licenses
sequencelengths
1
3
version
stringclasses
677 values
tree_hash
stringlengths
40
40
path
stringclasses
1 value
type
stringclasses
2 values
size
stringlengths
2
8
text
stringlengths
25
67.1M
package_name
stringlengths
2
41
repo
stringlengths
33
86
[ "MIT" ]
0.2.0
b14763be7e90836eb56370fda4ff2fab25f5892a
code
211
append!(empty!(LOAD_PATH), Base.DEFAULT_LOAD_PATH) using Pkg exampledir = joinpath(@__DIR__, "..", "examples") Pkg.activate(exampledir) Pkg.add("Literate") include(joinpath(exampledir, "generate_notebooks.jl"))
DirectTrajectoryOptimization
https://github.com/thowell/DirectTrajectoryOptimization.jl.git
[ "MIT" ]
0.2.0
b14763be7e90836eb56370fda4ff2fab25f5892a
code
626
using Literate function preprocess(str) str = replace(str, "# PREAMBLE" => "") str = replace(str, "# PKG_SETUP" => """ using Pkg Pkg.activate(@__DIR__) Pkg.instantiate() """) return str end exampledir = @__DIR__ for subdir in readdir(exampledir) root = joinpath(exampledir, subdir) isdir(root) || continue @show subdir for file in readdir(root) name, ext = splitext(file) lowercase(ext) == ".jl" || continue absfile = joinpath(root, file) @show absfile Literate.notebook(absfile, root, execute=false, preprocess=preprocess) end end
DirectTrajectoryOptimization
https://github.com/thowell/DirectTrajectoryOptimization.jl.git
[ "MIT" ]
0.2.0
b14763be7e90836eb56370fda4ff2fab25f5892a
code
3334
# PREAMBLE # PKG_SETUP # ## Setup using LinearAlgebra using Plots using DirectTrajectoryOptimization # ## horizon T = 101 # ## acrobot num_state = 4 num_action = 1 num_parameter = 0 function acrobot(x, u, w) mass1 = 1.0 inertia1 = 0.33 length1 = 1.0 lengthcom1 = 0.5 mass2 = 1.0 inertia2 = 0.33 length2 = 1.0 lengthcom2 = 0.5 gravity = 9.81 friction1 = 0.1 friction2 = 0.1 function M(x, w) a = (inertia1 + inertia2 + mass2 * length1 * length1 + 2.0 * mass2 * length1 * lengthcom2 * cos(x[2])) b = inertia2 + mass2 * length1 * lengthcom2 * cos(x[2]) c = inertia2 return [a b; b c] end function Minv(x, w) a = (inertia1 + inertia2 + mass2 * length1 * length1 + 2.0 * mass2 * length1 * lengthcom2 * cos(x[2])) b = inertia2 + mass2 * length1 * lengthcom2 * cos(x[2]) c = inertia2 return 1.0 / (a * c - b * b) * [c -b; -b a] end function τ(x, w) a = (-1.0 * mass1 * gravity * lengthcom1 * sin(x[1]) - mass2 * gravity * (length1 * sin(x[1]) + lengthcom2 * sin(x[1] + x[2]))) b = -1.0 * mass2 * gravity * lengthcom2 * sin(x[1] + x[2]) return [a; b] end function C(x, w) a = -2.0 * mass2 * length1 * lengthcom2 * sin(x[2]) * x[4] b = -1.0 * mass2 * length1 * lengthcom2 * sin(x[2]) * x[4] c = mass2 * length1 * lengthcom2 * sin(x[2]) * x[3] d = 0.0 return [a b; c d] end function B(x, w) [0.0; 1.0] end q = view(x, 1:2) v = view(x, 3:4) qdd = Minv(q, w) * (-1.0 * C(x, w) * v + τ(q, w) + B(q, w) * u[1] - [friction1; friction2] .* v) return [x[3]; x[4]; qdd[1]; qdd[2]] end function midpoint_implicit(y, x, u, w) h = 0.05 # timestep y - (x + h * acrobot(0.5 * (x + y), u, w)) end # ## model dt = Dynamics(midpoint_implicit, num_state, num_state, num_action, num_parameter=num_parameter, evaluate_hessian=true) dynamics = [dt for t = 1:T-1] # ## initialization x1 = [0.0; 0.0; 0.0; 0.0] xT = [π; 0.0; 0.0; 0.0] # ## objective ot = (x, u, w) -> 0.1 * dot(x[3:4], x[3:4]) + 0.1 * dot(u, u) oT = (x, u, w) -> 0.1 * dot(x[3:4], x[3:4]) ct = Cost(ot, num_state, num_action, num_parameter=num_parameter) cT = Cost(oT, num_state, 0, num_parameter=num_parameter) objective = [[ct for t = 1:T-1]..., cT] # ## constraints bnd1 = Bound(num_state, num_action) bndt = Bound(num_state, num_action) bndT = Bound(num_state, 0) bounds = [bnd1, [bndt for t = 2:T-1]..., bndT] constraints = [ Constraint((x, u, w) -> x - x1, num_state, num_action), [Constraint() for t = 2:T-1]..., Constraint((x, u, w) -> x - xT, num_state, 0) ] # ## problem solver = Solver(dynamics, objective, constraints, bounds, options=Options{Float64}()) # ## initialize x_interpolation = linear_interpolation(x1, xT, T) u_guess = [1.0 * randn(num_action) for t = 1:T-1] initialize_states!(solver, x_interpolation) initialize_controls!(solver, u_guess) # ## solve @time solve!(solver) # ## solution x_sol, u_sol = get_trajectory(solver) @show x_sol[1] @show x_sol[T] # ## state plot(hcat(x_sol...)') # ## control plot(hcat(u_sol[1:end-1]..., u_sol[end-1])', linetype = :steppost)
DirectTrajectoryOptimization
https://github.com/thowell/DirectTrajectoryOptimization.jl.git
[ "MIT" ]
0.2.0
b14763be7e90836eb56370fda4ff2fab25f5892a
code
2386
# PREAMBLE # PKG_SETUP # ## Setup using DirectTrajectoryOptimization using LinearAlgebra using Plots # ## horizon T = 51 # ## car num_state = 3 num_action = 2 num_parameter = 0 function car(x, u, w) [u[1] * cos(x[3]); u[1] * sin(x[3]); u[2]] end function midpoint_implicit(y, x, u, w) h = 0.1 # timestep y - (x + h * car(0.5 * (x + y), u, w)) end # ## model dt = Dynamics(midpoint_implicit, num_state, num_state, num_action, num_parameter=num_parameter) dynamics = [dt for t = 1:T-1] # ## initialization x1 = [0.0; 0.0; 0.0] xT = [1.0; 1.0; 0.0] # ## objective ot = (x, u, w) -> 0.0 * dot(x - xT, x - xT) + 1.0 * dot(u, u) oT = (x, u, w) -> 0.0 * dot(x - xT, x - xT) ct = Cost(ot, num_state, num_action, num_parameter=num_parameter) cT = Cost(oT, num_state, 0, num_parameter=num_parameter) objective = [[ct for t = 1:T-1]..., cT] # ## constraints action_lower = -0.5 * ones(num_action) action_upper = 0.5 * ones(num_action) bnd1 = Bound(num_state, num_action, state_lower=x1, state_upper=x1, action_lower=action_lower, action_upper=action_upper) bndt = Bound(num_state, num_action, action_lower=action_lower, action_upper=action_upper) bndT = Bound(num_state, 0, state_lower=xT, state_upper=xT) bounds = [bnd1, [bndt for t = 2:T-1]..., bndT] p_obs = [0.5; 0.5] r_obs = 0.1 function obs(x, u, w) e = x[1:2] - p_obs return [r_obs^2.0 - dot(e, e)] end cont = Constraint(obs, num_state, num_action, num_parameter=num_parameter, indices_inequality=collect(1:1)) conT = Constraint(obs, num_state, 0, num_parameter=num_parameter, indices_inequality=collect(1:1)) constraints = [[cont for t = 1:T-1]..., conT] # ## problem solver = Solver(dynamics, objective, constraints, bounds) # ## initialize x_interpolation = linear_interpolation(x1, xT, T) u_guess = [0.001 * randn(num_action) for t = 1:T-1] initialize_states!(solver, x_interpolation) initialize_controls!(solver, u_guess) # ## solve solve!(solver) # ## solution x_sol, u_sol = get_trajectory(solver) @show x_sol[1] @show x_sol[T] # ## state plot(hcat(x_sol...)[1, :], hcat(x_sol...)[2, :], label = "", color = :orange, width=2.0) pts = Plots.partialcircle(0.0, 2.0 * π, 100, r_obs) cx, cy = Plots.unzip(pts) plot!(Shape(cx .+ p_obs[1], cy .+ p_obs[2]), color = :black, label = "", linecolor = :black) # ## control plot(hcat(u_sol[1:end-1]..., u_sol[end-1])', linetype = :steppost)
DirectTrajectoryOptimization
https://github.com/thowell/DirectTrajectoryOptimization.jl.git
[ "MIT" ]
0.2.0
b14763be7e90836eb56370fda4ff2fab25f5892a
code
2532
# PREAMBLE # PKG_SETUP # ## Setup using LinearAlgebra using Plots using DirectTrajectoryOptimization # ## horizon T = 101 # ## cartpole num_state = 4 num_action = 1 num_parameter = 0 function cartpole(x, u, w) mc = 1.0 mp = 0.2 l = 0.5 g = 9.81 q = x[1:2] qd = x[3:4] s = sin(q[2]) c = cos(q[2]) H = [mc+mp mp*l*c; mp*l*c mp*l^2] Hinv = 1.0 / (H[1, 1] * H[2, 2] - H[1, 2] * H[2, 1]) * [H[2, 2] -H[1, 2]; -H[2, 1] H[1, 1]] C = [0 -mp*qd[2]*l*s; 0 0] G = [0, mp*g*l*s] B = [1, 0] qdd = -Hinv * (C*qd + G - B*u[1]) return [qd; qdd] end function rk3_explicit(x, u, w) h = 0.05 # timestep k1 = h * cartpole(x, u, w) k2 = h * cartpole(x + 0.5 * k1, u, w) k3 = h * cartpole(x - k1 + 2.0 * k2, u, w) return x + (k1 + 4.0 * k2 + k3) / 6.0 end function rk3_implicit(y, x, u, w) return y - rk3_explicit(x, u, w) end # ## model dt = Dynamics(rk3_implicit, num_state, num_state, num_action, num_parameter=num_parameter) dyn = [dt for t = 1:T-1] # ## initialization x1 = [0.0; 0.0; 0.0; 0.0] xT = [0.0; π; 0.0; 0.0] # ## objective Q = 1.0e-2 R = 1.0e-1 Qf = 1.0e2 ot = (x, u, w) -> 0.5 * Q * dot(x - xT, x - xT) + 0.5 * R * dot(u, u) oT = (x, u, w) -> 0.5 * Qf * dot(x - xT, x - xT) ct = Cost(ot, num_state, num_action, num_parameter=num_parameter) cT = Cost(oT, num_state, 0, num_parameter=num_parameter) obj = [[ct for t = 1:T-1]..., cT] # ## constraints u_bnd = 3.0 bnd1 = Bound(num_state, num_action, action_lower=[-u_bnd], action_upper=[u_bnd]) bndt = Bound(num_state, num_action, action_lower=[-u_bnd], action_upper=[u_bnd]) bndT = Bound(num_state, 0) bounds = [bnd1, [bndt for t = 2:T-1]..., bndT] cons = [ Constraint((x, u, w) -> x - x1, num_state, num_action), [Constraint() for t = 2:T-1]..., Constraint((x, u, w) -> x - xT, num_state, 0) ] # ## problem solver = Solver(dyn, obj, cons, bounds, options=Options{Float64}()) # ## initialize u_guess = [0.01 * ones(num_action) for t = 1:T-1] x_rollout = [x1] for t = 1:T-1 push!(x_rollout, rk3_explicit(x_rollout[end], u_guess[t], zeros(num_parameter))) end initialize_states!(solver, x_rollout) initialize_controls!(solver, u_guess) # ## solve @time solve!(solver) # ## solution x_sol, u_sol = get_trajectory(solver) @show x_sol[1] @show x_sol[T] # ## state plot(hcat(x_sol...)') # ## control plot(hcat(u_sol[1:end-1]..., u_sol[end-1])', linetype = :steppost)
DirectTrajectoryOptimization
https://github.com/thowell/DirectTrajectoryOptimization.jl.git
[ "MIT" ]
0.2.0
b14763be7e90836eb56370fda4ff2fab25f5892a
code
4037
# PREAMBLE # PKG_SETUP # ## Setup using LinearAlgebra using Plots using DirectTrajectoryOptimization # ## eval_hess_lag = true # ## horizon T = 11 # ## acrobot num_state = 2 num_action = 1 num_parameter = 0 function pendulum(x, u, w) mass = 1.0 length_com = 0.5 gravity = 9.81 damping = 0.1 [ x[2], (u[1] / ((mass * length_com * length_com)) - gravity * sin(x[1]) / length_com - damping * x[2] / (mass * length_com * length_com)) ] end function midpoint_implicit(y, x, u, w) h = 0.05 # timestep y - (x + h * pendulum(0.5 * (x + y), u, w)) end # ## model dt = Dynamics( midpoint_implicit, num_state, num_state, num_action, num_parameter=num_parameter, evaluate_hessian=eval_hess_lag) dynamics = [dt for t = 1:T-1] # ## initialization x1 = [0.0; 0.0] xT = [π; 0.0] # ## objective ot = (x, u, w) -> 0.1 * dot(x[1:2], x[1:2]) + 0.1 * dot(u, u) oT = (x, u, w) -> 0.1 * dot(x[1:2], x[1:2]) ct = Cost(ot, num_state, num_action, num_parameter=num_parameter, evaluate_hessian=eval_hess_lag) cT = Cost(oT, num_state, 0, num_parameter=num_parameter, evaluate_hessian=eval_hess_lag) objective = [[ct for t = 1:T-1]..., cT] # ## constraints bnd1 = Bound(num_state, num_action) bndt = Bound(num_state, num_action) bndT = Bound(num_state, 0) bounds = [bnd1, [bndt for t = 2:T-1]..., bndT] # ## initial con1 = Constraint((x, u, w) -> x - x1, num_state, num_action, evaluate_hessian=eval_hess_lag) conT = Constraint((x, u, w) -> x - xT, num_state, num_action, evaluate_hessian=eval_hess_lag) constraints = [con1, [Constraint() for t = 2:T-1]..., conT] # ## problem solver = Solver(dynamics, objective, constraints, bounds, evaluate_hessian=eval_hess_lag, options=Options{Float64}()) # ## initialize x_interpolation = linear_interpolation(x1, xT, T) u_guess = [1.0 * randn(num_action) for t = 1:T-1] initialize_states!(solver, x_interpolation) initialize_controls!(solver, u_guess) # ## solve @time solve!(solver) # ## solution x_sol, u_sol = get_trajectory(solver) @show x_sol[1] @show x_sol[T] # ## state plot(hcat(x_sol...)') # ## control plot(hcat(u_sol[1:end-1]..., u_sol[end-1])', linetype=:steppost) # DirectTrajectoryOptimization.jl environment # ## tested w/ pendulum example # ## assemble full system # dimensions nz = solver.nlp.num_variables ny = solver.nlp.num_constraint nj = solver.nlp.num_jacobian nh = solver.nlp.num_hessian_lagrangian # variables z = rand(nz) y = rand(ny) # data obj_grad = zeros(nz) con = zeros(ny) con_jac = zeros(nj) hess_lag = zeros(nh) # objective MOI.eval_objective(solver.nlp, z) MOI.eval_objective_gradient(solver.nlp, obj_grad, z) # constraints MOI.eval_constraint(solver.nlp, con, z) MOI.eval_constraint_jacobian(solver.nlp, con_jac, z) solver.nlp.hessian_lagrangian && MOI.eval_hessian_lagrangian(solver.nlp, hess_lag, z, 1.0, y) """ KKT system H = [ ∇²L C' C 0 ] h = [ ∇L c ] """ H = spzeros(nz + ny, nz + ny) h = zeros(nz + ny) # ∇L for i = 1:nz # objective gradient h[i] += obj_grad[i] # C' y cy = 0.0 for j = 1:ny # cy += C[j, i] * y[j] if (j, i) in solver.nlp.jacobian_sparsity cy += C[j, i] * y[j] end end h[i] += cy end # c for j = 1:ny h[nz + j] += con[j] end #TODO: only fill in half? # ∇²L for (i, idx) in enumerate(solver.nlp.hessian_lagrangian_sparsity) H[idx...] = hess_lag[i] end for (i, idx) in enumerate(solver.nlp.jacobian_sparsity) # C H[nz + idx[1], idx[2]] = con_jac[i] # C' H[idx[2], nz + idx[1]] = con_jac[i] end # regularization primal_reg = 1.0e-5 for i = 1:nz H[i, i] += primal_reg end dual_reg = 1.0e-5 for j = 1:ny H[nz + j, nz + j] -= dual_reg end H_dense = Array(H) eigen(H_dense) cond(H_dense) rank(H_dense) using QDLDL H F = qdldl(H) sol = zeros(nz + ny) sol = copy(h) QDLDL.solve!(F, sol) norm(sol - (H \ h), Inf)
DirectTrajectoryOptimization
https://github.com/thowell/DirectTrajectoryOptimization.jl.git
[ "MIT" ]
0.2.0
b14763be7e90836eb56370fda4ff2fab25f5892a
code
693
module DirectTrajectoryOptimization using LinearAlgebra using SparseArrays using Symbolics, IfElse using Parameters using Ipopt using MathOptInterface const MOI = MathOptInterface include("costs.jl") include("constraints.jl") include("bounds.jl") include("general_constraint.jl") include("dynamics.jl") include("options.jl") include("data.jl") include("solver.jl") include("moi.jl") include("utils.jl") # objective export Cost # constraints export Bound, Bounds, Constraint, Constraints, GeneralConstraint # dynamics export Dynamics # solver export Solver, Options, initialize_states!, initialize_controls!, solve!, get_trajectory # utils export linear_interpolation end # module
DirectTrajectoryOptimization
https://github.com/thowell/DirectTrajectoryOptimization.jl.git
[ "MIT" ]
0.2.0
b14763be7e90836eb56370fda4ff2fab25f5892a
code
462
struct Bound{T} state_lower::Vector{T} state_upper::Vector{T} action_lower::Vector{T} action_upper::Vector{T} end function Bound(num_state::Int=0, num_action::Int=0; state_lower=-Inf * ones(num_state), state_upper=Inf * ones(num_state), action_lower=-Inf * ones(num_action), action_upper=Inf * ones(num_action)) return Bound(state_lower, state_upper, action_lower, action_upper) end const Bounds{T} = Vector{Bound{T}}
DirectTrajectoryOptimization
https://github.com/thowell/DirectTrajectoryOptimization.jl.git
[ "MIT" ]
0.2.0
b14763be7e90836eb56370fda4ff2fab25f5892a
code
6133
struct Constraint{T} evaluate::Any jacobian::Any hessian::Any num_state::Int num_action::Int num_parameter::Int num_constraint::Int num_jacobian::Int num_hessian::Int jacobian_sparsity::Vector{Vector{Int}} hessian_sparsity::Vector{Vector{Int}} evaluate_cache::Vector{T} jacobian_cache::Vector{T} hessian_cache::Vector{T} indices_inequality::Vector{Int} end Constraints{T} = Vector{Constraint{T}} where T function Constraint(f::Function, num_state::Int, num_action::Int; num_parameter::Int=0, indices_inequality=collect(1:0), evaluate_hessian=false) #TODO: option to load/save methods @variables x[1:num_state], u[1:num_action], w[1:num_parameter] evaluate = f(x, u, w) jac = Symbolics.sparsejacobian(evaluate, [x; u]) evaluate_func = eval(Symbolics.build_function(evaluate, x, u, w)[2]) jac_func = eval(Symbolics.build_function(jac.nzval, x, u, w)[2]) num_constraint = length(evaluate) num_jacobian = length(jac.nzval) jacobian_sparsity = [findnz(jac)[1:2]...] if evaluate_hessian @variables λ[1:num_constraint] lag_con = dot(λ, evaluate) hessian = Symbolics.sparsehessian(lag_con, [x; u]) hess_func = eval(Symbolics.build_function(hessian.nzval, x, u, w, λ)[2]) hessian_sparsity = [findnz(hessian)[1:2]...] num_hessian = length(hessian.nzval) else hess_func = Expr(:null) hessian_sparsity = [Int[]] num_hessian = 0 end return Constraint( evaluate_func, jac_func, hess_func, num_state, num_action, num_parameter, num_constraint, num_jacobian, num_hessian, jacobian_sparsity, hessian_sparsity, zeros(num_constraint), zeros(num_jacobian), zeros(num_hessian), indices_inequality) end function Constraint() return Constraint( (constraint, state, action, parameter) -> nothing, (jacobian, state, action, parameter) -> nothing, (hessian, state, action, parameter) -> nothing, 0, 0, 0, 0, 0, 0, [Int[], Int[]], [Int[], Int[]], Float64[], Float64[], Float64[], collect(1:0)) end function constraints!(violations, indices, constraints::Constraints{T}, states, actions, parameters) where T for (t, con) in enumerate(constraints) con.evaluate(con.evaluate_cache, states[t], actions[t], parameters[t]) @views violations[indices[t]] .= con.evaluate_cache fill!(con.evaluate_cache, 0.0) # TODO: confirm this is necessary end end function jacobian!(jacobians, indices, constraints::Constraints{T}, states, actions, parameters) where T for (t, con) in enumerate(constraints) con.jacobian(con.jacobian_cache, states[t], actions[t], parameters[t]) @views jacobians[indices[t]] .= con.jacobian_cache fill!(con.jacobian_cache, 0.0) # TODO: confirm this is necessary end end function hessian_lagrangian!(hessians, indices, constraints::Constraints{T}, states, actions, parameters, duals) where T for (t, con) in enumerate(constraints) if !isempty(con.hessian_cache) con.hessian(con.hessian_cache, states[t], actions[t], parameters[t], duals[t]) @views hessians[indices[t]] .+= con.hessian_cache fill!(con.hessian_cache, 0.0) # TODO: confirm this is necessary end end end function sparsity_jacobian(constraints::Constraints{T}, num_state::Vector{Int}, num_action::Vector{Int}; row_shift=0) where T row = Int[] col = Int[] for (t, con) in enumerate(constraints) col_shift = (t > 1 ? (sum(num_state[1:t-1]) + sum(num_action[1:t-1])) : 0) push!(row, (con.jacobian_sparsity[1] .+ row_shift)...) push!(col, (con.jacobian_sparsity[2] .+ col_shift)...) row_shift += con.num_constraint end return collect(zip(row, col)) end function sparsity_hessian(constraints::Constraints{T}, num_state::Vector{Int}, num_action::Vector{Int}) where T row = Int[] col = Int[] for (t, con) in enumerate(constraints) if !isempty(con.hessian_sparsity[1]) shift = (t > 1 ? (sum(num_state[1:t-1]) + sum(num_action[1:t-1])) : 0) push!(row, (con.hessian_sparsity[1] .+ shift)...) push!(col, (con.hessian_sparsity[2] .+ shift)...) end end return collect(zip(row, col)) end num_constraint(constraints::Constraints{T}) where T = sum([con.num_constraint for con in constraints]) num_jacobian(constraints::Constraints{T}) where T = sum([con.num_jacobian for con in constraints]) # num_hessian(constraints::Constraints{T}) where T = sum([con.num_hessian for con in constraints]) function constraint_indices(constraints::Constraints{T}; shift=0) where T indices = Vector{Int}[] for (t, con) in enumerate(constraints) indices = [indices..., collect(shift .+ (1:con.num_constraint)),] shift += con.num_constraint end return indices end function jacobian_indices(constraints::Constraints{T}; shift=0) where T indices = Vector{Int}[] for (t, con) in enumerate(constraints) push!(indices, collect(shift .+ (1:con.num_jacobian))) shift += con.num_jacobian end return indices end function hessian_indices(constraints::Constraints{T}, key::Vector{Tuple{Int,Int}}, num_state::Vector{Int}, num_action::Vector{Int}) where T indices = Vector{Int}[] for (t, con) in enumerate(constraints) if !isempty(con.hessian_sparsity[1]) row = Int[] col = Int[] shift = (t > 1 ? (sum(num_state[1:t-1]) + sum(num_action[1:t-1])) : 0) push!(row, (con.hessian_sparsity[1] .+ shift)...) push!(col, (con.hessian_sparsity[2] .+ shift)...) rc = collect(zip(row, col)) push!(indices, [findfirst(x -> x == i, key) for i in rc]) else push!(indices, Int[]) end end return indices end
DirectTrajectoryOptimization
https://github.com/thowell/DirectTrajectoryOptimization.jl.git
[ "MIT" ]
0.2.0
b14763be7e90836eb56370fda4ff2fab25f5892a
code
3723
struct Cost{T} evaluate::Any gradient::Any hessian::Any num_gradient::Int num_hessian::Int sparsity::Vector{Vector{Int}} evaluate_cache::Vector{T} gradient_cache::Vector{T} hessian_cache::Vector{T} end function Cost(f::Function, num_state::Int, num_action::Int; num_parameter::Int=0, evaluate_hessian=false) #TODO: option to load/save methods @variables x[1:num_state], u[1:num_action], w[1:num_parameter] evaluate = f(x, u, w) gradient = Symbolics.gradient(evaluate, [x; u]) num_gradient = num_state + num_action evaluate_func = eval(Symbolics.build_function([evaluate], x, u, w)[2]) gradient_func = eval(Symbolics.build_function(gradient, x, u, w)[2]) if evaluate_hessian hessian = Symbolics.sparsehessian(evaluate, [x; u]) hessian_func = eval(Symbolics.build_function(hessian.nzval, x, u, w)[2]) sparsity = [findnz(hessian)[1:2]...] num_hessian = length(hessian.nzval) else hessian_func = Expr(:null) sparsity = [Int[]] num_hessian = 0 end return Cost( evaluate_func, gradient_func, hessian_func, num_gradient, num_hessian, sparsity, zeros(1), zeros(num_gradient), zeros(num_hessian)) end Objective{T} = Vector{Cost{T}} where T function cost(objective::Objective, states, actions, parameters) J = 0.0 for (t, cost) in enumerate(objective) cost.evaluate(cost.evaluate_cache, states[t], actions[t], parameters[t]) J += cost.evaluate_cache[1] end return J end function gradient!(gradient, indices, objective::Objective, states, actions, parameters) for (t, cost) in enumerate(objective) cost.gradient(cost.gradient_cache, states[t], actions[t], parameters[t]) @views gradient[indices[t]] .+= cost.gradient_cache # fill!(cost.gradient_cache, 0.0) # TODO: confirm this is necessary end end function hessian!(hessian, indices, objective::Objective, states, actions, parameters, scaling) for (t, cost) in enumerate(objective) cost.hessian(cost.hessian_cache, states[t], actions[t], parameters[t]) cost.hessian_cache .*= scaling @views hessian[indices[t]] .+= cost.hessian_cache # fill!(cost.hessian_cache, 0.0) # TODO: confirm this is necessary end end function sparsity_hessian(objective::Objective, num_state::Vector{Int}, num_action::Vector{Int}) row = Int[] col = Int[] for (t, cost) in enumerate(objective) if !isempty(cost.sparsity[1]) shift = (t > 1 ? (sum(num_state[1:t-1]) + sum(num_action[1:t-1])) : 0) push!(row, (cost.sparsity[1] .+ shift)...) push!(col, (cost.sparsity[2] .+ shift)...) end end return collect(zip(row, col)) end function hessian_indices(objective::Objective, key::Vector{Tuple{Int,Int}}, num_state::Vector{Int}, num_action::Vector{Int}) indices = Vector{Int}[] for (t, cost) in enumerate(objective) if !isempty(cost.sparsity[1]) row = Int[] col = Int[] shift = (t > 1 ? (sum(num_state[1:t-1]) + sum(num_action[1:t-1])) : 0) push!(row, (cost.sparsity[1] .+ shift)...) push!(col, (cost.sparsity[2] .+ shift)...) rc = collect(zip(row, col)) push!(indices, [findfirst(x -> x == i, key) for i in rc]) else push!(indices, Int[]) end end return indices end # num_gradient(objective::Objective{T}) where T = sum([obj.num_gradient for obj in objective]) # num_hessian(objective::Objective{T}) where T = sum([obj.num_hessian for obj in objective])
DirectTrajectoryOptimization
https://github.com/thowell/DirectTrajectoryOptimization.jl.git
[ "MIT" ]
0.2.0
b14763be7e90836eb56370fda4ff2fab25f5892a
code
10994
struct TrajectoryOptimizationData{T} states::Vector{Vector{T}} actions::Vector{Vector{T}} parameters::Vector{Vector{T}} objective::Objective{T} dynamics::Vector{Dynamics{T}} constraints::Constraints{T} bounds::Bounds{T} duals_dynamics::Vector{Vector{T}} duals_constraints::Vector{Vector{T}} state_dimensions::Vector{Int} action_dimensions::Vector{Int} parameter_dimensions::Vector{Int} end function TrajectoryOptimizationData(objective::Objective{T}, dynamics::Vector{Dynamics{T}}, constraints::Constraints{T}, bounds::Bounds{T}; parameters=[zeros(num_parameter) for num_parameter in dimensions(dynamics)[3]]) where T state_dimensions, action_dimensions, parameter_dimensions = dimensions(dynamics) states = [zeros(num_state) for num_state in state_dimensions] actions = [zeros(nu) for nu in action_dimensions] duals_dynamics = [zeros(num_state) for num_state in state_dimensions[2:end]] duals_constraints = [zeros(con.num_constraint) for con in constraints] TrajectoryOptimizationData( states, actions, parameters, objective, dynamics, constraints, bounds, duals_dynamics, duals_constraints, state_dimensions, action_dimensions, parameter_dimensions) end TrajectoryOptimizationData(objective::Objective, dynamics::Vector{Dynamics}) = TrajectoryOptimizationData(objective, dynamics, [Constraint() for t = 1:length(dynamics)], [Bound() for t = 1:length(dynamics)]) struct TrajectoryOptimizationIndices objective_hessians::Vector{Vector{Int}} dynamics_constraints::Vector{Vector{Int}} dynamics_jacobians::Vector{Vector{Int}} dynamics_hessians::Vector{Vector{Int}} stage_constraints::Vector{Vector{Int}} stage_jacobians::Vector{Vector{Int}} stage_hessians::Vector{Vector{Int}} general_constraint::Vector{Int} general_jacobian::Vector{Int} general_hessian::Vector{Int} states::Vector{Vector{Int}} actions::Vector{Vector{Int}} state_action::Vector{Vector{Int}} state_action_next_state::Vector{Vector{Int}} end function indices(objective::Objective{T}, dynamics::Vector{Dynamics{T}}, constraints::Constraints{T}, general::GeneralConstraint{T}, key::Vector{Tuple{Int,Int}}, num_state::Vector{Int}, num_action::Vector{Int}, num_trajectory::Int) where T # Jacobians dynamics_constraints = constraint_indices(dynamics, shift=0) dynamics_jacobians = jacobian_indices(dynamics, shift=0) stage_constraints = constraint_indices(constraints, shift=num_constraint(dynamics)) stage_jacobians = jacobian_indices(constraints, shift=num_jacobian(dynamics)) general_constraint = constraint_indices(general, shift=(num_constraint(dynamics) + num_constraint(constraints))) general_jacobian = jacobian_indices(general, shift=(num_jacobian(dynamics) + num_jacobian(constraints))) # Hessian of Lagrangian objective_hessians = hessian_indices(objective, key, num_state, num_action) dynamics_hessians = hessian_indices(dynamics, key, num_state, num_action) stage_hessians = hessian_indices(constraints, key, num_state, num_action) general_hessian = hessian_indices(general, key, num_trajectory) # indices x_idx = state_indices(dynamics) u_idx = action_indices(dynamics) xu_idx = state_action_indices(dynamics) xuy_idx = state_action_next_state_indices(dynamics) return TrajectoryOptimizationIndices( objective_hessians, dynamics_constraints, dynamics_jacobians, dynamics_hessians, stage_constraints, stage_jacobians, stage_hessians, general_constraint, general_jacobian, general_hessian, x_idx, u_idx, xu_idx, xuy_idx) end struct NLPData{T} <: MOI.AbstractNLPEvaluator trajopt::TrajectoryOptimizationData{T} num_variables::Int num_constraint::Int num_jacobian::Int num_hessian_lagrangian::Int variable_bounds::Vector{Vector{T}} constraint_bounds::Vector{Vector{T}} indices::TrajectoryOptimizationIndices jacobian_sparsity hessian_lagrangian_sparsity hessian_lagrangian::Bool general_constraint::GeneralConstraint{T} parameters::Vector{T} duals_general::Vector{T} end function primal_bounds(bounds::Bounds{T}, num_variables::Int, state_indices::Vector{Vector{Int}}, action_indices::Vector{Vector{Int}}) where T lower, upper = -Inf * ones(num_variables), Inf * ones(num_variables) for (t, bnd) in enumerate(bounds) length(bnd.state_lower) > 0 && (lower[state_indices[t]] = bnd.state_lower) length(bnd.state_upper) > 0 && (upper[state_indices[t]] = bnd.state_upper) length(bnd.action_lower) > 0 && (lower[action_indices[t]] = bnd.action_lower) length(bnd.action_upper) > 0 && (upper[action_indices[t]] = bnd.action_upper) end return lower, upper end function constraint_bounds(constraints::Constraints{T}, general::GeneralConstraint{T}, num_dynamics::Int, num_stage::Int, indices::TrajectoryOptimizationIndices) where T # total constraints total_constraint = num_dynamics + num_stage + general.num_constraint # bounds lower, upper = zeros(total_constraint), zeros(total_constraint) # stage for (t, con) in enumerate(constraints) lower[indices.stage_constraints[t][con.indices_inequality]] .= -Inf end # general lower[collect(num_dynamics + num_stage .+ general.indices_inequality)] .= -Inf return lower, upper end function NLPData(trajopt::TrajectoryOptimizationData; evaluate_hessian=false, general_constraint=GeneralConstraint()) # number of variables total_variables = sum(trajopt.state_dimensions) + sum(trajopt.action_dimensions) # number of constraints num_dynamics = num_constraint(trajopt.dynamics) num_stage = num_constraint(trajopt.constraints) num_general = num_constraint(general_constraint) total_constraints = num_dynamics + num_stage + num_general # number of nonzeros in constraint Jacobian num_dynamics_jacobian = num_jacobian(trajopt.dynamics) num_constraint_jacobian = num_jacobian(trajopt.constraints) num_general_jacobian = num_jacobian(general_constraint) total_jacobians = num_dynamics_jacobian + num_constraint_jacobian + num_general_jacobian # constraint Jacobian sparsity sparsity_dynamics = sparsity_jacobian(trajopt.dynamics, trajopt.state_dimensions, trajopt.action_dimensions, row_shift=0) sparsity_constraint = sparsity_jacobian(trajopt.constraints, trajopt.state_dimensions, trajopt.action_dimensions, row_shift=num_dynamics) sparsity_general = sparsity_jacobian(general_constraint, total_variables, row_shift=(num_dynamics + num_stage)) jacobian_sparsity = collect([sparsity_dynamics..., sparsity_constraint..., sparsity_general...]) # Hessian of Lagrangian sparsity sparsity_objective_hessians = sparsity_hessian(trajopt.objective, trajopt.state_dimensions, trajopt.action_dimensions) sparsity_dynamics_hessians = sparsity_hessian(trajopt.dynamics, trajopt.state_dimensions, trajopt.action_dimensions) sparsity_constraint_hessian = sparsity_hessian(trajopt.constraints, trajopt.state_dimensions, trajopt.action_dimensions) sparsity_general_hessian = sparsity_hessian(general_constraint, total_variables) hessian_lagrangian_sparsity = [sparsity_objective_hessians..., sparsity_dynamics_hessians..., sparsity_constraint_hessian..., sparsity_general_hessian...] hessian_lagrangian_sparsity = !isempty(hessian_lagrangian_sparsity) ? hessian_lagrangian_sparsity : Tuple{Int,Int}[] hessian_sparsity_key = sort(unique(hessian_lagrangian_sparsity)) # number of nonzeros in Hessian of Lagrangian num_hessian_lagrangian = length(hessian_lagrangian_sparsity) # indices idx = indices( trajopt.objective, trajopt.dynamics, trajopt.constraints, general_constraint, hessian_sparsity_key, trajopt.state_dimensions, trajopt.action_dimensions, total_variables) # primal variable bounds primal_lower, primal_upper = primal_bounds(trajopt.bounds, total_variables, idx.states, idx.actions) # nonlinear constraint bounds constraint_lower, constraint_upper = constraint_bounds(trajopt.constraints, general_constraint, num_dynamics, num_stage, idx) NLPData(trajopt, total_variables, total_constraints, total_jacobians, num_hessian_lagrangian, [primal_lower, primal_upper], [constraint_lower, constraint_upper], idx, jacobian_sparsity, hessian_sparsity_key, evaluate_hessian, general_constraint, vcat(trajopt.parameters...), zeros(general_constraint.num_constraint)) end struct SolverData nlp_bounds::Vector{MOI.NLPBoundsPair} block_data::MOI.NLPBlockData optimizer::Ipopt.Optimizer variables::Vector{MOI.VariableIndex} end function SolverData(nlp::NLPData; options=Options()) # solver nlp_bounds = MOI.NLPBoundsPair.(nlp.constraint_bounds...) block_data = MOI.NLPBlockData(nlp_bounds, nlp, true) # instantiate NLP solver optimizer = Ipopt.Optimizer() # set NLP optimizer options for name in fieldnames(typeof(options)) optimizer.options[String(name)] = getfield(options, name) end z = MOI.add_variables(optimizer, nlp.num_variables) for i = 1:nlp.num_variables MOI.add_constraint(optimizer, z[i], MOI.LessThan(nlp.variable_bounds[2][i])) MOI.add_constraint(optimizer, z[i], MOI.GreaterThan(nlp.variable_bounds[1][i])) end MOI.set(optimizer, MOI.NLPBlock(), block_data) MOI.set(optimizer, MOI.ObjectiveSense(), MOI.MIN_SENSE) return SolverData(nlp_bounds, block_data, optimizer, z) end function trajectory!(states::Vector{Vector{T}}, actions::Vector{Vector{T}}, trajectory::Vector{T}, state_indices::Vector{Vector{Int}}, action_indices::Vector{Vector{Int}}) where T for (t, idx) in enumerate(state_indices) states[t] .= @views trajectory[idx] end for (t, idx) in enumerate(action_indices) actions[t] .= @views trajectory[idx] end end function duals!(duals_dynamics::Vector{Vector{T}}, duals_constraints::Vector{Vector{T}}, duals_general::Vector{T}, duals, dynamics_indices::Vector{Vector{Int}}, constraint_indices::Vector{Vector{Int}}, general_indices::Vector{Int}) where T for (t, idx) in enumerate(dynamics_indices) duals_dynamics[t] .= @views duals[idx] end for (t, idx) in enumerate(constraint_indices) duals_constraints[t] .= @views duals[idx] end duals_general .= duals[general_indices] end
DirectTrajectoryOptimization
https://github.com/thowell/DirectTrajectoryOptimization.jl.git
[ "MIT" ]
0.2.0
b14763be7e90836eb56370fda4ff2fab25f5892a
code
8579
struct Dynamics{T} evaluate::Any jacobian::Any hessian::Any num_next_state::Int num_state::Int num_action::Int num_parameter::Int num_jacobian::Int num_hessian::Int jacobian_sparsity::Vector{Vector{Int}} hessian_sparsity::Vector{Vector{Int}} evaluate_cache::Vector{T} jacobian_cache::Vector{T} hessian_cache::Vector{T} end function Dynamics(f::Function, num_next_state::Int, num_state::Int, num_action::Int; num_parameter::Int=0, evaluate_hessian=false) #TODO: option to load/save methods @variables y[1:num_next_state], x[1:num_state], u[1:num_action], w[1:num_parameter] evaluate = f(y, x, u, w) jac = Symbolics.sparsejacobian(evaluate, [x; u; y]); evaluate_func = eval(Symbolics.build_function(evaluate, y, x, u, w)[2]); jacobian_func = eval(Symbolics.build_function(jac.nzval, y, x, u, w)[2]); num_jacobian = length(jac.nzval) jacobian_sparsity = [findnz(jac)[1:2]...] if evaluate_hessian @variables λ[1:num_next_state] lag_con = dot(λ, evaluate) hessian = Symbolics.sparsehessian(lag_con, [x; u; y]) hessian_func = eval(Symbolics.build_function(hessian.nzval, y, x, u, w, λ)[2]) hessian_sparsity = [findnz(hessian)[1:2]...] num_hessian = length(hessian.nzval) else hessian_func = Expr(:null) hessian_sparsity = [Int[]] num_hessian = 0 end return Dynamics(evaluate_func, jacobian_func, hessian_func, num_next_state, num_state, num_action, num_parameter, num_jacobian, num_hessian, jacobian_sparsity, hessian_sparsity, zeros(num_next_state), zeros(num_jacobian), zeros(num_hessian)) end function Dynamics(constraint::Function, constraint_jacobian::Function, num_next_state::Int, num_state::Int, num_action::Int; num_parameter::Int=0) # jacobian function num_variables = num_state + num_action + num_next_state jacobian_func = (J, y, x, u, w) -> constraint_jacobian(reshape(view(J, :), num_next_state, num_variables), y, x, u, w) # number of Jacobian elements num_jacobian = num_next_state * num_variables # Jacobian sparsity row = Int[] col = Int[] for j = 1:num_variables for i = 1:num_next_state push!(row, i) push!(col, j) end end jacobian_sparsity = [row, col] # Hessian hessian_func = Expr(:null) hessian_sparsity = [Int[]] num_hessian = 0 return Dynamics( constraint, jacobian_func, hessian_func, num_next_state, num_state, num_action, num_parameter, num_jacobian, num_hessian, jacobian_sparsity, hessian_sparsity, zeros(num_next_state), zeros(num_jacobian), zeros(num_hessian)) end function constraints!(violations, indices, constraints::Vector{Dynamics{T}}, states, actions, parameters) where T for (t, con) in enumerate(constraints) con.evaluate(con.evaluate_cache, states[t+1], states[t], actions[t], parameters[t]) @views violations[indices[t]] .= con.evaluate_cache fill!(con.evaluate_cache, 0.0) # TODO: confirm this is necessary end end function jacobian!(jacobians, indices, constraints::Vector{Dynamics{T}}, states, actions, parameters) where T for (t, con) in enumerate(constraints) con.jacobian(con.jacobian_cache, states[t+1], states[t], actions[t], parameters[t]) @views jacobians[indices[t]] .= con.jacobian_cache fill!(con.jacobian_cache, 0.0) # TODO: confirm this is necessary end end function hessian_lagrangian!(hessians, indices, constraints::Vector{Dynamics{T}}, states, actions, parameters, duals) where T for (t, con) in enumerate(constraints) if !isempty(con.hessian_cache) con.hessian(con.hessian_cache, states[t+1], states[t], actions[t], parameters[t], duals[t]) @views hessians[indices[t]] .+= con.hessian_cache fill!(con.hessian_cache, 0.0) # TODO: confirm this is necessary end end end function sparsity_jacobian(constraints::Vector{Dynamics{T}}, num_state::Vector{Int}, num_actions::Vector{Int}; row_shift=0) where T row = Int[] col = Int[] for (t, con) in enumerate(constraints) col_shift = (t > 1 ? (sum(num_state[1:t-1]) + sum(num_actions[1:t-1])) : 0) push!(row, (con.jacobian_sparsity[1] .+ row_shift)...) push!(col, (con.jacobian_sparsity[2] .+ col_shift)...) row_shift += con.num_next_state end return collect(zip(row, col)) end function sparsity_hessian(constraints::Vector{Dynamics{T}}, num_state::Vector{Int}, num_actions::Vector{Int}) where T row = Int[] col = Int[] for (t, con) in enumerate(constraints) if !isempty(con.hessian_sparsity[1]) shift = (t > 1 ? (sum(num_state[1:t-1]) + sum(num_actions[1:t-1])) : 0) push!(row, (con.hessian_sparsity[1] .+ shift)...) push!(col, (con.hessian_sparsity[2] .+ shift)...) end end return collect(zip(row, col)) end num_state_action_next_state(constraints::Vector{Dynamics{T}}) where T = sum([con.num_state + con.num_action for con in constraints]) + constraints[end].num_next_state num_constraint(constraints::Vector{Dynamics{T}}) where T = sum([con.num_next_state for con in constraints]) num_jacobian(constraints::Vector{Dynamics{T}}) where T = sum([con.num_jacobian for con in constraints]) # num_hessian(constraints::Vector{Dynamics{T}}) where T = sum([con.num_hessian for con in constraints]) function constraint_indices(constraints::Vector{Dynamics{T}}; shift=0) where T [collect(shift + (t > 1 ? sum([constraints[s].num_next_state for s = 1:(t-1)]) : 0) .+ (1:constraints[t].num_next_state)) for t = 1:length(constraints)] end function jacobian_indices(constraints::Vector{Dynamics{T}}; shift=0) where T [collect(shift + (t > 1 ? sum([constraints[s].num_jacobian for s = 1:(t-1)]) : 0) .+ (1:constraints[t].num_jacobian)) for t = 1:length(constraints)] end function hessian_indices(constraints::Vector{Dynamics{T}}, key::Vector{Tuple{Int,Int}}, num_state::Vector{Int}, num_action::Vector{Int}) where T indices = Vector{Int}[] for (t, con) in enumerate(constraints) if !isempty(con.hessian_sparsity[1]) shift = (t > 1 ? (sum(num_state[1:t-1]) + sum(num_action[1:t-1])) : 0) row = collect(con.hessian_sparsity[1] .+ shift) col = collect(con.hessian_sparsity[2] .+ shift) rc = collect(zip(row, col)) push!(indices, [findfirst(x -> x == i, key) for i in rc]) else push!(indices, Int[]) end end return indices end function state_indices(constraints::Vector{Dynamics{T}}) where T [[collect((t > 1 ? sum([constraints[s].num_state + constraints[s].num_action for s = 1:(t-1)]) : 0) .+ (1:constraints[t].num_state)) for t = 1:length(constraints)]..., collect(sum([constraints[s].num_state + constraints[s].num_action for s = 1:length(constraints)]) .+ (1:constraints[end].num_next_state))] end function action_indices(constraints::Vector{Dynamics{T}}) where T [collect((t > 1 ? sum([constraints[s].num_state + constraints[s].num_action for s = 1:(t-1)]) : 0) + constraints[t].num_state .+ (1:constraints[t].num_action)) for t = 1:length(constraints)] end function state_action_indices(constraints::Vector{Dynamics{T}}) where T [[collect((t > 1 ? sum([constraints[s].num_state + constraints[s].num_action for s = 1:(t-1)]) : 0) .+ (1:(+ constraints[t].num_state + constraints[t].num_action))) for t = 1:length(constraints)]..., collect(sum([constraints[s].num_state + constraints[s].num_action for s = 1:length(constraints)]) .+ (1:constraints[end].num_next_state))] end function state_action_next_state_indices(constraints::Vector{Dynamics{T}}) where T [collect((t > 1 ? sum([constraints[s].num_state + constraints[s].num_action for s = 1:(t-1)]) : 0) .+ (1:(+ constraints[t].num_state + constraints[t].num_action + constraints[t].num_next_state))) for t = 1:length(constraints)] end function dimensions(dynamics::Vector{Dynamics{T}}; parameters=[0 for t = 1:(length(dynamics) + 1)]) where T states = [[d.num_state for d in dynamics]..., dynamics[end].num_next_state] actions = [[d.num_action for d in dynamics]..., 0] return states, actions, parameters end
DirectTrajectoryOptimization
https://github.com/thowell/DirectTrajectoryOptimization.jl.git
[ "MIT" ]
0.2.0
b14763be7e90836eb56370fda4ff2fab25f5892a
code
4826
struct GeneralConstraint{T} evaluate::Any jacobian::Any hessian::Any num_variables::Int num_parameter::Int num_constraint::Int num_jacobian::Int num_hessian::Int jacobian_sparsity::Vector{Vector{Int}} hessian_sparsity::Vector{Vector{Int}} evaluate_cache::Vector{T} jacobian_cache::Vector{T} hessian_cache::Vector{T} indices_inequality::Vector{Int} end function GeneralConstraint(f::Function, num_variables::Int, num_parameter::Int; indices_inequality=collect(1:0), evaluate_hessian=false) #TODO: option to load/save methods @variables z[1:num_variables], w[1:num_parameter] evaluate = f(z, w) jacobian = Symbolics.sparsejacobian(evaluate, z) evaluate_func = eval(Symbolics.build_function(evaluate, z, w)[2]) jacobian_func = eval(Symbolics.build_function(jacobian.nzval, z, w)[2]) num_constraint = length(evaluate) num_jacobian = length(jacobian.nzval) jacobian_sparsity = [findnz(jacobian)[1:2]...] if evaluate_hessian @variables λ[1:num_constraint] lag_con = dot(λ, evaluate) hessian = Symbolics.sparsehessian(lag_con, z) hessian_func = eval(Symbolics.build_function(hessian.nzval, z, w, λ)[2]) hessian_sparsity = [findnz(hessian)[1:2]...] num_hessian = length(hessian.nzval) else hessian_func = Expr(:null) hessian_sparsity = [Int[]] num_hessian = 0 end return GeneralConstraint( evaluate_func, jacobian_func, hessian_func, num_variables, num_parameter, num_constraint, num_jacobian, num_hessian, jacobian_sparsity, hessian_sparsity, zeros(num_constraint), zeros(num_jacobian), zeros(num_hessian), indices_inequality) end function GeneralConstraint() return GeneralConstraint( (constraint, variables, parameters) -> nothing, (jacobian, variables, parameters) -> nothing, (hessian, variables, parameters) -> nothing, 0, 0, 0, 0, 0, [Int[], Int[]], [Int[], Int[]], Float64[], Float64[], Float64[], collect(1:0)) end function constraints!(violations, indices, general::GeneralConstraint{T}, variables, parameters) where T general.evaluate(general.evaluate_cache, variables, parameters) @views violations[indices] .= general.evaluate_cache fill!(general.evaluate_cache, 0.0) # TODO: confirm this is necessary end function jacobian!(jacobians, indices, general::GeneralConstraint{T}, variables, parameters) where T general.jacobian(general.jacobian_cache, variables, parameters) @views jacobians[indices] .= general.jacobian_cache fill!(general.jacobian_cache, 0.0) # TODO: confirm this is necessary end function hessian_lagrangian!(hessian, indices, general::GeneralConstraint{T}, variables, parameters, duals) where T if !isempty(general.hessian_cache) general.hessian(general.hessian_cache, variables, duals) @views hessian[indices] .+= general.hessian_cache fill!(general.hessian_cache, 0.0) # TODO: confirm this is necessary end end function sparsity_jacobian(general::GeneralConstraint{T}, num_variables::Int; row_shift=0) where T row = Int[] col = Int[] push!(row, (general.jacobian_sparsity[1] .+ row_shift)...) push!(col, general.jacobian_sparsity[2]...) return collect(zip(row, col)) end function sparsity_hessian(general::GeneralConstraint{T}, num_variables::Int) where T row = Int[] col = Int[] if !isempty(general.hessian_sparsity[1]) shift = 0 push!(row, (general.hessian_sparsity[1] .+ shift)...) push!(col, (general.hessian_sparsity[2] .+ shift)...) end return collect(zip(row, col)) end num_constraint(general::GeneralConstraint{T}) where T = general.num_constraint num_jacobian(general::GeneralConstraint{T}) where T = general.num_jacobian # num_hessian(general::GeneralConstraint{T}) where T = general.num_hessian constraint_indices(general::GeneralConstraint{T}; shift=0) where T = collect(shift .+ (1:general.num_constraint)) jacobian_indices(general::GeneralConstraint{T}; shift=0) where T = collect(shift .+ (1:general.num_jacobian)) function hessian_indices(general::GeneralConstraint{T}, key::Vector{Tuple{Int,Int}}, num_variables::Int) where T if !isempty(general.hessian_sparsity[1]) row = Int[] col = Int[] shift = 0 push!(row, (general.hessian_sparsity[1] .+ shift)...) push!(col, (general.hessian_sparsity[2] .+ shift)...) rc = collect(zip(row, col)) indices = [findfirst(x -> x == i, key) for i in rc] else indices = Vector{Int}[] end return indices end
DirectTrajectoryOptimization
https://github.com/thowell/DirectTrajectoryOptimization.jl.git
[ "MIT" ]
0.2.0
b14763be7e90836eb56370fda4ff2fab25f5892a
code
4275
function MOI.eval_objective(nlp::NLPData{T}, variables::Vector{T}) where T trajectory!( nlp.trajopt.states, nlp.trajopt.actions, variables, nlp.indices.states, nlp.indices.actions) cost( nlp.trajopt.objective, nlp.trajopt.states, nlp.trajopt.actions, nlp.trajopt.parameters) end function MOI.eval_objective_gradient(nlp::NLPData{T}, gradient, variables) where T fill!(gradient, 0.0) trajectory!( nlp.trajopt.states, nlp.trajopt.actions, variables, nlp.indices.states, nlp.indices.actions) gradient!(gradient, nlp.indices.state_action, nlp.trajopt.objective, nlp.trajopt.states, nlp.trajopt.actions, nlp.trajopt.parameters) return end function MOI.eval_constraint(nlp::NLPData{T}, violations, variables) where T fill!(violations, 0.0) trajectory!( nlp.trajopt.states, nlp.trajopt.actions, variables, nlp.indices.states, nlp.indices.actions) constraints!( violations, nlp.indices.dynamics_constraints, nlp.trajopt.dynamics, nlp.trajopt.states, nlp.trajopt.actions, nlp.trajopt.parameters) !isempty(nlp.indices.stage_constraints) && constraints!(violations, nlp.indices.stage_constraints, nlp.trajopt.constraints, nlp.trajopt.states, nlp.trajopt.actions, nlp.trajopt.parameters) nlp.general_constraint.num_constraint != 0 && constraints!(violations, nlp.indices.general_constraint, nlp.general_constraint, variables, nlp.parameters) return end function MOI.eval_constraint_jacobian(nlp::NLPData{T}, jacobian, variables) where T fill!(jacobian, 0.0) trajectory!( nlp.trajopt.states, nlp.trajopt.actions, variables, nlp.indices.states, nlp.indices.actions) jacobian!( jacobian, nlp.indices.dynamics_jacobians, nlp.trajopt.dynamics, nlp.trajopt.states, nlp.trajopt.actions, nlp.trajopt.parameters) !isempty(nlp.indices.stage_jacobians) && jacobian!(jacobian, nlp.indices.stage_jacobians, nlp.trajopt.constraints, nlp.trajopt.states, nlp.trajopt.actions, nlp.trajopt.parameters) nlp.general_constraint.num_constraint != 0 && jacobian!(jacobian, nlp.indices.general_jacobian, nlp.general_constraint, variables, nlp.parameters) return end function MOI.eval_hessian_lagrangian(nlp::MOI.AbstractNLPEvaluator, hessian, variables, scaling, duals) fill!(hessian, 0.0) trajectory!( nlp.trajopt.states, nlp.trajopt.actions, variables, nlp.indices.states, nlp.indices.actions) duals!( nlp.trajopt.duals_dynamics, nlp.trajopt.duals_constraints, nlp.duals_general, duals, nlp.indices.dynamics_constraints, nlp.indices.stage_constraints, nlp.indices.general_constraint) hessian!( hessian, nlp.indices.objective_hessians, nlp.trajopt.objective, nlp.trajopt.states, nlp.trajopt.actions, nlp.trajopt.parameters, scaling) hessian_lagrangian!( hessian, nlp.indices.dynamics_hessians, nlp.trajopt.dynamics, nlp.trajopt.states, nlp.trajopt.actions, nlp.trajopt.parameters, nlp.trajopt.duals_dynamics) hessian_lagrangian!( hessian, nlp.indices.stage_hessians, nlp.trajopt.constraints, nlp.trajopt.states, nlp.trajopt.actions, nlp.trajopt.parameters, nlp.trajopt.duals_constraints) hessian_lagrangian!( hessian, nlp.indices.general_hessian, nlp.general_constraint, variables, nlp.parameters, nlp.duals_general) return end MOI.features_available(nlp::MOI.AbstractNLPEvaluator) = nlp.hessian_lagrangian ? [:Grad, :Jac, :Hess] : [:Grad, :Jac] MOI.initialize(nlp::MOI.AbstractNLPEvaluator, features) = nothing MOI.jacobian_structure(nlp::MOI.AbstractNLPEvaluator) = nlp.jacobian_sparsity MOI.hessian_lagrangian_structure(nlp::MOI.AbstractNLPEvaluator) = nlp.hessian_lagrangian_sparsity
DirectTrajectoryOptimization
https://github.com/thowell/DirectTrajectoryOptimization.jl.git
[ "MIT" ]
0.2.0
b14763be7e90836eb56370fda4ff2fab25f5892a
code
1089
""" Solver options for Ipopt https://coin-or.github.io/Ipopt/OPTIONS.html#OPT_print_options_documentation """ Base.@kwdef mutable struct Options{T} tol::T = 1e-6 s_max::T = 100.0 max_iter::Int = 1000 # max_wall_time = 300.0 max_cpu_time = 300.0 dual_inf_tol::T = 1.0 constr_viol_tol::T = 1.0e-3 compl_inf_tol::T = 1.0e-3 acceptable_tol::T = 1.0e-6 acceptable_iter::Int = 15 acceptable_dual_inf_tol::T = 1.0e10 acceptable_constr_viol_tol::T = 1.0e-2 acceptable_compl_inf_tol::T = 1.0e-2 acceptable_obj_change_tol::T = 1.0e-5 diverging_iterates_tol::T = 1.0e8 mu_target::T = 1.0e-4 print_level::Int = 5 output_file = "output.txt" print_user_options = "no" # print_options_documentation = "no" # print_timing_statistics = "no" # print_options_mode = "text" # print_advanced_options = "no" print_info_string = "no" inf_pr_output = "original" print_frequency_iter = 1 print_frequency_time = 0.0 skip_finalize_solution_call = "no" # timing_statistics = :no end
DirectTrajectoryOptimization
https://github.com/thowell/DirectTrajectoryOptimization.jl.git
[ "MIT" ]
0.2.0
b14763be7e90836eb56370fda4ff2fab25f5892a
code
1521
struct Solver{T} <: MOI.AbstractNLPEvaluator nlp::NLPData{T} data::SolverData end function Solver(dynamics::Vector{Dynamics{T}}, objective::Objective{T}, constraints::Constraints{T}, bounds::Bounds{T}; evaluate_hessian=false, general_constraint=GeneralConstraint(), options=Options(), parameters=[[zeros(num_parameter) for num_parameter in dimensions(dynamics)[3]]..., zeros(0)]) where T trajopt = TrajectoryOptimizationData(objective, dynamics, constraints, bounds, parameters=parameters) nlp = NLPData(trajopt, general_constraint=general_constraint, evaluate_hessian=evaluate_hessian) data = SolverData(nlp, options=options) Solver(nlp, data) end function initialize_states!(solver::Solver, states) for (t, xt) in enumerate(states) n = length(xt) for i = 1:n MOI.set(solver.data.optimizer, MOI.VariablePrimalStart(), solver.data.variables[solver.nlp.indices.states[t][i]], xt[i]) end end end function initialize_controls!(solver::Solver, actions) for (t, ut) in enumerate(actions) m = length(ut) for j = 1:m MOI.set(solver.data.optimizer, MOI.VariablePrimalStart(), solver.data.variables[solver.nlp.indices.actions[t][j]], ut[j]) end end end function get_trajectory(solver::Solver) return solver.nlp.trajopt.states, solver.nlp.trajopt.actions[1:end-1] end function solve!(solver::Solver) MOI.optimize!(solver.data.optimizer) end
DirectTrajectoryOptimization
https://github.com/thowell/DirectTrajectoryOptimization.jl.git
[ "MIT" ]
0.2.0
b14763be7e90836eb56370fda4ff2fab25f5892a
code
334
function linear_interpolation(initial_state, final_state, horizon) n = length(initial_state) X = [copy(Array(initial_state)) for t = 1:horizon] for t = 1:horizon for i = 1:n X[t][i] = (final_state[i] - initial_state[i]) / (horizon - 1) * (t - 1) + initial_state[i] end end return X end
DirectTrajectoryOptimization
https://github.com/thowell/DirectTrajectoryOptimization.jl.git
[ "MIT" ]
0.2.0
b14763be7e90836eb56370fda4ff2fab25f5892a
code
1723
@testset "Constraints" begin T = 5 num_state = 2 num_action = 1 num_parameter = 0 dim_x = [num_state for t = 1:T] dim_u = [num_action for t = 1:T-1] dim_w = [num_parameter for t = 1:T] x = [rand(dim_x[t]) for t = 1:T] u = [[rand(dim_u[t]) for t = 1:T-1]..., zeros(0)] w = [rand(dim_w[t]) for t = 1:T] ct = (x, u, w) -> [-ones(num_state) - x; x - ones(num_state)] cT = (x, u, w) -> x cont = Constraint(ct, num_state, num_action, num_parameter=num_parameter, indices_inequality=collect(1:2num_state)) conT = Constraint(cT, num_state, 0, num_parameter=0) constraints = [[cont for t = 1:T-1]..., conT] nc = DTO.num_constraint(constraints) nj = DTO.num_jacobian(constraints) idx_c = DTO.constraint_indices(constraints) idx_j = DTO.jacobian_indices(constraints) c = zeros(nc) j = zeros(nj) cont.evaluate(c[idx_c[1]], x[1], u[1], w[1]) conT.evaluate(c[idx_c[T]], x[T], u[T], w[T]) DTO.constraints!(c, idx_c, constraints, x, u, w) # info = @benchmark DTO.constraints!($c, $idx_c, $constraints, $x, $u, $w) @test norm(c - vcat([ct(x[t], u[t], w[t]) for t = 1:T-1]..., cT(x[T], u[T], w[T]))) < 1.0e-8 DTO.jacobian!(j, idx_j, constraints, x, u, w) # info = @benchmark DTO.jacobian!($j, $idx_j, $constraints, $x, $u, $w) dct = [-I zeros(num_state, num_action); I zeros(num_state, num_action)] dcT = Diagonal(ones(num_state)) dc = cat([dct for t = 1:T-1]..., dcT, dims=(1,2)) sp = DTO.sparsity_jacobian(constraints, dim_x, dim_u) j_dense = zeros(nc, sum(dim_x) + sum(dim_u)) for (i, v) in enumerate(sp) j_dense[v[1], v[2]] = j[i] end @test norm(j_dense - dc) < 1.0e-8 end
DirectTrajectoryOptimization
https://github.com/thowell/DirectTrajectoryOptimization.jl.git
[ "MIT" ]
0.2.0
b14763be7e90836eb56370fda4ff2fab25f5892a
code
3239
@testset "Dynamics" begin T = 3 num_state = 2 num_action = 1 num_parameter = 0 parameter_dimensions = [num_parameter for t = 1:T] function pendulum(z, u, w) mass = 1.0 lc = 1.0 gravity = 9.81 damping = 0.1 [z[2], (u[1] / ((mass * lc * lc)) - gravity * sin(z[1]) / lc - damping * z[2] / (mass * lc * lc))] end function euler_implicit(y, x, u, w) h = 0.1 y - (x + h * pendulum(y, u, w)) end dt = Dynamics(euler_implicit, num_state, num_state, num_action, num_parameter=num_parameter); dynamics = [dt for t = 1:T-1] x1 = ones(num_state) u1 = ones(num_action) w1 = zeros(num_parameter) X = [x1 for t = 1:T] U = [u1 for t = 1:T] W = [w1 for t = 1:T] idx_dyn = DTO.constraint_indices(dynamics) idx_jac = DTO.jacobian_indices(dynamics) d = zeros(DTO.num_constraint(dynamics)) j = zeros(DTO.num_jacobian(dynamics)) dt.evaluate(dt.evaluate_cache, x1, x1, u1, w1) # @benchmark $dt.evaluate($dt.evaluate_cache, $x1, $x1, $u1, $w1) @test norm(dt.evaluate_cache - euler_implicit(x1, x1, u1, w1)) < 1.0e-8 dt.jacobian(dt.jacobian_cache, x1, x1, u1, w1) jac_dense = zeros(dt.num_next_state, dt.num_state + dt.num_action + dt.num_next_state) for (i, ji) in enumerate(dt.jacobian_cache) jac_dense[dt.jacobian_sparsity[1][i], dt.jacobian_sparsity[2][i]] = ji end jac_fd = ForwardDiff.jacobian(a -> euler_implicit(a[num_state + num_action .+ (1:num_state)], a[1:num_state], a[num_state .+ (1:num_action)], w1), [x1; u1; x1]) @test norm(jac_dense - jac_fd) < 1.0e-8 DTO.constraints!(d, idx_dyn, dynamics, X, U, W) @test norm(vcat(d...) - vcat([euler_implicit(X[t+1], X[t], U[t], W[t]) for t = 1:T-1]...)) < 1.0e-8 # info = @benchmark DTO.constraints!($d, $idx_dyn, $dynamics, $X, $U, $W) DTO.jacobian!(j, idx_jac, dynamics, X, U, W) s = DTO.sparsity_jacobian(dynamics, DTO.dimensions(dynamics)[1:2]...) jac_dense = zeros(DTO.num_constraint(dynamics), DTO.num_state_action_next_state(dynamics)) for (i, ji) in enumerate(j) jac_dense[s[i][1], s[i][2]] = ji end @test norm(jac_dense - [jac_fd zeros(dynamics[2].num_state, dynamics[2].num_action + dynamics[2].num_next_state); zeros(dynamics[2].num_next_state, dynamics[1].num_state + dynamics[1].num_action) jac_fd]) < 1.0e-8 # info = @benchmark DTO.jacobian!($j, $idx_jac, $dynamics, $X, $U, $W) x_idx = DTO.state_indices(dynamics) u_idx = DTO.action_indices(dynamics) xu_idx = DTO.state_action_indices(dynamics) xuy_idx = DTO.state_action_next_state_indices(dynamics) nz = sum([t < T ? dynamics[t].num_state : dynamics[t-1].num_next_state for t = 1:T]) + sum([dynamics[t].num_action for t = 1:T-1]) z = rand(nz) x = [zero(z[x_idx[t]]) for t = 1:T] u = [[zero(z[u_idx[t]]) for t = 1:T-1]..., zeros(0)] DTO.trajectory!(x, u, z, x_idx, u_idx) z̄ = zero(z) for (t, idx) in enumerate(x_idx) z̄[idx] .= x[t] end for (t, idx) in enumerate(u_idx) z̄[idx] .= u[t] end @test norm(z - z̄) < 1.0e-8 # info = @benchmark DTO.trajectory!($x, $u, $z, $x_idx, $u_idx) end
DirectTrajectoryOptimization
https://github.com/thowell/DirectTrajectoryOptimization.jl.git
[ "MIT" ]
0.2.0
b14763be7e90836eb56370fda4ff2fab25f5892a
code
9006
@testset "Hessian of Lagrangian" begin MOI = DTO.MOI # horizon T = 3 # acrobot num_state = 4 num_action = 1 num_parameter = 0 parameter_dimensions = [num_parameter for t = 1:T] function acrobot(x, u, w) # dimensions n = 4 m = 1 d = 0 # link 1 mass1 = 1.0 inertia1 = 0.33 length1 = 1.0 lengthcom1 = 0.5 # link 2 mass2 = 1.0 inertia2 = 0.33 length2 = 1.0 lengthcom2 = 0.5 gravity = 9.81 friction1 = 0.1 friction2 = 0.1 # mass matrix function M(x, w) a = (inertia1 + inertia2 + mass2 * length1 * length1 + 2.0 * mass2 * length1 * lengthcom2 * cos(x[2])) b = inertia2 + mass2 * length1 * lengthcom2 * cos(x[2]) c = inertia2 return [a b; b c] end function Minv(x, w) a = (inertia1 + inertia2 + mass2 * length1 * length1 + 2.0 * mass2 * length1 * lengthcom2 * cos(x[2])) b = inertia2 + mass2 * length1 * lengthcom2 * cos(x[2]) c = inertia2 return 1.0 / (a * c - b * b) * [c -b; -b a] end # dynamics bias function τ(x, w) a = (-1.0 * mass1 * gravity * lengthcom1 * sin(x[1]) - mass2 * gravity * (length1 * sin(x[1]) + lengthcom2 * sin(x[1] + x[2]))) b = -1.0 * mass2 * gravity * lengthcom2 * sin(x[1] + x[2]) return [a; b] end function C(x, w) a = -2.0 * mass2 * length1 * lengthcom2 * sin(x[2]) * x[4] b = -1.0 * mass2 * length1 * lengthcom2 * sin(x[2]) * x[4] c = mass2 * length1 * lengthcom2 * sin(x[2]) * x[3] d = 0.0 return [a b; c d] end # input Jacobian function B(x, w) [0.0; 1.0] end # dynamics q = view(x, 1:2) v = view(x, 3:4) qdd = Minv(q, w) * (-1.0 * C(x, w) * v + τ(q, w) + B(q, w) * u[1] - [friction1; friction2] .* v) return [x[3]; x[4]; qdd[1]; qdd[2]] end function midpoint_implicit(y, x, u, w) h = 0.05 # timestep y - (x + h * acrobot(0.5 * (x + y), u, w)) end dt = Dynamics(midpoint_implicit, num_state, num_state, num_action, num_parameter=num_parameter, evaluate_hessian=true) dynamics = [dt for t = 1:T-1] # initial state x1 = [0.0; 0.0; 0.0; 0.0] # goal state xT = [0.0; π; 0.0; 0.0] # objective ot = (x, u, w) -> 0.1 * dot(x[3:4], x[3:4]) + 0.1 * dot(u, u) oT = (x, u, w) -> 0.1 * dot(x[3:4], x[3:4]) objt = Cost(ot, num_state, num_action, num_parameter=num_parameter, evaluate_hessian=true) objT = Cost(oT, num_state, 0, num_parameter=num_parameter, evaluate_hessian=true) objective = [[objt for t = 1:T-1]..., objT] # constraints bnd1 = Bound(num_state, num_action, state_lower=x1, state_upper=x1) bndt = Bound(num_state, num_action) bndT = Bound(num_state, 0, state_lower=xT, state_upper=xT) bounds = [bnd1, [bndt for t = 2:T-1]..., bndT] ct = (x, u, w) -> [-5.0 * ones(num_action) - cos.(u) .* sum(x.^2); cos.(x) .* tan.(u) - 5.0 * ones(num_state)] cT = (x, u, w) -> sin.(x.^3.0) cont = Constraint(ct, num_state, num_action, num_parameter=num_parameter, indices_inequality=collect(1:(num_action + num_state)), evaluate_hessian=true) conT = Constraint(cT, num_state, 0, num_parameter=num_parameter, evaluate_hessian=true) constraints = [[cont for t = 1:T-1]..., conT] # data # trajopt = DTO.TrajectoryOptimizationData(objective, dynamics, constraints, bounds) # nlp = DTO.NLPData(trajopt, evaluate_hessian=true) solver = Solver(dynamics, objective, constraints, bounds, evaluate_hessian=true) # Lagrangian function lagrangian(z) x1 = z[1:num_state] u1 = z[num_state .+ (1:num_action)] x2 = z[num_state + num_action .+ (1:num_state)] u2 = z[num_state + num_action + num_state .+ (1:num_action)] x3 = z[num_state + num_action + num_state + num_action .+ (1:num_state)] λ1_dyn = z[num_state + num_action + num_state + num_action + num_state .+ (1:num_state)] λ2_dyn = z[num_state + num_action + num_state + num_action + num_state + num_state .+ (1:num_state)] λ1_stage = z[num_state + num_action + num_state + num_action + num_state + num_state + num_state .+ (1:(num_action + num_state))] λ2_stage = z[num_state + num_action + num_state + num_action + num_state + num_state + num_state + num_action + num_state .+ (1:(num_action + num_state))] λ3_stage = z[num_state + num_action + num_state + num_action + num_state + num_state + num_state + num_action + num_state + num_action + num_state .+ (1:num_state)] L = 0.0 L += ot(x1, u1, zeros(num_parameter)) L += ot(x2, u2, zeros(num_parameter)) L += oT(x3, zeros(0), zeros(num_parameter)) L += dot(λ1_dyn, midpoint_implicit(x2, x1, u1, zeros(num_parameter))) L += dot(λ2_dyn, midpoint_implicit(x3, x2, u2, zeros(num_parameter))) L += dot(λ1_stage, ct(x1, u1, zeros(num_parameter))) L += dot(λ2_stage, ct(x2, u2, zeros(num_parameter))) L += dot(λ3_stage, cT(x3, zeros(0), zeros(num_parameter))) return L end nz = num_state + num_action + num_state + num_action + num_state + num_state + num_state + num_action + num_state + num_action + num_state + num_state np = num_state + num_action + num_state + num_action + num_state nd = num_state + num_state + num_action + num_state + num_action + num_state + num_state @variables z[1:nz] L = lagrangian(z) Lxx = Symbolics.hessian(L, z[1:np]) Lxx_sp = Symbolics.sparsehessian(L, z[1:np]) spar = [findnz(Lxx_sp)[1:2]...] Lxx_func = eval(Symbolics.build_function(Lxx, z)[1]) Lxx_sp_func = eval(Symbolics.build_function(Lxx_sp.nzval, z)[1]) z0 = rand(nz) nh = length(solver.nlp.hessian_lagrangian_sparsity) h0 = zeros(nh) σ = 1.0 fill!(h0, 0.0) DTO.trajectory!(solver.nlp.trajopt.states, solver.nlp.trajopt.actions, z0[1:np], solver.nlp.indices.states, solver.nlp.indices.actions) DTO.duals!(solver.nlp.trajopt.duals_dynamics, solver.nlp.trajopt.duals_constraints, solver.nlp.duals_general, z0[np .+ (1:nd)], solver.nlp.indices.dynamics_constraints, solver.nlp.indices.stage_constraints, solver.nlp.indices.general_constraint) DTO.hessian!(h0, solver.nlp.indices.objective_hessians, solver.nlp.trajopt.objective, solver.nlp.trajopt.states, solver.nlp.trajopt.actions, solver.nlp.trajopt.parameters, σ) DTO.hessian_lagrangian!(h0, solver.nlp.indices.dynamics_hessians, solver.nlp.trajopt.dynamics, solver.nlp.trajopt.states, solver.nlp.trajopt.actions, solver.nlp.trajopt.parameters, solver.nlp.trajopt.duals_dynamics) DTO.hessian_lagrangian!(h0, solver.nlp.indices.stage_hessians, solver.nlp.trajopt.constraints, solver.nlp.trajopt.states, solver.nlp.trajopt.actions, solver.nlp.trajopt.parameters, solver.nlp.trajopt.duals_constraints) sparsity_objective_hessians = DTO.sparsity_hessian(objective, solver.nlp.trajopt.state_dimensions, solver.nlp.trajopt.action_dimensions) sparsity_dynamics_hessians = DTO.sparsity_hessian(dynamics, solver.nlp.trajopt.state_dimensions, solver.nlp.trajopt.action_dimensions) sparsity_constraint_hessian = DTO.sparsity_hessian(constraints, solver.nlp.trajopt.state_dimensions, solver.nlp.trajopt.action_dimensions) hessian_sparsity = collect([sparsity_objective_hessians..., sparsity_dynamics_hessians..., sparsity_constraint_hessian...]) sp_key = sort(unique(hessian_sparsity)) idx_objective_hessians = DTO.hessian_indices(objective, sp_key, solver.nlp.trajopt.state_dimensions, solver.nlp.trajopt.action_dimensions) idx_dynamics_hessians = DTO.hessian_indices(dynamics, sp_key, solver.nlp.trajopt.state_dimensions, solver.nlp.trajopt.action_dimensions) idx_con_hess = DTO.hessian_indices(constraints, sp_key, solver.nlp.trajopt.state_dimensions, solver.nlp.trajopt.action_dimensions) # indices @test sp_key[vcat(idx_objective_hessians...)] == sparsity_objective_hessians @test sp_key[vcat(idx_dynamics_hessians...)] == sparsity_dynamics_hessians @test sp_key[vcat(idx_con_hess...)] == sparsity_constraint_hessian # Hessian h0_full = zeros(np, np) for (i, h) in enumerate(h0) h0_full[sp_key[i][1], sp_key[i][2]] = h end @test norm(h0_full - Lxx_func(z0)) < 1.0e-8 @test norm(norm(h0 - Lxx_sp_func(z0))) < 1.0e-8 h0 = zeros(nh) MOI.eval_hessian_lagrangian(solver.nlp, h0, z0[1:np], σ, z0[np .+ (1:nd)]) @test norm(norm(h0 - Lxx_sp_func(z0))) < 1.0e-8 # a = z0[1:np] # b = z0[np .+ (1:nd)] # info = @benchmark MOI.evaluate_hessianian_lagrangian($solver, $h0, $a, $σ, $b) end
DirectTrajectoryOptimization
https://github.com/thowell/DirectTrajectoryOptimization.jl.git
[ "MIT" ]
0.2.0
b14763be7e90836eb56370fda4ff2fab25f5892a
code
1554
@testset "Objective" begin T = 3 num_state = 2 num_action = 1 num_parameter = 0 ot = (x, u, w) -> dot(x, x) + 0.1 * dot(u, u) oT = (x, u, w) -> 10.0 * dot(x, x) ct = Cost(ot, num_state, num_action, num_parameter=num_parameter) cT = Cost(oT, num_state, 0, num_parameter=num_parameter) objective = [[ct for t = 1:T-1]..., cT] J = [0.0] gradient = zeros((T - 1) * (num_state + num_action) + num_state) idx_xu = [collect((t - 1) * (num_state + num_action) .+ (1:(num_state + (t == T ? 0 : num_action)))) for t = 1:T] x1 = ones(num_state) u1 = ones(num_action) w1 = zeros(num_parameter) X = [x1 for t = 1:T] U = [t < T ? u1 : zeros(0) for t = 1:T] W = [w1 for t = 1:T] ct.evaluate(ct.evaluate_cache, x1, u1, w1) ct.gradient(ct.gradient_cache, x1, u1, w1) @test ct.evaluate_cache[1] ≈ ot(x1, u1, w1) @test norm(ct.gradient_cache - [2.0 * x1; 0.2 * u1]) < 1.0e-8 cT.evaluate(cT.evaluate_cache, x1, u1, w1) cT.gradient(cT.gradient_cache, x1, u1, w1) @test cT.evaluate_cache[1] ≈ oT(x1, u1, w1) @test norm(cT.gradient_cache - 20.0 * x1) < 1.0e-8 @test DTO.cost(objective, X, U, X) - sum([ot(X[t], U[t], W[t]) for t = 1:T-1]) - oT(X[T], U[T], W[T]) ≈ 0.0 DTO.gradient!(gradient, idx_xu, objective, X, U, W) @test norm(gradient - vcat([[2.0 * x1; 0.2 * u1] for t = 1:T-1]..., 20.0 * x1)) < 1.0e-8 # info = @benchmark DTO.cost($objective, $X, $U, $W) # info = @benchmark DTO.gradient!($gradient, $idx_xu, $objective, $X, $U, $W) end
DirectTrajectoryOptimization
https://github.com/thowell/DirectTrajectoryOptimization.jl.git
[ "MIT" ]
0.2.0
b14763be7e90836eb56370fda4ff2fab25f5892a
code
286
using Test using Symbolics using ForwardDiff using LinearAlgebra using SparseArrays using DirectTrajectoryOptimization const DTO = DirectTrajectoryOptimization include("objective.jl") include("dynamics.jl") include("constraints.jl") include("hessian_lagrangian.jl") include("solve.jl")
DirectTrajectoryOptimization
https://github.com/thowell/DirectTrajectoryOptimization.jl.git
[ "MIT" ]
0.2.0
b14763be7e90836eb56370fda4ff2fab25f5892a
code
7968
@testset "Solve: acrobot" begin # horizon T = 101 # acrobot num_state = 4 num_action = 1 num_parameter = 0 parameter_dimensions = [num_parameter for t = 1:T] function acrobot(x, u, w) # dimensions n = 4 m = 1 d = 0 # link 1 mass1 = 1.0 inertia1 = 0.33 length1 = 1.0 lengthcom1 = 0.5 # link 2 mass2 = 1.0 inertia2 = 0.33 length2 = 1.0 lengthcom2 = 0.5 gravity = 9.81 friction1 = 0.1 friction2 = 0.1 # mass matrix function M(x, w) a = (inertia1 + inertia2 + mass2 * length1 * length1 + 2.0 * mass2 * length1 * lengthcom2 * cos(x[2])) b = inertia2 + mass2 * length1 * lengthcom2 * cos(x[2]) c = inertia2 return [a b; b c] end function Minv(x, w) a = (inertia1 + inertia2 + mass2 * length1 * length1 + 2.0 * mass2 * length1 * lengthcom2 * cos(x[2])) b = inertia2 + mass2 * length1 * lengthcom2 * cos(x[2]) c = inertia2 return 1.0 / (a * c - b * b) * [c -b; -b a] end # dynamics bias function τ(x, w) a = (-1.0 * mass1 * gravity * lengthcom1 * sin(x[1]) - mass2 * gravity * (length1 * sin(x[1]) + lengthcom2 * sin(x[1] + x[2]))) b = -1.0 * mass2 * gravity * lengthcom2 * sin(x[1] + x[2]) return [a; b] end function C(x, w) a = -2.0 * mass2 * length1 * lengthcom2 * sin(x[2]) * x[4] b = -1.0 * mass2 * length1 * lengthcom2 * sin(x[2]) * x[4] c = mass2 * length1 * lengthcom2 * sin(x[2]) * x[3] d = 0.0 return [a b; c d] end # input Jacobian function B(x, w) [0.0; 1.0] end # dynamics q = view(x, 1:2) v = view(x, 3:4) qdd = Minv(q, w) * (-1.0 * C(x, w) * v + τ(q, w) + B(q, w) * u[1] - [friction1; friction2] .* v) return [x[3]; x[4]; qdd[1]; qdd[2]] end function midpoint_implicit(y, x, u, w) h = 0.05 # timestep y - (x + h * acrobot(0.5 * (x + y), u, w)) end dt = Dynamics(midpoint_implicit, num_state, num_state, num_action, num_parameter=num_parameter) dynamics = [dt for t = 1:T-1] # initial state x1 = [0.0; 0.0; 0.0; 0.0] # goal state xT = [0.0; π; 0.0; 0.0] # interpolation x_interpolation = linear_interpolation(x1, xT, T) # objective ot = (x, u, w) -> 0.1 * dot(x[3:4], x[3:4]) + 0.1 * dot(u, u) oT = (x, u, w) -> 0.1 * dot(x[3:4], x[3:4]) ct = Cost(ot, num_state, num_action, num_parameter=num_parameter) cT = Cost(oT, num_state, 0, num_parameter=num_parameter) objective = [[ct for t = 1:T-1]..., cT] # constraints bnd1 = Bound(num_state, num_action, state_lower=x1, state_upper=x1) bndt = Bound(num_state, num_action) bndT = Bound(num_state, 0, state_lower=xT, state_upper=xT) bounds = [bnd1, [bndt for t = 2:T-1]..., bndT] constraints = [Constraint() for t = 1:T] # problem solver = Solver(dynamics, objective, constraints, bounds) # initialize initialize_states!(solver, x_interpolation) initialize_controls!(solver, [randn(num_action) for t = 1:T-1]) # solve solve!(solver) # solution x_sol, u_sol = get_trajectory(solver) @test norm(x_sol[1] - x1) < 1.0e-3 @test norm(x_sol[T] - xT) < 1.0e-3 end @testset "Solve: user-provided dynamics gradients" begin # ## horizon T = 11 # ## double integrator num_state = 2 num_action = 1 num_parameter = 0 function double_integrator(d, y, x, u, w) A = [1.0 1.0; 0.0 1.0] B = [0.0; 1.0] d .= y - (A * x + B * u[1]) end function double_integrator_grad(dz, y, x, u, w) A = [1.0 1.0; 0.0 1.0] B = [0.0; 1.0] dz .= [-A -B I] end # ## fast methods function double_integrator(y, x, u, w) A = [1.0 1.0; 0.0 1.0] B = [0.0; 1.0] y - (A * x + B * u[1]) end function double_integrator_grad(y, x, u, w) A = [1.0 1.0; 0.0 1.0] B = [0.0; 1.0] [-A -B I] end @variables y[1:num_state] x[1:num_state] u[1:num_action] w[1:num_parameter] di = double_integrator(y, x, u, w) diz = double_integrator_grad(y, x, u, w) di_func = eval(Symbolics.build_function(di, y, x, u, w)[2]) diz_func = eval(Symbolics.build_function(diz, y, x, u, w)[2]) # ## model dt = Dynamics(di_func, diz_func, num_state, num_state, num_action) dynamics = [dt for t = 1:T-1] # ## initialization x1 = [0.0; 0.0] xT = [1.0; 0.0] # ## objective ot = (x, u, w) -> 0.1 * dot(x, x) + 0.1 * dot(u, u) oT = (x, u, w) -> 0.1 * dot(x, x) ct = Cost(ot, num_state, num_action, num_parameter=num_parameter) cT = Cost(oT, num_state, 0, num_parameter=num_parameter) objective = [[ct for t = 1:T-1]..., cT] # ## constraints bnd1 = Bound(num_state, num_action, state_lower=x1, state_upper=x1) bndt = Bound(num_state, num_action) bndT = Bound(num_state, 0, state_lower=xT, state_upper=xT) bounds = [bnd1, [bndt for t = 2:T-1]..., bndT] constraints = [Constraint() for t = 1:T] # ## problem solver = Solver(dynamics, objective, constraints, bounds) # ## initialize x_interpolation = linear_interpolation(x1, xT, T) u_guess = [1.0 * randn(num_action) for t = 1:T-1] initialize_states!(solver, x_interpolation) initialize_controls!(solver, u_guess) # ## solve solve!(solver) # ## solution x_sol, u_sol = get_trajectory(solver) @test norm(x_sol[1] - x1) < 1.0e-3 @test norm(x_sol[T] - xT) < 1.0e-3 end @testset "Solve: general constraint" begin # ## evaluate_hessian = true # ## horizon T = 11 # ## double integrator num_state = 2 num_action = 1 num_parameter = 0 function double_integrator(y, x, u, w) A = [1.0 1.0; 0.0 1.0] B = [0.0; 1.0] y - (A * x + B * u[1]) end # ## model dt = Dynamics(double_integrator, num_state, num_state, num_action, evaluate_hessian=evaluate_hessian) dynamics = [dt for t = 1:T-1] dynamics[1].hessian_cache # ## initialization x1 = [0.0; 0.0] xT = [1.0; 0.0] # ## objective ot = (x, u, w) -> 0.1 * dot(x, x) + 0.1 * dot(u, u) oT = (x, u, w) -> 0.1 * dot(x, x) ct = Cost(ot, num_state, num_action, num_parameter=num_parameter, evaluate_hessian=evaluate_hessian) cT = Cost(oT, num_state, 0, num_parameter=num_parameter, evaluate_hessian=evaluate_hessian) objective = [[ct for t = 1:T-1]..., cT] # ## constraints bnd1 = Bound(num_state, num_action, state_lower=x1, state_upper=x1) bndt = Bound(num_state, num_action) bndT = Bound(num_state, 0)#, state_lower=xT, state_upper=xT) bounds = [bnd1, [bndt for t = 2:T-1]..., bndT] constraints = [Constraint() for t = 1:T] gc = GeneralConstraint((z, w) -> z[(end-1):end] - xT, num_state * T + num_action * (T-1), 0, evaluate_hessian=true) # ## problem solver = Solver(dynamics, objective, constraints, bounds, general_constraint=gc, evaluate_hessian=true, options=Options()) # ## initialize x_interpolation = linear_interpolation(x1, xT, T) u_guess = [1.0 * randn(num_action) for t = 1:T-1] initialize_states!(solver, x_interpolation) initialize_controls!(solver, u_guess) # ## solve solve!(solver) # ## solution x_sol, u_sol = get_trajectory(solver) @test norm(x_sol[1] - x1) < 1.0e-3 @test norm(x_sol[T] - xT) < 1.0e-3 end
DirectTrajectoryOptimization
https://github.com/thowell/DirectTrajectoryOptimization.jl.git
[ "MIT" ]
0.2.0
b14763be7e90836eb56370fda4ff2fab25f5892a
docs
1365
# DirectTrajectoryOptimization.jl [![CI](https://github.com/thowell/DirectTrajectoryOptimization.jl/actions/workflows/CI.yml/badge.svg)](https://github.com/thowell/DirectTrajectoryOptimization.jl/actions/workflows/CI.yml) [![codecov](https://codecov.io/gh/thowell/DirectTrajectoryOptimization.jl/branch/main/graph/badge.svg?token=821EI7HJEL)](https://codecov.io/gh/thowell/DirectTrajectoryOptimization.jl) A Julia package for solving constrained trajectory optimization problems: ``` minimize cost_T(state_T; parameter_T) + sum(cost_t(state_t, action_t; parameter_t)) states, actions subject to dynamics_t(state_t, action_t, state_t+1; parameter_t), t = 1,...,T-1 constraint_t(state_t, action_t; parameter_t) {<,=} 0, t = 1,...,T state_lower_t < state_t < state_upper_t, t = 1,...,T action_lower_t < action_t < action_upper_t, t = 1,...,T-1. ``` with direct trajectory optimization. Fast and allocation-free gradients and sparse Jacobians are automatically generated using [Symbolics.jl](https://github.com/JuliaSymbolics/Symbolics.jl) for user-provided costs, constraints, and dynamics. The problem is solved with [Ipopt](https://coin-or.github.io/Ipopt/). ## Installation ``` Pkg.add("DirectTrajectoryOptimization") ``` ## Quick Start
DirectTrajectoryOptimization
https://github.com/thowell/DirectTrajectoryOptimization.jl.git
[ "MIT" ]
0.2.0
b14763be7e90836eb56370fda4ff2fab25f5892a
docs
910
# DirectTrajectoryOptimization.jl examples This directory contains various DirectTrajectoryOptimization.jl examples. The `.jl` files in each subdirectory are meant to be processed using [Literate.jl](https://github.com/fredrikekre/Literate.jl). During the documentation build process, the `.jl` files are converted to markdown files that end up in the package documentation. You can also generate Jupyter notebooks and run them locally by performing the following steps: 1. [install DirectTrajectoryOptimization.jl](https://github.com/thowell/DirectTrajectoryOptimization.jl) 2. [install IJulia](https://github.com/JuliaLang/IJulia.jl) (`add` it to the default project) 3. in the Julia REPL, run ``` using Pkg Pkg.build("DirectTrajectoryOptimization") using IJulia, DirectTrajectoryOptimization notebook(dir=joinpath(dirname(pathof(DirectTrajectoryOptimization)), "..", "examples")) ```
DirectTrajectoryOptimization
https://github.com/thowell/DirectTrajectoryOptimization.jl.git
[ "MIT" ]
0.7.5
104b6a1a358da9b1348ab7cd66ad685ecaca13d4
code
88
function module_dir() @__DIR__ end using Pkg Pkg.activate(module_dir()) using Dojo
Dojo
https://github.com/dojo-sim/Dojo.jl.git
[ "MIT" ]
0.7.5
104b6a1a358da9b1348ab7cd66ad685ecaca13d4
code
571
module DojoEnvironments using LinearAlgebra using Random using Dojo import Dojo: string_to_symbol, add_limits, RotX, RotY, RotZ, rotation_vector, SVector using PrecompileTools include("mechanisms.jl") include("environments.jl") include("utilities.jl") include("mechanisms/include.jl") include("environments/include.jl") # Precompilation include("precompile.jl") # Mechanism export get_mechanism, set_springs!, set_dampers!, set_limits # Environment export Environment, get_environment, step!, get_state, visualize end # module
Dojo
https://github.com/dojo-sim/Dojo.jl.git
[ "MIT" ]
0.7.5
104b6a1a358da9b1348ab7cd66ad685ecaca13d4
code
3499
""" Environment{T,N} abstract type for an environment consisting of a mechanism and a storage """ abstract type Environment{T,N} end function Base.show(io::IO, mime::MIME{Symbol("text/plain")}, environment::Environment) summary(io, environment) end """ get_environment(model; kwargs...) construct existing environment model: name of of environment kwargs: environment specific parameters """ function get_environment(model; kwargs...) return eval(string_to_symbol(model))(; string_to_symbol(kwargs)...) end """ state_map(environment, state) maps the provided state to the environments internal state environment: environment state: provided state """ function state_map(::Environment, state) return state end """ input_map(environment, input) maps the provided input to the environment's internal input environment: environment input: provided input """ function input_map(::Environment, input) return input end function input_map(environment::Environment, ::Nothing) return zeros(input_dimension(environment.mechanism)) end """ set_input!(environment, input) sets the provided input to the environment's mechanism environment: environment input: provided input """ function Dojo.set_input!(environment::Environment, input) set_input!(environment.mechanism, input_map(environment, input)) return end """ step(environment, x, u; k, record, opts) simulates environment one time step environment: Environment x: state u: input k: current timestep record: record step in storage opts: SolverOptions """ function Dojo.step!(environment::Environment, state, input=nothing; k=1, record=false, opts=SolverOptions()) state = state_map(environment, state) input = input_map(environment, input) Dojo.step_minimal_coordinates!(environment.mechanism, state, input; opts) record && Dojo.save_to_storage!(environment.mechanism, environment.storage, k) return end """ simulate!(environment, controller! = (mechanism, k) -> nothing; kwargs...) simulates the mechanism of the environment environment: Environment controller!: Control function kwargs: same as for Dojo.simulate """ function Dojo.simulate!(environment::Environment{T,N}, controller! = (environment, k) -> nothing; kwargs...) where {T,N} controller_wrapper!(mechanism, k) = controller!(environment, k) simulate!(environment.mechanism, 1:N, environment.storage, controller_wrapper!; kwargs...) end """ get_state(environment) returns the state of the environment environment: Environment """ function get_state(environment::Environment) return get_minimal_state(environment.mechanism) end """ initialize!(environment; kwargs...) initializes the environment's mechanism environment: Environment kwargs: same as for DojoEnvironments' mechanisms """ function Dojo.initialize!(environment::Environment, model; kwargs...) eval(Symbol(:initialize, :_, string_to_symbol(model), :!))(environment.mechanism; kwargs...) end """ visualize(environment; kwargs...) visualizes the environment with its internal storage environment: Environment kwargs: same as for Dojo.visualize """ function Dojo.visualize(environment::Environment; kwargs...) visualize(environment.mechanism, environment.storage; kwargs...) end
Dojo
https://github.com/dojo-sim/Dojo.jl.git
[ "MIT" ]
0.7.5
104b6a1a358da9b1348ab7cd66ad685ecaca13d4
code
702
""" get_mechanism(model; kwargs...) constructs mechanism model: name of mechanism kwargs: mechanism specific parameters """ function get_mechanism(model; kwargs...) # convert potential strings to symbols mechanism = eval(Symbol(:get, :_, string_to_symbol(model)))(; string_to_symbol(kwargs)...) return mechanism end """ initialize!(mechanism, model; kwargs) state initialization for mechanism mechanism: Mechanism model: name of mechanism kwargs: mechanism specific parameters """ function Dojo.initialize!(mechanism::Mechanism, model; kwargs...) eval(Symbol(:initialize, :_, string_to_symbol(model), :!))(mechanism; kwargs...) end
Dojo
https://github.com/dojo-sim/Dojo.jl.git
[ "MIT" ]
0.7.5
104b6a1a358da9b1348ab7cd66ad685ecaca13d4
code
1328
@setup_workload begin mechanisms = [ :ant, :atlas, :block, :block2d, :cartpole, :dzhanibekov, :exoskeleton, :fourbar, :halfcheetah, :hopper, :humanoid, :npendulum, :nslider, :panda, :pendulum, :quadrotor, :quadruped, :raiberthopper, :slider, :snake, :sphere, :tippetop, :twister, :uuv, :walker, :youbot, ] environments = [ :ant_ars, :cartpole_dqn, :pendulum, :quadruped_waypoint, :quadruped_sampling, :quadrotor_waypoint, :uuv_waypoint, :youbot_waypoint, ] @compile_workload begin # Simulate all mechanisms for name in mechanisms mech = get_mechanism(name) initialize!(mech, name) simulate!(mech, mech.timestep * 2) end # Simulate all environments for name in environments env = get_environment(name; horizon=2) x = get_state(env) u = DojoEnvironments.input_map(env, nothing) set_input!(env, nothing) step!(env, x) step!(env, x, u) simulate!(env) end end end
Dojo
https://github.com/dojo-sim/Dojo.jl.git
[ "MIT" ]
0.7.5
104b6a1a358da9b1348ab7cd66ad685ecaca13d4
code
2105
function set_springs!(joints, value::Real) for joint in joints (value==0) && break typeof(joint) <: JointConstraint{T,0} where T && continue # floating base joint.spring = true joint.translational.spring=value joint.rotational.spring=value end end function set_springs!(joints, springs::AbstractArray) for (i,value) in enumerate(springs) (value==0) && continue typeof(joints[i]) <: JointConstraint{T,0} where T && continue # floating base joints[i].spring = true joints[i].translational.spring=value joints[i].rotational.spring=value end end function set_dampers!(joints, value::Real) for joint in joints (value==0) && break typeof(joint) <: JointConstraint{T,0} where T && continue # floating base joint.damper = true joint.translational.damper=value joint.rotational.damper=value end end function set_dampers!(joints, dampers::AbstractArray) for (i,value) in enumerate(dampers) (value==0) && continue typeof(joints[i]) <: JointConstraint{T,0} where T && continue # floating base joints[i].damper = true joints[i].translational.damper=value joints[i].rotational.damper=value end end function set_limits(mechanism::Mechanism{T}, joint_limits) where T joints = JointConstraint{T}[deepcopy(mechanism.joints)...] for (joint_symbol,limits) in joint_limits joint = get_joint(mechanism, joint_symbol) if input_dimension(joint.translational) == 0 && input_dimension(joint.rotational) == 1 joints[joint.id] = add_limits(mechanism, joint, rot_limits=[SVector{1}(limits[1]), SVector{1}(limits[2])]) elseif input_dimension(joint.translational) == 1 && input_dimension(joint.rotational) == 0 joints[joint.id] = add_limits(mechanism, joint, tra_limits=[SVector{1}(limits[1]), SVector{1}(limits[2])]) else @warn "joint limits can only be set for one-dimensional joints" end end return joints end
Dojo
https://github.com/dojo-sim/Dojo.jl.git
[ "MIT" ]
0.7.5
104b6a1a358da9b1348ab7cd66ad685ecaca13d4
code
2137
mutable struct AntARS{T,N} <: Environment{T,N} mechanism::Mechanism{T} storage::Storage{T,N} end function ant_ars(; horizon=100, timestep=0.05, input_scaling=timestep, gravity=-9.81, urdf=:ant, springs=0, dampers=0, parse_springs=true, parse_dampers=true, joint_limits=Dict([ (:hip_1, [-30,30] * π / 180), (:ankle_1, [30,70] * π / 180), (:hip_2, [-30,30] * π / 180), (:ankle_2, [-70,-30] * π / 180), (:hip_3, [-30,30] * π / 180), (:ankle_3, [-70,-30] * π / 180), (:hip_4, [-30,30] * π / 180), (:ankle_4, [30,70] * π / 180)]), keep_fixed_joints=true, friction_coefficient=0.5, contact_feet=true, contact_body=true, T=Float64) mechanism = get_ant(; timestep, input_scaling, gravity, urdf, springs, dampers, parse_springs, parse_dampers, joint_limits, keep_fixed_joints, friction_coefficient, contact_feet, contact_body, T ) storage = Storage(horizon, length(mechanism.bodies)) return AntARS{T,horizon}(mechanism, storage) end function DojoEnvironments.state_map(::AntARS, state) state = state[1:28] return state end function DojoEnvironments.input_map(::AntARS, input::AbstractVector) input = [zeros(6);input] # floating base not actuated return input end function Dojo.step!(environment::AntARS, state, input=nothing; k=1, record=false, opts=SolverOptions()) state = state_map(environment, state) input = input_map(environment, input) Dojo.step_minimal_coordinates!(environment.mechanism, state, input; opts) record && Dojo.save_to_storage!(environment.mechanism, environment.storage, k) return end function DojoEnvironments.get_state(environment::AntARS{T}) where T contact_force = T[] for contact in environment.mechanism.contacts push!(contact_force, max(-1, min(1, contact.impulses[2][1]))) end state = [get_minimal_state(environment.mechanism); contact_force] return state end
Dojo
https://github.com/dojo-sim/Dojo.jl.git
[ "MIT" ]
0.7.5
104b6a1a358da9b1348ab7cd66ad685ecaca13d4
code
1562
mutable struct CartpoleDQN{T,N} <: Environment{T,N} mechanism::Mechanism{T} storage::Storage{T,N} end function cartpole_dqn(; horizon=100, timestep=0.01, input_scaling=timestep, gravity=-9.81, slider_mass=1, pendulum_mass=1, link_length=1, radius=0.075, color=RGBA(0.7, 0.7, 0.7, 1), springs=0, dampers=0, joint_limits=Dict(), keep_fixed_joints=true, T=Float64) mechanism = get_cartpole(; timestep, input_scaling, gravity, slider_mass, pendulum_mass, link_length, radius, color, springs, dampers, joint_limits, keep_fixed_joints, T ) storage = Storage(horizon, length(mechanism.bodies)) return CartpoleDQN{T,horizon}(mechanism, storage) end function DojoEnvironments.state_map(::CartpoleDQN, state) return state end function DojoEnvironments.input_map(::CartpoleDQN, input::Real) input = [input;0] # only the cart is actuated return input end function Dojo.step!(environment::CartpoleDQN, state, input=nothing; k=1, record=false, opts=SolverOptions()) state = state_map(environment, state) input = input_map(environment, input) Dojo.step_minimal_coordinates!(environment.mechanism, state, input; opts) record && Dojo.save_to_storage!(environment.mechanism, environment.storage, k) return end function DojoEnvironments.get_state(environment::CartpoleDQN) state = get_minimal_state(environment.mechanism) return state end
Dojo
https://github.com/dojo-sim/Dojo.jl.git
[ "MIT" ]
0.7.5
104b6a1a358da9b1348ab7cd66ad685ecaca13d4
code
227
include("ant_ars.jl") include("cartpole_dqn.jl") include("pendulum.jl") include("quadruped_waypoint.jl") include("quadruped_sampling.jl") include("quadrotor_waypoint.jl") include("uuv_waypoint.jl") include("youbot_waypoint.jl")
Dojo
https://github.com/dojo-sim/Dojo.jl.git
[ "MIT" ]
0.7.5
104b6a1a358da9b1348ab7cd66ad685ecaca13d4
code
1456
mutable struct Pendulum{T,N} <: Environment{T,N} mechanism::Mechanism{T} storage::Storage{T,N} end function pendulum(; horizon=100, timestep=0.01, input_scaling=timestep, gravity=-9.81, mass=1, link_length=1, color=RGBA(1, 0, 0), springs=0, dampers=0, joint_limits=Dict(), spring_offset=szeros(1), orientation_offset=one(Quaternion), T=Float64) mechanism = get_pendulum(; timestep, input_scaling, gravity, mass, link_length, color, springs, dampers, joint_limits, spring_offset, orientation_offset, T ) storage = Storage(horizon, length(mechanism.bodies)) return Pendulum{T,horizon}(mechanism, storage) end function DojoEnvironments.state_map(::Pendulum, state) return state end function DojoEnvironments.input_map(::Pendulum, input::AbstractVector) return input end function Dojo.step!(environment::Pendulum, state, input=nothing; k=1, record=false, opts=SolverOptions()) state = state_map(environment, state) input = input_map(environment, input) Dojo.step_minimal_coordinates!(environment.mechanism, state, input; opts) record && Dojo.save_to_storage!(environment.mechanism, environment.storage, k) return end function DojoEnvironments.get_state(environment::Pendulum) state = get_minimal_state(environment.mechanism) return state end
Dojo
https://github.com/dojo-sim/Dojo.jl.git
[ "MIT" ]
0.7.5
104b6a1a358da9b1348ab7cd66ad685ecaca13d4
code
4971
mutable struct QuadrotorWaypoint{T,N} <: Environment{T,N} mechanism::Mechanism{T} storage::Storage{T,N} rpms::AbstractVector end function quadrotor_waypoint(; horizon=100, timestep=0.01, input_scaling=timestep, gravity=-9.81, urdf=:pelican, springs=0, dampers=0, parse_springs=true, parse_dampers=true, joint_limits=Dict(), keep_fixed_joints=false, friction_coefficient=0.5, contact_rotors=true, contact_body=true, T=Float64) mechanism = get_quadrotor(; timestep, input_scaling, gravity, urdf, springs, dampers, parse_springs, parse_dampers, joint_limits, keep_fixed_joints, friction_coefficient, contact_rotors, contact_body, T ) storage = Storage(horizon, length(mechanism.bodies)) return QuadrotorWaypoint{T,horizon}(mechanism, storage, zeros(4)) end function DojoEnvironments.state_map(::QuadrotorWaypoint, state) state = [state;zeros(8)] return state end function DojoEnvironments.input_map(environment::QuadrotorWaypoint, input::AbstractVector) # Input is rotor rpm directly # Rotors are only visualized, dynamics are mapped here environment.rpms = input body = get_body(environment.mechanism, :base_link) q = body.state.q2 force_torque = rpm_to_force_torque(environment, input, q) input = [force_torque;zeros(4)] return input end function Dojo.step!(environment::QuadrotorWaypoint, state, input=nothing; k=1, record=false, opts=SolverOptions()) state = state_map(environment, state) input = input_map(environment, input) Dojo.step_minimal_coordinates!(environment.mechanism, state, input; opts) record && Dojo.save_to_storage!(environment.mechanism, environment.storage, k) return end function Dojo.simulate!(environment::QuadrotorWaypoint{T,N}, controller! = (environment, k) -> nothing; kwargs...) where {T,N} mechanism = environment.mechanism joint_rotor_0 = get_joint(mechanism, :rotor_0_joint) joint_rotor_1 = get_joint(mechanism, :rotor_1_joint) joint_rotor_2 = get_joint(mechanism, :rotor_2_joint) joint_rotor_3 = get_joint(mechanism, :rotor_3_joint) function controller_wrapper!(mechanism, k) rpms = environment.rpms set_minimal_velocities!(mechanism, joint_rotor_0, [rpms[1]]) set_minimal_velocities!(mechanism, joint_rotor_1, [-rpms[2]]) set_minimal_velocities!(mechanism, joint_rotor_2, [rpms[3]]) set_minimal_velocities!(mechanism, joint_rotor_3, [-rpms[4]]) controller!(environment, k) end simulate!(environment.mechanism, 1:N, environment.storage, controller_wrapper!; kwargs...) end function DojoEnvironments.get_state(environment::QuadrotorWaypoint) state = get_minimal_state(environment.mechanism)[1:12] return state end function Dojo.visualize(environment::QuadrotorWaypoint; waypoints=[ [1;1;0.3], [2;0;0.3], [1;-1;0.3], [0;0;0.3], ], return_animation=false, kwargs...) vis, animation = visualize(environment.mechanism, environment.storage; return_animation=true, kwargs...) for (i,waypoint) in enumerate(waypoints) waypoint_shape = Sphere(0.2;color=RGBA(0,0.25*i,0,0.3)) visshape = Dojo.convert_shape(waypoint_shape) subvisshape = vis["waypoints"]["waypoint$i"] Dojo.setobject!(subvisshape, visshape, waypoint_shape) Dojo.atframe(animation, 1) do Dojo.set_node!(waypoint, one(Quaternion), waypoint_shape, subvisshape, true) end end Dojo.setanimation!(vis,animation) return_animation ? (return vis, animation) : (return vis) end # ## physics functions function rpm_to_force_torque(::QuadrotorWaypoint, rpm::Real, rotor_sign::Int64) force_factor = 0.001 torque_factor = 0.0001 force = sign(rpm)*force_factor*rpm^2 torque = sign(rpm)*rotor_sign*torque_factor*rpm^2 return [force;0;0], [torque;0;0] end function rpm_to_force_torque(environment::QuadrotorWaypoint, rpms::AbstractVector, q::Quaternion) qympi2 = Dojo.RotY(-pi/2) orientations = [qympi2;qympi2;qympi2;qympi2] directions = [1;-1;1;-1] force_vertices = [ [0.21; 0; 0.05], [0; 0.21; 0.05], [-0.21; 0; 0.05], [0; -0.21; 0.05], ] forces_torques = [rpm_to_force_torque(environment, rpms[i], directions[i]) for i=1:4] forces = getindex.(forces_torques,1) torques = getindex.(forces_torques,2) forces = Dojo.vector_rotate.(forces, orientations) # in local frame torques = Dojo.vector_rotate.(torques, orientations) # in local frame torques_from_forces = Dojo.cross.(force_vertices, forces) force = Dojo.vector_rotate(sum(forces), q) # in minimal frame torque = Dojo.vector_rotate(sum(torques .+ torques_from_forces), q) # in minimal frame return [force; torque] end
Dojo
https://github.com/dojo-sim/Dojo.jl.git
[ "MIT" ]
0.7.5
104b6a1a358da9b1348ab7cd66ad685ecaca13d4
code
1957
mutable struct QuadrupedSampling{T,N} <: Environment{T,N} mechanism::Mechanism{T} storage::Storage{T,N} end function quadruped_sampling(; horizon=100, timestep=0.01, input_scaling=timestep, gravity=-9.81, urdf=:gazebo_a1, springs=0, dampers=0, parse_springs=true, parse_dampers=true, spring_offset=true, joint_limits=Dict(vcat([[ (Symbol(group,:_hip_joint), [-0.5,0.5]), (Symbol(group,:_thigh_joint), [-0.5,1.5]), (Symbol(group,:_calf_joint), [-2.5,-1])] for group in [:FR, :FL, :RR, :RL]]...)), keep_fixed_joints=false, friction_coefficient=0.8, contact_feet=true, contact_body=true, T=Float64) mechanism = get_quadruped(; timestep, input_scaling, gravity, urdf, springs, dampers, parse_springs, parse_dampers, spring_offset, joint_limits, keep_fixed_joints, friction_coefficient, contact_feet, contact_body, T ) storage = Storage(horizon, length(mechanism.bodies)) return QuadrupedSampling{T,horizon}(mechanism, storage) end function DojoEnvironments.state_map(::QuadrupedSampling, state) return state end function DojoEnvironments.input_map(::QuadrupedSampling, input::AbstractVector) input = [zeros(6);input] # trunk not actuated return input end function Dojo.step!(environment::QuadrupedSampling, state, input=nothing; k=1, record=false, opts=SolverOptions()) state = state_map(environment, state) input = input_map(environment, input) Dojo.step_minimal_coordinates!(environment.mechanism, state, input; opts) record && Dojo.save_to_storage!(environment.mechanism, environment.storage, k) return end function DojoEnvironments.get_state(environment::QuadrupedSampling) state = get_minimal_state(environment.mechanism) # x: floating base, FR (hip, thigh, calf), FL, RR, RL return state end
Dojo
https://github.com/dojo-sim/Dojo.jl.git
[ "MIT" ]
0.7.5
104b6a1a358da9b1348ab7cd66ad685ecaca13d4
code
2814
mutable struct QuadrupedWaypoint{T,N} <: Environment{T,N} mechanism::Mechanism{T} storage::Storage{T,N} end function quadruped_waypoint(; horizon=100, timestep=0.001, input_scaling=timestep, gravity=-9.81, urdf=:gazebo_a1, springs=0, dampers=0, parse_springs=true, parse_dampers=true, spring_offset=true, joint_limits=Dict(vcat([[ (Symbol(group,:_hip_joint), [-0.5,0.5]), (Symbol(group,:_thigh_joint), [-0.5,1.5]), (Symbol(group,:_calf_joint), [-2.5,-1])] for group in [:FR, :FL, :RR, :RL]]...)), keep_fixed_joints=false, friction_coefficient=0.8, contact_feet=true, contact_body=false, T=Float64) mechanism = get_quadruped(; timestep, input_scaling, gravity, urdf, springs, dampers, parse_springs, parse_dampers, spring_offset, joint_limits, keep_fixed_joints, friction_coefficient, contact_feet, contact_body, T ) storage = Storage(horizon, length(mechanism.bodies)) return QuadrupedWaypoint{T,horizon}(mechanism, storage) end function DojoEnvironments.state_map(::QuadrupedWaypoint, state) return state end function DojoEnvironments.input_map(::QuadrupedWaypoint, input::AbstractVector) input = [zeros(6);input] # trunk not actuated return input end function Dojo.step!(environment::QuadrupedWaypoint, state, input=nothing; k=1, record=false, opts=SolverOptions()) state = state_map(environment, state) input = input_map(environment, input) Dojo.step_minimal_coordinates!(environment.mechanism, state, input; opts) record && Dojo.save_to_storage!(environment.mechanism, environment.storage, k) return end function DojoEnvironments.get_state(environment::QuadrupedWaypoint) state = get_minimal_state(environment.mechanism) # x: floating base, FR (hip, thigh, calf), FL, RR, RL return state end function Dojo.visualize(environment::QuadrupedWaypoint; waypoints=[ [0.5;0.5;0.3], [1;0;0.3], [0.5;-0.5;0.3], [0;0;0.3], ], return_animation=false, kwargs...) vis, animation = visualize(environment.mechanism, environment.storage; return_animation=true, kwargs...) for (i,waypoint) in enumerate(waypoints) waypoint_shape = Sphere(0.2;color=RGBA(0,0.25*i,0,0.3)) visshape = Dojo.convert_shape(waypoint_shape) subvisshape = vis["waypoints"]["waypoint$i"] Dojo.setobject!(subvisshape, visshape, waypoint_shape) Dojo.atframe(animation, 1) do Dojo.set_node!(waypoint, one(Quaternion), waypoint_shape, subvisshape, true) end end Dojo.setanimation!(vis,animation) return_animation ? (return vis, animation) : (return vis) end
Dojo
https://github.com/dojo-sim/Dojo.jl.git
[ "MIT" ]
0.7.5
104b6a1a358da9b1348ab7cd66ad685ecaca13d4
code
5589
mutable struct UUVWaypoint{T,N} <: Environment{T,N} mechanism::Mechanism{T} storage::Storage{T,N} rpms::AbstractVector end function uuv_waypoint(; horizon=100, timestep=0.01, input_scaling=timestep, gravity=-9.81, urdf=:mini_tortuga, springs=0, dampers=0, parse_springs=true, parse_dampers=true, joint_limits=Dict(), keep_fixed_joints=false, friction_coefficient=0.5, contact_body=true, T=Float64) mechanism = get_uuv(; timestep, input_scaling, gravity, urdf, springs, dampers, parse_springs, parse_dampers, joint_limits, keep_fixed_joints, friction_coefficient, contact_body, T ) storage = Storage(horizon, length(mechanism.bodies)) return UUVWaypoint{T,horizon}(mechanism, storage, zeros(6)) end function DojoEnvironments.state_map(::UUVWaypoint, state) state = [state;zeros(12)] return state end function DojoEnvironments.input_map(environment::UUVWaypoint, input::AbstractVector) # Input is rotor rpm directly # Rotors are only visualized, dynamics are mapped here environment.rpms = input body = get_body(environment.mechanism, :base_link) q = body.state.q2 force_torque = rpm_to_force_torque(environment, input, q) input = [force_torque;zeros(6)] return input end function Dojo.step!(environment::UUVWaypoint, state, input=nothing; k=1, record=false, opts=SolverOptions()) state = state_map(environment, state) input = input_map(environment, input) Dojo.step_minimal_coordinates!(environment.mechanism, state, input; opts) record && Dojo.save_to_storage!(environment.mechanism, environment.storage, k) return end function Dojo.simulate!(environment::UUVWaypoint{T,N}, controller! = (environment, k) -> nothing; kwargs...) where {T,N} mechanism = environment.mechanism rotor_1_joint = get_joint(mechanism, :rotor_1_joint) rotor_2_joint = get_joint(mechanism, :rotor_2_joint) rotor_3_joint = get_joint(mechanism, :rotor_3_joint) rotor_4_joint = get_joint(mechanism, :rotor_4_joint) rotor_5_joint = get_joint(mechanism, :rotor_5_joint) rotor_6_joint = get_joint(mechanism, :rotor_6_joint) function controller_wrapper!(mechanism, k) rpms = environment.rpms set_minimal_velocities!(mechanism, rotor_1_joint, [rpms[1]]) set_minimal_velocities!(mechanism, rotor_2_joint, [rpms[2]]) set_minimal_velocities!(mechanism, rotor_3_joint, [-rpms[3]]) set_minimal_velocities!(mechanism, rotor_4_joint, [-rpms[4]]) set_minimal_velocities!(mechanism, rotor_5_joint, [rpms[5]]) set_minimal_velocities!(mechanism, rotor_6_joint, [-rpms[6]]) buoyancy!(environment, mechanism) controller!(environment, k) end simulate!(environment.mechanism, 1:N, environment.storage, controller_wrapper!; kwargs...) end function DojoEnvironments.get_state(environment::UUVWaypoint) state = get_minimal_state(environment.mechanism)[1:12] return state end function Dojo.visualize(environment::UUVWaypoint; waypoints=[ [1;1;0.3], [2;0;0.3], [1;-1;0.3], [0;0;0.3], ], return_animation=false, kwargs...) vis, animation = visualize(environment.mechanism, environment.storage; return_animation=true, kwargs...) for (i,waypoint) in enumerate(waypoints) waypoint_shape = Sphere(0.2;color=RGBA(0,0.25*i,0,0.3)) visshape = Dojo.convert_shape(waypoint_shape) subvisshape = vis["waypoints"]["waypoint$i"] Dojo.setobject!(subvisshape, visshape, waypoint_shape) Dojo.atframe(animation, 1) do Dojo.set_node!(waypoint, one(Quaternion), waypoint_shape, subvisshape, true) end end Dojo.setanimation!(vis,animation) return_animation ? (return vis, animation) : (return vis) end # ## physics functions function rpm_to_force_torque(::UUVWaypoint, rpm::Real, rotor_sign::Int64) force_factor = 0.01 torque_factor = 0.001 force = sign(rpm)*force_factor*rpm^2 torque = sign(rpm)*rotor_sign*torque_factor*rpm^2 return [force;0;0], [torque;0;0] end function rpm_to_force_torque(environment::UUVWaypoint, rpms::AbstractVector, q::Quaternion) qzpi4 = Dojo.RotZ(pi/4) qzmpi4 = Dojo.RotZ(-pi/4) qympi2 = Dojo.RotY(-pi/2) orientations = [qzpi4;qzmpi4;qzmpi4;qzpi4;qympi2;qympi2] directions = [1;1;-1;-1;1;-1] force_vertices = [ [0.14; -0.09; 0.059], [0.14; 0.09; 0.059], [-0.14; -0.09; 0.059], [-0.14; 0.09; 0.059], [0; -0.0855; 0.165], [0; 0.0855; 0.165], ] forces_torques = [rpm_to_force_torque(environment, rpms[i], directions[i]) for i=1:6] forces = getindex.(forces_torques,1) torques = getindex.(forces_torques,2) forces = Dojo.vector_rotate.(forces, orientations) # in local frame torques = Dojo.vector_rotate.(torques, orientations) # in local frame torques_from_forces = Dojo.cross.(force_vertices, forces) force = Dojo.vector_rotate(sum(forces), q) # in minimal frame torque = Dojo.vector_rotate(sum(torques .+ torques_from_forces), q) # in minimal frame return [force; torque] end function buoyancy!(::UUVWaypoint, mechanism) body = get_body(mechanism, :base_link) q = body.state.q2 force = Dojo.vector_rotate([0;0;19.5*9.81], inv(q)) # slightly positive torque = Dojo.cross([0;0;0.2], force) add_external_force!(body; force, torque) return end
Dojo
https://github.com/dojo-sim/Dojo.jl.git
[ "MIT" ]
0.7.5
104b6a1a358da9b1348ab7cd66ad685ecaca13d4
code
5082
mutable struct YoubotWaypoint{T,N} <: Environment{T,N} mechanism::Mechanism{T} storage::Storage{T,N} end function youbot_waypoint(; horizon=100, timestep=0.01, input_scaling=timestep, gravity=-9.81, urdf=:youbot, springs=0, dampers=0, parse_springs=true, parse_dampers=true, joint_limits=Dict([ (:arm_joint_1, [-2.95,2.95]), (:arm_joint_2, [-1.57,1.13]), (:arm_joint_3, [-2.55,2.55]), (:arm_joint_4, [-1.78,1.78]), (:arm_joint_5, [-2.92,2.92]), # (:gripper_finger_joint_l, [0,0.03]), # (:gripper_finger_joint_r, [-0.03,0]), ]), keep_fixed_joints=false, T=Float64) mechanism = get_youbot(; timestep, input_scaling, gravity, urdf, springs, dampers, parse_springs, parse_dampers, joint_limits, keep_fixed_joints, T ) storage = Storage(horizon, length(mechanism.bodies)) return YoubotWaypoint{T,horizon}(mechanism, storage) end function DojoEnvironments.state_map(::YoubotWaypoint, state) xy = state[1:2] # minimal coordinates are rotated for youbot vxy = state[4:5] # minimal coordinates are rotated for youbot xy_minimal = Dojo.vector_rotate([xy;0],Dojo.RotZ(-pi/2))[1:2] vxy_minimal = Dojo.vector_rotate([vxy;0],Dojo.RotZ(-pi/2))[1:2] state[1:2] = xy_minimal state[4:5] = vxy_minimal state = [state[1:6]; zeros(8); state[7:end]] return state end function DojoEnvironments.input_map(environment::YoubotWaypoint, input::AbstractVector) # Wheels are only for visualization and not actuated # so the wheel input must be mapped to the base l = 0.456 w = 0.316 H = [ 1 -1 -l-w 1 1 l+w 1 1 -l-w 1 -1 l+w ] θz = get_state(environment)[3] wheel_input = input[1:4] # fl, fr, bl, br base_input = H\wheel_input/10 # incorrect but roughly ok mapping xy = base_input[1:2] xy_minimal = Dojo.vector_rotate([xy;0],Dojo.RotZ(θz-pi/2))[1:2] base_input[1:2] = xy_minimal wheel_input = zeros(4) arm_input = input[5:end] # joint1 to joint5 to fingerl to fingerr input = [base_input;wheel_input;arm_input] return input end function Dojo.step!(environment::YoubotWaypoint, state, input=nothing; k=1, record=false, opts=SolverOptions()) state = state_map(environment, state) input = input_map(environment, input) Dojo.step_minimal_coordinates!(environment.mechanism, state, input; opts) record && Dojo.save_to_storage!(environment.mechanism, environment.storage, k) return end function Dojo.simulate!(environment::YoubotWaypoint{T,N}, controller! = (environment, k) -> nothing; kwargs...) where {T,N} mechanism = environment.mechanism joint_fl = get_joint(mechanism, :wheel_joint_fl) joint_fr = get_joint(mechanism, :wheel_joint_fr) joint_bl = get_joint(mechanism, :wheel_joint_bl) joint_br = get_joint(mechanism, :wheel_joint_br) function controller_wrapper!(mechanism, k) l = 0.456; w = 0.316; r = 0.0475 H = [ 1 -1 -l-w 1 1 l+w 1 1 -l-w 1 -1 l+w ] v = get_state(environment)[4:6] wheel_speeds = H*v/r set_minimal_velocities!(mechanism, joint_fl, [wheel_speeds[1]]) set_minimal_velocities!(mechanism, joint_fr, [wheel_speeds[2]]) set_minimal_velocities!(mechanism, joint_bl, [wheel_speeds[3]]) set_minimal_velocities!(mechanism, joint_br, [wheel_speeds[4]]) controller!(environment, k) end simulate!(environment.mechanism, 1:N, environment.storage, controller_wrapper!; kwargs...) end function DojoEnvironments.get_state(environment::YoubotWaypoint) state = get_minimal_state(environment.mechanism) xy_minimal = state[1:2] # minimal coordinates are rotated for youbot vxy_minimal = state[4:5] # minimal coordinates are rotated for youbot xy = Dojo.vector_rotate([xy_minimal;0],Dojo.RotZ(pi/2))[1:2] vxy = Dojo.vector_rotate([vxy_minimal;0],Dojo.RotZ(pi/2))[1:2] state[1:2] = xy state[4:5] = vxy state = [state[1:6]; state[15:end]] return state end function Dojo.visualize(environment::YoubotWaypoint; waypoints=[ [1;1;0.3], [2;0;0.3], [1;-1;0.3], [0;0;0.3], ], return_animation=false, kwargs...) vis, animation = visualize(environment.mechanism, environment.storage; return_animation=true, kwargs...) for (i,waypoint) in enumerate(waypoints) waypoint_shape = Sphere(0.2;color=RGBA(0,0.25*i,0,0.3)) visshape = Dojo.convert_shape(waypoint_shape) subvisshape = vis["waypoints"]["waypoint$i"] Dojo.setobject!(subvisshape, visshape, waypoint_shape) Dojo.atframe(animation, 1) do Dojo.set_node!(waypoint, one(Quaternion), waypoint_shape, subvisshape, true) end end Dojo.setanimation!(vis,animation) return_animation ? (return vis, animation) : (return vis) end
Dojo
https://github.com/dojo-sim/Dojo.jl.git
[ "MIT" ]
0.7.5
104b6a1a358da9b1348ab7cd66ad685ecaca13d4
code
838
include("ant/mechanism.jl") include("atlas/mechanism.jl") include("block/mechanism.jl") include("block2d/mechanism.jl") include("cartpole/mechanism.jl") include("dzhanibekov/mechanism.jl") include("exoskeleton/mechanism.jl") include("fourbar/mechanism.jl") include("halfcheetah/mechanism.jl") include("hopper/mechanism.jl") include("humanoid/mechanism.jl") include("npendulum/mechanism.jl") include("nslider/mechanism.jl") include("panda/mechanism.jl") include("pendulum/mechanism.jl") include("quadrotor/mechanism.jl") include("quadruped/mechanism.jl") include("raiberthopper/mechanism.jl") include("slider/mechanism.jl") include("snake/mechanism.jl") include("sphere/mechanism.jl") include("tippetop/mechanism.jl") include("twister/mechanism.jl") include("uuv/mechanism.jl") include("walker/mechanism.jl") include("youbot/mechanism.jl")
Dojo
https://github.com/dojo-sim/Dojo.jl.git
[ "MIT" ]
0.7.5
104b6a1a358da9b1348ab7cd66ad685ecaca13d4
code
3912
function get_ant(; timestep=0.05, input_scaling=timestep, gravity=-9.81, urdf=:ant, springs=0, dampers=0, parse_springs=true, parse_dampers=true, joint_limits=Dict([ (:hip_1, [-30,30] * π / 180), (:ankle_1, [30,70] * π / 180), (:hip_2, [-30,30] * π / 180), (:ankle_2, [-70,-30] * π / 180), (:hip_3, [-30,30] * π / 180), (:ankle_3, [-70,-30] * π / 180), (:hip_4, [-30,30] * π / 180), (:ankle_4, [30,70] * π / 180)]), keep_fixed_joints=true, friction_coefficient=0.5, contact_feet=true, contact_body=true, T=Float64) # mechanism path = joinpath(@__DIR__, "dependencies/$(string(urdf)).urdf") mechanism = Mechanism(path; floating=true, T, gravity, timestep, input_scaling, parse_dampers, keep_fixed_joints) # springs and dampers !parse_springs && set_springs!(mechanism.joints, springs) !parse_dampers && set_dampers!(mechanism.joints, dampers) # joint limits joints = set_limits(mechanism, joint_limits) mechanism = Mechanism(mechanism.origin, mechanism.bodies, joints; gravity, timestep, input_scaling) # contacts contacts = ContactConstraint{T}[] if contact_feet # feet contacts body_names = [:front_left_foot, :front_right_foot, :left_back_foot, :right_back_foot] contact_bodies = [get_body(mechanism, name) for name in body_names] n = length(contact_bodies) normals = fill(Z_AXIS,n) friction_coefficients = fill(friction_coefficient,n) contact_origins = [ [0.2; 0.2; 0], [-0.2; 0.2; 0], [-0.2; -0.2; 0], [0.2; -0.2; 0] ] contact_radii = [body.shape.shapes[1].rh[1] for body in contact_bodies] contacts = [contacts;contact_constraint(contact_bodies, normals; friction_coefficients, contact_origins, contact_radii)] end if contact_body # torso contact torso = get_body(mechanism, :torso) contact_radius = torso.shape.r contacts = [contacts;contact_constraint(torso, Z_AXIS; friction_coefficient, contact_radius)] # elbow contact body_names = [:aux_1, :aux_2, :aux_3, :aux_4] contact_bodies = [get_body(mechanism, name) for name in body_names] n = length(contact_bodies) normals = fill(Z_AXIS,n) friction_coefficients = fill(friction_coefficient,n) contact_origins = [ -[0.1; 0.1; 0], -[-0.1; 0.1; 0], -[-0.1;-0.1; 0], -[0.1; -0.1; 0] ] contact_radii = [body.shape.shapes[1].rh[1] for body in contact_bodies] contacts = [contacts;contact_constraint(contact_bodies, normals; friction_coefficients, contact_origins, contact_radii)] end mechanism = Mechanism(mechanism.origin, mechanism.bodies, mechanism.joints, contacts; gravity, timestep, input_scaling) # zero configuration initialize_ant!(mechanism) # construction finished return mechanism end function initialize_ant!(mechanism::Mechanism; body_position=0.5*Z_AXIS, body_orientation=one(Quaternion), ankle_angle=0.25) zero_velocities!(mechanism) zero_coordinates!(mechanism) set_minimal_coordinates!(mechanism, get_joint(mechanism, :floating_base), [body_position; Dojo.rotation_vector(body_orientation)]) for i in [1, 4] set_minimal_coordinates!(mechanism, get_joint(mechanism, Symbol("hip_$i")), [0]) set_minimal_coordinates!(mechanism, get_joint(mechanism, Symbol("ankle_$i")), [ankle_angle * π]) end for i in [2, 3] set_minimal_coordinates!(mechanism, get_joint(mechanism, Symbol("hip_$i")), [0]) set_minimal_coordinates!(mechanism, get_joint(mechanism, Symbol("ankle_$i")), [-ankle_angle * π]) end return end
Dojo
https://github.com/dojo-sim/Dojo.jl.git
[ "MIT" ]
0.7.5
104b6a1a358da9b1348ab7cd66ad685ecaca13d4
code
4130
function get_atlas(; timestep=0.01, input_scaling=timestep, gravity=-9.81, urdf=:atlas_simple, springs=0, dampers=0, parse_springs=true, parse_dampers=true, joint_limits=Dict(), keep_fixed_joints=false, friction_coefficient=0.8, contact_feet=true, contact_body=true, T=Float64) # mechanism path = joinpath(@__DIR__, "dependencies/$(string(urdf)).urdf") mechanism = Mechanism(path; floating=!(urdf==:armless), T, gravity, timestep, input_scaling, parse_dampers, keep_fixed_joints) # springs and dampers !parse_springs && set_springs!(mechanism.joints, springs) !parse_dampers && set_dampers!(mechanism.joints, dampers) # joint limits joints = set_limits(mechanism, joint_limits) mechanism = Mechanism(mechanism.origin, mechanism.bodies, joints; gravity, timestep, input_scaling) # contacts contacts = ContactConstraint{T}[] if contact_feet # feet contacts left_names=[Symbol("l_" .* name) for name in ["RR", "FR", "RL", "RR"]] right_names=[Symbol("r_" .* name) for name in ["RR", "FR", "RL", "RR"]] n = length(left_names) left_foot = get_body(mechanism, :l_foot) right_foot = get_body(mechanism, :r_foot) normals = fill(Z_AXIS,n) friction_coefficients = fill(friction_coefficient,n) contact_origins = [ [-0.08; -0.04; 0.015], [+0.12; -0.02; 0.015], [-0.08; +0.04; 0.015], [+0.12; +0.02; 0.015], ] contact_radii = fill(0.025,n) contacts = [ contacts contact_constraint(left_foot, normals; friction_coefficients, contact_origins, contact_radii, names=left_names) contact_constraint(right_foot, normals; friction_coefficients, contact_origins, contact_radii, names=right_names) ] end if contact_body body_names = [:l_hand, :r_hand, :l_lleg, :r_lleg, :l_clav, :r_clav, :pelvis, :l_uarm, :r_uarm, :head, :utorso, :utorso] names = [:l_hand, :r_hand, :l_knee, :r_knee, :l_clavis, :r_clavis, :pelvis, :l_elbow, :r_elbow, :head, :backpack_bottom, :backpack_top] contact_bodies = [get_body(mechanism, name) for name in body_names] n = length(contact_bodies) normals = fill(Z_AXIS,n) friction_coefficients = fill(friction_coefficient,n) contact_origins = [ zeros(3), # l_hand zeros(3), # r_hand [0.025; 0; 0.175], # l_lleg [0.025; 0; 0.175], # r_lleg [0; -0.05; -0.075], # l_clav [0; -0.05; -0.075], # r_clav [0; 0; 0.05], # pelvis [0; -0.185; 0], # l_uarm [0; -0.185; 0], # r_uarm zeros(3), # head [-0.095; 0; 0.25], # backpack_bottom [-0.095; 0; -0.2], # backpack_top ] contact_radii = [ 0.06, # l_hand 0.06, # r_hand 0.075, # l_lleg 0.075, # r_lleg 0.11, # l_clav 0.11, # r_clav 0.19, # pelvis 0.085, # l_uarm 0.085, # r_uarm 0.175, # head 0.15, # backpack_bottom 0.15, # backpack_top ] contacts = [ contacts contact_constraint(contact_bodies, normals; friction_coefficients, contact_origins, contact_radii, names) ] end mechanism = Mechanism(mechanism.origin, mechanism.bodies, mechanism.joints, contacts; gravity, timestep, input_scaling) # zero configuration initialize_atlas!(mechanism) # construction finished return mechanism end function initialize_atlas!(mechanism::Mechanism; body_position=[0, 0, 0.9385], body_orientation=one(Quaternion)) zero_velocities!(mechanism) zero_coordinates!(mechanism) set_minimal_coordinates!(mechanism, get_joint(mechanism, :floating_base), [body_position; Dojo.rotation_vector(body_orientation)]) return end
Dojo
https://github.com/dojo-sim/Dojo.jl.git
[ "MIT" ]
0.7.5
104b6a1a358da9b1348ab7cd66ad685ecaca13d4
code
2907
function get_block(; timestep=0.01, input_scaling=timestep, gravity=-9.81, mass=1, edge_length=0.5, color=RGBA(0.9, 0.9, 0.9, 1), springs=0, dampers=0, joint_limits=Dict(), keep_fixed_joints=true, friction_coefficient=0.8, contact=true, contact_radius=0, contact_type=:nonlinear, T=Float64) # mechanism origin = Origin{T}() block = Box(edge_length, edge_length, edge_length, mass; color, name=:block) bodies = [block] joint = JointConstraint(Floating(origin, block)) joints = [joint] mechanism = Mechanism(origin, bodies, joints; gravity, timestep, input_scaling) # springs and dampers set_springs!(mechanism.joints, springs) set_dampers!(mechanism.joints, dampers) # joint limits joints = set_limits(mechanism, joint_limits) mechanism = Mechanism(mechanism.origin, mechanism.bodies, joints; gravity, timestep, input_scaling) # contacts contacts = ContactConstraint{T}[] if contact names = [Symbol(:contact, i) for i=1:8] n = length(names) normals = fill(Z_AXIS,n) friction_coefficients = fill(friction_coefficient,n) contact_origins = [ [ edge_length / 2; edge_length / 2; -edge_length / 2], [ edge_length / 2; -edge_length / 2; -edge_length / 2], [-edge_length / 2; edge_length / 2; -edge_length / 2], [-edge_length / 2; -edge_length / 2; -edge_length / 2], [ edge_length / 2; edge_length / 2; edge_length / 2], [ edge_length / 2; -edge_length / 2; edge_length / 2], [-edge_length / 2; edge_length / 2; edge_length / 2], [-edge_length / 2; -edge_length / 2; edge_length / 2], ] contact_radii = fill(contact_radius,n) contacts = [contacts;contact_constraint(block, normals; friction_coefficients, contact_origins, contact_radii, contact_type, names)] end mechanism = Mechanism(mechanism.origin, mechanism.bodies, mechanism.joints, contacts; gravity, timestep, input_scaling) # zero configuration initialize_block!(mechanism) # construction finished return mechanism end function initialize_block!(mechanism::Mechanism; position = [0;0;1], orientation=one(Quaternion), velocity=zeros(3), angular_velocity=randn(3)) zero_velocities!(mechanism) zero_coordinates!(mechanism) body = mechanism.bodies[1] edge_length = body.shape.xyz[3]/2 if length(mechanism.contacts) > 0 model = mechanism.contacts[1].model offset = model.collision.contact_radius else offset = 0.0 end height = edge_length + offset set_maximal_configurations!(body, x=position + Z_AXIS*height, q=orientation) set_maximal_velocities!(body, v=velocity, ω=angular_velocity) return end
Dojo
https://github.com/dojo-sim/Dojo.jl.git
[ "MIT" ]
0.7.5
104b6a1a358da9b1348ab7cd66ad685ecaca13d4
code
2606
function get_block2d(; timestep=0.01, input_scaling=timestep, gravity=-9.81, mass=1, edge_length=0.5, color=RGBA(1, 1, 0.), springs=0, dampers=0, joint_limits=Dict(), keep_fixed_joints=true, friction_coefficient=0.8, contact=true, contact_radius=0, contact_type=:nonlinear, T=Float64) # mechanism origin = Origin{T}() block = Box(edge_length, edge_length, edge_length, mass; color, name=:block) bodies = [block] joint = JointConstraint(PlanarAxis(origin, block, X_AXIS); name=:joint) joints = [joint] mechanism = Mechanism(origin, bodies, joints; gravity, timestep, input_scaling) # springs and dampers set_springs!(mechanism.joints, springs) set_dampers!(mechanism.joints, dampers) # joint limits joints = set_limits(mechanism, joint_limits) mechanism = Mechanism(mechanism.origin, mechanism.bodies, joints; gravity, timestep, input_scaling) # contacts contacts = ContactConstraint{T}[] if contact names = [Symbol(:contact, i) for i=1:4] n = length(names) normals = fill(Z_AXIS,n) friction_coefficients = fill(friction_coefficient,n) contact_origins = [ [0, edge_length / 2, edge_length / 2], [0, edge_length / 2, -edge_length / 2], [0, -edge_length / 2, edge_length / 2], [0, -edge_length / 2, -edge_length / 2], ] contact_radii = fill(contact_radius,n) contacts = [contacts;contact_constraint(block, normals; friction_coefficients, contact_origins, contact_radii, contact_type, names)] end mechanism = Mechanism(mechanism.origin, mechanism.bodies, mechanism.joints, contacts; gravity, timestep, input_scaling) # zero configuration initialize_block2d!(mechanism) # construction finished return mechanism end function initialize_block2d!(mechanism::Mechanism; position = [0;1], orientation=0, velocity=zeros(2), angular_velocity=randn()) zero_velocities!(mechanism) zero_coordinates!(mechanism) body = mechanism.bodies[1] edge_length = body.shape.xyz[3]/2 if length(mechanism.contacts) > 0 model = mechanism.contacts[1].model offset = model.collision.contact_radius else offset = 0.0 end height = edge_length + offset set_maximal_configurations!(body, x=[0;position] + Z_AXIS*height, q=Dojo.RotX(orientation)) set_maximal_velocities!(body, v=[0;velocity], ω=[angular_velocity;0;0]) return end
Dojo
https://github.com/dojo-sim/Dojo.jl.git
[ "MIT" ]
0.7.5
104b6a1a358da9b1348ab7cd66ad685ecaca13d4
code
1716
function get_cartpole(; timestep=0.01, input_scaling=timestep, gravity=-9.81, slider_mass=1, pendulum_mass=1, link_length=1, radius=0.075, color=RGBA(0.7, 0.7, 0.7, 1), springs=0, dampers=0, joint_limits=Dict(), keep_fixed_joints=true, T=Float64) # mechanism origin = Origin{Float64}() slider = Capsule(1.5 * radius, 1, slider_mass; orientation_offset=Dojo.RotX(0.5 * π), color, name=:cart) pendulum = Capsule(radius, link_length, pendulum_mass; color, name=:pole) bodies = [slider, pendulum] joint_origin_slider = JointConstraint(Prismatic(origin, slider, Y_AXIS); name=:cart_joint) joint_slider_pendulum = JointConstraint(Revolute(slider, pendulum, X_AXIS; child_vertex=-0.5*link_length*Z_AXIS); name=:pole_joint) joints = [joint_origin_slider, joint_slider_pendulum] mechanism = Mechanism(origin, bodies, joints; gravity, timestep, input_scaling) # springs and dampers set_springs!(mechanism.joints, springs) set_dampers!(mechanism.joints, dampers) # joint limits joints = set_limits(mechanism, joint_limits) mechanism = Mechanism(mechanism.origin, mechanism.bodies, joints; gravity, timestep, input_scaling) # zero configuration initialize_cartpole!(mechanism) # construction finished return mechanism end function initialize_cartpole!(mechanism::Mechanism; position=0, orientation=pi/4) zero_velocities!(mechanism) zero_coordinates!(mechanism) set_minimal_coordinates!(mechanism, mechanism.joints[1], [position]) set_minimal_coordinates!(mechanism, mechanism.joints[2], [orientation]) return end
Dojo
https://github.com/dojo-sim/Dojo.jl.git
[ "MIT" ]
0.7.5
104b6a1a358da9b1348ab7cd66ad685ecaca13d4
code
1714
function get_dzhanibekov(; timestep=0.01, input_scaling=timestep, gravity=0, springs=0, dampers=0, color=RGBA(0.9,0.9,0.9,1), joint_limits=Dict(), keep_fixed_joints=true, T=Float64) # mechanism origin = Origin{Float64}() main_body = Capsule(0.1, 1, 1; color, name=:main) main_body.inertia = Diagonal([3e-2, 1e-3, 1e-1]) side_body = Capsule(0.5 * 0.1, 0.35 * 1, 0.5 * 1; orientation_offset=Dojo.RotY(0.5 * π), color=color, name=:side) bodies = [main_body, side_body] joint_float = JointConstraint(Floating(origin, bodies[1]); name=:floating) joint_fixed = JointConstraint(Fixed(bodies[1], bodies[2]; parent_vertex=szeros(3), child_vertex=[-0.25 * 1; 0; 0]), name=:fixed) joints = [joint_float, joint_fixed] mechanism = Mechanism(origin, bodies, joints; gravity, timestep, input_scaling) # springs and dampers set_springs!(mechanism.joints, springs) set_dampers!(mechanism.joints, dampers) # joint limits joints = set_limits(mechanism, joint_limits) mechanism = Mechanism(mechanism.origin, mechanism.bodies, joints; gravity, timestep, input_scaling) # zero configuration initialize_dzhanibekov!(mechanism) # construction finished return mechanism end function initialize_dzhanibekov!(mechanism::Mechanism; linear_velocity=zeros(3), angular_velocity=[10.0; 0.01; 0.0]) zero_velocities!(mechanism) zero_coordinates!(mechanism) joint = mechanism.joints[1] set_minimal_coordinates!(mechanism, joint, [Z_AXIS; zeros(3)]) set_minimal_velocities!(mechanism, joint, [linear_velocity; angular_velocity]) return end
Dojo
https://github.com/dojo-sim/Dojo.jl.git
[ "MIT" ]
0.7.5
104b6a1a358da9b1348ab7cd66ad685ecaca13d4
code
1592
function get_exoskeleton(; timestep=0.01, input_scaling=timestep, gravity=-9.81, urdf=:model, springs=0, dampers=0, parse_springs=true, parse_dampers=true, joint_limits=Dict([ (:sAA, [0, 90]*π/180), (:sFE, [0, 90]*π/180), (:sIE, [-80, 25]*π/180), (:eFE, [-125,0]*π/180),]), keep_fixed_joints=false, T=Float64) # mechanism path = joinpath(@__DIR__, "dependencies/$(string(urdf)).urdf") mechanism = Mechanism(path; floating=false, T, gravity, timestep, input_scaling, parse_dampers, keep_fixed_joints) # springs and dampers !parse_springs && set_springs!(mechanism.joints, springs) !parse_dampers && set_dampers!(mechanism.joints, dampers) # joint limits joints = set_limits(mechanism, joint_limits) mechanism = Mechanism(mechanism.origin, mechanism.bodies, joints; gravity, timestep, input_scaling) # zero configuration initialize_exoskeleton!(mechanism) # construction finished return mechanism end function initialize_exoskeleton!(mechanism::Mechanism; joint_angles=[pi/2;pi/2-0.1;0;-0.1]) zero_velocities!(mechanism) zero_coordinates!(mechanism) set_minimal_coordinates!(mechanism, get_joint(mechanism, :sAA), [joint_angles[1]]) set_minimal_coordinates!(mechanism, get_joint(mechanism, :sFE), [joint_angles[2]]) set_minimal_coordinates!(mechanism, get_joint(mechanism, :sIE), [joint_angles[3]]) set_minimal_coordinates!(mechanism, get_joint(mechanism, :eFE), [joint_angles[4]]) return end
Dojo
https://github.com/dojo-sim/Dojo.jl.git
[ "MIT" ]
0.7.5
104b6a1a358da9b1348ab7cd66ad685ecaca13d4
code
1662
function get_fourbar(; timestep=0.01, input_scaling=timestep, gravity=-9.81, urdf=:fourbar, springs=0, dampers=0, parse_springs=true, parse_dampers=true, joint_limits=Dict(), keep_fixed_joints=false, T=Float64) # mechanism path = joinpath(@__DIR__, "dependencies/$(String(urdf)).urdf") mechanism = Mechanism(path; floating=false, T, gravity, timestep, input_scaling, parse_dampers, keep_fixed_joints) # springs and dampers !parse_springs && set_springs!(mechanism.joints, springs) !parse_dampers && set_dampers!(mechanism.joints, dampers) # joint limits joints = set_limits(mechanism, joint_limits) mechanism = Mechanism(mechanism.origin, mechanism.bodies, joints; gravity, timestep, input_scaling) # zero configuration initialize_fourbar!(mechanism) # construction finished return mechanism end function initialize_fourbar!(mechanism::Mechanism; base_angle=pi/4, inner_angle=pi/4) zero_velocities!(mechanism) zero_coordinates!(mechanism) loop_joint_id = get_joint(mechanism, :joint24).id set_minimal_coordinates!(mechanism, get_joint(mechanism, :jointb1), [base_angle+inner_angle]; exclude_ids = [loop_joint_id]) set_minimal_coordinates!(mechanism, get_joint(mechanism, :jointb3), [base_angle-inner_angle]; exclude_ids = [loop_joint_id]) set_minimal_coordinates!(mechanism, get_joint(mechanism, :joint12), [-2*inner_angle]; exclude_ids = [loop_joint_id]) set_minimal_coordinates!(mechanism, get_joint(mechanism, :joint34), [2*inner_angle]; exclude_ids = [loop_joint_id]) return end
Dojo
https://github.com/dojo-sim/Dojo.jl.git
[ "MIT" ]
0.7.5
104b6a1a358da9b1348ab7cd66ad685ecaca13d4
code
3718
function get_halfcheetah(; timestep=0.01, input_scaling=timestep, gravity=-9.81, urdf=:halfcheetah, springs=0, dampers=0, parse_springs=true, parse_dampers=true, joint_limits=Dict([ (:bthigh, [-0.52,1.05]), (:bshin, [-0.785,0.785]), (:bfoot, [-0.400,0.785]), (:fthigh, [-1,0.7]), (:fshin, [-1.20,0.87]), (:ffoot, [-0.5,0.5])]), keep_fixed_joints=false, friction_coefficient=0.4, contact_feet=true, contact_body=true, T=Float64) # mechanism path = joinpath(@__DIR__, "dependencies/$(String(urdf)).urdf") mechanism = Mechanism(path; floating=false, T, gravity, timestep, input_scaling, parse_dampers, keep_fixed_joints) # springs and dampers !parse_springs && set_springs!(mechanism.joints, springs) !parse_dampers && set_dampers!(mechanism.joints, dampers) # joint limits joints = set_limits(mechanism, joint_limits) mechanism = Mechanism(mechanism.origin, mechanism.bodies, joints; gravity, timestep, input_scaling) # contacts contacts = ContactConstraint{T}[] if contact_feet body_names = [:ffoot, :bfoot] contact_bodies = [get_body(mechanism, name) for name in body_names] n = length(contact_bodies) normals = fill(Z_AXIS,n) friction_coefficients = fill(friction_coefficient,n) contact_origins = [ [0;0; -0.5 * contact_bodies[1].shape.shapes[1].rh[2]], [0;0; -0.5 * contact_bodies[2].shape.shapes[1].rh[2]], ] contact_radii = [ contact_bodies[1].shape.shapes[1].rh[1] contact_bodies[2].shape.shapes[1].rh[1] ] contacts = [contacts;contact_constraint(contact_bodies, normals; friction_coefficients, contact_origins, contact_radii)] end if contact_body body_names = getfield.(mechanism.bodies, :name) body_names = deleteat!(body_names, findall(x->(x==:ffoot||x==:bfoot||x==:torso),body_names)) body_names = [:torso; :torso; :torso; body_names] contact_bodies = [get_body(mechanism, name) for name in body_names] n = length(contact_bodies) normals = fill(Z_AXIS,n) friction_coefficients = fill(friction_coefficient,n) contact_origins = [ [[+0.5 * contact_bodies[1].shape.shapes[1].shapes[1].rh[2]; 0; 0]] [[-0.5 * contact_bodies[2].shape.shapes[1].shapes[1].rh[2]; 0; 0]] [[+0.5 * contact_bodies[3].shape.shapes[1].shapes[1].rh[2] + 0.214; 0; 0.1935]] [[0;0; -0.5 * contact_bodies[i].shape.shapes[1].rh[2]] for i = 4:n] ] contact_radii = [ contact_bodies[1].shape.shapes[1].shapes[1].rh[1] contact_bodies[2].shape.shapes[1].shapes[1].rh[1] contact_bodies[3].shape.shapes[1].shapes[1].rh[1] [contact_bodies[i].shape.shapes[1].rh[1] for i = 4:n] ] contacts = [contacts;contact_constraint(contact_bodies, normals; friction_coefficients, contact_origins, contact_radii)] end mechanism = Mechanism(mechanism.origin, mechanism.bodies, mechanism.joints, contacts; gravity, timestep, input_scaling) # zero configuration initialize_halfcheetah!(mechanism) # construction finished return mechanism end function initialize_halfcheetah!(mechanism::Mechanism; body_position=[0, 0], body_orientation=0) zero_velocities!(mechanism) zero_coordinates!(mechanism) set_minimal_coordinates!(mechanism, get_joint(mechanism, :floating_joint), [body_position[1] + 0.576509, body_position[2], body_orientation + 0.02792]) return end
Dojo
https://github.com/dojo-sim/Dojo.jl.git
[ "MIT" ]
0.7.5
104b6a1a358da9b1348ab7cd66ad685ecaca13d4
code
3025
function get_hopper(; timestep=0.01, input_scaling=timestep, gravity=-9.81, urdf=:hopper, springs=10, dampers=0, parse_springs=true, parse_dampers=true, joint_limits=Dict([ (:thigh, [0,150] * π / 180), (:leg, [0,150] * π / 180), (:foot, [-45,45] * π / 180)]), keep_fixed_joints=false, friction_coefficient=2, contact_foot=true, contact_body=true, T=Float64) # mechanism path = joinpath(@__DIR__, "dependencies/$(string(urdf)).urdf") mechanism = Mechanism(path; floating=false, T, gravity, timestep, input_scaling, parse_dampers, keep_fixed_joints) # springs and dampers !parse_springs && set_springs!(mechanism.joints, springs) !parse_dampers && set_dampers!(mechanism.joints, dampers) # joint limits joints = set_limits(mechanism, joint_limits) mechanism = Mechanism(mechanism.origin, mechanism.bodies, joints; gravity, timestep, input_scaling) # contacts contacts = ContactConstraint{T}[] if contact_foot body_names = [:foot; :foot] contact_bodies = [get_body(mechanism, name) for name in body_names] n = length(contact_bodies) normals = fill(Z_AXIS,n) friction_coefficients = fill(friction_coefficient,n) contact_origins = [ [0, 0, +0.5 * contact_bodies[1].shape.shapes[1].rh[2]], [0, 0, -0.5 * contact_bodies[2].shape.shapes[1].rh[2]], ] contact_radii = [ contact_bodies[1].shape.shapes[1].rh[1] contact_bodies[2].shape.shapes[1].rh[1] ] contacts = [contacts;contact_constraint(contact_bodies, normals; friction_coefficients, contact_origins, contact_radii)] end if contact_body body_names = getfield.(mechanism.bodies, :name) body_names = deleteat!(body_names, findall(x->(x==:foot),body_names)) contact_bodies = [get_body(mechanism, name) for name in body_names] n = length(contact_bodies) normals = fill(Z_AXIS,n) friction_coefficients = fill(friction_coefficient,n) contact_origins = [[0;0; 0.5 * contact_bodies[i].shape.shapes[1].rh[2]] for i = 1:n] contact_radii = [contact_bodies[i].shape.shapes[1].rh[1] for i = 1:n] contacts = [contacts;contact_constraint(contact_bodies, normals; friction_coefficients, contact_origins, contact_radii)] end mechanism = Mechanism(mechanism.origin, mechanism.bodies, mechanism.joints, contacts; gravity, timestep, input_scaling) # zero configuration initialize_hopper!(mechanism) # construction finished return mechanism end function initialize_hopper!(mechanism::Mechanism; body_position=[0, 0], body_orientation=0) zero_velocities!(mechanism) zero_coordinates!(mechanism) set_minimal_coordinates!(mechanism, get_joint(mechanism, :floating_joint), [body_position[1] + 1.25 , body_position[2], body_orientation]) return end
Dojo
https://github.com/dojo-sim/Dojo.jl.git
[ "MIT" ]
0.7.5
104b6a1a358da9b1348ab7cd66ad685ecaca13d4
code
2626
function get_humanoid(; timestep=0.01, input_scaling=timestep, gravity=-9.81, urdf=:humanoid, springs=0, dampers=0, parse_springs=true, parse_dampers=true, joint_limits=Dict(), keep_fixed_joints=false, friction_coefficient=0.8, contact_feet=true, T=Float64) # mechanism path = joinpath(@__DIR__, "dependencies/$(string(urdf)).urdf") mechanism = Mechanism(path; floating=true, T, gravity, timestep, input_scaling, parse_dampers, keep_fixed_joints) # springs and dampers !parse_springs && set_springs!(mechanism.joints, springs) !parse_dampers && set_dampers!(mechanism.joints, dampers) # joint limits joints = set_limits(mechanism, joint_limits) mechanism = Mechanism(mechanism.origin, mechanism.bodies, joints; gravity, timestep, input_scaling) # contacts contacts = ContactConstraint{T}[] if contact_feet # feet contacts body_names = [:left_foot; :left_foot; :right_foot; :right_foot] contact_bodies = [get_body(mechanism, name) for name in body_names] n = length(contact_bodies) normals = fill(Z_AXIS,n) friction_coefficients = fill(friction_coefficient,n) contact_origins = [ [0.5 * contact_bodies[1].shape.shapes[1].shapes[1].rh[2]; 0; 0], [-0.5 * contact_bodies[2].shape.shapes[1].shapes[1].rh[2]; 0; 0], [0.5 * contact_bodies[3].shape.shapes[1].shapes[1].rh[2]; 0; 0], [-0.5 * contact_bodies[4].shape.shapes[1].shapes[1].rh[2]; 0; 0], ] contact_radii = [ contact_bodies[1].shape.shapes[1].shapes[1].rh[1] contact_bodies[2].shape.shapes[1].shapes[1].rh[1] contact_bodies[3].shape.shapes[1].shapes[1].rh[1] contact_bodies[4].shape.shapes[1].shapes[1].rh[1] ] contacts = [contacts;contact_constraint(contact_bodies, normals; friction_coefficients, contact_origins, contact_radii)] end mechanism = Mechanism(mechanism.origin, mechanism.bodies, mechanism.joints, contacts; gravity, timestep, input_scaling) # zero configuration initialize_humanoid!(mechanism) # construction finished return mechanism end function initialize_humanoid!(mechanism::Mechanism; body_position=[0, 0, 1.33], body_orientation=one(Quaternion)) zero_velocities!(mechanism) zero_coordinates!(mechanism) set_minimal_coordinates!(mechanism, get_joint(mechanism, :floating_base), [body_position; Dojo.rotation_vector(body_orientation)]) return end
Dojo
https://github.com/dojo-sim/Dojo.jl.git
[ "MIT" ]
0.7.5
104b6a1a358da9b1348ab7cd66ad685ecaca13d4
code
1659
function get_npendulum(; timestep=0.01, input_scaling=timestep, gravity=-9.81, num_bodies=5, mass=1, link_length=1, color=RGBA(1, 0, 0), springs=0, dampers=0, joint_limits=Dict(), keep_fixed_joints=true, base_joint_type=:Revolute, rest_joint_type=:Revolute, T=Float64) # mechanism origin = Origin{T}() bodies = [Box(0.05, 0.05, link_length, mass; color) for i = 1:num_bodies] jointb1 = JointConstraint(Dojo.Prototype(base_joint_type, origin, bodies[1], X_AXIS; parent_vertex=(link_length+0.1)*Z_AXIS*num_bodies, child_vertex=Z_AXIS*link_length/2)) joints = JointConstraint{T}[ jointb1; [ JointConstraint(Dojo.Prototype(rest_joint_type, bodies[i - 1], bodies[i], X_AXIS; parent_vertex=-Z_AXIS*link_length/2, child_vertex=Z_AXIS*link_length/2)) for i = 2:num_bodies ] ] mechanism = Mechanism(origin, bodies, joints; gravity, timestep, input_scaling) # springs and dampers set_springs!(mechanism.joints, springs) set_dampers!(mechanism.joints, dampers) # joint limits joints = set_limits(mechanism, joint_limits) mechanism = Mechanism(mechanism.origin, mechanism.bodies, joints; gravity, timestep, input_scaling) # zero configuration initialize_npendulum!(mechanism) # construction finished return mechanism end function initialize_npendulum!(mechanism::Mechanism; base_angle=π/4) zero_velocities!(mechanism) zero_coordinates!(mechanism) set_minimal_coordinates!(mechanism, mechanism.joints[1], [base_angle]) return end
Dojo
https://github.com/dojo-sim/Dojo.jl.git
[ "MIT" ]
0.7.5
104b6a1a358da9b1348ab7cd66ad685ecaca13d4
code
1485
function get_nslider(; timestep=0.01, input_scaling=timestep, gravity=-9.81, num_bodies=5, color=RGBA(1, 0, 0), springs=0, dampers=0, joint_limits=Dict(), keep_fixed_joints=true, T=Float64) # mechanism origin = Origin{T}() bodies = [Cylinder(0.05, 1, 1; color) for i = 1:num_bodies] jointb1 = JointConstraint(Prismatic(origin, bodies[1], Z_AXIS)) joints = JointConstraint{T}[ jointb1; [JointConstraint(Prismatic(bodies[i - 1], bodies[i], Z_AXIS; parent_vertex=-Y_AXIS*0.05, child_vertex=Y_AXIS*0.05)) for i = 2:num_bodies ] ] mechanism = Mechanism(origin, bodies, joints; gravity, timestep, input_scaling) # springs and dampers set_springs!(mechanism.joints, springs) set_dampers!(mechanism.joints, dampers) # joint limits joints = set_limits(mechanism, joint_limits) mechanism = Mechanism(mechanism.origin, mechanism.bodies, joints; gravity, timestep, input_scaling) # zero coordinates initialize_nslider!(mechanism) # construction finished return mechanism end function initialize_nslider!(mechanism::Mechanism; position=mechanism.bodies[1].shape.rh[2], velocity=0) zero_velocities!(mechanism) zero_coordinates!(mechanism) set_minimal_coordinates!(mechanism, mechanism.joints[1], [position]) set_minimal_velocities!(mechanism, mechanism.joints[1], [velocity]) return end
Dojo
https://github.com/dojo-sim/Dojo.jl.git
[ "MIT" ]
0.7.5
104b6a1a358da9b1348ab7cd66ad685ecaca13d4
code
1683
function get_panda(; timestep=0.01, input_scaling=timestep, gravity=-9.81, urdf=:panda_end_effector, springs=0, dampers=5, parse_springs=true, parse_dampers=false, joint_limits=Dict([ (:joint1, [-2.8973, 2.8973]), (:joint2, [-1.7628, 1.7628]), (:joint3, [-2.8973, 2.8973]), (:joint4, [-3.0718,-0.0698]), (:joint5, [-2.8973, 2.8973]), (:joint6, [-0.0175, 3.7525]), (:joint7, [-2.8973, 2.8973]), (:jointf1, [-0.00, 0.04]), (:jointf2, [-0.00, 0.04])]), keep_fixed_joints=false, T=Float64) # mechanism path = joinpath(@__DIR__, "dependencies/$(string(urdf)).urdf") mechanism = Mechanism(path; floating=false, T, gravity, timestep, input_scaling, parse_dampers, keep_fixed_joints) # springs and dampers !parse_springs && set_springs!(mechanism.joints, springs) !parse_dampers && set_dampers!(mechanism.joints, dampers) # joint limits joints = set_limits(mechanism, joint_limits) mechanism = Mechanism(mechanism.origin, mechanism.bodies, joints; gravity, timestep, input_scaling) # zero configuration initialize_panda!(mechanism) # construction finished return mechanism end function initialize_panda!(mechanism::Mechanism; joint_angles=[0;0.5;0;-0.5;0;0.5;0; zeros(input_dimension(mechanism)-7)], joint_velocities=zeros(input_dimension(mechanism))) zero_velocities!(mechanism) zero_coordinates!(mechanism) nu = input_dimension(mechanism) x = vcat([[joint_angles[i], joint_velocities[i]] for i=1:nu]...) set_minimal_state!(mechanism, x) return end
Dojo
https://github.com/dojo-sim/Dojo.jl.git
[ "MIT" ]
0.7.5
104b6a1a358da9b1348ab7cd66ad685ecaca13d4
code
1505
function get_pendulum(; timestep=0.01, input_scaling=timestep, gravity=-9.81, mass=1, link_length=1, color=RGBA(1, 0, 0), springs=0, dampers=0, joint_limits=Dict(), spring_offset=szeros(1), orientation_offset=one(Quaternion), T=Float64) # mechanism origin = Origin{T}() body = Box(0.1, 0.1, link_length, mass; color, name=:pendulum) bodies = [body] joint = JointConstraint(Revolute(origin, body, X_AXIS; parent_vertex=(link_length+0.1)*Z_AXIS, child_vertex=0.5*link_length*Z_AXIS, rot_spring_offset=spring_offset, orientation_offset), name=:joint) joints = [joint] mechanism = Mechanism(origin, bodies, joints; gravity, timestep, input_scaling) # springs and dampers set_springs!(mechanism.joints, springs) set_dampers!(mechanism.joints, dampers) # joint limits joints = set_limits(mechanism, joint_limits) mechanism = Mechanism(mechanism.origin, mechanism.bodies, joints; gravity, timestep, input_scaling) # zero configuration initialize_pendulum!(mechanism) # construction finished return mechanism end function initialize_pendulum!(mechanism::Mechanism; angle=pi/4, angular_velocity=0) zero_velocities!(mechanism) zero_coordinates!(mechanism) set_minimal_coordinates!(mechanism, mechanism.joints[1], [angle]) set_minimal_velocities!(mechanism, mechanism.joints[1], [angular_velocity]) return end
Dojo
https://github.com/dojo-sim/Dojo.jl.git
[ "MIT" ]
0.7.5
104b6a1a358da9b1348ab7cd66ad685ecaca13d4
code
2682
function get_quadrotor(; timestep=0.01, input_scaling=timestep, gravity=-9.81, urdf=:pelican_fixed_rotors, springs=0, dampers=0, parse_springs=true, parse_dampers=true, joint_limits=Dict(), keep_fixed_joints=false, friction_coefficient=0.5, contact_rotors=true, contact_body=true, T=Float64) # mechanism path = joinpath(@__DIR__, "dependencies/$(string(urdf)).urdf") mechanism = Mechanism(path; floating=true, T, gravity, timestep, input_scaling, parse_dampers, keep_fixed_joints) # springs and dampers !parse_springs && set_springs!(mechanism.joints, springs) !parse_dampers && set_dampers!(mechanism.joints, dampers) # joint limits joints = set_limits(mechanism, joint_limits) mechanism = Mechanism(mechanism.origin, mechanism.bodies, joints; gravity, timestep, input_scaling) # contacts contacts = ContactConstraint{T}[] if contact_rotors # rotor contacts body_in_contact = get_body(mechanism, :base_link) n = 4 normals = fill(Z_AXIS,n) friction_coefficients = fill(friction_coefficient,n) contact_radii = fill(0.07,n) # smaller than rotor size to allow for pitching close to ground contact_origins = [ [0.21; 0; 0.045], [-0.21; 0; 0.045], [0; 0.21; 0.045], [0; -0.21; 0.045] ] contacts = [contacts;contact_constraint(body_in_contact, normals; friction_coefficients, contact_radii, contact_origins)] end if contact_body # base contact body_in_contact = get_body(mechanism, :base_link) n = 4 normals = fill(Z_AXIS,n) friction_coefficients = fill(friction_coefficient,n) contact_origins = [ [0.11; 0; -0.085], [-0.11; 0; -0.085], [0; 0.11; -0.085], [0; -0.11; -0.085] ] contacts = [contacts;contact_constraint(body_in_contact, normals; friction_coefficients, contact_origins)] end mechanism = Mechanism(mechanism.origin, mechanism.bodies, mechanism.joints, contacts; gravity, timestep, input_scaling) # zero configuration initialize_quadrotor!(mechanism) # construction finished return mechanism end function initialize_quadrotor!(mechanism::Mechanism; body_position=0.085*Z_AXIS, body_orientation=one(Quaternion)) zero_velocities!(mechanism) zero_coordinates!(mechanism) set_minimal_coordinates!(mechanism, get_joint(mechanism, :floating_base), [body_position; Dojo.rotation_vector(body_orientation)]) return end
Dojo
https://github.com/dojo-sim/Dojo.jl.git
[ "MIT" ]
0.7.5
104b6a1a358da9b1348ab7cd66ad685ecaca13d4
code
5322
function get_quadruped(; timestep=0.01, input_scaling=timestep, gravity=-9.81, urdf=:gazebo_a1, springs=0, dampers=0, parse_springs=true, parse_dampers=true, spring_offset=true, joint_limits=Dict(vcat([[ (Symbol(group,:_hip_joint), [-0.5,0.5]), (Symbol(group,:_thigh_joint), [-0.5,1.5]), (Symbol(group,:_calf_joint), [-2.5,-1])] for group in [:FR, :FL, :RR, :RL]]...)), keep_fixed_joints=false, friction_coefficient=0.8, contact_feet=true, contact_body=true, T=Float64) # mechanism path = joinpath(@__DIR__, "dependencies/$(string(urdf)).urdf") mechanism = Mechanism(path; floating=true, T, gravity, timestep, input_scaling, parse_dampers, keep_fixed_joints) # springs and dampers !parse_springs && set_springs!(mechanism.joints, springs) !parse_dampers && set_dampers!(mechanism.joints, dampers) if spring_offset θ_thigh = 0.9 θ_calf = -1.425 get_node(mechanism, :FR_hip_joint).rotational.spring_offset=0.0*sones(1) get_node(mechanism, :FL_hip_joint).rotational.spring_offset=0.0*sones(1) get_node(mechanism, :RR_hip_joint).rotational.spring_offset=0.0*sones(1) get_node(mechanism, :RL_hip_joint).rotational.spring_offset=0.0*sones(1) get_node(mechanism, :FR_thigh_joint).rotational.spring_offset=θ_thigh*sones(1) get_node(mechanism, :FL_thigh_joint).rotational.spring_offset=θ_thigh*sones(1) get_node(mechanism, :RR_thigh_joint).rotational.spring_offset=θ_thigh*sones(1) get_node(mechanism, :RL_thigh_joint).rotational.spring_offset=θ_thigh*sones(1) get_node(mechanism, :FR_calf_joint).rotational.spring_offset=θ_calf*sones(1) get_node(mechanism, :FL_calf_joint).rotational.spring_offset=θ_calf*sones(1) get_node(mechanism, :RR_calf_joint).rotational.spring_offset=θ_calf*sones(1) get_node(mechanism, :RL_calf_joint).rotational.spring_offset=θ_calf*sones(1) end # joint limits joints = set_limits(mechanism, joint_limits) mechanism = Mechanism(mechanism.origin, mechanism.bodies, joints; gravity, timestep, input_scaling) # contacts contacts = ContactConstraint{T}[] if contact_feet # feet contacts body_names = [:FR_calf, :FL_calf, :RR_calf, :RL_calf] names = [:FR_calf_contact, :FL_calf_contact, :RR_calf_contact, :RL_calf_contact] contact_bodies = [get_body(mechanism, name) for name in body_names] n = length(contact_bodies) normals = fill(Z_AXIS,n) friction_coefficients = fill(friction_coefficient,n) contact_origins = fill([-0.006; 0; -0.092],n) contact_radii = fill(0.021,n) contacts = [contacts;contact_constraint(contact_bodies, normals; friction_coefficients, contact_origins, contact_radii, names)] end if contact_body # thigh contacts body_names = [:FR_thigh, :FL_thigh, :RR_thigh, :RL_thigh] names = [:FR_thigh_contact, :FL_thigh_contact, :RR_thigh_contact, :RL_thigh_contact] contact_bodies = [get_body(mechanism, name) for name in body_names] n = length(contact_bodies) normals = fill(Z_AXIS,n) friction_coefficients = fill(friction_coefficient,n) contact_origins = [ [-0.005; -0.023; -0.16], [-0.005; 0.023; -0.16], [-0.005; -0.023; -0.16], [-0.005; 0.023; -0.16], ] contact_radii = fill(0.023,n) contacts = [contacts;contact_constraint(contact_bodies, normals; friction_coefficients, contact_origins, contact_radii, names)] # hip contacts body_names = [:FR_hip, :FL_hip, :RR_hip, :RL_hip] names = [:FR_hip_contact, :FL_hip_contact, :RR_hip_contact, :RL_hip_contact] contact_bodies = [get_body(mechanism, name) for name in body_names] n = length(contact_bodies) normals = fill(Z_AXIS,n) friction_coefficients = fill(friction_coefficient,n) contact_origins = fill([0; 0.05; 0],n) contact_radii = fill(0.05,n) contacts = [contacts;contact_constraint(contact_bodies, normals; friction_coefficients, contact_origins, contact_radii, names)] end mechanism = Mechanism(mechanism.origin, mechanism.bodies, mechanism.joints, contacts; gravity, timestep, input_scaling) # zero configuration initialize_quadruped!(mechanism) # construction finished return mechanism end function initialize_quadruped!(mechanism::Mechanism; body_position=[0, 0, 0], body_orientation=one(Quaternion), hip_angle=0, thigh_angle=pi/4, calf_angle=-pi/2) zero_velocities!(mechanism) zero_coordinates!(mechanism) body_position += [0, 0, 0.43] set_minimal_coordinates!(mechanism, get_joint(mechanism, :floating_base), [body_position; Dojo.rotation_vector(body_orientation)]) for group in [:FR, :FL, :RR, :RL] set_minimal_coordinates!(mechanism, get_joint(mechanism, Symbol(group, :_hip_joint)), [hip_angle]) set_minimal_coordinates!(mechanism, get_joint(mechanism, Symbol(group, :_thigh_joint)), [thigh_angle]) set_minimal_coordinates!(mechanism, get_joint(mechanism, Symbol(group, :_calf_joint)), [calf_angle]) end return end
Dojo
https://github.com/dojo-sim/Dojo.jl.git
[ "MIT" ]
0.7.5
104b6a1a358da9b1348ab7cd66ad685ecaca13d4
code
2333
function get_raiberthopper(; timestep=0.05, input_scaling=timestep, gravity=-9.81, body_mass=4.18, foot_mass=0.52, body_radius=0.1, foot_radius=0.05, color=RGBA(0.9, 0.9, 0.9), springs=[0;0], dampers=[0;0.1], joint_limits=Dict(), keep_fixed_joints=true, friction_coefficient=0.5, contact_foot=true, contact_body=true, T=Float64) # mechanism origin = Origin{Float64}() body = Sphere(body_radius, body_mass; color) foot = Sphere(foot_radius, foot_mass; color) bodies = [body, foot] joint_origin_body = JointConstraint(Floating(origin, body)) joint_body_foot = JointConstraint(Prismatic(body, foot, Z_AXIS; parent_vertex=szeros(Float64, 3), child_vertex=szeros(Float64, 3))) joints = [joint_origin_body, joint_body_foot] mechanism = Mechanism(origin, bodies, joints; gravity, timestep, input_scaling) # springs and dampers set_springs!(mechanism.joints, springs) set_dampers!(mechanism.joints, dampers) # joint limits joints = set_limits(mechanism, joint_limits) mechanism = Mechanism(mechanism.origin, mechanism.bodies, joints; gravity, timestep, input_scaling) # contacts contacts = ContactConstraint{T}[] if contact_foot # foot contact contact_radius = foot_radius contacts = [contacts;contact_constraint(foot, Z_AXIS; friction_coefficient, contact_radius)] end if contact_body # body contact contact_radius = body_radius contacts = [contacts;contact_constraint(body, Z_AXIS; friction_coefficient, contact_radius)] end mechanism = Mechanism(mechanism.origin, mechanism.bodies, mechanism.joints, contacts; gravity, timestep, input_scaling) # zero configuration initialize_raiberthopper!(mechanism) # construction finished return mechanism end function initialize_raiberthopper!(mechanism::Mechanism; body_position=zeros(3), leg_length=0.5) zero_velocities!(mechanism) zero_coordinates!(mechanism) body_position += [0;0;leg_length+mechanism.bodies[2].shape.r] set_minimal_coordinates!(mechanism, mechanism.joints[1], [body_position; 0; 0; 0]) set_minimal_coordinates!(mechanism, mechanism.joints[2], [-leg_length]) return end
Dojo
https://github.com/dojo-sim/Dojo.jl.git
[ "MIT" ]
0.7.5
104b6a1a358da9b1348ab7cd66ad685ecaca13d4
code
1415
function get_slider(; timestep=0.01, input_scaling=timestep, gravity=-9.81, color=RGBA(1, 0, 0), springs=0, dampers=0, joint_limits=Dict(), keep_fixed_joints=true, T=Float64) # mechanism origin = Origin{T}() pbody = Box(0.1, 0.1, 1, 1; color) bodies = [pbody] joint_between_origin_and_pbody = JointConstraint(Prismatic(origin, pbody, Z_AXIS; child_vertex=Z_AXIS/2)) joints = [joint_between_origin_and_pbody] mechanism = Mechanism(origin, bodies, joints; gravity, timestep, input_scaling) # springs and dampers set_springs!(mechanism.joints, springs) set_dampers!(mechanism.joints, dampers) # joint limits joints = set_limits(mechanism, joint_limits) mechanism = Mechanism(mechanism.origin, mechanism.bodies, joints; gravity, timestep, input_scaling) # zero coordinates initialize_slider!(mechanism) # construction finished return mechanism end function initialize_slider!(mechanism::Mechanism; position=0, velocity=0) zero_velocities!(mechanism) zero_coordinates!(mechanism) child_vertex = mechanism.joints[1].translational.vertices[2] set_maximal_configurations!(mechanism.origin, mechanism.bodies[1]; child_vertex=child_vertex - Z_AXIS*position) set_minimal_velocities!(mechanism, mechanism.joints[1], [velocity]) return end
Dojo
https://github.com/dojo-sim/Dojo.jl.git
[ "MIT" ]
0.7.5
104b6a1a358da9b1348ab7cd66ad685ecaca13d4
code
2559
function get_snake(; timestep=0.01, input_scaling=timestep, gravity=-9.81, num_bodies=2, link_length=1, radius=0.05, color=RGBA(0.9, 0.9, 0.9), springs=0, dampers=0, joint_limits=Dict(), joint_type=:Spherical, keep_fixed_joints=true, friction_coefficient=0.8, contact=true, contact_type=:nonlinear, T=Float64) # mechanism origin = Origin{T}() bodies = [Box(link_length, 3 * radius, 2 * radius, link_length; color) for i = 1:num_bodies] jointb1 = JointConstraint(Floating(origin, bodies[1])) joints = JointConstraint{T}[ jointb1; [ JointConstraint(Dojo.Prototype(joint_type, bodies[i - 1], bodies[i], X_AXIS; parent_vertex=-X_AXIS*link_length/2, child_vertex=X_AXIS*link_length/2)) for i = 2:num_bodies ] ] mechanism = Mechanism(origin, bodies, joints; gravity, timestep, input_scaling) # springs and dampers set_springs!(mechanism.joints, springs) set_dampers!(mechanism.joints, dampers) # joint limits joints = set_limits(mechanism, joint_limits) mechanism = Mechanism(mechanism.origin, mechanism.bodies, joints; gravity, timestep, input_scaling) # contacts contacts = ContactConstraint{T}[] if contact contact_bodies = [bodies;bodies] # we need to duplicate contacts for prismatic joint for instance n = length(contact_bodies) normals = fill(Z_AXIS,n) friction_coefficients = fill(friction_coefficient,n) contact_origins = [ fill(X_AXIS*link_length/2, Int64(n/2)) fill(-X_AXIS*link_length/2, Int64(n/2)) ] contacts = [contacts;contact_constraint(contact_bodies, normals; friction_coefficients, contact_origins, contact_type)] end mechanism = Mechanism(mechanism.origin, mechanism.bodies, mechanism.joints, contacts; gravity, timestep, input_scaling) # zero configuration initialize_snake!(mechanism) # construction finished return mechanism end function initialize_snake!(mechanism::Mechanism; base_position=zeros(3), base_orientation=one(Quaternion), base_linear_velocity=zeros(3), base_angular_velocity=zeros(3)) zero_velocities!(mechanism) zero_coordinates!(mechanism) set_minimal_coordinates!(mechanism, mechanism.joints[1], [base_position; Dojo.rotation_vector(base_orientation)]) set_minimal_velocities!(mechanism, mechanism.joints[1], [base_linear_velocity; base_angular_velocity]) return end
Dojo
https://github.com/dojo-sim/Dojo.jl.git
[ "MIT" ]
0.7.5
104b6a1a358da9b1348ab7cd66ad685ecaca13d4
code
1891
function get_sphere(; timestep=0.01, input_scaling=timestep, gravity=-9.81, mass=1, radius=0.5, color=RGBA(0.9, 0.9, 0.9), springs=0, dampers=0, joint_limits=Dict(), keep_fixed_joints=true, friction_coefficient=0.8, contact=true, contact_type=:nonlinear, T=Float64) # mechanism origin = Origin{T}(name=:origin) sphere = Sphere(radius, mass; color, name=:sphere) bodies = [sphere] joints = [JointConstraint(Floating(origin, bodies[1]); name=:floating_joint)] mechanism = Mechanism(origin, bodies, joints; timestep, gravity, input_scaling) # springs and dampers set_springs!(mechanism.joints, springs) set_dampers!(mechanism.joints, dampers) # joint limits joints = set_limits(mechanism, joint_limits) mechanism = Mechanism(mechanism.origin, mechanism.bodies, joints; gravity, timestep, input_scaling) # contacts contacts = ContactConstraint{T}[] if contact contact_radius = radius contacts = [contacts;contact_constraint(sphere, Z_AXIS; friction_coefficient, contact_radius, contact_type)] end mechanism = Mechanism(mechanism.origin, mechanism.bodies, mechanism.joints, contacts; gravity, timestep, input_scaling) # zero configuration initialize_sphere!(mechanism) # construction finished return mechanism end function initialize_sphere!(mechanism::Mechanism; position=Z_AXIS/2, orientation=one(Quaternion), velocity=[1;0;0], angular_velocity=zeros(3)) zero_velocities!(mechanism) zero_coordinates!(mechanism) position += Z_AXIS*mechanism.bodies[1].shape.r set_minimal_coordinates!(mechanism, mechanism.joints[1], [position; Dojo.rotation_vector(orientation)]) set_minimal_velocities!(mechanism, mechanism.joints[1], [velocity; angular_velocity]) return end
Dojo
https://github.com/dojo-sim/Dojo.jl.git
[ "MIT" ]
0.7.5
104b6a1a358da9b1348ab7cd66ad685ecaca13d4
code
2369
function get_tippetop(; timestep=0.01, input_scaling=timestep, gravity=-9.81, mass=1, radius=0.5, scale=0.2, color=RGBA(0.9, 0.9, 0.9, 1.0), springs=0, dampers=0, joint_limits=Dict(), keep_fixed_joints=true, friction_coefficient=0.4, contact=true, contact_type=:nonlinear, T=Float64) # mechanism origin = Origin{T}(name=:origin) bodies = [ Sphere(radius, mass; name=:sphere1, color), Sphere(radius*scale, mass*scale^3; name=:sphere2, color) ] bodies[1].inertia = Diagonal([1.9, 2.1, 2]) joints = [ JointConstraint(Floating(origin, bodies[1]); name=:floating_joint), JointConstraint(Fixed(bodies[1], bodies[2]; parent_vertex=[0,0,radius]), name = :fixed_joint) ] mechanism = Mechanism(origin, bodies, joints; timestep, gravity, input_scaling) # springs and dampers set_springs!(mechanism.joints, springs) set_dampers!(mechanism.joints, dampers) # joint limits joints = set_limits(mechanism, joint_limits) mechanism = Mechanism(mechanism.origin, mechanism.bodies, joints; gravity, timestep, input_scaling) # contacts contacts = ContactConstraint{T}[] if contact n = length(bodies) normals = fill(Z_AXIS,n) friction_coefficients = fill(friction_coefficient,n) contact_radii = [radius;radius*scale] contacts = [contacts;contact_constraint(bodies, normals; friction_coefficients, contact_radii, contact_type)] end mechanism = Mechanism(mechanism.origin, mechanism.bodies, mechanism.joints, contacts; gravity, timestep, input_scaling) # zero configuration initialize_tippetop!(mechanism) # construction finished return mechanism end function initialize_tippetop!(mechanism::Mechanism{T}; body_position=2*Z_AXIS*mechanism.bodies[1].shape.r, body_orientation=one(Quaternion), body_linear_velocity=zeros(3), body_angular_velocity=[0.0, 0.1, 50.0]) where T zero_velocities!(mechanism) zero_coordinates!(mechanism) floating_joint = mechanism.joints[1] set_minimal_coordinates!(mechanism, floating_joint, [body_position; Dojo.rotation_vector(body_orientation)]) set_minimal_velocities!(mechanism, floating_joint, [body_linear_velocity; body_angular_velocity]) end
Dojo
https://github.com/dojo-sim/Dojo.jl.git
[ "MIT" ]
0.7.5
104b6a1a358da9b1348ab7cd66ad685ecaca13d4
code
2488
function get_twister(; timestep=0.01, input_scaling=timestep, gravity=-9.81, num_bodies=5, height=1, radius=0.05, color=RGBA(1, 0, 0), springs=0, dampers=0, joint_limits=Dict(), joint_type=:Prismatic, keep_fixed_joints=true, friction_coefficient=0.8, contact=true, contact_type=:nonlinear, T=Float64) # mechanism origin = Origin{T}() bodies = [Box(height, 3 * radius, 2 * radius, height; color) for i = 1:num_bodies] jointb1 = JointConstraint(Floating(origin, bodies[1])) axes = [X_AXIS, Y_AXIS, Z_AXIS] joints = JointConstraint{T}[ jointb1; [ JointConstraint(Dojo.Prototype(joint_type, bodies[i - 1], bodies[i], axes[i%3+1]; parent_vertex=-X_AXIS*height/2, child_vertex=X_AXIS*height/2)) for i = 2:num_bodies ] ] mechanism = Mechanism(origin, bodies, joints; gravity, timestep, input_scaling) # springs and dampers set_springs!(mechanism.joints, springs) set_dampers!(mechanism.joints, dampers) # joint limits joints = set_limits(mechanism, joint_limits) mechanism = Mechanism(mechanism.origin, mechanism.bodies, joints; gravity, timestep, input_scaling) # contacts contacts = ContactConstraint{T}[] if contact contact_bodies = [bodies[1];bodies] n = length(contact_bodies) normals = fill(Z_AXIS,n) friction_coefficients = fill(friction_coefficient,n) contact_origins = [ [X_AXIS*height/2] fill(-X_AXIS*height/2,n-1) ] contacts = [contacts;contact_constraint(contact_bodies, normals; friction_coefficients, contact_origins, contact_type)] end mechanism = Mechanism(mechanism.origin, mechanism.bodies, mechanism.joints, contacts; gravity, timestep, input_scaling) # zero configuration initialize_twister!(mechanism) # construction finished return mechanism end function initialize_twister!(mechanism::Mechanism; base_position=zeros(3), base_orientation=one(Quaternion), base_linear_velocity=zeros(3), base_angular_velocity=zeros(3)) zero_velocities!(mechanism) zero_coordinates!(mechanism) set_minimal_coordinates!(mechanism, mechanism.joints[1], [base_position; Dojo.rotation_vector(base_orientation)]) set_minimal_velocities!(mechanism, mechanism.joints[1], [base_linear_velocity; base_angular_velocity]) return end
Dojo
https://github.com/dojo-sim/Dojo.jl.git
[ "MIT" ]
0.7.5
104b6a1a358da9b1348ab7cd66ad685ecaca13d4
code
2004
function get_uuv(; timestep=0.01, input_scaling=timestep, gravity=0, urdf=:mini_tortuga_fixed_rotors, springs=0, dampers=0, parse_springs=true, parse_dampers=true, joint_limits=Dict(), keep_fixed_joints=false, friction_coefficient=0.5, contact_body=true, T=Float64) # mechanism path = joinpath(@__DIR__, "dependencies/$(string(urdf)).urdf") mechanism = Mechanism(path; floating=false, T, gravity, timestep, input_scaling, parse_dampers, keep_fixed_joints) # springs and dampers !parse_springs && set_springs!(mechanism.joints, springs) !parse_dampers && set_dampers!(mechanism.joints, dampers) # joint limits joints = set_limits(mechanism, joint_limits) mechanism = Mechanism(mechanism.origin, mechanism.bodies, joints; gravity, timestep, input_scaling) # contacts contacts = ContactConstraint{T}[] if contact_body # base contact body_in_contact = get_body(mechanism, :base_link) n = 2 normals = fill(Z_AXIS,n) friction_coefficients = fill(friction_coefficient,n) contact_radii = fill(0.21,n) contact_origins = [ [0.12; 0; 0.07], [-0.12; 0; 0.07], ] contacts = [contacts;contact_constraint(body_in_contact, normals; friction_coefficients, contact_radii, contact_origins)] end mechanism = Mechanism(mechanism.origin, mechanism.bodies, mechanism.joints, contacts; gravity, timestep, input_scaling) # zero configuration initialize_uuv!(mechanism) # construction finished return mechanism end function initialize_uuv!(mechanism::Mechanism; body_position=Z_AXIS, body_orientation=one(Quaternion)) zero_velocities!(mechanism) zero_coordinates!(mechanism) set_minimal_coordinates!(mechanism, get_joint(mechanism, :floating_base), [body_position; Dojo.rotation_vector(body_orientation)]) return end
Dojo
https://github.com/dojo-sim/Dojo.jl.git
[ "MIT" ]
0.7.5
104b6a1a358da9b1348ab7cd66ad685ecaca13d4
code
3433
function get_walker(; timestep=0.01, input_scaling=timestep, gravity=-9.81, urdf=:walker, springs=0, dampers=0, parse_springs=true, parse_dampers=true, joint_limits=Dict([ (:thigh, [0,150] * π / 180), (:leg, [0,150] * π / 180), (:foot, [-45,45] * π / 180), (:thigh_left, [0,150] * π / 180), (:leg_left, [0,150] * π / 180), (:foot_left, [-45,45] * π / 180)]), keep_fixed_joints=false, friction_coefficient=0.5, contact_feet=true, contact_body=true, T=Float64) # mechanism path = joinpath(@__DIR__, "dependencies/$(string(urdf)).urdf") mechanism = Mechanism(path; floating=false, T, gravity, timestep, input_scaling, parse_dampers, keep_fixed_joints) # springs and dampers !parse_springs && set_springs!(mechanism.joints, springs) !parse_dampers && set_dampers!(mechanism.joints, dampers) # joint limits joints = set_limits(mechanism, joint_limits) mechanism = Mechanism(mechanism.origin, mechanism.bodies, joints; gravity, timestep, input_scaling) # contacts contacts = ContactConstraint{T}[] if contact_feet body_names = [:foot; :foot; :foot_left; :foot_left] contact_bodies = [get_body(mechanism, name) for name in body_names] n = length(contact_bodies) normals = fill(Z_AXIS,n) friction_coefficients = fill(friction_coefficient,n) contact_origins = [ [0, 0, +0.5 * contact_bodies[1].shape.shapes[1].rh[2]], [0, 0, -0.5 * contact_bodies[2].shape.shapes[1].rh[2]], [0, 0, +0.5 * contact_bodies[3].shape.shapes[1].rh[2]], [0, 0, -0.5 * contact_bodies[4].shape.shapes[1].rh[2]], ] contact_radii = [ contact_bodies[1].shape.shapes[1].rh[1] contact_bodies[2].shape.shapes[1].rh[1] contact_bodies[3].shape.shapes[1].rh[1] contact_bodies[4].shape.shapes[1].rh[1] ] contacts = [contacts;contact_constraint(contact_bodies, normals; friction_coefficients, contact_origins, contact_radii)] end if contact_body body_names = getfield.(mechanism.bodies, :name) body_names = deleteat!(body_names, findall(x->(x==:foot||x==:foot_left),body_names)) contact_bodies = [get_body(mechanism, name) for name in body_names] n = length(contact_bodies) normals = fill(Z_AXIS,n) friction_coefficients = fill(friction_coefficient,n) contact_origins = [[0;0; 0.5 * contact_bodies[i].shape.shapes[1].rh[2]] for i = 1:n] contact_radii = [contact_bodies[i].shape.shapes[1].rh[1] for i = 1:n] contacts = [contacts;contact_constraint(contact_bodies, normals; friction_coefficients, contact_origins, contact_radii)] end mechanism = Mechanism(mechanism.origin, mechanism.bodies, mechanism.joints, contacts; gravity, timestep, input_scaling) # zero configuration initialize_walker!(mechanism) # construction finished return mechanism end function initialize_walker!(mechanism::Mechanism; body_position=[0, 0], body_orientation=0) zero_velocities!(mechanism) zero_coordinates!(mechanism) set_minimal_coordinates!(mechanism, get_joint(mechanism, :floating_joint), [body_position[1] + 1.25 , body_position[2], body_orientation]) return end
Dojo
https://github.com/dojo-sim/Dojo.jl.git
[ "MIT" ]
0.7.5
104b6a1a358da9b1348ab7cd66ad685ecaca13d4
code
2456
function get_youbot(; timestep=0.01, input_scaling=timestep, gravity=-9.81, urdf=:youbot, springs=0, dampers=0, parse_springs=true, parse_dampers=true, joint_limits=Dict([ (:arm_joint_1, [-2.95,2.95]), (:arm_joint_2, [-1.57,1.13]), (:arm_joint_3, [-2.55,2.55]), (:arm_joint_4, [-1.78,1.78]), (:arm_joint_5, [-2.92,2.92]), # (:gripper_finger_joint_l, [0,0.03]), # (:gripper_finger_joint_r, [-0.03,0]), ]), keep_fixed_joints=false, T=Float64) # mechanism path = joinpath(@__DIR__, "dependencies/$(String(urdf)).urdf") mechanism = Mechanism(path; floating=false, T, gravity, timestep, input_scaling, parse_dampers, keep_fixed_joints) # springs and dampers !parse_springs && set_springs!(mechanism.joints, springs) !parse_dampers && set_dampers!(mechanism.joints, dampers) # joint limits joints = set_limits(mechanism, joint_limits) mechanism = Mechanism(mechanism.origin, mechanism.bodies, joints; gravity, timestep, input_scaling) # zero configuration initialize_youbot!(mechanism) # construction finished return mechanism end function initialize_youbot!(mechanism; body_position=zeros(2), body_orientation=0, arm_angles=zeros(5)) zero_velocities!(mechanism) zero_coordinates!(mechanism) base_joint = get_joint(mechanism, :base_footprint_joint) arm_joint_1 = get_joint(mechanism, :arm_joint_1) arm_joint_2 = get_joint(mechanism, :arm_joint_2) arm_joint_3 = get_joint(mechanism, :arm_joint_3) arm_joint_4 = get_joint(mechanism, :arm_joint_4) arm_joint_5 = get_joint(mechanism, :arm_joint_5) base_joint !== nothing && set_minimal_coordinates!(mechanism, base_joint, [body_position;body_orientation]) arm_joint_1 !== nothing && set_minimal_coordinates!(mechanism, get_joint(mechanism, :arm_joint_1), [arm_angles[1]]) arm_joint_2 !== nothing && set_minimal_coordinates!(mechanism, get_joint(mechanism, :arm_joint_2), [arm_angles[2]]) arm_joint_3 !== nothing && set_minimal_coordinates!(mechanism, get_joint(mechanism, :arm_joint_3), [arm_angles[3]]) arm_joint_4 !== nothing && set_minimal_coordinates!(mechanism, get_joint(mechanism, :arm_joint_4), [arm_angles[4]]) arm_joint_5 !== nothing && set_minimal_coordinates!(mechanism, get_joint(mechanism, :arm_joint_5), [arm_angles[5]]) return end
Dojo
https://github.com/dojo-sim/Dojo.jl.git
[ "MIT" ]
0.7.5
104b6a1a358da9b1348ab7cd66ad685ecaca13d4
code
463
environments = [ :ant_ars, :cartpole_dqn, :pendulum, :quadruped_waypoint, :quadruped_sampling, :quadrotor_waypoint, :uuv_waypoint, :youbot_waypoint, ] for name in environments env = get_environment(name; horizon=2) x = get_state(env) u = DojoEnvironments.input_map(env, nothing) set_input!(env, nothing) step!(env, x) step!(env, x, u) simulate!(env; record=true) visualize(env) @test true end
Dojo
https://github.com/dojo-sim/Dojo.jl.git
[ "MIT" ]
0.7.5
104b6a1a358da9b1348ab7cd66ad685ecaca13d4
code
535
mechanisms = [ :ant, :atlas, :block, :block2d, :cartpole, :dzhanibekov, :exoskeleton, :fourbar, :halfcheetah, :hopper, :humanoid, :npendulum, :nslider, :panda, :pendulum, :quadrotor, :quadruped, :raiberthopper, :slider, :snake, :sphere, :tippetop, :twister, :uuv, :walker, :youbot, ] for name in mechanisms mech = get_mechanism(name) initialize!(mech, name) simulate!(mech, 0.5; record=true) @test true end
Dojo
https://github.com/dojo-sim/Dojo.jl.git
[ "MIT" ]
0.7.5
104b6a1a358da9b1348ab7cd66ad685ecaca13d4
code
234
using Test using DojoEnvironments using Dojo @testset "DojoEnvironments" begin @testset "mechanisms" begin include("mechanisms.jl") end @testset "environments" begin include("environments.jl") end end
Dojo
https://github.com/dojo-sim/Dojo.jl.git
[ "MIT" ]
0.7.5
104b6a1a358da9b1348ab7cd66ad685ecaca13d4
code
132
using Pkg Pkg.develop(path="./DojoEnvironments") using BenchmarkTools SUITE = BenchmarkGroup() include("mechanisms_benchmark.jl")
Dojo
https://github.com/dojo-sim/Dojo.jl.git
[ "MIT" ]
0.7.5
104b6a1a358da9b1348ab7cd66ad685ecaca13d4
code
605
using Dojo using DojoEnvironments mechanisms = [ :ant, :atlas, :block, :block2d, :exoskeleton, :cartpole, :dzhanibekov, :fourbar, :halfcheetah, :hopper, :humanoid, :npendulum, :nslider, :panda, :pendulum, :quadrotor, :quadruped, :raiberthopper, :slider, :snake, :sphere, :tippetop, :twister, :uuv, :walker, :youbot, ] for name in mechanisms mech = get_mechanism(name) SUITE[string(name)] = @benchmarkable simulate!($mech, 1, opts=SolverOptions(rtol=1.0e-6, btol=1.0e-6)) samples=2 end
Dojo
https://github.com/dojo-sim/Dojo.jl.git
[ "MIT" ]
0.7.5
104b6a1a358da9b1348ab7cd66ad685ecaca13d4
code
392
append!(empty!(LOAD_PATH), Base.DEFAULT_LOAD_PATH) using Pkg ################################################################################ # Generate notebooks ################################################################################ exampledir = joinpath(@__DIR__, "..", "examples") Pkg.activate(exampledir) Pkg.instantiate() include(joinpath(exampledir, "generate_notebooks.jl"))
Dojo
https://github.com/dojo-sim/Dojo.jl.git
[ "MIT" ]
0.7.5
104b6a1a358da9b1348ab7cd66ad685ecaca13d4
code
2090
push!(LOAD_PATH, "../src/") using Documenter, Dojo makedocs( modules = [Dojo], format = Documenter.HTML(prettyurls=false), sitename = "Dojo", pages = [ ############################################## ## MAKE SURE TO SYNC WITH docs/src/index.md ## ############################################## "index.md", "Examples" => [ "examples/simulation.md", "examples/reinforcement_learning.md", "examples/system_identification.md", "examples/trajectory_optimization.md", ], "Creating a Mechanism" => [ "creating_mechanism/overview.md", "creating_mechanism/mechanism_directly.md", "creating_mechanism/mechanism_existing.md", "creating_mechanism/environment_existing.md", "creating_mechanism/tippetop.md", "creating_mechanism/quadruped.md", ], "Creating a Simulation" => [ "creating_simulation/define_simulation.md", "creating_simulation/define_controller.md", "creating_simulation/simulation_with_gradients.md", ], "Environments" => [ "environments/overview.md", ], "Background: Contact Models" => [ "background_contact/contact_models.md", "background_contact/impact.md", "background_contact/nonlinear_friction.md", "background_contact/linearized_friction.md", "background_contact/collisions.md", ], "Background: Representations" => [ "background_representations/maximal_representation.md", "background_representations/minimal_representation.md", "background_representations/gradients.md", ], "Background: Solver" => [ "background_solver/interior_point.md", "background_solver/solver_options.md", ], "api.md", "contributing.md", "citing.md" ] ) deploydocs( repo = "github.com/dojo-sim/Dojo.jl.git", )
Dojo
https://github.com/dojo-sim/Dojo.jl.git
[ "MIT" ]
0.7.5
104b6a1a358da9b1348ab7cd66ad685ecaca13d4
code
846
using Literate function preprocess(str) str = replace(str, "# PKG_SETUP_2" => """ using Pkg Pkg.activate(joinpath(@__DIR__, "../..")) Pkg.instantiate() """) str = replace(str, "# PKG_SETUP" => """ using Pkg Pkg.activate(joinpath(@__DIR__, "..")) Pkg.instantiate() """) return str end exampledir = @__DIR__ for subdir in ["control", "learning", "simulation", "simulation/mechanics", "system_identification"] root = joinpath(exampledir, subdir) isdir(root) || continue @show subdir for file in readdir(root) name, ext = splitext(file) name == "utilities" && continue lowercase(ext) == ".jl" || continue absfile = joinpath(root, file) @show absfile Literate.notebook(absfile, root, execute=false, preprocess=preprocess) end end
Dojo
https://github.com/dojo-sim/Dojo.jl.git
[ "MIT" ]
0.7.5
104b6a1a358da9b1348ab7cd66ad685ecaca13d4
code
1105
# ### Setup # PKG_SETUP using Dojo using DojoEnvironments using ControlSystemsBase using LinearAlgebra # ### Mechanism mechanism = get_mechanism(:cartpole) # ### Controller x0 = zeros(4) u0 = zeros(2) A, B = get_minimal_gradients!(mechanism, x0, u0) Q = I(4) R = I(1) K = lqr(Discrete,A,B[:,1],Q,R) function controller!(mechanism, k) ## Target state x_goal = [0;0; 0.0;0] ## Current state x = get_minimal_state(mechanism) ## Control inputs u = -K * (x - x_goal) ## 3 ways to set input: ## 1: get joint and set input cart_joint = get_joint(mechanism, :cart_joint) set_input!(cart_joint, u) ## 2: set input for all joints at once ## set_input!(mechanism, [u;0]) # need to know joint order ## 3: direct external force on body ## cart = get_body(mechanism, :cart) ## set_external_force!(cart; force=[0;u;0]) end # ### Simulate initialize!(mechanism, :cartpole; position=0, orientation=pi/4) storage = simulate!(mechanism, 10.0, controller!, record=true) # ### Visualize vis = visualize(mechanism, storage) render(vis)
Dojo
https://github.com/dojo-sim/Dojo.jl.git
[ "MIT" ]
0.7.5
104b6a1a358da9b1348ab7cd66ad685ecaca13d4
code
759
# ### Setup # PKG_SETUP using Dojo using DojoEnvironments # ### Mechanism mechanism = get_mechanism(:pendulum) # ### Controller summed_error = 0 # for integral part function controller!(mechanism, k) ## Target state x_goal = [π/2; 0.0] ## Current state x = get_minimal_state(mechanism) error = (x_goal-x) global summed_error += error[1]*mechanism.timestep ## Gains Kp = 25 Ki = 50 Kd = 5 ## Control inputs u = Kp*error[1] + Ki*summed_error + Kd*error[2] set_input!(mechanism, [u]) end # ### Simulate initialize!(mechanism, :pendulum, angle=0.0, angular_velocity=0.0) storage = simulate!(mechanism, 5.0, controller!, record=true) # ### Visualize vis = visualize(mechanism, storage) render(vis)
Dojo
https://github.com/dojo-sim/Dojo.jl.git
[ "MIT" ]
0.7.5
104b6a1a358da9b1348ab7cd66ad685ecaca13d4
code
839
# ### Setup # PKG_SETUP using Dojo using DojoEnvironments using LinearAlgebra # ### Environment quadrotor_env = get_environment(:quadrotor_waypoint; horizon=200) # ### Controllers trans_z_mode = normalize([1;1;1;1]) function velocity_controller!(environment, v_des) v_is = get_state(environment)[9] error_z = v_des - v_is thrust = (10*error_z - 1*v_is + 5.1)*trans_z_mode # P, D, feedforward rpm = thrust*20 set_input!(environment, rpm) end function position_controller!(environment, z_des) z_is = get_state(environment)[3] v_des = z_des - z_is velocity_controller!(environment, v_des) end function controller!(environment, k) position_controller!(environment, 0.3) end # ### Simulate simulate!(quadrotor_env, controller!; record=true) # ### Visualize vis = visualize(quadrotor_env) render(vis)
Dojo
https://github.com/dojo-sim/Dojo.jl.git
[ "MIT" ]
0.7.5
104b6a1a358da9b1348ab7cd66ad685ecaca13d4
code
6011
# ### Setup # PKG_SETUP using Dojo using DojoEnvironments using Random using LinearAlgebra using Statistics import LinearAlgebra.normalize # ### Parameters and structs rng = MersenneTwister(1) Base.@kwdef struct HyperParameters{T} main_loop_size::Int = 100 horizon::Int = 200 step_size::T = 0.05 n_directions::Int = 16 b::Int = 16 noise::T = 0.1 end mutable struct Policy{T} hp::HyperParameters{T} θ::Matrix{T} function Policy(input_size::Int, output_size::Int, hp::HyperParameters{T}; scale=0.2) where T new{T}(hp, scale * randn(output_size, input_size)) end end mutable struct Normalizer{T} n::Vector{T} mean::Vector{T} mean_diff::Vector{T} var::Vector{T} function Normalizer(num_inputs::Int) n = zeros(num_inputs) mean = zeros(num_inputs) mean_diff = zeros(num_inputs) var = zeros(num_inputs) new{eltype(n)}(n, mean, mean_diff, var) end end # ### Oberservation functions function normalize(normalizer, inputs) obs_std = sqrt.(normalizer.var) return (inputs .- normalizer.mean) ./ obs_std end function observe!(normalizer, inputs) normalizer.n .+= 1 last_mean = deepcopy(normalizer.mean) normalizer.mean .+= (inputs .- normalizer.mean) ./ normalizer.n normalizer.mean_diff .+= (inputs .- last_mean) .* (inputs .- normalizer.mean) normalizer.var .= max.(1e-2, normalizer.mean_diff ./ normalizer.n) end # ### Environment env = get_environment(:ant_ars; horizon=100, gravity=-9.81, timestep=0.05, dampers=50.0, springs=25.0, friction_coefficient=0.5, contact_feet=true, contact_body=true); # ### Reset and rollout functions function reset_state!(env) initialize!(env, :ant) return end function rollout_policy(θ::Matrix, env, normalizer::Normalizer, parameters::HyperParameters; record=false) reset_state!(env) rewards = 0.0 for k=1:parameters.horizon ## get state state = DojoEnvironments.get_state(env) x = state[1:28] # minimal state without contacts observe!(normalizer, state) state = normalize(normalizer, state) action = θ * state ## single step step!(env, x, action; record, k) ## get reward state_after = DojoEnvironments.get_state(env) x_pos_before = x[1] x_pos_after = state_after[1] forward_reward = 100 * (x_pos_after - x_pos_before) / env.mechanism.timestep control_cost = (0.05/10 * action' * action)[1] contact_cost = 0.0 for contact in env.mechanism.contacts contact_cost += 0.5 * 1.0e-3 * max(-1, min(1, contact.impulses[2][1]))^2.0 end survive_reward = 0.05 reward = forward_reward - control_cost - contact_cost + survive_reward rewards += reward ## check for failure if !(all(isfinite.(state_after)) && (state_after[3] >= 0.2) && (state_after[3] <= 1)) println(" failed") break end end return rewards end # ### Training functions function sample_policy(policy::Policy{T}) where T δ = [randn(size(policy.θ)) for i = 1:policy.hp.n_directions] θp = [policy.θ + policy.hp.noise .* δ[i] for i = 1:policy.hp.n_directions] θn = [policy.θ - policy.hp.noise .* δ[i] for i = 1:policy.hp.n_directions] return [θp..., θn...], δ end function update!(policy::Policy, rollouts, σ_r) stp = zeros(size(policy.θ)) for (r_pos, r_neg, d) in rollouts stp += (r_pos - r_neg) * d end policy.θ += policy.hp.step_size * stp ./ (σ_r * policy.hp.b) return end function train(env, policy::Policy{T}, normalizer::Normalizer{T}, hp::HyperParameters{T}) where T println("Training linear policy with Augmented Random Search (ARS)\n ") ## pre-allocate for rewards rewards = zeros(2 * hp.n_directions) for episode = 1:hp.main_loop_size ## initialize deltas and rewards θs, δs = sample_policy(policy) ## evaluate policies roll_time = @elapsed begin for k = 1:(2 * hp.n_directions) rewards[k] = rollout_policy(θs[k], env, normalizer, hp) end end ## reward evaluation r_max = [max(rewards[k], rewards[hp.n_directions + k]) for k = 1:hp.n_directions] σ_r = std(rewards) order = sortperm(r_max, rev = true)[1:hp.b] rollouts = [(rewards[k], rewards[hp.n_directions + k], δs[k]) for k = order] ## policy update update!(policy, rollouts, σ_r) ## finish, print: println("episode $episode reward_evaluation $(mean(rewards)). Took $(roll_time) seconds") end return nothing end # ### Training train_times = Float64[] rewards = Float64[] policies = Matrix{Float64}[] N = 2 for i = 1:N ## Random policy hp = HyperParameters( main_loop_size=20, horizon=100, n_directions=6, b=6, step_size=0.05) input_size = 37 output_size = 8 normalizer = Normalizer(input_size) policy = Policy(input_size, output_size, hp) ## Train policy train_time = @elapsed train(env, policy, normalizer, hp) ## Evaluate policy reward = rollout_policy(policy.θ, env, normalizer, hp) ## Cache push!(train_times, train_time) push!(rewards, reward) push!(policies, policy.θ) end # ### Training results max_idx = sortperm(rewards, lt=Base.isgreater) train_time_best = (train_times[max_idx])[1] rewards_best = (rewards[max_idx])[1] policies_best = (policies[max_idx])[1]; # ### Controller with best policy θ = policies_best input_size = 37 normalizer = Normalizer(input_size) function controller!(environment, k) state = get_state(env) observe!(normalizer, state) state = normalize(normalizer, state) action = θ * state set_input!(environment, action) end # ### Visualize policy reset_state!(env) simulate!(env, controller!; record=true) vis = visualize(env) render(vis)
Dojo
https://github.com/dojo-sim/Dojo.jl.git
[ "MIT" ]
0.7.5
104b6a1a358da9b1348ab7cd66ad685ecaca13d4
code
6957
# Running from within Dojo repo does not work somehow; create temp environment # Copied from https://github.com/JuliaReinforcementLearning/ReinforcementLearning.jl/blob/main/src/ReinforcementLearningEnvironments/src/environments/examples/CartPoleEnv.jl # ### Setup # PKG_SETUP using ReinforcementLearning # v0.10.2 using Random using ClosedIntervals using StableRNGs: StableRNG using Flux using Flux: params, ignore using Flux.Losses: huber_loss using Dojo using DojoEnvironments # ### BEGIN Redefinition because of breaking changes in ReinforcementLearning.jl repo function RLBase.update!(learner::BasicDQNLearner, batch::NamedTuple{SARTS}) Q = learner.approximator γ = learner.γ loss_func = learner.loss_func s, a, r, t, s′ = send_to_device(device(Q), batch) a = CartesianIndex.(a, 1:length(a)) gs = gradient(params(Q)) do q = Q(s)[a] q′ = vec(maximum(Q(s′); dims = 1)) G = @. r + γ * (1 - t) * q′ loss = loss_func(G, q) ignore() do learner.loss = loss end loss end update!(Q, gs) end RLBase.update!(app::NeuralNetworkApproximator, gs) = Flux.Optimise.update!(app.optimizer, params(app), gs) # ### END Redefinition because of breaking changes in ReinforcementLearning.jl repo struct CartPoleEnvParams{T} gravity::T masscart::T masspole::T totalmass::T halflength::T polemasslength::T forcemag::T dt::T thetathreshold::T xthreshold::T max_steps::Int end Base.show(io::IO, params::CartPoleEnvParams) = print( io, join(["$p=$(getfield(params, p))" for p in fieldnames(CartPoleEnvParams)], ","), ) function CartPoleEnvParams{T}(; gravity=9.8, masscart=1.0, masspole=0.1, halflength=0.5, forcemag=10.0, max_steps=200, dt=0.02, thetathreshold=12.0, xthreshold=2.4 ) where {T} CartPoleEnvParams{T}( gravity, masscart, masspole, masscart + masspole, halflength, masspole * halflength, forcemag, dt, thetathreshold * π / 180, xthreshold, max_steps, ) end mutable struct CartPoleEnv{T,ACT} <: AbstractEnv dojo_env::DojoEnvironments.CartpoleDQN # Dojo Environment record::Bool # Select if trajectory should be recorded in Dojo Storage params::CartPoleEnvParams{T} state::Vector{T} action::ACT done::Bool t::Int rng::AbstractRNG end function CartPoleEnv(; T=Float64, record=false, continuous=false, rng=Random.GLOBAL_RNG, kwargs...) params = CartPoleEnvParams{T}(; kwargs...) ## create Dojo Environment dojo_env = get_environment(:cartpole_dqn; horizon=params.max_steps+1, timestep = params.dt, gravity = -params.gravity, slider_mass = params.masscart, pendulum_mass = params.masspole, link_length = params.halflength*2 ) env = CartPoleEnv(dojo_env, record, params, zeros(T, 4), continuous ? zero(T) : zero(Int), false, 0, rng) reset!(env) env end CartPoleEnv{T}(; kwargs...) where {T} = CartPoleEnv(T=T, kwargs...) Random.seed!(env::CartPoleEnv, seed) = Random.seed!(env.rng, seed) RLBase.reward(env::CartPoleEnv{T}) where {T} = env.done ? zero(T) : one(T) RLBase.is_terminated(env::CartPoleEnv) = env.done RLBase.state(env::CartPoleEnv) = env.state function RLBase.state_space(env::CartPoleEnv{T}) where {T} ((-2 * env.params.xthreshold) .. (2 * env.params.xthreshold)) × (typemin(T) .. typemax(T)) × ((-2 * env.params.thetathreshold) .. (2 * env.params.thetathreshold)) × (typemin(T) .. typemax(T)) end RLBase.action_space(env::CartPoleEnv{<:AbstractFloat,Int}, player) = Base.OneTo(2) RLBase.action_space(env::CartPoleEnv{<:AbstractFloat,<:AbstractFloat}, player) = -1.0 .. 1.0 function RLBase.reset!(env::CartPoleEnv{T}) where {T} env.state[:] = T(0.1) * rand(env.rng, T, 4) .- T(0.05) env.t = 0 env.action = rand(env.rng, action_space(env)) env.done = false nothing end function (env::CartPoleEnv)(a::AbstractFloat) @assert a in action_space(env) env.action = a _step!(env, a) end function (env::CartPoleEnv)(a::Int) @assert a in action_space(env) env.action = a _step!(env, a == 2 ? 1 : -1) end function _step!(env::CartPoleEnv, a) env.t += 1 force = a * env.params.forcemag #= Remove ReinforcementLearningEnvironments dynamics x, xdot, theta, thetadot = env.state costheta = cos(theta) sintheta = sin(theta) tmp = (force + env.params.polemasslength * thetadot^2 * sintheta) / env.params.totalmass thetaacc = (env.params.gravity * sintheta - costheta * tmp) / ( env.params.halflength * (4 / 3 - env.params.masspole * costheta^2 / env.params.totalmass) ) xacc = tmp - env.params.polemasslength * thetaacc * costheta / env.params.totalmass env.state[1] += env.params.dt * xdot env.state[2] += env.params.dt * xacc env.state[3] += env.params.dt * thetadot env.state[4] += env.params.dt * thetaacc =# ## Use Dojo dynamics DojoEnvironments.step!(env.dojo_env, env.state, force; k=env.t, env.record) env.state = DojoEnvironments.get_state(env.dojo_env) env.done = abs(env.state[1]) > env.params.xthreshold || abs(env.state[3]) > env.params.thetathreshold || env.t > env.params.max_steps nothing end # Copied from https://juliareinforcementlearning.org/docs/experiments/experiments/DQN/JuliaRL_BasicDQN_CartPole/#JuliaRL\\_BasicDQN\\_CartPole env = CartPoleEnv(; record=true, rng = MersenneTwister(123)) seed = 123 rng = StableRNG(seed) ns, na = length(state(env)), length(action_space(env)) policy = Agent( policy = QBasedPolicy( learner = BasicDQNLearner( approximator = NeuralNetworkApproximator( model = Chain( Dense(ns, 128, relu; init = glorot_uniform(rng)), Dense(128, 128, relu; init = glorot_uniform(rng)), Dense(128, na; init = glorot_uniform(rng)), ) |> gpu, optimizer = ADAM(), ), batch_size = 32, min_replay_history = 100, loss_func = huber_loss, rng = rng, ), explorer = EpsilonGreedyExplorer( kind = :exp, ϵ_stable = 0.01, decay_steps = 500, rng = rng, ), ), trajectory = CircularArraySARTTrajectory( capacity = 1000, state = Vector{Float32} => (ns,), ), ); # ## Train policy run( policy, CartPoleEnv(), StopAfterEpisode(1000), TotalRewardPerEpisode() ) # ## Rollout policy once and record (record=true in env) run( policy, env, StopAfterEpisode(1), TotalRewardPerEpisode() ) # ### Visualize trained cartpole vis = visualize(env.dojo_env) render(vis)
Dojo
https://github.com/dojo-sim/Dojo.jl.git
[ "MIT" ]
0.7.5
104b6a1a358da9b1348ab7cd66ad685ecaca13d4
code
4045
# ### Setup # PKG_SETUP using Dojo using DojoEnvironments using Random using LinearAlgebra # ### Parameters rng = MersenneTwister(1) N = 2000 M = 20 paramcontainer = [[0.1; 0; 1; 0; -1.5]] # result: [[0.3604389380437305, 0.15854285262309512, 0.9575825661369068, -0.325769852046206, -1.4824537456751052]] paramstorage = [[0.1; 0; 1; 0; -1.5]] bias = zeros(5) distance = 0.0 explore_factor = 0.1 distancestorage = zeros(M); # ### Environment env = get_environment(:quadruped_sampling; horizon=N, timestep=0.001, joint_limits=Dict(), gravity=-9.81, contact_body=false) # ### Controller legmovement(k,a,b,c,offset) = a*cos(k*b*0.01*2*pi+offset)+c Kp = [100;80;60] Kd = [5;4;3] function controller!(x, k) angle21 = legmovement(k,paramcontainer[1][2],paramcontainer[1][1],paramcontainer[1][3],0) angle22 = legmovement(k,paramcontainer[1][2],paramcontainer[1][1],paramcontainer[1][3],pi) angle31 = legmovement(k,paramcontainer[1][4],paramcontainer[1][1],paramcontainer[1][5],-pi/2) angle32 = legmovement(k,paramcontainer[1][4],paramcontainer[1][1],paramcontainer[1][5],pi/2) u = zeros(12) for i=1:4 θ1 = x[12+(i-1)*6+1] dθ1 = x[12+(i-1)*6+2] θ2 = x[12+(i-1)*6+3] dθ2 = x[12+(i-1)*6+4] θ3 = x[12+(i-1)*6+5] dθ3 = x[12+(i-1)*6+6] if i == 1 || i == 4 u[(i-1)*3+1] = Kp[1]*(0-θ1) + Kd[1]*(0-dθ1) u[(i-1)*3+2] = Kp[2]*(angle21-θ2) + Kd[2]*(0-dθ2) u[(i-1)*3+3] = Kp[3]*(angle31-θ3) + Kd[3]*(0-dθ3) else u[(i-1)*3+1] = Kp[1]*(0-θ1) + Kd[1]*(0-dθ1) u[(i-1)*3+2] = Kp[2]*(angle22-θ2) + Kd[2]*(0-dθ2) u[(i-1)*3+3] = Kp[3]*(angle32-θ3) + Kd[3]*(0-dθ3) end end return u end # ### Reset and rollout functions function reset_state!(env) initialize!(env, :quadruped; body_position=[0;0;-0.43], hip_angle=0, thigh_angle=paramcontainer[1][3], calf_angle=paramcontainer[1][5]) calf_state = get_body(env.mechanism, :FR_calf).state position = get_sdf(get_contact(env.mechanism, :FR_calf_contact), Dojo.current_position(calf_state), Dojo.current_orientation(calf_state)) initialize!(env, :quadruped; body_position=[0;0;-position-0.43], hip_angle=0, thigh_angle=paramcontainer[1][3], calf_angle=paramcontainer[1][5]) end function rollout(env; record=false) for k=1:N x = get_state(env) if x[3] < 0 || !all(isfinite.(x)) || abs(x[1]) > 1000 # upsidedown || failed || "exploding" println(" failed") return 1 end u = controller!(x, k) step!(env, x, u; k, record) end return 0 end # ### Learning routine for i=1:M println("run: $i") if bias == zeros(5) paramcontainer[1] += randn!(rng, zeros(5))*explore_factor else paramcontainer[1] += randn!(rng, zeros(5))*0.002 + normalize(bias)*0.01 end reset_state!(env) x0 = DojoEnvironments.get_state(env)[1] res = 0 try res = rollout(env) catch res = 1 end if res == 1 println(" errored") end new_state = DojoEnvironments.get_state(env) distancenew = new_state[1] - x0 if res == 1 || distancenew <= distance println(" unsuccessful") !all(isfinite.(new_state)) && println(" nans") paramcontainer[1] = paramstorage[end] bias = zeros(5) explore_factor *= 0.9 else println(" successful") distance = distancenew push!(paramstorage,paramcontainer[1]) bias = paramstorage[end]-paramstorage[end-1] explore_factor = 0.1 end println(" distance: $distancenew") distancestorage[i] = distance end # ### Controller for best parameter set paramcontainer[1] = paramstorage[end] function environment_controller!(environment, k) x = get_state(environment) u = controller!(x, k) set_input!(environment, u) end # ### Visualize learned behavior reset_state!(env) simulate!(env, environment_controller!; record=true) vis = visualize(env) render(vis)
Dojo
https://github.com/dojo-sim/Dojo.jl.git
[ "MIT" ]
0.7.5
104b6a1a358da9b1348ab7cd66ad685ecaca13d4
code
886
# ### Setup # PKG_SETUP using Dojo using DojoEnvironments # ### List of all convenience mechanisms mechanisms = [ :ant, :atlas, :block, :block2d, :cartpole, :dzhanibekov, :exoskeleton, :fourbar, :halfcheetah, :hopper, :humanoid, :npendulum, :nslider, :panda, :pendulum, :quadrotor, :quadruped, :raiberthopper, :slider, :snake, :sphere, :tippetop, :twister, :uuv, :walker, :youbot, ] # ### Select mechanism name = :ant # ### Get mechanism (check DojoEnvironments/src/mechanisms files for kwargs) mech = get_mechanism(name) # ### Initialize mechanism (check DojoEnvironments/src/mechanisms files for kwargs) initialize!(mech, name) # ### Simulate mechanism storage = simulate!(mech, 5, record=true) # ### Visualize mechanism vis = visualize(mech, storage) render(vis)
Dojo
https://github.com/dojo-sim/Dojo.jl.git
[ "MIT" ]
0.7.5
104b6a1a358da9b1348ab7cd66ad685ecaca13d4
code
669
# ### Setup # PKG_SETUP using Dojo # ### Parameters radius = 0.1 link_length = 1 mass = 1 rotation_axis = [1;0;0] connection = [0;0;link_length/2] # ### Mechanism components origin = Origin() body = Cylinder(radius, link_length, mass) joint = JointConstraint(Revolute(origin, body, rotation_axis; child_vertex=connection)) # ### Construct Mechanism mechanism = Mechanism(origin, [body], [joint]) # ### Set state set_minimal_coordinates!(mechanism, joint, [pi/4]) set_minimal_velocities!(mechanism, joint, [0.2]) # ### Simulate storage = simulate!(mechanism, 5.0, record=true) # ### Visualize vis = visualize(mechanism, storage; visualize_floor=false) render(vis)
Dojo
https://github.com/dojo-sim/Dojo.jl.git
[ "MIT" ]
0.7.5
104b6a1a358da9b1348ab7cd66ad685ecaca13d4
code
480
# ### Setup # PKG_SETUP using Dojo using DojoEnvironments # ### Get environment (check DojoEnvironment/environments files for kwargs) environment = get_environment(:pendulum; timestep=0.01, horizon=200) # ### Initialize mechanism (check DojoEnvironment/mechanisms files for kwargs) initialize!(environment.mechanism, :pendulum; angle=-0.3) # ### Simulate environment simulate!(environment, record=true) # ### Visualize environment vis = visualize(environment) render(vis)
Dojo
https://github.com/dojo-sim/Dojo.jl.git
[ "MIT" ]
0.7.5
104b6a1a358da9b1348ab7cd66ad685ecaca13d4
code
479
# ### Setup # PKG_SETUP using Dojo using DojoEnvironments # ### Get mechanism (check DojoEnvironment/mechanisms files for kwargs) mechanism = get_mechanism(:pendulum; timestep=0.02, link_length=0.75) # ### Initialize mechanism (check DojoEnvironment/mechanisms files for kwargs) initialize!(mechanism, :pendulum; angle=-0.3) # ### Simulate mechanism storage = simulate!(mechanism, 5, record=true) # ### Visualize mechanism vis = visualize(mechanism, storage) render(vis)
Dojo
https://github.com/dojo-sim/Dojo.jl.git
[ "MIT" ]
0.7.5
104b6a1a358da9b1348ab7cd66ad685ecaca13d4
code
2241
# ### Setup # PKG_SETUP_2 using Dojo using DojoEnvironments using Plots using LinearAlgebra # ### Define gradient functions function get_gradients(mechanism::Mechanism, F, mode; rtol=1e-10, btol=1e-10, undercut=1.0, no_progress_undercut=1.0) (mode == :friction) && (idx = 1) (mode == :impact) && (idx = 2) opts = SolverOptions(; rtol, btol, undercut, no_progress_undercut) initialize!(mechanism, :block2d, position=[0, 0], velocity=[0, 0], orientation=0, angular_velocity=0) x0 = get_minimal_state(mechanism) u0 = zeros(3) u0[idx] += F _, ∇u = get_minimal_gradients!(mechanism, x0, u0; opts) Dojo.step_minimal_coordinates!(mechanism, x0, u0; opts) z1 = Dojo.get_next_state(mechanism) x1 = maximal_to_minimal(mechanism, z1) ∂x∂F = ∇u[idx,idx] Δx = x1[idx] - x0[idx] return Δx, ∂x∂F end # ### Gravity = Friction = 1 for nice plots mech = get_mechanism(:block2d; timestep=0.1, gravity=-1.0, friction_coefficient=1.0, contact=true) # ### Force range F_ref = 0.5:0.01:1.5 tolerances = [1e-4, 1e-6, 1e-8, 1e-10] # ### Gradient plots gradient_plot = plot(layout=(2,2), size=(800,600), legend=:topleft); # ### Impact plots for btol in tolerances gradients = [get_gradients(mech, F, :impact; btol) for F = F_ref] x = [r[1] for r in gradients] ∇x = [r[2] for r in gradients] plot!(gradient_plot[1,1], F_ref, x, xlabel="Fz", ylabel="z", linewidth=3.0, linestyle=:dot, label="Dojo btol ="*Dojo.scn(btol)) plot!(gradient_plot[2,1], F_ref, ∇x, xlabel="Fz", ylabel="∇z", linewidth=3.0, linestyle=:dot, label="Dojo btol ="*Dojo.scn(btol)[2:end]) end # ### Friction plots for btol in tolerances gradients = [get_gradients(mech, F, :friction; btol) for F = F_ref] x = [r[1] for r in gradients] ∇x = [r[2] for r in gradients] plot!(gradient_plot[1,2], F_ref, x, xlabel="Fx", ylabel="x", linewidth=3.0, linestyle=:dot, label="Dojo btol ="*Dojo.scn(btol)) plot!(gradient_plot[2,2], F_ref, ∇x, xlabel="Fx", ylabel="∇x", linewidth=3.0, linestyle=:dot, label="Dojo btol ="*Dojo.scn(btol)[2:end]) end # ### Show plots display(gradient_plot) # left: Impact, right: Friction
Dojo
https://github.com/dojo-sim/Dojo.jl.git
[ "MIT" ]
0.7.5
104b6a1a358da9b1348ab7cd66ad685ecaca13d4
code
2654
# ### Setup # PKG_SETUP_2 using Dojo using DojoEnvironments using Random using LinearAlgebra using Plots seed=100 Random.seed!(seed) # ### Define simulation function function simulation_loop(timestep, tsim; gravity=0.0, springs=0.0, dampers=0.0, ϵ=1.0e-6) display(timestep) mech = get_mechanism(:humanoid; timestep, gravity, springs, dampers, contact_feet=false) ## Initialize bodies with random velocities for body in mech.bodies v = LinearAlgebra.normalize(randn(3)) set_maximal_velocities!(body; v=v) end storage = simulate!(mech, tsim; record=true, opts=SolverOptions(btol=ϵ)) return mech, storage end # ### Simulation timesteps = [0.05, 0.01, 0.005] tsim = 10.0 storages = [] for timestep in timesteps mech, storage = simulation_loop(timestep, tsim) ## visualize(mech, storage, visualize_floor=false) push!(storages, storage) end # ## Plots color = [:magenta, :orange, :cyan]; mech, _ = simulation_loop(0.01, 0.01) conservation_plot = plot(layout=(3,1), size=(800,500), legend=:topleft); # ### Energy energies = [Dojo.mechanical_energy(mech, storage)[2:end] for storage in storages] energy_plot = plot(xlabel="time (s)", ylabel="energy drift"); for (i, energy) in enumerate(energies) time = [step * timesteps[i] for step = 1:length(energy)] plot!(conservation_plot[1,1], time, energy .- energy[1]; width=2.0, color=color[i], xlabel="time (s)", ylabel="energy drift", label="h = $(timesteps[i])") end # ### Momentum momenta = [Dojo.momentum(mech, storage)[2:end] for storage in storages]; # Linear momenta_linear = [[Vector(momentum_i)[1:3] for momentum_i in momentum] for momentum in momenta] for (i, momentum) in enumerate(momenta_linear) time = [step * timesteps[i] for step = 1:length(momentum)] plot!(conservation_plot[2,1], time, hcat([momentum_i - momentum[1] for momentum_i in momentum]...)'; width=2.0, color=color[i], xlabel="time (s)", ylabel="linear mom. drift", label=["h = $(timesteps[i])" "" ""]) end # Angular momenta_angular = [[Vector(momentum_i)[4:6] for momentum_i in momentum] for momentum in momenta] momentum_angular_plot = plot(ylims=(-1.0e-10, 1.0e-10), xlabel="time (s)", ylabel="angular momentum drift"); for (i, momentum) in enumerate(momenta_angular) time = [j * timesteps[i] for j in 1:length(momentum)] plot!(conservation_plot[3,1], time, hcat([momentum_i - momentum[1] for momentum_i in momentum]...)'; width=2.0, color=color[i], xlabel="time (s)", ylabel="angular mom. drift", label=["h = $(timesteps[i])" "" ""]) end # ### Show plots display(conservation_plot)
Dojo
https://github.com/dojo-sim/Dojo.jl.git
[ "MIT" ]
0.7.5
104b6a1a358da9b1348ab7cd66ad685ecaca13d4
code
1163
# ### Setup # PKG_SETUP_2 using Dojo using DojoEnvironments # ### Parameters friction_coefficient = 0.25 x0 = [-1.5, -0.50, 0.25] q0 = one(Quaternion) v0 = [4, 0.80, 0.0] ω0 = zeros(3) # ### Create blocks for comparison mech_linear = get_mechanism(:block; friction_coefficient, contact_type=:linear, color=orange); mech_nonlinear = get_mechanism(:block; friction_coefficient, contact_type=:nonlinear, color=cyan); # ### Simulate block with linear friction initialize!(mech_linear, :block; position=x0, velocity=v0, orientation=q0, angular_velocity=ω0) storage_linear = simulate!(mech_linear, 4.0; record=true) # ### Simulate block with nonlinear friction initialize!(mech_nonlinear, :block; position=x0, velocity=v0, orientation=q0, angular_velocity=ω0) storage_nonlinear = simulate!(mech_nonlinear, 4.0; record=true) # ### Visualize vis = Visualizer() set_camera!(vis, cam_pos=[-0.01, 0.0, 100.0], zoom=30) set_light!(vis, ambient=0.65, direction="Positive") vis, animation = visualize(mech_linear, storage_linear; vis, name=:linear, return_animation=true); vis = visualize(mech_nonlinear, storage_nonlinear; vis, name=:nonlinear, animation) render(vis)
Dojo
https://github.com/dojo-sim/Dojo.jl.git
[ "MIT" ]
0.7.5
104b6a1a358da9b1348ab7cd66ad685ecaca13d4
code
443
# ### Setup # PKG_SETUP_2 using Dojo using DojoEnvironments using Plots # ### Simulate block mech = get_mechanism(:block) storage = simulate!(mech, 5, record=true) vis = visualize(mech, storage) render(vis) # ### Contact interpenetration distances = get_sdf(mech, storage) # distance from floor to each contact minimum(minimum(distances)) # minimum distance of any corner to the ground # ### Exemplary plot of one corner plot(distances[1])
Dojo
https://github.com/dojo-sim/Dojo.jl.git
[ "MIT" ]
0.7.5
104b6a1a358da9b1348ab7cd66ad685ecaca13d4
code
1853
using Dojo using DojoEnvironments: Z_AXIS using LinearAlgebra # Parameters origin = Origin{Float64}() pbody = Box(1.0, 1.0, 1.0, 1.0) cbody = Dojo.Sphere(0.5, 1.0) joint1 = JointConstraint(Floating(origin, pbody)) joint2 = JointConstraint(Floating(origin, cbody)) bodies = [pbody, cbody] joints = [joint1, joint2] side = 1.0 contact_origins = [ [[ side / 2.0; side / 2.0; -side / 2.0]] [[ side / 2.0; -side / 2.0; -side / 2.0]] [[-side / 2.0; side / 2.0; -side / 2.0]] [[-side / 2.0; -side / 2.0; -side / 2.0]] [[ side / 2.0; side / 2.0; side / 2.0]] [[ side / 2.0; -side / 2.0; side / 2.0]] [[-side / 2.0; side / 2.0; side / 2.0]] [[-side / 2.0; -side / 2.0; side / 2.0]] ] normals = fill(Z_AXIS,8) friction_coefficients = fill(0.5,8) box_contacts = contact_constraint(pbody, normals; friction_coefficients, contact_origins, contact_type=:nonlinear) sphere_contact = contact_constraint(cbody, Z_AXIS; friction_coefficient=0.5, contact_radius=0.5) collision = SphereBoxCollision{Float64,2,3,6}( szeros(3), 1.0, 1.0, 2 * 1.0, 0.5 ) friction_parameterization = [ 1.0 0.0 0.0 1.0 ] body_body_contact = NonlinearContact{Float64,8}(0.5, friction_parameterization, collision) contacts = [ box_contacts..., sphere_contact, ContactConstraint((body_body_contact, cbody.id, pbody.id), name=:body_body) ] mech = Mechanism(origin, bodies, joints, contacts; gravity=-9.81, timestep=0.01) mech.bodies[1].state.x2 = [0.0, 0.0, 1.5] q = LinearAlgebra.normalize(rand(4)) mech.bodies[1].state.q2 = Quaternion(q...) mech.bodies[2].state.x2 = [0.3, 0.25, 3.0] storage = simulate!(mech, 5.0; record=true, opts=SolverOptions(rtol=1.0e-5, btol=1.0e-5)) visualize(mech, storage)
Dojo
https://github.com/dojo-sim/Dojo.jl.git
[ "MIT" ]
0.7.5
104b6a1a358da9b1348ab7cd66ad685ecaca13d4
code
1625
using Dojo using DojoEnvironments: Z_AXIS, Y_AXIS using LinearAlgebra # Parameters origin = Origin{Float64}() pbody = Capsule(0.5, 2.0, 1.0, orientation_offset=Quaternion(sqrt(2.0) / 2.0, sqrt(2.0) / 2.0, 0.0, 0.0)) cbody = Dojo.Sphere(0.5, 1.0) joint1 = JointConstraint(Floating(origin, pbody)) joint2 = JointConstraint(Floating(pbody, cbody)) bodies = [pbody, cbody] joints = [joint1] capsule_contact1 = contact_constraint(pbody, Z_AXIS, friction_coefficient=1.0, contact_origin=Y_AXIS, contact_radius=0.5) capsule_contact2 = contact_constraint(pbody, Z_AXIS, friction_coefficient=1.0, contact_origin=-Y_AXIS, contact_radius=0.5) sphere_contact = contact_constraint(cbody, Z_AXIS, friction_coefficient=1.0, contact_radius=0.5) collision = SphereCapsuleCollision{Float64,2,3,6}( szeros(3), Y_AXIS, -Y_AXIS, 0.5, 0.5, ) friction_parameterization = [ 1.0 0.0 0.0 1.0 ] body_body_contact = NonlinearContact{Float64,8}(0.5, friction_parameterization, collision) contacts = [ capsule_contact1; capsule_contact2; sphere_contact; ContactConstraint((body_body_contact, cbody.id, pbody.id), name=:body_body) ] mech = Mechanism(origin, bodies, joints, contacts; gravity=-9.81, timestep=0.05) mech.bodies[1].state.x2 = [0.25, 0.25, 1.5] q = LinearAlgebra.normalize(rand(4)) mech.bodies[1].state.q2 = Quaternion(q...) mech.bodies[2].state.x2 = [0.0, 0.5, 4.0] storage = simulate!(mech, 2.5, record=true; opts=SolverOptions(rtol=1.0e-5, btol=1.0e-5)) visualize(mech, storage)
Dojo
https://github.com/dojo-sim/Dojo.jl.git
[ "MIT" ]
0.7.5
104b6a1a358da9b1348ab7cd66ad685ecaca13d4
code
986
using Dojo using DojoEnvironments: Z_AXIS using LinearAlgebra # Parameters origin = Origin{Float64}() pbody = Dojo.Sphere(0.5, 1.0) cbody = Dojo.Sphere(0.5, 1.0) joint = JointConstraint(Fixed(origin, pbody)) bodies = [pbody, cbody] joints = [joint] sphere_contact = contact_constraint(cbody, Z_AXIS, friction_coefficient=1.0, contact_radius=0.5) collision = SphereSphereCollision{Float64,2,3,6}( szeros(3), szeros(3), pbody.shape.r, cbody.shape.r) friction_parameterization = [ 1.0 0.0 0.0 1.0 ] body_body_contact = NonlinearContact{Float64,8}(0.5, friction_parameterization, collision) contacts = [ sphere_contact; ContactConstraint((body_body_contact, pbody.id, cbody.id), name=:body_body) ] mech = Mechanism(origin, bodies, joints, contacts; gravity=-9.81, timestep=0.1) mech.bodies[1].state.x2 = [0.0, 0.0, 0.0] mech.bodies[2].state.x2 = [randn(2)/10..., 2.0] storage = simulate!(mech, 3.0; record=true) visualize(mech, storage)
Dojo
https://github.com/dojo-sim/Dojo.jl.git
[ "MIT" ]
0.7.5
104b6a1a358da9b1348ab7cd66ad685ecaca13d4
code
2550
using Dojo using DojoEnvironments: Z_AXIS using LinearAlgebra # Parameters origin = Origin{Float64}() box = Box(0.2, 1.0, 1.0, 1.0) left_finger = Dojo.Sphere(0.1, 0.1; color=RGBA(1,0,0,1)) right_finger = Dojo.Sphere(0.1, 0.1; color=RGBA(1,0,0,1)) joint1 = JointConstraint(PlanarAxis(origin, box,[1;0;0])) joint2 = JointConstraint(FixedOrientation(origin, left_finger)) joint3 = JointConstraint(FixedOrientation(origin, right_finger)) bodies = [box, left_finger, right_finger] joints = [joint1, joint2, joint3] side = 1.0 contact_origins = [ [[ side / 2.0; side / 2.0; -side / 2.0]] [[ side / 2.0; -side / 2.0; -side / 2.0]] [[-side / 2.0; side / 2.0; -side / 2.0]] [[-side / 2.0; -side / 2.0; -side / 2.0]] [[ side / 2.0; side / 2.0; side / 2.0]] [[ side / 2.0; -side / 2.0; side / 2.0]] [[-side / 2.0; side / 2.0; side / 2.0]] [[-side / 2.0; -side / 2.0; side / 2.0]] ] normals = fill(Z_AXIS,8) friction_coefficients = fill(0.5,8) collision = SphereBoxCollision{Float64,2,3,6}( szeros(3), 1.0, 1.0, 2 * 1.0, 0.1 ) friction_parameterization = [ 1.0 0.0 0.0 1.0 ] body_body_contact = NonlinearContact{Float64,8}(1.5, friction_parameterization, collision) contacts = [ ContactConstraint((body_body_contact, left_finger.id, box.id), name=:body_body1) ContactConstraint((body_body_contact, right_finger.id, box.id), name=:body_body2) ] mech = Mechanism(origin, bodies, joints, contacts; gravity=-9.81, timestep=0.01) function velocity_controller!(mechanism,v_des) vy, vz = box.state.v15[2:3] ω = box.state.ω15[1] Δvy = v_des[1] - vy Δvz = v_des[2] - vz Δω = v_des[3] - ω left_y = 1.2 +Δω +0.5Δvy left_z = 1.2+0.1 +0.5Δvz right_y = -1.2 -Δω +0.5Δvy right_z = 0+0.1 +0.5Δvz set_input!(joint2, [0;left_y;left_z]*9.81) set_input!(joint3, [0;right_y;right_z]*9.81) end function position_controller!(mechanism,x_des) y, z = box.state.x2[2:3] θ = box.state.q2.v1*2 # small angle approximation v_des = x_des - [y;z;θ] velocity_controller!(mechanism, v_des) end function controller!(mechanism,k) position_controller!(mechanism,[0.2*(1-cos(k/50));0.75+0.2*sin(k/50);0]) end mech.bodies[1].state.x2 = [0.0, 0.0, 0.75] mech.bodies[2].state.x2 = [0.0, -0.601, 0.5] mech.bodies[3].state.x2 = [0.0, 0.601,1.0] storage = simulate!(mech, 5.0, controller!; record=true) visualize(mech, storage)
Dojo
https://github.com/dojo-sim/Dojo.jl.git
[ "MIT" ]
0.7.5
104b6a1a358da9b1348ab7cd66ad685ecaca13d4
code
3932
# ### Setup # PKG_SETUP using Dojo using DojoEnvironments using Plots using JLD2 using ForwardDiff using LinearAlgebra # ### Include methods include("utilities.jl") # ### Parameters # Toss data from https://github.com/DAIRLab/contact-nets, distances scaled by factor 20. # We multiplied all the distance by distance_scaling for better data scaling. # We must rescale the gravity term accordingly since gravity contains length (g == kg.m.s^-2). distance_scaling = 20.0 opts = SolverOptions(btol=3e-4, rtol=3e-4, undercut=3.0) model = :block N = 100 mech_kwargs = Dict( :timestep => 1/148, :gravity => -9.81 * distance_scaling, :friction_coefficient => 0.16, :edge_length => 0.1 * distance_scaling) # ### Load dataset dataset = jldopen(joinpath(@__DIR__, "data", "datasets", "real_block.jld2")) storages = dataset["storages"] JLD2.close(dataset) function parameter_stack(θ) ## [friction_coefficient; contact_radius; contact_origin] return [ θ[1]; 0; +θ[2:4]; θ[1]; 0; +θ[5:7]; θ[1]; 0; +θ[8:10]; θ[1]; 0; +θ[11:13]; θ[1]; 0; +θ[14:16]; θ[1]; 0; +θ[17:19]; θ[1]; 0; +θ[20:22]; θ[1]; 0; +θ[23:25]; ] end data_mask = ForwardDiff.jacobian(x -> parameter_stack(x), zeros(25)); # ### Optimization Objective: Evaluation & Gradient timesteps = 50:52 function f0(d; storages=storages, timesteps=timesteps) mechanism = get_mechanism(model; mech_kwargs...) f = 0.0 for i = 1:100 fi = loss(mechanism, parameter_stack(d), storages[i], timesteps; opts, derivatives=false) f += fi end return f end function fgH0(d; storages=storages, timesteps=timesteps) mechanism = get_mechanism(model; mech_kwargs...) f = 0.0 nd = sum(Dojo.data_dim.(mechanism.contacts)) g = zeros(nd) H = zeros(nd,nd) for i = 1:100 fi, gi, Hi = loss(mechanism, parameter_stack(d), storages[i], timesteps; opts, derivatives=true) f += fi g += gi H += Hi end return f, data_mask' * g, data_mask' * H * data_mask end # ### Initial guess guess = [0.40, +2.00, +2.00, -2.00, +2.00, -2.00, -2.00, -2.00, +2.00, -2.00, -2.00, -2.00, -2.00, +2.00, +2.00, +2.00, +2.00, -2.00, +2.00, -2.00, +2.00, +2.00, -2.00, -2.00, +2.00, ] guess_error = f0(guess) # ### Solve lower_bound = [0.00, +0.05, +0.05, -2.00, +0.05, -2.00, -2.00, -2.00, +0.05, -2.00, -2.00, -2.00, -2.00, +0.05, +0.05, +0.05, +0.05, -2.00, +0.05, -2.00, +0.05, +0.05, -2.00, -2.00, +0.05, ] upper_bound = [0.80, +2.00, +2.00, -0.05, +2.00, -0.05, -0.05, -0.05, +2.00, -0.05, -0.05, -0.05, -0.05, +2.00, +2.00, +2.00, +2.00, -0.05, +2.00, -0.05, +2.00, +2.00, -0.05, -0.05, +2.00, ] solution = quasi_newton_solve(f0, fgH0, guess; iter=20, gtol=1e-8, ftol=1e-6, lower_bound, upper_bound, reg=1e-9) # ### Result solution_parameters = solution[1] solution_error = f0(solution_parameters) # ### Visualize vis = Visualizer() storage = storages[1] mech_kwargs = Dict( :timestep => 1/148, :gravity => -9.81 * distance_scaling, :color => RGBA(1,0,0,0.5), :friction_coefficient => 0.16, :edge_length => 0.1 * distance_scaling) mech = get_mechanism(model; mech_kwargs...) vis, animation = visualize(mech, storage; vis, return_animation=true, name=:original) position = storage.x[1][1]-[0;0;solution_parameters[2]] orientation = storage.q[1][1] velocity = storage.v[1][1] angular_velocity = storage.ω[1][1] edge_length = 2*sum(abs.(solution_parameters[2:25]))/24 # mean edge length for visualization mech_kwargs = Dict( :timestep => 1/148, :gravity => -9.81 * distance_scaling, :color => RGBA(0,1,0,0.5), :friction_coefficient => solution_parameters[1], :edge_length => edge_length) mech = get_mechanism(model; mech_kwargs...) set_data!(mech.contacts, parameter_stack(solution_parameters)) # set actual learned contact points initialize!(mech, model; position, velocity, orientation, angular_velocity) storage = simulate!(mech, length(storage)/148; record=true, opts) visualize(mech, storage; vis, animation, name=:learned) render(vis)
Dojo
https://github.com/dojo-sim/Dojo.jl.git
[ "MIT" ]
0.7.5
104b6a1a358da9b1348ab7cd66ad685ecaca13d4
code
3311
# ### Setup # PKG_SETUP using Dojo using Plots using DojoEnvironments using JLD2 using LinearAlgebra # ### Include methods include("utilities.jl") # ### Parameters model = :sphere N = 10 timesteps = 10:12 # at which trajectory will be used for learning mech_kwargs = Dict( :timestep => 0.02, :gravity => -9.81, :friction_coefficient => 0.2, :radius => 0.50) # ### Generate dataset mech = get_mechanism(model; mech_kwargs...) xlims = [[0,0,0], [1,1,0.2]] vlims = [-1*ones(3), 1*ones(3)] ωlims = [-5*ones(3), 5*ones(3)] storages = [] for i = 1:N position = xlims[1] + rand(3) .* (xlims[2] - xlims[1]) velocity = vlims[1] + rand(3) .* (vlims[2] - vlims[1]) angular_velocity = ωlims[1] + rand(3) .* (ωlims[2] - ωlims[1]) initialize!(mech, model; position, velocity, angular_velocity) storage = simulate!(mech, 2; record=true) push!(storages, storage) ## visualize(mech, storage) end # ### Save dataset jldsave(joinpath(@__DIR__, "data", "datasets", "synthetic_sphere.jld2"); storages) # ### Save and load dataset dataset = jldopen(joinpath(@__DIR__, "data", "datasets", "synthetic_sphere.jld2")) storages = dataset["storages"] JLD2.close(dataset) # ### Optimization Objective: Evaluation & Gradient function parameter_stack(θ) ## [friction_coefficient; contact_radius; contact_origin] return [θ; zeros(3)] end function f0(θ; storages=storages, timesteps=timesteps) mechanism = get_mechanism(model; mech_kwargs...) f = 0.0 for i in eachindex(storages) fi = loss(mechanism, parameter_stack(θ), storages[i], timesteps; derivatives=false) f += fi end return f end function fgH0(θ; storages=storages, timesteps=timesteps) mechanism = get_mechanism(model; mech_kwargs...) f = 0.0 nd = sum(Dojo.data_dim.(mechanism.contacts)) g = zeros(nd) H = zeros(nd,nd) for i in eachindex(storages) fi, gi, Hi = loss(mech, parameter_stack(θ), storages[i], timesteps; derivatives=true) f += fi g += gi H += Hi end return f, g[1:2], H[1:2,1:2] # We only care about the first two parameters end # ### Cost Landscape X = 0:0.02:0.4 Y = 0.47:0.005:0.53 surface(X, Y, (X, Y) -> f0([X, Y]; storages)) # ### Initial guess guess = [0.0, 1.0] guess_error = f0(guess) # ### Solve lower_bound = [0, 0.05] upper_bound = [0.8, 1] solution = quasi_newton_solve(f0, fgH0, guess; iter=20, gtol=1e-8, ftol=1e-6, lower_bound, upper_bound, reg=1e-9) # ### Result solution_parameters = solution[1] solution_error = f0(solution_parameters) # ### Visualize vis = Visualizer() storage = storages[1] mech_kwargs = Dict( :timestep => 0.02, :gravity => -9.81, :color => RGBA(1,0,0,0.5), :friction_coefficient => 0.2, :radius => 0.50) mech = get_mechanism(model; mech_kwargs...) vis, animation = visualize(mech, storage; vis, return_animation=true, name=:original) position = storage.x[1][1]-[0;0;solution_parameters[2]] orientation = storage.q[1][1] velocity = storage.v[1][1] angular_velocity = storage.ω[1][1] mech_kwargs = Dict( :timestep => 0.02, :gravity => -9.81, :color => RGBA(0,1,0,0.5), :friction_coefficient => solution_parameters[1], :radius => solution_parameters[2]) mech = get_mechanism(model; mech_kwargs...) initialize!(mech, model; position, velocity, angular_velocity) storage = simulate!(mech, 2; record=true) visualize(mech, storage; vis, animation, name=:learned) render(vis)
Dojo
https://github.com/dojo-sim/Dojo.jl.git
[ "MIT" ]
0.7.5
104b6a1a358da9b1348ab7cd66ad685ecaca13d4
code
2806
# Taken from Nocedal and Wright, Algorithm 6.1 function quasi_newton_solve(f, fgH, x0; ftol=-Inf, gtol=1e-4, iter=100, α0=1.0, lower_bound=-Inf, upper_bound=Inf, reg=1e-3, reg_min=1e-9, reg_max=1e6) x = copy(x0) X = [copy(x0)] ls_failure = false for k = 1:iter fe, ge, He = fgH(x) He += reg * I if ls_failure reg = clamp(reg * 2, reg_min, reg_max) else reg = clamp(reg / 1.5, reg_min, reg_max) end ((norm(ge, Inf) < gtol) || (fe < ftol)) && break p = - He \ ge α, ls_failure = clamped_linesearch(f, x, p, fe; α0=α0, lower_bound, upper_bound) x = clamp.(x + α*p, lower_bound, upper_bound) push!(X, copy(x)) println("k:", k, " f:", Dojo.scn(fe, digits=3)) end return x, X end function clamped_linesearch(f, x, p, fprev; α0=1.0, iter=4, lower_bound=-Inf, upper_bound=Inf) α = α0 ls_failure = false for k = 1:iter xc = clamp.(x + α*p, lower_bound, upper_bound) (f(xc) <= fprev) && break α /= 3 (k == iter) && (α = 0.001 / norm(p,Inf); ls_failure = true) end return α, ls_failure end function get_contact_gradients!(mechanism::Mechanism, z::AbstractVector, θ::AbstractVector; opts=SolverOptions()) z_next = contact_step!(mechanism, z, θ; opts) jacobian_state, jacobian_contact = Dojo.get_contact_gradients(mechanism) return z_next, jacobian_state, jacobian_contact end function contact_step!(mechanism::Mechanism, z::AbstractVector, θ::AbstractVector; opts=SolverOptions()) set_data!(mechanism.contacts, θ) nu = input_dimension(mechanism) step!(mechanism, z, zeros(nu), opts=opts) end function loss(mechanism::Mechanism, θ::AbstractVector{T}, storage::Storage{T,N}, timesteps::UnitRange{Int}; opts=SolverOptions(), derivatives::Bool=false) where {T,N} nz = maximal_dimension(mechanism, attjac=true) nd = length(θ) Q = Diagonal([ones(3); 1e-1ones(3); ones(4); 1e-1ones(3)]) cost = 0.0 gradient = zeros(nd) hessian = zeros(nd,nd) d_contact = zeros(nz,nd) z_prediction = get_maximal_state(storage, timesteps[1]) for i in timesteps z_true = get_maximal_state(storage, i+1) if derivatives z_prediction, ∂_state, ∂_contact = get_contact_gradients!(mechanism, z_prediction, θ; opts) attjac = attitude_jacobian(z_prediction, 1) d_contact = ∂_contact + ∂_state * d_contact gradient += (attjac * d_contact)' * Q * (z_prediction - z_true) hessian += (attjac * d_contact)' * Q * (attjac * d_contact) else z_prediction = contact_step!(mechanism, z_prediction, θ; opts) end cost += 0.5 * (z_prediction - z_true)'* Q *(z_prediction - z_true) end if derivatives return cost, gradient, hessian else return cost end end
Dojo
https://github.com/dojo-sim/Dojo.jl.git
[ "MIT" ]
0.7.5
104b6a1a358da9b1348ab7cd66ad685ecaca13d4
code
816
using Dojo using DojoEnvironments using JLD2 function convert_csv_to_jld2() timestep = 1/148 mechanism = get_mechanism(:block; timestep) storages = [] for k = 0:569 csv_path = joinpath(@__DIR__, "tosses_csv", "$(k).csv") toss = split.(readlines(csv_path), ",") toss = [parse.(Float64, t) for t in toss] N = length(toss) z = Vector{Vector{Float64}}() for i=1:N-1 z_i = toss[1+(i-1)] z_ip1 = toss[1+i] x1 = z_i[1:3] q1 = z_i[4:7] x2 = z_ip1[1:3] q2 = z_ip1[4:7] v15 = (x2 - x1) / timestep ω15 = Dojo.angular_velocity(Quaternion(q1...), Quaternion(q2...), timestep) push!(z, [x2; v15; q2; ω15]) end push!(storages, generate_storage(mechanism, z)) end jldsave(joinpath(@__DIR__, "..", "datasets", "real_block.jld2"); storages) return end convert_csv_to_jld2()
Dojo
https://github.com/dojo-sim/Dojo.jl.git
[ "MIT" ]
0.7.5
104b6a1a358da9b1348ab7cd66ad685ecaca13d4
code
7432
module Dojo # constants global const REG = 1.0e-10::Float64 global const X_AXIS = [1;0;0] global const Y_AXIS = [0;1;0] global const Z_AXIS = [0;0;1] #TODO: remove using FiniteDiff using LinearAlgebra using Random using StaticArrays using SparseArrays using StaticArrays: SUnitRange using Quaternions using Statistics using Colors using Colors: RGBA, RGB using FFMPEG using LightXML using MeshCat import MeshCat: render using Meshing using GeometryBasics using GraphBasedSystems using CoordinateTransformations using DocStringExtensions using PrecompileTools # Utilities include(joinpath("utilities", "methods.jl")) include(joinpath("utilities", "custom_static.jl")) include(joinpath("utilities", "normalize.jl")) # Orientation include(joinpath("orientation", "quaternion.jl")) include(joinpath("orientation", "mrp.jl")) include(joinpath("orientation", "axis_angle.jl")) include(joinpath("orientation", "mapping.jl")) include(joinpath("orientation", "rotate.jl")) # Graph objects include(joinpath("mechanism", "node.jl")) include(joinpath("mechanism", "edge.jl")) include(joinpath("mechanism", "id.jl")) # Bodies include(joinpath("bodies", "shapes.jl")) include(joinpath("bodies", "state.jl")) include(joinpath("bodies", "constructor.jl")) include(joinpath("bodies", "origin.jl")) include(joinpath("bodies", "set.jl")) # Mechanism include(joinpath("joints", "constraints.jl")) include(joinpath("contacts", "constructor.jl")) include(joinpath("contacts", "contact.jl")) include(joinpath("mechanism", "constructor.jl")) include(joinpath("mechanism", "gravity.jl")) include(joinpath("mechanism", "state.jl")) include(joinpath("mechanism", "system.jl")) include(joinpath("mechanism", "methods.jl")) include(joinpath("mechanism", "set.jl")) include(joinpath("mechanism", "get.jl")) include(joinpath("mechanism", "urdf.jl")) include(joinpath("mechanism", "traversal.jl")) # Simulation include(joinpath("simulation", "step.jl")) include(joinpath("simulation", "storage.jl")) include(joinpath("simulation", "simulate.jl")) # Mechanics include(joinpath("mechanics", "momentum.jl")) include(joinpath("mechanics", "energy.jl")) # Joints include(joinpath("joints", "orthogonal.jl")) include(joinpath("joints", "joint.jl")) include(joinpath("joints", "translational", "constructor.jl")) include(joinpath("joints", "translational", "impulses.jl")) include(joinpath("joints", "translational", "input.jl")) include(joinpath("joints", "translational", "springs.jl")) include(joinpath("joints", "translational", "dampers.jl")) include(joinpath("joints", "translational", "minimal.jl")) include(joinpath("joints", "rotational", "constructor.jl")) include(joinpath("joints", "rotational", "impulses.jl")) include(joinpath("joints", "rotational", "input.jl")) include(joinpath("joints", "rotational", "springs.jl")) include(joinpath("joints", "rotational", "dampers.jl")) include(joinpath("joints", "rotational", "minimal.jl")) include(joinpath("joints", "limits.jl")) include(joinpath("joints", "prototypes.jl")) include(joinpath("joints", "minimal.jl")) include(joinpath("joints", "impulses.jl")) # Contacts include(joinpath("contacts", "constraints.jl")) include(joinpath("contacts", "cone.jl")) include(joinpath("contacts", "collisions", "collision.jl")) include(joinpath("contacts", "collisions", "point_to_segment.jl")) include(joinpath("contacts", "collisions", "point_to_box_v2.jl")) include(joinpath("contacts", "collisions", "sphere_halfspace.jl")) include(joinpath("contacts", "collisions", "sphere_sphere.jl")) include(joinpath("contacts", "collisions", "sphere_capsule.jl")) include(joinpath("contacts", "collisions", "sphere_box.jl")) include(joinpath("contacts", "collisions", "string.jl")) include(joinpath("contacts", "velocity.jl")) include(joinpath("contacts", "impact.jl")) include(joinpath("contacts", "linear.jl")) include(joinpath("contacts", "nonlinear.jl")) include(joinpath("contacts", "utilities.jl")) # Solver include(joinpath("solver", "linear_system.jl")) include(joinpath("solver", "centering.jl")) include(joinpath("solver", "complementarity.jl")) include(joinpath("solver", "violations.jl")) include(joinpath("solver", "options.jl")) include(joinpath("solver", "initialization.jl")) include(joinpath("solver", "correction.jl")) include(joinpath("solver", "mehrotra.jl")) include(joinpath("solver", "line_search.jl")) # Integrator include(joinpath("integrators", "integrator.jl")) include(joinpath("integrators", "constraint.jl")) # Visualizer include(joinpath("visuals", "visualizer.jl")) include(joinpath("visuals", "set.jl")) include(joinpath("visuals", "convert.jl")) include(joinpath("visuals", "colors.jl")) # Data include(joinpath("mechanism", "data.jl")) # Gradients include(joinpath("gradients", "contact.jl")) include(joinpath("gradients", "finite_difference.jl")) include(joinpath("gradients", "state.jl")) include(joinpath("gradients", "data.jl")) include(joinpath("gradients", "utilities.jl")) # Precompilation include("precompile.jl") # Bodies export Body, Origin, Box, Capsule, Cylinder, Sphere, Pyramid, Mesh, CombinedShapes, get_body, get_node, set_external_force!, add_external_force! # Joints export Rotational, Translational, JointConstraint, Floating, Fixed, Prismatic, Planar, FixedOrientation, Revolute, Cylindrical, PlanarAxis, FreeRevolute, Orbital, PrismaticOrbital, PlanarOrbital, FreeOrbital, Spherical, CylindricalFree, PlanarFree, get_joint, nullspace_mask # Contacts export ContactConstraint, ImpactContact, LinearContact, NonlinearContact, get_contact, get_sdf, contact_location, damper_impulses, contact_constraint # Collision export SphereHalfSpaceCollision, SphereSphereCollision, SphereCapsuleCollision, SphereBoxCollision, StringCollision, distance, contact_point, contact_normal, contact_tangent # Inputs export set_input!, add_input!, input_dimension # Mechanism export Mechanism, initialize!, set_floating_base, zero_coordinates!, zero_velocities! # Maximal export set_maximal_state!, set_maximal_configurations!, set_maximal_velocities!, get_maximal_state, get_maximal_gradients!, maximal_dimension # Minimal export set_minimal_state!, set_minimal_coordinates!, set_minimal_velocities!, get_minimal_state, get_minimal_gradients!, minimal_coordinates, minimal_velocities, minimal_dimension # Maximal <-> Minimal export maximal_to_minimal, minimal_to_maximal # Simulation export simulate!, step!, generate_storage # Orientation export Quaternion, attitude_jacobian # Data export get_data, set_data!, get_solution # Gradients export maximal_to_minimal_jacobian, minimal_to_maximal_jacobian # Mechanics export kinetic_energy, potential_energy, mechanical_energy, momentum # Solver export mehrotra!, SolverOptions # Linear System "Ax = b" export full_matrix # Visuals export Visualizer, visualize, render, set_background!, set_floor!, set_surface!, set_light!, set_camera!, RGBA, orange, cyan, magenta # Static export szeros, sones, srand # Utilities export Storage, X_AXIS, Y_AXIS, Z_AXIS end
Dojo
https://github.com/dojo-sim/Dojo.jl.git
[ "MIT" ]
0.7.5
104b6a1a358da9b1348ab7cd66ad685ecaca13d4
code
1825
@setup_workload begin @compile_workload begin # One full simulation origin = Origin() body = Cylinder(0.1, 1, 1) joint = JointConstraint(Revolute(origin, body, [1;0;0]; child_vertex=[0;0;1/2])) mechanism = Mechanism(origin, [body], [joint]) controller!(mechanism, k) = set_input!(joint, [0]) set_minimal_coordinates!(mechanism, joint, [pi/4]) set_minimal_velocities!(mechanism, joint, [0.2]) storage = simulate!(mechanism, mechanism.timestep * 2, controller!, record=true) # Common shapes mesh = Mesh("", 1, rand(3,3)) box = Box(1,1,1,1.0) capsule = Capsule(1,1,1.0) cylinder = Cylinder(1, 1, 1.0) sphere = Sphere(1,1.0) pyramid = Pyramid(1,1,1.0) # Common joints joint_axis = [1;0;0] JointConstraint(Floating(origin, mesh)) JointConstraint(Fixed(origin, box)) JointConstraint(Prismatic(origin, capsule, joint_axis)) JointConstraint(Planar(origin, cylinder, joint_axis)) JointConstraint(FixedOrientation(origin, sphere)) JointConstraint(Revolute(origin, pyramid, joint_axis)) JointConstraint(Cylindrical(origin, mesh, joint_axis)) JointConstraint(PlanarAxis(origin, box, joint_axis)) JointConstraint(FreeRevolute(origin, capsule, joint_axis)) JointConstraint(Orbital(origin, cylinder, joint_axis)) JointConstraint(PrismaticOrbital(origin, sphere, joint_axis)) JointConstraint(PlanarOrbital(origin, pyramid, joint_axis)) JointConstraint(FreeOrbital(origin, mesh, joint_axis)) JointConstraint(Spherical(origin, box)) JointConstraint(CylindricalFree(origin, capsule, joint_axis)) JointConstraint(PlanarFree(origin, cylinder, joint_axis)) end end
Dojo
https://github.com/dojo-sim/Dojo.jl.git
[ "MIT" ]
0.7.5
104b6a1a358da9b1348ab7cd66ad685ecaca13d4
code
1403
""" Body{T} <: Node{T} A rigid body object id: unique identifying number name: unique identifying name mass: inertial property (kilograms) inertia: inertia matrix (kilograms meter^2) state: State; representation of the system's: position, linear velocity, orientation, and angular velocity shape: Shape; geometry information about the Body """ mutable struct Body{T} <: Node{T} id::Int64 name::Symbol mass::T inertia::SMatrix{3,3,T,9} state::State{T} shape::Shape{T} function Body(mass::Real, inertia::AbstractMatrix; name::Symbol=Symbol("body_" * randstring(4)), shape::Shape=EmptyShape()) T = promote_type(eltype.((mass, inertia))...) new{T}(getGlobalID(), name, mass, inertia, State{T}(), shape) end end function Base.show(io::IO, mime::MIME{Symbol("text/plain")}, body::Body) summary(io, body) println(io, "") println(io, " id: "*string(body.id)) println(io, " name: "*string(body.name)) println(io, " mass: "*string(body.mass)) println(io, " inertia: "*string(body.inertia)) end Base.length(::Body) = 6 # warn that body has poor inertial properties function check_body(body::Body) if norm(body.mass) == 0 || norm(body.inertia) == 0 @info "Bad inertial properties detected" end #TODO check condition number and potentially adapt end
Dojo
https://github.com/dojo-sim/Dojo.jl.git