licenses
sequencelengths 1
3
| version
stringclasses 677
values | tree_hash
stringlengths 40
40
| path
stringclasses 1
value | type
stringclasses 2
values | size
stringlengths 2
8
| text
stringlengths 25
67.1M
| package_name
stringlengths 2
41
| repo
stringlengths 33
86
|
---|---|---|---|---|---|---|---|---|
[
"Apache-2.0"
] | 0.8.1 | c14d0b2e7f19374017a2b5b6dfe48c5723c791ae | code | 1353 | """
adv_time(se::AbstractCompactSourceElement, obs::AbstractAcousticObserver)
Calculate the time an acoustic wave emmited by source `se` at time `se.Ο` is
recieved by observer `obs`.
"""
adv_time(se::AbstractCompactSourceElement, obs::AbstractAcousticObserver)
function adv_time(se::AbstractCompactSourceElement, obs::StationaryAcousticObserver)
Ο = source_time(se)
rv = obs(Ο) .- position(se)
r = norm_cs_safe(rv)
t = Ο + r/speed_of_sound(se)
return t
end
function adv_time(se::AbstractCompactSourceElement, obs::ConstVelocityAcousticObserver)
# Source time of the source element.
Ο = source_time(se)
# Ambient speed of sound of the source element.
c0 = speed_of_sound(se)
# Location of the observer at the source time.
x = obs(Ο)
# Vector from the source to the observer at the source time.
rv = x .- position(se)
# Distance from the source to the observer at the source time.
r = norm_cs_safe(rv)
# Speed of the observer divided by speed of sound.
Mo = norm_cs_safe(obs.v)/c0
# Unit vector pointing from the source to the observer.
rhat = rv/r
# Velocity of observer dotted with rhat at the source time.
Mor = dot_cs_safe(obs.v, rhat)/c0
# Now get the observer time.
t = Ο + r/c0*((Mor + sqrt(Mor^2 + 1 - Mo^2))/(1 - Mo^2))
return t
end
| AcousticAnalogies | https://github.com/OpenMDAO/AcousticAnalogies.jl.git |
|
[
"Apache-2.0"
] | 0.8.1 | c14d0b2e7f19374017a2b5b6dfe48c5723c791ae | code | 9761 | abstract type AbstractBoundaryLayer end
struct TrippedN0012BoundaryLayer{TAlphaStall} <: AbstractBoundaryLayer
alphastar0::TAlphaStall
end
TrippedN0012BoundaryLayer() = TrippedN0012BoundaryLayer(12.5*pi/180)
struct UntrippedN0012BoundaryLayer{TAlphaStall} <: AbstractBoundaryLayer
alphastar0::TAlphaStall
end
UntrippedN0012BoundaryLayer() = UntrippedN0012BoundaryLayer(12.5*pi/180)
struct ITrip1N0012BoundaryLayer{TAlphaStall} <: AbstractBoundaryLayer
alphastar0::TAlphaStall
end
ITrip1N0012BoundaryLayer() = ITrip1N0012BoundaryLayer(12.5*pi/180)
struct ITrip2N0012BoundaryLayer{TAlphaStall} <: AbstractBoundaryLayer
alphastar0::TAlphaStall
end
ITrip2N0012BoundaryLayer() = ITrip2N0012BoundaryLayer(12.5*pi/180)
struct ITrip3N0012BoundaryLayer{TAlphaStall} <: AbstractBoundaryLayer
alphastar0::TAlphaStall
end
ITrip3N0012BoundaryLayer() = ITrip3N0012BoundaryLayer(12.5*pi/180)
alpha_stall(bl::AbstractBoundaryLayer, Re_c) = bl.alphastar0
alpha_zerolift(bl::AbstractBoundaryLayer) = zero(bl.alphastar0)
is_top_suction(bl::AbstractBoundaryLayer, alphastar) = alphastar >= alpha_zerolift(bl)
function bl_thickness_0(::TrippedN0012BoundaryLayer, Re_c)
# Equation 2 from the BPM report.
logRe_c = log10(Re_c)
return 10^(1.892 - 0.9045*logRe_c + 0.0596*logRe_c^2)
end
function disp_thickness_0(::Union{TrippedN0012BoundaryLayer,ITrip1N0012BoundaryLayer}, Re_c)
# Equation 3 from the BPM report.
if Re_c β€ 0.3e6
return 0.0601*Re_c^(-0.114)
else
logRe_c = log10(Re_c)
return 10^(3.411 - 1.5397*logRe_c + 0.1059*logRe_c^2)
end
end
function disp_thickness_0(::ITrip2N0012BoundaryLayer, Re_c)
# Equation 3 from the BPM report, multiplied by 0.6 as is done in the code listing in the BPM report appendix.
if Re_c β€ 0.3e6
return 0.6*0.0601*Re_c^(-0.114)
else
logRe_c = log10(Re_c)
return 0.6*10^(3.411 - 1.5397*logRe_c + 0.1059*logRe_c^2)
end
end
function bl_thickness_0(::Union{UntrippedN0012BoundaryLayer,ITrip1N0012BoundaryLayer,ITrip3N0012BoundaryLayer}, Re_c)
# Equation 5 from the BPM report.
logRe_c = log10(Re_c)
return 10^(1.6569 - 0.9045*logRe_c + 0.0596*logRe_c^2)
end
function bl_thickness_0(::ITrip2N0012BoundaryLayer, Re_c)
# Equation 5 from the BPM report, multiplied by 0.6 as is done in the code listing in the BPM report appendix.
logRe_c = log10(Re_c)
return 0.6*10^(1.6569 - 0.9045*logRe_c + 0.0596*logRe_c^2)
end
function disp_thickness_0(::Union{UntrippedN0012BoundaryLayer,ITrip3N0012BoundaryLayer}, Re_c)
# Equation 6 from the BPM report.
logRe_c = log10(Re_c)
return 10^(3.0187 - 1.5397*logRe_c + 0.1059*logRe_c^2)
end
function _bl_thickness_p(::Union{TrippedN0012BoundaryLayer,UntrippedN0012BoundaryLayer,ITrip1N0012BoundaryLayer,ITrip2N0012BoundaryLayer,ITrip3N0012BoundaryLayer}, alphastar)
# Equation 8 from the BPM report.
alphastar_deg = alphastar*180/pi
return 10^(-0.04175*alphastar_deg + 0.00106*alphastar_deg^2)
end
function _disp_thickness_p(::Union{TrippedN0012BoundaryLayer,UntrippedN0012BoundaryLayer,ITrip1N0012BoundaryLayer,ITrip2N0012BoundaryLayer}, alphastar)
# Equation 9 from the BPM report.
alphastar_deg = alphastar*180/pi
return 10^(-0.0432*alphastar_deg + 0.00113*alphastar_deg^2)
end
function _disp_thickness_p(::ITrip3N0012BoundaryLayer, alphastar)
# Equation 9 from the BPM report, multiplied by 1.48 as is done in the BPM report appendix.
alphastar_deg = alphastar*180/pi
return 1.48*10^(-0.0432*alphastar_deg + 0.00113*alphastar_deg^2)
end
function _bl_thickness_s(::TrippedN0012BoundaryLayer, alphastar)
T = typeof(alphastar)
# Equation 11 from the BPM report.
# The report defines the suction-side boundary layer parameters for alphastar values from 0Β° to 25Β°.
# But what about negative angles of attack?
# The NACA0012 airfoil is symmetric, but if the angle of attack goes negative, I guess the pressure and suction sides would switch.
# So I'll check that the angle of attack is always positive here.
alphastar_deg = alphastar*180/pi
if alphastar_deg < 0
return T(NaN)
elseif alphastar_deg β€ 5
return 10^(0.0311*alphastar_deg)
elseif alphastar_deg β€ 12.5
return 0.3468*10^(0.1231*alphastar_deg)
elseif alphastar_deg β€ 25
return 5.718*10^(0.0258*alphastar_deg)
else
# What should I do for angles of attack greater than 25Β°?
# Maybe just keep the same thickness?
return 5.718*10^(0.0258*25*pi/180)*one(T)
end
end
function _disp_thickness_s(::Union{TrippedN0012BoundaryLayer,ITrip1N0012BoundaryLayer}, alphastar)
T = typeof(alphastar)
# Equation 12 from the BPM report.
alphastar_deg = alphastar*180/pi
if alphastar_deg < 0
# throw(DomainError(alphastar, "negative alphastar argument invalid"))
return T(NaN)
elseif alphastar_deg β€ 5
return 10^(0.0679*alphastar_deg)
elseif alphastar_deg β€ 12.5
return 0.381*10^(0.1516*alphastar_deg)
elseif alphastar_deg β€ 25
return 14.296*10^(0.0258*alphastar_deg)
else
# What should I do for angles of attack greater than 25Β°?
# Maybe just keep the same thickness?
return 14.296*10^(0.0258*25)*one(T)
end
end
function _bl_thickness_s(::Union{UntrippedN0012BoundaryLayer,ITrip1N0012BoundaryLayer,ITrip2N0012BoundaryLayer,ITrip3N0012BoundaryLayer}, alphastar)
T = typeof(alphastar)
# Equation 14 from the BPM report.
alphastar_deg = alphastar*180/pi
if alphastar_deg < 0
# throw(DomainError(alphastar, "negative alphastar argument invalid"))
return T(NaN)
elseif alphastar_deg β€ 7.5
return 10^(0.03114*alphastar_deg)
elseif alphastar_deg β€ 12.5
return 0.0303*10^(0.2336*alphastar_deg)
elseif alphastar_deg β€ 25
return 12*10^(0.0258*alphastar_deg)
else
# What should I do for angles of attack greater than 25Β°?
# Maybe just keep the same thickness?
return 12*10^(0.0258*25*pi/180)*one(T)
end
end
function _disp_thickness_s(::Union{UntrippedN0012BoundaryLayer,ITrip2N0012BoundaryLayer,ITrip3N0012BoundaryLayer}, alphastar)
T = typeof(alphastar)
# Equation 15 from the BPM report.
alphastar_deg = alphastar*180/pi
if alphastar_deg < 0
# throw(DomainError(alphastar, "negative alphastar argument invalid"))
return T(NaN)
elseif alphastar_deg β€ 7.5
return 10^(0.0679*alphastar_deg)
elseif alphastar_deg β€ 12.5
return 0.0162*10^(0.3066*alphastar_deg)
elseif alphastar_deg β€ 25
return 52.42*10^(0.0258*alphastar_deg)
else
# What should I do for angles of attack greater than 25Β°?
# Maybe just keep the same thickness?
return 52.42*10^(0.0258*25)*one(T)
end
end
function _disp_thickness_top(bl::Union{TrippedN0012BoundaryLayer,UntrippedN0012BoundaryLayer,ITrip1N0012BoundaryLayer,ITrip2N0012BoundaryLayer,ITrip3N0012BoundaryLayer}, alphastar)
# Switch sign on alphastar and call the "opposite" `disp_thickness_*` routine if the top surface isn't the suction surface.
return ifelse(is_top_suction(bl, alphastar), _disp_thickness_s(bl, alphastar), _disp_thickness_p(bl, -alphastar))
end
function _disp_thickness_bot(bl::Union{TrippedN0012BoundaryLayer,UntrippedN0012BoundaryLayer,ITrip1N0012BoundaryLayer,ITrip2N0012BoundaryLayer,ITrip3N0012BoundaryLayer}, alphastar)
return ifelse(is_top_suction(bl, alphastar), _disp_thickness_p(bl, alphastar), _disp_thickness_s(bl, -alphastar))
end
function _bl_thickness_top(bl::Union{TrippedN0012BoundaryLayer,UntrippedN0012BoundaryLayer,ITrip1N0012BoundaryLayer,ITrip2N0012BoundaryLayer,ITrip3N0012BoundaryLayer}, alphastar)
# Switch sign on alphastar and call the "opposite" `disp_thickness_*` routine if the top surface isn't the suction surface.
return ifelse(is_top_suction(bl, alphastar), _bl_thickness_s(bl, alphastar), _bl_thickness_p(bl, -alphastar))
end
function _bl_thickness_bot(bl::Union{TrippedN0012BoundaryLayer,UntrippedN0012BoundaryLayer,ITrip1N0012BoundaryLayer,ITrip2N0012BoundaryLayer,ITrip3N0012BoundaryLayer}, alphastar)
return ifelse(is_top_suction(bl, alphastar), _bl_thickness_p(bl, alphastar), _bl_thickness_s(bl, -alphastar))
end
function disp_thickness_bot(bl::AbstractBoundaryLayer, Re_c, alphastar)
# (Ξ΄^*_p/Ξ΄^*_0)*(Ξ΄^*_0/c)
return _disp_thickness_bot(bl, alphastar)*disp_thickness_0(bl, Re_c)
end
function disp_thickness_top(bl::AbstractBoundaryLayer, Re_c, alphastar)
return _disp_thickness_top(bl, alphastar)*disp_thickness_0(bl, Re_c)
end
function disp_thickness_s(bl::AbstractBoundaryLayer, Re_c, alphastar)
return ifelse(is_top_suction(bl, alphastar), disp_thickness_top(bl, Re_c, alphastar), disp_thickness_bot(bl, Re_c, alphastar))
end
function disp_thickness_p(bl::AbstractBoundaryLayer, Re_c, alphastar)
return ifelse(is_top_suction(bl, alphastar), disp_thickness_bot(bl, Re_c, alphastar), disp_thickness_top(bl, Re_c, alphastar))
end
function bl_thickness_bot(bl::AbstractBoundaryLayer, Re_c, alphastar)
# (Ξ΄_p/Ξ΄_0)*(Ξ΄_0/c)
return _bl_thickness_bot(bl, alphastar)*bl_thickness_0(bl, Re_c)
end
function bl_thickness_top(bl::AbstractBoundaryLayer, Re_c, alphastar)
return _bl_thickness_top(bl, alphastar)*bl_thickness_0(bl, Re_c)
end
function bl_thickness_s(bl::AbstractBoundaryLayer, Re_c, alphastar)
return ifelse(is_top_suction(bl, alphastar), bl_thickness_top(bl, Re_c, alphastar), bl_thickness_bot(bl, Re_c, alphastar))
end
function bl_thickness_p(bl::AbstractBoundaryLayer, Re_c, alphastar)
return ifelse(is_top_suction(bl, alphastar), bl_thickness_bot(bl, Re_c, alphastar), bl_thickness_top(bl, Re_c, alphastar))
end
| AcousticAnalogies | https://github.com/OpenMDAO/AcousticAnalogies.jl.git |
|
[
"Apache-2.0"
] | 0.8.1 | c14d0b2e7f19374017a2b5b6dfe48c5723c791ae | code | 16844 | function calculate_bpm_test(nu, L, chord, U, M, r_e, ΞΈ_e, Ξ¦_e, alphastar, bl; do_lblvs=false, do_tip_vortex=false, blade_tip=nothing, do_tebvs=false, h=nothing, Psi=nothing, use_Ualpha=false)
if do_tebvs
if do_tip_vortex
combined_calc = :with_tip
else
combined_calc = :no_tip
end
else
combined_calc = :none
end
M_c = 0.8*M
# How we're going to set this up:
#
# * Source starts at the origin, moving in the -x direction with velocity U.
#
c0 = U/M
# Hmm... how about the location stuff?
# I want the source element at the origin, so I guess that's r = 0, and ΞΈ doesn't matter.
r = 0.0
ΞΈ = 0.0
# Hmm... what about the twist?
# I want the chord line to be at an angle `alphastar` with the negative-x axis.
# But how does it work "by default"?
# Let's look at the doc strings.
# OK, so, if `twist_about_positive_y` is true, then initially the unit vector pointing from leading edge to trailing edge will be pointed in the negative z direction, then rotated about the positive y axis by an amount Ο.
# I want the blade to be aligned with the x axis, with the chord unit vector in the positive x axis direction.
twist_about_positive_y = true
# So then I think I want to rotate it by this much:
Ο = 3*pi/2 + alphastar
# Ο = 3*pi/2
# OK, so now, how about the velocities?
# Well, we're starting out in the blade fixed-frame, so the velocity should include everything, including induction.
# So, from the perspective of the source element, the total velocity is `M_c*c0` in the positive x direction.
# No velocity in the other directions.
vn = M_c*c0
vr = 0.0
vc = 0.0
# Ah, now I've decided that's not right.
# I want the chord line to be aligned with the x axis, so I'll need to rotate the velocity to take into account the angle of attack.
# So that means the normal velocity would be
# vn = M_c*c0*cos(alphastar)
# vr = 0.0
# vc = M_c*c0*sin(alphastar)
# We're starting at Ο = 0, and the time step doesn't matter yet.
Ο = 0.0
ΞΟ = 1.0
if use_Ualpha
se_tblte = AcousticAnalogies.TBLTESourceElement{AcousticAnalogies.BPMDirectivity,false,AcousticAnalogies.NoMachCorrection,true}(c0, nu, r, ΞΈ, L, chord, Ο, M_c*c0, alphastar, Ο, ΞΟ, bl, twist_about_positive_y)
if do_lblvs
se_lblvs = AcousticAnalogies.LBLVSSourceElement{AcousticAnalogies.BPMDirectivity,false,true}(c0, nu, r, ΞΈ, L, chord, Ο, M_c*c0, alphastar, Ο, ΞΟ, bl, twist_about_positive_y)
end
if do_tip_vortex
se_tip = AcousticAnalogies.TipVortexSourceElement{AcousticAnalogies.BPMDirectivity,false,true}(c0, r, ΞΈ, L, chord, Ο, M_c*c0, alphastar, Ο, ΞΟ, bl, blade_tip, twist_about_positive_y)
end
if do_tebvs
se_tebvs = AcousticAnalogies.TEBVSSourceElement{AcousticAnalogies.BPMDirectivity,false,true}(c0, nu, r, ΞΈ, L, chord, Ο, h, Psi, M_c*c0, alphastar, Ο, ΞΟ, bl, twist_about_positive_y)
end
if combined_calc == :no_tip
se_combined = AcousticAnalogies.CombinedNoTipBroadbandSourceElement{AcousticAnalogies.BPMDirectivity,false,AcousticAnalogies.NoMachCorrection,true}(c0, nu, r, ΞΈ, L, chord, Ο, h, Psi, M_c*c0, alphastar, Ο, ΞΟ, bl, twist_about_positive_y)
elseif combined_calc == :with_tip
se_combined = AcousticAnalogies.CombinedWithTipBroadbandSourceElement{AcousticAnalogies.BPMDirectivity,false,AcousticAnalogies.NoMachCorrection,true}(c0, nu, r, ΞΈ, L, chord, Ο, h, Psi, M_c*c0, alphastar, Ο, ΞΟ, bl, blade_tip, twist_about_positive_y)
end
else
se_tblte = AcousticAnalogies.TBLTESourceElement{AcousticAnalogies.BPMDirectivity,false,AcousticAnalogies.NoMachCorrection,true}(c0, nu, r, ΞΈ, L, chord, Ο, vn, vr, vc, Ο, ΞΟ, bl, twist_about_positive_y)
if do_lblvs
se_lblvs = AcousticAnalogies.LBLVSSourceElement{AcousticAnalogies.BPMDirectivity,false,true}(c0, nu, r, ΞΈ, L, chord, Ο, vn, vr, vc, Ο, ΞΟ, bl, twist_about_positive_y)
end
if do_tip_vortex
se_tip = AcousticAnalogies.TipVortexSourceElement{AcousticAnalogies.BPMDirectivity,false,true}(c0, r, ΞΈ, L, chord, Ο, vn, vr, vc, Ο, ΞΟ, bl, blade_tip, twist_about_positive_y)
end
if do_tebvs
se_tebvs = AcousticAnalogies.TEBVSSourceElement{AcousticAnalogies.BPMDirectivity,false,true}(c0, nu, r, ΞΈ, L, chord, Ο, h, Psi, vn, vr, vc, Ο, ΞΟ, bl, twist_about_positive_y)
end
if combined_calc == :no_tip
se_combined = AcousticAnalogies.CombinedNoTipBroadbandSourceElement{AcousticAnalogies.BPMDirectivity,false,AcousticAnalogies.NoMachCorrection,true}(c0, nu, r, ΞΈ, L, chord, Ο, h, Psi, vn, vr, vc, Ο, ΞΟ, bl, twist_about_positive_y)
elseif combined_calc == :with_tip
se_combined = AcousticAnalogies.CombinedWithTipBroadbandSourceElement{AcousticAnalogies.BPMDirectivity,false,AcousticAnalogies.NoMachCorrection,true}(c0, nu, r, ΞΈ, L, chord, Ο, h, Psi, vn, vr, vc, Ο, ΞΟ, bl, blade_tip, twist_about_positive_y)
end
end
# Let's check that things are what we expect.
@assert se_tblte.y0dot β [0.0, 0.0, 0.0]
@assert se_tblte.y1dot β [0.0, 0.0, 0.0]
@assert se_tblte.y1dot_fluid β [M_c*c0, 0.0, 0.0]
# @assert se_tblte.y1dot_fluid β [M_c*c0*cos(alphastar), 0.0, M_c*c0*sin(alphastar)]
@assert se_tblte.span_uvec β [0.0, 1.0, 0.0]
@assert se_tblte.chord_uvec β [cos(alphastar), 0.0, -sin(alphastar)]
# @assert se_tblte.chord_uvec β [1.0, 0.0, 0.0]
@assert isapprox(AcousticAnalogies.angle_of_attack(se_tblte), alphastar; atol=1e-12)
if do_lblvs
# Let's check that things are what we expect.
@assert se_lblvs.y0dot β [0.0, 0.0, 0.0]
@assert se_lblvs.y1dot β [0.0, 0.0, 0.0]
@assert se_lblvs.y1dot_fluid β [M_c*c0, 0.0, 0.0]
# @assert se_lblvs.y1dot_fluid β [M_c*c0*cos(alphastar), 0.0, M_c*c0*sin(alphastar)]
@assert se_lblvs.span_uvec β [0.0, 1.0, 0.0]
@assert se_lblvs.chord_uvec β [cos(alphastar), 0.0, -sin(alphastar)]
# @assert se_lblvs.chord_uvec β [1.0, 0.0, 0.0]
@assert isapprox(AcousticAnalogies.angle_of_attack(se_lblvs), alphastar; atol=1e-12)
end
if do_tip_vortex
# Let's check that things are what we expect.
@assert se_tip.y0dot β [0.0, 0.0, 0.0]
@assert se_tip.y1dot β [0.0, 0.0, 0.0]
@assert se_tip.y1dot_fluid β [M_c*c0, 0.0, 0.0]
# @assert se_tip.y1dot_fluid β [M_c*c0*cos(alphastar), 0.0, M_c*c0*sin(alphastar)]
@assert se_tip.span_uvec β [0.0, 1.0, 0.0]
@assert se_tip.chord_uvec β [cos(alphastar), 0.0, -sin(alphastar)]
# @assert se_tip.chord_uvec β [1.0, 0.0, 0.0]
@assert isapprox(AcousticAnalogies.angle_of_attack(se_tip), alphastar; atol=1e-12)
end
if do_tebvs
# Let's check that things are what we expect.
@assert se_tebvs.y0dot β [0.0, 0.0, 0.0]
@assert se_tebvs.y1dot β [0.0, 0.0, 0.0]
@assert se_tebvs.y1dot_fluid β [M_c*c0, 0.0, 0.0]
# @assert se_tebvs.y1dot_fluid β [M_c*c0*cos(alphastar), 0.0, M_c*c0*sin(alphastar)]
@assert se_tebvs.span_uvec β [0.0, 1.0, 0.0]
@assert se_tebvs.chord_uvec β [cos(alphastar), 0.0, -sin(alphastar)]
# @assert se_tebvs.chord_uvec β [1.0, 0.0, 0.0]
@assert isapprox(AcousticAnalogies.angle_of_attack(se_tebvs), alphastar; atol=1e-12)
end
if combined_calc != :none
# Let's check that things are what we expect.
@assert se_combined.y0dot β [0.0, 0.0, 0.0]
@assert se_combined.y1dot β [0.0, 0.0, 0.0]
@assert se_combined.y1dot_fluid β [M_c*c0, 0.0, 0.0]
# @assert se_combined.y1dot_fluid β [M_c*c0*cos(alphastar), 0.0, M_c*c0*sin(alphastar)]
@assert se_combined.span_uvec β [0.0, 1.0, 0.0]
@assert se_combined.chord_uvec β [cos(alphastar), 0.0, -sin(alphastar)]
# @assert se_combined.chord_uvec β [1.0, 0.0, 0.0]
@assert isapprox(AcousticAnalogies.angle_of_attack(se_combined), alphastar; atol=1e-12)
end
# Now we want to transform the source element into the global frame, which just means we make it move with speed `U` in the negative x direction.
trans = ConstantVelocityTransformation(Ο, [0.0, 0.0, 0.0], [-U, 0.0, 0.0])
# No, that's not right, I want it to move in the direction of the velocity, which isn't aligned with the x axis any more.
# trans = ConstantVelocityTransformation(Ο, [0.0, 0.0, 0.0], [-U*cos(alphastar), 0.0, -U*sin(alphastar)])
se_tblte_global = trans(se_tblte)
if do_lblvs
se_lblvs_global = trans(se_lblvs)
end
if do_tip_vortex
se_tip_global = trans(se_tip)
end
if do_tebvs
se_tebvs_global = trans(se_tebvs)
end
if combined_calc != :none
se_combined_global = trans(se_combined)
end
# Will that change the angle of attack?
# Originally the total velocity was `Vtotal = se_tblte.y1dot_fluid - se_tblte.y1dot = [M_c*c0, 0, 0]`, and now it will be `[M_c*c0 - U, 0, 0] - [-U, 0, 0] = [M_c*c0, 0, 0]`.
# So nope, which is good. :-)
# Oh, and I'm only changing the magnitude of the velocity, not the direction.
@assert se_tblte_global.y0dot β [0.0, 0.0, 0.0]
@assert se_tblte_global.y1dot β [-U, 0.0, 0.0]
# @assert se_tblte_global.y1dot β [-U*cos(alphastar), 0.0, -U*sin(alphastar)]
@assert se_tblte_global.y1dot_fluid β [M_c*c0 - U, 0.0, 0.0]
# @assert se_tblte_global.y1dot_fluid β [(M_c*c0 - U)*cos(alphastar), 0.0, (M_c*c0 - U)*sin(alphastar)]
@assert se_tblte_global.span_uvec β [0.0, 1.0, 0.0]
@assert se_tblte_global.chord_uvec β [cos(alphastar), 0.0, -sin(alphastar)]
# @assert se_tblte_global.chord_uvec β [1.0, 0.0, 0.0]
@assert isapprox(AcousticAnalogies.angle_of_attack(se_tblte_global), alphastar; atol=1e-12)
if do_lblvs
@assert se_lblvs_global.y0dot β [0.0, 0.0, 0.0]
@assert se_lblvs_global.y1dot β [-U, 0.0, 0.0]
# @assert se_lblvs_global.y1dot β [-U*cos(alphastar), 0.0, -U*sin(alphastar)]
@assert se_lblvs_global.y1dot_fluid β [M_c*c0 - U, 0.0, 0.0]
# @assert se_lblvs_global.y1dot_fluid β [(M_c*c0 - U)*cos(alphastar), 0.0, (M_c*c0 - U)*sin(alphastar)]
@assert se_lblvs_global.span_uvec β [0.0, 1.0, 0.0]
@assert se_lblvs_global.chord_uvec β [cos(alphastar), 0.0, -sin(alphastar)]
# @assert se_lblvs_global.chord_uvec β [1.0, 0.0, 0.0]
@assert isapprox(AcousticAnalogies.angle_of_attack(se_lblvs_global), alphastar; atol=1e-12)
end
if do_tip_vortex
@assert se_tip_global.y0dot β [0.0, 0.0, 0.0]
@assert se_tip_global.y1dot β [-U, 0.0, 0.0]
# @assert se_tip_global.y1dot β [-U*cos(alphastar), 0.0, -U*sin(alphastar)]
@assert se_tip_global.y1dot_fluid β [M_c*c0 - U, 0.0, 0.0]
# @assert se_tip_global.y1dot_fluid β [(M_c*c0 - U)*cos(alphastar), 0.0, (M_c*c0 - U)*sin(alphastar)]
@assert se_tip_global.span_uvec β [0.0, 1.0, 0.0]
@assert se_tip_global.chord_uvec β [cos(alphastar), 0.0, -sin(alphastar)]
# @assert se_tip_global.chord_uvec β [1.0, 0.0, 0.0]
@assert isapprox(AcousticAnalogies.angle_of_attack(se_tip_global), alphastar; atol=1e-12)
end
if do_tebvs
@assert se_tebvs_global.y0dot β [0.0, 0.0, 0.0]
@assert se_tebvs_global.y1dot β [-U, 0.0, 0.0]
# @assert se_tebvs_global.y1dot β [-U*cos(alphastar), 0.0, -U*sin(alphastar)]
@assert se_tebvs_global.y1dot_fluid β [M_c*c0 - U, 0.0, 0.0]
# @assert se_tebvs_global.y1dot_fluid β [(M_c*c0 - U)*cos(alphastar), 0.0, (M_c*c0 - U)*sin(alphastar)]
@assert se_tebvs_global.span_uvec β [0.0, 1.0, 0.0]
@assert se_tebvs_global.chord_uvec β [cos(alphastar), 0.0, -sin(alphastar)]
# @assert se_tebvs_global.chord_uvec β [1.0, 0.0, 0.0]
@assert isapprox(AcousticAnalogies.angle_of_attack(se_tebvs_global), alphastar; atol=1e-12)
end
if combined_calc != :none
@assert se_combined_global.y0dot β [0.0, 0.0, 0.0]
@assert se_combined_global.y1dot β [-U, 0.0, 0.0]
# @assert se_combined_global.y1dot β [-U*cos(alphastar), 0.0, -U*sin(alphastar)]
@assert se_combined_global.y1dot_fluid β [M_c*c0 - U, 0.0, 0.0]
# @assert se_combined_global.y1dot_fluid β [(M_c*c0 - U)*cos(alphastar), 0.0, (M_c*c0 - U)*sin(alphastar)]
@assert se_combined_global.span_uvec β [0.0, 1.0, 0.0]
@assert se_combined_global.chord_uvec β [cos(alphastar), 0.0, -sin(alphastar)]
# @assert se_combined_global.chord_uvec β [1.0, 0.0, 0.0]
@assert isapprox(AcousticAnalogies.angle_of_attack(se_combined_global), alphastar; atol=1e-12)
end
# If the angle of attack is negative, then the pressure and suction sides of the airfoil section switch, and so the coordinate system does too.
if (alphastar - AcousticAnalogies.alpha_zerolift(bl)) < 0
Ξ¦_e *= -1
end
# What about the observer?
# That's the tricky part.
# We know the final position of the observer is this.
x_obs_final = [r_e*cos(ΞΈ_e), r_e*sin(ΞΈ_e)*cos(Ξ¦_e), r_e*sin(ΞΈ_e)*sin(Ξ¦_e)]
# This polar coordinate system is actually defined from the perspective of the fluid velocity, not the source element chord direction.
# So need to take into acount that.
# x_obs_final = [r_e*cos(ΞΈ_e)*cos(alphastar), r_e*sin(ΞΈ_e)*cos(Ξ¦_e), r_e*sin(ΞΈ_e)*sin(Ξ¦_e)*sin(alphastar)]
# And we can use the distance from the initial position of the source to the final position of the observer to get the distance the acoustic wave travels, and then the final time.
t_final = Ο + norm(x_obs_final - se_tblte_global.y0dot)/c0
# And then we can use that to get the initial position of the observer, which is moving with the same velocity as the source.
x_obs_initial = x_obs_final - se_tblte_global.y1dot*(t_final - Ο)
# So now I should be able to create the observer object thingy.
obs = AcousticAnalogies.ConstVelocityAcousticObserver(Ο, x_obs_initial, se_tblte_global.y1dot)
# And now I should check if I get the expected final time.
@assert AcousticAnalogies.adv_time(se_tblte_global, obs) β t_final
if do_lblvs
@assert AcousticAnalogies.adv_time(se_lblvs_global, obs) β t_final
end
if do_tip_vortex
@assert AcousticAnalogies.adv_time(se_tip_global, obs) β t_final
end
if do_tebvs
@assert AcousticAnalogies.adv_time(se_tebvs_global, obs) β t_final
end
if combined_calc != :none
@assert AcousticAnalogies.adv_time(se_combined_global, obs) β t_final
end
# So now I should be able to do a noise prediction.
freqs = AcousticMetrics.ExactThirdOctaveCenterBands(0.2, 20e3)
tblte_out = AcousticAnalogies.noise(se_tblte_global, obs, freqs)
tblte_s_out = AcousticAnalogies.pbs_suction(tblte_out)
tblte_p_out = AcousticAnalogies.pbs_pressure(tblte_out)
tblte_alpha_out = AcousticAnalogies.pbs_alpha(tblte_out)
SPL_s_jl = 10.0 .* log10.(tblte_s_out./((20e-6)^2))
SPL_p_jl = 10.0 .* log10.(tblte_p_out./((20e-6)^2))
SPL_alpha_jl = 10.0 .* log10.(tblte_alpha_out./((20e-6)^2))
if do_lblvs
lblvs_out = AcousticAnalogies.noise(se_lblvs_global, obs, freqs)
SPL_lbl_vs = 10.0 .* log10.(lblvs_out./((20e-6)^2))
end
if do_tip_vortex
tip_out = AcousticAnalogies.noise(se_tip_global, obs, freqs)
SPL_tip = 10.0 .* log10.(tip_out./((20e-6)^2))
end
if do_tebvs
tebvs_out = AcousticAnalogies.noise(se_tebvs_global, obs, freqs)
SPL_teb = 10.0 .* log10.(tebvs_out./((20e-6)^2))
end
if combined_calc != :none
combined_out = AcousticAnalogies.noise(se_combined_global, obs, freqs)
end
@assert AcousticAnalogies.doppler(tblte_out) β 1
if do_lblvs
@assert AcousticAnalogies.doppler(lblvs_out) β 1
end
if do_tip_vortex
@assert AcousticAnalogies.doppler(tip_out) β 1
end
if do_tebvs
@assert AcousticAnalogies.doppler(tebvs_out) β 1
end
if combined_calc != :none
@assert AcousticAnalogies.doppler(combined_out) β 1
end
if combined_calc in (:no_tip, :with_tip)
@assert all(pbs_suction(combined_out) .β tblte_s_out)
@assert all(pbs_pressure(combined_out) .β tblte_p_out)
@assert all(pbs_alpha(combined_out) .β tblte_alpha_out)
@assert all(pbs_teb(combined_out) .β tebvs_out)
end
if combined_calc in (:with_tip,)
@assert all(pbs_tip(combined_out) .β tip_out)
end
res = (freqs, SPL_s_jl, SPL_p_jl, SPL_alpha_jl)
if do_lblvs
res = (res..., SPL_lbl_vs)
end
if do_tip_vortex
res = (res..., SPL_tip)
end
if do_tebvs
res = (res..., SPL_teb)
end
return res
end
| AcousticAnalogies | https://github.com/OpenMDAO/AcousticAnalogies.jl.git |
|
[
"Apache-2.0"
] | 0.8.1 | c14d0b2e7f19374017a2b5b6dfe48c5723c791ae | code | 55426 | import FillArrays: getindex_value
# Normal implementation is this from FillArrays.jl:
#
# @inline getindex_value(F::Fill) = F.value
#
# But that breaks with CCBlade.
# Why?
# Because, since a FillArrays.Fill <: AbstractArray, it calls this:
#
# function Base.getproperty(obj::AbstractVector{<:Section}, sym::Symbol)
# return getfield.(obj, sym)
# end
#
# which eventually calls FillArrays.getindex_value again, leading to recursion and a stack overflow.
#
# This is type piracy :-(.
# But it may also be type piracy to extend Base.getproperty in CCBlade.jl, since CCBlade.jl doesn't own Base.getproperty or AbstractVector.
@inline getindex_value(F::Fill{<:Union{CCBlade.Section,CCBlade.OperatingPoint,CCBlade.Outputs}}) = getfield(F, :value)
# Normal implementation is this from FillArrays.jl:
#
# @inline axes(F::Fill) = F.axes
#
# But that hits
#
# function Base.getproperty(obj::AbstractVector{<:Section}, sym::Symbol)
# return getfield.(obj, sym)
# end
#
# from CCBlade.
# This is type piracy :-(.
# But it may also be type piracy to extend Base.getproperty in CCBlade.jl, since CCBlade.jl doesn't own Base.getproperty or AbstractVector.
@inline Base.axes(F::Fill{<:Union{CCBlade.Section,CCBlade.OperatingPoint,CCBlade.Outputs}}) = getfield(F, :axes)
function _standard_ccblade_transform(rotor::CCBlade.Rotor, sections::AbstractVector{<:CCBlade.Section}, ops::AbstractVector{<:CCBlade.OperatingPoint}, period, num_src_times, positive_x_rotation)
# Assume the rotor is traveling in the positive x direction, with the first
# blade aligned with the positive y axis. Rotor hub is initially at the origin.
rot_axis = @SVector [1.0, 0.0, 0.0]
blade_axis = @SVector [0.0, 1.0, 0.0]
y0_hub = @SVector [0.0, 0.0, 0.0] # m
t0 = 0.0
# Get the time of each time step.
dt = period/num_src_times
src_times = t0 .+ (0:num_src_times-1).*dt
# Get transformations for each blade element.
cos_precone = cos(rotor.precone)
# r = SingleFieldStructArray(sections, Val{:r})
# Vx = SingleFieldStructArray(ops, Val{:Vx})
# Vy = SingleFieldStructArray(ops, Val{:Vy})
r = mapview(:r, sections)
Vx = mapview(:Vx, ops)
Vy = mapview(:Vy, ops)
if positive_x_rotation
rot_trans = SteadyRotXTransformation.(t0, Vy./(r.*cos_precone), 0.0) # size (num_radial,)
else
rot_trans = SteadyRotXTransformation.(t0, -Vy./(r.*cos_precone), 0.0) # size (num_radial,)
end
const_vel_trans = ConstantVelocityTransformation.(t0, Ref(y0_hub), Ref(rot_axis).*Vx./cos_precone) # size (num_radial,)
# Reshape things to get broadcasting to work.
rot_trans_rs = reshape(rot_trans, 1, :)
const_vel_trans_rs = reshape(const_vel_trans, 1, :)
# Now get all the transformations.
trans = compose.(src_times, const_vel_trans_rs, rot_trans_rs) # size (num_times, num_radial)
return src_times, dt, trans
end
"""
CompactF1ASourceElement(rotor::CCBlade.Rotor, section::CCBlade.Section, op::CCBlade.OperatingPoint, out::CCBlade.Outputs, ΞΈ, Ξr, area_per_chord2, Ο, positive_x_rotation=true)
Construct a source element to be used with the compact form of Farassat's formulation 1A from CCBlade objects.
The source element's position is calculated from `section.r`, `rotor.precone`, and the `ΞΈ` argument using
```julia
sΞΈ, cΞΈ = sincos(ΞΈ)
spc, cpc = sincos(precone)
y0dot = [r*spc, r*cpc*cΞΈ, r*cpc*sΞΈ]
```
where `y0dot` is the position of the source element.
# Arguments
- `rotor::CCBlade.Rotor`: CCBlade rotor object, needed for the precone angle.precone.
- `section::CCBlade.Section`: CCBlade section object, needed for the radial location and chord length of the element.
- `op::CCBlade.OperatingPoint`: CCBlade operating point, needed for atmospheric properties.
- `out::CCBlade.Outputs`: CCBlade outputs object, needed for the loading.
- `ΞΈ`: polar coordinate of the element, in radians.
- `Ξr`: length of the element.
- `area_per_chord2`: cross-sectional area divided by the chord squared of the element.
- `Ο`: source time of the element.
- `positive_x_rotation`: rotate blade around the positive-x axis if `true`, negative-x axis otherwise.
"""
function CompactF1ASourceElement(rotor::CCBlade.Rotor, section::CCBlade.Section, op::CCBlade.OperatingPoint, out::CCBlade.Outputs, ΞΈ, Ξr, area_per_chord2, Ο, positive_x_rotation)
Ο0 = op.rho
c0 = op.asound
r = section.r
precone = rotor.precone
Np = out.Np
Tp = out.Tp
Ξ = area_per_chord2*section.chord^2
# Thinking about the geometry here:
# y^ . .
# | . .
# | . .
# | . .
# |Ο. .
# |.--------->x .
sΞΈ, cΞΈ = sincos(ΞΈ)
spc, cpc = sincos(precone)
y0dot = @SVector [r*spc, r*cpc*cΞΈ, r*cpc*sΞΈ]
T = eltype(y0dot)
y1dot = @SVector zeros(T, 3)
y2dot = @SVector zeros(T, 3)
y3dot = @SVector zeros(T, 3)
# The sign convention is a little tricky. We want the load on the fluid in
# the blade coordinate system, which is a coordinate system that is rotating
# and translating with blades, and assumes that the axis of rotation is at
# the origin, aligned with the positive x axis. A positive rotation is
# righthanded (so, say, if the blade is aligned with the y axis and rotating
# with a positive rate, it is rotating toward the z axis) For the normal
# loading, CCBlade gives a positive value when the load *on the blade* is in
# the same direction as the axis of rotation (or opposite the freestream
# velocity in the normal case). But we need the loading *on the fluid*,
# which is in the opposite direction, hence we need to switch the sign on
# Np.
# For the circumferential loading, CCBlade gives a positive value when it
# opposes the motion of the blade. So, in our hypothetical coordinate
# system, let's say the blade is pointed along the y axis and rotating with
# a positive rate. Then the blade is moving toward the positive z axis, and
# since the circumferential loading opposes the blade motion, the load on
# the blade would be pointed in the negative z direction. So that means the
# load on the fluid would be in the positive z direction, and we don't need
# to switch the sign.
# So after all that, the takeaway is that we'll start out with a loading
# vector [-Np, 0, Tp], then rotate it about the positive z-axis by an amount
# `-precone`, then rotate it about the x axis by an amount `ΞΈ`.
# But, what if I decide the blade is rotating around the negative x-axis?
# The normal loading will still be in the same direction.
# The precone and theta stuff can still work the same way.
# I think the only thing that would switch is the circumferential loading.
fn = -Np*cpc
fr = Np*spc
if positive_x_rotation
fc = Tp
else
fc = -Tp
end
f0dot = @SVector [fn, cΞΈ*fr - sΞΈ*fc, sΞΈ*fr + cΞΈ*fc]
T = eltype(f0dot)
f1dot = @SVector zeros(T, 3)
u = @SVector [spc, cpc*cΞΈ, cpc*sΞΈ]
return CompactF1ASourceElement(Ο0, c0, Ξr, Ξ, y0dot, y1dot, y2dot, y3dot, f0dot, f1dot, Ο, u)
end
"""
f1a_source_elements_ccblade(rotor::CCBlade.Rotor, sections::Vector{CCBlade.Section}, ops::Vector{CCBlade.OperatingPoint}, outputs::Vector{CCBlade.Outputs}, area_per_chord2::Vector{AbstractFloat}, period, num_src_times, positive_x_rotation)
Construct and return an array of CompactF1ASourceElement objects from CCBlade structs.
# Arguments
- `rotor`: CCBlade rotor object.
- `sections`: `Vector` of CCBlade section object.
- `ops`: `Vector` of CCBlade operating point.
- `outputs`::`Vector` of CCBlade output objects.
- `area_per_chord2`: cross-sectional area divided by the chord squared of the element at each CCBlade.section. Should be a Vector{AbstractFloat}, same length as `sections`, `ops`, `outputs`.
- `period`: length of the source time over which the returned source elements will evaluated.
- `num_src_times`: number of source times.
- `positive_x_rotation`: rotate blade around the positive-x axis if `true`, negative-x axis otherwise.
"""
function f1a_source_elements_ccblade(rotor, sections, ops, outputs, area_per_chord2, period, num_src_times, positive_x_rotation)
# Need to know the radial spacing. (CCBlade doesn't use thisβwhen
# integrating stuff [loading to get torque and thrust] it uses the
# trapezoidal rule and passes in the radial locations, and assumes that
# integrands go to zero at the hub and tip.) Kind of lame that I have to
# calcluate it here, but whatever. Maybe I should use StaticArrays for this?
# Ah, no, I don't know the length at compile time.
dradii = get_ccblade_dradii(rotor, sections)
# Get the transformation that will put the source elements in the "standard" CCBlade.jl reference frame (moving axially in the positive x axis direction, rotating about the positive x axis or negative x axis, first blade initially aligned with the positive y axis).
src_times, dt, trans = _standard_ccblade_transform(rotor, sections, ops, period, num_src_times, positive_x_rotation)
# This is just an array of the angular offsets of each blade. First blade is
# aligned with the y axis, next one is offset 2*pi/B radians, etc..
num_blades = rotor.B
ΞΈs = 2*pi/num_blades.*(0:(num_blades-1)) .* ifelse(positive_x_rotation, 1, -1)
# Reshape for broadcasting. Goal is to make everything work for a size of (num_times,
# num_radial, num_blades).
# trans_rs = reshape(trans, size(trans)..., 1)
ΞΈs_rs = reshape(ΞΈs, 1, 1, :)
sections_rs = reshape(sections, 1, :, 1)
ops_rs = reshape(ops, 1, :, 1)
outputs_rs = reshape(outputs, 1, :, 1)
dradii_rs = reshape(dradii, 1, :, 1)
area_per_chord2_rs = reshape(area_per_chord2, 1, :, 1)
# src_times = reshape(src_times, :, 1, 1) # This one isn't necessary.
# Construct and transform the source elements.
ses = CompactF1ASourceElement.(Ref(rotor), sections_rs, ops_rs, outputs_rs, ΞΈs_rs, dradii_rs, area_per_chord2_rs, src_times, positive_x_rotation) .|> trans
return ses
end
function _get_position_velocity_span_uvec_chord_uvec(theta, precone, pitch, r, ΞΈ, W, phi, positive_x_rotation)
sΞΈ, cΞΈ = sincos(ΞΈ)
spc, cpc = sincos(precone)
stwist, ctwist = sincos(theta + pitch)
# The way this will work:
#
# * We're going to assume that the rotor blade is moving axially in the positive x direction, and rotating about the x axis.
# * The "first" blade is initially aligned with the positive y axis.
# * Then we'll rotate the element about the positive z-axis by an amount `-precone` to acount for the precone.
# * Then we'll rotate the element about the positive x-axis by an amount `ΞΈ`.
#
# Those transformations will be applied to the blade element position, but also other vectors associated with the element.
# In matrix form the precone transformation would be
#
# [ cos(-precone), -sin(-precone), 0 ]
# [ sin(-precone), cos(-precone), 0 ]
# [ 0, 0, 1 ]
#
# or equivalently
#
# [ cos(precone), sin(precone), 0 ]
# [-sin(precone), cos(precone), 0 ]
# [ 0, 0, 1 ]
#
# And the ΞΈ rotation about the x axis would be
#
# [ 1, 0 , 0 ]
# [ 0, cos(ΞΈ), -sin(ΞΈ) ]
# [ 0, sin(ΞΈ), cos(ΞΈ) ]
#
# So, to get the position, we start out with a vector
#
# [0]
# [r]
# [0]
#
# And then multiply that by the precone rotation matrix and ΞΈ rotation matrix.
#
# [ cos(precone), sin(precone), 0 ] [0] [ r*sin(precone) ]
# [-sin(precone), cos(precone), 0 ] [r] = [ r*cos(precone) ]
# [ 0, 0, 1 ] [0] [ 0 ]
#
# [ 1, 0 , 0 ] [ r*sin(precone) ] [ r*sin(precone) ]
# [ 0, cos(ΞΈ), -sin(ΞΈ) ] [ r*cos(precone) ] = [ r*cos(precone)*cos(ΞΈ) ]
# [ 0, sin(ΞΈ), cos(ΞΈ) ] [ 0 ] [ r*cos(precone)*sin(ΞΈ) ]
y0dot = @SVector [r*spc, r*cpc*cΞΈ, r*cpc*sΞΈ]
# In the blade-fixed frame, the source isn't moving, since the blade-fixed reference frame is moving with the source.
y1dot = @SVector zeros(eltype(y0dot), 3)
# Vx = op.Vx
# u = out.u
# Vy = op.Vy
# v = out.v
sphi, cphi = sincos(phi)
Vx_plus_u = W*sphi
Vy_minus_v = W*cphi
# The `span_uvec` is a unit vector pointing from the hub to the tip, along the blade element's radial length.
# So that's just the same as the position vector, but without the r factor.
span_uvec = @SVector [spc, cpc*cΞΈ, cpc*sΞΈ]
if positive_x_rotation
# Now, what is the velocity of the fluid in the blade-fixed frame?
# In our coordinate system, the rotor is rotating about the x axis, moving in the x axis direction.
# So that means it appears that the axial freestream velocity Vx is in the negative x axis direction.
# And the induced velocity `u` has the same sign convention as Vx.
# So the total axial velocity of the fluid is `(-Vx - u)`.
#
# For the tangential velocity, we're imagining the blade is initially aligned with the y axis, rotating about the positive x axis.
# So that means the blade is moving toward the z axis.
# So, from the perspective of the blade, the `Vy` velocity is in the negative z axis direction.
# But the sign convention for the induced tangential velocity `v` is that
# it's positive when it opposes `Vy`, so the total tangential velocity of the fluid is `(-Vy + v)`.
#
# So, finally, the fluid velocity vector we need to rotate is
#
# [-Vx - u ]
# [ 0 ]
# [-Vy + v ]
#
# and when I do all that I get
#
# [ (-Vx - u)*cos(precone) ]
# [ (Vx + u)*sin(precone)*cos(ΞΈ) - (-Vy + v)*sin(ΞΈ) ]
# [ (Vx + u)*sin(precone)*sin(ΞΈ) + (-Vy + v)*cos(ΞΈ) ]
# y1dot_fluid = @SVector [(-Vx - u)*cpc, (Vx + u)*spc*cΞΈ - (-Vy + v)*sΞΈ, (Vx + u)*spc*sΞΈ + (-Vy + v)*cΞΈ]
y1dot_fluid = @SVector [-Vx_plus_u*cpc, Vx_plus_u*spc*cΞΈ - (-Vy_minus_v)*sΞΈ, Vx_plus_u*spc*sΞΈ + (-Vy_minus_v)*cΞΈ]
# Finally the `chord_uvec` is a unit vector pointing from the leading edge to the trailing edge.
# In our initial coordinate system (i.e., not accounting for the precone or
# ΞΈ rotations) we're imagining the blade is rotating about the x axis,
# aligned with the y axis, and so is moving in the direction of the z axis.
# So that means if the twist is zero, then the leading edge is headed in the
# z axis direction, and a vector pointing from leading edge to trailing edge
# would be in the negative z axis direction. Then, to account for the twist,
# we would rotate it about the positive y axis. And then do the usual
# precone and ΞΈ rotations.
# So, a rotation about the y axis is
#
# [ cos(twist) 0 sin(twist) ]
# [ 0 1 0 ]
# [-sin(twist) 0 cos(twist) ]
#
# So, start with
#
# [ 0 ]
# [ 0 ]
# [-1 ]
#
# then
#
# [ cos(twist) 0 sin(twist) ] [ 0 ] [-sin(twist) ]
# [ 0 1 0 ] [ 0 ] = [ 0 ]
# [-sin(twist) 0 cos(twist) ] [-1 ] [-cos(twist) ]
#
# Now do the precone transformation
#
# [ cos(precone), sin(precone), 0 ] [-sin(twist) ] [-sin(twist)*cos(precone) ]
# [-sin(precone), cos(precone), 0 ] [ 0 ] = [ sin(twist)*sin(precone) ]
# [ 0, 0, 1 ] [-cos(twist) ] [-cos(twist) ]
#
# Finally do the ΞΈ transformation
#
# [ 1, 0 , 0 ] [-sin(twist)*cos(precone) ] [-sin(twist)*cos(precone) ]
# [ 0, cos(ΞΈ), -sin(ΞΈ) ] [ sin(twist)*sin(precone) ] = [ sin(twist)*sin(precone)*cos(ΞΈ) + cos(twist)*sin(ΞΈ) ]
# [ 0, sin(ΞΈ), cos(ΞΈ) ] [-cos(twist) ] [ sin(twist)*sin(precone)*sin(ΞΈ) - cos(twist)*cos(ΞΈ) ]
chord_uvec = @SVector [-stwist*cpc, stwist*spc*cΞΈ + ctwist*sΞΈ, stwist*spc*sΞΈ - ctwist*cΞΈ]
else
# But, what if I want to assume that the blade is rotating in the opposite direction, i.e., about the negative x axis?
# For the velocity, the direction of the axial velocity is unchanged: we're still moving in the positive x direction, so the axial velocity from the perspective of the blade element will be in the negative x direction.
# So the total axial velocity of the fluid is `(-Vx - u)`.
#
# For the tangential velocity, we're rotating about the negative x axis now, so since the blade is initially aligned with the y axis, it is moving in the negative z direction.
# So that means the freestream tangential velocity appears to be in the opposite direction, aka the positive z direction.
# But the induced tangential velocity is in the opposite direction of the freestream tangential velocity, so the total velocity in the tangential direction is `(Vy - v)`.
#
# So the fluid velocity vector we want to rotate is
#
# [-Vx - u ]
# [ 0 ]
# [ Vy - v ]
#
# The theta and precone stuff doesn't change, so we'll do all the same stuff.
# First we do the precone:
#
# [ cos(precone), sin(precone), 0 ] [-Vx - u] [ (-Vx - u)*cos(precone) ] [ (-Vx - u)*cos(precone) ]
# [-sin(precone), cos(precone), 0 ] [ 0 ] = [ (-Vx - u)*(-sin(precone)) ] = [ ( Vx + u)*sin(precone) ]
# [ 0, 0, 1 ] [ Vy - v] [ Vy - v ] [ Vy - v ]
#
# then do the theta rotation.
#
# [ 1, 0 , 0 ] [ (-Vx - u)*cos(precone) ] [ (-Vx - u)*cos(precone) ]
# [ 0, cos(ΞΈ), -sin(ΞΈ) ] [ ( Vx + u)*sin(precone) ] = [ ( Vx + u)*sin(precone)*cos(ΞΈ) - (Vy - v)*sin(ΞΈ) ]
# [ 0, sin(ΞΈ), cos(ΞΈ) ] [ Vy - v ] [ ( Vx + u)*sin(precone)*sin(ΞΈ) + (Vy - v)*cos(ΞΈ) ]
# y1dot_fluid = @SVector [(-Vx - u)*cpc, (Vx + u)*spc*cΞΈ - (Vy - v)*sΞΈ, (Vx + u)*spc*sΞΈ + (Vy - v)*cΞΈ]
y1dot_fluid = @SVector [-Vx_plus_u*cpc, Vx_plus_u*spc*cΞΈ - Vy_minus_v*sΞΈ, Vx_plus_u*spc*sΞΈ + Vy_minus_v*cΞΈ]
#
# That should be the same thing as the opposite case, but with the sign on (Vy - v) switched.
# Yep, good.
#
# For the chord_uvec, I want to start with a unit vector pointing in the positive z axis, then do a negative-twist rotation about the positive y axis.
# So start with
#
# [ 0 ]
# [ 0 ]
# [ 1 ]
#
# then
#
# [ cos(-twist) 0 sin(-twist) ] [ 0 ] [ sin(-twist) ]
# [ 0 1 0 ] [ 0 ] = [ 0 ]
# [-sin(-twist) 0 cos(-twist) ] [ 1 ] [ cos(-twist) ]
#
# Now do the precone transformation
#
# [ cos(precone), sin(precone), 0 ] [ sin(-twist) ] [ sin(-twist)*cos(precone) ]
# [-sin(precone), cos(precone), 0 ] [ 0 ] = [-sin(-twist)*sin(precone) ]
# [ 0, 0, 1 ] [ cos(-twist) ] [ cos(-twist) ]
#
# Finally do the ΞΈ transformation
#
# [ 1, 0 , 0 ] [ sin(-twist)*cos(precone) ] [ sin(-twist)*cos(precone) ]
# [ 0, cos(ΞΈ), -sin(ΞΈ) ] [-sin(-twist)*sin(precone) ] = [-sin(-twist)*sin(precone)*cos(ΞΈ) - cos(-twist)*sin(ΞΈ) ]
# [ 0, sin(ΞΈ), cos(ΞΈ) ] [ cos(-twist) ] [-sin(-twist)*sin(precone)*sin(ΞΈ) + cos(-twist)*cos(ΞΈ) ]
#
# Now handle the `-twist`,
#
# [ sin(-twist)*cos(precone) ] [-sin(twist)*cos(precone) ]
# [-sin(-twist)*sin(precone)*cos(ΞΈ) - cos(-twist)*sin(ΞΈ) ] = [ sin(twist)*sin(precone)*cos(ΞΈ) - cos(twist)*sin(ΞΈ) ]
# [-sin(-twist)*sin(precone)*sin(ΞΈ) + cos(-twist)*cos(ΞΈ) ] [ sin(twist)*sin(precone)*sin(ΞΈ) + cos(twist)*cos(ΞΈ) ]
chord_uvec = @SVector [-stwist*cpc, stwist*spc*cΞΈ - ctwist*sΞΈ, stwist*spc*sΞΈ + ctwist*cΞΈ]
end
chord_cross_span_to_get_top_uvec = positive_x_rotation
return y0dot, y1dot, y1dot_fluid, span_uvec, chord_uvec, chord_cross_span_to_get_top_uvec
end
"""
TBLTESourceElement(rotor::CCBlade.Rotor, section::CCBlade.Section, op::CCBlade.OperatingPoint, out::CCBlade.Outputs, ΞΈ, Ξr, Ο, ΞΟ, bl::AbstractBoundaryLayer, positive_x_rotation)
Construct a source element to be used to predict turbulent boundary layer-trailing edge (TBLTE) noise.
The source element's position is calculated from `section.r`, `rotor.precone`, and the `ΞΈ` argument using
```julia
sΞΈ, cΞΈ = sincos(ΞΈ)
spc, cpc = sincos(precone)
y0dot = [r*spc, r*cpc*cΞΈ, r*cpc*sΞΈ]
```
where `y0dot` is the position of the source element.
# Arguments
- `rotor::CCBlade.Rotor`: CCBlade rotor object, needed for the precone angle.
- `section::CCBlade.Section`: CCBlade section object, needed for the radial location and chord length of the element.
- `op::CCBlade.OperatingPoint`: CCBlade operating point, needed for atmospheric properties.
- `out::CCBlade.Outputs`: CCBlade outputs object, needed for the loading.
- `ΞΈ`: polar coordinate of the element, in radians.
- `Ξr`: length of the element, in meters.
- `Ο`: source time of the element, in seconds.
- `ΞΟ`: source time duration, in seconds.
- `bl`: `AcousticAnalogies.AbstractBoundaryLayer`, needed for boundary layer properties.
- `positive_x_rotation`: rotate blade around the positive-x axis if `true`, negative-x axis otherwise.
"""
function TBLTESourceElement(rotor::CCBlade.Rotor, section::CCBlade.Section, op::CCBlade.OperatingPoint, out::CCBlade.Outputs, ΞΈ, Ξr, Ο, ΞΟ, bl::AbstractBoundaryLayer, positive_x_rotation)
return TBLTESourceElement{BrooksBurleyDirectivity,true,PrandtlGlauertMachCorrection,true}(rotor, section, op, out, ΞΈ, Ξr, Ο, ΞΟ, bl, positive_x_rotation)
end
function TBLTESourceElement{TDirect,TUInduction,TMachCorrection,TDoppler}(rotor::CCBlade.Rotor, section::CCBlade.Section, op::CCBlade.OperatingPoint, out::CCBlade.Outputs, ΞΈ, Ξr, Ο, ΞΟ, bl::AbstractBoundaryLayer, positive_x_rotation) where {TDirect,TUInduction,TMachCorrection,TDoppler}
y0dot, y1dot, y1dot_fluid, span_uvec, chord_uvec, chord_cross_span_to_get_top_uvec = _get_position_velocity_span_uvec_chord_uvec(
section.theta, rotor.precone, op.pitch, section.r, ΞΈ, out.W, out.phi, positive_x_rotation)
nu = op.mu/op.rho
return TBLTESourceElement{TDirect,TUInduction,TMachCorrection,TDoppler}(op.asound, nu, Ξr, section.chord, y0dot, y1dot, y1dot_fluid, Ο, ΞΟ, span_uvec, chord_uvec, bl, chord_cross_span_to_get_top_uvec)
end
"""
tblte_source_elements_ccblade(rotor::CCBlade.Rotor, sections::Vector{CCBlade.Section}, ops::Vector{CCBlade.OperatingPoint}, outputs::Vector{CCBlade.Outputs}, bls::Vector{AbstractBoundaryLayer}, period, num_src_times, positive_x_rotation)
Construct and return an array of TBLTESourceElement objects from CCBlade structs.
# Arguments
- `rotor`: CCBlade rotor object.
- `sections`: `Vector` of CCBlade section object.
- `ops`: `Vector` of CCBlade operating point.
- `outputs`: `Vector` of CCBlade output objects.
- `bls`::`Vector` of boundary layer `AbstractBoundaryLayer` `structs`.
- `period`: length of the source time over which the returned source elements will evaluated.
- `num_src_times`: number of source times.
- `positive_x_rotation`: rotate blade around the positive-x axis if `true`, negative-x axis otherwise.
"""
function tblte_source_elements_ccblade(rotor, sections, ops, outputs, bls, period, num_src_times, positive_x_rotation)
return tblte_source_elements_ccblade(BrooksBurleyDirectivity, true, PrandtlGlauertMachCorrection, true, rotor, sections, ops, outputs, bls, period, num_src_times, positive_x_rotation)
end
function tblte_source_elements_ccblade(TDirect::Type{<:AbstractDirectivity}, TUInduction::Bool, TMachCorrection::Type{<:AbstractMachCorrection}, TDoppler::Bool, rotor, sections, ops, outputs, bls, period, num_src_times, positive_x_rotation)
# Need to know the radial spacing. (CCBlade doesn't use thisβwhen
# integrating stuff [loading to get torque and thrust] it uses the
# trapezoidal rule and passes in the radial locations, and assumes that
# integrands go to zero at the hub and tip.) Kind of lame that I have to
# calcluate it here, but whatever. Maybe I should use StaticArrays for this?
# Ah, no, I don't know the length at compile time.
dradii = get_ccblade_dradii(rotor, sections)
# Get the transformation that will put the source elements in the "standard" CCBlade.jl reference frame (moving axially in the positive x axis direction, rotating about the positive x axis, first blade initially aligned with the positive y axis).
src_times, dt, trans = _standard_ccblade_transform(rotor, sections, ops, period, num_src_times, positive_x_rotation)
# This is just an array of the angular offsets of each blade. First blade is
# aligned with the y axis, next one is offset 2*pi/B radians, etc..
num_blades = rotor.B
ΞΈs = 2*pi/num_blades.*(0:(num_blades-1)) .* ifelse(positive_x_rotation, 1, -1)
# Reshape for broadcasting. Goal is to make everything work for a size of (num_times,
# num_radial, num_blades).
# trans_rs = reshape(trans, size(trans)..., 1)
ΞΈs_rs = reshape(ΞΈs, 1, 1, :)
sections_rs = reshape(sections, 1, :, 1)
ops_rs = reshape(ops, 1, :, 1)
outputs_rs = reshape(outputs, 1, :, 1)
dradii_rs = reshape(dradii, 1, :, 1)
bls_rs = reshape(bls, 1, :, 1)
# src_times = reshape(src_times, :, 1, 1) # This one isn't necessary.
# Construct and transform the source elements.
ses = TBLTESourceElement{TDirect,TUInduction,TMachCorrection,TDoppler}.(Ref(rotor), sections_rs, ops_rs, outputs_rs, ΞΈs_rs, dradii_rs, src_times, Ref(dt), bls_rs, positive_x_rotation) .|> trans
return ses
end
"""
LBLVSSourceElement(rotor::CCBlade.Rotor, section::CCBlade.Section, op::CCBlade.OperatingPoint, out::CCBlade.Outputs, ΞΈ, Ξr, Ο, ΞΟ, bl::AbstractBoundaryLayer, positive_x_rotation)
Construct a source element to be used to predict laminary boundary layer-vortex shedding (LBLVS) noise.
The source element's position is calculated from `section.r`, `rotor.precone`, and the `ΞΈ` argument using
```julia
sΞΈ, cΞΈ = sincos(ΞΈ)
spc, cpc = sincos(precone)
y0dot = [r*spc, r*cpc*cΞΈ, r*cpc*sΞΈ]
```
where `y0dot` is the position of the source element.
# Arguments
- `rotor::CCBlade.Rotor`: CCBlade rotor object, needed for the precone angle.
- `section::CCBlade.Section`: CCBlade section object, needed for the radial location and chord length of the element.
- `op::CCBlade.OperatingPoint`: CCBlade operating point, needed for atmospheric properties.
- `out::CCBlade.Outputs`: CCBlade outputs object, needed for the loading.
- `ΞΈ`: polar coordinate of the element, in radians.
- `Ξr`: length of the element, in meters.
- `Ο`: source time of the element, in seconds.
- `ΞΟ`: source time duration, in seconds.
- `bl`: `AcousticAnalogies.AbstractBoundaryLayer`, needed for boundary layer properties.
- `positive_x_rotation`: rotate blade around the positive-x axis if `true`, negative-x axis otherwise.
"""
function LBLVSSourceElement(rotor::CCBlade.Rotor, section::CCBlade.Section, op::CCBlade.OperatingPoint, out::CCBlade.Outputs, ΞΈ, Ξr, Ο, ΞΟ, bl::AbstractBoundaryLayer, positive_x_rotation)
return LBLVSSourceElement{BrooksBurleyDirectivity,true,true}(rotor, section, op, out, ΞΈ, Ξr, Ο, ΞΟ, bl, positive_x_rotation)
end
function LBLVSSourceElement{TDirect,TUInduction,TDoppler}(rotor::CCBlade.Rotor, section::CCBlade.Section, op::CCBlade.OperatingPoint, out::CCBlade.Outputs, ΞΈ, Ξr, Ο, ΞΟ, bl::AbstractBoundaryLayer, positive_x_rotation) where {TDirect,TUInduction,TDoppler}
y0dot, y1dot, y1dot_fluid, span_uvec, chord_uvec, chord_cross_span_to_get_top_uvec = _get_position_velocity_span_uvec_chord_uvec(
section.theta, rotor.precone, op.pitch, section.r, ΞΈ, out.W, out.phi, positive_x_rotation)
nu = op.mu/op.rho
return LBLVSSourceElement{TDirect,TUInduction,TDoppler}(op.asound, nu, Ξr, section.chord, y0dot, y1dot, y1dot_fluid, Ο, ΞΟ, span_uvec, chord_uvec, bl, chord_cross_span_to_get_top_uvec)
end
"""
lblvs_source_elements_ccblade(rotor::CCBlade.Rotor, sections::Vector{CCBlade.Section}, ops::Vector{CCBlade.OperatingPoint}, outputs::Vector{CCBlade.Outputs}, bls::Vector{AbstractBoundaryLayer}, period, num_src_times, positive_x_rotation)
Construct and return an array of LBLVSSourceElement objects from CCBlade structs.
# Arguments
- `rotor`: CCBlade rotor object.
- `sections`: `Vector` of CCBlade section object.
- `ops`: `Vector` of CCBlade operating point.
- `outputs`: `Vector` of CCBlade output objects.
- `bls`::`Vector` of boundary layer `AbstractBoundaryLayer` `structs`.
- `period`: length of the source time over which the returned source elements will evaluated.
- `num_src_times`: number of source times.
- `positive_x_rotation`: rotate blade around the positive-x axis if `true`, negative-x axis otherwise.
"""
function lblvs_source_elements_ccblade(rotor, sections, ops, outputs, bls, period, num_src_times, positive_x_rotation)
return lblvs_source_elements_ccblade(BrooksBurleyDirectivity, true, true, rotor, sections, ops, outputs, bls, period, num_src_times, positive_x_rotation)
end
function lblvs_source_elements_ccblade(TDirect::Type{<:AbstractDirectivity}, TUInduction::Bool, TDoppler::Bool, rotor, sections, ops, outputs, bls, period, num_src_times, positive_x_rotation)
# Need to know the radial spacing. (CCBlade doesn't use thisβwhen
# integrating stuff [loading to get torque and thrust] it uses the
# trapezoidal rule and passes in the radial locations, and assumes that
# integrands go to zero at the hub and tip.) Kind of lame that I have to
# calcluate it here, but whatever. Maybe I should use StaticArrays for this?
# Ah, no, I don't know the length at compile time.
dradii = get_ccblade_dradii(rotor, sections)
# Get the transformation that will put the source elements in the "standard" CCBlade.jl reference frame (moving axially in the positive x axis direction, rotating about the positive x axis, first blade initially aligned with the positive y axis).
src_times, dt, trans = _standard_ccblade_transform(rotor, sections, ops, period, num_src_times, positive_x_rotation)
# This is just an array of the angular offsets of each blade. First blade is
# aligned with the y axis, next one is offset 2*pi/B radians, etc..
num_blades = rotor.B
ΞΈs = 2*pi/num_blades.*(0:(num_blades-1)) .* ifelse(positive_x_rotation, 1, -1)
# Reshape for broadcasting. Goal is to make everything work for a size of (num_times,
# num_radial, num_blades).
# trans_rs = reshape(trans, size(trans)..., 1)
ΞΈs_rs = reshape(ΞΈs, 1, 1, :)
sections_rs = reshape(sections, 1, :, 1)
ops_rs = reshape(ops, 1, :, 1)
outputs_rs = reshape(outputs, 1, :, 1)
dradii_rs = reshape(dradii, 1, :, 1)
bls_rs = reshape(bls, 1, :, 1)
# src_times = reshape(src_times, :, 1, 1) # This one isn't necessary.
# Construct and transform the source elements.
ses = LBLVSSourceElement{TDirect,TUInduction,TDoppler}.(Ref(rotor), sections_rs, ops_rs, outputs_rs, ΞΈs_rs, dradii_rs, src_times, Ref(dt), bls_rs, positive_x_rotation) .|> trans
return ses
end
"""
TipVortexSourceElement(rotor::CCBlade.Rotor, section::CCBlade.Section, op::CCBlade.OperatingPoint, out::CCBlade.Outputs, ΞΈ, Ξr, Ο, ΞΟ, bl::AbstractBoundaryLayer, blade_tip::AbstractBladeTip, positive_x_rotation)
Construct a source element to be used to predict tip vortex noise.
The source element's position is calculated from `section.r`, `rotor.precone`, and the `ΞΈ` argument using
```julia
sΞΈ, cΞΈ = sincos(ΞΈ)
spc, cpc = sincos(precone)
y0dot = [r*spc, r*cpc*cΞΈ, r*cpc*sΞΈ]
```
where `y0dot` is the position of the source element.
# Arguments
- `rotor::CCBlade.Rotor`: CCBlade rotor object, needed for the precone angle.
- `section::CCBlade.Section`: CCBlade section object, needed for the radial location and chord length of the element.
- `op::CCBlade.OperatingPoint`: CCBlade operating point, needed for atmospheric properties.
- `out::CCBlade.Outputs`: CCBlade outputs object, needed for the loading.
- `ΞΈ`: polar coordinate of the element, in radians.
- `Ξr`: length of the element, in meters.
- `Ο`: source time of the element, in seconds.
- `ΞΟ`: source time duration, in seconds.
- `bl`: `AcousticAnalogies.AbstractBoundaryLayer`, needed for boundary layer properties.
- `blade_tip`: `AcousticAnalogies.AbstractBladeTip`
- `positive_x_rotation`: rotate blade around the positive-x axis if `true`, negative-x axis otherwise.
"""
function TipVortexSourceElement(rotor::CCBlade.Rotor, section::CCBlade.Section, op::CCBlade.OperatingPoint, out::CCBlade.Outputs, ΞΈ, Ξr, Ο, ΞΟ, bl::AbstractBoundaryLayer, blade_tip::AbstractBladeTip, positive_x_rotation)
return TipVortexSourceElement{BrooksBurleyDirectivity,true,true}(rotor, section, op, out, ΞΈ, Ξr, Ο, ΞΟ, bl, blade_tip, positive_x_rotation)
end
function TipVortexSourceElement{TDirect,TUInduction,TDoppler}(rotor::CCBlade.Rotor, section::CCBlade.Section, op::CCBlade.OperatingPoint, out::CCBlade.Outputs, ΞΈ, Ξr, Ο, ΞΟ, bl::AbstractBoundaryLayer, blade_tip::AbstractBladeTip, positive_x_rotation) where {TDirect,TUInduction,TDoppler}
y0dot, y1dot, y1dot_fluid, span_uvec, chord_uvec, chord_cross_span_to_get_top_uvec = _get_position_velocity_span_uvec_chord_uvec(
section.theta, rotor.precone, op.pitch, section.r, ΞΈ, out.W, out.phi, positive_x_rotation)
return TipVortexSourceElement{TDirect,TUInduction,TDoppler}(op.asound, Ξr, section.chord, y0dot, y1dot, y1dot_fluid, Ο, ΞΟ, span_uvec, chord_uvec, bl, blade_tip, chord_cross_span_to_get_top_uvec)
end
"""
tip_vortex_source_elements_ccblade(rotor::CCBlade.Rotor, section::CCBlade.Section, op::CCBlade.OperatingPoint, output::CCBlade.Outputs, bl::AbstractBoundaryLayer, blade_tip::AbstractBladeTip, period, num_src_times, positive_x_rotation)
Construct and return an array of TipVortexSourceElement objects from CCBlade structs.
Note that unlike the other `*_source_elements_ccblade` functions, `tip_vortex_source_elements_ccblade` expects scalar arguments instead of vectors for `section`, `op`, etc. as a blade only has one tip.
# Arguments
- `rotor`: CCBlade rotor object.
- `section`: CCBlade section object at the blade tip.
- `op`: CCBlade operating point object at the blade tip.
- `output`: CCBlade output object at the blade tip.
- `Ξr`: radial spacing.
- `bl`:: Boundary layer `struct` at the blade tip.
- `blade_tip`: `AcousticAnalogies.AbstractBladeTip`
- `period`: length of the source time over which the returned source elements will evaluated.
- `num_src_times`: number of source times.
- `positive_x_rotation`: rotate blade around the positive-x axis if `true`, negative-x axis otherwise.
"""
function tip_vortex_source_elements_ccblade(rotor, section, op, output, Ξr, bl, blade_tip, period, num_src_times, positive_x_rotation)
return tip_vortex_source_elements_ccblade(BrooksBurleyDirectivity, true, true, rotor, section, op, output, Ξr, bl, blade_tip, period, num_src_times, positive_x_rotation)
end
function tip_vortex_source_elements_ccblade(TDirect::Type{<:AbstractDirectivity}, TUInduction::Bool, TDoppler::Bool, rotor, section, op, output, Ξr, bl, blade_tip, period, num_src_times, positive_x_rotation)
# Ugh, hate doing this.
# Wish there was a way to make a allocation-free array-like thingy from a scaler.
# But I doubt it makes any difference.
# sections = [section]
# ops = [op]
# Good news!
# Learned about the FillArrays.jl package.
sections = Fill(section, 1)
ops = Fill(op, 1)
# But that breaks with CCBlade.jl.
# So back to 1D arrays.
# sections = [section]
# ops = [op]
# Get the transformation that will put the source elements in the "standard" CCBlade.jl reference frame (moving axially in the positive x axis direction, rotating about the positive x axis, first blade initially aligned with the positive y axis).
src_times, dt, trans = _standard_ccblade_transform(rotor, sections, ops, period, num_src_times, positive_x_rotation)
# This is just an array of the angular offsets of each blade. First blade is
# aligned with the y axis, next one is offset 2*pi/B radians, etc..
num_blades = rotor.B
ΞΈs = 2*pi/num_blades.*(0:(num_blades-1)) .* ifelse(positive_x_rotation, 1, -1)
# Reshape for broadcasting. Goal is to make everything work for a size of (num_times, num_radial, num_blades).
# But this will really be (num_times, 1, num_blades).
# trans_rs = reshape(trans, size(trans)..., 1)
ΞΈs_rs = reshape(ΞΈs, 1, 1, :)
# sections_rs = reshape(sections, 1, 1)
# ops_rs = reshape(ops, 1, 1)
# outputs = reshape(outputs, 1, :, 1)
# dradii = reshape(dradii, 1, :, 1)
# bls = reshape(bls, 1, :, 1)
# src_times = reshape(src_times, :, 1, 1) # This one isn't necessary.
# Construct and transform the source elements.
# ses = TipVortexSourceElement.(Ref(rotor), sections_rs, ops_rs, Ref(output), ΞΈs_rs, Ref(Ξr), src_times, Ref(dt), Ref(bl), positive_x_rotation) .|> trans_rs
# So Ξs_rs has size (1, 1, num_blades), src_times has size (num_src_times,), trans has size (num_src_times, 1).
# So that should all work out.
ses = TipVortexSourceElement{TDirect,TUInduction,TDoppler}.(Ref(rotor), Ref(section), Ref(op), Ref(output), ΞΈs_rs, Ref(Ξr), src_times, Ref(dt), Ref(bl), Ref(blade_tip), positive_x_rotation) .|> trans
return ses
end
"""
TEBVSSourceElement(rotor::CCBlade.Rotor, section::CCBlade.Section, op::CCBlade.OperatingPoint, out::CCBlade.Outputs, ΞΈ, Ξr, h, Psi, Ο, ΞΟ, bl::AbstractBoundaryLayer, positive_x_rotation)
Construct a source element to be used to predict trailing edge bluntness-vortex shedding (TEBVS) noise.
The source element's position is calculated from `section.r`, `rotor.precone`, and the `ΞΈ` argument using
```julia
sΞΈ, cΞΈ = sincos(ΞΈ)
spc, cpc = sincos(precone)
y0dot = [r*spc, r*cpc*cΞΈ, r*cpc*sΞΈ]
```
where `y0dot` is the position of the source element.
# Arguments
- `rotor::CCBlade.Rotor`: CCBlade rotor object, needed for the precone angle.
- `section::CCBlade.Section`: CCBlade section object, needed for the radial location and chord length of the element.
- `op::CCBlade.OperatingPoint`: CCBlade operating point, needed for atmospheric properties.
- `out::CCBlade.Outputs`: CCBlade outputs object, needed for the loading.
- `ΞΈ`: polar coordinate of the element, in radians.
- `Ξr`: length of the element, in meters.
- `h`: trailing edge thickness (m)
- `Psi`: solid angle between the blade surfaces immediately upstream of the trailing edge (rad)
- `Ο`: source time of the element, in seconds.
- `ΞΟ`: source time duration, in seconds.
- `bl`: `AcousticAnalogies.AbstractBoundaryLayer`, needed for boundary layer properties.
- `positive_x_rotation`: rotate blade around the positive-x axis if `true`, negative-x axis otherwise.
"""
function TEBVSSourceElement(rotor::CCBlade.Rotor, section::CCBlade.Section, op::CCBlade.OperatingPoint, out::CCBlade.Outputs, ΞΈ, Ξr, h, Psi, Ο, ΞΟ, bl::AbstractBoundaryLayer, positive_x_rotation)
return TEBVSSourceElement{BrooksBurleyDirectivity,true,true}(rotor, section, op, out, ΞΈ, Ξr, h, Psi, Ο, ΞΟ, bl, positive_x_rotation)
end
function TEBVSSourceElement{TDirect,TUInduction,TDoppler}(rotor::CCBlade.Rotor, section::CCBlade.Section, op::CCBlade.OperatingPoint, out::CCBlade.Outputs, ΞΈ, Ξr, h, Psi, Ο, ΞΟ, bl::AbstractBoundaryLayer, positive_x_rotation) where {TDirect,TUInduction,TDoppler}
y0dot, y1dot, y1dot_fluid, span_uvec, chord_uvec, chord_cross_span_to_get_top_uvec = _get_position_velocity_span_uvec_chord_uvec(
section.theta, rotor.precone, op.pitch, section.r, ΞΈ, out.W, out.phi, positive_x_rotation)
nu = op.mu/op.rho
return TEBVSSourceElement{TDirect,TUInduction,TDoppler}(op.asound, nu, Ξr, section.chord, h, Psi, y0dot, y1dot, y1dot_fluid, Ο, ΞΟ, span_uvec, chord_uvec, bl, chord_cross_span_to_get_top_uvec)
end
"""
tebvs_source_elements_ccblade(rotor::CCBlade.Rotor, sections::Vector{CCBlade.Section}, ops::Vector{CCBlade.OperatingPoint}, outputs::Vector{CCBlade.Outputs}, hs, Psis, bls::Vector{AbstractBoundaryLayer}, period, num_src_times, positive_x_rotation)
Construct and return an array of TEBVSSourceElement objects from CCBlade structs.
# Arguments
- `rotor`: CCBlade rotor object.
- `sections`: `Vector` of CCBlade section object.
- `ops`: `Vector` of CCBlade operating point.
- `outputs`: `Vector` of CCBlade output objects.
- `hs`: `Vector` of trailing edge thicknesses
- `Psis`: `Vector` of solid angles between the blade surfaces immediately upstream of the trailing edge (rad)
- `bls`::`Vector` of boundary layer `AbstractBoundaryLayer` `structs`.
- `period`: length of the source time over which the returned source elements will evaluated.
- `num_src_times`: number of source times.
- `positive_x_rotation`: rotate blade around the positive-x axis if `true`, negative-x axis otherwise.
"""
function tebvs_source_elements_ccblade(rotor, sections, ops, outputs, hs, Psis, bls, period, num_src_times, positive_x_rotation)
return tebvs_source_elements_ccblade(BrooksBurleyDirectivity, true, true, rotor, sections, ops, outputs, hs, Psis, bls, period, num_src_times, positive_x_rotation)
end
function tebvs_source_elements_ccblade(TDirect::Type{<:AbstractDirectivity}, TUInduction::Bool, TDoppler::Bool, rotor, sections, ops, outputs, hs, Psis, bls, period, num_src_times, positive_x_rotation)
# Need to know the radial spacing. (CCBlade doesn't use thisβwhen
# integrating stuff [loading to get torque and thrust] it uses the
# trapezoidal rule and passes in the radial locations, and assumes that
# integrands go to zero at the hub and tip.) Kind of lame that I have to
# calcluate it here, but whatever. Maybe I should use StaticArrays for this?
# Ah, no, I don't know the length at compile time.
dradii = get_ccblade_dradii(rotor, sections)
# Get the transformation that will put the source elements in the "standard" CCBlade.jl reference frame (moving axially in the positive x axis direction, rotating about the positive x axis, first blade initially aligned with the positive y axis).
src_times, dt, trans = _standard_ccblade_transform(rotor, sections, ops, period, num_src_times, positive_x_rotation)
# This is just an array of the angular offsets of each blade. First blade is
# aligned with the y axis, next one is offset 2*pi/B radians, etc..
num_blades = rotor.B
ΞΈs = 2*pi/num_blades.*(0:(num_blades-1)) .* ifelse(positive_x_rotation, 1, -1)
# Reshape for broadcasting. Goal is to make everything work for a size of (num_times,
# num_radial, num_blades).
# trans_rs = reshape(trans, size(trans)..., 1)
ΞΈs_rs = reshape(ΞΈs, 1, 1, :)
sections_rs = reshape(sections, 1, :, 1)
ops_rs = reshape(ops, 1, :, 1)
outputs_rs = reshape(outputs, 1, :, 1)
dradii_rs = reshape(dradii, 1, :, 1)
hs_rs = reshape(hs, 1, :, 1)
Psis_rs = reshape(Psis, 1, :, 1)
bls_rs = reshape(bls, 1, :, 1)
# src_times = reshape(src_times, :, 1, 1) # This one isn't necessary.
# Construct and transform the source elements.
ses = TEBVSSourceElement{TDirect,TUInduction,TDoppler}.(Ref(rotor), sections_rs, ops_rs, outputs_rs, ΞΈs_rs, dradii_rs, hs_rs, Psis_rs, src_times, Ref(dt), bls_rs, positive_x_rotation) .|> trans
return ses
end
"""
CombinedNoTipBroadbandSourceElement(rotor::CCBlade.Rotor, section::CCBlade.Section, op::CCBlade.OperatingPoint, out::CCBlade.Outputs, ΞΈ, Ξr, h, Psi, Ο, ΞΟ, bl::AbstractBoundaryLayer, positive_x_rotation)
Construct a source element for predicting turbulent boundary layer-trailing edge (TBLTE), laminar boundary layer-vortex shedding (LBLVS) noise, and trailing edge bluntness-vortex shedding (TEBVS) noise using the BPM/Brooks and Burley method from CCBlade structs.
The source element's position is calculated from `section.r`, `rotor.precone`, and the `ΞΈ` argument using
```julia
sΞΈ, cΞΈ = sincos(ΞΈ)
spc, cpc = sincos(precone)
y0dot = [r*spc, r*cpc*cΞΈ, r*cpc*sΞΈ]
```
where `y0dot` is the position of the source element.
# Arguments
- `rotor::CCBlade.Rotor`: CCBlade rotor object, needed for the precone angle.
- `section::CCBlade.Section`: CCBlade section object, needed for the radial location and chord length of the element.
- `op::CCBlade.OperatingPoint`: CCBlade operating point, needed for atmospheric properties.
- `out::CCBlade.Outputs`: CCBlade outputs object, needed for the loading.
- `ΞΈ`: polar coordinate of the element, in radians.
- `Ξr`: length of the element, in meters.
- `h`: trailing edge thickness (m)
- `Psi`: solid angle between the blade surfaces immediately upstream of the trailing edge (rad)
- `Ο`: source time of the element, in seconds.
- `ΞΟ`: source time duration, in seconds.
- `bl`: `AcousticAnalogies.AbstractBoundaryLayer`, needed for boundary layer properties.
- `positive_x_rotation`: rotate blade around the positive-x axis if `true`, negative-x axis otherwise.
"""
function CombinedNoTipBroadbandSourceElement(rotor::CCBlade.Rotor, section::CCBlade.Section, op::CCBlade.OperatingPoint, out::CCBlade.Outputs, ΞΈ, Ξr, h, Psi, Ο, ΞΟ, bl::AbstractBoundaryLayer, positive_x_rotation)
return CombinedNoTipBroadbandSourceElement{BrooksBurleyDirectivity,true,PrandtlGlauertMachCorrection,true}(rotor, section, op, out, ΞΈ, Ξr, h, Psi, Ο, ΞΟ, bl, positive_x_rotation)
end
function CombinedNoTipBroadbandSourceElement{TDirect,TUInduction,TMachCorrection,TDoppler}(rotor::CCBlade.Rotor, section::CCBlade.Section, op::CCBlade.OperatingPoint, out::CCBlade.Outputs, ΞΈ, Ξr, h, Psi, Ο, ΞΟ, bl::AbstractBoundaryLayer, positive_x_rotation) where {TDirect,TUInduction,TMachCorrection,TDoppler}
y0dot, y1dot, y1dot_fluid, span_uvec, chord_uvec, chord_cross_span_to_get_top_uvec = _get_position_velocity_span_uvec_chord_uvec(
section.theta, rotor.precone, op.pitch, section.r, ΞΈ, out.W, out.phi, positive_x_rotation)
nu = op.mu/op.rho
return CombinedNoTipBroadbandSourceElement{TDirect,TUInduction,TMachCorrection,TDoppler}(op.asound, nu, Ξr, section.chord, h, Psi, y0dot, y1dot, y1dot_fluid, Ο, ΞΟ, span_uvec, chord_uvec, bl, chord_cross_span_to_get_top_uvec)
end
"""
CombinedWithTipBroadbandSourceElement(rotor::CCBlade.Rotor, section::CCBlade.Section, op::CCBlade.OperatingPoint, out::CCBlade.Outputs, ΞΈ, Ξr, h, Psi, Ο, ΞΟ, bl::AbstractBoundaryLayer, blade_tip::AbstractBladeTip, positive_x_rotation)
Construct a source element for predicting turbulent boundary layer-trailing edge (TBLTE), laminar boundary layer-vortex shedding (LBLVS) noise, trailing edge bluntness-vortex shedding (TEBVS), and tip vortex noise using the BPM/Brooks and Burley method from CCBlade structs.
The source element's position is calculated from `section.r`, `rotor.precone`, and the `ΞΈ` argument using
```julia
sΞΈ, cΞΈ = sincos(ΞΈ)
spc, cpc = sincos(precone)
y0dot = [r*spc, r*cpc*cΞΈ, r*cpc*sΞΈ]
```
where `y0dot` is the position of the source element.
# Arguments
- `rotor::CCBlade.Rotor`: CCBlade rotor object, needed for the precone angle.
- `section::CCBlade.Section`: CCBlade section object, needed for the radial location and chord length of the element.
- `op::CCBlade.OperatingPoint`: CCBlade operating point, needed for atmospheric properties.
- `out::CCBlade.Outputs`: CCBlade outputs object, needed for the loading.
- `ΞΈ`: polar coordinate of the element, in radians.
- `Ξr`: length of the element, in meters.
- `h`: trailing edge thickness (m)
- `Psi`: solid angle between the blade surfaces immediately upstream of the trailing edge (rad)
- `Ο`: source time of the element, in seconds.
- `ΞΟ`: source time duration, in seconds.
- `bl`: `AcousticAnalogies.AbstractBoundaryLayer`, needed for boundary layer properties.
- `blade_tip`: Blade tip struct, i.e. an AbstractBladeTip.
- `positive_x_rotation`: rotate blade around the positive-x axis if `true`, negative-x axis otherwise.
"""
function CombinedWithTipBroadbandSourceElement(rotor::CCBlade.Rotor, section::CCBlade.Section, op::CCBlade.OperatingPoint, out::CCBlade.Outputs, ΞΈ, Ξr, h, Psi, Ο, ΞΟ, bl::AbstractBoundaryLayer, blade_tip::AbstractBladeTip, positive_x_rotation)
return CombinedWithTipBroadbandSourceElement{BrooksBurleyDirectivity,true,PrandtlGlauertMachCorrection,true}(rotor, section, op, out, ΞΈ, Ξr, h, Psi, Ο, ΞΟ, bl, blade_tip, positive_x_rotation)
end
function CombinedWithTipBroadbandSourceElement{TDirect,TUInduction,TMachCorrection,TDoppler}(rotor::CCBlade.Rotor, section::CCBlade.Section, op::CCBlade.OperatingPoint, out::CCBlade.Outputs, ΞΈ, Ξr, h, Psi, Ο, ΞΟ, bl::AbstractBoundaryLayer, blade_tip::AbstractBladeTip, positive_x_rotation) where {TDirect,TUInduction,TMachCorrection,TDoppler}
y0dot, y1dot, y1dot_fluid, span_uvec, chord_uvec, chord_cross_span_to_get_top_uvec = _get_position_velocity_span_uvec_chord_uvec(
section.theta, rotor.precone, op.pitch, section.r, ΞΈ, out.W, out.phi, positive_x_rotation)
nu = op.mu/op.rho
return CombinedWithTipBroadbandSourceElement{TDirect,TUInduction,TMachCorrection,TDoppler}(op.asound, nu, Ξr, section.chord, h, Psi, y0dot, y1dot, y1dot_fluid, Ο, ΞΟ, span_uvec, chord_uvec, bl, blade_tip, chord_cross_span_to_get_top_uvec)
end
"""
combined_broadband_source_elements_ccblade(rotor::CCBlade.Rotor, sections::Vector{CCBlade.Section}, ops::Vector{CCBlade.OperatingPoint}, outputs::Vector{CCBlade.Outputs}, hs::Vector{Float64}, Psis::Vector{Float64}, bls::Vector{AbstractBoundaryLayer}, blade_tip::AbstractBladeTip, period, num_src_times, positive_x_rotation)
Construct and return an array of broadband prediction source element objects from CCBlade structs.
# Arguments
- `rotor`: CCBlade rotor object.
- `sections`: `Vector` of CCBlade section object.
- `ops`: `Vector` of CCBlade operating point.
- `outputs`: `Vector` of CCBlade output objects.
- `hs`: `Vector` of trailing edge thicknesses (m)
- `Psis`: `Vector` of solid angles between the blade surfaces immediately upstream of the trailing edge (rad)
- `bls`::`Vector` of boundary layer `AbstractBoundaryLayer` `structs`.
- `blade_tip`: Blade tip struct, i.e. an AbstractBladeTip.
- `period`: length of the source time over which the returned source elements will evaluated.
- `num_src_times`: number of source times.
- `positive_x_rotation`: rotate blade around the positive-x axis if `true`, negative-x axis otherwise.
"""
function combined_broadband_source_elements_ccblade(rotor, sections, ops, outputs, hs, Psis, bls, blade_tip, period, num_src_times, positive_x_rotation)
return combined_broadband_source_elements_ccblade(BrooksBurleyDirectivity, true, PrandtlGlauertMachCorrection, true, rotor, sections, ops, outputs, hs, Psis, bls, blade_tip, period, num_src_times, positive_x_rotation)
end
function combined_broadband_source_elements_ccblade(TDirect::Type{<:AbstractDirectivity}, TUInduction::Bool, TMachCorrection::Type{<:AbstractMachCorrection}, TDoppler::Bool, rotor, sections, ops, outputs, hs, Psis, bls::AbstractVector{<:AbstractBoundaryLayer}, blade_tip, period, num_src_times, positive_x_rotation)
# Need to know the radial spacing. (CCBlade doesn't use thisβwhen
# integrating stuff [loading to get torque and thrust] it uses the
# trapezoidal rule and passes in the radial locations, and assumes that
# integrands go to zero at the hub and tip.) Kind of lame that I have to
# calcluate it here, but whatever. Maybe I should use StaticArrays for this?
# Ah, no, I don't know the length at compile time.
dradii = get_ccblade_dradii(rotor, sections)
# Get the transformation that will put the source elements in the "standard" CCBlade.jl reference frame (moving axially in the positive x axis direction, rotating about the positive x axis, first blade initially aligned with the positive y axis).
# Will be size (num_times, num_radial), so we'll need to adjust for the no tip/with tip stuff.
src_times, dt, trans = _standard_ccblade_transform(rotor, sections, ops, period, num_src_times, positive_x_rotation)
# This is just an array of the angular offsets of each blade. First blade is
# aligned with the y axis, next one is offset 2*pi/B radians, etc..
num_blades = rotor.B
ΞΈs = 2*pi/num_blades.*(0:(num_blades-1)) .* ifelse(positive_x_rotation, 1, -1)
# Reshape for broadcasting. Goal is to make everything work for a size of (num_times, num_radial, num_blades).
ΞΈs_rs = reshape(ΞΈs, 1, 1, :)
sections_rs = reshape(sections, 1, :, 1)
ops_rs = reshape(ops, 1, :, 1)
outputs_rs = reshape(outputs, 1, :, 1)
dradii_rs = reshape(dradii, 1, :, 1)
hs_rs = reshape(hs, 1, :, 1)
Psis_rs = reshape(Psis, 1, :, 1)
bls_rs = reshape(bls, 1, :, 1)
# src_times = reshape(src_times, :, 1, 1) # This one isn't necessary.
# So, I want to create some structs for all the non-blade tip elements, and the blade tip elements.
# So I just need to slice things appropriately.
sections_rs_no_tip = @view sections_rs[:, begin:end-1, :]
ops_rs_no_tip = @view ops_rs[:, begin:end-1, :]
outputs_rs_no_tip = @view outputs_rs[:, begin:end-1, :]
dradii_rs_no_tip = @view dradii_rs[:, begin:end-1, :]
hs_rs_no_tip = @view hs_rs[:, begin:end-1, :]
Psis_rs_no_tip = @view Psis_rs[:, begin:end-1, :]
bls_rs_no_tip = @view bls_rs[:, begin:end-1, :]
trans_no_tip = @view trans[:, begin:end-1]
sections_rs_with_tip = @view sections_rs[:, end:end, :]
ops_rs_with_tip = @view ops_rs[:, end:end, :]
outputs_rs_with_tip = @view outputs_rs[:, end:end, :]
dradii_rs_with_tip = @view dradii_rs[:, end:end, :]
hs_rs_with_tip = @view hs_rs[:, end:end, :]
Psis_rs_with_tip = @view Psis_rs[:, end:end, :]
bls_rs_with_tip = @view bls_rs[:, end:end, :]
trans_with_tip = @view trans[:, end:end]
# Construct and transform the source elements.
ses_no_tip = CombinedNoTipBroadbandSourceElement{TDirect,TUInduction,TMachCorrection,TDoppler}.(Ref(rotor), sections_rs_no_tip, ops_rs_no_tip, outputs_rs_no_tip, ΞΈs_rs, dradii_rs_no_tip, hs_rs_no_tip, Psis_rs_no_tip, src_times, Ref(dt), bls_rs_no_tip, positive_x_rotation) .|> trans_no_tip
ses_with_tip = CombinedWithTipBroadbandSourceElement{TDirect,TUInduction,TMachCorrection,TDoppler}.(Ref(rotor), sections_rs_with_tip, ops_rs_with_tip, outputs_rs_with_tip, ΞΈs_rs, dradii_rs_with_tip, hs_rs_with_tip, Psis_rs_with_tip, src_times, Ref(dt), bls_rs_with_tip, Ref(blade_tip), positive_x_rotation) .|> trans_with_tip
return ses_no_tip, ses_with_tip
end
"""
get_ccblade_dradii(rotor::CCBlade.Rotor, sections::Vector{CCBlade.Section})
Construct and return a Vector of the lengths of each CCBlade section.
"""
function get_ccblade_dradii(rotor, sections)
radii = mapview(:r, sections)
dradii = get_dradii(radii, rotor.Rhub, rotor.Rtip)
return dradii
end
| AcousticAnalogies | https://github.com/OpenMDAO/AcousticAnalogies.jl.git |
|
[
"Apache-2.0"
] | 0.8.1 | c14d0b2e7f19374017a2b5b6dfe48c5723c791ae | code | 44954 | struct CombinedNoTipBroadbandSourceElement{
TDirect<:AbstractDirectivity,TUInduction,TMachCorrection,TDoppler,
Tc0,Tnu,TΞr,Tchord,Th,TPsi,Ty0dot,Ty1dot,Ty1dot_fluid,TΟ,TΞΟ,Tspan_uvec,Tchord_uvec,Tbl
} <: AbstractBroadbandSourceElement{TDirect,TUInduction,TMachCorrection,TDoppler}
# Speed of sound, m/s.
c0::Tc0
# Kinematic viscosity, m^2/s
nu::Tnu
# Radial/spanwise length of element, m.
Ξr::TΞr
# chord length of element, m.
chord::Tchord
# Trailing edge thickness, m.
h::Th
# Solid angle between blade surfaces immediately upstream of the trailing edge, rad.
Psi::TPsi
# Source position, m.
y0dot::Ty0dot
# Source velocity, m/s.
y1dot::Ty1dot
# Fluid velocity, m/s.
y1dot_fluid::Ty1dot_fluid
# Source time, s.
Ο::TΟ
# Time step size, i.e. the amount of time this source element "exists" at with these properties, s.
ΞΟ::TΞΟ
# Radial/spanwise unit vector, aka unit vector aligned with the element's span direction.
span_uvec::Tspan_uvec
# Chordwise unit vector, aka unit vector aligned with the element's chord line, pointing from leading edge to trailing edge.
chord_uvec::Tchord_uvec
# Boundary layer struct, i.e. an AbstractBoundaryLayer.
bl::Tbl
# `Bool` indicating chord_uvecΓspan_uvec will give a vector pointing from bottom side (usually pressure side) to top side (usually suction side) if `true`, or the opposite if `false`.
chord_cross_span_to_get_top_uvec::Bool
function CombinedNoTipBroadbandSourceElement{TDirect,TUInduction,TMachCorrection,TDoppler}(c0, nu, Ξr, chord, h, Psi, y0dot::AbstractVector, y1dot::AbstractVector, y1dot_fluid::AbstractVector, Ο, ΞΟ, span_uvec::AbstractVector, chord_uvec::AbstractVector, bl, chord_cross_span_to_get_top_uvec::Bool) where {TDirect<:AbstractDirectivity,TUInduction,TMachCorrection,TDoppler}
return new{
TDirect,TUInduction,TMachCorrection,TDoppler,
typeof(c0), typeof(nu), typeof(Ξr), typeof(chord), typeof(h), typeof(Psi), typeof(y0dot), typeof(y1dot), typeof(y1dot_fluid), typeof(Ο), typeof(ΞΟ), typeof(span_uvec), typeof(chord_uvec), typeof(bl)
}(c0, nu, Ξr, chord, h, Psi, y0dot, y1dot, y1dot_fluid, Ο, ΞΟ, span_uvec, chord_uvec, bl, chord_cross_span_to_get_top_uvec)
end
end
# Default to using the `BrooksBurleyDirectivity` directivity function, include induction in the flow speed normal to span (TUInduction == true), use the Prandtl-Glauert mach number correction, and Doppler-shift.
function CombinedNoTipBroadbandSourceElement(c0, nu, Ξr, chord, h, Psi, y0dot::AbstractVector, y1dot::AbstractVector, y1dot_fluid::AbstractVector, Ο, ΞΟ, span_uvec::AbstractVector, chord_uvec::AbstractVector, bl, chord_cross_span_to_get_top_uvec)
return CombinedNoTipBroadbandSourceElement{BrooksBurleyDirectivity,true,PrandtlGlauertMachCorrection,true}(c0, nu, Ξr, chord, h, Psi, y0dot, y1dot, y1dot_fluid, Ο, ΞΟ, span_uvec, chord_uvec, bl, chord_cross_span_to_get_top_uvec)
end
"""
CombinedNoTipBroadbandSourceElement(c0, nu, r, ΞΈ, Ξr, chord, Ο, h, Psi, vn, vr, vc, Ο, ΞΟ, bl, twist_about_positive_y)
Construct a source element for predicting turbulent boundary layer-trailing edge (TBLTE), laminar boundary layer-vortex shedding (LBLVS) noise, and trailing edge bluntness-vortex shedding (TEBVS) noise using the BPM/Brooks and Burley method, using position and velocity data expressed in a cylindrical coordinate system.
The `r` and `ΞΈ` arguments are used to define the radial and circumferential position of the source element in a cylindrical coordinate system.
Likewise, the `vn`, `vr`, and `vc` arguments are used to define the normal, radial, and circumferential velocity of the fluid (in a reference frame moving with the element) in the same cylindrical coordinate system.
The cylindrical coordinate system is defined as follows:
* The normal/axial direction is in the positive x axis
* The circumferential/azimuth angle `ΞΈ` is defined such that `ΞΈ = 0` means the radial direction is aligned with the positive y axis, and a positive `ΞΈ` indicates a right-handed rotation around the positive x axis.
The `twist_about_positive_y` is a `Bool` controling how the `Ο` argument is handled, which in turn controls the orientation of a unit vector defining `chord_uvec` indicating the orientation of the chord line, from leading edge to trailing edge.
If `twist_about_positive_y` is `true`, `chord_uvec` will initially be pointed in the negative-z direction, and then rotated around the positive y axis by an amount `Ο` before being rotated by the azimuth angle `ΞΈ`.
(This would typcially be appropriate for a source element rotating around the positive x axis.)
If `twist_about_positive_y` is `false`, `chord_uvec` will initially be pointed in the positive-z direction, and then rotated around the negative y axis by an amount `Ο` before being rotated by the azimuth angle `ΞΈ`.
(This would typcially be appropriate for a source element rotating around the negative x axis.)
Note that, for a proper noise prediction, the source element needs to be transformed into the "global" frame, aka, the reference frame of the fluid.
This can be done easily with the transformations provided by the `KinematicCoordinateTransformations` package, or manually by modifying the components of the source element struct.
# Arguments
- c0: Ambient speed of sound (m/s)
- nu: Kinematic viscosity (m^2/s)
- r: radial coordinate of the element in the blade-fixed coordinate system (m)
- ΞΈ: angular offest of the element in the blade-fixed coordinate system (rad)
- Ξr: length of the element (m)
- chord: chord length of blade element (m)
- Ο: twist of blade element (rad)
- h: trailing edge thickness (m)
- Psi: solid angle between the blade surfaces immediately upstream of the trailing edge (rad)
- vn: normal velocity of fluid (m/s)
- vr: radial velocity of fluid (m/s)
- vc: circumferential velocity of the fluid (m/s)
- Ο: source time (s)
- ΞΟ: source time duration (s)
- bl: Boundary layer struct, i.e. an AbstractBoundaryLayer.
- twist_about_positive_y: if `true`, apply twist Ο about positive y axis, negative y axis otherwise
"""
function CombinedNoTipBroadbandSourceElement{TDirect,TUInduction,TMachCorrection,TDoppler}(c0, nu, r, ΞΈ, Ξr, chord, Ο, h, Psi, vn, vr, vc, Ο, ΞΟ, bl, twist_about_positive_y) where {TDirect,TUInduction,TMachCorrection,TDoppler}
sΞΈ, cΞΈ = sincos(ΞΈ)
sΟ, cΟ = sincos(Ο)
y0dot = @SVector [0, r*cΞΈ, r*sΞΈ]
T = eltype(y0dot)
y1dot = @SVector zeros(T, 3)
y1dot_fluid = @SVector [vn, vr*cΞΈ - vc*sΞΈ, vr*sΞΈ + vc*cΞΈ]
span_uvec = @SVector [0, cΞΈ, sΞΈ]
if twist_about_positive_y
chord_uvec = @SVector [-sΟ, cΟ*sΞΈ, -cΟ*cΞΈ]
else
chord_uvec = @SVector [-sΟ, -cΟ*sΞΈ, cΟ*cΞΈ]
end
chord_cross_span_to_get_top_uvec = twist_about_positive_y
return CombinedNoTipBroadbandSourceElement{TDirect,TUInduction,TMachCorrection,TDoppler}(c0, nu, Ξr, chord, h, Psi, y0dot, y1dot, y1dot_fluid, Ο, ΞΟ, span_uvec, chord_uvec, bl, chord_cross_span_to_get_top_uvec)
end
# Default to using the `BrooksBurleyDirectivity` directivity function, include induction in the flow speed normal to span (TUInduction == true), use the Prandtl-Glauert mach number correction, and Doppler-shift.
function CombinedNoTipBroadbandSourceElement(c0, nu, r, ΞΈ, Ξr, chord, Ο, h, Psi, vn, vr, vc, Ο, ΞΟ, bl, twist_about_positive_y)
return CombinedNoTipBroadbandSourceElement{BrooksBurleyDirectivity,true,PrandtlGlauertMachCorrection,true}(c0, nu, r, ΞΈ, Ξr, chord, Ο, h, Psi, vn, vr, vc, Ο, ΞΟ, bl, twist_about_positive_y)
end
"""
CombinedNoTipBroadbandSourceElement(c0, nu, r, ΞΈ, Ξr, chord, Ο, h, Psi, U, Ξ±, Ο, ΞΟ, bl, twist_about_positive_y)
Construct a source element for predicting turbulent boundary layer-trailing edge (TBLTE), laminar boundary layer-vortex shedding (LBLVS) noise, and trailing edge bluntness-vortex shedding (TEBVS) noise using the BPM/Brooks and Burley method, using the velocity magnitude `U` and angle of attack `Ξ±`.
The `r` and `ΞΈ` arguments are used to define the radial and circumferential position of the source element in a cylindrical coordinate system.
The `U` and `Ξ±` arguments are the velocity magnitude normal to the source element length and the angle of attack, respectively.
The cylindrical coordinate system is defined as follows:
* The normal/axial direction is in the positive x axis
* The circumferential/azimuth angle `ΞΈ` is defined such that `ΞΈ = 0` means the radial direction is aligned with the positive y axis, and a positive `ΞΈ` indicates a right-handed rotation around the positive x axis.
The `twist_about_positive_y` is a `Bool` controling how the `Ο` argument is handled, which in turn controls the orientation of a unit vector defining `chord_uvec` indicating the orientation of the chord line, from leading edge to trailing edge.
If `twist_about_positive_y` is `true`, `chord_uvec` will initially be pointed in the negative-z direction, and then rotated around the positive y axis by an amount `Ο` before being rotated by the azimuth angle `ΞΈ`.
(This would typcially be appropriate for a source element rotating around the positive x axis.)
If `twist_about_positive_y` is `false`, `chord_uvec` will initially be pointed in the positive-z direction, and then rotated around the negative y axis by an amount `Ο` before being rotated by the azimuth angle `ΞΈ`.
(This would typcially be appropriate for a source element rotating around the negative x axis.)
Note that, for a proper noise prediction, the source element needs to be transformed into the "global" frame, aka, the reference frame of the fluid.
This can be done easily with the transformations provided by the `KinematicCoordinateTransformations` package, or manually by modifying the components of the source element struct.
# Arguments
- c0: Ambient speed of sound (m/s)
- nu: Kinematic viscosity (m^2/s)
- r: radial coordinate of the element in the blade-fixed coordinate system (m)
- ΞΈ: angular offest of the element in the blade-fixed coordinate system (rad)
- Ξr: length of the element (m)
- chord: chord length of blade element (m)
- Ο: twist of blade element (rad)
- h: trailing edge thickness (m)
- Psi: solid angle between the blade surfaces immediately upstream of the trailing edge (rad)
- U: velocity magnitude (m/s)
- Ξ±: angle of attack (rad)
- Ο: source time (s)
- ΞΟ: source time duration (s)
- bl: Boundary layer struct, i.e. an AbstractBoundaryLayer.
- twist_about_positive_y: if `true`, apply twist Ο about positive y axis, negative y axis otherwise
"""
function CombinedNoTipBroadbandSourceElement{TDirect,TUInduction,TMachCorrection,TDoppler}(c0, nu, r, ΞΈ, Ξr, chord, Ο, h, Psi, U, Ξ±, Ο, ΞΟ, bl, twist_about_positive_y) where {TDirect,TUInduction,TMachCorrection,TDoppler}
precone = 0
pitch = 0
phi = Ο - Ξ±
y0dot, y1dot, y1dot_fluid, span_uvec, chord_uvec, chord_cross_span_to_get_top_uvec = _get_position_velocity_span_uvec_chord_uvec(Ο, precone, pitch, r, ΞΈ, U, phi, twist_about_positive_y)
return CombinedNoTipBroadbandSourceElement{TDirect,TUInduction,TMachCorrection,TDoppler}(c0, nu, Ξr, chord, h, Psi, y0dot, y1dot, y1dot_fluid, Ο, ΞΟ, span_uvec, chord_uvec, bl, chord_cross_span_to_get_top_uvec)
end
# Default to using the `BrooksBurleyDirectivity` directivity function, include induction in the flow speed normal to span (TUInduction == true), use the PrandtlGlauertMachCorrection, and Doppler-shift.
function CombinedNoTipBroadbandSourceElement(c0, nu, r, ΞΈ, Ξr, chord, Ο, h, Psi, U, Ξ±, Ο, ΞΟ, bl, twist_about_positive_y::Bool)
return CombinedNoTipBroadbandSourceElement{BrooksBurleyDirectivity,true,PrandtlGlauertMachCorrection,true}(c0, nu, r, ΞΈ, Ξr, chord, Ο, h, Psi, U, Ξ±, Ο, ΞΟ, bl, twist_about_positive_y)
end
"""
(trans::KinematicTransformation)(se::CombinedNoTipBroadbandSourceElement)
Transform the position and orientation of a source element according to the coordinate system transformation `trans`.
"""
function (trans::KinematicTransformation)(se::CombinedNoTipBroadbandSourceElement{TDirect,TUInduction,TMachCorrection,TDoppler}) where {TDirect,TUInduction,TMachCorrection,TDoppler}
linear_only = false
y0dot, y1dot = trans(se.Ο, se.y0dot, se.y1dot, linear_only)
y0dot, y1dot_fluid = trans(se.Ο, se.y0dot, se.y1dot_fluid, linear_only)
linear_only = true
span_uvec = trans(se.Ο, se.span_uvec, linear_only)
chord_uvec = trans(se.Ο, se.chord_uvec, linear_only)
return CombinedNoTipBroadbandSourceElement{TDirect,TUInduction,TMachCorrection,TDoppler}(se.c0, se.nu, se.Ξr, se.chord, se.h, se.Psi, y0dot, y1dot, y1dot_fluid, se.Ο, se.ΞΟ, span_uvec, chord_uvec, se.bl, se.chord_cross_span_to_get_top_uvec)
end
"""
CombinedNoTipOutput(G_s, G_p, G_alpha, G_teb, cbands, dt, t)
Output of the combined broadband noise calculation not including tip vortex noise: the acoustic pressure autospectrum centered at time `t` over observer duration `dt` and observer frequencies `cbands` for the TBLTE suction side `G_s`, TBLTE pressure side `G_p`, TBLTE separation noise `G_alpha`, and trailing edge bluntness noise `G_teb`.
"""
struct CombinedNoTipOutput{NO,TF,TG<:AbstractVector{TF},TFreqs<:AcousticMetrics.AbstractProportionalBands{NO,:center},TDTime,TTime} <: AcousticMetrics.AbstractProportionalBandSpectrum{NO,TF}
G_s::TG
G_p::TG
G_alpha::TG
G_lblvs::TG
G_teb::TG
cbands::TFreqs
dt::TDTime
t::TTime
function CombinedNoTipOutput(G_s::TG, G_p::TG, G_alpha::TG, G_lblvs, G_teb::TG, cbands::AcousticMetrics.AbstractProportionalBands{NO,:center}, dt, t) where {NO,TG}
ncbands = length(cbands)
length(G_s) == ncbands || throw(ArgumentError("length(G_s) must match length(cbands)"))
length(G_p) == ncbands || throw(ArgumentError("length(G_p) must match length(cbands)"))
length(G_alpha) == ncbands || throw(ArgumentError("length(G_alpha) must match length(cbands)"))
length(G_lblvs) == ncbands || throw(ArgumentError("length(G_lblvs) must match length(cbands)"))
length(G_teb) == ncbands || throw(ArgumentError("length(G_teb) must match length(cbands)"))
dt > zero(dt) || throw(ArgumentError("dt must be positive"))
return new{NO,eltype(TG),TG,typeof(cbands),typeof(dt),typeof(t)}(G_s, G_p, G_alpha, G_lblvs, G_teb, cbands, dt, t)
end
end
@inline function Base.getindex(pbs::CombinedNoTipOutput, i::Int)
@boundscheck checkbounds(pbs, i)
return @inbounds pbs.G_s[i] + pbs.G_p[i] + pbs.G_alpha[i] + +pbs.G_lblvs[i] + pbs.G_teb[i]
end
@inline AcousticMetrics.has_observer_time(pbs::CombinedNoTipOutput) = true
@inline AcousticMetrics.observer_time(pbs::CombinedNoTipOutput) = pbs.t
@inline AcousticMetrics.timestep(pbs::CombinedNoTipOutput) = pbs.dt
@inline AcousticMetrics.time_scaler(pbs::CombinedNoTipOutput, period) = timestep(pbs)/period
function noise(se::CombinedNoTipBroadbandSourceElement, obs::AbstractAcousticObserver, t_obs, freqs::AcousticMetrics.AbstractProportionalBands{3, :center})
# Position of the observer:
x_obs = obs(t_obs)
# Need the angle of attack.
alphastar = angle_of_attack(se)
# Need the directivity functions.
top_is_suction = is_top_suction(se.bl, alphastar)
r_er, Dl, Dh = directivity(se, x_obs, top_is_suction)
# Need the fluid velocity normal to the span.
# Brooks and Burley 2001 are a bit ambiguous on whether it should include induction, or just the freestream and rotation.
#
# * In the nomenclature section: `U` is "flow speed normal to span (`U_mn` with `mn` suppressed).
# So that's one point for "no induction."
# * In some discussion after equation (8), "The Mach number, `M = U/c0`, represents that component of velocity `U` normal to the span...".
# Hard to say one way or the other.
# * In equation (12), `U_mn` is the velocity without induction.
# So that's another point for "no induction."
# * Equation (14) defines `V_tot` as the velocity including the freestream, rotation, and induction.
# And then it defines `U` as the part of `V_tot` normal to the span.
# So that's a point for "yes induction."
# * In the directivity function definitions in equations (19) and (20), `M_tot` is used in the denominator, which seems to make it clear *that* velocity should include induction, since `V_tot` always includes induction.
#
# So, at the moment, the TBLTESourceElement type has a parameter TUInduction which, when true, will include induction in the flow speed normal to the span, and not otherwise.
U = speed_normal_to_span(se)
# Reynolds number based on chord and the flow speed normal to span.
Re_c = U*se.chord/se.nu
# Also need the displacement thicknesses for the pressure and suction sides.
deltastar_s = disp_thickness_s(se.bl, Re_c, alphastar)*se.chord
deltastar_p = disp_thickness_p(se.bl, Re_c, alphastar)*se.chord
# Need the boundary layer thickness for the pressure side for LBL-VS noise.
delta_p = bl_thickness_p(se.bl, Re_c, alphastar)*se.chord
# Now that we've decided on the directivity functions and the displacement thickness, and we know the correct value of `top_is_suction` we should be able to switch the sign on `alphastar` if it's negative, and reference it to the zero-lift value, as the BPM report does.
alphastar_positive = abs_cs_safe(alphastar - alpha_zerolift(se.bl))
# Mach number of the flow speed normal to span.
M = U/se.c0
# This stuff is used to decide if the blade element is stalled or not.
alphastar0 = alpha_stall(se.bl, Re_c)
gamma0_deg = gamma0(M)
deep_stall = (alphastar_positive*180/pi) > min(gamma0_deg, alphastar0*180/pi)
# if deep_stall
# println("deep_stall! M = $(M), alphastar_positive*180/pi = $(alphastar_positive*180/pi), gamma0_deg = $(gamma0_deg), alphastar0*180/pi = $(alphastar0*180/pi)")
# println("forcing deep_stall == false")
# deep_stall = false
# end
St_peak_p = St_1(M)
St_peak_alpha = St_2(St_peak_p, alphastar_positive)
St_peak_s = 0.5*(St_peak_p + St_peak_alpha)
Re_deltastar_p = U*deltastar_p/se.nu
k_1 = K_1(Re_c)
k_2 = K_2(Re_c, M, alphastar_positive)
Ξk_1 = DeltaK_1(alphastar_positive, Re_deltastar_p)
deltastar_s_U = deltastar_s/U
deltastar_p_U = deltastar_p/U
# Stuff for LBLVS noise.
delta_p_U = delta_p/U
St_p_p = St_peak_prime(St_1_prime(Re_c), alphastar_positive)
Re_c_over_Re_c0 = Re_c / Re_c0(alphastar_positive)
g2 = G2(Re_c_over_Re_c0)
g3 = G3(alphastar_positive)
# Brooks and Burley 2001 recommend a Prandtl-Glauert style Mach number correction, but only for the TBLTE noise.
# But whether or not it's included is dependent on the TMachCorrection type parameter for the source element.
m_corr = mach_correction(se, M)
# Equation 73 from the BPM report.
deltastar_avg = 0.5*(deltastar_p + deltastar_s)
h_over_deltastar_avg = se.h/deltastar_avg
h_U = se.h/U
St_3pp = St_3prime_peak(h_over_deltastar_avg, se.Psi)
g4 = G4(h_over_deltastar_avg, se.Psi)
# The Brooks and Burley autospectrums appear to be scaled by the usual squared reference pressure (20 ΞΌPa)^2, but I'd like things in dimensional units, so multiply through by that.
pref2 = 4e-10
G_s_scaler = (deltastar_s*M^5*se.Ξr*Dh)/(r_er^2)*m_corr
G_s = _tble_te_s.(freqs, deltastar_s_U, Re_c, St_peak_s, k_1, G_s_scaler, deep_stall).*pref2
G_p_scaler = (deltastar_p*M^5*se.Ξr*Dh)/(r_er^2)*m_corr
G_p = _tble_te_p.(freqs, deltastar_p_U, Re_c, St_peak_p, k_1, Ξk_1, G_p_scaler, deep_stall).*pref2
G_alpha_scaler_l = (deltastar_s*M^5*se.Ξr*Dl)/(r_er^2)*m_corr
G_alpha_scaler_h = G_s_scaler
G_alpha = _tble_te_alpha.(freqs, Re_c, deltastar_s_U, St_peak_alpha, k_2, G_alpha_scaler_l, G_alpha_scaler_h, deep_stall).*pref2
G_lbl_vs_scaler = (delta_p*M^5*se.Ξr*Dh)/(r_er^2)
G_lbl_vs = _lbl_vs.(freqs, delta_p_U, St_p_p, g2, g3, G_lbl_vs_scaler) .* pref2
G_teb_vs_scaler = (se.h*(M^5.5)*se.Ξr*Dh)/(r_er^2)
G_teb_vs = _teb_vs.(freqs, h_U, h_over_deltastar_avg, St_3pp, se.Psi, g4, G_teb_vs_scaler) .* pref2
# Also need the Doppler shift for this source-observer combination.
doppler = doppler_factor(se, obs, t_obs)
# Get the doppler-shifted time step and proportional bands.
dt = se.ΞΟ/doppler
freqs_obs = AcousticMetrics.center_bands(freqs, doppler)
@assert AcousticMetrics.freq_scaler(freqs_obs) β doppler
# All done.
return CombinedNoTipOutput(G_s, G_p, G_alpha, G_lbl_vs, G_teb_vs, freqs_obs, dt, t_obs)
end
struct CombinedWithTipBroadbandSourceElement{
TDirect<:AbstractDirectivity,TUInduction,TMachCorrection,TDoppler,
Tc0,Tnu,TΞr,Tchord,Th,TPsi,Ty0dot,Ty1dot,Ty1dot_fluid,TΟ,TΞΟ,Tspan_uvec,Tchord_uvec,Tbl,Tblade_tip
} <: AbstractBroadbandSourceElement{TDirect,TUInduction,TMachCorrection,TDoppler}
# Speed of sound, m/s.
c0::Tc0
# Kinematic viscosity, m^2/s
nu::Tnu
# Radial/spanwise length of element, m.
Ξr::TΞr
# chord length of element, m.
chord::Tchord
# Trailing edge thickness, m.
h::Th
# Solid angle between blade surfaces immediately upstream of the trailing edge, rad.
Psi::TPsi
# Source position, m.
y0dot::Ty0dot
# Source velocity, m/s.
y1dot::Ty1dot
# Fluid velocity, m/s.
y1dot_fluid::Ty1dot_fluid
# Source time, s.
Ο::TΟ
# Time step size, i.e. the amount of time this source element "exists" at with these properties, s.
ΞΟ::TΞΟ
# Radial/spanwise unit vector, aka unit vector aligned with the element's span direction.
span_uvec::Tspan_uvec
# Chordwise unit vector, aka unit vector aligned with the element's chord line, pointing from leading edge to trailing edge.
chord_uvec::Tchord_uvec
# Boundary layer struct, i.e. an AbstractBoundaryLayer.
bl::Tbl
# Blade tip struct, i.e. and AbstractBladeTip
blade_tip::Tblade_tip
# `Bool` indicating chord_uvecΓspan_uvec will give a vector pointing from bottom side (usually pressure side) to top side (usually suction side) if `true`, or the opposite if `false`.
chord_cross_span_to_get_top_uvec::Bool
function CombinedWithTipBroadbandSourceElement{TDirect,TUInduction,TMachCorrection,TDoppler}(c0, nu, Ξr, chord, h, Psi, y0dot::AbstractVector, y1dot::AbstractVector, y1dot_fluid::AbstractVector, Ο, ΞΟ, span_uvec::AbstractVector, chord_uvec::AbstractVector, bl, blade_tip, chord_cross_span_to_get_top_uvec::Bool) where {TDirect<:AbstractDirectivity,TUInduction,TMachCorrection,TDoppler}
return new{
TDirect,TUInduction,TMachCorrection,TDoppler,
typeof(c0), typeof(nu), typeof(Ξr), typeof(chord), typeof(h), typeof(Psi), typeof(y0dot), typeof(y1dot), typeof(y1dot_fluid), typeof(Ο), typeof(ΞΟ), typeof(span_uvec), typeof(chord_uvec), typeof(bl), typeof(blade_tip)
}(c0, nu, Ξr, chord, h, Psi, y0dot, y1dot, y1dot_fluid, Ο, ΞΟ, span_uvec, chord_uvec, bl, blade_tip, chord_cross_span_to_get_top_uvec)
end
end
# Default to using the `BrooksBurleyDirectivity` directivity function, include induction in the flow speed normal to span (TUInduction == true), use the Prandtl-Glauert mach number correction, and Doppler-shift.
function CombinedWithTipBroadbandSourceElement(c0, nu, Ξr, chord, h, Psi, y0dot::AbstractVector, y1dot::AbstractVector, y1dot_fluid::AbstractVector, Ο, ΞΟ, span_uvec::AbstractVector, chord_uvec::AbstractVector, bl, blade_tip, chord_cross_span_to_get_top_uvec)
return CombinedWithTipBroadbandSourceElement{BrooksBurleyDirectivity,true,PrandtlGlauertMachCorrection,true}(c0, nu, Ξr, chord, h, Psi, y0dot, y1dot, y1dot_fluid, Ο, ΞΟ, span_uvec, chord_uvec, bl, blade_tip, chord_cross_span_to_get_top_uvec)
end
"""
CombinedWithTipBroadbandSourceElement(c0, nu, r, ΞΈ, Ξr, chord, Ο, h, Psi, vn, vr, vc, Ο, ΞΟ, bl, twist_about_positive_y)
Construct a source element for predicting turbulent boundary layer-trailing edge (TBLTE), laminar boundary layer-vortex shedding (LBLVS) noise, trailing edge bluntness-vortex shedding (TEBVS) noise, and tip vortex noise using the BPM/Brooks and Burley method, using position and velocity data expressed in a cylindrical coordinate system.
The `r` and `ΞΈ` arguments are used to define the radial and circumferential position of the source element in a cylindrical coordinate system.
Likewise, the `vn`, `vr`, and `vc` arguments are used to define the normal, radial, and circumferential velocity of the fluid (in a reference frame moving with the element) in the same cylindrical coordinate system.
The cylindrical coordinate system is defined as follows:
* The normal/axial direction is in the positive x axis
* The circumferential/azimuth angle `ΞΈ` is defined such that `ΞΈ = 0` means the radial direction is aligned with the positive y axis, and a positive `ΞΈ` indicates a right-handed rotation around the positive x axis.
The `twist_about_positive_y` is a `Bool` controling how the `Ο` argument is handled, which in turn controls the orientation of a unit vector defining `chord_uvec` indicating the orientation of the chord line, from leading edge to trailing edge.
If `twist_about_positive_y` is `true`, `chord_uvec` will initially be pointed in the negative-z direction, and then rotated around the positive y axis by an amount `Ο` before being rotated by the azimuth angle `ΞΈ`.
(This would typcially be appropriate for a source element rotating around the positive x axis.)
If `twist_about_positive_y` is `false`, `chord_uvec` will initially be pointed in the positive-z direction, and then rotated around the negative y axis by an amount `Ο` before being rotated by the azimuth angle `ΞΈ`.
(This would typcially be appropriate for a source element rotating around the negative x axis.)
Note that, for a proper noise prediction, the source element needs to be transformed into the "global" frame, aka, the reference frame of the fluid.
This can be done easily with the transformations provided by the `KinematicCoordinateTransformations` package, or manually by modifying the components of the source element struct.
# Arguments
- c0: Ambient speed of sound (m/s)
- nu: Kinematic viscosity (m^2/s)
- r: radial coordinate of the element in the blade-fixed coordinate system (m)
- ΞΈ: angular offest of the element in the blade-fixed coordinate system (rad)
- Ξr: length of the element (m)
- chord: chord length of blade element (m)
- Ο: twist of blade element (rad)
- h: trailing edge thickness (m)
- Psi: solid angle between the blade surfaces immediately upstream of the trailing edge (rad)
- vn: normal velocity of fluid (m/s)
- vr: radial velocity of fluid (m/s)
- vc: circumferential velocity of the fluid (m/s)
- Ο: source time (s)
- ΞΟ: source time duration (s)
- bl: Boundary layer struct, i.e. an AbstractBoundaryLayer.
- blade_tip: Blade tip struct, i.e. an AbstractBladeTip.
- twist_about_positive_y: if `true`, apply twist Ο about positive y axis, negative y axis otherwise
"""
function CombinedWithTipBroadbandSourceElement{TDirect,TUInduction,TMachCorrection,TDoppler}(c0, nu, r, ΞΈ, Ξr, chord, Ο, h, Psi, vn, vr, vc, Ο, ΞΟ, bl, blade_tip, twist_about_positive_y) where {TDirect,TUInduction,TMachCorrection,TDoppler}
sΞΈ, cΞΈ = sincos(ΞΈ)
sΟ, cΟ = sincos(Ο)
y0dot = @SVector [0, r*cΞΈ, r*sΞΈ]
T = eltype(y0dot)
y1dot = @SVector zeros(T, 3)
y1dot_fluid = @SVector [vn, vr*cΞΈ - vc*sΞΈ, vr*sΞΈ + vc*cΞΈ]
span_uvec = @SVector [0, cΞΈ, sΞΈ]
if twist_about_positive_y
chord_uvec = @SVector [-sΟ, cΟ*sΞΈ, -cΟ*cΞΈ]
else
chord_uvec = @SVector [-sΟ, -cΟ*sΞΈ, cΟ*cΞΈ]
end
chord_cross_span_to_get_top_uvec = twist_about_positive_y
return CombinedWithTipBroadbandSourceElement{TDirect,TUInduction,TMachCorrection,TDoppler}(c0, nu, Ξr, chord, h, Psi, y0dot, y1dot, y1dot_fluid, Ο, ΞΟ, span_uvec, chord_uvec, bl, blade_tip, chord_cross_span_to_get_top_uvec)
end
# Default to using the `BrooksBurleyDirectivity` directivity function, include induction in the flow speed normal to span (TUInduction == true), use the Prandtl-Glauert mach number correction, and Doppler-shift.
function CombinedWithTipBroadbandSourceElement(c0, nu, r, ΞΈ, Ξr, chord, Ο, h, Psi, vn, vr, vc, Ο, ΞΟ, bl, blade_tip, twist_about_positive_y)
return CombinedWithTipBroadbandSourceElement{BrooksBurleyDirectivity,true,PrandtlGlauertMachCorrection,true}(c0, nu, r, ΞΈ, Ξr, chord, Ο, h, Psi, vn, vr, vc, Ο, ΞΟ, bl, blade_tip, twist_about_positive_y)
end
"""
CombinedWithTipBroadbandSourceElement(c0, nu, r, ΞΈ, Ξr, chord, Ο, h, Psi, U, Ξ±, Ο, ΞΟ, bl, blade_tip, twist_about_positive_y)
Construct a source element for predicting turbulent boundary layer-trailing edge (TBLTE), laminar boundary layer-vortex shedding (LBLVS) noise, trailing edge bluntness-vortex shedding (TEBVS), and tip vortex noise using the BPM/Brooks and Burley method, using the velocity magnitude `U` and angle of attack `Ξ±`.
The `r` and `ΞΈ` arguments are used to define the radial and circumferential position of the source element in a cylindrical coordinate system.
The `U` and `Ξ±` arguments are the velocity magnitude normal to the source element length and the angle of attack, respectively.
The cylindrical coordinate system is defined as follows:
* The normal/axial direction is in the positive x axis
* The circumferential/azimuth angle `ΞΈ` is defined such that `ΞΈ = 0` means the radial direction is aligned with the positive y axis, and a positive `ΞΈ` indicates a right-handed rotation around the positive x axis.
The `twist_about_positive_y` is a `Bool` controling how the `Ο` argument is handled, which in turn controls the orientation of a unit vector defining `chord_uvec` indicating the orientation of the chord line, from leading edge to trailing edge.
If `twist_about_positive_y` is `true`, `chord_uvec` will initially be pointed in the negative-z direction, and then rotated around the positive y axis by an amount `Ο` before being rotated by the azimuth angle `ΞΈ`.
(This would typcially be appropriate for a source element rotating around the positive x axis.)
If `twist_about_positive_y` is `false`, `chord_uvec` will initially be pointed in the positive-z direction, and then rotated around the negative y axis by an amount `Ο` before being rotated by the azimuth angle `ΞΈ`.
(This would typcially be appropriate for a source element rotating around the negative x axis.)
Note that, for a proper noise prediction, the source element needs to be transformed into the "global" frame, aka, the reference frame of the fluid.
This can be done easily with the transformations provided by the `KinematicCoordinateTransformations` package, or manually by modifying the components of the source element struct.
# Arguments
- c0: Ambient speed of sound (m/s)
- nu: Kinematic viscosity (m^2/s)
- r: radial coordinate of the element in the blade-fixed coordinate system (m)
- ΞΈ: angular offest of the element in the blade-fixed coordinate system (rad)
- Ξr: length of the element (m)
- chord: chord length of blade element (m)
- Ο: twist of blade element (rad)
- h: trailing edge thickness (m)
- Psi: solid angle between the blade surfaces immediately upstream of the trailing edge (rad)
- U: velocity magnitude (m/s)
- Ξ±: angle of attack (rad)
- Ο: source time (s)
- ΞΟ: source time duration (s)
- bl: Boundary layer struct, i.e. an AbstractBoundaryLayer.
- blade_tip: Blade tip struct, i.e. an AbstractBladeTip
- twist_about_positive_y: if `true`, apply twist Ο about positive y axis, negative y axis otherwise
"""
function CombinedWithTipBroadbandSourceElement{TDirect,TUInduction,TMachCorrection,TDoppler}(c0, nu, r, ΞΈ, Ξr, chord, Ο, h, Psi, U, Ξ±, Ο, ΞΟ, bl, blade_tip, twist_about_positive_y) where {TDirect,TUInduction,TMachCorrection,TDoppler}
precone = 0
pitch = 0
phi = Ο - Ξ±
y0dot, y1dot, y1dot_fluid, span_uvec, chord_uvec, chord_cross_span_to_get_top_uvec = _get_position_velocity_span_uvec_chord_uvec(Ο, precone, pitch, r, ΞΈ, U, phi, twist_about_positive_y)
return CombinedWithTipBroadbandSourceElement{TDirect,TUInduction,TMachCorrection,TDoppler}(c0, nu, Ξr, chord, h, Psi, y0dot, y1dot, y1dot_fluid, Ο, ΞΟ, span_uvec, chord_uvec, bl, blade_tip, chord_cross_span_to_get_top_uvec)
end
# Default to using the `BrooksBurleyDirectivity` directivity function, include induction in the flow speed normal to span (TUInduction == true), use the PrandtlGlauertMachCorrection, and Doppler-shift.
function CombinedWithTipBroadbandSourceElement(c0, nu, r, ΞΈ, Ξr, chord, Ο, h, Psi, U, Ξ±, Ο, ΞΟ, bl, blade_tip, twist_about_positive_y::Bool)
return CombinedWithTipBroadbandSourceElement{BrooksBurleyDirectivity,true,PrandtlGlauertMachCorrection,true}(c0, nu, r, ΞΈ, Ξr, chord, Ο, h, Psi, U, Ξ±, Ο, ΞΟ, bl, blade_tip, twist_about_positive_y)
end
"""
(trans::KinematicTransformation)(se::CombinedWithTipBroadbandSourceElement)
Transform the position and orientation of a source element according to the coordinate system transformation `trans`.
"""
function (trans::KinematicTransformation)(se::CombinedWithTipBroadbandSourceElement{TDirect,TUInduction,TMachCorrection,TDoppler}) where {TDirect,TUInduction,TMachCorrection,TDoppler}
linear_only = false
y0dot, y1dot = trans(se.Ο, se.y0dot, se.y1dot, linear_only)
y0dot, y1dot_fluid = trans(se.Ο, se.y0dot, se.y1dot_fluid, linear_only)
linear_only = true
span_uvec = trans(se.Ο, se.span_uvec, linear_only)
chord_uvec = trans(se.Ο, se.chord_uvec, linear_only)
return CombinedWithTipBroadbandSourceElement{TDirect,TUInduction,TMachCorrection,TDoppler}(se.c0, se.nu, se.Ξr, se.chord, se.h, se.Psi, y0dot, y1dot, y1dot_fluid, se.Ο, se.ΞΟ, span_uvec, chord_uvec, se.bl, se.blade_tip, se.chord_cross_span_to_get_top_uvec)
end
"""
CombinedWithTipOutput(G_s, G_p, G_alpha, G_teb, G_tip, cbands, dt, t)
Output of the combined broadband noise calculation: the acoustic pressure autospectrum centered at time `t` over observer duration `dt` and observer frequencies `cbands` for the TBLTE suction side `G_s`, TBLTE pressure side `G_p`, TBLTE separation noise `G_alpha`, trailing edge bluntness noise `G_teb`, and tip vortex noise `G_tip`.
"""
struct CombinedWithTipOutput{NO,TF,TG<:AbstractVector{TF},TFreqs<:AcousticMetrics.AbstractProportionalBands{NO,:center},TDTime,TTime} <: AcousticMetrics.AbstractProportionalBandSpectrum{NO,TF}
G_s::TG
G_p::TG
G_alpha::TG
G_lblvs::TG
G_teb::TG
G_tip::TG
cbands::TFreqs
dt::TDTime
t::TTime
function CombinedWithTipOutput(G_s::TG, G_p::TG, G_alpha::TG, G_lblvs, G_teb::TG, G_tip::TG, cbands::AcousticMetrics.AbstractProportionalBands{NO,:center}, dt, t) where {NO,TG}
ncbands = length(cbands)
length(G_s) == ncbands || throw(ArgumentError("length(G_s) must match length(cbands)"))
length(G_p) == ncbands || throw(ArgumentError("length(G_p) must match length(cbands)"))
length(G_alpha) == ncbands || throw(ArgumentError("length(G_alpha) must match length(cbands)"))
length(G_lblvs) == ncbands || throw(ArgumentError("length(G_lblvs) must match length(cbands)"))
length(G_teb) == ncbands || throw(ArgumentError("length(G_teb) must match length(cbands)"))
length(G_tip) == ncbands || throw(ArgumentError("length(G_tip) must match length(cbands)"))
dt > zero(dt) || throw(ArgumentError("dt must be positive"))
return new{NO,eltype(TG),TG,typeof(cbands),typeof(dt),typeof(t)}(G_s, G_p, G_alpha, G_lblvs, G_teb, G_tip, cbands, dt, t)
end
end
@inline function Base.getindex(pbs::CombinedWithTipOutput, i::Int)
@boundscheck checkbounds(pbs, i)
return @inbounds pbs.G_s[i] + pbs.G_p[i] + pbs.G_alpha[i] + pbs.G_teb[i] + pbs.G_tip[i]
end
@inline AcousticMetrics.has_observer_time(pbs::CombinedWithTipOutput) = true
@inline AcousticMetrics.observer_time(pbs::CombinedWithTipOutput) = pbs.t
@inline AcousticMetrics.timestep(pbs::CombinedWithTipOutput) = pbs.dt
@inline AcousticMetrics.time_scaler(pbs::CombinedWithTipOutput, period) = timestep(pbs)/period
function noise(se::CombinedWithTipBroadbandSourceElement, obs::AbstractAcousticObserver, t_obs, freqs::AcousticMetrics.AbstractProportionalBands{3, :center})
# Position of the observer:
x_obs = obs(t_obs)
# Need the angle of attack.
alphastar = angle_of_attack(se)
# Need the angle of attack, including the possible tip correction.
alphatip = tip_vortex_alpha_correction(se.blade_tip, alphastar)
# Need the directivity functions.
# But we have two angles of attack: one that includes a tip vortex correction, one that doesn't.
# But the angle of attack is only used to determine the value of `top_is_suction`, which in turn only depends on if the angle of attack is greater or less than the zero-lift angle of attack.
# And the tip vortex alpha correction is designed to not change that.
# So no worries about which alpha to use.
top_is_suction = is_top_suction(se.bl, alphastar)
r_er, Dl, Dh = directivity(se, x_obs, top_is_suction)
# Need the fluid velocity normal to the span.
# Brooks and Burley 2001 are a bit ambiguous on whether it should include induction, or just the freestream and rotation.
#
# * In the nomenclature section: `U` is "flow speed normal to span (`U_mn` with `mn` suppressed).
# So that's one point for "no induction."
# * In some discussion after equation (8), "The Mach number, `M = U/c0`, represents that component of velocity `U` normal to the span...".
# Hard to say one way or the other.
# * In equation (12), `U_mn` is the velocity without induction.
# So that's another point for "no induction."
# * Equation (14) defines `V_tot` as the velocity including the freestream, rotation, and induction.
# And then it defines `U` as the part of `V_tot` normal to the span.
# So that's a point for "yes induction."
# * In the directivity function definitions in equations (19) and (20), `M_tot` is used in the denominator, which seems to make it clear *that* velocity should include induction, since `V_tot` always includes induction.
#
# So, at the moment, the TBLTESourceElement type has a parameter TUInduction which, when true, will include induction in the flow speed normal to the span, and not otherwise.
U = speed_normal_to_span(se)
# Reynolds number based on chord and the flow speed normal to span.
Re_c = U*se.chord/se.nu
# Also need the displacement thicknesses for the pressure and suction sides.
deltastar_s = disp_thickness_s(se.bl, Re_c, alphastar)*se.chord
deltastar_p = disp_thickness_p(se.bl, Re_c, alphastar)*se.chord
# Need the boundary layer thickness for the pressure side for LBL-VS noise.
delta_p = bl_thickness_p(se.bl, Re_c, alphastar)*se.chord
# Now that we've decided on the directivity functions and the displacement thickness, and we know the correct value of `top_is_suction` we should be able to switch the sign on `alphastar` if it's negative, and reference it to the zero-lift value, as the BPM report does.
alphastar_positive = abs_cs_safe(alphastar - alpha_zerolift(se.bl))
# Now that we've decided on the directivity functions and we know the correct value of `top_is_suction` we should be able to switch the sign on `alphastar` if it's negative, and reference it to the zero-lift value, as the BPM report does.
alphatip_positive = abs_cs_safe(alphatip - alpha_zerolift(se.bl))
# Mach number of the flow speed normal to span.
M = U/se.c0
# This stuff is used to decide if the blade element is stalled or not.
alphastar0 = alpha_stall(se.bl, Re_c)
gamma0_deg = gamma0(M)
deep_stall = (alphastar_positive*180/pi) > min(gamma0_deg, alphastar0*180/pi)
# if deep_stall
# println("deep_stall! M = $(M), alphastar_positive*180/pi = $(alphastar_positive*180/pi), gamma0_deg = $(gamma0_deg), alphastar0*180/pi = $(alphastar0*180/pi)")
# println("forcing deep_stall == false")
# deep_stall = false
# end
St_peak_p = St_1(M)
St_peak_alpha = St_2(St_peak_p, alphastar_positive)
St_peak_s = 0.5*(St_peak_p + St_peak_alpha)
Re_deltastar_p = U*deltastar_p/se.nu
k_1 = K_1(Re_c)
k_2 = K_2(Re_c, M, alphastar_positive)
Ξk_1 = DeltaK_1(alphastar_positive, Re_deltastar_p)
deltastar_s_U = deltastar_s/U
deltastar_p_U = deltastar_p/U
# Stuff for LBLVS noise.
delta_p_U = delta_p/U
St_p_p = St_peak_prime(St_1_prime(Re_c), alphastar_positive)
Re_c_over_Re_c0 = Re_c / Re_c0(alphastar_positive)
g2 = G2(Re_c_over_Re_c0)
g3 = G3(alphastar_positive)
# Brooks and Burley 2001 recommend a Prandtl-Glauert style Mach number correction, but only for the TBLTE noise.
# But whether or not it's included is dependent on the TMachCorrection type parameter for the source element.
m_corr = mach_correction(se, M)
# Equation 73 from the BPM report.
deltastar_avg = 0.5*(deltastar_p + deltastar_s)
h_over_deltastar_avg = se.h/deltastar_avg
h_U = se.h/U
St_3pp = St_3prime_peak(h_over_deltastar_avg, se.Psi)
g4 = G4(h_over_deltastar_avg, se.Psi)
# Need the maximum mach number near the tip vortex.
M_max = tip_vortex_max_mach_number(se.blade_tip, M, alphatip_positive)
# Now we can find the maximum speed near the tip vortex.
U_max = M_max * se.c0
# Get the tip vortex size.
l = tip_vortex_size_c(se.blade_tip, alphatip_positive) * se.chord
# The Brooks and Burley autospectrums appear to be scaled by the usual squared reference pressure (20 ΞΌPa)^2, but I'd like things in dimensional units, so multiply through by that.
pref2 = 4e-10
G_s_scaler = (deltastar_s*M^5*se.Ξr*Dh)/(r_er^2)*m_corr
G_s = _tble_te_s.(freqs, deltastar_s_U, Re_c, St_peak_s, k_1, G_s_scaler, deep_stall).*pref2
G_p_scaler = (deltastar_p*M^5*se.Ξr*Dh)/(r_er^2)*m_corr
G_p = _tble_te_p.(freqs, deltastar_p_U, Re_c, St_peak_p, k_1, Ξk_1, G_p_scaler, deep_stall).*pref2
G_alpha_scaler_l = (deltastar_s*M^5*se.Ξr*Dl)/(r_er^2)*m_corr
G_alpha_scaler_h = G_s_scaler
G_alpha = _tble_te_alpha.(freqs, Re_c, deltastar_s_U, St_peak_alpha, k_2, G_alpha_scaler_l, G_alpha_scaler_h, deep_stall).*pref2
G_lbl_vs_scaler = (delta_p*M^5*se.Ξr*Dh)/(r_er^2)
G_lbl_vs = _lbl_vs.(freqs, delta_p_U, St_p_p, g2, g3, G_lbl_vs_scaler) .* pref2
G_teb_vs_scaler = (se.h*(M^5.5)*se.Ξr*Dh)/(r_er^2)
G_teb_vs = _teb_vs.(freqs, h_U, h_over_deltastar_avg, St_3pp, se.Psi, g4, G_teb_vs_scaler) .* pref2
l_U_max = l/U_max
G_tip_scaler = (M^2*M_max^3*l^2*Dh/r_er^2)
G_tip = _tip.(freqs, l_U_max, G_tip_scaler) .* pref2
# Also need the Doppler shift for this source-observer combination.
doppler = doppler_factor(se, obs, t_obs)
# Get the doppler-shifted time step and proportional bands.
dt = se.ΞΟ/doppler
freqs_obs = AcousticMetrics.center_bands(freqs, doppler)
# @assert AcousticMetrics.freq_scaler(freqs_obs) β doppler
# All done.
return CombinedWithTipOutput(G_s, G_p, G_alpha, G_lbl_vs, G_teb_vs, G_tip, freqs_obs, dt, t_obs)
end
function pbs_suction(pbs::Union{TBLTEOutput,CombinedNoTipOutput,CombinedWithTipOutput})
t = AcousticMetrics.observer_time(pbs)
dt = AcousticMetrics.timestep(pbs)
cbands = AcousticMetrics.center_bands(pbs)
return AcousticMetrics.ProportionalBandSpectrumWithTime(pbs.G_s, cbands, dt, t)
end
function pbs_pressure(pbs::Union{TBLTEOutput,CombinedNoTipOutput,CombinedWithTipOutput})
t = AcousticMetrics.observer_time(pbs)
dt = AcousticMetrics.timestep(pbs)
cbands = AcousticMetrics.center_bands(pbs)
return AcousticMetrics.ProportionalBandSpectrumWithTime(pbs.G_p, cbands, dt, t)
end
function pbs_alpha(pbs::Union{TBLTEOutput,CombinedNoTipOutput,CombinedWithTipOutput})
t = AcousticMetrics.observer_time(pbs)
dt = AcousticMetrics.timestep(pbs)
cbands = AcousticMetrics.center_bands(pbs)
return AcousticMetrics.ProportionalBandSpectrumWithTime(pbs.G_alpha, cbands, dt, t)
end
function pbs_lblvs(pbs::Union{TBLTEOutput,CombinedNoTipOutput,CombinedWithTipOutput})
t = AcousticMetrics.observer_time(pbs)
dt = AcousticMetrics.timestep(pbs)
cbands = AcousticMetrics.center_bands(pbs)
return AcousticMetrics.ProportionalBandSpectrumWithTime(pbs.G_lblvs, cbands, dt, t)
end
function pbs_teb(pbs::Union{CombinedNoTipOutput,CombinedWithTipOutput})
t = AcousticMetrics.observer_time(pbs)
dt = AcousticMetrics.timestep(pbs)
cbands = AcousticMetrics.center_bands(pbs)
return AcousticMetrics.ProportionalBandSpectrumWithTime(pbs.G_teb, cbands, dt, t)
end
function pbs_tip(pbs::CombinedWithTipOutput)
t = AcousticMetrics.observer_time(pbs)
dt = AcousticMetrics.timestep(pbs)
cbands = AcousticMetrics.center_bands(pbs)
return AcousticMetrics.ProportionalBandSpectrumWithTime(pbs.G_tip, cbands, dt, t)
end
| AcousticAnalogies | https://github.com/OpenMDAO/AcousticAnalogies.jl.git |
|
[
"Apache-2.0"
] | 0.8.1 | c14d0b2e7f19374017a2b5b6dfe48c5723c791ae | code | 674 | const CompactSourceElement = CompactF1ASourceElement
Base.@deprecate CompactSourceElement CompactF1ASourceElement
Base.@deprecate f1a(se::CompactF1ASourceElement, obs::AbstractAcousticObserver, t_obs) noise(se::CompactF1ASourceElement, obs::AbstractAcousticObserver, t_obs)
Base.@deprecate f1a(se::CompactF1ASourceElement, obs::AbstractAcousticObserver) noise(se::CompactF1ASourceElement, obs::AbstractAcousticObserver)
Base.@deprecate source_elements_ccblade(rotor, sections, ops, outputs, area_per_chord2, period, num_src_times, positive_x_rotation) f1a_source_elements_ccblade(rotor, sections, ops, outputs, area_per_chord2, period, num_src_times, positive_x_rotation)
| AcousticAnalogies | https://github.com/OpenMDAO/AcousticAnalogies.jl.git |
|
[
"Apache-2.0"
] | 0.8.1 | c14d0b2e7f19374017a2b5b6dfe48c5723c791ae | code | 17163 | struct CompactF1ASourceElement{
TΟ0,Tc0,TΞr,TΞ,Ty0dot,Ty1dot,Ty2dot,Ty3dot,Tf0dot,Tf1dot,TΟ,Tspan_uvec
} <: AbstractCompactSourceElement
# Density.
Ο0::TΟ0
# Speed of sound.
c0::Tc0
# Radial length of element.
Ξr::TΞr
# Cross-sectional area.
Ξ::TΞ
# Source position and its time derivatives.
y0dot::Ty0dot
y1dot::Ty1dot
y2dot::Ty2dot
y3dot::Ty3dot
# Load *on the fluid*, and its time derivative.
f0dot::Tf0dot
f1dot::Tf1dot
# Source time.
Ο::TΟ
# orientation of the element. Only used for WriteVTK.
span_uvec::Tspan_uvec
end
"""
CompactF1ASourceElement(Ο0, c0, r, ΞΈ, Ξr, Ξ, fn, fr, fc, Ο)
Construct a source element to be used with the compact form of Farassat's formulation 1A, using position and loading data expressed in a cylindrical coordinate system.
The `r` and `ΞΈ` arguments are used to define the radial and circumferential position of the source element in a cylindrical coordinate system.
Likewise, the `fn`, `fr`, and `fc` arguments are used to define the normal, radial, and circumferential loading per unit span *on the fluid* (in a reference frame moving with the element) in the same cylindrical coordinate system.
The cylindrical coordinate system is defined as follows:
* The normal axial direction is in the positive x axis
* The circumferential/azimuth angle `ΞΈ` is defined such that `ΞΈ = 0` means the radial direction is aligned with the positive y axis, and a positive `ΞΈ` indicates a right-handed rotation around the positive x axis.
Note that, for a proper noise prediction, the source element needs to be transformed into the "global" frame, aka, the reference frame of the fluid.
This can be done easily with the transformations provided by the `KinematicCoordinateTransformations` package, or manually by modifying the components of the source element struct.
# Arguments
- Ο0: Ambient air density (kg/m^3)
- c0: Ambient speed of sound (m/s)
- r: radial coordinate of the element in the blade-fixed coordinate system (m)
- ΞΈ: angular offest of the element in the blade-fixed coordinate system (rad)
- Ξr: length of the element (m)
- Ξ: cross-sectional area of the element (m^2)
- fn: normal load per unit span *on the fluid* (N/m)
- fr: radial load *on the fluid* (N/m)
- fc: circumferential load *on the fluid* (N/m)
- Ο: source time (s)
"""
function CompactF1ASourceElement(Ο0, c0, r, ΞΈ, Ξr, Ξ, fn, fr, fc, Ο)
s, c = sincos(ΞΈ)
y0dot = @SVector [0, r*c, r*s]
T = eltype(y0dot)
y1dot = @SVector zeros(T, 3)
y2dot = @SVector zeros(T, 3)
y3dot = @SVector zeros(T, 3)
f0dot = @SVector [fn, c*fr - s*fc, s*fr + c*fc]
T = eltype(f0dot)
f1dot = @SVector zeros(T, 3)
span_uvec = @SVector [0, c, s]
return CompactF1ASourceElement(Ο0, c0, Ξr, Ξ, y0dot, y1dot, y2dot, y3dot, f0dot, f1dot, Ο, span_uvec)
end
"""
CompactF1ASourceElement(Ο0, c0, r, ΞΈ, Ξr, Ξ, fn, fndot, fr, frdot, fc, fcdot, Ο)
Construct a source element to be used with the compact form of Farassat's formulation 1A, using position and loading data expressed in a cylindrical coordinate system.
The `r` and `ΞΈ` arguments are used to define the radial and circumferential position of the source element in a cylindrical coordinate system.
Likewise, the `fn`, `fr`, and `fc` arguments are used to define the normal, radial, and circumferential loading per unit span *on the fluid* (in a reference frame moving with the element) in the same cylindrical coordinate system.
The `fndot`, `frdot`, and `fcdot` arguments are the time-derivative of the normal, radial, and circumferential loading per unit span, again *on the fluid* and in a reference frame moving with the element, in the cylindrical coordinate system.
The cylindrical coordinate system is defined as follows:
* The normal axial direction is in the positive x axis
* The circumferential/azimuth angle `ΞΈ` is defined such that `ΞΈ = 0` means the radial direction is aligned with the positive y axis, and a positive `ΞΈ` indicates a right-handed rotation around the positive x axis.
Note that, for a proper noise prediction, the source element needs to be transformed into the "global" frame, aka, the reference frame of the fluid.
This can be done easily with the transformations provided by the `KinematicCoordinateTransformations` package, or manually by modifying the components of the source element struct.
# Arguments
- Ο0: Ambient air density (kg/m^3)
- c0: Ambient speed of sound (m/s)
- r: radial coordinate of the element in the blade-fixed coordinate system (m)
- ΞΈ: angular offest of the element in the blade-fixed coordinate system (rad)
- Ξr: length of the element (m)
- Ξ: cross-sectional area of the element (m^2)
- fn: normal load per unit span *on the fluid* (N/m)
- fndot: time derivative of the normal load per unit span *on the fluid* (N/(m*s))
- fr: radial load *on the fluid* (N/m)
- frdot: time derivative of the radial load *on the fluid* (N/(m*s))
- fc: circumferential load *on the fluid* (N/m)
- fcdot: time derivative of the circumferential load *on the fluid* (N/(m*s))
- Ο: source time (s)
"""
function CompactF1ASourceElement(Ο0, c0, r, ΞΈ, Ξr, Ξ, fn, fndot, fr, frdot, fc, fcdot, Ο)
s, c = sincos(ΞΈ)
y0dot = @SVector [0, r*c, r*s]
T = eltype(y0dot)
y1dot = @SVector zeros(T, 3)
y2dot = @SVector zeros(T, 3)
y3dot = @SVector zeros(T, 3)
f0dot = @SVector [fn, c*fr - s*fc, s*fr + c*fc]
f1dot = @SVector [fndot, c*frdot - s*fcdot, s*frdot + c*fcdot]
span_uvec = @SVector [0, c, s]
return CompactF1ASourceElement(Ο0, c0, Ξr, Ξ, y0dot, y1dot, y2dot, y3dot, f0dot, f1dot, Ο, span_uvec)
end
"""
(trans::KinematicTransformation)(se::CompactF1ASourceElement)
Transform the position and forces of a source element according to the coordinate system transformation `trans`.
"""
function (trans::KinematicTransformation)(se::CompactF1ASourceElement)
linear_only = false
y0dot, y1dot, y2dot, y3dot = trans(se.Ο, se.y0dot, se.y1dot, se.y2dot, se.y3dot, linear_only)
linear_only = true
f0dot, f1dot= trans(se.Ο, se.f0dot, se.f1dot, linear_only)
span_uvec = trans(se.Ο, se.span_uvec, linear_only)
return CompactF1ASourceElement(se.Ο0, se.c0, se.Ξr, se.Ξ, y0dot, y1dot, y2dot, y3dot, f0dot, f1dot, se.Ο, span_uvec)
end
"""
Output of the F1A calculation: the acoustic pressure value at time `t`, broken into monopole component `p_m` and
dipole component `p_d`.
"""
struct F1AOutput{Tt,Tp_m,Tp_d}
t::Tt
p_m::Tp_m
p_d::Tp_d
end
"""
noise(se::CompactF1ASourceElement, obs::AbstractAcousticObserver, t_obs)
Calculate the acoustic pressure emitted by source element `se` and recieved by
observer `obs` at time `t_obs`, returning an [`F1AOutput`](@ref) object.
The correct value for `t_obs` can be found using [`adv_time`](@ref).
"""
function noise(se::CompactF1ASourceElement, obs::AbstractAcousticObserver, t_obs)
x_obs = obs(t_obs)
rv = x_obs .- se.y0dot
r = norm_cs_safe(rv)
rhat = rv/r
rv1dot = -se.y1dot
r1dot = dot_cs_safe(rhat, rv1dot)
rv2dot = -se.y2dot
r2dot = (dot_cs_safe(rv1dot, rv1dot) + dot_cs_safe(rv, rv2dot) - r1dot*r1dot)/r
rv3dot = -se.y3dot
Mr = dot_cs_safe(-rv1dot/se.c0, rhat)
rhat1dot = -1.0/(r*r)*r1dot*rv + 1.0/r*rv1dot
Mr1dot = (dot_cs_safe(rv2dot, rhat) + dot_cs_safe(rv1dot, rhat1dot))/(-se.c0)
rhat2dot = (2.0/(r^3)*r1dot*r1dot*rv .- 1.0/(r^2)*r2dot*rv .- 2.0/(r^2)*r1dot*rv1dot .+ 1.0/r*rv2dot)
Mr2dot = (dot_cs_safe(rv3dot, rhat) .+ 2.0*dot_cs_safe(rv2dot, rhat1dot) .+ dot_cs_safe(rv1dot, rhat2dot))/(-se.c0)
# Rnm = r^(-n)*(1.0 - Mr)^(-m)
R10 = 1.0/r
R01 = 1.0/(1.0 - Mr)
R11 = R10*R01
R02 = R01*R01
R21 = R11*R10
# Rnm1dot = d/dt(Rnm) = (-n*R10*r1dot + m*R01*Mr1dot)*Rnm
R10dot = -R10*r1dot*R10
R01dot = R01*Mr1dot*R01
R11dot = (-R10*r1dot + R01*Mr1dot)*R11
R11dotdot = (-R10dot*r1dot - R10*r2dot + R01dot*Mr1dot + R01*Mr2dot)*R11 + (-R10*r1dot + R01*Mr1dot)*R11dot
# Monopole coefficient.
C1A = R02*R11dotdot + R01*R01dot*R11dot
# Monople acoustic pressure!
p_m = se.Ο0/(4.0*pi)*se.Ξ*C1A*se.Ξr
# Dipole coefficients.
D1A = R01*R11*rhat
E1A = R01*(R11dot*rhat + R11*rhat1dot) + se.c0*R21*rhat
# Dipole acoustic pressure!
p_d = (dot_cs_safe(se.f1dot, D1A) + dot_cs_safe(se.f0dot, E1A))*se.Ξr/(4.0*pi*se.c0)
return F1AOutput(t_obs, p_m, p_d)
end
"""
noise(se::CompactF1ASourceElement, obs::AbstractAcousticObserver)
Calculate the acoustic pressure emitted by source element `se` and recieved by
observer `obs`, returning an [`F1AOutput`](@ref) object.
"""
function noise(se::CompactF1ASourceElement, obs::AbstractAcousticObserver)
t_obs = adv_time(se, obs)
return noise(se, obs, t_obs)
end
"""
common_obs_time(apth::AbstractArray{<:F1AOutput}, period, n, axis=1)
Return a suitable time range for the collection of F1A acoustic pressures in `apth`.
The time range will begin near the latest start time of the acoustic pressures
in `apth`, and be an `AbstractVector` (really a `StepRangeLen`) of size `n` and
of time length `period`. `axis` indicates which axis of `apth` the time for a
source varies.
"""
function common_obs_time(apth, period, n, axis=1)
# Make a single field struct array that behaves like a time array. 4%-6%
# faster than creating the array with getproperty.
t_obs = mapview(:t, apth)
# Get the first time for all the sources (returns a view β₯).
t_starts = selectdim(t_obs, axis, 1)
# Find the latest first time.
t_common_start = ksmax(t_starts, 30/period)
# Get the common observer time.
dt = period/n
t_common = t_common_start .+ (0:n-1)*dt
return t_common
end
struct F1APressureTimeHistory{IsEven,Tp_m,Tp_d,Tdt,Tt0} <: AcousticMetrics.AbstractPressureTimeHistory{IsEven}
p_m::Tp_m
p_d::Tp_d
dt::Tdt
t0::Tt0
function F1APressureTimeHistory{IsEven}(p_m, p_d, dt, t0) where {IsEven}
n_p_m = length(p_m)
n_p_d = length(p_d)
n_p_m == n_p_d || throw(ArgumentError("length(p_m) is not the same as length(p_d)"))
iseven(n_p_m) == IsEven || throw(ArgumentError("IsEven is not consistent with length(p_m) and length(p_d)"))
return new{IsEven, typeof(p_m), typeof(p_d), typeof(dt), typeof(t0)}(p_m, p_d, dt, t0)
end
end
function F1APressureTimeHistory(p_m, p_d, dt, t0)
ie = iseven(length(p_m))
return F1APressureTimeHistory{ie}(p_m, p_d, dt, t0)
end
"""
F1APressureTimeHistory([T=Float64,] n, dt, t0)
Construct an `F1APressureTimeHistory` `struct` suitable for containing an acoustic prediction of length `n`, starting at time `t0` with time step `dt`.
"""
function F1APressureTimeHistory(::Type{T}, n, dt, t0) where {T}
p_m = Vector{T}(undef, n)
p_d = Vector{T}(undef, n)
return F1APressureTimeHistory{iseven(n)}(p_m, p_d, dt, t0)
end
function F1APressureTimeHistory(n, dt, t0)
p_m = Vector{Float64}(undef, n)
p_d = Vector{Float64}(undef, n)
return F1APressureTimeHistory{iseven(n)}(p_m, p_d, dt, t0)
end
"""
F1APressureTimeHistory(apth::AbstractArray{<:F1AOutput}, period::AbstractFloat, n::Integer, axis::Integer=1)
Construct an `F1APressureTimeHistory` `struct` suitable for containing an acoustic prediction from an array of `F1AOutput` `struct`.
The elapsed time and length of the returned `F1APressureTimeHistory` will be
`period` and `n`, respectively. `axis` indicates which axis the `apth` `struct`s
time varies. (`period`, `n`, `axis` are passed to [`common_obs_time`](@ref).)
"""
function F1APressureTimeHistory(apth::AbstractArray{<:F1AOutput}, period, n, axis=1)
# Get the common observer time.
t_common = common_obs_time(apth, period, n, axis)
# Allocate output arrays.
T = typeof(first(apth).p_m)
p_m = Vector{T}(undef, n)
T = typeof(first(apth).p_d)
p_d = Vector{T}(undef, n)
# Create the output apth.
dt = step(t_common)
t0 = first(t_common)
apth_out = F1APressureTimeHistory{iseven(n)}(p_m, p_d, dt, t0)
return apth_out
end
@inline AcousticMetrics.pressure(ap::F1APressureTimeHistory) = ap.p_m + ap.p_d
@inline pressure_monopole(ap::F1APressureTimeHistory) = ap.p_m
@inline pressure_dipole(ap::F1APressureTimeHistory) = ap.p_d
apth_monopole(ap::F1APressureTimeHistory) = AcousticMetrics.PressureTimeHistory(pressure_monopole(ap), AcousticMetrics.timestep(ap), AcousticMetrics.starttime(ap))
apth_dipole(ap::F1APressureTimeHistory) = AcousticMetrics.PressureTimeHistory(pressure_dipole(ap), AcousticMetrics.timestep(ap), AcousticMetrics.starttime(ap))
"""
combine!(apth_out::F1APressureTimeHistory, apth::AbstractArray{<:F1AOutput}, time_axis; f_interp=akima)
Combine the acoustic pressures of multiple sources (`apth`) into a single acoustic pressure time history `apth_out`.
The input acoustic pressures `apth` are interpolated onto the time grid returned by `time(apth_out)`.
The interpolation is performed by the function `f_intep(xpt, ypt, x)`, where `xpt` and `ytp` are the input grid and function values, respectively, and `x` is the output grid.
`time_axis` is an integer indicating the time_axis of the `apth` array along which time varies.
For example, if `time_axis == 1` and `apth` is a three-dimensional array, then `apth[:, i, j]` would be the `F1AOutput` objects of the `i`, `j` source element for all time.
But if `time_axis == 3`, then `apth[i, j, :]` would be the `F1AOutput` objects of the `i`, `j` source element for all time.
"""
function combine!(apth_out, apth, time_axis; f_interp=akima)
# This makes no difference compared to passing in a cache (an object with
# working arrays that I'd copy stuff to) to this function (sometimes a
# speedup of <1%, sometimes a slowdown of <1%). I'm sure it'd be worse if I
# didn't pass in the cache. But it's nice to not have to worry about passing
# it in.
# But now I'm using FlexiMaps.mapview.
t_obs = mapview(:t, apth)
p_m = mapview(:p_m, apth)
p_d = mapview(:p_d, apth)
# Unpack the output arrays for clarity.
t_common = AcousticMetrics.time(apth_out)
p_m_interp = pressure_monopole(apth_out)
p_d_interp = pressure_dipole(apth_out)
# dimsAPTH = [axes(t_obs)...]
dimsAPTH = axes(t_obs)
ndimsAPTH = ndims(t_obs)
alldims = 1:ndimsAPTH
otherdims = setdiff(alldims, time_axis)
itershape = tuple(dimsAPTH[otherdims]...)
# idx = Any[first(ind) for ind in axes(t_obs)]
# idx[time_axis] = Colon()
# Create an array we'll use to index pbs_in, with a `Colon()` for the time_axis position and integers of the first value for all the others.
idx = [ifelse(d==time_axis, Colon(), first(ind)) for (d, ind) in enumerate(axes(t_obs))]
nidx = length(otherdims)
indices = CartesianIndices(itershape)
# Zero out the output arrays.
fill!(p_m_interp, zero(eltype(p_m_interp)))
fill!(p_d_interp, zero(eltype(p_d_interp)))
# Loop through the indices.
for I in indices
for i in 1:nidx
idx[otherdims[i]] = I.I[i]
end
# Now I have the current indices of the source that I want to interpolate.
# p_m_interp .+= f_interp(t_obs[idx...], p_m[idx...], t_common)
# p_d_interp .+= f_interp(t_obs[idx...], p_d[idx...], t_common)
# Let's be cool and use views.
t_obs_v = @view t_obs[idx...]
p_m_v = @view p_m[idx...]
p_d_v = @view p_d[idx...]
p_m_interp .+= f_interp(t_obs_v, p_m_v, t_common)
p_d_interp .+= f_interp(t_obs_v, p_d_v, t_common)
end
return apth_out
end
"""
combine(apth::AbstractArray{<:F1AOutput}, period::AbstractFloat, n::Integer, time_axis=1; f_interp=akima)
Combine the acoustic pressures of multiple sources (`apth`) into a single acoustic pressure time history on a time grid of size `n` extending over time length `period`.
`time_axis` is an integer indicating the time_axis of the `apth` array along which time varies.
For example, if `time_axis == 1` and `apth` is a three-dimensional array, then `apth[:, i, j]` would be the `F1AOutput` objects of the `i`, `j` source element for all time.
But if `time_axis == 3`, then `apth[i, j, :]` would be the `F1AOutput` objects of the `i`, `j` source element for all time.
"""
function combine(apth, period, n::Integer, axis::Integer=1; f_interp=akima)
# Get the common observer time.
t_common = common_obs_time(apth, period, n, axis)
# Construct a julienned array that will give me the time history of each source when we iterate over it.
alongs = (d == axis ? JuliennedArrays.True() : JuliennedArrays.False() for d in 1:ndims(apth))
apth_ja = JuliennedArrays.Slices(apth, alongs...)
p_m_interp = mapreduce(+, apth_ja) do p
t_obs = mapview(:t, p)
p_m = mapview(:p_m, p)
out = f_interp(t_obs, p_m, t_common)
return out
end
p_d_interp = mapreduce(+, apth_ja) do p
t_obs = mapview(:t, p)
p_d = mapview(:p_d, p)
out = f_interp(t_obs, p_d, t_common)
return out
end
return F1APressureTimeHistory(p_m_interp, p_d_interp, step(t_common), first(t_common))
end
| AcousticAnalogies | https://github.com/OpenMDAO/AcousticAnalogies.jl.git |
|
[
"Apache-2.0"
] | 0.8.1 | c14d0b2e7f19374017a2b5b6dfe48c5723c791ae | code | 18079 | function St_1_prime(Re_c)
# Equation 55 in the BPM report.
T = typeof(Re_c)
if Re_c β€ 1.3e5
return 0.18*one(T)
elseif Re_c β€ 4.0e5
return 0.001756*Re_c^(0.3931)
else
return 0.28*one(T)
end
end
function St_peak_prime(St_1_p, alphastar)
# Equation 56 in the BPM report.
alphastar_deg = alphastar*180/pi
return St_1_p*10.0^(-0.04*alphastar_deg)
end
function G1(St_prime_over_St_peak_prime)
# Equation 57 in the BPM report.
e = St_prime_over_St_peak_prime
if e β€ 0.5974
return 39.8*log10(e) - 11.12
elseif e β€ 0.8545
98.409*log10(e) + 2.0
elseif e β€ 1.17
return -5.076 + sqrt(2.484 - 506.25*log10(e)^2)
elseif e β€ 1.674
return -98.409*log10(e) + 2.0
else
return -39.8*log10(e) - 11.12
end
end
function Re_c0(alphastar)
# Equation 59 in the BPM report.
alphastar_deg = alphastar*180/pi
if alphastar_deg β€ 3.0
return 10.0^(0.215*alphastar_deg + 4.978)
else
return 10.0^(0.120*alphastar_deg + 5.263)
end
end
function G2(Re_c_over_Re_c0)
# Equation 58 in the BPM report.
d = Re_c_over_Re_c0
if d β€ 0.3237
return 77.852*log10(d) + 15.328
elseif d β€ 0.5689
return 65.188*log10(d) + 9.125
elseif d β€ 1.7579
return -114.052*log10(d)^2
elseif d β€ 3.0889
return -65.188*log10(d) + 9.125
else
return -77.852*log10(d) + 15.328
end
end
function G3(alphastar)
alphastar_deg = alphastar*180/pi
return 171.04 - 3.03*alphastar_deg
end
function LBL_VS(freq, nu, L, chord, U, M, M_c, r_e, theta_e, phi_e, alphastar, bl)
Re_c = U*chord/nu
delta_p = bl_thickness_p(bl, Re_c, alphastar)*chord
# Equation (54) from the BPM report.
St_prime = freq*delta_p/U
St_p_p = St_peak_prime(St_1_prime(Re_c), alphastar)
St_prime_over_St_peak_prime = St_prime/St_p_p
Re_c_over_Re_c0 = Re_c / Re_c0(alphastar)
# SPL = 10*log10(delta_p*M^5*L*Dbar_h(theta_e, phi_e, M, M_c)/r_e^2) + G1(St_prime_over_St_peak_prime) + G2(Re_c_over_Re_c0) + G3(alphastar)
# Brooks and Burley AIAA 2001-2210 style.
H_l = 10^(0.1*(G1(St_prime_over_St_peak_prime) + G2(Re_c_over_Re_c0) + G3(alphastar)))
G_lbl_vs = (delta_p*M^5*L*Dbar_h(theta_e, phi_e, M, M_c))/(r_e^2)*H_l
SPL = 10*log10(G_lbl_vs)
return SPL
end
struct LBLVSSourceElement{
TDirect<:AbstractDirectivity,TUInduction,TDoppler,
Tc0,Tnu,TΞr,Tchord,Ty0dot,Ty1dot,Ty1dot_fluid,TΟ,TΞΟ,Tspan_uvec,Tchord_uvec,Tbl
} <: AbstractBroadbandSourceElement{TDirect,TUInduction,NoMachCorrection,TDoppler}
# Speed of sound, m/s.
c0::Tc0
# Kinematic viscosity, m^2/s
nu::Tnu
# Radial/spanwise length of element, m.
Ξr::TΞr
# chord length of element, m.
chord::Tchord
# Source position, m.
y0dot::Ty0dot
# Source velocity, m/s.
y1dot::Ty1dot
# Fluid velocity, m/s.
y1dot_fluid::Ty1dot_fluid
# Source time, s.
Ο::TΟ
# Time step size, i.e. the amount of time this source element "exists" with these properties, s.
ΞΟ::TΞΟ
# Radial/spanwise unit vector, aka unit vector aligned with the element's span direction.
span_uvec::Tspan_uvec
# Chordwise unit vector, aka unit vector aligned with the element's chord line, pointing from leading edge to trailing edge.
chord_uvec::Tchord_uvec
# Boundary layer struct, i.e. an AbstractBoundaryLayer.
bl::Tbl
# `Bool` indicating chord_uvecΓspan_uvec will give a vector pointing from bottom side (usually pressure side) to top side (usually suction side) if `true`, or the opposite if `false`.
chord_cross_span_to_get_top_uvec::Bool
function LBLVSSourceElement{TDirect,TUInduction,TDoppler}(c0, nu, Ξr, chord, y0dot::AbstractVector, y1dot::AbstractVector, y1dot_fluid::AbstractVector, Ο, ΞΟ, span_uvec::AbstractVector, chord_uvec::AbstractVector, bl, chord_cross_span_to_get_top_uvec::Bool) where {TDirect<:AbstractDirectivity,TUInduction,TDoppler}
return new{
TDirect,TUInduction,TDoppler,
typeof(c0), typeof(nu), typeof(Ξr), typeof(chord), typeof(y0dot), typeof(y1dot), typeof(y1dot_fluid), typeof(Ο), typeof(ΞΟ), typeof(span_uvec), typeof(chord_uvec), typeof(bl)
}(c0, nu, Ξr, chord, y0dot, y1dot, y1dot_fluid, Ο, ΞΟ, span_uvec, chord_uvec, bl, chord_cross_span_to_get_top_uvec)
end
end
# Default to using the `BrooksBurleyDirectivity` directivity function, include induction in the flow speed normal to span (TUInduction == true), and Doppler-shift.
function LBLVSSourceElement(c0, nu, Ξr, chord, y0dot::AbstractVector, y1dot::AbstractVector, y1dot_fluid::AbstractVector, Ο, ΞΟ, span_uvec::AbstractVector, chord_uvec::AbstractVector, bl, chord_cross_span_to_get_top_uvec)
return LBLVSSourceElement{BrooksBurleyDirectivity,true,true}(c0, nu, Ξr, chord, y0dot, y1dot, y1dot_fluid, Ο, ΞΟ, span_uvec, chord_uvec, bl, chord_cross_span_to_get_top_uvec)
end
"""
LBLVSSourceElement(c0, nu, r, ΞΈ, Ξr, chord, Ο, vn, vr, vc, Ο, ΞΟ, bl, twist_about_positive_y)
Construct a source element for predicting laminar boundary layer-vortex shedding (LBLVS) noise using the BPM/Brooks and Burley method, using position and velocity data expressed in a cylindrical coordinate system.
The `r` and `ΞΈ` arguments are used to define the radial and circumferential position of the source element in a cylindrical coordinate system.
Likewise, the `vn`, `vr`, and `vc` arguments are used to define the normal, radial, and circumferential velocity of the fluid (in a reference frame moving with the element) in the same cylindrical coordinate system.
The cylindrical coordinate system is defined as follows:
* The normal/axial direction is in the positive x axis
* The circumferential/azimuth angle `ΞΈ` is defined such that `ΞΈ = 0` means the radial direction is aligned with the positive y axis, and a positive `ΞΈ` indicates a right-handed rotation around the positive x axis.
The `twist_about_positive_y` is a `Bool` controling how the `Ο` argument is handled, which in turn controls the orientation of a unit vector defining `chord_uvec` indicating the orientation of the chord line, from leading edge to trailing edge.
If `twist_about_positive_y` is `true`, `chord_uvec` will initially be pointed in the negative-z direction, and then rotated around the positive y axis by an amount `Ο` before being rotated by the azimuth angle `ΞΈ`.
(This would typcially be appropriate for a source element rotating around the positive x axis.)
If `twist_about_positive_y` is `false`, `chord_uvec` will initially be pointed in the positive-z direction, and then rotated around the negative y axis by an amount `Ο` before being rotated by the azimuth angle `ΞΈ`.
(This would typcially be appropriate for a source element rotating around the negative x axis.)
Note that, for a proper noise prediction, the source element needs to be transformed into the "global" frame, aka, the reference frame of the fluid.
This can be done easily with the transformations provided by the `KinematicCoordinateTransformations` package, or manually by modifying the components of the source element struct.
# Arguments
- c0: Ambient speed of sound (m/s)
- nu: Kinematic viscosity (m^2/s)
- r: radial coordinate of the element in the blade-fixed coordinate system (m)
- ΞΈ: angular offest of the element in the blade-fixed coordinate system (rad)
- Ξr: length of the element (m)
- chord: chord length of blade element (m)
- Ο: twist of blade element (rad)
- vn: normal velocity of fluid (m/s)
- vr: radial velocity of fluid (m/s)
- vc: circumferential velocity of the fluid (m/s)
- Ο: source time (s)
- ΞΟ: source time duration (s)
- bl: Boundary layer struct, i.e. an AbstractBoundaryLayer.
- twist_about_positive_y: if `true`, apply twist Ο about positive y axis, negative y axis otherwise
"""
function LBLVSSourceElement{TDirect,TUInduction,TDoppler}(c0, nu, r, ΞΈ, Ξr, chord, Ο, vn, vr, vc, Ο, ΞΟ, bl, twist_about_positive_y) where {TDirect,TUInduction,TDoppler}
sΞΈ, cΞΈ = sincos(ΞΈ)
sΟ, cΟ = sincos(Ο)
y0dot = @SVector [0, r*cΞΈ, r*sΞΈ]
T = eltype(y0dot)
y1dot = @SVector zeros(T, 3)
y1dot_fluid = @SVector [vn, vr*cΞΈ - vc*sΞΈ, vr*sΞΈ + vc*cΞΈ]
span_uvec = @SVector [0, cΞΈ, sΞΈ]
if twist_about_positive_y
chord_uvec = @SVector [-sΟ, cΟ*sΞΈ, -cΟ*cΞΈ]
else
chord_uvec = @SVector [-sΟ, -cΟ*sΞΈ, cΟ*cΞΈ]
end
chord_cross_span_to_get_top_uvec = twist_about_positive_y
return LBLVSSourceElement{TDirect,TUInduction,TDoppler}(c0, nu, Ξr, chord, y0dot, y1dot, y1dot_fluid, Ο, ΞΟ, span_uvec, chord_uvec, bl, chord_cross_span_to_get_top_uvec)
end
# Default to using the `BrooksBurleyDirectivity` directivity function, include induction in the flow speed normal to span (TUInduction == true), and Doppler-shift.
function LBLVSSourceElement(c0, nu, r, ΞΈ, Ξr, chord, Ο, vn, vr, vc, Ο, ΞΟ, bl, twist_about_positive_y)
return LBLVSSourceElement{BrooksBurleyDirectivity,true,true}(c0, nu, r, ΞΈ, Ξr, chord, Ο, vn, vr, vc, Ο, ΞΟ, bl, twist_about_positive_y)
end
"""
LBLVSSourceElement(c0, nu, r, ΞΈ, Ξr, chord, Ο, U, Ξ±, Ο, ΞΟ, bl, twist_about_positive_y)
Construct a source element for predicting laminar boundary layer-vortex shedding (LBLVS) noise using the BPM/Brooks and Burley method, using the velocity magnitude `U` and angle of attack `Ξ±`.
The `r` and `ΞΈ` arguments are used to define the radial and circumferential position of the source element in a cylindrical coordinate system.
The `U` and `Ξ±` arguments are the velocity magnitude normal to the source element length and the angle of attack, respectively.
The cylindrical coordinate system is defined as follows:
* The normal/axial direction is in the positive x axis
* The circumferential/azimuth angle `ΞΈ` is defined such that `ΞΈ = 0` means the radial direction is aligned with the positive y axis, and a positive `ΞΈ` indicates a right-handed rotation around the positive x axis.
The `twist_about_positive_y` is a `Bool` controling how the `Ο` argument is handled, which in turn controls the orientation of a unit vector defining `chord_uvec` indicating the orientation of the chord line, from leading edge to trailing edge.
If `twist_about_positive_y` is `true`, `chord_uvec` will initially be pointed in the negative-z direction, and then rotated around the positive y axis by an amount `Ο` before being rotated by the azimuth angle `ΞΈ`.
(This would typcially be appropriate for a source element rotating around the positive x axis.)
If `twist_about_positive_y` is `false`, `chord_uvec` will initially be pointed in the positive-z direction, and then rotated around the negative y axis by an amount `Ο` before being rotated by the azimuth angle `ΞΈ`.
(This would typcially be appropriate for a source element rotating around the negative x axis.)
Note that, for a proper noise prediction, the source element needs to be transformed into the "global" frame, aka, the reference frame of the fluid.
This can be done easily with the transformations provided by the `KinematicCoordinateTransformations` package, or manually by modifying the components of the source element struct.
# Arguments
- c0: Ambient speed of sound (m/s)
- nu: Kinematic viscosity (m^2/s)
- r: radial coordinate of the element in the blade-fixed coordinate system (m)
- ΞΈ: angular offest of the element in the blade-fixed coordinate system (rad)
- Ξr: length of the element (m)
- chord: chord length of blade element (m)
- Ο: twist of blade element (rad)
- U: velocity magnitude (m/s)
- Ξ±: angle of attack (rad)
- Ο: source time (s)
- ΞΟ: source time duration (s)
- bl: Boundary layer struct, i.e. an AbstractBoundaryLayer.
- twist_about_positive_y: if `true`, apply twist Ο about positive y axis, negative y axis otherwise
"""
function LBLVSSourceElement{TDirect,TUInduction,TDoppler}(c0, nu, r, ΞΈ, Ξr, chord, Ο, U, Ξ±, Ο, ΞΟ, bl, twist_about_positive_y) where {TDirect,TUInduction,TDoppler}
precone = 0
pitch = 0
phi = Ο - Ξ±
y0dot, y1dot, y1dot_fluid, span_uvec, chord_uvec, chord_cross_span_to_get_top_uvec = _get_position_velocity_span_uvec_chord_uvec(Ο, precone, pitch, r, ΞΈ, U, phi, twist_about_positive_y::Bool)
return LBLVSSourceElement{TDirect,TUInduction,TDoppler}(c0, nu, Ξr, chord, y0dot, y1dot, y1dot_fluid, Ο, ΞΟ, span_uvec, chord_uvec, bl, chord_cross_span_to_get_top_uvec)
end
# Default to using the `BrooksBurleyDirectivity` directivity function, include induction in the flow speed normal to span (TUInduction == true), and Doppler-shift.
function LBLVSSourceElement(c0, nu, r, ΞΈ, Ξr, chord, Ο, U, Ξ±, Ο, ΞΟ, bl, twist_about_positive_y)
return LBLVSSourceElement{BrooksBurleyDirectivity,true,true}(c0, nu, r, ΞΈ, Ξr, chord, Ο, U, Ξ±, Ο, ΞΟ, bl, twist_about_positive_y)
end
"""
(trans::KinematicTransformation)(se::LBLVSSourceElement)
Transform the position and orientation of a source element according to the coordinate system transformation `trans`.
"""
function (trans::KinematicTransformation)(se::LBLVSSourceElement{TDirect,TUInduction,TDoppler}) where {TDirect,TUInduction,TDoppler}
linear_only = false
y0dot, y1dot = trans(se.Ο, se.y0dot, se.y1dot, linear_only)
y0dot, y1dot_fluid = trans(se.Ο, se.y0dot, se.y1dot_fluid, linear_only)
linear_only = true
span_uvec = trans(se.Ο, se.span_uvec, linear_only)
chord_uvec = trans(se.Ο, se.chord_uvec, linear_only)
return LBLVSSourceElement{TDirect,TUInduction,TDoppler}(se.c0, se.nu, se.Ξr, se.chord, y0dot, y1dot, y1dot_fluid, se.Ο, se.ΞΟ, span_uvec, chord_uvec, se.bl, se.chord_cross_span_to_get_top_uvec)
end
function _lbl_vs(freq, delta_p_U, St_p_p, g2, g3, scaler)
# St_prime = freq*deltastar_p/U
# St_prime_over_St_peak_prime = St_prime/St_p_p
# H_l = 10^(0.1*(G1(St_prime_over_St_peak_prime) + g2 + g3))
St_prime = freq*delta_p_U
St_prime_over_St_peak_prime = St_prime/St_p_p
# return 10^(0.1*(G1(St_prime_over_St_peak_prime) + g2 + g3))
H_l = 10^(0.1*(G1(St_prime_over_St_peak_prime) + g2 + g3))
# G_lbl_vs = (deltastar_p*M^5*Ξr*Dh)/(r_er^2)*H_l
G_lbl_vs = scaler*H_l
# LBLVS = 10.0*log10((dpr*M^5*L*Dh)/rc^2)+G1+G2+G3
# 10*log10((deltastar_p*M^5*Ξr*Dh)/(r_er^2)*(10^(0.1*(G1(St_prime_over_St_peak_prime) + g2 + g3)))
# 10*log10((deltastar_p*M^5*Ξr*Dh)/(r_er^2)) + 10*log10((10^(0.1*(G1(St_prime_over_St_peak_prime) + g2 + g3))))
# 10*log10((deltastar_p*M^5*Ξr*Dh)/(r_er^2)) + 10*(0.1*(G1(St_prime_over_St_peak_prime) + g2 + g3))
# 10*log10((deltastar_p*M^5*Ξr*Dh)/(r_er^2)) + G1(St_prime_over_St_peak_prime) + g2 + g3
return G_lbl_vs
end
function noise(se::LBLVSSourceElement, obs::AbstractAcousticObserver, t_obs, freqs::AcousticMetrics.AbstractProportionalBands{3, :center})
# Position of the observer:
x_obs = obs(t_obs)
# Need the angle of attack.
alphastar = angle_of_attack(se)
# Need the directivity functions.
top_is_suction = is_top_suction(se.bl, alphastar)
r_er, Dl, Dh = directivity(se, x_obs, top_is_suction)
# Need the fluid velocity normal to the span.
# Brooks and Burley 2001 are a bit ambiguous on whether it should include induction, or just the freestream and rotation.
#
# * In the nomenclature section: `U` is "flow speed normal to span (`U_mn` with `mn` suppressed).
# So that's one point for "no induction."
# * In some discussion after equation (8), "The Mach number, `M = U/c0`, represents that component of velocity `U` normal to the span...".
# Hard to say one way or the other.
# * In equation (12), `U_mn` is the velocity without induction.
# So that's another point for "no induction."
# * Equation (14) defines `V_tot` as the velocity including the freestream, rotation, and induction.
# And then it defines `U` as the part of `V_tot` normal to the span.
# So that's a point for "yes induction."
# * In the directivity function definitions in equations (19) and (20), `M_tot` is used in the denominator, which seems to make it clear *that* velocity should include induction, since `V_tot` always includes induction.
#
# So, at the moment, the TBLTESourceElement type has a parameter TUInduction which, when true, will include induction in the flow speed normal to the span, and not otherwise.
U = speed_normal_to_span(se)
# Reynolds number based on chord and the flow speed normal to span.
Re_c = U*se.chord/se.nu
# Need the boundary layer thickness for the pressure side for LBL-VS noise.
# deltastar_p = disp_thickness_p(se.bl, Re_c, alphastar)*se.chord
delta_p = bl_thickness_p(se.bl, Re_c, alphastar)*se.chord
# Now that we've decided on the directivity functions and the displacement thickness, and we know the correct value of `top_is_suction` we should be able to switch the sign on `alphastar` if it's negative, and reference it to the zero-lift value, as the BPM report does.
alphastar_positive = abs_cs_safe(alphastar - alpha_zerolift(se.bl))
# Mach number of the flow speed normal to span.
M = U/se.c0
delta_p_U = delta_p/U
St_p_p = St_peak_prime(St_1_prime(Re_c), alphastar_positive)
Re_c_over_Re_c0 = Re_c / Re_c0(alphastar_positive)
g2 = G2(Re_c_over_Re_c0)
g3 = G3(alphastar_positive)
# The Brooks and Burley autospectrums appear to be scaled by the usual squared reference pressure (20 ΞΌPa)^2, but I'd like things in dimensional units, so multiply through by that.
pref2 = 4e-10
# G = (delta_p*M^5*se.Ξr*Dh)/(r_er^2) .* _Hl.(freq, delta_p_U, St_p_p, g2, g3) .* pref2
G_lbl_vs_scaler = (delta_p*M^5*se.Ξr*Dh)/(r_er^2)
G_lbl_vs = _lbl_vs.(freqs, delta_p_U, St_p_p, g2, g3, G_lbl_vs_scaler) .* pref2
# Also need the Doppler shift for this source-observer combination.
doppler = doppler_factor(se, obs, t_obs)
# Get the doppler-shifted time step and proportional bands.
dt = se.ΞΟ/doppler
freqs_obs = AcousticMetrics.center_bands(freqs, doppler)
# All done.
return AcousticMetrics.ProportionalBandSpectrumWithTime(G_lbl_vs, freqs_obs, dt, t_obs)
end
| AcousticAnalogies | https://github.com/OpenMDAO/AcousticAnalogies.jl.git |
|
[
"Apache-2.0"
] | 0.8.1 | c14d0b2e7f19374017a2b5b6dfe48c5723c791ae | code | 1346 | """
Supertype for an object that recieves a noise prediction when combined with an
acoustic analogy source; computational equivalent of a microphone.
(obs::AbstractAcousticObserver)(t)
Calculate the position of the acoustic observer at time `t`.
"""
abstract type AbstractAcousticObserver end
"""
StationaryAcousticObserver(x)
Construct an acoustic observer that does not move with position `x` (m).
"""
struct StationaryAcousticObserver{Tx} <: AbstractAcousticObserver
x::Tx
end
"""
velocity(t_obs, obs::StationaryAcousticObserver)
Return the velocity of `obs` at time `t_obs` (hintβwill always be zero βΊ)
"""
@inline velocity(t_obs, obs::StationaryAcousticObserver) = zero(obs.x)
"""
ConstVelocityAcousticObserver(t0, x0, v)
Construct an acoustic observer moving with a constant velocity `v`, located at
`x0` at time `t0`.
"""
struct ConstVelocityAcousticObserver{Tt0,Tx0,Tv} <: AbstractAcousticObserver
t0 ::Tt0
x0::Tx0
v::Tv
end
function (obs::StationaryAcousticObserver)(t)
return obs.x
end
function (obs::ConstVelocityAcousticObserver)(t)
return obs.x0 .+ (t - obs.t0).*obs.v
end
"""
velocity(t_obs, obs::ConstVelocityAcousticObserver)
Return the velocity of `obs` at time `t_obs` (hintβwill always be the same)
"""
@inline velocity(t_obs, obs::ConstVelocityAcousticObserver) = obs.v
| AcousticAnalogies | https://github.com/OpenMDAO/AcousticAnalogies.jl.git |
|
[
"Apache-2.0"
] | 0.8.1 | c14d0b2e7f19374017a2b5b6dfe48c5723c791ae | code | 32945 | abstract type AbstractTimeDerivMethod end
struct NoTimeDerivMethod <: AbstractTimeDerivMethod end
struct SecondOrderFiniteDiff <: AbstractTimeDerivMethod end
abstract type AbstractRadialInterpMethod end
struct FLOWLinearInterp <: AbstractRadialInterpMethod end
struct FLOWAkimaInterp <: AbstractRadialInterpMethod end
"""
Struct for holding data from an OpenFAST (AeroDyn?) output file.
# Fields:
* `time`: vector of simulation times with size `(num_times,)`
* `dtime_dtau`: vector of derivative of simulation times with respect to non-dimensional/computational time with size `(num_times,)`
* `v`: vector of freestream velocity time history with size `(num_times,)`
* `azimuth`: vector of azimuth angle time history with size `(num_times,)`
* `omega`: vector of rotation rate time history with size `(num_times,)`
* `pitch`: array of pitch angle time history with size `(num_times, num_blades)`
* `radii`: vector of blade radial locations with size `(num_radial,)`
* `radii_mid`: vector of cell-centered/midpoint blade radial locations with size `(num_radial-1,)`
* `cs_area`: vector of cross-sectional areas with size `(num_radial,)`.
* `cs_area_mid`: vector of cell-centered/midpoint cross-sectional areas with size `(num_radial-1,)`.
* `axial_loading`: array of axial loading time history with size `(num_times, num_radial, num_blades)`
* `axial_loading_mid`: array of axial loading time history at cell-centered blade radial locations with size `(num_times, num_radial-1, num_blades)`
* `axial_loading_mid_dot`: array of axial loading temporal derivative time history at cell-centered blade radial locations with size `(num_times, num_radial-1, num_blades)`
* `circum_loading`: array of circumferential loading time history with size `(num_times, num_radial, num_blades)`
* `circum_loading_mid`: array of circum loading time history at cell-centered blade radial locations with size `(num_times, num_radial-1, num_blades)`
* `circum_loading_mid_dot`: array of circum loading temporal derivative time history at cell-centered blade radial locations with size `(num_times, num_radial-1, num_blades)`
"""
struct OpenFASTData{TRadialInterpMethod,TTimeDerivMethod,
TTime,TdTimedTau,TV,TAzimuth,TOmega,TPitch,
TRadii,TRadiiMid,TDRadii,
TCSArea,TCSAreaMid,
TAxialLoading,TAxialLoadingMid,TAxialLoadingMidDot,
TCircumLoading,TCircumLoadingMid,TCircumLoadingMidDot}
time::TTime
dtime_dtau::TdTimedTau
v::TV
azimuth::TAzimuth
omega::TOmega
pitch::TPitch
radii::TRadii
radii_mid::TRadiiMid
dradii::TDRadii
cs_area::TCSArea
cs_area_mid::TCSAreaMid
axial_loading::TAxialLoading
axial_loading_mid::TAxialLoadingMid
axial_loading_mid_dot::TAxialLoadingMidDot
circum_loading::TCircumLoading
circum_loading_mid::TCircumLoadingMid
circum_loading_mid_dot::TCircumLoadingMidDot
num_blades::Int
function OpenFASTData{
TRadialInterpMethod,TTimeDerivMethod,
TTime,TdTimedTau,TV,TAzimuth,TOmega,TPitch,
TRadii,TRadiiMid,TDRadii,
TCSArea,TCSAreaMid,
TAxialLoading,TAxialLoadingMid,TAxialLoadingMidDot,
TCircumLoading,TCircumLoadingMid,TCircumLoadingMidDot}(
time, dtime_dtau, v, azimuth, omega, pitch,
radii, radii_mid, dradii,
cs_area, cs_area_mid,
axial_loading, axial_loading_mid, axial_loading_mid_dot,
circum_loading, circum_loading_mid, circum_loading_mid_dot) where {
TRadialInterpMethod,TTimeDerivMethod,
TTime,TdTimedTau,TV,TAzimuth,TOmega,TPitch,
TRadii,TRadiiMid,TDRadii,
TCSArea,TCSAreaMid,
TAxialLoading,TAxialLoadingMid,TAxialLoadingMidDot,
TCircumLoading,TCircumLoadingMid,TCircumLoadingMidDot}
num_times = length(time)
num_radial = length(radii)
num_radial_mid = num_radial - 1
# Figure out what num_blades is.
if pitch !== nothing
num_blades = size(pitch, 2)
elseif axial_loading !== nothing
num_blades = size(axial_loading, 3)
elseif axial_loading_mid !== nothing
num_blades = size(axial_loading_mid, 3)
elseif axial_loading_mid_dot !== nothing
num_blades = size(axial_loading_mid_dot, 3)
elseif circum_loading !== nothing
num_blades = size(circum_loading, 3)
elseif circum_loading_mid !== nothing
num_blades = size(circum_loading_mid, 3)
elseif circum_loading_mid_dot !== nothing
num_blades = size(circum_loading_mid_dot, 3)
else
num_blades = 0
end
if dtime_dtau !== nothing
size(dtime_dtau) == (num_times,) || throw(ArgumentError("size(dtime_dtau) = $(size(dtime_dtau)) does not match size(time) = $(size(time))"))
end
if v !== nothing
size(v) == (num_times,) || throw(ArgumentError("size(v) = $(size(v)) does not match size(time) = $(size(time))"))
end
if azimuth !== nothing
size(azimuth) == (num_times,) || throw(ArgumentError("size(azimuth) = $(size(azimuth)) does not match size(time) = $(size(time))"))
end
if omega !== nothing
size(omega) == (num_times,) || throw(ArgumentError("size(omega) = $(size(omega)) does not match size(time) = $(size(time))"))
end
if pitch !== nothing
size(pitch) == (num_times, num_blades) || throw(ArgumentError("size(pitch) = $(size(pitch)) not consistent with size(time) = $(size(time)) and/or size(axial_loading) = $(size(axial_loading))"))
end
if radii_mid !== nothing
size(radii_mid) == (num_radial_mid,) || throw(ArgumentError("size(radii_mid) = $(size(radii_mid)) not consistent with length(radii)-1 = $(num_radial_mid)"))
end
if dradii !== nothing
size(dradii) == (num_radial_mid,) || throw(ArgumentError("size(dradii) = $(size(dradii)) not consistent with length(radii)-1 = $(num_radial_mid)"))
end
if cs_area !== nothing
size(cs_area) == (num_radial,) || throw(ArgumentError("size(cs_area) = $(size(cs_area)) not consistent with length(radii) = $(num_radial)"))
end
if cs_area_mid !== nothing
size(cs_area_mid) == (num_radial_mid,) || throw(ArgumentError("size(cs_area_mid) = $(size(cs_area_mid)) not consistent with length(radii)-1 = $(num_radial_mid)"))
end
if axial_loading !== nothing
size(axial_loading) == (num_times, num_radial, num_blades) || throw(ArgumentError("size(axial_loading) = $(size(axial_loading)) not consistent with size(time) = $(size(time)), length(radii) = $(num_radial), blade count = $(num_blades)"))
end
if axial_loading_mid !== nothing
size(axial_loading_mid) == (num_times, num_radial_mid, num_blades) || throw(ArgumentError("size(axial_loading_mid) = $(size(axial_loading_mid)) not consistent with size(time) = $(size(time)), length(radii)-1 = $(num_radial_mid), blade count = $(num_blades)"))
end
if axial_loading_mid_dot !== nothing
size(axial_loading_mid_dot) == (num_times, num_radial_mid, num_blades) || throw(ArgumentError("size(axial_loading_mid_dot) = $(size(axial_loading_mid_dot)) not consistent with size(time) = $(size(time)), length(radii)-1 = $(num_radial_mid), blade count = $(num_blades)"))
end
if circum_loading !== nothing
size(circum_loading) == (num_times, num_radial, num_blades) || throw(ArgumentError("size(circum_loading) = $(size(circum_loading)) not consistent with size(time) = $(size(time)), length(radii) = $(num_radial), blade count = $(num_blades)"))
end
if circum_loading_mid !== nothing
size(circum_loading_mid) == (num_times, num_radial_mid, num_blades) || throw(ArgumentError("size(circum_loading_mid) = $(size(circum_loading_mid)) not consistent with size(time) = $(size(time)), length(radii)-1 = $(num_radial_mid), blade count = $(num_blades)"))
end
if circum_loading_mid_dot !== nothing
size(circum_loading_mid_dot) == (num_times, num_radial_mid, num_blades) || throw(ArgumentError("size(circum_loading_mid_dot) = $(size(circum_loading_mid_dot)) not consistent with size(time) = $(size(time)), length(radii)-1 = $(num_radial_mid), blade count = $(num_blades)"))
end
return new{TRadialInterpMethod,TTimeDerivMethod,
typeof(time),typeof(dtime_dtau),typeof(v),typeof(azimuth),typeof(omega),typeof(pitch),
typeof(radii),typeof(radii_mid),typeof(dradii),
typeof(cs_area),typeof(cs_area_mid),
typeof(axial_loading),typeof(axial_loading_mid),typeof(axial_loading_mid_dot),
typeof(circum_loading),typeof(circum_loading_mid),typeof(circum_loading_mid_dot)}(
time, dtime_dtau, v, azimuth, omega, pitch,
radii, radii_mid, dradii,
cs_area, cs_area_mid,
axial_loading, axial_loading_mid, axial_loading_mid_dot,
circum_loading, circum_loading_mid, circum_loading_mid_dot,
num_blades)
end
end
function OpenFASTData{TRadialInterpMethod,TTimeDerivMethod}(time, v, azimuth, omega, pitch, radii, cs_area, axial_loading, circum_loading) where {TRadialInterpMethod<:AbstractRadialInterpMethod,TTimeDerivMethod<:AbstractTimeDerivMethod}
dtime_dtau = similar(time)
# Find the blade element midpoint locations.
radii_mid = 0.5 .* (@view(radii[begin:end-1]) .+ @view(radii[begin+1:end]))
# Find the radial spacing.
dradii = @view(radii[begin+1:end]) .- @view(radii[begin:end-1])
if cs_area !== nothing
cs_area_mid = similar(cs_area, length(cs_area)-1)
else
cs_area_mid = nothing
end
if axial_loading !== nothing
axial_loading_mid = similar(axial_loading, size(axial_loading, 1), size(axial_loading, 2)-1, size(axial_loading, 3))
axial_loading_mid_dot = zero(axial_loading_mid)
else
axial_loading_mid = axial_loading_mid_dot = nothing
end
if circum_loading !== nothing
circum_loading_mid = similar(circum_loading, size(circum_loading, 1), size(circum_loading, 2)-1, size(circum_loading, 3))
circum_loading_mid_dot = zero(circum_loading_mid)
else
circum_loading_mid = circum_loading_mid_dot = nothing
end
return OpenFASTData{TRadialInterpMethod,TTimeDerivMethod}(
time, dtime_dtau, v, azimuth, omega, pitch,
radii, radii_mid, dradii,
cs_area, cs_area_mid,
axial_loading, axial_loading_mid, axial_loading_mid_dot,
circum_loading, circum_loading_mid, circum_loading_mid_dot)
end
function OpenFASTData{TRadialInterpMethod,TTimeDerivMethod}(
time, dtime_dtau, v, azimuth, omega, pitch,
radii, radii_mid, dradii,
cs_area, cs_area_mid,
axial_loading, axial_loading_mid, axial_loading_mid_dot,
circum_loading, circum_loading_mid, circum_loading_mid_dot) where {TRadialInterpMethod,TTimeDerivMethod}
return OpenFASTData{TRadialInterpMethod,TTimeDerivMethod,
typeof(time),typeof(dtime_dtau),typeof(v),typeof(azimuth),typeof(omega),typeof(pitch),
typeof(radii),typeof(radii_mid),typeof(dradii),
typeof(cs_area),typeof(cs_area_mid),
typeof(axial_loading),typeof(axial_loading_mid),typeof(axial_loading_mid_dot),
typeof(circum_loading),typeof(circum_loading_mid),typeof(circum_loading_mid_dot)}(
time, dtime_dtau, v, azimuth, omega, pitch,
radii, radii_mid, dradii,
cs_area, cs_area_mid,
axial_loading, axial_loading_mid, axial_loading_mid_dot,
circum_loading, circum_loading_mid, circum_loading_mid_dot)
end
function _get_num_blades(fmt, column_names)
# Match the format against the column names.
ms = match.(fmt, column_names)
# Remove any non-matches, for which `match` returns `nothing`.
ms_only_matches = filter(x->!isnothing(x), ms)
# Now, get all the sorted, unique blade indices, converting them from strings to Ints.
blade_idxs = parse.(Int, unique(sort(getindex.(ms_only_matches, :blade))))
# The blade indices appear to start at 1, so the highest blade index is the number of blades.
num_blades = maximum(blade_idxs)
# But check that the blade indices are what we assumed.
@assert all(blade_idxs .== 1:num_blades)
return num_blades, ms_only_matches
end
function _get_num_blades_num_radial(fmt, column_names)
# Let's figure out how many blades and radial stations there are.
# First, apply the loading regular expression to each column name:
ms = match.(fmt, column_names)
# Remove any non-matches, for which `match` returns `nothing`.
ms_only_matches = filter(x->!isnothing(x), ms)
# Now, get all the sorted, unique blade indices, converting them from strings to Ints.
blade_idxs = parse.(Int, unique(sort(getindex.(ms_only_matches, :blade))))
# The blade indices appear to start at 1, so the highest blade index is the number of blades.
num_blades = maximum(blade_idxs)
# But check that the blade indices are what we assumed.
@assert all(blade_idxs .== 1:num_blades)
# Now do the same thing for the radial indices.
radial_idxs = parse.(Int, unique(sort(getindex.(ms_only_matches, :radial))))
num_radial = maximum(radial_idxs)
@assert all(radial_idxs .== 1:num_radial)
return num_blades, num_radial, ms_only_matches
end
function interpolate_to_cell_centers!(data::OpenFASTData{FLOWLinearInterp})
if (data.cs_area !== nothing) && (data.cs_area_mid !== nothing)
data.cs_area_mid .= FLOWMath.linear.(Ref(data.radii), Ref(data.cs_area), data.radii_mid)
end
if (data.axial_loading !== nothing) && (data.axial_loading_mid !== nothing)
for bidx in 1:size(data.axial_loading_mid, 3)
for tidx in 1:size(data.axial_loading_mid, 1)
data.axial_loading_mid[tidx, :, bidx] .= FLOWMath.linear.(Ref(data.radii), Ref(@view(data.axial_loading[tidx, :, bidx])), data.radii_mid)
end
end
end
if (data.circum_loading !== nothing) && (data.circum_loading_mid !== nothing)
for bidx in 1:size(data.circum_loading_mid, 3)
for tidx in 1:size(data.circum_loading_mid, 1)
data.circum_loading_mid[tidx, :, bidx] .= FLOWMath.linear.(Ref(data.radii), Ref(@view(data.circum_loading[tidx, :, bidx])), data.radii_mid)
end
end
end
return nothing
end
function interpolate_to_cell_centers!(data::OpenFASTData{FLOWAkimaInterp})
if (data.cs_area !== nothing) && (data.cs_area_mid !== nothing)
spline_cs_area = FLOWMath.Akima(data.radii, data.cs_area)
data.cs_area_mid .= spline_cs_area.(data.radii_mid)
end
if (data.axial_loading !== nothing) && (data.axial_loading_mid !== nothing)
for bidx in 1:size(data.axial_loading_mid, 3)
for tidx in 1:size(data.axial_loading_mid, 1)
spline_axial = FLOWMath.Akima(data.radii, @view(data.axial_loading[tidx, :, bidx]))
data.axial_loading_mid[tidx, :, bidx] .= spline_axial.(data.radii_mid)
end
end
end
if (data.circum_loading !== nothing) && (data.circum_loading_mid !== nothing)
for bidx in 1:size(data.circum_loading_mid, 3)
for tidx in 1:size(data.circum_loading_mid, 1)
spline_circum = FLOWMath.Akima(data.radii, @view(data.circum_loading[tidx, :, bidx]))
data.circum_loading_mid[tidx, :, bidx] .= spline_circum.(data.radii_mid)
end
end
end
return nothing
end
function calculate_loading_dot!(data::OpenFASTData{TRadialInterpMethod,NoTimeDerivMethod}) where {TRadialInterpMethod}
if data.axial_loading_mid_dot !== nothing
fill!(data.axial_loading_mid_dot, 0)
end
if data.circum_loading_mid_dot !== nothing
fill!(data.circum_loading_mid_dot, 0)
end
return nothing
end
function _finite_diff_2nd_order!(df_dtau, f)
# `f` is the input array, which we assume is of size `(num_times, num_radial, num_blades)`.
# `df_dtau` is the derivative wrt `tau`, the non-dimensional time.
@views begin
# These stencils are in Tannehill, Anderson, Pletcher, "Computational Fluid Mechanics and Heat Transfer," 2nd edition, page 50.
# First do the interior points.
df_dtau[begin+1:end-1, :, :] .= 0.5 .* (f[begin+2:end, :, :] .- f[begin:end-2, :, :])
# Then the left boundary.
df_dtau[begin, :, :] .= 0.5 .* (-3 .* f[begin, :, :] .+ 4 .* f[begin+1, :, :] .- f[begin+2, :, :])
# Then the right boundary.
df_dtau[end, :, :] .= 0.5 .* (3 .* f[end, :, :] .- 4 .* f[end-1, :, :] .+ f[end-2, :, :])
end
return nothing
end
function calculate_loading_dot!(data::OpenFASTData{TRadialInterpMethod,SecondOrderFiniteDiff}) where {TRadialInterpMethod}
# First get dt/dΟ.
_finite_diff_2nd_order!(data.dtime_dtau, data.time)
if (data.axial_loading_mid !== nothing) && (data.axial_loading_mid_dot !== nothing)
# Now get the derivatitve of the axial loading wrt tau, the non-dimensional time.
_finite_diff_2nd_order!(data.axial_loading_mid_dot, data.axial_loading_mid)
# Now get the derivative of the axial loading with respect to the dimensional time via `dfdt = df/dΟ*dΟ/dt = (df/dΟ)/(dt/dΟ)
data.axial_loading_mid_dot ./= data.dtime_dtau
end
if (data.circum_loading_mid !== nothing) && (data.circum_loading_mid_dot !== nothing)
# Now get the derivatitve of the circum loading wrt tau, the non-dimensional time.
_finite_diff_2nd_order!(data.circum_loading_mid_dot, data.circum_loading_mid)
# Now get the derivative of the circum loading with respect to the dimensional time via `dfdt = df/dΟ*dΟ/dt = (df/dΟ)/(dt/dΟ)
data.circum_loading_mid_dot ./= data.dtime_dtau
end
return nothing
end
"""
read_openfast_file(fname, radii, cs_area=nothing;
header_keyword="Time",
has_units_header=true,
time_column_name="Time",
freestream_vel_column_name="Wind1VelX",
azimuth_column_name="Azimuth",
omega_column_name="RotSpeed",
pitch_fmt=r"BlPitch(?<blade>[[:digit:]]+)",
axial_loading_fmt=r"AB(?<blade>[[:digit:]]+)N(?<radial>[[:digit:]]+)Fxl",
circum_loading_fmt=r"AB(?<blade>[[:digit:]]+)N(?<radial>[[:digit:]]+)Fyl",
radial_interp_method=FLOWLinearInterp,
time_deriv_method=SecondOrderFiniteDiff)
Read an OpenFAST output file and return a [`OpenFASTData`](@ref) object.
The `Azimuth` and `BlPitch` columns are assumed to be in degrees and will be converted to radians.
Likewise, the `RotSpeed` column is assumed to be in revolutions per minute and will be converted to radians per second.
# Arguments
* `fname`: name of the OpenFAST output file to read
* `radii`: `Vector` of blade radial coordinates
* `cs_area`: `Vector` of radial distribution of cross-sectional areas, or `nothing` to ignore
* `header_keyword="Time"`: string at the beginning of the header line (maybe always "Time"?)
* `has_units_header=true`: if true, assume the file has a line directly after the header line with the units of each column
* `time_column_name=header_keyword`: name of time column in file. Set to `nothing` to skip.
* `freestream_vel_column_name`: name of the freestream velocity column in the file. Set to `nothing` to skip.
* `azimuth_column_name`: name of the azimuth column in the file. Set to `nothing` to skip.
* `omega_column_name`: name of the omega (rotation rate) Set to `nothing` to skip.
* `pitch_fmt`: Format for finding all pitch columns in the file. Should be a regex with a capture group named `blade` for the blade index, or `nothing` to skip.
* `axial_loading_fmt`: Format for finding all axial loading columns in the file. Should be a regex with a captures groups named `blade` and `radial` for the blade and radial indices, or `nothing` to skip.
* `circum_loading_fmt`: Format for finding all radial loading columns in the file. Should be a regex with a captures groups named `blade` and `radial` for the blade and radial indices, or `nothing` to skip.
* `radial_interp_method`: `<:AbstractRadialInterpMethod` indicating method used to interpolate loading from blade element "interfaces" to midpoints.
* `time_deriv_method`: `<:AbstractTimeDerivMethod` indicating the method used to calculate the loading time derivatives.
* `average_freestream_vel=false`: Store possibily unsteady freestream velocity in the `OpenFASTData` object if `false`, store average value otherwise.
* `average_omega=false`: Store possibily unsteady omega (rotation rate) in the `OpenFASTData` object if `false`, store average value otherwise.
"""
function read_openfast_file(fname, radii, cs_area=nothing;
header_keyword="Time",
has_units_header=true,
time_column_name=header_keyword,
freestream_vel_column_name="Wind1VelX",
azimuth_column_name="Azimuth",
omega_column_name="RotSpeed",
pitch_fmt=r"BlPitch(?<blade>[[:digit:]]+)",
axial_loading_fmt=r"AB(?<blade>[[:digit:]]+)N(?<radial>[[:digit:]]+)Fxl",
circum_loading_fmt=r"AB(?<blade>[[:digit:]]+)N(?<radial>[[:digit:]]+)Fyl",
radial_interp_method=FLOWLinearInterp,
time_deriv_method=SecondOrderFiniteDiff,
average_freestream_vel=true,
average_omega=true)
num_radial = length(radii)
# Remove leading and trailing whitespace from header keyword.
header_keyword_s = strip(header_keyword)
# Find the first line that starts with `header_keyword_s`, which is where the header starts.
idx_header = 0
found_header = false
for line in eachline(fname)
idx_header += 1
if startswith(strip(line), header_keyword_s)
found_header = true
break
end
end
# If we didn't find a header, throw an error.
if !found_header
throw(ArgumentError("Unable to find header (line starting with \"$(header_keyword_s)\") in $(fname)"))
end
# Decide what to do with the units header.
if has_units_header
# If we have a units header, then we'll want to start reading right after it.
skipto = idx_header + 2
else
# If there is no units header, then we don't need to skip anything and we'll just start reading directly after the header.
skipto = idx_header + 1
end
# Read the file into a dataframe.
df = CSV.read(fname, DataFrames.DataFrame; header=idx_header, skipto=skipto)
# The number of times is equal to the number of rows in the dataframe.
num_times = DataFrames.nrow(df)
# This gives us all the column names in the dataframe.
colnames = DataFrames.names(df)
if time_column_name === nothing
time = nothing
else
time = df[!, time_column_name]
end
if freestream_vel_column_name === nothing
v = nothing
else
v_tmp = df[!, freestream_vel_column_name]
if average_freestream_vel
v = Fill(mean(v_tmp), length(v_tmp))
else
v = v_tmp
end
end
if azimuth_column_name === nothing
azimuth = nothing
else
azimuth = df[!, azimuth_column_name] .* (pi/180)
end
if omega_column_name === nothing
omega = nothing
else
omega_tmp = df[!, omega_column_name] .* (2*pi/60)
if average_omega
omega = Fill(mean(omega_tmp), length(omega_tmp))
else
omega = omega_tmp
end
end
if pitch_fmt === nothing
pitch = nothing
else
# Get the number of blades and the pitch column names according to the pitch format.
pitch_num_blades, pitch_matches = _get_num_blades(pitch_fmt, colnames)
# Decide on an element type for the pitch, then read in the pitch.
TF_pitch = promote_type(eltype.(getproperty.(Ref(df), getproperty.(pitch_matches, :match)))...)
pitch = Array{TF_pitch, 2}(undef, num_times, pitch_num_blades)
for m in pitch_matches
b = parse(Int, m[:blade])
pitch[:, b] .= df[!, m.match] .* (pi/180)
end
end
if axial_loading_fmt === nothing
axial_loading = nothing
else
# Get the number of blades and radial stations according to the axial loading format.
axial_num_blades, axial_num_radial, axial_matches = _get_num_blades_num_radial(axial_loading_fmt, colnames)
# Decide on an element type for the axial loading, then read in the axial loading.
TF_axial = promote_type(eltype.(getproperty.(Ref(df), getproperty.(axial_matches, :match)))...)
axial_loading = Array{TF_axial, 3}(undef, num_times, axial_num_radial, axial_num_blades)
for m in axial_matches
b = parse(Int, m[:blade])
r = parse(Int, m[:radial])
axial_loading[:, r, b] .= df[!, m.match]
end
end
if circum_loading_fmt === nothing
circum_loading = nothing
else
# Get the number of blades and radial stations according to the circumferential loading format.
circum_num_blades, circum_num_radial, circum_matches = _get_num_blades_num_radial(circum_loading_fmt, colnames)
# Decide on an element type for the circumferential loading.
TF_circum = promote_type(eltype.(getproperty.(Ref(df), getproperty.(circum_matches, :match)))...)
circum_loading = Array{TF_circum, 3}(undef, num_times, circum_num_radial, circum_num_blades)
for m in circum_matches
b = parse(Int, m[:blade])
r = parse(Int, m[:radial])
circum_loading[:, r, b] .= df[!, m.match]
end
end
# Create the openfast data struct.
data = OpenFASTData{radial_interp_method,time_deriv_method}(time, v, azimuth, omega, pitch, radii, cs_area, axial_loading, circum_loading)
# Interpolate the loading to the cell centers.
interpolate_to_cell_centers!(data)
# Calculate the loading time derivatives.
calculate_loading_dot!(data)
return data
end
"""
f1a_source_elements_openfast(data::OpenFASTData, rho0, c0, area_per_chord2::Vector, positive_x_rotation::Bool=true)
Construct and return an array of `CompactF1ASourceElement` objects from OpenFAST data.
# Arguments
- `data`: OpenFAST data object.
- `rho0`: Ambient air density (kg/m^3)
- `c0`: Ambient speed of sound (m/s)
- `positive_x_rotation`: rotate blade around the positive-x axis if `true`, negative-x axis otherwise
"""
function f1a_source_elements_openfast(data::OpenFASTData, rho0, c0, positive_x_rotation::Bool=true)
# if length(area_per_chord2) != length(data.radii_mid)
# throw(ArgumentError("length of area_per_chord2 = $(length(area_per_chord2)) should be equal to length(data.radii_mid) = $(length(data.radii_mid))"))
# end
# OK, what's the coordinate system here?
# Well, I guess I can decide.
# For CCBlade, I've been assuming that the blade elements are translating in the positive x direction, rotating about the positive x axis if `positive_x_rotation` is `true`, negative x axis otherwise.
# So for consistency let's say I do the same here.
# Then that would mean the freestream velocity would be pointed in the negative x direction.
# The velocity in the example OpenFAST file is always positive, so, I'll need to keep that in mind.
# For the position of the blade elements, we'll initially be aligned with the y axis, and I'm assuming that the radial locations are all positive, so no sign switch necessary there.
# But what to do about the loading?
# What is the loading sign convention?
# Well, for the axial loading, I would expect that the axial loading on the fluid would oppose the freestream velocity for a wind turbine.
# So, if the blades are translating in the positive x direction, the axial loading on the fluid would also be in the positive x direction.
# I can see that the axial loading in the openfast file is all positive, so no sign switch is necessary.
# For the circumferential loading, for a wind turbine, I would expect the loading on the blade to be in the same direction as the blade rotation, so the loading on the fluid would be opposite the blade's rotation.
# So, if the first blade is initially aligned with the y axis, rotating around the positive x axis, then the blade would initially be moving in the positive z direction, and so the loading on the fluid should be in the negative z direction.
# And it looks like the circumferential loading in the OpenFAST file is negative, so no sign switch necessary.
# But if the blade is rotating about the negative x axis, then the loading on the blade would be in the negative direction, and thus the loading on the fluid would be in the positive direction, and so we'd need to switch the sign.
# Now, let's get some transformation stuff going.
# We're going to be translating in the positive x direction.
# Oh, but what do we do about the fact that the axial velocity isn't necessarily constant?
# Well, what I need is the position and velocity in the axial direction.
# It would also be nice to get the acceleration and jerk, too.
# OK, I have the velocity, but the position is the tricky part.
# But I should be able to just integrate it, I suppose.
# So let's do that.
# We'll assume the position at the first time is at the origin.
# Now we need to integrate the velocity.
# (This assumes the hub starts at the origin.
# If that's not the case, just add `x0` to it, where `x0` is the axial position at the first time level.)
x = FLOWMath.cumtrapz(data.time, data.v)
# So now we have the axial position and axial velocity as a function of data.time.
# Now we should be able to create transformations that take that into account.
# There will be one for each data.time level.
# For each entry in `data.time`, i.e. for `data.time[i]`, it will start at `[x[i], 0, 0]` and have velocity `[v[i], 0, 0]`.
# This won't take into account the effect the possibily non-constant velocity has on the acceleration or jerk.
# const_vel_trans = ConstantVelocityTransformation.(data.time, SVector{3,typeof(x)}.(x, 0, 0), SVector{3,typeof(x)}.(data.v, 0, 0))
# Next, we need to figure out the rotation stuff.
# We actually have both a time history of omega and azimuthal angles.
# So we could create a bunch of rotational transformations that have the correct azimuth offset and omega.
# But it wouldn't take into account the effect the time derivative of omega has on the things we care about: the derivatives of position and loading.
# I would need to do some work on that.
# Also, I'm going to assume that omega and azimuth are always positive, and so I'll switch their signs if we are rotating about the negative x axis.
# rot_trans = SteadyRotXTransformation.(data.time, data.omega.*ifelse(positive_x_rotation, 1, -1), data.azimuth.*ifelse(positive_x_rotation, 1, -1))
# So, want everything to have shape (num_times, num_radial_mid, num_blades).
radii_mid_rs = reshape(data.radii_mid, 1, :)
dradii_rs = reshape(data.dradii, 1, :)
num_blades = data.num_blades
thetas = 2*pi/num_blades.*(0:(num_blades-1)) .* ifelse(positive_x_rotation, 1, -1)
thetas_rs = reshape(thetas, 1, 1, :)
# cs_area_rs = reshape(cs_area, 1, :)
cs_area_rs = reshape(data.cs_area_mid, 1, :)
# All the loading arrays are in the right shape, and no sign switch is necessary.
fn = data.axial_loading_mid
fndot = data.axial_loading_mid_dot
# The OpenFAST file doesn't have any data for the loading in the radial direction (which should be quite small of course).
fr = zero(eltype(fn))
frdot = zero(eltype(fn))
fc = data.circum_loading_mid
fcdot = data.circum_loading_mid_dot
# Now we should be able to do all this.
# This is a bit too cute, but I can't help myself.
ses = (CompactF1ASourceElement.(rho0, c0, radii_mid_rs, thetas_rs, dradii_rs, cs_area_rs, fn, fndot, fr, frdot, fc.*ifelse(positive_x_rotation, 1, -1), fcdot.*ifelse(positive_x_rotation, 1, -1), data.time) .|>
compose.(data.time,
ConstantVelocityTransformation.(data.time, SVector{3,eltype(x)}.(x, 0, 0), SVector{3,eltype(data.v)}.(data.v, 0, 0)),
SteadyRotXTransformation.(data.time, data.omega.*ifelse(positive_x_rotation, 1, -1), data.azimuth.*ifelse(positive_x_rotation, 1, -1))
)
)
return ses
end
| AcousticAnalogies | https://github.com/OpenMDAO/AcousticAnalogies.jl.git |
|
[
"Apache-2.0"
] | 0.8.1 | c14d0b2e7f19374017a2b5b6dfe48c5723c791ae | code | 29144 | function K_1(Re_c)
# Equation (47) in the BPM paper.
if Re_c < 2.47e5
return -4.31*log10(Re_c) + 156.3
elseif Re_c < 8.0e5
return -9.0*log10(Re_c) + 181.6
else
return 128.5*one(Re_c)
end
end
function DeltaK_1(alphastar, Re_deltastar_p)
# Equation (48) in the BPM report.
T = promote_type(typeof(alphastar), typeof(Re_deltastar_p))
alphastar_deg = alphastar*180/pi
if Re_deltastar_p < 5000
return alphastar_deg*(1.43*log10(Re_deltastar_p) - 5.29)
else
return zero(T)
end
end
function St_1(M)
# Equation (31) from the BPM report.
return 0.02*M^(-0.6)
end
function A_min(a)
# Equation (35) from the BPM report.
if a < 0.204
return sqrt(67.552 - 886.788*a^2) - 8.219
elseif a β€ 0.244
return -32.665*a + 3.981
else
return -142.795*a^3 + 103.656*a^2 - 57.757*a + 6.006
end
end
function A_max(a)
# Equation (36) from the BPM report.
if a < 0.13
return sqrt(67.552 - 886.788*a^2) - 8.219
elseif a β€ 0.321
return -15.901*a + 1.098
else
return -4.669*a^3 + 3.491*a^2 - 16.699*a + 1.149
end
end
function A(St_over_St_peak, Re_c)
# Equation (37) from the BPM report.
a = abs_cs_safe(log10(St_over_St_peak))
# Equation (38) from the BPM report.
if Re_c < 9.52e4
a0 = 0.57*one(Re_c)
elseif Re_c β€ 8.57e5
a0 = (-9.57e-13)*(Re_c - 8.57e5)^2 + 1.13
else
a0 = 1.13*one(Re_c)
end
# Equation (39) from the BPM report.
A_min_a0 = A_min(a0)
A_max_a0 = A_max(a0)
A_R = (-20 - A_min_a0)/(A_max_a0 - A_min_a0)
# Equation (40) from the BPM report.
A_min_a = A_min(a)
A_max_a = A_max(a)
return A_min_a + A_R*(A_max_a - A_min_a)
end
function B_min(b)
# Equation (41) from the BPM report.
if b < 0.13
return sqrt(16.888 - 886.788*b^2) - 4.109
elseif b β€ 0.145
return -83.607*b + 8.138
else
return -817.810*b^3 + 355.201*b^2 - 135.024*b + 10.619
end
end
function B_max(b)
# Equation (42) from the BPM report.
if b < 0.10
return sqrt(16.888 - 886.788*b^2) - 4.109
elseif b β€ 0.187
return -31.330*b + 1.854
else
return -80.541*b^3 + 44.174*b^2 - 39.381*b + 2.344
end
end
function B(St_over_St_peak, Re_c)
# Equation (43) from the BPM report.
b = abs_cs_safe(log10(St_over_St_peak))
# Equation (44) from the BPM report.
if Re_c < 9.52e4
b0 = 0.30*one(Re_c)
elseif Re_c β€ 8.57e5
b0 = (-4.48e-13)*(Re_c - 8.57e5)^2 + 0.56
else
b0 = 0.56*one(Re_c)
end
# Equation (45) from the BPM report.
B_min_b0 = B_min(b0)
B_max_b0 = B_max(b0)
B_R = (-20 - B_min_b0)/(B_max_b0 - B_min_b0)
# Equation (46) from the BPM report.
B_min_b = B_min(b)
B_max_b = B_max(b)
return B_min_b + B_R*(B_max_b - B_min_b)
end
function St_2(St_1, alphastar)
# Equation (34) from the BPM report.
T = promote_type(typeof(St_1), typeof(alphastar))
alphastar_deg = alphastar*180/pi
if alphastar_deg < 1.333
return St_1*one(T)
elseif alphastar_deg β€ 12.5
return St_1*10.0^(0.0054*(alphastar_deg - 1.333)^2)
else
return St_1*4.72*one(T)
end
end
function gamma(M)
# Equation (50) from the BPM report.
gamma_deg = 27.094*M + 3.31
return gamma_deg
end
function gamma0(M)
# Equation (50) from the BPM report.
gamma0_deg = 23.43*M + 4.651
return gamma0_deg
end
function beta(M)
# Equation (50) from the BPM report.
beta_deg = 72.65*M + 10.74
return beta_deg
end
function beta0(M)
# Equation (50) from the BPM report.
beta0_deg = -34.19*M - 13.82
return beta0_deg
end
function K_2(Re_c, M, alphastar)
T = promote_type(typeof(Re_c), typeof(M), typeof(alphastar))
alphastar_deg = alphastar*180/pi
k_1 = K_1(Re_c)*one(T)
# Equation (50) from the BPM report.
# gamma_deg, gamma0_deg, beta_deg, beta0_deg = gammas_betas(M)
gamma_deg = gamma(M)
gamma0_deg = gamma0(M)
beta_deg = beta(M)
beta0_deg = beta0(M)
# Equation (49) from the BPM report.
if alphastar_deg < gamma0_deg - gamma_deg
return k_1 - 1000
# elseif alphastar_deg β€ gamma0_deg + gamma_deg
elseif alphastar_deg β€ gamma0_deg + sqrt(-(gamma_deg/beta_deg)^2*(-12 - beta0_deg)^2 + gamma_deg^2)
return k_1 + sqrt(beta_deg^2 - (beta_deg/gamma_deg)^2*(alphastar_deg - gamma0_deg)^2) + beta0_deg
else
return k_1 - 12
end
end
function St_1prime(Re_c)
# Equation (55) from the BPM report.
T = typeof(Re_c)
if Re_c < 1.3e5
return 0.18*one(T)
elseif Re_c β€ 4.0e5
return 0.001756*Re_c^(0.3931)
else
return 0.28*one(T)
end
end
function Dbar_h(theta_e, phi_e, M, M_c)
# Equation (B1) from the BPM report.
return (2*sin(0.5*theta_e)^2*sin(phi_e)^2)/((1 + M*cos(theta_e))*(1 + (M - M_c)*cos(theta_e))^2)
end
function Dbar_l(theta_e, phi_e, M)
# Equation (B2) from the BPM report.
return (sin(theta_e)^2*sin(phi_e)^2)/((1 + M*cos(theta_e))^4)
end
function TBL_TE_s(freq, nu, L, chord, U, M, M_c, r_e, theta_e, phi_e, alphastar, bl)
T = promote_type(typeof(freq), typeof(nu), typeof(L), typeof(chord), typeof(U), typeof(M), typeof(M_c), typeof(r_e), typeof(theta_e), typeof(phi_e), typeof(alphastar))
Re_c = U*chord/nu
alphastar0 = alpha_stall(bl, Re_c)
gamma0_deg = gamma0(M)
if alphastar*180/pi > min(gamma0_deg, alphastar0*180/pi)
# SPL_s = -100*one(T)
G_s = 10^(0.1*(-100))*one(T)
else
D = Dbar_h(theta_e, phi_e, M, M_c)
deltastar_s = disp_thickness_top(bl, Re_c, alphastar)*chord
St_s = freq*deltastar_s/U
St_peak_p = St_1(M)
St_peak_alpha = St_2(St_peak_p, alphastar)
St_peak_s = 0.5*(St_peak_p + St_peak_alpha)
A_s = A(St_s/St_peak_s, Re_c)
k_1 = K_1(Re_c)
# SPL_s = 10*log10((deltastar_s*M^5*L*D)/(r_e^2)) + A_s + k_1 - 3
# Brooks and Burley AIAA 2001-2210 style.
H_s = 10^(0.1*(A_s + k_1 - 3))
G_s = (deltastar_s*M^5*L*D)/(r_e^2)*H_s
end
SPL_s = 10*log10(G_s)
return SPL_s
end
function TBL_TE_p(freq, nu, L, chord, U, M, M_c, r_e, theta_e, phi_e, alphastar, bl)
T = promote_type(typeof(freq), typeof(nu), typeof(L), typeof(chord), typeof(U), typeof(M), typeof(M_c), typeof(r_e), typeof(theta_e), typeof(phi_e), typeof(alphastar))
Re_c = U*chord/nu
alphastar0 = alpha_stall(bl, Re_c)
gamma0_deg = gamma0(M)
if alphastar*180/pi > min(gamma0_deg, alphastar0*180/pi)
# SPL_p = -100*one(T)
G_p = 10^(0.1*(-100))*one(T)
else
D = Dbar_h(theta_e, phi_e, M, M_c)
deltastar_p = disp_thickness_bot(bl, Re_c, alphastar)*chord
k_1 = K_1(Re_c)
St_p = freq*deltastar_p/U
St_peak_p = St_1(M)
A_p = A(St_p/St_peak_p, Re_c)
Re_deltastar_p = U*deltastar_p/nu
Ξk_1 = DeltaK_1(alphastar, Re_deltastar_p)
# SPL_p = 10*log10((deltastar_p*M^5*L*D)/(r_e^2)) + A_p + k_1 - 3 + Ξk_1
# Brooks and Burley AIAA 2001-2210 style.
H_p = 10^(0.1*(A_p + k_1 - 3 + Ξk_1))
G_p = (deltastar_p*M^5*L*D)/(r_e^2)*H_p
end
SPL_p = 10*log10(G_p)
return SPL_p
end
function TBL_TE_alpha(freq, nu, L, chord, U, M, M_c, r_e, theta_e, phi_e, alphastar, bl)
Re_c = U*chord/nu
alphastar0 = alpha_stall(bl, Re_c)
gamma0_deg = gamma0(M)
deltastar_s = disp_thickness_top(bl, Re_c, alphastar)*chord
St_s = freq*deltastar_s/U
St_peak_p = St_1(M)
St_peak_alpha = St_2(St_peak_p, alphastar)
k2 = K_2(Re_c, M, alphastar)
if alphastar*180/pi > min(gamma0_deg, alphastar0*180/pi)
D = Dbar_l(theta_e, phi_e, M)
A_prime = A(St_s/St_peak_alpha, 3*Re_c)
# SPL_alpha = 10*log10((deltastar_s*M^5*L*D)/(r_e^2)) + A_prime + k2
# Brooks and Burley AIAA 2001-2210 style.
H_alpha = 10^(0.1*(A_prime + k2))
G_alpha = (deltastar_s*M^5*L*D)/(r_e^2)*H_alpha
else
D = Dbar_h(theta_e, phi_e, M, M_c)
B_alpha = B(St_s/St_peak_alpha, Re_c)
# SPL_alpha = 10*log10((deltastar_s*M^5*L*D)/(r_e^2)) + B_alpha + k2
# Brooks and Burley AIAA 2001-2210 style.
H_alpha = 10^(0.1*(B_alpha + k2))
G_alpha = (deltastar_s*M^5*L*D)/(r_e^2)*H_alpha
end
SPL_alpha = 10*log10(G_alpha)
return SPL_alpha
end
function TBL_TE(freq, nu, L, chord, U, M, M_c, r_e, theta_e, phi_e, alphastar, bl)
SPL_s = TBL_TE_s(freq, nu, L, chord, U, M, M_c, r_e, theta_e, phi_e, alphastar, bl)
SPL_p = TBL_TE_p(freq, nu, L, chord, U, M, M_c, r_e, theta_e, phi_e, alphastar, bl)
SPL_alpha = TBL_TE_alpha(freq, nu, L, chord, U, M, M_c, r_e, theta_e, phi_e, alphastar, bl)
return SPL_s, SPL_p, SPL_alpha
end
abstract type AbstractMachCorrection end
struct NoMachCorrection <: AbstractMachCorrection end
struct PrandtlGlauertMachCorrection <: AbstractMachCorrection end
struct TBLTESourceElement{
TDirect<:AbstractDirectivity,TUInduction,TMachCorrection,TDoppler,
Tc0,Tnu,TΞr,Tchord,Ty0dot,Ty1dot,Ty1dot_fluid,TΟ,TΞΟ,Tspan_uvec,Tchord_uvec,Tbl
} <: AbstractBroadbandSourceElement{TDirect,TUInduction,TMachCorrection,TDoppler}
# Speed of sound, m/s.
c0::Tc0
# Kinematic viscosity, m^2/s
nu::Tnu
# Radial/spanwise length of element, m.
Ξr::TΞr
# chord length of element, m.
chord::Tchord
# Source position, m.
y0dot::Ty0dot
# Source velocity, m/s.
y1dot::Ty1dot
# Fluid velocity, m/s.
y1dot_fluid::Ty1dot_fluid
# Source time, s.
Ο::TΟ
# Time step size, i.e. the amount of time this source element "exists" with these properties, s.
ΞΟ::TΞΟ
# Radial/spanwise unit vector, aka unit vector aligned with the element's span direction.
span_uvec::Tspan_uvec
# Chordwise unit vector, aka unit vector aligned with the element's chord line, pointing from leading edge to trailing edge.
chord_uvec::Tchord_uvec
# Boundary layer struct, i.e. an AbstractBoundaryLayer.
bl::Tbl
# `Bool` indicating chord_uvecΓspan_uvec will give a vector pointing from bottom side (usually pressure side) to top side (usually suction side) if `true`, or the opposite if `false`.
chord_cross_span_to_get_top_uvec::Bool
function TBLTESourceElement{TDirect,TUInduction,TMachCorrection,TDoppler}(c0, nu, Ξr, chord, y0dot::AbstractVector, y1dot::AbstractVector, y1dot_fluid::AbstractVector, Ο, ΞΟ, span_uvec::AbstractVector, chord_uvec::AbstractVector, bl, chord_cross_span_to_get_top_uvec::Bool) where {TDirect<:AbstractDirectivity,TUInduction,TMachCorrection,TDoppler}
return new{
TDirect,TUInduction,TMachCorrection,TDoppler,
typeof(c0), typeof(nu), typeof(Ξr), typeof(chord), typeof(y0dot), typeof(y1dot), typeof(y1dot_fluid), typeof(Ο), typeof(ΞΟ), typeof(span_uvec), typeof(chord_uvec), typeof(bl)
}(c0, nu, Ξr, chord, y0dot, y1dot, y1dot_fluid, Ο, ΞΟ, span_uvec, chord_uvec, bl, chord_cross_span_to_get_top_uvec)
end
end
# Default to using the `BrooksBurleyDirectivity` directivity function, include induction in the flow speed normal to span (TUInduction == true), use the PrandtlGlauertMachCorrection, and Doppler-shift.
function TBLTESourceElement(c0, nu, Ξr, chord, y0dot::AbstractVector, y1dot::AbstractVector, y1dot_fluid::AbstractVector, Ο, ΞΟ, span_uvec::AbstractVector, chord_uvec::AbstractVector, bl, chord_cross_span_to_get_top_uvec::Bool)
return TBLTESourceElement{BrooksBurleyDirectivity,true,PrandtlGlauertMachCorrection,true}(c0, nu, Ξr, chord, y0dot, y1dot, y1dot_fluid, Ο, ΞΟ, span_uvec, chord_uvec, bl, chord_cross_span_to_get_top_uvec)
end
"""
TBLTESourceElement(c0, nu, r, ΞΈ, Ξr, chord, Ο, vn, vr, vc, Ο, ΞΟ, bl, twist_about_positive_y)
Construct a source element for predicting turbulent boundary layer-trailing edge (TBLTE) noise using the BPM/Brooks and Burley method, using position and velocity data expressed in a cylindrical coordinate system.
The `r` and `ΞΈ` arguments are used to define the radial and circumferential position of the source element in a cylindrical coordinate system.
Likewise, the `vn`, `vr`, and `vc` arguments are used to define the normal, radial, and circumferential velocity of the fluid (in a reference frame moving with the element) in the same cylindrical coordinate system.
The cylindrical coordinate system is defined as follows:
* The normal/axial direction is in the positive x axis
* The circumferential/azimuth angle `ΞΈ` is defined such that `ΞΈ = 0` means the radial direction is aligned with the positive y axis, and a positive `ΞΈ` indicates a right-handed rotation around the positive x axis.
The `twist_about_positive_y` is a `Bool` controling how the `Ο` argument is handled, which in turn controls the orientation of a unit vector defining `chord_uvec` indicating the orientation of the chord line, from leading edge to trailing edge.
If `twist_about_positive_y` is `true`, `chord_uvec` will initially be pointed in the negative-z direction, and then rotated around the positive y axis by an amount `Ο` before being rotated by the azimuth angle `ΞΈ`.
(This would typcially be appropriate for a source element rotating around the positive x axis.)
If `twist_about_positive_y` is `false`, `chord_uvec` will initially be pointed in the positive-z direction, and then rotated around the negative y axis by an amount `Ο` before being rotated by the azimuth angle `ΞΈ`.
(This would typcially be appropriate for a source element rotating around the negative x axis.)
Note that, for a proper noise prediction, the source element needs to be transformed into the "global" frame, aka, the reference frame of the fluid.
This can be done easily with the transformations provided by the `KinematicCoordinateTransformations` package, or manually by modifying the components of the source element struct.
# Arguments
- c0: Ambient speed of sound (m/s)
- nu: Kinematic viscosity (m^2/s)
- r: radial coordinate of the element in the blade-fixed coordinate system (m)
- ΞΈ: angular offest of the element in the blade-fixed coordinate system (rad)
- Ξr: length of the element (m)
- chord: chord length of blade element (m)
- Ο: twist of blade element (rad)
- vn: normal velocity of fluid (m/s)
- vr: radial velocity of fluid (m/s)
- vc: circumferential velocity of the fluid (m/s)
- Ο: source time (s)
- ΞΟ: source time duration (s)
- bl: Boundary layer struct, i.e. an AbstractBoundaryLayer.
- twist_about_positive_y: if `true`, apply twist Ο about positive y axis, negative y axis otherwise
"""
function TBLTESourceElement{TDirect,TUInduction,TMachCorrection,TDoppler}(c0, nu, r, ΞΈ, Ξr, chord, Ο, vn, vr, vc, Ο, ΞΟ, bl, twist_about_positive_y::Bool) where {TDirect,TUInduction,TMachCorrection,TDoppler}
sΞΈ, cΞΈ = sincos(ΞΈ)
sΟ, cΟ = sincos(Ο)
y0dot = @SVector [0, r*cΞΈ, r*sΞΈ]
T = eltype(y0dot)
y1dot = @SVector zeros(T, 3)
y1dot_fluid = @SVector [vn, vr*cΞΈ - vc*sΞΈ, vr*sΞΈ + vc*cΞΈ]
span_uvec = @SVector [0, cΞΈ, sΞΈ]
if twist_about_positive_y
chord_uvec = @SVector [-sΟ, cΟ*sΞΈ, -cΟ*cΞΈ]
else
chord_uvec = @SVector [-sΟ, -cΟ*sΞΈ, cΟ*cΞΈ]
end
chord_cross_span_to_get_top_uvec = twist_about_positive_y
return TBLTESourceElement{TDirect,TUInduction,TMachCorrection,TDoppler}(c0, nu, Ξr, chord, y0dot, y1dot, y1dot_fluid, Ο, ΞΟ, span_uvec, chord_uvec, bl, chord_cross_span_to_get_top_uvec::Bool)
end
# Default to using the `BrooksBurleyDirectivity` directivity function, include induction in the flow speed normal to span (TUInduction == true), use the PrandtlGlauertMachCorrection, and Doppler-shift.
function TBLTESourceElement(c0, nu, r, ΞΈ, Ξr, chord, Ο, vn, vr, vc, Ο, ΞΟ, bl, twist_about_positive_y::Bool)
return TBLTESourceElement{BrooksBurleyDirectivity,true,PrandtlGlauertMachCorrection,true}(c0, nu, r, ΞΈ, Ξr, chord, Ο, vn, vr, vc, Ο, ΞΟ, bl, twist_about_positive_y)
end
"""
TBLTESourceElement(c0, nu, r, ΞΈ, Ξr, chord, Ο, U, Ξ±, Ο, ΞΟ, bl, twist_about_positive_y)
Construct a source element for predicting turbulent boundary layer-trailing edge (TBLTE) noise using the BPM/Brooks and Burley method, using the velocity magnitude `U` and angle of attack `Ξ±`.
The `r` and `ΞΈ` arguments are used to define the radial and circumferential position of the source element in a cylindrical coordinate system.
The `U` and `Ξ±` arguments are the velocity magnitude normal to the source element length and the angle of attack, respectively.
The cylindrical coordinate system is defined as follows:
* The normal/axial direction is in the positive x axis
* The circumferential/azimuth angle `ΞΈ` is defined such that `ΞΈ = 0` means the radial direction is aligned with the positive y axis, and a positive `ΞΈ` indicates a right-handed rotation around the positive x axis.
The `twist_about_positive_y` is a `Bool` controling how the `Ο` argument is handled, which in turn controls the orientation of a unit vector defining `chord_uvec` indicating the orientation of the chord line, from leading edge to trailing edge.
If `twist_about_positive_y` is `true`, `chord_uvec` will initially be pointed in the negative-z direction, and then rotated around the positive y axis by an amount `Ο` before being rotated by the azimuth angle `ΞΈ`.
(This would typcially be appropriate for a source element rotating around the positive x axis.)
If `twist_about_positive_y` is `false`, `chord_uvec` will initially be pointed in the positive-z direction, and then rotated around the negative y axis by an amount `Ο` before being rotated by the azimuth angle `ΞΈ`.
(This would typcially be appropriate for a source element rotating around the negative x axis.)
Note that, for a proper noise prediction, the source element needs to be transformed into the "global" frame, aka, the reference frame of the fluid.
This can be done easily with the transformations provided by the `KinematicCoordinateTransformations` package, or manually by modifying the components of the source element struct.
# Arguments
- c0: Ambient speed of sound (m/s)
- nu: Kinematic viscosity (m^2/s)
- r: radial coordinate of the element in the blade-fixed coordinate system (m)
- ΞΈ: angular offest of the element in the blade-fixed coordinate system (rad)
- Ξr: length of the element (m)
- chord: chord length of blade element (m)
- Ο: twist of blade element (rad)
- U: velocity magnitude (m/s)
- Ξ±: angle of attack (rad)
- Ο: source time (s)
- ΞΟ: source time duration (s)
- bl: Boundary layer struct, i.e. an AbstractBoundaryLayer.
- twist_about_positive_y: if `true`, apply twist Ο about positive y axis, negative y axis otherwise
"""
function TBLTESourceElement{TDirect,TUInduction,TMachCorrection,TDoppler}(c0, nu, r, ΞΈ, Ξr, chord, Ο, U, Ξ±, Ο, ΞΟ, bl, twist_about_positive_y) where {TDirect,TUInduction,TMachCorrection,TDoppler}
precone = 0
pitch = 0
phi = Ο - Ξ±
y0dot, y1dot, y1dot_fluid, span_uvec, chord_uvec, chord_cross_span_to_get_top_uvec = _get_position_velocity_span_uvec_chord_uvec(Ο, precone, pitch, r, ΞΈ, U, phi, twist_about_positive_y)
return TBLTESourceElement{TDirect,TUInduction,TMachCorrection,TDoppler}(c0, nu, Ξr, chord, y0dot, y1dot, y1dot_fluid, Ο, ΞΟ, span_uvec, chord_uvec, bl, chord_cross_span_to_get_top_uvec)
end
# Default to using the `BrooksBurleyDirectivity` directivity function, include induction in the flow speed normal to span (TUInduction == true), use the PrandtlGlauertMachCorrection, and Doppler-shift.
function TBLTESourceElement(c0, nu, r, ΞΈ, Ξr, chord, Ο, U, Ξ±, Ο, ΞΟ, bl, twist_about_positive_y::Bool)
return TBLTESourceElement{BrooksBurleyDirectivity,true,PrandtlGlauertMachCorrection,true}(c0, nu, r, ΞΈ, Ξr, chord, Ο, U, Ξ±, Ο, ΞΟ, bl, twist_about_positive_y)
end
"""
(trans::KinematicTransformation)(se::TBLTESourceElement)
Transform the position and orientation of a source element according to the coordinate system transformation `trans`.
"""
function (trans::KinematicTransformation)(se::TBLTESourceElement{TDirect,TUInduction,TMachCorrection,TDoppler}) where {TDirect,TUInduction,TMachCorrection,TDoppler}
linear_only = false
y0dot, y1dot = trans(se.Ο, se.y0dot, se.y1dot, linear_only)
y0dot, y1dot_fluid = trans(se.Ο, se.y0dot, se.y1dot_fluid, linear_only)
linear_only = true
span_uvec = trans(se.Ο, se.span_uvec, linear_only)
chord_uvec = trans(se.Ο, se.chord_uvec, linear_only)
return TBLTESourceElement{TDirect,TUInduction,TMachCorrection,TDoppler}(se.c0, se.nu, se.Ξr, se.chord, y0dot, y1dot, y1dot_fluid, se.Ο, se.ΞΟ, span_uvec, chord_uvec, se.bl, se.chord_cross_span_to_get_top_uvec)
end
doppler(pbs::AcousticMetrics.AbstractProportionalBandSpectrum) = AcousticMetrics.freq_scaler(pbs)
"""
Output of the turbulent boundary layer-trailing edge (TBL-TE) calculation: the acoustic pressure autospectrum centered at time `t` over observer duration `dt` and observer frequencies `cbands` for the suction side `G_s`, pressure side `G_p`, and the separation `G_alpha`.
"""
struct TBLTEOutput{NO,TF,TG<:AbstractVector{TF},TFreqs<:AcousticMetrics.AbstractProportionalBands{NO,:center},TDTime,TTime} <: AcousticMetrics.AbstractProportionalBandSpectrum{NO,TF}
G_s::TG
G_p::TG
G_alpha::TG
cbands::TFreqs
dt::TDTime
t::TTime
function TBLTEOutput(G_s::TG, G_p::TG, G_alpha::TG, cbands::AcousticMetrics.AbstractProportionalBands{NO,:center}, dt, t) where {NO,TG}
ncbands = length(cbands)
length(G_s) == ncbands || throw(ArgumentError("length(G_s) must match length(cbands)"))
length(G_p) == ncbands || throw(ArgumentError("length(G_p) must match length(cbands)"))
length(G_alpha) == ncbands || throw(ArgumentError("length(G_alpha) must match length(cbands)"))
dt > zero(dt) || throw(ArgumentError("dt must be positive"))
return new{NO,eltype(TG),TG,typeof(cbands),typeof(dt),typeof(t)}(G_s, G_p, G_alpha, cbands, dt, t)
end
end
@inline function Base.getindex(pbs::TBLTEOutput, i::Int)
@boundscheck checkbounds(pbs, i)
return @inbounds pbs.G_s[i] + pbs.G_p[i] + pbs.G_alpha[i]
end
@inline AcousticMetrics.has_observer_time(pbs::TBLTEOutput) = true
@inline AcousticMetrics.observer_time(pbs::TBLTEOutput) = pbs.t
@inline AcousticMetrics.timestep(pbs::TBLTEOutput) = pbs.dt
@inline AcousticMetrics.time_scaler(pbs::TBLTEOutput, period) = timestep(pbs)/period
function _tble_te_s(freq, deltastar_s_U, Re_c, St_peak_s, k_1, scaler, deep_stall)
St_s = freq*deltastar_s_U
A_s = A(St_s/St_peak_s, Re_c)
# SPL_s = 10*log10((deltastar_s*M^5*L*Dh)/(r_er^2)) + A_s + k_1 - 3
# Brooks and Burley AIAA 2001-2210 style.
H_s = 10^(0.1*(A_s + k_1 - 3))
# G_s = (deltastar_s*M^5*Ξr*Dh)/(r_er^2)*H_s
G_s = scaler*H_s
return ifelse(deep_stall, 10^(0.1*(-100))*one(typeof(G_s)), G_s)
end
function _tble_te_p(freq, deltastar_p_U, Re_c, St_peak_p, k_1, Ξk_1, scaler, deep_stall)
St_p = freq*deltastar_p_U
A_p = A(St_p/St_peak_p, Re_c)
# SPL_p = 10*log10((deltastar_p*M^5*L*Dh)/(r_er^2)) + A_p + k_1 - 3 + Ξk_1
# Brooks and Burley AIAA 2001-2210 style.
H_p = 10^(0.1*(A_p + k_1 - 3 + Ξk_1))
# G_p = (deltastar_p*M^5*Ξr*Dh)/(r_er^2)*H_p
G_p = scaler*H_p
return ifelse(deep_stall, 10^(0.1*(-100))*one(typeof(G_p)), G_p)
end
function _tble_te_alpha(freq, Re_c, deltastar_s_U, St_peak_alpha, k_2, scaler_l, scaler_h, deep_stall)
# Don't know if this is really necessary.
T = promote_type(typeof(freq), typeof(Re_c), typeof(deltastar_s_U), typeof(St_peak_alpha), typeof(k_2), typeof(scaler_l), typeof(scaler_h))
St_s = freq*deltastar_s_U
A_prime_stall = A(St_s/St_peak_alpha, 3*Re_c)
# SPL_alpha = 10*log10((deltastar_s*M^5*L*D)/(r_er^2)) + A_prime + k_2
# Brooks and Burley AIAA 2001-2210 style.
H_alpha_stall = 10^(0.1*(A_prime_stall + k_2))
# G_alpha_stall = (deltastar_s*M^5*Ξr*Dl)/(r_er^2)*H_alpha_stall
G_alpha_stall = scaler_l*H_alpha_stall*one(T)
B_alpha = B(St_s/St_peak_alpha, Re_c)
# SPL_alpha = 10*log10((deltastar_s*M^5*L*Dh)/(r_er^2)) + B_alpha + k_2
# Brooks and Burley AIAA 2001-2210 style.
H_alpha = 10^(0.1*(B_alpha + k_2))
# G_alpha = (deltastar_s*M^5*Ξr*Dh)/(r_er^2)*H_alpha
G_alpha = scaler_h*H_alpha*one(T)
return ifelse(deep_stall, G_alpha_stall, G_alpha)
end
# Should use traits or something for this.
function mach_correction(se::AbstractBroadbandSourceElement{TDirect,TUInduction,NoMachCorrection}, M) where {TDirect,TUInduction}
return one(typeof(M))
end
function mach_correction(se::AbstractBroadbandSourceElement{TDirect,TUInduction,PrandtlGlauertMachCorrection}, M) where {TDirect,TUInduction}
return 1/(1 - M^2)
end
function noise(se::TBLTESourceElement, obs::AbstractAcousticObserver, t_obs, freqs::AcousticMetrics.AbstractProportionalBands{3, :center})
# Position of the observer:
x_obs = obs(t_obs)
# Need the angle of attack.
alphastar = angle_of_attack(se)
# Need the directivity functions.
top_is_suction = is_top_suction(se.bl, alphastar)
r_er, Dl, Dh = directivity(se, x_obs, top_is_suction)
# Need the fluid velocity normal to the span.
# Brooks and Burley 2001 are a bit ambiguous on whether it should include induction, or just the freestream and rotation.
#
# * In the nomenclature section: `U` is "flow speed normal to span (`U_mn` with `mn` suppressed).
# So that's one point for "no induction."
# * In some discussion after equation (8), "The Mach number, `M = U/c0`, represents that component of velocity `U` normal to the span...".
# Hard to say one way or the other.
# * In equation (12), `U_mn` is the velocity without induction.
# So that's another point for "no induction."
# * Equation (14) defines `V_tot` as the velocity including the freestream, rotation, and induction.
# And then it defines `U` as the part of `V_tot` normal to the span.
# So that's a point for "yes induction."
# * In the directivity function definitions in equations (19) and (20), `M_tot` is used in the denominator, which seems to make it clear *that* velocity should include induction, since `V_tot` always includes induction.
#
# So, at the moment, the TBLTESourceElement type has a parameter TUInduction which, when true, will include induction in the flow speed normal to the span, and not otherwise.
U = speed_normal_to_span(se)
# Reynolds number based on chord and the flow speed normal to span.
Re_c = U*se.chord/se.nu
# Also need the displacement thicknesses for the pressure and suction sides.
deltastar_s = disp_thickness_s(se.bl, Re_c, alphastar)*se.chord
deltastar_p = disp_thickness_p(se.bl, Re_c, alphastar)*se.chord
# Now that we've decided on the directivity functions and the displacement thickness, and we know the correct value of `top_is_suction` we should be able to switch the sign on `alphastar` if it's negative, and reference it to the zero-lift value, as the BPM report does.
alphastar_positive = abs_cs_safe(alphastar - alpha_zerolift(se.bl))
# Mach number of the flow speed normal to span.
M = U/se.c0
# This stuff is used to decide if the blade element is stalled or not.
alphastar0 = alpha_stall(se.bl, Re_c)
gamma0_deg = gamma0(M)
deep_stall = (alphastar_positive*180/pi) > min(gamma0_deg, alphastar0*180/pi)
St_peak_p = St_1(M)
St_peak_alpha = St_2(St_peak_p, alphastar_positive)
St_peak_s = 0.5*(St_peak_p + St_peak_alpha)
Re_deltastar_p = U*deltastar_p/se.nu
k_1 = K_1(Re_c)
k_2 = K_2(Re_c, M, alphastar_positive)
Ξk_1 = DeltaK_1(alphastar_positive, Re_deltastar_p)
deltastar_s_U = deltastar_s/U
deltastar_p_U = deltastar_p/U
# Brooks and Burley 2001 recommend a Prandtl-Glauert style Mach number correction.
# But whether or not it's included is dependent on the TMachCorrection type parameter for the source element.
m_corr = mach_correction(se, M)
# The Brooks and Burley autospectrums appear to be scaled by the usual squared reference pressure (20 ΞΌPa)^2, but I'd like things in dimensional units, so multiply through by that.
pref2 = 4e-10
G_s_scaler = (deltastar_s*M^5*se.Ξr*Dh)/(r_er^2)*m_corr
G_s = _tble_te_s.(freqs, deltastar_s_U, Re_c, St_peak_s, k_1, G_s_scaler, deep_stall).*pref2
G_p_scaler = (deltastar_p*M^5*se.Ξr*Dh)/(r_er^2)*m_corr
G_p = _tble_te_p.(freqs, deltastar_p_U, Re_c, St_peak_p, k_1, Ξk_1, G_p_scaler, deep_stall).*pref2
G_alpha_scaler_l = (deltastar_s*M^5*se.Ξr*Dl)/(r_er^2)*m_corr
G_alpha_scaler_h = G_s_scaler
G_alpha = _tble_te_alpha.(freqs, Re_c, deltastar_s_U, St_peak_alpha, k_2, G_alpha_scaler_l, G_alpha_scaler_h, deep_stall).*pref2
# Also need the Doppler shift for this source-observer combination.
doppler = doppler_factor(se, obs, t_obs)
# Get the doppler-shifted time step and proportional bands.
dt = se.ΞΟ/doppler
freqs_obs = AcousticMetrics.center_bands(freqs, doppler)
# All done.
return TBLTEOutput(G_s, G_p, G_alpha, freqs_obs, dt, t_obs)
end
| AcousticAnalogies | https://github.com/OpenMDAO/AcousticAnalogies.jl.git |
|
[
"Apache-2.0"
] | 0.8.1 | c14d0b2e7f19374017a2b5b6dfe48c5723c791ae | code | 20676 | function St_3prime_peak(h_over_deltastar_avg, Psi)
Psi_deg = Psi*180/pi
# Equation 72 from the BPM report.
if h_over_deltastar_avg < 0.2
return 0.1*(h_over_deltastar_avg) + 0.095 - 0.00243*Psi_deg
else
return (0.212 - 0.0045*Psi_deg)/(1 + 0.235/h_over_deltastar_avg - 0.0132/(h_over_deltastar_avg^2))
end
end
function G4(h_over_deltastar_avg, Psi)
Psi_deg = Psi*180/pi
# Equation 74 from the BPM report.
if h_over_deltastar_avg β€ 5
return 17.5*log10(h_over_deltastar_avg) + 157.5 - 1.114*Psi_deg
else
return 169.7 - 1.114*Psi_deg
end
end
function G5_Psi14(h_over_deltastar_avg, St_3prime_over_St_3prime_peak)
# Equation 77 from the BPM report.
Ξ· = log10(St_3prime_over_St_3prime_peak)
# Equation 78 from the BPM report.
if h_over_deltastar_avg < 0.25
ΞΌ = 0.1211*one(h_over_deltastar_avg)
elseif h_over_deltastar_avg < 0.62
ΞΌ = -0.2175*h_over_deltastar_avg + 0.1755
elseif h_over_deltastar_avg < 1.15
ΞΌ = -0.0308*h_over_deltastar_avg + 0.0596
else
ΞΌ = 0.0242*one(h_over_deltastar_avg)
end
# Equation 79 from the BPM report.
if h_over_deltastar_avg < 0.02
m = zero(h_over_deltastar_avg)
elseif h_over_deltastar_avg β€ 0.5
m = 68.724*h_over_deltastar_avg - 1.35
elseif h_over_deltastar_avg β€ 0.62
m = 308.475*h_over_deltastar_avg - 121.23
elseif h_over_deltastar_avg < 1.15
m = 224.811*h_over_deltastar_avg - 69.354
elseif h_over_deltastar_avg < 1.2
m = 1583.28*h_over_deltastar_avg - 1631.592
else
m = 268.344*one(h_over_deltastar_avg)
end
# This is in the code listing in the BPM report appendix.
if m < 0
m = zero(h_over_deltastar_avg)
end
# Equation 80 from the BPM report.
Ξ·_0 = -sqrt((m^2*ΞΌ^4)/(6.25 + m^2*ΞΌ^2))
# Equation 81 from the BPM report.
k = 2.5*sqrt(1 - (Ξ·_0/ΞΌ)^2) - 2.5 - m*Ξ·_0
# Equation 76 from the BPM report.
if Ξ· < Ξ·_0
return m*Ξ· + k
elseif Ξ· < 0
return 2.5*sqrt(1 - (Ξ·/ΞΌ)^2) - 2.5
elseif Ξ· < 0.03616
return sqrt(1.5625 - 1194.99*Ξ·^2) - 1.25*one(h_over_deltastar_avg)
else
return -155.543*Ξ· + 4.375*one(h_over_deltastar_avg)
end
end
function G5_Psi0(h_over_deltastar_avg, St_3prime_over_St_3prime_peak)
# Equation 82 from the BPM report.
h_over_deltastar_avg_prime = 6.724*h_over_deltastar_avg^2 - 4.019*h_over_deltastar_avg + 1.107
return G5_Psi14(h_over_deltastar_avg_prime, St_3prime_over_St_3prime_peak)
end
function G5(h_over_deltastar_avg, Psi, St_3prime_over_St_3prime_peak)
Psi_deg = 180/pi*Psi
# Equation 75 from the BPM report.
G5_0 = G5_Psi0(h_over_deltastar_avg, St_3prime_over_St_3prime_peak)
G5_14 = G5_Psi14(h_over_deltastar_avg, St_3prime_over_St_3prime_peak)
g5 = G5_0 + 0.0714*Psi_deg*(G5_14 - G5_0)
# This check is in the code listing in the BPM report appendix:
if g5 > 0
return zero(g5)
else
return g5
end
end
function BLUNT(freq, nu, L, chord, h, Psi, U, M, M_c, r_e, theta_e, phi_e, alphastar, bl)
Re_c = U*chord/nu
# deltastar_s = disp_thickness_s(bl, Re_c, alphastar)*chord
# deltastar_p = disp_thickness_p(bl, Re_c, alphastar)*chord
deltastar_top = disp_thickness_top(bl, Re_c, alphastar)*chord
deltastar_bot = disp_thickness_bot(bl, Re_c, alphastar)*chord
top_is_suction = alphastar > alpha_zerolift(bl)
deltastar_s, deltastar_p = ifelse(top_is_suction,
(deltastar_top, deltastar_bot),
(deltastar_bot, deltastar_top))
# Equation 73 from the BPM report.
deltastar_avg = 0.5*(deltastar_p + deltastar_s)
h_over_deltastar_avg = h/deltastar_avg
D = Dbar_h(theta_e, phi_e, M, M_c)
# Equation 71 from the BPM report.
St_3p = freq*h/U
St_3prime_over_St_3prime_peak = St_3p/St_3prime_peak(h_over_deltastar_avg, Psi)
g5temp = G5(h_over_deltastar_avg, Psi, St_3prime_over_St_3prime_peak)
# This next check is in the code listing in the BPM report appendix.
# Need to find G5 for h_over_deltastar_avg = 0.25 for the F4TEMP variable.
f4temp = G5_Psi14(0.25, St_3prime_over_St_3prime_peak)
# if g5 > f4temp
# g5 = f4temp
# end
g5 = ifelse(g5temp > f4temp, f4temp, g5temp)
# Equation 70 from the BPM report.
# SPL_blunt = 10*log10((h*(M^5.5)*L*D)/(r_e^2)) + G4(h_over_deltastar_avg, Psi) + g5
# Brooks and Burley AIAA 2001-2210 style.
H_b = 10^(0.1*(G4(h_over_deltastar_avg, Psi) + g5))
G_bte = (h*(M^5.5)*L*D)/(r_e^2)*H_b
SPL_blunt = 10*log10(G_bte)
return SPL_blunt
end
struct TEBVSSourceElement{
TDirect<:AbstractDirectivity,TUInduction,TDoppler,
Tc0,Tnu,TΞr,Tchord,Th,TPsi,Ty0dot,Ty1dot,Ty1dot_fluid,TΟ,TΞΟ,Tspan_uvec,Tchord_uvec,Tbl
} <: AbstractBroadbandSourceElement{TDirect,TUInduction,NoMachCorrection,TDoppler}
# Speed of sound, m/s.
c0::Tc0
# Kinematic viscosity, m^2/s
nu::Tnu
# Radial/spanwise length of element, m.
Ξr::TΞr
# chord length of element, m.
chord::Tchord
# Trailing edge thickness, m.
h::Th
# Solid angle between blade surfaces immediately upstream of the trailing edge, rad.
Psi::TPsi
# Source position, m.
y0dot::Ty0dot
# Source velocity, m/s.
y1dot::Ty1dot
# Fluid velocity, m/s.
y1dot_fluid::Ty1dot_fluid
# Source time, s.
Ο::TΟ
# Time step size, i.e. the amount of time this source element "exists" with these properties, s.
ΞΟ::TΞΟ
# Radial/spanwise unit vector, aka unit vector aligned with the element's span direction.
span_uvec::Tspan_uvec
# Chordwise unit vector, aka unit vector aligned with the element's chord line, pointing from leading edge to trailing edge.
chord_uvec::Tchord_uvec
# Boundary layer struct, i.e. an AbstractBoundaryLayer.
bl::Tbl
# `Bool` indicating chord_uvecΓspan_uvec will give a vector pointing from bottom side (usually pressure side) to top side (usually suction side) if `true`, or the opposite if `false`.
chord_cross_span_to_get_top_uvec::Bool
function TEBVSSourceElement{TDirect,TUInduction,TDoppler}(c0, nu, Ξr, chord, h, Psi, y0dot::AbstractVector, y1dot::AbstractVector, y1dot_fluid::AbstractVector, Ο, ΞΟ, span_uvec::AbstractVector, chord_uvec::AbstractVector, bl, chord_cross_span_to_get_top_uvec::Bool) where {TDirect<:AbstractDirectivity,TUInduction,TDoppler}
return new{
TDirect,TUInduction,TDoppler,
typeof(c0), typeof(nu), typeof(Ξr), typeof(chord), typeof(h), typeof(Psi), typeof(y0dot), typeof(y1dot), typeof(y1dot_fluid), typeof(Ο), typeof(ΞΟ), typeof(span_uvec), typeof(chord_uvec), typeof(bl)
}(c0, nu, Ξr, chord, h, Psi, y0dot, y1dot, y1dot_fluid, Ο, ΞΟ, span_uvec, chord_uvec, bl, chord_cross_span_to_get_top_uvec)
end
end
# Default to using the `BrooksBurleyDirectivity` directivity function, include induction in the flow speed normal to span (TUInduction == true), and Doppler-shift.
function TEBVSSourceElement(c0, nu, Ξr, chord, h, Psi, y0dot::AbstractVector, y1dot::AbstractVector, y1dot_fluid::AbstractVector, Ο, ΞΟ, span_uvec::AbstractVector, chord_uvec::AbstractVector, bl, chord_cross_span_to_get_top_uvec)
return TEBVSSourceElement{BrooksBurleyDirectivity,true,true}(c0, nu, Ξr, chord, h, Psi, y0dot, y1dot, y1dot_fluid, Ο, ΞΟ, span_uvec, chord_uvec, bl, chord_cross_span_to_get_top_uvec)
end
"""
TEBVSSourceElement(c0, nu, r, ΞΈ, Ξr, chord, Ο, h, Psi, vn, vr, vc, Ο, ΞΟ, bl, twist_about_positive_y)
Construct a source element for predicting trailing edge bluntness-vortex shedding (TEBVS) noise using the BPM/Brooks and Burley method, using position and velocity data expressed in a cylindrical coordinate system.
The `r` and `ΞΈ` arguments are used to define the radial and circumferential position of the source element in a cylindrical coordinate system.
Likewise, the `vn`, `vr`, and `vc` arguments are used to define the normal, radial, and circumferential velocity of the fluid (in a reference frame moving with the element) in the same cylindrical coordinate system.
The cylindrical coordinate system is defined as follows:
* The normal/axial direction is in the positive x axis
* The circumferential/azimuth angle `ΞΈ` is defined such that `ΞΈ = 0` means the radial direction is aligned with the positive y axis, and a positive `ΞΈ` indicates a right-handed rotation around the positive x axis.
The `twist_about_positive_y` is a `Bool` controling how the `Ο` argument is handled, which in turn controls the orientation of a unit vector defining `chord_uvec` indicating the orientation of the chord line, from leading edge to trailing edge.
If `twist_about_positive_y` is `true`, `chord_uvec` will initially be pointed in the negative-z direction, and then rotated around the positive y axis by an amount `Ο` before being rotated by the azimuth angle `ΞΈ`.
(This would typcially be appropriate for a source element rotating around the positive x axis.)
If `twist_about_positive_y` is `false`, `chord_uvec` will initially be pointed in the positive-z direction, and then rotated around the negative y axis by an amount `Ο` before being rotated by the azimuth angle `ΞΈ`.
(This would typcially be appropriate for a source element rotating around the negative x axis.)
Note that, for a proper noise prediction, the source element needs to be transformed into the "global" frame, aka, the reference frame of the fluid.
This can be done easily with the transformations provided by the `KinematicCoordinateTransformations` package, or manually by modifying the components of the source element struct.
# Arguments
- c0: Ambient speed of sound (m/s)
- nu: Kinematic viscosity (m^2/s)
- r: radial coordinate of the element in the blade-fixed coordinate system (m)
- ΞΈ: angular offest of the element in the blade-fixed coordinate system (rad)
- Ξr: length of the element (m)
- chord: chord length of blade element (m)
- Ο: twist of blade element (rad)
- h: trailing edge thickness (m)
- Psi: solid angle between the blade surfaces immediately upstream of the trailing edge (rad)
- vn: normal velocity of fluid (m/s)
- vr: radial velocity of fluid (m/s)
- vc: circumferential velocity of the fluid (m/s)
- Ο: source time (s)
- ΞΟ: source time duration (s)
- bl: Boundary layer struct, i.e. an AbstractBoundaryLayer.
- twist_about_positive_y: if `true`, apply twist Ο about positive y axis, negative y axis otherwise
"""
function TEBVSSourceElement{TDirect,TUInduction,TDoppler}(c0, nu, r, ΞΈ, Ξr, chord, Ο, h, Psi, vn, vr, vc, Ο, ΞΟ, bl, twist_about_positive_y) where {TDirect,TUInduction,TDoppler}
sΞΈ, cΞΈ = sincos(ΞΈ)
sΟ, cΟ = sincos(Ο)
y0dot = @SVector [0, r*cΞΈ, r*sΞΈ]
T = eltype(y0dot)
y1dot = @SVector zeros(T, 3)
y1dot_fluid = @SVector [vn, vr*cΞΈ - vc*sΞΈ, vr*sΞΈ + vc*cΞΈ]
span_uvec = @SVector [0, cΞΈ, sΞΈ]
if twist_about_positive_y
chord_uvec = @SVector [-sΟ, cΟ*sΞΈ, -cΟ*cΞΈ]
else
chord_uvec = @SVector [-sΟ, -cΟ*sΞΈ, cΟ*cΞΈ]
end
chord_cross_span_to_get_top_uvec = twist_about_positive_y
return TEBVSSourceElement{TDirect,TUInduction,TDoppler}(c0, nu, Ξr, chord, h, Psi, y0dot, y1dot, y1dot_fluid, Ο, ΞΟ, span_uvec, chord_uvec, bl, chord_cross_span_to_get_top_uvec)
end
# Default to using the `BrooksBurleyDirectivity` directivity function, include induction in the flow speed normal to span (TUInduction == true), and Doppler-shift.
function TEBVSSourceElement(c0, nu, r, ΞΈ, Ξr, chord, Ο, h, Psi, vn, vr, vc, Ο, ΞΟ, bl, twist_about_positive_y)
return TEBVSSourceElement{BrooksBurleyDirectivity,true,true}(c0, nu, r, ΞΈ, Ξr, chord, Ο, h, Psi, vn, vr, vc, Ο, ΞΟ, bl, twist_about_positive_y)
end
"""
TEBVSSourceElement(c0, nu, r, ΞΈ, Ξr, chord, Ο, h, Psi, U, Ξ±, Ο, ΞΟ, bl, twist_about_positive_y)
Construct a source element for predicting trailing edge bluntness-vortex shedding (TEBVS) noise using the BPM/Brooks and Burley method, using the velocity magnitude `U` and angle of attack `Ξ±`.
The `r` and `ΞΈ` arguments are used to define the radial and circumferential position of the source element in a cylindrical coordinate system.
The `U` and `Ξ±` arguments are the velocity magnitude normal to the source element length and the angle of attack, respectively.
The cylindrical coordinate system is defined as follows:
* The normal/axial direction is in the positive x axis
* The circumferential/azimuth angle `ΞΈ` is defined such that `ΞΈ = 0` means the radial direction is aligned with the positive y axis, and a positive `ΞΈ` indicates a right-handed rotation around the positive x axis.
The `twist_about_positive_y` is a `Bool` controling how the `Ο` argument is handled, which in turn controls the orientation of a unit vector defining `chord_uvec` indicating the orientation of the chord line, from leading edge to trailing edge.
If `twist_about_positive_y` is `true`, `chord_uvec` will initially be pointed in the negative-z direction, and then rotated around the positive y axis by an amount `Ο` before being rotated by the azimuth angle `ΞΈ`.
(This would typcially be appropriate for a source element rotating around the positive x axis.)
If `twist_about_positive_y` is `false`, `chord_uvec` will initially be pointed in the positive-z direction, and then rotated around the negative y axis by an amount `Ο` before being rotated by the azimuth angle `ΞΈ`.
(This would typcially be appropriate for a source element rotating around the negative x axis.)
Note that, for a proper noise prediction, the source element needs to be transformed into the "global" frame, aka, the reference frame of the fluid.
This can be done easily with the transformations provided by the `KinematicCoordinateTransformations` package, or manually by modifying the components of the source element struct.
# Arguments
- c0: Ambient speed of sound (m/s)
- nu: Kinematic viscosity (m^2/s)
- r: radial coordinate of the element in the blade-fixed coordinate system (m)
- ΞΈ: angular offest of the element in the blade-fixed coordinate system (rad)
- Ξr: length of the element (m)
- chord: chord length of blade element (m)
- Ο: twist of blade element (rad)
- h: trailing edge thickness (m)
- Psi: solid angle between the blade surfaces immediately upstream of the trailing edge (rad)
- U: velocity magnitude (m/s)
- Ξ±: angle of attack (rad)
- Ο: source time (s)
- ΞΟ: source time duration (s)
- bl: Boundary layer struct, i.e. an AbstractBoundaryLayer.
- twist_about_positive_y: if `true`, apply twist Ο about positive y axis, negative y axis otherwise
"""
function TEBVSSourceElement{TDirect,TUInduction,TDoppler}(c0, nu, r, ΞΈ, Ξr, chord, Ο, h, Psi, U, Ξ±, Ο, ΞΟ, bl, twist_about_positive_y) where {TDirect,TUInduction,TDoppler}
precone = 0
pitch = 0
phi = Ο - Ξ±
y0dot, y1dot, y1dot_fluid, span_uvec, chord_uvec, chord_cross_span_to_get_top_uvec = _get_position_velocity_span_uvec_chord_uvec(Ο, precone, pitch, r, ΞΈ, U, phi, twist_about_positive_y)
return TEBVSSourceElement{TDirect,TUInduction,TDoppler}(c0, nu, Ξr, chord, h, Psi, y0dot, y1dot, y1dot_fluid, Ο, ΞΟ, span_uvec, chord_uvec, bl, chord_cross_span_to_get_top_uvec)
end
# Default to using the `BrooksBurleyDirectivity` directivity function, include induction in the flow speed normal to span (TUInduction == true), and Doppler-shift.
function TEBVSSourceElement(c0, nu, r, ΞΈ, Ξr, chord, Ο, h, Psi, U, Ξ±, Ο, ΞΟ, bl, twist_about_positive_y)
return TEBVSSourceElement{BrooksBurleyDirectivity,true,true}(c0, nu, r, ΞΈ, Ξr, chord, Ο, h, Psi, U, Ξ±, Ο, ΞΟ, bl, twist_about_positive_y)
end
"""
(trans::KinematicTransformation)(se::TEBVSSourceElement)
Transform the position and orientation of a source element according to the coordinate system transformation `trans`.
"""
function (trans::KinematicTransformation)(se::TEBVSSourceElement{TDirect,TUInduction,TDoppler}) where {TDirect,TUInduction,TDoppler}
linear_only = false
y0dot, y1dot = trans(se.Ο, se.y0dot, se.y1dot, linear_only)
y0dot, y1dot_fluid = trans(se.Ο, se.y0dot, se.y1dot_fluid, linear_only)
linear_only = true
span_uvec = trans(se.Ο, se.span_uvec, linear_only)
chord_uvec = trans(se.Ο, se.chord_uvec, linear_only)
return TEBVSSourceElement{TDirect,TUInduction,TDoppler}(se.c0, se.nu, se.Ξr, se.chord, se.h, se.Psi, y0dot, y1dot, y1dot_fluid, se.Ο, se.ΞΟ, span_uvec, chord_uvec, se.bl, se.chord_cross_span_to_get_top_uvec)
end
function _teb_vs(freq, h_U, h_over_deltastar_avg, St_3pp, Psi, g4, G_teb_vs_scaler)
# Equation 71 from the BPM report.
St_3p = freq*h_U
St_3prime_over_St_3prime_peak = St_3p/St_3pp
g5temp = G5(h_over_deltastar_avg, Psi, St_3prime_over_St_3prime_peak)
# This next check is in the code listing in the BPM report appendix.
# Need to find G5 for h_over_deltastar_avg = 0.25 for the F4TEMP variable.
f4temp = G5_Psi14(0.25, St_3prime_over_St_3prime_peak)
g5 = ifelse(g5temp > f4temp, f4temp, g5temp)
# Equation 70 from the BPM report.
# SPL_blunt = 10*log10((h*(M^5.5)*L*D)/(r_e^2)) + G4(h_over_deltastar_avg, Psi) + g5
# Brooks and Burley AIAA 2001-2210 style.
H_b = 10^(0.1*(g4 + g5))
G_bte = G_teb_vs_scaler*H_b
return G_bte
end
function noise(se::TEBVSSourceElement, obs::AbstractAcousticObserver, t_obs, freqs::AcousticMetrics.AbstractProportionalBands{3, :center})
# Position of the observer:
x_obs = obs(t_obs)
# Need the angle of attack.
alphastar = angle_of_attack(se)
# Need the directivity functions.
top_is_suction = is_top_suction(se.bl, alphastar)
r_er, Dl, Dh = directivity(se, x_obs, top_is_suction)
# Need the fluid velocity normal to the span.
# Brooks and Burley 2001 are a bit ambiguous on whether it should include induction, or just the freestream and rotation.
#
# * In the nomenclature section: `U` is "flow speed normal to span (`U_mn` with `mn` suppressed).
# So that's one point for "no induction."
# * In some discussion after equation (8), "The Mach number, `M = U/c0`, represents that component of velocity `U` normal to the span...".
# Hard to say one way or the other.
# * In equation (12), `U_mn` is the velocity without induction.
# So that's another point for "no induction."
# * Equation (14) defines `V_tot` as the velocity including the freestream, rotation, and induction.
# And then it defines `U` as the part of `V_tot` normal to the span.
# So that's a point for "yes induction."
# * In the directivity function definitions in equations (19) and (20), `M_tot` is used in the denominator, which seems to make it clear *that* velocity should include induction, since `V_tot` always includes induction.
#
# So, at the moment, the TBLTESourceElement type has a parameter TUInduction which, when true, will include induction in the flow speed normal to the span, and not otherwise.
U = speed_normal_to_span(se)
# Reynolds number based on chord and the flow speed normal to span.
Re_c = U*se.chord/se.nu
# Also need the displacement thicknesses for the pressure and suction sides.
deltastar_s = disp_thickness_s(se.bl, Re_c, alphastar)*se.chord
deltastar_p = disp_thickness_p(se.bl, Re_c, alphastar)*se.chord
# Now that we've decided on the directivity functions and the displacement thickness, and we know the correct value of `top_is_suction` we should be able to switch the sign on `alphastar` if it's negative, and reference it to the zero-lift value, as the BPM report does.
alphastar_positive = abs_cs_safe(alphastar - alpha_zerolift(se.bl))
# Mach number of the flow speed normal to span.
M = U/se.c0
# Equation 73 from the BPM report.
deltastar_avg = 0.5*(deltastar_p + deltastar_s)
h_over_deltastar_avg = se.h/deltastar_avg
h_U = se.h/U
St_3pp = St_3prime_peak(h_over_deltastar_avg, se.Psi)
g4 = G4(h_over_deltastar_avg, se.Psi)
# The Brooks and Burley autospectrums appear to be scaled by the usual squared reference pressure (20 ΞΌPa)^2, but I'd like things in dimensional units, so multiply through by that.
pref2 = 4e-10
G_teb_vs_scaler = (se.h*(M^5.5)*se.Ξr*Dh)/(r_er^2)
G_teb_vs = _teb_vs.(freqs, h_U, h_over_deltastar_avg, St_3pp, se.Psi, g4, G_teb_vs_scaler) .* pref2
# Also need the Doppler shift for this source-observer combination.
doppler = doppler_factor(se, obs, t_obs)
# Get the doppler-shifted time step and proportional bands.
dt = se.ΞΟ/doppler
freqs_obs = AcousticMetrics.center_bands(freqs, doppler)
# All done.
return AcousticMetrics.ProportionalBandSpectrumWithTime(G_teb_vs, freqs_obs, dt, t_obs)
end
| AcousticAnalogies | https://github.com/OpenMDAO/AcousticAnalogies.jl.git |
|
[
"Apache-2.0"
] | 0.8.1 | c14d0b2e7f19374017a2b5b6dfe48c5723c791ae | code | 18998 | abstract type AbstractTipAlphaCorrection end
struct NoTipAlphaCorrection <: AbstractTipAlphaCorrection end
struct BPMTipAlphaCorrection <: AbstractTipAlphaCorrection end
# struct BMTipAlphaCorrection{TCorrection} <: AbstractTipAlphaCorrection
# correction::TCorrection
# function BMTipAlphaCorrection(aspect_ratio)
# correction = BPM._tip_vortex_alpha_correction_nonsmooth(aspect_ratio)
# return new{typeof(correction)}(correction)
# end
# end
# struct SmoothBMTipAlphaCorrection{TCorrection} <: AbstractTipAlphaCorrection
# correction::TCorrection
# function SmoothBMTipAlphaCorrection(aspect_ratio)
# correction = BPM._tip_vortex_alpha_correction_smooth(aspect_ratio)
# return new{typeof(correction)}(correction)
# end
# end
abstract type AbstractBladeTip{TTipAlphaCorrection} end
alpha_zerolift(blade_tip::AbstractBladeTip) = blade_tip.alpha0lift
tip_alpha_correction(blade_tip::AbstractBladeTip) = blade_tip.tip_alpha_correction
struct RoundedTip{TTipAlphaCorrection,TAlpha0Lift} <: AbstractBladeTip{TTipAlphaCorrection}
tip_alpha_correction::TTipAlphaCorrection
alpha0lift::TAlpha0Lift
function RoundedTip(tip_alpha_correction::TTipAlphaCorrection, alpha0lift::TAlpha0Lift) where {TTipAlphaCorrection<:AbstractTipAlphaCorrection,TAlpha0Lift}
return new{TTipAlphaCorrection, TAlpha0Lift}(tip_alpha_correction, alpha0lift)
end
end
RoundedTip(alpha0lift=0.0) = RoundedTip(NoTipAlphaCorrection(), alpha0lift)
struct FlatTip{TTipAlphaCorrection,TAlpha0Lift} <: AbstractBladeTip{TTipAlphaCorrection}
tip_alpha_correction::TTipAlphaCorrection
alpha0lift::TAlpha0Lift
function FlatTip(tip_alpha_correction::TTipAlphaCorrection, alpha0lift::TAlpha0Lift) where {TTipAlphaCorrection<:AbstractTipAlphaCorrection,TAlpha0Lift}
return new{TTipAlphaCorrection, TAlpha0Lift}(tip_alpha_correction, alpha0lift)
end
end
FlatTip(alpha0lift=0.0) = FlatTip(NoTipAlphaCorrection(), alpha0lift)
function tip_vortex_alpha_correction(blade_tip::AbstractBladeTip{NoTipAlphaCorrection}, alphatip)
return alphatip
end
function tip_vortex_alpha_correction(blade_tip::AbstractBladeTip{BPMTipAlphaCorrection}, alphatip)
# Referencing the tip vortex angle of attack correction to the zero-lift angle of attack ensures that the correction will never cause the angle of attack to drop below the zero-lift value, assuming the correction factor (0.71 here) is between 0 and 1.
return 0.71*(alphatip - alpha_zerolift(blade_tip)) + alpha_zerolift(blade_tip)
# return 0.71*alphatip + (1 - 0.71)*alpha_zerolift(blade_tip)
end
# function tip_vortex_alpha_correction(blade_tip::AbstractBladeTip{<:Union{BMTipAlphaCorrection,SmoothBMTipAlphaCorrection}}, alphatip)
# return tip_alpha_correction(blade_tip).correction * (alphatip - alpha_zerolift(blade_tip)) + alpha_zerolift(blade_tip)
# end
function tip_vortex_size_c(::RoundedTip, alphatip)
# Equation 63 in the BPM report.
alphatip_deg = alphatip*180/pi
return 0.008*alphatip_deg
end
function tip_vortex_size_c(::FlatTip, alphatip)
alphatip_deg = alphatip*180/pi
# Equation 67 in the BPM report.
if alphatip_deg < 2
return 0.0230 + 0.0169*alphatip_deg
else
return 0.0378 + 0.0095*alphatip_deg
end
end
function tip_vortex_max_mach_number(::AbstractBladeTip, M, alphatip)
alphatip_deg = alphatip*180/pi
# Equation 64 in the BPM report.
M_max = (1 + 0.036*alphatip_deg)*M
return M_max
end
function TIP(freq, chord, M, M_c, U_max, M_max, r_e, theta_e, phi_e, alphatip, blade_tip::AbstractBladeTip)
l = tip_vortex_size_c(blade_tip, alphatip) * chord
# Equation 62 in the BPM report.
St_pp = freq*l/U_max
D = Dbar_h(theta_e, phi_e, M, M_c)
# Equation 61 in the BPM report.
# SPL_tip = 10*log10(M^2*M_max^3*l^2*D/r_e^2) - 30.5*(log10(St_pp) + 0.3)^2 + 126
# Brooks and Burley AIAA 2001-2210 style.
H_t = 10^(0.1*(-30.5*(log10(St_pp) + 0.3)^2 + 126))
G_tip = (M^2*M_max^3*l^2*D/r_e^2)*H_t
SPL_tip = 10*log10(G_tip)
return SPL_tip
end
struct TipVortexSourceElement{
TDirect<:AbstractDirectivity,TUInduction,TDoppler,
Tc0,TΞr,Tchord,Ty0dot,Ty1dot,Ty1dot_fluid,TΟ,TΞΟ,Tspan_uvec,Tchord_uvec,Tbl,Tblade_tip
} <: AbstractBroadbandSourceElement{TDirect,TUInduction,NoMachCorrection,TDoppler}
# Speed of sound, m/s.
# c0
c0::Tc0
# Radial/spanwise length of element, m.
Ξr::TΞr
# chord length of element, m.
chord::Tchord
# Source position, m.
y0dot::Ty0dot
# Source velocity, m/s.
y1dot::Ty1dot
# Fluid velocity, m/s.
y1dot_fluid::Ty1dot_fluid
# Source time, s.
Ο::TΟ
# Time step size, i.e. the amount of time this source element "exists" with these properties, s.
ΞΟ::TΞΟ
# Radial/spanwise unit vector, aka unit vector aligned with the element's span direction.
span_uvec::Tspan_uvec
# Chordwise unit vector, aka unit vector aligned with the element's chord line, pointing from leading edge to trailing edge.
chord_uvec::Tchord_uvec
# Boundary layer struct, i.e. an AbstractBoundaryLayer.
bl::Tbl
# Blade tip struct, i.e. an AbstractBladeTip.
blade_tip::Tblade_tip
# `Bool` indicating chord_uvecΓspan_uvec will give a vector pointing from bottom side (usually pressure side) to top side (usually suction side) if `true`, or the opposite if `false`.
chord_cross_span_to_get_top_uvec::Bool
function TipVortexSourceElement{TDirect,TUInduction,TDoppler}(c0, Ξr, chord, y0dot::AbstractVector, y1dot::AbstractVector, y1dot_fluid::AbstractVector, Ο, ΞΟ, span_uvec::AbstractVector, chord_uvec::AbstractVector, bl, blade_tip, chord_cross_span_to_get_top_uvec::Bool) where {TDirect<:AbstractDirectivity,TUInduction,TDoppler}
return new{
TDirect,TUInduction,TDoppler,
typeof(c0), typeof(Ξr), typeof(chord), typeof(y0dot), typeof(y1dot), typeof(y1dot_fluid), typeof(Ο), typeof(ΞΟ), typeof(span_uvec), typeof(chord_uvec), typeof(bl), typeof(blade_tip)
}(c0, Ξr, chord, y0dot, y1dot, y1dot_fluid, Ο, ΞΟ, span_uvec, chord_uvec, bl, blade_tip, chord_cross_span_to_get_top_uvec)
end
end
# Default to using the `BrooksBurleyDirectivity` directivity function, include induction in the flow speed normal to span (TUInduction == true), and Doppler-shift.
function TipVortexSourceElement(c0, Ξr, chord, y0dot::AbstractVector, y1dot::AbstractVector, y1dot_fluid::AbstractVector, Ο, ΞΟ, span_uvec::AbstractVector, chord_uvec::AbstractVector, bl, blade_tip, chord_cross_span_to_get_top_uvec)
return TipVortexSourceElement{BrooksBurleyDirectivity,true,true}(c0, Ξr, chord, y0dot, y1dot, y1dot_fluid, Ο, ΞΟ, span_uvec, chord_uvec, bl, blade_tip, chord_cross_span_to_get_top_uvec)
end
"""
TipVortexSourceElement(c0, r, ΞΈ, Ξr, chord, Ο, vn, vr, vc, Ο, ΞΟ, bl, blade_tip, twist_about_positive_y)
Construct a source element for predicting turbulent boundary layer-trailing edge (TBLTE) noise using the BPM/Brooks and Burley method, using position and velocity data expressed in a cylindrical coordinate system.
The `r` and `ΞΈ` arguments are used to define the radial and circumferential position of the source element in a cylindrical coordinate system.
Likewise, the `vn`, `vr`, and `vc` arguments are used to define the normal, radial, and circumferential velocity of the fluid (in a reference frame moving with the element) in the same cylindrical coordinate system.
The cylindrical coordinate system is defined as follows:
* The normal/axial direction is in the positive x axis
* The circumferential/azimuth angle `ΞΈ` is defined such that `ΞΈ = 0` means the radial direction is aligned with the positive y axis, and a positive `ΞΈ` indicates a right-handed rotation around the positive x axis.
The `twist_about_positive_y` is a `Bool` controling how the `Ο` argument is handled, which in turn controls the orientation of a unit vector defining `chord_uvec` indicating the orientation of the chord line, from leading edge to trailing edge.
If `twist_about_positive_y` is `true`, `chord_uvec` will initially be pointed in the negative-z direction, and then rotated around the positive y axis by an amount `Ο` before being rotated by the azimuth angle `ΞΈ`.
(This would typcially be appropriate for a source element rotating around the positive x axis.)
If `twist_about_positive_y` is `false`, `chord_uvec` will initially be pointed in the positive-z direction, and then rotated around the negative y axis by an amount `Ο` before being rotated by the azimuth angle `ΞΈ`.
(This would typcially be appropriate for a source element rotating around the negative x axis.)
Note that, for a proper noise prediction, the source element needs to be transformed into the "global" frame, aka, the reference frame of the fluid.
This can be done easily with the transformations provided by the `KinematicCoordinateTransformations` package, or manually by modifying the components of the source element struct.
# Arguments
- c0: Ambient speed of sound (m/s)
- r: radial coordinate of the element in the blade-fixed coordinate system (m)
- ΞΈ: angular offest of the element in the blade-fixed coordinate system (rad)
- Ξr: length of the element (m)
- chord: chord length of blade element (m)
- Ο: twist of blade element (rad)
- vn: normal velocity of fluid (m/s)
- vr: radial velocity of fluid (m/s)
- vc: circumferential velocity of the fluid (m/s)
- Ο: source time (s)
- ΞΟ: source time duration (s)
- bl: Boundary layer struct, i.e. an AbstractBoundaryLayer.
- blade_tip: Blade tip struct, i.e. an AbstractBladeTip.
- twist_about_positive_y: if `true`, apply twist Ο about positive y axis, negative y axis otherwise
"""
function TipVortexSourceElement{TDirect,TUInduction,TDoppler}(c0, r, ΞΈ, Ξr, chord, Ο, vn, vr, vc, Ο, ΞΟ, bl, blade_tip, twist_about_positive_y) where {TDirect,TUInduction,TDoppler}
sΞΈ, cΞΈ = sincos(ΞΈ)
sΟ, cΟ = sincos(Ο)
y0dot = @SVector [0, r*cΞΈ, r*sΞΈ]
T = eltype(y0dot)
y1dot = @SVector zeros(T, 3)
y1dot_fluid = @SVector [vn, vr*cΞΈ - vc*sΞΈ, vr*sΞΈ + vc*cΞΈ]
span_uvec = @SVector [0, cΞΈ, sΞΈ]
if twist_about_positive_y
chord_uvec = @SVector [-sΟ, cΟ*sΞΈ, -cΟ*cΞΈ]
else
chord_uvec = @SVector [-sΟ, -cΟ*sΞΈ, cΟ*cΞΈ]
end
chord_cross_span_to_get_top_uvec = twist_about_positive_y
return TipVortexSourceElement{TDirect,TUInduction,TDoppler}(c0, Ξr, chord, y0dot, y1dot, y1dot_fluid, Ο, ΞΟ, span_uvec, chord_uvec, bl, blade_tip, chord_cross_span_to_get_top_uvec)
end
# Default to using the `BrooksBurleyDirectivity` directivity function, include induction in the flow speed normal to span (TUInduction == true), and Doppler-shift.
function TipVortexSourceElement(c0, r, ΞΈ, Ξr, chord, Ο, vn, vr, vc, Ο, ΞΟ, bl, blade_tip, twist_about_positive_y)
return TipVortexSourceElement{BrooksBurleyDirectivity,true,true}(c0, r, ΞΈ, Ξr, chord, Ο, vn, vr, vc, Ο, ΞΟ, bl, blade_tip, twist_about_positive_y)
end
"""
TipVortexSourceElement(c0, r, ΞΈ, Ξr, chord, Ο, U, Ξ±, Ο, ΞΟ, bl, blade_tip, twist_about_positive_y)
Construct a source element for predicting tip vortex noise using the BPM/Brooks and Burley method, using the velocity magnitude `U` and angle of attack `Ξ±`.
The `r` and `ΞΈ` arguments are used to define the radial and circumferential position of the source element in a cylindrical coordinate system.
The `U` and `Ξ±` arguments are the velocity magnitude normal to the source element length and the angle of attack, respectively.
The cylindrical coordinate system is defined as follows:
* The normal/axial direction is in the positive x axis
* The circumferential/azimuth angle `ΞΈ` is defined such that `ΞΈ = 0` means the radial direction is aligned with the positive y axis, and a positive `ΞΈ` indicates a right-handed rotation around the positive x axis.
The `twist_about_positive_y` is a `Bool` controling how the `Ο` argument is handled, which in turn controls the orientation of a unit vector defining `chord_uvec` indicating the orientation of the chord line, from leading edge to trailing edge.
If `twist_about_positive_y` is `true`, `chord_uvec` will initially be pointed in the negative-z direction, and then rotated around the positive y axis by an amount `Ο` before being rotated by the azimuth angle `ΞΈ`.
(This would typcially be appropriate for a source element rotating around the positive x axis.)
If `twist_about_positive_y` is `false`, `chord_uvec` will initially be pointed in the positive-z direction, and then rotated around the negative y axis by an amount `Ο` before being rotated by the azimuth angle `ΞΈ`.
(This would typcially be appropriate for a source element rotating around the negative x axis.)
Note that, for a proper noise prediction, the source element needs to be transformed into the "global" frame, aka, the reference frame of the fluid.
This can be done easily with the transformations provided by the `KinematicCoordinateTransformations` package, or manually by modifying the components of the source element struct.
# Arguments
- c0: Ambient speed of sound (m/s)
- r: radial coordinate of the element in the blade-fixed coordinate system (m)
- ΞΈ: angular offest of the element in the blade-fixed coordinate system (rad)
- Ξr: length of the element (m)
- chord: chord length of blade element (m)
- Ο: twist of blade element (rad)
- U: velocity magnitude (m/s)
- Ξ±: angle of attack (rad)
- Ο: source time (s)
- ΞΟ: source time duration (s)
- bl: Boundary layer struct, i.e. an AbstractBoundaryLayer.
- blade_tip: Blade tip struct, i.e. an AbstractBladeTip.
- twist_about_positive_y: if `true`, apply twist Ο about positive y axis, negative y axis otherwise
"""
function TipVortexSourceElement{TDirect,TUInduction,TDoppler}(c0, r, ΞΈ, Ξr, chord, Ο, U, Ξ±, Ο, ΞΟ, bl, blade_tip, twist_about_positive_y) where {TDirect,TUInduction,TDoppler}
precone = 0
pitch = 0
phi = Ο - Ξ±
y0dot, y1dot, y1dot_fluid, span_uvec, chord_uvec, chord_cross_span_to_get_top_uvec = _get_position_velocity_span_uvec_chord_uvec(Ο, precone, pitch, r, ΞΈ, U, phi, twist_about_positive_y)
return TipVortexSourceElement{TDirect,TUInduction,TDoppler}(c0, Ξr, chord, y0dot, y1dot, y1dot_fluid, Ο, ΞΟ, span_uvec, chord_uvec, bl, blade_tip, chord_cross_span_to_get_top_uvec)
end
# Default to using the `BrooksBurleyDirectivity` directivity function, include induction in the flow speed normal to span (TUInduction == true), and Doppler-shift.
function TipVortexSourceElement(c0, r, ΞΈ, Ξr, chord, Ο, U, Ξ±, Ο, ΞΟ, bl, blade_tip, twist_about_positive_y)
return TipVortexSourceElement{BrooksBurleyDirectivity,true,true}(c0, r, ΞΈ, Ξr, chord, Ο, U, Ξ±, Ο, ΞΟ, bl, blade_tip, twist_about_positive_y)
end
"""
(trans::KinematicTransformation)(se::TipVortexSourceElement)
Transform the position and orientation of a source element according to the coordinate system transformation `trans`.
"""
function (trans::KinematicTransformation)(se::TipVortexSourceElement{TDirect,TUInduction,TDoppler}) where {TDirect,TUInduction,TDoppler}
linear_only = false
y0dot, y1dot = trans(se.Ο, se.y0dot, se.y1dot, linear_only)
y0dot, y1dot_fluid = trans(se.Ο, se.y0dot, se.y1dot_fluid, linear_only)
linear_only = true
span_uvec = trans(se.Ο, se.span_uvec, linear_only)
chord_uvec = trans(se.Ο, se.chord_uvec, linear_only)
return TipVortexSourceElement{TDirect,TUInduction,TDoppler}(se.c0, se.Ξr, se.chord, y0dot, y1dot, y1dot_fluid, se.Ο, se.ΞΟ, span_uvec, chord_uvec, se.bl, se.blade_tip, se.chord_cross_span_to_get_top_uvec)
end
function _tip(freq, l_U_max, scaler)
St_pp = freq*l_U_max
H_t = 10^(0.1*(-30.5*(log10(St_pp) + 0.3)^2 + 126))
# G_tip = (M^2*M_max^3*l^2*D/r_e^2)*H_t
G_tip = scaler*H_t
return G_tip
end
function noise(se::TipVortexSourceElement, obs::AbstractAcousticObserver, t_obs, freqs::AcousticMetrics.AbstractProportionalBands{3, :center})
# Position of the observer:
x_obs = obs(t_obs)
# Need the angle of attack, including the possible tip correction.
alphatip = tip_vortex_alpha_correction(se.blade_tip, angle_of_attack(se))
# Need the directivity functions.
top_is_suction = is_top_suction(se.bl, alphatip)
r_er, Dl, Dh = directivity(se, x_obs, top_is_suction)
# Need the fluid velocity normal to the span.
# Brooks and Burley 2001 are a bit ambiguous on whether it should include induction, or just the freestream and rotation.
#
# * In the nomenclature section: `U` is "flow speed normal to span (`U_mn` with `mn` suppressed).
# So that's one point for "no induction."
# * In some discussion after equation (8), "The Mach number, `M = U/c0`, represents that component of velocity `U` normal to the span...".
# Hard to say one way or the other.
# * In equation (12), `U_mn` is the velocity without induction.
# So that's another point for "no induction."
# * Equation (14) defines `V_tot` as the velocity including the freestream, rotation, and induction.
# And then it defines `U` as the part of `V_tot` normal to the span.
# So that's a point for "yes induction."
# * In the directivity function definitions in equations (19) and (20), `M_tot` is used in the denominator, which seems to make it clear *that* velocity should include induction, since `V_tot` always includes induction.
#
# So, at the moment, the TBLTESourceElement type has a parameter TUInduction which, when true, will include induction in the flow speed normal to the span, and not otherwise.
U = speed_normal_to_span(se)
# Now that we've decided on the directivity functions and we know the correct value of `top_is_suction` we should be able to switch the sign on `alphastar` if it's negative, and reference it to the zero-lift value, as the BPM report does.
alphatip_positive = abs_cs_safe(alphatip - alpha_zerolift(se.bl))
# Mach number of the flow speed normal to span.
M = U/se.c0
# Need the maximum mach number near the tip vortex.
M_max = tip_vortex_max_mach_number(se.blade_tip, M, alphatip_positive)
# Now we can find the maximum speed near the tip vortex.
U_max = M_max * se.c0
# Get the tip vortex size.
l = tip_vortex_size_c(se.blade_tip, alphatip_positive) * se.chord
# The Brooks and Burley autospectrums appear to be scaled by the usual squared reference pressure (20 ΞΌPa)^2, but I'd like things in dimensional units, so multiply through by that.
pref2 = 4e-10
l_U_max = l/U_max
G_tip_scaler = (M^2*M_max^3*l^2*Dh/r_er^2)
G_tip = _tip.(freqs, l_U_max, G_tip_scaler) .* pref2
# Also need the Doppler shift for this source-observer combination.
doppler = doppler_factor(se, obs, t_obs)
# Get the doppler-shifted time step and proportional bands.
dt = se.ΞΟ/doppler
freqs_obs = AcousticMetrics.center_bands(freqs, doppler)
# All done.
return AcousticMetrics.ProportionalBandSpectrumWithTime(G_tip, freqs_obs, dt, t_obs)
end
| AcousticAnalogies | https://github.com/OpenMDAO/AcousticAnalogies.jl.git |
|
[
"Apache-2.0"
] | 0.8.1 | c14d0b2e7f19374017a2b5b6dfe48c5723c791ae | code | 824 | """
get_dradii(radii, Rhub, Rtip)
Compute the spacing between blade elements given the radial locations of the
element midpoints in `radii` and the hub and tip radius in `Rhub` and `Rtip`,
respectively.
Assume the interfaces between elements are midway between adjacent element's midpoints.
"""
function get_dradii(radii, Rhub, Rtip)
# How do I get the radial spacing? Well, for the inner elements, I'll just
# assume that the interfaces are midway in between the centers.
r_interface = 0.5.*(radii[begin:end-1] .+ radii[begin+1:end])
# Then just say that the blade begins at Rhub, and ends at Rtip.
r_interface = vcat([Rhub], r_interface, [Rtip])
# And now the distance between interfaces is the spacing.
dradii = r_interface[begin+1:end] .- r_interface[begin:end-1]
return dradii
end
| AcousticAnalogies | https://github.com/OpenMDAO/AcousticAnalogies.jl.git |
|
[
"Apache-2.0"
] | 0.8.1 | c14d0b2e7f19374017a2b5b6dfe48c5723c791ae | code | 17184 | """
endpoints(se::AbstractCompactSourceElement)
Return the Tuple containing the endpoint locations of the compact source element `se`.
"""
function endpoints(se::AbstractCompactSourceElement)
p1 = se.y0dot - 0.5*se.Ξr*orientation(se)
p2 = se.y0dot + 0.5*se.Ξr*orientation(se)
# Don't like the idea of having a billion SVectors, so convert them to plain
# Vectors. Maybe not necessary.
return (Vector(p1), Vector(p2))
end
"""
to_vtp(name::AbstractString, ses::AbstractArray{<:AbstractCompactSourceElement})
Construct and return a VTK polygonal (.vtp) data file object for an array of `AbstractCompactSourceElement` with name `name.vtp` (i.e., the `name` argument should not contain a file extension).
"""
function to_vtp(name, ses::AbstractArray{<:AbstractCompactSourceElement})
# This will be an array of the same size as ses, with each entry a
# length-two tuple of the endpoints.
points_all = AcousticAnalogies.endpoints.(ses)
# This is an array of shape (2, size(ses)...) that has the global ID of each
# point. Need to use `collect` to create an actual Array since we're going
# to modify its elements.
line_ids = reshape(1:(2*length(ses)), 2, size(ses)...) |> collect
# Now I need to loop over each point...
points = Vector{Vector{Float64}}()
for I in CartesianIndices(points_all)
for (j, p_current) in enumerate(points_all[I])
# Is the current point in points?
k = findfirst(p -> all(p .β p_current), points)
if k === nothing
# p_current is not in points, so add it.
push!(points, p_current)
k = length(points)
end
line_ids[j, I] = k
end
end
# This converts the points Vector{Vector} into a Matrix. Should be
# size (num_dims, num_unique_points) where `num_dims` should be 3 (number of
# spatial dimensions), and num_unique_points is the number of unique points.
points = hcat(points...)
# `line_ids` is an Array of shape (2, size(ses)...) Need to reshape that to
# (2, length(ses)).
line_ids = reshape(line_ids, 2, length(ses))
# Now create the array of VTK lines.
lines = [WriteVTK.MeshCell(WriteVTK.PolyData.Lines(), line) for line in eachcol(line_ids)]
vtkfile = WriteVTK.vtk_grid(name, points, lines)
_write_data_to_vtk!(vtkfile, ses)
return vtkfile
end
function _write_data_to_vtk!(vtkfile, ses::AbstractArray{<:CompactF1ASourceElement})
# Now need to add the cell data. I would have expected to have to flatten
# these arrays, but apparently that's not necessary.
vtkfile["Length", WriteVTK.VTKCellData()] = mapview(:Ξr, ses)
vtkfile["CSArea", WriteVTK.VTKCellData()] = mapview(:Ξ, ses)
vtkfile["Position", WriteVTK.VTKCellData()] = hcat(mapview(:y0dot, ses)...)
vtkfile["Velocity", WriteVTK.VTKCellData()] = hcat(mapview(:y1dot, ses)...)
vtkfile["Acceleration", WriteVTK.VTKCellData()] = hcat(mapview(:y2dot, ses)...)
vtkfile["Jerk", WriteVTK.VTKCellData()] = hcat(mapview(:y3dot, ses)...)
vtkfile["Loading", WriteVTK.VTKCellData()] = hcat(mapview(:f0dot, ses)...)
vtkfile["LoadingDot", WriteVTK.VTKCellData()] = hcat(mapview(:f1dot, ses)...)
end
function _write_data_to_vtk!(vtkfile, ses::AbstractArray{<:Union{TBLTESourceElement,LBLVSSourceElement,TipVortexSourceElement}})
# Now need to add the cell data. I would have expected to have to flatten
# these arrays, but apparently that's not necessary.
vtkfile["Length", WriteVTK.VTKCellData()] = mapview(:Ξr, ses)
vtkfile["Chord", WriteVTK.VTKCellData()] = mapview(:chord, ses)
vtkfile["Position", WriteVTK.VTKCellData()] = hcat(mapview(:y0dot, ses)...)
vtkfile["Velocity", WriteVTK.VTKCellData()] = hcat(mapview(:y1dot, ses)...)
vtkfile["FluidVelocity", WriteVTK.VTKCellData()] = hcat(mapview(:y1dot_fluid, ses)...)
vtkfile["SpanUnitVector", WriteVTK.VTKCellData()] = hcat(mapview(:span_uvec, ses)...)
vtkfile["ChordUnitVector", WriteVTK.VTKCellData()] = hcat(mapview(:chord_uvec, ses)...)
end
function _write_data_to_vtk!(vtkfile, ses::AbstractArray{<:Union{TEBVSSourceElement,CombinedNoTipBroadbandSourceElement,CombinedWithTipBroadbandSourceElement}})
# Now need to add the cell data. I would have expected to have to flatten
# these arrays, but apparently that's not necessary.
vtkfile["Length", WriteVTK.VTKCellData()] = mapview(:Ξr, ses)
vtkfile["Chord", WriteVTK.VTKCellData()] = mapview(:chord, ses)
vtkfile["TrailingEdgeThickness", WriteVTK.VTKCellData()] = mapview(:h, ses)
vtkfile["TrailingEdgeAngle", WriteVTK.VTKCellData()] = mapview(:Psi, ses)
vtkfile["Position", WriteVTK.VTKCellData()] = hcat(mapview(:y0dot, ses)...)
vtkfile["Velocity", WriteVTK.VTKCellData()] = hcat(mapview(:y1dot, ses)...)
vtkfile["FluidVelocity", WriteVTK.VTKCellData()] = hcat(mapview(:y1dot_fluid, ses)...)
vtkfile["SpanUnitVector", WriteVTK.VTKCellData()] = hcat(mapview(:span_uvec, ses)...)
vtkfile["ChordUnitVector", WriteVTK.VTKCellData()] = hcat(mapview(:chord_uvec, ses)...)
end
function to_vtu(name, obs::AbstractAcousticObserver, t; sphere_radius=1.0, n=10)
# Get the current position of the observer.
x = obs(t)
# Create a sphere at the observer position with the specified radius.
s = Meshes.Sphere(tuple(x...), sphere_radius)
# Discretize the sphere.
mesh = Meshes.simplexify(Meshes.discretize(s, Meshes.RegularDiscretization(n)))
# This gets a fancy Unitful vector of Points that represent the verticies of the discretized sphere.
verts = Meshes.vertices(mesh)
# This gets the connectivity of the discretized sphere.
connec = Meshes.elements(Meshes.topology(mesh))
# This converts the fancy `verts` into a plain old Matrix{Float64}.
points = stack(p -> Meshes.ustrip.(Meshes.to(p)), verts)
# This creates VTK cells that we can eventually write out, converting the Meshes.jl connectivity into VTK MeshCells.
cells = [WriteVTK.MeshCell(WriteVTK.VTKCellTypes.VTK_TRIANGLE, Meshes.indices(c)) for c in connec]
# Now we can finally create a VTK file.
vtkfile = WriteVTK.vtk_grid(name, points, cells)
return vtkfile
end
r"""
to_paraview_collection(name::AbstractString, ses::NTuple{N, AbstractArray{<:AbstractCompactSourceElement}}; time_axes::NTuple{N, Int64}=ntuple(i->1, N), block_names=["block$(b)" for b in 1:N], observers=(), observer_names=nothing, observer_radii=nothing)
Construct and write out a ParaView collection data file (`.pvd`) object for a tuple of arrays of `CompactF1ASourceElement`s with name `name.pvd` (i.e., the `name` argument should not contain a file extension).
`time_axes` is a tuple of time axis indices, one for each entry of `ses`, indicating the axis over which the source time for the source elements in `ses` vary.
`block_names` is a `Vector` of strings, one for each entry in `ses`, that will be used to name each `ses` entry in the multiblock VTK file.
`observers` should be an iterable of `AbstractAcousticObserver` objects that will also be written out to the paraview file as discretized spheres.
`observer_names` can either be an iterable of Strings that will be used to name each VTK observer file, or `nothing`, in which case each observer will be named `observer<int>`.
`observer_radii` can either be an iterable of Float64 representing the radius of each observer sphere, or `nothing`, in which case a suitible radius will be calculated.
One VTK PolyData (`.vtp`) file will be written for each valid index along `time_axis` for each array in the `ses` tuple.
Returns a list of filenames written out by [WriteVTK.jl](https://github.com/jipolanco/WriteVTK.jl).
"""
function to_paraview_collection(name, ses::NTuple{N, AbstractArray{<:AbstractCompactSourceElement}}; time_axes::NTuple{N, Int64}=ntuple(i->1, N), block_names=["block$(b)" for b in 1:N], observers=(), observer_names=nothing, observer_radii=nothing) where {N}
# Check that the size of each array in the `ses` is the the same along the time axis.
# This will get the length of each array in `ses` along the time axis.
time_axis_lengths = size.(ses, time_axes)
# Now check if they're the same.
if !all(time_axis_lengths .== first(time_axis_lengths))
throw(ArgumentError("length of each array in ses tuple must be the same along the time axis. Length of each: $(time_axis_lengths)"))
end
time_axis_len = first(time_axis_lengths)
# Also check that the block names are unique.
length(unique(block_names)) == N || throw(ArgumentError("entries in block_names = $(block_names) must be unique"))
if length(observers) > 0
if observer_names === nothing
obs_names = ["observer$(i)" for i in 1:length(observers)]
else
# Check that the number of observers matches the number of observer names.
length(observer_names) == length(observers) || throw(ArgumentError("length of observer_names does not match length of observers"))
# Check that the observer names are unique.
length(unique(observer_names)) == length(observer_names) || throw(ArgumentError("entries in observer_names = $(observer_names) must be unique"))
# Also should check that the observer names aren't the same as the source element block names.
all_names = vcat(block_names, observer_names)
length(unique(all_names)) == length(all_names) || throw(ArgumentError("observer_names = $(observer_names) shares entries with block_names = $(block_names)"))
obs_names = observer_names
end
if observer_radii === nothing
# Check out this sorcery.
# (xmin, xmax) = mapreduce(x->extrema(getindex.(getproperty.(x, :y0dot), 1)), (a, b)->(min(a[1], b[1]), max(a[2], b[2])), ses)
# (ymin, ymax) = mapreduce(x->extrema(getindex.(getproperty.(x, :y0dot), 2)), (a, b)->(min(a[1], b[1]), max(a[2], b[2])), ses)
# (zmin, zmax) = mapreduce(x->extrema(getindex.(getproperty.(x, :y0dot), 3)), (a, b)->(min(a[1], b[1]), max(a[2], b[2])), ses)
# But could I do it in one line?
# That would mean I'd need to have a function that could take in a vector, then compare it to another vector.
# ((xmin, ymin, zmin), (xmax, ymax, zmax)) = mapreduce(
# (a, b)->((min(a[1][1], b[1][1]),
# min(a[1][2], b[1][2]),
# min(a[1][3], b[1][3])),
# (max(a[2][1], b[2][1]),
# max(a[2][2], b[2][2]),
# max(a[2][3], b[2][3]))), ses) do x
# xmin, xmax = extrema(getindex.(getproperty.(x, :y0dot), 1))
# ymin, ymax = extrema(getindex.(getproperty.(x, :y0dot), 2))
# zmin, zmax = extrema(getindex.(getproperty.(x, :y0dot), 3))
# return ((xmin, ymin, zmin), (xmax, ymax, zmax))
# end
# Still kind of annoying that I have to iterate over each source element array three times.
# How to avoid that?
# It would come down to not using extrema.
# I'd need a version of extrema that iterates over each vector, keeping track of the minimum and maximum of each element.
((xmin, ymin, zmin), (xmax, ymax, zmax)) = mapreduce(
(a, b)->((min(a[1][1], b[1][1]),
min(a[1][2], b[1][2]),
min(a[1][3], b[1][3])),
(max(a[2][1], b[2][1]),
max(a[2][2], b[2][2]),
max(a[2][3], b[2][3]))), ses) do X
mins = (Inf, Inf, Inf)
maxs = (-Inf, -Inf, -Inf)
for x in X
y0dot = x.y0dot
mins = (min(y0dot[1], mins[1]), min(y0dot[2], mins[2]), min(y0dot[3], mins[3]))
maxs = (max(y0dot[1], maxs[1]), max(y0dot[2], maxs[2]), max(y0dot[3], maxs[3]))
end
return mins, maxs
end
# Now find the diagonal of the boundary box.
r = sqrt((xmax - xmin)^2 + (ymax - ymin)^2 + (zmax - zmin)^2)
# Set the observer radii to be a fraction of that boundary box diagonal
obs_radii = fill(0.02*r, length(observers))
else
# Check that the length of observer_radii matches observers.
length(observer_radii) == length(observers) || throw(ArgumentError("length of observer_radii does not match length of observers"))
obs_radii = observer_radii
end
else
obs_names = nothing
obs_radii = nothing
end
outfiles = WriteVTK.paraview_collection(name) do pvd
for tidx in 1:time_axis_len
# We want to check that the source times for all elements we write out for this time index `tidx` is the same.
# So get the time for the first element in the first array, and compare later.
ses_first = first(ses)
time_axis_first = first(time_axes)
axes_first = axes(ses_first)
idx_first = [d == time_axis_first ? axes_first[d][tidx] : axes_first[d][begin] for d in 1:ndims(ses_first)]
t = source_time(ses_first[idx_first...])
# We will create a multiblock VTK file for each time step, with one block for each array in `ses`.
name_mb = format(FormatExpr("{}-{:08d}"), name, tidx)
WriteVTK.vtk_multiblock(name_mb) do vtm
for (i, (sesi, time_axis)) in enumerate(zip(ses, time_axes))
# This will give me each valid index allong the time axis for `sesi`.
time_indices = axes(sesi, time_axis)
# This will give me a `:` for each dimension of `sesi` except for the dimension corresponding to `time_axis`.
idx = [d == time_axis ? time_indices[tidx] : Colon() for d in 1:ndims(sesi)]
# Now we can grab all the source elements we want.
sesiv = @view sesi[idx...]
# Now check if all the source times are what we expect.
all(source_time.(sesiv) .β t) || thow(ArgumentError("ses[$i][$(idx)] does not have all source elements with source time $(t)"))
# Now create a VTK file for the source elements we've selected.
namei = format(FormatExpr("{}-{}-{:08d}"), name, block_names[i], tidx)
vtkfile = to_vtp(namei, sesiv)
# And add it to the multiblock file.
WriteVTK.multiblock_add_block(vtm, vtkfile)
end
for (obs, obs_name, obs_radius) in zip(observers, obs_names, obs_radii)
# Now also need to write out the observers.
namei = format(FormatExpr("{}-{}-{:08d}"), name, obs_name, tidx)
vtkfile = to_vtu(namei, obs, t; sphere_radius=obs_radius)
WriteVTK.multiblock_add_block(vtm, vtkfile)
end
# Now add the the multiblock file to the paraview collection.
pvd[t] = vtm
end
end
end
return outfiles
end
"""
to_paraview_collection(name::AbstractString, ses::AbstractArray{<:AbstractCompactSourceElement}; time_axis::Integer=1)
Construct and write out a ParaView collection data file (`.pvd`) object for an array of `AbstractCompactSourceElement`s with name `name.pvd` (i.e., the `name` argument should not contain a file extension).
`time_axis` indicates the time_axis of `ses` over which the source time for the source
elements in `ses` vary. One VTK PolyData (`.vtp`) file will be written for each
valid index along `time_axis`.
Returns a list of filenames written out by [WriteVTK.jl](https://github.com/jipolanco/WriteVTK.jl).
"""
function to_paraview_collection(name, ses::AbstractArray{<:AbstractCompactSourceElement}; time_axis=1)
outfiles = WriteVTK.paraview_collection(name) do pvd
# These are the time indices, i.e., the ones we actually want to iterate
# over.
time_indices = axes(ses, time_axis)
# idx is all the indicies, including the time one that we want to iterate
# over, and the others that we want to grab all at once. They're all colons
# right now, but the time one will be replaced with each index in `indices`
# in the `for i in indices` loop below.
idx = [d == time_axis ? first(time_indices) : Colon() for d in 1:ndims(ses)]
for (i, it) in enumerate(time_indices)
idx[time_axis] = it
namei = format(FormatExpr("{}{:08d}"), name, i)
sesi = @view ses[idx...]
vtkfile = to_vtp(namei, sesi)
# Assume that all the times in sesi are the same. They should be if the
# user specified the correct time_axis. I suppose I could check that and
# issue a warning.
t = first(sesi).Ο
pvd[t] = vtkfile
end
end
return outfiles
end
| AcousticAnalogies | https://github.com/OpenMDAO/AcousticAnalogies.jl.git |
|
[
"Apache-2.0"
] | 0.8.1 | c14d0b2e7f19374017a2b5b6dfe48c5723c791ae | code | 2044 | module AdvancedTimeTests
using AcousticAnalogies
using LinearAlgebra: norm
using NLsolve
using StaticArrays
using Test
@testset "Advanced time tests" begin
# Goal is to verify that the code can solve the equation
#
# R(t) = t - (Ο + |x(t) - y|/c0) = 0
#
# for t, where Ο and y are the source time and position, t and x are the
# observer time and position, and c0 is the (constant) speed of sound.
# Create a source element for the test.
# The only things about the source element that matters to the advanced
# time calculation is the time and position, and the speed of sound.
Ο = 2.5
y = @SVector [-4.0, 3.0, 6.0]
c0 = 2.0
dummy0 = 1.0
dummy3 = @SVector [0.0, 0.0, 0.0]
se = CompactF1ASourceElement(dummy0, c0, dummy0, dummy0, y, dummy3, dummy3, dummy3, dummy3, dummy3, Ο, dummy3)
# Define a function that takes a source element and an observer and compares
# the advanced time solution to one found by NLsolve.
function compare_to_nlsolve(se, obs)
# Create the residual equation that we'll solve. nlsolve assumes the
# residual function takes in and returns arrays.
R(t) = [t[1] - (se.Ο + norm(obs(t[1]) .- se.y0dot)/se.c0)]
# Solve the advanced time equation.
result = nlsolve(R, [1.0], autodiff=:forward)
if !converged(result)
@error "nlsolve advanced time calculation did not converge:\n$(result)"
end
t_obs = result.zero[1]
# Check that we can get the right answer.
@test adv_time(se, obs) β t_obs
return nothing
end
@testset "Stationary observer" begin
x0 = @SVector [-3.0, 2.0, 8.5]
obs = StationaryAcousticObserver(x0)
compare_to_nlsolve(se, obs)
end
@testset "Constant velocity observer" begin
t0 = 3.5
x0 = @SVector [-2.0, 3.5, 6.25]
v = @SVector [-1.5, 1.5, 3.25]
obs = ConstVelocityAcousticObserver(t0, x0, v)
compare_to_nlsolve(se, obs)
end
end
end # module
| AcousticAnalogies | https://github.com/OpenMDAO/AcousticAnalogies.jl.git |
|
[
"Apache-2.0"
] | 0.8.1 | c14d0b2e7f19374017a2b5b6dfe48c5723c791ae | code | 5596 | module ANOPP2Comparison
# const DO_PLOTS = false
using FLOWMath: FLOWMath
using Test: Test
# if DO_PLOTS
# import Plots
# end
using Printf: @sprintf
include(joinpath(@__DIR__, "anopp2_run.jl"))
using .ANOPP2Run: get_results
Test.@testset "ANOPP2 Comparison" begin
function compare_results(; stationary_observer, theta, f_interp, rpm, irpm)
t, p_thickness_interp, p_loading_interp, p_monopole_a2_interp, p_dipole_a2_interp = get_results(; stationary_observer, theta, f_interp, rpm, irpm)
# Now compare the results from the two codes.
max_aerr_thickness = maximum(abs.(p_thickness_interp - p_monopole_a2_interp))
p_thickness_ref = maximum(p_monopole_a2_interp) - minimum(p_monopole_a2_interp)
max_aerr_thickness_scaled = max_aerr_thickness / p_thickness_ref
tol = 0.01
Test.@test max_aerr_thickness_scaled < tol
if ! (max_aerr_thickness_scaled < tol)
println("stationary_observer = $(stationary_observer), theta = $(theta*180.0/pi) deg, rpm = $(rpm), thickness aerr_scaled = $(max_aerr_thickness_scaled)")
end
p_loading_ref = maximum(p_dipole_a2_interp) - minimum(p_dipole_a2_interp)
max_aerr_loading = maximum(abs.(p_loading_interp - p_dipole_a2_interp))
max_aerr_loading_scaled = max_aerr_loading / p_loading_ref
tol = 0.01
if theta β 0.0
tol = 0.01
else
if rpm β 200.0
# The 200.0 RPM case is strange. The thrust and torque
# are actually negative, and the loading noise looks
# especially different from what ANOPP2 predicts.
tol = 0.045
else
tol = 0.01
end
end
Test.@test max_aerr_loading_scaled < tol
if ! (max_aerr_loading_scaled < tol)
println("stationary_observer = $(stationary_observer), theta = $(theta*180.0/pi) deg, rpm = $(rpm), loading aerr_scaled = $(max_aerr_loading_scaled)")
end
# if DO_PLOTS
# # Create a plot.
# p_apth = Plots.plot(legend=:topleft, foreground_color_legend=nothing, background_color_legend=nothing)
# # Plot original data.
# Plots.plot!(p_apth, obs_time, p_thickness, label="thickness", seriescolor=:blue, markershape=:x)
# Plots.plot!(p_apth, obs_time, p_loading, label="loading", seriescolor=:red, markershape=:x)
# Plots.plot!(p_apth, t_a2, p_monopole_a2, label="ANOPP2 monopole", seriescolor=:blue, markershape=:+, markerstrokecolor=:blue)
# Plots.plot!(p_apth, t_a2, p_dipole_a2, label="ANOPP2 dipole", seriescolor=:red, markershape=:+, markerstrokecolor=:red)
# # Plot interpolated data.
# Plots.plot!(p_apth, t, p_thickness_interp, label="thickness, interp", seriescolor=:blue, markershape=:star4, markerstrokecolor=:blue, markercolor=nothing)
# Plots.plot!(p_apth, t, p_loading_interp, label="loading, interp", seriescolor=:red, markershape=:star4, markerstrokecolor=:red, markercolor=nothing)
# Plots.plot!(p_apth, t, p_monopole_a2_interp, label="ANOPP2 monopole, interp", seriescolor=:blue, markershape=:star6, markerstrokecolor=:blue, markercolor=nothing)
# Plots.plot!(p_apth, t, p_dipole_a2_interp, label="ANOPP2 dipole, interp", seriescolor=:red, markershape=:star6, markerstrokecolor=:red, markercolor=nothing)
# # Make the plot look good.
# if theta β 0.0
# Plots.ylims!(p_apth, apth_ylims_xrotor[irpm])
# end
# Plots.xlims!(p_apth, (0.0, 1.0))
# Plots.xlabel!(p_apth, "t/t_blade_pass")
# Plots.ylabel!(p_apth, "acoustic pressure, Pa")
# # Save the plot.
# theta_int = Int(round(theta*180.0/pi))
# if stationary_observer
# if f_interp === FLOWMath.akima
# Plots.savefig(p_apth, "p_apth_$(@sprintf "%04d" Int(round(rpm[irpm])))rpm_theta$(theta_int)_akima.png")
# elseif f_interp === FLOWMath.linear
# Plots.savefig(p_apth, "p_apth_$(@sprintf "%04d" Int(round(rpm[irpm])))rpm_theta$(theta_int)_linear.png")
# else
# Plots.savefig(p_apth, "p_apth_$(@sprintf "%04d" Int(round(rpm[irpm])))rpm_theta$(theta_int)_other.png")
# end
# else
# if f_interp === FLOWMath.akima
# Plots.savefig(p_apth, "p_apth_const_vel_$(@sprintf "%04d" Int(round(rpm[irpm])))rpm_theta$(theta_int)_akima.png")
# elseif f_interp === FLOWMath.linear
# Plots.savefig(p_apth, "p_apth_const_vel_$(@sprintf "%04d" Int(round(rpm[irpm])))rpm_theta$(theta_int)_linear.png")
# else
# Plots.savefig(p_apth, "p_apth_const_vel_$(@sprintf "%04d" Int(round(rpm[irpm])))rpm_theta$(theta_int)_other.png")
# end
# end
# end
end
# Actually run the tests.
for f_interp in [FLOWMath.akima, FLOWMath.linear]
for theta in [0.0, -45.0*pi/180.0]
for stationary_observer in [true, false]
for (i, rpm) in enumerate(200.0:200.0:2200.0) # rev/min
# get_results(stationary_observer=stationary_observer, theta=theta, f_interp=f_interp, rpm=rpm, irpm=i)
compare_results(; stationary_observer=stationary_observer, theta=theta, f_interp=f_interp, rpm=rpm, irpm=i)
end
end
end
end
end
end # module
| AcousticAnalogies | https://github.com/OpenMDAO/AcousticAnalogies.jl.git |
|
[
"Apache-2.0"
] | 0.8.1 | c14d0b2e7f19374017a2b5b6dfe48c5723c791ae | code | 5541 | module ANOPP2Run
using AcousticMetrics: AcousticMetrics
import AcousticAnalogies, DelimitedFiles, FLOWMath
using StaticArrays: @SVector, SVector
using KinematicCoordinateTransformations: KinematicCoordinateTransformations, compose
using Printf: @sprintf
using LinearAlgebra: Γ
using FileIO: load
include(joinpath(@__DIR__, "gen_test_data", "gen_ccblade_data", "constants.jl"))
using .CCBladeTestCaseConstants
ccbc = CCBladeTestCaseConstants
# This is a function that will do the AcousticAnalogies.jl noise calculation with the new
# observer stuff.
function cf1a_noise(num_blades, v, omega, radii, dradii, cs_area, fn, fc, stationary_observer, theta, f_interp)
t0 = 0.0
rot_axis = @SVector [0.0, 0.0, 1.0]
blade_axis = @SVector [0.0, 1.0, 0.0]
x0 = SVector{3}([cos(theta), 0.0, sin(theta)].*100.0.*12.0.*0.0254) # 100 ft in meters
y0_hub = @SVector [0.0, 0.0, 0.0] # m
v0_hub = SVector{3}(v.*rot_axis)
num_src_times = 256
num_obs_times = 2*num_src_times
# Blade Passing Period.
bpp = 2*pi/omega/num_blades
src_time_range = 5.0*bpp
obs_time_range = 4.0*bpp
if stationary_observer
obs = AcousticAnalogies.StationaryAcousticObserver(x0)
else
obs = AcousticAnalogies.ConstVelocityAcousticObserver(t0, x0, v0_hub)
end
rot_trans = KinematicCoordinateTransformations.SteadyRotXTransformation(t0, omega, 0.0)
global_trans = KinematicCoordinateTransformations.ConstantLinearMap(hcat(rot_axis, blade_axis, rot_axisΓblade_axis))
const_vel_trans = KinematicCoordinateTransformations.ConstantVelocityTransformation(t0, y0_hub, v0_hub)
# This is just an array of the angular offsets of each blade.
ΞΈs = 2*pi/num_blades.*(0:(num_blades-1))
dt = src_time_range/(num_src_times - 1)
src_times = t0 .+ (0:num_src_times-1).*dt
ΞΈs = reshape(ΞΈs, 1, 1, :)
radii = reshape(radii, 1, :, 1)
dradii = reshape(dradii, 1, :, 1)
cs_area = reshape(cs_area, 1, :, 1)
fn = reshape(fn, 1, :, 1)
fc = reshape(fc, 1, :, 1)
src_times = reshape(src_times, :, 1, 1) # This isn't really necessary.
# Get all the transformations!
trans = compose.(src_times, Ref(const_vel_trans), compose.(src_times, Ref(global_trans), Ref(rot_trans)))
# Transform the source elements.
ses = AcousticAnalogies.CompactF1ASourceElement.(ccbc.rho, ccbc.c0, radii, ΞΈs, dradii, cs_area, -fn, 0.0, fc, src_times) .|> trans
# Do the acoustics.
apth = AcousticAnalogies.noise.(ses, Ref(obs))
# Combine all the acoustic pressure time histories into one.
apth_total = AcousticAnalogies.combine(apth, obs_time_range, num_obs_times, 1; f_interp=f_interp)
return AcousticMetrics.time(apth_total), AcousticAnalogies.pressure_monopole(apth_total), AcousticAnalogies.pressure_dipole(apth_total)
end
function get_results(; stationary_observer, theta, f_interp, rpm, irpm)
apth_ylims_xrotor = [
(-0.0001, 0.0001), (-0.0005, 0.0005), (-0.0020, 0.0020),
(-0.005, 0.005), (-0.010, 0.010), (-0.020, 0.020), (-0.05, 0.05),
(-0.10, 0.10), (-0.20, 0.20), (-0.5, 0.5), (-1.0, 1.0)]
dradii = AcousticAnalogies.get_dradii(ccbc.radii, ccbc.Rhub, ccbc.Rtip)
cs_area = ccbc.area_over_chord_squared .* ccbc.chord.^2
omega = rpm*(2*pi/60.0)
# Get the normal and circumferential loading from the CCBlade output.
fname = joinpath(@__DIR__, "gen_test_data", "gen_ccblade_data", "ccblade_omega$(@sprintf "%02d" irpm)-outputs.jld2")
data_d = load(fname)
fn = data_d["Np"]
fc = data_d["Tp"]
# Blade passing period.
bpp = 2*pi/omega/ccbc.num_blades
# Calculate the noise with AcousticAnalogies.jl.
obs_time, p_thickness, p_loading = cf1a_noise(ccbc.num_blades, ccbc.v, omega, ccbc.radii, dradii, cs_area, fn, fc, stationary_observer, theta, f_interp)
t0 = obs_time[1]
# Nondimensionalize the observer time with the blade passing period.
obs_time = (obs_time .- t0)./bpp
# Read the ANOPP2 data.
if theta β 0.0
if stationary_observer
fname = joinpath(@__DIR__, "gen_test_data", "anopp2_omega$(@sprintf "%02d" irpm).csv")
data = DelimitedFiles.readdlm(fname, ',')
else
fname = joinpath(@__DIR__, "gen_test_data", "anopp2_const_vel_omega$(@sprintf "%02d" irpm).csv")
data = DelimitedFiles.readdlm(fname, ',')
end
else
theta_int = Int(round(theta*180.0/pi))
if stationary_observer
fname = joinpath(@__DIR__, "gen_test_data", "anopp2_omega$(@sprintf "%02d" irpm)_theta$(theta_int).csv")
data = DelimitedFiles.readdlm(fname, ',')
else
fname = joinpath(@__DIR__, "gen_test_data", "anopp2_const_vel_omega$(@sprintf "%02d" irpm)_theta$(theta_int).csv")
data = DelimitedFiles.readdlm(fname, ',')
end
end
t_a2 = data[:, 1]
p_monopole_a2 = data[:, 2]
p_dipole_a2 = data[:, 3]
# Nondimensionalize the observer time with the blade passing period.
t_a2 = (t_a2 .- t0)./bpp
# Let's interpolate both the AcousticAnalogies.jl and ANOPP2 data onto a common time
# domain.
t = range(0.0, 1.0, length=128)
p_thickness_interp = FLOWMath.akima(obs_time, p_thickness, t)
p_loading_interp = FLOWMath.akima(obs_time, p_loading, t)
p_monopole_a2_interp = FLOWMath.akima(t_a2, p_monopole_a2, t)
p_dipole_a2_interp = FLOWMath.akima(t_a2, p_dipole_a2, t)
return t, p_thickness_interp, p_loading_interp, p_monopole_a2_interp, p_dipole_a2_interp
end
end # module
| AcousticAnalogies | https://github.com/OpenMDAO/AcousticAnalogies.jl.git |
|
[
"Apache-2.0"
] | 0.8.1 | c14d0b2e7f19374017a2b5b6dfe48c5723c791ae | code | 21795 | module BoundaryLayerTests
using AcousticAnalogies: AcousticAnalogies
using AcousticMetrics: AcousticMetrics
using DelimitedFiles: DelimitedFiles
using FLOWMath: linear
using Test
@testset "boundary layer thickness" begin
@testset "zero angle of attack" begin
@testset "untripped" begin
# Get the digitized data from the BPM report plot.
fname = joinpath(@__DIR__, "bpm_data", "brooks_airfoil_self_noise_and_prediction_1989", "19890016302-figure06-bl_thickness-untripped.csv")
bpm_untripped = DelimitedFiles.readdlm(fname, ',')
Re_c_1e6 = bpm_untripped[:, 1]
delta0_c = bpm_untripped[:, 2]
# Get the AcousticAnalogies.jl implementation.
Re_c_1e6_jl = range(minimum(Re_c_1e6), maximum(Re_c_1e6); length=50)
delta0_c_jl = AcousticAnalogies.bl_thickness_0.(Ref(AcousticAnalogies.UntrippedN0012BoundaryLayer()), Re_c_1e6_jl.*1e6)
# Interpolate the BPM report data onto the uniform Re spacing.
delta0_c_interp = linear(Re_c_1e6, delta0_c, Re_c_1e6_jl)
# Find the scaled error.
vmin, vmax = extrema(delta0_c)
err = abs.(delta0_c_jl .- delta0_c_interp)/(vmax - vmin)
@test maximum(err) < 0.041
end
@testset "tripped" begin
# Get the digitized data from the BPM report plot.
fname = joinpath(@__DIR__, "bpm_data", "brooks_airfoil_self_noise_and_prediction_1989", "19890016302-figure06-bl_thickness-tripped.csv")
bpm_tripped = DelimitedFiles.readdlm(fname, ',')
Re_c_1e6 = bpm_tripped[:, 1]
delta0_c = bpm_tripped[:, 2]
# Get the AcousticAnalogies.jl implementation.
Re_c_1e6_jl = range(minimum(Re_c_1e6), maximum(Re_c_1e6); length=50)
delta0_c_jl = AcousticAnalogies.bl_thickness_0.(Ref(AcousticAnalogies.TrippedN0012BoundaryLayer()), Re_c_1e6_jl.*1e6)
# Interpolate the BPM report data onto the uniform Re spacing.
delta0_c_interp = linear(Re_c_1e6, delta0_c, Re_c_1e6_jl)
# Find the scaled error.
vmin, vmax = extrema(delta0_c)
err = abs.(delta0_c_jl .- delta0_c_interp)/(vmax - vmin)
@test maximum(err) < 0.0086
end
end
@testset "non-zero angle of attack, tripped" begin
@testset "pressure side" begin
# Get the digitized data from the BPM report plot.
fname = joinpath(@__DIR__, "bpm_data", "brooks_airfoil_self_noise_and_prediction_1989", "19890016302-figure07-bl_thickness-pressure_side.csv")
bpm_pressure_side = DelimitedFiles.readdlm(fname, ',')
alpha_deg = bpm_pressure_side[:, 1]
delta_bpm = bpm_pressure_side[:, 2]
# Get the AcousticAnalogies.jl implementation.
alpha_deg_jl = range(minimum(alpha_deg), maximum(alpha_deg); length=50)
delta_jl = AcousticAnalogies._bl_thickness_p.(Ref(AcousticAnalogies.TrippedN0012BoundaryLayer()), alpha_deg_jl.*pi/180)
# Interpolate the BPM report data onto the uniform alpha spacing.
delta_bpm_interp = linear(alpha_deg, delta_bpm, alpha_deg_jl)
# Find the scaled error.
vmin, vmax = extrema(delta_bpm)
err = abs.(delta_jl .- delta_bpm_interp)./(vmax - vmin)
@test maximum(err) < 0.032
end
@testset "suction side" begin
# Get the digitized data from the BPM report plot.
fname = joinpath(@__DIR__, "bpm_data", "brooks_airfoil_self_noise_and_prediction_1989", "19890016302-figure07-bl_thickness-suction_side.csv")
bpm_pressure_side = DelimitedFiles.readdlm(fname, ',')
alpha_deg = bpm_pressure_side[:, 1]
delta_bpm = bpm_pressure_side[:, 2]
# Get the AcousticAnalogies.jl implementation.
alpha_deg_jl = range(minimum(alpha_deg), maximum(alpha_deg); length=50)
delta_jl = AcousticAnalogies._bl_thickness_s.(Ref(AcousticAnalogies.TrippedN0012BoundaryLayer()), alpha_deg_jl.*pi/180)
# Interpolate the BPM report data onto the uniform alpha spacing.
delta_bpm_interp = linear(alpha_deg, delta_bpm, alpha_deg_jl)
# Find the scaled error.
vmin, vmax = extrema(delta_bpm)
err = abs.(delta_jl .- delta_bpm_interp)./(vmax - vmin)
@test maximum(err) < 0.023
end
end
@testset "non-zero angle of attack, untripped" begin
@testset "pressure side" begin
# Non-zero boundary layer thickness for the pressure side is the same for tripped and untripped, so getting the data for the tripped case.
# Get the digitized data from the BPM report plot.
fname = joinpath(@__DIR__, "bpm_data", "brooks_airfoil_self_noise_and_prediction_1989", "19890016302-figure07-bl_thickness-pressure_side.csv")
bpm_pressure_side = DelimitedFiles.readdlm(fname, ',')
alpha_deg = bpm_pressure_side[:, 1]
delta_bpm = bpm_pressure_side[:, 2]
# Get the AcousticAnalogies.jl implementation.
alpha_deg_jl = range(minimum(alpha_deg), maximum(alpha_deg); length=50)
delta_jl = AcousticAnalogies._bl_thickness_p.(Ref(AcousticAnalogies.UntrippedN0012BoundaryLayer()), alpha_deg_jl.*pi/180)
# Interpolate the BPM report data onto the uniform alpha spacing.
delta_bpm_interp = linear(alpha_deg, delta_bpm, alpha_deg_jl)
# Find the scaled error.
vmin, vmax = extrema(delta_bpm)
err = abs.(delta_jl .- delta_bpm_interp)./(vmax - vmin)
@test maximum(err) < 0.032
end
@testset "suction side" begin
# Get the digitized data from the BPM report plot.
fname = joinpath(@__DIR__, "bpm_data", "brooks_airfoil_self_noise_and_prediction_1989", "19890016302-figure08-bl_thickness-suction_side.csv")
bpm_pressure_side = DelimitedFiles.readdlm(fname, ',')
alpha_deg = bpm_pressure_side[:, 1]
delta_bpm = bpm_pressure_side[:, 2]
# Get the AcousticAnalogies.jl implementation.
alpha_deg_jl = range(minimum(alpha_deg), maximum(alpha_deg); length=50)
delta_jl = AcousticAnalogies._bl_thickness_s.(Ref(AcousticAnalogies.UntrippedN0012BoundaryLayer()), alpha_deg_jl.*pi/180)
# Interpolate the BPM report data onto the uniform alpha spacing.
delta_bpm_interp = linear(alpha_deg, delta_bpm, alpha_deg_jl)
# Find the scaled error.
vmin, vmax = extrema(delta_bpm)
err = abs.(delta_jl .- delta_bpm_interp)./(vmax - vmin)
@test maximum(err) < 0.028
end
end
@testset "positive/negative angle of attack" begin
for bl in [AcousticAnalogies.TrippedN0012BoundaryLayer(), AcousticAnalogies.UntrippedN0012BoundaryLayer()]
for Re_c in (range(0.04, 3.0; length=30)) .* 10^6
for alphastar_deg in 0:30
alphastar = alphastar_deg*pi/180
# For a positive angle of attack, the pressure side should be the bottom side.
delta_p = AcousticAnalogies.bl_thickness_p(bl, Re_c, alphastar)
delta_bot = AcousticAnalogies.bl_thickness_bot(bl, Re_c, alphastar)
@test delta_p β delta_bot
# For a positive angle of attack, the suction side should be the top side.
delta_s = AcousticAnalogies.bl_thickness_s(bl, Re_c, alphastar)
delta_top = AcousticAnalogies.bl_thickness_top(bl, Re_c, alphastar)
@test delta_s β delta_top
# But if we switch the sign on alpha, the top and bottom switch too.
delta_bot_neg = AcousticAnalogies.bl_thickness_bot(bl, Re_c, -alphastar)
@test delta_bot_neg β delta_s
delta_top_neg = AcousticAnalogies.bl_thickness_top(bl, Re_c, -alphastar)
@test delta_top_neg β delta_p
# But the value of the pressure and suction sides should never change.
delta_p_neg = AcousticAnalogies.bl_thickness_p(bl, Re_c, -alphastar)
@test delta_p_neg β delta_p
delta_s_neg = AcousticAnalogies.bl_thickness_s(bl, Re_c, -alphastar)
@test delta_s_neg β delta_s
end
end
end
end
@testset "ITrip1N0012BoundaryLayer" begin
bl = AcousticAnalogies.ITrip1N0012BoundaryLayer()
bl_untripped = AcousticAnalogies.UntrippedN0012BoundaryLayer()
bl_tripped = AcousticAnalogies.TrippedN0012BoundaryLayer()
for Re_c in (range(0.04, 3.0; length=30)) .* 10^6
for alphastar in (-30:30) .* (pi/180)
# Should use the untripped pressure-side and suction-side boundary layer thickness.
@test AcousticAnalogies.bl_thickness_p(bl, Re_c, alphastar) β AcousticAnalogies.bl_thickness_p(bl_untripped, Re_c, alphastar)
@test AcousticAnalogies.bl_thickness_s(bl, Re_c, alphastar) β AcousticAnalogies.bl_thickness_s(bl_untripped, Re_c, alphastar)
# Should use the tripped displacement thickness.
@test AcousticAnalogies.disp_thickness_p(bl, Re_c, alphastar) β AcousticAnalogies.disp_thickness_p(bl_tripped, Re_c, alphastar)
@test AcousticAnalogies.disp_thickness_s(bl, Re_c, alphastar) β AcousticAnalogies.disp_thickness_s(bl_tripped, Re_c, alphastar)
end
end
end
@testset "ITrip2N0012BoundaryLayer" begin
bl = AcousticAnalogies.ITrip2N0012BoundaryLayer()
bl_untripped = AcousticAnalogies.UntrippedN0012BoundaryLayer()
bl_tripped = AcousticAnalogies.TrippedN0012BoundaryLayer()
for Re_c in (range(0.04, 3.0; length=30)) .* 10^6
for alphastar in (-30:30) .* (pi/180)
# boundary layer thickness should be untripped multiplied by 0.6.
@test AcousticAnalogies.bl_thickness_p(bl, Re_c, alphastar) β 0.6*AcousticAnalogies.bl_thickness_p(bl_untripped, Re_c, alphastar)
@test AcousticAnalogies.bl_thickness_s(bl, Re_c, alphastar) β 0.6*AcousticAnalogies.bl_thickness_s(bl_untripped, Re_c, alphastar)
# The pressure-side displacement thickness should be tripped multiplied by 0.6.
@test AcousticAnalogies.disp_thickness_p(bl, Re_c, alphastar) β 0.6*AcousticAnalogies.disp_thickness_p(bl_tripped, Re_c, alphastar)
# The suction-side displacement thickness should be the tripped zero-alpha displacement thickness multipled by 0.6 multiplied by the untripped suction-side to zero-alpha displacement thickness ratio.
@test AcousticAnalogies.disp_thickness_s(bl, Re_c, alphastar) β AcousticAnalogies.disp_thickness_s(bl_tripped, Re_c, 0) * 0.6 * AcousticAnalogies.disp_thickness_s(bl_untripped, Re_c, alphastar) / AcousticAnalogies.disp_thickness_s(bl_untripped, Re_c, 0)
end
end
end
@testset "ITrip3N0012BoundaryLayer" begin
bl = AcousticAnalogies.ITrip3N0012BoundaryLayer()
bl_untripped = AcousticAnalogies.UntrippedN0012BoundaryLayer()
bl_tripped = AcousticAnalogies.TrippedN0012BoundaryLayer()
for Re_c in (range(0.04, 3.0; length=30)) .* 10^6
for alphastar in (-30:30) .* (pi/180)
# boundary layer thickness should be untripped.
@test AcousticAnalogies.bl_thickness_p(bl, Re_c, alphastar) β AcousticAnalogies.bl_thickness_p(bl_untripped, Re_c, alphastar)
@test AcousticAnalogies.bl_thickness_s(bl, Re_c, alphastar) β AcousticAnalogies.bl_thickness_s(bl_untripped, Re_c, alphastar)
# The pressure-side displacement thickness should be untripped multiplied by 1.48.
@test AcousticAnalogies.disp_thickness_p(bl, Re_c, alphastar) β 1.48*AcousticAnalogies.disp_thickness_p(bl_untripped, Re_c, alphastar)
# The suction-side displacement thickness should be the untripped.
@test AcousticAnalogies.disp_thickness_s(bl, Re_c, alphastar) β AcousticAnalogies.disp_thickness_s(bl_untripped, Re_c, alphastar)
end
end
end
end
@testset "displacement thickness" begin
@testset "zero angle of attack" begin
@testset "tripped" begin
# Get the digitized data from the BPM report plot.
fname = joinpath(@__DIR__, "bpm_data", "brooks_airfoil_self_noise_and_prediction_1989", "19890016302-figure06-disp_thickness-tripped.csv")
bpm_tripped = DelimitedFiles.readdlm(fname, ',')
Re_c_1e6 = bpm_tripped[:, 1]
deltastar0_c = bpm_tripped[:, 2]
# Get the AcousticAnalogies.jl implementation.
Re_c_1e6_jl = range(minimum(Re_c_1e6), maximum(Re_c_1e6); length=50)
deltastar0_c_jl = AcousticAnalogies.disp_thickness_0.(Ref(AcousticAnalogies.TrippedN0012BoundaryLayer()), Re_c_1e6_jl.*1e6)
# Interpolate the BPM report data onto the uniform Re spacing.
deltastar0_c_interp = linear(Re_c_1e6, deltastar0_c, Re_c_1e6_jl)
# Find the scaled error.
vmin, vmax = extrema(deltastar0_c)
err = abs.(deltastar0_c_jl .- deltastar0_c_interp)/(vmax - vmin)
@test maximum(err) < 0.05
end
@testset "untripped" begin
# Get the digitized data from the BPM report plot.
fname = joinpath(@__DIR__, "bpm_data", "brooks_airfoil_self_noise_and_prediction_1989", "19890016302-figure06-disp_thickness-untripped.csv")
bpm_untripped = DelimitedFiles.readdlm(fname, ',')
Re_c_1e6 = bpm_untripped[:, 1]
deltastar0_c = bpm_untripped[:, 2]
# Get the AcousticAnalogies.jl implementation.
Re_c_1e6_jl = range(minimum(Re_c_1e6), maximum(Re_c_1e6); length=50)
deltastar0_c_jl = AcousticAnalogies.disp_thickness_0.(Ref(AcousticAnalogies.UntrippedN0012BoundaryLayer()), Re_c_1e6_jl.*1e6)
# Interpolate the BPM report data onto the uniform Re spacing.
deltastar0_c_interp = linear(Re_c_1e6, deltastar0_c, Re_c_1e6_jl)
# Find the scaled error.
vmin, vmax = extrema(deltastar0_c)
err = abs.(deltastar0_c_jl .- deltastar0_c_interp)/(vmax - vmin)
@test maximum(err) < 0.02
end
end
@testset "non-zero angle of attack, tripped" begin
@testset "pressure side" begin
# Get the digitized data from the BPM report plot.
fname = joinpath(@__DIR__, "bpm_data", "brooks_airfoil_self_noise_and_prediction_1989", "19890016302-figure07-pressure_side.csv")
bpm_pressure_side = DelimitedFiles.readdlm(fname, ',')
alpha_deg = bpm_pressure_side[:, 1]
deltastar_bpm = bpm_pressure_side[:, 2]
# Get the AcousticAnalogies.jl implementation.
alpha_deg_jl = range(minimum(alpha_deg), maximum(alpha_deg); length=50)
deltastar_jl = AcousticAnalogies._disp_thickness_p.(Ref(AcousticAnalogies.TrippedN0012BoundaryLayer()), alpha_deg_jl.*pi/180)
# Interpolate the BPM report data onto the uniform alpha spacing.
deltastar_bpm_interp = linear(alpha_deg, deltastar_bpm, alpha_deg_jl)
# Find the scaled error.
vmin, vmax = extrema(deltastar_bpm)
err = abs.(deltastar_jl .- deltastar_bpm_interp)./(vmax - vmin)
@test maximum(err) < 0.06
end
@testset "suction side" begin
# Get the digitized data from the BPM report plot.
fname = joinpath(@__DIR__, "bpm_data", "brooks_airfoil_self_noise_and_prediction_1989", "19890016302-figure07-suction_side.csv")
bpm_suction_side = DelimitedFiles.readdlm(fname, ',')
alpha_deg = bpm_suction_side[:, 1]
deltastar_bpm = bpm_suction_side[:, 2]
# Get the AcousticAnalogies.jl implementation.
alpha_deg_jl = range(minimum(alpha_deg), maximum(alpha_deg); length=50)
deltastar_jl = AcousticAnalogies._disp_thickness_s.(Ref(AcousticAnalogies.TrippedN0012BoundaryLayer()), alpha_deg_jl.*pi/180)
# Interpolate the BPM report data onto the uniform alpha spacing.
deltastar_bpm_interp = linear(alpha_deg, deltastar_bpm, alpha_deg_jl)
# Find the scaled error.
vmin, vmax = extrema(deltastar_bpm)
err = abs.(deltastar_jl .- deltastar_bpm_interp)./(vmax - vmin)
@test maximum(err) < 0.04
end
end
@testset "non-zero angle of attack, untripped" begin
@testset "boundary layer thickness, pressure side" begin
# Get the digitized data from the BPM report plot.
fname = joinpath(@__DIR__, "bpm_data", "brooks_airfoil_self_noise_and_prediction_1989", "19890016302-figure08-bl_thickness-pressure_side.csv")
bpm_pressure_side = DelimitedFiles.readdlm(fname, ',')
alpha_deg = bpm_pressure_side[:, 1]
delta_bpm = bpm_pressure_side[:, 2]
# Get the AcousticAnalogies.jl implementation.
alpha_deg_jl = range(minimum(alpha_deg), maximum(alpha_deg); length=50)
delta_jl = AcousticAnalogies._bl_thickness_p.(Ref(AcousticAnalogies.UntrippedN0012BoundaryLayer()), alpha_deg_jl.*pi/180)
# Interpolate the BPM report onto the uniform alpha spacing.
delta_bpm_interp = linear(alpha_deg, delta_bpm, alpha_deg_jl)
# Find the scaled error.
vmin, vmax = extrema(delta_bpm)
err = abs.(delta_jl .- delta_bpm_interp)./(vmax - vmin)
@test maximum(err) < 0.037
end
@testset "displacement thickness, pressure side" begin
# Get the digitized data from the BPM report plot.
fname = joinpath(@__DIR__, "bpm_data", "brooks_airfoil_self_noise_and_prediction_1989", "19890016302-figure08-pressure_side.csv")
bpm_pressure_side = DelimitedFiles.readdlm(fname, ',')
alpha_deg = bpm_pressure_side[:, 1]
deltastar_bpm = bpm_pressure_side[:, 2]
# Get the AcousticAnalogies.jl implementation.
alpha_deg_jl = range(minimum(alpha_deg), maximum(alpha_deg); length=50)
deltastar_jl = AcousticAnalogies._disp_thickness_p.(Ref(AcousticAnalogies.UntrippedN0012BoundaryLayer()), alpha_deg_jl.*pi/180)
# Interpolate the BPM report onto the uniform alpha spacing.
deltastar_bpm_interp = linear(alpha_deg, deltastar_bpm, alpha_deg_jl)
# Find the scaled error.
vmin, vmax = extrema(deltastar_bpm)
err = abs.(deltastar_jl .- deltastar_bpm_interp)./(vmax - vmin)
# This is dumb. Maybe I have a bug?
@test maximum(err) < 0.11
end
@testset "displacement thinckness, suction side" begin
fname = joinpath(@__DIR__, "bpm_data", "brooks_airfoil_self_noise_and_prediction_1989", "19890016302-figure08-suction_side.csv")
bpm_suction_side = DelimitedFiles.readdlm(fname, ',')
alpha_deg = bpm_suction_side[:, 1]
deltastar_bpm = bpm_suction_side[:, 2]
alpha_deg_jl = range(minimum(alpha_deg), maximum(alpha_deg); length=50)
deltastar_jl = AcousticAnalogies._disp_thickness_s.(Ref(AcousticAnalogies.UntrippedN0012BoundaryLayer()), alpha_deg_jl.*pi/180)
deltastar_bpm_interp = linear(alpha_deg, deltastar_bpm, alpha_deg_jl)
vmin, vmax = extrema(deltastar_bpm)
err = abs.(deltastar_jl .- deltastar_bpm_interp)./(vmax - vmin)
# This is dumb. Maybe I have a bug?
@test maximum(err) < 0.081
end
end
@testset "positive/negative angle of attack" begin
for bl in [AcousticAnalogies.TrippedN0012BoundaryLayer(), AcousticAnalogies.UntrippedN0012BoundaryLayer()]
for Re_c in (range(0.04, 3.0; length=30)) .* 10^6
for alphastar_deg in 0:30
alphastar = alphastar_deg*pi/180
# For a positive angle of attack, the pressure side should be the bottom side.
deltastar_p = AcousticAnalogies.disp_thickness_p(bl, Re_c, alphastar)
deltastar_bot = AcousticAnalogies.disp_thickness_bot(bl, Re_c, alphastar)
@test deltastar_p β deltastar_bot
# For a positive angle of attack, the suction side should be the top side.
deltastar_s = AcousticAnalogies.disp_thickness_s(bl, Re_c, alphastar)
deltastar_top = AcousticAnalogies.disp_thickness_top(bl, Re_c, alphastar)
@test deltastar_s β deltastar_top
# But if we switch the sign on alpha, the top and bottom switch too.
deltastar_bot_neg = AcousticAnalogies.disp_thickness_bot(bl, Re_c, -alphastar)
@test deltastar_bot_neg β deltastar_s
deltastar_top_neg = AcousticAnalogies.disp_thickness_top(bl, Re_c, -alphastar)
@test deltastar_top_neg β deltastar_p
# But the value of the pressure and suction sides should never change.
deltastar_p_neg = AcousticAnalogies.disp_thickness_p(bl, Re_c, -alphastar)
@test deltastar_p_neg β deltastar_p
deltastar_s_neg = AcousticAnalogies.disp_thickness_s(bl, Re_c, -alphastar)
@test deltastar_s_neg β deltastar_s
end
end
end
end
end
end # module
| AcousticAnalogies | https://github.com/OpenMDAO/AcousticAnalogies.jl.git |
|
[
"Apache-2.0"
] | 0.8.1 | c14d0b2e7f19374017a2b5b6dfe48c5723c791ae | code | 698 | module BPMITRTests
using SafeTestsets: @safetestset
using Test: @testset
@testset "BPM.jl comparisons" begin
@safetestset "figure 22b" begin
include("itr_figure22b_bpmjl.jl")
end
@safetestset "figure 23c" begin
include("itr_figure23c_bpmjl.jl")
end
@safetestset "figure 24b" begin
include("itr_figure24b_bpmjl.jl")
end
end
@testset "PAS/ROTONET/BARC comparisons" begin
@safetestset "figure 22b" begin
include("itr_figure22b_barc.jl")
end
@safetestset "figure 23c" begin
include("itr_figure23c_barc.jl")
end
@safetestset "figure 24b" begin
include("itr_figure24b_barc.jl")
end
end
end # module
| AcousticAnalogies | https://github.com/OpenMDAO/AcousticAnalogies.jl.git |
|
[
"Apache-2.0"
] | 0.8.1 | c14d0b2e7f19374017a2b5b6dfe48c5723c791ae | code | 25867 | module BPMShapeFunctionTests
using AcousticAnalogies: AcousticAnalogies
using AcousticMetrics: AcousticMetrics
using DelimitedFiles: DelimitedFiles
using FLOWMath: linear
using Test
@testset "shape functions" begin
@testset "TBL-TE" begin
@testset "St_1" begin
@test isapprox(AcousticAnalogies.St_1(0.093), 0.081; atol=0.0022)
@test isapprox(AcousticAnalogies.St_1(0.116), 0.071; atol=0.002)
@test isapprox(AcousticAnalogies.St_1(0.163), 0.059; atol=0.0004)
@test isapprox(AcousticAnalogies.St_1(0.209), 0.051; atol=0.0002)
end
@testset "K_1" begin
fname = joinpath(@__DIR__, "bpm_data", "brooks_airfoil_self_noise_and_prediction_1989", "19890016302-figure77.csv")
bpm = DelimitedFiles.readdlm(fname, ',')
Re_c_bpm = bpm[:, 1]
K_1_bpm = bpm[:, 2]
Re_c_jl = range(minimum(Re_c_bpm), maximum(Re_c_bpm); length=50)
K_1_jl = AcousticAnalogies.K_1.(Re_c_jl)
K_1_interp = linear(Re_c_bpm, K_1_bpm, Re_c_jl)
vmin, vmax = extrema(K_1_bpm)
err = abs.(K_1_jl .- K_1_interp)./(vmax - vmin)
@test maximum(err) < 0.012
end
@testset "A" begin
fname = joinpath(@__DIR__, "bpm_data", "brooks_airfoil_self_noise_and_prediction_1989", "19890016302-figure78-A_min.csv")
bpm = DelimitedFiles.readdlm(fname, ',')
St_St_peak_bpm = bpm[:, 1]
A = bpm[:, 2]
St_St_peak_jl = range(minimum(St_St_peak_bpm), maximum(St_St_peak_bpm); length=50)
A_jl = AcousticAnalogies.A.(St_St_peak_jl, 9.5e4)
# Interpolate:
A_interp = linear(St_St_peak_bpm, A, St_St_peak_jl)
# Check error.
vmin, vmax = extrema(A)
err = abs.(A_jl .- A_interp)./(vmax - vmin)
@test maximum(err) < 0.057
fname = joinpath(@__DIR__, "bpm_data", "brooks_airfoil_self_noise_and_prediction_1989", "19890016302-figure78-A_max.csv")
bpm = DelimitedFiles.readdlm(fname, ',')
St_St_peak_bpm = bpm[:, 1]
A = bpm[:, 2]
St_St_peak_jl = range(minimum(St_St_peak_bpm), maximum(St_St_peak_bpm); length=50)
A_jl = AcousticAnalogies.A.(St_St_peak_jl, 8.58e5)
# Interpolate:
A_interp = linear(St_St_peak_bpm, A, St_St_peak_jl)
# Check error.
vmin, vmax = extrema(A)
err = abs.(A_jl .- A_interp)./(vmax - vmin)
@test maximum(err) < 0.021
end
@testset "B" begin
fname = joinpath(@__DIR__, "bpm_data", "brooks_airfoil_self_noise_and_prediction_1989", "19890016302-figure78-B_min.csv")
bpm = DelimitedFiles.readdlm(fname, ',')
St_St_peak_bpm = bpm[:, 1]
B = bpm[:, 2]
St_St_peak_jl = range(minimum(St_St_peak_bpm), maximum(St_St_peak_bpm); length=50)
B_jl = AcousticAnalogies.B.(St_St_peak_jl, 9.5e4)
# Interpolate:
B_interp = linear(St_St_peak_bpm, B, St_St_peak_jl)
# Check error.
vmin, vmax = extrema(B)
err = abs.(B_jl .- B_interp)./(vmax - vmin)
@test maximum(err) < 0.057
fname = joinpath(@__DIR__, "bpm_data", "brooks_airfoil_self_noise_and_prediction_1989", "19890016302-figure78-B_max.csv")
bpm = DelimitedFiles.readdlm(fname, ',')
St_St_peak_bpm = bpm[:, 1]
B = bpm[:, 2]
St_St_peak_jl = range(minimum(St_St_peak_bpm), maximum(St_St_peak_bpm); length=50)
B_jl = AcousticAnalogies.B.(St_St_peak_jl, 8.58e5)
# Interpolate:
B_interp = linear(St_St_peak_bpm, B, St_St_peak_jl)
# Check error.
vmin, vmax = extrema(B)
err = abs.(B_jl .- B_interp)./(vmax - vmin)
@test maximum(err) < 0.020
end
@testset "St_2" begin
fname = joinpath(@__DIR__, "bpm_data", "brooks_airfoil_self_noise_and_prediction_1989", "19890016302-figure80-M0.093.csv")
bpm = DelimitedFiles.readdlm(fname, ',')
alpha_deg = bpm[:, 1]
St_2 = bpm[:, 2]
alpha_deg_jl = range(minimum(alpha_deg), maximum(alpha_deg); length=50)
St_2_jl = AcousticAnalogies.St_2.(AcousticAnalogies.St_1(0.093), alpha_deg_jl.*pi/180)
# Interpolate:
St_2_interp = linear(alpha_deg, St_2, alpha_deg_jl)
# Check error.
vmin, vmax = extrema(St_2)
err = abs.(St_2_jl .- St_2_interp)./(vmax - vmin)
@test maximum(err) < 0.023
fname = joinpath(@__DIR__, "bpm_data", "brooks_airfoil_self_noise_and_prediction_1989", "19890016302-figure80-M0.209.csv")
bpm = DelimitedFiles.readdlm(fname, ',')
alpha_deg = bpm[:, 1]
St_2 = bpm[:, 2]
alpha_deg_jl = range(minimum(alpha_deg), maximum(alpha_deg); length=50)
St_2_jl = AcousticAnalogies.St_2.(AcousticAnalogies.St_1(0.209), alpha_deg_jl.*pi/180)
# Interpolate:
St_2_interp = linear(alpha_deg, St_2, alpha_deg_jl)
# Check error.
vmin, vmax = extrema(St_2)
err = abs.(St_2_jl .- St_2_interp)./(vmax - vmin)
@test maximum(err) < 0.011
end
@testset "K_2" begin
fname = joinpath(@__DIR__, "bpm_data", "brooks_airfoil_self_noise_and_prediction_1989", "19890016302-figure82-M0.093.csv")
bpm = DelimitedFiles.readdlm(fname, ',')
alpha_deg = bpm[:, 1]
K_2_K_1 = bpm[:, 2]
alpha_deg_jl = range(minimum(alpha_deg), maximum(alpha_deg); length=200)
K_2_K_1_jl = AcousticAnalogies.K_2.(1e6, 0.093, alpha_deg_jl.*pi/180) .- AcousticAnalogies.K_1(1e6)
# Interpolate:
K_2_K_1_interp = linear(alpha_deg, K_2_K_1, alpha_deg_jl)
# Check error.
vmin, vmax = extrema(K_2_K_1)
err = abs.(K_2_K_1_jl .- K_2_K_1_interp)./(vmax - vmin)
# The curve is almost vertical at low angles of attack, so a small error in the digitization results in big differences.
@test maximum(err[2:end]) < 0.027
fname = joinpath(@__DIR__, "bpm_data", "brooks_airfoil_self_noise_and_prediction_1989", "19890016302-figure82-M0.116.csv")
bpm = DelimitedFiles.readdlm(fname, ',')
alpha_deg = bpm[:, 1]
K_2_K_1 = bpm[:, 2]
alpha_deg_jl = range(minimum(alpha_deg), maximum(alpha_deg); length=200)
K_2_K_1_jl = AcousticAnalogies.K_2.(1e6, 0.116, alpha_deg_jl.*pi/180) .- AcousticAnalogies.K_1(1e6)
# Interpolate:
K_2_K_1_interp = linear(alpha_deg, K_2_K_1, alpha_deg_jl)
# Check error.
vmin, vmax = extrema(K_2_K_1)
err = abs.(K_2_K_1_jl .- K_2_K_1_interp)./(vmax - vmin)
# There's a branch for low angles of attack that sets K_2 - K_1 to
# -1000, but I can't see that in the digitized plots, so the first
# point is bad.
@test K_2_K_1_jl[1] β -1000
@test maximum(err[2:end]) < 0.022
fname = joinpath(@__DIR__, "bpm_data", "brooks_airfoil_self_noise_and_prediction_1989", "19890016302-figure82-M0.163.csv")
bpm = DelimitedFiles.readdlm(fname, ',')
alpha_deg = bpm[:, 1]
K_2_K_1 = bpm[:, 2]
alpha_deg_jl = range(minimum(alpha_deg), maximum(alpha_deg); length=200)
K_2_K_1_jl = AcousticAnalogies.K_2.(1e6, 0.163, alpha_deg_jl.*pi/180) .- AcousticAnalogies.K_1(1e6)
# Interpolate:
K_2_K_1_interp = linear(alpha_deg, K_2_K_1, alpha_deg_jl)
# Check error.
vmin, vmax = extrema(K_2_K_1)
err = abs.(K_2_K_1_jl .- K_2_K_1_interp)./(vmax - vmin)
# There's a branch for low angles of attack that sets K_2 - K_1 to
# -1000, but I can't see that in the digitized plots, so the first
# point is bad.
@test K_2_K_1_jl[1] β -1000.0
@test maximum(err[2:end]) < 0.020
fname = joinpath(@__DIR__, "bpm_data", "brooks_airfoil_self_noise_and_prediction_1989", "19890016302-figure82-M0.209.csv")
bpm = DelimitedFiles.readdlm(fname, ',')
alpha_deg = bpm[:, 1]
K_2_K_1 = bpm[:, 2]
alpha_deg_jl = range(minimum(alpha_deg), maximum(alpha_deg); length=200)
K_2_K_1_jl = AcousticAnalogies.K_2.(1e6, 0.209, alpha_deg_jl.*pi/180) .- AcousticAnalogies.K_1(1e6)
# Interpolate:
K_2_K_1_interp = linear(alpha_deg, K_2_K_1, alpha_deg_jl)
# Check error.
vmin, vmax = extrema(K_2_K_1)
err = abs.(K_2_K_1_jl .- K_2_K_1_interp)./(vmax - vmin)
@test maximum(err) < 0.024
end
end
@testset "LBL-VS" begin
@testset "St_1_prime" begin
fname = joinpath(@__DIR__, "bpm_data", "brooks_airfoil_self_noise_and_prediction_1989", "19890016302-figure86-St_1_prime.csv")
bpm = DelimitedFiles.readdlm(fname, ',')
Re_c_bpm = bpm[:, 1]
St_1_prime_bpm = bpm[:, 2]
Re_c_jl = 10.0.^(range(4, 7; length=100))
St_1_prime_jl = AcousticAnalogies.St_1_prime.(Re_c_jl)
St_1_prime_interp = linear(Re_c_bpm, St_1_prime_bpm, Re_c_jl)
vmin, vmax = extrema(St_1_prime_bpm)
err = abs.(St_1_prime_interp .- St_1_prime_jl)./(vmax - vmin)
@test maximum(err) < 0.04
end
@testset "G1" begin
fname = joinpath(@__DIR__, "bpm_data", "brooks_airfoil_self_noise_and_prediction_1989", "19890016302-figure85-G1.csv")
bpm = DelimitedFiles.readdlm(fname, ',')
e_bpm = bpm[:, 1]
G1_bpm = bpm[:, 2]
e_jl = 10.0.^(range(-1, 1; length=101))
G1_jl = AcousticAnalogies.G1.(e_jl)
G1_interp = linear(e_jl, G1_jl, e_bpm)
vmin, vmax = extrema(G1_bpm)
err = abs.(G1_interp .- G1_bpm)./(vmax - vmin)
@test maximum(err) < 0.033
end
@testset "St_peak_prime_alphastar" begin
fname = joinpath(@__DIR__, "bpm_data", "brooks_airfoil_self_noise_and_prediction_1989", "19890016302-figure87.csv")
bpm = DelimitedFiles.readdlm(fname, ',')
alphastar_bpm = bpm[:, 1]
St_peak_ratio_bpm = bpm[:, 2]
St_1_prime = 0.25 # Just make up a value, since we're multiplying and then dividing by it anyway.
alphastar_jl = range(0.0*pi/180, 7.0*pi/180; length=21)
St_peak_ratio_jl = AcousticAnalogies.St_peak_prime.(St_1_prime, alphastar_jl)./St_1_prime
St_peak_ratio_interp = linear(alphastar_jl.*180/pi, St_peak_ratio_jl, alphastar_bpm)
vmin, vmax = extrema(St_peak_ratio_bpm)
err = abs.(St_peak_ratio_interp .- St_peak_ratio_bpm)./(vmax - vmin)
@test maximum(err) < 0.031
end
@testset "G2" begin
fname = joinpath(@__DIR__, "bpm_data", "brooks_airfoil_self_noise_and_prediction_1989", "19890016302-figure89.csv")
bpm = DelimitedFiles.readdlm(fname, ',')
Re_ratio_bpm = bpm[:, 1]
G2_bpm = bpm[:, 2]
Re_ratio_jl = 10.0.^range(-1, 1, length=51)
G2_jl = AcousticAnalogies.G2.(Re_ratio_jl)
G2_interp = linear(Re_ratio_jl, G2_jl, Re_ratio_bpm)
vmin, vmax = extrema(G2_interp)
err = abs.(G2_interp .- G2_bpm)./(vmax - vmin)
@test maximum(err) < 0.024
end
@testset "G2 + G3" begin
fname = joinpath(@__DIR__, "bpm_data", "brooks_airfoil_self_noise_and_prediction_1989", "19890016302-figure88-G2-alpha0.csv")
alphastar = 0.0*pi/180
bpm = DelimitedFiles.readdlm(fname, ',')
Re_c_bpm = bpm[:, 1]
G2_bpm = bpm[:, 2]
Re_c_jl = 10.0.^range(log10(first(Re_c_bpm)), log10(last(Re_c_bpm)), length=51)
Re_c0 = AcousticAnalogies.Re_c0(alphastar)
Re_ratio_jl = Re_c_jl./Re_c0
G2_jl = AcousticAnalogies.G2.(Re_ratio_jl) .+ AcousticAnalogies.G3.(alphastar)
G2_interp = linear(Re_c_jl, G2_jl, Re_c_bpm)
vmin, vmax = extrema(G2_interp)
err = abs.(G2_interp .- G2_bpm)./(vmax - vmin)
@test maximum(err) < 0.013
fname = joinpath(@__DIR__, "bpm_data", "brooks_airfoil_self_noise_and_prediction_1989", "19890016302-figure88-G2-alpha6.csv")
alphastar = 6.0*pi/180
bpm = DelimitedFiles.readdlm(fname, ',')
Re_c_bpm = bpm[:, 1]
G2_bpm = bpm[:, 2]
Re_c_jl = 10.0.^range(log10(first(Re_c_bpm)), log10(last(Re_c_bpm)), length=51)
Re_c0 = AcousticAnalogies.Re_c0(alphastar)
Re_ratio_jl = Re_c_jl./Re_c0
G2_jl = AcousticAnalogies.G2.(Re_ratio_jl) .+ AcousticAnalogies.G3.(alphastar)
G2_interp = linear(Re_c_jl, G2_jl, Re_c_bpm)
vmin, vmax = extrema(G2_interp)
err = abs.(G2_interp .- G2_bpm)./(vmax - vmin)
@test maximum(err) < 0.030
end
end
@testset "TEB-VS" begin
@testset "St_3prime_peak" begin
fname = joinpath(@__DIR__, "bpm_data", "brooks_airfoil_self_noise_and_prediction_1989", "19890016302-figure95-0Psi.csv")
bpm = DelimitedFiles.readdlm(fname, ',')
h_over_deltastar_0Psi = bpm[:, 1]
St_3prime_peak_0Psi = bpm[:, 2]
fname = joinpath(@__DIR__, "bpm_data", "brooks_airfoil_self_noise_and_prediction_1989", "19890016302-figure95-14Psi.csv")
bpm = DelimitedFiles.readdlm(fname, ',')
h_over_deltastar_14Psi = bpm[:, 1]
St_3prime_peak_14Psi = bpm[:, 2]
h_over_deltastar_jl = 10.0.^(range(-1, 1; length=101))
St_3prime_peak_0Psi_jl = AcousticAnalogies.St_3prime_peak.(h_over_deltastar_jl, 0.0*pi/180)
St_3prime_peak_14Psi_jl = AcousticAnalogies.St_3prime_peak.(h_over_deltastar_jl, 14.0*pi/180)
St_3prime_peak_0Psi_interp = linear(h_over_deltastar_jl, St_3prime_peak_0Psi_jl, h_over_deltastar_0Psi)
vmin, vmax = extrema(St_3prime_peak_0Psi)
err = abs.(St_3prime_peak_0Psi_interp .- St_3prime_peak_0Psi)./(vmax - vmin)
@test maximum(err) < 0.070
St_3prime_peak_14Psi_interp = linear(h_over_deltastar_jl, St_3prime_peak_14Psi_jl, h_over_deltastar_14Psi)
vmin, vmax = extrema(St_3prime_peak_14Psi)
err = abs.(St_3prime_peak_14Psi_interp .- St_3prime_peak_14Psi)./(vmax - vmin)
@test maximum(err) < 0.049
end
@testset "G4" begin
fname = joinpath(@__DIR__, "bpm_data", "brooks_airfoil_self_noise_and_prediction_1989", "19890016302-figure96-0Psi.csv")
bpm = DelimitedFiles.readdlm(fname, ',')
h_over_deltastar_0Psi = bpm[:, 1]
G4_0Psi = bpm[:, 2]
fname = joinpath(@__DIR__, "bpm_data", "brooks_airfoil_self_noise_and_prediction_1989", "19890016302-figure96-14Psi.csv")
bpm = DelimitedFiles.readdlm(fname, ',')
h_over_deltastar_14Psi = bpm[:, 1]
G4_14Psi = bpm[:, 2]
h_over_deltastar_jl = 10.0.^(range(-1, 1; length=51))
G4_0Psi_jl = AcousticAnalogies.G4.(h_over_deltastar_jl, 0.0*pi/180)
G4_14Psi_jl = AcousticAnalogies.G4.(h_over_deltastar_jl, 14.0*pi/180)
G4_0Psi_interp = linear(h_over_deltastar_jl, G4_0Psi_jl, h_over_deltastar_0Psi)
vmin, vmax = extrema(G4_0Psi)
err = abs.(G4_0Psi_interp .- G4_0Psi)./(vmax - vmin)
@test maximum(err) < 0.033
G4_14Psi_interp = linear(h_over_deltastar_jl, G4_14Psi_jl, h_over_deltastar_14Psi)
vmin, vmax = extrema(G4_14Psi)
err = abs.(G4_14Psi_interp .- G4_14Psi)./(vmax - vmin)
@test maximum(err) < 0.024
end
@testset "G5, Psi = 14Β°" begin
fname = joinpath(@__DIR__, "bpm_data", "brooks_airfoil_self_noise_and_prediction_1989", "19890016302-figure97-Psi14-h_over_deltastar0p25.csv")
bpm = DelimitedFiles.readdlm(fname, ',')
St_3prime_over_St_3prime_peak_0p25 = bpm[:, 1]
G5_14Psi_h_over_deltastar_avg0p25 = bpm[:, 2]
fname = joinpath(@__DIR__, "bpm_data", "brooks_airfoil_self_noise_and_prediction_1989", "19890016302-figure97-Psi14-h_over_deltastar0p43.csv")
bpm = DelimitedFiles.readdlm(fname, ',')
St_3prime_over_St_3prime_peak_0p43 = bpm[:, 1]
G5_14Psi_h_over_deltastar_avg0p43 = bpm[:, 2]
fname = joinpath(@__DIR__, "bpm_data", "brooks_airfoil_self_noise_and_prediction_1989", "19890016302-figure97-Psi14-h_over_deltastar0p50.csv")
bpm = DelimitedFiles.readdlm(fname, ',')
St_3prime_over_St_3prime_peak_0p50 = bpm[:, 1]
G5_14Psi_h_over_deltastar_avg0p50 = bpm[:, 2]
fname = joinpath(@__DIR__, "bpm_data", "brooks_airfoil_self_noise_and_prediction_1989", "19890016302-figure97-Psi14-h_over_deltastar0p54.csv")
bpm = DelimitedFiles.readdlm(fname, ',')
St_3prime_over_St_3prime_peak_0p54 = bpm[:, 1]
G5_14Psi_h_over_deltastar_avg0p54 = bpm[:, 2]
fname = joinpath(@__DIR__, "bpm_data", "brooks_airfoil_self_noise_and_prediction_1989", "19890016302-figure97-Psi14-h_over_deltastar0p62.csv")
bpm = DelimitedFiles.readdlm(fname, ',')
St_3prime_over_St_3prime_peak_0p62 = bpm[:, 1]
G5_14Psi_h_over_deltastar_avg0p62 = bpm[:, 2]
fname = joinpath(@__DIR__, "bpm_data", "brooks_airfoil_self_noise_and_prediction_1989", "19890016302-figure97-Psi14-h_over_deltastar1p20.csv")
bpm = DelimitedFiles.readdlm(fname, ',')
St_3prime_over_St_3prime_peak_1p20 = bpm[:, 1]
G5_14Psi_h_over_deltastar_avg1p20 = bpm[:, 2]
St_3prime_over_St_3prime_peak_jl = 10.0.^(range(-1, 10; length=1001))
G5_14Psi_h_over_deltastar_avg0p25_jl = AcousticAnalogies.G5_Psi14.(0.25, St_3prime_over_St_3prime_peak_jl)
G5_14Psi_h_over_deltastar_avg0p43_jl = AcousticAnalogies.G5_Psi14.(0.43, St_3prime_over_St_3prime_peak_jl)
G5_14Psi_h_over_deltastar_avg0p50_jl = AcousticAnalogies.G5_Psi14.(0.50, St_3prime_over_St_3prime_peak_jl)
G5_14Psi_h_over_deltastar_avg0p54_jl = AcousticAnalogies.G5_Psi14.(0.54, St_3prime_over_St_3prime_peak_jl)
G5_14Psi_h_over_deltastar_avg0p62_jl = AcousticAnalogies.G5_Psi14.(0.62, St_3prime_over_St_3prime_peak_jl)
G5_14Psi_h_over_deltastar_avg1p20_jl = AcousticAnalogies.G5_Psi14.(1.20, St_3prime_over_St_3prime_peak_jl)
interp = linear(St_3prime_over_St_3prime_peak_jl, G5_14Psi_h_over_deltastar_avg0p25_jl, St_3prime_over_St_3prime_peak_0p25)
vmin, vmax = extrema(G5_14Psi_h_over_deltastar_avg0p25)
err = abs.(interp .- G5_14Psi_h_over_deltastar_avg0p25)/(vmax - vmin)
@test maximum(err) < 0.074
interp = linear(St_3prime_over_St_3prime_peak_jl, G5_14Psi_h_over_deltastar_avg0p43_jl, St_3prime_over_St_3prime_peak_0p43)
vmin, vmax = extrema(G5_14Psi_h_over_deltastar_avg0p43)
err = abs.(interp .- G5_14Psi_h_over_deltastar_avg0p43)/(vmax - vmin)
@test maximum(err) < 0.072
interp = linear(St_3prime_over_St_3prime_peak_jl, G5_14Psi_h_over_deltastar_avg0p50_jl, St_3prime_over_St_3prime_peak_0p50)
vmin, vmax = extrema(G5_14Psi_h_over_deltastar_avg0p50)
err = abs.(interp .- G5_14Psi_h_over_deltastar_avg0p50)/(vmax - vmin)
@test maximum(err) < 0.072
interp = linear(St_3prime_over_St_3prime_peak_jl, G5_14Psi_h_over_deltastar_avg0p54_jl, St_3prime_over_St_3prime_peak_0p54)
vmin, vmax = extrema(G5_14Psi_h_over_deltastar_avg0p54)
err = abs.(interp .- G5_14Psi_h_over_deltastar_avg0p54)/(vmax - vmin)
@test maximum(err) < 0.074
interp = linear(St_3prime_over_St_3prime_peak_jl, G5_14Psi_h_over_deltastar_avg0p62_jl, St_3prime_over_St_3prime_peak_0p62)
vmin, vmax = extrema(G5_14Psi_h_over_deltastar_avg0p62)
err = abs.(interp .- G5_14Psi_h_over_deltastar_avg0p62)/(vmax - vmin)
@test maximum(err) < 0.073
interp = linear(St_3prime_over_St_3prime_peak_jl, G5_14Psi_h_over_deltastar_avg1p20_jl, St_3prime_over_St_3prime_peak_1p20)
vmin, vmax = extrema(G5_14Psi_h_over_deltastar_avg1p20)
err = abs.(interp .- G5_14Psi_h_over_deltastar_avg1p20)/(vmax - vmin)
# The lower end of this case is really bad.
# Not sure why. :-(
@test maximum(err[1:22]) < 0.31
@test maximum(err[23:end]) < 0.087
end
@testset "G5, Psi = 0Β°" begin
fname = joinpath(@__DIR__, "bpm_data", "brooks_airfoil_self_noise_and_prediction_1989", "19890016302-figure97-Psi0-h_over_deltastar0p25.csv")
bpm = DelimitedFiles.readdlm(fname, ',')
St_3prime_over_St_3prime_peak_0p25 = bpm[:, 1]
G5_0Psi_h_over_deltastar_avg0p25 = bpm[:, 2]
fname = joinpath(@__DIR__, "bpm_data", "brooks_airfoil_self_noise_and_prediction_1989", "19890016302-figure97-Psi0-h_over_deltastar0p43.csv")
bpm = DelimitedFiles.readdlm(fname, ',')
St_3prime_over_St_3prime_peak_0p43 = bpm[:, 1]
G5_0Psi_h_over_deltastar_avg0p43 = bpm[:, 2]
fname = joinpath(@__DIR__, "bpm_data", "brooks_airfoil_self_noise_and_prediction_1989", "19890016302-figure97-Psi0-h_over_deltastar0p50.csv")
bpm = DelimitedFiles.readdlm(fname, ',')
St_3prime_over_St_3prime_peak_0p50 = bpm[:, 1]
G5_0Psi_h_over_deltastar_avg0p50 = bpm[:, 2]
fname = joinpath(@__DIR__, "bpm_data", "brooks_airfoil_self_noise_and_prediction_1989", "19890016302-figure97-Psi0-h_over_deltastar0p54.csv")
bpm = DelimitedFiles.readdlm(fname, ',')
St_3prime_over_St_3prime_peak_0p54 = bpm[:, 1]
G5_0Psi_h_over_deltastar_avg0p54 = bpm[:, 2]
# fname = joinpath(@__DIR__, "bpm_data", "brooks_airfoil_self_noise_and_prediction_1989", "19890016302-figure97-Psi0-h_over_deltastar0p62.csv")
# bpm = DelimitedFiles.readdlm(fname, ',')
# St_3prime_over_St_3prime_peak_0p62 = bpm[:, 1]
# G5_0Psi_h_over_deltastar_avg0p62 = bpm[:, 2]
fname = joinpath(@__DIR__, "bpm_data", "brooks_airfoil_self_noise_and_prediction_1989", "19890016302-figure97-Psi0-h_over_deltastar1p20.csv")
bpm = DelimitedFiles.readdlm(fname, ',')
St_3prime_over_St_3prime_peak_1p20 = bpm[:, 1]
G5_0Psi_h_over_deltastar_avg1p20 = bpm[:, 2]
St_3prime_over_St_3prime_peak_jl = 10.0.^(range(-1, 10; length=1001))
G5_0Psi_h_over_deltastar_avg0p25_jl = AcousticAnalogies.G5_Psi0.(0.25, St_3prime_over_St_3prime_peak_jl)
G5_0Psi_h_over_deltastar_avg0p43_jl = AcousticAnalogies.G5_Psi0.(0.43, St_3prime_over_St_3prime_peak_jl)
G5_0Psi_h_over_deltastar_avg0p50_jl = AcousticAnalogies.G5_Psi0.(0.50, St_3prime_over_St_3prime_peak_jl)
G5_0Psi_h_over_deltastar_avg0p54_jl = AcousticAnalogies.G5_Psi0.(0.54, St_3prime_over_St_3prime_peak_jl)
# G5_0Psi_h_over_deltastar_avg0p62_jl = AcousticAnalogies.G5_Psi0.(0.62, St_3prime_over_St_3prime_peak_jl)
G5_0Psi_h_over_deltastar_avg1p20_jl = AcousticAnalogies.G5_Psi0.(1.20, St_3prime_over_St_3prime_peak_jl)
interp = linear(St_3prime_over_St_3prime_peak_jl, G5_0Psi_h_over_deltastar_avg0p25_jl, St_3prime_over_St_3prime_peak_0p25)
vmin, vmax = extrema(G5_0Psi_h_over_deltastar_avg0p25)
err = abs.(interp .- G5_0Psi_h_over_deltastar_avg0p25)/(vmax - vmin)
@test maximum(err) < 0.030
interp = linear(St_3prime_over_St_3prime_peak_jl, G5_0Psi_h_over_deltastar_avg0p43_jl, St_3prime_over_St_3prime_peak_0p43)
vmin, vmax = extrema(G5_0Psi_h_over_deltastar_avg0p43)
err = abs.(interp .- G5_0Psi_h_over_deltastar_avg0p43)/(vmax - vmin)
@test maximum(err) < 0.026
interp = linear(St_3prime_over_St_3prime_peak_jl, G5_0Psi_h_over_deltastar_avg0p50_jl, St_3prime_over_St_3prime_peak_0p50)
vmin, vmax = extrema(G5_0Psi_h_over_deltastar_avg0p50)
err = abs.(interp .- G5_0Psi_h_over_deltastar_avg0p50)/(vmax - vmin)
@test maximum(err) < 0.037
interp = linear(St_3prime_over_St_3prime_peak_jl, G5_0Psi_h_over_deltastar_avg0p54_jl, St_3prime_over_St_3prime_peak_0p54)
vmin, vmax = extrema(G5_0Psi_h_over_deltastar_avg0p54)
err = abs.(interp .- G5_0Psi_h_over_deltastar_avg0p54)/(vmax - vmin)
@test maximum(err) < 0.037
# interp = linear(St_3prime_over_St_3prime_peak_jl, G5_0Psi_h_over_deltastar_avg0p62_jl, St_3prime_over_St_3prime_peak_0p62)
# vmin, vmax = extrema(G5_0Psi_h_over_deltastar_avg0p62)
# err = abs.(interp .- G5_0Psi_h_over_deltastar_avg0p62)/(vmax - vmin)
# @test maximum(err) < 0.073
interp = linear(St_3prime_over_St_3prime_peak_jl, G5_0Psi_h_over_deltastar_avg1p20_jl, St_3prime_over_St_3prime_peak_1p20)
vmin, vmax = extrema(G5_0Psi_h_over_deltastar_avg1p20)
err = abs.(interp .- G5_0Psi_h_over_deltastar_avg1p20)/(vmax - vmin)
@test maximum(err) < 0.045
end
end
end
end # module
| AcousticAnalogies | https://github.com/OpenMDAO/AcousticAnalogies.jl.git |
|
[
"Apache-2.0"
] | 0.8.1 | c14d0b2e7f19374017a2b5b6dfe48c5723c791ae | code | 11602 | module BPMWriteVTKTest
using AcousticAnalogies
using CCBlade
"""
XROTORAirfoilConfig(A0, DCLDA, CLMAX, CLMIN, DCL_STALL, DCLDA_STALL, CDMIN, CLDMIN, DCDCL2, REREF, REXP, MCRIT)
`struct` that holds all the required parameters for XROTOR's approach to handling airfoil lift and drag polars.
# Arguments
- `A0`: zero lift angle of attack, radians.
- `DCLDA`: lift curve slope, 1/radians.
- `CLMAX`: stall Cl.
- `CLMIN`: negative stall Cl.
- `DCL_STALL`: CL increment from incipient to total stall.
- `DCLDA_STALL`: stalled lift curve slope, 1/radian.
- `CDMIN`: minimum Cd.
- `CLDMIN`: Cl at minimum Cd.
- `DCDCL2`: d(Cd)/d(Cl**2).
- `REREF`: Reynolds Number at which Cd values apply.
- `REXP`: Exponent for Re scaling of Cd: Cd ~ Re**exponent
- `MCRIT`: Critical Mach number.
"""
struct XROTORAirfoilConfig{TF}
A0::TF # = 0. # zero lift angle of attack radians
DCLDA::TF # = 6.28 # lift curve slope /radian
CLMAX::TF # = 1.5 # stall Cl
CLMIN::TF # = -0.5 # negative stall Cl
DCL_STALL::TF # = 0.1 # CL increment from incipient to total stall
DCLDA_STALL::TF # = 0.1 # stalled lift curve slope /radian
CDMIN::TF # = 0.013 # minimum Cd
CLDMIN::TF # = 0.5 # Cl at minimum Cd
DCDCL2::TF # = 0.004 # d(Cd)/d(Cl**2)
REREF::TF # = 200000. # Reynolds Number at which Cd values apply
REXP::TF # = -0.4 # Exponent for Re scaling of Cd: Cd ~ Re**exponent
MCRIT::TF # = 0.8 # Critical Mach number
end
function XROTORAirfoilConfig(; A0, DCLDA, CLMAX, CLMIN, DCL_STALL, DCLDA_STALL, CDMIN, CLDMIN, DCDCL2, REREF, REXP, MCRIT)
return XROTORAirfoilConfig(A0, DCLDA, CLMAX, CLMIN, DCL_STALL, DCLDA_STALL, CDMIN, CLDMIN, DCDCL2, REREF, REXP, MCRIT)
end
"""
af_xrotor(alpha, Re, Mach, config::XROTORAirfoilConfig)
Return a tuple of the lift and drag coefficients for a given angle of attach
`alpha` (in radians), Reynolds number `Re`, and Mach number `Mach`.
"""
function af_xrotor(alpha, Re, Mach, config::XROTORAirfoilConfig)
# C------------------------------------------------------------
# C CL(alpha) function
# C Note that in addition to setting CLIFT and its derivatives
# C CLMAX and CLMIN (+ and - stall CL's) are set in this routine
# C In the compressible range the stall CL is reduced by a factor
# C proportional to Mcrit-Mach. Stall limiting for compressible
# C cases begins when the compressible drag added CDC > CDMstall
# C------------------------------------------------------------
# C CD(alpha) function - presently CD is assumed to be a sum
# C of profile drag + stall drag + compressibility drag
# C In the linear lift range drag is CD0 + quadratic function of CL-CLDMIN
# C In + or - stall an additional drag is added that is proportional
# C to the extent of lift reduction from the linear lift value.
# C Compressible drag is based on adding drag proportional to
# C (Mach-Mcrit_eff)^MEXP
# C------------------------------------------------------------
# C CM(alpha) function - presently CM is assumed constant,
# C varying only with Mach by Prandtl-Glauert scaling
# C------------------------------------------------------------
# C
# INCLUDE 'XROTOR.INC'
# LOGICAL STALLF
# DOUBLE PRECISION ECMIN, ECMAX
# C
# C---- Factors for compressibility drag model, HHY 10/23/00
# C Mcrit is set by user
# C Effective Mcrit is Mcrit_eff = Mcrit - CLMFACTOR*(CL-CLDmin) - DMDD
# C DMDD is the delta Mach to get CD=CDMDD (usually 0.0020)
# C Compressible drag is CDC = CDMFACTOR*(Mach-Mcrit_eff)^MEXP
# C CDMstall is the drag at which compressible stall begins
#
A0 = config.A0
DCLDA = config.DCLDA
CLMAX = config.CLMAX
CLMIN = config.CLMIN
DCL_STALL = config.DCL_STALL
DCLDA_STALL = config.DCLDA_STALL
CDMIN = config.CDMIN
CLDMIN = config.CLDMIN
DCDCL2 = config.DCDCL2
REREF = config.REREF
REXP = config.REXP
MCRIT = config.MCRIT
CDMFACTOR = 10.0
CLMFACTOR = 0.25
MEXP = 3.0
CDMDD = 0.0020
CDMSTALL = 0.1000
# C
# C---- Prandtl-Glauert compressibility factor
# MSQ = W*W*VEL^2/VSO^2
# MSQ_W = 2.0*W*VEL^2/VSO^2
# if (MSQ>1.0)
# # WRITE(*,*)
# # & 'CLFUNC: Local Mach number limited to 0.99, was ', MSQ
# MSQ = 0.99
# # MSQ_W = 0.
# end
MSQ = Mach*Mach
if MSQ > 1.0
MSQ = 0.99
Mach = sqrt(MSQ)
end
PG = 1.0 / sqrt(1.0 - MSQ)
# PG_W = 0.5*MSQ_W * PG^3
# C
# C---- Mach number and dependence on velocity
# Mach = sqrt(MSQ)
# MACH_W = 0.0
# IF(Mach.NE.0.0) MACH_W = 0.5*MSQ_W/Mach
# if ! (mach β 0.0)
# MACH_W = 0.5*MSQ_W/Mach
# end
# C
# C
# C------------------------------------------------------------
# C--- Generate CL from dCL/dAlpha and Prandtl-Glauert scaling
CLA = DCLDA*PG *(alpha-A0)
# CLA_ALF = DCLDA*PG
# CLA_W = DCLDA*PG_W*(ALF-A0)
# C
# C--- Effective CLmax is limited by Mach effects
# C reduces CLmax to match the CL of onset of serious compressible drag
CLMX = CLMAX
CLMN = CLMIN
DMSTALL = (CDMSTALL/CDMFACTOR)^(1.0/MEXP)
CLMAXM = max(0.0, (MCRIT+DMSTALL-Mach)/CLMFACTOR) + CLDMIN
CLMAX = min(CLMAX,CLMAXM)
CLMINM = min(0.0,-(MCRIT+DMSTALL-Mach)/CLMFACTOR) + CLDMIN
CLMIN = max(CLMIN,CLMINM)
# C
# C--- CL limiter function (turns on after +-stall
ECMAX = exp( min(200.0, (CLA-CLMAX)/DCL_STALL) )
ECMIN = exp( min(200.0, (CLMIN-CLA)/DCL_STALL) )
CLLIM = DCL_STALL * log( (1.0+ECMAX)/(1.0+ECMIN) )
CLLIM_CLA = ECMAX/(1.0+ECMAX) + ECMIN/(1.0+ECMIN)
# c
# c if(CLLIM.GT.0.001) then
# c write(*,999) 'cla,cllim,ecmax,ecmin ',cla,cllim,ecmax,ecmin
# c endif
# c 999 format(a,2(1x,f10.6),3(1x,d12.6))
# C
# C--- Subtract off a (nearly unity) fraction of the limited CL function
# C This sets the dCL/dAlpha in the stalled regions to 1-FSTALL of that
# C in the linear lift range
FSTALL = DCLDA_STALL/DCLDA
CLIFT = CLA - (1.0-FSTALL)*CLLIM
# CL_ALF = CLA_ALF - (1.0-FSTALL)*CLLIM_CLA*CLA_ALF
# CL_W = CLA_W - (1.0-FSTALL)*CLLIM_CLA*CLA_W
# C
# STALLF = false
# IF(CLIFT.GT.CLMAX) STALLF = .TRUE.
# IF(CLIFT.LT.CLMIN) STALLF = .TRUE.
# STALLF = (CLIFT > CLMAX) || (CLIFT < CLMIN)
# C
# C
# C------------------------------------------------------------
# C--- CM from CMCON and Prandtl-Glauert scaling
# CMOM = PG*CMCON
# CM_AL = 0.0
# CM_W = PG_W*CMCON
# C
# C
# C------------------------------------------------------------
# C--- CD from profile drag, stall drag and compressibility drag
# C
# C---- Reynolds number scaling factor
if (Re < 0.0)
RCORR = 1.0
# RCORR_REY = 0.0
else
RCORR = (Re/REREF)^REXP
# RCORR_REY = REXP/Re
end
# C
# C--- In the basic linear lift range drag is a function of lift
# C CD = CD0 (constant) + quadratic with CL)
CDRAG = (CDMIN + DCDCL2*(CLIFT-CLDMIN)^2 ) * RCORR
# CD_ALF = ( 2.0*DCDCL2*(CLIFT-CLDMIN)*CL_ALF) * RCORR
# CD_W = ( 2.0*DCDCL2*(CLIFT-CLDMIN)*CL_W ) * RCORR
# CD_REY = CDRAG*RCORR_REY
# C
# C--- Post-stall drag added
FSTALL = DCLDA_STALL/DCLDA
DCDX = (1.0-FSTALL)*CLLIM/(PG*DCLDA)
# c write(*,*) 'cla,cllim,fstall,pg,dclda ',cla,cllim,fstall,pg,dclda
DCD = 2.0* DCDX^2
# DCD_ALF = 4.0* DCDX * (1.0-FSTALL)*CLLIM_CLA*CLA_ALF/(PG*DCLDA)
# DCD_W = 4.0* DCDX * ( (1.0-FSTALL)*CLLIM_CLA*CLA_W/(PG*DCLDA) - DCD/PG*PG_W )
# c write(*,*) 'alf,cl,dcd,dcd_alf,dcd_w ',alf,clift,dcd,dcd_alf,dcd_w
# C
# C--- Compressibility drag (accounts for drag rise above Mcrit with CL effects
# C CDC is a function of a scaling factor*(M-Mcrit(CL))^MEXP
# C DMDD is the Mach difference corresponding to CD rise of CDMDD at MCRIT
DMDD = (CDMDD/CDMFACTOR)^(1.0/MEXP)
CRITMACH = MCRIT-CLMFACTOR*abs(CLIFT-CLDMIN) - DMDD
# CRITMACH_ALF = -CLMFACTOR*ABS(CL_ALF)
# CRITMACH_W = -CLMFACTOR*ABS(CL_W)
if (Mach < CRITMACH)
CDC = 0.0
# CDC_ALF = 0.0
# CDC_W = 0.0
else
CDC = CDMFACTOR*(Mach-CRITMACH)^MEXP
# CDC_W = MEXP*MACH_W*CDC/Mach - MEXP*CRITMACH_W *CDC/CRITMACH
# CDC_ALF = - MEXP*CRITMACH_ALF*CDC/CRITMACH
end
# c write(*,*) 'critmach,mach ',critmach,mach
# c write(*,*) 'cdc,cdc_w,cdc_alf ',cdc,cdc_w,cdc_alf
# C
FAC = 1.0
# FAC_W = 0.0
# C--- Although test data does not show profile drag increases due to Mach #
# C you could use something like this to add increase drag by Prandtl-Glauert
# C (or any function you choose)
# cc FAC = PG
# cc FAC_W = PG_W
# C--- Total drag terms
CDRAG = FAC*CDRAG + DCD + CDC
# CD_ALF = FAC*CD_ALF + DCD_ALF + CDC_ALF
# CD_W = FAC*CD_W + FAC_W*CDRAG + DCD_W + CDC_W
# CD_REY = FAC*CD_REY
# C
return CLIFT, CDRAG
end
function main(; positive_x_rotation)
# Define the blade geometry.
B = 2
Rhub = 0.10
Rtip = 1.1684 # meters
radii = Rhub .+ range(0.0, 1.0, length=31).*(Rtip - Rhub)
radii = 0.5.*(radii[2:end] .+ radii[1:end-1])
cs_area_over_chord_squared = 0.064
chord = [
0.35044 , 0.28260 , 0.22105 , 0.17787 , 0.14760,
0.12567 , 0.10927 , 0.96661E-01 , 0.86742E-01 ,
0.78783E-01 , 0.72287E-01 , 0.66906E-01 , 0.62387E-01 ,
0.58541E-01 , 0.55217E-01 , 0.52290E-01 , 0.49645E-01 ,
0.47176E-01 , 0.44772E-01 , 0.42326E-01 , 0.39732E-01 ,
0.36898E-01 , 0.33752E-01 , 0.30255E-01 , 0.26401E-01 ,
0.22217E-01 , 0.17765E-01 , 0.13147E-01 , 0.85683E-02 ,
0.47397E-02].*Rtip
theta = [
40.005, 34.201, 28.149, 23.753, 20.699, 18.516, 16.890, 15.633,
14.625, 13.795, 13.094, 12.488, 11.956, 11.481, 11.053, 10.662,
10.303, 9.9726, 9.6674, 9.3858, 9.1268, 8.8903, 8.6764, 8.4858,
8.3193, 8.1783, 8.0638, 7.9769, 7.9183, 7.8889].*(pi/180)
# Define the operating point.
rpm = 2200.0
omega = rpm*(2*pi/60.0)
rho = 1.226 # kg/m^3
c0 = 340.0 # m/s
mu = 0.1780e-4 # kg/(m*s)
pitch = 0.0 # rad
Vinf = 5.0 # m/s
# Create an airfoil interpolation object.
xrotor_config = XROTORAirfoilConfig(
A0=0.0, DCLDA=6.2800, CLMAX=1.5, CLMIN=-0.5, DCLDA_STALL=0.1,
DCL_STALL=0.1, MCRIT=0.8, CDMIN=0.13e-1, CLDMIN=0.5, DCDCL2=0.4e-2, REREF=0.2e6, REXP=-0.4)
airfoil_interp(a, r, m) = af_xrotor(a, r, m, xrotor_config)
# Create the CCBlade.jl structs.
rotor = Rotor(Rhub, Rtip, B)
sections = Section.(radii, chord, theta, Ref(airfoil_interp))
ops = OperatingPoint.(Vinf, omega.*radii, rho, pitch, mu, c0)
outs = solve.(Ref(rotor), sections, ops)
# Create the AcousticAnalogies.jl source elements.
bpp = 60/(rpm*B)
period = 2*bpp
num_source_times = 64
alphastar0 = 12.5*pi/180
ses = tblte_source_elements_ccblade(rotor, sections, ops, outs, fill(TrippedN0012BoundaryLayer(), length(radii)), period, num_source_times, positive_x_rotation)
@show size(ses)
if positive_x_rotation
name = "two_blade_example_tblte_pos_x_rotation"
else
name = "two_blade_example_tblte_neg_x_rotation"
end
outfiles = AcousticAnalogies.to_paraview_collection(name, ses)
return outfiles
end
end
| AcousticAnalogies | https://github.com/OpenMDAO/AcousticAnalogies.jl.git |
|
[
"Apache-2.0"
] | 0.8.1 | c14d0b2e7f19374017a2b5b6dfe48c5723c791ae | code | 143411 | module BroadbandSourceElementTests
using AcousticAnalogies
using AcousticAnalogies: calculate_bpm_test
using AcousticMetrics: AcousticMetrics
using CCBlade
using DelimitedFiles: DelimitedFiles
using FileIO: load
using FLOWMath: linear
using KinematicCoordinateTransformations: KinematicCoordinateTransformations, compose
using StaticArrays
using JLD2
using Test
using LinearAlgebra: norm, dot, cross
include("gen_test_data/gen_ccblade_data/constants.jl")
using .CCBladeTestCaseConstants
ccbc = CCBladeTestCaseConstants
@testset "Twist and rotation tests" begin
# So, the way this should work: first do the twist, then do the theta rotation.
# The twist could be either about the positive y axis or negative y axis.
# Then the theta rotation is always about the x axis.
c0 = 1.1
nu = 1.2
r = 2.0
Ξr = 0.1
chord = 1.3
h = 1.4
Psi = 1.5
vn = 2.0
vr = 3.0
vc = 4.0
Ο = 0.1
ΞΟ = 0.02
bl = 2.0 # should be a boundary layer struct, but doesn't matter for these tests.
blade_tip = 3.0 # should be a blade tip struct, but doesn't matter for these tests.
for setype in [TBLTESourceElement, LBLVSSourceElement, TEBVSSourceElement, TipVortexSourceElement, CombinedNoTipBroadbandSourceElement, CombinedWithTipBroadbandSourceElement]
for twist_about_positive_y in [true, false]
if setype == CombinedWithTipBroadbandSourceElement
se_0twist0theta = setype(c0, nu, r, 0.0, Ξr, chord, 0.0, h, Psi, vn, vr, vc, Ο, ΞΟ, bl, blade_tip, twist_about_positive_y)
elseif setype == TipVortexSourceElement
se_0twist0theta = setype(c0, r, 0.0, Ξr, chord, 0.0, vn, vr, vc, Ο, ΞΟ, bl, blade_tip, twist_about_positive_y)
elseif setype in (TEBVSSourceElement, CombinedNoTipBroadbandSourceElement)
se_0twist0theta = setype(c0, nu, r, 0.0, Ξr, chord, 0.0, h, Psi, vn, vr, vc, Ο, ΞΟ, bl, twist_about_positive_y)
else
se_0twist0theta = setype(c0, nu, r, 0.0, Ξr, chord, 0.0, vn, vr, vc, Ο, ΞΟ, bl, twist_about_positive_y)
end
for ΞΈ in [5, 10, 65, 95, 260, 270, 290].*(pi/180)
trans_theta = KinematicCoordinateTransformations.SteadyRotXTransformation(Ο, 0.0, -ΞΈ)
for Ο in [5, 10, 65, 95, 260, 270, 290].*(pi/180)
# The angle of attack depends on the twist and the fluid velocity
if twist_about_positive_y
alpha_check = Ο - atan(-vn, -vc)
else
alpha_check = Ο - atan(-vn, vc)
end
if setype == CombinedWithTipBroadbandSourceElement
se = setype(c0, nu, r, ΞΈ, Ξr, chord, Ο, h, Psi, vn, vr, vc, Ο, ΞΟ, bl, blade_tip, twist_about_positive_y) |> trans_theta
elseif setype == TipVortexSourceElement
se = setype(c0, r, ΞΈ, Ξr, chord, Ο, vn, vr, vc, Ο, ΞΟ, bl, blade_tip, twist_about_positive_y) |> trans_theta
elseif setype in (TEBVSSourceElement, CombinedNoTipBroadbandSourceElement)
se = setype(c0, nu, r, ΞΈ, Ξr, chord, Ο, h, Psi, vn, vr, vc, Ο, ΞΟ, bl, twist_about_positive_y) |> trans_theta
else
se = setype(c0, nu, r, ΞΈ, Ξr, chord, Ο, vn, vr, vc, Ο, ΞΟ, bl, twist_about_positive_y) |> trans_theta
end
# Adjust the angles of attack to always be between -pi and pi.
alpha_check = rem2pi(alpha_check+pi, RoundNearest) - pi
alpha = rem2pi(AcousticAnalogies.angle_of_attack(se)+pi, RoundNearest) - pi
@test alpha β alpha_check
for field in fieldnames(setype)
# The twist changes the unit vector in the chord direction, but nothing else, so ignore that for now.
if field != :chord_uvec
@test getproperty(se, field) β getproperty(se_0twist0theta, field)
end
end
if twist_about_positive_y
# If we're applying the twist about the positive y axis, then we need to do a negative rotation about the y axis to undo it.
trans_phi = KinematicCoordinateTransformations.SteadyRotYTransformation(Ο, 0.0, -Ο)
chord_uvec_check = @SVector [0.0, 0.0, -1.0]
else
# If we're applying the twist about the negative y axis, then we need to do a positive rotation about the y axis to undo it.
trans_phi = KinematicCoordinateTransformations.SteadyRotYTransformation(Ο, 0.0, Ο)
chord_uvec_check = @SVector [0.0, 0.0, 1.0]
end
se_no_twist = se |> trans_phi
@test se_no_twist.chord_uvec β chord_uvec_check
# Make sure we get the same thing if we specify the velocity via a velocity magnitude and angle of attack.
# But need to make sure we use vr == 0.
if setype == CombinedWithTipBroadbandSourceElement
se_no_vr = setype(c0, nu, r, ΞΈ, Ξr, chord, Ο, h, Psi, vn, 0.0, vc, Ο, ΞΟ, bl, blade_tip, twist_about_positive_y)
elseif setype == TipVortexSourceElement
se_no_vr = setype(c0, r, ΞΈ, Ξr, chord, Ο, vn, 0.0, vc, Ο, ΞΟ, bl, blade_tip, twist_about_positive_y)
elseif setype in (TEBVSSourceElement, CombinedNoTipBroadbandSourceElement)
se_no_vr = setype(c0, nu, r, ΞΈ, Ξr, chord, Ο, h, Psi, vn, 0.0, vc, Ο, ΞΟ, bl, twist_about_positive_y)
else
se_no_vr = setype(c0, nu, r, ΞΈ, Ξr, chord, Ο, vn, 0.0, vc, Ο, ΞΟ, bl, twist_about_positive_y)
end
# Removing vr, the radial velocity component, shouldn't change the angle of attack.
alpha_no_vr = rem2pi(AcousticAnalogies.angle_of_attack(se_no_vr)+pi, RoundNearest) - pi
@test alpha_no_vr β alpha_check
# Now create a source element using the velocity magnitude and angle of attack, check that we get the same thing.
U = sqrt(vn^2 + vc^2)
if setype == CombinedWithTipBroadbandSourceElement
se_from_U_Ξ± = setype(c0, nu, r, ΞΈ, Ξr, chord, Ο, h, Psi, U, alpha_no_vr, Ο, ΞΟ, bl, blade_tip, twist_about_positive_y)
elseif setype == TipVortexSourceElement
se_from_U_Ξ± = setype(c0, r, ΞΈ, Ξr, chord, Ο, U, alpha_no_vr, Ο, ΞΟ, bl, blade_tip, twist_about_positive_y)
elseif setype in (TEBVSSourceElement, CombinedNoTipBroadbandSourceElement)
se_from_U_Ξ± = setype(c0, nu, r, ΞΈ, Ξr, chord, Ο, h, Psi, U, alpha_no_vr, Ο, ΞΟ, bl, twist_about_positive_y)
else
se_from_U_Ξ± = setype(c0, nu, r, ΞΈ, Ξr, chord, Ο, U, alpha_no_vr, Ο, ΞΟ, bl, twist_about_positive_y)
end
for field in fieldnames(setype)
@test getproperty(se_from_U_Ξ±, field) β getproperty(se_no_vr, field)
end
end
end
end
end
end
@testset "TBLTESourceElement twist and rotation tests, CCBlade" begin
# Create the CCBlade objects.
Ο = 0.1
ΞΟ = 0.02
bl = AcousticAnalogies.UntrippedN0012BoundaryLayer()
# ccblade_fname = joinpath(@__DIR__, "gen_test_data", "gen_ccblade_data", "ccblade_omega11.jld2")
# out, section_loaded, Ξr, op, rotor0precone = nothing, nothing, nothing, nothing, nothing
# jldopen(ccblade_fname, "r") do f
# out = f["outs"][1]
# section_loaded = f["sections"][1]
# Ξr = f["sections"][2].r - f["sections"][1].r
# op = f["ops"][1]
# rotor0precone = f["rotor"]
# @test rotor0precone.precone β 0.0
# end
ccblade_fname = joinpath(@__DIR__, "gen_test_data", "gen_ccblade_data", "ccblade_omega11-outputs.jld2")
outs_d = load(ccblade_fname)
section_loaded = CCBlade.Section(first(ccbc.radii), first(ccbc.chord), first(ccbc.theta)*pi/180, nothing)
Ξr = ccbc.radii[2] - ccbc.radii[1]
op = CCBlade.OperatingPoint(ccbc.v, outs_d["omega"]*first(ccbc.radii), ccbc.rho, ccbc.pitch, ccbc.mu, ccbc.c0)
rotor0precone = CCBlade.Rotor(ccbc.Rhub, ccbc.Rtip, ccbc.num_blades)
out = CCBlade.Outputs(outs_d["Np"][1], outs_d["Tp"][1], outs_d["a"][1], outs_d["ap"][1], outs_d["u"][1], outs_d["v"][1], outs_d["phi"][1], outs_d["alpha"][1], outs_d["W"][1], outs_d["cl"][1], outs_d["cd"][1], outs_d["cn"][1], outs_d["ct"][1], outs_d["F"][1], outs_d["G"][1])
@test rotor0precone.precone β 0.0
for positive_x_rotation in [true, false]
for twist in [5, 10, 65, 95, 260, 270, 290].*(pi/180)
section = CCBlade.Section(section_loaded.r, section_loaded.chord, twist, section_loaded.af)
se_0theta0precone = TBLTESourceElement(rotor0precone, section, op, out, 0.0, Ξr, Ο, ΞΟ, bl, positive_x_rotation)
for precone in [5, 10, 65, 95, 260, 270, 290].*(pi/180)
rotor = CCBlade.Rotor(rotor0precone.Rhub, rotor0precone.Rtip, rotor0precone.B; turbine=rotor0precone.turbine, precone=precone)
# This is tricky: in my "normal" coordinate system, the blade is rotating around the x axis, moving axially in the positive x direction, and is initially aligned with the y axis.
# That means that the precone should be a rotation around the negative z axis.
# And so to undo it, we want a positive rotation around the positive z axis.
trans_precone = KinematicCoordinateTransformations.SteadyRotZTransformation(Ο, 0.0, precone)
for ΞΈ in [5, 10, 65, 95, 260, 270, 290].*(pi/180)
trans_theta = KinematicCoordinateTransformations.SteadyRotXTransformation(Ο, 0.0, -ΞΈ)
# Create a transformation that reverses the theta and precone rotations.
# The precone happens first, then theta.
# So to reverse it we need to do theta, then precone.
trans = KinematicCoordinateTransformations.compose(Ο, trans_precone, trans_theta)
# Create a source element with the theta and precone rotations, then undo it.
se = TBLTESourceElement(rotor, section, op, out, ΞΈ, Ξr, Ο, ΞΟ, bl, positive_x_rotation) |> trans
# Check that we got the same thing:
for field in fieldnames(TBLTESourceElement)
# The twist changes the unit vector in the chord direction, but nothing else, so ignore that for now.
if !(field in (:chord_uvec, :bl))
@test getproperty(se, field) β getproperty(se_0theta0precone, field)
end
end
if positive_x_rotation
# If we're doing a positive-x rotation, we're applying the twist about the positive y axis.
# If we're applying the twist about the positive y axis, then we need to do a negative rotation about the y axis to undo it.
trans_phi = KinematicCoordinateTransformations.SteadyRotYTransformation(Ο, 0.0, -twist)
chord_uvec_check = @SVector [0.0, 0.0, -1.0]
else
# If we're doing a negative-x rotation, we're applying the twist about the negative y axis.
# If we're applying the twist about the negative y axis, then we need to do a positive rotation about the y axis to undo it.
trans_phi = KinematicCoordinateTransformations.SteadyRotYTransformation(Ο, 0.0, twist)
chord_uvec_check = @SVector [0.0, 0.0, 1.0]
end
se_no_twist = se |> trans_phi
@test se_no_twist.chord_uvec β chord_uvec_check
end
end
end
end
end
@testset "CCBlade TBLTESourceElement complete test" begin
for positive_x_rotation in [true, false]
omega = 2200*(2*pi/60)
# Create the CCBlade objects.
rotor = Rotor(ccbc.Rhub, ccbc.Rtip, ccbc.num_blades; turbine=false)
sections = Section.(ccbc.radii, ccbc.chord, ccbc.theta, nothing)
ops = simple_op.(ccbc.v, omega, ccbc.radii, ccbc.rho; asound=ccbc.c0)
# What actually matters in the output structs are just W and phi.
phi = range(45.0, 10.0; length=length(sections)) .* (pi/180)
W = range(10.0, 11.0; length=length(sections))
outs = Outputs.(0.0, 0.0, 0.0, 0.0, 0.0, 0.0, phi, 0.0, W, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
# Set the source time stuff.
num_blade_passes = 3
steps_per_blade_pass = 8
num_src_times = num_blade_passes*steps_per_blade_pass
bpp = 2*pi/omega/ccbc.num_blades
src_time_range = num_blade_passes*bpp
# Finally get all the source elements.
bls = [AcousticAnalogies.TrippedN0012BoundaryLayer()]
ses_helper = tblte_source_elements_ccblade(rotor, sections, ops, outs, bls, src_time_range, num_src_times, positive_x_rotation)
# Now need to get the source elements the "normal" way.
# First get the transformation objects.
rot_axis = @SVector [1.0, 0.0, 0.0]
blade_axis = @SVector [0.0, 1.0, 0.0]
y0_hub = @SVector [0.0, 0.0, 0.0] # m
v0_hub = ccbc.v.*rot_axis
t0 = 0.0
if positive_x_rotation
rot_trans = KinematicCoordinateTransformations.SteadyRotXTransformation(t0, omega, 0.0)
else
rot_trans = KinematicCoordinateTransformations.SteadyRotXTransformation(t0, -omega, 0.0)
end
const_vel_trans = KinematicCoordinateTransformations.ConstantVelocityTransformation(t0, y0_hub, v0_hub)
# Need the source times.
dt = src_time_range/num_src_times
src_times = t0 .+ (0:num_src_times-1).*dt
# This is just an array of the angular offsets of each blade.
ΞΈs = 2*pi/ccbc.num_blades.*(0:(ccbc.num_blades-1))
# Radial spacing.
dradii = get_dradii(ccbc.radii, ccbc.Rhub, ccbc.Rtip)
# Need the kinematic viscosity.
nus = getproperty.(ops, :mu) ./ getproperty.(ops, :rho)
# Also need the velocity in each direction.
if positive_x_rotation
vn = @. -W*sin(phi)
vr = zeros(eltype(vn), length(vn))
vc = @. -W*cos(phi)
else
vn = @. -W*sin(phi)
vr = zeros(eltype(vn), length(vn))
vc = @. W*cos(phi)
end
# Reshape stuff for broadcasting.
radii_rs = reshape(ccbc.radii, 1, :, 1)
dradii_rs = reshape(dradii, 1, :, 1)
phi_rs = reshape(phi, 1, :, 1)
W_rs = reshape(W, 1, :, 1)
src_times_rs = reshape(src_times, :, 1, 1) # This isn't really necessary.
ΞΈs_rs = reshape(ΞΈs, 1, 1, :)
nus_rs = reshape(nus, 1, :, 1)
twist_rs = reshape(getproperty.(sections, :theta), 1, :, 1)
chord_rs = reshape(getproperty.(sections, :chord), 1, :, 1)
vn_rs = reshape(vn, 1, :, 1)
vr_rs = reshape(vr, 1, :, 1)
vc_rs = reshape(vc, 1, :, 1)
# Get all the transformations.
trans = compose.(src_times, Ref(const_vel_trans), Ref(rot_trans))
# Transform the source elements.
ses = TBLTESourceElement.(ccbc.c0, nus_rs, radii_rs, ΞΈs_rs, dradii_rs, chord_rs, twist_rs, vn_rs, vr_rs, vc_rs, src_times_rs, dt, bls, positive_x_rotation) .|> trans
# Now check that we got the same thing.
for field in fieldnames(TBLTESourceElement)
if !(field in (:bl,))
@test all(getproperty.(ses_helper, field) .β getproperty.(ses, field))
end
end
end
end
@testset "LBLVSSourceElement twist and rotation tests" begin
# So, the way this should work: first do the twist, then do the theta rotation.
# The twist could be either about the positive y axis or negative y axis.
# Then the theta rotation is always about the x axis.
c0 = 1.1
nu = 1.2
r = 2.0
Ξr = 0.1
chord = 1.3
vn = 2.0
vr = 3.0
vc = 4.0
Ο = 0.1
ΞΟ = 0.02
bl = 2.0 # should be a boundary layer struct, but doesn't matter for these tests.
for twist_about_positive_y in [true, false]
se_0twist0theta = LBLVSSourceElement(c0, nu, r, 0.0, Ξr, chord, 0.0, vn, vr, vc, Ο, ΞΟ, bl, twist_about_positive_y)
for ΞΈ in [5, 10, 65, 95, 260, 270, 290].*(pi/180)
trans_theta = KinematicCoordinateTransformations.SteadyRotXTransformation(Ο, 0.0, -ΞΈ)
for Ο in [5, 10, 65, 95, 260, 270, 290].*(pi/180)
# The angle of attack depends on the twist and the fluid velocity
if twist_about_positive_y
alpha_check = Ο - atan(-vn, -vc)
else
alpha_check = Ο - atan(-vn, vc)
end
se = LBLVSSourceElement(c0, nu, r, ΞΈ, Ξr, chord, Ο, vn, vr, vc, Ο, ΞΟ, bl, twist_about_positive_y) |> trans_theta
# Adjust the angles of attack to always be between -pi and pi.
alpha_check = rem2pi(alpha_check+pi, RoundNearest) - pi
alpha = rem2pi(AcousticAnalogies.angle_of_attack(se)+pi, RoundNearest) - pi
@test alpha β alpha_check
for field in fieldnames(LBLVSSourceElement)
# The twist changes the unit vector in the chord direction, but nothing else, so ignore that for now.
if field != :chord_uvec
@test getproperty(se, field) β getproperty(se_0twist0theta, field)
end
end
if twist_about_positive_y
# If we're applying the twist about the positive y axis, then we need to do a negative rotation about the y axis to undo it.
trans_phi = KinematicCoordinateTransformations.SteadyRotYTransformation(Ο, 0.0, -Ο)
chord_uvec_check = @SVector [0.0, 0.0, -1.0]
else
# If we're applying the twist about the negative y axis, then we need to do a positive rotation about the y axis to undo it.
trans_phi = KinematicCoordinateTransformations.SteadyRotYTransformation(Ο, 0.0, Ο)
chord_uvec_check = @SVector [0.0, 0.0, 1.0]
end
se_no_twist = se |> trans_phi
@test se_no_twist.chord_uvec β chord_uvec_check
end
end
end
end
@testset "LBLVSSourceElement twist and rotation tests, CCBlade" begin
# Create the CCBlade objects.
Ο = 0.1
ΞΟ = 0.02
bl = AcousticAnalogies.UntrippedN0012BoundaryLayer()
# ccblade_fname = joinpath(@__DIR__, "gen_test_data", "gen_ccblade_data", "ccblade_omega11.jld2")
# out, section_loaded, Ξr, op, rotor0precone = nothing, nothing, nothing, nothing, nothing
# jldopen(ccblade_fname, "r") do f
# out = f["outs"][1]
# section_loaded = f["sections"][1]
# Ξr = f["sections"][2].r - f["sections"][1].r
# op = f["ops"][1]
# rotor0precone = f["rotor"]
# @test rotor0precone.precone β 0.0
# end
ccblade_fname = joinpath(@__DIR__, "gen_test_data", "gen_ccblade_data", "ccblade_omega11-outputs.jld2")
outs_d = load(ccblade_fname)
section_loaded = CCBlade.Section(first(ccbc.radii), first(ccbc.chord), first(ccbc.theta)*pi/180, nothing)
Ξr = ccbc.radii[2] - ccbc.radii[1]
op = CCBlade.OperatingPoint(ccbc.v, outs_d["omega"]*first(ccbc.radii), ccbc.rho, ccbc.pitch, ccbc.mu, ccbc.c0)
rotor0precone = CCBlade.Rotor(ccbc.Rhub, ccbc.Rtip, ccbc.num_blades)
out = CCBlade.Outputs(outs_d["Np"][1], outs_d["Tp"][1], outs_d["a"][1], outs_d["ap"][1], outs_d["u"][1], outs_d["v"][1], outs_d["phi"][1], outs_d["alpha"][1], outs_d["W"][1], outs_d["cl"][1], outs_d["cd"][1], outs_d["cn"][1], outs_d["ct"][1], outs_d["F"][1], outs_d["G"][1])
@test rotor0precone.precone β 0.0
for positive_x_rotation in [true, false]
for twist in [5, 10, 65, 95, 260, 270, 290].*(pi/180)
section = CCBlade.Section(section_loaded.r, section_loaded.chord, twist, section_loaded.af)
se_0theta0precone = LBLVSSourceElement(rotor0precone, section, op, out, 0.0, Ξr, Ο, ΞΟ, bl, positive_x_rotation)
for precone in [5, 10, 65, 95, 260, 270, 290].*(pi/180)
rotor = CCBlade.Rotor(rotor0precone.Rhub, rotor0precone.Rtip, rotor0precone.B; turbine=rotor0precone.turbine, precone=precone)
# This is tricky: in my "normal" coordinate system, the blade is rotating around the x axis, moving axially in the positive x direction, and is initially aligned with the y axis.
# That means that the precone should be a rotation around the negative z axis.
# And so to undo it, we want a positive rotation around the positive z axis.
trans_precone = KinematicCoordinateTransformations.SteadyRotZTransformation(Ο, 0.0, precone)
for ΞΈ in [5, 10, 65, 95, 260, 270, 290].*(pi/180)
trans_theta = KinematicCoordinateTransformations.SteadyRotXTransformation(Ο, 0.0, -ΞΈ)
# Create a transformation that reverses the theta and precone rotations.
# The precone happens first, then theta.
# So to reverse it we need to do theta, then precone.
trans = KinematicCoordinateTransformations.compose(Ο, trans_precone, trans_theta)
# Create a source element with the theta and precone rotations, then undo it.
se = LBLVSSourceElement(rotor, section, op, out, ΞΈ, Ξr, Ο, ΞΟ, bl, positive_x_rotation) |> trans
# Check that we got the same thing:
for field in fieldnames(LBLVSSourceElement)
# The twist changes the unit vector in the chord direction, but nothing else, so ignore that for now.
if !(field in (:chord_uvec, :bl))
@test getproperty(se, field) β getproperty(se_0theta0precone, field)
end
end
if positive_x_rotation
# If we're doing a positive-x rotation, we're applying the twist about the positive y axis.
# If we're applying the twist about the positive y axis, then we need to do a negative rotation about the y axis to undo it.
trans_phi = KinematicCoordinateTransformations.SteadyRotYTransformation(Ο, 0.0, -twist)
chord_uvec_check = @SVector [0.0, 0.0, -1.0]
else
# If we're doing a negative-x rotation, we're applying the twist about the negative y axis.
# If we're applying the twist about the negative y axis, then we need to do a positive rotation about the y axis to undo it.
trans_phi = KinematicCoordinateTransformations.SteadyRotYTransformation(Ο, 0.0, twist)
chord_uvec_check = @SVector [0.0, 0.0, 1.0]
end
se_no_twist = se |> trans_phi
@test se_no_twist.chord_uvec β chord_uvec_check
end
end
end
end
end
@testset "CCBlade LBLVSSourceElement complete test" begin
for positive_x_rotation in [true, false]
omega = 2200*(2*pi/60)
# Create the CCBlade objects.
rotor = Rotor(ccbc.Rhub, ccbc.Rtip, ccbc.num_blades; turbine=false)
sections = Section.(ccbc.radii, ccbc.chord, ccbc.theta, nothing)
ops = simple_op.(ccbc.v, omega, ccbc.radii, ccbc.rho; asound=ccbc.c0)
# What actually matters in the output structs are just W and phi.
phi = range(45.0, 10.0; length=length(sections)) .* (pi/180)
W = range(10.0, 11.0; length=length(sections))
outs = Outputs.(0.0, 0.0, 0.0, 0.0, 0.0, 0.0, phi, 0.0, W, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
# Set the source time stuff.
num_blade_passes = 3
steps_per_blade_pass = 8
num_src_times = num_blade_passes*steps_per_blade_pass
bpp = 2*pi/omega/ccbc.num_blades
src_time_range = num_blade_passes*bpp
# Finally get all the source elements.
bls = [AcousticAnalogies.TrippedN0012BoundaryLayer()]
ses_helper = lblvs_source_elements_ccblade(rotor, sections, ops, outs, bls, src_time_range, num_src_times, positive_x_rotation)
# Now need to get the source elements the "normal" way.
# First get the transformation objects.
rot_axis = @SVector [1.0, 0.0, 0.0]
blade_axis = @SVector [0.0, 1.0, 0.0]
y0_hub = @SVector [0.0, 0.0, 0.0] # m
v0_hub = ccbc.v.*rot_axis
t0 = 0.0
if positive_x_rotation
rot_trans = KinematicCoordinateTransformations.SteadyRotXTransformation(t0, omega, 0.0)
else
rot_trans = KinematicCoordinateTransformations.SteadyRotXTransformation(t0, -omega, 0.0)
end
const_vel_trans = KinematicCoordinateTransformations.ConstantVelocityTransformation(t0, y0_hub, v0_hub)
# Need the source times.
dt = src_time_range/num_src_times
src_times = t0 .+ (0:num_src_times-1).*dt
# This is just an array of the angular offsets of each blade.
ΞΈs = 2*pi/ccbc.num_blades.*(0:(ccbc.num_blades-1))
# Radial spacing.
dradii = get_dradii(ccbc.radii, ccbc.Rhub, ccbc.Rtip)
# Need the kinematic viscosity.
nus = getproperty.(ops, :mu) ./ getproperty.(ops, :rho)
# Also need the velocity in each direction.
if positive_x_rotation
vn = @. -W*sin(phi)
vr = zeros(eltype(vn), length(vn))
vc = @. -W*cos(phi)
else
vn = @. -W*sin(phi)
vr = zeros(eltype(vn), length(vn))
vc = @. W*cos(phi)
end
# Reshape stuff for broadcasting.
radii_rs = reshape(ccbc.radii, 1, :, 1)
dradii_rs = reshape(dradii, 1, :, 1)
phi_rs = reshape(phi, 1, :, 1)
W_rs = reshape(W, 1, :, 1)
src_times_rs = reshape(src_times, :, 1, 1) # This isn't really necessary.
ΞΈs_rs = reshape(ΞΈs, 1, 1, :)
nus_rs = reshape(nus, 1, :, 1)
twist_rs = reshape(getproperty.(sections, :theta), 1, :, 1)
chord_rs = reshape(getproperty.(sections, :chord), 1, :, 1)
vn_rs = reshape(vn, 1, :, 1)
vr_rs = reshape(vr, 1, :, 1)
vc_rs = reshape(vc, 1, :, 1)
# Get all the transformations.
trans = compose.(src_times, Ref(const_vel_trans), Ref(rot_trans))
# Transform the source elements.
ses = LBLVSSourceElement.(ccbc.c0, nus_rs, radii_rs, ΞΈs_rs, dradii_rs, chord_rs, twist_rs, vn_rs, vr_rs, vc_rs, src_times_rs, dt, bls, positive_x_rotation) .|> trans
# Now check that we got the same thing.
for field in fieldnames(LBLVSSourceElement)
if !(field in (:bl,))
@test all(getproperty.(ses_helper, field) .β getproperty.(ses, field))
end
end
end
end
@testset "TEBVSSourceElement twist and rotation tests" begin
# So, the way this should work: first do the twist, then do the theta rotation.
# The twist could be either about the positive y axis or negative y axis.
# Then the theta rotation is always about the x axis.
c0 = 1.1
nu = 1.2
r = 2.0
Ξr = 0.1
chord = 1.3
vn = 2.0
vr = 3.0
vc = 4.0
Ο = 0.1
ΞΟ = 0.02
h = 0.1
Psi = 0.2
bl = 2.0 # should be a boundary layer struct, but doesn't matter for these tests.
for twist_about_positive_y in [true, false]
se_0twist0theta = TEBVSSourceElement(c0, nu, r, 0.0, Ξr, chord, 0.0, h, Psi, vn, vr, vc, Ο, ΞΟ, bl, twist_about_positive_y)
for ΞΈ in [5, 10, 65, 95, 260, 270, 290].*(pi/180)
trans_theta = KinematicCoordinateTransformations.SteadyRotXTransformation(Ο, 0.0, -ΞΈ)
for Ο in [5, 10, 65, 95, 260, 270, 290].*(pi/180)
# The angle of attack depends on the twist and the fluid velocity
if twist_about_positive_y
alpha_check = Ο - atan(-vn, -vc)
else
alpha_check = Ο - atan(-vn, vc)
end
se = TEBVSSourceElement(c0, nu, r, ΞΈ, Ξr, chord, Ο, h, Psi, vn, vr, vc, Ο, ΞΟ, bl, twist_about_positive_y) |> trans_theta
# Adjust the angles of attack to always be between -pi and pi.
alpha_check = rem2pi(alpha_check+pi, RoundNearest) - pi
alpha = rem2pi(AcousticAnalogies.angle_of_attack(se)+pi, RoundNearest) - pi
@test alpha β alpha_check
for field in fieldnames(TEBVSSourceElement)
# The twist changes the unit vector in the chord direction, but nothing else, so ignore that for now.
if field != :chord_uvec
@test getproperty(se, field) β getproperty(se_0twist0theta, field)
end
end
if twist_about_positive_y
# If we're applying the twist about the positive y axis, then we need to do a negative rotation about the y axis to undo it.
trans_phi = KinematicCoordinateTransformations.SteadyRotYTransformation(Ο, 0.0, -Ο)
chord_uvec_check = @SVector [0.0, 0.0, -1.0]
else
# If we're applying the twist about the negative y axis, then we need to do a positive rotation about the y axis to undo it.
trans_phi = KinematicCoordinateTransformations.SteadyRotYTransformation(Ο, 0.0, Ο)
chord_uvec_check = @SVector [0.0, 0.0, 1.0]
end
se_no_twist = se |> trans_phi
@test se_no_twist.chord_uvec β chord_uvec_check
end
end
end
end
@testset "TEBVSSourceElement twist and rotation tests, CCBlade" begin
# Create the CCBlade objects.
Ο = 0.1
ΞΟ = 0.02
h = 0.1
Psi = 0.2
bl = AcousticAnalogies.UntrippedN0012BoundaryLayer()
# ccblade_fname = joinpath(@__DIR__, "gen_test_data", "gen_ccblade_data", "ccblade_omega11.jld2")
# out, section_loaded, Ξr, op, rotor0precone = nothing, nothing, nothing, nothing, nothing
# jldopen(ccblade_fname, "r") do f
# out = f["outs"][1]
# section_loaded = f["sections"][1]
# Ξr = f["sections"][2].r - f["sections"][1].r
# op = f["ops"][1]
# rotor0precone = f["rotor"]
# @test rotor0precone.precone β 0.0
# end
ccblade_fname = joinpath(@__DIR__, "gen_test_data", "gen_ccblade_data", "ccblade_omega11-outputs.jld2")
outs_d = load(ccblade_fname)
section_loaded = CCBlade.Section(first(ccbc.radii), first(ccbc.chord), first(ccbc.theta)*pi/180, nothing)
Ξr = ccbc.radii[2] - ccbc.radii[1]
op = CCBlade.OperatingPoint(ccbc.v, outs_d["omega"]*first(ccbc.radii), ccbc.rho, ccbc.pitch, ccbc.mu, ccbc.c0)
rotor0precone = CCBlade.Rotor(ccbc.Rhub, ccbc.Rtip, ccbc.num_blades)
out = CCBlade.Outputs(outs_d["Np"][1], outs_d["Tp"][1], outs_d["a"][1], outs_d["ap"][1], outs_d["u"][1], outs_d["v"][1], outs_d["phi"][1], outs_d["alpha"][1], outs_d["W"][1], outs_d["cl"][1], outs_d["cd"][1], outs_d["cn"][1], outs_d["ct"][1], outs_d["F"][1], outs_d["G"][1])
@test rotor0precone.precone β 0.0
for positive_x_rotation in [true, false]
for twist in [5, 10, 65, 95, 260, 270, 290].*(pi/180)
section = CCBlade.Section(section_loaded.r, section_loaded.chord, twist, section_loaded.af)
se_0theta0precone = TEBVSSourceElement(rotor0precone, section, op, out, 0.0, Ξr, h, Psi, Ο, ΞΟ, bl, positive_x_rotation)
for precone in [5, 10, 65, 95, 260, 270, 290].*(pi/180)
rotor = CCBlade.Rotor(rotor0precone.Rhub, rotor0precone.Rtip, rotor0precone.B; turbine=rotor0precone.turbine, precone=precone)
# This is tricky: in my "normal" coordinate system, the blade is rotating around the x axis, moving axially in the positive x direction, and is initially aligned with the y axis.
# That means that the precone should be a rotation around the negative z axis.
# And so to undo it, we want a positive rotation around the positive z axis.
trans_precone = KinematicCoordinateTransformations.SteadyRotZTransformation(Ο, 0.0, precone)
for ΞΈ in [5, 10, 65, 95, 260, 270, 290].*(pi/180)
trans_theta = KinematicCoordinateTransformations.SteadyRotXTransformation(Ο, 0.0, -ΞΈ)
# Create a transformation that reverses the theta and precone rotations.
# The precone happens first, then theta.
# So to reverse it we need to do theta, then precone.
trans = KinematicCoordinateTransformations.compose(Ο, trans_precone, trans_theta)
# Create a source element with the theta and precone rotations, then undo it.
se = TEBVSSourceElement(rotor, section, op, out, ΞΈ, Ξr, h, Psi, Ο, ΞΟ, bl, positive_x_rotation) |> trans
# Check that we got the same thing:
for field in fieldnames(TEBVSSourceElement)
# The twist changes the unit vector in the chord direction, but nothing else, so ignore that for now.
if !(field in (:chord_uvec, :bl))
@test getproperty(se, field) β getproperty(se_0theta0precone, field)
end
end
if positive_x_rotation
# If we're doing a positive-x rotation, we're applying the twist about the positive y axis.
# If we're applying the twist about the positive y axis, then we need to do a negative rotation about the y axis to undo it.
trans_phi = KinematicCoordinateTransformations.SteadyRotYTransformation(Ο, 0.0, -twist)
chord_uvec_check = @SVector [0.0, 0.0, -1.0]
else
# If we're doing a negative-x rotation, we're applying the twist about the negative y axis.
# If we're applying the twist about the negative y axis, then we need to do a positive rotation about the y axis to undo it.
trans_phi = KinematicCoordinateTransformations.SteadyRotYTransformation(Ο, 0.0, twist)
chord_uvec_check = @SVector [0.0, 0.0, 1.0]
end
se_no_twist = se |> trans_phi
@test se_no_twist.chord_uvec β chord_uvec_check
end
end
end
end
end
@testset "CCBlade TEBVSSourceElement complete test" begin
for positive_x_rotation in [true, false]
omega = 2200*(2*pi/60)
# Create the CCBlade objects.
rotor = Rotor(ccbc.Rhub, ccbc.Rtip, ccbc.num_blades; turbine=false)
sections = Section.(ccbc.radii, ccbc.chord, ccbc.theta, nothing)
ops = simple_op.(ccbc.v, omega, ccbc.radii, ccbc.rho; asound=ccbc.c0)
# What actually matters in the output structs are just W and phi.
phi = range(45.0, 10.0; length=length(sections)) .* (pi/180)
W = range(10.0, 11.0; length=length(sections))
outs = Outputs.(0.0, 0.0, 0.0, 0.0, 0.0, 0.0, phi, 0.0, W, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
# Set the source time stuff.
num_blade_passes = 3
steps_per_blade_pass = 8
num_src_times = num_blade_passes*steps_per_blade_pass
bpp = 2*pi/omega/ccbc.num_blades
src_time_range = num_blade_passes*bpp
# Finally get all the source elements.
bls = [AcousticAnalogies.TrippedN0012BoundaryLayer()]
hs = range(0.1, 0.2; length=length(sections))
Psis = range(0.2, 0.3; length=length(sections))
ses_helper = tebvs_source_elements_ccblade(rotor, sections, ops, outs, hs, Psis, bls, src_time_range, num_src_times, positive_x_rotation)
# Now need to get the source elements the "normal" way.
# First get the transformation objects.
rot_axis = @SVector [1.0, 0.0, 0.0]
blade_axis = @SVector [0.0, 1.0, 0.0]
y0_hub = @SVector [0.0, 0.0, 0.0] # m
v0_hub = ccbc.v.*rot_axis
t0 = 0.0
if positive_x_rotation
rot_trans = KinematicCoordinateTransformations.SteadyRotXTransformation(t0, omega, 0.0)
else
rot_trans = KinematicCoordinateTransformations.SteadyRotXTransformation(t0, -omega, 0.0)
end
const_vel_trans = KinematicCoordinateTransformations.ConstantVelocityTransformation(t0, y0_hub, v0_hub)
# Need the source times.
dt = src_time_range/num_src_times
src_times = t0 .+ (0:num_src_times-1).*dt
# This is just an array of the angular offsets of each blade.
ΞΈs = 2*pi/ccbc.num_blades.*(0:(ccbc.num_blades-1))
# Radial spacing.
dradii = get_dradii(ccbc.radii, ccbc.Rhub, ccbc.Rtip)
# Need the kinematic viscosity.
nus = getproperty.(ops, :mu) ./ getproperty.(ops, :rho)
# Also need the velocity in each direction.
if positive_x_rotation
vn = @. -W*sin(phi)
vr = zeros(eltype(vn), length(vn))
vc = @. -W*cos(phi)
else
vn = @. -W*sin(phi)
vr = zeros(eltype(vn), length(vn))
vc = @. W*cos(phi)
end
# Reshape stuff for broadcasting.
radii_rs = reshape(ccbc.radii, 1, :, 1)
dradii_rs = reshape(dradii, 1, :, 1)
phi_rs = reshape(phi, 1, :, 1)
W_rs = reshape(W, 1, :, 1)
src_times_rs = reshape(src_times, :, 1, 1) # This isn't really necessary.
ΞΈs_rs = reshape(ΞΈs, 1, 1, :)
nus_rs = reshape(nus, 1, :, 1)
twist_rs = reshape(getproperty.(sections, :theta), 1, :, 1)
chord_rs = reshape(getproperty.(sections, :chord), 1, :, 1)
vn_rs = reshape(vn, 1, :, 1)
vr_rs = reshape(vr, 1, :, 1)
vc_rs = reshape(vc, 1, :, 1)
h_rs = reshape(hs, 1, :, 1)
Psi_rs = reshape(Psis, 1, :, 1)
# Get all the transformations.
trans = compose.(src_times, Ref(const_vel_trans), Ref(rot_trans))
# Transform the source elements.
ses = TEBVSSourceElement.(ccbc.c0, nus_rs, radii_rs, ΞΈs_rs, dradii_rs, chord_rs, twist_rs, h_rs, Psi_rs, vn_rs, vr_rs, vc_rs, src_times_rs, dt, bls, positive_x_rotation) .|> trans
# Now check that we got the same thing.
for field in fieldnames(TEBVSSourceElement)
if !(field in (:bl,))
@test all(getproperty.(ses_helper, field) .β getproperty.(ses, field))
end
end
end
end
@testset "TipVortexSourceElement twist and rotation tests" begin
# So, the way this should work: first do the twist, then do the theta rotation.
# The twist could be either about the positive y axis or negative y axis.
# Then the theta rotation is always about the x axis.
c0 = 1.1
# nu = 1.2
r = 2.0
Ξr = 0.1
chord = 1.3
vn = 2.0
vr = 3.0
vc = 4.0
Ο = 0.1
ΞΟ = 0.02
bl = 2.0 # should be a boundary layer struct, but doesn't matter for these tests.
blade_tip = 3.0 # should be a blade tip struct, but doesn't matter for these tests.
for twist_about_positive_y in [true, false]
se_0twist0theta = TipVortexSourceElement(c0, r, 0.0, Ξr, chord, 0.0, vn, vr, vc, Ο, ΞΟ, bl, blade_tip, twist_about_positive_y)
for ΞΈ in [5, 10, 65, 95, 260, 270, 290].*(pi/180)
trans_theta = KinematicCoordinateTransformations.SteadyRotXTransformation(Ο, 0.0, -ΞΈ)
for Ο in [5, 10, 65, 95, 260, 270, 290].*(pi/180)
# The angle of attack depends on the twist and the fluid velocity
if twist_about_positive_y
alpha_check = Ο - atan(-vn, -vc)
else
alpha_check = Ο - atan(-vn, vc)
end
se = TipVortexSourceElement(c0, r, ΞΈ, Ξr, chord, Ο, vn, vr, vc, Ο, ΞΟ, bl, blade_tip, twist_about_positive_y) |> trans_theta
# Adjust the angles of attack to always be between -pi and pi.
alpha_check = rem2pi(alpha_check+pi, RoundNearest) - pi
alpha = rem2pi(AcousticAnalogies.angle_of_attack(se)+pi, RoundNearest) - pi
@test alpha β alpha_check
for field in fieldnames(TipVortexSourceElement)
# The twist changes the unit vector in the chord direction, but nothing else, so ignore that for now.
if field != :chord_uvec
@test getproperty(se, field) β getproperty(se_0twist0theta, field)
end
end
if twist_about_positive_y
# If we're applying the twist about the positive y axis, then we need to do a negative rotation about the y axis to undo it.
trans_phi = KinematicCoordinateTransformations.SteadyRotYTransformation(Ο, 0.0, -Ο)
chord_uvec_check = @SVector [0.0, 0.0, -1.0]
else
# If we're applying the twist about the negative y axis, then we need to do a positive rotation about the y axis to undo it.
trans_phi = KinematicCoordinateTransformations.SteadyRotYTransformation(Ο, 0.0, Ο)
chord_uvec_check = @SVector [0.0, 0.0, 1.0]
end
se_no_twist = se |> trans_phi
@test se_no_twist.chord_uvec β chord_uvec_check
end
end
end
end
@testset "TipVortexSourceElement twist and rotation tests, CCBlade" begin
# Create the CCBlade objects.
Ο = 0.1
ΞΟ = 0.02
bl = AcousticAnalogies.UntrippedN0012BoundaryLayer()
blade_tip = AcousticAnalogies.RoundedTip()
# ccblade_fname = joinpath(@__DIR__, "gen_test_data", "gen_ccblade_data", "ccblade_omega11.jld2")
# out, section_loaded, Ξr, op, rotor0precone = nothing, nothing, nothing, nothing, nothing
# jldopen(ccblade_fname, "r") do f
# out = f["outs"][1]
# section_loaded = f["sections"][1]
# Ξr = f["sections"][2].r - f["sections"][1].r
# op = f["ops"][1]
# rotor0precone = f["rotor"]
# @test rotor0precone.precone β 0.0
# end
ccblade_fname = joinpath(@__DIR__, "gen_test_data", "gen_ccblade_data", "ccblade_omega11-outputs.jld2")
outs_d = load(ccblade_fname)
section_loaded = CCBlade.Section(first(ccbc.radii), first(ccbc.chord), first(ccbc.theta)*pi/180, nothing)
Ξr = ccbc.radii[2] - ccbc.radii[1]
op = CCBlade.OperatingPoint(ccbc.v, outs_d["omega"]*first(ccbc.radii), ccbc.rho, ccbc.pitch, ccbc.mu, ccbc.c0)
rotor0precone = CCBlade.Rotor(ccbc.Rhub, ccbc.Rtip, ccbc.num_blades)
out = CCBlade.Outputs(outs_d["Np"][1], outs_d["Tp"][1], outs_d["a"][1], outs_d["ap"][1], outs_d["u"][1], outs_d["v"][1], outs_d["phi"][1], outs_d["alpha"][1], outs_d["W"][1], outs_d["cl"][1], outs_d["cd"][1], outs_d["cn"][1], outs_d["ct"][1], outs_d["F"][1], outs_d["G"][1])
@test rotor0precone.precone β 0.0
for positive_x_rotation in [true, false]
for twist in [5, 10, 65, 95, 260, 270, 290].*(pi/180)
section = CCBlade.Section(section_loaded.r, section_loaded.chord, twist, section_loaded.af)
se_0theta0precone = TipVortexSourceElement(rotor0precone, section, op, out, 0.0, Ξr, Ο, ΞΟ, bl, blade_tip, positive_x_rotation)
for precone in [5, 10, 65, 95, 260, 270, 290].*(pi/180)
rotor = CCBlade.Rotor(rotor0precone.Rhub, rotor0precone.Rtip, rotor0precone.B; turbine=rotor0precone.turbine, precone=precone)
# This is tricky: in my "normal" coordinate system, the blade is rotating around the x axis, moving axially in the positive x direction, and is initially aligned with the y axis.
# That means that the precone should be a rotation around the negative z axis.
# And so to undo it, we want a positive rotation around the positive z axis.
trans_precone = KinematicCoordinateTransformations.SteadyRotZTransformation(Ο, 0.0, precone)
for ΞΈ in [5, 10, 65, 95, 260, 270, 290].*(pi/180)
trans_theta = KinematicCoordinateTransformations.SteadyRotXTransformation(Ο, 0.0, -ΞΈ)
# Create a transformation that reverses the theta and precone rotations.
# The precone happens first, then theta.
# So to reverse it we need to do theta, then precone.
trans = KinematicCoordinateTransformations.compose(Ο, trans_precone, trans_theta)
# Create a source element with the theta and precone rotations, then undo it.
se = TipVortexSourceElement(rotor, section, op, out, ΞΈ, Ξr, Ο, ΞΟ, bl, blade_tip, positive_x_rotation) |> trans
# Check that we got the same thing:
for field in fieldnames(TipVortexSourceElement)
# The twist changes the unit vector in the chord direction, but nothing else, so ignore that for now.
if !(field in (:chord_uvec, :bl, :blade_tip))
@test getproperty(se, field) β getproperty(se_0theta0precone, field)
end
end
if positive_x_rotation
# If we're doing a positive-x rotation, we're applying the twist about the positive y axis.
# If we're applying the twist about the positive y axis, then we need to do a negative rotation about the y axis to undo it.
trans_phi = KinematicCoordinateTransformations.SteadyRotYTransformation(Ο, 0.0, -twist)
chord_uvec_check = @SVector [0.0, 0.0, -1.0]
else
# If we're doing a negative-x rotation, we're applying the twist about the negative y axis.
# If we're applying the twist about the negative y axis, then we need to do a positive rotation about the y axis to undo it.
trans_phi = KinematicCoordinateTransformations.SteadyRotYTransformation(Ο, 0.0, twist)
chord_uvec_check = @SVector [0.0, 0.0, 1.0]
end
se_no_twist = se |> trans_phi
@test se_no_twist.chord_uvec β chord_uvec_check
end
end
end
end
end
@testset "CCBlade TipVortexSourceElement complete test" begin
for positive_x_rotation in [true, false]
omega = 2200*(2*pi/60)
# Create the CCBlade objects.
rotor = Rotor(ccbc.Rhub, ccbc.Rtip, ccbc.num_blades; turbine=false)
sections = Section.(ccbc.radii, ccbc.chord, ccbc.theta, nothing)
ops = simple_op.(ccbc.v, omega, ccbc.radii, ccbc.rho; asound=ccbc.c0)
# What actually matters in the output structs are just W and phi.
phi = range(45.0, 10.0; length=length(sections)) .* (pi/180)
W = range(10.0, 11.0; length=length(sections))
outs = Outputs.(0.0, 0.0, 0.0, 0.0, 0.0, 0.0, phi, 0.0, W, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
# Radial spacing.
dradii = get_dradii(ccbc.radii, ccbc.Rhub, ccbc.Rtip)
# Set the source time stuff.
num_blade_passes = 3
steps_per_blade_pass = 8
num_src_times = num_blade_passes*steps_per_blade_pass
bpp = 2*pi/omega/ccbc.num_blades
src_time_range = num_blade_passes*bpp
# Finally get all the source elements.
bl = AcousticAnalogies.TrippedN0012BoundaryLayer()
blade_tip = AcousticAnalogies.RoundedTip()
ses_helper = tip_vortex_source_elements_ccblade(rotor, sections[end], ops[end], outs[end], dradii[end], bl, blade_tip, src_time_range, num_src_times, positive_x_rotation)
# Now need to get the source elements the "normal" way.
# First get the transformation objects.
rot_axis = @SVector [1.0, 0.0, 0.0]
blade_axis = @SVector [0.0, 1.0, 0.0]
y0_hub = @SVector [0.0, 0.0, 0.0] # m
v0_hub = ccbc.v.*rot_axis
t0 = 0.0
if positive_x_rotation
rot_trans = KinematicCoordinateTransformations.SteadyRotXTransformation(t0, omega, 0.0)
else
rot_trans = KinematicCoordinateTransformations.SteadyRotXTransformation(t0, -omega, 0.0)
end
const_vel_trans = KinematicCoordinateTransformations.ConstantVelocityTransformation(t0, y0_hub, v0_hub)
# Need the source times.
dt = src_time_range/num_src_times
src_times = t0 .+ (0:num_src_times-1).*dt
# This is just an array of the angular offsets of each blade.
ΞΈs = 2*pi/ccbc.num_blades.*(0:(ccbc.num_blades-1))
# Need the kinematic viscosity.
# nus = getproperty.(ops, :mu) ./ getproperty.(ops, :rho)
# Also need the velocity in each direction.
if positive_x_rotation
vn = @. -W*sin(phi)
vr = zeros(eltype(vn), length(vn))
vc = @. -W*cos(phi)
else
vn = @. -W*sin(phi)
vr = zeros(eltype(vn), length(vn))
vc = @. W*cos(phi)
end
# Reshape stuff for broadcasting.
ΞΈs_rs = reshape(ΞΈs, 1, 1, :)
# Get all the transformations.
trans = compose.(src_times, Ref(const_vel_trans), Ref(rot_trans))
# Transform the source elements.
ses = TipVortexSourceElement.(ccbc.c0, ccbc.radii[end], ΞΈs_rs, dradii[end], sections[end].chord, sections[end].theta, vn[end], vr[end], vc[end], src_times, dt, Ref(bl), Ref(blade_tip), positive_x_rotation) .|> trans
# Now check that we got the same thing.
for field in fieldnames(TipVortexSourceElement)
if !(field in (:bl, :blade_tip))
@test all(getproperty.(ses_helper, field) .β getproperty.(ses, field))
end
end
end
end
@testset "CombinedNoTipBroadbandSourceElement twist and rotation tests" begin
# So, the way this should work: first do the twist, then do the theta rotation.
# The twist could be either about the positive y axis or negative y axis.
# Then the theta rotation is always about the x axis.
c0 = 1.1
nu = 1.2
r = 2.0
Ξr = 0.1
chord = 1.3
vn = 2.0
vr = 3.0
vc = 4.0
Ο = 0.1
ΞΟ = 0.02
h = 0.1
Psi = 0.2
bl = 2.0 # should be a boundary layer struct, but doesn't matter for these tests.
for twist_about_positive_y in [true, false]
se_0twist0theta = CombinedNoTipBroadbandSourceElement(c0, nu, r, 0.0, Ξr, chord, 0.0, h, Psi, vn, vr, vc, Ο, ΞΟ, bl, twist_about_positive_y)
for ΞΈ in [5, 10, 65, 95, 260, 270, 290].*(pi/180)
trans_theta = KinematicCoordinateTransformations.SteadyRotXTransformation(Ο, 0.0, -ΞΈ)
for Ο in [5, 10, 65, 95, 260, 270, 290].*(pi/180)
# The angle of attack depends on the twist and the fluid velocity
if twist_about_positive_y
alpha_check = Ο - atan(-vn, -vc)
else
alpha_check = Ο - atan(-vn, vc)
end
se = CombinedNoTipBroadbandSourceElement(c0, nu, r, ΞΈ, Ξr, chord, Ο, h, Psi, vn, vr, vc, Ο, ΞΟ, bl, twist_about_positive_y) |> trans_theta
# Adjust the angles of attack to always be between -pi and pi.
alpha_check = rem2pi(alpha_check+pi, RoundNearest) - pi
alpha = rem2pi(AcousticAnalogies.angle_of_attack(se)+pi, RoundNearest) - pi
@test alpha β alpha_check
for field in fieldnames(CombinedNoTipBroadbandSourceElement)
# The twist changes the unit vector in the chord direction, but nothing else, so ignore that for now.
if field != :chord_uvec
@test getproperty(se, field) β getproperty(se_0twist0theta, field)
end
end
if twist_about_positive_y
# If we're applying the twist about the positive y axis, then we need to do a negative rotation about the y axis to undo it.
trans_phi = KinematicCoordinateTransformations.SteadyRotYTransformation(Ο, 0.0, -Ο)
chord_uvec_check = @SVector [0.0, 0.0, -1.0]
else
# If we're applying the twist about the negative y axis, then we need to do a positive rotation about the y axis to undo it.
trans_phi = KinematicCoordinateTransformations.SteadyRotYTransformation(Ο, 0.0, Ο)
chord_uvec_check = @SVector [0.0, 0.0, 1.0]
end
se_no_twist = se |> trans_phi
@test se_no_twist.chord_uvec β chord_uvec_check
end
end
end
end
@testset "CombinedNoTipBroadbandSourceElement twist and rotation tests, CCBlade" begin
# Create the CCBlade objects.
Ο = 0.1
ΞΟ = 0.02
h = 0.1
Psi = 0.2
bl = AcousticAnalogies.UntrippedN0012BoundaryLayer()
# ccblade_fname = joinpath(@__DIR__, "gen_test_data", "gen_ccblade_data", "ccblade_omega11.jld2")
# out, section_loaded, Ξr, op, rotor0precone = nothing, nothing, nothing, nothing, nothing
# jldopen(ccblade_fname, "r") do f
# out = f["outs"][1]
# section_loaded = f["sections"][1]
# Ξr = f["sections"][2].r - f["sections"][1].r
# op = f["ops"][1]
# rotor0precone = f["rotor"]
# @test rotor0precone.precone β 0.0
# end
ccblade_fname = joinpath(@__DIR__, "gen_test_data", "gen_ccblade_data", "ccblade_omega11-outputs.jld2")
outs_d = load(ccblade_fname)
section_loaded = CCBlade.Section(first(ccbc.radii), first(ccbc.chord), first(ccbc.theta)*pi/180, nothing)
Ξr = ccbc.radii[2] - ccbc.radii[1]
op = CCBlade.OperatingPoint(ccbc.v, outs_d["omega"]*first(ccbc.radii), ccbc.rho, ccbc.pitch, ccbc.mu, ccbc.c0)
rotor0precone = CCBlade.Rotor(ccbc.Rhub, ccbc.Rtip, ccbc.num_blades)
out = CCBlade.Outputs(outs_d["Np"][1], outs_d["Tp"][1], outs_d["a"][1], outs_d["ap"][1], outs_d["u"][1], outs_d["v"][1], outs_d["phi"][1], outs_d["alpha"][1], outs_d["W"][1], outs_d["cl"][1], outs_d["cd"][1], outs_d["cn"][1], outs_d["ct"][1], outs_d["F"][1], outs_d["G"][1])
@test rotor0precone.precone β 0.0
for positive_x_rotation in [true, false]
for twist in [5, 10, 65, 95, 260, 270, 290].*(pi/180)
section = CCBlade.Section(section_loaded.r, section_loaded.chord, twist, section_loaded.af)
se_0theta0precone = CombinedNoTipBroadbandSourceElement(rotor0precone, section, op, out, 0.0, Ξr, h, Psi, Ο, ΞΟ, bl, positive_x_rotation)
for precone in [5, 10, 65, 95, 260, 270, 290].*(pi/180)
rotor = CCBlade.Rotor(rotor0precone.Rhub, rotor0precone.Rtip, rotor0precone.B; turbine=rotor0precone.turbine, precone=precone)
# This is tricky: in my "normal" coordinate system, the blade is rotating around the x axis, moving axially in the positive x direction, and is initially aligned with the y axis.
# That means that the precone should be a rotation around the negative z axis.
# And so to undo it, we want a positive rotation around the positive z axis.
trans_precone = KinematicCoordinateTransformations.SteadyRotZTransformation(Ο, 0.0, precone)
for ΞΈ in [5, 10, 65, 95, 260, 270, 290].*(pi/180)
trans_theta = KinematicCoordinateTransformations.SteadyRotXTransformation(Ο, 0.0, -ΞΈ)
# Create a transformation that reverses the theta and precone rotations.
# The precone happens first, then theta.
# So to reverse it we need to do theta, then precone.
trans = KinematicCoordinateTransformations.compose(Ο, trans_precone, trans_theta)
# Create a source element with the theta and precone rotations, then undo it.
se = CombinedNoTipBroadbandSourceElement(rotor, section, op, out, ΞΈ, Ξr, h, Psi, Ο, ΞΟ, bl, positive_x_rotation) |> trans
# Check that we got the same thing:
for field in fieldnames(CombinedNoTipBroadbandSourceElement)
# The twist changes the unit vector in the chord direction, but nothing else, so ignore that for now.
if !(field in (:chord_uvec, :bl))
@test getproperty(se, field) β getproperty(se_0theta0precone, field)
end
end
if positive_x_rotation
# If we're doing a positive-x rotation, we're applying the twist about the positive y axis.
# If we're applying the twist about the positive y axis, then we need to do a negative rotation about the y axis to undo it.
trans_phi = KinematicCoordinateTransformations.SteadyRotYTransformation(Ο, 0.0, -twist)
chord_uvec_check = @SVector [0.0, 0.0, -1.0]
else
# If we're doing a negative-x rotation, we're applying the twist about the negative y axis.
# If we're applying the twist about the negative y axis, then we need to do a positive rotation about the y axis to undo it.
trans_phi = KinematicCoordinateTransformations.SteadyRotYTransformation(Ο, 0.0, twist)
chord_uvec_check = @SVector [0.0, 0.0, 1.0]
end
se_no_twist = se |> trans_phi
@test se_no_twist.chord_uvec β chord_uvec_check
end
end
end
end
end
@testset "CombinedWithTipBroadbandSourceElement twist and rotation tests" begin
# So, the way this should work: first do the twist, then do the theta rotation.
# The twist could be either about the positive y axis or negative y axis.
# Then the theta rotation is always about the x axis.
c0 = 1.1
nu = 1.2
r = 2.0
Ξr = 0.1
chord = 1.3
vn = 2.0
vr = 3.0
vc = 4.0
Ο = 0.1
ΞΟ = 0.02
h = 0.1
Psi = 0.2
bl = 2.0 # should be a boundary layer struct, but doesn't matter for these tests.
blade_tip = 3.0 # should be a blade tip struct, but doesn't matter for these tests.
for twist_about_positive_y in [true, false]
se_0twist0theta = CombinedWithTipBroadbandSourceElement(c0, nu, r, 0.0, Ξr, chord, 0.0, h, Psi, vn, vr, vc, Ο, ΞΟ, bl, blade_tip, twist_about_positive_y)
for ΞΈ in [5, 10, 65, 95, 260, 270, 290].*(pi/180)
trans_theta = KinematicCoordinateTransformations.SteadyRotXTransformation(Ο, 0.0, -ΞΈ)
for Ο in [5, 10, 65, 95, 260, 270, 290].*(pi/180)
# The angle of attack depends on the twist and the fluid velocity
if twist_about_positive_y
alpha_check = Ο - atan(-vn, -vc)
else
alpha_check = Ο - atan(-vn, vc)
end
se = CombinedWithTipBroadbandSourceElement(c0, nu, r, ΞΈ, Ξr, chord, Ο, h, Psi, vn, vr, vc, Ο, ΞΟ, bl, blade_tip, twist_about_positive_y) |> trans_theta
# Adjust the angles of attack to always be between -pi and pi.
alpha_check = rem2pi(alpha_check+pi, RoundNearest) - pi
alpha = rem2pi(AcousticAnalogies.angle_of_attack(se)+pi, RoundNearest) - pi
@test alpha β alpha_check
for field in fieldnames(CombinedWithTipBroadbandSourceElement)
# The twist changes the unit vector in the chord direction, but nothing else, so ignore that for now.
if field != :chord_uvec
@test getproperty(se, field) β getproperty(se_0twist0theta, field)
end
end
if twist_about_positive_y
# If we're applying the twist about the positive y axis, then we need to do a negative rotation about the y axis to undo it.
trans_phi = KinematicCoordinateTransformations.SteadyRotYTransformation(Ο, 0.0, -Ο)
chord_uvec_check = @SVector [0.0, 0.0, -1.0]
else
# If we're applying the twist about the negative y axis, then we need to do a positive rotation about the y axis to undo it.
trans_phi = KinematicCoordinateTransformations.SteadyRotYTransformation(Ο, 0.0, Ο)
chord_uvec_check = @SVector [0.0, 0.0, 1.0]
end
se_no_twist = se |> trans_phi
@test se_no_twist.chord_uvec β chord_uvec_check
end
end
end
end
@testset "CombinedWithTipBroadbandSourceElement twist and rotation tests, CCBlade" begin
# Create the CCBlade objects.
Ο = 0.1
ΞΟ = 0.02
h = 0.1
Psi = 0.2
bl = AcousticAnalogies.UntrippedN0012BoundaryLayer()
blade_tip = AcousticAnalogies.RoundedTip()
# ccblade_fname = joinpath(@__DIR__, "gen_test_data", "gen_ccblade_data", "ccblade_omega11.jld2")
# out, section_loaded, Ξr, op, rotor0precone = nothing, nothing, nothing, nothing, nothing
# jldopen(ccblade_fname, "r") do f
# out = f["outs"][1]
# section_loaded = f["sections"][1]
# Ξr = f["sections"][2].r - f["sections"][1].r
# op = f["ops"][1]
# rotor0precone = f["rotor"]
# @test rotor0precone.precone β 0.0
# end
ccblade_fname = joinpath(@__DIR__, "gen_test_data", "gen_ccblade_data", "ccblade_omega11-outputs.jld2")
outs_d = load(ccblade_fname)
section_loaded = CCBlade.Section(first(ccbc.radii), first(ccbc.chord), first(ccbc.theta)*pi/180, nothing)
Ξr = ccbc.radii[2] - ccbc.radii[1]
op = CCBlade.OperatingPoint(ccbc.v, outs_d["omega"]*first(ccbc.radii), ccbc.rho, ccbc.pitch, ccbc.mu, ccbc.c0)
rotor0precone = CCBlade.Rotor(ccbc.Rhub, ccbc.Rtip, ccbc.num_blades)
out = CCBlade.Outputs(outs_d["Np"][1], outs_d["Tp"][1], outs_d["a"][1], outs_d["ap"][1], outs_d["u"][1], outs_d["v"][1], outs_d["phi"][1], outs_d["alpha"][1], outs_d["W"][1], outs_d["cl"][1], outs_d["cd"][1], outs_d["cn"][1], outs_d["ct"][1], outs_d["F"][1], outs_d["G"][1])
@test rotor0precone.precone β 0.0
for positive_x_rotation in [true, false]
for twist in [5, 10, 65, 95, 260, 270, 290].*(pi/180)
section = CCBlade.Section(section_loaded.r, section_loaded.chord, twist, section_loaded.af)
se_0theta0precone = CombinedWithTipBroadbandSourceElement(rotor0precone, section, op, out, 0.0, Ξr, h, Psi, Ο, ΞΟ, bl, blade_tip, positive_x_rotation)
for precone in [5, 10, 65, 95, 260, 270, 290].*(pi/180)
rotor = CCBlade.Rotor(rotor0precone.Rhub, rotor0precone.Rtip, rotor0precone.B; turbine=rotor0precone.turbine, precone=precone)
# This is tricky: in my "normal" coordinate system, the blade is rotating around the x axis, moving axially in the positive x direction, and is initially aligned with the y axis.
# That means that the precone should be a rotation around the negative z axis.
# And so to undo it, we want a positive rotation around the positive z axis.
trans_precone = KinematicCoordinateTransformations.SteadyRotZTransformation(Ο, 0.0, precone)
for ΞΈ in [5, 10, 65, 95, 260, 270, 290].*(pi/180)
trans_theta = KinematicCoordinateTransformations.SteadyRotXTransformation(Ο, 0.0, -ΞΈ)
# Create a transformation that reverses the theta and precone rotations.
# The precone happens first, then theta.
# So to reverse it we need to do theta, then precone.
trans = KinematicCoordinateTransformations.compose(Ο, trans_precone, trans_theta)
# Create a source element with the theta and precone rotations, then undo it.
se = CombinedWithTipBroadbandSourceElement(rotor, section, op, out, ΞΈ, Ξr, h, Psi, Ο, ΞΟ, bl, blade_tip, positive_x_rotation) |> trans
# Check that we got the same thing:
for field in fieldnames(CombinedWithTipBroadbandSourceElement)
# The twist changes the unit vector in the chord direction, but nothing else, so ignore that for now.
if !(field in (:chord_uvec, :bl, :blade_tip))
@test getproperty(se, field) β getproperty(se_0theta0precone, field)
end
end
if positive_x_rotation
# If we're doing a positive-x rotation, we're applying the twist about the positive y axis.
# If we're applying the twist about the positive y axis, then we need to do a negative rotation about the y axis to undo it.
trans_phi = KinematicCoordinateTransformations.SteadyRotYTransformation(Ο, 0.0, -twist)
chord_uvec_check = @SVector [0.0, 0.0, -1.0]
else
# If we're doing a negative-x rotation, we're applying the twist about the negative y axis.
# If we're applying the twist about the negative y axis, then we need to do a positive rotation about the y axis to undo it.
trans_phi = KinematicCoordinateTransformations.SteadyRotYTransformation(Ο, 0.0, twist)
chord_uvec_check = @SVector [0.0, 0.0, 1.0]
end
se_no_twist = se |> trans_phi
@test se_no_twist.chord_uvec β chord_uvec_check
end
end
end
end
end
@testset "CCBlade combined broadband source elements complete test" begin
for positive_x_rotation in [true, false]
omega = 2200*(2*pi/60)
# Create the CCBlade objects.
rotor = Rotor(ccbc.Rhub, ccbc.Rtip, ccbc.num_blades; turbine=false)
sections = Section.(ccbc.radii, ccbc.chord, ccbc.theta, nothing)
ops = simple_op.(ccbc.v, omega, ccbc.radii, ccbc.rho; asound=ccbc.c0)
# What actually matters in the output structs are just W and phi.
phi = range(45.0, 10.0; length=length(sections)) .* (pi/180)
W = range(10.0, 11.0; length=length(sections))
outs = Outputs.(0.0, 0.0, 0.0, 0.0, 0.0, 0.0, phi, 0.0, W, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
# Set the source time stuff.
num_blade_passes = 3
steps_per_blade_pass = 8
num_src_times = num_blade_passes*steps_per_blade_pass
bpp = 2*pi/omega/ccbc.num_blades
src_time_range = num_blade_passes*bpp
# Finally get all the source elements.
# bls = [AcousticAnalogies.TrippedN0012BoundaryLayer()]
# bl = AcousticAnalogies.TrippedN0012BoundaryLayer()
# bls = Fill(AcousticAnalogies.TrippedN0012BoundaryLayer(), num_radial)
bls = fill(AcousticAnalogies.TrippedN0012BoundaryLayer(), length(sections))
hs = range(0.1, 0.2; length=length(sections))
Psis = range(0.2, 0.3; length=length(sections))
blade_tip = AcousticAnalogies.RoundedTip()
ses_no_tip_helper, ses_with_tip_helper = combined_broadband_source_elements_ccblade(rotor, sections, ops, outs, hs, Psis, bls, blade_tip, src_time_range, num_src_times, positive_x_rotation)
# Now need to get the source elements the "normal" way.
# First get the transformation objects.
rot_axis = @SVector [1.0, 0.0, 0.0]
blade_axis = @SVector [0.0, 1.0, 0.0]
y0_hub = @SVector [0.0, 0.0, 0.0] # m
v0_hub = ccbc.v.*rot_axis
t0 = 0.0
if positive_x_rotation
rot_trans = KinematicCoordinateTransformations.SteadyRotXTransformation(t0, omega, 0.0)
else
rot_trans = KinematicCoordinateTransformations.SteadyRotXTransformation(t0, -omega, 0.0)
end
const_vel_trans = KinematicCoordinateTransformations.ConstantVelocityTransformation(t0, y0_hub, v0_hub)
# Need the source times.
dt = src_time_range/num_src_times
src_times = t0 .+ (0:num_src_times-1).*dt
# This is just an array of the angular offsets of each blade.
ΞΈs = 2*pi/ccbc.num_blades.*(0:(ccbc.num_blades-1))
# Radial spacing.
dradii = get_dradii(ccbc.radii, ccbc.Rhub, ccbc.Rtip)
# Need the kinematic viscosity.
nus = getproperty.(ops, :mu) ./ getproperty.(ops, :rho)
# Also need the velocity in each direction.
if positive_x_rotation
vn = @. -W*sin(phi)
vr = zeros(eltype(vn), length(vn))
vc = @. -W*cos(phi)
else
vn = @. -W*sin(phi)
vr = zeros(eltype(vn), length(vn))
vc = @. W*cos(phi)
end
# Reshape stuff for broadcasting.
radii_rs = reshape(ccbc.radii, 1, :, 1)
dradii_rs = reshape(dradii, 1, :, 1)
phi_rs = reshape(phi, 1, :, 1)
W_rs = reshape(W, 1, :, 1)
# src_times_rs = reshape(src_times, :, 1, 1) # This isn't really necessary.
ΞΈs_rs = reshape(ΞΈs, 1, 1, :)
nus_rs = reshape(nus, 1, :, 1)
twist_rs = reshape(getproperty.(sections, :theta), 1, :, 1)
chord_rs = reshape(getproperty.(sections, :chord), 1, :, 1)
hs_rs = reshape(hs, 1, :, 1)
Psis_rs = reshape(Psis, 1, :, 1)
vn_rs = reshape(vn, 1, :, 1)
vr_rs = reshape(vr, 1, :, 1)
vc_rs = reshape(vc, 1, :, 1)
bls_rs = reshape(bls, 1, :, 1)
# Get all the transformations.
trans = compose.(src_times, Ref(const_vel_trans), Ref(rot_trans))
# Now need to split things into the with tip and no tip stuff.
radii_rs_no_tip = @view radii_rs[:, begin:end-1, :]
dradii_rs_no_tip = @view dradii_rs[:, begin:end-1, :]
phi_rs_no_tip = @view phi_rs[:, begin:end-1, :]
W_rs_no_tip = @view W_rs[:, begin:end-1, :]
nus_rs_no_tip = @view nus_rs[:, begin:end-1, :]
twist_rs_no_tip = @view twist_rs[:, begin:end-1, :]
chord_rs_no_tip = @view chord_rs[:, begin:end-1, :]
hs_rs_no_tip = @view hs_rs[:, begin:end-1, :]
Psis_rs_no_tip = @view Psis_rs[:, begin:end-1, :]
vn_rs_no_tip = @view vn_rs[:, begin:end-1, :]
vr_rs_no_tip = @view vr_rs[:, begin:end-1, :]
vc_rs_no_tip = @view vc_rs[:, begin:end-1, :]
bls_rs_no_tip = @view bls_rs[:, begin:end-1, :]
radii_rs_with_tip = @view radii_rs[:, end:end, :]
dradii_rs_with_tip = @view dradii_rs[:, end:end, :]
phi_rs_with_tip = @view phi_rs[:, end:end, :]
W_rs_with_tip = @view W_rs[:, end:end, :]
nus_rs_with_tip = @view nus_rs[:, end:end, :]
twist_rs_with_tip = @view twist_rs[:, end:end, :]
chord_rs_with_tip = @view chord_rs[:, end:end, :]
hs_rs_with_tip = @view hs_rs[:, end:end, :]
Psis_rs_with_tip = @view Psis_rs[:, end:end, :]
vn_rs_with_tip = @view vn_rs[:, end:end, :]
vr_rs_with_tip = @view vr_rs[:, end:end, :]
vc_rs_with_tip = @view vc_rs[:, end:end, :]
bls_rs_with_tip = @view bls_rs[:, end:end, :]
# Transform the source elements.
ses_no_tip = CombinedNoTipBroadbandSourceElement.(ccbc.c0, nus_rs_no_tip, radii_rs_no_tip, ΞΈs_rs, dradii_rs_no_tip, chord_rs_no_tip, twist_rs_no_tip, hs_rs_no_tip, Psis_rs_no_tip, vn_rs_no_tip, vr_rs_no_tip, vc_rs_no_tip, src_times, dt, bls_rs_no_tip, positive_x_rotation) .|> trans
ses_with_tip = CombinedWithTipBroadbandSourceElement.(ccbc.c0, nus_rs_with_tip, radii_rs_with_tip, ΞΈs_rs, dradii_rs_with_tip, chord_rs_with_tip, twist_rs_with_tip, hs_rs_with_tip, Psis_rs_with_tip, vn_rs_with_tip, vr_rs_with_tip, vc_rs_with_tip, src_times, dt, bls_rs_with_tip, Ref(blade_tip), positive_x_rotation) .|> trans
# Now check that we got the same thing.
for field in fieldnames(CombinedNoTipBroadbandSourceElement)
if !(field in (:bl,))
@test all(getproperty.(ses_no_tip_helper, field) .β getproperty.(ses_no_tip, field))
end
end
for field in fieldnames(CombinedWithTipBroadbandSourceElement)
if !(field in (:bl, :blade_tip))
@test all(getproperty.(ses_with_tip_helper, field) .β getproperty.(ses_with_tip, field))
end
end
end
end
@testset "directivity function tests" begin
# None of this stuff matters for the directivity functions.
c0 = 2.0
nu = 3.0
dr = 0.1
chord = 1.1
Ο = 0.2
dΟ = 0.01
bl = AcousticAnalogies.UntrippedN0012BoundaryLayer()
chord_cross_span_to_get_top_uvec = true
# This stuff actually matters.
# Need the fluid velocity to be zero so we can ignore the denominator.
y1dot = @SVector [0.0, 0.0, 0.0]
y1dot_fluid = @SVector [0.0, 0.0, 0.0]
y0dot = @SVector [0.0, 0.0, 0.0]
chord_uvec = [1.0, 0.0, 0.0]
span_uvec = [0.0, 1.0, 0.0]
# Create a source element.
se = AcousticAnalogies.TBLTESourceElement(c0, nu, dr, chord, y0dot, y1dot, y1dot_fluid, Ο, dΟ, span_uvec, chord_uvec, bl, chord_cross_span_to_get_top_uvec)
# Now, create an observer at different places, and check that we get the correct directivity function.
for x_er in [-5.0, -3.0, 1.5, 4.0]
for y_er in [-5.0, -3.0, 1.5, 4.0]
for z_er in [-5.0, -3.0, 1.5, 4.0]
x = @SVector [x_er, y_er, z_er]
obs = AcousticAnalogies.StationaryAcousticObserver(x)
r_er_check = sqrt(x_er^2 + y_er^2 + z_er^2)
Ξ_er = acos(x_er/r_er_check)
Ξ¦_er = acos(y_er/sqrt(y_er^2 + z_er^2))
# Observer time doesn't matter since the observer is stationary.
t_obs = 7.0
x_obs = obs(t_obs)
Dl_check = (sin(Ξ_er)^2) * (sin(Ξ¦_er)^2)
Dh_check = 2*(sin(0.5*Ξ_er)^2) * (sin(Ξ¦_er)^2)
top_is_suction = true
r_er, Dl, Dh = AcousticAnalogies.directivity(se, obs(t_obs), top_is_suction)
@test r_er β r_er_check
@test Dl β Dl_check
@test Dh β Dh_check
# Now, rotate and translate both the source and the observer.
# The directivity functions should be the same.
# Time parameter for the steady rotations doesn't matter because the rotation rate is zero.
trans1 = KinematicCoordinateTransformations.SteadyRotXTransformation(t_obs, 0.0, 3.0*pi/180)
trans2 = KinematicCoordinateTransformations.SteadyRotYTransformation(t_obs, 0.0, 4.0*pi/180)
trans3 = KinematicCoordinateTransformations.SteadyRotZTransformation(t_obs, 0.0, 5.0*pi/180)
# Time parameter for the constant velocity transformations doesn't matter because the velocity is zero.
x_trans = @SVector [2.0, 3.0, 4.0]
v_trans = @SVector [0.0, 0.0, 0.0]
trans4 = KinematicCoordinateTransformations.ConstantVelocityTransformation(t_obs, x_trans, v_trans)
# Transform the source and observer.
trans = compose(t_obs, trans4, compose(t_obs, trans3, compose(t_obs, trans2, trans1)))
se_trans = trans(se)
obs_trans = AcousticAnalogies.StationaryAcousticObserver(trans(t_obs, obs(t_obs)))
# Check that the directivity functions didn't change.
r_er, Dl, Dh = AcousticAnalogies.directivity(se_trans, obs_trans(t_obs), top_is_suction)
@test r_er β r_er_check
@test Dl β Dl_check
@test Dh β Dh_check
end
end
end
end
@testset "angle of attack test" begin
@testset "TBLTESourceElement" begin
for twist_about_positive_y in [true, false]
# None of this stuff matters for the angle of attack.
c0 = 2.0
nu = 3.0
dr = 0.1
chord = 1.1
dΟ = 0.01
r = 0.5
omega = 101.0
bl = AcousticAnalogies.UntrippedN0012BoundaryLayer()
# We'll create a random transformation to check that rotating and displacing the source doesn't change the angle of attack.
# Time parameter for the steady rotations doesn't matter because the rotation rate is zero.
Ο = 0.2
trans1 = KinematicCoordinateTransformations.SteadyRotXTransformation(Ο, 0.0, 3.0*pi/180)
trans2 = KinematicCoordinateTransformations.SteadyRotYTransformation(Ο, 0.0, 4.0*pi/180)
trans3 = KinematicCoordinateTransformations.SteadyRotZTransformation(Ο, 0.0, 5.0*pi/180)
# Time parameter for the constant velocity transformations doesn't matter because the velocity is zero.
x_trans = @SVector [2.0, 3.0, 4.0]
v_trans = @SVector [0.0, 0.0, 0.0]
trans4 = KinematicCoordinateTransformations.ConstantVelocityTransformation(Ο, x_trans, v_trans)
# Combine all the transformations into one.
trans = compose(Ο, trans4, compose(Ο, trans3, compose(Ο, trans2, trans1)))
# This stuff does matter for angle of attack.
Vx = 5.5
u = 0.1*Vx
Vy = omega*r
v = 0.05*Vy
# So, let's say I'm in the usual frame of reference: moving axially in the positive x direction, rotating about the positive x axis if `twist_about_positive_y` is `true`, negative x axis if `twist_about_positive_y` is `false`, initially aligned with the y axis.
# Then, from the perspective of the blade element, the fluid velocity in the axial direction (`x`) is `-(Vx + u)`, and the velocity in the tangential direction is `(-Vy + v)`.
#
# vr shouldn't matter at all, so check that.
for use_induction in [true, false]
for vr in [0.0, 2.1, -2.1]
for ΞΈ in [5, 10, 65, 95, 260, 270, 290].*(pi/180)
for twist in [5, 10, 65, 95, 260, 270, 290].*(pi/180)
for vn_sign in [1, -1]
for vc_sign in [1, -1]
vn = -(Vx + u)*vn_sign
vc = (-Vy + v)*vc_sign
se = AcousticAnalogies.TBLTESourceElement{AcousticAnalogies.BrooksBurleyDirectivity,use_induction,AcousticAnalogies.NoMachCorrection,true}(c0, nu, r, ΞΈ, dr, chord, twist, vn, vr, vc, Ο, dΟ, bl, twist_about_positive_y)
# And then the angle of attack will be `twist - atan(-vn, -vc)`, where `twist` is the twist of the blade, `vn` is the velocity in the axial direction, and `vc` is the velocity in the circumferential/tangential direction.
# But we need to switch the direction of the velocity vector, since I'm thinking of them in opposite directions (eg the angle of attack is zero when the velocity and chordwise vector from trailing edge to leading edge are exactly opposite).
# The rem2pi will give us back an equivalent angle in the interval [-Ο, Ο].
if twist_about_positive_y
# If the twist is about the positive y axis, then the assumption is that the twist and velocity angles are zero when they are aligned with positive z axis.
# In the "usual" operation, the axial component of the blade-fixed frame velocity will be in the negative x direction, and the circumferential component of the blade-fixed frame velocity will be in the negative z direction.
# So we need to switch both of those signs to get the correct angle.
angle_of_attack_check = rem2pi(twist - atan(-vn, -vc), RoundNearest)
else
# If the twist is about the negative y axis, then the assumption is the twist and velocity angles are zero when they are aligned with the negative z axis.
# In then "usual" operation, the axial component of the blade-fixed frame velocity will be in the negative x direction, and the circumferential component of the blade fixed frame velocity will be in the positive z direction.
# So we need to switch the sign of the axial component, but not the circumferential.
angle_of_attack_check = rem2pi(twist - atan(-vn, vc), RoundNearest)
end
@test AcousticAnalogies.angle_of_attack(se) β angle_of_attack_check
if use_induction
# Flow speed normal to span, including induction:
U_check = sqrt(vn^2 + vc^2)
else
# Flow speed normal to span, not including induction:
U_check = sqrt(Vx^2 + Vy^2)
end
if use_induction
# If we're including induction in the flow speed normal to span calculation, we can check it now.
@test AcousticAnalogies.speed_normal_to_span(se) β U_check
end
# Apply the random transformation we created.
se_trans = trans(se)
# Make sure we get the same angle of attack as before.
@test AcousticAnalogies.angle_of_attack(se_trans) β angle_of_attack_check
# Now, instead of doing a transformation that just displaces the source element, let's do one that changes the velocity.
# So, how are we going to transform the source element into the fluid frame?
# Well, first we say we're rotating around the x axix at a rate Ο or -Ο, depending on the value of `twist_about_positive_y`
# Oh, but wait.
# We're switching the sign.
# Hmm... what to do about that?
# Well, the definition of the fluid frame is one that has the "freestream velocity" as zero.
# So that, I think, means we need to remove the axial and circumferential (rotational) velocity.
# So remove Vx and Vy.
# I should be able to do that.
# So, first, let's think about getting rid of Vy.
# If we rotate about the positive x axis, then that will increase the velocity in the z direction (since the blade is initially aligned with the y axis).
# If we rotate about the negative x axis, then that will decrease the velocity in the z direction (again, since the blade is initially aligned with the y axis).
# OK, then.
trans_rot = KinematicCoordinateTransformations.SteadyRotXTransformation(Ο, omega*vc_sign, 0.0)
# Now, for the x velocity, we just want to remove the Vx.
x0 = @SVector [0.0, 0.0, 0.0]
v0 = @SVector [Vx*vn_sign, 0.0, 0.0]
trans_freestream = KinematicCoordinateTransformations.ConstantVelocityTransformation(Ο, x0, v0)
# Now compose the two transformations, and apply them to the source element.
trans_global = compose(Ο, trans_freestream, trans_rot)
se_global = trans_global(se)
# The angle of attack should be the same.
@test AcousticAnalogies.angle_of_attack(se_global) β angle_of_attack_check
# Also, we should know what the source element and fluid velocities are, right?
y1dot_check = @SVector [Vx*vn_sign, Vy*vc_sign*(-sin(ΞΈ)), Vy*vc_sign*(cos(ΞΈ))]
y1dot_fluid_check = @SVector [-u*vn_sign, vr*cos(ΞΈ) + v*vc_sign*(-sin(ΞΈ)), vr*sin(ΞΈ) + v*vc_sign*(cos(ΞΈ))]
@test se_global.y1dot β y1dot_check
@test se_global.y1dot_fluid β y1dot_fluid_check
# The flow speed normal to span, including induction or not, shouldn't have changed, so check that.
@test AcousticAnalogies.speed_normal_to_span(se_global) β U_check
end
end
end
end
end
end
end
end
@testset "TBLTESourceElement, CCBlade" begin
# Create the CCBlade objects.
Ο = 0.1
ΞΟ = 0.02
bl = AcousticAnalogies.UntrippedN0012BoundaryLayer()
# ccblade_fname = joinpath(@__DIR__, "gen_test_data", "gen_ccblade_data", "ccblade_omega11.jld2")
# out, section, Ξr, op, rotor = nothing, nothing, nothing, nothing, nothing
# jldopen(ccblade_fname, "r") do f
# out = f["outs"][1]
# section = f["sections"][1]
# Ξr = f["sections"][2].r - f["sections"][1].r
# op = f["ops"][1]
# rotor = f["rotor"]
# @test rotor.precone β 0.0
# @test op.pitch β 0.0
# end
ccblade_fname = joinpath(@__DIR__, "gen_test_data", "gen_ccblade_data", "ccblade_omega11-outputs.jld2")
outs_d = load(ccblade_fname)
section = CCBlade.Section(first(ccbc.radii), first(ccbc.chord), first(ccbc.theta)*pi/180, nothing)
Ξr = ccbc.radii[2] - ccbc.radii[1]
op = CCBlade.OperatingPoint(ccbc.v, outs_d["omega"]*first(ccbc.radii), ccbc.rho, ccbc.pitch, ccbc.mu, ccbc.c0)
rotor = CCBlade.Rotor(ccbc.Rhub, ccbc.Rtip, ccbc.num_blades)
out = CCBlade.Outputs(outs_d["Np"][1], outs_d["Tp"][1], outs_d["a"][1], outs_d["ap"][1], outs_d["u"][1], outs_d["v"][1], outs_d["phi"][1], outs_d["alpha"][1], outs_d["W"][1], outs_d["cl"][1], outs_d["cd"][1], outs_d["cn"][1], outs_d["ct"][1], outs_d["F"][1], outs_d["G"][1])
@test rotor.precone β 0.0
@test op.pitch β 0.0
for positive_x_rotation in [true, false]
for ΞΈ in [5, 10, 65, 95, 260, 270, 290].*(pi/180)
se = AcousticAnalogies.TBLTESourceElement(rotor, section, op, out, ΞΈ, Ξr, Ο, ΞΟ, bl, positive_x_rotation)
# The `chord_uvec` vector points from leading edge to trailing edge.
# So we should be able to use that to figure out the angle it makes with the tangential/rotation direction.
# The tangential/rotation direction can be found by crossing the the rotation axis with the position vector.
# Then I can dot the chord with that direction, and the forward velocity axis, then use the arctan function to get the angle.
if positive_x_rotation
rot_axis = @SVector [1, 0, 0]
else
rot_axis = @SVector [-1, 0, 0]
end
tan_axis_tmp = cross(rot_axis, se.y0dot)
tan_axis = tan_axis_tmp / norm(tan_axis_tmp)
forward_axis = @SVector [1, 0, 0]
# I'm visualizing the chord vector as going from trailing edge to leading edge, but it's leading edge to trailing edge in the TBLTESourceElement struct, so switch that.
te_to_le = -se.chord_uvec
twist_check = atan(dot(te_to_le, forward_axis), dot(te_to_le, tan_axis))
@test twist_check β section.theta
# The angle of attack that AcousticAnalogies.jl calculates should match what CCBlade.jl has.
@test AcousticAnalogies.angle_of_attack(se) β out.alpha
# Now, rotate and translate the source, which shouldn't change the twist or angle of attack, as long as we don't do anything that would change the velocity.
# Time parameter for the steady rotations doesn't matter because the rotation rate is zero.
trans1 = KinematicCoordinateTransformations.SteadyRotXTransformation(Ο, 0.0, 3.0*pi/180)
trans2 = KinematicCoordinateTransformations.SteadyRotYTransformation(Ο, 0.0, 4.0*pi/180)
trans3 = KinematicCoordinateTransformations.SteadyRotZTransformation(Ο, 0.0, 5.0*pi/180)
# Time parameter for the constant velocity transformations doesn't matter because the velocity is zero.
x_trans = @SVector [2.0, 3.0, 4.0]
v_trans = @SVector [0.0, 0.0, 0.0]
trans4 = KinematicCoordinateTransformations.ConstantVelocityTransformation(Ο, x_trans, v_trans)
# Transform the source.
trans = compose(Ο, trans4, compose(Ο, trans3, compose(Ο, trans2, trans1)))
se_trans = trans(se)
# Angle of attack should still be the same.
@test AcousticAnalogies.angle_of_attack(se_trans) β out.alpha
# It'd be nice to check the twist too, but if that was wrong, the angle of attack would be wrong too.
# And there are other tests already for `chord_uvec`.
# Could I put the source element in the "fluid/global" frame now?
# I'd need to know the forward velocity and rotation rate.
# Well, the forward velocity would be Vx.
Vx = op.Vx
# And the rotation rate would be Vy/r.
omega = op.Vy / section.r
# Now, need to undo the rotation, which depends on `positive_x_rotation`.
if positive_x_rotation
# If we're rotating about the positive x axis, need to apply a rotation around the negative x axis to undo it.
trans_rot = KinematicCoordinateTransformations.SteadyRotXTransformation(Ο, -omega, 0.0)
else
# If we're rotating about the negative x axis, need to apply a rotation around the positive x axis to undo it.
trans_rot = KinematicCoordinateTransformations.SteadyRotXTransformation(Ο, omega, 0.0)
end
# Now, I'm assuming that the freestream/axial velocity is in the -x direction, so to undo that, move it in the positive x direction.
x0 = @SVector [0.0, 0.0, 0.0]
v0 = @SVector [Vx, 0.0, 0.0]
trans_freestream = KinematicCoordinateTransformations.ConstantVelocityTransformation(Ο, x0, v0)
# Now compose the two transformations, and apply them to the original source element.
trans_global = compose(Ο, trans_freestream, trans_rot)
se_global = trans_global(se)
# The angle of attack should be the same.
@test AcousticAnalogies.angle_of_attack(se_global) β out.alpha
end
end
end
end
@testset "BPM Report tests" begin
@testset "BPM Figure 11a" begin
nu = 1.4529e-5 # kinematic viscosity, m^2/s
L = 45.72e-2 # span in meters
chord = 30.48e-2 # chord in meters
U = 71.3 # freestream velocity in m/s
M = 0.209 # Mach number, corresponds to U = 71.3 m/s in BPM report
r_e = 1.22 # radiation distance in meters
ΞΈ_e = 90*pi/180
Ξ¦_e = 90*pi/180
M_c = 0.8*M
alphastar = 0.0
bl = AcousticAnalogies.TrippedN0012BoundaryLayer()
# Now, need to get the data from the BPM report.
fname = joinpath(@__DIR__, "bpm_data", "brooks_airfoil_self_noise_and_prediction_1989", "19890016302-figure11-a-TBL-TE-suction.csv")
bpm = DelimitedFiles.readdlm(fname, ',')
f_s = bpm[:, 1] # This is in kHz.
SPL_s = bpm[:, 2]
# At zero angle of attack the pressure and suction side predictions are the same.
f_p = f_s
SPL_p = SPL_s
for angle_of_attack_sign in [1, -1]
for use_Ualpha in [false, true]
freqs, SPL_s_jl, SPL_p_jl, SPL_alpha_jl = calculate_bpm_test(nu, L, chord, U, M, r_e, ΞΈ_e, Ξ¦_e, angle_of_attack_sign*alphastar, bl; use_Ualpha=use_Ualpha)
# Now compare...
SPL_s_jl_interp = linear(freqs, SPL_s_jl, f_s.*1e3)
vmin, vmax = extrema(SPL_s)
err = abs.(SPL_s_jl_interp .- SPL_s)./(vmax - vmin)
@test maximum(err) < 0.029
SPL_p_jl_interp = linear(freqs, SPL_p_jl, f_p.*1e3)
vmin, vmax = extrema(SPL_p)
err = abs.(SPL_p_jl_interp .- SPL_p)./(vmax - vmin)
@test maximum(err) < 0.029
# These should all be very negative, since alphastar is zero:
@test all(SPL_alpha_jl .< -100)
end
end
end
@testset "BPM Figure 11d" begin
nu = 1.4529e-5 # kinematic viscosity, m^2/s
L = 45.72e-2 # span in meters
chord = 30.48e-2 # chord in meters
U = 31.7 # freestream velocity in m/s
M = 0.093 # Mach number, corresponds to U = 31.7 m/s in BPM report
r_e = 1.22 # radiation distance in meters
ΞΈ_e = 90*pi/180
Ξ¦_e = 90*pi/180
alphastar = 0.0
bl = AcousticAnalogies.TrippedN0012BoundaryLayer()
# Now, need to get the data from the BPM report.
fname = joinpath(@__DIR__, "bpm_data", "brooks_airfoil_self_noise_and_prediction_1989", "19890016302-figure11-d-TBL-TE-suction.csv")
bpm = DelimitedFiles.readdlm(fname, ',')
f_s = bpm[:, 1] # This is in kHz.
SPL_s = bpm[:, 2]
# At zero angle of attack the pressure and suction side predictions are the same.
f_p = f_s
SPL_p = SPL_s
for angle_of_attack_sign in [1, -1]
for use_Ualpha in [false, true]
freqs, SPL_s_jl, SPL_p_jl, SPL_alpha_jl = calculate_bpm_test(nu, L, chord, U, M, r_e, ΞΈ_e, Ξ¦_e, angle_of_attack_sign*alphastar, bl; use_Ualpha=use_Ualpha)
# Now compare...
SPL_s_jl_interp = linear(freqs, SPL_s_jl, f_s.*1e3)
vmin, vmax = extrema(SPL_s)
err = abs.(SPL_s_jl_interp .- SPL_s)./(vmax - vmin)
@test maximum(err) < 0.015
SPL_p_jl_interp = linear(freqs, SPL_p_jl, f_p.*1e3)
vmin, vmax = extrema(SPL_p)
err = abs.(SPL_p_jl_interp .- SPL_p)./(vmax - vmin)
@test maximum(err) < 0.015
# These should all be very negative, since alphastar is zero:
@test all(SPL_alpha_jl .< -100)
end
end
end
@testset "BPM Figure 12a" begin
nu = 1.4529e-5 # kinematic viscosity, m^2/s
L = 45.72e-2 # span in meters
chord = 30.48e-2 # chord in meters
U = 71.3 # freestream velocity in m/s
M = 0.209 # Mach number, corresponds to U = 71.3 m/s in BPM report
r_e = 1.22 # radiation distance in meters
ΞΈ_e = 90*pi/180
Ξ¦_e = 90*pi/180
alphastar = 1.5*pi/180
bl = AcousticAnalogies.TrippedN0012BoundaryLayer()
# Now, need to get the data from the BPM report.
fname = joinpath(@__DIR__, "bpm_data", "brooks_airfoil_self_noise_and_prediction_1989", "19890016302-figure12-U71.3-TBL-TE-suction.csv")
bpm = DelimitedFiles.readdlm(fname, ',')
f_s = bpm[:, 1]
SPL_s = bpm[:, 2]
fname = joinpath(@__DIR__, "bpm_data", "brooks_airfoil_self_noise_and_prediction_1989", "19890016302-figure12-U71.3-TBL-TE-pressure.csv")
bpm = DelimitedFiles.readdlm(fname, ',')
f_p = bpm[:, 1]
SPL_p = bpm[:, 2]
fname = joinpath(@__DIR__, "bpm_data", "brooks_airfoil_self_noise_and_prediction_1989", "19890016302-figure12-U71.3-separation.csv")
bpm = DelimitedFiles.readdlm(fname, ',')
f_alpha = bpm[:, 1]
SPL_alpha = bpm[:, 2]
for angle_of_attack_sign in [1, -1]
for use_Ualpha in [false, true]
freqs, SPL_s_jl, SPL_p_jl, SPL_alpha_jl = calculate_bpm_test(nu, L, chord, U, M, r_e, ΞΈ_e, Ξ¦_e, angle_of_attack_sign*alphastar, bl; use_Ualpha=use_Ualpha)
# Now compare...
SPL_s_jl_interp = linear(freqs, SPL_s_jl, f_s.*1e3)
vmin, vmax = extrema(SPL_s)
err = abs.(SPL_s_jl_interp .- SPL_s)./(vmax - vmin)
@test maximum(err) < 0.022
SPL_p_jl_interp = linear(freqs, SPL_p_jl, f_p.*1e3)
vmin, vmax = extrema(SPL_p)
err = abs.(SPL_p_jl_interp .- SPL_p)./(vmax - vmin)
@test maximum(err) < 0.017
SPL_alpha_jl_interp = linear(freqs, SPL_alpha_jl, f_alpha.*1e3)
vmin, vmax = extrema(SPL_alpha)
err = abs.(SPL_alpha_jl_interp .- SPL_alpha)./(vmax - vmin)
@test maximum(err) < 0.037
end
end
end
@testset "BPM Figure 26a" begin
nu = 1.4529e-5 # kinematic viscosity, m^2/s
L = 45.72e-2 # span in meters
chord = 10.16e-2 # chord in meters
U = 71.3 # freestream velocity in m/s
M = 0.209 # Mach number, corresponds to U = 71.3 m/s in BPM report
r_e = 1.22 # radiation distance in meters
ΞΈ_e = 90*pi/180
Ξ¦_e = 90*pi/180
alphastar = 0.0
bl = AcousticAnalogies.TrippedN0012BoundaryLayer()
# Now, need to get the data from the BPM report.
fname = joinpath(@__DIR__, "bpm_data", "brooks_airfoil_self_noise_and_prediction_1989", "19890016302-figure26-a-TBL-TE-suction.csv")
bpm = DelimitedFiles.readdlm(fname, ',')
f_s = bpm[:, 1]
SPL_s = bpm[:, 2]
# At zero angle of attack the pressure and suction side predictions are the same.
f_p = f_s
SPL_p = SPL_s
for angle_of_attack_sign in [1, -1]
for use_Ualpha in [false, true]
freqs, SPL_s_jl, SPL_p_jl, SPL_alpha_jl = calculate_bpm_test(nu, L, chord, U, M, r_e, ΞΈ_e, Ξ¦_e, angle_of_attack_sign*alphastar, bl; use_Ualpha=use_Ualpha)
# Now compare...
SPL_s_jl_interp = linear(freqs, SPL_s_jl, f_s.*1e3)
vmin, vmax = extrema(SPL_s)
err = abs.(SPL_s_jl_interp .- SPL_s)./(vmax - vmin)
@test maximum(err) < 0.015
SPL_p_jl_interp = linear(freqs, SPL_p_jl, f_p.*1e3)
vmin, vmax = extrema(SPL_p)
err = abs.(SPL_p_jl_interp .- SPL_p)./(vmax - vmin)
@test maximum(err) < 0.015
# These should all be very negative, since alphastar is zero:
@test all(SPL_alpha_jl .< -100)
end
end
end
@testset "BPM Figure 26d" begin
nu = 1.4529e-5 # kinematic viscosity, m^2/s
L = 45.72e-2 # span in meters
chord = 10.16e-2 # chord in meters
U = 31.7 # freestream velocity in m/s
M = 0.093 # Mach number, corresponds to U = 31.7 m/s in BPM report
r_e = 1.22 # radiation distance in meters
ΞΈ_e = 90*pi/180
Ξ¦_e = 90*pi/180
alphastar = 0.0
bl = AcousticAnalogies.TrippedN0012BoundaryLayer()
# Now, need to get the data from the BPM report.
fname = joinpath(@__DIR__, "bpm_data", "brooks_airfoil_self_noise_and_prediction_1989", "19890016302-figure26-d-TBL-TE-suction.csv")
bpm = DelimitedFiles.readdlm(fname, ',')
f_s = bpm[:, 1]
SPL_s = bpm[:, 2]
# At zero angle of attack the pressure and suction side predictions are the same.
f_p = f_s
SPL_p = SPL_s
for angle_of_attack_sign in [1, -1]
for use_Ualpha in [false, true]
freqs, SPL_s_jl, SPL_p_jl, SPL_alpha_jl = calculate_bpm_test(nu, L, chord, U, M, r_e, ΞΈ_e, Ξ¦_e, angle_of_attack_sign*alphastar, bl, use_Ualpha=use_Ualpha)
# Now compare...
SPL_s_jl_interp = linear(freqs, SPL_s_jl, f_s.*1e3)
vmin, vmax = extrema(SPL_s)
err = abs.(SPL_s_jl_interp .- SPL_s)./(vmax - vmin)
@test maximum(err) < 0.032
SPL_p_jl_interp = linear(freqs, SPL_p_jl, f_p.*1e3)
vmin, vmax = extrema(SPL_p)
err = abs.(SPL_p_jl_interp .- SPL_p)./(vmax - vmin)
@test maximum(err) < 0.032
# These should all be very negative, since alphastar is zero:
@test all(SPL_alpha_jl .< -100)
end
end
end
@testset "BPM Figure 28a" begin
nu = 1.4529e-5 # kinematic viscosity, m^2/s
L = 45.72e-2 # span in meters
chord = 10.16e-2 # chord in meters
U = 71.3 # freestream velocity in m/s
M = 0.209 # Mach number, corresponds to U = 71.3 m/s in BPM report
r_e = 1.22 # radiation distance in meters
ΞΈ_e = 90*pi/180
Ξ¦_e = 90*pi/180
alphastar = 6.7*pi/180
# Using the tripped boundary layer in this case.
bl = AcousticAnalogies.TrippedN0012BoundaryLayer()
# Now, need to get the data from the BPM report.
fname = joinpath(@__DIR__, "bpm_data", "brooks_airfoil_self_noise_and_prediction_1989", "19890016302-figure28-a-TBL-TE-suction.csv")
bpm = DelimitedFiles.readdlm(fname, ',')
f_s = bpm[:, 1]
SPL_s = bpm[:, 2]
fname = joinpath(@__DIR__, "bpm_data", "brooks_airfoil_self_noise_and_prediction_1989", "19890016302-figure28-a-TBL-TE-pressure.csv")
bpm = DelimitedFiles.readdlm(fname, ',')
f_p = bpm[:, 1]
SPL_p = bpm[:, 2]
fname = joinpath(@__DIR__, "bpm_data", "brooks_airfoil_self_noise_and_prediction_1989", "19890016302-figure28-a-separation.csv")
bpm = DelimitedFiles.readdlm(fname, ',')
f_alpha = bpm[:, 1]
SPL_alpha = bpm[:, 2]
for angle_of_attack_sign in [1, -1]
for use_Ualpha in [false, true]
freqs, SPL_s_jl, SPL_p_jl, SPL_alpha_jl = calculate_bpm_test(nu, L, chord, U, M, r_e, ΞΈ_e, Ξ¦_e, angle_of_attack_sign*alphastar, bl; use_Ualpha=use_Ualpha)
# Now compare...
SPL_s_jl_interp = linear(freqs, SPL_s_jl, f_s.*1e3)
vmin, vmax = extrema(SPL_s)
err = abs.(SPL_s_jl_interp .- SPL_s)./(vmax - vmin)
@test maximum(err) < 0.036
SPL_p_jl_interp = linear(freqs, SPL_p_jl, f_p.*1e3)
vmin, vmax = extrema(SPL_p)
err = abs.(SPL_p_jl_interp .- SPL_p)./(vmax - vmin)
@test maximum(err) < 0.075
SPL_alpha_jl_interp = linear(freqs, SPL_alpha_jl, f_alpha.*1e3)
vmin, vmax = extrema(SPL_alpha)
err = abs.(SPL_alpha_jl_interp .- SPL_alpha)./(vmax - vmin)
@test maximum(err) < 0.039
end
end
end
@testset "BPM Figure 28d" begin
nu = 1.4529e-5 # kinematic viscosity, m^2/s
L = 45.72e-2 # span in meters
chord = 10.16e-2 # chord in meters
U = 31.7 # freestream velocity in m/s
M = 0.093 # mach number, corresponds to u = 31.7 m/s in bpm report
r_e = 1.22 # radiation distance in meters
ΞΈ_e = 90*pi/180
Ξ¦_e = 90*pi/180
alphastar = 6.7*pi/180
# Using the tripped boundary layer in this case.
bl = AcousticAnalogies.TrippedN0012BoundaryLayer()
# Now, need to get the data from the BPM report.
fname = joinpath(@__DIR__, "bpm_data", "brooks_airfoil_self_noise_and_prediction_1989", "19890016302-figure28-d-TBL-TE-suction.csv")
bpm = DelimitedFiles.readdlm(fname, ',')
f_s = bpm[:, 1]
SPL_s = bpm[:, 2]
fname = joinpath(@__DIR__, "bpm_data", "brooks_airfoil_self_noise_and_prediction_1989", "19890016302-figure28-d-TBL-TE-pressure.csv")
bpm = DelimitedFiles.readdlm(fname, ',')
f_p = bpm[:, 1]
SPL_p = bpm[:, 2]
fname = joinpath(@__DIR__, "bpm_data", "brooks_airfoil_self_noise_and_prediction_1989", "19890016302-figure28-d-separation.csv")
bpm = DelimitedFiles.readdlm(fname, ',')
f_alpha = bpm[:, 1]
SPL_alpha = bpm[:, 2]
for angle_of_attack_sign in [1, -1]
for use_Ualpha in [false, true]
freqs, SPL_s_jl, SPL_p_jl, SPL_alpha_jl = calculate_bpm_test(nu, L, chord, U, M, r_e, ΞΈ_e, Ξ¦_e, angle_of_attack_sign*alphastar, bl; use_Ualpha=use_Ualpha)
# Now compare...
SPL_s_jl_interp = linear(freqs, SPL_s_jl, f_s.*1e3)
vmin, vmax = extrema(SPL_s)
err = abs.(SPL_s_jl_interp .- SPL_s)./(vmax - vmin)
@test maximum(err) < 0.021
SPL_p_jl_interp = linear(freqs, SPL_p_jl, f_p.*1e3)
vmin, vmax = extrema(SPL_p)
err = abs.(SPL_p_jl_interp .- SPL_p)./(vmax - vmin)
@test maximum(err) < 0.042
SPL_alpha_jl_interp = linear(freqs, SPL_alpha_jl, f_alpha.*1e3)
vmin, vmax = extrema(SPL_alpha)
err = abs.(SPL_alpha_jl_interp .- SPL_alpha)./(vmax - vmin)
@test maximum(err) < 0.040
end
end
end
@testset "BPM Figure 38d" begin
nu = 1.4529e-5 # kinematic viscosity, m^2/s
L = 45.72e-2 # span in meters
chord = 2.54e-2 # chord in meters
U = 31.7 # freestream velocity in m/s
M = 0.093 # mach number, corresponds to u = 31.7 m/s in bpm report
r_e = 1.22 # radiation distance in meters
ΞΈ_e = 90*pi/180
Ξ¦_e = 90*pi/180
alphastar = 0.0*pi/180
# Using the tripped boundary layer in this case.
bl = AcousticAnalogies.TrippedN0012BoundaryLayer()
# Now, need to get the data from the BPM report.
fname = joinpath(@__DIR__, "bpm_data", "brooks_airfoil_self_noise_and_prediction_1989", "19890016302-figure38-d-TBL-TE-suction.csv")
bpm = DelimitedFiles.readdlm(fname, ',')
f_s = bpm[:, 1]
SPL_s = bpm[:, 2]
# At zero angle of attack the pressure and suction side predictions are the same.
f_p = f_s
SPL_p = SPL_s
for angle_of_attack_sign in [1, -1]
for use_Ualpha in [false, true]
freqs, SPL_s_jl, SPL_p_jl, SPL_alpha_jl = calculate_bpm_test(nu, L, chord, U, M, r_e, ΞΈ_e, Ξ¦_e, angle_of_attack_sign*alphastar, bl; use_Ualpha=use_Ualpha)
# Now compare...
SPL_s_jl_interp = linear(freqs, SPL_s_jl, f_s.*1e3)
vmin, vmax = extrema(SPL_s)
err = abs.(SPL_s_jl_interp .- SPL_s)./(vmax - vmin)
@test maximum(err) < 0.026
SPL_p_jl_interp = linear(freqs, SPL_p_jl, f_p.*1e3)
vmin, vmax = extrema(SPL_p)
err = abs.(SPL_p_jl_interp .- SPL_p)./(vmax - vmin)
@test maximum(err) < 0.026
# These should all be very negative, since alphastar is zero:
@test all(SPL_alpha_jl .< -100)
end
end
end
@testset "BPM Figure 39d" begin
nu = 1.4529e-5 # kinematic viscosity, m^2/s
L = 45.72e-2 # span in meters
chord = 2.54e-2 # chord in meters
U = 31.7 # freestream velocity in m/s
M = 0.093 # mach number, corresponds to u = 31.7 m/s in bpm report
r_e = 1.22 # radiation distance in meters
ΞΈ_e = 90*pi/180
Ξ¦_e = 90*pi/180
alphastar = 4.8*pi/180
# Using the tripped boundary layer in this case.
bl = AcousticAnalogies.TrippedN0012BoundaryLayer()
# Now, need to get the data from the BPM report.
fname = joinpath(@__DIR__, "bpm_data", "brooks_airfoil_self_noise_and_prediction_1989", "19890016302-figure39-d-TBL-TE-suction.csv")
bpm = DelimitedFiles.readdlm(fname, ',')
f_s = bpm[:, 1]
SPL_s = bpm[:, 2]
fname = joinpath(@__DIR__, "bpm_data", "brooks_airfoil_self_noise_and_prediction_1989", "19890016302-figure39-d-TBL-TE-pressure.csv")
bpm = DelimitedFiles.readdlm(fname, ',')
f_p = bpm[:, 1]
SPL_p = bpm[:, 2]
fname = joinpath(@__DIR__, "bpm_data", "brooks_airfoil_self_noise_and_prediction_1989", "19890016302-figure39-d-separation.csv")
bpm = DelimitedFiles.readdlm(fname, ',')
f_alpha = bpm[:, 1]
SPL_alpha = bpm[:, 2]
for angle_of_attack_sign in [1, -1]
for use_Ualpha in [false, true]
freqs, SPL_s_jl, SPL_p_jl, SPL_alpha_jl = calculate_bpm_test(nu, L, chord, U, M, r_e, ΞΈ_e, Ξ¦_e, angle_of_attack_sign*alphastar, bl; use_Ualpha=use_Ualpha)
# Now compare...
SPL_s_jl_interp = linear(freqs, SPL_s_jl, f_s.*1e3)
vmin, vmax = extrema(SPL_s)
err = abs.(SPL_s_jl_interp .- SPL_s)./(vmax - vmin)
@test maximum(err) < 0.036
SPL_p_jl_interp = linear(freqs, SPL_p_jl, f_p.*1e3)
vmin, vmax = extrema(SPL_p)
err = abs.(SPL_p_jl_interp .- SPL_p)./(vmax - vmin)
@test maximum(err) < 0.043
SPL_alpha_jl_interp = linear(freqs, SPL_alpha_jl, f_alpha.*1e3)
vmin, vmax = extrema(SPL_alpha)
err = abs.(SPL_alpha_jl_interp .- SPL_alpha)./(vmax - vmin)
@test maximum(err) < 0.039
end
end
end
@testset "BPM Figure 45a" begin
nu = 1.4529e-5 # kinematic viscosity, m^2/s
L = 45.72e-2 # span in meters
chord = 30.48e-2 # chord in meters
U = 71.3 # freestream velocity in m/s
M = 0.209 # Mach number, corresponds to U = 71.3 m/s in BPM report
r_e = 1.22 # radiation distance in meters
ΞΈ_e = 90*pi/180
Ξ¦_e = 90*pi/180
alphastar = 1.5*pi/180
bl = AcousticAnalogies.UntrippedN0012BoundaryLayer()
# Now, need to get the data from the BPM report.
fname = joinpath(@__DIR__, "bpm_data", "brooks_airfoil_self_noise_and_prediction_1989", "19890016302-figure45-a-TBL-TE-suction.csv")
bpm = DelimitedFiles.readdlm(fname, ',')
f_s = bpm[:, 1]
SPL_s = bpm[:, 2]
fname = joinpath(@__DIR__, "bpm_data", "brooks_airfoil_self_noise_and_prediction_1989", "19890016302-figure45-a-TBL-TE-pressure.csv")
bpm = DelimitedFiles.readdlm(fname, ',')
f_p = bpm[:, 1]
SPL_p = bpm[:, 2]
fname = joinpath(@__DIR__, "bpm_data", "brooks_airfoil_self_noise_and_prediction_1989", "19890016302-figure45-a-separation.csv")
bpm = DelimitedFiles.readdlm(fname, ',')
f_alpha = bpm[:, 1]
SPL_alpha = bpm[:, 2]
fname = joinpath(@__DIR__, "bpm_data", "brooks_airfoil_self_noise_and_prediction_1989", "19890016302-figure45-a-LBL-VS.csv")
bpm = DelimitedFiles.readdlm(fname, ',')
f_lbl_vs = bpm[:, 1]
SPL_lbl_vs = bpm[:, 2]
for angle_of_attack_sign in [1, -1]
for use_Ualpha in [false, true]
freqs, SPL_s_jl, SPL_p_jl, SPL_alpha_jl, SPL_lbl_vs_jl = calculate_bpm_test(nu, L, chord, U, M, r_e, ΞΈ_e, Ξ¦_e, angle_of_attack_sign*alphastar, bl; do_lblvs=true, use_Ualpha=use_Ualpha)
# Now compare...
# The agreement with these ones aren't so great.
# Might be better if I grabbed the listing in the BPM appendix?
SPL_s_jl_interp = linear(freqs, SPL_s_jl, f_s.*1e3)
vmin, vmax = extrema(SPL_s)
err = abs.(SPL_s_jl_interp .- SPL_s)./(vmax - vmin)
@test maximum(err) < 0.037
SPL_p_jl_interp = linear(freqs, SPL_p_jl, f_p.*1e3)
vmin, vmax = extrema(SPL_p)
err = abs.(SPL_p_jl_interp .- SPL_p)./(vmax - vmin)
@test maximum(err) < 0.058
SPL_alpha_jl_interp = linear(freqs, SPL_alpha_jl, f_alpha.*1e3)
vmin, vmax = extrema(SPL_alpha)
err = abs.(SPL_alpha_jl_interp .- SPL_alpha)./(vmax - vmin)
@test maximum(err) < 0.091
SPL_lbl_vs_jl_interp = linear(freqs, SPL_lbl_vs_jl, f_lbl_vs.*1e3)
vmin, vmax = extrema(SPL_lbl_vs)
err = abs.(SPL_lbl_vs_jl_interp .- SPL_lbl_vs)./(vmax - vmin)
@test maximum(err) < 0.053
end
end
end
@testset "BPM Figure 48c" begin
nu = 1.4529e-5 # kinematic viscosity, m^2/s
L = 45.72e-2 # span in meters
chord = 22.86e-2 # chord in meters
U = 39.6 # freestream velocity in m/s
M = 0.116 # Mach number, corresponds to U = 39.6 m/s in BPM report
r_e = 1.22 # radiation distance in meters
ΞΈ_e = 90*pi/180
Ξ¦_e = 90*pi/180
alphastar = 0.0*pi/180
bl = AcousticAnalogies.UntrippedN0012BoundaryLayer()
fname = joinpath(@__DIR__, "bpm_data", "brooks_airfoil_self_noise_and_prediction_1989", "19890016302-figure48-c-LBL-VS.csv")
bpm = DelimitedFiles.readdlm(fname, ',')
f_lbl_vs = bpm[:, 1]
SPL_lbl_vs = bpm[:, 2]
for angle_of_attack_sign in [1, -1]
for use_Ualpha in [false, true]
freqs, SPL_s_jl, SPL_p_jl, SPL_alpha_jl, SPL_lbl_vs_jl = calculate_bpm_test(nu, L, chord, U, M, r_e, ΞΈ_e, Ξ¦_e, angle_of_attack_sign*alphastar, bl; do_lblvs=true, use_Ualpha=use_Ualpha)
# Now compare...
SPL_lbl_vs_jl_interp = linear(freqs, SPL_lbl_vs_jl, f_lbl_vs.*1e3)
vmin, vmax = extrema(SPL_lbl_vs)
err = abs.(SPL_lbl_vs_jl_interp .- SPL_lbl_vs)./(vmax - vmin)
@test maximum(err) < 0.083
end
end
end
@testset "BPM Figure 54a" begin
nu = 1.4529e-5 # kinematic viscosity, m^2/s
L = 45.72e-2 # span in meters
chord = 15.24e-2 # chord in meters
U = 71.3 # freestream velocity in m/s
M = 0.209 # Mach number, corresponds to U = 71.3 m/s in BPM report
r_e = 1.22 # radiation distance in meters
ΞΈ_e = 90*pi/180
Ξ¦_e = 90*pi/180
alphastar = 2.7*pi/180
bl = AcousticAnalogies.UntrippedN0012BoundaryLayer()
# Now, need to get the data from the BPM report.
fname = joinpath(@__DIR__, "bpm_data", "brooks_airfoil_self_noise_and_prediction_1989", "19890016302-figure54-a-LBL-VS.csv")
bpm = DelimitedFiles.readdlm(fname, ',')
f_lbl_vs = bpm[:, 1]
SPL_lbl_vs = bpm[:, 2]
for angle_of_attack_sign in [1, -1]
for use_Ualpha in [false, true]
freqs, SPL_s_jl, SPL_p_jl, SPL_alpha_jl, SPL_lbl_vs_jl = calculate_bpm_test(nu, L, chord, U, M, r_e, ΞΈ_e, Ξ¦_e, angle_of_attack_sign*alphastar, bl; do_lblvs=true, use_Ualpha=use_Ualpha)
SPL_lbl_vs_jl_interp = linear(freqs, SPL_lbl_vs_jl, f_lbl_vs.*1e3)
vmin, vmax = extrema(SPL_lbl_vs)
err = abs.(SPL_lbl_vs_jl_interp .- SPL_lbl_vs)./(vmax - vmin)
@test maximum(err) < 0.026
end
end
end
@testset "BPM Figure 59c" begin
nu = 1.4529e-5 # kinematic viscosity, m^2/s
L = 45.72e-2 # span in meters
chord = 10.16e-2 # chord in meters
U = 39.6 # freestream velocity in m/s
M = 0.116 # Mach number, corresponds to U = 39.6 m/s in BPM report
r_e = 1.22 # radiation distance in meters
ΞΈ_e = 90*pi/180
Ξ¦_e = 90*pi/180
alphastar = 0.0*pi/180
bl = AcousticAnalogies.UntrippedN0012BoundaryLayer()
fname = joinpath(@__DIR__, "bpm_data", "brooks_airfoil_self_noise_and_prediction_1989", "19890016302-figure59-c-LBL-VS.csv")
bpm = DelimitedFiles.readdlm(fname, ',')
f_lbl_vs = bpm[:, 1]
SPL_lbl_vs = bpm[:, 2]
for angle_of_attack_sign in [1, -1]
for use_Ualpha in [false, true]
freqs, SPL_s_jl, SPL_p_jl, SPL_alpha_jl, SPL_lbl_vs_jl = calculate_bpm_test(nu, L, chord, U, M, r_e, ΞΈ_e, Ξ¦_e, angle_of_attack_sign*alphastar, bl; do_lblvs=true, use_Ualpha=use_Ualpha)
# Now compare...
SPL_lbl_vs_jl_interp = linear(freqs, SPL_lbl_vs_jl, f_lbl_vs.*1e3)
vmin, vmax = extrema(SPL_lbl_vs)
err = abs.(SPL_lbl_vs_jl_interp .- SPL_lbl_vs)./(vmax - vmin)
@test maximum(err) < 0.11
end
end
end
@testset "BPM Figure 60c" begin
nu = 1.4529e-5 # kinematic viscosity, m^2/s
L = 45.72e-2 # span in meters
chord = 10.16e-2 # chord in meters
U = 39.6 # freestream velocity in m/s
M = 0.116 # Mach number, corresponds to U = 39.6 m/s in BPM report
r_e = 1.22 # radiation distance in meters
ΞΈ_e = 90*pi/180
Ξ¦_e = 90*pi/180
alphastar = 3.3*pi/180
bl = AcousticAnalogies.UntrippedN0012BoundaryLayer()
fname = joinpath(@__DIR__, "bpm_data", "brooks_airfoil_self_noise_and_prediction_1989", "19890016302-figure60-c-LBL-VS.csv")
bpm = DelimitedFiles.readdlm(fname, ',')
f_lbl_vs = bpm[:, 1]
SPL_lbl_vs = bpm[:, 2]
for angle_of_attack_sign in [1, -1]
for use_Ualpha in [false, true]
freqs, SPL_s_jl, SPL_p_jl, SPL_alpha_jl, SPL_lbl_vs_jl = calculate_bpm_test(nu, L, chord, U, M, r_e, ΞΈ_e, Ξ¦_e, angle_of_attack_sign*alphastar, bl; do_lblvs=true, use_Ualpha=use_Ualpha)
# Now compare...
SPL_lbl_vs_jl_interp = linear(freqs, SPL_lbl_vs_jl, f_lbl_vs.*1e3)
vmin, vmax = extrema(SPL_lbl_vs)
err = abs.(SPL_lbl_vs_jl_interp .- SPL_lbl_vs)./(vmax - vmin)
@test maximum(err) < 0.12
end
end
end
@testset "BPM Figure 60d" begin
nu = 1.4529e-5 # kinematic viscosity, m^2/s
L = 45.72e-2 # span in meters
chord = 10.16e-2 # chord in meters
U = 31.7 # freestream velocity in m/s
M = 0.093 # mach number, corresponds to u = 31.7 m/s in bpm report
r_e = 1.22 # radiation distance in meters
ΞΈ_e = 90*pi/180
Ξ¦_e = 90*pi/180
alphastar = 3.3*pi/180
bl = AcousticAnalogies.UntrippedN0012BoundaryLayer()
fname = joinpath(@__DIR__, "bpm_data", "brooks_airfoil_self_noise_and_prediction_1989", "19890016302-figure60-d-LBL-VS.csv")
bpm = DelimitedFiles.readdlm(fname, ',')
f_lbl_vs = bpm[:, 1]
SPL_lbl_vs = bpm[:, 2]
for angle_of_attack_sign in [1, -1]
for use_Ualpha in [false, true]
freqs, SPL_s_jl, SPL_p_jl, SPL_alpha_jl, SPL_lbl_vs_jl = calculate_bpm_test(nu, L, chord, U, M, r_e, ΞΈ_e, Ξ¦_e, angle_of_attack_sign*alphastar, bl; do_lblvs=true, use_Ualpha=use_Ualpha)
SPL_lbl_vs_jl_interp = linear(freqs, SPL_lbl_vs_jl, f_lbl_vs.*1e3)
vmin, vmax = extrema(SPL_lbl_vs)
err = abs.(SPL_lbl_vs_jl_interp .- SPL_lbl_vs)./(vmax - vmin)
@test maximum(err) < 0.026
end
end
end
@testset "BPM Figure 65d" begin
nu = 1.4529e-5 # kinematic viscosity, m^2/s
L = 45.72e-2 # span in meters
chord = 5.08e-2 # chord in meters
U = 31.7 # freestream velocity in m/s
M = 0.093 # mach number, corresponds to u = 31.7 m/s in bpm report
r_e = 1.22 # radiation distance in meters
ΞΈ_e = 90*pi/180
Ξ¦_e = 90*pi/180
alphastar = 0.0*pi/180
bl = AcousticAnalogies.UntrippedN0012BoundaryLayer()
fname = joinpath(@__DIR__, "bpm_data", "brooks_airfoil_self_noise_and_prediction_1989", "19890016302-figure65-d-LBL-VS.csv")
bpm = DelimitedFiles.readdlm(fname, ',')
f_lbl_vs = bpm[:, 1]
SPL_lbl_vs = bpm[:, 2]
for angle_of_attack_sign in [1, -1]
for use_Ualpha in [false, true]
freqs, SPL_s_jl, SPL_p_jl, SPL_alpha_jl, SPL_lbl_vs_jl = calculate_bpm_test(nu, L, chord, U, M, r_e, ΞΈ_e, Ξ¦_e, angle_of_attack_sign*alphastar, bl; do_lblvs=true, use_Ualpha=use_Ualpha)
SPL_lbl_vs_jl_interp = linear(freqs, SPL_lbl_vs_jl, f_lbl_vs.*1e3)
vmin, vmax = extrema(SPL_lbl_vs)
err = abs.(SPL_lbl_vs_jl_interp .- SPL_lbl_vs)./(vmax - vmin)
@test maximum(err) < 0.021
end
end
end
@testset "BPM Figure 66b" begin
nu = 1.4529e-5 # kinematic viscosity, m^2/s
L = 45.72e-2 # span in meters
chord = 5.08e-2 # chord in meters
U = 39.6 # freestream velocity in m/s
M = 0.116 # Mach number, corresponds to U = 39.6 m/s in BPM report
r_e = 1.22 # radiation distance in meters
ΞΈ_e = 90*pi/180
Ξ¦_e = 90*pi/180
alphastar = 4.2*pi/180
bl = AcousticAnalogies.UntrippedN0012BoundaryLayer()
fname = joinpath(@__DIR__, "bpm_data", "brooks_airfoil_self_noise_and_prediction_1989", "19890016302-figure66-b-LBL-VS.csv")
bpm = DelimitedFiles.readdlm(fname, ',')
f_lbl_vs = bpm[:, 1]
SPL_lbl_vs = bpm[:, 2]
for angle_of_attack_sign in [1, -1]
for use_Ualpha in [false, true]
freqs, SPL_s_jl, SPL_p_jl, SPL_alpha_jl, SPL_lbl_vs_jl = calculate_bpm_test(nu, L, chord, U, M, r_e, ΞΈ_e, Ξ¦_e, angle_of_attack_sign*alphastar, bl; do_lblvs=true, use_Ualpha=use_Ualpha)
SPL_lbl_vs_jl_interp = linear(freqs, SPL_lbl_vs_jl, f_lbl_vs.*1e3)
vmin, vmax = extrema(SPL_lbl_vs)
err = abs.(SPL_lbl_vs_jl_interp .- SPL_lbl_vs)./(vmax - vmin)
@test length(err) == 3
@test err[1] < 0.089
@test err[2] < 0.373
@test err[3] < 0.746
end
end
end
@testset "BPM Figure 69a" begin
nu = 1.4529e-5 # kinematic viscosity, m^2/s
L = 45.72e-2 # span in meters
chord = 5.08e-2 # chord in meters
U = 71.3 # freestream velocity in m/s
M = 0.209 # Mach number, corresponds to U = 71.3 m/s in BPM report
r_e = 1.22 # radiation distance in meters
ΞΈ_e = 90*pi/180
Ξ¦_e = 90*pi/180
alphastar = 15.4*pi/180
bl = AcousticAnalogies.UntrippedN0012BoundaryLayer()
# Now, need to get the data from the BPM report.
fname = joinpath(@__DIR__, "bpm_data", "brooks_airfoil_self_noise_and_prediction_1989", "19890016302-figure69-a-separation.csv")
bpm = DelimitedFiles.readdlm(fname, ',')
f_alpha = bpm[:, 1]
SPL_alpha = bpm[:, 2]
for angle_of_attack_sign in [1, -1]
freqs, SPL_s_jl, SPL_p_jl, SPL_alpha_jl = calculate_bpm_test(nu, L, chord, U, M, r_e, ΞΈ_e, Ξ¦_e, angle_of_attack_sign*alphastar, bl)
# Now compare...
@test all(SPL_s_jl .β -100)
@test all(SPL_p_jl .β -100)
SPL_alpha_jl_interp = linear(freqs, SPL_alpha_jl, f_alpha.*1e3)
vmin, vmax = extrema(SPL_alpha)
err = abs.(SPL_alpha_jl_interp .- SPL_alpha)./(vmax - vmin)
@test maximum(err) < 0.033
end
end
@testset "BPM Figure 91" begin
nu = 1.4529e-5 # kinematic viscosity, m^2/s
L = 30.48e-2 # span in meters
chord = 15.24e-2 # chord in meters
speedofsound = 340.46
U = 71.3 # freestream velocity in m/s
# M = 0.209 # Mach number, corresponds to U = 71.3 m/s in BPM report
M = U/speedofsound
r_e = 1.22 # radiation distance in meters
ΞΈ_e = 90*pi/180
Ξ¦_e = 90*pi/180
# alphatip = 0.71*10.8*pi/180
alphastar = 10.8*pi/180
bl = AcousticAnalogies.UntrippedN0012BoundaryLayer()
# blade_tip = AcousticAnalogies.RoundedTip{AcousticAnalogies.BPMTipAlphaCorrection}()
blade_tip = AcousticAnalogies.RoundedTip(AcousticAnalogies.BPMTipAlphaCorrection(), 0.0)
fname = joinpath(@__DIR__, "bpm_data", "brooks_airfoil_self_noise_and_prediction_1989", "19890016302-figure91-tip.csv")
bpm = DelimitedFiles.readdlm(fname, ',')
f_tip = bpm[:, 1]
SPL_tip = bpm[:, 2]
for angle_of_attack_sign in [1, -1]
for use_Ualpha in [false, true]
freqs, SPL_s_jl, SPL_p_jl, SPL_alpha_jl, SPL_tip_jl = calculate_bpm_test(nu, L, chord, U, M, r_e, ΞΈ_e, Ξ¦_e, angle_of_attack_sign*alphastar, bl; do_tip_vortex=true, blade_tip=blade_tip, use_Ualpha=use_Ualpha)
SPL_tip_jl_interp = linear(freqs, SPL_tip_jl, f_tip.*1e3)
vmin, vmax = extrema(SPL_tip)
err = abs.(SPL_tip_jl_interp .- SPL_tip)./(vmax - vmin)
@test maximum(err) < 0.047
end
end
end
@testset "BPM Figure 98b" begin
nu = 1.4529e-5 # kinematic viscosity, m^2/s
L = 45.72e-2 # span in meters
chord = 60.96e-2 # chord in meters
U = 69.5 # freestream velocity in m/s
M = U/340.46
h = 1.1e-3 # trailing edge bluntness in meters
Psi = 14*pi/180 # bluntness angle in radians
r_e = 1.22 # radiation distance in meters
ΞΈ_e = 90*pi/180
Ξ¦_e = 90*pi/180
alphastar = 0.0*pi/180
bl = AcousticAnalogies.TrippedN0012BoundaryLayer()
# Now, need to get the data from the BPM report.
# Figures 98 a-d only differ in trailing edge bluntness, so the other sources are all the same.
# And TBL-TE is the only significant source, other than bluntness.
fname = joinpath(@__DIR__, "bpm_data", "brooks_airfoil_self_noise_and_prediction_1989", "19890016302-figure98-a-TBL-TE-suction.csv")
bpm = DelimitedFiles.readdlm(fname, ',')
f_s = bpm[:, 1]
SPL_s = bpm[:, 2]
# Suction and pressure are the same for zero angle of attack.
fname = joinpath(@__DIR__, "bpm_data", "brooks_airfoil_self_noise_and_prediction_1989", "19890016302-figure98-a-TBL-TE-suction.csv")
bpm = DelimitedFiles.readdlm(fname, ',')
f_p = bpm[:, 1]
SPL_p = bpm[:, 2]
fname = joinpath(@__DIR__, "bpm_data", "brooks_airfoil_self_noise_and_prediction_1989", "19890016302-figure98-b-bluntness.csv")
bpm = DelimitedFiles.readdlm(fname, ',')
f_teb_vs = bpm[:, 1]
SPL_teb_vs = bpm[:, 2]
for angle_of_attack_sign in [1, -1]
for use_Ualpha in [false, true]
freqs, SPL_s_jl, SPL_p_jl, SPL_alpha_jl, SPL_teb_vs_jl = calculate_bpm_test(nu, L, chord, U, M, r_e, ΞΈ_e, Ξ¦_e, angle_of_attack_sign*alphastar, bl; do_tebvs=true, h=h, Psi=Psi, use_Ualpha=use_Ualpha)
# Now compare...
SPL_s_jl_interp = linear(freqs, SPL_s_jl, f_s.*1e3)
vmin, vmax = extrema(SPL_s)
err = abs.(SPL_s_jl_interp .- SPL_s)./(vmax - vmin)
@test maximum(err) < 0.053
SPL_p_jl_interp = linear(freqs, SPL_p_jl, f_p.*1e3)
vmin, vmax = extrema(SPL_p)
err = abs.(SPL_p_jl_interp .- SPL_p)./(vmax - vmin)
@test maximum(err) < 0.053
SPL_teb_vs_jl_interp = linear(freqs, SPL_teb_vs_jl, f_teb_vs.*1e3)
vmin, vmax = extrema(SPL_teb_vs)
err = abs.(SPL_teb_vs_jl_interp .- SPL_teb_vs)./(vmax - vmin)
# Last two points are off.
# Not sure why.
@test maximum(err[1:end-2]) < 0.052
@test maximum(err[1:end-2]) < 0.052
@test maximum(err[1:end-1]) < 0.060
@test maximum(err) < 0.171
end
end
end
@testset "BPM Figure 98c" begin
nu = 1.4529e-5 # kinematic viscosity, m^2/s
L = 45.72e-2 # span in meters
chord = 60.96e-2 # chord in meters
U = 69.5 # freestream velocity in m/s
M = U/340.46
h = 1.9e-3 # trailing edge bluntness in meters
Psi = 14*pi/180 # bluntness angle in radians
r_e = 1.22 # radiation distance in meters
ΞΈ_e = 90*pi/180
Ξ¦_e = 90*pi/180
M_c = 0.8*M
alphastar = 0.0*pi/180
bl = AcousticAnalogies.TrippedN0012BoundaryLayer()
# Now, need to get the data from the BPM report.
# Figures 98 a-d only differ in trailing edge bluntness, so the other sources are all the same.
# And TBL-TE is the only significant source, other than bluntness.
fname = joinpath(@__DIR__, "bpm_data", "brooks_airfoil_self_noise_and_prediction_1989", "19890016302-figure98-a-TBL-TE-suction.csv")
bpm = DelimitedFiles.readdlm(fname, ',')
f_s = bpm[:, 1]
SPL_s = bpm[:, 2]
# Suction and pressure are the same for zero angle of attack.
fname = joinpath(@__DIR__, "bpm_data", "brooks_airfoil_self_noise_and_prediction_1989", "19890016302-figure98-a-TBL-TE-suction.csv")
bpm = DelimitedFiles.readdlm(fname, ',')
f_p = bpm[:, 1]
SPL_p = bpm[:, 2]
fname = joinpath(@__DIR__, "bpm_data", "brooks_airfoil_self_noise_and_prediction_1989", "19890016302-figure98-c-bluntness.csv")
bpm = DelimitedFiles.readdlm(fname, ',')
f_teb_vs = bpm[:, 1]
SPL_teb_vs = bpm[:, 2]
for angle_of_attack_sign in [1, -1]
for use_Ualpha in [false, true]
freqs, SPL_s_jl, SPL_p_jl, SPL_alpha_jl, SPL_teb_vs_jl = calculate_bpm_test(nu, L, chord, U, M, r_e, ΞΈ_e, Ξ¦_e, angle_of_attack_sign*alphastar, bl; do_tebvs=true, h=h, Psi=Psi, use_Ualpha=use_Ualpha)
# Now compare...
SPL_s_jl_interp = linear(freqs, SPL_s_jl, f_s.*1e3)
vmin, vmax = extrema(SPL_s)
err = abs.(SPL_s_jl_interp .- SPL_s)./(vmax - vmin)
@test maximum(err) < 0.053
SPL_p_jl_interp = linear(freqs, SPL_p_jl, f_p.*1e3)
vmin, vmax = extrema(SPL_p)
err = abs.(SPL_p_jl_interp .- SPL_p)./(vmax - vmin)
@test maximum(err) < 0.053
SPL_teb_vs_jl_interp = linear(freqs, SPL_teb_vs_jl, f_teb_vs.*1e3)
vmin, vmax = extrema(SPL_teb_vs)
err = abs.(SPL_teb_vs_jl_interp .- SPL_teb_vs)./(vmax - vmin)
# Last two points are off.
# Not sure why.
@test maximum(err[1:end-2]) < 0.040
@test maximum(err[1:end-1]) < 0.189
@test err[end] < 0.111
end
end
end
@testset "BPM Figure 98d" begin
nu = 1.4529e-5 # kinematic viscosity, m^2/s
L = 45.72e-2 # span in meters
chord = 60.96e-2 # chord in meters
U = 69.5 # freestream velocity in m/s
M = U/340.46
h = 2.5e-3 # trailing edge bluntness in meters
Psi = 14*pi/180 # bluntness angle in radians
r_e = 1.22 # radiation distance in meters
ΞΈ_e = 90*pi/180
Ξ¦_e = 90*pi/180
alphastar = 0.0*pi/180
bl = AcousticAnalogies.TrippedN0012BoundaryLayer()
# Now, need to get the data from the BPM report.
# Figures 98 a-d only differ in trailing edge bluntness, so the other sources are all the same.
# And TBL-TE is the only significant source, other than bluntness.
fname = joinpath(@__DIR__, "bpm_data", "brooks_airfoil_self_noise_and_prediction_1989", "19890016302-figure98-a-TBL-TE-suction.csv")
bpm = DelimitedFiles.readdlm(fname, ',')
f_s = bpm[:, 1]
SPL_s = bpm[:, 2]
# Suction and pressure are the same for zero angle of attack.
fname = joinpath(@__DIR__, "bpm_data", "brooks_airfoil_self_noise_and_prediction_1989", "19890016302-figure98-a-TBL-TE-suction.csv")
bpm = DelimitedFiles.readdlm(fname, ',')
f_p = bpm[:, 1]
SPL_p = bpm[:, 2]
fname = joinpath(@__DIR__, "bpm_data", "brooks_airfoil_self_noise_and_prediction_1989", "19890016302-figure98-d-bluntness.csv")
bpm = DelimitedFiles.readdlm(fname, ',')
f_teb_vs = bpm[:, 1]
SPL_teb_vs = bpm[:, 2]
for angle_of_attack_sign in [1, -1]
for use_Ualpha in [false, true]
freqs, SPL_s_jl, SPL_p_jl, SPL_alpha_jl, SPL_teb_vs_jl = calculate_bpm_test(nu, L, chord, U, M, r_e, ΞΈ_e, Ξ¦_e, angle_of_attack_sign*alphastar, bl; do_tebvs=true, h=h, Psi=Psi, use_Ualpha=use_Ualpha)
# Now compare...
SPL_s_jl_interp = linear(freqs, SPL_s_jl, f_s.*1e3)
vmin, vmax = extrema(SPL_s)
err = abs.(SPL_s_jl_interp .- SPL_s)./(vmax - vmin)
@test maximum(err) < 0.053
SPL_p_jl_interp = linear(freqs, SPL_p_jl, f_p.*1e3)
vmin, vmax = extrema(SPL_p)
err = abs.(SPL_p_jl_interp .- SPL_p)./(vmax - vmin)
@test maximum(err) < 0.053
SPL_teb_vs_jl_interp = linear(freqs, SPL_teb_vs_jl, f_teb_vs.*1e3)
vmin, vmax = extrema(SPL_teb_vs)
err = abs.(SPL_teb_vs_jl_interp .- SPL_teb_vs)./(vmax - vmin)
# Last two points are off.
# Not sure why.
@test maximum(err[1:end-2]) < 0.044
@test err[end-1] < 0.089
@test err[end] < 0.089
end
end
end
@testset "BPM Figure 99b" begin
nu = 1.4529e-5 # kinematic viscosity, m^2/s
L = 45.72e-2 # span in meters
chord = 60.96e-2 # chord in meters
U = 38.6 # freestream velocity in m/s
M = U/340.46
h = 1.1e-3 # trailing edge bluntness in meters
Psi = 14*pi/180 # bluntness angle in radians
r_e = 1.22 # radiation distance in meters
ΞΈ_e = 90*pi/180
Ξ¦_e = 90*pi/180
alphastar = 0.0*pi/180
bl = AcousticAnalogies.TrippedN0012BoundaryLayer()
# Now, need to get the data from the BPM report.
fname = joinpath(@__DIR__, "bpm_data", "brooks_airfoil_self_noise_and_prediction_1989", "19890016302-figure99-b-TBL-TE-suction.csv")
bpm = DelimitedFiles.readdlm(fname, ',')
f_s = bpm[:, 1]
SPL_s = bpm[:, 2]
# Suction and pressure are the same for zero angle of attack.
fname = joinpath(@__DIR__, "bpm_data", "brooks_airfoil_self_noise_and_prediction_1989", "19890016302-figure99-b-TBL-TE-suction.csv")
bpm = DelimitedFiles.readdlm(fname, ',')
f_p = bpm[:, 1]
SPL_p = bpm[:, 2]
fname = joinpath(@__DIR__, "bpm_data", "brooks_airfoil_self_noise_and_prediction_1989", "19890016302-figure99-b-bluntness.csv")
bpm = DelimitedFiles.readdlm(fname, ',')
f_teb_vs = bpm[:, 1]
SPL_teb_vs = bpm[:, 2]
for angle_of_attack_sign in [1, -1]
for use_Ualpha in [false, true]
freqs, SPL_s_jl, SPL_p_jl, SPL_alpha_jl, SPL_teb_vs_jl = calculate_bpm_test(nu, L, chord, U, M, r_e, ΞΈ_e, Ξ¦_e, angle_of_attack_sign*alphastar, bl; do_tebvs=true, h=h, Psi=Psi, use_Ualpha=use_Ualpha)
# Now compare...
SPL_s_jl_interp = linear(freqs, SPL_s_jl, f_s.*1e3)
vmin, vmax = extrema(SPL_s)
err = abs.(SPL_s_jl_interp .- SPL_s)./(vmax - vmin)
@test maximum(err) < 0.077
SPL_p_jl_interp = linear(freqs, SPL_p_jl, f_p.*1e3)
vmin, vmax = extrema(SPL_p)
err = abs.(SPL_p_jl_interp .- SPL_p)./(vmax - vmin)
@test maximum(err) < 0.077
SPL_teb_vs_jl_interp = linear(freqs, SPL_teb_vs_jl, f_teb_vs.*1e3)
vmin, vmax = extrema(SPL_teb_vs)
err = abs.(SPL_teb_vs_jl_interp .- SPL_teb_vs)./(vmax - vmin)
# Last two points are off.
# Not sure why.
@test maximum(err[1:end-2]) < 0.091
@test err[ end-1] < 0.251
@test err[ end ] < 0.400
end
end
end
@testset "BPM Figure 99c" begin
nu = 1.4529e-5 # kinematic viscosity, m^2/s
L = 45.72e-2 # span in meters
chord = 60.96e-2 # chord in meters
U = 38.6 # freestream velocity in m/s
M = U/340.46
h = 1.9e-3 # trailing edge bluntness in meters
Psi = 14*pi/180 # bluntness angle in radians
r_e = 1.22 # radiation distance in meters
ΞΈ_e = 90*pi/180
Ξ¦_e = 90*pi/180
alphastar = 0.0*pi/180
bl = AcousticAnalogies.TrippedN0012BoundaryLayer()
# Now, need to get the data from the BPM report.
# Figures 99 a-d only differ in trailing edge bluntness, so the other sources are all the same.
# And TBL-TE is the only significant source, other than bluntness.
fname = joinpath(@__DIR__, "bpm_data", "brooks_airfoil_self_noise_and_prediction_1989", "19890016302-figure99-b-TBL-TE-suction.csv")
bpm = DelimitedFiles.readdlm(fname, ',')
f_s = bpm[:, 1]
SPL_s = bpm[:, 2]
# Suction and pressure are the same for zero angle of attack.
fname = joinpath(@__DIR__, "bpm_data", "brooks_airfoil_self_noise_and_prediction_1989", "19890016302-figure99-b-TBL-TE-suction.csv")
bpm = DelimitedFiles.readdlm(fname, ',')
f_p = bpm[:, 1]
SPL_p = bpm[:, 2]
fname = joinpath(@__DIR__, "bpm_data", "brooks_airfoil_self_noise_and_prediction_1989", "19890016302-figure99-c-bluntness.csv")
bpm = DelimitedFiles.readdlm(fname, ',')
f_teb_vs = bpm[:, 1]
SPL_teb_vs = bpm[:, 2]
for angle_of_attack_sign in [1, -1]
for use_Ualpha in [false, true]
freqs, SPL_s_jl, SPL_p_jl, SPL_alpha_jl, SPL_teb_vs_jl = calculate_bpm_test(nu, L, chord, U, M, r_e, ΞΈ_e, Ξ¦_e, angle_of_attack_sign*alphastar, bl; do_tebvs=true, h=h, Psi=Psi, use_Ualpha=use_Ualpha)
# Now compare...
SPL_s_jl_interp = linear(freqs, SPL_s_jl, f_s.*1e3)
vmin, vmax = extrema(SPL_s)
err = abs.(SPL_s_jl_interp .- SPL_s)./(vmax - vmin)
@test maximum(err) < 0.077
SPL_p_jl_interp = linear(freqs, SPL_p_jl, f_p.*1e3)
vmin, vmax = extrema(SPL_p)
err = abs.(SPL_p_jl_interp .- SPL_p)./(vmax - vmin)
@test maximum(err) < 0.077
SPL_teb_vs_jl_interp = linear(freqs, SPL_teb_vs_jl, f_teb_vs.*1e3)
vmin, vmax = extrema(SPL_teb_vs)
err = abs.(SPL_teb_vs_jl_interp .- SPL_teb_vs)./(vmax - vmin)
# Last two points are off.
# Not sure why.
@test maximum(err[1:end-2]) < 0.057
@test err[ end-1] < 0.070
@test err[ end ] < 0.256
end
end
end
@testset "BPM Figure 99d" begin
nu = 1.4529e-5 # kinematic viscosity, m^2/s
L = 45.72e-2 # span in meters
chord = 60.96e-2 # chord in meters
U = 38.6 # freestream velocity in m/s
M = U/340.46
h = 2.5e-3 # trailing edge bluntness in meters
Psi = 14*pi/180 # bluntness angle in radians
r_e = 1.22 # radiation distance in meters
ΞΈ_e = 90*pi/180
Ξ¦_e = 90*pi/180
alphastar = 0.0*pi/180
bl = AcousticAnalogies.TrippedN0012BoundaryLayer()
# Now, need to get the data from the BPM report.
# Figures 99 a-d only differ in trailing edge bluntness, so the other sources are all the same.
# And TBL-TE is the only significant source, other than bluntness.
fname = joinpath(@__DIR__, "bpm_data", "brooks_airfoil_self_noise_and_prediction_1989", "19890016302-figure99-b-TBL-TE-suction.csv")
bpm = DelimitedFiles.readdlm(fname, ',')
f_s = bpm[:, 1]
SPL_s = bpm[:, 2]
# Suction and pressure are the same for zero angle of attack.
fname = joinpath(@__DIR__, "bpm_data", "brooks_airfoil_self_noise_and_prediction_1989", "19890016302-figure99-b-TBL-TE-suction.csv")
bpm = DelimitedFiles.readdlm(fname, ',')
f_p = bpm[:, 1]
SPL_p = bpm[:, 2]
fname = joinpath(@__DIR__, "bpm_data", "brooks_airfoil_self_noise_and_prediction_1989", "19890016302-figure99-d-bluntness.csv")
bpm = DelimitedFiles.readdlm(fname, ',')
f_teb_vs = bpm[:, 1]
SPL_teb_vs = bpm[:, 2]
for angle_of_attack_sign in [1, -1]
for use_Ualpha in [false, true]
freqs, SPL_s_jl, SPL_p_jl, SPL_alpha_jl, SPL_teb_vs_jl = calculate_bpm_test(nu, L, chord, U, M, r_e, ΞΈ_e, Ξ¦_e, angle_of_attack_sign*alphastar, bl; do_tebvs=true, h=h, Psi=Psi, use_Ualpha=use_Ualpha)
# Now compare...
SPL_s_jl_interp = linear(freqs, SPL_s_jl, f_s.*1e3)
vmin, vmax = extrema(SPL_s)
err = abs.(SPL_s_jl_interp .- SPL_s)./(vmax - vmin)
@test maximum(err) < 0.077
SPL_p_jl_interp = linear(freqs, SPL_p_jl, f_p.*1e3)
vmin, vmax = extrema(SPL_p)
err = abs.(SPL_p_jl_interp .- SPL_p)./(vmax - vmin)
@test maximum(err) < 0.077
SPL_teb_vs_jl_interp = linear(freqs, SPL_teb_vs_jl, f_teb_vs.*1e3)
vmin, vmax = extrema(SPL_teb_vs)
err = abs.(SPL_teb_vs_jl_interp .- SPL_teb_vs)./(vmax - vmin)
# Last two points are off.
# Not sure why.
@test maximum(err[1:end-3]) < 0.047
@test err[end-2] < 0.068
@test err[end-1] < 0.213
@test err[end] < 0.225
end
end
end
end
end # module
| AcousticAnalogies | https://github.com/OpenMDAO/AcousticAnalogies.jl.git |
|
[
"Apache-2.0"
] | 0.8.1 | c14d0b2e7f19374017a2b5b6dfe48c5723c791ae | code | 4220 | module CombineTests
using AcousticAnalogies
using FLOWMath: akima, linear
# using Random
using Test
@testset "Combine F1AOutput tests" begin
# Goal is to verify that the code can faithfully combine two acoustic
# pressures on different time "grids" onto a single common grid.
fa(t) = sin(2*pi*t) + 0.2*cos(4*pi*(t-0.1))
fb(t) = cos(6*pi*t) + 0.3*sin(8*pi*(t-0.2))
n = 101
t1 = collect(range(0.0, 1.0, length=n))
dt = t1[2] - t1[1]
# Add a bit of random noise to the time grid. Make sure that the amount of
# randomness isn't large enough to make the time values non-monotonically
# increasing (i.e., they don't overlap).
# t1 .+= 0.49.*dt.*(1 .- 2 .* rand(size(t1)...))
# Annoyed by the randomness.
# Let's make sure we have the same amount of "noise" for each test.
wiggle1 = 0.49.*dt.*(cos.(2.0*pi.*t1))
t1 .+= wiggle1
t2 = collect(range(0.1, 1.1, length=n))
dt = t2[2] - t2[1]
# t2 .+= 0.49.*dt.*(1 .- 2 .* rand(size(t2)...))
# Annoyed by the randomness.
# Let's make sure we have the same amount of "noise" for each test.
wiggle2 = 0.45.*dt.*(cos.(4.0*pi.*t2))
t2 .+= wiggle2
# Now I need a bunch of acoustic pressures.
apth1 = @. F1AOutput(t1, fa(t1), 2*fa(t1))
apth2 = @. F1AOutput(t2, fb(t2), 3*fb(t2))
# Calculate the "exact" answer by coming up with a common time, then
# evaluating the test functions directly on the common time grid.
period = 0.5
n_out = 51
t_start = max(t1[1], t2[1])
t_common = t_start .+ (0:n_out-1).*(period/n_out)
p_m = @. fa(t_common)+fb(t_common)
p_d = @. 2*fa(t_common)+3*fb(t_common)
even_length = iseven(n_out)
apth_test = F1APressureTimeHistory{even_length}(p_m, p_d, step(t_common), first(t_common))
function combine_test_axis1(f_interp)
# Put all the acoustic pressures in one array.
apth = hcat(apth1, apth2)
# Combine.
axis = 1
apth_out = combine(apth, period, n_out, axis, f_interp=f_interp)
# Now find the scaled absolute error between the two approaches.
p_m_min, p_m_max = extrema(apth_test.p_m)
err = @. abs(apth_out.p_m - apth_test.p_m)/(p_m_max - p_m_min)
err_max = maximum(err)
@test err_max < 0.01
p_d_min, p_d_max = extrema(apth_test.p_d)
err = @. abs(apth_out.p_d - apth_test.p_d)/(p_d_max - p_d_min)
err_max = maximum(err)
@test err_max < 0.01
# Do it with the mutating version aka combine!.
apth_out2 = F1APressureTimeHistory(apth, period, n_out, axis)
combine!(apth_out2, apth, axis; f_interp=f_interp)
@test all(apth_out2.p_m .β apth_out.p_m)
@test all(apth_out2.p_d .β apth_out.p_d)
@test apth_out2.dt β apth_out.dt
@test apth_out2.t0 β apth_out.t0
return nothing
end
function combine_test_axis2(f_interp)
# Put all the acoustic pressures in one array.
apth = permutedims(hcat(apth1, apth2))
# Combine.
axis = 2
apth_out = combine(apth, period, n_out, axis, f_interp=f_interp)
# Now find the scaled absolute error between the two approaches.
p_m_min, p_m_max = extrema(apth_test.p_m)
err = @. abs(apth_out.p_m - apth_test.p_m)/(p_m_max - p_m_min)
err_max = maximum(err)
@test err_max < 0.01
p_d_min, p_d_max = extrema(apth_test.p_d)
err = @. abs(apth_out.p_d - apth_test.p_d)/(p_d_max - p_d_min)
err_max = maximum(err)
@test err_max < 0.01
# Do it with the mutating version aka combine!.
apth_out2 = F1APressureTimeHistory(apth, period, n_out, axis)
combine!(apth_out2, apth, axis; f_interp=f_interp)
@test all(apth_out2.p_m .β apth_out.p_m)
@test all(apth_out2.p_d .β apth_out.p_d)
@test apth_out2.dt β apth_out.dt
@test apth_out2.t0 β apth_out.t0
return nothing
end
@testset "linear interpolation" begin
combine_test_axis1(linear)
combine_test_axis2(linear)
end
@testset "Akima spline interpolation" begin
combine_test_axis1(akima)
combine_test_axis2(akima)
end
end
end # module
| AcousticAnalogies | https://github.com/OpenMDAO/AcousticAnalogies.jl.git |
|
[
"Apache-2.0"
] | 0.8.1 | c14d0b2e7f19374017a2b5b6dfe48c5723c791ae | code | 7956 | module CompactF1AConstructorTests
using AcousticAnalogies
using CCBlade
using FileIO: load
using KinematicCoordinateTransformations
using StaticArrays
using JLD2
using Test
include("gen_test_data/gen_ccblade_data/constants.jl")
using .CCBladeTestCaseConstants
ccbc = CCBladeTestCaseConstants
@testset "CCBlade private utils tests" begin
Ξr = (ccbc.Rtip - ccbc.Rhub)/10
r = (ccbc.Rhub+0.5*Ξr):Ξr:(ccbc.Rtip-0.5*Ξr)
precone = 3*pi/180
rotor = Rotor(ccbc.Rhub, ccbc.Rtip, ccbc.num_blades; precone=precone, turbine=false)
dummy = similar(r)
sections = Section.(r, dummy, dummy, dummy)
@test all(AcousticAnalogies.get_ccblade_dradii(rotor, sections) .β Ξr)
end
@testset "Constructor rotation tests" begin
@testset "CompactF1ASourceElement" begin
Ο0 = 1.1
c0 = 1.2
r = 2.0
Ξr = 0.1
Ξ = 0.2
fn = 2.0
fr = 3.0
fc = 4.0
Ο = 0.1
se_0theta = CompactF1ASourceElement(Ο0, c0, r, 0.0, Ξr, Ξ, fn, fr, fc, Ο)
for ΞΈ in [5, 10, 65, 95, 260, 270, 290].*(pi/180)
# Create a transformation that will undo the ΞΈ rotation.
trans = KinematicCoordinateTransformations.SteadyRotXTransformation(Ο, 0.0, -ΞΈ)
# Create a source element with the theta rotation, then undo it.
se = CompactF1ASourceElement(Ο0, c0, r, ΞΈ, Ξr, Ξ, fn, fr, fc, Ο) |> trans
# Check that we got the same thing:
for field in fieldnames(CompactF1ASourceElement)
@test getproperty(se, field) β getproperty(se_0theta, field)
end
end
end
@testset "CompactF1ASourceElement, CCBlade" begin
# Create the CCBlade objects.
area_per_chord2 = 0.1
Ο = 0.1
ccblade_fname = joinpath(@__DIR__, "gen_test_data", "gen_ccblade_data", "ccblade_omega11-outputs.jld2")
outs_d = load(ccblade_fname)
section = CCBlade.Section(first(ccbc.radii), first(ccbc.chord), first(ccbc.theta)*pi/180, nothing)
Ξr = ccbc.radii[2] - ccbc.radii[1]
op = CCBlade.OperatingPoint(ccbc.v, outs_d["omega"]*first(ccbc.radii), ccbc.rho, ccbc.pitch, ccbc.mu, ccbc.c0)
rotor0precone = CCBlade.Rotor(ccbc.Rhub, ccbc.Rtip, ccbc.num_blades)
out = CCBlade.Outputs(outs_d["Np"][1], outs_d["Tp"][1], outs_d["a"][1], outs_d["ap"][1], outs_d["u"][1], outs_d["v"][1], outs_d["phi"][1], outs_d["alpha"][1], outs_d["W"][1], outs_d["cl"][1], outs_d["cd"][1], outs_d["cn"][1], outs_d["ct"][1], outs_d["F"][1], outs_d["G"][1])
@test rotor0precone.precone β 0.0
Rhub = rotor0precone.Rhub
Rtip = rotor0precone.Rtip
num_blades = rotor0precone.B
turbine = rotor0precone.turbine
for positive_x_rotation in [true, false]
se_0theta0precone = CompactF1ASourceElement(rotor0precone, section, op, out, 0.0, Ξr, area_per_chord2, Ο, positive_x_rotation)
for precone in [5, 10, 65, 95, 260, 270, 290].*(pi/180)
rotor = CCBlade.Rotor(Rhub, Rtip, num_blades; turbine=turbine, precone=precone)
# This is tricky: in my "normal" coordinate system, the blade is rotating around the x axis, moving axially in the positive x direction, and is initially aligned with the y axis.
# That means that the precone should be a rotation around the negative z axis.
# And so to undo it, we want a positive rotation around the positive z axis.
trans_precone = SteadyRotZTransformation(Ο, 0.0, precone)
for ΞΈ in [5, 10, 65, 95, 260, 270, 290].*(pi/180)
trans_theta = SteadyRotXTransformation(Ο, 0.0, -ΞΈ)
# Create a transformation that reverses the theta and precone rotations.
# The precone happens first, then theta.
# So to reverse it we need to do theta, then precone.
trans = KinematicCoordinateTransformations.compose(Ο, trans_precone, trans_theta)
# Create a source element with the theta and precone rotations, then undo it.
se = CompactF1ASourceElement(rotor, section, op, out, ΞΈ, Ξr, area_per_chord2, Ο, positive_x_rotation) |> trans
# Check that we got the same thing:
for field in fieldnames(CompactF1ASourceElement)
@test getproperty(se, field) β getproperty(se_0theta0precone, field)
end
end
end
end
end
end
@testset "CCBlade CompactF1ASourceElement complete test" begin
for positive_x_rotation in [true, false]
# omega = 2200*(2*pi/60)
# Read in the loading data.
# data = readdlm("gen_test_data/gen_ccblade_data/ccblade_omega11.csv", ',')
# Np = data[:, 1]
# Tp = data[:, 2]
# Read in the loading data.
fname = joinpath(@__DIR__, "gen_test_data", "gen_ccblade_data", "ccblade_omega11-outputs.jld2")
data_d = load(fname)
omega = data_d["omega"]
Np = data_d["Np"]
Tp = data_d["Tp"]
# Create the CCBlade objects.
rotor = Rotor(ccbc.Rhub, ccbc.Rtip, ccbc.num_blades; turbine=false)
sections = Section.(ccbc.radii, ccbc.chord, ccbc.theta, nothing)
ops = simple_op.(ccbc.v, omega, ccbc.radii, ccbc.rho; asound=ccbc.c0)
# Only care about getting the loading into the CCBlade Output structs.
dummies = fill(0.0, 13)
outs = Outputs.(Np, Tp, dummies...)
# Set the source time stuff.
num_blade_passes = 3
steps_per_blade_pass = 8
num_src_times = num_blade_passes*steps_per_blade_pass
bpp = 2*pi/omega/ccbc.num_blades
src_time_range = num_blade_passes*bpp
# Finally get all the source elements.
aoc2 = fill(ccbc.area_over_chord_squared, length(sections))
ses_helper = f1a_source_elements_ccblade(rotor, sections, ops, outs, aoc2, src_time_range, num_src_times, positive_x_rotation)
# Now need to get the source elements the "normal" way. First get the
# transformation objects.
rot_axis = @SVector [1.0, 0.0, 0.0]
blade_axis = @SVector [0.0, 1.0, 0.0]
y0_hub = @SVector [0.0, 0.0, 0.0] # m
v0_hub = ccbc.v.*rot_axis
t0 = 0.0
if positive_x_rotation
rot_trans = SteadyRotXTransformation(t0, omega, 0.0)
else
rot_trans = SteadyRotXTransformation(t0, -omega, 0.0)
end
const_vel_trans = ConstantVelocityTransformation(t0, y0_hub, v0_hub)
# Need the source times.
dt = src_time_range/num_src_times
src_times = t0 .+ (0:num_src_times-1).*dt
# This is just an array of the angular offsets of each blade.
ΞΈs = 2*pi/ccbc.num_blades.*(0:(ccbc.num_blades-1))
# Radial spacing.
dradii = get_dradii(ccbc.radii, ccbc.Rhub, ccbc.Rtip)
# Reshape stuff for broadcasting.
radii = reshape(ccbc.radii, 1, :, 1)
dradii = reshape(dradii, 1, :, 1)
cs_area = reshape(ccbc.area_over_chord_squared.*ccbc.chord.^2, 1, :, 1)
Np = reshape(Np, 1, :, 1)
Tp = reshape(Tp, 1, :, 1)
src_times = reshape(src_times, :, 1, 1) # This isn't really necessary.
ΞΈs = reshape(ΞΈs, 1, 1, :)
# Get all the transformations.
trans = compose.(src_times, Ref(const_vel_trans), Ref(rot_trans))
# Transform the source elements.
if positive_x_rotation
ses = CompactF1ASourceElement.(ccbc.rho, ccbc.c0, radii, ΞΈs, dradii, cs_area, -Np, 0.0, Tp, src_times) .|> trans
else
ses = CompactF1ASourceElement.(ccbc.rho, ccbc.c0, radii, ΞΈs, dradii, cs_area, -Np, 0.0, -Tp, src_times) .|> trans
end
for field in fieldnames(CompactF1ASourceElement)
@test all(getproperty.(ses_helper, field) .β getproperty.(ses, field))
end
end
end
end
| AcousticAnalogies | https://github.com/OpenMDAO/AcousticAnalogies.jl.git |
|
[
"Apache-2.0"
] | 0.8.1 | c14d0b2e7f19374017a2b5b6dfe48c5723c791ae | code | 9799 | module DopplerTests
using AcousticAnalogies: AcousticAnalogies
using KinematicCoordinateTransformations: KinematicTransformation, SteadyRotXTransformation, SteadyRotYTransformation, SteadyRotZTransformation, ConstantVelocityTransformation, compose
using StaticArrays: SVector
using Test
struct DummyElement{TDoppler,Ty0dot,Ty1dot,Ttime,TSoS} <: AcousticAnalogies.AbstractBroadbandSourceElement{AcousticAnalogies.BPMDirectivity,false, AcousticAnalogies.NoMachCorrection,TDoppler}
# Source position and its time derivatives.
y0dot::Ty0dot
y1dot::Ty1dot
# Source time.
Ο::Ttime
# speed of sound
c0::TSoS
end
function DummyElement{TDoppler}(y0dot, y1dot, Ο, c0) where {TDoppler}
return DummyElement{TDoppler,typeof(y0dot),typeof(y1dot),typeof(Ο),typeof(c0)}(y0dot, y1dot, Ο, c0)
end
function DummyElement{TDoppler}(se::DummyElement) where {TDoppler}
return DummyElement{TDoppler,typeof(se.y0dot),typeof(se.y1dot),typeof(se.Ο),typeof(se.c0)}(se.y0dot, se.y1dot, se.Ο, se.c0)
end
"""
(trans::KinematicTransformation)(se::DummyElement)
Transform the position and orientation of a source element according to the coordinate system transformation `trans`.
"""
function (trans::KinematicTransformation)(se::DummyElement{TDoppler,Ty0dot,Ty1dot,Ttime,TSoS}) where {TDoppler,Ty0dot,Ty1dot,Ttime,TSoS}
linear_only = false
y0dot, y1dot = trans(se.Ο, se.y0dot, se.y1dot, linear_only)
return DummyElement{TDoppler,Ty0dot,Ty1dot,Ttime,TSoS}(y0dot, y1dot, se.Ο, se.c0)
end
@testset "Doppler shift" begin
@testset "no motion" begin
@testset "stationary observer" begin
obs = AcousticAnalogies.StationaryAcousticObserver(SVector(1.2, 2.3, 3.4))
se = DummyElement{true}(SVector(3.0, 4.3, 5.0), SVector(0.0, 0.0, 0.0), 10.0, 340.0)
@test AcousticAnalogies.doppler_factor(se, obs) β 1.0
@test AcousticAnalogies.doppler_factor(DummyElement{false}(se), obs) β 1.0
end
@testset "\"moving\" observer" begin
# Should get the same thing with a `ConstVelocityAcousticObserver` that's not moving.
obs = AcousticAnalogies.ConstVelocityAcousticObserver(8.0, SVector(1.2, 2.3, 3.4), SVector(0.0, 0.0, 0.0))
se = DummyElement{true}(SVector(3.0, 4.3, 5.0), SVector(0.0, 0.0, 0.0), 10.0, 340.0)
@test AcousticAnalogies.doppler_factor(se, obs) β 1.0
@test AcousticAnalogies.doppler_factor(DummyElement{false}(se), obs) β 1.0
end
end
@testset "moving source" begin
@testset "stationary observer" begin
for mach_vector in -0.9:0.1:0.9
c0 = 343.0
# Observer time doesn't matter since the observer isn't moving.
t_obs = 6.5
x_obs = SVector(1.2, 2.3, 3.4)
obs = AcousticAnalogies.StationaryAcousticObserver(x_obs)
y0dot = SVector(1.2, 2.3, -3.4)
y1dot = SVector(0.0, 0.0, mach_vector*c0)
Ο = 10.0
se = DummyElement{true}(y0dot, y1dot, Ο, c0)
doppler_factor_expected = 1/(1 - mach_vector)
@test AcousticAnalogies.doppler_factor(se, obs) β doppler_factor_expected
@test AcousticAnalogies.doppler_factor(DummyElement{false}(se), obs) β 1.0
# Now, rotate and translate both the source and the observer.
# The Doppler shift factor should be the same, assuming we don't change the motion of the source and observer.
# Time parameter for the steady rotations doesn't matter because the rotation rate is zero.
trans1 = SteadyRotXTransformation(t_obs, 0.0, 3.0*pi/180)
trans2 = SteadyRotYTransformation(t_obs, 0.0, 4.0*pi/180)
trans3 = SteadyRotZTransformation(t_obs, 0.0, 5.0*pi/180)
x_trans = SVector(2.0, 3.0, 4.0)
v_trans = SVector(0.0, 0.0, 0.0)
# Time parameter for the constant velocity transformations doesn't matter because the velocity is zero.
trans4 = ConstantVelocityTransformation(t_obs, x_trans, v_trans)
# Transform the source and observer.
trans = compose(t_obs, trans4, compose(t_obs, trans3, compose(t_obs, trans2, trans1)))
se_trans = trans(se)
obs_trans = AcousticAnalogies.StationaryAcousticObserver(trans(t_obs, obs(t_obs)))
# Now we should still get the same Doppler factor.
@test AcousticAnalogies.doppler_factor(se_trans, obs_trans) β doppler_factor_expected
@test AcousticAnalogies.doppler_factor(DummyElement{false}(se_trans), obs_trans) β 1.0
end
end
@testset "\"moving\" observer" begin
for mach_vector in -0.9:0.1:0.9
c0 = 343.0
# Observer time doesn't matter since the observer isn't moving.
t_obs = 6.5
x_obs = SVector(1.2, 2.3, 3.4)
v_obs = SVector(0.0, 0.0, 0.0)
obs = AcousticAnalogies.ConstVelocityAcousticObserver(t_obs, x_obs, v_obs)
y0dot = SVector(1.2, 2.3, -3.4)
y1dot = SVector(0.0, 0.0, mach_vector*c0)
Ο = 10.0
se = DummyElement{true}(y0dot, y1dot, Ο, c0)
doppler_factor_expected = 1/(1 - mach_vector)
@test AcousticAnalogies.doppler_factor(se, obs) β doppler_factor_expected
@test AcousticAnalogies.doppler_factor(DummyElement{false}(se), obs) β 1.0
# Now, rotate and translate both the source and the observer.
# The Doppler shift factor should be the same, assuming we don't change the motion of the source and observer.
# Time parameter for the steady rotations doesn't matter because the rotation rate is zero.
trans1 = SteadyRotXTransformation(t_obs, 0.0, 3.0*pi/180)
trans2 = SteadyRotYTransformation(t_obs, 0.0, 4.0*pi/180)
trans3 = SteadyRotZTransformation(t_obs, 0.0, 5.0*pi/180)
x_trans = SVector(2.0, 3.0, 4.0)
v_trans = SVector(0.0, 0.0, 0.0)
# Time parameter for the constant velocity transformations doesn't matter because the velocity is zero.
trans4 = ConstantVelocityTransformation(t_obs, x_trans, v_trans)
# Transform the source and observer.
trans = compose(t_obs, trans4, compose(t_obs, trans3, compose(t_obs, trans2, trans1)))
se_trans = trans(se)
obs_trans = AcousticAnalogies.ConstVelocityAcousticObserver(t_obs, trans(t_obs, obs(t_obs), AcousticAnalogies.velocity(t_obs, obs))...)
# Now we should still get the same Doppler factor.
@test AcousticAnalogies.doppler_factor(se_trans, obs_trans) β doppler_factor_expected
@test AcousticAnalogies.doppler_factor(DummyElement{false}(se_trans), obs_trans) β 1.0
end
end
@testset "actual moving observer" begin
for mach_vector_obs in -0.9:0.1:0.9
for mach_vector_src in -0.9:0.1:0.9
c0 = 343.0
t_obs = 10.0
# Need to move the observer farther from the source for cases where they're moving towards each other, since the Doppler factor will change if they cross and move past each other.
x_obs = SVector(1.2, 2.3, 340.0)
v_obs = SVector(0.0, 0.0, mach_vector_obs*c0)
obs = AcousticAnalogies.ConstVelocityAcousticObserver(t_obs, x_obs, v_obs)
y0dot = SVector(1.2, 2.3, -3.4)
y1dot = SVector(0.0, 0.0, mach_vector_src*c0)
Ο = 10.0
se = DummyElement{true}(y0dot, y1dot, Ο, c0)
doppler_factor_expected = (1 - mach_vector_obs)/(1 - mach_vector_src)
@test AcousticAnalogies.doppler_factor(se, obs) β doppler_factor_expected
@test AcousticAnalogies.doppler_factor(DummyElement{false}(se), obs) β 1.0
# Now, rotate and translate both the source and the observer.
# The Doppler shift factor should be the same, assuming we don't change the motion of the source and observer.
# Time parameter for the steady rotations doesn't matter because the rotation rate is zero.
trans1 = SteadyRotXTransformation(t_obs, 0.0, 3.0*pi/180)
trans2 = SteadyRotYTransformation(t_obs, 0.0, 4.0*pi/180)
trans3 = SteadyRotZTransformation(t_obs, 0.0, 5.0*pi/180)
x_trans = SVector(2.0, 3.0, 4.0)
v_trans = SVector(0.0, 0.0, 0.0)
# Time parameter for the constant velocity transformations doesn't matter because the velocity is zero.
trans4 = ConstantVelocityTransformation(t_obs, x_trans, v_trans)
# Transform the source and observer.
trans = compose(t_obs, trans4, compose(t_obs, trans3, compose(t_obs, trans2, trans1)))
se_trans = trans(se)
obs_trans = AcousticAnalogies.ConstVelocityAcousticObserver(t_obs, trans(t_obs, obs(t_obs), AcousticAnalogies.velocity(t_obs, obs))...)
# Now we should still get the same Doppler factor.
@test AcousticAnalogies.doppler_factor(se_trans, obs_trans) β doppler_factor_expected
@test AcousticAnalogies.doppler_factor(DummyElement{false}(se_trans), obs_trans) β 1.0
end
end
end
end
end
end # module
| AcousticAnalogies | https://github.com/OpenMDAO/AcousticAnalogies.jl.git |
|
[
"Apache-2.0"
] | 0.8.1 | c14d0b2e7f19374017a2b5b6dfe48c5723c791ae | code | 4288 | module F1ATests
using AcousticAnalogies
using FLOWMath
using LinearAlgebra: norm
using NLsolve
using Polynomials
using Test
function f1_integrand(se, obs, t)
c0 = se.c0
# Need to get the retarded time.
R(Ο) = [t - (Ο[1] + norm(obs(t) .- se.y0dot(Ο[1]))/c0)]
result = nlsolve(R, [-0.1], autodiff=:forward)
if !converged(result)
@error "nlsolve retarded time calculation did not converge:\n$(result)"
end
Ο = result.zero[1]
# Position of source at the retarted time.
y = se.y0dot(Ο)
# Position vector from source to observer.
rv = obs(t) .- y
# Distance from source to observer.
r = AcousticAnalogies.norm_cs_safe(rv)
# Unit vector pointing from source to observer.
rhat = rv./r
# First time derivative of rv.
rv1dot = -se.y1dot(Ο)
# Mach number of the velocity of the source in the direction of the
# observer.
Mr = AcousticAnalogies.dot_cs_safe(-rv1dot/se.c0, rhat)
# Now evaluate the integrand.
p_m_integrand = se.Ο0/(4*pi)*se.Ξ*se.Ξr/(r*(1 - Mr))
# Loading at the retarded time.
f0dot = se.f0dot(Ο)
p_d_integrand_ff = (1/(4*pi*c0))*AcousticAnalogies.dot_cs_safe(f0dot, rhat)/(r*(1 - Mr))*se.Ξr
p_d_integrand_nf = (1/(4*pi*c0))*AcousticAnalogies.dot_cs_safe(f0dot, rhat)*c0/(r^2*(1 - Mr))*se.Ξr
return Ο, p_m_integrand, p_d_integrand_ff, p_d_integrand_nf
end
@testset "F1A tests" begin
# rho = 1.226 # kg/m^3
rho = 1.226e6 # kg/m^3
c0 = 340.0 # m/s
Rtip = 1.1684 # meters
radii = 0.99932*Rtip
dradii = (0.99932 - 0.99660)*Rtip # m
area_over_chord_squared = 0.064
chord = 0.47397E-02 * Rtip
Ξ = area_over_chord_squared * chord^2
theta = 90.0*pi/180.0
x0 = [cos(theta), 0.0, sin(theta)].*100.0.*12.0.*0.0254 # 100 ft in meters
obs = StationaryAcousticObserver(x0)
# Need the position and velocity of the source as a function of
# source/retarded time. How do I want it to move? I want it to rotate around
# an axis on the origin, pointing in the x direction.
rpm = 2200
omega = 2*pi/60*rpm
period = 60/rpm
fn = 180.66763939805125
fc = 19.358679206883078
y0dot(Ο) = [0, radii*cos(omega*Ο), radii*sin(omega*Ο)]
y1dot(Ο) = [0, -omega*radii*sin(omega*Ο), omega*radii*cos(omega*Ο)]
y2dot(Ο) = [0, -omega^2*radii*cos(omega*Ο), -omega^2*radii*sin(omega*Ο)]
y3dot(Ο) = [0, omega^3*radii*sin(omega*Ο), -omega^3*radii*cos(omega*Ο)]
f0dot(Ο) = [-fn, -sin(omega*Ο)*fc, cos(omega*Ο)*fc]
f1dot(Ο) = [0, -omega*cos(omega*Ο)*fc, -omega*sin(omega*Ο)*fc]
u(Ο) = y0dot(Ο)./radii
sef1 = CompactF1ASourceElement(rho, c0, dradii, Ξ, y0dot, y1dot, nothing, nothing, f0dot, nothing, 0.0, u)
t = 0.0
dt = period*0.5^4
Ο0, pmi0, pdiff0, pdinf0 = f1_integrand(sef1, obs, t)
sef1a = CompactF1ASourceElement(rho, c0, dradii, Ξ, y0dot(Ο0), y1dot(Ο0), y2dot(Ο0), y3dot(Ο0), f0dot(Ο0), f1dot(Ο0), Ο0, u(Ο0))
apth = noise(sef1a, obs)
err_prev_pm = nothing
err_prev_pd = nothing
dt_prev = nothing
dt_curr = dt
first_time = true
err_pm = []
err_pd = []
dts = []
ooa_pm = []
ooa_pd = []
for n in 1:7
Ο_1, pmi_1, pdiff_1, pdinf_1 = f1_integrand(sef1, obs, t-dt_curr)
Ο1, pmi1, pdiff1, pdinf1 = f1_integrand(sef1, obs, t+dt_curr)
p_m_f1 = (pmi_1 - 2*pmi0 + pmi1)/(dt_curr^2)
p_d_f1 = (pdiff1 - pdiff_1)/(2*dt_curr) + pdinf0
err_curr_pm = abs(p_m_f1 - apth.p_m)
err_curr_pd = abs(p_d_f1 - apth.p_d)
if first_time
first_time = false
else
push!(ooa_pm, log(err_curr_pm/err_prev_pm)/log(dt_curr/dt_prev))
push!(ooa_pd, log(err_curr_pd/err_prev_pd)/log(dt_curr/dt_prev))
end
push!(dts, dt_curr)
push!(err_pm, err_curr_pm)
push!(err_pd, err_curr_pd)
dt_prev = dt_curr
err_prev_pm = err_curr_pm
err_prev_pd = err_curr_pd
dt_curr = 0.5*dt_curr
end
# Fit a line through the errors on a log-log plot, then check that the slope
# is second-order.
l = fit(log.(dts), log.(err_pm), 1)
@test isapprox(l.coeffs[2], 2, atol=0.1)
l = fit(log.(dts), log.(err_pd), 1)
@test isapprox(l.coeffs[2], 2, atol=0.1)
end
end # module
| AcousticAnalogies | https://github.com/OpenMDAO/AcousticAnalogies.jl.git |
|
[
"Apache-2.0"
] | 0.8.1 | c14d0b2e7f19374017a2b5b6dfe48c5723c791ae | code | 5325 | module ForwardDiffTests
using AcousticAnalogies
using ForwardDiff
using KinematicCoordinateTransformations
using StaticArrays
using CCBlade
using AcousticMetrics
using Test
using LinearAlgebra
function guided_example(x)
Rx::eltype(x) = 0.0
Rhub = x[1]
Rtip = x[2]
num_blades = 2
radii = [
0.92904E-01, 0.11751, 0.15631, 0.20097,
0.24792 , 0.29563, 0.34336, 0.39068,
0.43727 , 0.48291, 0.52741, 0.57060,
0.61234 , 0.65249, 0.69092, 0.72752,
0.76218 , 0.79479, 0.82527, 0.85352,
0.87947 , 0.90303, 0.92415, 0.94275,
0.95880 , 0.97224, 0.98304, 0.99117,
0.99660 , 0.99932] .* Rtip
ΞΈs = 2pi / num_blades .* (0:(num_blades-1)) .+ Rx
dradii = get_dradii(radii, Rhub, Rtip)
rho = 1.226 # kg/m^3
c0 = 340.0 # m/s
v = x[3]
omega = x[4] # rad/s
cs_area_over_chord_squared = 0.064
chord = x[5:34] .* Rtip
cs_area = cs_area_over_chord_squared .* chord.^2
fn = [32.87810395677037, 99.05130471878633, 190.1751697055377,
275.9492967565419, 358.14423433748146, 439.64679797145624,
520.1002808148281, 599.1445046901513, 676.2358818769462,
751.3409657831587, 824.2087672338118, 894.4465814696498,
961.9015451678036, 1026.0112737521583, 1086.2610633094212,
1141.4900032393818, 1190.3376703335655, 1230.8999662260915,
1260.375390697363, 1275.354422403355, 1271.8827617273287,
1245.9059108698596, 1193.9967137923225, 1113.9397490286995,
1005.273267675585, 869.4101036003673, 709.8100230053759,
532.1946243370355, 346.53986082379265, 180.66763939805125] .+ Rx
fc = [26.09881302938423, 55.5216259955307, 75.84767780212506,
84.84509232798283, 89.73045068624886, 93.02999477395113,
95.4384273852926, 97.31647535460424, 98.81063179767507,
100.07617771995163, 101.17251941705561, 102.11543878532882,
102.94453631586998, 103.63835661864168, 104.18877957193807,
104.51732850056433, 104.54735678589765, 104.1688287897138,
103.20319203286938, 101.46246817378582, 99.11692436681635,
96.49009546562475, 93.45834266417528, 89.49783586366624,
83.87176811707455, 75.83190739325453, 64.88004605331857,
50.98243352318318, 34.85525518071079, 19.358679206883078] .+ Rx
period = 2pi / omega
num_src_times = 64
dt = 2 * period / (num_src_times-1)
src_times = (0:num_src_times-1) .* dt
ΞΈs = reshape(ΞΈs, 1, 1, :)
radii = reshape(radii, 1, :, 1)
dradii = reshape(dradii, 1, :, 1)
cs_area = reshape(cs_area, 1, :, 1)
fn = reshape(fn, 1, :, 1)
fc = reshape(fc, 1, :, 1)
src_times = reshape(src_times, :, 1, 1) # This isn't really necessary.
ses = CompactF1ASourceElement.(rho, c0, radii, ΞΈs, dradii, cs_area, -fn, 0.0, fc, src_times)
t0 = 0.0 # Time at which the angle between the source and target coordinate systems is equal to offest.
offset = 0.0 # Angular offset between the source and target cooridante systems at t0.
rot_trans = SteadyRotXTransformation(t0, omega, offset)
rot_axis = @SVector [0.0, 0.0, 1.0]
blade_axis = @SVector [0.0, 1.0, 0.0]
global_trans = ConstantLinearMap(hcat(rot_axis, blade_axis, rot_axisΓblade_axis))
y0_hub = @SVector [0.0, 0.0, 0.0] # Position of the hub at time t0
v0_hub = SVector{3}(v.*rot_axis) # Constant velocity of the hub in the global reference frame
const_vel_trans = ConstantVelocityTransformation(t0, y0_hub, v0_hub)
trans = compose.(src_times, Ref(const_vel_trans), compose.(src_times, Ref(global_trans), Ref(rot_trans)))
ses = ses .|> trans
x0 = @SVector [100*12*0.0254, 0.0, 0.0] # 100 ft in meters
obs = StationaryAcousticObserver(x0)
obs_time = adv_time.(ses, Ref(obs))
apth = noise.(ses, Ref(obs), obs_time)
bpp = period/num_blades # blade passing period
obs_time_range = 2 * bpp
num_obs_times = 128
apth_total = combine(apth, obs_time_range, num_obs_times, 1)
oaspl_from_apth = AcousticMetrics.OASPL(apth_total)
nbs = AcousticMetrics.MSPSpectrumAmplitude(apth_total)
oaspl_from_nbs = AcousticMetrics.OASPL(nbs)
return vcat(oaspl_from_apth, oaspl_from_nbs)
end
### Just run the guided example through ForwardDiff without errors.
# May want to make more comprehensive later. For now pretty much everything
# is affected by Dual numbers here, except for the loads are still Floats
# for now.
@testset "ForwardDiff test" begin
Rhub = 0.10
Rtip = 1.1684
v = 0.0 # m/s
omega = 2200 * 2pi/60 # rad/s
chord_normalized = [0.35044 , 0.28260 , 0.22105 , 0.17787 , 0.14760,
0.12567 , 0.10927 , 0.96661E-01 , 0.86742E-01 , 0.78783E-01 ,
0.72287E-01 , 0.66906E-01 , 0.62387E-01 , 0.58541E-01 , 0.55217E-01 ,
0.52290E-01 , 0.49645E-01 , 0.47176E-01 , 0.44772E-01 , 0.42326E-01 ,
0.39732E-01 , 0.36898E-01 , 0.33752E-01 , 0.30255E-01 , 0.26401E-01 ,
0.22217E-01 , 0.17765E-01 , 0.13147E-01 , 0.85683E-02 , 0.47397E-02]
x0 = vcat(Rhub, Rtip, v, omega, chord_normalized)
J = ForwardDiff.jacobian(guided_example, x0)
end
end #module
| AcousticAnalogies | https://github.com/OpenMDAO/AcousticAnalogies.jl.git |
|
[
"Apache-2.0"
] | 0.8.1 | c14d0b2e7f19374017a2b5b6dfe48c5723c791ae | code | 13837 | module iea3p4
using AcousticAnalogies
using AcousticMetrics
using ColorSchemes: colorschemes
using GLMakie
using DelimitedFiles
using KinematicCoordinateTransformations
using LinearAlgebra: Γ
using StaticArrays
using AcousticMetrics
using Statistics
using Interpolations
## Start of user-defined inputs
# Set number of blades, usually 3 for modern wind turbines
num_blades = 3 # number of blades
# Set the hub radius in m, it is specified in the ElastoDyn main input file of OpenFAST
Rhub = 2.
# Set the blade spanwise grid in m and the corresponding chord, also in m. The two arrays
# are specified in the AeroDyn15 blade input file
BlSpn = [0.0000e+00, 2.1692e+00, 4.3385e+00, 6.5077e+00, 8.6770e+00, 1.0846e+01, 1.3015e+01, 1.5184e+01,
1.7354e+01, 1.9523e+01, 2.1692e+01, 2.3861e+01, 2.6031e+01, 2.8200e+01, 3.0369e+01, 3.2538e+01,
3.4708e+01, 3.6877e+01, 3.9046e+01, 4.1215e+01, 4.3385e+01, 4.5554e+01, 4.7723e+01,
4.9892e+01, 5.2062e+01, 5.4231e+01, 5.6400e+01, 5.8570e+01, 6.0739e+01, 6.2908e+01]
Chord = [2.600e+00, 2.645e+00, 3.020e+00, 3.437e+00, 3.781e+00, 4.036e+00, 4.201e+00,
4.284e+00, 4.288e+00, 4.223e+00, 4.098e+00, 3.923e+00, 3.709e+00, 3.468e+00, 3.220e+00,
2.986e+00, 2.770e+00, 2.581e+00, 2.412e+00, 2.266e+00, 2.142e+00, 2.042e+00, 1.964e+00,
1.909e+00, 1.870e+00, 1.807e+00, 1.666e+00, 1.387e+00, 9.172e-01, 1.999e-01]
# path to the OpenFAST .out file. The file must contain these channels:
# Time (always available)
# Wind1VelX from InflowWind
# RotSpeed from ElastoDyn
# Nodal outputs Fxl and Fyl from AeroDyn15
file_path = joinpath(@__DIR__, "gen_test_data", "openfast_data", "IEA-3.4-130-RWT.out")
# Observer location set at the IEC-prescribed location (turbine height on the ground),
# The microphone is stationary in the global coordinate frame
HH = 110. # m
# Compute the blade locations in radial coordinates, m
RSpn = BlSpn .+ Rhub
x0 = @SVector [HH .+ RSpn[end], 0.0, -HH]
# ambient air density and speed of sound.
rho = 1.225 # kg/m^3
c0 = 340.0 # m/s
## End of user-defined inputs
## Start of computations
# Compute the mid-section locations in radial coordinates, m
radii = 0.5.*(RSpn[begin:end-1] .+ RSpn[begin+1:end])
# Compute the length of each section along blade span, m
dradii = RSpn[begin+1:end] .- RSpn[begin:end-1]
# Compute the blade angles
ΞΈs = 2*pi/num_blades.*(0:(num_blades-1))
# Create a linear interpolation object to interpolate chord onto the radial mid-points
itp = LinearInterpolation(RSpn, Chord)
# Perform interpolation
chord = itp(radii)
# Cross-sectional area of each element in m**2. This is taking a bit of a shortcut
cs_area_over_chord_squared = 0.064
cs_area = cs_area_over_chord_squared.*chord.^2
# Code to parse the data from the OpenFAST .out file
# Function to parse a line of data, converting strings to floats
function parse_line(line)
# Split the line by whitespace and filter out any empty strings
elements = filter(x -> !isempty(x), split(line))
# Convert elements to Float64
return map(x -> parse(Float64, x), elements)
end
# Initialize an empty array to store the data
data = []
# Open the file and read the data, skipping the first 8 lines
open(file_path) do file
# Skip the first 8 lines (header and description)
for i in 1:8
readline(file)
end
# Read the rest of the lines and parse them
for line in eachline(file)
push!(data, parse_line(line))
end
end
# Convert the data to an array of arrays (matrix)
data = reduce(hcat, data)
time = data[1, :]
avg_wind_speed = mean(data[2, :])
sim_length_s = time[end] - time[1] # s
@show length(time)
# Reopen the file and read the lines
lines = open(file_path) do f
readlines(f)
end
# Find the index of the line that contains the column headers
header_index = findfirst(x -> startswith(x, "Time"), lines)
# Extract the headers
headers = split(lines[header_index], '\t')
id_b1_Fx = findfirst(x -> x == "AB1N001Fxl", headers)
id_b2_Fx = findfirst(x -> x == "AB2N001Fxl", headers)
id_b3_Fx = findfirst(x -> x == "AB3N001Fxl", headers)
id_b1_Fy = findfirst(x -> x == "AB1N001Fyl", headers)
id_b2_Fy = findfirst(x -> x == "AB2N001Fyl", headers)
id_b3_Fy = findfirst(x -> x == "AB3N001Fyl", headers)
id_rot_speed = findfirst(x -> x == "RotSpeed", headers)
n_elems = length(radii)
Fx_b1_locs = data[id_b1_Fx:id_b1_Fx+n_elems,:]
Fy_b1_locs = data[id_b1_Fy:id_b1_Fy+n_elems,:]
Fx_b2_locs = data[id_b2_Fx:id_b2_Fx+n_elems,:]
Fy_b2_locs = data[id_b2_Fy:id_b2_Fy+n_elems,:]
Fx_b3_locs = data[id_b3_Fx:id_b3_Fx+n_elems,:]
Fy_b3_locs = data[id_b3_Fy:id_b3_Fy+n_elems,:]
# Reinterpolate onto the mid-sections
Fx_b1 = Array{Float64}(undef, 29, 6001)
Fx_b2 = Array{Float64}(undef, 29, 6001)
Fx_b3 = Array{Float64}(undef, 29, 6001)
Fy_b1 = Array{Float64}(undef, 29, 6001)
Fy_b2 = Array{Float64}(undef, 29, 6001)
Fy_b3 = Array{Float64}(undef, 29, 6001)
for j in axes(Fx_b1_locs, 2)
itp = LinearInterpolation(RSpn, Fx_b1_locs[:, j], extrapolation_bc=Line())
Fx_b1[:, j] = itp(radii)
end
for j in axes(Fx_b2_locs, 2)
itp = LinearInterpolation(RSpn, Fx_b2_locs[:, j], extrapolation_bc=Line())
Fx_b2[:, j] = itp(radii)
end
for j in axes(Fx_b3_locs, 2)
itp = LinearInterpolation(RSpn, Fx_b3_locs[:, j], extrapolation_bc=Line())
Fx_b3[:, j] = itp(radii)
end
for j in axes(Fy_b1_locs, 2)
itp = LinearInterpolation(RSpn, Fy_b1_locs[:, j], extrapolation_bc=Line())
Fy_b1[:, j] = itp(radii)
end
for j in axes(Fy_b2_locs, 2)
itp = LinearInterpolation(RSpn, Fy_b2_locs[:, j], extrapolation_bc=Line())
Fy_b2[:, j] = itp(radii)
end
for j in axes(Fy_b3_locs, 2)
itp = LinearInterpolation(RSpn, Fy_b3_locs[:, j], extrapolation_bc=Line())
Fy_b3[:, j] = itp(radii)
end
# Extract the mean rotor speed
omega_rpm = mean(data[id_rot_speed,:])
# Let's plot the unsteady loading 1 of every 500 timesteps
# x-axis is the span position (mid-sections)
# times are indicated by the colorbar on the right of the plot.
@assert size(Fx_b1) == size(Fx_b2) == size(Fx_b3) == size(Fy_b1) == size(Fy_b2) == size(Fy_b3)
ntimes_loading = size(Fx_b1, 2)
fig = Figure()
ax11 = fig[1, 1] = Axis(fig, xlabel="Span Position (m)", ylabel="Fx (N/m)", title="blade 1")
ax21 = fig[2, 1] = Axis(fig, xlabel="Span Position (m)", ylabel="Fy (N/m)")
ax12 = fig[1, 2] = Axis(fig, xlabel="Span Position (m)", ylabel="Fx (N/m)", title="blade 2")
ax22 = fig[2, 2] = Axis(fig, xlabel="Span Position (m)", ylabel="Fy (N/m)")
ax13 = fig[1, 3] = Axis(fig, xlabel="Span Position (m)", ylabel="Fx (N/m)", title="blade 3")
ax23 = fig[2, 3] = Axis(fig, xlabel="Span Position (m)", ylabel="Fy (N/m)")
bpp = 60/omega_rpm/num_blades
colormap = colorschemes[:viridis]
for tidx in 1:500:ntimes_loading
cidx = (time[tidx] - time[1])/sim_length_s
l1 = lines!(ax11, radii, Fx_b1[:,tidx], label ="b1", color=colormap[cidx])
l1 = lines!(ax12, radii, Fx_b2[:,tidx], label ="b2", color=colormap[cidx])
l1 = lines!(ax13, radii, Fx_b3[:,tidx], label ="b3", color=colormap[cidx])
l2 = lines!(ax21, radii, Fy_b1[:,tidx], label ="b1", color=colormap[cidx])
l2 = lines!(ax22, radii, Fy_b2[:,tidx], label ="b2", color=colormap[cidx])
l2 = lines!(ax23, radii, Fy_b3[:,tidx], label ="b3", color=colormap[cidx])
end
linkxaxes!(ax21, ax11)
linkxaxes!(ax21, ax11)
linkxaxes!(ax12, ax11)
linkxaxes!(ax22, ax11)
linkxaxes!(ax13, ax11)
linkxaxes!(ax23, ax11)
linkyaxes!(ax12, ax11)
linkyaxes!(ax13, ax11)
linkyaxes!(ax22, ax21)
linkyaxes!(ax23, ax21)
hidexdecorations!(ax11, grid=false)
hidexdecorations!(ax12, grid=false)
hidexdecorations!(ax13, grid=false)
hideydecorations!(ax12, grid=false)
hideydecorations!(ax13, grid=false)
hideydecorations!(ax22, grid=false)
hideydecorations!(ax23, grid=false)
save(joinpath(@__DIR__, "gen_test_data", "openfast_data", "Fx_t-all_time.png"), fig)
# To do F1A correctly, we need to put all source elements in a coordinate system that
# moves with the fluid, i.e. one in which the fluid appears stationary.
# So, to do that, we have the blades translating in the
# negative x direction at the average horizontal wind speed.
v = -avg_wind_speed # m/s
omega = omega_rpm * 2*pi/60 # rad/s
# some reshaping, ses[i, j, k] holds the CompactSourceElement at src_time[i], radii[j], and blade number k
ΞΈs = reshape(ΞΈs, 1, 1, :)
radii = reshape(radii, 1, :, 1)
dradii = reshape(dradii, 1, :, 1)
cs_area = reshape(cs_area, 1, :, 1)
src_times = reshape(time, :, 1, 1) # This isn't really necessary.
fx = cat(transpose(Fx_b1), transpose(Fx_b2), transpose(Fx_b3), dims=3)
fc = cat(transpose(Fy_b1), transpose(Fy_b2), transpose(Fy_b3), dims=3)
# source elements, with negative Fx
ses = CompactSourceElement.(rho, c0, radii, ΞΈs, dradii, cs_area, -fx, 0.0, fc, src_times)
t0 = 0.0 # Time at which the angle between the source and target coordinate systems is equal to offest.
offset = 0.0 # Angular offset between the source and target coordinate systems at t0.
# steady rotation around the x axis
rot_trans = SteadyRotXTransformation(t0, omega, offset)
# orient the rotation axis of the blades as it is the global frame
rot_axis = @SVector [1.0, 0.0, 0.0] # rotation axis aligned along global x-axis
blade_axis = @SVector [0.0, 0.0, 1.0] # blade 1 pointing up, along z-axis
global_trans = ConstantLinearMap(hcat(rot_axis, blade_axis, rot_axisΓblade_axis))
# blade to move with the appropriate forward velocity, and
# start from the desired location in the global reference frame
y0_hub = @SVector [0.0, 0.0, 0.0] # Position of the hub at time t0
v0_hub = SVector{3}(v.*rot_axis) # Constant velocity of the hub in the global reference frame
const_vel_trans = ConstantVelocityTransformation(t0, y0_hub, v0_hub)
# combine these three transformations into one, and then use that on the SourceElements
trans = compose.(src_times, Ref(const_vel_trans), compose.(src_times, Ref(global_trans), Ref(rot_trans)))
# trans will perform the three transformations from right to left (rot_trans, global_trans, const_vel_trans)
ses = ses .|> trans
# The ses object now describes how each blade element source is moving through the global reference
# frame over the time src_time. As it does this, it will emit acoustics that can be sensed by an acoustic observer
# (a human, or a microphone). The exact "amount" of acoustics the observer will experience depends
# on the relative location and motion between each source and the observer.
# This creates an acoustic observer moving with constant velocity v0_hub that is at location `x0` at time `t0`.
obs = ConstVelocityAcousticObserver(t0, x0, v0_hub)
# Now, in order to perform the F1A calculation,
# we need to know when each acoustic disturbance emitted
# by the source arrives at the observer. This is referred
# to an advanced time calculation, and is done this way:
apth = f1a.(ses, Ref(obs))
# We now have a noise prediction for each of the individual source elements in ses at the acoustic observer obs.
# What we ultimately want is the total noise prediction at obsβwe want to add all the acoustic pressures in apth together.
# But we can't add them directly, yet, since the observer times are not all the same. What we need to do
# is first interpolate the apth of each source onto a common observer time grid, and then add them up.
# We'll do this using the AcousticAnalogies.combine function.
period = 2*pi/omega
bpp = period/num_blades # blade passing period
obs_time_range = sim_length_s/60*omega_rpm*bpp
# Note that we need to be careful to avoid extrapolation in the `combine` calculation.
# That won't happen in this case, since obs_time_range/sim_length_s is 1/3, so the observer time
# range is much less than the source time range.
# The observer time range is 1/3 of the source time range, and we're using the same number of
# simulation times, so that means the observer time step is 1/3 that of the source time step.
num_obs_times = length(time)
apth_total = combine(apth, obs_time_range, num_obs_times, 1)
# The loading data is unsteady, so we may need to be careful to window the time history
# to avoid problems with discontinuities going from the begining/end of the pressure time history..
# We can now have a look at the total acoustic pressure time history at the observer:
fig = Figure()
ax1 = fig[1, 1] = Axis(fig, xlabel="time, s", ylabel="monopole, Pa")
ax2 = fig[2, 1] = Axis(fig, xlabel="time, s", ylabel="dipole, Pa")
ax3 = fig[3, 1] = Axis(fig, xlabel="time, s", ylabel="total, Pa")
l1 = lines!(ax1, time, apth_total.p_m)
l2 = lines!(ax2, time, apth_total.p_d)
l3 = lines!(ax3, time, apth_total.p_m.+apth_total.p_d)
hidexdecorations!(ax1, grid=false)
hidexdecorations!(ax2, grid=false)
save(joinpath(@__DIR__, "gen_test_data", "openfast_data", "openfast-apth_total.png"), fig)
# The plot shows that the monopole/thickness noise is much lower than the dipole/loading noise.
# Wind turbine blades are relatively slender, which would tend to reduce thickness noise.
# Also the observer is downstream of the rotation plane, which is where loading noise is traditionally
# thought to dominate (monopole/thickness noise is more significant in the rotor rotation plane, usually).
# We now calculate the overall sound pressure level from the acoustic pressure time history.
oaspl_from_apth = AcousticMetrics.OASPL(apth_total)
# Next, we calculate the narrowband spectrum.
nbs = AcousticMetrics.MSPSpectrumAmplitude(apth_total)
# Finally, walculate the overall A-weighted sound pressure level from the narrowband spectrum.
oaspl_from_nbs = AcousticMetrics.OASPL(nbs)
(oaspl_from_apth, oaspl_from_nbs)
# As a last step, we create VTK files that one can visualize in Paraview (or similar software)
name = joinpath(@__DIR__, "gen_test_data", "openfast_data", "vtk", "iea3p4_vtk")
mkpath(dirname(name))
outfiles = AcousticAnalogies.to_paraview_collection(name, ses)
end # module
| AcousticAnalogies | https://github.com/OpenMDAO/AcousticAnalogies.jl.git |
|
[
"Apache-2.0"
] | 0.8.1 | c14d0b2e7f19374017a2b5b6dfe48c5723c791ae | code | 12074 | using AcousticAnalogies
using AcousticMetrics: AcousticMetrics
using DelimitedFiles: readdlm
using KinematicCoordinateTransformations: compose, SteadyRotXTransformation, ConstantVelocityTransformation
using FileIO: load
using FLOWMath: akima
using StaticArrays: @SVector
using Test
data = load(joinpath(@__DIR__, "gen_bpmjl_data", "figure22b.jld2"))
rho = data["rho"]
asound = data["asound"]
mu = data["mu"]
Vinf = data["Vinf"]
omega = data["omega"]
B = data["B"]
Rhub = data["Rhub"]
Rtip = data["Rtip"]
radii = data["radii"]
chord = data["chord"]
twist = data["twist"]
alpha = data["alpha"]
U = data["U"]
hs = data["hs"]
num_src_times_blade_pass = data["num_src_times_blade_pass"]
Psis = data["Psis"]
nu = mu/rho
num_radial = length(radii)
dradii = AcousticAnalogies.get_dradii(radii, Rhub, Rtip)
# Get the source time, which will be one blade pass worth of time, each blade pass with `num_src_times_blade_pass` steps per blade pass.
bpp = 1/(B/(2*pi)*omega) # 1/(B blade_passes/rev * 1 rev / (2*pi rad) * omega rad/s)
num_blade_pass = 1
period_src = num_blade_pass*bpp
num_src_times = num_src_times_blade_pass * num_blade_pass
t0 = 0.0
dt = period_src/num_src_times
src_times = t0 .+ (0:num_src_times-1).*dt
# Now let's define the coordinate system.
# I'm going to do my usual thing, which is to have the freestream velocity pointed in the negative x direction, and thus the blades will be translating in the positive x direction.
# And the blades will be rotating about the positive x axis at a rate of `omega`.
rot_trans = SteadyRotXTransformation(t0, omega, 0.0)
# The hub/rotation axis of the blades will start at the origin at time `t0`, and translate in the positive x direction at a speed of `Vinf`.
y0_hub = @SVector [0.0, 0.0, 0.0] # m
v0_hub = @SVector [Vinf, 0.0, 0.0] # m/s
const_vel_trans = ConstantVelocityTransformation(t0, y0_hub, v0_hub)
# Now I can put the two transformations together:
trans = compose.(src_times, Ref(const_vel_trans), Ref(rot_trans))
# Azimuthal offset for each blade.
ΞΈs = (0:(B-1)) .* (2*pi/B)
# Paper doesn't specify the microphone used for Figure 22, but earlier at the beginning of "C. Noise Characteristics and Trends" there is this:
# > For the purposes of this paper, presented acoustic spectra will correspond to an observer located β35Β° below the plane of the rotor (microphone 5).
# So I'll just assume that holds for Figure 22.
# For the coordinate system, I'm doing my usual thing, which is to have the freestream velocity pointed in the negative x direction, and thus the blades will be translating in the positive x direction.
# The observer (microphone 5) is 35 deg behind/downstream of the rotor rotation plane, so this should be good.
# But it will of course be moving with the same freestream in the positive x direction.
r_obs = 2.27 # meters
theta_obs = -35*pi/180
# The observer is moving in the positive x direction at Vinf, at the origin at time t0.
t0_obs = 0.0
x0_obs = @SVector [r_obs*sin(theta_obs), r_obs*cos(theta_obs), 0.0]
v_obs = @SVector [Vinf, 0.0, 0.0]
obs = AcousticAnalogies.ConstVelocityAcousticObserver(t0_obs, x0_obs, v_obs)
# In the text describing Figure 22, "For these predictions, the trip flag was set to βtrippedβ, due to the rough surface quality of the blade."
bl = AcousticAnalogies.TrippedN0012BoundaryLayer()
# In the Figure 22 caption, "for these predictions, bluntness thickness H was set to 0.8 mm and trailing edge angle Ξ¨ was set to 16 degrees."
h = 0.8e-3 # meters
Psi = 16*pi/180 # radians
# I don't see any discussion for what type of tip was used for the tip vortex noise.
# The flat tip seems to match the PAS+ROTONET+BARC predictions well.
blade_tip = AcousticAnalogies.FlatTip()
# Reshape the inputs to the source element constructors so that everything will line up with (num_times, num_radial, num_blades).
ΞΈs_rs = reshape(ΞΈs, 1, 1, :)
radii_rs = reshape(radii, 1, :, 1)
dradii_rs = reshape(dradii, 1, :, 1)
chord_rs = reshape(chord, 1, :, 1)
twist_rs = reshape(twist, 1, :, 1)
hs_rs = reshape(hs, 1, :, 1)
Psis_rs = reshape(Psis, 1, :, 1)
Us_rs = reshape(U, 1, :, 1)
alphas_rs = reshape(alpha, 1, :, 1)
# bls_rs = reshape(bls, 1, :, 1)
# Separate things into tip and no-tip.
radii_rs_no_tip = @view radii_rs[:, begin:end-1, :]
dradii_rs_no_tip = @view dradii_rs[:, begin:end-1, :]
chord_rs_no_tip = @view chord_rs[:, begin:end-1, :]
twist_rs_no_tip = @view twist_rs[:, begin:end-1, :]
hs_rs_no_tip = @view hs_rs[:, begin:end-1, :]
Psis_rs_no_tip = @view Psis_rs[:, begin:end-1, :]
Us_rs_no_tip = @view Us_rs[:, begin:end-1, :]
alphas_rs_no_tip = @view alphas_rs[:, begin:end-1, :]
# bls_rs_no_tip = @view bls_rs[:, begin:end-1, :]
radii_rs_with_tip = @view radii_rs[:, end:end, :]
dradii_rs_with_tip = @view dradii_rs[:, end:end, :]
chord_rs_with_tip = @view chord_rs[:, end:end, :]
twist_rs_with_tip = @view twist_rs[:, end:end, :]
hs_rs_with_tip = @view hs_rs[:, end:end, :]
Psis_rs_with_tip = @view Psis_rs[:, end:end, :]
Us_rs_with_tip = @view Us_rs[:, end:end, :]
alphas_rs_with_tip = @view alphas_rs[:, end:end, :]
# bls_rs_with_tip = @view bls_rs[:, end:end, :]
positive_x_rotation = true
ses_no_tip = CombinedNoTipBroadbandSourceElement.(asound, nu, radii_rs_no_tip, ΞΈs_rs, dradii_rs_no_tip, chord_rs_no_tip, twist_rs_no_tip, hs_rs_no_tip, Psis_rs_no_tip, Us_rs_no_tip, alphas_rs_no_tip, src_times, dt, Ref(bl), positive_x_rotation) .|> trans
ses_with_tip = CombinedWithTipBroadbandSourceElement.(asound, nu, radii_rs_with_tip, ΞΈs_rs, dradii_rs_with_tip, chord_rs_with_tip, twist_rs_with_tip, hs_rs_with_tip, Psis_rs_with_tip, Us_rs_with_tip, alphas_rs_with_tip, src_times, dt, Ref(bl), Ref(blade_tip), positive_x_rotation) .|> trans
# It's more convinient to cat all the sources together.
ses = cat(ses_no_tip, ses_with_tip; dims=2)
# The predictions in Figure 22b appear to be on 1/3 octave, ranging from about 200 Hz to 60,000 Hz.
# But let's expand the range of source frequencies to account for Doppler shifting.
freqs_src = AcousticMetrics.ExactProportionalBands{3, :center}(10.0, 200000.0)
freqs_obs = AcousticMetrics.ExactProportionalBands{3, :center}(200.0, 60000.0)
# Now we can do a noise prediction.
bpm_outs = AcousticAnalogies.noise.(ses, Ref(obs), Ref(freqs_src))
# This seperates out the noise prediction for each source-observer combination into the different sources.
pbs_tblte_ps = AcousticAnalogies.pbs_pressure.(bpm_outs)
pbs_tblte_ss = AcousticAnalogies.pbs_suction.(bpm_outs)
pbs_tblte_alphas = AcousticAnalogies.pbs_alpha.(bpm_outs)
pbs_lblvss = AcousticAnalogies.pbs_lblvs.(bpm_outs)
pbs_tebs = AcousticAnalogies.pbs_teb.(bpm_outs)
pbs_tips = AcousticAnalogies.pbs_tip.(bpm_outs[:, end:end, :])
# Now, need to combine each broadband noise prediction.
# The time axis the axis over which the time varies for each source.
time_axis = 1
pbs_pressure = AcousticMetrics.combine(pbs_tblte_ps, freqs_obs, time_axis)
pbs_suction = AcousticMetrics.combine(pbs_tblte_ss, freqs_obs, time_axis)
pbs_alpha = AcousticMetrics.combine(pbs_tblte_alphas, freqs_obs, time_axis)
pbs_lblvs = AcousticMetrics.combine(pbs_lblvss, freqs_obs, time_axis)
pbs_teb = AcousticMetrics.combine(pbs_tebs, freqs_obs, time_axis)
pbs_tip = AcousticMetrics.combine(pbs_tips, freqs_obs, time_axis)
# Now I need to account for the fact that Figure 22b is actually comparing to narrowband experimental data with a frequency spacing of 20 Hz.
# So, to do that, I need to multiply the mean-squared pressure by Ξf_nb/Ξf_pbs, where `Ξf_nb` is the 20 Hz narrowband and `Ξf_pbs` is the bandwidth of each 1/3-octave proportional band.
# I think the paper describes that, right?
# Right, here's something:
#
# > The current prediction method is limited to one-third octave bands, but it is compared to the narrowband experiment with Ξf = 20 Hz.
# > This is done by dividing the energy from the one-third octave bands by the number of bands in Ξf = 20 Hz.
#
# So, `Ξf_pbs/Ξf_nb` would represent the number of `Ξf_nb`-width bands that could fit in a proportional band of bin width `Ξf_pbs`.
# And then I'm dividing by that.
# So that seems like the right thing.
# So, first thing is to get the proportional band spacing.
freqs_l = AcousticMetrics.lower_bands(freqs_obs)
freqs_u = AcousticMetrics.upper_bands(freqs_obs)
df_pbs = freqs_u .- freqs_l
# Also need the experimental narrowband spacing.
df_nb = 20.0
# Now multiply each by that.
nb_pressure = pbs_pressure .* df_nb ./ df_pbs
nb_suction = pbs_suction .* df_nb ./ df_pbs
nb_alpha = pbs_alpha .* df_nb ./ df_pbs
nb_lblvs = pbs_lblvs .* df_nb ./ df_pbs
nb_teb = pbs_teb .* df_nb ./ df_pbs
nb_tip = pbs_tip .* df_nb ./ df_pbs
# Now I want the SPL, which should just be this:
pref = 20e-6
spl_pressure = 10 .* log10.(nb_pressure./(pref^2))
spl_suction = 10 .* log10.(nb_suction./(pref^2))
spl_alpha = 10 .* log10.(nb_alpha./(pref^2))
spl_lblvs = 10 .* log10.(nb_lblvs./(pref^2))
spl_teb = 10 .* log10.(nb_teb./(pref^2))
spl_tip = 10 .* log10.(nb_tip./(pref^2))
# Now I should be able to compare to the BARC data.
# Need to read it in first.
data_pressure_barc = readdlm(joinpath(@__DIR__, "bpm_data", "pettingill_acoustic_performance_characteristics_of_ideally_twisted_rotor_in_hover_2021", "figure22b-TBL-TE-pressure-2.csv"), ',')
freq_pressure_barc = data_pressure_barc[:, 1]
spl_pressure_barc = data_pressure_barc[:, 2]
data_suction_barc = readdlm(joinpath(@__DIR__, "bpm_data", "pettingill_acoustic_performance_characteristics_of_ideally_twisted_rotor_in_hover_2021", "figure22b-TBL-TE-suction-2.csv"), ',')
freq_suction_barc = data_suction_barc[:, 1]
spl_suction_barc = data_suction_barc[:, 2]
data_separation_barc = readdlm(joinpath(@__DIR__, "bpm_data", "pettingill_acoustic_performance_characteristics_of_ideally_twisted_rotor_in_hover_2021", "figure22b-separation-2.csv"), ',')
freq_separation_barc = data_separation_barc[:, 1]
spl_separation_barc = data_separation_barc[:, 2]
data_lblvs_barc = readdlm(joinpath(@__DIR__, "bpm_data", "pettingill_acoustic_performance_characteristics_of_ideally_twisted_rotor_in_hover_2021", "figure22b-LBLVS.csv"), ',')
freq_lblvs_barc = data_lblvs_barc[:, 1]
spl_lblvs_barc = data_lblvs_barc[:, 2]
data_teb_barc = readdlm(joinpath(@__DIR__, "bpm_data", "pettingill_acoustic_performance_characteristics_of_ideally_twisted_rotor_in_hover_2021", "figure22b-BVS.csv"), ',')
freq_teb_barc = data_teb_barc[:, 1]
spl_teb_barc = data_teb_barc[:, 2]
data_tip_barc = readdlm(joinpath(@__DIR__, "bpm_data", "pettingill_acoustic_performance_characteristics_of_ideally_twisted_rotor_in_hover_2021", "figure22b-tip_vortex_shedding.csv"), ',')
freq_tip_barc = data_tip_barc[:, 1]
spl_tip_barc = data_tip_barc[:, 2]
# Interpolate the AcousticAnalogies.jl data onto the frequencies from the BARC CSV file.
spl_pressure_interp = akima(freqs_obs, spl_pressure, freq_pressure_barc)
spl_suction_interp = akima(freqs_obs, spl_suction, freq_suction_barc)
spl_separation_interp = akima(freqs_obs, spl_alpha, freq_separation_barc)
spl_lblvs_interp = akima(freqs_obs, spl_lblvs, freq_lblvs_barc)
spl_teb_interp = akima(freqs_obs, spl_teb, freq_teb_barc)
spl_tip_interp = akima(freqs_obs, spl_tip, freq_tip_barc)
# Now compare.
@test maximum(abs.(spl_pressure_interp .- spl_pressure_barc)) < 0.543
# Lower frequencies don't line up as well as higher.
# Not sure why.
@test abs(spl_suction_interp[1] - spl_suction_barc[1]) < 3.59
@test abs(spl_suction_interp[2] - spl_suction_barc[2]) < 2.71
@test abs(spl_suction_interp[3] - spl_suction_barc[3]) < 1.24
@test maximum(abs.(spl_suction_interp[4:end] .- spl_suction_barc[4:end])) < 0.462
# Lower frequencies don't line up as well as higher.
# Not sure why.
@test all(abs.(spl_separation_interp[1:12] .- spl_separation_barc[1:12]) .< [8.54, 7.63, 7.48, 6.82, 6.51, 6.60, 5.99, 4.87, 4.21, 2.58, 1.29, 0.299])
@test maximum(abs.(spl_separation_interp[13:end] .- spl_separation_barc[13:end])) < 0.466
@test all(abs.(spl_teb_interp .- spl_teb_barc) .< [0.134, 0.349, 0.424, 0.133, 0.187, 0.603, 0.244, 2.60])
@test all(abs.(spl_tip_interp .- spl_tip_barc) .< [0.0641, 0.0426, 0.170, 0.0923, 0.116, 0.231, 0.228, 0.160, 0.121])
| AcousticAnalogies | https://github.com/OpenMDAO/AcousticAnalogies.jl.git |
|
[
"Apache-2.0"
] | 0.8.1 | c14d0b2e7f19374017a2b5b6dfe48c5723c791ae | code | 14401 | using AcousticAnalogies
using AcousticMetrics: AcousticMetrics
using KinematicCoordinateTransformations: compose, SteadyRotXTransformation, SteadyRotYTransformation, SteadyRotZTransformation, ConstantVelocityTransformation
using FileIO: load
using FLOWMath: Akima
using StaticArrays
using Test
# tip vortex noise correction data based on "Airfoil Tip Vortex Formation Noise"
# Copied from BPM.jl (would like to add BPM.jl as a dependency if it's registered in General some day).
const bm_tip_alpha_aspect_data = [2.0,2.67,4.0,6.0,12.0,24.0]
const bm_tip_alpha_aratio_data = [0.54,0.62,0.71,0.79,0.89,0.95]
const bm_tip_alpha_aspect_ratio_correction = Akima(bm_tip_alpha_aspect_data, bm_tip_alpha_aratio_data)
function bm_tip_vortex_alpha_correction_nonsmooth(aspect_ratio)
# compute tip lift curve slope
if aspect_ratio < 2.0
aratio = 0.5*one(aspect_ratio)
elseif 2.0 <= aspect_ratio <= 24.0
aratio = bm_tip_alpha_aspect_ratio_correction(aspect_ratio)
elseif aspect_ratio > 24.0
aratio = 1.0*one(aspect_ratio)
end
return aratio
end
struct BMTipAlphaCorrection{TCorrection} <: AbstractTipAlphaCorrection
correction::TCorrection
function BMTipAlphaCorrection(aspect_ratio)
# correction = BPM._tip_vortex_alpha_correction_nonsmooth(aspect_ratio)
correction = bm_tip_vortex_alpha_correction_nonsmooth(aspect_ratio)
return new{typeof(correction)}(correction)
end
end
function AcousticAnalogies.tip_vortex_alpha_correction(blade_tip::AbstractBladeTip{<:BMTipAlphaCorrection}, alphatip)
a0l = AcousticAnalogies.alpha_zerolift(blade_tip)
correction_factor = AcousticAnalogies.tip_alpha_correction(blade_tip).correction
return correction_factor * (alphatip - a0l) + a0l
end
data = load(joinpath(@__DIR__, "gen_bpmjl_data", "figure22b.jld2"))
rho = data["rho"]
asound = data["asound"]
mu = data["mu"]
Vinf = data["Vinf"]
omega = data["omega"]
B = data["B"]
Rhub = data["Rhub"]
Rtip = data["Rtip"]
radii = data["radii"]
chord = data["chord"]
twist = data["twist"]
alpha = data["alpha"]
U = data["U"]
hs = data["hs"]
Psis = data["Psis"]
num_src_times_blade_pass = data["num_src_times_blade_pass"]
tripped_flags = data["tripped_flags"]
num_radial = length(radii)
nu = mu/rho
dradii = AcousticAnalogies.get_dradii(radii, Rhub, Rtip)
# Get some transform stuff.
bpp = 1/(B/(2*pi)*omega) # 1/(B blade_passes/rev * 1 rev / (2*pi rad) * omega rad/s)
num_blade_pass = 1
period_src = num_blade_pass*bpp
num_src_times = num_src_times_blade_pass * num_blade_pass
t0 = 0.0
dt = period_src/num_src_times
src_times = t0 .+ (0:num_src_times-1).*dt
# I don't see any discussion for what type of tip was used for the tip vortex noise.
# FlatTip with no CCBlade.jl tip correction or BPM-style tip correction seems to match the BARC predictions well.
# blade_tip = AcousticAnalogies.FlatTip(AcousticAnalogies.NoTipAlphaCorrection())
# BPM.jl uses a different tip alpha correction which appears to require the blade aspect ratio, defined as the blade radius divided by the average chord.
cbar = sum(chord .* dradii) / (Rtip - Rhub)
aspect_ratio = Rtip/cbar
alpha0lift = 0.0
blade_tip = AcousticAnalogies.FlatTip(BMTipAlphaCorrection(aspect_ratio), alpha0lift)
# Getting the coordinate system consistent with BPM.jl is a bit tricky.
# Here's a bit of code from BPM.jl:
#
# # Calculate the trailing edge position relative to the hub
# xs = sin(beta)*d - cos(beta)*(c - c1)
# zs = cos(beta)*d + sin(beta)*(c - c1)
#
# OK, so that shows me that the blade is initially aligned with the z axis, rotating to the positive x direction.
# And I know the blades are rotating about the positive y axis.
# So that's the answer for the BPM.jl coordinate system:
#
# * freestream in the positive y axis direction.
# * first blade initially aligned with the positive z axis, rotating about the positive y axis.
#
# Now, what do I need to do with AcousticAnalogies to make that happen?
# I want the blades to be translating in the negative y direction, rotating about the positive y axis.
# I usually start with the blades rotating about either the positive or negative x axis, moving in the direction of the positive x axis.
# I think the answer is,
#
# * start out with the blades rotating about the negative x axis, moving in the direction of the positive x axis
# * rotate 90Β° about the negative z axis.
# After this, the blades will be moving in the negative y direction, rotating about the positive y axis, which is good.
# But I want the first blade to be aligned with the positive z axis, and stopping here would mean it's aligned with the positive x axis.
# * rotate 90Β° about the negative y axis.
# This will put the first blade in line with the positive z axis.
# So, let's do what we said we need to do.
# Start with a rotation about the negative x axis.
positive_x_rotation = false
rot_trans = SteadyRotXTransformation(t0, omega*ifelse(positive_x_rotation, 1, -1), 0)
# Then translate along the positive x axis.
y0_hub = @SVector [0.0, 0.0, 0.0] # m
v0_hub = @SVector [Vinf, 0.0, 0.0]
const_vel_trans = ConstantVelocityTransformation(t0, y0_hub, v0_hub)
# Then a 90Β° rotation about the negative z axis.
trans_z90deg = SteadyRotZTransformation(0.0, 0.0, -0.5*pi)
# Then a 90Β° rotation about the negative y axis.
trans_y90deg = SteadyRotYTransformation(0.0, 0.0, -0.5*pi)
# Put them all together:
trans = compose.(src_times, Ref(trans_y90deg),
compose.(src_times, Ref(trans_z90deg),
compose.(src_times, Ref(const_vel_trans), Ref(rot_trans))))
# Use the M_c = 0.8*M that BPM.jl and the BPM report use.
U = @. 0.8*sqrt(Vinf^2 + (omega*radii)^2)
# Azimuthal offset for each blade.
ΞΈs = (0:(B-1)) .* (2*pi/B) .* ifelse(positive_x_rotation, 1, -1)
bls = [ifelse(tf,
AcousticAnalogies.TrippedN0012BoundaryLayer(),
AcousticAnalogies.UntrippedN0012BoundaryLayer()) for tf in tripped_flags]
# Need to do the LBLVS with the untripped boundary layer to match what BPM.jl is doing.
# bls_lblvs = fill(AcousticAnalogies.UntrippedN0012BoundaryLayer(), num_radial)
bl_lblvs = AcousticAnalogies.UntrippedN0012BoundaryLayer()
r_obs = 2.27 # meters
theta_obs = -35*pi/180
# So, the docstring for BPM.jl says that `V` argument is the wind velocity in the y direction.
# So I guess we should assume that the blades are rotating about the y axis.
# And if the freestream velocity is in the positive y axis, then, from the perspective of the fluid, the blades are translating in the negative y direction.
# And I want the observer to be downstream/behind the blades, so that would mean they would have a positive y position.
# So I want to rotate the observer around the positive x axis, so I'm going to switch the sign on `theta_obs`.
t0_obs = 0.0
x0_obs = [0.0, r_obs*sin(-theta_obs), r_obs*cos(-theta_obs)]
# The observer is moving in the same direction as the blades, which is the negative y axis.
v_obs = @SVector [0.0, -Vinf, 0.0]
obs = AcousticAnalogies.ConstVelocityAcousticObserver(t0_obs, x0_obs, v_obs)
# Reshape the inputs to the source element constructors so that everything will line up with (num_times, num_radial, num_blades).
ΞΈs_rs = reshape(ΞΈs, 1, 1, :)
radii_rs = reshape(radii, 1, :, 1)
dradii_rs = reshape(dradii, 1, :, 1)
chord_rs = reshape(chord, 1, :, 1)
twist_rs = reshape(twist, 1, :, 1)
hs_rs = reshape(hs, 1, :, 1)
Psis_rs = reshape(Psis, 1, :, 1)
Us_rs = reshape(U, 1, :, 1)
alphas_rs = reshape(alpha, 1, :, 1)
bls_rs = reshape(bls, 1, :, 1)
# bls_untripped_rs = reshape(bls_lblvs, 1, :, 1)
# Separate things into tip and no-tip.
radii_rs_no_tip = @view radii_rs[:, begin:end-1, :]
dradii_rs_no_tip = @view dradii_rs[:, begin:end-1, :]
chord_rs_no_tip = @view chord_rs[:, begin:end-1, :]
twist_rs_no_tip = @view twist_rs[:, begin:end-1, :]
hs_rs_no_tip = @view hs_rs[:, begin:end-1, :]
Psis_rs_no_tip = @view Psis_rs[:, begin:end-1, :]
Us_rs_no_tip = @view Us_rs[:, begin:end-1, :]
alphas_rs_no_tip = @view alphas_rs[:, begin:end-1, :]
bls_rs_no_tip = @view bls_rs[:, begin:end-1, :]
radii_rs_with_tip = @view radii_rs[:, end:end, :]
dradii_rs_with_tip = @view dradii_rs[:, end:end, :]
chord_rs_with_tip = @view chord_rs[:, end:end, :]
twist_rs_with_tip = @view twist_rs[:, end:end, :]
hs_rs_with_tip = @view hs_rs[:, end:end, :]
Psis_rs_with_tip = @view Psis_rs[:, end:end, :]
Us_rs_with_tip = @view Us_rs[:, end:end, :]
alphas_rs_with_tip = @view alphas_rs[:, end:end, :]
bls_rs_with_tip = @view bls_rs[:, end:end, :]
direct = AcousticAnalogies.BPMDirectivity
use_UInduction = false
use_Doppler = false
mach_correction = AcousticAnalogies.NoMachCorrection
ses_no_tip = CombinedNoTipBroadbandSourceElement{direct,use_UInduction,mach_correction,use_Doppler}.(asound, nu, radii_rs_no_tip, ΞΈs_rs, dradii_rs_no_tip, chord_rs_no_tip, twist_rs_no_tip, hs_rs_no_tip, Psis_rs_no_tip, Us_rs_no_tip, alphas_rs_no_tip, src_times, dt, bls_rs_no_tip, positive_x_rotation) .|> trans
ses_with_tip = CombinedWithTipBroadbandSourceElement{direct,use_UInduction,mach_correction,use_Doppler}.(asound, nu, radii_rs_with_tip, ΞΈs_rs, dradii_rs_with_tip, chord_rs_with_tip, twist_rs_with_tip, hs_rs_with_tip, Psis_rs_with_tip, Us_rs_with_tip, alphas_rs_with_tip, src_times, dt, bls_rs_with_tip, Ref(blade_tip), positive_x_rotation) .|> trans
# Need to do the LBLVS with the untripped boundary layer to match what BPM.jl is doing.
lblvs_ses_untripped = AcousticAnalogies.LBLVSSourceElement{direct,use_UInduction,use_Doppler}.(asound, nu, radii_rs, ΞΈs_rs, dradii_rs, chord_rs, twist_rs, Us_rs, alphas_rs, src_times, dt, Ref(bl_lblvs), positive_x_rotation) .|> trans
# # Write out the source elements.
# pvd_no_tip = AcousticAnalogies.to_paraview_collection(joinpath(@__DIR__, "figure22b-no_tip"), ses_no_tip)
# pvd_with_tip = AcousticAnalogies.to_paraview_collection(joinpath(@__DIR__, "figure22b-with_tip"), ses_with_tip)
# pvd_all = AcousticAnalogies.to_paraview_collection(joinpath(@__DIR__, "figure22b-all"), (ses_no_tip, ses_with_tip); observers=(obs,))
# Put the source elements together:
ses = cat(ses_no_tip, ses_with_tip; dims=2)
# Define the frequencies we'd like to evaluate.
# BPM.jl uses the approximate 1/3rd-octave bands.
freqs_obs = AcousticMetrics.ApproximateThirdOctaveCenterBands(100.0, 40000.0)
freqs_src = freqs_obs
# Now do the noise prediction.
bpm_outs = AcousticAnalogies.noise.(ses, Ref(obs), Ref(freqs_src))
pbs_lblvss_untripped = AcousticAnalogies.noise.(lblvs_ses_untripped, Ref(obs), Ref(freqs_src))
# Separate out each source.
pbs_tblte_ps = AcousticAnalogies.pbs_pressure.(bpm_outs)
pbs_tblte_ss = AcousticAnalogies.pbs_suction.(bpm_outs)
pbs_tblte_alphas = AcousticAnalogies.pbs_alpha.(bpm_outs)
pbs_tebs = AcousticAnalogies.pbs_teb.(bpm_outs)
pbs_tips = AcousticAnalogies.pbs_tip.(bpm_outs[:, end:end, :])
# Combine each noise prediction.
time_axis = 1
pbs_pressure = AcousticMetrics.combine(pbs_tblte_ps, freqs_obs, time_axis)
pbs_suction = AcousticMetrics.combine(pbs_tblte_ss, freqs_obs, time_axis)
pbs_alpha = AcousticMetrics.combine(pbs_tblte_alphas, freqs_obs, time_axis)
pbs_teb = AcousticMetrics.combine(pbs_tebs, freqs_obs, time_axis)
pbs_tip = AcousticMetrics.combine(pbs_tips, freqs_obs, time_axis)
pbs_lblvs_untripped = AcousticMetrics.combine(pbs_lblvss_untripped, freqs_obs, time_axis)
# Now I need to account for the fact that Figure 22b is actually comparing to narrowband experimental data with a frequency spacing of 20 Hz.
# So, to do that, I need to multiply the mean-squared pressure by Ξf_nb/Ξf_pbs, where `Ξf_nb` is the 20 Hz narrowband and `Ξf_pbs` is the bandwidth of each 1/3-octave proportional band.
# (Dividing the MSP by Ξf_pbs aka the 1/3 octave spacing is like getting a power-spectral density, then multiplying by the narrowband spacing Ξf_nb gives us the MSP associated with the narrowband.)
# I think the paper describes that, right?
# Right, here's something:
#
# > The current prediction method is limited to one-third octave bands, but it is compared to the narrowband experiment with Ξf = 20 Hz.
# > This is done by dividing the energy from the one-third octave bands by the number of bands in Ξf = 20 Hz.
#
# So, `Ξf_pbs/Ξf_nb` would represent the number of `Ξf_nb`-width bands that could fit in a proportional band of bin width `Ξf_pbs`.
# And then I'm dividing by that.
# So that seems like the right thing.
# So, first thing is to get the proportional band spacing.
freqs_l = AcousticMetrics.lower_bands(freqs_obs)
freqs_u = AcousticMetrics.upper_bands(freqs_obs)
df_pbs = freqs_u .- freqs_l
# Also need the experimental narrowband spacing.
df_nb = 20.0
# Now multiply each by that.
nb_pressure = pbs_pressure .* df_nb ./ df_pbs
nb_suction = pbs_suction .* df_nb ./ df_pbs
nb_alpha = pbs_alpha .* df_nb ./ df_pbs
nb_teb = pbs_teb .* df_nb ./ df_pbs
nb_tip = pbs_tip .* df_nb ./ df_pbs
nb_lblvs_untripped = pbs_lblvs_untripped .* df_nb ./ df_pbs
# Now I want the SPL, which should just be this:
pref = 20e-6
spl_pressure = 10 .* log10.(nb_pressure./(pref^2))
spl_suction = 10 .* log10.(nb_suction./(pref^2))
spl_alpha = 10 .* log10.(nb_alpha./(pref^2))
spl_teb = 10 .* log10.(nb_teb./(pref^2))
spl_tip = 10 .* log10.(nb_tip./(pref^2))
spl_lblvs_untripped = 10 .* log10.(nb_lblvs_untripped./(pref^2))
# Read in the BPM.jl data.
freq_bpmjl = data["freqs"]
spl_pressure_bpmjl = data["spl_nb_pressure"]
spl_suction_bpmjl = data["spl_nb_suction"]
spl_separation_bpmjl = data["spl_nb_separation"]
spl_lblvs_bpmjl = data["spl_nb_lblvs"]
spl_blunt_bpmjl = data["spl_nb_blunt"]
spl_tip_bpmjl = data["spl_nb_tip"]
# The frequencies in the CSV file should match the observer frequencies we're using.
@test all(freqs_obs .β freq_bpmjl)
# Only look at the SPLs that are actually significant, i.e. greater than 10 dB.
@test maximum(abs.(spl_pressure[spl_pressure_bpmjl .> 10] .- spl_pressure_bpmjl[spl_pressure_bpmjl .> 10])) < 0.77
@test maximum(abs.(spl_suction[spl_suction_bpmjl .> 10] .- spl_suction_bpmjl[spl_suction_bpmjl .> 10])) < 0.78
@test maximum(abs.(spl_alpha[spl_separation_bpmjl .> 10] .- spl_separation_bpmjl[spl_separation_bpmjl .> 10])) < 0.78
@test maximum(abs.(spl_lblvs_untripped[spl_lblvs_bpmjl .> 10] .- spl_lblvs_bpmjl[spl_lblvs_bpmjl .> 10])) < 0.81
@test maximum(abs.(spl_teb[spl_blunt_bpmjl .> 10] .- spl_blunt_bpmjl[spl_blunt_bpmjl .> 10])) < 0.81
@test maximum(abs.(spl_tip[spl_tip_bpmjl .> 10] .- spl_tip_bpmjl[spl_tip_bpmjl .> 10])) < 1.25
| AcousticAnalogies | https://github.com/OpenMDAO/AcousticAnalogies.jl.git |
|
[
"Apache-2.0"
] | 0.8.1 | c14d0b2e7f19374017a2b5b6dfe48c5723c791ae | code | 13844 | using AcousticAnalogies
using AcousticMetrics: AcousticMetrics
using DelimitedFiles: readdlm
using KinematicCoordinateTransformations: compose, SteadyRotXTransformation, ConstantVelocityTransformation
using FileIO: load
using FLOWMath: akima
using StaticArrays: @SVector
using Test
data = load(joinpath(@__DIR__, "gen_bpmjl_data", "figure23c.jld2"))
rho = data["rho"]
asound = data["asound"]
mu = data["mu"]
Vinf = data["Vinf"]
omega = data["omega"]
B = data["B"]
Rhub = data["Rhub"]
Rtip = data["Rtip"]
radii = data["radii"]
chord = data["chord"]
twist = data["twist"]
alpha = data["alpha"]
U = data["U"]
hs = data["hs"]
num_src_times_blade_pass = data["num_src_times_blade_pass"]
Psis = data["Psis"]
nu = mu/rho
num_radial = length(radii)
dradii = AcousticAnalogies.get_dradii(radii, Rhub, Rtip)
# Get the source time, which will be one blade pass worth of time, each blade pass with `num_src_times_blade_pass` steps per blade pass.
bpp = 1/(B/(2*pi)*omega) # 1/(B blade_passes/rev * 1 rev / (2*pi rad) * omega rad/s)
num_blade_pass = 1
period_src = num_blade_pass*bpp
num_src_times = num_src_times_blade_pass * num_blade_pass
t0 = 0.0
dt = period_src/num_src_times
src_times = t0 .+ (0:num_src_times-1).*dt
# Now let's define the coordinate system.
# I'm going to do my usual thing, which is to have the freestream velocity pointed in the negative x direction, and thus the blades will be translating in the positive x direction.
# And the blades will be rotating about the positive x axis at a rate of `omega`.
rot_trans = SteadyRotXTransformation(t0, omega, 0.0)
# The hub/rotation axis of the blades will start at the origin at time `t0`, and translate in the positive x direction at a speed of `Vinf`.
y0_hub = @SVector [0.0, 0.0, 0.0] # m
v0_hub = @SVector [Vinf, 0.0, 0.0] # m/s
const_vel_trans = ConstantVelocityTransformation(t0, y0_hub, v0_hub)
# Now I can put the two transformations together:
trans = compose.(src_times, Ref(const_vel_trans), Ref(rot_trans))
# Azimuthal offset for each blade.
ΞΈs = (0:(B-1)) .* (2*pi/B)
# Paper doesn't specify the microphone used for Figure 23, but earlier at the beginning of "C. Noise Characteristics and Trends" there is this:
# > For the purposes of this paper, presented acoustic spectra will correspond to an observer located β35Β° below the plane of the rotor (microphone 5).
# So I'll just assume that holds for Figure 23.
# For the coordinate system, I'm doing my usual thing, which is to have the freestream velocity pointed in the negative x direction, and thus the blades will be translating in the positive x direction.
# The observer (microphone 5) is 35 deg behind/downstream of the rotor rotation plane, so this should be good.
# But it will of course be moving with the same freestream in the positive x direction.
r_obs = 2.27 # meters
theta_obs = -35*pi/180
# The observer is moving in the positive x direction at Vinf, at the origin at time t0.
t0_obs = 0.0
x0_obs = @SVector [r_obs*sin(theta_obs), r_obs*cos(theta_obs), 0.0]
v_obs = @SVector [Vinf, 0.0, 0.0]
obs = AcousticAnalogies.ConstVelocityAcousticObserver(t0_obs, x0_obs, v_obs)
# So, for the boundary layer, we want to use untripped for the 95% of the blade from the hub to almost tip, and then tripped for the last 5% of the blade at the tip.
num_untripped = Int(round(0.95*num_radial))
num_tripped = num_radial - num_untripped
bls_untripped = fill(AcousticAnalogies.UntrippedN0012BoundaryLayer(), num_untripped)
bls_tripped = fill(AcousticAnalogies.TrippedN0012BoundaryLayer(), num_tripped)
bls = vcat(bls_untripped, bls_tripped)
# Now, the other trick: need to only include LBLVS noise for elements where the Reynolds number is < 160000.
# So, we need the Reynolds number for each section.
Re_c = @. U * chord / nu
# So now we want to extract the radial stations that meet that < 160000 condition.
low_Re_c = 160000
mask_low_Re_c = Re_c .< low_Re_c
# And we're also going to use the untripped boundary layer for the LBLVS source.
bl_lblvs = AcousticAnalogies.UntrippedN0012BoundaryLayer()
# In the Figure 23 caption, "for these predictions, bluntness thickness H was set to 0.5 mm and trailing edge angle Ξ¨ was set to 14 degrees."
h = 0.5e-3 # meters
Psi = 14*pi/180 # radians
# I don't see any discussion for what type of tip was used for the tip vortex noise.
# The flat tip seems to match the PAS+ROTONET+BARC predictions well.
blade_tip = AcousticAnalogies.FlatTip()
# Reshape the inputs to the source element constructors so that everything will line up with (num_times, num_radial, num_blades).
ΞΈs_rs = reshape(ΞΈs, 1, 1, :)
radii_rs = reshape(radii, 1, :, 1)
dradii_rs = reshape(dradii, 1, :, 1)
chord_rs = reshape(chord, 1, :, 1)
twist_rs = reshape(twist, 1, :, 1)
hs_rs = reshape(hs, 1, :, 1)
Psis_rs = reshape(Psis, 1, :, 1)
Us_rs = reshape(U, 1, :, 1)
alphas_rs = reshape(alpha, 1, :, 1)
bls_rs = reshape(bls, 1, :, 1)
# Separate things into tip and no-tip.
radii_rs_no_tip = @view radii_rs[:, begin:end-1, :]
dradii_rs_no_tip = @view dradii_rs[:, begin:end-1, :]
chord_rs_no_tip = @view chord_rs[:, begin:end-1, :]
twist_rs_no_tip = @view twist_rs[:, begin:end-1, :]
hs_rs_no_tip = @view hs_rs[:, begin:end-1, :]
Psis_rs_no_tip = @view Psis_rs[:, begin:end-1, :]
Us_rs_no_tip = @view Us_rs[:, begin:end-1, :]
alphas_rs_no_tip = @view alphas_rs[:, begin:end-1, :]
bls_rs_no_tip = @view bls_rs[:, begin:end-1, :]
radii_rs_with_tip = @view radii_rs[:, end:end, :]
dradii_rs_with_tip = @view dradii_rs[:, end:end, :]
chord_rs_with_tip = @view chord_rs[:, end:end, :]
twist_rs_with_tip = @view twist_rs[:, end:end, :]
hs_rs_with_tip = @view hs_rs[:, end:end, :]
Psis_rs_with_tip = @view Psis_rs[:, end:end, :]
Us_rs_with_tip = @view Us_rs[:, end:end, :]
alphas_rs_with_tip = @view alphas_rs[:, end:end, :]
bls_rs_with_tip = @view bls_rs[:, end:end, :]
positive_x_rotation = true
ses_no_tip = CombinedNoTipBroadbandSourceElement.(asound, nu, radii_rs_no_tip, ΞΈs_rs, dradii_rs_no_tip, chord_rs_no_tip, twist_rs_no_tip, hs_rs_no_tip, Psis_rs_no_tip, Us_rs_no_tip, alphas_rs_no_tip, src_times, dt, bls_rs_no_tip, positive_x_rotation) .|> trans
ses_with_tip = CombinedWithTipBroadbandSourceElement.(asound, nu, radii_rs_with_tip, ΞΈs_rs, dradii_rs_with_tip, chord_rs_with_tip, twist_rs_with_tip, hs_rs_with_tip, Psis_rs_with_tip, Us_rs_with_tip, alphas_rs_with_tip, src_times, dt, bls_rs_with_tip, Ref(blade_tip), positive_x_rotation) .|> trans
# It's more convinient to cat all the sources together.
ses = cat(ses_no_tip, ses_with_tip; dims=2)
# Need to do the LBLVS stuff separately.
# Grab the parts of the inputs that correspond to the low Reynolds number stations.
radii_lblvs = @view radii[mask_low_Re_c]
dradii_lblvs = @view dradii[mask_low_Re_c]
chord_lblvs = @view chord[mask_low_Re_c]
twist_lblvs = @view twist[mask_low_Re_c]
hs_lblvs = @view hs[mask_low_Re_c]
Psis_lblvs = @view Psis[mask_low_Re_c]
Us_lblvs = @view U[mask_low_Re_c]
alphas_lblvs = @view alpha[mask_low_Re_c]
# And do the reshaping.
radii_lblvs_rs = reshape(radii_lblvs, 1, :, 1)
dradii_lblvs_rs = reshape(dradii_lblvs, 1, :, 1)
chord_lblvs_rs = reshape(chord_lblvs, 1, :, 1)
twist_lblvs_rs = reshape(twist_lblvs, 1, :, 1)
hs_lblvs_rs = reshape(hs_lblvs, 1, :, 1)
Psis_lblvs_rs = reshape(Psis_lblvs, 1, :, 1)
Us_lblvs_rs = reshape(Us_lblvs, 1, :, 1)
alphas_lblvs_rs = reshape(alphas_lblvs, 1, :, 1)
# Now we can create the source elements.
ses_lblvs = LBLVSSourceElement.(asound, nu, radii_lblvs_rs, ΞΈs_rs, dradii_lblvs_rs, chord_lblvs_rs, twist_lblvs_rs, Us_lblvs_rs, alphas_lblvs_rs, src_times, dt, Ref(bl_lblvs), positive_x_rotation) .|> trans
# The predictions in Figure 23c appear to be on 1/3 octave, ranging from about 200 Hz to 60,000 Hz.
# But let's expand the range of source frequencies to account for Doppler shifting.
freqs_src = AcousticMetrics.ExactProportionalBands{3, :center}(10.0, 200000.0)
freqs_obs = AcousticMetrics.ExactProportionalBands{3, :center}(200.0, 60000.0)
# Now we can do a noise prediction.
bpm_outs = AcousticAnalogies.noise.(ses, Ref(obs), Ref(freqs_src))
pbs_lblvss = AcousticAnalogies.noise.(ses_lblvs, Ref(obs), Ref(freqs_src))
# This seperates out the noise prediction for each source-observer combination into the different sources.
pbs_tblte_ps = AcousticAnalogies.pbs_pressure.(bpm_outs)
pbs_tblte_ss = AcousticAnalogies.pbs_suction.(bpm_outs)
pbs_tblte_alphas = AcousticAnalogies.pbs_alpha.(bpm_outs)
pbs_tebs = AcousticAnalogies.pbs_teb.(bpm_outs)
pbs_tips = AcousticAnalogies.pbs_tip.(bpm_outs[:, end:end, :])
# Now, need to combine each broadband noise prediction.
# The time axis the axis over which the time varies for each source.
time_axis = 1
pbs_pressure = AcousticMetrics.combine(pbs_tblte_ps, freqs_obs, time_axis)
pbs_suction = AcousticMetrics.combine(pbs_tblte_ss, freqs_obs, time_axis)
pbs_alpha = AcousticMetrics.combine(pbs_tblte_alphas, freqs_obs, time_axis)
pbs_teb = AcousticMetrics.combine(pbs_tebs, freqs_obs, time_axis)
pbs_tip = AcousticMetrics.combine(pbs_tips, freqs_obs, time_axis)
pbs_lblvs = AcousticMetrics.combine(pbs_lblvss, freqs_obs, time_axis)
# Now I need to account for the fact that Figure 23c is actually comparing to narrowband experimental data with a frequency spacing of 20 Hz.
# So, to do that, I need to multiply the mean-squared pressure by Ξf_nb/Ξf_pbs, where `Ξf_nb` is the 20 Hz narrowband and `Ξf_pbs` is the bandwidth of each 1/3-octave proportional band.
# I think the paper describes that, right?
# Right, here's something:
#
# > The current prediction method is limited to one-third octave bands, but it is compared to the narrowband experiment with Ξf = 20 Hz.
# > This is done by dividing the energy from the one-third octave bands by the number of bands in Ξf = 20 Hz.
#
# So, `Ξf_pbs/Ξf_nb` would represent the number of `Ξf_nb`-width bands that could fit in a proportional band of bin width `Ξf_pbs`.
# And then I'm dividing by that.
# So that seems like the right thing.
# So, first thing is to get the proportional band spacing.
freqs_l = AcousticMetrics.lower_bands(freqs_obs)
freqs_u = AcousticMetrics.upper_bands(freqs_obs)
df_pbs = freqs_u .- freqs_l
# Also need the experimental narrowband spacing.
df_nb = 20.0
# Now multiply each by that.
nb_pressure = pbs_pressure .* df_nb ./ df_pbs
nb_suction = pbs_suction .* df_nb ./ df_pbs
nb_alpha = pbs_alpha .* df_nb ./ df_pbs
nb_lblvs = pbs_lblvs .* df_nb ./ df_pbs
nb_teb = pbs_teb .* df_nb ./ df_pbs
nb_tip = pbs_tip .* df_nb ./ df_pbs
# Now I want the SPL, which should just be this:
pref = 20e-6
spl_pressure = 10 .* log10.(nb_pressure./(pref^2))
spl_suction = 10 .* log10.(nb_suction./(pref^2))
spl_alpha = 10 .* log10.(nb_alpha./(pref^2))
spl_lblvs = 10 .* log10.(nb_lblvs./(pref^2))
spl_teb = 10 .* log10.(nb_teb./(pref^2))
spl_tip = 10 .* log10.(nb_tip./(pref^2))
# Now I should be able to compare to the BARC data.
# Need to read it in first.
data_pressure_barc = readdlm(joinpath(@__DIR__, "bpm_data", "pettingill_acoustic_performance_characteristics_of_ideally_twisted_rotor_in_hover_2021", "figure23c-TBL-TE-pressure.csv"), ',')
freq_pressure_barc = data_pressure_barc[:, 1]
spl_pressure_barc = data_pressure_barc[:, 2]
data_suction_barc = readdlm(joinpath(@__DIR__, "bpm_data", "pettingill_acoustic_performance_characteristics_of_ideally_twisted_rotor_in_hover_2021", "figure23c-TBL-TE-suction.csv"), ',')
freq_suction_barc = data_suction_barc[:, 1]
spl_suction_barc = data_suction_barc[:, 2]
data_separation_barc = readdlm(joinpath(@__DIR__, "bpm_data", "pettingill_acoustic_performance_characteristics_of_ideally_twisted_rotor_in_hover_2021", "figure23c-separation.csv"), ',')
freq_separation_barc = data_separation_barc[:, 1]
spl_separation_barc = data_separation_barc[:, 2]
data_lblvs_barc = readdlm(joinpath(@__DIR__, "bpm_data", "pettingill_acoustic_performance_characteristics_of_ideally_twisted_rotor_in_hover_2021", "figure23c-LBLVS.csv"), ',')
freq_lblvs_barc = data_lblvs_barc[:, 1]
spl_lblvs_barc = data_lblvs_barc[:, 2]
data_teb_barc = readdlm(joinpath(@__DIR__, "bpm_data", "pettingill_acoustic_performance_characteristics_of_ideally_twisted_rotor_in_hover_2021", "figure23c-BVS.csv"), ',')
freq_teb_barc = data_teb_barc[:, 1]
spl_teb_barc = data_teb_barc[:, 2]
data_tip_barc = readdlm(joinpath(@__DIR__, "bpm_data", "pettingill_acoustic_performance_characteristics_of_ideally_twisted_rotor_in_hover_2021", "figure23c-tip_vortex_shedding.csv"), ',')
freq_tip_barc = data_tip_barc[:, 1]
spl_tip_barc = data_tip_barc[:, 2]
# Interpolate the AcousticAnalogies.jl data onto the frequencies from the BARC CSV file.
spl_pressure_interp = akima(freqs_obs, spl_pressure, freq_pressure_barc)
spl_suction_interp = akima(freqs_obs, spl_suction, freq_suction_barc)
spl_separation_interp = akima(freqs_obs, spl_alpha, freq_separation_barc)
spl_lblvs_interp = akima(freqs_obs, spl_lblvs, freq_lblvs_barc)
spl_teb_interp = akima(freqs_obs, spl_teb, freq_teb_barc)
spl_tip_interp = akima(freqs_obs, spl_tip, freq_tip_barc)
# Now compare.
@test all(abs.(spl_pressure_interp .- spl_pressure_barc) .< [1.918, 1.880, 1.484, 1.65, 1.496, 1.170, 1.043, 0.729, 0.406, 0.406, 1.49, 1.142, 1.131])
@test all(abs.(spl_suction_interp .- spl_suction_barc) .< [2.193, 2.066, 1.984, 1.961, 1.686, 1.423, 1.255, 1.060, 0.339, 0.101, 0.149, 0.749, 1.363, 1.220, 1.547, 1.979])
@test all(abs.(spl_separation_interp .- spl_separation_barc) .< [17.002, 14.84, 12.09, 10.20, 9.42, 8.371, 7.763, 7.504, 7.099, 6.124, 5.307, 2.843, 2.326, 2.560, 2.583, 2.088, 1.448, 0.628, 0.112, 0.873, 1.971])
@test all(abs.(spl_lblvs_interp .- spl_lblvs_barc) .< [3.369, 3.795, 3.758, 3.797, 3.765, 3.749, 3.545, 3.927, 3.922, 3.652, 3.571])
@test all(abs.(spl_teb_interp .- spl_teb_barc) .< [0.274, 0.135, 0.211, 0.127, 0.0584, 2.200, 2.981])
@test all(abs.(spl_tip_interp .- spl_tip_barc) .< [0.590, 0.659, 0.625, 0.460, 0.240, 0.467, 0.434, 0.0235, 0.0468])
| AcousticAnalogies | https://github.com/OpenMDAO/AcousticAnalogies.jl.git |
|
[
"Apache-2.0"
] | 0.8.1 | c14d0b2e7f19374017a2b5b6dfe48c5723c791ae | code | 15166 | using AcousticAnalogies
using AcousticMetrics: AcousticMetrics
using KinematicCoordinateTransformations: compose, SteadyRotXTransformation, SteadyRotYTransformation, SteadyRotZTransformation, ConstantVelocityTransformation
using FileIO: load
using FLOWMath: Akima
using StaticArrays: @SVector
using Test
# tip vortex noise correction data based on "Airfoil Tip Vortex Formation Noise"
# Copied from BPM.jl (would like to add BPM.jl as a dependency if it's registered in General some day).
const bm_tip_alpha_aspect_data = [2.0,2.67,4.0,6.0,12.0,24.0]
const bm_tip_alpha_aratio_data = [0.54,0.62,0.71,0.79,0.89,0.95]
const bm_tip_alpha_aspect_ratio_correction = Akima(bm_tip_alpha_aspect_data, bm_tip_alpha_aratio_data)
function bm_tip_vortex_alpha_correction_nonsmooth(aspect_ratio)
# compute tip lift curve slope
if aspect_ratio < 2.0
aratio = 0.5*one(aspect_ratio)
elseif 2.0 <= aspect_ratio <= 24.0
aratio = bm_tip_alpha_aspect_ratio_correction(aspect_ratio)
elseif aspect_ratio > 24.0
aratio = 1.0*one(aspect_ratio)
end
return aratio
end
struct BMTipAlphaCorrection{TCorrection} <: AbstractTipAlphaCorrection
correction::TCorrection
function BMTipAlphaCorrection(aspect_ratio)
# correction = BPM._tip_vortex_alpha_correction_nonsmooth(aspect_ratio)
correction = bm_tip_vortex_alpha_correction_nonsmooth(aspect_ratio)
return new{typeof(correction)}(correction)
end
end
function AcousticAnalogies.tip_vortex_alpha_correction(blade_tip::AbstractBladeTip{<:BMTipAlphaCorrection}, alphatip)
a0l = AcousticAnalogies.alpha_zerolift(blade_tip)
correction_factor = AcousticAnalogies.tip_alpha_correction(blade_tip).correction
return correction_factor * (alphatip - a0l) + a0l
end
data = load(joinpath(@__DIR__, "gen_bpmjl_data", "figure23c.jld2"))
rho = data["rho"]
asound = data["asound"]
mu = data["mu"]
Vinf = data["Vinf"]
omega = data["omega"]
B = data["B"]
Rhub = data["Rhub"]
Rtip = data["Rtip"]
radii = data["radii"]
chord = data["chord"]
twist = data["twist"]
alpha = data["alpha"]
U = data["U"]
hs = data["hs"]
Psis = data["Psis"]
num_src_times_blade_pass = data["num_src_times_blade_pass"]
tripped_flags = data["tripped_flags"]
lblvs_flags = data["lblvs_flags"]
num_radial = length(radii)
nu = mu/rho
dradii = AcousticAnalogies.get_dradii(radii, Rhub, Rtip)
# Get some transform stuff.
bpp = 1/(B/(2*pi)*omega) # 1/(B blade_passes/rev * 1 rev / (2*pi rad) * omega rad/s)
num_blade_pass = 1
period_src = num_blade_pass*bpp
num_src_times = num_src_times_blade_pass * num_blade_pass
t0 = 0.0
dt = period_src/num_src_times
src_times = t0 .+ (0:num_src_times-1).*dt
# I don't see any discussion for what type of tip was used for the tip vortex noise.
# FlatTip with no CCBlade.jl tip correction or BPM-style tip correction seems to match the BARC predictions well.
# blade_tip = AcousticAnalogies.FlatTip(AcousticAnalogies.NoTipAlphaCorrection())
# BPM.jl uses a different tip alpha correction which appears to require the blade aspect ratio, defined as the blade radius divided by the average chord.
cbar = sum(chord .* dradii) / (Rtip - Rhub)
aspect_ratio = Rtip/cbar
alpha0lift = 0.0
blade_tip = AcousticAnalogies.FlatTip(BMTipAlphaCorrection(aspect_ratio), alpha0lift)
# Getting the coordinate system consistent with BPM.jl is a bit tricky.
# Here's a bit of code from BPM.jl:
#
# # Calculate the trailing edge position relative to the hub
# xs = sin(beta)*d - cos(beta)*(c - c1)
# zs = cos(beta)*d + sin(beta)*(c - c1)
#
# OK, so that shows me that the blade is initially aligned with the z axis, rotating to the positive x direction.
# And I know the blades are rotating about the positive y axis.
# So that's the answer for the BPM.jl coordinate system:
#
# * freestream in the positive y axis direction.
# * first blade initially aligned with the positive z axis, rotating about the positive y axis.
#
# Now, what do I need to do with AcousticAnalogies to make that happen?
# I want the blades to be translating in the negative y direction, rotating about the positive y axis.
# I usually start with the blades rotating about either the positive or negative x axis, moving in the direction of the positive x axis.
# I think the answer is,
#
# * start out with the blades rotating about the negative x axis, moving in the direction of the positive x axis
# * rotate 90Β° about the negative z axis.
# After this, the blades will be moving in the negative y direction, rotating about the positive y axis, which is good.
# But I want the first blade to be aligned with the positive z axis, and stopping here would mean it's aligned with the positive x axis.
# * rotate 90Β° about the negative y axis.
# This will put the first blade in line with the positive z axis.
# So, let's do what we said we need to do.
# Start with a rotation about the negative x axis.
positive_x_rotation = false
rot_trans = SteadyRotXTransformation(t0, omega*ifelse(positive_x_rotation, 1, -1), 0)
# Then translate along the positive x axis.
y0_hub = @SVector [0.0, 0.0, 0.0] # m
v0_hub = @SVector [Vinf, 0.0, 0.0]
const_vel_trans = ConstantVelocityTransformation(t0, y0_hub, v0_hub)
# Then a 90Β° rotation about the negative z axis.
trans_z90deg = SteadyRotZTransformation(0.0, 0.0, -0.5*pi)
# Then a 90Β° rotation about the negative y axis.
trans_y90deg = SteadyRotYTransformation(0.0, 0.0, -0.5*pi)
# Put them all together:
trans = compose.(src_times, Ref(trans_y90deg),
compose.(src_times, Ref(trans_z90deg),
compose.(src_times, Ref(const_vel_trans), Ref(rot_trans))))
# Use the M_c = 0.8*M that BPM.jl and the BPM report use.
U = @. 0.8*sqrt(Vinf^2 + (omega*radii)^2)
# Azimuthal offset for each blade.
ΞΈs = (0:(B-1)) .* (2*pi/B) .* ifelse(positive_x_rotation, 1, -1)
bls = [ifelse(tf,
AcousticAnalogies.TrippedN0012BoundaryLayer(),
AcousticAnalogies.UntrippedN0012BoundaryLayer()) for tf in tripped_flags]
# Need to do the LBLVS with the untripped boundary layer to match what BPM.jl is doing.
# bls_lblvs = fill(AcousticAnalogies.UntrippedN0012BoundaryLayer(), num_radial)
bl_lblvs = AcousticAnalogies.UntrippedN0012BoundaryLayer()
r_obs = 2.27 # meters
theta_obs = -35*pi/180
# So, the docstring for BPM.jl says that `V` argument is the wind velocity in the y direction.
# So I guess we should assume that the blades are rotating about the y axis.
# And if the freestream velocity is in the positive y axis, then, from the perspective of the fluid, the blades are translating in the negative y direction.
# And I want the observer to be downstream/behind the blades, so that would mean they would have a positive y position.
# So I want to rotate the observer around the positive x axis, so I'm going to switch the sign on `theta_obs`.
t0_obs = 0.0
x0_obs = [0.0, r_obs*sin(-theta_obs), r_obs*cos(-theta_obs)]
# The observer is moving in the same direction as the blades, which is the negative y axis.
v_obs = @SVector [0.0, -Vinf, 0.0]
obs = AcousticAnalogies.ConstVelocityAcousticObserver(t0_obs, x0_obs, v_obs)
# Reshape the inputs to the source element constructors so that everything will line up with (num_times, num_radial, num_blades).
ΞΈs_rs = reshape(ΞΈs, 1, 1, :)
radii_rs = reshape(radii, 1, :, 1)
dradii_rs = reshape(dradii, 1, :, 1)
chord_rs = reshape(chord, 1, :, 1)
twist_rs = reshape(twist, 1, :, 1)
hs_rs = reshape(hs, 1, :, 1)
Psis_rs = reshape(Psis, 1, :, 1)
Us_rs = reshape(U, 1, :, 1)
alphas_rs = reshape(alpha, 1, :, 1)
bls_rs = reshape(bls, 1, :, 1)
# bls_untripped_rs = reshape(bls_lblvs, 1, :, 1)
# Separate things into tip and no-tip.
radii_rs_no_tip = @view radii_rs[:, begin:end-1, :]
dradii_rs_no_tip = @view dradii_rs[:, begin:end-1, :]
chord_rs_no_tip = @view chord_rs[:, begin:end-1, :]
twist_rs_no_tip = @view twist_rs[:, begin:end-1, :]
hs_rs_no_tip = @view hs_rs[:, begin:end-1, :]
Psis_rs_no_tip = @view Psis_rs[:, begin:end-1, :]
Us_rs_no_tip = @view Us_rs[:, begin:end-1, :]
alphas_rs_no_tip = @view alphas_rs[:, begin:end-1, :]
bls_rs_no_tip = @view bls_rs[:, begin:end-1, :]
radii_rs_with_tip = @view radii_rs[:, end:end, :]
dradii_rs_with_tip = @view dradii_rs[:, end:end, :]
chord_rs_with_tip = @view chord_rs[:, end:end, :]
twist_rs_with_tip = @view twist_rs[:, end:end, :]
hs_rs_with_tip = @view hs_rs[:, end:end, :]
Psis_rs_with_tip = @view Psis_rs[:, end:end, :]
Us_rs_with_tip = @view Us_rs[:, end:end, :]
alphas_rs_with_tip = @view alphas_rs[:, end:end, :]
bls_rs_with_tip = @view bls_rs[:, end:end, :]
direct = AcousticAnalogies.BPMDirectivity
use_UInduction = false
use_Doppler = false
mach_correction = AcousticAnalogies.NoMachCorrection
ses_no_tip = CombinedNoTipBroadbandSourceElement{direct,use_UInduction,mach_correction,use_Doppler}.(asound, nu, radii_rs_no_tip, ΞΈs_rs, dradii_rs_no_tip, chord_rs_no_tip, twist_rs_no_tip, hs_rs_no_tip, Psis_rs_no_tip, Us_rs_no_tip, alphas_rs_no_tip, src_times, dt, bls_rs_no_tip, positive_x_rotation) .|> trans
ses_with_tip = CombinedWithTipBroadbandSourceElement{direct,use_UInduction,mach_correction,use_Doppler}.(asound, nu, radii_rs_with_tip, ΞΈs_rs, dradii_rs_with_tip, chord_rs_with_tip, twist_rs_with_tip, hs_rs_with_tip, Psis_rs_with_tip, Us_rs_with_tip, alphas_rs_with_tip, src_times, dt, bls_rs_with_tip, Ref(blade_tip), positive_x_rotation) .|> trans
# Need to do the LBLVS with the untripped boundary layer to match what BPM.jl is doing, and only where `lblvs_flags` is true.
# So extract the radial locations where that's true.
radii_lblvs = @view radii[lblvs_flags]
dradii_lblvs = @view dradii[lblvs_flags]
chord_lblvs = @view chord[lblvs_flags]
twist_lblvs = @view twist[lblvs_flags]
Us_lblvs = @view U[lblvs_flags]
alphas_lblvs = @view alpha[lblvs_flags]
# bls_lblvs = @view bls_lblvs[lblvs_flags]
# Now do the usual reshaping.
radii_lblvs_rs = reshape(radii_lblvs, 1, :, 1)
dradii_lblvs_rs = reshape(dradii_lblvs, 1, :, 1)
chord_lblvs_rs = reshape(chord_lblvs, 1, :, 1)
twist_lblvs_rs = reshape(twist_lblvs, 1, :, 1)
Us_lblvs_rs = reshape(Us_lblvs, 1, :, 1)
alphas_lblvs_rs = reshape(alphas_lblvs, 1, :, 1)
# bls_lblvs_rs = reshape(bls_lblvs, 1, :, 1)
# Now we can construct the lblvs source elements.
lblvs_ses = AcousticAnalogies.LBLVSSourceElement{direct,use_UInduction,use_Doppler}.(asound, nu, radii_lblvs_rs, ΞΈs_rs, dradii_lblvs_rs, chord_lblvs_rs, twist_lblvs_rs, Us_lblvs_rs, alphas_lblvs_rs, src_times, dt, Ref(bl_lblvs), positive_x_rotation) .|> trans
# Write out the source elements.
# pvd_no_tip = AcousticAnalogies.to_paraview_collection(joinpath(@__DIR__, "figure23c-no_tip"), ses_no_tip)
# pvd_with_tip = AcousticAnalogies.to_paraview_collection(joinpath(@__DIR__, "figure23c-with_tip"), ses_with_tip)
# pvd_all = AcousticAnalogies.to_paraview_collection(joinpath(@__DIR__, "figure23c-all"), (ses_no_tip, ses_with_tip, lblvs_ses); observers=(obs,))
# Put the source elements together:
ses = cat(ses_no_tip, ses_with_tip; dims=2)
# Define the frequencies we'd like to evaluate.
# BPM.jl uses the approximate 1/3rd-octave bands.
freqs_obs = AcousticMetrics.ApproximateThirdOctaveCenterBands(100.0, 40000.0)
freqs_src = freqs_obs
# Now do the noise prediction.
bpm_outs = AcousticAnalogies.noise.(ses, Ref(obs), Ref(freqs_src))
pbs_lblvss = AcousticAnalogies.noise.(lblvs_ses, Ref(obs), Ref(freqs_src))
# Separate out each source.
pbs_tblte_ps = AcousticAnalogies.pbs_pressure.(bpm_outs)
pbs_tblte_ss = AcousticAnalogies.pbs_suction.(bpm_outs)
pbs_tblte_alphas = AcousticAnalogies.pbs_alpha.(bpm_outs)
pbs_tebs = AcousticAnalogies.pbs_teb.(bpm_outs)
pbs_tips = AcousticAnalogies.pbs_tip.(bpm_outs[:, end:end, :])
# Combine each noise prediction.
time_axis = 1
pbs_pressure = AcousticMetrics.combine(pbs_tblte_ps, freqs_obs, time_axis)
pbs_suction = AcousticMetrics.combine(pbs_tblte_ss, freqs_obs, time_axis)
pbs_alpha = AcousticMetrics.combine(pbs_tblte_alphas, freqs_obs, time_axis)
pbs_teb = AcousticMetrics.combine(pbs_tebs, freqs_obs, time_axis)
pbs_tip = AcousticMetrics.combine(pbs_tips, freqs_obs, time_axis)
pbs_lblvs = AcousticMetrics.combine(pbs_lblvss, freqs_obs, time_axis)
# Now I need to account for the fact that Figure 23c is actually comparing to narrowband experimental data with a frequency spacing of 20 Hz.
# So, to do that, I need to multiply the mean-squared pressure by Ξf_nb/Ξf_pbs, where `Ξf_nb` is the 20 Hz narrowband and `Ξf_pbs` is the bandwidth of each 1/3-octave proportional band.
# (Dividing the MSP by Ξf_pbs aka the 1/3 octave spacing is like getting a power-spectral density, then multiplying by the narrowband spacing Ξf_nb gives us the MSP associated with the narrowband.)
# I think the paper describes that, right?
# Right, here's something:
#
# > The current prediction method is limited to one-third octave bands, but it is compared to the narrowband experiment with Ξf = 20 Hz.
# > This is done by dividing the energy from the one-third octave bands by the number of bands in Ξf = 20 Hz.
#
# So, `Ξf_pbs/Ξf_nb` would represent the number of `Ξf_nb`-width bands that could fit in a proportional band of bin width `Ξf_pbs`.
# And then I'm dividing by that.
# So that seems like the right thing.
# So, first thing is to get the proportional band spacing.
freqs_l = AcousticMetrics.lower_bands(freqs_obs)
freqs_u = AcousticMetrics.upper_bands(freqs_obs)
df_pbs = freqs_u .- freqs_l
# Also need the experimental narrowband spacing.
df_nb = 20.0
# Now multiply each by that.
nb_pressure = pbs_pressure .* df_nb ./ df_pbs
nb_suction = pbs_suction .* df_nb ./ df_pbs
nb_alpha = pbs_alpha .* df_nb ./ df_pbs
nb_teb = pbs_teb .* df_nb ./ df_pbs
nb_tip = pbs_tip .* df_nb ./ df_pbs
nb_lblvs = pbs_lblvs .* df_nb ./ df_pbs
# Now I want the SPL, which should just be this:
pref = 20e-6
spl_pressure = 10 .* log10.(nb_pressure./(pref^2))
spl_suction = 10 .* log10.(nb_suction./(pref^2))
spl_alpha = 10 .* log10.(nb_alpha./(pref^2))
spl_teb = 10 .* log10.(nb_teb./(pref^2))
spl_tip = 10 .* log10.(nb_tip./(pref^2))
spl_lblvs = 10 .* log10.(nb_lblvs./(pref^2))
# Read in the BPM.jl data.
freq_bpmjl = data["freqs"]
spl_pressure_bpmjl = data["spl_nb_pressure"]
spl_suction_bpmjl = data["spl_nb_suction"]
spl_separation_bpmjl = data["spl_nb_separation"]
spl_lblvs_bpmjl = data["spl_nb_lblvs"]
spl_blunt_bpmjl = data["spl_nb_blunt"]
spl_tip_bpmjl = data["spl_nb_tip"]
# The frequencies in the CSV file should match the observer frequencies we're using.
@test all(freqs_obs .β freq_bpmjl)
# Only look at the SPLs that are actually significant, i.e. greater than 10 dB.
@test maximum(abs.(spl_pressure[spl_pressure_bpmjl .> 10] .- spl_pressure_bpmjl[spl_pressure_bpmjl .> 10])) < 0.826
@test maximum(abs.(spl_suction[spl_suction_bpmjl .> 10] .- spl_suction_bpmjl[spl_suction_bpmjl .> 10])) < 0.774
@test maximum(abs.(spl_alpha[spl_separation_bpmjl .> 10] .- spl_separation_bpmjl[spl_separation_bpmjl .> 10])) < 0.771
@test maximum(abs.(spl_teb[spl_blunt_bpmjl .> 10] .- spl_blunt_bpmjl[spl_blunt_bpmjl .> 10])) < 0.792
@test maximum(abs.(spl_tip[spl_tip_bpmjl .> 10] .- spl_tip_bpmjl[spl_tip_bpmjl .> 10])) < 1.26
@test maximum(abs.(spl_lblvs[spl_lblvs_bpmjl .> 10] .- spl_lblvs_bpmjl[spl_lblvs_bpmjl .> 10])) < 0.811
| AcousticAnalogies | https://github.com/OpenMDAO/AcousticAnalogies.jl.git |
|
[
"Apache-2.0"
] | 0.8.1 | c14d0b2e7f19374017a2b5b6dfe48c5723c791ae | code | 12706 | using AcousticAnalogies
using AcousticMetrics: AcousticMetrics
using DelimitedFiles: readdlm
using KinematicCoordinateTransformations: compose, SteadyRotXTransformation, ConstantVelocityTransformation
using FileIO: load
using FLOWMath: akima
using StaticArrays: @SVector
using Test
data = load(joinpath(@__DIR__, "gen_bpmjl_data", "figure24b.jld2"))
rho = data["rho"]
asound = data["asound"]
mu = data["mu"]
Vinf = data["Vinf"]
omega = data["omega"]
B = data["B"]
Rhub = data["Rhub"]
Rtip = data["Rtip"]
radii = data["radii"]
chord = data["chord"]
twist = data["twist"]
alpha = data["alpha"]
U = data["U"]
hs = data["hs"]
num_src_times_blade_pass = data["num_src_times_blade_pass"]
Psis = data["Psis"]
nu = mu/rho
num_radial = length(radii)
dradii = AcousticAnalogies.get_dradii(radii, Rhub, Rtip)
# Get the source time, which will be one blade pass worth of time, each blade pass with `num_src_times_blade_pass` steps per blade pass.
bpp = 1/(B/(2*pi)*omega) # 1/(B blade_passes/rev * 1 rev / (2*pi rad) * omega rad/s)
num_blade_pass = 1
period_src = num_blade_pass*bpp
num_src_times = num_src_times_blade_pass * num_blade_pass
t0 = 0.0
dt = period_src/num_src_times
src_times = t0 .+ (0:num_src_times-1).*dt
# Now let's define the coordinate system.
# I'm going to do my usual thing, which is to have the freestream velocity pointed in the negative x direction, and thus the blades will be translating in the positive x direction.
# And the blades will be rotating about the positive x axis at a rate of `omega`.
rot_trans = SteadyRotXTransformation(t0, omega, 0.0)
# The hub/rotation axis of the blades will start at the origin at time `t0`, and translate in the positive x direction at a speed of `Vinf`.
y0_hub = @SVector [0.0, 0.0, 0.0] # m
v0_hub = @SVector [Vinf, 0.0, 0.0] # m/s
const_vel_trans = ConstantVelocityTransformation(t0, y0_hub, v0_hub)
# Now I can put the two transformations together:
trans = compose.(src_times, Ref(const_vel_trans), Ref(rot_trans))
# Azimuthal offset for each blade.
ΞΈs = (0:(B-1)) .* (2*pi/B)
# Paper doesn't specify the microphone used for Figure 24, but earlier at the beginning of "C. Noise Characteristics and Trends" there is this:
# > For the purposes of this paper, presented acoustic spectra will correspond to an observer located β35Β° below the plane of the rotor (microphone 5).
# So I'll just assume that holds for Figure 23.
# For the coordinate system, I'm doing my usual thing, which is to have the freestream velocity pointed in the negative x direction, and thus the blades will be translating in the positive x direction.
# The observer (microphone 5) is 35 deg behind/downstream of the rotor rotation plane, so this should be good.
# But it will of course be moving with the same freestream in the positive x direction.
r_obs = 2.27 # meters
theta_obs = -35*pi/180
# The observer is moving in the positive x direction at Vinf, at the origin at time t0.
t0_obs = 0.0
x0_obs = @SVector [r_obs*sin(theta_obs), r_obs*cos(theta_obs), 0.0]
v_obs = @SVector [Vinf, 0.0, 0.0]
obs = AcousticAnalogies.ConstVelocityAcousticObserver(t0_obs, x0_obs, v_obs)
# So, for the boundary layer, we want to use untripped for the 95% of the blade from the hub to almost tip, and then tripped for the last 5% of the blade at the tip.
num_untripped = Int(round(0.95*num_radial))
num_tripped = num_radial - num_untripped
bls_untripped = fill(AcousticAnalogies.UntrippedN0012BoundaryLayer(), num_untripped)
bls_tripped = fill(AcousticAnalogies.TrippedN0012BoundaryLayer(), num_tripped)
bls = vcat(bls_untripped, bls_tripped)
# And we're also going to use the untripped boundary layer for the LBLVS source.
bl_lblvs = AcousticAnalogies.UntrippedN0012BoundaryLayer()
# In the Figure 24 caption, "for these predictions, bluntness thickness H was set to 0.5 mm and trailing edge angle Ξ¨ was set to 14 degrees."
h = 0.5e-3 # meters
Psi = 14*pi/180 # radians
# I don't see any discussion for what type of tip was used for the tip vortex noise.
# The flat tip seems to match the PAS+ROTONET+BARC predictions well.
blade_tip = AcousticAnalogies.FlatTip()
# Reshape the inputs to the source element constructors so that everything will line up with (num_times, num_radial, num_blades).
ΞΈs_rs = reshape(ΞΈs, 1, 1, :)
radii_rs = reshape(radii, 1, :, 1)
dradii_rs = reshape(dradii, 1, :, 1)
chord_rs = reshape(chord, 1, :, 1)
twist_rs = reshape(twist, 1, :, 1)
hs_rs = reshape(hs, 1, :, 1)
Psis_rs = reshape(Psis, 1, :, 1)
Us_rs = reshape(U, 1, :, 1)
alphas_rs = reshape(alpha, 1, :, 1)
bls_rs = reshape(bls, 1, :, 1)
# Separate things into tip and no-tip.
radii_rs_no_tip = @view radii_rs[:, begin:end-1, :]
dradii_rs_no_tip = @view dradii_rs[:, begin:end-1, :]
chord_rs_no_tip = @view chord_rs[:, begin:end-1, :]
twist_rs_no_tip = @view twist_rs[:, begin:end-1, :]
hs_rs_no_tip = @view hs_rs[:, begin:end-1, :]
Psis_rs_no_tip = @view Psis_rs[:, begin:end-1, :]
Us_rs_no_tip = @view Us_rs[:, begin:end-1, :]
alphas_rs_no_tip = @view alphas_rs[:, begin:end-1, :]
bls_rs_no_tip = @view bls_rs[:, begin:end-1, :]
radii_rs_with_tip = @view radii_rs[:, end:end, :]
dradii_rs_with_tip = @view dradii_rs[:, end:end, :]
chord_rs_with_tip = @view chord_rs[:, end:end, :]
twist_rs_with_tip = @view twist_rs[:, end:end, :]
hs_rs_with_tip = @view hs_rs[:, end:end, :]
Psis_rs_with_tip = @view Psis_rs[:, end:end, :]
Us_rs_with_tip = @view Us_rs[:, end:end, :]
alphas_rs_with_tip = @view alphas_rs[:, end:end, :]
bls_rs_with_tip = @view bls_rs[:, end:end, :]
positive_x_rotation = true
ses_no_tip = CombinedNoTipBroadbandSourceElement.(asound, nu, radii_rs_no_tip, ΞΈs_rs, dradii_rs_no_tip, chord_rs_no_tip, twist_rs_no_tip, hs_rs_no_tip, Psis_rs_no_tip, Us_rs_no_tip, alphas_rs_no_tip, src_times, dt, bls_rs_no_tip, positive_x_rotation) .|> trans
ses_with_tip = CombinedWithTipBroadbandSourceElement.(asound, nu, radii_rs_with_tip, ΞΈs_rs, dradii_rs_with_tip, chord_rs_with_tip, twist_rs_with_tip, hs_rs_with_tip, Psis_rs_with_tip, Us_rs_with_tip, alphas_rs_with_tip, src_times, dt, bls_rs_with_tip, Ref(blade_tip), positive_x_rotation) .|> trans
# It's more convinient to cat all the sources together.
ses = cat(ses_no_tip, ses_with_tip; dims=2)
# The LBLVS uses a different boundary layer, and all radial stations.
ses_lblvs = LBLVSSourceElement.(asound, nu, radii_rs, ΞΈs_rs, dradii_rs, chord_rs, twist_rs, Us_rs, alphas_rs, src_times, dt, Ref(bl_lblvs), positive_x_rotation) .|> trans
# The predictions in Figure 24b appear to be on 1/3 octave, ranging from about 200 Hz to 60,000 Hz.
# But let's expand the range of source frequencies to account for Doppler shifting.
freqs_src = AcousticMetrics.ExactProportionalBands{3, :center}(10.0, 200000.0)
freqs_obs = AcousticMetrics.ExactProportionalBands{3, :center}(200.0, 60000.0)
# Now we can do a noise prediction.
bpm_outs = AcousticAnalogies.noise.(ses, Ref(obs), Ref(freqs_src))
pbs_lblvss = AcousticAnalogies.noise.(ses_lblvs, Ref(obs), Ref(freqs_src))
# This seperates out the noise prediction for each source-observer combination into the different sources.
pbs_tblte_ps = AcousticAnalogies.pbs_pressure.(bpm_outs)
pbs_tblte_ss = AcousticAnalogies.pbs_suction.(bpm_outs)
pbs_tblte_alphas = AcousticAnalogies.pbs_alpha.(bpm_outs)
pbs_tebs = AcousticAnalogies.pbs_teb.(bpm_outs)
pbs_tips = AcousticAnalogies.pbs_tip.(bpm_outs[:, end:end, :])
# Now, need to combine each broadband noise prediction.
# The time axis the axis over which the time varies for each source.
time_axis = 1
pbs_pressure = AcousticMetrics.combine(pbs_tblte_ps, freqs_obs, time_axis)
pbs_suction = AcousticMetrics.combine(pbs_tblte_ss, freqs_obs, time_axis)
pbs_alpha = AcousticMetrics.combine(pbs_tblte_alphas, freqs_obs, time_axis)
pbs_teb = AcousticMetrics.combine(pbs_tebs, freqs_obs, time_axis)
pbs_tip = AcousticMetrics.combine(pbs_tips, freqs_obs, time_axis)
pbs_lblvs = AcousticMetrics.combine(pbs_lblvss, freqs_obs, time_axis)
# Now I need to account for the fact that Figure 24b is actually comparing to narrowband experimental data with a frequency spacing of 20 Hz.
# So, to do that, I need to multiply the mean-squared pressure by Ξf_nb/Ξf_pbs, where `Ξf_nb` is the 20 Hz narrowband and `Ξf_pbs` is the bandwidth of each 1/3-octave proportional band.
# I think the paper describes that, right?
# Right, here's something:
#
# > The current prediction method is limited to one-third octave bands, but it is compared to the narrowband experiment with Ξf = 20 Hz.
# > This is done by dividing the energy from the one-third octave bands by the number of bands in Ξf = 20 Hz.
#
# So, `Ξf_pbs/Ξf_nb` would represent the number of `Ξf_nb`-width bands that could fit in a proportional band of bin width `Ξf_pbs`.
# And then I'm dividing by that.
# So that seems like the right thing.
# So, first thing is to get the proportional band spacing.
freqs_l = AcousticMetrics.lower_bands(freqs_obs)
freqs_u = AcousticMetrics.upper_bands(freqs_obs)
df_pbs = freqs_u .- freqs_l
# Also need the experimental narrowband spacing.
df_nb = 20.0
# Now multiply each by that.
nb_pressure = pbs_pressure .* df_nb ./ df_pbs
nb_suction = pbs_suction .* df_nb ./ df_pbs
nb_alpha = pbs_alpha .* df_nb ./ df_pbs
nb_lblvs = pbs_lblvs .* df_nb ./ df_pbs
nb_teb = pbs_teb .* df_nb ./ df_pbs
nb_tip = pbs_tip .* df_nb ./ df_pbs
# Now I want the SPL, which should just be this:
pref = 20e-6
spl_pressure = 10 .* log10.(nb_pressure./(pref^2))
spl_suction = 10 .* log10.(nb_suction./(pref^2))
spl_alpha = 10 .* log10.(nb_alpha./(pref^2))
spl_lblvs = 10 .* log10.(nb_lblvs./(pref^2))
spl_teb = 10 .* log10.(nb_teb./(pref^2))
spl_tip = 10 .* log10.(nb_tip./(pref^2))
# Now I should be able to compare to the BARC data.
# Need to read it in first.
data_pressure_barc = readdlm(joinpath(@__DIR__, "bpm_data", "pettingill_acoustic_performance_characteristics_of_ideally_twisted_rotor_in_hover_2021", "figure24b-TBL-TE-pressure.csv"), ',')
freq_pressure_barc = data_pressure_barc[:, 1]
spl_pressure_barc = data_pressure_barc[:, 2]
data_suction_barc = readdlm(joinpath(@__DIR__, "bpm_data", "pettingill_acoustic_performance_characteristics_of_ideally_twisted_rotor_in_hover_2021", "figure24b-TBL-TE-suction.csv"), ',')
freq_suction_barc = data_suction_barc[:, 1]
spl_suction_barc = data_suction_barc[:, 2]
data_separation_barc = readdlm(joinpath(@__DIR__, "bpm_data", "pettingill_acoustic_performance_characteristics_of_ideally_twisted_rotor_in_hover_2021", "figure24b-separation.csv"), ',')
freq_separation_barc = data_separation_barc[:, 1]
spl_separation_barc = data_separation_barc[:, 2]
data_lblvs_barc = readdlm(joinpath(@__DIR__, "bpm_data", "pettingill_acoustic_performance_characteristics_of_ideally_twisted_rotor_in_hover_2021", "figure24b-LBLVS.csv"), ',')
freq_lblvs_barc = data_lblvs_barc[:, 1]
spl_lblvs_barc = data_lblvs_barc[:, 2]
data_teb_barc = readdlm(joinpath(@__DIR__, "bpm_data", "pettingill_acoustic_performance_characteristics_of_ideally_twisted_rotor_in_hover_2021", "figure24b-BVS.csv"), ',')
freq_teb_barc = data_teb_barc[:, 1]
spl_teb_barc = data_teb_barc[:, 2]
data_tip_barc = readdlm(joinpath(@__DIR__, "bpm_data", "pettingill_acoustic_performance_characteristics_of_ideally_twisted_rotor_in_hover_2021", "figure24b-tip_vortex_shedding.csv"), ',')
freq_tip_barc = data_tip_barc[:, 1]
spl_tip_barc = data_tip_barc[:, 2]
# Interpolate the AcousticAnalogies.jl data onto the frequencies from the BARC CSV file.
spl_pressure_interp = akima(freqs_obs, spl_pressure, freq_pressure_barc)
spl_suction_interp = akima(freqs_obs, spl_suction, freq_suction_barc)
spl_separation_interp = akima(freqs_obs, spl_alpha, freq_separation_barc)
spl_lblvs_interp = akima(freqs_obs, spl_lblvs, freq_lblvs_barc)
spl_teb_interp = akima(freqs_obs, spl_teb, freq_teb_barc)
spl_tip_interp = akima(freqs_obs, spl_tip, freq_tip_barc)
# Now compare.
@test all(abs.(spl_pressure_interp .- spl_pressure_barc) .< [2.839, 2.365, 1.971, 1.892, 1.368, 0.801, 0.567, 0.145, 0.571, 0.746, 0.925, 0.760])
@test all(abs.(spl_suction_interp .- spl_suction_barc) .< [0.291, 0.527, 0.447, 0.854, 0.818, 0.503, 0.247, 0.229, 0.105, 0.469, 0.563, 0.702, 0.947, 1.224])
@test all(abs.(spl_separation_interp .- spl_separation_barc) .< [12.876, 10.398, 8.513, 7.067, 6.679, 5.426, 4.791, 4.325, 3.330, 1.307, 1.565, 1.437, 0.881, 0.384, 0.0727, 0.643, 1.357, 1.596, 1.886])
@test all(abs.(spl_lblvs_interp .- spl_lblvs_barc) .< [28.442, 24.625, 20.380, 16.315, 12.763, 8.731, 5.498, 2.812, 0.964, 0.390, 0.628, 0.743, 0.903, 0.0362, 0.0262, 1.801, 3.430, 5.011, 4.375, 3.376])
@test all(abs.(spl_teb_interp .- spl_teb_barc) .< [0.134, 0.306, 0.459, 0.106, 0.139, 0.809])
@test all(abs.(spl_tip_interp .- spl_tip_barc) .< [0.862, 0.839, 0.843, 0.545, 0.429, 0.616, 0.382, 0.135])
| AcousticAnalogies | https://github.com/OpenMDAO/AcousticAnalogies.jl.git |
|
[
"Apache-2.0"
] | 0.8.1 | c14d0b2e7f19374017a2b5b6dfe48c5723c791ae | code | 14194 | using AcousticAnalogies
using AcousticMetrics: AcousticMetrics
using KinematicCoordinateTransformations: compose, SteadyRotXTransformation, SteadyRotYTransformation, SteadyRotZTransformation, ConstantVelocityTransformation
using FileIO: load
using FLOWMath: Akima
using StaticArrays: @SVector
using Test
# tip vortex noise correction data based on "Airfoil Tip Vortex Formation Noise"
# Copied from BPM.jl (would like to add BPM.jl as a dependency if it's registered in General some day).
const bm_tip_alpha_aspect_data = [2.0,2.67,4.0,6.0,12.0,24.0]
const bm_tip_alpha_aratio_data = [0.54,0.62,0.71,0.79,0.89,0.95]
const bm_tip_alpha_aspect_ratio_correction = Akima(bm_tip_alpha_aspect_data, bm_tip_alpha_aratio_data)
function bm_tip_vortex_alpha_correction_nonsmooth(aspect_ratio)
# compute tip lift curve slope
if aspect_ratio < 2.0
aratio = 0.5*one(aspect_ratio)
elseif 2.0 <= aspect_ratio <= 24.0
aratio = bm_tip_alpha_aspect_ratio_correction(aspect_ratio)
elseif aspect_ratio > 24.0
aratio = 1.0*one(aspect_ratio)
end
return aratio
end
struct BMTipAlphaCorrection{TCorrection} <: AbstractTipAlphaCorrection
correction::TCorrection
function BMTipAlphaCorrection(aspect_ratio)
# correction = BPM._tip_vortex_alpha_correction_nonsmooth(aspect_ratio)
correction = bm_tip_vortex_alpha_correction_nonsmooth(aspect_ratio)
return new{typeof(correction)}(correction)
end
end
function AcousticAnalogies.tip_vortex_alpha_correction(blade_tip::AbstractBladeTip{<:BMTipAlphaCorrection}, alphatip)
a0l = AcousticAnalogies.alpha_zerolift(blade_tip)
correction_factor = AcousticAnalogies.tip_alpha_correction(blade_tip).correction
return correction_factor * (alphatip - a0l) + a0l
end
data = load(joinpath(@__DIR__, "gen_bpmjl_data", "figure24b.jld2"))
rho = data["rho"]
asound = data["asound"]
mu = data["mu"]
Vinf = data["Vinf"]
omega = data["omega"]
B = data["B"]
Rhub = data["Rhub"]
Rtip = data["Rtip"]
radii = data["radii"]
chord = data["chord"]
twist = data["twist"]
alpha = data["alpha"]
U = data["U"]
hs = data["hs"]
Psis = data["Psis"]
num_src_times_blade_pass = data["num_src_times_blade_pass"]
tripped_flags = data["tripped_flags"]
num_radial = length(radii)
nu = mu/rho
dradii = AcousticAnalogies.get_dradii(radii, Rhub, Rtip)
# Get some transform stuff.
bpp = 1/(B/(2*pi)*omega) # 1/(B blade_passes/rev * 1 rev / (2*pi rad) * omega rad/s)
num_blade_pass = 1
period_src = num_blade_pass*bpp
num_src_times = num_src_times_blade_pass * num_blade_pass
t0 = 0.0
dt = period_src/num_src_times
src_times = t0 .+ (0:num_src_times-1).*dt
# I don't see any discussion for what type of tip was used for the tip vortex noise.
# FlatTip with no CCBlade.jl tip correction or BPM-style tip correction seems to match the BARC predictions well.
# blade_tip = AcousticAnalogies.FlatTip(AcousticAnalogies.NoTipAlphaCorrection())
# BPM.jl uses a different tip alpha correction which appears to require the blade aspect ratio, defined as the blade radius divided by the average chord.
cbar = sum(chord .* dradii) / (Rtip - Rhub)
aspect_ratio = Rtip/cbar
alpha0lift = 0.0
blade_tip = AcousticAnalogies.FlatTip(BMTipAlphaCorrection(aspect_ratio), alpha0lift)
# Getting the coordinate system consistent with BPM.jl is a bit tricky.
# Here's a bit of code from BPM.jl:
#
# # Calculate the trailing edge position relative to the hub
# xs = sin(beta)*d - cos(beta)*(c - c1)
# zs = cos(beta)*d + sin(beta)*(c - c1)
#
# OK, so that shows me that the blade is initially aligned with the z axis, rotating to the positive x direction.
# And I know the blades are rotating about the positive y axis.
# So that's the answer for the BPM.jl coordinate system:
#
# * freestream in the positive y axis direction.
# * first blade initially aligned with the positive z axis, rotating about the positive y axis.
#
# Now, what do I need to do with AcousticAnalogies to make that happen?
# I want the blades to be translating in the negative y direction, rotating about the positive y axis.
# I usually start with the blades rotating about either the positive or negative x axis, moving in the direction of the positive x axis.
# I think the answer is,
#
# * start out with the blades rotating about the negative x axis, moving in the direction of the positive x axis
# * rotate 90Β° about the negative z axis.
# After this, the blades will be moving in the negative y direction, rotating about the positive y axis, which is good.
# But I want the first blade to be aligned with the positive z axis, and stopping here would mean it's aligned with the positive x axis.
# * rotate 90Β° about the negative y axis.
# This will put the first blade in line with the positive z axis.
# So, let's do what we said we need to do.
# Start with a rotation about the negative x axis.
positive_x_rotation = false
rot_trans = SteadyRotXTransformation(t0, omega*ifelse(positive_x_rotation, 1, -1), 0)
# Then translate along the positive x axis.
y0_hub = @SVector [0.0, 0.0, 0.0] # m
v0_hub = @SVector [Vinf, 0.0, 0.0]
const_vel_trans = ConstantVelocityTransformation(t0, y0_hub, v0_hub)
# Then a 90Β° rotation about the negative z axis.
trans_z90deg = SteadyRotZTransformation(0.0, 0.0, -0.5*pi)
# Then a 90Β° rotation about the negative y axis.
trans_y90deg = SteadyRotYTransformation(0.0, 0.0, -0.5*pi)
# Put them all together:
trans = compose.(src_times, Ref(trans_y90deg),
compose.(src_times, Ref(trans_z90deg),
compose.(src_times, Ref(const_vel_trans), Ref(rot_trans))))
# Use the M_c = 0.8*M that BPM.jl and the BPM report use.
U = @. 0.8*sqrt(Vinf^2 + (omega*radii)^2)
# Azimuthal offset for each blade.
ΞΈs = (0:(B-1)) .* (2*pi/B) .* ifelse(positive_x_rotation, 1, -1)
bls = [ifelse(tf,
AcousticAnalogies.TrippedN0012BoundaryLayer(),
AcousticAnalogies.UntrippedN0012BoundaryLayer()) for tf in tripped_flags]
# Need to do the LBLVS with the untripped boundary layer to match what BPM.jl is doing.
bl_lblvs = AcousticAnalogies.UntrippedN0012BoundaryLayer()
r_obs = 2.27 # meters
theta_obs = -35*pi/180
# So, the docstring for BPM.jl says that `V` argument is the wind velocity in the y direction.
# So I guess we should assume that the blades are rotating about the y axis.
# And if the freestream velocity is in the positive y axis, then, from the perspective of the fluid, the blades are translating in the negative y direction.
# And I want the observer to be downstream/behind the blades, so that would mean they would have a positive y position.
# So I want to rotate the observer around the positive x axis, so I'm going to switch the sign on `theta_obs`.
t0_obs = 0.0
x0_obs = [0.0, r_obs*sin(-theta_obs), r_obs*cos(-theta_obs)]
# The observer is moving in the same direction as the blades, which is the negative y axis.
v_obs = @SVector [0.0, -Vinf, 0.0]
obs = AcousticAnalogies.ConstVelocityAcousticObserver(t0_obs, x0_obs, v_obs)
# Reshape the inputs to the source element constructors so that everything will line up with (num_times, num_radial, num_blades).
ΞΈs_rs = reshape(ΞΈs, 1, 1, :)
radii_rs = reshape(radii, 1, :, 1)
dradii_rs = reshape(dradii, 1, :, 1)
chord_rs = reshape(chord, 1, :, 1)
twist_rs = reshape(twist, 1, :, 1)
hs_rs = reshape(hs, 1, :, 1)
Psis_rs = reshape(Psis, 1, :, 1)
Us_rs = reshape(U, 1, :, 1)
alphas_rs = reshape(alpha, 1, :, 1)
bls_rs = reshape(bls, 1, :, 1)
# bls_untripped_rs = reshape(bls_lblvs, 1, :, 1)
# Separate things into tip and no-tip.
radii_rs_no_tip = @view radii_rs[:, begin:end-1, :]
dradii_rs_no_tip = @view dradii_rs[:, begin:end-1, :]
chord_rs_no_tip = @view chord_rs[:, begin:end-1, :]
twist_rs_no_tip = @view twist_rs[:, begin:end-1, :]
hs_rs_no_tip = @view hs_rs[:, begin:end-1, :]
Psis_rs_no_tip = @view Psis_rs[:, begin:end-1, :]
Us_rs_no_tip = @view Us_rs[:, begin:end-1, :]
alphas_rs_no_tip = @view alphas_rs[:, begin:end-1, :]
bls_rs_no_tip = @view bls_rs[:, begin:end-1, :]
radii_rs_with_tip = @view radii_rs[:, end:end, :]
dradii_rs_with_tip = @view dradii_rs[:, end:end, :]
chord_rs_with_tip = @view chord_rs[:, end:end, :]
twist_rs_with_tip = @view twist_rs[:, end:end, :]
hs_rs_with_tip = @view hs_rs[:, end:end, :]
Psis_rs_with_tip = @view Psis_rs[:, end:end, :]
Us_rs_with_tip = @view Us_rs[:, end:end, :]
alphas_rs_with_tip = @view alphas_rs[:, end:end, :]
bls_rs_with_tip = @view bls_rs[:, end:end, :]
direct = AcousticAnalogies.BPMDirectivity
use_UInduction = false
use_Doppler = false
mach_correction = AcousticAnalogies.NoMachCorrection
ses_no_tip = CombinedNoTipBroadbandSourceElement{direct,use_UInduction,mach_correction,use_Doppler}.(asound, nu, radii_rs_no_tip, ΞΈs_rs, dradii_rs_no_tip, chord_rs_no_tip, twist_rs_no_tip, hs_rs_no_tip, Psis_rs_no_tip, Us_rs_no_tip, alphas_rs_no_tip, src_times, dt, bls_rs_no_tip, positive_x_rotation) .|> trans
ses_with_tip = CombinedWithTipBroadbandSourceElement{direct,use_UInduction,mach_correction,use_Doppler}.(asound, nu, radii_rs_with_tip, ΞΈs_rs, dradii_rs_with_tip, chord_rs_with_tip, twist_rs_with_tip, hs_rs_with_tip, Psis_rs_with_tip, Us_rs_with_tip, alphas_rs_with_tip, src_times, dt, bls_rs_with_tip, Ref(blade_tip), positive_x_rotation) .|> trans
# Now we can construct the lblvs source elements.
lblvs_ses = AcousticAnalogies.LBLVSSourceElement{direct,use_UInduction,use_Doppler}.(asound, nu, radii_rs, ΞΈs_rs, dradii_rs, chord_rs, twist_rs, Us_rs, alphas_rs, src_times, dt, Ref(bl_lblvs), positive_x_rotation) .|> trans
# Write out the source elements.
# pvd_no_tip = AcousticAnalogies.to_paraview_collection(joinpath(@__DIR__, "figure24b-no_tip"), ses_no_tip)
# pvd_with_tip = AcousticAnalogies.to_paraview_collection(joinpath(@__DIR__, "figure24b-with_tip"), ses_with_tip)
# pvd_all = AcousticAnalogies.to_paraview_collection(joinpath(@__DIR__, "figure24b-all"), (ses_no_tip, ses_with_tip, lblvs_ses); observers=(obs,))
# Put the source elements together:
ses = cat(ses_no_tip, ses_with_tip; dims=2)
# Define the frequencies we'd like to evaluate.
# BPM.jl uses the approximate 1/3rd-octave bands.
freqs_obs = AcousticMetrics.ApproximateThirdOctaveCenterBands(100.0, 40000.0)
freqs_src = freqs_obs
# Now do the noise prediction.
bpm_outs = AcousticAnalogies.noise.(ses, Ref(obs), Ref(freqs_src))
pbs_lblvss = AcousticAnalogies.noise.(lblvs_ses, Ref(obs), Ref(freqs_src))
# Separate out each source.
pbs_tblte_ps = AcousticAnalogies.pbs_pressure.(bpm_outs)
pbs_tblte_ss = AcousticAnalogies.pbs_suction.(bpm_outs)
pbs_tblte_alphas = AcousticAnalogies.pbs_alpha.(bpm_outs)
pbs_tebs = AcousticAnalogies.pbs_teb.(bpm_outs)
pbs_tips = AcousticAnalogies.pbs_tip.(bpm_outs[:, end:end, :])
# Combine each noise prediction.
time_axis = 1
pbs_pressure = AcousticMetrics.combine(pbs_tblte_ps, freqs_obs, time_axis)
pbs_suction = AcousticMetrics.combine(pbs_tblte_ss, freqs_obs, time_axis)
pbs_alpha = AcousticMetrics.combine(pbs_tblte_alphas, freqs_obs, time_axis)
pbs_teb = AcousticMetrics.combine(pbs_tebs, freqs_obs, time_axis)
pbs_tip = AcousticMetrics.combine(pbs_tips, freqs_obs, time_axis)
pbs_lblvs = AcousticMetrics.combine(pbs_lblvss, freqs_obs, time_axis)
# Now I need to account for the fact that Figure 23c is actually comparing to narrowband experimental data with a frequency spacing of 20 Hz.
# So, to do that, I need to multiply the mean-squared pressure by Ξf_nb/Ξf_pbs, where `Ξf_nb` is the 20 Hz narrowband and `Ξf_pbs` is the bandwidth of each 1/3-octave proportional band.
# (Dividing the MSP by Ξf_pbs aka the 1/3 octave spacing is like getting a power-spectral density, then multiplying by the narrowband spacing Ξf_nb gives us the MSP associated with the narrowband.)
# I think the paper describes that, right?
# Right, here's something:
#
# > The current prediction method is limited to one-third octave bands, but it is compared to the narrowband experiment with Ξf = 20 Hz.
# > This is done by dividing the energy from the one-third octave bands by the number of bands in Ξf = 20 Hz.
#
# So, `Ξf_pbs/Ξf_nb` would represent the number of `Ξf_nb`-width bands that could fit in a proportional band of bin width `Ξf_pbs`.
# And then I'm dividing by that.
# So that seems like the right thing.
# So, first thing is to get the proportional band spacing.
freqs_l = AcousticMetrics.lower_bands(freqs_obs)
freqs_u = AcousticMetrics.upper_bands(freqs_obs)
df_pbs = freqs_u .- freqs_l
# Also need the experimental narrowband spacing.
df_nb = 20.0
# Now multiply each by that.
nb_pressure = pbs_pressure .* df_nb ./ df_pbs
nb_suction = pbs_suction .* df_nb ./ df_pbs
nb_alpha = pbs_alpha .* df_nb ./ df_pbs
nb_teb = pbs_teb .* df_nb ./ df_pbs
nb_tip = pbs_tip .* df_nb ./ df_pbs
nb_lblvs = pbs_lblvs .* df_nb ./ df_pbs
# Now I want the SPL, which should just be this:
pref = 20e-6
spl_pressure = 10 .* log10.(nb_pressure./(pref^2))
spl_suction = 10 .* log10.(nb_suction./(pref^2))
spl_alpha = 10 .* log10.(nb_alpha./(pref^2))
spl_teb = 10 .* log10.(nb_teb./(pref^2))
spl_tip = 10 .* log10.(nb_tip./(pref^2))
spl_lblvs = 10 .* log10.(nb_lblvs./(pref^2))
# Read in the BPM.jl data.
freq_bpmjl = data["freqs"]
spl_pressure_bpmjl = data["spl_nb_pressure"]
spl_suction_bpmjl = data["spl_nb_suction"]
spl_separation_bpmjl = data["spl_nb_separation"]
spl_lblvs_bpmjl = data["spl_nb_lblvs"]
spl_blunt_bpmjl = data["spl_nb_blunt"]
spl_tip_bpmjl = data["spl_nb_tip"]
# The frequencies in the CSV file should match the observer frequencies we're using.
@test all(freqs_obs .β freq_bpmjl)
# Only look at the SPLs that are actually significant, i.e. greater than 0 dB.
@test maximum(abs.(spl_pressure[spl_pressure_bpmjl .> 0] .- spl_pressure_bpmjl[spl_pressure_bpmjl .> 0])) < 0.496
@test maximum(abs.(spl_suction[spl_suction_bpmjl .> 0] .- spl_suction_bpmjl[spl_suction_bpmjl .> 0])) < 0.476
@test maximum(abs.(spl_alpha[spl_separation_bpmjl .> 0] .- spl_separation_bpmjl[spl_separation_bpmjl .> 0])) < 0.479
@test maximum(abs.(spl_teb[spl_blunt_bpmjl .> 0] .- spl_blunt_bpmjl[spl_blunt_bpmjl .> 0])) < 0.489
@test maximum(abs.(spl_tip[spl_tip_bpmjl .> 0] .- spl_tip_bpmjl[spl_tip_bpmjl .> 0])) < 0.874
@test maximum(abs.(spl_lblvs[spl_lblvs_bpmjl .> 0] .- spl_lblvs_bpmjl[spl_lblvs_bpmjl .> 0])) < 0.499
| AcousticAnalogies | https://github.com/OpenMDAO/AcousticAnalogies.jl.git |
|
[
"Apache-2.0"
] | 0.8.1 | c14d0b2e7f19374017a2b5b6dfe48c5723c791ae | code | 1261 | module OpenFASTHelperTests
using SafeTestsets: @safetestset
using Test: @testset
@testset "OpenFAST reader tests" begin
@testset "reading" begin
@safetestset "default" begin
include("openfast_reading_default.jl")
end
@safetestset "different time column name" begin
include("openfast_reading_different_time_column_name.jl")
end
@safetestset "no units header" begin
include("openfast_reading_no_units_header.jl")
end
end
@testset "radial interpolation" begin
@safetestset "linear" begin
include("openfast_radial_interpolation_linear.jl")
end
@safetestset "akima" begin
include("openfast_radial_interpolation_akima.jl")
end
end
@testset "time derivatives" begin
@safetestset "constant time step" begin
include("openfast_time_derivatives_constant_time_step.jl")
end
@safetestset "non-constant time step" begin
include("openfast_time_derivatives_nonconstant_time_step.jl")
end
@safetestset "no time diff" begin
include("openfast_time_derivatives_nonconstant_time_step_no_diff.jl")
end
end
end
end
| AcousticAnalogies | https://github.com/OpenMDAO/AcousticAnalogies.jl.git |
|
[
"Apache-2.0"
] | 0.8.1 | c14d0b2e7f19374017a2b5b6dfe48c5723c791ae | code | 2426 | using AcousticAnalogies
using Test
T = 2.5
t0 = 0.3
R = 2.3
num_times = 64
num_radial = 30
num_blades = 3
cs(r) = 0.1*sin(2*pi*r/R + 0.1*pi) + 0.2*cos(4*pi*r/R + 0.2*pi)
fn(t, r, b) = 0.2*sin(2*pi/T*t*r/R*b + 0.1*pi) + 0.3*cos(4*pi/T*t*r/R*b + 0.2*pi)
fc(t, r, b) = 0.4*sin(2*pi/T*t*r/R*b + 0.3*pi) + 0.5*cos(4*pi/T*t*r/R*b + 0.4*pi)
dt = T/num_times
time = t0 .+ (0:(num_times-1)) .* dt
radii = range(0.2*R, R; length=num_radial)
radii_mid = 0.5 .* (@view(radii[1:end-1]) .+ @view(radii[2:end]))
dradii = nothing
dtime_dtau = v = azimuth = omega = pitch = nothing
axial_loading_mid_dot = circum_loading_mid_dot = nothing
r = reshape(radii, 1, :)
b = reshape(1:num_blades, 1, 1, :)
cs_area = @. cs(radii)
axial_loading = @. fn(time, r, b)
circum_loading = @. fc(time, r, b)
cs_area_mid = similar(cs_area, num_radial-1)
axial_loading_mid = similar(axial_loading, num_times, num_radial-1, num_blades)
circum_loading_mid = similar(circum_loading, num_times, num_radial-1, num_blades)
data = OpenFASTData{FLOWAkimaInterp,SecondOrderFiniteDiff}(
time, dtime_dtau, v, azimuth, omega, pitch,
radii, radii_mid, dradii,
cs_area, cs_area_mid,
axial_loading, axial_loading_mid, axial_loading_mid_dot,
circum_loading, circum_loading_mid, circum_loading_mid_dot)
interpolate_to_cell_centers!(data)
r_mid = reshape(radii_mid, 1, :)
cs_area_mid_exact = @. cs(radii_mid)
axial_loading_mid_exact = @. fn(time, r_mid, b)
circum_loading_mid_exact = @. fc(time, r_mid, b)
csm_min, csm_max = extrema(cs_area_mid_exact)
csm_err = maximum(abs.((data.cs_area_mid .- cs_area_mid_exact)./(csm_max - csm_min)))
@test csm_err < 0.00105
alm_min = reshape(minimum(axial_loading_mid_exact; dims=2), num_times, 1, num_blades)
alm_max = reshape(maximum(axial_loading_mid_exact; dims=2), num_times, 1, num_blades)
# @show maximum(abs.((data.axial_loading_mid .- axial_loading_mid_exact)./(alm_max .- alm_min)))
alm_err = maximum(abs.((data.axial_loading_mid .- axial_loading_mid_exact)./(alm_max .- alm_min)))
@test alm_err < 0.033
clm_min = reshape(minimum(circum_loading_mid_exact; dims=2), num_times, 1, num_blades)
clm_max = reshape(maximum(circum_loading_mid_exact; dims=2), num_times, 1, num_blades)
# @show maximum(abs.((data.circum_loading_mid .- circum_loading_mid_exact)./(clm_max .- clm_min)))
clm_err = maximum(abs.((data.circum_loading_mid .- circum_loading_mid_exact)./(clm_max .- clm_min)))
@test clm_err < 0.033
| AcousticAnalogies | https://github.com/OpenMDAO/AcousticAnalogies.jl.git |
|
[
"Apache-2.0"
] | 0.8.1 | c14d0b2e7f19374017a2b5b6dfe48c5723c791ae | code | 2231 | using AcousticAnalogies
using Test
T = 2.5
t0 = 0.3
R = 2.3
num_times = 64
num_radial = 30
num_blades = 3
cs(r) = 0.1*sin(2*pi*r/R + 0.1*pi) + 0.2*cos(4*pi*r/R + 0.2*pi)
fn(t, r, b) = 0.2*sin(2*pi/T*t*r/R*b + 0.1*pi) + 0.3*cos(4*pi/T*t*r/R*b + 0.2*pi)
fc(t, r, b) = 0.4*sin(2*pi/T*t*r/R*b + 0.3*pi) + 0.5*cos(4*pi/T*t*r/R*b + 0.4*pi)
dt = T/num_times
time = t0 .+ (0:(num_times-1)) .* dt
radii = range(0.2*R, R; length=num_radial)
radii_mid = 0.5 .* (@view(radii[1:end-1]) .+ @view(radii[2:end]))
dradii = nothing
dtime_dtau = v = azimuth = omega = pitch = nothing
axial_loading_mid_dot = circum_loading_mid_dot = nothing
r = reshape(radii, 1, :)
b = reshape(1:num_blades, 1, 1, :)
cs_area = @. cs(radii)
axial_loading = @. fn(time, r, b)
circum_loading = @. fc(time, r, b)
cs_area_mid = similar(cs_area, num_radial-1)
axial_loading_mid = similar(axial_loading, num_times, num_radial-1, num_blades)
circum_loading_mid = similar(circum_loading, num_times, num_radial-1, num_blades)
data = OpenFASTData{FLOWLinearInterp,SecondOrderFiniteDiff}(
time, dtime_dtau, v, azimuth, omega, pitch,
radii, radii_mid, dradii,
cs_area, cs_area_mid,
axial_loading, axial_loading_mid, axial_loading_mid_dot,
circum_loading, circum_loading_mid, circum_loading_mid_dot)
interpolate_to_cell_centers!(data)
r_mid = reshape(radii_mid, 1, :)
cs_area_mid_exact = @. cs(radii_mid)
axial_loading_mid_exact = @. fn(time, r_mid, b)
circum_loading_mid_exact = @. fc(time, r_mid, b)
csm_min, csm_max = extrema(cs_area_mid_exact)
csm_err = maximum(abs.((data.cs_area_mid .- cs_area_mid_exact)./(csm_max - csm_min)))
@test csm_err < 0.00664
alm_min = reshape(minimum(axial_loading_mid_exact; dims=2), num_times, 1, num_blades)
alm_max = reshape(maximum(axial_loading_mid_exact; dims=2), num_times, 1, num_blades)
alm_err = maximum(abs.((data.axial_loading_mid .- axial_loading_mid_exact)./(alm_max .- alm_min)))
@test alm_err < 0.069
clm_min = reshape(minimum(circum_loading_mid_exact; dims=2), num_times, 1, num_blades)
clm_max = reshape(maximum(circum_loading_mid_exact; dims=2), num_times, 1, num_blades)
clm_err = maximum(abs.((data.circum_loading_mid .- circum_loading_mid_exact)./(clm_max .- clm_min)))
@test clm_err < 0.063
| AcousticAnalogies | https://github.com/OpenMDAO/AcousticAnalogies.jl.git |
|
[
"Apache-2.0"
] | 0.8.1 | c14d0b2e7f19374017a2b5b6dfe48c5723c791ae | code | 1220 | using AcousticAnalogies
using Statistics: mean
using Test
fname = joinpath(@__DIR__, "gen_test_data", "openfast_data", "IEA-3.4-130-RWT-small.out")
num_radial = 30
radii = range(0.2, 1.0; length=num_radial)
data = read_openfast_file(fname, radii)
num_times = length(data.time)
num_blades = size(data.pitch, 2)
num_radial = size(data.axial_loading, 2)
@test size(data.time) == (num_times,)
@test size(data.v) == (num_times,)
@test size(data.azimuth) == (num_times,)
@test size(data.omega) == (num_times,)
@test size(data.pitch) == (num_times, num_blades)
@test size(data.axial_loading) == (num_times, num_radial, num_blades)
@test size(data.circum_loading) == (num_times, num_radial, num_blades)
@test all(data.time .β (60.0:0.01:60.1))
@test all(data.v .β 7)
@test all(data.pitch .β 0*pi/180)
# Just some coarse tests.
@test mean(data.omega) β 8.126818181818182*(2*pi/60)
@test mean(data.axial_loading) β 1632.1274949494953
@test mean(data.circum_loading) β -217.45748949494939
# Make sure the averaging of the freestream velocity and omega works.
data2 = read_openfast_file(fname, radii; average_freestream_vel=true, average_omega=true)
@test all(data2.v .β 7)
@test all(data2.omega .β 8.126818181818182*(2*pi/60))
| AcousticAnalogies | https://github.com/OpenMDAO/AcousticAnalogies.jl.git |
|
[
"Apache-2.0"
] | 0.8.1 | c14d0b2e7f19374017a2b5b6dfe48c5723c791ae | code | 1280 | using AcousticAnalogies
using Statistics: mean
using Test
fname = joinpath(@__DIR__, "gen_test_data", "openfast_data", "IEA-3.4-130-RWT-small-FooTime.out")
num_radial = 30
radii = range(0.2, 1.0; length=num_radial)
data = read_openfast_file(fname, radii; header_keyword="FooTime")
num_times = length(data.time)
num_blades = size(data.pitch, 2)
num_radial = size(data.axial_loading, 2)
@test size(data.time) == (num_times,)
@test size(data.v) == (num_times,)
@test size(data.azimuth) == (num_times,)
@test size(data.omega) == (num_times,)
@test size(data.pitch) == (num_times, num_blades)
@test size(data.axial_loading) == (num_times, num_radial, num_blades)
@test size(data.circum_loading) == (num_times, num_radial, num_blades)
@test all(data.time .β (60.0:0.01:60.1))
@test all(data.v .β 7)
@test all(data.pitch .β 0*pi/180)
# Just some coarse tests.
@test mean(data.omega) β 8.126818181818182*(2*pi/60)
@test mean(data.axial_loading) β 1632.1274949494953
@test mean(data.circum_loading) β -217.45748949494939
# Make sure the averaging of the freestream velocity and omega works.
data2 = read_openfast_file(fname, radii; header_keyword="FooTime", average_freestream_vel=true, average_omega=true)
@test all(data2.v .β 7)
@test all(data2.omega .β 8.126818181818182*(2*pi/60))
| AcousticAnalogies | https://github.com/OpenMDAO/AcousticAnalogies.jl.git |
|
[
"Apache-2.0"
] | 0.8.1 | c14d0b2e7f19374017a2b5b6dfe48c5723c791ae | code | 1304 | using AcousticAnalogies
using Statistics: mean
using Test
fname = joinpath(@__DIR__, "gen_test_data", "openfast_data", "IEA-3.4-130-RWT-small-no_units.out")
num_radial = 30
radii = range(0.2, 1.0; length=num_radial)
data = read_openfast_file(fname, radii; has_units_header=false)
num_times = length(data.time)
num_blades = size(data.pitch, 2)
num_radial = size(data.axial_loading, 2)
@test size(data.time) == (num_times,)
@test size(data.v) == (num_times,)
@test size(data.azimuth) == (num_times,)
@test size(data.omega) == (num_times,)
@test size(data.pitch) == (num_times, num_blades)
@test size(data.axial_loading) == (num_times, num_radial, num_blades)
@test size(data.circum_loading) == (num_times, num_radial, num_blades)
@test all(data.time .β (60.0:0.01:60.1))
@test all(data.v .β 7)
@test all(data.pitch .β 0)
@test all(data.pitch .β 0*pi/180)
# Just some coarse tests.
@test mean(data.omega) β 8.126818181818182*(2*pi/60)
@test mean(data.axial_loading) β 1632.1274949494953
@test mean(data.circum_loading) β -217.45748949494939
# Make sure the averaging of the freestream velocity and omega works.
data2 = read_openfast_file(fname, radii; has_units_header=false, average_freestream_vel=true, average_omega=true)
@test all(data2.v .β 7)
@test all(data2.omega .β 8.126818181818182*(2*pi/60))
| AcousticAnalogies | https://github.com/OpenMDAO/AcousticAnalogies.jl.git |
|
[
"Apache-2.0"
] | 0.8.1 | c14d0b2e7f19374017a2b5b6dfe48c5723c791ae | code | 2560 | using AcousticAnalogies
using Polynomials: fit
using Test
v = azimuth = omega = pitch = nothing
dradii = nothing
cs_area = cs_area_mid = nothing
axial_loading = circum_loading = nothing
T = 2.5
t0 = 0.3
fn(t, r, b) = 0.2*sin(2*pi/T*t*r*b + 0.1*pi) + 0.3*cos(4*pi/T*t*r*b + 0.2*pi)
fndot(t, r, b) = 0.2*2*pi/T*r*b*cos(2*pi/T*t*r*b + 0.1*pi) - 0.3*4*pi/T*r*b*sin(4*pi/T*t*r*b + 0.2*pi)
fc(t, r, b) = 0.4*sin(2*pi/T*t*r*b + 0.3*pi) + 0.5*cos(4*pi/T*t*r*b + 0.4*pi)
fcdot(t, r, b) = 0.4*2*pi/T*r*b*cos(2*pi/T*t*r*b + 0.3*pi) - 0.5*4*pi/T*r*b*sin(4*pi/T*t*r*b + 0.4*pi)
# r = reshape(range(1.0, 2.0; length=5), 1, :)
radii = range(1.0, 2.0; length=5)
radii_mid = 0.5 .* (@view(radii[1:end-1]) .+ @view(radii[2:end]))
r = reshape(radii_mid, 1, :)
b = reshape(1:3, 1, 1, :)
errs_fn_l2 = Vector{Float64}()
errs_fc_l2 = Vector{Float64}()
dts = Vector{Float64}()
for N in 120:10:150
dt = T/N
push!(dts, dt)
time = t0 .+ (0:(N-1)) .* dt
dtime_dtau = similar(time)
axial_loading_mid = fn.(time, r, b)
circum_loading_mid = fc.(time, r, b)
axial_loading_mid_dot = similar(axial_loading_mid)
circum_loading_mid_dot = similar(circum_loading_mid)
# data = OpenFASTData{SecondOrderFiniteDiff}(time, v, azimuth, omega, pitch, axial_loading_mid, circum_loading_mid)
data = OpenFASTData{FLOWLinearInterp,SecondOrderFiniteDiff}(
time, dtime_dtau, v, azimuth, omega, pitch,
radii, radii_mid, dradii,
cs_area, cs_area_mid,
axial_loading, axial_loading_mid, axial_loading_mid_dot,
circum_loading, circum_loading_mid, circum_loading_mid_dot)
AcousticAnalogies.calculate_loading_dot!(data)
@test all(data.dtime_dtau .β dt)
err_fn_l2 = sqrt(sum((data.axial_loading_mid_dot .- fndot.(time, r, b)).^2) / length(data.axial_loading_mid_dot))
push!(errs_fn_l2, err_fn_l2)
err_fc_l2 = sqrt(sum((data.circum_loading_mid_dot .- fcdot.(time, r, b)).^2) / length(data.circum_loading_mid_dot))
push!(errs_fc_l2, err_fc_l2)
end
# err β dt^p
# err2/err1 β (dt2^p)/(dt1^p) = (dt2/dt1)^p
# log(err2/err1) β log((dt2/dt1)^p) = p*log(dt2/dt1)
# p β log(err2/err1)/log(dt2/dt1) β (log(err2) - log(err1))/(log(dt2) - log(dt1))
# Fit a line through the errors on a log-log plot, then check that the slope is 2 (second-order).
l_fn = fit(log.(dts), log.(errs_fn_l2), 1)
@test isapprox(l_fn.coeffs[2], 2, atol=0.02)
# Fit a line through the errors on a log-log plot, then check that the slope is 2 (second-order).
l_fc = fit(log.(dts), log.(errs_fc_l2), 1)
@test isapprox(l_fc.coeffs[2], 2, atol=0.02)
| AcousticAnalogies | https://github.com/OpenMDAO/AcousticAnalogies.jl.git |
|
[
"Apache-2.0"
] | 0.8.1 | c14d0b2e7f19374017a2b5b6dfe48c5723c791ae | code | 2639 | using AcousticAnalogies
using Polynomials: fit
using Test
v = azimuth = omega = pitch = nothing
cs_area = cs_area_mid = nothing
axial_loading = circum_loading = nothing
dradii = nothing
T = 2.5
t0 = 0.3
fn(t, r, b) = 0.2*sin(2*pi/T*t*r*b + 0.1*pi) + 0.3*cos(4*pi/T*t*r*b + 0.2*pi)
fndot(t, r, b) = 0.2*2*pi/T*r*b*cos(2*pi/T*t*r*b + 0.1*pi) - 0.3*4*pi/T*r*b*sin(4*pi/T*t*r*b + 0.2*pi)
fc(t, r, b) = 0.4*sin(2*pi/T*t*r*b + 0.3*pi) + 0.5*cos(4*pi/T*t*r*b + 0.4*pi)
fcdot(t, r, b) = 0.4*2*pi/T*r*b*cos(2*pi/T*t*r*b + 0.3*pi) - 0.5*4*pi/T*r*b*sin(4*pi/T*t*r*b + 0.4*pi)
# r = reshape(range(1.0, 2.0; length=5), 1, :)
radii = range(1.0, 2.0; length=5)
radii_mid = 0.5 .* (@view(radii[1:end-1]) .+ @view(radii[2:end]))
r = reshape(radii_mid, 1, :)
b = reshape(1:3, 1, 1, :)
errs_fn_l2 = Vector{Float64}()
errs_fc_l2 = Vector{Float64}()
Ns = 120:10:150
for N in Ns
dt = T/N
time1 = t0 .+ (0:(N-1)) .* dt
wiggle = 0.49.*dt.*(cos.(2.0*pi./T.*time1))
time = time1 .+ wiggle
dtime_dtau = similar(time)
axial_loading_mid = fn.(time, r, b)
circum_loading_mid = fc.(time, r, b)
axial_loading_mid_dot = similar(axial_loading_mid)
circum_loading_mid_dot = similar(circum_loading_mid)
# data = OpenFASTData{SecondOrderFiniteDiff}(time, v, azimuth, omega, pitch, axial_loading_mid, circum_loading_mid)
data = OpenFASTData{FLOWLinearInterp,SecondOrderFiniteDiff}(
time, dtime_dtau, v, azimuth, omega, pitch,
radii, radii_mid, dradii,
cs_area, cs_area_mid,
axial_loading, axial_loading_mid, axial_loading_mid_dot,
circum_loading, circum_loading_mid, circum_loading_mid_dot)
AcousticAnalogies.calculate_loading_dot!(data)
err_fn_l2 = sqrt(sum((data.axial_loading_mid_dot .- fndot.(time, r, b)).^2) / length(data.axial_loading_mid_dot))
push!(errs_fn_l2, err_fn_l2)
err_fc_l2 = sqrt(sum((data.circum_loading_mid_dot .- fcdot.(time, r, b)).^2) / length(data.circum_loading_mid_dot))
push!(errs_fc_l2, err_fc_l2)
end
# err β dt^p = (T/N)^p
# err2/err1 β ((T/N2)^p)/((T/N1)^p) = ((T/N2)/(T/N1))^p = (N1/N2)^p
# log(err2/err1) β log((N1/N2)^p) = p*log(N1/N2)
# p β log(err2/err1)/log(N1/N2) β (log(err2) - log(err1))/(log(N1) - log(N2)) = -(log(err2) - log(err1))/(log(N2) - log(N1))
# Fit a line through the errors on a log-log plot, then check that the slope is -2 (second-order).
l_fn = fit(log.(Ns), log.(errs_fn_l2), 1)
@test isapprox(-l_fn.coeffs[2], 2, atol=0.02)
# Fit a line through the errors on a log-log plot, then check that the slope is -2 (second-order).
l_fc = fit(log.(Ns), log.(errs_fc_l2), 1)
@test isapprox(-l_fc.coeffs[2], 2, atol=0.02)
| AcousticAnalogies | https://github.com/OpenMDAO/AcousticAnalogies.jl.git |
|
[
"Apache-2.0"
] | 0.8.1 | c14d0b2e7f19374017a2b5b6dfe48c5723c791ae | code | 1506 | using AcousticAnalogies
using Polynomials: fit
using Test
v = azimuth = omega = pitch = nothing
cs_area = cs_area_mid = nothing
axial_loading = circum_loading = nothing
dradii = nothing
T = 2.5
t0 = 0.3
fn(t, r, b) = 0.2*sin(2*pi/T*t*r*b + 0.1*pi) + 0.3*cos(4*pi/T*t*r*b + 0.2*pi)
fndot(t, r, b) = 0.2*2*pi/T*r*b*cos(2*pi/T*t*r*b + 0.1*pi) - 0.3*4*pi/T*r*b*sin(4*pi/T*t*r*b + 0.2*pi)
fc(t, r, b) = 0.4*sin(2*pi/T*t*r*b + 0.3*pi) + 0.5*cos(4*pi/T*t*r*b + 0.4*pi)
fcdot(t, r, b) = 0.4*2*pi/T*r*b*cos(2*pi/T*t*r*b + 0.3*pi) - 0.5*4*pi/T*r*b*sin(4*pi/T*t*r*b + 0.4*pi)
# r = reshape(range(1.0, 2.0; length=5), 1, :)
radii = range(1.0, 2.0; length=5)
radii_mid = 0.5 .* (@view(radii[1:end-1]) .+ @view(radii[2:end]))
r = reshape(radii_mid, 1, :)
b = reshape(1:3, 1, 1, :)
N = 120
dt = T/N
time1 = t0 .+ (0:(N-1)) .* dt
wiggle = 0.49.*dt.*(cos.(2.0*pi./T.*time1))
time = time1 .+ wiggle
dtime_dtau = similar(time)
axial_loading_mid = fn.(time, r, b)
circum_loading_mid = fc.(time, r, b)
axial_loading_mid_dot = similar(axial_loading_mid)
circum_loading_mid_dot = similar(circum_loading_mid)
data = OpenFASTData{FLOWLinearInterp,NoTimeDerivMethod}(
time, dtime_dtau, v, azimuth, omega, pitch,
radii, radii_mid, dradii,
cs_area, cs_area_mid,
axial_loading, axial_loading_mid, axial_loading_mid_dot,
circum_loading, circum_loading_mid, circum_loading_mid_dot)
AcousticAnalogies.calculate_loading_dot!(data)
@test all(data.axial_loading_mid_dot .β 0)
@test all(data.circum_loading_mid_dot .β 0)
| AcousticAnalogies | https://github.com/OpenMDAO/AcousticAnalogies.jl.git |
|
[
"Apache-2.0"
] | 0.8.1 | c14d0b2e7f19374017a2b5b6dfe48c5723c791ae | code | 1113 | module AcousticAnalogiesTests
all_tests = isempty(ARGS) || ("all" in ARGS)
if "adv_time" in ARGS || all_tests
include("adv_time_tests.jl")
end
if "combine" in ARGS || all_tests
include("combine_tests.jl")
end
if "f1a" in ARGS || all_tests
include("f1a_tests.jl")
end
if "f1a_constructor" in ARGS || all_tests
include("compact_f1a_constructor_tests.jl")
end
if "anopp2" in ARGS || all_tests
include("anopp2_comparison.jl")
end
if "forwarddiff" in ARGS || all_tests
include("forwarddiff_test.jl")
end
if "doppler" in ARGS || all_tests
include("doppler_tests.jl")
end
if "boundary_layers" in ARGS || all_tests
include("boundary_layer_tests.jl")
end
if "bpm_shape_functions" in ARGS || all_tests
include("bpm_shape_function_tests.jl")
end
if "broadband_source_elements" in ARGS || all_tests
include("broadband_source_element_tests.jl")
end
if "writevtk" in ARGS || all_tests
include("writevtk_tests.jl")
end
if "openfast" in ARGS || all_tests
include("openfast_helper_tests.jl")
end
if "bpm_itr" in ARGS || all_tests
include("bpm_itr_tests.jl")
end
end # module
| AcousticAnalogies | https://github.com/OpenMDAO/AcousticAnalogies.jl.git |
|
[
"Apache-2.0"
] | 0.8.1 | c14d0b2e7f19374017a2b5b6dfe48c5723c791ae | code | 4918 | module WriteVTKTests
using AcousticAnalogies
using Format: format, FormatExpr
using JLD2: JLD2
using SHA: sha1
using StaticArrays: @SVector
using Test
@testset "WriteVTK tests" begin
@testset "Compact F1A source elements" begin
fname = joinpath(@__DIR__, "writevtk", "cf1a.jld2")
ses = nothing
JLD2.jldopen(fname, "r") do file
ses = file["ses"]
end
name = "cf1a"
pvd = AcousticAnalogies.to_paraview_collection(name, ses)
for i in 1:size(ses, 1)
fname = format(FormatExpr("{}{:08d}.vtp"), name, i)
sha_str = bytes2hex(open(sha1, fname))
sha_str_check = bytes2hex(open(sha1, joinpath("writevtk", fname)))
@test sha_str == sha_str_check
end
if !Sys.iswindows()
fname = "$(name).pvd"
sha_str = bytes2hex(open(sha1, fname))
sha_str_check = bytes2hex(open(sha1, joinpath(@__DIR__, "writevtk", fname)))
@test sha_str == sha_str_check
end
end
@testset "Compact F1A source elements, with observers" begin
fname = joinpath(@__DIR__, "writevtk", "cf1a.jld2")
ses = nothing
JLD2.jldopen(fname, "r") do file
ses = file["ses"]
end
obs1 = AcousticAnalogies.ConstVelocityAcousticObserver(0.0, @SVector([0, 2.0, 0]), @SVector([5.0, 0.0, 0.0]))
obs2 = AcousticAnalogies.StationaryAcousticObserver(@SVector [0, 2.5, 0])
obs = [obs1, obs2]
name = "cf1a_with_observers"
pvd = AcousticAnalogies.to_paraview_collection(name, (ses,); observers=obs)
for i in 1:size(ses, 1)
fname = format(FormatExpr("{}-block1-{:08d}.vtp"), name, i)
sha_str = bytes2hex(open(sha1, fname))
sha_str_check = bytes2hex(open(sha1, joinpath(@__DIR__, "writevtk", fname)))
@test sha_str == sha_str_check
# The source element files for this test case with observers should be the same as the case without the observers.
name2 = "cf1a"
fname2 = format(FormatExpr("{}{:08d}.vtp"), name2, i)
sha_str_check = bytes2hex(open(sha1, joinpath(@__DIR__, "writevtk", fname)))
@test sha_str == sha_str_check
for j in 1:length(obs)
fname = format(FormatExpr("{}-observer$(j)-{:08d}.vtu"), name, i)
sha_str = bytes2hex(open(sha1, fname))
sha_str_check = bytes2hex(open(sha1, joinpath(@__DIR__, "writevtk", fname)))
# @test sha_str == sha_str_check
end
end
if !Sys.iswindows()
fname = "$(name).pvd"
sha_str = bytes2hex(open(sha1, fname))
sha_str_check = bytes2hex(open(sha1, joinpath(@__DIR__, "writevtk", fname)))
@test sha_str == sha_str_check
end
end
@testset "Compact F1A source elements, multiblock, with observers" begin
fname = joinpath(@__DIR__, "writevtk", "cf1a.jld2")
ses = nothing
JLD2.jldopen(fname, "r") do file
ses = file["ses"]
end
# Split the array into "blocks."
ses_mb = tuple([ses[:, :, b] for b in 1:size(ses, 3)]...)
obs1 = AcousticAnalogies.ConstVelocityAcousticObserver(0.0, @SVector([0, 2.0, 0]), @SVector([5.0, 0.0, 0.0]))
obs2 = AcousticAnalogies.StationaryAcousticObserver(@SVector [0, 2.5, 0])
obs = [obs1, obs2]
name = "cf1a_mb_with_observers"
pvd = AcousticAnalogies.to_paraview_collection(name, ses_mb; observers=obs)
for i in 1:size(ses, 1)
for b in 1:length(ses_mb)
fname = format(FormatExpr("{}-block$(b)-{:08d}.vtp"), name, i)
sha_str = bytes2hex(open(sha1, fname))
sha_str_check = bytes2hex(open(sha1, joinpath(@__DIR__, "writevtk", fname)))
@test sha_str == sha_str_check
end
for j in 1:length(obs)
fname = format(FormatExpr("{}-observer$(j)-{:08d}.vtu"), name, i)
sha_str = bytes2hex(open(sha1, fname))
sha_str_check = bytes2hex(open(sha1, joinpath(@__DIR__, "writevtk", fname)))
# @test sha_str == sha_str_check
# The observers for this case should be identical to the observers from the single-block case.
fname2 = format(FormatExpr("cf1a_with_observers-observer$(j)-{:08d}.vtu"), i)
sha_str_check = bytes2hex(open(sha1, joinpath(@__DIR__, "writevtk", fname2)))
# @test sha_str == sha_str_check
end
end
if !Sys.iswindows()
fname = "$(name).pvd"
sha_str = bytes2hex(open(sha1, fname))
sha_str_check = bytes2hex(open(sha1, joinpath(@__DIR__, "writevtk", fname)))
@test sha_str == sha_str_check
end
end
end
end # module
| AcousticAnalogies | https://github.com/OpenMDAO/AcousticAnalogies.jl.git |
|
[
"Apache-2.0"
] | 0.8.1 | c14d0b2e7f19374017a2b5b6dfe48c5723c791ae | code | 41045 | module ITRWithBPMJL
using Accessors: Accessors
using AcousticMetrics: AcousticMetrics
using BPM: BPM
using CCBlade: CCBlade
# using DelimitedFiles: writedlm
using JLD2: JLD2
using FileIO: save
function get_airfoil(; af_fname, cr75, Re_exp)
(info, Re, Mach, alpha, cl, cd) = CCBlade.parsefile(af_fname, false)
# Extend the angle of attack with the Viterna method.
(alpha, cl, cd) = CCBlade.viterna(alpha, cl, cd, cr75)
af = CCBlade.AlphaAF(alpha, cl, cd, info, Re, Mach)
# Reynolds number correction. The 0.6 factor seems to match the NACA 0012
# drag data from airfoiltools.com.
reynolds = CCBlade.SkinFriction(Re, Re_exp)
# Mach number correction.
mach = CCBlade.PrandtlGlauert()
# Rotational stall delay correction. Need some parameters from the CL curve.
m, alpha0 = CCBlade.linearliftcoeff(af, 1.0, 1.0) # dummy values for Re and Mach
# Create the Du Selig and Eggers correction.
rotation = CCBlade.DuSeligEggers(1.0, 1.0, 1.0, m, alpha0)
# The usual hub and tip loss correction.
tip = CCBlade.PrandtlTipHub()
return af, mach, reynolds, rotation, tip
end
function from_cell_centers_to_interfaces(cc_vals::Vector)
N = length(cc_vals)
b = cc_vals[:]
b[1] = 0.25*cc_vals[1] + 0.25*cc_vals[2]
A = zeros(N, N)
for i in 1:N-1
A[i, i] = 0.5
A[i+1, i] = 0.5
end
A[N, N] = 0.5
a = A\b
@assert all(A*a .β b)
interface_vals = zeros(N+1)
interface_vals[1] = 1.5*cc_vals[1] - 0.5*cc_vals[2]
interface_vals[2:end] .= a
@assert all(0.5.*(interface_vals[1:end-1] .+ interface_vals[2:end]) .β cc_vals)
return interface_vals
end
function do_figure22b()
# Pettingill et al., "Acoustic And Performance Characteristics of an Ideally Twisted Rotor in Hover", 2021
# Parameters from Table 1
B = 4 # number of blades
Rtip = 0.1588 # meters
chord = 0.2*Rtip
# Standard day:
Tamb = 15 + 273.15 # 15Β°C in Kelvin
pamb = 101325.0 # Pa
R = 287.052874 # J/(kg*K)
rho = pamb/(R*Tamb)
asound = sqrt(1.4*R*Tamb)
# CCBlade.jl defines pitch/collective as "the thing added to the twist to get the orientation of the chord line," but the paper appears to use "the angle of the chord line at the tip."
collective0 = 6.9*pi/180
# The Figure 23 caption says Ξ_tip = 7 deg, but I think that "actually" means 6.9Β°.
# And yes, collective is 0 here, which is a bit silly, I guess, but is consistent with the definition of twist down below.
collective = 6.9 .* (pi/180) .- collective0
mu = rho*1.4502e-5
Vinf = 0.001*asound
# Figure 22 caption says Ξ©_c = 5465 RPM.
rpm = 5465.0
omega = rpm * (2*pi/60)
# Get "cell-centered" radial locations.
num_radial = 50
r_Rtip_ = range(0.2, 1.0; length=num_radial+1)
r_Rtip = 0.5 .* (r_Rtip_[2:end] .+ r_Rtip_[1:end-1])
radii = r_Rtip .* Rtip
Rhub = r_Rtip_[1]*Rtip
# From Pettingill Equation (1), and value for Ξ_tip in Table 1.
Ξ_tip = 6.9 * pi/180
twist = Ξ_tip ./ (r_Rtip)
# NACA 0012 airfoil stuff.
af_fname = joinpath(@__DIR__, "airfoils", "xf-n0012-il-500000.dat")
Re_exp = 0.6
cr75 = chord / Rtip
af, mach_correction, reynolds_correction, rotation_correction, tip_correction = get_airfoil(; af_fname, cr75, Re_exp)
tip_correction = nothing
precone = 0.0
turbine = false
rotor = CCBlade.Rotor(Rhub, Rtip, B; precone=precone, turbine=turbine, mach=mach_correction, re=reynolds_correction, rotation=rotation_correction, tip=tip_correction)
sections = CCBlade.Section.(radii, chord, twist, Ref(af))
ops = CCBlade.OperatingPoint.(Vinf, omega.*radii, rho, collective, mu, asound)
outs = CCBlade.solve.(Ref(rotor), sections, ops)
# BPM.jl uses the M_c = 0.8*M assumption from the BPM report, so modify the W field of each CCBlade.Outputs struct to match that.
lens = Accessors.@optic _.W
outs_bpm_Mc = Accessors.set.(outs, Ref(lens), 0.8.*sqrt.(getproperty.(ops, :Vx).^2 .+ getproperty.(ops, :Vy).^2))
@assert all(getproperty.(outs_bpm_Mc, :W) .β 0.8.*sqrt.(getproperty.(ops, :Vx).^2 .+ getproperty.(ops, :Vy).^2))
# Paper doesn't specify the microphone used for Figure 22, but earlier at the beginning of "C. Noise Characteristics and Trends" there is this:
# > For the purposes of this paper, presented acoustic spectra will correspond to an observer located β35Β° below the plane of the rotor (microphone 5).
# So I'll just assume that holds for Figure 22.
# The observer (microphone 5) is 35 deg behind/downstream of the rotor rotation plane.
r_obs = 2.27 # meters
theta_obs = -35*pi/180
# So, the docstring for BPM.jl says that `V` argument is the wind velocity in the y direction.
# So I guess we should assume that the blades are rotating about the y axis.
# And if the freestream velocity is in the positive y axis, then, from the perspective of the fluid, the blades are translating in the negative y direction.
# And I want the observer to be downstream/behind the blades, so that would mean they would have a positive y position.
# So I want to rotate the observer around the positive x axis, so I'm going to switch the sign on `theta_obs`.
t0_obs = 0.0
x0_obs = [0.0, r_obs*sin(-theta_obs), r_obs*cos(-theta_obs)]
# Get the components of the observer position in a form that BPM.jl uses.
ox = x0_obs[1]
oy = x0_obs[2]
oz = x0_obs[3]
# Radial locations.
rs = getproperty.(sections, :r)
# BPM.jl docstring says we need the angle of attack in degrees.
# But it expects them at the interfaces, not cell centers.
alphas_deg = getproperty.(outs_bpm_Mc, :alpha) .* (180/pi)
rs_interface = from_cell_centers_to_interfaces(rs)
alphas_deg_interface = from_cell_centers_to_interfaces(alphas_deg)
# Do the same thing for the chord.
# What other inputs do we need?
# So the distance from the pitch axis to the leading edge is used, apparently, to locate the trailing edge.
# Let's make sure that's true.
# Here's the relevant code
#
# # Calculate the trailing edge position relative to the hub
# xs = sin(beta)*d - cos(beta)*(c - c1)
# zs = cos(beta)*d + sin(beta)*(c - c1)
#
# `beta` is an azimuthal angle, and `d` is the radial distance of the blade element relative to the hub.
# So let's say that's zero.
# Then, I guess, `xs = (c - c1)` and `zs = r`
# So it looks like the twist is being ignored, I think.
# But, at any rate, if I set c1 = c, that effect is ignored.
chords = getproperty.(sections, :chord)
chords_interface = from_cell_centers_to_interfaces(chords)
c1s = chords_interface
# In the text describing Figure 22, "For these predictions, the trip flag was set to βtrippedβ, due to the rough surface quality of the blade."
tripped_flags = true
# In the Figure 22 caption, "for these predictions, bluntness thickness H was set to 0.8 mm and trailing edge angle Ξ¨ was set to 16 degrees."
h = 0.8e-3 # meters
Psi = 16*pi/180 # radians
hs = fill(h, length(rs_interface))
Psis = fill(Psi, length(rs_interface))
Psis_deg = Psis .* 180/pi
# Also need kinematic viscosity.
nu = mu/rho
# Number of azimuthal stations per blade pass, I think.
num_betas = 20
# Save the inputs.
data = Dict(
"rho"=>rho, "asound"=>asound, "mu"=>mu,
"Vinf"=>Vinf, "omega"=>omega,
"B"=>B,
"Rhub"=>rotor.Rhub,
"Rtip"=>rotor.Rtip,
"radii"=>getproperty.(sections, :r),
"chord"=>getproperty.(sections, :chord),
"twist"=>getproperty.(sections, :theta),
"alpha"=>getproperty.(outs, :alpha),
"U"=>getproperty.(outs, :W),
"hs"=>hs[begin:end-1],
"Psis"=>Psis[begin:end-1],
"tripped_flags"=>fill(tripped_flags, length(sections)),
"num_src_times_blade_pass"=>num_betas)
# save("figure22b-inputs.jld2", data_inputs)
# Now we can start doing the predictions.
oaspl_pressure, spl_pressure = BPM.sound_pressure_levels(
ox, oy, oz, Vinf, omega,
B, rs_interface, chords_interface, c1s, hs,
alphas_deg_interface, Psis_deg, nu,
asound;
turbulent_pressure=true,
turbulent_suction=false,
turbulent_separation=false,
blunt=false,
weighted=false,
trip=tripped_flags,
tip=false,
laminar=false,
round=false,
nbeta=num_betas,
smooth=false)
oaspl_suction, spl_suction = BPM.sound_pressure_levels(
ox, oy, oz, Vinf, omega,
B, rs_interface, chords_interface, c1s, hs,
alphas_deg_interface, Psis_deg, nu,
asound;
turbulent_pressure=false,
turbulent_suction=true,
turbulent_separation=false,
blunt=false,
weighted=false,
trip=tripped_flags,
tip=false,
laminar=false,
round=false,
nbeta=num_betas,
smooth=false)
oaspl_separation, spl_separation = BPM.sound_pressure_levels(
ox, oy, oz, Vinf, omega,
B, rs_interface, chords_interface, c1s, hs,
alphas_deg_interface, Psis_deg, nu,
asound;
turbulent_pressure=false,
turbulent_suction=false,
turbulent_separation=true,
blunt=false,
weighted=false,
trip=tripped_flags,
tip=false,
laminar=false,
round=false,
nbeta=num_betas,
smooth=false)
oaspl_lblvs, spl_lblvs = BPM.sound_pressure_levels(
ox, oy, oz, Vinf, omega,
B, rs_interface, chords_interface, c1s, hs,
alphas_deg_interface, Psis_deg, nu,
asound;
turbulent_pressure=false,
turbulent_suction=false,
turbulent_separation=false,
blunt=false,
weighted=false,
trip=tripped_flags,
tip=false,
laminar=true,
round=false,
nbeta=num_betas,
smooth=false)
oaspl_blunt, spl_blunt = BPM.sound_pressure_levels(
ox, oy, oz, Vinf, omega,
B, rs_interface, chords_interface, c1s, hs,
alphas_deg_interface, Psis_deg, nu,
asound;
turbulent_pressure=false,
turbulent_suction=false,
turbulent_separation=false,
blunt=true,
weighted=false,
trip=tripped_flags,
tip=false,
laminar=false,
round=false,
nbeta=num_betas,
smooth=false)
oaspl_tip, spl_tip = BPM.sound_pressure_levels(
ox, oy, oz, Vinf, omega, B, rs_interface, chords_interface, c1s, hs, alphas_deg_interface, Psis_deg, nu, asound;
blunt=false,
weighted=false,
trip=tripped_flags,
tip=true,
laminar=false,
turbulent_pressure=false,
turbulent_suction=false,
turbulent_separation=false,
round=false,
nbeta=num_betas,
smooth=false)
# header = "BPM.default_f,spl_pressure,spl_suction,spl_separation,spl_lblvs,spl_blunt,spl_tip\n"
# data = hcat(BPM.default_f, spl_pressure, spl_suction, spl_separation, spl_lblvs, spl_blunt, spl_tip)
# fname = joinpath(@__DIR__, "figure22b.csv")
# open(fname, "w") do f
# write(f, header)
# writedlm(f, data, ',')
# end
# Now I'd like to do the narrowband SPL like the Pettingill et al. paper does, instead of 1/3 octave SPL.
# So, to do that, I need to multiply the mean-squared pressure by Ξf_nb/Ξf_pbs, where `Ξf_nb` is the 20 Hz narrowband and `Ξf_pbs` is the bandwidth of each 1/3-octave proportional band.
# (Dividing the MSP by Ξf_pbs aka the 1/3 octave spacing is like getting a power-spectral density, then multiplying by the narrowband spacing Ξf_nb gives us the MSP associated with the narrowband.)
# I think the paper describes that, right?
# Right, here's something:
#
# > The current prediction method is limited to one-third octave bands, but it is compared to the narrowband experiment with Ξf = 20 Hz.
# > This is done by dividing the energy from the one-third octave bands by the number of bands in Ξf = 20 Hz.
#
# So, `Ξf_pbs/Ξf_nb` would represent the number of `Ξf_nb`-width bands that could fit in a proportional band of bin width `Ξf_pbs`.
# And then I'm dividing by that.
# So that seems like the right thing.
# First, I'll confirm that the frequencies BPM.jl are using are the ApproximateThirdOctaveCenterBands.
# This will give me those center bands:
cbands_approx3rdcenter = AcousticMetrics.ApproximateThirdOctaveCenterBands(first(BPM.default_f), last(BPM.default_f))
@assert maximum(abs.(BPM.default_f .- cbands_approx3rdcenter)) < 1e-10
# So then I need to get the spacing associated with the proportional bands.
# So get the lower and upper "edges" of the bands.
freqs_l = AcousticMetrics.lower_bands(cbands_approx3rdcenter)
freqs_u = AcousticMetrics.upper_bands(cbands_approx3rdcenter)
# And then the spacing for each band.
df_pbs = freqs_u .- freqs_l
# Also need the experimental narrowband spacing, which is 20 Hz.
df_nb = 20.0
# So, if spl = 10*log10(msp/pref^2), and I want to multiply the msp by df_nb/df_pbs, then
#
# spl_nb = 10*log10((msp*df_nb/df_pbs)/pref^2) = 10*(log10(msp/pref^2) + log10(df_nb/df_pbs))
# spl_nb = 10*log10(msp/pref^2) + 10*log10(df_nb/df_pbs)
# spl_nb = spl + 10*log10(df_nb/df_pbs)
#
# That's easy.
spl_nb_pressure = @. spl_pressure + 10*log10(df_nb/df_pbs)
spl_nb_suction = @. spl_suction + 10*log10(df_nb/df_pbs)
spl_nb_separation = @. spl_separation + 10*log10(df_nb/df_pbs)
spl_nb_lblvs = @. spl_lblvs + 10*log10(df_nb/df_pbs)
spl_nb_blunt = @. spl_blunt + 10*log10(df_nb/df_pbs)
spl_nb_tip = @. spl_tip + 10*log10(df_nb/df_pbs)
data["freqs"] = BPM.default_f
data["spl_nb_pressure"] = spl_nb_pressure
data["spl_nb_suction"] = spl_nb_suction
data["spl_nb_separation"] = spl_nb_separation
data["spl_nb_lblvs"] = spl_nb_lblvs
data["spl_nb_blunt"] = spl_nb_blunt
data["spl_nb_tip"] = spl_nb_tip
save(joinpath(@__DIR__, "figure22b.jld2"), data)
return nothing
end
function do_figure23c()
# Pettingill et al., "Acoustic And Performance Characteristics of an Ideally Twisted Rotor in Hover", 2021
# Parameters from Table 1
B = 4 # number of blades
Rtip = 0.1588 # meters
chord = 0.2*Rtip
# Standard day:
Tamb = 15 + 273.15 # 15Β°C in Kelvin
pamb = 101325.0 # Pa
R = 287.052874 # J/(kg*K)
rho = pamb/(R*Tamb)
asound = sqrt(1.4*R*Tamb)
# CCBlade.jl defines pitch/collective as "the thing added to the twist to get the orientation of the chord line," but the paper appears to use "the angle of the chord line at the tip."
collective0 = 6.9*pi/180
# The Figure 23 caption says Ξ_tip = 7 deg, but I think that "actually" means 6.9Β°.
# And yes, collective is 0 here, which is a bit silly, I guess, but is consistent with the definition of twist down below.
collective = 6.9 .* (pi/180) .- collective0
mu = rho*1.4502e-5
Vinf = 0.001*asound
# Figure 23 caption says Ξ©_c = 5510 RPM.
rpm = 5510.0
omega = rpm * (2*pi/60)
# Get "cell-centered" radial locations.
num_radial = 50
r_Rtip_ = range(0.2, 1.0; length=num_radial+1)
r_Rtip = 0.5 .* (r_Rtip_[2:end] .+ r_Rtip_[1:end-1])
radii = r_Rtip .* Rtip
Rhub = r_Rtip_[1]*Rtip
# From Pettingill Equation (1), and value for Ξ_tip in Table 1.
Ξ_tip = 6.9 * pi/180
twist = Ξ_tip ./ (r_Rtip)
# NACA 0012 airfoil stuff.
af_fname = joinpath(@__DIR__, "airfoils", "xf-n0012-il-500000.dat")
Re_exp = 0.6
cr75 = chord / Rtip
af, mach_correction, reynolds_correction, rotation_correction, tip_correction = get_airfoil(; af_fname, cr75, Re_exp)
tip_correction = nothing
precone = 0.0
turbine = false
rotor = CCBlade.Rotor(Rhub, Rtip, B; precone=precone, turbine=turbine, mach=mach_correction, re=reynolds_correction, rotation=rotation_correction, tip=tip_correction)
sections = CCBlade.Section.(radii, chord, twist, Ref(af))
ops = CCBlade.OperatingPoint.(Vinf, omega.*radii, rho, collective, mu, asound)
outs = CCBlade.solve.(Ref(rotor), sections, ops)
# BPM.jl uses the M_c = 0.8*M assumption from the BPM report, so modify the W field of each CCBlade.Outputs struct to match that.
lens = Accessors.@optic _.W
outs_bpm_Mc = Accessors.set.(outs, Ref(lens), 0.8.*sqrt.(getproperty.(ops, :Vx).^2 .+ getproperty.(ops, :Vy).^2))
@assert all(getproperty.(outs_bpm_Mc, :W) .β 0.8.*sqrt.(getproperty.(ops, :Vx).^2 .+ getproperty.(ops, :Vy).^2))
# Paper doesn't specify the microphone used for Figure 23, but earlier at the beginning of "C. Noise Characteristics and Trends" there is this:
# > For the purposes of this paper, presented acoustic spectra will correspond to an observer located β35Β° below the plane of the rotor (microphone 5).
# So I'll just assume that holds for Figure 23.
# The observer (microphone 5) is 35 deg behind/downstream of the rotor rotation plane.
r_obs = 2.27 # meters
theta_obs = -35*pi/180
# So, the docstring for BPM.jl says that `V` argument is the wind velocity in the y direction.
# So I guess we should assume that the blades are rotating about the y axis.
# And if the freestream velocity is in the positive y axis, then, from the perspective of the fluid, the blades are translating in the negative y direction.
# And I want the observer to be downstream/behind the blades, so that would mean they would have a positive y position.
# So I want to rotate the observer around the positive x axis, so I'm going to switch the sign on `theta_obs`.
t0_obs = 0.0
x0_obs = [0.0, r_obs*sin(-theta_obs), r_obs*cos(-theta_obs)]
# Get the components of the observer position in a form that BPM.jl uses.
ox = x0_obs[1]
oy = x0_obs[2]
oz = x0_obs[3]
# Radial locations.
rs = getproperty.(sections, :r)
# BPM.jl docstring says we need the angle of attack in degrees.
# But it expects them at the interfaces, not cell centers.
rs_interface = from_cell_centers_to_interfaces(rs)
alphas_deg = getproperty.(outs_bpm_Mc, :alpha) .* (180/pi)
alphas_deg_interface = from_cell_centers_to_interfaces(alphas_deg)
# Do the same thing for the chord.
# What other inputs do we need?
# So the distance from the pitch axis to the leading edge is used, apparently, to locate the trailing edge.
# Let's make sure that's true.
# Here's the relevant code
#
# # Calculate the trailing edge position relative to the hub
# xs = sin(beta)*d - cos(beta)*(c - c1)
# zs = cos(beta)*d + sin(beta)*(c - c1)
#
# `beta` is an azimuthal angle, and `d` is the radial distance of the blade element relative to the hub.
# So let's say that's zero.
# Then, I guess, `xs = (c - c1)` and `zs = r`
# So it looks like the twist is being ignored, I think.
# But, at any rate, if I set c1 = c, that effect is ignored.
chords = getproperty.(sections, :chord)
chords_interface = from_cell_centers_to_interfaces(chords)
c1s = chords_interface
# So, for the boundary layer, we want to use untripped for the 95% of the blade from the hub to almost tip, and then tripped for the last 5% of the blade at the tip.
# So what are those section indices?
num_untripped = Int(round(0.95*num_radial))
num_tripped = num_radial - num_untripped
_tripped_flags = vcat(fill(false, num_untripped), fill(true, num_tripped))
@assert length(_tripped_flags) == num_radial
# This is working with num_radial, the number of cell-centers, not interfaces.
# I think this is the right thing to do though, because it looks like the last value of the `trip` argument is not used by BPM.jl.
# But I'll add an extra `true` just to be consistent.
tripped_flags = vcat(_tripped_flags, _tripped_flags[end:end])
# Now, the other trick: need to only include LBLVS noise for elements where the Reynolds number is < 160000.
# So, we need the Reynolds number for each section.
Re_c = rho * getproperty(outs_bpm_Mc, :W) .* getproperty.(sections, :chord) / mu
# So now we just need to decide which radial stations have the low or high Re_c values.
low_Re_c = 160000
_lblvs_flags = Re_c .< low_Re_c
# Again, this is working with num_radial-length arrays, which are dealing with cell-centered quantities.
# Again, the last value is ignored, but I'll add a value to be consistent.
lblvs_flags = vcat(_lblvs_flags, _lblvs_flags[end:end])
# In the Figure 23 caption, "for these predictions, bluntness thickness H was set to 0.5 mm and trailing edge angle Ξ¨ was set to 14 degrees."
h = 0.5e-3 # meters
Psi = 14*pi/180 # radians
hs = fill(h, length(rs_interface))
Psis = fill(Psi, length(rs_interface))
Psis_deg = Psis .* 180/pi
# Also need kinematic viscosity.
nu = mu/rho
# Number of azimuthal stations per blade pass, I think.
num_betas = 20
# Save the inputs.
data = Dict(
"rho"=>rho, "asound"=>asound, "mu"=>mu,
"Vinf"=>Vinf, "omega"=>omega,
"B"=>B,
"Rhub"=>rotor.Rhub,
"Rtip"=>rotor.Rtip,
"radii"=>getproperty.(sections, :r),
"chord"=>getproperty.(sections, :chord),
"twist"=>getproperty.(sections, :theta),
"alpha"=>getproperty.(outs, :alpha),
"U"=>getproperty.(outs, :W),
"hs"=>hs[begin:end-1],
"Psis"=>Psis[begin:end-1],
"tripped_flags"=>tripped_flags[begin:end-1],
"lblvs_flags"=>lblvs_flags[begin:end-1],
"num_src_times_blade_pass"=>num_betas)
# Now we can start doing the predictions.
oaspl_pressure, spl_pressure = BPM.sound_pressure_levels(
ox, oy, oz, Vinf, omega,
B, rs_interface, chords_interface, c1s, hs,
alphas_deg_interface, Psis_deg, nu,
asound;
turbulent_pressure=true,
turbulent_suction=false,
turbulent_separation=false,
blunt=false,
weighted=false,
trip=tripped_flags,
tip=false,
laminar=false,
round=false,
nbeta=num_betas,
smooth=false)
oaspl_suction, spl_suction = BPM.sound_pressure_levels(
ox, oy, oz, Vinf, omega,
B, rs_interface, chords_interface, c1s, hs,
alphas_deg_interface, Psis_deg, nu,
asound;
turbulent_pressure=false,
turbulent_suction=true,
turbulent_separation=false,
blunt=false,
weighted=false,
trip=tripped_flags,
tip=false,
laminar=false,
round=false,
nbeta=num_betas,
smooth=false)
oaspl_separation, spl_separation = BPM.sound_pressure_levels(
ox, oy, oz, Vinf, omega,
B, rs_interface, chords_interface, c1s, hs,
alphas_deg_interface, Psis_deg, nu,
asound;
turbulent_pressure=false,
turbulent_suction=false,
turbulent_separation=true,
blunt=false,
weighted=false,
trip=tripped_flags,
tip=false,
laminar=false,
round=false,
nbeta=num_betas,
smooth=false)
oaspl_lblvs, spl_lblvs = BPM.sound_pressure_levels(
ox, oy, oz, Vinf, omega,
B, rs_interface, chords_interface, c1s, hs,
alphas_deg_interface, Psis_deg, nu,
asound;
turbulent_pressure=false,
turbulent_suction=false,
turbulent_separation=false,
blunt=false,
weighted=false,
trip=tripped_flags,
tip=false,
laminar=lblvs_flags,
round=false,
nbeta=num_betas,
smooth=false)
oaspl_blunt, spl_blunt = BPM.sound_pressure_levels(
ox, oy, oz, Vinf, omega,
B, rs_interface, chords_interface, c1s, hs,
alphas_deg_interface, Psis_deg, nu,
asound;
turbulent_pressure=false,
turbulent_suction=false,
turbulent_separation=false,
blunt=true,
weighted=false,
trip=tripped_flags,
tip=false,
laminar=false,
round=false,
nbeta=num_betas,
smooth=false)
oaspl_tip, spl_tip = BPM.sound_pressure_levels(
ox, oy, oz, Vinf, omega, B, rs_interface, chords_interface, c1s, hs, alphas_deg_interface, Psis_deg, nu, asound;
blunt=false,
weighted=false,
trip=tripped_flags,
tip=true,
laminar=false,
turbulent_pressure=false,
turbulent_suction=false,
turbulent_separation=false,
round=false,
nbeta=num_betas,
smooth=false)
# Now I'd like to do the narrowband SPL like the Pettingill et al. paper does, instead of 1/3 octave SPL.
# So, to do that, I need to multiply the mean-squared pressure by Ξf_nb/Ξf_pbs, where `Ξf_nb` is the 20 Hz narrowband and `Ξf_pbs` is the bandwidth of each 1/3-octave proportional band.
# (Dividing the MSP by Ξf_pbs aka the 1/3 octave spacing is like getting a power-spectral density, then multiplying by the narrowband spacing Ξf_nb gives us the MSP associated with the narrowband.)
# I think the paper describes that, right?
# Right, here's something:
#
# > The current prediction method is limited to one-third octave bands, but it is compared to the narrowband experiment with Ξf = 20 Hz.
# > This is done by dividing the energy from the one-third octave bands by the number of bands in Ξf = 20 Hz.
#
# So, `Ξf_pbs/Ξf_nb` would represent the number of `Ξf_nb`-width bands that could fit in a proportional band of bin width `Ξf_pbs`.
# And then I'm dividing by that.
# So that seems like the right thing.
# First, I'll confirm that the frequencies BPM.jl are using are the ApproximateThirdOctaveCenterBands.
# This will give me those center bands:
cbands_approx3rdcenter = AcousticMetrics.ApproximateThirdOctaveCenterBands(first(BPM.default_f), last(BPM.default_f))
@assert maximum(abs.(BPM.default_f .- cbands_approx3rdcenter)) < 1e-10
# So then I need to get the spacing associated with the proportional bands.
# So get the lower and upper "edges" of the bands.
freqs_l = AcousticMetrics.lower_bands(cbands_approx3rdcenter)
freqs_u = AcousticMetrics.upper_bands(cbands_approx3rdcenter)
# And then the spacing for each band.
df_pbs = freqs_u .- freqs_l
# Also need the experimental narrowband spacing, which is 20 Hz.
df_nb = 20.0
# So, if spl = 10*log10(msp/pref^2), and I want to multiply the msp by df_nb/df_pbs, then
#
# spl_nb = 10*log10((msp*df_nb/df_pbs)/pref^2) = 10*(log10(msp/pref^2) + log10(df_nb/df_pbs))
# spl_nb = 10*log10(msp/pref^2) + 10*log10(df_nb/df_pbs)
# spl_nb = spl + 10*log10(df_nb/df_pbs)
#
# That's easy.
spl_nb_pressure = @. spl_pressure + 10*log10(df_nb/df_pbs)
spl_nb_suction = @. spl_suction + 10*log10(df_nb/df_pbs)
spl_nb_separation = @. spl_separation + 10*log10(df_nb/df_pbs)
spl_nb_lblvs = @. spl_lblvs + 10*log10(df_nb/df_pbs)
spl_nb_blunt = @. spl_blunt + 10*log10(df_nb/df_pbs)
spl_nb_tip = @. spl_tip + 10*log10(df_nb/df_pbs)
data["freqs"] = BPM.default_f
data["spl_nb_pressure"] = spl_nb_pressure
data["spl_nb_suction"] = spl_nb_suction
data["spl_nb_separation"] = spl_nb_separation
data["spl_nb_lblvs"] = spl_nb_lblvs
data["spl_nb_blunt"] = spl_nb_blunt
data["spl_nb_tip"] = spl_nb_tip
save(joinpath(@__DIR__, "figure23c.jld2"), data)
return nothing
end
function do_figure24b()
# Pettingill et al., "Acoustic And Performance Characteristics of an Ideally Twisted Rotor in Hover", 2021
# Parameters from Table 1
B = 4 # number of blades
Rtip = 0.1588 # meters
chord = 0.2*Rtip
# From the first paragraph on page 3, the rotor was designed to produce 11.12 N of thrust.
# Using that and the value of the design thrust coefficient in Table 1 to get the density and speed of sound.
# omega_target = 5500.0 * (2*pi/60)
# thrust_target = 11.12 # Newtons
# CT_target = 0.0137
# Mtip_target = 0.27
# asound = omega_target*Rtip/Mtip_target
# rho = thrust_target/(CT_target * (pi*Rtip^2) * (omega_target*Rtip)^2)
# Standard day:
Tamb = 15 + 273.15 # 15Β°C in Kelvin
pamb = 101325.0 # Pa
R = 287.052874 # J/(kg*K)
rho = pamb/(R*Tamb)
asound = sqrt(1.4*R*Tamb)
# CCBlade.jl defines pitch/collective as "the thing added to the twist to get the orientation of the chord line," but the paper appears to use "the angle of the chord line at the tip."
collective0 = 6.9*pi/180
# The Figure 24 caption says Ξ_tip = 7 deg, but I think that "actually" means 6.9Β°.
# And yes, collective is 0 here, which is a bit silly, I guess, but is consistent with the definition of twist down below.
collective = 6.9 .* (pi/180) .- collective0
mu = rho*1.4502e-5
Vinf = 0.001*asound
# Figure 24 caption says Ξ©_c = 2938 RPM.
rpm = 2938.0
omega = rpm * (2*pi/60)
# Get "cell-centered" radial locations.
num_radial = 50
r_Rtip_ = range(0.2, 1.0; length=num_radial+1)
r_Rtip = 0.5 .* (r_Rtip_[2:end] .+ r_Rtip_[1:end-1])
radii = r_Rtip .* Rtip
Rhub = r_Rtip_[1]*Rtip
# From Pettingill Equation (1), and value for Ξ_tip in Table 1.
Ξ_tip = 6.9 * pi/180
twist = Ξ_tip ./ (r_Rtip)
# NACA 0012 airfoil stuff.
af_fname = joinpath(@__DIR__, "airfoils", "xf-n0012-il-500000.dat")
Re_exp = 0.6
cr75 = chord / Rtip
af, mach_correction, reynolds_correction, rotation_correction, tip_correction = get_airfoil(; af_fname, cr75, Re_exp)
tip_correction = nothing
precone = 0.0
turbine = false
rotor = CCBlade.Rotor(Rhub, Rtip, B; precone=precone, turbine=turbine, mach=mach_correction, re=reynolds_correction, rotation=rotation_correction, tip=tip_correction)
sections = CCBlade.Section.(radii, chord, twist, Ref(af))
ops = CCBlade.OperatingPoint.(Vinf, omega.*radii, rho, collective, mu, asound)
outs = CCBlade.solve.(Ref(rotor), sections, ops)
# BPM.jl uses the M_c = 0.8*M assumption from the BPM report, so modify the W field of each CCBlade.Outputs struct to match that.
lens = Accessors.@optic _.W
outs_bpm_Mc = Accessors.set.(outs, Ref(lens), 0.8.*sqrt.(getproperty.(ops, :Vx).^2 .+ getproperty.(ops, :Vy).^2))
@assert all(getproperty.(outs_bpm_Mc, :W) .β 0.8.*sqrt.(getproperty.(ops, :Vx).^2 .+ getproperty.(ops, :Vy).^2))
# Paper doesn't specify the microphone used for Figure 24, but earlier at the beginning of "C. Noise Characteristics and Trends" there is this:
# > For the purposes of this paper, presented acoustic spectra will correspond to an observer located β35Β° below the plane of the rotor (microphone 5).
# So I'll just assume that holds for Figure 24.
# The observer (microphone 5) is 35 deg behind/downstream of the rotor rotation plane.
r_obs = 2.27 # meters
theta_obs = -35*pi/180
# So, the docstring for BPM.jl says that `V` argument is the wind velocity in the y direction.
# So I guess we should assume that the blades are rotating about the y axis.
# And if the freestream velocity is in the positive y axis, then, from the perspective of the fluid, the blades are translating in the negative y direction.
# And I want the observer to be downstream/behind the blades, so that would mean they would have a positive y position.
# So I want to rotate the observer around the positive x axis, so I'm going to switch the sign on `theta_obs`.
t0_obs = 0.0
x0_obs = [0.0, r_obs*sin(-theta_obs), r_obs*cos(-theta_obs)]
# Get the components of the observer position in a form that BPM.jl uses.
ox = x0_obs[1]
oy = x0_obs[2]
oz = x0_obs[3]
# Radial locations.
rs = getproperty.(sections, :r)
# BPM.jl docstring says we need the angle of attack in degrees.
# But it expects them at the interfaces, not cell centers.
alphas_deg = getproperty.(outs_bpm_Mc, :alpha) .* (180/pi)
rs_interface = from_cell_centers_to_interfaces(rs)
alphas_deg_interface = from_cell_centers_to_interfaces(alphas_deg)
# Do the same thing for the chord.
# What other inputs do we need?
# So the distance from the pitch axis to the leading edge is used, apparently, to locate the trailing edge.
# Let's make sure that's true.
# Here's the relevant code
#
# # Calculate the trailing edge position relative to the hub
# xs = sin(beta)*d - cos(beta)*(c - c1)
# zs = cos(beta)*d + sin(beta)*(c - c1)
#
# `beta` is an azimuthal angle, and `d` is the radial distance of the blade element relative to the hub.
# So let's say that's zero.
# Then, I guess, `xs = (c - c1)` and `zs = r`
# So it looks like the twist is being ignored, I think.
# But, at any rate, if I set c1 = c, that effect is ignored.
chords = getproperty.(sections, :chord)
chords_interface = from_cell_centers_to_interfaces(chords)
c1s = chords_interface
# So, for the boundary layer, we want to use untripped for the 95% of the blade from the hub to almost tip, and then tripped for the last 5% of the blade at the tip.
# So what are those section indices?
num_untripped = Int(round(0.95*num_radial))
num_tripped = num_radial - num_untripped
_tripped_flags = vcat(fill(false, num_untripped), fill(true, num_tripped))
@assert length(_tripped_flags) == num_radial
# This is working with num_radial, the number of cell-centers, not interfaces.
# I think this is the right thing to do though, because it looks like the last value of the `trip` argument is not used by BPM.jl.
# But I'll add an extra entry at the end, just to be consistent.
tripped_flags = vcat(_tripped_flags, _tripped_flags[end:end])
# In the Figure 24 caption, "for these predictions, bluntness thickness H was set to 0.5 mm and trailing edge angle Ξ¨ was set to 14 degrees."
h = 0.5e-3 # meters
Psi = 14*pi/180 # radians
hs = fill(h, length(rs_interface))
Psis_deg = fill(Psi*180/pi, length(rs_interface))
# Also need kinematic viscosity.
nu = mu/rho
# Number of azimuthal stations per blade pass, I think.
num_betas = 20
# Save the inputs in a dict that we'll write out later.
data = Dict(
"rho"=>rho, "asound"=>asound, "mu"=>mu,
"Vinf"=>Vinf, "omega"=>omega,
"B"=>B,
"Rhub"=>rotor.Rhub,
"Rtip"=>rotor.Rtip,
"radii"=>getproperty.(sections, :r),
"chord"=>getproperty.(sections, :chord),
"twist"=>getproperty.(sections, :theta),
"alpha"=>getproperty.(outs, :alpha),
"U"=>getproperty.(outs, :W),
"hs"=>hs[begin:end-1],
"Psis"=>fill(Psi, length(sections)),
"tripped_flags"=>tripped_flags[begin:end-1],
"num_src_times_blade_pass"=>num_betas)
# save(joinpath(@__DIR__, "figure24b-inputs.jld2"), data_inputs)
# Now we can start doing the predictions.
oaspl_pressure, spl_pressure = BPM.sound_pressure_levels(
ox, oy, oz, Vinf, omega,
B, rs_interface, chords_interface, c1s, hs,
alphas_deg_interface, Psis_deg, nu,
asound;
turbulent_pressure=true,
turbulent_suction=false,
turbulent_separation=false,
blunt=false,
weighted=false,
trip=tripped_flags,
tip=false,
laminar=false,
round=false,
nbeta=num_betas,
smooth=false)
oaspl_suction, spl_suction = BPM.sound_pressure_levels(
ox, oy, oz, Vinf, omega,
B, rs_interface, chords_interface, c1s, hs,
alphas_deg_interface, Psis_deg, nu,
asound;
turbulent_pressure=false,
turbulent_suction=true,
turbulent_separation=false,
blunt=false,
weighted=false,
trip=tripped_flags,
tip=false,
laminar=false,
round=false,
nbeta=num_betas,
smooth=false)
oaspl_separation, spl_separation = BPM.sound_pressure_levels(
ox, oy, oz, Vinf, omega,
B, rs_interface, chords_interface, c1s, hs,
alphas_deg_interface, Psis_deg, nu,
asound;
turbulent_pressure=false,
turbulent_suction=false,
turbulent_separation=true,
blunt=false,
weighted=false,
trip=tripped_flags,
tip=false,
laminar=false,
round=false,
nbeta=num_betas,
smooth=false)
oaspl_lblvs, spl_lblvs = BPM.sound_pressure_levels(
ox, oy, oz, Vinf, omega,
B, rs_interface, chords_interface, c1s, hs,
alphas_deg_interface, Psis_deg, nu,
asound;
turbulent_pressure=false,
turbulent_suction=false,
turbulent_separation=false,
blunt=false,
weighted=false,
trip=tripped_flags,
tip=false,
laminar=true,
round=false,
nbeta=num_betas,
smooth=false)
oaspl_blunt, spl_blunt = BPM.sound_pressure_levels(
ox, oy, oz, Vinf, omega,
B, rs_interface, chords_interface, c1s, hs,
alphas_deg_interface, Psis_deg, nu,
asound;
turbulent_pressure=false,
turbulent_suction=false,
turbulent_separation=false,
blunt=true,
weighted=false,
trip=tripped_flags,
tip=false,
laminar=false,
round=false,
nbeta=num_betas,
smooth=false)
oaspl_tip, spl_tip = BPM.sound_pressure_levels(
ox, oy, oz, Vinf, omega, B, rs_interface, chords_interface, c1s, hs, alphas_deg_interface, Psis_deg, nu, asound;
blunt=false,
weighted=false,
trip=tripped_flags,
tip=true,
laminar=false,
turbulent_pressure=false,
turbulent_suction=false,
turbulent_separation=false,
round=false,
nbeta=num_betas,
smooth=false)
# Now I'd like to do the narrowband SPL like the Pettingill et al. paper does, instead of 1/3 octave SPL.
# So, to do that, I need to multiply the mean-squared pressure by Ξf_nb/Ξf_pbs, where `Ξf_nb` is the 20 Hz narrowband and `Ξf_pbs` is the bandwidth of each 1/3-octave proportional band.
# (Dividing the MSP by Ξf_pbs aka the 1/3 octave spacing is like getting a power-spectral density, then multiplying by the narrowband spacing Ξf_nb gives us the MSP associated with the narrowband.)
# I think the paper describes that, right?
# Right, here's something:
#
# > The current prediction method is limited to one-third octave bands, but it is compared to the narrowband experiment with Ξf = 20 Hz.
# > This is done by dividing the energy from the one-third octave bands by the number of bands in Ξf = 20 Hz.
#
# So, `Ξf_pbs/Ξf_nb` would represent the number of `Ξf_nb`-width bands that could fit in a proportional band of bin width `Ξf_pbs`.
# And then I'm dividing by that.
# So that seems like the right thing.
# First, I'll confirm that the frequencies BPM.jl are using are the ApproximateThirdOctaveCenterBands.
# This will give me those center bands:
cbands_approx3rdcenter = AcousticMetrics.ApproximateThirdOctaveCenterBands(first(BPM.default_f), last(BPM.default_f))
@assert maximum(abs.(BPM.default_f .- cbands_approx3rdcenter)) < 1e-10
# So then I need to get the spacing associated with the proportional bands.
# So get the lower and upper "edges" of the bands.
freqs_l = AcousticMetrics.lower_bands(cbands_approx3rdcenter)
freqs_u = AcousticMetrics.upper_bands(cbands_approx3rdcenter)
# And then the spacing for each band.
df_pbs = freqs_u .- freqs_l
# Also need the experimental narrowband spacing, which is 20 Hz.
df_nb = 20.0
# So, if spl = 10*log10(msp/pref^2), and I want to multiply the msp by df_nb/df_pbs, then
#
# spl_nb = 10*log10((msp*df_nb/df_pbs)/pref^2) = 10*(log10(msp/pref^2) + log10(df_nb/df_pbs))
# spl_nb = 10*log10(msp/pref^2) + 10*log10(df_nb/df_pbs)
# spl_nb = spl + 10*log10(df_nb/df_pbs)
#
# That's easy.
spl_nb_pressure = @. spl_pressure + 10*log10(df_nb/df_pbs)
spl_nb_suction = @. spl_suction + 10*log10(df_nb/df_pbs)
spl_nb_separation = @. spl_separation + 10*log10(df_nb/df_pbs)
spl_nb_lblvs = @. spl_lblvs + 10*log10(df_nb/df_pbs)
spl_nb_blunt = @. spl_blunt + 10*log10(df_nb/df_pbs)
spl_nb_tip = @. spl_tip + 10*log10(df_nb/df_pbs)
data["freqs"] = BPM.default_f
data["spl_nb_pressure"] = spl_nb_pressure
data["spl_nb_suction"] = spl_nb_suction
data["spl_nb_separation"] = spl_nb_separation
data["spl_nb_lblvs"] = spl_nb_lblvs
data["spl_nb_blunt"] = spl_nb_blunt
data["spl_nb_tip"] = spl_nb_tip
save(joinpath(@__DIR__, "figure24b.jld2"), data)
return nothing
end
function doit()
do_figure22b()
do_figure23c()
do_figure24b()
end
end # module
| AcousticAnalogies | https://github.com/OpenMDAO/AcousticAnalogies.jl.git |
|
[
"Apache-2.0"
] | 0.8.1 | c14d0b2e7f19374017a2b5b6dfe48c5723c791ae | code | 5506 | module GenANOPP2Data
import ANOPP2, DelimitedFiles
using Printf: @sprintf
include("gen_ccblade_data/constants.jl")
"""
get_dradii(radii, Rhub, Rtip)
Compute the spacing between blade elements given the radial locations of the
element midpoints in `radii` and the hub and tip radius in `Rhub` and `Rtip`,
respectively.
"""
function get_dradii(radii, Rhub, Rtip)
# How do I get the radial spacing? Well, for the inner elements, I'll just
# assume that the interfaces are midway in between the centers.
r_interface = 0.5.*(radii[1:end-1] .+ radii[2:end])
# Then just say that the blade begins at Rhub, and ends at Rtip.
r_interface = vcat([Rhub], r_interface, [Rtip])
# And now the distance between interfaces is the spacing.
dradii = r_interface[2:end] .- r_interface[1:end-1]
return dradii
end
function omega_sweep_with_acoustics(; stationary_observer, theta)
dradii = get_dradii(radii, Rhub, Rtip)
cs_area = area_over_chord_squared .* chord.^2
rpm = 200.0:200.0:2200.0 # rev/min
for i in eachindex(rpm)
omega = rpm[i]*(2*pi/60.0)
# Get the normal and circumferential loading from the CCBlade output.
data = DelimitedFiles.readdlm("gen_ccblade_data/ccblade_omega$(@sprintf "%02d" i).csv", ',')
fn = data[:, 1]
fc = data[:, 2]
# Calculate the noise with ANOPP2.
t_monopole, p_monopole, t_dipole, p_dipole = anopp2_noise(num_blades, v, omega, radii, dradii, chord, fn, fc, stationary_observer, theta)
# Check that the two times are the same.
max_diff = maximum(abs.(t_monopole .- t_dipole))
if max_diff > 1e-10
msg = """
time vectors associated with the monopole and dipole sources appear to differ"
t_monopole = $(t_monopole)
t_dipole = $(t_dipole)
"""
@warn msg
end
# Write the data.
data = hcat(t_monopole, p_monopole, p_dipole)
if theta β 0.0
if stationary_observer
DelimitedFiles.writedlm("anopp2_omega$(@sprintf "%02d" i).csv", data, ',')
else
DelimitedFiles.writedlm("anopp2_const_vel_omega$(@sprintf "%02d" i).csv", data, ',')
end
else
theta_int = Int(round(theta*180.0/pi))
if stationary_observer
DelimitedFiles.writedlm("anopp2_omega$(@sprintf "%02d" i)_theta$(theta_int).csv", data, ',')
else
DelimitedFiles.writedlm("anopp2_const_vel_omega$(@sprintf "%02d" i)_theta$(theta_int).csv", data, ',')
end
end
end
end
function anopp2_noise(num_blades, v, omega, radii, dradii, chord, fn, fc, stationary_observer, theta)
num_radial = length(radii)
t0 = 0.0
rot_axis = [0.0, 0.0, 1.0]
blade_axis = [0.0, 1.0, 0.0]
x0 = ANOPP2.A2_RK[cos(theta), 0.0, sin(theta)].*100.0.*12.0.*0.0254 # 100 ft in meters
y0_hub = [0.0, 0.0, 0.0] # m
v0_hub = v.*rot_axis
num_src_times = 256
num_obs_times = 2*num_src_times
# Now let's see if I can write out the ANOPP2 data.
atm_conf = ANOPP2.writerspy.write_atm_files(density=rho, temperature=c0^2/(gam*R), pressure=rho*c0^2/gam)
atm_t = ANOPP2.a2_atm_create(atm_conf)
adl_confs = ANOPP2.writerspy.write_adl_files(
num_blades=num_blades, num_radial=num_radial,
num_src_times=num_src_times, aauc=area_over_chord_squared, omega=omega,
radii=radii, dradii=dradii, chord=chord, fn=fn, fc=fc)
surf_ts = [ANOPP2.a2_geo_create(adl_conf) for adl_conf in adl_confs]
fp_conf = ANOPP2.writerspy.write_flightpath_files(rot_axis=rot_axis, blade_axis=blade_axis, v0_hub=v0_hub, y0_hub=y0_hub)
fp_t = ANOPP2.a2_fp_create(fp_conf, atm_t)
if stationary_observer
# This just says the observer frame of reference is centered at the
# global origin, and is not moving.
obs_conf = ANOPP2.writerspy.write_observer_files(x=[0.0, 0.0, 0.0], v=[0.0, 0.0, 0.0])
else
# This just says the observer frame of reference is centered at the
# global origin, and is moving with the same constant velocity as the hub.
obs_conf = ANOPP2.writerspy.write_observer_files(x=[0.0, 0.0, 0.0], v=v0_hub)
end
obs_t = ANOPP2.a2_obs_create(obs_conf)
ANOPP2.a2_obs_new_node(obs_t, x0)
nnodes = ANOPP2.a2_obs_number_of_nodes(obs_t)
f1a_conf = ANOPP2.writerspy.write_f1a_files(num_src_times=num_src_times, num_recep_times=num_obs_times, omega=omega)
f1a_input_ts = vcat(surf_ts, atm_t)
f1a_t, results_ts = ANOPP2.a2_exec_create_functional_module(f1a_conf, f1a_input_ts, obs_t)
ANOPP2.a2_exec_execute_functional_module(f1a_t, atm_t, fp_t)
t_monopole = Vector{Float64}[]
t_dipole = Vector{Float64}[]
p_monopole = Vector{Float64}[]
p_dipole = Vector{Float64}[]
for (j, results_t) in enumerate(results_ts)
time, apth, nltype, cs, ife = ANOPP2.a2_obs_get_apth(obs_t, results_t, 1, 0)
name = rstrip(ANOPP2.a2_obs_get_result_name(obs_t, results_t))
if endswith(name, "Monopole")
push!(t_monopole, time)
push!(p_monopole, apth)
elseif endswith(name, "Dipole")
push!(t_dipole, time)
push!(p_dipole, apth)
end
end
p_monopole_total = p_monopole[1] .+ p_monopole[2]
p_dipole_total = p_dipole[1] .+ p_dipole[2]
return t_monopole[1], p_monopole_total, t_dipole[1], p_dipole_total
end
end # module
| AcousticAnalogies | https://github.com/OpenMDAO/AcousticAnalogies.jl.git |
|
[
"Apache-2.0"
] | 0.8.1 | c14d0b2e7f19374017a2b5b6dfe48c5723c791ae | code | 2293 | module GenCCBladeData
using CCBlade: CCBlade
using FileIO: save
using JLD2: JLD2
using Printf: @sprintf
include("constants.jl")
include("xrotor_airfoil.jl")
# Most of this is taken from <developer.nasa.gov:dingraha/CROTORCCBladeComparisons.jl.git>
#' This is the function that will iterate over the RPM values and do the computation.
function omega_sweep()
#' I ended up extracting and CROTOR airfoil code and using it with CCBlade to make
#' sure we're actually doing an "apples-to-apples" comparsion. This is a Julia
#' `struct` that holds all the parameters needed for the CROTOR airfoil routine.
#' The `af_xrotor` routine takes the `XROTORAirfoilConfig` `struct` and
#' an angle of attack, Reynolds number, and Mach number and returns a lift and
#' drag coefficient.
xrotor_config = XROTORAirfoilConfig(
A0=0.0, DCLDA=6.2800, CLMAX=1.5, CLMIN=-0.5, DCLDA_STALL=0.1,
DCL_STALL=0.1, MCRIT=0.8, CDMIN=0.13e-1, CLDMIN=0.5, DCDCL2=0.4e-2, REREF=0.2e6, REXP=-0.4)
airfoil_interp(a, r, m) = af_xrotor(a, r, m, xrotor_config)
theta_rad = CCBladeTestCaseConstants.theta .* pi/180.0
rotor = CCBlade.Rotor(CCBladeTestCaseConstants.Rhub, CCBladeTestCaseConstants.Rtip, CCBladeTestCaseConstants.num_blades)
sections = CCBlade.Section.(CCBladeTestCaseConstants.radii, CCBladeTestCaseConstants.chord, theta_rad, airfoil_interp)
rpm = 200.0:200.0:2200.0 # rev/min
for i in eachindex(rpm)
omega = rpm[i]*(2*pi/60.0)
ops = CCBlade.OperatingPoint.(CCBladeTestCaseConstants.v, omega.*CCBladeTestCaseConstants.radii, CCBladeTestCaseConstants.rho, CCBladeTestCaseConstants.pitch, CCBladeTestCaseConstants.mu, CCBladeTestCaseConstants.c0)
outs = CCBlade.solve.(Ref(rotor), sections, ops)
outs_d = Dict{String,Any}(string(f)=>getproperty.(outs, f) for f in fieldnames(eltype(outs)))
outs_d["omega"] = omega
save("ccblade_omega$(@sprintf "%02d" i)-outputs.jld2", outs_d)
# data = DelimitedFiles.readdlm("ccblade_omega$(@sprintf "%02d" i).csv", ',')
# @show maximum(abs.(getproperty.(outs, :Np) .- data[:, 1]))
# @show maximum(abs.(getproperty.(outs, :Tp) .- data[:, 2]))
end
return nothing
end
if ! isinteractive()
omega_sweep()
end
end # module
| AcousticAnalogies | https://github.com/OpenMDAO/AcousticAnalogies.jl.git |
|
[
"Apache-2.0"
] | 0.8.1 | c14d0b2e7f19374017a2b5b6dfe48c5723c791ae | code | 1504 | module CCBladeTestCaseConstants
# Christopher J Miller's (GRC-LTV) CROTOR blade design.
const gam = 1.4
const R = 287.058 # J/(kg*K)
const rho = 1.226 # kg/m^3
const c0 = 340.0 # m/s
const mu = 0.1780e-4 # kg/(m*s)
const Rtip = 1.1684 # meters
const Rhub = 0.10 # meters
const radii = [
0.92904E-01, 0.11751, 0.15631, 0.20097,
0.24792 , 0.29563, 0.34336, 0.39068,
0.43727 , 0.48291, 0.52741, 0.57060,
0.61234 , 0.65249, 0.69092, 0.72752,
0.76218 , 0.79479, 0.82527, 0.85352,
0.87947 , 0.90303, 0.92415, 0.94275,
0.95880 , 0.97224, 0.98304, 0.99117,
0.99660 , 0.99932].*Rtip
const chord = [
0.35044 , 0.28260 , 0.22105 , 0.17787 , 0.14760,
0.12567 , 0.10927 , 0.96661E-01 , 0.86742E-01 ,
0.78783E-01 , 0.72287E-01 , 0.66906E-01 , 0.62387E-01 ,
0.58541E-01 , 0.55217E-01 , 0.52290E-01 , 0.49645E-01 ,
0.47176E-01 , 0.44772E-01 , 0.42326E-01 , 0.39732E-01 ,
0.36898E-01 , 0.33752E-01 , 0.30255E-01 , 0.26401E-01 ,
0.22217E-01 , 0.17765E-01 , 0.13147E-01 , 0.85683E-02 ,
0.47397E-02].*Rtip
const theta = [
40.005, 34.201, 28.149, 23.753, 20.699, 18.516, 16.890, 15.633,
14.625, 13.795, 13.094, 12.488, 11.956, 11.481, 11.053, 10.662,
10.303, 9.9726, 9.6674, 9.3858, 9.1268, 8.8903, 8.6764, 8.4858,
8.3193, 8.1783, 8.0638, 7.9769, 7.9183, 7.8889, ] # deg
const num_blades = 2
const v = 5.0 # m/s
const area_over_chord_squared = 0.064
const pitch = 0.0 # rad
end # module
| AcousticAnalogies | https://github.com/OpenMDAO/AcousticAnalogies.jl.git |
|
[
"Apache-2.0"
] | 0.8.1 | c14d0b2e7f19374017a2b5b6dfe48c5723c791ae | code | 9104 | """
XROTORAirfoilConfig(A0, DCLDA, CLMAX, CLMIN, DCL_STALL, DCLDA_STALL, CDMIN, CLDMIN, DCDCL2, REREF, REXP, MCRIT)
`struct` that holds all the required parameters for XROTOR's approach to handling airfoil lift and drag polars.
# Arguments
- `A0`: zero lift angle of attack, radians.
- `DCLDA`: lift curve slope, 1/radians.
- `CLMAX`: stall Cl.
- `CLMIN`: negative stall Cl.
- `DCL_STALL`: CL increment from incipient to total stall.
- `DCLDA_STALL`: stalled lift curve slope, 1/radian.
- `CDMIN`: minimum Cd.
- `CLDMIN`: Cl at minimum Cd.
- `DCDCL2`: d(Cd)/d(Cl**2).
- `REREF`: Reynolds Number at which Cd values apply.
- `REXP`: Exponent for Re scaling of Cd: Cd ~ Re**exponent
- `MCRIT`: Critical Mach number.
"""
struct XROTORAirfoilConfig{TF}
A0::TF # = 0. # zero lift angle of attack radians
DCLDA::TF # = 6.28 # lift curve slope /radian
CLMAX::TF # = 1.5 # stall Cl
CLMIN::TF # = -0.5 # negative stall Cl
DCL_STALL::TF # = 0.1 # CL increment from incipient to total stall
DCLDA_STALL::TF # = 0.1 # stalled lift curve slope /radian
CDMIN::TF # = 0.013 # minimum Cd
CLDMIN::TF # = 0.5 # Cl at minimum Cd
DCDCL2::TF # = 0.004 # d(Cd)/d(Cl**2)
REREF::TF # = 200000. # Reynolds Number at which Cd values apply
REXP::TF # = -0.4 # Exponent for Re scaling of Cd: Cd ~ Re**exponent
MCRIT::TF # = 0.8 # Critical Mach number
end
function XROTORAirfoilConfig(; A0, DCLDA, CLMAX, CLMIN, DCL_STALL, DCLDA_STALL, CDMIN, CLDMIN, DCDCL2, REREF, REXP, MCRIT)
return XROTORAirfoilConfig(A0, DCLDA, CLMAX, CLMIN, DCL_STALL, DCLDA_STALL, CDMIN, CLDMIN, DCDCL2, REREF, REXP, MCRIT)
end
"""
af_xrotor(alpha, Re, Mach, config::XROTORAirfoilConfig)
Return a tuple of the lift and drag coefficients for a given angle of attach
`alpha` (in radians), Reynolds number `Re`, and Mach number `Mach`.
"""
function af_xrotor(alpha, Re, Mach, config::XROTORAirfoilConfig)
# C------------------------------------------------------------
# C CL(alpha) function
# C Note that in addition to setting CLIFT and its derivatives
# C CLMAX and CLMIN (+ and - stall CL's) are set in this routine
# C In the compressible range the stall CL is reduced by a factor
# C proportional to Mcrit-Mach. Stall limiting for compressible
# C cases begins when the compressible drag added CDC > CDMstall
# C------------------------------------------------------------
# C CD(alpha) function - presently CD is assumed to be a sum
# C of profile drag + stall drag + compressibility drag
# C In the linear lift range drag is CD0 + quadratic function of CL-CLDMIN
# C In + or - stall an additional drag is added that is proportional
# C to the extent of lift reduction from the linear lift value.
# C Compressible drag is based on adding drag proportional to
# C (Mach-Mcrit_eff)^MEXP
# C------------------------------------------------------------
# C CM(alpha) function - presently CM is assumed constant,
# C varying only with Mach by Prandtl-Glauert scaling
# C------------------------------------------------------------
# C
# INCLUDE 'XROTOR.INC'
# LOGICAL STALLF
# DOUBLE PRECISION ECMIN, ECMAX
# C
# C---- Factors for compressibility drag model, HHY 10/23/00
# C Mcrit is set by user
# C Effective Mcrit is Mcrit_eff = Mcrit - CLMFACTOR*(CL-CLDmin) - DMDD
# C DMDD is the delta Mach to get CD=CDMDD (usually 0.0020)
# C Compressible drag is CDC = CDMFACTOR*(Mach-Mcrit_eff)^MEXP
# C CDMstall is the drag at which compressible stall begins
#
A0 = config.A0
DCLDA = config.DCLDA
CLMAX = config.CLMAX
CLMIN = config.CLMIN
DCL_STALL = config.DCL_STALL
DCLDA_STALL = config.DCLDA_STALL
CDMIN = config.CDMIN
CLDMIN = config.CLDMIN
DCDCL2 = config.DCDCL2
REREF = config.REREF
REXP = config.REXP
MCRIT = config.MCRIT
CDMFACTOR = 10.0
CLMFACTOR = 0.25
MEXP = 3.0
CDMDD = 0.0020
CDMSTALL = 0.1000
# C
# C---- Prandtl-Glauert compressibility factor
# MSQ = W*W*VEL^2/VSO^2
# MSQ_W = 2.0*W*VEL^2/VSO^2
# if (MSQ>1.0)
# # WRITE(*,*)
# # & 'CLFUNC: Local Mach number limited to 0.99, was ', MSQ
# MSQ = 0.99
# # MSQ_W = 0.
# end
MSQ = Mach*Mach
if MSQ > 1.0
MSQ = 0.99
Mach = sqrt(MSQ)
end
PG = 1.0 / sqrt(1.0 - MSQ)
# PG_W = 0.5*MSQ_W * PG^3
# C
# C---- Mach number and dependence on velocity
# Mach = sqrt(MSQ)
# MACH_W = 0.0
# IF(Mach.NE.0.0) MACH_W = 0.5*MSQ_W/Mach
# if ! (mach β 0.0)
# MACH_W = 0.5*MSQ_W/Mach
# end
# C
# C
# C------------------------------------------------------------
# C--- Generate CL from dCL/dAlpha and Prandtl-Glauert scaling
CLA = DCLDA*PG *(alpha-A0)
# CLA_ALF = DCLDA*PG
# CLA_W = DCLDA*PG_W*(ALF-A0)
# C
# C--- Effective CLmax is limited by Mach effects
# C reduces CLmax to match the CL of onset of serious compressible drag
CLMX = CLMAX
CLMN = CLMIN
DMSTALL = (CDMSTALL/CDMFACTOR)^(1.0/MEXP)
CLMAXM = max(0.0, (MCRIT+DMSTALL-Mach)/CLMFACTOR) + CLDMIN
CLMAX = min(CLMAX,CLMAXM)
CLMINM = min(0.0,-(MCRIT+DMSTALL-Mach)/CLMFACTOR) + CLDMIN
CLMIN = max(CLMIN,CLMINM)
# C
# C--- CL limiter function (turns on after +-stall
ECMAX = exp( min(200.0, (CLA-CLMAX)/DCL_STALL) )
ECMIN = exp( min(200.0, (CLMIN-CLA)/DCL_STALL) )
CLLIM = DCL_STALL * log( (1.0+ECMAX)/(1.0+ECMIN) )
CLLIM_CLA = ECMAX/(1.0+ECMAX) + ECMIN/(1.0+ECMIN)
# c
# c if(CLLIM.GT.0.001) then
# c write(*,999) 'cla,cllim,ecmax,ecmin ',cla,cllim,ecmax,ecmin
# c endif
# c 999 format(a,2(1x,f10.6),3(1x,d12.6))
# C
# C--- Subtract off a (nearly unity) fraction of the limited CL function
# C This sets the dCL/dAlpha in the stalled regions to 1-FSTALL of that
# C in the linear lift range
FSTALL = DCLDA_STALL/DCLDA
CLIFT = CLA - (1.0-FSTALL)*CLLIM
# CL_ALF = CLA_ALF - (1.0-FSTALL)*CLLIM_CLA*CLA_ALF
# CL_W = CLA_W - (1.0-FSTALL)*CLLIM_CLA*CLA_W
# C
# STALLF = false
# IF(CLIFT.GT.CLMAX) STALLF = .TRUE.
# IF(CLIFT.LT.CLMIN) STALLF = .TRUE.
# STALLF = (CLIFT > CLMAX) || (CLIFT < CLMIN)
# C
# C
# C------------------------------------------------------------
# C--- CM from CMCON and Prandtl-Glauert scaling
# CMOM = PG*CMCON
# CM_AL = 0.0
# CM_W = PG_W*CMCON
# C
# C
# C------------------------------------------------------------
# C--- CD from profile drag, stall drag and compressibility drag
# C
# C---- Reynolds number scaling factor
if (Re < 0.0)
RCORR = 1.0
# RCORR_REY = 0.0
else
RCORR = (Re/REREF)^REXP
# RCORR_REY = REXP/Re
end
# C
# C--- In the basic linear lift range drag is a function of lift
# C CD = CD0 (constant) + quadratic with CL)
CDRAG = (CDMIN + DCDCL2*(CLIFT-CLDMIN)^2 ) * RCORR
# CD_ALF = ( 2.0*DCDCL2*(CLIFT-CLDMIN)*CL_ALF) * RCORR
# CD_W = ( 2.0*DCDCL2*(CLIFT-CLDMIN)*CL_W ) * RCORR
# CD_REY = CDRAG*RCORR_REY
# C
# C--- Post-stall drag added
FSTALL = DCLDA_STALL/DCLDA
DCDX = (1.0-FSTALL)*CLLIM/(PG*DCLDA)
# c write(*,*) 'cla,cllim,fstall,pg,dclda ',cla,cllim,fstall,pg,dclda
DCD = 2.0* DCDX^2
# DCD_ALF = 4.0* DCDX * (1.0-FSTALL)*CLLIM_CLA*CLA_ALF/(PG*DCLDA)
# DCD_W = 4.0* DCDX * ( (1.0-FSTALL)*CLLIM_CLA*CLA_W/(PG*DCLDA) - DCD/PG*PG_W )
# c write(*,*) 'alf,cl,dcd,dcd_alf,dcd_w ',alf,clift,dcd,dcd_alf,dcd_w
# C
# C--- Compressibility drag (accounts for drag rise above Mcrit with CL effects
# C CDC is a function of a scaling factor*(M-Mcrit(CL))^MEXP
# C DMDD is the Mach difference corresponding to CD rise of CDMDD at MCRIT
DMDD = (CDMDD/CDMFACTOR)^(1.0/MEXP)
CRITMACH = MCRIT-CLMFACTOR*abs(CLIFT-CLDMIN) - DMDD
# CRITMACH_ALF = -CLMFACTOR*ABS(CL_ALF)
# CRITMACH_W = -CLMFACTOR*ABS(CL_W)
if (Mach < CRITMACH)
CDC = 0.0
# CDC_ALF = 0.0
# CDC_W = 0.0
else
CDC = CDMFACTOR*(Mach-CRITMACH)^MEXP
# CDC_W = MEXP*MACH_W*CDC/Mach - MEXP*CRITMACH_W *CDC/CRITMACH
# CDC_ALF = - MEXP*CRITMACH_ALF*CDC/CRITMACH
end
# c write(*,*) 'critmach,mach ',critmach,mach
# c write(*,*) 'cdc,cdc_w,cdc_alf ',cdc,cdc_w,cdc_alf
# C
FAC = 1.0
# FAC_W = 0.0
# C--- Although test data does not show profile drag increases due to Mach #
# C you could use something like this to add increase drag by Prandtl-Glauert
# C (or any function you choose)
# cc FAC = PG
# cc FAC_W = PG_W
# C--- Total drag terms
CDRAG = FAC*CDRAG + DCD + CDC
# CD_ALF = FAC*CD_ALF + DCD_ALF + CDC_ALF
# CD_W = FAC*CD_W + FAC_W*CDRAG + DCD_W + CDC_W
# CD_REY = FAC*CD_REY
# C
return CLIFT, CDRAG
end
| AcousticAnalogies | https://github.com/OpenMDAO/AcousticAnalogies.jl.git |
|
[
"Apache-2.0"
] | 0.8.1 | c14d0b2e7f19374017a2b5b6dfe48c5723c791ae | code | 11646 | module GenWriteVTKTestData
using AcousticAnalogies
using CCBlade
using JLD2: JLD2
"""
XROTORAirfoilConfig(A0, DCLDA, CLMAX, CLMIN, DCL_STALL, DCLDA_STALL, CDMIN, CLDMIN, DCDCL2, REREF, REXP, MCRIT)
`struct` that holds all the required parameters for XROTOR's approach to handling airfoil lift and drag polars.
# Arguments
- `A0`: zero lift angle of attack, radians.
- `DCLDA`: lift curve slope, 1/radians.
- `CLMAX`: stall Cl.
- `CLMIN`: negative stall Cl.
- `DCL_STALL`: CL increment from incipient to total stall.
- `DCLDA_STALL`: stalled lift curve slope, 1/radian.
- `CDMIN`: minimum Cd.
- `CLDMIN`: Cl at minimum Cd.
- `DCDCL2`: d(Cd)/d(Cl**2).
- `REREF`: Reynolds Number at which Cd values apply.
- `REXP`: Exponent for Re scaling of Cd: Cd ~ Re**exponent
- `MCRIT`: Critical Mach number.
"""
struct XROTORAirfoilConfig{TF}
A0::TF # = 0. # zero lift angle of attack radians
DCLDA::TF # = 6.28 # lift curve slope /radian
CLMAX::TF # = 1.5 # stall Cl
CLMIN::TF # = -0.5 # negative stall Cl
DCL_STALL::TF # = 0.1 # CL increment from incipient to total stall
DCLDA_STALL::TF # = 0.1 # stalled lift curve slope /radian
CDMIN::TF # = 0.013 # minimum Cd
CLDMIN::TF # = 0.5 # Cl at minimum Cd
DCDCL2::TF # = 0.004 # d(Cd)/d(Cl**2)
REREF::TF # = 200000. # Reynolds Number at which Cd values apply
REXP::TF # = -0.4 # Exponent for Re scaling of Cd: Cd ~ Re**exponent
MCRIT::TF # = 0.8 # Critical Mach number
end
function XROTORAirfoilConfig(; A0, DCLDA, CLMAX, CLMIN, DCL_STALL, DCLDA_STALL, CDMIN, CLDMIN, DCDCL2, REREF, REXP, MCRIT)
return XROTORAirfoilConfig(A0, DCLDA, CLMAX, CLMIN, DCL_STALL, DCLDA_STALL, CDMIN, CLDMIN, DCDCL2, REREF, REXP, MCRIT)
end
"""
af_xrotor(alpha, Re, Mach, config::XROTORAirfoilConfig)
Return a tuple of the lift and drag coefficients for a given angle of attach
`alpha` (in radians), Reynolds number `Re`, and Mach number `Mach`.
"""
function af_xrotor(alpha, Re, Mach, config::XROTORAirfoilConfig)
# C------------------------------------------------------------
# C CL(alpha) function
# C Note that in addition to setting CLIFT and its derivatives
# C CLMAX and CLMIN (+ and - stall CL's) are set in this routine
# C In the compressible range the stall CL is reduced by a factor
# C proportional to Mcrit-Mach. Stall limiting for compressible
# C cases begins when the compressible drag added CDC > CDMstall
# C------------------------------------------------------------
# C CD(alpha) function - presently CD is assumed to be a sum
# C of profile drag + stall drag + compressibility drag
# C In the linear lift range drag is CD0 + quadratic function of CL-CLDMIN
# C In + or - stall an additional drag is added that is proportional
# C to the extent of lift reduction from the linear lift value.
# C Compressible drag is based on adding drag proportional to
# C (Mach-Mcrit_eff)^MEXP
# C------------------------------------------------------------
# C CM(alpha) function - presently CM is assumed constant,
# C varying only with Mach by Prandtl-Glauert scaling
# C------------------------------------------------------------
# C
# INCLUDE 'XROTOR.INC'
# LOGICAL STALLF
# DOUBLE PRECISION ECMIN, ECMAX
# C
# C---- Factors for compressibility drag model, HHY 10/23/00
# C Mcrit is set by user
# C Effective Mcrit is Mcrit_eff = Mcrit - CLMFACTOR*(CL-CLDmin) - DMDD
# C DMDD is the delta Mach to get CD=CDMDD (usually 0.0020)
# C Compressible drag is CDC = CDMFACTOR*(Mach-Mcrit_eff)^MEXP
# C CDMstall is the drag at which compressible stall begins
#
A0 = config.A0
DCLDA = config.DCLDA
CLMAX = config.CLMAX
CLMIN = config.CLMIN
DCL_STALL = config.DCL_STALL
DCLDA_STALL = config.DCLDA_STALL
CDMIN = config.CDMIN
CLDMIN = config.CLDMIN
DCDCL2 = config.DCDCL2
REREF = config.REREF
REXP = config.REXP
MCRIT = config.MCRIT
CDMFACTOR = 10.0
CLMFACTOR = 0.25
MEXP = 3.0
CDMDD = 0.0020
CDMSTALL = 0.1000
# C
# C---- Prandtl-Glauert compressibility factor
# MSQ = W*W*VEL^2/VSO^2
# MSQ_W = 2.0*W*VEL^2/VSO^2
# if (MSQ>1.0)
# # WRITE(*,*)
# # & 'CLFUNC: Local Mach number limited to 0.99, was ', MSQ
# MSQ = 0.99
# # MSQ_W = 0.
# end
MSQ = Mach*Mach
if MSQ > 1.0
MSQ = 0.99
Mach = sqrt(MSQ)
end
PG = 1.0 / sqrt(1.0 - MSQ)
# PG_W = 0.5*MSQ_W * PG^3
# C
# C---- Mach number and dependence on velocity
# Mach = sqrt(MSQ)
# MACH_W = 0.0
# IF(Mach.NE.0.0) MACH_W = 0.5*MSQ_W/Mach
# if ! (mach β 0.0)
# MACH_W = 0.5*MSQ_W/Mach
# end
# C
# C
# C------------------------------------------------------------
# C--- Generate CL from dCL/dAlpha and Prandtl-Glauert scaling
CLA = DCLDA*PG *(alpha-A0)
# CLA_ALF = DCLDA*PG
# CLA_W = DCLDA*PG_W*(ALF-A0)
# C
# C--- Effective CLmax is limited by Mach effects
# C reduces CLmax to match the CL of onset of serious compressible drag
CLMX = CLMAX
CLMN = CLMIN
DMSTALL = (CDMSTALL/CDMFACTOR)^(1.0/MEXP)
CLMAXM = max(0.0, (MCRIT+DMSTALL-Mach)/CLMFACTOR) + CLDMIN
CLMAX = min(CLMAX,CLMAXM)
CLMINM = min(0.0,-(MCRIT+DMSTALL-Mach)/CLMFACTOR) + CLDMIN
CLMIN = max(CLMIN,CLMINM)
# C
# C--- CL limiter function (turns on after +-stall
ECMAX = exp( min(200.0, (CLA-CLMAX)/DCL_STALL) )
ECMIN = exp( min(200.0, (CLMIN-CLA)/DCL_STALL) )
CLLIM = DCL_STALL * log( (1.0+ECMAX)/(1.0+ECMIN) )
CLLIM_CLA = ECMAX/(1.0+ECMAX) + ECMIN/(1.0+ECMIN)
# c
# c if(CLLIM.GT.0.001) then
# c write(*,999) 'cla,cllim,ecmax,ecmin ',cla,cllim,ecmax,ecmin
# c endif
# c 999 format(a,2(1x,f10.6),3(1x,d12.6))
# C
# C--- Subtract off a (nearly unity) fraction of the limited CL function
# C This sets the dCL/dAlpha in the stalled regions to 1-FSTALL of that
# C in the linear lift range
FSTALL = DCLDA_STALL/DCLDA
CLIFT = CLA - (1.0-FSTALL)*CLLIM
# CL_ALF = CLA_ALF - (1.0-FSTALL)*CLLIM_CLA*CLA_ALF
# CL_W = CLA_W - (1.0-FSTALL)*CLLIM_CLA*CLA_W
# C
# STALLF = false
# IF(CLIFT.GT.CLMAX) STALLF = .TRUE.
# IF(CLIFT.LT.CLMIN) STALLF = .TRUE.
# STALLF = (CLIFT > CLMAX) || (CLIFT < CLMIN)
# C
# C
# C------------------------------------------------------------
# C--- CM from CMCON and Prandtl-Glauert scaling
# CMOM = PG*CMCON
# CM_AL = 0.0
# CM_W = PG_W*CMCON
# C
# C
# C------------------------------------------------------------
# C--- CD from profile drag, stall drag and compressibility drag
# C
# C---- Reynolds number scaling factor
if (Re < 0.0)
RCORR = 1.0
# RCORR_REY = 0.0
else
RCORR = (Re/REREF)^REXP
# RCORR_REY = REXP/Re
end
# C
# C--- In the basic linear lift range drag is a function of lift
# C CD = CD0 (constant) + quadratic with CL)
CDRAG = (CDMIN + DCDCL2*(CLIFT-CLDMIN)^2 ) * RCORR
# CD_ALF = ( 2.0*DCDCL2*(CLIFT-CLDMIN)*CL_ALF) * RCORR
# CD_W = ( 2.0*DCDCL2*(CLIFT-CLDMIN)*CL_W ) * RCORR
# CD_REY = CDRAG*RCORR_REY
# C
# C--- Post-stall drag added
FSTALL = DCLDA_STALL/DCLDA
DCDX = (1.0-FSTALL)*CLLIM/(PG*DCLDA)
# c write(*,*) 'cla,cllim,fstall,pg,dclda ',cla,cllim,fstall,pg,dclda
DCD = 2.0* DCDX^2
# DCD_ALF = 4.0* DCDX * (1.0-FSTALL)*CLLIM_CLA*CLA_ALF/(PG*DCLDA)
# DCD_W = 4.0* DCDX * ( (1.0-FSTALL)*CLLIM_CLA*CLA_W/(PG*DCLDA) - DCD/PG*PG_W )
# c write(*,*) 'alf,cl,dcd,dcd_alf,dcd_w ',alf,clift,dcd,dcd_alf,dcd_w
# C
# C--- Compressibility drag (accounts for drag rise above Mcrit with CL effects
# C CDC is a function of a scaling factor*(M-Mcrit(CL))^MEXP
# C DMDD is the Mach difference corresponding to CD rise of CDMDD at MCRIT
DMDD = (CDMDD/CDMFACTOR)^(1.0/MEXP)
CRITMACH = MCRIT-CLMFACTOR*abs(CLIFT-CLDMIN) - DMDD
# CRITMACH_ALF = -CLMFACTOR*ABS(CL_ALF)
# CRITMACH_W = -CLMFACTOR*ABS(CL_W)
if (Mach < CRITMACH)
CDC = 0.0
# CDC_ALF = 0.0
# CDC_W = 0.0
else
CDC = CDMFACTOR*(Mach-CRITMACH)^MEXP
# CDC_W = MEXP*MACH_W*CDC/Mach - MEXP*CRITMACH_W *CDC/CRITMACH
# CDC_ALF = - MEXP*CRITMACH_ALF*CDC/CRITMACH
end
# c write(*,*) 'critmach,mach ',critmach,mach
# c write(*,*) 'cdc,cdc_w,cdc_alf ',cdc,cdc_w,cdc_alf
# C
FAC = 1.0
# FAC_W = 0.0
# C--- Although test data does not show profile drag increases due to Mach #
# C you could use something like this to add increase drag by Prandtl-Glauert
# C (or any function you choose)
# cc FAC = PG
# cc FAC_W = PG_W
# C--- Total drag terms
CDRAG = FAC*CDRAG + DCD + CDC
# CD_ALF = FAC*CD_ALF + DCD_ALF + CDC_ALF
# CD_W = FAC*CD_W + FAC_W*CDRAG + DCD_W + CDC_W
# CD_REY = FAC*CD_REY
# C
return CLIFT, CDRAG
end
function main()
rpm = 2200.0
omega = rpm*(2*pi/60.0)
B = 2
Rhub = 0.10
Rtip = 1.1684 # meters
# radii = [
# 0.92904E-01, 0.11751, 0.15631, 0.20097,
# 0.24792 , 0.29563, 0.34336, 0.39068,
# 0.43727 , 0.48291, 0.52741, 0.57060,
# 0.61234 , 0.65249, 0.69092, 0.72752,
# 0.76218 , 0.79479, 0.82527, 0.85352,
# 0.87947 , 0.90303, 0.92415, 0.94275,
# 0.95880 , 0.97224, 0.98304, 0.99117,
# 0.99660 , 0.99932].*Rtip
radii = Rhub .+ range(0.0, 1.0, length=31).*(Rtip - Rhub)
radii = 0.5.*(radii[2:end] .+ radii[1:end-1])
cs_area_over_chord_squared = 0.064
chord = [
0.35044 , 0.28260 , 0.22105 , 0.17787 , 0.14760,
0.12567 , 0.10927 , 0.96661E-01 , 0.86742E-01 ,
0.78783E-01 , 0.72287E-01 , 0.66906E-01 , 0.62387E-01 ,
0.58541E-01 , 0.55217E-01 , 0.52290E-01 , 0.49645E-01 ,
0.47176E-01 , 0.44772E-01 , 0.42326E-01 , 0.39732E-01 ,
0.36898E-01 , 0.33752E-01 , 0.30255E-01 , 0.26401E-01 ,
0.22217E-01 , 0.17765E-01 , 0.13147E-01 , 0.85683E-02 ,
0.47397E-02].*Rtip
theta = [
40.005, 34.201, 28.149, 23.753, 20.699, 18.516, 16.890, 15.633,
14.625, 13.795, 13.094, 12.488, 11.956, 11.481, 11.053, 10.662,
10.303, 9.9726, 9.6674, 9.3858, 9.1268, 8.8903, 8.6764, 8.4858,
8.3193, 8.1783, 8.0638, 7.9769, 7.9183, 7.8889].*(pi/180)
rho = 1.226 # kg/m^3
c0 = 340.0 # m/s
mu = 0.1780e-4 # kg/(m*s)
pitch = 0.0
xrotor_config = XROTORAirfoilConfig(
A0=0.0, DCLDA=6.2800, CLMAX=1.5, CLMIN=-0.5, DCLDA_STALL=0.1,
DCL_STALL=0.1, MCRIT=0.8, CDMIN=0.13e-1, CLDMIN=0.5, DCDCL2=0.4e-2, REREF=0.2e6, REXP=-0.4)
airfoil_interp(a, r, m) = af_xrotor(a, r, m, xrotor_config)
rotor = Rotor(Rhub, Rtip, B)
sections = Section.(radii, chord, theta, Ref(airfoil_interp))
Vinf = 5.0 # m/s
ops = OperatingPoint.(Vinf, omega.*radii, rho, pitch, mu, c0)
outs = solve.(Ref(rotor), sections, ops)
bpp = 60/(rpm*B)
period = 2*bpp
num_source_times = 64
ses = source_elements_ccblade(rotor, sections, ops, outs, fill(cs_area_over_chord_squared, length(radii)), period, num_source_times)
name = "cf1a"
JLD2.jldopen("$(name).jld2", "w") do file
file["ses"] = ses
end
pvd = AcousticAnalogies.to_paraview_collection(name, ses)
end
end # module
| AcousticAnalogies | https://github.com/OpenMDAO/AcousticAnalogies.jl.git |
|
[
"Apache-2.0"
] | 0.8.1 | c14d0b2e7f19374017a2b5b6dfe48c5723c791ae | code | 616 | module ConvertCF1AData
using AcousticAnalogies
using JLD2: JLD2
function to_cf1a(se)
return CompactF1ASourceElement(se.Ο0, se.c0, se.Ξr, se.Ξ, se.y0dot, se.y1dot, se.y2dot, se.y3dot, se.f0dot, se.f1dot, se.Ο, se.u)
end
function doit()
ses = nothing
JLD2.jldopen(joinpath(@__DIR__, "cf1a-old.jld2"), "r") do file
# Renaming CompactSourceElement to CompactF1ASourceElement breaks reconstructing the source elements from the jld2file.
ses = to_cf1a.(file["ses"])
end
JLD2.jldopen(joinpath(@__DIR__, "cf1a.jld2"), "w") do file
file["ses"] = ses
end
end
end # module
| AcousticAnalogies | https://github.com/OpenMDAO/AcousticAnalogies.jl.git |
|
[
"Apache-2.0"
] | 0.8.1 | c14d0b2e7f19374017a2b5b6dfe48c5723c791ae | docs | 3190 | # AcousticAnalogies.jl Documentation
[](https://github.com/OpenMDAO/AcousticAnalogies.jl/actions/workflows/test.yaml)
[](https://OpenMDAO.github.io/AcousticAnalogies.jl/dev)
**Summary**: A pure-Julia package for propeller/rotor blade noise prediction with acoustic analogies.
**What's an acoustic analogy?**
* TL;DR answer:
An acoustic analogy is a noise prediction approach that takes information from
one area of the fluid domain (e.g., a propeller blade surface, or a fictitious
surface surrounding a complicated flow) and calculates the acoustics radiated
by the flow. The particular acoustic analogy implemented in `AcousticAnalogies.jl` is
especially well-suited for predicting tonal propeller/rotor noise, and has
features that ease its inclusion in gradient-based optimizations.
* Mathy answer:
An acoustic analogy is a clever rearrangement of the Navier-Stokes equations,
the governing equations of fluid flow, into a form that looks like the classical
inhomogeneous wave equation. The inhomogeneous term represents sources of sound
in the flow. The wave equation can be solved using the appropriate [Green's
function](https://en.wikipedia.org/wiki/Green%27s_function#Table_of_Green's_functions),
which requires the evaluation of two surface integrals and a volume integral
(usually neglected). If the integration surface is taken to be a solid surface
in the fluid domain (e.g., a propeller blade), we can use the acoustic analogy
solution to predict the acoustics caused by the motion of and loading on the
integration surface.
**Features**:
* Implementation of L. Lopes' compact form of Farassat's formulation 1A
(see
[http://dx.doi.org/10.2514/6.2015-2673](http://dx.doi.org/10.2514/6.2015-2673)
or
[http://dx.doi.org/10.2514/1.C034048](http://dx.doi.org/10.2514/1.C034048)
for details).
* Implementation of Brooks & Burley's rotor broadband noise prediction method [http://dx.doi.org/10.2514/6.2001-2210](http://dx.doi.org/10.2514/6.2001-2210).
* Support for stationary or constant-velocity moving observers, with an
explict calculation for the latter from D. Casalino
[http://dx.doi.org/10.1016/S0022-460X(02)00986-0](http://dx.doi.org/10.1016/S0022-460X(02)00986-0).
* Thoroughly tested: unit tests for everything, and multiple comparisons of the entire
calculation to equivalent methods in NASA's ANOPP2 code.
* Convenient, fast coordinate system transformations through
[KinematicCoordinateTransformations.jl](https://github.com/OpenMDAO/KinematicCoordinateTransformations.jl).
* Written in pure Julia, and compatible with automatic differentiation (AD)
tools like [ForwardDiff.jl](https://github.com/JuliaDiff/ForwardDiff.jl).
* Comprehensive docs (TODO).
* Fast!
**Installation**
```julia-repl
] add AcousticAnalogies
```
**Usage**
See the docs.
# Software Quality Assurance
* This repository contains extensive tests run by GitHub Actions.
* This repository only allows signed commits to be merged into the `main` branch.
| AcousticAnalogies | https://github.com/OpenMDAO/AcousticAnalogies.jl.git |
|
[
"Apache-2.0"
] | 0.8.1 | c14d0b2e7f19374017a2b5b6dfe48c5723c791ae | docs | 100 | ```@meta
CurrentModule = AADocs
```
# API Reference
```@autodocs
Modules = [AcousticAnalogies]
```
| AcousticAnalogies | https://github.com/OpenMDAO/AcousticAnalogies.jl.git |
|
[
"Apache-2.0"
] | 0.8.1 | c14d0b2e7f19374017a2b5b6dfe48c5723c791ae | docs | 23595 | ```@meta
CurrentModule = AADocs
```
# Software Quality Assurance, Cont.
## Brooks, Pope, and Marcolini Airfoil Self-Noise Tests
The [Brooks, Pope, and Marcolini (BPM) report on airfoil self-noise](https://ntrs.nasa.gov/citations/19890016302) forms the basis of the [Brooks and Burley broadband noise modeling approach](https://doi.org/10.2514/6.2001-2210) that is implemented in AcousticAnalogies.jl.
### Boundary Layer Tests
```@example bpm_bl_thickness
using AcousticAnalogies: AcousticAnalogies
using ColorSchemes: colorschemes
using DelimitedFiles: DelimitedFiles
# using FLOWMath: linear
using GLMakie
# https://docs.makie.org/stable/examples/blocks/axis/index.html#logticks
struct IntegerTicks end
Makie.get_tickvalues(::IntegerTicks, vmin, vmax) = ceil(Int, vmin) : floor(Int, vmax)
colors = colorschemes[:tab10]
fig = Figure()
ax1 = fig[1, 1] = Axis(fig; xlabel="Re_c/10^6", ylabel="Ξ΄_0/c",
xscale=log10, yscale=log10,
xminorticksvisible=true, yminorticksvisible=true,
xminorticks=IntervalsBetween(9), yminorticks=IntervalsBetween(9),
xticks=LogTicks(IntegerTicks()), yticks=LogTicks(IntegerTicks()))
fname = joinpath(@__DIR__, "..", "..", "test", "bpm_data", "brooks_airfoil_self_noise_and_prediction_1989", "19890016302-figure06-bl_thickness-tripped.csv")
bpm_tripped = DelimitedFiles.readdlm(fname, ',')
Re_c_1e6 = bpm_tripped[:, 1]
deltastar0_c = bpm_tripped[:, 2]
scatter!(ax1, Re_c_1e6, deltastar0_c, markersize=4, label="tripped, BPM report", color=colors[1])
Re_c_1e6_jl = range(minimum(Re_c_1e6), maximum(Re_c_1e6); length=50)
deltastar0_c_jl = AcousticAnalogies.bl_thickness_0.(Ref(AcousticAnalogies.TrippedN0012BoundaryLayer()), Re_c_1e6_jl.*1e6)
lines!(ax1, Re_c_1e6_jl, deltastar0_c_jl, label="tripped, Julia", color=colors[1])
fname = joinpath(@__DIR__, "..", "..", "test", "bpm_data", "brooks_airfoil_self_noise_and_prediction_1989", "19890016302-figure06-bl_thickness-untripped.csv")
bpm_untripped = DelimitedFiles.readdlm(fname, ',')
Re_c_1e6 = bpm_untripped[:, 1]
deltastar0_c = bpm_untripped[:, 2]
scatter!(ax1, Re_c_1e6, deltastar0_c, markersize=4, label="untripped, BPM report", color=colors[2])
Re_c_1e6_jl = range(minimum(Re_c_1e6), maximum(Re_c_1e6); length=50)
deltastar0_c_jl = AcousticAnalogies.bl_thickness_0.(Ref(AcousticAnalogies.UntrippedN0012BoundaryLayer()), Re_c_1e6_jl.*1e6)
lines!(ax1, Re_c_1e6_jl, deltastar0_c_jl, label="untripped, Julia", color=colors[2])
xlims!(ax1, 0.04, 3)
ylims!(ax1, 0.01, 0.2)
axislegend(ax1)
save("19890016302-figure06-bl_thickness.png", fig)
```

```@example bpm_disp_thickness
using AcousticAnalogies: AcousticAnalogies
using ColorSchemes: colorschemes
using DelimitedFiles: DelimitedFiles
using GLMakie
# https://docs.makie.org/stable/examples/blocks/axis/index.html#logticks
struct IntegerTicks end
Makie.get_tickvalues(::IntegerTicks, vmin, vmax) = ceil(Int, vmin) : floor(Int, vmax)
colors = colorschemes[:tab10]
fig = Figure()
ax1 = fig[1, 1] = Axis(fig; xlabel="Re_c/10^6", ylabel="Ξ΄_0^*/c",
xscale=log10, yscale=log10,
xminorticksvisible=true, yminorticksvisible=true,
xminorticks=IntervalsBetween(9), yminorticks=IntervalsBetween(9),
xticks=LogTicks(IntegerTicks()), yticks=LogTicks(IntegerTicks()))
fname = joinpath(@__DIR__, "..", "..", "test", "bpm_data", "brooks_airfoil_self_noise_and_prediction_1989", "19890016302-figure06-disp_thickness-tripped.csv")
bpm_tripped = DelimitedFiles.readdlm(fname, ',')
Re_c_1e6 = bpm_tripped[:, 1]
deltastar0_c = bpm_tripped[:, 2]
scatter!(ax1, Re_c_1e6, deltastar0_c, markersize=4, label="tripped, BPM report", color=colors[1])
Re_c_1e6_jl = range(minimum(Re_c_1e6), maximum(Re_c_1e6); length=50)
deltastar0_c_jl = AcousticAnalogies.disp_thickness_0.(Ref(AcousticAnalogies.TrippedN0012BoundaryLayer()), Re_c_1e6_jl.*1e6)
lines!(ax1, Re_c_1e6_jl, deltastar0_c_jl, label="tripped, Julia", color=colors[1])
fname = joinpath(@__DIR__, "..", "..", "test", "bpm_data", "brooks_airfoil_self_noise_and_prediction_1989", "19890016302-figure06-disp_thickness-untripped.csv")
bpm_untripped = DelimitedFiles.readdlm(fname, ',')
Re_c_1e6 = bpm_untripped[:, 1]
deltastar0_c = bpm_untripped[:, 2]
scatter!(ax1, Re_c_1e6, deltastar0_c, markersize=4, label="untripped, BPM report", color=colors[2])
Re_c_1e6_jl = range(minimum(Re_c_1e6), maximum(Re_c_1e6); length=50)
deltastar0_c_jl = AcousticAnalogies.disp_thickness_0.(Ref(AcousticAnalogies.UntrippedN0012BoundaryLayer()), Re_c_1e6_jl.*1e6)
lines!(ax1, Re_c_1e6_jl, deltastar0_c_jl, label="untripped, Julia", color=colors[2])
xlims!(ax1, 0.04, 3)
ylims!(ax1, 0.001, 0.03)
axislegend(ax1)
save("19890016302-figure06-disp_thickness.png", fig)
```

```@example bpm_bl_thickness_tripped
using AcousticAnalogies: AcousticAnalogies
using ColorSchemes: colorschemes
using DelimitedFiles: DelimitedFiles
using GLMakie
# https://docs.makie.org/stable/examples/blocks/axis/index.html#logticks
struct IntegerTicks end
Makie.get_tickvalues(::IntegerTicks, vmin, vmax) = ceil(Int, vmin) : floor(Int, vmax)
colors = colorschemes[:tab10]
fig = Figure()
ax1 = fig[1, 1] = Axis(fig; xlabel="alpha, deg.", ylabel="Ξ΄/Ξ΄_0",
yscale=log10,
yminorticksvisible=true,
yminorticks=IntervalsBetween(9),
yticks=LogTicks(IntegerTicks())
)
fname = joinpath(@__DIR__, "..", "..", "test", "bpm_data", "brooks_airfoil_self_noise_and_prediction_1989", "19890016302-figure07-bl_thickness-pressure_side.csv")
bpm_pressure_side = DelimitedFiles.readdlm(fname, ',')
alpha_deg = bpm_pressure_side[:, 1]
delta_bpm = bpm_pressure_side[:, 2]
scatter!(ax1, alpha_deg, delta_bpm, color=colors[1], markersize=4, label="pressure side, BPM report")
alpha_deg_jl = range(minimum(alpha_deg), maximum(alpha_deg); length=50)
delta_jl = AcousticAnalogies._bl_thickness_p.(Ref(AcousticAnalogies.TrippedN0012BoundaryLayer()), alpha_deg_jl.*pi/180)
lines!(ax1, alpha_deg_jl, delta_jl; color=colors[1], label="pressure side, Julia")
fname = joinpath(@__DIR__, "..", "..", "test", "bpm_data", "brooks_airfoil_self_noise_and_prediction_1989", "19890016302-figure07-bl_thickness-suction_side.csv")
bpm_suction_side = DelimitedFiles.readdlm(fname, ',')
alpha_deg = bpm_suction_side[:, 1]
delta_bpm = bpm_suction_side[:, 2]
scatter!(ax1, alpha_deg, delta_bpm, markersize=4, color=colors[2], label="suction side, BPM report")
alpha_deg_jl = range(minimum(alpha_deg), maximum(alpha_deg); length=50)
delta_jl = AcousticAnalogies._bl_thickness_s.(Ref(AcousticAnalogies.TrippedN0012BoundaryLayer()), alpha_deg_jl.*pi/180)
lines!(ax1, alpha_deg_jl, delta_jl; color=colors[2], label="suction side, Julia")
xlims!(ax1, 0, 25)
ylims!(ax1, 0.2, 20)
axislegend(ax1, position=:lt)
save("19890016302-figure07-bl_thickness.png", fig)
```

```@example bpm_disp_thickness_star_tripped
using AcousticAnalogies: AcousticAnalogies
using ColorSchemes: colorschemes
using DelimitedFiles: DelimitedFiles
using GLMakie
# https://docs.makie.org/stable/examples/blocks/axis/index.html#logticks
struct IntegerTicks end
Makie.get_tickvalues(::IntegerTicks, vmin, vmax) = ceil(Int, vmin) : floor(Int, vmax)
colors = colorschemes[:tab10]
fig = Figure()
ax1 = fig[1, 1] = Axis(fig; xlabel="alpha, deg.", ylabel="Ξ΄^*/Ξ΄_0^*",
yscale=log10,
yminorticksvisible=true,
yminorticks=IntervalsBetween(9),
yticks=LogTicks(IntegerTicks())
)
fname = joinpath(@__DIR__, "..", "..", "test", "bpm_data", "brooks_airfoil_self_noise_and_prediction_1989", "19890016302-figure07-pressure_side.csv")
bpm_pressure_side = DelimitedFiles.readdlm(fname, ',')
alpha_deg = bpm_pressure_side[:, 1]
deltastar_bpm = bpm_pressure_side[:, 2]
scatter!(ax1, alpha_deg, deltastar_bpm, color=colors[1], markersize=4, label="pressure side, BPM report")
alpha_deg_jl = range(minimum(alpha_deg), maximum(alpha_deg); length=50)
deltastar_jl = AcousticAnalogies._disp_thickness_p.(Ref(AcousticAnalogies.TrippedN0012BoundaryLayer()), alpha_deg_jl.*pi/180)
lines!(ax1, alpha_deg_jl, deltastar_jl; color=colors[1], label="pressure side, Julia")
fname = joinpath(@__DIR__, "..", "..", "test", "bpm_data", "brooks_airfoil_self_noise_and_prediction_1989", "19890016302-figure07-suction_side.csv")
bpm_suction_side = DelimitedFiles.readdlm(fname, ',')
alpha_deg = bpm_suction_side[:, 1]
deltastar_bpm = bpm_suction_side[:, 2]
scatter!(ax1, alpha_deg, deltastar_bpm, markersize=4, color=colors[2], label="suction side, BPM report")
alpha_deg_jl = range(minimum(alpha_deg), maximum(alpha_deg); length=50)
deltastar_jl = AcousticAnalogies._disp_thickness_s.(Ref(AcousticAnalogies.TrippedN0012BoundaryLayer()), alpha_deg_jl.*pi/180)
lines!(ax1, alpha_deg_jl, deltastar_jl; color=colors[2], label="suction side, Julia")
xlims!(ax1, 0, 25)
ylims!(ax1, 0.2, 200)
axislegend(ax1, position=:lt)
save("19890016302-figure07.png", fig)
```

```@example bpm_bl_thickness_untripped
using AcousticAnalogies: AcousticAnalogies
using ColorSchemes: colorschemes
using DelimitedFiles: DelimitedFiles
using GLMakie
# https://docs.makie.org/stable/examples/blocks/axis/index.html#logticks
struct IntegerTicks end
Makie.get_tickvalues(::IntegerTicks, vmin, vmax) = ceil(Int, vmin) : floor(Int, vmax)
colors = colorschemes[:tab10]
fig = Figure()
ax1 = fig[1, 1] = Axis(fig; xlabel="alpha, deg.", ylabel="Ξ΄/Ξ΄_0",
yscale=log10,
yminorticksvisible=true,
yminorticks=IntervalsBetween(9),
yticks=LogTicks(IntegerTicks())
)
fname = joinpath(@__DIR__, "..", "..", "test", "bpm_data", "brooks_airfoil_self_noise_and_prediction_1989", "19890016302-figure08-bl_thickness-pressure_side.csv")
bpm_pressure_side = DelimitedFiles.readdlm(fname, ',')
alpha_deg = bpm_pressure_side[:, 1]
deltastar_bpm = bpm_pressure_side[:, 2]
scatter!(ax1, alpha_deg, deltastar_bpm, color=colors[1], markersize=4, label="pressure side, BPM report")
alpha_deg_jl = range(minimum(alpha_deg), maximum(alpha_deg); length=50)
deltastar_jl = AcousticAnalogies._bl_thickness_p.(Ref(AcousticAnalogies.UntrippedN0012BoundaryLayer()), alpha_deg_jl.*pi/180)
lines!(ax1, alpha_deg_jl, deltastar_jl; color=colors[1], label="pressure side, Julia")
fname = joinpath(@__DIR__, "..", "..", "test", "bpm_data", "brooks_airfoil_self_noise_and_prediction_1989", "19890016302-figure08-bl_thickness-suction_side.csv")
bpm_pressure_side = DelimitedFiles.readdlm(fname, ',')
alpha_deg = bpm_pressure_side[:, 1]
deltastar_bpm = bpm_pressure_side[:, 2]
scatter!(ax1, alpha_deg, deltastar_bpm, color=colors[2], markersize=4, label="suction side, BPM report")
alpha_deg_jl = range(minimum(alpha_deg), maximum(alpha_deg); length=50)
deltastar_jl = AcousticAnalogies._bl_thickness_s.(Ref(AcousticAnalogies.UntrippedN0012BoundaryLayer()), alpha_deg_jl.*pi/180)
lines!(ax1, alpha_deg_jl, deltastar_jl; color=colors[2], label="suction side, Julia")
xlims!(ax1, 0, 25)
ylims!(ax1, 0.2, 40)
axislegend(ax1, position=:lt)
save("19890016302-figure08-bl_thickness.png", fig)
```

```@example bpm_disp_thickness_star_untripped
using AcousticAnalogies: AcousticAnalogies
using ColorSchemes: colorschemes
using DelimitedFiles: DelimitedFiles
using GLMakie
# https://docs.makie.org/stable/examples/blocks/axis/index.html#logticks
struct IntegerTicks end
Makie.get_tickvalues(::IntegerTicks, vmin, vmax) = ceil(Int, vmin) : floor(Int, vmax)
colors = colorschemes[:tab10]
fig = Figure()
ax1 = fig[1, 1] = Axis(fig; xlabel="alpha, deg.", ylabel="Ξ΄^*/Ξ΄_0^*",
yscale=log10,
yminorticksvisible=true,
yminorticks=IntervalsBetween(9),
yticks=LogTicks(IntegerTicks())
)
fname = joinpath(@__DIR__, "..", "..", "test", "bpm_data", "brooks_airfoil_self_noise_and_prediction_1989", "19890016302-figure08-pressure_side.csv")
bpm_pressure_side = DelimitedFiles.readdlm(fname, ',')
alpha_deg = bpm_pressure_side[:, 1]
deltastar_bpm = bpm_pressure_side[:, 2]
scatter!(ax1, alpha_deg, deltastar_bpm, color=colors[1], markersize=4, label="pressure side, BPM report")
alpha_deg_jl = range(minimum(alpha_deg), maximum(alpha_deg); length=50)
deltastar_jl = AcousticAnalogies._disp_thickness_p.(Ref(AcousticAnalogies.UntrippedN0012BoundaryLayer()), alpha_deg_jl.*pi/180)
lines!(ax1, alpha_deg_jl, deltastar_jl; color=colors[1], label="pressure side, Julia")
fname = joinpath(@__DIR__, "..", "..", "test", "bpm_data", "brooks_airfoil_self_noise_and_prediction_1989", "19890016302-figure08-suction_side.csv")
bpm_suction_side = DelimitedFiles.readdlm(fname, ',')
alpha_deg = bpm_suction_side[:, 1]
deltastar_bpm = bpm_suction_side[:, 2]
scatter!(ax1, alpha_deg, deltastar_bpm, markersize=4, color=colors[2], label="suction side, BPM report")
alpha_deg_jl = range(minimum(alpha_deg), maximum(alpha_deg); length=50)
deltastar_jl = AcousticAnalogies._disp_thickness_s.(Ref(AcousticAnalogies.UntrippedN0012BoundaryLayer()), alpha_deg_jl.*pi/180)
lines!(ax1, alpha_deg_jl, deltastar_jl; color=colors[2], label="suction side, Julia")
xlims!(ax1, 0, 25)
ylims!(ax1, 0.2, 200)
axislegend(ax1, position=:lt)
save("19890016302-figure08.png", fig)
```

### Turbulent Boundary Layer-Trailing Edge Shape Function Tests
```@example bpm_K_1
using AcousticAnalogies: AcousticAnalogies
using ColorSchemes: colorschemes
using DelimitedFiles: DelimitedFiles
using GLMakie
# https://docs.makie.org/stable/examples/blocks/axis/index.html#logticks
struct IntegerTicks end
Makie.get_tickvalues(::IntegerTicks, vmin, vmax) = ceil(Int, vmin) : floor(Int, vmax)
colors = colorschemes[:tab10]
fig = Figure()
ax1 = fig[1, 1] = Axis(fig; xlabel="Re_c", ylabel="Peak scaled SPL_1/3, dB",
xscale=log10,
xminorticksvisible=true,
xminorticks=IntervalsBetween(9),
xticks=LogTicks(IntegerTicks()))
fname = joinpath(@__DIR__, "..", "..", "test", "bpm_data", "brooks_airfoil_self_noise_and_prediction_1989", "19890016302-figure77.csv")
bpm = DelimitedFiles.readdlm(fname, ',')
Re_c_bpm = bpm[:, 1]
K_1_bpm = bpm[:, 2]
scatter!(ax1, Re_c_bpm, K_1_bpm, color=colors[1], markersize=8, label="BPM report")
Re_c_jl = range(minimum(Re_c_bpm), maximum(Re_c_bpm); length=50)
K_1_jl = AcousticAnalogies.K_1.(Re_c_jl)
lines!(ax1, Re_c_jl, K_1_jl, color=colors[1], label="Julia")
xlims!(ax1, 10^4, 10^7)
ylims!(ax1, 110.0, 150.0)
axislegend(ax1, position=:lt)
save("19890016302-figure77.png", fig)
```

```@example bpm_A
using AcousticAnalogies: AcousticAnalogies
using ColorSchemes: colorschemes
using DelimitedFiles: DelimitedFiles
using GLMakie
# https://docs.makie.org/stable/examples/blocks/axis/index.html#logticks
struct IntegerTicks end
Makie.get_tickvalues(::IntegerTicks, vmin, vmax) = ceil(Int, vmin) : floor(Int, vmax)
colors = colorschemes[:tab10]
fig = Figure()
ax1 = fig[1, 1] = Axis(fig; xlabel="Strouhal number ratio, St/St_peak", ylabel="Function A level, dB",
xscale=log10,
xminorticksvisible=true,
xminorticks=IntervalsBetween(9),
xticks=LogTicks(IntegerTicks()))
fname = joinpath(@__DIR__, "..", "..", "test", "bpm_data", "brooks_airfoil_self_noise_and_prediction_1989", "19890016302-figure78-A_min.csv")
bpm = DelimitedFiles.readdlm(fname, ',')
St_St_peak_bpm = bpm[:, 1]
A = bpm[:, 2]
scatter!(ax1, St_St_peak_bpm, A, color=colors[1], markersize=8, label="A_min, BPM report")
St_St_peak_jl = range(minimum(St_St_peak_bpm), maximum(St_St_peak_bpm); length=50)
A_jl = AcousticAnalogies.A.(St_St_peak_jl, 9.5e4)
lines!(ax1, St_St_peak_jl, A_jl, color=colors[1], label="A_min, Julia")
fname = joinpath(@__DIR__, "..", "..", "test", "bpm_data", "brooks_airfoil_self_noise_and_prediction_1989", "19890016302-figure78-A_max.csv")
bpm = DelimitedFiles.readdlm(fname, ',')
St_St_peak_bpm = bpm[:, 1]
A = bpm[:, 2]
scatter!(ax1, St_St_peak_bpm, A, color=colors[2], markersize=8, label="A_max, BPM report")
St_St_peak_jl = range(minimum(St_St_peak_bpm), maximum(St_St_peak_bpm); length=50)
A_jl = AcousticAnalogies.A.(St_St_peak_jl, 8.58e5)
lines!(ax1, St_St_peak_jl, A_jl, color=colors[2], label="A_max, Julia")
xlims!(ax1, 0.1, 20)
ylims!(ax1, -20.0, 0.0)
axislegend(ax1, position=:lt)
save("19890016302-figure78-A.png", fig)
```

```@example bpm_B
using AcousticAnalogies: AcousticAnalogies
using ColorSchemes: colorschemes
using DelimitedFiles: DelimitedFiles
using GLMakie
# https://docs.makie.org/stable/examples/blocks/axis/index.html#logticks
struct IntegerTicks end
Makie.get_tickvalues(::IntegerTicks, vmin, vmax) = ceil(Int, vmin) : floor(Int, vmax)
colors = colorschemes[:tab10]
fig = Figure()
ax1 = fig[1, 1] = Axis(fig; xlabel="Strouhal number ratio, St/St_peak", ylabel="Function B level, dB",
xscale=log10,
xminorticksvisible=true,
xminorticks=IntervalsBetween(9),
xticks=LogTicks(IntegerTicks()))
fname = joinpath(@__DIR__, "..", "..", "test", "bpm_data", "brooks_airfoil_self_noise_and_prediction_1989", "19890016302-figure78-B_min.csv")
bpm = DelimitedFiles.readdlm(fname, ',')
St_St_peak_bpm = bpm[:, 1]
B = bpm[:, 2]
scatter!(ax1, St_St_peak_bpm, B, color=colors[1], markersize=8, label="B_min, BPM report")
St_St_peak_jl = range(0.5, 2; length=50)
B_jl = AcousticAnalogies.B.(St_St_peak_jl, 9.5e4)
lines!(ax1, St_St_peak_jl, B_jl, color=colors[1], label="B_min, Julia")
fname = joinpath(@__DIR__, "..", "..", "test", "bpm_data", "brooks_airfoil_self_noise_and_prediction_1989", "19890016302-figure78-B_max.csv")
bpm = DelimitedFiles.readdlm(fname, ',')
St_St_peak_bpm = bpm[:, 1]
B = bpm[:, 2]
scatter!(ax1, St_St_peak_bpm, B, color=colors[2], markersize=8, label="B_max, BPM report")
St_St_peak_jl = range(0.2, 4; length=50)
B_jl = AcousticAnalogies.B.(St_St_peak_jl, 8.58e5)
lines!(ax1, St_St_peak_jl, B_jl, color=colors[2], label="B_max, Julia")
xlims!(ax1, 0.1, 20)
ylims!(ax1, -20.0, 0.0)
axislegend(ax1, position=:lt)
save("19890016302-figure78-B.png", fig)
```

```@example bpm_St_2
using AcousticAnalogies: AcousticAnalogies
using ColorSchemes: colorschemes
using DelimitedFiles: DelimitedFiles
using GLMakie
# https://docs.makie.org/stable/examples/blocks/axis/index.html#logticks
struct IntegerTicks end
Makie.get_tickvalues(::IntegerTicks, vmin, vmax) = ceil(Int, vmin) : floor(Int, vmax)
colors = colorschemes[:tab10]
fig = Figure()
ax1 = fig[1, 1] = Axis(fig; xlabel="Angle of attack Ξ±^*, deg", ylabel="Peak Strouhal number, St_peak",
yscale=log10,
yminorticksvisible=true,
yminorticks=IntervalsBetween(9),
yticks=LogTicks(IntegerTicks()))
fname = joinpath(@__DIR__, "..", "..", "test", "bpm_data", "brooks_airfoil_self_noise_and_prediction_1989", "19890016302-figure80-M0.093.csv")
bpm = DelimitedFiles.readdlm(fname, ',')
alpha_deg = bpm[:, 1]
St_2 = bpm[:, 2]
scatter!(ax1, alpha_deg, St_2, color=colors[1], markersize=8, label="St_2 for M = 0.093, BPM")
alpha_deg_jl = range(minimum(alpha_deg), maximum(alpha_deg); length=50)
St_2_jl = AcousticAnalogies.St_2.(AcousticAnalogies.St_1(0.093), alpha_deg_jl.*pi/180)
lines!(ax1, alpha_deg_jl, St_2_jl, color=colors[1], label="St_2 for M = 0.093, Julia")
fname = joinpath(@__DIR__, "..", "..", "test", "bpm_data", "brooks_airfoil_self_noise_and_prediction_1989", "19890016302-figure80-M0.209.csv")
bpm = DelimitedFiles.readdlm(fname, ',')
alpha_deg = bpm[:, 1]
St_2 = bpm[:, 2]
scatter!(ax1, alpha_deg, St_2, color=colors[2], markersize=8, label="St_2 for M = 0.209, BPM")
alpha_deg_jl = range(minimum(alpha_deg), maximum(alpha_deg); length=50)
St_2_jl = AcousticAnalogies.St_2.(AcousticAnalogies.St_1(0.209), alpha_deg_jl.*pi/180)
lines!(ax1, alpha_deg_jl, St_2_jl, color=colors[2], label="St_2 for M = 0.209, Julia")
xlims!(ax1, 0.0, 25.0)
ylims!(ax1, 0.01, 1)
axislegend(ax1, position=:lt)
save("19890016302-figure80.png", fig)
```

```@example bpm_K_2_K_1
using AcousticAnalogies: AcousticAnalogies
using ColorSchemes: colorschemes
using DelimitedFiles: DelimitedFiles
using GLMakie
# https://docs.makie.org/stable/examples/blocks/axis/index.html#logticks
struct IntegerTicks end
Makie.get_tickvalues(::IntegerTicks, vmin, vmax) = ceil(Int, vmin) : floor(Int, vmax)
colors = colorschemes[:tab10]
fig = Figure()
ax1 = fig[1, 1] = Axis(fig; xlabel="Angle of attack Ξ±_*, deg", ylabel="Extracted scaled levels minus K_1, dB")
fname = joinpath(@__DIR__, "..", "..", "test", "bpm_data", "brooks_airfoil_self_noise_and_prediction_1989", "19890016302-figure82-M0.093.csv")
bpm = DelimitedFiles.readdlm(fname, ',')
alpha_deg = bpm[:, 1]
K_2_K_1 = bpm[:, 2]
scatter!(ax1, alpha_deg, K_2_K_1, color=colors[1], markersize=8, label="M = 0.093, BPM", marker='o')
alpha_deg_jl = range(minimum(alpha_deg), maximum(alpha_deg); length=200)
K_2_K_1_jl = AcousticAnalogies.K_2.(1e6, 0.093, alpha_deg_jl.*pi/180) .- AcousticAnalogies.K_1(1e6)
lines!(ax1, alpha_deg_jl, K_2_K_1_jl, color=colors[1], label="M = 0.093, Julia")
fname = joinpath(@__DIR__, "..", "..", "test", "bpm_data", "brooks_airfoil_self_noise_and_prediction_1989", "19890016302-figure82-M0.116.csv")
bpm = DelimitedFiles.readdlm(fname, ',')
alpha_deg = bpm[:, 1]
K_2_K_1 = bpm[:, 2]
scatter!(ax1, alpha_deg, K_2_K_1, color=colors[2], markersize=8, label="M = 0.116, BPM", marker='o')
alpha_deg_jl = range(minimum(alpha_deg), maximum(alpha_deg); length=200)
K_2_K_1_jl = AcousticAnalogies.K_2.(1e6, 0.116, alpha_deg_jl.*pi/180) .- AcousticAnalogies.K_1(1e6)
lines!(ax1, alpha_deg_jl, K_2_K_1_jl, color=colors[2], label="M = 0.116, Julia")
fname = joinpath(@__DIR__, "..", "..", "test", "bpm_data", "brooks_airfoil_self_noise_and_prediction_1989", "19890016302-figure82-M0.163.csv")
bpm = DelimitedFiles.readdlm(fname, ',')
alpha_deg = bpm[:, 1]
K_2_K_1 = bpm[:, 2]
scatter!(ax1, alpha_deg, K_2_K_1, color=colors[3], markersize=8, label="M = 0.163, BPM", marker='o')
alpha_deg_jl = range(minimum(alpha_deg), maximum(alpha_deg); length=200)
K_2_K_1_jl = AcousticAnalogies.K_2.(1e6, 0.163, alpha_deg_jl.*pi/180) .- AcousticAnalogies.K_1(1e6)
lines!(ax1, alpha_deg_jl, K_2_K_1_jl, color=colors[3], label="M = 0.163, Julia")
fname = joinpath(@__DIR__, "..", "..", "test", "bpm_data", "brooks_airfoil_self_noise_and_prediction_1989", "19890016302-figure82-M0.209.csv")
bpm = DelimitedFiles.readdlm(fname, ',')
alpha_deg = bpm[:, 1]
K_2_K_1 = bpm[:, 2]
scatter!(ax1, alpha_deg, K_2_K_1, color=colors[4], markersize=8, label="M = 0.209, BPM", marker='o')
alpha_deg_jl = range(minimum(alpha_deg), maximum(alpha_deg); length=200)
K_2_K_1_jl = AcousticAnalogies.K_2.(1e6, 0.209, alpha_deg_jl.*pi/180) .- AcousticAnalogies.K_1(1e6)
lines!(ax1, alpha_deg_jl, K_2_K_1_jl, color=colors[4], label="M = 0.209, Julia")
xlims!(ax1, 0.0, 25.0)
ylims!(ax1, -20, 20)
axislegend(ax1, position=:lt)
save("19890016302-figure82.png", fig)
```

| AcousticAnalogies | https://github.com/OpenMDAO/AcousticAnalogies.jl.git |
|
[
"Apache-2.0"
] | 0.8.1 | c14d0b2e7f19374017a2b5b6dfe48c5723c791ae | docs | 21656 | ```@meta
CurrentModule = AADocs
```
# Software Quality Assurance, Cont.
## Brooks, Pope, and Marcolini Airfoil Self-Noise Tests, Cont.
### Laminar Boundary Layer-Vortex Shedding Tests
```@example bpm_St_1_prime
using AcousticAnalogies: AcousticAnalogies
using ColorSchemes: colorschemes
using DelimitedFiles: DelimitedFiles
# using FLOWMath: linear
using GLMakie
# https://docs.makie.org/stable/examples/blocks/axis/index.html#logticks
struct IntegerTicks end
Makie.get_tickvalues(::IntegerTicks, vmin, vmax) = ceil(Int, vmin) : floor(Int, vmax)
colors = colorschemes[:tab10]
fig = Figure()
ax1 = fig[1, 1] = Axis(fig; xlabel="Re_c", ylabel="Peak Strouhal number, St'_peak",
xscale=log10,
xminorticksvisible=true,
xminorticks=IntervalsBetween(9),
xticks=LogTicks(IntegerTicks()),
yscale=log10,
yminorticksvisible=true,
yminorticks=IntervalsBetween(9),
yticks=LogTicks(IntegerTicks()))
fname = joinpath(@__DIR__, "..", "..", "test", "bpm_data", "brooks_airfoil_self_noise_and_prediction_1989", "19890016302-figure86-St_1_prime.csv")
bpm = DelimitedFiles.readdlm(fname, ',')
Re_c_bpm = bpm[:, 1]
St_1_prime_bpm = bpm[:, 2]
scatter!(ax1, Re_c_bpm, St_1_prime_bpm, color=colors[1], markersize=4, label="BPM")
Re_c_jl = 10.0.^(range(4, 7; length=100))
St_1_prime_jl = AcousticAnalogies.St_1_prime.(Re_c_jl)
lines!(ax1, Re_c_jl, St_1_prime_jl, color=colors[1], label="Julia")
xlims!(ax1, 1e4, 1e7)
ylims!(ax1, 0.01, 1)
axislegend(ax1, position=:lt)
save("19890016302-figure86.png", fig)
```

```@example bpm_lbl_vs_G1
using AcousticAnalogies: AcousticAnalogies
using ColorSchemes: colorschemes
using DelimitedFiles: DelimitedFiles
# using FLOWMath: linear
using GLMakie
# https://docs.makie.org/stable/examples/blocks/axis/index.html#logticks
struct IntegerTicks end
Makie.get_tickvalues(::IntegerTicks, vmin, vmax) = ceil(Int, vmin) : floor(Int, vmax)
colors = colorschemes[:tab10]
fig = Figure()
ax1 = fig[1, 1] = Axis(fig; xlabel="St'/St'_peak", ylabel="Function G_1 level, dB",
xscale=log10,
xminorticksvisible=true,
xminorticks=IntervalsBetween(9),
xticks=LogTicks(IntegerTicks()))
fname = joinpath(@__DIR__, "..", "..", "test", "bpm_data", "brooks_airfoil_self_noise_and_prediction_1989", "19890016302-figure85-G1.csv")
bpm = DelimitedFiles.readdlm(fname, ',')
e_bpm = bpm[:, 1]
G1_bpm = bpm[:, 2]
scatter!(ax1, e_bpm, G1_bpm, color=colors[1], markersize=4, label="BPM")
e_jl = 10.0.^(range(-1, 1; length=101))
G1_jl = AcousticAnalogies.G1.(e_jl)
lines!(ax1, e_jl, G1_jl, color=colors[1], label="Julia")
xlims!(ax1, 0.1, 10)
ylims!(ax1, -30, 0)
axislegend(ax1, position=:lt)
save("19890016302-figure85.png", fig)
```

```@example bpm_lbl_vs_St_peak_prime_alphastar
using AcousticAnalogies: AcousticAnalogies
using ColorSchemes: colorschemes
using DelimitedFiles: DelimitedFiles
# using FLOWMath: linear
using GLMakie
# https://docs.makie.org/stable/examples/blocks/axis/index.html#logticks
struct IntegerTicks end
Makie.get_tickvalues(::IntegerTicks, vmin, vmax) = ceil(Int, vmin) : floor(Int, vmax)
colors = colorschemes[:tab10]
fig = Figure()
ax1 = fig[1, 1] = Axis(fig; xlabel="alpha^*, deg", ylabel="St'_peak/St'_1",
yscale=log10,
yminorticksvisible=true,
yminorticks=IntervalsBetween(9),
yticks=LogTicks(IntegerTicks()))
fname = joinpath(@__DIR__, "..", "..", "test", "bpm_data", "brooks_airfoil_self_noise_and_prediction_1989", "19890016302-figure87.csv")
bpm = DelimitedFiles.readdlm(fname, ',')
alphastar_bpm = bpm[:, 1]
St_peak_ratio_bpm = bpm[:, 2]
scatter!(ax1, alphastar_bpm, St_peak_ratio_bpm, color=colors[1], markersize=4, label="BPM")
St_1_prime = 0.25 # Just make up a value, since we're multiplying and then dividing by it anyway.
alphastar_jl = range(0.0*pi/180, 7.0*pi/180; length=21)
St_peak_ratio_jl = AcousticAnalogies.St_peak_prime.(St_1_prime, alphastar_jl)./St_1_prime
lines!(ax1, alphastar_jl.*180/pi, St_peak_ratio_jl, color=colors[1], label="Julia")
xlims!(ax1, 0, 7)
ylims!(ax1, 0.5, 2)
axislegend(ax1, position=:lt)
save("19890016302-figure87.png", fig)
```

```@example bpm_lbl_vs_G2_alphastar
using AcousticAnalogies: AcousticAnalogies
using ColorSchemes: colorschemes
using DelimitedFiles: DelimitedFiles
# using FLOWMath: linear
using GLMakie
# https://docs.makie.org/stable/examples/blocks/axis/index.html#logticks
struct IntegerTicks end
Makie.get_tickvalues(::IntegerTicks, vmin, vmax) = ceil(Int, vmin) : floor(Int, vmax)
colors = colorschemes[:tab10]
fig = Figure()
ax1 = fig[1, 1] = Axis(fig; xlabel="Re_c/Re_c0", ylabel="G2 + G3",
xscale=log10,
xminorticksvisible=true,
xminorticks=IntervalsBetween(9),
xticks=LogTicks(IntegerTicks()))
fname = joinpath(@__DIR__, "..", "..", "test", "bpm_data", "brooks_airfoil_self_noise_and_prediction_1989", "19890016302-figure88-G2-alpha0.csv")
alphastar = 0.0*pi/180
bpm = DelimitedFiles.readdlm(fname, ',')
Re_c_bpm = bpm[:, 1]
G2_bpm = bpm[:, 2]
scatter!(ax1, Re_c_bpm, G2_bpm, color=colors[1], markersize=4, label="BPM - Ξ±^* = $(alphastar*180/pi)Β°")
Re_c_jl = 10.0.^range(log10(first(Re_c_bpm)), log10(last(Re_c_bpm)), length=51)
Re_c0 = AcousticAnalogies.Re_c0(alphastar)
Re_ratio_jl = Re_c_jl./Re_c0
# G2_jl = AcousticAnalogies.G2.(Re_ratio_jl) .+ 171.04 .- 3.03*(alphastar*180/pi)
G2_jl = AcousticAnalogies.G2.(Re_ratio_jl) .+ AcousticAnalogies.G3.(alphastar)
lines!(ax1, Re_c_jl, G2_jl, color=colors[1], label="Julia - Ξ±^* = $(alphastar*180/pi)Β°")
fname = joinpath(@__DIR__, "..", "..", "test", "bpm_data", "brooks_airfoil_self_noise_and_prediction_1989", "19890016302-figure88-G2-alpha6.csv")
alphastar = 6.0*pi/180
bpm = DelimitedFiles.readdlm(fname, ',')
Re_c_bpm = bpm[:, 1]
G2_bpm = bpm[:, 2]
scatter!(ax1, Re_c_bpm, G2_bpm, color=colors[2], markersize=4, label="BPM - Ξ±^* = $(alphastar*180/pi)Β°")
Re_c_jl = 10.0.^range(log10(first(Re_c_bpm)), log10(last(Re_c_bpm)), length=51)
Re_c0 = AcousticAnalogies.Re_c0(alphastar)
Re_ratio_jl = Re_c_jl./Re_c0
# G2_jl = AcousticAnalogies.G2.(Re_ratio_jl) .+ 171.04 .- 3.03*(alphastar*180/pi)
G2_jl = AcousticAnalogies.G2.(Re_ratio_jl) .+ AcousticAnalogies.G3.(alphastar)
lines!(ax1, Re_c_jl, G2_jl, color=colors[2], label="Julia - Ξ±^* = $(alphastar*180/pi)Β°")
xlims!(ax1, 10^4, 10^7)
ylims!(ax1, 125, 175)
axislegend(ax1, position=:lt)
save("19890016302-figure88.png", fig)
```

```@example bpm_lbl_vs_G2
using AcousticAnalogies: AcousticAnalogies
using ColorSchemes: colorschemes
using DelimitedFiles: DelimitedFiles
# using FLOWMath: linear
using GLMakie
# https://docs.makie.org/stable/examples/blocks/axis/index.html#logticks
struct IntegerTicks end
Makie.get_tickvalues(::IntegerTicks, vmin, vmax) = ceil(Int, vmin) : floor(Int, vmax)
colors = colorschemes[:tab10]
fig = Figure()
ax1 = fig[1, 1] = Axis(fig; xlabel="Re_c/Re_c0", ylabel="G2",
xscale=log10,
xminorticksvisible=true,
xminorticks=IntervalsBetween(9),
xticks=LogTicks(IntegerTicks()))
fname = joinpath(@__DIR__, "..", "..", "test", "bpm_data", "brooks_airfoil_self_noise_and_prediction_1989", "19890016302-figure89.csv")
bpm = DelimitedFiles.readdlm(fname, ',')
Re_ratio_bpm = bpm[:, 1]
G2_bpm = bpm[:, 2]
scatter!(ax1, Re_ratio_bpm, G2_bpm, color=colors[1], markersize=4, label="BPM")
Re_ratio_jl = 10.0.^range(-1, 1, length=51)
G2_jl = AcousticAnalogies.G2.(Re_ratio_jl)
lines!(ax1, Re_ratio_jl, G2_jl, color=colors[1], label="Julia")
xlims!(ax1, 0.1, 100)
ylims!(ax1, -45, 5)
axislegend(ax1, position=:lt)
save("19890016302-figure89.png", fig)
```

### Trailing Edge Bluntness-Vortex Shedding Tests
```@example bpm_figure95
using AcousticAnalogies: AcousticAnalogies
using AcousticMetrics: ExactThirdOctaveCenterBands
using DelimitedFiles: DelimitedFiles
using GLMakie
# https://docs.makie.org/stable/examples/blocks/axis/index.html#logticks
struct IntegerTicks end
Makie.get_tickvalues(::IntegerTicks, vmin, vmax) = ceil(Int, vmin) : floor(Int, vmax)
fname = joinpath(@__DIR__, "..", "..", "test", "bpm_data", "brooks_airfoil_self_noise_and_prediction_1989", "19890016302-figure95-0Psi.csv")
bpm = DelimitedFiles.readdlm(fname, ',')
h_over_deltastar_0Psi = bpm[:, 1]
St_3prime_peak_0Psi = bpm[:, 2]
fname = joinpath(@__DIR__, "..", "..", "test", "bpm_data", "brooks_airfoil_self_noise_and_prediction_1989", "19890016302-figure95-14Psi.csv")
bpm = DelimitedFiles.readdlm(fname, ',')
h_over_deltastar_14Psi = bpm[:, 1]
St_3prime_peak_14Psi = bpm[:, 2]
h_over_deltastar_jl = 10.0.^(range(-1, 1; length=51))
St_3prime_peak_0Psi_jl = AcousticAnalogies.St_3prime_peak.(h_over_deltastar_jl, 0.0*pi/180)
St_3prime_peak_14Psi_jl = AcousticAnalogies.St_3prime_peak.(h_over_deltastar_jl, 14.0*pi/180)
fig = Figure()
ax1 = fig[1, 1] = Axis(fig; xlabel="Thickness ratio, h/Ξ΄^*", ylabel="Peak Strouhal number, St'''_peak",
xscale=log10,
xminorticksvisible=true,
xminorticks=IntervalsBetween(9),
xticks=LogTicks(IntegerTicks()),
yscale=log10,
yminorticksvisible=true,
yminorticks=IntervalsBetween(9),
yticks=LogTicks(IntegerTicks()),
title="Figure 95")
scatter!(ax1, h_over_deltastar_0Psi, St_3prime_peak_0Psi; marker='o', label="Ξ¨ = 0Β°, BPM")
lines!(ax1, h_over_deltastar_jl, St_3prime_peak_0Psi_jl; label="Ξ¨ = 0Β°, Julia")
scatter!(ax1, h_over_deltastar_14Psi, St_3prime_peak_14Psi; marker='o', label="Ξ¨ = 14Β°, BPM")
lines!(ax1, h_over_deltastar_jl, St_3prime_peak_14Psi_jl; label="Ξ¨ = 14Β°, Julia")
xlims!(ax1, 0.2, 10.0)
ylims!(ax1, 0.05, 0.3)
axislegend(ax1, position=:rt)
save("19890016302-figure95.png", fig)
```

```@example bpm_figure96
using AcousticAnalogies: AcousticAnalogies
using AcousticMetrics: ExactThirdOctaveCenterBands
using DelimitedFiles: DelimitedFiles
using GLMakie
# https://docs.makie.org/stable/examples/blocks/axis/index.html#logticks
struct IntegerTicks end
Makie.get_tickvalues(::IntegerTicks, vmin, vmax) = ceil(Int, vmin) : floor(Int, vmax)
fname = joinpath(@__DIR__, "..", "..", "test", "bpm_data", "brooks_airfoil_self_noise_and_prediction_1989", "19890016302-figure96-0Psi.csv")
bpm = DelimitedFiles.readdlm(fname, ',')
h_over_deltastar_0Psi = bpm[:, 1]
G4_0Psi = bpm[:, 2]
fname = joinpath(@__DIR__, "..", "..", "test", "bpm_data", "brooks_airfoil_self_noise_and_prediction_1989", "19890016302-figure96-14Psi.csv")
bpm = DelimitedFiles.readdlm(fname, ',')
h_over_deltastar_14Psi = bpm[:, 1]
G4_14Psi = bpm[:, 2]
h_over_deltastar_jl = 10.0.^(range(-1, 1; length=51))
G4_0Psi_jl = AcousticAnalogies.G4.(h_over_deltastar_jl, 0.0*pi/180)
G4_14Psi_jl = AcousticAnalogies.G4.(h_over_deltastar_jl, 14.0*pi/180)
fig = Figure()
ax1 = fig[1, 1] = Axis(fig; xlabel="Thickness ratio, h/Ξ΄^*", ylabel="Scaled peak SPL_1/3, dB",
xscale=log10,
xminorticksvisible=true,
xminorticks=IntervalsBetween(9),
xticks=LogTicks(IntegerTicks()),
title="Figure 96")
scatter!(ax1, h_over_deltastar_0Psi, G4_0Psi; marker='o', label="Ξ¨ = 0Β°, BPM")
lines!(ax1, h_over_deltastar_jl, G4_0Psi_jl; label="Ξ¨ = 0Β°, Julia")
scatter!(ax1, h_over_deltastar_14Psi, G4_14Psi; marker='o', label="Ξ¨ = 14Β°, BPM")
lines!(ax1, h_over_deltastar_jl, G4_14Psi_jl; label="Ξ¨ = 14Β°, Julia")
xlims!(ax1, 0.1, 10.0)
ylims!(ax1, 110, 180)
axislegend(ax1, position=:lt)
save("19890016302-figure96.png", fig)
```

```@example bpm_figure97a
using AcousticAnalogies: AcousticAnalogies
using AcousticMetrics: ExactThirdOctaveCenterBands
using DelimitedFiles: DelimitedFiles
using GLMakie
# https://docs.makie.org/stable/examples/blocks/axis/index.html#logticks
struct IntegerTicks end
Makie.get_tickvalues(::IntegerTicks, vmin, vmax) = ceil(Int, vmin) : floor(Int, vmax)
fname = joinpath(@__DIR__, "..", "..", "test", "bpm_data", "brooks_airfoil_self_noise_and_prediction_1989", "19890016302-figure97-Psi14-h_over_deltastar0p25.csv")
bpm = DelimitedFiles.readdlm(fname, ',')
St_3prime_over_St_3prime_peak_0p25 = bpm[:, 1]
G5_14Psi_h_over_deltastar_avg0p25 = bpm[:, 2]
fname = joinpath(@__DIR__, "..", "..", "test", "bpm_data", "brooks_airfoil_self_noise_and_prediction_1989", "19890016302-figure97-Psi14-h_over_deltastar0p43.csv")
bpm = DelimitedFiles.readdlm(fname, ',')
St_3prime_over_St_3prime_peak_0p43 = bpm[:, 1]
G5_14Psi_h_over_deltastar_avg0p43 = bpm[:, 2]
fname = joinpath(@__DIR__, "..", "..", "test", "bpm_data", "brooks_airfoil_self_noise_and_prediction_1989", "19890016302-figure97-Psi14-h_over_deltastar0p50.csv")
bpm = DelimitedFiles.readdlm(fname, ',')
St_3prime_over_St_3prime_peak_0p50 = bpm[:, 1]
G5_14Psi_h_over_deltastar_avg0p50 = bpm[:, 2]
fname = joinpath(@__DIR__, "..", "..", "test", "bpm_data", "brooks_airfoil_self_noise_and_prediction_1989", "19890016302-figure97-Psi14-h_over_deltastar0p54.csv")
bpm = DelimitedFiles.readdlm(fname, ',')
St_3prime_over_St_3prime_peak_0p54 = bpm[:, 1]
G5_14Psi_h_over_deltastar_avg0p54 = bpm[:, 2]
fname = joinpath(@__DIR__, "..", "..", "test", "bpm_data", "brooks_airfoil_self_noise_and_prediction_1989", "19890016302-figure97-Psi14-h_over_deltastar0p62.csv")
bpm = DelimitedFiles.readdlm(fname, ',')
St_3prime_over_St_3prime_peak_0p62 = bpm[:, 1]
G5_14Psi_h_over_deltastar_avg0p62 = bpm[:, 2]
fname = joinpath(@__DIR__, "..", "..", "test", "bpm_data", "brooks_airfoil_self_noise_and_prediction_1989", "19890016302-figure97-Psi14-h_over_deltastar1p20.csv")
bpm = DelimitedFiles.readdlm(fname, ',')
St_3prime_over_St_3prime_peak_1p20 = bpm[:, 1]
G5_14Psi_h_over_deltastar_avg1p20 = bpm[:, 2]
St_3prime_over_St_3prime_peak_jl = 10.0.^(range(-1, 10; length=1001))
G5_14Psi_h_over_deltastar_avg0p25_jl = AcousticAnalogies.G5_Psi14.(0.25, St_3prime_over_St_3prime_peak_jl)
G5_14Psi_h_over_deltastar_avg0p43_jl = AcousticAnalogies.G5_Psi14.(0.43, St_3prime_over_St_3prime_peak_jl)
G5_14Psi_h_over_deltastar_avg0p50_jl = AcousticAnalogies.G5_Psi14.(0.50, St_3prime_over_St_3prime_peak_jl)
G5_14Psi_h_over_deltastar_avg0p54_jl = AcousticAnalogies.G5_Psi14.(0.54, St_3prime_over_St_3prime_peak_jl)
G5_14Psi_h_over_deltastar_avg0p62_jl = AcousticAnalogies.G5_Psi14.(0.62, St_3prime_over_St_3prime_peak_jl)
G5_14Psi_h_over_deltastar_avg1p20_jl = AcousticAnalogies.G5_Psi14.(1.20, St_3prime_over_St_3prime_peak_jl)
fig = Figure()
ax1 = fig[1, 1] = Axis(fig; xlabel="Strouhal ratio, St'''/St'''_peak", ylabel="G_5, Ξ¨=14Β°",
xscale=log10,
xminorticksvisible=true,
xminorticks=IntervalsBetween(9),
xticks=LogTicks(IntegerTicks()),
title="Figure 97a")
scatter!(ax1, St_3prime_over_St_3prime_peak_0p25, G5_14Psi_h_over_deltastar_avg0p25; label="h/Ξ΄^* = 0.25, BPM", marker='o')
lines!(ax1, St_3prime_over_St_3prime_peak_jl, G5_14Psi_h_over_deltastar_avg0p25_jl; label="h/Ξ΄^* = 0.25, Julia")
scatter!(ax1, St_3prime_over_St_3prime_peak_0p43, G5_14Psi_h_over_deltastar_avg0p43; label="h/Ξ΄^* = 0.43, BPM", marker='o')
lines!(ax1, St_3prime_over_St_3prime_peak_jl, G5_14Psi_h_over_deltastar_avg0p43_jl; label="h/Ξ΄^* = 0.43, Julia")
scatter!(ax1, St_3prime_over_St_3prime_peak_0p50, G5_14Psi_h_over_deltastar_avg0p50; label="h/Ξ΄^* = 0.50, BPM", marker='o')
lines!(ax1, St_3prime_over_St_3prime_peak_jl, G5_14Psi_h_over_deltastar_avg0p50_jl; label="h/Ξ΄^* = 0.50, Julia")
scatter!(ax1, St_3prime_over_St_3prime_peak_0p54, G5_14Psi_h_over_deltastar_avg0p54; label="h/Ξ΄^* = 0.54, BPM", marker='o')
lines!(ax1, St_3prime_over_St_3prime_peak_jl, G5_14Psi_h_over_deltastar_avg0p54_jl; label="h/Ξ΄^* = 0.54, Julia")
scatter!(ax1, St_3prime_over_St_3prime_peak_0p62, G5_14Psi_h_over_deltastar_avg0p62; label="h/Ξ΄^* = 0.62, BPM", marker='o')
lines!(ax1, St_3prime_over_St_3prime_peak_jl, G5_14Psi_h_over_deltastar_avg0p62_jl; label="h/Ξ΄^* = 0.62, Julia")
scatter!(ax1, St_3prime_over_St_3prime_peak_1p20, G5_14Psi_h_over_deltastar_avg1p20; label="h/Ξ΄^* = 1.20, BPM", marker='o')
lines!(ax1, St_3prime_over_St_3prime_peak_jl, G5_14Psi_h_over_deltastar_avg1p20_jl; label="h/Ξ΄^* = 1.20, Julia")
xlims!(ax1, 0.1, 10.0)
ylims!(ax1, -30, 10)
axislegend(ax1, position=:rt)
save("19890016302-figure97a.png", fig)
```

```@example bpm_figure97b
using AcousticAnalogies: AcousticAnalogies
using AcousticMetrics: ExactThirdOctaveCenterBands
using DelimitedFiles: DelimitedFiles
using GLMakie
# https://docs.makie.org/stable/examples/blocks/axis/index.html#logticks
struct IntegerTicks end
Makie.get_tickvalues(::IntegerTicks, vmin, vmax) = ceil(Int, vmin) : floor(Int, vmax)
fname = joinpath(@__DIR__, "..", "..", "test", "bpm_data", "brooks_airfoil_self_noise_and_prediction_1989", "19890016302-figure97-Psi0-h_over_deltastar0p25.csv")
bpm = DelimitedFiles.readdlm(fname, ',')
St_3prime_over_St_3prime_peak_0p25 = bpm[:, 1]
G5_0Psi_h_over_deltastar_avg0p25 = bpm[:, 2]
fname = joinpath(@__DIR__, "..", "..", "test", "bpm_data", "brooks_airfoil_self_noise_and_prediction_1989", "19890016302-figure97-Psi0-h_over_deltastar0p43.csv")
bpm = DelimitedFiles.readdlm(fname, ',')
St_3prime_over_St_3prime_peak_0p43 = bpm[:, 1]
G5_0Psi_h_over_deltastar_avg0p43 = bpm[:, 2]
fname = joinpath(@__DIR__, "..", "..", "test", "bpm_data", "brooks_airfoil_self_noise_and_prediction_1989", "19890016302-figure97-Psi0-h_over_deltastar0p50.csv")
bpm = DelimitedFiles.readdlm(fname, ',')
St_3prime_over_St_3prime_peak_0p50 = bpm[:, 1]
G5_0Psi_h_over_deltastar_avg0p50 = bpm[:, 2]
fname = joinpath(@__DIR__, "..", "..", "test", "bpm_data", "brooks_airfoil_self_noise_and_prediction_1989", "19890016302-figure97-Psi0-h_over_deltastar0p54.csv")
bpm = DelimitedFiles.readdlm(fname, ',')
St_3prime_over_St_3prime_peak_0p54 = bpm[:, 1]
G5_0Psi_h_over_deltastar_avg0p54 = bpm[:, 2]
# fname = joinpath(@__DIR__, "..", "..", "test", "bpm_data", "brooks_airfoil_self_noise_and_prediction_1989", "19890016302-figure97-Psi0-h_over_deltastar0p62.csv")
# bpm = DelimitedFiles.readdlm(fname, ',')
# St_3prime_over_St_3prime_peak_0p62 = bpm[:, 1]
# G5_0Psi_h_over_deltastar_avg0p62 = bpm[:, 2]
fname = joinpath(@__DIR__, "..", "..", "test", "bpm_data", "brooks_airfoil_self_noise_and_prediction_1989", "19890016302-figure97-Psi0-h_over_deltastar1p20.csv")
bpm = DelimitedFiles.readdlm(fname, ',')
St_3prime_over_St_3prime_peak_1p20 = bpm[:, 1]
G5_0Psi_h_over_deltastar_avg1p20 = bpm[:, 2]
St_3prime_over_St_3prime_peak_jl = 10.0.^(range(-1, 10; length=1001))
G5_0Psi_h_over_deltastar_avg0p25_jl = AcousticAnalogies.G5_Psi0.(0.25, St_3prime_over_St_3prime_peak_jl)
G5_0Psi_h_over_deltastar_avg0p43_jl = AcousticAnalogies.G5_Psi0.(0.43, St_3prime_over_St_3prime_peak_jl)
G5_0Psi_h_over_deltastar_avg0p50_jl = AcousticAnalogies.G5_Psi0.(0.50, St_3prime_over_St_3prime_peak_jl)
G5_0Psi_h_over_deltastar_avg0p54_jl = AcousticAnalogies.G5_Psi0.(0.54, St_3prime_over_St_3prime_peak_jl)
# G5_0Psi_h_over_deltastar_avg0p62_jl = AcousticAnalogies.G5_Psi0.(0.62, St_3prime_over_St_3prime_peak_jl)
G5_0Psi_h_over_deltastar_avg1p20_jl = AcousticAnalogies.G5_Psi0.(1.20, St_3prime_over_St_3prime_peak_jl)
fig = Figure()
ax1 = fig[1, 1] = Axis(fig; xlabel="Strouhal ratio, St'''/St'''_peak", ylabel="G_5, Ξ¨=0Β°",
xscale=log10,
xminorticksvisible=true,
xminorticks=IntervalsBetween(9),
xticks=LogTicks(IntegerTicks()),
title="Figure 97b")
scatter!(ax1, St_3prime_over_St_3prime_peak_0p25, G5_0Psi_h_over_deltastar_avg0p25; label="h/Ξ΄^* = 0.25, BPM", marker='o')
lines!(ax1, St_3prime_over_St_3prime_peak_jl, G5_0Psi_h_over_deltastar_avg0p25_jl; label="h/Ξ΄^* = 0.25, Julia")
scatter!(ax1, St_3prime_over_St_3prime_peak_0p43, G5_0Psi_h_over_deltastar_avg0p43; label="h/Ξ΄^* = 0.43, BPM", marker='o')
lines!(ax1, St_3prime_over_St_3prime_peak_jl, G5_0Psi_h_over_deltastar_avg0p43_jl; label="h/Ξ΄^* = 0.43, Julia")
scatter!(ax1, St_3prime_over_St_3prime_peak_0p50, G5_0Psi_h_over_deltastar_avg0p50; label="h/Ξ΄^* = 0.50, BPM", marker='o')
lines!(ax1, St_3prime_over_St_3prime_peak_jl, G5_0Psi_h_over_deltastar_avg0p50_jl; label="h/Ξ΄^* = 0.50, Julia")
scatter!(ax1, St_3prime_over_St_3prime_peak_0p54, G5_0Psi_h_over_deltastar_avg0p54; label="h/Ξ΄^* = 0.54, BPM", marker='o')
lines!(ax1, St_3prime_over_St_3prime_peak_jl, G5_0Psi_h_over_deltastar_avg0p54_jl; label="h/Ξ΄^* = 0.54, Julia")
# scatter!(ax1, St_3prime_over_St_3prime_peak_0p62, G5_0Psi_h_over_deltastar_avg0p62; label="h/Ξ΄^* = 0.62, BPM", marker='o')
# lines!(ax1, St_3prime_over_St_3prime_peak_jl, G5_0Psi_h_over_deltastar_avg0p62_jl; label="h/Ξ΄^* = 0.62, Julia")
scatter!(ax1, St_3prime_over_St_3prime_peak_1p20, G5_0Psi_h_over_deltastar_avg1p20; label="h/Ξ΄^* = 1.20, BPM", marker='o')
lines!(ax1, St_3prime_over_St_3prime_peak_jl, G5_0Psi_h_over_deltastar_avg1p20_jl; label="h/Ξ΄^* = 1.20, Julia")
xlims!(ax1, 0.1, 10.0)
ylims!(ax1, -30, 10)
axislegend(ax1, position=:rt)
save("19890016302-figure97b.png", fig)
```

| AcousticAnalogies | https://github.com/OpenMDAO/AcousticAnalogies.jl.git |
|
[
"Apache-2.0"
] | 0.8.1 | c14d0b2e7f19374017a2b5b6dfe48c5723c791ae | docs | 74299 | ```@meta
CurrentModule = AADocs
```
# Software Quality Assurance, Cont.
## Brooks, Pope, and Marcolini Airfoil Self-Noise Tests, Cont.
### Airfoil Self-Noise Predictions
```@example bpm_figure11_a
using AcousticAnalogies: AcousticAnalogies
using AcousticMetrics: ExactThirdOctaveCenterBands
using DelimitedFiles: DelimitedFiles
using GLMakie
# https://docs.makie.org/stable/examples/blocks/axis/index.html#logticks
struct IntegerTicks end
Makie.get_tickvalues(::IntegerTicks, vmin, vmax) = ceil(Int, vmin) : floor(Int, vmax)
fname = joinpath(@__DIR__, "..", "..", "test", "bpm_data", "brooks_airfoil_self_noise_and_prediction_1989", "19890016302-figure11-a-TBL-TE-suction.csv")
bpm = DelimitedFiles.readdlm(fname, ',')
f_s = bpm[:, 1]
SPL_s = bpm[:, 2]
# At zero angle of attack the pressure and suction side predictions are the same.
f_p = f_s
SPL_p = SPL_s
nu = 1.4529e-5 # kinematic viscosity, m^2/s
L = 45.72e-2 # span in meters
chord = 30.48e-2 # chord in meters
U = 71.3 # freestream velocity in m/s
M = 0.209 # Mach number, corresponds to U = 71.3 m/s in BPM report
r_e = 1.22 # radiation distance in meters
ΞΈ_e = 90*pi/180
Ξ¦_e = 90*pi/180
M_c = 0.8*M
alphastar = 0.0
bl = AcousticAnalogies.TrippedN0012BoundaryLayer()
f_jl, SPL_s_jl, SPL_p_jl, SPL_alpha_jl = AcousticAnalogies.calculate_bpm_test(nu, L, chord, U, M, r_e, ΞΈ_e, Ξ¦_e, alphastar, bl)
fig = Figure()
ax1 = fig[1, 1] = Axis(fig; xlabel="frequency, kHz", ylabel="SPL_1/3, dB",
xscale=log10,
xminorticksvisible=true,
xminorticks=IntervalsBetween(9),
xticks=LogTicks(IntegerTicks()),
title="Figure 11 (a) - U = $U m/s")
scatter!(ax1, f_s, SPL_s; marker='o', label="TBL-TE suction side, BPM")
lines!(ax1, f_jl./1e3, SPL_s_jl; label="TBL-TE suction side, Julia")
scatter!(ax1, f_p, SPL_p; marker='β‘', label="TBL-TE pressure side, BPM")
lines!(ax1, f_jl./1e3, SPL_p_jl; label="TBL-TE pressure side, Julia")
xlims!(ax1, 0.2, 20.0)
ylims!(ax1, 40, 80)
axislegend(ax1, position=:rt)
save("19890016302-figure11-a.png", fig)
```

```@example bpm_figure11_b
using AcousticAnalogies: AcousticAnalogies
using AcousticMetrics: ExactThirdOctaveCenterBands
using DelimitedFiles: DelimitedFiles
using GLMakie
# https://docs.makie.org/stable/examples/blocks/axis/index.html#logticks
struct IntegerTicks end
Makie.get_tickvalues(::IntegerTicks, vmin, vmax) = ceil(Int, vmin) : floor(Int, vmax)
fname = joinpath(@__DIR__, "..", "..", "test", "bpm_data", "brooks_airfoil_self_noise_and_prediction_1989", "19890016302-figure11-b-TBL-TE-suction.csv")
bpm = DelimitedFiles.readdlm(fname, ',')
f_s = bpm[:, 1]
SPL_s = bpm[:, 2]
# At zero angle of attack the pressure and suction side predictions are the same.
f_p = f_s
SPL_p = SPL_s
nu = 1.4529e-5 # kinematic viscosity, m^2/s
L = 45.72e-2 # span in meters
chord = 30.48e-2 # chord in meters
U = 55.5 # freestream velocity in m/s
# M = 0.163 # Mach number, corresponds to U = 55.5 m/s in BPM report
M = U/340.46
r_e = 1.22 # radiation distance in meters
ΞΈ_e = 90*pi/180
Ξ¦_e = 90*pi/180
M_c = 0.8*M
D_h = AcousticAnalogies.Dbar_h(ΞΈ_e, Ξ¦_e, M, M_c)
alphastar = 0.0
bl = AcousticAnalogies.TrippedN0012BoundaryLayer()
f_jl, SPL_s_jl, SPL_p_jl, SPL_alpha_jl = AcousticAnalogies.calculate_bpm_test(nu, L, chord, U, M, r_e, ΞΈ_e, Ξ¦_e, alphastar, bl)
fig = Figure()
ax1 = fig[1, 1] = Axis(fig; xlabel="frequency, kHz", ylabel="SPL_1/3, dB",
xscale=log10,
xminorticksvisible=true,
xminorticks=IntervalsBetween(9),
xticks=LogTicks(IntegerTicks()),
title="Figure 11 (b) - U = $U m/s")
scatter!(ax1, f_s, SPL_s; marker='o', label="TBL-TE suction side, BPM")
lines!(ax1, f_jl./1e3, SPL_s_jl; label="TBL-TE suction side, Julia")
scatter!(ax1, f_p, SPL_p; marker='β‘', label="TBL-TE pressure side, BPM")
lines!(ax1, f_jl./1e3, SPL_p_jl; label="TBL-TE pressure side, Julia")
xlims!(ax1, 0.2, 20.0)
ylims!(ax1, 30, 70)
axislegend(ax1, position=:rt)
save("19890016302-figure11-b.png", fig)
```

```@example bpm_figure11_c
using AcousticAnalogies: AcousticAnalogies
using AcousticMetrics: ExactThirdOctaveCenterBands
using DelimitedFiles: DelimitedFiles
using GLMakie
# https://docs.makie.org/stable/examples/blocks/axis/index.html#logticks
struct IntegerTicks end
Makie.get_tickvalues(::IntegerTicks, vmin, vmax) = ceil(Int, vmin) : floor(Int, vmax)
fname = joinpath(@__DIR__, "..", "..", "test", "bpm_data", "brooks_airfoil_self_noise_and_prediction_1989", "19890016302-figure11-c-TBL-TE-suction.csv")
bpm = DelimitedFiles.readdlm(fname, ',')
f_s = bpm[:, 1]
SPL_s = bpm[:, 2]
# At zero angle of attack the pressure and suction side predictions are the same.
f_p = f_s
SPL_p = SPL_s
nu = 1.4529e-5 # kinematic viscosity, m^2/s
L = 45.72e-2 # span in meters
chord = 30.48e-2 # chord in meters
U = 39.6 # freestream velocity in m/s
# M = 0.116 # Mach number, corresponds to U = 36.6 m/s in BPM report
M = U/340.46
r_e = 1.22 # radiation distance in meters
ΞΈ_e = 90*pi/180
Ξ¦_e = 90*pi/180
M_c = 0.8*M
D_h = AcousticAnalogies.Dbar_h(ΞΈ_e, Ξ¦_e, M, M_c)
alphastar = 0.0
bl = AcousticAnalogies.TrippedN0012BoundaryLayer()
f_jl, SPL_s_jl, SPL_p_jl, SPL_alpha_jl = AcousticAnalogies.calculate_bpm_test(nu, L, chord, U, M, r_e, ΞΈ_e, Ξ¦_e, alphastar, bl)
fig = Figure()
ax1 = fig[1, 1] = Axis(fig; xlabel="frequency, kHz", ylabel="SPL_1/3, dB",
xscale=log10,
xminorticksvisible=true,
xminorticks=IntervalsBetween(9),
xticks=LogTicks(IntegerTicks()),
title="Figure 11 (c) - U = $U m/s")
scatter!(ax1, f_s, SPL_s; marker='o', label="TBL-TE suction side, BPM")
lines!(ax1, f_jl./1e3, SPL_s_jl; label="TBL-TE suction side, Julia")
scatter!(ax1, f_p, SPL_p; marker='β‘', label="TBL-TE pressure side, BPM")
lines!(ax1, f_jl./1e3, SPL_p_jl; label="TBL-TE pressure side, Julia")
xlims!(ax1, 0.2, 20.0)
ylims!(ax1, 20, 60)
axislegend(ax1, position=:rt)
save("19890016302-figure11-c.png", fig)
```

```@example bpm_figure11_d
using AcousticAnalogies: AcousticAnalogies
using AcousticMetrics: ExactThirdOctaveCenterBands
using DelimitedFiles: DelimitedFiles
using GLMakie
# https://docs.makie.org/stable/examples/blocks/axis/index.html#logticks
struct IntegerTicks end
Makie.get_tickvalues(::IntegerTicks, vmin, vmax) = ceil(Int, vmin) : floor(Int, vmax)
fname = joinpath(@__DIR__, "..", "..", "test", "bpm_data", "brooks_airfoil_self_noise_and_prediction_1989", "19890016302-figure11-d-TBL-TE-suction.csv")
bpm = DelimitedFiles.readdlm(fname, ',')
f_s = bpm[:, 1]
SPL_s = bpm[:, 2]
# At zero angle of attack the pressure and suction side predictions are the same.
f_p = f_s
SPL_p = SPL_s
nu = 1.4529e-5 # kinematic viscosity, m^2/s
L = 45.72e-2 # span in meters
chord = 30.48e-2 # chord in meters
U = 31.7 # freestream velocity in m/s
M = 0.093 # Mach number, corresponds to U = 31.7 m/s in BPM report
r_e = 1.22 # radiation distance in meters
ΞΈ_e = 90*pi/180
Ξ¦_e = 90*pi/180
M_c = 0.8*M
D_h = AcousticAnalogies.Dbar_h(ΞΈ_e, Ξ¦_e, M, M_c)
alphastar = 0.0
bl = AcousticAnalogies.TrippedN0012BoundaryLayer()
f_jl, SPL_s_jl, SPL_p_jl, SPL_alpha_jl = AcousticAnalogies.calculate_bpm_test(nu, L, chord, U, M, r_e, ΞΈ_e, Ξ¦_e, alphastar, bl)
fig = Figure()
ax1 = fig[1, 1] = Axis(fig; xlabel="frequency, kHz", ylabel="SPL_1/3, dB",
xscale=log10,
xminorticksvisible=true,
xminorticks=IntervalsBetween(9),
xticks=LogTicks(IntegerTicks()),
title="Figure 11 (d) - U = $U m/s")
scatter!(ax1, f_s, SPL_s; marker='o', label="TBL-TE suction side, BPM")
lines!(ax1, f_jl./1e3, SPL_s_jl; label="TBL-TE suction side, Julia")
scatter!(ax1, f_p, SPL_p; marker='β‘', label="TBL-TE pressure side, BPM")
lines!(ax1, f_jl./1e3, SPL_p_jl; label="TBL-TE pressure side, Julia")
xlims!(ax1, 0.2, 20.0)
ylims!(ax1, 20, 60)
axislegend(ax1, position=:rt)
save("19890016302-figure11-d.png", fig)
```

```@example bpm_figure12_a
using AcousticAnalogies: AcousticAnalogies
using AcousticMetrics: ExactThirdOctaveCenterBands
using DelimitedFiles: DelimitedFiles
using GLMakie
# https://docs.makie.org/stable/examples/blocks/axis/index.html#logticks
struct IntegerTicks end
Makie.get_tickvalues(::IntegerTicks, vmin, vmax) = ceil(Int, vmin) : floor(Int, vmax)
fname = joinpath(@__DIR__, "..", "..", "test", "bpm_data", "brooks_airfoil_self_noise_and_prediction_1989", "19890016302-figure12-U71.3-TBL-TE-suction.csv")
bpm = DelimitedFiles.readdlm(fname, ',')
f_s = bpm[:, 1]
SPL_s = bpm[:, 2]
fname = joinpath(@__DIR__, "..", "..", "test", "bpm_data", "brooks_airfoil_self_noise_and_prediction_1989", "19890016302-figure12-U71.3-TBL-TE-pressure.csv")
bpm = DelimitedFiles.readdlm(fname, ',')
f_p = bpm[:, 1]
SPL_p = bpm[:, 2]
fname = joinpath(@__DIR__, "..", "..", "test", "bpm_data", "brooks_airfoil_self_noise_and_prediction_1989", "19890016302-figure12-U71.3-separation.csv")
bpm = DelimitedFiles.readdlm(fname, ',')
f_alpha = bpm[:, 1]
SPL_alpha = bpm[:, 2]
nu = 1.4529e-5 # kinematic viscosity, m^2/s
L = 45.72e-2 # span in meters
chord = 30.48e-2 # chord in meters
U = 71.3 # freestream velocity in m/s
M = 0.209 # Mach number, corresponds to U = 71.3 m/s in BPM report
r_e = 1.22 # radiation distance in meters
ΞΈ_e = 90*pi/180
Ξ¦_e = 90*pi/180
M_c = 0.8*M
alphastar = 1.5*pi/180
bl = AcousticAnalogies.TrippedN0012BoundaryLayer()
f_jl, SPL_s_jl, SPL_p_jl, SPL_alpha_jl = AcousticAnalogies.calculate_bpm_test(nu, L, chord, U, M, r_e, ΞΈ_e, Ξ¦_e, alphastar, bl)
fig = Figure()
ax1 = fig[1, 1] = Axis(fig; xlabel="frequency, kHz", ylabel="SPL_1/3, dB",
xscale=log10,
xminorticksvisible=true,
xminorticks=IntervalsBetween(9),
xticks=LogTicks(IntegerTicks()),
title="Figure 12 (a) - U = $U m/s")
scatter!(ax1, f_s, SPL_s; marker='o', label="TBL-TE suction side, BPM")
lines!(ax1, f_jl./1e3, SPL_s_jl; label="TBL-TE suction side, Julia")
scatter!(ax1, f_p, SPL_p; marker='β‘', label="TBL-TE pressure side, BPM")
lines!(ax1, f_jl./1e3, SPL_p_jl; label="TBL-TE pressure side, Julia")
scatter!(ax1, f_alpha, SPL_alpha; marker='β³', label="separation, BPM")
lines!(ax1, f_jl./1e3, SPL_alpha_jl; label="separation, Julia")
xlims!(ax1, 0.2, 20.0)
ylims!(ax1, 40, 80)
axislegend(ax1, position=:rt)
save("19890016302-figure12-a.png", fig)
```

```@example bpm_figure12_b
using AcousticAnalogies: AcousticAnalogies
using AcousticMetrics: ExactThirdOctaveCenterBands
using DelimitedFiles: DelimitedFiles
using GLMakie
# https://docs.makie.org/stable/examples/blocks/axis/index.html#logticks
struct IntegerTicks end
Makie.get_tickvalues(::IntegerTicks, vmin, vmax) = ceil(Int, vmin) : floor(Int, vmax)
fname = joinpath(@__DIR__, "..", "..", "test", "bpm_data", "brooks_airfoil_self_noise_and_prediction_1989", "19890016302-figure12-b-TBL-TE-suction.csv")
bpm = DelimitedFiles.readdlm(fname, ',')
f_s = bpm[:, 1]
SPL_s = bpm[:, 2]
fname = joinpath(@__DIR__, "..", "..", "test", "bpm_data", "brooks_airfoil_self_noise_and_prediction_1989", "19890016302-figure12-b-TBL-TE-pressure.csv")
bpm = DelimitedFiles.readdlm(fname, ',')
f_p = bpm[:, 1]
SPL_p = bpm[:, 2]
fname = joinpath(@__DIR__, "..", "..", "test", "bpm_data", "brooks_airfoil_self_noise_and_prediction_1989", "19890016302-figure12-b-TBL-TE-separation.csv")
bpm = DelimitedFiles.readdlm(fname, ',')
f_alpha = bpm[:, 1]
SPL_alpha = bpm[:, 2]
nu = 1.4529e-5 # kinematic viscosity, m^2/s
L = 45.72e-2 # span in meters
chord = 30.48e-2 # chord in meters
U = 39.6 # freestream velocity in m/s
M = 0.116 # Mach number, corresponds to U = 36.6 m/s in BPM report
r_e = 1.22 # radiation distance in meters
ΞΈ_e = 90*pi/180
Ξ¦_e = 90*pi/180
M_c = 0.8*M
alphastar = 1.5*pi/180
bl = AcousticAnalogies.TrippedN0012BoundaryLayer()
f_jl, SPL_s_jl, SPL_p_jl, SPL_alpha_jl = AcousticAnalogies.calculate_bpm_test(nu, L, chord, U, M, r_e, ΞΈ_e, Ξ¦_e, alphastar, bl)
fig = Figure()
ax1 = fig[1, 1] = Axis(fig; xlabel="frequency, kHz", ylabel="SPL_1/3, dB",
xscale=log10,
xminorticksvisible=true,
xminorticks=IntervalsBetween(9),
xticks=LogTicks(IntegerTicks()),
title="Figure 12 (b) - U = $U m/s")
scatter!(ax1, f_s, SPL_s; marker='o', label="TBL-TE suction side, BPM")
lines!(ax1, f_jl./1e3, SPL_s_jl; label="TBL-TE suction side, Julia")
scatter!(ax1, f_p, SPL_p; marker='β‘', label="TBL-TE pressure side, BPM")
lines!(ax1, f_jl./1e3, SPL_p_jl; label="TBL-TE pressure side, Julia")
scatter!(ax1, f_alpha, SPL_alpha; marker='β³', label="separation, BPM")
lines!(ax1, f_jl./1e3, SPL_alpha_jl; label="separation, Julia")
xlims!(ax1, 0.2, 20.0)
ylims!(ax1, 20, 60)
axislegend(ax1, position=:rt)
save("19890016302-figure12-b.png", fig)
```

```@example bpm_figure26_a
using AcousticAnalogies: AcousticAnalogies
using AcousticMetrics: ExactThirdOctaveCenterBands
using DelimitedFiles: DelimitedFiles
using GLMakie
# https://docs.makie.org/stable/examples/blocks/axis/index.html#logticks
struct IntegerTicks end
Makie.get_tickvalues(::IntegerTicks, vmin, vmax) = ceil(Int, vmin) : floor(Int, vmax)
fname = joinpath(@__DIR__, "..", "..", "test", "bpm_data", "brooks_airfoil_self_noise_and_prediction_1989", "19890016302-figure26-a-TBL-TE-suction.csv")
bpm = DelimitedFiles.readdlm(fname, ',')
f_s = bpm[:, 1]
SPL_s = bpm[:, 2]
# Pressure and suction sides are the same for zero angle of attack.
f_p = f_s
SPL_p = SPL_s
nu = 1.4529e-5 # kinematic viscosity, m^2/s
L = 45.72e-2 # span in meters
chord = 10.16e-2 # chord in meters
U = 71.3 # freestream velocity in m/s
M = 0.209 # Mach number, corresponds to U = 71.3 m/s in BPM report
r_e = 1.22 # radiation distance in meters
ΞΈ_e = 90*pi/180
Ξ¦_e = 90*pi/180
M_c = 0.8*M
alphastar = 0.0*pi/180
bl = AcousticAnalogies.TrippedN0012BoundaryLayer()
f_jl, SPL_s_jl, SPL_p_jl, SPL_alpha_jl = AcousticAnalogies.calculate_bpm_test(nu, L, chord, U, M, r_e, ΞΈ_e, Ξ¦_e, alphastar, bl)
fig = Figure()
ax1 = fig[1, 1] = Axis(fig; xlabel="frequency, kHz", ylabel="SPL_1/3, dB",
xscale=log10,
xminorticksvisible=true,
xminorticks=IntervalsBetween(9),
xticks=LogTicks(IntegerTicks()),
title="Figure 26 (a) - U = $U m/s")
scatter!(ax1, f_s, SPL_s; marker='o', label="TBL-TE suction side, BPM")
lines!(ax1, f_jl./1e3, SPL_s_jl; label="TBL-TE suction side, Julia")
scatter!(ax1, f_p, SPL_p; marker='β‘', label="TBL-TE pressure side, BPM")
lines!(ax1, f_jl./1e3, SPL_p_jl; label="TBL-TE pressure side, Julia")
# scatter!(ax1, f_alpha, SPL_alpha; marker='β³', label="separation, BPM")
lines!(ax1, f_jl./1e3, SPL_alpha_jl; label="separation, Julia")
xlims!(ax1, 0.2, 20.0)
ylims!(ax1, 40, 80)
axislegend(ax1, position=:rt)
save("19890016302-figure26-a.png", fig)
```

```@example bpm_figure26_b
using AcousticAnalogies: AcousticAnalogies
using AcousticMetrics: ExactThirdOctaveCenterBands
using DelimitedFiles: DelimitedFiles
using GLMakie
# https://docs.makie.org/stable/examples/blocks/axis/index.html#logticks
struct IntegerTicks end
Makie.get_tickvalues(::IntegerTicks, vmin, vmax) = ceil(Int, vmin) : floor(Int, vmax)
fname = joinpath(@__DIR__, "..", "..", "test", "bpm_data", "brooks_airfoil_self_noise_and_prediction_1989", "19890016302-figure26-b-TBL-TE-suction.csv")
bpm = DelimitedFiles.readdlm(fname, ',')
f_s = bpm[:, 1]
SPL_s = bpm[:, 2]
# Pressure and suction sides are the same for zero angle of attack.
f_p = f_s
SPL_p = SPL_s
nu = 1.4529e-5 # kinematic viscosity, m^2/s
L = 45.72e-2 # span in meters
chord = 10.16e-2 # chord in meters
U = 55.5 # freestream velocity in m/s
M = 0.163 # Mach number, corresponds to U = 55.5 m/s in BPM report
r_e = 1.22 # radiation distance in meters
ΞΈ_e = 90*pi/180
Ξ¦_e = 90*pi/180
M_c = 0.8*M
alphastar = 0.0*pi/180
bl = AcousticAnalogies.TrippedN0012BoundaryLayer()
f_jl, SPL_s_jl, SPL_p_jl, SPL_alpha_jl = AcousticAnalogies.calculate_bpm_test(nu, L, chord, U, M, r_e, ΞΈ_e, Ξ¦_e, alphastar, bl)
fig = Figure()
ax1 = fig[1, 1] = Axis(fig; xlabel="frequency, kHz", ylabel="SPL_1/3, dB",
xscale=log10,
xminorticksvisible=true,
xminorticks=IntervalsBetween(9),
xticks=LogTicks(IntegerTicks()),
title="Figure 26 (b) - U = $U m/s")
scatter!(ax1, f_s, SPL_s; marker='o', label="TBL-TE suction side, BPM")
lines!(ax1, f_jl./1e3, SPL_s_jl; label="TBL-TE suction side, Julia")
scatter!(ax1, f_p, SPL_p; marker='β‘', label="TBL-TE pressure side, BPM")
lines!(ax1, f_jl./1e3, SPL_p_jl; label="TBL-TE pressure side, Julia")
# scatter!(ax1, f_alpha, SPL_alpha; marker='β³', label="separation, BPM")
lines!(ax1, f_jl./1e3, SPL_alpha_jl; label="separation, Julia")
xlims!(ax1, 0.2, 20.0)
ylims!(ax1, 30, 70)
axislegend(ax1, position=:rt)
save("19890016302-figure26-b.png", fig)
```

```@example bpm_figure26_c
using AcousticAnalogies: AcousticAnalogies
using AcousticMetrics: ExactThirdOctaveCenterBands
using DelimitedFiles: DelimitedFiles
using GLMakie
# https://docs.makie.org/stable/examples/blocks/axis/index.html#logticks
struct IntegerTicks end
Makie.get_tickvalues(::IntegerTicks, vmin, vmax) = ceil(Int, vmin) : floor(Int, vmax)
fname = joinpath(@__DIR__, "..", "..", "test", "bpm_data", "brooks_airfoil_self_noise_and_prediction_1989", "19890016302-figure26-c-TBL-TE-suction.csv")
bpm = DelimitedFiles.readdlm(fname, ',')
f_s = bpm[:, 1]
SPL_s = bpm[:, 2]
# Pressure and suction sides are the same for zero angle of attack.
f_p = f_s
SPL_p = SPL_s
nu = 1.4529e-5 # kinematic viscosity, m^2/s
L = 45.72e-2 # span in meters
chord = 10.16e-2 # chord in meters
U = 39.6 # freestream velocity in m/s
M = 0.116 # Mach number, corresponds to U = 39.6 m/s in BPM report
r_e = 1.22 # radiation distance in meters
ΞΈ_e = 90*pi/180
Ξ¦_e = 90*pi/180
M_c = 0.8*M
alphastar = 0.0*pi/180
bl = AcousticAnalogies.TrippedN0012BoundaryLayer()
f_jl, SPL_s_jl, SPL_p_jl, SPL_alpha_jl = AcousticAnalogies.calculate_bpm_test(nu, L, chord, U, M, r_e, ΞΈ_e, Ξ¦_e, alphastar, bl)
fig = Figure()
ax1 = fig[1, 1] = Axis(fig; xlabel="frequency, kHz", ylabel="SPL_1/3, dB",
xscale=log10,
xminorticksvisible=true,
xminorticks=IntervalsBetween(9),
xticks=LogTicks(IntegerTicks()),
title="Figure 26 (c) - U = $U m/s")
scatter!(ax1, f_s, SPL_s; marker='o', label="TBL-TE suction side, BPM")
lines!(ax1, f_jl./1e3, SPL_s_jl; label="TBL-TE suction side, Julia")
scatter!(ax1, f_p, SPL_p; marker='β‘', label="TBL-TE pressure side, BPM")
lines!(ax1, f_jl./1e3, SPL_p_jl; label="TBL-TE pressure side, Julia")
xlims!(ax1, 0.2, 20.0)
ylims!(ax1, 20, 60)
axislegend(ax1, position=:rt)
save("19890016302-figure26-c.png", fig)
```

```@example bpm_figure26_d
using AcousticAnalogies: AcousticAnalogies
using AcousticMetrics: ExactThirdOctaveCenterBands
using DelimitedFiles: DelimitedFiles
using GLMakie
# https://docs.makie.org/stable/examples/blocks/axis/index.html#logticks
struct IntegerTicks end
Makie.get_tickvalues(::IntegerTicks, vmin, vmax) = ceil(Int, vmin) : floor(Int, vmax)
fname = joinpath(@__DIR__, "..", "..", "test", "bpm_data", "brooks_airfoil_self_noise_and_prediction_1989", "19890016302-figure26-d-TBL-TE-suction.csv")
bpm = DelimitedFiles.readdlm(fname, ',')
f_s = bpm[:, 1]
SPL_s = bpm[:, 2]
# Pressure and suction sides are the same for zero angle of attack.
f_p = f_s
SPL_p = SPL_s
nu = 1.4529e-5 # kinematic viscosity, m^2/s
L = 45.72e-2 # span in meters
chord = 10.16e-2 # chord in meters
U = 31.7 # freestream velocity in m/s
M = 0.093 # Mach number, corresponds to U = 31.7 m/s in BPM report
r_e = 1.22 # radiation distance in meters
ΞΈ_e = 90*pi/180
Ξ¦_e = 90*pi/180
M_c = 0.8*M
alphastar = 0.0*pi/180
bl = AcousticAnalogies.TrippedN0012BoundaryLayer()
f_jl, SPL_s_jl, SPL_p_jl, SPL_alpha_jl = AcousticAnalogies.calculate_bpm_test(nu, L, chord, U, M, r_e, ΞΈ_e, Ξ¦_e, alphastar, bl)
fig = Figure()
ax1 = fig[1, 1] = Axis(fig; xlabel="frequency, kHz", ylabel="SPL_1/3, dB",
xscale=log10,
xminorticksvisible=true,
xminorticks=IntervalsBetween(9),
xticks=LogTicks(IntegerTicks()),
title="Figure 26 (d) - U = $U m/s")
scatter!(ax1, f_s, SPL_s; marker='o', label="TBL-TE suction side, BPM")
lines!(ax1, f_jl./1e3, SPL_s_jl; label="TBL-TE suction side, Julia")
scatter!(ax1, f_p, SPL_p; marker='β‘', label="TBL-TE pressure side, BPM")
lines!(ax1, f_jl./1e3, SPL_p_jl; label="TBL-TE pressure side, Julia")
# scatter!(ax1, f_alpha, SPL_alpha; marker='β³', label="separation, BPM")
lines!(ax1, f_jl./1e3, SPL_alpha_jl; label="separation, Julia")
xlims!(ax1, 0.2, 20.0)
ylims!(ax1, 20, 60)
axislegend(ax1, position=:rt)
save("19890016302-figure26-d.png", fig)
```

```@example bpm_figure28_a
using AcousticAnalogies: AcousticAnalogies
using AcousticMetrics: ExactThirdOctaveCenterBands
using DelimitedFiles: DelimitedFiles
using GLMakie
# https://docs.makie.org/stable/examples/blocks/axis/index.html#logticks
struct IntegerTicks end
Makie.get_tickvalues(::IntegerTicks, vmin, vmax) = ceil(Int, vmin) : floor(Int, vmax)
fname = joinpath(@__DIR__, "..", "..", "test", "bpm_data", "brooks_airfoil_self_noise_and_prediction_1989", "19890016302-figure28-a-TBL-TE-suction.csv")
bpm = DelimitedFiles.readdlm(fname, ',')
f_s = bpm[:, 1]
SPL_s = bpm[:, 2]
fname = joinpath(@__DIR__, "..", "..", "test", "bpm_data", "brooks_airfoil_self_noise_and_prediction_1989", "19890016302-figure28-a-TBL-TE-pressure.csv")
bpm = DelimitedFiles.readdlm(fname, ',')
f_p = bpm[:, 1]
SPL_p = bpm[:, 2]
fname = joinpath(@__DIR__, "..", "..", "test", "bpm_data", "brooks_airfoil_self_noise_and_prediction_1989", "19890016302-figure28-a-separation.csv")
bpm = DelimitedFiles.readdlm(fname, ',')
f_alpha = bpm[:, 1]
SPL_alpha = bpm[:, 2]
nu = 1.4529e-5 # kinematic viscosity, m^2/s
L = 45.72e-2 # span in meters
chord = 10.16e-2 # chord in meters
U = 71.3 # freestream velocity in m/s
M = 0.209 # Mach number, corresponds to U = 71.3 m/s in BPM report
r_e = 1.22 # radiation distance in meters
ΞΈ_e = 90*pi/180
Ξ¦_e = 90*pi/180
M_c = 0.8*M
alphastar = 6.7*pi/180
bl = AcousticAnalogies.TrippedN0012BoundaryLayer()
f_jl, SPL_s_jl, SPL_p_jl, SPL_alpha_jl = AcousticAnalogies.calculate_bpm_test(nu, L, chord, U, M, r_e, ΞΈ_e, Ξ¦_e, alphastar, bl)
fig = Figure()
ax1 = fig[1, 1] = Axis(fig; xlabel="frequency, kHz", ylabel="SPL_1/3, dB",
xscale=log10,
xminorticksvisible=true,
xminorticks=IntervalsBetween(9),
xticks=LogTicks(IntegerTicks()),
title="Figure 28 (a) - U = $U m/s")
scatter!(ax1, f_s, SPL_s; marker='o', label="TBL-TE suction side, BPM")
lines!(ax1, f_jl./1e3, SPL_s_jl; label="TBL-TE suction side, Julia")
scatter!(ax1, f_p, SPL_p; marker='β‘', label="TBL-TE pressure side, BPM")
lines!(ax1, f_jl./1e3, SPL_p_jl; label="TBL-TE pressure side, Julia")
scatter!(ax1, f_alpha, SPL_alpha; marker='β³', label="separation, BPM")
lines!(ax1, f_jl./1e3, SPL_alpha_jl; label="separation, Julia")
xlims!(ax1, 0.2, 20.0)
ylims!(ax1, 40, 80)
axislegend(ax1, position=:rt)
save("19890016302-figure28-a.png", fig)
```

```@example bpm_figure28_b
using AcousticAnalogies: AcousticAnalogies
using AcousticMetrics: ExactThirdOctaveCenterBands
using DelimitedFiles: DelimitedFiles
using GLMakie
# https://docs.makie.org/stable/examples/blocks/axis/index.html#logticks
struct IntegerTicks end
Makie.get_tickvalues(::IntegerTicks, vmin, vmax) = ceil(Int, vmin) : floor(Int, vmax)
fname = joinpath(@__DIR__, "..", "..", "test", "bpm_data", "brooks_airfoil_self_noise_and_prediction_1989", "19890016302-figure28-b-TBL-TE-suction.csv")
bpm = DelimitedFiles.readdlm(fname, ',')
f_s = bpm[:, 1]
SPL_s = bpm[:, 2]
fname = joinpath(@__DIR__, "..", "..", "test", "bpm_data", "brooks_airfoil_self_noise_and_prediction_1989", "19890016302-figure28-b-TBL-TE-pressure.csv")
bpm = DelimitedFiles.readdlm(fname, ',')
f_p = bpm[:, 1]
SPL_p = bpm[:, 2]
fname = joinpath(@__DIR__, "..", "..", "test", "bpm_data", "brooks_airfoil_self_noise_and_prediction_1989", "19890016302-figure28-b-separation.csv")
bpm = DelimitedFiles.readdlm(fname, ',')
f_alpha = bpm[:, 1]
SPL_alpha = bpm[:, 2]
nu = 1.4529e-5 # kinematic viscosity, m^2/s
L = 45.72e-2 # span in meters
chord = 10.16e-2 # chord in meters
U = 55.5 # freestream velocity in m/s
M = 0.163 # Mach number, corresponds to U = 55.5 m/s in BPM report
r_e = 1.22 # radiation distance in meters
ΞΈ_e = 90*pi/180
Ξ¦_e = 90*pi/180
M_c = 0.8*M
alphastar = 6.7*pi/180
bl = AcousticAnalogies.TrippedN0012BoundaryLayer()
f_jl, SPL_s_jl, SPL_p_jl, SPL_alpha_jl = AcousticAnalogies.calculate_bpm_test(nu, L, chord, U, M, r_e, ΞΈ_e, Ξ¦_e, alphastar, bl)
fig = Figure()
ax1 = fig[1, 1] = Axis(fig; xlabel="frequency, kHz", ylabel="SPL_1/3, dB",
xscale=log10,
xminorticksvisible=true,
xminorticks=IntervalsBetween(9),
xticks=LogTicks(IntegerTicks()),
title="Figure 28 (b) - U = $U m/s")
scatter!(ax1, f_s, SPL_s; marker='o', label="TBL-TE suction side, BPM")
lines!(ax1, f_jl./1e3, SPL_s_jl; label="TBL-TE suction side, Julia")
scatter!(ax1, f_p, SPL_p; marker='β‘', label="TBL-TE pressure side, BPM")
lines!(ax1, f_jl./1e3, SPL_p_jl; label="TBL-TE pressure side, Julia")
scatter!(ax1, f_alpha, SPL_alpha; marker='β³', label="separation, BPM")
lines!(ax1, f_jl./1e3, SPL_alpha_jl; label="separation, Julia")
xlims!(ax1, 0.2, 20.0)
ylims!(ax1, 30, 70)
axislegend(ax1, position=:rt)
save("19890016302-figure28-b.png", fig)
```

```@example bpm_figure28_c
using AcousticAnalogies: AcousticAnalogies
using AcousticMetrics: ExactThirdOctaveCenterBands
using DelimitedFiles: DelimitedFiles
using GLMakie
# https://docs.makie.org/stable/examples/blocks/axis/index.html#logticks
struct IntegerTicks end
Makie.get_tickvalues(::IntegerTicks, vmin, vmax) = ceil(Int, vmin) : floor(Int, vmax)
fname = joinpath(@__DIR__, "..", "..", "test", "bpm_data", "brooks_airfoil_self_noise_and_prediction_1989", "19890016302-figure28-c-TBL-TE-suction.csv")
bpm = DelimitedFiles.readdlm(fname, ',')
f_s = bpm[:, 1]
SPL_s = bpm[:, 2]
fname = joinpath(@__DIR__, "..", "..", "test", "bpm_data", "brooks_airfoil_self_noise_and_prediction_1989", "19890016302-figure28-c-TBL-TE-pressure.csv")
bpm = DelimitedFiles.readdlm(fname, ',')
f_p = bpm[:, 1]
SPL_p = bpm[:, 2]
fname = joinpath(@__DIR__, "..", "..", "test", "bpm_data", "brooks_airfoil_self_noise_and_prediction_1989", "19890016302-figure28-c-separation.csv")
bpm = DelimitedFiles.readdlm(fname, ',')
f_alpha = bpm[:, 1]
SPL_alpha = bpm[:, 2]
nu = 1.4529e-5 # kinematic viscosity, m^2/s
L = 45.72e-2 # span in meters
chord = 10.16e-2 # chord in meters
U = 39.6 # freestream velocity in m/s
M = 0.116 # Mach number, corresponds to U = 39.6 m/s in BPM report
r_e = 1.22 # radiation distance in meters
ΞΈ_e = 90*pi/180
Ξ¦_e = 90*pi/180
M_c = 0.8*M
alphastar = 6.7*pi/180
bl = AcousticAnalogies.TrippedN0012BoundaryLayer()
f_jl, SPL_s_jl, SPL_p_jl, SPL_alpha_jl = AcousticAnalogies.calculate_bpm_test(nu, L, chord, U, M, r_e, ΞΈ_e, Ξ¦_e, alphastar, bl)
fig = Figure()
ax1 = fig[1, 1] = Axis(fig; xlabel="frequency, kHz", ylabel="SPL_1/3, dB",
xscale=log10,
xminorticksvisible=true,
xminorticks=IntervalsBetween(9),
xticks=LogTicks(IntegerTicks()),
title="Figure 28 (c) - U = $U m/s")
scatter!(ax1, f_s, SPL_s; marker='o', label="TBL-TE suction side, BPM")
lines!(ax1, f_jl./1e3, SPL_s_jl; label="TBL-TE suction side, Julia")
scatter!(ax1, f_p, SPL_p; marker='β‘', label="TBL-TE pressure side, BPM")
lines!(ax1, f_jl./1e3, SPL_p_jl; label="TBL-TE pressure side, Julia")
scatter!(ax1, f_alpha, SPL_alpha; marker='β³', label="separation, BPM")
lines!(ax1, f_jl./1e3, SPL_alpha_jl; label="separation, Julia")
xlims!(ax1, 0.2, 20.0)
ylims!(ax1, 30, 70)
axislegend(ax1, position=:rt)
save("19890016302-figure28-c.png", fig)
```

```@example bpm_figure28_d
using AcousticAnalogies: AcousticAnalogies
using AcousticMetrics: ExactThirdOctaveCenterBands
using DelimitedFiles: DelimitedFiles
using GLMakie
# https://docs.makie.org/stable/examples/blocks/axis/index.html#logticks
struct IntegerTicks end
Makie.get_tickvalues(::IntegerTicks, vmin, vmax) = ceil(Int, vmin) : floor(Int, vmax)
fname = joinpath(@__DIR__, "..", "..", "test", "bpm_data", "brooks_airfoil_self_noise_and_prediction_1989", "19890016302-figure28-d-TBL-TE-suction.csv")
bpm = DelimitedFiles.readdlm(fname, ',')
f_s = bpm[:, 1]
SPL_s = bpm[:, 2]
fname = joinpath(@__DIR__, "..", "..", "test", "bpm_data", "brooks_airfoil_self_noise_and_prediction_1989", "19890016302-figure28-d-TBL-TE-pressure.csv")
bpm = DelimitedFiles.readdlm(fname, ',')
f_p = bpm[:, 1]
SPL_p = bpm[:, 2]
fname = joinpath(@__DIR__, "..", "..", "test", "bpm_data", "brooks_airfoil_self_noise_and_prediction_1989", "19890016302-figure28-d-separation.csv")
bpm = DelimitedFiles.readdlm(fname, ',')
f_alpha = bpm[:, 1]
SPL_alpha = bpm[:, 2]
nu = 1.4529e-5 # kinematic viscosity, m^2/s
L = 45.72e-2 # span in meters
chord = 10.16e-2 # chord in meters
U = 31.7 # freestream velocity in m/s
M = 0.093 # mach number, corresponds to u = 31.7 m/s in bpm report
r_e = 1.22 # radiation distance in meters
ΞΈ_e = 90*pi/180
Ξ¦_e = 90*pi/180
M_c = 0.8*M
alphastar = 6.7*pi/180
bl = AcousticAnalogies.TrippedN0012BoundaryLayer()
f_jl, SPL_s_jl, SPL_p_jl, SPL_alpha_jl = AcousticAnalogies.calculate_bpm_test(nu, L, chord, U, M, r_e, ΞΈ_e, Ξ¦_e, alphastar, bl)
fig = Figure()
ax1 = fig[1, 1] = Axis(fig; xlabel="frequency, kHz", ylabel="SPL_1/3, dB",
xscale=log10,
xminorticksvisible=true,
xminorticks=IntervalsBetween(9),
xticks=LogTicks(IntegerTicks()),
title="figure 28 (d) - U = $U m/s")
scatter!(ax1, f_s, SPL_s; marker='o', label="TBL-TE suction side, BPM")
lines!(ax1, f_jl./1e3, SPL_s_jl; label="TBL-TE suction side, Julia")
scatter!(ax1, f_p, SPL_p; marker='β‘', label="TBL-TE pressure side, BPM")
lines!(ax1, f_jl./1e3, SPL_p_jl; label="TBL-TE pressure side, Julia")
scatter!(ax1, f_alpha, SPL_alpha; marker='β³', label="separation, BPM")
lines!(ax1, f_jl./1e3, SPL_alpha_jl; label="separation, Julia")
xlims!(ax1, 0.2, 20.0)
ylims!(ax1, 30, 70)
axislegend(ax1, position=:rt)
save("19890016302-figure28-d.png", fig)
```

```@example bpm_figure38_d
using AcousticAnalogies: AcousticAnalogies
using AcousticMetrics: ExactThirdOctaveCenterBands
using DelimitedFiles: DelimitedFiles
using GLMakie
# https://docs.makie.org/stable/examples/blocks/axis/index.html#logticks
struct IntegerTicks end
Makie.get_tickvalues(::IntegerTicks, vmin, vmax) = ceil(Int, vmin) : floor(Int, vmax)
fname = joinpath(@__DIR__, "..", "..", "test", "bpm_data", "brooks_airfoil_self_noise_and_prediction_1989", "19890016302-figure38-d-TBL-TE-suction.csv")
bpm = DelimitedFiles.readdlm(fname, ',')
f_s = bpm[:, 1]
SPL_s = bpm[:, 2]
# fname = joinpath(@__DIR__, "..", "..", "test", "bpm_data", "brooks_airfoil_self_noise_and_prediction_1989", "19890016302-figure38-d-TBL-TE-pressure.csv")
# bpm = DelimitedFiles.readdlm(fname, ',')
# f_p = bpm[:, 1]
# SPL_p = bpm[:, 2]
#
# fname = joinpath(@__DIR__, "..", "..", "test", "bpm_data", "brooks_airfoil_self_noise_and_prediction_1989", "19890016302-figure38-d-separation.csv")
# bpm = DelimitedFiles.readdlm(fname, ',')
# f_alpha = bpm[:, 1]
# SPL_alpha = bpm[:, 2]
nu = 1.4529e-5 # kinematic viscosity, m^2/s
L = 45.72e-2 # span in meters
chord = 2.54e-2 # chord in meters
U = 31.7 # freestream velocity in m/s
M = 0.093 # mach number, corresponds to u = 31.7 m/s in bpm report
r_e = 1.22 # radiation distance in meters
ΞΈ_e = 90*pi/180
Ξ¦_e = 90*pi/180
M_c = 0.8*M
alphastar = 0.0*pi/180
bl = AcousticAnalogies.TrippedN0012BoundaryLayer()
f_jl, SPL_s_jl, SPL_p_jl, SPL_alpha_jl = AcousticAnalogies.calculate_bpm_test(nu, L, chord, U, M, r_e, ΞΈ_e, Ξ¦_e, alphastar, bl)
fig = Figure()
ax1 = fig[1, 1] = Axis(fig; xlabel="frequency, kHz", ylabel="SPL_1/3, dB",
xscale=log10,
xminorticksvisible=true,
xminorticks=IntervalsBetween(9),
xticks=LogTicks(IntegerTicks()),
title="figure 38 (d) - U = $U m/s")
scatter!(ax1, f_s, SPL_s; marker='o', label="TBL-TE suction side, BPM")
lines!(ax1, f_jl./1e3, SPL_s_jl; label="TBL-TE suction side, Julia")
# scatter!(ax1, f_p, SPL_p; marker='β‘', label="TBL-TE pressure side, BPM")
# lines!(ax1, f_jl./1e3, SPL_p_jl; label="TBL-TE pressure side, Julia")
#
# scatter!(ax1, f_alpha, SPL_alpha; marker='β³', label="separation, BPM")
# lines!(ax1, f_jl./1e3, SPL_alpha_jl; label="separation, Julia")
xlims!(ax1, 0.2, 20.0)
ylims!(ax1, 20, 60)
axislegend(ax1, position=:rt)
save("19890016302-figure38-d.png", fig)
```

```@example bpm_figure39_d
using AcousticAnalogies: AcousticAnalogies
using AcousticMetrics: ExactThirdOctaveCenterBands
using DelimitedFiles: DelimitedFiles
using GLMakie
# https://docs.makie.org/stable/examples/blocks/axis/index.html#logticks
struct IntegerTicks end
Makie.get_tickvalues(::IntegerTicks, vmin, vmax) = ceil(Int, vmin) : floor(Int, vmax)
fname = joinpath(@__DIR__, "..", "..", "test", "bpm_data", "brooks_airfoil_self_noise_and_prediction_1989", "19890016302-figure39-d-TBL-TE-suction.csv")
bpm = DelimitedFiles.readdlm(fname, ',')
f_s = bpm[:, 1]
SPL_s = bpm[:, 2]
fname = joinpath(@__DIR__, "..", "..", "test", "bpm_data", "brooks_airfoil_self_noise_and_prediction_1989", "19890016302-figure39-d-TBL-TE-pressure.csv")
bpm = DelimitedFiles.readdlm(fname, ',')
f_p = bpm[:, 1]
SPL_p = bpm[:, 2]
fname = joinpath(@__DIR__, "..", "..", "test", "bpm_data", "brooks_airfoil_self_noise_and_prediction_1989", "19890016302-figure39-d-separation.csv")
bpm = DelimitedFiles.readdlm(fname, ',')
f_alpha = bpm[:, 1]
SPL_alpha = bpm[:, 2]
nu = 1.4529e-5 # kinematic viscosity, m^2/s
L = 45.72e-2 # span in meters
chord = 2.54e-2 # chord in meters
U = 31.7 # freestream velocity in m/s
M = 0.093 # mach number, corresponds to u = 31.7 m/s in bpm report
r_e = 1.22 # radiation distance in meters
ΞΈ_e = 90*pi/180
Ξ¦_e = 90*pi/180
M_c = 0.8*M
alphastar = 4.8*pi/180
bl = AcousticAnalogies.TrippedN0012BoundaryLayer()
f_jl, SPL_s_jl, SPL_p_jl, SPL_alpha_jl = AcousticAnalogies.calculate_bpm_test(nu, L, chord, U, M, r_e, ΞΈ_e, Ξ¦_e, alphastar, bl)
fig = Figure()
ax1 = fig[1, 1] = Axis(fig; xlabel="frequency, kHz", ylabel="SPL_1/3, dB",
xscale=log10,
xminorticksvisible=true,
xminorticks=IntervalsBetween(9),
xticks=LogTicks(IntegerTicks()),
title="figure 39 (d) - U = $U m/s")
scatter!(ax1, f_s, SPL_s; marker='o', label="TBL-TE suction side, BPM")
lines!(ax1, f_jl./1e3, SPL_s_jl; label="TBL-TE suction side, Julia")
scatter!(ax1, f_p, SPL_p; marker='β‘', label="TBL-TE pressure side, BPM")
lines!(ax1, f_jl./1e3, SPL_p_jl; label="TBL-TE pressure side, Julia")
scatter!(ax1, f_alpha, SPL_alpha; marker='β³', label="separation, BPM")
lines!(ax1, f_jl./1e3, SPL_alpha_jl; label="separation, Julia")
xlims!(ax1, 0.2, 20.0)
ylims!(ax1, 20, 60)
axislegend(ax1, position=:rt)
save("19890016302-figure39-d.png", fig)
```

```@example bpm_figure45_a
using AcousticAnalogies: AcousticAnalogies
using AcousticMetrics: ExactThirdOctaveCenterBands
using DelimitedFiles: DelimitedFiles
using GLMakie
# https://docs.makie.org/stable/examples/blocks/axis/index.html#logticks
struct IntegerTicks end
Makie.get_tickvalues(::IntegerTicks, vmin, vmax) = ceil(Int, vmin) : floor(Int, vmax)
fname = joinpath(@__DIR__, "..", "..", "test", "bpm_data", "brooks_airfoil_self_noise_and_prediction_1989", "19890016302-figure45-a-TBL-TE-suction.csv")
bpm = DelimitedFiles.readdlm(fname, ',')
f_s = bpm[:, 1]
SPL_s = bpm[:, 2]
fname = joinpath(@__DIR__, "..", "..", "test", "bpm_data", "brooks_airfoil_self_noise_and_prediction_1989", "19890016302-figure45-a-TBL-TE-pressure.csv")
bpm = DelimitedFiles.readdlm(fname, ',')
f_p = bpm[:, 1]
SPL_p = bpm[:, 2]
fname = joinpath(@__DIR__, "..", "..", "test", "bpm_data", "brooks_airfoil_self_noise_and_prediction_1989", "19890016302-figure45-a-separation.csv")
bpm = DelimitedFiles.readdlm(fname, ',')
f_alpha = bpm[:, 1]
SPL_alpha = bpm[:, 2]
fname = joinpath(@__DIR__, "..", "..", "test", "bpm_data", "brooks_airfoil_self_noise_and_prediction_1989", "19890016302-figure45-a-LBL-VS.csv")
bpm = DelimitedFiles.readdlm(fname, ',')
f_lbl_vs = bpm[:, 1]
SPL_lbl_vs = bpm[:, 2]
nu = 1.4529e-5 # kinematic viscosity, m^2/s
L = 45.72e-2 # span in meters
chord = 30.48e-2 # chord in meters
U = 71.3 # freestream velocity in m/s
M = 0.209 # Mach number, corresponds to U = 71.3 m/s in BPM report
r_e = 1.22 # radiation distance in meters
ΞΈ_e = 90*pi/180
Ξ¦_e = 90*pi/180
alphastar = 1.5*pi/180
bl = AcousticAnalogies.UntrippedN0012BoundaryLayer()
f_jl, SPL_s_jl, SPL_p_jl, SPL_alpha_jl, SPL_lbl_vs_jl = AcousticAnalogies.calculate_bpm_test(nu, L, chord, U, M, r_e, ΞΈ_e, Ξ¦_e, alphastar, bl; do_lblvs=true)
fig = Figure()
ax1 = fig[1, 1] = Axis(fig; xlabel="frequency, kHz", ylabel="SPL_1/3, dB",
xscale=log10,
xminorticksvisible=true,
xminorticks=IntervalsBetween(9),
xticks=LogTicks(IntegerTicks()),
title="Figure 45 (a) - U = $U m/s")
scatter!(ax1, f_s, SPL_s; marker='o', label="TBL-TE suction side, BPM")
lines!(ax1, f_jl./1e3, SPL_s_jl; label="TBL-TE suction side, Julia")
scatter!(ax1, f_p, SPL_p; marker='β‘', label="TBL-TE pressure side, BPM")
lines!(ax1, f_jl./1e3, SPL_p_jl; label="TBL-TE pressure side, Julia")
scatter!(ax1, f_alpha, SPL_alpha; marker='β³', label="separation, BPM")
lines!(ax1, f_jl./1e3, SPL_alpha_jl; label="separation, Julia")
scatter!(ax1, f_lbl_vs, SPL_lbl_vs; marker='β', label="LBL-VS, BPM")
scatterlines!(ax1, f_jl./1e3, SPL_lbl_vs_jl; marker='β', label="LBL-VS, Julia")
xlims!(ax1, 0.2, 20.0)
ylims!(ax1, 40, 80)
axislegend(ax1, position=:rt)
save("19890016302-figure45-a.png", fig)
```

```@example bpm_figure48_c
using AcousticAnalogies: AcousticAnalogies
using AcousticMetrics: ExactThirdOctaveCenterBands
using DelimitedFiles: DelimitedFiles
using GLMakie
# https://docs.makie.org/stable/examples/blocks/axis/index.html#logticks
struct IntegerTicks end
Makie.get_tickvalues(::IntegerTicks, vmin, vmax) = ceil(Int, vmin) : floor(Int, vmax)
fname = joinpath(@__DIR__, "..", "..", "test", "bpm_data", "brooks_airfoil_self_noise_and_prediction_1989", "19890016302-figure48-c-LBL-VS.csv")
bpm = DelimitedFiles.readdlm(fname, ',')
f_lbl_vs = bpm[:, 1]
SPL_lbl_vs = bpm[:, 2]
nu = 1.4529e-5 # kinematic viscosity, m^2/s
L = 45.72e-2 # span in meters
chord = 22.86e-2 # chord in meters
U = 39.6 # freestream velocity in m/s
M = 0.116 # Mach number, corresponds to U = 39.6 m/s in BPM report
r_e = 1.22 # radiation distance in meters
ΞΈ_e = 90*pi/180
Ξ¦_e = 90*pi/180
alphastar = 0.0*pi/180
bl = AcousticAnalogies.UntrippedN0012BoundaryLayer()
f_jl, SPL_s_jl, SPL_p_jl, SPL_alpha_jl, SPL_lbl_vs_jl = AcousticAnalogies.calculate_bpm_test(nu, L, chord, U, M, r_e, ΞΈ_e, Ξ¦_e, alphastar, bl; do_lblvs=true)
fig = Figure()
ax1 = fig[1, 1] = Axis(fig; xlabel="frequency, kHz", ylabel="SPL_1/3, dB",
xscale=log10,
xminorticksvisible=true,
xminorticks=IntervalsBetween(9),
xticks=LogTicks(IntegerTicks()),
title="Figure 48 (c) - U = $U m/s")
scatter!(ax1, f_lbl_vs, SPL_lbl_vs; marker=:diamond, label="LBL-VS, BPM")
lines!(ax1, f_jl./1e3, SPL_lbl_vs_jl; label="LBL-VS, Julia")
xlims!(ax1, 0.2, 20.0)
ylims!(ax1, 20, 60)
axislegend(ax1, position=:rt)
save("19890016302-figure48-c.png", fig)
```

```@example bpm_figure54_a
using AcousticAnalogies: AcousticAnalogies
using AcousticMetrics: ExactThirdOctaveCenterBands
using DelimitedFiles: DelimitedFiles
using GLMakie
# https://docs.makie.org/stable/examples/blocks/axis/index.html#logticks
struct IntegerTicks end
Makie.get_tickvalues(::IntegerTicks, vmin, vmax) = ceil(Int, vmin) : floor(Int, vmax)
fname = joinpath(@__DIR__, "..", "..", "test", "bpm_data", "brooks_airfoil_self_noise_and_prediction_1989", "19890016302-figure54-a-LBL-VS.csv")
bpm = DelimitedFiles.readdlm(fname, ',')
f_lbl_vs = bpm[:, 1]
SPL_lbl_vs = bpm[:, 2]
nu = 1.4529e-5 # kinematic viscosity, m^2/s
L = 45.72e-2 # span in meters
chord = 15.24e-2 # chord in meters
U = 71.3 # freestream velocity in m/s
M = 0.209 # Mach number, corresponds to U = 71.3 m/s in BPM report
r_e = 1.22 # radiation distance in meters
ΞΈ_e = 90*pi/180
Ξ¦_e = 90*pi/180
alphastar = 2.7*pi/180
bl = AcousticAnalogies.UntrippedN0012BoundaryLayer()
f_jl, SPL_s_jl, SPL_p_jl, SPL_alpha_jl, SPL_lbl_vs_jl = AcousticAnalogies.calculate_bpm_test(nu, L, chord, U, M, r_e, ΞΈ_e, Ξ¦_e, alphastar, bl; do_lblvs=true)
fig = Figure()
ax1 = fig[1, 1] = Axis(fig; xlabel="frequency, kHz", ylabel="SPL_1/3, dB",
xscale=log10,
xminorticksvisible=true,
xminorticks=IntervalsBetween(9),
xticks=LogTicks(IntegerTicks()),
title="Figure 54 (a) - U = $U m/s")
scatter!(ax1, f_lbl_vs, SPL_lbl_vs; marker=:diamond, label="LBL-VS, BPM")
lines!(ax1, f_jl./1e3, SPL_lbl_vs_jl; label="LBL-VS, Julia")
xlims!(ax1, 0.2, 20.0)
ylims!(ax1, 50, 90)
axislegend(ax1, position=:rt)
save("19890016302-figure54-a.png", fig)
```

```@example bpm_figure59_c
using AcousticAnalogies: AcousticAnalogies
using AcousticMetrics: ExactThirdOctaveCenterBands
using DelimitedFiles: DelimitedFiles
using GLMakie
# https://docs.makie.org/stable/examples/blocks/axis/index.html#logticks
struct IntegerTicks end
Makie.get_tickvalues(::IntegerTicks, vmin, vmax) = ceil(Int, vmin) : floor(Int, vmax)
fname = joinpath(@__DIR__, "..", "..", "test", "bpm_data", "brooks_airfoil_self_noise_and_prediction_1989", "19890016302-figure59-c-LBL-VS.csv")
bpm = DelimitedFiles.readdlm(fname, ',')
f_lbl_vs = bpm[:, 1]
SPL_lbl_vs = bpm[:, 2]
nu = 1.4529e-5 # kinematic viscosity, m^2/s
L = 45.72e-2 # span in meters
chord = 10.16e-2 # chord in meters
U = 39.6 # freestream velocity in m/s
M = 0.116 # Mach number, corresponds to U = 39.6 m/s in BPM report
r_e = 1.22 # radiation distance in meters
ΞΈ_e = 90*pi/180
Ξ¦_e = 90*pi/180
alphastar = 0.0*pi/180
bl = AcousticAnalogies.UntrippedN0012BoundaryLayer()
f_jl, SPL_s_jl, SPL_p_jl, SPL_alpha_jl, SPL_lbl_vs_jl = AcousticAnalogies.calculate_bpm_test(nu, L, chord, U, M, r_e, ΞΈ_e, Ξ¦_e, alphastar, bl; do_lblvs=true)
fig = Figure()
ax1 = fig[1, 1] = Axis(fig; xlabel="frequency, kHz", ylabel="SPL_1/3, dB",
xscale=log10,
xminorticksvisible=true,
xminorticks=IntervalsBetween(9),
xticks=LogTicks(IntegerTicks()),
title="Figure 59 (c) - U = $U m/s")
scatter!(ax1, f_lbl_vs, SPL_lbl_vs; marker=:diamond, label="LBL-VS, BPM")
lines!(ax1, f_jl./1e3, SPL_lbl_vs_jl; label="LBL-VS, Julia")
xlims!(ax1, 0.2, 20.0)
ylims!(ax1, 40, 80)
axislegend(ax1, position=:rt)
save("19890016302-figure59-c.png", fig)
```

```@example bpm_figure60_c
using AcousticAnalogies: AcousticAnalogies
using AcousticMetrics: ExactThirdOctaveCenterBands
using DelimitedFiles: DelimitedFiles
using GLMakie
# https://docs.makie.org/stable/examples/blocks/axis/index.html#logticks
struct IntegerTicks end
Makie.get_tickvalues(::IntegerTicks, vmin, vmax) = ceil(Int, vmin) : floor(Int, vmax)
fname = joinpath(@__DIR__, "..", "..", "test", "bpm_data", "brooks_airfoil_self_noise_and_prediction_1989", "19890016302-figure60-c-LBL-VS.csv")
bpm = DelimitedFiles.readdlm(fname, ',')
f_lbl_vs = bpm[:, 1]
SPL_lbl_vs = bpm[:, 2]
nu = 1.4529e-5 # kinematic viscosity, m^2/s
L = 45.72e-2 # span in meters
chord = 10.16e-2 # chord in meters
U = 39.6 # freestream velocity in m/s
M = 0.116 # Mach number, corresponds to U = 39.6 m/s in BPM report
r_e = 1.22 # radiation distance in meters
ΞΈ_e = 90*pi/180
Ξ¦_e = 90*pi/180
alphastar = 3.3*pi/180
bl = AcousticAnalogies.UntrippedN0012BoundaryLayer()
f_jl, SPL_s_jl, SPL_p_jl, SPL_alpha_jl, SPL_lbl_vs_jl = AcousticAnalogies.calculate_bpm_test(nu, L, chord, U, M, r_e, ΞΈ_e, Ξ¦_e, alphastar, bl; do_lblvs=true)
fig = Figure()
ax1 = fig[1, 1] = Axis(fig; xlabel="frequency, kHz", ylabel="SPL_1/3, dB",
xscale=log10,
xminorticksvisible=true,
xminorticks=IntervalsBetween(9),
xticks=LogTicks(IntegerTicks()),
title="Figure 60 (c) - U = $U m/s")
scatter!(ax1, f_lbl_vs, SPL_lbl_vs; marker=:diamond, label="LBL-VS, BPM")
lines!(ax1, f_jl./1e3, SPL_lbl_vs_jl; label="LBL-VS, Julia")
xlims!(ax1, 0.2, 20.0)
ylims!(ax1, 40, 80)
axislegend(ax1, position=:rt)
save("19890016302-figure60-c.png", fig)
```

```@example bpm_figure60_d
using AcousticAnalogies: AcousticAnalogies
using AcousticMetrics: ExactThirdOctaveCenterBands
using DelimitedFiles: DelimitedFiles
using GLMakie
# https://docs.makie.org/stable/examples/blocks/axis/index.html#logticks
struct IntegerTicks end
Makie.get_tickvalues(::IntegerTicks, vmin, vmax) = ceil(Int, vmin) : floor(Int, vmax)
fname = joinpath(@__DIR__, "..", "..", "test", "bpm_data", "brooks_airfoil_self_noise_and_prediction_1989", "19890016302-figure60-d-LBL-VS.csv")
bpm = DelimitedFiles.readdlm(fname, ',')
f_lbl_vs = bpm[:, 1]
SPL_lbl_vs = bpm[:, 2]
nu = 1.4529e-5 # kinematic viscosity, m^2/s
L = 45.72e-2 # span in meters
chord = 10.16e-2 # chord in meters
U = 31.7 # freestream velocity in m/s
M = 0.093 # mach number, corresponds to u = 31.7 m/s in bpm report
r_e = 1.22 # radiation distance in meters
ΞΈ_e = 90*pi/180
Ξ¦_e = 90*pi/180
alphastar = 3.3*pi/180
bl = AcousticAnalogies.UntrippedN0012BoundaryLayer()
f_jl, SPL_s_jl, SPL_p_jl, SPL_alpha_jl, SPL_lbl_vs_jl = AcousticAnalogies.calculate_bpm_test(nu, L, chord, U, M, r_e, ΞΈ_e, Ξ¦_e, alphastar, bl; do_lblvs=true)
fig = Figure()
ax1 = fig[1, 1] = Axis(fig; xlabel="frequency, kHz", ylabel="SPL_1/3, dB",
xscale=log10,
xminorticksvisible=true,
xminorticks=IntervalsBetween(9),
xticks=LogTicks(IntegerTicks()),
title="Figure 60 (d) - U = $U m/s")
scatter!(ax1, f_lbl_vs, SPL_lbl_vs; marker=:diamond, label="LBL-VS, BPM")
lines!(ax1, f_jl./1e3, SPL_lbl_vs_jl; label="LBL-VS, Julia")
xlims!(ax1, 0.2, 20.0)
ylims!(ax1, 40, 80)
axislegend(ax1, position=:rt)
save("19890016302-figure60-d.png", fig)
```

```@example bpm_figure65_d
using AcousticAnalogies: AcousticAnalogies
using AcousticMetrics: ExactThirdOctaveCenterBands
using DelimitedFiles: DelimitedFiles
using GLMakie
# https://docs.makie.org/stable/examples/blocks/axis/index.html#logticks
struct IntegerTicks end
Makie.get_tickvalues(::IntegerTicks, vmin, vmax) = ceil(Int, vmin) : floor(Int, vmax)
fname = joinpath(@__DIR__, "..", "..", "test", "bpm_data", "brooks_airfoil_self_noise_and_prediction_1989", "19890016302-figure65-d-LBL-VS.csv")
bpm = DelimitedFiles.readdlm(fname, ',')
f_lbl_vs = bpm[:, 1]
SPL_lbl_vs = bpm[:, 2]
nu = 1.4529e-5 # kinematic viscosity, m^2/s
L = 45.72e-2 # span in meters
chord = 5.08e-2 # chord in meters
U = 31.7 # freestream velocity in m/s
M = 0.093 # mach number, corresponds to u = 31.7 m/s in bpm report
r_e = 1.22 # radiation distance in meters
ΞΈ_e = 90*pi/180
Ξ¦_e = 90*pi/180
alphastar = 0.0*pi/180
bl = AcousticAnalogies.UntrippedN0012BoundaryLayer()
f_jl, SPL_s_jl, SPL_p_jl, SPL_alpha_jl, SPL_lbl_vs_jl = AcousticAnalogies.calculate_bpm_test(nu, L, chord, U, M, r_e, ΞΈ_e, Ξ¦_e, alphastar, bl; do_lblvs=true)
fig = Figure()
ax1 = fig[1, 1] = Axis(fig; xlabel="frequency, kHz", ylabel="SPL_1/3, dB",
xscale=log10,
xminorticksvisible=true,
xminorticks=IntervalsBetween(9),
xticks=LogTicks(IntegerTicks()),
title="Figure 65 (d) - U = $U m/s")
scatter!(ax1, f_lbl_vs, SPL_lbl_vs; marker=:diamond, label="LBL-VS, BPM")
lines!(ax1, f_jl./1e3, SPL_lbl_vs_jl; label="LBL-VS, Julia")
xlims!(ax1, 0.2, 20.0)
ylims!(ax1, 50, 90)
axislegend(ax1, position=:rt)
save("19890016302-figure65-d.png", fig)
```

```@example bpm_figure66_b
using AcousticAnalogies: AcousticAnalogies
using AcousticMetrics: ExactThirdOctaveCenterBands
using DelimitedFiles: DelimitedFiles
using GLMakie
# https://docs.makie.org/stable/examples/blocks/axis/index.html#logticks
struct IntegerTicks end
Makie.get_tickvalues(::IntegerTicks, vmin, vmax) = ceil(Int, vmin) : floor(Int, vmax)
fname = joinpath(@__DIR__, "..", "..", "test", "bpm_data", "brooks_airfoil_self_noise_and_prediction_1989", "19890016302-figure66-b-LBL-VS.csv")
bpm = DelimitedFiles.readdlm(fname, ',')
f_lbl_vs = bpm[:, 1]
SPL_lbl_vs = bpm[:, 2]
nu = 1.4529e-5 # kinematic viscosity, m^2/s
L = 45.72e-2 # span in meters
chord = 5.08e-2 # chord in meters
U = 39.6 # freestream velocity in m/s
M = 0.116 # Mach number, corresponds to U = 39.6 m/s in BPM report
r_e = 1.22 # radiation distance in meters
ΞΈ_e = 90*pi/180
Ξ¦_e = 90*pi/180
alphastar = 4.2*pi/180
bl = AcousticAnalogies.UntrippedN0012BoundaryLayer()
f_jl, SPL_s_jl, SPL_p_jl, SPL_alpha_jl, SPL_lbl_vs_jl = AcousticAnalogies.calculate_bpm_test(nu, L, chord, U, M, r_e, ΞΈ_e, Ξ¦_e, alphastar, bl; do_lblvs=true)
fig = Figure()
ax1 = fig[1, 1] = Axis(fig; xlabel="frequency, kHz", ylabel="SPL_1/3, dB",
xscale=log10,
xminorticksvisible=true,
xminorticks=IntervalsBetween(9),
xticks=LogTicks(IntegerTicks()),
title="Figure 66 (b) - U = $U m/s")
scatter!(ax1, f_lbl_vs, SPL_lbl_vs; marker=:diamond, label="LBL-VS, BPM")
scatterlines!(ax1, f_jl./1e3, SPL_lbl_vs_jl; label="LBL-VS, Julia")
xlims!(ax1, 0.2, 20.0)
ylims!(ax1, 30, 70)
axislegend(ax1, position=:rt)
save("19890016302-figure66-b.png", fig)
```

```@example bpm_figure69_a
using AcousticAnalogies: AcousticAnalogies
using AcousticMetrics: ExactThirdOctaveCenterBands
using DelimitedFiles: DelimitedFiles
using GLMakie
# https://docs.makie.org/stable/examples/blocks/axis/index.html#logticks
struct IntegerTicks end
Makie.get_tickvalues(::IntegerTicks, vmin, vmax) = ceil(Int, vmin) : floor(Int, vmax)
fname = joinpath(@__DIR__, "..", "..", "test", "bpm_data", "brooks_airfoil_self_noise_and_prediction_1989", "19890016302-figure69-a-separation.csv")
bpm = DelimitedFiles.readdlm(fname, ',')
f_alpha = bpm[:, 1]
SPL_alpha = bpm[:, 2]
nu = 1.4529e-5 # kinematic viscosity, m^2/s
L = 45.72e-2 # span in meters
chord = 5.08e-2 # chord in meters
U = 71.3 # freestream velocity in m/s
M = 0.209 # Mach number, corresponds to U = 71.3 m/s in BPM report
r_e = 1.22 # radiation distance in meters
ΞΈ_e = 90*pi/180
Ξ¦_e = 90*pi/180
M_c = 0.8*M
alphastar = 15.4*pi/180
bl = AcousticAnalogies.UntrippedN0012BoundaryLayer()
f_jl, SPL_s_jl, SPL_p_jl, SPL_alpha_jl = AcousticAnalogies.calculate_bpm_test(nu, L, chord, U, M, r_e, ΞΈ_e, Ξ¦_e, alphastar, bl)
fig = Figure()
ax1 = fig[1, 1] = Axis(fig; xlabel="frequency, kHz", ylabel="SPL_1/3, dB",
xscale=log10,
xminorticksvisible=true,
xminorticks=IntervalsBetween(9),
xticks=LogTicks(IntegerTicks()),
title="Figure 69 (a) - U = $U m/s")
# scatter!(ax1, f_s, SPL_s; marker='o', label="TBL-TE suction side, BPM")
lines!(ax1, f_jl./1e3, SPL_s_jl; label="TBL-TE suction side, Julia")
# scatter!(ax1, f_p, SPL_p; marker='β‘', label="TBL-TE pressure side, BPM")
lines!(ax1, f_jl./1e3, SPL_p_jl; label="TBL-TE pressure side, Julia")
scatter!(ax1, f_alpha, SPL_alpha; marker='β³', label="separation, BPM")
lines!(ax1, f_jl./1e3, SPL_alpha_jl; label="separation, Julia")
xlims!(ax1, 0.2, 20.0)
ylims!(ax1, 60, 100)
axislegend(ax1, position=:rt)
save("19890016302-figure69-a.png", fig)
```

```@example bpm_figure69_b
using AcousticAnalogies: AcousticAnalogies
using AcousticMetrics: ExactThirdOctaveCenterBands
using DelimitedFiles: DelimitedFiles
using GLMakie
# https://docs.makie.org/stable/examples/blocks/axis/index.html#logticks
struct IntegerTicks end
Makie.get_tickvalues(::IntegerTicks, vmin, vmax) = ceil(Int, vmin) : floor(Int, vmax)
# TBL-TE suction and pressure aren't significant sources for this case (deep stall).
fname = joinpath(@__DIR__, "..", "..", "test", "bpm_data", "brooks_airfoil_self_noise_and_prediction_1989", "19890016302-figure69-b-separation.csv")
bpm = DelimitedFiles.readdlm(fname, ',')
f_alpha = bpm[:, 1]
SPL_alpha = bpm[:, 2]
nu = 1.4529e-5 # kinematic viscosity, m^2/s
L = 45.72e-2 # span in meters
chord = 5.08e-2 # chord in meters
U = 39.6 # freestream velocity in m/s
M = 0.116 # Mach number, corresponds to U = 39.6 m/s in BPM report
r_e = 1.22 # radiation distance in meters
ΞΈ_e = 90*pi/180
Ξ¦_e = 90*pi/180
M_c = 0.8*M
alphastar = 15.4*pi/180
bl = AcousticAnalogies.UntrippedN0012BoundaryLayer()
f_jl, SPL_s_jl, SPL_p_jl, SPL_alpha_jl = AcousticAnalogies.calculate_bpm_test(nu, L, chord, U, M, r_e, ΞΈ_e, Ξ¦_e, alphastar, bl)
fig = Figure()
ax1 = fig[1, 1] = Axis(fig; xlabel="frequency, kHz", ylabel="SPL_1/3, dB",
xscale=log10,
xminorticksvisible=true,
xminorticks=IntervalsBetween(9),
xticks=LogTicks(IntegerTicks()),
title="Figure 69 (b) - U = $U m/s")
# scatter!(ax1, f_s, SPL_s; marker='o', label="TBL-TE suction side, BPM")
lines!(ax1, f_jl./1e3, SPL_s_jl; label="TBL-TE suction side, Julia")
# scatter!(ax1, f_p, SPL_p; marker='β‘', label="TBL-TE pressure side, BPM")
lines!(ax1, f_jl./1e3, SPL_p_jl; label="TBL-TE pressure side, Julia")
scatter!(ax1, f_alpha, SPL_alpha; marker='β³', label="separation, BPM")
lines!(ax1, f_jl./1e3, SPL_alpha_jl; label="separation, Julia")
xlims!(ax1, 0.2, 20.0)
ylims!(ax1, 40, 80)
axislegend(ax1, position=:rt)
save("19890016302-figure69-b.png", fig)
```

```@example bpm_figure91
using AcousticAnalogies: AcousticAnalogies
using AcousticMetrics: ExactThirdOctaveCenterBands
using DelimitedFiles: DelimitedFiles
using GLMakie
# https://docs.makie.org/stable/examples/blocks/axis/index.html#logticks
struct IntegerTicks end
Makie.get_tickvalues(::IntegerTicks, vmin, vmax) = ceil(Int, vmin) : floor(Int, vmax)
fname = joinpath(@__DIR__, "..", "..", "test", "bpm_data", "brooks_airfoil_self_noise_and_prediction_1989", "19890016302-figure91-tip.csv")
bpm = DelimitedFiles.readdlm(fname, ',')
f_tip = bpm[:, 1]
SPL_tip = bpm[:, 2]
nu = 1.4529e-5 # kinematic viscosity, m^2/s
L = 30.48e-2 # span in meters
chord = 15.24e-2 # chord in meters
speedofsound = 340.46
U = 71.3 # freestream velocity in m/s
# M = 0.209 # Mach number, corresponds to U = 71.3 m/s in BPM report
M = U/speedofsound
M_c = 0.8*M
# speedofsound = U/M
r_e = 1.22 # radiation distance in meters
ΞΈ_e = 90*pi/180
Ξ¦_e = 90*pi/180
alphastar = 10.8*pi/180
bl = AcousticAnalogies.UntrippedN0012BoundaryLayer()
blade_tip = AcousticAnalogies.RoundedTip(AcousticAnalogies.BPMTipAlphaCorrection(), 0.0)
f_jl, SPL_s_jl, SPL_p_jl, SPL_alpha_jl, SPL_tip_jl = AcousticAnalogies.calculate_bpm_test(nu, L, chord, U, M, r_e, ΞΈ_e, Ξ¦_e, alphastar, bl; do_tip_vortex=true, blade_tip=blade_tip)
fig = Figure()
ax1 = fig[1, 1] = Axis(fig; xlabel="frequency, kHz", ylabel="SPL_1/3, dB",
xscale=log10,
xminorticksvisible=true,
xminorticks=IntervalsBetween(9),
xticks=LogTicks(IntegerTicks()),
title="Figure 91")
scatter!(ax1, f_tip, SPL_tip; marker='o', label="Tip, BPM")
lines!(ax1, f_jl./1e3, SPL_tip_jl; label="Tip, Julia")
xlims!(ax1, 0.2, 20.0)
ylims!(ax1, 40, 90)
axislegend(ax1, position=:rt)
save("19890016302-figure91.png", fig)
```

```@example bpm_figure98_b
using AcousticAnalogies: AcousticAnalogies
using AcousticMetrics: ExactThirdOctaveCenterBands
using DelimitedFiles: DelimitedFiles
using GLMakie
# https://docs.makie.org/stable/examples/blocks/axis/index.html#logticks
struct IntegerTicks end
Makie.get_tickvalues(::IntegerTicks, vmin, vmax) = ceil(Int, vmin) : floor(Int, vmax)
# Figures 98 a-d only differ in trailing edge bluntness, so the other sources are all the same.
# And TBL-TE is the only significant source, other than bluntness.
fname = joinpath(@__DIR__, "..", "..", "test", "bpm_data", "brooks_airfoil_self_noise_and_prediction_1989", "19890016302-figure98-a-TBL-TE-suction.csv")
bpm = DelimitedFiles.readdlm(fname, ',')
f_s = bpm[:, 1]
SPL_s = bpm[:, 2]
# Suction and pressure are the same for zero angle of attack.
fname = joinpath(@__DIR__, "..", "..", "test", "bpm_data", "brooks_airfoil_self_noise_and_prediction_1989", "19890016302-figure98-a-TBL-TE-suction.csv")
bpm = DelimitedFiles.readdlm(fname, ',')
f_p = bpm[:, 1]
SPL_p = bpm[:, 2]
fname = joinpath(@__DIR__, "..", "..", "test", "bpm_data", "brooks_airfoil_self_noise_and_prediction_1989", "19890016302-figure98-b-bluntness.csv")
bpm = DelimitedFiles.readdlm(fname, ',')
f_teb_vs = bpm[:, 1]
SPL_teb_vs = bpm[:, 2]
nu = 1.4529e-5 # kinematic viscosity, m^2/s
L = 45.72e-2 # span in meters
chord = 60.96e-2 # chord in meters
U = 69.5 # freestream velocity in m/s
M = U/340.46
h = 1.1e-3 # trailing edge bluntness in meters
Psi = 14*pi/180 # bluntness angle in radians
r_e = 1.22 # radiation distance in meters
ΞΈ_e = 90*pi/180
Ξ¦_e = 90*pi/180
M_c = 0.8*M
alphastar = 0.0*pi/180
bl = AcousticAnalogies.TrippedN0012BoundaryLayer()
f_jl, SPL_s_jl, SPL_p_jl, SPL_alpha_jl, SPL_teb_vs_jl = AcousticAnalogies.calculate_bpm_test(nu, L, chord, U, M, r_e, ΞΈ_e, Ξ¦_e, alphastar, bl; do_tebvs=true, h=h, Psi=Psi)
fig = Figure()
ax1 = fig[1, 1] = Axis(fig; xlabel="frequency, kHz", ylabel="SPL_1/3, dB",
xscale=log10,
xminorticksvisible=true,
xminorticks=IntervalsBetween(9),
xticks=LogTicks(IntegerTicks()),
title="Figure 98 (b) - U = $U m/s")
scatter!(ax1, f_s, SPL_s; marker='o', label="TBL-TE suction side, BPM")
lines!(ax1, f_jl./1e3, SPL_s_jl; label="TBL-TE suction side, Julia")
scatter!(ax1, f_p, SPL_p; marker='β‘', label="TBL-TE pressure side, BPM")
lines!(ax1, f_jl./1e3, SPL_p_jl; label="TBL-TE pressure side, Julia")
scatter!(ax1, f_teb_vs, SPL_teb_vs; marker='βΊ', label="Bluntness, BPM")
lines!(ax1, f_jl./1e3, SPL_teb_vs_jl; label="Bluntness, Julia")
xlims!(ax1, 0.2, 20.0)
ylims!(ax1, 40, 80)
axislegend(ax1, position=:rt)
save("19890016302-figure98-b.png", fig)
```

```@example bpm_figure98_c
using AcousticAnalogies: AcousticAnalogies
using AcousticMetrics: ExactThirdOctaveCenterBands
using DelimitedFiles: DelimitedFiles
using GLMakie
# https://docs.makie.org/stable/examples/blocks/axis/index.html#logticks
struct IntegerTicks end
Makie.get_tickvalues(::IntegerTicks, vmin, vmax) = ceil(Int, vmin) : floor(Int, vmax)
# Figures 98 a-d only differ in trailing edge bluntness, so the other sources are all the same.
# And TBL-TE is the only significant source, other than bluntness.
fname = joinpath(@__DIR__, "..", "..", "test", "bpm_data", "brooks_airfoil_self_noise_and_prediction_1989", "19890016302-figure98-a-TBL-TE-suction.csv")
bpm = DelimitedFiles.readdlm(fname, ',')
f_s = bpm[:, 1]
SPL_s = bpm[:, 2]
# Suction and pressure are the same for zero angle of attack.
fname = joinpath(@__DIR__, "..", "..", "test", "bpm_data", "brooks_airfoil_self_noise_and_prediction_1989", "19890016302-figure98-a-TBL-TE-suction.csv")
bpm = DelimitedFiles.readdlm(fname, ',')
f_p = bpm[:, 1]
SPL_p = bpm[:, 2]
fname = joinpath(@__DIR__, "..", "..", "test", "bpm_data", "brooks_airfoil_self_noise_and_prediction_1989", "19890016302-figure98-c-bluntness.csv")
bpm = DelimitedFiles.readdlm(fname, ',')
f_teb_vs = bpm[:, 1]
SPL_teb_vs = bpm[:, 2]
nu = 1.4529e-5 # kinematic viscosity, m^2/s
L = 45.72e-2 # span in meters
chord = 60.96e-2 # chord in meters
U = 69.5 # freestream velocity in m/s
M = U/340.46
h = 1.9e-3 # trailing edge bluntness in meters
Psi = 14*pi/180 # bluntness angle in radians
r_e = 1.22 # radiation distance in meters
ΞΈ_e = 90*pi/180
Ξ¦_e = 90*pi/180
M_c = 0.8*M
alphastar = 0.0*pi/180
bl = AcousticAnalogies.TrippedN0012BoundaryLayer()
f_jl, SPL_s_jl, SPL_p_jl, SPL_alpha_jl, SPL_teb_vs_jl = AcousticAnalogies.calculate_bpm_test(nu, L, chord, U, M, r_e, ΞΈ_e, Ξ¦_e, alphastar, bl; do_tebvs=true, h=h, Psi=Psi)
fig = Figure()
ax1 = fig[1, 1] = Axis(fig; xlabel="frequency, kHz", ylabel="SPL_1/3, dB",
xscale=log10,
xminorticksvisible=true,
xminorticks=IntervalsBetween(9),
xticks=LogTicks(IntegerTicks()),
title="Figure 98 (c) - U = $U m/s")
scatter!(ax1, f_s, SPL_s; marker='o', label="TBL-TE suction side, BPM")
lines!(ax1, f_jl./1e3, SPL_s_jl; label="TBL-TE suction side, Julia")
scatter!(ax1, f_p, SPL_p; marker='β‘', label="TBL-TE pressure side, BPM")
lines!(ax1, f_jl./1e3, SPL_p_jl; label="TBL-TE pressure side, Julia")
scatter!(ax1, f_teb_vs, SPL_teb_vs; marker='βΊ', label="Bluntness, BPM")
lines!(ax1, f_jl./1e3, SPL_teb_vs_jl; label="Bluntness, Julia")
xlims!(ax1, 0.2, 20.0)
ylims!(ax1, 40, 80)
axislegend(ax1, position=:lt)
save("19890016302-figure98-c.png", fig)
```

```@example bpm_figure98_d
using AcousticAnalogies: AcousticAnalogies
using AcousticMetrics: ExactThirdOctaveCenterBands
using DelimitedFiles: DelimitedFiles
using GLMakie
# https://docs.makie.org/stable/examples/blocks/axis/index.html#logticks
struct IntegerTicks end
Makie.get_tickvalues(::IntegerTicks, vmin, vmax) = ceil(Int, vmin) : floor(Int, vmax)
# Figures 98 a-d only differ in trailing edge bluntness, so the other sources are all the same.
# And TBL-TE is the only significant source, other than bluntness.
fname = joinpath(@__DIR__, "..", "..", "test", "bpm_data", "brooks_airfoil_self_noise_and_prediction_1989", "19890016302-figure98-a-TBL-TE-suction.csv")
bpm = DelimitedFiles.readdlm(fname, ',')
f_s = bpm[:, 1]
SPL_s = bpm[:, 2]
# Suction and pressure are the same for zero angle of attack.
fname = joinpath(@__DIR__, "..", "..", "test", "bpm_data", "brooks_airfoil_self_noise_and_prediction_1989", "19890016302-figure98-a-TBL-TE-suction.csv")
bpm = DelimitedFiles.readdlm(fname, ',')
f_p = bpm[:, 1]
SPL_p = bpm[:, 2]
fname = joinpath(@__DIR__, "..", "..", "test", "bpm_data", "brooks_airfoil_self_noise_and_prediction_1989", "19890016302-figure98-d-bluntness.csv")
bpm = DelimitedFiles.readdlm(fname, ',')
f_teb_vs = bpm[:, 1]
SPL_teb_vs = bpm[:, 2]
nu = 1.4529e-5 # kinematic viscosity, m^2/s
L = 45.72e-2 # span in meters
chord = 60.96e-2 # chord in meters
U = 69.5 # freestream velocity in m/s
M = U/340.46
h = 2.5e-3 # trailing edge bluntness in meters
Psi = 14*pi/180 # bluntness angle in radians
r_e = 1.22 # radiation distance in meters
ΞΈ_e = 90*pi/180
Ξ¦_e = 90*pi/180
M_c = 0.8*M
alphastar = 0.0*pi/180
bl = AcousticAnalogies.TrippedN0012BoundaryLayer()
f_jl, SPL_s_jl, SPL_p_jl, SPL_alpha_jl, SPL_teb_vs_jl = AcousticAnalogies.calculate_bpm_test(nu, L, chord, U, M, r_e, ΞΈ_e, Ξ¦_e, alphastar, bl; do_tebvs=true, h=h, Psi=Psi)
fig = Figure()
ax1 = fig[1, 1] = Axis(fig; xlabel="frequency, kHz", ylabel="SPL_1/3, dB",
xscale=log10,
xminorticksvisible=true,
xminorticks=IntervalsBetween(9),
xticks=LogTicks(IntegerTicks()),
title="Figure 98 (d) - U = $U m/s")
scatter!(ax1, f_s, SPL_s; marker='o', label="TBL-TE suction side, BPM")
lines!(ax1, f_jl./1e3, SPL_s_jl; label="TBL-TE suction side, Julia")
scatter!(ax1, f_p, SPL_p; marker='β‘', label="TBL-TE pressure side, BPM")
lines!(ax1, f_jl./1e3, SPL_p_jl; label="TBL-TE pressure side, Julia")
scatter!(ax1, f_teb_vs, SPL_teb_vs; marker='βΊ', label="Bluntness, BPM")
lines!(ax1, f_jl./1e3, SPL_teb_vs_jl; label="Bluntness, Julia")
xlims!(ax1, 0.2, 20.0)
ylims!(ax1, 40, 80)
axislegend(ax1, position=:lt)
save("19890016302-figure98-d.png", fig)
```

```@example bpm_figure99_b
using AcousticAnalogies: AcousticAnalogies
using AcousticMetrics: ExactThirdOctaveCenterBands
using DelimitedFiles: DelimitedFiles
using GLMakie
# https://docs.makie.org/stable/examples/blocks/axis/index.html#logticks
struct IntegerTicks end
Makie.get_tickvalues(::IntegerTicks, vmin, vmax) = ceil(Int, vmin) : floor(Int, vmax)
# Figures 99 a-d only differ in trailing edge bluntness, so the other sources are all the same.
# And TBL-TE is the only significant source, other than bluntness.
fname = joinpath(@__DIR__, "..", "..", "test", "bpm_data", "brooks_airfoil_self_noise_and_prediction_1989", "19890016302-figure99-b-TBL-TE-suction.csv")
bpm = DelimitedFiles.readdlm(fname, ',')
f_s = bpm[:, 1]
SPL_s = bpm[:, 2]
# Suction and pressure are the same for zero angle of attack.
fname = joinpath(@__DIR__, "..", "..", "test", "bpm_data", "brooks_airfoil_self_noise_and_prediction_1989", "19890016302-figure99-b-TBL-TE-suction.csv")
bpm = DelimitedFiles.readdlm(fname, ',')
f_p = bpm[:, 1]
SPL_p = bpm[:, 2]
fname = joinpath(@__DIR__, "..", "..", "test", "bpm_data", "brooks_airfoil_self_noise_and_prediction_1989", "19890016302-figure99-b-bluntness.csv")
bpm = DelimitedFiles.readdlm(fname, ',')
f_teb_vs = bpm[:, 1]
SPL_teb_vs = bpm[:, 2]
nu = 1.4529e-5 # kinematic viscosity, m^2/s
L = 45.72e-2 # span in meters
chord = 60.96e-2 # chord in meters
U = 38.6 # freestream velocity in m/s
M = U/340.46
h = 1.1e-3 # trailing edge bluntness in meters
Psi = 14*pi/180 # bluntness angle in radians
r_e = 1.22 # radiation distance in meters
ΞΈ_e = 90*pi/180
Ξ¦_e = 90*pi/180
M_c = 0.8*M
alphastar = 0.0*pi/180
bl = AcousticAnalogies.TrippedN0012BoundaryLayer()
f_jl, SPL_s_jl, SPL_p_jl, SPL_alpha_jl, SPL_teb_vs_jl = AcousticAnalogies.calculate_bpm_test(nu, L, chord, U, M, r_e, ΞΈ_e, Ξ¦_e, alphastar, bl; do_tebvs=true, h=h, Psi=Psi)
fig = Figure()
ax1 = fig[1, 1] = Axis(fig; xlabel="frequency, kHz", ylabel="SPL_1/3, dB",
xscale=log10,
xminorticksvisible=true,
xminorticks=IntervalsBetween(9),
xticks=LogTicks(IntegerTicks()),
title="Figure 99 (b) - U = $U m/s")
scatter!(ax1, f_s, SPL_s; marker='o', label="TBL-TE suction side, BPM")
lines!(ax1, f_jl./1e3, SPL_s_jl; label="TBL-TE suction side, Julia")
scatter!(ax1, f_p, SPL_p; marker='β‘', label="TBL-TE pressure side, BPM")
lines!(ax1, f_jl./1e3, SPL_p_jl; label="TBL-TE pressure side, Julia")
scatter!(ax1, f_teb_vs, SPL_teb_vs; marker='βΊ', label="Bluntness, BPM")
lines!(ax1, f_jl./1e3, SPL_teb_vs_jl; label="Bluntness, Julia")
xlims!(ax1, 0.2, 20.0)
ylims!(ax1, 30, 70)
axislegend(ax1, position=:rt)
save("19890016302-figure99-b.png", fig)
```

```@example bpm_figure99_c
using AcousticAnalogies: AcousticAnalogies
using AcousticMetrics: ExactThirdOctaveCenterBands
using DelimitedFiles: DelimitedFiles
using GLMakie
# https://docs.makie.org/stable/examples/blocks/axis/index.html#logticks
struct IntegerTicks end
Makie.get_tickvalues(::IntegerTicks, vmin, vmax) = ceil(Int, vmin) : floor(Int, vmax)
# Figures 99 a-d only differ in trailing edge bluntness, so the other sources are all the same.
# And TBL-TE is the only significant source, other than bluntness.
fname = joinpath(@__DIR__, "..", "..", "test", "bpm_data", "brooks_airfoil_self_noise_and_prediction_1989", "19890016302-figure99-b-TBL-TE-suction.csv")
bpm = DelimitedFiles.readdlm(fname, ',')
f_s = bpm[:, 1]
SPL_s = bpm[:, 2]
# Suction and pressure are the same for zero angle of attack.
fname = joinpath(@__DIR__, "..", "..", "test", "bpm_data", "brooks_airfoil_self_noise_and_prediction_1989", "19890016302-figure99-b-TBL-TE-suction.csv")
bpm = DelimitedFiles.readdlm(fname, ',')
f_p = bpm[:, 1]
SPL_p = bpm[:, 2]
fname = joinpath(@__DIR__, "..", "..", "test", "bpm_data", "brooks_airfoil_self_noise_and_prediction_1989", "19890016302-figure99-c-bluntness.csv")
bpm = DelimitedFiles.readdlm(fname, ',')
f_teb_vs = bpm[:, 1]
SPL_teb_vs = bpm[:, 2]
nu = 1.4529e-5 # kinematic viscosity, m^2/s
L = 45.72e-2 # span in meters
chord = 60.96e-2 # chord in meters
U = 38.6 # freestream velocity in m/s
M = U/340.46
h = 1.9e-3 # trailing edge bluntness in meters
Psi = 14*pi/180 # bluntness angle in radians
r_e = 1.22 # radiation distance in meters
ΞΈ_e = 90*pi/180
Ξ¦_e = 90*pi/180
M_c = 0.8*M
alphastar = 0.0*pi/180
bl = AcousticAnalogies.TrippedN0012BoundaryLayer()
f_jl, SPL_s_jl, SPL_p_jl, SPL_alpha_jl, SPL_teb_vs_jl = AcousticAnalogies.calculate_bpm_test(nu, L, chord, U, M, r_e, ΞΈ_e, Ξ¦_e, alphastar, bl; do_tebvs=true, h=h, Psi=Psi)
fig = Figure()
ax1 = fig[1, 1] = Axis(fig; xlabel="frequency, kHz", ylabel="SPL_1/3, dB",
xscale=log10,
xminorticksvisible=true,
xminorticks=IntervalsBetween(9),
xticks=LogTicks(IntegerTicks()),
title="Figure 99 (c) - U = $U m/s")
scatter!(ax1, f_s, SPL_s; marker='o', label="TBL-TE suction side, BPM")
lines!(ax1, f_jl./1e3, SPL_s_jl; label="TBL-TE suction side, Julia")
scatter!(ax1, f_p, SPL_p; marker='β‘', label="TBL-TE pressure side, BPM")
lines!(ax1, f_jl./1e3, SPL_p_jl; label="TBL-TE pressure side, Julia")
scatter!(ax1, f_teb_vs, SPL_teb_vs; marker='βΊ', label="Bluntness, BPM")
lines!(ax1, f_jl./1e3, SPL_teb_vs_jl; label="Bluntness, Julia")
xlims!(ax1, 0.2, 20.0)
ylims!(ax1, 30, 70)
axislegend(ax1, position=:rt)
save("19890016302-figure99-c.png", fig)
```

```@example bpm_figure99_d
using AcousticAnalogies: AcousticAnalogies
using AcousticMetrics: ExactThirdOctaveCenterBands
using DelimitedFiles: DelimitedFiles
using GLMakie
# https://docs.makie.org/stable/examples/blocks/axis/index.html#logticks
struct IntegerTicks end
Makie.get_tickvalues(::IntegerTicks, vmin, vmax) = ceil(Int, vmin) : floor(Int, vmax)
# Figures 99 a-d only differ in trailing edge bluntness, so the other sources are all the same.
# And TBL-TE is the only significant source, other than bluntness.
fname = joinpath(@__DIR__, "..", "..", "test", "bpm_data", "brooks_airfoil_self_noise_and_prediction_1989", "19890016302-figure99-b-TBL-TE-suction.csv")
bpm = DelimitedFiles.readdlm(fname, ',')
f_s = bpm[:, 1]
SPL_s = bpm[:, 2]
# Suction and pressure are the same for zero angle of attack.
fname = joinpath(@__DIR__, "..", "..", "test", "bpm_data", "brooks_airfoil_self_noise_and_prediction_1989", "19890016302-figure99-b-TBL-TE-suction.csv")
bpm = DelimitedFiles.readdlm(fname, ',')
f_p = bpm[:, 1]
SPL_p = bpm[:, 2]
fname = joinpath(@__DIR__, "..", "..", "test", "bpm_data", "brooks_airfoil_self_noise_and_prediction_1989", "19890016302-figure99-d-bluntness.csv")
bpm = DelimitedFiles.readdlm(fname, ',')
f_teb_vs = bpm[:, 1]
SPL_teb_vs = bpm[:, 2]
nu = 1.4529e-5 # kinematic viscosity, m^2/s
L = 45.72e-2 # span in meters
chord = 60.96e-2 # chord in meters
U = 38.6 # freestream velocity in m/s
M = U/340.46
h = 2.5e-3 # trailing edge bluntness in meters
Psi = 14*pi/180 # bluntness angle in radians
r_e = 1.22 # radiation distance in meters
ΞΈ_e = 90*pi/180
Ξ¦_e = 90*pi/180
M_c = 0.8*M
alphastar = 0.0*pi/180
bl = AcousticAnalogies.TrippedN0012BoundaryLayer()
f_jl, SPL_s_jl, SPL_p_jl, SPL_alpha_jl, SPL_teb_vs_jl = AcousticAnalogies.calculate_bpm_test(nu, L, chord, U, M, r_e, ΞΈ_e, Ξ¦_e, alphastar, bl; do_tebvs=true, h=h, Psi=Psi)
fig = Figure()
ax1 = fig[1, 1] = Axis(fig; xlabel="frequency, kHz", ylabel="SPL_1/3, dB",
xscale=log10,
xminorticksvisible=true,
xminorticks=IntervalsBetween(9),
xticks=LogTicks(IntegerTicks()),
title="Figure 99 (d) - U = $U m/s")
scatter!(ax1, f_s, SPL_s; marker='o', label="TBL-TE suction side, BPM")
lines!(ax1, f_jl./1e3, SPL_s_jl; label="TBL-TE suction side, Julia")
scatter!(ax1, f_p, SPL_p; marker='β‘', label="TBL-TE pressure side, BPM")
lines!(ax1, f_jl./1e3, SPL_p_jl; label="TBL-TE pressure side, Julia")
scatter!(ax1, f_teb_vs, SPL_teb_vs; marker='βΊ', label="Bluntness, BPM")
lines!(ax1, f_jl./1e3, SPL_teb_vs_jl; label="Bluntness, Julia")
xlims!(ax1, 0.2, 20.0)
ylims!(ax1, 30, 70)
axislegend(ax1, position=:rt)
save("19890016302-figure99-d.png", fig)
```

| AcousticAnalogies | https://github.com/OpenMDAO/AcousticAnalogies.jl.git |
|
[
"Apache-2.0"
] | 0.8.1 | c14d0b2e7f19374017a2b5b6dfe48c5723c791ae | docs | 5922 | ```@meta
CurrentModule = AADocs
```
# Compact Formulation 1A CCBlade.jl Example
AcousticAnalogies.jl contains routines that take in types defined by
[CCBlade.jl](https://github.com/byuflowlab/CCBlade.jl), a blade element
momentum theory (BEMT) code and construct the types
used by AcousticAnalogies.jl for acoustic predictions. This makes it simple to
go from a BEMT aerodynamic prediction of a propeller or rotor to an acoustic
prediction.
First step is to load up `CCBlade.jl`.
```@example first_example
using CCBlade: parsefile, viterna, AlphaAF, SkinFriction, PrandtlGlauert, DuSeligEggers, PrandtlTipHub, Rotor, Section, OperatingPoint, solve, linearliftcoeff
nothing # hide
```
Then we'll define some parameters we'll need to create the CCBlade.jl types.
First some atmospheric properties:
```@example first_example
gam = 1.4
R = 287.058 # J/(kg*K)
rho = 1.226 # kg/m^3
c0 = 340.0 # m/s
mu = 0.1780e-4 # kg/(m*s)
nothing # hide
```
And some blade geometry parameters:
```@example first_example
num_blades = 3
num_radial = 30
precone = 0.0 # rad
Rtip = 0.5*24*0.0254 # blade radius, m
Rhub = 0.2*Rtip # hub radius, m
r_ = range(Rhub, Rtip, length=num_radial+1) # blade element interfaces
radii = 0.5.*(r_[2:end] .+ r_[1:end-1]) # blade element centers, m
c = 1.5*0.0254 # (constant) chord, m
chord = fill(c, num_radial) # chord, m
D = 2*Rtip # blade diameter, m
P = 16*0.0254 # propeller pitch, m
twist = @. atan(P/(pi*D*radii/Rtip)) # twist, rad
area_over_chord_squared = 0.08217849116518001 # Cross-sectional area per chord^2 for NACA0012.
nothing # hide
```
We also need airfoil lift and drag coefficients as a function of angle of
attack. CCBlade.jl has routines for interpolating and correcting airfoil lift
and drag data. Here we're starting with [NACA0012 airfoil data from
airfoiltools.com](http://airfoiltools.com/polar/details?polar=xf-n0012-il-500000):
```@example first_example
af_fname = joinpath(@__DIR__, "assets", "xf-n0012-il-500000.dat")
info, Re, Mach, alpha, cl, cd = parsefile(af_fname, false)
# Extend the angle of attack with the Viterna method.
cr75 = c/Rtip
(alpha, cl, cd) = viterna(alpha, cl, cd, cr75)
af = AlphaAF(alpha, cl, cd, info, Re, Mach)
# Reynolds number correction. The 0.6 factor seems to match the NACA 0012
# drag data from airfoiltools.com.
reynolds = SkinFriction(Re, 0.6)
# Mach number correction.
mach = PrandtlGlauert()
# Rotational stall delay correction. Need some parameters from the CL curve.
m, alpha0 = linearliftcoeff(af, 1.0, 1.0) # dummy values for Re and Mach
# Create the Du Selig and Eggers correction.
rotation = DuSeligEggers(1.0, 1.0, 1.0, m, alpha0)
# The usual hub and tip loss correction.
tip = PrandtlTipHub()
nothing # hide
```
Finally, the freestream velocity and the rotor rotation rate:
```@example first_example
v = 0.11*c0 # m/s
omega = 7100 * 2*pi/60 # rad/s
pitch = 0.0 # rad
nothing # hide
```
Now we have enough information to create the CCBlade.jl `structs` we'll need.
```@example first_example
rotor = Rotor(Rhub, Rtip, num_blades; precone=precone, turbine=false, mach=mach, re=reynolds, rotation=rotation, tip=tip)
sections = Section.(radii, chord, twist, Ref(af))
ops = OperatingPoint.(v, omega.*radii, rho, pitch, mu, c0)
nothing # hide
```
And we can use CCBlade.jl to solve the BEMT equations.
```@example first_example
outs = solve.(Ref(rotor), sections, ops)
nothing # hide
```
And then make some plots.
```@example first_example
using GLMakie
fig1 = Figure()
ax1_1 = fig1[1, 1] = Axis(fig1, xlabel="radii/Rtip", ylabel="normal load/span, N/m")
ax1_2 = fig1[2, 1] = Axis(fig1, xlabel="radii/Rtip", ylabel="circum load/span, N/m")
lines!(ax1_1, radii./Rtip, getproperty.(outs, :Np))
lines!(ax1_2, radii./Rtip, getproperty.(outs, :Tp))
hidexdecorations!(ax1_1, grid=false)
save("ccblade_example-ccblade_loads.png", fig1)
nothing # hide
```

Now we can use the CCBlade.jl `structs` to create AcousticAnalogies.jl source
elements. The key function is [`f1a_source_elements_ccblade`](@ref):
```@docs
f1a_source_elements_ccblade
```
So let's try that:
```@example first_example
using AcousticAnalogies: f1a_source_elements_ccblade, ConstVelocityAcousticObserver, noise, combine, pressure_monopole, pressure_dipole
bpp = 2*pi/omega/num_blades # blade passing period
positive_x_rotation = true
ses = f1a_source_elements_ccblade(rotor, sections, ops, outs, [area_over_chord_squared], 4*bpp, 64, positive_x_rotation)
nothing # hide
```
Now we can use the source elements to perform an acoustic prediction, after we
decide on an acoustic observer location.
```@example first_example
using AcousticMetrics
# Sideline microphone location in meters.
x_obs = [0.0, 2.3033, 2.6842]
v_obs = [v, 0.0, 0.0]
obs = ConstVelocityAcousticObserver(0.0, x_obs, v_obs)
apth = noise.(ses, Ref(obs))
apth_total = combine(apth, 2*bpp, 64)
nothing # hide
```
And finally plot the acoustic pressure time history.
```@example first_example
fig2 = Figure()
ax2_1 = fig2[1, 1] = Axis(fig2, xlabel="time, blade passes", ylabel="acoustic pressure, monopole, Pa")
ax2_2 = fig2[2, 1] = Axis(fig2, xlabel="time, blade passes", ylabel="acoustic pressure, dipole, Pa")
ax2_3 = fig2[3, 1] = Axis(fig2, xlabel="time, blade passes", ylabel="acoustic pressure, total, Pa")
t = AcousticMetrics.time(apth_total)
t_nondim = (t .- t[1])./bpp
lines!(ax2_1, t_nondim, pressure_monopole(apth_total))
lines!(ax2_2, t_nondim, pressure_dipole(apth_total))
lines!(ax2_3, t_nondim, AcousticMetrics.pressure(apth_total))
hidexdecorations!(ax2_1, grid=false)
hidexdecorations!(ax2_2, grid=false)
save("ccblade_example-apth.png", fig2)
nothing # hide
```

| AcousticAnalogies | https://github.com/OpenMDAO/AcousticAnalogies.jl.git |
|
[
"Apache-2.0"
] | 0.8.1 | c14d0b2e7f19374017a2b5b6dfe48c5723c791ae | docs | 17175 | ```@meta
CurrentModule = AADocs
```
# [Compact Formulation 1A Guided Example](@id guided_example)
There are four steps to predicting propeller/rotor noise with
AcousticAnalogies.jl.
1. Define the blade's motion and loading as a function of source time
2. Perform the advanced time calculation
3. Propagate the acoustics caused by each blade section to the acoustic observer(s) using
the F1A formulation
4. Combine all the acoustic pressures resulting from step 3 into one acoustic
pressure time history
## 1. Define the Blade
### The Blade-Fixed Reference Frame
We need to know what the blade is doing aerodynamically before we can predict
how loud it is. Specifically, we need to know at each radial station along each blade the
* position
* velocity
* acceleration
* jerk (time derivative of acceleration)
* cross-sectional area
* loading per unit span
all as a function of time. We'll do this first in a reference frame moving with
the blades, i.e., translating and rotating with the blade geometry, that we'll
call the blade-fixed reference frame.
First step is to load up `AcousticAnalogies.jl`:
```@example first_example
using AcousticAnalogies
```
So, for this example we'll imagine that we have a blade with radial stations
that look like this:
```@example first_example
num_blades = 2 # number of blades
Rhub = 0.10 # meters
Rtip = 1.1684 # meters
radii = [
0.92904E-01, 0.11751, 0.15631, 0.20097,
0.24792 , 0.29563, 0.34336, 0.39068,
0.43727 , 0.48291, 0.52741, 0.57060,
0.61234 , 0.65249, 0.69092, 0.72752,
0.76218 , 0.79479, 0.82527, 0.85352,
0.87947 , 0.90303, 0.92415, 0.94275,
0.95880 , 0.97224, 0.98304, 0.99117,
0.99660 , 0.99932].*Rtip
nothing # hide
```
`radii` is a `Vector` of the distance of each blade element's center from the
propeller hub, in meters.
Each of the `num_blades` blades have the same radial coordinates in the
blade-fixed frame, but different angular coordinates: blade number `2` will be
offset `180Β°` from blade number `1`.
```@example first_example
ΞΈs = 2*pi/num_blades.*(0:(num_blades-1))
nothing # hide
```
So now we know where each blade element is in the blade-fixed frame: in polar
coordinates, element at radial index `j` and blade `k` is at `radii[j]`,
`ΞΈs[k]`.
We'll also need the length of each blade element.
There is a convenience function in `AcousticAnalogies.jl` called `get_dradii`
that calculates each blade element's length from the element centers and the hub
and tip location:
```@example first_example
dradii = get_dradii(radii, Rhub, Rtip)
```
The compact F1A calculation also requires the cross-sectional area of each
element. In many types of propeller codes, the cross-sectional shape at each
radial station is defined as having a certain standard shape (e.g., circular
near the hub, a given airfoil shape elsewhere). If we know the cross-sectional
area for each relevant airfoil shape with a chord length of one, we can find the
cross-sectional area for any chord length by multiplying by the squared chord
length. In this example we'll assume the blade uses the same airfoil shape at
each radial station, and that this airfoil has a cross-sectional area per unit
chord squared of `0.064`. After defining the chord length for each radial
station, we find the cross-sectional area in units of meters squared:
```@example first_example
cs_area_over_chord_squared = 0.064
chord = [
0.35044 , 0.28260 , 0.22105 , 0.17787 , 0.14760,
0.12567 , 0.10927 , 0.96661E-01 , 0.86742E-01 ,
0.78783E-01 , 0.72287E-01 , 0.66906E-01 , 0.62387E-01 ,
0.58541E-01 , 0.55217E-01 , 0.52290E-01 , 0.49645E-01 ,
0.47176E-01 , 0.44772E-01 , 0.42326E-01 , 0.39732E-01 ,
0.36898E-01 , 0.33752E-01 , 0.30255E-01 , 0.26401E-01 ,
0.22217E-01 , 0.17765E-01 , 0.13147E-01 , 0.85683E-02 ,
0.47397E-02].*Rtip
cs_area = cs_area_over_chord_squared.*chord.^2
nothing # hide
```
Next, we need the loading on the blade. `AcousticAnalogies.jl` needs us to
specify the loading at each radial station as a 3D vector in units of loading
per unit span. But for now, let's imagine that we've run some type of propeller
aerodynamic code (I used [CCBlade.jl](https://github.com/byuflowlab/CCBlade.jl),
FYI) and have the normal and circumferential loading as a function of radial
position along the blade. The loading is in units of force per unit span (here,
Newtons/meter).
```@example first_example
fn = [32.87810395677037, 99.05130471878633, 190.1751697055377,
275.9492967565419, 358.14423433748146, 439.64679797145624,
520.1002808148281, 599.1445046901513, 676.2358818769462,
751.3409657831587, 824.2087672338118, 894.4465814696498,
961.9015451678036, 1026.0112737521583, 1086.2610633094212,
1141.4900032393818, 1190.3376703335655, 1230.8999662260915,
1260.375390697363, 1275.354422403355, 1271.8827617273287,
1245.9059108698596, 1193.9967137923225, 1113.9397490286995,
1005.273267675585, 869.4101036003673, 709.8100230053759,
532.1946243370355, 346.53986082379265, 180.66763939805125]
fc = [26.09881302938423, 55.5216259955307, 75.84767780212506, 84.84509232798283,
89.73045068624886, 93.02999477395113, 95.4384273852926, 97.31647535460424,
98.81063179767507, 100.07617771995163, 101.17251941705561, 102.11543878532882,
102.94453631586998, 103.63835661864168, 104.18877957193807, 104.51732850056433,
104.54735678589765, 104.1688287897138, 103.20319203286938, 101.46246817378582,
99.11692436681635, 96.49009546562475, 93.45834266417528, 89.49783586366624,
83.87176811707455, 75.83190739325453, 64.88004605331857, 50.98243352318318,
34.85525518071079, 19.358679206883078]
nothing # hide
```
We also need to decide on some atmospheric properties, specifically the
ambient air density and speed of sound.
```@example first_example
rho = 1.226 # kg/m^3
c0 = 340.0 # m/s
nothing # hide
```
And we need to decide on some operating point parameters. Let's assume that
the blade is moving forward at `5.0 m/s` and rotating at `2200 rev/min`.
```@example first_example
v = 0.0 # m/s
omega = 2200 * 2*pi/60 # rad/s
nothing # hide
```
We also need to decide over what time period we're going to calculate the
blades' acoustics. Let's do one rotation of the blade:
```@example first_example
period = 2*pi/omega
num_src_times = 64
dt = 2*period/(num_src_times-1)
src_times = (0:num_src_times-1).*dt
nothing # hide
```
So at this point we have all the information needed to define the source
elements in a frame of reference that's moving with the blade, i.e., rotating at
a rate of `omega` and moving forward at a speed of `v` defined above. Let's do
that. We want one source element for each radial station along the blade at each
`src_time` and each of the `num_blades` blades. Sounds kind of complicated, but
luckily Julia's broadcasting makes this easy. What we'd like is an array `ses`
of `CompactF1ASourceElement` types that has `size` `(num_src_times, num_radial,
num_blades)`, where `ses[i, j, k]` holds the `CompactF1ASourceElement` at
`src_time[i]`, `radii[j]`, and blade number `k`. So let's reshape the input
arrays to make that happen.
```@example first_example
ΞΈs = reshape(ΞΈs, 1, 1, :)
radii = reshape(radii, 1, :, 1)
dradii = reshape(dradii, 1, :, 1)
cs_area = reshape(cs_area, 1, :, 1)
fn = reshape(fn, 1, :, 1)
fc = reshape(fc, 1, :, 1)
src_times = reshape(src_times, :, 1, 1) # This isn't really necessary.
nothing # hide
```
Now, the last thing we need to think about is the coordinate system we're
defining these quantities in. Again, right now we are in the blade-fixed frame,
which means the coordinate system is rotating with the blades at a rate of
`omega` and translating with a velocity `v` in the positive x direction. The
`CompactF1ASourceElement` constructor we'll use allows us to specify each source
element's location in terms of `r` and `ΞΈ`, where `r` is the distance from the
origin and `ΞΈ` is the polar angle from the positive y axis, rotating toward the
positive `z` axis. So the `radii` and `ΞΈs` arrays are set up correctly.
Now, one of the tricky aspects of using an acoustic analogy is getting the
direction of the loading on the integration surface (or line in the case of a
compact formulation) right. An acoustic analogy requires the loading *on the
fluid*, not on the solid body. One might expect that we just need to switch the
sign on the `fn` and `fc` arrays above. That's true for the `fn` array, which
represents the loading in the axial direction: if we imagine our propeller is
moving in the positive x direction, the propeller would be pushing on the fluid
in the negative x direction in normal operation. But what about the
circumferential loading? In the blade-fixed frame, we assume the propeller is
rotating about the x axis in a positive (i.e., right-handed) sense. So, if we
imagine the situation for `ΞΈ=0`, the blade will be initially along the positive
y axis, rotating toward the positive z axis. What direction will the
circumferential loading on the fluid be? It will be positive, pointing in the
same direction as the positive z axis. So we don't need to switch the sign on
the `fc` array.
So let's create all the source elements:
```@example first_example
ses = CompactF1ASourceElement.(rho, c0, radii, ΞΈs, dradii, cs_area, -fn, 0.0, fc, src_times)
size(ses)
```
The size of the source element array ended up like we wanted: `(num_src_times, num_radial, num_blades)`.
### The Global Reference Frame
At this point we have an array of `CompactF1ASourceElement` that describes the what
each blade element "source" is doing from the perspective of the blade-fixed
reference frame. But in order to perform the F1A calculation, we need to move
the sources from the blade-fixed frame to the global reference frame, i.e., the
one for which the fluid medium (air) appears to be stationary. This involves
just setting the position and loading components of each `CompactF1ASourceElement`
to the correct values (`y0dot` through `y3dot` and `f0dot` and `f1dot`). This
could be done manually, but it's easier to use the
[KinematicCoordinateTransformations.jl](https://github.com/OpenMDAO/KinematicCoordinateTransformations.jl)
package.
The first transformation we need to perform is a steady rotation around the x
axis. So we create a `SteadyRotXTransformation`:
```@example first_example
using KinematicCoordinateTransformations
t0 = 0.0 # Time at which the angle between the source and target coordinate systems is equal to offest.
offset = 0.0 # Angular offset between the source and target cooridante systems at t0.
rot_trans = SteadyRotXTransformation(t0, omega, offset)
nothing # hide
```
Next, we need to orient the rotation axis of the blades as it is the global
frame. For example, let's say that it's pointed in the global positive z-axis
direction, and the first blade is pointed in the positive y-axis direction. Then
we can perform this transformation using the `ConstantLinearMap` transformation:
```@example first_example
using LinearAlgebra: Γ
using StaticArrays
rot_axis = @SVector [0.0, 0.0, 1.0]
blade_axis = @SVector [0.0, 1.0, 0.0]
global_trans = ConstantLinearMap(hcat(rot_axis, blade_axis, rot_axisΓblade_axis))
nothing # hide
```
Finally, we need the blade to move with the appropriate forward velocity, and
start from the desired location in the global reference frame:
```@example first_example
y0_hub = @SVector [0.0, 0.0, 0.0] # Position of the hub at time t0
v0_hub = SVector{3}(v.*rot_axis) # Constant velocity of the hub in the global reference frame
const_vel_trans = ConstantVelocityTransformation(t0, y0_hub, v0_hub)
nothing # hide
```
Now we could apply each of these transformations to the `SourceElement` array.
But it's more efficient to combine these three transformations into one, and
then use that on the `SourceElements` using `compose`.
```@example first_example
trans = compose.(src_times, Ref(const_vel_trans), compose.(src_times, Ref(global_trans), Ref(rot_trans)))
nothing # hide
```
Now `trans` will perform the three transformations from right to left
(`rot_trans`, `global_trans`, `const_vel_trans`). Now we use it on `ses`:
```@example first_example
ses = ses .|> trans
nothing # hide
```
So now the `ses` has been transformed from the blade-fixed reference frame to
the global reference frame. We could have created the source elements and
transformed them all in one line, too, which is pretty slick:
```@example first_example
ses = AcousticAnalogies.CompactF1ASourceElement.(rho, c0, radii, ΞΈs, dradii, cs_area, -fn, 0.0, fc, src_times) .|> trans
nothing # hide
```
## 2. Perform the Advanced Time Calculation
The `ses` object now describes how each blade element source is moving through
the global reference frame over the time `src_time`. As it does this, it will
emit acoustics that can be sensed by an acoustic observer (a human, or a
microphone). The exact "amount" of acoustics the observer will experience depends
on the relative location and motion between each source and the observer. So
we'll need to define our acoustic observer before we can calculate the noise
heard by it. For this example, we'll assume that our acoustic observer is
stationary in the global frame.
```@example first_example
x0 = @SVector [100*12*0.0254, 0.0, 0.0] # 100 ft in meters
obs = StationaryAcousticObserver(x0)
nothing # hide
```
Now, in order to perform the F1A calculation, we need to know when each acoustic
disturbance emitted by the source arrives at the observer. This is referred to an
advanced time calculation, and is done this way:
```@example first_example
obs_time = adv_time.(ses, Ref(obs))
nothing # hide
```
That returns an array the same size of `ses` of the time each acoustic
disturbance reaches the observer `obs`:
```@example first_example
@show size(obs_time)
nothing # hide
```
## 3. Perform the F1A Calculation
We're finally ready to do the compact F1A calculation!
```@example first_example
apth = noise.(ses, Ref(obs), obs_time)
nothing # hide
```
When called this way (notice the `.` after `noise`), the `noise` routine returns an
array of `F1AOutput` `struct`s, the same size as `ses` and `obs_time`.
Each `F1AOutput` `struct` has three components: the observer time `t`,
the thickness/monopole part of the acoustic pressure `p_m`, and the
loading/dipole part of the acoustic pressure `p_d`.
## 4. Combine the Acoustic Pressures
We now have a noise prediction for each of the individual source elements in
`ses` at the acoustic observer `obs`. What we ultimately want is the *total*
noise prediction at `obs`βwe want to add all the acoustic pressures in `apth`
together. But we can't add them directly, yet, since the observer times are not
all the same. What we need to do is first interpolate the `apth` of each source
onto a common observer time grid, and then add them up. We'll do this using the
`AcousticAnalogies.combine` function.
```@example first_example
bpp = period/num_blades # blade passing period
obs_time_range = 2*bpp
num_obs_times = 128
apth_total = combine(apth, obs_time_range, num_obs_times, 1)
nothing # hide
```
`combine` returns a single `F1AAcousticPressure` `struct` made up of `Vector`sβit
is an "struct of arrays" and not an "array of structs" like `apth`:
```@example first_example
@show typeof(apth) typeof(apth_total)
nothing # hide
```
We can now have a look at the total acoustic pressure time history at the
observer:
```@example first_example
using AcousticMetrics
using GLMakie
fig = Figure()
ax1 = fig[1, 1] = Axis(fig, xlabel="time, blade passes", ylabel="monopole, Pa")
ax2 = fig[2, 1] = Axis(fig, xlabel="time, blade passes", ylabel="dipole, Pa")
ax3 = fig[3, 1] = Axis(fig, xlabel="time, blade passes", ylabel="total, Pa")
t_nondim = (AcousticMetrics.time(apth_total) .- AcousticMetrics.starttime(apth_total))./bpp
l1 = lines!(ax1, t_nondim, apth_total.p_m)
l2 = lines!(ax2, t_nondim, apth_total.p_d)
l3 = lines!(ax3, t_nondim, apth_total.p_m.+apth_total.p_d)
hidexdecorations!(ax1, grid=false)
hidexdecorations!(ax2, grid=false)
save("first_example-apth_total.png", fig)
nothing # hide
```

We can now post-process the total acoustic pressure time history in `apth_total` in any way we'd like.
# AcousticMetrics.jl Support
The [`combine`](@ref) function returns a `F1AAcousticPressure` `struct`, which
subtypes the `AbstractAcousticPressure` type from the AcousticMetrics.jl
package. Because of this, any of the acoustic metric functions defined in
AcousticMetrics.jl relevant to `AbstractAcousticPressure` objects can be used
with the `F1AAcousticPressure` returned by `combine`:
```@example first_example
using AcousticMetrics
# Calculate the overall sound pressure level from the acoustic pressure time history.
oaspl_from_apth = AcousticMetrics.OASPL(apth_total)
# Calculate the narrowband spectrum of mean-squared pressure.
nbs = AcousticMetrics.MSPSpectrumAmplitude(apth_total)
# Calculate the OASPL from the NBS.
oaspl_from_nbs = AcousticMetrics.OASPL(nbs)
(oaspl_from_apth, oaspl_from_nbs)
```
The two approaches to calculate the OASPL give essentially the same result.
| AcousticAnalogies | https://github.com/OpenMDAO/AcousticAnalogies.jl.git |
|
[
"Apache-2.0"
] | 0.8.1 | c14d0b2e7f19374017a2b5b6dfe48c5723c791ae | docs | 2941 | ```@meta
CurrentModule = AADocs
```
# AcousticAnalogies.jl Documentation
**Summary**: A pure-Julia package for propeller/rotor blade noise prediction with acoustic analogies.
**What's an acoustic analogy?**
* TL;DR answer:
An acoustic analogy is a noise prediction approach that takes information from
one area of the fluid domain (e.g., a propeller blade surface, or a fictitious
surface surrounding a complicated flow) and calculates the acoustics radiated
by the flow. The particular acoustic analogy implemented in `AcousticAnalogies.jl` is
especially well-suited for predicting tonal propeller/rotor noise, and has
features that ease its inclusion in gradient-based optimizations.
* Mathy answer:
An acoustic analogy is a clever rearrangement of the Navier-Stokes equations,
the governing equations of fluid flow, into a form that looks like the classical
inhomogeneous wave equation. The inhomogeneous term represents sources of sound
in the flow. The wave equation can be solved using the appropriate [Green's
function](https://en.wikipedia.org/wiki/Green%27s_function#Table_of_Green's_functions),
which requires the evaluation of two surface integrals and a volume integral
(usually neglected). If the integration surface is taken to be a solid surface
in the fluid domain (e.g., a propeller blade), we can use the acoustic analogy
solution to predict the acoustics caused by the motion of and loading on the
integration surface.
**Features**:
* Implementation of L. Lopes' compact form of Farassat's formulation 1A
(see
[http://dx.doi.org/10.2514/6.2015-2673](http://dx.doi.org/10.2514/6.2015-2673)
or
[http://dx.doi.org/10.2514/1.C034048](http://dx.doi.org/10.2514/1.C034048)
for details).
* Implementation of Brooks & Burley's rotor broadband noise prediction method [http://dx.doi.org/10.2514/6.2001-2210](http://dx.doi.org/10.2514/6.2001-2210).
* Support for stationary or constant-velocity moving observers, with an
explict calculation for the latter from D. Casalino
[http://dx.doi.org/10.1016/S0022-460X(02)00986-0](http://dx.doi.org/10.1016/S0022-460X(02)00986-0).
* Thoroughly tested: unit tests for everything, and multiple comparisons of the entire
calculation to equivalent methods in NASA's ANOPP2 code.
* Convenient, fast coordinate system transformations through
[KinematicCoordinateTransformations.jl](https://github.com/OpenMDAO/KinematicCoordinateTransformations.jl).
* Written in pure Julia, and compatible with automatic differentiation (AD)
tools like [ForwardDiff.jl](https://github.com/JuliaDiff/ForwardDiff.jl).
* Comprehensive docs (TODO).
* Fast!
**Installation**
```julia-repl
] add AcousticAnalogies
```
**Usage**
See the docs.
# Software Quality Assurance
* This repository contains extensive tests run by GitHub Actions.
* This repository only allows signed commits to be merged into the `main` branch.
| AcousticAnalogies | https://github.com/OpenMDAO/AcousticAnalogies.jl.git |
|
[
"Apache-2.0"
] | 0.8.1 | c14d0b2e7f19374017a2b5b6dfe48c5723c791ae | docs | 46999 | ```@meta
CurrentModule = AADocs
```
# Software Quality Assurance, Cont.
## BPM.jl Comparisons for the Pettingill et al. Ideally Twisted Rotor
See [here](http://dx.doi.org/10.2514/6.2021-1928) or [here](https://ntrs.nasa.gov/citations/20205003328) for details on the Ideally Twisted Rotor.
### Figure 22b
```@example figure22b
using AcousticAnalogies
using AcousticMetrics: AcousticMetrics
using GLMakie
using KinematicCoordinateTransformations: compose, SteadyRotXTransformation, SteadyRotYTransformation, SteadyRotZTransformation, ConstantVelocityTransformation
using FileIO: load
using FLOWMath: Akima
using StaticArrays: @SVector
# Copied from BPM.jl (would like to add BPM.jl as a dependency if it's registered in General some day).
# tip vortex noise correction data based on "Airfoil Tip Vortex Formation Noise"
const bm_tip_alpha_aspect_data = [2.0,2.67,4.0,6.0,12.0,24.0]
const bm_tip_alpha_aratio_data = [0.54,0.62,0.71,0.79,0.89,0.95]
const bm_tip_alpha_aspect_ratio_correction = Akima(bm_tip_alpha_aspect_data, bm_tip_alpha_aratio_data)
function bm_tip_vortex_alpha_correction_nonsmooth(aspect_ratio)
# compute tip lift curve slope
if aspect_ratio < 2.0
aratio = 0.5*one(aspect_ratio)
elseif 2.0 <= aspect_ratio <= 24.0
aratio = bm_tip_alpha_aspect_ratio_correction(aspect_ratio)
elseif aspect_ratio > 24.0
aratio = 1.0*one(aspect_ratio)
end
return aratio
end
struct BMTipAlphaCorrection{TCorrection} <: AbstractTipAlphaCorrection
correction::TCorrection
function BMTipAlphaCorrection(aspect_ratio)
# correction = BPM._tip_vortex_alpha_correction_nonsmooth(aspect_ratio)
correction = bm_tip_vortex_alpha_correction_nonsmooth(aspect_ratio)
return new{typeof(correction)}(correction)
end
end
function AcousticAnalogies.tip_vortex_alpha_correction(blade_tip::AbstractBladeTip{<:BMTipAlphaCorrection}, alphatip)
a0l = AcousticAnalogies.alpha_zerolift(blade_tip)
correction_factor = AcousticAnalogies.tip_alpha_correction(blade_tip).correction
return correction_factor * (alphatip - a0l) + a0l
end
# Pettingill et al., "Acoustic And Performance Characteristics of an Ideally Twisted Rotor in Hover", 2021
# Parameters from Table 1
B = 4 # number of blades
Rtip = 0.1588 # meters
chord = 0.2*Rtip
# Standard day:
Tamb = 15 + 273.15 # 15Β°C in Kelvin
pamb = 101325.0 # Pa
R = 287.052874 # J/(kg*K)
rho = pamb/(R*Tamb)
asound = sqrt(1.4*R*Tamb)
# Dynamic and kinematic viscosity
mu = rho*1.4502e-5
nu = mu/rho
# This is a hover case, so the freestream velocity should be zero.
# CCBlade.jl will run with a zero freestream, but I've found that it compares a bit better with experiment if I give it a small non-zero value.
Vinf = 0.001*asound
# Figure 22 caption says Ξ©_c = 5465 RPM.
rpm = 5465.0
omega = rpm * (2*pi/60)
# Get "cell-centered" radial locations, and also the radial spacing.
num_radial = 50
r_Rtip_ = range(0.2, 1.0; length=num_radial+1)
r_Rtip = 0.5 .* (r_Rtip_[2:end] .+ r_Rtip_[1:end-1])
radii = r_Rtip .* Rtip
dradii = (r_Rtip_[2:end] .- r_Rtip_[1:end-1]) .* Rtip
Rhub = r_Rtip_[1]*Rtip
# From Pettingill Equation (1), and value for Ξ_tip in Table 1.
Ξ_tip = 6.9 * pi/180
twist = Ξ_tip ./ (r_Rtip)
# Need some aerodynamic quantities.
# Got these using CCBlade.jl: see `AcousticAnalogies.jl/test/gen_bpmjl_data/itr_with_bpmjl.jl`.
data_bpmjl = load(joinpath(@__DIR__, "..", "..", "test", "gen_bpmjl_data", "figure22b.jld2"))
# Angle of attack at each radial station, radians.
alpha = data_bpmjl["alpha"]
# Flow speed normal to span at each radial station, m/s.
U = data_bpmjl["U"]
# In the Figure 22 caption, "for these predictions, bluntness thickness H was set to 0.8 mm and trailing edge angle Ξ¨ was set to 16 degrees."
h = 0.8e-3 # meters
Psi = 16*pi/180 # radians
# We'll run for 1 blade pass, 20 time steps per blade pass.
num_blade_pass = 1
num_src_times_blade_pass = 20
bpp = 1/(B/(2*pi)*omega) # 1/(B blade_passes/rev * 1 rev / (2*pi rad) * omega rad/s)
period_src = num_blade_pass*bpp
num_src_times = num_src_times_blade_pass * num_blade_pass
t0 = 0.0
dt = period_src/num_src_times
src_times = t0 .+ (0:num_src_times-1).*dt
# BPM.jl uses a different tip alpha correction which appears to require the blade aspect ratio.
# Need to find the blade aspect ratio of the ITR to apply the tip vortex angle of attack correction.
# The aspect ratio is defined as the blade tip radius divided by the average chord, but the chord is constant for this case.
aspect_ratio = Rtip / chord
# Now we can create the tip object.
alpha0lift = 0.0
blade_tip = AcousticAnalogies.FlatTip(BMTipAlphaCorrection(aspect_ratio), alpha0lift)
# Start with a rotation about the negative x axis.
positive_x_rotation = false
rot_trans = SteadyRotXTransformation(t0, omega*ifelse(positive_x_rotation, 1, -1), 0)
# Then translate along the positive x axis.
y0_hub = @SVector [0.0, 0.0, 0.0] # m
v0_hub = @SVector [Vinf, 0.0, 0.0]
const_vel_trans = ConstantVelocityTransformation(t0, y0_hub, v0_hub)
# Then a 90Β° rotation about the negative z axis.
trans_z90deg = SteadyRotZTransformation(0.0, 0.0, -0.5*pi)
# Then a 90Β° rotation about the negative y axis.
trans_y90deg = SteadyRotYTransformation(0.0, 0.0, -0.5*pi)
# Put them all together:
trans = compose.(src_times, Ref(trans_y90deg),
compose.(src_times, Ref(trans_z90deg),
compose.(src_times, Ref(const_vel_trans), Ref(rot_trans))))
# Use the M_c = 0.8*M that BPM report and BPM.jl use.
U = @. 0.8*sqrt(Vinf^2 + (omega*radii)^2)
# In the text describing Figure 22, "For these predictions, the trip flag was set to βtrippedβ, due to the rough surface quality of the blade."
# So we'll use a tripped boundary layer for all radial stations along the blade.
bl = AcousticAnalogies.TrippedN0012BoundaryLayer()
# Need to do the LBLVS with the untripped boundary layer to match what BPM.jl is doing.
# BPM.jl uses the untripped boundary layer properties for the laminar boundary layer-vortex shedding noise source, so do that here too.
bl_lblvs = AcousticAnalogies.UntrippedN0012BoundaryLayer()
# Paper doesn't specify the microphone used for Figure 22, but earlier at the beginning of "C. Noise Characteristics and Trends" there is this:
# > For the purposes of this paper, presented acoustic spectra will correspond to an observer located β35Β° below the plane of the rotor (microphone 5).
# So I'll just assume that holds for Figure 22.
# The observer (microphone 5) is 35 deg behind/downstream of the rotor rotation plane.
r_obs = 2.27 # meters
theta_obs = -35*pi/180
# So, the docstring for BPM.jl says that `V` argument is the wind velocity in the y direction.
# So I guess we should assume that the blades are rotating about the y axis.
# And if the freestream velocity is in the positive y axis, then, from the perspective of the fluid, the blades are translating in the negative y direction.
# And I want the observer to be downstream/behind the blades, so that would mean they would have a positive y position.
# So I want to rotate the observer around the positive x axis, so I'm going to switch the sign on `theta_obs`.
t0_obs = 0.0
x0_obs = @SVector [0.0, r_obs*sin(-theta_obs), r_obs*cos(-theta_obs)]
# The observer is moving in the same direction as the blades, which is the negative y axis.
v_obs = @SVector [0.0, -Vinf, 0.0]
obs = AcousticAnalogies.ConstVelocityAcousticObserver(t0_obs, x0_obs, v_obs)
# Azimuthal offset for each blade.
ΞΈs = (0:(B-1)) .* (2*pi/B) .* ifelse(positive_x_rotation, 1, -1)
# Reshape the inputs to the source element constructors so that everything will line up with (num_times, num_radial, num_blades).
ΞΈs_rs = reshape(ΞΈs, 1, 1, :)
radii_rs = reshape(radii, 1, :, 1)
dradii_rs = reshape(dradii, 1, :, 1)
# chord_rs = reshape(chord, 1, :, 1)
twist_rs = reshape(twist, 1, :, 1)
# hs_rs = reshape(hs, 1, :, 1)
# Psis_rs = reshape(Psis, 1, :, 1)
Us_rs = reshape(U, 1, :, 1)
alphas_rs = reshape(alpha, 1, :, 1)
# bls_rs = reshape(bls, 1, :, 1)
# bls_untripped_rs = reshape(bls_untripped, 1, :, 1)
# Separate things into tip and no-tip.
radii_rs_no_tip = @view radii_rs[:, begin:end-1, :]
dradii_rs_no_tip = @view dradii_rs[:, begin:end-1, :]
# chord_rs_no_tip = @view chord_rs[:, begin:end-1, :]
twist_rs_no_tip = @view twist_rs[:, begin:end-1, :]
# hs_rs_no_tip = @view hs_rs[:, begin:end-1, :]
# Psis_rs_no_tip = @view Psis_rs[:, begin:end-1, :]
Us_rs_no_tip = @view Us_rs[:, begin:end-1, :]
alphas_rs_no_tip = @view alphas_rs[:, begin:end-1, :]
# bls_rs_no_tip = @view bls_rs[:, begin:end-1, :]
radii_rs_with_tip = @view radii_rs[:, end:end, :]
dradii_rs_with_tip = @view dradii_rs[:, end:end, :]
# chord_rs_with_tip = @view chord_rs[:, end:end, :]
twist_rs_with_tip = @view twist_rs[:, end:end, :]
# hs_rs_with_tip = @view hs_rs[:, end:end, :]
# Psis_rs_with_tip = @view Psis_rs[:, end:end, :]
Us_rs_with_tip = @view Us_rs[:, end:end, :]
alphas_rs_with_tip = @view alphas_rs[:, end:end, :]
# bls_rs_with_tip = @view bls_rs[:, end:end, :]
direct = AcousticAnalogies.BPMDirectivity
use_UInduction = false
use_Doppler = false
mach_correction = AcousticAnalogies.NoMachCorrection
ses_no_tip = CombinedNoTipBroadbandSourceElement{direct,use_UInduction,mach_correction,use_Doppler}.(asound, nu, radii_rs_no_tip, ΞΈs_rs, dradii_rs_no_tip, chord, twist_rs_no_tip, h, Psi, Us_rs_no_tip, alphas_rs_no_tip, src_times, dt, Ref(bl), positive_x_rotation) .|> trans
ses_with_tip = CombinedWithTipBroadbandSourceElement{direct,use_UInduction,mach_correction,use_Doppler}.(asound, nu, radii_rs_with_tip, ΞΈs_rs, dradii_rs_with_tip, chord, twist_rs_with_tip, h, Psi, Us_rs_with_tip, alphas_rs_with_tip, src_times, dt, Ref(bl), Ref(blade_tip), positive_x_rotation) .|> trans
# Put the source elements together:
ses = cat(ses_no_tip, ses_with_tip; dims=2)
# Need to do the LBLVS with the untripped boundary layer to match what BPM.jl is doing.
lblvs_ses = AcousticAnalogies.LBLVSSourceElement{direct,use_UInduction,use_Doppler}.(asound, nu, radii_rs, ΞΈs_rs, dradii_rs, chord, twist_rs, Us_rs, alphas_rs, src_times, dt, Ref(bl_lblvs), positive_x_rotation) .|> trans
# Define the frequencies we'd like to evaluate.
# BPM.jl uses the approximate 1/3rd-octave bands.
freqs_obs = AcousticMetrics.ApproximateThirdOctaveCenterBands(100.0, 40000.0)
freqs_src = freqs_obs
# Now do the noise prediction.
bpm_outs = AcousticAnalogies.noise.(ses, Ref(obs), Ref(freqs_src))
pbs_lblvss = AcousticAnalogies.noise.(lblvs_ses, Ref(obs), Ref(freqs_src))
# Separate out each source.
pbs_tblte_ps = AcousticAnalogies.pbs_pressure.(bpm_outs)
pbs_tblte_ss = AcousticAnalogies.pbs_suction.(bpm_outs)
pbs_tblte_alphas = AcousticAnalogies.pbs_alpha.(bpm_outs)
pbs_tebs = AcousticAnalogies.pbs_teb.(bpm_outs)
pbs_tips = AcousticAnalogies.pbs_tip.(bpm_outs[:, end:end, :])
# Combine each noise prediction.
time_axis = 1
pbs_pressure = AcousticMetrics.combine(pbs_tblte_ps, freqs_obs, time_axis)
pbs_suction = AcousticMetrics.combine(pbs_tblte_ss, freqs_obs, time_axis)
pbs_alpha = AcousticMetrics.combine(pbs_tblte_alphas, freqs_obs, time_axis)
pbs_teb = AcousticMetrics.combine(pbs_tebs, freqs_obs, time_axis)
pbs_tip = AcousticMetrics.combine(pbs_tips, freqs_obs, time_axis)
pbs_lblvs = AcousticMetrics.combine(pbs_lblvss, freqs_obs, time_axis)
# Now I need to account for the fact that Figure 22b is actually comparing to narrowband experimental data with a frequency spacing of 20 Hz.
# So, to do that, I need to multiply the mean-squared pressure by Ξf_nb/Ξf_pbs, where `Ξf_nb` is the 20 Hz narrowband and `Ξf_pbs` is the bandwidth of each 1/3-octave proportional band.
# (Dividing the MSP by Ξf_pbs aka the 1/3 octave spacing is like getting a power-spectral density, then multiplying by the narrowband spacing Ξf_nb gives us the MSP associated with the narrowband.)
# I think the paper describes that, right?
# Right, here's something:
#
# > The current prediction method is limited to one-third octave bands, but it is compared to the narrowband experiment with Ξf = 20 Hz.
# > This is done by dividing the energy from the one-third octave bands by the number of bands in Ξf = 20 Hz.
#
# So, `Ξf_pbs/Ξf_nb` would represent the number of `Ξf_nb`-width bands that could fit in a proportional band of bin width `Ξf_pbs`.
# And then I'm dividing by that.
# So that seems like the right thing.
# So, first thing is to get the proportional band spacing.
freqs_l = AcousticMetrics.lower_bands(freqs_obs)
freqs_u = AcousticMetrics.upper_bands(freqs_obs)
df_pbs = freqs_u .- freqs_l
# Also need the experimental narrowband spacing.
df_nb = 20.0
# Now multiply each by that.
nb_pressure = pbs_pressure .* df_nb ./ df_pbs
nb_suction = pbs_suction .* df_nb ./ df_pbs
nb_alpha = pbs_alpha .* df_nb ./ df_pbs
nb_teb = pbs_teb .* df_nb ./ df_pbs
nb_tip = pbs_tip .* df_nb ./ df_pbs
nb_lblvs_untripped = pbs_lblvs .* df_nb ./ df_pbs
# Now I want the SPL, which should just be this:
pref = 20e-6
spl_pressure = 10 .* log10.(nb_pressure./(pref^2))
spl_suction = 10 .* log10.(nb_suction./(pref^2))
spl_alpha = 10 .* log10.(nb_alpha./(pref^2))
spl_teb = 10 .* log10.(nb_teb./(pref^2))
spl_tip = 10 .* log10.(nb_tip./(pref^2))
spl_lblvs_untripped = 10 .* log10.(nb_lblvs_untripped./(pref^2))
# Finally, let's get the BPM.jl predictions for this case, which we've run and saved previously in a JLD2/HDF5 file.
freq_bpmjl = data_bpmjl["freqs"]
spl_pressure_bpmjl = data_bpmjl["spl_nb_pressure"]
spl_suction_bpmjl = data_bpmjl["spl_nb_suction"]
spl_separation_bpmjl = data_bpmjl["spl_nb_separation"]
spl_lblvs_bpmjl = data_bpmjl["spl_nb_lblvs"]
spl_blunt_bpmjl = data_bpmjl["spl_nb_blunt"]
spl_tip_bpmjl = data_bpmjl["spl_nb_tip"]
# Now let's plot.
fig = Figure()
ax1 = fig[2, 1] = Axis(fig, xlabel="frequency, Hz", ylabel="SPL (dB Ref: 20 ΞΌPa), Ξf = 20 Hz", xscale=log10, xticks=[10^3, 10^4], xminorticksvisible=true, xminorgridvisible=true, xminorticks=IntervalsBetween(9), yticks=10:10:70)#, aspect=3)
s_pressure = scatter!(ax1, freq_bpmjl, spl_pressure_bpmjl, color=:blue, marker=:rtriangle)
s_suction = scatter!(ax1, freq_bpmjl, spl_suction_bpmjl, color=:red, marker=:ltriangle)
s_separation = scatter!(ax1, freq_bpmjl, spl_separation_bpmjl, color=:yellow, marker=:diamond)
s_lblvs = scatter!(ax1, freq_bpmjl, spl_lblvs_bpmjl, color=:purple, marker=:rect)
s_blunt = scatter!(ax1, freq_bpmjl, spl_blunt_bpmjl, color=:green, marker=:star6)
s_tip = scatter!(ax1, freq_bpmjl, spl_tip_bpmjl, color=:cyan, marker=:circle)
l_pressure = lines!(ax1, freqs_obs, spl_pressure, color=:blue)
l_suction = lines!(ax1, freqs_obs, spl_suction, color=:red)
l_alpha = lines!(ax1, freqs_obs, spl_alpha, color=:yellow)
l_lblvs = lines!(ax1, freqs_obs, spl_lblvs_untripped, color=:purple)
l_teb = lines!(ax1, freqs_obs, spl_teb, color=:green)
l_tip = lines!(ax1, freqs_obs, spl_tip, color=:cyan)
xlims!(ax1, 2e2, 6e4)
ylims!(ax1, 10.0, 70.0)
leg = Legend(fig[1, 1], [
[s_pressure, l_pressure],
[s_suction, l_suction],
[s_separation, l_alpha],
[s_lblvs, l_lblvs],
[s_blunt, l_teb],
[s_tip, l_tip],
],
[
"TBLTE-Pressure",
"TBLTE-Suction",
"Separation",
"LBLVS",
"BVS",
"Tip",
]; orientation=:horizontal, tellwidth=false, tellheight=true, nbanks=2)
text!(ax1, 210, 62; text="markers: CCBlade.jl+BPM.jl\nlines: CCBlade.jl+AcousticAnalogies.jl")
save("figure22b-spl-bpmjl.png", fig)
```

### Figure 23c
```@example figure23c
using AcousticAnalogies
using AcousticMetrics: AcousticMetrics
using GLMakie
using KinematicCoordinateTransformations: compose, SteadyRotXTransformation, SteadyRotYTransformation, SteadyRotZTransformation, ConstantVelocityTransformation
using FileIO: load
using FLOWMath: Akima
using StaticArrays: @SVector
# Copied from BPM.jl (would like to add BPM.jl as a dependency if it's registered in General some day).
# tip vortex noise correction data based on "Airfoil Tip Vortex Formation Noise"
const bm_tip_alpha_aspect_data = [2.0,2.67,4.0,6.0,12.0,24.0]
const bm_tip_alpha_aratio_data = [0.54,0.62,0.71,0.79,0.89,0.95]
const bm_tip_alpha_aspect_ratio_correction = Akima(bm_tip_alpha_aspect_data, bm_tip_alpha_aratio_data)
function bm_tip_vortex_alpha_correction_nonsmooth(aspect_ratio)
# compute tip lift curve slope
if aspect_ratio < 2.0
aratio = 0.5*one(aspect_ratio)
elseif 2.0 <= aspect_ratio <= 24.0
aratio = bm_tip_alpha_aspect_ratio_correction(aspect_ratio)
elseif aspect_ratio > 24.0
aratio = 1.0*one(aspect_ratio)
end
return aratio
end
struct BMTipAlphaCorrection{TCorrection} <: AbstractTipAlphaCorrection
correction::TCorrection
function BMTipAlphaCorrection(aspect_ratio)
# correction = BPM._tip_vortex_alpha_correction_nonsmooth(aspect_ratio)
correction = bm_tip_vortex_alpha_correction_nonsmooth(aspect_ratio)
return new{typeof(correction)}(correction)
end
end
function AcousticAnalogies.tip_vortex_alpha_correction(blade_tip::AbstractBladeTip{<:BMTipAlphaCorrection}, alphatip)
a0l = AcousticAnalogies.alpha_zerolift(blade_tip)
correction_factor = AcousticAnalogies.tip_alpha_correction(blade_tip).correction
return correction_factor * (alphatip - a0l) + a0l
end
# Pettingill et al., "Acoustic And Performance Characteristics of an Ideally Twisted Rotor in Hover", 2021
# Parameters from Table 1
B = 4 # number of blades
Rtip = 0.1588 # meters
chord = 0.2*Rtip
# Standard day:
Tamb = 15 + 273.15 # 15Β°C in Kelvin
pamb = 101325.0 # Pa
R = 287.052874 # J/(kg*K)
rho = pamb/(R*Tamb)
asound = sqrt(1.4*R*Tamb)
# Dynamic and kinematic viscosity
mu = rho*1.4502e-5
nu = mu/rho
# This is a hover case, so the freestream velocity should be zero.
# CCBlade.jl will run with a zero freestream, but I've found that it compares a bit better with experiment if I give it a small non-zero value.
Vinf = 0.001*asound
# Figure 23 caption says Ξ©_c = 5510 RPM.
rpm = 5510.0
omega = rpm * (2*pi/60)
# Get "cell-centered" radial locations, and also the radial spacing.
num_radial = 50
r_Rtip_ = range(0.2, 1.0; length=num_radial+1)
r_Rtip = 0.5 .* (r_Rtip_[2:end] .+ r_Rtip_[1:end-1])
radii = r_Rtip .* Rtip
dradii = (r_Rtip_[2:end] .- r_Rtip_[1:end-1]) .* Rtip
Rhub = r_Rtip_[1]*Rtip
# From Pettingill Equation (1), and value for Ξ_tip in Table 1.
Ξ_tip = 6.9 * pi/180
twist = Ξ_tip ./ (r_Rtip)
# Need some aerodynamic quantities.
# Got these using CCBlade.jl: see `AcousticAnalogies.jl/test/gen_bpmjl_data/itr_with_bpmjl.jl`.
data_bpmjl = load(joinpath(@__DIR__, "..", "..", "test", "gen_bpmjl_data", "figure23c.jld2"))
# Angle of attack at each radial station, radians.
alpha = data_bpmjl["alpha"]
# Flow speed normal to span at each radial station, m/s.
U = data_bpmjl["U"]
# In the Figure 23 caption, "for these predictions, bluntness thickness H was set to 0.5 mm and trailing edge angle Ξ¨ was set to 14 degrees."
h = 0.5e-3 # meters
Psi = 14*pi/180 # radians
# We'll run for 1 blade pass, 20 time steps per blade pass.
num_blade_pass = 1
num_src_times_blade_pass = 20
bpp = 1/(B/(2*pi)*omega) # 1/(B blade_passes/rev * 1 rev / (2*pi rad) * omega rad/s)
period_src = num_blade_pass*bpp
num_src_times = num_src_times_blade_pass * num_blade_pass
t0 = 0.0
dt = period_src/num_src_times
src_times = t0 .+ (0:num_src_times-1).*dt
# BPM.jl uses a different tip alpha correction which appears to require the blade aspect ratio.
# Need to find the blade aspect ratio of the ITR to apply the tip vortex angle of attack correction.
# The aspect ratio is defined as the blade tip radius divided by the average chord, but the chord is constant for this case.
aspect_ratio = Rtip / chord
# Now we can create the tip object.
alpha0lift = 0.0
blade_tip = AcousticAnalogies.FlatTip(BMTipAlphaCorrection(aspect_ratio), alpha0lift)
# Start with a rotation about the negative x axis.
positive_x_rotation = false
rot_trans = SteadyRotXTransformation(t0, omega*ifelse(positive_x_rotation, 1, -1), 0)
# Then translate along the positive x axis.
y0_hub = @SVector [0.0, 0.0, 0.0] # m
v0_hub = @SVector [Vinf, 0.0, 0.0]
const_vel_trans = ConstantVelocityTransformation(t0, y0_hub, v0_hub)
# Then a 90Β° rotation about the negative z axis.
trans_z90deg = SteadyRotZTransformation(0.0, 0.0, -0.5*pi)
# Then a 90Β° rotation about the negative y axis.
trans_y90deg = SteadyRotYTransformation(0.0, 0.0, -0.5*pi)
# Put them all together:
trans = compose.(src_times, Ref(trans_y90deg),
compose.(src_times, Ref(trans_z90deg),
compose.(src_times, Ref(const_vel_trans), Ref(rot_trans))))
# Use the M_c = 0.8*M that BPM report and BPM.jl use.
U = @. 0.8*sqrt(Vinf^2 + (omega*radii)^2)
# For the boundary layer we want to use untripped for the 95% of the blade from the hub to almost tip, and then tripped for the last 5% of the blade at the tip.
# First figure out how many of each we'll actually have with the `num_radial = 50` radial stations.
num_untripped = Int(round(0.95*num_radial))
num_tripped = num_radial - num_untripped
# Now create a length-`num_radial` vector of untripped and then tripped boundary layer objects.
bls = vcat(fill(AcousticAnalogies.UntrippedN0012BoundaryLayer(), num_untripped), fill(AcousticAnalogies.TrippedN0012BoundaryLayer(), num_tripped))
# Now, the other trick: for this case, we're only going to include the LBLVS source where the local Reynolds number (with the chord as the length scale) is < 160000.
low_Re_c = 160000.0
# So we need the Reynolds number for each section.
Re_c = U .* chord / nu
# Now we'll get a length-`num_radial` vector of Bools indicating if that criteria is satisfied or not.
lblvs_flags = Re_c .< low_Re_c
# Also we'll always be using the untripped boundary layer for LBLVS, like BPM.jl does.
bl_lblvs = AcousticAnalogies.UntrippedN0012BoundaryLayer()
# Paper doesn't specify the microphone used for Figure 23, but earlier at the beginning of "C. Noise Characteristics and Trends" there is this:
# > For the purposes of this paper, presented acoustic spectra will correspond to an observer located β35Β° below the plane of the rotor (microphone 5).
# So I'll just assume that holds for Figure 23.
# The observer (microphone 5) is 35 deg behind/downstream of the rotor rotation plane.
r_obs = 2.27 # meters
theta_obs = -35*pi/180
# So, the docstring for BPM.jl says that `V` argument is the wind velocity in the y direction.
# So I guess we should assume that the blades are rotating about the y axis.
# And if the freestream velocity is in the positive y axis, then, from the perspective of the fluid, the blades are translating in the negative y direction.
# And I want the observer to be downstream/behind the blades, so that would mean they would have a positive y position.
# So I want to rotate the observer around the positive x axis, so I'm going to switch the sign on `theta_obs`.
t0_obs = 0.0
x0_obs = @SVector [0.0, r_obs*sin(-theta_obs), r_obs*cos(-theta_obs)]
# The observer is moving in the same direction as the blades, which is the negative y axis.
v_obs = @SVector [0.0, -Vinf, 0.0]
obs = AcousticAnalogies.ConstVelocityAcousticObserver(t0_obs, x0_obs, v_obs)
# Azimuthal offset for each blade.
ΞΈs = (0:(B-1)) .* (2*pi/B) .* ifelse(positive_x_rotation, 1, -1)
# Reshape the inputs to the source element constructors so that everything will line up with (num_times, num_radial, num_blades).
ΞΈs_rs = reshape(ΞΈs, 1, 1, :)
radii_rs = reshape(radii, 1, :, 1)
dradii_rs = reshape(dradii, 1, :, 1)
# chord_rs = reshape(chord, 1, :, 1)
twist_rs = reshape(twist, 1, :, 1)
# hs_rs = reshape(hs, 1, :, 1)
# Psis_rs = reshape(Psis, 1, :, 1)
Us_rs = reshape(U, 1, :, 1)
alphas_rs = reshape(alpha, 1, :, 1)
bls_rs = reshape(bls, 1, :, 1)
# Separate things into tip and no-tip.
radii_rs_no_tip = @view radii_rs[:, begin:end-1, :]
dradii_rs_no_tip = @view dradii_rs[:, begin:end-1, :]
twist_rs_no_tip = @view twist_rs[:, begin:end-1, :]
Us_rs_no_tip = @view Us_rs[:, begin:end-1, :]
alphas_rs_no_tip = @view alphas_rs[:, begin:end-1, :]
bls_rs_no_tip = @view bls_rs[:, begin:end-1, :]
radii_rs_with_tip = @view radii_rs[:, end:end, :]
dradii_rs_with_tip = @view dradii_rs[:, end:end, :]
twist_rs_with_tip = @view twist_rs[:, end:end, :]
Us_rs_with_tip = @view Us_rs[:, end:end, :]
alphas_rs_with_tip = @view alphas_rs[:, end:end, :]
bls_rs_with_tip = @view bls_rs[:, end:end, :]
direct = AcousticAnalogies.BPMDirectivity
use_UInduction = false
use_Doppler = false
mach_correction = AcousticAnalogies.NoMachCorrection
ses_no_tip = CombinedNoTipBroadbandSourceElement{direct,use_UInduction,mach_correction,use_Doppler}.(asound, nu, radii_rs_no_tip, ΞΈs_rs, dradii_rs_no_tip, chord, twist_rs_no_tip, h, Psi, Us_rs_no_tip, alphas_rs_no_tip, src_times, dt, bls_rs_no_tip, positive_x_rotation) .|> trans
ses_with_tip = CombinedWithTipBroadbandSourceElement{direct,use_UInduction,mach_correction,use_Doppler}.(asound, nu, radii_rs_with_tip, ΞΈs_rs, dradii_rs_with_tip, chord, twist_rs_with_tip, h, Psi, Us_rs_with_tip, alphas_rs_with_tip, src_times, dt, bls_rs_with_tip, Ref(blade_tip), positive_x_rotation) .|> trans
# Put the source elements together:
ses = cat(ses_no_tip, ses_with_tip; dims=2)
# Need to do the LBLVS with the untripped boundary layer to match what BPM.jl is doing, and only where `lblvs_flags` is true.
# So extract the radial locations where that's true.
radii_lblvs = @view radii[lblvs_flags]
dradii_lblvs = @view dradii[lblvs_flags]
twist_lblvs = @view twist[lblvs_flags]
Us_lblvs = @view U[lblvs_flags]
alphas_lblvs = @view alpha[lblvs_flags]
# Now do the usual reshaping.
radii_lblvs_rs = reshape(radii_lblvs, 1, :, 1)
dradii_lblvs_rs = reshape(dradii_lblvs, 1, :, 1)
twist_lblvs_rs = reshape(twist_lblvs, 1, :, 1)
Us_lblvs_rs = reshape(Us_lblvs, 1, :, 1)
alphas_lblvs_rs = reshape(alphas_lblvs, 1, :, 1)
# Now we can construct the lblvs source elements.
lblvs_ses = AcousticAnalogies.LBLVSSourceElement{direct,use_UInduction,use_Doppler}.(asound, nu, radii_lblvs_rs, ΞΈs_rs, dradii_lblvs_rs, chord, twist_lblvs_rs, Us_lblvs_rs, alphas_lblvs_rs, src_times, dt, Ref(bl_lblvs), positive_x_rotation) .|> trans
# Define the frequencies we'd like to evaluate.
# BPM.jl uses the approximate 1/3rd-octave bands.
freqs_obs = AcousticMetrics.ApproximateThirdOctaveCenterBands(100.0, 40000.0)
freqs_src = freqs_obs
# Now do the noise prediction.
bpm_outs = AcousticAnalogies.noise.(ses, Ref(obs), Ref(freqs_src))
pbs_lblvss = AcousticAnalogies.noise.(lblvs_ses, Ref(obs), Ref(freqs_src))
# Separate out each source.
pbs_tblte_ps = AcousticAnalogies.pbs_pressure.(bpm_outs)
pbs_tblte_ss = AcousticAnalogies.pbs_suction.(bpm_outs)
pbs_tblte_alphas = AcousticAnalogies.pbs_alpha.(bpm_outs)
pbs_tebs = AcousticAnalogies.pbs_teb.(bpm_outs)
pbs_tips = AcousticAnalogies.pbs_tip.(bpm_outs[:, end:end, :])
# Combine each noise prediction.
time_axis = 1
pbs_pressure = AcousticMetrics.combine(pbs_tblte_ps, freqs_obs, time_axis)
pbs_suction = AcousticMetrics.combine(pbs_tblte_ss, freqs_obs, time_axis)
pbs_alpha = AcousticMetrics.combine(pbs_tblte_alphas, freqs_obs, time_axis)
pbs_teb = AcousticMetrics.combine(pbs_tebs, freqs_obs, time_axis)
pbs_tip = AcousticMetrics.combine(pbs_tips, freqs_obs, time_axis)
pbs_lblvs = AcousticMetrics.combine(pbs_lblvss, freqs_obs, time_axis)
# Now I need to account for the fact that Figure 23c is actually comparing to narrowband experimental data with a frequency spacing of 20 Hz.
# So, to do that, I need to multiply the mean-squared pressure by Ξf_nb/Ξf_pbs, where `Ξf_nb` is the 20 Hz narrowband and `Ξf_pbs` is the bandwidth of each 1/3-octave proportional band.
# (Dividing the MSP by Ξf_pbs aka the 1/3 octave spacing is like getting a power-spectral density, then multiplying by the narrowband spacing Ξf_nb gives us the MSP associated with the narrowband.)
# I think the paper describes that, right?
# Right, here's something:
#
# > The current prediction method is limited to one-third octave bands, but it is compared to the narrowband experiment with Ξf = 20 Hz.
# > This is done by dividing the energy from the one-third octave bands by the number of bands in Ξf = 20 Hz.
#
# So, `Ξf_pbs/Ξf_nb` would represent the number of `Ξf_nb`-width bands that could fit in a proportional band of bin width `Ξf_pbs`.
# And then I'm dividing by that.
# So that seems like the right thing.
# So, first thing is to get the proportional band spacing.
freqs_l = AcousticMetrics.lower_bands(freqs_obs)
freqs_u = AcousticMetrics.upper_bands(freqs_obs)
df_pbs = freqs_u .- freqs_l
# Also need the experimental narrowband spacing.
df_nb = 20.0
# Now multiply each by that.
nb_pressure = pbs_pressure .* df_nb ./ df_pbs
nb_suction = pbs_suction .* df_nb ./ df_pbs
nb_alpha = pbs_alpha .* df_nb ./ df_pbs
nb_teb = pbs_teb .* df_nb ./ df_pbs
nb_tip = pbs_tip .* df_nb ./ df_pbs
nb_lblvs_untripped = pbs_lblvs .* df_nb ./ df_pbs
# Now I want the SPL, which should just be this:
pref = 20e-6
spl_pressure = 10 .* log10.(nb_pressure./(pref^2))
spl_suction = 10 .* log10.(nb_suction./(pref^2))
spl_alpha = 10 .* log10.(nb_alpha./(pref^2))
spl_teb = 10 .* log10.(nb_teb./(pref^2))
spl_tip = 10 .* log10.(nb_tip./(pref^2))
spl_lblvs_untripped = 10 .* log10.(nb_lblvs_untripped./(pref^2))
# Finally, let's get the BPM.jl predictions for this case, which we've run and saved previously in a JLD2/HDF5 file.
freq_bpmjl = data_bpmjl["freqs"]
spl_pressure_bpmjl = data_bpmjl["spl_nb_pressure"]
spl_suction_bpmjl = data_bpmjl["spl_nb_suction"]
spl_separation_bpmjl = data_bpmjl["spl_nb_separation"]
spl_lblvs_bpmjl = data_bpmjl["spl_nb_lblvs"]
spl_blunt_bpmjl = data_bpmjl["spl_nb_blunt"]
spl_tip_bpmjl = data_bpmjl["spl_nb_tip"]
# Now let's plot.
fig = Figure()
ax1 = fig[2, 1] = Axis(fig, xlabel="frequency, Hz", ylabel="SPL (dB Ref: 20 ΞΌPa), Ξf = 20 Hz", xscale=log10, xticks=[10^3, 10^4], xminorticksvisible=true, xminorgridvisible=true, xminorticks=IntervalsBetween(9), yticks=10:10:70)#, aspect=3)
s_pressure = scatter!(ax1, freq_bpmjl, spl_pressure_bpmjl, color=:blue, marker=:rtriangle)
s_suction = scatter!(ax1, freq_bpmjl, spl_suction_bpmjl, color=:red, marker=:ltriangle)
s_separation = scatter!(ax1, freq_bpmjl, spl_separation_bpmjl, color=:yellow, marker=:diamond)
s_lblvs = scatter!(ax1, freq_bpmjl, spl_lblvs_bpmjl, color=:purple, marker=:rect)
s_blunt = scatter!(ax1, freq_bpmjl, spl_blunt_bpmjl, color=:green, marker=:star6)
s_tip = scatter!(ax1, freq_bpmjl, spl_tip_bpmjl, color=:cyan, marker=:circle)
l_pressure = lines!(ax1, freqs_obs, spl_pressure, color=:blue)
l_suction = lines!(ax1, freqs_obs, spl_suction, color=:red)
l_alpha = lines!(ax1, freqs_obs, spl_alpha, color=:yellow)
l_lblvs = lines!(ax1, freqs_obs, spl_lblvs_untripped, color=:purple)
l_teb = lines!(ax1, freqs_obs, spl_teb, color=:green)
l_tip = lines!(ax1, freqs_obs, spl_tip, color=:cyan)
xlims!(ax1, 2e2, 6e4)
ylims!(ax1, 10.0, 70.0)
leg = Legend(fig[1, 1], [
[s_pressure, l_pressure],
[s_suction, l_suction],
[s_separation, l_alpha],
[s_lblvs, l_lblvs],
[s_blunt, l_teb],
[s_tip, l_tip],
],
[
"TBLTE-Pressure",
"TBLTE-Suction",
"Separation",
"LBLVS",
"BVS",
"Tip",
]; orientation=:horizontal, tellwidth=false, tellheight=true, nbanks=2)
text!(ax1, 210, 62; text="markers: CCBlade.jl+BPM.jl\nlines: CCBlade.jl+AcousticAnalogies.jl")
save("figure23c-spl-bpmjl.png", fig)
```

### Figure 24b
```@example figure24b
using AcousticAnalogies
using AcousticMetrics: AcousticMetrics
using GLMakie
using KinematicCoordinateTransformations: compose, SteadyRotXTransformation, SteadyRotYTransformation, SteadyRotZTransformation, ConstantVelocityTransformation
using FileIO: load
using FLOWMath: Akima
using StaticArrays: @SVector
# Copied from BPM.jl (would like to add BPM.jl as a dependency if it's registered in General some day).
# tip vortex noise correction data based on "Airfoil Tip Vortex Formation Noise"
const bm_tip_alpha_aspect_data = [2.0,2.67,4.0,6.0,12.0,24.0]
const bm_tip_alpha_aratio_data = [0.54,0.62,0.71,0.79,0.89,0.95]
const bm_tip_alpha_aspect_ratio_correction = Akima(bm_tip_alpha_aspect_data, bm_tip_alpha_aratio_data)
function bm_tip_vortex_alpha_correction_nonsmooth(aspect_ratio)
# compute tip lift curve slope
if aspect_ratio < 2.0
aratio = 0.5*one(aspect_ratio)
elseif 2.0 <= aspect_ratio <= 24.0
aratio = bm_tip_alpha_aspect_ratio_correction(aspect_ratio)
elseif aspect_ratio > 24.0
aratio = 1.0*one(aspect_ratio)
end
return aratio
end
struct BMTipAlphaCorrection{TCorrection} <: AbstractTipAlphaCorrection
correction::TCorrection
function BMTipAlphaCorrection(aspect_ratio)
# correction = BPM._tip_vortex_alpha_correction_nonsmooth(aspect_ratio)
correction = bm_tip_vortex_alpha_correction_nonsmooth(aspect_ratio)
return new{typeof(correction)}(correction)
end
end
function AcousticAnalogies.tip_vortex_alpha_correction(blade_tip::AbstractBladeTip{<:BMTipAlphaCorrection}, alphatip)
a0l = AcousticAnalogies.alpha_zerolift(blade_tip)
correction_factor = AcousticAnalogies.tip_alpha_correction(blade_tip).correction
return correction_factor * (alphatip - a0l) + a0l
end
# Pettingill et al., "Acoustic And Performance Characteristics of an Ideally Twisted Rotor in Hover", 2021
# Parameters from Table 1
B = 4 # number of blades
Rtip = 0.1588 # meters
chord = 0.2*Rtip
# Standard day:
Tamb = 15 + 273.15 # 15Β°C in Kelvin
pamb = 101325.0 # Pa
R = 287.052874 # J/(kg*K)
rho = pamb/(R*Tamb)
asound = sqrt(1.4*R*Tamb)
# Dynamic and kinematic viscosity
mu = rho*1.4502e-5
nu = mu/rho
# This is a hover case, so the freestream velocity should be zero.
# CCBlade.jl will run with a zero freestream, but I've found that it compares a bit better with experiment if I give it a small non-zero value.
Vinf = 0.001*asound
# Figure 24 caption says Ξ©_c = 2938 RPM.
rpm = 2938.0
omega = rpm * (2*pi/60)
# Get "cell-centered" radial locations, and also the radial spacing.
num_radial = 50
r_Rtip_ = range(0.2, 1.0; length=num_radial+1)
r_Rtip = 0.5 .* (r_Rtip_[2:end] .+ r_Rtip_[1:end-1])
radii = r_Rtip .* Rtip
dradii = (r_Rtip_[2:end] .- r_Rtip_[1:end-1]) .* Rtip
Rhub = r_Rtip_[1]*Rtip
# From Pettingill Equation (1), and value for Ξ_tip in Table 1.
Ξ_tip = 6.9 * pi/180
twist = Ξ_tip ./ (r_Rtip)
# Need some aerodynamic quantities.
# Got these using CCBlade.jl: see `AcousticAnalogies.jl/test/gen_bpmjl_data/itr_with_bpmjl.jl`.
data_bpmjl = load(joinpath(@__DIR__, "..", "..", "test", "gen_bpmjl_data", "figure24b.jld2"))
# Angle of attack at each radial station, radians.
alpha = data_bpmjl["alpha"]
# Flow speed normal to span at each radial station, m/s.
U = data_bpmjl["U"]
# In the Figure 24 caption, "for these predictions, bluntness thickness H was set to 0.5 mm and trailing edge angle Ξ¨ was set to 14 degrees."
h = 0.5e-3 # meters
Psi = 14*pi/180 # radians
# We'll run for 1 blade pass, 20 time steps per blade pass.
num_blade_pass = 1
num_src_times_blade_pass = 20
# Get the time levels we'll run.
# First, get the blade passing period.
bpp = 1/(B/(2*pi)*omega) # 1/(B blade_passes/rev * 1 rev / (2*pi rad) * omega rad/s)
# Now we can get the total period of source time we'll run over.
period_src = num_blade_pass*bpp
# And th number of source times.
num_src_times = num_src_times_blade_pass * num_blade_pass
# We know the total time period and number of source times, so we can get the time step.
dt = period_src/num_src_times
# We'll arbitrarily start at time 0.0 seconds.
t0 = 0.0
# And now we can finally get each source time.
src_times = t0 .+ (0:num_src_times-1).*dt
# BPM.jl uses a different tip alpha correction which appears to require the blade aspect ratio.
# Need to find the blade aspect ratio of the ITR to apply the tip vortex angle of attack correction.
# The aspect ratio is defined as the blade tip radius divided by the average chord, but the chord is constant for this case.
aspect_ratio = Rtip / chord
# Now we can create the tip object.
alpha0lift = 0.0
blade_tip = AcousticAnalogies.FlatTip(BMTipAlphaCorrection(aspect_ratio), alpha0lift)
# Start with a rotation about the negative x axis.
positive_x_rotation = false
rot_trans = SteadyRotXTransformation(t0, omega*ifelse(positive_x_rotation, 1, -1), 0)
# Then translate along the positive x axis.
y0_hub = @SVector [0.0, 0.0, 0.0] # m
v0_hub = @SVector [Vinf, 0.0, 0.0]
const_vel_trans = ConstantVelocityTransformation(t0, y0_hub, v0_hub)
# Then a 90Β° rotation about the negative z axis.
trans_z90deg = SteadyRotZTransformation(0.0, 0.0, -0.5*pi)
# Then a 90Β° rotation about the negative y axis.
trans_y90deg = SteadyRotYTransformation(0.0, 0.0, -0.5*pi)
# Put them all together:
trans = compose.(src_times, Ref(trans_y90deg),
compose.(src_times, Ref(trans_z90deg),
compose.(src_times, Ref(const_vel_trans), Ref(rot_trans))))
# Use the M_c = 0.8*M that BPM report and BPM.jl use.
U = @. 0.8*sqrt(Vinf^2 + (omega*radii)^2)
# For the boundary layer we want to use untripped for the 95% of the blade from the hub to almost tip, and then tripped for the last 5% of the blade at the tip.
# First figure out how many of each we'll actually have with the `num_radial = 50` radial stations.
num_untripped = Int(round(0.95*num_radial))
num_tripped = num_radial - num_untripped
# Now create a length-`num_radial` vector of untripped and then tripped boundary layer objects.
bls = vcat(fill(AcousticAnalogies.UntrippedN0012BoundaryLayer(), num_untripped), fill(AcousticAnalogies.TrippedN0012BoundaryLayer(), num_tripped))
# Also we'll always be using the untripped boundary layer for LBLVS, like BPM.jl does.
bl_lblvs = AcousticAnalogies.UntrippedN0012BoundaryLayer()
# Paper doesn't specify the microphone used for Figure 24, but earlier at the beginning of "C. Noise Characteristics and Trends" there is this:
# > For the purposes of this paper, presented acoustic spectra will correspond to an observer located β35Β° below the plane of the rotor (microphone 5).
# So I'll just assume that holds for Figure 23.
# The observer (microphone 5) is 35 deg behind/downstream of the rotor rotation plane.
r_obs = 2.27 # meters
theta_obs = -35*pi/180
# So, the docstring for BPM.jl says that `V` argument is the wind velocity in the y direction.
# So I guess we should assume that the blades are rotating about the y axis.
# And if the freestream velocity is in the positive y axis, then, from the perspective of the fluid, the blades are translating in the negative y direction.
# And I want the observer to be downstream/behind the blades, so that would mean they would have a positive y position.
# So I want to rotate the observer around the positive x axis, so I'm going to switch the sign on `theta_obs`.
t0_obs = 0.0
x0_obs = @SVector [0.0, r_obs*sin(-theta_obs), r_obs*cos(-theta_obs)]
# The observer is moving in the same direction as the blades, which is the negative y axis.
v_obs = @SVector [0.0, -Vinf, 0.0]
obs = AcousticAnalogies.ConstVelocityAcousticObserver(t0_obs, x0_obs, v_obs)
# Azimuthal offset for each blade.
ΞΈs = (0:(B-1)) .* (2*pi/B) .* ifelse(positive_x_rotation, 1, -1)
# Reshape the inputs to the source element constructors so that everything will line up with (num_times, num_radial, num_blades).
ΞΈs_rs = reshape(ΞΈs, 1, 1, :)
radii_rs = reshape(radii, 1, :, 1)
dradii_rs = reshape(dradii, 1, :, 1)
# chord_rs = reshape(chord, 1, :, 1)
twist_rs = reshape(twist, 1, :, 1)
# hs_rs = reshape(hs, 1, :, 1)
# Psis_rs = reshape(Psis, 1, :, 1)
Us_rs = reshape(U, 1, :, 1)
alphas_rs = reshape(alpha, 1, :, 1)
bls_rs = reshape(bls, 1, :, 1)
# Separate things into tip and no-tip.
radii_rs_no_tip = @view radii_rs[:, begin:end-1, :]
dradii_rs_no_tip = @view dradii_rs[:, begin:end-1, :]
twist_rs_no_tip = @view twist_rs[:, begin:end-1, :]
Us_rs_no_tip = @view Us_rs[:, begin:end-1, :]
alphas_rs_no_tip = @view alphas_rs[:, begin:end-1, :]
bls_rs_no_tip = @view bls_rs[:, begin:end-1, :]
radii_rs_with_tip = @view radii_rs[:, end:end, :]
dradii_rs_with_tip = @view dradii_rs[:, end:end, :]
twist_rs_with_tip = @view twist_rs[:, end:end, :]
Us_rs_with_tip = @view Us_rs[:, end:end, :]
alphas_rs_with_tip = @view alphas_rs[:, end:end, :]
bls_rs_with_tip = @view bls_rs[:, end:end, :]
# Use the directivity functions from the BPM report.
direct = AcousticAnalogies.BPMDirectivity
# Don't include induction for the velocity scale U.
use_UInduction = false
# Don't doppler-shift the source frequencies and source time steps to get observer frequencies & timesteps.
use_Doppler = false
# Don't use the Prandtl-Glauret Mach number correction that Brooks & Burley recommend.
mach_correction = AcousticAnalogies.NoMachCorrection
ses_no_tip = CombinedNoTipBroadbandSourceElement{direct,use_UInduction,mach_correction,use_Doppler}.(asound, nu, radii_rs_no_tip, ΞΈs_rs, dradii_rs_no_tip, chord, twist_rs_no_tip, h, Psi, Us_rs_no_tip, alphas_rs_no_tip, src_times, dt, bls_rs_no_tip, positive_x_rotation) .|> trans
ses_with_tip = CombinedWithTipBroadbandSourceElement{direct,use_UInduction,mach_correction,use_Doppler}.(asound, nu, radii_rs_with_tip, ΞΈs_rs, dradii_rs_with_tip, chord, twist_rs_with_tip, h, Psi, Us_rs_with_tip, alphas_rs_with_tip, src_times, dt, bls_rs_with_tip, Ref(blade_tip), positive_x_rotation) .|> trans
# Put the source elements together:
ses = cat(ses_no_tip, ses_with_tip; dims=2)
# Need to do the LBLVS with the untripped boundary layer to match what BPM.jl is doing.
lblvs_ses = AcousticAnalogies.LBLVSSourceElement{direct,use_UInduction,use_Doppler}.(asound, nu, radii_rs, ΞΈs_rs, dradii_rs, chord, twist_rs, Us_rs, alphas_rs, src_times, dt, Ref(bl_lblvs), positive_x_rotation) .|> trans
# Define the frequencies we'd like to evaluate.
# BPM.jl uses the approximate 1/3rd-octave bands.
freqs_obs = AcousticMetrics.ApproximateThirdOctaveCenterBands(100.0, 40000.0)
freqs_src = freqs_obs
# Now do the noise prediction.
bpm_outs = AcousticAnalogies.noise.(ses, Ref(obs), Ref(freqs_src))
pbs_lblvss = AcousticAnalogies.noise.(lblvs_ses, Ref(obs), Ref(freqs_src))
# Separate out each source.
pbs_tblte_ps = AcousticAnalogies.pbs_pressure.(bpm_outs)
pbs_tblte_ss = AcousticAnalogies.pbs_suction.(bpm_outs)
pbs_tblte_alphas = AcousticAnalogies.pbs_alpha.(bpm_outs)
pbs_tebs = AcousticAnalogies.pbs_teb.(bpm_outs)
pbs_tips = AcousticAnalogies.pbs_tip.(bpm_outs[:, end:end, :])
# Combine each noise prediction.
time_axis = 1
pbs_pressure = AcousticMetrics.combine(pbs_tblte_ps, freqs_obs, time_axis)
pbs_suction = AcousticMetrics.combine(pbs_tblte_ss, freqs_obs, time_axis)
pbs_alpha = AcousticMetrics.combine(pbs_tblte_alphas, freqs_obs, time_axis)
pbs_teb = AcousticMetrics.combine(pbs_tebs, freqs_obs, time_axis)
pbs_tip = AcousticMetrics.combine(pbs_tips, freqs_obs, time_axis)
pbs_lblvs = AcousticMetrics.combine(pbs_lblvss, freqs_obs, time_axis)
# Now I need to account for the fact that Figure 24b is actually comparing to narrowband experimental data with a frequency spacing of 20 Hz.
# So, to do that, I need to multiply the mean-squared pressure by Ξf_nb/Ξf_pbs, where `Ξf_nb` is the 20 Hz narrowband and `Ξf_pbs` is the bandwidth of each 1/3-octave proportional band.
# (Dividing the MSP by Ξf_pbs aka the 1/3 octave spacing is like getting a power-spectral density, then multiplying by the narrowband spacing Ξf_nb gives us the MSP associated with the narrowband.)
# I think the paper describes that, right?
# Right, here's something:
#
# > The current prediction method is limited to one-third octave bands, but it is compared to the narrowband experiment with Ξf = 20 Hz.
# > This is done by dividing the energy from the one-third octave bands by the number of bands in Ξf = 20 Hz.
#
# So, `Ξf_pbs/Ξf_nb` would represent the number of `Ξf_nb`-width bands that could fit in a proportional band of bin width `Ξf_pbs`.
# And then I'm dividing by that.
# So that seems like the right thing.
# So, first thing is to get the proportional band spacing.
freqs_l = AcousticMetrics.lower_bands(freqs_obs)
freqs_u = AcousticMetrics.upper_bands(freqs_obs)
df_pbs = freqs_u .- freqs_l
# Also need the experimental narrowband spacing.
df_nb = 20.0
# Now multiply each by that.
nb_pressure = pbs_pressure .* df_nb ./ df_pbs
nb_suction = pbs_suction .* df_nb ./ df_pbs
nb_alpha = pbs_alpha .* df_nb ./ df_pbs
nb_teb = pbs_teb .* df_nb ./ df_pbs
nb_tip = pbs_tip .* df_nb ./ df_pbs
nb_lblvs_untripped = pbs_lblvs .* df_nb ./ df_pbs
# Now I want the SPL, which should just be this:
pref = 20e-6
spl_pressure = 10 .* log10.(nb_pressure./(pref^2))
spl_suction = 10 .* log10.(nb_suction./(pref^2))
spl_alpha = 10 .* log10.(nb_alpha./(pref^2))
spl_teb = 10 .* log10.(nb_teb./(pref^2))
spl_tip = 10 .* log10.(nb_tip./(pref^2))
spl_lblvs_untripped = 10 .* log10.(nb_lblvs_untripped./(pref^2))
# Finally, let's get the BPM.jl predictions for this case, which we've run and saved previously in a JLD2/HDF5 file.
freq_bpmjl = data_bpmjl["freqs"]
spl_pressure_bpmjl = data_bpmjl["spl_nb_pressure"]
spl_suction_bpmjl = data_bpmjl["spl_nb_suction"]
spl_separation_bpmjl = data_bpmjl["spl_nb_separation"]
spl_lblvs_bpmjl = data_bpmjl["spl_nb_lblvs"]
spl_blunt_bpmjl = data_bpmjl["spl_nb_blunt"]
spl_tip_bpmjl = data_bpmjl["spl_nb_tip"]
# Now let's plot.
fig = Figure()
ax1 = fig[2, 1] = Axis(fig, xlabel="frequency, Hz", ylabel="SPL (dB Ref: 20 ΞΌPa), Ξf = 20 Hz", xscale=log10, xticks=[10^3, 10^4], xminorticksvisible=true, xminorgridvisible=true, xminorticks=IntervalsBetween(9), yticks=10:10:70)#, aspect=3)
s_pressure = scatter!(ax1, freq_bpmjl, spl_pressure_bpmjl, color=:blue, marker=:rtriangle)
s_suction = scatter!(ax1, freq_bpmjl, spl_suction_bpmjl, color=:red, marker=:ltriangle)
s_separation = scatter!(ax1, freq_bpmjl, spl_separation_bpmjl, color=:yellow, marker=:diamond)
s_lblvs = scatter!(ax1, freq_bpmjl, spl_lblvs_bpmjl, color=:purple, marker=:rect)
s_blunt = scatter!(ax1, freq_bpmjl, spl_blunt_bpmjl, color=:green, marker=:star6)
s_tip = scatter!(ax1, freq_bpmjl, spl_tip_bpmjl, color=:cyan, marker=:circle)
l_pressure = lines!(ax1, freqs_obs, spl_pressure, color=:blue)
l_suction = lines!(ax1, freqs_obs, spl_suction, color=:red)
l_alpha = lines!(ax1, freqs_obs, spl_alpha, color=:yellow)
l_lblvs = lines!(ax1, freqs_obs, spl_lblvs_untripped, color=:purple)
l_teb = lines!(ax1, freqs_obs, spl_teb, color=:green)
l_tip = lines!(ax1, freqs_obs, spl_tip, color=:cyan)
xlims!(ax1, 2e2, 6e4)
ylims!(ax1, 0.0, 50.0)
leg = Legend(fig[1, 1], [
[s_pressure, l_pressure],
[s_suction, l_suction],
[s_separation, l_alpha],
[s_lblvs, l_lblvs],
[s_blunt, l_teb],
[s_tip, l_tip],
],
[
"TBLTE-Pressure",
"TBLTE-Suction",
"Separation",
"LBLVS",
"BVS",
"Tip",
]; orientation=:horizontal, tellwidth=false, tellheight=true, nbanks=2)
text!(ax1, 210, 44; text="markers: CCBlade.jl+BPM.jl\nlines: CCBlade.jl+AcousticAnalogies.jl")
save("figure24b-spl-bpmjl.png", fig)
```

| AcousticAnalogies | https://github.com/OpenMDAO/AcousticAnalogies.jl.git |
|
[
"Apache-2.0"
] | 0.8.1 | c14d0b2e7f19374017a2b5b6dfe48c5723c791ae | docs | 43930 | ```@meta
CurrentModule = AADocs
```
# Software Quality Assurance, Cont.
## PAS/ROTONET/BARC Comparisons for the Pettingill et al. Ideally Twisted Rotor
See [here](http://dx.doi.org/10.2514/6.2021-1928) or [here](https://ntrs.nasa.gov/citations/20205003328) for details on the Ideally Twisted Rotor.
### Figure 22b
```@example figure22b
using AcousticAnalogies
using AcousticMetrics: AcousticMetrics
using DelimitedFiles: readdlm
using KinematicCoordinateTransformations: compose, SteadyRotXTransformation, ConstantVelocityTransformation
using FileIO: load
using GLMakie
using StaticArrays: @SVector
# Pettingill et al., "Acoustic And Performance Characteristics of an Ideally Twisted Rotor in Hover", 2021
# Parameters from Table 1
B = 4 # number of blades
Rtip = 0.1588 # meters
chord = 0.2*Rtip
# Standard day:
Tamb = 15 + 273.15 # 15Β°C in Kelvin
pamb = 101325.0 # Pa
R = 287.052874 # J/(kg*K)
rho = pamb/(R*Tamb)
asound = sqrt(1.4*R*Tamb)
# Dynamic and kinematic viscosity
mu = rho*1.4502e-5
nu = mu/rho
# This is a hover case, so the freestream velocity should be zero.
# CCBlade.jl will run with a zero freestream, but I've found that it compares a bit better with experiment if I give it a small non-zero value.
Vinf = 0.001*asound
# Figure 22 caption says Ξ©_c = 5465 RPM.
rpm = 5465.0
omega = rpm * (2*pi/60)
# Get "cell-centered" radial locations, and also the radial spacing.
num_radial = 50
r_Rtip_ = range(0.2, 1.0; length=num_radial+1)
r_Rtip = 0.5 .* (r_Rtip_[2:end] .+ r_Rtip_[1:end-1])
radii = r_Rtip .* Rtip
dradii = (r_Rtip_[2:end] .- r_Rtip_[1:end-1]) .* Rtip
Rhub = r_Rtip_[1]*Rtip
# From Pettingill Equation (1), and value for Ξ_tip in Table 1.
Ξ_tip = 6.9 * pi/180
twist = Ξ_tip ./ (r_Rtip)
# Need some aerodynamic quantities.
# Got these using CCBlade.jl: see `AcousticAnalogies.jl/test/gen_bpmjl_data/itr_with_bpmjl.jl`.
data_ccblade = load(joinpath(@__DIR__, "..", "..", "test", "gen_bpmjl_data", "figure22b.jld2"))
# Angle of attack at each radial station, radians.
alpha = data_ccblade["alpha"]
# Flow speed normal to span at each radial station, m/s.
U = data_ccblade["U"]
# In the text describing Figure 22, "For these predictions, the trip flag was set to βtrippedβ, due to the rough surface quality of the blade."
bl = AcousticAnalogies.TrippedN0012BoundaryLayer()
# But we're going to use the untripped boundary layer for the LBL-VS noise.
bl_lblvs = AcousticAnalogies.UntrippedN0012BoundaryLayer()
# In the Figure 22 caption, "for these predictions, bluntness thickness H was set to 0.8 mm and trailing edge angle Ξ¨ was set to 16 degrees."
h = 0.8e-3 # meters
Psi = 16*pi/180 # radians
# We'll run for 1 blade pass, 20 time steps per blade pass.
num_blade_pass = 1
num_src_times_blade_pass = 20
bpp = 1/(B/(2*pi)*omega) # 1/(B blade_passes/rev * 1 rev / (2*pi rad) * omega rad/s)
period_src = num_blade_pass*bpp
num_src_times = num_src_times_blade_pass * num_blade_pass
t0 = 0.0
dt = period_src/num_src_times
src_times = t0 .+ (0:num_src_times-1).*dt
# I don't see any discussion for what type of tip was used for the tip vortex noise.
# The flat tip seems to match the PAS+ROTONET+BARC predictions well.
blade_tip = AcousticAnalogies.FlatTip()
# Now let's define the coordinate system.
# I'm going to do my usual thing, which is to have the freestream velocity pointed in the negative x direction, and thus the blades will be translating in the positive x direction.
# And the blades will be rotating about the positive x axis at a rate of `omega`.
rot_trans = SteadyRotXTransformation(t0, omega, 0.0)
# The hub/rotation axis of the blades will start at the origin at time `t0`, and translate in the positive x direction at a speed of `Vinf`.
y0_hub = @SVector [0.0, 0.0, 0.0] # m
v0_hub = @SVector [Vinf, 0.0, 0.0] # m/s
const_vel_trans = ConstantVelocityTransformation(t0, y0_hub, v0_hub)
# Now I can put the two transformations together:
trans = compose.(src_times, Ref(const_vel_trans), Ref(rot_trans))
# Azimuthal offset for each blade.
ΞΈs = (0:(B-1)) .* (2*pi/B)
# Paper doesn't specify the microphone used for Figure 22, but earlier at the beginning of "C. Noise Characteristics and Trends" there is this:
# > For the purposes of this paper, presented acoustic spectra will correspond to an observer located β35Β° below the plane of the rotor (microphone 5).
# So I'll just assume that holds for Figure 22.
# For the coordinate system, I'm doing my usual thing, which is to have the freestream velocity pointed in the negative x direction, and thus the blades will be translating in the positive x direction.
# The observer (microphone 5) is 35 deg behind/downstream of the rotor rotation plane, so this should be good.
# But it will of course be moving with the same freestream in the positive x direction.
r_obs = 2.27 # meters
theta_obs = -35*pi/180
# The observer is moving in the positive x direction at Vinf, at the origin at time t0.
t0_obs = 0.0
x0_obs = @SVector [r_obs*sin(theta_obs), r_obs*cos(theta_obs), 0.0]
v_obs = @SVector [Vinf, 0.0, 0.0]
obs = AcousticAnalogies.ConstVelocityAcousticObserver(t0_obs, x0_obs, v_obs)
# Reshape the inputs to the source element constructors so that everything will line up with (num_times, num_radial, num_blades).
ΞΈs_rs = reshape(ΞΈs, 1, 1, :)
radii_rs = reshape(radii, 1, :, 1)
dradii_rs = reshape(dradii, 1, :, 1)
# chord_rs = reshape(chord, 1, :, 1)
twist_rs = reshape(twist, 1, :, 1)
# hs_rs = reshape(hs, 1, :, 1)
# Psis_rs = reshape(Psis, 1, :, 1)
Us_rs = reshape(U, 1, :, 1)
alphas_rs = reshape(alpha, 1, :, 1)
# bls_rs = reshape(bls, 1, :, 1)
# Separate things into tip and no-tip.
radii_rs_no_tip = @view radii_rs[:, begin:end-1, :]
dradii_rs_no_tip = @view dradii_rs[:, begin:end-1, :]
# chord_rs_no_tip = @view chord_rs[:, begin:end-1, :]
twist_rs_no_tip = @view twist_rs[:, begin:end-1, :]
# hs_rs_no_tip = @view hs_rs[:, begin:end-1, :]
# Psis_rs_no_tip = @view Psis_rs[:, begin:end-1, :]
Us_rs_no_tip = @view Us_rs[:, begin:end-1, :]
alphas_rs_no_tip = @view alphas_rs[:, begin:end-1, :]
radii_rs_with_tip = @view radii_rs[:, end:end, :]
dradii_rs_with_tip = @view dradii_rs[:, end:end, :]
# chord_rs_with_tip = @view chord_rs[:, end:end, :]
twist_rs_with_tip = @view twist_rs[:, end:end, :]
# hs_rs_with_tip = @view hs_rs[:, end:end, :]
# Psis_rs_with_tip = @view Psis_rs[:, end:end, :]
Us_rs_with_tip = @view Us_rs[:, end:end, :]
alphas_rs_with_tip = @view alphas_rs[:, end:end, :]
positive_x_rotation = true
ses_no_tip = CombinedNoTipBroadbandSourceElement.(asound, nu, radii_rs_no_tip, ΞΈs_rs, dradii_rs_no_tip, chord, twist_rs_no_tip, h, Psi, Us_rs_no_tip, alphas_rs_no_tip, src_times, dt, Ref(bl), positive_x_rotation) .|> trans
ses_with_tip = CombinedWithTipBroadbandSourceElement.(asound, nu, radii_rs_with_tip, ΞΈs_rs, dradii_rs_with_tip, chord, twist_rs_with_tip, h, Psi, Us_rs_with_tip, alphas_rs_with_tip, src_times, dt, Ref(bl), Ref(blade_tip), positive_x_rotation) .|> trans
# It's more convinient to cat all the sources together.
ses = cat(ses_no_tip, ses_with_tip; dims=2)
# Do the LBLVS prediction with the untripped boundary layer.
ses_lblvs = LBLVSSourceElement.(asound, nu, radii_rs, ΞΈs_rs, dradii_rs, chord, twist_rs, Us_rs, alphas_rs, src_times, dt, Ref(bl_lblvs), positive_x_rotation) .|> trans
# The predictions in Figure 22b appear to be on 1/3 octave, ranging from about 200 Hz to 60,000 Hz.
# But let's expand the range of source frequencies to account for Doppler shifting.
freqs_src = AcousticMetrics.ExactProportionalBands{3, :center}(10.0, 200000.0)
freqs_obs = AcousticMetrics.ExactProportionalBands{3, :center}(200.0, 60000.0)
# Now we can do a noise prediction.
bpm_outs = AcousticAnalogies.noise.(ses, Ref(obs), Ref(freqs_src))
pbs_lblvss = AcousticAnalogies.noise.(ses_lblvs, Ref(obs), Ref(freqs_src))
# This seperates out the noise prediction for each source-observer combination into the different sources.
pbs_tblte_ps = AcousticAnalogies.pbs_pressure.(bpm_outs)
pbs_tblte_ss = AcousticAnalogies.pbs_suction.(bpm_outs)
pbs_tblte_alphas = AcousticAnalogies.pbs_alpha.(bpm_outs)
# pbs_lblvss = AcousticAnalogies.pbs_lblvs.(bpm_outs)
pbs_tebs = AcousticAnalogies.pbs_teb.(bpm_outs)
pbs_tips = AcousticAnalogies.pbs_tip.(bpm_outs[:, end:end, :])
# Now, need to combine each broadband noise prediction.
# The time axis the axis over which the time varies for each source.
time_axis = 1
pbs_pressure = AcousticMetrics.combine(pbs_tblte_ps, freqs_obs, time_axis)
pbs_suction = AcousticMetrics.combine(pbs_tblte_ss, freqs_obs, time_axis)
pbs_alpha = AcousticMetrics.combine(pbs_tblte_alphas, freqs_obs, time_axis)
pbs_lblvs = AcousticMetrics.combine(pbs_lblvss, freqs_obs, time_axis)
pbs_teb = AcousticMetrics.combine(pbs_tebs, freqs_obs, time_axis)
pbs_tip = AcousticMetrics.combine(pbs_tips, freqs_obs, time_axis)
# Now I need to account for the fact that Figure 22b is actually comparing to narrowband experimental data with a frequency spacing of 20 Hz.
# So, to do that, I need to multiply the mean-squared pressure by Ξf_nb/Ξf_pbs, where `Ξf_nb` is the 20 Hz narrowband and `Ξf_pbs` is the bandwidth of each 1/3-octave proportional band.
# I think the paper describes that, right?
# Right, here's something:
#
# > The current prediction method is limited to one-third octave bands, but it is compared to the narrowband experiment with Ξf = 20 Hz.
# > This is done by dividing the energy from the one-third octave bands by the number of bands in Ξf = 20 Hz.
#
# So, `Ξf_pbs/Ξf_nb` would represent the number of `Ξf_nb`-width bands that could fit in a proportional band of bin width `Ξf_pbs`.
# And then I'm dividing by that.
# So that seems like the right thing.
# So, first thing is to get the proportional band spacing.
freqs_l = AcousticMetrics.lower_bands(freqs_obs)
freqs_u = AcousticMetrics.upper_bands(freqs_obs)
df_pbs = freqs_u .- freqs_l
# Also need the experimental narrowband spacing.
df_nb = 20.0
# Now multiply each by that.
nb_pressure = pbs_pressure .* df_nb ./ df_pbs
nb_suction = pbs_suction .* df_nb ./ df_pbs
nb_alpha = pbs_alpha .* df_nb ./ df_pbs
nb_lblvs = pbs_lblvs .* df_nb ./ df_pbs
nb_teb = pbs_teb .* df_nb ./ df_pbs
nb_tip = pbs_tip .* df_nb ./ df_pbs
# Now I want the SPL, which should just be this:
pref = 20e-6
spl_pressure = 10 .* log10.(nb_pressure./(pref^2))
spl_suction = 10 .* log10.(nb_suction./(pref^2))
spl_alpha = 10 .* log10.(nb_alpha./(pref^2))
spl_lblvs = 10 .* log10.(nb_lblvs./(pref^2))
spl_teb = 10 .* log10.(nb_teb./(pref^2))
spl_tip = 10 .* log10.(nb_tip./(pref^2))
# Now I should be able to compare to the BARC data.
# Need to read it in first.
data_pressure_barc = readdlm(joinpath(@__DIR__, "..", "..", "test", "bpm_data", "pettingill_acoustic_performance_characteristics_of_ideally_twisted_rotor_in_hover_2021", "figure22b-TBL-TE-pressure-2.csv"), ',')
freq_pressure_barc = data_pressure_barc[:, 1]
spl_pressure_barc = data_pressure_barc[:, 2]
data_suction_barc = readdlm(joinpath(@__DIR__, "..", "..", "test", "bpm_data", "pettingill_acoustic_performance_characteristics_of_ideally_twisted_rotor_in_hover_2021", "figure22b-TBL-TE-suction-2.csv"), ',')
freq_suction_barc = data_suction_barc[:, 1]
spl_suction_barc = data_suction_barc[:, 2]
data_separation_barc = readdlm(joinpath(@__DIR__, "..", "..", "test", "bpm_data", "pettingill_acoustic_performance_characteristics_of_ideally_twisted_rotor_in_hover_2021", "figure22b-separation-2.csv"), ',')
freq_separation_barc = data_separation_barc[:, 1]
spl_separation_barc = data_separation_barc[:, 2]
# data_lblvs_barc = readdlm(joinpath(@__DIR__, "..", "..", "test", "bpm_data", "pettingill_acoustic_performance_characteristics_of_ideally_twisted_rotor_in_hover_2021", "figure22b-LBLVS.csv"), ',')
# freq_lblvs_barc = data_lblvs_barc[:, 1]
# spl_lblvs_barc = data_lblvs_barc[:, 2]
data_teb_barc = readdlm(joinpath(@__DIR__, "..", "..", "test", "bpm_data", "pettingill_acoustic_performance_characteristics_of_ideally_twisted_rotor_in_hover_2021", "figure22b-BVS.csv"), ',')
freq_teb_barc = data_teb_barc[:, 1]
spl_teb_barc = data_teb_barc[:, 2]
data_tip_barc = readdlm(joinpath(@__DIR__, "..", "..", "test", "bpm_data", "pettingill_acoustic_performance_characteristics_of_ideally_twisted_rotor_in_hover_2021", "figure22b-tip_vortex_shedding.csv"), ',')
freq_tip_barc = data_tip_barc[:, 1]
spl_tip_barc = data_tip_barc[:, 2]
# Now let's plot.
fig = Figure()
ax1 = fig[2, 1] = Axis(fig, xlabel="frequency, Hz", ylabel="SPL (dB Ref: 20 ΞΌPa), Ξf = 20 Hz", xscale=log10, xticks=[10^3, 10^4], xminorticksvisible=true, xminorgridvisible=true, xminorticks=IntervalsBetween(9), yticks=10:10:70)#, aspect=3)
s_pressure = scatter!(ax1, freq_pressure_barc, spl_pressure_barc, color=:blue, marker=:rtriangle)
s_suction = scatter!(ax1, freq_suction_barc, spl_suction_barc, color=:red, marker=:ltriangle)
s_separation = scatter!(ax1, freq_separation_barc, spl_separation_barc, color=:yellow, marker=:diamond)
# s_lblvs = scatter!(ax1, freq_lblvs_barc, spl_lblvs_barc, color=:purple, marker=:rect)
s_blunt = scatter!(ax1, freq_teb_barc, spl_teb_barc, color=:green, marker=:star6)
s_tip = scatter!(ax1, freq_tip_barc, spl_tip_barc, color=:cyan, marker=:circle)
l_pressure = lines!(ax1, freqs_obs, spl_pressure, color=:blue)
l_suction = lines!(ax1, freqs_obs, spl_suction, color=:red)
l_alpha = lines!(ax1, freqs_obs, spl_alpha, color=:yellow)
# l_lblvs = lines!(ax1, freqs_obs, spl_lblvs, color=:purple)
l_teb = lines!(ax1, freqs_obs, spl_teb, color=:green)
l_tip = lines!(ax1, freqs_obs, spl_tip, color=:cyan)
xlims!(ax1, 2e2, 6e4)
ylims!(ax1, 10.0, 70.0)
leg = Legend(fig[1, 1], [
[s_pressure, l_pressure],
[s_suction, l_suction],
[s_separation, l_alpha],
# [s_lblvs, l_lblvs],
[s_blunt, l_teb],
[s_tip, l_tip],
],
[
"TBLTE-Pressure",
"TBLTE-Suction",
"Separation",
# "LBLVS",
"BVS",
"Tip",
]; orientation=:horizontal, tellwidth=false, tellheight=true, nbanks=2)
text!(ax1, 210, 62; text="markers: CCBlade.jl+BPM.jl\nlines: CCBlade.jl+AcousticAnalogies.jl")
save("figure22b-spl-barc.png", fig)
```

### Figure 23c
```@example figure23c
using AcousticAnalogies
using AcousticMetrics: AcousticMetrics
using DelimitedFiles: readdlm
using KinematicCoordinateTransformations: compose, SteadyRotXTransformation, ConstantVelocityTransformation
using FileIO: load
using GLMakie
using StaticArrays: @SVector
# Pettingill et al., "Acoustic And Performance Characteristics of an Ideally Twisted Rotor in Hover", 2021
# Parameters from Table 1
B = 4 # number of blades
Rtip = 0.1588 # meters
chord = 0.2*Rtip
# Standard day:
Tamb = 15 + 273.15 # 15Β°C in Kelvin
pamb = 101325.0 # Pa
R = 287.052874 # J/(kg*K)
rho = pamb/(R*Tamb)
asound = sqrt(1.4*R*Tamb)
# Dynamic and kinematic viscosity
mu = rho*1.4502e-5
nu = mu/rho
# This is a hover case, so the freestream velocity should be zero.
# CCBlade.jl will run with a zero freestream, but I've found that it compares a bit better with experiment if I give it a small non-zero value.
Vinf = 0.001*asound
# Figure 23 caption says Ξ©_c = 5510 RPM.
rpm = 5510.0
omega = rpm * (2*pi/60)
# Get "cell-centered" radial locations, and also the radial spacing.
num_radial = 50
r_Rtip_ = range(0.2, 1.0; length=num_radial+1)
r_Rtip = 0.5 .* (r_Rtip_[2:end] .+ r_Rtip_[1:end-1])
radii = r_Rtip .* Rtip
dradii = (r_Rtip_[2:end] .- r_Rtip_[1:end-1]) .* Rtip
Rhub = r_Rtip_[1]*Rtip
# From Pettingill Equation (1), and value for Ξ_tip in Table 1.
Ξ_tip = 6.9 * pi/180
twist = Ξ_tip ./ (r_Rtip)
# Need some aerodynamic quantities.
# Got these using CCBlade.jl: see `AcousticAnalogies.jl/test/gen_bpmjl_data/itr_with_bpmjl.jl`.
data_ccblade = load(joinpath(@__DIR__, "..", "..", "test", "gen_bpmjl_data", "figure23c.jld2"))
# Angle of attack at each radial station, radians.
alpha = data_ccblade["alpha"]
# Flow speed normal to span at each radial station, m/s.
U = data_ccblade["U"]
# So, for the boundary layer, we want to use untripped for the 95% of the blade from the hub to almost tip, and then tripped for the last 5% of the blade at the tip.
num_untripped = Int(round(0.95*num_radial))
num_tripped = num_radial - num_untripped
bls_untripped = fill(AcousticAnalogies.UntrippedN0012BoundaryLayer(), num_untripped)
bls_tripped = fill(AcousticAnalogies.TrippedN0012BoundaryLayer(), num_tripped)
bls = vcat(bls_untripped, bls_tripped)
# Now, the other trick: need to only include LBLVS noise for elements where the Reynolds number is < 160000.
# So, we need the Reynolds number for each section.
Re_c = @. U * chord / nu
# So now we want to extract the radial stations that meet that < 160000 condition.
low_Re_c = 160000
mask_low_Re_c = Re_c .< low_Re_c
# And we're also going to use the untripped boundary layer for the LBLVS source.
bl_lblvs = AcousticAnalogies.UntrippedN0012BoundaryLayer()
# In the Figure 23 caption, "for these predictions, bluntness thickness H was set to 0.5 mm and trailing edge angle Ξ¨ was set to 14 degrees."
h = 0.5e-3 # meters
Psi = 14*pi/180 # radians
# We'll run for 1 blade pass, 20 time steps per blade pass.
num_blade_pass = 1
num_src_times_blade_pass = 20
bpp = 1/(B/(2*pi)*omega) # 1/(B blade_passes/rev * 1 rev / (2*pi rad) * omega rad/s)
period_src = num_blade_pass*bpp
num_src_times = num_src_times_blade_pass * num_blade_pass
t0 = 0.0
dt = period_src/num_src_times
src_times = t0 .+ (0:num_src_times-1).*dt
# I don't see any discussion for what type of tip was used for the tip vortex noise.
# The flat tip seems to match the PAS+ROTONET+BARC predictions well.
blade_tip = AcousticAnalogies.FlatTip()
# Now let's define the coordinate system.
# I'm going to do my usual thing, which is to have the freestream velocity pointed in the negative x direction, and thus the blades will be translating in the positive x direction.
# And the blades will be rotating about the positive x axis at a rate of `omega`.
rot_trans = SteadyRotXTransformation(t0, omega, 0.0)
# The hub/rotation axis of the blades will start at the origin at time `t0`, and translate in the positive x direction at a speed of `Vinf`.
y0_hub = @SVector [0.0, 0.0, 0.0] # m
v0_hub = @SVector [Vinf, 0.0, 0.0] # m/s
const_vel_trans = ConstantVelocityTransformation(t0, y0_hub, v0_hub)
# Now I can put the two transformations together:
trans = compose.(src_times, Ref(const_vel_trans), Ref(rot_trans))
# Azimuthal offset for each blade.
ΞΈs = (0:(B-1)) .* (2*pi/B)
# Paper doesn't specify the microphone used for Figure 22, but earlier at the beginning of "C. Noise Characteristics and Trends" there is this:
# > For the purposes of this paper, presented acoustic spectra will correspond to an observer located β35Β° below the plane of the rotor (microphone 5).
# So I'll just assume that holds for Figure 22.
# For the coordinate system, I'm doing my usual thing, which is to have the freestream velocity pointed in the negative x direction, and thus the blades will be translating in the positive x direction.
# The observer (microphone 5) is 35 deg behind/downstream of the rotor rotation plane, so this should be good.
# But it will of course be moving with the same freestream in the positive x direction.
r_obs = 2.27 # meters
theta_obs = -35*pi/180
# The observer is moving in the positive x direction at Vinf, at the origin at time t0.
t0_obs = 0.0
x0_obs = @SVector [r_obs*sin(theta_obs), r_obs*cos(theta_obs), 0.0]
v_obs = @SVector [Vinf, 0.0, 0.0]
obs = AcousticAnalogies.ConstVelocityAcousticObserver(t0_obs, x0_obs, v_obs)
# Reshape the inputs to the source element constructors so that everything will line up with (num_times, num_radial, num_blades).
ΞΈs_rs = reshape(ΞΈs, 1, 1, :)
radii_rs = reshape(radii, 1, :, 1)
dradii_rs = reshape(dradii, 1, :, 1)
# chord_rs = reshape(chord, 1, :, 1)
twist_rs = reshape(twist, 1, :, 1)
# hs_rs = reshape(hs, 1, :, 1)
# Psis_rs = reshape(Psis, 1, :, 1)
Us_rs = reshape(U, 1, :, 1)
alphas_rs = reshape(alpha, 1, :, 1)
bls_rs = reshape(bls, 1, :, 1)
# Separate things into tip and no-tip.
radii_rs_no_tip = @view radii_rs[:, begin:end-1, :]
dradii_rs_no_tip = @view dradii_rs[:, begin:end-1, :]
# chord_rs_no_tip = @view chord_rs[:, begin:end-1, :]
twist_rs_no_tip = @view twist_rs[:, begin:end-1, :]
# hs_rs_no_tip = @view hs_rs[:, begin:end-1, :]
# Psis_rs_no_tip = @view Psis_rs[:, begin:end-1, :]
Us_rs_no_tip = @view Us_rs[:, begin:end-1, :]
alphas_rs_no_tip = @view alphas_rs[:, begin:end-1, :]
bls_rs_no_tip = @view bls_rs[:, begin:end-1, :]
radii_rs_with_tip = @view radii_rs[:, end:end, :]
dradii_rs_with_tip = @view dradii_rs[:, end:end, :]
# chord_rs_with_tip = @view chord_rs[:, end:end, :]
twist_rs_with_tip = @view twist_rs[:, end:end, :]
# hs_rs_with_tip = @view hs_rs[:, end:end, :]
# Psis_rs_with_tip = @view Psis_rs[:, end:end, :]
Us_rs_with_tip = @view Us_rs[:, end:end, :]
alphas_rs_with_tip = @view alphas_rs[:, end:end, :]
bls_rs_with_tip = @view bls_rs[:, end:end, :]
positive_x_rotation = true
ses_no_tip = CombinedNoTipBroadbandSourceElement.(asound, nu, radii_rs_no_tip, ΞΈs_rs, dradii_rs_no_tip, chord, twist_rs_no_tip, h, Psi, Us_rs_no_tip, alphas_rs_no_tip, src_times, dt, bls_rs_no_tip, positive_x_rotation) .|> trans
ses_with_tip = CombinedWithTipBroadbandSourceElement.(asound, nu, radii_rs_with_tip, ΞΈs_rs, dradii_rs_with_tip, chord, twist_rs_with_tip, h, Psi, Us_rs_with_tip, alphas_rs_with_tip, src_times, dt, bls_rs_with_tip, Ref(blade_tip), positive_x_rotation) .|> trans
# It's more convinient to cat all the sources together.
ses = cat(ses_no_tip, ses_with_tip; dims=2)
# Need to do the LBLVS stuff separately.
# Grab the parts of the inputs that correspond to the low Reynolds number stations.
radii_lblvs = @view radii[mask_low_Re_c]
dradii_lblvs = @view dradii[mask_low_Re_c]
# chord_lblvs = @view chord[mask_low_Re_c]
twist_lblvs = @view twist[mask_low_Re_c]
# hs_lblvs = @view hs[mask_low_Re_c]
# Psis_lblvs = @view Psis[mask_low_Re_c]
Us_lblvs = @view U[mask_low_Re_c]
alphas_lblvs = @view alpha[mask_low_Re_c]
# And do the reshaping.
radii_lblvs_rs = reshape(radii_lblvs, 1, :, 1)
dradii_lblvs_rs = reshape(dradii_lblvs, 1, :, 1)
# chord_lblvs_rs = reshape(chord_lblvs, 1, :, 1)
twist_lblvs_rs = reshape(twist_lblvs, 1, :, 1)
# hs_lblvs_rs = reshape(hs_lblvs, 1, :, 1)
# Psis_lblvs_rs = reshape(Psis_lblvs, 1, :, 1)
Us_lblvs_rs = reshape(Us_lblvs, 1, :, 1)
alphas_lblvs_rs = reshape(alphas_lblvs, 1, :, 1)
# Now we can create the source elements.
ses_lblvs = LBLVSSourceElement.(asound, nu, radii_lblvs_rs, ΞΈs_rs, dradii_lblvs_rs, chord, twist_lblvs_rs, Us_lblvs_rs, alphas_lblvs_rs, src_times, dt, Ref(bl_lblvs), positive_x_rotation) .|> trans
# Now we can create the source elements.
ses_lblvs = LBLVSSourceElement.(asound, nu, radii_lblvs_rs, ΞΈs_rs, dradii_lblvs_rs, chord, twist_lblvs_rs, Us_lblvs_rs, alphas_lblvs_rs, src_times, dt, Ref(bl_lblvs), positive_x_rotation) .|> trans
# The predictions in Figure 23c appear to be on 1/3 octave, ranging from about 200 Hz to 60,000 Hz.
# But let's expand the range of source frequencies to account for Doppler shifting.
freqs_src = AcousticMetrics.ExactProportionalBands{3, :center}(10.0, 200000.0)
freqs_obs = AcousticMetrics.ExactProportionalBands{3, :center}(200.0, 60000.0)
# Now we can do a noise prediction.
bpm_outs = AcousticAnalogies.noise.(ses, Ref(obs), Ref(freqs_src))
pbs_lblvss = AcousticAnalogies.noise.(ses_lblvs, Ref(obs), Ref(freqs_src))
# This seperates out the noise prediction for each source-observer combination into the different sources.
pbs_tblte_ps = AcousticAnalogies.pbs_pressure.(bpm_outs)
pbs_tblte_ss = AcousticAnalogies.pbs_suction.(bpm_outs)
pbs_tblte_alphas = AcousticAnalogies.pbs_alpha.(bpm_outs)
pbs_tebs = AcousticAnalogies.pbs_teb.(bpm_outs)
pbs_tips = AcousticAnalogies.pbs_tip.(bpm_outs[:, end:end, :])
# Now, need to combine each broadband noise prediction.
# The time axis the axis over which the time varies for each source.
time_axis = 1
pbs_pressure = AcousticMetrics.combine(pbs_tblte_ps, freqs_obs, time_axis)
pbs_suction = AcousticMetrics.combine(pbs_tblte_ss, freqs_obs, time_axis)
pbs_alpha = AcousticMetrics.combine(pbs_tblte_alphas, freqs_obs, time_axis)
pbs_teb = AcousticMetrics.combine(pbs_tebs, freqs_obs, time_axis)
pbs_tip = AcousticMetrics.combine(pbs_tips, freqs_obs, time_axis)
pbs_lblvs = AcousticMetrics.combine(pbs_lblvss, freqs_obs, time_axis)
# Now I need to account for the fact that Figure 23c is actually comparing to narrowband experimental data with a frequency spacing of 20 Hz.
# So, to do that, I need to multiply the mean-squared pressure by Ξf_nb/Ξf_pbs, where `Ξf_nb` is the 20 Hz narrowband and `Ξf_pbs` is the bandwidth of each 1/3-octave proportional band.
# I think the paper describes that, right?
# Right, here's something:
#
# > The current prediction method is limited to one-third octave bands, but it is compared to the narrowband experiment with Ξf = 20 Hz.
# > This is done by dividing the energy from the one-third octave bands by the number of bands in Ξf = 20 Hz.
#
# So, `Ξf_pbs/Ξf_nb` would represent the number of `Ξf_nb`-width bands that could fit in a proportional band of bin width `Ξf_pbs`.
# And then I'm dividing by that.
# So that seems like the right thing.
# So, first thing is to get the proportional band spacing.
freqs_l = AcousticMetrics.lower_bands(freqs_obs)
freqs_u = AcousticMetrics.upper_bands(freqs_obs)
df_pbs = freqs_u .- freqs_l
# Also need the experimental narrowband spacing.
df_nb = 20.0
# Now multiply each by that.
nb_pressure = pbs_pressure .* df_nb ./ df_pbs
nb_suction = pbs_suction .* df_nb ./ df_pbs
nb_alpha = pbs_alpha .* df_nb ./ df_pbs
nb_lblvs = pbs_lblvs .* df_nb ./ df_pbs
nb_teb = pbs_teb .* df_nb ./ df_pbs
nb_tip = pbs_tip .* df_nb ./ df_pbs
# Now I want the SPL, which should just be this:
pref = 20e-6
spl_pressure = 10 .* log10.(nb_pressure./(pref^2))
spl_suction = 10 .* log10.(nb_suction./(pref^2))
spl_alpha = 10 .* log10.(nb_alpha./(pref^2))
spl_lblvs = 10 .* log10.(nb_lblvs./(pref^2))
spl_teb = 10 .* log10.(nb_teb./(pref^2))
spl_tip = 10 .* log10.(nb_tip./(pref^2))
# Now I should be able to compare to the BARC data.
# Need to read it in first.
data_pressure_barc = readdlm(joinpath(@__DIR__, "..", "..", "test", "bpm_data", "pettingill_acoustic_performance_characteristics_of_ideally_twisted_rotor_in_hover_2021", "figure23c-TBL-TE-pressure.csv"), ',')
freq_pressure_barc = data_pressure_barc[:, 1]
spl_pressure_barc = data_pressure_barc[:, 2]
data_suction_barc = readdlm(joinpath(@__DIR__, "..", "..", "test", "bpm_data", "pettingill_acoustic_performance_characteristics_of_ideally_twisted_rotor_in_hover_2021", "figure23c-TBL-TE-suction.csv"), ',')
freq_suction_barc = data_suction_barc[:, 1]
spl_suction_barc = data_suction_barc[:, 2]
data_separation_barc = readdlm(joinpath(@__DIR__, "..", "..", "test", "bpm_data", "pettingill_acoustic_performance_characteristics_of_ideally_twisted_rotor_in_hover_2021", "figure23c-separation.csv"), ',')
freq_separation_barc = data_separation_barc[:, 1]
spl_separation_barc = data_separation_barc[:, 2]
data_lblvs_barc = readdlm(joinpath(@__DIR__, "..", "..", "test", "bpm_data", "pettingill_acoustic_performance_characteristics_of_ideally_twisted_rotor_in_hover_2021", "figure23c-LBLVS.csv"), ',')
freq_lblvs_barc = data_lblvs_barc[:, 1]
spl_lblvs_barc = data_lblvs_barc[:, 2]
data_teb_barc = readdlm(joinpath(@__DIR__, "..", "..", "test", "bpm_data", "pettingill_acoustic_performance_characteristics_of_ideally_twisted_rotor_in_hover_2021", "figure23c-BVS.csv"), ',')
freq_teb_barc = data_teb_barc[:, 1]
spl_teb_barc = data_teb_barc[:, 2]
data_tip_barc = readdlm(joinpath(@__DIR__, "..", "..", "test", "bpm_data", "pettingill_acoustic_performance_characteristics_of_ideally_twisted_rotor_in_hover_2021", "figure23c-tip_vortex_shedding.csv"), ',')
freq_tip_barc = data_tip_barc[:, 1]
spl_tip_barc = data_tip_barc[:, 2]
# Now let's plot.
fig = Figure()
ax1 = fig[2, 1] = Axis(fig, xlabel="frequency, Hz", ylabel="SPL (dB Ref: 20 ΞΌPa), Ξf = 20 Hz", xscale=log10, xticks=[10^3, 10^4], xminorticksvisible=true, xminorgridvisible=true, xminorticks=IntervalsBetween(9), yticks=10:10:70)#, aspect=3)
s_pressure = scatter!(ax1, freq_pressure_barc, spl_pressure_barc, color=:blue, marker=:rtriangle)
s_suction = scatter!(ax1, freq_suction_barc, spl_suction_barc, color=:red, marker=:ltriangle)
s_separation = scatter!(ax1, freq_separation_barc, spl_separation_barc, color=:yellow, marker=:diamond)
s_lblvs = scatter!(ax1, freq_lblvs_barc, spl_lblvs_barc, color=:purple, marker=:rect)
s_blunt = scatter!(ax1, freq_teb_barc, spl_teb_barc, color=:green, marker=:star6)
s_tip = scatter!(ax1, freq_tip_barc, spl_tip_barc, color=:cyan, marker=:circle)
l_pressure = lines!(ax1, freqs_obs, spl_pressure, color=:blue)
l_suction = lines!(ax1, freqs_obs, spl_suction, color=:red)
l_alpha = lines!(ax1, freqs_obs, spl_alpha, color=:yellow)
l_lblvs = lines!(ax1, freqs_obs, spl_lblvs, color=:purple)
l_teb = lines!(ax1, freqs_obs, spl_teb, color=:green)
l_tip = lines!(ax1, freqs_obs, spl_tip, color=:cyan)
xlims!(ax1, 2e2, 6e4)
ylims!(ax1, 10.0, 70.0)
leg = Legend(fig[1, 1], [
[s_pressure, l_pressure],
[s_suction, l_suction],
[s_separation, l_alpha],
[s_lblvs, l_lblvs],
[s_blunt, l_teb],
[s_tip, l_tip],
],
[
"TBLTE-Pressure",
"TBLTE-Suction",
"Separation",
"LBLVS",
"BVS",
"Tip",
]; orientation=:horizontal, tellwidth=false, tellheight=true, nbanks=2)
text!(ax1, 210, 62; text="markers: CCBlade.jl+BPM.jl\nlines: CCBlade.jl+AcousticAnalogies.jl")
save("figure23c-spl-barc.png", fig)
```

### Figure 24b
```@example figure24b
using AcousticAnalogies
using AcousticMetrics: AcousticMetrics
using DelimitedFiles: readdlm
using KinematicCoordinateTransformations: compose, SteadyRotXTransformation, ConstantVelocityTransformation
using FileIO: load
using GLMakie
using StaticArrays: @SVector
# Pettingill et al., "Acoustic And Performance Characteristics of an Ideally Twisted Rotor in Hover", 2021
# Parameters from Table 1
B = 4 # number of blades
Rtip = 0.1588 # meters
chord = 0.2*Rtip
# Standard day:
Tamb = 15 + 273.15 # 15Β°C in Kelvin
pamb = 101325.0 # Pa
R = 287.052874 # J/(kg*K)
rho = pamb/(R*Tamb)
asound = sqrt(1.4*R*Tamb)
# Dynamic and kinematic viscosity
mu = rho*1.4502e-5
nu = mu/rho
# This is a hover case, so the freestream velocity should be zero.
# CCBlade.jl will run with a zero freestream, but I've found that it compares a bit better with experiment if I give it a small non-zero value.
Vinf = 0.001*asound
# Figure 24 caption says Ξ©_c = 2938 RPM.
rpm = 2938.0
omega = rpm * (2*pi/60)
# Get "cell-centered" radial locations, and also the radial spacing.
num_radial = 50
r_Rtip_ = range(0.2, 1.0; length=num_radial+1)
r_Rtip = 0.5 .* (r_Rtip_[2:end] .+ r_Rtip_[1:end-1])
radii = r_Rtip .* Rtip
dradii = (r_Rtip_[2:end] .- r_Rtip_[1:end-1]) .* Rtip
Rhub = r_Rtip_[1]*Rtip
# From Pettingill Equation (1), and value for Ξ_tip in Table 1.
Ξ_tip = 6.9 * pi/180
twist = Ξ_tip ./ (r_Rtip)
# Need some aerodynamic quantities.
# Got these using CCBlade.jl: see `AcousticAnalogies.jl/test/gen_bpmjl_data/itr_with_bpmjl.jl`.
data_ccblade = load(joinpath(@__DIR__, "..", "..", "test", "gen_bpmjl_data", "figure24b.jld2"))
# Angle of attack at each radial station, radians.
alpha = data_ccblade["alpha"]
# Flow speed normal to span at each radial station, m/s.
U = data_ccblade["U"]
# In the Figure 24 caption, "for these predictions, bluntness thickness H was set to 0.5 mm and trailing edge angle Ξ¨ was set to 14 degrees."
h = 0.5e-3 # meters
Psi = 14*pi/180 # radians
# We'll run for 1 blade pass, 20 time steps per blade pass.
num_blade_pass = 1
num_src_times_blade_pass = 20
# Get the time levels we'll run.
# First, get the blade passing period.
bpp = 1/(B/(2*pi)*omega) # 1/(B blade_passes/rev * 1 rev / (2*pi rad) * omega rad/s)
# Now we can get the total period of source time we'll run over.
period_src = num_blade_pass*bpp
# And the number of source times.
num_src_times = num_src_times_blade_pass * num_blade_pass
# We know the total time period and number of source times, so we can get the time step.
dt = period_src/num_src_times
# We'll arbitrarily start at time 0.0 seconds.
t0 = 0.0
# And now we can finally get each source time.
src_times = t0 .+ (0:num_src_times-1).*dt
# Now let's define the coordinate system.
# I'm going to do my usual thing, which is to have the freestream velocity pointed in the negative x direction, and thus the blades will be translating in the positive x direction.
# And the blades will be rotating about the positive x axis at a rate of `omega`.
rot_trans = SteadyRotXTransformation(t0, omega, 0.0)
# The hub/rotation axis of the blades will start at the origin at time `t0`, and translate in the positive x direction at a speed of `Vinf`.
y0_hub = @SVector [0.0, 0.0, 0.0] # m
v0_hub = @SVector [Vinf, 0.0, 0.0] # m/s
const_vel_trans = ConstantVelocityTransformation(t0, y0_hub, v0_hub)
# Now I can put the two transformations together:
trans = compose.(src_times, Ref(const_vel_trans), Ref(rot_trans))
# Azimuthal offset for each blade.
ΞΈs = (0:(B-1)) .* (2*pi/B)
# For the boundary layer we want to use untripped for the 95% of the blade from the hub to almost tip, and then tripped for the last 5% of the blade at the tip.
# First figure out how many of each we'll actually have with the `num_radial = 50` radial stations.
num_untripped = Int(round(0.95*num_radial))
num_tripped = num_radial - num_untripped
# Now create a length-`num_radial` vector of untripped and then tripped boundary layer objects.
bls = vcat(fill(AcousticAnalogies.UntrippedN0012BoundaryLayer(), num_untripped), fill(AcousticAnalogies.TrippedN0012BoundaryLayer(), num_tripped))
# But we'll always use the untripped boundary layer with LBLVS.
bl_lblvs = AcousticAnalogies.UntrippedN0012BoundaryLayer()
# I don't see any discussion for what type of tip was used for the tip vortex noise.
# The flat tip seems to match the PAS+ROTONET+BARC predictions well.
blade_tip = AcousticAnalogies.FlatTip()
# Paper doesn't specify the microphone used for Figure 24, but earlier at the beginning of "C. Noise Characteristics and Trends" there is this:
# > For the purposes of this paper, presented acoustic spectra will correspond to an observer located β35Β° below the plane of the rotor (microphone 5).
# So I'll just assume that holds for Figure 24.
# For the coordinate system, I'm doing my usual thing, which is to have the freestream velocity pointed in the negative x direction, and thus the blades will be translating in the positive x direction.
# The observer (microphone 5) is 35 deg behind/downstream of the rotor rotation plane, so this should be good.
# But it will of course be moving with the same freestream in the positive x direction.
r_obs = 2.27 # meters
theta_obs = -35*pi/180
# The observer is moving in the positive x direction at Vinf, at the origin at time t0.
t0_obs = 0.0
x0_obs = @SVector [r_obs*sin(theta_obs), r_obs*cos(theta_obs), 0.0]
v_obs = @SVector [Vinf, 0.0, 0.0]
obs = AcousticAnalogies.ConstVelocityAcousticObserver(t0_obs, x0_obs, v_obs)
# Reshape the inputs to the source element constructors so that everything will line up with (num_times, num_radial, num_blades).
ΞΈs_rs = reshape(ΞΈs, 1, 1, :)
radii_rs = reshape(radii, 1, :, 1)
dradii_rs = reshape(dradii, 1, :, 1)
# chord_rs = reshape(chord, 1, :, 1)
twist_rs = reshape(twist, 1, :, 1)
# hs_rs = reshape(hs, 1, :, 1)
# Psis_rs = reshape(Psis, 1, :, 1)
Us_rs = reshape(U, 1, :, 1)
alphas_rs = reshape(alpha, 1, :, 1)
bls_rs = reshape(bls, 1, :, 1)
# Separate things into tip and no-tip.
radii_rs_no_tip = @view radii_rs[:, begin:end-1, :]
dradii_rs_no_tip = @view dradii_rs[:, begin:end-1, :]
twist_rs_no_tip = @view twist_rs[:, begin:end-1, :]
Us_rs_no_tip = @view Us_rs[:, begin:end-1, :]
alphas_rs_no_tip = @view alphas_rs[:, begin:end-1, :]
bls_rs_no_tip = @view bls_rs[:, begin:end-1, :]
radii_rs_with_tip = @view radii_rs[:, end:end, :]
dradii_rs_with_tip = @view dradii_rs[:, end:end, :]
twist_rs_with_tip = @view twist_rs[:, end:end, :]
Us_rs_with_tip = @view Us_rs[:, end:end, :]
alphas_rs_with_tip = @view alphas_rs[:, end:end, :]
bls_rs_with_tip = @view bls_rs[:, end:end, :]
positive_x_rotation = true
ses_no_tip = CombinedNoTipBroadbandSourceElement.(asound, nu, radii_rs_no_tip, ΞΈs_rs, dradii_rs_no_tip, chord, twist_rs_no_tip, h, Psi, Us_rs_no_tip, alphas_rs_no_tip, src_times, dt, bls_rs_no_tip, positive_x_rotation) .|> trans
ses_with_tip = CombinedWithTipBroadbandSourceElement.(asound, nu, radii_rs_with_tip, ΞΈs_rs, dradii_rs_with_tip, chord, twist_rs_with_tip, h, Psi, Us_rs_with_tip, alphas_rs_with_tip, src_times, dt, bls_rs_with_tip, Ref(blade_tip), positive_x_rotation) .|> trans
# Put the source elements together:
ses = cat(ses_no_tip, ses_with_tip; dims=2)
# Need to do the LBLVS with the untripped boundary layer.
ses_lblvs = AcousticAnalogies.LBLVSSourceElement.(asound, nu, radii_rs, ΞΈs_rs, dradii_rs, chord, twist_rs, Us_rs, alphas_rs, src_times, dt, Ref(bl_lblvs), positive_x_rotation) .|> trans
# The predictions in Figure 24b appear to be on 1/3 octave, ranging from about 200 Hz to 60,000 Hz.
# But let's expand the range of source frequencies to account for Doppler shifting.
freqs_src = AcousticMetrics.ExactProportionalBands{3, :center}(10.0, 200000.0)
freqs_obs = AcousticMetrics.ExactProportionalBands{3, :center}(200.0, 60000.0)
# Now we can do a noise prediction.
bpm_outs = AcousticAnalogies.noise.(ses, Ref(obs), Ref(freqs_src))
pbs_lblvss = AcousticAnalogies.noise.(ses_lblvs, Ref(obs), Ref(freqs_src))
# This seperates out the noise prediction for each source-observer combination into the different sources.
pbs_tblte_ps = AcousticAnalogies.pbs_pressure.(bpm_outs)
pbs_tblte_ss = AcousticAnalogies.pbs_suction.(bpm_outs)
pbs_tblte_alphas = AcousticAnalogies.pbs_alpha.(bpm_outs)
pbs_tebs = AcousticAnalogies.pbs_teb.(bpm_outs)
pbs_tips = AcousticAnalogies.pbs_tip.(bpm_outs[:, end:end, :])
# Now, need to combine each broadband noise prediction.
# The time axis the axis over which the time varies for each source.
time_axis = 1
pbs_pressure = AcousticMetrics.combine(pbs_tblte_ps, freqs_obs, time_axis)
pbs_suction = AcousticMetrics.combine(pbs_tblte_ss, freqs_obs, time_axis)
pbs_alpha = AcousticMetrics.combine(pbs_tblte_alphas, freqs_obs, time_axis)
pbs_teb = AcousticMetrics.combine(pbs_tebs, freqs_obs, time_axis)
pbs_tip = AcousticMetrics.combine(pbs_tips, freqs_obs, time_axis)
pbs_lblvs = AcousticMetrics.combine(pbs_lblvss, freqs_obs, time_axis)
# Now I need to account for the fact that Figure 24b is actually comparing to narrowband experimental data with a frequency spacing of 20 Hz.
# So, to do that, I need to multiply the mean-squared pressure by Ξf_nb/Ξf_pbs, where `Ξf_nb` is the 20 Hz narrowband and `Ξf_pbs` is the bandwidth of each 1/3-octave proportional band.
# I think the paper describes that, right?
# Right, here's something:
#
# > The current prediction method is limited to one-third octave bands, but it is compared to the narrowband experiment with Ξf = 20 Hz.
# > This is done by dividing the energy from the one-third octave bands by the number of bands in Ξf = 20 Hz.
#
# So, `Ξf_pbs/Ξf_nb` would represent the number of `Ξf_nb`-width bands that could fit in a proportional band of bin width `Ξf_pbs`.
# And then I'm dividing by that.
# So that seems like the right thing.
# So, first thing is to get the proportional band spacing.
freqs_l = AcousticMetrics.lower_bands(freqs_obs)
freqs_u = AcousticMetrics.upper_bands(freqs_obs)
df_pbs = freqs_u .- freqs_l
# Also need the experimental narrowband spacing.
df_nb = 20.0
# Now multiply each by that.
nb_pressure = pbs_pressure .* df_nb ./ df_pbs
nb_suction = pbs_suction .* df_nb ./ df_pbs
nb_alpha = pbs_alpha .* df_nb ./ df_pbs
nb_lblvs = pbs_lblvs .* df_nb ./ df_pbs
nb_teb = pbs_teb .* df_nb ./ df_pbs
nb_tip = pbs_tip .* df_nb ./ df_pbs
# Now I want the SPL, which should just be this:
pref = 20e-6
spl_pressure = 10 .* log10.(nb_pressure./(pref^2))
spl_suction = 10 .* log10.(nb_suction./(pref^2))
spl_alpha = 10 .* log10.(nb_alpha./(pref^2))
spl_lblvs = 10 .* log10.(nb_lblvs./(pref^2))
spl_teb = 10 .* log10.(nb_teb./(pref^2))
spl_tip = 10 .* log10.(nb_tip./(pref^2))
# Now I should be able to compare to the BARC data.
# Need to read it in first.
data_pressure_barc = readdlm(joinpath(@__DIR__, "..", "..", "test", "bpm_data", "pettingill_acoustic_performance_characteristics_of_ideally_twisted_rotor_in_hover_2021", "figure24b-TBL-TE-pressure.csv"), ',')
freq_pressure_barc = data_pressure_barc[:, 1]
spl_pressure_barc = data_pressure_barc[:, 2]
data_suction_barc = readdlm(joinpath(@__DIR__, "..", "..", "test", "bpm_data", "pettingill_acoustic_performance_characteristics_of_ideally_twisted_rotor_in_hover_2021", "figure24b-TBL-TE-suction.csv"), ',')
freq_suction_barc = data_suction_barc[:, 1]
spl_suction_barc = data_suction_barc[:, 2]
data_separation_barc = readdlm(joinpath(@__DIR__, "..", "..", "test", "bpm_data", "pettingill_acoustic_performance_characteristics_of_ideally_twisted_rotor_in_hover_2021", "figure24b-separation.csv"), ',')
freq_separation_barc = data_separation_barc[:, 1]
spl_separation_barc = data_separation_barc[:, 2]
data_lblvs_barc = readdlm(joinpath(@__DIR__, "..", "..", "test", "bpm_data", "pettingill_acoustic_performance_characteristics_of_ideally_twisted_rotor_in_hover_2021", "figure24b-LBLVS.csv"), ',')
freq_lblvs_barc = data_lblvs_barc[:, 1]
spl_lblvs_barc = data_lblvs_barc[:, 2]
data_teb_barc = readdlm(joinpath(@__DIR__, "..", "..", "test", "bpm_data", "pettingill_acoustic_performance_characteristics_of_ideally_twisted_rotor_in_hover_2021", "figure24b-BVS.csv"), ',')
freq_teb_barc = data_teb_barc[:, 1]
spl_teb_barc = data_teb_barc[:, 2]
data_tip_barc = readdlm(joinpath(@__DIR__, "..", "..", "test", "bpm_data", "pettingill_acoustic_performance_characteristics_of_ideally_twisted_rotor_in_hover_2021", "figure24b-tip_vortex_shedding.csv"), ',')
freq_tip_barc = data_tip_barc[:, 1]
spl_tip_barc = data_tip_barc[:, 2]
# Now let's plot.
fig = Figure()
ax1 = fig[2, 1] = Axis(fig, xlabel="frequency, Hz", ylabel="SPL (dB Ref: 20 ΞΌPa), Ξf = 20 Hz", xscale=log10, xticks=[10^3, 10^4], xminorticksvisible=true, xminorgridvisible=true, xminorticks=IntervalsBetween(9), yticks=10:10:70)#, aspect=3)
s_pressure = scatter!(ax1, freq_pressure_barc, spl_pressure_barc, color=:blue, marker=:rtriangle)
s_suction = scatter!(ax1, freq_suction_barc, spl_suction_barc, color=:red, marker=:ltriangle)
s_separation = scatter!(ax1, freq_separation_barc, spl_separation_barc, color=:yellow, marker=:diamond)
s_lblvs = scatter!(ax1, freq_lblvs_barc, spl_lblvs_barc, color=:purple, marker=:rect)
s_blunt = scatter!(ax1, freq_teb_barc, spl_teb_barc, color=:green, marker=:star6)
s_tip = scatter!(ax1, freq_tip_barc, spl_tip_barc, color=:cyan, marker=:circle)
l_pressure = lines!(ax1, freqs_obs, spl_pressure, color=:blue)
l_suction = lines!(ax1, freqs_obs, spl_suction, color=:red)
l_alpha = lines!(ax1, freqs_obs, spl_alpha, color=:yellow)
l_lblvs = lines!(ax1, freqs_obs, spl_lblvs, color=:purple)
l_teb = lines!(ax1, freqs_obs, spl_teb, color=:green)
l_tip = lines!(ax1, freqs_obs, spl_tip, color=:cyan)
xlims!(ax1, 2e2, 6e4)
ylims!(ax1, 0.0, 50.0)
leg = Legend(fig[1, 1], [
[s_pressure, l_pressure],
[s_suction, l_suction],
[s_separation, l_alpha],
[s_lblvs, l_lblvs],
[s_blunt, l_teb],
[s_tip, l_tip],
],
[
"TBLTE-Pressure",
"TBLTE-Suction",
"Separation",
"LBLVS",
"BVS",
"Tip",
]; orientation=:horizontal, tellwidth=false, tellheight=true, nbanks=2)
text!(ax1, 210, 44; text="markers: CCBlade.jl+BPM.jl\nlines: CCBlade.jl+AcousticAnalogies.jl")
save("figure24b-spl-barc.png", fig)
```

| AcousticAnalogies | https://github.com/OpenMDAO/AcousticAnalogies.jl.git |
|
[
"Apache-2.0"
] | 0.8.1 | c14d0b2e7f19374017a2b5b6dfe48c5723c791ae | docs | 23995 | ```@meta
CurrentModule = AADocs
```
# Compact Formulation 1A OpenFAST Example
## Introduction
This example loads a .out file generated by the popular aeroserohydroelastic
solver [OpenFAST](https://github.com/OpenFAST/openfast), which is released by
the U.S. National Renewable Energy Laboratory to simulate wind turbines,
and then constructs the types used by AcousticAnalogies.jl for acoustic predictions.
The example simulates the acoustic emissions of the 3.4MW land-based reference wind
turbine released by the International Wind Energy Agency. The OpenFAST model is available at
https://github.com/IEAWindTask37/IEA-3.4-130-RWT.
We start by loading Julia dependencies, which are available in the General registry
```@example first_example
using AcousticAnalogies: AcousticAnalogies
using AcousticMetrics: AcousticMetrics
using ColorSchemes: colorschemes
using FillArrays: FillArrays, getindex_value
using GLMakie
using KinematicCoordinateTransformations: SteadyRotYTransformation
using StaticArrays: @SVector
nothing # hide
```
## Inputs
Next, we set the user-defined inputs:
* number of blades, usually 3 for modern wind turbines
* hub radius in m, it is specified in the ElastoDyn main input file of OpenFAST
* blade spanwise grid in m and the corresponding chord, also in m. The two arrays are specified in the AeroDyn15 blade input file
* Observer location in the global coordinate frame (located at the rotor center, x points downwind, z points vertically up, and y points sideways). In this case we picked the IEC-prescribed location (turbine height on the ground) by specifying the hub height of 110 m.
* Air density and speed of sound
* Path to the OpenFAST .out file. The file must contain these channels: Time (always available), Wind1VelX from InflowWind, RotSpeed from ElastoDyn, Nodal outputs Fxl and Fyl from AeroDyn15. the file is available in the repo under `test/gen_test_data/openfast_data`.
```@example first_example
# num_blades = 3
Rhub = 2.
BlSpn = [0.0000e+00, 2.1692e+00, 4.3385e+00, 6.5077e+00, 8.6770e+00, 1.0846e+01, 1.3015e+01, 1.5184e+01,
1.7354e+01, 1.9523e+01, 2.1692e+01, 2.3861e+01, 2.6031e+01, 2.8200e+01, 3.0369e+01, 3.2538e+01,
3.4708e+01, 3.6877e+01, 3.9046e+01, 4.1215e+01, 4.3385e+01, 4.5554e+01, 4.7723e+01,
4.9892e+01, 5.2062e+01, 5.4231e+01, 5.6400e+01, 5.8570e+01, 6.0739e+01, 6.2908e+01]
Chord = [2.600e+00, 2.645e+00, 3.020e+00, 3.437e+00, 3.781e+00, 4.036e+00, 4.201e+00,
4.284e+00, 4.288e+00, 4.223e+00, 4.098e+00, 3.923e+00, 3.709e+00, 3.468e+00, 3.220e+00,
2.986e+00, 2.770e+00, 2.581e+00, 2.412e+00, 2.266e+00, 2.142e+00, 2.042e+00, 1.964e+00,
1.909e+00, 1.870e+00, 1.807e+00, 1.666e+00, 1.387e+00, 9.172e-01, 1.999e-01]
file_path = joinpath(@__DIR__, "..", "..", "test", "gen_test_data", "openfast_data", "IEA-3.4-130-RWT.out")
HH = 110. # m
RSpn = BlSpn .+ Rhub
x0 = @SVector [HH .+ RSpn[end], 0.0, -HH]
rho = 1.225 # kg/m^3
c0 = 340.0 # m/s
nothing # hide
```
For the monopole/thickness noise, we need the cross-sectional area at each radial station.
If we know the cross-sectional area per chord squared, we can find the cross-sectional area this way:
```@example first_example
# Cross-sectional area of each element in m**2. This is taking a bit of a shortcutβthe value of `cs_area_over_chord_squared` does not actually correspond to the IEAWindTask37 turbine blade.
cs_area_over_chord_squared = 0.064
cs_area = cs_area_over_chord_squared .* Chord.^2
nothing # hide
```
Next, we'll use the [`read_openfast_file`](@ref) function to read the OpenFAST output file:
```@example first_example
# Read the data from the file and create an `OpenFASTData` object, a simple struct with fields like `time`, `omega`, `axial_loading`, etc.
data = AcousticAnalogies.read_openfast_file(file_path, RSpn, cs_area; average_freestream_vel=true, average_omega=true)
nothing # hide
```
That will read the data in the file, but also do a bit of processing necessary for an acoustic prediction.
Specifically, it will...
* interpolate the cross-sectional area and loading from the blade element interfaces to the cell centers,
* use second-order finite differences to differentiate the loading with respect to time,
* average the freestream velocity and RPM (if `average_freestream_vel` or `average_omega` keyword arguments are `true`)
The [`read_openfast_file` doc string](@ref read_openfast_file) has more information.
The output of `read_openfast_file` is a `OpenFASTData` `struct` that has fields like `time`, `omega`, `axial_loading`, etc. that are read from the output file, and also fields like `radii_mid`, `circum_loading_mid_dot` that are created after the output file is read.
Check out the [`OpenFASTData` doc string](@ref OpenFASTData) for a list of all the fields.
We can get the averaged rotation rate value from the `OpenFASTData` `struct` this way:
```@example first_example
omega_avg = getindex_value(data.omega)
@show omega_avg
nothing # hide
```
(When averaging rotation rate or freestream velocity, `read_openfast_file` uses a [`Fill`](https://juliaarrays.github.io/FillArrays.jl/stable/#FillArrays.Fill) `struct` from the [`FillArrays.jl`](https://github.com/JuliaArrays/FillArrays.jl) package to lazily represent the average `omega` value as a length-`num_times` `Vector`, and [`getindex_value`](https://juliaarrays.github.io/FillArrays.jl/stable/#FillArrays.getindex_value) is a function from `FillArrays.jl` that returns that single averaged value.
Could have also just indexed the `data.omega` array at the first value, or last, etc..)
```@example first_example
@show data.omega[1] data.omega[8] data.omega[end]
nothing # hide
```
Before we actually try an acoustic prediction, let's have a look at the loading.
We'll use the Makie plotting package to make the plots, and only plot 1 out of every 500 time steps (as seen in the `for tidx` line):
```@example first_example
ntimes_loading = size(data.axial_loading_mid, 1)
fig = Figure()
ax11 = fig[1, 1] = Axis(fig, xlabel="Span Position (m)", ylabel="Fx (N/m)", title="blade 1")
ax21 = fig[2, 1] = Axis(fig, xlabel="Span Position (m)", ylabel="Fy (N/m)")
ax12 = fig[1, 2] = Axis(fig, xlabel="Span Position (m)", ylabel="Fx (N/m)", title="blade 2")
ax22 = fig[2, 2] = Axis(fig, xlabel="Span Position (m)", ylabel="Fy (N/m)")
ax13 = fig[1, 3] = Axis(fig, xlabel="Span Position (m)", ylabel="Fx (N/m)", title="blade 3")
ax23 = fig[2, 3] = Axis(fig, xlabel="Span Position (m)", ylabel="Fy (N/m)")
num_blades = data.num_blades
colormap = colorschemes[:viridis]
time = data.time
sim_length_s = time[end] - time[begin]
for tidx in 1:500:ntimes_loading
cidx = (time[tidx] - time[1])/sim_length_s
l1 = lines!(ax11, data.radii_mid, data.axial_loading_mid[tidx,:,1], label ="b1", color=colormap[cidx])
l1 = lines!(ax12, data.radii_mid, data.axial_loading_mid[tidx,:,2], label ="b2", color=colormap[cidx])
l1 = lines!(ax13, data.radii_mid, data.axial_loading_mid[tidx,:,3], label ="b3", color=colormap[cidx])
l2 = lines!(ax21, data.radii_mid, data.circum_loading_mid[tidx,:,1], label ="b1", color=colormap[cidx])
l2 = lines!(ax22, data.radii_mid, data.circum_loading_mid[tidx,:,2], label ="b2", color=colormap[cidx])
l2 = lines!(ax23, data.radii_mid, data.circum_loading_mid[tidx,:,3], label ="b3", color=colormap[cidx])
end
linkxaxes!(ax21, ax11)
linkxaxes!(ax12, ax11)
linkxaxes!(ax22, ax11)
linkxaxes!(ax13, ax11)
linkxaxes!(ax23, ax11)
linkyaxes!(ax12, ax11)
linkyaxes!(ax13, ax11)
linkyaxes!(ax22, ax21)
linkyaxes!(ax23, ax21)
hidexdecorations!(ax11, grid=false)
hidexdecorations!(ax12, grid=false)
hidexdecorations!(ax13, grid=false)
hideydecorations!(ax12, grid=false)
hideydecorations!(ax13, grid=false)
hideydecorations!(ax22, grid=false)
hideydecorations!(ax23, grid=false)
cbar = fig[:, 4] = Colorbar(fig; limits=(time[begin], time[end]), colormap=:viridis, label="time (sec)")
save(joinpath(@__DIR__, "openfast_example_loading.png"), fig)
nothing # hide
```

The x axis of each subplot is the radial position along the blade, from hub to tip.
The top three plots show the axial loading, bottom three the circumferential, and there's one column for each blade.
And the colorbar indicates the simulation time.
The plot shows significant unsteadiness, which is cool to see.
We can also plot the loading time derivative in a similar form:
```@example first_example
ntimes_loading = size(data.axial_loading_mid_dot, 1)
fig = Figure()
ax11 = fig[1, 1] = Axis(fig, xlabel="Span Position (m)", ylabel="βFx/βt (N/(m*s))", title="blade 1")
ax21 = fig[2, 1] = Axis(fig, xlabel="Span Position (m)", ylabel="βFy/βt (N/(m*s))")
ax12 = fig[1, 2] = Axis(fig, xlabel="Span Position (m)", ylabel="βFx/βt (N/(m*s))", title="blade 2")
ax22 = fig[2, 2] = Axis(fig, xlabel="Span Position (m)", ylabel="βFy/βt (N/(m*s))")
ax13 = fig[1, 3] = Axis(fig, xlabel="Span Position (m)", ylabel="βFx/βt (N/(m*s))", title="blade 3")
ax23 = fig[2, 3] = Axis(fig, xlabel="Span Position (m)", ylabel="βFy/βt (N/(m*s))")
num_blades = data.num_blades
colormap = colorschemes[:viridis]
time = data.time
sim_length_s = time[end] - time[begin]
for tidx in 1:500:ntimes_loading
cidx = (time[tidx] - time[1])/sim_length_s
l1 = lines!(ax11, data.radii_mid, data.axial_loading_mid_dot[tidx,:,1], label ="b1", color=colormap[cidx])
l1 = lines!(ax12, data.radii_mid, data.axial_loading_mid_dot[tidx,:,2], label ="b2", color=colormap[cidx])
l1 = lines!(ax13, data.radii_mid, data.axial_loading_mid_dot[tidx,:,3], label ="b3", color=colormap[cidx])
l2 = lines!(ax21, data.radii_mid, data.circum_loading_mid_dot[tidx,:,1], label ="b1", color=colormap[cidx])
l2 = lines!(ax22, data.radii_mid, data.circum_loading_mid_dot[tidx,:,2], label ="b2", color=colormap[cidx])
l2 = lines!(ax23, data.radii_mid, data.circum_loading_mid_dot[tidx,:,3], label ="b3", color=colormap[cidx])
end
linkxaxes!(ax21, ax11)
linkxaxes!(ax12, ax11)
linkxaxes!(ax22, ax11)
linkxaxes!(ax13, ax11)
linkxaxes!(ax23, ax11)
linkyaxes!(ax12, ax11)
linkyaxes!(ax13, ax11)
linkyaxes!(ax22, ax21)
linkyaxes!(ax23, ax21)
hidexdecorations!(ax11, grid=false)
hidexdecorations!(ax12, grid=false)
hidexdecorations!(ax13, grid=false)
hideydecorations!(ax12, grid=false)
hideydecorations!(ax13, grid=false)
hideydecorations!(ax22, grid=false)
hideydecorations!(ax23, grid=false)
cbar = fig[:, 4] = Colorbar(fig; limits=(time[begin], time[end]), colormap=:viridis, label="time (sec)")
save(joinpath(@__DIR__, "openfast_example_loading_dot.png"), fig)
nothing # hide
```

## Constructing the Source Elements
Now, the next step is to turn the OpenFAST data into source elements.
This step is pretty easy, since there is a function called [`f1a_source_elements_openfast`](@ref f1a_source_elements_openfast) that takes the `OpenFASTData` `struct` and a few other parameters and will create the source elements for us.
But first we need to think about the coordinate system we'd like our source elements to be in.
Eventually, we want the turbine blades to be rotating about the positive x axis, with the freestream velocity pointing in the positive x axis direction.
But there are two things we need to account for to make that happen:
* To do a proper noise prediction, AcousticAnalogies.jl needs the source elements' motion to be defined in a reference frame relative to the ambient fluid, not the ground.
Put another way, we need to manipulate the source elements in a way so that it appears that there is no freestream velocityβthat the ambient fluid is stationary.
So instead of having blade elements that are only rotating about a fixed hub position relative to the ground in a freestream pointed in the positive x direction, we will have the blade elements translate in the *negative* x direction as they rotate, with no freestream velocity.
* The `f1a_source_elements_openfast` routine puts the source elements in the Standard AcousticAnalogies.jl Reference Frameβ’, where the source elements
* begin with the hub (rotation center) at coordinate system origin at source time `t = 0`,
* rotate about either the positive x or negative x axis (depending on the value of the `positive_x_rotation` argument),
* translate in the positive x direction.
So, to make all this work, we'll initially have the source elements translate in the positive x direction (as required by `f1a_source_elements_openfast`) and rotate about the *negative* x axis.
Then we'll rotate the source elements 180Β° about the y axis, which will mean they will be translating in the negative x axis, rotating about the positive x axis, just like what we intend.
So, here's the first step: create the source elements from the `OpenFASTData` `struct`, where they'll be rotating about the negative x axis, translating along the positive x axis.
```@example first_example
positive_x_rotation = false
ses_before_roty = AcousticAnalogies.f1a_source_elements_openfast(data, rho, c0, positive_x_rotation)
nothing # hide
```
The `f1a_source_elements_openfast` returns an array of [`CompactF1ASourceElement`](@ref) `structs`.
The array is of size `(num_times, num_radial, num_blades)`, where `ses[i, j, k]` refers to the source element of the `i`th time step, `j`th radial position, and `k`th blade:
```@example first_example
@show size(ses_before_roty)
nothing # hide
```
Now we'll rotate each source element 180Β° about the positive y axis.
```@example first_example
# Create the object from KinematicCoordinateTransformations.jl defining the 180Β° rotation about the y axis.
rot180degy = SteadyRotYTransformation(0, 0, pi)
# Now rotate the source elements.
ses = rot180degy.(ses_before_roty)
# Could have combined all that in one line, i.e.,
# ses = rot180degy.(AcousticAnalogies.f1a_source_elements_openfast(data, rho, c0, positive_x_rotation))
nothing # hide
```
## Defining the Observer
The last thing we need before we can perform the noise prediction is an acoustic observer.
The observer is just the computational equivalent of the microphoneβa fictitious, possibly moving point in space that will "receive" the noise produced by each source element.
In this case we picked the IEC-prescribed location (turbine height on the ground) by specifying the hub height of 110 m.
So we need the observer to be 110 m below the hub.
We'll also have the observer positioned downstream of the turbine rotation plane by a certain amount.
```@example first_example
x0_obs = @SVector [HH + RSpn[end], 0.0, -HH]
nothing # hide
```
(The `@SVector` macro creates a statically-size vector using the [StaticArrays.jl](https://github.com/JuliaArrays/StaticArrays.jl) package, which is good for performance but not required.)
Now, just like with the source elements, we need to define the motion of the observer relative to the fluid, not the ground.
So, we'll use the same trick that we used with the source elements: have the observer translate in the negative x direction to account for the freestream velocity that's pointed in the positive x direction:
```@example first_example
# Get the average freestream velocity from the OpenFAST data.
v_avg = getindex_value(data.v)
# Create a vector defining the velocity of the observer.
v_obs = @SVector [-v_avg, 0, 0]
nothing # hide
```
Since the observer is moving, its position is obviously changing.
So the `x0_obs` will be the position of the observer at the start of the simulation, at the first source time level of the source elements.
We can get that first source time level this way:
```@example first_example
t0_obs = data.time[1]
nothing # hide
```
Now we have enough information to create the observer object:
```@example first_example
obs = AcousticAnalogies.ConstVelocityAcousticObserver(t0_obs, x0_obs, v_obs)
nothing # hide
```
That says that we want our observer to start at the location `x0_obs` at time `t0_obs`, and then move with constant velocity `v_obs` forever after.
After creating the observer, we can query its location at any time value after this way:
```@example first_example
@show obs(t0_obs) # should be equal to `x0_obs`
@show obs(t0_obs + 1)
nothing # hide
```
## Visualization with VTK Files
That was a lot.
How will we know we did all that correctly?
The answer is: write out the source elements and observer we just created to VTK files, and then visualize them with our favorite visualization software (ParaView at the moment).
The function we want is [`to_paraview_collection`](@ref).
Using it is simple:
```@example first_example
AcousticAnalogies.to_paraview_collection("openfast_example_with_obs", (ses,); observers=(obs,))
nothing # hide
```
(This form of `to_paraview_collection` expects multiple arrays of source elements and multiple observers.
But here we just have one array of source elements (`ses`) and one observer (`obs`), so we wrap each in a single-entry tuple, i.e., `(ses,)` and `(obs,)`.)
That will write out a bunch of VTK files showing the motion of the source elements and the observer, all starting with the `name` argument to the function (`openfast_example_with_obs` here).
The one to focus on is `openfast_example_with_obs.pvd`, a [ParaView data file](https://www.paraview.org/Wiki/ParaView/Data_formats#PVD_File_Format) that describes how all the many VTK files that `to_paraview_collection` writes out fit together.
The VTK files for the source elements will also contain all the data defined in the source element `struct`s (the loading, cross-sectional area, etc.).
That's really handy for checking that the loading is in the correct direction (remember, it needs to be the loading on the fluid, i.e. exactly opposite the loading on the blades).
To that end, here's an animation of the blades and observer, with the blades colored by the loading per unit span in the y direction:

Things look pretty good: the observer (i.e. the gray sphere) and the blades are all translating in the negative x direction, and the blades are rotating about the positive x axis.
(The gray smearing along the path of the observer is an artifact of the compression process the `gif` went through to make the file smaller.)
The y-component of the loading also appears to be in the correction direction: for a wind turbine, we'd expect the loading on the fluid to oppose the motion of the blade in the circumferential direction, which is what the animation shows.
One thing that is troubling about the previous animation is the location of the observer relative to the blades in the y direction.
Since the rotor hub starts at the origin and moves along the negative x axis, and since y component of the observer position is always zero, the observer should only be offset in the x and z directions relative to the hub path.
That's hard to see in the previous animation, but if we switch our perspective to be looking directly downstream (i.e., looking in the positive-x direction), everything appears as it should be:

Both the blade hub and the observer appear to be moving in the `y=0` plane.
## Noise Prediction
Now we're finally ready to do a noise prediction!
The relevant function for that is [`noise`](@ref), which takes in a source element and observer and returns an [`F1AOutput`](@ref) `struct`, representing the acoustic pressure experienced by the observer due to the source:
```@example first_example
apth = AcousticAnalogies.noise.(ses, Ref(obs))
nothing # hide
```
Notice that we used a `.` after the `noise` function, which [broadcasts](https://docs.julialang.org/en/v1/manual/arrays/#Broadcasting) the `noise` call over all source element-observer combinations.
(The `Ref(obs)` makes the single observer `struct` act as a scalar during broadcasting, meaning the same observer object is passed to each `noise` call.)
Because of the broadcasting, `apth` is an `Array` of `F1AOutput` `structs` with the same size as `ses`:
```@example first_example
@show size(ses) size(apth)
nothing # hide
```
We now have a noise prediction for each of the individual source elements in `ses` at the acoustic observer obsβspecifically, `apth[i, j, k]` represents the acoustic pressure for the `i` time step, `j` radial location, and `k` blade.
What we ultimately want is the total noise prediction at `obs`βwe want to add all the acoustic pressures for each time level in `apth` together.
But we can't add them directly, yet, since the observer timesβthe time at which each source's noise reaches the observerβare not all the same.
What we need to do is first interpolate the acoustic pressure time history of each source onto a common series of observer time levels, and then add them up.
We'll do this using the [`combine`](@ref) function.
First, we need to decide on the length of the observer time series and how many points it will contain.
If the motion and loading of the blades was steady, then one blade pass would be sufficient, but for this example that is not the case, so we'll use a longer observer time:
```@example first_example
rev_period = 2*pi/omega_avg
bpp = rev_period/num_blades # blade passing period
omega_rpm = omega_avg * 60/(2*pi)
obs_time_range = sim_length_s/60*omega_rpm*bpp
num_obs_times = length(data.time)
nothing # hide
```
So that says that we'll have an output observer time length of `obs_time_range` with `num_obs_times` points.
Note that we need to be careful to avoid extrapolation in the `combine` calculation, which will happen if the observer time specified via the `obs_time_range` and `num_obs_times` arguments to `combine` extends past the times contained in the `apth` array.
That won't happen in this case, since `obs_time_range/sim_length_s` is 1/3, so the observer time range is much less than the source time range.
Now we call `combine` to get the total acoustic pressure time history:
```@example first_example
time_axis = 1
apth_total = AcousticAnalogies.combine(apth, obs_time_range, num_obs_times, time_axis)
nothing # hide
```
With that, we're finally able to plot the acoustic pressure time history:
```@example first_example
fig = Figure()
ax1 = fig[1, 1] = Axis(fig, xlabel="time, s", ylabel="monopole, Pa")
ax2 = fig[2, 1] = Axis(fig, xlabel="time, s", ylabel="dipole, Pa")
ax3 = fig[3, 1] = Axis(fig, xlabel="time, s", ylabel="total, Pa")
l1 = lines!(ax1, time, apth_total.p_m)
l2 = lines!(ax2, time, apth_total.p_d)
l3 = lines!(ax3, time, apth_total.p_m.+apth_total.p_d)
hidexdecorations!(ax1, grid=false)
hidexdecorations!(ax2, grid=false)
save(joinpath(@__DIR__, "openfast-apth_total.png"), fig)
nothing # hide
```

The plot shows that the monopole/thickness noise is much lower than the dipole/loading noise.
Wind turbine blades are relatively slender, which would tend to reduce thickness noise.
Also the observer is downstream of the rotation plane, which is where loading noise is traditionally
thought to dominate (monopole/thickness noise is more significant in the rotor rotation plane, usually).
(Although we didn't use the actual cross-sectional area for the blades, which directly affects the monopole/thickness noise.)
We now calculate the overall sound pressure level from the acoustic pressure time history.
Next, we will calculate the narrowband spectrum.
Finally, we will calculate the overall sound pressure level from the narrowband spectrum.
```@example first_example
oaspl_from_apth = AcousticMetrics.OASPL(apth_total)
nbs = AcousticMetrics.MSPSpectrumAmplitude(apth_total)
oaspl_from_nbs = AcousticMetrics.OASPL(nbs)
@show oaspl_from_apth oaspl_from_nbs
nothing # hide
```
The OASPL values calculated from the acoustic pressure time history and the narrowband spectrum are the same, as they should be according to [Parseval's theorem](https://en.wikipedia.org/wiki/Parseval%27s_theorem).
| AcousticAnalogies | https://github.com/OpenMDAO/AcousticAnalogies.jl.git |
|
[
"Apache-2.0"
] | 0.8.1 | c14d0b2e7f19374017a2b5b6dfe48c5723c791ae | docs | 20224 | ```@meta
CurrentModule = AADocs
```
# Software Quality Assurance
## Tests
AcousticAnalogies.jl uses the usual Julia testing framework to implement and run tests.
The tests can be run locally after installing AcousticAnalogies.jl, and are also run automatically on GitHub Actions.
To run the tests locally, from the Julia REPL, type `]` to enter the Pkg prompt, then
```julia-repl
(jl_jncZ1E) pkg> test AcousticAnalogies
Testing Running tests...
Test Summary: | Pass Total Time
Advanced time tests | 2 2 7.0s
Test Summary: | Pass Total Time
Combine F1AOutput tests | 8 8 2.7s
Test Summary: | Pass Total Time
F1A tests | 2 2 5.9s
Test Summary: | Pass Total Time
CCBlade private utils tests | 1 1 0.3s
Test Summary: | Pass Total Time
CCBlade CompactF1ASourceElement test | 12 12 3.4s
Test Summary: | Pass Total Time
ANOPP2 Comparison | 176 176 5.9s
Test Summary: | Time
ForwardDiff test | None 14.1s
Testing AcousticAnalogies tests passed
(jl_jncZ1E) pkg>
```
(The output associated with installing all the dependencies the tests need isn't shown above.)
Here is a description of each category of test:
### Advanced Time Tests
The F1A calculation is concerned with roughly two types of objects: acoustic sources and acoustic observers.
Acoustic sources are things that make noise, and, for AcousticAnalogies.jl, would typically be a portion of some type of aerodynamic lifting surface (like a propeller blade).
An acoustic observer is just a fancy name for a person or microphone that will hear the noise emitted by the source.
Both the source and observer may be stationary, but more likely will be moving.
During the F1A calculation, we need to know the time at which an acoustic wave emitted by the source encounters the observer.
Mathematically, we need to solve the equation
```math
R(t) = t - \left( \tau + \frac{|\vec{x}(t) - \vec{y}(Ο)|}{c_0} \right) = 0
```
where
* ``Ο`` is the time the source has emitted an acoustic disturbance
* ``t`` is the time the observer encounters the acoustic disturbance
* ``\vec{y}`` is the position of the source
* ``\vec{x}`` is the position of the observer
* ``c_0`` is the speed of sound
AcousticAnalogies.jl currently uses an advanced time approach to solving this equation.
This means we start with knowledge of ``\tau`` and then calculate ``t``βwe "advance" the source time to the observer time by adding the amount of time it takes for the acoustic disturbance to travel from ``y`` to ``x``.
Now, the ``R(t) = 0`` equation is quite easy to solve if the observer is stationary.
In that case, ``x`` is not a function of ``t``, and so solving for ``t`` just involves moving everything in the parenthesis to the right-hand side.
But if the observer is moving, things are more complicated.
It may be impossible to solve for ``t`` explicitly in that case.
It turns out, however, that there is an explicit solution for ``t`` in the advanced time approach if the observer is moving at a constant rate (see D. Casolino [http://dx.doi.org/10.1016/S0022-460X(02)00986-0](http://dx.doi.org/10.1016/S0022-460X(02)00986-0)).
The constant velocity case is actually quite handy, since it's what we need to compare to wind tunnel data.
So, how do we test that we've implemented the solution to the ``R(t) = 0`` advanced time equation correctly?
In AcousticAnalogies.jl, we just use the nonlinear solver provided by [NLsolve.jl](https://github.com/JuliaNLSolvers/NLsolve.jl), and compare its solution to AcousticAnalogies.jl.
Here's how to do that:
```@example adv_time_tests
using AcousticAnalogies: AcousticAnalogies
using LinearAlgebra: norm
using NLsolve: NLsolve
using StaticArrays
# Create a source element for the test.
# The only things about the source element that matters to the advanced # time calculation is the time and position, and the speed of sound.
# So everything else will be take on dummy values.
Ο = 2.5
y = @SVector [-4.0, 3.0, 6.0]
c0 = 2.0
dummy0 = 1.0
dummy3 = @SVector [0.0, 0.0, 0.0]
se = AcousticAnalogies.CompactF1ASourceElement(dummy0, c0, dummy0, dummy0, y, dummy3, dummy3, dummy3, dummy3, dummy3, Ο, dummy3)
# Define a function that solves the advanced time equation using `nlsolve.
function adv_time_nlsolve(se, obs)
# Create the residual equation that we'll solve.
# nlsolve assumes the residual function takes in and returns arrays.
R(t) = [t[1] - (se.Ο + norm(obs(t[1]) .- se.y0dot)/se.c0)]
# Solve the advanced time equation.
result = NLsolve.nlsolve(R, [1.0], autodiff=:forward)
if !NLsolve.converged(result)
@error "nlsolve advanced time calculation did not converge:\n$(result)"
end
t_obs = result.zero[1]
return t_obs
end
# Let's try it out.
# First, a stationary observer:
x0 = @SVector [-3.0, 2.0, 8.5]
obs = AcousticAnalogies.StationaryAcousticObserver(x0)
t_exact = AcousticAnalogies.adv_time(se, obs)
t_nlsolve = adv_time_nlsolve(se, obs)
println("stationary observer, exact: $(t_exact), nlsorve: $(t_nlsolve), difference = $(t_exact - t_nlsolve)")
# Next, a constant velocity observer:
t0 = 3.5
x0 = @SVector [-2.0, 3.5, 6.25]
v = @SVector [-1.5, 1.5, 3.25]
obs = AcousticAnalogies.ConstVelocityAcousticObserver(t0, x0, v)
t_exact = AcousticAnalogies.adv_time(se, obs)
t_nlsolve = adv_time_nlsolve(se, obs)
println("constant velocity observer, exact: $(t_exact), nlsorve: $(t_nlsolve), difference = $(t_exact - t_nlsolve)")
```
Almost identical results, so things are good!
### Combine `F1AOutput` Tests
The function `noise(se::CompactF1ASourceElement, obs::AcousticObserver)` uses Farassat's formulation 1A to perform a prediction of the noise experienced by one observer `obs` due to one acoustic source `se`.
Typically we will not have just one source, however.
For example, the [guided example in the docs](@ref guided_example) uses 30 "source elements" to model each propeller blade.
But we're interested in the acoustics experienced by `obs` due to **all** of the source elements, not just one.
So, we need to combine the output of `noise` for one observer and all of the source elements.
In AcousticAnalogies.jl, this is done by interpolating the time history of each source element's acoustics (the "pressure time history") onto a common chunk of time, and then adding them up.
No big deal.
But, how do we test the "interpolating and adding" routine, aka [`AcousticAnalogies.combine`](@ref)?
That's pretty simple, actually: we just define some arbitrary functions that we'll use to create some pressure time histories, add them using the `combine` routine, and then compare that result to those created via evaluating those arbitrary functions on the same time grid used by the `combine` routine.
If those match, then the test passes, and everything in the `combine` routine should be good.
Let's try that:
```@example combine_test
using AcousticAnalogies: AcousticAnalogies
using AcousticMetrics: AcousticMetrics
using GLMakie
using Random
# Goal is to verify that the code can faithfully combine two acoustic pressures on different time "grids" onto a single common grid.
# These will be our made up functions:
fa(t) = sin(2*pi*t) + 0.2*cos(4*pi*(t-0.1))
fb(t) = cos(6*pi*t) + 0.3*sin(8*pi*(t-0.2))
# Now we'll make some made up time grids.
n = 101
t1 = collect(range(0.0, 1.0, length=n))
dt = t1[2] - t1[1]
# Add a bit of random noise to the time grid.
# Make sure that the amount of # randomness isn't large enough to make the time values non-monotonically increasing (i.e., they don't overlap).
noise = 0.49.*dt.*(1 .- 2 .* rand(size(t1)...))
t1 .+= noise
t2 = collect(range(0.1, 1.1, length=n))
dt = t2[2] - t2[1]
t2 .+= 0.49.*dt.*(1 .- 2 .* rand(size(t2)...))
# Now let's create a bunch of pressure time histories on the time grids we just defined.
apth1 = @. AcousticAnalogies.F1AOutput(t1, fa(t1), 2*fa(t1))
apth2 = @. AcousticAnalogies.F1AOutput(t2, fb(t2), 3*fb(t2))
# Calculate the "exact" answer by coming up with a common time, then evaluating the test functions directly on the common time grid.
period = 0.5
n_out = 51
t_start = max(t1[1], t2[1])
t_common = t_start .+ (0:n_out-1).*(period/n_out)
p_m = @. fa(t_common)+fb(t_common)
p_d = @. 2*fa(t_common)+3*fb(t_common)
even_length = iseven(n_out)
apth_test = AcousticAnalogies.F1APressureTimeHistory{even_length}(p_m, p_d, step(t_common), first(t_common))
# Put all the acoustic pressures in one array.
apth = hcat(apth1, apth2)
# Combine.
apth_out = AcousticAnalogies.combine(apth, period, n_out)
# Plot the two solutions.
fig2 = Figure()
ax2_1 = fig2[1, 1] = Axis(fig2, xlabel="time", ylabel="acoustic pressure, monopole")
ax2_2 = fig2[2, 1] = Axis(fig2, xlabel="time", ylabel="acoustic pressure, dipole")
scatter!(ax2_1, AcousticMetrics.time(apth_out), AcousticAnalogies.pressure_monopole(apth_out); marker=:x, label="AcousticAnalogies.combine")
scatter!(ax2_2, AcousticMetrics.time(apth_out), AcousticAnalogies.pressure_dipole(apth_out); marker=:x)
lines!(ax2_1, AcousticMetrics.time(apth_test), AcousticAnalogies.pressure_monopole(apth_test); label="Exact")
lines!(ax2_2, AcousticMetrics.time(apth_test), AcousticAnalogies.pressure_dipole(apth_test))
hidexdecorations!(ax2_1, grid=false)
axislegend(ax2_1; merge=true, unique=true, framevisible=false, bgcolor=:transparent, position=:rt)
save("combine_test.png", fig2)
nothing # hide
```

Right on top of each other.
### F1A Tests
The most complicated part of AcousticAnalogies.jl is the implementation of the F1A calculation itself.
For example, the compact form of the F1A dipole term as implemented in AcousticAnalogies.jl (neglecting surface deformation) is
```math
4 \pi c_0 p_d = \int_{L=0} \left[ \left( \dot{\vec{f}} \cdot \vec{D}_{1A} + \vec{f} \cdot \vec{E}_{1A} \right) dr \right]
```
where
* ``p_d`` is the "dipole" part of the acoustic pressure
* ``\vec{f}`` is the loading per unit span on the source element
* ``\vec{\dot{f}}`` is the source-time derivative of the loading per unit span on the source element
* ``dr`` is the differential length of the source element
* ``c_0`` is the ambient speed of sound
* ``\vec{D}_{1A}`` and ``\vec{E}_{1A}`` are complicated functions of the position, velocity, and acceleration of the source element
* ``L = 0`` indicates the integration is performed over some curve defined by ``L = 0``.
How are we going to test that we have all that implemented properly?
Well, it turns out that Farassat's original formulation (F1) is much simpler than F1A:
```math
4 \pi c_0 p_d = \frac{\partial}{\partial t} \int_{L=0} \left( \vec{f} \cdot \vec{B}_{1}\right) dr + \int_{L=0}\left( \vec{f} \cdot \vec{C}_1 \right) dr
```
where ``\vec{B}_1`` and ``\vec{C}_1`` are again functions of the position of the source element and time derivatives of the same.
It might not look that much simpler, but it is, because:
* The F1 integrands don't depend on ``\dot{\vec{f}}``
* ``\vec{D}_{1A}`` and ``\vec{E}_{1A}`` from F1A are more complicated than ``\vec{B}_1`` and ``\vec{C}_1``, and involve higher-order time derivatives
But the key thing to understand about F1 and F1A is that they are equivalentβgoing from F1A to F1 involves some fancy math (moving the derivative with respect to the observer time $t$ inside the integral), but should give the same answer.
The only trick is this: how will we evaluate the derivatives with respect to the observer time ``t`` in the F1 expressions?
What we'll do here is just use standard second-order-accurate finite difference approximations, i.e.,
```math
\frac{\partial g}{\partial t} = \frac{g(t+\Delta t) - g(t-\Delta t)}{2 \Delta t} + \mathcal{O}(\Delta t^2)
```
where the notation ``\mathcal{O}(\Delta t^2)`` indicates that the error associated with the finite difference approximation should be proportional to ``\Delta t^2``.
But this means that we can't expect our F1 calculation to exactly match F1A.
So, what to do about that?
What we can expect is that, if F1A and F1 have been implemented properly, the difference between them should go to zero at a second-order rate.
So we can systematically reduce the time step size ``\Delta t`` used to evaluate F1, and check that goes to zero at the expected rate.
If it does, that proves that the only error between the two codes is due to the finite difference approximation, and gives us strong evidence that both F1A and F1 have been implemented properly.
So, let's try it out!
First we'll need a function that evaluates the f1 integrands
```@example f1a_tests
using AcousticAnalogies
using LinearAlgebra: norm
using NLsolve
using Polynomials
using GLMakie
function f1_integrand(se, obs, t)
c0 = se.c0
# Need to get the retarded time.
R(Ο) = [t - (Ο[1] + norm(obs(t) .- se.y0dot(Ο[1]))/c0)]
result = nlsolve(R, [-0.1], autodiff=:forward)
if !converged(result)
@error "nlsolve retarded time calculation did not converge:\n$(result)"
end
Ο = result.zero[1]
# Position of source at the retarted time.
y = se.y0dot(Ο)
# Position vector from source to observer.
rv = obs(t) .- y
# Distance from source to observer.
r = AcousticAnalogies.norm_cs_safe(rv)
# Unit vector pointing from source to observer.
rhat = rv./r
# First time derivative of rv.
rv1dot = -se.y1dot(Ο)
# Mach number of the velocity of the source in the direction of the
# observer.
Mr = AcousticAnalogies.dot_cs_safe(-rv1dot/se.c0, rhat)
# Now evaluate the integrand.
p_m_integrand = se.Ο0/(4*pi)*se.Ξ*se.Ξr/(r*(1 - Mr))
# Loading at the retarded time.
f0dot = se.f0dot(Ο)
p_d_integrand_ff = (1/(4*pi*c0))*AcousticAnalogies.dot_cs_safe(f0dot, rhat)/(r*(1 - Mr))*se.Ξr
p_d_integrand_nf = (1/(4*pi*c0))*AcousticAnalogies.dot_cs_safe(f0dot, rhat)*c0/(r^2*(1 - Mr))*se.Ξr
return Ο, p_m_integrand, p_d_integrand_ff, p_d_integrand_nf
end
```
The `f1_integrand` function takes a source element `se`, and acoustic observer `obs`, and an observer time `t` and finds the source time and intermediate stuff that will eventually want to differentiate using the finite difference approximation.
Now we need to make up a source and observer that we can test this out with:
```@example f1a_tests
# https://docs.makie.org/v0.19/examples/blocks/axis/index.html#logticks
struct IntegerTicks end
Makie.get_tickvalues(::IntegerTicks, vmin, vmax) = ceil(Int, vmin) : floor(Int, vmax)
function doit()
# Scale up the density to make the error bigger.
rho = 1.226e6 # kg/m^3
c0 = 340.0 # m/s
Rtip = 1.1684 # meters
radii = 0.99932*Rtip
dradii = (0.99932 - 0.99660)*Rtip # m
area_over_chord_squared = 0.064
chord = 0.47397E-02 * Rtip
Ξ = area_over_chord_squared * chord^2
theta = 90.0*pi/180.0
x0 = [cos(theta), 0.0, sin(theta)].*100.0.*12.0.*0.0254 # 100 ft in meters
obs = StationaryAcousticObserver(x0)
# Need the position and velocity of the source as a function of
# source/retarded time. How do I want it to move? I want it to rotate around
# an axis on the origin, pointing in the x direction.
rpm = 2200
omega = 2*pi/60*rpm
period = 60/rpm
fn = 180.66763939805125
fc = 19.358679206883078
y0dot(Ο) = [0, radii*cos(omega*Ο), radii*sin(omega*Ο)]
y1dot(Ο) = [0, -omega*radii*sin(omega*Ο), omega*radii*cos(omega*Ο)]
y2dot(Ο) = [0, -omega^2*radii*cos(omega*Ο), -omega^2*radii*sin(omega*Ο)]
y3dot(Ο) = [0, omega^3*radii*sin(omega*Ο), -omega^3*radii*cos(omega*Ο)]
f0dot(Ο) = [-fn, -sin(omega*Ο)*fc, cos(omega*Ο)*fc]
f1dot(Ο) = [0, -omega*cos(omega*Ο)*fc, -omega*sin(omega*Ο)*fc]
u(Ο) = y0dot(Ο)./radii
sef1 = CompactF1ASourceElement(rho, c0, dradii, Ξ, y0dot, y1dot, nothing, nothing, f0dot, nothing, 0.0, u)
t = 0.0
dt = period*0.5^4
Ο0, pmi0, pdiff0, pdinf0 = f1_integrand(sef1, obs, t)
sef1a = CompactF1ASourceElement(rho, c0, dradii, Ξ, y0dot(Ο0), y1dot(Ο0), y2dot(Ο0), y3dot(Ο0), f0dot(Ο0), f1dot(Ο0), Ο0, u(Ο0))
apth = noise(sef1a, obs)
err_prev_pm = nothing
err_prev_pd = nothing
dt_prev = nothing
dt_curr = dt
first_time = true
err_pm = Vector{Float64}()
err_pd = Vector{Float64}()
dts = Vector{Float64}()
ooa_pm = Vector{Float64}()
ooa_pd = Vector{Float64}()
# Gradually reduce time step size, recording the error and order-of-accuracy each time.
for n in 1:7
Ο_1, pmi_1, pdiff_1, pdinf_1 = f1_integrand(sef1, obs, t-dt_curr)
Ο1, pmi1, pdiff1, pdinf1 = f1_integrand(sef1, obs, t+dt_curr)
p_m_f1 = (pmi_1 - 2*pmi0 + pmi1)/(dt_curr^2)
p_d_f1 = (pdiff1 - pdiff_1)/(2*dt_curr) + pdinf0
err_curr_pm = abs(p_m_f1 - apth.p_m)
err_curr_pd = abs(p_d_f1 - apth.p_d)
if first_time
first_time = false
else
push!(ooa_pm, log(err_curr_pm/err_prev_pm)/log(dt_curr/dt_prev))
push!(ooa_pd, log(err_curr_pd/err_prev_pd)/log(dt_curr/dt_prev))
end
push!(dts, dt_curr)
push!(err_pm, err_curr_pm)
push!(err_pd, err_curr_pd)
dt_prev = dt_curr
err_prev_pm = err_curr_pm
err_prev_pd = err_curr_pd
dt_curr = 0.5*dt_curr
end
# Fit a line through the errors on a log-log plot, then check that the slope
# is second-order.
l = fit(log.(dts), log.(err_pm), 1)
println("monopole term convergence rate = $(l.coeffs[2])")
l = fit(log.(dts), log.(err_pd), 1)
println("dipole term convergence rate = $(l.coeffs[2])")
# Plot the error and observered order of accuracy.
fig = Figure()
ax1 = fig[1, 1] = Axis(fig, xlabel="time step size", ylabel="error", xscale=log10, xticks=LogTicks(IntegerTicks()), yscale=log10)
ax2 = fig[2, 1] = Axis(fig, xlabel="time step size", ylabel="convergence rate", xscale=log10, xticks=LogTicks(IntegerTicks()))
linkxaxes!(ax2, ax1)
lines!(ax1, dts, err_pm, label="monopole term")
lines!(ax1, dts, err_pd, label="dipole term")
lines!(ax2, dts[2:end], ooa_pm, label="monopole term")
lines!(ax2, dts[2:end], ooa_pd, label="dipole term")
ylims!(ax2, -0.1, 3.1)
axislegend(ax1; merge=true, unique=true, framevisible=false, bgcolor=:transparent, position=:lt)
save("f1a_test.png", fig)
end
doit()
```

The convergence rate of the error (the bottom plot) is extremely close to 2, which is what we're looking for.
### ANOPP2 Comparisons
The AcousticAnalogies.jl test suite includes comparisons to ANOPP2 predictions.
Tests for a hypothetical isolated rotor are performed over a range of RPMs, with both stationary and moving observers.
Here is an example using a moving observer:
```@example anopp2
using GLMakie
using FLOWMath: akima
include(joinpath(@__DIR__, "..", "..", "test", "anopp2_run.jl"))
using .ANOPP2Run
rpm = 2200.0
t, p_thickness, p_loading, p_monopole_a2, p_dipole_a2 = ANOPP2Run.get_results(;
stationary_observer=false, theta=0.0, f_interp=akima, rpm=rpm, irpm=11)
fig = Figure()
ax1 = fig[1, 1] = Axis(fig, xlabel="time, blade passes", ylabel="acoustic pressure, monopole, Pa")
ax2 = fig[2, 1] = Axis(fig, xlabel="time, blade passes", ylabel="acoustic pressure, dipole, Pa")
lines!(ax1, t, p_thickness, label="AcousticAnalogies.jl")
scatter!(ax1, t, p_monopole_a2, label="ANOPP2", markersize=6)
lines!(ax2, t, p_loading)
scatter!(ax2, t, p_dipole_a2, markersize=6)
hidexdecorations!(ax1, grid=false)
axislegend(ax1; merge=true, unique=true, framevisible=false, bgcolor=:transparent, position=:lt)
save("anopp2_comparison.png", fig)
```

The difference between the two codes' predictions is very small (less than 1% error).
### Brooks, Pope & Marcolini Tests
## Signed Commits
The AcousticAnalogies.jl GitHub repository requires all commits to the `main` branch to be signed.
See the [GitHub docs on signing commits](https://docs.github.com/en/authentication/managing-commit-signature-verification/about-commit-signature-verification) for more information.
## Reporting Bugs
Users can use the [GitHub Issues](https://docs.github.com/en/issues/tracking-your-work-with-issues/about-issues) feature to report bugs and submit feature requests.
| AcousticAnalogies | https://github.com/OpenMDAO/AcousticAnalogies.jl.git |
|
[
"Apache-2.0"
] | 0.8.1 | c14d0b2e7f19374017a2b5b6dfe48c5723c791ae | docs | 12822 | ```@meta
CurrentModule = AADocs
```
# WriteVTK.jl Support
```@setup vtk_example
"""
XROTORAirfoilConfig(A0, DCLDA, CLMAX, CLMIN, DCL_STALL, DCLDA_STALL, CDMIN, CLDMIN, DCDCL2, REREF, REXP, MCRIT)
`struct` that holds all the required parameters for XROTOR's approach to handling airfoil lift and drag polars.
# Arguments
- `A0`: zero lift angle of attack, radians.
- `DCLDA`: lift curve slope, 1/radians.
- `CLMAX`: stall Cl.
- `CLMIN`: negative stall Cl.
- `DCL_STALL`: CL increment from incipient to total stall.
- `DCLDA_STALL`: stalled lift curve slope, 1/radian.
- `CDMIN`: minimum Cd.
- `CLDMIN`: Cl at minimum Cd.
- `DCDCL2`: d(Cd)/d(Cl**2).
- `REREF`: Reynolds Number at which Cd values apply.
- `REXP`: Exponent for Re scaling of Cd: Cd ~ Re**exponent
- `MCRIT`: Critical Mach number.
"""
struct XROTORAirfoilConfig{TF}
A0::TF # = 0. # zero lift angle of attack radians
DCLDA::TF # = 6.28 # lift curve slope /radian
CLMAX::TF # = 1.5 # stall Cl
CLMIN::TF # = -0.5 # negative stall Cl
DCL_STALL::TF # = 0.1 # CL increment from incipient to total stall
DCLDA_STALL::TF # = 0.1 # stalled lift curve slope /radian
CDMIN::TF # = 0.013 # minimum Cd
CLDMIN::TF # = 0.5 # Cl at minimum Cd
DCDCL2::TF # = 0.004 # d(Cd)/d(Cl**2)
REREF::TF # = 200000. # Reynolds Number at which Cd values apply
REXP::TF # = -0.4 # Exponent for Re scaling of Cd: Cd ~ Re**exponent
MCRIT::TF # = 0.8 # Critical Mach number
end
function XROTORAirfoilConfig(; A0, DCLDA, CLMAX, CLMIN, DCL_STALL, DCLDA_STALL, CDMIN, CLDMIN, DCDCL2, REREF, REXP, MCRIT)
return XROTORAirfoilConfig(A0, DCLDA, CLMAX, CLMIN, DCL_STALL, DCLDA_STALL, CDMIN, CLDMIN, DCDCL2, REREF, REXP, MCRIT)
end
"""
af_xrotor(alpha, Re, Mach, config::XROTORAirfoilConfig)
Return a tuple of the lift and drag coefficients for a given angle of attach
`alpha` (in radians), Reynolds number `Re`, and Mach number `Mach`.
"""
function af_xrotor(alpha, Re, Mach, config::XROTORAirfoilConfig)
# C------------------------------------------------------------
# C CL(alpha) function
# C Note that in addition to setting CLIFT and its derivatives
# C CLMAX and CLMIN (+ and - stall CL's) are set in this routine
# C In the compressible range the stall CL is reduced by a factor
# C proportional to Mcrit-Mach. Stall limiting for compressible
# C cases begins when the compressible drag added CDC > CDMstall
# C------------------------------------------------------------
# C CD(alpha) function - presently CD is assumed to be a sum
# C of profile drag + stall drag + compressibility drag
# C In the linear lift range drag is CD0 + quadratic function of CL-CLDMIN
# C In + or - stall an additional drag is added that is proportional
# C to the extent of lift reduction from the linear lift value.
# C Compressible drag is based on adding drag proportional to
# C (Mach-Mcrit_eff)^MEXP
# C------------------------------------------------------------
# C CM(alpha) function - presently CM is assumed constant,
# C varying only with Mach by Prandtl-Glauert scaling
# C------------------------------------------------------------
# C
# INCLUDE 'XROTOR.INC'
# LOGICAL STALLF
# DOUBLE PRECISION ECMIN, ECMAX
# C
# C---- Factors for compressibility drag model, HHY 10/23/00
# C Mcrit is set by user
# C Effective Mcrit is Mcrit_eff = Mcrit - CLMFACTOR*(CL-CLDmin) - DMDD
# C DMDD is the delta Mach to get CD=CDMDD (usually 0.0020)
# C Compressible drag is CDC = CDMFACTOR*(Mach-Mcrit_eff)^MEXP
# C CDMstall is the drag at which compressible stall begins
#
A0 = config.A0
DCLDA = config.DCLDA
CLMAX = config.CLMAX
CLMIN = config.CLMIN
DCL_STALL = config.DCL_STALL
DCLDA_STALL = config.DCLDA_STALL
CDMIN = config.CDMIN
CLDMIN = config.CLDMIN
DCDCL2 = config.DCDCL2
REREF = config.REREF
REXP = config.REXP
MCRIT = config.MCRIT
CDMFACTOR = 10.0
CLMFACTOR = 0.25
MEXP = 3.0
CDMDD = 0.0020
CDMSTALL = 0.1000
# C
# C---- Prandtl-Glauert compressibility factor
# MSQ = W*W*VEL^2/VSO^2
# MSQ_W = 2.0*W*VEL^2/VSO^2
# if (MSQ>1.0)
# # WRITE(*,*)
# # & 'CLFUNC: Local Mach number limited to 0.99, was ', MSQ
# MSQ = 0.99
# # MSQ_W = 0.
# end
MSQ = Mach*Mach
if MSQ > 1.0
MSQ = 0.99
Mach = sqrt(MSQ)
end
PG = 1.0 / sqrt(1.0 - MSQ)
# PG_W = 0.5*MSQ_W * PG^3
# C
# C---- Mach number and dependence on velocity
# Mach = sqrt(MSQ)
# MACH_W = 0.0
# IF(Mach.NE.0.0) MACH_W = 0.5*MSQ_W/Mach
# if ! (mach β 0.0)
# MACH_W = 0.5*MSQ_W/Mach
# end
# C
# C
# C------------------------------------------------------------
# C--- Generate CL from dCL/dAlpha and Prandtl-Glauert scaling
CLA = DCLDA*PG *(alpha-A0)
# CLA_ALF = DCLDA*PG
# CLA_W = DCLDA*PG_W*(ALF-A0)
# C
# C--- Effective CLmax is limited by Mach effects
# C reduces CLmax to match the CL of onset of serious compressible drag
CLMX = CLMAX
CLMN = CLMIN
DMSTALL = (CDMSTALL/CDMFACTOR)^(1.0/MEXP)
CLMAXM = max(0.0, (MCRIT+DMSTALL-Mach)/CLMFACTOR) + CLDMIN
CLMAX = min(CLMAX,CLMAXM)
CLMINM = min(0.0,-(MCRIT+DMSTALL-Mach)/CLMFACTOR) + CLDMIN
CLMIN = max(CLMIN,CLMINM)
# C
# C--- CL limiter function (turns on after +-stall
ECMAX = exp( min(200.0, (CLA-CLMAX)/DCL_STALL) )
ECMIN = exp( min(200.0, (CLMIN-CLA)/DCL_STALL) )
CLLIM = DCL_STALL * log( (1.0+ECMAX)/(1.0+ECMIN) )
CLLIM_CLA = ECMAX/(1.0+ECMAX) + ECMIN/(1.0+ECMIN)
# c
# c if(CLLIM.GT.0.001) then
# c write(*,999) 'cla,cllim,ecmax,ecmin ',cla,cllim,ecmax,ecmin
# c endif
# c 999 format(a,2(1x,f10.6),3(1x,d12.6))
# C
# C--- Subtract off a (nearly unity) fraction of the limited CL function
# C This sets the dCL/dAlpha in the stalled regions to 1-FSTALL of that
# C in the linear lift range
FSTALL = DCLDA_STALL/DCLDA
CLIFT = CLA - (1.0-FSTALL)*CLLIM
# CL_ALF = CLA_ALF - (1.0-FSTALL)*CLLIM_CLA*CLA_ALF
# CL_W = CLA_W - (1.0-FSTALL)*CLLIM_CLA*CLA_W
# C
# STALLF = false
# IF(CLIFT.GT.CLMAX) STALLF = .TRUE.
# IF(CLIFT.LT.CLMIN) STALLF = .TRUE.
# STALLF = (CLIFT > CLMAX) || (CLIFT < CLMIN)
# C
# C
# C------------------------------------------------------------
# C--- CM from CMCON and Prandtl-Glauert scaling
# CMOM = PG*CMCON
# CM_AL = 0.0
# CM_W = PG_W*CMCON
# C
# C
# C------------------------------------------------------------
# C--- CD from profile drag, stall drag and compressibility drag
# C
# C---- Reynolds number scaling factor
if (Re < 0.0)
RCORR = 1.0
# RCORR_REY = 0.0
else
RCORR = (Re/REREF)^REXP
# RCORR_REY = REXP/Re
end
# C
# C--- In the basic linear lift range drag is a function of lift
# C CD = CD0 (constant) + quadratic with CL)
CDRAG = (CDMIN + DCDCL2*(CLIFT-CLDMIN)^2 ) * RCORR
# CD_ALF = ( 2.0*DCDCL2*(CLIFT-CLDMIN)*CL_ALF) * RCORR
# CD_W = ( 2.0*DCDCL2*(CLIFT-CLDMIN)*CL_W ) * RCORR
# CD_REY = CDRAG*RCORR_REY
# C
# C--- Post-stall drag added
FSTALL = DCLDA_STALL/DCLDA
DCDX = (1.0-FSTALL)*CLLIM/(PG*DCLDA)
# c write(*,*) 'cla,cllim,fstall,pg,dclda ',cla,cllim,fstall,pg,dclda
DCD = 2.0* DCDX^2
# DCD_ALF = 4.0* DCDX * (1.0-FSTALL)*CLLIM_CLA*CLA_ALF/(PG*DCLDA)
# DCD_W = 4.0* DCDX * ( (1.0-FSTALL)*CLLIM_CLA*CLA_W/(PG*DCLDA) - DCD/PG*PG_W )
# c write(*,*) 'alf,cl,dcd,dcd_alf,dcd_w ',alf,clift,dcd,dcd_alf,dcd_w
# C
# C--- Compressibility drag (accounts for drag rise above Mcrit with CL effects
# C CDC is a function of a scaling factor*(M-Mcrit(CL))^MEXP
# C DMDD is the Mach difference corresponding to CD rise of CDMDD at MCRIT
DMDD = (CDMDD/CDMFACTOR)^(1.0/MEXP)
CRITMACH = MCRIT-CLMFACTOR*abs(CLIFT-CLDMIN) - DMDD
# CRITMACH_ALF = -CLMFACTOR*ABS(CL_ALF)
# CRITMACH_W = -CLMFACTOR*ABS(CL_W)
if (Mach < CRITMACH)
CDC = 0.0
# CDC_ALF = 0.0
# CDC_W = 0.0
else
CDC = CDMFACTOR*(Mach-CRITMACH)^MEXP
# CDC_W = MEXP*MACH_W*CDC/Mach - MEXP*CRITMACH_W *CDC/CRITMACH
# CDC_ALF = - MEXP*CRITMACH_ALF*CDC/CRITMACH
end
# c write(*,*) 'critmach,mach ',critmach,mach
# c write(*,*) 'cdc,cdc_w,cdc_alf ',cdc,cdc_w,cdc_alf
# C
FAC = 1.0
# FAC_W = 0.0
# C--- Although test data does not show profile drag increases due to Mach #
# C you could use something like this to add increase drag by Prandtl-Glauert
# C (or any function you choose)
# cc FAC = PG
# cc FAC_W = PG_W
# C--- Total drag terms
CDRAG = FAC*CDRAG + DCD + CDC
# CD_ALF = FAC*CD_ALF + DCD_ALF + CDC_ALF
# CD_W = FAC*CD_W + FAC_W*CDRAG + DCD_W + CDC_W
# CD_REY = FAC*CD_REY
# C
return CLIFT, CDRAG
end
```
AcousticAnalogies.jl can write out [`CompactF1ASourceElement`](@ref) `structs` to VTK
files, allowing us to easily visualize the state and motion of the acoustic
sources in popular visualization tools (e.g.
[ParaView](https://www.paraview.org/)). This is very useful for checking that
the motion, loading, coordinate system, etc. is what we expect.
To write out VTK files, we just need to pass an array of source elements to the
[`AcousticAnalogies.to_paraview_collection`](@ref) function. We'll use
[`CCBlade.jl`](https://github.com/byuflowlab/CCBlade.jl) to calculate the
aerodynamic loads, and the CCBlade.jl helper routines that AcousticAnalogies.jl
provides to create the source elements from the CCBlade.jl data.
```@example vtk_example
using AcousticAnalogies
using CCBlade
# Define the blade geometry.
B = 2
Rhub = 0.10
Rtip = 1.1684 # meters
radii = Rhub .+ range(0.0, 1.0, length=31).*(Rtip - Rhub)
radii = 0.5.*(radii[2:end] .+ radii[1:end-1])
cs_area_over_chord_squared = 0.064
chord = [
0.35044 , 0.28260 , 0.22105 , 0.17787 , 0.14760,
0.12567 , 0.10927 , 0.96661E-01 , 0.86742E-01 ,
0.78783E-01 , 0.72287E-01 , 0.66906E-01 , 0.62387E-01 ,
0.58541E-01 , 0.55217E-01 , 0.52290E-01 , 0.49645E-01 ,
0.47176E-01 , 0.44772E-01 , 0.42326E-01 , 0.39732E-01 ,
0.36898E-01 , 0.33752E-01 , 0.30255E-01 , 0.26401E-01 ,
0.22217E-01 , 0.17765E-01 , 0.13147E-01 , 0.85683E-02 ,
0.47397E-02].*Rtip
theta = [
40.005, 34.201, 28.149, 23.753, 20.699, 18.516, 16.890, 15.633,
14.625, 13.795, 13.094, 12.488, 11.956, 11.481, 11.053, 10.662,
10.303, 9.9726, 9.6674, 9.3858, 9.1268, 8.8903, 8.6764, 8.4858,
8.3193, 8.1783, 8.0638, 7.9769, 7.9183, 7.8889].*(pi/180)
# Define the operating point.
rpm = 2200.0
omega = rpm*(2*pi/60.0)
rho = 1.226 # kg/m^3
c0 = 340.0 # m/s
mu = 0.1780e-4 # kg/(m*s)
pitch = 0.0 # rad
Vinf = 5.0 # m/s
# Create an airfoil interpolation object.
xrotor_config = XROTORAirfoilConfig(
A0=0.0, DCLDA=6.2800, CLMAX=1.5, CLMIN=-0.5, DCLDA_STALL=0.1,
DCL_STALL=0.1, MCRIT=0.8, CDMIN=0.13e-1, CLDMIN=0.5, DCDCL2=0.4e-2, REREF=0.2e6, REXP=-0.4)
airfoil_interp(a, r, m) = af_xrotor(a, r, m, xrotor_config)
# Create the CCBlade.jl structs.
rotor = Rotor(Rhub, Rtip, B)
sections = Section.(radii, chord, theta, Ref(airfoil_interp))
ops = OperatingPoint.(Vinf, omega.*radii, rho, pitch, mu, c0)
outs = solve.(Ref(rotor), sections, ops)
# Create the AcousticAnalogies.jl source elements.
bpp = 60/(rpm*B)
period = 2*bpp
num_source_times = 64
positive_x_rotation = true
ses = f1a_source_elements_ccblade(rotor, sections, ops, outs, fill(cs_area_over_chord_squared, length(radii)), period, num_source_times, positive_x_rotation)
@show size(ses)
```
`ses` is an array of source elements of shape `(num_source_times, num_radial,
B)`, where `num_source_times` is the number of time steps over which the source
elements are defined, `num_radial` is the number of radial elements each blade
is subdivided into, and `B` is the number of blades.
Now that we have an array of source elements, we can write them out to VTK
files.
```@example vtk_example
name = "two_blade_example"
outfiles = AcousticAnalogies.to_paraview_collection(name, ses)
```
This will write out one polygonal VTK (`.vtp`) file per time step, along with a
ParaView collection (`.pvd`) file that allows us to open all of the `.vtp` files at once.
Here's an example visualization of the above example, showing an animation of
the loading in the `y` direction, which is normal to the rotation axis of the
rotor.

| AcousticAnalogies | https://github.com/OpenMDAO/AcousticAnalogies.jl.git |
|
[
"Apache-2.0"
] | 0.8.1 | c14d0b2e7f19374017a2b5b6dfe48c5723c791ae | docs | 84 | Airfoil data is from http://airfoiltools.com/polar/details?polar=xf-n0012-il-500000
| AcousticAnalogies | https://github.com/OpenMDAO/AcousticAnalogies.jl.git |
|
[
"MIT"
] | 1.0.0 | ad84a76cb2b4ccf86ad91c0c44b76acd326e0f2a | code | 1082 | # ------------------------------------------------------------------
# Licensed under the MIT License. See LICENCE in the project root.
# ------------------------------------------------------------------
module RankAggregation
using Tables
"""
AggregationMethod
A rank aggregation method.
"""
abstract type AggregationMethod end
"""
rank(objects, scores, method; rev=false)
Rank `objects` stored in a tabular format on the basis of
`scores` columns and with an aggregation `method`.
"""
function rank(objects, scores::NTuple{N,Symbol},
method::AggregationMethod=TauModel();
rev=false) where {N}
r = rank_impl(objects, scores, method)
rev ? length(r) .- r .+ 1 : r
end
rank(objects, score::Symbol, method::AggregationMethod=TauModel(); rev=false) =
rank(objects, (score,), method, rev=rev)
rank_impl(::Any, ::NTuple{N,Symbol}, ::AggregationMethod) where {N} =
@error "not implemented"
#------------------
# IMPLEMENTATIONS
#------------------
include("tau_model.jl")
export
AggregationMethod,
TauModel,
rank
end # module
| RankAggregation | https://github.com/JuliaML/RankAggregation.jl.git |
|
[
"MIT"
] | 1.0.0 | ad84a76cb2b4ccf86ad91c0c44b76acd326e0f2a | code | 1025 | # ------------------------------------------------------------------
# Licensed under the MIT License. See LICENCE in the project root.
# ------------------------------------------------------------------
"""
TauModel()
Probabilistic rank aggregation with the Tau model.
## References
* Journel 2002. Combining Knowledge From Diverse Sources:
An Alternative to Traditional Data Independence Hypotheses.
"""
struct TauModel <: AggregationMethod end
function rank_impl(objects, scores::NTuple{N,Symbol},
method::TauModel) where {N}
# score columns
cols = []
for col in propertynames(objects)
if col β scores
push!(cols, getproperty(objects, col))
end
end
# conditional probabilities
S = reduce(hcat, cols)
P = S ./ sum(S, dims=1)
n = size(P, 1)
# uniform prior
xβ = (1 - 1/n) / (1/n)
# odds with no redundancy
X = (1 .- P) ./ P
x = xβ * prod(X/xβ, dims=2)
# posterior probabilities
p = 1 ./ (1 .+ x)
# final rank
sortperm(vec(p), rev=true)
end
| RankAggregation | https://github.com/JuliaML/RankAggregation.jl.git |
|
[
"MIT"
] | 1.0.0 | ad84a76cb2b4ccf86ad91c0c44b76acd326e0f2a | code | 412 | using RankAggregation
using DataFrames
using Test
@testset "RankAggregation.jl" begin
objects = DataFrame(object=[:a,:b,:c],
score1=[0.9, 0.7, 0.5],
score2=[0.8, 0.9, 0.4])
@test rank(objects, :score1) == [1,2,3]
@test rank(objects, :score2) == [2,1,3]
@test rank(objects, (:score1,:score2)) == [1,2,3]
@test rank(objects, :score2, rev=true) == [2,3,1]
end
| RankAggregation | https://github.com/JuliaML/RankAggregation.jl.git |
|
[
"MIT"
] | 1.0.0 | ad84a76cb2b4ccf86ad91c0c44b76acd326e0f2a | docs | 2577 | <p align="center">
<img src="docs/RankAggregation.png" height="200"><br>
<a href="https://travis-ci.org/JuliaEarth/RankAggregation.jl">
<img src="https://travis-ci.org/JuliaEarth/RankAggregation.jl.svg?branch=master">
</a>
<a href="https://codecov.io/gh/JuliaEarth/RankAggregation.jl">
<img src="https://codecov.io/gh/JuliaEarth/RankAggregation.jl/branch/master/graph/badge.svg">
</a>
<a href="LICENSE">
<img src="https://img.shields.io/badge/license-MIT-blue.svg">
</a>
</p>
Given a set of objects (e.g. rows of a table) with scores
given by different scoring methods (e.g. columns), how to
rank the objects? This problem is known in the literature
as the rank aggregation problem.
The problem is trivial when there is only one score for
each object (one column), but ranking objects on the basis
of multiple (conflicting) scores is challenging. This
package provides algorithms to aggregate multiple scores
stored in a tabular format
(see [Tables.jl](https://github.com/JuliaData/Tables.jl))
into a final rank vector.
## Installation
Get the latest stable release with Julia's package manager:
```julia
] add RankAggregation
```
## Usage
Given a table with scores `score1` and `score2` for objects `a`, `b`, and `c`:
```julia
julia> using DataFrames
julia> using RankAggregation
julia> objects = DataFrame(object=[:a,:b,:c], score1=[0.9, 0.7, 0.5], score2=[0.8, 0.9, 0.4])
3Γ3 DataFrame
β Row β object β score1 β score2 β
β β Symbol β Float64 β Float64 β
βββββββΌβββββββββΌββββββββββΌββββββββββ€
β 1 β a β 0.9 β 0.8 β
β 2 β b β 0.7 β 0.9 β
β 3 β c β 0.5 β 0.4 β
```
rank the objects using:
```julia
julia> rank(objects, :score1)
3-element Array{Int64,1}:
1
2
3
julia> rank(objects, :score2)
3-element Array{Int64,1}:
2
1
3
julia> rank(objects, (:score1,:score2))
3-element Array{Int64,1}:
1
2
3
```
Optionally, specify the aggregation method:
```julia
julia> rank(objects, (:score1,:score2), TauModel())
3-element Array{Int64,1}:
1
2
3
```
and the reverse option:
```julia
julia> rank(objects, (:score1,:score2), rev=true)
3-element Array{Int64,1}:
3
2
1
```
## Aggregation Methods
| Method | References |
|--------|------------|
| `TauModel` | Journel 2002. Combining Knowledge From Diverse Sources: An Alternative to Traditional Data Independence Hypotheses. |
## Contributing
Contributions are very welcome, as are feature requests and suggestions.
Please [open an issue](https://github.com/JuliaEarth/RankAggregation.jl/issues) if you encounter
any problems.
| RankAggregation | https://github.com/JuliaML/RankAggregation.jl.git |
|
[
"MIT"
] | 0.2.0 | b007cfc7f9bee9a958992d2301e9c5b63f332a90 | code | 6241 | module ILUZero
using LinearAlgebra, SparseArrays
import LinearAlgebra.ldiv!, LinearAlgebra.\, SparseArrays.nnz
export ILU0Precon, \, forward_substitution!, backward_substitution!, nnz, ldiv!, ilu0, ilu0!
# ILU0 type definition
struct ILU0Precon{T <: Any, N <: Integer, M<: Any} <: Factorization{T}
m::N
n::N
l_colptr::Vector{N}
l_rowval::Vector{N}
l_nzval::Vector{T}
u_colptr::Vector{N}
u_rowval::Vector{N}
u_nzval::Vector{T}
l_map::Vector{N}
u_map::Vector{N}
wrk::Vector{M}
end
# Allocates ILU0Precon type
function ILU0Precon(A::SparseMatrixCSC{T,N}, b_type = T) where {T <: Any,N <: Integer}
m, n = size(A)
# Determine number of elements in lower/upper
lnz = 0
unz = 0
@inbounds for i = 1:n
for j = A.colptr[i]:A.colptr[i + 1] - 1
if A.rowval[j] > i
lnz += 1
else
unz += 1
end
end
end
# Preallocate variables
l_colptr = zeros(N, n + 1)
u_colptr = zeros(N, n + 1)
l_nzval = zeros(T, lnz)
u_nzval = zeros(T, unz)
l_rowval = zeros(Int64, lnz)
u_rowval = zeros(Int64, unz)
l_map = Vector{N}(undef, lnz)
u_map = Vector{N}(undef, unz)
wrk = zeros(b_type, n)
l_colptr[1] = 1
u_colptr[1] = 1
# Map elements of A to lower and upper triangles, fill out colptr, and fill out rowval
lit = 1
uit = 1
@inbounds for i = 1:n
l_colptr[i + 1] = l_colptr[i]
u_colptr[i + 1] = u_colptr[i]
for j = A.colptr[i]:A.colptr[i + 1] - 1
if A.rowval[j] > i
l_colptr[i + 1] += 1
l_rowval[lit] = A.rowval[j]
l_map[lit] = j
lit += 1
else
u_colptr[i + 1] += 1
u_rowval[uit] = A.rowval[j]
u_map[uit] = j
uit += 1
end
end
end
return ILU0Precon(m, n, l_colptr, l_rowval, l_nzval, u_colptr, u_rowval, u_nzval, l_map, u_map, wrk)
end
# Updates ILU0Precon type in-place based on matrix A
function ilu0!(LU::ILU0Precon{T,N}, A::SparseMatrixCSC{T,N}) where {T <: Any,N <: Integer}
m = LU.m
n = LU.n
l_colptr = LU.l_colptr
l_rowval = LU.l_rowval
l_nzval = LU.l_nzval
u_colptr = LU.u_colptr
u_rowval = LU.u_rowval
u_nzval = LU.u_nzval
l_map = LU.l_map
u_map = LU.u_map
# Redundant data or better speed... speed is chosen, but this might be changed.
# This shouldn't be inbounded either.
for i = 1:length(l_map)
l_nzval[i] = A.nzval[l_map[i]]
end
for i = 1:length(u_map)
u_nzval[i] = A.nzval[u_map[i]]
end
@inbounds for i = 1:m - 1
m_inv = inv(u_nzval[u_colptr[i + 1] - 1])
for j = l_colptr[i]:l_colptr[i + 1] - 1
l_nzval[j] = l_nzval[j] * m_inv
end
for j = u_colptr[i + 1]:u_colptr[i + 2] - 2
multiplier = u_nzval[j]
qn = j + 1
rn = l_colptr[i + 1]
pn = l_colptr[u_rowval[j]]
while pn < l_colptr[u_rowval[j] + 1] && l_rowval[pn] <= i + 1
while qn < u_colptr[i + 2] && u_rowval[qn] < l_rowval[pn]
qn += 1
end
if qn < u_colptr[i + 2] && l_rowval[pn] == u_rowval[qn]
u_nzval[qn] -= l_nzval[pn] * multiplier
end
pn += 1
end
while pn < l_colptr[u_rowval[j] + 1]
while rn < l_colptr[i + 2] && l_rowval[rn] < l_rowval[pn]
rn += 1
end
if rn < l_colptr[i + 2] && l_rowval[pn] == l_rowval[rn]
l_nzval[rn] -= l_nzval[pn] * multiplier
end
pn += 1
end
end
end
return
end
# Constructs ILU0Precon type based on matrix A
function ilu0(A::SparseMatrixCSC{T,N}, arg...) where {T <: Any,N <: Integer}
LU = ILU0Precon(A, arg...)
ilu0!(LU, A)
return LU
end
# Solves L\b and stores the solution in y
function forward_substitution!(y, LU::ILU0Precon{T,N,M}, b) where {T, N <: Integer, M}
n = LU.n
l_colptr = LU.l_colptr
l_rowval = LU.l_rowval
l_nzval = LU.l_nzval
for i in eachindex(y)
y[i] = zero(M)
end
@inbounds for i = 1:n
y[i] += b[i]
for j = l_colptr[i]:l_colptr[i + 1] - 1
y[l_rowval[j]] -= l_nzval[j] * y[i]
end
end
return y
end
# Solves U\y and stores the solution in x
function backward_substitution!(x, LU::ILU0Precon, y)
n = LU.n
u_colptr = LU.u_colptr
u_rowval = LU.u_rowval
u_nzval = LU.u_nzval
wrk = LU.wrk
wrk .= y
@inbounds for i = n:-1:1
x[i] = u_nzval[u_colptr[i + 1] - 1] \ wrk[i]
for j = u_colptr[i]:u_colptr[i + 1] - 2
wrk[u_rowval[j]] -= u_nzval[j] * x[i]
end
end
return x
end
# Solves LU\b overwriting x
function ldiv!(x::AbstractVector{M}, LU::ILU0Precon{T,N,M}, b::AbstractVector{M}) where {T,N <: Integer,M}
(length(b) == LU.n) || throw(DimensionMismatch())
n = LU.n
l_colptr = LU.l_colptr
l_rowval = LU.l_rowval
l_nzval = LU.l_nzval
u_colptr = LU.u_colptr
u_rowval = LU.u_rowval
u_nzval = LU.u_nzval
wrk = LU.wrk
for i in eachindex(wrk)
wrk[i] = zero(M)
end
@inbounds for i = 1:n
wrk[i] += b[i]
for j = l_colptr[i]:l_colptr[i + 1] - 1
wrk[l_rowval[j]] -= l_nzval[j] * wrk[i]
end
end
@inbounds for i = n:-1:1
x[i] = u_nzval[u_colptr[i + 1] - 1] \ wrk[i]
for j = u_colptr[i]:u_colptr[i + 1] - 2
wrk[u_rowval[j]] -= u_nzval[j] * x[i]
end
end
return x
end
# Solves LU\b overwriting b
function ldiv!(LU::ILU0Precon{T,N}, b::AbstractVector{T}) where {T <: Any,N <: Integer}
ldiv!(b, LU, b)
end
# Returns LU\b
function \(LU::ILU0Precon{T,N}, b::Vector{T}) where {T <: Any,N <: Integer}
length(b) == LU.n || throw(DimensionMismatch())
x = zeros(T, length(b))
ldiv!(x, LU, b)
end
# Returns the number of nonzero
function nnz(LU::ILU0Precon{T,N}) where {T <: Any,N <: Integer}
return length(LU.l_nzval) + length(LU.u_nzval)
end
end
| ILUZero | https://github.com/mcovalt/ILUZero.jl.git |
|
[
"MIT"
] | 0.2.0 | b007cfc7f9bee9a958992d2301e9c5b63f332a90 | code | 1271 | # Start Test Script
using ILUZero, LinearAlgebra, SparseArrays, Test
function cg(A, b; M=I)
n = size(A, 1)
x = zeros(n)
r = copy(b)
z = zeros(n)
ldiv!(z, M, r)
p = copy(z)
Ξ³ = dot(r, z)
k = 0
tired = false
solved = false
while !(solved || tired)
Ap = A * p
Ξ± = Ξ³ / dot(p, Ap)
x = x + Ξ± * p
r = r - Ξ± * Ap
ldiv!(z, M, r)
Ξ³_new = dot(r, z)
Ξ² = Ξ³_new / Ξ³
Ξ³ = Ξ³_new
p = z + Ξ² * p
k = k + 1
tired = k > n
solved = norm(r) β€ 1e-8 * norm(b)
end
return x, k
end
function test_solve()
n = 100
tA = sprandn(n, n, .1) + 10.0 * I
A = tA' * tA
ilu_prec = ilu0(A)
b = rand(n)
x1, k1 = cg(A, b)
println("No preconditioning: ", k1, " iterations")
x2, k2 = cg(A, b, M=ilu_prec)
println("Preconditioned: ", k2, " iterations")
return k1 > k2
end
function test_substitutions()
n = 100
tA = sprandn(n, n, .1) + 10.0 * I
A = tA' * tA
ilu_prec = ilu0(A)
b = rand(n)
x = ilu_prec \ b
x1 = zeros(n)
x2 = zeros(n)
forward_substitution!(x1, ilu_prec, b)
backward_substitution!(x2, ilu_prec, x1)
return (x2 == x)
end
@test test_solve()
@test test_substitutions()
| ILUZero | https://github.com/mcovalt/ILUZero.jl.git |
|
[
"MIT"
] | 0.2.0 | b007cfc7f9bee9a958992d2301e9c5b63f332a90 | docs | 2152 | # ILUZero.jl
`ILUZero.jl` is a Julia implementation of incomplete LU factorization with zero level of fill-in. It allows for non-allocating updates of the factorization. The module is compatible with [ForwardDiff.jl](https://github.com/JuliaDiff/ForwardDiff.jl).
## Requirements
* Julia 1.0 and up
## Installation
```julia
julia> ]
pkg> add ILUZero
```
## Why use ILUZero.jl?
You probably shouldn't. Julia's built in factorization methods are much better. Julia uses [SuiteSparse](http://faculty.cse.tamu.edu/davis/suitesparse.html) for sparse matrix factorization which factorizes at about nearly the same speed and results in similarly sized preconditioners which are *much* more robust. In addition, Julia uses heuristics to determine a good factorization scheme for your matrix automatically.
Due to the zero-fill of this package, however, factorization should be a bit faster and preconditioners can be preallocated if updated by a matrix of identical sparsity.
## How to use
```julia
julia> using ILUZero
```
* `LU = ilu0(A)`: Create a factorization based on a sparse matrix `A`
* `ilu0!(LU, A)`: Update factorization `LU` in-place based on a sparse matrix `A`. This assumes the original factorization was created with another sparse matrix with the exact same sparsity pattern as `A`. No check is made for this.
* To solve for `x` in `(LU)x=b`, use the same methods as you typically would: `\` or `ldiv!(x, LU, b)`. See [the docs](https://docs.julialang.org/en/v1/stdlib/LinearAlgebra/) for further information.
* There's also:
- Forward substitution: `forward_substitution!(y, LU, b)` solves `L\b` and stores the solution in y.
- Backward substitution: `backward_substitution!(x, LU, y)` solves `U\y` and stores the solution in x.
- Nonzero count: `nnz(LU)` will return the number of nonzero entries in `LU`.
## Performance
```julia
julia> using ILUZero
julia> using BenchmarkTools, LinearAlgebra, SparseArrays
julia> A = sprand(1000, 1000, 5 / 1000) + 10I
julia> fact = @btime ilu0(A)
107.600 ΞΌs (16 allocations: 160.81 KiB)
julia> updated_fact = @btime ilu0!($fact, $A)
71.500 ΞΌs (0 allocations: 0 bytes)
```
| ILUZero | https://github.com/mcovalt/ILUZero.jl.git |
|
[
"MIT"
] | 0.1.2 | f1f6d497ff84039deeb37f264396dac0c2250497 | code | 416 | using Clang.Generators
using libwebp_jll
cd(@__DIR__)
include_dir = joinpath(libwebp_jll.artifact_dir, "include", "webp")
options = load_options(joinpath(@__DIR__, "generator.toml"))
args = get_default_args()
push!(args, "-I$include_dir")
headers = [
joinpath(include_dir, header) for
header in readdir(include_dir) if endswith(header, ".h")
]
ctx = create_context(headers, args, options)
build!(ctx)
| WebP | https://github.com/stemann/WebP.jl.git |
|
[
"MIT"
] | 0.1.2 | f1f6d497ff84039deeb37f264396dac0c2250497 | code | 284 | module WebP
using ColorTypes
using FileIO
using FixedPointNumbers
using ImageCore
include(joinpath(@__DIR__, "Wrapper.jl"))
using .Wrapper
include(joinpath(@__DIR__, "decoding.jl"))
include(joinpath(@__DIR__, "encoding.jl"))
include(joinpath(@__DIR__, "fileio_interface.jl"))
end
| WebP | https://github.com/stemann/WebP.jl.git |
|
[
"MIT"
] | 0.1.2 | f1f6d497ff84039deeb37f264396dac0c2250497 | code | 32930 | module Wrapper
using libwebp_jll
export libwebp_jll
using CEnum
struct WebPRGBABuffer
rgba::Ptr{UInt8}
stride::Cint
size::Csize_t
end
struct WebPYUVABuffer
y::Ptr{UInt8}
u::Ptr{UInt8}
v::Ptr{UInt8}
a::Ptr{UInt8}
y_stride::Cint
u_stride::Cint
v_stride::Cint
a_stride::Cint
y_size::Csize_t
u_size::Csize_t
v_size::Csize_t
a_size::Csize_t
end
@cenum WEBP_CSP_MODE::UInt32 begin
MODE_RGB = 0
MODE_RGBA = 1
MODE_BGR = 2
MODE_BGRA = 3
MODE_ARGB = 4
MODE_RGBA_4444 = 5
MODE_RGB_565 = 6
MODE_rgbA = 7
MODE_bgrA = 8
MODE_Argb = 9
MODE_rgbA_4444 = 10
MODE_YUV = 11
MODE_YUVA = 12
MODE_LAST = 13
end
struct var"##Ctag#243"
data::NTuple{80, UInt8}
end
function Base.getproperty(x::Ptr{var"##Ctag#243"}, f::Symbol)
f === :RGBA && return Ptr{WebPRGBABuffer}(x + 0)
f === :YUVA && return Ptr{WebPYUVABuffer}(x + 0)
return getfield(x, f)
end
function Base.getproperty(x::var"##Ctag#243", f::Symbol)
r = Ref{var"##Ctag#243"}(x)
ptr = Base.unsafe_convert(Ptr{var"##Ctag#243"}, r)
fptr = getproperty(ptr, f)
GC.@preserve r unsafe_load(fptr)
end
function Base.setproperty!(x::Ptr{var"##Ctag#243"}, f::Symbol, v)
unsafe_store!(getproperty(x, f), v)
end
struct WebPDecBuffer
data::NTuple{120, UInt8}
end
function Base.getproperty(x::Ptr{WebPDecBuffer}, f::Symbol)
f === :colorspace && return Ptr{WEBP_CSP_MODE}(x + 0)
f === :width && return Ptr{Cint}(x + 4)
f === :height && return Ptr{Cint}(x + 8)
f === :is_external_memory && return Ptr{Cint}(x + 12)
f === :u && return Ptr{var"##Ctag#243"}(x + 16)
f === :pad && return Ptr{NTuple{4, UInt32}}(x + 96)
f === :private_memory && return Ptr{Ptr{UInt8}}(x + 112)
return getfield(x, f)
end
function Base.getproperty(x::WebPDecBuffer, f::Symbol)
r = Ref{WebPDecBuffer}(x)
ptr = Base.unsafe_convert(Ptr{WebPDecBuffer}, r)
fptr = getproperty(ptr, f)
GC.@preserve r unsafe_load(fptr)
end
function Base.setproperty!(x::Ptr{WebPDecBuffer}, f::Symbol, v)
unsafe_store!(getproperty(x, f), v)
end
mutable struct WebPIDecoder end
struct WebPBitstreamFeatures
width::Cint
height::Cint
has_alpha::Cint
has_animation::Cint
format::Cint
pad::NTuple{5, UInt32}
end
struct WebPDecoderOptions
bypass_filtering::Cint
no_fancy_upsampling::Cint
use_cropping::Cint
crop_left::Cint
crop_top::Cint
crop_width::Cint
crop_height::Cint
use_scaling::Cint
scaled_width::Cint
scaled_height::Cint
use_threads::Cint
dithering_strength::Cint
flip::Cint
alpha_dithering_strength::Cint
pad::NTuple{5, UInt32}
end
struct WebPDecoderConfig
input::WebPBitstreamFeatures
output::WebPDecBuffer
options::WebPDecoderOptions
end
function WebPGetDecoderVersion()
ccall((:WebPGetDecoderVersion, libwebp), Cint, ())
end
function WebPGetInfo(data, data_size, width, height)
ccall((:WebPGetInfo, libwebp), Cint, (Ptr{UInt8}, Csize_t, Ptr{Cint}, Ptr{Cint}), data, data_size, width, height)
end
function WebPDecodeRGBA(data, data_size, width, height)
ccall((:WebPDecodeRGBA, libwebp), Ptr{UInt8}, (Ptr{UInt8}, Csize_t, Ptr{Cint}, Ptr{Cint}), data, data_size, width, height)
end
function WebPDecodeARGB(data, data_size, width, height)
ccall((:WebPDecodeARGB, libwebp), Ptr{UInt8}, (Ptr{UInt8}, Csize_t, Ptr{Cint}, Ptr{Cint}), data, data_size, width, height)
end
function WebPDecodeBGRA(data, data_size, width, height)
ccall((:WebPDecodeBGRA, libwebp), Ptr{UInt8}, (Ptr{UInt8}, Csize_t, Ptr{Cint}, Ptr{Cint}), data, data_size, width, height)
end
function WebPDecodeRGB(data, data_size, width, height)
ccall((:WebPDecodeRGB, libwebp), Ptr{UInt8}, (Ptr{UInt8}, Csize_t, Ptr{Cint}, Ptr{Cint}), data, data_size, width, height)
end
function WebPDecodeBGR(data, data_size, width, height)
ccall((:WebPDecodeBGR, libwebp), Ptr{UInt8}, (Ptr{UInt8}, Csize_t, Ptr{Cint}, Ptr{Cint}), data, data_size, width, height)
end
function WebPDecodeYUV(data, data_size, width, height, u, v, stride, uv_stride)
ccall((:WebPDecodeYUV, libwebp), Ptr{UInt8}, (Ptr{UInt8}, Csize_t, Ptr{Cint}, Ptr{Cint}, Ptr{Ptr{UInt8}}, Ptr{Ptr{UInt8}}, Ptr{Cint}, Ptr{Cint}), data, data_size, width, height, u, v, stride, uv_stride)
end
function WebPDecodeRGBAInto(data, data_size, output_buffer, output_buffer_size, output_stride)
ccall((:WebPDecodeRGBAInto, libwebp), Ptr{UInt8}, (Ptr{UInt8}, Csize_t, Ptr{UInt8}, Csize_t, Cint), data, data_size, output_buffer, output_buffer_size, output_stride)
end
function WebPDecodeARGBInto(data, data_size, output_buffer, output_buffer_size, output_stride)
ccall((:WebPDecodeARGBInto, libwebp), Ptr{UInt8}, (Ptr{UInt8}, Csize_t, Ptr{UInt8}, Csize_t, Cint), data, data_size, output_buffer, output_buffer_size, output_stride)
end
function WebPDecodeBGRAInto(data, data_size, output_buffer, output_buffer_size, output_stride)
ccall((:WebPDecodeBGRAInto, libwebp), Ptr{UInt8}, (Ptr{UInt8}, Csize_t, Ptr{UInt8}, Csize_t, Cint), data, data_size, output_buffer, output_buffer_size, output_stride)
end
function WebPDecodeRGBInto(data, data_size, output_buffer, output_buffer_size, output_stride)
ccall((:WebPDecodeRGBInto, libwebp), Ptr{UInt8}, (Ptr{UInt8}, Csize_t, Ptr{UInt8}, Csize_t, Cint), data, data_size, output_buffer, output_buffer_size, output_stride)
end
function WebPDecodeBGRInto(data, data_size, output_buffer, output_buffer_size, output_stride)
ccall((:WebPDecodeBGRInto, libwebp), Ptr{UInt8}, (Ptr{UInt8}, Csize_t, Ptr{UInt8}, Csize_t, Cint), data, data_size, output_buffer, output_buffer_size, output_stride)
end
function WebPDecodeYUVInto(data, data_size, luma, luma_size, luma_stride, u, u_size, u_stride, v, v_size, v_stride)
ccall((:WebPDecodeYUVInto, libwebp), Ptr{UInt8}, (Ptr{UInt8}, Csize_t, Ptr{UInt8}, Csize_t, Cint, Ptr{UInt8}, Csize_t, Cint, Ptr{UInt8}, Csize_t, Cint), data, data_size, luma, luma_size, luma_stride, u, u_size, u_stride, v, v_size, v_stride)
end
function WebPIsPremultipliedMode(mode)
ccall((:WebPIsPremultipliedMode, libwebp), Cint, (WEBP_CSP_MODE,), mode)
end
function WebPIsAlphaMode(mode)
ccall((:WebPIsAlphaMode, libwebp), Cint, (WEBP_CSP_MODE,), mode)
end
function WebPIsRGBMode(mode)
ccall((:WebPIsRGBMode, libwebp), Cint, (WEBP_CSP_MODE,), mode)
end
function WebPInitDecBufferInternal(arg1, arg2)
ccall((:WebPInitDecBufferInternal, libwebp), Cint, (Ptr{WebPDecBuffer}, Cint), arg1, arg2)
end
function WebPInitDecBuffer(buffer)
ccall((:WebPInitDecBuffer, libwebp), Cint, (Ptr{WebPDecBuffer},), buffer)
end
function WebPFreeDecBuffer(buffer)
ccall((:WebPFreeDecBuffer, libwebp), Cvoid, (Ptr{WebPDecBuffer},), buffer)
end
@cenum VP8StatusCode::UInt32 begin
VP8_STATUS_OK = 0
VP8_STATUS_OUT_OF_MEMORY = 1
VP8_STATUS_INVALID_PARAM = 2
VP8_STATUS_BITSTREAM_ERROR = 3
VP8_STATUS_UNSUPPORTED_FEATURE = 4
VP8_STATUS_SUSPENDED = 5
VP8_STATUS_USER_ABORT = 6
VP8_STATUS_NOT_ENOUGH_DATA = 7
end
function WebPINewDecoder(output_buffer)
ccall((:WebPINewDecoder, libwebp), Ptr{WebPIDecoder}, (Ptr{WebPDecBuffer},), output_buffer)
end
function WebPINewRGB(csp, output_buffer, output_buffer_size, output_stride)
ccall((:WebPINewRGB, libwebp), Ptr{WebPIDecoder}, (WEBP_CSP_MODE, Ptr{UInt8}, Csize_t, Cint), csp, output_buffer, output_buffer_size, output_stride)
end
function WebPINewYUVA(luma, luma_size, luma_stride, u, u_size, u_stride, v, v_size, v_stride, a, a_size, a_stride)
ccall((:WebPINewYUVA, libwebp), Ptr{WebPIDecoder}, (Ptr{UInt8}, Csize_t, Cint, Ptr{UInt8}, Csize_t, Cint, Ptr{UInt8}, Csize_t, Cint, Ptr{UInt8}, Csize_t, Cint), luma, luma_size, luma_stride, u, u_size, u_stride, v, v_size, v_stride, a, a_size, a_stride)
end
function WebPINewYUV(luma, luma_size, luma_stride, u, u_size, u_stride, v, v_size, v_stride)
ccall((:WebPINewYUV, libwebp), Ptr{WebPIDecoder}, (Ptr{UInt8}, Csize_t, Cint, Ptr{UInt8}, Csize_t, Cint, Ptr{UInt8}, Csize_t, Cint), luma, luma_size, luma_stride, u, u_size, u_stride, v, v_size, v_stride)
end
function WebPIDelete(idec)
ccall((:WebPIDelete, libwebp), Cvoid, (Ptr{WebPIDecoder},), idec)
end
function WebPIAppend(idec, data, data_size)
ccall((:WebPIAppend, libwebp), VP8StatusCode, (Ptr{WebPIDecoder}, Ptr{UInt8}, Csize_t), idec, data, data_size)
end
function WebPIUpdate(idec, data, data_size)
ccall((:WebPIUpdate, libwebp), VP8StatusCode, (Ptr{WebPIDecoder}, Ptr{UInt8}, Csize_t), idec, data, data_size)
end
function WebPIDecGetRGB(idec, last_y, width, height, stride)
ccall((:WebPIDecGetRGB, libwebp), Ptr{UInt8}, (Ptr{WebPIDecoder}, Ptr{Cint}, Ptr{Cint}, Ptr{Cint}, Ptr{Cint}), idec, last_y, width, height, stride)
end
function WebPIDecGetYUVA(idec, last_y, u, v, a, width, height, stride, uv_stride, a_stride)
ccall((:WebPIDecGetYUVA, libwebp), Ptr{UInt8}, (Ptr{WebPIDecoder}, Ptr{Cint}, Ptr{Ptr{UInt8}}, Ptr{Ptr{UInt8}}, Ptr{Ptr{UInt8}}, Ptr{Cint}, Ptr{Cint}, Ptr{Cint}, Ptr{Cint}, Ptr{Cint}), idec, last_y, u, v, a, width, height, stride, uv_stride, a_stride)
end
function WebPIDecGetYUV(idec, last_y, u, v, width, height, stride, uv_stride)
ccall((:WebPIDecGetYUV, libwebp), Ptr{UInt8}, (Ptr{WebPIDecoder}, Ptr{Cint}, Ptr{Ptr{UInt8}}, Ptr{Ptr{UInt8}}, Ptr{Cint}, Ptr{Cint}, Ptr{Cint}, Ptr{Cint}), idec, last_y, u, v, width, height, stride, uv_stride)
end
function WebPIDecodedArea(idec, left, top, width, height)
ccall((:WebPIDecodedArea, libwebp), Ptr{WebPDecBuffer}, (Ptr{WebPIDecoder}, Ptr{Cint}, Ptr{Cint}, Ptr{Cint}, Ptr{Cint}), idec, left, top, width, height)
end
function WebPGetFeaturesInternal(arg1, arg2, arg3, arg4)
ccall((:WebPGetFeaturesInternal, libwebp), VP8StatusCode, (Ptr{UInt8}, Csize_t, Ptr{WebPBitstreamFeatures}, Cint), arg1, arg2, arg3, arg4)
end
function WebPGetFeatures(data, data_size, features)
ccall((:WebPGetFeatures, libwebp), VP8StatusCode, (Ptr{UInt8}, Csize_t, Ptr{WebPBitstreamFeatures}), data, data_size, features)
end
function WebPInitDecoderConfigInternal(arg1, arg2)
ccall((:WebPInitDecoderConfigInternal, libwebp), Cint, (Ptr{WebPDecoderConfig}, Cint), arg1, arg2)
end
function WebPInitDecoderConfig(config)
ccall((:WebPInitDecoderConfig, libwebp), Cint, (Ptr{WebPDecoderConfig},), config)
end
function WebPIDecode(data, data_size, config)
ccall((:WebPIDecode, libwebp), Ptr{WebPIDecoder}, (Ptr{UInt8}, Csize_t, Ptr{WebPDecoderConfig}), data, data_size, config)
end
function WebPDecode(data, data_size, config)
ccall((:WebPDecode, libwebp), VP8StatusCode, (Ptr{UInt8}, Csize_t, Ptr{WebPDecoderConfig}), data, data_size, config)
end
mutable struct WebPDemuxer end
@cenum WebPMuxAnimDispose::UInt32 begin
WEBP_MUX_DISPOSE_NONE = 0
WEBP_MUX_DISPOSE_BACKGROUND = 1
end
struct WebPData
bytes::Ptr{UInt8}
size::Csize_t
end
@cenum WebPMuxAnimBlend::UInt32 begin
WEBP_MUX_BLEND = 0
WEBP_MUX_NO_BLEND = 1
end
struct WebPIterator
frame_num::Cint
num_frames::Cint
x_offset::Cint
y_offset::Cint
width::Cint
height::Cint
duration::Cint
dispose_method::WebPMuxAnimDispose
complete::Cint
fragment::WebPData
has_alpha::Cint
blend_method::WebPMuxAnimBlend
pad::NTuple{2, UInt32}
private_::Ptr{Cvoid}
end
struct WebPChunkIterator
chunk_num::Cint
num_chunks::Cint
chunk::WebPData
pad::NTuple{6, UInt32}
private_::Ptr{Cvoid}
end
struct WebPAnimInfo
canvas_width::UInt32
canvas_height::UInt32
loop_count::UInt32
bgcolor::UInt32
frame_count::UInt32
pad::NTuple{4, UInt32}
end
struct WebPAnimDecoderOptions
color_mode::WEBP_CSP_MODE
use_threads::Cint
padding::NTuple{7, UInt32}
end
function WebPGetDemuxVersion()
ccall((:WebPGetDemuxVersion, libwebp), Cint, ())
end
@cenum WebPDemuxState::Int32 begin
WEBP_DEMUX_PARSE_ERROR = -1
WEBP_DEMUX_PARSING_HEADER = 0
WEBP_DEMUX_PARSED_HEADER = 1
WEBP_DEMUX_DONE = 2
end
function WebPDemuxInternal(arg1, arg2, arg3, arg4)
ccall((:WebPDemuxInternal, libwebp), Ptr{WebPDemuxer}, (Ptr{WebPData}, Cint, Ptr{WebPDemuxState}, Cint), arg1, arg2, arg3, arg4)
end
function WebPDemux(data)
ccall((:WebPDemux, libwebp), Ptr{WebPDemuxer}, (Ptr{WebPData},), data)
end
function WebPDemuxPartial(data, state)
ccall((:WebPDemuxPartial, libwebp), Ptr{WebPDemuxer}, (Ptr{WebPData}, Ptr{WebPDemuxState}), data, state)
end
function WebPDemuxDelete(dmux)
ccall((:WebPDemuxDelete, libwebp), Cvoid, (Ptr{WebPDemuxer},), dmux)
end
@cenum WebPFormatFeature::UInt32 begin
WEBP_FF_FORMAT_FLAGS = 0
WEBP_FF_CANVAS_WIDTH = 1
WEBP_FF_CANVAS_HEIGHT = 2
WEBP_FF_LOOP_COUNT = 3
WEBP_FF_BACKGROUND_COLOR = 4
WEBP_FF_FRAME_COUNT = 5
end
function WebPDemuxGetI(dmux, feature)
ccall((:WebPDemuxGetI, libwebp), UInt32, (Ptr{WebPDemuxer}, WebPFormatFeature), dmux, feature)
end
function WebPDemuxGetFrame(dmux, frame_number, iter)
ccall((:WebPDemuxGetFrame, libwebp), Cint, (Ptr{WebPDemuxer}, Cint, Ptr{WebPIterator}), dmux, frame_number, iter)
end
function WebPDemuxNextFrame(iter)
ccall((:WebPDemuxNextFrame, libwebp), Cint, (Ptr{WebPIterator},), iter)
end
function WebPDemuxPrevFrame(iter)
ccall((:WebPDemuxPrevFrame, libwebp), Cint, (Ptr{WebPIterator},), iter)
end
function WebPDemuxReleaseIterator(iter)
ccall((:WebPDemuxReleaseIterator, libwebp), Cvoid, (Ptr{WebPIterator},), iter)
end
function WebPDemuxGetChunk(dmux, fourcc, chunk_number, iter)
ccall((:WebPDemuxGetChunk, libwebp), Cint, (Ptr{WebPDemuxer}, Ptr{Cchar}, Cint, Ptr{WebPChunkIterator}), dmux, fourcc, chunk_number, iter)
end
function WebPDemuxNextChunk(iter)
ccall((:WebPDemuxNextChunk, libwebp), Cint, (Ptr{WebPChunkIterator},), iter)
end
function WebPDemuxPrevChunk(iter)
ccall((:WebPDemuxPrevChunk, libwebp), Cint, (Ptr{WebPChunkIterator},), iter)
end
function WebPDemuxReleaseChunkIterator(iter)
ccall((:WebPDemuxReleaseChunkIterator, libwebp), Cvoid, (Ptr{WebPChunkIterator},), iter)
end
mutable struct WebPAnimDecoder end
function WebPAnimDecoderOptionsInitInternal(arg1, arg2)
ccall((:WebPAnimDecoderOptionsInitInternal, libwebp), Cint, (Ptr{WebPAnimDecoderOptions}, Cint), arg1, arg2)
end
function WebPAnimDecoderOptionsInit(dec_options)
ccall((:WebPAnimDecoderOptionsInit, libwebp), Cint, (Ptr{WebPAnimDecoderOptions},), dec_options)
end
function WebPAnimDecoderNewInternal(arg1, arg2, arg3)
ccall((:WebPAnimDecoderNewInternal, libwebp), Ptr{WebPAnimDecoder}, (Ptr{WebPData}, Ptr{WebPAnimDecoderOptions}, Cint), arg1, arg2, arg3)
end
function WebPAnimDecoderNew(webp_data, dec_options)
ccall((:WebPAnimDecoderNew, libwebp), Ptr{WebPAnimDecoder}, (Ptr{WebPData}, Ptr{WebPAnimDecoderOptions}), webp_data, dec_options)
end
function WebPAnimDecoderGetInfo(dec, info)
ccall((:WebPAnimDecoderGetInfo, libwebp), Cint, (Ptr{WebPAnimDecoder}, Ptr{WebPAnimInfo}), dec, info)
end
function WebPAnimDecoderGetNext(dec, buf, timestamp)
ccall((:WebPAnimDecoderGetNext, libwebp), Cint, (Ptr{WebPAnimDecoder}, Ptr{Ptr{UInt8}}, Ptr{Cint}), dec, buf, timestamp)
end
function WebPAnimDecoderHasMoreFrames(dec)
ccall((:WebPAnimDecoderHasMoreFrames, libwebp), Cint, (Ptr{WebPAnimDecoder},), dec)
end
function WebPAnimDecoderReset(dec)
ccall((:WebPAnimDecoderReset, libwebp), Cvoid, (Ptr{WebPAnimDecoder},), dec)
end
function WebPAnimDecoderGetDemuxer(dec)
ccall((:WebPAnimDecoderGetDemuxer, libwebp), Ptr{WebPDemuxer}, (Ptr{WebPAnimDecoder},), dec)
end
function WebPAnimDecoderDelete(dec)
ccall((:WebPAnimDecoderDelete, libwebp), Cvoid, (Ptr{WebPAnimDecoder},), dec)
end
@cenum WebPImageHint::UInt32 begin
WEBP_HINT_DEFAULT = 0
WEBP_HINT_PICTURE = 1
WEBP_HINT_PHOTO = 2
WEBP_HINT_GRAPH = 3
WEBP_HINT_LAST = 4
end
struct WebPConfig
lossless::Cint
quality::Cfloat
method::Cint
image_hint::WebPImageHint
target_size::Cint
target_PSNR::Cfloat
segments::Cint
sns_strength::Cint
filter_strength::Cint
filter_sharpness::Cint
filter_type::Cint
autofilter::Cint
alpha_compression::Cint
alpha_filtering::Cint
alpha_quality::Cint
pass::Cint
show_compressed::Cint
preprocessing::Cint
partitions::Cint
partition_limit::Cint
emulate_jpeg_size::Cint
thread_level::Cint
low_memory::Cint
near_lossless::Cint
exact::Cint
use_delta_palette::Cint
use_sharp_yuv::Cint
qmin::Cint
qmax::Cint
end
@cenum WebPEncCSP::UInt32 begin
WEBP_YUV420 = 0
WEBP_YUV420A = 4
WEBP_CSP_UV_MASK = 3
WEBP_CSP_ALPHA_BIT = 4
end
# typedef int ( * WebPWriterFunction ) ( const uint8_t * data , size_t data_size , const WebPPicture * picture )
const WebPWriterFunction = Ptr{Cvoid}
struct WebPAuxStats
coded_size::Cint
PSNR::NTuple{5, Cfloat}
block_count::NTuple{3, Cint}
header_bytes::NTuple{2, Cint}
residual_bytes::NTuple{3, NTuple{4, Cint}}
segment_size::NTuple{4, Cint}
segment_quant::NTuple{4, Cint}
segment_level::NTuple{4, Cint}
alpha_data_size::Cint
layer_data_size::Cint
lossless_features::UInt32
histogram_bits::Cint
transform_bits::Cint
cache_bits::Cint
palette_size::Cint
lossless_size::Cint
lossless_hdr_size::Cint
lossless_data_size::Cint
pad::NTuple{2, UInt32}
end
@cenum WebPEncodingError::UInt32 begin
VP8_ENC_OK = 0
VP8_ENC_ERROR_OUT_OF_MEMORY = 1
VP8_ENC_ERROR_BITSTREAM_OUT_OF_MEMORY = 2
VP8_ENC_ERROR_NULL_PARAMETER = 3
VP8_ENC_ERROR_INVALID_CONFIGURATION = 4
VP8_ENC_ERROR_BAD_DIMENSION = 5
VP8_ENC_ERROR_PARTITION0_OVERFLOW = 6
VP8_ENC_ERROR_PARTITION_OVERFLOW = 7
VP8_ENC_ERROR_BAD_WRITE = 8
VP8_ENC_ERROR_FILE_TOO_BIG = 9
VP8_ENC_ERROR_USER_ABORT = 10
VP8_ENC_ERROR_LAST = 11
end
# typedef int ( * WebPProgressHook ) ( int percent , const WebPPicture * picture )
const WebPProgressHook = Ptr{Cvoid}
struct WebPPicture
use_argb::Cint
colorspace::WebPEncCSP
width::Cint
height::Cint
y::Ptr{UInt8}
u::Ptr{UInt8}
v::Ptr{UInt8}
y_stride::Cint
uv_stride::Cint
a::Ptr{UInt8}
a_stride::Cint
pad1::NTuple{2, UInt32}
argb::Ptr{UInt32}
argb_stride::Cint
pad2::NTuple{3, UInt32}
writer::WebPWriterFunction
custom_ptr::Ptr{Cvoid}
extra_info_type::Cint
extra_info::Ptr{UInt8}
stats::Ptr{WebPAuxStats}
error_code::WebPEncodingError
progress_hook::WebPProgressHook
user_data::Ptr{Cvoid}
pad3::NTuple{3, UInt32}
pad4::Ptr{UInt8}
pad5::Ptr{UInt8}
pad6::NTuple{8, UInt32}
memory_::Ptr{Cvoid}
memory_argb_::Ptr{Cvoid}
pad7::NTuple{2, Ptr{Cvoid}}
end
struct WebPMemoryWriter
mem::Ptr{UInt8}
size::Csize_t
max_size::Csize_t
pad::NTuple{1, UInt32}
end
function WebPGetEncoderVersion()
ccall((:WebPGetEncoderVersion, libwebp), Cint, ())
end
function WebPEncodeRGB(rgb, width, height, stride, quality_factor, output)
ccall((:WebPEncodeRGB, libwebp), Csize_t, (Ptr{UInt8}, Cint, Cint, Cint, Cfloat, Ptr{Ptr{UInt8}}), rgb, width, height, stride, quality_factor, output)
end
function WebPEncodeBGR(bgr, width, height, stride, quality_factor, output)
ccall((:WebPEncodeBGR, libwebp), Csize_t, (Ptr{UInt8}, Cint, Cint, Cint, Cfloat, Ptr{Ptr{UInt8}}), bgr, width, height, stride, quality_factor, output)
end
function WebPEncodeRGBA(rgba, width, height, stride, quality_factor, output)
ccall((:WebPEncodeRGBA, libwebp), Csize_t, (Ptr{UInt8}, Cint, Cint, Cint, Cfloat, Ptr{Ptr{UInt8}}), rgba, width, height, stride, quality_factor, output)
end
function WebPEncodeBGRA(bgra, width, height, stride, quality_factor, output)
ccall((:WebPEncodeBGRA, libwebp), Csize_t, (Ptr{UInt8}, Cint, Cint, Cint, Cfloat, Ptr{Ptr{UInt8}}), bgra, width, height, stride, quality_factor, output)
end
function WebPEncodeLosslessRGB(rgb, width, height, stride, output)
ccall((:WebPEncodeLosslessRGB, libwebp), Csize_t, (Ptr{UInt8}, Cint, Cint, Cint, Ptr{Ptr{UInt8}}), rgb, width, height, stride, output)
end
function WebPEncodeLosslessBGR(bgr, width, height, stride, output)
ccall((:WebPEncodeLosslessBGR, libwebp), Csize_t, (Ptr{UInt8}, Cint, Cint, Cint, Ptr{Ptr{UInt8}}), bgr, width, height, stride, output)
end
function WebPEncodeLosslessRGBA(rgba, width, height, stride, output)
ccall((:WebPEncodeLosslessRGBA, libwebp), Csize_t, (Ptr{UInt8}, Cint, Cint, Cint, Ptr{Ptr{UInt8}}), rgba, width, height, stride, output)
end
function WebPEncodeLosslessBGRA(bgra, width, height, stride, output)
ccall((:WebPEncodeLosslessBGRA, libwebp), Csize_t, (Ptr{UInt8}, Cint, Cint, Cint, Ptr{Ptr{UInt8}}), bgra, width, height, stride, output)
end
@cenum WebPPreset::UInt32 begin
WEBP_PRESET_DEFAULT = 0
WEBP_PRESET_PICTURE = 1
WEBP_PRESET_PHOTO = 2
WEBP_PRESET_DRAWING = 3
WEBP_PRESET_ICON = 4
WEBP_PRESET_TEXT = 5
end
function WebPConfigInitInternal(arg1, arg2, arg3, arg4)
ccall((:WebPConfigInitInternal, libwebp), Cint, (Ptr{WebPConfig}, WebPPreset, Cfloat, Cint), arg1, arg2, arg3, arg4)
end
function WebPConfigInit(config)
ccall((:WebPConfigInit, libwebp), Cint, (Ptr{WebPConfig},), config)
end
function WebPConfigPreset(config, preset, quality)
ccall((:WebPConfigPreset, libwebp), Cint, (Ptr{WebPConfig}, WebPPreset, Cfloat), config, preset, quality)
end
function WebPConfigLosslessPreset(config, level)
ccall((:WebPConfigLosslessPreset, libwebp), Cint, (Ptr{WebPConfig}, Cint), config, level)
end
function WebPValidateConfig(config)
ccall((:WebPValidateConfig, libwebp), Cint, (Ptr{WebPConfig},), config)
end
function WebPMemoryWriterInit(writer)
ccall((:WebPMemoryWriterInit, libwebp), Cvoid, (Ptr{WebPMemoryWriter},), writer)
end
function WebPMemoryWriterClear(writer)
ccall((:WebPMemoryWriterClear, libwebp), Cvoid, (Ptr{WebPMemoryWriter},), writer)
end
function WebPMemoryWrite(data, data_size, picture)
ccall((:WebPMemoryWrite, libwebp), Cint, (Ptr{UInt8}, Csize_t, Ptr{WebPPicture}), data, data_size, picture)
end
function WebPPictureInitInternal(arg1, arg2)
ccall((:WebPPictureInitInternal, libwebp), Cint, (Ptr{WebPPicture}, Cint), arg1, arg2)
end
function WebPPictureInit(picture)
ccall((:WebPPictureInit, libwebp), Cint, (Ptr{WebPPicture},), picture)
end
function WebPPictureAlloc(picture)
ccall((:WebPPictureAlloc, libwebp), Cint, (Ptr{WebPPicture},), picture)
end
function WebPPictureFree(picture)
ccall((:WebPPictureFree, libwebp), Cvoid, (Ptr{WebPPicture},), picture)
end
function WebPPictureCopy(src, dst)
ccall((:WebPPictureCopy, libwebp), Cint, (Ptr{WebPPicture}, Ptr{WebPPicture}), src, dst)
end
function WebPPlaneDistortion(src, src_stride, ref, ref_stride, width, height, x_step, type, distortion, result)
ccall((:WebPPlaneDistortion, libwebp), Cint, (Ptr{UInt8}, Csize_t, Ptr{UInt8}, Csize_t, Cint, Cint, Csize_t, Cint, Ptr{Cfloat}, Ptr{Cfloat}), src, src_stride, ref, ref_stride, width, height, x_step, type, distortion, result)
end
function WebPPictureDistortion(src, ref, metric_type, result)
ccall((:WebPPictureDistortion, libwebp), Cint, (Ptr{WebPPicture}, Ptr{WebPPicture}, Cint, Ptr{Cfloat}), src, ref, metric_type, result)
end
function WebPPictureCrop(picture, left, top, width, height)
ccall((:WebPPictureCrop, libwebp), Cint, (Ptr{WebPPicture}, Cint, Cint, Cint, Cint), picture, left, top, width, height)
end
function WebPPictureView(src, left, top, width, height, dst)
ccall((:WebPPictureView, libwebp), Cint, (Ptr{WebPPicture}, Cint, Cint, Cint, Cint, Ptr{WebPPicture}), src, left, top, width, height, dst)
end
function WebPPictureIsView(picture)
ccall((:WebPPictureIsView, libwebp), Cint, (Ptr{WebPPicture},), picture)
end
function WebPPictureRescale(picture, width, height)
ccall((:WebPPictureRescale, libwebp), Cint, (Ptr{WebPPicture}, Cint, Cint), picture, width, height)
end
function WebPPictureImportRGB(picture, rgb, rgb_stride)
ccall((:WebPPictureImportRGB, libwebp), Cint, (Ptr{WebPPicture}, Ptr{UInt8}, Cint), picture, rgb, rgb_stride)
end
function WebPPictureImportRGBA(picture, rgba, rgba_stride)
ccall((:WebPPictureImportRGBA, libwebp), Cint, (Ptr{WebPPicture}, Ptr{UInt8}, Cint), picture, rgba, rgba_stride)
end
function WebPPictureImportRGBX(picture, rgbx, rgbx_stride)
ccall((:WebPPictureImportRGBX, libwebp), Cint, (Ptr{WebPPicture}, Ptr{UInt8}, Cint), picture, rgbx, rgbx_stride)
end
function WebPPictureImportBGR(picture, bgr, bgr_stride)
ccall((:WebPPictureImportBGR, libwebp), Cint, (Ptr{WebPPicture}, Ptr{UInt8}, Cint), picture, bgr, bgr_stride)
end
function WebPPictureImportBGRA(picture, bgra, bgra_stride)
ccall((:WebPPictureImportBGRA, libwebp), Cint, (Ptr{WebPPicture}, Ptr{UInt8}, Cint), picture, bgra, bgra_stride)
end
function WebPPictureImportBGRX(picture, bgrx, bgrx_stride)
ccall((:WebPPictureImportBGRX, libwebp), Cint, (Ptr{WebPPicture}, Ptr{UInt8}, Cint), picture, bgrx, bgrx_stride)
end
function WebPPictureARGBToYUVA(picture, arg2)
ccall((:WebPPictureARGBToYUVA, libwebp), Cint, (Ptr{WebPPicture}, WebPEncCSP), picture, arg2)
end
function WebPPictureARGBToYUVADithered(picture, colorspace, dithering)
ccall((:WebPPictureARGBToYUVADithered, libwebp), Cint, (Ptr{WebPPicture}, WebPEncCSP, Cfloat), picture, colorspace, dithering)
end
function WebPPictureSharpARGBToYUVA(picture)
ccall((:WebPPictureSharpARGBToYUVA, libwebp), Cint, (Ptr{WebPPicture},), picture)
end
function WebPPictureSmartARGBToYUVA(picture)
ccall((:WebPPictureSmartARGBToYUVA, libwebp), Cint, (Ptr{WebPPicture},), picture)
end
function WebPPictureYUVAToARGB(picture)
ccall((:WebPPictureYUVAToARGB, libwebp), Cint, (Ptr{WebPPicture},), picture)
end
function WebPCleanupTransparentArea(picture)
ccall((:WebPCleanupTransparentArea, libwebp), Cvoid, (Ptr{WebPPicture},), picture)
end
function WebPPictureHasTransparency(picture)
ccall((:WebPPictureHasTransparency, libwebp), Cint, (Ptr{WebPPicture},), picture)
end
function WebPBlendAlpha(picture, background_rgb)
ccall((:WebPBlendAlpha, libwebp), Cvoid, (Ptr{WebPPicture}, UInt32), picture, background_rgb)
end
function WebPEncode(config, picture)
ccall((:WebPEncode, libwebp), Cint, (Ptr{WebPConfig}, Ptr{WebPPicture}), config, picture)
end
mutable struct WebPMux end
@cenum WebPChunkId::UInt32 begin
WEBP_CHUNK_VP8X = 0
WEBP_CHUNK_ICCP = 1
WEBP_CHUNK_ANIM = 2
WEBP_CHUNK_ANMF = 3
WEBP_CHUNK_DEPRECATED = 4
WEBP_CHUNK_ALPHA = 5
WEBP_CHUNK_IMAGE = 6
WEBP_CHUNK_EXIF = 7
WEBP_CHUNK_XMP = 8
WEBP_CHUNK_UNKNOWN = 9
WEBP_CHUNK_NIL = 10
end
struct WebPMuxFrameInfo
bitstream::WebPData
x_offset::Cint
y_offset::Cint
duration::Cint
id::WebPChunkId
dispose_method::WebPMuxAnimDispose
blend_method::WebPMuxAnimBlend
pad::NTuple{1, UInt32}
end
struct WebPMuxAnimParams
bgcolor::UInt32
loop_count::Cint
end
struct WebPAnimEncoderOptions
anim_params::WebPMuxAnimParams
minimize_size::Cint
kmin::Cint
kmax::Cint
allow_mixed::Cint
verbose::Cint
padding::NTuple{4, UInt32}
end
@cenum WebPMuxError::Int32 begin
WEBP_MUX_OK = 1
WEBP_MUX_NOT_FOUND = 0
WEBP_MUX_INVALID_ARGUMENT = -1
WEBP_MUX_BAD_DATA = -2
WEBP_MUX_MEMORY_ERROR = -3
WEBP_MUX_NOT_ENOUGH_DATA = -4
end
function WebPGetMuxVersion()
ccall((:WebPGetMuxVersion, libwebp), Cint, ())
end
function WebPNewInternal(arg1)
ccall((:WebPNewInternal, libwebp), Ptr{WebPMux}, (Cint,), arg1)
end
function WebPMuxNew()
ccall((:WebPMuxNew, libwebp), Ptr{WebPMux}, ())
end
function WebPMuxDelete(mux)
ccall((:WebPMuxDelete, libwebp), Cvoid, (Ptr{WebPMux},), mux)
end
function WebPMuxCreateInternal(arg1, arg2, arg3)
ccall((:WebPMuxCreateInternal, libwebp), Ptr{WebPMux}, (Ptr{WebPData}, Cint, Cint), arg1, arg2, arg3)
end
function WebPMuxCreate(bitstream, copy_data)
ccall((:WebPMuxCreate, libwebp), Ptr{WebPMux}, (Ptr{WebPData}, Cint), bitstream, copy_data)
end
function WebPMuxSetChunk(mux, fourcc, chunk_data, copy_data)
ccall((:WebPMuxSetChunk, libwebp), WebPMuxError, (Ptr{WebPMux}, Ptr{Cchar}, Ptr{WebPData}, Cint), mux, fourcc, chunk_data, copy_data)
end
function WebPMuxGetChunk(mux, fourcc, chunk_data)
ccall((:WebPMuxGetChunk, libwebp), WebPMuxError, (Ptr{WebPMux}, Ptr{Cchar}, Ptr{WebPData}), mux, fourcc, chunk_data)
end
function WebPMuxDeleteChunk(mux, fourcc)
ccall((:WebPMuxDeleteChunk, libwebp), WebPMuxError, (Ptr{WebPMux}, Ptr{Cchar}), mux, fourcc)
end
function WebPMuxSetImage(mux, bitstream, copy_data)
ccall((:WebPMuxSetImage, libwebp), WebPMuxError, (Ptr{WebPMux}, Ptr{WebPData}, Cint), mux, bitstream, copy_data)
end
function WebPMuxPushFrame(mux, frame, copy_data)
ccall((:WebPMuxPushFrame, libwebp), WebPMuxError, (Ptr{WebPMux}, Ptr{WebPMuxFrameInfo}, Cint), mux, frame, copy_data)
end
function WebPMuxGetFrame(mux, nth, frame)
ccall((:WebPMuxGetFrame, libwebp), WebPMuxError, (Ptr{WebPMux}, UInt32, Ptr{WebPMuxFrameInfo}), mux, nth, frame)
end
function WebPMuxDeleteFrame(mux, nth)
ccall((:WebPMuxDeleteFrame, libwebp), WebPMuxError, (Ptr{WebPMux}, UInt32), mux, nth)
end
function WebPMuxSetAnimationParams(mux, params)
ccall((:WebPMuxSetAnimationParams, libwebp), WebPMuxError, (Ptr{WebPMux}, Ptr{WebPMuxAnimParams}), mux, params)
end
function WebPMuxGetAnimationParams(mux, params)
ccall((:WebPMuxGetAnimationParams, libwebp), WebPMuxError, (Ptr{WebPMux}, Ptr{WebPMuxAnimParams}), mux, params)
end
function WebPMuxSetCanvasSize(mux, width, height)
ccall((:WebPMuxSetCanvasSize, libwebp), WebPMuxError, (Ptr{WebPMux}, Cint, Cint), mux, width, height)
end
function WebPMuxGetCanvasSize(mux, width, height)
ccall((:WebPMuxGetCanvasSize, libwebp), WebPMuxError, (Ptr{WebPMux}, Ptr{Cint}, Ptr{Cint}), mux, width, height)
end
function WebPMuxGetFeatures(mux, flags)
ccall((:WebPMuxGetFeatures, libwebp), WebPMuxError, (Ptr{WebPMux}, Ptr{UInt32}), mux, flags)
end
function WebPMuxNumChunks(mux, id, num_elements)
ccall((:WebPMuxNumChunks, libwebp), WebPMuxError, (Ptr{WebPMux}, WebPChunkId, Ptr{Cint}), mux, id, num_elements)
end
function WebPMuxAssemble(mux, assembled_data)
ccall((:WebPMuxAssemble, libwebp), WebPMuxError, (Ptr{WebPMux}, Ptr{WebPData}), mux, assembled_data)
end
mutable struct WebPAnimEncoder end
function WebPAnimEncoderOptionsInitInternal(arg1, arg2)
ccall((:WebPAnimEncoderOptionsInitInternal, libwebp), Cint, (Ptr{WebPAnimEncoderOptions}, Cint), arg1, arg2)
end
function WebPAnimEncoderOptionsInit(enc_options)
ccall((:WebPAnimEncoderOptionsInit, libwebp), Cint, (Ptr{WebPAnimEncoderOptions},), enc_options)
end
function WebPAnimEncoderNewInternal(arg1, arg2, arg3, arg4)
ccall((:WebPAnimEncoderNewInternal, libwebp), Ptr{WebPAnimEncoder}, (Cint, Cint, Ptr{WebPAnimEncoderOptions}, Cint), arg1, arg2, arg3, arg4)
end
function WebPAnimEncoderNew(width, height, enc_options)
ccall((:WebPAnimEncoderNew, libwebp), Ptr{WebPAnimEncoder}, (Cint, Cint, Ptr{WebPAnimEncoderOptions}), width, height, enc_options)
end
function WebPAnimEncoderAdd(enc, frame, timestamp_ms, config)
ccall((:WebPAnimEncoderAdd, libwebp), Cint, (Ptr{WebPAnimEncoder}, Ptr{WebPPicture}, Cint, Ptr{WebPConfig}), enc, frame, timestamp_ms, config)
end
function WebPAnimEncoderAssemble(enc, webp_data)
ccall((:WebPAnimEncoderAssemble, libwebp), Cint, (Ptr{WebPAnimEncoder}, Ptr{WebPData}), enc, webp_data)
end
function WebPAnimEncoderGetError(enc)
ccall((:WebPAnimEncoderGetError, libwebp), Ptr{Cchar}, (Ptr{WebPAnimEncoder},), enc)
end
function WebPAnimEncoderDelete(enc)
ccall((:WebPAnimEncoderDelete, libwebp), Cvoid, (Ptr{WebPAnimEncoder},), enc)
end
@cenum WebPFeatureFlags::UInt32 begin
ANIMATION_FLAG = 2
XMP_FLAG = 4
EXIF_FLAG = 8
ALPHA_FLAG = 16
ICCP_FLAG = 32
ALL_VALID_FLAGS = 62
end
function WebPDataInit(webp_data)
ccall((:WebPDataInit, libwebp), Cvoid, (Ptr{WebPData},), webp_data)
end
function WebPDataClear(webp_data)
ccall((:WebPDataClear, libwebp), Cvoid, (Ptr{WebPData},), webp_data)
end
function WebPDataCopy(src, dst)
ccall((:WebPDataCopy, libwebp), Cint, (Ptr{WebPData}, Ptr{WebPData}), src, dst)
end
function WebPMalloc(size)
ccall((:WebPMalloc, libwebp), Ptr{Cvoid}, (Csize_t,), size)
end
function WebPFree(ptr)
ccall((:WebPFree, libwebp), Cvoid, (Ptr{Cvoid},), ptr)
end
const WEBP_DECODER_ABI_VERSION = 0x0209
const WEBP_DEMUX_ABI_VERSION = 0x0107
const WEBP_ENCODER_ABI_VERSION = 0x020f
const WEBP_MAX_DIMENSION = 16383
const WEBP_MUX_ABI_VERSION = 0x0108
# Skipping MacroDefinition: WEBP_INLINE inline
# Skipping MacroDefinition: WEBP_EXTERN extern __attribute__ ( ( visibility ( "default" ) ) )
# exports
const PREFIXES = ["WebP"]
for name in names(@__MODULE__; all=true), prefix in PREFIXES
if startswith(string(name), prefix)
@eval export $name
end
end
end # module
| WebP | https://github.com/stemann/WebP.jl.git |
|
[
"MIT"
] | 0.1.2 | f1f6d497ff84039deeb37f264396dac0c2250497 | code | 2404 | function decode(
::Type{TColor}, data::AbstractVector{UInt8}; transpose = false
)::Matrix{TColor} where {TColor <: Colorant}
TDecodedColor = TColor
if TColor == ARGB{N0f8}
webp_decode_fn = Wrapper.WebPDecodeARGB
elseif TColor == BGR{N0f8}
webp_decode_fn = Wrapper.WebPDecodeBGR
elseif TColor == BGRA{N0f8}
webp_decode_fn = Wrapper.WebPDecodeBGRA
elseif TColor == RGB{N0f8}
webp_decode_fn = Wrapper.WebPDecodeRGB
elseif TColor == RGBA{N0f8}
webp_decode_fn = Wrapper.WebPDecodeRGBA
elseif TColor == Gray{N0f8}
webp_decode_fn = Wrapper.WebPDecodeRGB
TDecodedColor = RGB{N0f8}
else
throw(ArgumentError("Unsupported color type: $TColor"))
end
width = Ref{Int32}(-1)
height = Ref{Int32}(-1)
decoded_data_ptr = webp_decode_fn(pointer(data), length(data), width, height)
decoded_data_size = (sizeof(TDecodedColor), Int(width[]), Int(height[]))
decoded_data = unsafe_wrap(Array{UInt8, 3}, decoded_data_ptr, decoded_data_size)
image_view = colorview(TDecodedColor, normedview(decoded_data))
if TDecodedColor == TColor
image = transpose ? collect(image_view) : permutedims(image_view, (2, 1))
else
image = if transpose
TColor.(image_view)
else
TColor.(PermutedDimsArray(image_view, (2, 1)))
end
end
Wrapper.WebPFree(decoded_data_ptr)
return image
end
function decode(
data::AbstractVector{UInt8}; kwargs...
)::Union{Matrix{RGB{N0f8}}, Matrix{RGBA{N0f8}}}
bitstream_features = Ref{Wrapper.WebPBitstreamFeatures}()
# WebPGetFeatures is not available in libwebp dynamic library, but WebPGetFeaturesInternal is equivalent: https://github.com/webmproject/libwebp/blob/v1.4.0/src/webp/decode.h#L441
Wrapper.WebPGetFeaturesInternal(
pointer(data), length(data), bitstream_features, Wrapper.WEBP_DECODER_ABI_VERSION
)
has_alpha = bitstream_features[].has_alpha != 0
TColor = has_alpha ? RGBA{N0f8} : RGB{N0f8}
return decode(TColor, data; kwargs...)
end
function read_webp(
::Type{CT}, f::Union{AbstractString, IO}; kwargs...
)::Matrix{CT} where {CT <: Colorant}
return decode(CT, Base.read(f); kwargs...)
end
function read_webp(
f::Union{AbstractString, IO}; kwargs...
)::Union{Matrix{RGB{N0f8}}, Matrix{RGBA{N0f8}}}
return decode(Base.read(f); kwargs...)
end
| WebP | https://github.com/stemann/WebP.jl.git |
|
[
"MIT"
] | 0.1.2 | f1f6d497ff84039deeb37f264396dac0c2250497 | code | 1854 | function encode(
image::AbstractMatrix{TColor}; lossy = false, quality::Real = 75, transpose = false
)::Vector{UInt8} where {TColor <: Colorant}
if lossy && !(0 β€ quality β€ 100)
throw(ArgumentError("Quality $quality is not in the range from 0 to 100."))
end
if TColor == BGR{N0f8}
webp_encode_fn = lossy ? Wrapper.WebPEncodeBGR : Wrapper.WebPEncodeLosslessBGR
elseif TColor == BGRA{N0f8}
webp_encode_fn = lossy ? Wrapper.WebPEncodeBGRA : Wrapper.WebPEncodeLosslessBGRA
elseif TColor == RGB{N0f8}
webp_encode_fn = lossy ? Wrapper.WebPEncodeRGB : Wrapper.WebPEncodeLosslessRGB
elseif TColor == RGBA{N0f8}
webp_encode_fn = lossy ? Wrapper.WebPEncodeRGBA : Wrapper.WebPEncodeLosslessRGBA
else
throw(ArgumentError("Unsupported color type: $TColor"))
end
if !transpose # TODO the kwarg transpose is quite confusing/misleading
image = permutedims(image, (2, 1))
end
width, height = size(image)
stride = width * sizeof(TColor)
output_ptr = Ref{Ptr{UInt8}}()
if lossy
quality_factor = Float32(quality)
output_length = webp_encode_fn(
pointer(image), width, height, stride, quality_factor, output_ptr
)
else
output_length = webp_encode_fn(pointer(image), width, height, stride, output_ptr)
end
output_view = unsafe_wrap(Vector{UInt8}, output_ptr[], output_length)
output = collect(output_view)
Wrapper.WebPFree(output_ptr[])
return output
end
function write_webp(file_path::AbstractString, image::AbstractMatrix{<:Colorant}; kwargs...)
open(file_path, "w") do io
write_webp(io, image; kwargs...)
end
return nothing
end
function write_webp(io::IO, image::AbstractMatrix{<:Colorant}; kwargs...)
write(io, encode(image; kwargs...))
return nothing
end
| WebP | https://github.com/stemann/WebP.jl.git |
|
[
"MIT"
] | 0.1.2 | f1f6d497ff84039deeb37f264396dac0c2250497 | code | 449 | fileio_load(f::File{format"WebP"}; kwargs...) = read_webp(f.filename; kwargs...)
fileio_load(s::Stream{format"WebP"}; kwargs...) = read_webp(s.io; kwargs...)
function fileio_save(f::File{format"WebP"}, image::AbstractMatrix{<:Colorant}; kwargs...)
return write_webp(f.filename, image; kwargs...)
end
function fileio_save(s::Stream{format"WebP"}, image::AbstractMatrix{<:Colorant}; kwargs...)
return write_webp(s.io, image; kwargs...)
end
| WebP | https://github.com/stemann/WebP.jl.git |
|
[
"MIT"
] | 0.1.2 | f1f6d497ff84039deeb37f264396dac0c2250497 | code | 2217 | using ColorTypes
using FixedPointNumbers
using Downloads
using Test
using WebP
@testset "Decoding" begin
webp_galleries = (
lossy = (
url = "https://www.gstatic.com/webp/gallery",
data = Dict(
"1.webp" => (368, 550),
"2.webp" => (404, 550),
"3.webp" => (720, 1280),
"4.webp" => (772, 1024),
"5.webp" => (752, 1024),
),
),
lossless = (
url = "https://www.gstatic.com/webp/gallery3",
data = Dict(
"1_webp_ll.webp" => (301, 400),
"2_webp_ll.webp" => (395, 386),
"3_webp_ll.webp" => (600, 800),
"4_webp_ll.webp" => (163, 421),
"5_webp_ll.webp" => (300, 300),
),
),
)
for gallery in webp_galleries
for (filename, image_size) in gallery.data
mktempdir() do tmp_dir_path
file_path = joinpath(tmp_dir_path, filename)
Downloads.download(joinpath(gallery.url, filename), file_path)
for kwargs in (NamedTuple(), (transpose = true,), (transpose = false,))
if hasproperty(kwargs, :transpose) && kwargs.transpose
expected_image_size = reverse(image_size)
else
expected_image_size = image_size
end
@testset "WebP.read_webp($(joinpath(gallery.url, filename)); $kwargs)" begin
image = WebP.read_webp(file_path; kwargs...)
@test size(image) == expected_image_size
end
for TColor in [
ARGB{N0f8}, BGR{N0f8}, BGRA{N0f8}, RGB{N0f8}, RGBA{N0f8}, Gray{N0f8}
]
@testset "WebP.read_webp($TColor, $(joinpath(gallery.url, filename)); $kwargs)" begin
image = WebP.read_webp(TColor, file_path; kwargs...)
@test size(image) == expected_image_size
end
end
end
end
end
end
end
| WebP | https://github.com/stemann/WebP.jl.git |
|
[
"MIT"
] | 0.1.2 | f1f6d497ff84039deeb37f264396dac0c2250497 | code | 1898 | using Test
using TestImages
using WebP
@testset "Encoding" begin
kwargs_combos = (NamedTuple(), (transpose = true,), (transpose = false,))
image_rgb = testimage("lighthouse")
for TColor in [RGB, BGR, RGBA, BGRA]
image = TColor.(image_rgb)
for kwargs in kwargs_combos
if hasproperty(kwargs, :transpose) && kwargs.transpose
input_image = permutedims(image, (2, 1))
else
input_image = image
end
@testset "Lossless" begin
@testset "WebP.encode(::Matrix{$TColor}; $kwargs)" begin
data = WebP.encode(input_image; kwargs...)
output = WebP.decode(data)
@test size(output) == size(image)
end
end
@testset "Lossy" begin
@testset "encode throws ArgumentError for quality outside range" begin
@test_throws ArgumentError WebP.encode(
input_image; lossy = true, quality = -1
)
@test_throws ArgumentError WebP.encode(
input_image; lossy = true, quality = 101
)
end
qualities = [1, 10, 50, 100]
quality_types = [Int, Float32, Float64]
for quality in qualities, TQuality in quality_types
input_kwargs = merge(
kwargs, (lossy = true, quality = TQuality(quality))
)
@testset "WebP.encode(::Matrix{$TColor}; $input_kwargs)" begin
data = WebP.encode(input_image; input_kwargs...)
output = WebP.decode(data)
@test size(output) == size(image)
end
end
end
end
end
end
| WebP | https://github.com/stemann/WebP.jl.git |
|
[
"MIT"
] | 0.1.2 | f1f6d497ff84039deeb37f264396dac0c2250497 | code | 1564 | using FileIO
using Test
using TestImages
using WebP
@testset "FileIO interface" begin
expected_image = testimage("lighthouse")
mktempdir() do tmp_dir_path
file_path = joinpath(tmp_dir_path, "lighthouse.webp")
@testset "File{format\"WebP\"}" begin
f = File{format"WebP"}(file_path)
@testset "fileio_load" begin
WebP.write_webp(file_path, expected_image)
image = WebP.fileio_load(f)
@test size(image) == size(expected_image)
end
@testset "fileio_save" begin
WebP.fileio_save(f, expected_image)
image = WebP.read_webp(file_path)
@test size(image) == size(expected_image)
end
end
@testset "Stream{format\"WebP\"}" begin
s = Stream{format"WebP"}(IOBuffer())
@testset "fileio_load" begin
WebP.write_webp(file_path, expected_image)
open(file_path, "r") do io
s = Stream{format"WebP"}(io)
image = WebP.fileio_load(s)
@test size(image) == size(expected_image)
end
end
@testset "fileio_save" begin
open(file_path, "w") do io
s = Stream{format"WebP"}(io)
WebP.fileio_save(s, expected_image)
end
image = WebP.read_webp(file_path)
@test size(image) == size(expected_image)
end
end
end
end
| WebP | https://github.com/stemann/WebP.jl.git |
|
[
"MIT"
] | 0.1.2 | f1f6d497ff84039deeb37f264396dac0c2250497 | code | 208 | using Test
@testset "WebP.jl" begin
include(joinpath(@__DIR__, "decoding_tests.jl"))
include(joinpath(@__DIR__, "encoding_tests.jl"))
include(joinpath(@__DIR__, "fileio_interface_tests.jl"))
end
| WebP | https://github.com/stemann/WebP.jl.git |
|
[
"MIT"
] | 0.1.2 | f1f6d497ff84039deeb37f264396dac0c2250497 | docs | 1499 | # WebP
[](https://github.com/stemann/WebP.jl/actions/workflows/CI.yml?query=branch%3Amaster)
[](https://codecov.io/gh/stemann/WebP.jl)
[](https://github.com/invenia/BlueStyle)
WebP.jl is a Julia library for handling [WebP](https://developers.google.com/speed/webp) images. WebP provides both lossy and lossless compression of images, and may offer smaller file sizes compared to JPEG and PNG.
The core functionality of this package is supported by the [libwebp](https://developers.google.com/speed/webp/docs/api) C library.
## Usage
This package provides functions for reading and writing WebP image files,
* `WebP.read_webp`
* `WebP.write_webp`
as well as functions for decoding and encoding WebP image data,
* `WebP.decode`
* `WebP.encode`
### Reading and writing
An image may be written,
```julia
using TestImages
using WebP
image = testimage("lighthouse")
WebP.write_webp("lighthouse.webp", image)
```
and subsequently read,
```julia
image = WebP.read_webp("lighthouse.webp")
```
### Decoding and encoding
An image may be encoded,
```julia
using TestImages
using WebP
image = testimage("lighthouse")
data = WebP.encode(image) # data is a Vector{UInt8}
```
and subsequently decoded,
```julia
image = WebP.decode(data)
```
| WebP | https://github.com/stemann/WebP.jl.git |
|
[
"MIT"
] | 0.1.2 | 45f2d31d22d8bf962eaab74cf800127b4d307c61 | code | 248 | using Documenter
using FrankenTuples
makedocs(modules=[FrankenTuples],
sitename="FrankenTuples.jl",
authors="Alex Arslan",
pages=["index.md"])
deploydocs(repo="github.com/ararslan/FrankenTuples.jl.git", target="build")
| FrankenTuples | https://github.com/ararslan/FrankenTuples.jl.git |
|
[
"MIT"
] | 0.1.2 | 45f2d31d22d8bf962eaab74cf800127b4d307c61 | code | 12976 | module FrankenTuples
export FrankenTuple, ftuple, @ftuple, ftcall
"""
FrankenTuple{T<:Tuple, names, NT<:Tuple}
A `FrankenTuple` contains a `Tuple` of type `T` and a `NamedTuple` with names `names`
and types `NT`.
It acts like a cross between the two, like a partially-named tuple.
The named portion of a `FrankenTuple` can be accessed using `NamedTuple`, and the unnamed
portion can be accessed with `Tuple`.
# Examples
```jldoctest
julia> ft = FrankenTuple((1, 2), (a=1, b=2))
FrankenTuple((1, 2), (a = 1, b = 2))
julia> Tuple(ft)
(1, 2)
julia> NamedTuple(ft)
(a = 1, b = 2)
```
"""
struct FrankenTuple{T<:Tuple,names,NT<:Tuple}
t::T
nt::NamedTuple{names,NT}
FrankenTuple{T,names,NT}(t, nt) where {T<:Tuple,names,NT<:Tuple} = new{T,names,NT}(t, nt)
FrankenTuple{T}(t::Tuple) where {T<:Tuple} = new{T,(),Tuple{}}(t, NamedTuple())
FrankenTuple{T,names,NT}(nt::NamedTuple) where {T<:Tuple,names,NT<:Tuple} =
new{T,names,NT}((), nt)
FrankenTuple{T,names,NT}(ft::FrankenTuple) where {T<:Tuple,names,NT<:Tuple} =
new{T,names,NT}(convert(T, getfield(ft, :t)),
convert(NamedTuple{names,NT}, getfield(ft, :nt)))
end
FrankenTuple(t::T, nt::NamedTuple{names,NT}) where {T<:Tuple,names,NT<:Tuple} =
FrankenTuple{T,names,NT}(t, nt)
FrankenTuple() = FrankenTuple{Tuple{},(),Tuple{}}((), NamedTuple())
FrankenTuple(t::Tuple) = FrankenTuple(t, NamedTuple())
FrankenTuple(nt::NamedTuple) = FrankenTuple((), nt)
FrankenTuple(ft::FrankenTuple) = ft
"""
Tuple(ft::FrankenTuple)
Access the `Tuple` part of a `FrankenTuple`, i.e. the "plain," unnamed portion.
"""
Base.Tuple(ft::FrankenTuple) = getfield(ft, :t)
"""
NamedTuple(ft::FrankenTuple)
Access the `NamedTuple` part of a `FrankenTuple`, i.e. the named portion.
"""
Base.NamedTuple(ft::FrankenTuple) = getfield(ft, :nt)
function Base.show(io::IO, ft::FrankenTuple)
print(io, "FrankenTuple(")
show(io, Tuple(ft))
print(io, ", ")
show(io, NamedTuple(ft))
print(io, ')')
nothing
end
Base.show(io::IO, ft::FrankenTuple{Tuple{},(),Tuple{}}) =
print(io, "FrankenTuple()")
Base.convert(::Type{FrankenTuple{T,names,NT}}, t::Tuple) where {T<:Tuple,names,NT<:Tuple} =
FrankenTuple{T,names,NT}(convert(T, t), NamedTuple())
Base.convert(::Type{FrankenTuple{T,names,NT}}, nt::NamedTuple) where {T<:Tuple,names,NT<:Tuple} =
FrankenTuple{T,names,NT}((), convert(NamedTuple{names,NT}, nt))
"""
isempty(ft::FrankenTuple)
Determine whether the given `FrankenTuple` is empty, i.e. has at least 1 element.
"""
Base.isempty(ft::FrankenTuple) = false
Base.isempty(ft::FrankenTuple{Tuple{},(),Tuple{}}) = true
"""
length(ft::FrankenTuple)
Compute the number of elements in `ft`.
"""
Base.length(ft::FrankenTuple) = length(Tuple(ft)) + length(NamedTuple(ft))
Base.length(ft::FrankenTuple{Tuple{},(),Tuple{}}) = 0
Base.length(ft::FrankenTuple{<:Tuple,(),Tuple{}}) = length(Tuple(ft))
Base.length(ft::FrankenTuple{Tuple{},names}) where {names} = length(names)
"""
getindex(ft::FrankenTuple, i)
Retrieve the value of `ft` at the given index `i`. When `i::Integer`, this gets the value
at index `i` in iteration order.
When `i::Symbol`, this gets the value from the named section with name `i`.
(`getproperty` can also be used for the `Symbol` case.)
# Examples
```jldoctest
julia> ftuple(1, 2; a=3, b=4)[3]
3
julia> ftuple(1, 2; a=3, b=4)[:a]
3
```
"""
function Base.getindex(ft::FrankenTuple, i::Integer)
t = Tuple(ft)
n = length(t)
if i <= n
getfield(t, i)
else
getfield(NamedTuple(ft), i - n)
end
end
Base.getindex(ft::FrankenTuple, x::Symbol) = getfield(NamedTuple(ft), x)
Base.getproperty(ft::FrankenTuple, x::Symbol) = getfield(NamedTuple(ft), x)
"""
firstindex(ft::FrankenTuple)
Retrieve the first index of `ft`, which is always 1.
"""
Base.firstindex(ft::FrankenTuple) = 1
"""
lastindex(ft::FrankenTuple)
Retrieve the last index of `ft`, which is equivalent to its `length`.
"""
Base.lastindex(ft::FrankenTuple) = length(ft)
"""
first(ft::FrankenTuple)
Get the first value in `ft` in iteration order.
`ft` must be non-empty.
"""
Base.first(ft::FrankenTuple) = @inbounds ft[1]
Base.first(ft::FrankenTuple{Tuple{},(),Tuple{}}) =
throw(ArgumentError("FrankenTuple must be non-empty"))
"""
Base.tail(ft::FrankenTuple)
Return the tail portion of `ft`: a new `FrankenTuple` with the first element of `ft`
removed.
`ft` must be non-empty.
# Examples
```jldoctest
julia> Base.tail(ftuple(a=4, b=5))
FrankenTuple((), (b = 5,))
```
"""
Base.tail(ft::FrankenTuple) = _tail(Tuple(ft), NamedTuple(ft))
# TODO: Should be able to get rid of the helper after VERSION >= v"1.1.0-DEV.553"
_tail(t::Tuple{}, nt::NamedTuple{(),Tuple{}}) =
throw(ArgumentError("FrankenTuple must be non-empty"))
_tail(t::Tuple{}, nt::NamedTuple{names,<:Tuple}) where {names} =
FrankenTuple(t, NamedTuple{Base.tail(names)}(nt))
_tail(t::Tuple, nt::NamedTuple) = FrankenTuple(Base.tail(t), nt)
"""
iterate(ft::FrankenTuple[, state])
Iterate over `ft`.
This yields the values of the unnamed section first, then the values of the named section.
# Examples
```jldoctest
julia> ft = @ftuple (1, a=3, 2, b=4)
FrankenTuple((1, 2), (a = 3, b = 4))
julia> collect(ft)
4-element Array{Int64,1}:
1
2
3
4
```
"""
Base.iterate(ft::FrankenTuple, state...) =
iterate(Iterators.flatten((Tuple(ft), NamedTuple(ft))), state...)
"""
keys(ft::FrankenTuple)
Get the keys of the given `FrankenTuple`, i.e. the set of valid indices into `ft`.
The unnamed section of `ft` has 1-based integer keys and the named section is keyed by
name, given as `Symbol`s.
# Examples
```jldoctest
julia> keys(ftuple(1, 2; a=3, b=4))
(1, 2, :a, :b)
```
"""
Base.keys(ft::FrankenTuple) = (keys(Tuple(ft))..., keys(NamedTuple(ft))...)
Base.keys(ft::FrankenTuple{Tuple{},(),Tuple{}}) = ()
Base.keys(ft::FrankenTuple{Tuple{},N,<:Tuple}) where {N} = N
Base.keys(ft::FrankenTuple{<:Tuple,(),Tuple{}}) = keys(Tuple(ft))
"""
values(ft::FrankenTuple)
Get the values of the given `FrankenTuple` in iteration order.
The values for the unnamed section appear before that of the named section.
# Examples
```jldoctest
julia> values(ftuple(1, 2; a=3, b=4))
(1, 2, 3, 4)
```
"""
Base.values(ft::FrankenTuple) = (Tuple(ft)..., NamedTuple(ft)...)
Base.values(ft::FrankenTuple{Tuple{},(),Tuple{}}) = ()
Base.values(ft::FrankenTuple{Tuple{},names,<:Tuple}) where {names} = values(NamedTuple(ft))
Base.values(ft::FrankenTuple{<:Tuple,(),Tuple{}}) = Tuple(ft)
"""
pairs(ft::FrankenTuple)
Construct a `Pairs` iterator that associates the `keys` of `ft` with its `values`.
# Examples
```jldoctest
julia> collect(pairs(ftuple(1, 2; a=3, b=4)))
4-element Array{Pair{Any,Int64},1}:
1 => 1
2 => 2
:a => 3
:b => 4
```
"""
Base.pairs(ft::FrankenTuple) = Iterators.Pairs(ft, keys(ft))
"""
eltype(ft::FrankenTuple)
Determine the element type of `ft`.
This is the immediate supertype of the elements in `ft` if they are not homogeneously typed.
# Examples
```jldoctest
julia> eltype(ftuple(1, 2; a=3, b=4))
Int64
julia> eltype(ftuple(0x0, 1))
Integer
julia> eltype(ftuple(a=2.0, b=0x1))
Real
julia> eltype(ftuple())
Union{}
```
"""
Base.eltype(::Type{FrankenTuple{T,names,V}}) where {T<:Tuple,names,V<:Tuple} =
Base.promote_typejoin(eltype(T), eltype(V))
"""
empty(ft::FrankenTuple)
Construct an empty `FrankenTuple`.
"""
Base.empty(@nospecialize ft::FrankenTuple) = FrankenTuple()
if VERSION >= v"1.8.0-DEV.1254" # https://github.com/JuliaLang/julia/pull/43695
_default_world() = Base.get_world_counter()
else
_default_world() = typemax(UInt)
end
if VERSION < v"1.2.0-DEV.217"
function Base.hasmethod(@nospecialize(f),
::Type{FrankenTuple{T,names,NT}};
world=_default_world()) where {T,names,NT}
hasmethod(f, T; world=world) || return false
m = which(f, T)
kws = Base.kwarg_decl(m, Core.kwftype(typeof(f)))
for kw in kws
endswith(String(kw), "...") && return true
end
issubset(names, kws)
end
else
function Base.hasmethod(@nospecialize(f),
::Type{FrankenTuple{T,names,NT}};
world=_default_world()) where {T,names,NT}
hasmethod(f, T, names; world=world)
end
end
function Base.hasmethod(@nospecialize(f),
::Type{FrankenTuple{T,(),Tuple{}}};
world=_default_world()) where {T}
hasmethod(f, T; world=world)
end
function Base.hasmethod(@nospecialize(f),
::Type{FrankenTuple{T,names}};
world=_default_world()) where {T,names}
NT = Tuple{Iterators.repeated(Any, length(names))...}
hasmethod(f, FrankenTuple{T,names,NT}; world=world)
end
"""
hasmethod(f, ft::Type{<:FrankenTuple})
Determine whether the function `f` has a method with positional argument types matching
those in the unnamed portion of `ft` and with keyword arguments named in accordance with
those in the named portion of `ft`.
Note that the types in the named portion of `ft` do not factor into determining the
existence of a matching method because keyword arguments to not participate in dispatch.
Similarly, calling `hasmethod` with a `FrankenTuple` with an empty named portion will
still return `true` if the positional arguments match, even if `f` only has methods that
accept keyword arguments.
This ensures agreement with the behavior of `hasmethod` on `Tuple`s.
More generally, the names in the `FrankenTuple` must be a subset of the keyword argument
names in the matching method, _except_ when the method accepts a variable number of
keyword arguments (e.g. `kwargs...`).
In that case, the names in the method must be a subset of the `FrankenTuple`'s names.
# Examples
```jldoctest
julia> f(x::Int; y=3, z=4) = x + y + z;
julia> hasmethod(f, FrankenTuple{Tuple{Int},(:y,)})
true
julia> hasmethod(f, FrankenTuple{Tuple{Int},(:a,)}) # no keyword `a`
false
julia> g(; a, b, kwargs...) = +(a, b, kwargs...);
julia> hasmethod(g, FrankenTuple{Tuple{},(:a,:b,:c,:d)}) # g accepts arbitrarily many kwargs
true
```
"""
Base.hasmethod(::Any, ::Type{<:FrankenTuple})
"""
ftuple(args...; kwargs...)
Construct a [`FrankenTuple`](@ref) from the given positional and keyword arguments.
# Examples
```jldoctest
julia> ftuple(1, 2)
FrankenTuple((1, 2), NamedTuple())
julia> ftuple(1, 2, a=3, b=4)
FrankenTuple((1, 2), (a = 3, b = 4))
```
"""
function ftuple(args...; kwargs...)
@static if VERSION < v"1.7.0-DEV.1017"
nt = kwargs.data
else
# NOTE: We don't use this unconditionally because the `NamedTuple` constructor
# method that accepts arbitrary key-value iterators requires 1.6.0-DEV.877
nt = NamedTuple(kwargs)
end
FrankenTuple(args, nt)
end
"""
@ftuple (x...; y...)
@ftuple (a, x=t, b, y=u)
Construct a [`FrankenTuple`](@ref) from the given tuple expression, which can contain
both positional and named elements. The tuple can be "sectioned" in the same manner as
a function signature, with positional elements separated from the named elements by a
semicolon, or positional and named elements can be intermixed, occurring in any order.
# Examples
```jldoctest
julia> @ftuple (1, 2; a=3, b=4)
FrankenTuple((1, 2), (a = 3, b = 4))
julia> @ftuple (1, a=3, 2, b=4)
FrankenTuple((1, 2), (a = 3, b = 4))
```
"""
macro ftuple(ex::Expr)
ex.head === :tuple || throw(ArgumentError("@ftuple: expected tuple expression"))
# ()
if isempty(ex.args)
t = Expr(:tuple)
nt = Expr(:call, :NamedTuple)
# (a, b; x=t, y=u)
elseif ex.args[1] isa Expr && ex.args[1].head === :parameters
t = Expr(:tuple)
length(ex.args) > 1 && append!(t.args, ex.args[2:end])
nt = Expr(:tuple)
for kw in ex.args[1].args
@assert kw isa Expr && kw.head === :kw
push!(nt.args, Expr(:(=), esc(kw.args[1]), kw.args[2]))
end
# (a, x=t, b, y=u)
else
t = Expr(:tuple)
nt = Expr(:tuple)
for arg in ex.args
if arg isa Expr && arg.head === :(=)
push!(nt.args, esc(arg))
else
push!(t.args, arg)
end
end
if nt == Expr(:tuple)
# No named elements found
nt = Expr(:call, :NamedTuple)
end
end
:(FrankenTuple($t, $nt))
end
# XXX: I'm not convinced that I like this or think it's useful in any way, but it's cute
"""
ftcall(f::Function, ft::FrankenTuple)
Call the function `f` using the unnamed portion of `ft` as its positional arguments and
the named portion of `ft` as its keyword arguments.
# Examples
```jldoctest
julia> ftcall(mapreduce, ftuple(abs2, -, 1:4; init=0))
-30
```
"""
ftcall(f, ft::FrankenTuple) = f(Tuple(ft)...; NamedTuple(ft)...)
ftcall(f, ft::FrankenTuple{Tuple{},(),Tuple{}}) = f()
end # module
| FrankenTuples | https://github.com/ararslan/FrankenTuples.jl.git |
|
[
"MIT"
] | 0.1.2 | 45f2d31d22d8bf962eaab74cf800127b4d307c61 | code | 3404 | using FrankenTuples
using Test
@testset "It's alive!" begin
x = ftuple(1, 2, a=3, b=4)
@test x == FrankenTuple((1, 2), (a=3, b=4))
@test x == FrankenTuple(x)
@test !isempty(x)
@test length(x) == 4
@test Tuple(x) == (1, 2)
@test NamedTuple(x) == (a=3, b=4)
@test sprint(show, x) == "FrankenTuple((1, 2), (a = 3, b = 4))"
@test x == @ftuple (1, 2; a=3, b=4)
@test x == @ftuple (1, a=3, b=4, 2)
@test keys(x) == (1, 2, :a, :b)
@test values(x) == (1, 2, 3, 4)
@test eltype(x) == Int
@test first(x) == 1
@test Base.tail(x) == ftuple(2, a=3, b=4)
y = FrankenTuple{Tuple{Float64,Float64},(:a,:b),Tuple{Float64,Float64}}(x)
@test y == ftuple(1.0, 2.0, a=3.0, b=4.0)
t = ftuple(1, 2)
@test t == FrankenTuple((1, 2))
@test length(t) == 2
@test Tuple(t) == (1, 2)
@test NamedTuple(t) == NamedTuple()
@test t == convert(FrankenTuple{Tuple{Int,Int},(),Tuple{}}, (1, 2))
@test sprint(show, t) == "FrankenTuple((1, 2), NamedTuple())"
@test t == @ftuple (1, 2)
@test keys(t) == keys(Tuple(t))
@test values(t) == (1, 2)
@test first(t) == 1
@test Base.tail(t) == ftuple(2)
nt = ftuple(a=3, b=4)
@test nt == FrankenTuple((a=3, b=4))
@test length(nt) == 2
@test Tuple(nt) == ()
@test NamedTuple(nt) == (a=3, b=4)
@test nt == convert(FrankenTuple{Tuple{},(:a,:b),Tuple{Int,Int}}, (a=3, b=4))
@test sprint(show, nt) == "FrankenTuple((), (a = 3, b = 4))"
@test nt == @ftuple (a=3, b=4)
@test keys(nt) == (:a, :b)
@test values(nt) == (3, 4)
@test first(nt) == 3
@test Base.tail(nt) == ftuple(b=4)
e = empty(x)
@test e == FrankenTuple()
@test isempty(e)
@test length(e) == 0
@test sprint(show, e) == "FrankenTuple()"
@test e == @ftuple ()
@test keys(e) == values(e) == ()
@test_throws ArgumentError first(e)
@test_throws ArgumentError Base.tail(e)
@test eltype(ftuple(1, 2.0, a=3, b=4.0f0)) == Real
end
@testset "Indexing and iteration" begin
x = ftuple(1, 2, a=3, b=4)
@test x.a == x[:a] == 3
@test x.b == x[:b] == 4
for i = 1:4
@test x[i] == i
end
for (i, t) in enumerate(x)
@test t == i
end
@test collect(pairs(x)) == [1 => 1, 2 => 2, :a => 3, :b => 4]
@test firstindex(x) == 1
@test lastindex(x) == 4
end
@testset "β" begin
@test ftcall(sum, ftuple(abs2, [1 2; 3 4]; dims=2)) == reshape([5, 25], (2, 1))
@test ftcall(string, ftuple()) == ""
@test ftcall(+, ftuple(1, 2)) == 3
@test ftcall((; k...)->sum(values(k)), ftuple(a=3.0, b=0x4)) == 7.0
end
f(x::Int; y=3) = x + y
g(; b, c, a) = a + b + c
h(x::String; a, kwargs...) = x * a
@testset "hasmethod" begin
@test hasmethod(f, typeof(ftuple(1, y=2)))
@test hasmethod(f, typeof(ftuple(1))) # Agreement with using a plain Tuple
@test !hasmethod(f, typeof(ftuple(1, a=3)))
@test hasmethod(f, FrankenTuple{Tuple{Int},(:y,)}) # Omitting NamedTuple types
@test hasmethod(g, typeof(ftuple(a=1, b=2, c=3)))
@test hasmethod(g, typeof(ftuple(a=1, b=2)))
@test !hasmethod(g, FrankenTuple{Tuple{},(:a,:b,:d)})
@test hasmethod(g, FrankenTuple{Tuple{},(:a,:b,:c)})
@test hasmethod(h, FrankenTuple{Tuple{String},(:a,:b,:c,:d)})
@test !hasmethod(h, FrankenTuple{Tuple{Int},(:a,)})
@test !hasmethod(f, FrankenTuple{Tuple{Int},(:y,)}, world=typemin(UInt))
end
| FrankenTuples | https://github.com/ararslan/FrankenTuples.jl.git |
|
[
"MIT"
] | 0.1.2 | 45f2d31d22d8bf962eaab74cf800127b4d307c61 | docs | 1097 | # FrankenTuples.jl
[](https://github.com/ararslan/FrankenTuples.jl/actions?query=workflow%3ACI+branch%3Amain)
[](https://codecov.io/gh/ararslan/FrankenTuples.jl)
[![][docs-latest-img]][docs-latest-url]
This package defines a type, `FrankenTuple`, which is like a cross between a `Tuple` and a
`NamedTuple`; it contains both positional and named elements.
> _Accursed creator! Why did you form a monster so hideous that even you turned from me in disgust?_
A function call has the form `f(args...; kwargs...)`.
Take away the function, and you get `(args...; kwargs...)`, a tuple with both positional
and named elements.
No one Base type currently models this, so `FrankenTuple` was created as an experiment to
see if and when this precise structure could be useful.
[docs-latest-img]: https://img.shields.io/badge/docs-latest-blue.svg
[docs-latest-url]: http://ararslan.github.io/FrankenTuples.jl/latest/
| FrankenTuples | https://github.com/ararslan/FrankenTuples.jl.git |
|
[
"MIT"
] | 0.1.2 | 45f2d31d22d8bf962eaab74cf800127b4d307c61 | docs | 1152 | ```@meta
DocTestSetup = :(using FrankenTuples)
CurrentModule = FrankenTuples
```
# FrankenTuples.jl
The FrankenTuples package defines a type, `FrankenTuple`, which is a creature not unlike
Frankenstein's monster.
It is comprised of both a `Tuple` and a `NamedTuple` to facilitate situations in which
some but not all elements of a tuple are named, e.g. `(1, 2; a=3, b=4)`, and thus acts
like a cross between the two.
## Type and Constructors
```@docs
FrankenTuples.FrankenTuple
FrankenTuples.ftuple
FrankenTuples.@ftuple
```
## API
`FrankenTuple`s adhere as closely as makes sense to the API for `Tuple`s and `NamedTuple`s.
```@docs
Base.Tuple
Base.NamedTuple
Base.length
Base.isempty
Base.iterate
Base.keys
Base.values
Base.pairs
Base.getindex
Base.firstindex
Base.lastindex
Base.first
Base.tail
Base.empty
Base.eltype
```
## Additional Methods
These are some additional ways to use `FrankenTuple`s.
The most interesting of these is perhaps `hasmethod`, which permits looking for methods
that have particular keyword arguments.
This is not currently possible with the generic method in Base.
```@docs
Base.hasmethod
FrankenTuples.ftcall
```
| FrankenTuples | https://github.com/ararslan/FrankenTuples.jl.git |
|
[
"MIT"
] | 0.5.2 | 512b75d09aab52e93192e68de612fc472f001979 | code | 4974 | using SLEEF
using BenchmarkTools
using JLD, DataStructures
using Printf
const RETUNE = false
const VERBOSE = true
const DETAILS = false
const test_types = (Float64, Float32) # Which types do you want to bench?
const bench = ("Base", "SLEEF")
const suite = BenchmarkGroup()
for n in bench
suite[n] = BenchmarkGroup([n])
end
bench_reduce(f::Function, X) = mapreduce(x -> reinterpret(Unsigned,x), |, f(x) for x in X)
using Base.Math.IEEEFloat
MRANGE(::Type{Float64}) = 10000000
MRANGE(::Type{Float32}) = 10000
IntF(::Type{Float64}) = Int64
IntF(::Type{Float32}) = Int32
x_trig(::Type{T}) where {T<:IEEEFloat} = begin
x_trig = T[]
for i = 1:10000
s = reinterpret(T, reinterpret(IntF(T), T(pi)/4 * i) - IntF(T)(20))
e = reinterpret(T, reinterpret(IntF(T), T(pi)/4 * i) + IntF(T)(20))
d = s
while d <= e
append!(x_trig, d)
d = reinterpret(T, reinterpret(IntF(T), d) + IntF(T)(1))
end
end
x_trig = append!(x_trig, -10:0.0002:10)
x_trig = append!(x_trig, -MRANGE(T):200.1:MRANGE(T))
end
x_exp(::Type{T}) where {T<:IEEEFloat} = map(T, vcat(-10:0.0002:10, -1000:0.1:1000))
x_exp2(::Type{T}) where {T<:IEEEFloat} = map(T, vcat(-10:0.0002:10, -120:0.023:1000, -1000:0.02:2000))
x_exp10(::Type{T}) where {T<:IEEEFloat} = map(T, vcat(-10:0.0002:10, -35:0.023:1000, -300:0.01:300))
x_expm1(::Type{T}) where {T<:IEEEFloat} = map(T, vcat(-10:0.0002:10, -1000:0.021:1000, -1000:0.023:1000, 10.0.^-(0:0.02:300), -10.0.^-(0:0.02:300), 10.0.^(0:0.021:300), -10.0.^-(0:0.021:300)))
x_log(::Type{T}) where {T<:IEEEFloat} = map(T, vcat(0.0001:0.0001:10, 0.001:0.1:10000, 1.1.^(-1000:1000), 2.1.^(-1000:1000)))
x_log10(::Type{T}) where {T<:IEEEFloat} = map(T, vcat(0.0001:0.0001:10, 0.0001:0.1:10000))
x_log1p(::Type{T}) where {T<:IEEEFloat} = map(T, vcat(0.0001:0.0001:10, 0.0001:0.1:10000, 10.0.^-(0:0.02:300), -10.0.^-(0:0.02:300)))
x_atrig(::Type{T}) where {T<:IEEEFloat} = map(T, vcat(-1:0.00002:1))
x_atan(::Type{T}) where {T<:IEEEFloat} = map(T, vcat(-10:0.0002:10, -10000:0.2:10000, -10000:0.201:10000))
x_cbrt(::Type{T}) where {T<:IEEEFloat} = map(T, vcat(-10000:0.2:10000, 1.1.^(-1000:1000), 2.1.^(-1000:1000)))
x_trigh(::Type{T}) where {T<:IEEEFloat} = map(T, vcat(-10:0.0002:10, -1000:0.02:1000))
x_asinhatanh(::Type{T}) where {T<:IEEEFloat} = map(T, vcat(-10:0.0002:10, -1000:0.02:1000))
x_acosh(::Type{T}) where {T<:IEEEFloat} = map(T, vcat(1:0.0002:10, 1:0.02:1000))
x_pow(::Type{T}) where {T<:IEEEFloat} = begin
xx1 = map(Tuple{T,T}, [(x,y) for x = -100:0.20:100, y = 0.1:0.20:100])[:]
xx2 = map(Tuple{T,T}, [(x,y) for x = -100:0.21:100, y = 0.1:0.22:100])[:]
xx3 = map(Tuple{T,T}, [(x,y) for x = 2.1, y = -1000:0.1:1000])
xx = vcat(xx1, xx2, xx2)
end
import Base.atanh
for f in (:atanh,)
@eval begin
($f)(x::Float64) = ccall($(string(f)), Float64, (Float64,), x)
($f)(x::Float32) = ccall($(string(f,"f")), Float32, (Float32,), x)
end
end
const micros = OrderedDict(
"sin" => x_trig,
"cos" => x_trig,
"tan" => x_trig,
"asin" => x_atrig,
"acos" => x_atrig,
"atan" => x_atan,
"exp" => x_exp,
"exp2" => x_exp2,
"exp10" => x_exp10,
"expm1" => x_expm1,
"log" => x_log,
"log2" => x_log10,
"log10" => x_log10,
"log1p" => x_log1p,
"sinh" => x_trigh,
"cosh" => x_trigh,
"tanh" => x_trigh,
"asinh" => x_asinhatanh,
"acosh" => x_acosh,
"atanh" => x_asinhatanh,
"cbrt" => x_cbrt
)
for n in bench
for (f,x) in micros
suite[n][f] = BenchmarkGroup([f])
for T in test_types
fex = Expr(:., Symbol(n), QuoteNode(Symbol(f)))
suite[n][f][string(T)] = @benchmarkable bench_reduce($fex, $(x(T)))
end
end
end
tune_params = joinpath(@__DIR__, "params.jld")
if !isfile(tune_params) || RETUNE
tune!(suite; verbose=VERBOSE, seconds = 2)
save(tune_params, "suite", params(suite))
println("Saving tuned parameters.")
else
println("Loading pretuned parameters.")
loadparams!(suite, load(tune_params, "suite"), :evals, :samples)
end
println("Running micro benchmarks...")
results = run(suite; verbose=VERBOSE, seconds = 2)
printstyled("Benchmarks: median ratio SLEEF/Base\n", color = :blue)
for f in keys(micros)
printstyled(string(f) color = :magenta)
for T in test_types
println()
print("time: ", )
tratio = ratio(median(results["SLEEF"][f][string(T)]), median(results["Base"][f][string(T)])).time
tcolor = tratio > 3 ? :red : tratio < 1.5 ? :green : :blue
printstyled(@sprintf("%.2f",tratio), " ", string(T), color = tcolor)
if DETAILS
printstyled("details SLEEF/Base\n", color=:blue)
println(results["SLEEF"][f][string(T)])
println(results["Base"][f][string(T)])
println()
end
end
println("\n")
end
| SLEEF | https://github.com/musm/SLEEF.jl.git |
|
[
"MIT"
] | 0.5.2 | 512b75d09aab52e93192e68de612fc472f001979 | code | 5440 | module SLEEF
# export sin, cos, tan, asin, acos, atan, sincos, sinh, cosh, tanh,
# asinh, acosh, atanh, log, log2, log10, log1p, ilogb, exp, exp2, exp10, expm1, ldexp, cbrt, pow
# fast variants (within 3 ulp)
# export sin_fast, cos_fast, tan_fast, sincos_fast, asin_fast, acos_fast, atan_fast, atan2_fast, log_fast, cbrt_fast
using Base.Math: uinttype, @horner, exponent_bias, exponent_mask, significand_bits, IEEEFloat, exponent_raw_max
## constants
const MLN2 = 6.931471805599453094172321214581765680755001343602552541206800094933936219696955e-01 # log(2)
const MLN2E = 1.442695040888963407359924681001892137426645954152985934135449406931 # log2(e)
const M_PI = 3.141592653589793238462643383279502884 # pi
const PI_2 = 1.570796326794896619231321691639751442098584699687552910487472296153908203143099 # pi/2
const PI_4 = 7.853981633974483096156608458198757210492923498437764552437361480769541015715495e-01 # pi/4
const M_1_PI = 0.318309886183790671537767526745028724 # 1/pi
const M_2_PI = 0.636619772367581343075535053490057448 # 2/pi
const M_4_PI = 1.273239544735162686151070106980114896275677165923651589981338752471174381073817 # 4/pi
const MSQRT2 = 1.414213562373095048801688724209698078569671875376948073176679737990732478462102 # sqrt(2)
const M1SQRT2 = 7.071067811865475244008443621048490392848359376884740365883398689953662392310596e-01 # 1/sqrt(2)
const M2P13 = 1.259921049894873164767210607278228350570251464701507980081975112155299676513956 # 2^1/3
const M2P23 = 1.587401051968199474751705639272308260391493327899853009808285761825216505624206 # 2^2/3
const MLOG10_2 = 3.3219280948873623478703194294893901758648313930
const MDLN10E(::Type{Float64}) = Double(0.4342944819032518, 1.098319650216765e-17) # log10(e)
const MDLN10E(::Type{Float32}) = Double(0.4342945f0, -1.010305f-8)
const MDLN2E(::Type{Float64}) = Double(1.4426950408889634, 2.0355273740931033e-17) # log2(e)
const MDLN2E(::Type{Float32}) = Double(1.442695f0, 1.925963f-8)
const MDLN2(::Type{Float64}) = Double(0.693147180559945286226764, 2.319046813846299558417771e-17) # log(2)
const MDLN2(::Type{Float32}) = Double(0.69314718246459960938f0, -1.904654323148236017f-9)
const MDPI(::Type{Float64}) = Double(3.141592653589793, 1.2246467991473532e-16) # pi
const MDPI(::Type{Float32}) = Double(3.1415927f0, -8.742278f-8)
const MDPI2(::Type{Float64}) = Double(1.5707963267948966, 6.123233995736766e-17) # pi/2
const MDPI2(::Type{Float32}) = Double(1.5707964f0, -4.371139f-8)
const MD2P13(::Type{Float64}) = Double(1.2599210498948732, -2.589933375300507e-17) # 2^1/3
const MD2P13(::Type{Float32}) = Double(1.2599211f0, -2.4018702f-8)
const MD2P23(::Type{Float64}) = Double(1.5874010519681996, -1.0869008194197823e-16) # 2^2/3
const MD2P23(::Type{Float32}) = Double(1.587401f0, 1.9520385f-8)
# Split pi into four parts (each is 26 bits)
const PI_A(::Type{Float64}) = 3.1415926218032836914
const PI_B(::Type{Float64}) = 3.1786509424591713469e-08
const PI_C(::Type{Float64}) = 1.2246467864107188502e-16
const PI_D(::Type{Float64}) = 1.2736634327021899816e-24
const PI_A(::Type{Float32}) = 3.140625f0
const PI_B(::Type{Float32}) = 0.0009670257568359375f0
const PI_C(::Type{Float32}) = 6.2771141529083251953f-7
const PI_D(::Type{Float32}) = 1.2154201256553420762f-10
const PI_XD(::Type{Float32}) = 1.2141754268668591976f-10
const PI_XE(::Type{Float32}) = 1.2446743939339977025f-13
# split 2/pi into upper and lower parts
const M_2_PI_H = 0.63661977236758138243
const M_2_PI_L = -3.9357353350364971764e-17
# Split log(10) into upper and lower parts
const L10U(::Type{Float64}) = 0.30102999566383914498
const L10L(::Type{Float64}) = 1.4205023227266099418e-13
const L10U(::Type{Float32}) = 0.3010253906f0
const L10L(::Type{Float32}) = 4.605038981f-6
# Split log(2) into upper and lower parts
const L2U(::Type{Float64}) = 0.69314718055966295651160180568695068359375
const L2L(::Type{Float64}) = 0.28235290563031577122588448175013436025525412068e-12
const L2U(::Type{Float32}) = 0.693145751953125f0
const L2L(::Type{Float32}) = 1.428606765330187045f-06
const TRIG_MAX(::Type{Float64}) = 1e14
const TRIG_MAX(::Type{Float32}) = 1f7
const SQRT_MAX(::Type{Float64}) = 1.3407807929942596355e154
const SQRT_MAX(::Type{Float32}) = 18446743523953729536f0
include("utils.jl") # utility functions
include("double.jl") # Dekker style double double functions
include("priv.jl") # private math functions
include("exp.jl") # exponential functions
include("log.jl") # logarithmic functions
include("trig.jl") # trigonometric and inverse trigonometric functions
include("hyp.jl") # hyperbolic and inverse hyperbolic functions
include("misc.jl") # miscallenous math functions including pow and cbrt
# fallback definitions
for func in (:sin, :cos, :tan, :sincos, :asin, :acos, :atan, :sinh, :cosh, :tanh,
:asinh, :acosh, :atanh, :log, :log2, :log10, :log1p, :exp, :exp2, :exp10, :expm1, :cbrt,
:sin_fast, :cos_fast, :tan_fast, :sincos_fast, :asin_fast, :acos_fast, :atan_fast, :atan2_fast, :log_fast, :cbrt_fast)
@eval begin
$func(a::Float16) = Float16.($func(Float32(a)))
$func(x::Real) = $func(float(x))
end
end
for func in (:atan, :hypot)
@eval begin
$func(y::Real, x::Real) = $func(promote(float(y), float(x))...)
$func(a::Float16, b::Float16) = Float16($func(Float32(a), Float32(b)))
end
end
ldexp(x::Float16, q::Int) = Float16(ldexpk(Float32(x), q))
end
| SLEEF | https://github.com/musm/SLEEF.jl.git |
|
[
"MIT"
] | 0.5.2 | 512b75d09aab52e93192e68de612fc472f001979 | code | 7399 | import Base: -, <, copysign, flipsign, convert
struct Double{T<:IEEEFloat} <: Number
hi::T
lo::T
end
Double(x::T) where {T<:IEEEFloat} = Double(x, zero(T))
(::Type{T})(x::Double{T}) where {T<:IEEEFloat} = x.hi + x.lo
@inline trunclo(x::Float64) = reinterpret(Float64, reinterpret(UInt64, x) & 0xffff_ffff_f800_0000) # clear lower 27 bits (leave upper 26 bits)
@inline trunclo(x::Float32) = reinterpret(Float32, reinterpret(UInt32, x) & 0xffff_f000) # clear lowest 12 bits (leave upper 12 bits)
@inline function splitprec(x::IEEEFloat)
hx = trunclo(x)
hx, x - hx
end
@inline function dnormalize(x::Double{T}) where {T}
r = x.hi + x.lo
Double(r, (x.hi - r) + x.lo)
end
@inline flipsign(x::Double{T}, y::T) where {T<:IEEEFloat} = Double(flipsign(x.hi, y), flipsign(x.lo, y))
@inline scale(x::Double{T}, s::T) where {T<:IEEEFloat} = Double(s * x.hi, s * x.lo)
@inline (-)(x::Double{T}) where {T<:IEEEFloat} = Double(-x.hi, -x.lo)
@inline function (<)(x::Double{T}, y::Double{T}) where {T<:IEEEFloat}
x.hi < y.hi
end
@inline function (<)(x::Double{T}, y::Number) where {T<:IEEEFloat}
x.hi < y
end
@inline function (<)(x::Number, y::Double{T}) where {T<:IEEEFloat}
x < y.hi
end
# quick-two-sum x+y
@inline function dadd(x::T, y::T) where {T<:IEEEFloat} #WARNING |x| >= |y|
s = x + y
Double(s, (x - s) + y)
end
@inline function dadd(x::T, y::Double{T}) where {T<:IEEEFloat} #WARNING |x| >= |y|
s = x + y.hi
Double(s, (x - s) + y.hi + y.lo)
end
@inline function dadd(x::Double{T}, y::T) where {T<:IEEEFloat} #WARNING |x| >= |y|
s = x.hi + y
Double(s, (x.hi - s) + y + x.lo)
end
@inline function dadd(x::Double{T}, y::Double{T}) where {T<:IEEEFloat} #WARNING |x| >= |y|
s = x.hi + y.hi
Double(s, (x.hi - s) + y.hi + y.lo + x.lo)
end
@inline function dsub(x::Double{T}, y::Double{T}) where {T<:IEEEFloat} #WARNING |x| >= |y|
s = x.hi - y.hi
Double(s, (x.hi - s) - y.hi - y.lo + x.lo)
end
@inline function dsub(x::Double{T}, y::T) where {T<:IEEEFloat} #WARNING |x| >= |y|
s = x.hi - y
Double(s, (x.hi - s) - y + x.lo)
end
@inline function dsub(x::T, y::Double{T}) where {T<:IEEEFloat} #WARNING |x| >= |y|
s = x - y.hi
Double(s, (x - s) - y.hi - y.lo)
end
@inline function dsub(x::T, y::T) where {T<:IEEEFloat} #WARNING |x| >= |y|
s = x - y
Double(s, (x - s) - y)
end
# two-sum x+y NO BRANCH
@inline function dadd2(x::T, y::T) where {T<:IEEEFloat}
s = x + y
v = s - x
Double(s, (x - (s - v)) + (y - v))
end
@inline function dadd2(x::T, y::Double{T}) where {T<:IEEEFloat}
s = x + y.hi
v = s - x
Double(s, (x - (s - v)) + (y.hi - v) + y.lo)
end
@inline dadd2(x::Double{T}, y::T) where {T<:IEEEFloat} = dadd2(y, x)
@inline function dadd2(x::Double{T}, y::Double{T}) where {T<:IEEEFloat}
s = x.hi + y.hi
v = s - x.hi
Double(s, (x.hi - (s - v)) + (y.hi - v) + x.lo + y.lo)
end
@inline function dsub2(x::T, y::T) where {T<:IEEEFloat}
s = x - y
v = s - x
Double(s, (x - (s - v)) + (-y - v))
end
@inline function dsub2(x::T, y::Double{T}) where {T<:IEEEFloat}
s = x - y.hi
v = s - x
Double(s, (x - (s - v)) + (-y.hi - v) - y.lo)
end
@inline function dsub2(x::Double{T}, y::T) where {T<:IEEEFloat}
s = x.hi - y
v = s - x.hi
Double(s, (x.hi - (s - v)) + (-y - v) + x.lo)
end
@inline function dsub2(x::Double{T}, y::Double{T}) where {T<:IEEEFloat}
s = x.hi - y.hi
v = s - x.hi
Double(s, (x.hi - (s - v)) + (-y.hi - v) + x.lo - y.lo)
end
if FMA_FAST
# two-prod-fma
@inline function dmul(x::T, y::T) where {T<:IEEEFloat}
z = x * y
Double(z, fma(x, y, -z))
end
@inline function dmul(x::Double{T}, y::T) where {T<:IEEEFloat}
z = x.hi * y
Double(z, fma(x.hi, y, -z) + x.lo * y)
end
@inline dmul(x::T, y::Double{T}) where {T<:IEEEFloat} = dmul(y, x)
@inline function dmul(x::Double{T}, y::Double{T}) where {T<:IEEEFloat}
z = x.hi * y.hi
Double(z, fma(x.hi, y.hi, -z) + x.hi * y.lo + x.lo * y.hi)
end
# x^2
@inline function dsqu(x::T) where {T<:IEEEFloat}
z = x * x
Double(z, fma(x, x, -z))
end
@inline function dsqu(x::Double{T}) where {T<:IEEEFloat}
z = x.hi * x.hi
Double(z, fma(x.hi, x.hi, -z) + x.hi * (x.lo + x.lo))
end
# sqrt(x)
@inline function dsqrt(x::Double{T}) where {T<:IEEEFloat}
zhi = _sqrt(x.hi)
Double(zhi, (x.lo + fma(-zhi, zhi, x.hi)) / (zhi + zhi))
end
# x/y
@inline function ddiv(x::Double{T}, y::Double{T}) where {T<:IEEEFloat}
invy = 1 / y.hi
zhi = x.hi * invy
Double(zhi, (fma(-zhi, y.hi, x.hi) + fma(-zhi, y.lo, x.lo)) * invy)
end
@inline function ddiv(x::T, y::T) where {T<:IEEEFloat}
ry = 1 / y
r = x * ry
Double(r, fma(-r, y, x) * ry)
end
# 1/x
@inline function drec(x::T) where {T<:IEEEFloat}
zhi = 1 / x
Double(zhi, fma(-zhi, x, one(T)) * zhi)
end
@inline function drec(x::Double{T}) where {T<:IEEEFloat}
zhi = 1 / x.hi
Double(zhi, (fma(-zhi, x.hi, one(T)) + -zhi * x.lo) * zhi)
end
else
#two-prod x*y
@inline function dmul(x::T, y::T) where {T<:IEEEFloat}
hx, lx = splitprec(x)
hy, ly = splitprec(y)
z = x * y
Double(z, ((hx * hy - z) + lx * hy + hx * ly) + lx * ly)
end
@inline function dmul(x::Double{T}, y::T) where {T<:IEEEFloat}
hx, lx = splitprec(x.hi)
hy, ly = splitprec(y)
z = x.hi * y
Double(z, (hx * hy - z) + lx * hy + hx * ly + lx * ly + x.lo * y)
end
@inline dmul(x::T, y::Double{T}) where {T<:IEEEFloat} = dmul(y, x)
@inline function dmul(x::Double{T}, y::Double{T}) where {T<:IEEEFloat}
hx, lx = splitprec(x.hi)
hy, ly = splitprec(y.hi)
z = x.hi * y.hi
Double(z, (((hx * hy - z) + lx * hy + hx * ly) + lx * ly) + x.hi * y.lo + x.lo * y.hi)
end
# x^2
@inline function dsqu(x::T) where {T<:IEEEFloat}
hx, lx = splitprec(x)
z = x * x
Double(z, (hx * hx - z) + lx * (hx + hx) + lx * lx)
end
@inline function dsqu(x::Double{T}) where {T<:IEEEFloat}
hx, lx = splitprec(x.hi)
z = x.hi * x.hi
Double(z, (hx * hx - z) + lx * (hx + hx) + lx * lx + x.hi * (x.lo + x.lo))
end
# sqrt(x)
@inline function dsqrt(x::Double{T}) where {T<:IEEEFloat}
c = _sqrt(x.hi)
u = dsqu(c)
Double(c, (x.hi - u.hi - u.lo + x.lo) / (c + c))
end
# x/y
@inline function ddiv(x::Double{T}, y::Double{T}) where {T<:IEEEFloat}
invy = 1 / y.hi
c = x.hi * invy
u = dmul(c, y.hi)
Double(c, ((((x.hi - u.hi) - u.lo) + x.lo) - c * y.lo) * invy)
end
@inline function ddiv(x::T, y::T) where {T<:IEEEFloat}
ry = 1 / y
r = x * ry
hx, lx = splitprec(r)
hy, ly = splitprec(y)
Double(r, (((-hx * hy + r * y) - lx * hy - hx * ly) - lx * ly) * ry)
end
# 1/x
@inline function drec(x::T) where {T<:IEEEFloat}
c = 1 / x
u = dmul(c, x)
Double(c, (one(T) - u.hi - u.lo) * c)
end
@inline function drec(x::Double{T}) where {T<:IEEEFloat}
c = 1 / x.hi
u = dmul(c, x.hi)
Double(c, (one(T) - u.hi - u.lo - c * x.lo) * c)
end
end
| SLEEF | https://github.com/musm/SLEEF.jl.git |
|
[
"MIT"
] | 0.5.2 | 512b75d09aab52e93192e68de612fc472f001979 | code | 5009 | # exported exponential functions
"""
ldexp(a, n)
Computes `a Γ 2^n`
"""
ldexp(x::Union{Float32,Float64}, q::Int) = ldexpk(x, q)
const max_exp2(::Type{Float64}) = 1024
const max_exp2(::Type{Float32}) = 128f0
const min_exp2(::Type{Float64}) = -1075
const min_exp2(::Type{Float32}) = -150f0
@inline function exp2_kernel(x::Float64)
c11 = 0.4434359082926529454e-9
c10 = 0.7073164598085707425e-8
c9 = 0.1017819260921760451e-6
c8 = 0.1321543872511327615e-5
c7 = 0.1525273353517584730e-4
c6 = 0.1540353045101147808e-3
c5 = 0.1333355814670499073e-2
c4 = 0.9618129107597600536e-2
c3 = 0.5550410866482046596e-1
c2 = 0.2402265069591012214
c1 = 0.6931471805599452862
return @horner x c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11
end
@inline function exp2_kernel(x::Float32)
c6 = 0.1535920892f-3
c5 = 0.1339262701f-2
c4 = 0.9618384764f-2
c3 = 0.5550347269f-1
c2 = 0.2402264476f0
c1 = 0.6931471825f0
return @horner x c1 c2 c3 c4 c5 c6
end
"""
exp2(x)
Compute the base-`2` exponential of `x`, that is `2Λ£`.
"""
function exp2(d::T) where {T<:Union{Float32,Float64}}
q = round(d)
qi = unsafe_trunc(Int, q)
s = d - q
u = exp2_kernel(s)
u = T(dnormalize(dadd(T(1.0), dmul(u,s))))
u = ldexp2k(u, qi)
d > max_exp2(T) && (u = T(Inf))
d < min_exp2(T) && (u = T(0.0))
return u
end
const max_exp10(::Type{Float64}) = 3.08254715559916743851e2 # log 2^1023*(2-2^-52)
const max_exp10(::Type{Float32}) = 38.531839419103626f0 # log 2^127 *(2-2^-23)
const min_exp10(::Type{Float64}) = -3.23607245338779784854769e2 # log10 2^-1075
const min_exp10(::Type{Float32}) = -45.15449934959718f0 # log10 2^-150
@inline function exp10_kernel(x::Float64)
c11 = 0.2411463498334267652e-3
c10 = 0.1157488415217187375e-2
c9 = 0.5013975546789733659e-2
c8 = 0.1959762320720533080e-1
c7 = 0.6808936399446784138e-1
c6 = 0.2069958494722676234e0
c5 = 0.5393829292058536229e0
c4 = 0.1171255148908541655e1
c3 = 0.2034678592293432953e1
c2 = 0.2650949055239205876e1
c1 = 0.2302585092994045901e1
return @horner x c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11
end
@inline function exp10_kernel(x::Float32)
c6 = 0.2064004987f0
c5 = 0.5417877436f0
c4 = 0.1171286821f1
c3 = 0.2034656048f1
c2 = 0.2650948763f1
c1 = 0.2302585125f1
return @horner x c1 c2 c3 c4 c5 c6
end
"""
exp10(x)
Compute the base-`10` exponential of `x`, that is `10Λ£`.
"""
function exp10(d::T) where {T<:Union{Float32,Float64}}
q = round(T(MLOG10_2) * d)
qi = unsafe_trunc(Int, q)
s = muladd(q, -L10U(T), d)
s = muladd(q, -L10L(T), s)
u = exp10_kernel(s)
u = T(dnormalize(dadd(T(1.0), dmul(u,s))))
u = ldexp2k(u, qi)
d > max_exp10(T) && (u = T(Inf))
d < min_exp10(T) && (u = T(0.0))
return u
end
const max_expm1(::Type{Float64}) = 7.09782712893383996732e2 # log 2^1023*(2-2^-52)
const max_expm1(::Type{Float32}) = 88.72283905206835f0 # log 2^127 *(2-2^-23)
const min_expm1(::Type{Float64}) = -37.42994775023704434602223
const min_expm1(::Type{Float32}) = -17.3286790847778338076068394f0
"""
expm1(x)
Compute `eΛ£- 1` accurately for small values of `x`.
"""
function expm1(x::T) where {T<:Union{Float32,Float64}}
u = T(dadd2(expk2(Double(x)), -T(1.0)))
x > max_expm1(T) && (u = T(Inf))
x < min_expm1(T) && (u = -T(1.0))
isnegzero(x) && (u = T(-0.0))
return u
end
const max_exp(::Type{Float64}) = 709.78271114955742909217217426 # log 2^1023*(2-2^-52)
const max_exp(::Type{Float32}) = 88.72283905206835f0 # log 2^127 *(2-2^-23)
const min_exp(::Type{Float64}) = -7.451332191019412076235e2 # log 2^-1075
const min_exp(::Type{Float32}) = -103.97208f0 # β log 2^-150
@inline function exp_kernel(x::Float64)
c11 = 2.08860621107283687536341e-09
c10 = 2.51112930892876518610661e-08
c9 = 2.75573911234900471893338e-07
c8 = 2.75572362911928827629423e-06
c7 = 2.4801587159235472998791e-05
c6 = 0.000198412698960509205564975
c5 = 0.00138888888889774492207962
c4 = 0.00833333333331652721664984
c3 = 0.0416666666666665047591422
c2 = 0.166666666666666851703837
c1 = 0.50
return @horner x c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11
end
@inline function exp_kernel(x::Float32)
c6 = 0.000198527617612853646278381f0
c5 = 0.00139304355252534151077271f0
c4 = 0.00833336077630519866943359f0
c3 = 0.0416664853692054748535156f0
c2 = 0.166666671633720397949219f0
c1 = 0.5f0
return @horner x c1 c2 c3 c4 c5 c6
end
"""
exp(x)
Compute the base-`e` exponential of `x`, that is `eΛ£`.
"""
function exp(d::T) where {T<:Union{Float32,Float64}}
q = round(T(MLN2E) * d)
qi = unsafe_trunc(Int, q)
s = muladd(q, -L2U(T), d)
s = muladd(q, -L2L(T), s)
u = exp_kernel(s)
u = s * s * u + s + 1
u = ldexp2k(u, qi)
d > max_exp(T) && (u = T(Inf))
d < min_exp(T) && (u = T(0))
return u
end
| SLEEF | https://github.com/musm/SLEEF.jl.git |
|
[
"MIT"
] | 0.5.2 | 512b75d09aab52e93192e68de612fc472f001979 | code | 2423 | # exported hyperbolic functions
over_sch(::Type{Float64}) = 710.0
over_sch(::Type{Float32}) = 89f0
"""
sinh(x)
Compute hyperbolic sine of `x`.
"""
function sinh(x::T) where {T<:Union{Float32,Float64}}
u = abs(x)
d = expk2(Double(u))
d = dsub(d, drec(d))
u = T(d) * T(0.5)
u = abs(x) > over_sch(T) ? T(Inf) : u
u = isnan(u) ? T(Inf) : u
u = flipsign(u, x)
u = isnan(x) ? T(NaN) : u
return u
end
"""
cosh(x)
Compute hyperbolic cosine of `x`.
"""
function cosh(x::T) where {T<:Union{Float32,Float64}}
u = abs(x)
d = expk2(Double(u))
d = dadd(d, drec(d))
u = T(d) * T(0.5)
u = abs(x) > over_sch(T) ? T(Inf) : u
u = isnan(u) ? T(Inf) : u
u = isnan(x) ? T(NaN) : u
return u
end
over_th(::Type{Float64}) = 18.714973875
over_th(::Type{Float32}) = 18.714973875f0
"""
tanh(x)
Compute hyperbolic tangent of `x`.
"""
function tanh(x::T) where {T<:Union{Float32,Float64}}
u = abs(x)
d = expk2(Double(u))
e = drec(d)
d = ddiv(dsub(d, e), dadd(d, e))
u = T(d)
u = abs(x) > over_th(T) ? T(1.0) : u
u = isnan(u) ? T(1) : u
u = flipsign(u, x)
u = isnan(x) ? T(NaN) : u
return u
end
"""
asinh(x)
Compute the inverse hyperbolic sine of `x`.
"""
function asinh(x::T) where {T<:Union{Float32,Float64}}
y = abs(x)
d = y > 1 ? drec(x) : Double(y, T(0.0))
d = dsqrt(dadd2(dsqu(d), T(1.0)))
d = y > 1 ? dmul(d, y) : d
d = logk2(dnormalize(dadd(d, x)))
y = T(d)
y = (abs(x) > SQRT_MAX(T) || isnan(y)) ? flipsign(T(Inf), x) : y
y = isnan(x) ? T(NaN) : y
y = isnegzero(x) ? T(-0.0) : y
return y
end
"""
acosh(x)
Compute the inverse hyperbolic cosine of `x`.
"""
function acosh(x::T) where {T<:Union{Float32,Float64}}
d = logk2(dadd2(dmul(dsqrt(dadd2(x, T(1.0))), dsqrt(dsub2(x, T(1.0)))), x))
y = T(d)
y = (x > SQRT_MAX(T) || isnan(y)) ? T(Inf) : y
y = x == T(1.0) ? T(0.0) : y
y = x < T(1.0) ? T(NaN) : y
y = isnan(x) ? T(NaN) : y
return y
end
"""
atanh(x)
Compute the inverse hyperbolic tangent of `x`.
"""
function atanh(x::T) where {T<:Union{Float32,Float64}}
u = abs(x)
d = logk2(ddiv(dadd2(T(1.0), u), dsub2(T(1.0), u)))
u = u > T(1.0) ? T(NaN) : (u == T(1.0) ? T(Inf) : T(d) * T(0.5))
u = isinf(x) || isnan(u) ? T(NaN) : u
u = flipsign(u, x)
u = isnan(x) ? T(NaN) : u
return u
end
| SLEEF | https://github.com/musm/SLEEF.jl.git |
|
[
"MIT"
] | 0.5.2 | 512b75d09aab52e93192e68de612fc472f001979 | code | 4736 | # exported logarithmic functions
const FP_ILOGB0 = typemin(Int)
const FP_ILOGBNAN = typemin(Int)
const INT_MAX = typemax(Int)
"""
ilogb(x)
Returns the integral part of the logarithm of `abs(x)`, using base 2 for the
logarithm. In other words, this computes the binary exponent of `x` such that
x = significand Γ 2^exponent,
where `significand β [1, 2)`.
* Exceptional cases (where `Int` is the machine wordsize)
* `x = 0` returns `FP_ILOGB0`
* `x = Β±Inf` returns `INT_MAX`
* `x = NaN` returns `FP_ILOGBNAN`
"""
function ilogb(x::T) where {T<:Union{Float32,Float64}}
e = ilogbk(abs(x))
x == 0 && (e = FP_ILOGB0)
isnan(x) && (e = FP_ILOGBNAN)
isinf(x) && (e = INT_MAX)
return e
end
"""
log10(x)
Returns the base `10` logarithm of `x`.
"""
function log10(a::T) where {T<:Union{Float32,Float64}}
x = T(dmul(logk(a), MDLN10E(T)))
isinf(a) && (x = T(Inf))
(a < 0 || isnan(a)) && (x = T(NaN))
a == 0 && (x = T(-Inf))
return x
end
"""
log2(x)
Returns the base `2` logarithm of `x`.
"""
function log2(a::T) where {T<:Union{Float32,Float64}}
u = T(dmul(logk(a), MDLN2E(T)))
isinf(a) && (u = T(Inf))
(a < 0 || isnan(a)) && (u = T(NaN))
a == 0 && (u = T(-Inf))
return u
end
const over_log1p(::Type{Float64}) = 1e307
const over_log1p(::Type{Float32}) = 1f38
"""
log1p(x)
Accurately compute the natural logarithm of 1+x.
"""
function log1p(a::T) where {T<:Union{Float32,Float64}}
x = T(logk2(dadd2(a, T(1.0))))
a > over_log1p(T) && (x = T(Inf))
a < -1 && (x = T(NaN))
a == -1 && (x = T(-Inf))
isnegzero(a) && (x = T(-0.0))
return x
end
@inline function log_kernel(x::Float64)
c7 = 0.1532076988502701353
c6 = 0.1525629051003428716
c5 = 0.1818605932937785996
c4 = 0.2222214519839380009
c3 = 0.2857142932794299317
c2 = 0.3999999999635251990
c1 = 0.6666666666667333541
return @horner x c1 c2 c3 c4 c5 c6 c7
end
@inline function log_kernel(x::Float32)
c3 = 0.3027294874f0
c2 = 0.3996108174f0
c1 = 0.6666694880f0
return @horner x c1 c2 c3
end
"""
log(x)
Compute the natural logarithm of `x`. The inverse of the natural logarithm is
the natural expoenential function `exp(x)`
"""
function log(d::T) where {T<:Union{Float32,Float64}}
o = d < floatmin(T)
o && (d *= T(Int64(1) << 32) * T(Int64(1) << 32))
e = ilogb2k(d * T(1.0/0.75))
m = ldexp3k(d, -e)
o && (e -= 64)
x = ddiv(dadd2(T(-1.0), m), dadd2(T(1.0), m))
x2 = x.hi*x.hi
t = log_kernel(x2)
s = dmul(MDLN2(T), T(e))
s = dadd(s, scale(x, T(2.0)))
s = dadd(s, x2*x.hi*t)
r = T(s)
isinf(d) && (r = T(Inf))
(d < 0 || isnan(d)) && (r = T(NaN))
d == 0 && (r = -T(Inf))
return r
end
# First we split the argument to its mantissa `m` and integer exponent `e` so
# that `d = m \times 2^e`, where `m \in [0.5, 1)` then we apply the polynomial
# approximant on this reduced argument `m` before putting back the exponent
# in. This first part is done with the help of the private function
# `ilogbk(x)` and we put the exponent back using
# `\log(m \times 2^e) = \log(m) + \log 2^e = \log(m) + e\times MLN2
# The polynomial we evaluate is based on coefficients from
# `log_2(x) = 2\sum_{n=0}^\infty \frac{1}{2n+1} \bigl(\frac{x-1}{x+1}^{2n+1}\bigr)`
# That being said, since this converges faster when the argument is close to
# 1, we multiply `m` by `2` and subtract 1 for the exponent `e` when `m` is
# less than `sqrt(2)/2`
@inline function log_fast_kernel(x::Float64)
c8 = 0.153487338491425068243146
c7 = 0.152519917006351951593857
c6 = 0.181863266251982985677316
c5 = 0.222221366518767365905163
c4 = 0.285714294746548025383248
c3 = 0.399999999950799600689777
c2 = 0.6666666666667778740063
c1 = 2.0
return @horner x c1 c2 c3 c4 c5 c6 c7 c8
end
@inline function log_fast_kernel(x::Float32)
c5 = 0.2392828464508056640625f0
c4 = 0.28518211841583251953125f0
c3 = 0.400005877017974853515625f0
c2 = 0.666666686534881591796875f0
c1 = 2f0
return @horner x c1 c2 c3 c4 c5
end
"""
log_fast(x)
Compute the natural logarithm of `x`. The inverse of the natural logarithm is
the natural expoenential function `exp(x)`
"""
function log_fast(d::T) where {T<:Union{Float32,Float64}}
o = d < floatmin(T)
o && (d *= T(Int64(1) << 32) * T(Int64(1) << 32))
e = ilogb2k(d * T(1.0/0.75))
m = ldexp3k(d, -e)
o && (e -= 64)
x = (m - 1) / (m + 1)
x2 = x * x
t = log_fast_kernel(x2)
x = x * t + T(MLN2) * e
isinf(d) && (x = T(Inf))
(d < 0 || isnan(d)) && (x = T(NaN))
d == 0 && (x = -T(Inf))
return x
end
| SLEEF | https://github.com/musm/SLEEF.jl.git |
|
[
"MIT"
] | 0.5.2 | 512b75d09aab52e93192e68de612fc472f001979 | code | 2860 |
"""
pow(x, y)
Exponentiation operator, returns `x` raised to the power `y`.
"""
function pow(x::T, y::T) where {T<:Union{Float32,Float64}}
yi = unsafe_trunc(Int, y)
yisint = yi == y
yisodd = isodd(yi) && yisint
result = expk(dmul(logk(abs(x)), y))
result = isnan(result) ? T(Inf) : result
result *= (x > 0 ? T(1.0) : (!yisint ? T(NaN) : (yisodd ? -T(1.0) : T(1.0))))
efx = flipsign(abs(x) - 1, y)
isinf(y) && (result = efx < 0 ? T(0.0) : (efx == 0 ? T(1.0) : T(Inf)))
(isinf(x) || x == 0) && (result = (yisodd ? _sign(x) : T(1.0)) * ((x == 0 ? -y : y) < 0 ? T(0.0) : T(Inf)))
(isnan(x) || isnan(y)) && (result = T(NaN))
(y == 0 || x == 1) && (result = T(1.0))
return result
end
let
global cbrt_fast
global cbrt
c6d = -0.640245898480692909870982
c5d = 2.96155103020039511818595
c4d = -5.73353060922947843636166
c3d = 6.03990368989458747961407
c2d = -3.85841935510444988821632
c1d = 2.2307275302496609725722
c6f = -0.601564466953277587890625f0
c5f = 2.8208892345428466796875f0
c4f = -5.532182216644287109375f0
c3f = 5.898262500762939453125f0
c2f = -3.8095417022705078125f0
c1f = 2.2241256237030029296875f0
global @inline cbrt_kernel(x::Float64) = @horner x c1d c2d c3d c4d c5d c6d
global @inline cbrt_kernel(x::Float32) = @horner x c1f c2f c3f c4f c5f c6f
"""
cbrt_fast(x)
Return `x^{1/3}`.
"""
function cbrt_fast(d::T) where {T<:Union{Float32,Float64}}
e = ilogbk(abs(d)) + 1
d = ldexp2k(d, -e)
r = (e + 6144) % 3
q = r == 1 ? T(M2P13) : T(1)
q = r == 2 ? T(M2P23) : q
q = ldexp2k(q, (e + 6144) Γ· 3 - 2048)
q = flipsign(q, d)
d = abs(d)
x = cbrt_kernel(d)
y = x * x
y = y * y
x -= (d * y - x) * T(1 / 3)
y = d * x * x
y = (y - T(2 / 3) * y * (y * x - 1)) * q
end
"""
cbrt(x)
Return `x^{1/3}`. The prefix operator `β` is equivalent to `cbrt`.
"""
function cbrt(d::T) where {T<:Union{Float32,Float64}}
e = ilogbk(abs(d)) + 1
d = ldexp2k(d, -e)
r = (e + 6144) % 3
q2 = r == 1 ? MD2P13(T) : Double(T(1))
q2 = r == 2 ? MD2P23(T) : q2
q2 = flipsign(q2, d)
d = abs(d)
x = cbrt_kernel(d)
y = x * x
y = y * y
x -= (d * y - x) * T(1 / 3)
z = x
u = dsqu(x)
u = dsqu(u)
u = dmul(u, d)
u = dsub(u, x)
y = T(u)
y = -T(2 / 3) * y * z
v = dadd(dsqu(z), y)
v = dmul(v, d)
v = dmul(v, q2)
z = ldexp2k(T(v), (e + 6144) Γ· 3 - 2048)
isinf(d) && (z = flipsign(T(Inf), q2.hi))
d == 0 && (z = flipsign(T(0), q2.hi))
return z
end
end
"""
hypot(x,y)
Compute the hypotenuse `\\sqrt{x^2+y^2}` avoiding overflow and underflow.
"""
function hypot(x::T, y::T) where {T<:IEEEFloat}
x = abs(x)
y = abs(y)
if x < y
x, y = y, x
end
r = (x == 0) ? y : y / x
x * sqrt(T(1.0) + r * r)
end
| SLEEF | https://github.com/musm/SLEEF.jl.git |
|
[
"MIT"
] | 0.5.2 | 512b75d09aab52e93192e68de612fc472f001979 | code | 9650 | # private math functions
"""
A helper function for `ldexpk`
First note that `r = (q >> n) << n` clears the lowest n bits of q, i.e. returns 2^n where n is the
largest integer such that q >= 2^n
For numbers q less than 2^m the following code does the same as the above snippet
`r = ( (q>>v + q) >> n - q>>v ) << n`
For numbers larger than or equal to 2^v this subtracts 2^n from q for q>>n times.
The function returns q(input) := q(output) + offset*r
In the code for ldexpk we actually use
`m = ( (m>>n + m) >> n - m>>m ) << (n-2)`.
So that x has to be multplied by u four times `x = x*u*u*u*u` to put the value of the offset
exponent amount back in.
"""
@inline function _split_exponent(q, n, v, offset)
m = q >> v
m = (((m + q) >> n) - m) << (n - offset)
q = q - (m << offset)
m, q
end
@inline split_exponent(::Type{Float64}, q::Int) = _split_exponent(q, UInt(9), UInt(31), UInt(2))
@inline split_exponent(::Type{Float32}, q::Int) = _split_exponent(q, UInt(6), UInt(31), UInt(2))
"""
ldexpk(a, n)
Computes `a Γ 2^n`.
"""
@inline function ldexpk(x::T, q::Int) where {T<:Union{Float32,Float64}}
bias = exponent_bias(T)
emax = exponent_raw_max(T)
m, q = split_exponent(T, q)
m += bias
m = ifelse(m < 0, 0, m)
m = ifelse(m > emax, emax, m)
q += bias
u = integer2float(T, m)
x = x * u * u * u * u
u = integer2float(T, q)
x * u
end
@inline function ldexp2k(x::T, e::Int) where {T<:Union{Float32,Float64}}
x * pow2i(T, e >> 1) * pow2i(T, e - (e >> 1))
end
@inline function ldexp3k(x::T, e::Int) where {T<:Union{Float32,Float64}}
reinterpret(T, reinterpret(Unsigned, x) + (Int64(e) << significand_bits(T)) % uinttype(T))
end
# threshold values for `ilogbk`
const threshold_exponent(::Type{Float64}) = 300
const threshold_exponent(::Type{Float32}) = 64
"""
ilogbk(x) -> Int
Returns the integral part of the logarithm of `|x|`, using 2 as base for the logarithm; in other
words this returns the binary exponent of `x` so that
x = significand Γ 2^exponent
where `significand β [1, 2)`.
"""
@inline function ilogbk(d::T) where {T<:Union{Float32,Float64}}
m = d < T(2)^-threshold_exponent(T)
d = ifelse(m, d * T(2)^threshold_exponent(T), d)
q = float2integer(d) & exponent_raw_max(T)
q = ifelse(m, q - (threshold_exponent(T) + exponent_bias(T)), q - exponent_bias(T))
end
# similar to ilogbk, but argument has to be a normalized float value
@inline function ilogb2k(d::T) where {T<:Union{Float32,Float64}}
(float2integer(d) & exponent_raw_max(T)) - exponent_bias(T)
end
let
global atan2k_fast
global atan2k
c20d = 1.06298484191448746607415e-05
c19d = -0.000125620649967286867384336
c18d = 0.00070557664296393412389774
c17d = -0.00251865614498713360352999
c16d = 0.00646262899036991172313504
c15d = -0.0128281333663399031014274
c14d = 0.0208024799924145797902497
c13d = -0.0289002344784740315686289
c12d = 0.0359785005035104590853656
c11d = -0.041848579703592507506027
c10d = 0.0470843011653283988193763
c9d = -0.0524914210588448421068719
c8d = 0.0587946590969581003860434
c7d = -0.0666620884778795497194182
c6d = 0.0769225330296203768654095
c5d = -0.0909090442773387574781907
c4d = 0.111111108376896236538123
c3d = -0.142857142756268568062339
c2d = 0.199999999997977351284817
c1d = -0.333333333333317605173818
c9f = -0.00176397908944636583328247f0
c8f = 0.0107900900766253471374512f0
c7f = -0.0309564601629972457885742f0
c6f = 0.0577365085482597351074219f0
c5f = -0.0838950723409652709960938f0
c4f = 0.109463557600975036621094f0
c3f = -0.142626821994781494140625f0
c2f = 0.199983194470405578613281f0
c1f = -0.333332866430282592773438f0
global @inline atan2k_fast_kernel(x::Float64) = @horner x c1d c2d c3d c4d c5d c6d c7d c8d c9d c10d c11d c12d c13d c14d c15d c16d c17d c18d c19d c20d
global @inline atan2k_fast_kernel(x::Float32) = @horner x c1f c2f c3f c4f c5f c6f c7f c8f c9f
@inline function atan2k_fast(y::T, x::T) where {T<:Union{Float32,Float64}}
q = 0
if x < 0
x = -x
q = -2
end
if y > x
t = x; x = y
y = -t
q += 1
end
s = y / x
t = s * s
u = atan2k_fast_kernel(t)
t = u * t * s + s
q * T(PI_2) + t
end
global @inline atan2k_kernel(x::Double{Float64}) = @horner x.hi c1d c2d c3d c4d c5d c6d c7d c8d c9d c10d c11d c12d c13d c14d c15d c16d c17d c18d c19d c20d
global @inline atan2k_kernel(x::Double{Float32}) = dadd(c1f, x.hi * (@horner x.hi c2f c3f c4f c5f c6f c7f c8f c9f))
@inline function atan2k(y::Double{T}, x::Double{T}) where {T<:Union{Float32,Float64}}
q = 0
if x < 0
x = -x
q = -2
end
if y > x
t = x; x = y
y = -t
q += 1
end
s = ddiv(y, x)
t = dsqu(s)
t = dnormalize(t)
u = atan2k_kernel(t)
t = dmul(t, u)
t = dmul(s, dadd(T(1.0), t))
T <: Float64 && abs(s.hi) < 1e-200 && (t = s)
t = dadd(dmul(T(q), MDPI2(T)), t)
return t
end
end
const under_expk(::Type{Float64}) = -1000.0
const under_expk(::Type{Float32}) = -104f0
@inline function expk_kernel(x::Float64)
c10 = 2.51069683420950419527139e-08
c9 = 2.76286166770270649116855e-07
c8 = 2.75572496725023574143864e-06
c7 = 2.48014973989819794114153e-05
c6 = 0.000198412698809069797676111
c5 = 0.0013888888939977128960529
c4 = 0.00833333333332371417601081
c3 = 0.0416666666665409524128449
c2 = 0.166666666666666740681535
c1 = 0.500000000000000999200722
return @horner x c1 c2 c3 c4 c5 c6 c7 c8 c9 c10
end
@inline function expk_kernel(x::Float32)
c5 = 0.00136324646882712841033936f0
c4 = 0.00836596917361021041870117f0
c3 = 0.0416710823774337768554688f0
c2 = 0.166665524244308471679688f0
c1 = 0.499999850988388061523438f0
return @horner x c1 c2 c3 c4 c5
end
@inline function expk(d::Double{T}) where {T<:Union{Float32,Float64}}
q = round(T(d) * T(MLN2E))
qi = unsafe_trunc(Int, q)
s = dadd(d, -q * L2U(T))
s = dadd(s, -q * L2L(T))
s = dnormalize(s)
u = expk_kernel(T(s))
t = dadd(s, dmul(dsqu(s), u))
t = dadd(T(1.0), t)
u = ldexpk(T(t), qi)
(d.hi < under_expk(T)) && (u = T(0.0))
return u
end
@inline function expk2_kernel(x::Double{Float64})
c11 = 0.1602472219709932072e-9
c10 = 0.2092255183563157007e-8
c9 = 0.2505230023782644465e-7
c8 = 0.2755724800902135303e-6
c7 = 0.2755731892386044373e-5
c6 = 0.2480158735605815065e-4
c5 = 0.1984126984148071858e-3
c4 = 0.1388888888886763255e-2
c3 = 0.8333333333333347095e-2
c2 = 0.4166666666666669905e-1
c1 = 0.1666666666666666574e0
u = @horner x.hi c2 c3 c4 c5 c6 c7 c8 c9 c10 c11
return dadd(dmul(x, u), c1)
end
@inline function expk2_kernel(x::Double{Float32})
c5 = 0.1980960224f-3
c4 = 0.1394256484f-2
c3 = 0.8333456703f-2
c2 = 0.4166637361f-1
c1 = 0.166666659414234244790680580464f0
u = @horner x.hi c2 c3 c4 c5
return dadd(dmul(x, u), c1)
end
@inline function expk2(d::Double{T}) where {T<:Union{Float32,Float64}}
q = round(T(d) * T(MLN2E))
qi = unsafe_trunc(Int, q)
s = dadd(d, -q * L2U(T))
s = dadd(s, -q * L2L(T))
t = expk2_kernel(s)
t = dadd(dmul(s, t), T(0.5))
t = dadd(s, dmul(dsqu(s), t))
t = dadd(T(1.0), t)
t = Double(ldexp2k(t.hi, qi), ldexp2k(t.lo, qi))
(d.hi < under_expk(T)) && (t = Double(T(0.0)))
return t
end
@inline function logk2_kernel(x::Float64)
c8 = 0.13860436390467167910856
c7 = 0.131699838841615374240845
c6 = 0.153914168346271945653214
c5 = 0.181816523941564611721589
c4 = 0.22222224632662035403996
c3 = 0.285714285511134091777308
c2 = 0.400000000000914013309483
c1 = 0.666666666666664853302393
return @horner x c1 c2 c3 c4 c5 c6 c7 c8
end
@inline function logk2_kernel(x::Float32)
c4 = 0.240320354700088500976562f0
c3 = 0.285112679004669189453125f0
c2 = 0.400007992982864379882812f0
c1 = 0.666666686534881591796875f0
return @horner x c1 c2 c3 c4
end
@inline function logk2(d::Double{T}) where {T<:Union{Float32,Float64}}
e = ilogbk(d.hi * T(1.0/0.75))
m = scale(d, pow2i(T, -e))
x = ddiv(dsub2(m, T(1.0)), dadd2(m, T(1.0)))
x2 = dsqu(x)
t = logk2_kernel(x2.hi)
s = dmul(MDLN2(T), T(e))
s = dadd(s, scale(x, T(2.0)))
s = dadd(s, dmul(dmul(x2, x), t))
return s
end
@inline function logk_kernel(x::Double{Float64})
c10 = 0.116255524079935043668677
c9 = 0.103239680901072952701192
c8 = 0.117754809412463995466069
c7 = 0.13332981086846273921509
c6 = 0.153846227114512262845736
c5 = 0.181818180850050775676507
c4 = 0.222222222230083560345903
c3 = 0.285714285714249172087875
c2 = 0.400000000000000077715612
c1 = Double(0.666666666666666629659233, 3.80554962542412056336616e-17)
dadd2(dmul(x, @horner x.hi c2 c3 c4 c5 c6 c7 c8 c9 c10), c1)
end
@inline function logk_kernel(x::Double{Float32})
c4 = 0.240320354700088500976562f0
c3 = 0.285112679004669189453125f0
c2 = 0.400007992982864379882812f0
c1 = Double(0.66666662693023681640625f0, 3.69183861259614332084311f-9)
dadd2(dmul(x, @horner x.hi c2 c3 c4), c1)
end
@inline function logk(d::T) where {T<:Union{Float32,Float64}}
o = d < floatmin(T)
o && (d *= T(Int64(1) << 32) * T(Int64(1) << 32))
e = ilogb2k(d * T(1.0/0.75))
m = ldexp3k(d, -e)
o && (e -= 64)
x = ddiv(dsub2(m, T(1.0)), dadd2(T(1.0), m))
x2 = dsqu(x)
t = logk_kernel(x2)
s = dmul(MDLN2(T), T(e))
s = dadd(s, scale(x, T(2.0)))
s = dadd(s, dmul(dmul(x2, x), t))
return s
end
| SLEEF | https://github.com/musm/SLEEF.jl.git |
|
[
"MIT"
] | 0.5.2 | 512b75d09aab52e93192e68de612fc472f001979 | code | 21723 | # exported trigonometric functions
"""
sin(x)
Compute the sine of `x`, where the output is in radians.
"""
function sin end
"""
cos(x)
Compute the cosine of `x`, where the output is in radians.
"""
function cos end
@inline function sincos_kernel(x::Double{Float64})
c8 = 2.72052416138529567917983e-15
c7 = -7.64292594113954471900203e-13
c6 = 1.60589370117277896211623e-10
c5 = -2.5052106814843123359368e-08
c4 = 2.75573192104428224777379e-06
c3 = -0.000198412698412046454654947
c2 = 0.00833333333333318056201922
c1 = -0.166666666666666657414808
return dadd(c1, x.hi * (@horner x.hi c2 c3 c4 c5 c6 c7 c8))
end
@inline function sincos_kernel(x::Double{Float32})
c4 = 2.6083159809786593541503f-06
c3 = -0.0001981069071916863322258f0
c2 = 0.00833307858556509017944336f0
c1 = -0.166666597127914428710938f0
return dadd(c1, x.hi * (@horner x.hi c2 c3 c4))
end
function sin(d::T) where {T<:Float64}
qh = trunc(d * (T(M_1_PI) / (1 << 24)))
ql = round(d * T(M_1_PI) - qh * (1 << 24))
s = dadd2(d, qh * (-PI_A(T) * (1 << 24)))
s = dadd2(s, ql * (-PI_A(T) ))
s = dadd2(s, qh * (-PI_B(T) * (1 << 24)))
s = dadd2(s, ql * (-PI_B(T) ))
s = dadd2(s, qh * (-PI_C(T) * (1 << 24)))
s = dadd2(s, ql * (-PI_C(T) ))
s = dadd2(s, (qh * (1 << 24) + ql) * - PI_D(T))
t = s
s = dsqu(s)
w = sincos_kernel(s)
v = dmul(t, dadd(T(1.0), dmul(w, s)))
u = T(v)
qli = unsafe_trunc(Int, ql)
qli & 1 != 0 && (u = -u)
!isinf(d) && (isnegzero(d) || abs(d) > TRIG_MAX(T)) && (u = T(-0.0))
return u
end
function sin(d::T) where {T<:Float32}
q = round(d * T(M_1_PI))
s = dadd2(d, q * -PI_A(T))
s = dadd2(s, q * -PI_B(T))
s = dadd2(s, q * -PI_C(T))
s = dadd2(s, q * -PI_D(T))
t = s
s = dsqu(s)
w = sincos_kernel(s)
v = dmul(t, dadd(T(1.0), dmul(w, s)))
u = T(v)
qi = unsafe_trunc(Int, q)
qi & 1 != 0 && (u = -u)
!isinf(d) && (isnegzero(d) || abs(d) > TRIG_MAX(T)) && (u = T(-0.0))
return u
end
function cos(d::T) where {T<:Float64}
d = abs(d)
qh = trunc(d * (T(M_1_PI) / (1 << 23)) - T(0.5) * (T(M_1_PI) / (1 << 23)))
ql = 2*round(d * T(M_1_PI) - T(0.5) - qh * (1 << 23)) + 1
s = dadd2(d, qh * (-PI_A(T)* T(0.5) * (1 << 24)))
s = dadd2(s, ql * (-PI_A(T)* T(0.5) ))
s = dadd2(s, qh * (-PI_B(T)* T(0.5) * (1 << 24)))
s = dadd2(s, ql * (-PI_B(T)* T(0.5) ))
s = dadd2(s, qh * (-PI_C(T)* T(0.5) * (1 << 24)))
s = dadd2(s, ql * (-PI_C(T)* T(0.5) ))
s = dadd2(s, (qh * (1 << 24) + ql) * (-PI_D(T) * T(0.5)))
t = s
s = dsqu(s)
w = sincos_kernel(s)
v = dmul(t, dadd(T(1.0), dmul(w, s)))
u = T(v)
qli = unsafe_trunc(Int, ql)
qli & 2 == 0 && (u = -u)
!isinf(d) && (d > TRIG_MAX(T)) && (u = T(0.0))
return u
end
function cos(d::T) where {T<:Float32}
d = abs(d)
q = 1 + 2*round(d * T(M_1_PI) - T(0.5))
s = dadd2(d, q * -PI_A(T)* T(0.5))
s = dadd2(s, q * -PI_B(T)* T(0.5))
s = dadd2(s, q * -PI_C(T)* T(0.5))
s = dadd2(s, q * -PI_D(T)* T(0.5))
t = s
s = dsqu(s)
w = sincos_kernel(s)
v = dmul(t, dadd(T(1.0), dmul(w, s)))
u = T(v)
qi = unsafe_trunc(Int, q)
qi & 2 == 0 && (u = -u)
!isinf(d) && (d > TRIG_MAX(T)) && (u = T(0.0))
return u
end
"""
sin_fast(x)
Compute the sine of `x`, where the output is in radians.
"""
function sin_fast end
"""
cos_fast(x)
Compute the cosine of `x`, where the output is in radians.
"""
function cos_fast end
# Argument is first reduced to the domain 0 < s < Ο/4
# We return the correct sign using `q & 1 != 0` i.e. q is odd (this works for
# positive and negative q) and if this condition is true we flip the sign since
# we are now in the negative branch of sin(x). Recall that q is just the integer
# part of d/Ο and thus we can determine the correct sign using this information.
@inline function sincos_fast_kernel(x::Float64)
c9 = -7.97255955009037868891952e-18
c8 = 2.81009972710863200091251e-15
c7 = -7.64712219118158833288484e-13
c6 = 1.60590430605664501629054e-10
c5 = -2.50521083763502045810755e-08
c4 = 2.75573192239198747630416e-06
c3 = -0.000198412698412696162806809
c2 = 0.00833333333333332974823815
c1 = -0.166666666666666657414808
return @horner x c1 c2 c3 c4 c5 c6 c7 c8 c9
end
@inline function sincos_fast_kernel(x::Float32)
c4 = 2.6083159809786593541503f-06
c3 = -0.0001981069071916863322258f0
c2 = 0.00833307858556509017944336f0
c1 = -0.166666597127914428710938f0
return @horner x c1 c2 c3 c4
end
function sin_fast(d::T) where {T<:Float64}
t = d
qh = trunc(d * (T(M_1_PI) / (1 << 24)))
ql = round(d * T(M_1_PI) - qh * (1 << 24))
d = muladd(qh , -PI_A(T) * (1 << 24) , d)
d = muladd(ql , -PI_A(T) , d)
d = muladd(qh , -PI_B(T) * (1 << 24) , d)
d = muladd(ql , -PI_B(T) , d)
d = muladd(qh , -PI_C(T) * (1 << 24) , d)
d = muladd(ql , -PI_C(T) , d)
d = muladd(qh * (1 << 24) + ql, -PI_D(T), d)
s = d * d
qli = unsafe_trunc(Int, ql)
qli & 1 != 0 && (d = -d)
u = sincos_fast_kernel(s)
u = muladd(s, u * d, d)
!isinf(t) && (isnegzero(t) || abs(t) > TRIG_MAX(T)) && (u = T(-0.0))
return u
end
function sin_fast(d::T) where {T<:Float32}
t = d
q = round(d * T(M_1_PI))
d = muladd(q , -PI_A(T), d)
d = muladd(q , -PI_B(T), d)
d = muladd(q , -PI_C(T), d)
d = muladd(q , -PI_D(T), d)
s = d * d
qli = unsafe_trunc(Int, q)
qli & 1 != 0 && (d = -d)
u = sincos_fast_kernel(s)
u = muladd(s, u * d, d)
!isinf(t) && (isnegzero(t) || abs(t) > TRIG_MAX(T)) && (u = T(-0.0))
return u
end
function cos_fast(d::T) where {T<:Float64}
t = d
qh = trunc(d * (T(M_1_PI) / (1 << 23)) - T(0.5) * (T(M_1_PI) / (1 << 23)))
ql = 2*round(d * T(M_1_PI) - T(0.5) - qh * (1 << 23)) + 1
d = muladd(qh , -PI_A(T) * T(0.5) * (1 << 24) , d)
d = muladd(ql , -PI_A(T) * T(0.5) , d)
d = muladd(qh , -PI_B(T) * T(0.5) * (1 << 24) , d)
d = muladd(ql , -PI_B(T) * T(0.5) , d)
d = muladd(qh , -PI_C(T) * T(0.5) * (1 << 24) , d)
d = muladd(ql , -PI_C(T) * T(0.5) , d)
d = muladd(qh * (1 << 24) + ql, -PI_D(T) * T(0.5), d)
s = d * d
qli = unsafe_trunc(Int, ql)
qli & 2 == 0 && (d = -d)
u = sincos_fast_kernel(s)
u = muladd(s, u * d, d)
!isinf(t) && (abs(t) > TRIG_MAX(T)) && (u = T(0.0))
return u
end
function cos_fast(d::T) where {T<:Float32}
t = d
q = 1 + 2*round(d * T(M_1_PI) - T(0.5))
d = muladd(q, -PI_A(T) * T(0.5), d)
d = muladd(q, -PI_B(T) * T(0.5), d)
d = muladd(q, -PI_C(T) * T(0.5), d)
d = muladd(q, -PI_D(T) * T(0.5), d)
s = d * d
qi = unsafe_trunc(Int, q)
qi & 2 == 0 && (d = -d)
u = sincos_fast_kernel(s)
u = muladd(s, u * d, d)
!isinf(t) && (abs(t) > TRIG_MAX(T)) && (u = T(0.0))
return u
end
"""
sincos(x)
Compute the sin and cosine of `x` simultaneously, where the output is in
radians, returning a tuple.
"""
function sincos end
"""
sincos_fast(x)
Compute the sin and cosine of `x` simultaneously, where the output is in
radians, returning a tuple.
"""
function sincos_fast end
@inline function sincos_a_kernel(x::Float64)
a6 = 1.58938307283228937328511e-10
a5 = -2.50506943502539773349318e-08
a4 = 2.75573131776846360512547e-06
a3 = -0.000198412698278911770864914
a2 = 0.0083333333333191845961746
a1 = -0.166666666666666130709393
return @horner x a1 a2 a3 a4 a5 a6
end
@inline function sincos_a_kernel(x::Float32)
a3 = -0.000195169282960705459117889f0
a2 = 0.00833215750753879547119141f0
a1 = -0.166666537523269653320312f0
return @horner x a1 a2 a3
end
@inline function sincos_b_kernel(x::Float64)
b7 = -1.13615350239097429531523e-11
b6 = 2.08757471207040055479366e-09
b5 = -2.75573144028847567498567e-07
b4 = 2.48015872890001867311915e-05
b3 = -0.00138888888888714019282329
b2 = 0.0416666666666665519592062
b1 = -0.50
return @horner x b1 b2 b3 b4 b5 b6 b7
end
@inline function sincos_b_kernel(x::Float32)
b5 = -2.71811842367242206819355f-07
b4 = 2.47990446951007470488548f-05
b3 = -0.00138888787478208541870117f0
b2 = 0.0416666641831398010253906f0
b1 = -0.5f0
return @horner x b1 b2 b3 b4 b5
end
function sincos_fast(d::T) where {T<:Float64}
s = d
qh = trunc(d * ((2 * T(M_1_PI)) / (1 << 24)))
ql = round(d * (2 * T(M_1_PI)) - qh * (1 << 24))
s = muladd(qh, -PI_A(T) * T(0.5) * (1 << 24), s)
s = muladd(ql, -PI_A(T) * T(0.5), s)
s = muladd(qh, -PI_B(T) * T(0.5) * (1 << 24), s)
s = muladd(ql, -PI_B(T) * T(0.5), s)
s = muladd(qh, -PI_C(T) * T(0.5) * (1 << 24), s)
s = muladd(ql, -PI_C(T) * T(0.5), s)
s = muladd(qh * (1 << 24) + ql, -PI_D(T) * 0.5, s)
t = s
s = s * s
u = sincos_a_kernel(s)
u = u * s * t
rx = t + u
isnegzero(d) && (rx = T(-0.0))
u = sincos_b_kernel(s)
ry = u * s + T(1.0)
qli = unsafe_trunc(Int, ql)
qli & 1 != 0 && (s = ry; ry = rx; rx = s)
qli & 2 != 0 && (rx = -rx)
(qli + 1) & 2 != 0 && (ry = -ry)
abs(d) > TRIG_MAX(T) && (rx = ry = T(0.0))
isinf(d) && (rx = ry = T(NaN))
return (rx, ry)
end
function sincos_fast(d::T) where {T<:Float32}
s = d
q = round(d * (2 * T(M_1_PI)))
s = muladd(q, -PI_A(T) * T(0.5), s)
s = muladd(q, -PI_B(T) * T(0.5), s)
s = muladd(q, -PI_C(T) * T(0.5), s)
s = muladd(q, -PI_D(T) * T(0.5), s)
t = s
s = s * s
u = sincos_a_kernel(s)
u = u * s * t
rx = t + u
isnegzero(d) && (rx = T(-0.0))
u = sincos_b_kernel(s)
ry = u * s + T(1.0)
qi = unsafe_trunc(Int, q)
qi & 1 != 0 && (s = ry; ry = rx; rx = s)
qi & 2 != 0 && (rx = -rx)
(qi + 1) & 2 != 0 && (ry = -ry)
abs(d) > TRIG_MAX(T) && (rx = ry = T(0.0))
isinf(d) && (rx = ry = T(NaN))
return (rx, ry)
end
function sincos(d::T) where {T<:Float64}
qh = trunc(d * ((2 * T(M_1_PI)) / (1 << 24)))
ql = round(d * (2 * T(M_1_PI)) - qh * (1 << 24))
s = dadd2(d, qh * (-PI_A(T) * T(0.5) * (1 << 24)))
s = dadd2(s, ql * (-PI_A(T) * T(0.5) ))
s = dadd2(s, qh * (-PI_B(T) * T(0.5) * (1 << 24)))
s = dadd2(s, ql * (-PI_B(T) * T(0.5) ))
s = dadd2(s, qh * (-PI_C(T) * T(0.5) * (1 << 24)))
s = dadd2(s, ql * (-PI_C(T) * T(0.5) ))
s = dadd2(s, (qh * (1 << 24) + ql) * (-PI_D(T) * T(0.5)))
t = s
s = dsqu(s)
sx = T(s)
u = sincos_a_kernel(sx)
u *= sx * t.hi
v = dadd(t, u)
rx = T(v)
isnegzero(d) && (rx = T(-0.0))
u = sincos_b_kernel(sx)
v = dadd(T(1.0), dmul(sx, u))
ry = T(v)
qli = unsafe_trunc(Int, ql)
qli & 1 != 0 && (u = ry; ry = rx; rx = u)
qli & 2 != 0 && (rx = -rx)
(qli + 1) & 2 != 0 && (ry = -ry)
abs(d) > TRIG_MAX(T) && (rx = ry = T(0.0))
isinf(d) && (rx = ry = T(NaN))
return (rx, ry)
end
function sincos(d::T) where {T<:Float32}
q = round(d * (2 * T(M_1_PI)))
s = dadd2(d, q * (-PI_A(T) * T(0.5)))
s = dadd2(s, q * (-PI_B(T) * T(0.5)))
s = dadd2(s, q * (-PI_C(T) * T(0.5)))
s = dadd2(s, q * (-PI_D(T) * T(0.5)))
t = s
s = dsqu(s)
sx = T(s)
u = sincos_a_kernel(sx)
u *= sx * t.hi
v = dadd(t, u)
rx = T(v)
isnegzero(d) && (rx = T(-0.0))
u = sincos_b_kernel(sx)
v = dadd(T(1.0), dmul(sx, u))
ry = T(v)
qi = unsafe_trunc(Int, q)
qi & 1 != 0 && (u = ry; ry = rx; rx = u)
qi & 2 != 0 && (rx = -rx)
(qi + 1) & 2 != 0 && (ry = -ry)
abs(d) > TRIG_MAX(T) && (rx = ry = T(0.0))
isinf(d) && (rx = ry = T(NaN))
return (rx, ry)
end
"""
tan(x)
Compute the tangent of `x`, where the output is in radians.
"""
function tan end
"""
tan_fast(x)
Compute the tangent of `x`, where the output is in radians.
"""
function tan_fast end
@inline function tan_fast_kernel(x::Float64)
c16 = 9.99583485362149960784268e-06
c15 = -4.31184585467324750724175e-05
c14 = 0.000103573238391744000389851
c13 = -0.000137892809714281708733524
c12 = 0.000157624358465342784274554
c11 = -6.07500301486087879295969e-05
c10 = 0.000148898734751616411290179
c9 = 0.000219040550724571513561967
c8 = 0.000595799595197098359744547
c7 = 0.00145461240472358871965441
c6 = 0.0035923150771440177410343
c5 = 0.00886321546662684547901456
c4 = 0.0218694899718446938985394
c3 = 0.0539682539049961967903002
c2 = 0.133333333334818976423364
c1 = 0.333333333333320047664472
return @horner x c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13 c14 c15 c16
end
@inline function tan_fast_kernel(x::Float32)
c7 = 0.00446636462584137916564941f0
c6 = -8.3920182078145444393158f-05
c5 = 0.0109639242291450500488281f0
c4 = 0.0212360303848981857299805f0
c3 = 0.0540687143802642822265625f0
c2 = 0.133325666189193725585938f0
c1 = 0.33333361148834228515625f0
return @horner x c1 c2 c3 c4 c5 c6 c7
end
function tan_fast(d::T) where {T<:Float64}
qh = trunc(d * (2 * T(M_1_PI)) / (1 << 24))
ql = round(d * (2 * T(M_1_PI)) - qh * (1 << 24))
x = muladd(qh, -PI_A(T) * T(0.5) * (1 << 24), d)
x = muladd(ql, -PI_A(T) * T(0.5), x)
x = muladd(qh, -PI_B(T) * T(0.5) * (1 << 24), x)
x = muladd(ql, -PI_B(T) * T(0.5), x)
x = muladd(qh, -PI_C(T) * T(0.5) * (1 << 24), x)
x = muladd(ql, -PI_C(T) * T(0.5), x)
x = muladd(qh * (1 << 24) + ql, -PI_D(T) * T(0.5), x)
s = x * x
qli = unsafe_trunc(Int, ql)
qli & 1 != 0 && (x = -x)
u = tan_fast_kernel(s)
u = muladd(s, u * x, x)
qli & 1 != 0 && (u = T(1.0) / u)
!isinf(d) && (isnegzero(d) || abs(d) > TRIG_MAX(T)) && (u = T(-0.0))
return u
end
function tan_fast(d::T) where {T<:Float32}
q = round(d * (2 * T(M_1_PI)))
x = d
x = muladd(q, -PI_A(T) * T(0.5), x)
x = muladd(q, -PI_B(T) * T(0.5), x)
x = muladd(q, -PI_C(T) * T(0.5), x)
x = muladd(q, -PI_D(T) * T(0.5), x)
s = x * x
qi = unsafe_trunc(Int, q)
qi & 1 != 0 && (x = -x)
u = tan_fast_kernel(s)
u = muladd(s, u * x, x)
qi & 1 != 0 && (u = T(1.0) / u)
!isinf(d) && (isnegzero(d) || abs(d) > TRIG_MAX(T)) && (u = T(-0.0))
return u
end
@inline function tan_kernel(x::Double{Float64})
c15 = 1.01419718511083373224408e-05
c14 = -2.59519791585924697698614e-05
c13 = 5.23388081915899855325186e-05
c12 = -3.05033014433946488225616e-05
c11 = 7.14707504084242744267497e-05
c10 = 8.09674518280159187045078e-05
c9 = 0.000244884931879331847054404
c8 = 0.000588505168743587154904506
c7 = 0.00145612788922812427978848
c6 = 0.00359208743836906619142924
c5 = 0.00886323944362401618113356
c4 = 0.0218694882853846389592078
c3 = 0.0539682539781298417636002
c2 = 0.133333333333125941821962
c1 = 0.333333333333334980164153
return dadd(c1, x.hi * (@horner x.hi c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13 c14 c15))
end
@inline function tan_kernel(x::Double{Float32})
c7 = 0.00446636462584137916564941f0
c6 = -8.3920182078145444393158f-05
c5 = 0.0109639242291450500488281f0
c4 = 0.0212360303848981857299805f0
c3 = 0.0540687143802642822265625f0
c2 = 0.133325666189193725585938f0
c1 = 0.33333361148834228515625f0
return dadd(c1, x.hi * (@horner x.hi c2 c3 c4 c5 c6 c7))
end
function tan(d::T) where {T<:Float64}
qh = trunc(d * (T(M_2_PI)) / (1 << 24))
s = dadd2(dmul(Double(T(M_2_PI_H), T(M_2_PI_L)), d), (d < 0 ? T(-0.5) : T(0.5)) - qh * (1 << 24))
ql = trunc(T(s))
s = dadd2(d, qh * (-PI_A(T) * T(0.5) * (1 << 24)))
s = dadd2(s, ql * (-PI_A(T) * T(0.5) ))
s = dadd2(s, qh * (-PI_B(T) * T(0.5) * (1 << 24)))
s = dadd2(s, ql * (-PI_B(T) * T(0.5) ))
s = dadd2(s, qh * (-PI_C(T) * T(0.5) * (1 << 24)))
s = dadd2(s, ql * (-PI_C(T) * T(0.5) ))
s = dadd2(s, (qh * (1 << 24) + ql) * (-PI_D(T) * T(0.5)))
qli = unsafe_trunc(Int, ql)
qli & 1 != 0 && (s = -s)
t = s
s = dsqu(s)
u = tan_kernel(s)
x = dadd(T(1.0), dmul(u, s))
x = dmul(t, x)
qli & 1 != 0 && (x = drec(x))
v = T(x)
!isinf(d) && (isnegzero(d) || abs(d) > TRIG_MAX(T)) && (v = T(-0.0))
return v
end
function tan(d::T) where {T<:Float32}
q = round(d * (T(M_2_PI)))
s = dadd2(d, q * -PI_A(T) * T(0.5))
s = dadd2(s, q * -PI_B(T) * T(0.5))
s = dadd2(s, q * -PI_C(T) * T(0.5))
s = dadd2(s, q * -PI_XD(T) * T(0.5))
s = dadd2(s, q * -PI_XE(T) * T(0.5))
qi = unsafe_trunc(Int, q)
qi & 1 != 0 && (s = -s)
t = s
s = dsqu(s)
s = dnormalize(s)
u = tan_kernel(s)
x = dadd(T(1.0), dmul(u, s))
x = dmul(t, x)
qi & 1 != 0 && (x = drec(x))
v = T(x)
!isinf(d) && (isnegzero(d) || abs(d) > TRIG_MAX(T)) && (v = T(-0.0))
return v
end
"""
atan(x)
Compute the inverse tangent of `x`, where the output is in radians.
"""
function atan(x::T) where {T<:Union{Float32,Float64}}
u = T(atan2k(Double(abs(x)), Double(T(1))))
isinf(x) && (u = T(PI_2))
flipsign(u, x)
end
@inline function atan_fast_kernel(x::Float64)
c19 = -1.88796008463073496563746e-05
c18 = 0.000209850076645816976906797
c17 = -0.00110611831486672482563471
c16 = 0.00370026744188713119232403
c15 = -0.00889896195887655491740809
c14 = 0.016599329773529201970117
c13 = -0.0254517624932312641616861
c12 = 0.0337852580001353069993897
c11 = -0.0407629191276836500001934
c10 = 0.0466667150077840625632675
c9 = -0.0523674852303482457616113
c8 = 0.0587666392926673580854313
c7 = -0.0666573579361080525984562
c6 = 0.0769219538311769618355029
c5 = -0.090908995008245008229153
c4 = 0.111111105648261418443745
c3 = -0.14285714266771329383765
c2 = 0.199999999996591265594148
c1 = -0.333333333333311110369124
return @horner x c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13 c14 c15 c16 c17 c18 c19
end
@inline function atan_fast_kernel(x::Float32)
c8 = 0.00282363896258175373077393f0
c7 = -0.0159569028764963150024414f0
c6 = 0.0425049886107444763183594f0
c5 = -0.0748900920152664184570312f0
c4 = 0.106347933411598205566406f0
c3 = -0.142027363181114196777344f0
c2 = 0.199926957488059997558594f0
c1 = -0.333331018686294555664062f0
return @horner x c1 c2 c3 c4 c5 c6 c7 c8
end
"""
atan_fast(x)
Compute the inverse tangent of `x`, where the output is in radians.
"""
function atan_fast(x::T) where {T<:Union{Float32,Float64}}
q = 0
if signbit(x)
x = -x
q = 2
end
if x > 1
x = 1 / x
q |= 1
end
t = x * x
u = atan_fast_kernel(t)
t = x + x * t * u
q & 1 != 0 && (t = T(PI_2) - t)
q & 2 != 0 && (t = -t)
return t
end
const under_atan2(::Type{Float64}) = 5.5626846462680083984e-309
const under_atan2(::Type{Float32}) = 2.9387372783541830947f-39
"""
atan(x, y)
Compute the inverse tangent of `x/y`, using the signs of both `x` and `y` to determine the quadrant of the return value.
"""
function atan(x::T, y::T) where {T<:Union{Float32,Float64}}
abs(y) < under_atan2(T) && (x *= T(Int64(1) << 53); y *= T(Int64(1) << 53))
r = T(atan2k(Double(abs(x)), Double(y)))
r = flipsign(r, y)
if isinf(y) || y == 0
r = T(PI_2) - (isinf(y) ? _sign(y) * T(PI_2) : T(0.0))
end
if isinf(x)
r = T(PI_2) - (isinf(y) ? _sign(y) * T(PI_4) : T(0.0))
end
if x == 0
r = _sign(y) == -1 ? T(M_PI) : T(0.0)
end
return isnan(y) || isnan(x) ? T(NaN) : flipsign(r, x)
end
"""
atan2_fast(x, y)
Compute the inverse tangent of `x/y`, using the signs of both `x` and `y` to determine the quadrant of the return value.
"""
function atan_fast(x::T, y::T) where {T<:Union{Float32,Float64}}
r = atan2k_fast(abs(x), y)
r = flipsign(r, y)
if isinf(y) || y == 0
r = T(PI_2) - (isinf(y) ? _sign(y) * T(PI_2) : T(0))
end
if isinf(x)
r = T(PI_2) - (isinf(y) ? _sign(y) * T(PI_4) : T(0))
end
if x == 0
r = _sign(y) == -1 ? T(M_PI) : T(0)
end
return isnan(y) || isnan(x) ? T(NaN) : flipsign(r, x)
end
"""
asin(x)
Compute the inverse sine of `x`, where the output is in radians.
"""
function asin(x::T) where {T<:Union{Float32,Float64}}
d = atan2k(Double(abs(x)), dsqrt(dmul(dadd(T(1), x), dsub(T(1), x))))
u = T(d)
abs(x) == 1 && (u = T(PI_2))
flipsign(u, x)
end
"""
asin_fast(x)
Compute the inverse sine of `x`, where the output is in radians.
"""
function asin_fast(x::T) where {T<:Union{Float32,Float64}}
flipsign(atan2k_fast(abs(x), _sqrt((1 + x) * (1 - x))), x)
end
"""
acos(x)
Compute the inverse cosine of `x`, where the output is in radians.
"""
function acos(x::T) where {T<:Union{Float32,Float64}}
d = atan2k(dsqrt(dmul(dadd(T(1), x), dsub(T(1), x))), Double(abs(x)))
d = flipsign(d, x)
abs(x) == 1 && (d = Double(T(0)))
signbit(x) && (d = dadd(MDPI(T), d))
return T(d)
end
"""
acos_fast(x)
Compute the inverse cosine of `x`, where the output is in radians.
"""
function acos_fast(x::T) where {T<:Union{Float32,Float64}}
flipsign(atan2k_fast(_sqrt((1 + x) * (1 - x)), abs(x)), x) + (signbit(x) ? T(M_PI) : T(0))
end
| SLEEF | https://github.com/musm/SLEEF.jl.git |
|
[
"MIT"
] | 0.5.2 | 512b75d09aab52e93192e68de612fc472f001979 | code | 1449 | ## utility functions mainly used by the private math functions in priv.jl
function is_fma_fast end
for T in (Float32, Float64)
@eval is_fma_fast(::Type{$T}) = $(muladd(nextfloat(one(T)), nextfloat(one(T)), -nextfloat(one(T), 2)) != zero(T))
end
const FMA_FAST = is_fma_fast(Float64) && is_fma_fast(Float32)
@inline isnegzero(x::T) where {T<:AbstractFloat} = x === T(-0.0)
@inline ispinf(x::T) where {T<:AbstractFloat} = x == T(Inf)
@inline isninf(x::T) where {T<:AbstractFloat} = x == T(-Inf)
# _sign emits better native code than sign but does not properly handle the Inf/NaN cases
@inline _sign(d::T) where {T<:AbstractFloat} = flipsign(one(T), d)
@inline integer2float(::Type{Float64}, m::Int) = reinterpret(Float64, (m % Int64) << significand_bits(Float64))
@inline integer2float(::Type{Float32}, m::Int) = reinterpret(Float32, (m % Int32) << significand_bits(Float32))
@inline float2integer(d::Float64) = (reinterpret(Int64, d) >> significand_bits(Float64)) % Int
@inline float2integer(d::Float32) = (reinterpret(Int32, d) >> significand_bits(Float32)) % Int
@inline pow2i(::Type{T}, q::Int) where {T<:Union{Float32,Float64}} = integer2float(T, q + exponent_bias(T))
# sqrt without the domain checks which we don't need since we handle the checks ourselves
if VERSION < v"0.7-"
_sqrt(x::T) where {T<:Union{Float32,Float64}} = Base.sqrt_llvm_fast(x)
else
_sqrt(x::T) where {T<:Union{Float32,Float64}} = Base.sqrt_llvm(x)
end
| SLEEF | https://github.com/musm/SLEEF.jl.git |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.