licenses
sequencelengths
1
3
version
stringclasses
677 values
tree_hash
stringlengths
40
40
path
stringclasses
1 value
type
stringclasses
2 values
size
stringlengths
2
8
text
stringlengths
25
67.1M
package_name
stringlengths
2
41
repo
stringlengths
33
86
[ "MIT" ]
1.1.0
e495a1eaee52a513e02fe6ca2c995a7d0ed671a7
code
4133
mutable struct Energy_density_measurement{Dim,TG} <: AbstractMeasurement filename::String _temporary_gaugefields::Vector{TG} temp_UμνTA::Matrix{TG} Dim::Int8 #factor::Float64 verbose_print::Union{Verbose_print,Nothing} printvalues::Bool function Energy_density_measurement( U::Vector{T}; filename = nothing, verbose_level = 2, printvalues = true, ) where {T} myrank = get_myrank(U) if printvalues verbose_print = Verbose_print(verbose_level, myid = myrank, filename = filename) else verbose_print = nothing end Dim = length(U) temp_UμνTA = Array{T,2}(undef, Dim, Dim) for μ = 1:Dim for ν = 1:Dim temp_UμνTA[ν, μ] = similar(U[1]) end end numg = 3 _temporary_gaugefields = Vector{T}(undef, numg) _temporary_gaugefields[1] = similar(U[1]) for i = 2:numg _temporary_gaugefields[i] = similar(U[1]) end return new{Dim,T}( filename, _temporary_gaugefields, temp_UμνTA, Dim, verbose_print, printvalues, ) end end function Energy_density_measurement(U, params, filename) where {T} return Energy_density_measurement( U; filename = filename, verbose_level = params.verbose_level, printvalues = params.printvalues, ) end function measure( m::M, itrj, U::Array{<:AbstractGaugefields{NC,Dim},1}; additional_string = "", ) where {M<:Energy_density_measurement,NC,Dim} temps = get_temporary_gaugefields(m) value = calculate_energy_density(U, m.temp_UμνTA, temps) measurestring = "" if m.printvalues st = "-----------------" measurestring *= st * "\n" println_verbose_level2(U[1], st) st = "$itrj $additional_string $value # energydensity" measurestring *= st * "\n" println_verbose_level2(m.verbose_print, st) st = "-----------------" measurestring *= st * "\n" println_verbose_level2(U[1], st) end return values, measurestring end # = = = calc energy density = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = function calculate_energy_density(U::Array{T,1}, Wmat, temps) where {T<:AbstractGaugefields} # Making a ( Ls × Lt) Wilson loop operator for potential calculations WL = 0.0 + 0.0im NV = U[1].NV NC = U[1].NC #Wmat = Array{T,2}(undef,4,4) # make_energy_density!(Wmat, U, temps) # make wilon loop operator and evaluate as a field, not traced. WL = make_energy_density_core(Wmat, U, NV) # tracing over color and average over spacetime and x,y,z. NDir = 4.0 * 3.0 / 2 # choice of 2 axis from 4. return real(WL) / NV / NDir / NC / 8 end function make_energy_density!( Wmat, U::Array{<:AbstractGaugefields{NC,Dim},1}, temps, ) where {NC,Dim} W_operator, numofloops = calc_loopset_μν_name("clover", Dim)#make_Wilson_loop(Lt,Ls) calc_large_wilson_loop!(Wmat, W_operator, U, temps) return end function make_energy_density_core( Wmat::Array{<:AbstractGaugefields{NC,Dim},2}, U::Array{T,1}, NV, ) where {T<:AbstractGaugefields,NC,Dim} @assert Dim == 4 W = 0.0 + 0.0im for μ = 1:Dim # all directions for ν = 1:Dim if μ == ν continue end W += tr(Wmat[μ, ν], Wmat[μ, ν]) / 4 end end return W end function calc_large_wilson_loop!( temp_Wmat::Array{<:AbstractGaugefields{NC,Dim},2}, W_operator, U::Array{T,1}, temps, ) where {T<:AbstractGaugefields,NC,Dim} W = temp_Wmat for μ = 1:Dim for ν = 1:Dim if μ == ν continue end #println(typeof(μ)," ",typeof(ν)) #exit() #loopset = Loops(U,W_operator[μ,ν]) evaluate_gaugelinks!(W[μ, ν], W_operator[μ, ν], U, temps) #W[μ,ν] = evaluate_loops(loopset,U) end end return end
LatticeQCD
https://github.com/akio-tomiya/LatticeQCD.jl.git
[ "MIT" ]
1.1.0
e495a1eaee52a513e02fe6ca2c995a7d0ed671a7
code
2332
mutable struct Plaquette_measurement{Dim,TG} <: AbstractMeasurement filename::Union{Nothing,String} _temporary_gaugefields::Vector{TG} Dim::Int8 factor::Float64 verbose_print::Union{Verbose_print,Nothing} printvalues::Bool function Plaquette_measurement( U::Vector{T}; filename = nothing, verbose_level = 2, printvalues = true, ) where {T} myrank = get_myrank(U) #= if U[1].mpi == false myrank = 0 else myrank = U[1].myrank end =# if printvalues verbose_print = Verbose_print(verbose_level, myid = myrank, filename = filename) #println(verbose_print) #error("v") else verbose_print = nothing end Dim = length(U) if Dim == 4 comb = 6 elseif Dim == 2 comb = 1 else error("Dim = $Dim is not supported in Plaquette_measurement") end factor = 1 / (comb * U[1].NV * U[1].NC) numg = 2 _temporary_gaugefields = Vector{T}(undef, numg) _temporary_gaugefields[1] = similar(U[1]) for i = 2:numg _temporary_gaugefields[i] = similar(U[1]) end return new{Dim,T}( filename, _temporary_gaugefields, Dim, factor, verbose_print, printvalues, ) end end function Plaquette_measurement(U::Vector{T}, params::Plaq_parameters, filename) where {T} return Plaquette_measurement( U, filename = filename, verbose_level = params.verbose_level, printvalues = params.printvalues, ) end function measure(m::M, itrj, U; additional_string = "") where {M<:Plaquette_measurement} temps = get_temporary_gaugefields(m) plaq = real(calculate_Plaquette(U, temps[1], temps[2]) * m.factor) measurestring = "" if m.printvalues #println("m.verbose_print ",m.verbose_print) #println_verbose_level2(U[1],"-----------------") measurestring = "$itrj $additional_string $plaq # plaq" println_verbose_level2(m.verbose_print, measurestring) #println_verbose_level2(U[1],"-----------------") end return plaq, measurestring end
LatticeQCD
https://github.com/akio-tomiya/LatticeQCD.jl.git
[ "MIT" ]
1.1.0
e495a1eaee52a513e02fe6ca2c995a7d0ed671a7
code
1896
mutable struct Polyakov_measurement{Dim,TG} <: AbstractMeasurement filename::Union{Nothing,String} _temporary_gaugefields::Vector{TG} Dim::Int8 #factor::Float64 verbose_print::Union{Verbose_print,Nothing} printvalues::Bool function Polyakov_measurement( U::Vector{T}; filename = nothing, verbose_level = 2, printvalues = true, ) where {T} myrank = get_myrank(U) #= if U[1].mpi == false myrank = 0 else myrank = U[1].myrank end =# if printvalues verbose_print = Verbose_print(verbose_level, myid = myrank, filename = filename) else verbose_print = nothing end Dim = length(U) numg = 2 _temporary_gaugefields = Vector{T}(undef, numg) _temporary_gaugefields[1] = similar(U[1]) for i = 2:numg _temporary_gaugefields[i] = similar(U[1]) end return new{Dim,T}(filename, _temporary_gaugefields, Dim, verbose_print, printvalues) end end function Polyakov_measurement(U::Vector{T}, params::Poly_parameters, filename) where {T} return Polyakov_measurement( U, filename = filename, verbose_level = params.verbose_level, printvalues = params.printvalues, ) end function measure(m::M, itrj, U; additional_string = "") where {M<:Polyakov_measurement} temps = get_temporary_gaugefields(m) poly = calculate_Polyakov_loop(U, temps[1], temps[2]) measurestring = "" if m.printvalues #println_verbose_level2(U[1],"-----------------") measurestring = "$itrj $additional_string $(real(poly)) $(imag(poly)) # poly" println_verbose_level2(m.verbose_print, measurestring) #println_verbose_level2(U[1],"-----------------") end return poly, measurestring end
LatticeQCD
https://github.com/akio-tomiya/LatticeQCD.jl.git
[ "MIT" ]
1.1.0
e495a1eaee52a513e02fe6ca2c995a7d0ed671a7
code
9877
mutable struct Topological_charge_measurement{Dim,TG} <: AbstractMeasurement filename::String _temporary_gaugefields::Vector{TG} temp_UμνTA::Matrix{TG} Dim::Int8 #factor::Float64 verbose_print::Union{Verbose_print,Nothing} printvalues::Bool TC_methods::Vector{String} function Topological_charge_measurement( U::Vector{T}; filename = nothing, verbose_level = 2, printvalues = true, TC_methods = ["plaquette"], ) where {T} myrank = get_myrank(U) if printvalues verbose_print = Verbose_print(verbose_level, myid = myrank, filename = filename) else verbose_print = nothing end Dim = length(U) temp_UμνTA = Array{T,2}(undef, Dim, Dim) for μ = 1:Dim for ν = 1:Dim temp_UμνTA[ν, μ] = similar(U[1]) end end numg = 3 _temporary_gaugefields = Vector{T}(undef, numg) _temporary_gaugefields[1] = similar(U[1]) for i = 2:numg _temporary_gaugefields[i] = similar(U[1]) end return new{Dim,T}( filename, _temporary_gaugefields, temp_UμνTA, Dim, verbose_print, printvalues, TC_methods, ) end end function Topological_charge_measurement( U::Vector{T}, params::TopologicalCharge_parameters, filename, ) where {T} return Topological_charge_measurement( U, filename = filename, verbose_level = params.verbose_level, printvalues = params.printvalues, TC_methods = params.kinds_of_topological_charge, #["plaquette"] ) end function measure( m::M, itrj, U::Array{<:AbstractGaugefields{NC,Dim},1}; additional_string = "", ) where {M<:Topological_charge_measurement,NC,Dim} temps = get_temporary_gaugefields(m) temp1 = temps[1] temp2 = temps[2] measurestring = "" nummethod = length(m.TC_methods) values = Float64[] printstring = "$itrj " * additional_string for i = 1:nummethod methodname = m.TC_methods[i] if methodname == "plaquette" Qplaq = calculate_topological_charge_plaq(U, m.temp_UμνTA, temps) push!(values, real(Qplaq)) elseif methodname == "clover" Qclover = calculate_topological_charge_clover(U, m.temp_UμνTA, temps) push!(values, real(Qclover)) Qimproved = calculate_topological_charge_improved(U, m.temp_UμνTA, Qclover, temps) push!(values, real(Qimproved)) else error("method $methodname is not supported in topological charge measurement") end #printstring *= "$(values[i]) " end for value in values printstring *= "$(value) " end printstring *= "# itrj " for i = 1:nummethod methodname = m.TC_methods[i] if methodname == "plaquette" printstring *= "Qplaq " elseif methodname == "clover" printstring *= "Qclover Qimproved " else error("method $methodname is not supported in topological charge measurement") end end if m.printvalues #println_verbose_level2(U[1],"-----------------") measurestring = printstring println_verbose_level2(m.verbose_print, printstring) #println_verbose_level2(U[1],"-----------------") end return values, measurestring end function calculate_topological_charge_plaq(U::Array{T,1}, temp_UμνTA, temps) where {T} UμνTA = temp_UμνTA numofloops = calc_UμνTA!(UμνTA, "plaq", U, temps) Q = calc_Q(UμνTA, numofloops, U) return Q end function calculate_topological_charge_clover(U::Array{T,1}, temp_UμνTA, temps) where {T} UμνTA = temp_UμνTA numofloops = calc_UμνTA!(UμνTA, "clover", U, temps) Q = calc_Q(UμνTA, numofloops, U) return Q end function calculate_topological_charge_improved( U::Array{T,1}, temp_UμνTA, Qclover, temps, ) where {T} UμνTA = temp_UμνTA #numofloops = calc_UμνTA!(UμνTA,"clover",U) #Qclover = calc_Q(UμνTA,numofloops,U) numofloops = calc_UμνTA!(UμνTA, "rect", U, temps) Qrect = 2 * calc_Q(UμνTA, numofloops, U) c1 = -1 / 12 c0 = 5 / 3 Q = c0 * Qclover + c1 * Qrect return Q end function calc_UμνTA!( temp_UμνTA, name::String, U::Array{<:AbstractGaugefields{NC,Dim},1}, temps, ) where {NC,Dim} loops_μν, numofloops = calc_loopset_μν_name(name, Dim) calc_UμνTA!(temp_UμνTA, loops_μν, U, temps) return numofloops end function calc_UμνTA!( temp_UμνTA, loops_μν, U::Array{<:AbstractGaugefields{NC,Dim},1}, temps, ) where {NC,Dim} UμνTA = temp_UμνTA for μ = 1:Dim for ν = 1:Dim if ν == μ continue end evaluate_gaugelinks!(temps[1], loops_μν[μ, ν], U, temps[2:3]) Traceless_antihermitian!(UμνTA[μ, ν], temps[1]) #loopset = Loops(U,loops_μν[μ,ν]) #UμνTA[μ,ν] = evaluate_loops(loopset,U) #UμνTA[μ,ν] = Traceless_antihermitian(UμνTA[μ,ν]) end end return end #= implementation of topological charge is based on https://arxiv.org/abs/1509.04259 =# function calc_Q(UμνTA, numofloops, U::Array{<:AbstractGaugefields{NC,Dim},1}) where {NC,Dim} Q = 0.0 if Dim == 4 ε(μ, ν, ρ, σ) = epsilon_tensor(μ, ν, ρ, σ) else error("Dimension $Dim is not supported") end for μ = 1:Dim for ν = 1:Dim if ν == μ continue end Uμν = UμνTA[μ, ν] for ρ = 1:Dim for σ = 1:Dim if ρ == σ continue end Uρσ = UμνTA[ρ, σ] s = tr(Uμν, Uρσ) Q += ε(μ, ν, ρ, σ) * s / numofloops^2 end end end end return -Q / (32 * (π^2)) end #topological charge function epsilon_tensor(mu::Int, nu::Int, rho::Int, sigma::Int) sign = 1 # (3) 1710.09474 extended epsilon tensor if mu < 0 sign *= -1 mu = -mu end if nu < 0 sign *= -1 nu = -nu end if rho < 0 sign *= -1 rh = -rho end if sigma < 0 sign *= -1 sigma = -sigma end epsilon = zeros(Int, 4, 4, 4, 4) epsilon[1, 2, 3, 4] = 1 epsilon[1, 2, 4, 3] = -1 epsilon[1, 3, 2, 4] = -1 epsilon[1, 3, 4, 2] = 1 epsilon[1, 4, 2, 3] = 1 epsilon[1, 4, 3, 2] = -1 epsilon[2, 1, 3, 4] = -1 epsilon[2, 1, 4, 3] = 1 epsilon[2, 3, 1, 4] = 1 epsilon[2, 3, 4, 1] = -1 epsilon[2, 4, 1, 3] = -1 epsilon[2, 4, 3, 1] = 1 epsilon[3, 1, 2, 4] = 1 epsilon[3, 1, 4, 2] = -1 epsilon[3, 2, 1, 4] = -1 epsilon[3, 2, 4, 1] = 1 epsilon[3, 4, 1, 2] = 1 epsilon[3, 4, 2, 1] = -1 epsilon[4, 1, 2, 3] = -1 epsilon[4, 1, 3, 2] = 1 epsilon[4, 2, 1, 3] = 1 epsilon[4, 2, 3, 1] = -1 epsilon[4, 3, 1, 2] = -1 epsilon[4, 3, 2, 1] = 1 return epsilon[mu, nu, rho, sigma] * sign end function calc_loopset_μν_name(name, Dim) loops_μν = Array{Vector{Wilsonline{Dim}},2}(undef, Dim, Dim) if name == "plaq" numofloops = 1 for μ = 1:Dim for ν = 1:Dim loops_μν[μ, ν] = Wilsonline{Dim}[] if ν == μ continue end plaq = make_plaq(μ, ν, Dim = Dim) push!(loops_μν[μ, ν], plaq) end end elseif name == "clover" numofloops = 4 for μ = 1:Dim for ν = 1:Dim loops_μν[μ, ν] = Wilsonline{Dim}[] if ν == μ continue end loops_μν[μ, ν] = make_cloverloops_topo(μ, ν, Dim = Dim) end end elseif name == "rect" numofloops = 8 for μ = 1:4 for ν = 1:4 if ν == μ continue end loops = Wilsonline{Dim}[] loop_righttop = Wilsonline([(μ, 2), (ν, 1), (μ, -2), (ν, -1)]) loop_lefttop = Wilsonline([(ν, 1), (μ, -2), (ν, -1), (μ, 2)]) loop_rightbottom = Wilsonline([(ν, -1), (μ, 2), (ν, 1), (μ, -2)]) loop_leftbottom = Wilsonline([(μ, -2), (ν, -1), (μ, 2), (ν, 1)]) push!(loops, loop_righttop) push!(loops, loop_lefttop) push!(loops, loop_rightbottom) push!(loops, loop_leftbottom) loop_righttop = Wilsonline([(μ, 1), (ν, 2), (μ, -1), (ν, -2)]) loop_lefttop = Wilsonline([(ν, 2), (μ, -1), (ν, -2), (μ, 1)]) loop_rightbottom = Wilsonline([(ν, -2), (μ, 1), (ν, 2), (μ, -1)]) loop_leftbottom = Wilsonline([(μ, -1), (ν, -2), (μ, 1), (ν, 2)]) push!(loops, loop_righttop) push!(loops, loop_lefttop) push!(loops, loop_rightbottom) push!(loops, loop_leftbottom) loops_μν[μ, ν] = loops end end else error("$name is not supported") end return loops_μν, numofloops end function make_cloverloops_topo(μ, ν; Dim = 4) loops = Wilsonline{Dim}[] loop_righttop = Wilsonline([(μ, 1), (ν, 1), (μ, -1), (ν, -1)]) loop_lefttop = Wilsonline([(ν, 1), (μ, -1), (ν, -1), (μ, 1)]) loop_rightbottom = Wilsonline([(ν, -1), (μ, 1), (ν, 1), (μ, -1)]) loop_leftbottom = Wilsonline([(μ, -1), (ν, -1), (μ, 1), (ν, 1)]) push!(loops, loop_righttop) push!(loops, loop_lefttop) push!(loops, loop_rightbottom) push!(loops, loop_leftbottom) return loops end
LatticeQCD
https://github.com/akio-tomiya/LatticeQCD.jl.git
[ "MIT" ]
1.1.0
e495a1eaee52a513e02fe6ca2c995a7d0ed671a7
code
13018
mutable struct Topological_charge_measurement{Dim,TG,S} <: AbstractMeasurement filename::String _temporary_gaugefields::Vector{TG} temp_UμνTA::Matrix{TG} Dim::Int8 #factor::Float64 verbose_print::Union{Verbose_print,Nothing} printvalues::Bool Usmr::Array{TG,1} smearing::S smearing_type::String numflow::Int64 function Topological_charge_measurement( U::Vector{T}; Nflowsteps = 1, eps_flow = 0.01, smearing_type = "gradient_flow", numflow = 10, filename = nothing, verbose_level = 2, printvalues = true, ) where {T} myrank = get_myrank(U) Usmr = deepcopy(U) if printvalues verbose_print = Verbose_print(verbose_level, myid = myrank, filename = filename) else verbose_print = nothing end Dim = length(U) temp_UμνTA = Array{T,2}(undef, Dim, Dim) for μ = 1:Dim for ν = 1:Dim temp_UμνTA[ν, μ] = similar(U[1]) end end if smearing_type == "gradient_flow" smearing = Gradientflow(U, Nflow = Nflowsteps, eps = eps_flow) #smearing = Gradientflow(U,Nflow = Nflowsteps,eps = eps_flow) S = typeof(smearing) else error("smearing_type = $smearing_type is not supported") end numg = 3 _temporary_gaugefields = Vector{T}(undef, numg) _temporary_gaugefields[1] = similar(U[1]) for i = 2:numg _temporary_gaugefields[i] = similar(U[1]) end return new{Dim,T,S}( filename, _temporary_gaugefields, temp_UμνTA, Dim, verbose_print, printvalues, Usmr, smearing, smearing_type, numflow, ) end end function measure( m::M, itrj, U::Array{<:AbstractGaugefields{NC,Dim},1}, ) where {M<:Topological_charge_measurement,NC,Dim} temps = get_temporary_gaugefields(m) temp1 = temps[1] temp2 = temps[2] eps_flow = m.smearing.eps #Nflowsteps = m.smearing.Nflow if m.printvalues println_verbose_level2(U[1], "-----------------") println_verbose_level2(U[1], "# epsilon for the Wilson flow is $(eps_flow)") end substitute_U!(m.Usmr, U) τ = 0.0 if Dim == 4 comb = 6 #4*3/2 elseif Dim == 3 comb = 3 elseif Dim == 2 comb = 1 else error("dimension $Dim is not supported") end factor = 1 / (comb * U[1].NV * NC) plaq = calculate_Plaquette(U, temp1, temp2) * factor Qplaq = calculate_topological_charge_plaq(m.Usmr, m.temp_UμνTA, temps) #println("Qplaq = ",Qplaq) Qclover = calculate_topological_charge_clover(m.Usmr, m.temp_UμνTA, temps) Qimproved = calculate_topological_charge_improved(m.Usmr, m.temp_UμνTA, Qclover, temps) #println("Qimproved = ",Qimproved) clov = calculate_energy_density(m.Usmr, m.temp_UμνTA, temps) if m.printvalues println_verbose_level2( U[1], "$itrj $τ $plaq $clov $(real(Qplaq)) $(real(Qclover)) $(real(Qimproved)) #flow itrj flowtime plaq E Qplaq Qclov Qimproved", ) #println(m.fp,"$itrj $τ $plaq $clov $(real(Qplaq)) $(real(Qclover)) $(real(Qimproved)) #flow itrj flowtime plaq E Qplaq Qclov Qimproved") flush(stdout) end if m.smearing_type == "gradient_flow" for iflow = 1:m.numflow#5000 # eps=0.01: t_flow = 50 flow!(m.Usmr, m.smearing) plaq = calculate_Plaquette(m.Usmr, temp1, temp2) * factor Qplaq = calculate_topological_charge_plaq(m.Usmr, m.temp_UμνTA, temps) Qclover = calculate_topological_charge_clover(m.Usmr, m.temp_UμνTA, temps) Qimproved = calculate_topological_charge_improved(m.Usmr, m.temp_UμνTA, Qclover, temps) clov = calculate_energy_density(m.Usmr, m.temp_UμνTA, temps) #@time Q = calc_topological_charge(Usmr) τ = iflow * eps_flow * m.smearing.Nflow if m.printvalues println_verbose_level2( m.verbose_print, "$itrj $(round(τ, digits=3)) $plaq $clov $(real(Qplaq)) $(real(Qclover)) $(real(Qimproved)) #flow itrj flowtime plaq E Qplaq Qclov Qimproved", ) #println(m.fp,"$itrj $(round(τ, digits=3)) $plaq $clov $(real(Qplaq)) $(real(Qclover)) $(real(Qimproved)) #flow itrj flowtime plaq E Qplaq Qclov Qimproved") #if iflow%10 == 0 flush(stdout) end end else error("$(m.smearig_type) is not suppoorted") end return Qclover end function calculate_topological_charge_plaq(U::Array{T,1}, temp_UμνTA, temps) where {T} UμνTA = temp_UμνTA numofloops = calc_UμνTA!(UμνTA, "plaq", U, temps) Q = calc_Q(UμνTA, numofloops, U) return Q end function calculate_topological_charge_clover(U::Array{T,1}, temp_UμνTA, temps) where {T} UμνTA = temp_UμνTA numofloops = calc_UμνTA!(UμνTA, "clover", U, temps) Q = calc_Q(UμνTA, numofloops, U) return Q end function calculate_topological_charge_improved( U::Array{T,1}, temp_UμνTA, Qclover, temps, ) where {T} UμνTA = temp_UμνTA #numofloops = calc_UμνTA!(UμνTA,"clover",U) #Qclover = calc_Q(UμνTA,numofloops,U) numofloops = calc_UμνTA!(UμνTA, "rect", U, temps) Qrect = 2 * calc_Q(UμνTA, numofloops, U) c1 = -1 / 12 c0 = 5 / 3 Q = c0 * Qclover + c1 * Qrect return Q end function calc_UμνTA!( temp_UμνTA, name::String, U::Array{<:AbstractGaugefields{NC,Dim},1}, temps, ) where {NC,Dim} loops_μν, numofloops = calc_loopset_μν_name(name, Dim) calc_UμνTA!(temp_UμνTA, loops_μν, U, temps) return numofloops end function calc_UμνTA!( temp_UμνTA, loops_μν, U::Array{<:AbstractGaugefields{NC,Dim},1}, temps, ) where {NC,Dim} UμνTA = temp_UμνTA for μ = 1:Dim for ν = 1:Dim if ν == μ continue end evaluate_gaugelinks!(temps[1], loops_μν[μ, ν], U, temps[2:3]) Traceless_antihermitian!(UμνTA[μ, ν], temps[1]) #loopset = Loops(U,loops_μν[μ,ν]) #UμνTA[μ,ν] = evaluate_loops(loopset,U) #UμνTA[μ,ν] = Traceless_antihermitian(UμνTA[μ,ν]) end end return end #= implementation of topological charge is based on https://arxiv.org/abs/1509.04259 =# function calc_Q(UμνTA, numofloops, U::Array{<:AbstractGaugefields{NC,Dim},1}) where {NC,Dim} Q = 0.0 if Dim == 4 ε(μ, ν, ρ, σ) = epsilon_tensor(μ, ν, ρ, σ) else error("Dimension $Dim is not supported") end for μ = 1:Dim for ν = 1:Dim if ν == μ continue end Uμν = UμνTA[μ, ν] for ρ = 1:Dim for σ = 1:Dim if ρ == σ continue end Uρσ = UμνTA[ρ, σ] s = tr(Uμν, Uρσ) Q += ε(μ, ν, ρ, σ) * s / numofloops^2 end end end end return -Q / (32 * (π^2)) end #topological charge function epsilon_tensor(mu::Int, nu::Int, rho::Int, sigma::Int) sign = 1 # (3) 1710.09474 extended epsilon tensor if mu < 0 sign *= -1 mu = -mu end if nu < 0 sign *= -1 nu = -nu end if rho < 0 sign *= -1 rh = -rho end if sigma < 0 sign *= -1 sigma = -sigma end epsilon = zeros(Int, 4, 4, 4, 4) epsilon[1, 2, 3, 4] = 1 epsilon[1, 2, 4, 3] = -1 epsilon[1, 3, 2, 4] = -1 epsilon[1, 3, 4, 2] = 1 epsilon[1, 4, 2, 3] = 1 epsilon[1, 4, 3, 2] = -1 epsilon[2, 1, 3, 4] = -1 epsilon[2, 1, 4, 3] = 1 epsilon[2, 3, 1, 4] = 1 epsilon[2, 3, 4, 1] = -1 epsilon[2, 4, 1, 3] = -1 epsilon[2, 4, 3, 1] = 1 epsilon[3, 1, 2, 4] = 1 epsilon[3, 1, 4, 2] = -1 epsilon[3, 2, 1, 4] = -1 epsilon[3, 2, 4, 1] = 1 epsilon[3, 4, 1, 2] = 1 epsilon[3, 4, 2, 1] = -1 epsilon[4, 1, 2, 3] = -1 epsilon[4, 1, 3, 2] = 1 epsilon[4, 2, 1, 3] = 1 epsilon[4, 2, 3, 1] = -1 epsilon[4, 3, 1, 2] = -1 epsilon[4, 3, 2, 1] = 1 return epsilon[mu, nu, rho, sigma] * sign end # = = = calc energy density = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = function calculate_energy_density(U::Array{T,1}, Wmat, temps) where {T<:AbstractGaugefields} # Making a ( Ls × Lt) Wilson loop operator for potential calculations WL = 0.0 + 0.0im NV = U[1].NV NC = U[1].NC #Wmat = Array{T,2}(undef,4,4) # make_energy_density!(Wmat, U, temps) # make wilon loop operator and evaluate as a field, not traced. WL = make_energy_density_core(Wmat, U, NV) # tracing over color and average over spacetime and x,y,z. NDir = 4.0 * 3.0 / 2 # choice of 2 axis from 4. return real(WL) / NV / NDir / NC / 8 end function make_energy_density!( Wmat, U::Array{<:AbstractGaugefields{NC,Dim},1}, temps, ) where {NC,Dim} W_operator, numofloops = calc_loopset_μν_name("clover", Dim)#make_Wilson_loop(Lt,Ls) calc_large_wilson_loop!(Wmat, W_operator, U, temps) return end function make_energy_density_core( Wmat::Array{<:AbstractGaugefields{NC,Dim},2}, U::Array{T,1}, NV, ) where {T<:AbstractGaugefields,NC,Dim} @assert Dim == 4 W = 0.0 + 0.0im for μ = 1:Dim # all directions for ν = 1:Dim if μ == ν continue end W += tr(Wmat[μ, ν], Wmat[μ, ν]) / 4 end end return W end function calc_loopset_μν_name(name, Dim) loops_μν = Array{Vector{Wilsonline{Dim}},2}(undef, Dim, Dim) if name == "plaq" numofloops = 1 for μ = 1:Dim for ν = 1:Dim loops_μν[μ, ν] = Wilsonline{Dim}[] if ν == μ continue end plaq = make_plaq(μ, ν, Dim = Dim) push!(loops_μν[μ, ν], plaq) end end elseif name == "clover" numofloops = 4 for μ = 1:Dim for ν = 1:Dim loops_μν[μ, ν] = Wilsonline{Dim}[] if ν == μ continue end loops_μν[μ, ν] = make_cloverloops(μ, ν, Dim = Dim) end end elseif name == "rect" numofloops = 8 for μ = 1:4 for ν = 1:4 if ν == μ continue end loops = Wilsonline{Dim}[] loop_righttop = Wilsonline([(μ, 2), (ν, 1), (μ, -2), (ν, -1)]) loop_lefttop = Wilsonline([(ν, 1), (μ, -2), (ν, -1), (μ, 2)]) loop_rightbottom = Wilsonline([(ν, -1), (μ, 2), (ν, 1), (μ, -2)]) loop_leftbottom = Wilsonline([(μ, -2), (ν, -1), (μ, 2), (ν, 1)]) push!(loops, loop_righttop) push!(loops, loop_lefttop) push!(loops, loop_rightbottom) push!(loops, loop_leftbottom) loop_righttop = Wilsonline([(μ, 1), (ν, 2), (μ, -1), (ν, -2)]) loop_lefttop = Wilsonline([(ν, 2), (μ, -1), (ν, -2), (μ, 1)]) loop_rightbottom = Wilsonline([(ν, -2), (μ, 1), (ν, 2), (μ, -1)]) loop_leftbottom = Wilsonline([(μ, -1), (ν, -2), (μ, 1), (ν, 2)]) push!(loops, loop_righttop) push!(loops, loop_lefttop) push!(loops, loop_rightbottom) push!(loops, loop_leftbottom) loops_μν[μ, ν] = loops end end else error("$name is not supported") end return loops_μν, numofloops end function make_cloverloops(μ, ν; Dim = 4) loops = Wilsonline{Dim}[] loop_righttop = Wilsonline([(μ, 1), (ν, 1), (μ, -1), (ν, -1)]) loop_lefttop = Wilsonline([(ν, 1), (μ, -1), (ν, -1), (μ, 1)]) loop_rightbottom = Wilsonline([(ν, -1), (μ, 1), (ν, 1), (μ, -1)]) loop_leftbottom = Wilsonline([(μ, -1), (ν, -1), (μ, 1), (ν, 1)]) push!(loops, loop_righttop) push!(loops, loop_lefttop) push!(loops, loop_rightbottom) push!(loops, loop_leftbottom) return loops end function calc_large_wilson_loop!( temp_Wmat::Array{<:AbstractGaugefields{NC,Dim},2}, W_operator, U::Array{T,1}, temps, ) where {T<:AbstractGaugefields,NC,Dim} W = temp_Wmat for μ = 1:Dim for ν = 1:Dim if μ == ν continue end #println(typeof(μ)," ",typeof(ν)) #exit() #loopset = Loops(U,W_operator[μ,ν]) evaluate_gaugelinks!(W[μ, ν], W_operator[μ, ν], U, temps) #W[μ,ν] = evaluate_loops(loopset,U) end end return end
LatticeQCD
https://github.com/akio-tomiya/LatticeQCD.jl.git
[ "MIT" ]
1.1.0
e495a1eaee52a513e02fe6ca2c995a7d0ed671a7
code
597
module MPImodules using MPI import ..Simpleprint: println_rank0 MPI.Init() const comm = MPI.COMM_WORLD const myrank = MPI.Comm_rank(comm) const nprocs = MPI.Comm_size(comm) struct MPI_lattice PEs::Vector{Int64} end const mpi_lattice = MPI_lattice([1, 1, 1, 1]) function get_myrank() return myrank end function get_nprocs() return nprocs end function println_rank0(jj...) if myrank == 0 println(jj...) end end function set_PEs(PEs) for i = 1:length(PEs) mpi_lattice.PEs[i] = PEs[i] end end function get_PEs() return mpi_lattice.PEs end end
LatticeQCD
https://github.com/akio-tomiya/LatticeQCD.jl.git
[ "MIT" ]
1.1.0
e495a1eaee52a513e02fe6ca2c995a7d0ed671a7
code
77
module Simpleprint function println_rank0(jj...) println(jj...) end end
LatticeQCD
https://github.com/akio-tomiya/LatticeQCD.jl.git
[ "MIT" ]
1.1.0
e495a1eaee52a513e02fe6ca2c995a7d0ed671a7
code
382
L = (4, 4, 4, 4) β = 6 NTRACE = 3 #gparam = Setup_Gauge_action(β) gparam = GaugeActionParam_standard(β, NTRACE) BoundaryCondition = [1, 1, 1, -1] Nwing = 1 initial = "cold" NC = 3 hop = 0.141139#Hopping parameter r = 1#Wilson term eps = 1e-19 Dirac_operator = "Wilson" MaxCGstep = 3000 fparam = FermiActionParam_Wilson(hop, r, eps, Dirac_operator, MaxCGstep)
LatticeQCD
https://github.com/akio-tomiya/LatticeQCD.jl.git
[ "MIT" ]
1.1.0
e495a1eaee52a513e02fe6ca2c995a7d0ed671a7
code
6546
module LQCD import ..Universe_module: Univ import ..Transform_oldinputfile: transform_to_toml import ..Parameters_TOML: construct_Params_from_TOML import ..AbstractUpdate_module: Updatemethod, update! import Gaugefields: Gradientflow, println_verbose_level1, get_myrank, flow!, save_binarydata, save_textdata, saveU using QCDMeasurements #import ..AbstractMeasurement_module:Measurement_methods, #calc_measurement_values,measure,Plaquette_measurement,get_temporary_gaugefields import QCDMeasurements: measure, Plaquette_measurement#, get_temporary_gaugefields import ..LatticeQCD: Measurement_methods, calc_measurement_values using Gaugefields using InteractiveUtils using Dates using Random import ..Simpleprint: println_rank0 function run_LQCD(filenamein::String; MPIparallel=false) plaq = run_LQCD_file(filenamein, MPIparallel=MPIparallel) return plaq end function run_LQCD_file(filenamein::String; MPIparallel=false) if MPIparallel == true println_rank0("test") end filename_head = splitext(filenamein)[1] ext = splitext(filenamein)[end] filename = filename_head * ".toml" if ext == ".jl" transform_to_toml(filenamein) println_rank0("input file $filenamein is transformed to $filename") elseif ext == ".toml" else @error "$filenamein is not supported. use a TOML format." end parameters = construct_Params_from_TOML(filename) Random.seed!(parameters.randomseed) univ = Univ(parameters) println_verbose_level1(univ, "# ", pwd()) println_verbose_level1(univ, "# ", Dates.now()) io = IOBuffer() InteractiveUtils.versioninfo(io) versioninfo = String(take!(io)) println_verbose_level1(univ, versioninfo) updatemethod = Updatemethod(parameters, univ) eps_flow = parameters.eps_flow numflow = parameters.numflow Nflow = parameters.Nflow dτ = Nflow * eps_flow gradientflow = Gradientflow(univ.U, Nflow=1, eps=eps_flow) measurements = Measurement_methods(univ.U, parameters.measuredir, parameters.measurement_methods) plaq_m = Plaquette_measurement(univ.U, printvalues=false) i_plaq = 0 for i = 1:measurements.num_measurements if isa(measurements.measurements[i], Plaquette_measurement) i_plaq = i plaq_m = measurements.measurements[i] end end #if i_plaq == 0 # plaq_m = Plaquette_measurement(univ.U, printvalues=false) #end measurements_for_flow = Measurement_methods(univ.U, parameters.measuredir, parameters.measurements_for_flow) calc_measurement_values(measurements, 0, univ.U) savedata = Savedata( parameters.saveU_format, parameters.saveU_dir, parameters.saveU_every, parameters.update_method, univ.U, ) value, runtime_all = @timed begin numaccepts = 0 for itrj = parameters.initialtrj:parameters.Nsteps println_verbose_level1(univ, "# itrj = $itrj") accepted, runtime = @timed update!(updatemethod, univ.U) println_verbose_level1(univ, "Update: Elapsed time $runtime [s]") if accepted numaccepts += 1 end save_gaugefield(savedata, univ.U, itrj) measurestrings = calc_measurement_values(measurements, itrj, univ.U) #println(measurestrings) #println("$(univ.verbose_print.fp)") for st in measurestrings println(univ.verbose_print.fp, st) end Usmr = deepcopy(univ.U) for istep = 1:numflow τ = istep * dτ flow!(Usmr, gradientflow) additional_string = "$itrj $istep $τ " for i = 1:measurements_for_flow.num_measurements interval = measurements_for_flow.intervals[i] if istep % interval == 0 measure( measurements_for_flow.measurements[i], Usmr, additional_string=additional_string, ) end end end println_verbose_level1( univ, "Acceptance $numaccepts/$itrj : $(round(numaccepts*100/itrj)) %", ) flush(univ.verbose_print.fp) end #println(stdout,univ.verbose_print.fp) #println("close file") close(univ.verbose_print.fp) for meas in measurements.measurements close(meas.verbose_print.fp) end #println(stdout,univ.verbose_print.fp) end println_verbose_level1(univ, "Total Elapsed time $(runtime_all) [s]") temps = QCDMeasurements.get_temporary_gaugefields(plaq_m) plaq = real(calculate_Plaquette(univ.U, temps[1], temps[2]) * plaq_m.factor) return plaq end mutable struct Savedata issaved::Bool saveU_format::Union{Nothing,String} saveU_dir::String saveU_every::Int64 itrjsavecount::Int64 function Savedata(saveU_format, saveU_dir, saveU_every, update_method, U) itrjsavecount = 0 if saveU_format != nothing && update_method != "Fileloading" itrj = 0 itrjstring = lpad(itrj, 8, "0") println_verbose_level1( U[1], "save gaugefields U every $(saveU_every) trajectory", ) #println("save gaugefields U every $(parameters.saveU_every) trajectory") issaved = true else issaved = false end return new(issaved, saveU_format, saveU_dir, saveU_every, itrjsavecount) end end function save_gaugefield(savedata::Savedata, U, itrj) if savedata.issaved == false return end if itrj % savedata.saveU_every == 0 savedata.itrjsavecount += 1 itrjstring = lpad(itrj, 8, "0") if savedata.saveU_format == "JLD" filename = savedata.saveU_dir * "/conf_$(itrjstring).jld2" saveU(filename, U) elseif savedata.saveU_format == "ILDG" filename = savedata.saveU_dir * "/conf_$(itrjstring).ildg" save_binarydata(U, filename) elseif savedata.saveU_format == "BridgeText" filename = savedata.saveU_dir * "/conf_$(itrjstring).txt" save_textdata(U, filename) else error("$(savedata.saveU_format) is not supported") end end end end
LatticeQCD
https://github.com/akio-tomiya/LatticeQCD.jl.git
[ "MIT" ]
1.1.0
e495a1eaee52a513e02fe6ca2c995a7d0ed671a7
code
21929
module Mainrun using Dates using InteractiveUtils import Gaugefields: Gradientflow, println_verbose_level1, get_myrank import ..Universe_module: Univ, get_gauge_action, is_quenched import ..AbstractMD_module: MD, runMD! import ..AbstractUpdate_module: Updatemethod, update! import ..AbstractMeasurement_module: Plaquette_measurement, measure, Polyakov_measurement, Topological_charge_measurement, Energy_density_measurement, Measurements_set, measure_withflow import ..LTK_universe: Universe, show_parameters, make_WdagWmatrix, calc_Action, set_β!, set_βs!, get_β, Wilsonloops_actions, calc_looptrvalues, calc_trainingdata, calc_looptrvalues_site import ..Actions: Setup_Gauge_action, Setup_Fermi_action, GaugeActionParam_autogenerator import ..Measurements: calc_plaquette, measure_correlator, Measurement, calc_polyakovloop, measure_chiral_cond, calc_topological_charge, measurements, Measurement_set import ..MD: md_initialize!, MD_parameters_standard, md!, metropolis_update!, construct_MD_parameters import ..System_parameters: Params import ..Print_config: write_config import ..Smearing: gradientflow!, calc_fatlink_APE, calc_stout import ..ILDG_format: ILDG, load_gaugefield, load_gaugefield!, save_binarydata import ..Bridge_format: load_BridgeText!, save_textdata import ..Heatbath: heatbath!, overrelaxation! import ..Wilsonloops: make_plaq, make_loopforactions, make_plaqloops, make_rectloops, make_polyakovloops import ..IOmodule: saveU, loadU, loadU! import ..SLMC: SLMC_data, show_effbeta, update_slmcdata! import ..Gaugefields: calc_GaugeAction import ..Actions: GaugeActionParam_standard, GaugeActionParam, GaugeActionParam_autogenerator import ..Verbose_print: println_verbose1, println_verbose2, Verbose_1 import ..System_parameters: system, actions, md, cg, wilson, staggered, measurement import ..Transform_oldinputfile: transform_to_toml import ..Parameters_TOML: construct_Params_from_TOML import ..LQCD: run_LQCD_file function run_LQCD(filenamein::String) plaq = run_LQCD_file(filenamein) return plaq end #= function run_LQCD() parameters = parameterloading() load_gaugefield() univ = Universe(parameters) run_LQCD!(univ,parameters) return end =# function run_LQCD(parameters::Params) univ = Universe(parameters) plaq = run_LQCD!(univ, parameters) return plaq end function run_LQCD_new!(univ::Univ, parameters::Params) println_verbose_level1(univ.U[1], "# " * pwd()) println_verbose_level1(univ.U[1], "# " * string(Dates.now())) if get_myrank(univ.U) == 0 InteractiveUtils.versioninfo() end #md = MD(parameters,univ) #update_Uold!(univ) #substitute_U!(univ.Uold,univ.U) gauge_action = get_gauge_action(univ) quench = is_quenched(univ) updatemethod = Updatemethod( univ.U, gauge_action, parameters.update_method, quench, parameters.Δτ, parameters.MDsteps, fermi_action = univ.fermi_action, SextonWeingargten = parameters.SextonWeingargten, loadU_dir = parameters.loadU_dir, loadU_format = parameters.loadU_format, isevenodd = parameters.isevenodd, β = parameters.β, ITERATION_MAX = parameters.ITERATION_MAX, numOR = parameters.numOR, useOR = parameters.useOR, ) #runMD!(univ.U,md) eps_flow = 0.01 numflow = 500 Nflow = 1 meas = Measurements_set(univ.U, parameters.measuredir, parameters.measurement_methods) gradientflow = Gradientflow(univ.U, Nflow = 1, eps = eps_flow) #= plaq_m = Plaquette_measurement(univ.U,filename="plaq.txt") poly_m = Polyakov_measurement(univ.U,filename="poly.txt") topo_m = Topological_charge_measurement(univ.U, filename="topo.txt", TC_methods = ["plaquette","clover"]) energy_m = Energy_density_measurement(univ.U, filename="energydensity.txt") =# #= plaq = measure(plaq_m,0,univ.U) poly = measure(poly_m,0,univ.U) topo = measure(topo_m,0,univ.U) energy = measure(energy_m,0,univ.U) =# dτ = Nflow * eps_flow measure(meas, 0, univ.U) measure_withflow(meas, 0, univ.U, gradientflow, numflow, dτ) for itrj = parameters.initialtrj:parameters.Nsteps println_verbose_level1(univ.U[1], "# itrj = $itrj") @time update!(updatemethod, univ.U) measure(meas, itrj, univ.U) measure_withflow(meas, itrj, univ.U, gradientflow, numflow, dτ) #= plaq = measure(plaq_m,itrj,univ.U) poly = measure(poly_m,itrj,univ.U) topo = measure(topo_m,itrj,univ.U) energy = measure(energy_m,itrj,univ.U) =# end error("error in run_LQCD_new!") end function run_LQCD!(univ::Universe, parameters::Params) verbose = univ.kind_of_verboselevel #println("# ",pwd()) #println("# ",Dates.now()) println_verbose1(verbose, "# ", pwd()) println_verbose1(verbose, "# ", Dates.now()) if univ.U[1].myrank == 0 InteractiveUtils.versioninfo() end #show_parameters(univ) mdparams = construct_MD_parameters(parameters) measset = Measurement_set( univ, parameters.measuredir, measurement_methods = parameters.measurement_methods, ) #if isdemo #run_demo!(parameters,univ,measset) #else plaq = run_core!(parameters, univ, mdparams, measset) #end end function checkfile(filename, list) for name in list end end function run_init_Fileloading!(parameters, univ, mdparams, meas, verbose) ildg = nothing println_verbose1(verbose, "load U from ", parameters.loadU_dir) if parameters.loadU_format == "JLD" datatype = "JLD" filename_load = filter(f -> contains(f, ".jld2"), readdir("./$(parameters.loadU_dir)")) #filename_load = filter(f -> contains(f,".jld"),readdir("./$(parameters.loadU_dir)")) elseif parameters.loadU_format == "ILDG" datatype = "ILDG" filename_load = filter(f -> contains(f, "ildg"), readdir("./$(parameters.loadU_dir)")) elseif parameters.loadU_format == "BridgeText" datatype = "BridgeText" filename_load = filter(f -> contains(f, "txt"), readdir("./$(parameters.loadU_dir)")) else error("loadU_format should be JLD or ILDG") end if parameters.loadU_fromfile data = readlines("./$(parameters.loadU_dir)/$(parameters.loadU_filename)") datafromlist = String[] for (i, datai) in enumerate(data) havesharp = findfirst('#', datai) #println("havesharp: $havesharp") if havesharp == 1 datau = "" elseif havesharp != nothing datau = datai[begin:havesharp-1] else datau = datai end datau = strip(datau) if datatype == "JLD" doescontains = contains(datau, ".jld2") #doescontains = contains(datau,".jld") elseif datatype == "ILDG" doescontains = contains(datau, ".ildg") elseif datatype == "BridgeText" doescontains = contains(datau, ".txt") end #println(doescontains) if doescontains if isfile("./$(parameters.loadU_dir)/$(datau)") push!(datafromlist, datau) else println( "Warning! $(datau) does not exist in $(parameters.loadU_dir)! We ignore this.", ) end #println(datau) end end filename_load = datafromlist #println(datafromlist) end #exit() #filename = filter(f -> isfile(f), readdir("./$(parameters.loadU_dir)")) #println(filename) numfiles = length(filename_load) println_verbose1(verbose, "Num of files = $numfiles") for file in filename_load println_verbose1(verbose, "$file") end #println("Num of files = $numfiles") Nsteps = numfiles - 1 filename_i = filename_load[1] if parameters.loadU_format == "JLD" loadU!(parameters.loadU_dir * "/" * filename_i, univ.U) elseif parameters.loadU_format == "ILDG" ildg = ILDG(parameters.loadU_dir * "/" * filename_i) i = 1 load_gaugefield!(univ.U, i, ildg, parameters.L, parameters.NC) elseif parameters.loadU_format == "BridgeText" load_BridgeText!( parameters.loadU_dir * "/" * filename_i, univ.U, parameters.L, parameters.NC, ) end return Nsteps, numfiles, filename_load, ildg end function print_trainingdata(trs, Sg, Sf) for i = 1:length(trs) print(real(trs[i]), "\t", imag(trs[i]), "\t") end println(Sg, "\t", Sf, "\t #trainingdata") end function print_trainingdata(fp, trs, Sg, Sf) for i = 1:length(trs) print(fp, real(trs[i]), "\t", imag(trs[i]), "\t") end println(fp, Sg, "\t", Sf, "\t #trainingdata") end function print_trainingdata_site(fp, trs, Sg, Sf) return numloops, NX, NY, NZ, NT = size(trs) println(fp, Sg, "\t", Sf, " $numloops $NX $NY $NZ $NT") for it = 1:NT for iz = 1:NZ for iy = 1:NY for ix = 1:NX print(fp, "$ix $iy $iz $it ") for i = 1:numloops print( fp, real(trs[i, ix, iy, iz, it]), "\t", imag(trs[i, ix, iy, iz, it]), "\t", ) end println(fp, "\t") end end end end #println(fp,Sg,"\t",Sf,"\t #trainingdata_site") end function run_core!(parameters, univ, mdparams, meas) # If an algorithm uses fermion integration (trlog(D+m)), # it is flagged if parameters.update_method == "IntegratedHMC" || parameters.update_method == "SLHMC" || parameters.update_method == "IntegratedHB" || parameters.update_method == "SLMC" isIntegratedFermion = true else isIntegratedFermion = false end verbose = univ.kind_of_verboselevel if parameters.integratedFermionAction loopactions = Wilsonloops_actions(univ) trainingfp = open(parameters.training_data_name, "w") trainingfp2 = open("trainset.txt", "w") couplinglist = loopactions.couplinglist print(trainingfp, "# ") for i = 1:loopactions.numloops print( trainingfp, "Re($(loopactions.couplinglist[i])) Im($(loopactions.couplinglist[i])) ", ) end println(trainingfp, "Sg Sf") #println(trainingfp,"#Re(plaq) Im(plaq) Re(rect) Im(rect) Re(polyx) Im(polyy) Re(polyz) Im(polyz) Re(polyt) Im(polyt) Sg Sf") end Nsteps = parameters.Nsteps if parameters.update_method == "Fileloading" Nsteps, numfiles, filename_load, ildg = run_init_Fileloading!(parameters, univ, mdparams, meas, verbose) elseif parameters.update_method == "SLHMC" || parameters.update_method == "SLMC" #slmc_data = SLMC_data(1,univ.NC) if typeof(univ.gparam) == GaugeActionParam_autogenerator slmc_data = SLMC_data(length(univ.gparam.couplinglist), univ.NC) else slmc_data = SLMC_data(1, univ.NC) end end numaccepts = 0 if (parameters.Nthermalization ≤ 0 && parameters.initialtrj == 1) || parameters.update_method == "Fileloading" plaq, poly = measurements(0, univ.U, univ, meas; verbose = univ.kind_of_verboselevel) # check consistency of preparation. end if parameters.integratedFermionAction trs, Sg, Sf = calc_trainingdata(loopactions, univ) print_trainingdata(trs, Sg, Sf) print_trainingdata(trainingfp, trs, Sg, Sf) trs_site = calc_looptrvalues_site(loopactions, univ) print_trainingdata_site(trainingfp2, trs_site, Sg, Sf) end if parameters.saveU_format != nothing && parameters.update_method != "Fileloading" itrj = 0 itrjstring = lpad(itrj, 8, "0") itrjsavecount = 0 println_verbose1( verbose, "save gaugefields U every $(parameters.saveU_every) trajectory", ) #println("save gaugefields U every $(parameters.saveU_every) trajectory") end if isIntegratedFermion Sfold = nothing end for itrj = parameters.initialtrj:Nsteps println("# itrj = $itrj") # Update for different updaters # HMC: Hybrid Monte-Carlo if parameters.update_method == "HMC" Hold = md_initialize!(univ) @time Hnew = md!(univ, mdparams) if parameters.integratedFermionAction trs, Sg, Sf = calc_trainingdata(loopactions, univ) print_trainingdata(trs, Sg, Sf) print_trainingdata(trainingfp, trs, Sg, Sf) trs_site = calc_looptrvalues_site(loopactions, univ) print_trainingdata_site(trainingfp2, trs_site, Sg, Sf) end accept = metropolis_update!(univ, Hold, Hnew) numaccepts += ifelse(accept, 1, 0) #println("Acceptance $numaccepts/$itrj : $(round(numaccepts*100/itrj)) %") println_verbose1( verbose, "Acceptance $numaccepts/$itrj : $(round(numaccepts*100/itrj)) %", ) # Heatbath elseif parameters.update_method == "Heatbath" @time heatbath!(univ) if parameters.useOR for ior = 1:parameters.numOR @time overrelaxation!(univ) end end if parameters.integratedFermionAction trs, Sg, Sf = calc_trainingdata(loopactions, univ) print_trainingdata(trs, Sg, Sf) print_trainingdata(trainingfp, trs, Sg, Sf) trs_site = calc_looptrvalues_site(loopactions, univ) print_trainingdata_site(trainingfp2, trs_site, Sg, Sf) end # Integrated HMC # HMC with S = -tr(log(D+m)), instead of the pseudo-fermins elseif parameters.update_method == "IntegratedHMC" Sgold = md_initialize!(univ) @time Sgnew, Sfnew, Sgold, Sfold = md!(univ, Sfold, Sgold, mdparams) Sold = Sgold + Sfold Snew = Sgnew + Sfnew if parameters.integratedFermionAction trs, Sg, Sf = calc_trainingdata(loopactions, univ) print_trainingdata(trs, Sg, Sf) print_trainingdata(trainingfp, trs, Sg, Sf) trs_site = calc_looptrvalues_site(loopactions, univ) print_trainingdata_site(trainingfp2, trs_site, Sg, Sf) end accept = metropolis_update!(univ, Sold, Snew) numaccepts += ifelse(accept, 1, 0) #println("Acceptance $numaccepts/$itrj : $(round(numaccepts*100/itrj)) %") println_verbose1( verbose, "Acceptance $numaccepts/$itrj : $(round(numaccepts*100/itrj)) %", ) Sfold = ifelse(accept, Sfnew, Sfold) # File loading # This actually loads files, and performs measurements elseif parameters.update_method == "Fileloading" filename_i = filename_load[itrj+1] if parameters.loadU_format == "JLD" loadU!(parameters.loadU_dir * "/" * filename_i, univ.U) elseif parameters.loadU_format == "ILDG" ildg = ILDG(parameters.loadU_dir * "/" * filename_i) i = 1 load_gaugefield!(univ.U, i, ildg, parameters.L, parameters.NC) elseif parameters.loadU_format == "BridgeText" load_BridgeText!( parameters.loadU_dir * "/" * filename_i, univ.U, parameters.L, parameters.NC, ) end if parameters.integratedFermionAction trs, Sg, Sf = calc_trainingdata(loopactions, univ) print_trainingdata(trs, Sg, Sf) print_trainingdata(trainingfp, trs, Sg, Sf) trs_site = calc_looptrvalues_site(loopactions, univ) print_trainingdata_site(trainingfp2, trs_site, Sg, Sf) end #loadU!(parameters.loadU_dir*"/"*filename_i,univ.U) # SLHMC: Self-learing Hybrid Monte-Carlo # This uses gluonic effective action for MD elseif parameters.update_method == "SLHMC" Sgold = md_initialize!(univ) @time Sgnew, Sfnew, Sgold, Sfold, plaq = md!(univ, Sfold, Sgold, mdparams) Sold = Sgold + Sfold Snew = Sgnew + Sfnew elseif parameters.update_method == "SLMC" Sgold = md_initialize!(univ) @time Sgnew, Sfnew, Sgeffnew, Sgold, Sfold, Sgeffold = md!(univ, Sfold, Sgold, mdparams) Sold = Sgold + Sfold - Sgeffold Snew = Sgnew + Sfnew - Sgeffnew elseif parameters.update_method == "IntegratedHB" Sgold = md_initialize!(univ) @time Sgnew, Sfnew, Sgeffnew, Sgold, Sfold, Sgeffold = md!(univ, Sfold, Sgold, mdparams) Sold = Sgold + Sfold - Sgeffold Snew = Sgnew + Sfnew - Sgeffnew if parameters.integratedFermionAction trs, Sg, Sf = calc_trainingdata(loopactions, univ) print_trainingdata(trs, Sg, Sf) print_trainingdata(trainingfp, trs, Sg, Sf) trs_site = calc_looptrvalues_site(loopactions, univ) print_trainingdata_site(trainingfp2, trs_site, Sg, Sf) end accept = metropolis_update!(univ, Sold, Snew) numaccepts += ifelse(accept, 1, 0) #println("Acceptance $numaccepts/$itrj : $(round(numaccepts*100/itrj)) %") println_verbose1( verbose, "Acceptance $numaccepts/$itrj : $(round(numaccepts*100/itrj)) %", ) Sfold = ifelse(accept, Sfnew, Sfold) end if parameters.update_method == "SLHMC" || parameters.update_method == "SLMC" S2, plaqetc = calc_GaugeAction(univ) plaq = plaqetc #S2,plaq = calc_Action(univ) if typeof(plaqetc) == Float64 plaqetc = [plaq] end #println(plaq) #exit() Sf = Sfnew outputdata = univ.gparam.β * plaqetc[1] * slmc_data.factor + Sf update_slmcdata!(slmc_data, plaqetc, outputdata) βeffs, Econst, IsSucs = show_effbeta(slmc_data, univ.gparam) println("βeffs = ", βeffs) println_verbose1(verbose, "#S = ", outputdata) println_verbose1( verbose, "#Estimated Seff = ", Econst + sum(βeffs[:] .* plaqetc[:]) * slmc_data.factor, ) if IsSucs && itrj ≥ parameters.firstlearn mdparams.βeff = βeffs[:] end if parameters.integratedFermionAction trs, Sg, Sf = calc_trainingdata(loopactions, univ) print_trainingdata(trs, Sg, Sf) print_trainingdata(trainingfp, trs, Sg, Sf) trs_site = calc_looptrvalues_site(loopactions, univ) print_trainingdata_site(trainingfp2, trs_site, Sg, Sf) end accept = metropolis_update!(univ, Sold, Snew) numaccepts += ifelse(accept, 1, 0) println_verbose1( verbose, "Acceptance $numaccepts/$itrj : $(round(numaccepts*100/itrj)) %", ) #println("Acceptance $numaccepts/$itrj : $(round(numaccepts*100/itrj)) %") Sfold = ifelse(accept, Sfnew, Sfold) end# update end if (itrj ≥ parameters.Nthermalization) || parameters.update_method == "Fileloading" plaq, poly = measurements(itrj, univ.U, univ, meas; verbose = univ.kind_of_verboselevel) end if itrj % parameters.saveU_every == 0 && parameters.saveU_format != nothing && parameters.update_method != "Fileloading" itrjsavecount += 1 itrjstring = lpad(itrj, 8, "0") #itrjstring = lpad(itrjsavecount,8,"0") if parameters.saveU_format == "JLD" #filename = parameters.saveU_dir*"/conf_$(itrjstring).jld" filename = parameters.saveU_dir * "/conf_$(itrjstring).jld2" saveU(filename, univ.U) elseif parameters.saveU_format == "ILDG" filename = parameters.saveU_dir * "/conf_$(itrjstring).ildg" save_binarydata(univ.U, filename) elseif parameters.saveU_format == "BridgeText" filename = parameters.saveU_dir * "/conf_$(itrjstring).txt" save_textdata(univ.U, filename) else error("$(parameters.saveU_format) is not supported") end end println_verbose1(verbose, "-------------------------------------") #println("-------------------------------------") flush(stdout) flush(verbose) if parameters.integratedFermionAction flush(trainingfp) flush(trainingfp2) end end if parameters.integratedFermionAction close(trainingfp) end return plaq end end
LatticeQCD
https://github.com/akio-tomiya/LatticeQCD.jl.git
[ "MIT" ]
1.1.0
e495a1eaee52a513e02fe6ca2c995a7d0ed671a7
code
32726
module Parameter_structs using REPL.TerminalMenus import ..Simpleprint: println_rank0 @enum SmearingMethod Nosmearing = 1 STOUT = 2 import QCDMeasurements: Fermion_parameters, Quench_parameters, Wilson_parameters, Staggered_parameters, Domainwall_parameters, initialize_fermion_parameters, Measurement_parameters, Plaq_parameters, Poly_parameters, Wilson_loop_parameters, Pion_parameters, ChiralCondensate_parameters, Energy_density_parameters, TopologicalCharge_parameters, initialize_measurement_parameters, prepare_measurement_from_dict, construct_Measurement_parameters_from_dict #= Base.@kwdef mutable struct System BoundaryCondition::Vector{Int64} = [1, 1, 1, -1] Nwing::Int64 = 1 verboselevel::Int64 = 1 randomseed::Int64 = 111 L::Vector{Int64} = [4, 4, 4, 4] NC::Int64 = 3 β::Float64 = 5.7 initialtrj::Int64 = 1 loadU_format::String = "nothing" update_method::String = "HMC" loadU_dir::String = "" loadU_fromfile::Bool = false loadU_filename::String = "" initial::String = "cold" Dirac_operator::String = "nothing" quench::Bool = true smearing_for_fermion::String = "nothing" stout_numlayers::Union{Nothing,Int64} = nothing stout_ρ::Union{Nothing,Array{Float64,1}} = nothing stout_loops::Union{Nothing,Array{String,1}} = nothing useOR::Bool = false #Over relaxation method for heatbath updates numOR::Int64 = 0 #number of Over relaxation method βeff::Float64 = 5.7 #effective beta for SLHMC firstlearn::Int64 = 1 Nthermalization::Int64 = 0 #number of updates without measuring #smearing::Smearing_parameters = NoSmearing_parameters() log_dir::String = "" logfile::String = "" saveU_format::String = "nothing" saveU_dir::String = "" saveU_every::Int64 = 1 isevenodd = true end =# const important_parameters = [ "L", "β", "update_method", "MDsteps", "Δτ", "Dirac_operator", "fermion_parameters", "methodname", "measurement_basedir", "hasgradientflow", "measurement_dir", "kinds_of_topological_charge", "measurements_for_flow", "gradientflow_measurements", ] function check_important_parameters(key) findornot = findfirst(x -> x == key, important_parameters) if findornot == nothing return false else return true end end struct2dict(x::T) where {T} = Dict{String,Any}(string(fn) => getfield(x, fn) for fn ∈ fieldnames(T)) function generate_printlist(x::Type) pnames = fieldnames(x) plist = String[] for i = 1:length(pnames) push!(plist, String(pnames[i])) end return plist end # Physical setting Base.@kwdef mutable struct Print_Physical_parameters L::Vector{Int64} = [4, 4, 4, 4] β::Float64 = 5.7 NC::Int64 = 3 Nthermalization::Int64 = 0 Nsteps::Int64 = 100 initial::String = "cold" initialtrj::Int64 = 1 update_method::String = "HMC" useOR::Bool = false numOR::Int64 = 0 Nwing::Int64 = 0 end # Physical setting(fermions) Base.@kwdef mutable struct Print_Fermions_parameters quench::Bool = true Dirac_operator::Union{Nothing,String} = nothing Clover_coefficient::Float64 = 1.5612 r::Float64 = 1 hop::Float64 = 0.141139 Nf::Int64 = 4 mass::Float64 = 0.5 Domainwall_M::Union{Nothing,Float64} = nothing Domainwall_m::Union{Nothing,Float64} = nothing Domainwall_L5::Union{Nothing,Int64} = nothing BoundaryCondition::Array{Int64,1} = [1, 1, 1, -1] smearing_for_fermion::String = "nothing" stout_numlayers::Union{Nothing,Int64} = nothing stout_ρ::Union{Nothing,Array{Float64,1}} = nothing stout_loops::Union{Nothing,Array{String,1}} = nothing # These three params should be revised. M::Union{Nothing,Float64} = nothing m::Union{Nothing,Float64} = nothing N5::Union{Nothing,Int64} = nothing end # System Control Base.@kwdef mutable struct Print_System_control_parameters log_dir::String = "" logfile::String = "" loadU_format::Union{Nothing,String} = nothing loadU_dir::String = "" loadU_fromfile::Bool = false loadU_filename::String = "" saveU_dir::String = "" saveU_format::Union{String,Nothing} = nothing saveU_every::Int64 = 1 verboselevel::Int64 = 1 randomseed::Int64 = 111 measurement_basedir::String = "" measurement_dir::String = "" julian_random_number::Bool = false isevenodd = true hasgradientflow::Bool = false eps_flow::Float64 = 0.01 numflow::Int64 = 100 Nflow::Int64 = 1 end # HMC related Base.@kwdef mutable struct Print_HMCrelated_parameters Δτ::Float64 = 0.05 SextonWeingargten::Bool = false N_SextonWeingargten::Int64 = 2 MDsteps::Int64 = 20 eps::Float64 = 1e-19 MaxCGstep::Int64 = 3000 end # Gradient Flow Base.@kwdef mutable struct Print_Gradientflow_parameters hasgradientflow::Bool = false eps_flow::Float64 = 0.01 numflow::Int64 = 100 Nflow::Int64 = 1 #gradientflow_measurements::Vector{Dict} = [] end # Action parameter for SLMC struct Print_SLMC_parameters βeff::Union{Float64,Array{Float64,1}} firstlearn::Int64 use_autogeneratedstaples::Bool couplingcoeff::Array{Float64,1} couplinglist::Array{String,1} coupling_loops::Union{Nothing,Array{Array{Array{Tuple{Int,Int},1},1},1}} end # Measurement set Base.@kwdef mutable struct Print_Measurement_parameters measurement_methods::Array{Dict,1} = Dict[] end const printlist_physical = generate_printlist(Print_Physical_parameters) const printlist_fermions = generate_printlist(Print_Fermions_parameters) const printlist_systemcontrol = generate_printlist(Print_System_control_parameters) const printlist_HMCrelated = generate_printlist(Print_HMCrelated_parameters) const printlist_parameters_SLMC = generate_printlist(Print_SLMC_parameters) const printlist_measurement = generate_printlist(Print_Measurement_parameters) Base.@kwdef mutable struct Action use_autogeneratedstaples::Bool = false couplinglist::Vector{String} = [] couplingcoeff::Vector{ComplexF64} = [] end Base.@kwdef mutable struct MD MDsteps::Int64 = 20 Δτ::Float64 = 1 / 20 SextonWeingargten::Bool = false N_SextonWeingargten::Int64 = 2 end abstract type Smearing_parameters end Base.@kwdef mutable struct NoSmearing_parameters <: Smearing_parameters end const kindsof_loops = [ "plaquette", "rectangular", "chair", "polyakov_x", "polyakov_y", "polyakov_z", "polyakov_t", ] Base.@kwdef mutable struct Stout_parameters <: Smearing_parameters numlayers::Int64 = 1 ρ::Vector{Float64} = [] stout_loops::Union{Nothing,Array{String,1}} = nothing end #= abstract type Fermion_parameters end Base.@kwdef mutable struct Quench_parameters <: Fermion_parameters Dirac_operator::String = "nothing" end Base.@kwdef mutable struct Wilson_parameters <: Fermion_parameters Dirac_operator::String = "Wilson" hop::Float64 = 0.141139 r::Float64 = 1 hasclover::Bool = false Clover_coefficient::Float64 = 1.5612 end Base.@kwdef mutable struct Staggered_parameters <: Fermion_parameters Dirac_operator::String = "Staggered" mass::Float64 = 0.5 #mass Nf::Int64 = 2 #flavor end Base.@kwdef mutable struct Domainwall_parameters <: Fermion_parameters Dirac_operator::String = "Domainwall" Domainwall_L5::Int64 = 4 Domainwall_M::Float64 = -1 #mass for Wilson operator which should be negative Domainwall_m::Float64 = 0.1 #physical mass end function initialize_fermion_parameters(fermion_type) if fermion_type == "nothing" fermion_parameter = Quench_parameters() elseif fermion_type == "Wilson" || fermion_type == "WilsonClover" fermion_parameter = Wilson_parameters() elseif fermion_type == "Staggered" fermion_parameter = Staggered_parameters() elseif fermion_type == "Domainwall" fermion_parameter = Domainwall_parameters() else @error "$fermion_type is not implemented in parameter_structs.jl" end return fermion_parameter end =# Base.@kwdef mutable struct ConjugateGradient eps::Float64 = 1e-19 MaxCGstep::Int64 = 3000 end #= abstract type Measurement_parameters end Base.@kwdef mutable struct Plaq_parameters <: Measurement_parameters #common::Measurement_common_parameters = Measurement_common_parameters() methodname::String = "Plaquette" measure_every::Int64 = 10 fermiontype::String = "nothing" verbose_level::Int64 = 2 printvalues::Bool = true end Base.@kwdef mutable struct Poly_parameters <: Measurement_parameters methodname::String = "Polyakov_loop" measure_every::Int64 = 10 fermiontype::String = "nothing" verbose_level::Int64 = 2 printvalues::Bool = true #common::Measurement_common_parameters = Measurement_common_parameters() end Base.@kwdef mutable struct Energy_density_parameters <: Measurement_parameters methodname::String = "Energy_density" measure_every::Int64 = 10 fermiontype::String = "nothing" verbose_level::Int64 = 2 printvalues::Bool = true #common::Measurement_common_parameters = Measurement_common_parameters() end Base.@kwdef mutable struct TopologicalCharge_parameters <: Measurement_parameters methodname::String = "Topological_charge" measure_every::Int64 = 10 fermiontype::String = "nothing" #common::Measurement_common_parameters = Measurement_common_parameters() #numflow::Int64 = 1 #number of flows #Nflowsteps::Int64 = 1 #eps_flow::Float64 = 0.01 verbose_level::Int64 = 2 printvalues::Bool = true kinds_of_topological_charge::Vector{String} = ["plaquette","clover"] end Base.@kwdef mutable struct ChiralCondensate_parameters <: Measurement_parameters #common::Measurement_common_parameters = Measurement_common_parameters() methodname::String = "Chiral_condensate" measure_every::Int64 = 10 fermiontype::String = "Staggered" Nf::Int64 = 4 eps::Float64 = 1e-19 mass::Float64 = 0.5 MaxCGstep::Int64 = 3000 smearing_for_fermion::String = "nothing" stout_numlayers::Union{Nothing,Int64} = nothing stout_ρ::Union{Nothing,Array{Float64,1}} = nothing stout_loops::Union{Nothing,Array{String,1}} = nothing verbose_level::Int64 = 2 printvalues::Bool = true Nr = 10 #smearing::Smearing_parameters = Stout_parameters() end Base.@kwdef mutable struct Pion_parameters <: Measurement_parameters #common::Measurement_common_parameters = Measurement_common_parameters() methodname::String = "Pion_correlator" measure_every::Int64 = 10 fermiontype::String = "Wilson" eps::Float64 = 1e-19 MaxCGstep::Int64 = 3000 smearing_for_fermion::String = "nothing" stout_numlayers::Union{Nothing,Int64} = nothing stout_ρ::Union{Nothing,Array{Float64,1}} = nothing stout_loops::Union{Nothing,Array{String,1}} = nothing #smearing::Smearing_parameters = NoSmearing_parameters() fermion_parameters::Fermion_parameters = Wilson_parameters() verbose_level::Int64 = 2 printvalues::Bool = true end Base.@kwdef mutable struct Wilson_loop_parameters <: Measurement_parameters #common::Measurement_common_parameters = Measurement_common_parameters() methodname::String = "Wilson_loop" measure_every::Int64 = 10 fermiontype::String = "nothing" verbose_level::Int64 = 2 printvalues::Bool = true Tmax::Int64 = 4 Rmax::Int64 = 4 end =# #= function initialize_measurement_parameters(methodname) if methodname == "Plaquette" method = Plaq_parameters() elseif methodname == "Polyakov_loop" method = Poly_parameters() elseif methodname == "Topological_charge" method = TopologicalCharge_parameters() elseif methodname == "Chiral_condensate" method = ChiralCondensate_parameters() elseif methodname == "Pion_correlator" method = Pion_parameters() elseif methodname == "Energy_density" method = Energy_density_parameters() elseif methodname == "Wilson_loop" method = Wilson_loop_parameters() else @error "$methodname is not implemented in parameter_structs.jl" end return method end =# Base.@kwdef mutable struct Measurement_parameterset measurement_methods::Vector{Measurement_parameters} = [] #measurement_basedir::String = "" #measurement_dir::String = "" end function transform_measurement_dictvec(value) #println(value) flow_dict = Dict() nummeasure = length(value) value_out = Vector{Measurement_parameters}(undef, nummeasure) hasgradientflow = false for i = 1:nummeasure if haskey(value[i], "methodname") if value[i]["methodname"] == "Topological_charge" hasgradientflow = true value_out[i] = transform_topological_charge_measurement!(flow_dict, value[i]) else value_out[i] = construct_Measurement_parameters_from_dict(value[i]) end else @error("method name in measurement should be set") end end return value_out, flow_dict, hasgradientflow end #= function construct_Measurement_parameters_from_dict(value_i::Dict) #println(value) @assert haskey(value_i, "methodname") "methodname should be set in measurement." methodname = value_i["methodname"] method = initialize_measurement_parameters(methodname) method_dict = struct2dict(method) #println("value_i ",value_i) if haskey(value_i, "Dirac_operator") fermiontype = value_i["Dirac_operator"] else if haskey(value_i, "fermiontype") if value_i["fermiontype"] == nothing fermiontype = "nothing" else fermiontype = value_i["fermiontype"] end else fermiontype = "nothing" end end #println("fermiontype $fermiontype") fermion_parameters = initialize_fermion_parameters(fermiontype) fermion_parameters_dict = struct2dict(fermion_parameters) #println("femriontype ",fermiontype) for (key_ii, value_ii) in value_i #println("$key_ii $value_ii") if haskey(method_dict, key_ii) if typeof(value_ii) != Nothing keytype = typeof(getfield(method, Symbol(key_ii))) setfield!(method, Symbol(key_ii), keytype(value_ii)) end else if haskey(fermion_parameters_dict, key_ii) #println("fermion $key_ii $value_ii") keytype = typeof(getfield(fermion_parameters, Symbol(key_ii))) setfield!(fermion_parameters, Symbol(key_ii), keytype(value_ii)) else @warn "$key_ii is not found! in $(typeof(method))" end end end if haskey(method_dict, "fermion_parameters") setfield!(method, Symbol("fermion_parameters"), fermion_parameters) end value_out = deepcopy(method) return value_out end =# function transform_topological_charge_measurement!(flow_dict, measurement) @assert haskey(measurement, "methodname") "method name in measurement should be set $(measurement)" @assert measurement["methodname"] == "Topological_charge" "this function is for topological charge measurement" measurement_revised = Dict() for (key, value) in measurement #println((key,value)) if key == "Nflowsteps" flow_dict["Nflow"] = value elseif key == "numflow" flow_dict["numflow"] = value elseif key == "eps_flow" flow_dict["eps_flow"] = value else measurement_revised[key] = value end end measurement_revised["fermiontype"] = "nothing" #println(measurement_revised) valuem = construct_Measurement_parameters_from_dict(measurement_revised) flow_dict["measurements_for_flow"] = Dict() flow_dict["measurements_for_flow"]["Topological_charge"] = measurement_revised return valuem end function Plaq_parameters_interactive() method = Plaq_parameters() println_rank0("You measure Plaquette loops") method.methodname = "Plaquette" method.measure_every = parse(Int64, Base.prompt("How often measure Plaquette loops?", default = "1")) return method end function Poly_parameters_interactive() method = Poly_parameters() println_rank0("You measure Polyakov loops") method.methodname = "Polyakov_loop" method.measure_every = parse(Int64, Base.prompt("How often measure Polyakov loops?", default = "1")) return method end function Wilson_loop_parameters_interactive(L) method = Wilson_loop_parameters() println_rank0("You measure RxT Wilson loops") method.methodname = "Wilson_loop" Rmax0 = min(L[1], L[2], L[3]) ÷ 2 Tmax0 = L[4] ÷ 2 method.measure_every = parse(Int64, Base.prompt("How often measure Wilson loops?", default = "1")) method.Rmax = parse(Int64, Base.prompt("maximum R for RxT Wilson loop?", default = "$Rmax0")) method.Tmax = parse(Int64, Base.prompt("maximum T for RxT Wilson loop??", default = "$Tmax0")) return method end function Energy_density_parameters_interactive() method = Energy_density_parameters() println_rank0("You measure Energy density") method.methodname = "Energy_density" method.measure_every = parse(Int64, Base.prompt("How often measure Plaquette loops?", default = "1")) return method end function TopologicalCharge_parameters_interactive() method = TopologicalCharge_parameters() println_rank0("You measure a topological charge") method.methodname = "Topological_charge" method.measure_every = parse(Int64, Base.prompt("How often measure a topological charge?", default = "1")) #= method.numflow = parse( Int64, Base.prompt( "How many times do you want to flow gauge fields to measure the topological charge?", default = "10", ), ) =# #= Nflowsteps = 1#L[1] eps_flow = 0.01 method.Nflowsteps = parse(Int64, Base.prompt("Nflowsteps?", default = "$Nflowsteps")) method.eps_flow = parse(Float64, Base.prompt("eps_flow?", default = "$eps_flow")) =# return method end function MD_interactive(; Dirac_operator = nothing) md = MD() println_rank0("Choose parameters for MD") MDsteps = parse(Int64, Base.prompt("Input MD steps", default = "20")) Δτ = parse(Float64, Base.prompt("Input Δτ", default = "$(1/MDsteps)")) md.MDsteps = MDsteps md.Δτ = Δτ if Dirac_operator != nothing SW = request( "Use SextonWeingargten method? multi-time scale", RadioMenu(["false", "true"]), ) SextonWeingargten = ifelse(SW == 1, false, true) if SextonWeingargten N_SextonWeingargten = parse( Int64, Base.prompt("Input number of SextonWeingargten steps", default = "2"), ) else N_SextonWeingargten = 2 end md.SextonWeingargten = SextonWeingargten md.N_SextonWeingargten = N_SextonWeingargten end return md end function Stout_parameters_interactive() stout = Stout_parameters() stout_menu = MultiSelectMenu(kindsof_loops) choices = request("Select the kinds of loops you want to add in stout smearing:", stout_menu) count = 0 ρs = Float64[] loops = String[] for i in choices count += 1 ρ = parse( Float64, Base.prompt("coefficient ρ for $(kindsof_loops[i]) loop?", default = "0.1"), ) push!(ρs, ρ) push!(loops, kindsof_loops[i]) end stout.ρ = ρs stout.stout_loops = loops return stout end function CG_params_interactive() cg = ConjugateGradient() eps = parse(Float64, Base.prompt("relative error in CG loops", default = "1e-19")) MaxCGstep = parse(Int64, Base.prompt("Maximum iteration steps in CG loops", default = "3000")) if eps <= 0 error("Invalid value for eps=$eps. This has to be strictly positive.") end if MaxCGstep <= 0 error("Invalid value for MaxCGstep=$MaxCGstep. This has to be strictly positive.") end cg.eps = eps cg.MaxCGstep = MaxCGstep return cg end function ChiralCondensate_parameters_interactive(; mass = 0.5) method = ChiralCondensate_parameters() println_rank0("You measure chiral condensates with the statteggred fermion") method.methodname = "Chiral_condensate" method.measure_every = parse(Int64, Base.prompt("How often measure chiral condensates?", default = "1")) method.mass = parse( Float64, Base.prompt( "Input mass for the measurement of chiral condensates", default = "$mass", ), ) method.Nf = 4 println_rank0( "Number of flavors (tastes) for the measurement of chiral condensates is $(method.Nf)", ) eps = parse(Float64, Base.prompt("relative error in CG loops", default = "1e-19")) MaxCGstep = parse(Int64, Base.prompt("Maximum iteration steps in CG loops", default = "3000")) if eps <= 0 error("Invalid value for eps=$eps. This has to be strictly positive.") end if MaxCGstep <= 0 error("Invalid value for MaxCGstep=$MaxCGstep. This has to be strictly positive.") end method.eps = eps method.MaxCGstep = MaxCGstep smearingmethod = request( "Choose a configuration format for loading", RadioMenu(["No smearing", "stout smearing"]), ) |> SmearingMethod if smearingmethod == Nosmearing method.smearing_for_fermion = "nothing" smearing = NoSmearing_parameters() elseif smearingmethod == STOUT method.smearing_for_fermion = "stout" smearing = Stout_parameters_interactive() method.stout_ρ = smearing.ρ method.stout_loops = smearing.stout_loops method.stout_numlayers = smearing.numlayers end return method end function Pion_parameters_interactive() method = Pion_parameters() println_rank0("You measure Pion_correlator") method.methodname = "Pion_correlator" method.measure_every = parse(Int64, Base.prompt("How often measure Pion_correlator?", default = "1")) wtype = request( "Choose fermion type for the measurement of Pion_correlator", RadioMenu([ "Standard Wilson fermion action", "Staggered fermion action", #"Wilson+Clover fermion action", ]), ) if wtype == 1 println_rank0("Standard Wilson fermion action will be used for the measurement") method.fermiontype = "Wilson" fermion_parameters, cg = wilson_wizard() elseif wtype == 3 println_rank0("Wilson+Clover fermion action will be used for the measurement") method.fermiontype = "WilsonClover" fermion_parameters, cg = wilson_wizard() elseif wtype == 2 println_rank0("Staggered fermion action will be used for the measurement") method.fermiontype = "Staggered" fermion_parameters, cg = staggered_wizard() end method.eps = cg.eps method.MaxCGstep = cg.MaxCGstep smearingmethod = request( "Choose a configuration format for loading", RadioMenu(["No smearing", "stout smearing"]), ) |> SmearingMethod if smearingmethod == Nosmearing method.smearing_for_fermion = "nothing" smearing = NoSmearing_parameters() elseif smearingmethod == STOUT method.smearing_for_fermion = "stout" smearing = Stout_parameters_interactive() method.stout_ρ = smearing.ρ method.stout_loops = smearing.stout_loops method.stout_numlayers = smearing.numlayers end return method end function wilson_wizard() fermion_parameters = Wilson_parameters() hop = parse(Float64, Base.prompt("Input the hopping parameter κ", default = "0.141139")) #hop = parse(Float64,readline(stdin)) if hop <= 0 error("Invalid value for κ=$hop. This has to be strictly positive.") end println_rank0("κ = $hop") fermion_parameters.hop = hop cg = CG_params_interactive() return fermion_parameters, cg end function staggered_wizard() staggered = Staggered_parameters() mass = parse(Float64, Base.prompt("Input mass", default = "0.5")) if mass <= 0 error("Invalid value for mass=$mass. This has to be strictly positive.") end staggered.mass = mass Nftype = request( "Choose the number of flavors(tastes)", RadioMenu([ "2 (RHMC will be used)", "3 (RHMC will be used)", "4 (HMC will be used)", "8 (HMC will be used)", "1 (RHMC will be used)", ]), ) if Nftype == 1 Nf = 2 elseif Nftype == 2 Nf = 3 elseif Nftype == 3 Nf = 4 elseif Nftype == 4 Nf = 8 elseif Nftype == 5 Nf = 1 end staggered.Nf = Nf cg = CG_params_interactive() return staggered, cg end function Domainwall_wizard() fermion_parameters = Domainwall_parameters() N5 = parse(Int64, Base.prompt("Input the size of the extra dimension L5", default = "4")) #fermion_parameters.Domainwall_L5 = N5 fermion_parameters.N5 = N5 println_rank0("Standard Domainwall fermion action is used") M = parse(Float64, Base.prompt("Input M", default = "-1")) while M >= 0 println_rank0("M should be M < 0. ") M = parse(Float64, Base.prompt("Input M", default = "-1")) end #fermion_parameters.Domainwall_M = M fermion_parameters.M = M m = parse(Float64, Base.prompt("Input mass", default = "0.25")) #fermion_parameters.Domainwall_m = m fermion_parameters.m = m cg = CG_params_interactive() return fermion_parameters, cg end #= function generate_printable_parameters(p::System) pnames = fieldnames(System) physical = Print_Physical_parameters() names_physical = fieldnames(typeof(physical)) fermions = Print_Fermions_parameters() names_fermions = fieldnames(typeof(fermions)) control = Print_System_control_parameters() names_control = fieldnames(typeof(control)) hmc = Print_HMCrelated_parameters() names_hmc = fieldnames(typeof(hmc)) #measure = Print_Measurement_parameters() #names_measure = fieldnames(typeof(measure)) for pname_i in pnames value = getfield(p, pname_i) #println_rank0(value) hasvalue = false physical_index = findfirst(x -> x == pname_i, names_physical) if physical_index != nothing setfield!(physical, pname_i, value) #println_rank0(value, "\t", pname_i) hasvalue = true end fermions_index = findfirst(x -> x == pname_i, names_fermions) if fermions_index != nothing setfield!(fermions, pname_i, value) #println_rank0(value, "\t", pname_i) hasvalue = true end control_index = findfirst(x -> x == pname_i, names_control) if control_index != nothing setfield!(control, pname_i, value) #println_rank0(value, "\t", pname_i) hasvalue = true end hmc_index = findfirst(x -> x == pname_i, names_hmc) if hmc_index != nothing setfield!(hmc, pname_i, value) #println_rank0(value, "\t", pname_i) hasvalue = true end #= measure_index = findfirst(x -> x == pname_i, names_measure) if measure_index != nothing setfield!(measure, pname_i, value) #println_rank0(value, "\t", pname_i) hasvalue = true end =# #= if hasvalue == false @warn "$(pname_i) is not set!" end =# #@assert hasvalue "$(pname_i) is not set!" end return physical, fermions, control, hmc#, measure end =# function construct_printable_parameters_fromdict!( key, value, physical, fermions, control, hmc, ) if key == "L" value = collect(value) elseif key == "r" value = Float64(value) end #println_rank0("$key $value") hasvalue = false pname_i = Symbol(key) physical_index = findfirst(x -> x == key, printlist_physical) if physical_index != nothing setfield!(physical, pname_i, value) hasvalue = true end fermions_index = findfirst(x -> x == key, printlist_fermions) if fermions_index != nothing setfield!(fermions, pname_i, value) hasvalue = true end control_index = findfirst(x -> x == key, printlist_systemcontrol) if control_index != nothing setfield!(control, pname_i, value) hasvalue = true end hmc_index = findfirst(x -> x == key, printlist_HMCrelated) if hmc_index != nothing setfield!(hmc, pname_i, value) hasvalue = true end #if hasvalue == false # @warn "$(pname_i) is not set!" #end if hasvalue == false @warn "$(key) is not used!" end return hasvalue end function construct_printable_parameters_fromdict!(x::Dict, physical, fermions, control, hmc) for (key, value) in x hasvalue = false pname_i = Symbol(key) physical_index = findfirst(x -> x == pname_i, names_physical) if physical_index != nothing setfield!(physical, pname_i, value) hasvalue = true end fermions_index = findfirst(x -> x == pname_i, names_fermions) if fermions_index != nothing setfield!(fermions, pname_i, value) hasvalue = true end control_index = findfirst(x -> x == pname_i, names_control) if control_index != nothing setfield!(control, pname_i, value) hasvalue = true end hmc_index = findfirst(x -> x == pname_i, names_hmc) if hmc_index != nothing setfield!(hmc, pname_i, value) hasvalue = true end if hasvalue == false @warn "$(pname_i) is not set!" end end end function remove_default_values!(x::Dict, defaultsystem) for (key, value) in x if hasfield(typeof(defaultsystem), Symbol(key)) default_value = getfield(defaultsystem, Symbol(key)) #println_rank0(key, "\t", value, "\t", default_value) if value == default_value || string(value) == string(default_value) if check_important_parameters(key) == false delete!(x, key) end else if value == nothing x[key] = "nothing" end end else if value == nothing x[key] = "nothing" end end if typeof(value) == Vector{Measurement_parameters} construct_dict_from_measurement!(x, value) end if typeof(value) <: Fermion_parameters construct_dict_from_fermion!(x, value) end end end function construct_dict_from_fermion!(x, value) fermiondic = struct2dict(value) #println_rank0("fermiondic",fermiondic) fermiondic_default = typeof(value)() remove_default_values!(fermiondic, fermiondic_default) x["fermion_parameters"] = fermiondic end function construct_dict_from_measurement!(x, value) measuredic = Dict() #println_rank0(value) for measure in value methoddic = struct2dict(measure) measure_struct_default = typeof(measure)() remove_default_values!(methoddic, measure_struct_default) measuredic[methoddic["methodname"]] = methoddic end #println_rank0("x",x) #println_rank0(measuredic) x["measurement_methods"] = measuredic end function remove_default_values!(x::Dict) physical = Print_Physical_parameters() fermions = Print_Fermions_parameters() control = Print_System_control_parameters() hmc = Print_HMCrelated_parameters() #measure = Print_Measurement_parameters() #defaultsystem = System() for (params, paramsname) in x remove_default_values!(x[params], physical) remove_default_values!(x[params], fermions) remove_default_values!(x[params], control) remove_default_values!(x[params], hmc) #remove_default_values!(x[params], measure) end end end
LatticeQCD
https://github.com/akio-tomiya/LatticeQCD.jl.git
[ "MIT" ]
1.1.0
e495a1eaee52a513e02fe6ca2c995a7d0ed671a7
code
10100
module Parameters_TOML using TOML import ..System_parameters: Params import ..Parameter_structs: Print_Physical_parameters, Print_Fermions_parameters, Print_System_control_parameters, Print_HMCrelated_parameters, struct2dict, initialize_fermion_parameters, Print_Gradientflow_parameters function demo_TOML() println("demo for TOML format") p = construct_Params_from_TOML("parametertest.toml") end function set_params_value!(value_Params, values) d = struct2dict(values) pnames = fieldnames(Params) for (i, pname_i) in enumerate(pnames) if haskey(d, String(pname_i)) if d[String(pname_i)] == "nothing" && String(pname_i) != "smearing_for_fermion" value_Params[i] = nothing else value_Params[i] = d[String(pname_i)] end end end end const unused_bool_values = ["use_autogeneratedstaples", "integratedFermionAction"] const unused_array_values = ["couplinglist", "couplingcoeff"] const unused_int_values = ["firstlearn"] const unused_float_values = ["βeff"] const unused_nothing_values = ["coupling_loops"] const unused_string_values = ["training_data_name"] function set_unused_parameters!(value_Params) pnames = fieldnames(Params) for (i, pname_i) in enumerate(pnames) valuename = String(pname_i) if findfirst(x -> x == valuename, unused_bool_values) != nothing value_Params[i] = false elseif findfirst(x -> x == valuename, unused_array_values) != nothing value_Params[i] = [] elseif findfirst(x -> x == valuename, unused_int_values) != nothing value_Params[i] = 0 elseif findfirst(x -> x == valuename, unused_float_values) != nothing value_Params[i] = 0.0 elseif findfirst(x -> x == valuename, unused_nothing_values) != nothing value_Params[i] = nothing elseif findfirst(x -> x == valuename, unused_string_values) != nothing value_Params[i] = "" end end end function show_parameters(parameters) #println(parameters) for (key, value) in parameters println("[$(key)]") if key == "Measurement set" for (key_i, value_i) in value println("[$(key_i)]") display(value_i) println("\t") end else display(value) println("\t") end end end function construct_Params_from_TOML(filename::String) parameters = TOML.parsefile(filename) println("inputfile: ", pwd() * "/" * filename) construct_Params_from_TOML(parameters) end function construct_Params_from_TOML(parameters) show_parameters(parameters) pnames = fieldnames(Params) numparams = length(pnames) value_Params = Vector{Any}(undef, numparams) physical = Print_Physical_parameters() set_params_value!(value_Params, physical) fermions = Print_Fermions_parameters() set_params_value!(value_Params, fermions) control = Print_System_control_parameters() set_params_value!(value_Params, control) hmc = Print_HMCrelated_parameters() set_params_value!(value_Params, hmc) gradientflow = Print_Gradientflow_parameters() set_params_value!(value_Params, gradientflow) set_unused_parameters!(value_Params) #println(pnames) pos = findfirst(x -> String(x) == "ITERATION_MAX", pnames) value_Params[pos] = 10^5 pos = findfirst(x -> String(x) == "isevenodd", pnames) value_Params[pos] = true pos = findfirst(x -> String(x) == "load_fp", pnames) logfilename = parameters["System Control"]["logfile"] log_dir = parameters["System Control"]["log_dir"] if isdir(log_dir) == false mkdir(log_dir) end logfile = pwd() * "/" * log_dir * "/" * logfilename load_fp = open(logfile, "w") value_Params[pos] = load_fp if haskey(parameters["Physical setting(fermions)"],"Dirac_operator") if parameters["Physical setting(fermions)"]["Dirac_operator"] == "Domainwall" pairs = [("M","Domainwall_M"),("m","Domainwall_m"),("N5","Domainwall_L5")] param = parameters["Physical setting(fermions)"] for pair in pairs if haskey(param,pair[1]) if haskey(param,pair[2]) == false param[pair[2]] = param[pair[1]] end if param[pair[1]] == nothing param[pair[2]] = param[pair[1]] end end if haskey(param,pair[2]) if haskey(param,pair[1]) == false param[pair[1]] = param[pair[2]] end if param[pair[2]] == nothing param[pair[1]] = param[pair[2]] end end end end end if haskey(parameters["Measurement set"], "measurement_basedir") && haskey(parameters["System Control"], "measurement_basedir") == false measurement_basedir = parameters["Measurement set"]["measurement_basedir"] measurement_dir = parameters["Measurement set"]["measurement_dir"] elseif haskey(parameters["Measurement set"], "measurement_basedir") == false && haskey(parameters["System Control"], "measurement_basedir") measurement_basedir = parameters["System Control"]["measurement_basedir"] measurement_dir = parameters["System Control"]["measurement_dir"] elseif haskey(parameters["Measurement set"], "measurement_basedir") && haskey(parameters["System Control"], "measurement_basedir") @error "both \"Measurement set\" and \"System Control\" have \"measurement_basedir\". remove one." else measurement_basedir = parameters["Measurement set"]["measurement_basedir"] measurement_dir = parameters["Measurement set"]["measurement_dir"] end if isdir(measurement_basedir) == false mkdir(measurement_basedir) end if isdir(pwd() * "/" * measurement_basedir * "/" * measurement_dir) == false mkdir(pwd() * "/" * measurement_basedir * "/" * measurement_dir) end pos = findfirst(x -> String(x) == "measuredir", pnames) measuredir = pwd() * "/" * measurement_basedir * "/" * measurement_dir value_Params[pos] = measuredir for (i, pname_i) in enumerate(pnames) #println("before $(value_Params[i])") for (key, value) in parameters if haskey(value, String(pname_i)) #println("$pname_i $key ",value[String(pname_i)]) if String(pname_i) == "measurement_methods" #println("$pname_i $key ",value[String(pname_i)]) valuedir = construct_measurement_dir(value[String(pname_i)]) value_Params[i] = valuedir elseif String(pname_i) == "measurements_for_flow" valuedir = construct_measurement_dir(value[String(pname_i)]) value_Params[i] = valuedir elseif String(pname_i) == "L" value_Params[i] = Tuple(value[String(pname_i)]) else if value[String(pname_i)] == "nothing" && String(pname_i) != "smearing_for_fermion" value_Params[i] = nothing else value_Params[i] = value[String(pname_i)] end end end end if isassigned(value_Params, i) == false @error "$(pname_i) is not defined!" end #println(pname_i,"::$(typeof(value_Params[i])) $(value_Params[i])") end parameters = Params(value_Params...) parameter_check(parameters) return parameters end function parameter_check(p::Params) if p.Dirac_operator != nothing println("$(p.Dirac_operator) fermion is used") if p.smearing_for_fermion == "stout" println("stout smearing is used for fermions") end end if p.saveU_format ≠ nothing if isdir(p.saveU_dir) == false mkdir(p.saveU_dir) end println("$(p.saveU_dir) is used for saving configurations") end if p.update_method == "HMC" println("HMC will be used") elseif p.update_method == "Heatbath" println("Heatbath will be used") elseif p.update_method == "Fileloading" println("No update will be used (read-measure mode)") p.quench = true elseif p.update_method == "SLHMC" println("SLHMC will be used") if p.quench == false println("quench = true is set") p.quench = true #error("system[\"quench\"] = false. The SLHMC needs the quench update. Put the other system[\"update_method\"] != \"SLHMC\" or system[\"quench\"] = true") end else error(""" update_method in [\"Physical setting\"] = $(p.update_method) is not supported. Supported methods are HMC Heatbath Fileloading """) end log_dir = p.log_dir if isdir(log_dir) == false mkdir(log_dir) end end function construct_measurement_dir(x) #println(x) valuedic = Dict[] for (method, methoddic) in x dic_i = Dict() for (key, value) in methoddic if key == "fermion_parameters" fermion_type = value["Dirac_operator"] fermion_dict = struct2dict(initialize_fermion_parameters(fermion_type)) for (key_i, value_i) in fermion_dict if haskey(value, key_i) dic_i[key_i] = value[key_i] else dic_i[key_i] = value_i end end else dic_i[key] = value end end #println("dic_i $dic_i") push!(valuedic, dic_i) end #display(valuedic) return valuedic end #demo_TOML() end
LatticeQCD
https://github.com/akio-tomiya/LatticeQCD.jl.git
[ "MIT" ]
1.1.0
e495a1eaee52a513e02fe6ca2c995a7d0ed671a7
code
3648
module System_parameters using Random export Params import ..Transform_oldinputfile: default_system, default_md, default_defaultmeasures, default_actions, default_cg, default_wilson, default_staggered, default_measurement import ..Parameter_structs: printlist_physical, printlist_fermions, printlist_systemcontrol, printlist_HMCrelated, printlist_parameters_SLMC, printlist_measurement const printlists = [ printlist_physical, printlist_fermions, printlist_systemcontrol, printlist_HMCrelated, printlist_parameters_SLMC, printlist_measurement, ] system = default_system() md = default_md() defaultmeasures = default_defaultmeasures() actions = default_actions() cg = default_cg() wilson = default_wilson() staggered = default_staggered() measurement = default_measurement() struct Params L::Tuple # = (2,2,2,2) # Mandatory β::Float64 # = 6 # Mandatory NC::Int64 # = 3 Dirac_operator::Union{Nothing,String} # = "Wilson" quench::Bool # = false initial::String # = "cold" BoundaryCondition::Array{Int64,1} # =[1,1,1,-1] Nwing::Int64 # = 1 randomseed::Int64 # = 111 #For actions use_autogeneratedstaples::Bool # = false couplinglist::Array{String,1} # = [] couplingcoeff::Array{Float64,1} # = [] coupling_loops::Union{Nothing,Array{Array{Array{Tuple{Int,Int},1},1},1}} #For MD Δτ::Float64 # = 0.05 MDsteps::Int64 # = 20 SextonWeingargten::Bool # = false Nsteps::Int64 # = 100 Nthermalization::Int64 # = 10 #For Sexton-Weingargten N_SextonWeingargten::Int64 # = 10 # Mandatory #For IntegratedHMC #IntegratedHMC::Bool # = false #For Heatbath #Heatbath::Bool # = false #For CG eps::Float64 # = 1e-19 MaxCGstep::Int64 # = 3000 #For Wilson hop::Float64 # = 0.141139#Hopping parameter # Mandatory r::Float64 # = 1 #Wilson term #For WilsonClover Clover_coefficient::Float64 # = 1.5612 #For Staggered mass::Float64 # = 0.5 # Mandatory Nf::Int64 # = 4 #verbose verboselevel::Int64 # = 2 #For measurement measurement_methods::Vector{Dict} # = defaultmeasures saveU_format::Union{String,Nothing} saveU_every::Int64 saveU_dir::String loadU_format::Union{String,Nothing} loadU_dir::String update_method::String βeff::Union{Float64,Array{Float64,1}} firstlearn::Int64 log_dir::String logfile::String load_fp::IOStream measuredir::String integratedFermionAction::Bool training_data_name::String useOR::Bool numOR::Int64 initialtrj::Int64 loadU_fromfile::Bool loadU_filename::String smearing_for_fermion::String stout_numlayers::Union{Nothing,Int64} stout_ρ::Union{Nothing,Array{Float64,1}} stout_loops::Union{Nothing,Array{String,1}} Domainwall_M::Union{Nothing,Float64} Domainwall_m::Union{Nothing,Float64} Domainwall_L5::Union{Nothing,Int64} #Domainwall_b::Union{Nothing,Float64} ##Domainwall_c::Union{Nothing,Float64} #Domainwall_ωs::Union{Nothing,Array{Float64,1}} #Domainwall_r::Union{Nothing,Float64} julian_random_number::Bool ITERATION_MAX::Int64 isevenodd::Bool hasgradientflow::Bool eps_flow::Float64 numflow::Int64 Nflow::Int64 measurements_for_flow::Vector{Dict} #measurement in gradientflow end end #using .System_parameters #System_parameters.parameterloading(ARGS[1])
LatticeQCD
https://github.com/akio-tomiya/LatticeQCD.jl.git
[ "MIT" ]
1.1.0
e495a1eaee52a513e02fe6ca2c995a7d0ed671a7
code
6138
module Transform_oldinputfile import ..Parameter_structs: Print_Physical_parameters, Print_Fermions_parameters, Print_System_control_parameters, Print_HMCrelated_parameters, construct_printable_parameters_fromdict!, remove_default_values!, struct2dict, initialize_fermion_parameters, Measurement_parameters, initialize_measurement_parameters, generate_printlist, transform_measurement_dictvec, transform_topological_charge_measurement!, Print_Gradientflow_parameters using TOML function default_system() system = Dict() system["Dirac_operator"] = "Wilson" system["quench"] = false system["initial"] = "cold" system["BoundaryCondition"] = [1, 1, 1, -1] system["Nwing"] = 1 system["randomseed"] = 111 system["verboselevel"] = 2 system["saveU_format"] = "JLD" system["saveU_every"] = 1 system["saveU_dir"] = "./confs" system["initialtrj"] = 1 system["update_method"] = "HMC" system["isevenodd"] = true system["Nsteps"] = 100 system["Nthermalization"] = 0 system["julian_random_number"] = false return system end function default_md() md = Dict() md["Δτ"] = 0.05 md["MDsteps"] = 20 md["SextonWeingargten"] = false return md end function default_defaultmeasures() defaultmeasures = Array{Dict,1}(undef, 2) for i = 1:length(defaultmeasures) defaultmeasures[i] = Dict() end defaultmeasures[1]["methodname"] = "Plaquette" defaultmeasures[1]["measure_every"] = 1 defaultmeasures[1]["fermiontype"] = nothing defaultmeasures[2]["methodname"] = "Polyakov_loop" defaultmeasures[2]["measure_every"] = 1 defaultmeasures[2]["fermiontype"] = nothing return defaultmeasures end function default_actions() actions = Dict() actions["use_autogeneratedstaples"] = false #actions["couplinglist"] = [] actions["couplingcoeff"] = [] actions["coupling_loops"] = nothing return actions end function default_cg() cg = Dict() cg["eps"] = 1e-19 cg["MaxCGstep"] = 3000 return cg end function default_wilson() wilson = Dict() wilson["r"] = 1 wilson["Clover_coefficient"] = 1.5612 return wilson end function default_staggered() staggered = Dict() staggered["Nf"] = 4 return staggered end function default_measurement() measurement = Dict() measurement["measurement_methods"] = defaultmeasures return measurement end system = default_system() md = default_md() defaultmeasures = default_defaultmeasures() actions = default_actions() cg = default_cg() wilson = default_wilson() staggered = default_staggered() measurement = default_measurement() function transform_to_toml(filename) include(abspath(filename)) physical = Print_Physical_parameters() fermions = Print_Fermions_parameters() control = Print_System_control_parameters() hmc = Print_HMCrelated_parameters() for (key, value) in system hasvalue = construct_printable_parameters_fromdict!( key, value, physical, fermions, control, hmc, ) end for (key, value) in md hasvalue = construct_printable_parameters_fromdict!( key, value, physical, fermions, control, hmc, ) end for (key, value) in cg hasvalue = construct_printable_parameters_fromdict!( key, value, physical, fermions, control, hmc, ) end for (key, value) in wilson hasvalue = construct_printable_parameters_fromdict!( key, value, physical, fermions, control, hmc, ) end for (key, value) in staggered hasvalue = construct_printable_parameters_fromdict!( key, value, physical, fermions, control, hmc, ) end measurement_dict = Dict() flow_dict = Dict() hasgradientflow = false for (key, value) in measurement if key == "measurement_methods" valuem, flow_dict, hasgradientflow = transform_measurement_dictvec(value) measurement_dict[key] = valuem else hasvalue = construct_printable_parameters_fromdict!( key, value, physical, fermions, control, hmc, ) end end #println(control) #= display(physical) println("\t") display(fermions) println("\t") display(control) println("\t") display(hmc) println("\t") =# system_parameters_dict = Dict() system_parameters_dict["Physical setting"] = struct2dict(physical) system_parameters_dict["Physical setting(fermions)"] = struct2dict(fermions) system_parameters_dict["System Control"] = struct2dict(control) system_parameters_dict["HMC related"] = struct2dict(hmc) system_parameters_dict["Measurement set"] = measurement_dict if hasgradientflow system_parameters_dict["System Control"]["hasgradientflow"] = true else flow_dict["measurements_for_flow"] = Dict() end system_parameters_dict["gradientflow_measurements"] = flow_dict #system_parameters_dict["Measurement set"] = struct2dict(measurement) #= display(system_parameters_dict) println("\t") =# #println(system_parameters_dict["System Control"]) #println(system_parameters_dict) remove_default_values!(system_parameters_dict) #println(system_parameters_dict) #println(system_parameters_dict["System Control"]) filename_toml = splitext(filename)[1] * ".toml" #display(system_parameters_dict) open(filename_toml, "w") do io TOML.print(io, system_parameters_dict) end end function demo_transform() filename = "demo.jl" transform_to_toml(filename) end #demo_transform() end
LatticeQCD
https://github.com/akio-tomiya/LatticeQCD.jl.git
[ "MIT" ]
1.1.0
e495a1eaee52a513e02fe6ca2c995a7d0ed671a7
code
5014
module Universe_module import ..System_parameters: Params using Gaugefields using LatticeDiracOperators import Gaugefields struct Univ{Dim,TG,T_FA} L::NTuple{Dim,Int64} NC::Int64 Nwing::Int8 gauge_action::GaugeAction{Dim,TG} U::Vector{TG} quench::Bool fermi_action::T_FA cov_neural_net::Union{Nothing,CovNeuralnet{Dim}} #Uold::Vector{TG} verbose_print::Verbose_print end function get_gauge_action(univ::Univ) return univ.gauge_action end function is_quenched(univ::Univ) return univ.quench end function Univ(p::Params; MPIparallel = false, PEs = nothing) Dim = length(p.L) L = Tuple(p.L) NC = p.NC Nwing = p.Nwing if p.initial == "cold" || p.initial == "hot" || p.initial == "one instanton" if Dim == 2 U = Initialize_Gaugefields(NC, Nwing, L..., condition = p.initial) else U = Initialize_Gaugefields(NC, Nwing, L..., condition = p.initial) end else if Dim == 2 U = Initialize_Gaugefields(NC, Nwing, L..., condition = "cold") else U = Initialize_Gaugefields(NC, Nwing, L..., condition = "cold") end end close(p.load_fp) logfilename = pwd() * "/" * p.log_dir * "/" * p.logfile verbose_print = Verbose_print(p.verboselevel, myid = get_myrank(U[1]), filename = logfilename) if p.initial == "cold" || p.initial == "hot" || p.initial == "one instanton" else println_verbose_level2(verbose_print, "..... File start") println_verbose_level1(verbose_print, "File name is $(p.initial)") if p.loadU_format == "ILDG" ildg = ILDG(p.initial) i = 1 load_gaugefield!(U, i, ildg, L, NC) elseif p.loadU_format == "BridgeText" filename = p.initial load_BridgeText!(filename, U, L, NC) else error("loadU_format should be ILDG or BridgeText. Now $(p.loadU_format)") end end #println_verbose_level1(verbose_print, "..... test mode") #Uold = similar(U) gauge_action = GaugeAction(U) if p.use_autogeneratedstaples error("p.use_autogeneratedstaples = true is not supported yet!") else plaqloop = make_loops_fromname("plaquette", Dim = Dim) append!(plaqloop, plaqloop') βinp = p.β / 2 push!(gauge_action, βinp, plaqloop) end TG = eltype(U) #println(TG) #show(gauge_action) if p.Dirac_operator == nothing fermi_action = nothing else params = Dict() parameters_action = Dict() if p.Dirac_operator == "Staggered" x = Initialize_pseudofermion_fields(U[1], "staggered") params["Dirac_operator"] = "staggered" params["mass"] = p.mass parameters_action["Nf"] = p.Nf elseif p.Dirac_operator == "Wilson" x = Initialize_pseudofermion_fields(U[1], "Wilson", nowing = true) params["Dirac_operator"] = "Wilson" params["κ"] = p.hop params["r"] = p.r params["faster version"] = true elseif p.Dirac_operator == "Domainwall" L5 = p.Domainwall_L5 #println(L5) #error("L5") M = p.Domainwall_M mass = p.Domainwall_m params["Dirac_operator"] = "Domainwall" params["mass"] = mass params["L5"] = L5 params["M"] = M x = Initialize_pseudofermion_fields(U[1], "Domainwall", L5 = L5, nowing = true) else error("not supported") end params["eps_CG"] = p.eps params["verbose_level"] = p.verboselevel #2 params["MaxCGstep"] = p.MaxCGstep params["boundarycondition"] = p.BoundaryCondition D = Dirac_operator(U, x, params) fermi_action = FermiAction(D, parameters_action) end T_FA = typeof(fermi_action) if p.smearing_for_fermion == "nothing" cov_neural_net = nothing elseif p.smearing_for_fermion == "stout" cov_neural_net = CovNeuralnet() @assert p.stout_numlayers == 1 "stout_numlayers should be one. But now $(p.stout_numlayers)" st = STOUT_Layer(p.stout_loops, p.stout_ρ, L) push!(cov_neural_net, st) else error("p.smearing_for_fermion = $(p.smearing_for_fermion) is not supported") end return Univ{Dim,TG,T_FA}( L, NC, Nwing, gauge_action, U, p.quench, fermi_action, cov_neural_net, verbose_print, ) end function Gaugefields.println_verbose_level1(univ::T, val...) where {T<:Univ} println_verbose_level1(univ.verbose_print, val...) end function Gaugefields.println_verbose_level2(univ::T, val...) where {T<:Univ} println_verbose_level2(univ.verbose_print, val...) end function Gaugefields.println_verbose_level3(univ::T, val...) where {T<:Univ} println_verbose_level3(univ.verbose_print, val...) end end
LatticeQCD
https://github.com/akio-tomiya/LatticeQCD.jl.git
[ "MIT" ]
1.1.0
e495a1eaee52a513e02fe6ca2c995a7d0ed671a7
code
28216
module Wizard using REPL.TerminalMenus using TOML import ..System_parameters: Params import ..Parameter_structs: #System, Action, CG_params_interactive, Quench_parameters, Fermion_parameters, Wilson_parameters, Staggered_parameters, Stout_parameters, kindsof_loops, Stout_parameters_interactive, ConjugateGradient, NoSmearing_parameters, Domainwall_parameters, MD, MD_interactive, Measurement_parameters, Plaq_parameters_interactive, Poly_parameters_interactive, ChiralCondensate_parameters_interactive, TopologicalCharge_parameters_interactive, staggered_wizard, wilson_wizard, Domainwall_wizard, Pion_parameters_interactive, Measurement_parameterset, #generate_printable_parameters, remove_default_values!, struct2dict, Print_Gradientflow_parameters, Print_Physical_parameters, Print_Fermions_parameters, Print_System_control_parameters, Print_HMCrelated_parameters, Wilson_loop_parameters_interactive, Energy_density_parameters_interactive import ..Parameters_TOML: demo_TOML, construct_Params_from_TOML @enum Wizardmode simple = 1 expert = 2 @enum Initialconf coldstart = 1 hotstart = 2 filestart = 3 instantonstart = 4 @enum Fileformat JLD = 1 ILDG = 2 BridgeText = 3 Nosave = 0 @enum SmearingMethod Nosmearing = 1 STOUT = 2 @enum Fermiontype Nofermion = 1 Wilsonfermion = 2 Staggeredfermion = 3 Domainwallfermion = 4 @enum Options Plaquette = 1 Polyakov_loop = 2 Topological_charge = 3 Chiral_condensate = 4 Pion_correlator = 5 Wilson_loop = 6 Energy_density = 7 function get_filename_extension(loadtype::Fileformat) if loadtype == JLD ext = ".jld" elseif loadtype == ILDG ext = ".ildg" elseif v == BridgeText ext = ".txt" else error("error!") end return ext end function print_wizard_logo(outs) blue = "\033[34m" red = "\033[31m" green = "\033[32m" magenta = "\033[35m" normal = "\033[0m\033[0m" logo = raw""" -------------------------------------------------------------------------------- run_wizard      格       格             色       格         色色色      格     子子色色色色色子子子子子格子子子子     色色色      格          色       格         格       格         力       学      LatticeQCD.jl     力力力     学学学     子子力力力力力子子子学学学学学子子       力力力     学学学           力       学            格       格                                                                  """ logo = replace(logo, "Q" => "$(red)Q$(normal)") logo = replace(logo, "C" => "$(blue)C$(normal)") logo = replace(logo, "D" => "$(green)D$(normal)") logo = replace(logo, "色" => "$(red)色$(normal)") logo = replace(logo, "力" => "$(blue)力$(normal)") logo = replace(logo, "学" => "$(green)学$(normal)") println(outs, logo) println( outs, "Welcome to a wizard for Lattice QCD.\n", "We'll get you set up simulation parameters in no time.", ) println( "--------------------------------------------------------------------------------", ) println("If you leave the prompt empty, a default value will be used.") println("To exit, press Ctrl + c.") end function run_wizard() print_wizard_logo(stdout) physicalparams = Print_Physical_parameters() controlparams = Print_System_control_parameters() fermionparams = Print_Fermions_parameters() hmcparams = Print_HMCrelated_parameters() #system = System() #action = Action() #println(system) #println(action) mode = request( "Choose wizard mode", Wizardmode |> instances |> collect .|> string |> RadioMenu, ) |> Wizardmode isexpert::Bool = (mode == expert) filename = String( Base.prompt( "put the name of the parameter file you make", default = "my_parameters.toml", ), ) physicalparams.L = set_Lattice_size(isexpert) #system.L = set_Lattice_size(isexpert) physicalparams.NC = set_gaugegroup(isexpert) #system.NC = set_gaugegroup(isexpert) physicalparams.β = set_β(physicalparams.NC) #system.β = set_β(system.NC) if isexpert controlparams.randomseed = parse(Int64, Base.prompt("Input random seed.", default = "111")) controlparams.verboselevel = set_verboselevel() #system.randomseed = parse(Int64, Base.prompt("Input random seed.", default = "111")) #system.verboselevel = set_verboselevel() end if check_isfileloading() controlparams.loadU_format, _ = set_loadU_format() physicalparams.update_method = "Fileloading" controlparams.loadU_dir = String(Base.prompt("Loading directory", default = "./confs")) filelist = request( "Which configurations do you use?", RadioMenu([ "All configurations in the directory", "Configurations written in a list", ]), ) if filelist == 1 controlparams.loadU_fromfile = false else controlparams.loadU_fromfile = true controlparams.loadU_filename = String( Base.prompt( "name of the list in $(controlparams.loadU_dir)", default = "filelist.txt", ), ) end else if physicalparams.NC == 2 initialconf = request( "Choose initial configurations", RadioMenu([ "cold start", "hot start", "start from a file", "start from one instanton (Radius is half of Nx)", ]), ) |> Initialconf else initialconf = request( "Choose initial configurations", RadioMenu(["cold start", "hot start", "start from a file"]), ) |> Initialconf end if initialconf == coldstart physicalparams.initial = "cold" elseif initialconf == hotstart physicalparams.initial = "hot" elseif initialconf == filestart println("Initial configuration is loaded from a file") controlparams.loadU_format, filetype = set_loadU_format() extstring = get_filename_extension(filetype) physicalparams.initial = String( Base.prompt( "Input the file name that you want to use", default = "./confs/conf_00000001.$(extstring)", ), ) physicalparams.initialtrj = parse(Int64, Base.prompt("Start trj number?", default = "1")) elseif initialconf == instantonstart physicalparams.initial = "one instanton" end if isexpert ftype = request( "Choose a dynamical fermion", RadioMenu([ "Nothing (quenched approximation)", "Wilson Fermion (2-flavor)", "Staggered Fermion", "Domain-wall Fermion (Experimental)", ]), ) |> Fermiontype if ftype == Nofermion cg = ConjugateGradient() fermion_parameters = Quench_parameters() fermionparams.Dirac_operator = "nothing" fermionparams.quench = true elseif ftype == Wilsonfermion fermionparams.quench = false println("Standard Wilson fermion action will be used") fermionparams.Dirac_operator = "Wilson" #= wtype = request( "Choose Wilson fermion type", RadioMenu([ "Standard Wilson fermion action", "Wilson+Clover fermion action", ]), ) if wtype == 1 println("Standard Wilson fermion action will be used") fermionparams.Dirac_operator = "Wilson" else println("Wilson+Clover fermion action will be used") fermionparams.Dirac_operator = "WilsonClover" end =# fermion_parameters, cg = wilson_wizard() elseif ftype == Staggeredfermion fermionparams.quench = false fermionparams.Dirac_operator = "Staggered" fermion_parameters, cg = staggered_wizard() elseif ftype == Domainwallfermion fermionparams.quench = false fermionparams.Dirac_operator = "Domainwall" fermion_parameters, cg = Domainwall_wizard() end else fermionparams.Dirac_operator = "Wilson" fermionparams.quench = false fermion_parameters, cg = wilson_wizard_simple() end if fermionparams.quench == false smearingmethod = request( "Choose a configuration format for loading", RadioMenu(["No smearing", "stout smearing"]), ) |> SmearingMethod if smearingmethod == Nosmearing fermionparams.smearing_for_fermion = "nothing" smearing = NoSmearing_parameters() elseif smearingmethod == STOUT fermionparams.smearing_for_fermion = "stout" smearing = Stout_parameters_interactive() fermionparams.stout_ρ = smearing.ρ fermionparams.stout_loops = smearing.stout_loops fermionparams.stout_numlayers = smearing.numlayers end else smearing = NoSmearing_parameters() end if isexpert if fermionparams.quench methodtype = request( "Choose an update method", RadioMenu(["Heatbath", "Hybrid Monte Carlo"]), ) if methodtype == 1 physicalparams.update_method = "Heatbath" or = request("Use overrelazation method?", RadioMenu(["true", "false"])) physicalparams.useOR = ifelse(or == 1, true, false) if physicalparams.useOR physicalparams.numOR = parse( Int64, Base.prompt( "How many times do you want to do the OR?", default = "3", ), ) end else methodtype == 2 physicalparams.update_method = "HMC" end else methodtype = request( "Choose an update method", RadioMenu([ "Hybrid Monte Carlo", "Self-learning Hybrid Monte Carlo (SLHMC)", ]), ) if methodtype == 1 physicalparams.update_method = "HMC" else methodtype == 2 physicalparams.update_method = "SLHMC" @warn "SLHMC is not well developed" #= system.βeff = parse( Float64, Base.prompt("Input initial effective β", default = "$β"), ) system.firstlearn = parse( Int64, Base.prompt( "When do you want to start updating the effective action?", default = "10", ), ) =# end end else physicalparams.update_method = "HMC" end if isexpert Nthermalization = parse( Int64, Base.prompt( "Input the number of thermalization steps (no mearurement)", default = "0", ), ) if Nthermalization < 0 error( "Invalid value for Nthermalization=$Nthermalization. This has to be positive/zero.", ) end physicalparams.Nthermalization = Nthermalization end Nsteps = parse( Int64, Base.prompt( "Input the number of total trajectories after the thermalization", default = "$(100+physicalparams.initialtrj)", ), ) if Nsteps <= 0 error("Invalid value for Nsteps=$Nsteps. This has to be strictly positive.") end physicalparams.Nsteps = Nsteps if isexpert && physicalparams.update_method != "Heatbath" md = MD_interactive(Dirac_operator = fermionparams.Dirac_operator) else md = MD() end hmcparams.MDsteps = md.MDsteps hmcparams.Δτ = md.Δτ hmcparams.SextonWeingargten = md.SextonWeingargten hmcparams.N_SextonWeingargten = md.N_SextonWeingargten hmcparams.eps = cg.eps hmcparams.MaxCGstep = cg.MaxCGstep end measurement = Measurement_parameterset() measurementmenu = MultiSelectMenu(Options |> instances |> collect .|> string) if isexpert choices = request("Select the measurement methods you want to do:", measurementmenu) |> collect .|> Options else choices = [1, 2, 5] .|> Options end nummeasurements = length(choices) measurement.measurement_methods = Vector{Measurement_parameters}(undef, nummeasurements) #@enum Options Plaquette=1 Polyakov_loop=2 Topological_charge=3 Chiral_condensate=4 Pion_correlator=5 count = 0 for method in choices count += 1 if method == Plaquette measurement.measurement_methods[count] = Plaq_parameters_interactive() #plaq_wizard() elseif method == Polyakov_loop measurement.measurement_methods[count] = Poly_parameters_interactive() elseif method == Topological_charge measurement.measurement_methods[count] = TopologicalCharge_parameters_interactive() elseif method == Chiral_condensate measurement.measurement_methods[count] = ChiralCondensate_parameters_interactive() elseif method == Pion_correlator measurement.measurement_methods[count] = Pion_parameters_interactive() elseif method == Wilson_loop measurement.measurement_methods[count] = Wilson_loop_parameters_interactive(physicalparams.L) elseif method == Energy_density measurement.measurement_methods[count] = Energy_density_parameters_interactive() end end headername = make_headername(physicalparams, fermionparams, fermion_parameters) if nummeasurements != 0 controlparams.measurement_basedir = String( Base.prompt("base directory for measurements", default = "./measurements"), ) controlparams.measurement_dir = String( Base.prompt( "directory for measurements in $(controlparams.measurement_basedir)/", default = headername, ), ) end gradient_params = Print_Gradientflow_parameters() measurement_gradientflow = Measurement_parameterset() if isexpert methodtype = request( "Perform measurements with the gradient flow?", RadioMenu(["No", "Yes"]), ) if methodtype == 2 #Yes gradient_params.hasgradientflow = true else gradient_params.hasgradientflow = false end if gradient_params.hasgradientflow println("---------------------------------------------") println("---set measurements in gradient flow----------") gradient_params.eps_flow = parse( Float64, Base.prompt( "time step for gradient flow?", default = "$(gradient_params.eps_flow)", ), ) gradient_params.numflow = parse( Int64, Base.prompt( "How many times do you want to flow gauge fields?", default = "$(gradient_params.numflow)", ), ) #gradient_params.numflow = parse(Int64, Base.prompt("number of steps for gradient flow?", default = "$(gradient_params.numflow)")) #measurement_gradientflow = Measurement_parameterset() measurementmenu = MultiSelectMenu(Options |> instances |> collect .|> string) choices = request( "Select the measurement methods you want to do:", measurementmenu, ) |> collect .|> Options nummeasurements = length(choices) measurement_gradientflow.measurement_methods = Vector{Measurement_parameters}(undef, nummeasurements) count = 0 for method in choices count += 1 if method == Plaquette measurement_gradientflow.measurement_methods[count] = Plaq_parameters_interactive() #plaq_wizard() elseif method == Polyakov_loop measurement_gradientflow.measurement_methods[count] = Poly_parameters_interactive() elseif method == Topological_charge measurement_gradientflow.measurement_methods[count] = TopologicalCharge_parameters_interactive() elseif method == Chiral_condensate measurement_gradientflow.measurement_methods[count] = ChiralCondensate_parameters_interactive() elseif method == Pion_correlator measurement_gradientflow.measurement_methods[count] = Pion_parameters_interactive() elseif method == Energy_density measurement_gradientflow.measurement_methods[count] = Energy_density_parameters_interactive() end end println("---done for gradient flow----------") println("---------------------------------------------") end end controlparams.log_dir = String(Base.prompt("log directory", default = "./logs")) controlparams.logfile = String(Base.prompt("logfile name", default = headername * ".txt")) if isexpert savetype = request( "Choose a configuration format for saving", RadioMenu(["no save", "JLD", "ILDG", "Text format (BridgeText)"]), ) |> x -> x - 1 |> Fileformat if savetype == Nosave controlparams.saveU_format = "nothing" elseif savetype == JLD controlparams.saveU_format = "JLD" elseif savetype == ILDG controlparams.saveU_format = "ILDG" elseif savetype == BridgeText controlparams.saveU_format = "BridgeText" end if controlparams.saveU_format .≠ "nothing" controlparams.saveU_every = parse( Int64, Base.prompt( "How often do you save a configuration in file (Save every)?", default = "10", ), ) #system["saveU_basedir"] = String(Base.prompt("base directory for saving configuration", default="./confs")) controlparams.saveU_dir = String(Base.prompt("Saving directory", default = "./confs_$(headername)")) #system["saveU_dir"] = system["saveU_basedir"]*"/"*system["saveU_dir"] end end #physical, fermions, control, hmc = generate_printable_parameters(system) system_parameters_dict = Dict() system_parameters_dict["Physical setting"] = struct2dict(physicalparams) system_parameters_dict["Physical setting(fermions)"] = merge(struct2dict(fermionparams), struct2dict(fermion_parameters)) system_parameters_dict["System Control"] = struct2dict(controlparams) system_parameters_dict["HMC related"] = struct2dict(hmcparams) system_parameters_dict["Measurement set"] = struct2dict(measurement) system_parameters_dict["gradientflow_measurements"] = merge(struct2dict(gradient_params), struct2dict(measurement_gradientflow)) remove_default_values!(system_parameters_dict) system_parameters_dict["gradientflow_measurements"]["measurements_for_flow"] = deepcopy(system_parameters_dict["gradientflow_measurements"]["measurement_methods"]) delete!(system_parameters_dict["gradientflow_measurements"], "measurement_methods") open(filename, "w") do io TOML.print(io, system_parameters_dict) end #system_parameters_dict["Measurement set"] params_set = construct_Params_from_TOML(filename) #p = Params(params_set) println(""" -------------------------------------------------------------------------------- run_wizard is done. The returned value in this run_wizard() is params_set. If you want to run a simulation in REPL or other Julia codes, just do run_LQCD(params_set) or run_LQCD("$filename") The output parameter file is $filename. If you want to run a simulation, just do julia run.jl $filename -------------------------------------------------------------------------------- """) return params_set end function wilson_wizard_simple() wtype = 1 println("Standard Wilson fermion action will be used") hop = parse(Float64, Base.prompt("Input the hopping parameter κ", default = "0.141139")) if hop <= 0 error("Invalid value for κ=$hop. This has to be strictly positive.") end fermion_parameters = Wilson_parameters() fermion_parameters.hop = hop cg = ConjugateGradient() return fermion_parameters, cg end function set_verboselevel!(system) verboselevel = parse(Int64, Base.prompt("verbose level ?", default = "2")) if 1 ≤ verboselevel ≤ 3 println("verbose level = ", verboselevel) else error("verbose level should be 1 ≤ verboselevel ≤ 3") end system.verboselevel = verboselevel #system["verboselevel"] = verboselevel end function set_verboselevel() verboselevel = parse(Int64, Base.prompt("verbose level ?", default = "2")) if 1 ≤ verboselevel ≤ 3 println("verbose level = ", verboselevel) else error("verbose level should be 1 ≤ verboselevel ≤ 3") end return verboselevel #system["verboselevel"] = verboselevel end function set_Lattice_size(isexpert) if isexpert println("Input Lattice size, L=(Nx,Ny,Nz,Nt)") NX = parse(Int64, Base.prompt("Nx ?", default = "4")) NY = parse(Int64, Base.prompt("Ny ?", default = "4")) NZ = parse(Int64, Base.prompt("Nz ?", default = "4")) NT = parse(Int64, Base.prompt("Nt ?", default = "4")) #NT = parse(Int64,readline(stdin)) L = [NX, NY, NZ, NT] #L = (NX, NY, NZ, NT) #system["L"] = L if (NX <= 0) | (NY <= 0) | (NZ <= 0) | (NT <= 0) error("Invalid parameter L=$L, elements must be positive integers") end else NX = parse(Int64, Base.prompt("Input spatial lattice size ", default = "4")) NT = parse(Int64, Base.prompt("Input temporal lattice size ", default = "4")) #L = (NX, NX, NX, NT) L = [NX, NX, NX, NT] #system["L"] = L if (NX <= 0) | (NT <= 0) error("Invalid parameter L=$L, elements must be positive integers") end end println("Lattice is $L") return L end function set_gaugegroup(isexpert) if isexpert SNC = request("Choose a gauge group", RadioMenu(["SU(3)", "SU(2)"])) NC = ifelse(SNC == 1, 3, 2) else NC = 3 end println("SU($NC) will be used") return NC end function set_β(NC) if NC == 3 β = parse(Float64, Base.prompt("β ?", default = "5.7")) elseif NC == 2 β = parse(Float64, Base.prompt("β ?", default = "2.7")) end @assert β > 0 "Invalid value for β=$β. This has to be positive or zero" return β end function check_isfileloading() fileloading = request( "Do you perform only measurements on configurations in a directory? (no update)", RadioMenu(["No", "Yes"]), ) if fileloading == 2 isfileloading = true else isfileloading = false end return isfileloading end function set_loadU_format() loadtype = request( "Choose a configuration format for loading", RadioMenu(["JLD", "ILDG", "Text format(BridgeText)"]), ) |> Fileformat if loadtype == JLD loadU_format = "JLD" elseif loadtype == ILDG loadU_format = "ILDG" elseif v == BridgeText loadU_format = "BridgeText" end return loadU_format, loadtype end function make_headername(physicalparams, fermionparams, fermion_parameters) L = physicalparams.L update_method = physicalparams.update_method β = physicalparams.β quench = fermionparams.quench Dirac_operator = fermionparams.Dirac_operator #L = system.L headername = update_method * "_L" * string(L[1], pad = 2) * string(L[2], pad = 2) * string(L[3], pad = 2) * string(L[4], pad = 2) * "_beta" * string(β) if update_method == "HMC" if quench == true headername *= "_quenched" else headername *= "_" * Dirac_operator if Dirac_operator == "Staggered" headername *= "_mass" * string(fermion_parameters.mass) * "_Nf" * string(fermion_parameters.Nf) elseif Dirac_operator == "Wilson" || Dirac_operator == "WilsonClover" headername *= "_kappa" * string(fermion_parameters.hop) end end elseif update_method == "Heatbath" headername *= "_quenched" else if Dirac_operator != nothing headername *= "_" * Dirac_operator if Dirac_operator == "Staggered" headername *= "_mass" * string(fermion_parameters.mass) * "_Nf" * string(fermion_parameters.Nf) elseif Dirac_operator == "Wilson" || Dirac_operator == "WilsonClover" headername *= "_kappa" * string(fermion_parameters.hop) end else end end return headername end end #using .Wizard #Wizard.run_wizard()
LatticeQCD
https://github.com/akio-tomiya/LatticeQCD.jl.git
[ "MIT" ]
1.1.0
e495a1eaee52a513e02fe6ca2c995a7d0ed671a7
code
31466
module MD using LinearAlgebra using Base.Threads using Random, Distributions import ..Verbose_print: Verbose_level, Verbose_3, Verbose_2, Verbose_1, println_verbose3 import ..Actions: GaugeActionParam_standard, FermiActionParam_WilsonClover, FermiActionParam_Wilson, GaugeActionParam_autogenerator, SmearingParam_single, SmearingParam_multi, Nosmearing import ..LTK_universe: Universe, calc_Action, gauss_distribution, make_WdagWmatrix, set_β!, calc_IntegratedFermionAction, construct_fermion_gauss_distribution!, construct_fermionfield_φ!, construct_fermionfield_η! import ..Gaugefields: GaugeFields, substitute!, SU3GaugeFields, set_wing!, projlink!, make_staple_double!, GaugeFields_1d, SU3GaugeFields_1d, SU2GaugeFields_1d, calc_Plaq_notrace_1d, calc_GaugeAction, apply_smearing, calc_smearingU import ..Gaugefields import ..LieAlgebrafields: gauss_distribution_lie!, LieAlgebraFields, SU3AlgebraFields, SU2AlgebraFields, Gauge2Lie!, add!, add_gaugeforce!, expA!, stoutfource import ..Fermionfields: gauss_distribution_fermi!, set_wing_fermi!, Wdagx!, vvmat!, FermionFields, fermion_shift!, WilsonFermion, fermion_shiftB!, StaggeredFermion, Wx!, clear!, WdagWx!, substitute_fermion! using ..Fermionfields import ..Heatbath: heatbath! #import ..CGfermion:cg0!,cg0_WdagW!,shiftedcg0_WdagW! import ..Clover: Make_CloverFμν!, dSclover! import ..System_parameters: Params import ..Diracoperators: Wilson_operator, Adjoint_Wilson_operator, WilsonClover_operator, Dirac_operator, DdagD_operator import ..CGmethods: bicg, cg, shiftedcg import ..RationalApprox: calc_exactvalue, calc_Anϕ import ..Rhmc: get_order, get_β, get_α, get_α0, get_β_inverse, get_α_inverse, get_α0_inverse abstract type MD_parameters end struct MD_parameters_SextonWeingargten <: MD_parameters Δτ::Float64 MDsteps::Int64 N_SextonWeingargten::Int64 QPQ::Bool function MD_parameters_SextonWeingargten(Δτ, MDsteps, N_SextonWeingargten; QPQ = true) return new(Δτ, MDsteps, N_SextonWeingargten, QPQ) end end struct MD_parameters_standard <: MD_parameters Δτ::Float64 MDsteps::Int64 QPQ::Bool function MD_parameters_standard(Δτ, MDsteps; QPQ = true) return new(Δτ, MDsteps, QPQ) end end struct MD_parameters_IntegratedHMC <: MD_parameters Δτ::Float64 MDsteps::Int64 end struct MD_parameters_IntegratedHB <: MD_parameters end mutable struct MD_parameters_SLMC <: MD_parameters βeff::Union{Float64,Array{Float64,1}} debug::Bool function MD_parameters_SLMC(βeff) debug = false #debug = true return new(βeff, debug) end end mutable struct MD_parameters_SLHMC <: MD_parameters Δτ::Float64 MDsteps::Int64 βeff::Union{Float64,Array{Float64,1}} end function calc_factor(univ::Universe, mdparams::MD_parameters) return -univ.gparam.β * mdparams.Δτ / (2 * univ.NC) end function construct_MD_parameters(p::Params) #fac = - p.Δτ * p.β / (2*p.NC) if p.SextonWeingargten if p.quench == true error( "The quench update does not need the SextonWeingargten method. Put SextonWeingargten = false", ) end #return MD_parameters_SextonWeingargten(p.Δτ,p.MDsteps,fac,p.β,p.N_SextonWeingargten) return MD_parameters_SextonWeingargten(p.Δτ, p.MDsteps, p.N_SextonWeingargten) elseif p.SextonWeingargten == false && p.update_method == "IntegratedHMC" if p.quench == false error( "quench = false. The IntegratedHMC needs the quench update. Put update_method != IntegratedHMC or quench = true", ) end #return MD_parameters_IntegratedHMC(p.Δτ,p.MDsteps,fac,p.β) return MD_parameters_IntegratedHMC(p.Δτ, p.MDsteps) elseif p.SextonWeingargten == false && p.update_method == "SLHMC" if p.quench == false error( "quench = false. The SLHMC needs the quench update. Put update_method != SLHMC or quench = true", ) end #return MD_parameters_IntegratedHMC(p.Δτ,p.MDsteps,fac,p.β) return MD_parameters_SLHMC(p.Δτ, p.MDsteps, p.βeff) elseif p.SextonWeingargten == false && p.update_method == "IntegratedHB" if p.quench == false error( "quench = false. The IntegratedHB needs the quench update. Put update_method != IntegratedHB or quench = true", ) end #return MD_parameters_IntegratedHMC(p.Δτ,p.MDsteps,fac,p.β) return MD_parameters_IntegratedHB() elseif p.SextonWeingargten == false && p.update_method == "SLMC" if p.quench == false error( "quench = false. The SLMC needs the quench update. Put update_method != SLMC or quench = true", ) end #return MD_parameters_IntegratedHMC(p.Δτ,p.MDsteps,fac,p.β) return MD_parameters_SLMC(p.βeff) else #return MD_parameters_standard(p.Δτ,p.MDsteps,fac,p.β) return MD_parameters_standard(p.Δτ, p.MDsteps) end end function MD_parameters_standard(gparam::GaugeActionParam_standard) #βMD = gparam.β MDsteps = 10 Δτ = 0.1 #fac = - Δτ * βMD / (2*gparam.NTRACE) return MD_parameters_standard(gparam, Δτ, MDsteps)#,βMD) end function MD_parameters_standard(gparam::GaugeActionParam_standard, Δτ, MDsteps, βMD) #fac = - Δτ * βMD / (2*gparam.NTRACE) return MD_parameters_standard(Δτ, MDsteps)#,fac,βMD) end function md!(univ::Universe, mdparams::MD_parameters_standard) #Sold = md_initialize!(univ::Universe) QPQ = mdparams.QPQ #true if QPQ for istep = 1:mdparams.MDsteps #println("istep = $istep") updateU!(univ, mdparams, 0.5) updateP!(univ, mdparams, 1.0) if univ.quench == false #if univ.fparam != nothing updateP_fermi!(univ, mdparams, 1.0) end updateU!(univ, mdparams, 0.5) #Sold,Sg = calc_Action(univ) #println("$istep Sold,plaq = ",Sold,"\t",Sg) #exit() end else for istep = 1:mdparams.MDsteps #println("istep = $istep") updateP!(univ, mdparams, 0.5) if univ.quench == false #if univ.fparam != nothing updateP_fermi!(univ, mdparams, 0.5) end updateU!(univ, mdparams, 1.0) updateP!(univ, mdparams, 0.5) if univ.quench == false #if univ.fparam != nothing updateP_fermi!(univ, mdparams, 0.5) end end end if univ.quench == false construct_fermionfield_η!(univ) end Snew, plaq = calc_Action(univ) return Snew end function md!(univ::Universe, mdparams::MD_parameters_SextonWeingargten) #Sold = md_initialize!(univ::Universe) QPQ = mdparams.QPQ if QPQ != true for istep = 1:mdparams.MDsteps if univ.quench == false updateP_fermi!(univ, mdparams, 0.5) end for istep_SW = 1:mdparams.N_SextonWeingargten #println("istep_SW = $(istep_SW)") updateP!(univ, mdparams, 0.5 / mdparams.N_SextonWeingargten) updateU!(univ, mdparams, 1 / mdparams.N_SextonWeingargten) updateP!(univ, mdparams, 0.5 / mdparams.N_SextonWeingargten) end if univ.quench == false updateP_fermi!(univ, mdparams, 0.5) end end elseif QPQ @assert mdparams.N_SextonWeingargten % 2 == 0 "mdparams.N_SextonWeingargten % 2 should be 0!" for istep = 1:mdparams.MDsteps for istep_SW = 1:div(mdparams.N_SextonWeingargten, 2) updateU!(univ, mdparams, 0.5 / mdparams.N_SextonWeingargten) updateP!(univ, mdparams, 1 / mdparams.N_SextonWeingargten) updateU!(univ, mdparams, 0.5 / mdparams.N_SextonWeingargten) end if univ.quench == false updateP_fermi!(univ, mdparams, 1.0) end for istep_SW = 1:div(mdparams.N_SextonWeingargten, 2) updateU!(univ, mdparams, 0.5 / mdparams.N_SextonWeingargten) updateP!(univ, mdparams, 1 / mdparams.N_SextonWeingargten) updateU!(univ, mdparams, 0.5 / mdparams.N_SextonWeingargten) end end end if univ.quench == false construct_fermionfield_η!(univ) end Snew, plaq = calc_Action(univ) return Snew end function md!(univ::Universe, Sfold, Sgold, mdparams::MD_parameters_IntegratedHMC) @assert univ.quench == true "quench should be true!" if Sfold == nothing WdagW = make_WdagWmatrix(univ) #e,_ = eigen(WdagW) #println(e) Sfold = -real(logdet(WdagW)) #Uold = deepcopy(univ.U) if univ.Dirac_operator == "Staggered" if univ.fparam.Nf == 4 Sfold /= 2 end end end for istep = 1:mdparams.MDsteps updateU!(univ, mdparams, 0.5) updateP!(univ, mdparams, 1.0) updateU!(univ, mdparams, 0.5) end Sgnew, plaq = calc_Action(univ) println("Making W^+W matrix...") @time WdagW = make_WdagWmatrix(univ) println("Calculating logdet") @time Sfnew = -real(logdet(WdagW)) if univ.Dirac_operator == "Staggered" if univ.fparam.Nf == 4 Sfnew /= 2 end end # #println("Snew,plaq = ",Snew,"\t",plaq) println("Sgnew,Sfnew,Sgold,Sfold: ", Sgnew, "\t", Sfnew, "\t", Sgold, "\t", Sfold) return Sgnew, Sfnew, Sgold, Sfold end function md!(univ::Universe, Sfold, Sgold, mdparams::MD_parameters_IntegratedHB) @assert univ.quench == true "quench should be true!" @assert univ.NC == 2 "Only SU(2) is supported now." if Sfold == nothing @time Sfold = calc_IntegratedFermionAction(univ) #= WdagW = make_WdagWmatrix(univ) #e,_ = eigen(WdagW) #println(e) Sfold = -real(logdet(WdagW)) #Uold = deepcopy(univ.U) if univ.Dirac_operator == "Staggered" if univ.fparam.Nf == 4 Sfold /= 2 end end =# end Sgold, plaq = calc_GaugeAction(univ) Sgeffold = Sgold heatbath!(univ) Sgnew, plaq = calc_GaugeAction(univ) Sgeffnew = Sgnew #= println("Making W^+W matrix...") @time WdagW = make_WdagWmatrix(univ) println("Calculating logdet") @time Sfnew = -real(logdet(WdagW)) if univ.Dirac_operator == "Staggered" if univ.fparam.Nf == 4 Sfnew /= 2 end end =# @time Sfnew = calc_IntegratedFermionAction(univ) # #println("Snew,plaq = ",Snew,"\t",plaq) println("Sgnew,Sfnew,Sgold,Sfold: ", Sgnew, "\t", Sfnew, "\t", Sgold, "\t", Sfold) return Sgnew, Sfnew, Sgeffnew, Sgold, Sfold, Sgeffold end function md!(univ::Universe, Sfold, Sgold, mdparams::MD_parameters_SLMC) @assert univ.quench == true "quench should be true!" #@assert univ.NC == 2 "Only SU(2) is supported now." if Sfold == nothing @time Sfold = calc_IntegratedFermionAction(univ, debug = mdparams.debug) #= WdagW = make_WdagWmatrix(univ) #e,_ = eigen(WdagW) #println(e) Sfold = -real(logdet(WdagW)) #Uold = deepcopy(univ.U) if univ.Dirac_operator == "Staggered" if univ.fparam.Nf == 4 Sfold /= 2 end end =# end β = univ.gparam.β Sgold, plaq = calc_GaugeAction(univ) set_β!(univ, mdparams.βeff) Sgeffold, plaq = calc_GaugeAction(univ) heatbath!(univ) #heatbath!(univ) Sgeffnew, plaq = calc_GaugeAction(univ) set_β!(univ, β) Sgnew, plaq = calc_GaugeAction(univ) @time Sfnew = calc_IntegratedFermionAction(univ, debug = mdparams.debug) #println("Sfnew comparison: $Sfnew,$Sfnew2") # #println("Snew,plaq = ",Snew,"\t",plaq) println( "Sgnew,Sfnew,Sgeffnew,Sgold,Sfold,Sgeffold: ", Sgnew, "\t", Sfnew, "\t", Sgeffnew, "\t", Sgold, "\t", Sfold, "\t", Sgeffold, ) return Sgnew, Sfnew, Sgeffnew, Sgold, Sfold, Sgeffold end function md!(univ::Universe, Sfold, Sgold, mdparams::MD_parameters_SLHMC) @assert univ.quench == true "quench should be true!" if Sfold == nothing WdagW = make_WdagWmatrix(univ) #e,_ = eigen(WdagW) Sfold = -real(logdet(WdagW)) #Uold = deepcopy(univ.U) if univ.Dirac_operator == "Staggered" if univ.fparam.Nf == 4 Sfold /= 2 end end end β = univ.gparam.β set_β!(univ, mdparams.βeff) for istep = 1:mdparams.MDsteps updateU!(univ, mdparams, 0.5) updateP!(univ, mdparams, 1.0) updateU!(univ, mdparams, 0.5) end set_β!(univ, β) Sgnew, plaq = calc_Action(univ) println("Making W^+W matrix...") @time WdagW = make_WdagWmatrix(univ) println("Calculating logdet") @time Sfnew = -real(logdet(WdagW)) if univ.Dirac_operator == "Staggered" if univ.fparam.Nf == 4 Sfnew /= 2 end end # #println("Snew,plaq = ",Snew,"\t",plaq) println("Sgnew,Sfnew,Sgold,Sfold: ", Sgnew, "\t", Sfnew, "\t", Sgold, "\t", Sfold) return Sgnew, Sfnew, Sgold, Sfold, plaq end function md_initialize!(univ::Universe) substitute!(univ.Uold, univ.U) NV = univ.NV NDFALG = univ.NDFALG for μ = 1:4 pwork = gauss_distribution(univ, NV * NDFALG) substitute!(univ.p[μ], pwork) #display(univ.p[μ]) end #gauss_distribution_lie!(univ.p) if univ.quench == false #if univ.fparam != nothing construct_fermion_gauss_distribution!(univ) #generate η #println(univ.η*univ.η) construct_fermionfield_φ!(univ) #generate φ end Sold, Sg = calc_Action(univ) #println("-----------------------------------------------") #println("Sold,plaq in init = ",Sold,"\t",Sg) #println("-----------------------------------------------") #exit() return Sold end function metropolis_update!(univ::Universe, Sold, Snew) accept = exp(Sold - Snew) >= univ.ranf() println("Snew,Sold $Snew $Sold") println("Sold,Snew,Diff,accept: $Sold $Snew $(Sold-Snew) $accept") if accept else substitute!(univ.U, univ.Uold) end return accept end function updateP_fermi!(univ::Universe, mdparams::MD_parameters, τ) updateP_fermi!( univ.η, univ.φ, univ.ξ, univ.fparam, univ.p, mdparams, τ, univ.U, univ._temporal_gauge, univ._temporal_algebra, univ._temporal_fermi, kind_of_verboselevel = univ.kind_of_verboselevel, ) return end function updateP_fermi_fromX!( Y::F, φ::F, X::F, fparam, p::Array{N,1}, mdparams::MD_parameters, τ, U::Array{T,1}, temps::Array{T_1d,1}, temp_a::Array{N,1}, temps_fermi; kind_of_verboselevel = Verbose_2(), ) where {F<:WilsonFermion,T<:GaugeFields,N<:LieAlgebraFields,T_1d<:GaugeFields_1d} temp0_f = temps_fermi[1] #F_field temp1_f = temps_fermi[2] #F_field temp2_g = temps[1] #G_field1 temp3_g = temps[2] #G_field1 c = temp_a[1] NV = temp2_g.NV W = Dirac_operator(U, φ, fparam) mul!(Y, W, X) set_wing_fermi!(Y) for μ = 1:4 #! Construct U(x,mu)*P1 # U_{k,μ} X_{k+μ} fermion_shift!(temp0_f, U, μ, X) # (r-γ_μ) U_{k,μ} X_{k+μ} mul!(temp0_f, view(X.rminusγ, :, :, μ), temp0_f) # κ (r-γ_μ) U_{k,μ} X_{k+μ} mul!(temp1_f, X.hopp[μ], temp0_f) # κ ((r-γ_μ) U_{k,μ} X_{k+μ}) ⊗ Y_k vvmat!(temp2_g, temp1_f, Y, 1) #..... Projection onto Lie Algebra ..... projlink!(temp3_g, temp2_g) Gauge2Lie!(c, temp3_g) #... p(new) = p(old) + fac * c ..... add!(p[μ], τ * mdparams.Δτ, c) #! Construct P2*U_adj(x,mu) # Y_{k+μ}^dag U_{k,μ}^dag fermion_shiftB!(temp0_f, U, -μ, Y) # Y_{k+μ}^dag U_{k,μ}^dag*(r+γ_μ) mul!(temp0_f, temp0_f, view(X.rplusγ, :, :, μ)) # κ Y_{k+μ}^dag U_{k,μ}^dag*(r+γ_μ) mul!(temp1_f, X.hopm[μ], temp0_f) # X_k ⊗ κ Y_{k+μ}^dag U_{k,μ}^dag*(r+γ_μ) vvmat!(temp2_g, X, temp1_f, 2) #..... Projection onto Lie Algebra ..... projlink!(temp3_g, temp2_g) Gauge2Lie!(c, temp3_g) add!(p[μ], -τ * mdparams.Δτ, c) if typeof(fparam) == FermiActionParam_WilsonClover dSclover!(c, μ, X, Y, U, fparam, temps) add!(p[μ], -τ * mdparams.Δτ, c) end end end function updateP_fermi_fromX_smearing!( Y::F, φ::F, X::F, fparam, p::Array{N,1}, mdparams::MD_parameters, τ, U::Array{T,1}, Uout_multi, dSdU, Uin, temps::Array{T_1d,1}, temp_a::Array{N,1}, temps_fermi; kind_of_verboselevel = Verbose_2(), ) where {F<:WilsonFermion,T<:GaugeFields,N<:LieAlgebraFields,T_1d<:GaugeFields_1d} temp0_f = temps_fermi[1] #F_field temp1_f = temps_fermi[2] #F_field temp2_g = temps[1] #G_field1 temp3_g = temps[2] #G_field1 c = temp_a[1] NV = temp2_g.NV W = Dirac_operator(U, φ, fparam) mul!(Y, W, X) set_wing_fermi!(Y) for μ = 1:4 #! Construct U(x,mu)*P1 # U_{k,μ} X_{k+μ} fermion_shift!(temp0_f, U, μ, X) # (r-γ_μ) U_{k,μ} X_{k+μ} mul!(temp0_f, view(X.rminusγ, :, :, μ), temp0_f) # κ (r-γ_μ) U_{k,μ} X_{k+μ} mul!(temp1_f, X.hopp[μ], temp0_f) # κ ((r-γ_μ) U_{k,μ} X_{k+μ}) ⊗ Y_k vvmat!(temp2_g, temp1_f, Y, 1) mul!(dSdU[μ], U[μ]', temp2_g) #additional term #! Construct P2*U_adj(x,mu) # Y_{k+μ}^dag U_{k,μ}^dag fermion_shiftB!(temp0_f, U, -μ, Y) # Y_{k+μ}^dag U_{k,μ}^dag*(r+γ_μ) mul!(temp0_f, temp0_f, view(X.rplusγ, :, :, μ)) # κ Y_{k+μ}^dag U_{k,μ}^dag*(r+γ_μ) mul!(temp1_f, X.hopm[μ], temp0_f) # X_k ⊗ κ Y_{k+μ}^dag U_{k,μ}^dag*(r+γ_μ) vvmat!(temp2_g, X, temp1_f, 2) mul!(temp3_g, U[μ]', temp2_g) #Gaugefields.add!(dSdU[μ],temp3_g) Gaugefields.muladd!(dSdU[μ], -1, temp3_g) if typeof(fparam) == FermiActionParam_WilsonClover dSclover!(c, μ, X, Y, U, fparam, temps) Gaugefields.muladd!(dSdU[μ], -1, c) #add!(p[μ],-τ*mdparams.Δτ,c) end end if typeof(fparam.smearing) <: SmearingParam_single dSdUnew, _ = stoutfource(dSdU, Uin, fparam.smearing) elseif typeof(fparam.smearing) <: SmearingParam_multi dSdUnew, _ = stoutfource(dSdU, Uout_multi, Uin, fparam.smearing) elseif typeof(fparam.smearing) <: Nosmearing dSdUnew = dSdU else error("$(typeof(fparam.smearing)) is not supported") end for μ = 1:4 mul!(temp2_g, Uin[μ], dSdUnew[μ]) #..... Projection onto Lie Algebra ..... projlink!(temp3_g, temp2_g) Gauge2Lie!(c, temp3_g) #... p(new) = p(old) + fac * c ..... add!(p[μ], τ * mdparams.Δτ, c) end end function updateP_fermi_fromX!( Y::F, φ::F, X::F, fparam, p::Array{N,1}, mdparams::MD_parameters, τ, U::Array{T,1}, temps::Array{T_1d,1}, temp_a::Array{N,1}, temps_fermi; kind_of_verboselevel = Verbose_2(), coeff = 1, ) where {F<:StaggeredFermion,T<:GaugeFields,N<:LieAlgebraFields,T_1d<:GaugeFields_1d} temp0_f = temps_fermi[1] #F_field temp1_f = temps_fermi[2] #F_field temp2_g = temps[1] #G_field1 temp3_g = temps[2] #G_field1 c = temp_a[1] NV = temp2_g.NV W = Dirac_operator(U, φ, fparam) mul!(Y, W, X) for μ = 1:4 #! Construct U(x,mu)*P1 # U_{k,μ} X_{k+μ} fermion_shift!(temp0_f, U, μ, X) # κ ((r-γ_μ) U_{k,μ} X_{k+μ}) ⊗ Y_k vvmat!(temp2_g, temp0_f, Y, 1) #..... Projection onto Lie Algebra ..... projlink!(temp3_g, temp2_g) Gauge2Lie!(c, temp3_g) #... p(new) = p(old) + fac * c ..... add!(p[μ], -0.5 * τ * mdparams.Δτ * coeff, c) #! Construct P2*U_adj(x,mu) # Y_{k+μ}^dag U_{k,μ}^dag fermion_shiftB!(temp0_f, U, -μ, Y) # Y_{k+μ}^dag U_{k,μ}^dag*(r+γ_μ) # X_k ⊗ κ Y_{k+μ}^dag U_{k,μ}^dag*(r+γ_μ) vvmat!(temp2_g, X, temp0_f, 2) #..... Projection onto Lie Algebra ..... projlink!(temp3_g, temp2_g) Gauge2Lie!(c, temp3_g) add!(p[μ], -0.5 * τ * mdparams.Δτ * coeff, c) end return end function updateP_fermi_fromX_smearing!( Y::F, φ::F, X::F, fparam, p::Array{N,1}, mdparams::MD_parameters, τ, U::Array{T,1}, Uout_multi, dSdU, Uin, temps::Array{T_1d,1}, temp_a::Array{N,1}, temps_fermi; kind_of_verboselevel = Verbose_2(), coeff = 1, ) where {F<:StaggeredFermion,T<:GaugeFields,N<:LieAlgebraFields,T_1d<:GaugeFields_1d} temp0_f = temps_fermi[1] #F_field temp1_f = temps_fermi[2] #F_field temp2_g = temps[1] #G_field1 temp3_g = temps[2] #G_field1 c = temp_a[1] NV = temp2_g.NV W = Dirac_operator(U, φ, fparam) mul!(Y, W, X) for μ = 1:4 #! Construct U(x,mu)*P1 # U_{k,μ} X_{k+μ} fermion_shift!(temp0_f, U, μ, X) # κ ((r-γ_μ) U_{k,μ} X_{k+μ}) ⊗ Y_k vvmat!(temp2_g, temp0_f, Y, 1) mul!(dSdU[μ], U[μ]', temp2_g) #additional term #! Construct P2*U_adj(x,mu) # Y_{k+μ}^dag U_{k,μ}^dag fermion_shiftB!(temp0_f, U, -μ, Y) # X_k ⊗ κ Y_{k+μ}^dag U_{k,μ}^dag*(r+γ_μ) #vvmat!(UdSdU2[μ],X,temp0_f,2) #if fparam.smearing != nothing vvmat!(temp2_g, X, temp0_f, 2) mul!(temp3_g, U[μ]', temp2_g) Gaugefields.add!(dSdU[μ], temp3_g) end if typeof(fparam.smearing) <: SmearingParam_single dSdUnew, _ = stoutfource(dSdU, Uin, fparam.smearing) elseif typeof(fparam.smearing) <: SmearingParam_multi dSdUnew, _ = stoutfource(dSdU, Uout_multi, Uin, fparam.smearing) else error("$(typeof(fparam.smearing)) is not supported") end for μ = 1:4 mul!(temp2_g, Uin[μ], dSdUnew[μ]) projlink!(temp3_g, temp2_g) Gauge2Lie!(c, temp3_g) add!(p[μ], -0.5 * τ * mdparams.Δτ * coeff, c) end return end function updateP_fermi!( Y::F, φ::F, X::F, fparam, p::Array{N,1}, mdparams::MD_parameters, τ, Uin::Array{T,1}, temps::Array{T_1d,1}, temp_a::Array{N,1}, temps_fermi; kind_of_verboselevel = Verbose_2(), ) where {F<:WilsonFermion,T<:GaugeFields,N<:LieAlgebraFields,T_1d<:GaugeFields_1d} temp0_f = temps_fermi[1] #F_field temp1_f = temps_fermi[2] #F_field temp2_g = temps[1] #G_field1 temp3_g = temps[2] #G_field1 c = temp_a[1] NV = temp2_g.NV U, Uout_multi, dSdU = calc_smearingU(Uin, fparam.smearing, calcdSdU = true, temps = temps) WdagW = DdagD_operator(U, φ, fparam) cg( X, WdagW, φ, eps = fparam.eps, maxsteps = fparam.MaxCGstep, verbose = kind_of_verboselevel, ) set_wing_fermi!(X) if fparam.smearing != nothing && typeof(fparam.smearing) != Nosmearing updateP_fermi_fromX_smearing!( Y, φ, X, fparam, p, mdparams, τ, U, Uout_multi, dSdU, Uin, temps, temp_a, temps_fermi, kind_of_verboselevel = kind_of_verboselevel, ) else updateP_fermi_fromX!( Y, φ, X, fparam, p, mdparams, τ, U, temps, temp_a, temps_fermi, kind_of_verboselevel = kind_of_verboselevel, ) end return end function updateP_fermi!( Y::F, φ::F, X::F, fparam, p::Array{N,1}, mdparams::MD_parameters, τ, Uin::Array{T,1}, temps::Array{T_1d,1}, temp_a::Array{N,1}, temps_fermi; kind_of_verboselevel = Verbose_2(), ) where {F<:StaggeredFermion,T<:GaugeFields,N<:LieAlgebraFields,T_1d<:GaugeFields_1d} temp0_f = temps_fermi[1] #F_field temp1_f = temps_fermi[2] #F_field temp2_g = temps[1] #G_field1 temp3_g = temps[2] #G_field1 c = temp_a[1] NV = temp2_g.NV U, Uout_multi, dSdU = calc_smearingU(Uin, fparam.smearing, calcdSdU = true, temps = temps) WdagW = DdagD_operator(U, φ, fparam) if fparam.Nf == 4 || fparam.Nf == 8 #X = (D^dag D)^(-1) ϕ # cg( X, WdagW, φ, eps = fparam.eps, maxsteps = fparam.MaxCGstep, verbose = kind_of_verboselevel, ) set_wing_fermi!(X) if fparam.smearing != nothing && typeof(fparam.smearing) != Nosmearing updateP_fermi_fromX_smearing!( Y, φ, X, fparam, p, mdparams, τ, U, Uout_multi, dSdU, Uin, temps, temp_a, temps_fermi, kind_of_verboselevel = kind_of_verboselevel, ) else updateP_fermi_fromX!( Y, φ, X, fparam, p, mdparams, τ, U, temps, temp_a, temps_fermi, kind_of_verboselevel = kind_of_verboselevel, ) end else N_MD = get_order(fparam.rhmc_MD) #numtemps_fermi = length(temps_fermi) x = temps_fermi[end-N_MD] vec_x = temps_fermi[end-N_MD+1:end] for j = 1:N_MD Fermionfields.clear!(vec_x[j]) end vec_β = get_β_inverse(fparam.rhmc_MD) vec_α = get_α_inverse(fparam.rhmc_MD) α0 = get_α0_inverse(fparam.rhmc_MD) shiftedcg(vec_x, vec_β, x, WdagW, φ, eps = fparam.eps, maxsteps = fparam.MaxCGstep) for j = 1:N_MD set_wing_fermi!(vec_x[j]) if fparam.smearing != nothing && typeof(fparam.smearing) != Nosmearing updateP_fermi_fromX_smearing!( Y, φ, vec_x[j], fparam, p, mdparams, τ, U, Uout_multi, dSdU, Uin, temps, temp_a, temps_fermi, kind_of_verboselevel = kind_of_verboselevel, coeff = vec_α[j], ) else updateP_fermi_fromX!( Y, φ, vec_x[j], fparam, p, mdparams, τ, U, temps, temp_a, temps_fermi, kind_of_verboselevel = kind_of_verboselevel, coeff = vec_α[j], ) end end end #exit() return end function updateP!(univ::Universe, mdparams::MD_parameters, τ) factor = calc_factor(univ, mdparams) updateP!( univ.p, factor, τ, univ.U, univ._temporal_gauge, univ._temporal_algebra[1], univ.gparam, ) return end function updateP!( p::Array{N,1}, factor, τ, U::Array{T,1}, temps::Array{T_1d,1}, temp_a::N, gparam::GaugeActionParam_autogenerator, ) where {T<:GaugeFields,N<:LieAlgebraFields,T_1d<:GaugeFields_1d} add_gaugeforce!(p, U, temps, temp_a, gparam, fac = τ * factor) return end function updateP!( p::Array{N,1}, factor, τ, U::Array{T,1}, temps::Array{T_1d,1}, temp_a::N, gparam::GaugeActionParam_standard, ) where {T<:GaugeFields,N<:LieAlgebraFields,T_1d<:GaugeFields_1d} add_gaugeforce!(p, U, temps, temp_a, fac = τ * factor) return end function updateU!(univ::Universe, mdparams::MD_parameters, τ) updateU!(univ.U, mdparams, τ, univ.p, univ._temporal_gauge, univ._temporal_algebra[1]) return end function updateU!( U, mdparams::MD_parameters, τ, p::Array{N,1}, temps, temp_a::N, ) where {N<:LieAlgebraFields} temp1 = temps[1] temp2 = temps[2] temp3 = temps[3] temp4 = temps[4] c = temp_a for μ = 1:4 substitute!(temp1, U[μ]) mul!(c, τ * mdparams.Δτ, p[μ]) expA!(temp2, c, temp3, temp4) #mul!(temp3,temp1,U[μ]) mul!(temp3, temp2, temp1) substitute!(U[μ], temp3) set_wing!(U[μ]) end end function updateU!( U, mdparams::MD_parameters, τ, p::Array{N,1}, temps::Array{T_1d,1}, temp_a::N, ) where {N<:LieAlgebraFields,T_1d<:GaugeFields_1d} temp1 = temps[1] temp2 = temps[2] temp3 = temps[3] temp4 = temps[4] c = temp_a for μ = 1:4 substitute!(temp1, U[μ]) mul!(c, τ * mdparams.Δτ, p[μ]) expA!(temp2, c, temp3, temp4) #mul!(temp3,temp1,U[μ]) mul!(temp3, temp2, temp1) substitute!(U[μ], temp3) set_wing!(U[μ]) end end end
LatticeQCD
https://github.com/akio-tomiya/LatticeQCD.jl.git
[ "MIT" ]
1.1.0
e495a1eaee52a513e02fe6ca2c995a7d0ed671a7
code
53320
module Measurements using LinearAlgebra using SparseArrays using KrylovKit import ..LTK_universe: Universe, make_WdagWmatrix, calc_IntegratedFermionAction import ..Gaugefields: GaugeFields, set_wing!, substitute!, make_staple!, calc_Plaq!, SU3GaugeFields, SU2GaugeFields, SU3GaugeFields_1d, SU2GaugeFields_1d, GaugeFields_1d, calc_Polyakov, calc_Plaq, calc_Plaq_notrace_1d, SUn, SU2, SU3, TA, add!, SUNGaugeFields, SUNGaugeFields_1d, Loops, evaluate_loops!, evaluate_loops, U1GaugeFields, U1GaugeFields_1d, calc_smearingU import ..Fermionfields: clear!, FermionFields, WilsonFermion import ..Fermionfields: Z4_distribution_fermi!, gauss_distribution_fermi!, set_wing_fermi! import ..CGmethods: bicg #import ..CGfermion:cg0! import ..System_parameters: Params import ..Actions: FermiActionParam_Wilson, FermiActionParam_Staggered, FermiActionParam_WilsonClover import ..Diracoperators: Dirac_operator, γ5D_operator import ..Verbose_print: Verbose_level, Verbose_3, Verbose_2, Verbose_1, println_verbose3, println_verbose2, println_verbose1, print_verbose1, print_verbose2, print_verbose3 import ..Smearing: gradientflow!, calc_stout!, calc_fatlink_APE!, calc_stout, calc_fatlink_APE, calc_multihit! import ..Wilsonloops: Wilson_loop, Wilson_loop_set #import ..System_parameters: set_params #= abstract type MeasureMethod end Base.@kwdef mutable struct Pion_correlator <: MeasureMethod measure_every::Int64 = 10 Dirac_operator::String = "Wilson" end =# struct Measurement{Fermi,GaugeP,FermiP,Gauge_temp} gparam::GaugeP fparam::Union{Nothing,FermiP} _temporal_gauge::Array{Gauge_temp,1} _temporal_fermi1::Union{Nothing,Array{Fermi,1}} _temporal_fermi2::Union{Nothing,Array{Fermi,1}} function Measurement(p::Params, univ::Universe) if p.Dirac_operator == p.Dirac_operator_measurement return Measurement(univ, Dirac_operator = univ.Dirac_operator) else if p.Dirac_operator_measurement == nothing fparam = nothing else if p.Dirac_operator_measurement == "Wilson" fparam = FermiActionParam_Wilson( p.hop_measurement, p.r_measurement, p.eps_measurement, p.Dirac_operator_measurement, p.MaxCGstep_measurement, p.quench, ) elseif p.Dirac_operator_measurement == "Staggered" fparam = FermiActionParam_Staggered( p.mass_measurement, p.eps_measurement, p.Dirac_operator_measurement, p.MaxCGstep_measurement, p.quench, p.Nf, ) end end return Measurement(univ, fparam; Dirac_operator = p.Dirac_operator_measurement) end end function Measurement(univ::Universe, gparam, fparam; Dirac_operator = nothing) NX = univ.NX NY = univ.NY NZ = univ.NZ NT = univ.NT NC = univ.NC if NC == 3 U = Array{SU3GaugeFields,1}(undef, 4) _temporal_gauge = Array{SU3GaugeFields_1d,1}(undef, 4) elseif NC == 2 U = Array{SU2GaugeFields,1}(undef, 4) _temporal_gauge = Array{SU2GaugeFields_1d,1}(undef, 4) elseif NC ≥ 4 U = Array{SUNGaugeFields,1}(undef, 4) _temporal_gauge = Array{SUNGaugeFields_1d,1}(undef, 4) elseif NC == 1 U = Array{U1GaugeFields,1}(undef, 4) _temporal_gauge = Array{U1GaugeFields_1d,1}(undef, 4) end for i = 1:length(_temporal_gauge) _temporal_gauge[i] = GaugeFields_1d(NC, NX, NY, NZ, NT) #similar(U[1]) end if Dirac_operator == nothing _temporal_fermi1 = nothing _temporal_fermi2 = nothing φ = nothing else φ = FermionFields(NC, NX, NY, NZ, NT, fparam, univ.BoundaryCondition) _temporal_fermi1 = Array{FermionFields,1}(undef, 4) _temporal_fermi2 = Array{FermionFields,1}(undef, 4) for i = 1:length(_temporal_fermi1) _temporal_fermi1[i] = similar(φ) end for i = 1:length(_temporal_fermi2) _temporal_fermi2[i] = similar(φ) end end Fermi = typeof(φ) GaugeP = typeof(gparam) FermiP = typeof(fparam) Gauge_temp = eltype(_temporal_gauge) return new{Fermi,GaugeP,FermiP,Gauge_temp}( gparam, fparam, _temporal_gauge, _temporal_fermi1, _temporal_fermi2, ) end function Measurement(univ::Universe; Dirac_operator = nothing) return Measurement( univ::Universe, univ.gparam, univ.fparam, Dirac_operator = Dirac_operator, ) end function Measurement(univ::Universe, fparam; Dirac_operator = nothing) return Measurement( univ::Universe, univ.gparam, fparam, Dirac_operator = Dirac_operator, ) end end defaultmeasures = Array{Dict,1}(undef, 2) for i = 1:length(defaultmeasures) defaultmeasures[i] = Dict() end defaultmeasures[1]["methodname"] = "Plaquette" defaultmeasures[1]["measure_every"] = 1 defaultmeasures[1]["fermiontype"] = nothing defaultmeasures[2]["methodname"] = "Polyakov_loop" defaultmeasures[2]["measure_every"] = 1 defaultmeasures[2]["fermiontype"] = nothing #= defaultmeasures[3]["methodname"] = "Chiral_cond" defaultmeasures[3]["measure_every"] = 10 defaultmeasures[3]["fermiontype"] = "Staggered" defaultmeasures[4]["methodname"] = "Pion_correlator" defaultmeasures[4]["measure_every"] = 20 defaultmeasures[4]["fermiontype"] = "Wilson" defaultmeasures[5]["methodname"] = "Topologicalcharge" defaultmeasures[5]["measure_every"] = 5 defaultmeasures[5]["fermiontype"] = nothing defaultmeasures[5]["numflow"] = 10 =# struct Measurement_set nummeasurement::Int64 fermions::Array{Measurement,1} measurement_methods::Array{Dict,1} measurementfps::Array{IOStream,1} function Measurement_set( univ::Universe, measurement_dir; measurement_methods = defaultmeasures, ) nummeasurement = length(measurement_methods) fermions = Array{Measurement,1}(undef, nummeasurement) measurementfps = Array{IOStream,1}(undef, nummeasurement) for i = 1:nummeasurement method = measurement_methods[i] if haskey(method, "fermiontype") fermiontype = method["fermiontype"] else fermiontype = nothing end measure_overwrite = "w" if method["methodname"] == "Plaquette" measurementfps[i] = open(measurement_dir * "/Plaquette.txt", measure_overwrite) elseif method["methodname"] == "Polyakov_loop" measurementfps[i] = open(measurement_dir * "/Polyakov_loop.txt", measure_overwrite) elseif method["methodname"] == "Topological_charge" measurementfps[i] = open(measurement_dir * "/Topological_charge.txt", measure_overwrite) elseif method["methodname"] == "Chiral_condensate" measurementfps[i] = open(measurement_dir * "/Chiral_condensate.txt", measure_overwrite) @assert fermiontype != nothing "fermiontype should be set in Chiral_condensate measurement" elseif method["methodname"] == "Pion_correlator" measurementfps[i] = open(measurement_dir * "/Pion_correlator.txt", measure_overwrite) @assert fermiontype != nothing "fermiontype should be set in Pion_correlator measurement" elseif method["methodname"] == "Polyakov_loop_correlator" measurementfps[i] = open( measurement_dir * "/Polyakov_loop_correlator.txt", measure_overwrite, ) elseif method["methodname"] == "Wilson_loop" measurementfps[i] = open(measurement_dir * "/Wilson_loop.txt", measure_overwrite) elseif method["methodname"] == "smeared_Wilson_loop" measurementfps[i] = open(measurement_dir * "/smeared_Wilson_loop.txt", measure_overwrite) elseif method["methodname"] == "integrated_fermion_action" measurementfps[i] = open(measurement_dir * "/Fermion_actions.txt", "w") elseif method["methodname"] == "eigenvalues" measurementfps[i] = open(measurement_dir * "/eigenvalues.txt", "w") else error("$(method["methodname"]) is not supported in measurement functions") end if haskey(method, "eps") eps = method["eps"] else eps = 1e-16 end if haskey(method, "MaxCGstep") MaxCGstep = method["MaxCGstep"] else MaxCGstep = 5000 end if fermiontype == "Wilson" if haskey(method, "hop") hop = method["hop"] else hop = 0.141139 println( "Warning. hop = $hop, Default value is used in measurement $(method["methodname"])", ) end if haskey(method, "r") r = method["r"] else r = 1 end quench = false smearing_for_fermion = set_params(method, "smearing_for_fermion", "nothing") stout_numlayers = set_params(method, "stout_numlayers", nothing) stout_ρ = set_params(method, "stout_ρ", nothing) stout_loops = set_params(method, "stout_loops", nothing) #fparam = FermiActionParam_Wilson(hop,r,eps,fermiontype,MaxCGstep,quench) if smearing_for_fermion == "nothing" fparam = FermiActionParam_Wilson(hop, r, eps, fermiontype, MaxCGstep, quench) else L = (univ.NX, univ.NY, univ.NZ, univ.NT) fparam = FermiActionParam_Wilson( hop, r, eps, fermiontype, MaxCGstep, quench, smearingparameters = "stout", loops_list = stout_loops, coefficients = stout_ρ, numlayers = stout_numlayers, L = L, ) end elseif fermiontype == "WilsonClover" if haskey(method, "hop") hop = method["hop"] else hop = 0.141139 println( "Warning. hop = $hop, Default value is used in measurement $(method["methodname"])", ) end if haskey(method, "r") r = method["r"] else r = 1 end if haskey(method, "Clover_coefficient") Clover_coefficient = method["Clover_coefficient"] else Clover_coefficient = 1.5612 end NV = univ.NV inn_table = zeros(Int64, NV, 4, 2) internal_flags = zeros(Bool, 2) _ftmp_vectors = Array{Array{ComplexF64,3},1}(undef, 6) for i = 1:6 _ftmp_vectors[i] = zeros(ComplexF64, univ.NC, NV, 4) end _is1 = zeros(Int64, NV) _is2 = zeros(Int64, NV) quench = false fparam = FermiActionParam_WilsonClover( hop, r, eps, fermiontype, MaxCGstep, Clover_coefficient, internal_flags, inn_table, _ftmp_vectors, _is1, _is2, quench, ) smearing_for_fermion = set_params(method, "smearing_for_fermion", "nothing") stout_numlayers = set_params(method, "stout_numlayers", nothing) stout_ρ = set_params(method, "stout_ρ", nothing) stout_loops = set_params(method, "stout_loops", nothing) if smearing_for_fermion == "nothing" FermiActionParam_WilsonClover( hop, r, eps, fermiontype, MaxCGstep, Clover_coefficient, internal_flags, inn_table, _ftmp_vectors, _is1, _is2, quench, ) else error("stout for WilsonClover is not supported yet!") L = (univ.NX, univ.NY, univ.NZ, univ.NT) FermiActionParam_WilsonClover( hop, r, eps, fermiontype, MaxCGstep, Clover_coefficient, internal_flags, inn_table, _ftmp_vectors, _is1, _is2, quench, smearingparameters = "stout", loops_list = stout_loops, coefficients = stout_ρ, numlayers = stout_numlayers, L = L, ) end elseif fermiontype == "Staggered" if haskey(method, "mass") mass = method["mass"] else mass = 0.5 println( "Warning. mass = $mass, Default value is used in measurement $(method["methodname"])", ) end if haskey(method, "Nf") Nf = method["Nf"] else error( "Nf should be set if you want to use the staggered fermion in measurements", ) #println("Warning. mass = $hop, Default value is used") end quench = false smearing_for_fermion = set_params(method, "smearing_for_fermion", "nothing") stout_numlayers = set_params(method, "stout_numlayers", nothing) stout_ρ = set_params(method, "stout_ρ", nothing) stout_loops = set_params(method, "stout_loops", nothing) if smearing_for_fermion == "nothing" fparam = FermiActionParam_Staggered( mass, eps, fermiontype, MaxCGstep, quench, Nf, ) else L = (univ.NX, univ.NY, univ.NZ, univ.NT) fparam = FermiActionParam_Staggered( mass, eps, fermiontype, MaxCGstep, quench, Nf, smearingparameters = "stout", loops_list = stout_loops, coefficients = stout_ρ, numlayers = stout_numlayers, L = L, ) end #println("Measurement_set::mass_measurement = $(p.mass_measurement)") #fparam = FermiActionParam_Staggered(mass,eps,fermiontype,MaxCGstep,quench,Nf) elseif fermiontype == nothing fparam = nothing else error("$fermiontype is not supported. use Wilson or Staggered") end fermions[i] = Measurement(univ, fparam; Dirac_operator = fermiontype) end return new(nummeasurement, fermions, measurement_methods, measurementfps) end end function measurements(itrj, U, univ, measset::Measurement_set; verbose = Verbose_2()) plaq = 0.0 poly = 0.0 + 0.0im for i = 1:measset.nummeasurement method = measset.measurement_methods[i] measfp = measset.measurementfps[i] #println(method) #println(method["measure_every"]) if itrj % method["measure_every"] == 0 println_verbose1(verbose, "-----------------") if method["methodname"] == "Plaquette" plaq = calc_plaquette(U) println_verbose1(verbose, "$itrj $plaq # plaq") println(measfp, "$itrj $plaq # plaq") elseif method["methodname"] == "integrated_fermion_action" Sfexact, Sfapprox = calc_fermionaction(univ, measset.fermions[i], method) println_verbose1( verbose, "$itrj $(real(Sfexact)) $(real(Sfapprox)) # fermion action", ) println(measfp, "$itrj $(real(Sfexact)) $(real(Sfapprox)) # fermion action") elseif method["methodname"] == "Wilson_loop" for T = 1:method["Tmax"] for R = 1:method["Rmax"] WL = calc_Wilson_loop(U, T, R) # calculate RxT Wilson loop println_verbose1(verbose, "$itrj $T $R $WL # WL # itrj T R W(T,R)") println(measfp, "$itrj $T $R $WL # WL # itrj T R W(T,R)") end end elseif method["methodname"] == "smeared_Wilson_loop" Usmr = deepcopy(U) # arXiv:hep-lat/0107006 α = 0.5 for iflow = 1:5 #method["numflow"] calc_fatlink_APE!( Usmr, α, α, normalize_method = "special unitary", temporal_dir_smear = false, ) end for T = 1:method["Tmax"] for R = 1:method["Rmax"] WL = calc_Wilson_loop(Usmr, T, R) # calculate RxT Wilson loop println_verbose1(verbose, "$itrj $T $R $WL # sWL # itrj T R W(T,R)") println(measfp, "$itrj $T $R $WL # sWL # itrj T R W(T,R)") end end elseif method["methodname"] == "Polyakov_loop" poly = calc_Polyakov(U) println_verbose1(verbose, "$itrj $(real(poly)) $(imag(poly)) # poly") println(measfp, "$itrj $(real(poly)) $(imag(poly)) # poly") elseif method["methodname"] == "Polyakov_loop_correlator" Usmr = deepcopy(U) β = univ.gparam.β calc_multihit!(Usmr, U, β) #α = 0.5 #calc_fatlink_APE!(Usmr,α,α,normalize_method="special unitary", temporal_dir_smear=false) for R = 1:method["Rmax"] PP = calc_Polyakov_loop_correlator(Usmr, R) println_verbose1(verbose, "$itrj $R $PP # PP # itrj R PP(R)") println(measfp, "$itrj $R $PP # PP # itrj R PP(R)") end elseif method["methodname"] == "Topological_charge" Nflowsteps = method["Nflowsteps"]#50 eps_flow = method["eps_flow"] #0.01 println_verbose2(verbose, "# epsilon for the Wilson flow is $eps_flow") Usmr = deepcopy(U) W1 = deepcopy(univ.U) W2 = deepcopy(univ.U) temp_UμνTA = Array{GaugeFields_1d,2}(undef, 4, 4) τ = 0.0 plaq = calc_plaquette(Usmr) Eclov = calc_energy_density(Usmr) Qplaq = calc_topological_charge_plaq(Usmr, temp_UμνTA) Qclov = calc_topological_charge_clover(Usmr) Qimpr = calc_topological_charge_improved(Usmr, temp_UμνTA, Qclov) #Q = calc_topological_charge(Usmr) # sign of topological charge defined to be positive for one-instanton. #println("Qplaq = ",Qplaq) #println("Qclover = ",Qclover) #println_verbose1(verbose,"$itrj $τ $plaq $(real(Qplaq)) $(real(Qclover)) #flow itrj flowtime plaq Qplaq Qclov") #println(measfp,"$itrj $τ $plaq $(real(Qplaq)) $(real(Qclover)) #flow itrj flowtime plaq Qplaq Qclov") println_verbose1( verbose, "$itrj $τ $plaq $Eclov $(real(Qplaq)) $(real(Qclov)) $(real(Qimpr)) #flow itrj flowtime plaq Eclov Qplaq Qclov Qimproved", ) println( measfp, "$itrj $τ $plaq $Eclov $(real(Qplaq)) $(real(Qclov)) $(real(Qimpr)) #flow itrj flowtime plaq Eclov Qplaq Qclov Qimproved", ) flush(stdout) smearing_type = "gradient_flow" # now, gradient flow is the only scheme for toplogical charge. #smearing_type = "APE" #smearing_type = "stout" if smearing_type == "gradient_flow" for iflow = 1:method["numflow"]#5000 # eps=0.01: t_flow = 50 gradientflow!(Usmr, univ, W1, W2, Nflowsteps, eps_flow) τ = iflow * eps_flow * Nflowsteps plaq = calc_plaquette(Usmr) Eclov = calc_energy_density(Usmr) Qplaq = calc_topological_charge_plaq(Usmr, temp_UμνTA) Qclov = calc_topological_charge_clover(Usmr, temp_UμνTA) Qimpr = calc_topological_charge_improved(Usmr, temp_UμνTA, Qclov) #@time Q = calc_topological_charge(Usmr) println_verbose1( verbose, "$itrj $(round(τ, digits=3)) $plaq $Eclov $(real(Qplaq)) $(real(Qclov)) $(real(Qimpr)) #flow itrj flowtime plaq Eclov Qplaq Qclov Qimproved", ) println( measfp, "$itrj $(round(τ, digits=3)) $plaq $Eclov $(real(Qplaq)) $(real(Qclov)) $(real(Qimpr)) #flow itrj flowtime plaq Eclov Qplaq Qclov Qimproved", ) #if iflow%10 == 0 flush(stdout) #end end elseif smearing_type == "APE" # TODO this should be commonized to gradient flow Usmr = deepcopy(U) α = 1 / (7 / 6 + 1) # magic number from hep-lat/9907019 for reproduction. This should be an input parameter for iflow = 1:method["numflow"] Usmr = calc_fatlink_APE( Usmr, α, α, normalize_method = "special unitary", ) #calc_fatlink_APE!(Usmr,α,α,normalize_method="special unitary") plaq = calc_plaquette(Usmr) Qplaq = calc_topological_charge_plaq(Usmr, temp_UμνTA) Qclover = calc_topological_charge_clover(Usmr, temp_UμνTA) Qimproved = calc_topological_charge_improved(Usmr, temp_UμνTA, Qclover) τ = iflow println_verbose1( verbose, "$itrj $τ $plaq $(real(Qplaq)) $(real(Qclover)) $(real(Qimproved)) #ape itrj flowtime plaq Qplaq Qclov Qimproved", ) println( measfp, "$itrj $τ $plaq $(real(Qplaq)) $(real(Qclover)) $(real(Qimproved)) #ape itrj flowtime plaq Qplaq Qclov Qimproved", ) #if iflow%10 == 0 flush(stdout) #end end elseif smearing_type == "stout" # TODO this should be commonized to gradient flow Usmr = deepcopy(U) ρ = 1 / (7 / 6 + 1) / 6 for iflow = 1:method["numflow"] Usmr = calc_stout(Usmr, ρ) #calc_stout!(Usmr,Usmr,ρ) plaq = calc_plaquette(Usmr) Qplaq = calc_topological_charge_plaq(Usmr, temp_UμνTA) Qclover = calc_topological_charge_clover(Usmr, temp_UμνTA) Qimproved = calc_topological_charge_improved(Usmr, temp_UμνTA, Qclover) τ = iflow println_verbose1( verbose, "$itrj $τ $plaq $(real(Qplaq)) $(real(Qclover)) $(real(Qimproved)) #stout itrj flowtime plaq Qplaq Qclov Qimproved", ) println( measfp, "$itrj $τ $plaq $(real(Qplaq)) $(real(Qclover)) $(real(Qimproved)) #stout itrj flowtime plaq Qplaq Qclov Qimproved", ) #if iflow%10 == 0 flush(stdout) #end end else error("Invalid smearing_type = $smearing_type") end elseif method["methodname"] == "Chiral_condensate" #fermiontype = method["fermiontype"] measure_chiral_cond(univ, measset.fermions[i], itrj, measfp, verbose) elseif method["methodname"] == "Pion_correlator" #fermiontype = method["fermiontype"] #calc_pion_correlator(univ,measset.fermions[i]) measure_correlator(univ, measset.fermions[i], itrj, measfp, verbose) elseif method["methodname"] == "eigenvalues" measure_eigenvalues(univ, measset.fermions[i], itrj, measfp, verbose) else error("$(method["methodname"]) is not supported") end println_verbose1(verbose, "-----------------") flush(measfp) end end return plaq, poly end function calc_polyakovloop(univ::Universe) poly = calc_Polyakov(univ.U) return poly end function calc_factor_plaq(U) factor = 2 / (U[1].NV * 4 * 3 * U[1].NC) end # - - - Polyakov loop correlator function calc_Polyakov_loop_correlator(U::Array{T,1}, R) where {T<:GaugeFields} WL = 0.0 + 0.0im NV = U[1].NV NC = U[1].NC Wmat = Array{GaugeFields_1d,2}(undef, 4, 4) # construct_Polyakov_correlator!(Wmat, U) # make wilon loop operator and evaluate as a field, not traced. WL = calc_Polyakov_loop_correlator_core(Wmat, U, R) # tracing over color and average over spacetime and x,y,z. NDir = 3.0 # in 4 diemension, 3 associated staples. t-x plane, t-y plane, t-z plane return real(WL) / NV / NDir / NC end function construct_Polyakov_correlator!(Wmat, U) NT = U[1].NT W_operator = make_2Polyakov_loop(NT) calc_2Polyakov_loop!(Wmat, W_operator, U) return end function calc_Polyakov_loop_correlator_core( Wmat, U::Array{GaugeFields{S},1}, R, ) where {S<:SUn} if S == SU3 NC = 3 elseif S == SU2 NC = 2 else NC = U[1].NC #error("NC != 2,3 is not supported") end W = 0.0 + 0.0im NX = U[1].NX NY = U[1].NY NZ = U[1].NZ it = 1 for ix = 1:NX for iy = 1:NY for iz = 1:NZ i = (((it - 1)NZ + iz - 1)NY + iy - 1) * NX + ix # μ = 1 ix2 = (ix + R - 1) % NX + 1 i2 = (((it - 1)NZ + iz - 1)NY + iy - 1) * NX + ix2 W += tr(Wmat[μ][:, :, i]') * tr(Wmat[μ][:, :, i2]) # μ = 2 iy2 = (iy + R - 1) % NY + 1 i2 = (((it - 1)NZ + iz - 1)NY + iy2 - 1) * NX + ix W += tr(Wmat[μ][:, :, i]') * tr(Wmat[μ][:, :, i2]) # μ = 3 iz2 = (iz + R - 1) % NZ + 1 i2 = (((it - 1)NZ + iz2 - 1)NY + iy - 1) * NX + ix W += tr(Wmat[μ][:, :, i]') * tr(Wmat[μ][:, :, i2]) end end end return W end function make_2Polyakov_loop(NT) #= Making a Wilson loop operator for potential calculations Ls × Lt ν=4 ↑ + | | | + → μ=1,2,3 (averaged) =# Wmatset = Array{Wilson_loop_set,1}(undef, 3) for μ = 1:3 # t = 4 loops = Wilson_loop_set() loop = Wilson_loop([(t, NT)]) #plakov loop # This part is under construction. push!(loops, loop) Wmatset[μ] = loops end return Wmatset end function calc_2Polyakov_loop!(temp_Wmat, loops_μν, U) W = temp_Wmat for μ = 1:3 # spatial directions loopset = Loops(U, loops_μν[μ]) W[μ] = evaluate_loops(loopset, U) end return end # - - - end Polyakov loop correlator function calc_Wilson_loop(U::Array{T,1}, Lt, Ls) where {T<:GaugeFields} # Making a ( Ls × Lt) Wilson loop operator for potential calculations WL = 0.0 + 0.0im NV = U[1].NV NC = U[1].NC Wmat = Array{GaugeFields_1d,2}(undef, 4, 4) # calc_large_wiloson_loop!(Wmat, Lt, Ls, U) # make wilon loop operator and evaluate as a field, not traced. WL = calc_Wilson_loop_core(Wmat, U, NV) # tracing over color and average over spacetime and x,y,z. NDir = 3.0 # in 4 diemension, 3 associated staples. t-x plane, t-y plane, t-z plane return real(WL) / NV / NDir / NC end function calc_Wilson_loop_core(Wmat, U::Array{GaugeFields{S},1}, NV) where {S<:SUn} if S == SU3 NC = 3 elseif S == SU2 NC = 2 else NC = U[1].NC #error("NC != 2,3 is not supported") end W = 0.0 + 0.0im for n = 1:NV for μ = 1:3 # spatial directions ν = 4 # T-direction is not summed over W += tr(Wmat[μ, ν][:, :, n]) end end return W end function calc_large_wiloson_loop!(Wmat, Lt, Ls, U) W_operator = make_Wilson_loop(Lt, Ls) calc_large_wiloson_loop!(Wmat, W_operator, U) return end function make_Wilson_loop(Lt, Ls) #= Making a Wilson loop operator for potential calculations Ls × Lt ν=4 ↑ +--+ | | | | | | +--+ → μ=1,2,3 (averaged) =# Wmatset = Array{Wilson_loop_set,2}(undef, 4, 4) for μ = 1:3 # spatial directions ν = 4 # T-direction is not summed over loops = Wilson_loop_set() loop = Wilson_loop([(μ, Ls), (ν, Lt), (μ, -Ls), (ν, -Lt)]) push!(loops, loop) Wmatset[μ, ν] = loops end return Wmatset end function calc_large_wiloson_loop!(temp_Wmat, loops_μν, U) W = temp_Wmat for μ = 1:3 # spatial directions ν = 4 # T-direction is not summed over loopset = Loops(U, loops_μν[μ, ν]) W[μ, ν] = evaluate_loops(loopset, U) end return end # = = = calc energy density = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = function calc_energy_density(U::Array{T,1}) where {T<:GaugeFields} # definition in https://arxiv.org/abs/1508.05552 (published version. There is a mistake in the arXiv version) # WL = 0.0+0.0im NV = U[1].NV #NC = U[1].NC Gμν = Array{GaugeFields_1d,2}(undef, 4, 4) # make_clover_leaf!(Gμν, U) # make a clover Wilson loop operator, which is same as Gμν E = calc_energy_density_core(Gμν, U, NV) # #NDir = 4.0*3.0/2 # choice of 2 axis from 4. return E / NV #/NDir/NC/8 end function calc_energy_density_core(G, U::Array{GaugeFields{S},1}, NV) where {S<:SUn} #if S == SU3 # NC = 3 #elseif S == SU2 # NC = 2 #else # NC = U[1].NC # #error("NC != 2,3 is not supported") #end E = 0.0 + 0.0im for n = 1:NV for μ = 1:4 # all directions for ν = 1:4 if μ == ν continue end E += -tr(G[μ, ν][:, :, n] * G[μ, ν][:, :, n]) / 2 end end end return real(E) / 4^2 # this is a factor in the Gmunu but including here end function make_clover_leaf!(G, U) W_operator, numofloops = calc_loopset_μν("clover")# abstract clover loop instantiate_clover_leaf!(G, W_operator, U) # instantiate return end function instantiate_clover_leaf!(G, W_operator, U) #G = temp_Wmat for μ = 1:4 for ν = 1:4 if μ == ν continue end loopset = Loops(U, W_operator[μ, ν]) G[μ, ν] = TA(evaluate_loops(loopset, U)) # factor 1/4 is included above end end return end # = = = end of energy density = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = function calc_plaquette(U::Array{T,1}) where {T<:GaugeFields} plaq = 0 factor = calc_factor_plaq(U) plaq = calc_Plaq(U) * factor return real(plaq) end function calc_plaquette(univ::Universe, U::Array{T,1}) where {T<:GaugeFields} plaq = 0 temps = univ._temporal_gauge factor = calc_factor_plaq(U) plaq = calc_Plaq!(U, temps) * factor return real(plaq) end function calc_topological_charge(U::Array{GaugeFields{S},1}) where {S<:SUn} return calc_topological_charge_plaq(U) end function calc_topological_charge_clover(U::Array{GaugeFields{S},1}) where {S<:SUn} UμνTA = Array{GaugeFields_1d,2}(undef, 4, 4) Q = calc_topological_charge_clover(U, UμνTA) return Q end function calc_topological_charge_clover( U::Array{GaugeFields{S},1}, temp_UμνTA, ) where {S<:SUn} UμνTA = temp_UμνTA numofloops = calc_UμνTA!(UμνTA, "clover", U) Q = calc_Q(UμνTA, numofloops, U) return Q end function calc_topological_charge_improved( U::Array{GaugeFields{S},1}, temp_UμνTA, ) where {S<:SUn} UμνTA = temp_UμνTA numofloops = calc_UμνTA!(UμνTA, "clover", U) Qclover = calc_Q(UμνTA, numofloops, U) Q = calc_topological_charge_improved(U, UμνTA, Qclover) return Q end function calc_topological_charge_improved( U::Array{GaugeFields{S},1}, temp_UμνTA, Qclover, ) where {S<:SUn} UμνTA = temp_UμνTA #numofloops = calc_UμνTA!(UμνTA,"clover",U) #Qclover = calc_Q(UμνTA,numofloops,U) numofloops = calc_UμνTA!(UμνTA, "rect", U) Qrect = 2 * calc_Q(UμνTA, numofloops, U) c1 = -1 / 12 c0 = 5 / 3 Q = c0 * Qclover + c1 * Qrect return Q end function calc_topological_charge_plaq(U::Array{GaugeFields{S},1}, temp_UμνTA) where {S<:SUn} UμνTA = temp_UμνTA numofloops = calc_UμνTA!(UμνTA, "plaq", U) Q = calc_Q(UμνTA, numofloops, U) return Q end function calc_topological_charge_plaq(U::Array{GaugeFields{S},1}) where {S<:SUn} UμνTA = Array{GaugeFields_1d,2}(undef, 4, 4) return calc_topological_charge_plaq(U, UμνTA) end function calc_loopset_μν(name) loops_μν = Array{Wilson_loop_set,2}(undef, 4, 4) if name == "plaq" numofloops = 1 for μ = 1:4 for ν = 1:4 if ν == μ continue end loops = Wilson_loop_set() loop = Wilson_loop([(μ, 1), (ν, 1), (μ, -1), (ν, -1)]) push!(loops, loop) loops_μν[μ, ν] = loops end end elseif name == "clover" numofloops = 4 for μ = 1:4 for ν = 1:4 if ν == μ continue end loops = Wilson_loop_set() # notation in 1508.05552 loop_righttop = Wilson_loop([(μ, 1), (ν, 1), (μ, -1), (ν, -1)]) # Pmunu loop_rightbottom = Wilson_loop([(ν, -1), (μ, 1), (ν, 1), (μ, -1)]) # Qmunu loop_leftbottom = Wilson_loop([(μ, -1), (ν, -1), (μ, 1), (ν, 1)]) # Rmunu loop_lefttop = Wilson_loop([(ν, 1), (μ, -1), (ν, -1), (μ, 1)]) # Smunu push!(loops, loop_righttop) push!(loops, loop_lefttop) push!(loops, loop_rightbottom) push!(loops, loop_leftbottom) loops_μν[μ, ν] = loops end end elseif name == "rect" numofloops = 8 for μ = 1:4 for ν = 1:4 if ν == μ continue end loops = Wilson_loop_set() loop_righttop = Wilson_loop([(μ, 2), (ν, 1), (μ, -2), (ν, -1)]) loop_lefttop = Wilson_loop([(ν, 1), (μ, -2), (ν, -1), (μ, 2)]) loop_rightbottom = Wilson_loop([(ν, -1), (μ, 2), (ν, 1), (μ, -2)]) loop_leftbottom = Wilson_loop([(μ, -2), (ν, -1), (μ, 2), (ν, 1)]) push!(loops, loop_righttop) push!(loops, loop_lefttop) push!(loops, loop_rightbottom) push!(loops, loop_leftbottom) loop_righttop = Wilson_loop([(μ, 1), (ν, 2), (μ, -1), (ν, -2)]) loop_lefttop = Wilson_loop([(ν, 2), (μ, -1), (ν, -2), (μ, 1)]) loop_rightbottom = Wilson_loop([(ν, -2), (μ, 1), (ν, 2), (μ, -1)]) loop_leftbottom = Wilson_loop([(μ, -1), (ν, -2), (μ, 1), (ν, 2)]) push!(loops, loop_righttop) push!(loops, loop_lefttop) push!(loops, loop_rightbottom) push!(loops, loop_leftbottom) loops_μν[μ, ν] = loops end end else error("$name is not supported") end return loops_μν, numofloops end function calc_UμνTA!(temp_UμνTA, loops_μν, U) UμνTA = temp_UμνTA for μ = 1:4 for ν = 1:4 if ν == μ continue end loopset = Loops(U, loops_μν[μ, ν]) UμνTA[μ, ν] = evaluate_loops(loopset, U) UμνTA[μ, ν] = TA(UμνTA[μ, ν]) end end return end function calc_UμνTA!(temp_UμνTA, name::String, U) loops_μν, numofloops = calc_loopset_μν(name) calc_UμνTA!(temp_UμνTA, loops_μν, U) return numofloops end #= implementation of topological charge is based on https://arxiv.org/abs/1509.04259 =# function calc_Q(UμνTA, numofloops, U::Array{GaugeFields{S},1}) where {S<:SUn} if S == SU3 NC = 3 elseif S == SU2 NC = 2 else NC = U[1].NC #error("NC != 2,3 is not supported") end Q = 0.0 ε(μ, ν, ρ, σ) = epsilon_tensor(μ, ν, ρ, σ) NV = UμνTA[1, 2].NV for n = 1:NV for μ = 1:4 for ν = 1:4 if ν == μ continue end for ρ = 1:4 for σ = 1:4 if ρ == σ continue end s = 0im for i = 1:NC for j = 1:NC s += UμνTA[μ, ν][i, j, n] * UμνTA[ρ, σ][j, i, n] end end Q += ε(μ, ν, ρ, σ) * s / numofloops^2 #*tr(tmp1*tmp2) end end end end end return -Q / (32 * (π^2)) end function TAm(M) NC = size(M)[1] AM = (M - M') / 2 t = tr(AM) / NC for i = 1:NC AM[i, i] -= t end return AM end function calc_plaquette(univ::Universe) return calc_plaquette(univ, univ.U) end function spincolor(ic, is, univ::Universe) return ic - 1 + (is - 1) * univ.NC + 1 end function calc_chiral_cond( univ::Universe, meas, measfp, itrj, Nr = 10, verbose = Verbose_2(), ) # pbp = (1/Nr) Σ_i p_i # p_i = r_i^\dag xi_i # xi_i = D^{-1} r_i # D xi = r : r is a random veccor # Nfbase = ifelse(meas.fparam.Dirac_operator == "Staggered", 4, 1) Nf = meas.fparam.Nf factor = Nf / Nfbase # println_verbose2( verbose, "Chiral condensate for Nf = $(Nf), Dirac_operator = $(meas.fparam.Dirac_operator), factor=$factor is multiplied.", ) # pbp = 0.0 # setup a massive Dirac operator U, _... = calc_smearingU(univ.U, meas.fparam.smearing) M = Dirac_operator(U, meas._temporal_fermi2[1], meas.fparam) #M = Dirac_operator(univ.U,meas._temporal_fermi2[1],meas.fparam) for ir = 1:Nr r = similar(meas._temporal_fermi2[1]) p = similar(r) clear!(p) #gauss_distribution_fermi!(r,univ.ranf) Z4_distribution_fermi!(r) #set_wing_fermi!(r) bicg( p, M, r, eps = meas.fparam.eps, maxsteps = meas.fparam.MaxCGstep, verbose = verbose, ) # solve Mp=b, we get p=M^{-1}b tmp = r * p # hemitian inner product println_verbose2( verbose, "# $itrj $ir $(real(tmp)/univ.NV) # itrj irand chiralcond", ) println(measfp, "# $itrj $ir $(real(tmp)/univ.NV) # itrj irand chiralcond") pbp += tmp end return real(pbp / Nr) / univ.NV * factor end function measure_chiral_cond( univ::Universe, meas::Measurement, itrj, measfp, verbose = Verbose_2(), ) Nr = 10 pbp = calc_chiral_cond(univ, meas, measfp, itrj, Nr, verbose) println_verbose1(verbose, "$itrj $pbp # pbp Nr=$Nr") println(measfp, "$itrj $pbp # pbp Nr=$Nr") flush(stdout) end function calc_fermionaction(univ::Universe, meas::Measurement, method) println("Making W^+W matrix...") @time WdagW = make_WdagWmatrix( univ.U, meas._temporal_fermi2[1], meas._temporal_fermi2[2], meas.fparam, ) if haskey(method, "nc") nc = method["nc"] else nc = 20 end if haskey(method, "M") M = method["M"] else M = 128 end if haskey(method, "nonc") nonc = method["nonc"] else nonc = false end if haskey(method, "m") m = method["m"] else m = 100 end Sfexact = calc_IntegratedFermionAction(univ, WdagW; debug = false) Sfapprox = calc_IntegratedFermionAction( univ, WdagW; debug = true, M = M, m = m, nc = nc, nonc = nonc, ) return Sfexact, Sfapprox end function calc_quark_propagators_point_source_each(M, meas, i, NC, verbose) # calculate D^{-1} for a given source at the origin. # Nc*Ns (Ns: dim of spinor, Wilson=4, ks=1) elements has to be gathered. # staggered Pion correlator relies on https://itp.uni-frankfurt.de/~philipsen/theses/breitenfelder_ba.pdf (3.33) b = similar(meas._temporal_fermi2[1]) # source is allocated p = similar(b) # sink is allocated (propagator to sink position) #k = meas._temporal_fermi2[2] clear!(b) Nspinor = ifelse(meas.fparam.Dirac_operator == "Staggered", 1, 4) is = ((i - 1) % Nspinor) + 1 # spin index ic = ((i - is) ÷ Nspinor) + 1 # color index println_verbose1(verbose, "$ic $is") #println("$ic $is") b[ic, 1, 1, 1, 1, is] = 1 # source at the origin @time bicg( p, M, b, eps = meas.fparam.eps, maxsteps = meas.fparam.MaxCGstep, verbose = verbose, ) # solve Mp=b, we get p=M^{-1}b #@time cg0!(k,b,1, univ.U, meas._temporal_gauge, meas._temporal_fermi1, meas.fparam) # k[x] = M^{-1}b[0] println_verbose1(verbose, "Hadron spectrum: Inversion $(i)/$(NC*Nspinor) is done") #println("Hadron spectrum: Inversion $(i)/$(NC*4) is done") flush(stdout) return p end function calc_quark_propagators_point_source(D, meas, NC, verbose) # D^{-1} for each spin x color element Nspinor = ifelse(meas.fparam.Dirac_operator == "Staggered", 1, 4) propagators = map( i -> calc_quark_propagators_point_source_each(D, meas, i, NC, verbose), 1:NC*Nspinor, ) return propagators end function calc_pion_correlator(univ::Universe, meas::Measurement, verbose) println_verbose2(verbose, "Hadron spectrum started") #println("Hadron spectrum started") #U = univ._temporal_gauge #if univ.NC != 3 # error("not implemented yet for calc_pion_correlator") #end #b = meas._temporal_fermi2[1] # source allocate #k = meas._temporal_fermi2[2] # sink allocate # setup a massive Dirac operator U, _... = calc_smearingU(univ.U, meas.fparam.smearing) M = Dirac_operator(U, meas._temporal_fermi2[1], meas.fparam) #M = Dirac_operator(univ.U,meas._temporal_fermi2[1],meas.fparam) # Allocate the Wilson matrix = S Nspinor = ifelse(meas.fparam.Dirac_operator == "Staggered", 1, 4) S = zeros( ComplexF64, (univ.NX, univ.NY, univ.NZ, univ.NT, Nspinor * univ.NC, Nspinor * univ.NC), ) # calculate quark propagators from a point source at he origin propagators = calc_quark_propagators_point_source(M, meas, univ.NC, verbose) #ctr = 0 # a counter for ic = 1:univ.NC for is = 1:Nspinor icum = (ic - 1) * Nspinor + is #= clear!(b) b[ic,1,1,1,1,is]=1 # source at the origin @time cg0!(k,b,1, univ.U, meas._temporal_gauge, meas._temporal_fermi1, meas.fparam) # k[x] = M^{-1}b[0] =# propagator = propagators[icum] α0 = spincolor(ic, is, univ) # source(color-spinor) index # # reconstruction for t = 1:univ.NT for z = 1:univ.NZ for y = 1:univ.NY for x = 1:univ.NX for ic2 = 1:univ.NC for is2 = 1:Nspinor # Nspinor is the number of spinor index in 4d. β = spincolor(ic2, is2, univ) S[x, y, z, t, α0, β] += propagator[ic, x, y, z, t, is] end end end end end end # end for the substitution #ctr+=1 end end # contruction end. println_verbose2(verbose, "Hadron spectrum: Reconstruction") #println("Hadron spectrum: Reconstruction") Cpi = zeros(univ.NT) # Construct Pion propagator for t = 1:univ.NT tmp = 0.0 + 0.0im for z = 1:univ.NZ for y = 1:univ.NY for x = 1:univ.NX for ic = 1:univ.NC for is = 1:Nspinor # Nspinor is the number of spinor index in 4d. α = spincolor(ic, is, univ) for ic2 = 1:univ.NC for is2 = 1:Nspinor # Nspinor is the number of spinor index in 4d. β = spincolor(ic2, is2, univ) tmp += S[x, y, z, t, α, β] * S[x, y, z, t, α, β]'#inner product. # complex conjugate = g5 S g5. end end # complex conjugate = g5 S g5. end end end end end # staggered Pion correlator relies on https://itp.uni-frankfurt.de/~philipsen/theses/breitenfelder_ba.pdf (3.33) # we adopt ignoreing the staggering factor. See detail above reference. ksfact = 1.0 #ifelse( meas.fparam.Dirac_operator == "Staggered" , (-1)^(t-1) * 64, 1) Cpi[t] = real(tmp) * ksfact end #println(typeof(verbose),"\t",verbose) println_verbose2(verbose, "Hadron spectrum end") #println("Hadron spectrum end") return Cpi end function measure_correlator(univ::Universe, meas::Measurement, itrj, measfp, verbose) C = calc_pion_correlator(univ, meas, verbose) print_verbose1(verbose, "$itrj ") print(measfp, "$itrj ") for it = 1:length(C) cc = C[it] print_verbose1(verbose, "$cc ") print(measfp, "$cc ") end println_verbose1(verbose, "#pioncorrelator") println(measfp, "#pioncorrelator") end function measure_eigenvalues(univ::Universe, meas::Measurement, itrj, measfp, verbose) ene = calc_eigenvalues(univ, meas, verbose) print_verbose1(verbose, "$itrj ") print(measfp, "$itrj ") for it = 1:length(ene) e = ene[it] print_verbose1(verbose, "$e ") print(measfp, "$e ") end println_verbose1(verbose, "#eigenvalues") println(measfp, "#eigenvalues") end function calc_eigenvalues(univ, meas, verbose) println_verbose2(verbose, "Dirac spectrum started") U, _... = calc_smearingU(univ.U, meas.fparam.smearing) γ5D = γ5D_operator(U, meas._temporal_fermi2[1], meas.fparam) function γ5Dx(x) y = similar(x) mul!(y, γ5D, x) return y end x = similar(meas._temporal_fermi2[1]) x.f[1] = 1 for i = 1:length(x.f) x.f[i] = rand() end #decomp, history = partialschur(γ5D, nev=10, tol=1e-6, which=SR()); result = eigsolve(γ5Dx, x, 10, EigSorter(abs; rev = false), Lanczos()) println(result) end #topological charge function epsilon_tensor(mu::Int, nu::Int, rho::Int, sigma::Int) sign = 1 # (3) 1710.09474 extended epsilon tensor if mu < 0 sign *= -1 mu = -mu end if nu < 0 sign *= -1 nu = -nu end if rho < 0 sign *= -1 rho = -rho end if sigma < 0 sign *= -1 sigma = -sigma end epsilon = zeros(Int, 4, 4, 4, 4) epsilon[1, 2, 3, 4] = 1 epsilon[1, 2, 4, 3] = -1 epsilon[1, 3, 2, 4] = -1 epsilon[1, 3, 4, 2] = 1 epsilon[1, 4, 2, 3] = 1 epsilon[1, 4, 3, 2] = -1 epsilon[2, 1, 3, 4] = -1 epsilon[2, 1, 4, 3] = 1 epsilon[2, 3, 1, 4] = 1 epsilon[2, 3, 4, 1] = -1 epsilon[2, 4, 1, 3] = -1 epsilon[2, 4, 3, 1] = 1 epsilon[3, 1, 2, 4] = 1 epsilon[3, 1, 4, 2] = -1 epsilon[3, 2, 1, 4] = -1 epsilon[3, 2, 4, 1] = 1 epsilon[3, 4, 1, 2] = 1 epsilon[3, 4, 2, 1] = -1 epsilon[4, 1, 2, 3] = -1 epsilon[4, 1, 3, 2] = 1 epsilon[4, 2, 1, 3] = 1 epsilon[4, 2, 3, 1] = -1 epsilon[4, 3, 1, 2] = -1 epsilon[4, 3, 2, 1] = 1 return epsilon[mu, nu, rho, sigma] * sign end end
LatticeQCD
https://github.com/akio-tomiya/LatticeQCD.jl.git
[ "MIT" ]
1.1.0
e495a1eaee52a513e02fe6ca2c995a7d0ed671a7
code
35529
module LTK_universe using LinearAlgebra using SparseArrays using Random #export Universe import ..Gaugefields: GaugeFields, GaugeFields_1d, IdentityGauges, RandomGauges, set_wing!, substitute!, calc_GaugeAction, SU3GaugeFields, SU3GaugeFields_1d, SU2GaugeFields, SU2GaugeFields_1d, SUNGaugeFields, SUNGaugeFields_1d, Oneinstanton, evaluate_wilson_loops!, U1GaugeFields, U1GaugeFields_1d, apply_smearing, calc_smearingU import ..Gaugefields import ..Fermionfields: FermionFields, WilsonFermion, StaggeredFermion, substitute_fermion!, gauss_distribution_fermi!, set_wing_fermi! import ..Fermionfields import ..Actions: GaugeActionParam, FermiActionParam, Setup_Gauge_action, Setup_Fermi_action, GaugeActionParam_standard, FermiActionParam_Wilson, show_parameters_action, FermiActionParam_WilsonClover, FermiActionParam_Staggered, GaugeActionParam_autogenerator, SmearingParam_multi, SmearingParam_single, Nosmearing, FermiActionParam_Domainwall import ..LieAlgebrafields: LieAlgebraFields, clear!, add_gaugeforce! import ..LieAlgebrafields import ..Rand: Random_LCGs import ..System_parameters: Params import ..Diracoperators: DdagD_operator, Domainwall_operator, make_densematrix, D5DW_Domainwall_operator import ..Diracoperators import ..Wilsonloops: make_loopforactions, Wilson_loop_set, make_originalactions_fromloops, make_cloverloops import ..Verbose_print: Verbose_level, Verbose_3, Verbose_2, Verbose_1 import ..IOmodule: loadU import ..SUN_generator: Generator import ..RationalApprox: calc_exactvalue, calc_Anϕ import ..ILDG_format: ILDG, load_gaugefield, load_gaugefield!, save_binarydata import ..Bridge_format: load_BridgeText! import ..Othermethods: tdlogdet import ..CGmethods: bicg, cg, shiftedcg import ..Rhmc: get_order, get_β, get_α, get_α0, get_β_inverse, get_α_inverse, get_α0_inverse #import ..Smearing:apply_smearing """ Your universe is described in this type. """ struct Universe{Gauge,Lie,Fermi,GaugeP,FermiP,Gauge_temp} NX::Int64 NY::Int64 NZ::Int64 NT::Int64 NV::Int64 NC::Int64 Nwing::Int64 Dirac_operator::Union{Nothing,String} U::Array{Gauge,1} Uold::Array{Gauge,1} p::Array{Lie,1} φ::Union{Nothing,Fermi} ξ::Union{Nothing,Fermi} η::Union{Nothing,Fermi} gparam::GaugeP fparam::Union{Nothing,FermiP} BoundaryCondition::Array{Int8,1} initial::String quench::Bool NDFALG::Int64 _temporal_gauge::Array{Gauge_temp,1} _temporal_fermi::Union{Nothing,Array{Fermi,1}} _temporal_algebra::Array{Lie,1} ranf::Random_LCGs verboselevel::Int8 kind_of_verboselevel::Verbose_level #rng::MersenneTwister end function set_β!(univ::Universe, β) if typeof(univ.gparam) == GaugeActionParam_standard univ.gparam.β = β #univ.gparam = GaugeActionParam_standard(β,univ.gparam.NTRACE) elseif typeof(univ.gparam) == GaugeActionParam_autogenerator #univ.gparam =GaugeActionParam_autogenerator(univ.gparam.βs * (univ.gparam.β/β),β,univ.gparam.numactions,univ.gparam.NTRACE,univ.gparam.loops,univ.gparam.staples) univ.gparam.β = β univ.gparam.βs .= 0#univ.gparam.βs * (univ.gparam.β/β) univ.gparam.βs[1] = β else error("$(typeof(univ.gparam)) is not supported!") end end function set_β!(univ::Universe, βs::Array{T,1}) where {T<:Number} if typeof(univ.gparam) == GaugeActionParam_standard univ.gparam.β = βs[1] #univ.gparam = GaugeActionParam_standard(β,univ.gparam.NTRACE) elseif typeof(univ.gparam) == GaugeActionParam_autogenerator @assert length(univ.gparam.βs) == length(βs) "univ.gparam.βs = $(univ.gparam.βs) and βs = $βs" #univ.gparam =GaugeActionParam_autogenerator(univ.gparam.βs * (univ.gparam.β/β),β,univ.gparam.numactions,univ.gparam.NTRACE,univ.gparam.loops,univ.gparam.staples) univ.gparam.β = βs[1] univ.gparam.βs .= βs #univ.gparam.βs = univ.gparam.βs * (univ.gparam.β/β) else error("$(typeof(univ.gparam)) is not supported!") end end function get_β(univ::Universe) if typeof(univ.gparam) == GaugeActionParam_standard return univ.gparam.β elseif typeof(univ.gparam) == GaugeActionParam_autogenerator return univ.gparam.β else error("$(typeof(univ.gparam)) is not supported!") end end function set_βs!(univ::Universe, βs) if typeof(univ.gparam) == GaugeActionParam_standard univ.gparam.β = βs[1] elseif typeof(univ.gparam) == GaugeActionParam_autogenerator univ.gparam.β = βs[1] univ.gparam.βs = βs[:] else error("$(typeof(univ.gparam)) is not supported!") end end include("default.jl") function Universe() file = "default.jl" return Universe(file) end function Universe(p::Params) L = p.L β = p.β NTRACE = p.NC #rng = MersenneTwister(p.randomseed, (0, 1002, 0, 1)) if p.use_autogeneratedstaples #loops = make_loopforactions(p.couplinglist,L) #println(loops) loops = make_originalactions_fromloops(p.coupling_loops) gparam = GaugeActionParam_autogenerator(p.couplingcoeff, loops, p.NC, p.couplinglist) else gparam = GaugeActionParam_standard(β, NTRACE) end if p.Dirac_operator == nothing fparam = nothing else if p.Dirac_operator == "Wilson" if p.smearing_for_fermion == "nothing" fparam = FermiActionParam_Wilson( p.hop, p.r, p.eps, p.Dirac_operator, p.MaxCGstep, p.quench, ) else fparam = FermiActionParam_Wilson( p.hop, p.r, p.eps, p.Dirac_operator, p.MaxCGstep, p.quench, smearingparameters = "stout", loops_list = p.stout_loops, coefficients = p.stout_ρ, numlayers = p.stout_numlayers, L = p.L, ) end elseif p.Dirac_operator == "WilsonClover" #if p.NC == 2 # error("You use NC = 2. But WilsonClover Fermion is not supported in SU2 gauge theory yet. Use NC = 3.") #end NV = prod(p.L) #CloverFμν = zeros(ComplexF64,p.NC,p.NC,NV,6) inn_table = zeros(Int64, NV, 4, 2) internal_flags = zeros(Bool, 2) _ftmp_vectors = Array{Array{ComplexF64,3},1}(undef, 6) for i = 1:6 _ftmp_vectors[i] = zeros(ComplexF64, p.NC, NV, 4) end _is1 = zeros(Int64, NV) _is2 = zeros(Int64, NV) if p.NC ≥ 4 SUNgenerator = Generator(p.NC) else SUNgenerator = nothing end _cloverloops = Array{Wilson_loop_set,2}(undef, 3, 4) for μ = 1:3 for ν = μ+1:4 _cloverloops[μ, ν] = make_cloverloops(μ, ν) end end #fparam = FermiActionParam_WilsonClover(p.hop,p.r,p.eps,p.Dirac_operator,p.MaxCGstep,p.Clover_coefficient,CloverFμν, # internal_flags,inn_table,_ftmp_vectors,_is1,_is2, # p.quench) if p.smearing_for_fermion == "nothing" fparam = FermiActionParam_WilsonClover( p.hop, p.r, p.eps, p.Dirac_operator, p.MaxCGstep, p.Clover_coefficient, internal_flags, inn_table, _ftmp_vectors, _is1, _is2, p.quench, SUNgenerator, _cloverloops, ) else error("stout for Wilson with clover is not supported yet!") fparam = FermiActionParam_WilsonClover( p.hop, p.r, p.eps, p.Dirac_operator, p.MaxCGstep, p.Clover_coefficient, internal_flags, inn_table, _ftmp_vectors, _is1, _is2, p.quench, SUNgenerator, _cloverloops, smearingparameters = "stout", loops_list = p.stout_loops, coefficients = p.stout_ρ, numlayers = p.stout_numlayers, L = p.L, ) end elseif p.Dirac_operator == "Staggered" if p.smearing_for_fermion == "nothing" fparam = FermiActionParam_Staggered( p.mass, p.eps, p.Dirac_operator, p.MaxCGstep, p.quench, p.Nf, ) else fparam = FermiActionParam_Staggered( p.mass, p.eps, p.Dirac_operator, p.MaxCGstep, p.quench, p.Nf, smearingparameters = "stout", loops_list = p.stout_loops, coefficients = p.stout_ρ, numlayers = p.stout_numlayers, L = p.L, ) end elseif p.Dirac_operator == "Domainwall" if p.smearing_for_fermion == "nothing" fparam = FermiActionParam_Domainwall( p.Domainwall_N5, p.r, p.Domainwall_M, p.Domainwall_m, p.Domainwall_ωs, p.Domainwall_b, p.Domainwall_c, p.eps, p.Dirac_operator, p.MaxCGstep, p.quench, ) else fparam = FermiActionParam_Domainwall( p.Domainwall_N5, p.r, p.Domainwall_M, p.Domainwall_m, p.Domainwall_ωs, p.Domainwall_b, p.Domainwall_c, p.eps, p.Dirac_operator, p.MaxCGstep, p.quench, smearingparameters = "stout", loops_list = p.stout_loops, coefficients = p.stout_ρ, numlayers = p.stout_numlayers, L = p.L, ) end #error("Not implemented! here is in LTK_universe.jl") else error(p.Dirac_operator, " is not supported!") end end univ = Universe( L, gparam, p.Nwing, fparam, p.BoundaryCondition, p.initial, p.NC, p.verboselevel, p.load_fp, p.loadU_format, p.julian_random_number, ) end """ ```Universe(file)``` - file: file name of the input file. Make your universe. The input file is loaded. Undefined parameters in your input file are defined with the default values. The default values are as follows. ```julia L = (4,4,4,4) β = 6 NTRACE = 3 #gparam = Setup_Gauge_action(β) gparam = GaugeActionParam_standard(β,NTRACE) BoundaryCondition=[1,1,1,-1] Nwing = 1 initial="cold" NC =3 hop= 0.141139 #Hopping parameter r= 1 #Wilson term eps= 1e-19 Dirac_operator= "Wilson" MaxCGstep= 3000 fparam = FermiActionParam_Wilson(hop,r,eps,Dirac_operator,MaxCGstep) ``` """ function Universe(file) if file != "default.jl" include(pwd() * "/" * file) end univ = Universe(L, gparam, Nwing, fparam, BoundaryCondition, initial, NC) end function show_parameters(univ::Universe) println(""" L = $((univ.NX,univ.NY,univ.NZ,univ.NT)) """) show_parameters_action(univ.gparam) println(""" BoundaryCondition= $(univ.BoundaryCondition) Nwing = $(univ.Nwing) initial= $(univ.initial) NC =$(univ.NC) """) if univ.fparam != nothing show_parameters_action(univ.fparam) end end """ ```Universe(L::Tuple,gparam::GaugeActionParam,initial="cold",fparam=nothing)``` - L: system size (NX,NY,NZ,NT) - gparam: parameters for gauge actions - [initial]: initial Gauge configuration - [fparam]: parameters for fermion actions """ function Universe(L::Tuple, gparam::GaugeActionParam, initial = "cold", fparam = nothing) Nwing = 1 BoundaryCondition = [1, 1, 1, -1] NC = 3 Universe(L, gparam, Nwing, fparam, BoundaryCondition, initial, NC) end function Universe( L, gparam, Nwing, fparam, BoundaryCondition, initial, NC, verboselevel, load_fp, loadU_format, julian_random_number, ) #(L::Tuple,gparam::GaugeActionParam; # Nwing = 1,fparam=nothing, # BoundaryCondition=[1,1,1,-1],initial="cold",NC =3) if verboselevel == 1 kind_of_verboselevel = Verbose_1(load_fp) elseif verboselevel == 2 kind_of_verboselevel = Verbose_2(load_fp) elseif verboselevel == 3 kind_of_verboselevel = Verbose_3(load_fp) end ranf = Random_LCGs(1, julian_random_number = julian_random_number) NX = L[1] NY = L[2] NZ = L[3] NT = L[4] NV = NX * NY * NZ * NT NDFALG = ifelse(NC == 1, 1, NC^2 - 1) num_tempfield_g = 5 num_tempfield_f = 4 if fparam != nothing && fparam.Dirac_operator == "WilsonClover" numbasis = NC^2 - 1 num_tempfield_g += 4 + 4 + 2numbasis elseif fparam != nothing # && fparam.Dirac_operator == "Staggered" num_tempfield_f += 4 end if fparam != nothing && fparam.Dirac_operator == "Staggered" if fparam.Nf != 4 && fparam.Nf != 8 N_action = get_order(fparam.rhmc_action) N_MD = get_order(fparam.rhmc_MD) num_tempfield_f += maximum((N_action, N_MD)) + 1 end end if fparam != nothing && fparam.smearing != nothing num_tempfield_g += 4 end if typeof(gparam) == GaugeActionParam_autogenerator num_tempfield_g += 1 end if NC == 3 U = Array{SU3GaugeFields,1}(undef, 4) _temporal_gauge = Array{SU3GaugeFields_1d,1}(undef, num_tempfield_g) elseif NC == 2 U = Array{SU2GaugeFields,1}(undef, 4) _temporal_gauge = Array{SU2GaugeFields_1d,1}(undef, num_tempfield_g) elseif NC ≥ 4 U = Array{SUNGaugeFields{NC},1}(undef, 4) _temporal_gauge = Array{SUNGaugeFields_1d{NC},1}(undef, num_tempfield_g) elseif NC == 1 U = Array{U1GaugeFields,1}(undef, 4) _temporal_gauge = Array{U1GaugeFields_1d,1}(undef, num_tempfield_g) end # Uold = Array{GaugeFields,1}(undef,4) p = Array{LieAlgebraFields,1}(undef, 4) for μ = 1:4 p[μ] = LieAlgebraFields(NC, NX, NY, NZ, NT) end if initial == "cold" println("..... Cold start") for μ = 1:4 U[μ] = IdentityGauges(NC, NX, NY, NZ, NT, Nwing) end elseif initial == "hot" println("..... Hot start") for μ = 1:4 U[μ] = RandomGauges(NC, NX, NY, NZ, NT, Nwing) end elseif initial == "one instanton" @assert NC == 2 "From one instanton start, NC should be 2!" U = Oneinstanton(NC, NX, NY, NZ, NT, Nwing) else #if initial == "file" println("..... File start") println("File name is $initial") if loadU_format == "JLD" U = loadU(initial, NX, NY, NZ, NT, NC) elseif loadU_format == "ILDG" ildg = ILDG(initial) i = 1 for μ = 1:4 U[μ] = IdentityGauges(NC, NX, NY, NZ, NT, Nwing) end load_gaugefield!(U, i, ildg, L, NC) elseif loadU_format == "BridgeText" for μ = 1:4 U[μ] = IdentityGauges(NC, NX, NY, NZ, NT, Nwing) end load_BridgeText!(initial, U, L, NC) else error("loadU_format should be JLD or ILDG") end #error("not supported yet.") end set_wing!(U) Uold = similar(U) substitute!(Uold, U) #= for μ=1:4 set_wing!(U[μ]) Uold[μ] = similar(U[μ]) substitute!(Uold[μ],U[μ]) end =# #_temporal_gauge = Array{GaugeFields,1}(undef,4) for i = 1:length(_temporal_gauge) _temporal_gauge[i] = GaugeFields_1d(NC, NX, NY, NZ, NT) #similar(U[1]) #_temporal_gauge[i] = similar(U[1]) end _temporal_algebra = Array{LieAlgebraFields,1}(undef, 1) for i = 1:length(_temporal_algebra) _temporal_algebra[i] = similar(p[1]) end if fparam == nothing Dirac_operator = nothing φ = nothing η = nothing ξ = nothing _temporal_fermi = nothing quench = true else Dirac_operator = fparam.Dirac_operator φ = FermionFields(NC, NX, NY, NZ, NT, fparam, BoundaryCondition) η = similar(φ) ξ = similar(φ) _temporal_fermi = Array{FermionFields,1}(undef, num_tempfield_f) for i = 1:length(_temporal_fermi) _temporal_fermi[i] = similar(φ) end quench = fparam.quench if Dirac_operator == "Domainwall" gauss_distribution_fermi!(ξ) #A = D5DW_Domainwall_operator(U,ξ,fparam) A = Domainwall_operator(U, ξ, fparam) A_dense_PV = make_densematrix(A.D5DW_PV) A_dense = make_densematrix(A.D5DW) M = A_dense * inv(A_dense_PV) #e,v = eigen(A_dense) e, v = eigen(M) fp = open("eigenvalues_M.txt", "w") for ene in e println(fp, real(ene), "\t", imag(ene)) end close(fp) #println(e) error("stop!") bicg(η, A, ξ) error("stop!") end end Gauge = eltype(U) Fermi = typeof(φ) Lie = eltype(p) GaugeP = typeof(gparam) FermiP = typeof(fparam) Gauge_temp = eltype(_temporal_gauge) return Universe{Gauge,Lie,Fermi,GaugeP,FermiP,Gauge_temp}( NX, NY, NZ, NT, NV, NC, Nwing, Dirac_operator, U, Uold, p, φ, ξ, η, gparam, fparam, BoundaryCondition, initial, quench, NDFALG, _temporal_gauge, _temporal_fermi, _temporal_algebra, ranf, verboselevel, kind_of_verboselevel, ) end function gauss_distribution(univ::Universe, nv) variance = 1 nvh = div(nv, 2) granf = zeros(Float64, nv) for i = 1:nvh rho = sqrt(-2 * log(univ.ranf()) * variance) theta = 2pi * univ.ranf() granf[i] = rho * cos(theta) granf[i+nvh] = rho * sin(theta) end if 2 * nvh == nv return granf end granf[nv] = sqrt(-2 * log(univ.ranf()) * variance) * cos(2pi * univ.ranf()) return granf end function expF_U!( U::Array{T,1}, F::Array{N,1}, Δτ, univ::Universe, ) where {T<:GaugeFields,N<:LieAlgebraFields} LieAlgebrafields.expF_U!(U, F, Δτ, univ._temporal_gauge, univ._temporal_algebra[1]) end function calc_gaugeforce!(F::Array{N,1}, univ::Universe) where {N<:LieAlgebraFields} clear!(F) calc_gaugeforce!(F, univ.U, univ) #add_gaugeforce!(F,univ.U,univ._temporal_gauge,univ._temporal_algebra[1]) return end function calc_gaugeforce!( F::Array{N,1}, U::Array{T,1}, univ::Universe, ) where {N<:LieAlgebraFields,T<:GaugeFields} clear!(F) calc_gaugeforce!(F, U, univ, univ.gparam) #add_gaugeforce!(F,U,univ._temporal_gauge,univ._temporal_algebra[1],univ.gparam) return end function calc_gaugeforce!( F::Array{N,1}, U::Array{T,1}, univ::Universe, gparam::GP, ) where {N<:LieAlgebraFields,T<:GaugeFields,GP<:GaugeActionParam_autogenerator} clear!(F) add_gaugeforce!(F, U, univ._temporal_gauge, univ._temporal_algebra[1], gparam) return end function calc_gaugeforce!( F::Array{N,1}, U::Array{T,1}, univ::Universe, gparam::GP, ) where {N<:LieAlgebraFields,T<:GaugeFields,GP} clear!(F) add_gaugeforce!(F, U, univ._temporal_gauge, univ._temporal_algebra[1]) return end function Gaugefields.calc_GaugeAction(univ::Universe) Sg, plaq = calc_GaugeAction(univ.U, univ.gparam, univ._temporal_gauge) return real(Sg), real(plaq) end function calc_Action(univ::Universe) Sg, plaq = calc_GaugeAction(univ.U, univ.gparam, univ._temporal_gauge) SP = univ.p * univ.p / 2 #println("ek = $SP") S = Sg + SP #println("eym = $plaq") #println("e = $S") if univ.quench == false #if univ.fparam != nothing Sf = univ.η * univ.η S += Sf end return real(S), real(plaq) end function calc_IntegratedFermionAction( univ::Universe; debug = false, M = 16, m = 100, nc = 20, nonc = false, ) println("Making W^+W matrix...") NX = univ.U[1].NX NY = univ.U[1].NY NZ = univ.U[1].NZ NT = univ.U[1].NT NC = univ.U[1].NC T = eltype(univ._temporal_fermi) if T == StaggeredFermion NG = 1 else NG = 4 end Nsize = NX * NY * NZ * NT * NC * NG WdagW = zeros(ComplexF64, Nsize, Nsize) @time make_WdagWmatrix!(WdagW, univ) #@time WdagW = make_WdagWmatrix(univ) Sfnew = calc_IntegratedFermionAction( univ, WdagW, debug = debug, M = M, m = m, nc = nc, nonc = nonc, ) return Sfnew end function calc_IntegratedFermionAction( univ::Universe, WdagW; debug = false, M = 16, m = 100, nc = 20, nonc = false, ) if debug #WdagW = DdagD_operator(univ.U,univ.η,univ.fparam) #println("Calculating approximated logdet") #@time Sfnew = -tdlogdet(WdagW,M,m,nc=nc,nonc=nonc) #exit() WdagWsp = sparse(WdagW) N, _ = size(WdagW) tempvecs = Array{Array{ComplexF64,1}}(undef, 3) for i = 1:3 tempvecs[i] = zeros(ComplexF64, N) end println("Calculating approximated logdet") #@time Sfnew = -tdlogdet(WdagWsp,M2,m2,tempvecs,nc=nc2,nonc=nonc) #M2 = 100 #m2 = 100 #nc2 = 100 @time Sfnew = -tdlogdet(WdagWsp, M, m, tempvecs, nc = nc, nonc = nonc) #exit() #= M = 8*2 #M = 4#8*2 m = 100 NX = univ.U[1].NX #m = 20 N,_ = size(WdagW) tempvecs = Array{Array{ComplexF64,1}}(undef,3) for i=1:3 tempvecs[i] = zeros(ComplexF64,N) end nc = 20 nonc = false @time ldet = logdet(WdagW) if nonc fp = open("deltavalue_m$(m)_nonc_NX$(NX)_6.dat","w") else fp = open("deltavalue_m$(m)_nc$(nc)_NX$(NX)_6.dat","w") end for M in [4,8,16,32,64,128] if nonc filename="delta_$(NX)$(NX)$(NX)$(NX)_$(M)_m$(m)_nonc_6.dat" else filename="delta_$(NX)$(NX)$(NX)$(NX)_$(M)_m$(m)_nc$(nc)_6.dat" end a = tdlogdet(WdagWsp,M,m,tempvecs,filename=filename,nc=nc,nonc=nonc) println("$M $a $ldet") println(fp,"$M $a $ldet") end close(fp) exit() @time Sfnew = -tdlogdet(WdagWsp,M,m,tempvecs) =# else println("Calculating logdet") @time Sfnew = -real(logdet(WdagW)) end if univ.Dirac_operator == "Staggered" #if univ.fparam.Nf == 4 # Sfnew /= 2 #end Sfnew /= (8 / univ.fparam.Nf) end return Sfnew end struct Wilsonloops_actions{Gauge_temp} loops::Array{Wilson_loop_set,1} loopaction::Gauge_temp temps::Array{Gauge_temp,1} numloops::Int64 β::Float64 NC::Float64 couplinglist::Array{String,1} function Wilsonloops_actions(univ) couplinglist = ["plaq", "rect", "polyx", "polyy", "polyz", "polyt"] L = (univ.U[1].NX, univ.U[1].NY, univ.U[1].NZ, univ.U[1].NT) loops = make_loopforactions(couplinglist, L) loopaction = similar(univ._temporal_gauge[1]) sutype = typeof(loopaction) temps = Array{sutype,1}(undef, 3) for i = 1:3 temps[i] = similar(loopaction) end numloops = length(couplinglist) β = univ.gparam.β NC = univ.NC return new{sutype}(loops, loopaction, temps, numloops, β, NC, couplinglist) end end function calc_looptrvalues(w::Wilsonloops_actions, univ) numloops = w.numloops trs = zeros(ComplexF64, numloops) for i = 1:numloops evaluate_wilson_loops!(w.loopaction, w.loops[i], univ.U, w.temps[1:3]) trs[i] = tr(w.loopaction) end return trs end function calc_looptrvalues_site(w::Wilsonloops_actions, univ) return numloops = w.numloops NX = univ.U[1].NX NY = univ.U[1].NY NZ = univ.U[1].NZ NT = univ.U[1].NT NC = univ.NC V = zeros(ComplexF64, NC, NC) trs = zeros(ComplexF64, numloops, NX, NY, NZ, NT) for it = 1:NT for iz = 1:NZ for iy = 1:NY for ix = 1:NX for i = 1:numloops evaluate_wilson_loops!(V, w.loops[i], univ.U, ix, iy, iz, it) trs[i, ix, iy, iz, it] = tr(V) end end end end end return trs end function get_looptrvalues(w::Wilsonloops_actions) return w.trs end function calc_IntegratedSf(w::Wilsonloops_actions, univ) Sf = calc_IntegratedFermionAction(univ) return Sf end function calc_gaugeSg(w::Wilsonloops_actions, univ) trs = calc_looptrvalues(w, univ) Sg = (-w.β / w.NC) * trs[1] return real(Sg), trs end function calc_trainingdata(w::Wilsonloops_actions, univ) Sf = calc_IntegratedSf(w, univ) Sg, trs = calc_gaugeSg(w, univ) return trs, Sg, Sf end function make_WdagWmatrix(univ::Universe) return make_WdagWmatrix(univ.U, univ._temporal_fermi, univ.fparam) end function make_WdagWmatrix!(WdagW, univ::Universe) make_WdagWmatrix!(WdagW, univ.U, univ._temporal_fermi, univ.fparam) return end function make_WdagWmatrix(univ::Universe, U::Array{T,1}) where {T<:GaugeFields} return make_WdagWmatrix(U, univ._temporal_fermi, univ.fparam) end function make_WdagWmatrix( U::Array{G,1}, temps::Array{T,1}, fparam, ) where {G<:GaugeFields,T<:FermionFields} x0 = temps[7] xi = temps[8] return make_WdagWmatrix(U, x0, xi, fparam) end function make_WdagWmatrix!( WdagW, U::Array{G,1}, temps::Array{T,1}, fparam, ) where {G<:GaugeFields,T<:FermionFields} x0 = temps[7] xi = temps[8] make_WdagWmatrix!(WdagW, U, x0, xi, fparam) return end function make_WdagWmatrix( U::Array{G,1}, x0::T, xi::T, fparam, ) where {G<:GaugeFields,T<:FermionFields} NX = x0.NX NY = x0.NY NZ = x0.NZ NT = x0.NT NC = x0.NC if T == StaggeredFermion NG = 1 else NG = 4 end Nsize = NX * NY * NZ * NT * NC * NG WdagW = zeros(ComplexF64, Nsize, Nsize) make_WdagWmatrix!(WdagW, U, x0, xi, fparam) return WdagW end function make_WdagWmatrix!( WdagW, U::Array{G,1}, x0::T, xi::T, fparam, ) where {G<:GaugeFields,T<:FermionFields} Fermionfields.clear!(x0) NX = x0.NX NY = x0.NY NZ = x0.NZ NT = x0.NT NC = x0.NC if T == StaggeredFermion NG = 1 else NG = 4 end Nsize = NX * NY * NZ * NT * NC * NG #WdagW = zeros(ComplexF64,Nsize,Nsize) WdagWoperator = DdagD_operator(U, x0, fparam) j = 0 for α = 1:NG for it = 1:NT for iz = 1:NZ for iy = 1:NY for ix = 1:NX for ic = 1:NC Fermionfields.clear!(x0) j += 1 x0[ic, ix, iy, iz, it, α] = 1 #set_wing_fermi!(x0) #WdagWx!(xi,U,x0,temps,fparam) #println(xi*xi) #Wx!(xi,U,x0,temps,fparam) #println(xi*xi) #Wx!(xi,U,x0,temps,fparam,(ix,iy,iz,it,α)) #println(xi*xi) mul!(xi, WdagWoperator, x0, (ix, iy, iz, it, α)) #WdagWx!(xi,U,x0,temps,fparam,(ix,iy,iz,it,α)) #println("fast ",xi*xi) #exit() #display(xi) #exit() substitute_fermion!(WdagW, j, xi) end end end end end end #return WdagW end function construct_fermion_gauss_distribution!( univ::Universe{Gauge,Lie,Fermi,GaugeP,FermiP,Gauge_temp}, ) where {Gauge,Lie,Fermi,GaugeP,FermiP,Gauge_temp} gauss_distribution_fermi!(univ.η, univ.ranf) end function construct_fermion_gauss_distribution!( univ::Universe{Gauge,Lie,Fermi,GaugeP,FermiP,Gauge_temp}, ) where {Gauge,Lie,Fermi<:StaggeredFermion,GaugeP,FermiP,Gauge_temp} gauss_distribution_fermi!(univ.η, univ.ranf) if univ.fparam.Nf == 4 U, _... = calc_smearingU(univ.U, univ.fparam.smearing) evensite = false W = Diracoperators.Dirac_operator(U, univ.η, univ.fparam) mul!(univ.φ, W', univ.η) #Wdagx!(univ.φ,univ.U,univ.η,univ._temporal_fermi,univ.fparam) Fermionfields.clear!(univ.φ, evensite) bicg(univ.η, W', univ.φ, eps = univ.fparam.eps, maxsteps = univ.fparam.MaxCGstep) end end function construct_fermionfield_φ!( univ::Universe{Gauge,Lie,Fermi,GaugeP,FermiP,Gauge_temp}, ) where {Gauge,Lie,Fermi,GaugeP,FermiP,Gauge_temp} U, _... = calc_smearingU(univ.U, univ.fparam.smearing) W = Diracoperators.Dirac_operator(U, univ.η, univ.fparam) mul!(univ.φ, W', univ.η) set_wing_fermi!(univ.φ) end function construct_fermionfield_φ!( univ::Universe{Gauge,Lie,Fermi,GaugeP,FermiP,Gauge_temp}, ) where {Gauge,Lie,Fermi<:StaggeredFermion,GaugeP,FermiP,Gauge_temp} U, _... = calc_smearingU(univ.U, univ.fparam.smearing) if univ.fparam.Nf == 4 || univ.fparam.Nf == 8 W = Diracoperators.Dirac_operator(U, univ.η, univ.fparam) mul!(univ.φ, W', univ.η) else WdagW = Diracoperators.DdagD_operator(U, univ.η, univ.fparam) N = get_order(univ.fparam.rhmc_action) x = univ.φ vec_x = univ._temporal_fermi[end-N+1:end] for j = 1:N Fermionfields.clear!(vec_x[j]) end # eta = (MdagM)^{-alpha/2} phi -> phi = (MdagM)^{alpha/2} eta #(MdagM)^{alpha/2} eta ~ α0 eta + sum_k αk (MdagM + βk)^{-1} eta vec_β = get_β(univ.fparam.rhmc_action) vec_α = get_α(univ.fparam.rhmc_action) α0 = get_α0(univ.fparam.rhmc_action) shiftedcg( vec_x, vec_β, x, WdagW, univ.η, eps = univ.fparam.eps, maxsteps = univ.fparam.MaxCGstep, ) Fermionfields.clear!(univ.φ) Fermionfields.add!(univ.φ, α0, univ.η) for j = 1:N αk = vec_α[j] Fermionfields.add!(univ.φ, αk, vec_x[j]) end end set_wing_fermi!(univ.φ) end function construct_fermionfield_η!( univ::Universe{Gauge,Lie,Fermi,GaugeP,FermiP,Gauge_temp}, ) where {Gauge,Lie,Fermi,GaugeP,FermiP,Gauge_temp} U, _... = calc_smearingU(univ.U, univ.fparam.smearing) W = Diracoperators.Dirac_operator(U, univ.η, univ.fparam) bicg( univ.η, W', univ.φ, eps = univ.fparam.eps, maxsteps = univ.fparam.MaxCGstep, verbose = univ.kind_of_verboselevel, ) end function construct_fermionfield_η!( univ::Universe{Gauge,Lie,Fermi,GaugeP,FermiP,Gauge_temp}, ) where {Gauge,Lie,Fermi<:StaggeredFermion,GaugeP,FermiP,Gauge_temp} # eta = Wdag^{-1} phi U, _... = calc_smearingU(univ.U, univ.fparam.smearing) if univ.fparam.Nf == 4 || univ.fparam.Nf == 8 W = Diracoperators.Dirac_operator(U, univ.η, univ.fparam) bicg( univ.η, W', univ.φ, eps = univ.fparam.eps, maxsteps = univ.fparam.MaxCGstep, verbose = univ.kind_of_verboselevel, ) else WdagW = Diracoperators.DdagD_operator(U, univ.η, univ.fparam) N = get_order(univ.fparam.rhmc_action) x = univ.η vec_x = univ._temporal_fermi[end-N+1:end] for j = 1:N Fermionfields.clear!(vec_x[j]) end # eta = (MdagM)^{-alpha/2} phi -> phi = (MdagM)^{alpha/2} eta #(MdagM)^{alpha/2} eta ~ α0 eta + sum_k αk (MdagM + βk)^{-1} eta vec_β = get_β_inverse(univ.fparam.rhmc_action) vec_α = get_α_inverse(univ.fparam.rhmc_action) α0 = get_α0_inverse(univ.fparam.rhmc_action) shiftedcg( vec_x, vec_β, x, WdagW, univ.φ, eps = univ.fparam.eps, maxsteps = univ.fparam.MaxCGstep, ) Fermionfields.clear!(univ.η) Fermionfields.add!(univ.η, α0, univ.φ) for j = 1:N αk = vec_α[j] Fermionfields.add!(univ.η, αk, vec_x[j]) end end end end
LatticeQCD
https://github.com/akio-tomiya/LatticeQCD.jl.git
[ "MIT" ]
1.1.0
e495a1eaee52a513e02fe6ca2c995a7d0ed671a7
code
4995
module Rand export Crand mutable struct Crand iw::Array{Int64,1} jr::Int64 kr::Int64 end mutable struct Random_LCGs{T} crand_public::Crand Random_LCGs(ndelay; julian_random_number = false) = new{julian_random_number}(cint3(ndelay)) end function (g::Random_LCGs{false})() #return rand() return ranf!(g.crand_public) end function (g::Random_LCGs{true})() return rand() #return ranf!(g.crand_public) end const IP = 521 const IQ = 32 const MACRM = 40 const MACRI = 1 const FNORM = Float32(0.465661e-9) const intmax32 = Int32(2147483647) function cint3(ndelay) println("ndelay : $ndelay") #ccall((:readseed,"./randfortran.so"),Nothing,(),) crand_public = init3() delay3!(crand_public, ndelay) #display(crand_public.iw) return crand_public end function make_value_Int32_again(ix) while ix < -intmax32 - 1 ix += 2 * intmax32 + 1 end while ix > intmax32 ix -= 2 * (intmax32 + 1) end return ix end function init3() #println(2147483647+1-2*(intmax32+1)) ib = zeros(Int64, IP) #INTEGER ib(0:IP-1) iw = zeros(Int64, IP) #INTEGER iw(0:IP-1) ix = Int32(MACRI) for i = 0:IP-1 ix = ix * 69069 ix = make_value_Int32_again(ix) #while ix < -intmax32-1 || intmax32 < ix # ix -= Int32(Int32(2)*(intmax32+Int32(1))) #end #println(Int32(ix) >>> -(-31)) ib[i+1] = Int32(ix) >>> -(-31) #println("$i ",ix," ",typeof(ix)) #println(ix,"\t",ib[i+1]) #ib[i+1] = ishift(ix,-31) end jr = 0 kr = IP - IQ for j = 0:IP-1 iwork = 0 for i = 0:31 iwork = iwork * 2 + ib[jr+1] #while iwork < -intmax32-1 || intmax32 < iwork # iwork -= Int32(Int32(2)*(intmax32+Int32(1))) #end iwork = make_value_Int32_again(iwork) ib[jr+1] = Int32(ib[jr+1]) ⊻ Int32(ib[kr+1]) jr += 1 if jr == IP jr = 0 end kr += 1 if kr == IP kr = 0 end end iw[j+1] = Int32(iwork) >>> -(-1) #println(j,"\t",iw[j+1]) end return Crand(iw, jr, kr) # exit() end function delay3!(crand_public::Crand, lambda) iwk = zeros(Int32, 2 * IP - 2 + 1) c = zeros(Int32, 2 * IP - 1 + 1) ib = zeros(Int32, IP + 31 + 1) mu = MACRM for i = 0:IP-1 iwk[i+1] = crand_public.iw[i+1] end for i = IP:2*IP-2 iwk[i+1] = Int32(iwk[i-IP+1]) ⊻ Int32(iwk[i-IQ+1]) end for i = 0:mu-1 ib[i+1] = 0 end m = lambda nb = mu - 1 #count = 0 while m > IP - 1 nb += 1 ib[nb+1] = m % 2 m = div(m, 2) #count += 1 #if count > 100000000 # error("something is wrong in rand.jl!") #end end for i = 0:IP-1 c[i+1] = 0 end c[m+1] = 1 for j = nb:-1:0 for i = IP-1:-1:0 c[2*i+ib[j+1]+1] = c[i+1] c[2*i+1-ib[j+1]+1] = 0 end for i = 2*IP-1:-1:IP c[i-IP+1] = Int32(c[i-IP+1]) ⊻ Int32(c[i+1]) c[i-IQ+1] = Int32(c[i-IQ+1]) ⊻ Int32(c[i+1]) end end for j = 0:IP-1 iwork = 0 for i = 0:IP-1 #while iwork < -intmax32-1 || intmax32 < iwork # iwork -= Int32(Int32(2)*(intmax32+Int32(1))) #end iwork = make_value_Int32_again(iwork) iwork = Int32(iwork) ⊻ Int32(c[i+1] * iwk[j+i+1]) end crand_public.iw[j+1] = iwork end end function ranf!(crand_public) #ranfs = zeros(Float64,1) #ccall((:call_random,"./randfortran.so"),Nothing,(Ref{Float64},),ranfs) #return ranfs[1] ir = crand_public.iw j = crand_public.jr k = crand_public.kr crand_public.iw[j+1] = Int32(crand_public.iw[j+1]) ⊻ Int32(crand_public.iw[k+1]) irnd = crand_public.iw[j+1] #println("irnd = $irnd ", FNORM,"\t",irnd*FNORM) #ranf = Float32(irnd*FNORM) #granf = Float64(irnd)*FNORM frnd = Float32(irnd * FNORM) #println(frnd,"\t",irnd*FNORM,"\t",Float64(irnd),"\t",granf) #exit() ranf = Float32(frnd) crand_public.jr = crand_public.jr + 1 if crand_public.jr >= IP crand_public.jr = crand_public.jr - IP end crand_public.kr = crand_public.kr + 1 if crand_public.kr >= IP crand_public.kr = crand_public.kr - IP end return ranf end function rgauss1!(crand_public, nup) xr = zeros(Float64, nup) nup2 = div(nup, 2) if nup != 2 * nup2 error(""" !!!! Attention nup in rgauss should be even nup = $nup """) end for i = 1:nup2 i2 = 2 * i i1 = i2 - 1 v1 = sqrt(-log(ranf!(crand_public) + 1e-10) * 2) v2 = 2pi * ranf!(crand_public) xr[i1] = v1 * cos(v2) xr[i2] = v1 * sin(v2) end return xr end end
LatticeQCD
https://github.com/akio-tomiya/LatticeQCD.jl.git
[ "MIT" ]
1.1.0
e495a1eaee52a513e02fe6ca2c995a7d0ed671a7
code
2811
module AbstractUpdate_module using Gaugefields using LinearAlgebra using LatticeDiracOperators import ..Universe_module: Univ, get_gauge_action, is_quenched import ..System_parameters: Params import ..AbstractMD_module: StandardMD, MD, initialize_MD!, runMD! abstract type AbstractUpdate end include("./standardHMC.jl") include("./givenconfigurations.jl") include("./heatbath.jl") #= function Updatemethod(p::Params, univ::Univ) gauge_action = get_gauge_action(univ) quench = is_quenched(univ) U = univ.U updatemethod = Updatemethod( U, gauge_action, update_method, quench, p.Δτ, p.MDsteps, SextonWeingargten = SextonWeingargten, ) return updatemethod end =# function Updatemethod(parameters::Params, univ::Univ) gauge_action = get_gauge_action(univ) quench = is_quenched(univ) updatemethod = Updatemethod( univ.U, gauge_action, parameters.update_method, quench, parameters.Δτ, parameters.MDsteps, fermi_action = univ.fermi_action, cov_neural_net = univ.cov_neural_net, SextonWeingargten = parameters.SextonWeingargten, loadU_dir = parameters.loadU_dir, loadU_format = parameters.loadU_format, isevenodd = parameters.isevenodd, β = parameters.β, ITERATION_MAX = parameters.ITERATION_MAX, numOR = parameters.numOR, useOR = parameters.useOR, ) return updatemethod end function Updatemethod( U, gauge_action, update_method, quench, Δτ = nothing, MDsteps = nothing; fermi_action = nothing, cov_neural_net = nothing, SextonWeingargten = false, loadU_dir = nothing, loadU_format = nothing, isevenodd = true, β = 5.7, ITERATION_MAX = 10^5, numOR = 3, useOR = false, ) if update_method == "HMC" updatemethod = StandardHMC( U, gauge_action, quench, Δτ, MDsteps, fermi_action, cov_neural_net, SextonWeingargten = SextonWeingargten, ) elseif update_method == "Fileloading" updatemethod = GivenConfigurations(U, loadU_dir, loadU_format) elseif update_method == "Heatbath" updatemethod = Heatbathupdate( U, gauge_action, quench, isevenodd = isevenodd, β = β, ITERATION_MAX = ITERATION_MAX, numOR = numOR, useOR = useOR, ) else error("update method $(update_method) is not supported!") end return updatemethod end function update!(updatemethod::T, U) where {T<:AbstractUpdate} error("updatemethod type $(typeof(updatemethod)) is not supported!!") end end
LatticeQCD
https://github.com/akio-tomiya/LatticeQCD.jl.git
[ "MIT" ]
1.1.0
e495a1eaee52a513e02fe6ca2c995a7d0ed671a7
code
2274
struct SLHMC{Tmd,Tmd_eff,TG} <: AbstractUpdate md::Tmd md_eff::Tmd_eff Uold::Vector{TG} end function SLHMC( U, gauge_action, quench, Δτ, MDsteps, fermi_action, gauge_eff_action, fermi_eff_action; SextonWeingargten = false, ) md = MD( U, gauge_action, quench, Δτ, MDsteps, fermi_action; SextonWeingargten = SextonWeingargten, ) Tmd = typeof(md) md_eff = MD( U, gauge_eff_action, quench, Δτ, MDsteps, fermi_eff_action; SextonWeingargten = SextonWeingargten, ) Tmd_eff = typeof(md_eff) Uold = similar(U) TG = eltype(Uold) return SLHMC{Tmd,Tmd_eff,TG}(md, md_eff, Uold) #error("in StandardHMC!!") end function update!(updatemethod::T, U) where {T<:SLHMC} NC = U[1].NC md = updatemethod.md md_eff = updatemethod.md_eff Uold = updatemethod.Uold substitute_U!(Uold, U) #previous configuration initialize_MD!(U, md) Sp = md.p * md.p / 2 Sg = -evaluate_GaugeAction(md.gauge_action, U) / NC println_verbose_level3(U[1], "Sp_old = $Sp, Sg_old = $Sg") Sold = real(Sp + Sg) if md.quench == false Sfold = real(dot(md.ξ, md.ξ)) println_verbose_level3(U[1], "Sfold = $Sfold") Sold += Sfold md_eff.ξ = md.ξ md_eff.η = md.η end md_eff.p = md.p runMD!(U, md_eff) md.p = md_eff.p Sp = md.p * md.p / 2 Sg = -evaluate_GaugeAction(md.gauge_action, U) / NC println_verbose_level3(U[1], "Sp_new = $Sp, Sg_new = $Sg") Snew = real(Sp + Sg) if md.quench == false Sfnew = evaluate_FermiAction(md.fermi_action, U, md.η) println_verbose_level3(U[1], "Sfnew = $Sfnew") Snew += Sfnew end println_verbose_level2(U[1], "Sold = $Sold, Snew = $Snew") println_verbose_level2(U[1], "Snew - Sold = $(Snew-Sold)") accept = exp(Sold - Snew) >= rand() if accept println_verbose_level2(U[1], "Accepted") else substitute_U!(U, Uold) #back to previous configuration println_verbose_level2(U[1], "Rejected") end return accept #error("updatemethod type $(typeof(updatemethod)) is not supported!!") end
LatticeQCD
https://github.com/akio-tomiya/LatticeQCD.jl.git
[ "MIT" ]
1.1.0
e495a1eaee52a513e02fe6ca2c995a7d0ed671a7
code
2209
struct GivenConfigurations <: AbstractUpdate loadU_dir::String loadU_format::String filename_load::Vector{String} current_fileindex::Vector{Int64} function GivenConfigurations(U, loadU_dir, loadU_format) ildg = nothing println_verbose_level1(U[1], "load U from ", loadU_dir) if loadU_format == "JLD" datatype = "JLD" filename_load = filter(f -> contains(f, ".jld2"), readdir("./$(loadU_dir)")) #filename_load = filter(f -> contains(f,".jld"),readdir("./$(parameters.loadU_dir)")) elseif loadU_format == "ILDG" datatype = "ILDG" filename_load = filter(f -> contains(f, "ildg"), readdir("./$(loadU_dir)")) elseif loadU_format == "BridgeText" datatype = "BridgeText" filename_load = filter(f -> contains(f, "txt"), readdir("./$(loadU_dir)")) else error("loadU_format should be JLD, ILDG or BridgeText. now $(loadU_format)") end numfiles = length(filename_load) println_verbose_level1(U[1], "Num of files = $numfiles") for file in filename_load println_verbose_level1(U[1], "$file") end current_fileindex = Vector{Int64}(undef, 1) current_fileindex[1] = 0 updatemethod = new(loadU_dir, loadU_format, filename_load, current_fileindex) update!(updatemethod, U) return updatemethod #new(loadU_dir,loadU_format,filename_load,current_fileindex) end end function update!(updatemethod::T, U) where {T<:GivenConfigurations} updatemethod.current_fileindex[1] += 1 itrj = updatemethod.current_fileindex[1] fileformat = updatemethod.loadU_format loadU_dir = updatemethod.loadU_dir filename_i = updatemethod.filename_load[itrj] _, _, L... = size(U[1]) NC = U[1].NC if fileformat == "JLD" error("not supported now") elseif fileformat == "ILDG" ildg = ILDG(loadU_dir * "/" * filename_i) i = 1 load_gaugefield!(U, i, ildg, L, NC) elseif fileformat == "BridgeText" filename = loadU_dir * "/" * filename_i load_BridgeText!(filename, U, L, NC) end return true end
LatticeQCD
https://github.com/akio-tomiya/LatticeQCD.jl.git
[ "MIT" ]
1.1.0
e495a1eaee52a513e02fe6ca2c995a7d0ed671a7
code
1184
struct Heatbathupdate{Dim,T} <: AbstractUpdate heatbath::Union{Heatbath_update{Dim,T},Heatbath{T}} isevenodd::Bool numOR::Int64 useOR::Bool end function Heatbathupdate( U::Array{T,1}, gauge_action, quench; useOR = false, numOR = 0, isevenodd = false, β = 2.3, ITERATION_MAX = 10^5, ) where {T} @assert quench "Heatbath update is only for quanch case!" Dim = length(U) if isevenodd println_verbose_level1( U[1], "Heatbath update with even-odd method. Only plaquette action can be treated. Now β = $β", ) hb = Heatbath(U, β, ITERATION_MAX = ITERATION_MAX) else hb = Heatbath_update(U, gauge_action, ITERATION_MAX = ITERATION_MAX) end return Heatbathupdate{Dim,T}(hb, isevenodd, numOR, useOR) #error("in StandardHMC!!") end function update!(updatemethod::T, U) where {T<:Heatbathupdate} heatbath!(U, updatemethod.heatbath) if updatemethod.useOR for i = 1:updatemethod.numOR overrelaxation!(U, updatemethod.heatbath) end end return true #error("updatemethod type $(updatemethod) is not supported!!") end
LatticeQCD
https://github.com/akio-tomiya/LatticeQCD.jl.git
[ "MIT" ]
1.1.0
e495a1eaee52a513e02fe6ca2c995a7d0ed671a7
code
2132
struct StandardHMC{Tmd,TG} <: AbstractUpdate md::Tmd Uold::Vector{TG} end function StandardHMC( U, gauge_action, quench, Δτ, MDsteps, fermi_action, cov_neural_net; SextonWeingargten = false, ) md = MD( U, gauge_action, quench, Δτ, MDsteps, fermi_action, cov_neural_net; SextonWeingargten = SextonWeingargten, ) Tmd = typeof(md) Uold = similar(U) TG = eltype(Uold) return StandardHMC{Tmd,TG}(md, Uold) #error("in StandardHMC!!") end function update!(updatemethod::T, U) where {T<:StandardHMC} NC = U[1].NC md = updatemethod.md Uold = updatemethod.Uold substitute_U!(Uold, U) #previous configuration initialize_MD!(U, md) Sp = md.p * md.p / 2 Sg = -evaluate_GaugeAction(md.gauge_action, U) / NC println_verbose_level3(U[1], "Sp_old = $Sp, Sg_old = $Sg") Sold = real(Sp + Sg) if md.quench == false Sfold = real(dot(md.ξ, md.ξ)) println_verbose_level3(U[1], "Sfold = $Sfold") Sold += Sfold end runMD!(U, md) Sp = md.p * md.p / 2 Sg = -evaluate_GaugeAction(md.gauge_action, U) / NC println_verbose_level3(U[1], "Sp_new = $Sp, Sg_new = $Sg") Snew = real(Sp + Sg) if md.quench == false if md.cov_neural_net != Nothing Uout, Uout_multi, _ = calc_smearedU(U, md.cov_neural_net) Sfnew = evaluate_FermiAction(md.fermi_action, Uout, md.η) else Sfnew = evaluate_FermiAction(md.fermi_action, U, md.η) end println_verbose_level3(U[1], "Sfnew = $Sfnew") Snew += Sfnew end println_verbose_level2(U[1], "Sold = $Sold, Snew = $Snew") println_verbose_level2(U[1], "Snew - Sold = $(Snew-Sold)") accept = exp(Sold - Snew) >= rand() if accept println_verbose_level2(U[1], "Accepted") else substitute_U!(U, Uold) #back to previous configuration println_verbose_level2(U[1], "Rejected") end return accept #error("updatemethod type $(typeof(updatemethod)) is not supported!!") end
LatticeQCD
https://github.com/akio-tomiya/LatticeQCD.jl.git
[ "MIT" ]
1.1.0
e495a1eaee52a513e02fe6ca2c995a7d0ed671a7
code
5621
using LatticeQCD using Test function readplaqdata() data = readlines("debugplaqdata.txt") num = length(data) plaqvalues = Float64[] for i=1:num push!(plaqvalues,parse(Float64,split(data[i])[1])) end return plaqvalues end @testset "LatticeQCD.jl" begin eps = 1e-5 plaqvalues = readplaqdata() #fout = open("Testvalues.txt","w");println(fout,"Test values") #@time begin # time @testset "quenched HMC" begin @testset "SU(2)" begin @time plaq = run_LQCD("test02.toml") #plaq_comparison = 0.5575491312570713 plaq_comparison = plaqvalues[1] #0.4870451289565683#for 1.9 0.48785061558469406 @test abs(plaq - plaq_comparison)/plaq_comparison < eps #println(fout,"qhmc SU(2), $plaq") end @testset "SU(3)" begin @time plaq = run_LQCD("test01.toml") #plaq_comparison = 0.6190393357419764 plaq_comparison = plaqvalues[2] #plaq_comparison = 0.5753703885492326 @test abs(plaq - plaq_comparison)/plaq_comparison < eps #println(fout,"qhmc SU(3), $plaq") end @testset "SU(4)" begin @time plaq = run_LQCD("test03.toml") #plaq_comparison = 0.4966683811089479 plaq_comparison = plaqvalues[3] #plaq_comparison = 0.3915274700011152 @test abs(plaq - plaq_comparison)/plaq_comparison < eps #println(fout,"qhmc SU(4), $plaq") end end @testset "Heatbath" begin @testset "SU(2)" begin @time plaq = run_LQCD("test02-hb.toml") #plaq_comparison = 0.5287735727118359 plaq_comparison = plaqvalues[4] #plaq_comparison = 0.4855523668804699 @test abs(plaq - plaq_comparison)/plaq_comparison < eps #println(fout,"hb SU(2), $plaq") end @testset "SU(3)" begin @time plaq = run_LQCD("test01-hb.toml") #plaq_comparison = 0.5821680570717788 plaq_comparison = plaqvalues[5] #plaq_comparison = 0.5502269475635925 @test abs(plaq - plaq_comparison)/plaq_comparison < eps #println(fout,"hb SU(3), $plaq") end @testset "SU(4)" begin @time plaq = run_LQCD("test03-hb.toml") #plaq_comparison = 0.5467724338528576 plaq_comparison = plaqvalues[6] #plaq_comparison = 0.4425954597477664 @test abs(plaq - plaq_comparison)/plaq_comparison < eps #println(fout,"hb SU(4), $plaq") end end @testset "HMC" begin @testset "Wilson SU(3) with SextonWeingargten" begin @time plaq = run_LQCD("test_wilson.toml") #plaq_comparison = 0.3449688128155864 #plaq_comparison = 0.4867607208994073 #plaq_comparison = 0.4976172009730353 #plaq_comparison = 0.49956695470173684 plaq_comparison = plaqvalues[7] #println(plaq) @test abs(plaq - plaq_comparison)/plaq_comparison < eps #println(fout,"Wilson SU(3) with SextonWeingargten, $plaq") end @testset "Staggered SU(3) with 4 tastes" begin @time plaq = run_LQCD("test_staggered.toml") #plaq_comparison = 0.25455870400018477 #0.00624053999484795 #plaq_comparison = 0.4987738124715037 #plaq_comparison = 0.4713469212809392 #plaq_comparison = 0.49956695470173684 #plaq_comparison = 0.48966257272554553 plaq_comparison = plaqvalues[8] #println(plaq) @test abs(plaq - plaq_comparison)/plaq_comparison < eps #println(fout,"Staggered SU(3) with 4 tastes, $plaq") end @testset "Staggered SU(3) with 2 tastes" begin @time plaq = run_LQCD("test_Nf2.toml") #plaq_comparison = 0.5630198767336069 #plaq_comparison = 0.5837848292310798 plaq_comparison = plaqvalues[9] @test abs(plaq - plaq_comparison)/plaq_comparison < eps #println(fout,"Staggered SU(3) with 2 tastes, $plaq") end @testset "Staggered SU(3) with 3 tastes" begin @time plaq = run_LQCD("test_Nf3.toml") #plaq_comparison = 0.565176584402352 #plaq_comparison = 0.5864438294310259 plaq_comparison = plaqvalues[10] @test abs(plaq - plaq_comparison)/plaq_comparison < eps #println(fout,"Staggered SU(3) with 3 tastes, $plaq") end @testset "Domain-wall SU(3)" begin # cold start @time plaq = run_LQCD("test_domainwallhmc.toml") #plaq_comparison = 0.649479122018118 plaq_comparison = plaqvalues[11] @test abs(plaq - plaq_comparison)/plaq_comparison < eps #println(fout,"Domain-wall SU(3), $plaq") end end #end # time #close(fout) #= @testset "SLMC" begin @testset "Staggered SU(3)" begin @time plaq = run_LQCD("test06_slmc_ks.jl") plaq_comparison = 0.5279623287035208 @test abs(plaq - plaq_comparison)/plaq_comparison < eps end end @testset "WilsonClover SU(3) with SextonWeingargten" begin @time plaq = run_LQCD("test_wilsonclover.jl") plaq_comparison = 0.3449688128155864 #plaq_comparison = 0.00624053999484795 @test abs(plaq - plaq_comparison)/plaq_comparison < eps end =# end
LatticeQCD
https://github.com/akio-tomiya/LatticeQCD.jl.git
[ "MIT" ]
1.1.0
e495a1eaee52a513e02fe6ca2c995a7d0ed671a7
code
2382
# - - parameters - - - - - - - - - - - system["saveU_dir"] = "" system["verboselevel"] = 2 system["L"] = (4, 4, 4, 4) system["Nwing"] = 1 system["Nsteps"] = 10 system["quench"] = true system["logfile"] = "Heatbath_L04040404_beta5.7_quenched_su3.txt" system["initial"] = "cold" system["Dirac_operator"] = nothing system["log_dir"] = "./logs" system["Nthermalization"] = 0 system["update_method"] = "Heatbath" system["randomseed"] = 111 system["NC"] = 3 system["BoundaryCondition"] = [1, 1, 1, -1] system["saveU_format"] = nothing system["β"] = 5.7 actions["use_autogeneratedstaples"] = false actions["couplingcoeff"] = Any[] actions["couplinglist"] = Any[] md["Δτ"] = 0.06666666666666667 md["N_SextonWeingargten"] = 2 md["SextonWeingargten"] = false md["MDsteps"] = 15 measurement["measurement_methods"] = Dict[Dict{Any,Any}("eps" => 1.0e-19,"fermiontype" => "Staggered","Nf" => 4,"mass" => 0.5,"measure_every" => 5,"MaxCGstep" => 3000,"methodname" => "Chiral_condensate"), Dict{Any,Any}("fermiontype" => nothing,"measure_every" => 1,"methodname" => "Polyakov_loop"), Dict{Any,Any}("eps_flow" => 0.01,"fermiontype" => nothing,"numflow" => 10,"measure_every" => 10,"methodname" => "Topological_charge","Nflowsteps" => 4), Dict{Any,Any}("eps" => 1.0e-19,"fermiontype" => "Wilson","r" => 1,"measure_every" => 5,"hop" => 0.141139,"methodname" => "Pion_correlator","MaxCGstep" => 3000), Dict{Any,Any}("fermiontype" => nothing,"measure_every" => 1,"methodname" => "Plaquette")] #measurement["measurement_methods"] = Dict[Dict{Any,Any}("eps" => 1.0e-19,"fermiontype" => "Staggered","Nf" => 4,"mass" => 0.5,"measure_every" => 5,"MaxCGstep" => 3000,"methodname" => "Chiral_condensate"), Dict{Any,Any}("fermiontype" => nothing,"measure_every" => 1,"methodname" => "Polyakov_loop"), Dict{Any,Any}("fermiontype" => nothing,"numflow" => 10,"measure_every" => 5,"methodname" => "Topological_charge"), Dict{Any,Any}("eps" => 1.0e-19,"fermiontype" => "Wilson","r" => 1,"measure_every" => 5,"hop" => 0.141139,"methodname" => "Pion_correlator","MaxCGstep" => 3000), Dict{Any,Any}("fermiontype" => nothing,"measure_every" => 1,"methodname" => "Plaquette")] measurement["measurement_dir"] = "Heatbath_L04040404_beta5.7_quenched_su3" measurement["measurement_basedir"] = "./measurements" # - - - - - - - - - - - - - - - - - - -
LatticeQCD
https://github.com/akio-tomiya/LatticeQCD.jl.git
[ "MIT" ]
1.1.0
e495a1eaee52a513e02fe6ca2c995a7d0ed671a7
code
1700
# - - parameters - - - - - - - - - - - system["saveU_dir"] = "" system["verboselevel"] = 2 system["L"] = (4, 4, 4, 4) system["Nwing"] = 1 system["Nsteps"] = 10 system["quench"] = true system["logfile"] = "HMC_L04040404_beta5.7_quenched_su3.txt" system["initial"] = "cold" system["Dirac_operator"] = nothing system["log_dir"] = "./logs" system["Nthermalization"] = 0 system["update_method"] = "HMC" system["randomseed"] = 111 system["NC"] = 3 system["BoundaryCondition"] = [1, 1, 1, -1] system["saveU_format"] = nothing system["β"] = 5.7 actions["use_autogeneratedstaples"] = false actions["couplingcoeff"] = Any[] actions["couplinglist"] = Any[] md["Δτ"] = 0.06666666666666667 md["N_SextonWeingargten"] = 2 md["SextonWeingargten"] = false md["MDsteps"] = 15 measurement["measurement_methods"] = Dict[Dict{Any,Any}("eps" => 1.0e-19,"fermiontype" => "Staggered","Nf" => 4,"mass" => 0.5,"measure_every" => 5,"MaxCGstep" => 3000,"methodname" => "Chiral_condensate"), Dict{Any,Any}("fermiontype" => nothing,"measure_every" => 1,"methodname" => "Polyakov_loop"), Dict{Any,Any}("eps_flow" => 0.01,"fermiontype" => nothing,"numflow" => 10,"measure_every" => 10,"methodname" => "Topological_charge","Nflowsteps" => 4), Dict{Any,Any}("eps" => 1.0e-19,"fermiontype" => "Wilson","r" => 1,"measure_every" => 5,"hop" => 0.141139,"methodname" => "Pion_correlator","MaxCGstep" => 3000), Dict{Any,Any}("fermiontype" => nothing,"measure_every" => 1,"methodname" => "Plaquette")] measurement["measurement_dir"] = "HMC_L04040404_beta5.7_quenched_su3" measurement["measurement_basedir"] = "./measurements" # - - - - - - - - - - - - - - - - - - -
LatticeQCD
https://github.com/akio-tomiya/LatticeQCD.jl.git
[ "MIT" ]
1.1.0
e495a1eaee52a513e02fe6ca2c995a7d0ed671a7
code
2381
# - - parameters - - - - - - - - - - - system["saveU_dir"] = "" system["verboselevel"] = 2 system["L"] = (4, 4, 4, 4) system["Nwing"] = 1 system["Nsteps"] = 10 system["quench"] = true system["logfile"] = "Heatbath_L04040404_beta5.7_quenched_su2.txt" system["initial"] = "cold" system["Dirac_operator"] = nothing system["log_dir"] = "./logs" system["Nthermalization"] = 0 system["update_method"] = "Heatbath" system["randomseed"] = 111 system["NC"] = 2 system["BoundaryCondition"] = [1, 1, 1, -1] system["saveU_format"] = nothing system["β"] = 1.9 actions["use_autogeneratedstaples"] = false actions["couplingcoeff"] = Any[] actions["couplinglist"] = Any[] md["Δτ"] = 0.06666666666666667 md["N_SextonWeingargten"] = 2 md["SextonWeingargten"] = false md["MDsteps"] = 15 measurement["measurement_methods"] = Dict[Dict{Any,Any}("eps" => 1.0e-19,"fermiontype" => "Staggered","Nf" => 4,"mass" => 0.5,"measure_every" => 5,"MaxCGstep" => 3000,"methodname" => "Chiral_condensate"), Dict{Any,Any}("fermiontype" => nothing,"measure_every" => 1,"methodname" => "Polyakov_loop"), Dict{Any,Any}("eps_flow" => 0.01,"fermiontype" => nothing,"numflow" => 10,"measure_every" => 10,"methodname" => "Topological_charge","Nflowsteps" => 4), Dict{Any,Any}("eps" => 1.0e-19,"fermiontype" => "Wilson","r" => 1,"measure_every" => 5,"hop" => 0.141139,"methodname" => "Pion_correlator","MaxCGstep" => 3000), Dict{Any,Any}("fermiontype" => nothing,"measure_every" => 1,"methodname" => "Plaquette")] #measurement["measurement_methods"] = Dict[Dict{Any,Any}("eps" => 1.0e-19,"fermiontype" => "Staggered","Nf" => 4,"mass" => 0.5,"measure_every" => 5,"MaxCGstep" => 3000,"methodname" => "Chiral_condensate"), Dict{Any,Any}("fermiontype" => nothing,"measure_every" => 1,"methodname" => "Polyakov_loop"), Dict{Any,Any}("fermiontype" => nothing,"numflow" => 10,"measure_every" => 5,"methodname" => "Topological_charge"), Dict{Any,Any}("eps" => 1.0e-19,"fermiontype" => "Wilson","r" => 1,"measure_every" => 5,"hop" => 0.141139,"methodname" => "Pion_correlator","MaxCGstep" => 3000), Dict{Any,Any}("fermiontype" => nothing,"measure_every" => 1,"methodname" => "Plaquette")] measurement["measurement_dir"] = "Heatbath_L04040404_beta5.7_quenched_su2" measurement["measurement_basedir"] = "./measurements" # - - - - - - - - - - - - - - - - - - -
LatticeQCD
https://github.com/akio-tomiya/LatticeQCD.jl.git
[ "MIT" ]
1.1.0
e495a1eaee52a513e02fe6ca2c995a7d0ed671a7
code
2366
# - - parameters - - - - - - - - - - - system["saveU_dir"] = "" system["verboselevel"] = 2 system["L"] = (4, 4, 4, 4) system["Nwing"] = 1 system["Nsteps"] = 10 system["quench"] = true system["logfile"] = "HMC_L04040404_beta5.7_quenched_su2.txt" system["initial"] = "cold" system["Dirac_operator"] = nothing system["log_dir"] = "./logs" system["Nthermalization"] = 0 system["update_method"] = "HMC" system["randomseed"] = 111 system["NC"] = 2 system["BoundaryCondition"] = [1, 1, 1, -1] system["saveU_format"] = nothing system["β"] = 1.9 actions["use_autogeneratedstaples"] = false actions["couplingcoeff"] = Any[] actions["couplinglist"] = Any[] md["Δτ"] = 0.06666666666666667 md["N_SextonWeingargten"] = 2 md["SextonWeingargten"] = false md["MDsteps"] = 15 measurement["measurement_methods"] = Dict[Dict{Any,Any}("eps" => 1.0e-19,"fermiontype" => "Staggered","Nf" => 4,"mass" => 0.5,"measure_every" => 5,"MaxCGstep" => 3000,"methodname" => "Chiral_condensate"), Dict{Any,Any}("fermiontype" => nothing,"measure_every" => 1,"methodname" => "Polyakov_loop"), Dict{Any,Any}("eps_flow" => 0.01,"fermiontype" => nothing,"numflow" => 10,"measure_every" => 10,"methodname" => "Topological_charge","Nflowsteps" => 4), Dict{Any,Any}("eps" => 1.0e-19,"fermiontype" => "Wilson","r" => 1,"measure_every" => 5,"hop" => 0.141139,"methodname" => "Pion_correlator","MaxCGstep" => 3000), Dict{Any,Any}("fermiontype" => nothing,"measure_every" => 1,"methodname" => "Plaquette")] #measurement["measurement_methods"] = Dict[Dict{Any,Any}("eps" => 1.0e-19,"fermiontype" => "Staggered","Nf" => 4,"mass" => 0.5,"measure_every" => 5,"MaxCGstep" => 3000,"methodname" => "Chiral_condensate"), Dict{Any,Any}("fermiontype" => nothing,"measure_every" => 1,"methodname" => "Polyakov_loop"), Dict{Any,Any}("fermiontype" => nothing,"numflow" => 10,"measure_every" => 5,"methodname" => "Topological_charge"), Dict{Any,Any}("eps" => 1.0e-19,"fermiontype" => "Wilson","r" => 1,"measure_every" => 5,"hop" => 0.141139,"methodname" => "Pion_correlator","MaxCGstep" => 3000), Dict{Any,Any}("fermiontype" => nothing,"measure_every" => 1,"methodname" => "Plaquette")] measurement["measurement_dir"] = "HMC_L04040404_beta5.7_quenched_su2" measurement["measurement_basedir"] = "./measurements" # - - - - - - - - - - - - - - - - - - -
LatticeQCD
https://github.com/akio-tomiya/LatticeQCD.jl.git
[ "MIT" ]
1.1.0
e495a1eaee52a513e02fe6ca2c995a7d0ed671a7
code
2381
# - - parameters - - - - - - - - - - - system["saveU_dir"] = "" system["verboselevel"] = 2 system["L"] = (4, 4, 4, 4) system["Nwing"] = 1 system["Nsteps"] = 10 system["quench"] = true system["logfile"] = "Heatbath_L04040404_beta5.7_quenched_su4.txt" system["initial"] = "cold" system["Dirac_operator"] = nothing system["log_dir"] = "./logs" system["Nthermalization"] = 0 system["update_method"] = "Heatbath" system["randomseed"] = 111 system["NC"] = 4 system["BoundaryCondition"] = [1, 1, 1, -1] system["saveU_format"] = nothing system["β"] = 9.0 actions["use_autogeneratedstaples"] = false actions["couplingcoeff"] = Any[] actions["couplinglist"] = Any[] md["Δτ"] = 0.06666666666666667 md["N_SextonWeingargten"] = 2 md["SextonWeingargten"] = false md["MDsteps"] = 15 measurement["measurement_methods"] = Dict[Dict{Any,Any}("eps" => 1.0e-19,"fermiontype" => "Staggered","Nf" => 4,"mass" => 0.5,"measure_every" => 5,"MaxCGstep" => 3000,"methodname" => "Chiral_condensate"), Dict{Any,Any}("fermiontype" => nothing,"measure_every" => 1,"methodname" => "Polyakov_loop"), Dict{Any,Any}("eps_flow" => 0.01,"fermiontype" => nothing,"numflow" => 10,"measure_every" => 10,"methodname" => "Topological_charge","Nflowsteps" => 4), Dict{Any,Any}("eps" => 1.0e-19,"fermiontype" => "Wilson","r" => 1,"measure_every" => 5,"hop" => 0.141139,"methodname" => "Pion_correlator","MaxCGstep" => 3000), Dict{Any,Any}("fermiontype" => nothing,"measure_every" => 1,"methodname" => "Plaquette")] #measurement["measurement_methods"] = Dict[Dict{Any,Any}("eps" => 1.0e-19,"fermiontype" => "Staggered","Nf" => 4,"mass" => 0.5,"measure_every" => 5,"MaxCGstep" => 3000,"methodname" => "Chiral_condensate"), Dict{Any,Any}("fermiontype" => nothing,"measure_every" => 1,"methodname" => "Polyakov_loop"), Dict{Any,Any}("fermiontype" => nothing,"numflow" => 10,"measure_every" => 5,"methodname" => "Topological_charge"), Dict{Any,Any}("eps" => 1.0e-19,"fermiontype" => "Wilson","r" => 1,"measure_every" => 5,"hop" => 0.141139,"methodname" => "Pion_correlator","MaxCGstep" => 3000), Dict{Any,Any}("fermiontype" => nothing,"measure_every" => 1,"methodname" => "Plaquette")] measurement["measurement_dir"] = "Heatbath_L04040404_beta5.7_quenched_su4" measurement["measurement_basedir"] = "./measurements" # - - - - - - - - - - - - - - - - - - -
LatticeQCD
https://github.com/akio-tomiya/LatticeQCD.jl.git
[ "MIT" ]
1.1.0
e495a1eaee52a513e02fe6ca2c995a7d0ed671a7
code
2366
# - - parameters - - - - - - - - - - - system["saveU_dir"] = "" system["verboselevel"] = 2 system["L"] = (4, 4, 4, 4) system["Nwing"] = 1 system["Nsteps"] = 10 system["quench"] = true system["logfile"] = "HMC_L04040404_beta5.7_quenched_su4.txt" system["initial"] = "cold" system["Dirac_operator"] = nothing system["log_dir"] = "./logs" system["Nthermalization"] = 0 system["update_method"] = "HMC" system["randomseed"] = 111 system["NC"] = 4 system["BoundaryCondition"] = [1, 1, 1, -1] system["saveU_format"] = nothing system["β"] = 9.0 actions["use_autogeneratedstaples"] = false actions["couplingcoeff"] = Any[] actions["couplinglist"] = Any[] md["Δτ"] = 0.06666666666666667 md["N_SextonWeingargten"] = 2 md["SextonWeingargten"] = false md["MDsteps"] = 15 measurement["measurement_methods"] = Dict[Dict{Any,Any}("eps" => 1.0e-19,"fermiontype" => "Staggered","Nf" => 4,"mass" => 0.5,"measure_every" => 5,"MaxCGstep" => 3000,"methodname" => "Chiral_condensate"), Dict{Any,Any}("fermiontype" => nothing,"measure_every" => 1,"methodname" => "Polyakov_loop"), Dict{Any,Any}("eps_flow" => 0.01,"fermiontype" => nothing,"numflow" => 10,"measure_every" => 10,"methodname" => "Topological_charge","Nflowsteps" => 4), Dict{Any,Any}("eps" => 1.0e-19,"fermiontype" => "Wilson","r" => 1,"measure_every" => 5,"hop" => 0.141139,"methodname" => "Pion_correlator","MaxCGstep" => 3000), Dict{Any,Any}("fermiontype" => nothing,"measure_every" => 1,"methodname" => "Plaquette")] #measurement["measurement_methods"] = Dict[Dict{Any,Any}("eps" => 1.0e-19,"fermiontype" => "Staggered","Nf" => 4,"mass" => 0.5,"measure_every" => 5,"MaxCGstep" => 3000,"methodname" => "Chiral_condensate"), Dict{Any,Any}("fermiontype" => nothing,"measure_every" => 1,"methodname" => "Polyakov_loop"), Dict{Any,Any}("fermiontype" => nothing,"numflow" => 10,"measure_every" => 5,"methodname" => "Topological_charge"), Dict{Any,Any}("eps" => 1.0e-19,"fermiontype" => "Wilson","r" => 1,"measure_every" => 5,"hop" => 0.141139,"methodname" => "Pion_correlator","MaxCGstep" => 3000), Dict{Any,Any}("fermiontype" => nothing,"measure_every" => 1,"methodname" => "Plaquette")] measurement["measurement_dir"] = "HMC_L04040404_beta5.7_quenched_su4" measurement["measurement_basedir"] = "./measurements" # - - - - - - - - - - - - - - - - - - -
LatticeQCD
https://github.com/akio-tomiya/LatticeQCD.jl.git
[ "MIT" ]
1.1.0
e495a1eaee52a513e02fe6ca2c995a7d0ed671a7
code
2452
# - - parameters - - - - - - - - - - - system["saveU_dir"] = "" system["verboselevel"] = 2 system["L"] = (4, 4, 4, 4) system["Nwing"] = 1 system["Nsteps"] = 15 system["firstlearn"] = 10 system["quench"] = true system["logfile"] = "SLMC_L04040404_beta5.7_Staggered_mass0.5.txt" system["βeff"] = 5.7 system["initial"] = "hot" system["Dirac_operator"] = "Staggered" system["log_dir"] = "./logs" system["Nthermalization"] = 10 system["update_method"] = "SLMC" system["randomseed"] = 111 system["NC"] = 3 system["BoundaryCondition"] = [1, 1, 1, -1] system["saveU_format"] = nothing system["β"] = 5.7 actions["use_autogeneratedstaples"] = false actions["couplingcoeff"] = Any[] actions["couplinglist"] = Any[] cg["eps"] = 1.0e-19 cg["MaxCGstep"] = 3000 staggered["Nf"] = 4 staggered["mass"] = 0.5 measurement["measurement_methods"] = Dict[] measurement["measurement_methods"] = Dict[Dict{Any,Any}("eps" => 1.0e-19,"fermiontype" => "Staggered","Nf" => 4,"mass" => 0.5,"measure_every" => 5,"MaxCGstep" => 3000,"methodname" => "Chiral_condensate"), Dict{Any,Any}("fermiontype" => nothing,"measure_every" => 1,"methodname" => "Polyakov_loop"), Dict{Any,Any}("eps_flow" => 0.01,"fermiontype" => nothing,"numflow" => 10,"measure_every" => 10,"methodname" => "Topological_charge","Nflowsteps" => 4), Dict{Any,Any}("eps" => 1.0e-19,"fermiontype" => "Wilson","r" => 1,"measure_every" => 5,"hop" => 0.141139,"methodname" => "Pion_correlator","MaxCGstep" => 3000), Dict{Any,Any}("fermiontype" => nothing,"measure_every" => 1,"methodname" => "Plaquette")] #measurement["measurement_methods"] = Dict[Dict{Any,Any}("eps" => 1.0e-19,"fermiontype" => "Staggered","Nf" => 4,"mass" => 0.5,"measure_every" => 50,"MaxCGstep" => 3000,"methodname" => "Chiral_condensate"), Dict{Any,Any}("fermiontype" => nothing,"measure_every" => 1,"methodname" => "Polyakov_loop"), Dict{Any,Any}("fermiontype" => nothing,"numflow" => 10,"measure_every" => 50,"methodname" => "Topological_charge"), Dict{Any,Any}("eps" => 1.0e-19,"fermiontype" => "Wilson","r" => 1,"measure_every" => 50,"hop" => 0.141139,"methodname" => "Pion_correlator","MaxCGstep" => 3000), Dict{Any,Any}("fermiontype" => nothing,"measure_every" => 1,"methodname" => "Plaquette")] measurement["measurement_dir"] = "SLMC_L04040404_beta5.7_Staggered_mass0.5" measurement["measurement_basedir"] = "./measurements" # - - - - - - - - - - - - - - - - - - -
LatticeQCD
https://github.com/akio-tomiya/LatticeQCD.jl.git
[ "MIT" ]
1.1.0
e495a1eaee52a513e02fe6ca2c995a7d0ed671a7
code
1381
# - - parameters - - - - - - - - - - - # Physical setting system["L"] = (4, 4, 4, 4) system["β"] = 5.7 system["NC"] = 3 system["Nthermalization"] = 0 system["Nsteps"] = 10 system["initial"] = "cold" system["initialtrj"] = 1 system["update_method"] = "HMC" system["Nwing"] = 1 # Physical setting(fermions) system["quench"] = false system["Dirac_operator"] = "Staggered" staggered["Nf"] = 2 staggered["mass"] = 0.5 system["BoundaryCondition"] = [1, 1, 1, -1] # System Control system["log_dir"] = "./logs" system["logfile"] = "HMC_L04040404_beta5.7_Staggered_mass0.5_Nf2.txt" system["saveU_dir"] = "" system["saveU_format"] = nothing system["verboselevel"] = 2 system["randomseed"] = 111 measurement["measurement_basedir"] = "./measurements" measurement["measurement_dir"] = "HMC_L04040404_beta5.7_Staggered_mass0.5_Nf2" # HMC related md["Δτ"] = 0.05 md["SextonWeingargten"] = false md["N_SextonWeingargten"] = 2 md["MDsteps"] = 20 cg["eps"] = 1.0e-19 cg["MaxCGstep"] = 3000 # Action parameter for SLMC actions["use_autogeneratedstaples"] = false actions["couplingcoeff"] = Any[] actions["couplinglist"] = Any[] # Measurement set measurement["measurement_methods"] = Dict[ Dict{Any,Any}("methodname" => "Polyakov_loop", "measure_every" => 1 ), Dict{Any,Any}("methodname" => "Plaquette", "measure_every" => 1 ) ] # - - - - - - - - - - - - - - - - - - -
LatticeQCD
https://github.com/akio-tomiya/LatticeQCD.jl.git
[ "MIT" ]
1.1.0
e495a1eaee52a513e02fe6ca2c995a7d0ed671a7
code
1302
# - - parameters - - - - - - - - - - - # Physical setting system["L"] = (4, 4, 4, 4) system["β"] = 5.7 system["NC"] = 3 system["Nthermalization"] = 0 system["Nsteps"] = 10 system["initial"] = "cold" system["initialtrj"] = 1 system["update_method"] = "HMC" system["Nwing"] = 1 # Physical setting(fermions) system["quench"] = false system["Dirac_operator"] = "Staggered" staggered["Nf"] = 3 staggered["mass"] = 0.5 system["BoundaryCondition"] = [1, 1, 1, -1] # System Control system["log_dir"] = "./logs" system["logfile"] = "HMC_L04040404_beta5.7_Staggered_mass0.5_Nf3.txt" system["saveU_dir"] = "" system["saveU_format"] = nothing system["verboselevel"] = 2 system["randomseed"] = 111 measurement["measurement_basedir"] = "./measurements" measurement["measurement_dir"] = "HMC_L04040404_beta5.7_Staggered_mass0.5_Nf3" # HMC related md["Δτ"] = 0.05 md["SextonWeingargten"] = false md["N_SextonWeingargten"] = 2 md["MDsteps"] = 20 cg["eps"] = 1.0e-19 cg["MaxCGstep"] = 3000 # Action parameter for SLMC actions["use_autogeneratedstaples"] = false actions["couplingcoeff"] = Any[] actions["couplinglist"] = Any[] # Measurement set measurement["measurement_methods"] = Dict[ Dict{Any,Any}("methodname" => "Plaquette", "measure_every" => 1 ) ] # - - - - - - - - - - - - - - - - - - -
LatticeQCD
https://github.com/akio-tomiya/LatticeQCD.jl.git
[ "MIT" ]
1.1.0
e495a1eaee52a513e02fe6ca2c995a7d0ed671a7
code
2456
# - - parameters - - - - - - - - - - - system["saveU_dir"] = "" system["verboselevel"] = 2 system["L"] = (4, 4, 4, 4) system["Nwing"] = 1 system["Nsteps"] = 10 system["quench"] = false system["logfile"] = "HMC_L04040404_beta5.7_Staggered_mass0.5.txt" system["initial"] = "hot" system["Dirac_operator"] = "Staggered" system["log_dir"] = "./logs" system["Nthermalization"] = 0 system["update_method"] = "HMC" system["randomseed"] = 111 system["NC"] = 3 system["BoundaryCondition"] = [1, 1, 1, -1] system["saveU_format"] = nothing system["β"] = 5.7 actions["use_autogeneratedstaples"] = false actions["couplingcoeff"] = Any[] actions["couplinglist"] = Any[] md["Δτ"] = 0.025 md["N_SextonWeingargten"] = 2 md["SextonWeingargten"] = false md["MDsteps"] = 40 cg["eps"] = 1.0e-19 cg["MaxCGstep"] = 3000 staggered["Nf"] = 4 staggered["mass"] = 0.5 measurement["measurement_methods"] = Dict[Dict{Any,Any}("eps" => 1.0e-19,"fermiontype" => "Staggered","Nf" => 4,"mass" => 0.5,"measure_every" => 5,"MaxCGstep" => 3000,"methodname" => "Chiral_condensate"), Dict{Any,Any}("fermiontype" => nothing,"measure_every" => 1,"methodname" => "Polyakov_loop"), Dict{Any,Any}("eps_flow" => 0.01,"fermiontype" => nothing,"numflow" => 10,"measure_every" => 10,"methodname" => "Topological_charge","Nflowsteps" => 4), Dict{Any,Any}("eps" => 1.0e-19,"fermiontype" => "Wilson","r" => 1,"measure_every" => 5,"hop" => 0.141139,"methodname" => "Pion_correlator","MaxCGstep" => 3000), Dict{Any,Any}("fermiontype" => nothing,"measure_every" => 1,"methodname" => "Plaquette")] #measurement["measurement_methods"] = Dict[Dict{Any,Any}("eps" => 1.0e-19,"fermiontype" => "Staggered","Nf" => 4,"mass" => 0.5,"measure_every" => 50,"MaxCGstep" => 3000,"methodname" => "Chiral_condensate"), Dict{Any,Any}("fermiontype" => nothing,"measure_every" => 1,"methodname" => "Polyakov_loop"), Dict{Any,Any}("fermiontype" => nothing,"numflow" => 10,"measure_every" => 50,"methodname" => "Topological_charge"), Dict{Any,Any}("eps" => 1.0e-19,"fermiontype" => "Wilson","r" => 1,"measure_every" => 50,"hop" => 0.141139,"methodname" => "Pion_correlator","MaxCGstep" => 3000), Dict{Any,Any}("fermiontype" => nothing,"measure_every" => 1,"methodname" => "Plaquette")] measurement["measurement_dir"] = "HMC_L04040404_beta5.7_Staggered_mass0.5" measurement["measurement_basedir"] = "./measurements" # - - - - - - - - - - - - - - - - - - -
LatticeQCD
https://github.com/akio-tomiya/LatticeQCD.jl.git
[ "MIT" ]
1.1.0
e495a1eaee52a513e02fe6ca2c995a7d0ed671a7
code
2499
# - - parameters - - - - - - - - - - - system["saveU_dir"] = "" system["verboselevel"] = 2 system["L"] = (4, 4, 4, 4) system["Nwing"] = 1 system["Nsteps"] = 10 system["quench"] = false system["logfile"] = "HMC_L04040404_beta5.7_Wilson_kappa0.141139.txt" system["initial"] = "hot" system["Dirac_operator"] = "Wilson" system["log_dir"] = "./logs" system["Nthermalization"] = 0 system["update_method"] = "HMC" system["randomseed"] = 111 system["NC"] = 3 system["BoundaryCondition"] = [1, 1, 1, -1] system["saveU_format"] = nothing system["β"] = 5.7 actions["use_autogeneratedstaples"] = false actions["couplingcoeff"] = Any[] actions["couplinglist"] = Any[] md["Δτ"] = 0.05 md["N_SextonWeingargten"] = 10 md["SextonWeingargten"] = true md["MDsteps"] = 20 cg["eps"] = 1.0e-19 cg["MaxCGstep"] = 3000 wilson["r"] = 1 wilson["hop"] = 0.141139 measurement["measurement_methods"] = Dict[] measurement["measurement_methods"] = Dict[Dict{Any,Any}("eps" => 1.0e-19,"fermiontype" => "Staggered","Nf" => 4,"mass" => 0.5,"measure_every" => 5,"MaxCGstep" => 3000,"methodname" => "Chiral_condensate"), Dict{Any,Any}("fermiontype" => nothing,"measure_every" => 1,"methodname" => "Polyakov_loop"), Dict{Any,Any}("eps_flow" => 0.01,"fermiontype" => nothing,"numflow" => 10,"measure_every" => 10,"methodname" => "Topological_charge","Nflowsteps" => 4), Dict{Any,Any}("eps" => 1.0e-19,"fermiontype" => "Wilson","r" => 1,"measure_every" => 5,"hop" => 0.141139,"methodname" => "Pion_correlator","MaxCGstep" => 3000), Dict{Any,Any}("fermiontype" => nothing,"measure_every" => 1,"methodname" => "Plaquette")] #measurement["measurement_methods"] = Dict[Dict{Any,Any}("eps" => 1.0e-19,"fermiontype" => "Staggered","Nf" => 4,"mass" => 0.5,"measure_every" => 50,"MaxCGstep" => 3000,"methodname" => "Chiral_condensate"), Dict{Any,Any}("fermiontype" => nothing,"measure_every" => 1,"methodname" => "Polyakov_loop"), Dict{Any,Any}("fermiontype" => nothing,"numflow" => 10,"measure_every" => 50,"methodname" => "Topological_charge"), Dict{Any,Any}("eps" => 1.0e-19,"fermiontype" => "Wilson","r" => 1,"measure_every" => 50,"hop" => 0.141139,"methodname" => "Pion_correlator","MaxCGstep" => 3000), Dict{Any,Any}("fermiontype" => nothing,"measure_every" => 1,"methodname" => "Plaquette")] measurement["measurement_dir"] = "HMC_L04040404_beta5.7_Wilson_kappa0.141139" measurement["measurement_basedir"] = "./measurements" # - - - - - - - - - - - - - - - - - - -
LatticeQCD
https://github.com/akio-tomiya/LatticeQCD.jl.git
[ "MIT" ]
1.1.0
e495a1eaee52a513e02fe6ca2c995a7d0ed671a7
code
2554
# - - parameters - - - - - - - - - - - system["saveU_dir"] = "" system["verboselevel"] = 2 system["L"] = (4, 4, 4, 4) system["Nwing"] = 1 system["Nsteps"] = 2 system["quench"] = false system["logfile"] = "HMC_L04040404_beta5.7_WilsonClover_kappa0.141139.txt" system["initial"] = "hot" system["Dirac_operator"] = "WilsonClover" system["log_dir"] = "./logs" system["Nthermalization"] = 0 system["update_method"] = "HMC" system["randomseed"] = 111 system["NC"] = 3 system["BoundaryCondition"] = [1, 1, 1, -1] system["saveU_format"] = nothing system["β"] = 5.7 actions["use_autogeneratedstaples"] = false actions["couplingcoeff"] = Any[] actions["couplinglist"] = Any[] md["Δτ"] = 0.05 md["N_SextonWeingargten"] = 10 md["SextonWeingargten"] = true md["MDsteps"] = 20 cg["eps"] = 1.0e-19 cg["MaxCGstep"] = 3000 wilson["Clover_coefficient"] = 1.5612 wilson["r"] = 1 wilson["hop"] = 0.141139 measurement["measurement_methods"] = Dict[] measurement["measurement_methods"] = Dict[Dict{Any,Any}("eps" => 1.0e-19,"fermiontype" => "Staggered","Nf" => 4,"mass" => 0.5,"measure_every" => 5,"MaxCGstep" => 3000,"methodname" => "Chiral_condensate"), Dict{Any,Any}("fermiontype" => nothing,"measure_every" => 1,"methodname" => "Polyakov_loop"), Dict{Any,Any}("eps_flow" => 0.01,"fermiontype" => nothing,"numflow" => 10,"measure_every" => 10,"methodname" => "Topological_charge","Nflowsteps" => 4), Dict{Any,Any}("eps" => 1.0e-19,"fermiontype" => "Wilson","r" => 1,"measure_every" => 5,"hop" => 0.141139,"methodname" => "Pion_correlator","MaxCGstep" => 3000), Dict{Any,Any}("fermiontype" => nothing,"measure_every" => 1,"methodname" => "Plaquette")] #measurement["measurement_methods"] = Dict[Dict{Any,Any}("eps" => 1.0e-19,"fermiontype" => "Staggered","Nf" => 4,"mass" => 0.5,"measure_every" => 50,"MaxCGstep" => 3000,"methodname" => "Chiral_condensate"), Dict{Any,Any}("fermiontype" => nothing,"measure_every" => 1,"methodname" => "Polyakov_loop"), Dict{Any,Any}("fermiontype" => nothing,"numflow" => 10,"measure_every" => 50,"methodname" => "Topological_charge"), Dict{Any,Any}("eps" => 1.0e-19,"fermiontype" => "Wilson","r" => 1,"measure_every" => 50,"hop" => 0.141139,"methodname" => "Pion_correlator","MaxCGstep" => 3000), Dict{Any,Any}("fermiontype" => nothing,"measure_every" => 1,"methodname" => "Plaquette")] measurement["measurement_dir"] = "HMC_L04040404_beta5.7_WilsonClover_kappa0.141139" measurement["measurement_basedir"] = "./measurements" # - - - - - - - - - - - - - - - - - - -
LatticeQCD
https://github.com/akio-tomiya/LatticeQCD.jl.git
[ "MIT" ]
1.1.0
e495a1eaee52a513e02fe6ca2c995a7d0ed671a7
docs
8150
# LatticeQCD.jl [![CI](https://github.com/akio-tomiya/LatticeQCD.jl/actions/workflows/CI.yml/badge.svg)](https://github.com/akio-tomiya/LatticeQCD.jl/actions/workflows/CI.yml) <img src="logo.png" width=400> This code enabales you to perform lattice QCD calculations! A native Julia code for Lattice QCD. - [What is lattice QCD? (PDG)](https://pdg.lbl.gov/2019/reviews/rpp2018-rev-lattice-qcd.pdf) : Lattice regulated quantum chromo-dynamics used in high energy physics. - [What is Julia?](https://julialang.org/) : An easy and fast scientific programming launguage with the JIT compiler <img src="demo.gif" width=500> ## Star History [![Star History Chart](https://api.star-history.com/svg?repos=akio-tomiya/LatticeQCD.jl&type=Date)](https://star-history.com/#akio-tomiya/LatticeQCD.jl&Date) ## Tutorial You can start it in [Google Colab](https://colab.research.google.com/drive/1dMD7Uo-Z5SjK_LLHq9HkunQajXTXCE-L?usp=sharing) # Quick start You can start lattice QCD in 5 steps! 1.Download a Julia binary from [Julialang.org](https://julialang.org/downloads/). Set a path to the binary of Julia. Julia 1.6 (or higher) is supported. Julia 1.9 (or higher) is supported in LatticeQCD.jl 1.0.4 (or higher). 2.In Julia REPL, push "]" key to enter the package mode and type ``` add LatticeQCD ``` and "return" key. Press "backspace" key ( "delete" key for mac) to exit the package mode. You can get the latest version via ``add LatticeQCD#master``. (All dependence will be solved automatically) 3.Include the package with ``` using LatticeQCD ``` 4.Make a parameter file with wizard, ``` run_wizard() ``` Choose parameters as you want! 5.Start simulation with created your parameter file! ``` run_LQCD("my_parameters.toml") ``` You'll get results! Of cource, you can write/modify a parameter file by yourself. Enjoy life with lattice QCD. To see our demonstration above, execute, ```julia using Plots using LatticeQCD demo() ``` it takes time before showing up the window. # What is supported? We support lattice gauge theory in 4 dimensional euclidean spacetime. - Wizard for parameter files - Gauge fields - Optimized SU(2), SU(3) - General SU(N) - General gauge action = plaquette + rect + etc action - Fermions - Wilson (2 flavor) - Staggered fermion (1-8 tastes ~ flavor) - Standard Domain-wall (2 flavor, experimental) - Configuration generation algorithms - Cold/Hot start for SU(N). One instanton configuration for SU(2) - Heatbath for SU(N) & overelaxation for a general gauge action - Even-odd heatbath for the plaquette action - Quenched HMC with SU(N) for a general gauge action - HMC (2 flavor Wilson) with SU(N) with a general gauge action - HMC (4 taste staggered fermions) with SU(N) with a general gauge action - RHMC (any flavor staggered) with SU(N) for a general gauge action* - SU(N) stout smeared dynamical fermions (experimental) - Self-learning HMC with the plaquette action - Measurements - Plaquette - Polyakov loop - Chiral condensates (Wilson, staggered) - Momentum projected pion correlator (Wilson fermion, staggered) - RxT Wilson loop - Energy density - Topological charge (plaquette, clover and O(a^2) improved definition) - Load & measurement mode (load and measure all configurations in a directory) - Smearing - Stout - Gradient flow for a generic action (experimental) - I/O for gauge configurations - ILDG format (Binary) - JLD format (Default binary file for Julia, one of HDF5) - Text file for Bridge++ (Bridgetext) *If you specified other than Nf=4, 8 with the staggered fermion HMC, RHMC is automatically used. For a machine with the apple silicon, Nf=1-8 is avalable. To use following functions, please use v 0.1.2 - Fermion integrated HMC with a general gauge action - Self-learning Monte-Carlo with a general action (ref. [this paper](https://arxiv.org/abs/2010.11900) ) *Version below 1.0, it uses ``***.jl`` as a default parameter file, and now it uses ``***.toml``. Version 1.0 supports both parameter file formats. *Parallelazation is supported by [LatticeDiracOperators.jl](https://github.com/akio-tomiya/LatticeDiracOperators.jl). See below. # Related packages <img src="LQCDjl_block.png" width=300> LatticeQCD.jl is basically a wrapper of the following packages - [Wilsonloop.jl](https://github.com/akio-tomiya/Wilsonloop.jl) :Wilsonloop.jl helps us to treat with the Wilson loops and generic Wilson lines in any Nc and dimensions. Wilson lines can be defined in symbolly. - [Gaugefields.jl](https://github.com/akio-tomiya/Gaugefields.jl): Gaugefields.jl is a package for lattice lattice SU(N) gauge fileds. Treating gauge fields (links), gauge actions with MPI and autograd. This can generate quenched configurations. - [LatticeDiracOperators.jl](https://github.com/akio-tomiya/LatticeDiracOperators.jl): LatticeDiracOperators.jl is a package for Dirac operators and fermions on the lattice. Treating pseudo-femrion fields with various lattice Dirac operators, fermion actions with MPI. This can generate configurations with dynamical fermions. - [QCDMeasurements.jl](https://github.com/akio-tomiya/QCDMeasurements.jl): QCDMeasurements.jl is a package for measuring physical quantities. This has measurements for basic quantities like chiral condensates, plaquettes. Moreover, pion correlators and topological charge with several definitions. This also has the gradient flow with several actions. This package is a code in a project [JuliaQCD](https://github.com/JuliaQCD/). # USAGE/User interface We support following two user interfaces 1. Julia REPL interface (For beginners, just after the lattice QCD textbook) 2. Genral interface (Experience with another code, for batch job, customised purpose) Usage 1 was already explained. For Usage 2, in Julia REPL, push "]" key to enter the package mode and type ``` add LatticeQCD ``` Then, LatticeQCD.jl is installed on your machine. The "PARAMETER_FILE" can be created through the wizard. To use the wizard on the shell, you write the following code (& save as ``wizard.jl``): ```julia:wizard.jl using LatticeQCD run_wizard() ``` Then, you can run the wizard: ``` julia wizard.jl ``` You write the following code (& save as ``run.jl``): ```julia:run.jl using LatticeQCD run_LQCD(ARGS[1]) ``` Then, you can execute like ``` julia run.jl PARAMETER_FILE ``` then, you get results though standard I/O. # Purpose of the code We develop this code to achive following things: 1. Good portability (If one has Julia, this code is runnable. All dependences are under control.) 2. Easy to start/ pedagogical (start in 10 minutes) 3. Suite (configuration generation with and without fermions, and measurements) 4. Easy to modify (Good for prototyping) 5. Compatitive speed with Fortran 90 codes This is the first open source Julia code for lattice QCD. High performance is out of our scope. # How has it been tested? We compared results to following papers/codes - Nf=4 SU(3) staggered HMC with https://inspirehep.net/literature/283285 - Quenched SU(2) improved thermodynamics https://inspirehep.net/literature/1614325 - RHMC https://doi.org/10.1051/epjconf/201817507041 - HMC for Wilson and Clover Wilson fermions "Lattice Tool Kit": https://nio-mon.riise.hiroshima-u.ac.jp/LTK/ - Pion correlator with the Wilson-Dirac operator https://inspirehep.net/literature/37901 - Pion correlator with the staggered Dirac operator https://inspirehep.net/literature/21821 # Reference We refer "Lattice Tool Kit" https://nio-mon.riise.hiroshima-u.ac.jp/LTK/ written in Fortran 90. # Acknowledgement If you write a paper using this package, please refer this code. E.g. This work is in part based on LatticeQCD.jl (https://github.com/akio-tomiya/LatticeQCD.jl). BibTeX citation is following ``` @article{Nagai:2024yaf, author = "Nagai, Yuki and Tomiya, Akio", title = "{JuliaQCD: Portable lattice QCD package in Julia language}", eprint = "2409.03030", archivePrefix = "arXiv", primaryClass = "hep-lat", month = "9", year = "2024" } ``` and the paper is [arXiv:2409.03030](https://arxiv.org/abs/2409.03030).
LatticeQCD
https://github.com/akio-tomiya/LatticeQCD.jl.git
[ "MIT" ]
1.1.0
e495a1eaee52a513e02fe6ca2c995a7d0ed671a7
docs
4570
# LatticeQCD.jl This is the lattice QCD package purely written in Julia language. Lattice QCD is a well-established non-perturbative approach to solving the quantum chromodynamics (QCD) theory of quarks and gluons. We confirmed that it works in Julia 1.5 or later. This code is inspired by the Lattice Tool Kit (LTK) written in [Fortran](https://nio-mon.riise.hiroshima-u.ac.jp/LTK/). With the use of a modern programing language, it is easy to understand how the code works. The part of the codes is translated from the LTK. What LatticeQCD.jl can do is : - Two flavor SU(3) Hybrid Monte Carlo with the Wilson Fermion (We want to add more functionalities.). - The speed is the faster than the original LTK code written in fortran. ## How to do ### simple version You can try this code with ``` julia ./src/run.jl ``` or ``` julia ./src/run.jl params.jl ``` Here, in params.jl, we can see ```julia L = (4,4,4,4) β = 6 #gparam = Setup_Gauge_action(β) NTRACE = 3 gparam = GaugeActionParam_standard(β,NTRACE) #gparam = Setup_Gauge_action(β) hop= 0.141139#Hopping parameter r= 1#Wilson term eps= 1e-19 Dirac_operator= "Wilson" MaxCGstep= 3000 #fparam = Setup_Fermi_action() fparam = FermiActionParam_Wilson(hop,r,eps,Dirac_operator,MaxCGstep) ``` You can change the parameters. If you set ```fparam=nothing``` in this file, you can do the quench HMC. ### more details In the LatticeQCD.jl, the Universe type is an important type for simulations. At first, you have to generate your "universe". ```julia univ = Universe(file) ``` The file is like: ```julia L = (4,4,4,4) β = 6 NTRACE = 3 #gparam = Setup_Gauge_action(β) gparam = GaugeActionParam_standard(β,NTRACE) BoundaryCondition=[1,1,1,-1] Nwing = 1 initial="cold" NC =3 hop= 0.141139#Hopping parameter r= 1#Wilson term eps= 1e-19 Dirac_operator= "Wilson" MaxCGstep= 3000 fparam = FermiActionParam_Wilson(hop,r,eps,Dirac_operator,MaxCGstep) ``` The parameters that you do not provide are set by the default values. Then, you can calculate physical obserbables. For example, if you want to calculate a plaquette, just do ```julia plaq = calc_plaquette(univ) println("plaq = ",plaq) ``` If you want to do the HMC simulation, set the MD parameters: ```julia Δτ = 0.1 MDsteps = 10 βMD = β mdparams =MD_parameters_standard(gparam,Δτ,MDsteps,βMD) ``` and do it like: ```julia for i=1:20 Sold = md_initialize!(univ) Snew = md!(univ,mdparams) metropolis_update!(univ,Sold,Snew) plaq = calc_plaquette(univ) println("-------------------------------------") println("$i-th plaq = ",plaq) println("-------------------------------------") end ``` ## Benchmarks The speed is important for the Lattice QCD simulation. Remarkably, this Julia code is faster than s similar code in Fortran. For example, with the following parameters: ``` 6.0d0 6.0d0 beta, betamd 0.141139d0 1.d0 hop, r (Hopping parametger, Wilson term) .false. Clover term (0.0d0,0.0d0) cmu (Chemical potential) 1 istart (1:Cold, 2:Hot, 3:File) 001 020 ntraj0, ntraj1 1.d0 gamma_G 10 0.1d0 nstep, dtau .true. fermions 0 flagMD ``` , where this is an input file of the LTK. We set eps=1e-19 as a convergence criteria in a CG solver. The elapsed time of the original LTK code on Mac mini (2018) with 3.2Ghz Intel Core i7 (6 cores) is ``` Eold,Enew,Diff,accept: 0.1613911E+04 0.1614279E+04 -0.3678492E+00 T Plaq : 0.60513145439721250 Pol : (1.1156431755476819,-3.20744714128515240E-002) ./a.out < input 227.40s user 0.07s system 99% cpu 3:47.51 total ``` On the other hand, the elapsed time of this LatticeQCD.jl is ``` ------------------------------------- 20-th plaq = 0.6051309989225465 ------------------------------------- julia --sysimage ~/sys_plots.so run.jl 180.41s user 0.25s system 100% cpu 3:00.62 total ``` The LatticeQCD.jl is faster than the Fortran-based code. We note that the plaquette value is consistently in single precision floating point numbers, since the random number generation is based on the original Fortran code and random numbers are in single precision floating point. ```@autodocs Modules = [LatticeQCD.LTK_universe] ``` ```@docs Setup_Gauge_action Setup_Fermi_action ```
LatticeQCD
https://github.com/akio-tomiya/LatticeQCD.jl.git
[ "MIT" ]
1.1.0
e495a1eaee52a513e02fe6ca2c995a7d0ed671a7
docs
572
# Analysis code Please ``samples.zip`` decompress. ``analysis_sample.jl`` is the analysis code. ``` using LatticeQCD betas = ["1.40","1.65"] println("# beta plaquette") for beta in betas dir = "samples/HMC_L08080808_su2nf8_beta$(beta)_Staggered_mass0.015" p = get_plaquette_average(dir) println("$beta $p #$dir") end println("# ") println("# beta Polyakov loop") for beta in betas dir = "samples/HMC_L08080808_su2nf8_beta$(beta)_Staggered_mass0.015" p = get_polyakov_average(dir) println("$beta $p #$dir") end ```
LatticeQCD
https://github.com/akio-tomiya/LatticeQCD.jl.git
[ "MIT" ]
0.0.6
28462d28ee55ed3378aa682be12c6fe09da06254
code
74
module NatureGas include("heatvalue.jl") include("aga8.jl") end # module
NatureGas
https://github.com/hzgzh/NatureGas.jl.git
[ "MIT" ]
0.0.6
28462d28ee55ed3378aa682be12c6fe09da06254
code
8328
using Roots export ng_zfactor """ ng_zfactor(p,T;CH4=0.965,N2=0.003,CO2=0.006,C2H6=0.018,C3H8=0.045,H2O=0.,H2S=0., H2=0.,CO=0.,O2=0.,iC4H10=0.001,nC4H10=0.001,iC5H12=0.0005,nC5H12=0.0003,nC6H14=0.0007, nC7H16=0.,nC8H18=0.,nNonane=0.,nDecane=0.,He=0.,Ar=0.) Calculate the compress factor of specific pressure and temperature nature gas # Auguments ... - "p::Float64" : thre pressure,unit MPa - "T::Float64" : the temperature,unit K ... # Example ``` julia>ng_z_factor(6,300;CO2=0.006,N2=0.003,CH4=0.965,C2H6=0.018,C3H8=0.0045, iC4H10=0.001,nC4H10=0.001,iC5H12=0.0005,nC5H12=0.0003,nC6H14=0.0007)) 0.8953514530758864 ``` """ function ng_zfactor(p,T; CH4=0.965, N2=0.003, CO2=0.006, C2H6=0.018, C3H8=0.0045, H2O=0., H2S=0., H2=0., CO=0., O2=0., iC4H10=0.001, nC4H10=0.001, iC5H12=0.0005, nC5H12=0.0003, nC6H14=0.0007, nC7H16=0., nC8H18=0., nNonane=0., nDecane=0., HE=0., AR=0.) #参数检查 #= ul=[12,338,1,0.2,0.2,0.1,0.035,0.015,0.005,0.001,0.0005,0.0005,0.1,0.03,0.005,0.00015] ll=[0;263;0.7;zeros(13)] pars=["pressure"=>p,"Temperature"=>T,"CH4"=>CH4,"N2"=>N2,"CO2"=>CO2,"C2H6"=>C2H6,"C3H8"=>C3H8, "C4H10"=>iC4H10+nC4H10,"C5H12"=>iC5H12+nC5H12,"C6"=>nC6H14,"C7"=>nC7H16,"C8+"=>nC8H18+nNonane+nDecane, "H2"=>H2,"CO"=>CO,"HE"=>HE,"H2O"=>H2O] for i=1:16 !(ll[i]<pars[i].second<ul[i]) && error("$(pars[i].first) should be in range of $(ll[i]) - $(ul[i])") end =# x=[CH4,N2,CO2,C2H6,C3H8,H2O,H2S,H2,CO,O2,iC4H10,nC4H10,iC5H12,nC5H12,nC6H14,nC7H16,nC8H18,nNonane,nDecane,HE,AR] x=x./sum(x) #sum(x)!=100. && error("all componnet sum should be 100") N=21 R=8.31451e-3 #状态参数值 a=[ 0.153832600, 1.341953000,-2.998583000, -0.048312280, 0.375796500, -1.589575000,-0.053588470, 0.886594630, -0.710237040,-1.471722000, 1.321850350, -0.786659250, 0.2291290e-08,0.157672400,-0.436386400,-0.044081590, -0.003433888, 0.032059050, 0.024873550, 0.073322790,-0.001600573, 0.642470600,-0.416260100,-0.066899570, 0.279179500,-0.696605100,-0.002860589, -0.008098836, 3.150547000, 0.007224479,-0.705752900, 0.534979200, -0.079314910,-1.418465000,-0.5999050e-16,0.105840200, 0.034317290, -0.007022847, 0.024955870, 0.042968180, 0.746545300,-0.291961300, 7.294616000, -9.936757000,-0.005399808, -0.243256700, 0.049870160, 0.003733797, 1.874951000, 0.002168144,-0.658716400, 0.000205518, 0.009776195, -0.020487080, 0.015573220, 0.006862415, -0.001226752, 0.002850908] b=Float64[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5,5,5,6,6,7,7,8,8,8,9,9] k=Float64[0,0,0,0,0,0,0,0,0,0,0,0,3,2,2,2,4,4,0,0,2,2,2,4,4,4,4,0,1,1,2,2,3,3,4,4,4,0,0,2,2,2,4,4,0,2,2,4,4,0,2,0,2,1,2,2,2,2] c=Float64[0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,0,0,1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1,1,0,0,1,1,1,1,1,0,1,1,1,1,0,1,0,1,1,1,1,1,1] g=Float64[0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,1,0,0] f=Float64[0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] q=Float64[0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1,0,1,0,0,1,0,0,0,0,0,1] s=Float64[0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] w=Float64[0,0,0,0,0,0,0,0,0,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] u=Float64[0,0.5 ,1,3.5 ,-0.5 ,4.5 ,0.5 ,7.5 ,9.5 ,6,12,12.5 ,-6,2,3,2,2,11,-0.5 ,0.5 ,0,4,6,21,23,22,-1,-0.5 ,7,-1,6, 4,1,9,-13,21,8,-0.5 ,0,2,7,9,22,23,1,9,3,8,23,1.5 ,5,-0.5 ,4,7,3,0,1,0] #特征参数值 M=[16.0430 , 28.0135 , 44.0100 , 30.0700 , 44.0970 , 18.0153 , 34.0820 , 2.0159 , 28.0100 , 31.9988 , 58.1230 , 58.1230 , 72.1500 , 72.1500 , 86.1770 ,100.2040 ,114.2310 ,128.2580 ,142.2850 , 4.0026 , 39.9480 ] E=[151.318300 , 99.737780 , 241.960600 , 244.166700 , 298.118300 , 514.015600 , 296.355000 , 26.957940 , 105.534800 , 122.766700 , 324.068900 , 337.638900 , 365.599900 , 370.682300 , 402.636293 , 427.722630 , 450.325022 , 470.840891 , 489.558373 , 2.610111 , 119.629900 ] K=[ 0.4619255 , 0.4479153 , 0.4557489 , 0.5279209 , 0.5837490 , 0.3825868 , 0.4618263 , 0.3514916 , 0.4533894 , 0.4186954 , 0.6406937 , 0.6341423 , 0.6738577 , 0.6798307 , 0.7175118 , 0.7525189 , 0.7849550 , 0.8152731 , 0.8437826 , 0.3589888 , 0.4216551 ] G=[0, 0.027815 , 0.189065 , 0.079300 , 0.141239 , 0.332500 , 0.088500 , 0.034369 , 0.038953 , 0.021000 , 0.256692 , 0.281835 , 0.332267 , 0.366911 , 0.289731 , 0.337542 , 0.383381 , 0.427354 , 0.469659 , 0, 0] Q=[zeros(2);0.69; zeros(2); 1.06775; 0.633276; zeros(14)] F=[zeros(7);1.0;zeros(13,1)] S=[zeros(5); 1.5822; 0.390; zeros(14)] W=[zeros(5); 1; zeros(15)] #交互作用参数值 Ex=[1.0 0.971640 0.960644 1.0 0.994635 0.708218 0.931484 1.170520 0.990126 1.0 1.019530 0.989844 1.002350 0.999268 1.107274 0.880880 0.880973 0.881067 0.881161 1.0 1.0; ones(1,2) 1.022740 0.970120 0.945939 0.746954 0.902271 1.086320 1.005710 1.021000 0.946914 0.973384 0.959340 0.945520 ones(1,7); ones(1,3) 0.925053 0.960237 0.849408 0.955052 1.281790 1.5 1 0.906849 0.897362 0.726255 0.859764 0.855134 0.831229 0.808310 0.786323 0.765171 ones(1,2); ones(1,4) 1.022560 0.693168 0.946871 1.164460 ones(1,3) 1.013060 1 1.00532 ones(1,7); ones(1,7) 1.034787 ones(1,3) 1.0049 ones(1,9); ones(1,21); ones(1,14) 1.008692 1.010126 1.011501 1.012821 1.014089 ones(1,2); ones(1,8) 1.1 1 1.3 1.3 ones(1,9);ones(13,21)] Gx=ones(21,21);Gx[1,3]=0.807653;Gx[1,8]=1.957310;Gx[2,3]=0.982746; Gx[3,4]=0.370296; Gx[3,6]=1.673090 Ux=[1.0 0.886106 0.963827 1 0.990877 1.0 0.736833 1.156390 ones(1,3) 0.992291 1 1.003670 1.302576 1.191904 1.205769 1.219634 1.233498 ones(1,2); ones(1,2) 0.835058 0.816431 0.915502 1.0 0.993476 0.408838 ones(1,3) 0.993556 ones(1,9); ones(1,3) 0.969870 ones(1,2) 1.045290 1.0 0.9 ones(1,5) 1.066638 1.077634 1.088178 1.098291 1.108021 ones(1,2); ones(1,4) 1.065173 1.0 0.971926 1.616660 ones(1,2) ones(1,4)*1.25 ones(1,7); ones(2,21); ones(1,14) 1.028973 1.033754 1.038338 1.042735 1.046966 ones(1,2); ones(14,21)] Kx=[ones(1,1) 1.003630 0.995933 1 1.007619 1 1.000080 1.023260 ones(1,3) 0.997596 1 1.002529 0.982962 0.983565 0.982707 0.981849 0.980991 ones(1,2); ones(1,2) 0.982361 1.007960 1 1 0.9425960 1.032270 ones(1,13); ones(1,3) 1.008510 ones(1,2) 1.00779 ones(1,7) 0.910183 0.895362 0.881152 0.867520 0.854406 ones(1,2); ones(1,4) 0.986893 1 0.999969 1.020340 ones(1,13); ones(2,21); ones(1,16) 0.968130 0.962870 0.957828 0.952441 0.948338; ones(14,21)] Eij=[Ex[i,j]*sqrt(E[i]*E[j]) for i=1:N,j=1:N] Gij=[Gx[i,j]*(G[i]+G[j])/2.0 for i=1:N,j=1:N] Bnij=[(Gij[i,j]+1.0-g[n])^g[n]* (Q[i]*Q[j]+1.0-q[n])^q[n]* (sqrt(F[i]*F[j])+1.0-f[n])^f[n]* (S[i]*S[j]+1.0-s[n])^s[n]* (W[i]*W[j]+1.0-w[n])^w[n] for n=1:18,i=1:N,j=1:N] B=sum(a[n]*T^(-u[n])*sum(x[i]*x[j]*Bnij[n,i,j]*Eij[i,j]^u[n]*(K[i]*K[j])^1.5 for i=1:N,j=1:N) for n=1:18) U0=(sum(x.*(E.^2.5))^2.0+sum(x[i]*x[j]*(Ux[i,j]^5.0-1.0)*(E[i]*E[j])^2.5 for i=1:N-1 for j=i+1:N))^0.2 G0=sum(x.*G)+sum(x[i]*x[j]*(Gx[i,j]-1.0)*(G[i]+G[j]) for i=1:N-1 for j=i+1:N) Q0=sum(x.*Q) F0=sum(x.^2.0.*F) K0=(sum(x.*K.^2.5)^2.0+2*sum(x[i]*x[j]*(Kx[i,j]^5.0-1.0)*(K[i]*K[j])^2.5 for i=1:N-1 for j=i+1:N))^0.2 Cn=[a[n]*(G0+1-g[n])^g[n]*(Q0^2+1.0-q[n])^q[n]*(F0+1.0-f[n])^f[n]*U0^u[n]*T^(-u[n]) for n=13:58] Cn=[zeros(12);Cn] function fun(ρm) ρr=K0^3.0*ρm z=1.0+B*ρm-ρr*sum(Cn[n] for n=13:18)+sum(Cn[n]*(b[n]-c[n]*k[n]*ρr^k[n])*ρr^b[n]*exp(-c[n]*ρr^k[n]) for n=13:58) ρm*R*T*z-p end ρm=find_zero(fun,40,rtol=1e-6) p/(ρm*R*T) end
NatureGas
https://github.com/hzgzh/NatureGas.jl.git
[ "MIT" ]
0.0.6
28462d28ee55ed3378aa682be12c6fe09da06254
code
9690
R=8.31451;p=101325;T=293.15 molemass=[ 16.0430,30.0700,44.0970,58.1230,58.1230,72.1500,72.1500,72.1500, 86.1770,86.1770,86.1770,86.1770,86.1770,100.204,114.231,128.258, 142.285,28.0540,42.0810,56.1080,56.0180,56.1080,56.1080,70.1340, 40.0650,54.0920,54.0920,26.0380,70.1340,84.1610,98.1880,84.1610, 98.1880,112.215,78.1140,92.1410,106.167,106.167,32.0420,48.1090, 2.01590,18.0153,34.0820,17.0306,27.0260,28.0100,60.0760,76.1430, 4.00260,20.1797,39.9480,28.0135,31.9988,44.0100,64.0650,44.0129, 83.8000,131.290] mol_heat_high=[ 891.090,1561.41,2220.13,2878.57,2869.38,3537.17,3530.24,3516.01, 4196.58,4188.95,4191.54,4179.15,4186.93,4855.29,5513.88,6173.46, 6832.31,1411.65,2058.72,2717.75,2711.00,2707.40,2701.10,3376.57, 1943.53,2594.45,2541.43,1301.21,3320.88,3970.93,4630.19,3954.47, 4602.35,5264.98,3302.15,3948.84,4608.32,4597.46,764.590,1239.83, 285.990,44.2240,562.190,383.160,671.600,282.950,548.190,1104.41] mol_heat_low=[ 802.650,1428.74,2043.23,2657.45,2648.26,3271.83,3264.89,3250.67, 3887.01,3879.38,3881.97,3869.59,3877.36,4501.49,5115.87,5731.22, 6345.85,1323.20,1926.05,2540.86,2534.10,2530.50,2524.20,3155.45, 1855.08,2461.78,2408.76,1256.98,3099.76,3705.59,4320.63,3689.13, 4292.78,4911.19,3169.48,3771.95,4387.20,4376.34,676.140,1151.39, 241.760,0.00000,517.970,316.820,649.500,282.950,548.190,1104.41] z=[ 0.9981,0.9920,0.9834,0.9682,0.9710,0.9450,0.953,0.959, 0.9190,0.9260,0.9280,0.9350,0.9340,0.8760,0.817,0.735, 0.6230,0.9940,0.9850,0.9720,0.9690,0.9690,0.972,0.952, 0.9840,0.9650,0.9730,0.9930,0.9500,0.9270,0.885,0.924, 0.8940,0.8380,0.9360,0.8920,0.8370,0.8210,0.892,0.978, 1.0006,0.9520,0.9900,0.9890,0.9200,0.9996,0.988,0.965, 1.0005,1.0005,0.9993,0.9997,0.9993,0.9944,0.980] b=[0.0436,0.0894,0.1288,0.1783,0.1703,0.2345,0.2168,0.2025, 0.2846,0.2720,0.2683,0.2550,0.2569,0.3521,0.4278,0.5148, 0.6140,0.0775,0.1225,0.1673,0.1761,0.1761,0.1673,0.2191, 0.1265,0.1871,0.1643,0.0837,0.2236,0.2702,0.3391,0.2757, 0.3256,0.4025,0.2530,0.3286,0.4037,0.4231,0.3286,0.1483, -0.0051,0.2191,0.1000,0.1049,0.2828,0.0200,0.1095,0.1871, 0.0000,0.0000,0.0265,0.0173,0.0265,0.0728,0.1414] N=48;N1=55 hhv_mole(x)=sum(mol_heat_high[1:N].*x[1:N]) lhv_mole(x)=sum(mol_heat_low[1:N].*x[1:N]) mole_mass(x)=sum(molemass.*x) hhv_mass(x)=hhv_mole(x)/mole_mass(x) lhv_mass(x)=lhv_mole(x)/mole_mass(x) vol2mol(x)=x[1:N1]./z/sum(x[1:N1]./z) zmix(x)=1.0-sum(x[1:N1].*b) lhv_vol(x)=lhv_mole(x)*p/R/T hhv_vol(x)=hhv_mole(x)*p/R/T lhv_real_vol(x)=lhv_vol(x)/zmix(x) hhv_real_vol(x)=hhv_vol(x)/zmix(x) rel_ρ(x)=sum(x*mole_mass(x)/28.9625) abs_ρ(x)=sum(x*mole_mass(x))*p/R/T real_rel_ρ(x)=rel_ρ(x)*0.99963/zmix(x) real_abs_ρ(x)=abs_ρ(x)/zmix(x) function calorific(x,out) if out==:mol return (lhv_mole(x),hhv_mole(x)) elseif out==:mass return (lhv_mass(x),hhv_mass(x)) elseif out==:vol return (lhv_real_vol(x),hhv_real_vol(x)) elseif out==:rho return (real_rel_ρ(x),real_abs_ρ(x)) end end """ ng_calorific(mode=:mol,outoption=:mol;CH4=100.0,C2H6=0,C3H8=0,C4H10=0,C4H10_1=0,C5H12=0,C5H12_1=0.,C5H12_2=0,C6H14=0, C6H14_1=0.0,C6H14_2=0.0,C6H14_3=0,C6H14_4=0,C7H16=0,C8H18=0.0,C9H20=0.0,C10H22=0.0,C2H4=0.0, C3H6=0.0,C4H8=0.0,C4H8_1=0.0,C4H8_2=0.0,C4H8_3=0.0,C5H10=0.0,C3H4=0.0,C4H6=0.0,C4H6_1=0.0,C2H2=0.0, C5H10_1=0.0,C6H12=0.0,C7H12=0.0,C6H12_1=0.0,C7H14=0.0,C8H16=0.0,C6H6=0.0,C7H8=0.0,C8H10=0.0,C8H10_1=0.0, CH4O=0.0,C2H6HgS2=0.0,H2=0.0,H2O=0.0,H2S=0.0,NH3=0.0,CHN=0.0,CO2=0.0,COS=0.0,CS2=0.0,He=0.0,Ne=0.0,Ar=0.0, N2=0.0,O2=0.0,CO2=0.0,O2S=0.0,N2O=0.0,Kr=0.0,Xe=0.0) # Augument - `mode`: `:mol` mol heat;`:mass` mass heat;`:vol heat` volume heat - `outoption` : `:mol` (mole_low_heat,mole_high_heat) kJ/mo1;`:mass` (mass_low_heat,mass_high_heat) MJ/kg;`:vol`(vol_low_heat,vol_high_heat) u"MJ/m3"; `:rho` (real rel_density,real abs_density u"kg/m3") """ function ng_calorific(mode=:mol,outoption=:mol;CH4=1.0,C2H6=0,C3H8=0,nC4H10=0,iC4H10=0,nC5H12=0,iC5H12=0., C5H12_2=0,nC6H14=0,iC6H14=0.0,C6H14_2=0.0,C6H14_3=0,C6H14_4=0,nC7H16=0,nC8H18=0.0,nC9H20=0.0,nC10H22=0.0, C2H4=0.0,C3H6=0.0,C4H8=0.0,C4H8_1=0.0,C4H8_2=0.0,C4H8_3=0.0,C5H10=0.0,C3H4=0.0,C4H6=0.0,C4H6_1=0.0,C2H2=0.0, C5H10_1=0.0,C6H12=0.0,C7H12=0.0,C6H12_1=0.0,C7H14=0.0,C8H16=0.0,C6H6=0.0,C7H8=0.0,C8H10=0.0,C8H10_1=0.0, CH4O=0.0,C2H6HgS2=0.0,H2=0.0,H2O=0.0,H2S=0.0,NH3=0.0,CHN=0.0,CO=0.0,COS=0.0,CS2=0.0,He=0.0,Ne=0.0,Ar=0.0, N2=0.0,O2=0.0,CO2=0.0,O2S=0.0,N2O=0.0,Kr=0.0,Xe=0.0) x=[CH4,C2H6,C3H8,nC4H10,iC4H10,nC5H12,iC5H12,C5H12_2,nC6H14, iC6H14,C6H14_2,C6H14_3,C6H14_4,nC7H16,nC8H18,nC9H20,nC10H22,C2H4, C3H6,C4H8,C4H8_1,C4H8_2,C4H8_3,C5H10,C3H4,C4H6,C4H6_1,C2H2, C5H10_1,C6H12,C7H12,C6H12_1,C7H14,C8H16,C6H6,C7H8,C8H10,C8H10_1, CH4O,C2H6HgS2,H2,H2O,H2S,NH3,CHN,CO,COS,CS2,He,Ne,Ar, N2,O2,CO2,O2S,N2O,Kr,Xe] if mode==:vol;x=vol2mol(x);end calorific(x,outoption) end """ ng_calorific_cn(mode=:mol,outoption=:mol;甲烷=100,乙烷=0,丙烷=0,丁烷=0,二甲基丙烷=0,戊烷=0,二甲基丁烷=0, 二二甲基丙烷=0,已烷=0,二甲基戊烷=0,三甲基戊烷=0,二二甲基丁烷=0,二三甲基丁烷=0,庚烷=0,辛烷=0, 壬烷=0,癸烷=0,乙烯=0,丙烯=0,一丁烯=0,顺二丁烯=0,反二丁烯=0,二甲基丙烯=0,一戊烯=0,丙二烯=0,一二丁二烯=0, 一三丁二烯=0,乙炔=0,环戊烷=0,甲基环戊烷=0,乙基环戊烷=0,环己烷=0,甲基环己烷=0,乙基环己烷=0,苯=0, 甲苯=0,乙苯=0,邻二甲苯=0,甲醇=0,甲硫醇=0,氢气=0,水=0,硫化氢=0,氨=0,氰化氢=0,一氧化碳=0,硫氧碳=0, 二硫化碳=0,氦气=0,氖气=0,氩气=0,氮气=0,氧气=0,二氧化碳=0,二氧化硫=0,一氧化二氮=0,氪气=0,氙气=0) # Augument - `mode`: `:mol` mol heat;`:mass` mass heat;`:vol heat` volume heat - `outoption` : `:mol` (mole_low_heat,mole_high_heat) kJ/mo1;`:mass` (mass_low_heat,mass_high_heat) MJ/kg;`:vol`(vol_low_heat,vol_high_heat) u"MJ/m3"; `:rho` (real rel_density,real abs_density u"kg/m3") """ function ng_calorific_cn(mode=:mol,outoption=:mol;甲烷=1,乙烷=0,丙烷=0,丁烷=0,二甲基丙烷=0,戊烷=0,二甲基丁烷=0, 二二甲基丙烷=0,已烷=0,二甲基戊烷=0,三甲基戊烷=0,二二甲基丁烷=0,二三甲基丁烷=0,庚烷=0,辛烷=0, 壬烷=0,癸烷=0,乙烯=0,丙烯=0,一丁烯=0,顺二丁烯=0,反二丁烯=0,二甲基丙烯=0,一戊烯=0,丙二烯=0,一二丁二烯=0, 一三丁二烯=0,乙炔=0,环戊烷=0,甲基环戊烷=0,乙基环戊烷=0,环己烷=0,甲基环己烷=0,乙基环己烷=0,苯=0, 甲苯=0,乙苯=0,邻二甲苯=0,甲醇=0,甲硫醇=0,氢气=0,水=0,硫化氢=0,氨=0,氰化氢=0,一氧化碳=0,硫氧碳=0, 二硫化碳=0,氦气=0,氖气=0,氩气=0,氮气=0,氧气=0,二氧化碳=0,二氧化硫=0,一氧化二氮=0,氪气=0,氙气=0) x=[甲烷,乙烷,丙烷,丁烷,二甲基丙烷,戊烷,二甲基丁烷, 二二甲基丙烷,已烷,二甲基戊烷,三甲基戊烷,二二甲基丁烷,二三甲基丁烷,庚烷,辛烷, 壬烷,癸烷,乙烯,丙烯,一丁烯,顺二丁烯,反二丁烯,二甲基丙烯,一戊烯,丙二烯,一二丁二烯, 一三丁二烯,乙炔,环戊烷,甲基环戊烷,乙基环戊烷,环己烷,甲基环己烷,乙基环己烷,苯, 甲苯,乙苯,邻二甲苯,甲醇,甲硫醇,氢气,水,硫化氢,氨,氰化氢,一氧化碳,硫氧碳, 二硫化碳,氦气,氖气,氩气,氮气,氧气,二氧化碳,二氧化硫,一氧化二氮,氪气,氙气] if mode==:vol;x=vol2mol(x);end calorific(x,outoption) end """ ng_calorific_en(mode=:mol,outoption=:mol;Methane=100.0,Ethane=0.0,Propane=0.0,nButane=0.0,Alkanes=0.0,nPentane=0.0, Methylbutane_2=0.0,Dimethylpropane_2_2=0.0,nHexane=0.0,Methylpentane_2=0.0,Methoylpentane_3=0.0, Dimethylbutane_2_2=0.0,Dimethylbutane_2_3=0.0,nHeptane=0.0,nOctane=0.0,nNonane=0.0,nDecane=0.0, Ethylene=0.0,Propylene=0.0, Butene_1=0.0,cis_2_Butene=0.0,trans_2_Butene=0.0,Methylpropene_2=0.0, Pentene_1=0.0, Propadiene=0.0,Butadiene_1_2=0.0,Butadiene_1_3=0.0,Acetylene=0.0,Cyclopentane=0.0, Methylcyclopentane=0.0,Ethylcyclopentane=0.0,Cyclohexane=0.0,Methylcyclohexane=0.0,Ethylcyclohexane=0.0, Benzene=0.0,Toluene=0.0,Ethylbenzene=0.0,o_Xylene=0.0,Methanol=0.0,Methanethiol=0.0,Hydrogen=0.0, Water=0.0,Hydrogen_sulfide=0.0,Ammonia=0.0,Hydrogen_cyanide=0.0,Carbon_monoxide=0.0,Carbonyl_sulfide=0.0, Carbon_disulfide=0.0,Helium=0.0,Neon=0.0,Argon=0.0,Nitrogen=0.0,Oxygen=0.0,Carbon_dioxide=0.0,Sulfur_Dioxide=0.0, Dinitrogen_monoxide=0.0,Krypton=0.0,Xenon=0.0) # Augument - `mode`: `:mol` mol heat;`:mass` mass heat;`:vol heat` volume heat - `outoption` : `:mol` (mole_low_heat,mole_high_heat) kJ/mo1;`:mass` (mass_low_heat,mass_high_heat) MJ/kg;`:vol`(vol_low_heat,vol_high_heat) u"MJ/m3"; `:rho` (real rel_density,real abs_density u"kg/m3") """ function ng_calorific_en(mode=:mol,outoption=:mol;Methane=1.0,Ethane=0.0,Propane=0.0,nButane=0.0,Alkanes=0.0,nPentane=0.0, Methylbutane_2=0.0,Dimethylpropane_2_2=0.0,nHexane=0.0,Methylpentane_2=0.0,Methoylpentane_3=0.0, Dimethylbutane_2_2=0.0,Dimethylbutane_2_3=0.0,nHeptane=0.0,nOctane=0.0,nNonane=0.0,nDecane=0.0, Ethylene=0.0,Propylene=0.0, Butene_1=0.0,cis_2_Butene=0.0,trans_2_Butene=0.0,Methylpropene_2=0.0, Pentene_1=0.0, Propadiene=0.0,Butadiene_1_2=0.0,Butadiene_1_3=0.0,Acetylene=0.0,Cyclopentane=0.0, Methylcyclopentane=0.0,Ethylcyclopentane=0.0,Cyclohexane=0.0,Methylcyclohexane=0.0,Ethylcyclohexane=0.0, Benzene=0.0,Toluene=0.0,Ethylbenzene=0.0,o_Xylene=0.0,Methanol=0.0,Methanethiol=0.0,Hydrogen=0.0, Water=0.0,Hydrogen_sulfide=0.0,Ammonia=0.0,Hydrogen_cyanide=0.0,Carbon_monoxide=0.0,Carbonyl_sulfide=0.0, Carbon_disulfide=0.0,Helium=0.0,Neon=0.0,Argon=0.0,Nitrogen=0.0,Oxygen=0.0,Carbon_dioxide=0.0,Sulfur_Dioxide=0.0, Dinitrogen_monoxide=0.0,Krypton=0.0,Xenon=0.0) x=[Methane,Ethane,Propane,nButane,Alkanes,nPentane,Methylbutane_2,Dimethylpropane_2_2,nHexane,Methylpentane_2,Methoylpentane_3, Dimethylbutane_2_2,Dimethylbutane_2_3,nHeptane,nOctane,nNonane,nDecane,Ethylene,Propylene,Butene_1,cis_2_Butene,trans_2_Butene, Methylpropene_2,Pentene_1,Propadiene,Butadiene_1_2,Butadiene_1_3,Acetylene,Cyclopentane,Methylcyclopentane,Ethylcyclopentane, Cyclohexane,Methylcyclohexane,Ethylcyclohexane,Benzene,Toluene,Ethylbenzene,o_Xylene,Methanol,Methanethiol,Hydrogen,Water, Hydrogen_sulfide,Ammonia,Hydrogen_cyanide,Carbon_monoxide,Carbonyl_sulfide,Carbon_disulfide,Helium,Neon,Argon,Nitrogen,Oxygen, Carbon_dioxide,Sulfur_Dioxide,Dinitrogen_monoxide,Krypton,Xenon] if mode==:vol;x=vol2mol(x);end calorific(x,outoption) end export ng_calorific,ng_calorific_cn,ng_calorific_en
NatureGas
https://github.com/hzgzh/NatureGas.jl.git
[ "MIT" ]
0.0.6
28462d28ee55ed3378aa682be12c6fe09da06254
code
2995
using NatureGas using Test #= gas=[ "CO2" 0.006 0.005 0.015 0.016 0.076 0.011; "N2" 0.003 0.031 0.010 0.100 0.057 0.117; "H2" 0.00 0.00 0.00 0.095 0.00 0.00; "CO" 0.00 0.00 0.00 0.010 0.00 0.00; "CH4" 0.965 0.907 0.859 0.735 0.812 0.826; "C2H6" 0.018 0.0450 0.085 0.033 0.043 0.035; "C3H8" 0.0045 0.0084 0.023 0.0074 0.009 0.0075; "iC4H10" 0.0010 0.0010 0.0035 0.0012 0.0015 0.0012; "nC4H10" 0.0010 0.0015 0.0035 0.0012 0.0015 0.0012; "iC5H12" 0.0005 0.0003 0.0005 0.0004 0.00 0.0004; "nC5H12" 0.0003 0.0004 0.0005 0.0004 0.00 0.0004; "nC6H14" 0.0007 0.0004 0.00 0.0002 0.00 0.0002; "nC7H16" 0.00 0.00 0.00 0.0001 0.00 0.000 ; "nC8H18" 0.00 0.00 0.00 0.0001 0.00 0.00] =# case=[ 60 -3.15 0.84053 0.83348 0.79380 0.88550 0.82609 0.85380; 60 6.85 0.86199 0.85596 0.82206 0.90144 0.84969 0.87370; 60 16.85 0.88006 0.87484 0.84544 0.91501 0.86944 0.89052; 60 36.85 0.90867 0.90466 0.88183 0.93674 0.90052 0.91723; 60 56.85 0.93011 0.92696 0.90868 0.95318 0.92368 0.93730; 120 -3.15 0.72133 0.71044 0.64145 0.81024 0.69540 0.75074; 120 6.85 0.76025 0.75066 0.68971 0.83782 0.73780 0.78586; 120 16.85 0.79317 0.78475 0.73123 0.86137 0.77369 0.81569; 120 36.85 0.84515 0.83863 0.79697 0.89913 0.83022 0.86311; 120 56.85 0.88383 0.87870 0.84553 0.92766 0.87211 0.89862] atol=0.005 @testset "Gas 1" begin for i=1:10 @test isapprox(ng_zfactor(case[i,1]/10,case[i,2]+273.15,CO2=0.006,N2=0.003,CH4=0.965,C2H6=0.018, C3H8=0.0045,iC4H10=0.001,nC4H10=0.001,iC5H12=0.0005,nC5H12=0.0003,nC6H14=0.0007),case[i,3];rtol=atol) end end @testset "Gas 2" begin for i=1:10 @test isapprox(ng_zfactor(case[i,1]/10,case[i,2]+273.15,CO2=0.005,N2=0.031,CH4=0.907,C2H6=0.045, C3H8=0.0084,iC4H10=0.001,nC4H10=0.0015,iC5H12=0.0003,nC5H12=0.0004,nC6H14=0.0004),case[i,4];rtol=atol) end end @testset "Gas 3" begin for i=1:10 @test isapprox(ng_zfactor(case[i,1]/10,case[i,2]+273.15,CO2=0.015,N2=0.01,CH4=0.859,C2H6=0.085, C3H8=0.023,iC4H10=0.0035,nC4H10=0.0035,iC5H12=0.0005,nC5H12=0.0005,nC6H14=0.0000),case[i,5];rtol=atol) end end @testset "Gas 4" begin for i=1:10 @test isapprox(ng_zfactor(case[i,1]/10,case[i,2]+273.15,CO2=0.016,N2=0.1,H2=0.095,CO=0.01,CH4=0.735,C2H6=0.033, C3H8=0.0074,iC4H10=0.0012,nC4H10=0.0012,iC5H12=0.0004,nC5H12=0.0004,nC6H14=0.0002,nC7H16=0.0001,nC8H18=0.0001),case[i,6];rtol=atol) end end @testset "Gas 5" begin for i=1:10 @test_skip isapprox(ng_zfactor(case[i,1]/10,case[i,2]+273.15,CO2=0.076,N2=0.057,CH4=0.812,C2H6=0.043, C3H8=0.009,iC4H10=0.0015,nC4H10=0.0015),case[i,7];rtol=atol) end end @testset "Gas 6" begin for i=1:10 @test isapprox(ng_zfactor(case[i,1]/10,case[i,2]+273.15,CO2=0.011,N2=0.117,CH4=0.826,C2H6=0.035, C3H8=0.0075,iC4H10=0.0012,nC4H10=0.0012,iC5H12=0.0004,nC5H12=0.0004,nC6H14=0.0002,nC7H16=0.0001),case[i,8];rtol=atol) end end
NatureGas
https://github.com/hzgzh/NatureGas.jl.git
[ "MIT" ]
0.0.6
28462d28ee55ed3378aa682be12c6fe09da06254
docs
422
# NG[![Build Status](https://travis-ci.org/hzgzh/NatureGas.jl.svg?branch=master)](https://travis-ci.org/hzgzh/Naturegas.jl) # Nature Gas Compress Factor Calculation ## install Pkg.add("https://github.com/hzgzh/NatureGas.git") ## usage # Example ``` julia>ng_zfactor(6,300;CO2=0.006,N2=0.003,CH4=0.965,C2H6=0.018,C3H8=0.0045, iC4H10=0.001,nC4H10=0.001,iC5H12=0.0005,nC5H12=0.0003,nC6H14=0.0007)) 0.8953514530758864 ```
NatureGas
https://github.com/hzgzh/NatureGas.jl.git
[ "Apache-2.0" ]
0.1.15
191e4f6de2ddf2dc60d5d90c412d066814f1655b
code
58
using Julog include("population.jl") include("zebra.jl")
Julog
https://github.com/ztangent/Julog.jl.git
[ "Apache-2.0" ]
0.1.15
191e4f6de2ddf2dc60d5d90c412d066814f1655b
code
2523
# Population density benchmark from https://github.com/SWI-Prolog/bench # Author: David H. D. Warren # # query population and area database to find coun- # tries of approximately equal population density clauses = @julog [ query([C1,D1,C2,D2]) <<= density(C1,D1) & density(C2,D2) & (D1 > D2) & is(T1, 20*D1) & is(T2, 21*D2) & (T1 < T2), density(C,D) <<= pop(C,P) & area(C,A) & is(D, (P*100)/A), # populations in 100000's pop(china, 8250) <<= true, pop(india, 5863) <<= true, pop(ussr, 2521) <<= true, pop(usa, 2119) <<= true, pop(indonesia, 1276) <<= true, pop(japan, 1097) <<= true, pop(brazil, 1042) <<= true, pop(bangladesh, 750) <<= true, pop(pakistan, 682) <<= true, pop(w_germany, 620) <<= true, pop(nigeria, 613) <<= true, pop(mexico, 581) <<= true, pop(uk, 559) <<= true, pop(italy, 554) <<= true, pop(france, 525) <<= true, pop(philippines, 415) <<= true, pop(thailand, 410) <<= true, pop(turkey, 383) <<= true, pop(egypt, 364) <<= true, pop(spain, 352) <<= true, pop(poland, 337) <<= true, pop(s_korea, 335) <<= true, pop(iran, 320) <<= true, pop(ethiopia, 272) <<= true, pop(argentina, 251) <<= true, # areas in 1000's of square miles area(china, 3380) <<= true, area(india, 1139) <<= true, area(ussr, 8708) <<= true, area(usa, 3609) <<= true, area(indonesia, 570) <<= true, area(japan, 148) <<= true, area(brazil, 3288) <<= true, area(bangladesh, 55) <<= true, area(pakistan, 311) <<= true, area(w_germany, 96) <<= true, area(nigeria, 373) <<= true, area(mexico, 764) <<= true, area(uk, 86) <<= true, area(italy, 116) <<= true, area(france, 213) <<= true, area(philippines, 90) <<= true, area(thailand, 200) <<= true, area(turkey, 296) <<= true, area(egypt, 386) <<= true, area(spain, 190) <<= true, area(poland, 121) <<= true, area(s_korea, 37) <<= true, area(iran, 628) <<= true, area(ethiopia, 350) <<= true, area(argentina, 1080) <<= true, ] goal = @julog(query([C1,D1,C2,D2])) println("Population (single run):") @time resolve(goal, clauses) function benchmark(n) for i = 1:n resolve(@julog(query([C1,D1,C2,D2])), clauses) end end println("Population (100 runs):") @time benchmark(100)
Julog
https://github.com/ztangent/Julog.jl.git
[ "Apache-2.0" ]
0.1.15
191e4f6de2ddf2dc60d5d90c412d066814f1655b
code
1601
# Logic puzzle benchmark from https://github.com/SWI-Prolog/bench # Where does the zebra live? # Puzzle solution written by Claude Sammut. clauses = @julog [ query(Houses) <<= houses(Houses) & member(house(red, english, _, _, _), Houses) & member(house(_, spanish, dog, _, _), Houses) & member(house(green, _, _, coffee, _), Houses) & member(house(_, ukrainian, _, tea, _), Houses) & right_of(house(green,_,_,_,_), house(ivory,_,_,_,_), Houses) & member(house(_, _, snails, _, winstons), Houses) & member(house(yellow, _, _, _, kools), Houses) & unifies(Houses, [_, _, house(_, _, _, milk, _), _,_]) & unifies(Houses, [house(_, norwegian, _, _, _)|_]) & next_to(house(_,_,_,_,chesterfields), house(_,_,fox,_,_), Houses) & next_to(house(_,_,_,_,kools), house(_,_,horse,_,_), Houses) & member(house(_, _, _, orange_juice, lucky_strikes), Houses) & member(house(_, japanese, _, _, parliaments), Houses) & next_to(house(_,norwegian,_,_,_), house(blue,_,_,_,_), Houses) & member(house(_, _, zebra, _, _), Houses) & member(house(_, _, _, water, _), Houses), houses([ house(_, _, _, _, _), house(_, _, _, _, _), house(_, _, _, _, _), house(_, _, _, _, _), house(_, _, _, _, _) ]) <<= true, right_of(A, B, [B, A | _]) <<= true, right_of(A, B, [_ | Y]) <<= right_of(A, B, Y), next_to(A, B, [A, B | _]) <<= true, next_to(A, B, [B, A | _]) <<= true, next_to(A, B, [_ | Y]) <<= next_to(A, B, Y), member(X, [X|_]) <<= true, member(X, [_|Y]) <<= member(X, Y) ] println("Zebra puzzle (single run):") goal = @julog query(Houses) @time resolve(goal, clauses)
Julog
https://github.com/ztangent/Julog.jl.git
[ "Apache-2.0" ]
0.1.15
191e4f6de2ddf2dc60d5d90c412d066814f1655b
code
635
module Julog include("structs.jl") include("parse.jl") include("utils.jl") include("clausetable.jl") include("main.jl") export Const, Var, Compound, Term, Clause, Subst, ClauseTable export get_args, is_ground, substitute, has_subterm, find_subterms export to_nnf, to_cnf, to_dnf, flatten_conjs, flatten_disjs, deuniversalize export eval_term, unify, resolve, derivations, derive, fwd_chain, bwd_chain export regularize_clauses, index_clauses, deindex_clauses, retrieve_clauses export insert_clauses!, insert_clauses, subtract_clauses!, subtract_clauses export parse_prolog, write_prolog export @julog, @prolog, @varsub end # module
Julog
https://github.com/ztangent/Julog.jl.git
[ "Apache-2.0" ]
0.1.15
191e4f6de2ddf2dc60d5d90c412d066814f1655b
code
4279
"Nested dictionary to store indexed clauses." const ClauseSubtable{T} = Dict{Symbol,Vector{T}} where T <: AbstractClause const ClauseTable{T} = Dict{Symbol,ClauseSubtable{T}} function insert_clause!(table::ClauseTable{T}, c::Clause) where {T <: AbstractClause} subtable = get!(table, c.head.name, Dict{Symbol,Vector{T}}()) if isa(c.head, Compound) && length(c.head.args) >= 1 arg = c.head.args[1] if isa(arg, Var) push!(get!(subtable, :__var__, Vector{T}()), c) else push!(get!(subtable, Symbol(arg.name), Vector{T}()), c) end push!(get!(subtable, :__all__, Vector{T}()), c) else push!(get!(subtable, :__no_args__, Vector{T}()), c) end end "Insert clauses into indexed table for efficient look-up." function insert_clauses!(table::ClauseTable{T}, clauses::Vector{T}) where {T <: AbstractClause} # Ensure no duplicates are added clauses = unique(clauses) if (length(table) > 0) setdiff!(clauses, deindex_clauses(table)) end # Iterate over clauses and insert into table for c in clauses insert_clause!(table, c) end return table end "Insert clauses into indexed table and return a new table." function insert_clauses(table::ClauseTable{T}, clauses::Vector{T}) where {T <: AbstractClause} return insert_clauses!(deepcopy(table), clauses) end "Index clauses by functor name and first argument for efficient look-up." function index_clauses(clauses::Vector{T}) where {T <: AbstractClause} return insert_clauses!(ClauseTable{T}(), clauses) end "Convert indexed clause table to flat list of clauses." function deindex_clauses(table::ClauseTable{T}) where {T <: AbstractClause} clauses = Vector{T}() for (functor, subtable) in table if :__no_args__ in keys(subtable) append!(clauses, subtable[:__no_args__]) else append!(clauses, subtable[:__all__]) end end return clauses end "Retrieve matching clauses from indexed clause table." function retrieve_clauses(table::ClauseTable{T}, term::Term, funcs::Dict=Dict()) where {T <: AbstractClause} clauses = Vector{T}() funcs = length(funcs) > 0 ? merge(default_funcs, funcs) : default_funcs subtable = get(table, term.name, nothing) if subtable === nothing return clauses end if isa(term, Compound) && length(term.args) >= 1 arg = term.args[1] if isa(arg, Var) || arg.name in keys(funcs) clauses = get(subtable, :__all__, clauses) else clauses = [get(subtable, Symbol(arg.name), clauses); get(subtable, :__var__, clauses)] end else clauses = get(subtable, :__no_args__, clauses) end return clauses end "Subtract one clause table from another (in-place)." function subtract_clauses!(table1::ClauseTable{T}, table2::ClauseTable{T}) where {T <: AbstractClause} for (functor, subtable2) in table2 if !(functor in keys(table1)) continue end subtable1 = table1[functor] for arg in keys(subtable2) if !(arg in keys(subtable1)) continue end setdiff!(subtable1[arg], subtable2[arg]) end end return table1 end "Subtract one clause table from another (returns new copy)." function subtract_clauses(table1::ClauseTable{T}, table2::ClauseTable{T}) where {T <: AbstractClause} return subtract_clauses!(deepcopy(table1), table2) end "Subtract clauses from a indexed clause table (in-place)." function subtract_clauses!(table::ClauseTable{T}, clauses::Vector{T}) where {T <: AbstractClause} return subtract_clauses!(table, index_clauses(clauses)) end "Subtract clauses from a indexed clause table (returns new copy)." function subtract_clauses(table::ClauseTable{T}, clauses::Vector{T}) where {T <: AbstractClause} return subtract_clauses(table, index_clauses(clauses)) end "Return number of clauses in indexed clause table." function num_clauses(table::ClauseTable{T}) where {T <: AbstractClause} n = 0 for (functor, subtable) in table if :__no_args__ in keys(subtable) n += length(subtable[:__no_args__]) else n += length(subtable[:__all__]) end end return n end
Julog
https://github.com/ztangent/Julog.jl.git
[ "Apache-2.0" ]
0.1.15
191e4f6de2ddf2dc60d5d90c412d066814f1655b
code
20757
"Recursive structure for representing goals." mutable struct GoalTree term::Term # Term to be proven parent::Union{GoalTree,Nothing} # Parent goal children::Vector{Term} # List of subgoals active::Int # Index of active subgoal env::Subst # Dictionary of variable mappings for the current goal vmap::Subst # Variables inherited from parent end GoalTree(g::GoalTree) = GoalTree(g.term, g.parent, copy(g.children), g.active, copy(g.env), g.vmap) "Built-in arithmetic operations." const math_ops = Set([:+, :-, :*, :/, :mod]) "Built-in comparison operations." const comp_ops = Set([:(==), :<=, :>=, :<, :>, :(!=)]) "Built-in operators." const ops = union(math_ops, comp_ops) "Built-in functions." const default_funcs = Dict(op => eval(op) for op in ops) "Built-in logical connectives." const logicals = Set([true, false, :and, :or, :not, :!, :exists, :forall, :imply, :(=>)]) "Built-in predicates with special handling during SLD resolution." const builtins = union( comp_ops, logicals, [:is, :call, :unifies, :≐, :cut, :fail, :findall, :countall] ) """ eval_term(term, env[, funcs]) Given an environment, evaluate all variables in a Julog term to constants. Returns a term that is as fully evaluated as possible. # Arguments - `term::Term`: A term to evaluate. - `env::Dict{Var,Term}`: An environment mapping variables to terms. - `funcs::Dict=Dict()`: Additional custom functions (e.g. custom math). """ eval_term(term::Term, env::Subst, funcs::Dict=Dict()) = error("Not implemented") eval_term(term::Var, env::Subst, funcs::Dict=Dict()) = term in keys(env) ? eval_term(env[term], env, funcs) : term function eval_term(term::Const, env::Subst, funcs::Dict=Dict()) val = get(funcs, term.name, term) if val === term return val elseif isa(val, Function) return Const(val()) else return Const(val) end end function eval_term(term::Compound, env::Subst, funcs::Dict=Dict()) args = Term[eval_term(a, env, funcs) for a in term.args] func = get(funcs, term.name) do get(default_funcs, term.name, nothing) end if func !== nothing && all(isa(a, Const) for a in args) if isa(func, Function) # Evaluate function if all arguments are fully evulated return Const(func((a.name for a in args)...)) elseif isa(func, Dict) # Lookup value if custom function is a lookup table key = Tuple(a.name for a in args) if key in keys(func) return Const(func[key]) end # Leave un-evaluated if lookup table has missing entries return Compound(term.name, args) else error("$(term.name) is neither a custom function or lookup table.") end else return Compound(term.name, args) end end """ unify(src, dst[, occurs_check, funcs]) Unifies src with dst and returns a dictionary of any substitutions needed. # Arguments - `src::Term`: A term to unify. - `dst::Term`: A term to unify (src/dst order does not matter). - `occurs_check::Bool=true`: Whether to perform the occurs check. - `funcs::Dict=Dict()`: Custom functions to evaluate. """ function unify(src::Term, dst::Term, occurs_check::Bool=true, funcs::Dict=Dict()) src_stack, dst_stack = Term[src], Term[dst] src_defer, dst_defer = Term[], Term[] subst = Subst() success = true while length(src_stack) > 0 src, dst = pop!(src_stack), pop!(dst_stack) # Unify $src with $dst if isa(src, Const) && isa(dst, Const) success = _unify!(src::Const, dst, funcs) if !success break end elseif isa(src, Var) success = _unify!(src::Var, dst, src_stack, dst_stack, subst, occurs_check) if !success break end elseif isa(dst, Var) success = _unify!(dst::Var, src, dst_stack, src_stack, subst, occurs_check) if !success break end elseif isa(src, Compound) && isa(dst, Compound) success = _unify!(src::Compound, dst, src_stack, dst_stack) if !success break end elseif isa(src, Const) && isempty(dst.args) success = _unify!(src::Const, dst, funcs) if !success break end elseif isa(dst, Const) && isempty(src.args) success = _unify!(dst::Const, src, funcs) if !success break end else # Reaches here if one term is compound and the other is constant push!(src_defer, src) push!(dst_defer, dst) end end # Try evaluating deferred Const vs Compound comparisons for (src, dst) in zip(src_defer, dst_defer) src, dst = eval_term(src, subst, funcs), eval_term(dst, subst, funcs) if src != dst # "No: cannot unify $src and $dst after evaluation" success = false; break end end return success ? subst : nothing end function _unify!(src::Const, dst::Term, funcs::Dict=Dict()) if src.name != dst.name src_val = get(funcs, src.name, src.name) dst_val = get(funcs, dst.name, dst.name) return src_val == dst_val end return true end function _unify!(src::Var, dst::Term, src_stack, dst_stack, subst, occurs_check::Bool=true) if isa(dst, Var) && src.name == dst.name # "Yes: same variable" return true elseif occurs_check && occurs_in(src, dst) # "No: src occurs in dst" return false end # Replace src with dst in stack for i in 1:length(src_stack) s, d = src_stack[i], dst_stack[i] ss = substitute(s, src, dst) if s !== ss src_stack[i] = ss end dd = substitute(d, src, dst) if d !== dd dst_stack[i] = dd end end # Replace src with dst in substitution values map!(v -> substitute(v, src, dst), values(subst)) # Add substitution of src to dst subst[src] = dst return true end function _unify!(src::Compound, dst::Term, src_stack, dst_stack) if src.name != dst.name # "No: diff functors" return false elseif length(src.args) != length(dst.args) # "No: diff arity" return false end # "Yes: pushing args onto stack" append!(src_stack, src.args) append!(dst_stack, dst.args) return true end "Handle built-in predicates" function handle_builtins!(queue, clauses, goal, term; options...) funcs = get(options, :funcs, Dict()) occurs_check = get(options, :occurs_check, false) vcount = get(options, :vcount, Ref(UInt(0))) if term.name == true return true elseif term.name == false return false elseif term.name == :call # Handle meta-call predicate pred, args = term.args[1], term.args[2:end] if isa(pred, Var) pred = get(goal.env, pred, nothing) end if isnothing(pred) error("$term not sufficiently instantiated.") end term = Compound(pred.name, [pred.args; args]) # Rewrite term goal.children[goal.active] = term # Replace term goal.active -= 1 return true elseif term.name == :is # Handle is/2 predicate qn, ans = term.args[1], eval_term(term.args[2], goal.env, funcs) # Failure if RHS is insufficiently instantiated if !isa(ans, Const) return false end # LHS can either be a variable or evaluate to a constant if isa(qn, Var) && !(qn in keys(goal.env)) # If LHS is a free variable, bind to RHS for (k, v) in goal.env goal.env[k] = substitute(v, qn, ans) end goal.env[qn] = ans return true else # If LHS evaluates to a constant, check if it is equal to RHS qn = eval_term(qn, goal.env, funcs) return isa(qn, Const) ? qn == ans : false end return false elseif term.name in [:unifies, :≐] # Check if LHS and RHS unify term = substitute(term, goal.env) lhs, rhs = term.args[1], term.args[2] unifier = unify(lhs, rhs, occurs_check, funcs) if isnothing(unifier) return false end compose!(goal.env, unifier) # Update variable bindings if satisfied return true elseif term.name == :and # Remove self and add all arguments as children to the goal, succeed splice!(goal.children, goal.active, term.args) goal.active -= 1 return true elseif term.name == :or # Create new goals for each term in disjunct, add to queue for arg in term.args g = GoalTree(goal) g.children[g.active] = arg # Replace disjunct with term push!(queue, g) end # No longer work on this goal return false elseif term.name in [:not, :!] # Try to resolve negated predicate, return true upon failure neg_goal = term.args[1] sat, _ = resolve(Term[neg_goal], clauses; options..., vcount=vcount, env=copy(goal.env), mode=:any) return !sat # Success if no proof is found elseif term.name == :exists # exists(Cond, Body) holds if Body holds for at least 1 binding of Cond cond, body = term.args sat, subst = resolve(Term[cond, body], clauses; options..., vcount=vcount, env=copy(goal.env), mode=:any) # Update variable bindings if satisfied goal.env = sat ? compose!(goal.env, subst[1]) : goal.env return sat elseif term.name == :forall # forall(Cond, Body) holds if Body holds for all bindings of Cond cond, body = term.args term = @julog(not(and(:cond, not(:body)))) # Rewrite term goal.children[goal.active] = term # Replace term goal.active -= 1 return true elseif term.name in [:imply, :(=>)] # imply(Cond, Body) holds if or(not(Cond), Body) holds cond, body = term.args sat, _ = resolve(Term[cond], clauses; options..., vcount=vcount, env=copy(goal.env), mode=:any) # Return true if Cond does not hold if !sat return true end # Otherwise replace original term with [Cond, Body], return true splice!(goal.children, goal.active, [cond, body]) goal.active -= 1 return true elseif term.name == :cut # Remove all other goals and succeed empty!(queue) return true elseif term.name == :fail # Fail and skip goal return false elseif term.name == :findall # Find list of all cond matches, substituted into template template, cond, list = term.args _, subst = resolve(Term[cond], clauses; options..., vcount=vcount, env=copy(goal.env), mode=:all) matches = to_term_list([substitute(template, s) for s in subst]) unifier = unify(list, matches, occurs_check, funcs) if isnothing(unifier) return false end compose!(goal.env, unifier) # Update variable bindings if satisfied return true elseif term.name == :countall # Count number of ways to prove the condition cond, count = term.args _, subst = resolve(Term[cond], clauses; options..., vcount=vcount, env=copy(goal.env), mode=:all) unifier = unify(count, Const(length(subst)), occurs_check, funcs) if isnothing(unifier) return false end compose!(goal.env, unifier) # Update variable bindings if satisfied return true elseif term.name in comp_ops || term.name in keys(funcs) defer_eval = get(options, :defer_eval, false) result = eval_term(term, goal.env, funcs) if isa(result, Const) # Return true if term evaluates to true return result.name == true elseif defer_eval && goal.active < length(goal.children) # Defer evaluation goal.children[goal.active] = goal.children[goal.active + 1] goal.children[goal.active + 1] = term goal.active -= 1 return true end end return false end """ resolve(goals, clauses; <keyword arguments>) bwd_chain(goals, clauses; <keyword arguments>) SLD-resolution of goals with additional Prolog-like control flow. # Arguments - `goals::Vector{<:Term}`: A list of Julog terms to be prove or query. - `clauses::Vector{Clause}`: A list of Julog clauses. - `env::Subst=Subst()`: An initial environment mapping variables to terms. - `funcs::Dict=Dict()`: Custom functions for evaluating terms. A function `f` should be stored as `funcs[:f] = f` - `mode::Symbol=:all`: How results should be returned. `:all` returns all possible substitutions. `:any` returns the first satisfying substitution found. `:interactive` prompts for continuation after each satisfying substitution is found. - `search::Symbol=:bfs`: search either breadth (`:bfs`) or depth-first (`:dfs`) - `occurs_check::Bool=false`: Flag for occurs check during unification - `defer_eval::Bool=false`: Flag to defer evaluation of (custom) operators. """ function resolve(goals::Vector{<:Term}, clauses::Vector{<:AbstractClause}; options...) return resolve(goals, index_clauses(clauses); options...) end function resolve(goals::Vector{<:Term}, clauses::ClauseTable; options...) # Unpack options env = get(options, :env, Subst())::Subst funcs = get(options, :funcs, Dict())::Dict mode = get(options, :mode, :all)::Symbol search = get(options, :search, :bfs)::Symbol occurs_check = get(options, :occurs_check, false)::Bool vcount = get(options, :vcount, Ref(UInt(0)))::Ref{UInt} # Construct top level goal and put it on the queue queue = [GoalTree(Const(false), nothing, Vector{Term}(goals), 1, env, Subst())] subst = Subst[] # Iterate across queue of goals while length(queue) > 0 goal = (search == :dfs) ? pop!(queue) : popfirst!(queue) @debug string("Goal: ", Clause(goal.term, goal.children), " ", "Env: ", goal.env) if goal.active > length(goal.children) # All subgoals are done if isnothing(goal.parent) # If goal has no parent, we are successful @debug string("Success: ", goal.env) if !(goal.env in subst) push!(subst, goal.env) end if (mode == :all) continue elseif (mode == :any || length(queue) == 0) break elseif mode == :interactive # Interactively prompt for continuation println(goal.env) print("Continue? [y/n]: ") s = readline() if s in ["y", "Y", ""] continue else break end end end @debug string("Done, returning to parent.") # Copy construct parent to create fresh copy of environment parent = GoalTree(goal.parent) # Remap variables from child to parent vmap = Subst() for (pvar, cvar) in goal.vmap if !(cvar in keys(goal.env)) continue end if pvar == goal.env[cvar] continue end vmap[pvar] = goal.env[cvar] end parent.env = compose!(parent.env, vmap) # Advance parent to next subgoal and put it back on the queue parent.active += 1 push!(queue, parent) continue end # Examine current subgoal term = goal.children[goal.active] @debug string("Subgoal: ", term) # Handle built-in special terms if term.name in builtins || term.name in keys(funcs) success = handle_builtins!(queue, clauses, goal, term; vcount=vcount, options...) # If successful, go to next subgoal, otherwise skip to next goal if success @debug string("Done, returning to parent.") goal.active += 1 push!(queue, goal) end continue end # Substitute and freshen variables in term vmap = Subst() term = freshen!(substitute(term, goal.env), vmap, vcount) # Iterate across clause set with matching heads matched_clauses = retrieve_clauses(clauses, term, funcs) matched = false for c in matched_clauses # Freshen variables in clause c = freshen!(c, Subst(), vcount) # If term unifies with head of a clause, add it as a subgoal unifier = unify(term, c.head, occurs_check, funcs) if isnothing(unifier) continue end child = GoalTree(c.head, goal, copy(c.body), 1, unifier, vmap) push!(queue, child) matched = true end if !matched @debug string("Failed, no matching clauses.") end end # Goals were satisfied if we found valid substitutions return (length(subst) > 0), subst end resolve(goal::Term, clauses::Vector{<:AbstractClause}; options...) = resolve(Term[goal], clauses; options...) resolve(goals::Vector{Clause}, clauses::Vector{<:AbstractClause}; options...) = resolve([convert(Term, g) for g in goals], clauses; options...) const bwd_chain = resolve "Return all facts derivable in `n` steps from the initial set of clauses." function derivations(clauses::Vector{<:AbstractClause}, n::Real=1; options...) rules = filter(c -> length(c.body) > 0, clauses) facts = filter(c -> length(c.body) == 0, clauses) return derivations(rules, facts, n; options...) end function derivations(rules::Vector{T}, facts::Vector{T}, n::Real=1; options...) where {T <: AbstractClause} return derivations(rules, index_clauses(facts), n; options...) end function derivations(rules::Vector{T}, facts::ClauseTable{T}, n::Real=1; as_indexed::Bool=false, options...) where {T <: AbstractClause} step = 0 n_facts = num_clauses(facts) while step < n # Iteratively add facts derivable from each rule derived = derive_step(rules, facts; options...) insert_clauses!(facts, derived) # Terminate early if we reach a fixed point n_facts_new = num_clauses(facts) if (n_facts < n_facts_new) n_facts = n_facts_new else break end step += 1 end return as_indexed ? facts : deindex_clauses(facts) end "Iteratively add facts derivable from each rule." function derive_step(rules::Vector{T}, facts::ClauseTable{T}; options...) where {T <: AbstractClause} # Iteratively add facts derivable from each rule derived = Term[] for r in rules # Find all valid substitutions of each rule's body _, subst = resolve(r.body, facts; options...) append!(derived, Term[substitute(r.head, s) for s in subst]) end return [Clause(d, []) for d in derived] end """ derive(goals, clauses; <keyword arguments>) fwd_chain(goals, clauses; <keyword arguments>) Derive goals via forward-chaining from the initial set of clauses. # Arguments - `goals::Vector{<:Term}`: A list of Julog terms to be prove or query. - `clauses::Vector{Clause}`: A list of Julog clauses. - `max-steps::Real=100`: Maximum steps before terminating with failure. See `resolve` for other supported arguments. """ function derive(goals::Vector{<:Term}, clauses::Vector{T}; max_steps::Real=100, options...) where {T <: AbstractClause} grounded = all(is_ground.(goals)) rules = filter(c -> length(c.body) > 0, clauses) facts = index_clauses(filter(c -> length(c.body) == 0, clauses)) n_facts = num_clauses(facts) step = 0 while step < max_steps # Return all goals are grounded and satisfied if grounded sat, subst = resolve(goals, facts; options...) if sat return sat, subst end end # Iteratively add facts derivable from each rule derived = derive_step(rules, facts; options...) insert_clauses!(facts, derived) # Terminate early if we reach a fixed point n_facts_new = num_clauses(facts) if (n_facts < n_facts_new) n_facts = n_facts_new else break end step += 1 end return resolve(goals, facts; options...) end derive(goal::Term, clauses::Vector{<:AbstractClause}; options...) = derive(Term[goal], clauses; options...) derive(goals::Vector{Clause}, clauses::Vector{<:AbstractClause}; options...) = derive([convert(Term, g) for g in goals], clauses; options...) const fwd_chain = derive
Julog
https://github.com/ztangent/Julog.jl.git
[ "Apache-2.0" ]
0.1.15
191e4f6de2ddf2dc60d5d90c412d066814f1655b
code
8082
"Parse Julog terms using Prolog-like syntax." function parse_term(expr, esc=esc) if isa(expr, Union{String,Number,Enum,Bool}) # Strings, numbers, enums and bools are automatically constants return :(Const($expr)) elseif isa(expr, Symbol) if expr == :_ # Underscores are wildcards, parsed to variables with new names return Expr(:call, Var, Meta.quot(gensym(expr))) elseif isuppercase(string(expr)[1]) || string(expr)[1] == "_" # Initial uppercase / underscored symbols are parsed to variables return Expr(:call, Var, Meta.quot(expr)) else # Everything else is parsed to a constant return Expr(:call, Const, Meta.quot(expr)) end elseif isa(expr, Expr) && expr.head == :tuple # Fully evaluated tuples are valid constants return :(Const($(esc(expr)))) elseif isa(expr, Expr) && expr.head == :vect # Parse vector as Prolog style list return parse_list(expr.args, esc) elseif isa(expr, Expr) && expr.head == :$ # Evaluate interpolated expression as Const within scope of caller val = expr.args[1] return :(Const($(esc(val)))) elseif isa(expr, Expr) && expr.head == :call # A compound term comprises its name (functor) and arguments name = esc(Meta.quot(expr.args[1])) args = [parse_term(e, esc) for e in expr.args[2:end]] return :(Compound($name, [$(args...)])) elseif isa(expr, QuoteNode) # Evaluate quoted expression within scope of caller val = expr.value return esc(val) else dump(expr) error("syntax error in Julog term at $expr") end end "Parse arguments of vector using Prolog-style list syntax." function parse_list(args, esc=esc) if (length(args) > 0 && isa(args[end], Expr) && args[end].head == :call && args[end].args[1] == :|) # Handle [... | Tail] syntax for last element tail = parse_term(args[end].args[3], esc) pretail = parse_term(args[end].args[2], esc) tail = :(Compound(:cons, [$pretail, $tail])) args = args[1:end-1] else # Initialize tail to empty list tail = :(Compound(:cend, [])) end # Recursively build list using :cons for a in Iterators.reverse(args) e = parse_term(a, esc) tail = :(Compound(:cons, [$e, $tail])) end return tail end "Parse body of Julog clause using Prolog-like syntax, with '&' replacing ','." function parse_body(expr, esc=esc) if expr == true return [] elseif isa(expr, Symbol) || isa(expr, QuoteNode) || isa(expr, Expr) && expr.head in [:tuple, :vect, :$] return [parse_term(expr, esc)] elseif isa(expr, Expr) && expr.head == :call if expr.args[1] == :& # '&' is left-associative, so we descend the parse tree accordingly return [parse_body(expr.args[2], esc); parse_term(expr.args[3], esc)] else return [parse_term(expr, esc)] end else dump(expr) error("syntax error in body of Julog clause at $expr") end end """ Parse Julog expression using Prolog-like syntax. Set `esc` to `identity` to avoid unnecessary escaping. """ function parse_julog(expr, esc=esc) if !isa(expr, Expr) return parse_term(expr, esc) elseif expr.head == :<<= head = parse_term(expr.args[1], esc) body = parse_body(expr.args[2], esc) return :(Clause($head, [$(body...)])) elseif expr.head == Symbol("'") head = parse_term(expr.args[1], esc) return :(Clause($head, [])) elseif expr.head == :vect exprs = [parse_julog(a, esc) for a in expr.args] return :([$(exprs...)]) elseif expr.head == :ref && expr.args[1] == :Clause exprs = [parse_julog(a, esc) for a in expr.args[2:end]] return :(Clause[$(exprs...)]) elseif expr.head == :ref && expr.args[1] in [:Term, :Const, :Var, :Compound] ty = expr.args[1] exprs = [parse_term(a, esc) for a in expr.args[2:end]] return :($ty[$(exprs...)]) elseif expr.head == :ref && expr.args[1] == :list return parse_list(expr.args[2:end], esc) else return parse_term(expr, esc) end end """ @julog expr Parse and return Julog expressions. - `@julog <term>` parses a Prolog-style term. - `@julog <term> <<= true` or `@julog <term>'` parses a fact (body-less clause). - `@julog <head> <<= <body>` parses a definite clause. - `@julog [<term|clause>, ...]` parses a vector of terms or clauses - `@julog <T>[<term>, ...]` parses to a vector of type `T` (e.g. `Const`) - `@julog list[<term>, ...]` parses a Prolog-style list directly to a term. Additionally, the `\$` operator can be used to interpolate regular Julia expressions as Julog constants, while the `:` operator can be used to interpolate variables referring to pre-constructed Julog terms into another Julog term or clause. """ macro julog(expr) return parse_julog(expr) end "Parse Julog substitutions, e.g. {X => hello, Y => world}." macro varsub(expr) if !(isa(expr, Expr) && expr.head == :braces && all(isa.(expr.args, Expr)) && all(a.head == :call && a.args[1] == :(=>) for a in expr.args)) error("Invalid format for Julog substitutions: $e.") end vars = [Expr(:call, Var, Meta.quot(a.args[2])) for a in expr.args] terms = [parse_term(a.args[3]) for a in expr.args] entries = [:($v => $t) for (v, t) in zip(vars, terms)] return Expr(:call, Subst, entries...) end "Convert Prolog string to list of Julog strings." function convert_prolog_to_julog(str::String) clauses = String[] # Match each clause (being careful to handle periods in lists + floats) for m in eachmatch(r"((?:\d\.\d+|[^\.]|\.\()*)\.\s*", str) clause = m.captures[1] # Replace cuts, negations and implications clause = replace(clause, "!" => "cut") clause = replace(clause, "\\+" => "!") clause = replace(clause, "->" => "=>") clause = replace(clause, ".(" => "cons(") # Try to match to definite clause m = match(r"(.*):-(.*)", clause) if isnothing(m) # Push fact on to list of clauses clause = clause * " <<= true" push!(clauses, clause) continue end # Handle definite clauses head, body = m.captures[1:2] # Handle disjunctions within the body for bd in split(body, ";") # Handle conjuctions within body (find commas outside of brackets) br_count = 0 commas = [0] for (idx, chr) in enumerate(bd) if (chr == '(') br_count += 1 elseif (chr == ')') br_count -= 1 elseif (chr == ',') && br_count == 0 push!(commas, idx) end end push!(commas, length(bd)+1) terms = [strip(bd[a+1:b-1]) for (a, b) in zip(commas[1:end-1], commas[2:end])] subclause = strip(head) * " <<= " * join(terms, " & ") push!(clauses, subclause) end end return clauses end "Parse Julog expression from string using standard Prolog syntax." function parse_prolog(str::String) strs = convert_prolog_to_julog(str) exprs = [@julog($(Meta.parse(s))) for s in strs] return exprs end "Write list of Julog clauses to Prolog string." function write_prolog(clauses::Vector{Clause}) str = "" for clause in clauses clause = repr(clause) clause = replace(clause, "!" => "\\+") clause = replace(clause, "=>" => "->") clause = replace(clause, " &" => ",") clause = replace(clause, "<<=" => ":-") str = str * clause * ".\n" end return str end "Parse Prolog program as a string and return a list of Julog clauses." macro prolog(str::String) strs = convert_prolog_to_julog(str) exprs = [parse_julog(Meta.parse(s)) for s in strs] return :([$(exprs...)]) end
Julog
https://github.com/ztangent/Julog.jl.git
[ "Apache-2.0" ]
0.1.15
191e4f6de2ddf2dc60d5d90c412d066814f1655b
code
3762
""" Term Represents a term or expression in first-order logic, including variables, constants, or compound terms. """ abstract type Term end """ Const Represents a named constant term with no arguments. """ struct Const <: Term name::Any end """ Var Represents a variable in a first-order expression. """ struct Var <: Term name::Union{Symbol,UInt} end """ Compound A `Compound` represents a term with zero or more arguments. When a `Compound` has zero arguments, it is functionally equivalent to a `Const.` """ struct Compound <: Term name::Symbol args::Vector{Term} end """ AbstractClause Abstract type for clauses in a logic program. """ abstract type AbstractClause end """ Clause A definite Horn clause of the form `[head] <<= [body]`. """ struct Clause <: AbstractClause head::Term body::Vector{Term} end """ Subst Substitution mapping from variables to terms. Alias for `Dict{Var,Term}`. """ const Subst = Dict{Var,Term} Base.:(==)(t1::Term, t2::Term) = false Base.:(==)(t1::Const, t2::Const) = t1.name == t2.name Base.:(==)(t1::Var, t2::Var) = t1.name == t2.name Base.:(==)(t1::Const, t2::Compound) = t1.name == t2.name && isempty(t2.args) Base.:(==)(t1::Compound, t2::Const) = t1.name == t2.name && isempty(t1.args) Base.:(==)(t1::Compound, t2::Compound) = (t1.name == t2.name && length(t1.args) == length(t2.args) && all(a1 == a2 for (a1, a2) in zip(t1.args, t2.args))) Base.hash(t::Term, h::UInt) = error("Not implemented.") Base.hash(t::Const, h::UInt) = hash(t.name, h) Base.hash(t::Var, h::UInt) = hash(t.name, h) Base.hash(t::Compound, h::UInt) = isempty(t.args) ? hash(t.name, h) : hash(t.name, hash(Tuple(t.args), h)) Base.:(==)(c1::Clause, c2::Clause) = (c1.head == c2.head && length(c1.body) == length(c2.body) && all(t1 == t2 for (t1, t2) in zip(c1.body, c2.body))) Base.hash(c::Clause, h::UInt) = hash(c.head, hash(Tuple(c.body), h)) Base.convert(::Type{Clause}, term::Term) = Clause(term, []) function Base.convert(::Type{Term}, clause::Clause) if length(clause.body) == 0 return clause.head end return Compound(:(=>), Term[Compound(:and, copy(clause.body)), clause.head]) end function Base.show(io::IO, t::Term) print(io, t.name) end function Base.show(io::IO, t::Var) (t.name isa UInt) ? print(io, "#", t.name) : print(io, t.name) end function Base.show(io::IO, t::Compound) if t.name == :cons && length(t.args) == 2 # Handle lists separately head, tail = t.args[1], t.args[2] if isa(tail, Var) print(io, "[", repr(head), " | ", repr(tail), "]") elseif isa(tail, Compound) && tail.name == :cend print(io, "[", repr(head), "]") else print(io, "[", repr(head), ", ", repr(tail)[2:end-1], "]") end elseif isempty(t.args) # Print zero-arity compounds as constants t.name == :cend ? print(io, "[]") : print(io, t.name) else # Print compound term as "name(args...)" print(io, t.name, "(", join([repr(a) for a in t.args], ", ")..., ")") end end function Base.show(io::IO, c::Clause) if length(c.body) == 0 print(io, c.head) else print(io, c.head, " <<= ", join([repr(t) for t in c.body], " & ")...) end end function Base.show(io::IO, subst::Subst) print(io, "{", join(["$k => $v" for (k, v) in subst], ", ")..., "}") end "Get arguments of a term." get_args(term::Term) = Term[] get_args(term::Compound) = term.args Base.getproperty(t::Const, f::Symbol) = f == :args ? Term[] : getfield(t, f) Base.getproperty(t::Var, f::Symbol) = f == :args ? Term[] : getfield(t, f) Base.propertynames(t::Const) = (:name, :args) Base.propertynames(t::Var) = (:name, :args)
Julog
https://github.com/ztangent/Julog.jl.git
[ "Apache-2.0" ]
0.1.15
191e4f6de2ddf2dc60d5d90c412d066814f1655b
code
10825
@static if VERSION < v"1.1" isnothing(::Any) = false isnothing(::Nothing) = true end @static if VERSION < v"1.2" function map!(f, iter::Base.ValueIterator) dict = iter.dict for (key, val) in pairs(dict) dict[key] = f(val) end return iter end end "Return all vars in a term." get_vars(t::Term) = error("Not implemented.") get_vars(t::Const) = Set{Var}() get_vars(t::Var) = Set{Var}([t]) get_vars(t::Compound) = length(t.args) > 0 ? union((get_vars(a) for a in t.args)...) : Set{Var}() "Check if a term is ground (contains no variables)." is_ground(t::Term) = error("Not implemented.") is_ground(t::Const) = true is_ground(t::Var) = false is_ground(t::Compound) = all(is_ground(a) for a in t.args) "Check whether a variable appears in a term." occurs_in(v::Var, t::Term) = error("Not implemented.") occurs_in(v::Var, t::Const) = false occurs_in(v::Var, t::Var) = (v.name == t.name) occurs_in(v::Var, t::Compound) = any(occurs_in(v, a) for a in t.args) "Performs variable substitution of var by val in a term." substitute(term::Term, var::Var, val::Term) = error("Not implemented.") substitute(term::Const, var::Var, val::Term) = term substitute(term::Var, var::Var, val::Term) = term.name == var.name ? val : term function substitute(term::Compound, var::Var, val::Term) args, ident = nothing, true for (i, a) in enumerate(term.args) b = substitute(a, var, val) if ident && a !== b args, ident = collect(term.args[1:i-1]), false end if !ident push!(args, b) end end return ident ? term : Compound(term.name, args) end "Apply substitution to a term." substitute(term::Term, subst::Subst) = error("Not implemented.") substitute(term::Const, subst::Subst) = term substitute(term::Var, subst::Subst) = get(subst, term, term) function substitute(term::Compound, subst::Subst) args, ident = nothing, true for (i, a) in enumerate(term.args) b = substitute(a, subst) if ident && a !== b args, ident = collect(term.args[1:i-1]), false end if !ident push!(args, b) end end return ident ? term : Compound(term.name, args) end "Compose two substitutions (s2 after s1)." function compose(s1::Subst, s2::Subst) subst = Subst(var => substitute(val, s2) for (var, val) in s1) return merge(s2, subst) end "Compose two substitutions (s2 after s1), modifying s1 in place." function compose!(s1::Subst, s2::Subst) map!(v -> substitute(v, s2), values(s1)) for (var, val) in s2 get!(s1, var, val) end return s1 end "Replace variables in a term or clause with fresh names." function freshen(term::Term, vars::Set{Var}) vmap = Subst(v => Var(gensym(v.name)) for v in vars) term = substitute(term, vmap) return term, vmap end function freshen(clause::Clause, vars::Set{Var}) vmap = Subst(v => Var(gensym(v.name)) for v in vars) clause = Clause(substitute(clause.head, vmap), Term[substitute(t, vmap) for t in clause.body]) return clause, vmap end freshen(t::Term) = freshen!(t, Subst()) freshen(c::Clause) = freshen!(c, Subst()) freshen!(t::Const, vmap::Subst) = t freshen!(t::Var, vmap::Subst) = get!(vmap, t, Var(gensym(t.name))) freshen!(t::Compound, vmap::Subst) = Compound(t.name, Term[freshen!(a, vmap) for a in t.args]) freshen!(c::Clause, vmap::Subst) = Clause(freshen!(c.head, vmap), Term[freshen!(t, vmap) for t in c.body]) freshen!(t::Const, vmap::Subst, vcount::Ref{UInt}) = t freshen!(t::Var, vmap::Subst, vcount::Ref{UInt}) = get!(vmap, t, Var(vcount[] += 1)) freshen!(t::Compound, vmap::Subst, vcount::Ref{UInt}) = Compound(t.name, Term[freshen!(a, vmap, vcount) for a in t.args]) freshen!(c::Clause, vmap::Subst, vcount::Ref{UInt}) = Clause(freshen!(c.head, vmap, vcount), Term[freshen!(t, vmap, vcount) for t in c.body]) "Check whether a term has a matching subterm." function has_subterm(term::Term, subterm::Term) if !isnothing(unify(term, subterm)) return true end return any(has_subterm(arg, subterm) for arg in get_args(term)) end "Find all matching subterms in a term." function find_subterms(term::Term, subterm::Term) init = !isnothing(unify(term, subterm)) ? Term[term] : Term[] subterms = (find_subterms(a, subterm) for a in get_args(term)) return reduce(vcat, subterms; init=init) end "Convert a vector of Julia objects to a Julog list of constants." to_const_list(v::Vector) = foldr((i, j) -> Compound(:cons, [Const(i), j]), v; init=Compound(:cend, [])) "Convert a vector of Julog terms to a Julog list." to_term_list(v::Vector{<:Term}) = foldr((i, j) -> Compound(:cons, [i, j]), v; init=Compound(:cend, [])) "Convert a list of Julog terms to a vector of Julog terms.." to_julia_list(list::Term) = list.name == :cons ? [list.args[1]; to_julia_list(list.args[2])] : [] "Simplify by rewriting implications, flattening conjuctions and disjunctions." function simplify(term::Compound) if !(term.name in logicals) return term end args = simplify.(term.args) if term.name in (:imply, :(=>)) cond, body = args return simplify(@julog or(not(:cond), and(:cond, :body))) elseif term.name == :and if length(args) == 1 return args[1] elseif any(a -> a.name == false, args) return Const(false) elseif all(a -> a.name == true, args) return Const(true) else args = flatten_conjs(filter!(a -> a.name != true, args)) term = Compound(term.name, unique!(args)) end elseif term.name == :or if length(args) == 1 return args[1] elseif any(a -> a.name == true, args) return Const(true) elseif all(a -> a.name == false, args) return Const(false) else args = flatten_disjs(filter!(a -> a.name != false, args)) term = Compound(term.name, unique!(args)) end elseif term.name in (:not, :!) if args[1].name == true return Const(false) elseif args[1].name == false return Const(true) else return Compound(:not, args) end end return length(term.args) == 1 ? term.args[1] : term end simplify(term::Const) = term simplify(term::Var) = term "Convert a term to negation normal form." function to_nnf(term::Compound) term = simplify(term) if term.name in (:not, :!) inner = term.args[1] if inner.name in (:not, :!) term = inner.args[1] elseif inner.name in (true, false) term = Const(!inner.name) elseif inner.name in (:and, :or) args = to_nnf.(@julog(not(:a)) for a in inner.args) term = Compound(inner.name == :and ? :or : :and, args) elseif inner.name in (:forall, :exists) query, body = inner.args query = to_nnf(query) body = to_nnf(@julog(not(:body))) name = inner.name == :forall ? :exists : :forall term = Compound(name, Term[query, body]) end elseif term.name in (true, false) return term elseif term.name in logicals term = Compound(term.name, to_nnf.(term.args)) end return term end to_nnf(term::Const) = term to_nnf(term::Var) = term "Convert a term to conjunctive normal form." function to_cnf(term::Compound) term = to_nnf(term) if !(term.name in (:and, :or)) return @julog and(or(:term)) end subterms = to_cnf.(term.args) if term.name == :and args = foldl(vcat, [a.args for a in subterms]; init=Compound[]) term = Compound(:and, args) elseif term.name == :or stack = Compound[@julog(or())] for subterm in subterms new_stack = Compound[] for disj_i in stack for disj_j in subterm.args new_disj = Compound(:or, [disj_i.args; disj_j.args]) push!(new_stack, new_disj) end end stack = new_stack end term = Compound(:and, stack) end return term end to_cnf(term::Const) = @julog and(or(:term)) to_cnf(term::Var) = @julog and(or(:term)) "Convert a term to disjunctive normal form." function to_dnf(term::Compound) term = to_nnf(term) if !(term.name in (:and, :or)) return @julog or(and(:term)) end subterms = to_dnf.(term.args) if term.name == :or args = foldl(vcat, (a.args for a in subterms); init=Compound[]) term = Compound(:or, args) elseif term.name == :and stack = Compound[@julog(and())] for subterm in subterms new_stack = Compound[] for conj_i in stack for conj_j in subterm.args new_conj = Compound(:and, [conj_i.args; conj_j.args]) push!(new_stack, new_conj) end end stack = new_stack end term = Compound(:or, stack) end return term end to_dnf(term::Const) = @julog or(and(:term)) to_dnf(term::Var) = @julog or(and(:term)) "Recursively flatten conjunctions in a term to a list." flatten_conjs(t::Term) = t.name == :and ? flatten_conjs(get_args(t)) : Term[t] flatten_conjs(t::Vector{<:Term}) = reduce(vcat, flatten_conjs.(t); init=Term[]) "Recursively flatten disjunctions in term to a list." flatten_disjs(t::Term) = t.name == :or ? flatten_disjs(get_args(t)) : Term[t] flatten_disjs(t::Vector{<:Term}) = reduce(vcat, flatten_disjs.(t); init=Term[]) "Instantiate universal quantifiers relative to a set of clauses." function deuniversalize(term::Compound, clauses::Vector{Clause}) if term.name == :forall cond, body = term.args sat, subst = resolve(cond, clauses) if !sat return Const(true) end instantiated = unique!(Term[substitute(body, s) for s in subst]) return Compound(:and, instantiated) elseif term.name in logicals args = Term[deuniversalize(a, clauses) for a in term.args] return Compound(term.name, args) else return term end end deuniversalize(term::Const, ::Vector{Clause}) = term deuniversalize(term::Var, ::Vector{Clause}) = term deuniversalize(c::Clause, clauses::Vector{Clause}) = Clause(c.head, [deuniversalize(t, clauses) for t in c.body]) "Convert any clauses with disjunctions in their bodies into a set of clauses." function regularize_clauses(clauses::Vector{Clause}; instantiate::Bool=false) regularized = Clause[] for c in clauses if length(c.body) == 0 push!(regularized, c) else body = Compound(:and, c.body) if (instantiate == true) body = deuniversalize(body, clauses) end for conj in to_dnf(body).args push!(regularized, Clause(c.head, conj.args)) end end end return regularized end
Julog
https://github.com/ztangent/Julog.jl.git
[ "Apache-2.0" ]
0.1.15
191e4f6de2ddf2dc60d5d90c412d066814f1655b
code
5700
@testset "Built-in predicates" begin # Test handling of and/N and or/N clauses = @julog [ shocked(P) <<= and(surprised(P), upset(P)), upset(P) <<= or(unhappy(P), angry(P)), ] # Avery is surprised. Are they shocked? (No.) facts = @julog [surprised(avery) <<= true] @test resolve(@julog(shocked(avery)), [facts; clauses])[1] == false # Bailey is surprised and angry. Are they shocked? (Yes.) facts = @julog [surprised(bailey) <<= true, angry(bailey) <<= true] @test resolve(@julog(shocked(bailey)), [facts; clauses])[1] == true # Casey is unhappy. Is anyone upset? (Yes, Casey.) facts = @julog [unhappy(casey) <<= true] @test @varsub({P => casey}) in resolve(@julog(upset(P)), [facts; clauses])[2] # Test handling of unifies/2 and not/1 clauses = @julog [ child(zeus, kronos) <<= true, child(hera, kronos) <<= true, sibling(A, B) <<= child(A, C) & child(B, C) & not(unifies(A, B)), ] # Is Hera her own sibling? (No) @test resolve(@julog(sibling(hera, hera)), clauses)[1] == false # Is Hera the sibling of Zeus? (Yes) @test resolve(@julog(sibling(hera, zeus)), clauses)[1] == true # Test the is/2 predicate (see also math_ops.jl for more tests) clauses = @julog [ square(X, Y) <<= is(Y, X * X), cube(X, Y) <<= is(Y, X * X * X) ] # Is the cube of -1 the negation of its square? (Yes) @test resolve(@julog([square(-1, S), cube(-1, C), S == -C]), clauses)[1] == true # Is the cube of 2 twice its square? (Yes) @test resolve(@julog([square(2, S), cube(2, C), C == 2*S]), clauses)[1] == true # Test negation and double negation clauses = @julog [red(roses) <<= true, blue(violets) <<= true] @test resolve(@julog(not(red(roses))), clauses)[1] == false @test resolve(@julog(not(blue(violets))), clauses)[1] == false @test resolve(@julog(not(not(red(roses)))), clauses)[1] == true @test resolve(@julog(not(not(blue(violets)))), clauses)[1] == true # Test exists/2, forall/2, implies/2 clauses = @julog [ human(pythagoras) <<= true, human(pyrrho) <<= true, human(zeno) <<= true, human(epicurus) <<= true, human(aristotle) <<= true, human(plato) <<= true, god(hera) <<= true, god(zeus) <<= true, god(aphrodite) <<= true, god(ares) <<= true, person(X) <<= human(X), person(X) <<= god(X), mortal(X) <<= human(X), immortal(X) <<= god(X) ] # Is there a human who is mortal? (Yes.) @test resolve(@julog(exists(human(X), mortal(X))), clauses)[1] == true # Is there a god who is immortal? (Yes.) @test resolve(@julog(exists(god(X), immortal(X))), clauses)[1] == true # Is there a person who is mortal? (Yes.) @test resolve(@julog(exists(person(X), mortal(X))), clauses)[1] == true # Are all persons mortal? (No.) @test resolve(@julog(forall(person(X), mortal(X))), clauses)[1] == false # Are all humans mortal? (Yes.) @test resolve(@julog(forall(human(X), mortal(X))), clauses)[1] == true # Are all gods immortal? (Yes.) @test resolve(@julog(forall(god(X), immortal(X))), clauses)[1] == true # Is it true that if Hera is mortal, she's human? (Yes, since she's not mortal.) @test resolve(@julog(imply(mortal(hera), human(hera))), clauses)[1] == true # Is it true that if Hera is immortal, she's human? (No.) @test resolve(@julog(imply(immortal(hera), human(hera))), clauses)[1] == false # Is it true that for all people, being a god implies immortality? (Yes.) @test resolve(@julog(forall(person(X), god(X) => immortal(X))), clauses)[1] == true # Is it true that for all people, being a person implies immortality? (No.) @test resolve(@julog(forall(person(X), person(X) => mortal(X))), clauses)[1] == false # Of those who are persons, which are immortal? sat, subst = resolve(@julog(person(X) => immortal(X)), clauses) ans = Set([@varsub({X => hera}), @varsub({X => zeus}), @varsub({X => aphrodite}), @varsub({X => ares})]) @test ans == Set(subst) # Test findall/3 and countall/2 humans = @julog list[pythagoras, pyrrho, zeno, epicurus, aristotle, plato] @test resolve(@julog(findall(X, human(X), :humans)), clauses)[1] == true @test resolve(@julog(countall(human(X), 6)), clauses)[1] == true gods = @julog list[hera, zeus, aphrodite, ares] @test resolve(@julog(findall(X, god(X), :gods)), clauses)[1] == true @test resolve(@julog(countall(god(X), 4)), clauses)[1] == true persons = @julog list[pythagoras, pyrrho, zeno, epicurus, aristotle, plato, hera, zeus, aphrodite, ares] @test resolve(@julog(findall(X, person(X), :persons)), clauses)[1] == true @test resolve(@julog(countall(person(X), 10)), clauses)[1] == true # Test cut and fail by preventing infinite loops clauses = @julog [ fakeloop1(A) <<= fakeloop1(B), fakeloop1(A) <<= cut, fakeloop2(A) <<= fail & fakeloop2(B), ] @test resolve(@julog(fakeloop1(0)), clauses)[1] == true @test resolve(@julog(fakeloop2(0)), clauses)[1] == false # Test the meta-call predicate call/N clauses = @julog [ test(x, y) <<= true, pred(test) <<= true, metatest1(A, B, C) <<= call(A, B, C), metatest2(A, B, C) <<= pred(A) & call(A, B, C) ] @test_throws Exception resolve(@julog(call(P, A, B)), clauses) @test @varsub({A => x, B => y}) in resolve(@julog(call(test, A, B)), clauses)[2] @test @varsub({A => x, B => y}) in resolve(@julog(call(test(A), B)), clauses)[2] @test @varsub({B => y}) in resolve(@julog(call(test(x), B)), clauses)[2] @test @varsub({A => x}) in resolve(@julog(call(test(A), y)), clauses)[2] @test_throws Exception resolve(@julog(metatest1(P, x, y)), clauses) @test @varsub({B => y}) in resolve(@julog(metatest1(test, x, B)), clauses)[2] @test @varsub({P => test}) in resolve(@julog(metatest2(P, x, y)), clauses)[2] @test @varsub({B => y}) in resolve(@julog(metatest2(test, x, B)), clauses)[2] end
Julog
https://github.com/ztangent/Julog.jl.git
[ "Apache-2.0" ]
0.1.15
191e4f6de2ddf2dc60d5d90c412d066814f1655b
code
2592
@testset "Logical form conversions" begin @test to_nnf(@julog(a)) == @julog a @test to_nnf(@julog(and())) == @julog true @test to_nnf(@julog(or())) == @julog false @test to_nnf(@julog(and(a))) == @julog a @test to_nnf(@julog(true => not(and(not(!a), b, or(not(c), false))))) == @julog(or(not(a), not(b), c)) @test to_nnf(@julog(not(forall(human(X), mortal(X))))) == @julog(exists(human(X), not(mortal(X)))) @test to_nnf(@julog(not(exists(god(X), mortal(X))))) == @julog(forall(god(X), not(mortal(X)))) @test to_cnf(@julog(and(a))) == @julog and(or(a)) @test to_cnf(@julog(and(and(or(a, and(b, or(c, d))), or(e, f)), and(not(x), or(y, z))))) == @julog(and(or(a, b), or(a, c, d), or(e, f), or(not(x)), or(y, z))) @test to_cnf(@julog(true => not(and(not(!a), b, or(not(c), false))))) == @julog(and(or(not(a), not(b), c))) @test to_dnf(@julog(and(a))) == @julog or(and(a)) @test to_dnf(@julog(or(or(and(a, or(b, and(c, d))), and(e, f)), or(not(x), and(y, z))))) == @julog(or(and(a, b), and(a, c, d), and(e, f), and(not(x)), and(y, z))) @test to_dnf(@julog(true => not(and(not(!a), b, or(not(c), false))))) == @julog(or(and(not(a)), and(not(b)), and(c))) # Test flattening of conjuctions and disjunctions @test flatten_conjs(@julog(and(a, and(b, c)))) == @julog Const[a, b, c] @test flatten_conjs(@julog([a, and(b, c)])) == @julog Const[a, b, c] @test flatten_disjs(@julog(or(a, or(b, c)))) == @julog Const[a, b, c] @test flatten_disjs(@julog([a, or(b, c)])) == @julog Const[a, b, c] # Test instantiation of universal quantifiers clauses = @julog [ block(a) <<= true, block(b) <<= true, block(c) <<= true, holding(a) <<= true ] universal_term = @julog(forall(block(X), not(holding(X)))) @test deuniversalize(universal_term, clauses) == @julog and(not(holding(a)), not(holding(b)), not(holding(c))) universal_clause = Clause(@julog(handempty), [universal_term]) @test deuniversalize(universal_clause, clauses) == @julog handempty <<= and(not(holding(a)), not(holding(b)), not(holding(c))) # Test regularization of clause bodies clauses = @julog [ binary(X) <<= or(woman(X), man(X)) & not(nonbinary(X)), bigender(X) <<= and(woman(X), man(X)), nonbinary(X) <<= or(genderqueer(X), agender(X), thirdgender(X)) ] regularized = @julog [ binary(X) <<= woman(X) & not(nonbinary(X)), binary(X) <<= man(X) & not(nonbinary(X)), bigender(X) <<= woman(X) & man(X), nonbinary(X) <<= genderqueer(X), nonbinary(X) <<= agender(X), nonbinary(X) <<= thirdgender(X) ] @test regularize_clauses(clauses) == regularized end
Julog
https://github.com/ztangent/Julog.jl.git
[ "Apache-2.0" ]
0.1.15
191e4f6de2ddf2dc60d5d90c412d066814f1655b
code
1722
@testset "Custom function evaluation" begin funcs = Dict() funcs[:pi] = pi funcs[:zero] = () -> 0 funcs[:sin] = sin funcs[:cos] = cos funcs[:square] = x -> x * x funcs[:dup] = x -> (x, x) funcs[:pair] = (x, y) -> (x, y) funcs[:fst] = tup -> tup[1] funcs[:snd] = tup -> tup[2] funcs[:fakesum] = Dict((1, 1) => 2, (2, 2) => 4) @test resolve(@julog(zero == 0), Clause[], funcs=funcs)[1] == true @test resolve(@julog(sin(pi / 2) == 1), Clause[], funcs=funcs)[1] == true @test resolve(@julog(cos(pi) == -1), Clause[], funcs=funcs)[1] == true @test resolve(@julog(square(5) == 25), Clause[], funcs=funcs)[1] == true @test resolve(@julog(dup(6) == pair(6, 6)), Clause[], funcs=funcs)[1] == true @test resolve(@julog(fakesum(1, 1) == 2), Clause[], funcs=funcs)[1] == true @test resolve(@julog(fakesum(2, 2) == 4), Clause[], funcs=funcs)[1] == true clauses = @julog [ even(X) <<= mod(X, 2) == 0, is_dup(X) <<= fst(X) == snd(X), is_square(5, 5, 25) <<= true ] @test resolve(@julog(even(fakesum(1, 1))), clauses, funcs=funcs)[1] == true @test resolve(@julog(is_dup(dup(8))), clauses, funcs=funcs)[1] == true @test resolve(@julog(is_square(5, X, square(5))), clauses, funcs=funcs)[1] == true clauses = @julog [ on_circ(Rad, Pt) <<= square(fst(Pt)) + square(snd(Pt)) == square(Rad), on_diag(X, Y) <<= dup(X) == pair(X, Y) ] # Is the point (3, -4) on the circle of radius 5? @test resolve(@julog(on_circ(5, (3, -4))), clauses, funcs=funcs)[1] == true # How about the point (5 * sin(1), 5 * cos(1))? @test resolve(@julog(on_circ(5, pair(5*sin(1), 5*cos(1)))), clauses, funcs=funcs)[1] == true # Is the point (10, 10) on the line X=Y? @test resolve(@julog(on_diag(10, 10)), clauses, funcs=funcs)[1] == true end
Julog
https://github.com/ztangent/Julog.jl.git
[ "Apache-2.0" ]
0.1.15
191e4f6de2ddf2dc60d5d90c412d066814f1655b
code
1573
@testset "Zen lineage (example)" begin # Test composition and transitive relations using the traditional Zen lineage clauses = @julog [ ancestor(sakyamuni, bodhidharma) <<= true, teacher(bodhidharma, huike) <<= true, teacher(huike, sengcan) <<= true, teacher(sengcan, daoxin) <<= true, teacher(daoxin, hongren) <<= true, teacher(hongren, huineng) <<= true, ancestor(A, B) <<= teacher(A, B), ancestor(A, C) <<= teacher(B, C) & ancestor(A, B), grandteacher(A, C) <<= teacher(A, B) & teacher(B, C) ] # Is Sakyamuni the dharma ancestor of Huineng? goals = @julog [ancestor(sakyamuni, huineng)] sat, subst = resolve(goals, clauses); @test sat == true # Who are the grandteachers of whom? goals = @julog [grandteacher(X, Y)] sat, subst = resolve(goals, clauses) subst = Set(subst) @test @varsub({X => bodhidharma, Y => sengcan}) in subst @test @varsub({X => huike, Y => daoxin}) in subst @test @varsub({X => sengcan, Y => hongren}) in subst @test @varsub({X => daoxin, Y => huineng}) in subst # Test that forward chaining produces the same / correct results fwd_sat, fwd_subst = derive(goals, clauses) @test fwd_sat == sat @test Set(fwd_subst) == subst n_init = 6 n_ancestor = 5 + 15 n_grandteacher = 4 @test length(derivations(clauses, Inf)) == n_ancestor + n_grandteacher + n_init # Test clause table manipulation table = index_clauses(clauses[1:4]) table = insert_clauses!(table, clauses[4:end]) @test table == index_clauses(clauses) subtract_clauses!(table, clauses[5:end]) @test Set(deindex_clauses(table)) == Set(clauses[1:4]) end
Julog
https://github.com/ztangent/Julog.jl.git
[ "Apache-2.0" ]
0.1.15
191e4f6de2ddf2dc60d5d90c412d066814f1655b
code
1356
@testset "List manipulation" begin # Test list parsing @test @julog(cons(x, cons(y, cons(z, cend())))) == @julog(list[x, y, z]) @test @julog(cons(x, cons(y, cons(z, W)))) == @julog(list[x, y, z | W]) @test @julog(list[x|[y|[z]]]) == @julog(list[x, y, z]) # Test list functionality with some basic list operations clauses = @julog [ member(X, [X | Y]) <<= true, member(X, [Y | YS]) <<= member(X, YS), append([], L, L) <<= true, append([X | XS], YS, [X | ZS]) <<= append(XS, YS, ZS), reverse(X, Y) <<= reverse(X, [], Y), reverse([], YS, YS) <<= true, reverse([X | XS], Accu, YS) <<= reverse(XS, [X | Accu], YS) ] # Test list membership @test resolve(@julog(member(banana, [avocado, banana, coconut])), clauses)[1] == true @test resolve(@julog(member(durian, [avocado, banana, coconut])), clauses)[1] == false # Test list appending @test resolve(@julog(append([h,e,l,l], [o], [h,e,l,l,o])), clauses)[1] == true @test resolve(@julog(append([o], [h,e,l,l], [h,e,l,l,o])), clauses)[1] == false # Test list reversal @test resolve(@julog(reverse([r,e,g,a,l], [l,a,g,e,r])), clauses)[1] == true # A palindrome! @test resolve(@julog(reverse([d,e,l,e,v,e,l,e,d], [d,e,l,e,v,e,l,e,d])), clauses)[1] == true # Not a palindrome (but yes an ambigram) @test resolve(@julog(reverse([p,a,s,s,e,d], [p,a,s,s,e,d])), clauses)[1] == false end
Julog
https://github.com/ztangent/Julog.jl.git
[ "Apache-2.0" ]
0.1.15
191e4f6de2ddf2dc60d5d90c412d066814f1655b
code
1672
@testset "Math operators" begin # Test built-in math and comparison operators @test resolve(@julog(1 == 1), Clause[])[1] == true @test resolve(@julog(1 == 2), Clause[])[1] == false @test resolve(@julog(1 != 2), Clause[])[1] == true @test resolve(@julog(1 < 2), Clause[])[1] == true @test resolve(@julog(3 > 2), Clause[])[1] == true @test resolve(@julog(3 <= 4), Clause[])[1] == true @test resolve(@julog(5 >= 4), Clause[])[1] == true @test resolve(@julog(1 + 1 == 2), Clause[])[1] == true @test resolve(@julog(5 - 6 == -1), Clause[])[1] == true @test resolve(@julog(6 * 9 != 42), Clause[])[1] == true @test resolve(@julog(8 * 8 > 7 * 9), Clause[])[1] == true @test resolve(@julog(5 / 2 == 2.5), Clause[])[1] == true @test resolve(@julog(mod(5, 2) == 1), Clause[])[1] == true # Define addition using built-in operators clauses = @julog [ add(X, Y, Z) <<= is(Z, X + Y), add(X, Y, Z) <<= is(X, Z - Y), add(X, Y, Z) <<= is(Y, Z - X) ] # Is 1 + 1 = 2? @test resolve(@julog(add(1, 1, 2)), clauses)[1] == true # What is 2 + 3? @test @varsub({Z => 5}) in resolve(@julog(add(2, 3, Z)), clauses)[2] # What is 5 - 2? @test @varsub({X => 2}) in resolve(@julog(add(X, 3, 5)), clauses)[2] # What is 5 - 3? @test @varsub({Y => 3}) in resolve(@julog(add(2, Y, 5)), clauses)[2] # Using is/2 doesn't allow us ask for all the ways to add to 5 @test resolve(@julog(add(X, Y, 5)), clauses)[1] == false # Test normal evaluation of operators query = @julog [is(X, 1), is(Y, 2), (X < Y)] @test resolve(query, Clause[])[1] == true # Test deferred evaluation of operators query = @julog [(X < Y), is(X, 1), is(Y, 2)] @test resolve(query, Clause[]; defer_eval=true)[1] == true end
Julog
https://github.com/ztangent/Julog.jl.git
[ "Apache-2.0" ]
0.1.15
191e4f6de2ddf2dc60d5d90c412d066814f1655b
code
842
@testset "Natural numbers (example)" begin # Test the natural numbers and addition clauses = @julog [ nat(0) <<= true, nat(s(N)) <<= nat(N), add(0, Y, Y) <<= true, add(s(X), Y, s(Z)) <<= add(X, Y, Z) ] # Is 1 a natural number? sat, subst = resolve(@julog(nat(s(0))), clauses) @test sat == true # Is 5 a natural number? sat, subst = resolve(@julog(nat(s(s(s(s(s(0))))))), clauses) @test sat == true # Is 1 + 1 = 2? sat, subst = resolve(@julog(add(s(0), s(0), s(s(0)))), clauses) @test sat == true # What are all the ways to add up to 3? sat, subst = resolve(@julog(add(A, B, s(s(s(0))))), clauses) subst = Set(subst) @test @varsub({A => 0, B => s(s(s(0)))}) in subst @test @varsub({A => s(0), B => s(s(0))}) in subst @test @varsub({A => s(s(0)), B => s(0)}) in subst @test @varsub({A => s(s(s(0))), B => 0}) in subst end
Julog
https://github.com/ztangent/Julog.jl.git
[ "Apache-2.0" ]
0.1.15
191e4f6de2ddf2dc60d5d90c412d066814f1655b
code
1643
@testset "Parsing" begin # Parsing of terms @test Const(:atom) == @julog atom @test Const(1) == @julog 1 @test Const((2,3)) == @julog (2,3) @test Const("foo") == @julog "foo" @test Var(:Variable) == @julog Variable @test Compound(:functor, Term[Const(:a), Var(:B)]) == @julog functor(a, B) # Parsing of clauses and facts @test Clause(Const(:head), [Const(:body)]) == @julog head <<= body @test Clause(Const(:head), [Const(:t1), Const(:t2)]) == @julog head <<= t1 & t2 @test Clause(Const(:head), []) == @julog head <<= true @test Clause(Const(:head), []) == @julog head' # Parsing of lists of terms or clauses @test [Clause(Const(:fact), []), Const(:term)] == @julog [fact', term] @test [Clause(Const(:a), [Const(:b)])] == @julog Clause[a <<= b] @test Const[Const(:a), Const(:b)] == @julog [a, b] @test Term[Const(:a), Const(:b)] == @julog Term[a, b] @test Const[Const(:a), Const(:b)] == @julog Const[a, b] @test Var[Var(:A), Var(:B)] == @julog Var[A, B] @test Compound[Compound(:f, [Const(:arg)])] == @julog Compound[f(arg)] # Interpolation of constants and Julog expressions x, y = 2, Const(3) @test Compound(:even, [Const(x)]) == @julog even($x) @test Compound(:odd, [y]) == @julog odd(:y) not_even = Compound(:not, [Compound(:even, [Var(:X)])]) odd_if_not_even = Clause(Compound(:odd, [Var(:X)]), [not_even]) @test odd_if_not_even == @julog odd(X) <<= :not_even let f = :f @test @julog($f(x)) == @julog(f(x)) end # Test parsing and interpolation in @varsub macro a, b = :alice, Const(:bob) s1 = Subst(Var(:A) => Const(a), Var(:B) => b) s2 = @varsub {A => alice, B => bob} s3 = @varsub {A => $a, B => :b} @test s1 == s2 == s3 end
Julog
https://github.com/ztangent/Julog.jl.git
[ "Apache-2.0" ]
0.1.15
191e4f6de2ddf2dc60d5d90c412d066814f1655b
code
623
@testset "Permutation generation (example)" begin clauses = @julog [ permutations(T) <<= unifies(T, [_, _ ,_]) & subset([1,2,3], T), member(X, [X | Y]) <<= true, member(X, [Y | YS]) <<= member(X, YS), subset([], _) <<= true, subset([X | XS], L) <<= member(X,L) & subset(XS,L), ] sat, subst = resolve(@julog(permutations(T)),clauses) @test @varsub({T => [1, 2, 3]}) in subst @test @varsub({T => [1, 3, 2]}) in subst @test @varsub({T => [2, 1, 3]}) in subst @test @varsub({T => [2, 3, 1]}) in subst @test @varsub({T => [3, 1, 2]}) in subst @test @varsub({T => [3, 2, 1]}) in subst end
Julog
https://github.com/ztangent/Julog.jl.git
[ "Apache-2.0" ]
0.1.15
191e4f6de2ddf2dc60d5d90c412d066814f1655b
code
1386
@testset "Prolog syntax conversion" begin pl_input = @prolog """ member(X, [X | Y]). member(X, [Y | YS]) :- member(X, YS). vertebrate(A) :- fish(A) ; amphibian(A) ; reptile(A) ; bird(A) ; mammal(A). bird(A) :- dinosaur(A), \\+reptile(A). reptile(A) :- member(A, .(stegosaurus, .(triceratops, []))). dinosaur(A) :- member(A, [archaeopteryx, stegosaurus, triceratops]). """ julog_clauses = @julog [ member(X, [X | Y]) <<= true, member(X, [Y | YS]) <<= member(X, YS), vertebrate(A) <<= fish(A), vertebrate(A) <<= amphibian(A), vertebrate(A) <<= reptile(A), vertebrate(A) <<= bird(A), vertebrate(A) <<= mammal(A), bird(A) <<= dinosaur(A) & !reptile(A), reptile(A) <<= member(A, cons(stegosaurus, cons(triceratops, []))), dinosaur(A) <<= member(A, [archaeopteryx, stegosaurus, triceratops]) ] @test pl_input == julog_clauses @test resolve(@prolog("bird(archaeopteryx)."), pl_input)[1] == true pl_output = """ member(X, [X | Y]). member(X, [Y | YS]) :- member(X, YS). vertebrate(A) :- fish(A). vertebrate(A) :- amphibian(A). vertebrate(A) :- reptile(A). vertebrate(A) :- bird(A). vertebrate(A) :- mammal(A). bird(A) :- dinosaur(A), \\+(reptile(A)). reptile(A) :- member(A, [stegosaurus, triceratops]). dinosaur(A) :- member(A, [archaeopteryx, stegosaurus, triceratops]). """ @test write_prolog(pl_input) == pl_output end
Julog
https://github.com/ztangent/Julog.jl.git
[ "Apache-2.0" ]
0.1.15
191e4f6de2ddf2dc60d5d90c412d066814f1655b
code
276
using Julog using Test include("parse.jl") include("unify.jl") include("builtins.jl") include("math_ops.jl") include("lists.jl") include("custom_funcs.jl") include("prolog.jl") include("conversions.jl") include("lineage.jl") include("naturals.jl") include("permutations.jl")
Julog
https://github.com/ztangent/Julog.jl.git
[ "Apache-2.0" ]
0.1.15
191e4f6de2ddf2dc60d5d90c412d066814f1655b
code
1988
@testset "Unification" begin # Test unification of constant with zero-arity compound subst = unify(@julog(constant), @julog(constant())) @test subst == @varsub {} # Test unification of nested terms subst = unify(@julog(f(g(X, h(X, b)), Z)), @julog(f(g(a, Z), Y))) @test subst == @varsub {X => a, Z => h(a, b), Y => h(a, b)} # Test occurs check during unification @test unify(@julog(A), @julog(functor(A)), false) == @varsub {A => functor(A)} @test unify(@julog(A), @julog(functor(A)), true) === nothing # Test extended unification of arithmetic functions (Prolog can't do this!) # X unifies to 4, Y unifies to 5, so *(X, Y) unifies by evaluation to 20 @test unify(@julog(f(X, X*Y, Y)), @julog(f(4, 20, 5))) == @varsub {Y => 5, X => 4} # X unifies to 4, Y unifies to /(20,4), so *(X, Y) unifies by evaluation to 20 @test unify(@julog(f(X, X*Y, Y)), @julog(f(4, 20, 20/4))) == @varsub {Y => /(20, 4), X => 4} # X unifies to 4, Y unifies to 5, Z unifies to *(X, Y) === *(4, 5) post substitution @test unify(@julog(f(X, X*Y, Y)), @julog(f(4, Z, 5))) == @varsub {Y => 5, X => 4, Z => *(4, 5)} # X unifies to X, Y unifies to 5, X*Y cannot be evaluated and so fails to unify with 20 @test unify(@julog(f(X, X*Y, Y)), @julog(f(X, 20, 5))) === nothing # Test subterm detection @test has_subterm(@julog(atom), @julog(Var)) == true @test has_subterm(@julog(functor(functor(atom))), @julog(functor)) == false @test has_subterm(@julog(functor(functor(atom))), @julog(atom)) == true @test has_subterm(@julog(functor(functor(atom))), @julog(functor(Var))) == true @test has_subterm(@julog(list[a, b, c, d]), @julog(b)) == true @test has_subterm(@julog(list[a, b, c, d]), @julog(list[a, b])) == false @test has_subterm(@julog(list[a, b, c, d]), @julog(list[c, d])) == true @test has_subterm(@julog(f(g(X, h(X, b)), Z)), @julog(h(X, Y))) == true subterms = find_subterms(@julog(foo(bar(1), bar(bar(2)))), @julog(bar(X))) @test Set(subterms) == Set(@julog(Term[bar(1), bar(bar(2)), bar(2)])) end
Julog
https://github.com/ztangent/Julog.jl.git
[ "Apache-2.0" ]
0.1.15
191e4f6de2ddf2dc60d5d90c412d066814f1655b
docs
12279
# Julog.jl ![GitHub Workflow Status](https://img.shields.io/github/workflow/status/ztangent/Julog.jl/CI) ![GitHub release (latest SemVer)](https://img.shields.io/github/v/release/ztangent/Julog.jl) ![License](https://img.shields.io/github/license/ztangent/Julog.jl?color=lightgrey) [![Documentation](https://img.shields.io/badge/docs-stable-blue.svg)](https://juliahub.com/docs/Julog) A Julia package for Prolog-style logic programming. ## Installation Enter the package manager by pressing `]` at the Julia REPL, then run: ``` add Julog ``` The latest development version can also be installed by running: ``` add <link to this git repository> ``` ## Features - [Prolog-like syntax](#syntax) - [Interpolation of expressions](#interpolation) - [Custom function support](#custom-functions) - [Built-in predicates and logical connectives](#built-in-predicates) - [Conversion utilities](#conversion-utilities) ## Usage [Terms](http://www.dai.ed.ac.uk/groups/ssp/bookpages/quickprolog/node5.html) and [Horn clauses](https://en.wikipedia.org/wiki/Horn_clause) can be expressed in Prolog-like syntax using the `@julog` macro: ```julia # This creates a term @julog teacher(bodhidharma, huike) # This creates a fact (a term which is asserted to be true) @julog teacher(bodhidharma, huike) <<= true # This creates a definite clause @julog grandteacher(A, C) <<= teacher(A, B) & teacher(B, C) ``` The `@julog` macro can be also applied to a list of clauses to create a knowledge base. We use the traditional [Zen lineage chart](https://en.wikipedia.org/wiki/Zen_lineage_charts) as an example: ```julia clauses = @julog [ ancestor(sakyamuni, bodhidharma) <<= true, teacher(bodhidharma, huike) <<= true, teacher(huike, sengcan) <<= true, teacher(sengcan, daoxin) <<= true, teacher(daoxin, hongren) <<= true, teacher(hongren, huineng) <<= true, ancestor(A, B) <<= teacher(A, B), ancestor(A, C) <<= teacher(B, C) & ancestor(A, B), grandteacher(A, C) <<= teacher(A, B) & teacher(B, C) ] ``` With the `resolve` function, we can query the knowledge base via [SLD resolution](https://en.wikipedia.org/wiki/SLD_resolution) (the form of backward-chaining proof search used by Prolog): ```julia # Query: Is Sakyamuni the dharma ancestor of Huineng? julia> goals = @julog [ancestor(sakyamuni, huineng)]; # List of terms to query or prove julia> sat, subst = resolve(goals, clauses); julia> sat true # Query: Who are the grandteachers of whom? julia> goals = @julog [grandteacher(X, Y)]; julia> sat, subst = resolve(goals, clauses); julia> subst 4-element Array{Any,1}: {Y => sengcan, X => bodhidharma} {Y => daoxin, X => huike} {Y => hongren, X => sengcan} {Y => huineng, X => daoxin} ``` Forward-chaining proof search is supported as well, using `derive`. We can also compute the list of n-step derivations with `derivations(clauses, n)`: ```julia # Facts derivable from one iteration through the rules julia> derivations(clauses, 1) 16-element Array{Clause,1}: teacher(bodhidharma, huike) ⋮ ancestor(sakyamuni, huike) # The set of all derivable facts (i.e. the closure / fixed-point) julia> derivations(clauses, Inf) 30-element Array{Clause,1}: teacher(bodhidharma, huike) ⋮ ancestor(sakyamuni, huineng) ``` More examples can be found in the [`test`](test) folder. ## Syntax `Julog` uses syntax very similar to Prolog. In particular, users should note that argument-free terms with initial capitals are parsed as variables, whereas lowercase terms are parsed as constants: ```julia julia> typeof(@julog(Person)) Var julia> typeof(@julog(person)) Const ``` However, several important operators differ from Prolog, as shown by the examples below: | Julog | Prolog | Meaning | |------------------------------------------|----------------------------------------|-------------------------------------| | `human(socrates) <<= true` | `human(socrates).` | Socrates is human. | | `mortal(X) <<= human(X)` | `mortal(X) :- human(X).` | If X is human, X is mortal. | | `!mortal(gaia)` | `\+mortal(gaia)` | Gaia is not mortal. | | `mortal(X) <<= can_live(X) & can_die(X)` | `mortal(X) :- can_live(X), can_die(X)` | X is mortal if it can live and die. | In words, `<<=` replaces the Prolog turnstile `:-`, `<<= true` or `'` replaces `.` when stating facts, `!` replaces `\+` for negation, there is no longer a special operator for `cut`, `&` replaces `,` in the bodies of definite clauses, and there is no `or` operator like the `;` in Prolog. In addition, when constructing Prolog-style linked-lists, the syntax `@julog list[a, b, c]` should be used when the list is not nested within any other compound term. This is because the `@julog [a, b, c]` syntax is reserved for creating a *Julia* list of Julog objects, such as a list of Julog clauses. Lists which are nested within other term, e.g., `member(b, [a, b, c])`, are parsed in the same way as Prolog. If Prolog syntax is preferred, the `@prolog` macro and `parse_prolog` functions can be used to convert Prolog strings directly to Julog constructs, while `write_prolog` converts a list of Julog clauses to a Prolog string. However, this conversion cannot presently handle all of Prolog syntax (e.g., nested infix operators or comparison operators such as `=:=`), and should be used with caution. ## Interpolation Similar to [string interpolation](https://docs.julialang.org/en/latest/manual/strings/#string-interpolation-1) and [expression interpolation](https://docs.julialang.org/en/v1/manual/metaprogramming/#Expressions-and-evaluation-1) in Julia, you can interpolate Julia expressions when constructing `Julog` terms using the `@julog` macro. `Julog` supports two forms of interpolation. The first form is constant interpolation using the `$` operator, where ordinary Julia expressions are converted to `Const`s: ```julia julia> e = exp(1) 2.718281828459045 julia> term = @julog irrational($e) irrational(2.718281828459045) julia> dump(term) Compound name: Symbol irrational args: Array{Term}((1,)) 1: Const name: Float64 2.718281828459045 ``` The second form is term interpolation using the `:` operator, where pre-constructed `Julog` terms are interpolated into a surrounding `Julog` expression: ```julia julia> e = Const(exp(1)) 2.718281828459045 julia> term = @julog irrational(:e) irrational(2.718281828459045) julia> dump(term) Compound name: Symbol irrational args: Array{Term}((1,)) 1: Const name: Float64 2.718281828459045 ``` Interpolation allows us to easily generate Julog knowledge bases programatically using Julia code: ```julia julia> people = @julog [avery, bailey, casey, darcy]; julia> heights = [@julog(height(:p, cm($(rand(140:200))))) for p in people] 4-element Array{Compound,1}: height(avery, cm(155)) height(bailey, cm(198)) height(casey, cm(161)) height(darcy, cm(175)) ``` ## Custom Functions In addition to standard arithmetic functions, `Julog` supports the evaluation of custom functions during proof search, allowing users to leverage the full power of precompiled Julia code. This can be done by providing a dictionary of functions when calling `resolve`. This dictionary can also accept constants (allowing one to store, e.g., numeric-valued fluents), and lookup-tables. An example is shown below: ```julia funcs = Dict() funcs[:pi] = pi funcs[:sin] = sin funcs[:cos] = cos funcs[:square] = x -> x * x funcs[:lookup] = Dict((:foo,) => "hello", (:bar,) => "world") @assert resolve(@julog(sin(pi / 2) == 1), Clause[], funcs=funcs)[1] == true @assert resolve(@julog(cos(pi) == -1), Clause[], funcs=funcs)[1] == true @assert resolve(@julog(lookup(foo) == "hello"), Clause[], funcs=funcs)[1] == true @assert resolve(@julog(lookup(bar) == "world"), Clause[], funcs=funcs)[1] == true ``` See [`test/custom_funcs.jl`](test/custom_funcs.jl) for more examples. Unlike Prolog, Julog also supports [extended unification](https://www.sciencedirect.com/science/article/pii/0743106687900021) via the evaluation of functional terms. In other words, the following terms unify: ```julia julia> unify(@julog(f(X, X*Y, Y)), @julog(f(4, 20, 5))) Dict{Var, Term} with 2 entries: Y => 5 X => 4 ``` However, the extent of such unification is limited. If variables used within a functional expression are not sufficiently instantiated at the time of evaluation, evaluation will be partial, causing unification to fail: ```julia julia> unify(@julog(f(X, X*Y, Y)), @julog(f(X, 20, 5))) === nothing true ``` ## Built-in Predicates `Julog` provides a number of built-in predicates for control-flow and convenience. Some of these are also part of ISO Prolog, but may not share the exact same behavior. - `cons` and `cend` are reserved for lists. `[x, y, z]` is equivalent to `cons(x, cons(y, cons(z, cend()))`. - `true` and `false` operate as one might expect. - `and(A, B, C, ...)` is equivalent to `A & B & C & ...` in the body of an Julog clause. - `or(A, B, C, ...)` is equivalent to `A ; B ; C ; ...` in Prolog-syntax. - `not(X)` / `!X` is true if X cannot be proven (i.e. negation as failure). - `unifies(X, Y)` / `X ≐ Y` is true if `X` unifies with `Y`. - `exists(Cond, Act)` is true if `Act` is true for at least one binding of `Cond`. - `forall(Cond, Act)` is true if `Act` is true for all possible bindings of `Cond` (beware infinite loops). - `imply(Cond, Act)` / `Cond => Act` is true if either `Cond` is false, or both `Cond` and `Act` are true. - `call(pred, A, B, ...)`, the meta-call predicate, is equivalent to `pred(A, B, ...)`. - `findall(Template, Cond, List)` finds all instances where `Cond` is true, substitutes any variables into `Template`, and unifies `List` with the result. - `countall(Cond, N)` counts the number of proofs of `Cond` and unifies `N` with the result. - `fail` causes the current goal to fail (equivalent to `false`). - `cut` causes the current goal to succeed and suppresses all other goals. However, this does not have the same effects as in Prolog because `Julog` uses breadth-first search during SLD-resolution, unlike most Prolog implementations, which use depth-first search. See [`test/builtins.jl`](test/builtins.jl) for usage examples. ## Conversion Utilities Julog provides some support for converting and manipulating logical formulae, for example, conversion to negation, conjunctive, or disjunctive normal form: ```julia julia> formula = @julog and(not(and(a, not(b))), c) julia> to_nnf(formula) and(or(not(a), b), c) julia> to_cnf(formula) and(or(not(a), b), or(c)) julia> to_dnf(formula) or(and(not(a), c), and(b, c)) ``` This can be useful for downstream applications, such as classical planning. Note however that these conversions do not handle the implicit existential quantification in Prolog semantics, and hence are not guaranteed to preserve equivalence when free variables are involved. In particular, care should be taken with negations of conjunctions of unbound predicates. For example, the following expression states that "All ravens are black.": ```julia @julog not(and(raven(X), not(black(X)))) ``` However, `to_dnf` doesn't handle the implied existential quantifier over `X`, and gives the non-equivalent statement "Either there are no ravens, or there exist black things, or both.": ```julia @julog or(and(not(raven(X))), and(black(X))) ``` ## Related Packages There are several other Julia packages related to Prolog and logic programming: - [HerbSWIPL.jl](https://github.com/Herb-AI/HerbSWIPL.jl) is a wrapper around SWI-Prolog that uses the Julog parser and interface. - [Problox.jl](https://github.com/femtomc/Problox.jl) is a lightweight Julia wrapper around [ProbLog](https://dtai.cs.kuleuven.be/problog/), a probabilistic variant of Prolog. ## Acknowledgements This implementation was made with reference to Chris Meyer's [Python interpreter for Prolog](http://www.openbookproject.net/py4fun/prolog/intro.html), as well as the unification and SLD-resolution algorithms presented in [An Introduction to Prolog](https://link.springer.com/content/pdf/bbm%3A978-3-642-41464-0%2F1.pdf) by Pierre M. Nugues.
Julog
https://github.com/ztangent/Julog.jl.git
[ "MIT" ]
0.6.2
d29ce82ed1d4c37135095e1a4d799c93d7be2361
code
1495
using AbstractDifferentiation import AbstractDifferentiation as AD using Documenter DocMeta.setdocmeta!( AbstractDifferentiation, :DocTestSetup, :(import AbstractDifferentiation as AD); recursive=true, ) generated_path = joinpath(@__DIR__, "src") base_url = "https://github.com/JuliaDiff/AbstractDifferentiation.jl/blob/master/" isdir(generated_path) || mkdir(generated_path) open(joinpath(generated_path, "index.md"), "w") do io # Point to source license file println( io, """ ```@meta EditURL = "$(base_url)README.md" ``` """, ) # Write the contents out below the meta block for line in eachline(joinpath(dirname(@__DIR__), "README.md")) println(io, line) end end makedocs(; modules=[AbstractDifferentiation], authors="Mohamed Tarek <[email protected]> and contributors", sitename="AbstractDifferentiation.jl", format=Documenter.HTML(; repolink="https://github.com/JuliaDiff/AbstractDifferentiation.jl", prettyurls=get(ENV, "CI", "false") == "true", canonical="https://JuliaDiff.github.io/AbstractDifferentiation.jl", edit_link="master", assets=String[], ), pages=[ "Home" => "index.md", "User guide" => "user_guide.md", "Implementer guide" => "implementer_guide.md", ], ) deploydocs(; repo="github.com/JuliaDiff/AbstractDifferentiation.jl", devbranch="master", push_preview=true, )
AbstractDifferentiation
https://github.com/JuliaDiff/AbstractDifferentiation.jl.git
[ "MIT" ]
0.6.2
d29ce82ed1d4c37135095e1a4d799c93d7be2361
code
539
module AbstractDifferentiationChainRulesCoreExt import AbstractDifferentiation as AD using ChainRulesCore: ChainRulesCore AD.@primitive function value_and_pullback_function( ba::AD.ReverseRuleConfigBackend, f, xs... ) value, back = ChainRulesCore.rrule_via_ad(AD.ruleconfig(ba), f, xs...) function rrule_pullback(vs) _vs = if vs isa Tuple && !(value isa Tuple) only(vs) else vs end return Base.tail(back(_vs)) end return value, rrule_pullback end end # module
AbstractDifferentiation
https://github.com/JuliaDiff/AbstractDifferentiation.jl.git
[ "MIT" ]
0.6.2
d29ce82ed1d4c37135095e1a4d799c93d7be2361
code
1664
module AbstractDifferentiationFiniteDifferencesExt if isdefined(Base, :get_extension) import AbstractDifferentiation as AD using FiniteDifferences: FiniteDifferences else import ..AbstractDifferentiation as AD using ..FiniteDifferences: FiniteDifferences end """ FiniteDifferencesBackend(method=FiniteDifferences.central_fdm(5, 1)) Create an AD backend that uses forward mode with FiniteDifferences.jl. """ AD.FiniteDifferencesBackend() = AD.FiniteDifferencesBackend(FiniteDifferences.central_fdm(5, 1)) function AD.jacobian(ba::AD.FiniteDifferencesBackend, f, xs...) return FiniteDifferences.jacobian(ba.method, f, xs...) end function AD.gradient(ba::AD.FiniteDifferencesBackend, f, xs...) return FiniteDifferences.grad(ba.method, f, xs...) end function AD.pushforward_function(ba::AD.FiniteDifferencesBackend, f, xs...) return function pushforward(vs) ws = FiniteDifferences.jvp(ba.method, f, tuple.(xs, vs)...) return length(xs) == 1 ? (ws,) : ws end end function AD.pullback_function(ba::AD.FiniteDifferencesBackend, f, xs...) function pullback(vs) return FiniteDifferences.j′vp(ba.method, f, vs, xs...) end end # Ensure consistency with `value_and_pullback` function function AD.value_and_pullback_function(ba::AD.FiniteDifferencesBackend, f, xs...) value = f(xs...) function fd_pullback(vs) return FiniteDifferences.j′vp(ba.method, f, vs, xs...) end return value, fd_pullback end # Better performance: issue #87 function AD.derivative(ba::AD.FiniteDifferencesBackend, f::TF, x::Real) where {TF<:Function} return (ba.method(f, x),) end end # module
AbstractDifferentiation
https://github.com/JuliaDiff/AbstractDifferentiation.jl.git
[ "MIT" ]
0.6.2
d29ce82ed1d4c37135095e1a4d799c93d7be2361
code
4432
module AbstractDifferentiationForwardDiffExt if isdefined(Base, :get_extension) import AbstractDifferentiation as AD using DiffResults: DiffResults using ForwardDiff: ForwardDiff else import ..AbstractDifferentiation as AD using ..DiffResults: DiffResults using ..ForwardDiff: ForwardDiff end """ ForwardDiffBackend(; chunksize::Union{Val,Nothing}=nothing) Create an AD backend that uses forward mode with ForwardDiff.jl. If the `chunksize` of the differentiation algorithm is set to `nothing` (the default), then ForwarddDiff uses a heuristic to set the chunk size based on the input. Alternatively, if `chunksize=Val{N}()`, then the chunk size is set to `N`. See also: [ForwardDiff.jl: Configuring Chunk Size](https://juliadiff.org/ForwardDiff.jl/dev/user/advanced/#Configuring-Chunk-Size) """ function AD.ForwardDiffBackend(; chunksize::Union{Val,Nothing}=nothing) return AD.ForwardDiffBackend{getchunksize(chunksize)}() end AD.@primitive function pushforward_function(ba::AD.ForwardDiffBackend, f, xs...) return function pushforward(vs) if length(xs) == 1 v = vs isa Tuple ? only(vs) : vs return (ForwardDiff.derivative(h -> f(step_toward(xs[1], v, h)), 0),) else return ForwardDiff.derivative(h -> f(step_toward.(xs, vs, h)...), 0) end end end AD.primal_value(x::ForwardDiff.Dual) = ForwardDiff.value(x) AD.primal_value(x::AbstractArray{<:ForwardDiff.Dual}) = ForwardDiff.value.(x) # these implementations are more efficient than the fallbacks function AD.derivative(::AD.ForwardDiffBackend, f, x::Real) return (ForwardDiff.derivative(f, x),) end function AD.gradient(ba::AD.ForwardDiffBackend, f, x::AbstractArray) cfg = ForwardDiff.GradientConfig(f, x, chunk(ba, x)) return (ForwardDiff.gradient(f, x, cfg),) end function AD.jacobian(ba::AD.ForwardDiffBackend, f, x::AbstractArray) cfg = ForwardDiff.JacobianConfig(AD.asarray ∘ f, x, chunk(ba, x)) return (ForwardDiff.jacobian(AD.asarray ∘ f, x, cfg),) end AD.jacobian(::AD.ForwardDiffBackend, f, x::Real) = (ForwardDiff.derivative(f, x),) function AD.hessian(ba::AD.ForwardDiffBackend, f, x::AbstractArray) cfg = ForwardDiff.HessianConfig(f, x, chunk(ba, x)) return (ForwardDiff.hessian(f, x, cfg),) end function AD.value_and_derivative(::AD.ForwardDiffBackend, f, x::Real) T = typeof(ForwardDiff.Tag(f, typeof(x))) ydual = f(ForwardDiff.Dual{T}(x, one(x))) return ForwardDiff.value(T, ydual), (ForwardDiff.partials(T, ydual, 1),) end function AD.value_and_gradient(ba::AD.ForwardDiffBackend, f, x::AbstractArray) result = DiffResults.GradientResult(x) cfg = ForwardDiff.GradientConfig(f, x, chunk(ba, x)) ForwardDiff.gradient!(result, f, x, cfg) return DiffResults.value(result), (DiffResults.derivative(result),) end function AD.value_and_second_derivative(ba::AD.ForwardDiffBackend, f, x::Real) T = typeof(ForwardDiff.Tag(f, typeof(x))) xdual = ForwardDiff.Dual{T}(x, one(x)) T2 = typeof(ForwardDiff.Tag(f, typeof(xdual))) ydual = f(ForwardDiff.Dual{T2}(xdual, one(xdual))) v = ForwardDiff.value(T, ForwardDiff.value(T2, ydual)) d2 = ForwardDiff.partials(T, ForwardDiff.partials(T2, ydual, 1), 1) return v, (d2,) end function AD.value_and_hessian(ba::AD.ForwardDiffBackend, f, x) result = DiffResults.HessianResult(x) cfg = ForwardDiff.HessianConfig(f, result, x, chunk(ba, x)) ForwardDiff.hessian!(result, f, x, cfg) return DiffResults.value(result), (DiffResults.hessian(result),) end function AD.value_derivative_and_second_derivative(ba::AD.ForwardDiffBackend, f, x::Real) T = typeof(ForwardDiff.Tag(f, typeof(x))) xdual = ForwardDiff.Dual{T}(x, one(x)) T2 = typeof(ForwardDiff.Tag(f, typeof(xdual))) ydual = f(ForwardDiff.Dual{T2}(xdual, one(xdual))) v = ForwardDiff.value(T, ForwardDiff.value(T2, ydual)) d = ForwardDiff.partials(T, ForwardDiff.value(T2, ydual), 1) d2 = ForwardDiff.partials(T, ForwardDiff.partials(T2, ydual, 1), 1) return v, (d,), (d2,) end @inline step_toward(x::Number, v::Number, h) = x + h * v # support arrays and tuples @noinline step_toward(x, v, h) = x .+ h .* v getchunksize(::Nothing) = Nothing getchunksize(::Val{N}) where {N} = N chunk(::AD.ForwardDiffBackend{Nothing}, x) = ForwardDiff.Chunk(x) chunk(::AD.ForwardDiffBackend{N}, _) where {N} = ForwardDiff.Chunk{N}() end # module
AbstractDifferentiation
https://github.com/JuliaDiff/AbstractDifferentiation.jl.git
[ "MIT" ]
0.6.2
d29ce82ed1d4c37135095e1a4d799c93d7be2361
code
2244
module AbstractDifferentiationReverseDiffExt if isdefined(Base, :get_extension) import AbstractDifferentiation as AD using DiffResults: DiffResults using ReverseDiff: ReverseDiff else import ..AbstractDifferentiation as AD using ..DiffResults: DiffResults using ..ReverseDiff: ReverseDiff end AD.primal_value(x::ReverseDiff.TrackedReal) = ReverseDiff.value(x) AD.primal_value(x::AbstractArray{<:ReverseDiff.TrackedReal}) = ReverseDiff.value.(x) AD.primal_value(x::ReverseDiff.TrackedArray) = ReverseDiff.value(x) function AD.jacobian(ba::AD.ReverseDiffBackend, f, xs...) xs_arr = map(AD.asarray, xs) tape = ReverseDiff.JacobianTape(xs_arr) do (xs_arr...) xs_new = map(xs, xs_arr) do x, x_arr return x isa Number ? only(x_arr) : x_arr end return AD.asarray(f(xs_new...)) end results = ReverseDiff.jacobian!(tape, xs_arr) return map(xs, results) do x, result return x isa Number ? vec(result) : result end end function AD.jacobian(::AD.ReverseDiffBackend, f, xs::AbstractArray...) return ReverseDiff.jacobian(AD.asarray ∘ f, xs) end function AD.derivative(::AD.ReverseDiffBackend, f, xs::Number...) tape = ReverseDiff.InstructionTape() xs_tracked = ReverseDiff.TrackedReal.(xs, zero.(xs), Ref(tape)) y_tracked = f(xs_tracked...) ReverseDiff.seed!(y_tracked) ReverseDiff.reverse_pass!(tape) return ReverseDiff.deriv.(xs_tracked) end function AD.gradient(::AD.ReverseDiffBackend, f, xs::AbstractArray...) return ReverseDiff.gradient(f, xs) end function AD.hessian(::AD.ReverseDiffBackend, f, x::AbstractArray) return (ReverseDiff.hessian(f, x),) end function AD.value_and_gradient(::AD.ReverseDiffBackend, f, x::AbstractArray) result = DiffResults.GradientResult(x) cfg = ReverseDiff.GradientConfig(x) ReverseDiff.gradient!(result, f, x, cfg) return DiffResults.value(result), (DiffResults.derivative(result),) end function AD.value_and_hessian(::AD.ReverseDiffBackend, f, x) result = DiffResults.HessianResult(x) cfg = ReverseDiff.HessianConfig(result, x) ReverseDiff.hessian!(result, f, x, cfg) return DiffResults.value(result), (DiffResults.hessian(result),) end end # module
AbstractDifferentiation
https://github.com/JuliaDiff/AbstractDifferentiation.jl.git
[ "MIT" ]
0.6.2
d29ce82ed1d4c37135095e1a4d799c93d7be2361
code
1230
module AbstractDifferentiationTrackerExt if isdefined(Base, :get_extension) import AbstractDifferentiation as AD using Tracker: Tracker else import ..AbstractDifferentiation as AD using ..Tracker: Tracker end function AD.second_lowest(::AD.TrackerBackend) return throw(ArgumentError("Tracker backend does not support nested differentiation.")) end AD.primal_value(x::Tracker.TrackedReal) = Tracker.data(x) AD.primal_value(x::Tracker.TrackedArray) = Tracker.data(x) AD.primal_value(x::AbstractArray{<:Tracker.TrackedReal}) = Tracker.data.(x) AD.@primitive function value_and_pullback_function(ba::AD.TrackerBackend, f, xs...) _value, back = Tracker.forward(f, xs...) value = map(Tracker.data, _value) function tracker_pullback(ws) _ws = if ws isa Tuple && !(value isa Tuple) only(ws) else ws end return map(Tracker.data, back(_ws)) end return value, tracker_pullback end function AD.derivative(::AD.TrackerBackend, f, xs::Number...) return Tracker.data.(Tracker.gradient(f, xs...)) end function AD.gradient(::AD.TrackerBackend, f, xs::AbstractVector...) return Tracker.data.(Tracker.gradient(f, xs...)) end end # module
AbstractDifferentiation
https://github.com/JuliaDiff/AbstractDifferentiation.jl.git
[ "MIT" ]
0.6.2
d29ce82ed1d4c37135095e1a4d799c93d7be2361
code
502
module AbstractDifferentiationZygoteExt if isdefined(Base, :get_extension) import AbstractDifferentiation as AD using Zygote: Zygote else import ..AbstractDifferentiation as AD using ..Zygote: Zygote end AD.ZygoteBackend() = AD.ReverseRuleConfigBackend(Zygote.ZygoteRuleConfig()) # Context should not persist between different AD calls: fixes #69 function AD.ruleconfig(::AD.ReverseRuleConfigBackend{<:Zygote.ZygoteRuleConfig}) return Zygote.ZygoteRuleConfig() end end # module
AbstractDifferentiation
https://github.com/JuliaDiff/AbstractDifferentiation.jl.git
[ "MIT" ]
0.6.2
d29ce82ed1d4c37135095e1a4d799c93d7be2361
code
23781
module AbstractDifferentiation using LinearAlgebra, ExprTools abstract type AbstractBackend end abstract type AbstractFiniteDifference <: AbstractBackend end abstract type AbstractForwardMode <: AbstractBackend end abstract type AbstractReverseMode <: AbstractBackend end """ AD.HigherOrderBackend{B} Let `ab_f` be a forward-mode automatic differentiation backend and let `ab_r` be a reverse-mode automatic differentiation backend. To construct a higher order backend for doing forward-over-reverse-mode automatic differentiation, use `AD.HigherOrderBackend((ab_f, ab_r))`. To construct a higher order backend for doing reverse-over-forward-mode automatic differentiation, use `AD.HigherOrderBackend((ab_r, ab_f))`. # Fields - `backends::B` """ struct HigherOrderBackend{B} <: AbstractBackend backends::B end reduce_order(b::AbstractBackend) = b function reduce_order(b::HigherOrderBackend) if length(b.backends) == 1 return lowest(b) # prevent zero tuple and subsequent error when reducing over HigherOrderBackend else return HigherOrderBackend(reverse(Base.tail(reverse(b.backends)))) end end lowest(b::AbstractBackend) = b lowest(b::HigherOrderBackend) = b.backends[end] second_lowest(b::AbstractBackend) = b second_lowest(b::HigherOrderBackend) = lowest(reduce_order(b)) # If the primal value is in y, extract it. # Otherwise, re-compute it, e.g. in finite diff. primal_value(::AbstractFiniteDifference, ::Any, f, xs) = f(xs...) primal_value(::AbstractBackend, ys, ::Any, ::Any) = primal_value(ys) primal_value(x::Tuple) = map(primal_value, x) primal_value(x) = x """ AD.derivative(ab::AD.AbstractBackend, f, xs::Number...) Compute the derivatives of `f` with respect to the numbers `xs` using the backend `ab`. The function returns a `Tuple` of derivatives, one for each element in `xs`. """ function derivative(ab::AbstractBackend, f, xs::Number...) der = getindex.(jacobian(lowest(ab), f, xs...), 1) if der isa Tuple return der else return (der,) end end """ AD.gradient(ab::AD.AbstractBackend, f, xs...) Compute the gradients of `f` with respect to the inputs `xs` using the backend `ab`. The function returns a `Tuple` of gradients, one for each element in `xs`. """ function gradient(ab::AbstractBackend, f, xs...) return reshape.(adjoint.(jacobian(lowest(ab), f, xs...)), size.(xs)) end """ AD.jacobian(ab::AD.AbstractBackend, f, xs...) Compute the Jacobians of `f` with respect to the inputs `xs` using the backend `ab`. The function returns a `Tuple` of Jacobians, one for each element in `xs`. """ function jacobian(ab::AbstractBackend, f, xs...) end function jacobian(ab::HigherOrderBackend, f, xs...) return jacobian(lowest(ab), f, xs...) end """ AD.second_derivative(ab::AD.AbstractBackend, f, x) Compute the second derivative of `f` with respect to the input `x` using the backend `ab`. The function returns a single value because `second_derivative` currently only supports a single input. """ function second_derivative(ab::AbstractBackend, f, x) if x isa Tuple # only support computation of second derivative for functions with single input argument x = only(x) end return derivative(second_lowest(ab), x -> begin d = derivative(lowest(ab), f, x) return d[1] # derivative returns a tuple end, x) end """ AD.hessian(ab::AD.AbstractBackend, f, x) Compute the Hessian of `f` wrt the input `x` using the backend `ab`. The function returns a single matrix because `hessian` currently only supports a single input. """ function hessian(ab::AbstractBackend, f, x) if x isa Tuple # only support computation of Hessian for functions with single input argument x = only(x) end return jacobian(second_lowest(ab), x -> begin gradient(lowest(ab), f, x)[1] # gradient returns a tuple end, x) end """ AD.value_and_derivative(ab::AD.AbstractBackend, f, xs::Number...) Return the tuple `(v, ds)` of the function value `v = f(xs...)` and the derivatives `ds = AD.derivative(ab, f, xs...)`. See also [`AbstractDifferentiation.derivative`](@ref). """ function value_and_derivative(ab::AbstractBackend, f, xs::Number...) value, jacs = value_and_jacobian(lowest(ab), f, xs...) return value[1], getindex.(jacs, 1) end """ AD.value_and_gradient(ab::AD.AbstractBackend, f, xs...) Return the tuple `(v, gs)` of the function value `v = f(xs...)` and the gradients `gs = AD.gradient(ab, f, xs...)`. See also [`AbstractDifferentiation.gradient`](@ref). """ function value_and_gradient(ab::AbstractBackend, f, xs...) value, jacs = value_and_jacobian(lowest(ab), f, xs...) return value, reshape.(adjoint.(jacs), size.(xs)) end """ AD.value_and_jacobian(ab::AD.AbstractBackend, f, xs...) Return the tuple `(v, Js)` of the function value `v = f(xs...)` and the Jacobians `Js = AD.jacobian(ab, f, xs...)`. See also [`AbstractDifferentiation.jacobian`](@ref). """ function value_and_jacobian(ab::AbstractBackend, f, xs...) value = f(xs...) jacs = jacobian(lowest(ab), f, xs...) return value, jacs end """ AD.value_and_second_derivative(ab::AD.AbstractBackend, f, x) Return the tuple `(v, d2)` of the function value `v = f(x)` and the second derivative `d2 = AD.second_derivative(ab, f, x)`. See also [`AbstractDifferentiation.second_derivative`](@ref) """ function value_and_second_derivative(ab::AbstractBackend, f, x) return f(x), second_derivative(ab, f, x) end """ AD.value_and_hessian(ab::AD.AbstractBackend, f, x) Return the tuple `(v, H)` of the function value `v = f(x)` and the Hessian `H = AD.hessian(ab, f, x)`. See also [`AbstractDifferentiation.hessian`](@ref). """ function value_and_hessian(ab::AbstractBackend, f, x) if x isa Tuple # only support computation of Hessian for functions with single input argument x = only(x) end value = f(x) hess = jacobian(second_lowest(ab), _x -> begin g = gradient(lowest(ab), f, _x) return g[1] # gradient returns a tuple end, x) return value, hess end """ AD.value_derivative_and_second_derivative(ab::AD.AbstractBackend, f, x) Return the tuple `(v, d, d2)` of the function value `v = f(x)`, the first derivative `d = AD.derivative(ab, f, x)`, and the second derivative `d2 = AD.second_derivative(ab, f, x)`. """ function value_derivative_and_second_derivative(ab::AbstractBackend, f, x) if x isa Tuple # only support computation of Hessian for functions with single input argument x = only(x) end value = f(x) deriv, secondderiv = value_and_derivative( second_lowest(ab), _x -> begin d = derivative(lowest(ab), f, _x) return d[1] # derivative returns a tuple end, x ) return value, (deriv,), secondderiv end """ AD.value_gradient_and_hessian(ab::AD.AbstractBackend, f, x) Return the tuple `(v, g, H)` of the function value `v = f(x)`, the gradient `g = AD.gradient(ab, f, x)`, and the Hessian `H = AD.hessian(ab, f, x)`. See also [`AbstractDifferentiation.gradient`](@ref) and [`AbstractDifferentiation.hessian`](@ref). """ function value_gradient_and_hessian(ab::AbstractBackend, f, x) if x isa Tuple # only support computation of Hessian for functions with single input argument x = only(x) end value = f(x) grads, hess = value_and_jacobian( second_lowest(ab), _x -> begin g = gradient(lowest(ab), f, _x) return g[1] # gradient returns a tuple end, x ) return value, (grads,), hess end """ AD.pushforward_function(ab::AD.AbstractBackend, f, xs...) Return the pushforward function `pff` of the function `f` at the inputs `xs` using backend `ab`. The pushfoward function `pff` accepts as input a `Tuple` of tangents, one for each element in `xs`. If `xs` consists of a single element, `pff` can also accept a single tangent instead of a 1-tuple. """ function pushforward_function(ab::AbstractBackend, f, xs...) function pff(ds) function pff_aux(xds...) if ds isa Tuple @assert length(xs) == length(ds) newxs = xs .+ ds .* xds return f(newxs...) else newx = only(xs) + ds * only(xds) return f(newx) end end return jacobian(lowest(ab), pff_aux, _zero.(xs, ds)...) end return pff end """ AD.value_and_pushforward_function(ab::AD.AbstractBackend, f, xs...) Return a single function `vpff` which, given tangents `ts`, computes the tuple `(v, p) = vpff(ts)` composed of - the function value `v = f(xs...)` - the pushforward value `p = pff(ts)` given by the pushforward function `pff = AD.pushforward_function(ab, f, xs...)` applied to `ts`. See also [`AbstractDifferentiation.pushforward_function`](@ref). !!! warning This name should be understood as "(value and pushforward) function", and thus is not aligned with the reverse mode counterpart [`AbstractDifferentiation.value_and_pullback_function`](@ref). """ function value_and_pushforward_function(ab::AbstractBackend, f, xs...) n = length(xs) value = f(xs...) pff = pushforward_function(lowest(ab), f, xs...) function vpff(ds) if !(ds isa Tuple) ds = (ds,) end @assert length(ds) == n return value, pff(ds) end return vpff end _zero(::Number, d::Number) = zero(d) _zero(::Number, d::AbstractVector) = zero(d) _zero(::AbstractVector, d::AbstractVector) = zero(eltype(d)) _zero(::AbstractVector, d::AbstractMatrix) = zero(similar(d, size(d, 2))) _zero(::AbstractMatrix, d::AbstractMatrix) = zero(d) _zero(::Any, d::Any) = zero(d) @inline _dot(x, y) = dot(x, y) @inline function _dot(x::AbstractVector, y::UniformScaling) return @inbounds dot(only(x), y.λ) end @inline function _dot(x::AbstractVector, y::AbstractMatrix) @assert size(y, 2) == 1 return dot(x, y) end """ AD.pullback_function(ab::AD.AbstractBackend, f, xs...) Return the pullback function `pbf` of the function `f` at the inputs `xs` using backend `ab`. The pullback function `pbf` accepts as input a `Tuple` of cotangents, one for each output of `f`. If `f` has a single output, `pbf` can also accept a single input instead of a 1-tuple. """ function pullback_function(ab::AbstractBackend, f, xs...) _, pbf = value_and_pullback_function(ab, f, xs...) return pbf end """ AD.value_and_pullback_function(ab::AD.AbstractBackend, f, xs...) Return a tuple `(v, pbf)` of the function value `v = f(xs...)` and the pullback function `pbf = AD.pullback_function(ab, f, xs...)`. See also [`AbstractDifferentiation.pullback_function`](@ref). !!! warning This name should be understood as "value and (pullback function)", and thus is not aligned with the forward mode counterpart [`AbstractDifferentiation.value_and_pushforward_function`](@ref). """ function value_and_pullback_function(ab::AbstractBackend, f, xs...) value = f(xs...) function pbf(ws) function pbf_aux(_xs...) vs = f(_xs...) if ws isa Tuple @assert length(vs) == length(ws) return sum(Base.splat(_dot), zip(ws, vs)) else return _dot(vs, ws) end end return gradient(lowest(ab), pbf_aux, xs...) end return value, pbf end struct LazyDerivative{B,F,X} backend::B f::F xs::X end function Base.:*(d::LazyDerivative, y) return derivative(d.backend, d.f, d.xs...) * y end function Base.:*(y, d::LazyDerivative) return y * derivative(d.backend, d.f, d.xs...) end function Base.:*(d::LazyDerivative, y::Union{Number,Tuple}) if y isa Tuple && d.xs isa Tuple @assert length(y) == length(d.xs) end return derivative(d.backend, d.f, d.xs...) .* y end function Base.:*(y::Union{Number,Tuple}, d::LazyDerivative) if y isa Tuple && d.xs isa Tuple @assert length(y) == length(d.xs) end return y .* derivative(d.backend, d.f, d.xs...) end function Base.:*(d::LazyDerivative, y::AbstractArray) return map((d) -> d * y, derivative(d.backend, d.f, d.xs...)) end function Base.:*(y::AbstractArray, d::LazyDerivative) return map((d) -> y * d, derivative(d.backend, d.f, d.xs...)) end struct LazyGradient{B,F,X} backend::B f::F xs::X end Base.:*(d::LazyGradient, y) = gradient(d.backend, d.f, d.xs...) * y Base.:*(y, d::LazyGradient) = y * gradient(d.backend, d.f, d.xs...) function Base.:*(d::LazyGradient, y::Union{Number,Tuple}) if y isa Tuple && d.xs isa Tuple @assert length(y) == length(d.xs) end if d.xs isa Tuple return gradient(d.backend, d.f, d.xs...) .* y else return gradient(d.backend, d.f, d.xs) .* y end end function Base.:*(y::Union{Number,Tuple}, d::LazyGradient) if y isa Tuple && d.xs isa Tuple @assert length(y) == length(d.xs) end if d.xs isa Tuple return y .* gradient(d.backend, d.f, d.xs...) else return y .* gradient(d.backend, d.f, d.xs) end end struct LazyJacobian{B,F,X} backend::B f::F xs::X end function Base.:*(d::LazyJacobian, ys) if !(ys isa Tuple) ys = (ys,) end if d.xs isa Tuple vjp = pushforward_function(d.backend, d.f, d.xs...)(ys) else vjp = pushforward_function(d.backend, d.f, d.xs)(ys) end if vjp isa Tuple return vjp else return (vjp,) end end function Base.:*(ys, d::LazyJacobian) if ys isa Tuple ya = adjoint.(ys) else ya = adjoint(ys) end if d.xs isa Tuple return pullback_function(d.backend, d.f, d.xs...)(ya) else return pullback_function(d.backend, d.f, d.xs)(ya) end end function Base.:*(d::LazyJacobian, ys::Number) if d.xs isa Tuple return jacobian(d.backend, d.f, d.xs...) .* ys else return jacobian(d.backend, d.f, d.xs) .* ys end end function Base.:*(ys::Number, d::LazyJacobian) if d.xs isa Tuple return jacobian(d.backend, d.f, d.xs...) .* ys else return jacobian(d.backend, d.f, d.xs) .* ys end end struct LazyHessian{B,F,X} backend::B f::F xs::X end function Base.:*(d::LazyHessian, ys) if !(ys isa Tuple) ys = (ys,) end if d.xs isa Tuple res = pushforward_function( second_lowest(d.backend), (xs...,) -> gradient(lowest(d.backend), d.f, xs...)[1], d.xs..., )( ys ) # [1] because gradient returns a tuple else res = pushforward_function( second_lowest(d.backend), (xs,) -> gradient(lowest(d.backend), d.f, xs)[1], d.xs )( ys ) # gradient returns a tuple end if res isa Tuple return res else return (res,) end end function Base.:*(ys, d::LazyHessian) if ys isa Tuple ya = adjoint.(ys) else ya = adjoint(ys) end if d.xs isa Tuple return pullback_function( second_lowest(d.backend), (xs...,) -> gradient(lowest(d.backend), d.f, xs...), d.xs..., )( ya ) else return pullback_function( second_lowest(d.backend), (xs,) -> gradient(lowest(d.backend), d.f, xs)[1], d.xs )( ya ) end end function Base.:*(d::LazyHessian, ys::Number) if d.xs isa Tuple return hessian(d.backend, d.f, d.xs...) .* ys else return hessian(d.backend, d.f, d.xs) .* ys end end function Base.:*(ys::Number, d::LazyHessian) if d.xs isa Tuple return ys .* hessian(d.backend, d.f, d.xs...) else return ys .* hessian(d.backend, d.f, d.xs) end end """ AD.lazy_derivative(ab::AbstractBackend, f, xs::Number...) Return an operator `ld` for multiplying by the derivative of `f` at `xs`. You can apply the operator by multiplication e.g. `ld * y` where `y` is a number if `f` has a single input, a tuple of the same length as `xs` if `f` has multiple inputs, or an array of numbers/tuples. """ function lazy_derivative(ab::AbstractBackend, f, xs::Number...) return LazyDerivative(ab, f, xs) end """ AD.lazy_gradient(ab::AbstractBackend, f, xs...) Return an operator `lg` for multiplying by the gradient of `f` at `xs`. You can apply the operator by multiplication e.g. `lg * y` where `y` is a number if `f` has a single input or a tuple of the same length as `xs` if `f` has multiple inputs. """ function lazy_gradient(ab::AbstractBackend, f, xs...) return LazyGradient(ab, f, xs) end """ AD.lazy_hessian(ab::AbstractBackend, f, x) Return an operator `lh` for multiplying by the Hessian of the scalar-valued function `f` at `x`. You can apply the operator by multiplication e.g. `lh * y` or `y' * lh` where `y` is a number or a vector of the appropriate length. """ function lazy_hessian(ab::AbstractBackend, f, xs...) return LazyHessian(ab, f, xs) end """ AD.lazy_jacobian(ab::AbstractBackend, f, xs...) Return an operator `lj` for multiplying by the Jacobian of `f` at `xs`. You can apply the operator by multiplication e.g. `lj * y` or `y' * lj` where `y` is a number, vector or tuple of numbers and/or vectors. If `f` has multiple inputs, `y` in `lj * y` should be a tuple. If `f` has multiple outputs, `y` in `y' * lj` should be a tuple. Otherwise, it should be a scalar or a vector of the appropriate length. """ function lazy_jacobian(ab::AbstractBackend, f, xs...) return LazyJacobian(ab, f, xs) end struct D{B,F} backend::B f::F end D(b::AbstractBackend, d::D) = H(HigherOrderBackend((b, d.b)), d.f) D(d::D) = H(HigherOrderBackend((d.backend, d.backend)), d.f) function (d::D)(xs...; lazy=true) if lazy return lazy_jacobian(d.ab, d.f, xs...) else return jacobian(d.ab, d.f, xs...) end end struct H{B,F} backend::B f::F end function (h::H)(xs...; lazy=true) if lazy return lazy_hessian(h.ab, h.f, xs...) else return hessian(h.ab, h.f, xs...) end end macro primitive(expr) fdef = ExprTools.splitdef(expr) name = fdef[:name] if name == :pushforward_function return esc(define_pushforward_function_and_friends(fdef)) elseif name == :value_and_pullback_function return esc(define_value_and_pullback_function_and_friends(fdef)) else throw("Unsupported AD primitive.") end end function define_pushforward_function_and_friends(fdef) fdef[:name] = :($(AbstractDifferentiation).pushforward_function) args = fdef[:args] funcs = quote $(ExprTools.combinedef(fdef)) function $(AbstractDifferentiation).jacobian($(args...)) identity_like = $(identity_matrix_like)($(args[3:end]...)) pff = $(pushforward_function)($(args...)) if eltype(identity_like) <: Tuple{Vararg{Union{AbstractMatrix,Number}}} return map(identity_like) do identity_like_i return mapreduce(hcat, $(_eachcol).(identity_like_i)...) do (cols...) pff(cols) end end elseif eltype(identity_like) <: AbstractMatrix # needed for the computation of the Hessian and Jacobian ret = hcat.(mapslices(identity_like[1]; dims=1) do cols # cols loop over basis states pf = pff((cols,)) if typeof(pf) <: AbstractVector # to make the hcat. work / get correct matrix-like, non-flat output dimension return (pf,) else return pf end end...) return ret isa Tuple ? ret : (ret,) else return pff(identity_like) end end end return funcs end function define_value_and_pullback_function_and_friends(fdef) fdef[:name] = :($(AbstractDifferentiation).value_and_pullback_function) args = fdef[:args] funcs = quote $(ExprTools.combinedef(fdef)) function $(AbstractDifferentiation).jacobian($(args...)) value, pbf = $(value_and_pullback_function)($(args...)) identity_like = $(identity_matrix_like)(value) if eltype(identity_like) <: Tuple{Vararg{AbstractMatrix}} return map(identity_like) do identity_like_i return mapreduce(vcat, $(_eachcol).(identity_like_i)...) do (cols...) pbf(cols)' end end elseif eltype(identity_like) <: AbstractMatrix # needed for Hessian computation: # value is a (grad,). Then, identity_like is a (matrix,). # cols loops over columns of the matrix return vcat.(mapslices(identity_like[1]; dims=1) do cols adjoint.(pbf((cols,))) end...) else return adjoint.(pbf(identity_like)) end end end return funcs end _eachcol(a::Number) = (a,) _eachcol(a) = eachcol(a) function identity_matrix_like(x) throw("The function `identity_matrix_like` is not defined for the type $(typeof(x)).") end function identity_matrix_like(x::AbstractVector) return (Matrix{eltype(x)}(I, length(x), length(x)),) end function identity_matrix_like(x::Number) return (one(x),) end identity_matrix_like(x::Tuple) = identity_matrix_like(x...) @generated function identity_matrix_like(x...) expr = :(()) for i in 1:length(x) push!(expr.args, :(())) for j in 1:(i - 1) push!(expr.args[i].args, :((zero_matrix_like(x[$j])[1]))) end push!(expr.args[i].args, :((identity_matrix_like(x[$i]))[1])) for j in (i + 1):length(x) push!(expr.args[i].args, :(zero_matrix_like(x[$j])[1])) end end return expr end zero_matrix_like(x::Tuple) = zero_matrix_like(x...) zero_matrix_like(x...) = map(zero_matrix_like, x) zero_matrix_like(x::AbstractVector) = (zero(similar(x, length(x), length(x))),) zero_matrix_like(x::Number) = (zero(x),) function zero_matrix_like(x) throw("The function `zero_matrix_like` is not defined for the type $(typeof(x)).") end @inline asarray(x) = [x] @inline asarray(x::AbstractArray) = x include("backends.jl") # TODO: Replace with proper version const EXTENSIONS_SUPPORTED = isdefined(Base, :get_extension) if !EXTENSIONS_SUPPORTED using Requires: @require include("../ext/AbstractDifferentiationChainRulesCoreExt.jl") end @static if !EXTENSIONS_SUPPORTED function __init__() @require DiffResults = "163ba53b-c6d8-5494-b064-1a9d43ac40c5" begin @require ForwardDiff = "f6369f11-7733-5829-9624-2563aa707210" include( "../ext/AbstractDifferentiationForwardDiffExt.jl" ) @require ReverseDiff = "37e2e3b7-166d-5795-8a7a-e32c996b4267" include( "../ext/AbstractDifferentiationReverseDiffExt.jl" ) end @require FiniteDifferences = "26cc04aa-876d-5657-8c51-4c34ba976000" include( "../ext/AbstractDifferentiationFiniteDifferencesExt.jl" ) @require Tracker = "9f7883ad-71c0-57eb-9f7f-b5c9e6d3789c" include( "../ext/AbstractDifferentiationTrackerExt.jl" ) @require Zygote = "e88e6eb3-aa80-5325-afca-941959d7151f" include( "../ext/AbstractDifferentiationZygoteExt.jl" ) end end end
AbstractDifferentiation
https://github.com/JuliaDiff/AbstractDifferentiation.jl.git
[ "MIT" ]
0.6.2
d29ce82ed1d4c37135095e1a4d799c93d7be2361
code
2614
""" FiniteDifferencesBackend{M} AD backend that uses forward mode with [FiniteDifferences.jl](https://github.com/JuliaDiff/FiniteDifferences.jl). The type parameter `M` is the type of the method used to perform finite differences. !!! note To be able to use this backend, you have to load FiniteDifferences. """ struct FiniteDifferencesBackend{M} <: AbstractFiniteDifference method::M end """ ForwardDiffBackend{CS} AD backend that uses forward mode with [ForwardDiff.jl](https://github.com/JuliaDiff/ForwardDiff.jl). The type parameter `CS` denotes the chunk size of the differentiation algorithm. If it is `Nothing`, then ForwardiffDiff uses a heuristic to set the chunk size based on the input. See also: [ForwardDiff.jl: Configuring Chunk Size](https://juliadiff.org/ForwardDiff.jl/dev/user/advanced/#Configuring-Chunk-Size) !!! note To be able to use this backend, you have to load ForwardDiff. """ struct ForwardDiffBackend{CS} <: AbstractForwardMode end """ ReverseDiffBackend AD backend that uses reverse mode with [ReverseDiff.jl](https://github.com/JuliaDiff/ReverseDiff.jl). !!! note To be able to use this backend, you have to load ReverseDiff. """ struct ReverseDiffBackend <: AbstractReverseMode end """ TrackerBackend AD backend that uses reverse mode with [Tracker.jl](https://github.com/FluxML/Tracker.jl). !!! note To be able to use this backend, you have to load Tracker. """ struct TrackerBackend <: AbstractReverseMode end """ ReverseRuleConfigBackend AD backend that uses reverse mode with any [ChainRulesCore.jl](https://github.com/JuliaDiff/ChainRulesCore.jl)-compatible reverse-mode AD package. Constructed with a [`RuleConfig`](https://juliadiff.org/ChainRulesCore.jl/stable/rule_author/superpowers/ruleconfig.html) object: ```julia backend = AD.ReverseRuleConfigBackend(rc) ``` !!! note On Julia >= 1.9, you have to load ChainRulesCore (possibly implicitly by loading a ChainRules-compatible AD package) to be able to use this backend. """ struct ReverseRuleConfigBackend{RC} <: AbstractReverseMode ruleconfig::RC end # internal function for extracting the rule config # falls back to returning the wrapped `ruleconfig` but can be specialized # e.g., for Zygote to fix #69 ruleconfig(ba::ReverseRuleConfigBackend) = ba.ruleconfig """ ZygoteBackend() Create an AD backend that uses reverse mode with [Zygote.jl](https://github.com/FluxML/Zygote.jl). It is a special case of [`ReverseRuleConfigBackend`](@ref). !!! note To be able to use this backend, you have to load Zygote. """ function ZygoteBackend end
AbstractDifferentiation
https://github.com/JuliaDiff/AbstractDifferentiation.jl.git
[ "MIT" ]
0.6.2
d29ce82ed1d4c37135095e1a4d799c93d7be2361
code
8471
using AbstractDifferentiation using Test using FiniteDifferences, ForwardDiff, Zygote const AD = AbstractDifferentiation const FDM = FiniteDifferences ## FiniteDifferences struct FDMBackend1{A} <: AD.AbstractFiniteDifference alg::A end FDMBackend1() = FDMBackend1(central_fdm(5, 1)) const fdm_backend1 = FDMBackend1() # Minimal interface function AD.jacobian(ab::FDMBackend1, f, xs...) return FDM.jacobian(ab.alg, f, xs...) end struct FDMBackend2{A} <: AD.AbstractFiniteDifference alg::A end FDMBackend2() = FDMBackend2(central_fdm(5, 1)) const fdm_backend2 = FDMBackend2() AD.@primitive function pushforward_function(ab::FDMBackend2, f, xs...) return function (vs) ws = FDM.jvp(ab.alg, f, tuple.(xs, vs)...) return length(xs) == 1 ? (ws,) : ws end end struct FDMBackend3{A} <: AD.AbstractFiniteDifference alg::A end FDMBackend3() = FDMBackend3(central_fdm(5, 1)) const fdm_backend3 = FDMBackend3() AD.@primitive function value_and_pullback_function(ab::FDMBackend3, f, xs...) value = f(xs...) function fd3_pullback(vs) # Supports only single output _vs = vs isa AbstractVector ? vs : only(vs) return FDM.j′vp(ab.alg, f, _vs, xs...) end return value, fd3_pullback end ## ## ForwardDiff struct ForwardDiffBackend1 <: AD.AbstractForwardMode end const forwarddiff_backend1 = ForwardDiffBackend1() function AD.jacobian(ab::ForwardDiffBackend1, f, xs) if xs isa Number return (ForwardDiff.derivative(f, xs),) elseif xs isa AbstractArray out = f(xs) if out isa Number return (adjoint(ForwardDiff.gradient(f, xs)),) else return (ForwardDiff.jacobian(f, xs),) end elseif xs isa Tuple error(typeof(xs)) else error(typeof(xs)) end end AD.primal_value(::ForwardDiffBackend1, ::Any, f, xs) = ForwardDiff.value.(f(xs...)) struct ForwardDiffBackend2 <: AD.AbstractForwardMode end const forwarddiff_backend2 = ForwardDiffBackend2() AD.@primitive function pushforward_function(ab::ForwardDiffBackend2, f, xs...) # jvp = f'(x)*v, i.e., differentiate f(x + h*v) wrt h at 0 return function (vs) if xs isa Tuple @assert length(xs) <= 2 if length(xs) == 1 (ForwardDiff.derivative(h -> f(xs[1] + h * vs[1]), 0),) else ForwardDiff.derivative(h -> f(xs[1] + h * vs[1], xs[2] + h * vs[2]), 0) end else ForwardDiff.derivative(h -> f(xs + h * vs), 0) end end end AD.primal_value(::ForwardDiffBackend2, ::Any, f, xs) = ForwardDiff.value.(f(xs...)) ## ## Zygote struct ZygoteBackend1 <: AD.AbstractReverseMode end const zygote_backend1 = ZygoteBackend1() AD.@primitive function value_and_pullback_function(ab::ZygoteBackend1, f, xs...) # Supports only single output value, back = Zygote.pullback(f, xs...) function zygote_pullback(vs) _vs = vs isa AbstractVector ? vs : only(vs) return back(_vs) end return value, zygote_pullback end @testset "defaults" begin @testset "Utils" begin test_higher_order_backend( fdm_backend1, fdm_backend2, fdm_backend3, zygote_backend1, forwarddiff_backend2 ) end @testset "FiniteDifferences" begin @testset "Derivative" begin test_derivatives(fdm_backend1) test_derivatives(fdm_backend2) test_derivatives(fdm_backend3) end @testset "Gradient" begin test_gradients(fdm_backend1) test_gradients(fdm_backend2) test_gradients(fdm_backend3) end @testset "Jacobian" begin test_jacobians(fdm_backend1) test_jacobians(fdm_backend2) test_jacobians(fdm_backend3) end @testset "Hessian" begin test_hessians(fdm_backend1) test_hessians(fdm_backend2) test_hessians(fdm_backend3) end @testset "jvp" begin test_jvp(fdm_backend1; test_types=false) test_jvp(fdm_backend2; vaugmented=true) test_jvp(fdm_backend3) end @testset "j′vp" begin test_j′vp(fdm_backend1) test_j′vp(fdm_backend2) test_j′vp(fdm_backend3) end @testset "Lazy Derivative" begin test_lazy_derivatives(fdm_backend1) test_lazy_derivatives(fdm_backend2) test_lazy_derivatives(fdm_backend3) end @testset "Lazy Gradient" begin test_lazy_gradients(fdm_backend1) test_lazy_gradients(fdm_backend2) test_lazy_gradients(fdm_backend3) end @testset "Lazy Jacobian" begin test_lazy_jacobians(fdm_backend1) test_lazy_jacobians(fdm_backend2; vaugmented=true) test_lazy_jacobians(fdm_backend3) end @testset "Lazy Hessian" begin test_lazy_hessians(fdm_backend1) test_lazy_hessians(fdm_backend2) test_lazy_hessians(fdm_backend3) end end @testset "ForwardDiff" begin @testset "Derivative" begin test_derivatives(forwarddiff_backend1; multiple_inputs=false) test_derivatives(forwarddiff_backend2) end @testset "Gradient" begin test_gradients(forwarddiff_backend1; multiple_inputs=false) test_gradients(forwarddiff_backend2) end @testset "Jacobian" begin test_jacobians(forwarddiff_backend1; multiple_inputs=false) test_jacobians(forwarddiff_backend2) end @testset "Hessian" begin test_hessians(forwarddiff_backend1; multiple_inputs=false) test_hessians(forwarddiff_backend2) end @testset "jvp" begin test_jvp(forwarddiff_backend1; multiple_inputs=false) test_jvp(forwarddiff_backend2; vaugmented=true) end @testset "j′vp" begin test_j′vp(forwarddiff_backend1; multiple_inputs=false) test_j′vp(forwarddiff_backend2) end @testset "Lazy Derivative" begin test_lazy_derivatives(forwarddiff_backend1; multiple_inputs=false) test_lazy_derivatives(forwarddiff_backend2) end @testset "Lazy Gradient" begin test_lazy_gradients(forwarddiff_backend1; multiple_inputs=false) test_lazy_gradients(forwarddiff_backend2) end @testset "Lazy Jacobian" begin test_lazy_jacobians(forwarddiff_backend1; multiple_inputs=false) test_lazy_jacobians(forwarddiff_backend2; vaugmented=true) end @testset "Lazy Hessian" begin test_lazy_hessians(forwarddiff_backend1; multiple_inputs=false) test_lazy_hessians(forwarddiff_backend2) end end @testset "Zygote" begin @testset "Derivative" begin test_derivatives(zygote_backend1) end @testset "Gradient" begin test_gradients(zygote_backend1) end @testset "Jacobian" begin test_jacobians(zygote_backend1) end @testset "Hessian" begin # Zygote over Zygote problems backends = AD.HigherOrderBackend((forwarddiff_backend2, zygote_backend1)) test_hessians(backends) backends = AD.HigherOrderBackend((zygote_backend1, forwarddiff_backend1)) test_hessians(backends) # fails: # backends = AD.HigherOrderBackend((zygote_backend1,forwarddiff_backend2)) # test_hessians(backends) end @testset "jvp" begin test_jvp(zygote_backend1) end @testset "j′vp" begin test_j′vp(zygote_backend1) end @testset "Lazy Derivative" begin test_lazy_derivatives(zygote_backend1) end @testset "Lazy Gradient" begin test_lazy_gradients(zygote_backend1) end @testset "Lazy Jacobian" begin test_lazy_jacobians(zygote_backend1) end @testset "Lazy Hessian" begin # Zygote over Zygote problems backends = AD.HigherOrderBackend((forwarddiff_backend2, zygote_backend1)) test_lazy_hessians(backends) backends = AD.HigherOrderBackend((zygote_backend1, forwarddiff_backend1)) test_lazy_hessians(backends) end end end
AbstractDifferentiation
https://github.com/JuliaDiff/AbstractDifferentiation.jl.git
[ "MIT" ]
0.6.2
d29ce82ed1d4c37135095e1a4d799c93d7be2361
code
1445
using AbstractDifferentiation using Test using FiniteDifferences @testset "FiniteDifferencesBackend" begin method = FiniteDifferences.central_fdm(6, 1) # `central_fdm(5, 1)` is not type-inferrable, so only check inferrability # with user-specified method backends = [ AD.FiniteDifferencesBackend(), @inferred(AD.FiniteDifferencesBackend(method)) ] @test backends[2].method === method @testset for backend in backends @testset "Derivative" begin test_derivatives(backend) end @testset "Gradient" begin test_gradients(backend) end @testset "Jacobian" begin test_jacobians(backend) end @testset "Second derivative" begin test_second_derivatives(backend) end @testset "Hessian" begin test_hessians(backend) end @testset "jvp" begin test_jvp(backend; vaugmented=true) end @testset "j′vp" begin test_j′vp(backend) end @testset "Lazy Derivative" begin test_lazy_derivatives(backend) end @testset "Lazy Gradient" begin test_lazy_gradients(backend) end @testset "Lazy Jacobian" begin test_lazy_jacobians(backend; vaugmented=true) end @testset "Lazy Hessian" begin test_lazy_hessians(backend) end end end
AbstractDifferentiation
https://github.com/JuliaDiff/AbstractDifferentiation.jl.git
[ "MIT" ]
0.6.2
d29ce82ed1d4c37135095e1a4d799c93d7be2361
code
1302
using AbstractDifferentiation using Test using ForwardDiff @testset "ForwardDiffBackend" begin backends = [ @inferred(AD.ForwardDiffBackend()) @inferred(AD.ForwardDiffBackend(; chunksize=Val{1}())) ] @testset for backend in backends @test backend isa AD.AbstractForwardMode @testset "Derivative" begin test_derivatives(backend) end @testset "Gradient" begin test_gradients(backend) end @testset "Jacobian" begin test_jacobians(backend) end @testset "Second derivative" begin test_second_derivatives(backend) end @testset "Hessian" begin test_hessians(backend) end @testset "jvp" begin test_jvp(backend; vaugmented=true) end @testset "j′vp" begin test_j′vp(backend) end @testset "Lazy Derivative" begin test_lazy_derivatives(backend) end @testset "Lazy Gradient" begin test_lazy_gradients(backend) end @testset "Lazy Jacobian" begin test_lazy_jacobians(backend; vaugmented=true) end @testset "Lazy Hessian" begin test_lazy_hessians(backend) end end end
AbstractDifferentiation
https://github.com/JuliaDiff/AbstractDifferentiation.jl.git
[ "MIT" ]
0.6.2
d29ce82ed1d4c37135095e1a4d799c93d7be2361
code
1141
using AbstractDifferentiation using Test using ReverseDiff @testset "ReverseDiffBackend" begin backends = [@inferred(AD.ReverseDiffBackend())] @testset for backend in backends @testset "Derivative" begin test_derivatives(backend) end @testset "Gradient" begin test_gradients(backend) end @testset "Jacobian" begin test_jacobians(backend) end @testset "Second derivative" begin test_second_derivatives(backend) end @testset "Hessian" begin test_hessians(backend) end @testset "jvp" begin test_jvp(backend) end @testset "j′vp" begin test_j′vp(backend) end @testset "Lazy Derivative" begin test_lazy_derivatives(backend) end @testset "Lazy Gradient" begin test_lazy_gradients(backend) end @testset "Lazy Jacobian" begin test_lazy_jacobians(backend) end @testset "Lazy Hessian" begin test_lazy_hessians(backend) end end end
AbstractDifferentiation
https://github.com/JuliaDiff/AbstractDifferentiation.jl.git
[ "MIT" ]
0.6.2
d29ce82ed1d4c37135095e1a4d799c93d7be2361
code
2260
using AbstractDifferentiation using ChainRulesCore using Test using Zygote @testset "ReverseRuleConfigBackend(ZygoteRuleConfig())" begin backends = [@inferred(AD.ZygoteBackend())] @testset for backend in backends @testset "Derivative" begin test_derivatives(backend) end @testset "Gradient" begin test_gradients(backend) end @testset "Jacobian" begin test_jacobians(backend) end @testset "jvp" begin test_jvp(backend) end @testset "j′vp" begin test_j′vp(backend) end @testset "Second derivative" begin test_second_derivatives(backend) end @testset "Lazy Derivative" begin test_lazy_derivatives(backend) end @testset "Lazy Gradient" begin test_lazy_gradients(backend) end @testset "Lazy Jacobian" begin test_lazy_jacobians(backend) end end # issue #69 @testset "Zygote context" begin ad = AD.ZygoteBackend() # example in #69: context is not mutated @test ad.ruleconfig.context.cache === nothing @test AD.derivative(ad, exp, 1.0) === (exp(1.0),) @test ad.ruleconfig.context.cache === nothing @test AD.derivative(ad, exp, 1.0) === (exp(1.0),) @test ad.ruleconfig.context.cache === nothing # Jacobian computation still works # https://github.com/JuliaDiff/AbstractDifferentiation.jl/pull/70#issuecomment-1449481724 function f(x, a) r = Ref(x) r[] = r[] + r[] r[] = r[] * a return r[] end @test AD.jacobian(ad, f, [1, 2, 3], 3) == ([6.0 0.0 0.0; 0.0 6.0 0.0; 0.0 0.0 6.0], [2.0, 4.0, 6.0]) end # issue #57 @testset "primal computation in rrule" begin function myfunc(x) @info "This should not be logged if I have an rrule" return x end ChainRulesCore.rrule(::typeof(myfunc), x) = (x, (y -> (NoTangent(), y))) @test_logs Zygote.gradient(myfunc, 1) # nothing is logged @test_logs AD.derivative(AD.ZygoteBackend(), myfunc, 1) # nothing is logged end end
AbstractDifferentiation
https://github.com/JuliaDiff/AbstractDifferentiation.jl.git
[ "MIT" ]
0.6.2
d29ce82ed1d4c37135095e1a4d799c93d7be2361
code
366
using AbstractDifferentiation using Documenter using Test @testset verbose = true "AbstractDifferentiation.jl" begin doctest(AbstractDifferentiation) include("test_utils.jl") include("defaults.jl") include("forwarddiff.jl") include("reversediff.jl") include("finitedifferences.jl") include("tracker.jl") include("ruleconfig.jl") end
AbstractDifferentiation
https://github.com/JuliaDiff/AbstractDifferentiation.jl.git
[ "MIT" ]
0.6.2
d29ce82ed1d4c37135095e1a4d799c93d7be2361
code
18152
using AbstractDifferentiation using Test, LinearAlgebra using Random Random.seed!(1234) fder(x, y) = exp(y) * x + y * log(x) dfderdx(x, y) = exp(y) + y * 1 / x dfderdy(x, y) = exp(y) * x + log(x) dfderdxdx(x, y) = -y / x^2 fgrad(x, y) = prod(x) + sum(y ./ (1:length(y))) dfgraddx(x, y) = prod(x) ./ x dfgraddy(x, y) = one(eltype(y)) ./ (1:length(y)) dfgraddxdx(x, y) = prod(x) ./ (x * x') - Diagonal(diag(prod(x) ./ (x * x'))) dfgraddydy(x, y) = zeros(length(y), length(y)) function fjac(x, y) return x + -3 * y + [y[2:end]; zero(y[end])] / 2# Bidiagonal(-ones(length(y)) * 3, ones(length(y) - 1) / 2, :U) * y end dfjacdx(x, y) = I(length(x)) dfjacdy(x, y) = Bidiagonal(-ones(length(y)) * 3, ones(length(y) - 1) / 2, :U) # Jvp jxvp(x, y, v) = dfjacdx(x, y) * v jyvp(x, y, v) = dfjacdy(x, y) * v # vJp vJxp(x, y, v) = dfjacdx(x, y)' * v vJyp(x, y, v) = dfjacdy(x, y)' * v const xscalar = rand() const yscalar = rand() const xvec = rand(5) const yvec = rand(5) # to check if vectors get mutated xvec2 = deepcopy(xvec) yvec2 = deepcopy(yvec) function test_higher_order_backend(backends...) ADbackends = AD.HigherOrderBackend(backends) @test backends[end] == AD.lowest(ADbackends) @test backends[end - 1] == AD.second_lowest(ADbackends) for i in length(backends):-1:1 @test backends[i] == AD.lowest(ADbackends) ADbackends = AD.reduce_order(ADbackends) end return backends[1] == AD.reduce_order(ADbackends) end function test_derivatives(backend; multiple_inputs=true, test_types=true) # test with respect to analytical solution der_exact = (dfderdx(xscalar, yscalar), dfderdy(xscalar, yscalar)) if multiple_inputs der1 = AD.derivative(backend, fder, xscalar, yscalar) @test minimum(isapprox.(der_exact, der1, rtol=1e-10)) valscalar, der2 = AD.value_and_derivative(backend, fder, xscalar, yscalar) @test valscalar == fder(xscalar, yscalar) @test der2 .- der1 == (0, 0) end # test if single input (no tuple works) valscalara, dera = AD.value_and_derivative(backend, x -> fder(x, yscalar), xscalar) valscalarb, derb = AD.value_and_derivative(backend, y -> fder(xscalar, y), yscalar) if test_types @test valscalara isa Float64 @test valscalarb isa Float64 @test dera[1] isa Float64 @test derb[1] isa Float64 end @test fder(xscalar, yscalar) == valscalara @test fder(xscalar, yscalar) == valscalarb @test isapprox(dera[1], der_exact[1], rtol=1e-10) @test isapprox(derb[1], der_exact[2], rtol=1e-10) end function test_gradients(backend; multiple_inputs=true, test_types=true) # test with respect to analytical solution grad_exact = (dfgraddx(xvec, yvec), dfgraddy(xvec, yvec)) if multiple_inputs grad1 = AD.gradient(backend, fgrad, xvec, yvec) @test minimum(isapprox.(grad_exact, grad1, rtol=1e-10)) valscalar, grad2 = AD.value_and_gradient(backend, fgrad, xvec, yvec) if test_types @test valscalar isa Float64 @test grad1[1] isa AbstractVector{Float64} @test grad1[2] isa AbstractVector{Float64} @test grad2[1] isa AbstractVector{Float64} @test grad2[2] isa AbstractVector{Float64} end @test valscalar == fgrad(xvec, yvec) @test norm.(grad2 .- grad1) == (0, 0) end # test if single input (no tuple works) valscalara, grada = AD.value_and_gradient(backend, x -> fgrad(x, yvec), xvec) valscalarb, gradb = AD.value_and_gradient(backend, y -> fgrad(xvec, y), yvec) if test_types @test valscalara isa Float64 @test valscalarb isa Float64 @test grada[1] isa AbstractVector{Float64} @test gradb[1] isa AbstractVector{Float64} end @test fgrad(xvec, yvec) == valscalara @test fgrad(xvec, yvec) == valscalarb @test isapprox(grada[1], grad_exact[1], rtol=1e-10) @test isapprox(gradb[1], grad_exact[2], rtol=1e-10) @test xvec == xvec2 @test yvec == yvec2 end function test_jacobians(backend; multiple_inputs=true, test_types=true) # test with respect to analytical solution jac_exact = (dfjacdx(xvec, yvec), dfjacdy(xvec, yvec)) if multiple_inputs jac1 = AD.jacobian(backend, fjac, xvec, yvec) @test minimum(isapprox.(jac_exact, jac1, rtol=1e-10)) valvec, jac2 = AD.value_and_jacobian(backend, fjac, xvec, yvec) if test_types @test valvec isa Vector{Float64} @test jac1[1] isa Matrix{Float64} @test jac1[2] isa Matrix{Float64} @test jac2[1] isa Matrix{Float64} @test jac2[2] isa Matrix{Float64} end @test valvec == fjac(xvec, yvec) @test norm.(jac2 .- jac1) == (0, 0) end # test if single input (no tuple works) valveca, jaca = AD.value_and_jacobian(backend, x -> fjac(x, yvec), xvec) valvecb, jacb = AD.value_and_jacobian(backend, y -> fjac(xvec, y), yvec) if test_types @test valveca isa Vector{Float64} @test valvecb isa Vector{Float64} @test jaca[1] isa Matrix{Float64} @test jacb[1] isa Matrix{Float64} end @test fjac(xvec, yvec) == valveca @test fjac(xvec, yvec) == valvecb @test isapprox(jaca[1], jac_exact[1], rtol=1e-10) @test isapprox(jacb[1], jac_exact[2], rtol=1e-10) @test xvec == xvec2 @test yvec == yvec2 end function test_second_derivatives(backend; test_types=true) # explicit test that AbstractDifferentiation throws an error # don't support tuple of second derivatives @test_throws ArgumentError AD.second_derivative( backend, x -> fder(x, yscalar), (xscalar, yscalar) ) @test_throws MethodError AD.second_derivative( backend, x -> fder(x, yscalar), xscalar, yscalar ) # test if single input (no tuple works) dder1 = AD.second_derivative(backend, x -> fder(x, yscalar), xscalar) if test_types @test only(dder1) isa Float64 end @test dfderdxdx(xscalar, yscalar) ≈ only(dder1) atol = 1e-8 valscalar, dder2 = AD.value_and_second_derivative( backend, x -> fder(x, yscalar), xscalar ) if test_types @test valscalar isa Float64 @test only(dder2) isa Float64 end @test valscalar == fder(xscalar, yscalar) @test dder2 == dder1 valscalar, der, dder3 = AD.value_derivative_and_second_derivative( backend, x -> fder(x, yscalar), xscalar ) if test_types @test valscalar isa Float64 @test only(der) isa Float64 @test only(dder3) isa Float64 end @test valscalar == fder(xscalar, yscalar) @test der == AD.derivative(backend, x -> fder(x, yscalar), xscalar) @test dder3 == dder1 end function test_hessians(backend; multiple_inputs=false, test_types=true) if multiple_inputs # ... but error("multiple_inputs=true is not supported.") else # explicit test that AbstractDifferentiation throws an error # don't support tuple of Hessians @test_throws ArgumentError AD.hessian(backend, fgrad, (xvec, yvec)) @test_throws MethodError AD.hessian(backend, fgrad, xvec, yvec) end # @test dfgraddxdx(xvec,yvec) ≈ H1[1] atol=1e-10 # @test dfgraddydy(xvec,yvec) ≈ H1[2] atol=1e-10 # test if single input (no tuple works) fhess = x -> fgrad(x, yvec) hess1 = AD.hessian(backend, fhess, xvec) if test_types @test hess1[1] isa Matrix{Float64} end # test with respect to analytical solution @test dfgraddxdx(xvec, yvec) ≈ hess1[1] atol = 1e-10 valscalar, hess2 = AD.value_and_hessian(backend, fhess, xvec) if test_types @test valscalar isa Float64 @test hess2[1] isa Matrix{Float64} end @test valscalar == fgrad(xvec, yvec) @test norm.(hess2 .- hess1) == (0,) valscalar, grad, hess3 = AD.value_gradient_and_hessian(backend, fhess, xvec) if test_types @test valscalar isa Float64 @test grad[1] isa AbstractVector{Float64} @test hess3[1] isa Matrix{Float64} end @test valscalar == fgrad(xvec, yvec) @test norm.(grad .- AD.gradient(backend, fhess, xvec)) == (0,) @test norm.(hess3 .- hess1) == (0,) @test xvec == xvec2 @test yvec == yvec2 fhess2 = x -> dfgraddx(x, yvec) hess4 = AD.jacobian(backend, fhess2, xvec) if test_types @test hess4[1] isa Matrix{Float64} end @test minimum(isapprox.(hess4, hess1, atol=1e-10)) end function test_jvp( backend; multiple_inputs=true, vaugmented=false, rng=Random.GLOBAL_RNG, test_types=true ) v = (rand(rng, length(xvec)), rand(rng, length(yvec))) if multiple_inputs if vaugmented identity_like = AD.identity_matrix_like(v) vaug = map(identity_like) do identity_like_i identity_like_i .* v end pf1 = map(v -> AD.pushforward_function(backend, fjac, xvec, yvec)(v), vaug) ((valvec1, pf2x), (valvec2, pf2y)) = map( v -> AD.value_and_pushforward_function(backend, fjac, xvec, yvec)(v), vaug ) else pf1 = AD.pushforward_function(backend, fjac, xvec, yvec)(v) valvec, pf2 = AD.value_and_pushforward_function(backend, fjac, xvec, yvec)(v) ((valvec1, pf2x), (valvec2, pf2y)) = (valvec, pf2[1]), (valvec, pf2[2]) end if test_types @test valvec1 isa Vector{Float64} @test valvec2 isa Vector{Float64} @test pf1[1] isa Vector{Float64} @test pf1[2] isa Vector{Float64} @test pf2x isa Vector{Float64} @test pf2y isa Vector{Float64} end @test valvec1 == fjac(xvec, yvec) @test valvec2 == fjac(xvec, yvec) @test norm.((pf2x, pf2y) .- pf1) == (0, 0) # test with respect to analytical solution @test minimum( isapprox.(pf1, (jxvp(xvec, yvec, v[1]), jyvp(xvec, yvec, v[2])), atol=1e-10) ) @test xvec == xvec2 @test yvec == yvec2 end valvec1, pf1 = AD.value_and_pushforward_function(backend, x -> fjac(x, yvec), xvec)( v[1] ) valvec2, pf2 = AD.value_and_pushforward_function(backend, y -> fjac(xvec, y), yvec)( v[2] ) if test_types @test valvec1 isa Vector{Float64} @test valvec2 isa Vector{Float64} @test pf1[1] isa Vector{Float64} @test pf2[1] isa Vector{Float64} end @test valvec1 == fjac(xvec, yvec) @test valvec2 == fjac(xvec, yvec) @test minimum( isapprox.( (pf1[1], pf2[1]), (jxvp(xvec, yvec, v[1]), jyvp(xvec, yvec, v[2])), atol=1e-10 ), ) end function test_j′vp(backend; multiple_inputs=true, rng=Random.GLOBAL_RNG, test_types=true) # test with respect to analytical solution w = rand(rng, length(fjac(xvec, yvec))) if multiple_inputs pb1 = AD.pullback_function(backend, fjac, xvec, yvec)(w) valvec, pbf2 = AD.value_and_pullback_function(backend, fjac, xvec, yvec) pb2 = pbf2(w) if test_types @test valvec isa Vector{Float64} @test pb1[1] isa AbstractVector{Float64} @test pb1[2] isa AbstractVector{Float64} @test pb2[1] isa AbstractVector{Float64} @test pb2[2] isa AbstractVector{Float64} end @test valvec == fjac(xvec, yvec) @test norm.(pb2 .- pb1) == (0, 0) @test minimum( isapprox.(pb1, (vJxp(xvec, yvec, w), vJyp(xvec, yvec, w)), atol=1e-10) ) @test xvec == xvec2 @test yvec == yvec2 end valvec1, pbf1 = AD.value_and_pullback_function(backend, x -> fjac(x, yvec), xvec) pb1 = pbf1(w) valvec2, pbf2 = AD.value_and_pullback_function(backend, y -> fjac(xvec, y), yvec) pb2 = pbf2(w) if test_types @test valvec1 isa Vector{Float64} @test valvec2 isa Vector{Float64} @test pb1[1] isa AbstractVector{Float64} @test pb2[1] isa AbstractVector{Float64} end @test valvec1 == fjac(xvec, yvec) @test valvec2 == fjac(xvec, yvec) @test minimum( isapprox.((pb1[1], pb2[1]), (vJxp(xvec, yvec, w), vJyp(xvec, yvec, w)), atol=1e-10) ) end function test_lazy_derivatives(backend; multiple_inputs=true) # single input function der1 = AD.derivative(backend, x -> fder(x, yscalar), xscalar) lazyder = AD.LazyDerivative(backend, x -> fder(x, yscalar), xscalar) # multiplication with scalar @test lazyder * yscalar == der1 .* yscalar @test lazyder * yscalar isa Tuple @test yscalar * lazyder == yscalar .* der1 @test yscalar * lazyder isa Tuple # multiplication with array @test lazyder * yvec == (der1 .* yvec,) @test lazyder * yvec isa Tuple @test yvec * lazyder == (yvec .* der1,) @test yvec * lazyder isa Tuple # multiplication with tuple @test lazyder * (yscalar,) == lazyder * yscalar @test lazyder * (yvec,) == lazyder * yvec @test (yscalar,) * lazyder == yscalar * lazyder @test (yvec,) * lazyder == yvec * lazyder # two input function if multiple_inputs der1 = AD.derivative(backend, fder, xscalar, yscalar) lazyder = AD.LazyDerivative(backend, fder, (xscalar, yscalar)) # multiplication with scalar @test lazyder * yscalar == der1 .* yscalar @test lazyder * yscalar isa Tuple @test yscalar * lazyder == yscalar .* der1 @test yscalar * lazyder isa Tuple # multiplication with array @test lazyder * yvec == (der1[1] * yvec, der1[2] * yvec) @test lazyder * yvec isa Tuple @test yvec * lazyder == (yvec * der1[1], yvec * der1[2]) @test lazyder * yvec isa Tuple # multiplication with tuple @test_throws AssertionError lazyder * (yscalar,) @test_throws AssertionError lazyder * (yvec,) @test_throws AssertionError (yscalar,) * lazyder @test_throws AssertionError (yvec,) * lazyder end end function test_lazy_gradients(backend; multiple_inputs=true) # single input function grad1 = AD.gradient(backend, x -> fgrad(x, yvec), xvec) lazygrad = AD.LazyGradient(backend, x -> fgrad(x, yvec), xvec) # multiplication with scalar @test norm.(lazygrad * yscalar .- grad1 .* yscalar) == (0,) @test lazygrad * yscalar isa Tuple @test norm.(yscalar * lazygrad .- yscalar .* grad1) == (0,) @test yscalar * lazygrad isa Tuple # multiplication with tuple @test lazygrad * (yscalar,) == lazygrad * yscalar @test (yscalar,) * lazygrad == yscalar * lazygrad # two input function if multiple_inputs grad1 = AD.gradient(backend, fgrad, xvec, yvec) lazygrad = AD.LazyGradient(backend, fgrad, (xvec, yvec)) # multiplication with scalar @test norm.(lazygrad * yscalar .- grad1 .* yscalar) == (0, 0) @test lazygrad * yscalar isa Tuple @test norm.(yscalar * lazygrad .- yscalar .* grad1) == (0, 0) @test yscalar * lazygrad isa Tuple # multiplication with tuple @test_throws AssertionError lazygrad * (yscalar,) == lazygrad * yscalar @test_throws AssertionError (yscalar,) * lazygrad == yscalar * lazygrad end end function test_lazy_jacobians( backend; multiple_inputs=true, vaugmented=false, rng=Random.GLOBAL_RNG ) # single input function jac1 = AD.jacobian(backend, x -> fjac(x, yvec), xvec) lazyjac = AD.LazyJacobian(backend, x -> fjac(x, yvec), xvec) # multiplication with scalar @test norm.(lazyjac * yscalar .- jac1 .* yscalar) == (0,) @test lazyjac * yscalar isa Tuple @test norm.(yscalar * lazyjac .- yscalar .* jac1) == (0,) @test yscalar * lazyjac isa Tuple w = rand(rng, length(fjac(xvec, yvec))) v = (rand(rng, length(xvec)), rand(rng, length(xvec))) # vjp pb1 = (vJxp(xvec, yvec, w),) res = w' * lazyjac @test minimum(isapprox.(pb1, res, atol=1e-10)) @test res isa Tuple # jvp pf1 = (jxvp(xvec, yvec, v[1]),) res = lazyjac * v[1] @test minimum(isapprox.(pf1, res, atol=1e-10)) @test res isa Tuple # two input function if multiple_inputs jac1 = AD.jacobian(backend, fjac, xvec, yvec) lazyjac = AD.LazyJacobian(backend, fjac, (xvec, yvec)) # multiplication with scalar @test norm.(lazyjac * yscalar .- jac1 .* yscalar) == (0, 0) @test lazyjac * yscalar isa Tuple @test norm.(yscalar * lazyjac .- yscalar .* jac1) == (0, 0) @test yscalar * lazyjac isa Tuple # vjp pb1 = (vJxp(xvec, yvec, w), vJyp(xvec, yvec, w)) res = w'lazyjac @test minimum(isapprox.(pb1, res, atol=1e-10)) @test res isa Tuple # jvp pf1 = (jxvp(xvec, yvec, v[1]), jyvp(xvec, yvec, v[2])) if vaugmented identity_like = AD.identity_matrix_like(v) vaug = map(identity_like) do identity_like_i identity_like_i .* v end res = map(v -> (lazyjac * v)[1], vaug) else res = lazyjac * v end @test minimum(isapprox.(pf1, res, atol=1e-10)) @test res isa Tuple end end function test_lazy_hessians(backend; multiple_inputs=true, rng=Random.GLOBAL_RNG) # fdm_backend not used here yet.. # single input function fhess = x -> fgrad(x, yvec) hess1 = (dfgraddxdx(xvec, yvec),) lazyhess = AD.LazyHessian(backend, fhess, xvec) # multiplication with scalar @test minimum(isapprox.(lazyhess * yscalar, hess1 .* yscalar, atol=1e-10)) @test lazyhess * yscalar isa Tuple # multiplication with scalar @test minimum(isapprox.(yscalar * lazyhess, yscalar .* hess1, atol=1e-10)) @test yscalar * lazyhess isa Tuple w = rand(rng, length(xvec)) v = rand(rng, length(xvec)) # Hvp Hv = map(h -> h * v, hess1) res = lazyhess * v @test minimum(isapprox.(Hv, res, atol=1e-10)) @test res isa Tuple # H′vp wH = map(h -> h' * w, hess1) res = w' * lazyhess @test minimum(isapprox.(wH, res, atol=1e-10)) @test res isa Tuple end
AbstractDifferentiation
https://github.com/JuliaDiff/AbstractDifferentiation.jl.git
[ "MIT" ]
0.6.2
d29ce82ed1d4c37135095e1a4d799c93d7be2361
code
1305
using AbstractDifferentiation using Test using Tracker @testset "TrackerBackend" begin backends = [@inferred(AD.TrackerBackend())] @testset for backend in backends @testset "errors when nested" begin @test_throws ArgumentError AD.second_lowest(backend) @test_throws ArgumentError AD.hessian(backend, sum, randn(3)) end @testset "primal_value for array of tracked reals" begin @test AD.primal_value([Tracker.TrackedReal(1.0)]) isa Vector{Float64} @test AD.primal_value(fill(Tracker.TrackedReal(1.0), 1, 1)) isa Matrix{Float64} end @testset "Derivative" begin test_derivatives(backend) end @testset "Gradient" begin test_gradients(backend) end @testset "Jacobian" begin test_jacobians(backend) end @testset "jvp" begin test_jvp(backend) end @testset "j′vp" begin test_j′vp(backend) end @testset "Lazy Derivative" begin test_lazy_derivatives(backend) end @testset "Lazy Gradient" begin test_lazy_gradients(backend) end @testset "Lazy Jacobian" begin test_lazy_jacobians(backend) end end end
AbstractDifferentiation
https://github.com/JuliaDiff/AbstractDifferentiation.jl.git
[ "MIT" ]
0.6.2
d29ce82ed1d4c37135095e1a4d799c93d7be2361
docs
2553
# AbstractDifferentiation [![Stable](https://img.shields.io/badge/docs-stable-blue.svg)](https://JuliaDiff.github.io/AbstractDifferentiation.jl/stable) [![Dev](https://img.shields.io/badge/docs-dev-blue.svg)](https://JuliaDiff.github.io/AbstractDifferentiation.jl/dev) [![CI](https://github.com/JuliaDiff/AbstractDifferentiation.jl/actions/workflows/CI.yml/badge.svg?branch=master)](https://github.com/JuliaDiff/AbstractDifferentiation.jl/actions/workflows/CI.yml?query=branch%3Amaster) [![Coverage](https://codecov.io/gh/JuliaDiff/AbstractDifferentiation.jl/branch/master/graph/badge.svg)](https://codecov.io/gh/JuliaDiff/AbstractDifferentiation.jl) [![Code Style: Blue](https://img.shields.io/badge/code%20style-blue-4495d1.svg)](https://github.com/invenia/BlueStyle) [![ColPrac: Contributor's Guide on Collaborative Practices for Community Packages](https://img.shields.io/badge/ColPrac-Contributor%27s%20Guide-blueviolet)](https://github.com/SciML/ColPrac) ## Motivation This is a package that implements an abstract interface for differentiation in Julia. This is particularly useful for implementing abstract algorithms requiring derivatives, gradients, jacobians, Hessians or multiple of those without depending on specific automatic differentiation packages' user interfaces. Julia has more (automatic) differentiation packages than you can count on 2 hands. Different packages have different user interfaces. Therefore, having a backend-agnostic interface to request the function value and its gradient for example is necessary to avoid a combinatorial explosion of code when trying to support every differentiation package in Julia in every algorithm package requiring gradients. For higher order derivatives, the situation is even more dire since you can combine any 2 differentiation backends together to create a new higher-order backend. ## Getting started - If you are an autodiff user and want to write code in a backend-agnostic way, read the _user guide_ in the docs. - If you are an autodiff developer and want your backend to implement the interface, read the _implementer guide_ in the docs (still in construction). ## Citing this package If you use this package in your work, please cite the package: ```bib @article{schafer2021abstractdifferentiation, title={AbstractDifferentiation. jl: Backend-Agnostic Differentiable Programming in Julia}, author={Sch{\"a}fer, Frank and Tarek, Mohamed and White, Lyndon and Rackauckas, Chris}, journal={NeurIPS 2021 Differentiable Programming Workshop}, year={2021} } ```
AbstractDifferentiation
https://github.com/JuliaDiff/AbstractDifferentiation.jl.git
[ "MIT" ]
0.6.2
d29ce82ed1d4c37135095e1a4d799c93d7be2361
docs
1857
# Implementer guide !!! warning "Work in progress" Come back later! ## The macro `@primitive` To implement the `AbstractDifferentiation` interface for your backend, you only _need_ to provide a "primitive" from which the rest of the functions can be deduced. However, for performance reasons, you _can_ implement more of the interface to make certain calls faster. At the moment, the only primitives supported are `AD.pushforward_function` and `AD.value_and_pullback_function`. The `AD.@primitive` macro uses the provided function to implement `AD.jacobian`, and all the other functions follow. ```julia AD.@primitive function AD.myprimitive(ab::MyBackend, f, xs...) # write your code here end ``` See the backend-specific extensions in the `ext/` folder of the repository for example implementations. ## Function dependency graph These details are not part of the public API and are expected to change. They are just listed here to help readers figure out the code structure: - `jacobian` has no default implementation - `derivative` calls `jacobian` - `gradient` calls `jacobian` - `hessian` calls `jacobian` and `gradient` - `second_derivative` calls `derivative` - `value_and_jacobian` calls `jacobian` - `value_and_derivative` calls `value_and_jacobian` - `value_and_gradient` calls `value_and_jacobian` - `value_and_hessian` calls `jacobian` and `gradient` - `value_and_second_derivative` calls `second_derivative` - `value_gradient_and_hessian` calls `value_and_jacobian` and `gradient` - `value_derivative_and_second_derivative` calls `value_and_derivative` and `second_derivative` - `pushforward_function` calls `jacobian` - `value_and_pushforward_function` calls `pushforward_function` - `pullback_function` calls `value_and_pullback_function` - `value_and_pullback_function` calls `gradient`
AbstractDifferentiation
https://github.com/JuliaDiff/AbstractDifferentiation.jl.git
[ "MIT" ]
0.6.2
d29ce82ed1d4c37135095e1a4d799c93d7be2361
docs
5025
# User guide The list of functions on this page is the officially supported differentiation interface in `AbstractDifferentiation`. ## Loading `AbstractDifferentiation` To load `AbstractDifferentiation`, it is recommended to use ```julia import AbstractDifferentiation as AD ``` With the `AD` alias you can access names inside of `AbstractDifferentiation` using `AD.<>` instead of typing the long name `AbstractDifferentiation`. ## `AbstractDifferentiation` backends To use `AbstractDifferentiation`, first construct a backend instance `ab::AD.AbstractBackend` using your favorite differentiation package in Julia that supports `AbstractDifferentiation`. Here's an example: ```jldoctest julia> import AbstractDifferentiation as AD, Zygote julia> backend = AD.ZygoteBackend(); julia> f(x) = log(sum(exp, x)); julia> AD.gradient(backend, f, collect(1:3)) ([0.09003057317038046, 0.2447284710547977, 0.665240955774822],) ``` The following backends are temporarily made available by `AbstractDifferentiation` as soon as their corresponding package is loaded (thanks to [weak dependencies](https://pkgdocs.julialang.org/dev/creating-packages/#Weak-dependencies) on Julia ≥ 1.9 and [Requires.jl](https://github.com/JuliaPackaging/Requires.jl) on older Julia versions): ```@docs AbstractDifferentiation.ReverseDiffBackend AbstractDifferentiation.ReverseRuleConfigBackend AbstractDifferentiation.FiniteDifferencesBackend AbstractDifferentiation.ZygoteBackend AbstractDifferentiation.ForwardDiffBackend AbstractDifferentiation.TrackerBackend ``` In the long term, these backend objects (and many more) will be defined within their respective packages to enforce the `AbstractDifferentiation` interface. This is already the case for: - `Diffractor.DiffractorForwardBackend()` for [Diffractor.jl](https://github.com/JuliaDiff/Diffractor.jl) in forward mode For higher order derivatives, you can build higher order backends using `AD.HigherOrderBackend`. ```@docs AbstractDifferentiation.HigherOrderBackend ``` ## Derivatives The following list of functions can be used to request the derivative, gradient, Jacobian, second derivative or Hessian without the function value. ```@docs AbstractDifferentiation.derivative AbstractDifferentiation.gradient AbstractDifferentiation.jacobian AbstractDifferentiation.second_derivative AbstractDifferentiation.hessian ``` ## Value and derivatives The following list of functions can be used to request the function value along with its derivative, gradient, Jacobian, second derivative, or Hessian. You can also request the function value, its derivative (or its gradient) and its second derivative (or Hessian) for single-input functions. ```@docs AbstractDifferentiation.value_and_derivative AbstractDifferentiation.value_and_gradient AbstractDifferentiation.value_and_jacobian AbstractDifferentiation.value_and_second_derivative AbstractDifferentiation.value_and_hessian AbstractDifferentiation.value_derivative_and_second_derivative AbstractDifferentiation.value_gradient_and_hessian ``` ## Jacobian-vector products This operation goes by a few names, like "pushforward". Refer to the [ChainRules documentation](https://juliadiff.org/ChainRulesCore.jl/stable/#The-propagators:-pushforward-and-pullback) for more on terminology. For a single input, single output function `f` with a Jacobian `J`, the pushforward operator `pf_f` is equivalent to applying the function `v -> J * v` on a (tangent) vector `v`. The following functions can be used to request a function that returns the pushforward operator/function. In order to request the pushforward function `pf_f` of a function `f` at the inputs `xs`, you can use either of: ```@docs AbstractDifferentiation.pushforward_function AbstractDifferentiation.value_and_pushforward_function ``` ## Vector-Jacobian products This operation goes by a few names, like "pullback". Refer to the [ChainRules documentation](https://juliadiff.org/ChainRulesCore.jl/stable/#The-propagators:-pushforward-and-pullback) for more on terminology. For a single input, single output function `f` with a Jacobian `J`, the pullback operator `pb_f` is equivalent to applying the function `v -> v' * J` on a (co-tangent) vector `v`. The following functions can be used to request the pullback operator/function with or without the function value. In order to request the pullback function `pb_f` of a function `f` at the inputs `xs`, you can use either of: ```@docs AbstractDifferentiation.pullback_function AbstractDifferentiation.value_and_pullback_function ``` ## Lazy operators You can also get a struct for the lazy derivative/gradient/Jacobian/Hessian of a function. You can then use the `*` operator to apply the lazy operator on a value or tuple of the correct shape. To get a lazy derivative/gradient/Jacobian/Hessian use any one of: ```@docs AbstractDifferentiation.lazy_derivative AbstractDifferentiation.lazy_gradient AbstractDifferentiation.lazy_jacobian AbstractDifferentiation.lazy_hessian ``` ## Index ```@index ```
AbstractDifferentiation
https://github.com/JuliaDiff/AbstractDifferentiation.jl.git
[ "Apache-2.0" ]
0.4.0
86947d8739d1a9f53612ab0a6023d4fbf214e3c9
code
559
using Coverage # process '*.cov' files coverage = process_folder() # defaults to src/; alternatively, supply the folder name as argument LCOV.writefile("lcov.info", coverage) # process '*.info' files coverage = merge_coverage_counts( coverage, filter!( let prefixes = (joinpath(pwd(), "src", ""),) c -> any(p -> startswith(c.filename, p), prefixes) end, LCOV.readfolder("test"), ), ) # Get total coverage for all Julia files covered_lines, total_lines = get_summary(coverage) @show covered_lines, total_lines
DeprecateKeywords
https://github.com/MilesCranmer/DeprecateKeywords.jl.git
[ "Apache-2.0" ]
0.4.0
86947d8739d1a9f53612ab0a6023d4fbf214e3c9
code
1399
using DeprecateKeywords using Documenter DocMeta.setdocmeta!(DeprecateKeywords, :DocTestSetup, :(using DeprecateKeywords); recursive=true) readme = open(dirname(@__FILE__) * "/../README.md") do io read(io, String) end # We replace every instance of <img src="IMAGE" ...> with ![](IMAGE). readme = replace(readme, r"<img src=\"([^\"]+)\"[^>]+>.*" => s"![](\1)") # Then, we remove any line with "<div" on it: readme = replace(readme, r"<[/]?div.*" => s"") # Finally, we read in file docs/src/index_base.md: index_base = open(dirname(@__FILE__) * "/src/index_base.md") do io read(io, String) end # And then we create "/src/index.md": open(dirname(@__FILE__) * "/src/index.md", "w") do io write(io, readme) write(io, "\n") write(io, index_base) end makedocs(; modules=[DeprecateKeywords], authors="MilesCranmer <[email protected]> and contributors", repo="https://github.com/MilesCranmer/DeprecateKeywords.jl/blob/{commit}{path}#{line}", sitename="DeprecateKeywords.jl", format=Documenter.HTML(; prettyurls=get(ENV, "CI", "false") == "true", canonical="https://astroautomata.com/DeprecateKeywords.jl", edit_link="master", assets=String[] ), pages=[ "Home" => "index.md", "API" => "api.md", ] ) deploydocs(; repo="github.com/MilesCranmer/DeprecateKeywords.jl", devbranch="master" )
DeprecateKeywords
https://github.com/MilesCranmer/DeprecateKeywords.jl.git
[ "Apache-2.0" ]
0.4.0
86947d8739d1a9f53612ab0a6023d4fbf214e3c9
code
4153
module DeprecateKeywords export @depkws using MacroTools """ @depkws def Macro to deprecate keyword arguments. Use by wrapping a function signature, while using `@deprecate(old_kw, new_kw)` within the function signature to deprecate. # Examples ```julia @depkws function f(; a=2, @deprecate(b, a)) a end ``` """ macro depkws(def) return esc(_depkws(def)) end abstract type DeprecatedDefault end function _depkws(def) sdef = splitdef(def) func_symbol = Expr(:quote, sdef[:name]) # Double quote for expansion new_symbols = Symbol[] deprecated_symbols = Symbol[] kwargs_to_remove = Int[] for (i, param) in enumerate(sdef[:kwargs]) isa(param, Symbol) && continue # Look for @deprecated macro: if param.head == :macrocall && param.args[1] == Symbol("@deprecate") # e.g., params.args[2] is the line number deprecated_symbol = param.args[end-1] new_symbol = param.args[end] if !isa(new_symbol, Symbol) # Remove line numbers nodes: clean_param = deepcopy(param) filter!(x -> !isa(x, LineNumberNode), clean_param.args) error( "The expression\n $(clean_param)\ndoes not appear to be two symbols in a `@deprecate`. This can happen if you use `@deprecate` in a function " * "definition without " * "parentheses, such as `f(; @deprecate a b, c=2)`. Instead, you should write `f(; (@deprecate a b), c=2)` or alternatively " * "`f(; @deprecate(a, b), c=2)`.)" ) end push!(deprecated_symbols, deprecated_symbol) push!(new_symbols, new_symbol) push!(kwargs_to_remove, i) end end deleteat!(sdef[:kwargs], kwargs_to_remove) # Add deprecated kws: for deprecated_symbol in deprecated_symbols pushfirst!(sdef[:kwargs], Expr(:kw, deprecated_symbol, DeprecatedDefault)) end symbol_mapping = Dict(new_symbols .=> deprecated_symbols) # Update new symbols to use deprecated kws if passed: for (i, kw) in enumerate(sdef[:kwargs]) no_default_type_assertion = !isa(kw, Symbol) && kw.head != :kw no_default_naked = isa(kw, Symbol) no_default = no_default_naked || no_default_type_assertion (kw, type_assertion) = if no_default_type_assertion @assert kw.head == :(::) # Remove type assertion from keyword; we will # assert it later. kw.args else (kw, Nothing) end new_kw, default = if no_default (kw, DeprecatedDefault) else (kw.args[1], kw.args[2]) end _get_symbol(new_kw) in deprecated_symbols && continue !(_get_symbol(new_kw) in new_symbols) && continue deprecated_symbol = symbol_mapping[_get_symbol(new_kw)] depwarn_string = "Keyword argument `$(deprecated_symbol)` is deprecated. Use `$(_get_symbol(new_kw))` instead." new_kwcall = quote if $deprecated_symbol !== $(DeprecatedDefault) Base.depwarn($depwarn_string, $func_symbol) $deprecated_symbol else $default end end sdef[:kwargs][i] = Expr(:kw, new_kw, new_kwcall) if no_default_type_assertion pushfirst!( sdef[:body].args, Expr(:(::), _get_symbol(new_kw), type_assertion) ) end if no_default # Propagate UndefKeywordError pushfirst!( sdef[:body].args, Expr(:if, Expr(:call, :(===), _get_symbol(new_kw), DeprecatedDefault), Expr(:call, :throw, Expr(:call, :UndefKeywordError, QuoteNode(_get_symbol(new_kw))) ) ) ) end end return combinedef(sdef) end # This is used to go from a::Int to a _get_symbol(e::Expr) = first(map(_get_symbol, e.args)) _get_symbol(e::Symbol) = e end
DeprecateKeywords
https://github.com/MilesCranmer/DeprecateKeywords.jl.git
[ "Apache-2.0" ]
0.4.0
86947d8739d1a9f53612ab0a6023d4fbf214e3c9
code
1740
using Test using DeprecateKeywords @testset "Basic" begin @depkws function f(; a=2, @deprecate b a) a end @test f(a=1) === 1 VERSION >= v"1.8" && @test_warn "Keyword argument `b` is deprecated. Use `a` instead." (@test f(b=1) == 1) @test f(b=nothing) === nothing end @testset "Multi-param" begin @depkws function g(; α=2, γ=4, @deprecate(β, α), @deprecate(δ, γ)) α + γ end @test g() === 6 @test g(α=1, γ=3) === 4 if VERSION >= v"1.8" @test_warn "Keyword argument" (@test g(β=1, γ=3) === 4) @test_warn "Keyword argument" (@test g(α=1, δ=3) === 4) @test_warn "Keyword argument `β`" (@test g(β=1, δ=3) === 4) end end @testset "With types" begin @depkws h(; (@deprecate old_kw new_kw), new_kw::Int=3) = new_kw @test h() === 3 @test h(new_kw=1) === 1 VERSION >= v"1.8" && @test_warn "Keyword argument" (@test h(old_kw=1) === 1) end @testset "Error catching" begin if VERSION >= v"1.8" # Incorrect scope: @test_throws LoadError (@eval @depkws k(; @deprecate a b, b = 10) = b) end # Use type assertion with no default set: @depkws y(; a::Int, (@deprecate b a)) = a @test y(a=1) == 1 VERSION >= v"1.8" && @test_warn "Keyword argument" (@test y(b=1) == 1) # Type assertion should still work: @test_throws TypeError y(a=1.0) # We shouldn't interfere with regular kwargs: @depkws y2(; a::Int) = a @test y2(a=1) == 1 end @testset "No default set" begin @depkws k(x; (@deprecate a b), b) = x + b VERSION >= v"1.8" && @test_throws UndefKeywordError k(1.0) VERSION >= v"1.8" && @test_warn "Keyword argument" (@test k(1.0; a=2.0) == 3.0) @test k(1.0; b=2.0) == 3.0 end
DeprecateKeywords
https://github.com/MilesCranmer/DeprecateKeywords.jl.git
[ "Apache-2.0" ]
0.4.0
86947d8739d1a9f53612ab0a6023d4fbf214e3c9
docs
3458
<div align="center"> # DeprecateKeywords.jl [![Dev](https://img.shields.io/badge/docs-dev-blue.svg)](https://astroautomata.com/DeprecateKeywords.jl/dev/) [![Build Status](https://github.com/MilesCranmer/DeprecateKeywords.jl/actions/workflows/CI.yml/badge.svg?branch=master)](https://github.com/MilesCranmer/DeprecateKeywords.jl/actions/workflows/CI.yml?query=branch%3Amaster) [![Coverage](https://coveralls.io/repos/github/MilesCranmer/DeprecateKeywords.jl/badge.svg?branch=master)](https://coveralls.io/github/MilesCranmer/DeprecateKeywords.jl?branch=master) </div> [DeprecateKeywords.jl](https://github.com/MilesCranmer/DeprecateKeywords.jl) is a tiny package (77 lines) which defines a macro for keyword deprecation. While normally you can use `Base.@deprecate` for deprecating functions and *arguments*, because multiple dispatch does not apply to keywords, you actually need a separate macro for using at the original function signature. For example, let's say we wish to deprecate the keyword `old_kw1` in favor of `new_kw1`, and and `old_kw2` in favor of `new_kw2`: ```julia using DeprecateKeywords @depkws function foo(; new_kw1=2, new_kw2=3, @deprecate(old_kw1, new_kw1), @deprecate(old_kw2, new_kw2)) return new_kw1 + new_kw2 end ``` The use of normal `@deprecate` in here is syntactic sugar to help make the signature more intuitive. The `@depkws` will simply consume the `@deprecate`s and and interpret their contents. With this, we can use both the old and new keywords. If using the old keyword, it will automatically be passed to the new keyword, but with a deprecation warning. ```julia julia> foo(new_kw1=1, new_kw2=2) 3 julia> foo(old_kw1=1, new_kw2=2) ┌ Warning: Keyword argument `old_kw1` is deprecated. Use `new_kw1` instead. │ caller = top-level scope at REPL[5]:1 └ @ Core REPL[5]:1 3 ``` (The warning uses `depwarn`, so is only visible if one starts with `--depwarn=yes`) Here's what this actually gets expanded to: ```julia function foo(; old_kw2 = DeprecatedDefault, old_kw1 = DeprecatedDefault, new_kw1 = begin if old_kw1 !== DeprecatedDefault Base.depwarn("Keyword argument `old_kw1` is deprecated. Use `new_kw1` instead.", :foo) old_kw1 else 2 end end, new_kw2 = begin if old_kw2 !== DeprecatedDefault Base.depwarn("Keyword argument `old_kw2` is deprecated. Use `new_kw2` instead.", :foo) old_kw2 else 3 end end) new_kw1 + new_kw2 end ``` ### Other notes/warnings - I'm not 100% sure if/when this might prevent Julia from specializing to types, or if it is different from how you would set this up manually. So just be wary of major type inference issues when passing the deprecated keywords. - This does not check whether the user passes both keyword arguments. (It might be better to use `kws...` and then pass through the old keywords within the function body. I didn't do this in my current approach so that the user could still use `kws...` in the signature if they wish.) - This uses the very nice [MacroTools.jl](https://github.com/FluxML/MacroTools.jl) package to help make the macro generic. Contributions very much appreciated. I'm also open to better syntax suggestions!
DeprecateKeywords
https://github.com/MilesCranmer/DeprecateKeywords.jl.git
[ "Apache-2.0" ]
0.4.0
86947d8739d1a9f53612ab0a6023d4fbf214e3c9
docs
30
# Usage ```@docs @depkws ```
DeprecateKeywords
https://github.com/MilesCranmer/DeprecateKeywords.jl.git
[ "MIT" ]
0.1.1
731532d7a03845a784a5a5e4e9a7b4993830032c
code
870
using PrettyTests using Documenter using DocumenterInterLinks DocMeta.setdocmeta!(PrettyTests, :DocTestSetup, :(using PrettyTests; PrettyTests.disable_failure_styling()); recursive=true) links = InterLinks( "Julia" => "https://docs.julialang.org/en/v1/", "numpy" => "https://numpy.org/doc/stable/", "python" => "https://docs.python.org/3/" ); makedocs(; modules=[PrettyTests], authors="Ted Papalexopoulos", sitename="PrettyTests.jl", doctest = true, checkdocs = :exports, format=Documenter.HTML(; prettyurls = true, canonical="https://tpapalex.github.io/PrettyTests.jl", edit_link="dev", assets=String[], ), pages=[ "Home" => "index.md", "Reference" => "reference.md", ], plugins=[ links ] ) deploydocs(; repo="github.com/tpapalex/PrettyTests.jl" )
PrettyTests
https://github.com/tpapalex/PrettyTests.jl.git
[ "MIT" ]
0.1.1
731532d7a03845a784a5a5e4e9a7b4993830032c
code
321
module PrettyTests using Test, Format using Base.Meta: isexpr using Test: Returned, Threw, Broken using Test: get_testset, record using Test: do_test, do_broken_test export @test_sets export @test_all include("helpers.jl") include("test_sets.jl") include("test_all.jl") end
PrettyTests
https://github.com/tpapalex/PrettyTests.jl.git
[ "MIT" ]
0.1.1
731532d7a03845a784a5a5e4e9a7b4993830032c
code
4640
################### Global behavior variables ################## # Whether expressions should be color coded in the output. const STYLED_FAILURES = Ref{Bool}(get(stdout, :color, false)) # Color cycle used for expression coloring const EXPRESSION_COLORS = ( :light_cyan, :light_magenta, :light_blue, :light_green, ) # Utility to extract the i'th color of the cycle: get_color(i::Integer) = EXPRESSION_COLORS[(i - 1) % length(EXPRESSION_COLORS) + 1] """ disable_failure_styling() Globally disable ANSI color styling in macro failure messages. All tests macros that are run after this function will print failure messages in plain text (or until `enable_failure_styling()` is called). The function can be called when the module is loaded, e.g. in a `runtests.jl` file, to disable styling throughout a test suite. Alternatively, it can be called at the beginning of a specific [`@testset`](@extref Julia Test.@testset) and renabled at the end to disable styling for that specific test set. See also [`enable_failure_styling`](@ref). """ function disable_failure_styling() STYLED_FAILURES[] = false end """ enable_failure_styling() Globally enable ANSI color styling in macro failure messages. All test macros that are run after this function will print failure messages with ANSI color styling for readability (or until `disable_failure_styling()` is called). See also [`disable_failure_styling`](@ref). """ function enable_failure_styling() STYLED_FAILURES[] = true end # Number of failures that are printed in a `@test_all` failures (via `print_failures()`). const MAX_PRINT_FAILURES = Ref{Int}(10) """ set_max_print_failures(n=10) Globaly sets the maximum number of individual failures that will be printed in a failed [`@test_all`](@ref) test to `n`. If `n` is `nothing`, all failures are printed. If `n == 0`, only a summary is printed. By default, if there are more than `n=10` failing elements in a `@test_all`, the macro only shows messages for the first and last `5`. Calling this function changes `n` globally for all subsequent tests, or until the function is called again. The function returns the previous value of `n` so that it can be restored if desired. # Examples ```@julia-repl julia> @test_all 1:3 .== 0 Test Failed at none:1 Expression: all(1:3 .== 0) Evaluated: false Argument: 3-element BitVector, 3 failures: [1]: 1 == 0 ===> false [2]: 2 == 0 ===> false [3]: 3 == 0 ===> false julia> set_max_print_failures(0); julia> @test_all 1:3 .== 0 Test Failed at none:1 Expression: all(1:3 .== 0) Evaluated: false Argument: 3-element BitVector, 3 failures ``` """ function set_max_print_failures(n::Integer=10) @assert n >= 0 old_n = MAX_PRINT_FAILURES[] MAX_PRINT_FAILURES[] = n return old_n end set_max_print_failures(::Nothing) = set_max_print_failures(typemax(Int)) # Function to create a new IOBuffer() wrapped in an IOContext for creating # failure messages. function failure_ioc(; compact::Bool=true, limit::Bool=true, override_color::Bool=false, typeinfo=nothing ) io = IOBuffer() if typeinfo === nothing io = IOContext(io, :compact => compact, :limit => limit, :color => STYLED_FAILURES[] || override_color ) else io = IOContext(io, :compact => compact, :limit => limit, :typeinfo => typeinfo, :color => STYLED_FAILURES[] || override_color ) end return io end stringify!(io::IOContext) = String(take!(io.io)) # Internal function called on a test macros kws... to extract broken and skip keywords. # Modified from Test.@test macro processing function extract_broken_skip_keywords(kws...) # Collect the broken/skip keywords and remove them from the rest of keywords broken = [kw.args[2] for kw in kws if isa(kw, Expr) && kw.head == :(=) && kw.args[1] === :broken] skip = [kw.args[2] for kw in kws if isa(kw, Expr) && kw.head == :(=) && kw.args[1] === :skip] kws = filter(kw -> !isa(kw, Expr) || (kw.args[1] ∉ (:skip, :broken)), kws) # Validation of broken/skip keywords for (kw, name) in ((broken, :broken), (skip, :skip)) if length(kw) > 1 error("invalid test macro call: cannot set $(name) keyword multiple times") end end if length(skip) > 0 && length(broken) > 0 error("invalid test macro call: cannot set both skip and broken keywords") end return kws, broken, skip end
PrettyTests
https://github.com/tpapalex/PrettyTests.jl.git
[ "MIT" ]
0.1.1
731532d7a03845a784a5a5e4e9a7b4993830032c
code
26197
const DISPLAYABLE_FUNCS = Set{Symbol}([ :isequal, :isapprox, :occursin, :startswith, :endswith, :isempty, :contains, :ismissing, :isnan, :isinf, :isfinite, :iseven, :isodd, :isreal, :isa, :ifelse, :≈, :≉, ]) const COMPARISON_PREC = Base.operator_precedence(:(==)) const OPS_LOGICAL = (:.&, :.|, :.⊻, :.⊽) const OPS_APPROX = (:.≈, :.≉) @nospecialize #################### Pre-processing expressions ################### # Functions to preprocess expressions for `@test_all` macro. isvecoperator(x::Symbol) = Meta.isoperator(x) && first(string(x)) == '.' function unvecoperator_string(x::Symbol) sx = string(x) if startswith(sx, ".") return sx[2:end] else return sx end end # Used only on :call or :. args to check if args expression is displayable: isdisplayableargexpr(ex) = !isexpr(ex, (:kw, :parameters, :...)) # Preprocess `@test_all` expressions of function calls with trailing keyword arguments, # so that e.g. `@test_all a .≈ b atol=ε` means `@test_all .≈(a, b, atol=ε)`. # If `ex` is a negation expression (either a `!` or `.!` call), keyword arguments will # be added to the inner expression, so that `@test_all .!(a .≈ b) atol=ε` means # `@test_all .!(.≈(a, b, atol=ε))`. pushkeywords!(ex) = ex function pushkeywords!(ex, kws...) # Recursively dive through negations orig_ex = ex if isexpr(ex, :call, 2) && (ex.args[1] === :! || ex.args[1] === :.!) ex = ex.args[2] end # Check that inner expression is a :call or :. if !isexpr(ex, (:call, :.)) error("invalid test macro call: @test_all $ex does not accept keyword arguments") end # Push keywords to the end of arguments as keyword expressions args = ex.head === :call ? ex.args : ex.args[2].args for kw in kws if isexpr(kw, :(=)) kw.head = :kw push!(args, kw) else error("invalid test macro call: $kw is not valid keyword syntax") end end return orig_ex end # An internal function, recursively called on the @test_all expression to normalize it. function preprocess_test_all(ex) # Normalize dot comparison operator calls to :comparison expressions. # Do not if there are extra arguments or there are splats. if Meta.isexpr(ex, :call, 3) && isvecoperator(ex.args[1]::Symbol) && Base.operator_precedence(ex.args[1]) == COMPARISON_PREC && isdisplayableargexpr(ex.args[2]) && isdisplayableargexpr(ex.args[3]) ex = Expr(:comparison, ex.args[2], ex.args[1], ex.args[3]) # For displayable :call or :. expressions, push :kw expressions in :parameters to # end of arguments. elseif isexpr(ex, (:call, :.)) && ((ex.args[1]::Symbol ∈ OPS_APPROX) || (ex.args[1]::Symbol ∈ DISPLAYABLE_FUNCS)) # For :call arguments start at i = 2 # For :. they start at i = 1, inside the ex.args[2] :tuple expression args, i = ex.head === :call ? (ex.args, 2) : (ex.args[2].args, 1) # Push any :kw expressions in :parameters as trailing keywords if length(args) != 0 && isexpr(args[i], :parameters) parex = args[i] new_args = args[i+1:end] new_parex_args = [] for a in parex.args if isexpr(a, :kw) push!(new_args, a) else push!(new_parex_args) end end # If remaining :parameters, readd at beginning of args if length(new_parex_args) > 0 insert!(new_args, 1, Expr(:parameters, new_parex_args...)) end # Depending on head, recreate expression if ex.head === :call ex = Expr(:call, ex.args[1], new_args...) else ex = Expr(:., ex.args[1], Expr(:tuple, new_args...)) end end end return ex end #################### Classifying expressions ################### # The following internal functions are used to classify expressions into # certain groups that will be displayed differently by `@test_all`. # NOT expressions, e.g. !a isvecnegationexpr(ex) = isexpr(ex, :call, 2) && ex.args[1]::Symbol === :.! # Vectorized AND or OR expressions, e.g, a .&& b, a .|| c isveclogicalexpr(ex) = isexpr(ex, :call) && ex.args[1]::Symbol ∈ OPS_LOGICAL # Vectorized comparison expressions, e.g. a .== b, a .<= b .> c, a .≈ B. Note that :call # expressions with comparison ops are changed to :comparison in preprocess_test_all(). function isveccomparisonexpr(ex) if isexpr(ex, :comparison) for i in 2:2:length(ex.args) if !isvecoperator(ex.args[i]::Symbol) return false end end return true else return false end end # Special case of .≈ or .≉ calls with kws (and no splats), for formatting as comparison function isvecapproxexpr(ex) return isexpr(ex, :call) && ex.args[1]::Symbol ∈ OPS_APPROX && isdisplayableargexpr(ex.args[2]) && isdisplayableargexpr(ex.args[3]) end # Vectorized :. call to displayable function (with no splats) function isvecdisplayexpr(ex) if isexpr(ex, :., 2) && ex.args[1]::Symbol ∈ DISPLAYABLE_FUNCS && isexpr(ex.args[2], :tuple) for a in ex.args[2].args if isexpr(a, :...) return false end end return true else return false end end #################### Pretty-printing utilities ################### # An internal, IO-like object, used to dynamically produce a `Format.FormatExpr`-like # string representation of the unvectorized @test_all expression. struct Formatter ioc::IOContext{IOBuffer} parens::Bool function Formatter(parens::Bool) ioc = failure_ioc() parens && print(ioc, "(") return new(ioc, parens) end end function stringify!(fmt::Formatter) fmt.parens && print(fmt.ioc, ")") return stringify!(fmt.ioc) end function Base.print(fmt::Formatter, strs::AbstractString...; i::Integer=0) if i == 0 print(fmt.ioc, strs...) else printstyled(fmt.ioc, strs..., color=get_color(i)) end end function Base.print(fmt::Formatter, innerfmt::Formatter) print(fmt.ioc, stringify!(innerfmt)) close(innerfmt.ioc) end function Base.print(fmt::Formatter, s; i::Integer=0) print(fmt, string(s); i=i) end # Matches indenteation of TypeError in @test_all error message const _INDENT_TYPEERROR = " "; # Matches indenteation of "Evaluated:" expression in @test_all fail message const _INDENT_EVALUATED = " "; # Stringifies indices returned by findall() for pretty printing function stringify_idxs(idxs::Vector{CartesianIndex{D}}) where D maxlens = [maximum(idx -> ndigits(idx.I[d]), idxs) for d in 1:D] to_str = idx -> join(map(i -> lpad(idx.I[i], maxlens[i]), 1:D), ",") return map(to_str, idxs) end function stringify_idxs(idxs::AbstractVector{<:Integer}) maxlen = maximum(ndigits, idxs) return lpad.(string.(idxs), maxlen) end function stringify_idxs(idxs::AbstractVector) ss = string.(idxs) maxlen = maximum(length, ss) return lpad.(ss, maxlen) end # Prints the individual failures in a @test_all test, given the indices of the failures # and a function to print an individual failure. function print_failures( io::IO, idxs::AbstractVector, print_idx_failure, prefix="" ) # Depending on MAX_PRINT_FAILURES, filter the failiing indices to some subset. MAX_PRINT_FAILURES[] == 0 && return if length(idxs) > MAX_PRINT_FAILURES[] i_dots = (MAX_PRINT_FAILURES[] ÷ 2) if MAX_PRINT_FAILURES[] % 2 == 1 i_dots = i_dots + 1 idxs = idxs[[1:i_dots; end-i_dots+2:end]] else idxs = idxs[[1:i_dots; end-i_dots+1:end]] end else i_dots = 0 end # Pretty print the failures with the provided function str_idxs = stringify_idxs(idxs) for (i, idx) in enumerate(idxs) print(io, "\n", prefix, "[", str_idxs[i], "]: ") print_idx_failure(io, idx) if i == i_dots print(io, "\n", prefix, "⋮") end end return end # An internal exception type, thrown (and later caught by the `Test` infrastructure), when # non-Boolean, non-Missing values are encountered in an evaluated `@test_all` expression. # It's constructed directly from the result of evaluting the expression, and pretty-prints # the non-Boolean values. struct NonBoolTypeError <: Exception msg::String # Constructor when the evaluated expression is a vector or array: pretty-print the # the non-Boolean indices. function NonBoolTypeError(evaled::AbstractArray) io = failure_ioc(typeinfo = eltype(evaled)) # First print the summary: n_nonbool = sum(x -> x !== true && x !== false && x !== missing, evaled, init=0) summary(io, evaled) print(io, " with ", n_nonbool, " non-Boolean value", n_nonbool == 1 ? "" : "s") if MAX_PRINT_FAILURES[] == 0 return new(stringify!(io)) end # Avoid allocating vector with `findall()` if only a few failures need to be # printed. print(io, ":") if MAX_PRINT_FAILURES[] == 1 idxs = [findfirst(x -> x !== true && x !== false && x !== missing, evaled)] else idxs = findall(x -> x !== true && x !== false && x !== missing, evaled) end # Get the pretty-printing function for each index print_idx_failure = (io, idx) -> begin if evaled[idx] isa Union{Symbol,AbstractString} print(io, repr(evaled[idx])) else print(io, evaled[idx]) end printstyled(io, " ===> ", typeof(evaled[idx]), color=:light_yellow) end print_failures(io, idxs, print_idx_failure, _INDENT_TYPEERROR) return new(stringify!(io)) end function NonBoolTypeError(evaled) io = failure_ioc(typeinfo = typeof(evaled)) print(io, evaled) printstyled(io, " ===> ", typeof(evaled), color=:light_yellow) return new(stringify!(io)) end end function Base.showerror(io::IO, err::NonBoolTypeError) print(io, " TypeError: non-boolean used in boolean context") if err.msg != "" print(io, "\n Argument: ", err.msg) end end #################### Escaping arguments ################### # Internal functions to process an expression `ex` for use in `@test_all`. Recursively # builds `escargs`, the vector of "broadcasted" sub-expressions. Returns a modified # expression `ex` with references to `ARG[i]`, and two `Formatter` objects: one with # a pretty-printed string representation of `ex`, and one with python-like format # entries ("{i:s}"), that can be used to pretty-print individual failure messages. # Example: a .== b # 1) Adds `a` and `b` as escaped expressions to `escargs` # 2) Return [1] is a modified `ex` as `ARG[1] .== ARG[2]` # 3) Return [2] a Formatter with the pretty-printed string "a .== b" # 4) Return [3] a Formatter with the format string "{1:s} == {2:s}" function recurse_process!(ex, escargs::Vector{Expr}; outmost::Bool=false) ex = preprocess_test_all(ex) if isexpr(ex, :kw) return recurse_process_keyword!(ex, escargs, outmost=outmost) elseif isvecnegationexpr(ex) return recurse_process_negation!(ex, escargs, outmost=outmost) elseif isveclogicalexpr(ex) return recurse_process_logical!(ex, escargs, outmost=outmost) elseif isveccomparisonexpr(ex) return recurse_process_comparison!(ex, escargs, outmost=outmost) elseif isvecapproxexpr(ex) return recurse_process_approx!(ex, escargs, outmost=outmost) elseif isvecdisplayexpr(ex) return recurse_process_displayfunc!(ex, escargs, outmost=outmost) else return recurse_process_basecase!(ex, escargs, outmost=outmost) end end function recurse_process_basecase!(ex, escargs::Vector{Expr}; outmost::Bool=false) # Escape entire expression to args push!(escargs, esc(ex)) # Determine if parens are needed around the pretty-printed expression: parens = if outmost false elseif isexpr(ex, :call) && Meta.isbinaryoperator(ex.args[1]::Symbol) # Range definition, e.g. 1:5 if ex.args[1] === :(:) false # scalar multiplication, e.g. 100x elseif ex.args[1] === :* && length(ex.args) == 3 && isa(ex.args[2], Union{Int, Int64, Float32, Float64}) && isa(ex.args[3], Symbol) false # Other binary operator expressions else true end elseif isexpr(ex, (:&&, :||)) true else false end # Pretty-print the expression using Base.show_unquoted for the base-case: str = Formatter(parens) print(str, sprint(Base.show_unquoted, ex), i=length(escargs)) # Simplest format string {i:s} for the base-case (no parens since evaluated value # will be printed): fmt = Formatter(false) print(fmt, "{$(length(escargs)):s}", i=length(escargs)) # Replace the expression with ARG[i] ex = :(ARG[$(length(escargs))]) return ex, str, fmt end function recurse_process_keyword!(ex::Expr, escargs::Vector{Expr}; outmost::Bool=false) # Keyword argument values are pushed to escaped `args`, but should be # wrapped in a Ref() call to avoid broadcasting. push!(escargs, esc(Expr(:call, :Ref, ex.args[2]))) str = Formatter(false) print(str, ex.args[1]) print(str, "=") print(str, sprint(Base.show_unquoted, ex.args[2]), i=length(escargs)) fmt = Formatter(false) print(fmt, ex.args[1]) print(fmt, "=") print(fmt, "{$(length(escargs)):s}", i=length(escargs)) # Replace keyword argument with ARG[i].x to un-Ref() in evaluation ex.args[2] = :(ARG[$(length(escargs))].x) return ex, str, fmt end function recurse_process_negation!(ex::Expr, escargs::Vector{Expr}; outmost::Bool=false) # Recursively update the second argument ex.args[2], str_arg, fmt_arg = recurse_process!(ex.args[2], escargs) # Never requires parentheses outside the negation str = Formatter(false) print(str, ex.args[1]) print(str, str_arg) fmt = Formatter(false) print(fmt, "!") print(fmt, fmt_arg) # Escape negation operator ex.args[1] = esc(ex.args[1]) return ex, str, fmt end function recurse_process_logical!(ex::Expr, escargs::Vector{Expr}; outmost::Bool=false) str = Formatter(!outmost) fmt = Formatter(!outmost) for i in 2:length(ex.args) # Recursively update the two arguments. If a sub-expression is also logical, # there is no need to parenthesize so consider it `outmost=true`. ex.args[i], str_arg, fmt_arg = recurse_process!( ex.args[i], escargs, outmost=isveclogicalexpr(ex.args[i])) # Unless it's the first argument, print the operator i == 2 || print(str, " ", string(ex.args[1]), " ") i == 2 || print(fmt, " ", unvecoperator_string(ex.args[1]), " ") print(str, str_arg) print(fmt, fmt_arg) end # Escape the operator ex.args[1] = esc(ex.args[1]) return ex, str, fmt end function recurse_process_comparison!(ex::Expr, escargs::Vector{Expr}; outmost::Bool=false) str = Formatter(!outmost) fmt = Formatter(!outmost) # Recursively update every other argument (i.e. the terms), and # escape the operators. for i in eachindex(ex.args) if i % 2 == 1 # Term ex.args[i], str_arg, fmt_arg = recurse_process!(ex.args[i], escargs) print(str, str_arg) print(fmt, fmt_arg) else # Operator print(str, " ", string(ex.args[i]), " ") print(fmt, " ", unvecoperator_string(ex.args[i]), " ") ex.args[i] = esc(ex.args[i]) end end return ex, str, fmt end function recurse_process_approx!(ex::Expr, escargs::Vector{Expr}; outmost::Bool=false) # Recursively update both positional arguments ex.args[2], str_arg2, fmt_arg2 = recurse_process!(ex.args[2], escargs) ex.args[3], str_arg3, fmt_arg3 = recurse_process!(ex.args[3], escargs) # If outmost, format as comparison, otherwise as a function call str = Formatter(false) print(str, string(ex.args[1])) print(str, "(") print(str, str_arg2) print(str, ", ") print(str, str_arg3) print(str, ", ") fmt = Formatter(false) if outmost print(fmt, fmt_arg2) print(fmt, " ", unvecoperator_string(ex.args[1]), " ") print(fmt, fmt_arg3) print(fmt, " (") else print(fmt, unvecoperator_string(ex.args[1])) print(fmt, "(") print(fmt, fmt_arg2) print(fmt, ", ") print(fmt, fmt_arg3) print(fmt, ", ") end # Recursively update with keyword arguments for i in 4:length(ex.args) ex.args[i], str_arg, fmt_arg = recurse_process!(ex.args[i], escargs) print(str, str_arg) print(fmt, fmt_arg) i == length(ex.args) || print(str, ", ") i == length(ex.args) || print(fmt, ", ") end print(str, ")") print(fmt, ")") # Escape function ex.args[1] = esc(ex.args[1]) return ex, str, fmt end function recurse_process_displayfunc!(ex::Expr, escargs::Vector{Expr}; outmost::Bool=false) ex_args = ex.args[2].args str = Formatter(false) fmt = Formatter(false) print(str, string(ex.args[1]), ".(") print(fmt, string(ex.args[1]), "(") for i in eachindex(ex_args) ex_args[i], str_arg, fmt_arg = recurse_process!(ex_args[i], escargs, outmost=true) print(str, str_arg) print(fmt, fmt_arg) i == length(ex_args) || print(str, ", ") i == length(ex_args) || print(fmt, ", ") end print(str, ")") print(fmt, ")") # Escape the function name ex.args[1] = esc(ex.args[1]) return ex, str, fmt end # Internal function used at `@test_all` runtime to get a `Returned` `Test.ExecutionResult` # with nice failure messages. Used in the code generated by `get_test_all_result()` at # compile time. # - `evaled`: the result of evaluating the processed expression returned by # `recurse_process!` (the one with references to `ARG[i]`) # - `terms`: a vector of all terms that were broadcasted to produce `evaled`, which can # be used to produce individual failure messages. It is the result of evaluating and # concatenating the escaped arguments extracted by `recurse_process!()` into a vector. # - `fmt_term`: a FormatExpr-like string for pretty-printing an individual failure. It is the # result of `stringify!(f)` on the `Formatter` returned by `recurse_process!()`. function eval_test_all( @nospecialize(evaled), @nospecialize(terms), fmt::String, source::LineNumberNode) # If evaled contains non-Bool values, throw a NonBoolTypeError with pretty-printed # message. Need the evaled !== missing check to avoid a MethodError for iterate(missing). if evaled !== missing && any(x -> x !== true && x !== false && x !== missing, evaled) throw(NonBoolTypeError(evaled)) end # Compute the result of the all() call: res = evaled === missing ? missing : all(evaled) # If all() returns true, no need for pretty printing anything. res === true && return Returned(true, nothing, source) # Broadcast the input terms and compile the formatting expression for pretty printing. # Wrap in a try catch/block, so that we can fallback to a simple message if the # some terms are not broadcastable, or if the size of the broadcasted terms # does not match the size of the evaluated result (I believe the latter should not # happen, but better safe than sorry). # try broadcasted_terms = Base.broadcasted(tuple, terms...) # size(broadcasted_terms) == size(evaled) || Broad) fmt = FormatExpr(fmt) # Print the evaluated result: io = failure_ioc() print(io, res) print(io, "\n Argument: ") # Print a nice message. If the evaluated result (evaled) is a Bool or Missing (not # a vector or array), print a simple message: if isa(evaled, Union{Bool,Missing}) terms = repr.(first(broadcasted_terms)) printfmt(io, fmt, terms...) printstyled(io, " ===> ", evaled, color=:light_yellow) # Otherwise, use pretty-printing with indices. Note that we are guaranteed that # eltype(evaled) <: Union{Missing,Bool}. else # First, print type of inner expression and number of false/missing values summary(io, evaled) n_missing = sum(x -> ismissing(x), evaled) n_false = sum(x -> !x, skipmissing(evaled), init=0) print(io, ", ") if n_missing > 0 print(io, n_missing, " missing") n_false == 0 || print(io, " and ") end if n_false > 0 print(io, n_false, " failure", n_false == 1 ? "" : "s") end # Avoid allocating with `findall()` if only a few failures need to be printed. if MAX_PRINT_FAILURES[] == 0 return Returned(false, stringify!(io), source) end idxs = try if MAX_PRINT_FAILURES[] == 1 [findfirst(x -> x !== true, evaled)] else findall(x -> x !== true, evaled) end catch return Returned(false, stringify!(io), source) end print(io, ": ") print_idx_message = (io, idx) -> begin printfmt(io, fmt, repr.(broadcasted_terms[idx])...) printstyled(io, " ===> ", evaled[idx], color=:light_yellow) end print_failures(io, idxs, print_idx_message, _INDENT_EVALUATED) end return Returned(false, stringify!(io), source) end # Internal function used at compile time to generate code that will produce the final # `@test_all` `Test.ExecutionResult`. Wraps `eval_test_all()` in a try/catch block # so that exceptions can be returned as `Test.Threw` result. function get_test_all_result(ex, source) escaped_args = Expr[] mod_ex, str, fmt = recurse_process!(ex, escaped_args; outmost=true) str, fmt = stringify!(str), stringify!(fmt) result = quote try let ARG = Any[$(escaped_args...)] # Use `let` for local scope on `ARG` eval_test_all( $(mod_ex), ARG, $(fmt), $(QuoteNode(source)) ) end catch _e _e isa InterruptException && rethrow() Threw(_e, Base.current_exceptions(), $(QuoteNode(source))) end end return result, str end """ @test_all ex @test_all f(args...) key=val ... @test_all ex broken=true @test_all ex skip=true Test that the expression `all(ex)` evaluates to `true`. Does not short-circuit at the first `false` value, so that all `false` elements are shown in case of failure. Same return behaviour as [`Test.@test`](@extref Julia), namely: if executed inside a `@testset`, returns a `Pass` `Result` if `all(ex)` evaluates to `true`, a `Fail` `Result` if it evaluates to `false` or `missing`, and an `Error` `Result` if it could not be evaluated. If executed outside a `@testset`, throws an exception instead of returning `Fail` or `Error`. # Examples ```@julia-repl julia> @test_all [1.0, 2.0] .== [1, 2] Test Passed julia> @test_all [1, 2, 3] .< 2 Test Failed at none:1 Expression: all([1, 2, 3] .< 2) Evaluated: false Argument: 3-element BitVector, 2 failures: [2]: 2 < 2 ===> false [3]: 3 < 2 ===> false ``` Similar to `@test`, the `@test_all f(args...) key=val...` form is equivalent to writing `@test_all f(args...; key=val...)` which can be useful when the expression is a call using infix syntax such as vectorized approximate comparisons: ```@julia-repl julia> v = [0.99, 1.0, 1.01]; julia> @test_all v .≈ 1 atol=0.1 Test Passed ``` This is equivalent to the uglier test `@test_all .≈(v, 1, atol=0.1)`. Keyword splicing also works through any negation operator: ```@julia-repl julia> @test_all .!(v .≈ 1) atol=0.001 Test Failed at none:1 Expression: all(.!.≈(v, 1, atol=0.001)) Evaluated: false Argument: 3-element BitVector, 1 failure: [2]: !≈(1.0, 1, atol=0.001) ===> false ``` As with `@test`, it is an error to supply more than one expression unless the first is a call (possibly broadcast `.` syntax) and the rest are assignments (`k=v`). The macro supports `broken=true` and `skip=true` keywords, with similar behavior to [`Test.@test`](@extref Julia): ```@julia-repl julia> @test_all [1, 2] .< 2 broken=true Test Broken Expression: all([1, 2] .< 2) julia> @test_all [1, 2] .< 3 broken=true Error During Test at none:1 Unexpected Pass Expression: all([1, 2] .< 3) Got correct result, please change to @test if no longer broken. julia> @test_all [1, 2, 3] .< 2 skip=true Test Broken Skipped: all([1, 2, 3] .< 2) ``` """ macro test_all(ex, kws...) # Collect the broken/skip keywords and remove them from the rest of keywords: kws, broken, skip = extract_broken_skip_keywords(kws...) # Add keywords to the expression ex = pushkeywords!(ex, kws...) # Generate code to evaluate expression and return a `Test.ExecutionResult` result, str_ex = get_test_all_result(ex, __source__) str_ex = "all($str_ex)" # Copy `Test` code to create `Test.Result` using `do_test` or `do_broken_test` result = quote if $(length(skip) > 0 && esc(skip[1])) record(get_testset(), Broken(:skipped, $str_ex)) else let _do = $(length(broken) > 0 && esc(broken[1])) ? do_broken_test : do_test _do($result, $str_ex) end end end return result end @specialize
PrettyTests
https://github.com/tpapalex/PrettyTests.jl.git
[ "MIT" ]
0.1.1
731532d7a03845a784a5a5e4e9a7b4993830032c
code
10916
# Set of valid operators for @test_sets const OPS_SETCOMP = ( :(==), :≠, :⊆, :⊇, :⊊, :⊋, :∩, ) # Additional valid operators that are converted in `preprocess` const OPS_SETCOMP_CONVERTER = Dict( :!= => :≠, :⊂ => :⊆, :⊃ => :⊇, :|| => :∩, :issetequal => :(==), :isdisjoint => :∩, :issubset => :⊆, ) #################### Pretty printing utilities ################### # Match indentation of @test "Evaluated: " line const _INDENT_SETOP = " "; function printLsepR( io::IO, L::AbstractString, sep::AbstractString, R::AbstractString, suffixes::AbstractString... ) printstyled(io, L, color=EXPRESSION_COLORS[1]) print(io, " ") print(io, sep) print(io, " ") printstyled(io, R, color=EXPRESSION_COLORS[2]) print(io, suffixes...) end const LminusR = "L ∖ R" const RminusL = "R ∖ L" const LequalR = "L = R" const LintersectR = "L ∩ R" # Print a set or vector compactly, with a description: function printset(io::IO, v::Union{AbstractVector, AbstractSet}, desc::AbstractString) n = length(v) print(io, "\n", _INDENT_SETOP) print(io, desc) print(io, " has ", n, " element", n == 1 ? ": " : "s: ") Base.show_vector(IOContext(io, :typeinfo => typeof(v)), v) end function printset(io::IO, v, desc::AbstractString) printset(io, collect(v), desc) end # Stringify a processed `@test_sets` expression, to be printed in the `@test` # `Evaluated: ` line. function stringify_expr_test_sets(ex) suffix = ex.args[1] === :∩ ? " == ∅" : "" str = sprint( printLsepR, sprint(Base.show_unquoted, ex.args[2]), sprint(Base.show_unquoted, ex.args[1]), sprint(Base.show_unquoted, ex.args[3]), suffix, context = :color => STYLED_FAILURES[] ) return str end #################### Evaluating @test_sets ################### # Internal function to process an expression `ex` for use in `@test_sets`. Validates # the form `L <op> R` and convert any operator aliases to the canonical version. function process_expr_test_sets(ex) # Special case `a ∩ b == ∅` or `∅ == a ∩ b` gets converted to `a ∩ b` if isexpr(ex, :call, 3) && ex.args[1] === :(==) if isexpr(ex.args[2], :call, 3) && ex.args[2].args[1] === :∩ && ex.args[3] === :∅ ex = ex.args[2] elseif isexpr(ex.args[3], :call, 3) && ex.args[3].args[1] === :∩ && ex.args[2] === :∅ ex = ex.args[3] end end if isexpr(ex, :call, 3) op, L, R = ex.args op = get(OPS_SETCOMP_CONVERTER, op, op) if op ∉ OPS_SETCOMP if Meta.isoperator(op) error("invalid test macro call: @test_set unsupported set operator $op") else error("invalid test macro call: @test_set $ex") end end elseif isexpr(ex, :||, 2) op = :∩ L, R = ex.args else error("invalid test macro call: @test_set $ex") end return Expr(:call, op, L, R) end # Internal function used at `@test_sets` runtime to get a `Returned` `Test.ExecutionResult` # with nice failure messages. Used in the code generated by `get_test_sets_result()` at # compile time. # - `L`: the container on the left side of the operator # - `op`: the operator, one of `OPS_SETCOMP` # - `R`: the container on the right side of the operator function eval_test_sets(L, op, R, source) # Perform the desired set operation to get the boolean result: if op === :(==) res = issetequal(L, R) elseif op === :≠ res = !issetequal(L, R) elseif op === :∩ res = isdisjoint(L, R) elseif op === :⊊ res = issubset(L, R) && !issetequal(L, R) elseif op === :⊋ res = issubset(R, L) && !issetequal(L, R) elseif op === :⊆ res = issubset(L, R) elseif op === :⊇ res = issubset(R, L) else error("Unsupported operator $op.") end # If the result is false, create a custom failure message depending on the operator: if res === false io = failure_ioc() if op === :(==) # issetequal(L, R) printLsepR(io, "L", "and", "R", " are not equal.") printset(io, setdiff(L, R), LminusR) printset(io, setdiff(R, L), RminusL) elseif op === :!= || op === :≠ # !issetequal(L, R) printLsepR(io, "L", "and", "R", " are equal.") printset(io, intersect(L, R), LequalR) elseif op === :⊆ # issubset(L, R) printLsepR(io, "L", "is not a subset of", "R", ".") printset(io, setdiff(L, R), LminusR) elseif op === :⊇ # issubset(R, L) printLsepR(io, "L", "is not a superset of", "R", ".") printset(io, setdiff(R, L), RminusL) elseif op === :⊊ && issetequal(L, R) # L ⊊ R (failure b/c not *proper* subset) printLsepR(io, "L", "is not a proper subset of", "R", ", it is equal.") printset(io, intersect(L, R), LequalR) elseif op === :⊊ # L ⊊ R (failure because L has extra elements) printLsepR(io, "L", "is not a proper subset of", "R", ".") printset(io, setdiff(L, R), LminusR) elseif op === :⊋ && issetequal(L, R) # L ⊋ R (failure b/c not *proper* superset) printLsepR(io, "L", "is not a proper superset of", "R", ", it is equal.") printset(io, intersect(L, R), LequalR) elseif op === :⊋ # L ⊋ R (failure because R has extra elements) printLsepR(io, "L", "is not a proper superset of", "R", ".") printset(io, setdiff(R, L), RminusL) elseif op === :∩ # isdisjoint(L, R) printLsepR(io, "L", "and", "R", " are not disjoint.") printset(io, intersect(L, R), LintersectR) else error("Unsupported operator $op.") end return Returned(res, stringify!(io), source) else # res === true return Returned(res, nothing, source) end end # Internal function used at compile time to generate code that will produce the final # `@test_sets` `Test.ExecutionResults`. Wraps `eval_test_sets()` in a try/catch block # so that exceptions can be returned as `Test.Threw` result. function get_test_sets_result(ex, source) op, L, R = ex.args if L === :∅ L = :(Set()) end if R === :∅ R = :(Set()) end result = quote try eval_test_sets( $(esc(L)), $(QuoteNode(op)), $(esc(R)), $(QuoteNode(source)) ) catch _e _e isa InterruptException && rethrow() Threw(_e, Base.current_exceptions(), $(QuoteNode(source))) end end result end """ @test_sets L op R @test_sets L op R broken=true @test_sets L op R skip=true Test that the expression `L op R` evaluates to `true`, where `op` is an infix operator interpreted as a set-like comparison: - `L == R` expands to `issetequal(L, R)` - `L != R` or `L ≠ R` expands to `!issetequal(L, R)` - `L ⊆ R` or `L ⊂ R` expands to `issubset(L, R)` - `L ⊇ R` or `L ⊃ R` expands to `issubset(R, L)` - `L ⊊ R` expands to `issubset(L, R) && !issetequal(L, R)` - `L ⊋ R` expands to `issubset(R, L) && !issetequal(L, R)` - `L ∩ R` or `L || R` expands to `isdisjoint(L, R)` Same return behaviour as [`Test.@test`](@extref Julia), namely: if executed inside a `@testset`, returns a `Pass` `Result` if expanded expression evaluates to `true`, a `Fail` `Result` if it evaluates to `false`, and an `Error` `Result` if it could not be evaluated. If executed outside a `@testset`, throws an exception instead of returning `Fail` or `Error`. You can use any `L` and `R` that work with the expanded expressions above (including tuples, arrays, sets, dictionaries, strings, and more generable iterables). The `∅` symbol can also be used as shorthand for `Set()`. The only additional limitation is that `setdiff(L, R)` and `intersect(L, R)` must also work, since they are used to generate informative failure messages in some cases. See also: [`Base.issetequal`](@extref Julia), [`Base.issubset`](@extref Julia), [`Base.isdisjoint`](@extref Julia), [`Base.setdiff`](@extref Julia), [`Base.intersect`](@extref Julia). !!! note "Disjointness" The last form represents a slight abuse of notation, in that `isdisjoint(L, R)` is better notated as `L ∩ R == ∅`. The macro also supports this syntax, in addition to shorthand `L ∩ R` and `L || R`. !!! note "Typing unicode characters" Unicode operators can be typed in Julia editors by writing `\\<name><tab>`. The ones supported by this macro are `≠` (`\\neq`), `⊆` (`\\subseteq`), `⊇` (`\\supseteq`), `⊂` (`\\subset`), `⊃` (`\\supset`), `⊊` (`\\subsetneq`), `⊋` (`\\supsetneq`), `∩` (`\\cap`), and `∅` (`\\emptyset`). # Examples ```@julia-repl julia> @test_sets (1, 2) == (2, 1, 1, 1) Test Passed julia> @test_sets ∅ ⊆ 1:5 Test Passed julia> @test_sets 1:3 ⊇ 5 Test Failed at none:1 Expression: 1:3 ⊇ 5 Evaluated: L is not a superset of R. R ∖ L has 1 element: [5] julia> @test_sets [1, 2, 3] ∩ [2, 3, 4] Test Failed at none:1 Expression: [1, 2, 3] ∩ [2, 3, 4] == ∅ Evaluated: L and R are not disjoint. L ∩ R has 2 elements: [2, 3] julia> @test_sets "baabaa" ≠ 'a':'b' Test Failed at none:1 Expression: "baabaa" ≠ 'a':'b' Evaluated: L and R are equal. L = R has 2 elements: ['b', 'a'] ``` The macro supports `broken=cond` and `skip=cond` keywords, with similar behavior to [`Test.@test`](@extref Julia): # Examples ```@julia-repl julia> @test_sets [1] ⊆ [2, 3] broken=true Test Broken Expression: [1] ⊆ [2, 3] julia> @test_sets [1] ⊆ [1, 2] broken=true Error During Test at none:1 Unexpected Pass Expression: [1] ⊆ [1, 2] Got correct result, please change to @test if no longer broken. julia> @test_sets [1] ⊆ [2, 3] skip=true Test Broken Skipped: [1] ⊆ [2, 3] ``` """ macro test_sets(ex, kws...) # Collect the broken/skip keywords and remove them from the rest of keywords: kws, broken, skip = extract_broken_skip_keywords(kws...) # Ensure that no other expressions are present length(kws) == 0 || error("invalid test macro call: @test_sets $ex $(join(kws, " "))") # Process expression and get stringified version ex = process_expr_test_sets(ex) str_ex = stringify_expr_test_sets(ex) # Generate code to evaluate expression and return a `Test.ExecutionResult` result = get_test_sets_result(ex, __source__) result = quote if $(length(skip) > 0 && esc(skip[1])) record(get_testset(), Broken(:skipped, $str_ex)) else let _do = $(length(broken) > 0 && esc(broken[1])) ? do_broken_test : do_test _do($result, $str_ex) end end end end
PrettyTests
https://github.com/tpapalex/PrettyTests.jl.git
[ "MIT" ]
0.1.1
731532d7a03845a784a5a5e4e9a7b4993830032c
code
812
@testset "helpers.jl" begin @testset "failure_styling" begin @test !PT.disable_failure_styling() @test PT.STYLED_FAILURES[] === false @test PT.enable_failure_styling() @test PT.STYLED_FAILURES[] === true @test !PT.disable_failure_styling() @test PT.STYLED_FAILURES[] === false end @testset "max_print_failures" begin PT.set_max_print_failures(0) @test PT.MAX_PRINT_FAILURES[] == 0 @test PT.set_max_print_failures(5) == 0 # returns previous value @test PT.MAX_PRINT_FAILURES[] == 5 @test PT.set_max_print_failures(nothing) == 5 @test PT.MAX_PRINT_FAILURES[] == typemax(Int) @test PT.set_max_print_failures() == typemax(Int) @test PT.MAX_PRINT_FAILURES[] == 10 # default is 10 end end
PrettyTests
https://github.com/tpapalex/PrettyTests.jl.git