licenses
sequencelengths
1
3
version
stringclasses
677 values
tree_hash
stringlengths
40
40
path
stringclasses
1 value
type
stringclasses
2 values
size
stringlengths
2
8
text
stringlengths
25
67.1M
package_name
stringlengths
2
41
repo
stringlengths
33
86
[ "MIT" ]
0.7.5
104b6a1a358da9b1348ab7cd66ad685ecaca13d4
code
997
""" Origin{T} <: Node{T} Global reference frame id: always 0 name: always :origin state: State; defaults to zero values shape: Shape; defaults to EmptyShape """ mutable struct Origin{T} <: Node{T} id::Int64 name::Symbol state::State{T} shape::Shape{T} function Origin{T}(; name::Symbol=:origin, state=State{T}(), shape::Shape=EmptyShape()) where T new{T}(getGlobalID(), name, state, shape) end function Origin(; name::Symbol=:origin, state=State{Float64}(), shape::Shape=EmptyShape()) Origin{Float64}(; name, state, shape) end function Origin(body::Body{T}) where T new{T}(body.id, body.name, body.state, body.shape) end end function Base.show(io::IO, mime::MIME{Symbol("text/plain")}, origin::Origin) summary(io, origin) println(io, "") println(io, " id: "*string(origin.id)) println(io, " name: "*string(origin.name)) end
Dojo
https://github.com/dojo-sim/Dojo.jl.git
[ "MIT" ]
0.7.5
104b6a1a358da9b1348ab7cd66ad685ecaca13d4
code
3746
function set_velocity_solution!(body::Body) state = body.state state.vsol[1] = state.v15 state.vsol[2] = state.v15 state.ωsol[1] = state.ω15 state.ωsol[2] = state.ω15 end function set_previous_configuration!(body::Body{T}, timestep::T) where {T} x2, v15, q2, ω15 = initial_configuration_velocity(body.state) body.state.x1 = next_position(x2, -v15, timestep) body.state.q1 = next_orientation(q2, -ω15, timestep) end function initialize_state!(body::Body{T}, timestep) where T set_previous_configuration!(body, timestep) state = body.state state.JF2 = szeros(T,3) state.Jτ2 = szeros(T,3) end function update_state!(body::Body{T}, timestep) where T state = body.state state.x1 = state.x2 state.q1 = state.q2 state.v15 = state.vsol[2] state.ω15 = state.ωsol[2] state.x2 = next_position(state.x2, state.vsol[2], timestep) state.q2 = next_orientation(state.q2, state.ωsol[2], timestep) state.JF2 = szeros(T,3) state.Jτ2 = szeros(T,3) end # maximal function set_maximal_configurations!(body::Body; x::AbstractVector=SA[0.0; 0.0; 0.0], q::Quaternion=one(Quaternion)) body.state.x2 = x body.state.q2 = q return body.state.x2, body.state.q2 end function set_maximal_velocities!(body::Body; v::AbstractVector=SA[0.0; 0.0; 0.0], ω::AbstractVector=SA[0.0; 0.0; 0.0]) body.state.v15 = v body.state.ω15 = ω return body.state.v15, body.state.ω15 end function set_maximal_configurations!(pbody::Node, cbody::Body; parent_vertex::AbstractVector=SA[0.0; 0.0; 0.0], child_vertex::AbstractVector=SA[0.0; 0.0; 0.0], Δx::AbstractVector=SA[0.0; 0.0; 0.0], Δq::Quaternion=one(Quaternion)) q1 = pbody.state.q2 q2 = pbody.state.q2 * Δq x2 = pbody.state.x2 + vector_rotate(parent_vertex + Δx, q1) - vector_rotate(child_vertex, q2) return set_maximal_configurations!(cbody; x=x2, q=q2) end function set_maximal_velocities!(pbody::Node, cbody::Body; parent_vertex::AbstractVector=SA[0.0; 0.0; 0.0], child_vertex::AbstractVector=SA[0.0; 0.0; 0.0], Δv::AbstractVector=SA[0.0; 0.0; 0.0], Δω::AbstractVector=SA[0.0; 0.0; 0.0]) x1 = pbody.state.x2 v1 = pbody.state.v15 q1 = pbody.state.q2 ω1 = pbody.state.ω15 x2 = cbody.state.x2 q2 = cbody.state.q2 ω2 = vector_rotate(Δω + ω1, inv(q2) * q1) ω1w = vector_rotate(ω1, q1) ω2w = vector_rotate(ω2, q2) Δvw = vector_rotate(Δv, q1) cApB_w = (x2 + vector_rotate(child_vertex, q2)) - x1 pBcB_w = - vector_rotate(child_vertex, q2) v2 = copy(v1) v2 += skew(ω1w) * cApB_w v2 += skew(ω2w) * pBcB_w v2 += Δvw return set_maximal_velocities!(cbody; v = v2, ω = ω2) end """ set_external_force!(body; force, torque, vertex) applies an external force on a body body: Body force: force in body frame torque: torque in local frame vertex: point where force is applied in local frame """ function set_external_force!(body::Body; force=zeros(3), torque=zeros(3), vertex=zeros(3)) body.state.Fext = vector_rotate(force, body.state.q2) body.state.τext = torque + cross(vertex, force) return end """ add_external_force!(body; force, torque, vertex) adds an additional external force on a body body: Body force: force in body frame torque: torque in local frame """ function add_external_force!(body::Body; force=zeros(3), torque=zeros(3), vertex=zeros(3)) body.state.Fext += vector_rotate(force, body.state.q2) body.state.τext += torque + cross(vertex, force) return end function clear_external_force!(body::Body{T}) where T body.state.Fext = szeros(T,3) body.state.τext = szeros(T,3) return end
Dojo
https://github.com/dojo-sim/Dojo.jl.git
[ "MIT" ]
0.7.5
104b6a1a358da9b1348ab7cd66ad685ecaca13d4
code
13458
""" Shape{T} Abstract type; Subtypes contain geometric and visual information for a Body. """ abstract type Shape{T} end """ EmptyShape{T} <: Shape{T} Contains no geometric or visual information """ struct EmptyShape{T} <: Shape{T} EmptyShape() = new{Float64}() end function Base.show(io::IO, mime::MIME{Symbol("text/plain")}, shape::EmptyShape) summary(io, shape) println(io, "") end #TODO: change to MeshShape """ Mesh{T} <: Shape{T} Contains geometric and visual information based on .obj file """ mutable struct Mesh{T} <: Shape{T} position_offset::SVector{3,T} orientation_offset::Quaternion{T} path::String scale::SVector{3,T} color::RGBA function Mesh(path::String; position_offset::AbstractVector=szeros(3), orientation_offset::Quaternion=one(Quaternion), scale::AbstractVector=sones(3), color=RGBA(0.75, 0.75, 0.75)) T = promote_type(quateltype.((position_offset, orientation_offset))...) new{T}(position_offset, orientation_offset, path, scale, color) end function Mesh(path::String, m::Real, J::AbstractMatrix; position_offset::AbstractVector=szeros(3), orientation_offset::Quaternion=one(Quaternion), scale::AbstractVector=sones(3), name::Symbol=Symbol("body_" * randstring(4)), color=RGBA(0.75, 0.75, 0.75)) T = promote_type(quateltype.((m, J, position_offset, orientation_offset))...) return Body(m, J; name=name, shape=new{T}(position_offset, orientation_offset, path, scale, color)) end end """ Box{T} <: Shape{T} Cuboid geometry position_offset: geometry origin offset from center of mass orientation_offset: orientation offset from body frame xyz: dimensions (meters) scale: scaling color: RGBA """ mutable struct Box{T} <: Shape{T} position_offset::SVector{3,T} orientation_offset::Quaternion{T} xyz::SVector{3,T} scale::SVector{3,T} color::RGBA function Box(x::Real, y::Real, z::Real; position_offset::AbstractVector=szeros(3), orientation_offset::Quaternion=one(Quaternion), scale::AbstractVector=sones(3), color=RGBA(0.75, 0.75, 0.75)) T = promote_type(quateltype.((x, y, z, position_offset, orientation_offset))...) new{T}(position_offset, orientation_offset, [x; y; z], scale, color) end function Box(x::Real, y::Real, z::Real, m::Real; position_offset::AbstractVector=szeros(3), orientation_offset::Quaternion=one(Quaternion), scale::AbstractVector=sones(3), name::Symbol=Symbol("body_" * randstring(4)), color=RGBA(0.75, 0.75, 0.75)) T = promote_type(quateltype.((x, y, z, m, position_offset, orientation_offset))...) J = 1 / 12 * m * diagm([y^2 + z^2; x^2 + z^2; x^2 + y^2]) return Body(m, J; name=name, shape=new{T}(position_offset, orientation_offset, [x;y;z], scale, color)) end end """ Cylinder{T} <: Shape{T} cylinder geometry position_offset: geometry origin offset from center of mass orientation_offset: orientation offset from body frame rh: radius and height dimensions (meters) scale: scaling color: RGBA """ mutable struct Cylinder{T} <: Shape{T} position_offset::SVector{3,T} orientation_offset::Quaternion{T} rh::SVector{2,T} scale::SVector{3,T} color::RGBA # Cylinder points in the z direction function Cylinder(r::Real, h::Real; position_offset::AbstractVector=szeros(3), orientation_offset::Quaternion=one(Quaternion), scale::AbstractVector=sones(3), color=RGBA(0.75, 0.75, 0.75)) T = promote_type(quateltype.((r, h, position_offset, orientation_offset))...) new{T}(position_offset, orientation_offset, [r;h], scale, color) end function Cylinder(r::Real, h::Real, m::Real; position_offset::AbstractVector=szeros(3), orientation_offset::Quaternion=one(Quaternion), scale::AbstractVector=sones(3), name::Symbol=Symbol("body_" * randstring(4)), color=RGBA(0.75, 0.75, 0.75)) T = promote_type(quateltype.((r, h, m, position_offset, orientation_offset))...) J = 1 / 2 * m * diagm([r^2 + 1 / 6 * h^2; r^2 + 1 / 6 * h^2; r^2]) return Body(m, J; name=name, shape=new{T}(position_offset, orientation_offset, [r;h], scale, color)) end end """ Capsule geometry created as a CombinedShapes position_offset: geometry origin offset from center of mass orientation_offset: orientation offset from body frame rh: radius and height dimensions (meters) scale: scaling color: RGBA """ function Capsule(r::Real, h::Real; position_offset::AbstractVector=szeros(3), orientation_offset::Quaternion=one(Quaternion), scale::AbstractVector=sones(3), color=RGBA(0.75, 0.75, 0.75)) T = promote_type(quateltype.((r, h, position_offset, orientation_offset))...) cylinder = Cylinder(r, h) cap1 = Sphere(r; position_offset=[0;0;h/2]) cap2 = Sphere(r; position_offset=[0;0;-h/2]) CombinedShapes([cylinder;cap1;cap2]; position_offset, orientation_offset, scale, color) end function Capsule(r::Real, h::Real, m::Real; position_offset::AbstractVector=szeros(3), orientation_offset::Quaternion=one(Quaternion), scale::AbstractVector=sones(3), name::Symbol=Symbol("body_" * randstring(4)), color=RGBA(0.75, 0.75, 0.75)) T = promote_type(quateltype.((r, h, m, position_offset, orientation_offset))...) volume_cylinder = π * h * r^2.0 volume_hemisphere = π * 4.0 / 3.0 * r^3.0 / 2.0 volume_total = volume_cylinder + 2 * volume_hemisphere mass_cylinder = m * volume_cylinder / volume_total mass_hemisphere = m * volume_hemisphere / volume_total Ixx_cylinder = mass_cylinder * (1.0 / 12.0 * h^2.0 + 1.0 / 4.0 * r^2.0) Izz_cylinder = mass_cylinder * 1.0 / 2.0 * r^2.0 Ixx_hemisphere = 83.0 / 320 * mass_hemisphere * r^2 Izz_hemisphere = mass_hemisphere * 2.0 / 5.0 * r^2 / 2.0 d = (3.0 / 8.0 * r + 0.5 * h) Ixx = Ixx_cylinder + 2.0 * (Ixx_hemisphere + mass_hemisphere * d^2.0) Izz = Izz_cylinder + Izz_hemisphere * 2.0 J = diagm([Ixx; Ixx; Izz]) return Body(m, J; name=name, shape=Capsule(r, h; position_offset, orientation_offset, scale, color)) end """ CombinedShapes{T} <: Shape{T} composite geometry position_offset: geometry origin offset from center of mass orientation_offset: orientation offset from body frame shape: list of Shape objects xyz: dimensions (meters) """ mutable struct CombinedShapes{T} <: Shape{T} position_offset::SVector{3,T} orientation_offset::Quaternion{T} shapes::Vector{<:Shape{T}} scale::SVector{3,T} color::RGBA function CombinedShapes(shapes::Vector{<:Shape{T}}; position_offset::AbstractVector=szeros(3), orientation_offset::Quaternion=one(Quaternion), scale::AbstractVector=sones(3), color=RGBA(0.75, 0.75, 0.75)) where T new{T}(position_offset, orientation_offset, shapes, scale, color) end function CombinedShapes(shapes::Vector{<:Shape{T}}, m::T, J; position_offset::AbstractVector=szeros(3), orientation_offset::Quaternion=one(Quaternion), name::Symbol=Symbol("body_" * randstring(4)), scale::AbstractVector=sones(3), color=RGBA(0.75, 0.75, 0.75)) where T Body(m, J; name=name, shape=new{T}(position_offset, orientation_offset, shapes, scale, color)) end end """ Sphere{T} <: Shape{T} sphere geometry position_offset: geometry origin offset from center of mass orientation_offset: orientation offset from body frame r: radius (meters) scale: scaling color: RGBA """ mutable struct Sphere{T} <: Shape{T} position_offset::SVector{3,T} orientation_offset::Quaternion{T} r::T scale::SVector{3,T} color::RGBA function Sphere(r::Real; position_offset::AbstractVector=szeros(3), orientation_offset::Quaternion=one(Quaternion), scale::AbstractVector=sones(3), color=RGBA(0.75, 0.75, 0.75)) T = promote_type(quateltype.((r, position_offset, orientation_offset))...) new{T}(position_offset, orientation_offset, r, scale, color) end function Sphere(r::Real, m::Real; position_offset::AbstractVector=szeros(3), orientation_offset::Quaternion=one(Quaternion), scale::AbstractVector=sones(3), name::Symbol=Symbol("body_" * randstring(4)), color=RGBA(0.75, 0.75, 0.75)) T = promote_type(quateltype.((r, m, position_offset, orientation_offset))...) J = 2 / 5 * m * diagm([r^2 for i = 1:3]) return Body(m, J; name=name, shape=new{T}(position_offset, orientation_offset, r, scale, color)) end end """ Pyramid{T} <: Shape{T} pyramid geometry position_offset: geometry origin offset from center of mass orientation_offset: orientation offset from body frame wh: width and height dimensions (meters) scale: scaling color: RGBA """ mutable struct Pyramid{T} <: Shape{T} position_offset::SVector{3,T} orientation_offset::Quaternion{T} wh::SVector{2,T} scale::SVector{3,T} color::RGBA # Pyramid points in the z direction, Center of mass at 1/4 h function Pyramid(w::Real, h::Real; position_offset::AbstractVector=szeros(3), orientation_offset::Quaternion=one(Quaternion), scale::AbstractVector=sones(3), color=RGBA(0.75, 0.75, 0.75)) T = promote_type(quateltype.((w, h, position_offset, orientation_offset))...) new{T}(position_offset, orientation_offset, [w;h], scale, color) end function Pyramid(w::Real, h::Real, m::Real; position_offset::AbstractVector=szeros(3), orientation_offset::Quaternion=one(Quaternion), scale::AbstractVector=sones(3), name::Symbol=Symbol("body_" * randstring(4)), color=RGBA(0.75, 0.75, 0.75)) T = promote_type(quateltype.((w, h, m, position_offset, orientation_offset))...) J = 1/80 * m * diagm([4*w^2+3*h^2;4*w^2+3*h^2;8*w^2]) return Body(m, J; name=name, shape=new{T}(position_offset, orientation_offset, [w;h], scale, color)) end end """ FrameShape{T} <: Shape{T} coordinate frame geometry position_offset: geometry origin offset from center of mass orientation_offset: orientation offset from body frame scale: scaling color: not used """ mutable struct FrameShape{T} <: Shape{T} position_offset::SVector{3,T} orientation_offset::Quaternion{T} scale::SVector{3,T} color::RGBA function FrameShape(; position_offset::AbstractVector=szeros(3), orientation_offset::Quaternion=one(Quaternion), scale::AbstractVector=sones(3), color=RGBA(0.75, 0.75, 0.75)) T = promote_type(quateltype.((position_offset, orientation_offset))...) new{T}(position_offset, orientation_offset, scale, color) end function FrameShape(m::Real; position_offset::AbstractVector=szeros(3), orientation_offset::Quaternion=one(Quaternion), scale::AbstractVector=sones(3), name::Symbol=Symbol("body_" * randstring(4)), color=RGBA(0.75, 0.75, 0.75)) T = promote_type(quateltype.((m, position_offset, orientation_offset))...) J = m * sI(3) return Body(m, J; name=name, shape=new{T}(position_offset, orientation_offset, scale, color)) end end function Base.show(io::IO, mime::MIME{Symbol("text/plain")}, shape::Shape) summary(io, shape) println(io,"") println(io," position_offset: "*string(shape.position_offset)) println(io," orientation_offset: "*string(shape.orientation_offset)) println(io," scale: "*string(shape.scale)) println(io," color: "*string(shape.color)) end function convert_shape(box::Box) x, y, z = Tuple(box.xyz) return GeometryBasics.HyperRectangle(Vec(-x / 2.0, -y / 2.0, -z / 2.0), Vec(x, y, z)) end function convert_shape(cylinder::Cylinder) r, h = Tuple(cylinder.rh) return GeometryBasics.Cylinder(Point(0.0, 0.0, -h / 2.0),Point(0.0, 0.0, h / 2.0), r) end function convert_shape(sphere::Sphere) r = sphere.r return GeometryBasics.Sphere(Point(0.0, 0.0, 0.0), r) end function convert_shape(pyramid::Pyramid) w, h = Tuple(pyramid.wh) return GeometryBasics.Pyramid(Point(0.0, 0.0, -h / 4.0), h, w) end function convert_shape(frame::FrameShape) return MeshCat.Triad() end function convert_shape(mesh::Mesh) return MeshFileObject(mesh.path) end function convert_shape(::EmptyShape) return nothing end function convert_shape(combinedshapes::CombinedShapes) geom = [] for shape in combinedshapes.shapes push!(geom, convert_shape(shape)) end return geom end # color set_color!(shape::EmptyShape, color) = nothing function set_color!(shape::Shape, color) shape.color = color end function set_color!(shapes::CombinedShapes, color) for i in eachindex(shapes) shapes.shape[i].color = color end end
Dojo
https://github.com/dojo-sim/Dojo.jl.git
[ "MIT" ]
0.7.5
104b6a1a358da9b1348ab7cd66ad685ecaca13d4
code
2907
""" State{T} state information in maximal coordinates for Body at time steps: 1, 2, 3. information at time step 3 is recovered using configurations at time step 2 and velocities at time step 2.5. x1: position at previous time step q1: orientation (Quaternion) at previous time step v15: linear velocity at time step 1.5 (midpoint) ω15: angular velocity at time step 1.5 (midpoint) x2: position at current time step q2: orientation (Quaternion) at current time step JF2: linear impulse (force * time step) applied at current time step Jτ2: angular impulse (torque * timestep) applied at current time step Fext: external force applied at current time step τext: external torque applied at current time step vsol: linear velocity at time step 2.5 (midpoint); contains current value (index 1) and candidate value (index 2) ωsol: angular velocity at time step 2.5 (midpoint); contains current value (index 1) and candidate value (index 2) d: implicit dynamics evaluator (zero vector indicates physics are satisfied) D: Jacobian of implicit dynamics """ mutable struct State{T} # previous state x1::SVector{3,T} q1::Quaternion{T} v15::SVector{3,T} ω15::SVector{3,T} # current state x2::SVector{3,T} q2::Quaternion{T} JF2::SVector{3,T} Jτ2::SVector{3,T} Fext::SVector{3,T} τext::SVector{3,T} # solution estimate [before step; after step] vsol::Vector{SVector{3,T}} ωsol::Vector{SVector{3,T}} # dynamics and Jacobian evaluation d::SVector{6,T} D::SMatrix{6,6,T,36} function State{T}() where T x1 = szeros(T, 3) q1 = one(Quaternion{T}) v15 = szeros(T, 3) ω15 = szeros(T, 3) x2 = szeros(T, 3) q2 = one(Quaternion{T}) JF2 = szeros(T, 3) Jτ2 = szeros(T, 3) Fext = szeros(T, 3) τext = szeros(T, 3) vsol = [szeros(T, 3) for i=1:2] ωsol = [szeros(T, 3) for i=1:2] d = szeros(T, 6) D = szeros(T, 6, 6) new{T}(x1, q1, v15, ω15, x2, q2, JF2, Jτ2, Fext, τext, vsol, ωsol, d, D) end end function Base.show(io::IO, mime::MIME{Symbol("text/plain")}, state::State{T}) where {T} summary(io, state) println(io, "") println(io, "x1: "*string(state.x1)) println(io, "q1: "*string(state.q1)) println(io, "v15: "*string(state.v15)) println(io, "ω15: "*string(state.ω15)) println(io, "x2: "*string(state.x2)) println(io, "q2: "*string(state.q2)) println(io, "JF2: "*string(state.JF2)) println(io, "Jτ2: "*string(state.Jτ2)) println(io, "Fext: "*string(state.Fext)) println(io, "τext: "*string(state.τext)) println(io, "vsol: "*string(state.vsol)) println(io, "ωsol: "*string(state.ωsol)) println(io, "d: "*string(state.d)) println(io, "D: "*string(state.D)) end
Dojo
https://github.com/dojo-sim/Dojo.jl.git
[ "MIT" ]
0.7.5
104b6a1a358da9b1348ab7cd66ad685ecaca13d4
code
489
# second-order cone product; see: https://web.stanford.edu/~boyd/papers/ecos.html function cone_product(u::AbstractVector{T}, v::AbstractVector{T}) where {T} [u' * v; u[1] * v[2:end] + v[1] * u[2:end]] end function cone_product(u::SVector{N,T}, v::SVector{N,T}) where {N,T} vcat(u' * v, u[1] * v[SUnitRange(2,end)] + v[1] * u[SUnitRange(2,end)]) end function cone_product_jacobian(u::SVector{3,T}) where T SMatrix{3,3,T,9}(u[1], u[2], u[3], u[2], u[1], 0, u[3], 0, u[1]) end
Dojo
https://github.com/dojo-sim/Dojo.jl.git
[ "MIT" ]
0.7.5
104b6a1a358da9b1348ab7cd66ad685ecaca13d4
code
3682
# constraint Jacobian function constraint_jacobian_configuration(mechanism, contact::ContactConstraint, body::Body) relative = (body.id == contact.parent_id ? :parent : :child) timestep = mechanism.timestep pbody = get_body(mechanism, contact.parent_id) cbody = get_body(mechanism, contact.child_id) return constraint_jacobian_configuration(relative, contact.model, next_configuration_velocity(pbody.state, timestep)..., next_configuration_velocity(cbody.state, timestep)..., mechanism.timestep) end function constraint_jacobian_velocity(mechanism, contact::ContactConstraint, body::Body) relative = (body.id == contact.parent_id ? :parent : :child) timestep = mechanism.timestep pbody = get_body(mechanism, contact.parent_id) cbody = get_body(mechanism, contact.child_id) return constraint_jacobian_velocity(relative, contact.model, next_configuration_velocity(pbody.state, timestep)..., next_configuration_velocity(cbody.state, timestep)..., mechanism.timestep) end # impulses function impulses!(mechanism, body::Body, contact::ContactConstraint) body.state.d -= impulse_map(mechanism, contact, body) * contact.impulses[2] return end function impulse_map(mechanism, contact::ContactConstraint, body::Body) relative = (body.id == contact.parent_id ? :parent : :child) pbody = get_body(mechanism, contact.parent_id) cbody = get_body(mechanism, contact.child_id) return impulse_map(relative, contact.model, pbody, cbody, mechanism.timestep) end function impulse_map_jacobian_configuration(mechanism, body::Body{T}, contact::ContactConstraint{T}) where T relative = (body.id == contact.parent_id ? :parent : :child) return impulse_map_jacobian(relative, relative, contact.model, get_body(mechanism, contact.parent_id), get_body(mechanism, contact.child_id), contact.impulses[2], mechanism.timestep) end function impulses_jacobian_velocity!(mechanism, body::Body, contact::ContactConstraint) timestep = mechanism.timestep body.state.D -= impulse_map_jacobian_configuration(mechanism, body, contact) * integrator_jacobian_velocity(body, timestep) return end # off-diagonal terms for linear system function off_diagonal_jacobians(mechanism, body::Body, contact::ContactConstraint{T,N,Nc,Cs,N½}) where {T,N,Nc,Cs,N½} Z = szeros(T,N½,6) return [Z' -impulse_map(mechanism, contact, body)], [Z; constraint_jacobian_velocity(mechanism, contact, body)] end # off-diagonal terms for linear system function off_diagonal_jacobians(mechanism, contact::ContactConstraint{T,N,Nc,Cs,N½}, body::Body) where {T,N,Nc,Cs,N½} Z = szeros(T,N½,6) return [Z; constraint_jacobian_velocity(mechanism, contact, body)], [Z' -impulse_map(mechanism, contact, body)] end # linear system entries function set_matrix_vector_entries!(mechanism::Mechanism, matrix_entry::Entry, vector_entry::Entry, contact::ContactConstraint) matrix_entry.value = constraint_jacobian(contact) vector_entry.value = vcat(-complementarityμ(mechanism, contact), -constraint(mechanism, contact)) return end # reset variables using cone-specific neutral vector function reset!(contact::ContactConstraint; scale=1.0) contact.impulses[1] = scale * neutral_vector(contact.model) contact.impulses[2] = scale * neutral_vector(contact.model) contact.impulses_dual[1] = scale * neutral_vector(contact.model) contact.impulses_dual[2] = scale * neutral_vector(contact.model) return end # dimension of cone cone_degree(contact::ContactConstraint) = sum(cone_degree(contact.model))
Dojo
https://github.com/dojo-sim/Dojo.jl.git
[ "MIT" ]
0.7.5
104b6a1a358da9b1348ab7cd66ad685ecaca13d4
code
5004
""" ContactConstraint{T} <: Constraint{T} constraint containing information for contact node. id: unique identifying number name: unique identifying name model: type of contact model: ImpactContact, LinearContact, NonlinearContact parent_id: identifying number of Body experiencing contact child_id: always 0 impulses: contact impulses applied to Body impulses_dual: dual contact impulses, used by solver to enforce correct contact behaviors """ mutable struct ContactConstraint{T,N,Nc,Cs,N½} <: Constraint{T,N} # ID id::Int64 name::Symbol # contact model model::Cs # neighbor IDs parent_id::Int child_id::Int # variables impulses::Vector{SVector{N½,T}} impulses_dual::Vector{SVector{N½,T}} function ContactConstraint(data; name::Symbol=Symbol("contact_" * randstring(4))) model, parent_id, child_id = data T = typeof(model).parameters[1] N = length(model) N½ = Int64(N/2) impulses = [neutral_vector(model) for i = 1:2] impulses_dual = [neutral_vector(model) for i = 1:2] new{T,N,1,typeof(model),N½}(getGlobalID(), name, model, parent_id, child_id, impulses, impulses_dual) end end # function Base.show(io::IO, mime::MIME{Symbol("text/plain")}, constraint::ContactConstraint) # summary(io, constraint) # println(io, "") # println(io, "id: "*string(constraint.id)) # println(io, "name: "*string(constraint.name)) # println(io, "model: "*string(constraint.model)) # println(io, "parent_id: "*string(constraint.parent_id)) # println(io, "child_id: "*string(constraint.child_id)) # println(io, "impulses: "*string(constraint.impulses)) # println(io, "impulses_dual: "*string(constraint.impulses_dual)) # end """ contact_constraint(bodies::Vector{Body}) generate ContactConstraints for each Body in list normals: surface normal for each contact point friction_coefficients: value of coefficient of friction for each contact point (optional for ImpactContact) contact_origins: the offset with respect to the center of Body for each contact point (optional) contact_radius: radius for each contact (optional) contact_type: :nonlinear, :linear, :impact """ function contact_constraint(bodies::Vector{Body{T}}, normals::AbstractVector{<:AbstractVector}; friction_coefficients::AbstractVector=ones(T,length(normals)), contact_origins::AbstractVector=[szeros(T, 3) for i=1:length(normals)], contact_radii::AbstractVector=[0.0 for i=1:length(normals)], names::Vector{Symbol}=[Symbol("contact_" * randstring(4)) for i = 1:length(normals)], contact_type::Symbol=:nonlinear) where T n = length(normals) @assert n == length(bodies) == length(normals) == length(friction_coefficients) == length(contact_origins) == length(contact_radii) contacts = Vector{ContactConstraint}() for i = 1:n contact = contact_constraint(bodies[i], normals[i], friction_coefficient=friction_coefficients[i], contact_origin=contact_origins[i], contact_radius=contact_radii[i], name=names[i], contact_type=contact_type) push!(contacts, contact) end contacts = [contacts...] # vector typing return contacts end function contact_constraint(body::Body{T}, normals::AbstractVector{<:AbstractVector}; friction_coefficients::AbstractVector=ones(T,length(normals)), contact_origins::AbstractVector=[szeros(T, 3) for i=1:length(normals)], contact_radii::AbstractVector=[0.0 for i=1:length(normals)], names::Vector{Symbol}=[Symbol("contact_" * randstring(4)) for i = 1:length(normals)], contact_type::Symbol=:nonlinear) where T n = length(normals) @assert n == length(normals) == length(friction_coefficients) == length(contact_origins) == length(contact_radii) return contact_constraint(fill(body, n), normals; friction_coefficients, contact_origins, contact_radii, names, contact_type) end function contact_constraint(body::Body{T}, normal::AbstractVector; friction_coefficient=T(1), contact_origin::AbstractVector=szeros(T, 3), contact_radius=T(0), name::Symbol=Symbol("contact_" * randstring(4)), contact_type::Symbol=:nonlinear) where T if contact_type == :nonlinear model = NonlinearContact(body, normal, friction_coefficient; contact_origin, contact_radius) elseif contact_type == :linear model = LinearContact(body, normal, friction_coefficient; contact_origin, contact_radius) elseif contact_type == :impact model = ImpactContact(body, normal; contact_origin, contact_radius) else @warn "unknown contact_type" end contacts = ContactConstraint((model, body.id, 0); name) return contacts end
Dojo
https://github.com/dojo-sim/Dojo.jl.git
[ "MIT" ]
0.7.5
104b6a1a358da9b1348ab7cd66ad685ecaca13d4
code
6633
""" Contact{T,N} Abstract type containing contact information associated with Body objects. """ abstract type Contact{T,N} end # constraint Jacobians function constraint_jacobian_configuration(relative::Symbol, model::Contact, xp::AbstractVector, vp::AbstractVector, qp::Quaternion, ωp::AbstractVector, xc::AbstractVector, vc::AbstractVector, qc::Quaternion, ωc::AbstractVector, timestep) # distance Jacobian ∂d∂x = ∂distance∂x(relative, model.collision, xp, qp, xc, qc) ∂d∂q = ∂distance∂q(relative, model.collision, xp, qp, xc, qc) # contact point velocity Jacobian ∂vt∂x = ∂relative_tangential_velocity∂x(relative, model, xp, qp, vp, ωp, xc, qc, vc, ωc) ∂vt∂q = ∂relative_tangential_velocity∂q(relative, model, xp, qp, vp, ωp, xc, qc, vc, ωc) X = [ ∂d∂x; szeros(1, 3); model.friction_parameterization * ∂vt∂x; ] Q = [ ∂d∂q; szeros(1, 4); model.friction_parameterization * ∂vt∂q ] return [X Q] end function constraint_jacobian_velocity(relative::Symbol, model::Contact, xp::AbstractVector, vp::AbstractVector, qp::Quaternion, ωp::AbstractVector, xc::AbstractVector, vc::AbstractVector, qc::Quaternion, ωc::AbstractVector, timestep) # distance Jacobian ∂d∂x = ∂distance∂x(relative, model.collision, xp, qp, xc, qc) ∂d∂q = ∂distance∂q(relative, model.collision, xp, qp, xc, qc) # relative tangential velocity Jacobian ∂vt∂q = ∂relative_tangential_velocity∂q(relative, model, xp, qp, vp, ωp, xc, qc, vc, ωc) ∂vt∂v = ∂relative_tangential_velocity∂v(relative, model, xp, qp, vp, ωp, xc, qc, vc, ωc) ∂vt∂ω = ∂relative_tangential_velocity∂ω(relative, model, xp, qp, vp, ωp, xc, qc, vc, ωc) # recover current orientation if relative == :parent x = next_position(xp, -vp, timestep) ∂x∂v = linear_integrator_jacobian_velocity(x, vp, timestep) q = next_orientation(qp, -ωp, timestep) ∂q∂ω = rotational_integrator_jacobian_velocity(q, ωp, timestep); elseif relative == :child x = next_position(xc, -vc, timestep) ∂x∂v = linear_integrator_jacobian_velocity(x, vc, timestep) q = next_orientation(qc, -ωc, timestep) ∂q∂ω = rotational_integrator_jacobian_velocity(q, ωc, timestep); end V = [ ∂d∂x * ∂x∂v; szeros(1, 3); model.friction_parameterization * ∂vt∂v ] Ω = [ ∂d∂q * ∂q∂ω; szeros(1, 3); model.friction_parameterization * (∂vt∂ω + ∂vt∂q * ∂q∂ω); ] return [V Ω] end function impulse_map(relative::Symbol, model::Contact, pbody::Node, cbody::Node, timestep) # configurations xp, qp = next_configuration(pbody.state, timestep) xc, qc = next_configuration(cbody.state, timestep) # mapping X = force_mapping(relative, model, xp, qp, xc, qc) c = contact_point(relative, model.collision, xp, qp, xc, qc) if relative == :parent r = c - xp Q = rotation_matrix(inv(qp)) * skew(r) * X elseif relative == :child r = c - xc Q = rotation_matrix(inv(qc)) * skew(r) * X end return [ X; Q; ] end function impulse_map_jacobian(relative::Symbol, jacobian::Symbol, model::Contact, pbody::Node, cbody::Node, λ, timestep) # configurations xp, qp = next_configuration(pbody.state, timestep) xc, qc = next_configuration(cbody.state, timestep) # mapping X = force_mapping(relative, model, xp, qp, xc, qc) # force Jacobian Xx = ∂force_mapping_jvp∂x(relative, jacobian, model, xp, qp, xc, qc, λ) Xq = ∂force_mapping_jvp∂q(relative, jacobian, model, xp, qp, xc, qc, λ) # contact point c = contact_point(relative, model.collision, xp, qp, xc, qc) # torque Jacobian if relative == :parent r = c - xp q = qp elseif relative == :child r = c - xc q = qc end Qx = rotation_matrix(inv(q)) * skew(r) * Xx Qx -= rotation_matrix(inv(q)) * skew(X * λ) * (∂contact_point∂x(relative, jacobian, model.collision, xp, qp, xc, qc) - (relative == jacobian ? 1.0 : 0.0) * sI(3)) Qq = rotation_matrix(inv(q)) * skew(r) * Xq Qq -= rotation_matrix(inv(q)) * skew(X * λ) * ∂contact_point∂q(relative, jacobian, model.collision, xp, qp, xc, qc) Qq += ∂rotation_matrix∂q(inv(q), skew(r) * X * λ) * Tmat() return [ Xx Xq; Qx Qq; ] end # force mapping function force_mapping(relative::Symbol, model::Contact, xp::AbstractVector, qp::Quaternion, xc::AbstractVector, qc::Quaternion) X = [ contact_normal(model.collision, xp, qp, xc, qc)' szeros(3, 1) contact_tangent(model.collision, xp, qp, xc, qc)' * model.friction_parameterization' ] if relative == :parent return X elseif relative == :child return -1.0 * X end end # mapping * λ function ∂force_mapping_jvp∂x(relative::Symbol, jacobian::Symbol, model::Contact, xp::AbstractVector, qp::Quaternion, xc::AbstractVector, qc::Quaternion, λ::AbstractVector) # normal X = ∂contact_normal_transpose∂x(jacobian, model.collision, xp, qp, xc, qc) * λ[1] # tangent λ_tangent = model.friction_parameterization' * λ[SUnitRange(3, length(λ))] X += ∂contact_tangent_one_transpose∂x(jacobian, model.collision, xp, qp, xc, qc) * λ_tangent[1] X += ∂contact_tangent_two_transpose∂x(jacobian, model.collision, xp, qp, xc, qc) * λ_tangent[2] if relative == :parent return X elseif relative == :child return -1.0 * X end end # mapping * λ function ∂force_mapping_jvp∂q(relative::Symbol, jacobian::Symbol, model::Contact, xp::AbstractVector, qp::Quaternion, xc::AbstractVector, qc::Quaternion, λ::AbstractVector) # normal X = ∂contact_normal_transpose∂q(jacobian, model.collision, xp, qp, xc, qc) * λ[1] # tangent λ_tangent = model.friction_parameterization' * λ[SUnitRange(3, length(λ))] X += ∂contact_tangent_one_transpose∂q(jacobian, model.collision, xp, qp, xc, qc) * λ_tangent[1] X += ∂contact_tangent_two_transpose∂q(jacobian, model.collision, xp, qp, xc, qc) * λ_tangent[2] if relative == :parent return X elseif relative == :child return -1.0 * X end end # utilities Base.length(model::Contact{T,N}) where {T,N} = N neutral_vector(model::Contact{T,N}) where {T,N} = sones(T, Int(N / 2)) cone_degree(model::Contact{T,N}) where {T,N} = Int(N / 2)
Dojo
https://github.com/dojo-sim/Dojo.jl.git
[ "MIT" ]
0.7.5
104b6a1a358da9b1348ab7cd66ad685ecaca13d4
code
4535
""" ImpactContact{T,N} <: Contact{T,N} contact object for impact (i.e., no friction) collision: Collision """ mutable struct ImpactContact{T,N} <: Contact{T,N} friction_parameterization::SMatrix{0,2,T,0} collision::Collision{T,0,3,0} end # function Base.show(io::IO, mime::MIME{Symbol("text/plain")}, contact::ImpactContact) # summary(io, contact) # println(io, "") # println(io, "friction_parameterization: "*string(contact.friction_parameterization)) # println(io, "collision: "*string(contact.collision)) # end function ImpactContact(body::Body{T}, normal::AbstractVector; contact_origin=szeros(T, 3), contact_radius=0.0) where T # contact directions V1, V2, V3 = orthogonal_columns(normal) # A = [V1 V2 V3] Ainv = inv(A) contact_normal = Ainv[3, SA[1; 2; 3]]' # friction parametrization parameterization = szeros(T, 0, 2) # collision collision = SphereHalfSpaceCollision(szeros(T, 0, 3), contact_normal, SVector{3}(contact_origin), contact_radius) ImpactContact{Float64,2}(parameterization, collision) end function constraint(mechanism, contact::ContactConstraint{T,N,Nc,Cs}) where {T,N,Nc,Cs<:ImpactContact{T,N}} # contact model model = contact.model # parent pbody = get_body(mechanism, contact.parent_id) xp, qp = next_configuration(pbody.state, mechanism.timestep) # child cbody = get_body(mechanism, contact.child_id) xc, qc = next_configuration(cbody.state, mechanism.timestep) # constraint SVector{1,T}(distance(model.collision, xp, qp, xc, qc) - contact.impulses_dual[2][1]) end function constraint_jacobian(contact::ContactConstraint{T,N,Nc,Cs,N½}) where {T,N,Nc,Cs<:ImpactContact{T,N},N½} γ = contact.impulses[2] + REG * neutral_vector(contact.model) s = contact.impulses_dual[2] + REG * neutral_vector(contact.model) ∇s = hcat(γ, -Diagonal(sones(N½))) ∇γ = hcat(s, -Diagonal(szeros(N½))) return [∇s ∇γ] end function constraint_jacobian_configuration(relative::Symbol, model::ImpactContact, xp::AbstractVector, vp::AbstractVector, qp::Quaternion, ωp::AbstractVector, xc::AbstractVector, vc::AbstractVector, qc::Quaternion, ωc::AbstractVector, timestep) X = ∂distance∂x(relative, model.collision, xp, qp, xc, qc) Q = ∂distance∂q(relative, model.collision, xp, qp, xc, qc) return [X Q] end function constraint_jacobian_velocity(relative::Symbol, model::ImpactContact, xp::AbstractVector, vp::AbstractVector, qp::Quaternion, ωp::AbstractVector, xc::AbstractVector, vc::AbstractVector, qc::Quaternion, ωc::AbstractVector, timestep) # recover current orientation if relative == :parent x = next_position(xp, -vp, timestep) ∂x∂v = linear_integrator_jacobian_velocity(x, vp, timestep) q = next_orientation(qp, -ωp, timestep) ∂q∂ω = rotational_integrator_jacobian_velocity(q, ωp, timestep) elseif relative == :child x = next_position(xc, -vc, timestep) ∂x∂v = linear_integrator_jacobian_velocity(x, vc, timestep) q = next_orientation(qc, -ωc, timestep) ∂q∂ω = rotational_integrator_jacobian_velocity(q, ωc, timestep) end # Jacobian V = ∂distance∂x(relative, model.collision, xp, qp, xc, qc) * ∂x∂v Ω = ∂distance∂q(relative, model.collision, xp, qp, xc, qc) * ∂q∂ω return [V Ω] end function force_mapping(relative::Symbol, model::ImpactContact, xp::AbstractVector, qp::Quaternion, xc::AbstractVector, qc::Quaternion) X = contact_normal(model.collision, xp, qp, xc, qc)' if relative == :parent return X elseif relative == :child return -1.0 * X end end function ∂force_mapping_jvp∂x(relative::Symbol, jacobian::Symbol, model::ImpactContact, xp::AbstractVector, qp::Quaternion, xc::AbstractVector, qc::Quaternion, λ::AbstractVector) X = ∂contact_normal_transpose∂x(jacobian, model.collision, xp, qp, xc, qc) * λ[1] if relative == :parent return X elseif relative == :child return -1.0 * X end end function ∂force_mapping_jvp∂q(relative::Symbol, jacobian::Symbol, model::ImpactContact, xp::AbstractVector, qp::Quaternion, xc::AbstractVector, qc::Quaternion, λ::AbstractVector) X = ∂contact_normal_transpose∂q(jacobian, model.collision, xp, qp, xc, qc) * λ[1] if relative == :parent return X elseif relative == :child return -1.0 * X end end
Dojo
https://github.com/dojo-sim/Dojo.jl.git
[ "MIT" ]
0.7.5
104b6a1a358da9b1348ab7cd66ad685ecaca13d4
code
3421
""" LinearContact{T,N} <: Contact{T,N} contact object for impact and friction with a linearized friction cone friction_coefficient: value of friction coefficient collision: Collision """ mutable struct LinearContact{T,N} <: Contact{T,N} friction_coefficient::T friction_parameterization::SMatrix{4,2,T,8} collision::Collision{T,2,3,6} end # function Base.show(io::IO, mime::MIME{Symbol("text/plain")}, contact::LinearContact) # summary(io, contact) # println(io, "") # println(io, "friction_coefficient: "*string(contact.friction_coefficient)) # println(io, "friction_parameterization: "*string(contact.friction_parameterization)) # println(io, "collision: "*string(contact.collision)) # end function LinearContact(body::Body{T}, normal::AbstractVector, friction_coefficient; contact_origin=szeros(T, 3), contact_radius=0.0) where T # contact directions V1, V2, V3 = orthogonal_columns(normal) A = [V1 V2 V3] Ainv = inv(A) contact_normal = Ainv[3, SA[1; 2; 3]]' contact_tangent = Ainv[SA[1; 2], SA[1; 2; 3]] # friction parameterization parameterization = SA{T}[ 0.0 1.0 0.0 -1.0 1.0 0.0 -1.0 0.0 ] # collision collision = SphereHalfSpaceCollision(contact_tangent, contact_normal, SVector{3}(contact_origin), contact_radius) LinearContact{Float64,12}(friction_coefficient, parameterization, collision) end function constraint_jacobian(contact::ContactConstraint{T,N,Nc,Cs,N½}) where {T,N,Nc,Cs<:LinearContact{T,N},N½} friction_coefficient = contact.model.friction_coefficient γ = contact.impulses[2] + REG * neutral_vector(contact.model) s = contact.impulses_dual[2] + REG * neutral_vector(contact.model) ∇s1 = Diagonal(γ) # 6x6 ∇s2 = Diagonal(-sones(T, 6)) ∇s = vcat(∇s1, ∇s2) # 12x6 ∇γ1 = Diagonal(s) # 6x6 ∇γ2 = @SMatrix[0.0 0.0 0.0 0.0 0.0 0.0; friction_coefficient 0.0 -1.0 -1.0 -1.0 -1.0; 0.0 1.0 0.0 0.0 0.0 0.0; 0.0 1.0 0.0 0.0 0.0 0.0; 0.0 1.0 0.0 0.0 0.0 0.0; 0.0 1.0 0.0 0.0 0.0 0.0;] ∇γ = vcat(∇γ1, ∇γ2) # 12x6 return [∇s ∇γ] end function constraint(mechanism, contact::ContactConstraint{T,N,Nc,Cs,N½}) where {T,N,Nc,Cs<:LinearContact{T,N},N½} # contact model model = contact.model # parent pbody = get_body(mechanism, contact.parent_id) xp, vp, qp, ωp = next_configuration_velocity(pbody.state, mechanism.timestep) # child cbody = get_body(mechanism, contact.child_id) xc, vc, qc, ωc = next_configuration_velocity(cbody.state, mechanism.timestep) # distance d = distance(model.collision, xp, qp, xc, qc) # relative tangential velocity vt = relative_tangential_velocity(model, xp, qp, vp, ωp, xc, qc, vc, ωc) # unpack contact variables γ = contact.impulses[2][1] sγ = contact.impulses_dual[2][1] ψ = contact.impulses[2][2] sψ = contact.impulses_dual[2][2] β = contact.impulses[2][SA[3;4;5;6]] sβ = contact.impulses_dual[2][SA[3;4;5;6]] SVector{N½,T}( d - sγ, model.friction_coefficient * γ - sum(β) - sψ, (model.friction_parameterization * vt + ψ * sones(4) - sβ)...) end
Dojo
https://github.com/dojo-sim/Dojo.jl.git
[ "MIT" ]
0.7.5
104b6a1a358da9b1348ab7cd66ad685ecaca13d4
code
3600
""" NonlinearContact{T,N} <: Contact{T,N} contact object for impact and friction with a nonlinear friction cone friction_coefficient: value of friction coefficient contact_tangent: mapping from world frame to surface tangent frame contact_normal: inverse/complement of contact_tangent contact_origin: position of contact on Body relative to center of mass contact radius: radius of contact """ mutable struct NonlinearContact{T,N} <: Contact{T,N} friction_coefficient::T friction_parameterization::SMatrix{2,2,T,4} collision::Collision{T,2,3,6} end # function Base.show(io::IO, mime::MIME{Symbol("text/plain")}, contact::NonlinearContact) # summary(io, contact) # println(io, "") # println(io, "friction_coefficient: "*string(contact.friction_coefficient)) # println(io, "friction_parameterization: "*string(contact.friction_parameterization)) # println(io, "collision: "*string(contact.collision)) # end function NonlinearContact(body::Body{T}, normal::AbstractVector, friction_coefficient; contact_origin=szeros(T, 3), contact_radius=0.0) where T # contact directions V1, V2, V3 = orthogonal_columns(normal) A = [V1 V2 V3] Ainv = inv(A) contact_normal = Ainv[3, SA[1; 2; 3]]' contact_tangent = Ainv[SA[1; 2], SA[1; 2; 3]] # friction parameterization parameterization = SA{T}[ 1.0 0.0 0.0 1.0 ] # collision collision = SphereHalfSpaceCollision(contact_tangent, contact_normal, SVector{3}(contact_origin), contact_radius) NonlinearContact{T,8}(friction_coefficient, parameterization, collision) end function constraint(mechanism, contact::ContactConstraint{T,N,Nc,Cs,N½}) where {T,N,Nc,Cs<:NonlinearContact{T,N},N½} # contact model model = contact.model # parent pbody = get_body(mechanism, contact.parent_id) xp, vp, qp, ωp = next_configuration_velocity(pbody.state, mechanism.timestep) # child cbody = get_body(mechanism, contact.child_id) xc, vc, qc, ωc = next_configuration_velocity(cbody.state, mechanism.timestep) # distance d = distance(model.collision, xp, qp, xc, qc) # relative tangential velocity vt = relative_tangential_velocity(model, xp, qp, vp, ωp, xc, qc, vc, ωc) # unpack contact variables γ = contact.impulses[2] s = contact.impulses_dual[2] SVector{N½,T}( d - s[1], model.friction_coefficient * γ[1] - γ[2], (model.friction_parameterization * vt - s[SA[3;4]])...) end function constraint_jacobian(contact::ContactConstraint{T,N,Nc,Cs,N½}) where {T,N,Nc,Cs<:NonlinearContact{T,N},N½} friction_coefficient = contact.model.friction_coefficient γ = contact.impulses[2] + REG * neutral_vector(contact.model) # TODO need to check this is legit s = contact.impulses_dual[2] + REG * neutral_vector(contact.model) # TODO need to check this is legit ∇s1 = [γ[SA[1]]; szeros(T,3)]' ∇s2 = [szeros(T,3,1) cone_product_jacobian(γ[SA[2,3,4]])] ∇s3 = Diagonal(SVector{4,T}(-1.0, 0.0, -1.0, -1.0)) ∇s = [∇s1; ∇s2; ∇s3] ∇γ1 = [s[SA[1]]; szeros(T, 3)]' ∇γ2 = [szeros(T,3,1) cone_product_jacobian(s[SA[2,3,4]])] ∇γ3 = SA[0.0 0.0 0.0 0.0; friction_coefficient -1.0 0.0 0.0; 0.0 0.0 0.0 0.0; 0.0 0.0 0.0 0.0;] ∇γ = [∇γ1; ∇γ2; ∇γ3] return [∇s ∇γ] end neutral_vector(::NonlinearContact{T,N}) where {T,N} = [sones(T, 2); szeros(T, Int(N/2) - 2)] cone_degree(::NonlinearContact) = 2
Dojo
https://github.com/dojo-sim/Dojo.jl.git
[ "MIT" ]
0.7.5
104b6a1a358da9b1348ab7cd66ad685ecaca13d4
code
2814
""" get_sdf(contact, x, q) returns the signed distance for a contact contact: ContactConstraint x: body position q: body orientation """ function get_sdf(contact::ContactConstraint{T,N,Nc,Cs}, x::AbstractVector{T}, q::Quaternion{T}) where {T,N,Nc,Cs<:Contact{T,N}} model = contact.model return model.collision.contact_normal * (x + vector_rotate(model.collision.contact_origin, q)) - model.collision.contact_radius end function get_sdf(mechanism::Mechanism{T,Nn,Ne,Nb,Ni}, storage::Storage{T,N}) where {T,Nn,Ne,Nb,Ni,N} d = [] for contact in mechanism.contacts ibody = get_body(mechanism, contact.parent_id).id - Ne push!(d, [get_sdf(contact, storage.x[ibody][i], storage.q[ibody][i]) for i = 1:N]) end return d end """ contact_location(contact, x, q) location of contact point in world coordinates contact: ContactConstraint x: body position q: body orientation """ function contact_location(contact::ContactConstraint{T,N,Nc,Cs}, x::AbstractVector{T}, q::Quaternion{T}) where {T,N,Nc,Cs<:Contact{T,N}} model = contact.model return x + vector_rotate(model.collision.contact_origin, q) - model.collision.contact_normal' * model.collision.contact_radius end function contact_location(contact::ContactConstraint{T,N,Nc,Cs}, body::Body) where {T,N,Nc,Cs<:Contact{T,N}} x = body.state.x2 q = body.state.q2 return contact_location(contact, x, q) end function contact_location(mechanism::Mechanism, contact::ContactConstraint) body = mechanism.bodies[findfirst(x -> x.id == contact.parent_id, mechanism.bodies)] return contact_location(contact, body) end function contact_location(mechanism::Mechanism) return [contact_location(mechanism, contact) for contact in mechanism.contacts] end #=""" string_location(contact, x, q) location of the attach point of the string in world coordinates collision: StringCollision x: body position q: body orientation """=# function string_location(collision::StringCollision, x::AbstractVector{T}, q::Quaternion{T}; relative::Symbol=:parent) where T origin = (relative == :parent) ? collision.origin_parent : collision.origin_child return x + vector_rotate(origin, q) end function string_location(collision::StringCollision, body::Body; relative::Symbol=:parent) x = body.state.x2 q = body.state.q2 return string_location(collision, x, q, relative=relative) end function string_location(mechanism::Mechanism, collision::StringCollision) pbody = get_body(mechanism, contact.parent_id) cbody = get_body(mechanism, contact.child_id) x_parent = string_location(collision, pbody, relative=:parent) x_child = string_location(collision, cbody, relative=:child) return x_parent, x_child end
Dojo
https://github.com/dojo-sim/Dojo.jl.git
[ "MIT" ]
0.7.5
104b6a1a358da9b1348ab7cd66ad685ecaca13d4
code
6225
# contact point velocity function contact_point_velocity(model::Contact, x, q, v, ω, c) return v + skew(vector_rotate(ω, q)) * (c - x) end function ∂contact_point_velocity∂x(model::Contact, x, q, v, ω, c) return -skew(vector_rotate(ω, q)) end function ∂contact_point_velocity∂q(model::Contact, x, q, v, ω, c) return -skew(c - x) * ∂vector_rotate∂q(ω, q) end function ∂contact_point_velocity∂v(model::Contact, x, q, v, ω, c) return 1.0 * sI(3) end function ∂contact_point_velocity∂ω(model::Contact, x, q, v, ω, c) return -skew(c - x) * rotation_matrix(q) end function ∂contact_point_velocity∂c(model::Contact, x, q, v, ω, c) return skew(vector_rotate(ω, q)) end # relative tangential velocity function relative_tangential_velocity(model::Contact, xp, qp, vp, ωp, xc, qc, vc, ωc) # contact points cp = contact_point(:parent, model.collision, xp, qp, xc, qc) cc = contact_point(:child, model.collision, xp, qp, xc, qc) # contact point velocities vp = contact_point_velocity(model, xp, qp, vp, ωp, cp) vc = contact_point_velocity(model, xc, qc, vc, ωc, cc) # tangent projection return contact_tangent(model.collision, xp, qp, xc, qc) * (vp - vc) end function ∂relative_tangential_velocity∂x(jacobian::Symbol, model::Contact, xp, qp, vp, ωp, xc, qc, vc, ωc) # contact points cp = contact_point(:parent, model.collision, xp, qp, xc, qc) cc = contact_point(:child, model.collision, xp, qp, xc, qc) # contact point velocities vp = contact_point_velocity(model, xp, qp, vp, ωp, cp) vc = contact_point_velocity(model, xc, qc, vc, ωc, cc) Δv = vp - vc # Jacobians if jacobian == :parent X = contact_tangent(model.collision, xp, qp, xc, qc) * ∂contact_point_velocity∂x(model, xp, qp, vp, ωp, cp) X += contact_tangent(model.collision, xp, qp, xc, qc) * ∂contact_point_velocity∂c(model, xp, qp, vp, ωp, cp) * ∂contact_point∂x(:parent, jacobian, model.collision, xp, qp, xc, qc) X -= contact_tangent(model.collision, xp, qp, xc, qc) * ∂contact_point_velocity∂c(model, xc, qc, vc, ωc, cc) * ∂contact_point∂x(:child, jacobian, model.collision, xp, qp, xc, qc) elseif jacobian == :child X = contact_tangent(model.collision, xp, qp, xc, qc) * ∂contact_point_velocity∂c(model, xp, qp, vp, ωp, cp) * ∂contact_point∂x(:parent, jacobian, model.collision, xp, qp, xc, qc) X -= contact_tangent(model.collision, xp, qp, xc, qc) * ∂contact_point_velocity∂x(model, xc, qc, vc, ωc, cc) X -= contact_tangent(model.collision, xp, qp, xc, qc) * ∂contact_point_velocity∂c(model, xc, qc, vc, ωc, cc) * ∂contact_point∂x(:child, jacobian, model.collision, xp, qp, xc, qc) end X += [ Δv' * ∂contact_tangent_one_transpose∂x(jacobian, model.collision, xp, qp, xc, qc); Δv' * ∂contact_tangent_two_transpose∂x(jacobian, model.collision, xp, qp, xc, qc); ] return X end function ∂relative_tangential_velocity∂q(jacobian::Symbol, model::Contact, xp, qp, vp, ωp, xc, qc, vc, ωc) # contact points cp = contact_point(:parent, model.collision, xp, qp, xc, qc) cc = contact_point(:child, model.collision, xp, qp, xc, qc) # contact point velocities vp = contact_point_velocity(model, xp, qp, vp, ωp, cp) vc = contact_point_velocity(model, xc, qc, vc, ωc, cc) Δv = vp - vc # Jacobians if jacobian == :parent X = contact_tangent(model.collision, xp, qp, xc, qc) * ∂contact_point_velocity∂q(model, xp, qp, vp, ωp, cp) X += contact_tangent(model.collision, xp, qp, xc, qc) * ∂contact_point_velocity∂c(model, xp, qp, vp, ωp, cp) * ∂contact_point∂q(:parent, jacobian, model.collision, xp, qp, xc, qc) X -= contact_tangent(model.collision, xp, qp, xc, qc) * ∂contact_point_velocity∂c(model, xc, qc, vc, ωc, cc) * ∂contact_point∂q(:child, jacobian, model.collision, xp, qp, xc, qc) elseif jacobian == :child X = contact_tangent(model.collision, xp, qp, xc, qc) * ∂contact_point_velocity∂c(model, xp, qp, vp, ωp, cp) * ∂contact_point∂q(:parent, jacobian, model.collision, xp, qp, xc, qc) X -= contact_tangent(model.collision, xp, qp, xc, qc) * ∂contact_point_velocity∂q(model, xc, qc, vc, ωc, cc) X -= contact_tangent(model.collision, xp, qp, xc, qc) * ∂contact_point_velocity∂c(model, xc, qc, vc, ωc, cc) * ∂contact_point∂q(:child, jacobian, model.collision, xp, qp, xc, qc) end # X += ∂contact_tangent_jvp∂q(jacobian, model.collision, xp, qp, xc, qc, Δv) X += [ Δv' * ∂contact_tangent_one_transpose∂q(jacobian, model.collision, xp, qp, xc, qc); Δv' * ∂contact_tangent_two_transpose∂q(jacobian, model.collision, xp, qp, xc, qc); ] return X end function ∂relative_tangential_velocity∂v(jacobian::Symbol, model::Contact, xp, qp, vp, ωp, xc, qc, vc, ωc) # contact points cp = contact_point(:parent, model.collision, xp, qp, xc, qc) cc = contact_point(:child, model.collision, xp, qp, xc, qc) # contact point velocities vp = contact_point_velocity(model, xp, qp, vp, ωp, cp) vc = contact_point_velocity(model, xc, qc, vc, ωc, cc) # Δv = vp - vc # Jacobians if jacobian == :parent X = contact_tangent(model.collision, xp, qp, xc, qc) * ∂contact_point_velocity∂v(model, xp, qp, vp, ωp, cp) elseif jacobian == :child X = -1.0 * contact_tangent(model.collision, xp, qp, xc, qc) * ∂contact_point_velocity∂v(model, xc, qc, vc, ωc, cc) end return X end function ∂relative_tangential_velocity∂ω(jacobian::Symbol, model::Contact, xp, qp, vp, ωp, xc, qc, vc, ωc) # contact points cp = contact_point(:parent, model.collision, xp, qp, xc, qc) cc = contact_point(:child, model.collision, xp, qp, xc, qc) # contact point velocities vp = contact_point_velocity(model, xp, qp, vp, ωp, cp) vc = contact_point_velocity(model, xc, qc, vc, ωc, cc) # Δv = vp - vc if jacobian == :parent X = contact_tangent(model.collision, xp, qp, xc, qc) * ∂contact_point_velocity∂ω(model, xp, qp, vp, ωp, cp) elseif jacobian == :child X = -1.0 * contact_tangent(model.collision, xp, qp, xc, qc) * ∂contact_point_velocity∂ω(model, xc, qc, vc, ωc, cc) end return X end
Dojo
https://github.com/dojo-sim/Dojo.jl.git
[ "MIT" ]
0.7.5
104b6a1a358da9b1348ab7cd66ad685ecaca13d4
code
4044
""" CapsuleCapsuleCollision collision between two capsules origin_parent: radius of contact for parent body origin_child: radius of contact for child body orientation_parent: radius of contact for parent body orientation_child: radius of contact for child body radius_parent: radius of contact for parent body radius_child: radius of contact for child body height_parent: radius of contact for parent body height_child: radius of contact for child body """ mutable struct CapsuleCapsuleCollision{T,O,I,OI} <: Collision{T,O,I,OI} origin_parent::SVector{I,T} origin_child::SVector{I,T} orientation_parent::Quaternion{T} orientation_child::Quaternion{T} radius_parent::T radius_child::T height_parent::T height_child::T end # function Base.show(io::IO, mime::MIME{Symbol("text/plain")}, collision::CapsuleCapsuleCollision) # summary(io, collision) # println(io, "") # println(io, "origin_parent: "*string(collision.origin_parent)) # println(io, "origin_child: "*string(collision.origin_child)) # println(io, "orientation_parent: "*string(collision.orientation_parent)) # println(io, "orientation_child: "*string(collision.orientation_child)) # println(io, "radius_parent: "*string(collision.radius_parent)) # println(io, "radius_child: "*string(collision.radius_child)) # println(io, "height_parent: "*string(collision.height_parent)) # println(io, "height_child: "*string(collision.height_child)) # end # distance function distance(collision::CapsuleCapsuleCollision, xp, qp, xc, qc) # contact points pp = contact_point(:parent, collision, xp, qp, xc, qc) pc = contact_point(:child, collision, xp, qp, xc, qc) # difference d = pp - pc return norm(pp - pc, 2) end function ∂distance∂x(gradient::Symbol, collision::CapsuleCapsuleCollision, xp, qp, xc, qc) # contact points pp = contact_point(:parent, collision, xp, qp, xc, qc) pc = contact_point(:child, collision, xp, qp, xc, qc) # difference d = pp - pc X = ∂norm∂x(d) * (∂contact_point∂x(:parent, jacobian, collision, xp, qp, xc, qc) - ∂contact_point∂x(:child, jacobian, collision, xp, qp, xc, qc)) return X end function ∂distance∂q(gradient::Symbol, collision::CapsuleCapsuleCollision, xp, qp, xc, qc) # contact points pp = contact_point(:parent, collision, xp, qp, xc, qc) pc = contact_point(:child, collision, xp, qp, xc, qc) # difference d = pp - pc X = ∂norm∂x(d) * (∂contact_point∂q(:parent, jacobian, collision, xp, qp, xc, qc) - ∂contact_point∂q(:child, jacobian, collision, xp, qp, xc, qc)) return X end # contact point in world frame function contact_point(relative::Symbol, collision::CapsuleCapsuleCollision, xp, qp, xc, qc) # call mehrotra if relative == :parent return collision.ip.z[SA[1;2;3]] elseif relative == :child return collision.ip.z[SA[4;5;6]] end end function ∂contact_point∂x(relative::Symbol, jacobian::Symbol, collision::CapsuleCapsuleCollision, xp, qp, xc, qc) # call mehrotra if relative == :parent if jacobian == :parent X = collision.ip.δz[] elseif jacobian == :child X = collision.ip.δz[] end elseif relative == :child if jacobian == :parent X = collision.ip.δz[] elseif jacobian == :child X = collision.ip.δz[] end end return X end function ∂contact_point∂q(relative::Symbol, jacobian::Symbol, collision::CapsuleCapsuleCollision, xp, qp, xc, qc) # call mehrotra if relative == :parent if jacobian == :parent X = collision.ip.δz[] elseif jacobian == :child X = collision.ip.δz[] end elseif relative == :child if jacobian == :parent X = collision.ip.δz[] elseif jacobian == :child X = collision.ip.δz[] end end return X end
Dojo
https://github.com/dojo-sim/Dojo.jl.git
[ "MIT" ]
0.7.5
104b6a1a358da9b1348ab7cd66ad685ecaca13d4
code
7288
""" Collision abstract type defining interaction between two bodies """ abstract type Collision{T,O,I,OI} end # contact point origin function contact_point_origin(x, q, k) x + vector_rotate(k, q) end ∂contact_point_origin∂x(x, q, k) = 1.0 * sI(3) ∂contact_point_origin∂q(x, q, k) = ∂vector_rotate∂q(k, q) ∂contact_point_origin∂k(x, q, k) = rotation_matrix(q) """ contact_normal(collision, xp, qp, xc, qc) the contact normal (from child to parent) between two contact points collision: Collision xp: parent body position qp: parent body orientation xc: child body position qc: child body orientation """ function contact_normal(collision::Collision, xp, qp, xc, qc) # contact points cop = contact_point(:parent, collision, xp, qp, xc, qc) coc = contact_point(:child, collision, xp, qp, xc, qc) # unnormalized direction dir = cop - coc # distance dis = distance(collision, xp, qp, xc, qc) # normalized direction if dis >= 0.0 return normalize(dir)' else return -1.0 * normalize(dir)' end end function ∂contact_normal_transpose∂x(jacobian::Symbol, collision::Collision, xp, qp, xc, qc) # contact origin points cop = contact_point(:parent, collision, xp, qp, xc, qc) coc = contact_point(:child, collision, xp, qp, xc, qc) # unnormalized direction dir = cop - coc # Jacobians X = ∂normalize∂x(dir) * (∂contact_point∂x(:parent, jacobian, collision, xp, qp, xc, qc) - ∂contact_point∂x(:child, jacobian, collision, xp, qp, xc, qc)) # distance dis = distance(collision, xp, qp, xc, qc) # normalized direction if dis >= 0.0 return X else return -1.0 * X end end function ∂contact_normal_transpose∂q(jacobian::Symbol, collision::Collision, xp, qp, xc, qc) # contact origin points cop = contact_point(:parent, collision, xp, qp, xc, qc) coc = contact_point(:child, collision, xp, qp, xc, qc) # unnormalized direction dir = cop - coc Q = ∂normalize∂x(dir) * (∂contact_point∂q(:parent, jacobian, collision, xp, qp, xc, qc) - ∂contact_point∂q(:child, jacobian, collision, xp, qp, xc, qc)) # Jacobians # if jacobian == :parent # FD = FiniteDiff.finite_difference_jacobian(q -> contact_normal(collision, xp, Quaternion(q...), xc, qc)', vector(qp)) # elseif jacobian == :child # FD = FiniteDiff.finite_difference_jacobian(q -> contact_normal(collision, xp, qp, xc, Quaternion(q...))', vector(qc)) # end # distance dis = distance(collision, xp, qp, xc, qc) # @assert norm((dis >= 0.0 ? 1.0 : -1.0) * Q - FD, Inf) < 1.0e-2 # normalized direction if dis >= 0.0 return Q else return -1.0 * Q end end function contact_tangent_one(collision::Collision, xp, qp, xc, qc) # normal n = contact_normal(collision, xp, qp, xc, qc) # tangents w = [1.0; 0.0; 0.0] t1 = skew(w) * n' # tangent if !(norm(t1) > 1.0e-6) # @warn "edge case!" w = [0.0; 1.0; 0.0] t1 = skew(w) * n' # tangent end return t1' end function contact_tangent_two(collision::Collision, xp, qp, xc, qc) # normal n = contact_normal(collision, xp, qp, xc, qc) # tangent one t1 = contact_tangent_one(collision, xp, qp, xc, qc) # tangent two t2 = skew(t1') * n' return t2' end """ contact_tangent(collision, xp, qp, xc, qc) contact tangents between two contact points collision: Collision xp: parent body position qp: parent body orientation xc: child body position qc: child body orientation """ function contact_tangent(collision::Collision, xp, qp, xc, qc) [ contact_tangent_one(collision, xp, qp, xc, qc); contact_tangent_two(collision, xp, qp, xc, qc); ] end function ∂contact_tangent_one_transpose∂x(jacobian::Symbol, collision::Collision, xp, qp, xc, qc) # normal n = contact_normal(collision, xp, qp, xc, qc) # tangents w = [1.0; 0.0; 0.0] # candidate t1 = skew(w) * n' # tangent if !(norm(t1) > 1.0e-5) w = [0.0; 1.0; 0.0] # candidate t1 = skew(w) * n' # tangent end ∂t1∂x = skew(w) * ∂contact_normal_transpose∂x(jacobian, collision, xp, qp, xc, qc) # if jacobian == :parent # FD = FiniteDiff.finite_difference_jacobian(x -> contact_tangent(collision, x, qp, xc, qc)[1, :]', xp) # elseif jacobian == :child # FD = FiniteDiff.finite_difference_jacobian(x -> contact_tangent(collision, xp, qp, x, qc)[1, :]', xc) # end # @assert norm(FD - ∂t1∂x, Inf) < 1.0e-2 return ∂t1∂x end function ∂contact_tangent_two_transpose∂x(jacobian::Symbol, collision::Collision, xp, qp, xc, qc) # normal n = contact_normal(collision, xp, qp, xc, qc) t1 = contact_tangent_one(collision, xp, qp, xc, qc) ∂t1∂x = ∂contact_tangent_one_transpose∂x(jacobian, collision, xp, qp, xc, qc) ∂t2∂x = skew(t1') * ∂contact_normal_transpose∂x(jacobian, collision, xp, qp, xc, qc) + ∂skew∂p(n') * ∂t1∂x # if jacobian == :parent # FD = FiniteDiff.finite_difference_jacobian(x -> contact_tangent(collision, x, qp, xc, qc)[2, :]', xp) # elseif jacobian == :child # FD = FiniteDiff.finite_difference_jacobian(x -> contact_tangent(collision, xp, qp, x, qc)[2, :]', xc) # end # @assert norm(FD - ∂t2∂x, Inf) < 1.0e-2 return ∂t2∂x end function ∂contact_tangent_one_transpose∂q(jacobian::Symbol, collision::Collision, xp, qp, xc, qc) # normal n = contact_normal(collision, xp, qp, xc, qc) # tangents w = [1.0; 0.0; 0.0] # candidate t1 = skew(w) * n' # tangent if !(norm(t1) > 1.0e-5) w = [0.0; 1.0; 0.0] # candidate t1 = skew(w) * n' # tangent end ∂t1∂q = skew(t1) * ∂contact_normal_transpose∂q(jacobian, collision, xp, qp, xc, qc) # if jacobian == :parent # FD = FiniteDiff.finite_difference_jacobian(q -> contact_tangent(collision, xp, Quaternion(q...), xc, qc)[1, :]', vector(qp)) # elseif jacobian == :child # FD = FiniteDiff.finite_difference_jacobian(q -> contact_tangent(collision, xp, qp, xc, Quaternion(q...))[1, :]', vector(qc)) # end # return FD # @assert norm(FD - ∂t1∂q, Inf) < 1.0e-2 return ∂t1∂q end function ∂contact_tangent_two_transpose∂q(jacobian::Symbol, collision::Collision, xp, qp, xc, qc) # normal n = contact_normal(collision, xp, qp, xc, qc) # tangents w = [1.0; 0.0; 0.0] # candidate t1 = skew(w) * n' # tangent if !(norm(t1) > 1.0e-5) w = [0.0; 1.0; 0.0] # candidate t1 = skew(w) * n' # tangent end t2 = skew(t1) * n' # tangent ∂t1∂q = skew(w) * ∂contact_normal_transpose∂q(jacobian, collision, xp, qp, xc, qc) ∂t2∂q = skew(t1) * ∂contact_normal_transpose∂q(jacobian, collision, xp, qp, xc, qc) + ∂skew∂p(n') * ∂t1∂q # if jacobian == :parent # FD = FiniteDiff.finite_difference_jacobian(q -> contact_tangent(collision, xp, Quaternion(q...), xc, qc)[2, :]', vector(qp)) # elseif jacobian == :child # FD = FiniteDiff.finite_difference_jacobian(q -> contact_tangent(collision, xp, qp, xc, Quaternion(q...))[2, :]', vector(qc)) # end # @assert norm(FD - ∂t2∂q, Inf) < 1.0e-2 return ∂t2∂q end
Dojo
https://github.com/dojo-sim/Dojo.jl.git
[ "MIT" ]
0.7.5
104b6a1a358da9b1348ab7cd66ad685ecaca13d4
code
4913
function contact_point_box(ps, xc, qc, kx, ky, kz) # corner kinematics cx = contact_point_origin(szeros(3), qc, kx) cy = contact_point_origin(szeros(3), qc, ky) cz = contact_point_origin(szeros(3), qc, kz) v1 = 2.0 * cx v2 = 2.0 * cy v3 = 2.0 * cz # origin is opposite corner origin = xc - cx - cy - cz @show tx = dot(ps - origin, v1) / dot(v1, v1) @show ty = dot(ps - origin, v2) / dot(v2, v2) @show tz = dot(ps - origin, v3) / dot(v3, v3) coc = origin if tx >= 1.0 coc += v1 elseif tx < 0.0 nothing else coc += tx * v1 end if ty >= 1.0 coc += v2 elseif ty < 0.0 nothing else coc += ty * v2 end if tz >= 1.0 coc += v3 elseif tz < 0.0 nothing else coc += tz * v3 end return coc end function ∂contact_point_box∂p(ps, xc, qc, kx, ky, kz) cx = contact_point_origin(szeros(3), qc, kx) cy = contact_point_origin(szeros(3), qc, ky) cz = contact_point_origin(szeros(3), qc, kz) v1 = 2.0 * cx v2 = 2.0 * cy v3 = 2.0 * cz origin = xc - cx - cy - cz tx = dot(ps - origin, v1) / dot(v1, v1) ty = dot(ps - origin, v2) / dot(v2, v2) tz = dot(ps - origin, v3) / dot(v3, v3) P = szeros(3, 3) if tx >= 1.0 # coc += v1 # X += elseif tx < 0.0 # nothing # X += else # coc += tx * v1 P += v1 * 1.0 / dot(v1, v1) * v1' end if ty >= 1.0 # coc += v2 elseif ty < 0.0 # nothing else # coc += ty * v2 P += v2 * 1.0 / dot(v2, v2) * v2' end if tz >= 1.0 # coc += v3 elseif tz < 0.0 # nothing else # coc += tz * v3 P += v3 * 1.0 / dot(v3, v3) * v3' end return P # FiniteDiff.finite_difference_jacobian(p -> contact_point_box(p, xc, qc, kx, ky, kz), ps) end function ∂contact_point_box∂x(ps, xc, qc, kx, ky, kz) cx = contact_point_origin(szeros(3), qc, kx) cy = contact_point_origin(szeros(3), qc, ky) cz = contact_point_origin(szeros(3), qc, kz) v1 = 2.0 * cx v2 = 2.0 * cy v3 = 2.0 * cz origin = xc - cx - cy - cz tx = dot(ps - origin, v1) / dot(v1, v1) ty = dot(ps - origin, v2) / dot(v2, v2) tz = dot(ps - origin, v3) / dot(v3, v3) X = 1.0 * sI(3) if tx >= 1.0 # coc += v1 elseif tx < 0.0 # nothing else # coc += tx * v1 X += v1 * 1.0 / dot(v1, v1) * v1' * -1.0 end if ty >= 1.0 # coc += v2 elseif ty < 0.0 # nothing else # coc += ty * v2 X += v2 * 1.0 / dot(v2, v2) * v2' * -1.0 end if tz > 1.0 # coc += v3 elseif tz < 0.0 # nothing else # coc += tz * v3 X += v3 * 1.0 / dot(v3, v3) * v3' * -1.0 end return X # FiniteDiff.finite_difference_jacobian(x -> contact_point_box(ps, x, qc, kx, ky, kz), xc) end function ∂contact_point_box∂q(ps, xc, qc, kx, ky, kz) cx = contact_point_origin(szeros(3), qc, kx) cy = contact_point_origin(szeros(3), qc, ky) cz = contact_point_origin(szeros(3), qc, kz) v1 = 2.0 * cx v2 = 2.0 * cy v3 = 2.0 * cz ∂v1∂q = 2.0 * ∂contact_point_origin∂q(szeros(3), qc, kx) ∂v2∂q = 2.0 * ∂contact_point_origin∂q(szeros(3), qc, ky) ∂v3∂q = 2.0 * ∂contact_point_origin∂q(szeros(3), qc, kz) origin = xc - cx - cy - cz tx = dot(ps - origin, v1) / dot(v1, v1) ty = dot(ps - origin, v2) / dot(v2, v2) tz = dot(ps - origin, v3) / dot(v3, v3) Q = -0.5 * (∂v1∂q + ∂v2∂q + ∂v3∂q) if tx >= 1.0 # coc += v1 Q += ∂v1∂q elseif tx < 0.0 # nothing else # coc += tx * v1 Q += tx * ∂v1∂q Q += v1 * (ps - xc)' ./ dot(v1, v1) * ∂v1∂q Q += v1 * -1.0 * dot(ps - xc, v1) ./ dot(v1, v1)^2 * 2.0 * v1' * ∂v1∂q Q += v1 * 1.0 / dot(v1, v1) * v1' * -0.5 * ∂v1∂q end if ty >= 1.0 # coc += v2 Q += ∂v2∂q elseif ty < 0.0 # nothing else # coc += ty * v2 Q += tx * ∂v2∂q Q += v2 * (ps - xc)' ./ dot(v2, v2) * ∂v2∂q Q += v2 * -1.0 * dot(ps - xc, v2) ./ dot(v2, v2)^2 * 2.0 * v2' * ∂v2∂q Q += v2 * 1.0 / dot(v2, v2) * v2' * -0.5 * ∂v2∂q end if tz >= 1.0 # coc += v3 Q += ∂v3∂q elseif tz < 0.0 # nothing else # coc += tz * v3 Q += tx * ∂v3∂q Q += v3 * (ps - xc)' ./ dot(v3, v3) * ∂v3∂q Q += v3 * -1.0 * dot(ps - xc, v3) ./ dot(v3, v3)^2 * 2.0 * v3' * ∂v3∂q Q += v3 * 1.0 / dot(v3, v3) * v3' * -0.5 * ∂v3∂q end return Q # FiniteDiff.finite_difference_jacobian(q -> contact_point_box(ps, xc, Quaternion(q...), kx, ky, kz), vector(qc)) end
Dojo
https://github.com/dojo-sim/Dojo.jl.git
[ "MIT" ]
0.7.5
104b6a1a358da9b1348ab7cd66ad685ecaca13d4
code
1184
function klamp(t, a, b) if t <= a return a elseif b <= t return b else da = abs(t - a) db = abs(t - b) if da < db return a else return b end # return t end end function contact_point_box(ps, xc, qc, kx, ky, kz) # rotate point into box frame ps_box_frame = vector_rotate(ps - xc, inv(qc)) # find box point in box frame px = clamp(ps_box_frame[1], -0.5 * kx, 0.5 * kx) py = clamp(ps_box_frame[2], -0.5 * ky, 0.5 * ky) pz = clamp(ps_box_frame[3], -0.5 * kz, 0.5 * kz) # box point in world frame return vector_rotate([px; py; pz], qc) + xc end function ∂contact_point_box∂p(ps, xc, qc, kx, ky, kz) FiniteDiff.finite_difference_jacobian(p -> contact_point_box(p, xc, qc, kx, ky, kz), ps) end function ∂contact_point_box∂x(ps, xc, qc, kx, ky, kz) FiniteDiff.finite_difference_jacobian(x -> contact_point_box(ps, x, qc, kx, ky, kz), xc) end function ∂contact_point_box∂q(ps, xc, qc, kx, ky, kz) FiniteDiff.finite_difference_jacobian(q -> contact_point_box(ps, xc, Quaternion(q...), kx, ky, kz), vector(qc)) end
Dojo
https://github.com/dojo-sim/Dojo.jl.git
[ "MIT" ]
0.7.5
104b6a1a358da9b1348ab7cd66ad685ecaca13d4
code
3454
# capsule contact point origin sphere-capsule function contact_point_segment(ps, xc, qc, ka, kb) # capsule origin a ca = contact_point_origin(xc, qc, ka) # capsule origin b cb = contact_point_origin(xc, qc, kb) # point differences dab = cb - ca das = ps - ca t = dot(das, dab) / dot(dab, dab) # t_clamp = min(max(t, 0.0), 1.0) # closest point if t <= 0.0 p = ca elseif t >= 1.0 p = cb else p = ca + t * dab end return p end # capsule contact point origin sphere-capsule function ∂contact_point_segment∂p(ps, xc, qc, ka, kb) # capsule origin a ca = contact_point_origin(xc, qc, ka) # capsule origin b cb = contact_point_origin(xc, qc, kb) # point differences dab = cb - ca das = ps - ca t = dot(das, dab) ./ dot(dab, dab) # t_clamp = min(max(t, 0.0), 1.0) # closest point if t <= 0.0 # p = ca return szeros(3, 3) elseif t >= 1.0 # p = cb return szeros(3, 3) else # p = ca + t * dab return dab * dab' ./ dot(dab, dab) end return p end # capsule contact point origin sphere-capsule function ∂contact_point_segment∂x(ps, xc, qc, ka, kb) # capsule origin a ca = contact_point_origin(xc, qc, ka) # capsule origin b cb = contact_point_origin(xc, qc, kb) # point differences dab = cb - ca das = ps - ca t = dot(das, dab) ./ dot(dab, dab) # t_clamp = min(max(t, 0.0), 1.0) # closest point if t <= 0.0 # p = ca return ∂contact_point_origin∂x(xc, qc, ka) elseif t >= 1.0 # p = cb return ∂contact_point_origin∂x(xc, qc, kb) else # p = ca + t * dab X = ∂contact_point_origin∂x(xc, qc, ka) X += t * (∂contact_point_origin∂x(xc, qc, kb) - ∂contact_point_origin∂x(xc, qc, ka)) t1 = 1.0 / (dab' * dab) * dab' * (-∂contact_point_origin∂x(xc, qc, ka)) t2 = 1.0 / (dab' * dab) * das' * (∂contact_point_origin∂x(xc, qc, kb) - ∂contact_point_origin∂x(xc, qc, ka)) t3 = -2.0 * das' * dab / (dab' * dab)^2 * dab' * (∂contact_point_origin∂x(xc, qc, kb) - ∂contact_point_origin∂x(xc, qc, ka)) X += dab * (t1 + t2 + t3) return X end end # capsule contact point origin sphere-capsule function ∂contact_point_segment∂q(ps, xc, qc, ka, kb) # capsule origin a ca = contact_point_origin(xc, qc, ka) # capsule origin b cb = contact_point_origin(xc, qc, kb) # point differences dab = cb - ca das = ps - ca t = dot(das, dab) ./ dot(dab, dab) # t_clamp = min(max(t, 0.0), 1.0) # closest point if t <= 0.0 # p = ca return ∂contact_point_origin∂q(xc, qc, ka) elseif t >= 1.0 # p = cb return ∂contact_point_origin∂q(xc, qc, kb) else # p = ca + t * dab Q = ∂contact_point_origin∂q(xc, qc, ka) Q += t * (∂contact_point_origin∂q(xc, qc, kb) - ∂contact_point_origin∂q(xc, qc, ka)) t1 = 1.0 / (dab' * dab) * dab' * (-∂contact_point_origin∂q(xc, qc, ka)) t2 = 1.0 / (dab' * dab) * das' * (∂contact_point_origin∂q(xc, qc, kb) - ∂contact_point_origin∂q(xc, qc, ka)) t3 = -2.0 * das' * dab ./ (dab' * dab)^2 * dab' * (∂contact_point_origin∂q(xc, qc, kb) - ∂contact_point_origin∂q(xc, qc, ka)) Q += dab * (t1 + t2 + t3) return Q end end
Dojo
https://github.com/dojo-sim/Dojo.jl.git
[ "MIT" ]
0.7.5
104b6a1a358da9b1348ab7cd66ad685ecaca13d4
code
9515
""" SphereBoxCollision collision between sphere and box origin_sphere: position of sphere contact relative to body center of mass origin_box_a: position of box corner contact a relative to body center of mass origin_box_b: position of box corner contact b relative to body center of mass radius_sphere: radius of sphere contact """ mutable struct SphereBoxCollision{T,O,I,OI} <: Collision{T,O,I,OI} origin_sphere::SVector{I,T} width::T depth::T height::T radius_sphere::T end # distance function distance(collision::SphereBoxCollision, xp, qp, xc, qc) # contact origin points cop = contact_point_origin(xp, qp, collision.origin_sphere) coc = contact_point_box(cop, xc, qc, collision.width, collision.depth, collision.height) # distance between contact origins d = norm(cop - coc, 2) # minimum distance between spheres return d - collision.radius_sphere end function ∂distance∂x(gradient::Symbol, collision::SphereBoxCollision, xp, qp, xc, qc) # contact origin points cop = contact_point_origin(xp, qp, collision.origin_sphere) coc = contact_point_box(cop, xc, qc, collision.width, collision.depth, collision.height) # distance between contact origins d = norm(cop - coc, 2) ∂norm∂d = ∂norm∂x(cop - coc) if gradient == :parent D = ∂norm∂d * (1.0 * ∂contact_point_origin∂x(xp, qp, collision.origin_sphere) - ∂contact_point_box∂p(cop, xc, qc, collision.width, collision.depth, collision.height) * ∂contact_point_origin∂x(xp, qp, collision.origin_sphere)) elseif gradient == :child D = ∂norm∂d * -1.0 * ∂contact_point_box∂x(cop, xc, qc, collision.width, collision.depth, collision.height) end # if gradient == :parent # FD = FiniteDiff.finite_difference_jacobian(x -> distance(collision, x, qp, xc, qc), xp) # elseif gradient == :child # FD = FiniteDiff.finite_difference_jacobian(x -> distance(collision, xp, qp, x, qc), xc) # end # return FD # @assert norm(D - FD, Inf) < 1.0e-5 return D end function ∂distance∂q(gradient::Symbol, collision::SphereBoxCollision, xp, qp, xc, qc) # contact origin points cop = contact_point_origin(xp, qp, collision.origin_sphere) coc = contact_point_box(cop, xc, qc, collision.width, collision.depth, collision.height) # distance between contact origins d = norm(cop - coc, 2) ∂norm∂d = ∂norm∂x(cop - coc) if gradient == :parent D = ∂norm∂d * (1.0 * ∂contact_point_origin∂q(xp, qp, collision.origin_sphere) - ∂contact_point_box∂p(cop, xc, qc, collision.width, collision.depth, collision.height) * ∂contact_point_origin∂q(xp, qp, collision.origin_sphere)) elseif gradient == :child D = ∂norm∂d * -1.0 * ∂contact_point_box∂q(cop, xc, qc, collision.width, collision.depth, collision.height) end # if gradient == :parent # FD = FiniteDiff.finite_difference_jacobian(q -> distance(collision, xp, Quaternion(q...), xc, qc), vector(qp)) # elseif gradient == :child # FD = FiniteDiff.finite_difference_jacobian(q -> distance(collision, xp, qp, xc, Quaternion(q...)), vector(qc)) # end # return FD # @assert norm(D - FD, Inf) < 1.0e-5 return D end # contact point in world frame function contact_point(relative::Symbol, collision::SphereBoxCollision, xp, qp, xc, qc) # contact origin points cop = contact_point_origin(xp, qp, collision.origin_sphere) coc = contact_point_box(cop, xc, qc, collision.width, collision.depth, collision.height) # direction of minimum distance (child to parent) d = cop - coc dir = normalize(d) # contact point if relative == :parent return cop - collision.radius_sphere * dir elseif relative == :child return coc end end function ∂contact_point∂x(relative::Symbol, jacobian::Symbol, collision::SphereBoxCollision, xp, qp, xc, qc) # contact origin points cop = contact_point_origin(xp, qp, collision.origin_sphere) coc = contact_point_box(cop, xc, qc, collision.width, collision.depth, collision.height) # direction of minimum distance (child to parent) d = cop - coc dir = normalize(d) if relative == :parent # cop - collision.radius_sphere * dir if jacobian == :parent ∂c∂x = ∂contact_point_origin∂x(xp, qp, collision.origin_sphere) X = ∂c∂x X -= collision.radius_sphere * ∂normalize∂x(d) * (∂c∂x - ∂contact_point_box∂p(cop, xc, qc, collision.width, collision.depth, collision.height) * ∂c∂x) elseif jacobian == :child X = -1.0 * collision.radius_sphere * ∂normalize∂x(d) * -1.0 * ∂contact_point_box∂x(cop, xc, qc, collision.width, collision.depth, collision.height) end elseif relative == :child # coc if jacobian == :parent X = ∂contact_point_box∂p(cop, xc, qc, collision.width, collision.depth, collision.height) * ∂contact_point_origin∂x(xp, qp, collision.origin_sphere) elseif jacobian == :child X = ∂contact_point_box∂x(cop, xc, qc, collision.width, collision.depth, collision.height) end end # if jacobian == :parent # FD = FiniteDiff.finite_difference_jacobian(x -> contact_point(relative, collision, x, qp, xc, qc), xp) # elseif jacobian == :child # FD = FiniteDiff.finite_difference_jacobian(x -> contact_point(relative, collision, xp, qp, x, qc), xc) # end # return FD # @assert norm(X - FD, Inf) < 1.0e-5 return X end function ∂contact_point∂q(relative::Symbol, jacobian::Symbol, collision::SphereBoxCollision, xp, qp, xc, qc) # contact origin points cop = contact_point_origin(xp, qp, collision.origin_sphere) coc = contact_point_box(cop, xc, qc, collision.width, collision.depth, collision.height) # direction of minimum distance (child to parent) d = cop - coc dir = normalize(d) if relative == :parent # cop - collision.radius_sphere * dir if jacobian == :parent ∂c∂q = ∂contact_point_origin∂q(xp, qp, collision.origin_sphere) Q = ∂c∂q Q -= collision.radius_sphere * ∂normalize∂x(d) * (∂c∂q - ∂contact_point_box∂p(cop, xc, qc, collision.width, collision.depth, collision.height) * ∂c∂q) elseif jacobian == :child Q = -1.0 * collision.radius_sphere * ∂normalize∂x(d) * -1.0 * ∂contact_point_box∂q(cop, xc, qc, collision.width, collision.depth, collision.height) end elseif relative == :child # coc if jacobian == :parent Q = ∂contact_point_box∂p(cop, xc, qc, collision.width, collision.depth, collision.height) * ∂contact_point_origin∂q(xp, qp, collision.origin_sphere) elseif jacobian == :child Q = ∂contact_point_box∂q(cop, xc, qc, collision.width, collision.depth, collision.height) end end # if jacobian == :parent # FD = FiniteDiff.finite_difference_jacobian(q -> contact_point(relative, collision, xp, Quaternion(q...), xc, qc), vector(qp)) # elseif jacobian == :child # FD = FiniteDiff.finite_difference_jacobian(q -> contact_point(relative, collision, xp, qp, xc, Quaternion(q...)), vector(qc)) # end # return FD # @assert norm(Q - FD, Inf) < 1.0e-5 return Q end function contact_normal(collision::SphereBoxCollision, xp, qp, xc, qc) # contact points cop = contact_point(:parent, collision, xp, qp, xc, qc) coc = contact_point(:child, collision, xp, qp, xc, qc) # unnormalized direction dir = cop - coc # distance dis = distance(collision, xp, qp, xc, qc) # normalized direction if dis >= 0.0 return normalize(dir)' else return -1.0 * normalize(dir)' end end function ∂contact_normal_transpose∂x(jacobian::Symbol, collision::SphereBoxCollision, xp, qp, xc, qc) # contact origin points cop = contact_point(:parent, collision, xp, qp, xc, qc) coc = contact_point(:child, collision, xp, qp, xc, qc) # unnormalized direction dir = cop - coc # Jacobians X = ∂normalize∂x(dir) * (∂contact_point∂x(:parent, jacobian, collision, xp, qp, xc, qc) - ∂contact_point∂x(:child, jacobian, collision, xp, qp, xc, qc)) # distance dis = distance(collision, xp, qp, xc, qc) # normalized direction if dis >= 0.0 return X else return -1.0 * X end end function ∂contact_normal_transpose∂q(jacobian::Symbol, collision::SphereBoxCollision, xp, qp, xc, qc) # contact origin points cop = contact_point(:parent, collision, xp, qp, xc, qc) coc = contact_point(:child, collision, xp, qp, xc, qc) # unnormalized direction dir = cop - coc Q = ∂normalize∂x(dir) * (∂contact_point∂q(:parent, jacobian, collision, xp, qp, xc, qc) - ∂contact_point∂q(:child, jacobian, collision, xp, qp, xc, qc)) # Jacobians # if jacobian == :parent # FD = FiniteDiff.finite_difference_jacobian(q -> contact_normal(collision, xp, Quaternion(q...), xc, qc)', vector(qp)) # elseif jacobian == :child # FD = FiniteDiff.finite_difference_jacobian(q -> contact_normal(collision, xp, qp, xc, Quaternion(q...))', vector(qc)) # end # distance dis = distance(collision, xp, qp, xc, qc) # @assert norm((dis >= 0.0 ? 1.0 : -1.0) * Q - FD, Inf) < 1.0e-2 # normalized direction if dis >= 0.0 return Q else return -1.0 * Q end end
Dojo
https://github.com/dojo-sim/Dojo.jl.git
[ "MIT" ]
0.7.5
104b6a1a358da9b1348ab7cd66ad685ecaca13d4
code
8645
""" SphereCapsuleCollision collision between sphere and capsule origin_sphere: position of sphere contact relative to body center of mass origin_capsule_a: position of capsule contact a relative to body center of mass origin_capsule_b: position of capsule contact b relative to body center of mass radius_sphere: radius of sphere contact radius_capsule: radius of capsule contact """ mutable struct SphereCapsuleCollision{T,O,I,OI} <: Collision{T,O,I,OI} origin_sphere::SVector{I,T} origin_capsule_a::SVector{I,T} origin_capsule_b::SVector{I,T} radius_sphere::T radius_capsule::T end # distance function distance(collision::SphereCapsuleCollision, xp, qp, xc, qc) # contact origin points cop = contact_point_origin(xp, qp, collision.origin_sphere) coc = contact_point_segment(cop, xc, qc, collision.origin_capsule_a, collision.origin_capsule_b) # distance between contact origins d = norm(cop - coc, 2) # minimum distance between spheres return d - (collision.radius_sphere + collision.radius_capsule) end function ∂distance∂x(gradient::Symbol, collision::SphereCapsuleCollision, xp, qp, xc, qc) # contact origin points cop = contact_point_origin(xp, qp, collision.origin_sphere) coc = contact_point_segment(cop, xc, qc, collision.origin_capsule_a, collision.origin_capsule_b) # distance between contact origins d = norm(cop - coc, 2) ∂norm∂d = ∂norm∂x(cop - coc) if gradient == :parent D = ∂norm∂d * (1.0 * ∂contact_point_origin∂x(xp, qp, collision.origin_sphere) - ∂contact_point_segment∂p(cop, xc, qc, collision.origin_capsule_a, collision.origin_capsule_b) * ∂contact_point_origin∂x(xp, qp, collision.origin_sphere)) elseif gradient == :child D = ∂norm∂d * -1.0 * ∂contact_point_segment∂x(cop, xc, qc, collision.origin_capsule_a, collision.origin_capsule_b) end # if gradient == :parent # FD = FiniteDiff.finite_difference_jacobian(x -> distance(collision, x, qp, xc, qc), xp) # elseif gradient == :child # FD = FiniteDiff.finite_difference_jacobian(x -> distance(collision, xp, qp, x, qc), xc) # end # return FD # @assert norm(D - FD, Inf) < 1.0e-5 return D end function ∂distance∂q(gradient::Symbol, collision::SphereCapsuleCollision, xp, qp, xc, qc) # contact origin points cop = contact_point_origin(xp, qp, collision.origin_sphere) coc = contact_point_segment(cop, xc, qc, collision.origin_capsule_a, collision.origin_capsule_b) # distance between contact origins d = norm(cop - coc, 2) ∂norm∂d = ∂norm∂x(cop - coc) if gradient == :parent D = ∂norm∂d * (1.0 * ∂contact_point_origin∂q(xp, qp, collision.origin_sphere) - ∂contact_point_segment∂p(cop, xc, qc, collision.origin_capsule_a, collision.origin_capsule_b) * ∂contact_point_origin∂q(xp, qp, collision.origin_sphere)) elseif gradient == :child D = ∂norm∂d * -1.0 * ∂contact_point_segment∂q(cop, xc, qc, collision.origin_capsule_a, collision.origin_capsule_b) end # if gradient == :parent # FD = FiniteDiff.finite_difference_jacobian(q -> distance(collision, xp, Quaternion(q...), xc, qc), vector(qp)) # elseif gradient == :child # FD = FiniteDiff.finite_difference_jacobian(q -> distance(collision, xp, qp, xc, Quaternion(q...)), vector(qc)) # end # return FD # @assert norm(D - FD, Inf) < 1.0e-5 return D end # contact point in world frame function contact_point(relative::Symbol, collision::SphereCapsuleCollision, xp, qp, xc, qc) # contact origin points cop = contact_point_origin(xp, qp, collision.origin_sphere) coc = contact_point_segment(cop, xc, qc, collision.origin_capsule_a, collision.origin_capsule_b) # direction of minimum distance (child to parent) d = cop - coc dir = normalize(d) # contact point if relative == :parent return cop - collision.radius_sphere * dir elseif relative == :child return coc + collision.radius_capsule * dir end end function ∂contact_point∂x(relative::Symbol, jacobian::Symbol, collision::SphereCapsuleCollision, xp, qp, xc, qc) # contact origin points cop = contact_point_origin(xp, qp, collision.origin_sphere) coc = contact_point_segment(cop, xc, qc, collision.origin_capsule_a, collision.origin_capsule_b) # direction of minimum distance (child to parent) d = cop - coc dir = normalize(d) if relative == :parent # cop - collision.radius_sphere * dir if jacobian == :parent ∂c∂x = ∂contact_point_origin∂x(xp, qp, collision.origin_sphere) X = ∂c∂x X -= collision.radius_sphere * ∂normalize∂x(d) * (∂c∂x - ∂contact_point_segment∂p(cop, xc, qc, collision.origin_capsule_a, collision.origin_capsule_b) * ∂c∂x) elseif jacobian == :child X = -1.0 * collision.radius_sphere * ∂normalize∂x(d) * -1.0 * ∂contact_point_segment∂x(cop, xc, qc, collision.origin_capsule_a, collision.origin_capsule_b) end elseif relative == :child # coc + collision.radius_capsule * dir if jacobian == :parent X = ∂contact_point_segment∂p(cop, xc, qc, collision.origin_capsule_a, collision.origin_capsule_b) * ∂contact_point_origin∂x(xp, qp, collision.origin_sphere) X += 1.0 * collision.radius_capsule * ∂normalize∂x(d) * (∂contact_point_origin∂x(xp, qp, collision.origin_sphere) - ∂contact_point_segment∂p(cop, xc, qc, collision.origin_capsule_a, collision.origin_capsule_b) * ∂contact_point_origin∂x(xp, qp, collision.origin_sphere)) elseif jacobian == :child X = ∂contact_point_segment∂x(cop, xc, qc, collision.origin_capsule_a, collision.origin_capsule_b) X += collision.radius_capsule * ∂normalize∂x(d) * (-∂contact_point_segment∂x(cop, xc, qc, collision.origin_capsule_a, collision.origin_capsule_b)) end end # if jacobian == :parent # FD = FiniteDiff.finite_difference_jacobian(x -> contact_point(relative, collision, x, qp, xc, qc), xp) # elseif jacobian == :child # FD = FiniteDiff.finite_difference_jacobian(x -> contact_point(relative, collision, xp, qp, x, qc), xc) # end # return FD # @assert norm(X - FD, Inf) < 1.0e-5 return X end function ∂contact_point∂q(relative::Symbol, jacobian::Symbol, collision::SphereCapsuleCollision, xp, qp, xc, qc) # contact origin points cop = contact_point_origin(xp, qp, collision.origin_sphere) coc = contact_point_segment(cop, xc, qc, collision.origin_capsule_a, collision.origin_capsule_b) # direction of minimum distance (child to parent) d = cop - coc dir = normalize(d) if relative == :parent # cop - collision.radius_sphere * dir if jacobian == :parent ∂c∂q = ∂contact_point_origin∂q(xp, qp, collision.origin_sphere) Q = ∂c∂q Q -= collision.radius_sphere * ∂normalize∂x(d) * (∂c∂q - ∂contact_point_segment∂p(cop, xc, qc, collision.origin_capsule_a, collision.origin_capsule_b) * ∂c∂q) elseif jacobian == :child Q = -1.0 * collision.radius_sphere * ∂normalize∂x(d) * -1.0 * ∂contact_point_segment∂q(cop, xc, qc, collision.origin_capsule_a, collision.origin_capsule_b) end elseif relative == :child # coc + collision.radius_capsule * dir if jacobian == :parent Q = ∂contact_point_segment∂p(cop, xc, qc, collision.origin_capsule_a, collision.origin_capsule_b) * ∂contact_point_origin∂q(xp, qp, collision.origin_sphere) Q += 1.0 * collision.radius_capsule * ∂normalize∂x(d) * (∂contact_point_origin∂q(xp, qp, collision.origin_sphere) - ∂contact_point_segment∂p(cop, xc, qc, collision.origin_capsule_a, collision.origin_capsule_b) * ∂contact_point_origin∂q(xp, qp, collision.origin_sphere)) elseif jacobian == :child Q = ∂contact_point_segment∂q(cop, xc, qc, collision.origin_capsule_a, collision.origin_capsule_b) Q += collision.radius_capsule * ∂normalize∂x(d) * (-∂contact_point_segment∂q(cop, xc, qc, collision.origin_capsule_a, collision.origin_capsule_b)) end end # if jacobian == :parent # FD = FiniteDiff.finite_difference_jacobian(q -> contact_point(relative, collision, xp, Quaternion(q...), xc, qc), vector(qp)) # elseif jacobian == :child # FD = FiniteDiff.finite_difference_jacobian(q -> contact_point(relative, collision, xp, qp, xc, Quaternion(q...)), vector(qc)) # end # return FD # @assert norm(Q - FD, Inf) < 1.0e-5 return Q end
Dojo
https://github.com/dojo-sim/Dojo.jl.git
[ "MIT" ]
0.7.5
104b6a1a358da9b1348ab7cd66ad685ecaca13d4
code
5065
""" SphereHalfSpaceCollision collision between a spherical contact and a flat surface contact_tangent: mapping from world frame to surface tangent frame contact_normal: inverse/complement of contact_tangent contact_origin: position of contact on Body relative to center of mass contact_radius: radius of contact """ mutable struct SphereHalfSpaceCollision{T,O,I,OI} <: Collision{T,O,I,OI} contact_tangent::SMatrix{O,I,T,OI} contact_normal::Adjoint{T,SVector{I,T}} contact_origin::SVector{I,T} contact_radius::T function SphereHalfSpaceCollision(contact_tangent::SMatrix{O,I,T0,OI}, contact_normal, contact_origin, contact_radius) where {O,I,T0,OI} T = promote_type(eltype.((contact_tangent, contact_normal, contact_origin, contact_radius))...) new{T,O,I,OI}(contact_tangent, contact_normal, contact_origin, contact_radius) end end # function Base.show(io::IO, mime::MIME{Symbol("text/plain")}, collision::SphereHalfSpaceCollision) # summary(io, collision) # println(io, "") # println(io, "contact_tangent: "*string(collision.contact_tangent)) # println(io, "contact_normal: "*string(collision.contact_normal)) # println(io, "contact_origin: "*string(collision.contact_origin)) # println(io, "contact_radius: "*string(collision.contact_radius)) # end # distance function distance(collision::SphereHalfSpaceCollision, xp, qp, xc, qc) collision.contact_normal * (xp + vector_rotate(collision.contact_origin, qp)) - collision.contact_radius end function ∂distance∂x(gradient::Symbol, collision::SphereHalfSpaceCollision, xp, qp, xc, qc) if gradient == :parent return collision.contact_normal elseif gradient == :child return szeros(eltype(xc), 1, 3) end end function ∂distance∂q(gradient::Symbol, collision::SphereHalfSpaceCollision, xp, qp, xc, qc) if gradient == :parent return collision.contact_normal * ∂vector_rotate∂q(collision.contact_origin, qp) elseif gradient == :child return szeros(eltype(qc), 1, 4) end end # contact point in world frame function contact_point(relative::Symbol, collision::SphereHalfSpaceCollision, xp, qp, xc, qc) if relative == :parent return xp + vector_rotate(collision.contact_origin, qp) - collision.contact_normal' * collision.contact_radius elseif relative == :child projector = collision.contact_tangent' * collision.contact_tangent return projector * (xp + vector_rotate(collision.contact_origin, qp)) end end function ∂contact_point∂x(relative::Symbol, jacobian::Symbol, collision::SphereHalfSpaceCollision, xp, qp, xc, qc) if relative == :parent if jacobian == :parent return 1.0 * sI(3) elseif jacobian == :child return szeros(eltype(xp), 3, 3) end elseif relative == :child if jacobian == :parent projector = collision.contact_tangent' * collision.contact_tangent return projector elseif jacobian == :child return szeros(eltype(xp), 3, 3) end end end function ∂contact_point∂q(relative::Symbol, jacobian::Symbol, collision::SphereHalfSpaceCollision, xp, qp, xc, qc) if relative == :parent if jacobian == :parent return ∂vector_rotate∂q(collision.contact_origin, qp) end elseif relative == :child if jacobian == :parent projector = collision.contact_tangent' * collision.contact_tangent return projector * ∂vector_rotate∂q(collision.contact_origin, qp) elseif jacobian == :child return szeros(eltype(qp), 3, 4) end end end # normal projection (from child to parent) function contact_normal(collision::SphereHalfSpaceCollision, xp, qp, xc, qc) return collision.contact_normal end function ∂contact_normal_transpose∂x(jacobian::Symbol, collision::SphereHalfSpaceCollision, xp, qp, xc, qc) return szeros(eltype(collision.contact_normal), 3, 3) end function ∂contact_normal_transpose∂q(jacobian::Symbol, collision::SphereHalfSpaceCollision, xp, qp, xc, qc) return szeros(eltype(collision.contact_normal), 3, 4) end # tangent projection function contact_tangent(collision::SphereHalfSpaceCollision, xp, qp, xc, qc) return collision.contact_tangent # {2,4} x 3 end function ∂contact_tangent_one_transpose∂x(jacobian::Symbol, collision::SphereHalfSpaceCollision, xp, qp, xc, qc) return szeros(eltype(collision.contact_tangent), 3, 3) end function ∂contact_tangent_two_transpose∂x(jacobian::Symbol, collision::SphereHalfSpaceCollision, xp, qp, xc, qc) return szeros(eltype(collision.contact_tangent), 3, 3) end function ∂contact_tangent_one_transpose∂q(jacobian::Symbol, collision::SphereHalfSpaceCollision, xp, qp, xc, qc) return szeros(eltype(collision.contact_tangent), 3, 4) end function ∂contact_tangent_two_transpose∂q(jacobian::Symbol, collision::SphereHalfSpaceCollision, xp, qp, xc, qc) return szeros(eltype(collision.contact_tangent), 3, 4) end
Dojo
https://github.com/dojo-sim/Dojo.jl.git
[ "MIT" ]
0.7.5
104b6a1a358da9b1348ab7cd66ad685ecaca13d4
code
7128
""" SphereSphereCollision collision between two spheres origin_parent: position of contact on parent body relative to center of mass origin_child: position of contact on parent body relative to center of mass radius_parent: radius of contact for parent body radius_child: radius of contact for child body """ mutable struct SphereSphereCollision{T,O,I,OI} <: Collision{T,O,I,OI} origin_parent::SVector{I,T} origin_child::SVector{I,T} radius_parent::T radius_child::T end # function Base.show(io::IO, mime::MIME{Symbol("text/plain")}, collision::SphereSphereCollision) # summary(io, collision) # println(io, "") # println(io, "origin_parent: "*string(collision.origin_parent)) # println(io, "origin_child: "*string(collision.origin_child)) # println(io, "radius_parent: "*string(collision.radius_parent)) # println(io, "radius_child: "*string(collision.radius_child)) # end # distance function distance(collision::SphereSphereCollision, xp, qp, xc, qc) # contact origin points cop = contact_point_origin(xp, qp, collision.origin_parent) coc = contact_point_origin(xc, qc, collision.origin_child) # distance between contact origins d = norm(cop - coc, 2) # minimum distance between spheres return d - (collision.radius_parent + collision.radius_child) end function ∂distance∂x(gradient::Symbol, collision::SphereSphereCollision, xp, qp, xc, qc) # contact origin points cop = contact_point_origin(xp, qp, collision.origin_parent) coc = contact_point_origin(xc, qc, collision.origin_child) # distance between contact origins d = norm(cop - coc, 2) ∂norm∂d = ∂norm∂x(cop - coc) if gradient == :parent D = ∂norm∂d * 1.0 * ∂contact_point_origin∂x(xp, qp, collision.origin_parent) elseif gradient == :child D = ∂norm∂d * -1.0 * ∂contact_point_origin∂x(xc, qc, collision.origin_child) end if gradient == :parent FD = FiniteDiff.finite_difference_jacobian(x -> distance(collision, x, qp, xc, qc), xp) elseif gradient == :child FD = FiniteDiff.finite_difference_jacobian(x -> distance(collision, xp, qp, x, qc), xc) end return FD # @assert norm(D - FD, Inf) < 1.0e-5 return D end function ∂distance∂q(gradient::Symbol, collision::SphereSphereCollision, xp, qp, xc, qc) # contact origin points cop = contact_point_origin(xp, qp, collision.origin_parent) coc = contact_point_origin(xc, qc, collision.origin_child) # distance between contact origins d = norm(cop - coc, 2) ∂norm∂d = ∂norm∂x(cop - coc) if gradient == :parent D = ∂norm∂d * 1.0 * ∂contact_point_origin∂q(xp, qp, collision.origin_parent) elseif gradient == :child D = ∂norm∂d * -1.0 * ∂contact_point_origin∂q(xc, qc, collision.origin_child) end if gradient == :parent FD = FiniteDiff.finite_difference_jacobian(q -> distance(collision, xp, Quaternion(q...), xc, qc), vector(qp)) elseif gradient == :child FD = FiniteDiff.finite_difference_jacobian(q -> distance(collision, xp, qp, xc, Quaternion(q...)), vector(qc)) end return FD # @assert norm(D - FD, Inf) < 1.0e-5 return D end # contact point in world frame function contact_point(relative::Symbol, collision::SphereSphereCollision, xp, qp, xc, qc) # contact origin points cop = contact_point_origin(xp, qp, collision.origin_parent) coc = contact_point_origin(xc, qc, collision.origin_child) # direction of minimum distance (child to parent) d = cop - coc dir = normalize(d) # contact point if relative == :parent return cop - collision.radius_parent * dir elseif relative == :child return coc + collision.radius_child * dir end end function ∂contact_point∂x(relative::Symbol, jacobian::Symbol, collision::SphereSphereCollision, xp, qp, xc, qc) # contact origin points cop = contact_point_origin(xp, qp, collision.origin_parent) coc = contact_point_origin(xc, qc, collision.origin_child) # direction of minimum distance (child to parent) d = cop - coc dir = normalize(d) if relative == :parent # cop - collision.radius_parent * dir if jacobian == :parent ∂c∂x = ∂contact_point_origin∂x(xp, qp, collision.origin_parent) X = ∂c∂x X -= collision.radius_parent * ∂normalize∂x(d) * ∂c∂x elseif jacobian == :child X = -1.0 * collision.radius_parent * ∂normalize∂x(d) * -1.0 * ∂contact_point_origin∂x(xc, qc, collision.origin_child) end elseif relative == :child # coc + collision.radius_child * dir if jacobian == :parent X = 1.0 * collision.radius_child * ∂normalize∂x(d) * ∂contact_point_origin∂x(xp, qp, collision.origin_parent) elseif jacobian == :child ∂c∂x = ∂contact_point_origin∂x(xc, qc, collision.origin_child) X = ∂c∂x X += collision.radius_child * ∂normalize∂x(d) * -1.0 * ∂c∂x end end if jacobian == :parent FD = FiniteDiff.finite_difference_jacobian(x -> contact_point(relative, collision, x, qp, xc, qc), xp) elseif jacobian == :child FD = FiniteDiff.finite_difference_jacobian(x -> contact_point(relative, collision, xp, qp, x, qc), xc) end return FD # @assert norm(X - FD, Inf) < 1.0e-5 return X end function ∂contact_point∂q(relative::Symbol, jacobian::Symbol, collision::SphereSphereCollision, xp, qp, xc, qc) # contact origin points cop = contact_point_origin(xp, qp, collision.origin_parent) coc = contact_point_origin(xc, qc, collision.origin_child) # direction of minimum distance (child to parent) d = cop - coc dir = normalize(d) if relative == :parent # cop - collision.radius_parent * dir if jacobian == :parent ∂c∂q = ∂contact_point_origin∂q(xp, qp, collision.origin_parent) Q = ∂c∂q Q -= collision.radius_parent * ∂normalize∂x(d) * ∂c∂q elseif jacobian == :child Q = -1.0 * collision.radius_parent * ∂normalize∂x(d) * -1.0 * ∂contact_point_origin∂q(xc, qc, collision.origin_child) end elseif relative == :child # coc + collision.radius_child * dir if jacobian == :parent Q = 1.0 * collision.radius_child * ∂normalize∂x(d) * ∂contact_point_origin∂q(xp, qp, collision.origin_parent) elseif jacobian == :child ∂c∂q = ∂contact_point_origin∂q(xc, qc, collision.origin_child) Q = ∂c∂q Q += collision.radius_child * ∂normalize∂x(d) * -1.0 * ∂c∂q end end if jacobian == :parent FD = FiniteDiff.finite_difference_jacobian(q -> contact_point(relative, collision, xp, Quaternion(q...), xc, qc), vector(qp)) elseif jacobian == :child FD = FiniteDiff.finite_difference_jacobian(q -> contact_point(relative, collision, xp, qp, xc, Quaternion(q...)), vector(qc)) end return FD # @assert norm(Q - FD, Inf) < 1.0e-5 return Q end
Dojo
https://github.com/dojo-sim/Dojo.jl.git
[ "MIT" ]
0.7.5
104b6a1a358da9b1348ab7cd66ad685ecaca13d4
code
8209
#=""" StringCollision string collision between contact points origin_parent: position of contact on parent body relative to center of mass origin_child: position of contact on parent body relative to center of mass length: maximum distance between contact point """=# mutable struct StringCollision{T,O,I,OI} <: Collision{T,O,I,OI} origin_parent::SVector{I,T} origin_child::SVector{I,T} length::T end # function Base.show(io::IO, mime::MIME{Symbol("text/plain")}, collision::StringCollision) # summary(io, collision) # println(io, "") # println(io, "origin_parent: "*string(collision.origin_parent)) # println(io, "origin_child: "*string(collision.origin_child)) # println(io, "length: "*string(collision.length)) # end # distance function distance(collision::StringCollision, xp, qp, xc, qc) # contact origin points cop = contact_point_origin(xp, qp, collision.origin_parent) coc = contact_point_origin(xc, qc, collision.origin_child) # distance between contact origins d = norm(cop - coc, 2) # minimum distance between spheres return collision.length - d end function ∂distance∂x(gradient::Symbol, collision::StringCollision, xp, qp, xc, qc) # contact origin points cop = contact_point_origin(xp, qp, collision.origin_parent) coc = contact_point_origin(xc, qc, collision.origin_child) # distance between contact origins # d = norm(cop - coc, 2) ∂norm∂d = ∂norm∂x(cop - coc) if gradient == :parent D = 1.0 * ∂norm∂d * 1.0 * ∂contact_point_origin∂x(xp, qp, collision.origin_parent) elseif gradient == :child D = 1.0 * ∂norm∂d * -1.0 * ∂contact_point_origin∂x(xc, qc, collision.origin_child) end # if gradient == :parent # FD = FiniteDiff.finite_difference_jacobian(x -> distance(collision, x, qp, xc, qc), xp) # elseif gradient == :child # FD = FiniteDiff.finite_difference_jacobian(x -> distance(collision, xp, qp, x, qc), xc) # end # @assert norm(-D - FD, Inf) < 1.0e-5 return -D end function ∂distance∂q(gradient::Symbol, collision::StringCollision, xp, qp, xc, qc) # contact origin points cop = contact_point_origin(xp, qp, collision.origin_parent) coc = contact_point_origin(xc, qc, collision.origin_child) # distance between contact origins # d = norm(cop - coc, 2) ∂norm∂d = ∂norm∂x(cop - coc) if gradient == :parent D = 1.0 * ∂norm∂d * 1.0 * ∂contact_point_origin∂q(xp, qp, collision.origin_parent) elseif gradient == :child D = 1.0 * ∂norm∂d * -1.0 * ∂contact_point_origin∂q(xc, qc, collision.origin_child) end # if gradient == :parent # FD = FiniteDiff.finite_difference_jacobian(q -> distance(collision, xp, Quaternion(q...), xc, qc), vector(qp)) # elseif gradient == :child # FD = FiniteDiff.finite_difference_jacobian(q -> distance(collision, xp, qp, xc, Quaternion(q...)), vector(qc)) # end # @assert norm(-D - FD, Inf) < 1.0e-5 return -D end # contact point in world frame function contact_point(relative::Symbol, collision::StringCollision, xp, qp, xc, qc) # contact origin points cop = contact_point_origin(xp, qp, collision.origin_parent) coc = contact_point_origin(xc, qc, collision.origin_child) # direction of minimum distance (child to parent) # d = cop - coc # dir = normalize(d) # contact point if relative == :parent return cop elseif relative == :child return coc end end function ∂contact_point∂x(relative::Symbol, jacobian::Symbol, collision::StringCollision, xp, qp, xc, qc) # contact origin points cop = contact_point_origin(xp, qp, collision.origin_parent) coc = contact_point_origin(xc, qc, collision.origin_child) # direction of minimum distance (child to parent) # d = cop - coc # dir = normalize(d) if relative == :parent # cop if jacobian == :parent ∂c∂x = ∂contact_point_origin∂x(xp, qp, collision.origin_parent) X = ∂c∂x elseif jacobian == :child X = szeros(eltype(xc), 3, 3) end elseif relative == :child # coc if jacobian == :parent X = szeros(eltype(xp), 3, 3) elseif jacobian == :child ∂c∂x = ∂contact_point_origin∂x(xc, qc, collision.origin_child) X = ∂c∂x end end # if jacobian == :parent # FD = FiniteDiff.finite_difference_jacobian(x -> contact_point(relative, collision, x, qp, xc, qc), xp) # elseif jacobian == :child # FD = FiniteDiff.finite_difference_jacobian(x -> contact_point(relative, collision, xp, qp, x, qc), xc) # end # @assert norm(X - FD, Inf) < 1.0e-5 return X end function ∂contact_point∂q(relative::Symbol, jacobian::Symbol, collision::StringCollision, xp, qp, xc, qc) # contact origin points cop = contact_point_origin(xp, qp, collision.origin_parent) coc = contact_point_origin(xc, qc, collision.origin_child) # direction of minimum distance (child to parent) # d = cop - coc # dir = normalize(d) if relative == :parent # cop if jacobian == :parent ∂c∂q = ∂contact_point_origin∂q(xp, qp, collision.origin_parent) Q = ∂c∂q elseif jacobian == :child Q = szeros(eltype(xc), 3, 4) end elseif relative == :child # coc if jacobian == :parent Q = szeros(eltype(xp), 3, 4) elseif jacobian == :child ∂c∂q = ∂contact_point_origin∂q(xc, qc, collision.origin_child) Q = ∂c∂q end end # if jacobian == :parent # FD = FiniteDiff.finite_difference_jacobian(q -> contact_point(relative, collision, xp, Quaternion(q...), xc, qc), vector(qp)) # elseif jacobian == :child # FD = FiniteDiff.finite_difference_jacobian(q -> contact_point(relative, collision, xp, qp, xc, Quaternion(q...)), vector(qc)) # end # @assert norm(Q - FD, Inf) < 1.0e-5 return Q end function contact_normal(collision::StringCollision, xp, qp, xc, qc) # contact points cop = contact_point(:parent, collision, xp, qp, xc, qc) coc = contact_point(:child, collision, xp, qp, xc, qc) # unnormalized direction dir = cop - coc # distance dis = distance(collision, xp, qp, xc, qc) # normalized direction # if dis >= 0.0 return -normalize(dir)' # else # return normalize(dir)' # end end function ∂contact_normal_transpose∂x(jacobian::Symbol, collision::StringCollision, xp, qp, xc, qc) # contact origin points cop = contact_point(:parent, collision, xp, qp, xc, qc) coc = contact_point(:child, collision, xp, qp, xc, qc) # unnormalized direction dir = cop - coc # Jacobians X = ∂normalize∂x(dir) * (∂contact_point∂x(:parent, jacobian, collision, xp, qp, xc, qc) - ∂contact_point∂x(:child, jacobian, collision, xp, qp, xc, qc)) # distance # dis = distance(collision, xp, qp, xc, qc) # normalized direction # if dis >= 0.0 return -X # else # return 1.0 * X # end end function ∂contact_normal_transpose∂q(jacobian::Symbol, collision::StringCollision, xp, qp, xc, qc) # contact origin points cop = contact_point(:parent, collision, xp, qp, xc, qc) coc = contact_point(:child, collision, xp, qp, xc, qc) # unnormalized direction dir = cop - coc Q = ∂normalize∂x(dir) * (∂contact_point∂q(:parent, jacobian, collision, xp, qp, xc, qc) - ∂contact_point∂q(:child, jacobian, collision, xp, qp, xc, qc)) # Jacobians # if jacobian == :parent # FD = FiniteDiff.finite_difference_jacobian(q -> contact_normal(collision, xp, Quaternion(q...), xc, qc)', vector(qp)) # elseif jacobian == :child # FD = FiniteDiff.finite_difference_jacobian(q -> contact_normal(collision, xp, qp, xc, Quaternion(q...))', vector(qc)) # end # distance dis = distance(collision, xp, qp, xc, qc) # @assert norm((dis >= 0.0 ? 1.0 : -1.0) * Q - FD, Inf) < 1.0e-2 # normalized direction # if dis >= 0.0 return -Q # else # return Q # end end
Dojo
https://github.com/dojo-sim/Dojo.jl.git
[ "MIT" ]
0.7.5
104b6a1a358da9b1348ab7cd66ad685ecaca13d4
code
3091
function get_contact_gradients(mechanism::Mechanism{T,Nn,Ne,Nb,Ni}) where {T,Nn,Ne,Nb,Ni} timestep= mechanism.timestep nc = sum(Dojo.data_dim.(mechanism.contacts)) for entry in mechanism.data_matrix.nzval # reset matrix entry.value .= 0.0 end jacobian_data!(mechanism.data_matrix, mechanism) nodes = [mechanism.joints; mechanism.bodies; mechanism.contacts] dimrow = length.(nodes) dimcol = data_dim.(nodes) index_row = [1+sum(dimrow[1:i-1]):sum(dimrow[1:i]) for i in 1:length(dimrow)] index_col = [1+sum(dimcol[1:i-1]):sum(dimcol[1:i]) for i in 1:length(dimcol)] index_state = [index_col[body.id][[14:16; 8:10; 17:19; 11:13]] for body in mechanism.bodies] # ∂ x2 v15 q2 ω15 # index_control = [index_col[joint.id][1:input_dimension(joint)] for joint in mechanism.joints] # ∂ u index_contact = [index_col[contact.id][1:data_dim(contact)] for contact in mechanism.contacts] # ∂ θ datamat = full_matrix(mechanism.data_matrix, false, dimrow, dimcol) solmat = full_matrix(mechanism.system) # data Jacobian data_jacobian = solmat \ datamat #TODO: use pre-factorization # Jacobian jacobian_state = zeros(12Nb,12Nb) # jacobian_control = zeros(12Nb,nu) jacobian_contact = zeros(12Nb,nc) for (i, body) in enumerate(mechanism.bodies) id = body.id # Fill in gradients of v25, ω25 jacobian_state[12*(i-1) .+ [4:6; 10:12],:] += data_jacobian[index_row[id], vcat(index_state...)] # jacobian_control[12*(i-1) .+ [4:6; 10:12],:] += data_jacobian[index_row[id], vcat(index_control...)] jacobian_contact[12*(i-1) .+ [4:6; 10:12],:] += data_jacobian[index_row[id], vcat(index_contact...)] # Fill in gradients of x3, q3 x2 = body.state.x2 q2 = body.state.q2 v25 = body.state.vsol[2] ω25 = body.state.ωsol[2] q3 = next_orientation(q2, ω25, timestep) jacobian_state[12*(i-1) .+ (1:3), :] += linear_integrator_jacobian_velocity(x2, v25, timestep) * data_jacobian[index_row[id][1:3], vcat(index_state...)] jacobian_state[12*(i-1) .+ (1:3), 12*(i-1) .+ (1:3)] += linear_integrator_jacobian_position(x2, v25, timestep) jacobian_state[12*(i-1) .+ (7:9), :] += LVᵀmat(q3)' * rotational_integrator_jacobian_velocity(q2, ω25, timestep) * data_jacobian[index_row[id][4:6], vcat(index_state...)] jacobian_state[12*(i-1) .+ (7:9), 12*(i-1) .+ (7:9)] += LVᵀmat(q3)' * rotational_integrator_jacobian_orientation(q2, ω25, timestep, attjac=true) # jacobian_control[12*(i-1) .+ (1:3),:] += linear_integrator_jacobian_velocity(x2, v25, timestep) * data_jacobian[index_row[id][1:3], vcat(index_control...)] # jacobian_control[12*(i-1) .+ (7:9),:] += LVᵀmat(q3)' * rotational_integrator_jacobian_velocity(q2, ω25, timestep) * data_jacobian[index_row[id][4:6], vcat(index_control...)] jacobian_contact[12*(i-1) .+ (1:3),:] += linear_integrator_jacobian_velocity(x2, v25, timestep) * data_jacobian[index_row[id][1:3], vcat(index_contact...)] jacobian_contact[12*(i-1) .+ (7:9),:] += LVᵀmat(q3)' * rotational_integrator_jacobian_velocity(q2, ω25, timestep) * data_jacobian[index_row[id][4:6], vcat(index_contact...)] end return jacobian_state, jacobian_contact end
Dojo
https://github.com/dojo-sim/Dojo.jl.git
[ "MIT" ]
0.7.5
104b6a1a358da9b1348ab7cd66ad685ecaca13d4
code
16021
################################################################################ # Data Jacobians ################################################################################ function joint_constraint_jacobian_body_data(mechanism::Mechanism, joint::JointConstraint{T,N}, body::Body{T}) where {T,N} Nd = data_dim(body) ∇m = szeros(T,N,1) ∇J = szeros(T,N,6) ∇v15 = szeros(T,N,3) ∇ω15 = szeros(T,N,3) ∇z2 = -constraint_jacobian_configuration(mechanism, joint, body) * integrator_jacobian_configuration(body, mechanism.timestep, attjac=true) ∇g = [∇m ∇J ∇v15 ∇ω15 ∇z2] return ∇g end function body_constraint_jacobian_body_data(mechanism::Mechanism, body::Body{T}) where T Δt = mechanism.timestep N = 6 x1, v15, q1, ω15 = previous_configuration_velocity(body.state) x2, v25, q2, ω25 = current_configuration_velocity(body.state) x3, q3 = next_configuration(body.state, Δt) # Mass gravity=mechanism.gravity ∇m = [1 / Δt * (x2 - x1) + Δt/2 * gravity - 1 / Δt * (x3 - x2) + Δt/2 * gravity; szeros(T,3,1)] # Inertia ∇J = 2 / Δt * LVᵀmat(q2)' * LVᵀmat(q1) * ∂Jp∂J(VLᵀmat(q1) * vector(q2)) ∇J += 2 / Δt * LVᵀmat(q2)' * Tmat() * RᵀVᵀmat(q3) * ∂Jp∂J(VLᵀmat(q2) * vector(q3)) ∇J = [szeros(T,3,6); ∇J] # initial conditions: v15, ω15 ∇v15 = body.mass * SMatrix{3,3,T,9}(Diagonal(sones(T,3))) ∇q1 = -2 / Δt * LVᵀmat(q2)' * ∂LVᵀmat∂q(body.inertia * VLᵀmat(q1) * vector(q2)) ∇q1 += -2 / Δt * LVᵀmat(q2)' * LVᵀmat(q1) * body.inertia * ∂VLᵀmat∂q(vector(q2)) ∇ω15 = ∇q1 * rotational_integrator_jacobian_velocity(q2, -ω15, Δt) ∇15 = [∇v15 szeros(T,3,3); szeros(T,3,3) ∇ω15] # current configuration: z2 = x2, q2 # manipulator's equation contribution ∇tra_x2 = - 2 / Δt * body.mass * SMatrix{3,3,T,9}(Diagonal(sones(T,3))) ∇tra_q2 = szeros(T,3,3) ∇rot_x2 = szeros(T,3,3) ∇rot_q2 = -2 / Δt * VLᵀmat(q2) * LVᵀmat(q1) * body.inertia * VLᵀmat(q1) ∇rot_q2 += -2 / Δt * VLᵀmat(q2) * Tmat() * RᵀVᵀmat(q3) * body.inertia * ∂VLᵀmat∂q(vector(q3)) ∇rot_q2 += -2 / Δt * ∂VLᵀmat∂q(LVᵀmat(q1) * body.inertia * VLᵀmat(q1) * vector(q2) + Tmat() * RᵀVᵀmat(q3) * body.inertia * VLᵀmat(q2) * vector(q3)) ∇rot_q2 *= LVᵀmat(q2) ∇z2 = [∇tra_x2 ∇tra_q2; ∇rot_x2 ∇rot_q2] # @show ∇z2 # TODO # # contact constraints impulses contribution # @warn "000" return [∇m ∇J ∇15 0.0000000000*∇z2] #TODO not sure why we need to zero out this block, maybe finite diff is not correct and we try to match finite diff end function body_constraint_jacobian_body_data(mechanism::Mechanism, pbody::Node{T}, cbody::Node{T}, joint::JointConstraint{T,N,Nc}) where {T,N,Nc} # Jacobian of pbody's dynamics constraints wrt cbody's data (x2b, q2b) # this comes from the fact that the Joint Constraint force mapping of pbody # depends on cbody's data (x2b, q2b) # This is the same for spring and damper forces. timestep= mechanism.timestep ∇z2_aa = szeros(T,6,6) ∇z2_ab = szeros(T,6,6) # joint constraints impulses contribution for i = 1:Nc λ = get_joint_impulses(joint, i) if cbody.id == joint.child_id ∇z2_aa += impulse_map_jacobian(:parent, :parent, (joint.translational, joint.rotational)[i], pbody, cbody, λ) ∇z2_ab += impulse_map_jacobian(:parent, :child, (joint.translational, joint.rotational)[i], pbody, cbody, λ) elseif pbody.id == joint.child_id ∇z2_aa += impulse_map_jacobian(:child, :child, (joint.translational, joint.rotational)[i], cbody, pbody, λ) ∇z2_ab += impulse_map_jacobian(:child, :parent, (joint.translational, joint.rotational)[i], cbody, pbody, λ) end end # spring and damper impulses contribution if joint.spring for i = 1:Nc λ = get_joint_impulses(joint, i) if cbody.id == joint.child_id ∇z2_aa += spring_jacobian_configuration( :parent, :parent, (joint.translational, joint.rotational)[i], pbody, cbody, timestep) ∇z2_ab += spring_jacobian_configuration( :parent, :child, (joint.translational, joint.rotational)[i], pbody, cbody, timestep) elseif pbody.id == joint.child_id ∇z2_aa += spring_jacobian_configuration( :child, :child, (joint.translational, joint.rotational)[i], cbody, pbody, timestep) ∇z2_ab += spring_jacobian_configuration( :child, :parent, (joint.translational, joint.rotational)[i], cbody, pbody, timestep) end end end if joint.damper for i = 1:Nc λ = get_joint_impulses(joint, i) if cbody.id == joint.child_id ∇z2_aa += damper_jacobian_configuration( :parent, :parent, (joint.translational, joint.rotational)[i], pbody, cbody, timestep) ∇z2_ab += damper_jacobian_configuration( :parent, :child, (joint.translational, joint.rotational)[i], pbody, cbody, timestep) elseif pbody.id == joint.child_id ∇z2_aa += damper_jacobian_configuration( :child, :child, (joint.translational, joint.rotational)[i], cbody, pbody, timestep) ∇z2_ab += damper_jacobian_configuration( :child, :parent, (joint.translational, joint.rotational)[i], cbody, pbody, timestep) end end end return [szeros(T,6,13) ∇z2_aa], [szeros(T,6,13) ∇z2_ab] end function body_constraint_jacobian_body_data(mechanism::Mechanism, body::Node{T}, contact::ContactConstraint{T,N,Nc}) where {T,N,Nc} # Jacobian of the Body's dynamics constraints wrt the Body's data (x2, q2) # this comes from the fact that the Contact Constraint force mapping depends # on the Body's data (x2, q2) # contact constraints impulses contribution ∇z3 = impulse_map_jacobian_configuration(mechanism, body, contact) ∇z2 = ∇z3 * integrator_jacobian_configuration(body, mechanism.timestep) return [szeros(T,6,13) ∇z2] end function body_constraint_jacobian_joint_data(mechanism::Mechanism{T}, body::Body{T}, joint::JointConstraint{T}) where {T} Δt = mechanism.timestep Nd = data_dim(joint) N = 6 x1, v15, q1, ω15 = previous_configuration_velocity(body.state) x2, v25, q2, ω25 = current_configuration_velocity(body.state) x3, q3 = next_configuration(body.state, Δt) # ∇u = Diagonal(SVector{6,T}(1,1,1,2,2,2)) * input_jacobian_control(mechanism, joint, body) ∇u = Diagonal(SVector{6,T}(1,1,1,1,1,1)) * input_jacobian_control(mechanism, joint, body) ∇spring = joint.spring ? spring_impulses(mechanism, joint, body, unitary=true) : szeros(T,6,1) ∇damper = joint.damper ? damper_impulses(mechanism, joint, body, unitary=true) : szeros(T,6,1) return [∇u ∇spring ∇damper] end function body_constraint_jacobian_contact_data(mechanism::Mechanism, body::Body{T}, contact::ContactConstraint{T,N,Nc,Cs,N½}) where {T,N,Nc,Cs<:NonlinearContact{T,N},N½} Nd = data_dim(contact) model = contact.model xp3, qp3 = next_configuration(get_body(mechanism, contact.parent_id).state, mechanism.timestep) xc3, qc3 = next_configuration(get_body(mechanism, contact.child_id).state, mechanism.timestep) γ = contact.impulses[2] ∇friction_coefficient = szeros(T,3,1) X = force_mapping(:parent, model, xp3, qp3, xc3, qc3) ∇p = -∂skew∂p(VRmat(qp3) * LᵀVᵀmat(qp3) * X * γ) cn = contact_normal(model.collision, xp3, qp3, xc3, qc3) ∇contact_radius = - ∂skew∂p(VRmat(qp3) * LᵀVᵀmat(qp3) * X * γ) * -rotation_matrix(inv(qp3)) * cn' ∇X = szeros(T,3,Nd) ∇Q = -[∇friction_coefficient ∇contact_radius ∇p] return [∇X; ∇Q] end function contact_constraint_jacobian_contact_data(mechanism::Mechanism, contact::ContactConstraint{T,N,Nc,Cs,N½}, body::Body{T}) where {T,N,Nc,Cs<:NonlinearContact{T,N},N½} Nd = data_dim(contact) model = contact.model xp3, vp25, qp3, ωp25 = next_configuration_velocity(get_body(mechanism, contact.parent_id).state, mechanism.timestep) xc3, vc25, qc3, ωc25 = next_configuration_velocity(get_body(mechanism, contact.child_id).state, mechanism.timestep) γ = contact.impulses[2] ∇friction_coefficient = SA[0,γ[1],0,0] cn = contact_normal(model.collision, xp3, qp3, xc3, qc3) ct = contact_tangent(model.collision, xp3, qp3, xc3, qc3) ∇contact_radius = [-cn; szeros(T,1,3); -ct * skew(vector_rotate(ωp25, qp3))] * cn' ∇p = [cn * rotation_matrix(qp3); szeros(T,1,3); ct * skew(vector_rotate(ωp25, qp3)) * rotation_matrix(qp3)] ∇compμ = szeros(T,N½,Nd) ∇g = -[∇friction_coefficient ∇contact_radius ∇p] return [∇compμ; ∇g] end function contact_constraint_jacobian_body_data(mechanism::Mechanism, contact::ContactConstraint{T,N,Nc,Cs,N½}, body::Body{T}) where {T,N,Nc,Cs,N½} Nd = data_dim(body) ∇compμ = szeros(T,N½,Nd) ∇m = szeros(T,N½,1) ∇J = szeros(T,N½,6) ∇v15 = szeros(T,N½,3) ∇ω15 = szeros(T,N½,3) ∇z3 = - constraint_jacobian_configuration(mechanism, contact, body) # minus sign coming from res = [-compμ; -constraint] ∇z2 = ∇z3 * integrator_jacobian_configuration(body, mechanism.timestep, attjac=true) # 4x7 * 7x6 = 4x6 ∇g = [∇m ∇J ∇v15 ∇ω15 ∇z2] return [∇compμ; ∇g] end ################################################################################ # System Data Jacobians ################################################################################ function data_adjacency_matrix(joints::Vector{<:JointConstraint}, bodies::Vector{<:Body}, contacts::Vector{<:ContactConstraint}) # mode can be impulses or data depending on whi nodes = [joints; bodies; contacts] n = length(nodes) A = zeros(Bool, n, n) for node1 in nodes for node2 in nodes T1 = typeof(node1) T2 = typeof(node2) if T1 <: Body if T2 <: Body (node1.id == node2.id) && (A[node1.id, node2.id] = 1) # self loop linked = length(indirect_link(node1.id, node2.id, [joints; contacts])) > 0 linked && (A[node1.id, node2.id] = 1) # linked through a common joint elseif T2 <: JointConstraint (node1.id == node2.parent_id || node1.id == node2.child_id) && (A[node1.id, node2.id] = 1) # linked elseif T2 <: ContactConstraint (node1.id == node2.parent_id || node1.id == node2.child_id) && (A[node1.id, node2.id] = 1) # linked end elseif T1 <: JointConstraint if T2 <: Body (node2.id == node1.parent_id || node2.id == node1.child_id) && (A[node1.id, node2.id] = 1) # linked end elseif T1 <: ContactConstraint if T2 <: Body (node2.id == node1.parent_id || node2.id == node1.child_id) && (A[node1.id, node2.id] = 1) # linked elseif T2 <: ContactConstraint (node1.id == node2.id) && (A[node1.id, node2.id] = 1) # self loop end end end end A = convert(Matrix{Int64}, A) return A end function indirect_link(id1, id2, nodes::Vector{S}) where {S<:Node} ids = zeros(Int, 0) for node in nodes parent_id = node.parent_id (parent_id === nothing) && (parent_id = 0) #handle the origin's corner case linked = (id1 == node.child_id) && (id2 == parent_id) linked |= (id2 == node.child_id) && (id1 == parent_id) linked && push!(ids, node.id) end return ids end function create_data_matrix(joints::Vector{<:JointConstraint}, bodies::Vector{B}, contacts::Vector{<:ContactConstraint}; force_static::Bool=false) where {T,B<:Body{T}} nodes = [joints; bodies; contacts] A = data_adjacency_matrix(joints, bodies, contacts) dimrow = length.(nodes) dimcol = data_dim.(nodes) N = length(dimrow) static = force_static || (all(dimrow.<=10) && all(dimcol.<=10)) data_matrix = spzeros(Entry,N,N) for i = 1:N for j = 1:N if A[i,j] == 1 data_matrix[i,j] = Entry{T}(dimrow[i], dimcol[j], static = static) end end end return data_matrix end function jacobian_data!(data_matrix::SparseMatrixCSC, mechanism::Mechanism) jacobian_contact_data!(data_matrix, mechanism) jacobian_body_data!(data_matrix, mechanism) jacobian_joint_data!(data_matrix, mechanism) return nothing end function jacobian_contact_data!(data_matrix::SparseMatrixCSC, mechanism::Mechanism{T}) where {T} # ∂body∂ineqcdata for contact in mechanism.contacts pbody = get_body(mechanism, contact.parent_id) data_matrix[pbody.id, contact.id].value += body_constraint_jacobian_contact_data(mechanism, pbody, contact) end # ∂contact∂contactdata for contact in mechanism.contacts pbody = get_body(mechanism, contact.parent_id) data_matrix[contact.id, contact.id].value += contact_constraint_jacobian_contact_data(mechanism, contact, pbody) end return nothing end function jacobian_joint_data!(data_matrix::SparseMatrixCSC, mechanism::Mechanism{T}) where T # ∂body∂jointdata # TODO adapt this to handle cycles for body in mechanism.bodies for joint in mechanism.joints if (body.id == joint.parent_id) || (body.id == joint.child_id) data_matrix[body.id, joint.id].value += body_constraint_jacobian_joint_data(mechanism, body, joint) end end end return nothing end function jacobian_body_data!(data_matrix::SparseMatrixCSC, mechanism::Mechanism{T}) where T # ∂joint∂bodydata # TODO adapt this to handle cycles for body in mechanism.bodies for joint in mechanism.joints if (body.id == joint.parent_id) || (body.id == joint.child_id) data_matrix[joint.id, body.id].value += joint_constraint_jacobian_body_data(mechanism, joint, body) end end end # ∂body∂bodydata for pbody in mechanism.bodies data_matrix[pbody.id, pbody.id].value += body_constraint_jacobian_body_data(mechanism, pbody) for cbody in [mechanism.bodies; mechanism.origin] joint_links = indirect_link(pbody.id, cbody.id, mechanism.joints) joints = [get_joint(mechanism, id) for id in joint_links] for joint in joints ∇11, ∇12 = body_constraint_jacobian_body_data(mechanism, pbody, cbody, joint) (typeof(pbody) <: Body) && (data_matrix[pbody.id, pbody.id].value += ∇11) (typeof(pbody) <: Body && typeof(cbody) <: Body) && (data_matrix[pbody.id, cbody.id].value += ∇12) end # pretty sure this is useless because contact is never linked to two bodies # contact_links = indirect_link(pbody.id, cbody.id, mechanism.contacts) # contacts = [get_joint(mechanism, id) for id in contact_links] # for contact in contacts # data_matrix[pbody.id, cbody.id].value += body_constraint_jacobian_body_data(mechanism, pbody, cbody, contact) # end end end for contact in mechanism.contacts body = get_body(mechanism, contact.parent_id) data_matrix[body.id, body.id].value += body_constraint_jacobian_body_data(mechanism, body, contact) end # ∂contact∂bodydata for contact in mechanism.contacts pbody = get_body(mechanism, contact.parent_id) data_matrix[contact.id, pbody.id].value += contact_constraint_jacobian_body_data(mechanism, contact, pbody) end return nothing end
Dojo
https://github.com/dojo-sim/Dojo.jl.git
[ "MIT" ]
0.7.5
104b6a1a358da9b1348ab7cd66ad685ecaca13d4
code
2518
function get_solution(mechanism::Mechanism{T}) where {T} sol = T[] for (i, joints) in enumerate(mechanism.joints) λ = joints.impulses[2] push!(sol, λ...) end for (i, body) in enumerate(mechanism.bodies) v25 = body.state.vsol[2] ω25 = body.state.ωsol[2] push!(sol, [v25; ω25]...) end for (i, contacts) in enumerate(mechanism.contacts) s = contacts.impulses_dual[2] γ = contacts.impulses[2] push!(sol, [s; γ]...) end return sol end function set_solution!(mechanism::Mechanism{T}, sol::AbstractVector) where T off = 0 for (i,joints) in enumerate(mechanism.joints) nλ = length(joints) λ = sol[off .+ (1:nλ)]; off += nλ joints.impulses[2] = λ end for (i,body) in enumerate(mechanism.bodies) nv = 3 nω = 3 v25 = sol[off .+ (1:nv)]; off += nv ω25 = sol[off .+ (1:nω)]; off += nω body.state.vsol[2] = v25 body.state.ωsol[2] = ω25 end for (i,contacts) in enumerate(mechanism.contacts) N = length(contacts) N½ = Int(N/2) s = sol[off .+ (1:N½)]; off += N½ γ = sol[off .+ (1:N½)]; off += N½ contacts.impulses_dual[2] = s contacts.impulses[2] = γ end return nothing end function evaluate_residual!(mechanism::Mechanism, data::AbstractVector, sol::AbstractVector) system = mechanism.system set_data!(mechanism, data) set_solution!(mechanism, sol) set_entries!(mechanism) return full_vector(system) end function residual_dimension(mechanism::Mechanism) return sum(Vector{Int}(length.(mechanism.joints))) + sum(Vector{Int}(length.(mechanism.bodies))) + sum(Vector{Int}(length.(mechanism.contacts))) end function finite_difference_data_jacobian(mechanism::Mechanism, data::AbstractVector, sol::AbstractVector; δ = 1e-5, verbose=false) mechanism = deepcopy(mechanism) Nd = data_dim(mechanism, attjac=false) Nr = residual_dimension(mechanism) jac = zeros(Nr, Nd) set_data!(mechanism, deepcopy(data)) set_solution!(mechanism, deepcopy(sol)) for i = 1:Nd verbose && println("$i / $ndata") datap = deepcopy(data) datam = deepcopy(data) datap[i] += δ datam[i] -= δ rp = evaluate_residual!(deepcopy(mechanism), datap, deepcopy(sol)) rm = evaluate_residual!(deepcopy(mechanism), datam, deepcopy(sol)) jac[:,i] = (rp - rm) / (2δ) end return jac end
Dojo
https://github.com/dojo-sim/Dojo.jl.git
[ "MIT" ]
0.7.5
104b6a1a358da9b1348ab7cd66ad685ecaca13d4
code
8451
""" maximal_to_minimal_jacobian(mechanism, z) Jacobian of mapping from maximal to minimal representation mechanism: Mechanism z: maximal state """ function maximal_to_minimal_jacobian(mechanism::Mechanism{T,Nn,Ne,Nb,Ni}, z::AbstractVector{Tz}) where {T,Nn,Ne,Nb,Ni,Tz} J = zeros(minimal_dimension(mechanism), maximal_dimension(mechanism) - Nb) timestep= mechanism.timestep row_shift = 0 for joint in mechanism.joints c_shift = 0 v_shift = input_dimension(joint) ichild = joint.child_id - Ne for element in (joint.translational, joint.rotational) nu_element = input_dimension(element) c_idx = row_shift + c_shift .+ (1:nu_element) v_idx = row_shift + v_shift .+ (1:nu_element) xb, vb, qb, ωb = unpack_maximal_state(z, ichild) xb_idx = collect((ichild-1)*12 .+ (1:3)) vb_idx = collect((ichild-1)*12 .+ (4:6)) qb_idx = collect((ichild-1)*12 .+ (7:9)) ωb_idx = collect((ichild-1)*12 .+ (10:12)) if joint.parent_id != 0 iparent = joint.parent_id - Ne xa, va, qa, ωa = unpack_maximal_state(z, iparent) xa_idx = collect((iparent-1)*12 .+ (1:3)) va_idx = collect((iparent-1)*12 .+ (4:6)) qa_idx = collect((iparent-1)*12 .+ (7:9)) ωa_idx = collect((iparent-1)*12 .+ (10:12)) J[c_idx, [xa_idx; qa_idx]] = minimal_coordinates_jacobian_configuration(:parent, element, xa, qa, xb, qb) J[v_idx, [xa_idx; qa_idx]] = minimal_velocities_jacobian_configuration(:parent, element, xa, va, qa, ωa, xb, vb, qb, ωb, timestep) J[v_idx, [va_idx; ωa_idx]] = minimal_velocities_jacobian_velocity(:parent, element, xa, va, qa, ωa, xb, vb, qb, ωb, timestep) else xa, va, qa, ωa = current_configuration_velocity(mechanism.origin.state) end J[c_idx, [xb_idx; qb_idx]] = minimal_coordinates_jacobian_configuration(:child, element, xa, qa, xb, qb) J[v_idx, [xb_idx; qb_idx]] = minimal_velocities_jacobian_configuration(:child, element, xa, va, qa, ωa, xb, vb, qb, ωb, timestep) J[v_idx, [vb_idx; ωb_idx]] = minimal_velocities_jacobian_velocity(:child, element, xa, va, qa, ωa, xb, vb, qb, ωb, timestep) c_shift += nu_element v_shift += nu_element end row_shift += 2 * input_dimension(joint) end return J end """ get_maximal_gradients!(mechanism, z, u; opts) return maximal gradients for mechanism note: this requires simulating the mechanism for one time step mechanism: Mechanism z: state u: input opts: SolverOptions """ function get_maximal_gradients!(mechanism::Mechanism{T,Nn,Ne,Nb,Ni}, z::AbstractVector{T}, u::AbstractVector{T}; opts=SolverOptions()) where {T,Nn,Ne,Nb,Ni} step!(mechanism, z, u, opts=opts) jacobian_state, jacobian_control = get_maximal_gradients(mechanism) return jacobian_state, jacobian_control end function get_maximal_gradients(mechanism::Mechanism{T,Nn,Ne,Nb,Ni}) where {T,Nn,Ne,Nb,Ni} timestep= mechanism.timestep nu = input_dimension(mechanism) for entry in mechanism.data_matrix.nzval # reset matrix entry.value .= 0.0 end jacobian_data!(mechanism.data_matrix, mechanism) nodes = [mechanism.joints; mechanism.bodies; mechanism.contacts] dimrow = length.(nodes) dimcol = data_dim.(nodes) index_row = [1+sum(dimrow[1:i-1]):sum(dimrow[1:i]) for i in 1:length(dimrow)] index_col = [1+sum(dimcol[1:i-1]):sum(dimcol[1:i]) for i in 1:length(dimcol)] index_state = [index_col[body.id][[14:16; 8:10; 17:19; 11:13]] for body in mechanism.bodies] # ∂ x2 v15 q2 ω15 index_control = [index_col[joint.id][1:input_dimension(joint)] for joint in mechanism.joints] # ∂ u datamat = full_matrix(mechanism.data_matrix, false, dimrow, dimcol) solmat = full_matrix(mechanism.system) # data Jacobian data_jacobian = solmat \ datamat #TODO: use pre-factorization # Jacobian jacobian_state = zeros(12Nb,12Nb) jacobian_control = zeros(12Nb,nu) for (i, body) in enumerate(mechanism.bodies) id = body.id # Fill in gradients of v25, ω25 jacobian_state[12*(i-1) .+ [4:6; 10:12],:] += data_jacobian[index_row[id], vcat(index_state...)] jacobian_control[12*(i-1) .+ [4:6; 10:12],:] += data_jacobian[index_row[id], vcat(index_control...)] # Fill in gradients of x3, q3 x2 = body.state.x2 q2 = body.state.q2 v25 = body.state.vsol[2] ω25 = body.state.ωsol[2] q3 = next_orientation(q2, ω25, timestep) jacobian_state[12*(i-1) .+ (1:3), :] += linear_integrator_jacobian_velocity(x2, v25, timestep) * data_jacobian[index_row[id][1:3], vcat(index_state...)] jacobian_state[12*(i-1) .+ (1:3), 12*(i-1) .+ (1:3)] += linear_integrator_jacobian_position(x2, v25, timestep) jacobian_state[12*(i-1) .+ (7:9), :] += LVᵀmat(q3)' * rotational_integrator_jacobian_velocity(q2, ω25, timestep) * data_jacobian[index_row[id][4:6], vcat(index_state...)] jacobian_state[12*(i-1) .+ (7:9), 12*(i-1) .+ (7:9)] += LVᵀmat(q3)' * rotational_integrator_jacobian_orientation(q2, ω25, timestep, attjac=true) jacobian_control[12*(i-1) .+ (1:3),:] += linear_integrator_jacobian_velocity(x2, v25, timestep) * data_jacobian[index_row[id][1:3], vcat(index_control...)] jacobian_control[12*(i-1) .+ (7:9),:] += LVᵀmat(q3)' * rotational_integrator_jacobian_velocity(q2, ω25, timestep) * data_jacobian[index_row[id][4:6], vcat(index_control...)] end return jacobian_state, jacobian_control end """ minimal_to_maximal_jacobian(mechanism, x) Jacobian of mapping from minimal to maximal representation mechanism: Mechanism y: minimal state """ function minimal_to_maximal_jacobian(mechanism::Mechanism{T,Nn,Ne,Nb,Ni}, x::AbstractVector{Tx}) where {T,Nn,Ne,Nb,Ni,Tx} timestep= mechanism.timestep J = zeros(maximal_dimension(mechanism, attjac=true), minimal_dimension(mechanism)) # Compute partials partials = Dict{Vector{Int}, Matrix{T}}() for cnode in mechanism.bodies for joint in parent_joints(mechanism, cnode) pnode = get_node(mechanism, joint.parent_id, origin=true) partials[[cnode.id, joint.id]] = set_minimal_coordinates_velocities_jacobian_minimal(joint, pnode, cnode, timestep) # 12 x 2nu (xvqω x Δxθvω) partials[[cnode.id, pnode.id]] = set_minimal_coordinates_velocities_jacobian_parent(joint, pnode, cnode, timestep) # 12 x 12 (xvqω x xvqω) end end # Index row = [12(i-1)+1:12i for i = 1:Nb] col = [] # ordering joints from root to tree col_idx = zeros(Int,Ne) cnt = 0 for joint in mechanism.joints id = joint.id nu = input_dimension(get_joint(mechanism, id)) nu == 0 && continue # ignore fixed joints cnt += 1 if length(col) > 0 push!(col, col[end][end] .+ (1:2nu)) else push!(col, 1:2nu) end col_idx[id] = cnt end # chain partials together for body in mechanism.bodies for joint in parent_joints(mechanism, body) input_dimension(joint) == 0 && continue pnode = get_node(mechanism, joint.parent_id, origin=true) J[row[body.id-Ne], col[col_idx[joint.id]]] += partials[[body.id, joint.id]] # ∂zi∂θp(i) (pnode.id == 0) && continue # avoid origin J[row[body.id-Ne], :] += partials[[body.id, pnode.id]] * J[row[pnode.id-Ne], :] # ∂zi∂zp(p(i)) * ∂zp(p(i))/∂θ end end return J end """ get_minimal_gradients!(mechanism, y, u; opts) return minimal gradients for mechanism note: this requires simulating the mechanism for one time step mechanism: Mechanism y: state u: input opts: SolverOptions """ function get_minimal_gradients!(mechanism::Mechanism{T}, y::AbstractVector{T}, u::AbstractVector{T}; opts=SolverOptions()) where T # simulate next state step_minimal_coordinates!(mechanism, y, u, opts=opts) return get_minimal_gradients!(mechanism) end function get_minimal_gradients!(mechanism::Mechanism{T}) where T # current maximal state z = get_maximal_state(mechanism) # next maximal state z_next = get_next_state(mechanism) # current minimal state x = maximal_to_minimal(mechanism, z) # maximal dynamics Jacobians maximal_jacobian_state, minimal_jacobian_control = get_maximal_gradients(mechanism) # minimal to maximal Jacobian at current time step (rhs) min_to_max_jacobian_current = minimal_to_maximal_jacobian(mechanism, x) # maximal to minimal Jacobian at next time step (lhs) max_to_min_jacobian_next = maximal_to_minimal_jacobian(mechanism, z_next) # minimal state Jacobian minimal_jacobian_state = max_to_min_jacobian_next * maximal_jacobian_state * min_to_max_jacobian_current # minimal control Jacobian minimal_jacobian_control = max_to_min_jacobian_next * minimal_jacobian_control return minimal_jacobian_state, minimal_jacobian_control end
Dojo
https://github.com/dojo-sim/Dojo.jl.git
[ "MIT" ]
0.7.5
104b6a1a358da9b1348ab7cd66ad685ecaca13d4
code
1194
################################################################################ # Inertia ################################################################################ function lift_inertia(j::SVector{6,T}) where T J = SMatrix{3,3,T,9}( [j[1] j[2] j[3]; j[2] j[4] j[5]; j[3] j[5] j[6]]) end function flatten_inertia(J::SMatrix{3,3,T,9}) where T j = SVector{6,T}([J[1,1], J[1,2], J[1,3], J[2,2], J[2,3], J[3,3]]) end function ∂Jp∂J(p) #∂(J*p)/∂flatten(J) SA[ p[1] p[2] p[3] 0 0 0; 0 p[1] 0 p[2] p[3] 0; 0 0 p[1] 0 p[2] p[3]; ] end function attitude_jacobian(data::AbstractVector, Nb::Int) G = zeros(0,0) for i = 1:Nb x2, v15, q2, ω15 = unpack_data(data[13 * (i-1) .+ (1:13)]) q2 = Quaternion(q2...) G = cat(G, sI(6), LVᵀmat(q2), sI(3), dims = (1,2)) end ndata = length(data) nu = ndata - size(G)[1] G = cat(G, I(nu), dims = (1,2)) return G end function unpack_data(data::AbstractVector) x2 = data[SA[1;2;3]] v15 = data[SA[4;5;6]] q2 = data[SA[7;8;9;10]] ω15 = data[SA[11;12;13]] return x2, v15, q2, ω15 end
Dojo
https://github.com/dojo-sim/Dojo.jl.git
[ "MIT" ]
0.7.5
104b6a1a358da9b1348ab7cd66ad685ecaca13d4
code
2954
function constraint(mechanism::Mechanism{T,Nn,Ne,Nb}, body::Body{T}) where {T,Nn,Ne,Nb} state = body.state timestep= mechanism.timestep mass = body.mass inertia = body.inertia gravity = mechanism.gravity x1, q1 = previous_configuration(state) x2, q2 = current_configuration(state) x3, q3 = next_configuration(state, timestep) # dynamics D1x = - 1.0 / timestep * mass * (x2 - x1) - 0.5 * timestep * (mass * gravity + state.Fext) D2x = 1.0 / timestep * mass * (x3 - x2) - 0.5 * timestep * (mass * gravity + state.Fext) D1q = -2.0 / timestep * LVᵀmat(q2)' * Lmat(q1) * Vᵀmat() * inertia * Vmat() * Lmat(q1)' * vector(q2) - 0.5 * timestep * state.τext D2q = -2.0 / timestep * LVᵀmat(q2)' * Tmat() * Rmat(q3)' * Vᵀmat() * inertia * Vmat() * Lmat(q2)' * vector(q3) - 0.5 * timestep * state.τext dynT = D2x + D1x dynR = D2q + D1q state.d = [dynT; dynR] # inputs state.d -= [state.JF2; state.Jτ2] # impulses for id in connections(mechanism.system, body.id) Ne < id <= Ne + Nb && continue # body impulses!(mechanism, body, get_node(mechanism, id)) end return state.d end function constraint_jacobian_configuration(mechanism::Mechanism{T,Nn,Ne,Nb}, body::Body{T}; reg::T=Dojo.REG) where {T,Nn,Ne,Nb} state = body.state timestep = mechanism.timestep mass = body.mass inertia = body.inertia x2, q2 = current_configuration(state) x3, q3 = next_configuration(state, timestep) I3 = SMatrix{3,3,T,9}(Diagonal(sones(T,3))) Z33 = szeros(T, 3, 3) Z34 = szeros(T, 3, 4) # dynamics dynT = I3 * mass / timestep dynR = -2.0 / timestep * LVᵀmat(q2)' * Tmat() * (∂Rᵀmat∂q(Vᵀmat() * inertia * Vmat() * Lmat(q2)' * vector(q3)) + Rmat(q3)' * Vᵀmat() * inertia * Vmat() * Lmat(q2)') state.D = [[dynT; Z33] [Z34; dynR]] * integrator_jacobian_velocity(body, timestep) state.D += [[reg * I3; Z33] [Z33; reg * I3]] # inputs nothing # impulses for id in connections(mechanism.system, body.id) Ne < id <= Ne + Nb && continue # body impulses_jacobian_velocity!(mechanism, body, get_node(mechanism, id)) end return state.D end function integrator_jacobian_velocity(body::Body{T}, timestep) where T state = body.state x2, v25, q2, ω25 = current_configuration_velocity(state) integrator_jacobian_velocity(x2, v25, q2, ω25, timestep) end function integrator_jacobian_configuration(body::Body{T}, timestep; attjac::Bool=true) where T state = body.state x2, v25, q2, ω25 = current_configuration_velocity(state) integrator_jacobian_configuration(x2, v25, q2, ω25, timestep; attjac=attjac) end # linear system function set_matrix_vector_entries!(mechanism, matrix_entry::Entry, vector_entry::Entry, body::Body) matrix_entry.value = constraint_jacobian_configuration(mechanism, body) vector_entry.value = -constraint(mechanism, body) end
Dojo
https://github.com/dojo-sim/Dojo.jl.git
[ "MIT" ]
0.7.5
104b6a1a358da9b1348ab7cd66ad685ecaca13d4
code
3221
# previous previous_configuration(state::State) = (state.x1, state.q1) previous_configuration_velocity(state::State) = (state.x1, state.v15, state.q1, state.ω15) # current current_position(state::State) = state.x2 current_orientation(state::State) = state.q2 current_configuration(state::State) = (current_position(state), current_orientation(state)) current_velocity(state::State) = (state.vsol[2], state.ωsol[2]) current_configuration_velocity(state::State) = (current_position(state), state.vsol[2], current_orientation(state), state.ωsol[2]) initial_configuration_velocity(state::State) = (current_position(state), state.v15, current_orientation(state), state.ω15) # next next_position(x2::SVector{3}, v25::SVector{3}, timestep::Real) = x2 + v25 * timestep next_orientation(q2::Quaternion, ω25::SVector{3}, timestep::Real) = q2 * quaternion_map(ω25, timestep) * timestep / 2 next_position(state::State, timestep) = next_position(state.x2, state.vsol[2], timestep) next_orientation(state::State, timestep) = next_orientation(state.q2, state.ωsol[2], timestep) next_configuration(state::State, timestep) = (next_position(state, timestep), next_orientation(state, timestep)) next_configuration_velocity(state::State, timestep) = (next_position(state, timestep), state.vsol[2], next_orientation(state, timestep), state.ωsol[2]) # angular velocity function angular_velocity(q1::Quaternion, q2::Quaternion, timestep) 2.0 / timestep * Vmat() * Lᵀmat(q1) * vector(q2) end function ∂angular_velocity∂q1(q1::Quaternion, q2::Quaternion, timestep) 2.0 / timestep * Vmat() * Rmat(q2) * Tmat() end function ∂angular_velocity∂q2(q1::Quaternion, q2::Quaternion, timestep) 2.0 / timestep * Vmat() * Lᵀmat(q1) end # Jacobians function integrator_jacobian_velocity(x2::AbstractVector, v25::AbstractVector, q2::Quaternion, ω25::SVector{3}, timestep::T) where T V = [linear_integrator_jacobian_velocity(x2, v25, timestep) szeros(T,3,3)] Ω = [szeros(T,4,3) rotational_integrator_jacobian_velocity(q2, ω25, timestep)] return [V; Ω] # 7x6 end function integrator_jacobian_configuration(x2::AbstractVector, v25::AbstractVector, q2::Quaternion, ω25::SVector{3}, timestep::T; attjac::Bool=true) where T Z = attjac ? szeros(T,3,3) : szeros(T,3,4) X = [linear_integrator_jacobian_position(x2, v25, timestep) Z] Q = [szeros(T,4,3) rotational_integrator_jacobian_orientation(q2, ω25, timestep; attjac=attjac)] return [X; Q] # 7x6 or 7x7 end function linear_integrator_jacobian_position(x2::AbstractVector, v2::AbstractVector, timestep::T) where T return SMatrix{3,3,T,9}(Diagonal(sones(T, 3))) end function linear_integrator_jacobian_velocity(x2::AbstractVector, v2::AbstractVector, timestep::T) where T return timestep * SMatrix{3,3,T,9}(Diagonal(sones(T,3))) end function rotational_integrator_jacobian_orientation(q2::Quaternion, ω25::SVector{3}, timestep::Real; attjac::Bool = true) M = Rmat(quaternion_map(ω25, timestep) * timestep / 2) attjac && (M *= LVᵀmat(q2)) return M end function rotational_integrator_jacobian_velocity(q2::Quaternion, ω25::SVector{3}, timestep::Real) return Lmat(q2) * quaternion_map_jacobian(ω25, timestep) * timestep / 2 end
Dojo
https://github.com/dojo-sim/Dojo.jl.git
[ "MIT" ]
0.7.5
104b6a1a358da9b1348ab7cd66ad685ecaca13d4
code
18278
""" JointConstraint{T} <: Constraint{T} constraint restricting translational and rotational degrees of freedom between two Body objects. id: a unique identifying number name: a unique identifying name translational: Translational rotational: Rotational spring: flag for joint springs on damper: flag for joint dampers on parent_id: identifying number for parent Body{T} child_id: identifying number for child Body{T} minimal_index: indices for minimal coordinates impulses: joint impulses that maintain constraint between two Body{T} objects """ mutable struct JointConstraint{T,N,Nc,TJ,RJ} <: Constraint{T,N} # ID id::Int64 name::Symbol # joint constraints translational::TJ rotational::RJ # springs and dampers spring::Bool damper::Bool # neighbor IDs parent_id::Int child_id::Int # indices minimal_index::SVector{Nc,SVector{2,Int64}} # indices for minimal coordinates, assumes joints # Nc = 2 THIS IS SPECIAL CASED # impulses impulses::Vector{SVector{N,T}} function JointConstraint(data; name::Symbol=Symbol("joint_" * randstring(4))) @assert data[1][2] == data[2][2] # check parent ids @assert data[1][3] == data[2][3] # check child ids # joints translational = data[1][1] rotational = data[2][1] # IDs parent_id = data[1][2] child_id = data[1][3] # data dype T = typeof(data[1][1]).parameters[1] # set springs & dampers off spring = false damper = false minimal_index = Vector{Int64}[] N = 0 for joint_data in data joint = joint_data[1] # set spring & damper on joint.spring != 0 && (spring = true) joint.damper != 0 && (damper = true) # minimal-coordaintes indices Nλ = joint_length(joint) Nset = impulses_length(joint) if isempty(minimal_index) push!(minimal_index, [1;3-Nλ]) else push!(minimal_index, [last(minimal_index)[2]+1; last(minimal_index)[2]+3-Nλ]) end N += Nset end Nc = 2 impulses = [zeros(T, N) for i=1:2] return new{T,N,Nc,typeof(translational),typeof(rotational)}(getGlobalID(), name, translational, rotational, spring, damper, parent_id, child_id, minimal_index, impulses) end end function Base.show(io::IO, mime::MIME{Symbol("text/plain")}, constraint::JointConstraint) summary(io, constraint) println(io, "") println(io, "id: "*string(constraint.id)) println(io, "name: "*string(constraint.name)) println(io, "spring: "*string(constraint.spring)) println(io, "damper: "*string(constraint.damper)) println(io, "parent_id: "*string(constraint.parent_id)) println(io, "child_id: "*string(constraint.child_id)) println(io, "minimal_index: "*string(constraint.minimal_index)) println(io, "impulses: "*string(constraint.impulses)) end # constraints # @generated function constraint(mechanism, joint::JointConstraint) # pbody = :(get_body(mechanism, joint.parent_id)) # cbody = :(get_body(mechanism, joint.child_id)) # tra = :(constraint(joint.translational, # $pbody, $cbody, # joint.impulses[2][joint_impulse_index(joint,1)], mechanism.μ, mechanism.timestep)) # rot = :(constraint(joint.rotational, # $pbody, $cbody, # joint.impulses[2][joint_impulse_index(joint,2)], mechanism.μ, mechanism.timestep)) # return :(svcat($tra, $rot)) # end function constraint(mechanism, joint::JointConstraint) pbody = get_body(mechanism, joint.parent_id) cbody = get_body(mechanism, joint.child_id) tra = constraint(joint.translational, pbody, cbody, joint.impulses[2][joint_impulse_index(joint,1)], mechanism.μ, mechanism.timestep) rot = constraint(joint.rotational, pbody, cbody, joint.impulses[2][joint_impulse_index(joint,2)], mechanism.μ, mechanism.timestep) return svcat(tra, rot) end # # constraints Jacobians # @generated function constraint_jacobian(joint::JointConstraint) # tra = :(constraint_jacobian(joint.translational, joint.impulses[2][joint_impulse_index(joint, 1)])) # rot = :(constraint_jacobian(joint.rotational, joint.impulses[2][joint_impulse_index(joint, 2)])) # return :(cat($tra, $rot, dims=(1,2))) # end function constraint_jacobian(joint::JointConstraint) tra = constraint_jacobian(joint.translational, joint.impulses[2][joint_impulse_index(joint, 1)]) rot = constraint_jacobian(joint.rotational, joint.impulses[2][joint_impulse_index(joint, 2)]) return diagonal_cat(tra, rot) end @generated function constraint_jacobian_configuration(mechanism, joint::JointConstraint, body::Body) relative = :(body.id == joint.parent_id ? :parent : :child) pbody = :(get_body(mechanism, joint.parent_id)) cbody = :(get_body(mechanism, joint.child_id)) tra = :(constraint_jacobian_configuration($relative, joint.translational, $pbody, $cbody, joint.impulses[2][joint_impulse_index(joint, 1)], mechanism.timestep)) rot = :(constraint_jacobian_configuration($relative, joint.rotational, $pbody, $cbody, joint.impulses[2][joint_impulse_index(joint, 2)], mechanism.timestep)) return :(vcat($tra, $rot)) end # impulses function impulses!(mechanism, body::Body, joint::JointConstraint{T,Nλ}) where {T,Nλ} (Nλ > 0) && (body.state.d -= impulse_map(mechanism, joint, body) * joint.impulses[2]) joint.spring && (body.state.d -= spring_impulses(mechanism, joint, body)) joint.damper && (body.state.d -= damper_impulses(mechanism, joint, body)) return end function impulse_map(mechanism, joint::JointConstraint, body::Body) relative = body.id == joint.parent_id ? :parent : :child pbody = get_body(mechanism, joint.parent_id) cbody = get_body(mechanism, joint.child_id) tra = impulse_map(relative, joint.translational, pbody, cbody, joint.impulses[2][joint_impulse_index(joint, 1)]) rot = impulse_map(relative, joint.rotational, pbody, cbody, joint.impulses[2][joint_impulse_index(joint, 2)]) return hcat(tra, rot) end # @generated function impulse_map(mechanism, joint::JointConstraint, body::Body) # relative = :(body.id == joint.parent_id ? :parent : :child) # pbody = :(get_body(mechanism, joint.parent_id)) # cbody = :(get_body(mechanism, joint.child_id)) # tra = :(impulse_map($relative, joint.translational, # $pbody, $cbody, # joint.impulses[2][joint_impulse_index(joint, 1)])) # rot = :(impulse_map($relative, joint.rotational, # $pbody, $cbody, # joint.impulses[2][joint_impulse_index(joint, 2)])) # return :(hcat($tra, $rot)) # end # impulses Jacobians function impulses_jacobian_velocity!(mechanism, body::Body, joint::JointConstraint) # relative relative = (body.id == joint.parent_id ? :parent : (body.id == joint.child_id ? :child : error())) # time step timestep= mechanism.timestep # bodies pbody = get_body(mechanism, joint.parent_id) cbody = get_body(mechanism, joint.child_id) # springs joint.spring && (body.state.D -= spring_jacobian_velocity(relative, relative, joint.translational, pbody, cbody, timestep)) joint.spring && (body.state.D -= spring_jacobian_velocity(relative, relative, joint.rotational, pbody, cbody, timestep)) # dampers joint.damper && (body.state.D -= damper_jacobian_velocity(relative, relative, joint.translational, pbody, cbody, timestep)) joint.damper && (body.state.D -= damper_jacobian_velocity(relative, relative, joint.rotational, pbody, cbody, timestep)) return end # off-diagonal Jacobians function off_diagonal_jacobians(mechanism, body::Body, joint::JointConstraint) return -impulse_map(mechanism, joint, body), constraint_jacobian_configuration(mechanism, joint, body) * integrator_jacobian_velocity(body, mechanism.timestep) end function off_diagonal_jacobians(mechanism, joint::JointConstraint, body::Body) return constraint_jacobian_configuration(mechanism, joint, body) * integrator_jacobian_velocity(body, mechanism.timestep), -impulse_map(mechanism, joint, body) end function off_diagonal_jacobians(mechanism, pbody::Body, cbody::Body) # time step timestep = mechanism.timestep # dimensions Ne = length(mechanism.joints) Nb = length(mechanism.bodies) Nc = length(mechanism.contacts) # Jacobian jacobian_parent_child = szeros(6, 6) jacobian_child_parent = szeros(6, 6) for connectionid in connections(mechanism.system, pbody.id) # joints if connectionid <= Ne joint = get_node(mechanism, connectionid) if pbody.id == joint.parent_id for element in (joint.translational, joint.rotational) if cbody.id == joint.child_id joint.damper && (jacobian_parent_child -= damper_jacobian_velocity(:parent, :child, element, pbody, cbody, timestep)) joint.damper && (jacobian_child_parent -= damper_jacobian_velocity(:child, :parent, element, pbody, cbody, timestep)) end end elseif cbody.id == joint.parent_id for element in (joint.translational, joint.rotational) if pbody.id == joint.child_id joint.damper && (jacobian_parent_child -= damper_jacobian_velocity(:parent, :child, element, cbody, pbody, timestep)) joint.damper && (jacobian_child_parent -= damper_jacobian_velocity(:child, :parent, element, cbody, pbody, timestep)) end end end end # contacts if connectionid > Ne + Nb contact = get_node(mechanism, connectionid) if pbody.id == contact.parent_id if cbody.id == contact.child_id Jpc = impulse_map_jacobian(:parent, :child, contact.model, pbody, cbody, contact.impulses[2], mechanism.timestep) * integrator_jacobian_velocity(cbody, timestep) Jcp = impulse_map_jacobian(:child, :parent, contact.model, pbody, cbody, contact.impulses[2], mechanism.timestep) * integrator_jacobian_velocity(pbody, timestep) # impulse_map_jacobian_configuration(mechanism, body, contact) * integrator_jacobian_velocity(body, timestep) # impulse_map(mechanism, contact, body) * contact.impulses[2] jacobian_parent_child -= Jpc#damper_jacobian_velocity(:parent, :child, element, pbody, cbody, timestep) jacobian_child_parent -= Jcp#damper_jacobian_velocity(:child, :parent, element, pbody, cbody, timestep) end elseif cbody.id == contact.parent_id if pbody.id == contact.child_id Jpc = impulse_map_jacobian(:parent, :child, contact.model, cbody, pbody, contact.impulses[2], mechanism.timestep) * integrator_jacobian_velocity(pbody, timestep) Jcp = impulse_map_jacobian(:child, :parent, contact.model, cbody, bbody, contact.impulses[2], mechanism.timestep) * integrator_jacobian_velocity(cbody, timestep) jacobian_parent_child -= Jpc #damper_jacobian_velocity(:parent, :child, element, cbody, pbody, timestep) jacobian_child_parent -= Jcp #damper_jacobian_velocity(:child, :parent, element, cbody, pbody, timestep) end end end end return jacobian_parent_child, jacobian_child_parent end # linear system function set_matrix_vector_entries!(mechanism, matrix_entry::Entry, vector_entry::Entry, joint::JointConstraint) matrix_entry.value = constraint_jacobian(joint) vector_entry.value = -constraint(mechanism, joint) end # springs function spring_impulses(mechanism, joint::JointConstraint{T}, body::Body{T}; unitary::Bool=false) where T relative = (body.id == joint.parent_id ? :parent : :child) impulses = szeros(T,6) pbody = get_body(mechanism, joint.parent_id) cbody = get_body(mechanism, joint.child_id) impulses += spring_impulses(relative, joint.translational, pbody, cbody, mechanism.timestep, unitary=unitary) impulses += spring_impulses(relative, joint.rotational, pbody, cbody, mechanism.timestep, unitary=unitary) return impulses end # dampers function damper_impulses(mechanism, joint::JointConstraint{T}, body::Body; unitary::Bool=false) where T relative = (body.id == joint.parent_id ? :parent : :child) impulses = szeros(T,6) pbody = get_body(mechanism, joint.parent_id) cbody = get_body(mechanism, joint.child_id) impulses += damper_impulses(relative, joint.translational, pbody, cbody, mechanism.timestep, unitary=unitary) impulses += damper_impulses(relative, joint.rotational, pbody, cbody, mechanism.timestep, unitary=unitary) return impulses end # inputs function set_input!(joint::JointConstraint{T,N,Nc}, input::AbstractVector) where {T,N,Nc} @assert length(input) == input_dimension(joint) # translational r_idx = SUnitRange(joint.minimal_index[1][1], joint.minimal_index[1][2]) length(r_idx) > 0 && set_input!(joint.translational, input[r_idx]) # rotational r_idx = SUnitRange(joint.minimal_index[2][1], joint.minimal_index[2][2]) length(r_idx) > 0 && set_input!(joint.rotational, input[r_idx]) return end function add_input!(joint::JointConstraint{T,N,Nc}, input::AbstractVector) where {T,N,Nc} @assert length(input) == input_dimension(joint) add_input!(joint.translational, input[SUnitRange(joint.minimal_index[1][1], joint.minimal_index[1][2])]) add_input!(joint.rotational, input[SUnitRange(joint.minimal_index[2][1], joint.minimal_index[2][2])]) return end @generated function input_jacobian_control(mechanism, joint::JointConstraint{T,N,Nc}, body::Body) where {T,N,Nc} relative = :(body.id == joint.parent_id ? :parent : :child) pbody = :(get_body(mechanism, joint.parent_id)) cbody = :(get_body(mechanism, joint.child_id)) rot = :(input_jacobian_control($relative, joint.translational, $pbody, $cbody, mechanism.input_scaling)) tra = :(input_jacobian_control($relative, joint.rotational, $pbody, $cbody, mechanism.input_scaling)) return :(hcat($rot, $tra)) end function input_impulse!(joint::JointConstraint{T,N,Nc}, mechanism, clear::Bool=true) where {T,N,Nc} pbody = get_body(mechanism, joint.parent_id) cbody = get_body(mechanism, joint.child_id) input_impulse!(joint.translational, pbody, cbody, mechanism.input_scaling, clear) input_impulse!(joint.rotational, pbody, cbody, mechanism.input_scaling, clear) return end # minimal @generated function minimal_coordinates(mechanism, joint::JointConstraint{T,N,Nc}) where {T,N,Nc} pbody = :(get_body(mechanism, joint.parent_id)) cbody = :(get_body(mechanism, joint.child_id)) tra = :(minimal_coordinates(joint.translational, $pbody, $cbody)) rot = :(minimal_coordinates(joint.rotational, $pbody, $cbody)) return :(svcat($tra, $rot)) end @generated function minimal_velocities(mechanism, joint::JointConstraint{T,N,Nc}) where {T,N,Nc} pbody = :(get_body(mechanism, joint.parent_id)) cbody = :(get_body(mechanism, joint.child_id)) tra = :(minimal_velocities(joint.translational, $pbody, $cbody, mechanism.timestep)) rot = :(minimal_velocities(joint.rotational, $pbody, $cbody, mechanism.timestep)) return :(svcat($tra, $rot)) end ################################################################################ # Utilities ################################################################################ function get_joint_impulses(joint::JointConstraint{T,N,Nc}, i::Int) where {T,N,Nc} n1 = 1 for j = 1:i-1 n1 += impulses_length((joint.translational, joint.rotational)[j]) end n2 = n1 - 1 + impulses_length((joint.translational, joint.rotational)[i]) λi = SVector{n2-n1+1,T}(joint.impulses[2][SUnitRange(n1,n2)]) return λi end function joint_impulse_index(joint::JointConstraint{T,N,Nc}, i::Int) where {T,N,Nc} s = 0 for j = 1:i-1 element = (joint.translational, joint.rotational)[j] s += impulses_length(element) end joint_impulse_index((joint.translational, joint.rotational)[i], s) end # function reset!(joint::JointConstraint{T,N,Nc}; # scale::T=1.0) where {T,N,Nc} # λ = [] # for (i, element) in enumerate((joint.translational, joint.rotational)) # Nλ = joint_length(element) # Nb = limits_length(element) # push!(λ, [scale * sones(2Nb); szeros(Nλ)]) # end # joint.impulses[1] = vcat(λ...) # joint.impulses[2] = vcat(λ...) # return # end function reset!(joint::JointConstraint{T,N,Nc}; scale::T=1.0) where {T,N,Nc} Nλ_tra = joint_length(joint.translational) Nb_tra = limits_length(joint.translational) Nλ_rot = joint_length(joint.rotational) Nb_rot = limits_length(joint.rotational) joint.impulses[1] = [scale * sones(2Nb_tra); szeros(Nλ_tra); scale * sones(2Nb_rot); szeros(Nλ_rot)] joint.impulses[2] = [scale * sones(2Nb_tra); szeros(Nλ_tra); scale * sones(2Nb_rot); szeros(Nλ_rot)] return end function input_dimension(joint::JointConstraint{T,N,Nc}; ignore_floating_base::Bool=false) where {T,N,Nc} ignore_floating_base && (N == 0) && return 0 N̄ = 0 N̄ = input_dimension(joint.translational) + input_dimension(joint.rotational) return N̄ end
Dojo
https://github.com/dojo-sim/Dojo.jl.git
[ "MIT" ]
0.7.5
104b6a1a358da9b1348ab7cd66ad685ecaca13d4
code
1023
################################################################################ # Impulse Transform ################################################################################ function impulse_transform(relative::Symbol, joint::Joint, xa::AbstractVector, qa::Quaternion, xb::AbstractVector, qb::Quaternion) X, Q = displacement_jacobian_configuration(relative, joint, xa, qa, xb, qb, attjac=true) Diagonal([sones(3); 0.5 * sones(3)]) * transpose([X Q]) #TODO: 0.5 Q end ################################################################################ # Derivatives ################################################################################ function impulse_map_jacobian(relative::Symbol, jacobian::Symbol, joint::Joint, pbody::Node{T}, cbody::Node{T}, λ) where T # ∂(G*λ)/∂(x,q) p = impulse_projector(joint) * λ impulse_transform_jacobian(relative, jacobian, joint, current_configuration(pbody.state)..., current_configuration(cbody.state)..., p) end
Dojo
https://github.com/dojo-sim/Dojo.jl.git
[ "MIT" ]
0.7.5
104b6a1a358da9b1348ab7cd66ad685ecaca13d4
code
6223
""" Joint{T} Abstract type for 3-dimensional constraint between two Body objects """ abstract type Joint{T,Nλ,Nb,N,Nb½} end # joints function joint_constraint(joint::Joint{T}, xa::AbstractVector, qa::Quaternion, xb::AbstractVector, qb::Quaternion, η) where {T} return constraint_mask(joint) * displacement(joint, xa, qa, xb, qb) end function joint_constraint_jacobian_configuration(relative::Symbol, joint::Joint{T}, xa::AbstractVector, qa::Quaternion, xb::AbstractVector, qb::Quaternion, η) where {T} X, Q = displacement_jacobian_configuration(relative, joint, xa, qa, xb, qb, attjac=false) return constraint_mask(joint) * [X Q] end # constraints function constraint(joint::Joint{T,Nλ,0}, xa::AbstractVector, qa::Quaternion, xb::AbstractVector, qb::Quaternion, η, μ) where {T,Nλ} joint_constraint(joint, xa, qa, xb, qb, η) end constraint(joint::Joint, pbody::Node, cbody::Node, λ, μ, timestep) = constraint(joint, next_configuration(pbody.state, timestep)..., next_configuration(cbody.state, timestep)..., λ, μ) # constraint Jacobians function constraint_jacobian(joint::Joint{T,Nλ,0}, η; reg::T=Dojo.REG) where {T,Nλ} return Diagonal(reg * sones(T,Nλ)) end function constraint_jacobian(joint::Joint{T,Nλ,Nb}, η; reg::T=Dojo.REG) where {T,Nλ,Nb} s, γ = split_impulses(joint, η) c1 = [Diagonal(γ + reg * sones(T, Nb)); Diagonal(sones(Nb)); szeros(Nλ, Nb)] c2 = [Diagonal(s + reg * sones(T, Nb)); szeros(Nb, Nb); szeros(Nλ, Nb)] c3 = [szeros(Nb, Nλ); szeros(Nb, Nλ); Diagonal(reg * sones(T, Nλ))] return [c1 c2 c3] end constraint_jacobian_configuration(relative::Symbol, joint::Joint, pbody::Node, cbody::Node, λ, timestep) = constraint_jacobian_configuration(relative, joint, next_configuration(pbody.state, timestep)..., next_configuration(cbody.state, timestep)..., λ) function constraint_jacobian_configuration(relative::Symbol, joint::Joint{T,Nλ,0}, xa::AbstractVector, qa::Quaternion, xb::AbstractVector, qb::Quaternion, η) where {T,Nλ} joint_constraint_jacobian_configuration(relative, joint, xa, qa, xb, qb, η) end # masks constraint_mask(::Joint{T,0}) where T = szeros(T,0,3) constraint_mask(joint::Joint{T,1}) where T = joint.axis_mask3 constraint_mask(joint::Joint{T,2}) where T = [joint.axis_mask1; joint.axis_mask2] constraint_mask(::Joint{T,3}) where T = SMatrix{3,3,T,9}(I) nullspace_mask(::Joint{T,0}) where T = SMatrix{3,3,T,9}(I) nullspace_mask(joint::Joint{T,1}) where T = [joint.axis_mask1; joint.axis_mask2] nullspace_mask(joint::Joint{T,2}) where T = joint.axis_mask3 nullspace_mask(::Joint{T,3}) where T = szeros(T,0,3) # impulse maps impulse_map(relative::Symbol, joint::Joint, pbody::Node, cbody::Node, λ) = impulse_map(relative, joint, current_configuration(pbody.state)..., current_configuration(cbody.state)..., λ) function impulse_map(relative::Symbol, joint::Joint{T,Nλ,Nb}, xa::AbstractVector, qa::Quaternion, xb::AbstractVector, qb::Quaternion, η) where {T,Nλ,Nb} return impulse_transform(relative, joint, xa, qa, xb, qb) * impulse_projector(joint) end function impulse_map(relative::Symbol, joint::Joint{T,Nλ,0}, xa::AbstractVector, qa::Quaternion, xb::AbstractVector, qb::Quaternion, η) where {T,Nλ} J = constraint_jacobian_configuration(relative, joint, xa, qa, xb, qb, η) G = [[Diagonal(sones(T,3)) szeros(T,3,3)]; [szeros(4,3) LVᵀmat(relative == :parent ? qa : qb)]] return Diagonal([sones(3); 0.5 * sones(3)]) * transpose(J * G) end function impulse_projector(joint::Joint{T,Nλ,0}) where {T,Nλ} zerodimstaticadjoint(constraint_mask(joint)) end function impulse_projector(joint::Joint{T,Nλ,Nb}) where {T,Nλ,Nb} zerodimstaticadjoint([szeros(Nb,3); -nullspace_mask(joint); nullspace_mask(joint); constraint_mask(joint)]) end # inputs function set_input!(joint::Joint, input::SVector) joint.input = zerodimstaticadjoint(nullspace_mask(joint)) * input return end set_input!(joint::Joint) = return function add_input!(joint::Joint, input::SVector) joint.input += zerodimstaticadjoint(nullspace_mask(joint)) * input return end add_input!(joint::Joint) = return function input_jacobian_control(relative::Symbol, joint::Joint, pbody::Node, cbody::Node, input_scaling) return input_jacobian_control(relative, joint, current_configuration(pbody.state)..., current_configuration(cbody.state)..., input_scaling) * zerodimstaticadjoint(nullspace_mask(joint)) end # minimal coordinates minimal_coordinates(joint::Joint{T,Nλ}) where {T,Nλ} = szeros(T, 3 - Nλ) function minimal_coordinates(joint::Joint, pbody::Node, cbody::Node) return minimal_coordinates(joint, current_configuration(pbody.state)..., current_configuration(cbody.state)...) end function minimal_velocities(joint::Joint, pnode::Node, cnode::Node, timestep) minimal_velocities(joint, initial_configuration_velocity(pnode.state)..., initial_configuration_velocity(cnode.state)..., timestep) end ################################################################################ # Utilities ################################################################################ Base.length(joint::Joint{T,Nλ}) where {T,Nλ} = Nλ Base.zero(joint::Joint{T,Nλ}) where {T,Nλ} = szeros(T, Nλ, 6) joint_length(joint::Joint{T,Nλ}) where {T,Nλ} = Nλ limits_length(joint::Joint{T,Nλ,Nb}) where {T,Nλ,Nb} = Nb impulses_length(joint::Joint{T,Nλ,Nb,N}) where {T,Nλ,Nb,N} = N function split_impulses(joint::Joint{T,Nλ,Nb}, η) where {T,Nλ,Nb} s = η[SUnitRange(1,Nb)] γ = η[SUnitRange(Nb+1,2*Nb)] return s, γ end function joint_impulse_index(joint::Joint{T,Nλ,Nb,N}, s::Int) where {T,Nλ,Nb,N} ind = SVector{N,Int}(s+1:s+N) return ind end input_dimension(joint::Joint{T,N}) where {T,N} = 3 - N function displacement_jacobian_configuration(relative::Symbol, joint::Joint{T}, xa::AbstractVector, qa::Quaternion, xb::AbstractVector, qb::Quaternion; attjac::Bool=true) where T X, Q = displacement_jacobian_configuration(relative, joint, xa, qa, xb, qb) G = relative == :parent ? LVᵀmat(qa) : LVᵀmat(qb) if attjac Q = Q * G return X, Q::SMatrix{3,3,T,9} else return X, Q::SMatrix{3,4,T,12} end end
Dojo
https://github.com/dojo-sim/Dojo.jl.git
[ "MIT" ]
0.7.5
104b6a1a358da9b1348ab7cd66ad685ecaca13d4
code
2235
function constraint(joint::Joint{T,Nλ,Nb,N,Nb½}, xa::AbstractVector, qa::Quaternion, xb::AbstractVector, qb::Quaternion, η, μ) where {T,Nλ,Nb,N,Nb½} e1 = joint_constraint(joint, xa, qa, xb, qb, η) e2 = minimal_coordinates(joint, xa, qa, xb, qb) s, γ = split_impulses(joint, η) return [ s .* γ .- μ; s[SUnitRange(1,Nb½)] - (joint.joint_limits[2] .- e2); s[SUnitRange(Nb½+1,Nb)] - (e2 .- joint.joint_limits[1]); e1; ] end function constraint_jacobian_configuration(relative::Symbol, joint::Joint{T,Nλ,Nb}, xa::AbstractVector, qa::Quaternion, xb::AbstractVector, qb::Quaternion, η) where {T,Nλ,Nb} ∇comp = szeros(T,Nb,7) ∇mincoord = minimal_coordinates_jacobian_configuration(relative, joint, xa, qa, xb, qb, attjac=false) ∇unlim = joint_constraint_jacobian_configuration(relative, joint, xa, qa, xb, qb, η) return [∇comp; ∇mincoord; -∇mincoord; ∇unlim] end function add_limits(mech::Mechanism, joint::JointConstraint; # NOTE: this only works for joints between serial chains (ie, single child joints) tra_limits=joint.translational.joint_limits, rot_limits=joint.rotational.joint_limits) # update translational tra = joint.translational T = typeof(tra).parameters[1] Nλ = typeof(tra).parameters[2] Nb½ = length(tra_limits[1]) Nb = 2Nb½ N̄λ = 3 - Nλ N = Nλ + 2Nb tra_limit = (Translational{T,Nλ,Nb,N,Nb½,N̄λ}(tra.axis, tra.axis_mask1, tra.axis_mask2, tra.axis_mask3, tra.vertices, tra.spring, tra.damper, tra.spring_offset, tra_limits, tra.spring_type, tra.input), joint.parent_id, joint.child_id) # update rotational rot = joint.rotational T = typeof(rot).parameters[1] Nλ = typeof(rot).parameters[2] Nb½ = length(rot_limits[1]) Nb = 2Nb½ N̄λ = 3 - Nλ N = Nλ + 2Nb rot_limit = (Rotational{T,Nλ,Nb,N,Nb½,N̄λ}(rot.axis, rot.axis_mask1, rot.axis_mask2, rot.axis_mask3, rot.orientation_offset, rot.spring, rot.damper, rot.spring_offset, rot_limits, rot.spring_type, rot.input), joint.parent_id, joint.child_id) JointConstraint((tra_limit, rot_limit); name=joint.name) end
Dojo
https://github.com/dojo-sim/Dojo.jl.git
[ "MIT" ]
0.7.5
104b6a1a358da9b1348ab7cd66ad685ecaca13d4
code
15419
################################################################################ # Coordinates ################################################################################ function minimal_coordinates(joint::JointConstraint, pbody::Node, cbody::Node) Δx = minimal_coordinates(joint.translational, current_configuration(pbody.state)..., current_configuration(cbody.state)...) Δθ = minimal_coordinates(joint.rotational, current_configuration(pbody.state)..., current_configuration(cbody.state)...) return [Δx; Δθ] end function set_minimal_coordinates!(joint::JointConstraint, pnode::Node, cnode::Node, timestep; Δx::AbstractVector=szeros(input_dimension(joint.translational)), Δθ::AbstractVector=szeros(input_dimension(joint.rotational))) set_minimal_coordinates!(joint.rotational, pnode, cnode, timestep; Δθ=Δθ) set_minimal_coordinates!(joint.translational, pnode, cnode, timestep; Δx=Δx) return nothing end function set_minimal_coordinates!(mechanism, joint::JointConstraint{T,N,Nc}, xθ; iter=true, exclude_ids=Int64[]) where {T,N,Nc} # bodies pbody = get_body(mechanism, joint.parent_id) cbody = get_body(mechanism, joint.child_id) # unpack Δx = xθ[SUnitRange(joint.minimal_index[1][1], joint.minimal_index[1][2])] Δθ = xθ[SUnitRange(joint.minimal_index[2][1], joint.minimal_index[2][2])] # set current_coordinates = get_minimal_coordinates(mechanism) set_minimal_coordinates!(joint, pbody, cbody, mechanism.timestep, Δx=Δx, Δθ=Δθ) # recursive update down the kinematic chain if iter for id in recursivedirectchildren!(mechanism.system, joint.id) id in exclude_ids && continue # skip loop joints node = get_node(mechanism, id) if node isa JointConstraint set_minimal_coordinates!(mechanism, node, current_coordinates[id]) end end end end ################################################################################ # Velocities ################################################################################ function minimal_velocities(joint::JointConstraint, pnode::Node, cnode::Node, timestep) Δv = minimal_velocities(joint.translational, pnode, cnode, timestep) Δω = minimal_velocities(joint.rotational, pnode, cnode, timestep) return [Δv; Δω] end function set_minimal_velocities!(joint::JointConstraint, pnode::Node, cnode::Node, timestep; Δv=szeros(input_dimension(joint.translational)), Δω=szeros(input_dimension(joint.rotational))) # get vb, ωb = get_child_velocity(joint, initial_configuration_velocity(pnode.state)..., current_configuration(cnode.state)..., timestep, Δv=Δv, Δω=Δω) # set set_maximal_velocities!(cnode; v=vb, ω=ωb) set_previous_configuration!(cnode, timestep) return nothing end function set_minimal_velocities!(mechanism, joint::JointConstraint{T,N,Nc}, vω) where {T,N,Nc} # bodies pbody = get_body(mechanism, joint.parent_id) cbody = get_body(mechanism, joint.child_id) # unpack Δv = vω[SUnitRange(joint.minimal_index[1][1], joint.minimal_index[1][2])] Δω = vω[SUnitRange(joint.minimal_index[2][1], joint.minimal_index[2][2])] # set set_minimal_velocities!(joint, pbody, cbody, mechanism.timestep, Δv=Δv, Δω=Δω) return end function get_child_velocity(joint::JointConstraint, xa::AbstractVector, va::AbstractVector, qa::Quaternion, ωa::AbstractVector, xb::AbstractVector, qb::Quaternion, timestep; Δv=szeros(input_dimension(joint.translational)), Δω=szeros(input_dimension(joint.rotational))) rot = joint.rotational tra = joint.translational pa = tra.vertices[1] pb = tra.vertices[2] orientation_offset = rot.orientation_offset Arot = zerodimstaticadjoint(nullspace_mask(rot)) Atra = zerodimstaticadjoint(nullspace_mask(tra)) Δx = minimal_coordinates(joint.translational, xa, qa, xb, qb) Δq = inv(orientation_offset) * inv(qa) * qb # 1 step backward in time xa1 = next_position(xa, -va, timestep) qa1 = next_orientation(qa, -ωa, timestep) # Finite difference Δx1 = Δx .- Δv * timestep Δq1 = Δq * inv(axis_angle_to_quaternion(Arot * Δω * timestep)) qb1 = qa1 * orientation_offset * Δq1 xb1 = xa1 + vector_rotate(pa + Atra * Δx1, qa1) - vector_rotate(pb, qb1) # Finite difference vb = (xb - xb1) / timestep ωb = angular_velocity(qb1, qb, timestep) return vb, ωb end ################################################################################ # Coordinates and Velocities ################################################################################ function minimal_coordinates_velocities(joint::JointConstraint, pnode::Node, cnode::Node, timestep) Δxθ = minimal_coordinates(joint, pnode, cnode) Δvω = minimal_velocities(joint, pnode, cnode, timestep) return [Δxθ; Δvω] end function set_minimal_coordinates_velocities!(mechanism::Mechanism, joint::JointConstraint; xmin::AbstractVector=szeros(2*input_dimension(joint))) pnode = get_body(mechanism, joint.parent_id) cnode = get_body(mechanism, joint.child_id) xa = pnode.state.x2 va = pnode.state.v15 qa = pnode.state.q2 ωa = pnode.state.ω15 za = [xa; va; vector(qa); ωa] set_minimal_coordinates_velocities!(joint, pnode, cnode, mechanism.timestep; xmin=xmin, zp=za) end function set_minimal_coordinates_velocities!(joint::JointConstraint, pbody::Node, cbody::Node, timestep; zp::AbstractVector=[pbody.state.x2; pbody.state.v15; vector(pbody.state.q2); pbody.state.ω15], xmin::AbstractVector=szeros(2*input_dimension(joint))) nu = input_dimension(joint) Δx = xmin[SUnitRange(joint.minimal_index[1]...)] Δθ = xmin[SUnitRange(joint.minimal_index[2]...)] Δv = xmin[nu .+ SUnitRange(joint.minimal_index[1]...)] Δω = xmin[nu .+ SUnitRange(joint.minimal_index[2]...)] rot = joint.rotational tra = joint.translational pa = tra.vertices[1] pb = tra.vertices[2] orientation_offset = rot.orientation_offset Arot = zerodimstaticadjoint(nullspace_mask(rot)) Atra = zerodimstaticadjoint(nullspace_mask(tra)) # parent state xa = SVector{3}(zp[SA[1;2;3]]) va = SVector{3}(zp[SA[4;5;6]]) qa = Quaternion(zp[SA[7;8;9;10]]...) ωa = SVector{3}(zp[SA[11;12;13]]) # positions Δq = axis_angle_to_quaternion(Arot * Δθ) qb = qa * orientation_offset * Δq xb = xa + vector_rotate(pa + Atra * Δx, qa) - vector_rotate(pb, qb) # previous configuration xa1 = next_position(xa, -va, timestep) qa1 = next_orientation(qa, -ωa, timestep) # finite-difference configuration Δx1 = Δx .- Δv * timestep Δq1 = Δq * inv(axis_angle_to_quaternion(Arot * Δω * timestep)) qb1 = qa1 * orientation_offset * Δq1 xb1 = xa1 + vector_rotate(pa + Atra * Δx1, qa1) - vector_rotate(pb, qb1) # finite-difference velocity vb = (xb - xb1) / timestep ωb = angular_velocity(qb1, qb, timestep) # set child state cbody.state.x2 = xb cbody.state.v15 = vb cbody.state.q2 = qb cbody.state.ω15 = ωb return [xb; vb; vector(qb); ωb] end function minimal_coordinates_velocities_jacobian_parent(joint::JointConstraint{T}, xa::AbstractVector, va::AbstractVector, qa::Quaternion, ωa::AbstractVector, timestep; Δx=szeros(input_dimension(joint.translational)), Δθ=szeros(input_dimension(joint.rotational)), Δv=szeros(input_dimension(joint.translational)), Δω=szeros(input_dimension(joint.rotational))) where T rot = joint.rotational tra = joint.translational pa = tra.vertices[1] pb = tra.vertices[2] orientation_offset = rot.orientation_offset Arot = zerodimstaticadjoint(nullspace_mask(rot)) Atra = zerodimstaticadjoint(nullspace_mask(tra)) # positions Δq = axis_angle_to_quaternion(Arot * Δθ) qb = qa * orientation_offset * Δq xb = xa + vector_rotate(pa + Atra * Δx, qa) - vector_rotate(pb, qb) # step backward in time xa1 = next_position(xa, -va, timestep) qa1 = next_orientation(qa, -ωa, timestep) # step backward in time Δx1 = Δx .- Δv * timestep Δq1 = Δq * inv(axis_angle_to_quaternion(Arot * Δω * timestep)) qb1 = qa1 * orientation_offset * Δq1 xb1 = xa1 + vector_rotate(pa + Atra * Δx1, qa1) - vector_rotate(pb, qb1) # Jacobians ∂xb∂xa = 1.0 * sI(3) ∂xb∂va = szeros(T, 3, 3) ∂xb∂qa = ∂vector_rotate∂q(pa + Atra * Δx, qa) ∂xb∂qa += -∂vector_rotate∂q(pb, qb) * Rmat(orientation_offset * axis_angle_to_quaternion(Arot * Δθ)) ∂xb∂ωa = szeros(T, 3, 3) ∂qb∂xa = szeros(T, 4, 3) ∂qb∂va = szeros(T, 4, 3) ∂qb∂qa = Rmat(orientation_offset * axis_angle_to_quaternion(Arot * Δθ)) ∂qb∂ωa = szeros(T, 4, 3) ∂vb∂xa = szeros(T, 3, 3) ∂vb∂va = 1.0 * sI(3) ∂vb∂qa = 1.0 / timestep * ∂vector_rotate∂q(pa + Atra * Δx, qa) ∂vb∂qa -= 1.0 / timestep * ∂vector_rotate∂q(pb, qb) * Rmat(orientation_offset * Δq) ∂vb∂qa += -1.0 / timestep * ∂vector_rotate∂q(pa + Atra * Δx1, qa1) * rotational_integrator_jacobian_orientation(qa, -ωa, timestep, attjac=false) ∂vb∂qa += 1.0 / timestep * ∂vector_rotate∂q(pb, qb1) * Rmat(orientation_offset * Δq1) * rotational_integrator_jacobian_orientation(qa, -ωa, timestep, attjac=false) ∂vb∂ωa = 1.0 / timestep * ∂vector_rotate∂q(pa + Atra * Δx1, qa1) * rotational_integrator_jacobian_velocity(qa, -ωa, timestep) ∂vb∂ωa += -1.0 / timestep * ∂vector_rotate∂q(pb, qb1) * Rmat(orientation_offset * Δq1) * rotational_integrator_jacobian_velocity(qa, -ωa, timestep) ∂ωb∂xa = szeros(T, 3, 3) ∂ωb∂va = szeros(T, 3, 3) ∂ωb∂qa = ∂angular_velocity∂q1(qb1, qb, timestep) * Rmat(orientation_offset * Δq1) * rotational_integrator_jacobian_orientation(qa, -ωa, timestep, attjac=false) ∂ωb∂qa += ∂angular_velocity∂q2(qb1, qb, timestep) * Rmat(orientation_offset * Δq) ∂ωb∂ωa = -1.0 * ∂angular_velocity∂q1(qb1, qb, timestep) * Rmat(orientation_offset * Δq1) * rotational_integrator_jacobian_velocity(qa, -ωa, timestep) [ ∂xb∂xa ∂xb∂va ∂xb∂qa ∂xb∂ωa; ∂vb∂xa ∂vb∂va ∂vb∂qa ∂vb∂ωa; ∂qb∂xa ∂qb∂va ∂qb∂qa ∂qb∂ωa; ∂ωb∂xa ∂ωb∂va ∂ωb∂qa ∂ωb∂ωa; ] end function set_minimal_coordinates_velocities_jacobian_parent(joint::JointConstraint, pnode::Node, cnode::Node, timestep) xmin = minimal_coordinates_velocities(joint, pnode, cnode, timestep) qb = current_orientation(cnode.state) xa, va, qa, ωa = initial_configuration_velocity(pnode.state) za = [xa; va; vector(qa); ωa] nu = input_dimension(joint) Δx = xmin[SUnitRange(joint.minimal_index[1]...)] Δθ = xmin[SUnitRange(joint.minimal_index[2]...)] Δv = xmin[nu .+ SUnitRange(joint.minimal_index[1]...)] Δω = xmin[nu .+ SUnitRange(joint.minimal_index[2]...)] J = minimal_coordinates_velocities_jacobian_parent(joint, xa, va, qa, ωa, timestep; Δx=Δx, Δθ=Δθ, Δv=Δv, Δω=Δω) J = cat(Diagonal(sones(6)), LVᵀmat(qb)', Diagonal(sones(3)), dims=(1,2)) * J J = J * cat(Diagonal(sones(6)), LVᵀmat(qa), Diagonal(sones(3)), dims=(1,2)) return J end function minimal_coordinates_velocities_jacobian_minimal(joint::JointConstraint{T}, xa::AbstractVector, va::AbstractVector, qa::Quaternion, ωa::AbstractVector, timestep; Δx=szeros(input_dimension(joint.translational)), Δθ=szeros(input_dimension(joint.rotational)), Δv=szeros(input_dimension(joint.translational)), Δω=szeros(input_dimension(joint.rotational))) where T rot = joint.rotational tra = joint.translational pa = tra.vertices[1] pb = tra.vertices[2] orientation_offset = rot.orientation_offset Arot = zerodimstaticadjoint(nullspace_mask(rot)) Atra = zerodimstaticadjoint(nullspace_mask(tra)) # positions Δq = axis_angle_to_quaternion(Arot * Δθ) qb = qa * orientation_offset * Δq xb = xa + vector_rotate(pa + Atra * Δx, qa) - vector_rotate(pb, qb) # step backward in time xa1 = next_position(xa, -va, timestep) qa1 = next_orientation(qa, -ωa, timestep) # step backward in time Δq = axis_angle_to_quaternion(Arot * Δθ) Δx1 = Δx .- Δv * timestep Δq1 = Δq * inv(axis_angle_to_quaternion(Arot * Δω * timestep)) qb1 = qa1 * orientation_offset * Δq1 xb1 = xa1 + vector_rotate(pa + Atra * Δx1, qa1) - vector_rotate(pb, qb1) # Jacobians ∂xb∂Δx = rotation_matrix(qa) * Atra ∂xb∂Δθ = -∂vector_rotate∂q(pb, qb) * Lmat(qa * orientation_offset) * daxis_angle_to_quaterniondx(Arot * Δθ) * Arot ∂xb∂Δv = szeros(T, 3, input_dimension(joint.translational)) ∂xb∂Δω = szeros(T, 3, input_dimension(joint.rotational)) ∂qb∂Δx = szeros(T, 4, input_dimension(joint.translational)) ∂qb∂Δθ = Lmat(qa * orientation_offset) * daxis_angle_to_quaterniondx(Arot * Δθ) * Arot ∂qb∂Δv = szeros(T, 4, input_dimension(joint.translational)) ∂qb∂Δω = szeros(T, 4, input_dimension(joint.rotational)) ∂vb∂Δx = 1 / timestep * rotation_matrix(qa) * Atra ∂vb∂Δx += -1 / timestep * rotation_matrix(qa1) * Atra ∂vb∂Δθ = -1.0 / timestep * ∂vector_rotate∂q(pb, qb) * Lmat(qa * orientation_offset) * daxis_angle_to_quaterniondx(Arot * Δθ) * Arot ∂vb∂Δθ += 1.0 / timestep * ∂vector_rotate∂q(pb, qb1) * Rmat(inv(axis_angle_to_quaternion(Arot * Δω * timestep))) * Lmat(qa1 * orientation_offset) * daxis_angle_to_quaterniondx(Arot * Δθ) * Arot ∂vb∂Δv = rotation_matrix(qa1) * Atra ∂vb∂Δω = ∂vector_rotate∂q(pb, qb1) * Lmat(qa1 * orientation_offset * Δq) * Tmat() * daxis_angle_to_quaterniondx(Arot * Δω * timestep) * Arot ∂ωb∂Δx = szeros(T, 3, input_dimension(joint.translational)) ∂ωb∂Δθ = ∂angular_velocity∂q1(qb1, qb, timestep) * Rmat(inv(axis_angle_to_quaternion(Arot * Δω * timestep))) * Lmat(qa1 * orientation_offset) * daxis_angle_to_quaterniondx(Arot * Δθ) * Arot ∂ωb∂Δθ += ∂angular_velocity∂q2(qb1, qb, timestep) * Lmat(qa * orientation_offset) * daxis_angle_to_quaterniondx(Arot * Δθ) * Arot ∂ωb∂Δv = szeros(3, input_dimension(joint.translational)) ∂ωb∂Δω = ∂angular_velocity∂q1(qb1, qb, timestep) * Lmat(qa1 * orientation_offset * Δq) * Tmat() * daxis_angle_to_quaterniondx(Arot * Δω * timestep) * Arot * timestep [ ∂xb∂Δx ∂xb∂Δθ ∂xb∂Δv ∂xb∂Δω; ∂vb∂Δx ∂vb∂Δθ ∂vb∂Δv ∂vb∂Δω; ∂qb∂Δx ∂qb∂Δθ ∂qb∂Δv ∂qb∂Δω; ∂ωb∂Δx ∂ωb∂Δθ ∂ωb∂Δv ∂ωb∂Δω; ] end function set_minimal_coordinates_velocities_jacobian_minimal(joint::JointConstraint, pnode::Node, cnode::Node, timestep) xmin = minimal_coordinates_velocities(joint, pnode, cnode, timestep) qb = current_orientation(cnode.state) xa, va, qa, ωa = initial_configuration_velocity(pnode.state) za = [xa; va; vector(qa); ωa] nu = input_dimension(joint) Δx = xmin[SUnitRange(joint.minimal_index[1]...)] Δθ = xmin[SUnitRange(joint.minimal_index[2]...)] Δv = xmin[nu .+ SUnitRange(joint.minimal_index[1]...)] Δω = xmin[nu .+ SUnitRange(joint.minimal_index[2]...)] J = minimal_coordinates_velocities_jacobian_minimal(joint, xa, va, qa, ωa, timestep; Δx=Δx, Δθ=Δθ, Δv=Δv, Δω=Δω) J = cat(Diagonal(sones(6)), LVᵀmat(qb)', Diagonal(sones(3)), dims=(1,2)) * J return J end
Dojo
https://github.com/dojo-sim/Dojo.jl.git
[ "MIT" ]
0.7.5
104b6a1a358da9b1348ab7cd66ad685ecaca13d4
code
420
function orthogonal_rows(axis::AbstractVector) if norm(axis) > 0 axis = normalize(axis) end A = svd(skew(axis)).Vt inds = SA[1; 2; 3] V1 = A[1,inds]' V2 = A[2,inds]' V3 = axis' # instead of A[3,:] for correct sign: abs(axis) = abs(A[3,:]) return V1, V2, V3 end function orthogonal_columns(axis::AbstractVector) V1, V2, V3 = orthogonal_rows(axis) return V1', V2', V3' end
Dojo
https://github.com/dojo-sim/Dojo.jl.git
[ "MIT" ]
0.7.5
104b6a1a358da9b1348ab7cd66ad685ecaca13d4
code
20121
""" Fixed{T} <: JointConstraint{T} fixed connection between two bodies """ Fixed(pbody::Node{T}, cbody::Node{T}; parent_vertex=szeros(T, 3), child_vertex=szeros(T, 3), orientation_offset=one(Quaternion{T})) where T = Translational{T,3}(pbody, cbody; parent_vertex, child_vertex), Rotational{T,3}(pbody, cbody; orientation_offset) """ Prismatic{T} <: JointConstraint{T} one translational degree of freedom between two bodies """ Prismatic(pbody::Node{T}, cbody::Node{T}, axis; parent_vertex=szeros(T, 3), child_vertex=szeros(T, 3), orientation_offset=one(Quaternion{T}), spring=zero(T), damper=zero(T), tra_spring_offset=szeros(T,1), tra_joint_limits=[szeros(T,0), szeros(T,0)]) where T = Translational{T,2}(pbody, cbody; parent_vertex, child_vertex, axis, spring, damper, spring_offset=tra_spring_offset, joint_limits=tra_joint_limits), Rotational{T,3}(pbody, cbody; orientation_offset, spring, damper) """ Planar{T} <: JointConstraint{T} two translational degree of freedom between two bodies """ Planar(pbody::Node{T}, cbody::Node{T}, axis; parent_vertex=szeros(T, 3), child_vertex=szeros(T, 3), orientation_offset=one(Quaternion{T}), spring=zero(T), damper=zero(T), tra_spring_offset=szeros(T,2), tra_joint_limits=[szeros(T,0), szeros(T,0)]) where T = Translational{T,1}(pbody, cbody; parent_vertex, child_vertex, axis, spring, damper, spring_offset=tra_spring_offset, joint_limits=tra_joint_limits), Rotational{T,3}(pbody, cbody; orientation_offset, spring, damper) """ FixedOrientation{T} <: JointConstraint{T} three translational degree of freedom between two bodies """ FixedOrientation(pbody::Node{T}, cbody::Node{T}; orientation_offset=one(Quaternion{T}), spring=zero(T), damper=zero(T), tra_spring_offset=szeros(T,3), tra_joint_limits=[szeros(T,0), szeros(T,0)]) where T = Translational{T,0}(pbody, cbody; spring, damper, spring_offset=tra_spring_offset, joint_limits=tra_joint_limits), Rotational{T,3}(pbody, cbody; orientation_offset, spring, damper) """ Revolute{T} <: JointConstraint{T} one rotational degree of freedom between two bodies """ Revolute(pbody::Node{T}, cbody::Node{T}, axis; parent_vertex=szeros(T, 3), child_vertex=szeros(T, 3), orientation_offset=one(Quaternion{T}), spring=zero(T), damper=zero(T), rot_spring_offset=szeros(T,1), rot_joint_limits=[szeros(T,0), szeros(T,0)], spring_type=:linear) where T = Translational{T,3}(pbody, cbody; parent_vertex, child_vertex, spring, damper), Rotational{T,2}(pbody, cbody; axis, orientation_offset, spring, damper, spring_offset=rot_spring_offset, joint_limits=rot_joint_limits, spring_type=spring_type) """ Cylindrical{T} <: JointConstraint{T} one translational and one rotational degree of freedom between two bodies """ Cylindrical(pbody::Node{T}, cbody::Node{T}, axis; parent_vertex=szeros(T, 3), child_vertex=szeros(T, 3), orientation_offset=one(Quaternion{T}), spring=zero(T), damper=zero(T), tra_spring_offset=szeros(T,1), rot_spring_offset=szeros(T,1), rot_joint_limits=[szeros(T,0), szeros(T,0)], tra_joint_limits=[szeros(T,0), szeros(T,0)], spring_type=:linear) where T = Translational{T,2}(pbody, cbody; parent_vertex, child_vertex, axis, spring, damper, spring_offset=tra_spring_offset, joint_limits=tra_joint_limits), Rotational{T,2}(pbody, cbody; axis, orientation_offset, spring, damper, spring_offset=rot_spring_offset, joint_limits=rot_joint_limits, spring_type=spring_type) """ PlanarAxis{T} <: JointConstraint{T} two translational and one rotational degree of freedom between two bodies """ PlanarAxis(pbody::Node{T}, cbody::Node{T}, axis; parent_vertex=szeros(T, 3), child_vertex=szeros(T, 3), orientation_offset=one(Quaternion{T}), spring=zero(T), damper=zero(T), tra_spring_offset=szeros(T,2), rot_spring_offset=szeros(T,1), rot_joint_limits=[szeros(T,0), szeros(T,0)], tra_joint_limits=[szeros(T,0), szeros(T,0)], spring_type=:linear) where T = Translational{T,1}(pbody, cbody; parent_vertex, child_vertex, axis, spring, damper, spring_offset=tra_spring_offset, joint_limits=tra_joint_limits), Rotational{T,2}(pbody, cbody; axis, orientation_offset, spring, damper, spring_offset=rot_spring_offset, joint_limits=rot_joint_limits, spring_type=spring_type) """ FreeRevolute{T} <: JointConstraint{T} free translation with rotation along one axis """ FreeRevolute(pbody::Node{T}, cbody::Node{T}, axis; parent_vertex=szeros(T, 3), child_vertex=szeros(T, 3), orientation_offset=one(Quaternion{T}), spring=zero(T), damper=zero(T), tra_spring_offset=szeros(T,3), rot_spring_offset=szeros(T,1), rot_joint_limits=[szeros(T,0), szeros(T,0)], tra_joint_limits=[szeros(T,0), szeros(T,0)], spring_type=:linear) where T = Translational{T,0}(pbody, cbody; spring, damper, spring_offset=tra_spring_offset, joint_limits=tra_joint_limits), Rotational{T,2}(pbody, cbody; axis, orientation_offset, spring, damper, spring_offset=rot_spring_offset, joint_limits=rot_joint_limits, spring_type=spring_type) """ Orbital{T} <: JointConstraint{T} two rotational degrees of freedom between two bodies """ Orbital(pbody::Node{T}, cbody::Node{T}, axis; parent_vertex=szeros(T, 3), child_vertex=szeros(T, 3), orientation_offset=one(Quaternion{T}), spring=zero(T), damper=zero(T), rot_spring_offset=szeros(T,2), rot_joint_limits=[szeros(T,0), szeros(T,0)], spring_type=:linear) where T = Translational{T,3}(pbody, cbody; parent_vertex, child_vertex, axis, spring, damper), Rotational{T,1}(pbody, cbody; axis, orientation_offset, spring, damper, spring_offset=rot_spring_offset, joint_limits=rot_joint_limits, spring_type=spring_type) """ PrismaticOrbital{T} <: JointConstraint{T} one translational and two rotational degrees of freedom between two bodies """ PrismaticOrbital(pbody::Node{T}, cbody::Node{T}, axis; parent_vertex=szeros(T, 3), child_vertex=szeros(T, 3), orientation_offset=one(Quaternion{T}), spring=zero(T), damper=zero(T), tra_spring_offset=szeros(T,1), rot_spring_offset=szeros(T,2), rot_joint_limits=[szeros(T,0), szeros(T,0)], tra_joint_limits=[szeros(T,0), szeros(T,0)], spring_type=:linear) where T = Translational{T,2}(pbody, cbody; parent_vertex, child_vertex, axis, spring, damper, spring_offset=tra_spring_offset, joint_limits=tra_joint_limits), Rotational{T,1}(pbody, cbody; axis, orientation_offset, spring, damper, spring_offset=rot_spring_offset, joint_limits=rot_joint_limits, spring_type=spring_type) """ PlanarOrbital{T} <: JointConstraint{T} two translational and two rotational degrees of freedom between two bodies """ PlanarOrbital(pbody::Node{T}, cbody::Node{T}, axis; parent_vertex=szeros(T, 3), child_vertex=szeros(T, 3), orientation_offset=one(Quaternion{T}), spring=zero(T), damper=zero(T), tra_spring_offset=szeros(T,2), rot_spring_offset=szeros(T,2), rot_joint_limits=[szeros(T,0), szeros(T,0)], tra_joint_limits=[szeros(T,0), szeros(T,0)], spring_type=:linear) where T = Translational{T,1}(pbody, cbody; parent_vertex, child_vertex, axis, spring, damper, spring_offset=tra_spring_offset, joint_limits=tra_joint_limits), Rotational{T,1}(pbody, cbody; axis, orientation_offset, spring, damper, spring_offset=rot_spring_offset, joint_limits=rot_joint_limits, spring_type=spring_type) """ FreeOrbital{T} <: JointConstraint{T} three translational and two rotational degrees of freedom between two bodies """ FreeOrbital(pbody::Node{T}, cbody::Node{T}, axis; parent_vertex=szeros(T, 3), child_vertex=szeros(T, 3), orientation_offset=one(Quaternion{T}), spring=zero(T), damper=zero(T), tra_spring_offset=szeros(T,3), rot_spring_offset=szeros(T,2), rot_joint_limits=[szeros(T,0), szeros(T,0)], tra_joint_limits=[szeros(T,0), szeros(T,0)], spring_type=:linear) where T = Translational{T,0}(pbody, cbody; spring, damper, spring_offset=tra_spring_offset, joint_limits=tra_joint_limits), Rotational{T,1}(pbody, cbody; axis, orientation_offset, spring, damper, spring_offset=rot_spring_offset, joint_limits=rot_joint_limits, spring_type=spring_type) """ Spherical{T} <: JointConstraint{T} three rotational degrees of freedom between two bodies """ Spherical(pbody::Node{T}, cbody::Node{T}; parent_vertex=szeros(T, 3), child_vertex=szeros(T, 3), orientation_offset=one(Quaternion{T}), spring=zero(T), damper=zero(T), rot_spring_offset=szeros(T,3), rot_joint_limits=[szeros(T,0), szeros(T,0)], spring_type=:linear) where T = Translational{T,3}(pbody, cbody; parent_vertex, child_vertex, spring, damper), Rotational{T,0}(pbody, cbody; orientation_offset, spring, damper, spring_offset=rot_spring_offset, joint_limits=rot_joint_limits, spring_type=spring_type) """ CylindricalFree{T} <: JointConstraint{T} one translational and three rotational degrees of freedom between two bodies """ CylindricalFree(pbody::Node{T}, cbody::Node{T}, axis; parent_vertex=szeros(T, 3), child_vertex=szeros(T, 3), spring=zero(T), damper=zero(T), tra_spring_offset=szeros(T,1), rot_spring_offset=szeros(T,3), rot_joint_limits=[szeros(T,0), szeros(T,0)], tra_joint_limits=[szeros(T,0), szeros(T,0)], spring_type=:linear) where T = Translational{T,2}(pbody, cbody; parent_vertex, child_vertex, axis, spring, damper, spring_offset=tra_spring_offset, joint_limits=tra_joint_limits), Rotational{T,0}(pbody, cbody; spring, damper, spring_offset=rot_spring_offset, joint_limits=rot_joint_limits, spring_type=spring_type) """ PlanarFree{T} <: JointConstraint{T} two translational and three rotational degrees of freedom between two bodies """ PlanarFree(pbody::Node{T}, cbody::Node{T}, axis; parent_vertex=szeros(T, 3), child_vertex=szeros(T, 3), spring=zero(T), damper= zero(T), tra_spring_offset=szeros(T,2), rot_spring_offset=szeros(T,3), rot_joint_limits=[szeros(T,0), szeros(T,0)], tra_joint_limits=[szeros(T,0), szeros(T,0)], spring_type=:linear) where T = Translational{T,1}(pbody, cbody; parent_vertex, child_vertex, axis, spring, damper, spring_offset=tra_spring_offset, joint_limits=tra_joint_limits), Rotational{T,0}(pbody, cbody; spring, damper, spring_offset=rot_spring_offset, joint_limits=rot_joint_limits, spring_type=spring_type) """ Floating{T} <: JointConstraint{T} no restricted degrees of freedom between two bodies """ Floating(pbody::Node{T}, cbody::Node{T}; spring=zero(T), damper=zero(T), tra_spring_offset=szeros(T,3), rot_spring_offset=szeros(T,3), rot_joint_limits=[szeros(T,0), szeros(T,0)], tra_joint_limits=[szeros(T,0), szeros(T,0)], spring_type=:linear) where T = Translational{T,0}(pbody, cbody; spring, damper, spring_offset=tra_spring_offset, joint_limits=tra_joint_limits), Rotational{T,0}(pbody, cbody; spring, damper, spring_offset=rot_spring_offset, joint_limits=rot_joint_limits, spring_type=spring_type) function Prototype(joint_type::Symbol, pbody::Node{T}, cbody::Node{T}, axis; parent_vertex=szeros(T, 3), child_vertex=szeros(T, 3), orientation_offset=one(Quaternion{T}), spring=zero(T), damper=zero(T), tra_spring_offset=nothing, rot_spring_offset=nothing, tra_joint_limits=[szeros(T,0), szeros(T,0)], rot_joint_limits=[szeros(T,0), szeros(T,0)], spring_type=:linear) where T N̄tra, N̄rot = nullspace_dimension(joint_type) (tra_spring_offset === nothing) && (tra_spring_offset = szeros(T,N̄tra)) (rot_spring_offset === nothing) && (rot_spring_offset = szeros(T,N̄rot)) (joint_type == :Fixed) && (return Fixed(pbody, cbody; parent_vertex=parent_vertex, child_vertex=child_vertex, orientation_offset=orientation_offset)) (joint_type == :Prismatic) && (return Prismatic(pbody, cbody, axis; parent_vertex=parent_vertex, child_vertex=child_vertex, orientation_offset=orientation_offset, spring=spring, damper=damper, tra_spring_offset=tra_spring_offset, tra_joint_limits=tra_joint_limits)) (joint_type == :Planar) && (return Planar(pbody, cbody, axis; parent_vertex=parent_vertex, child_vertex=child_vertex, orientation_offset=orientation_offset, spring=spring, damper=damper, tra_spring_offset=tra_spring_offset, tra_joint_limits=tra_joint_limits)) (joint_type == :FixedOrientation) && (return FixedOrientation(pbody, cbody; orientation_offset=orientation_offset, spring=spring, damper=damper, tra_spring_offset=tra_spring_offset, tra_joint_limits=tra_joint_limits)) (joint_type == :Revolute) && (return Revolute(pbody, cbody, axis; parent_vertex=parent_vertex, child_vertex=child_vertex, orientation_offset=orientation_offset, spring=spring, damper=damper, rot_spring_offset=rot_spring_offset, rot_joint_limits=rot_joint_limits, spring_type=spring_type)) (joint_type == :Cylindrical) && (return Cylindrical(pbody, cbody, axis; parent_vertex=parent_vertex, child_vertex=child_vertex, orientation_offset=orientation_offset, spring=spring, damper=damper, tra_spring_offset=tra_spring_offset, rot_spring_offset=rot_spring_offset, tra_joint_limits=tra_joint_limits, rot_joint_limits=rot_joint_limits, spring_type=spring_type)) (joint_type == :PlanarAxis) && (return PlanarAxis(pbody, cbody, axis; parent_vertex=parent_vertex, child_vertex=child_vertex, orientation_offset=orientation_offset, spring=spring, damper=damper, tra_spring_offset=tra_spring_offset, rot_spring_offset=rot_spring_offset, tra_joint_limits=tra_joint_limits, rot_joint_limits=rot_joint_limits, spring_type=spring_type)) (joint_type == :FreeRevolute) && (return FreeRevolute(pbody, cbody, axis; parent_vertex=parent_vertex, child_vertex=child_vertex, orientation_offset=orientation_offset, spring=spring, damper=damper, tra_spring_offset=tra_spring_offset, rot_spring_offset=rot_spring_offset, tra_joint_limits=tra_joint_limits, rot_joint_limits=rot_joint_limits, spring_type=spring_type)) (joint_type == :Orbital) && (return Orbital(pbody, cbody, axis; parent_vertex=parent_vertex, child_vertex=child_vertex, orientation_offset=orientation_offset, spring=spring, damper=damper, rot_spring_offset=rot_spring_offset, rot_joint_limits=rot_joint_limits, spring_type=spring_type)) (joint_type == :PrismaticOrbital) && (return PrismaticOrbital(pbody, cbody, axis; parent_vertex=parent_vertex, child_vertex=child_vertex, orientation_offset=orientation_offset, spring=spring, damper=damper, tra_spring_offset=tra_spring_offset, rot_spring_offset=rot_spring_offset, tra_joint_limits=tra_joint_limits, rot_joint_limits=rot_joint_limits, spring_type=spring_type)) (joint_type == :PlanarOrbital) && (return PlanarOrbital(pbody, cbody, axis; parent_vertex=parent_vertex, child_vertex=child_vertex, orientation_offset=orientation_offset, spring=spring, damper=damper, tra_spring_offset=tra_spring_offset, rot_spring_offset=rot_spring_offset, tra_joint_limits=tra_joint_limits, rot_joint_limits=rot_joint_limits, spring_type=spring_type)) (joint_type == :FreeOrbital) && (return FreeOrbital(pbody, cbody, axis; parent_vertex=parent_vertex, child_vertex=child_vertex, orientation_offset=orientation_offset, spring=spring, damper=damper, tra_spring_offset=tra_spring_offset, rot_spring_offset=rot_spring_offset, tra_joint_limits=tra_joint_limits, rot_joint_limits=rot_joint_limits, spring_type=spring_type)) (joint_type == :Spherical) && (return Spherical(pbody, cbody; parent_vertex=parent_vertex, child_vertex=child_vertex, orientation_offset=orientation_offset, spring=spring, damper=damper, rot_spring_offset=rot_spring_offset, rot_joint_limits=rot_joint_limits, spring_type=spring_type)) (joint_type == :CylindricalFree) && (return CylindricalFree(pbody, cbody, axis; parent_vertex=parent_vertex, child_vertex=child_vertex, spring=spring, damper=damper, tra_spring_offset=tra_spring_offset, rot_spring_offset=rot_spring_offset, tra_joint_limits=tra_joint_limits, rot_joint_limits=rot_joint_limits, spring_type=spring_type)) (joint_type == :PlanarFree) && (return PlanarFree(pbody, cbody, axis; parent_vertex=parent_vertex, child_vertex=child_vertex, spring=spring, damper=damper, tra_spring_offset=tra_spring_offset, rot_spring_offset=rot_spring_offset, tra_joint_limits=tra_joint_limits, rot_joint_limits=rot_joint_limits, spring_type=spring_type)) (joint_type == :Floating) && (return Floating(pbody, cbody; spring=spring, damper=damper, tra_spring_offset=tra_spring_offset, rot_spring_offset=rot_spring_offset, tra_joint_limits=tra_joint_limits, rot_joint_limits=rot_joint_limits, spring_type=spring_type)) end function nullspace_dimension(joint_type::Symbol) (joint_type == :Fixed) && (return 0, 0) (joint_type == :Prismatic) && (return 1, 0) (joint_type == :Planar) && (return 2, 0) (joint_type == :FixedOrientation) && (return 3, 0) (joint_type == :Revolute) && (return 0, 1) (joint_type == :Cylindrical) && (return 1, 1) (joint_type == :PlanarAxis) && (return 2, 1) (joint_type == :FreeRevolute) && (return 3, 1) (joint_type == :Orbital) && (return 0, 2) (joint_type == :PrismaticOrbital) && (return 1, 2) (joint_type == :PlanarOrbital) && (return 2, 2) (joint_type == :FreeOrbital) && (return 3, 2) (joint_type == :Spherical) && (return 0, 3) (joint_type == :CylindricalFree) && (return 1, 3) (joint_type == :PlanarFree) && (return 2, 3) (joint_type == :Floating) && (return 3, 3) end
Dojo
https://github.com/dojo-sim/Dojo.jl.git
[ "MIT" ]
0.7.5
104b6a1a358da9b1348ab7cd66ad685ecaca13d4
code
3038
""" Rotational{T} <: Joint{T} constraint limiting rotational degrees of freedom axis: rotation axis in parent offset frame axis_mask1: rotation axis mask in pbody's frame axis_mask2: rotation axis mask in pbody's frame axis_mask3: rotation axis mask in pbody's frame orientation_offset: rotation axis offset from pbody's frame spring :coefficient for joint spring damper: coefficient for joint damper spring_offset: nominal joint configuration joint_limits: lower and upper limits on the joint configuration spring_type: can be :linear or :sinusoidal (currently not implemented), if linear then we need joint_limits to avoid the 360° singularity. input: external impulse torque """ mutable struct Rotational{T,Nλ,Nb,N,Nb½,N̄λ} <: Joint{T,Nλ,Nb,N,Nb½} axis::SVector{3,T} # rotation axis in parent offset frame axis_mask1::Adjoint{T,SVector{3,T}} # in pbody's frame axis_mask2::Adjoint{T,SVector{3,T}} # in pbody's frame axis_mask3::Adjoint{T,SVector{3,T}} # in pbody's frame orientation_offset::Quaternion{T} # in pbody's frame spring::T damper::T spring_offset::SVector{N̄λ,T} joint_limits::Vector{SVector{Nb½,T}} # lower and upper limits on the joint minimal coordinate angles spring_type::Symbol # the rotational springs can be :linear or :sinusoidal (currently not implemented), if linear then we need joint_limits to avoid the 360° singularity. input::SVector{3,T} # joint input. torque if mechanism.input_scaling = timestep, impulse if mechanism.input_scaling = 1 end function Base.show(io::IO, mime::MIME{Symbol("text/plain")}, joint::Rotational{T,N}) where {T,N} summary(io, joint) println(io,"") println(io, " axis: "*string(joint.axis)) println(io, " axis_mask1: "*string(joint.axis_mask1)) println(io, " axis_mask2: "*string(joint.axis_mask2)) println(io, " axis_mask3: "*string(joint.axis_mask3)) println(io, " orientation_offset: "*string(joint.orientation_offset)) println(io, " spring: "*string(joint.spring)) println(io, " damper: "*string(joint.damper)) println(io, " spring_offset: "*string(joint.spring_offset)) println(io, " joint_limits: "*string(joint.joint_limits)) println(io, " spring_type: "*string(joint.spring_type)) println(io, " input: "*string(joint.input)) end function Rotational{T,Nλ}(pbody::Node, cbody::Node; axis::AbstractVector=szeros(T,3), orientation_offset::Quaternion=one(Quaternion{T}), spring=zero(T), damper=zero(T), spring_offset=szeros(T,3-Nλ), joint_limits=[szeros(T,0), szeros(T,0)], spring_type::Symbol=:linear) where {T,Nλ} V1, V2, V3 = orthogonal_rows(axis) input = zeros(T,3) Nb½ = length(joint_limits[1]) Nb = 2Nb½ N̄λ = 3 - Nλ N = Nλ + 2Nb Rotational{T,Nλ,Nb,N,Nb½,N̄λ}(axis, V1, V2, V3, orientation_offset, spring, damper, spring_offset, joint_limits, spring_type, input), pbody.id, cbody.id end
Dojo
https://github.com/dojo-sim/Dojo.jl.git
[ "MIT" ]
0.7.5
104b6a1a358da9b1348ab7cd66ad685ecaca13d4
code
4606
############################################################################### # Damper Force ############################################################################### function damper_force(relative::Symbol, joint::Rotational{T}, qa::Quaternion, ωa::AbstractVector, qb::Quaternion, ωb::AbstractVector, timestep; rotate::Bool=true, unitary::Bool=false) where T damper = unitary ? 1.0 : joint.damper A = nullspace_mask(joint) Aᵀ = zerodimstaticadjoint(A) orientation_offset = joint.orientation_offset velocity = minimal_velocities(joint, szeros(3), szeros(3), qa, ωa, szeros(3), szeros(3), qb, ωb, timestep) if relative == :parent force = 1.0 * damper * Aᵀ * velocity # currently assumes same damper constant in all directions rotate && (force = vector_rotate(force, orientation_offset)) # rotate back to frame a return [szeros(T, 3); force] elseif relative == :child force = - 1.0 * damper * Aᵀ * velocity # currently assumes same damper constant in all directions rotate && (force = vector_rotate(force, inv(qb) * qa * orientation_offset)) # rotate back to frame b return [szeros(T, 3); force] end end damper_impulses(relative::Symbol, joint::Rotational, pbody::Node, cbody::Node, timestep; unitary::Bool=false) = timestep * damper_force(relative, joint, current_configuration(pbody.state)[2], pbody.state.ωsol[2], current_configuration(cbody.state)[2], cbody.state.ωsol[2], timestep, unitary=unitary) damper_impulses(relative::Symbol, joint::Rotational{T,3}, pbody::Node, cbody::Node, timestep; unitary::Bool=false) where T = szeros(T, 6) ############################################################################### # Damper Jacobians ################################################################################ function damper_jacobian_configuration(relative::Symbol, jacobian::Symbol, joint::Rotational, pbody::Node, cbody::Node, timestep::T; ) where T Aᵀ = zerodimstaticadjoint(nullspace_mask(joint)) xa, va, qa, ωa = current_configuration_velocity(pbody.state) xb, vb, qb, ωb = current_configuration_velocity(cbody.state) orientation_offset = joint.orientation_offset X = szeros(T, 3, 3) Z = szeros(T, 3, 6) force = damper_force(relative, joint, qa, ωa, qb, ωb, timestep; rotate = false)[SUnitRange(4,6)] ∂vel = minimal_velocities_jacobian_configuration(jacobian, joint, xa, va, qa, ωa, xb, vb, qb, ωb, timestep)[:, SUnitRange(4,6)] if relative == :parent Q = rotation_matrix(orientation_offset) * 1.0000 * joint.damper * Aᵀ * ∂vel elseif relative == :child Q = rotation_matrix(inv(qb) * qa * orientation_offset) * -1.0000 * joint.damper * Aᵀ * ∂vel if jacobian == :parent # Q += rotation_matrix(inv(qb)) * ∂rotation_matrix∂q(qa, vector_rotate(force, orientation_offset), attjac=true) Q += rotation_matrix(inv(qb)) * ∂rotation_matrix∂q(qa, vector_rotate(force, orientation_offset)) * LVᵀmat(qa) # ATTJAC elseif jacobian == :child # Q += ∂rotation_matrix_inv∂q(qb, vector_rotate(force, qa * orientation_offset), attjac=true) Q += ∂rotation_matrix_inv∂q(qb, vector_rotate(force, qa * orientation_offset)) * LVᵀmat(qb) # ATTJAC end end return timestep * [Z; X Q] end function damper_jacobian_velocity(relative::Symbol, jacobian::Symbol, joint::Rotational, pbody::Node, cbody::Node, timestep::T) where T Aᵀ = zerodimstaticadjoint(nullspace_mask(joint)) xa, va, qa, ωa = current_configuration_velocity(pbody.state) xb, vb, qb, ωb = current_configuration_velocity(cbody.state) orientation_offset = joint.orientation_offset force = damper_force(relative, joint, qa, ωa, qb, ωb, timestep; rotate = false)[SUnitRange(4,6)] ∂vel = minimal_velocities_jacobian_velocity(jacobian, joint, xa, va, qa, ωa, xb, vb, qb, ωb, timestep) if relative == :parent VΩ = rotation_matrix(orientation_offset) * 1.0000 * joint.damper * Aᵀ * ∂vel elseif relative == :child VΩ = rotation_matrix(inv(qb) * qa * orientation_offset) * -1.0000 * joint.damper * Aᵀ * ∂vel end return timestep * [szeros(T, 3, 6); VΩ] end damper_jacobian_configuration(relative::Symbol, jacobian::Symbol, joint::Rotational{T,3}, pbody::Node, cbody::Node, timestep::T; attjac::Bool = true) where T = attjac ? szeros(T, 6, 6) : szeros(T, 6, 7) damper_jacobian_velocity(relative::Symbol, jacobian::Symbol, joint::Rotational{T,3}, pbody::Node, cbody::Node, timestep::T) where T = szeros(T, 6, 6)
Dojo
https://github.com/dojo-sim/Dojo.jl.git
[ "MIT" ]
0.7.5
104b6a1a358da9b1348ab7cd66ad685ecaca13d4
code
1753
################################################################################ # Impulses ################################################################################ # see joints/joint.jl method ################################################################################ # Derivatives ################################################################################ function impulse_transform_jacobian(relative::Symbol, jacobian::Symbol, joint::Rotational{T,Nλ}, xa::AbstractVector, qa::Quaternion, xb::AbstractVector, qb::Quaternion, p; attjac=true) where {T,Nλ} if relative == :parent if jacobian == :parent # ∂(Ja'*p)/∂(xa,qa) Z3 = szeros(T,3,3) ∂Q∂qa = ∂VLᵀmat∂q(Tmat() * Rᵀmat(qb) * LVᵀmat(joint.orientation_offset) * p) * LVᵀmat(qa) return cat(sI(3), 0.5 * sI(3), dims=(1,2)) * [Z3 Z3; Z3 ∂Q∂qa] elseif jacobian == :child # ∂(Ja'*p)/∂(xb,qb) Z3 = szeros(T,3,3) ∇Qqb = VLᵀmat(qa) * Tmat(T) * ∂Rᵀmat∂q(LVᵀmat(joint.orientation_offset) * p) * LVᵀmat(qb) return cat(sI(3), 0.5 * sI(3), dims=(1,2)) * [Z3 Z3; Z3 ∇Qqb] end elseif relative == :child if jacobian == :parent # ∂(Jb'*p)/∂(xa,qa) Z3 = szeros(T,3,3) ∇Qqa = VLᵀmat(qb) * ∂Lmat∂q(LVᵀmat(joint.orientation_offset) * p) * LVᵀmat(qa) return cat(sI(3), 0.5 * sI(3), dims=(1,2)) * [Z3 Z3; Z3 ∇Qqa] elseif jacobian == :child # ∂(Jb'*p)/∂(xb,qb) Z3 = szeros(T,3,3) ∇Qqb = ∂VLᵀmat∂q(Lmat(qa) * LVᵀmat(joint.orientation_offset) * p) * LVᵀmat(qb) return cat(sI(3), 0.5 * sI(3), dims=(1,2)) * [Z3 Z3; Z3 ∇Qqb] end end end
Dojo
https://github.com/dojo-sim/Dojo.jl.git
[ "MIT" ]
0.7.5
104b6a1a358da9b1348ab7cd66ad685ecaca13d4
code
2457
################################################################################ # Control Input ################################################################################ function input_impulse!(joint::Rotational{T}, pbody::Node, cbody::Node, input_scaling::T, clear::Bool) where T orientation_offset = joint.orientation_offset τ = joint.input * input_scaling xa, qa = current_configuration(pbody.state) xb, qb = current_configuration(cbody.state) pbody.state.Jτ2 += vector_rotate(-τ, orientation_offset) cbody.state.Jτ2 += vector_rotate(τ, inv(qb) * qa * orientation_offset) clear && (joint.input = szeros(T,3)) return end ################################################################################ # Control Jacobian ################################################################################ function input_jacobian_control(relative::Symbol, joint::Rotational{T}, xa::AbstractVector, qa::Quaternion, xb::AbstractVector, qb::Quaternion, input_scaling) where T orientation_offset = joint.orientation_offset if relative == :parent BFa = szeros(T, 3, 3) Bτa = - rotation_matrix(orientation_offset) return [BFa; Bτa] * input_scaling elseif relative == :child BFb = szeros(T, 3, 3) Bτb = rotation_matrix(inv(qb) * qa * orientation_offset) return [BFb; Bτb] * input_scaling end end function input_jacobian_configuration(relative::Symbol, joint::Rotational{T}, xa::AbstractVector, qa::Quaternion, xb::AbstractVector, qb::Quaternion) where T orientation_offset = joint.orientation_offset τ = joint.input if relative == :parent FaXa = szeros(T,3,3) FaQa = szeros(T,3,4) τaXa = szeros(T,3,3) τaQa = szeros(T,3,4) FbXa = szeros(T,3,3) FbQa = szeros(T,3,4) τbXa = szeros(T,3,3) τbQa = rotation_matrix(inv(qb)) * ∂rotation_matrix∂q(qa * orientation_offset, τ)#*LVᵀmat(qa) return FaXa, FaQa, τaXa, τaQa, FbXa, FbQa, τbXa, τbQa elseif relative == :child FaXb = szeros(T,3,3) FaQb = szeros(T,3,4) τaXb = szeros(T,3,3) τaQb = szeros(T,3,4) FbXb = szeros(T,3,3) FbQb = szeros(T,3,4) τbXb = szeros(T,3,3) τbQb = ∂rotation_matrix_inv∂q(qb, vector_rotate(τ, qa * orientation_offset))#*LVᵀmat(qb) return FaXb, FaQb, τaXb, τaQb, FbXb, FbQb, τbXb, τbQb end end
Dojo
https://github.com/dojo-sim/Dojo.jl.git
[ "MIT" ]
0.7.5
104b6a1a358da9b1348ab7cd66ad685ecaca13d4
code
6589
################################################################################ # Displacements ################################################################################ function displacement(joint::Rotational, xa::AbstractVector, qa::Quaternion, xb::AbstractVector, qb::Quaternion; vmat=true) q = inv(joint.orientation_offset) * inv(qa) * qb vmat ? (return Vmat(q)) : (return q) end function displacement_jacobian_configuration_unstable(relative::Symbol, joint::Rotational{T}, xa::AbstractVector, qa::Quaternion, xb::AbstractVector, qb::Quaternion; attjac::Bool=true, vmat::Bool=true) where T X = szeros(T, 3, 3) if relative == :parent Q = Lᵀmat(joint.orientation_offset) * Rmat(qb) * Tmat() attjac && (Q *= LVᵀmat(qa)) elseif relative == :child Q = Lᵀmat(joint.orientation_offset) * Lᵀmat(qa) attjac && (Q *= LVᵀmat(qb)) end vmat && (Q = Vmat() * Q) return X, Q end function displacement_jacobian_configuration(relative::Symbol, joint::Rotational{T}, xa::AbstractVector, qa::Quaternion, xb::AbstractVector, qb::Quaternion; ) where T X = szeros(T, 3, 3) if relative == :parent Q = Lᵀmat(joint.orientation_offset) * Rmat(qb) * Tmat() elseif relative == :child Q = Lᵀmat(joint.orientation_offset) * Lᵀmat(qa) end return X, Vmat() * Q end # function displacement_jacobian_configuration(relative::Symbol, joint::Rotational{T}, # xa::AbstractVector, qa::Quaternion, # xb::AbstractVector, qb::Quaternion; # attjac::Bool=true, vmat=true) where T # X = szeros(T, 3, 3) # if relative == :parent # Q = Lᵀmat(joint.orientation_offset) * Rmat(qb) * Tmat() # attjac && (Q *= LVᵀmat(qa)) # elseif relative == :child # Q = Lᵀmat(joint.orientation_offset) * Lᵀmat(qa) # attjac && (Q *= LVᵀmat(qb)) # end # vmat && (Q = Vmat() * Q) # return X, Q # end ################################################################################ # Coordinates ################################################################################ function minimal_coordinates(joint::Rotational, xa::AbstractVector, qa::Quaternion, xb::AbstractVector, qb::Quaternion) return nullspace_mask(joint) * rotation_vector(displacement(joint, xa, qa, xb, qb, vmat=false)) end function minimal_coordinates_jacobian_configuration(relative::Symbol, joint::Rotational{T}, xa::AbstractVector, qa::Quaternion, xb::AbstractVector, qb::Quaternion; attjac::Bool=true) where T A = nullspace_mask(joint) q = displacement(joint, xa, qa, xb, qb, vmat=false) X, Q = displacement_jacobian_configuration_unstable(relative, joint, xa, qa, xb, qb, attjac=attjac, vmat=false) ∂rv∂q = drotation_vectordq(q) return A * [X ∂rv∂q * Q] end ################################################################################ # Set Coordinates ################################################################################ function set_minimal_coordinates!(joint::Rotational, pnode::Node, cnode::Node, timestep; Δθ::AbstractVector=szeros(input_dimension(joint))) orientation_offset = joint.orientation_offset qa = pnode.state.q2 Aᵀ = zerodimstaticadjoint(nullspace_mask(joint)) Δq = axis_angle_to_quaternion(Aᵀ * Δθ) qb = qa * orientation_offset * Δq set_maximal_configurations!(cnode; x=cnode.state.x2, q = qb) set_previous_configuration!(cnode, timestep) return nothing end ################################################################################ # Velocities ################################################################################ function minimal_velocities(joint::Rotational, xa::AbstractVector, va::AbstractVector, qa::Quaternion, ωa::AbstractVector, xb::AbstractVector, vb::AbstractVector, qb::Quaternion, ωb::AbstractVector, timestep) orientation_offset = joint.orientation_offset A = nullspace_mask(joint) # 1 step backward in time qa1 = next_orientation(qa, -ωa, timestep) qb1 = next_orientation(qb, -ωb, timestep) q = inv(orientation_offset) * inv(qa) * qb q1 = inv(orientation_offset) * inv(qa1) * qb1 return A * rotation_vector(inv(q1) * q) ./ timestep end function minimal_velocities_jacobian_configuration(relative::Symbol, joint::Rotational{T}, xa::AbstractVector, va::AbstractVector, qa::Quaternion, ωa::AbstractVector, xb::AbstractVector, vb::AbstractVector, qb::Quaternion, ωb::AbstractVector, timestep) where T orientation_offset = joint.orientation_offset A = nullspace_mask(joint) nu = input_dimension(joint) # 1 step backward in time qa1 = next_orientation(qa, -ωa, timestep) qb1 = next_orientation(qb, -ωb, timestep) q = inv(orientation_offset) * inv(qa) * qb q1 = inv(orientation_offset) * inv(qa1) * qb1 X = szeros(T, nu, 3) if relative == :parent Q = 1.0 / timestep * A * drotation_vectordq(inv(q1) * q) * Rmat(q) * Tmat() * Rmat(qb1) * Lmat(inv(orientation_offset)) * Tmat() * rotational_integrator_jacobian_orientation(qa, -ωa, timestep, attjac=false) Q += 1.0 / timestep * A * drotation_vectordq(inv(q1) * q) * Lmat(inv(q1)) * Rmat(qb) * Lmat(inv(orientation_offset)) * Tmat() Q *= LVᵀmat(qa) elseif relative == :child Q = 1.0 / timestep * A * drotation_vectordq(inv(q1) * q) * Rmat(q) * Tmat() * Lmat(inv(orientation_offset) * inv(qa1)) * rotational_integrator_jacobian_orientation(qb, -ωb, timestep, attjac=false) Q += 1.0 / timestep * A * drotation_vectordq(inv(q1) * q) * Lmat(inv(q1) * inv(orientation_offset) * inv(qa)) Q *= LVᵀmat(qb) end return [X Q] end function minimal_velocities_jacobian_velocity(relative::Symbol, joint::Rotational{T}, xa::AbstractVector, va::AbstractVector, qa::Quaternion, ωa::AbstractVector, xb::AbstractVector, vb::AbstractVector, qb::Quaternion, ωb::AbstractVector, timestep) where T orientation_offset = joint.orientation_offset A = nullspace_mask(joint) nu = input_dimension(joint) # 1 step backward in time qa1 = next_orientation(qa, -ωa, timestep) qb1 = next_orientation(qb, -ωb, timestep) q = inv(orientation_offset) * inv(qa) * qb q1 = inv(orientation_offset) * inv(qa1) * qb1 V = szeros(T, nu, 3) if relative == :parent Ω = 1.0 / timestep * A * drotation_vectordq(inv(q1) * q) * Rmat(q) * Tmat() * Lmat(inv(orientation_offset)) * Rmat(qb1) * Tmat() * -rotational_integrator_jacobian_velocity(qa, -ωa, timestep) elseif relative == :child Ω = 1.0 / timestep * A * drotation_vectordq(inv(q1) * q) * Rmat(q) * Tmat() * Lmat(inv(orientation_offset) * inv(qa1)) * -rotational_integrator_jacobian_velocity(qb, -ωb, timestep) end return [V Ω] end
Dojo
https://github.com/dojo-sim/Dojo.jl.git
[ "MIT" ]
0.7.5
104b6a1a358da9b1348ab7cd66ad685ecaca13d4
code
4362
################################################################################ # Spring Impulses ################################################################################ function spring_force(relative::Symbol, joint::Rotational{T}, xa::AbstractVector, qa::Quaternion, xb::AbstractVector, qb::Quaternion; rotate::Bool=true, unitary::Bool=false) where T spring = unitary ? 1.0 : joint.spring distance = joint.spring_offset .- minimal_coordinates(joint, xa, qa, xb, qb) force = -spring * zerodimstaticadjoint(nullspace_mask(joint)) * distance # force in offset frame if relative == :parent rotate ? (output = vector_rotate(force, joint.orientation_offset)) : (output = force) # rotate into a frame elseif relative == :child rotate ? (output = vector_rotate(-force, inv(qb) * qa * joint.orientation_offset)) : (output = -force) # rotate back to b frame end return [szeros(T, 3); output] end function spring_impulses(relative::Symbol, joint::Rotational, pbody::Node, cbody::Node, timestep; unitary::Bool=false) spring_impulses(relative, joint, current_configuration(pbody.state)..., current_configuration(cbody.state)..., timestep, unitary=unitary) end function spring_impulses(relative::Symbol, joint::Rotational, xa::AbstractVector, qa::Quaternion, xb::AbstractVector, qb::Quaternion, timestep; unitary::Bool=false) timestep * spring_force(relative, joint, xa, qa, xb, qb; unitary=unitary) end spring_impulses(relative::Symbol, joint::Rotational{T,3}, pbody::Node, cbody::Node, timestep; unitary::Bool=false) where T = szeros(T, 6) ################################################################################ # Spring Jacobians ################################################################################ function spring_jacobian_configuration(relative::Symbol, jacobian::Symbol, joint::Rotational{T}, xa::AbstractVector, qa::Quaternion, xb::AbstractVector, qb::Quaternion, timestep::T; rotate::Bool=true, unitary::Bool=false, attjac=true) where T Z = attjac ? szeros(T, 3, 6) : szeros(T, 3, 7) force = spring_force(relative, joint, xa, qa, xb, qb, rotate=false) spring = unitary ? 1.0 : joint.spring if relative == :parent J = timestep * rotation_matrix(joint.orientation_offset) * spring * zerodimstaticadjoint(nullspace_mask(joint)) * minimal_coordinates_jacobian_configuration(jacobian, joint, xa, qa, xb, qb, attjac=attjac) elseif relative == :child X = szeros(T, 3, 3) if rotate J1 = timestep * rotation_matrix(inv(qb) * qa * joint.orientation_offset) * -spring * zerodimstaticadjoint(nullspace_mask(joint)) * minimal_coordinates_jacobian_configuration(jacobian, joint, xa, qa, xb, qb, attjac=attjac) if jacobian == :parent Q2 = timestep * ∂vector_rotate∂q(force[SA[4;5;6]], inv(qb) * qa * joint.orientation_offset) * Rmat(joint.orientation_offset) * Lmat(inv(qb)) attjac && (Q2 *= LVᵀmat(qa)) J2 = [X Q2] elseif jacobian == :child Q2 = timestep * ∂vector_rotate∂q(force[SA[4;5;6]], inv(qb) * qa * joint.orientation_offset) * Rmat(qa * joint.orientation_offset) * Tmat() attjac && (Q2 *= LVᵀmat(qb)) J2 = [X Q2] end J = J1 + J2 else J = timestep * -spring * zerodimstaticadjoint(nullspace_mask(joint)) * minimal_coordinates_jacobian_configuration(jacobian, joint, xa, qa, xb, qb, attjac=attjac) end end return [Z; J] end function spring_jacobian_configuration(relative::Symbol, jacobian::Symbol, joint::Rotational, pbody::Node, cbody::Node, timestep::T; attjac::Bool = true) where T spring_jacobian_configuration(relative, jacobian, joint, current_configuration(pbody.state)..., current_configuration(cbody.state)..., timestep; attjac=attjac) end spring_jacobian_configuration(relative::Symbol, jacobian::Symbol, joint::Rotational{T,3}, pbody::Node, cbody::Node, timestep::T; attjac::Bool = true) where T = attjac ? szeros(T, 6, 6) : szeros(T, 6, 7) spring_jacobian_velocity(relative::Symbol, jacobian::Symbol, joint::Rotational, pbody::Node, cbody::Node, timestep::T) where T = szeros(T, 6, 6)
Dojo
https://github.com/dojo-sim/Dojo.jl.git
[ "MIT" ]
0.7.5
104b6a1a358da9b1348ab7cd66ad685ecaca13d4
code
3126
""" Translational{T} <: Joint{T} constraint limiting translational degrees of freedom axis: translational axis in parent offset frame axis_mask1: translational axis mask in pbody's frame axis_mask2: translational axis mask in pbody's frame axis_mask3: translational axis mask in pbody's frame vertices: points in parent can child frames spring: coefficient for joint spring damper: coefficient for joint damper spring_offset: nominal joint configuration joint_limits: lower and upper limits on the joint configuration spring_type: can be :linear or :sinusoidal (currently not implemented), if linear then we need joint_limits to avoid the 360° singularity. input: external impulse force """ mutable struct Translational{T,Nλ,Nb,N,Nb½,N̄λ} <: Joint{T,Nλ,Nb,N,Nb½} axis::SVector{3,T} # translation axis in parent frame axis_mask1::Adjoint{T,SVector{3,T}} # in pbody's frame axis_mask2::Adjoint{T,SVector{3,T}} # in pbody's frame axis_mask3::Adjoint{T,SVector{3,T}} # in pbody's frame vertices::NTuple{2,SVector{3,T}} # in pbody's & cbody's frames spring::T damper::T spring_offset::SVector{N̄λ,T} joint_limits::Vector{SVector{Nb½,T}} # lower and upper limits on the joint minimal coordinate angles spring_type::Symbol # the rotational springs can be :linear or :sinusoidal, if linear then we need joint_limits to avoid the 180° singularity. input::SVector{3,T} # joint input. force if mechanism.input_scaling = timestep, impulse if mechanism.input_scaling = 1 end function Base.show(io::IO, mime::MIME{Symbol("text/plain")}, joint::Translational{T,N}) where {T,N} summary(io, joint) println(io,"") println(io, " axis: "*string(joint.axis)) println(io, " axis_mask1: "*string(joint.axis_mask1)) println(io, " axis_mask2: "*string(joint.axis_mask2)) println(io, " axis_mask3: "*string(joint.axis_mask3)) println(io, " vertices: "*string(joint.vertices)) println(io, " spring: "*string(joint.spring)) println(io, " damper: "*string(joint.damper)) println(io, " spring_offset: "*string(joint.spring_offset)) println(io, " joint_limits: "*string(joint.joint_limits)) println(io, " spring_type: "*string(joint.spring_type)) println(io, " input: "*string(joint.input)) end function Translational{T,Nλ}(pbody::Node, cbody::Node; parent_vertex::AbstractVector=szeros(T,3), child_vertex::AbstractVector=szeros(T,3), axis::AbstractVector=szeros(T,3), spring=zero(T), damper=zero(T), spring_offset=szeros(T,3-Nλ), joint_limits=[szeros(T,0), szeros(T,0)], spring_type::Symbol = :linear) where {T,Nλ} #TODO: reimplement sinusoidal vertices = (parent_vertex, child_vertex) V1, V2, V3 = orthogonal_rows(axis) input = zeros(T,3) Nb½ = length(joint_limits[1]) Nb = 2Nb½ N̄λ = 3 - Nλ N = Nλ + 2Nb Translational{T,Nλ,Nb,N,Nb½,N̄λ}(axis, V1, V2, V3, vertices, spring, damper, spring_offset, joint_limits, spring_type, input), pbody.id, cbody.id end
Dojo
https://github.com/dojo-sim/Dojo.jl.git
[ "MIT" ]
0.7.5
104b6a1a358da9b1348ab7cd66ad685ecaca13d4
code
5535
################################################################################ # Damper Force ################################################################################ function damper_force(joint::Translational{T}, xa::AbstractVector, va::AbstractVector, qa::Quaternion, ωa::AbstractVector, xb::AbstractVector, vb::AbstractVector, qb::Quaternion, ωb::AbstractVector, timestep; unitary::Bool=false) where T damper = unitary ? 1.0 : joint.damper Aᵀ = zerodimstaticadjoint(nullspace_mask(joint)) input = damper * Aᵀ * -minimal_velocities(joint, xa, va, qa, ωa, xb, vb, qb, ωb, timestep) # in the a frame return input end function damper_force(relative::Symbol, joint::Translational{T}, xa::AbstractVector, va::AbstractVector, qa::Quaternion, ωa::AbstractVector, xb::AbstractVector, vb::AbstractVector, qb::Quaternion, ωb::AbstractVector, timestep; unitary::Bool=false) where T input = damper_force(joint, xa, va, qa, ωa, xb, vb, qb, ωb, timestep, unitary=unitary) # in the a frame inputa = impulse_transform(relative, joint, xa, qa, xb, qb) * input return inputa end damper_impulses(relative::Symbol, joint::Translational, pbody::Node, cbody::Node, timestep; unitary::Bool=false) = timestep * damper_force(relative, joint, current_configuration_velocity(pbody.state)..., current_configuration_velocity(cbody.state)..., timestep; unitary=unitary) damper_impulses(relative::Symbol, joint::Translational{T,3}, pbody::Node, cbody::Node, timestep; unitary::Bool=false) where T = szeros(T, 6) ################################################################################ # Damper Jacobian ################################################################################ function damper_force_jacobian_configuration(jacobian_relative::Symbol, joint::Translational{T}, xa::AbstractVector, va::AbstractVector, qa::Quaternion, ωa::AbstractVector, xb::AbstractVector, vb::AbstractVector, qb::Quaternion, ωb::AbstractVector, timestep; unitary::Bool=false) where T damper = unitary ? 1.0 : joint.damper Aᵀ = zerodimstaticadjoint(nullspace_mask(joint)) ∇input = damper * Aᵀ * -minimal_velocities_jacobian_configuration(jacobian_relative, joint, xa, va, qa, ωa, xb, vb, qb, ωb, timestep) # in the a frame return ∇input end function damper_force_jacobian_velocity(jacobian_relative::Symbol, joint::Translational{T}, xa::AbstractVector, va::AbstractVector, qa::Quaternion, ωa::AbstractVector, xb::AbstractVector, vb::AbstractVector, qb::Quaternion, ωb::AbstractVector, timestep; unitary::Bool=false) where T damper = unitary ? 1.0 : joint.damper Aᵀ = zerodimstaticadjoint(nullspace_mask(joint)) ∇input = damper * Aᵀ * -minimal_velocities_jacobian_velocity(jacobian_relative, joint, xa, va, qa, ωa, xb, vb, qb, ωb, timestep) # in the a frame return ∇input end function damper_jacobian_configuration(relative::Symbol, jacobian_relative::Symbol, joint::Translational{T}, xa::AbstractVector, va::AbstractVector, qa::Quaternion, ωa::AbstractVector, xb::AbstractVector, vb::AbstractVector, qb::Quaternion, ωb::AbstractVector, timestep::T; unitary::Bool=false) where T input = damper_force(joint, xa, va, qa, ωa, xb, vb, qb, ωb, timestep, unitary=unitary) ∇xq = impulse_transform(relative, joint, xa, qa, xb, qb) * damper_force_jacobian_configuration(jacobian_relative, joint, xa, va, qa, ωa, xb, vb, qb, ωb, timestep, unitary=unitary) ∇xq += impulse_transform_jacobian(relative, jacobian_relative, joint, xa, qa, xb, qb, input) return timestep * ∇xq end function damper_jacobian_configuration(relative::Symbol, jacobian::Symbol, joint::Translational, pbody::Node, cbody::Node, timestep::T; attjac::Bool = true) where T return damper_jacobian_configuration(relative, jacobian, joint, current_configuration_velocity(pbody.state)..., current_configuration_velocity(cbody.state)..., timestep; unitary=false) end function damper_jacobian_velocity(relative::Symbol, jacobian_relative::Symbol, joint::Translational{T}, xa::AbstractVector, va::AbstractVector, qa::Quaternion, ωa::AbstractVector, xb::AbstractVector, vb::AbstractVector, qb::Quaternion, ωb::AbstractVector, timestep::T; unitary::Bool=false) where T ∇xq = impulse_transform(relative, joint, xa, qa, xb, qb) * damper_force_jacobian_velocity(jacobian_relative, joint, xa, va, qa, ωa, xb, vb, qb, ωb, timestep, unitary=unitary) return timestep * ∇xq end function damper_jacobian_velocity(relative::Symbol, jacobian::Symbol, joint::Translational, pbody::Node, cbody::Node, timestep::T, attjac::Bool=true) where T return damper_jacobian_velocity(relative, jacobian, joint, current_configuration_velocity(pbody.state)..., current_configuration_velocity(cbody.state)..., timestep; unitary=false) end damper_jacobian_configuration(relative::Symbol, jacobian::Symbol, joint::Translational{T,3}, pbody::Node, cbody::Node, timestep::T; attjac::Bool = true, unitary::Bool=false) where T = attjac ? szeros(T, 6, 6) : szeros(T, 6, 7) damper_jacobian_velocity(relative::Symbol, jacobian::Symbol, joint::Translational{T,3}, pbody::Node, cbody::Node, timestep::T, unitary::Bool=false) where T = szeros(T, 6, 6)
Dojo
https://github.com/dojo-sim/Dojo.jl.git
[ "MIT" ]
0.7.5
104b6a1a358da9b1348ab7cd66ad685ecaca13d4
code
2206
################################################################################ # Impulses ################################################################################ # see joints/joint.jl method ################################################################################ # Impulse Transform Derivatives ################################################################################ function impulse_transform_jacobian(relative::Symbol, jacobian::Symbol, joint::Translational{T,Nλ}, xa::AbstractVector, qa::Quaternion, xb::AbstractVector, qb::Quaternion, p; attjac=true) where {T,Nλ} Z3 = szeros(T,3,3) if relative == :parent if jacobian == :parent # ∂(impulse_transform_a'*p)/∂(xa,qa) ∇Xqa = -∂rotation_matrix∂q(qa, p) * LVᵀmat(qa) ∇Qxa = ∂skew∂p(p) * rotation_matrix(inv(qa)) ∇Qqa = -∂skew∂p(p) * ∂rotation_matrix_inv∂q(qa, xb - xa + rotation_matrix(qb) * joint.vertices[2]) * LVᵀmat(qa) return [Z3 ∇Xqa; ∇Qxa ∇Qqa] elseif jacobian == :child # ∂(impulse_transform_a'*p)/∂(xb,qb) ∇Qxb = -∂skew∂p(p) * rotation_matrix(inv(qa)) ∇Qqb = -∂skew∂p(p) * rotation_matrix(inv(qa)) * ∂rotation_matrix∂q(qb, joint.vertices[2]) * LVᵀmat(qb) return [Z3 Z3; ∇Qxb ∇Qqb] end elseif relative == :child if jacobian == :parent # ∂(impulse_transform_b'*p)/∂(xa,qa) cbpb_w = rotation_matrix(qb) * joint.vertices[2] # body b kinematics point ∇Xqa = ∂rotation_matrix∂q(qa, p) * LVᵀmat(qa) ∇Qqa = rotation_matrix(inv(qb)) * skew(cbpb_w) * ∂rotation_matrix∂q(qa, p) * LVᵀmat(qa) return [Z3 ∇Xqa; Z3 ∇Qqa] elseif jacobian == :child # ∂(impulse_transform_b'*p)/∂(xb,qb) cbpb_w = rotation_matrix(qb) * joint.vertices[2] # body b kinematics point ∇Qqb = ∂rotation_matrix_inv∂q(qb, skew(cbpb_w) * rotation_matrix(qa) * p) ∇Qqb += rotation_matrix(inv(qb)) * ∂skew∂p(rotation_matrix(qa) * p) * ∂rotation_matrix∂q(qb, joint.vertices[2]) ∇Qqb *= LVᵀmat(qb) return [Z3 Z3; Z3 ∇Qqb] end end end
Dojo
https://github.com/dojo-sim/Dojo.jl.git
[ "MIT" ]
0.7.5
104b6a1a358da9b1348ab7cd66ad685ecaca13d4
code
2232
################################################################################ # Control Input ################################################################################ function input_impulse!(joint::Translational{T}, pbody::Node, cbody::Node, input_scaling::T, clear::Bool) where T xa, qa = current_configuration(pbody.state) xb, qb = current_configuration(cbody.state) input = joint.input * input_scaling Ta = impulse_transform(:parent, joint, xa, qa, xb, qb) Tb = impulse_transform(:child, joint, xa, qa, xb, qb) JFaw = Ta[SA[1;2;3],SA[1;2;3]] * input Jτaa = Ta[SA[4;5;6],SA[1;2;3]] * input JFbw = Tb[SA[1;2;3],SA[1;2;3]] * input Jτbb = Tb[SA[4;5;6],SA[1;2;3]] * input pbody.state.JF2 += JFaw pbody.state.Jτ2 += Jτaa/2 cbody.state.JF2 += JFbw cbody.state.Jτ2 += Jτbb/2 clear && (joint.input = szeros(T,3)) return end ################################################################################ # Control Jacobian ################################################################################ function input_jacobian_control(relative::Symbol, joint::Translational, xa::AbstractVector, qa::Quaternion, xb::AbstractVector, qb::Quaternion, input_scaling) Ta = impulse_transform(relative, joint, xa, qa, xb, qb) X = Ta[SA[1;2;3],SA[1;2;3]] Q = 0.5 * Ta[SA[4;5;6],SA[1;2;3]] return [X; Q] * input_scaling end function input_jacobian_configuration(relative::Symbol, joint::Translational{T}, xa::AbstractVector, qa::Quaternion, xb::AbstractVector, qb::Quaternion) where T # d[Faw;2τaa]/d[xa,qa] ∇aa = impulse_transform_jacobian(:parent, relative, joint, xa, qa, xb, qb, joint.input) FaXa = ∇aa[SA[1;2;3], SA[1;2;3]] FaQa = ∇aa[SA[1;2;3], SA[4;5;6]] τaXa = 0.5 * ∇aa[SA[4;5;6], SA[1;2;3]] τaQa = 0.5 * ∇aa[SA[4;5;6], SA[4;5;6]] # d[Fbw;2τbb]/d[xa,qa] ∇ba = impulse_transform_jacobian(:child, relative, joint, xa, qa, xb, qb, joint.input) FbXa = ∇ba[SA[1;2;3],SA[1;2;3]] FbQa = ∇ba[SA[1;2;3],SA[4;5;6]] τbXa = 0.5 * ∇ba[SA[4;5;6],SA[1;2;3]] τbQa = 0.5 * ∇ba[SA[4;5;6],SA[4;5;6]] return FaXa, FaQa, τaXa, τaQa, FbXa, FbQa, τbXa, τbQa end
Dojo
https://github.com/dojo-sim/Dojo.jl.git
[ "MIT" ]
0.7.5
104b6a1a358da9b1348ab7cd66ad685ecaca13d4
code
7231
################################################################################ # Displacements ################################################################################ function displacement(joint::Translational, xa::AbstractVector, qa::Quaternion, xb::AbstractVector, qb::Quaternion; rotate::Bool = true) vertices = joint.vertices d = xb + vector_rotate(vertices[2], qb) - (xa + vector_rotate(vertices[1], qa)) rotate && (return vector_rotate(d, inv(qa))) : (return d) end function displacement_jacobian_configuration(relative::Symbol, joint::Translational{T}, xa::AbstractVector, qa::Quaternion, xb::AbstractVector, qb::Quaternion) where T vertices = joint.vertices if relative == :parent d = xb + vector_rotate(vertices[2], qb) - (xa + vector_rotate(vertices[1], qa)) # in the world frame X = -rotation_matrix(inv(qa)) Q = -rotation_matrix(inv(qa)) * ∂rotation_matrix∂q(qa, vertices[1]) Q += ∂rotation_matrix_inv∂q(qa, d) elseif relative == :child X = rotation_matrix(inv(qa)) Q = rotation_matrix(inv(qa)) * ∂rotation_matrix∂q(qb, vertices[2]) end return X, Q end # function displacement_jacobian_configuration(relative::Symbol, joint::Translational{T}, # xa::AbstractVector, qa::Quaternion, # xb::AbstractVector, qb::Quaternion; # attjac=true) where T # # vertices = joint.vertices # # if relative == :parent # d = xb + vector_rotate(vertices[2], qb) - (xa + vector_rotate(vertices[1], qa)) # in the world frame # X = -rotation_matrix(inv(qa)) # Q = -rotation_matrix(inv(qa)) * ∂rotation_matrix∂q(qa, vertices[1]) # Q += ∂rotation_matrix_inv∂q(qa, d) # attjac && (Q *= LVᵀmat(qa)) # elseif relative == :child # X = rotation_matrix(inv(qa)) # Q = rotation_matrix(inv(qa)) * ∂rotation_matrix∂q(qb, vertices[2]) # attjac && (Q *= LVᵀmat(qb)) # end # # return X, Q # end ################################################################################ # Coordinates ################################################################################ function minimal_coordinates(joint::Translational, xa::AbstractVector, qa::Quaternion, xb::AbstractVector, qb::Quaternion) return nullspace_mask(joint) * displacement(joint, xa, qa, xb, qb) end function minimal_coordinates_jacobian_configuration(relative::Symbol, joint::Translational, xa::AbstractVector, qa::Quaternion, xb::AbstractVector, qb::Quaternion; attjac::Bool=true) X, Q = displacement_jacobian_configuration(relative, joint, xa, qa, xb, qb, attjac=attjac) return nullspace_mask(joint) * [X Q] end ################################################################################ # Coordinates ################################################################################ function set_minimal_coordinates!(joint::Translational, pnode::Node, cnode::Node, timestep; Δx::AbstractVector=szeros(input_dimension(joint))) pa = joint.vertices[1] pb = joint.vertices[2] qa = pnode.state.q2 xa = pnode.state.x2 qb = cnode.state.q2 Aᵀ = zerodimstaticadjoint(nullspace_mask(joint)) xb = xa + vector_rotate(pa + Aᵀ * Δx, qa) - vector_rotate(pb, qb) set_maximal_configurations!(cnode; x=xb, q=cnode.state.q2) set_previous_configuration!(cnode, timestep) return nothing end ################################################################################ # Velocities ################################################################################ function minimal_velocities(joint::Translational, xa::AbstractVector, va::AbstractVector, qa::Quaternion, ωa::AbstractVector, xb::AbstractVector, vb::AbstractVector, qb::Quaternion, ωb::AbstractVector, timestep) A = nullspace_mask(joint) # 1 step backward in time xa1 = next_position(xa, -va, timestep) qa1 = next_orientation(qa, -ωa, timestep) xb1 = next_position(xb, -vb, timestep) qb1 = next_orientation(qb, -ωb, timestep) # Coordinates Δx = A * displacement(joint, xa, qa, xb, qb) # Previous step coordinates Δx1 = A * displacement(joint, xa1, qa1, xb1, qb1) # Finite difference Δv = (Δx - Δx1) / timestep return Δv end function minimal_velocities_jacobian_configuration(relative::Symbol, joint::Translational, xa::AbstractVector, va::AbstractVector, qa::Quaternion, ωa::AbstractVector, xb::AbstractVector, vb::AbstractVector, qb::Quaternion, ωb::AbstractVector, timestep) A = nullspace_mask(joint) # 1 step backward in time xa1 = next_position(xa, -va, timestep) qa1 = next_orientation(qa, -ωa, timestep) xb1 = next_position(xb, -vb, timestep) qb1 = next_orientation(qb, -ωb, timestep) # Coordinates Δx = A * displacement(joint, xa, qa, xb, qb) # Previous step coordinates Δx1 = A * displacement(joint, xa1, qa1, xb1, qb1) # Finite difference # Δv = (Δx - Δx1) / timestep if relative == :parent X, Q = displacement_jacobian_configuration(:parent, joint, xa, qa, xb, qb, attjac=false) X1, Q1 = displacement_jacobian_configuration(:parent, joint, xa1, qa1, xb1, qb1, attjac=false) X1 *= -1.0 Q1 *= -1.0 * rotational_integrator_jacobian_orientation(qa, -ωa, timestep, attjac=false) Q *= LVᵀmat(qa) Q1 *= LVᵀmat(qa) J = 1.0 / timestep * A * [X Q] J += 1.0 / timestep * A * [X1 Q1] elseif relative == :child 1.0 / timestep * (Δx - Δx1) X, Q = displacement_jacobian_configuration(:child, joint, xa, qa, xb, qb, attjac=false) X1, Q1 = displacement_jacobian_configuration(:child, joint, xa1, qa1, xb1, qb1, attjac=false) X1 *= -1.0 Q1 *= -1.0 * rotational_integrator_jacobian_orientation(qb, -ωb, timestep, attjac=false) Q *= LVᵀmat(qb) Q1 *= LVᵀmat(qb) J = 1.0 / timestep * A * [X Q] J += 1.0 / timestep * A * [X1 Q1] end return J end function minimal_velocities_jacobian_velocity(relative::Symbol, joint::Translational, xa::AbstractVector, va::AbstractVector, qa::Quaternion, ωa::AbstractVector, xb::AbstractVector, vb::AbstractVector, qb::Quaternion, ωb::AbstractVector, timestep) A = nullspace_mask(joint) # 1 step backward in time xa1 = next_position(xa, -va, timestep) qa1 = next_orientation(qa, -ωa, timestep) xb1 = next_position(xb, -vb, timestep) qb1 = next_orientation(qb, -ωb, timestep) # Coordinates Δx = A * displacement(joint, xa, qa, xb, qb) # Previous step coordinates Δx1 = A * displacement(joint, xa1, qa1, xb1, qb1) # Finite difference Δv = (Δx - Δx1) / timestep if relative == :parent X1, Q1 = displacement_jacobian_configuration(:parent, joint, xa1, qa1, xb1, qb1, attjac=false) X1 *= -timestep Q1 *= -rotational_integrator_jacobian_velocity(qa, -ωa, timestep) J = -1.0 / timestep * A * [X1 Q1] elseif relative == :child X1, Q1 = displacement_jacobian_configuration(:child, joint, xa1, qa1, xb1, qb1, attjac=false) X1 *= -timestep Q1 *= -rotational_integrator_jacobian_velocity(qb, -ωb, timestep) J = -1.0 / timestep * A * [X1 Q1] end return J end
Dojo
https://github.com/dojo-sim/Dojo.jl.git
[ "MIT" ]
0.7.5
104b6a1a358da9b1348ab7cd66ad685ecaca13d4
code
3508
################################################################################ # Spring Impulses ################################################################################ function spring_force(relative::Symbol, joint::Translational{T}, xa::AbstractVector, qa::Quaternion, xb::AbstractVector, qb::Quaternion; unitary::Bool=false) where T spring = unitary ? 1.0 : joint.spring distance = joint.spring_offset .- minimal_coordinates(joint, xa, qa, xb, qb) force = spring * zerodimstaticadjoint(nullspace_mask(joint)) * distance return [force; szeros(T, 3)] end function spring_impulses(relative::Symbol, joint::Translational, pbody::Node, cbody::Node, timestep; unitary::Bool=false) spring_impulses(relative, joint, current_configuration(pbody.state)..., current_configuration(cbody.state)..., timestep, unitary=unitary) end function spring_impulses(relative::Symbol, joint::Translational, xa::AbstractVector, qa::Quaternion, xb::AbstractVector, qb::Quaternion, timestep; unitary::Bool=false) timestep * impulse_transform(relative, joint, xa, qa, xb, qb) * spring_force(relative, joint, xa, qa, xb, qb; unitary=unitary)[SA[1;2;3]] end spring_impulses(relative::Symbol, joint::Translational{T,3}, pbody::Node, cbody::Node, timestep; unitary::Bool=false) where T = szeros(T, 6) ################################################################################ # Spring Jacobians ################################################################################ function spring_force_jacobian_configuration(jacobian_relative::Symbol, joint::Translational{T}, xa::AbstractVector, qa::Quaternion, xb::AbstractVector, qb::Quaternion; unitary::Bool=false, attjac=true) where T spring = unitary ? 1.0 : joint.spring return -spring * zerodimstaticadjoint(nullspace_mask(joint)) * minimal_coordinates_jacobian_configuration(jacobian_relative, joint, xa, qa, xb, qb, attjac=attjac) end function spring_jacobian_configuration(relative::Symbol, jacobian_relative::Symbol, joint::Translational{T}, xa::AbstractVector, qa::Quaternion, xb::AbstractVector, qb::Quaternion, timestep::T; unitary::Bool=false, attjac=true) where T force = spring_force(relative, joint, xa, qa, xb, qb, unitary=unitary)[SA[1;2;3]] J = impulse_transform(relative, joint, xa, qa, xb, qb) * spring_force_jacobian_configuration(jacobian_relative, joint, xa, qa, xb, qb, unitary=unitary, attjac=attjac) J += impulse_transform_jacobian(relative, jacobian_relative, joint, xa, qa, xb, qb, force, attjac=attjac) return timestep * J end function spring_jacobian_configuration(relative::Symbol, jacobian::Symbol, joint::Translational, pbody::Node, cbody::Node, timestep::T; attjac::Bool=true, unitary=false) where T return spring_jacobian_configuration(relative, jacobian, joint, current_configuration(pbody.state)..., current_configuration(cbody.state)..., timestep; unitary=false, attjac=attjac) end spring_jacobian_configuration(relative::Symbol, jacobian::Symbol, joint::Translational{T,3}, pbody::Node, cbody::Node, timestep::T; attjac::Bool = true, unitary::Bool=false) where T = attjac ? szeros(T, 6, 6) : szeros(T, 6, 7) spring_jacobian_velocity(relative::Symbol, jacobian::Symbol, joint::Translational, pbody::Node, cbody::Node, timestep::T, unitary::Bool=false) where T = szeros(T, 6, 6)
Dojo
https://github.com/dojo-sim/Dojo.jl.git
[ "MIT" ]
0.7.5
104b6a1a358da9b1348ab7cd66ad685ecaca13d4
code
2754
""" mechanical_energy(mechanism, storage) mechanism's total mechanical energy mechanism: Mechanism storage: Storage """ function mechanical_energy(mechanism::Mechanism, storage::Storage) ke = kinetic_energy(mechanism, storage) pe = potential_energy(mechanism, storage) me = ke + pe return me end """ kinetic_energy(mechanism, storage) mechanism's kinetic energy from linear and angular velocity mechanism: Mechanism storage: Storage """ function kinetic_energy(mechanism::Mechanism, storage::Storage{T,N}) where {T,N} ke = zeros(T,N) for i = 1:N ke[i] = kinetic_energy(mechanism, storage, i) end return ke end function kinetic_energy(mechanism::Mechanism, storage::Storage{T,N}, t::Int) where {T,N} ke = 0.0 for (i,body) in enumerate(mechanism.bodies) vl = storage.vl[i][t] ωl = storage.ωl[i][t] ke += 0.5 * body.mass * vl' * vl ke += 0.5 * ωl' * body.inertia * ωl end return ke end """ potential_energy(mechanism, storage) mechanism's potential energy from gravity and springs mechanism: Mechanism storage: Storage """ function potential_energy(mechanism::Mechanism, storage::Storage{T,N}) where {T,N} pe = zeros(T,N) for i = 1:N pe[i] = potential_energy(mechanism, storage, i) end return pe end function potential_energy(mechanism::Mechanism{T,Nn,Ne,Nb}, storage::Storage{T,Ns}, t::Int) where {T,Nn,Ne,Nb,Ns} pe = 0.0 # Gravity for (i,body) in enumerate(mechanism.bodies) pe -= body.mass * dot(mechanism.gravity, storage.x[i][t]) # TODO: confirm this is correct end # Springs for joint in mechanism.joints parent_id = joint.parent_id child_id = joint.child_id if joint.spring for element in (joint.translational, joint.rotational) if element.spring > 0 xb = storage.x[child_id - Ne][t] # TODO this is sketchy way to get the correct index qb = storage.q[child_id - Ne][t] # TODO this is sketchy way to get the correct index if parent_id != 0 xa = storage.x[parent_id - Ne][t] # TODO this is sketchy way to get the correct index qa = storage.q[parent_id - Ne][t] # TODO this is sketchy way to get the correct index else xa, qa = current_configuration(mechanism.origin.state) end force = spring_force(:parent, element, xa, qa, xb, qb) pe += 0.5 * dot(force, force) ./ element.spring end end end end return pe end
Dojo
https://github.com/dojo-sim/Dojo.jl.git
[ "MIT" ]
0.7.5
104b6a1a358da9b1348ab7cd66ad685ecaca13d4
code
3018
""" momentum(mechanism, storage) mechanism's linear and angular momentum mechanism: Mechanism storage: Storage """ function momentum(mechanism::Mechanism, storage::Storage{T,N}) where {T,N} m = [szeros(T,6) for i = 1:N] for i = 1:N m[i] = momentum(mechanism, storage, i) end return m # in world frame end function momentum(mechanism::Mechanism{T}, body::Body{T}) where T timestep = mechanism.timestep state = body.state mass = body.mass inertia = body.inertia # x1, q1 = previous_configuration(state) x2, q2 = current_configuration(state) x3, q3 = next_configuration(state, timestep) v15 = body.state.vsol[2] # v1.5 ω15 = body.state.ωsol[2] # ω1.5 D2x = 1 / timestep * mass * (x3 - x2) - 0.5 * timestep * (mass * mechanism.gravity + state.Fext) D2q = -2.0 / timestep * LVᵀmat(q2)' * Tmat() * Rmat(q3)' * Vᵀmat() * inertia * Vmat() * Lmat(q2)' * vector(q3) - 0.5 * timestep * state.τext p_linear_body = D2x - 0.5 * state.JF2 p_angular_body = D2q - 0.5 * state.Jτ2 for joint in mechanism.joints f_joint = joint_impulses(mechanism, joint, body) p_linear_body -= 0.5 * f_joint[SA[1;2;3]] p_angular_body -= 0.5 * f_joint[SA[4;5;6]] end return p_linear_body, vector_rotate(p_angular_body, q2) end function joint_impulses(mechanism, joint::JointConstraint{T,N}, body) where {T,N} f_joint = szeros(T,6) if body.id ∈ (joint.parent_id, joint.child_id) (N > 0) && (f_joint += impulse_map(mechanism, joint, body) * joint.impulses[2]) # computed at t = 1.5 joint.spring && (f_joint += spring_impulses(mechanism, joint, body)) # computed at t = 1.5 joint.damper && (f_joint += damper_impulses(mechanism, joint, body)) # computed at t = 1.5 end return f_joint end function momentum(mechanism::Mechanism{T,Nn,Ne,Nb,Ni}, storage::Storage{T,Ns}, t::Int) where {T,Nn,Ne,Nb,Ni,Ns} p = zeros(T, 6) com = center_of_mass(mechanism, storage, t) mass = total_mass(mechanism) p_linear_body = [storage.px[i][t] for i = 1:Nb] # in world frame p_angular_body = [storage.pq[i][t] for i = 1:Nb] # in world frame p_linear = sum(p_linear_body) p_angular = zeros(T, 3) v_com = p_linear ./ mass for (i, body) in enumerate(mechanism.bodies) r = storage.x[i][t] - com v_body = p_linear_body[i] ./ body.mass p_angular += p_angular_body[i] p_angular += cross(r, body.mass * (v_body - v_com)) #TODO maybe there is cleaner way to handle the factor 2 end return [p_linear; p_angular] # in world frame end function center_of_mass(mechanism::Mechanism{T}, storage::Storage{T,N}, t::Int) where {T,N} r = zeros(T, 3) for (i,body) in enumerate(mechanism.bodies) r += body.mass * storage.x[i][t] end return r ./ total_mass(mechanism) end function total_mass(mechanism::Mechanism{T}) where T w = 0.0 for body in mechanism.bodies w += body.mass end return w end
Dojo
https://github.com/dojo-sim/Dojo.jl.git
[ "MIT" ]
0.7.5
104b6a1a358da9b1348ab7cd66ad685ecaca13d4
code
3649
""" Mechanism{T} Multi-rigid-body system. origin: global reference frame represented with Origin joints: list of JointConstraint objects bodies: list of Body objects contacts: list of ContactConstraint objects system: graph-based representation for mechanism residual_entries: containt entries for linear system residual data_matrix: contains parameter information that is fixed during simulation root_to_leaves: list of node connections traversing from root node to leaves timestep: time discretization input_scaling: input scaling for internal use of impulses (default: timestep) gravity: force vector resulting from gravitational potential μ: complementarity violation (contact softness) """ mutable struct Mechanism{T,Nn,Ne,Nb,Ni} origin::Origin{T} joints::Vector{<:JointConstraint{T}} bodies::Vector{Body{T}} contacts::Vector{<:ContactConstraint{T}} system::System{Nn} residual_entries::Vector{Entry} data_matrix::SparseMatrixCSC{Entry,Int64} root_to_leaves::Vector{Int64} timestep::T input_scaling::T gravity::SVector{3,T} μ::T end function Base.show(io::IO, mime::MIME{Symbol("text/plain")}, mechanism::Mechanism{T,Nn,Nb,Ne,Ni}) where {T,Nn,Nb,Ne,Ni} summary(io, mechanism) println(io, " with ", Nb, " bodies, ", Ne, " joints, and ", Ni, " contacts") println(io, " root_to_leaves: "*string(mechanism.root_to_leaves)) println(io, " timestep: "*string(mechanism.timestep)) println(io, " gravity: "*string(mechanism.gravity)) println(io, " μ: "*string(mechanism.μ)) end function Mechanism(origin::Origin{T}, bodies::Vector{Body{T}}, joints::Vector{<:JointConstraint{T}}, contacts::Vector{<:ContactConstraint{T}}; timestep=0.01, input_scaling=timestep, gravity=[0.0; 0.0;-9.81]) where T # reset ids resetGlobalID() # check body inertia parameters check_body.(bodies) # dimensions Ne = length(joints) Nb = length(bodies) Ni = length(contacts) Nn = Ne + Nb + Ni # nodes nodes = [joints; bodies; contacts] # set IDs global_id!(nodes) origin.id = 0 # graph system system = create_system(origin, joints, bodies, contacts) residual_entries = deepcopy(system.vector_entries) # data gradient system data_matrix = create_data_matrix(joints, bodies, contacts) # Node ordering from root to leaves, loop joints at the end loop_joints = get_loop_joints(bodies, joints) nodes = [origin; bodies; joints; contacts] root_to_leaves = root_to_leaves_ordering(nodes, loop_joints, exclude_origin=true, exclude_loop_joints=false) Mechanism{T,Nn,Ne,Nb,Ni}(origin, joints, bodies, contacts, system, residual_entries, data_matrix, root_to_leaves, timestep, input_scaling, get_gravity(gravity), 0.0) end Mechanism(origin::Origin{T}, bodies::Vector{Body{T}}, joints::Vector{<:JointConstraint{T}}; kwargs...) where T = Mechanism(origin, bodies, joints, ContactConstraint{T}[]; kwargs...) function Mechanism(filename::String; floating::Bool=false, T=Float64, parse_dampers=true, keep_fixed_joints=true, kwargs...) # parse urdf origin, links, joints, loopjoints = parse_urdf(filename, floating, T, parse_dampers) # create mechanism mechanism = Mechanism(origin, links, [joints; loopjoints]; kwargs...) # initialize mechanism set_parsed_values!(mechanism, loopjoints) if !keep_fixed_joints mechanism = reduce_fixed_joints(mechanism; kwargs...) end return mechanism end Base.length(mechanism::Mechanism{T,N}) where {T,N} = N
Dojo
https://github.com/dojo-sim/Dojo.jl.git
[ "MIT" ]
0.7.5
104b6a1a358da9b1348ab7cd66ad685ecaca13d4
code
6280
################################################################################ # Dimension ################################################################################ # Mechanism data_dim(mechanism::Mechanism; attjac::Bool=true) = sum(Vector{Int64}(data_dim.(mechanism.joints))) + sum(Vector{Int64}(data_dim.(mechanism.bodies, attjac=attjac))) + sum(Vector{Int64}(data_dim.(mechanism.contacts))) # Joints data_dim(joint::JointConstraint) = 2 + sum(data_dim.((joint.translational, joint.rotational))) # [utra, urot, spring, damper] data_dim(joint::Translational{T,Nλ,Nb,N,Nb½,N̄λ}) where {T,Nλ,Nb,N,Nb½,N̄λ} = N̄λ # [utra] data_dim(joint::Rotational{T,Nλ,Nb,N,Nb½,N̄λ}) where {T,Nλ,Nb,N,Nb½,N̄λ} = N̄λ # [urot] # Body data_dim(body::Body; attjac::Bool=true) = attjac ? 19 : 20 # 1+6+6+6 or 1+6+6+7 [m,flat(J),v15,ω15,x2,q2] with attjac # Contact data_dim(contact::ContactConstraint) = data_dim(contact.model) data_dim(model::NonlinearContact) = 5 # [friction_coefficient, contact_radius, p] data_dim(model::LinearContact) = 5 # [friction_coefficient, contact_radius, p] data_dim(model::ImpactContact) = 4 # [contact_radius, p] ################################################################################ # Attitude Jacobian ################################################################################ # Mechanism function data_attitude_jacobian(mechanism::Mechanism) attjacs = [data_attitude_jacobian.(mechanism.joints); data_attitude_jacobian.(mechanism.bodies); data_attitude_jacobian.(mechanism.contacts)] attjac = cat(attjacs..., dims=(1,2)) return attjac end # Joints function data_attitude_jacobian(joint::JointConstraint) return I(data_dim(joint)) end # Body function data_attitude_jacobian(body::Body) # [m,flat(J),x1,q1,x2,q2] x2, q2 = current_configuration(body.state) attjac = cat(I(1+6+6+3), LVᵀmat(q2), dims=(1,2)) return attjac end # Contacts function data_attitude_jacobian(contact::ContactConstraint) return I(data_dim(contact)) end ################################################################################ # Get Data ################################################################################ # Mechanism get_data(mechanism::Mechanism) = vcat([get_data.(mechanism.joints); get_data.(mechanism.bodies); get_data.(mechanism.contacts)]...) # Joints function get_data(joint::JointConstraint) joints = (joint.translational, joint.rotational) u = vcat(nullspace_mask.(joints) .* getfield.(joints, :input)...) spring = joints[1].spring # assumes we have the same spring and dampers for translational and rotational joint. damper = joints[1].damper # assumes we have the same spring and dampers for translational and rotational joint. return [u; spring; damper] end # Body function get_data(body::Body) m = body.mass j = flatten_inertia(body.inertia) v15 = body.state.v15 ω15 = body.state.ω15 x2, q2 = current_configuration(body.state) return [m; j; v15; ω15; x2; vector(q2)] end # Contacts get_data(model::NonlinearContact) = [model.friction_coefficient; model.collision.contact_radius; model.collision.contact_origin] get_data(model::LinearContact) = [model.friction_coefficient; model.collision.contact_radius; model.collision.contact_origin] get_data(model::ImpactContact) = [model.collision.contact_radius; model.collision.contact_origin] get_data(contact::ContactConstraint) = get_data(contact.model) ################################################################################ # Set Data ################################################################################ # Mechanism function set_data!(mechanism::Mechanism, data::AbstractVector) # It's important to treat bodies before eqcs # set_data!(body) will erase state.JF2 and state.Jτ2 # set_data!(eqc) using applyinput!, will write in state.JF2 and state.Jτ2 c = 0 for joint in mechanism.joints Nd = data_dim(joint) set_data!(joint, data[SUnitRange(c+1,c+Nd)]); c += Nd end for body in mechanism.bodies Nd = data_dim(body, attjac=false) set_data!(body, data[SUnitRange(c+1,c+Nd)], mechanism.timestep); c += Nd end for contact in mechanism.contacts Nd = data_dim(contact) set_data!(contact, data[SUnitRange(c+1,c+Nd)]); c += Nd end for joint in mechanism.joints input_impulse!(joint, mechanism, false) end return nothing end # Joints function set_data!(joint::JointConstraint, data::AbstractVector) nu = input_dimension(joint) u = data[SUnitRange(1,nu)] spring = data[nu+1] damper = data[nu+2] set_input!(joint, u) for joint in (joint.translational, joint.rotational) joint.spring=spring joint.damper=damper end return nothing end # Body function set_data!(body::Body, data::AbstractVector, timestep) # [m,flat(J),x2,v15,q2,ω15] m = data[1] J = lift_inertia(data[SUnitRange(2,7)]) v15 = data[SUnitRange(8,10)] ω15 = data[SUnitRange(11,13)] x2 = data[SUnitRange(14,16)] q2 = Quaternion(data[17:20]...) x1 = next_position(x2, -v15, timestep) q1 = next_orientation(q2, -ω15, timestep) body.mass = m body.inertia = J body.state.x1 = x1 body.state.v15 = v15 body.state.q1 = q1 body.state.ω15 = ω15 body.state.x2 = x2 body.state.q2 = q2 body.state.JF2 = SVector{3}(0,0,0.) body.state.Jτ2 = SVector{3}(0,0,0.) return nothing end # Contact function set_data!(model::NonlinearContact, data::AbstractVector) model.friction_coefficient = data[1] model.collision.contact_radius = data[2] model.collision.contact_origin = data[SA[3;4;5]] return nothing end function set_data!(model::LinearContact, data::AbstractVector) model.friction_coefficient = data[1] model.collision.contact_radius = data[2] model.collision.contact_origin = data[SA[3;4;5]] return nothing end function set_data!(model::ImpactContact, data::AbstractVector) model.collision.contact_radius = data[1] model.collision.contact_origin = data[SA[2;3;4]] return nothing end function set_data!(contact::ContactConstraint, data::AbstractVector) model = contact.model N = data_dim(model) set_data!(model, data[SUnitRange(1,N)]) return nothing end function set_data!(contacts::Vector{<:ContactConstraint}, data::AbstractVector) c = 0 for contact in contacts Nd = data_dim(contact) set_data!(contact, data[SUnitRange(c+1,c+Nd)]) c += Nd end return nothing end
Dojo
https://github.com/dojo-sim/Dojo.jl.git
[ "MIT" ]
0.7.5
104b6a1a358da9b1348ab7cd66ad685ecaca13d4
code
158
""" Constraint{T} Abstract type for graph edge object """ abstract type Constraint{T,N} <: Node{T} end Base.length(::Constraint{T,N}) where {T,N} = N
Dojo
https://github.com/dojo-sim/Dojo.jl.git
[ "MIT" ]
0.7.5
104b6a1a358da9b1348ab7cd66ad685ecaca13d4
code
4054
# constraints """ get_joint(mechanism, name) return JointConstraint from Mechanism mechanism: Mechanism name: unique identifier for joint """ function get_joint(mechanism::Mechanism, name::Symbol) for joint in mechanism.joints if joint.name == name return joint end end return end get_joint(mechanism::Mechanism, id::Integer) = mechanism.joints[id] # bodies """ get_body(mechanism, name) returns Body from Mechanism mechanism: Mechanism name: unique identifier for body """ function get_body(mechanism::Mechanism, name::Symbol) if name == :origin return mechanism.origin else for body in mechanism.bodies if body.name == name return body end end end return end get_body(mechanism::Mechanism{T,Nn,Ne,Nb,Ni}, id::Integer) where {T,Nn,Ne,Nb,Ni} = id == 0 ? mechanism.origin : mechanism.bodies[id-Ne] # contacts """ get_contact(mechanism, name) returns ContactConstraint from Mechanism mechanism: Mechanism name: unique identifier for contact """ function get_contact(mechanism::Mechanism, name::Symbol) for contact in mechanism.contacts if contact.name == name return contact end end return end get_contact(mechanism::Mechanism{T,Nn,Ne,Nb,Ni}, id::Integer) where {T,Nn,Ne,Nb,Ni} = mechanism.contacts[id-Ne-Nb] # nodes """ get_node(mechanism, name) return Node from Mechanism mechanism: Mechanism name: unique identifier for node """ function get_node(mechanism::Mechanism, name::Symbol) node = get_body(mechanism, name) if node === nothing node = get_joint(mechanism,name) end if node === nothing node = get_contact(mechanism,name) end return node end function get_node(mechanism::Mechanism{T,Nn,Ne,Nb}, id::Integer; origin::Bool=false) where {T,Nn,Ne,Nb} (origin && id == 0) && return mechanism.origin if id <= Ne return get_joint(mechanism, id) elseif id <= Ne+Nb return get_body(mechanism, id) else return get_contact(mechanism, id) end end # maximal """ get_maximal_state(mechanism) return the current maximal state of mechanism mechanism: Mechanism """ function get_maximal_state(mechanism::Mechanism{T,Nn,Ne,Nb,Ni}) where {T,Nn,Ne,Nb,Ni} z = zeros(T, 13Nb) for (i, body) in enumerate(mechanism.bodies) x2 = body.state.x2 v15 = body.state.v15 q2 = body.state.q2 ω15 = body.state.ω15 pack_maximal_state!(z, x2, v15, q2, ω15, i) end return z end """ get_next_state(mechanism) return the maximal state of mechanism after one simulation step mechanism: Mechanism """ function get_next_state(mechanism::Mechanism{T,Nn,Ne,Nb,Ni}) where {T,Nn,Ne,Nb,Ni} timestep= mechanism.timestep z_next = zeros(T, 13Nb) for (i, body) in enumerate(mechanism.bodies) x3, v25, q3, ω25 = next_configuration_velocity(body.state, timestep) z_next[13 * (i-1) .+ (1:13)] = [x3; v25; vector(q3); ω25] end return z_next end # minimal """ get_minimal_state(mechanism) return minimal state for mechanism mechanism: Mechanism """ function get_minimal_state(mechanism::Mechanism{T,Nn,Ne,Nb,Ni}) where {T,Nn,Ne,Nb,Ni} x = [] mechanism = deepcopy(mechanism) timestep = mechanism.timestep for joint in mechanism.joints c = zeros(T,0) v = zeros(T,0) pbody = get_body(mechanism, joint.parent_id) cbody = get_body(mechanism, joint.child_id) for element in (joint.translational, joint.rotational) pos = minimal_coordinates(element, pbody, cbody) vel = minimal_velocities(element, pbody, cbody, timestep) push!(c, pos...) push!(v, vel...) end push!(x, [c; v]...) end x = [x...] return x end function get_minimal_coordinates(mechanism::Mechanism{T}) where T d = Dict{Int,Vector{T}}() for joint in mechanism.joints push!(d, joint.id => minimal_coordinates(mechanism, joint)) end return d end
Dojo
https://github.com/dojo-sim/Dojo.jl.git
[ "MIT" ]
0.7.5
104b6a1a358da9b1348ab7cd66ad685ecaca13d4
code
153
# gravity get_gravity(g::T) where T <: Real = SVector{3,T}([0.0; 0.0; g]) get_gravity(g::Vector{T}) where T = SVector{3,T}(g) get_gravity(g::SVector) = g
Dojo
https://github.com/dojo-sim/Dojo.jl.git
[ "MIT" ]
0.7.5
104b6a1a358da9b1348ab7cd66ad685ecaca13d4
code
477
global CURRENTID = -1 getGlobalID() = (global CURRENTID -= 1; return CURRENTID + 1) resetGlobalID() = (global CURRENTID = -1; return) function global_id!(nodes) oldnewid = Dict([node.id => i for (i, node) in enumerate(nodes)]...) for node in nodes node.id = oldnewid[node.id] if typeof(node) <: Constraint node.parent_id = get(oldnewid, node.parent_id, 0) node.child_id = get(oldnewid, node.child_id, 0) end end end
Dojo
https://github.com/dojo-sim/Dojo.jl.git
[ "MIT" ]
0.7.5
104b6a1a358da9b1348ab7cd66ad685ecaca13d4
code
8529
function velocity_index(mechanism::Mechanism{T,Nn,Ne}) where {T,Nn,Ne} ind = [] off = 0 for joint in mechanism.joints nu = input_dimension(joint) push!(ind, Vector(off + nu .+ (1:nu))) off += 2nu end return vcat(ind...) end # find all the joints parents of a body function parent_joints(mechanism::Mechanism{T,Nn,Ne,Nb,Ni}, body::Body) where {T,Nn,Ne,Nb,Ni} ids = parents(mechanism.system, body.id) ids = intersect(ids, 1:Ne) # filter out the bodies return [get_node(mechanism, id) for id in ids] end # dimensions """ minimal_dimension(mechanism) dimension of a mechanism's minimal representation mechanism: Mechanism """ function minimal_dimension(mechanism::Mechanism{T,Nn,Ne,Nb,Ni}) where {T,Nn,Ne,Nb,Ni} nx = 0 free_rot_base = false # we are going to check if the link attached to the base has free orientation nx = 2 * input_dimension(mechanism, ignore_floating_base=false) free_rot_base && (nx += 1) return nx end """ maximal_dimension(mechanism) dimension of a mechanism's maximal representation mechanism: Mechanism """ maximal_dimension(mechanism::Mechanism{T,Nn,Ne,Nb}; attjac::Bool=false) where {T,Nn,Ne,Nb} = attjac ? 12Nb : 13Nb """ input_dimension(mechanism) return the number of inputs for mechanism mechanism: Mechanism """ function input_dimension(mechanism::Mechanism; ignore_floating_base::Bool=false) nu = 0 for joint in mechanism.joints nu += input_dimension(joint; ignore_floating_base) end return nu end """ input_dimensions(mechanism) return an array with the input dimensions of all joints mechanism: Mechanism """ function input_dimensions(mechanism::Mechanism; ignore_floating_base::Bool=false) nus = Int64[] for joint in mechanism.joints push!(nus,input_dimension(joint; ignore_floating_base)) end return nus end """ set_floating_base(mechanism, name) returns a mechanism with modified joints having body identified with 'name' as the floating base mechanism: Mechanism name: Symbol, identifier for floating-base body """ function set_floating_base(mechanism::Mechanism, name::Symbol) # copy mechanism = deepcopy(mechanism) # original floating base body1 = mechanism.origin # new floating base body2 = get_body(mechanism, name) # find joint for new floating base body = body2 joint = mechanism.joints[findall(j -> j.child_id == body.id, mechanism.joints)[1]] joint_list = JointConstraint[] push!(joint_list, joint) while joint_list[end].parent_id != body1.id push!(joint_list, mechanism.joints[findall(j -> j.child_id == joint_list[end].parent_id, mechanism.joints)[1]]) end # reverse JointConstraint (p_old -> c_old) to (c_old -> p_old) new_joint_list = JointConstraint[] for j in joint_list j = deepcopy(j) if j.parent_id == body1.id j.child_id = body2.id push!(new_joint_list, j) continue else parent_id = j.parent_id child_id = j.child_id pbody = get_body(mechanism, parent_id) cbody = get_body(mechanism, child_id) # translational conversion t = j.translational t_reverse = Translational{typeof(t).parameters[1], typeof(t).parameters[2]}(cbody, pbody; parent_vertex=t.vertices[2], child_vertex=t.vertices[1], axis=-t.axis, spring=t.spring, damper=t.damper, spring_offset=t.spring_offset, joint_limits=t.joint_limits, spring_type=t.spring_type)[1] r = j.rotational r_reverse = Rotational{typeof(r).parameters[1], typeof(r).parameters[2]}(cbody, pbody; axis=-r.axis, orientation_offset=inv(r.orientation_offset), spring=r.spring, damper=r.damper, spring_offset=r.spring_offset, joint_limits=r.joint_limits, spring_type=r.spring_type)[1] j.parent_id = child_id j.child_id = parent_id j.translational = t_reverse j.rotational = r_reverse end push!(new_joint_list, j) end # set joints for j in new_joint_list mechanism.joints[j.id] = j end return Mechanism(mechanism.origin, mechanism.bodies, mechanism.joints, mechanism.contacts, gravity=mechanism.gravity, timestep=mechanism.timestep) end function reduce_fixed_joints(mechanism; kwargs...) mechanism = Mechanism(reduce_fixed_joints(mechanism.origin, mechanism.bodies, mechanism.joints)...; kwargs...) zero_coordinates!(mechanism) return mechanism end # TODO currently only for non-contact mechanisms function reduce_fixed_joints(origin, bodies, joints; merge_names=false) remaining_bodies = ones(Bool,length(bodies)) remaining_joints = ones(Bool,length(joints)) for (j,joint) in enumerate(joints) if typeof(joint) <: JointConstraint{T,6} where T # i.e., fixed joint parent_body = get_origin_or_body_from_id(joint.parent_id, origin, bodies) child_body = get_origin_or_body_from_id(joint.child_id, origin, bodies) v1, v2 = joint.translational.vertices q_offset = joint.rotational.orientation_offset child_body_com = v1 - vector_rotate(v2,q_offset) # in parent_body's frame if parent_body == origin new_body_com = zeros(3) else parent_m, child_m = parent_body.mass, child_body.mass parent_J, child_J = parent_body.inertia, child_body.inertia new_body_com = child_body_com*child_m/(parent_m+child_m) # in parent_body's frame parent_body.mass = parent_m + child_m new_body_J1 = parent_J + parent_m*skew(-new_body_com)'*skew(-new_body_com) # in new_body's frame new_body_J2 = matrix_transform(child_J,q_offset) + child_m*skew(child_body_com-new_body_com)'*skew(child_body_com-new_body_com) # in new_body's frame parent_body.inertia = new_body_J1 + new_body_J2 # in new_body's frame end if !(typeof(parent_body.shape) <: EmptyShape) parent_body.shape.position_offset += -new_body_com # in new_body's frame end if !(typeof(child_body.shape) <: EmptyShape) child_body.shape.position_offset += child_body_com-new_body_com # in new_body's frame child_body.shape.orientation_offset *= q_offset end parent_body.shape = CombinedShapes([parent_body.shape;child_body.shape]) merge_names && (parent_body.name = Symbol(parent_body.name,"_merged_with_",child_body.name)) for joint2 in joints joint2 == joint && continue v21, v22 = joint2.translational.vertices q_offset2 = joint2.rotational.orientation_offset if joint2.parent_id == parent_body.id joint2.translational.vertices = (v21-new_body_com, v22) elseif joint2.child_id == parent_body.id joint2.translational.vertices = (v21,v22-new_body_com) elseif joint2.parent_id == child_body.id joint2.parent_id = parent_body.id joint2.translational.vertices = (vector_rotate(v21,q_offset)+child_body_com-new_body_com, v22) joint2.rotational.orientation_offset = q_offset*q_offset2 # correct? elseif joint2.child_id == child_body.id joint2.child_id = parent_body.id joint2.translational.vertices = (v21,vector_rotate(v22,q_offset)+child_body_com-new_body_com) joint2.rotational.orientation_offset = q_offset*q_offset2 # correct? end end remaining_joints[j] = false remaining_bodies[findfirst(x->x==child_body,bodies)] = false end end return origin, bodies[remaining_bodies], joints[remaining_joints] end function get_origin_or_body_from_id(id, origin, bodies) origin.id == id && (return origin) for body in bodies body.id == id && (return body) end end
Dojo
https://github.com/dojo-sim/Dojo.jl.git
[ "MIT" ]
0.7.5
104b6a1a358da9b1348ab7cd66ad685ecaca13d4
code
87
""" Node{T} Abstract type for graph node object """ abstract type Node{T} end
Dojo
https://github.com/dojo-sim/Dojo.jl.git
[ "MIT" ]
0.7.5
104b6a1a358da9b1348ab7cd66ad685ecaca13d4
code
3621
# maximal """ set_maximal_state(mechanism, z) set the maximal state of a mechanism mechanism: Mechanism z: state """ function set_maximal_state!(mechanism::Mechanism, z::AbstractVector) off = 0 for body in mechanism.bodies x2, v15, q2, ω15 = unpack_data(z[SUnitRange(off+1,end)]); off += 13 q2 = Quaternion(q2...) body.state.v15 = v15 body.state.ω15 = ω15 body.state.x2 = x2 body.state.q2 = q2 initialize_state!(mechanism) # set x1, q1 and zeroes out JF2 Jτ2 end # warm-start solver for body in mechanism.bodies set_velocity_solution!(body) end end function initialize_state!(mechanism::Mechanism) for body in mechanism.bodies initialize_state!(body, mechanism.timestep) end end # inputs """ set_input(mechanism, u) set input for each joint in mechanism mechanism: Mechanism u: input """ function set_input!(mechanism::Mechanism{T}, u::AbstractVector) where T joints = mechanism.joints # set the controls in the equality constraints off = 0 for joint in joints nu = input_dimension(joint) set_input!(joint, SVector{nu,T}(u[SUnitRange(off+1,off+nu)])) off += nu end # apply the controls to each body's state for joint in joints input_impulse!(joint, mechanism) end end function set_input!(mechanism::Mechanism, dict::Dict) for (id, joint) in pairs(mechanism.joints) set_input!(joint, dict[id]) end end # minimal """ set_minimal_state(mechanism, y) set the minimal state of a mechanism mechanism: Mechanism y: state """ function set_minimal_state!(mechanism::Mechanism, y::AbstractVector) z = minimal_to_maximal(mechanism, y) set_maximal_state!(mechanism, z) end function set_minimal_coordinates!(mechanism::Mechanism, dict::Dict) for (id, joint) in pairs(mechanism.joints) set_minimal_coordinates!(mechanism, joint, dict[id]) end end function set_minimal_velocities!(mechanism::Mechanism, dict::Dict) for (id, joint) in pairs(mechanism.joints) set_minimal_velocities!(mechanism, joint, dict[id]) end end """ zero_coordinates!(mechanism) set all mechanism body coordinates to zero mechanism: Mechanism """ function zero_coordinates!(mechanism::Mechanism) for id in root_to_leaves_ordering(mechanism, exclude_origin=true, exclude_loop_joints=true) joint = get_node(mechanism, id) !(joint isa JointConstraint) && continue cnode = get_node(mechanism, joint.child_id) pnode = get_node(mechanism, joint.parent_id, origin=true) parent_vertex, child_vertex = joint.translational.vertices Δq = joint.rotational.orientation_offset set_maximal_configurations!(cnode) # set everything to zero set_maximal_configurations!(pnode, cnode; parent_vertex, child_vertex, Δq) end end # velocity """ zero_velocities!(mechanism) set all mechanism body velocities to zero mechanism: Mechanism """ function zero_velocities!(mechanism::Mechanism) for (i, body) in enumerate(mechanism.bodies) try set_maximal_velocities!(body, v=zeros(3), ω=zeros(3)) set_previous_configuration!(body, mechanism.timestep) catch nothing end end end # springs + dampers function set_spring_offset!(mechanism::Mechanism{T,Nn,Ne,Nb,Ni}, x::AbstractVector) where {T,Nn,Ne,Nb,Ni} off = 0 for joint in mechanism.joints N̄ = 3 - length(joint) joint.spring_offset = x[SUnitRange(off+1,off+N̄)] off += 2N̄ end return end
Dojo
https://github.com/dojo-sim/Dojo.jl.git
[ "MIT" ]
0.7.5
104b6a1a358da9b1348ab7cd66ad685ecaca13d4
code
2468
""" minimal_to_maximal(mechanism, y) convert minimal to maximal representation mechanism: Mechanism y: minimal state """ function minimal_to_maximal(mechanism::Mechanism{T,Nn,Ne,Nb,Ni}, y::AbstractVector) where {T,Nn,Ne,Nb,Ni} temp_mechanism = deepcopy(mechanism) nus = input_dimensions(mechanism) for id in temp_mechanism.root_to_leaves (id > Ne) && continue # only treat joints joint = temp_mechanism.joints[id] nu = input_dimension(joint) off = sum(nus[SUnitRange(1,id-1)])*2 set_minimal_coordinates_velocities!(temp_mechanism, joint, xmin=y[SUnitRange(off+1,off+2nu)]) # TODO does this actually set a state and not just convert min to max? end return get_maximal_state(temp_mechanism) end function joint_indices(mechanism::Mechanism{T,Nn,Ne}) where {T,Nn,Ne} ind = [] off = 0 for joint in mechanism.joints nu = input_dimension(joint) push!(ind, Vector(off + nu .+ (1:nu))) off += 2nu end return vcat(ind...) end """ maximal_to_minimal(mechanism, z) convert maximal to minimal representation mechanism: Mechanism z: maximal state """ function maximal_to_minimal(mechanism::Mechanism{T,Nn,Ne,Nb,Ni}, z::AbstractVector{Tz}) where {T,Nn,Ne,Nb,Ni,Tz} x = [] for joint in mechanism.joints c = zeros(Tz,0) v = zeros(Tz,0) i_child = joint.child_id - Ne for element in (joint.translational, joint.rotational) xb, vb, qb, ωb = unpack_maximal_state(z, i_child) if joint.parent_id != 0 i_parent = joint.parent_id - Ne xa, va, qa, ωa = unpack_maximal_state(z, i_parent) else xa, va, qa, ωa = current_configuration_velocity(mechanism.origin.state) end push!(c, minimal_coordinates(element, xa, qa, xb, qb)...) push!(v, minimal_velocities(element, xa, va, qa, ωa, xb, vb, qb, ωb, mechanism.timestep)...) end push!(x, [c; v]...) end x = [x...] return x end function unpack_maximal_state(z::AbstractVector, i::Int) zi = z[SUnitRange((i-1)*13+1,i*13)] x2 = zi[SUnitRange(1,3)] v15 = zi[SUnitRange(4,6)] q2 = Quaternion(zi[SUnitRange(7,10)]...) ω15 = zi[SUnitRange(11,13)] return x2, v15, q2, ω15 end function pack_maximal_state!(z::AbstractVector, x2::AbstractVector, v15::AbstractVector, q2::Quaternion, ω15::AbstractVector, i::Int) z[SUnitRange((i-1)*13+1,(i-1)*13+3)] = x2 z[SUnitRange((i-1)*13+4,(i-1)*13+6)] = v15 z[SUnitRange((i-1)*13+7,(i-1)*13+10)] = vector(q2) z[SUnitRange((i-1)*13+11,(i-1)*13+13)] = ω15 return nothing end
Dojo
https://github.com/dojo-sim/Dojo.jl.git
[ "MIT" ]
0.7.5
104b6a1a358da9b1348ab7cd66ad685ecaca13d4
code
2343
function create_system(origin::Origin{T}, joints::Vector{<:JointConstraint}, bodies::Vector{<:Body}, contacts::Vector{<:ContactConstraint}) where T adjacency = adjacency_matrix(joints, bodies, contacts) dims = length.([joints; bodies; contacts]) system = System{T}(adjacency, dims) for joint in joints joint.parent_id == origin.id && (joint.parent_id = 0) end origin.id = 0 return system end function adjacency_matrix(joints::Vector{<:JointConstraint}, bodies::Vector{<:Body}, contacts::Vector{<:ContactConstraint}) nodes = [joints; bodies; contacts] n = length(nodes) A = zeros(Bool, n, n) for node1 in nodes for node2 in nodes if typeof(node1) <: Constraint node2.id == node1.child_id && (A[node1.id, node2.id] = 1) elseif typeof(node2) <: Constraint node1.id == node2.parent_id && (A[node1.id, node2.id] = 1) # TODO these entries linking two bodies should be removed, # not sure why this is breaking some of the tests elseif typeof(node1) <: Body && typeof(node2) <: Body for joint in joints if node1.id == joint.parent_id && node2.id == joint.child_id A[node1.id, node2.id] = 1 end if node2.id == joint.parent_id && node1.id == joint.child_id A[node2.id, node1.id] = 1 end end # for contact in contacts # if node1.id == contact.parent_id && node2.id == contact.child_id # A[node1.id, node2.id] = 1 # end # if node2.id == contact.parent_id && node1.id == contact.child_id # A[node2.id, node1.id] = 1 # end # end end end end A = convert(Matrix{Int64}, A .| A') return A end get_entry(system, id1, id2) = system.matrix_entries[id1, id2] get_entry(system, id) = system.vector_entries[id] function recursivedirectchildren!(system, id::Integer) dirs = copy(children(system, id)) dirslocal = copy(dirs) for child_id in dirslocal append!(dirs, recursivedirectchildren!(system, child_id)) end return dirs end
Dojo
https://github.com/dojo-sim/Dojo.jl.git
[ "MIT" ]
0.7.5
104b6a1a358da9b1348ab7cd66ad685ecaca13d4
code
2713
""" root_to_leaves_ordering(mechanism; exclude_origin, exclude_loop_joints) ordered list of ids from root to leaves, all nodes are visited a single time excluding: origin, joints forming a loop which are not visited mechanism: Mechanism exclude_origin: flag to exclude origin from traversal exclude_loop_joints: flag to exclude loop joints from traversal """ function root_to_leaves_ordering(mechanism::Mechanism{T}; exclude_origin::Bool=true, exclude_loop_joints::Bool=true) where T nodes = [mechanism.origin; mechanism.bodies; mechanism.joints; mechanism.contacts] loop_joints = get_loop_joints(mechanism.bodies, mechanism.joints) return root_to_leaves_ordering(nodes, loop_joints, exclude_origin=exclude_origin, exclude_loop_joints=exclude_loop_joints) end function root_to_leaves_ordering(nodes::Vector{Node{T}}, loop_joints; exclude_origin::Bool=true, exclude_loop_joints::Bool=true) where T ids = Vector{Int64}() stack = [0] while length(stack) > 0 ids, stack = explore(ids, stack, nodes, loop_joints) end exclude_origin && (ids = ids[2:end]) # remove origin !exclude_loop_joints && push!(ids, getfield.(loop_joints, :id)...) # add loop_joints return ids end function explore(ids::Vector{Int}, stack::Vector{Int}, nodes::Vector{Node{T}}, loop_joints) where T loop_joints_ids = getfield.(loop_joints, :id) id = pop!(stack) push!(ids, id) node = nodes[findfirst(n -> n.id == id, nodes)] child_ids = get_child_ids(node, nodes) setdiff!(child_ids, loop_joints_ids) push!(stack, child_ids...) return ids, stack end function get_child_ids(joint::JointConstraint, nodes::Vector{Node{T}}) where T [joint.child_id] end function get_child_ids(node::Node, nodes::Vector{Node{T}}) where T child_ids = Vector{Int64}() for cnode in nodes if !(cnode isa Origin) && !(cnode isa Body) (cnode.parent_id == node.id) && push!(child_ids, cnode.id) end end return child_ids end function get_child_ids(body::Contact, nodes::Vector{Node{T}}) where T Vector{Int64}() end function get_loop_joints(bodies::Vector{<:Body}, joints::Vector{<:JointConstraint}) # Assumes that the Origin cannot be the child of a joint. # the results is dependent on the ordering of the joints provided to the method. loop_joints = [] body_ids = getfield.(bodies, :id) visited_bodies = zeros(Int,0) for joint in joints if joint.child_id in visited_bodies push!(loop_joints, joint) else push!(visited_bodies, joint.child_id) end end return [loop_joints...] end
Dojo
https://github.com/dojo-sim/Dojo.jl.git
[ "MIT" ]
0.7.5
104b6a1a358da9b1348ab7cd66ad685ecaca13d4
code
22653
### Before parsing unsafeattribute(::Nothing, ::Core.AbstractString) = nothing unsafeattribute(x::LightXML.XMLElement, name::Core.AbstractString) = attribute(x, name) function parse_scalar(xel, name::String, T; default::Union{String,Nothing}=nothing) scalarstr = unsafeattribute(xel, name) if scalarstr === nothing if default === nothing @error "no parsable scalar found" else scalarstr = default end end return parse(T, scalarstr) end function parse_vector(xel, name::String, T; default::Union{String,Nothing}=nothing) vectorstr = unsafeattribute(xel, name) if vectorstr === nothing if default === nothing @error "no parsable vector found" else vectorstr = default end end return parse.(T,split(vectorstr)) end function parse_inertiamatrix(xinertia, T) if xinertia === nothing J = zeros(T, 3, 3) else ixx = parse_scalar(xinertia, "ixx", T) ixy = parse_scalar(xinertia, "ixy", T; default = "0") ixz = parse_scalar(xinertia, "ixz", T; default = "0") iyy = parse_scalar(xinertia, "iyy", T) iyz = parse_scalar(xinertia, "iyz", T; default = "0") izz = parse_scalar(xinertia, "izz", T) J = [ixx ixy ixz; ixy iyy iyz; ixz iyz izz] end return J end function parse_pose(xpose, T) if xpose === nothing x, q = zeros(T, 3), one(Quaternion{T}) else x = parse_vector(xpose, "xyz", T; default = "0 0 0") rpy = parse_vector(xpose, "rpy", T; default = "0 0 0") q = RotZ(rpy[3])*RotY(rpy[2])*RotX(rpy[1]) end return x, q end function parse_inertia(xinertial, T) if xinertial === nothing x = zeros(T, 3) q = one(Quaternion{T}) m = zero(T) J = zeros(T, 3, 3) else x, q = parse_pose(find_element(xinertial, "origin"), T) J = parse_inertiamatrix(find_element(xinertial, "inertia"), T) m = parse_scalar(find_element(xinertial, "mass"), "value", T; default = "0") end return x, q, m, J end function parse_robotmaterials(xroot, T) xmaterials = get_elements_by_tagname(xroot, "material") mdict = Dict{String,Vector{T}}() for xmaterial in xmaterials name = attribute(xmaterial, "name") colornode = find_element(xmaterial, "color") colorvec = parse_vector(colornode, "rgba", T) mdict[name] = colorvec end return mdict end function parse_xmaterial(xmaterial, materialdict, T) if xmaterial === nothing color = RGBA(0.75, 0.75, 0.75) else name = unsafeattribute(xmaterial, "name") if haskey(materialdict, name) colorvec = materialdict[name] else colorvec = [0.75; 0.75; 0.75; 1.0] end colornode = find_element(xmaterial, "color") colorvec = parse_vector(colornode, "rgba", T; default = string(colorvec[1]," ",colorvec[2]," ",colorvec[3]," ",colorvec[4])) color = RGBA(colorvec...) end return color end # function parse_shape(xvisual, materialdict, T, xb, qb) function parse_shape(xvisual, materialdict, T; path_prefix) if xvisual === nothing shape = nothing else xgeometry = find_element(xvisual, "geometry") @assert xgeometry !== nothing color = parse_xmaterial(find_element(xvisual, "material"), materialdict, T) x, q = parse_pose(find_element(xvisual, "origin"), T) shapenodes = LightXML.XMLElement[] for node in child_nodes(xgeometry) # node is an instance of XMLNode if is_elementnode(node) push!(shapenodes, XMLElement(node)) end end if length(shapenodes) == 0 shape = nothing else if length(shapenodes) > 1 @warn "Multiple geometries." end shapenode = shapenodes[1] shape = get_shape(shapenode, x, q, color, T; path_prefix) end end return shape end function get_shape(shapenode, x, q, color, T; path_prefix) if name(shapenode) == "box" xyz = parse_vector(shapenode, "size", T; default = "1 1 1") shape = Box(xyz..., zero(T); color, position_offset = x, orientation_offset = q) elseif name(shapenode) == "cylinder" r = parse_scalar(shapenode, "radius", T; default = "0.5") l = parse_scalar(shapenode, "length", T; default = "1") shape = Cylinder(r, l, zero(T); color, position_offset = x, orientation_offset = q) elseif name(shapenode) == "pyramid" w = parse_scalar(shapenode, "width", T; default = "1") h = parse_scalar(shapenode, "height", T; default = "1") shape = Cylinder(w, h, zero(T); color, position_offset = x, orientation_offset = q) elseif name(shapenode) == "sphere" r = parse_scalar(shapenode, "radius", T; default = "0.5") shape = Sphere(r, zero(T); color, position_offset = x, orientation_offset = q) elseif name(shapenode) == "mesh" path = attribute(shapenode, "filename") scale = parse_vector(shapenode, "scale", T; default = "1 1 1") shape = Mesh(normpath(joinpath(path_prefix, path)), zero(T), zeros(T, 3, 3); scale, color, position_offset = x, orientation_offset = q) elseif name(shapenode) == "capsule" r = parse_scalar(shapenode, "radius", T; default = "0.5") l = parse_scalar(shapenode, "length", T; default = "1") shape = Capsule(r, l, zero(T); color, position_offset = x, orientation_offset = q) else @info "Unknown geometry." shape = nothing end end function parse_link(xlink, materialdict, T; path_prefix) x, q, m, J = parse_inertia(find_element(xlink, "inertial"), T) xvisuals = get_elements_by_tagname(xlink, "visual") shapes = [parse_shape(xvisual, materialdict, T; path_prefix) for xvisual in xvisuals] # shapes = [parse_shape(xvisual, materialdict, T, x, q) for xvisual in xvisuals] if length(shapes) == 0 shape = nothing elseif length(shapes) > 1 s = [s.shape for s in shapes] shape = CombinedShapes(s, 0.0, szeros(3,3)) else shape = shapes[1] end name = attribute(xlink, "name") if shape === nothing link = Body(m, J, name=Symbol(name)) else link = shape link.mass = m link.inertia = J link.name = Symbol(name) end link.state.x2 = x link.state.q2 = q return link end function parse_links(xlinks, materialdict, T; path_prefix) ldict = Dict{Symbol,Body{T}}() for xlink in xlinks link = parse_link(xlink, materialdict, T; path_prefix) ldict[link.name] = link end return ldict end # TODO: fix axis function joint_selector(joint_type, pbody, cbody, T; axis = SA{T}[1;0;0], parent_vertex = szeros(T,3), child_vertex = szeros(T,3), orientation_offset = one(Quaternion{T}), name = Symbol("joint_" * randstring(4)), damper = zero(T)) # TODO @warn "this is not great" # axis = vector_rotate(axis, orientation_offset) # inv(orientation_offset) * axis # TODO limits for revolute joint? if joint_type == "revolute" || joint_type == "continuous" joint = JointConstraint(Revolute(pbody, cbody, axis; parent_vertex, child_vertex, orientation_offset, damper); name) elseif joint_type == "prismatic" joint = JointConstraint(Prismatic(pbody, cbody, axis; parent_vertex, child_vertex, orientation_offset, damper); name) elseif joint_type == "planar" joint = JointConstraint(Planar(pbody, cbody, axis; parent_vertex, child_vertex, orientation_offset, damper); name) elseif joint_type == "planarfree" joint = JointConstraint(PlanarFree(pbody, cbody, axis; parent_vertex, child_vertex, damper); name) elseif joint_type == "fixed" joint = JointConstraint(Fixed(pbody, cbody; parent_vertex, child_vertex, orientation_offset); name) elseif joint_type == "floating" joint = JointConstraint(Floating(pbody, cbody; damper); name) elseif joint_type == "orbital" joint = JointConstraint(Orbital(pbody, cbody, axis; parent_vertex, child_vertex, orientation_offset, damper); name) elseif joint_type == "ball" joint = JointConstraint(Spherical(pbody, cbody; parent_vertex, child_vertex, orientation_offset, damper); name) elseif joint_type == "fixedorientation" joint = JointConstraint(FixedOrientation(pbody, cbody; orientation_offset, damper); name) elseif joint_type == "cylindrical" joint = JointConstraint(Cylindrical(pbody, cbody, axis; parent_vertex, child_vertex, orientation_offset, damper); name) elseif joint_type == "cylindricalfree" joint = JointConstraint(CylindricalFree(pbody, cbody, axis; parent_vertex, child_vertex, damper); name) elseif joint_type == "planaraxis" joint = JointConstraint(PlanarAxis(pbody, cbody, axis; parent_vertex, child_vertex, orientation_offset, damper); name) else @error "Unknown joint type" end return joint end function parse_joint(xjoint, plink, clink, T, parse_dampers) joint_type = attribute(xjoint, "type") x, q = parse_pose(find_element(xjoint, "origin"), T) axis = parse_vector(find_element(xjoint, "axis"), "xyz", T; default = "1 0 0") parent_vertex = x name = Symbol(attribute(xjoint, "name")) parse_dampers ? damper = parse_scalar(find_element(xjoint, "dynamics"), "damping", T; default = "0") : damper = 0 return joint_selector(joint_type, plink, clink, T; axis, parent_vertex, orientation_offset = q, name, damper) end function parse_loop_joint(xjoint, pbody, cbody, T, parse_dampers) find_element(xjoint, "link1") find_element(xjoint, "link2") joint_type = attribute(xjoint, "type") axis = parse_vector(find_element(xjoint, "axis"), "xyz", T, default = "1 0 0") x1, q1 = parse_pose(find_element(xjoint, "link1"), T) x2, _ = parse_pose(find_element(xjoint, "link2"), T) # The orientation q2 of the second body is ignored because it is determined by the mechanism's structure parent_vertex = x1 child_vertex = x2 name = Symbol(attribute(xjoint, "name")) parse_dampers ? damper = parse_scalar(find_element(xjoint, "dynamics"), "damping", T; default = "0") : damper = 0 return joint_selector(joint_type, pbody, cbody, T; axis, parent_vertex, child_vertex, orientation_offset = q1, name, damper) end function parse_joints(xjoints, ldict, floating, T, parse_dampers) origins = Origin{T}[] links = Body{T}[] joints = JointConstraint{T}[] floatingname = "" for name in keys(ldict) childflag = false for xjoint in xjoints xchild = find_element(xjoint, "child") childname = attribute(xchild, "link") if Symbol(childname) == name childflag = true break end end if childflag push!(links, ldict[name]) else origin = Origin{T}() if floating # keep current link and create new origin push!(links, ldict[name]) floatingname = name else # make current link origin origin = Origin(ldict[name]) end push!(origins, origin) end end @assert length(origins) == 1 "Multiple origins" origin = origins[1] for xjoint in xjoints xplink = find_element(xjoint, "parent") xclink = find_element(xjoint, "child") clink = ldict[Symbol(attribute(xclink, "link"))] plink = ldict[Symbol(attribute(xplink, "link"))] if plink.id == origin.id plink = origin joint = parse_joint(xjoint, plink, clink, T, parse_dampers) joints = [joint; joints] # For proper parsing the first joint must be connected to the origin else joint = parse_joint(xjoint, plink, clink, T, parse_dampers) push!(joints, joint) end end if floating originjoint = JointConstraint(Floating(origin, ldict[Symbol(floatingname)]), name=:floating_base) joints = [originjoint; joints] # For proper parsing the first joint must be connected to the origin end return origin, links, joints end # TODO This might be missing the detection of a direct loop, i.e., only two links connected by two joints # TODO Also only works for a single loop closure in a cycle (so no ladders) function parse_loop_joints(xloopjoints, origin, joints, ldict, T, parse_dampers) loopjoints = JointConstraint{T}[] for xloopjoint in xloopjoints xpbody = find_element(xloopjoint, "link1") xcbody = find_element(xloopjoint, "link2") pbody = ldict[Symbol(attribute(xpbody, "link"))] cbody = ldict[Symbol(attribute(xcbody, "link"))] predlist = Tuple{Int64,Int64}[] jointlist = [(joints[i].id,joints[i].parent_id, joints[i].child_id) for i in eachindex(joints)] linkid = pbody.id while true # create list of predecessor joints and parent links for pbody for (i,jointdata) in enumerate(jointlist) if linkid ∈ jointdata[3] push!(predlist,(jointdata[1],jointdata[2])) linkid = jointdata[2] deleteat!(jointlist,i) break end end if linkid == origin.id break end end jointlist = [(joints[i].id, joints[i].parent_id, joints[i].child_id) for i in eachindex(joints)] linkid = cbody.id joint1id = 0 joint2id = 0 foundflag = false while true # check which predecessor link of cbody is also a predecessor link of pbody for (i,jointdata) in enumerate(jointlist) if linkid ∈ jointdata[3] joint2id = jointdata[1] linkid = jointdata[2] deleteat!(jointlist,i) break end end for el in predlist if linkid == el[2] joint1id = el[1] foundflag = true break end end foundflag && break end loopjoint = parse_loop_joint(xloopjoint, pbody, cbody, T, parse_dampers) push!(loopjoints, loopjoint) end return joints, loopjoints end function parse_urdf(filename, floating, ::Type{T}, parse_dampers) where T xdoc = LightXML.parse_file(filename) xroot = LightXML.root(xdoc) @assert LightXML.name(xroot) == "robot" xlinks = get_elements_by_tagname(xroot, "link") xjoints = get_elements_by_tagname(xroot, "joint") xloopjoints = get_elements_by_tagname(xroot, "loop_joint") materialdict = parse_robotmaterials(xroot, T) ldict = parse_links(xlinks, materialdict, T; path_prefix=dirname(filename)) origin, links, joints = parse_joints(xjoints, ldict, floating, T, parse_dampers) joints, loopjoints = parse_loop_joints(xloopjoints, origin, joints, ldict, T, parse_dampers) free(xdoc) return origin, links, joints, loopjoints end ### After parsing function set_parsed_values!(mechanism::Mechanism{T}, loopjoints) where T system = mechanism.system timestep= mechanism.timestep xjointlist = Dict{Int64,SVector{3,T}}() # stores id, x in world frame qjointlist = Dict{Int64,Quaternion{T}}() # stores id, q in world frame for id in root_to_leaves_ordering(mechanism, exclude_origin=true, exclude_loop_joints=true) node = get_node(mechanism, id) !(node isa JointConstraint) && continue # only for joints # Parent joint --> Parent body --> Child joint --> Child body # Child joint (joint of interest here) cjoint = node x_cjoint = cjoint.translational.vertices[1] # stored in parent_vertex q_cjoint = cjoint.rotational.orientation_offset # stored in orientation_offset # axis_pjoint = # # Child body (body of interest here) cnode = get_node(mechanism, cjoint.child_id) # x and q are stored in x2[1] and q2[1] shape = cnode.shape # x_cnode = cnode.state.x2 # q_cnode = cnode.state.q2 xbodylocal = cnode.state.x2 qbodylocal = cnode.state.q2 # Parent body pnode = get_node(mechanism, cjoint.parent_id, origin=true) # x and q are stored in x2[1] and q2[1] # x_pnode = pnode.state.x2 # q_pnode = pnode.state.q2 xparentbody = pnode.state.x2 qparentbody = pnode.state.q2 # Parent joint if pnode.id == 0 # parent body is origin # x_pjoint = SA{T}[0; 0; 0] # q_pjoint = one(Quaternion{T}) # # axis_pjoint = SA{T}[1; 0; 0] xparentjoint = SA{T}[0; 0; 0] qparentjoint = one(Quaternion{T}) else pjoint = get_node(mechanism, get_parent_id(mechanism, pnode.id, loopjoints)) # x_pjoint = pjoint.translational.vertices[1] # stored in parent_vertex # q_pjoint = pjoint.rotational.orientation_offset # stored in orientation_offset # # axis_pjoint = # xparentjoint = xjointlist[pjoint.id] # in world frame qparentjoint = qjointlist[pjoint.id] # in world frame end # urdf joint's x and q in parent's (parentbody) frame # xjointlocal = vector_rotate(x_pjoint + vector_rotate(x_cjoint, q_pjoint) - x_pnode, inv(q_pnode)) xjointlocal = vector_rotate(xparentjoint + vector_rotate(x_cjoint, qparentjoint) - xparentbody, inv(qparentbody)) qjointlocal = qparentbody \ qparentjoint * q_cjoint # store joint's x and q in world frame xjoint = xparentbody + vector_rotate(xjointlocal, qparentbody) qjoint = qparentbody * qjointlocal xjointlist[cjoint.id] = xjoint qjointlist[cjoint.id] = qjoint # difference to parent body (parentbody) orientation_offset = qjointlocal * qbodylocal # actual joint properties parent_vertex = xjointlocal # in parent's (parentbody) frame child_vertex = vector_rotate(-xbodylocal, inv(qbodylocal)) # in body frame (xbodylocal and qbodylocal are both relative to the same (joint) frame -> rotationg by inv(body.q) gives body frame) cjoint.translational.vertices = (parent_vertex, child_vertex) # V3 = vector_rotate(cjoint.rotational.axis_mask3', qjointlocal) # in parent's (parentbody) frame # V1 = (svd(skew(V3)).Vt)[1:1,:] # V2 = (svd(skew(V3)).Vt)[2:2,:] # cjoint.rotational.axis_mask3 = SVector{3}(V3)' # cjoint.rotational.axis_mask1 = SVector{3}(V1)' # cjoint.rotational.axis_mask2 = SVector{3}(V2)' cjoint.rotational.orientation_offset = orientation_offset # in parent's (parentbody) frame # actual body properties set_maximal_configurations!(cnode) # set everything to zero set_maximal_configurations!(pnode, cnode; parent_vertex, child_vertex, Δq = orientation_offset) xbody = cnode.state.x2 qbody = cnode.state.q2 # shape relative if !(typeof(shape) <: EmptyShape) shape.position_offset = vector_rotate(xjoint + vector_rotate(shape.position_offset, qjoint) - xbody, inv(qbody)) shape.orientation_offset = orientation_offset \ qjointlocal * shape.orientation_offset end end for (i,constraint) in enumerate(loopjoints) parent_id1 = constraint.parent_id parent_id2 = constraint.child_id if parent_id1 == 0 # predecessor is origin parentpbody = mechanism.origin xparentpbody = SA{T}[0; 0; 0] qparentpbody = one(Quaternion{T}) xparentjoint1 = SA{T}[0; 0; 0] qparentjoint1 = one(Quaternion{T}) else parentpbody = get_body(mechanism, parent_id1) grandparent_id1 = get_parent_id(mechanism, parent_id1, loopjoints) parentconstraint1 = get_joint(mechanism, grandparent_id1) xparentpbody = parentpbody.state.x2 # in world frame qparentpbody = parentpbody.state.q2 # in world frame xparentjoint1 = xjointlist[parentconstraint1.id] # in world frame qparentjoint1 = qjointlist[parentconstraint1.id] # in world frame end parentcbody = get_body(mechanism, parent_id2) grandparent_id2 = get_parent_id(mechanism, parent_id2, loopjoints) parentconstraint2 = get_joint(mechanism, grandparent_id2) xparentcbody = parentcbody.state.x2 # in world frame qparentcbody = parentcbody.state.q2 # in world frame xparentjoint2 = xjointlist[parentconstraint2.id] # in world frame qparentjoint2 = qjointlist[parentconstraint2.id] # in world frame ind1 = 1 ind2 = ind1+1 # urdf joint's x and q in parent's (parentbody) frame xjointlocal1 = vector_rotate(xparentjoint1 + vector_rotate(constraint.translational.vertices[1], qparentjoint1) - xparentpbody, inv(qparentpbody)) xjointlocal2 = vector_rotate(xparentjoint2 + vector_rotate(constraint.translational.vertices[2], qparentjoint2) - xparentcbody, inv(qparentcbody)) qjointlocal1 = qparentpbody \ qparentjoint1 * constraint.rotational.orientation_offset # difference to parent body (parentbody) orientation_offset1 = qjointlocal1 * qparentcbody # qparentcbody = body in for loop above # actual joint properties parent_vertex = xjointlocal1 # in parent's (parentpbody) frame child_vertex = xjointlocal2 # in parent's (parentcbody) frame constraint.translational.vertices = (parent_vertex, child_vertex) V3 = vector_rotate(constraint.rotational.axis_mask3', qjointlocal1) # in parent's (parentpbody) frame V1 = (svd(skew(V3)).Vt)[1:1,:] V2 = (svd(skew(V3)).Vt)[2:2,:] constraint.rotational.axis_mask3 = SVector{3}(V3)' constraint.rotational.axis_mask1 = SVector{3}(V1)' constraint.rotational.axis_mask2 = SVector{3}(V2)' constraint.rotational.orientation_offset = orientation_offset1 # in parent's (parentpbody) frame end end function get_parent_id(mechanism, id, loopjoints) system = mechanism.system conns = connections(system, id) for connsid in conns constraint = get_joint(mechanism, connsid) if constraint ∉ loopjoints && id == constraint.child_id return connsid end end return nothing end
Dojo
https://github.com/dojo-sim/Dojo.jl.git
[ "MIT" ]
0.7.5
104b6a1a358da9b1348ab7cd66ad685ecaca13d4
code
1586
function axis_angle_to_quaternion(x) @assert length(x) == 3 θ = norm(x) if θ > 0.0 r = x ./ θ q = Quaternion(cos(0.5 * θ), (sin(0.5 * θ) * r)...) else q = Quaternion(1.0, 0.0, 0.0, 0.0) end return q end function daxis_angle_to_quaterniondx(x) θ = norm(x) if θ > 0.0 r = x ./ θ ∂qw∂x = -0.5 * sin(0.5 * θ) * transpose(x) ./ θ ∂qx∂x = 0.5 * cos(0.5 * θ) * transpose(x) ./ θ * r[1] + [sin(0.5 * θ) / θ 0.0 0.0] - sin(0.5 * θ) * x[1] / θ^2 * transpose(x) ./ θ ∂qy∂x = 0.5 * cos(0.5 * θ) * transpose(x) ./ θ * r[2] + [0.0 sin(0.5 * θ) / θ 0.0] - sin(0.5 * θ) * x[2] / θ^2 * transpose(x) ./ θ ∂qz∂x = 0.5 * cos(0.5 * θ) * transpose(x) ./ θ * r[3] + [0.0 0.0 sin(0.5 * θ) / θ] - sin(0.5 * θ) * x[3] / θ^2 * transpose(x) ./ θ return [ ∂qw∂x; ∂qx∂x; ∂qy∂x; ∂qz∂x; ] else return [ 0.0 0.0 0.0; 0.5 0.0 0.0; 0.0 0.5 0.0; 0.0 0.0 0.5; ] end end function axes_pair_to_quaternion(n1, n2) if norm(n1 + n2, Inf) < 1e-5 n2 = n2 + 1e-5ones(3) end reg(x) = 1e-20 * (x == 0) + x # provides the quaternion that rotates n1 into n2, assuming n1 and n2 are normalized n1 ./= reg(norm(n1)) n2 ./= reg(norm(n2)) n3 = skew(n1)*n2 cθ = n1' * n2 # cosine sθ = norm(n3) # sine axis = n3 ./ reg(sθ) tanθhalf = sθ / reg(1 + cθ) q = [1; tanθhalf * axis] q /= norm(q) return Quaternion(q...) end
Dojo
https://github.com/dojo-sim/Dojo.jl.git
[ "MIT" ]
0.7.5
104b6a1a358da9b1348ab7cd66ad685ecaca13d4
code
713
function quaternion_map(ω, timestep) return Quaternion(sqrt(4 / timestep^2 - dot(ω, ω)), ω...) end function quaternion_map_jacobian(ω::SVector{3}, timestep) msq = -sqrt(4 / timestep^2 - dot(ω, ω)) return [ω' / msq; I] end function cayley(ω) Quaternion(1.0 / sqrt(1.0 + ω' * ω) * [1.0; ω]) end function cayley_jacobian(ω) ω₁, ω₂, ω₃ = ω a = (sqrt(1.0 + ω₁^2 + ω₂^2 + ω₃^2)^-3) b = sqrt(1.0 + ω₁^2 + ω₂^2 + ω₃^2)^-1 SMatrix{4,3}([ -ω₁*a -ω₂*a -ω₃*a; (b - (ω₁^2)*a) (-ω₁ * ω₂ * a) (-ω₁ * ω₃ * a); (-ω₁ * ω₂ * a) (b - (ω₂^2)*a) (-ω₂ * ω₃ * a); (-ω₁ * ω₃ * a) (-ω₂ * ω₃ * a) (b - (ω₃^2)*a); ]) end
Dojo
https://github.com/dojo-sim/Dojo.jl.git
[ "MIT" ]
0.7.5
104b6a1a358da9b1348ab7cd66ad685ecaca13d4
code
1495
function mrp(q::Quaternion) q̄ = vector(q) return q̄[SUnitRange(2,4)] ./ (q̄[1] + 1.0) end function mrp(q::AbstractVector) return q[SUnitRange(2,4)] ./ (q[1] + 1.0) end function dmrpdq(q::AbstractVector) s = q[1] v = q[SA[2;3;4]] d1 = 1 / (s + 1)^2 di = 1 / (s + 1) [-v[1] * d1 di 0.0 0.0; -v[2] * d1 0.0 di 0.0; -v[3] * d1 0.0 0.0 di] end function axis(q) m = mrp(q) mag = norm(m) if mag > 0 # θ = 4.0 * atan(mag) n = m ./ mag else # θ = 0.0 n = SVector{3}(1.0, 0.0, 0.0) end return n end function daxisdq(q::AbstractVector) m = mrp(q) dmrpdq(q) ./ norm(m) - m ./ norm(m)^2 * transpose(m ./ norm(m)) * dmrpdq(q) end function angle(q) m = mrp(q) mag = norm(m) if mag > 0 θ = 4.0 * atan(mag) else θ = 0.0 end return θ end function dangledq(q::AbstractVector) m = mrp(q) 4.0 * 1.0 / (1.0 + norm(m)^2.0) * transpose(m ./ norm(m)) * dmrpdq(q) end function axis_angle(q) return axis(q), angle(q) end function rotation_vector(q) n, θ = axis_angle(q) return θ .* n end function drotation_vectordq(q::AbstractVector) θ = angle(q) if θ != 0.0 a = axis(q) return a * dangledq(q) + θ * daxisdq(q) else [ 0.0 2.0 0.0 0.0; 0.0 0.0 2.0 0.0; 0.0 0.0 0.0 2.0; ] end end drotation_vectordq(q::Quaternion) = drotation_vectordq(vector(q))
Dojo
https://github.com/dojo-sim/Dojo.jl.git
[ "MIT" ]
0.7.5
104b6a1a358da9b1348ab7cd66ad685ecaca13d4
code
4459
Quaternions.Quaternion(v::AbstractVector) = Quaternion(0,v[1],v[2],v[3]) MeshCat.LinearMap(q::Quaternion) = MeshCat.LinearMap(rotation_matrix(q)) MeshCat.js_quaternion(q::Quaternion) = [q.v1, q.v2, q.v3, q.s] RotX(θ) = Quaternion(cos(θ/2), sin(θ/2), 0, 0) RotY(θ) = Quaternion(cos(θ/2), 0, sin(θ/2), 0) RotZ(θ) = Quaternion(cos(θ/2), 0, 0, sin(θ/2)) quateltype(x) = eltype(x) # TODO not super elegant quateltype(::Quaternion{T}) where T = T vector(q::Quaternion) = SA[q.s, q.v1, q.v2, q.v3] vector(q::AbstractVector) = q function Lmat(q::Quaternion) SA[ q.s -q.v1 -q.v2 -q.v3; q.v1 q.s -q.v3 q.v2; q.v2 q.v3 q.s -q.v1; q.v3 -q.v2 q.v1 q.s; ] end function Rmat(q::Quaternion) SA[ q.s -q.v1 -q.v2 -q.v3; q.v1 q.s q.v3 -q.v2; q.v2 -q.v3 q.s q.v1; q.v3 q.v2 -q.v1 q.s; ] end Lᵀmat(q) = Lmat(q)' Rᵀmat(q) = Rmat(q)' function Tmat(::Type{T}=Float64) where T SA{T}[ 1 0 0 0; 0 -1 0 0; 0 0 -1 0; 0 0 0 -1; ] end function Vmat(::Type{T}=Float64) where T SA{T}[ 0 1 0 0; 0 0 1 0; 0 0 0 1; ] end function Vᵀmat(::Type{T}=Float64) where T SA{T}[ 0 0 0; 1 0 0; 0 1 0; 0 0 1; ] end Vmat(q::Quaternion) = SA[q.v1, q.v2, q.v3] function VLmat(q::Quaternion) SA[ q.v1 q.s -q.v3 q.v2; q.v2 q.v3 q.s -q.v1; q.v3 -q.v2 q.v1 q.s; ] end function VLᵀmat(q::Quaternion) SA[ -q.v1 q.s q.v3 -q.v2; -q.v2 -q.v3 q.s q.v1; -q.v3 q.v2 -q.v1 q.s; ] end function VRmat(q::Quaternion) SA[ q.v1 q.s q.v3 -q.v2; q.v2 -q.v3 q.s q.v1; q.v3 q.v2 -q.v1 q.s; ] end function VRᵀmat(q::Quaternion) SA[ -q.v1 q.s -q.v3 q.v2; -q.v2 q.v3 q.s -q.v1; -q.v3 -q.v2 q.v1 q.s; ] end function LVᵀmat(q::Quaternion) SA[ -q.v1 -q.v2 -q.v3; q.s -q.v3 q.v2; q.v3 q.s -q.v1; -q.v2 q.v1 q.s; ] end function LᵀVᵀmat(q::Quaternion) SA[ q.v1 q.v2 q.v3; q.s q.v3 -q.v2; -q.v3 q.s q.v1; q.v2 -q.v1 q.s; ] end function RVᵀmat(q::Quaternion) SA[ -q.v1 -q.v2 -q.v3; q.s q.v3 -q.v2; -q.v3 q.s q.v1; q.v2 -q.v1 q.s; ] end function RᵀVᵀmat(q::Quaternion) SA[ q.v1 q.v2 q.v3; q.s -q.v3 q.v2; q.v3 q.s -q.v1; -q.v2 q.v1 q.s; ] end ################################################################################ # Matrix-Vector Product Jacobian ################################################################################ function ∂VLmat∂q(p::AbstractVector) # 𝞉(VLmat(q)*p)/∂q SA[ 0 p[1] p[2] p[3]; p[1] 0 p[3] -p[2]; p[2] -p[3] 0 p[1]; p[3] p[2] -p[1] 0; ] end function ∂LVᵀmat∂q(p::AbstractVector) # 𝞉(∂LVᵀmat∂q(q)*p)/∂q SA[ 0 -p[1] -p[2] -p[3]; p[1] 0 p[3] -p[2]; p[2] -p[3] 0 p[1]; p[3] p[2] -p[1] 0; ] end function ∂VLᵀmat∂q(p::AbstractVector) # 𝞉(VLᵀmat(q)*p)/∂q SA[ p[2] -p[1] -p[4] p[3]; p[3] p[4] -p[1] -p[2]; p[4] -p[3] p[2] -p[1]; ] end function ∂LᵀVᵀmat∂q(p::AbstractVector) # 𝞉(LᵀVᵀmat(q)*p)/∂q SA[ 0 p[1] p[2] p[3]; p[1] 0 -p[3] p[2]; p[2] p[3] 0 -p[1]; p[3] -p[2] p[1] 0; ] end function ∂VRmat∂q(p::AbstractVector) # 𝞉(VRmat(q)*p)/∂q SA[ p[2] p[1] -p[4] p[3]; p[3] p[4] p[1] -p[2]; p[4] -p[3] p[2] p[1]; ] end function ∂RᵀVᵀmat∂q(p::AbstractVector) # 𝞉(RᵀVᵀmat(q)*p)/∂q SA[ p[2] p[1] p[4] -p[3]; p[3] -p[4] p[1] p[2]; p[4] p[3] -p[2] p[1]; ] end function ∂VRᵀmat∂q(p::AbstractVector) # 𝞉(RᵀVᵀmat(q)*p)/∂q SA[ p[2] -p[1] p[4] -p[3]; p[3] -p[4] -p[1] p[2]; p[4] p[3] -p[2] -p[1]; ] end function ∂Rᵀmat∂q(p::AbstractVector) # 𝞉(Rᵀmat(q)*p)/∂q SA[ p[1] p[2] p[3] p[4]; p[2] -p[1] p[4] -p[3]; p[3] -p[4] -p[1] p[2]; p[4] p[3] -p[2] -p[1]; ] end function ∂Lmat∂q(p::AbstractVector) # 𝞉(Lmat(q)*p)/∂q SA[ p[1] -p[2] -p[3] -p[4]; p[2] p[1] p[4] -p[3]; p[3] -p[4] p[1] p[2]; p[4] p[3] -p[2] p[1]; ] end function skew(p) SA[ 0 -p[3] p[2]; p[3] 0 -p[1]; -p[2] p[1] 0; ] end function ∂skew∂p(λ) # 𝞉(skew(p)*λ)/∂p skew(-λ) end
Dojo
https://github.com/dojo-sim/Dojo.jl.git
[ "MIT" ]
0.7.5
104b6a1a358da9b1348ab7cd66ad685ecaca13d4
code
1356
# rotate quaternion quaternion_rotate(q1::Quaternion,q2::Quaternion) = q2 * q1 / q2 # rotate vector vector_rotate(v::AbstractVector,q::Quaternion) = Vmat(quaternion_rotate(Quaternion(0,v...), q)) ∂vector_rotate∂q(p::AbstractVector, q::Quaternion) = VLmat(q) * Lmat(Quaternion(p)) * Tmat() + VRᵀmat(q) * Rmat(Quaternion(p)) # rotate matrix function matrix_rotate(A::AbstractMatrix,q::Quaternion) c1 = vector_rotate(A[SA[1;2;3]], q) c2 = vector_rotate(A[SA[4;5;6]], q) c3 = vector_rotate(A[SA[7;8;9]], q) return [c1 c2 c3] end # transform matrix in different frame "q*A*inv(q)" function matrix_transform(A::AbstractMatrix,q::Quaternion) matrix_rotate(matrix_rotate(A', q)', q) end # rotation matrix rotation_matrix(q::Quaternion) = VRᵀmat(q) * LVᵀmat(q) function ∂rotation_matrix∂q(q::Quaternion, p::AbstractVector{T}) where T #; attjac::Bool=false) where T M = ∂VRᵀmat∂q(LVᵀmat(q) * p) + VRᵀmat(q) * ∂LVᵀmat∂q(p) # if attjac # return (M * LVᵀmat(q))::SMatrix{3,3,T,9} # else # return M::SMatrix{3,4,T,12} # end end function ∂rotation_matrix_inv∂q(q::Quaternion, p::AbstractVector{T}) where T #; attjac::Bool=false) where T M = ∂rotation_matrix∂q(inv(q), p) * Tmat() # if attjac # return (M * LVᵀmat(q))::SMatrix{3,3,T,9} # else # return M::SMatrix{3,4,T,12} # end end
Dojo
https://github.com/dojo-sim/Dojo.jl.git
[ "MIT" ]
0.7.5
104b6a1a358da9b1348ab7cd66ad685ecaca13d4
code
2050
""" simulate!(mechanism, steps, storage, control!; record, verbose, abort_upon_failure, opts) simulate a mechanism mechanism: Mechanism steps: range of steps to simulate storage: Storage control!: Function setting inputs for mechanism record: flag for recording simulation to storage verbose: flag for printing during simulation abort_upon_failure: flag for terminating simulation is solver fails to meet tolerances opts: SolverOptions """ function simulate!(mechanism::Mechanism, steps::AbstractUnitRange, storage::Storage, control!::Function=(m, k) -> nothing; record::Bool=true, verbose::Bool=false, abort_upon_failure::Bool=false, opts=SolverOptions(verbose=verbose)) initialize_simulation!(mechanism) for k = steps control!(mechanism, k) for joint in mechanism.joints input_impulse!(joint, mechanism) end status = mehrotra!(mechanism, opts=opts) for body in mechanism.bodies clear_external_force!(body) end abort_upon_failure && (status == :failed) && break record && save_to_storage!(mechanism, storage, k) (k != steps[end]) && (for body in mechanism.bodies update_state!(body, mechanism.timestep) end) end record ? (return storage) : (return) end function simulate!(mechanism::Mechanism{T}, tend::Real, args...; record::Bool=true, verbose::Bool=false, abort_upon_failure::Bool=false, opts=SolverOptions(verbose=verbose)) where T steps = Base.OneTo(Int64(ceil(tend / mechanism.timestep))) record ? (storage = Storage{T}(steps, length(mechanism.bodies))) : (storage = Storage{T}()) storage = simulate!(mechanism, steps, storage, args...; verbose=verbose, record=record, abort_upon_failure=abort_upon_failure, opts=opts) return storage end function initialize_simulation!(mechanism::Mechanism) initialize_state!(mechanism) for body in mechanism.bodies set_velocity_solution!(body) end end
Dojo
https://github.com/dojo-sim/Dojo.jl.git
[ "MIT" ]
0.7.5
104b6a1a358da9b1348ab7cd66ad685ecaca13d4
code
1526
""" step!(mechanism::Mechanism{T}, z::Vector{T}, u::Vector{T}; opts) simulate mechanism for one time step provided maximal coordinates mechanism: Mechanism z: maximal state u: inputs opts: SolverOptions """ function step!(mechanism::Mechanism{T}, z::Vector{T}, u::Vector{T}; opts=SolverOptions{T}()) where T # set state set_maximal_state!(mechanism, z) # set control set_input!(mechanism, u) # solve the 1-step simulation problem mehrotra!(mechanism, opts=opts) for body in mechanism.bodies update_state!(body, mechanism.timestep) end # extract the next state z_next = get_next_state(mechanism) return z_next end """ step_minimal_coordinates!(mechanism::Mechanism{T}, x::Vector{T}, u::Vector{T}; opts) simulate mechanism for one time step provided minimal coordinates mechanism: Mechanism x: minimal state u: inputs opts: SolverOptions """ function step_minimal_coordinates!(mechanism::Mechanism{T}, x::Vector{T}, u::Vector{T}; opts=SolverOptions{T}()) where T # set state set_maximal_state!(mechanism, minimal_to_maximal(mechanism, x)) # set control set_input!(mechanism, u) # solve the 1-step simulation problem mehrotra!(mechanism, opts=opts) for body in mechanism.bodies update_state!(body, mechanism.timestep) end # extract the next state x_next = maximal_to_minimal(mechanism, get_next_state(mechanism)) return x_next end
Dojo
https://github.com/dojo-sim/Dojo.jl.git
[ "MIT" ]
0.7.5
104b6a1a358da9b1348ab7cd66ad685ecaca13d4
code
3458
""" Storage{T,N} contains maximal-representation trajectories x: position q: orientation (Quaternion) v: linear velocity (midpoint) ω: angular velocity (midpoint) px: linear momentum pq: angular momentum vl: linear velocity ωl: angular velocity """ struct Storage{T,N} x::Vector{Vector{SVector{3,T}}} q::Vector{Vector{Quaternion{T}}} v::Vector{Vector{SVector{3,T}}} ω::Vector{Vector{SVector{3,T}}} px::Vector{Vector{SVector{3,T}}} pq::Vector{Vector{SVector{3,T}}} vl::Vector{Vector{SVector{3,T}}} ωl::Vector{Vector{SVector{3,T}}} function Storage{T}(steps, nbodies) where T x = [[szeros(T, 3) for i = steps] for j = 1:nbodies] q = [[one(Quaternion{T}) for i = steps] for j = 1:nbodies] v = [[szeros(T, 3) for i = steps] for j = 1:nbodies] ω = [[szeros(T, 3) for i = steps] for j = 1:nbodies] px = [[szeros(T, 3) for i = steps] for j = 1:nbodies] pq = [[szeros(T, 3) for i = steps] for j = 1:nbodies] vl = [[szeros(T, 3) for i = steps] for j = 1:nbodies] ωl = [[szeros(T, 3) for i = steps] for j = 1:nbodies] new{T,length(steps)}(x, q, v, ω, px, pq, vl, ωl) end Storage(steps, nbodies) = Storage{Float64}(steps, nbodies) Storage{T}(nsteps::Integer, nbodies) where T = Storage{T}(Base.OneTo(nsteps), nbodies) Storage(nsteps::Integer, nbodies) = Storage{Float64}(nsteps, nbodies) Storage{T}() where T = Storage{T}(Base.OneTo(0),0) end function Base.show(io::IO, mime::MIME{Symbol("text/plain")}, storage::Storage{T,N}) where {T,N} println(io, "Storage for "*string(N)*" steps of "*string(length(storage.x))*" bodies.") end Base.length(storage::Storage{T,N}) where {T,N} = N function save_to_storage!(mechanism::Mechanism, storage::Storage, i::Int) for (ind, body) in enumerate(mechanism.bodies) state = body.state storage.x[ind][i] = state.x2 # x2 storage.q[ind][i] = state.q2 # q2 storage.v[ind][i] = state.v15 # v1.5 storage.ω[ind][i] = state.ω15 # ω1.5 q2 = state.q2 px2, pq2 = momentum(mechanism, body) # p in world frame v2 = px2 / body.mass # in world frame ω2 = body.inertia \ (vector_rotate(pq2, inv(q2))) # in body frame, we rotate using the current quaternion q2 = state.q2 storage.px[ind][i] = px2 # px2 storage.pq[ind][i] = pq2 # pq2 storage.vl[ind][i] = v2 # v2 storage.ωl[ind][i] = ω2 # ω2 end return end function generate_storage(mechanism::Mechanism, z) N = length(z) M = length(mechanism.bodies) storage = Storage{Float64}(N, M) for t = 1:N off = 0 for i = 1:M storage.x[i][t] = z[t][SUnitRange(off+1,off+3)] storage.v[i][t] = z[t][SUnitRange(off+4,off+6)] storage.q[i][t] = Quaternion(z[t][SUnitRange(off+7,off+10)]...) storage.ω[i][t] = z[t][SUnitRange(off+11,off+13)] off += 13 end end return storage end function get_maximal_state(storage::Storage{T,N}) where {T,N} z = [get_maximal_state(storage, i) for i=1:N] return z end function get_maximal_state(storage::Storage{T,N}, i::Int) where {T,N} Nb = length(storage.x) z = zeros(13 * Nb) for j = 1:Nb x2 = storage.x[j][i] q2 = storage.q[j][i] v15 = storage.v[j][i] ω15 = storage.ω[j][i] z[SUnitRange((j-1)*13+1,j*13)] = [x2; v15; vector(q2); ω15] end return z end
Dojo
https://github.com/dojo-sim/Dojo.jl.git
[ "MIT" ]
0.7.5
104b6a1a358da9b1348ab7cd66ad685ecaca13d4
code
1722
function centering!(mechanism::Mechanism, αaff::T) where T system = mechanism.system parameters = [SA{T}[0;0;0]] # ν, νaff, n for contact in mechanism.contacts centering!(parameters, contact, get_entry(system, contact.id), αaff) end for joint in mechanism.joints centering!(parameters, joint, get_entry(system, joint.id), αaff) end ν = parameters[1][1]/parameters[1][3] νaff = parameters[1][2]/parameters[1][3] return ν, νaff end function centering!(parameters, contact::ContactConstraint{T,N,Nc,Cs,N½}, vector_entry::Entry, αaff) where {T,N,Nc,Cs,N½} s = contact.impulses_dual[2] γ = contact.impulses[2] Δs = vector_entry.value[SUnitRange(1,N½)] Δγ = vector_entry.value[SUnitRange(N½+1,N)] ν = dot(s, γ) νaff = dot(s + αaff * Δs, γ + αaff * Δγ) # plus or minus n = cone_degree(contact) parameters[1] += SA{T}[ν;νaff;n] return end function centering!(parameters, joint::JointConstraint{T,N,Nc}, vector_entry::Entry, αaff) where {T,N,Nc} joint_t = joint.translational s, γ = split_impulses(joint_t, joint.impulses[2][joint_impulse_index(joint,1)]) Δs, Δγ = split_impulses(joint_t, vector_entry.value[joint_impulse_index(joint,1)]) ν = dot(s, γ) νaff = dot(s + αaff * Δs, γ + αaff * Δγ) # plus or minus n = length(s) parameters[1] += SA{T}[ν;νaff;n] joint_r = joint.rotational s, γ = split_impulses(joint_r, joint.impulses[2][joint_impulse_index(joint,2)]) Δs, Δγ = split_impulses(joint_r, vector_entry.value[joint_impulse_index(joint,2)]) ν = dot(s, γ) νaff = dot(s + αaff * Δs, γ + αaff * Δγ) # plus or minus n = length(s) parameters[1] += SA{T}[ν;νaff;n] return end
Dojo
https://github.com/dojo-sim/Dojo.jl.git
[ "MIT" ]
0.7.5
104b6a1a358da9b1348ab7cd66ad685ecaca13d4
code
873
# joints function complementarity(mechanism, joint::JointConstraint{T,N,Nc}) where {T,N,Nc} λ = joint.impulses[2][joint_impulse_index(joint, 1)] s, γ = split_impulses(joint.translational, λ) ct = s .* γ λ = joint.impulses[2][joint_impulse_index(joint, 2)] s, γ = split_impulses(joint.rotational, λ) cr = s .* γ return [ct; cr] end # contacts complementarity(mechanism, contact::ContactConstraint) = contact.impulses[2] .* contact.impulses_dual[2] function complementarity(mechanism, contact::ContactConstraint{T,N,Nc,Cs}) where {T,N,Nc,Cs<:NonlinearContact{T,N}} γ = contact.impulses[2] s = contact.impulses_dual[2] return vcat(γ[1] * s[1], cone_product(γ[SA[2,3,4]], s[SA[2,3,4]])) end complementarityμ(mechanism, contact::ContactConstraint) = complementarity(mechanism, contact) - mechanism.μ * neutral_vector(contact.model)
Dojo
https://github.com/dojo-sim/Dojo.jl.git
[ "MIT" ]
0.7.5
104b6a1a358da9b1348ab7cd66ad685ecaca13d4
code
1909
function correction!(mechanism) system = mechanism.system residual_entries = mechanism.residual_entries for id in reverse(system.dfs_list) node = get_node(mechanism, id) correction!(mechanism, residual_entries[id], get_entry(system, id), node) end return end correction!(mechanism::Mechanism, residual_entry::Entry, step_entry::Entry, node::Node) = nothing function correction!(mechanism::Mechanism, residual_entry::Entry, step_entry::Entry, ::ContactConstraint{T,N,Nc,Cs,N½}) where {T,N,Nc,Cs,N½} Δs = step_entry.value[SUnitRange(1,N½)] Δγ = step_entry.value[SUnitRange(N½+1,N)] μ = mechanism.μ residual_entry.value += [- Δs .* Δγ .+ μ; szeros(N½)] return end function correction!(mechanism::Mechanism, residual_entry::Entry, step_entry::Entry, contact::ContactConstraint{T,N,Nc,Cs,N½}) where {T,N,Nc,Cs<:NonlinearContact{T,N},N½} cont = contact.model μ = mechanism.μ Δs = step_entry.value[SUnitRange(1,N½)] Δγ = step_entry.value[SUnitRange(N½+1,N)] residual_entry.value += [[-Δs[1] * Δγ[1]; -cone_product(Δs[SA[2;3;4]], Δγ[SA[2;3;4]])] + μ * neutral_vector(cont); szeros(N½)] return end function correction!(mechanism::Mechanism{T}, residual_entry::Entry, step_entry::Entry, joint::JointConstraint{T,N,Nc}) where {T,N,Nc} cor = correction(mechanism, step_entry, joint) residual_entry.value += cor return end @generated function correction(mechanism::Mechanism{T}, step_entry::Entry, joint::JointConstraint{T,N,Nc}) where {T,N,Nc} cor_tra = :(correction(joint.translational, step_entry.value[joint_impulse_index(joint, 1)], mechanism.μ)) cor_rot = :(correction(joint.rotational, step_entry.value[joint_impulse_index(joint, 2)], mechanism.μ)) return :(vcat($cor_tra, $cor_rot)) end function correction(joint::Joint{T,Nλ,Nb,N}, Δ, μ) where {T,Nλ,Nb,N} Δs, Δγ = split_impulses(joint, Δ) return [- Δs .* Δγ .+ μ; szeros(Nb + Nλ)] end
Dojo
https://github.com/dojo-sim/Dojo.jl.git
[ "MIT" ]
0.7.5
104b6a1a358da9b1348ab7cd66ad685ecaca13d4
code
1907
function initialize!(contact::ContactConstraint{T,N,Nc,Cs}) where {T,N,Nc,Cs} initialize_positive_orthant!(contact.impulses[1], contact.impulses_dual[1]) initialize_positive_orthant!(contact.impulses[2], contact.impulses_dual[2]) return nothing end function initialize!(contact::ContactConstraint{T,N,Nc,Cs}) where {T,N,Nc,Cs<:NonlinearContact{T,N}} γort, sort = initialize_positive_orthant!(contact.impulses[1][SA[1]], contact.impulses_dual[1][SA[1]]) γsoc, ssoc = initialize_second_order_cone!(contact.impulses[1][SA[2;3;4]], contact.impulses_dual[1][SA[2;3;4]]) contact.impulses[1] = [γort; γsoc] contact.impulses_dual[1] = [sort; ssoc] γort, sort = initialize_positive_orthant!(contact.impulses[2][SA[1]], contact.impulses_dual[2][SA[1]]) γsoc, ssoc = initialize_second_order_cone!(contact.impulses[2][SA[2;3;4]], contact.impulses_dual[2][SA[2;3;4]]) contact.impulses[2] = [γort; γsoc] contact.impulses_dual[2] = [sort; ssoc] return nothing end function initialize_positive_orthant!(γ::AbstractVector{T}, s::AbstractVector{T}; ϵ::T = 1e-20) where T δs = max(-1.5 * minimum(s), 0) δγ = max(-1.5 * minimum(γ), 0) sh = s .+ δs γh = γ .+ δγ δhs = 0.5 * transpose(sh) * γh / (sum(γh) + ϵ) δhγ = 0.5 * transpose(sh) * γh / (sum(sh) + ϵ) s0 = sh .+ δhs γ0 = γh .+ δhγ return γ0, s0 end function initialize_second_order_cone!(γ::AbstractVector{T}, s::AbstractVector{T}; ϵ::T = 1e-20) where T e = [1.0; szeros(length(γ) - 1)] # identity element δs = max(-1.5 * (s[1] - norm(s[SUnitRange(2,end)])), 0) δγ = max(-1.5 * (γ[1] - norm(γ[SUnitRange(2,end)])), 0) sh = s + δs * e γh = γ + δγ * e δhs = 0.5 * transpose(sh) * γh / ((γh[1] + norm(γh[SUnitRange(2,end)])) + ϵ) δhγ = 0.5 * transpose(sh) * γh / ((sh[1] + norm(sh[SUnitRange(2,end)])) + ϵ) s0 = sh + δhs * e γ0 = γh + δhγ * e return γ0, s0 end
Dojo
https://github.com/dojo-sim/Dojo.jl.git
[ "MIT" ]
0.7.5
104b6a1a358da9b1348ab7cd66ad685ecaca13d4
code
5782
function line_search!(mechanism::Mechanism, α, rvio, bvio, opts) scale = 0 system = mechanism.system rvio_cand = Inf bvio_cand = Inf for n = Base.OneTo(opts.max_ls) for contact in mechanism.contacts candidate_step!(α, contact, get_entry(system, contact.id), scale) end for joint in mechanism.joints candidate_step!(α, joint, get_entry(system, joint.id), scale) end for body in mechanism.bodies ωmax = 3.9 / mechanism.timestep^2 candidate_step!(α, mechanism, body, get_entry(system, body.id), scale, ωmax=ωmax, verbose=opts.verbose) if dot(body.state.ωsol[2], body.state.ωsol[2]) > 3.91 / mechanism.timestep^2 error("Excessive angular velocity. Body-ID: $(string(body.name)) " * string(body.id) * ", ω: " * string(body.state.ωsol[2]) * ".") end end rvio_cand = residual_violation(mechanism) bvio_cand = bilinear_violation(mechanism) if (rvio_cand > rvio) && (bvio_cand > bvio) scale += 1 else return rvio_cand, bvio_cand end end return rvio_cand, bvio_cand end function cone_line_search!(mechanism::Mechanism; τort::T=0.95, τsoc::T=0.95) where T system = mechanism.system α = 1.0 for contact in mechanism.contacts α = cone_line_search!(α, mechanism, contact, get_entry(system, contact.id), τort, τsoc) end for joint in mechanism.joints α = cone_line_search!(α, mechanism, joint, get_entry(system, joint.id), τort, τsoc) end return α end function cone_line_search!(α, mechanism, contact::ContactConstraint{T,N,Nc,Cs,N½}, vector_entry::Entry, τort, τsoc) where {T,N,Nc,Cs<:NonlinearContact{T,N},N½} s = contact.impulses_dual[2] γ = contact.impulses[2] Δs = vector_entry.value[SUnitRange(1,N½)] Δγ = vector_entry.value[SUnitRange(N½+1,2*N½)] αs_ort = positive_orthant_step_length(s[SA[1]], Δs[SA[1]], τ = τort) αγ_ort = positive_orthant_step_length(γ[SA[1]], Δγ[SA[1]], τ = τort) αs_soc = second_order_cone_step_length(s[SA[2;3;4]], Δs[SA[2;3;4]]; τ = τsoc) αγ_soc = second_order_cone_step_length(γ[SA[2;3;4]], Δγ[SA[2;3;4]]; τ = τsoc) return min(α, αs_soc, αγ_soc, αs_ort, αγ_ort) end function cone_line_search!(α, mechanism, contact::ContactConstraint{T,N,Nc,Cs,N½}, vector_entry::Entry, τort, τsoc) where {T,N,Nc,Cs<:Union{ImpactContact{T,N},LinearContact{T,N}},N½} s = contact.impulses_dual[2] γ = contact.impulses[2] Δs = vector_entry.value[SUnitRange(1,N½)] Δγ = vector_entry.value[SUnitRange(N½+1,2*N½)] αs_ort = positive_orthant_step_length(s, Δs, τ = τort) αγ_ort = positive_orthant_step_length(γ, Δγ, τ = τort) return min(α, αs_ort, αγ_ort) end function cone_line_search!(α, mechanism, joint::JointConstraint{T,N,Nc}, vector_entry::Entry, τort, τsoc) where {T,N,Nc} s, γ = split_impulses(joint.translational, joint.impulses[2][joint_impulse_index(joint,1)]) Δs, Δγ = split_impulses(joint.translational, vector_entry.value[joint_impulse_index(joint,1)]) αs_ort = positive_orthant_step_length(s, Δs, τ = τort) αγ_ort = positive_orthant_step_length(γ, Δγ, τ = τort) α = min(α, αs_ort, αγ_ort) s, γ = split_impulses(joint.rotational, joint.impulses[2][joint_impulse_index(joint,2)]) Δs, Δγ = split_impulses(joint.rotational, vector_entry.value[joint_impulse_index(joint,2)]) αs_ort = positive_orthant_step_length(s, Δs, τ = τort) αγ_ort = positive_orthant_step_length(γ, Δγ, τ = τort) α = min(α, αs_ort, αγ_ort) return α end function positive_orthant_step_length(λ::AbstractVector{T}, Δ::AbstractVector{T}; τ::T = 0.99) where T α = 1.0 for i in eachindex(λ) if Δ[i] < 0 # safer α = min(α, - τ * λ[i] / Δ[i]) end end return α end function second_order_cone_step_length(λ::AbstractVector{T}, Δ::AbstractVector{T}; τ::T=0.99, ϵ::T=1e-14) where T # check Section 8.2 CVXOPT λ0 = λ[1] λ_2_end = λ[SUnitRange(2,end)] λ_λ = max(λ0^2 - λ_2_end' * λ_2_end, 1e-25) if λ_λ < 0.0 # @show λ_λ @warn "should always be positive" end λ_λ += ϵ λ_Δ = λ0 * Δ[1] - λ_2_end' * Δ[SUnitRange(2,end)] + ϵ ρs = λ_Δ / λ_λ ρv = Δ[SUnitRange(2,end)] / sqrt(λ_λ) ρv -= (λ_Δ / sqrt(λ_λ) + Δ[1]) / (λ0 / sqrt(λ_λ) + 1) * λ_2_end / λ_λ α = 1.0 if norm(ρv) - ρs > 0.0 α = min(α, τ / (norm(ρv) - ρs)) end return α end function candidate_step!(α, mechanism::Mechanism, body::Body, vector_entry::Entry, scale; ωmax = Inf, verbose=true) body.state.vsol[2] = body.state.vsol[1] + 1 / (2^scale) * α * vector_entry.value[SA[1; 2; 3]] body.state.ωsol[2] = body.state.ωsol[1] + 1 / (2^scale) * α * vector_entry.value[SA[4; 5; 6]] ω = body.state.ωsol[2] ωdot = dot(ω, ω) if ωdot > ωmax verbose && println("clipping ", scale, scn((ωdot - ωmax) / ωmax), " ", scn(ωdot), " ", scn(ωmax), " ", body.name) body.state.ωsol[2] *= ωmax / ωdot # this is overkill, but works better than sqrt(ωmax/ωdot) end return end function candidate_step!(α, joint::JointConstraint, vector_entry::Entry, scale) joint.impulses[2] = joint.impulses[1] + 1.0 / (2^scale) * α * vector_entry.value return end function candidate_step!(α::T, contact::ContactConstraint{T,N,Nc,Cs,N½}, vector_entry::Entry, scale) where {T,N,Nc,Cs,N½} contact.impulses_dual[2] = contact.impulses_dual[1] + 1 / (2^scale) * α * vector_entry.value[SVector{N½,Int64}(1:N½)] contact.impulses[2] = contact.impulses[1] + 1 / (2^scale) * α * vector_entry.value[SVector{N½,Int64}(N½+1:N)] return end
Dojo
https://github.com/dojo-sim/Dojo.jl.git
[ "MIT" ]
0.7.5
104b6a1a358da9b1348ab7cd66ad685ecaca13d4
code
2015
function set_entries!(mechanism::Mechanism) system = mechanism.system for id in reverse(system.dfs_list) for child_id in system.cyclic_children[id] zero_LU!(get_entry(system, id, child_id), get_entry(system, child_id, id)) end node = get_node(mechanism, id) set_matrix_vector_entries!(mechanism, get_entry(system, id, id), get_entry(system, id), node) for child_id in children(system,id) set_LU!(mechanism, get_entry(system, id, child_id), get_entry(system, child_id, id), node, get_node(mechanism, child_id)) end end return end function set_LU!(mechanism::Mechanism, matrix_entry_L::Entry, matrix_entry_U::Entry, nodea::Node, nodeb::Node) L, U = off_diagonal_jacobians(mechanism, nodea, nodeb) matrix_entry_L.value = L matrix_entry_U.value = U return end function zero_LU!(matrix_entry_L::Entry, matrix_entry_U::Entry) matrix_entry_L.value *= 0 matrix_entry_U.value *= 0 return end function pull_residual!(mechanism::Mechanism) for i in eachindex(mechanism.residual_entries) pull_residual!(mechanism.residual_entries[i], mechanism.system.vector_entries[i]) end return end function pull_residual!(residual_entry, vector_entry) residual_entry.value = vector_entry.value end function push_residual!(mechanism::Mechanism) for i in eachindex(mechanism.residual_entries) push_residual!(mechanism.system.vector_entries[i], mechanism.residual_entries[i]) end return end function push_residual!(vector_entry, residual_entry) vector_entry.value = residual_entry.value end function update!(body::Body) body.state.vsol[1] = body.state.vsol[2] body.state.ωsol[1] = body.state.ωsol[2] return end function update!(joint::JointConstraint) joint.impulses[1] = joint.impulses[2] return end function update!(contact::ContactConstraint) contact.impulses_dual[1] = contact.impulses_dual[2] contact.impulses[1] = contact.impulses[2] return end
Dojo
https://github.com/dojo-sim/Dojo.jl.git
[ "MIT" ]
0.7.5
104b6a1a358da9b1348ab7cd66ad685ecaca13d4
code
3682
""" mehrotra!(mechanism; opts) interior-point solver for simulation-step feasibility problem mechanism: Mechanism opts: SolverOptions """ function mehrotra!(mechanism::Mechanism{T}; opts=SolverOptions{T}()) where T reset!.(mechanism.contacts, scale=1.0) # resets the values of s and γ to the scaled neutral vector; TODO: solver option reset!.(mechanism.joints, scale=1.0) # resets the values of s and γ to the scaled neutral vector; TODO: solver option status = :failed mechanism.μ = 0.0 μtarget = 0.0 no_progress = 0 undercut = opts.undercut α = 1.0 initialize!.(mechanism.contacts) set_entries!(mechanism) # compute the residual bvio = bilinear_violation(mechanism) # does not require to apply set_entries! rvio = residual_violation(mechanism) # does not require to apply set_entries! opts.verbose && solver_header() for n = Base.OneTo(opts.max_iter) opts.verbose && solver_status(mechanism, α, rvio, bvio, n, μtarget, undercut) (rvio < opts.rtol) && (bvio < opts.btol) && (status=:success; break) (n == opts.max_iter) && (opts.verbose && (@warn "failed mehrotra")) # affine search direction μ = 0.0 pull_residual!(mechanism) # store the residual inside mechanism.residual_entries ldu_factorization!(mechanism.system) # factorize system, modifies the matrix in place ldu_backsubstitution!(mechanism.system) # solve system, modifies the vector in place αaff = cone_line_search!(mechanism; τort=0.95, τsoc=0.95) # uses system.vector_entries which holds the search drection ν, νaff = centering!(mechanism, αaff) σcentering = clamp(νaff / (ν + 1e-20), 0.0, 1.0)^3 # corrected search direction μtarget = max(σcentering * ν, opts.btol / undercut) mechanism.μ = μtarget correction!(mechanism) # update the residual in mechanism.residual_entries push_residual!(mechanism) # cache residual + correction ldu_backsubstitution!(mechanism.system) # solve system τ = max(0.95, 1 - max(rvio, bvio)^2) # τ = 0.95 α = cone_line_search!(mechanism; τort=τ, τsoc=min(τ, 0.95)) # uses system.vector_entries which holds the corrected search drection # steps taken without making progress rvio_, bvio_ = line_search!(mechanism, α, rvio, bvio, opts) # evaluate progress made_progress = (!(rvio_ < opts.rtol) && (rvio_ < 0.8rvio)) || (!(bvio_ < opts.btol) && (bvio_ < 0.8bvio)) # we only care when progress is made while the tolerance is not met made_progress ? no_progress = max(no_progress - 1, 0) : no_progress += 1 rvio, bvio = rvio_, bvio_ (no_progress >= opts.no_progress_max) && (undercut *= opts.no_progress_undercut) # update solution update!.(mechanism.bodies) update!.(mechanism.joints) update!.(mechanism.contacts) # recompute Jacobian and residual set_entries!(mechanism) end return status end function solver_status(mechanism::Mechanism, α, rvio, bvio, n, μtarget, undercut) fv = full_vector(mechanism.system) Δvar = norm(fv, Inf) fM = full_matrix(mechanism.system) fΔ = fM \ fv Δalt = norm(fΔ, Inf) res = norm(fv, Inf) println( n, " ", scn(bvio, digits=0), " ", scn(rvio, digits=0), " ", scn(α, digits=0), " ", scn(μtarget, digits=0), " ", scn(res, digits=0), " ", scn(Δvar, digits=0), # " ucut", scn(undercut), ) end function solver_header() println(" ") println("n bvio rvio α μ |res|∞ |Δ|∞") println("–––––––––––––––––––––––––––––––––––––––––––––––––") end
Dojo
https://github.com/dojo-sim/Dojo.jl.git
[ "MIT" ]
0.7.5
104b6a1a358da9b1348ab7cd66ad685ecaca13d4
code
1986
""" SolverOptions{T} Options and tolerances of primal-dual interior point solver. rtol: tolerance on residual violations (equality constraints); defaults to 1e-6 btol: tolerance on bilinear violations (complementarity constraints); defaults to 1e-4 ls_scale: line search scaling factor (α_new ← ls_scale * α_current); defaults to 0.5 max_iter: maximum number of Newton iterations; defaults to 50 max_ls: maximum number of line search steps; defaults to 10 undercut: complementarity slackness target; solver will aim at reaching complementarity violation = btol / undercut; defaults to Inf no_progress_max: number of Newton's iterations without progress trigerring the rescaling of the target complementarity violation; defaults to 3 no_progress_undercut: undercut scaling factor (target_new ← target_current / no_progress_undercut); defaults to 10 verbose: flag for printing the status of the solver during the solve; defaults to false """ Base.@kwdef mutable struct SolverOptions{T} rtol::T=1.0e-6 btol::T=1.0e-4 ls_scale::T=0.5 max_iter::Int=50 max_ls=10 undercut::T=Inf no_progress_max::Int=3 no_progress_undercut::T=10.0 verbose::Bool=false end function Base.show(io::IO, mime::MIME{Symbol("text/plain")}, options::SolverOptions) summary(io, options) println(io, "") println(io, " rtol: "*string(options.rtol)) println(io, " btol: "*string(options.btol)) println(io, " ls_scale: "*string(options.ls_scale)) println(io, " max_iter: "*string(options.max_iter)) println(io, " max_ls: "*string(options.max_ls)) println(io, " undercut: "*string(options.undercut)) println(io, " no_progress_max: "*string(options.no_progress_max)) println(io, " no_progress_undercut: "*string(options.no_progress_undercut)) println(io, " verbose: "*string(options.verbose)) end
Dojo
https://github.com/dojo-sim/Dojo.jl.git
[ "MIT" ]
0.7.5
104b6a1a358da9b1348ab7cd66ad685ecaca13d4
code
1833
function residual_violation(mechanism::Mechanism) violation = 0.0 for joint in mechanism.joints violation = max(violation, joint_residual_violation(mechanism, joint)) end for body in mechanism.bodies res = constraint(mechanism, body) violation = max(violation, norm(res, Inf)) end for contact in mechanism.contacts violation = max(violation, contact_residual_violation(mechanism, contact)) end return violation end function joint_residual_violation(mechanism, joint) res = constraint(mechanism, joint) joint_t = joint.translational Nλ = joint_length(joint_t) Nb = limits_length(joint_t) subres = res[SUnitRange(2*Nb+1,2*Nb+Nλ)] violation = norm(subres, Inf) shift = impulses_length(joint_t) joint_r = joint.rotational Nλ = joint_length(joint_r) Nb = limits_length(joint_r) subres = res[SUnitRange(shift+2Nb+1,shift+2Nb+Nλ)] violation = max(violation, norm(subres, Inf)) return violation end function contact_residual_violation(mechanism, contact) res = constraint(mechanism, contact) violation = norm(res, Inf) return violation end function bilinear_violation(mechanism::Mechanism) violation = 0.0 for joint in mechanism.joints violation = max(violation, joint_bilinear_violation(mechanism, joint)) end for contact in mechanism.contacts violation = max(violation, contact_bilinear_violation(mechanism, contact)) end return violation end function joint_bilinear_violation(mechanism, joint) comp = complementarity(mechanism, joint) violation = norm(comp, Inf) return violation end function contact_bilinear_violation(mechanism, contact) comp = complementarity(mechanism, contact) violation = norm(comp, Inf) return violation end
Dojo
https://github.com/dojo-sim/Dojo.jl.git
[ "MIT" ]
0.7.5
104b6a1a358da9b1348ab7cd66ad685ecaca13d4
code
1416
Base.:*(u::AbstractVector, v::SVector{1,T}) where T = u * v[1] Base.vcat(v::Adjoint{T,SVector{N,T}}, E::UniformScaling) where {T, N} = vcat(v, SMatrix{N,N,T,N*N}(E)) Base.vcat(A::SMatrix{N1,N2,T,N1N2}, E::UniformScaling) where {T, N1, N2, N1N2} = vcat(A, SMatrix{N2,N2,T,N2*N2}(E)) svcat(a::T, b::T) where T = SA[a; b] svcat(a::StaticArray, b::StaticArray) = vcat(a, b) svcat(a::StaticArray{Tuple{N},T,1}, b::T) where {T,N} = vcat(a, SA[b]) svcat(a::T, b::StaticArray{Tuple{N},T,1}) where {T,N} = vcat(SA[a], b) szeros(::Type{T}, N) where T = @SVector zeros(T, N) szeros(N)= @SVector zeros(N) szeros(::Type{T}, N1, N2) where T = @SMatrix zeros(T, N1, N2) szeros(N1, N2)= @SMatrix zeros(N1, N2) sones(::Type{T}, N) where T = @SVector ones(T, N) sones(N)= @SVector ones(N) srand(N)= @SVector rand(N) sI(::Type{T}, N) where T = SMatrix{N,N,T}(I) sI(N) = SMatrix{N,N,Float64}(I) # TODO: check StaticArray bug fix, then remove zerodimstaticadjoint(A) = A' zerodimstaticadjoint(::SMatrix{0,N,T,0}) where {T,N} = SMatrix{N,0,T,0}() function diagonal_cat(a::AbstractMatrix{T}, b::AbstractMatrix{T}) where T diagonal_cat(dense(a), dense(b)) end function diagonal_cat(a::SMatrix{Na,Na,T,Ma}, b::SMatrix{Nb,Nb,T,Mb}) where {T,Na,Nb,Ma,Mb} [[a szeros(Na,Nb)]; [szeros(Nb,Na) b]] end dense(a::AbstractMatrix{T}) where T = a function dense(a::Diagonal{T,SVector{N, T}}) where {T,N} SMatrix{N,N,T,N^2}(a) end
Dojo
https://github.com/dojo-sim/Dojo.jl.git
[ "MIT" ]
0.7.5
104b6a1a358da9b1348ab7cd66ad685ecaca13d4
code
997
function module_dir() return joinpath(@__DIR__, "..", "..") end function string_to_symbol(x) typeof(x) <: String ? (return Symbol(x)) : (return x) end function scn(a::Float64; digits=1, exp_digits=1) isnan(a) && return " NaN" * " "^(digits + exp_digits) @assert digits >= 0 # a = m x 10^e if a == 0 e = 0 m = 0.0 elseif a == Inf return " Inf" elseif a == -Inf return "-Inf" else e = Int(floor(log(abs(a))/log(10))) m = a*exp(-e*log(10)) end m = round(m, digits=digits) if m == 10.0 m = 1.0 e += 1 end if digits == 0 m = Int(floor(m)) strm = string(m) else strm = string(m) is_neg = m < 0. strm = strm*"0"^max(0, 2+digits+is_neg-length(strm)) end sgn = a >= 0 ? " " : "" sgne = e >= 0 ? "+" : "-" stre = string(abs(e)) stre = "0"^max(0, exp_digits - length(stre)) * stre return "$sgn$(strm)e$sgne$(stre)" end # useful for python visualizer wait_for_server = MeshCat.wait_for_server
Dojo
https://github.com/dojo-sim/Dojo.jl.git
[ "MIT" ]
0.7.5
104b6a1a358da9b1348ab7cd66ad685ecaca13d4
code
534
function normalize(x) mag = norm(x) if mag > 0.0 return x ./ mag else return ones(length(x)) ./ length(x) end end function ∂normalize∂x(x) mag = norm(x) n = length(x) if mag > 0.0 n = length(x) return 1.0 * I(n) ./ mag - x * transpose(x) ./ mag^3 else return 1.0 * I(n) # TODO: confirm this is good choice end end function ∂norm∂x(x) mag = norm(x) if mag > 0.0 return x' ./ mag else return ones(1, length(x)) end end
Dojo
https://github.com/dojo-sim/Dojo.jl.git
[ "MIT" ]
0.7.5
104b6a1a358da9b1348ab7cd66ad685ecaca13d4
code
438
# default colors orange = RGBA(1.0, 153.0 / 255.0, 51.0 / 255.0, 1.0) cyan = RGBA(51.0 / 255.0, 1.0, 1.0, 1.0) magenta = RGBA(255.0 / 255.0, 0.0, 255.0 / 255.0, 1.0) gray = RGBA(0.7, 0.7, 0.7, 1.0) # light colors orange_light = RGBA(1.0, 153.0 / 255.0 + 0.2, 51.0 / 255.0 + 0.2, 1.0) cyan_light = RGBA(51.0 / 255.0 + 0.6, 1.0, 1.0, 1.0) magenta_light = RGBA(255.0 / 255.0, 0.75, 255.0 / 255.0, 1.0) gray_light = RGBA(0.9, 0.9, 0.9, 1.0)
Dojo
https://github.com/dojo-sim/Dojo.jl.git
[ "MIT" ]
0.7.5
104b6a1a358da9b1348ab7cd66ad685ecaca13d4
code
1888
function convert_video_to_gif(video_file_path::String, output_path::String="output.gif"; framerate::Int=30, start_time=0., duration=1e3, overwrite=false, width::Int=1080, height::Int=-2, hq_colors::Bool=false) output_path = abspath(output_path) if !isfile(video_file_path) error("Could not find the input file $video_file_path") end if isfile(output_path) && !overwrite error("The output path $output_path already exists. To overwrite that file, you can pass `overwrite=true` to this function") end mktempdir() do tmpdir # run(MeshCat.unpack_cmd(video_file_path, tmpdir, ".mp4", nothing)) # unpack the .tar file # cmd = ["-r", string(framerate), "-i", "%07d.png", "-vcodec", "libx264", "-preset", "slow", "-crf", "18"] color_map = hq_colors ? "[0:v] fps=$framerate, scale=$width:$height,split [a][b];[a] palettegen=stats_mode=single [p];[b][p] paletteuse=new=1" : "[0:v] fps=$framerate, scale=$width:$height,split [a][b];[a] palettegen [p];[b][p] paletteuse" cmd = ["-ss", string(start_time), "-t", string(duration), "-i", video_file_path, "-filter_complex", color_map] if overwrite push!(cmd, "-y") end push!(cmd, output_path) cd(tmpdir) do FFMPEG.exe(cmd...) end end @info("Saved output as $output_path") return output_path end function convert_frames_to_video_and_gif(filename, overwrite::Bool=true; load_path=homedir()*"/Downloads", save_path=homedir() * "/Documents/video") MeshCat.convert_frames_to_video( joinpath(load_path, "$filename.tar"), joinpath(save_path, "$filename.mp4"), overwrite=overwrite) convert_video_to_gif( joinpath(save_path, "$filename.mp4"), joinpath(save_path, "$filename.gif"), overwrite=overwrite) return nothing end
Dojo
https://github.com/dojo-sim/Dojo.jl.git
[ "MIT" ]
0.7.5
104b6a1a358da9b1348ab7cd66ad685ecaca13d4
code
4920
function newton_solver(res, x0; iterations=500, tolerance=1e-6) x = x0 for i = 1:iterations r = res(x) (norm(r, Inf) < tolerance) && break ∇r = FiniteDiff.finite_difference_derivative(x -> res(x), x) Δx = - r / ∇r α = 1.0 r_cand = Inf while norm(r_cand, Inf) >= norm(r, Inf) r_cand = res(x + α * Δx) α /= 2 end x += α * Δx (i == iterations) && (@show "solver failure") end return x end function catenary_parameters(x_start, x_goal, rope_length; iterations=500, tolerance=1e-6, a_guess=0.0, dx_guess=0.0) rope_length = max(rope_length, (1+1e-5)*norm(x_goal - x_start)) h = x_goal[1] - x_start[1] v = x_goal[2] - x_start[2] # find a i.e. the shape of the catenary res(b) = 1/sqrt(sqrt(rope_length^2 - v^2)/h - 1) - 1/sqrt(2b * sinh(1/(2b)) - 1) b = newton_solver(res, a_guess/h, iterations=iterations, tolerance=tolerance) a = b * h # find x offset function caten(x; a=a) return a * cosh(x/a) end res = dx -> caten(x_goal[1] + dx) - caten(x_start[1] + dx) - (x_goal[2] - x_start[2]) dx = newton_solver(res, dx_guess, iterations=iterations, tolerance=tolerance) # find y offset dy = x_goal[2] - caten(x_goal[1] + dx) # final function return a, dx, dy end function catenary(x; a=0.0, dx=0.0, dy=0.0) return a * cosh((x+dx)/a) + dy end function link_transform(start, goal) # transforms a vertical line of length 1 into a line between start and goal v1 = [0.0, 0.0, 1.0] v2 = goal[SA[1;2;3]] - start[SA[1;2;3]] normalize!(v2) ax = cross(v1, v2) ang = acos(v1' * v2) q = axis_angle_to_quaternion(ang * normalize!(ax)) rope_length = norm(goal - start) scaling = LinearMap(I * Diagonal([1.0, 1.0, rope_length])) transform = compose(Translation(start), LinearMap(q)) return transform, scaling end function build_rope(vis::Visualizer; N::Int=10, color=Colors.RGBA(0,0,0,1), rope_type::Symbol=:cylinder, rope_radius=0.02, name=:rope) if rope_type == :line line = MeshCat.Line([xa, xb]) material = LineBasicMaterial(color=color, wireframeLinewidth=10, linewidth=10) elseif rope_type == :cylinder line = MeshCat.Cylinder(Point(0,0,0.0), Point(0,0,1.0), rope_radius) material = MeshPhongMaterial(color=color) end for i = 1:N setobject!(vis[name][Symbol(i)][:scaled], line, material) end return vis end function set_straight_rope(vis::Visualizer, x_start, x_goal; N::Int=10, name::Symbol=:rope) Λ = range(0,1,length=N+1) x = [(1-λ)*x_start + λ * x_goal for λ in Λ] for i = 1:N transform, scaling = link_transform(x[i], x[i+1]) settransform!(vis[name][Symbol(i)][:scaled], scaling) settransform!(vis[name][Symbol(i)], transform) end return nothing end function set_loose_rope(vis::Visualizer, x_start, x_goal; N::Int=10, rope_length=2norm(x_goal - x_start), min_altitude=-Inf, a_guess=1.0, dx_guess=0.0, name::Symbol=:rope) v = x_goal - x_start shadow_rope_length = norm(v[SA[1;2]]) θ = atan(v[2], v[1]) R = rotationmatrix(RotZ(-θ)) v̄ = R * v # rotated into the xz plane a, dx, dy = catenary_parameters(zeros(2), v̄[SA[1;3]], rope_length, a_guess=a_guess, dx_guess=dx_guess) Λ = shadow_rope_length * range(0,1,length=N+1) x = [] for i = 1:N+1 xi = x_start + R' * [Λ[i], 0, catenary(Λ[i], a=a, dx=dx, dy=dy)] xi[3] = max(xi[3], min_altitude) push!(x, xi) end for i = 1:N transform, scaling = link_transform(x[i], x[i+1]) settransform!(vis[name][Symbol(i)][:scaled], scaling) settransform!(vis[name][Symbol(i)], transform) end return a, dx end function animate_straight_rope(vis::Visualizer, start_traj::Vector, goal_traj::Vector; anim::Animation=MeshCat.Animation(100), N::Int=50, name=:rope) M = length(start_traj) for i = 1:M atframe(anim, i) do xa = start_traj[i] xb = goal_traj[i] set_straight_rope(vis, xa, xb, N=N, name=name) end end setanimation!(vis, anim) return vis, anim end function animate_loose_rope(vis::Visualizer, start_traj::Vector, goal_traj::Vector; anim::Animation=MeshCat.Animation(100), rope_length=30.0, N::Int=50, min_altitude=-Inf, name=:rope) M = length(start_traj) a_guess = 1.0 dx_guess = 0.0 for i = 1:M atframe(anim, i) do xa = start_traj[i] xb = goal_traj[i] a_guess, dx_guess = set_loose_rope(vis, xa, xb, rope_length=rope_length, N=N, min_altitude=min_altitude, a_guess=a_guess, dx_guess=dx_guess, name=name) # set_straight_rope(vis, xa, xb, N=N, name=name) end end setanimation!(vis, anim) return vis, anim end
Dojo
https://github.com/dojo-sim/Dojo.jl.git
[ "MIT" ]
0.7.5
104b6a1a358da9b1348ab7cd66ad685ecaca13d4
code
4543
""" set_floor!(vis; x, y, z, origin, normal, color, tilepermeter, imagename, axis, grid) adds floor to visualization vis::Visualizer x: lateral position y: longitudinal position z: vertical position origin:: position of the center of the floor normal:: unit vector indicating the normal to the floor color: RGBA tilepermeter: scaling imagename: path to image axis: flag to turn on visualizer axis grid: flag to turn on visualizer grid """ function set_floor!(vis::Visualizer; x=20.0, y=20.0, z=0.1, origin=[0,0,0.0], normal=[0,0,1.0], color=RGBA(0.5,0.5,0.5,1.0), tilepermeter=1.0, imagename="tile.png", axis::Bool=false, grid::Bool=false) image = PngImage(joinpath(module_dir(), "assets", imagename)) repeat = Int.(ceil.(tilepermeter * [x, y])) texture = Texture(image=image, wrap=(1,1), repeat=(repeat[1],repeat[2])) mat = MeshPhongMaterial(map=texture) (color !== nothing) && (mat = MeshPhongMaterial(color=color)) obj = HyperRectangle(Vec(-x/2, -y/2, -z), Vec(x, y, z)) setobject!(vis[:floor], obj, mat) p = origin q = axes_pair_to_quaternion([0,0,1.], normal) settransform!(vis[:floor], MeshCat.compose( MeshCat.Translation(p...), MeshCat.LinearMap(q), )) setvisible!(vis["/Axes"], axis) setvisible!(vis["/Grid"], grid) return nothing end """ set_surface!(vis; f, xlims, ylims, color, n) adds surface to visualization vis::Visualizer f: implicit function representing surface xlims: lateral domain for surface ylims: longitudinal domain for surface color: RGBA n: number of discretization points along each domain """ function set_surface!(vis::Visualizer, f::Any; xlims=[-20.0, 20.0], ylims=[-20.0, 20.0], color=RGBA(1.0, 1.0, 1.0, 0.0), n::Int=200) mesh = GeometryBasics.Mesh(f, HyperRectangle(Vec(xlims[1], ylims[1], -2.0), Vec(xlims[2] - xlims[1], ylims[2] - ylims[1], 4.0)), Meshing.MarchingCubes(), samples=(n, n, Int(floor(n / 8)))) setobject!(vis["surface"], mesh, MeshPhongMaterial(color=color)) return nothing end """ set_light!(vis; ambient, fill, pointX, pointXshadow, direction) lighting conditions for visualization vis: Visualizer ambient: value for ambient lighting direction: positive or negative direction for light """ function set_light!(vis::Visualizer; ambient=0.35, direction::String="Positive") setprop!(vis["/Lights/AmbientLight/<object>"], "intensity", ambient) setprop!(vis["/Lights/FillLight/<object>"], "intensity", 0.25) setprop!(vis["/Lights/PointLight$(direction)X/<object>"], "intensity", 0.85) setprop!(vis["/Lights/PointLight$(direction)X/<object>"], "castShadow", true) return nothing end """ set_camera!(vis; zoom, cam_pos) position and zoom for camera in visualization vis: Visualizer zoom: value for zoom cam_pos: position of camera """ function set_camera!(vis::Visualizer; zoom=1.0, cam_pos=nothing) camvis=vis["/Cameras/default/rotated/<object>"] setprop!(camvis, "zoom", zoom) (cam_pos !== nothing) && MeshCat.settransform!(camvis, MeshCat.compose( MeshCat.LinearMap(Dojo.RotX(-1/2 * pi)), MeshCat.Translation(cam_pos...), )) return nothing end """ set_arrow!(vis, origin, direction; color, shaft_radius, max_head_radius, scaling, name) adds an arrow object to scene vis: Visualizer origin: point defining arrow base direction: vector defining arrow color: RGBA shaft_radius: dimension of arrow shaft max_head_radius: dimension of arrow head base scaling: parameter that scales the entire arrow name: Symbol """ function set_arrow!(vis, origin, direction; color=Colors.RGBA(1.0, 0.0, 0.0, 1.0), shaft_radius=0.0125, max_head_radius=0.025, scaling=0.2, name=:name) # create arrow force_vis = ArrowVisualizer(vis[name]) setobject!(force_vis, MeshPhongMaterial(color=color)) # direction scaled_direction = scaling * direction # set settransform!(force_vis, Point(origin...), Vec(scaled_direction...), shaft_radius=shaft_radius, max_head_radius=max_head_radius) end function set_background!(vis::Visualizer; top_color=RGBA(1,1,1.0), bottom_color=RGBA(1,1,1.0)) setprop!(vis["/Background"], "top_color", top_color) setprop!(vis["/Background"], "bottom_color", bottom_color) end
Dojo
https://github.com/dojo-sim/Dojo.jl.git
[ "MIT" ]
0.7.5
104b6a1a358da9b1348ab7cd66ad685ecaca13d4
code
10572
""" visualize(mechanism, storage; vis, build, show_contact, animation, color, name) visualize mechanism using trajectory from storage mechanism: Mechanism storage: Storage vis: Visualizer build: flag to construct mechanism visuals (only needs to be built once) show_contact: flag to show contact locations on system color: RGBA name: unique identifier for mechanism """ function visualize(mechanism::Mechanism, storage::Storage{T,N}; vis::Visualizer=Visualizer(), framerate=60, # Inf for 1/timestep build::Bool=true, show_joint=false, joint_radius=0.1, show_contact=false, show_frame=false, animation=nothing, color=nothing, name::Symbol=:robot, return_animation=false, visualize_floor=true) where {T,N} storage = deepcopy(storage) bodies = mechanism.bodies origin = mechanism.origin # Build robot in the visualizer build && build_robot(mechanism; vis, show_joint, show_contact, show_frame, color, name, visualize_floor) # Create animations timestep_max = 1/framerate time_factor = Int64(maximum([1;floor(timestep_max/mechanism.timestep)])) framerate = Int64(round(1/(mechanism.timestep*time_factor))) (animation === nothing) && (animation = MeshCat.Animation(Dict{MeshCat.SceneTrees.Path,MeshCat.AnimationClip}(), framerate)) # Bodies and Contacts for (id, body) in enumerate(bodies) shape = body.shape visshape = convert_shape(shape) subvisshape = nothing showshape = false if visshape !== nothing subvisshape = vis[name][:bodies][Symbol(body.name, "__id_$id")] showshape = true end animate_node!(storage, id, shape, animation, subvisshape, showshape, time_factor) if show_joint for (jd, joint) in enumerate(mechanism.joints) if joint.child_id == body.id radius = 0.1 joint_shape = Sphere(radius, position_offset=joint.translational.vertices[2], color=RGBA(0.0, 0.0, 1.0, 0.5)) visshape = convert_shape(joint_shape) subvisshape = nothing showshape = false if visshape !== nothing subvisshape = vis[name][:joints][Symbol(joint.name, "__id_$(jd)")] showshape = true end animate_node!(storage, id, joint_shape, animation, subvisshape, showshape, time_factor) end end end if show_contact for (jd, contact) in enumerate(mechanism.contacts) if contact.parent_id == body.id radius = abs(contact.model.collision.contact_radius) (radius == 0.0) && (radius = 0.01) contact_shape = Sphere(radius, position_offset=contact.model.collision.contact_origin, #TODO: generalize for collision checking orientation_offset=one(Quaternion), color=RGBA(1.0, 0.0, 0.0, 0.5)) visshape = convert_shape(contact_shape) subvisshape = nothing showshape = false if visshape !== nothing subvisshape = vis[name][:contacts][Symbol(contact.name, "__id_$(jd)")] showshape = true end animate_node!(storage, id, contact_shape, animation, subvisshape, showshape, time_factor) end end end if show_frame frame_shape = FrameShape(scale=0.33*ones(3)) visshape = convert_shape(frame_shape) subvisshape = vis[name][:frames][Symbol(body.name, "__id_$id")] showshape = true animate_node!(storage, id, frame_shape, animation, subvisshape, showshape, time_factor) end end # Origin id = origin.id shape = origin.shape visshape = convert_shape(shape) if visshape !== nothing subvisshape = vis[name][:bodies][Symbol(:origin, "_id")] shapetransform = transform(szeros(T,3), one(Quaternion{T}), shape) settransform!(subvisshape, shapetransform) end setanimation!(vis, animation) return_animation ? (return vis, animation) : (return vis) end """ build_robot(mechanism; vis, show_contact, name, color) construct visuals for mechanism mechanism: Mechanism vis: Visualizer show_contact: flag to show contact locations on mechanism name: unique identifier color: RGBA """ function build_robot(mechanism::Mechanism; vis::Visualizer=Visualizer(), show_joint=false, joint_radius=0.1, show_contact=false, show_frame=false, name::Symbol=:robot, color=nothing, visualize_floor=true) bodies = mechanism.bodies origin = mechanism.origin set_background!(vis) set_light!(vis) visualize_floor && set_floor!(vis) # Bodies and Contacts for (id, body) in enumerate(bodies) if color !== nothing shape = deepcopy(body.shape) set_color!(shape, color) else shape = body.shape end visshape = convert_shape(shape) subvisshape = nothing if visshape !== nothing subvisshape = vis[name][:bodies][Symbol(body.name, "__id_$id")] setobject!(subvisshape, visshape, shape, transparent=(show_joint || show_contact)) end if show_joint for (jd, joint) in enumerate(mechanism.joints) if joint.child_id == body.id radius = joint_radius joint_shape = Sphere(radius, position_offset=joint.translational.vertices[2], color=RGBA(0.0, 0.0, 1.0, 0.5)) visshape = convert_shape(joint_shape) subvisshape = nothing if visshape !== nothing subvisshape = vis[name][:joints][Symbol(joint.name, "__id_$(jd)")] setobject!(subvisshape, visshape, joint_shape, transparent=false) end end end end if show_contact for (jd, contact) in enumerate(mechanism.contacts) if contact.parent_id == body.id radius = abs(contact.model.collision.contact_radius) (radius == 0.0) && (radius = 0.01) contact_shape = Sphere(radius, position_offset=(contact.model.collision.contact_origin), orientation_offset=one(Quaternion), color=RGBA(1.0, 0.0, 0.0, 0.5)) visshape = convert_shape(contact_shape) subvisshape = nothing if visshape !== nothing subvisshape = vis[name][:contacts][Symbol(contact.name, "__id_$(jd)")] setobject!(subvisshape,visshape,contact_shape,transparent=false) end end end end if show_frame frame_shape = FrameShape(scale=0.33*ones(3)) visshape = convert_shape(frame_shape) subvisshape = vis[name][:frames][Symbol(body.name, "__id_$id")] setobject!(subvisshape, visshape, frame_shape, transparent=false) end end # Origin id = origin.id shape = origin.shape visshape = convert_shape(shape) if visshape !== nothing subvisshape = vis[name][:bodies][Symbol(:origin, "_id")] setobject!(subvisshape,visshape,shape,transparent=(show_joint || show_contact)) end return vis end function transform(x, q, shape) scale_transform = MeshCat.LinearMap(diagm(shape.scale)) x_transform = MeshCat.Translation(x + vector_rotate(shape.position_offset, q)) q_transform = MeshCat.LinearMap(q * shape.orientation_offset) return MeshCat.compose(x_transform, q_transform, scale_transform) end MeshCat.js_scaling(s::AbstractVector) = s MeshCat.js_position(p::AbstractVector) = p function set_node!(x, q, shape, shapevisualizer, showshape) if showshape # TODO currently setting props directly because MeshCat/Rotations doesn't convert scaled rotation properly. # If this changes, do similarily to origin setprop!(shapevisualizer, "scale", MeshCat.js_scaling(shape.scale)) setprop!(shapevisualizer, "position", MeshCat.js_position(x + vector_rotate(shape.position_offset, q))) setprop!(shapevisualizer, "quaternion", MeshCat.js_quaternion(q * shape.orientation_offset)) end return end function animate_node!(storage::Storage{T,N}, id, shape, animation, shapevisualizer, showshape, time_factor) where {T,N} frame_id = 1 for i=1:time_factor:N x = storage.x[id][i] q = storage.q[id][i] atframe(animation, frame_id) do set_node!(x, q, shape, shapevisualizer, showshape) end frame_id += 1 end return end function MeshCat.setobject!(subvisshape, visshapes::Vector, shape::CombinedShapes; transparent=false) for (i,visshape) in enumerate(visshapes) v = subvisshape["shape"*string(i)] s = shape.shapes[i] setobject!(v, visshape, s; transparent) scale_transform = MeshCat.LinearMap(diagm(s.scale)) x_transform = MeshCat.Translation(s.position_offset) q_transform = MeshCat.LinearMap(s.orientation_offset) t = MeshCat.compose(x_transform, q_transform, scale_transform) settransform!(v, t) end end function MeshCat.setobject!(subvisshape, visshape, shape::Shape; transparent=false) setobject!(subvisshape, visshape, MeshPhongMaterial(color=(transparent ? RGBA(0.75, 0.75, 0.75, 0.5) : shape.color))) end function MeshCat.setobject!(subvisshape, visshape, shape::FrameShape; transparent=false) setobject!(subvisshape, visshape) end function MeshCat.setobject!(subvisshape, visshape, shape::Mesh; transparent=false) if visshape.mtl_library == "" visshape = MeshFileGeometry(visshape.contents, visshape.format) setobject!(subvisshape, visshape, MeshPhongMaterial(color=(transparent ? RGBA(0.75, 0.75, 0.75, 0.5) : shape.color))) else setobject!(subvisshape, visshape) end end
Dojo
https://github.com/dojo-sim/Dojo.jl.git
[ "MIT" ]
0.7.5
104b6a1a358da9b1348ab7cd66ad685ecaca13d4
code
3589
@testset "Quadruped" begin mech = get_mechanism(:quadruped; timestep=0.05, gravity=-9.81, friction_coefficient=0.8, parse_springs=false, parse_dampers=false, dampers=1000.0, springs=30.0) initialize!(mech, :quadruped) storage = simulate!(mech, 5.0, record=true, verbose=false) res = get_sdf(mech, storage) # distance from floor to each contact @test minimum(minimum([min.(0.0, r) for r in res])) >= 0.0 end @testset "Box toss" begin for timestep in [0.10, 0.05, 0.01, 0.005] mech = get_mechanism(:block; timestep, gravity=-9.81, friction_coefficient = 0.1) initialize!(mech, :block, position=[0.0, 0.0, 0.5], velocity=[1.0, 1.5, 1.0], angular_velocity=[5.0, 4.0, 2.0] .* timestep) storage = simulate!(mech, 5.0, record=true, opts=SolverOptions(btol=1e-6, rtol=1e-6, verbose=false)) @test norm(storage.v[1][end], Inf) < 1.0e-8 @test norm(storage.x[1][end][3] - 0.25, Inf) < 1.0e-3 end end @testset "Box external force" begin mech = get_mechanism(:block;gravity=0, contact=false, mass=1) mech.bodies[1].inertia = diagm(ones(3)) controller!(mechanism, k) = (k<=50 ? set_external_force!(mechanism.bodies[1];force=[1;0;0],vertex=[0.5;0;0]) : nothing) initialize!(mech, :block; position=zeros(3), orientation=Dojo.RotZ(pi/2), velocity=zeros(3), angular_velocity=zeros(3)) storage = simulate!(mech, 1.0, controller!, record=true) @test norm(mech.bodies[1].state.vsol[1][2] - 0.5) < 1.0e-3 controller!(mechanism, k) = (k<=50 ? set_external_force!(mechanism.bodies[1];torque=[1;0;0],vertex=[0.5;0;0]) : nothing) initialize!(mech, :block; position=zeros(3), orientation=Dojo.RotZ(pi/2), velocity=zeros(3), angular_velocity=zeros(3)) storage = simulate!(mech, 1.0, controller!, record=true) @test norm(mech.bodies[1].state.ωsol[1][1] - 0.5) < 1.0e-3 end @testset "Four-bar linkage" begin for timestep in [0.10, 0.05, 0.01, 0.005] mech = get_mechanism(:fourbar; timestep, parse_springs=false, parse_dampers=false, dampers=0.0) Dojo.initialize!(mech, :fourbar, inner_angle=0.25) loopjoints = mech.joints[end:end] Dojo.root_to_leaves_ordering(mech) == [2, 7, 3, 6, 1, 8, 4, 9] # Simulation function ctrl!(m, t) Dojo.set_input!(m, 1.0 * SVector(rand(), -rand(), 0.0, 0.0, 0.0)) return nothing end storage = Dojo.simulate!(mech, 5.0, ctrl!, verbose=false, record=true) min_coords = Dojo.get_minimal_coordinates(mech) @test norm(min_coords[5] - +min_coords[4], Inf) < 1.0e-5 @test norm(min_coords[5] - -min_coords[3], Inf) < 1.0e-5 @test norm(min_coords[5] - (min_coords[2] - min_coords[1]), Inf) < 1.0e-5 end end @testset "Dzhanibekov" begin # Simulation timestep=0.01 gravity=0.0 mech = get_mechanism(:dzhanibekov; timestep, gravity); # Simulate Dojo.initialize!(mech, :dzhanibekov, angular_velocity=[15.0; 0.01; 0.0]) storage = Dojo.simulate!(mech, 4.0, record=true, verbose=false) # The x position of the side body oscillate between a positive and negative # value when we observe the Dhanibekov effect. Otherwise, it always remains in the positive position. @test Dojo.minimum([x[1] for x in storage.x[2]]) < -0.05 end
Dojo
https://github.com/dojo-sim/Dojo.jl.git
[ "MIT" ]
0.7.5
104b6a1a358da9b1348ab7cd66ad685ecaca13d4
code
816
@testset "Shape convertion" begin # shapes box = Dojo.Box(1.0, 1.0, 1.0) cylinder = Dojo.Cylinder(1.0, 1.0) capsule = Dojo.Capsule(1.0, 1.0) shapes = Dojo.CombinedShapes([box, cylinder, capsule]) sphere = Dojo.Sphere(1.0) pyramid = Dojo.Pyramid(1.0, 1.0) frame = Dojo.FrameShape() mesh = Dojo.Mesh(joinpath(dirname(pathof(DojoEnvironments)), "mechanisms/atlas/dependencies/mesh/head.obj")) # convert box_geom = Dojo.convert_shape(box) cylinder_geom = Dojo.convert_shape(cylinder) capsule_geom = Dojo.convert_shape(capsule) shapes_geom = Dojo.convert_shape(shapes) sphere_geom = Dojo.convert_shape(sphere) pyramid_geom = Dojo.convert_shape(pyramid) frame_geom = Dojo.convert_shape(frame) mesh_geom = Dojo.convert_shape(mesh) @test true end
Dojo
https://github.com/dojo-sim/Dojo.jl.git
[ "MIT" ]
0.7.5
104b6a1a358da9b1348ab7cd66ad685ecaca13d4
code
28247
@testset "Collision: Sphere-sphere" begin function get_two_body(; radius_body1=0.5, radius_body2=0.5, mass_body1=1.0, mass_body2=1.0, friction_type=:nonlinear, friction_coefficient=0.5, joint_world_body1=:Fixed, gravity=-9.81, timestep=0.1) origin = Dojo.Origin{Float64}() pbody = Dojo.Sphere(radius_body1, mass_body1) cbody = Dojo.Sphere(radius_body2, mass_body2) joint = Dojo.JointConstraint(eval(joint_world_body1)(origin, pbody)) bodies = [pbody, cbody] joints = [joint] # contact model collision = Dojo.SphereSphereCollision{Float64,2,3,6}( szeros(3), szeros(3), pbody.shape.r, cbody.shape.r) if friction_type == :nonlinear friction_parameterization = SA{Float64}[ 1.0 0.0 0.0 1.0 ] body_body = Dojo.NonlinearContact{Float64,8}(friction_coefficient, friction_parameterization, collision) elseif friction_type == :linear friction_parameterization = SA{Float64}[ 0.0 1.0 0.0 -1.0 1.0 0.0 -1.0 0.0 ] body_body = Dojo.LinearContact{Float64,12}(friction_coefficient, friction_parameterization, collision) elseif friction_type == :impact friction_parameterization = szeros(Float64, 0, 2) collision = Dojo.SphereSphereCollision{Float64,0,3,0}( szeros(3), szeros(3), pbody.shape.r, cbody.shape.r) body_body = Dojo.ImpactContact{Float64,2}(friction_parameterization, collision) end contacts = [Dojo.ContactConstraint((body_body, pbody.id, cbody.id), name=:body_body)] # z-drop (w/ gravity) mechanism = Dojo.Mechanism(origin, bodies, joints, contacts; gravity, timestep) return mechanism end function test_jacobians(mechanism) # unpack collision = mechanism.contacts[1].model.collision xp = mechanism.bodies[1].state.x2 qp = mechanism.bodies[1].state.q2 xc = mechanism.bodies[2].state.x2 qc = mechanism.bodies[2].state.q2 for jacobian in [:parent, :child] # distance dis = Dojo.distance(collision, xp, qp, xc, qc) X = Dojo.∂contact_normal_transpose∂x(jacobian, collision, xp, qp, xc, qc) if jacobian == :parent FD = ForwardDiff.jacobian(x -> Dojo.contact_normal(collision, x, qp, xc, qc)', xp) elseif jacobian == :child FD = ForwardDiff.jacobian(x -> Dojo.contact_normal(collision, xp, qp, x, qc)', xc) end @test norm((dis >= 0.0 ? 1.0 : -1.0) * X - FD, Inf) < 1.0e-6 Q = Dojo.∂contact_normal_transpose∂q(jacobian, collision, xp, qp, xc, qc) if jacobian == :parent FD = ForwardDiff.jacobian(q -> Dojo.contact_normal(collision, xp, Quaternion(q...), xc, qc)', Dojo.vector(qp)) elseif jacobian == :child FD = ForwardDiff.jacobian(q -> Dojo.contact_normal(collision, xp, qp, xc, Quaternion(q...))', Dojo.vector(qc)) end @test norm((dis >= 0.0 ? 1.0 : -1.0) * Q - FD, Inf) < 1.0e-6 X = Dojo.∂contact_tangent_one_transpose∂x(jacobian, collision, xp, qp, xc, qc) if jacobian == :parent FD = ForwardDiff.jacobian(x -> Dojo.contact_tangent(collision, x, qp, xc, qc)[1, :]', xp) elseif jacobian == :child FD = ForwardDiff.jacobian(x -> Dojo.contact_tangent(collision, xp, qp, x, qc)[1, :]', xc) end @test norm(FD - X, Inf) < 1.0e-6 X = Dojo.∂contact_tangent_two_transpose∂x(jacobian, collision, xp, qp, xc, qc) if jacobian == :parent FD = ForwardDiff.jacobian(x -> Dojo.contact_tangent(collision, x, qp, xc, qc)[2, :]', xp) elseif jacobian == :child FD = ForwardDiff.jacobian(x -> Dojo.contact_tangent(collision, xp, qp, x, qc)[2, :]', xc) end @test norm(FD - X, Inf) < 1.0e-6 Q = Dojo.∂contact_tangent_one_transpose∂q(jacobian, collision, xp, qp, xc, qc) if jacobian == :parent FD = ForwardDiff.jacobian(q -> Dojo.contact_tangent(collision, xp, Quaternion(q...), xc, qc)[1, :]', Dojo.vector(qp)) elseif jacobian == :child FD = ForwardDiff.jacobian(q -> Dojo.contact_tangent(collision, xp, qp, xc, Quaternion(q...))[1, :]', Dojo.vector(qc)) end @test norm(FD - Q, Inf) < 1.0e-6 Q = Dojo.∂contact_tangent_two_transpose∂q(jacobian, collision, xp, qp, xc, qc) if jacobian == :parent FD = ForwardDiff.jacobian(q -> Dojo.contact_tangent(collision, xp, Quaternion(q...), xc, qc)[2, :]', Dojo.vector(qp)) elseif jacobian == :child FD = ForwardDiff.jacobian(q -> Dojo.contact_tangent(collision, xp, qp, xc, Quaternion(q...))[2, :]', Dojo.vector(qc)) end @test norm(FD - Q, Inf) < 1.0e-6 # gradients gradient = jacobian D = Dojo.∂distance∂x(gradient, collision, xp, qp, xc, qc) if gradient == :parent FD = FiniteDiff.finite_difference_jacobian(x -> Dojo.distance(collision, x, qp, xc, qc), xp) elseif gradient == :child FD = FiniteDiff.finite_difference_jacobian(x -> Dojo.distance(collision, xp, qp, x, qc), xc) end @test norm(D - FD, Inf) < 1.0e-5 Q = Dojo.∂distance∂q(gradient, collision, xp, qp, xc, qc) if gradient == :parent FD = FiniteDiff.finite_difference_jacobian(q -> Dojo.distance(collision, xp, Quaternion(q...), xc, qc), Dojo.vector(qp)) elseif gradient == :child FD = FiniteDiff.finite_difference_jacobian(q -> Dojo.distance(collision, xp, qp, xc, Quaternion(q...)), Dojo.vector(qc)) end @test norm(Q - FD, Inf) < 1.0e-5 for relative in [:parent, :child] X = Dojo.∂contact_point∂x(relative, jacobian, collision, xp, qp, xc, qc) if jacobian == :parent FD = ForwardDiff.jacobian(x -> Dojo.contact_point(relative, collision, x, qp, xc, qc), xp) elseif jacobian == :child FD = ForwardDiff.jacobian(x -> Dojo.contact_point(relative, collision, xp, qp, x, qc), xc) end @test norm(X - FD, Inf) < 1.0e-6 Q = Dojo.∂contact_point∂q(relative, jacobian, collision, xp, qp, xc, qc) if jacobian == :parent FD = ForwardDiff.jacobian(q -> Dojo.contact_point(relative, collision, xp, Quaternion(q...), xc, qc), Dojo.vector(qp)) elseif jacobian == :child FD = ForwardDiff.jacobian(q -> Dojo.contact_point(relative, collision, xp, qp, xc, Quaternion(q...)), Dojo.vector(qc)) end @test norm(Q - FD, Inf) < 1.0e-6 end end end for friction_type in [:nonlinear, :linear, :impact] ## z drop mech = get_two_body(; friction_type=friction_type, gravity=-9.81) # initialize mech.bodies[1].state.x2 = [0.0, 0.0, 0.0] mech.bodies[2].state.x2 = [0.0, 0.0, 2.0] mech.bodies[1].state.v15 = [0.0, 0.0, 0.0] mech.bodies[2].state.v15 = [0.0, 0.0, 0.0] # initial Jacobians test_jacobians(mech) # initial distance d = Dojo.distance(mech.contacts[1].model.collision, mech.bodies[1].state.x2, mech.bodies[1].state.q2, mech.bodies[2].state.x2, mech.bodies[2].state.q2,) @test abs(d - 1.0) < 1.0e-6 # body 1 contact point cp = Dojo.contact_point(:parent, mech.contacts[1].model.collision, mech.bodies[1].state.x2, mech.bodies[1].state.q2, mech.bodies[2].state.x2, mech.bodies[2].state.q2,) @test norm(cp - [0.0; 0.0; 0.5], Inf) < 1.0e-6 # body 2 contact point cc = Dojo.contact_point(:child, mech.contacts[1].model.collision, mech.bodies[1].state.x2, mech.bodies[1].state.q2, mech.bodies[2].state.x2, mech.bodies[2].state.q2,) @test norm(cc - [0.0; 0.0; 1.5], Inf) < 1.0e-6 # contact normal cn = Dojo.contact_normal(mech.contacts[1].model.collision, mech.bodies[1].state.x2, mech.bodies[1].state.q2, mech.bodies[2].state.x2, mech.bodies[2].state.q2,) @test norm(cn - [0.0 0.0 -1.0], Inf) < 1.0e-6 # contact tangent ct = Dojo.contact_tangent(mech.contacts[1].model.collision, mech.bodies[1].state.x2, mech.bodies[1].state.q2, mech.bodies[2].state.x2, mech.bodies[2].state.q2,) @test norm(ct - [0.0 1.0 0.0; -1.0 0.0 0.0], Inf) < 1.0e-6 # graph am = Dojo.adjacency_matrix(mech.joints, mech.bodies, mech.contacts) @test norm(am - [0 1 0 0; 1 0 0 1; 0 0 0 1; 0 1 1 0], Inf) < 1.0e-6 # simulate storage = Dojo.simulate!(mech, 2.0, verbose=false, record=true) # Jacobians test_jacobians(mech) # test no interpentration @test norm(storage.x[2][end] - [0.0; 0.0; 1.0], Inf) < 1.0e-4 ## z velocity (no gravity) mech = get_two_body(; friction_type=friction_type, gravity=0.0) # initialize mech.bodies[1].state.x2 = [0.0, 0.0, 0.0] mech.bodies[2].state.x2 = [0.0, 0.0, 2.0] mech.bodies[1].state.v15 = [0.0, 0.0, 0.0] mech.bodies[2].state.v15 = [0.0, 0.0, -5.0] # initial Jacobians test_jacobians(mech) # simulate storage = simulate!(mech, 2.0, verbose=false, record=true) # Jacobians test_jacobians(mech) # test no interpentration @test storage.x[2][end][end] > 1.0 # z velocity (no gravity) mech = get_two_body(; friction_type=friction_type, gravity=0.0) # initialize mech.bodies[1].state.x2 = [0.0, 0.0, 0.0] mech.bodies[2].state.x2 = [0.0, 0.0, 2.0] mech.bodies[1].state.v15 = [0.0, 0.0, 0.0] mech.bodies[2].state.v15 = [0.0, 0.0, -5.0] # initial Jacobians test_jacobians(mech) # simulate storage = Dojo.simulate!(mech, 2.0, verbose=false, record=true) # Jacobians test_jacobians(mech) # test no interpentration @test storage.x[2][end][end] > 1.0 ## z velocity (no gravity, floating parent) mech = get_two_body(; friction_type=friction_type, joint_world_body1=:Floating, gravity=0.0) # initialize mech.bodies[1].state.x2 = [0.0, 0.0, 0.0] mech.bodies[2].state.x2 = [0.0, 0.0, 2.0] mech.bodies[1].state.v15 = [0.0, 0.0, 0.0] mech.bodies[2].state.v15 = [0.0, 0.0, -5.0] # initial Jacobians test_jacobians(mech) # simulate storage = Dojo.simulate!(mech, 2.0, verbose=false, record=true) # Jacobians test_jacobians(mech) # test no interpentration @test storage.x[2][end][end] - storage.x[1][end][end] > 1.0 @test storage.x[2][end][end] < 0.0 ## x velocity (fixed parent) mech = get_two_body(; friction_type=friction_type, gravity=0.0) # initialize mech.bodies[1].state.x2 = [0.0, 0.0, 0.0] mech.bodies[2].state.x2 = [2.0, 0.0, 0.0] mech.bodies[1].state.v15 = [0.0, 0.0, 0.0] mech.bodies[2].state.v15 = [-5.0, 0.0, 0.0] # initial Jacobians test_jacobians(mech) # initial distance d = Dojo.distance(mech.contacts[1].model.collision, mech.bodies[1].state.x2, mech.bodies[1].state.q2, mech.bodies[2].state.x2, mech.bodies[2].state.q2,) @test abs(d - 1.0) < 1.0e-6 # body 1 contact point cp = Dojo.contact_point(:parent, mech.contacts[1].model.collision, mech.bodies[1].state.x2, mech.bodies[1].state.q2, mech.bodies[2].state.x2, mech.bodies[2].state.q2,) @test norm(cp - [0.5; 0.0; 0.0], Inf) < 1.0e-6 # body 2 contact point cc = Dojo.contact_point(:child, mech.contacts[1].model.collision, mech.bodies[1].state.x2, mech.bodies[1].state.q2, mech.bodies[2].state.x2, mech.bodies[2].state.q2,) @test norm(cc - [1.5; 0.0; 0.0], Inf) < 1.0e-6 # contact normal cn = Dojo.contact_normal(mech.contacts[1].model.collision, mech.bodies[1].state.x2, mech.bodies[1].state.q2, mech.bodies[2].state.x2, mech.bodies[2].state.q2,) @test norm(cn - [-1.0 0.0 0.0], Inf) < 1.0e-6 # contact tangent ct = Dojo.contact_tangent(mech.contacts[1].model.collision, mech.bodies[1].state.x2, mech.bodies[1].state.q2, mech.bodies[2].state.x2, mech.bodies[2].state.q2,) @test norm(ct - [0.0 0.0 1.0; 0.0 -1.0 0.0], Inf) < 1.0e-6 # graph am = Dojo.adjacency_matrix(mech.joints, mech.bodies, mech.contacts) @test norm(am - [0 1 0 0; 1 0 0 1; 0 0 0 1; 0 1 1 0], Inf) < 1.0e-6 # simulate storage = Dojo.simulate!(mech, 2.0, verbose=false, record=true) # Jacobians test_jacobians(mech) # test no interpentration @test storage.x[2][end][1] > 1.0 ## x velocity (floating parent) mech = get_two_body(; friction_type=friction_type, joint_world_body1=:Floating, gravity=0.0) # initialize mech.bodies[1].state.x2 = [0.0, 0.0, 0.0] mech.bodies[2].state.x2 = [2.0, 0.0, 0.0] mech.bodies[1].state.v15 = [0.0, 0.0, 0.0] mech.bodies[2].state.v15 = [-5.0, 0.0, 0.0] # initial Jacobians test_jacobians(mech) # simulate storage = Dojo.simulate!(mech, 2.0, verbose=false, record=true) # Jacobians test_jacobians(mech) # test no interpentration @test storage.x[2][end][1] - storage.x[1][end][1] > 1.0 @test storage.x[1][end][1] < 0.0 ## y velocity (fixed parent) mech = get_two_body(; friction_type=friction_type, gravity=0.0) # initialize mech.bodies[1].state.x2 = [0.0, 0.0, 0.0] mech.bodies[2].state.x2 = [0.0, 2.0, 0.0] mech.bodies[1].state.v15 = [0.0, 0.0, 0.0] mech.bodies[2].state.v15 = [0.0, -5.0, 0.0] # initial Jacobians test_jacobians(mech) # initial distance d = Dojo.distance(mech.contacts[1].model.collision, mech.bodies[1].state.x2, mech.bodies[1].state.q2, mech.bodies[2].state.x2, mech.bodies[2].state.q2,) @test abs(d - 1.0) < 1.0e-6 # body 1 contact point cp = Dojo.contact_point(:parent, mech.contacts[1].model.collision, mech.bodies[1].state.x2, mech.bodies[1].state.q2, mech.bodies[2].state.x2, mech.bodies[2].state.q2,) @test norm(cp - [0.0; 0.5; 0.0], Inf) < 1.0e-6 # body 2 contact point cc = Dojo.contact_point(:child, mech.contacts[1].model.collision, mech.bodies[1].state.x2, mech.bodies[1].state.q2, mech.bodies[2].state.x2, mech.bodies[2].state.q2,) @test norm(cc - [0.0; 1.5; 0.0], Inf) < 1.0e-6 # contact normal cn = Dojo.contact_normal(mech.contacts[1].model.collision, mech.bodies[1].state.x2, mech.bodies[1].state.q2, mech.bodies[2].state.x2, mech.bodies[2].state.q2,) @test norm(cn - [0.0 -1.0 0.0], Inf) < 1.0e-6 # contact tangent ct = Dojo.contact_tangent(mech.contacts[1].model.collision, mech.bodies[1].state.x2, mech.bodies[1].state.q2, mech.bodies[2].state.x2, mech.bodies[2].state.q2,) @test norm(ct - [0.0 0.0 -1.0; -1.0 0.0 0.0], Inf) < 1.0e-6 # graph am = Dojo.adjacency_matrix(mech.joints, mech.bodies, mech.contacts) @test norm(am - [0 1 0 0; 1 0 0 1; 0 0 0 1; 0 1 1 0], Inf) < 1.0e-6 # simulate storage = Dojo.simulate!(mech, 2.0, verbose=false, record=true) # Jacobians test_jacobians(mech) # test no interpentration @test storage.x[2][end][2] > 1.0 ## y velocity (floating parent) mech = get_two_body(; friction_type=friction_type, joint_world_body1=:Floating, gravity=0.0) # initialize mech.bodies[1].state.x2 = [0.0, 0.0, 0.0] mech.bodies[2].state.x2 = [0.0, 2.0, 0.0] mech.bodies[1].state.v15 = [0.0, 0.0, 0.0] mech.bodies[2].state.v15 = [0.0, -5.0, 0.0] # initial Jacobians test_jacobians(mech) # simulate storage = Dojo.simulate!(mech, 2.0, verbose=false, record=true) # Jacobians test_jacobians(mech) # test no interpentration @test storage.x[2][end][2] - storage.x[1][end][2] > 1.0 @test storage.x[1][end][2] < 0.0 ## xyz velocity (fixed parent) mech = get_two_body(; friction_type=friction_type, gravity=0.0) # initialize mech.bodies[1].state.x2 = [0.0, 0.0, 0.0] mech.bodies[2].state.x2 = [2.0, 2.0, 2.0] mech.bodies[1].state.v15 = [0.0, 0.0, 0.0] mech.bodies[2].state.v15 = [-2.0, -2.0, -2.0] # initial Jacobians test_jacobians(mech) # initial distance d = Dojo.distance(mech.contacts[1].model.collision, mech.bodies[1].state.x2, mech.bodies[1].state.q2, mech.bodies[2].state.x2, mech.bodies[2].state.q2,) @test abs(d - 2.4641016) < 1.0e-4 # body 1 contact point cp = Dojo.contact_point(:parent, mech.contacts[1].model.collision, mech.bodies[1].state.x2, mech.bodies[1].state.q2, mech.bodies[2].state.x2, mech.bodies[2].state.q2,) @test norm(cp - [0.288675; 0.288675; 0.288675], Inf) < 1.0e-4 # body 2 contact point cc = Dojo.contact_point(:child, mech.contacts[1].model.collision, mech.bodies[1].state.x2, mech.bodies[1].state.q2, mech.bodies[2].state.x2, mech.bodies[2].state.q2,) @test norm(cc - [1.711324; 1.711324; 1.711324], Inf) < 1.0e-4 # contact normal cn = Dojo.contact_normal(mech.contacts[1].model.collision, mech.bodies[1].state.x2, mech.bodies[1].state.q2, mech.bodies[2].state.x2, mech.bodies[2].state.q2,) @test norm(cn - [-0.57735 -0.57735 -0.57735], Inf) < 1.0e-4 # contact tangent ct = Dojo.contact_tangent(mech.contacts[1].model.collision, mech.bodies[1].state.x2, mech.bodies[1].state.q2, mech.bodies[2].state.x2, mech.bodies[2].state.q2,) @test norm(ct - [0.0 0.57735 -0.57735; -0.66666 0.33333 0.33333], Inf) < 1.0e-4 # graph am = Dojo.adjacency_matrix(mech.joints, mech.bodies, mech.contacts) @test norm(am - [0 1 0 0; 1 0 0 1; 0 0 0 1; 0 1 1 0], Inf) < 1.0e-6 # simulate storage = Dojo.simulate!(mech, 2.0, verbose=false, record=true) # Jacobians test_jacobians(mech) # test no interpentration @test storage.x[2][end][1] > 0.5 @test storage.x[2][end][2] > 0.5 @test storage.x[2][end][3] > 0.5 # test reverse velocity direction @test norm(Dojo.normalize(storage.v[2][end]) + Dojo.normalize([-2.0, -2.0, -2.0]), Inf) < 1.0e-5 ## xyz velocity (floating parent) mech = get_two_body(; friction_type=friction_type, joint_world_body1=:Floating, gravity=0.0) # initialize mech.bodies[1].state.x2 = [0.0, 0.0, 0.0] mech.bodies[2].state.x2 = [2.0, 2.0, 2.0] mech.bodies[1].state.v15 = [0.0, 0.0, 0.0] mech.bodies[2].state.v15 = [-2.0, -2.0, -2.0] # initial Jacobians test_jacobians(mech) # simulate storage = Dojo.simulate!(mech, 2.0, verbose=false, record=true) # Jacobians test_jacobians(mech) @test norm(storage.x[2][end] - storage.x[1][end]) > 1.0 @test norm(Dojo.normalize(storage.v[2][end]) - Dojo.normalize([-2.0, -2.0, -2.0]), Inf) < 1.0e-5 @test norm(Dojo.normalize(storage.v[1][end]) - Dojo.normalize([-2.0, -2.0, -2.0]), Inf) < 1.0e-5 end end # Sphere-Capsule @testset "Collision: Sphere-capsule" begin function simulate_sphere_capsule(x1, x2) origin = Dojo.Origin{Float64}() pbody = Dojo.Capsule(0.5, 2.0, 1.0, orientation_offset=Dojo.Quaternion(sqrt(2.0) / 2.0, sqrt(2.0) / 2.0, 0.0, 0.0)) cbody = Dojo.Sphere(0.5, 1.0) joint = Dojo.JointConstraint(Dojo.Fixed(origin, pbody)) bodies = [pbody, cbody] joints = [joint] collision = Dojo.SphereCapsuleCollision{Float64,2,3,6}( szeros(3), SA[0.0; 1.0; 0.0], SA[0.0; -1.0; 0.0], 0.5, 0.5, ) friction_parameterization = SA{Float64}[ 1.0 0.0 0.0 1.0 ] body_body_contact = Dojo.NonlinearContact{Float64,8}(0.5, friction_parameterization, collision) contacts = [Dojo.ContactConstraint((body_body_contact, cbody.id, pbody.id), name=:body_body)] mech = Dojo.Mechanism(origin, bodies, joints, contacts, gravity=1.0 * -9.81, timestep=0.05) mech.bodies[1].state.x2 = x1 mech.bodies[2].state.x2 = x2 storage = Dojo.simulate!(mech, 1.0, verbose=false, record=true) return mech, storage end x2 = [[0.0, 0.0, 2.0], [0.2, 0.5, 2.0]] mech, storage = simulate_sphere_capsule([0.0, 0.0, 0.0], x2[1]) d = Dojo.distance(mech.contacts[1].model.collision, storage.x[2][end], storage.q[2][end], storage.x[1][end], storage.q[1][end],) @test d > 0.0 cp = Dojo.contact_point(:parent, mech.contacts[1].model.collision, mech.bodies[2].state.x2, mech.bodies[2].state.q2, mech.bodies[1].state.x2, mech.bodies[1].state.q2,) @test norm(cp - [0.0; 0.0; 0.5], Inf) < 1.0e-2 cc = Dojo.contact_point(:child, mech.contacts[1].model.collision, mech.bodies[2].state.x2, mech.bodies[2].state.q2, mech.bodies[1].state.x2, mech.bodies[1].state.q2, ) @test norm(cc - [0.0; 0.0; 0.5], Inf) < 1.0e-2 cn = Dojo.contact_normal(mech.contacts[1].model.collision, mech.bodies[2].state.x2, mech.bodies[2].state.q2, mech.bodies[1].state.x2, mech.bodies[1].state.q2, ) @test norm(cn - [0.0 0.0 1.0], Inf) < 1.0e-3 ct = Dojo.contact_tangent(mech.contacts[1].model.collision, mech.bodies[2].state.x2, mech.bodies[2].state.q2, mech.bodies[1].state.x2, mech.bodies[1].state.q2, ) @test norm(ct - [0.0 -1.0 0.0; -1.0 0.0 0.0], Inf) < 1.0e-2 mech, storage = simulate_sphere_capsule([0.0, 0.0, 0.0], x2[2]) d = Dojo.distance(mech.contacts[1].model.collision, storage.x[2][end], storage.q[2][end], storage.x[1][end], storage.q[1][end],) @test d > 0.0 end # Sphere-Box @testset "Collision: Sphere-box" begin function simulate_sphere_box(x1, x2, v2) origin = Dojo.Origin{Float64}() pbody = Dojo.Box(1.0, 1.0, 1.0, 1.0) cbody = Dojo.Sphere(0.5, 1.0) joint = Dojo.JointConstraint(Dojo.Fixed(origin, pbody)) bodies = [pbody, cbody] joints = [joint] collision = Dojo.SphereBoxCollision{Float64,2,3,6}( szeros(3), 1.0, 1.0, 1.0, 0.5, ) friction_parameterization = SA{Float64}[ 1.0 0.0 0.0 1.0 ] body_body_contact = Dojo.NonlinearContact{Float64,8}(0.5, friction_parameterization, collision) contacts = [Dojo.ContactConstraint((body_body_contact, cbody.id, pbody.id), name=:body_body)] mech = Dojo.Mechanism(origin, bodies, joints, contacts, gravity=1.0 * -9.81, timestep=0.05) mech.bodies[1].state.x2 = x1 mech.bodies[2].state.x2 = x2 mech.bodies[2].state.v15 = v2 storage = Dojo.simulate!(mech, 1.0, verbose=false, record=true) return mech, storage end x1 = [0.0, 0.0, 0.0] x2 = [ [0.0, 0.0, 2.0], [0.0, 1.0, 2.0], [1.0, 1.0, 2.0], [-1.0, 1.0, 2.0], [-0.5; 0.5; 2.0], [0.0, -1.0, 2.0], [0.0, -1.0, 2.0], [-1.0, -1.0, -2.0], [0.0, 0.0, -2.0], ] v2 = [ [0.0, 0.0, 0.0], [0.0; -1.0; -2.0], [-1.0; -1.0; -2.0], [1.0; -1.0; -2.0], [0.0; 0.0; 0.0], [0.0; 1.0; -2.0], [0.0; 1.0; -2.0], [5.0; 5.0; 10.0], [0.0; 0.0; 10.0], ] N = length(x2) for i = 1:N mech, storage = simulate_sphere_box(x1, x2[i], v2[i]) d = Dojo.distance(mech.contacts[1].model.collision, storage.x[2][end], storage.q[2][end], storage.x[1][end], storage.q[1][end],) @test d > 0.0 if i == 1 cp = Dojo.contact_point(:parent, mech.contacts[1].model.collision, mech.bodies[2].state.x2, mech.bodies[2].state.q2, mech.bodies[1].state.x2, mech.bodies[1].state.q2,) @test norm(cp - [0.0; 0.0; 0.5], Inf) < 1.0e-2 cc = Dojo.contact_point(:child, mech.contacts[1].model.collision, mech.bodies[2].state.x2, mech.bodies[2].state.q2, mech.bodies[1].state.x2, mech.bodies[1].state.q2, ) @test norm(cc - [0.0; 0.0; 0.5], Inf) < 1.0e-2 cn = Dojo.contact_normal(mech.contacts[1].model.collision, mech.bodies[2].state.x2, mech.bodies[2].state.q2, mech.bodies[1].state.x2, mech.bodies[1].state.q2, ) @test norm(cn - [0.0 0.0 1.0], Inf) < 1.0e-3 ct = Dojo.contact_tangent(mech.contacts[1].model.collision, mech.bodies[2].state.x2, mech.bodies[2].state.q2, mech.bodies[1].state.x2, mech.bodies[1].state.q2, ) @test norm(ct - [0.0 -1.0 0.0; -1.0 0.0 0.0], Inf) < 1.0e-2 end end end @testset "Collision: String" begin origin = Origin{Float64}() pbody = Sphere(0.5, 1.0) cbody = Sphere(0.5, 1.0) joint = JointConstraint(Fixed(origin, pbody)) bodies = [pbody, cbody] joints = [joint] collision = StringCollision{Float64,2,3,6}( szeros(3), szeros(3), 2.0) friction_parameterization = SA{Float64}[ 1.0 0.0 0.0 1.0 ] body_body_contact = NonlinearContact{Float64,8}(0.5, friction_parameterization, collision) contacts = [ContactConstraint((body_body_contact, pbody.id, cbody.id), name=:body_body)] mech = Mechanism(origin, bodies, joints, contacts; gravity=1.0 * -9.81, timestep=0.1) mech.bodies[1].state.x2 = [0.0, 0.0, 0.0] mech.bodies[2].state.x2 = [0.0, 0.0, 1.0] storage = simulate!(mech, 2.0, verbose=false, record=true) # vis = Visualizer() # render(vis) # visualize(mech, storage, # vis=vis) @test norm(mech.bodies[2].state.x2 - mech.bodies[1].state.x2) < 2.0 end
Dojo
https://github.com/dojo-sim/Dojo.jl.git
[ "MIT" ]
0.7.5
104b6a1a358da9b1348ab7cd66ad685ecaca13d4
code
4479
@testset "rotational damper jacobian" begin joint_types = [ :Fixed, :Prismatic, :Planar, :FixedOrientation, :Revolute, :Cylindrical, :PlanarAxis, :FreeRevolute, :Orbital, :PrismaticOrbital, :PlanarOrbital, :FreeOrbital, :Spherical, :CylindricalFree, :PlanarFree ] for joint_type in joint_types mech = DojoEnvironments.get_snake(; gravity=0.0, num_bodies=2, dampers=0.3, joint_type) DojoEnvironments.initialize_snake!(mech) function ctrl!(m,k) Dojo.set_input!(m, 0.01*ones(Dojo.minimal_dimension(m))) end storage = Dojo.simulate!(mech, 1.0, ctrl!) # Dojo.visualize(mech, storage, vis=vis) rot0 = mech.joints[2].rotational timestep0 = mech.timestep pbody0 = mech.bodies[1] cbody0 = mech.bodies[2] xa0, va0, qa0, ωa0 = Dojo.current_configuration_velocity(pbody0.state) xb0, vb0, qb0, ωb0 = Dojo.current_configuration_velocity(cbody0.state) # Configuration J0 = Dojo.damper_jacobian_configuration(:parent, :parent, rot0, pbody0, cbody0, timestep0) J1 = ForwardDiff.jacobian( xq -> timestep0 * Dojo.damper_force(:parent, rot0, Dojo.Quaternion(xq[4:7]...), ωa0, qb0, ωb0, timestep0; rotate=true, unitary=false), [xa0; Dojo.vector(qa0)]) * Dojo.cat(I(3), Dojo.LVᵀmat(qa0), dims=(1,2)) norm(J0 - J1, Inf) @test norm(J0 - J1, Inf) < 1.0e-8 J0 = Dojo.damper_jacobian_configuration(:parent, :child, rot0, pbody0, cbody0, timestep0) J1 = ForwardDiff.jacobian( xq -> timestep0 * Dojo.damper_force(:parent, rot0, qa0, ωa0, Dojo.Quaternion(xq[4:7]...), ωb0, timestep0; rotate=true, unitary=false), [xb0; Dojo.vector(qb0)]) * Dojo.cat(I(3), Dojo.LVᵀmat(qb0), dims=(1,2)) norm(J0 - J1, Inf) @test norm(J0 - J1, Inf) < 1.0e-8 J0 = Dojo.damper_jacobian_configuration(:child, :parent, rot0, pbody0, cbody0, timestep0) J1 = ForwardDiff.jacobian( xq -> timestep0 * Dojo.damper_force(:child, rot0, Dojo.Quaternion(xq[4:7]...), ωa0, qb0, ωb0, timestep0; rotate=true, unitary=false), [xa0; Dojo.vector(qa0)]) * Dojo.cat(I(3), Dojo.LVᵀmat(qa0), dims=(1,2)) norm(J0 - J1, Inf) @test norm(J0 - J1, Inf) < 1.0e-8 J0 = Dojo.damper_jacobian_configuration(:child, :child, rot0, pbody0, cbody0, timestep0) J1 = ForwardDiff.jacobian( xq -> timestep0 * Dojo.damper_force(:child, rot0, qa0, ωa0, Dojo.Quaternion(xq[4:7]...), ωb0, timestep0; rotate=true, unitary=false), [xb0; Dojo.vector(qb0)]) * Dojo.cat(I(3), Dojo.LVᵀmat(qb0), dims=(1,2)) norm(J0 - J1, Inf) @test norm(J0 - J1, Inf) < 1.0e-8 # Velocity J0 = Dojo.damper_jacobian_velocity(:parent, :parent, rot0, pbody0, cbody0, timestep0) J1 = ForwardDiff.jacobian( vω -> timestep0 * Dojo.damper_force(:parent, rot0, qa0, vω[Dojo.SUnitRange(4,6)], qb0, ωb0, timestep0; rotate=true, unitary=false), [va0; ωa0]) norm(J0 - J1, Inf) @test norm(J0 - J1, Inf) < 1.0e-8 J0 = Dojo.damper_jacobian_velocity(:parent, :child, rot0, pbody0, cbody0, timestep0) J1 = ForwardDiff.jacobian( vω -> timestep0 * Dojo.damper_force(:parent, rot0, qa0, ωa0, qb0, vω[Dojo.SUnitRange(4,6)], timestep0; rotate=true, unitary=false), [vb0; ωb0]) norm(J0 - J1, Inf) @test norm(J0 - J1, Inf) < 1.0e-8 J0 = Dojo.damper_jacobian_velocity(:child, :parent, rot0, pbody0, cbody0, timestep0) J1 = ForwardDiff.jacobian( vω -> timestep0 * Dojo.damper_force(:child, rot0, qa0, vω[Dojo.SUnitRange(4,6)], qb0, ωb0, timestep0; rotate=true, unitary=false), [va0; ωa0]) norm(J0 - J1, Inf) @test norm(J0 - J1, Inf) < 1.0e-8 J0 = Dojo.damper_jacobian_velocity(:child, :child, rot0, pbody0, cbody0, timestep0) J1 = ForwardDiff.jacobian( vω -> timestep0 * Dojo.damper_force(:child, rot0, qa0, ωa0, qb0, vω[Dojo.SUnitRange(4,6)], timestep0; rotate=true, unitary=false), [vb0; ωb0]) norm(J0 - J1, Inf) @test norm(J0 - J1, Inf) < 1.0e-8 end end
Dojo
https://github.com/dojo-sim/Dojo.jl.git
[ "MIT" ]
0.7.5
104b6a1a358da9b1348ab7cd66ad685ecaca13d4
code
6948
joint_types = [ :Fixed, :Prismatic, :Planar, :FixedOrientation, :Revolute, :Cylindrical, :PlanarAxis, :FreeRevolute, :Orbital, :PrismaticOrbital, :PlanarOrbital, :FreeOrbital, :Spherical, :CylindricalFree, :PlanarFree ] function test_get_set_data(mechanism::Mechanism) Nd = Dojo.data_dim(mechanism, attjac=false) data0 = rand(Nd) Dojo.set_data!(mechanism, data0) data1 = Dojo.get_data(mechanism) @test norm(data0 - data1) < 1.0e-8 end @testset "Get and set data" begin mech = DojoEnvironments.get_snake(; num_bodies=3, dampers=1.0, springs=1.0, contact_type=:nonlinear); test_get_set_data(mech) mech = DojoEnvironments.get_snake(; num_bodies=3, dampers=1.0, springs=1.0, contact_type=:linear); test_get_set_data(mech) mech = DojoEnvironments.get_snake(; num_bodies=3, dampers=1.0, springs=1.0, contact_type=:impact); test_get_set_data(mech) mech = DojoEnvironments.get_pendulum(; dampers=1.0, springs=10.0); test_get_set_data(mech) mech = DojoEnvironments.get_humanoid(; parse_springs=false, parse_dampers=false, springs=10.0, contact_feet=true); test_get_set_data(mech) mech = DojoEnvironments.get_humanoid(; parse_springs=false, parse_dampers=false, springs=10.0, contact_feet=false); test_get_set_data(mech) mech = DojoEnvironments.get_atlas(; parse_springs=false, parse_dampers=false, springs=10.0, dampers=10.0); test_get_set_data(mech) mech = DojoEnvironments.get_quadruped(; parse_springs=false, parse_dampers=false, dampers=1.0, springs=10.0); test_get_set_data(mech) end ################################################################################ # Analytical Jacobian ################################################################################ # Controller function ctrl!(mechanism, k) nu = Dojo.input_dimension(mechanism) if Dojo.input_dimension(mechanism.joints[1]) == 6 u = 0.2 * [szeros(6); sones(nu-6)] else u = 0.2 * sones(nu) end Dojo.set_input!(mechanism, u) return end function test_data_system(model::Symbol; ϵ=1.0e-6, tsim=0.1, ctrl=(m, k)->nothing, timestep=0.01, gravity=[0.0; 0.0; -9.81], verbose=false, T=Float64, kwargs...) # mechanism mechanism = DojoEnvironments.get_mechanism(model; timestep, gravity, kwargs...) Dojo.initialize!(mechanism, model) # simulate Dojo.simulate!(mechanism, tsim, ctrl!, record=false, verbose=false, opts=Dojo.SolverOptions(rtol=ϵ, btol=ϵ)) # Finite Difference Nd = Dojo.data_dim(mechanism, attjac=false) data0 = Dojo.get_data(mechanism) sol0 = Dojo.get_solution(mechanism) datajac0 = Dojo.finite_difference_data_jacobian(mechanism, data0, sol0) attjac0 = Dojo.data_attitude_jacobian(mechanism) datajac0 *= attjac0 # Analytical D = Dojo.create_data_matrix(mechanism.joints, mechanism.bodies, mechanism.contacts) Dojo.jacobian_data!(D, mechanism) nodes = [mechanism.joints; mechanism.bodies; mechanism.contacts] dimrow = length.(nodes) dimcol = Dojo.data_dim.(nodes) datajac1 = Dojo.full_matrix(D, false, dimrow, dimcol) # Test @testset "$(String(model))" begin @test norm(datajac0 - datajac1, Inf) < 1.0e-6 end return nothing end ################################################################################ # Without contact and joint limits ################################################################################ @testset "Data Jacobian without contact and limits" begin for (springs, dampers) in [(0.0, 0.0), (2.0, 0.3)] test_data_system(:sphere; contact=false) test_data_system(:block; contact=false) test_data_system(:block2d; contact=false) test_data_system(:slider; springs, dampers) test_data_system(:nslider; springs, dampers) test_data_system(:pendulum; springs, dampers) test_data_system(:cartpole; springs, dampers) test_data_system(:pendulum; springs, dampers) test_data_system(:hopper; parse_springs=false, parse_dampers=false, springs, dampers, contact_foot=false, contact_body=false) test_data_system(:humanoid; parse_springs=false, parse_dampers=false, springs, dampers, contact_feet=false) test_data_system(:atlas; parse_springs=false, parse_dampers=false, springs, dampers, contact_feet=false, contact_body=false) test_data_system(:halfcheetah; parse_springs=false, parse_dampers=false, contact_feet=false, contact_body=false, joint_limits=Dict()) test_data_system(:walker; parse_springs=false, parse_dampers=false, springs, dampers, contact_feet=false, contact_body=false, joint_limits=Dict()) test_data_system(:quadruped; parse_springs=false, parse_dampers=false, springs, dampers, contact_feet=false, contact_body=false, joint_limits=Dict()) for joint_type in joint_types test_data_system(:snake; num_bodies=5, springs, dampers, contact=false, joint_type) test_data_system(:twister; num_bodies=5, springs, dampers, contact=false, joint_type) end end end ################################################################################ # With contact and joint limits ################################################################################ @testset "Data Jacobian with contact and limtis" begin for (springs, dampers) in [(0.0, 0.0), (2.0, 0.3)] test_data_system(:sphere; contact=true) test_data_system(:block; contact=true) test_data_system(:block2d; contact=true) test_data_system(:slider; springs, dampers) test_data_system(:nslider; springs, dampers) test_data_system(:pendulum; springs, dampers) test_data_system(:cartpole; springs, dampers) test_data_system(:pendulum; springs, dampers) test_data_system(:hopper; parse_springs=false, parse_dampers=false, springs, dampers, contact_foot=true, contact_body=true) test_data_system(:humanoid; parse_springs=false, parse_dampers=false, springs, dampers, contact_feet=true) test_data_system(:atlas; parse_springs=false, parse_dampers=false, springs, dampers, contact_feet=true, contact_body=true) test_data_system(:halfcheetah; parse_springs=false, parse_dampers=false, contact_feet=true, contact_body=true) test_data_system(:walker; parse_springs=false, parse_dampers=false, springs, dampers, contact_feet=true, contact_body=true) test_data_system(:quadruped; parse_springs=false, parse_dampers=false, springs, dampers, contact_feet=true, contact_body=true) for joint_type in joint_types test_data_system(:snake; num_bodies=5, springs, dampers, contact=true, joint_type=joint_type) test_data_system(:twister; num_bodies=5, springs, dampers, contact=true, joint_type=joint_type) end end end
Dojo
https://github.com/dojo-sim/Dojo.jl.git
[ "MIT" ]
0.7.5
104b6a1a358da9b1348ab7cd66ad685ecaca13d4
code
19626
# Parameters ϵ0 = 1.0e-12 timestep0 = 1.0e-2 start0 = Int(floor(1 / timestep0)) + 1 joint_types = [ :Fixed, :Prismatic, :Planar, :FixedOrientation, :Revolute, :Cylindrical, :PlanarAxis, :FreeRevolute, :Orbital, :PrismaticOrbital, :PlanarOrbital, :FreeOrbital, :Spherical, :CylindricalFree, :PlanarFree ] # Controllers function controller!(mechanism, k; U=0.5, timestep=timestep0) N = Int(floor(1 / timestep)) for joint in mechanism.joints nu = input_dimension(joint) u = (nu <= 5 && k ∈ (1:N)) * U * sones(nu) set_input!(joint, u) end return end nocontrol!(mechanism, k) = controller!(mechanism, k, U=0.0) function humanoid_controller!(mechanism, k; U=0.05, timestep=timestep0) N = Int(floor(1 / timestep)) for joint in mechanism.joints nu = input_dimension(joint) u = (nu <= 5 && k ∈ (1:N)) * U * sones(nu) set_input!(joint, u) end return end function quadruped_controller!(mechanism, k; U=0.05, timestep=timestep0) N = Int(floor(1.0 / timestep)) for joint in mechanism.joints nu = input_dimension(joint) u = (nu <= 5 && k ∈ (1:N)) * U * sones(nu) set_input!(joint, u) end return end function snake_controller!(mechanism, k; U=0.05, timestep=timestep0) N = Int(floor(1.0 / timestep)) for joint in mechanism.joints nu = input_dimension(joint) u = (nu <= 5 && k ∈ (1:N)) * U * sones(nu) set_input!(joint, u) end return end function twister_controller!(mechanism, k; U=0.01, timestep=timestep0) N = Int(floor(1.0 / timestep)) for joint in mechanism.joints nu = input_dimension(joint) u = (nu <= 5 && k ∈ (1:N)) * U * sones(nu) set_input!(joint, u) end return end ################################################################################ # DICE ################################################################################ # single body # initial linear and angular velocity # no gravity # no spring and damper # no control ################################################################################ @testset "Dice" begin gravity0 = -10.0 mech = get_mechanism(:block; timestep=timestep0, gravity=gravity0, contact=false) v0 = [1,2,3.0] ω0 = [1,1,1.0] initialize!(mech, :block; velocity=v0, angular_velocity=ω0) storage = simulate!(mech, 5.0, nocontrol!; record=true, verbose=false, opts=SolverOptions(rtol=ϵ0, btol=ϵ0)) # visualize(mech, storage, vis=vis) ke0 = kinetic_energy(mech, storage)[start0:end] pe0 = potential_energy(mech, storage)[start0:end] me0 = mechanical_energy(mech, storage)[start0:end] # plot([(i-1) * timestep0 for i in 1:length(ke0)], ke0 .- ke0[1]) # plot([(i-1) * timestep0 for i in 1:length(pe0)], pe0 .- pe0[1]) # plot([(i-1) * timestep0 for i in 1:length(me0)], me0 .- me0[1]) # Test mechanical energy conservation # With spring the error is or the order of timestep, but there is no drift @test norm((me0 .- me0[1]) ./ mean(me0), Inf) < 1.0e-8 end ################################################################################ # SINGLE PENDULUM ################################################################################ # single body # initial angular velocity # gravity # no damper # no control ################################################################################ @testset "Pendulum" begin gravity0 = 0.0 springs0 = 1.0 dampers0 = 0.0 mech = get_mechanism(:pendulum; timestep=timestep0, gravity=gravity0, springs=springs0, dampers=dampers0) ϕ0 = 0.5π ω0 = 0.0 initialize!(mech, :pendulum, angle=ϕ0, angular_velocity=ω0) storage = simulate!(mech, 25.0, controller!, record=true, verbose=false, opts=SolverOptions(rtol=ϵ0, btol=ϵ0)) # visualize(mech, storage, vis=vis) ke0 = kinetic_energy(mech, storage)[start0:end] pe0 = potential_energy(mech, storage)[start0:end] me0 = mechanical_energy(mech, storage)[start0:end] # plot([(i-1) * timestep0 for i in 1:length(ke0)], ke0 .- ke0[1]) # plot([(i-1) * timestep0 for i in 1:length(pe0)], pe0 .- pe0[1]) # plot([(i-1) * timestep0 for i in 1:length(me0)], me0 .- me0[1]) # Test mechanical energy conservation # With spring the error is or the order of timestep, but there is no drift @test norm((me0 .- me0[1]) ./ mean(me0), Inf) < 1.0e-2 end ################################################################################ # SLIDER 1 ################################################################################ # single body # no initial linear velocity # no gravity # no damper # no control ################################################################################ @testset "Slider 1" begin gravity0 = 0.0 springs0 = 10.0 dampers0 = 0.0 mech = get_mechanism(:slider; timestep=timestep0, gravity=gravity0, springs=springs0, dampers=dampers0) z0 = 0.5 initialize!(mech, :slider; position=z0) # Analytical pbody = mech.bodies[1] zmax = z0 vmax = z0 * sqrt(springs0 / pbody.mass) pe_max = 0.5 * springs0 * zmax^2 ke_max = 0.5 * pbody.mass * vmax^2 storage = simulate!(mech, 5.0, nocontrol!; record=true, verbose=false, opts=SolverOptions(rtol=ϵ0, btol=ϵ0)) # visualize(mech, storage, vis=vis) ke0 = kinetic_energy(mech, storage)[start0:end] pe0 = potential_energy(mech, storage)[start0:end] me0 = mechanical_energy(mech, storage)[start0:end] # plot([(i-1) * timestep0 for i in 1:length(ke0)], ke0 .- ke0[1]) # plot([(i-1) * timestep0 for i in 1:length(pe0)], pe0 .- pe0[1]) # plot([(i-1) * timestep0 for i in 1:length(me0)], me0 .- me0[1]) # Test maximum amplitude and velocity @test norm(maximum([x[3] for x in storage.x[1]]) - zmax + 0.5) < 1.0e-4 @test norm(maximum([vl[3] for vl in storage.vl[1]]) - vmax) < 1.0e-4 # Test mechanical energy conservation # With spring the error is of the order of timestep, but there is no drift @test norm((me0 .- me0[1]) ./ mean(me0), Inf) < 1.0e-3 # @show norm((me0 .- me0[1]) ./ mean(me0), Inf) end ################################################################################ # SLIDER 2 ################################################################################ # single body # no initial linear velocity # gravity # no damper # no control ################################################################################ @testset "Slider 2" begin gravity0 = -9.81 springs0 = 0.0 dampers0 = 0.0 mech = get_mechanism(:slider; timestep=timestep0, gravity=gravity0, springs=springs0, dampers=dampers0) z0 = 0.5 initialize!(mech, :slider, position=z0) storage = simulate!(mech, 1.5, nocontrol!, record=true, verbose=false, opts=SolverOptions(rtol=ϵ0, btol=ϵ0)) # visualize(mech, storage, vis=vis) ke0 = kinetic_energy(mech, storage)[start0:end] pe0 = potential_energy(mech, storage)[start0:end] me0 = mechanical_energy(mech, storage)[start0:end] # plot([(i-1) * timestep0 for i in 1:length(ke0)], ke0 .- ke0[1]) # plot([(i-1) * timestep0 for i in 1:length(pe0)], pe0 .- pe0[1]) # plot([(i-1) * timestep0 for i in 1:length(me0)], me0 .- me0[1]) # Test mechanical energy conservation # For gravity the conservation is perfect @test norm((me0 .- me0[1]) ./ mean(me0), Inf) < 1.0e-6 end ################################################################################ # SLIDER 3 ################################################################################ # single body # no initial linear velocity # gravity # no damper # no control ################################################################################ @testset "Slider 3" begin gravity0 = -9.81 springs0 = 1.0 dampers0 = 0.0 mech = get_mechanism(:slider; timestep=timestep0, gravity=gravity0, springs=springs0, dampers=dampers0) z0 = 0.1 initialize!(mech, :slider; position=z0) storage = simulate!(mech, 10.0, nocontrol!; record=true, verbose=false, opts=SolverOptions(rtol=ϵ0, btol=ϵ0)) # visualize(mech, storage, vis=vis) ke0 = kinetic_energy(mech, storage)[start0:end] pe0 = potential_energy(mech, storage)[start0:end] me0 = mechanical_energy(mech, storage)[start0:end] # plot([(i-1) * timestep0 for i in 1:length(ke0)], ke0 .- ke0[start0]) # plot([(i-1) * timestep0 for i in 1:length(pe0)], pe0 .- pe0[start0]) # plot([(i-1) * timestep0 for i in 1:length(me0)], me0 .- me0[start0]) # Test mechanical energy conservation @test norm((me0 .- me0[1]) ./ mean(me0), Inf) < 1.0e-3 end ################################################################################ # HUMANOID ################################################################################ # multiple bodies # initial linear and angular velocity # no gravity # with spring and damper # with control ################################################################################ @testset "Humanoid" begin gravity0 = 0.0 springs0 = 1.0 dampers0 = 0.0 mech = get_mechanism(:humanoid; timestep=timestep0, gravity=gravity0, parse_springs=false, parse_dampers=false, springs=springs0, dampers=dampers0, contact_feet=false) initialize!(mech, :humanoid) bodies = mech.bodies for body in mech.bodies set_maximal_velocities!(body, ω=0.5 * rand(3)) # set_maximal_velocities!(body, v=1.0 * rand(3)) end for joint in mech.joints joint.rotational.spring_type = :linear end storage = simulate!(mech, 3.0, humanoid_controller!; record=true, verbose=false, opts=SolverOptions(rtol=ϵ0, btol=ϵ0)) # visualize(mech, storage, vis=vis) ke0 = kinetic_energy(mech, storage)[start0:end] pe0 = potential_energy(mech, storage)[start0:end] me0 = mechanical_energy(mech, storage)[start0:end] # plot([(i-1) * timestep0 for i in 1:length(ke0)], ke0 .- ke0[1]) # plot([(i-1) * timestep0 for i in 1:length(pe0)], pe0 .- pe0[1]) # plot([(i-1) * timestep0 for i in 1:length(me0)], me0 .- me0[1]) # Test mechanical energy conservation @test norm((me0 .- me0[1]) ./ mean(me0), Inf) < 2.0e-3 end ################################################################################ # ATLAS ################################################################################ # multiple bodies # initial linear and angular velocity # no gravity # with spring and damper # with control ################################################################################ @testset "Atlas" begin gravity0 = 0.0 springs0 = 1.0 dampers0 = 0.0 mech = get_mechanism(:atlas; timestep=timestep0, gravity=gravity0, parse_springs=false, parse_dampers=false, springs=springs0, contact_feet=false, contact_body=false) initialize!(mech, :atlas) bodies = mech.bodies set_maximal_velocities!.(bodies, ω=1.0 * rand(3)) storage = simulate!(mech, 5.0, humanoid_controller!; record=true, verbose=false, opts=SolverOptions(rtol=ϵ0, btol=ϵ0)) # visualize(mech, storage, vis=vis) ke0 = kinetic_energy(mech, storage)[start0:end] pe0 = potential_energy(mech, storage)[start0:end] me0 = mechanical_energy(mech, storage)[start0:end] # plot([(i-1) * timestep0 for i in 1:length(ke0)], ke0 .- ke0[1]) # plot([(i-1) * timestep0 for i in 1:length(pe0)], pe0 .- pe0[1]) # plot([(i-1) * timestep0 for i in 1:length(me0)], me0 .- me0[1]) # Test mechanical energy conservation @test norm((me0 .- me0[1]) ./ mean(me0), Inf) < 3.0e-3 end ################################################################################ # QUADRUPED ################################################################################ # multiple bodies # initial linear and angular velocity # no gravity # with spring and damper # with control ################################################################################ @testset "Quadruped" begin gravity0 = 0.0 springs0 = 1.0 dampers0 = 0.0 mech = get_mechanism(:quadruped; timestep=timestep0, gravity=gravity0, parse_springs=false, parse_dampers=false, springs=springs0, contact_feet=false, contact_body=false, joint_limits=Dict()) initialize!(mech, :quadruped) storage = simulate!(mech, 5.0; record=true, verbose=false, opts=SolverOptions(rtol=ϵ0, btol=ϵ0)) # visualize(mech, storage, vis=vis) ke0 = kinetic_energy(mech, storage)[start0:end] pe0 = potential_energy(mech, storage)[start0:end] me0 = mechanical_energy(mech, storage)[start0:end] # plot([(i-1) * timestep0 for i in 1:length(ke0)], ke0 .- ke0[1]) # plot([(i-1) * timestep0 for i in 1:length(pe0)], pe0 .- pe0[1]) # plot([(i-1) * timestep0 for i in 1:length(me0)], me0 .- me0[1]) # Test mechanical energy conservation @test norm((me0 .- me0[1]) ./ mean(me0), Inf) < 1.0e-2 end # TODO Removed due to change in mechanism in DojoEnvironments. Test could be adjusted # ################################################################################ # # 5-LINK SNAKE # ################################################################################ # # multiple bodies # # initial linear and angular velocity # # no gravity # # with spring and damper # # with control # ################################################################################ # @testset "Snake" begin # Nb0 = 5 # gravity0 = 0.0 # springs0 = 0.01 # dampers0 = 0.0 # mech = get_mechanism(:snake; # timestep=timestep0, # gravity=gravity0, # num_bodies=Nb0, # springs=springs0, # dampers=dampers0, # joint_type=:Revolute, # contact=false, # radius=0.05); # v0 = 10.0 * [1, 2, 3] * timestep0 # ω0 = 10.0 * [1, 2, 3] * timestep0 # q10 = Dojo.RotX(0.5*π) # initialize!(mech, :snake, # base_orientation=q10, # base_linear_velocity=v0, # base_angular_velocity=ω0) # storage = simulate!(mech, 3.0, snake_controller!; # record=true, verbose=false, # opts=SolverOptions(rtol=ϵ0, btol=ϵ0)) # # visualize(mech, storage, vis=vis) # ke0 = kinetic_energy(mech, storage)[start0:end] # pe0 = potential_energy(mech, storage)[start0:end] # me0 = mechanical_energy(mech, storage)[start0:end] # # plot([(i-1) * timestep0 for i in 1:length(ke0)], ke0 .- ke0[1]) # # plot([(i-1) * timestep0 for i in 1:length(pe0)], pe0 .- pe0[1]) # # plot([(i-1) * timestep0 for i in 1:length(me0)], me0 .- me0[1]) # # Test mechanical energy conservation # @test norm((me0 .- me0[1]) ./ mean(me0), Inf) < 1.0e-3 # for joint_type in joint_types # # @show joint_type # mech = get_mechanism(:snake; # timestep=timestep0, # gravity=gravity0, # num_bodies=Nb0, # springs=springs0, # dampers=dampers0, # joint_type=joint_type, # contact=false, # radius=0.05) # v0 = 10.0 * [1, 2, 3] * timestep0 # ω0 = 10.0 * [1, 2, 3] * timestep0 # q10 = Dojo.RotX(0.5*π) # initialize!(mech, :snake; # base_orientation=q10, # base_linear_velocity=v0, # base_angular_velocity=ω0) # storage = simulate!(mech, 3.0, snake_controller!; # record=true, verbose=false, # opts=SolverOptions(rtol=ϵ0, btol=ϵ0)) # # visualize(mech, storage, vis=vis) # ke0 = kinetic_energy(mech, storage)[start0:end] # pe0 = potential_energy(mech, storage)[start0:end] # me0 = mechanical_energy(mech, storage)[start0:end] # # plot([(i-1) * timestep0 for i in 1:length(ke0)], ke0 .- ke0[1]) # # plot([(i-1) * timestep0 for i in 1:length(pe0)], pe0 .- pe0[1]) # # plot([(i-1) * timestep0 for i in 1:length(me0)], me0 .- me0[1]) # # Test mechanical energy conservation # @test norm((me0 .- me0[1]) ./ mean(me0), Inf) < 1.0e-2 # norm((me0 .- me0[1]) ./ mean(me0), Inf) # end # end ################################################################################ # 5-lINK TWISTER ################################################################################ # multiple bodies # initial linear and angular velocity # no gravity # with spring and damper # with control ################################################################################ @testset "Twister" begin Nb0 = 5 gravity0 = 0.0 springs0 = 0.01 dampers0 = 0.0 mech = get_mechanism(:twister; timestep=timestep0, gravity=gravity0, num_bodies=Nb0, springs=springs0, dampers=dampers0, joint_type=:Revolute, contact=false, radius=0.05); v0 = 10.0 * [1, 2, 3] * timestep0 ω0 = 10.0 * [1, 2, 3] * timestep0 q10 = Dojo.RotX(0.5*π) initialize!(mech, :twister, base_orientation=q10, base_linear_velocity=v0, base_angular_velocity=ω0) storage = simulate!(mech, 3.0, twister_controller!; record=true, verbose=false, opts=SolverOptions(rtol=ϵ0, btol=ϵ0)) # visualize(mech, storage, vis=vis) ke0 = kinetic_energy(mech, storage)[start0:end] pe0 = potential_energy(mech, storage)[start0:end] me0 = mechanical_energy(mech, storage)[start0:end] # plot([(i-1) * timestep0 for i in 1:length(ke0)], ke0 .- ke0[1]) # plot([(i-1) * timestep0 for i in 1:length(pe0)], pe0 .- pe0[1]) # plot([(i-1) * timestep0 for i in 1:length(me0)], me0 .- me0[1]) # Test mechanical energy conservation @test norm((me0 .- me0[1]) ./ mean(me0), Inf) < 1.0e-3 for joint_type in joint_types mech = get_mechanism(:twister; timestep=timestep0, gravity=gravity0, num_bodies=Nb0, springs=springs0, dampers=dampers0, joint_type=joint_type, contact=false, radius=0.05) v0 = 10.0 * [1, 2, 3] * timestep0 ω0 = 10.0 * [1, 2, 3] * timestep0 q10 = Dojo.RotX(0.5*π) initialize!(mech, :twister; base_orientation=q10, base_linear_velocity=v0, base_angular_velocity=ω0) storage = simulate!(mech, 3.0, snake_controller!; record=true, verbose=false, opts=SolverOptions(rtol=ϵ0, btol=ϵ0)) # visualize(mech, storage, vis=vis) ke0 = kinetic_energy(mech, storage)[start0:end] pe0 = potential_energy(mech, storage)[start0:end] me0 = mechanical_energy(mech, storage)[start0:end] # plot([(i-1) * timestep0 for i in 1:length(ke0)], ke0 .- ke0[1]) # plot([(i-1) * timestep0 for i in 1:length(pe0)], pe0 .- pe0[1]) # plot([(i-1) * timestep0 for i in 1:length(me0)], me0 .- me0[1]) # Test mechanical energy conservation @test norm((me0 .- me0[1]) ./ mean(me0), Inf) < 1.0e-2 norm((me0 .- me0[1]) ./ mean(me0), Inf) end end
Dojo
https://github.com/dojo-sim/Dojo.jl.git
[ "MIT" ]
0.7.5
104b6a1a358da9b1348ab7cd66ad685ecaca13d4
code
11647
################################################################################ # Displacement Jacobian ################################################################################ @testset "Displacement Jacobian" begin @testset "Rotational" begin mech = DojoEnvironments.get_mechanism(:pendulum) joint0 = mech.joints[1] rot0 = joint0.rotational rot0.orientation_offset = rand(QuatRotation).q xa = rand(3) qa = rand(QuatRotation).q xb = rand(3) qb = rand(QuatRotation).q # displacement_jacobian_configuration X0, Q0 = Dojo.displacement_jacobian_configuration(:parent, rot0, xa, qa, xb, qb, attjac=true) J0 = [X0 Q0] attjac = cat(I(3),Dojo.LVᵀmat(qa), dims=(1,2)) J1 = ForwardDiff.jacobian( z -> Dojo.displacement(rot0, z[1:3], Quaternion(z[4:7]...), xb, qb), [xa; Dojo.vector(qa)] ) * attjac @test norm(J0 - J1, Inf) < 1.0e-8 # displacement_jacobian_configuration X0, Q0 = Dojo.displacement_jacobian_configuration(:child, rot0, xa, qa, xb, qb, attjac=true) J0 = [X0 Q0] attjac = cat(I(3),Dojo.LVᵀmat(qb), dims=(1,2)) J1 = ForwardDiff.jacobian( z -> Dojo.displacement(rot0, xa, qa, z[1:3], Quaternion(z[4:7]...)), [xb; Dojo.vector(qb)] ) * attjac @test norm(J0 - J1, Inf) < 1.0e-8 end @testset "Translational" begin mech = DojoEnvironments.get_mechanism(:slider) joint0 = mech.joints[1] tra0 = joint0.translational xa = rand(3) qa = rand(QuatRotation).q xb = rand(3) qb = rand(QuatRotation).q # displacement_jacobian_configuration X0, Q0 = Dojo.displacement_jacobian_configuration(:parent, tra0, xa, qa, xb, qb, attjac=true) J0 = [X0 Q0] attjac = cat(I(3),Dojo.LVᵀmat(qa), dims=(1,2)) J1 = ForwardDiff.jacobian( z -> Dojo.displacement(tra0, z[1:3], Quaternion(z[4:7]...), xb, qb), [xa; Dojo.vector(qa)] ) * attjac @test norm(J0 - J1, Inf) < 1.0e-8 # displacement_jacobian_configuration X0, Q0 = Dojo.displacement_jacobian_configuration(:child, tra0, xa, qa, xb, qb, attjac=true) J0 = [X0 Q0] attjac = cat(I(3),Dojo.LVᵀmat(qb), dims=(1,2)) J1 = ForwardDiff.jacobian( z -> Dojo.displacement(tra0, xa, qa, z[1:3], Quaternion(z[4:7]...)), [xb; Dojo.vector(qb)] ) * attjac @test norm(J0 - J1, Inf) < 1.0e-8 end end ################################################################################ # Impulse transform Jacobian ################################################################################ @testset "Impulse transform Jacobian: rotational" begin @testset "Rotational" begin mech = DojoEnvironments.get_mechanism(:pendulum) joint0 = mech.joints[1] rot0 = joint0.rotational rot0.orientation_offset = rand(QuatRotation).q xa = rand(3) qa = rand(QuatRotation).q xb = rand(3) qb = rand(QuatRotation).q p0 = rand(3) J0 = Dojo.impulse_transform_jacobian(:parent, :parent, rot0, xa, qa, xb, qb, p0) attjac = cat(I(3),Dojo.LVᵀmat(qa), dims=(1,2)) J1 = FiniteDiff.finite_difference_jacobian( z -> Dojo.impulse_transform(:parent, rot0, z[1:3], Quaternion(z[4:7]...), xb, qb) * p0, [xa; Dojo.vector(qa)] ) * attjac @test norm(J0 - J1, Inf) < 1.0e-6 J0 = Dojo.impulse_transform_jacobian(:parent, :child, rot0, xa, qa, xb, qb, p0) attjac = cat(I(3),Dojo.LVᵀmat(qb), dims=(1,2)) J1 = FiniteDiff.finite_difference_jacobian( z -> Dojo.impulse_transform(:parent, rot0, xa, qa, z[1:3], Quaternion(z[4:7]...)) * p0, [xb; Dojo.vector(qb)] ) * attjac @test norm(J0 - J1, Inf) < 1.0e-6 J0 = Dojo.impulse_transform_jacobian(:child, :parent, rot0, xa, qa, xb, qb, p0) attjac = cat(I(3),Dojo.LVᵀmat(qa), dims=(1,2)) J1 = FiniteDiff.finite_difference_jacobian( z -> Dojo.impulse_transform(:child, rot0, z[1:3], Quaternion(z[4:7]...), xb, qb) * p0, [xa; Dojo.vector(qa)] ) * attjac @test norm(J0 - J1, Inf) < 1.0e-6 J0 = Dojo.impulse_transform_jacobian(:child, :child, rot0, xa, qa, xb, qb, p0) attjac = cat(I(3),Dojo.LVᵀmat(qb), dims=(1,2)) J1 = FiniteDiff.finite_difference_jacobian( z -> Dojo.impulse_transform(:child, rot0, xa, qa, z[1:3], Quaternion(z[4:7]...)) * p0, [xb; Dojo.vector(qb)] ) * attjac @test norm(J0 - J1, Inf) < 1.0e-6 end @testset "Translational" begin mech = DojoEnvironments.get_mechanism(:slider) joint0 = mech.joints[1] tra0 = joint0.translational xa = rand(3) qa = rand(QuatRotation).q xb = rand(3) qb = rand(QuatRotation).q p0 = rand(3) J0 = Dojo.impulse_transform_jacobian(:parent, :parent, tra0, xa, qa, xb, qb, p0) attjac = cat(I(3),Dojo.LVᵀmat(qa), dims=(1,2)) J1 = FiniteDiff.finite_difference_jacobian( z -> Dojo.impulse_transform(:parent, tra0, z[1:3], Quaternion(z[4:7]...), xb, qb) * p0, [xa; Dojo.vector(qa)] ) * attjac @test norm(J0 - J1, Inf) < 1.0e-6 J0 = Dojo.impulse_transform_jacobian(:parent, :child, tra0, xa, qa, xb, qb, p0) attjac = cat(I(3), Dojo.LVᵀmat(qb), dims=(1,2)) J1 = FiniteDiff.finite_difference_jacobian( z -> Dojo.impulse_transform(:parent, tra0, xa, qa, z[1:3], Quaternion(z[4:7]...)) * p0, [xb; Dojo.vector(qb)] ) * attjac @test norm(J0 - J1, Inf) < 1.0e-6 J0 = Dojo.impulse_transform_jacobian(:child, :parent, tra0, xa, qa, xb, qb, p0) attjac = cat(I(3), Dojo.LVᵀmat(qa), dims=(1,2)) J1 = FiniteDiff.finite_difference_jacobian( z -> Dojo.impulse_transform(:child, tra0, z[1:3], Quaternion(z[4:7]...), xb, qb) * p0, [xa; Dojo.vector(qa)] ) * attjac @test norm(J0 - J1, Inf) < 1.0e-6 J0 = Dojo.impulse_transform_jacobian(:child, :child, tra0, xa, qa, xb, qb, p0) attjac = cat(I(3),Dojo.LVᵀmat(qb), dims=(1,2)) J1 = FiniteDiff.finite_difference_jacobian( z -> Dojo.impulse_transform(:child, tra0, xa, qa, z[1:3], Quaternion(z[4:7]...)) * p0, [xb; Dojo.vector(qb)] ) * attjac @test norm(J0 - J1, Inf) < 1.0e-6 end end ################################################################################ # Impulse map Jacobian ################################################################################ @testset "Impulse map" begin @testset "impulse map: rotational" begin mech = DojoEnvironments.get_mechanism(:pendulum) joint0 = mech.joints[1] rot0 = joint0.rotational rot0.orientation_offset = rand(QuatRotation).q xa = rand(3) qa = rand(QuatRotation).q xb = rand(3) qb = rand(QuatRotation).q λ = rand(2) η = rand(0) Dojo.impulse_map(:parent, rot0, xa, qa, xb, qb, η) Dojo.impulse_map(:child, rot0, xa, qa, xb, qb, η) m = 1.0 J = I(3) pbody = Body(m, J) cbody = Body(m, J) pbody.state.x2 = xa pbody.state.q2 = qa cbody.state.x2 = xb cbody.state.q2 = qb # impulse_map_parent_jacobian_parent J0 = Dojo.impulse_map_jacobian(:parent, :parent, rot0, pbody, cbody, λ) attjac = cat(I(3),Dojo.LVᵀmat(qa), dims=(1,2)) J1 = FiniteDiff.finite_difference_jacobian( z -> Dojo.impulse_map(:parent, rot0, z[1:3], Quaternion(z[4:7]...), xb, qb, 0) * λ, [xa; Dojo.vector(qa)] ) * attjac @test norm(J0 - J1, Inf) < 1.0e-6 # impulse_map_parent_jacobian_child J0 = Dojo.impulse_map_jacobian(:parent, :child, rot0, pbody, cbody, λ) attjac = cat(I(3), Dojo.LVᵀmat(qb), dims=(1,2)) J1 = FiniteDiff.finite_difference_jacobian( z -> Dojo.impulse_map(:parent, rot0, xa, qa, z[1:3], Quaternion(z[4:7]...), 0) * λ, [xb; Dojo.vector(qb)] ) * attjac @test norm(J0 - J1, Inf) < 1.0e-6 # impulse_map_child_jacobian_parent J0 = Dojo.impulse_map_jacobian(:child, :parent, rot0, pbody, cbody, λ) attjac = cat(I(3), Dojo.LVᵀmat(qa), dims=(1,2)) J1 = FiniteDiff.finite_difference_jacobian( z -> Dojo.impulse_map(:child, rot0, z[1:3], Quaternion(z[4:7]...), xb, qb, 0) * λ, [xa; Dojo.vector(qa)] ) * attjac @test norm(J0 - J1, Inf) < 1.0e-6 # impulse_map_child_jacobian_child J0 = Dojo.impulse_map_jacobian(:child, :child, rot0, pbody, cbody, λ) attjac = cat(I(3), Dojo.LVᵀmat(qb), dims=(1,2)) J1 = FiniteDiff.finite_difference_jacobian( z -> Dojo.impulse_map(:child, rot0, xa, qa, z[1:3], Quaternion(z[4:7]...), 0) * λ, [xb; Dojo.vector(qb)] ) * attjac @test norm(J0 - J1, Inf) < 1.0e-6 end @testset "Translational" begin mech = get_mechanism(:pendulum) joint0 = mech.joints[1] tra0 = joint0.translational xa = rand(3) qa = rand(QuatRotation).q xb = rand(3) qb = rand(QuatRotation).q λ = rand(3) η = rand(0) Dojo.impulse_map(:parent, tra0, xa, qa, xb, qb, η) Dojo.impulse_map(:child, tra0, xa, qa, xb, qb, η) m = 1.0 J = I(3) pbody = Body(m, J) cbody = Body(m, J) pbody.state.x2 = xa pbody.state.q2 = qa cbody.state.x2 = xb cbody.state.q2 = qb # impulse_map_parent_jacobian_parent J0 = Dojo.impulse_map_jacobian(:parent, :parent, tra0, pbody, cbody, λ) attjac = cat(I(3),Dojo.LVᵀmat(qa), dims=(1,2)) J1 = FiniteDiff.finite_difference_jacobian( z -> Dojo.impulse_map(:parent, tra0, z[1:3], Quaternion(z[4:7]...), xb, qb, 0) * λ, [xa; Dojo.vector(qa)] ) * attjac @test norm(J0 - J1, Inf) < 1.0e-6 # impulse_map_parent_jacobian_child J0 = Dojo.impulse_map_jacobian(:parent, :child, tra0, pbody, cbody, λ) attjac = cat(I(3), Dojo.LVᵀmat(qb), dims=(1,2)) J1 = FiniteDiff.finite_difference_jacobian( z -> Dojo.impulse_map(:parent, tra0, xa, qa, z[1:3], Quaternion(z[4:7]...), 0) * λ, [xb; Dojo.vector(qb)] ) * attjac @test norm(J0 - J1, Inf) < 1.0e-6 # impulse_map_child_jacobian_parent J0 = Dojo.impulse_map_jacobian(:child, :parent, tra0, pbody, cbody, λ) attjac = cat(I(3), Dojo.LVᵀmat(qa), dims=(1,2)) J1 = FiniteDiff.finite_difference_jacobian( z -> Dojo.impulse_map(:child, tra0, z[1:3], Quaternion(z[4:7]...), xb, qb, 0) * λ, [xa; Dojo.vector(qa)] ) * attjac @test norm(J0 - J1, Inf) < 1.0e-6 # impulse_map_child_jacobian_child J0 = Dojo.impulse_map_jacobian(:child, :child, tra0, pbody, cbody, λ) attjac = cat(I(3), Dojo.LVᵀmat(qb), dims=(1,2)) J1 = FiniteDiff.finite_difference_jacobian( z -> Dojo.impulse_map(:child, tra0, xa, qa, z[1:3], Quaternion(z[4:7]...), 0) * λ, [xb; Dojo.vector(qb)] ) * attjac @test norm(J0 - J1, Inf) < 1.0e-6 end end
Dojo
https://github.com/dojo-sim/Dojo.jl.git
[ "MIT" ]
0.7.5
104b6a1a358da9b1348ab7cd66ad685ecaca13d4
code
1982
@testset "ForwardDiff comparison" begin Random.seed!(100) x0 = srand(3) v0 = srand(3) q0 = rand(QuatRotation).q ω0 = srand(3) timestep0 = 0.01 x1 = Dojo.next_position(x0, v0, timestep0) q1 = Dojo.next_orientation(q0, ω0, timestep0) # ∇v FD∂i∂v = ForwardDiff.jacobian(v0 -> Dojo.next_position(x0, v0, timestep0), v0) @test norm(FD∂i∂v - Dojo.linear_integrator_jacobian_velocity(x0, v0, timestep0), Inf) < 1.0e-8 # ∇ω FD∂i∂ω = ForwardDiff.jacobian(ω0 -> Dojo.vector(Dojo.next_orientation(q0, ω0, timestep0)), ω0) @test norm(FD∂i∂ω - Dojo.rotational_integrator_jacobian_velocity(q0, ω0, timestep0), Inf) < 1.0e-8 # ∇x FD∂i∂x = ForwardDiff.jacobian(x0 -> Dojo.next_position(x0, v0, timestep0), x0) @test norm(FD∂i∂x - Dojo.linear_integrator_jacobian_position(x0, v0, timestep0), Inf) < 1.0e-8 # ∇q FD∂i∂q = ForwardDiff.jacobian(q0 -> Dojo.vector(Dojo.next_orientation(Quaternion(q0...), ω0, timestep0)), Dojo.vector(q0)) @test norm(FD∂i∂q - Dojo.rotational_integrator_jacobian_orientation(q0, ω0, timestep0, attjac=false), Inf) < 1.0e-8 # ∇vω vel0 = [v0; ω0] FDvel = ForwardDiff.jacobian(vel0 -> [Dojo.next_position(x0, SVector{3}(vel0[1:3]), timestep0); Dojo.vector(Dojo.next_orientation(q0, SVector{3}(vel0[4:6]), timestep0))], vel0) @test norm(FDvel - Dojo.integrator_jacobian_velocity(x0, v0, q0, ω0, timestep0), Inf) < 1.0e-8 # ∇xq con0 = [x0; Dojo.vector(q0)] FDcon = ForwardDiff.jacobian(con0 -> [Dojo.next_position(SVector{3}(con0[1:3]), v0, timestep0); Dojo.vector(Dojo.next_orientation(Quaternion(con0[4:7]...), ω0, timestep0))], con0) @test norm(FDcon - Dojo.integrator_jacobian_configuration(x0, v0, q0, ω0, timestep0, attjac=false), Inf) < 1.0e-8 @test norm(FDcon * cat(I(3), Dojo.LVᵀmat(q0), dims=(1,2)) - Dojo.integrator_jacobian_configuration(x0, v0, q0, ω0, timestep0, attjac=true), Inf) < 1.0e-8 end
Dojo
https://github.com/dojo-sim/Dojo.jl.git
[ "MIT" ]
0.7.5
104b6a1a358da9b1348ab7cd66ad685ecaca13d4
code
5626
function test_solmat(model; ϵ=1.0e-6, tsim=0.1, ctrl=(m, k)->nothing, timestep=0.01, gravity=[0.0; 0.0; -9.81], verbose=false, T=Float64, kwargs...) @testset "$(string(model))" begin # mechanism mechanism = get_mechanism(model; timestep, gravity, kwargs...) initialize!(mechanism, model) # simulate storage = simulate!(mechanism, tsim, ctrl, record=true, verbose=verbose, opts=SolverOptions(rtol=ϵ, btol=ϵ)) # Set data Nb = length(mechanism.bodies) data = Dojo.get_data(mechanism) Dojo.set_data!(mechanism, data) sol = Dojo.get_solution(mechanism) attjac = Dojo.attitude_jacobian(data, Nb) # IFT solmat = Dojo.full_matrix(mechanism.system) # finite diff fd_solmat = finite_difference_solution_matrix(mechanism, data, sol, δ=1.0e-5, verbose=verbose) @test norm(fd_solmat + solmat, Inf) < ϵ end return nothing end function finite_difference_solution_matrix(mechanism::Mechanism, data::AbstractVector, sol::AbstractVector; δ=1.0e-8, verbose=false) nsol = length(sol) jac = zeros(nsol, nsol) Dojo.set_data!(mechanism, data) Dojo.set_solution!(mechanism, sol) for i = 1:nsol verbose && println("$i / $nsol") solp = deepcopy(sol) solm = deepcopy(sol) solp[i] += δ solm[i] -= δ rp = Dojo.evaluate_residual!(deepcopy(mechanism), data, solp) rm = Dojo.evaluate_residual!(deepcopy(mechanism), data, solm) jac[:, i] = (rp - rm) / (2δ) end return jac end function control!(mechanism, k; u=0.1) for joint in mechanism.joints nu = Dojo.input_dimension(joint, ignore_floating_base=false) su = u * sones(nu) Dojo.set_input!(joint, su) end end #TODO: decrease ϵ tolerance once we replace finite-difference methods # Flying after 0.1 sec simulation @testset "Flying" begin tsim = 0.1 test_solmat(:atlas, tsim=tsim, ctrl=(m,k)->control!(m,k,u=0.1), ϵ=1.0e-7, parse_dampers=false) test_solmat(:atlas, tsim=tsim, ctrl=(m,k)->control!(m,k,u=0.1), ϵ=1.0e-7, parse_dampers=false) test_solmat(:atlas, tsim=tsim, ctrl=(m,k)->control!(m,k,u=0.1), ϵ=1.0e-7, parse_springs=false, parse_dampers=false, springs=1e3, dampers=5e2) test_solmat(:quadruped, tsim=tsim, ctrl=(m,k)->control!(m,k,u=0.1), ϵ=1.0e-7, parse_springs=false, parse_dampers=false, springs=1.0, dampers=0.2) test_solmat(:block, tsim=tsim, ctrl=(m,k)->control!(m,k,u=0.1), ϵ=1.0e-7) test_solmat(:snake, tsim=tsim, ctrl=(m,k)->control!(m,k,u=0.1), ϵ=1.0e-7, springs=1.0, dampers=0.2) test_solmat(:slider, tsim=tsim, ctrl=(m,k)->control!(m,k,u=0.1), ϵ=1.0e-7, springs=1.0, dampers=0.2) test_solmat(:pendulum, tsim=tsim, ctrl=(m,k)->control!(m,k,u=0.1), ϵ=1.0e-7, springs=1.0, dampers=0.2) test_solmat(:npendulum, tsim=tsim, ctrl=(m,k)->control!(m,k,u=0.1), ϵ=1.0e-7, springs=1.0, dampers=0.2) test_solmat(:nslider, tsim=tsim, ctrl=(m,k)->control!(m,k,u=0.1), ϵ=1.0e-7, springs=1.0, dampers=0.2) test_solmat(:twister, tsim=tsim, ctrl=(m,k)->control!(m,k,u=0.1), ϵ=1.0e-7, springs=1.0, dampers=0.2) test_solmat(:sphere, tsim=tsim, ctrl=(m,k)->control!(m,k,u=0.1), ϵ=1.0e-7, contact_type=:nonlinear) test_solmat(:sphere, tsim=tsim, ctrl=(m,k)->control!(m,k,u=0.1), ϵ=1.0e-7, contact_type=:linear) test_solmat(:sphere, tsim=tsim, ctrl=(m,k)->control!(m,k,u=0.1), ϵ=1.0e-7, contact_type=:impact) test_solmat(:ant, tsim=tsim, ctrl=(m,k)->control!(m,k,u=0.1), ϵ=1.0e-7) test_solmat(:halfcheetah,tsim=tsim, ctrl=(m,k)->control!(m,k,u=0.1), ϵ=1.0e-7) end # In contact with the ground after 0.4 sec simulation @testset "In contact" begin tsim = 0.4 test_solmat(:atlas, tsim=tsim, ctrl=(m,k)->control!(m,k,u=0.1), ϵ=1.0e-7) test_solmat(:atlas, tsim=tsim, ctrl=(m,k)->control!(m,k,u=0.1), ϵ=1.0e-7, parse_springs=false, parse_dampers=false, springs=1e3, dampers=5e2) test_solmat(:quadruped, tsim=tsim, ctrl=(m,k)->control!(m,k,u=0.1), ϵ=1.0e-7, parse_springs=false, parse_dampers=false, springs=1.0, dampers=0.2) test_solmat(:block, tsim=tsim, ctrl=(m,k)->control!(m,k,u=0.1), ϵ=1.0e-7) test_solmat(:snake, tsim=tsim, ctrl=(m,k)->control!(m,k,u=0.1), ϵ=1.0e-7, springs=1.0, dampers=0.2) test_solmat(:slider, tsim=tsim, ctrl=(m,k)->control!(m,k,u=0.1), ϵ=1.0e-7, springs=1.0, dampers=0.2) test_solmat(:pendulum, tsim=tsim, ctrl=(m,k)->control!(m,k,u=0.1), ϵ=1.0e-7, springs=1.0, dampers=0.2) test_solmat(:npendulum, tsim=tsim, ctrl=(m,k)->control!(m,k,u=0.1), ϵ=1.0e-7, springs=1.0, dampers=0.2) test_solmat(:nslider, tsim=tsim, ctrl=(m,k)->control!(m,k,u=0.1), ϵ=1.0e-7, springs=1.0, dampers=0.2) test_solmat(:twister, tsim=tsim, ctrl=(m,k)->control!(m,k,u=0.1), ϵ=1.0e-7, springs=1.0, dampers=0.2) test_solmat(:sphere, tsim=tsim, ctrl=(m,k)->control!(m,k,u=0.1), ϵ=1.0e-7) test_solmat(:sphere, tsim=tsim, ctrl=(m,k)->control!(m,k,u=0.1), ϵ=1.0e-7, contact_type=:nonlinear) test_solmat(:sphere, tsim=tsim, ctrl=(m,k)->control!(m,k,u=0.1), ϵ=1.0e-7, contact_type=:linear) test_solmat(:sphere, tsim=tsim, ctrl=(m,k)->control!(m,k,u=0.1), ϵ=1.0e-7, contact_type=:impact) test_solmat(:ant, tsim=tsim, ctrl=(m,k)->control!(m,k,u=0.1), ϵ=1.0e-7) test_solmat(:halfcheetah,tsim=tsim, ctrl=(m,k)->control!(m,k,u=0.1), ϵ=1.0e-7) end
Dojo
https://github.com/dojo-sim/Dojo.jl.git
[ "MIT" ]
0.7.5
104b6a1a358da9b1348ab7cd66ad685ecaca13d4
code
471
@testset "Pendulum" begin mech = get_mechanism(:pendulum; timestep=0.01, gravity=-9.81, springs=0.0, dampers=0.0, joint_limits=Dict([ (:joint, [0.25 * π, 1.0 * π]),]) ) initialize!(mech, :pendulum; angle=0.4 * π) storage = simulate!(mech, 1.0; record=true, opts=SolverOptions(btol=1.0e-5, rtol=1.0e-5)) @test norm(Dojo.get_minimal_state(mech)[1] - 0.25 * π) < 1.0e-3 end
Dojo
https://github.com/dojo-sim/Dojo.jl.git
[ "MIT" ]
0.7.5
104b6a1a358da9b1348ab7cd66ad685ecaca13d4
code
5436
@testset "Pendulum" begin # get pendulum mechanism and simulate timestep=0.1 mechanism = DojoEnvironments.get_mechanism(:pendulum; timestep, gravity=-10.0); DojoEnvironments.initialize!(mechanism, :pendulum; angle=0.25 * π) u1 = rand(Dojo.input_dimension(mechanism)) z1 = Dojo.get_maximal_state(mechanism) storage = Dojo.simulate!(mechanism, 1.0; record=true) @test norm(z1 - Dojo.get_maximal_state(storage, 1)) < 1.0e-6 zTs = Dojo.get_maximal_state(mechanism) @test norm(zTs - Dojo.get_maximal_state(storage, Dojo.length(storage))) < 1.0e-6 zT = Dojo.get_next_state(mechanism) DojoEnvironments.initialize!(mechanism, :pendulum; angle=0.25 * π) storage = Dojo.simulate!(mechanism, 1.0 + timestep; record=true) @test norm(zT - Dojo.get_maximal_state(storage, Dojo.length(storage))) < 1.0e-6 # maximal gradients Dojo.step!(mechanism, z1, u1) Fx1, Fu1 = Dojo.get_maximal_gradients(mechanism) Fx2, Fu2 = Dojo.get_maximal_gradients!(mechanism, z1, u1) @test norm(Fx1 - Fx2, Inf) < 1.0e-6 @test norm(Fu1 - Fu2, Inf) < 1.0e-6 timestep=0.1 mechanism = DojoEnvironments.get_mechanism(:halfcheetah; timestep, gravity=-10.0); # get body @test Dojo.get_body(mechanism, :origin).name == :base # get contact contact_name = mechanism.contacts[1].name @test Dojo.get_contact(mechanism, contact_name).name == contact_name # velocity indices @test Dojo.velocity_index(mechanism) == [4, 5, 6, 8, 10, 12, 14, 16, 18] # set state z = Dojo.get_maximal_state(mechanism) mechanism = DojoEnvironments.get_mechanism(:halfcheetah; timestep, gravity=-10.0); Dojo.set_maximal_state!(mechanism, zeros(Dojo.maximal_dimension(mechanism))) z2 = Dojo.get_maximal_state(mechanism) @test norm(z2) < 1.0e-8 Dojo.set_maximal_state!(mechanism, z) @test norm(z - Dojo.get_maximal_state(mechanism)) < 1.0e-8 # change atlas floating base mechanism = get_mechanism(:atlas; parse_dampers=false) j = get_joint(mechanism, :floating_base) base_origin = get_body(mechanism, j.child_id).name mechanism = set_floating_base(mechanism, :head) j = get_joint(mechanism, :floating_base) base_new = get_body(mechanism, j.child_id).name @test base_origin != base_new @test base_new == :head end @testset "Remove fixed joints" begin origin = Origin() box1 = Box(0.1,0.1,0.5,0.5;color=RGBA(0.8,0.8,0.8,0.5)) box2 = Box(0.1,0.1,0.5,0.5;color=RGBA(0.8,0.8,0.8,0.5)) box3 = Box(0.1,0.1,0.5,0.5;color=RGBA(1,1,0,0.5)) box4 = Box(0.1,0.1,0.5,0.5;color=RGBA(1,0,1,0.5)) joint1 = JointConstraint(Revolute(origin, box1, [1;0;0], child_vertex = [0;0;0.25])) joint2 = JointConstraint(Fixed(box1, box2; parent_vertex = [0;0;-0.25], child_vertex = [0;0;0.25], orientation_offset = Dojo.RotY(pi/2))) joint3 = JointConstraint(Revolute(origin, box3, [1;0;0], child_vertex = [0;0;0.25])) joint4 = JointConstraint(Fixed(box3, box4; parent_vertex = [0;0;-0.25], child_vertex = [0;0;0.25], orientation_offset = Dojo.RotY(pi/2))) mechanism = Mechanism(origin, [box1;box2;box3;box4], [joint1;joint2;joint3;joint4]) origin, bodies, joints = Dojo.reduce_fixed_joints(mechanism.origin,mechanism.bodies,mechanism.joints) box1 = Box(0.1,0.1,0.5,0.5;color=RGBA(0.8,0.8,0.8,0.5)) box2 = Box(0.1,0.1,0.5,0.5;color=RGBA(0.8,0.8,0.8,0.5)) joint1 = JointConstraint(Revolute(origin, box1, [1;0;0]; child_vertex = [0;0;0.25])) joint2 = JointConstraint(Fixed(box1, box2; parent_vertex = [0;0;-0.25], child_vertex = [0;0;0.25], orientation_offset = Dojo.RotY(pi/2))) mechanism = Mechanism(origin, [box1,box2,bodies[2]], [joint1,joint2,joints[2]]; gravity = -9.81, timestep = 0.01) Dojo.zero_coordinates!(mechanism) set_minimal_coordinates!(mechanism,joint1,[pi/2]) set_minimal_coordinates!(mechanism,joints[2],[pi/2]) storage = simulate!(mechanism, 5.0; record = true) @test abs(storage.q[3][end].v1 - storage.q[1][end].v1) < 1.0e-5 end @testset "Force and impulse input" begin timestep = 0.01 # Force input, default scaling origin0 = Origin() box0 = Box(1.0,1,1,1) joint0 = JointConstraint(Floating(origin0,box0)) mech0 = Mechanism(origin0, [box0], [joint0]; gravity = -9.81, timestep) controller0!(mechanism, k) = set_input!(mechanism, [0;0;9.81;0;0;0]) storage0 = simulate!(mech0, 10.0, controller0!; record = true) # Force input, default scaling explicitly set origin1 = Origin() box1 = Box(1.0,1,1,1) joint1 = JointConstraint(Floating(origin1,box1)) mech1 = Mechanism(origin1, [box1], [joint1]; gravity = -9.81, timestep, input_scaling = timestep) controller1!(mechanism, k) = set_input!(mechanism, [0;0;9.81;0;0;0]) storage1 = simulate!(mech1, 10.0, controller1!; record = true) # Impulse input, input scaled by timestep origin2 = Origin() box2 = Box(1.0,1,1,1) joint2 = JointConstraint(Floating(origin2,box2)) mech2 = Mechanism(origin2, [box2], [joint2]; gravity = -9.81, timestep, input_scaling = 1) controller2!(mechanism, k) = set_input!(mechanism, [0;0;9.81*timestep;0;0;0]) storage2 = simulate!(mech2, 10.0, controller2!; record = true) @test norm(storage0.x[1][end] - storage1.x[1][end]) < 1.0e-5 @test norm(storage1.x[1][end] - storage2.x[1][end]) < 1.0e-5 end #TODO: get and set methods
Dojo
https://github.com/dojo-sim/Dojo.jl.git