licenses
sequencelengths
1
3
version
stringclasses
677 values
tree_hash
stringlengths
40
40
path
stringclasses
1 value
type
stringclasses
2 values
size
stringlengths
2
8
text
stringlengths
25
67.1M
package_name
stringlengths
2
41
repo
stringlengths
33
86
[ "MIT" ]
0.1.1
731532d7a03845a784a5a5e4e9a7b4993830032c
code
756
# Copied from Test package, for testing test failures mutable struct NoThrowTestSet <: Test.AbstractTestSet results::Vector NoThrowTestSet(desc) = new([]) end Test.record(ts::NoThrowTestSet, t::Test.Result) = (push!(ts.results, t); t) Test.finish(ts::NoThrowTestSet) = ts.results # User-defined struct with custom show for testing struct TestStruct a::Int b::Float64 end Base.show(io::IO, s::TestStruct) = print(io, "S(", s.a, ", ", s.b, ")") # Remove ANSI color codes from a string destyle = x -> replace(x, r"\e\[\d+m" => "") # Evaluate occursin(x, str), but replaces every `\e` with a regex that matches an # ANSI color code. ansire = x -> Regex(replace(x, '\e' => raw"\e\[\d+m")) ansioccursin = (x, str) -> occursin(ansire(x), str)
PrettyTests
https://github.com/tpapalex/PrettyTests.jl.git
[ "MIT" ]
0.1.1
731532d7a03845a784a5a5e4e9a7b4993830032c
code
359
using PrettyTests using PrettyTests using Test const PT = PrettyTests PT.disable_failure_styling() # Will be enabled for some tests, but mostly don't want for tests @testset "PrettyTests.jl" begin include("nothrowtestset.jl") # structs used in testing of test macros include("helpers.jl") include("test_sets.jl") include("test_all.jl") end
PrettyTests
https://github.com/tpapalex/PrettyTests.jl.git
[ "MIT" ]
0.1.1
731532d7a03845a784a5a5e4e9a7b4993830032c
code
42700
@testset "test_all.jl" begin @testset "pushkeywords!(ex, kws)" begin @testset "without keywords" begin # Test that returns input if there are no keywords added to case cases = [ :(a == b), :(a .< b), :(!(a == b)), :(.!(a .≈ b)), :(f()), :(f.(a)), :(!f()), :(.!f.(a)) ] @testset "ex: $ex" for ex in cases modex = PT.pushkeywords!(ex) @test modex === ex end end @testset "with keywords" begin # Add :(x = 1) keyword to case cases = [ :(a ≈ b) => :(≈(a, b, x = 1)), :(a .≈ b) => :(.≈(a, b, x = 1)), :(g()) => :(g(x = 1)), :(!g()) => :(!g(x = 1)), :(g.(a)) => :(g.(a, x = 1)), :(.!g.(a)) => :(.!g.(a, x = 1)), ] @testset "push (x=1) to ex: $ex" for (ex, res) in cases mod_ex = PT.pushkeywords!(ex, :(x = 1)) @test mod_ex == res end # Add :(x = 1, y = 2) keywords to case cases = [ :(g()) => :(g(x = 1, y = 2)) :(.!g.(a)) => :(.!g.(a, x = 1, y = 2)) ] @testset "push (x=1,y=2) to ex: $ex" for (ex, res) in cases mod_ex = PT.pushkeywords!(ex, :(x = 1), :(y=2)) @test mod_ex == res end end @testset "does not accept keywords" begin # Throws error because case does not support keywords cases = [ :(a), :(:a), :(a && b), :(a .|| b), :([a,b]), :((a,b)), :(a <: b) ] @testset "ex: $ex" for ex in cases @test_throws ErrorException("invalid test macro call: @test_all $ex does not accept keyword arguments") PT.pushkeywords!(ex, :(x = 1)) end end @testset "invalid keyword syntax" begin # Throws error because case is not valid keyword syntax cases = [ :(a), :(:a), :(a == 1), :(g(x)), ] @testset "kw: $kw" for kw in cases @test_throws ErrorException("invalid test macro call: $kw is not valid keyword syntax") PT.pushkeywords!(:(g()), kw) end # Same but where only some keywords are invalid @testset "kws: (x = 1, $kw)" for kw in cases @test_throws ErrorException PT.pushkeywords!(:(g()), :(x = 1), kw) end end end @testset "preprocess_test_all(ex)" begin @testset "convert to comparison" begin # Case is converted to :comparison call cases = [ :(a .== b) => Expr(:comparison, :a, :.==, :b), :(.≈(a, b)) => Expr(:comparison, :a, :.≈, :b), :(a .≈ b) => Expr(:comparison, :a, :.≈, :b), :(a .∈ b) => Expr(:comparison, :a, :.∈, :b), :(a .⊆ b) => Expr(:comparison, :a, :.⊆, :b), :(a .<: b) => Expr(:comparison, :a, :.<:, :b), :(a .>: b) => Expr(:comparison, :a, :.>:, :b), ] @testset "ex: $ex" for (ex, res) in cases proc_ex = PT.preprocess_test_all(ex) @test proc_ex == res @test proc_ex !== res # returns new expression end end @testset "change parameters kws to trailing" begin # Parameter kws in case are moved to trailing arguments cases = [ # Displayable, not vectorized :(isnan(x; a=1)) => :(isnan(x, a=1)), :(isnan(x, a=1; b=1)) => :(isnan(x, a=1, b=1)), :(isnan(x; a=1, b=1)) => :(isnan(x, a=1, b=1)), # Displayable, vectorized :(isnan.(x; a=1)) => :(isnan.(x, a=1)), :(isnan.(x, a=1; b=1)) => :(isnan.(x, a=1, b=1)), :(isnan.(x; a=1, b=1)) => :(isnan.(x, a=1, b=1)), # Approx cases :(≈(x, y; a=1)) => :(≈(x, y, a=1)), :(≈(x, y, a=1; b=1)) => :(≈(x, y, a=1, b=1)), :(.≈(x, y; a=1)) => :(.≈(x, y, a=1)), :(.≈(x, y, a=1; b=1)) => :(.≈(x, y, a=1, b=1)), ] @testset "ex: $ex" for (ex, res) in cases proc_ex = PT.preprocess_test_all(ex) @test proc_ex == res @test proc_ex !== res # returns new expression end end @testset "no preprocess_test_alling" begin # Expression remains unchanged cases = [ :a, :(:a), :(a == b), :(a .== b .== c), Expr(:comparison, :a, :.==, :b), :(g(x; a = 1)), :(isnan(x)), # Displayable call, but no keywords :(isnan(x, a = 1)), # Displayable call, but already trailing keywords :(isnan.(x)), # Displayable, but no keywords :(isnan.(x, a = 1)) # Displayable, but already trailing keywords ] @testset "ex: $ex" for ex in cases @test PT.preprocess_test_all(deepcopy(ex)) == ex @test PT.preprocess_test_all(ex) === ex end end end @testset "expression classifiers" begin @testset "isvecnegationexpr(ex)" begin cases = [ # True :(.!a) => true, :(.!(a .== b)) => true, :(.!g(x)) => true, :(.!g.(x)) => true, :(.!isnan.(x)) => true, # False :(a .== b) => false, :(!a) => false, :(!g(x)) => false, :(!(a == b)) => false, ] @testset "ex: $ex ===> $res" for (ex, res) in cases ex = PT.preprocess_test_all(ex) @test PT.isvecnegationexpr(ex) === res end end @testset "isveclogicalexpr(ex)" begin cases = [ # True :(a .& b) => true, :(a .| b) => true, :(a .⊽ b) => true, :(a .⊻ b) => true, :(a .& b .| c) => true, :(a .⊽ g.(x) .⊻ c) => true, # False :(a & b) => false, :(a || b) => false, :(a ⊻ b) => false, :(a .== b) => false, ] @testset "ex: $ex ===> $res" for (ex, res) in cases ex = PT.preprocess_test_all(ex) @test PT.isveclogicalexpr(ex) === res end end @testset "isveccomparisonexpr(ex)" begin cases = [ # True :(a .== b) => true, :(a .≈ b) => true, :(a .>: b) => true, :(a .<: b) => true, :(a .∈ b) => true, # False (other) :(a == b) => false, :(a .== b <= c) => false, :(a .&& b) => false, :(a .|| b) => false, ] @testset "$ex => $res" for (ex, res) in cases ex = PT.preprocess_test_all(ex) @test PT.isveccomparisonexpr(ex) === res end end @testset "isvecapproxexpr(ex)" begin cases = [ # True :(.≈(a, b, atol=1)) => true, :(.≉(a, b, atol=1)) => true, # False (splats) :(.≈(a..., atol=1)) => false, :(.≈(a, b..., atol=1)) => false, :(.≉(a..., b, atol=1)) => false, # False (other) :(≈(a, b, atol=1)) => false, :(≉(a, b, atol=1)) => false, :(a == b) => false, :(a .== b <= c) => false, :(a .&& b) => false, :(a .|| b) => false, ] @testset "ex: $ex ===> $res" for (ex, res) in cases ex = PT.preprocess_test_all(ex) @test PT.isvecapproxexpr(ex) === res end end @testset "isvecdisplayexpr(ex)" begin cases = [ # True :(isnan.(x)) => true, :(isreal.(x)) => true, :(occursin.(a, b)) => true, :(isapprox.(a, b, atol=1)) => true, # False (not vectorized) :(isnan(x)) => false, :(isapprox(a, b, atol=1)) => false, # False (splats) :(isnan.(a...)) => false, :(isapprox.(a..., atol=1)) => false, # False (other) :(g.(x)) => false, :(a .== b) => false, ] @testset "ex: $ex ===> $res" for (ex, res) in cases ex = PT.preprocess_test_all(ex) @test PT.isvecdisplayexpr(ex) === res end end end @testset "recurse_process!()" begin escape! = (ex, args; kws...) -> PT.recurse_process!(deepcopy(ex), args; kws...) stringify! = fmt_io -> PT.stringify!(fmt_io) @testset "basecase" begin cases = [ :(1), :(a), :(:a), :([1,2]), :(Int[a,b]), :(a[1]), :(g(x)), :(g.(x,a=1;b=b)), :(a:length(b)), :(a...), :(√a), :(A'), :(10 * TOL), ] @testset "ex: $ex" for ex in cases args = Expr[] res, str, fmt = escape!(ex, args; outmost=true) @test args == Expr[esc(ex)] @test res == :(ARG[1]) @test stringify!(str) == sprint(Base.show_unquoted, ex) @test stringify!(fmt) == "{1:s}" res, str, fmt = escape!(ex, args; outmost=false) @test args == Expr[esc(ex), esc(ex)] @test res == :(ARG[2]) @test stringify!(str) == sprint(Base.show_unquoted, ex) @test stringify!(fmt) == "{2:s}" end cases = [ :(a + b), :(a .- b), :(a && b), :(a * b) ] @testset "ex: $ex" for ex in cases args = Expr[] res, str, fmt = escape!(ex, args; outmost=true) @test args == Expr[esc(ex)] @test res == :(ARG[1]) @test stringify!(str) == sprint(Base.show_unquoted, ex) @test stringify!(fmt) == "{1:s}" res, str, fmt = escape!(ex, args; outmost=false) @test args == Expr[esc(ex), esc(ex)] @test res == :(ARG[2]) @test stringify!(str) == "(" * sprint(Base.show_unquoted, ex) * ")" @test stringify!(fmt) == "{2:s}" end end @testset "keywords" begin kw = Expr(:kw, :a, 1) @testset "kw: $(kw.args[1]) = $(kw.args[2])" begin args = Expr[] res, str, fmt = escape!(kw, args) @test args == [esc(:(Ref(1)))] @test res == Expr(:kw, :a, :(ARG[1].x)) @test stringify!(str) == "a=1" @test stringify!(fmt) == "a={1:s}" res, str, fmt = escape!(kw, args) @test args == [esc(:(Ref(1))), esc(:(Ref(1)))] @test res == Expr(:kw, :a, :(ARG[2].x)) @test stringify!(str) == "a=1" @test stringify!(fmt) == "a={2:s}" end kw = Expr(:kw, :atol, :(1+TOL)) @testset "kw: $(kw.args[1]) = $(kw.args[2])" begin args = Expr[] res, str, fmt = escape!(kw, args) @test args == [esc(:(Ref(1+TOL)))] @test res == Expr(:kw, :atol, :(ARG[1].x)) @test stringify!(str) == "atol=1 + TOL" @test stringify!(fmt) == "atol={1:s}" res, str, fmt = escape!(kw, args) @test args == [esc(:(Ref(1+TOL))), esc(:(Ref(1+TOL)))] @test res == Expr(:kw, :atol, :(ARG[2].x)) @test stringify!(str) == "atol=1 + TOL" @test stringify!(fmt) == "atol={2:s}" end end @testset "negation" begin ex = :(.!a) @testset "ex: $ex" begin args = Expr[] res, str, fmt = escape!(ex, args; outmost=true) @test args == Expr[esc(:a)] @test res == Expr(:call, esc(:.!), :(ARG[1])) @test stringify!(str) == ".!a" @test stringify!(fmt) == "!{1:s}" res, str, fmt = escape!(ex, args; outmost=false) @test args == Expr[esc(:a), esc(:a)] @test res == Expr(:call, esc(:.!), :(ARG[2])) @test stringify!(str) == ".!a" @test stringify!(fmt) == "!{2:s}" end end @testset "logical" begin ex = :(a .& b) @testset "ex: $ex" begin args = Expr[] res, str, fmt = escape!(ex, args; outmost=true) @test args == esc.([:a, :b]) @test res == Expr(:call, esc(:.&), :(ARG[1]), :(ARG[2])) @test stringify!(str) == "a .& b" @test stringify!(fmt) == "{1:s} & {2:s}" res, str, fmt = escape!(ex, args; outmost=false) @test args == Expr[esc(:a), esc(:b), esc(:a), esc(:b)] @test res == Expr(:call, esc(:.&), :(ARG[3]), :(ARG[4])) @test stringify!(str) == "(a .& b)" @test stringify!(fmt) == "({3:s} & {4:s})" end ex = :(a .| b .| c) @testset "ex: $ex" begin args = Expr[] res, str, fmt = escape!(ex, args; outmost=true) @test args == esc.([:a, :b, :c]) inner_res = Expr(:call, esc(:.|), :(ARG[1]), :(ARG[2])) @test res == Expr(:call, esc(:.|), inner_res, :(ARG[3])) @test stringify!(str) == "a .| b .| c" @test stringify!(fmt) == "{1:s} | {2:s} | {3:s}" res, str, fmt = escape!(ex, args; outmost=false) @test args == esc.([:a, :b, :c, :a, :b, :c]) inner_res = Expr(:call, esc(:.|), :(ARG[4]), :(ARG[5])) @test res == Expr(:call, esc(:.|), inner_res, :(ARG[6])) @test stringify!(str) == "(a .| b .| c)" @test stringify!(fmt) == "({4:s} | {5:s} | {6:s})" end ex = :(a .& b .⊻ c .⊽ d .| e) @testset "ex: $ex" begin args = Expr[] res, str, fmt = escape!(ex, args; outmost=true) @test args == esc.([:a, :b, :c, :d, :e]) inner_res = Expr(:call, esc(:.&), :(ARG[1]), :(ARG[2])) inner_res = Expr(:call, esc(:.⊻), inner_res, :(ARG[3])) inner_res = Expr(:call, esc(:.⊽), inner_res, :(ARG[4])) @test res == Expr(:call, esc(:.|), inner_res, :(ARG[5])) @test stringify!(str) == "a .& b .⊻ c .⊽ d .| e" @test stringify!(fmt) == "{1:s} & {2:s} ⊻ {3:s} ⊽ {4:s} | {5:s}" end ex = :(.⊽(a, b, c)) @testset "ex: $ex" begin args = Expr[] res, str, fmt = escape!(ex, args; outmost=true) @test args == esc.([:a, :b, :c]) @test res == Expr(:call, esc(:.⊽), :(ARG[1]), :(ARG[2]), :(ARG[3])) @test stringify!(str) == "a .⊽ b .⊽ c" @test stringify!(fmt) == "{1:s} ⊽ {2:s} ⊽ {3:s}" end end @testset "comparison" begin ex = :(a .== b) @testset "ex: $ex" begin args = Expr[] res, str, fmt = escape!(ex, args; outmost=true) @test args == esc.([:a, :b]) @test res == Expr(:comparison, :(ARG[1]), esc(:.==), :(ARG[2])) @test stringify!(str) == "a .== b" @test stringify!(fmt) == "{1:s} == {2:s}" res, str, fmt = escape!(ex, args; outmost=false) @test args == esc.([:a, :b, :a, :b]) @test res == Expr(:comparison, :(ARG[3]), esc(:.==), :(ARG[4])) @test stringify!(str) == "(a .== b)" @test stringify!(fmt) == "({3:s} == {4:s})" end ex = :(a .≈ b .> c) @testset "ex: $ex" begin args = Expr[] res, str, fmt = escape!(ex, args; outmost=false) @test args == esc.([:a, :b, :c]) @test res == Expr(:comparison, :(ARG[1]), esc(:.≈), :(ARG[2]), esc(:.>), :(ARG[3])) @test stringify!(str) == "(a .≈ b .> c)" @test stringify!(fmt) == "({1:s} ≈ {2:s} > {3:s})" end ex = :(a .<: b .>: c) @testset "ex: $ex" begin args = Expr[] res, str, fmt = escape!(ex, args; outmost=true) @test args == esc.([:a, :b, :c]) @test res == Expr(:comparison, :(ARG[1]), esc(:.<:), :(ARG[2]), esc(:.>:), :(ARG[3])) @test stringify!(str) == "a .<: b .>: c" @test stringify!(fmt) == "{1:s} <: {2:s} >: {3:s}" end end @testset "approx" begin ex = :(.≈(a, b, atol=10*TOL)) @testset "ex: $ex" begin args = Expr[] res, str, fmt = escape!(ex, args; outmost=true) @test args == esc.([:a, :b, :(Ref(10*TOL))]) @test res == Expr(:call, esc(:.≈), :(ARG[1]), :(ARG[2]), Expr(:kw, :atol, :(ARG[3].x))) @test stringify!(str) == ".≈(a, b, atol=10TOL)" @test stringify!(fmt) == "{1:s} ≈ {2:s} (atol={3:s})" res, str, fmt = escape!(ex, args; outmost=false) @test args == esc.([:a, :b, :(Ref(10*TOL)), :a, :b, :(Ref(10*TOL))]) @test res == Expr(:call, esc(:.≈), :(ARG[4]), :(ARG[5]), Expr(:kw, :atol, :(ARG[6].x))) @test stringify!(str) == ".≈(a, b, atol=10TOL)" @test stringify!(fmt) == "≈({4:s}, {5:s}, atol={6:s})" end ex = :(.≉(a, b, rtol=1, atol=1)) @testset "ex: $ex" begin args = Expr[] res, str, fmt = escape!(ex, args; outmost=true) @test args == esc.([:a, :b, :(Ref(1)), :(Ref(1))]) @test res == Expr(:call, esc(:.≉), :(ARG[1]), :(ARG[2]), Expr(:kw, :rtol, :(ARG[3].x)), Expr(:kw, :atol, :(ARG[4].x))) @test stringify!(str) == ".≉(a, b, rtol=1, atol=1)" @test stringify!(fmt) == "{1:s} ≉ {2:s} (rtol={3:s}, atol={4:s})" res, str, fmt = escape!(ex, args; outmost=false) @test args == esc.([:a, :b, :(Ref(1)), :(Ref(1)), :a, :b, :(Ref(1)), :(Ref(1))]) @test res == Expr(:call, esc(:.≉), :(ARG[5]), :(ARG[6]), Expr(:kw, :rtol, :(ARG[7].x)), Expr(:kw, :atol, :(ARG[8].x))) @test stringify!(str) == ".≉(a, b, rtol=1, atol=1)" @test stringify!(fmt) == "≉({5:s}, {6:s}, rtol={7:s}, atol={8:s})" end end @testset "displayable function" begin ex = :(isnan.(a)) @testset "ex: $ex" begin args = Expr[] res, str, fmt = escape!(ex, args; outmost=true) @test args == esc.([:a]) @test res == Expr(:., esc(:isnan), Expr(:tuple, :(ARG[1]))) @test stringify!(str) == "isnan.(a)" @test stringify!(fmt) == "isnan({1:s})" res, str, fmt = escape!(ex, args; outmost=true) @test args == esc.([:a, :a]) @test res == Expr(:., esc(:isnan), Expr(:tuple, :(ARG[2]))) @test stringify!(str) == "isnan.(a)" @test stringify!(fmt) == "isnan({2:s})" end ex = :(isnan.(a = 1)) @testset "ex: $ex" begin args = Expr[] res, str, fmt = escape!(ex, args; outmost=true) @test args == esc.([:(Ref(1))]) @test res == Expr(:., esc(:isnan), Expr(:tuple, Expr(:kw, :a, :(ARG[1].x)))) @test stringify!(str) == "isnan.(a=1)" @test stringify!(fmt) == "isnan(a={1:s})" res, str, fmt = escape!(ex, args; outmost=false) @test args == esc.([:(Ref(1)), :(Ref(1))]) @test res == Expr(:., esc(:isnan), Expr(:tuple, Expr(:kw, :a, :(ARG[2].x)))) @test stringify!(str) == "isnan.(a=1)" @test stringify!(fmt) == "isnan(a={2:s})" end ex = :(isnan.()) @testset "ex: $ex" begin args = Expr[] res, str, fmt = escape!(ex, args; outmost=true) @test args == esc.([]) @test res == Expr(:., esc(:isnan), Expr(:tuple)) @test stringify!(str) == "isnan.()" @test stringify!(fmt) == "isnan()" res, str, fmt = escape!(ex, args; outmost=false) @test args == esc.([]) @test res == Expr(:., esc(:isnan), Expr(:tuple)) @test stringify!(str) == "isnan.()" @test stringify!(fmt) == "isnan()" end ex = :(isapprox.(a, b, atol=1)) @testset "ex: $ex" begin args = Expr[] res, str, fmt = escape!(ex, args; outmost=true) @test args == esc.([:a, :b, :(Ref(1))]) @test res == Expr(:., esc(:isapprox), Expr(:tuple, :(ARG[1]), :(ARG[2]), Expr(:kw, :atol, :(ARG[3].x)))) @test stringify!(str) == "isapprox.(a, b, atol=1)" @test stringify!(fmt) == "isapprox({1:s}, {2:s}, atol={3:s})" res, str, fmt = escape!(ex, args; outmost=false) @test args == esc.([:a, :b, :(Ref(1)), :a, :b, :(Ref(1))]) @test res == Expr(:., esc(:isapprox), Expr(:tuple, :(ARG[4]), :(ARG[5]), Expr(:kw, :atol, :(ARG[6].x)))) @test stringify!(str) == "isapprox.(a, b, atol=1)" @test stringify!(fmt) == "isapprox({4:s}, {5:s}, atol={6:s})" end ex = :(isapprox.(a, b, atol=1, rtol=1)) @testset "ex: $ex" begin args = Expr[] res, str, fmt = escape!(ex, args; outmost=true) @test args == esc.([:a, :b, :(Ref(1)), :(Ref(1))]) @test res == Expr(:., esc(:isapprox), Expr(:tuple, :(ARG[1]), :(ARG[2]), Expr(:kw, :atol, :(ARG[3].x)), Expr(:kw, :rtol, :(ARG[4].x)))) @test stringify!(str) == "isapprox.(a, b, atol=1, rtol=1)" @test stringify!(fmt) == "isapprox({1:s}, {2:s}, atol={3:s}, rtol={4:s})" end end @testset "complicated expressions" begin ex = :(a .& f.(b) .& .!isnan.(x) .& .≈(y, z, atol=TOL)) @testset "ex: $ex" begin args = Expr[] res, str, fmt = escape!(ex, args; outmost=true) @test args == esc.([:a, :(f.(b)), :x, :y, :z, :(Ref(TOL))]) inner_res1 = :(ARG[1]) inner_res2 = Expr(:call, esc(:.&), inner_res1, :(ARG[2])) inner_res3 = Expr(:call, esc(:.!), Expr(:., esc(:isnan), Expr(:tuple, :(ARG[3])))) inner_res4 = Expr(:call, esc(:.&), inner_res2, inner_res3) inner_res5 = Expr(:call, esc(:.≈), :(ARG[4]), :(ARG[5]), Expr(:kw, :atol, :(ARG[6].x))) @test res == Expr(:call, esc(:.&), inner_res4, inner_res5) @test stringify!(str) == "a .& f.(b) .& .!isnan.(x) .& .≈(y, z, atol=TOL)" @test stringify!(fmt) == "{1:s} & {2:s} & !isnan({3:s}) & ≈({4:s}, {5:s}, atol={6:s})" end end @testset "styling" begin f = ex -> begin args = Expr[] _, str, fmt = PT.recurse_process!(ex, args; outmost=true) PT.stringify!(str), PT.stringify!(fmt) end PT.enable_failure_styling() # Base case str, fmt = f(:(a)) @test occursin(ansire("\ea\e"), str) @test occursin(ansire("\e{1:s}\e"), fmt) str, fmt = f(:(a .+ b)) @test occursin(ansire("\ea \\.\\+ b\e"), str) @test occursin(ansire("\e{1:s}\e"), fmt) str, fmt = f(:(g.(x, a=1))) @test occursin(ansire("\eg\\.\\(x, a = 1\\)\e"), str) @test occursin(ansire("\e{1:s}\e"), fmt) str, fmt = f(:([1,2,3])) @test occursin(ansire("\e\\[1, 2, 3\\]\e"), str) @test occursin(ansire("\e{1:s}\e"), fmt) # keywords str, fmt = f(Expr(:kw, :a, 1)) @test occursin(ansire("a=\e1\e"), str) @test occursin(ansire("a=\e{1:s}\e"), fmt) str, fmt = f(Expr(:kw, :atol, :(1+TOL))) @test occursin(ansire("atol=\e1 \\+ TOL\e"), str) @test occursin(ansire("atol=\e{1:s}\e"), fmt) # negation str, fmt = f(:(.!a)) @test occursin(ansire("\\.!\ea\e"), str) # logical str, fmt = f(:(a .& b)) @test occursin(ansire("\ea\e \\.& \eb\e"), str) @test occursin(ansire("\e{1:s}\e & \e{2:s}\e"), fmt) str, fmt = f(:(a .| b .⊻ c)) @test occursin(ansire("\ea\e \\.| \eb\e .⊻ \ec\e"), str) @test occursin(ansire("\e{1:s}\e | \e{2:s}\e ⊻ \e{3:s}\e"), fmt) # comparison str, fmt = f(:(a .& b .| c)) @test occursin(ansire("\ea\e \\.& \eb\e \\.| \ec\e"), str) @test occursin(ansire("\e{1:s}\e & \e{2:s}\e | \e{3:s}\e"), fmt) # approx str, fmt = f(:(.≈(a, b, atol=10*TOL))) @test occursin(ansire("\\.≈\\(\ea\e, \eb\e, atol=\e10TOL\e\\)"), str) @test occursin(ansire("\e{1:s}\e ≈ \e{2:s}\e \\(atol=\e{3:s}\e\\)"), fmt) # displayable function str, fmt = f(:(isnan.(x))) @test occursin(ansire("isnan\\.\\(\ex\e\\)"), str) @test occursin(ansire("isnan\\(\e{1:s}\e\\)"), fmt) str, fmt = f(:(isnan.(x, a=1))) @test occursin(ansire("isnan\\.\\(\ex\e, a=\e1\e\\)"), str) @test occursin(ansire("isnan\\(\e{1:s}\e, a=\e{2:s}\e\\)"), fmt) PT.disable_failure_styling() end end @testset "printing utilities" begin @testset "get/set max print failures" begin @test_throws AssertionError PT.set_max_print_failures(-1) PT.set_max_print_failures(10) @test PT.set_max_print_failures(5) == 10 @test PT.set_max_print_failures(nothing) == 5 @test PT.set_max_print_failures() == typemax(Int) end @testset "stringify_idxs()" begin I = CartesianIndex @test PT.stringify_idxs([1,2,3]) == ["1", "2", "3"] @test PT.stringify_idxs([1,100,10]) == [" 1", "100", " 10"] @test PT.stringify_idxs([I(1,1), I(1,10), I(100,1)]) == [ " 1, 1", " 1,10", "100, 1"] end @testset "print_failures()" begin printfunc = (args...) -> sprint(PT.print_failures, args...) # Without abbreviating output f = (io, idx) -> print(io, 2 * idx) @test printfunc(1:3, f) == "\n[1]: 2\n[2]: 4\n[3]: 6" @test printfunc(1:3, f, "*") == "\n*[1]: 2\n*[2]: 4\n*[3]: 6" f = (io, idx) -> print(io, sum(idx.I)) idxs = CartesianIndex.([(1,10), (10,1)]) @test printfunc(idxs, f) == "\n[ 1,10]: 11\n[10, 1]: 11" # With abbreviating output f = (io, idx) -> print(io, idx) PT.set_max_print_failures(5) @test printfunc(1:9, f) == "\n[1]: 1\n[2]: 2\n[3]: 3\n⋮\n[8]: 8\n[9]: 9" PT.set_max_print_failures(2) @test printfunc(1:9, f) == "\n[1]: 1\n⋮\n[9]: 9" PT.set_max_print_failures(1) @test printfunc(1:9, f, "*") == "\n*[1]: 1\n*⋮" PT.set_max_print_failures(0) @test printfunc(1:9, f) == "" PT.set_max_print_failures(10) end @testset "NonBoolTypeError" begin f = evaled -> destyle(PT.NonBoolTypeError(evaled).msg) # Non-array @test f(1) == "1 ===> $Int" @test f(:a) == "a ===> Symbol" @test f(TestStruct(1, π)) == "S(1, 3.14159) ===> TestStruct" @test f(Set{Int16}(1:1)) == "Set([1]) ===> Set{Int16}" # Arrays msg = f([1,2]) @test contains(msg, "2-element Vector{$Int} with 2 non-Boolean values:") @test contains(msg, "[1]: 1 ===> $Int\n") @test contains(msg, "[2]: 2 ===> $Int") msg = f([true, :a, false, TestStruct(1, π)]) @test contains(msg, "4-element Vector{Any} with 2 non-Boolean values:") @test contains(msg, "[2]: :a ===> Symbol") @test contains(msg, "[4]: S(1, 3.14159) ===> TestStruct") msg = f(1:3) @test contains(msg, "3-element UnitRange{$Int} with 3 non-Boolean values:") end end @testset "eval_test_all()" begin @testset "method error when evaling all()" begin f = (evaled) -> PT.eval_test_all(evaled, [evaled], "", LineNumberNode(1)) cases = [ :a, TestStruct(1,1) ] @testset "evaled: $case" for case in cases @test_throws MethodError f(case) end end @testset "non-Boolean in evaled argument" begin f = (evaled) -> PT.eval_test_all(evaled, [evaled], "", LineNumberNode(1)) cases = [ 1, 1:3, [true, :a], [TestStruct(1,1), false], ] @testset "evaled: $case" for case in cases @test_throws PT.NonBoolTypeError f(case) end end @testset "passing all()" begin f = (evaled) -> PT.eval_test_all(evaled, [evaled], "", LineNumberNode(1)) cases = [ true, [true, true], 1 .== [1,1], Set([]), Set([true]), Dict([]), .≈(1, [1, 2], atol=2) ] @testset "evaled: $case" for case in cases res = f(case) @test res isa Test.Returned @test res.value === true @test res.data === nothing end end f = (evaled, terms, fmt) -> begin res = PT.eval_test_all(evaled, terms, fmt, LineNumberNode(1)) @assert res isa Test.Returned return destyle(res.data) end @testset "evaled === false" begin msg = f(1 .== 2, [1, 2], "{1:s} == {2:s}") @test startswith(msg, "false") @test contains(msg, "Argument: 1 == 2 ===> false") end @testset "evaled isa BitArray" begin a, b = [1,1], [1,2] msg = f(a .== b, [a, b], "{1:s} == {2:s}") @test startswith(msg, "false") @test contains(msg, "Argument: 2-element BitVector, 1 failure:") @test contains(msg, "[2]: 1 == 2 ===> false") a, b = 1, [1, 2, missing] msg = f(a .== b, [a, b], "{1:s} == {2:s}") @test startswith(msg, "false") @test occursin(r"Argument: 3-element Vector.*, 1 missing and 1 failure:", msg) @test contains(msg, "[2]: 1 == 2 ===> false") @test contains(msg, "[3]: 1 == missing ===> missing") end end @testset "@test_all" begin @testset "Pass" begin a = [1,2,3] b = a .+ 0.01 c = a .+ 1e-10 TOL = 0.1 @test_all true @test_all fill(true, 5) @test_all Dict() @test_all Set([true]) @test_all a .=== a @test_all a .== 1:3 @test_all a .<= b @test_all 5:7 .>= b @test_all a .≈ c @test_all a .≉ b @test_all [Real, Integer] .>: Int16 @test_all [1:2, 1:3, 1:4] .⊆ Ref(0:5) @test_all occursin.(r"a|b", ["aa", "bb", "ab"]) @test_all a .≈ b atol=TOL @test_all a .≉ b atol=1e-8 @test_all Bool[1,0,1] .| Bool[1,1,0] @test_all Bool[1,0,0] .⊻ Bool[0,1,0] .⊻ Bool[0,0,1] end @testset "Fail" begin messages = [] let fails = @testset NoThrowTestSet begin # 1 @test_all 1:3 .== 2:4 push!(messages, [ "Expression: all(1:3 .== 2:4)", "Evaluated: false", "Argument: 3-element BitVector, 3 failures:", "[1]: 1 == 2 ===> false", "[2]: 2 == 3 ===> false", "[3]: 3 == 4 ===> false", ]) # 2 @test_all [1 2] .== [1, 2] push!(messages, [ "Expression: all([1 2] .== [1, 2])", "Evaluated: false", "Argument: 2×2 BitMatrix, 2 failures:", "[2,1]: 1 == 2 ===> false", "[1,2]: 2 == 1 ===> false", ]) # 3 a, b = Bool[1,0], Bool[1,1] @test_all a .⊻ b push!(messages, [ "Expression: all(a .⊻ b)", "Evaluated: false", "Argument: 2-element BitVector, 1 failure:", "[1]: true ⊻ true ===> false", ]) # 4 @test_all 1:4 .∈ Ref(1:3) push!(messages, [ "Expression: all(1:4 .∈ Ref(1:3))", "Evaluated: false", "Argument: 4-element BitVector, 1 failure:", "[4]: 4 ∈ 1:3 ===> false", ]) # 5 a = Set([false]) @test_all a push!(messages, [ "Expression: all(a)", "Evaluated: false", "Argument: Set{Bool} with 1 element, 1 failure", ]) # 6 a = [1,2,missing] @test_all a .== 1 push!(messages, [ "Expression: all(a .== 1)", "Evaluated: false", "Argument: 3-element Vector{Union{Missing, Bool}}, 1 missing and 1 failure:", "[2]: 2 == 1 ===> false", "[3]: missing == 1 ===> missing", ]) # 7 @test_all 1 .== 2 push!(messages, [ "Expression: all(1 .== 2)", "Evaluated: false", "Argument: 1 == 2 ===> false", ]) # 8 a = [1,NaN,3] @test_all .!isnan.(a) push!(messages, [ "Expression: all(.!isnan.(a))", "Evaluated: false", "Argument: 3-element BitVector, 1 failure:", "[2]: !isnan(NaN) ===> false", ]) # 9 a = [0.9, 1.0, 1.1] @test_all a .≈ 1 atol=1e-2 push!(messages, [ "Expression: all(.≈(a, 1, atol=0.01))", "Evaluated: false", "Argument: 3-element BitVector, 2 failures:", "[1]: 0.9 ≈ 1 (atol=0.01) ===> false", "[3]: 1.1 ≈ 1 (atol=0.01) ===> false", ]) # 10 @test_all false push!(messages, [ "Expression: all(false)", "Evaluated: false", "Argument: false ===> false", ]) # 11 a = [[1,2], 1, 1:2] @test_all a .== Ref(1:2) push!(messages, [ "Expression: all(a .== Ref(1:2))", "Evaluated: false", "Argument: 3-element BitVector, 1 failure:", "[2]: 1 == 1:2 ===> false", ]) # 12 @test_all [1] .== missing push!(messages, [ "Expression: all([1] .== missing)", "Evaluated: missing", "Argument: 1-element Vector{Missing}, 1 missing:", "[1]: 1 == missing ===> missing", ]) # 13 @test_all 1 .== missing push!(messages, [ "Expression: all(1 .== missing)", "Evaluated: missing", "Argument: 1 == missing ===> missing", ]) # 14 a = [-1, 2, 1] @test_all ifelse.(a .< 0, -a .% 2, a .% 2) .== 1 push!(messages, [ "Expression: all(ifelse.(a .< 0, -a .% 2, a .% 2) .== 1)", "Evaluated: false", "Argument: 3-element BitVector, 1 failure:", "[2]: ifelse(2 < 0, 0, 0) == 1 ===> false", ]) end @testset "ex[$i]: $(fail.orig_expr)" for (i, fail) in enumerate(fails) @test fail isa Test.Fail @test fail.test_type === :test str = sprint(show, fail) for msg in messages[i] @test contains(str, msg) end end end # let fails end @testset "skip/broken=false" begin a = 1 @test_all 1 .== 1 broken=false @test_all 1 .== 1 skip=false @test_all 1 .== 1 broken=a==2 @test_all 1 .== 1 skip=!isone(1) end @testset "skip=true" begin let skips = @testset NoThrowTestSet begin # 1 @test_all 1 .== 1 skip=true # 2 @test_all 1 .== 2 skip=true # 3 @test_all 1 .== error("fail gracefully") skip=true end @testset "skipped[$i]" for (i, skip) in enumerate(skips) @test skip isa Test.Broken @test skip.test_type === :skipped end end # let skips end @testset "broken=true" begin let brokens = @testset NoThrowTestSet begin # 1 @test_all 1 .== 2 broken=true # 2 @test_all 1 .== error("fail gracefully") broken=true end @testset "broken[$i]" for (i, broken) in enumerate(brokens) @test broken isa Test.Broken @test broken.test_type === :test end end # let brokens let unbrokens = @testset NoThrowTestSet begin # 1 @test_all 1 .== 1 broken=true end @testset "unbroken[$i]" for (i, unbroken) in enumerate(unbrokens) @test unbroken isa Test.Error @test unbroken.test_type === :test_unbroken end end # let unbrokens end @testset "Error" begin messages = [] let errors = @testset NoThrowTestSet begin # 1 @test_all A push!(messages, ["UndefVarError:"]) # 2 @test_all sqrt.([1,-1]) push!(messages, ["DomainError"]) # 3 @test_all error("fail ungracefully") push!(messages, ["fail ungracefully"]) # 4 end @testset "error[$i]" for (i, error) in enumerate(errors) @test error isa Test.Error @test error.test_type === :test_error for msg in messages[i] @test contains(sprint(show, error), msg) end end end end @testset "evaluate arguments once" begin g = Int[] f = (x) -> (push!(g, 1); x) @test_all f([1,2]) .== 1:2 @test g == [1] empty!(g) @test_all occursin.(r"a|b", f(["aa", "bb", "ab"])) @test g == [1] end end end
PrettyTests
https://github.com/tpapalex/PrettyTests.jl.git
[ "MIT" ]
0.1.1
731532d7a03845a784a5a5e4e9a7b4993830032c
code
19910
@testset "test_sets.jl" begin @testset "printing utilities" begin @testset "printL/R" begin fLR = (args...) -> destyle(sprint(PT.printLsepR, args...)) @test fLR("L", "sep", "R") == "L sep R" @test fLR("L", "sep", "R", " suffix") == "L sep R suffix" end @testset "printset()" begin f = v -> sprint(PT.printset, v, "set", context = PT.failure_ioc()) @test contains(f([1]), "set has 1 element: [1]") @test contains(f([2,3]), "set has 2 elements: [2, 3]") @test contains(f(Set([4])), "set has 1 element: [4]") @test occursin(r"set has 2 elements: \[(5|6), (5|6)\]", f(Set([5,6]))) @test contains(f(Int32[7,8]), "set has 2 elements: [7, 8]") @test contains(f(Set{Int32}([9])), "set has 1 element: [9]") @test contains(f([1,π]), "set has 2 elements: [1.0, 3.14159]") @test contains(f([TestStruct(1,π)]), "set has 1 element: [S(1, 3.14159)]") end @testset "stringify_expr_test_sets()" begin f = PT.stringify_expr_test_sets @test f(:(a == b)) == "a == b" @test f(:(a ≠ b)) == "a ≠ b" @test f(:(a ⊆ b)) == "a ⊆ b" @test f(:(a ⊇ b)) == "a ⊇ b" @test f(:(a ⊊ b)) == "a ⊊ b" @test f(:(a ⊋ b)) == "a ⊋ b" @test f(:(a ∩ b)) == "a ∩ b == ∅" @test f(:(1:3 == 1:3)) == "1:3 == 1:3" @test f(:(Set(3) ≠ [1 2 3])) == "Set(3) ≠ [1 2 3]" @test f(:([1,2] ∩ [3,4])) == "[1, 2] ∩ [3, 4] == ∅" # Check that output is styled PT.enable_failure_styling() @test ansioccursin("\ea\e == \eb\e", f(:(a == b))) @test ansioccursin("\eset\e ∩ \earr\e == ∅", f(:(set ∩ arr))) PT.disable_failure_styling() end end @testset "process_expr_test_sets(ex)" begin @testset "valid expressions" begin cases = [ # Left as is :(L == R) => :(L == R), :(L ≠ R) => :(L ≠ R), :(L ⊆ R) => :(L ⊆ R), :(L ⊇ R) => :(L ⊇ R), :(L ⊊ R) => :(L ⊊ R), :(L ⊋ R) => :(L ⊋ R), :(L ∩ R) => :(L ∩ R), # Converted :(L != R) => :(L ≠ R), :(L ⊂ R) => :(L ⊆ R), :(L ⊃ R) => :(L ⊇ R), :(L || R) => :(L ∩ R), :(issetequal(L, R)) => :(L == R), :(isdisjoint(L, R)) => :(L ∩ R), :(issubset(L, R)) => :(L ⊆ R), # Disjoint syntactic sugar :(L ∩ R == ∅) => :(L ∩ R), :(∅ == L ∩ R) => :(L ∩ R), ] @testset "$ex" for (ex, res) in cases @test PT.process_expr_test_sets(ex) == res end end @testset "unsupported operator" begin cases = [ :(a <= b), :(a .== b), :(a ∈ b), :(a ∪ b), :(a | b) ] @testset "$ex" for ex in cases @test_throws ErrorException("invalid test macro call: @test_set unsupported set operator $(ex.args[1])") PT.process_expr_test_sets(ex) end end @testset "invalid expression" begin cases = [ :(a && b), :(a == b == c), :(g(a, b)), ] @testset "$ex" for ex in cases @test_throws ErrorException("invalid test macro call: @test_set $ex") PT.process_expr_test_sets(ex) end end end @testset "eval_test_sets()" begin @testset "op: ==" begin f = (lhs, rhs) -> PT.eval_test_sets(lhs, :(==), rhs, LineNumberNode(1)) res = f(Set([1,2,3]), [1,2,3]) @test res.value === true res = f([2,1,2], [1,2,1,2]) @test res.value === true res = f([1,2,3], Set([1,2])) @test res.value === false @test startswith(res.data, "L and R are not equal.") @test contains(res.data, "L ∖ R has 1 element: [3]") @test contains(res.data, "R ∖ L has 0 elements: []") res = f(4:6, 1:9) @test res.value === false @test startswith(res.data, "L and R are not equal.") @test contains(res.data, "L ∖ R has 0 elements: []") @test occursin(r"R ∖ L has 6 elements: \[(\d, ){5}\d]", res.data) end @testset "op: ≠" begin f = (lhs, rhs) -> PT.eval_test_sets(lhs, :≠, rhs, LineNumberNode(1)) res = f([1,2,3], Set([1,2])) @test res.value === true res = f([1,2,3], [1,1,1]) @test res.value === true res = f([1,2,3], Set([3,2,1])) @test res.value === false @test startswith(res.data, "L and R are equal.") @test contains(res.data, "L = R has 3 elements: [1, 2, 3]") res = f([2,1,1,1,1], [1,2]) @test res.value === false @test startswith(res.data, "L and R are equal.") @test contains(res.data, "L = R has 2 elements: [2, 1]") end @testset "op: ⊆" begin f = (lhs, rhs) -> PT.eval_test_sets(lhs, :⊆, rhs, LineNumberNode(1)) res = f([1,2,3], [1,2,3]) @test res.value === true res = f([1,2], Set([1,2,3])) @test res.value === true res = f([1,2,2,1], 1:5) @test res.value === true res = f([1,2,3], Set([2,1])) @test res.value === false @test startswith(res.data, "L is not a subset of R.") @test contains(res.data, "L ∖ R has 1 element: [3]") res = f(4:-1:1, [1,2]) @test res.value === false @test startswith(res.data, "L is not a subset of R.") @test contains(res.data, "L ∖ R has 2 elements: [4, 3]") end @testset "op: ⊇" begin f = (lhs, rhs) -> PT.eval_test_sets(lhs, :⊇, rhs, LineNumberNode(1)) res = f([1,2,3], [1,2,3]) @test res.value === true res = f(Set([1,2,3]), [1,2]) @test res.value === true res = f(1:5, [1,2,2,1]) @test res.value === true res = f(Set([2,1]), [1,2,3]) @test res.value === false @test startswith(res.data, "L is not a superset of R.") @test contains(res.data, "R ∖ L has 1 element: [3]") res = f([1,2], 4:-1:1) @test res.value === false @test startswith(res.data, "L is not a superset of R.") @test contains(res.data, "R ∖ L has 2 elements: [4, 3]") end @testset "op: ⊊" begin f = (lhs, rhs) -> PT.eval_test_sets(lhs, :⊊, rhs, LineNumberNode(1)) res = f([1,2], [1,2,3]) @test res.value === true res = f(1:5, 0:10) @test res.value === true res = f([1,3,2,3], [1,2,3,1]) @test res.value === false @test startswith(res.data, "L is not a proper subset of R, it is equal.") @test contains(res.data, "L = R has 3 elements: [1, 3, 2]") res = f(Set([1,2,3]), [1,2]) @test res.value === false @test startswith(res.data, "L is not a proper subset of R.") @test contains(res.data, "L ∖ R has 1 element: [3]") res = f([1,2,4,1,1,3], [1,2]) @test res.value === false @test startswith(res.data, "L is not a proper subset of R.") @test contains(res.data, "L ∖ R has 2 elements: [4, 3]") end @testset "op: ⊋" begin f = (lhs, rhs) -> PT.eval_test_sets(lhs, :⊋, rhs, LineNumberNode(1)) res = f([1,2,3], [1,2]) @test res.value === true res = f(0:10, 1:5) @test res.value === true res = f([1,2,3,1], [1,3,2,3]) @test res.value === false @test startswith(res.data, "L is not a proper superset of R, it is equal.") @test contains(res.data, "L = R has 3 elements: [1, 2, 3]") res = f([1,2], Set([1,2,3])) @test res.value === false @test startswith(res.data, "L is not a proper superset of R.") @test contains(res.data, "R ∖ L has 1 element: [3]") res = f([1,2], [1,2,4,1,1,3]) @test res.value === false @test startswith(res.data, "L is not a proper superset of R.") @test contains(res.data, "R ∖ L has 2 elements: [4, 3]") end @testset "op: ∩" begin f = (lhs, rhs) -> PT.eval_test_sets(lhs, :∩, rhs, LineNumberNode(1)) res = f([1,2,3], [4,5]) @test res.value === true res = f(1:5, 6:10) @test res.value === true res = f(1, [3,4]) @test res.value === true res = f([1,2,3], [3,4]) @test res.value === false @test startswith(res.data, "L and R are not disjoint.") @test contains(res.data, "L ∩ R has 1 element: [3]") res = f(1:5, 3:8) @test res.value === false @test startswith(res.data, "L and R are not disjoint.") @test contains(res.data, "L ∩ R has 3 elements: [3, 4, 5]") end @testset "styling" begin # Brief examples to test styling PT.enable_failure_styling() f = (lhs, op, rhs) -> PT.eval_test_sets(lhs, op, rhs, LineNumberNode(1)).data @test ansioccursin("\eL\e and \eR\e are not equal.", f([1,2], :(==), [2,3])) @test ansioccursin("\eL\e and \eR\e are equal.", f([1,2], :≠, [2,1])) @test ansioccursin("\eL\e is not a subset of \eR\e.", f([1,2], :⊆, [2,3])) @test ansioccursin("\eL\e is not a superset of \eR\e.", f([1,2], :⊇, [2,3])) @test ansioccursin("\eL\e is not a proper subset of \eR\e, it is equal.", f([1,2], :⊊, [2,1])) @test ansioccursin("\eL\e is not a proper subset of \eR\e.", f([1,2], :⊊, [2,3])) @test ansioccursin("\eL\e is not a proper superset of \eR\e, it is equal.", f([1,2], :⊋, [2,1])) @test ansioccursin("\eL\e is not a proper superset of \eR\e.", f([1,2], :⊋, [2,3])) @test ansioccursin("\eL\e and \eR\e are not disjoint.", f([1,2], :∩, [2,3])) PT.disable_failure_styling() end end @testset "@test_sets" begin @testset "Pass" begin @test_sets 1:2 == [2,1] @test_sets [1,1] == Set(1) @test_sets issetequal([1,3,3,1], 1:2:3) @test_sets ∅ == ∅ @test_sets [1,2] != 1:3 @test_sets Set(1:3) ≠ 2 @test_sets ∅ ≠ [1 2] @test_sets 1:2 ⊆ [1,2] @test_sets 3 ⊂ Set(3) @test_sets issubset([1,2],0:100) @test_sets ∅ ⊆ 1:2 @test_sets [1,2] ⊇ 1:2 @test_sets Set(3) ⊃ [3] @test_sets 0:100 ⊇ [42,42] @test_sets 1:2 ⊇ ∅ @test_sets [1,2] ⊊ 1:3 @test_sets 1 ⊊ [1,2,1] @test_sets [3] ⊊ Set(1:3) @test_sets ∅ ⊊ 1 @test_sets [1,2,3] ⊋ 1:2 @test_sets 1:100 ⊋ [42,42] @test_sets Set(1:3) ⊋ [3] @test_sets 1 ⊋ ∅ @test_sets [1,2,3] ∩ [4,5] @test_sets 1:5 || 6:8 @test_sets isdisjoint(3, Set([1,2])) @test_sets ∅ ∩ ∅ == ∅ @test_sets isdisjoint(∅, 1:2) @test_sets 1 ∩ [2,3] == ∅ @test_sets ∅ == [4,5] ∩ Set(6) end @testset "Fail" begin messages = [] let fails = @testset NoThrowTestSet begin # 1 @test_sets [1,2,3] == [1,2,3,4] push!(messages, [ "Expression: [1, 2, 3] == [1, 2, 3, 4]", "Evaluated: L and R are not equal.", ]) # 2 a, b = 1, 1 @test_sets a ≠ b push!(messages, [ "Expression: a ≠ b", "Evaluated: L and R are equal.", ]) # 3 a = [3,2,1,3,2,1] @test_sets a ⊆ 2:3 push!(messages, [ "Expression: a ⊆ 2:3", "Evaluated: L is not a subset of R.", ]) # 4 @test_sets 2:4 ⊇ 1:5 push!(messages, [ "Expression: 2:4 ⊇ 1:5", "Evaluated: L is not a superset of R.", ]) # 5 b = 1:3 @test_sets [1,2,3] ⊊ b push!(messages, [ "Expression: [1, 2, 3] ⊊ b", "Evaluated: L is not a proper subset of R, it is equal.", ]) # 6 @test_sets 1:4 ⊊ 1:3 push!(messages, [ "Expression: 1:4 ⊊ 1:3", "Evaluated: L is not a proper subset of R.", ]) # 7 SET = Set([5,5,5,6]) @test_sets SET ⊋ [6,5] push!(messages, [ "Expression: SET ⊋ [6, 5]", "Evaluated: L is not a proper superset of R, it is equal.", ]) # 8 @test_sets (1,1,1,2) ⊋ (3,2) push!(messages, [ "Expression: (1, 1, 1, 2) ⊋ (3, 2)", "Evaluated: L is not a proper superset of R.", ]) # 9 @test_sets [1,1,1,2] ∩ [3,2] push!(messages, [ "Expression: [1, 1, 1, 2] ∩ [3, 2] == ∅", "Evaluated: L and R are not disjoint.", ]) # 10 a = [1,2,3] @test_sets a != [1,2,3] push!(messages, [ "Expression: a ≠ [1, 2, 3]", "Evaluated: L and R are equal.", ]) # 11 @test_sets 4 ⊂ Set(1:3) push!(messages, [ "Expression: 4 ⊆ Set(1:3)", "Evaluated: L is not a subset of R.", ]) # 12 a = Set(1:3) @test_sets a ⊃ 4 push!(messages, [ "Expression: a ⊇ 4", "Evaluated: L is not a superset of R.", ]) # 13 @test_sets 1:3 || 2:4 push!(messages, [ "Expression: 1:3 ∩ 2:4 == ∅", "Evaluated: L and R are not disjoint.", ]) # 14 a = [1] @test_sets issetequal(a, 2) push!(messages, [ "Expression: a == 2", "Evaluated: L and R are not equal.", ]) # 15 @test_sets isdisjoint(1, 1) push!(messages, [ "Expression: 1 ∩ 1 == ∅", "Evaluated: L and R are not disjoint.", ]) # 16 @test_sets issubset(1:5, 3) push!(messages, [ "Expression: 1:5 ⊆ 3", "Evaluated: L is not a subset of R.", ]) # 17 @test_sets ∅ ⊋ ∅ push!(messages, [ "Expression: ∅ ⊋ ∅", "Evaluated: L is not a proper superset of R, it is equal.", ]) # 18 @test_sets ∅ == 1:5 push!(messages, [ "Expression: ∅ == 1:5", "Evaluated: L and R are not equal.", ]) end @testset "ex[$i]: $(fail.orig_expr)" for (i, fail) in enumerate(fails) @test fail isa Test.Fail @test fail.test_type === :test str = destyle(sprint(show, fail)) for msg in messages[i] @test contains(str, msg) end end end # let fails end @testset "skip/broken=false" begin a = 1 @test_sets 1 == 1 broken=false @test_sets 1 == 1 skip=false @test_sets 1 == 1 broken=a==2 @test_sets 1 == 1 skip=!isone(1) end @testset "skip=true" begin let skips = @testset NoThrowTestSet begin # 1 @test_sets 1 == 1 skip=true # 2 @test_sets 1 == 2 skip=true # 3 @test_sets 1 == error("fail gracefully") skip=true end @testset "skipped[$i]" for (i, skip) in enumerate(skips) @test skip isa Test.Broken @test skip.test_type === :skipped end end # let skips end @testset "broken=true" begin let brokens = @testset NoThrowTestSet begin # 1 @test_sets 1 == 2 broken=true # 2 @test_sets 1 == error("fail gracefully") broken=true end @testset "broken[$i]" for (i, broken) in enumerate(brokens) @test broken isa Test.Broken @test broken.test_type === :test end end # let brokens let unbrokens = @testset NoThrowTestSet begin # 1 @test_sets 1 == 1 broken=true end @testset "unbroken[$i]" for (i, unbroken) in enumerate(unbrokens) @test unbroken isa Test.Error @test unbroken.test_type === :test_unbroken end end # let unbrokens end @testset "Error" begin messages = [] let errors = @testset NoThrowTestSet begin # 1 @test_sets A == B push!(messages, "UndefVarError") # 2 @test_sets sqrt(-1) == 3 push!(messages, "DomainError") # 3 @test_sets 3 == error("fail ungracefully") push!(messages, "fail ungracefully") end @testset "error[$i]" for (i, error) in enumerate(errors) @test error isa Test.Error @test error.test_type === :test_error @test contains(sprint(show, error), messages[i]) end end end @testset "evaluate arguments once" begin g = Int[] f = (x) -> (push!(g, x); x) @test_sets f(1) == 1 @test g == [1] empty!(g) @test_sets 1 ≠ f(2) @test g == [2] end end end
PrettyTests
https://github.com/tpapalex/PrettyTests.jl.git
[ "MIT" ]
0.1.1
731532d7a03845a784a5a5e4e9a7b4993830032c
docs
1751
# PrettyTests.jl [![Dev](https://img.shields.io/badge/docs-dev-blue.svg)](https://tpapalex.github.io/PrettyTests.jl/dev/) [![Build Status](https://github.com/tpapalex/PrettyTests.jl/actions/workflows/CI.yml/badge.svg?branch=main)](https://github.com/tpapalex/PrettyTests.jl/actions/workflows/CI.yml?query=branch%3Amain) A Julia package that provides `@test`-like macros with more informative error messages. The inspiration comes from `python` [asserts](https://docs.python.org/3/library/unittest.html#assert-methods), which customize their error message based on the type of unit test being performed; for example, by showing the differences between two sets or lists that should be equal. `PrettyTests` exports drop-in replacements for `@test` that are designed to (a) provide concise error messages tailored to specific situations, and (b) conform with the standard [`Test`](https://docs.julialang.org/en/v1/stdlib/Test/) interface so that they fit into to any unit-testing workflow. ## Installation The package requires Julia `1.7` or higher. It can be installed using Julia's package manager: first type `]` in the REPL, then: ``` pkg> add PrettyTests ``` ## Example Usage ```@julia-repl julia> @test_all [1, 2, 3] .< 2 Test Failed at none:1 Expression: all([1, 2, 3] .< 2) Evaluated: false Argument: 3-element BitVector, 2 failures: [2]: 2 < 2 ===> false [3]: 3 < 2 ===> false julia> @test_sets [1, 2, 3] ∩ [2, 3, 4] == ∅ Test Failed at none:1 Expression: [1, 2, 3] ∩ [2, 3, 4] == ∅ Evaluated: L and R are not disjoint. L ∩ R has 2 elements: [2, 3] ``` More details and functionalities are listed in the package [documentation](https://tpapalex.github.io/PrettyTests.jl/dev/).
PrettyTests
https://github.com/tpapalex/PrettyTests.jl.git
[ "MIT" ]
0.1.1
731532d7a03845a784a5a5e4e9a7b4993830032c
docs
19280
```@meta CurrentModule = PrettyTests ``` # Home [PrettyTests](https://github.com/tpapalex/PrettyTests.jl) extends Julia's basic unit-testing functionality by providing drop-in replacements for [`Test.@test`] (@extref Julia) with more informative error messages. The inspiration for the package comes from [`python`](@extref python assert-methods) and [`numpy` asserts](@extref numpy numpy.testing), which customize their error messages depending on the type of test being performed; for example, by showing the differences between two sets that should be equal or the number of elements that differ in two arrays. `PrettyTests` macros are designed to (a) provide clear and concise error messages tailored to specific situations, and (b) conform with the standard [`Test`](@extref Julia stdlib/Test) library interface, so that they can fit into any testing workflow. This guide walks through several examples: ```@contents Pages = ["index.md"] Depth = 2:3 ``` The package requires Julia `1.7` or higher, and can be installed in the usual way: type `]` to enter the package manager, followed by `add PrettyTests`. ## `@test_sets` for set-like comparisons ### Set equality The [`@test_sets`](@ref) macro is used to compare two set-like objects. It accepts expressions of the form `@test_sets L <op> R`, where `op` is an infix set comparison operator and `L` and `R` are collections, broadly defined. In the simplest example, one could test for set equality with the (overloaded) `==` operator: ```@setup test_sets using PrettyTests, Test PrettyTests.enable_failure_styling() PrettyTests.set_max_print_failures(10) mutable struct JustPrintTestSet <: Test.AbstractTestSet results::Vector JustPrintTestSet(desc) = new([]) end function Test.record(ts::JustPrintTestSet, t::Test.Result) str = sprint(show, t, context=:color=>true) str = replace(str, r"Stacktrace:(.|\n)*$" => "Stacktrace: [...]") println(str) push!(ts.results, t) return t end Test.finish(ts::JustPrintTestSet) = nothing ``` ```@repl test_sets a, b = [2, 1, 1], [1, 2]; @testset JustPrintTestSet begin # hide @test_sets a == b end # hide ``` This is equivalent to the more verbose `@test issetequal(a, b)`. It is also more informative in the case of failure: ```@repl test_sets @testset JustPrintTestSet begin # hide @test_sets a == 2:4 end # hide ``` The failed test message lists exactly how many and which elements were in the set differences `L \ R` and `R \ L`, which should have been empty in a passing test. Note how the collections interpreted as `L` and `R` are color-coded (using ANSI color escape codes) so that they can be easily identified if the expressions are long: ```@repl test_sets variable_with_long_name = 1:3; function_with_long_name = () -> 4:9; @testset JustPrintTestSet begin # hide @test_sets variable_with_long_name ∪ Set(4:6) == function_with_long_name() end # hide ``` !!! info "Disable color output" To disable colored subexpressions in failure messages use [`disable_failure_styling()`] (@ref PrettyTests.disable_failure_styling). The symbol `∅` (typed as `\emptyset<tab>`) can be used as shorthand for `Set()` in any set expression: ```@repl test_sets @testset JustPrintTestSet begin # hide @test_sets Set() == ∅ end # hide @testset JustPrintTestSet begin # hide @test_sets [1,1] == ∅ end # hide ``` Because the macro internally expands the input expression to an [`issetequal`](@extref Julia Base.issetequal) call (and uses [`setdiff`](@extref Julia Base.setdiff) to print the differences), it works very flexibly with general collections and iterables: ```@repl test_sets @testset JustPrintTestSet begin # hide @test_sets Dict() == Set() end # hide @testset JustPrintTestSet begin # hide @test_sets "baabaa" == "abc" end # hide ``` ### Subsets Set comparisons beyond equality are also supported, with modified error messages. For example, [(as in base Julia)](@extref Julia Base.issubset), the expression `L ⊆ R` is equivalent to `issubset(L, R)`: ```@repl test_sets @testset JustPrintTestSet begin # hide @test_sets "baabaa" ⊆ "abc" end # hide @testset JustPrintTestSet begin # hide @test_sets (3, 1, 2, 3) ⊆ (1, 2) end # hide ``` Note how, in this case, the failure displays only the set difference `L \ R` and omits the irrelevant `R \ L`. ### Disjointness The form `L ∩ R == ∅` is equivalent to [`isdisjoint`](@extref Julia Base.isdisjoint)`(L, R)`. In the case of failure, the macro displays the non-empty intersection `L ∩ R`, as computed by [intersect](@extref Julia Base.intersect): ```@repl test_sets @testset JustPrintTestSet begin # hide @test_sets (1, 2, 3) ∩ (4, 5, 6) == ∅ end # hide @testset JustPrintTestSet begin # hide @test_sets "baabaa" ∩ "abc" == ∅ end # hide ``` !!! info "Shorthand disjointness syntax" Though slightly abusive in terms of notation, the macro will also accept `L ∩ R` and `L || R` as shorthands for `isdisjoint(L, R)`: ```@repl test_sets @testset JustPrintTestSet begin # hide @test_sets "baabaa" ∩ "moooo" end # hide @testset JustPrintTestSet begin # hide @test_sets (1,2) || (3,4) end # hide ``` ## `@test_all` for vectorized tests ### Basic usage The [`@test_all`](@ref) macro is used for "vectorized" [`@test`](@extref Julia Test.@test)s. The name derives from the fact that `@test_all ex` will (mostly) behave like `@test all(ex)`: ```@setup test_all using PrettyTests, Test PrettyTests.enable_failure_styling() PrettyTests.set_max_print_failures(10) mutable struct JustPrintTestSet <: Test.AbstractTestSet results::Vector JustPrintTestSet(desc) = new([]) end function Test.record(ts::JustPrintTestSet, t::Test.Result) str = sprint(show, t, context=:color=>true) str = replace(str, r"Stacktrace:(.|\n)*$" => "Stacktrace: [...]") println(str) push!(ts.results, t) return t end #function Base.show(io::IO, t::Test.Fai) Test.finish(ts::JustPrintTestSet) = nothing ``` ```@repl test_all a = [1, 2, 3, 4]; @testset JustPrintTestSet begin # hide @test all(a .< 5) end # hide @testset JustPrintTestSet begin # hide @test_all a .< 5 end # hide ``` With one important difference: `@test_all` does not [short-circuit](@extref Julia Base.all-Tuple{Any}) when it encounters the first `false` value. It evaluates the full expression and checks that *each element* is not `false`, printing errors for each "individual" failure: ```@repl test_all @testset JustPrintTestSet begin # hide @test_all a .< 2 end # hide ``` The failure message can be parsed as follows: - The expression `all(a .< 2)` evaluated to `false` - The argument to `all()` was a `4-element BitVector` - There were `3` failures, i.e. elements of the argument that were `false` - These occured at indices `[2]`, `[3]` and `[4]` Like [`@test`](@extref Julia Test.@test), the macro performed some introspection to show an *unvectorized* (and color-coded) form of the expression for each individual failure. For example, the failure at index `[4]` was because `a[4] = 4`, and `4 < 2` evaluated to `false`. !!! note "Why not `@testset` for ...?" One could achieve a similar effect to `@test_all` by using the [`@testset for`] (@extref Julia Test.@testset) syntax built in to [`Test`](@extref Julia stdlib/Test). The test `@test_all a .< 2` is basically equivalent to: ```@julia @testset for i in eachindex(a) @test a[i] < 2 end ``` When the iteration is relatively simple, `@test_all` should be preferred for its conciseness. It avoids the need for explicit indexing, e.g. `a[i]`, conforming with Julia's intuitive broadcasting semantics. More importantly, all relevant information about the test failures (i.e. how many and which indices failed) are printed in a single, concise [`Test.Fail`](@extref Julia) result rather than multiple, redundant messages in nested test sets. The introspection goes quite a bit deeper than what [`@test`](@extref Julia Test.@test) supports, handling pretty complicated expressions: ```@repl test_all x, y, str, func = 2, 4.0, "baa", arg -> arg > 0; @testset JustPrintTestSet begin # hide @test_all (x .< 2) .| isnan.(y) .& .!occursin.(r"a|b", str) .| func(-1) end # hide ``` Note also how, since `ex` evaluated to a scalar in this case, the failure message ommitted the summary/indexing and printed just the single failure under `Argument:`. !!! info "Disable color output" To disable colored subexpressions in failure messages use [`disable_failure_styling()`] (@ref PrettyTests.disable_failure_styling). !!! details "Introspection mechanics" To create individual failure messages, the `@test_all` parser recursively dives through the [Abstract Syntax Tree (AST)](@extref Julia Surface-syntax-AST) of the input expression and creates/combines [`python`-like format strings] (https://github.com/JuliaString/Format.jl) for any of the following "displayable" forms: - `:comparison`s or `:call`s with vectorized comparison operators, e.g. `.==`, `.≈`, `.∈`, etc. - `:call`s to the vectorized negation operator `.!` - `:call`s to vectorized bitwise logical operators, e.g. `.&`, `.|`, `.⊻`, `.⊽` - `:.` (broadcast dot) calls to certain common functions, e.g. `isnan`, `contains`, `occursin`, etc. Any (sub-)expressions that do not fall into one of these categories are escaped and collectively [`broadcast`](@extref Julia Base.Broadcast.broadcast), so that elements can splatted into the format string at each failing index. *Note:* Unvectorized forms are not considered displayable by the parser. This is to avoid certain ambiguities with broadcasting under the current implementation. This may be changed in future. ##### Example 1 ```@repl test_all x, y = 2, 1; @testset JustPrintTestSet begin # hide @test_all (x .< y) .& (x < y) end # hide ``` In this example, the parser first receives the top-level expression `(x .< y) .& (x < y)`, which it knows to display as `$f1 & $f2` in unvectorized form. The sub-format strings `f1` and `f2` must then be determined by recursively parsing the expressions on either side of `.&`. On the left side, the sub-expression `x .< y` is also displayable as `($f11 < $f12)` with format strings `f11` and `f22` given by further recursion. At this level, the parser hits the base case, since neither `x` nor `y` are displayable forms. The two expressions are escaped and used as the first and second broadcast arguments, while the corresponding format strings `{1:s}` and `{2:s}` are passed back up the recursion to create `f1` as `({1:s} < {2:s})`. On the right side, `x < y` is *not* displayable (since it is unvectorized) and therefore escaped as whole to make the third broadcasted argument. The corresponding format string `{3:s}` is passed back up the recursion, and used as `f2`. By the end, the parser has created the format string is `({1:s} < {2:s}) & {3:s}`, with three corresponding expressions `x`, `y`, and `x < y`. Evaluating and collectively broadcasting the latter results in the scalar 3-tuple `(2, 1, false)`, which matches the dimension of the evaluated expression (`false`). Since this is a failure, the 3-tuple is splatted into the format string to create the part of the message that reads `(2 < 1) & false`. ##### Example 2 ```@repl test_all x, y = [5 6; 7 8], [5 6]; @testset JustPrintTestSet begin # hide @test_all x .== y end # hide ``` Here, the top-level expression `x .== y` is displayable, while the two sub-expressions `x` and `y` are not. The parser creates a format string `{1:s} == {2:s}` with corresponding expressions `x` and `y`. After evaluating and broadcasting, the arguments create a `2×2` matrix of 2-tuples to go with the `2×2 BitMatrix` result. The latter has two `false` elements at indices `[2,1]` and `[2,2]`, corresponding to the 2-tuples `(7, 5)` and `(8, 6)`. Splatting each of these into the format string creates the parts of the message that read `7 == 5` and `8 == 6`. ### More complicated broadcasting Expressions that involve more complicated broadcasting behaviour are naturally formatted. For example, if the expression evaluates to a higher-dimensional array (e.g. `BitMatrix`), individual failures are identified by their [`CartesianIndex`](@extref Julia Cartesian-indices): ```@repl test_all @testset JustPrintTestSet begin # hide @test_all [1 0] .== [1 0; 0 1] end # hide @testset JustPrintTestSet begin # hide @test_all occursin.([r"a|b" "oo"], ["moo", "baa"]) end # hide ``` `Ref` can be used to avoid broadcasting certain elements: ```@repl test_all vals = [1,2,3]; @testset JustPrintTestSet begin # hide @test_all 1:5 .∈ Ref(vals) end # hide ``` ### Keyword splicing Like [`@test`](@extref Julia Test.@test), [`@test_all`](@ref) will accept trailing keyword arguments that will be spliced into `ex` if it is a function call (possibly `.` vectorized). This is primarily useful to make vectorized approximate comparisons more readable: ```@repl test_all v = [3, π, 4]; @testset JustPrintTestSet begin # hide @test_all v .≈ 3.14 atol=0.15 end # hide ``` Splicing works with any callable function, including if it is wrapped in a negation: ```@repl test_all iszero_mod(x; p=2) = x % p == 0; @testset JustPrintTestSet begin # hide @test_all .!iszero_mod.(1:3) p = 3 end # hide ``` ### General iterables Paralleling its [namesake](@extref Julia Base.all-Tuple{Any}), [`@test_all`](@ref) works with general iterables (as long as they also define [`length`] (@extref Julia Base.length)): ```@example test_all struct IsEven vals end Base.iterate(x::IsEven, i=1) = i > length(x.vals) ? nothing : (iseven(x.vals[i]), i+1); Base.length(x::IsEven) = length(x.vals) ``` ```@repl test_all @testset JustPrintTestSet begin # hide @test_all IsEven(1:4) end # hide ``` If they also define [`keys`](@extref Julia Base.keys) and a corresponding [`getindex`] (@extref Julia Base.getindex), failures will be printed by index: ```@example test_all Base.keys(x::IsEven) = keys(x.vals) Base.getindex(x::IsEven, args...) = getindex(x.vals, args...) ``` ```@repl test_all @testset JustPrintTestSet begin # hide @test_all IsEven(1:4) end # hide ``` !!! warning "Short-circuiting and iterables" Since `@test_all ex` does not short-circuit at the first `false` value, it may behave differently than `@test all(ex)` in certain edge cases, notably when iterating over `ex` has side-effects. Consider the same `IsEven` iterable as above, but with an assertion that each value is non-negative: ```@example test_all function Base.iterate(x::IsEven, i=1) i > length(x.vals) && return nothing @assert x.vals[i] >= 0 iseven(x.vals[i]), i+1 end x = IsEven([1, 0, -1]) nothing # hide ``` Evaluating `@test all(x)` will return a [`Test.Fail`](@extref Julia), since the evaluation of `all(x)` short-circuits after the first iteration and returns `false`: ```@repl test_all @testset JustPrintTestSet begin # hide @test all(x) end # hide ``` Conversely, `@test_all x` will return a [`Test.Error`](@extref Julia) because it evaluates all iterations and thus triggers the assertion error on the third iteration: ```@repl test_all @testset JustPrintTestSet begin # hide @test_all x end # hide ``` ### `Missing` values The only other major difference between `@test all(ex)` and `@test_all ex` is in how they deal with missing values. Recall that, in the presence of missing values, [`all()`](@extref Julia Base.all-Tuple{Any}) will return `false` if any non-missing value is `false`, or `missing` if all non-missing values are `true`. Within an [`@test`](@extref Julia Test.@test), the former will return a [`Test.Fail`] (@extref Julia) result, whereas the latter a [`Test.Error`](@extref Julia), pointing out that the return value was non-Boolean: ```@repl test_all @testset JustPrintTestSet begin # hide @test all([1, missing] .== 2) # [false, missing] ===> false end # hide @testset JustPrintTestSet begin # hide @test all([2, missing] .== 2) # [true, missing] ===> missing end # hide ``` In the respective cases, [`@test_all`](@ref) will show the result of evaluating `all(ex)` (`false` or `missing`), but always returns a [`Test.Fail`](@extref Julia) result showing individual elements that were `missing` along with the ones that were `false`: ```@repl test_all @testset JustPrintTestSet begin # hide @test_all [1, missing] .== 2 end # hide @testset JustPrintTestSet begin # hide @test_all [2, missing] .== 2 end # hide ``` ### Non-Boolean values Finally, the macro will also produce a customized [`Test.Error`](@extref Julia) result if the evaluated argument contains any non-Boolean, non-missing values. Where `all()` would short-circuit and throw a [`Core.TypeError`](@extref Julia) on the first non-Boolean value, [`@test_all`](@ref) identifies the indices of *all* non-Boolean, non-missing values: ```@repl test_all @testset JustPrintTestSet begin # hide @test_all [true, false, 42, "a", missing] end # hide ``` ## `Test` integrations ```@setup integration using PrettyTests, Test PrettyTests.enable_failure_styling() PrettyTests.set_max_print_failures(10) mutable struct JustPrintTestSet <: Test.AbstractTestSet results::Vector JustPrintTestSet(desc) = new([]) end function Test.record(ts::JustPrintTestSet, t::Test.Result) str = sprint(show, t, context=:color=>true) str = replace(str, r"Stacktrace:(.|\n)*$" => "Stacktrace: [...]") println(str) push!(ts.results, t) return t end Test.finish(ts::JustPrintTestSet) = nothing ``` A core feature of `PrettyTests` is that macros integrate seamlessly with Julia's standard [unit-testing framework](@extref Julia stdlib/Test). They return one of the standard [`Test.Result`](@extref Julia) objects defined therein, namely: - [`Test.Pass`](@extref Julia) if the test expression evaluates to `true`. - [`Test.Fail`](@extref Julia) if it evaluates to `false` (or `missing` in the case of `@test_all`). - [`Test.Error`](@extref Julia) if the expression cannot be evaluated. - [`Test.Broken`](@extref Julia) if the test is marked as broken or skipped (see below). ### Broken/skipped tests They also support `skip` and `broken` keywords, with identical behavior to [`@test`](@extref Julia Test.@test): ```@repl integration @testset JustPrintTestSet begin # hide @test_sets 1 ⊆ 2 skip=true end #hide @testset JustPrintTestSet begin # hide @test_all 1 .== 2 broken=true end #hide @testset JustPrintTestSet begin # hide @test_all 1 .== 1 broken=true end #hide ``` ### Working with test sets The macros will also [`record`](@extref Julia Test.record) the result in the test set returned by [`Test.get_testset()`](@extref Julia Test.get_testset). This means that they will play nicely with testing workflows that use [`@testset`](@extref Julia Test.@testset): ```@repl integration @testset "MyTestSet" begin a = [1, 2] @test_all a .== 1:2 @test_all a .< 1:2 broken=true @test_sets a ⊆ 1:2 @test_sets a == 1:3 skip=true end; ```
PrettyTests
https://github.com/tpapalex/PrettyTests.jl.git
[ "MIT" ]
0.1.1
731532d7a03845a784a5a5e4e9a7b4993830032c
docs
209
## Macros ```@docs PrettyTests.@test_sets PrettyTests.@test_all ``` ## Display settings ```@docs PrettyTests.set_max_print_failures PrettyTests.disable_failure_styling PrettyTests.enable_failure_styling ```
PrettyTests
https://github.com/tpapalex/PrettyTests.jl.git
[ "MIT" ]
0.6.4
fc2e0dbf5df044c8790fb2d89f5c8684922b93b3
code
779
module SMTPClient using Distributed using LibCURL using Dates using Base64 using Markdown import Base: convert import Sockets: send export SendOptions, SendResponse, send export get_body, get_mime_msg include("utils.jl") include("types.jl") include("cbs.jl") # callbacks include("mail.jl") include("mime_types.jl") include("user.jl") ############################## # Module init/cleanup ############################## function __init__() curl_global_init(CURL_GLOBAL_ALL) global c_curl_write_cb = @cfunction(curl_write_cb, Csize_t, (Ptr{Cchar}, Csize_t, Csize_t, Ptr{Cvoid})) global c_curl_read_cb = @cfunction(curl_read_cb, Csize_t, (Ptr{Cchar}, Csize_t, Csize_t, Ptr{Cvoid})) atexit() do curl_global_cleanup() end end end # module SMTPClient
SMTPClient
https://github.com/aviks/SMTPClient.jl.git
[ "MIT" ]
0.6.4
fc2e0dbf5df044c8790fb2d89f5c8684922b93b3
code
784
############################################################################### # Callbacks ############################################################################### function curl_write_cb(buff::Ptr{Cchar}, s::Csize_t, n::Csize_t, p::Ptr{Cvoid})::Csize_t ctxt = unsafe_pointer_to_objref(p) nbytes = s * n write(ctxt.resp.body, unsafe_string(buff, nbytes)) ctxt.bytes_recd = ctxt.bytes_recd + nbytes nbytes end function writeptr(dst::Ptr{Cchar}, rd::ReadData, n::Csize_t)::Csize_t src = read(rd.src, n) n = length(src) ccall(:memcpy, Ptr{Cvoid}, (Ptr{Cvoid}, Ptr{Cvoid}, UInt), dst, src, n) n end function curl_read_cb(out::Ptr{Cchar}, s::Csize_t, n::Csize_t, p::Ptr{Cvoid})::Csize_t ctxt = unsafe_pointer_to_objref(p) writeptr(out, ctxt.rd, s * n) end
SMTPClient
https://github.com/aviks/SMTPClient.jl.git
[ "MIT" ]
0.6.4
fc2e0dbf5df044c8790fb2d89f5c8684922b93b3
code
590
send(url::AbstractString, to::AbstractVector{<:AbstractString}, from::AbstractString, body::IO, opts::SendOptions = SendOptions()) = do_send(String(url), map(String, collect(to)), String(from), opts, ReadData(body)) function do_send(url::String, to::Vector{String}, from::String, options::SendOptions, rd::ReadData) ctxt = nothing try ctxt = ConnContext(url = url, rd = rd, options = options) setmail_from!(ctxt, from) setmail_rcpt!(ctxt, to) connect(ctxt) getresponse!(ctxt) ctxt.resp finally cleanup!(ctxt) end end
SMTPClient
https://github.com/aviks/SMTPClient.jl.git
[ "MIT" ]
0.6.4
fc2e0dbf5df044c8790fb2d89f5c8684922b93b3
code
4631
mime_types = Dict( [ "abs" => "audio/x-mpeg" "ai" => "application/postscript" "aif" => "audio/x-aiff" "aifc" => "audio/x-aiff" "aiff" => "audio/x-aiff" "aim" => "application/x-aim" "art" => "image/x-jg" "asf" => "video/x-ms-asf" "asx" => "video/x-ms-asf" "au" => "audio/basic" "avi" => "video/x-msvideo" "avx" => "video/x-rad-screenplay" "bcpio" => "application/x-bcpio" "bin" => "application/octet-stream" "bmp" => "image/bmp" "body" => "text/html" "cdf" => "application/x-cdf" "cer" => "application/x-x509-ca-cert" "class" => "application/java" "cpio" => "application/x-cpio" "csh" => "application/x-csh" "css" => "text/css" "dib" => "image/bmp" "doc" => "application/msword" "dtd" => "text/plain" "dv" => "video/x-dv" "dvi" => "application/x-dvi" "eps" => "application/postscript" "etx" => "text/x-setext" "exe" => "application/octet-stream" "gif" => "image/gif" "gtar" => "application/x-gtar" "gz" => "application/x-gzip" "hdf" => "application/x-hdf" "hqx" => "application/mac-binhex40" "htc" => "text/x-component" "htm" => "text/html" "html" => "text/html" "ief" => "image/ief" "jad" => "text/vnd.sun.j2me.app-descriptor" "jar" => "application/octet-stream" "java" => "text/plain" "jnlp" => "application/x-java-jnlp-file" "jpe" => "image/jpeg" "jpeg" => "image/jpeg" "jpg" => "image/jpeg" "js" => "text/javascript" "kar" => "audio/x-midi" "latex" => "application/x-latex" "m3u" => "audio/x-mpegurl" "mac" => "image/x-macpaint" "man" => "application/x-troff-man" "me" => "application/x-troff-me" "mid" => "audio/x-midi" "midi" => "audio/x-midi" "mif" => "application/x-mif" "mov" => "video/quicktime" "movie" => "video/x-sgi-movie" "mp1" => "audio/x-mpeg" "mp2" => "audio/x-mpeg" "mp3" => "audio/x-mpeg" "mpa" => "audio/x-mpeg" "mpe" => "video/mpeg" "mpeg" => "video/mpeg" "mpega" => "audio/x-mpeg" "mpg" => "video/mpeg" "mpv2" => "video/mpeg2" "ms" => "application/x-wais-source" "nc" => "application/x-netcdf" "oda" => "application/oda" "pbm" => "image/x-portable-bitmap" "pct" => "image/pict" "pdf" => "application/pdf" "pgm" => "image/x-portable-graymap" "pic" => "image/pict" "pict" => "image/pict" "pls" => "audio/x-scpls" "png" => "image/png" "pnm" => "image/x-portable-anymap" "pnt" => "image/x-macpaint" "ppm" => "image/x-portable-pixmap" "ps" => "application/postscript" "psd" => "image/x-photoshop" "qt" => "video/quicktime" "qti" => "image/x-quicktime" "qtif" => "image/x-quicktime" "ras" => "image/x-cmu-raster" "rgb" => "image/x-rgb" "rm" => "application/vnd.rn-realmedia" "roff" => "application/x-troff" "rtf" => "application/rtf" "rtx" => "text/richtext" "sh" => "application/x-sh" "shar" => "application/x-shar" "smf" => "audio/x-midi" "snd" => "audio/basic" "src" => "application/x-wais-source" "sv4cpio" => "application/x-sv4cpio" "sv4crc" => "application/x-sv4crc" "swf" => "application/x-shockwave-flash" "t" => "application/x-troff" "tar" => "application/x-tar" "tcl" => "application/x-tcl" "tex" => "application/x-tex" "texi" => "application/x-texinfo" "texinfo" => "application/x-texinfo" "tif" => "image/tiff" "tiff" => "image/tiff" "tr" => "application/x-troff" "tsv" => "text/tab-separated-values" "txt" => "text/plain" "ulw" => "audio/basic" "ustar" => "application/x-ustar" "xbm" => "image/x-xbitmap" "xpm" => "image/x-xpixmap" "xwd" => "image/x-xwindowdump" "wav" => "audio/x-wav" "wbmp" => "image/vnd.wap.wbmp" "wml" => "text/vnd.wap.wml" "wmlc" => "application/vnd.wap.wmlc" "wmls" => "text/vnd.wap.wmlscript" "wmlscriptc" => "application/vnd.wap.wmlscriptc" "wrl" => "x-world/x-vrml" "Z" => "application/x-compress" "z" => "application/x-compress" "zip" => "application/zip" ] )
SMTPClient
https://github.com/aviks/SMTPClient.jl.git
[ "MIT" ]
0.6.4
fc2e0dbf5df044c8790fb2d89f5c8684922b93b3
code
4029
mutable struct SendOptions isSSL::Bool username::String passwd::String verbose::Bool end function SendOptions(; isSSL::Bool = false, username::AbstractString = "", passwd::AbstractString = "", verbose::Bool = false, kwargs...) kwargs = Dict(kwargs) if get(kwargs, :blocking, nothing) ≠ nothing @warn "options `blocking` is deprecated, blocking behaviour is default now, " * "use `@async send(...)` for non-blocking style." pop!(kwargs, :blocking) end length(keys(kwargs)) ≠ 0 && throw(MethodError("got unsupported keyword arguments")) SendOptions(isSSL, String(username), String(passwd), verbose) end function Base.show(io::IO, o::SendOptions) println(io, "SSL: ", o.isSSL) print( io, "verbose: ", o.verbose) !isempty(o.username) && print(io, "\nusername: ", o.username) end mutable struct SendResponse body::IOBuffer code::Int total_time::Float64 SendResponse() = new(IOBuffer(), 0, 0.0) end function Base.show(io::IO, o::SendResponse) println(io, "Return Code: ", o.code) println(io, "Time: ", o.total_time) print(io, "Response: ", String(take!(o.body))) end mutable struct ReadData{T<:IO} typ::Symbol src::T str::AbstractString offset::Csize_t sz::Csize_t end ReadData() = ReadData{IOBuffer}(:undefined, IOBuffer(), "", 0, 0) ReadData(io::T) where {T<:IO} = ReadData{T}(:io, io, "", 0, 0) ReadData(io::IOBuffer) = ReadData{IOBuffer}(:io, io, "", 0, io.size) mutable struct ConnContext curl::Ptr{CURL} # CURL handle url::String rd::ReadData resp::SendResponse options::SendOptions close_ostream::Bool bytes_recd::Int finalizer::Vector{Function} end function ConnContext(; curl = curl_easy_init(), url::String = "", rd::ReadData = ReadData(), resp::SendResponse = SendResponse(), options::SendOptions = SendOptions()) curl == C_NULL && throw("curl_easy_init() failed") ctxt = ConnContext(curl, url, rd, resp, options, false, 0, Function[]) @ce_curl curl_easy_setopt curl CURLOPT_URL url @ce_curl curl_easy_setopt curl CURLOPT_WRITEFUNCTION c_curl_write_cb @ce_curl curl_easy_setopt curl CURLOPT_WRITEDATA ctxt @ce_curl curl_easy_setopt curl CURLOPT_READFUNCTION c_curl_read_cb @ce_curl curl_easy_setopt curl CURLOPT_READDATA ctxt @ce_curl curl_easy_setopt curl CURLOPT_UPLOAD 1 if options.isSSL @ce_curl curl_easy_setopt curl CURLOPT_USE_SSL CURLUSESSL_ALL @ce_curl curl_easy_setopt curl CURLOPT_CAINFO LibCURL.cacert end if !isempty(options.username) @ce_curl curl_easy_setopt curl CURLOPT_USERNAME options.username @ce_curl curl_easy_setopt curl CURLOPT_PASSWORD options.passwd end if options.verbose @ce_curl curl_easy_setopt curl CURLOPT_VERBOSE 1 end ctxt end function setopt!(ctxt::ConnContext, opt, val) @ce_curl curl_easy_setopt ctxt.curl opt val ctxt end setmail_from!(ctxt::ConnContext, from::String) = setopt!(ctxt, CURLOPT_MAIL_FROM, from) function setmail_rcpt!(ctxt::ConnContext, R::Vector{String}) R′ = foldl(curl_slist_append, R, init = C_NULL) R′ == C_NULL && error("mail rcpts invalid") setopt!(ctxt, CURLOPT_MAIL_RCPT, R′) push!(ctxt.finalizer, () -> curl_slist_free_all(R′)) ctxt end function connect(ctxt::ConnContext) @ce_curl curl_easy_perform ctxt.curl ctxt end cleanup!(::Nothing) = nothing function cleanup!(ctxt::ConnContext) curl = ctxt.curl curl ≠ C_NULL && curl_easy_cleanup(curl) for f ∈ ctxt.finalizer f() end empty!(ctxt.finalizer) if ctxt.close_ostream close(ctxt.resp.body) ctxt.resp.body = nothing ctxt.close_ostream = false end end function getresponse!(ctxt::ConnContext) code = Array{Int}(undef, 1) @ce_curl curl_easy_getinfo ctxt.curl CURLINFO_RESPONSE_CODE code total_time = Array{Float64}(undef, 1) @ce_curl curl_easy_getinfo ctxt.curl CURLINFO_TOTAL_TIME total_time ctxt.resp.code = code[1] ctxt.resp.total_time = total_time[1] end
SMTPClient
https://github.com/aviks/SMTPClient.jl.git
[ "MIT" ]
0.6.4
fc2e0dbf5df044c8790fb2d89f5c8684922b93b3
code
3989
function encode_attachment(filename::String) io = IOBuffer() iob64_encode = Base64EncodePipe(io) open(filename, "r") do f write(iob64_encode, f) end close(iob64_encode) filename_ext = split(filename, '.')[end] if haskey(mime_types, filename_ext) content_type = mime_types[filename_ext] else content_type = "application/octet-stream" end if haskey(mime_types, filename_ext) && startswith(mime_types[filename_ext], "image") content_disposition = "inline" else content_disposition = "attachment" end # Some email clients, like Spark Mail, have problems when the attachment # encoded string is very long. This code breaks the payload into lines with # 75 characters, avoiding those problems. raw_attachment = String(take!(io)) buf = IOBuffer() char_count = 0 for c in raw_attachment write(buf, c) char_count += 1 if char_count == 75 write(buf, "\r\n") char_count = 0 end end encoded_str = "Content-Disposition: $content_disposition;\r\n" * " filename=\"$(basename(filename))\"\r\n" * "Content-Type: $content_type;\r\n" * " name=\"$(basename(filename))\"\r\n" * "Content-ID: <$(basename(filename))>\r\n" * "Content-Transfer-Encoding: base64\r\n" * "\r\n" * "$(String(take!(buf)))\r\n" return encoded_str end # See https://www.w3.org/Protocols/rfc1341/7_1_Text.html about charset function get_mime_msg(message::String, ::Val{:plain}, charset::String = "UTF-8") msg = "Content-Type: text/plain; charset=\"$charset\"\r\n" * "Content-Transfer-Encoding: quoted-printable\r\n\r\n" * "$message\r\n" return msg end get_mime_msg(message::String, ::Val{:utf8}) = get_mime_msg(message, Val(:plain), "UTF-8") get_mime_msg(message::String, ::Val{:usascii}) = get_mime_msg(message, Val(:plain), "US-ASCII") get_mime_msg(message::String) = get_mime_msg(message, Val(:utf8)) function get_mime_msg(message::String, ::Val{:html}) msg = "Content-Type: text/html;\r\n" * "Content-Transfer-Encoding: 7bit;\r\n\r\n" * "\r\n" * "<html>\r\n<body>" * message * "</body>\r\n</html>" return msg end get_mime_msg(message::HTML{String}) = get_mime_msg(message.content, Val(:html)) get_mime_msg(message::Markdown.MD) = get_mime_msg(Markdown.html(message), Val(:html)) #Provide the message body as RFC5322 within an IO function get_body( to::Vector{String}, from::String, subject::String, msg::String; cc::Vector{String} = String[], replyto::String = "", attachments::Vector{String} = String[] ) boundary = "Julia_SMTPClient-" * join(rand(collect(vcat('0':'9','A':'Z','a':'z')), 40)) tz = mapreduce( x -> string(x, pad=2), *, divrem( div( ( now() - now(Dates.UTC) ).value, 60000 ), 60 ) ) date = join([Dates.format(now(), "e, d u yyyy HH:MM:SS", locale="english"), tz], " ") contents = "From: $from\r\n" * "Date: $date\r\n" * "Subject: $subject\r\n" * ifelse(length(cc) > 0, "Cc: $(join(cc, ", "))\r\n", "") * ifelse(length(replyto) > 0, "Reply-To: $replyto\r\n", "") * "To: $(join(to, ", "))\r\n" if length(attachments) == 0 contents *= "MIME-Version: 1.0\r\n" * "$msg\r\n\r\n" else contents *= "Content-Type: multipart/mixed; boundary=\"$boundary\"\r\n" * "MIME-Version: 1.0\r\n" * "\r\n" * "This is a message with multiple parts in MIME format.\r\n" * "--$boundary\r\n" * msg * "\r\n--$boundary\r\n" * join(encode_attachment.(attachments), "\r\n--$boundary\r\n") * "\r\n--$boundary--\r\n" end body = IOBuffer(contents) return body end
SMTPClient
https://github.com/aviks/SMTPClient.jl.git
[ "MIT" ]
0.6.4
fc2e0dbf5df044c8790fb2d89f5c8684922b93b3
code
555
macro ce_curl(f, handle, args...) local esc_args = [esc(arg) for arg in args] quote cc = $(esc(f))($(esc(handle)), $(esc_args...)) if cc != CURLE_OK err = unsafe_string(curl_easy_strerror(cc)) error(string($f) * "() failed: " * err) end end end macro ce_curlm(f, handle, args...) local esc_args = [esc(arg) for arg in args] quote cc = $(esc(f))($(esc(handle)), $(esc_args...)) if cc != CURLM_OK err = unsafe_string(curl_multi_strerror(cc)) error(string($f) * "() failed: " * err) end end end
SMTPClient
https://github.com/aviks/SMTPClient.jl.git
[ "MIT" ]
0.6.4
fc2e0dbf5df044c8790fb2d89f5c8684922b93b3
code
786
@testset "Errors" begin @testset "Error message for Humans(TM)" begin let errmsg = "Couldn't resolve host name" server = "smtp://nonexists" body = IOBuffer("test") try send(server, ["nobody@earth"], "nobody@earth", body) @assert false, "send should fail" catch e @test occursin(string(errmsg), string(e)) end end end @testset "Non-blocking send" begin let errmsg = "Couldn't resolve host name" server = "smtp://nonexists" body = IOBuffer("test") t = @async send(server, ["nobody@earth"], "nobody@earth", body) try wait(t) catch e @test e isa TaskFailedException @test occursin(errmsg, e.task.exception.msg) end end end end # @testset "Errors"
SMTPClient
https://github.com/aviks/SMTPClient.jl.git
[ "MIT" ]
0.6.4
fc2e0dbf5df044c8790fb2d89f5c8684922b93b3
code
186
using Test import Base64: base64decode using Markdown using SMTPClient @testset "SMTPClient" begin for t ∈ (:send, :error) @info "testset: $t..." include("./$t.jl") end end
SMTPClient
https://github.com/aviks/SMTPClient.jl.git
[ "MIT" ]
0.6.4
fc2e0dbf5df044c8790fb2d89f5c8684922b93b3
code
24623
function test_content(f::Base.Callable, fname) try open(fname) do io f(read(io, String)) end finally rm(fname, force = true) end end @testset "Send" begin logfile = tempname() server = "smtp://127.0.0.1:1025" addr = "<[email protected]>" mock = joinpath(dirname(@__FILE__), "mock.py") cmd = `python3.7 $mock $logfile` smtpsink = run(pipeline(cmd, stderr=stdout), wait = false) sleep(.5) # wait for fake smtp server ready try let # send with body::IOBuffer body = IOBuffer("body::IOBuffer test") send(server, [addr], addr, body) test_content(logfile) do s @test occursin("body::IOBuffer test", s) end end let # send with body::IOStream mktemp() do path, io write(io, "body::IOStream test") seekstart(io) send(server, [addr], addr, io) test_content(logfile) do s @test occursin("body::IOStream test", s) end end end let # AUTH PLAIN opts = SendOptions(username = "[email protected]", passwd = "bar") body = IOBuffer("AUTH PLAIN test") send(server, [addr], addr, body, opts) test_content(logfile) do s @test occursin("AUTH PLAIN test", s) end end let opts = SendOptions(username = "[email protected]", passwd = "invalid") body = IOBuffer("invalid password") @test_throws Exception send(server, [addr], addr, body, opts) end let # multiple RCPT TO body = IOBuffer("multiple rcpt") rcpts = ["<[email protected]>", "<[email protected]>", "<[email protected]>"] send(server, rcpts, addr, body) test_content(logfile) do s @test occursin("multiple rcpt", s) @test occursin("X-RCPT: [email protected]", s) @test occursin("X-RCPT: [email protected]", s) @test occursin("X-RCPT: [email protected]", s) end end let # non-blocking send body = IOBuffer("non-blocking send") task = @async send(server, [addr], addr, body) wait(task) test_content(logfile) do s @test occursin("non-blocking send", s) end end let # SendOptions.verbose no error opts = SendOptions(verbose = true, username = "[email protected]", passwd = "bar") body = IOBuffer("SendOptions.verbose") send(server, [addr], addr, body, opts) test_content(logfile) do s @test occursin("SendOptions.verbose", s) end end let # send using get_body message = "body mime message" subject = "test message" mime_message = get_mime_msg(message, Val(:usascii)) body = get_body([addr], addr, subject, mime_message) send(server, [addr], addr, body) test_content(logfile) do s @test occursin("From: $addr", s) @test occursin("To: $addr", s) @test occursin("Subject: $subject", s) @test occursin(message, s) end end let # send using get_body with UTF-8 encoded message message = "ABCDEFGHIJKLMNOPQRSTUVWXYZ /0123456789\r\n" * "abcdefghijklmnopqrstuvwxyz £©µÀÆÖÞßéöÿ\r\n" * "–—‘“”„†•…‰™œŠŸž€ ΑΒΓΔΩαβγδω АБВГДабвгд\r\n" * "∀∂∈ℝ∧∪≡∞ ↑↗↨↻⇣ ┐┼╔╘░►☺♀ fi�⑀₂ἠḂӥẄɐː⍎אԱა\r\n" subject = "test message in UTF-8" mime_message = get_mime_msg(message, Val(:utf8)) body = get_body([addr], addr, subject, mime_message) send(server, [addr], addr, body) test_content(logfile) do s @test occursin("From: $addr", s) @test occursin("To: $addr", s) @test occursin("Subject: $subject", s) @test occursin("ABCDEFGHIJKLMNOPQRSTUVWXYZ /0123456789", s) @test occursin("abcdefghijklmnopqrstuvwxyz £©µÀÆÖÞßéöÿ", s) @test occursin("–—‘“”„†•…‰™œŠŸž€ ΑΒΓΔΩαβγδω АБВГДабвгд", s) @test occursin("∀∂∈ℝ∧∪≡∞ ↑↗↨↻⇣ ┐┼╔╘░►☺♀ fi�⑀₂ἠḂӥẄɐː⍎אԱა", s) end end let # send using get_body with HTML string encoded message message = HTML( """<h2>An important link to look at!</h2> Here's an <a href="https://github.com/aviks/SMTPClient.jl">important link</a>\r\n""" ) subject = "test message in HTML" mime_message = get_mime_msg(message) body = get_body([addr], addr, subject, mime_message) send(server, [addr], addr, body) test_content(logfile) do s @test occursin("From: $addr", s) @test occursin("To: $addr", s) @test occursin("Subject: $subject", s) @test occursin("Content-Type: text/html;", s) @test occursin("Content-Transfer-Encoding: 7bit;", s) @test occursin("<html>", s) @test occursin("<body>", s) @test occursin("<h2>An important link to look at!</h2>", s) @test occursin( "<a href=\"https://github.com/aviks/SMTPClient.jl\">important link</a>", s ) @test occursin("</body>", s) @test occursin("</html>", s) end end let # send using get_body with HTML string encoded message message = Markdown.parse( """# An important link to look at! Here's an [important link](https://github.com/aviks/SMTPClient.jl)""" ) subject = "test message in Markdown" mime_message = get_mime_msg(message) body = get_body([addr], addr, subject, mime_message) send(server, [addr], addr, body) test_content(logfile) do s @test occursin("From: $addr", s) @test occursin("To: $addr", s) @test occursin("Subject: $subject", s) @test occursin("Content-Type: text/html;", s) @test occursin("Content-Transfer-Encoding: 7bit;", s) @test occursin("<html>", s) @test occursin("<body>", s) @test occursin("<h1>An important link to look at&#33;</h1>", s) @test occursin( "<a href=\"https://github.com/aviks/SMTPClient.jl\">important link</a>", s ) @test occursin("</body>", s) @test occursin("</html>", s) end end let # send using get_body with extra fields message = "body mime message with extra fields" subject = "test message with extra fields" mime_message = get_mime_msg(message) from = addr to = ["<[email protected]>", "<[email protected]>"] cc = ["<[email protected]>", "<[email protected]>"] bcc = ["<[email protected]>"] replyto = addr body = get_body(to, from, subject, mime_message; cc = cc, replyto = replyto) rcpts = vcat(to, cc, bcc) send(server, rcpts, addr, body) test_content(logfile) do s @test occursin("From: $addr", s) @test occursin("Subject: $subject", s) @test occursin("Cc: <[email protected]>, <[email protected]>", s) @test occursin("Reply-To: $addr", s) @test occursin("To: <[email protected]>, <[email protected]>", s) @test occursin(message, s) @test occursin("X-RCPT: [email protected]", s) @test occursin("X-RCPT: [email protected]", s) @test occursin("X-RCPT: [email protected]", s) @test occursin("X-RCPT: [email protected]", s) @test occursin("X-RCPT: [email protected]", s) end end let # send with attachment message = "body mime message with attachment" subject = "test message with attachment" svg_str = """<?xml version="1.0" encoding="UTF-8"?> <svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" width="320pt" height="200pt" viewBox="0 0 320 200" version="1.1"> <g id="surface61"> <path style=" stroke:none;fill-rule:nonzero;fill:rgb(0%,0%,0%);fill-opacity:1;" d="M 67.871094 164.3125 C 67.871094 171.847656 67.023438 177.933594 65.328125 182.566406 C 63.632812 187.203125 61.222656 190.800781 58.09375 193.363281 C 54.96875 195.925781 51.21875 197.640625 46.847656 198.507812 C 42.476562 199.371094 37.613281 199.804688 32.265625 199.804688 C 25.027344 199.804688 19.488281 198.675781 15.648438 196.414062 C 11.804688 194.152344 9.882812 191.441406 9.882812 188.273438 C 9.882812 185.636719 10.953125 183.414062 13.101562 181.605469 C 15.25 179.796875 18.132812 178.894531 21.75 178.894531 C 24.464844 178.894531 26.632812 179.628906 28.25 181.097656 C 29.871094 182.566406 31.210938 184.019531 32.265625 185.449219 C 33.46875 187.03125 34.488281 188.085938 35.316406 188.613281 C 36.144531 189.140625 36.898438 189.40625 37.578125 189.40625 C 39.007812 189.40625 40.101562 188.558594 40.855469 186.863281 C 41.609375 185.167969 41.984375 181.871094 41.984375 176.972656 L 41.984375 84.050781 L 67.871094 76.929688 L 67.871094 164.3125 M 104.738281 79.414062 L 104.738281 139.214844 C 104.738281 140.875 105.058594 142.4375 105.699219 143.90625 C 106.339844 145.375 107.226562 146.640625 108.355469 147.695312 C 109.488281 148.75 110.804688 149.597656 112.3125 150.238281 C 113.820312 150.878906 115.441406 151.199219 117.175781 151.199219 C 119.132812 151.199219 121.359375 150.101562 124.070312 148.203125 C 128.363281 145.195312 130.964844 143.128906 130.964844 140.683594 C 130.964844 140.097656 130.964844 79.414062 130.964844 79.414062 L 156.738281 79.414062 L 156.738281 164.3125 L 130.964844 164.3125 L 130.964844 156.398438 C 127.574219 159.261719 123.957031 161.558594 120.113281 163.292969 C 116.269531 165.027344 112.539062 165.894531 108.921875 165.894531 C 104.703125 165.894531 100.78125 165.195312 97.164062 163.800781 C 93.546875 162.40625 90.382812 160.503906 87.671875 158.09375 C 84.957031 155.683594 82.828125 152.855469 81.28125 149.613281 C 79.738281 146.375 78.964844 142.90625 78.964844 139.214844 L 78.964844 79.414062 L 104.738281 79.414062 M 192.882812 164.3125 L 167.222656 164.3125 L 167.222656 45.277344 L 192.882812 38.15625 L 192.882812 164.3125 M 203.601562 84.050781 L 229.375 76.929688 L 229.375 164.3125 L 203.601562 164.3125 L 203.601562 84.050781 M 283.226562 120.449219 C 280.738281 121.507812 278.230469 122.730469 275.707031 124.125 C 273.183594 125.519531 270.882812 127.046875 268.8125 128.703125 C 266.738281 130.359375 265.0625 132.132812 263.78125 134.015625 C 262.5 135.898438 261.859375 137.859375 261.859375 139.894531 C 261.859375 141.476562 262.066406 143.003906 262.480469 144.472656 C 262.894531 145.941406 263.480469 147.203125 264.234375 148.257812 C 264.988281 149.3125 265.816406 150.160156 266.722656 150.800781 C 267.625 151.441406 268.605469 151.761719 269.660156 151.761719 C 271.769531 151.761719 273.898438 151.121094 276.046875 149.839844 C 278.195312 148.558594 280.585938 146.941406 283.226562 144.980469 L 283.226562 120.449219 M 309.109375 164.3125 L 283.226562 164.3125 L 283.226562 157.527344 C 281.792969 158.734375 280.398438 159.847656 279.042969 160.863281 C 277.6875 161.878906 276.160156 162.765625 274.464844 163.519531 C 272.769531 164.273438 270.867188 164.855469 268.753906 165.273438 C 266.644531 165.6875 264.15625 165.894531 261.296875 165.894531 C 257.375 165.894531 253.851562 165.328125 250.726562 164.199219 C 247.597656 163.066406 244.941406 161.523438 242.757812 159.5625 C 240.570312 157.605469 238.894531 155.285156 237.726562 152.609375 C 236.558594 149.9375 235.972656 147.015625 235.972656 143.851562 C 235.972656 140.609375 236.59375 137.671875 237.839844 135.03125 C 239.082031 132.394531 240.777344 130.023438 242.925781 127.910156 C 245.074219 125.800781 247.578125 123.917969 250.441406 122.257812 C 253.304688 120.601562 256.378906 119.074219 259.65625 117.679688 C 262.933594 116.285156 266.34375 115.007812 269.886719 113.839844 C 273.425781 112.671875 276.933594 111.558594 280.398438 110.503906 L 283.226562 109.824219 L 283.226562 101.460938 C 283.226562 96.035156 282.1875 92.191406 280.117188 89.929688 C 278.042969 87.667969 275.273438 86.539062 271.808594 86.539062 C 267.738281 86.539062 264.910156 87.519531 263.328125 89.476562 C 261.746094 91.4375 260.953125 93.808594 260.953125 96.597656 C 260.953125 98.179688 260.785156 99.726562 260.445312 101.234375 C 260.109375 102.742188 259.523438 104.058594 258.695312 105.191406 C 257.867188 106.320312 256.679688 107.226562 255.132812 107.902344 C 253.589844 108.582031 251.648438 108.921875 249.3125 108.921875 C 245.695312 108.921875 242.757812 107.882812 240.496094 105.8125 C 238.234375 103.738281 237.105469 101.121094 237.105469 97.953125 C 237.105469 95.015625 238.101562 92.285156 240.097656 89.761719 C 242.097656 87.234375 244.789062 85.066406 248.183594 83.261719 C 251.574219 81.449219 255.492188 80.019531 259.9375 78.964844 C 264.382812 77.910156 269.09375 77.382812 274.066406 77.382812 C 280.171875 77.382812 285.429688 77.929688 289.839844 79.019531 C 294.246094 80.113281 297.882812 81.675781 300.746094 83.710938 C 303.609375 85.746094 305.71875 88.195312 307.074219 91.058594 C 308.433594 93.921875 309.109375 97.128906 309.109375 100.667969 L 309.109375 164.3125 "/> <path style=" stroke:none;fill-rule:nonzero;fill:rgb(79.6%,23.5%,20%);fill-opacity:1;" d="M 235.273438 55.089844 C 235.273438 64.757812 227.4375 72.589844 217.773438 72.589844 C 208.105469 72.589844 200.273438 64.757812 200.273438 55.089844 C 200.273438 45.425781 208.105469 37.589844 217.773438 37.589844 C 227.4375 37.589844 235.273438 45.425781 235.273438 55.089844 "/> <path style=" stroke:none;fill-rule:nonzero;fill:rgb(25.1%,38.8%,84.7%);fill-opacity:1;" d="M 72.953125 55.089844 C 72.953125 64.757812 65.117188 72.589844 55.453125 72.589844 C 45.789062 72.589844 37.953125 64.757812 37.953125 55.089844 C 37.953125 45.425781 45.789062 37.589844 55.453125 37.589844 C 65.117188 37.589844 72.953125 45.425781 72.953125 55.089844 "/> <path style=" stroke:none;fill-rule:nonzero;fill:rgb(58.4%,34.5%,69.8%);fill-opacity:1;" d="M 277.320312 55.089844 C 277.320312 64.757812 269.484375 72.589844 259.820312 72.589844 C 250.15625 72.589844 242.320312 64.757812 242.320312 55.089844 C 242.320312 45.425781 250.15625 37.589844 259.820312 37.589844 C 269.484375 37.589844 277.320312 45.425781 277.320312 55.089844 "/> <path style=" stroke:none;fill-rule:nonzero;fill:rgb(22%,59.6%,14.9%);fill-opacity:1;" d="M 256.300781 18.671875 C 256.300781 28.335938 248.464844 36.171875 238.800781 36.171875 C 229.132812 36.171875 221.300781 28.335938 221.300781 18.671875 C 221.300781 9.007812 229.132812 1.171875 238.800781 1.171875 C 248.464844 1.171875 256.300781 9.007812 256.300781 18.671875 "/> </g> </svg> """ filename = joinpath(tempdir(), "julia_logo_color.svg") open(filename, "w") do f write(f, svg_str) end readme = open(f->read(f, String), joinpath("..", "README.md")) mime_message = get_mime_msg(message, Val(:utf8)) attachments = [joinpath("..", "README.md"), filename] body = get_body([addr], addr, subject, mime_message, attachments = attachments) send(server, [addr], addr, body) test_content(logfile) do s m = match(r"Content-Type:\s*multipart\/mixed;\s*boundary=\"(.+)\"\n", s) @test m !== nothing boundary = m.captures[1] @test occursin("To: $addr", s) @test occursin("Subject: $subject", s) @test occursin(message, s) splt = split(s) ind = findall(v -> occursin("--$boundary", v), splt) @test length(ind) == 6 @test String(base64decode(splt[ind[4]-1])) == readme @test String(base64decode(splt[ind[6]-1])) == svg_str end rm(filename) end let # send with attachment and markdown message message = Markdown.parse( """# An important link to look at! Here's an [important link](https://github.com/aviks/SMTPClient.jl) And don't forget to check out the attached *cool* **julia** logo.""" ) subject = "test message with attachment" svg_str = """<?xml version="1.0" encoding="UTF-8"?> <svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" width="320pt" height="200pt" viewBox="0 0 320 200" version="1.1"> <g id="surface61"> <path style=" stroke:none;fill-rule:nonzero;fill:rgb(0%,0%,0%);fill-opacity:1;" d="M 67.871094 164.3125 C 67.871094 171.847656 67.023438 177.933594 65.328125 182.566406 C 63.632812 187.203125 61.222656 190.800781 58.09375 193.363281 C 54.96875 195.925781 51.21875 197.640625 46.847656 198.507812 C 42.476562 199.371094 37.613281 199.804688 32.265625 199.804688 C 25.027344 199.804688 19.488281 198.675781 15.648438 196.414062 C 11.804688 194.152344 9.882812 191.441406 9.882812 188.273438 C 9.882812 185.636719 10.953125 183.414062 13.101562 181.605469 C 15.25 179.796875 18.132812 178.894531 21.75 178.894531 C 24.464844 178.894531 26.632812 179.628906 28.25 181.097656 C 29.871094 182.566406 31.210938 184.019531 32.265625 185.449219 C 33.46875 187.03125 34.488281 188.085938 35.316406 188.613281 C 36.144531 189.140625 36.898438 189.40625 37.578125 189.40625 C 39.007812 189.40625 40.101562 188.558594 40.855469 186.863281 C 41.609375 185.167969 41.984375 181.871094 41.984375 176.972656 L 41.984375 84.050781 L 67.871094 76.929688 L 67.871094 164.3125 M 104.738281 79.414062 L 104.738281 139.214844 C 104.738281 140.875 105.058594 142.4375 105.699219 143.90625 C 106.339844 145.375 107.226562 146.640625 108.355469 147.695312 C 109.488281 148.75 110.804688 149.597656 112.3125 150.238281 C 113.820312 150.878906 115.441406 151.199219 117.175781 151.199219 C 119.132812 151.199219 121.359375 150.101562 124.070312 148.203125 C 128.363281 145.195312 130.964844 143.128906 130.964844 140.683594 C 130.964844 140.097656 130.964844 79.414062 130.964844 79.414062 L 156.738281 79.414062 L 156.738281 164.3125 L 130.964844 164.3125 L 130.964844 156.398438 C 127.574219 159.261719 123.957031 161.558594 120.113281 163.292969 C 116.269531 165.027344 112.539062 165.894531 108.921875 165.894531 C 104.703125 165.894531 100.78125 165.195312 97.164062 163.800781 C 93.546875 162.40625 90.382812 160.503906 87.671875 158.09375 C 84.957031 155.683594 82.828125 152.855469 81.28125 149.613281 C 79.738281 146.375 78.964844 142.90625 78.964844 139.214844 L 78.964844 79.414062 L 104.738281 79.414062 M 192.882812 164.3125 L 167.222656 164.3125 L 167.222656 45.277344 L 192.882812 38.15625 L 192.882812 164.3125 M 203.601562 84.050781 L 229.375 76.929688 L 229.375 164.3125 L 203.601562 164.3125 L 203.601562 84.050781 M 283.226562 120.449219 C 280.738281 121.507812 278.230469 122.730469 275.707031 124.125 C 273.183594 125.519531 270.882812 127.046875 268.8125 128.703125 C 266.738281 130.359375 265.0625 132.132812 263.78125 134.015625 C 262.5 135.898438 261.859375 137.859375 261.859375 139.894531 C 261.859375 141.476562 262.066406 143.003906 262.480469 144.472656 C 262.894531 145.941406 263.480469 147.203125 264.234375 148.257812 C 264.988281 149.3125 265.816406 150.160156 266.722656 150.800781 C 267.625 151.441406 268.605469 151.761719 269.660156 151.761719 C 271.769531 151.761719 273.898438 151.121094 276.046875 149.839844 C 278.195312 148.558594 280.585938 146.941406 283.226562 144.980469 L 283.226562 120.449219 M 309.109375 164.3125 L 283.226562 164.3125 L 283.226562 157.527344 C 281.792969 158.734375 280.398438 159.847656 279.042969 160.863281 C 277.6875 161.878906 276.160156 162.765625 274.464844 163.519531 C 272.769531 164.273438 270.867188 164.855469 268.753906 165.273438 C 266.644531 165.6875 264.15625 165.894531 261.296875 165.894531 C 257.375 165.894531 253.851562 165.328125 250.726562 164.199219 C 247.597656 163.066406 244.941406 161.523438 242.757812 159.5625 C 240.570312 157.605469 238.894531 155.285156 237.726562 152.609375 C 236.558594 149.9375 235.972656 147.015625 235.972656 143.851562 C 235.972656 140.609375 236.59375 137.671875 237.839844 135.03125 C 239.082031 132.394531 240.777344 130.023438 242.925781 127.910156 C 245.074219 125.800781 247.578125 123.917969 250.441406 122.257812 C 253.304688 120.601562 256.378906 119.074219 259.65625 117.679688 C 262.933594 116.285156 266.34375 115.007812 269.886719 113.839844 C 273.425781 112.671875 276.933594 111.558594 280.398438 110.503906 L 283.226562 109.824219 L 283.226562 101.460938 C 283.226562 96.035156 282.1875 92.191406 280.117188 89.929688 C 278.042969 87.667969 275.273438 86.539062 271.808594 86.539062 C 267.738281 86.539062 264.910156 87.519531 263.328125 89.476562 C 261.746094 91.4375 260.953125 93.808594 260.953125 96.597656 C 260.953125 98.179688 260.785156 99.726562 260.445312 101.234375 C 260.109375 102.742188 259.523438 104.058594 258.695312 105.191406 C 257.867188 106.320312 256.679688 107.226562 255.132812 107.902344 C 253.589844 108.582031 251.648438 108.921875 249.3125 108.921875 C 245.695312 108.921875 242.757812 107.882812 240.496094 105.8125 C 238.234375 103.738281 237.105469 101.121094 237.105469 97.953125 C 237.105469 95.015625 238.101562 92.285156 240.097656 89.761719 C 242.097656 87.234375 244.789062 85.066406 248.183594 83.261719 C 251.574219 81.449219 255.492188 80.019531 259.9375 78.964844 C 264.382812 77.910156 269.09375 77.382812 274.066406 77.382812 C 280.171875 77.382812 285.429688 77.929688 289.839844 79.019531 C 294.246094 80.113281 297.882812 81.675781 300.746094 83.710938 C 303.609375 85.746094 305.71875 88.195312 307.074219 91.058594 C 308.433594 93.921875 309.109375 97.128906 309.109375 100.667969 L 309.109375 164.3125 "/> <path style=" stroke:none;fill-rule:nonzero;fill:rgb(79.6%,23.5%,20%);fill-opacity:1;" d="M 235.273438 55.089844 C 235.273438 64.757812 227.4375 72.589844 217.773438 72.589844 C 208.105469 72.589844 200.273438 64.757812 200.273438 55.089844 C 200.273438 45.425781 208.105469 37.589844 217.773438 37.589844 C 227.4375 37.589844 235.273438 45.425781 235.273438 55.089844 "/> <path style=" stroke:none;fill-rule:nonzero;fill:rgb(25.1%,38.8%,84.7%);fill-opacity:1;" d="M 72.953125 55.089844 C 72.953125 64.757812 65.117188 72.589844 55.453125 72.589844 C 45.789062 72.589844 37.953125 64.757812 37.953125 55.089844 C 37.953125 45.425781 45.789062 37.589844 55.453125 37.589844 C 65.117188 37.589844 72.953125 45.425781 72.953125 55.089844 "/> <path style=" stroke:none;fill-rule:nonzero;fill:rgb(58.4%,34.5%,69.8%);fill-opacity:1;" d="M 277.320312 55.089844 C 277.320312 64.757812 269.484375 72.589844 259.820312 72.589844 C 250.15625 72.589844 242.320312 64.757812 242.320312 55.089844 C 242.320312 45.425781 250.15625 37.589844 259.820312 37.589844 C 269.484375 37.589844 277.320312 45.425781 277.320312 55.089844 "/> <path style=" stroke:none;fill-rule:nonzero;fill:rgb(22%,59.6%,14.9%);fill-opacity:1;" d="M 256.300781 18.671875 C 256.300781 28.335938 248.464844 36.171875 238.800781 36.171875 C 229.132812 36.171875 221.300781 28.335938 221.300781 18.671875 C 221.300781 9.007812 229.132812 1.171875 238.800781 1.171875 C 248.464844 1.171875 256.300781 9.007812 256.300781 18.671875 "/> </g> </svg> """ filename = joinpath(tempdir(), "julia_logo_color.svg") open(filename, "w") do f write(f, svg_str) end readme = open(f->read(f, String), joinpath("..", "README.md")) mime_message = get_mime_msg(message) attachments = [joinpath("..", "README.md"), filename] body = get_body([addr], addr, subject, mime_message, attachments = attachments) send(server, [addr], addr, body) test_content(logfile) do s m = match(r"Content-Type:\s*multipart\/mixed;\s*boundary=\"(.+)\"\n", s) @test m !== nothing boundary = m.captures[1] @test occursin("To: $addr", s) @test occursin("Subject: $subject", s) @test occursin("Content-Type: text/html;", s) @test occursin("Content-Transfer-Encoding: 7bit;", s) @test occursin("<html>", s) @test occursin("<body>", s) @test occursin("<h1>An important link to look at&#33;</h1>", s) @test occursin( "<a href=\"https://github.com/aviks/SMTPClient.jl\">important link</a>", s ) @test occursin("<em>cool</em>",s) @test occursin("<strong>julia</strong>",s) @test occursin("</body>", s) @test occursin("</html>", s) splt = split(s) ind = findall(v -> occursin("--$boundary", v), splt) @test length(ind) == 6 @test String(base64decode(splt[ind[4]-1])) == readme @test String(base64decode(splt[ind[6]-1])) == svg_str end rm(filename) end finally kill(smtpsink) rm(logfile, force = true) end end # @testset "Send"
SMTPClient
https://github.com/aviks/SMTPClient.jl.git
[ "MIT" ]
0.6.4
fc2e0dbf5df044c8790fb2d89f5c8684922b93b3
docs
9577
# SMTPClient [![Build Status](https://travis-ci.org/aviks/SMTPClient.jl.svg?branch=master)](https://travis-ci.org/aviks/SMTPClient.jl) [![Latest Version](https://juliahub.com/docs/SMTPClient/version.svg)](https://juliahub.com/ui/Packages/SMTPClient/Bx8Fn/) [![Pkg Eval](https://juliahub.com/docs/SMTPClient/pkgeval.svg)](https://juliahub.com/ui/Packages/SMTPClient/Bx8Fn/) [![Dependents](https://juliahub.com/docs/SMTPClient/deps.svg)](https://juliahub.com/ui/Packages/SMTPClient/Bx8Fn/?t=2) A [CURL](curl.haxx.se) based SMTP client with fairly low level API. It is useful for sending emails from within Julia code. Depends on [LibCURL.jl](https://github.com/JuliaWeb/LibCURL.jl/). The latest version of SMTPClient requires Julia 1.3 or higher. Versions of this package may be available for older Julia versions, but are not fully supported. ## Installation ```julia Pkg.add("SMTPClient") ``` The LibCURL native library is automatically installed using Julia's artifact system. ## Raw usage ```julia using SMTPClient opt = SendOptions( isSSL = true, username = "[email protected]", passwd = "yourgmailpassword") #Provide the message body as RFC5322 within an IO body = IOBuffer( "Date: Fri, 18 Oct 2013 21:44:29 +0100\r\n" * "From: You <[email protected]>\r\n" * "To: [email protected]\r\n" * "Subject: Julia Test\r\n" * "\r\n" * "Test Message\r\n") url = "smtps://smtp.gmail.com:465" rcpt = ["<[email protected]>", "<[email protected]>"] from = "<[email protected]>" resp = send(url, rcpt, from, body, opt) ``` - Sending from file `IOStream` is supported: ```julia body = open("/path/to/mail") ``` ### Example with HTML formatting ```julia body = "Subject: A simple test\r\n"* "Mime-Version: 1.0;\r\n"* "Content-Type: text/html;\r\n"* "Content-Transfer-Encoding: 7bit;\r\n"* "\r\n"* """<html> <body> <h2>An important link to look at!</h2> Here's an <a href="https://github.com/aviks/SMTPClient.jl">important link</a> </body> </html>\r\n""" ``` ### Function to construct the IOBuffer body and for adding attachments A new function `get_body()` is available to facilitate constructing the IOBuffer for the body of the message and for adding attachments. The function takes four required arguments: the `to` and `from` email addresses, a `subject` string, and a `msg` string. The `to` argument is a vector of strings, containing one or more email addresses. The `msg` string can be a regular string with the contents of the message or a string in MIME format, following the [RFC5322](https://datatracker.ietf.org/doc/html/rfc5322) specifications, and constructed as a plain text, html text or markdown text. There are also the optional keyword arguments `cc`, `replyto` and `attachments`. The argument `cc` should be a vector of strings, containing one or more email addresses, while `replyto` is a string expected to contain a single argument, just like `from`. The `attachments` argument should be a list of filenames to be attached to the message. The attachments are encoded using `Base64.base64encode` and included in the IOBuffer variable returned by the function. The function `get_body()` takes care of identifying which type of attachments are to be included (from the filename extensions) and to properly add them according to the MIME specifications. In case an attachment is to be added, the `msg` argument must be formatted according to the MIME specifications. In order to help with that, another function, `get_mime_msg(message)`, is provided, which takes the provided message and returns the message with the proper MIME specifications. By default, it assumes plain text with UTF-8 encoding, but plain text with different encodings or HTML text or Markdown text can also be given (see [src/user.jl#L36](src/user.jl#L35) for more details on the implementation). As for blind carbon copy (Bcc), it is implicitly handled by `send()`. Every recipient in `send()` which is not included in `body` is treated as a Bcc. Here are a few examples: #### Message with several types of recipients ```julia using SMTPClient opt = SendOptions( isSSL = true, username = "[email protected]", passwd = "yourgmailpassword" ) url = "smtps://smtp.gmail.com:465" subject = "SMPTClient.jl" message = "Don't forget to check out SMTPClient.jl" to = ["<[email protected]>"] cc = ["<[email protected]>"] bcc = ["<[email protected]>"] from = "You <[email protected]>" replyto = "<[email protected]>" body = get_body(to, from, subject, message; cc, replyto) rcpt = vcat(to, cc, bcc) resp = send(url, rcpt, from, body, opt) ``` #### Message with attachment ```julia subject = "Julia logo" message = "Check out this cool logo!" attachments = ["julia_logo_color.png"] mime_msg = get_mime_msg(message) body = get_body(to, from, subject, mime_msg; attachments) ``` #### HTML message Note that, by using `get_mime_msg()` with an `HTML{String}` message, the tags `<html>` and `<body>` should not be added. ```julia subject = "A simple HTML test" message = html"""<h2>An important link to look at!</h2> Here's an <a href="https://github.com/aviks/SMTPClient.jl">important link</a> """ mime_msg = get_mime_msg(message) body = get_body(to, from, subject, mime_msg) resp = send(server, rcpts, sender, body, opts) ``` #### Markdown message ```julia using Markdown subject = "The Julia Programming Language" message = Markdown.parse( """# The Julia Programming Language ## Julia in a Nutshell 1. **Fast** - Julia was designed from the beginning for [high performance](https://docs.julialang.org/en/v1/manual/types/). 1. **Dynamic** - Julia is [dynamically typed](https://docs.julialang.org/en/v1/manual/types/). 1. **Reproducible** - recreate the same [Julia environment](https://julialang.github.io/Pkg.jl/v1/environments/) every time. 1. **Composable** - Julia uses [multiple dispatch](https://docs.julialang.org/en/v1/manual/methods/) as a paradigm. 1. **General** - One can build entire [Applications and Microservices](https://www.youtube.com/watch?v=uLhXgt_gKJc) in Julia. 1. **Open source** - Available under the [MIT license](https://github.com/JuliaLang/julia/blob/master/LICENSE.md), with the [source code](https://github.com/JuliaLang/julia) on GitHub. It has *over 5,000* [Julia packages](https://juliahub.com/ui/Packages) and a *variety* of advanced ecosystems. Check out more on [the Julia Programing Language website](https://julialang.org). """ ) mime_msg = get_mime_msg(message) body = get_body(to, from, subject, mime_msg; cc, replyto) resp = send(server, rcpts, sender, body, opts) ``` #### Previewing the generated message You can preview your message by displaying the generated `body`, which is an `IOBuffer`. For instance, you can view the raw message with `println(String(take!(body)))`. You can also save the message `body` to a `.eml` file for viewing it in a email viewer. ```julia open("message.eml","w") do io println(io, String(take!(body))) end ``` The last example on the previous section shows the following preview on Apple Mail: ![Message on the Julia Programming Language](img/message.png) ### Gmail Notes Due to the security policy of Gmail, you need to "allow less secure apps into your account": - <https://myaccount.google.com/lesssecureapps> The URL for gmail can be either `smtps://smtp.gmail.com:465` or `smtp://smtp.gmail.com:587`. (Note the extra `s` in the former.) Both use SSL, and thus `isSSL` must be set to `true` in `SendOptions`. The latter starts the connection with plain text, and converts it to secured before sending any data using a protocol extension called `STARTTLS`. Gmail documentation suggests using this latter setup. ### Troubleshooting Since this package is a pretty thin wrapper around a low level network protocol, it helps to know the basics of SMTP while troubleshooting this package. Here is a [quick overview of SMTP](https://utcc.utoronto.ca/usg/technotes/smtp-intro.html). In particular, please pay attention to the difference between the `envelope headers` and the `message headers`. If you are having trouble with sending email, set `verbose=true` when creating the `SendOptions` object. Please always do this before submitting a bugreport to this project. When sending email over SSL, certificate verification is performed, which requires the presence of a certificate authority bundle. This package uses the [CA bundle from the Mozilla](https://curl.haxx.se/docs/caextract.html) project. Currently there is no way to specify a private CA bundle. Modify the source if you need this. ## Function Reference ```julia send(url, to-addresses, from-address, message-body, options) ``` Send an email. * `url` should be of the form `smtp://server:port` or `smtps://...`. * `to-address` is a vector of `String`. * `from-address` is a `String`. All addresses must be enclosed in angle brackets. * `message-body` must be a RFC5322 formatted message body provided via an `IO`. * `options` is an object of type `SendOptions`. It contains authentication information, as well as the option of whether the server requires TLS. ```julia SendOptions(; isSSL = false, verbose = false, username = "", passwd = "") ``` Options are passed via the `SendOptions` constructor that takes keyword arguments. The defaults are shown above. - `verbose`: enable `libcurl` verbose mode or not. - If the `username` is blank, the `passwd` is not sent even if present. Note that no keepalive is implemented. New connections to the SMTP server are created for each message.
SMTPClient
https://github.com/aviks/SMTPClient.jl.git
[ "MIT" ]
0.1.17
27c82b3b48bbff2123518b23b14778d013f080ac
code
131
module Jello include("main.jl") greet() = print("Hello World!") export Blob, FourierBlob, ConvBlob, InterpBlob end # module Jello
Jello
https://github.com/paulxshen/Jello.jl.git
[ "MIT" ]
0.1.17
27c82b3b48bbff2123518b23b14778d013f080ac
code
4059
# - `alg`: `:interpolation` `:fourier` """ Blob(sz; contrast=20, alg=:interpolation, T=Float32, rmin=nothing, lsolid=rmin, lvoid=rmin, symmetries=[]) (m::ConvBlob)() Functor for generating length scale controlled geometry mask, represented as array of values between 0 to 1.0. `ConvBlob` constructor makes the callable functor which can be passed as the model parameter to `Flux.jl`. Caliing it yields geometry whose length, spacing and radii are roughly on order of `lmin`. contrast controls the edge sharpness. Setting `rmin` applies additional morphological filtering which eliminates smaller features and radii Args - `sz`: size of mask array Keyword Args - `contrast`: edge sharpness - `rmin`: minimal radii during morphological filtering, can also be `nothing` (no filtering) - `lsolid`: same as `rmin` but only applied to solid (bright) features - `lvoid`: ditto - `symmetries`: symmetry dimensions """ function Blob(sz::Base.AbstractVecOrTuple; lmin=0, lvoid=0, lsolid=0, symmetries=[], alg=:interp, init=nothing, frame=0, F=Float32, T=F, verbose=false) N = length(sz) # lmin, lsolid, lvoid = round.(Int, [lmin, lsolid, lvoid]) lmin = max(lmin, lsolid, lvoid) lmin /= 1.2sqrt(N) lmin = max(1, lmin) rmin = round((lmin - 1) / 2 + 0.01) if isa(frame, Number) margin = maximum(round.((lsolid, lvoid))) frame = fill(frame, sz + 2margin) end if alg == :interp psz = round.(Int, sz ./ lmin) + 1 elseif alg == :conv rfilter = round(1.6rmin) psz = sz + 2rfilter end da = 0.02 if isnothing(init) a = da * randn(psz) end if isa(init, Number) a = fill((-da) + 2 * da * init, psz) end if alg == :conv if isa(init, Number) a += 0.5randn(psz) * rmin^(N / 2) end a = T.(a) n = 2rfilter + 1 conv = Conv((n, n), 1 => 1) conv.weight .= conic(rfilter, 2) return ConvBlob(a, conv, rmin, symmetries) elseif alg == :interp if isa(init, Number) # a += -0.9sign(init) * rand(T, psz) end a = T.(a) # resize(T.(init), nbasis) # end # n = length(a) # N = prod(sz) # A = zeros(Int, 3, 2^d * N) # if lmin == 1 if any(sz .< psz) A = nothing else J = LinearIndices(a) I = LinearIndices(sz) A = map(CartesianIndices(Tuple(sz))) do i _i = I[i] i = Tuple(i) i = 1 + (i - 1) .* (size(a) - 1) ./ (sz - 1) i = Float32.(i) p = floor(i) q = ceil(i) stack(vec([Int32[_i, J[j...], round(1000prod(1 - abs.(i - j)))] for j = Base.product([p[i] == q[i] ? (p[i],) : (p[i], q[i]) for i = 1:length(i)]...)])) end A = reduce(hcat, vec(A))' i, j, v = eachcol(A) A = sparse(i, j, T(v / 1000)) a = vec(a) end # nn = [ # map(getindex.(getindex.(t, 1), i)) do c # c = min.(c, size(a)) # l[c...] # end for i = 1:2^d # ] # w = [getindex.(getindex.(t, 2), i) for i = 1:2^d] # nn = w = 0 return InterpBlob(a, A, sz, lmin, lvoid, lsolid, frame, symmetries,) elseif alg == :fourier if isnothing(init) ar = randn(T, nbasis...) ai = randn(T, nbasis...) else ar = zeros(T, nbasis...) ai = zeros(T, nbasis...) if init == 1 ar[1] = 1 end end if verbose @info """ Blob configs Geometry generation - algorithm: Fourier basis - Fourier k-space size (# of Fourier basis per dimension): $nbasis $com """ end return FourierBlob(ar, ai, T(contrast), sz, lsolid, lvoid, symmetries, diagonal_symmetry) end end Blob(sz...; kw...) = Blob(sz; kw...)
Jello
https://github.com/paulxshen/Jello.jl.git
[ "MIT" ]
0.1.17
27c82b3b48bbff2123518b23b14778d013f080ac
code
692
struct ConvBlob a::AbstractArray conv rmin symmetries end @functor ConvBlob (a, conv) Zygote.Params(m::ConvBlob) = Params([m.a]) Flux.trainable(m::ConvBlob) = (; a=m.a) # Base.size(m::ConvBlob) = size(m.a) function (m::ConvBlob)(α::Real=0.03, rmin=0, rsolid=rmin, rvoid=rmin,) @unpack a, conv, symmetries, = m T = eltype(a) α = T(α) # v = mean(abs.(a)) # if v != 0 # a *= T(0.5) / v # end N = ndims(a) a = reshape(a, size(a)..., 1, 1) a = conv(a) a = dropdims(a, dims=(N + 1, N + 2)) # a = tanh.(α * m.rmin * a) a = step(a, α) a = (a + 1) / 2 a = smooth(a, rsolid, rvoid) a = apply(symmetries, a) end
Jello
https://github.com/paulxshen/Jello.jl.git
[ "MIT" ]
0.1.17
27c82b3b48bbff2123518b23b14778d013f080ac
code
2234
struct FourierBlob ar::AbstractArray ai::AbstractArray contrast sz ose cse symmetries diagonal_symmetry end @functor FourierBlob (ar, ai) Base.size(m::FourierBlob) = m.sz """ FourierBlob(sz...; nbasis=4, contrast=1, T=Float32, rmin=nothing, rsolid=rmin, rvoid=rmin, symmetries=[], diagonal_symmetry=false) (m::FourierBlob)() Functor for generating length scale controlled geometry mask, represented as array of values between 0 to 1.0. `FourierBlob` constructor makes the callable functor which can be passed as the model parameter to `Flux.jl`. Caliing it yields geometry whose length, spacing and radii are roughly on order of `edge length / nbasis`. contrast controls the edge sharpness. Setting `rmin` applies additional morphological filtering which eliminates smaller features and radii Args - `sz`: size of mask array - `contrast`: edge sharpness - `nbasis`: # of Fourier basis along each dimension - `rmin`: minimal radii during morphological filtering, can also be `nothing` (no filtering) or `:auto` (automatically set wrt `nbasis`) - `rsolid`: same as `rmin` but only applied to fill (bright) features - `rvoid`: ditto """ # function FourierBlob(sz...; nbasis=4, init=nothing, contrast=1, T=Float32, rmin=nothing, rsolid=rmin, rvoid=rmin, symmetries=[], diagonal_symmetry=false, verbose=true) # if length(nbasis) == 1 # nbasis = round.(Int, nbasis ./ minimum(sz) .* sz) # end # d = length(sz) # # a = complex.(randn(T, nbasis...), randn(T, nbasis...)) # end function (m::FourierBlob)(contrast=m.contrast, σ=x -> 1 / (1 + exp(-x))) @unpack ar, ai, sz, ose, cse, symmetries, diagonal_symmetry = m a = complex.(ar, ai) # margins = round.(Int, sz ./ size(a) .* 0.75) # i = range.(margins .+ 1, margins .+ sz) # r = real(ifft(pad(a, 0, fill(0, ndims(a)), sz .+ 2 .* margins .- size(a))))[i...] r = real(ifft(pad(a, 0, fill(0, ndims(a)), sz .- size(a)))) r = apply(symmetries, r) # r = σ.(contrast * r) r = apply(σ, contrast, r) r = apply(ose, cse, r) end function FourierBlob(m::FourierBlob, sz...; contrast=m.contrast,) FourierBlob(m.ar, m.ai, contrast, sz, m.ose, m.cse, m.symmetries, m.diagonal_symmetry) end
Jello
https://github.com/paulxshen/Jello.jl.git
[ "MIT" ]
0.1.17
27c82b3b48bbff2123518b23b14778d013f080ac
code
653
struct InterpBlob a::AbstractArray A sz lmin lvoid lsolid frame symmetries end @functor InterpBlob (a, A) Zygote.Params(m::InterpBlob) = Params([m.a]) Flux.trainable(m::InterpBlob) = (; a=m.a) # Base.size(m::InterpBlob) = size(m.a) function (m::InterpBlob)(sharpness::Real=0.99, lvoid=m.lvoid, lsolid=m.lsolid,) @unpack a, A, symmetries, sz, lmin, frame = m T = eltype(a) α = T(1 - sharpness) if !isnothing(A) a = reshape((A) * a, sz) end a = apply(symmetries, a) a = step(a, α) margin = Int.((size(frame, 1) - sz[1]) / 2) a = smooth(a, α, lvoid, lsolid, frame, margin) end
Jello
https://github.com/paulxshen/Jello.jl.git
[ "MIT" ]
0.1.17
27c82b3b48bbff2123518b23b14778d013f080ac
code
465
using Random, FFTW, UnPack, ArrayPadding, LinearAlgebra, Statistics, SparseArrays, Flux, Zygote, Functors, ImageMorphology, Porcupine, ChainRulesCore, NNlib, ImageTransformations # using ImageTransformations # using Zygote: Buffer include("utils.jl") include("convblob.jl") include("interpblob.jl") include("fourierblob.jl") include("blob.jl") # m = Blob(4, 4) # g = gradient(m) do m # sum(m()) # end # g[m] # g = gradient(Params([m.a])) do # sum(m()) # end
Jello
https://github.com/paulxshen/Jello.jl.git
[ "MIT" ]
0.1.17
27c82b3b48bbff2123518b23b14778d013f080ac
code
2961
_ceil(x) = x == floor(Int, x) ? Int(x) + 1 : ceil(Int, x) function circle(r, d) r = round(Int, r) [norm(v) <= r + 0.001 for v = Base.product(fill(-r:r, d)...)] # circle end function conic(r, d) r = round(Int, r) a = [1 - norm(v) / (r + 1) for v = Base.product(fill(-r:r, d)...)] # circle a /= sum(a) end function se(r, d=2) centered(circle(round(r), d)) end function apply(symmetries, r) if !isempty(symmetries) for d = symmetries d = string(d) if startswith(d, "diag") r = (r + r') / 2 # diagonal symmetry in this Ceviche challenge elseif startswith(d, "anti") r = (r + reverse(r, dims=1)') / 2 # elseif startswith(d ,"anti") elseif d == "inversion" r += reverse(r, dims=Tuple(1:ndims(r))) r /= 2 else d = ignore_derivatives() do parse(Int, d) end r += reverse(r, dims=d) r /= 2 end end end r end function step(a::AbstractArray{T}, α::Real) where {T} m = a .> 0 α = T(α) a = α / 2 * tanh.(a) + (m) * (1 - α / 2) + (1 - m) * (α / 2) # a = min.(1, a) # a = max.(-1, a) end # function open(a, r) # A = ignore_derivatives() do # T = typeof(a) # m0 = Array(a) .> 0.5 # m = opening(m0, se(r, ndims(a))) # T(m0 .== m) # end # a .* A # end # function close(a, r) # A, B = ignore_derivatives() do # T = typeof(a) # m0 = Array(a) .> 0.5 # m = closing(m0, se(r, ndims(a))) # T(m0 .== m), T(m .> m0) # end # a .* A + B # end function smooth(a, α, lvoid=0, lsolid=0, frame=nothing, lmin=0) if lvoid == lsolid == 0 return a end rvoid = round(lvoid / 2 + 0.01) rsolid = round(lsolid / 2 + 0.01) T = typeof(a) m0 = Array(a) .> 0.5 m = m0 A, B = ignore_derivatives() do # for (ro, rc) in zip(ropen:-1:1, rclose:-1:1) # # for (ro, rc) in zip(1:ropen, 1:rclose) # # a = openclose(a, ro, rc) # m = closing(m, se(rc, ndims(a))) # m = opening(m, se(ro, ndims(a))) # end if !isnothing(frame) o = fill(round(lmin) + 1, ndims(m)) roi = range.(o, o + size(m) - 1) _m = copy(frame) _m[roi...] = m m = _m end if rsolid > 0 m = opening(m, se(rsolid, ndims(a))) end if rvoid > 0 m = closing(m, se(rvoid, ndims(a))) end if !isnothing(frame) m = m[roi...] end m .> m0, m .< m0 end A, B = T.((A, B)) a + (1 - α) * (A - B) end function resize(a, sz) if length(sz) == 1 return imresize(a, sz, method=ImageTransformations.Lanczos4OpenCV()) end imresize(a, sz) end
Jello
https://github.com/paulxshen/Jello.jl.git
[ "MIT" ]
0.1.17
27c82b3b48bbff2123518b23b14778d013f080ac
docs
293
# Jello.jl Automatic differentiation (AD) and GPU compatible geometry generator with length scale and sharpness control. Applications in topology optimization , inverse design, ... Flux.jl compatible See [](docs.ipynb) ### Contributors Paul Shen [email protected] Luminescent AI
Jello
https://github.com/paulxshen/Jello.jl.git
[ "MIT" ]
0.2.6
b88d988a6a59a7ac37d73f8517a7022613997c68
code
1547
using StochasticGroundMotionSimulation using Documenter DocMeta.setdocmeta!(StochasticGroundMotionSimulation, :DocTestSetup, :(using StochasticGroundMotionSimulation); recursive=true) makedocs(; modules=[StochasticGroundMotionSimulation], authors="Peter Stafford <[email protected]>", # repo="https://github.com/pstafford/StochasticGroundMotionSimulation.jl/blob/{commit}{path}#L{line}", sitename="StochasticGroundMotionSimulation.jl", format=Documenter.HTML(; prettyurls=get(ENV, "CI", "false") == "true", canonical="https://pstafford.github.io/StochasticGroundMotionSimulation.jl", assets=String[], ), pages=[ "Home" => "index.md", "Model Components" => [ "Fourier Spectral Parameters" => "fourier_parameters.md", "Oscillator Parameters" => "sdof_parameters.md", "Random Vibration Parameters" => "random_vibration_parameters.md", ], "Module Functionality" => [ "Fourier Components" => [ "Fourier Amplitude Spectrum" => "fourier_spectrum.md", "Source spectrum" => "source_spectrum.md", "Path scaling" => "path_scaling.md", "Site scaling" => "site_scaling.md", ], "Method Index" => "method_index.md" ] ], workdir = joinpath(@__DIR__, ".."), checkdocs = :exports, # warnonly = Documenter.except(:missing_docs), ) deploydocs(; repo="github.com/pstafford/StochasticGroundMotionSimulation.jl.git", )
StochasticGroundMotionSimulation
https://github.com/pstafford/StochasticGroundMotionSimulation.jl.git
[ "MIT" ]
0.2.6
b88d988a6a59a7ac37d73f8517a7022613997c68
code
2200
module StochasticGroundMotionSimulation using Interpolations using Roots using ForwardDiff using ForwardDiff: Dual using QuadGK using FastGaussQuadrature using LinearAlgebra using StaticArrays export Oscillator, FourierParameters, SourceParameters, GeometricSpreadingParameters, NearSourceSaturationParameters, AnelasticAttenuationParameters, PathParameters, SiteParameters, SiteAmpUnit, SiteAmpConstant, SiteAmpBoore2016_760, SiteAmpAlAtikAbrahamson2021_ask14_620, SiteAmpAlAtikAbrahamson2021_ask14_760, SiteAmpAlAtikAbrahamson2021_ask14_1100, SiteAmpAlAtikAbrahamson2021_bssa14_620, SiteAmpAlAtikAbrahamson2021_bssa14_760, SiteAmpAlAtikAbrahamson2021_bssa14_1100, SiteAmpAlAtikAbrahamson2021_cb14_620, SiteAmpAlAtikAbrahamson2021_cb14_760, SiteAmpAlAtikAbrahamson2021_cb14_1100, SiteAmpAlAtikAbrahamson2021_cy14_620, SiteAmpAlAtikAbrahamson2021_cy14_760, SiteAmpAlAtikAbrahamson2021_cy14_1100, RandomVibrationParameters, SpectralMoments, create_spectral_moments, period, transfer, transfer!, squared_transfer, squared_transfer!, site_amplification, kappa_filter, magnitude_to_moment, corner_frequency, geometric_spreading, near_source_saturation, equivalent_point_source_distance, anelastic_attenuation, fourier_constant, fourier_source, fourier_source_shape, fourier_path, fourier_attenuation, fourier_site, combined_kappa_frequency, fourier_spectral_ordinate, fourier_spectrum, fourier_spectrum!, spectral_moment, spectral_moments, excitation_duration, rms_duration, peak_factor, rvt_response_spectral_ordinate, rvt_response_spectrum, rvt_response_spectrum! # Write your package code here. include("oscillator/PJSoscillator.jl") include("fourier/PJSsiteAmpStructs.jl") include("fourier/PJSfourierParameters.jl") include("rvt/PJSspectralMoments.jl") include("rvt/PJSrandomVibrationParameters.jl") include("fourier/PJSsite.jl") include("fourier/PJSsource.jl") include("fourier/PJSpath.jl") include("fourier/PJSfourierSpectrum.jl") include("duration/PJSduration.jl") include("rvt/PJSintegration.jl") include("rvt/PJSpeakFactor.jl") include("rvt/PJSrandomVibration.jl") end
StochasticGroundMotionSimulation
https://github.com/pstafford/StochasticGroundMotionSimulation.jl.git
[ "MIT" ]
0.2.6
b88d988a6a59a7ac37d73f8517a7022613997c68
code
23286
""" boore_thompson_2014_path_duration(r_ps::T) where {T<:Real} Boore & Thompson (2014) path duration model (for ACRs). Note that this model is the same as the Boore & Thompson (2015) model for ACRs. """ function boore_thompson_2014_path_duration(r_ps::T) where {T<:Real} # path duration if r_ps == 0.0 return zero(T) elseif r_ps > 0.0 && r_ps <= 7.0 return r_ps / 7.0 * 2.4 elseif r_ps > 7.0 && r_ps <= 45.0 return 2.4 + (r_ps - 7.0) / (45.0 - 7.0) * (8.4 - 2.4) elseif r_ps > 45.0 && r_ps <= 125.0 return 8.4 + (r_ps - 45.0) / (125.0 - 45.0) * (10.9 - 8.4) elseif r_ps > 125.0 && r_ps <= 175.0 return 10.9 + (r_ps - 125.0) / (175.0 - 125.0) * (17.4 - 10.9) elseif r_ps > 175.0 && r_ps <= 270.0 return 17.4 + (r_ps - 175.0) / (270.0 - 175.0) * (34.2 - 17.4) elseif r_ps > 270.0 return 34.2 + 0.156 * (r_ps - 270.0) else return T(NaN) end end """ boore_thompson_2014(m, r_ps::U, src::SourceParameters{S,T}) where {S<:Float64, T<:Real, U<:Real} Boore & Thompson (2014) excitation duration model (for ACRs). Note that this model is the same as the Boore & Thompson (2015) model for ACRs. """ function boore_thompson_2014(m, r_ps::U, src::SourceParameters{S,T}) where {S<:Float64,T<:Real,U<:Real} # source duration fa, fb, ε = corner_frequency(m, src) if src.model == :Atkinson_Silva_2000 Ds = 0.5 / fa + 0.5 / fb else Ds = 1.0 / fa end # path duration Dp = boore_thompson_2014_path_duration(r_ps) # checks on return type for type stability if isnan(Dp) if T <: Dual return T(NaN) elseif U <: Dual return U(NaN) else return S(NaN) end else return Ds + Dp end end boore_thompson_2014(m, r_ps, fas::FourierParameters) = boore_thompson_2014(m, r_ps, fas.source) """ boore_thompson_2015_path_duration_acr(r_ps::T) where {T<:Real} Boore & Thompson (2015) path duration model (for ACRs). Note that this model is the same as the Boore & Thompson (2014) model for ACRs. """ boore_thompson_2015_path_duration_acr(r_ps::T) where {T<:Real} = boore_thompson_2014_path_duration(r_ps) """ boore_thompson_2015_path_duration_scr(r_ps::T) where {T<:Real} Boore & Thompson (2015) path duration model (for SCRs). """ function boore_thompson_2015_path_duration_scr(r_ps::T) where {T<:Real} # path duration if r_ps == 0.0 return zero(T) elseif r_ps > 0.0 && r_ps <= 15.0 return r_ps / 15.0 * 2.6 elseif r_ps > 15.0 && r_ps <= 35.0 return 2.6 + (r_ps - 15.0) / (35.0 - 15.0) * (17.5 - 2.6) elseif r_ps > 35.0 && r_ps <= 50.0 return 17.5 + (r_ps - 35.0) / (50.0 - 35.0) * (25.1 - 17.5) elseif r_ps > 50.0 && r_ps <= 125.0 return 25.1 elseif r_ps > 125.0 && r_ps <= 200.0 return 25.1 + (r_ps - 125.0) / (200.0 - 125.0) * (28.5 - 25.1) elseif r_ps > 200.0 && r_ps <= 392.0 return 28.5 + (r_ps - 200.0) / (392.0 - 200.0) * (46.0 - 28.5) elseif r_ps > 392.0 && r_ps <= 600.0 return 46.0 + (r_ps - 392.0) / (600.0 - 392.0) * (69.1 - 46.0) elseif r_ps > 600.0 return 69.1 + 0.111 * (r_ps - 600.0) else return T(NaN) end end """ boore_thompson_2015(m, r_ps::U, src::SourceParameters{S,T}, region::Symbol) where {S<:Float64, T<:Real, U<:Real} Boore & Thompson (2015) excitation duration model (for ACRs or SCRs). """ function boore_thompson_2015(m, r_ps::U, src::SourceParameters{S,T}, region::Symbol) where {S<:Float64,T<:Real,U<:Real} # source duration fa, fb, ε = corner_frequency(m, src) if src.model == :Atkinson_Silva_2000 Ds = 0.5 / fa + 0.5 / fb else Ds = 1.0 / fa end # path duration if region == :ACR Dp = boore_thompson_2015_path_duration_acr(r_ps) elseif region == :SCR Dp = boore_thompson_2015_path_duration_scr(r_ps) else Dp = NaN end # checks on return type for type stability if isnan(Dp) if T <: Dual return T(NaN) elseif U <: Dual return U(NaN) else return S(NaN) end else return Ds + Dp end end boore_thompson_2015(m, r_ps, fas::FourierParameters, region) = boore_thompson_2015(m, r_ps, fas.source, region) boore_thompson_2015(m, r_ps::U, src::SourceParameters{S,T}, rvt::RandomVibrationParameters) where {S<:Float64, T<:Real, U<:Real} = boore_thompson_2015(m, r_ps, src, rvt.dur_region) boore_thompson_2015(m, r_ps::U, fas::FourierParameters, rvt::RandomVibrationParameters) where {U<:Real} = boore_thompson_2015(m, r_ps, fas.source, rvt.dur_region) """ edwards_2023_path_duration(r_ps::T) where {T<:Real} Edwards (2023) path duration model using within South African NPP study. Note that the model was specified in terms of R_hyp -- so interpret this to be the effective point-source distance. Further note that this model is apparently based upon work of Afshari & Stewart (2016) who found a dependence of 5-75% significant duration on distance of 0.07s/km. Edwards then found for the Groningen project in the Netherlands (for induced seismicity) that the excitation duration was equivalent to the 5-75% duration divided by 0.55. However, in Edwards' definition, this 0.55 scale factor is supposed to apply to the 5-75% duration in its entirety, but he only scales the path duration (not the source duration). """ function edwards_2023_path_duration(r_ps::T) where {T<:Real} # path duration if r_ps <= 0.0 return zero(T) else return 0.13 * r_ps end end """ edwards_2023(m, r_ps::U, src::SourceParameters{S,T}) where {S<:Float64, T<:Real, U<:Real} Edwards (2023) excitation duration model proposed for use within South African NPP study. """ function edwards_2023(m, r_ps::U, src::SourceParameters{S,T}) where {S<:Float64,T<:Real,U<:Real} # source duration fa, fb, ε = corner_frequency(m, src) # this is not explicitly considered in the Edwards model, but keep the same functionality as other models for consistency if src.model == :Atkinson_Silva_2000 Ds = 0.5 / fa + 0.5 / fb else Ds = 1.0 / fa end # path duration Dp = edwards_2023_path_duration(r_ps) return Ds + Dp end """ uk_path_duration_free(r_ps::T) where {T<:Real} Path duration model for the UK allowing the plateau segment to have a free slope """ function uk_path_duration_free(r_ps::T) where {T<:Real} r_ref = [ 0.0, 21.8, 140.4, 254.2 ] dg_ref = [ 0.667, 0.002, 0.128, 0.192 ] d_path = zero(T) if r_ps <= r_ref[1] return d_path elseif r_ps <= r_ref[2] return d_path + dg_ref[1] * r_ps elseif r_ps <= r_ref[3] return d_path + dg_ref[1] * r_ref[2] + dg_ref[2] * (r_ps - r_ref[2]) elseif r_ps <= r_ref[4] return d_path + dg_ref[1] * r_ref[2] + dg_ref[2] * (r_ref[3] - r_ref[2]) + dg_ref[3] * (r_ps - r_ref[3]) else return d_path + dg_ref[1] * r_ref[2] + dg_ref[2] * (r_ref[3] - r_ref[2]) + dg_ref[3] * (r_ref[4] - r_ref[3]) + dg_ref[4] * (r_ps - r_ref[4]) end end """ uk_path_duration_fixed(r_ps::T) where {T<:Real} Path duration model for the UK forcing the plateau segment to have a flat slope """ function uk_path_duration_fixed(r_ps::T) where {T<:Real} r_ref = [0.0, 28.3, 140.5, 254.1] dg_ref = [0.519, 0.0, 0.13, 0.193] d_path = zero(T) if r_ps <= r_ref[1] return d_path elseif r_ps <= r_ref[2] return d_path + dg_ref[1] * r_ps elseif r_ps <= r_ref[3] return d_path + dg_ref[1] * r_ref[2] + dg_ref[2] * (r_ps - r_ref[2]) elseif r_ps <= r_ref[4] return d_path + dg_ref[1] * r_ref[2] + dg_ref[2] * (r_ref[3] - r_ref[2]) + dg_ref[3] * (r_ps - r_ref[3]) else return d_path + dg_ref[1] * r_ref[2] + dg_ref[2] * (r_ref[3] - r_ref[2]) + dg_ref[3] * (r_ref[4] - r_ref[3]) + dg_ref[4] * (r_ps - r_ref[4]) end end """ uk_duration_free(m, r_ps::U, src::SourceParameters{S,T}) where {S<:Float64,T<:Real,U<:Real} Excitation duration for the UK. Combines standard reciprocal corner frequency source duration with a UK path duration. """ function uk_duration_free(m, r_ps::U, src::SourceParameters{S,T}) where {S<:Float64,T<:Real,U<:Real} # source duration fa, fb, ε = corner_frequency(m, src) # this is not explicitly considered in the Edwards model, but keep the same functionality as other models for consistency if src.model == :Atkinson_Silva_2000 Ds = 0.5 / fa + 0.5 / fb else Ds = 1.0 / fa end # path duration Dp = uk_path_duration_free(r_ps) # combine source and path durations return Ds + Dp end """ uk_duration_fixed(m, r_ps::U, src::SourceParameters{S,T}) where {S<:Float64,T<:Real,U<:Real} Excitation duration for the UK. Combines standard reciprocal corner frequency source duration with a UK path duration. """ function uk_duration_fixed(m, r_ps::U, src::SourceParameters{S,T}) where {S<:Float64,T<:Real,U<:Real} # source duration fa, fb, ε = corner_frequency(m, src) # this is not explicitly considered in the Edwards model, but keep the same functionality as other models for consistency if src.model == :Atkinson_Silva_2000 Ds = 0.5 / fa + 0.5 / fb else Ds = 1.0 / fa end # path duration Dp = uk_path_duration_fixed(r_ps) # combine source and path durations return Ds + Dp end """ excitation_duration(m, r_ps::U, src::SourceParameters{S,T}, rvt::RandomVibrationParameters) where {S<:Float64,T<:Real,U<:Real} Generic function implementing excitation duration models. Currently, only the general Boore & Thompson (2014, 2015) models are implemented along with some project-specific models from Edwards (2023) (for South Africa), and two UK duration models. The first two are both represented within the Boore & Thompson (2015) paper, so just switch path duration based upon `rvt.dur_region` To activate the Edwards model, use `rvt.dur_ex == :BE23` For the UK models use `rvt.dur_ex == :UKfree` or `rvt.dur_ex == :UKfixed` """ function excitation_duration(m, r_ps::U, src::SourceParameters{S,T}, rvt::RandomVibrationParameters) where {S<:Float64,T<:Real,U<:Real} if rvt.dur_ex == :BE23 # use the BT15 saturation model to obtain an r_rup from the specified r_ps # Edwards actually suggested using R_{EFF}, but this metric is heavily dependent upon a particular source/site geometry # sat = NearSourceSaturationParameters(:BT15) # compute r_rup from r_ps # r_rup = rupture_distance_from_equivalent_point_source_distance(r_ps, m, sat) return edwards_2023(m, r_ps, src) elseif rvt.dur_ex == :UKfree return uk_duration_free(m, r_ps, src) elseif rvt.dur_ex == :UKfixed return uk_duration_fixed(m, r_ps, src) elseif (rvt.dur_ex == :BT14) & (rvt.dur_region == :ACR) return boore_thompson_2014(m, r_ps, src) elseif (rvt.dur_ex == :BT15) return boore_thompson_2015(m, r_ps, src, rvt) else if T <: Dual return T(NaN) elseif U <: Dual return U(NaN) else return S(NaN) end end end excitation_duration(m, r_ps, fas::FourierParameters, rvt::RandomVibrationParameters) = excitation_duration(m, r_ps, fas.source, rvt) # Definition of Boore & Thompson (2012) constant values to be used within subsequent functions include("coefficients/PJSbooreThompson2012.jl") """ boore_thompson_2012_coefs(idx_m::T, idx_r::T; region::Symbol=:ACR) where T<:Int Base function to extract the coefficients of the Boore & Thompson (2012) rms duration model. """ function boore_thompson_2012_coefs(idx_m::T, idx_r::T; region::Symbol=:ACR) where {T<:Int} idx = (idx_r - 1) * num_m_ii_bt12 + idx_m if region == :SCR @inbounds c = coefs_ena_bt12[idx, 3:9] return c else @inbounds c = coefs_wna_bt12[idx, 3:9] return c end end """ boore_thompson_2012_base(η::S, c::Vector{T}, ζ::T=0.05) where {S<:Real,T<:Float64} Base function to compute the Boore & Thompson (2012) rms duration model for known magnitude and distance. """ function boore_thompson_2012_base(η::S, c::Vector{T}, ζ::T=0.05) where {S<:Real,T<:Float64} @inbounds ηc3 = η^c[3] @inbounds ratio = (c[1] + c[2] * ((1.0 - ηc3) / (1.0 + ηc3))) * (1.0 + c[4] / (2π * ζ) * (η / (1.0 + c[5] * η^c[6]))^c[7]) return ratio end """ boore_thompson_2012(m, r_ps::T, src::SourceParameters, sdof::Oscillator, rvt::RandomVibrationParameters) where {T<:Real} Boore & Thompson (2012) rms duration model. Also outputs the excitation duration (given that its required within the rms duration calculations). """ function boore_thompson_2012(m, r_ps::T, src::SourceParameters, sdof::Oscillator, rvt::RandomVibrationParameters) where {T<:Real} # for magnitude and distance that don't match coefficient tables we need to use bilinear interpolation # get the excitation duration (as recommended by Boore & Thompson, 2012) Dex = excitation_duration(m, r_ps, src, rvt) # get the oscillator period T_n = period(sdof) ζ = sdof.ζ_n # define the η parameter as T_n/Dex η = T_n / Dex # impose limits on the magnitudes and distances m = (m < 4.0) ? 4.0 : m m = (m > 8.0) ? 8.0 : m r_ps = (r_ps < 2.0) ? 2.0 : r_ps r_ps = (r_ps > 1262.0) ? 1262.0 : r_ps # get the bounding indicies i_lo = findlast(m_ii_bt12 .<= m) i_hi = findfirst(m_ii_bt12 .>= m) j_lo = findlast(r_jj_bt12 .<= r_ps) j_hi = findfirst(r_jj_bt12 .>= r_ps) # get the region for the rms duration model region = rvt.dur_region # check for situations in which the coefficients are known for the given m,r if i_lo == i_hi # we have coefficients for this magnitude if j_lo == j_hi # we have coefficients for this distance c = boore_thompson_2012_coefs(i_lo, j_lo; region=region) Dratio = boore_thompson_2012_base(η, c, ζ) else # we need to interpolate the distance values only r_lo = r_jj_bt12[j_lo] r_hi = r_jj_bt12[j_hi] c_lo = boore_thompson_2012_coefs(i_lo, j_lo; region=region) c_hi = boore_thompson_2012_coefs(i_lo, j_hi; region=region) D_lo = boore_thompson_2012_base(η, c_lo, ζ) D_hi = boore_thompson_2012_base(η, c_hi, ζ) lnDratio = log(D_lo) + (r_ps - r_lo) / (r_hi - r_lo) * log(D_hi / D_lo) Dratio = exp(lnDratio) end else # we need to interpolate the magnitudes if j_lo == j_hi # we have coefficients for this distance m_lo = m_ii_bt12[i_lo] m_hi = m_ii_bt12[i_hi] c_lo = boore_thompson_2012_coefs(i_lo, j_lo; region=region) c_hi = boore_thompson_2012_coefs(i_hi, j_lo; region=region) D_lo = boore_thompson_2012_base(η, c_lo, ζ) D_hi = boore_thompson_2012_base(η, c_hi, ζ) lnDratio = log(D_lo) + (m - m_lo) / (m_hi - m_lo) * log(D_hi / D_lo) Dratio = exp(lnDratio) else # we need to interpolate for this magnitude and distance # create the combinations of (m,r) from these indices m_lo = m_ii_bt12[i_lo] m_hi = m_ii_bt12[i_hi] r_lo = r_jj_bt12[j_lo] r_hi = r_jj_bt12[j_hi] # get the corresponding coefficients c_ll = boore_thompson_2012_coefs(i_lo, j_lo; region=region) c_lh = boore_thompson_2012_coefs(i_lo, j_hi; region=region) c_hl = boore_thompson_2012_coefs(i_hi, j_lo; region=region) c_hh = boore_thompson_2012_coefs(i_hi, j_hi; region=region) # get the corresponding ratios Dr_ll = boore_thompson_2012_base(η, c_ll, ζ) Dr_lh = boore_thompson_2012_base(η, c_lh, ζ) Dr_hl = boore_thompson_2012_base(η, c_hl, ζ) Dr_hh = boore_thompson_2012_base(η, c_hh, ζ) # bilinear interpolation # used repeated linear interpolation as the fastest method Δm = m_hi - m_lo Δr = r_hi - r_lo fac = 1.0 / (Δm * Δr) lnDr_ll = log(Dr_ll) lnDr_lh = log(Dr_lh) lnDr_hl = log(Dr_hl) lnDr_hh = log(Dr_hh) lnDratio = fac * ((lnDr_ll * (r_hi - r_ps) + lnDr_lh * (r_ps - r_lo)) * (m_hi - m) + (lnDr_hl * (r_hi - r_ps) + lnDr_hh * (r_ps - r_lo)) * (m - m_lo)) Dratio = exp(lnDratio) end end Drms = Dratio * Dex return (Drms, Dex, Dratio) end boore_thompson_2012(m, r_ps, fas::FourierParameters, sdof::Oscillator, rvt::RandomVibrationParameters) = boore_thompson_2012(m, r_ps, fas.source, sdof, rvt) # Definition of Boore & Thompson (2015) constant values to be used within subsequent functions include("coefficients/PJSbooreThompson2015.jl") """ boore_thompson_2015_coefs(idx_m::T, idx_r::T; region::Symbol=:ACR) where T<:Int Base function to extract the coefficients of the Boore & Thompson (2015) rms duration model. """ function boore_thompson_2015_coefs(idx_m::T, idx_r::T; region::Symbol=:ACR) where {T<:Int} idx = (idx_r - 1) * num_m_ii_bt15 + idx_m if region == :SCR @inbounds c = coefs_ena_bt15[idx, 3:9] return c else @inbounds c = coefs_wna_bt15[idx, 3:9] return c end end """ boore_thompson_2015_base(η::S, c::Vector{T}, ζ::T=0.05) where {S<:Real,T<:Float64} Base function to compute the Boore & Thompson (2015) rms duration model for known magnitude and distance. """ function boore_thompson_2015_base(η::S, c::Vector{T}, ζ::T=0.05) where {S<:Real,T<:Float64} @inbounds ηc3 = η^c[3] @inbounds ratio = (c[1] + c[2] * ((1.0 - ηc3) / (1.0 + ηc3))) * (1.0 + c[4] / (2π * ζ) * (η / (1.0 + c[5] * η^c[6]))^c[7]) return ratio end """ boore_thompson_2015(m, r_ps::T, src::SourceParameters, sdof::Oscillator, rvt::RandomVibrationParameters) where {T<:Real} Boore & Thompson (2015) rms duration model. Also outputs the excitation duration (given that its required within the rms duration calculations). """ function boore_thompson_2015(m, r_ps::T, src::SourceParameters, sdof::Oscillator, rvt::RandomVibrationParameters) where {T<:Real} # for magnitude and distance that don't match coefficient tables we need to use bilinear interpolation of the log Drms values # get the excitation duration (as recommended by Boore & Thompson, 2015) Dex = excitation_duration(m, r_ps, src, rvt) # get the oscillator period T_n = period(sdof) ζ = sdof.ζ_n # define the η parameter as T_n/Dex η = T_n / Dex # impose limits on the magnitudes and distances m = (m < 2.0) ? 2.0 : m m = (m > 8.0) ? 8.0 : m r_ps = (r_ps < 2.0) ? 2.0 : r_ps r_ps = (r_ps > 1262.0) ? 1262.0 : r_ps # get the bounding indicies i_lo = findlast(m_ii_bt15 .<= m) i_hi = findfirst(m_ii_bt15 .>= m) j_lo = findlast(r_jj_bt15 .<= r_ps) j_hi = findfirst(r_jj_bt15 .>= r_ps) # get the region for the rms duration model region = rvt.dur_region # check for situations in which the coefficients are known for the given m,r if i_lo == i_hi # we have coefficients for this magnitude if j_lo == j_hi # we have coefficients for this distance c = boore_thompson_2015_coefs(i_lo, j_lo; region=region) Dratio = boore_thompson_2015_base(η, c, ζ) else # we need to interpolate the distance values only r_lo = r_jj_bt15[j_lo] r_hi = r_jj_bt15[j_hi] c_lo = boore_thompson_2015_coefs(i_lo, j_lo; region=region) c_hi = boore_thompson_2015_coefs(i_lo, j_hi; region=region) D_lo = boore_thompson_2015_base(η, c_lo, ζ) D_hi = boore_thompson_2015_base(η, c_hi, ζ) lnDratio = log(D_lo) + (r_ps - r_lo) / (r_hi - r_lo) * log(D_hi / D_lo) Dratio = exp(lnDratio) end else # we need to interpolate the magnitudes if j_lo == j_hi # we have coefficients for this distance m_lo = m_ii_bt15[i_lo] m_hi = m_ii_bt15[i_hi] c_lo = boore_thompson_2015_coefs(i_lo, j_lo; region=region) c_hi = boore_thompson_2015_coefs(i_hi, j_lo; region=region) D_lo = boore_thompson_2015_base(η, c_lo, ζ) D_hi = boore_thompson_2015_base(η, c_hi, ζ) lnDratio = log(D_lo) + (m - m_lo) / (m_hi - m_lo) * log(D_hi / D_lo) Dratio = exp(lnDratio) else # we need to interpolate for this magnitude and distance # create the combinations of (m,r) from these indices m_lo = m_ii_bt15[i_lo] m_hi = m_ii_bt15[i_hi] r_lo = r_jj_bt15[j_lo] r_hi = r_jj_bt15[j_hi] # get the corresponding coefficients c_ll = boore_thompson_2015_coefs(i_lo, j_lo; region=region) c_lh = boore_thompson_2015_coefs(i_lo, j_hi; region=region) c_hl = boore_thompson_2015_coefs(i_hi, j_lo; region=region) c_hh = boore_thompson_2015_coefs(i_hi, j_hi; region=region) # get the corresponding ratios Dr_ll = boore_thompson_2015_base(η, c_ll, ζ) Dr_lh = boore_thompson_2015_base(η, c_lh, ζ) Dr_hl = boore_thompson_2015_base(η, c_hl, ζ) Dr_hh = boore_thompson_2015_base(η, c_hh, ζ) # bilinear interpolation # used repeated linear interpolation as the fastest method Δm = m_hi - m_lo Δr = r_hi - r_lo fac = 1.0 / (Δm * Δr) lnDr_ll = log(Dr_ll) lnDr_lh = log(Dr_lh) lnDr_hl = log(Dr_hl) lnDr_hh = log(Dr_hh) lnDratio = fac * ((lnDr_ll * (r_hi - r_ps) + lnDr_lh * (r_ps - r_lo)) * (m_hi - m) + (lnDr_hl * (r_hi - r_ps) + lnDr_hh * (r_ps - r_lo)) * (m - m_lo)) Dratio = exp(lnDratio) end end Drms = Dratio * Dex return (Drms, Dex, Dratio) end boore_thompson_2015(m, r_ps, fas::FourierParameters, sdof::Oscillator, rvt::RandomVibrationParameters) = boore_thompson_2015(m, r_ps, fas.source, sdof, rvt) """ liu_pezeshk_1999(m, r_ps::T, fas::FourierParameters, sdof::Oscillator, rvt::RandomVibrationParameters) where {T<:Real} Liu & Pezeshk (1999) rms duration model. Also outputs the excitation duration (given that its required within the rms duration calculations). """ function liu_pezeshk_1999(m, r_ps::T, fas::FourierParameters, sdof::Oscillator, rvt::RandomVibrationParameters) where {T<:Real} # get the excitation duration Dex = excitation_duration(m, r_ps, fas, rvt) # oscillator duration Dosc = 1.0 / ( 2π * sdof.f_n * sdof.ζ_n ) # gamma parameter γ = Dex / Dosc # spectral moments, required for use within definition of α parameter mi = spectral_moments([0,1,2], m, r_ps, fas, sdof) m0 = mi.m0 m1 = mi.m1 m2 = mi.m2 # define α α = sqrt( 2π * (1.0 - ( m1^2 )/( m0*m2 )) ) n = 2.0 # RMS duration Drms = Dex + Dosc * (γ^n / (γ^n + α)) Dratio = Drms / Dex return (Drms, Dex, Dratio) end """ rms_duration(m::S, r_ps::T, src::SourceParameters, sdof::Oscillator, rvt::RandomVibrationParameters) where {T<:Real} Returns a 3-tuple of (Drms, Dex, Dratio), using a switch on `rvt.dur_rms`. Default `rvt` makes use of the `:BT14` model for excitation duration, `Dex`. - `m` is magnitude - `r_ps` is an equivalent point source distance """ function rms_duration(m, r_ps::T, src::SourceParameters, sdof::Oscillator, rvt::RandomVibrationParameters) where {T<:Real} if (rvt.dur_rms == :BT15) && (rvt.pf_method == :DK80) return boore_thompson_2015(m, r_ps, src, sdof, rvt) elseif (rvt.dur_rms == :BT12) && (rvt.pf_method == :CL56) return boore_thompson_2012(m, r_ps, src, sdof, rvt) elseif (rvt.dur_rms == :LP99) && (rvt.pf_method == :CL56) return liu_pezeshk_1999(m, r_ps, src, sdof, rvt) # println("Cannot pass `src::SourceParameters` for `rvt.dur_rms == :LP99`; method requires full `fas::FourierParameters` input") # return (T(NaN), T(NaN), T(NaN)) else println("Inconsistent combination of `rvt.dur_rms` and `rvt.pf_method`") return (T(NaN), T(NaN), T(NaN)) end end function rms_duration(m, r_ps, fas::FourierParameters, sdof::Oscillator, rvt::RandomVibrationParameters) if (rvt.dur_rms == :LP99) && (rvt.pf_method == :CL56) return liu_pezeshk_1999(m, r_ps, fas, sdof, rvt) else return rms_duration(m, r_ps, fas.source, sdof, rvt) end end
StochasticGroundMotionSimulation
https://github.com/pstafford/StochasticGroundMotionSimulation.jl.git
[ "MIT" ]
0.2.6
b88d988a6a59a7ac37d73f8517a7022613997c68
code
34549
# Definition of Boore & Thompson (2012) constant values to be used within subsequent functions const m_ii_bt12 = [ 4.0, 4.5, 5.0, 5.5, 6.0, 6.5, 7.0, 7.5, 8.0 ] const r_jj_bt12 = [ 2.00, 3.17, 5.02, 7.96, 12.62, 20.00, 31.70, 50.24, 79.62, 126.19, 200.00, 317.00, 502.40, 796.20, 1262.00 ] const num_m_ii_bt12 = 9 const num_r_jj_bt12 = 15 const coefs_wna_bt12 = [ 4.0 2.00 8.4312e-01 -2.8671e-02 2.0 1.7316e+00 1.1695e+00 2.1671e+00 9.6224e-01 9.9929e-01 9.4336e-01 4.0 2.00; 4.5 2.00 8.3064e-01 -5.3355e-08 2.0 1.6962e+00 1.3236e+00 2.0308e+00 9.5517e-01 1.0176e+00 9.6580e-01 4.5 2.00; 5.0 2.00 8.9701e-01 -1.0484e-02 2.0 1.7181e+00 1.2797e+00 1.9295e+00 1.0163e+00 1.0290e+00 9.6175e-01 5.0 2.00; 5.5 2.00 8.3574e-01 -1.2031e-06 2.0 1.3859e+00 1.2015e+00 1.9904e+00 8.1829e-01 1.0523e+00 9.8336e-01 5.5 2.00; 6.0 2.00 8.4485e-01 -1.2609e-02 2.0 1.2391e+00 9.9399e-01 2.0532e+00 7.4884e-01 1.0681e+00 9.7567e-01 6.0 2.00; 6.5 2.00 8.4348e-01 -1.4520e-06 2.0 1.1331e+00 9.3441e-01 2.0328e+00 7.1150e-01 1.0680e+00 9.7535e-01 6.5 2.00; 7.0 2.00 8.0078e-01 -1.0231e-03 2.0 9.9676e-01 8.0084e-01 2.1466e+00 5.9286e-01 1.0908e+00 9.7381e-01 7.0 2.00; 7.5 2.00 8.3352e-01 -2.0697e-03 2.0 9.4601e-01 8.2133e-01 2.1052e+00 6.1011e-01 1.0849e+00 9.5386e-01 7.5 2.00; 8.0 2.00 1.1818e+00 -3.7875e-01 2.0 7.6114e-01 2.4868e+00 3.4051e+00 5.1616e-01 1.1002e+00 9.3188e-01 8.0 2.00; 4.0 3.17 8.2110e-01 -4.7357e-03 2.0 1.8627e+00 1.6118e+00 2.0128e+00 9.6557e-01 1.0024e+00 9.6134e-01 4.0 3.17; 4.5 3.17 8.7601e-01 -5.9903e-07 2.0 1.8200e+00 1.4626e+00 1.9542e+00 1.0076e+00 1.0074e+00 9.5429e-01 4.5 3.17; 5.0 3.17 8.3971e-01 -3.0439e-03 2.0 1.5964e+00 1.3635e+00 1.9761e+00 8.9640e-01 1.0425e+00 9.7057e-01 5.0 3.17; 5.5 3.17 8.3455e-01 -2.8341e-06 2.0 1.3116e+00 1.1068e+00 2.0414e+00 7.7989e-01 1.0458e+00 9.8125e-01 5.5 3.17; 6.0 3.17 8.1645e-01 -8.3202e-08 2.0 1.1908e+00 9.8968e-01 2.0549e+00 6.9953e-01 1.0647e+00 9.7531e-01 6.0 3.17; 6.5 3.17 8.2440e-01 -2.2922e-19 2.0 1.1212e+00 9.2690e-01 2.0537e+00 6.7673e-01 1.0722e+00 9.7217e-01 6.5 3.17; 7.0 3.17 8.3242e-01 -4.0859e-03 2.0 1.0919e+00 1.0439e+00 2.0355e+00 6.6335e-01 1.0850e+00 9.6470e-01 7.0 3.17; 7.5 3.17 8.3241e-01 -8.3435e-03 2.0 1.1067e+00 1.1521e+00 1.9907e+00 6.4715e-01 1.0951e+00 9.4210e-01 7.5 3.17; 8.0 3.17 8.3994e-01 -2.6168e-02 2.0 9.6494e-01 9.0967e-01 2.2436e+00 5.8696e-01 1.1028e+00 9.2279e-01 8.0 3.17; 4.0 5.02 8.6329e-01 -4.0771e-02 2.0 1.8792e+00 1.7825e+00 2.0071e+00 9.5979e-01 1.0150e+00 9.6497e-01 4.0 5.02; 4.5 5.02 8.4825e-01 -5.8380e-05 2.0 1.8285e+00 1.6611e+00 1.9249e+00 9.6711e-01 1.0252e+00 9.7713e-01 4.5 5.02; 5.0 5.02 8.4446e-01 -3.4661e-22 2.0 1.5463e+00 1.4665e+00 1.9448e+00 8.6771e-01 1.0329e+00 9.7563e-01 5.0 5.02; 5.5 5.02 8.4978e-01 -6.2734e-09 2.0 1.5126e+00 1.4004e+00 1.9072e+00 8.4997e-01 1.0460e+00 9.7378e-01 5.5 5.02; 6.0 5.02 8.2129e-01 -4.5730e-06 2.0 1.2115e+00 1.0578e+00 2.0028e+00 7.0987e-01 1.0598e+00 9.7654e-01 6.0 5.02; 6.5 5.02 8.1544e-01 -1.9160e-08 2.0 1.0668e+00 8.4143e-01 2.0735e+00 6.5158e-01 1.0751e+00 9.7467e-01 6.5 5.02; 7.0 5.02 8.2414e-01 -4.0369e-03 2.0 1.0467e+00 7.1242e-01 2.1586e+00 6.2836e-01 1.0794e+00 9.5870e-01 7.0 5.02; 7.5 5.02 8.9473e-01 -5.3853e-02 2.0 1.0888e+00 1.4138e+00 2.0212e+00 6.7776e-01 1.0900e+00 9.5025e-01 7.5 5.02; 8.0 5.02 9.2147e-01 -8.9899e-02 2.0 9.5008e-01 1.1607e+00 2.4017e+00 6.2635e-01 1.0980e+00 9.2819e-01 8.0 5.02; 4.0 7.96 8.4779e-01 -2.8493e-02 2.0 2.0858e+00 2.6221e+00 1.8501e+00 9.5690e-01 1.0194e+00 9.7959e-01 4.0 7.96; 4.5 7.96 8.4677e-01 -2.1554e-14 2.0 1.9701e+00 2.2219e+00 1.7755e+00 9.8498e-01 1.0316e+00 9.9715e-01 4.5 7.96; 5.0 7.96 8.8283e-01 -4.1263e-07 2.0 1.9400e+00 1.8389e+00 1.8013e+00 1.0235e+00 1.0334e+00 9.7377e-01 5.0 7.96; 5.5 7.96 8.2785e-01 -8.1587e-17 2.0 1.4890e+00 1.4475e+00 1.9052e+00 8.1571e-01 1.0561e+00 9.8353e-01 5.5 7.96; 6.0 7.96 8.3393e-01 -4.2583e-08 2.0 1.4016e+00 1.4232e+00 1.8975e+00 7.8526e-01 1.0658e+00 9.7835e-01 6.0 7.96; 6.5 7.96 8.1429e-01 -2.8150e-05 2.0 1.0955e+00 9.3363e-01 2.0547e+00 6.6504e-01 1.0786e+00 9.8445e-01 6.5 7.96; 7.0 7.96 8.0350e-01 -3.1805e-06 2.0 1.0903e+00 1.0120e+00 2.0825e+00 6.3175e-01 1.0930e+00 9.6779e-01 7.0 7.96; 7.5 7.96 8.6455e-01 -4.9497e-02 2.0 1.0672e+00 1.3965e+00 2.0600e+00 6.2719e-01 1.0924e+00 9.5518e-01 7.5 7.96; 8.0 7.96 9.3068e-01 -1.0354e-01 2.0 1.0295e+00 1.7393e+00 2.1326e+00 6.3596e-01 1.0994e+00 9.2609e-01 8.0 7.96; 4.0 12.62 8.4343e-01 -9.4015e-03 2.0 1.7138e+00 2.7357e+00 1.8332e+00 8.7570e-01 1.0193e+00 9.9529e-01 4.0 12.62; 4.5 12.62 8.2603e-01 -1.5203e-02 2.0 1.7515e+00 2.3023e+00 1.8093e+00 8.6816e-01 1.0462e+00 9.9553e-01 4.5 12.62; 5.0 12.62 8.5078e-01 -6.8471e-17 2.0 1.6943e+00 1.8025e+00 1.7993e+00 9.1795e-01 1.0461e+00 1.0026e+00 5.0 12.62; 5.5 12.62 8.4406e-01 -4.2873e-07 2.0 1.6936e+00 1.6701e+00 1.7942e+00 8.9001e-01 1.0584e+00 9.8314e-01 5.5 12.62; 6.0 12.62 8.1873e-01 -9.7554e-08 2.0 1.3379e+00 1.3058e+00 1.9370e+00 7.4590e-01 1.0649e+00 9.8476e-01 6.0 12.62; 6.5 12.62 8.2130e-01 -1.1179e-06 2.0 1.0666e+00 9.5527e-01 2.0441e+00 6.5972e-01 1.0706e+00 9.9066e-01 6.5 12.62; 7.0 12.62 8.3901e-01 -3.8867e-03 2.0 1.0721e+00 9.7602e-01 2.0319e+00 6.7214e-01 1.0773e+00 9.7088e-01 7.0 12.62; 7.5 12.62 8.8154e-01 -5.3242e-02 2.0 1.0746e+00 1.4629e+00 2.0001e+00 6.4928e-01 1.0882e+00 9.4526e-01 7.5 12.62; 8.0 12.62 9.6254e-01 -1.5468e-01 2.0 8.4972e-01 1.1369e+00 2.6445e+00 5.5070e-01 1.0967e+00 9.2600e-01 8.0 12.62; 4.0 20.00 8.4020e-01 -4.0622e-03 2.0 1.7122e+00 3.7111e+00 1.7781e+00 8.3369e-01 1.0231e+00 1.0055e+00 4.0 20.00; 4.5 20.00 8.0074e-01 -1.1163e-03 2.0 1.6050e+00 2.5984e+00 1.7981e+00 8.0776e-01 1.0514e+00 1.0107e+00 4.5 20.00; 5.0 20.00 8.1957e-01 -2.6783e-08 2.0 1.5537e+00 1.9525e+00 1.8541e+00 8.1185e-01 1.0503e+00 9.9790e-01 5.0 20.00; 5.5 20.00 8.4597e-01 -2.1761e-28 2.0 1.6384e+00 1.8613e+00 1.7709e+00 8.6430e-01 1.0543e+00 9.8634e-01 5.5 20.00; 6.0 20.00 8.1936e-01 -2.8792e-08 2.0 1.2967e+00 1.3933e+00 1.9226e+00 7.3484e-01 1.0646e+00 9.9737e-01 6.0 20.00; 6.5 20.00 8.2149e-01 -2.1626e-07 2.0 1.2651e+00 1.1833e+00 1.8904e+00 7.2337e-01 1.0798e+00 9.7962e-01 6.5 20.00; 7.0 20.00 8.2885e-01 -1.4510e-02 2.0 1.0514e+00 8.6325e-01 2.0854e+00 6.3459e-01 1.0858e+00 9.7187e-01 7.0 20.00; 7.5 20.00 8.8599e-01 -6.7109e-02 2.0 1.0820e+00 1.4223e+00 2.1483e+00 6.5140e-01 1.0931e+00 9.5410e-01 7.5 20.00; 8.0 20.00 9.6561e-01 -1.5069e-01 2.0 9.2494e-01 1.6108e+00 2.3995e+00 5.7877e-01 1.0942e+00 9.3791e-01 8.0 20.00; 4.0 31.70 8.1172e-01 -4.8496e-04 2.0 1.5154e+00 4.2066e+00 1.7868e+00 7.5495e-01 1.0411e+00 1.0121e+00 4.0 31.70; 4.5 31.70 7.8971e-01 -1.1171e-07 2.0 1.3881e+00 2.8525e+00 1.9129e+00 7.1011e-01 1.0446e+00 1.0101e+00 4.5 31.70; 5.0 31.70 7.8907e-01 -3.0999e-07 2.0 1.3945e+00 1.9681e+00 1.8882e+00 7.2307e-01 1.0590e+00 1.0093e+00 5.0 31.70; 5.5 31.70 8.2863e-01 -4.3712e-29 2.0 1.5918e+00 1.8609e+00 1.7700e+00 8.3632e-01 1.0636e+00 1.0051e+00 5.5 31.70; 6.0 31.70 8.1063e-01 -2.5156e-07 2.0 1.3122e+00 1.4358e+00 1.8632e+00 7.3257e-01 1.0734e+00 1.0013e+00 6.0 31.70; 6.5 31.70 8.1517e-01 -5.7539e-06 2.0 1.1768e+00 1.1135e+00 1.8888e+00 6.9805e-01 1.0796e+00 9.8922e-01 6.5 31.70; 7.0 31.70 8.1577e-01 -1.2460e-04 2.0 1.1862e+00 1.0549e+00 1.9416e+00 6.8195e-01 1.0868e+00 9.6233e-01 7.0 31.70; 7.5 31.70 9.2526e-01 -1.1605e-01 2.0 1.0984e+00 1.6537e+00 2.1768e+00 6.4739e-01 1.0974e+00 9.5360e-01 7.5 31.70; 8.0 31.70 9.0070e-01 -1.0408e-01 2.0 9.3630e-01 1.4596e+00 2.2897e+00 5.6532e-01 1.0993e+00 9.3947e-01 8.0 31.70; 4.0 50.24 7.4376e-01 -9.0204e-03 2.0 1.1760e+00 5.3724e+00 1.9952e+00 5.7376e-01 1.0611e+00 1.0292e+00 4.0 50.24; 4.5 50.24 7.6692e-01 -2.8995e-07 2.0 1.2262e+00 3.1344e+00 1.9104e+00 6.3632e-01 1.0607e+00 1.0303e+00 4.5 50.24; 5.0 50.24 8.0410e-01 -1.7249e-07 2.0 1.2658e+00 2.0493e+00 1.8728e+00 7.1205e-01 1.0610e+00 1.0300e+00 5.0 50.24; 5.5 50.24 8.0289e-01 -7.3756e-10 2.0 1.3033e+00 1.9082e+00 1.8283e+00 7.1257e-01 1.0611e+00 1.0228e+00 5.5 50.24; 6.0 50.24 8.2058e-01 -3.3962e-07 2.0 1.4215e+00 1.7148e+00 1.7918e+00 7.7238e-01 1.0701e+00 9.9697e-01 6.0 50.24; 6.5 50.24 8.1998e-01 -3.7615e-08 2.0 1.3171e+00 1.5287e+00 1.8113e+00 7.3336e-01 1.0743e+00 9.8469e-01 6.5 50.24; 7.0 50.24 8.0401e-01 -1.8401e-03 2.0 1.2092e+00 1.1668e+00 1.9378e+00 6.7879e-01 1.0950e+00 9.7028e-01 7.0 50.24; 7.5 50.24 9.2124e-01 -1.1109e-01 2.0 1.0821e+00 1.7469e+00 2.2082e+00 6.4069e-01 1.0886e+00 9.5945e-01 7.5 50.24; 8.0 50.24 9.1213e-01 -1.0459e-01 2.0 1.0303e+00 1.7188e+00 2.1460e+00 6.1959e-01 1.0951e+00 9.3272e-01 8.0 50.24; 4.0 79.62 7.1877e-01 -8.4424e-07 2.0 9.8189e-01 5.7882e+00 1.9315e+00 4.8869e-01 1.0633e+00 1.0405e+00 4.0 79.62; 4.5 79.62 7.6806e-01 -7.7865e-10 2.0 1.1500e+00 4.2410e+00 1.8852e+00 5.8860e-01 1.0545e+00 1.0258e+00 4.5 79.62; 5.0 79.62 8.1221e-01 -1.9339e-06 2.0 1.3867e+00 3.2310e+00 1.7712e+00 7.2172e-01 1.0557e+00 1.0225e+00 5.0 79.62; 5.5 79.62 8.1179e-01 -3.6814e-15 2.0 1.3673e+00 2.3510e+00 1.7695e+00 7.3065e-01 1.0617e+00 1.0209e+00 5.5 79.62; 6.0 79.62 8.3805e-01 -3.9863e-07 2.0 1.4750e+00 1.7874e+00 1.7191e+00 8.0489e-01 1.0630e+00 1.0006e+00 6.0 79.62; 6.5 79.62 8.3461e-01 -3.2932e-04 2.0 1.5359e+00 1.6907e+00 1.7029e+00 8.1570e-01 1.0730e+00 9.7817e-01 6.5 79.62; 7.0 79.62 8.2516e-01 -1.0574e-03 2.0 1.4617e+00 1.6598e+00 1.7075e+00 7.8372e-01 1.0840e+00 9.7763e-01 7.0 79.62; 7.5 79.62 9.2678e-01 -1.2826e-01 2.0 1.0954e+00 1.8061e+00 2.2617e+00 6.3883e-01 1.0935e+00 9.5951e-01 7.5 79.62; 8.0 79.62 9.4781e-01 -1.3027e-01 2.0 1.1123e+00 1.9835e+00 2.2682e+00 6.5983e-01 1.0897e+00 9.3568e-01 8.0 79.62; 4.0 126.19 7.0065e-01 -3.0866e-03 2.0 7.7514e-01 4.3880e+00 2.1942e+00 3.9751e-01 1.0665e+00 1.0430e+00 4.0 126.19; 4.5 126.19 7.3944e-01 -6.1421e-03 2.0 8.4700e-01 3.1720e+00 2.1861e+00 4.6495e-01 1.0631e+00 1.0421e+00 4.5 126.19; 5.0 126.19 8.0513e-01 -3.1300e-07 2.0 1.4173e+00 3.7696e+00 1.7451e+00 7.2746e-01 1.0661e+00 1.0375e+00 5.0 126.19; 5.5 126.19 8.3644e-01 -1.2787e-02 2.0 1.6253e+00 3.0751e+00 1.6687e+00 8.0811e-01 1.0660e+00 1.0188e+00 5.5 126.19; 6.0 126.19 8.4568e-01 -1.0589e-02 2.0 1.6317e+00 2.5450e+00 1.6207e+00 8.3600e-01 1.0663e+00 1.0196e+00 6.0 126.19; 6.5 126.19 8.4142e-01 -9.2432e-03 2.0 1.6367e+00 2.2281e+00 1.6330e+00 8.4571e-01 1.0759e+00 1.0072e+00 6.5 126.19; 7.0 126.19 8.3694e-01 -1.8592e-12 2.0 1.4260e+00 1.8587e+00 1.6980e+00 7.8752e-01 1.0719e+00 9.9019e-01 7.0 126.19; 7.5 126.19 9.7787e-01 -1.5087e-01 2.0 1.3198e+00 2.7095e+00 2.0948e+00 7.4851e-01 1.0802e+00 9.6889e-01 7.5 126.19; 8.0 126.19 9.5551e-01 -1.3687e-01 2.0 1.0502e+00 1.6420e+00 2.2945e+00 6.6223e-01 1.0834e+00 9.5884e-01 8.0 126.19; 4.0 200.00 7.2408e-01 -3.7872e-06 2.0 7.9315e-01 3.3863e+00 2.1194e+00 4.3168e-01 1.0731e+00 1.0494e+00 4.0 200.00; 4.5 200.00 7.6883e-01 -1.0649e-10 2.0 8.4489e-01 3.0451e+00 2.0022e+00 5.1530e-01 1.0674e+00 1.0491e+00 4.5 200.00; 5.0 200.00 8.0446e-01 -1.1419e-07 2.0 1.2079e+00 3.5405e+00 1.7311e+00 6.7846e-01 1.0708e+00 1.0434e+00 5.0 200.00; 5.5 200.00 8.5125e-01 -2.0805e-02 2.0 1.6828e+00 3.7940e+00 1.5949e+00 8.1298e-01 1.0634e+00 1.0157e+00 5.5 200.00; 6.0 200.00 8.8936e-01 -3.4678e-02 2.0 1.9176e+00 3.6113e+00 1.5457e+00 9.0903e-01 1.0583e+00 1.0253e+00 6.0 200.00; 6.5 200.00 8.8360e-01 -4.3347e-02 2.0 2.1189e+00 3.0810e+00 1.5627e+00 9.3733e-01 1.0723e+00 1.0070e+00 6.5 200.00; 7.0 200.00 8.8401e-01 -4.3273e-02 2.0 2.2411e+00 3.1543e+00 1.5785e+00 9.5961e-01 1.0768e+00 9.8898e-01 7.0 200.00; 7.5 200.00 9.7709e-01 -1.3800e-01 2.0 1.3833e+00 2.6413e+00 2.0144e+00 7.8650e-01 1.0724e+00 9.7395e-01 7.5 200.00; 8.0 200.00 9.4766e-01 -1.2599e-01 2.0 1.0937e+00 1.7927e+00 2.1485e+00 6.8255e-01 1.0817e+00 9.6134e-01 8.0 200.00; 4.0 317.00 7.3621e-01 -2.6124e-07 2.0 6.7866e-01 1.5442e+00 2.3208e+00 4.0993e-01 1.0759e+00 1.0570e+00 4.0 317.00; 4.5 317.00 7.7046e-01 -2.0803e-06 2.0 8.4695e-01 2.4074e+00 1.9286e+00 5.2494e-01 1.0786e+00 1.0462e+00 4.5 317.00; 5.0 317.00 8.3255e-01 -8.9857e-03 2.0 1.2272e+00 3.5393e+00 1.6207e+00 6.9898e-01 1.0666e+00 1.0366e+00 5.0 317.00; 5.5 317.00 9.3328e-01 -9.4425e-02 2.0 1.7388e+00 5.6367e+00 1.5939e+00 8.2772e-01 1.0637e+00 1.0337e+00 5.5 317.00; 6.0 317.00 9.6786e-01 -1.0575e-01 2.0 2.0371e+00 4.4326e+00 1.5835e+00 9.3047e-01 1.0545e+00 1.0163e+00 6.0 317.00; 6.5 317.00 9.9191e-01 -1.2806e-01 2.0 2.2631e+00 4.7905e+00 1.5624e+00 9.7756e-01 1.0573e+00 1.0188e+00 6.5 317.00; 7.0 317.00 9.8463e-01 -1.2911e-01 2.0 2.4172e+00 4.1328e+00 1.5968e+00 1.0248e+00 1.0671e+00 1.0121e+00 7.0 317.00; 7.5 317.00 9.8211e-01 -1.4721e-01 2.0 1.4960e+00 2.3251e+00 2.0687e+00 8.3602e-01 1.0789e+00 9.7502e-01 7.5 317.00; 8.0 317.00 9.8036e-01 -1.3181e-01 2.0 1.4355e+00 2.1624e+00 2.0674e+00 8.5037e-01 1.0726e+00 9.6315e-01 8.0 317.00; 4.0 502.40 7.7145e-01 -2.1903e-08 2.0 7.5501e-01 1.2254e+00 1.9918e+00 4.8005e-01 1.0784e+00 1.0568e+00 4.0 502.40; 4.5 502.40 8.3924e-01 -1.7176e-02 2.0 8.4240e-01 1.7566e+00 1.7682e+00 5.8451e-01 1.0631e+00 1.0452e+00 4.5 502.40; 5.0 502.40 8.6317e-01 -3.0913e-02 2.0 1.2712e+00 3.3879e+00 1.4455e+00 7.1360e-01 1.0659e+00 1.0382e+00 5.0 502.40; 5.5 502.40 9.3729e-01 -1.1001e-01 2.0 1.9503e+00 6.6024e+00 1.4210e+00 8.4644e-01 1.0762e+00 1.0447e+00 5.5 502.40; 6.0 502.40 9.8756e-01 -1.2780e-01 2.0 2.3398e+00 5.8967e+00 1.4040e+00 9.5484e-01 1.0593e+00 1.0275e+00 6.0 502.40; 6.5 502.40 1.0255e+00 -1.6704e-01 2.0 2.7393e+00 5.7808e+00 1.5652e+00 1.0339e+00 1.0626e+00 1.0108e+00 6.5 502.40; 7.0 502.40 1.0233e+00 -1.6031e-01 2.0 2.9463e+00 4.5741e+00 1.5529e+00 1.0997e+00 1.0652e+00 1.0006e+00 7.0 502.40; 7.5 502.40 1.0200e+00 -1.2401e-01 2.0 3.0000e+00 3.9155e+00 1.6445e+00 1.1560e+00 1.0461e+00 9.6435e-01 7.5 502.40; 8.0 502.40 1.0002e+00 -1.1999e-01 2.0 2.5675e+00 3.3955e+00 1.6785e+00 1.1070e+00 1.0599e+00 9.6587e-01 8.0 502.40; 4.0 796.20 8.8270e-01 -8.3018e-02 2.0 1.2361e+00 3.2178e+00 1.2860e+00 6.5438e-01 1.0883e+00 1.0605e+00 4.0 796.20; 4.5 796.20 9.0131e-01 -9.0819e-02 2.0 1.4035e+00 3.7970e+00 1.3032e+00 7.1226e-01 1.0843e+00 1.0593e+00 4.5 796.20; 5.0 796.20 9.3558e-01 -8.3350e-02 2.0 1.5771e+00 4.0563e+00 1.2214e+00 7.8376e-01 1.0603e+00 1.0343e+00 5.0 796.20; 5.5 796.20 9.8071e-01 -1.2639e-01 2.0 2.1823e+00 5.4690e+00 1.2828e+00 8.9979e-01 1.0625e+00 1.0402e+00 5.5 796.20; 6.0 796.20 1.0292e+00 -1.6994e-01 2.0 2.9999e+00 6.5631e+00 1.2973e+00 1.0071e+00 1.0608e+00 1.0173e+00 6.0 796.20; 6.5 796.20 1.0716e+00 -2.0385e-01 2.0 3.0000e+00 6.0142e+00 1.4500e+00 1.0802e+00 1.0575e+00 1.0181e+00 6.5 796.20; 7.0 796.20 1.1170e+00 -2.2503e-01 2.0 3.0000e+00 5.5908e+00 1.6436e+00 1.1310e+00 1.0466e+00 1.0011e+00 7.0 796.20; 7.5 796.20 1.1243e+00 -2.3116e-01 2.0 3.0000e+00 4.7524e+00 1.7099e+00 1.1844e+00 1.0490e+00 9.9987e-01 7.5 796.20; 8.0 796.20 1.0006e+00 -1.1062e-01 2.0 2.8163e+00 3.0643e+00 1.6161e+00 1.2033e+00 1.0543e+00 9.8424e-01 8.0 796.20; 4.0 1262.00 1.1142e+00 -2.9561e-01 2.0 1.6692e+00 6.1510e+00 1.3141e+00 7.6115e-01 1.0829e+00 1.0502e+00 4.0 1262.00; 4.5 1262.00 1.1450e+00 -2.8700e-01 2.0 1.9553e+00 6.0141e+00 1.2838e+00 8.6221e-01 1.0634e+00 1.0392e+00 4.5 1262.00; 5.0 1262.00 1.1431e+00 -3.0083e-01 2.0 2.2941e+00 6.8268e+00 1.2609e+00 8.9057e-01 1.0726e+00 1.0475e+00 5.0 1262.00; 5.5 1262.00 1.1467e+00 -2.7310e-01 2.0 2.5178e+00 6.9746e+00 1.3125e+00 9.6257e-01 1.0554e+00 1.0372e+00 5.5 1262.00; 6.0 1262.00 1.1623e+00 -2.9893e-01 2.0 3.0000e+00 7.2278e+00 1.4351e+00 1.0457e+00 1.0629e+00 1.0252e+00 6.0 1262.00; 6.5 1262.00 1.2000e+00 -3.2059e-01 2.0 3.0000e+00 7.6028e+00 1.5529e+00 1.0983e+00 1.0535e+00 1.0295e+00 6.5 1262.00; 7.0 1262.00 1.2000e+00 -3.0723e-01 2.0 3.0000e+00 6.1282e+00 1.6668e+00 1.1508e+00 1.0466e+00 1.0024e+00 7.0 1262.00; 7.5 1262.00 1.2000e+00 -3.0499e-01 2.0 3.0000e+00 5.0982e+00 1.7273e+00 1.2181e+00 1.0481e+00 1.0067e+00 7.5 1262.00; 8.0 1262.00 1.2000e+00 -3.0348e-01 2.0 3.0000e+00 4.2696e+00 1.8291e+00 1.2610e+00 1.0492e+00 9.8681e-01 8.0 1262.00 ] const coefs_ena_bt12 = [ 4.0 2.00 7.4499e-01 -3.0772e-02 2.0 1.3928e+00 8.3838e-01 2.4979e+00 6.7955e-01 1.0253e+00 9.6354e-01 4.0 2.00; 4.5 2.00 7.6659e-01 -3.0413e-02 2.0 1.3636e+00 9.7771e-01 2.3632e+00 6.9419e-01 1.0538e+00 9.6656e-01 4.5 2.00; 5.0 2.00 8.5088e-01 -2.7815e-06 2.0 1.2579e+00 9.8032e-01 2.0749e+00 7.8838e-01 1.0598e+00 9.5727e-01 5.0 2.00; 5.5 2.00 7.6469e-01 -1.0292e-07 2.0 1.1153e+00 8.5585e-01 2.1955e+00 6.0514e-01 1.0745e+00 9.7063e-01 5.5 2.00; 6.0 2.00 8.0539e-01 -4.1307e-17 2.0 1.0631e+00 8.3666e-01 2.1792e+00 6.3713e-01 1.0776e+00 9.5917e-01 6.0 2.00; 6.5 2.00 8.2454e-01 -1.1132e-16 2.0 1.0240e+00 7.5717e-01 2.1935e+00 6.4412e-01 1.0957e+00 9.4398e-01 6.5 2.00; 7.0 2.00 8.4196e-01 -8.3632e-03 2.0 9.8648e-01 7.3577e-01 2.2221e+00 6.4268e-01 1.1001e+00 9.1936e-01 7.0 2.00; 7.5 2.00 8.0918e-01 -1.9895e-06 2.0 9.1407e-01 7.9186e-01 2.2626e+00 5.7595e-01 1.1080e+00 9.0618e-01 7.5 2.00; 8.0 2.00 1.1574e+00 -4.1628e-01 2.0 7.1549e-01 3.3332e+00 4.1754e+00 4.0981e-01 1.1114e+00 8.7461e-01 8.0 2.00; 4.0 3.17 7.4249e-01 -3.4061e-02 2.0 1.3792e+00 8.1130e-01 2.5371e+00 6.6759e-01 1.0251e+00 9.6351e-01 4.0 3.17; 4.5 3.17 7.7349e-01 -2.2472e-02 2.0 1.3817e+00 9.9520e-01 2.3073e+00 7.2181e-01 1.0535e+00 9.6624e-01 4.5 3.17; 5.0 3.17 8.5089e-01 -4.4519e-07 2.0 1.2735e+00 9.9594e-01 2.0666e+00 7.9499e-01 1.0601e+00 9.5733e-01 5.0 3.17; 5.5 3.17 7.6277e-01 -3.8418e-08 2.0 1.1145e+00 8.4433e-01 2.2020e+00 6.0264e-01 1.0744e+00 9.7069e-01 5.5 3.17; 6.0 3.17 8.0431e-01 -1.3389e-17 2.0 1.0649e+00 8.3603e-01 2.1806e+00 6.3657e-01 1.0778e+00 9.5924e-01 6.0 3.17; 6.5 3.17 8.2327e-01 -9.8165e-21 2.0 1.0255e+00 7.5555e-01 2.1958e+00 6.4310e-01 1.0954e+00 9.4426e-01 6.5 3.17; 7.0 3.17 8.4445e-01 -1.2431e-02 2.0 9.8210e-01 7.3887e-01 2.2377e+00 6.3896e-01 1.1000e+00 9.1991e-01 7.0 3.17; 7.5 3.17 8.0631e-01 -4.7208e-07 2.0 9.0758e-01 7.6090e-01 2.2867e+00 5.6936e-01 1.1083e+00 9.0648e-01 7.5 3.17; 8.0 3.17 1.1238e+00 -3.3574e-01 2.0 7.3859e-01 2.2882e+00 3.4862e+00 4.8200e-01 1.1122e+00 8.7493e-01 8.0 3.17; 4.0 5.02 7.4005e-01 -3.5818e-02 2.0 1.3817e+00 8.0165e-01 2.5506e+00 6.6482e-01 1.0248e+00 9.6350e-01 4.0 5.02; 4.5 5.02 7.7668e-01 -1.8238e-02 2.0 1.3961e+00 1.0010e+00 2.2827e+00 7.3750e-01 1.0531e+00 9.6663e-01 4.5 5.02; 5.0 5.02 8.5014e-01 -3.3214e-07 2.0 1.2845e+00 1.0033e+00 2.0625e+00 7.9911e-01 1.0594e+00 9.5759e-01 5.0 5.02; 5.5 5.02 7.6180e-01 -2.1336e-17 2.0 1.1175e+00 8.4272e-01 2.2037e+00 6.0313e-01 1.0745e+00 9.7063e-01 5.5 5.02; 6.0 5.02 8.0269e-01 -2.0009e-17 2.0 1.0693e+00 8.3770e-01 2.1815e+00 6.3637e-01 1.0776e+00 9.5939e-01 6.0 5.02; 6.5 5.02 8.2171e-01 -3.0971e-31 2.0 1.0280e+00 7.5486e-01 2.1982e+00 6.4214e-01 1.0955e+00 9.4444e-01 6.5 5.02; 7.0 5.02 8.4613e-01 -1.5745e-02 2.0 9.8072e-01 7.4313e-01 2.2508e+00 6.3615e-01 1.0995e+00 9.1966e-01 7.0 5.02; 7.5 5.02 8.0493e-01 -6.6301e-08 2.0 9.0662e-01 7.5179e-01 2.2949e+00 5.6713e-01 1.1082e+00 9.0712e-01 7.5 5.02; 8.0 5.02 1.1064e+00 -3.1800e-01 2.0 7.4773e-01 2.1428e+00 3.4018e+00 4.8628e-01 1.1116e+00 8.7545e-01 8.0 5.02; 4.0 7.96 7.3601e-01 -3.8687e-02 2.0 1.3940e+00 7.9664e-01 2.5636e+00 6.6310e-01 1.0243e+00 9.6349e-01 4.0 7.96; 4.5 7.96 7.8586e-01 -7.4996e-03 2.0 1.4162e+00 1.0088e+00 2.2240e+00 7.7432e-01 1.0527e+00 9.6619e-01 4.5 7.96; 5.0 7.96 8.4919e-01 -2.4409e-07 2.0 1.2958e+00 1.0061e+00 2.0606e+00 8.0357e-01 1.0588e+00 9.5731e-01 5.0 7.96; 5.5 7.96 7.6152e-01 -1.7248e-17 2.0 1.1247e+00 8.4775e-01 2.2017e+00 6.0650e-01 1.0740e+00 9.7116e-01 5.5 7.96; 6.0 7.96 8.0101e-01 -5.6871e-34 2.0 1.0761e+00 8.4182e-01 2.1812e+00 6.3750e-01 1.0776e+00 9.5969e-01 6.0 7.96; 6.5 7.96 8.1921e-01 -6.4799e-35 2.0 1.0327e+00 7.5446e-01 2.2011e+00 6.4087e-01 1.0955e+00 9.4462e-01 6.5 7.96; 7.0 7.96 8.4706e-01 -2.0159e-02 2.0 9.7927e-01 7.4729e-01 2.2700e+00 6.3117e-01 1.0997e+00 9.1996e-01 7.0 7.96; 7.5 7.96 8.0254e-01 -1.0004e-19 2.0 9.0843e-01 7.4615e-01 2.3023e+00 5.6478e-01 1.1079e+00 9.0698e-01 7.5 7.96; 8.0 7.96 1.0991e+00 -3.1060e-01 2.0 7.5231e-01 2.0950e+00 3.3597e+00 4.8859e-01 1.1116e+00 8.7612e-01 8.0 7.96; 4.0 12.62 7.0000e-01 -2.4374e-01 2.0 1.7607e+00 6.9945e+00 2.9837e+00 4.0530e-01 1.0529e+00 1.0123e+00 4.0 12.62; 4.5 12.62 8.1100e-01 -5.4627e-02 2.0 1.3644e+00 2.1006e+00 1.9852e+00 6.6942e-01 1.0678e+00 1.0024e+00 4.5 12.62; 5.0 12.62 7.9093e-01 -9.1466e-03 2.0 1.4484e+00 1.7639e+00 1.8515e+00 7.2182e-01 1.0770e+00 9.8893e-01 5.0 12.62; 5.5 12.62 7.8662e-01 -6.4267e-07 2.0 1.1562e+00 1.0929e+00 1.9671e+00 6.4646e-01 1.0865e+00 9.8772e-01 5.5 12.62; 6.0 12.62 8.4063e-01 -3.7478e-07 2.0 1.1179e+00 8.6813e-01 1.9900e+00 7.1682e-01 1.0880e+00 9.6728e-01 6.0 12.62; 6.5 12.62 8.2699e-01 -9.6153e-08 2.0 1.0649e+00 9.0260e-01 2.0259e+00 6.5749e-01 1.0958e+00 9.5398e-01 6.5 12.62; 7.0 12.62 8.0730e-01 -1.0776e-06 2.0 9.7457e-01 7.1721e-01 2.2248e+00 5.9962e-01 1.1051e+00 9.3355e-01 7.0 12.62; 7.5 12.62 8.2952e-01 -1.1781e-02 2.0 9.4264e-01 9.2716e-01 2.2199e+00 6.0866e-01 1.1050e+00 9.2204e-01 7.5 12.62; 8.0 12.62 1.1075e+00 -3.2347e-01 2.0 7.9284e-01 2.4170e+00 3.4246e+00 4.9618e-01 1.1125e+00 8.8831e-01 8.0 12.62; 4.0 20.00 7.0972e-01 -1.5611e-01 2.0 1.0568e+00 1.5270e+01 3.4374e+00 3.3059e-01 1.0844e+00 1.0550e+00 4.0 20.00; 4.5 20.00 7.5373e-01 -3.5155e-02 2.0 1.0502e+00 3.2069e+00 2.1437e+00 5.0568e-01 1.0894e+00 1.0373e+00 4.5 20.00; 5.0 20.00 7.4294e-01 -4.4353e-03 2.0 9.7401e-01 1.3124e+00 2.0837e+00 5.1430e-01 1.0829e+00 1.0347e+00 5.0 20.00; 5.5 20.00 7.2999e-01 -2.9787e-07 2.0 1.0646e+00 8.7860e-01 2.0446e+00 5.2091e-01 1.0870e+00 1.0000e+00 5.5 20.00; 6.0 20.00 7.9094e-01 -2.4672e-17 2.0 1.0599e+00 9.0053e-01 1.9662e+00 5.9849e-01 1.0887e+00 9.8811e-01 6.0 20.00; 6.5 20.00 8.0349e-01 -4.4357e-07 2.0 1.1059e+00 1.1712e+00 1.9580e+00 6.2395e-01 1.0934e+00 9.6524e-01 6.5 20.00; 7.0 20.00 8.2080e-01 -6.2367e-05 2.0 1.1345e+00 1.2266e+00 1.9089e+00 6.6433e-01 1.1049e+00 9.4121e-01 7.0 20.00; 7.5 20.00 8.2713e-01 -1.6679e-02 2.0 9.7085e-01 9.6843e-01 2.1135e+00 5.9319e-01 1.1024e+00 9.1320e-01 7.5 20.00; 8.0 20.00 1.1435e+00 -3.3384e-01 2.0 8.6005e-01 2.9950e+00 3.0842e+00 5.6602e-01 1.1145e+00 8.9025e-01 8.0 20.00; 4.0 31.70 7.5523e-01 -6.1519e-02 2.0 7.0295e-01 1.6974e+01 2.7714e+00 3.5788e-01 1.0968e+00 1.0716e+00 4.0 31.70; 4.5 31.70 7.2579e-01 -7.4006e-02 2.0 8.4409e-01 7.7628e+00 2.6833e+00 3.5510e-01 1.0895e+00 1.0478e+00 4.5 31.70; 5.0 31.70 7.3171e-01 -1.8856e-02 2.0 9.7754e-01 2.6668e+00 2.1737e+00 4.6838e-01 1.0968e+00 1.0442e+00 5.0 31.70; 5.5 31.70 7.4865e-01 -4.8344e-07 2.0 9.7714e-01 1.1250e+00 2.1068e+00 5.1255e-01 1.0960e+00 1.0332e+00 5.5 31.70; 6.0 31.70 7.6646e-01 -3.0853e-07 2.0 1.0203e+00 9.3153e-01 2.0629e+00 5.4787e-01 1.0977e+00 1.0095e+00 6.0 31.70; 6.5 31.70 7.7282e-01 -7.6203e-07 2.0 9.9068e-01 9.3050e-01 2.0019e+00 5.4762e-01 1.1004e+00 9.9098e-01 6.5 31.70; 7.0 31.70 8.0833e-01 -2.0127e-03 2.0 9.9126e-01 1.1425e+00 1.9250e+00 6.0071e-01 1.1018e+00 9.7147e-01 7.0 31.70; 7.5 31.70 8.2974e-01 -1.7129e-02 2.0 9.6726e-01 1.0363e+00 2.0572e+00 5.9916e-01 1.1023e+00 9.2972e-01 7.5 31.70; 8.0 31.70 1.1337e+00 -3.4815e-01 2.0 8.2312e-01 2.8601e+00 3.2358e+00 5.1106e-01 1.1149e+00 8.9638e-01 8.0 31.70; 4.0 50.24 7.0000e-01 -3.3844e-03 2.0 6.2430e-01 2.7092e+01 2.1023e+00 3.3039e-01 1.1043e+00 1.0745e+00 4.0 50.24; 4.5 50.24 7.0000e-01 -1.0683e-03 2.0 7.0260e-01 9.4854e+00 2.2301e+00 3.6400e-01 1.0999e+00 1.0722e+00 4.5 50.24; 5.0 50.24 7.0000e-01 -1.8942e-02 2.0 7.8355e-01 4.0256e+00 2.4505e+00 3.7077e-01 1.0970e+00 1.0617e+00 5.0 50.24; 5.5 50.24 7.0000e-01 -1.6300e-02 2.0 8.8500e-01 1.9832e+00 2.3716e+00 4.0325e-01 1.0971e+00 1.0463e+00 5.5 50.24; 6.0 50.24 7.1272e-01 -1.4726e-07 2.0 8.9286e-01 8.1783e-01 2.3500e+00 4.3997e-01 1.0965e+00 1.0360e+00 6.0 50.24; 6.5 50.24 7.6839e-01 -6.4575e-08 2.0 1.0072e+00 9.1313e-01 1.9774e+00 5.3680e-01 1.1030e+00 9.9851e-01 6.5 50.24; 7.0 50.24 7.9821e-01 -2.1127e-05 2.0 9.9853e-01 1.0824e+00 1.8584e+00 5.8686e-01 1.0951e+00 9.8511e-01 7.0 50.24; 7.5 50.24 8.3695e-01 -3.1385e-02 2.0 9.8773e-01 1.0788e+00 2.0739e+00 5.9519e-01 1.0989e+00 9.3891e-01 7.5 50.24; 8.0 50.24 1.2000e+00 -4.0437e-01 2.0 8.5839e-01 4.1919e+00 3.1777e+00 5.4781e-01 1.1109e+00 9.0655e-01 8.0 50.24; 4.0 79.62 7.0000e-01 -8.0890e-18 2.0 5.5429e-01 3.4017e+01 2.0664e+00 3.1187e-01 1.1005e+00 1.0754e+00 4.0 79.62; 4.5 79.62 7.0000e-01 -1.3090e-07 2.0 6.3896e-01 1.3043e+01 2.1523e+00 3.4652e-01 1.1058e+00 1.0788e+00 4.5 79.62; 5.0 79.62 7.0000e-01 -1.2290e-02 2.0 7.3580e-01 6.5228e+00 2.3315e+00 3.6224e-01 1.1035e+00 1.0648e+00 5.0 79.62; 5.5 79.62 7.0000e-01 -5.1176e-03 2.0 8.5381e-01 2.3219e+00 2.3280e+00 4.0281e-01 1.0951e+00 1.0580e+00 5.5 79.62; 6.0 79.62 7.4394e-01 -7.1538e-03 2.0 8.5853e-01 1.0128e+00 2.3976e+00 4.6298e-01 1.0970e+00 1.0547e+00 6.0 79.62; 6.5 79.62 7.3383e-01 -7.5166e-06 2.0 9.1533e-01 7.6082e-01 2.2108e+00 4.7191e-01 1.1022e+00 1.0224e+00 6.5 79.62; 7.0 79.62 7.6594e-01 -1.1135e-05 2.0 1.0242e+00 1.0944e+00 1.8323e+00 5.4115e-01 1.1060e+00 9.8341e-01 7.0 79.62; 7.5 79.62 8.3184e-01 -3.7984e-02 2.0 1.0252e+00 1.1924e+00 1.9481e+00 5.9080e-01 1.1065e+00 9.5858e-01 7.5 79.62; 8.0 79.62 1.2000e+00 -4.2855e-01 2.0 8.2436e-01 4.5732e+00 3.5456e+00 5.0411e-01 1.1105e+00 9.2490e-01 8.0 79.62; 4.0 126.19 7.0000e-01 -9.3134e-03 2.0 6.5770e-01 2.4111e+01 2.0921e+00 3.4515e-01 1.0948e+00 1.0737e+00 4.0 126.19; 4.5 126.19 7.0000e-01 -6.4122e-03 2.0 7.0065e-01 1.1473e+01 2.2173e+00 3.6651e-01 1.0964e+00 1.0705e+00 4.5 126.19; 5.0 126.19 7.0000e-01 -3.8103e-02 2.0 8.1428e-01 5.6824e+00 2.5118e+00 3.6708e-01 1.0982e+00 1.0603e+00 5.0 126.19; 5.5 126.19 7.0000e-01 -2.0781e-02 2.0 8.8580e-01 2.2925e+00 2.3286e+00 4.0074e-01 1.0892e+00 1.0465e+00 5.5 126.19; 6.0 126.19 7.1685e-01 -2.3828e-03 2.0 9.4160e-01 1.1819e+00 2.1530e+00 4.6235e-01 1.0937e+00 1.0376e+00 6.0 126.19; 6.5 126.19 7.5639e-01 -6.9748e-06 2.0 1.0266e+00 1.0918e+00 1.9603e+00 5.4218e-01 1.0949e+00 1.0160e+00 6.5 126.19; 7.0 126.19 7.8490e-01 -1.8834e-05 2.0 1.1253e+00 1.1569e+00 1.8651e+00 6.0514e-01 1.0910e+00 9.7531e-01 7.0 126.19; 7.5 126.19 8.2386e-01 -3.8922e-02 2.0 1.0819e+00 1.3516e+00 1.9944e+00 5.9384e-01 1.0999e+00 9.5643e-01 7.5 126.19; 8.0 126.19 1.2000e+00 -4.3500e-01 2.0 8.3252e-01 3.9690e+00 3.5290e+00 4.9975e-01 1.1068e+00 9.2419e-01 8.0 126.19; 4.0 200.00 7.0000e-01 -9.9722e-09 2.0 5.7369e-01 2.2867e+01 2.0999e+00 3.2613e-01 1.0893e+00 1.0764e+00 4.0 200.00; 4.5 200.00 7.0000e-01 -2.0290e-15 2.0 6.9245e-01 1.1532e+01 2.0741e+00 3.6652e-01 1.0896e+00 1.0693e+00 4.5 200.00; 5.0 200.00 7.0000e-01 -1.7951e-02 2.0 7.5549e-01 5.9753e+00 2.4248e+00 3.6718e-01 1.0879e+00 1.0610e+00 5.0 200.00; 5.5 200.00 7.0000e-01 -1.2546e-02 2.0 8.5451e-01 2.9617e+00 2.2767e+00 4.0641e-01 1.0935e+00 1.0547e+00 5.5 200.00; 6.0 200.00 7.1629e-01 -4.5233e-07 2.0 9.3155e-01 1.7244e+00 2.1745e+00 4.5411e-01 1.0864e+00 1.0374e+00 6.0 200.00; 6.5 200.00 7.4775e-01 -1.1187e-05 2.0 1.0262e+00 1.3210e+00 1.9536e+00 5.2329e-01 1.0925e+00 1.0271e+00 6.5 200.00; 7.0 200.00 7.8534e-01 -5.3183e-05 2.0 1.0803e+00 1.3301e+00 1.8174e+00 6.0116e-01 1.0887e+00 1.0000e+00 7.0 200.00; 7.5 200.00 8.3010e-01 -4.3565e-02 2.0 1.0546e+00 1.3811e+00 1.9608e+00 5.9829e-01 1.1017e+00 9.7409e-01 7.5 200.00; 8.0 200.00 1.2000e+00 -4.2648e-01 2.0 8.5386e-01 4.6946e+00 3.5826e+00 5.2896e-01 1.0980e+00 9.4662e-01 8.0 200.00; 4.0 317.00 7.0000e-01 -3.0941e-07 2.0 5.4038e-01 2.0798e+01 2.1620e+00 3.1839e-01 1.0999e+00 1.0873e+00 4.0 317.00; 4.5 317.00 7.0000e-01 -2.0482e-02 2.0 6.1477e-01 1.5841e+01 2.4554e+00 3.1946e-01 1.0955e+00 1.0786e+00 4.5 317.00; 5.0 317.00 7.0000e-01 -3.9962e-02 2.0 7.0732e-01 8.4084e+00 2.7415e+00 3.3211e-01 1.0985e+00 1.0637e+00 5.0 317.00; 5.5 317.00 7.0390e-01 -7.4679e-03 2.0 7.6534e-01 3.2582e+00 2.3231e+00 3.8841e-01 1.0927e+00 1.0643e+00 5.5 317.00; 6.0 317.00 7.3097e-01 -3.7794e-04 2.0 8.8502e-01 2.1430e+00 2.1211e+00 4.6048e-01 1.0888e+00 1.0423e+00 6.0 317.00; 6.5 317.00 7.7222e-01 -4.3701e-03 2.0 1.0979e+00 2.0230e+00 1.8593e+00 5.6905e-01 1.0903e+00 1.0215e+00 6.5 317.00; 7.0 317.00 7.9944e-01 -2.1160e-03 2.0 1.1200e+00 1.6581e+00 1.8141e+00 6.2103e-01 1.0856e+00 1.0083e+00 7.0 317.00; 7.5 317.00 7.9780e-01 -2.1297e-06 2.0 1.2097e+00 1.5811e+00 1.7106e+00 6.5362e-01 1.0932e+00 9.8560e-01 7.5 317.00; 8.0 317.00 1.2000e+00 -4.1799e-01 2.0 9.6603e-01 5.5529e+00 3.0556e+00 5.6936e-01 1.1012e+00 9.5754e-01 8.0 317.00; 4.0 502.40 7.0000e-01 -1.7111e-02 2.0 4.6999e-01 1.8968e+01 2.8200e+00 2.6648e-01 1.0937e+00 1.0850e+00 4.0 502.40; 4.5 502.40 7.0000e-01 -2.6396e-02 2.0 5.1949e-01 1.6368e+01 2.8759e+00 2.7832e-01 1.0958e+00 1.0749e+00 4.5 502.40; 5.0 502.40 7.0000e-01 -2.1671e-02 2.0 6.1000e-01 8.6654e+00 2.6980e+00 3.1148e-01 1.0901e+00 1.0729e+00 5.0 502.40; 5.5 502.40 7.0002e-01 -7.1630e-03 2.0 6.9537e-01 4.5437e+00 2.4581e+00 3.5831e-01 1.0952e+00 1.0655e+00 5.5 502.40; 6.0 502.40 7.6134e-01 -6.3443e-06 2.0 8.9341e-01 3.7976e+00 1.9228e+00 5.0275e-01 1.0876e+00 1.0463e+00 6.0 502.40; 6.5 502.40 7.9007e-01 -2.5364e-03 2.0 1.0237e+00 2.5624e+00 1.7955e+00 5.8082e-01 1.0837e+00 1.0309e+00 6.5 502.40; 7.0 502.40 7.8695e-01 -2.0933e-03 2.0 1.1867e+00 2.1554e+00 1.6970e+00 6.3350e-01 1.0993e+00 1.0215e+00 7.0 502.40; 7.5 502.40 8.1809e-01 -4.3629e-03 2.0 1.4327e+00 2.5223e+00 1.5747e+00 7.2501e-01 1.0885e+00 9.9483e-01 7.5 502.40; 8.0 502.40 1.2000e+00 -3.9261e-01 2.0 1.1094e+00 5.2480e+00 2.8220e+00 6.5055e-01 1.0920e+00 9.6559e-01 8.0 502.40; 4.0 796.20 7.0000e-01 -2.3099e-02 2.0 4.5581e-01 1.7534e+01 3.1836e+00 2.5169e-01 1.0938e+00 1.0935e+00 4.0 796.20; 4.5 796.20 7.0000e-01 -3.7902e-02 2.0 4.8070e-01 1.8783e+01 3.4708e+00 2.4695e-01 1.0957e+00 1.0901e+00 4.5 796.20; 5.0 796.20 7.0000e-01 -8.6256e-03 2.0 5.4088e-01 8.8700e+00 2.5344e+00 3.0798e-01 1.0999e+00 1.0796e+00 5.0 796.20; 5.5 796.20 7.2574e-01 -6.1859e-07 2.0 6.3759e-01 6.1694e+00 2.2528e+00 3.8172e-01 1.0942e+00 1.0656e+00 5.5 796.20; 6.0 796.20 7.9007e-01 -1.1663e-07 2.0 8.9429e-01 5.2998e+00 1.8310e+00 5.4462e-01 1.0835e+00 1.0541e+00 6.0 796.20; 6.5 796.20 8.0321e-01 -5.4738e-06 2.0 1.0887e+00 4.4263e+00 1.6296e+00 6.2320e-01 1.0833e+00 1.0565e+00 6.5 796.20; 7.0 796.20 8.3257e-01 -1.9010e-02 2.0 1.3544e+00 3.6403e+00 1.5790e+00 7.0373e-01 1.0842e+00 1.0292e+00 7.0 796.20; 7.5 796.20 8.2613e-01 -6.7595e-03 2.0 1.5248e+00 2.8118e+00 1.5264e+00 7.6541e-01 1.0887e+00 1.0129e+00 7.5 796.20; 8.0 796.20 1.1507e+00 -3.2529e-01 2.0 1.4633e+00 5.9123e+00 2.1639e+00 7.6925e-01 1.0861e+00 9.8940e-01 8.0 796.20; 4.0 1262.00 7.0380e-01 -2.3859e-02 2.0 4.6750e-01 1.6009e+01 3.2471e+00 2.5732e-01 1.0983e+00 1.0854e+00 4.0 1262.00; 4.5 1262.00 7.2948e-01 -1.4944e-02 2.0 4.8377e-01 1.2697e+01 2.6412e+00 2.9720e-01 1.0910e+00 1.0799e+00 4.5 1262.00; 5.0 1262.00 7.1686e-01 -8.8205e-09 2.0 5.0825e-01 8.9544e+00 2.5879e+00 3.1741e-01 1.0940e+00 1.0730e+00 5.0 1262.00; 5.5 1262.00 7.5789e-01 -5.9107e-07 2.0 6.3038e-01 8.3660e+00 2.0527e+00 4.2616e-01 1.0955e+00 1.0773e+00 5.5 1262.00; 6.0 1262.00 7.8795e-01 -1.1888e-06 2.0 9.4374e-01 7.9155e+00 1.6171e+00 5.6637e-01 1.0922e+00 1.0692e+00 6.0 1262.00; 6.5 1262.00 8.3205e-01 -7.7356e-04 2.0 1.3982e+00 7.1069e+00 1.4151e+00 7.1961e-01 1.0743e+00 1.0470e+00 6.5 1262.00; 7.0 1262.00 8.2346e-01 -5.7461e-03 2.0 1.6840e+00 5.8126e+00 1.3549e+00 7.5587e-01 1.0847e+00 1.0338e+00 7.0 1262.00; 7.5 1262.00 8.4754e-01 -2.1169e-02 2.0 1.9081e+00 4.5097e+00 1.3691e+00 8.1498e-01 1.0837e+00 1.0215e+00 7.5 1262.00; 8.0 1262.00 8.5187e-01 -1.5704e-02 2.0 2.7561e+00 4.7263e+00 1.2542e+00 9.5985e-01 1.0839e+00 1.0185e+00 8.0 1262.00 ]
StochasticGroundMotionSimulation
https://github.com/pstafford/StochasticGroundMotionSimulation.jl.git
[ "MIT" ]
0.2.6
b88d988a6a59a7ac37d73f8517a7022613997c68
code
37054
# Definition of Boore & Thompson (2012) constant values to be used within subsequent functions const m_ii_bt15 = [ 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 6.5, 7.0, 7.5, 8.0 ] const r_jj_bt15 = [ 2.00, 3.17, 5.02, 7.96, 12.62, 20.00, 31.70, 50.24, 79.62, 126.20, 200.01, 317.00, 502.41, 796.26, 1262.00 ] const num_m_ii_bt15 = 13 const num_r_jj_bt15 = 15 const coefs_wna_bt15 = [ 2.00 2.00 9.38E-01 -1.09E-02 2.00E+00 1.00E+00 1.86E+00 2.00E+00 1.07E+00 1.03E+00 1.00E+00; 2.50 2.00 9.06E-01 -1.38E-02 2.00E+00 1.00E+00 1.67E+00 2.00E+00 1.07E+00 1.05E+00 1.04E+00; 3.00 2.00 9.55E-01 -1.74E-02 2.00E+00 1.00E+00 1.17E+00 2.00E+00 1.28E+00 1.04E+00 1.03E+00; 3.50 2.00 9.55E-01 -2.27E-02 2.00E+00 1.00E+00 9.35E-01 2.00E+00 1.29E+00 1.04E+00 1.03E+00; 4.00 2.00 9.85E-01 -3.71E-02 2.00E+00 1.00E+00 6.72E-01 2.00E+00 1.37E+00 1.03E+00 1.02E+00; 4.50 2.00 1.01E+00 -7.99E-02 2.00E+00 1.00E+00 5.18E-01 2.00E+00 1.39E+00 1.04E+00 1.02E+00; 5.00 2.00 1.04E+00 -1.10E-01 2.00E+00 1.00E+00 4.31E-01 2.00E+00 1.34E+00 1.03E+00 1.01E+00; 5.50 2.00 1.03E+00 -1.28E-01 2.00E+00 1.00E+00 3.20E-01 2.00E+00 1.34E+00 1.05E+00 1.01E+00; 6.00 2.00 9.54E-01 -7.01E-02 2.00E+00 1.00E+00 2.23E-01 2.00E+00 1.16E+00 1.05E+00 1.00E+00; 6.50 2.00 9.52E-01 -6.39E-02 2.00E+00 1.00E+00 1.86E-01 2.00E+00 1.16E+00 1.05E+00 9.96E-01; 7.00 2.00 8.48E-01 2.92E-02 2.00E+00 1.00E+00 1.15E-01 2.00E+00 1.15E+00 1.07E+00 9.88E-01; 7.50 2.00 8.49E-01 3.80E-02 2.00E+00 1.00E+00 1.02E-01 2.00E+00 1.15E+00 1.07E+00 9.65E-01; 8.00 2.00 8.30E-01 3.78E-02 2.00E+00 1.00E+00 8.68E-02 2.00E+00 1.05E+00 1.08E+00 9.50E-01; 2.00 3.17 9.17E-01 -9.48E-03 2.00E+00 1.00E+00 3.35E+00 2.00E+00 1.01E+00 1.05E+00 1.02E+00; 2.50 3.17 9.17E-01 -2.05E-02 2.00E+00 1.00E+00 3.08E+00 2.00E+00 1.01E+00 1.05E+00 1.04E+00; 3.00 3.17 9.37E-01 -1.12E-02 2.00E+00 1.00E+00 1.89E+00 2.00E+00 1.19E+00 1.04E+00 1.03E+00; 3.50 3.17 9.36E-01 -1.44E-02 2.00E+00 1.00E+00 1.48E+00 2.00E+00 1.19E+00 1.04E+00 1.03E+00; 4.00 3.17 9.62E-01 -3.49E-02 2.00E+00 1.00E+00 9.96E-01 2.00E+00 1.27E+00 1.04E+00 1.02E+00; 4.50 3.17 9.66E-01 -4.16E-02 2.00E+00 1.00E+00 6.78E-01 2.00E+00 1.30E+00 1.04E+00 1.03E+00; 5.00 3.17 1.01E+00 -9.19E-02 2.00E+00 1.00E+00 5.24E-01 2.00E+00 1.34E+00 1.04E+00 1.02E+00; 5.50 3.17 1.02E+00 -1.15E-01 2.00E+00 1.00E+00 3.74E-01 2.00E+00 1.29E+00 1.05E+00 1.01E+00; 6.00 3.17 9.80E-01 -8.70E-02 2.00E+00 1.00E+00 2.67E-01 2.00E+00 1.15E+00 1.05E+00 9.85E-01; 6.50 3.17 9.45E-01 -5.79E-02 2.00E+00 1.00E+00 1.90E-01 2.00E+00 1.17E+00 1.06E+00 9.84E-01; 7.00 3.17 8.36E-01 4.35E-02 2.00E+00 1.00E+00 1.15E-01 2.00E+00 1.16E+00 1.07E+00 9.83E-01; 7.50 3.17 8.45E-01 3.80E-02 2.00E+00 1.00E+00 1.02E-01 2.00E+00 1.13E+00 1.08E+00 9.61E-01; 8.00 3.17 8.28E-01 3.80E-02 2.00E+00 1.00E+00 7.62E-02 2.00E+00 1.06E+00 1.08E+00 9.41E-01; 2.00 5.02 9.13E-01 -4.79E-03 2.00E+00 1.00E+00 5.72E+00 2.00E+00 9.90E-01 1.05E+00 1.04E+00; 2.50 5.02 9.02E-01 -3.31E-03 2.00E+00 1.00E+00 5.19E+00 2.00E+00 1.02E+00 1.05E+00 1.04E+00; 3.00 5.02 9.03E-01 -2.62E-03 2.00E+00 1.00E+00 3.71E+00 2.00E+00 1.04E+00 1.05E+00 1.05E+00; 3.50 5.02 9.09E-01 -2.44E-03 2.00E+00 1.00E+00 2.44E+00 2.00E+00 1.12E+00 1.05E+00 1.05E+00; 4.00 5.02 9.39E-01 -2.64E-02 2.00E+00 1.00E+00 1.49E+00 2.00E+00 1.21E+00 1.05E+00 1.05E+00; 4.50 5.02 9.36E-01 -2.14E-02 2.00E+00 1.00E+00 1.05E+00 2.00E+00 1.19E+00 1.04E+00 1.03E+00; 5.00 5.02 9.76E-01 -6.53E-02 2.00E+00 1.00E+00 6.74E-01 2.00E+00 1.25E+00 1.05E+00 1.03E+00; 5.50 5.02 9.95E-01 -9.77E-02 2.00E+00 1.00E+00 4.58E-01 2.00E+00 1.23E+00 1.06E+00 1.02E+00; 6.00 5.02 9.96E-01 -1.02E-01 2.00E+00 1.00E+00 3.34E-01 2.00E+00 1.21E+00 1.06E+00 1.01E+00; 6.50 5.02 8.88E-01 -1.34E-02 2.00E+00 1.00E+00 1.90E-01 2.00E+00 1.15E+00 1.07E+00 1.00E+00; 7.00 5.02 8.24E-01 5.87E-02 2.00E+00 1.00E+00 1.20E-01 2.00E+00 1.16E+00 1.07E+00 9.91E-01; 7.50 5.02 8.41E-01 3.74E-02 2.00E+00 1.00E+00 9.77E-02 2.00E+00 1.08E+00 1.08E+00 9.59E-01; 8.00 5.02 8.04E-01 6.20E-02 2.00E+00 1.00E+00 7.63E-02 2.00E+00 1.06E+00 1.08E+00 9.48E-01; 2.00 7.96 9.10E-01 -1.24E-02 2.00E+00 1.00E+00 1.07E+01 2.00E+00 9.03E-01 1.05E+00 1.03E+00; 2.50 7.96 9.03E-01 6.10E-04 2.00E+00 1.00E+00 7.60E+00 2.00E+00 1.01E+00 1.05E+00 1.05E+00; 3.00 7.96 8.93E-01 -4.72E-03 2.00E+00 1.00E+00 6.14E+00 2.00E+00 1.00E+00 1.06E+00 1.06E+00; 3.50 7.96 8.93E-01 -4.55E-03 2.00E+00 1.00E+00 3.78E+00 2.00E+00 1.00E+00 1.05E+00 1.05E+00; 4.00 7.96 9.15E-01 -2.36E-02 2.00E+00 1.00E+00 2.52E+00 2.00E+00 1.07E+00 1.06E+00 1.05E+00; 4.50 7.96 9.29E-01 -2.47E-02 2.00E+00 1.00E+00 1.51E+00 2.00E+00 1.16E+00 1.06E+00 1.05E+00; 5.00 7.96 9.71E-01 -6.76E-02 2.00E+00 1.00E+00 9.17E-01 2.00E+00 1.21E+00 1.06E+00 1.04E+00; 5.50 7.96 9.69E-01 -6.62E-02 2.00E+00 1.00E+00 6.06E-01 2.00E+00 1.20E+00 1.06E+00 1.03E+00; 6.00 7.96 9.49E-01 -6.62E-02 2.00E+00 1.00E+00 3.53E-01 2.00E+00 1.15E+00 1.06E+00 1.01E+00; 6.50 7.96 8.31E-01 4.55E-02 2.00E+00 1.00E+00 1.75E-01 2.00E+00 1.15E+00 1.07E+00 1.02E+00; 7.00 7.96 8.31E-01 4.58E-02 2.00E+00 1.00E+00 1.38E-01 2.00E+00 1.13E+00 1.07E+00 9.90E-01; 7.50 7.96 8.31E-01 4.14E-02 2.00E+00 1.00E+00 1.12E-01 2.00E+00 1.12E+00 1.08E+00 9.75E-01; 8.00 7.96 8.04E-01 6.82E-02 2.00E+00 1.00E+00 7.01E-02 2.00E+00 1.05E+00 1.08E+00 9.48E-01; 2.00 12.62 9.01E-01 -2.38E-04 2.00E+00 1.00E+00 1.39E+01 2.00E+00 9.03E-01 1.05E+00 1.05E+00; 2.50 12.62 8.78E-01 -2.16E-03 2.00E+00 1.00E+00 1.20E+01 2.00E+00 8.87E-01 1.06E+00 1.06E+00; 3.00 12.62 8.67E-01 -2.53E-03 2.00E+00 1.00E+00 9.21E+00 2.00E+00 8.98E-01 1.07E+00 1.06E+00; 3.50 12.62 8.88E-01 -4.74E-03 2.00E+00 1.00E+00 4.96E+00 2.00E+00 1.00E+00 1.07E+00 1.06E+00; 4.00 12.62 8.89E-01 -1.24E-02 2.00E+00 1.00E+00 3.28E+00 2.00E+00 1.02E+00 1.06E+00 1.06E+00; 4.50 12.62 8.90E-01 -1.27E-02 2.00E+00 1.00E+00 1.71E+00 2.00E+00 1.02E+00 1.06E+00 1.05E+00; 5.00 12.62 9.15E-01 -2.13E-02 2.00E+00 1.00E+00 9.17E-01 2.00E+00 1.14E+00 1.06E+00 1.05E+00; 5.50 12.62 9.69E-01 -6.63E-02 2.00E+00 1.00E+00 6.29E-01 2.00E+00 1.20E+00 1.06E+00 1.03E+00; 6.00 12.62 9.99E-01 -1.15E-01 2.00E+00 1.00E+00 5.22E-01 2.00E+00 1.16E+00 1.06E+00 1.02E+00; 6.50 12.62 8.21E-01 5.22E-02 2.00E+00 1.00E+00 1.75E-01 2.00E+00 1.08E+00 1.07E+00 1.00E+00; 7.00 12.62 8.42E-01 3.63E-02 2.00E+00 1.00E+00 1.49E-01 2.00E+00 1.10E+00 1.07E+00 9.84E-01; 7.50 12.62 8.18E-01 5.02E-02 2.00E+00 1.00E+00 1.12E-01 2.00E+00 1.09E+00 1.08E+00 9.69E-01; 8.00 12.62 8.02E-01 6.36E-02 2.00E+00 1.00E+00 7.30E-02 2.00E+00 1.07E+00 1.08E+00 9.47E-01; 2.00 20.00 8.67E-01 1.11E-03 2.00E+00 1.00E+00 2.31E+01 2.00E+00 8.44E-01 1.07E+00 1.05E+00; 2.50 20.00 8.79E-01 -2.62E-03 2.00E+00 1.00E+00 1.54E+01 2.00E+00 9.00E-01 1.07E+00 1.06E+00; 3.00 20.00 8.78E-01 -2.33E-03 2.00E+00 1.00E+00 1.24E+01 2.00E+00 9.00E-01 1.06E+00 1.05E+00; 3.50 20.00 8.78E-01 -9.54E-03 2.00E+00 1.00E+00 7.24E+00 2.00E+00 9.47E-01 1.07E+00 1.06E+00; 4.00 20.00 8.75E-01 -8.07E-03 2.00E+00 1.00E+00 4.40E+00 2.00E+00 9.51E-01 1.06E+00 1.06E+00; 4.50 20.00 8.82E-01 -1.08E-02 2.00E+00 1.00E+00 2.28E+00 2.00E+00 1.00E+00 1.07E+00 1.06E+00; 5.00 20.00 8.90E-01 -1.53E-02 2.00E+00 1.00E+00 1.35E+00 2.00E+00 1.01E+00 1.06E+00 1.04E+00; 5.50 20.00 8.86E-01 -1.56E-02 2.00E+00 1.00E+00 7.89E-01 2.00E+00 1.01E+00 1.06E+00 1.03E+00; 6.00 20.00 9.69E-01 -8.21E-02 2.00E+00 1.00E+00 5.22E-01 2.00E+00 1.15E+00 1.07E+00 1.03E+00; 6.50 20.00 9.68E-01 -8.34E-02 2.00E+00 1.00E+00 3.54E-01 2.00E+00 1.17E+00 1.06E+00 1.01E+00; 7.00 20.00 8.30E-01 3.98E-02 2.00E+00 1.00E+00 1.57E-01 2.00E+00 1.11E+00 1.08E+00 1.00E+00; 7.50 20.00 8.36E-01 4.00E-02 2.00E+00 1.00E+00 1.19E-01 2.00E+00 1.10E+00 1.07E+00 9.68E-01; 8.00 20.00 8.01E-01 6.36E-02 2.00E+00 1.00E+00 7.10E-02 2.00E+00 1.05E+00 1.08E+00 9.49E-01; 2.00 31.70 8.77E-01 -2.85E-03 2.00E+00 1.00E+00 2.84E+01 2.00E+00 8.36E-01 1.07E+00 1.06E+00; 2.50 31.70 8.72E-01 -2.76E-03 2.00E+00 1.00E+00 2.74E+01 2.00E+00 8.37E-01 1.07E+00 1.06E+00; 3.00 31.70 8.76E-01 -2.14E-03 2.00E+00 1.00E+00 1.88E+01 2.00E+00 9.14E-01 1.07E+00 1.06E+00; 3.50 31.70 8.55E-01 -9.99E-03 2.00E+00 1.00E+00 1.05E+01 2.00E+00 8.84E-01 1.09E+00 1.07E+00; 4.00 31.70 8.76E-01 -1.01E-02 2.00E+00 1.00E+00 6.42E+00 2.00E+00 9.42E-01 1.07E+00 1.06E+00; 4.50 31.70 8.68E-01 -7.45E-03 2.00E+00 1.00E+00 3.65E+00 2.00E+00 9.52E-01 1.07E+00 1.06E+00; 5.00 31.70 8.84E-01 -2.10E-02 2.00E+00 1.00E+00 1.97E+00 2.00E+00 9.67E-01 1.07E+00 1.05E+00; 5.50 31.70 8.91E-01 -2.11E-02 2.00E+00 1.00E+00 1.06E+00 2.00E+00 9.86E-01 1.06E+00 1.03E+00; 6.00 31.70 9.70E-01 -8.86E-02 2.00E+00 1.00E+00 6.97E-01 2.00E+00 1.13E+00 1.07E+00 1.03E+00; 6.50 31.70 9.66E-01 -8.88E-02 2.00E+00 1.00E+00 4.23E-01 2.00E+00 1.12E+00 1.07E+00 1.00E+00; 7.00 31.70 7.93E-01 7.72E-02 2.00E+00 1.00E+00 1.57E-01 2.00E+00 1.07E+00 1.07E+00 1.00E+00; 7.50 31.70 8.07E-01 6.50E-02 2.00E+00 1.00E+00 1.26E-01 2.00E+00 1.08E+00 1.08E+00 9.72E-01; 8.00 31.70 7.98E-01 6.55E-02 2.00E+00 1.00E+00 8.50E-02 2.00E+00 1.07E+00 1.08E+00 9.51E-01; 2.00 50.24 8.70E-01 -2.75E-03 2.00E+00 1.00E+00 3.34E+01 2.00E+00 8.31E-01 1.08E+00 1.06E+00; 2.50 50.24 8.63E-01 -1.52E-02 2.00E+00 1.00E+00 2.83E+01 2.00E+00 8.21E-01 1.08E+00 1.07E+00; 3.00 50.24 8.76E-01 -1.96E-03 2.00E+00 1.00E+00 1.80E+01 2.00E+00 9.11E-01 1.07E+00 1.07E+00; 3.50 50.24 8.54E-01 2.04E-03 2.00E+00 1.00E+00 1.37E+01 2.00E+00 8.84E-01 1.08E+00 1.07E+00; 4.00 50.24 8.79E-01 -1.08E-02 2.00E+00 1.00E+00 6.94E+00 2.00E+00 9.35E-01 1.07E+00 1.07E+00; 4.50 50.24 8.75E-01 -1.25E-02 2.00E+00 1.00E+00 4.72E+00 2.00E+00 9.33E-01 1.07E+00 1.06E+00; 5.00 50.24 8.79E-01 -1.76E-02 2.00E+00 1.00E+00 2.58E+00 2.00E+00 9.66E-01 1.07E+00 1.06E+00; 5.50 50.24 8.76E-01 -7.74E-03 2.00E+00 1.00E+00 1.30E+00 2.00E+00 9.89E-01 1.07E+00 1.05E+00; 6.00 50.24 8.97E-01 -3.42E-02 2.00E+00 1.00E+00 7.04E-01 2.00E+00 9.98E-01 1.07E+00 1.02E+00; 6.50 50.24 9.07E-01 -4.26E-02 2.00E+00 1.00E+00 4.49E-01 2.00E+00 1.04E+00 1.07E+00 1.01E+00; 7.00 50.24 9.07E-01 -4.26E-02 2.00E+00 1.00E+00 3.05E-01 2.00E+00 1.05E+00 1.07E+00 1.01E+00; 7.50 50.24 8.06E-01 6.49E-02 2.00E+00 1.00E+00 1.32E-01 2.00E+00 1.08E+00 1.07E+00 9.82E-01; 8.00 50.24 8.00E-01 6.46E-02 2.00E+00 1.00E+00 9.83E-02 2.00E+00 1.08E+00 1.08E+00 9.62E-01; 2.00 79.62 8.77E-01 -1.54E-02 2.00E+00 1.00E+00 2.13E+01 2.00E+00 8.24E-01 1.08E+00 1.06E+00; 2.50 79.62 8.74E-01 -1.34E-02 2.00E+00 1.00E+00 1.89E+01 2.00E+00 8.41E-01 1.07E+00 1.07E+00; 3.00 79.62 8.58E-01 -8.54E-03 2.00E+00 1.00E+00 1.51E+01 2.00E+00 8.63E-01 1.08E+00 1.08E+00; 3.50 79.62 8.70E-01 -1.69E-02 2.00E+00 1.00E+00 1.17E+01 2.00E+00 8.59E-01 1.07E+00 1.07E+00; 4.00 79.62 8.69E-01 -1.02E-02 2.00E+00 1.00E+00 6.79E+00 2.00E+00 9.17E-01 1.07E+00 1.06E+00; 4.50 79.62 8.64E-01 -9.08E-03 2.00E+00 1.00E+00 4.01E+00 2.00E+00 9.22E-01 1.08E+00 1.07E+00; 5.00 79.62 8.80E-01 -2.34E-02 2.00E+00 1.00E+00 2.25E+00 2.00E+00 9.66E-01 1.07E+00 1.06E+00; 5.50 79.62 8.77E-01 -1.97E-02 2.00E+00 1.00E+00 1.26E+00 2.00E+00 9.69E-01 1.07E+00 1.05E+00; 6.00 79.62 8.77E-01 -1.15E-02 2.00E+00 1.00E+00 7.06E-01 2.00E+00 1.05E+00 1.07E+00 1.04E+00; 6.50 79.62 8.93E-01 -2.12E-02 2.00E+00 1.00E+00 4.34E-01 2.00E+00 1.08E+00 1.07E+00 1.01E+00; 7.00 79.62 8.91E-01 -2.06E-02 2.00E+00 1.00E+00 3.06E-01 2.00E+00 1.11E+00 1.07E+00 1.00E+00; 7.50 79.62 8.87E-01 -1.92E-02 2.00E+00 1.00E+00 1.99E-01 2.00E+00 1.12E+00 1.07E+00 9.88E-01; 8.00 79.62 7.90E-01 6.96E-02 2.00E+00 1.00E+00 1.06E-01 2.00E+00 1.09E+00 1.08E+00 9.64E-01; 2.00 126.20 8.67E-01 -1.54E-02 2.00E+00 1.00E+00 1.06E+01 2.00E+00 8.24E-01 1.08E+00 1.07E+00; 2.50 126.20 8.70E-01 -1.99E-02 2.00E+00 1.00E+00 1.11E+01 2.00E+00 8.25E-01 1.08E+00 1.07E+00; 3.00 126.20 8.68E-01 -2.25E-02 2.00E+00 1.00E+00 9.66E+00 2.00E+00 8.31E-01 1.08E+00 1.07E+00; 3.50 126.20 8.69E-01 -2.90E-02 2.00E+00 1.00E+00 9.08E+00 2.00E+00 8.38E-01 1.08E+00 1.08E+00; 4.00 126.20 8.66E-01 -1.41E-02 2.00E+00 1.00E+00 5.26E+00 2.00E+00 9.05E-01 1.08E+00 1.08E+00; 4.50 126.20 8.67E-01 -1.24E-02 2.00E+00 1.00E+00 3.47E+00 2.00E+00 9.22E-01 1.07E+00 1.06E+00; 5.00 126.20 8.83E-01 -3.09E-02 2.00E+00 1.00E+00 2.31E+00 2.00E+00 9.33E-01 1.07E+00 1.05E+00; 5.50 126.20 8.87E-01 -3.49E-02 2.00E+00 1.00E+00 1.33E+00 2.00E+00 9.58E-01 1.07E+00 1.04E+00; 6.00 126.20 8.85E-01 -4.67E-03 2.00E+00 1.00E+00 6.42E-01 2.00E+00 1.11E+00 1.06E+00 1.04E+00; 6.50 126.20 8.83E-01 -7.45E-03 2.00E+00 1.00E+00 4.14E-01 2.00E+00 1.11E+00 1.06E+00 1.02E+00; 7.00 126.20 9.14E-01 -3.72E-02 2.00E+00 1.00E+00 3.05E-01 2.00E+00 1.13E+00 1.06E+00 9.97E-01; 7.50 126.20 8.54E-01 1.79E-02 2.00E+00 1.00E+00 1.91E-01 2.00E+00 1.12E+00 1.07E+00 9.80E-01; 8.00 126.20 8.06E-01 6.96E-02 2.00E+00 1.00E+00 1.13E-01 2.00E+00 1.17E+00 1.07E+00 9.62E-01; 2.00 200.01 8.56E-01 -1.56E-02 2.00E+00 1.00E+00 1.03E+01 2.00E+00 8.08E-01 1.09E+00 1.07E+00; 2.50 200.01 8.54E-01 -2.40E-02 2.00E+00 1.00E+00 1.13E+01 2.00E+00 7.70E-01 1.09E+00 1.09E+00; 3.00 200.01 8.57E-01 -2.40E-02 2.00E+00 1.00E+00 1.16E+01 2.00E+00 7.70E-01 1.09E+00 1.07E+00; 3.50 200.01 8.67E-01 -2.90E-02 2.00E+00 1.00E+00 9.08E+00 2.00E+00 8.30E-01 1.09E+00 1.08E+00; 4.00 200.01 8.69E-01 -2.93E-02 2.00E+00 1.00E+00 7.53E+00 2.00E+00 8.32E-01 1.08E+00 1.07E+00; 4.50 200.01 8.73E-01 -3.34E-02 2.00E+00 1.00E+00 5.56E+00 2.00E+00 8.32E-01 1.08E+00 1.07E+00; 5.00 200.01 8.81E-01 -3.48E-02 2.00E+00 1.00E+00 3.46E+00 2.00E+00 8.72E-01 1.08E+00 1.06E+00; 5.50 200.01 9.15E-01 -6.55E-02 2.00E+00 1.00E+00 2.27E+00 2.00E+00 9.25E-01 1.07E+00 1.05E+00; 6.00 200.01 9.16E-01 -5.45E-02 2.00E+00 1.00E+00 1.37E+00 2.00E+00 9.66E-01 1.07E+00 1.05E+00; 6.50 200.01 8.12E-01 6.67E-02 2.00E+00 1.00E+00 5.05E-01 2.00E+00 1.06E+00 1.06E+00 1.03E+00; 7.00 200.01 8.10E-01 7.00E-02 2.00E+00 1.00E+00 3.05E-01 2.00E+00 1.11E+00 1.06E+00 1.02E+00; 7.50 200.01 8.40E-01 3.43E-02 2.00E+00 1.00E+00 2.54E-01 2.00E+00 1.17E+00 1.07E+00 1.01E+00; 8.00 200.01 8.39E-01 3.23E-02 2.00E+00 1.00E+00 1.87E-01 2.00E+00 1.17E+00 1.07E+00 9.74E-01; 2.00 317.00 9.43E-01 -1.02E-01 2.00E+00 1.00E+00 1.21E+01 2.00E+00 7.87E-01 1.08E+00 1.08E+00; 2.50 317.00 8.98E-01 -6.21E-02 2.00E+00 1.00E+00 1.02E+01 2.00E+00 7.73E-01 1.09E+00 1.08E+00; 3.00 317.00 8.87E-01 -5.91E-02 2.00E+00 1.00E+00 1.05E+01 2.00E+00 7.62E-01 1.09E+00 1.09E+00; 3.50 317.00 8.88E-01 -5.91E-02 2.00E+00 1.00E+00 9.81E+00 2.00E+00 7.62E-01 1.09E+00 1.08E+00; 4.00 317.00 8.79E-01 -2.97E-02 2.00E+00 1.00E+00 7.52E+00 2.00E+00 8.23E-01 1.08E+00 1.08E+00; 4.50 317.00 8.67E-01 -3.08E-02 2.00E+00 1.00E+00 5.96E+00 2.00E+00 8.07E-01 1.08E+00 1.07E+00; 5.00 317.00 8.69E-01 -3.36E-02 2.00E+00 1.00E+00 5.00E+00 2.00E+00 8.24E-01 1.08E+00 1.08E+00; 5.50 317.00 9.22E-01 -6.81E-02 2.00E+00 1.00E+00 3.09E+00 2.00E+00 9.07E-01 1.08E+00 1.07E+00; 6.00 317.00 9.16E-01 -5.09E-02 2.00E+00 1.00E+00 2.01E+00 2.00E+00 9.57E-01 1.07E+00 1.05E+00; 6.50 317.00 9.05E-01 -5.09E-02 2.00E+00 1.00E+00 1.30E+00 2.00E+00 9.57E-01 1.07E+00 1.05E+00; 7.00 317.00 7.84E-01 9.62E-02 2.00E+00 1.00E+00 4.18E-01 2.00E+00 1.10E+00 1.06E+00 1.04E+00; 7.50 317.00 8.33E-01 3.42E-02 2.00E+00 1.00E+00 2.99E-01 2.00E+00 1.12E+00 1.07E+00 1.02E+00; 8.00 317.00 8.48E-01 3.23E-02 2.00E+00 1.00E+00 1.87E-01 2.00E+00 1.17E+00 1.07E+00 9.92E-01; 2.00 502.41 9.28E-01 -9.26E-02 2.00E+00 1.00E+00 6.71E+00 2.00E+00 7.45E-01 1.08E+00 1.08E+00; 2.50 502.41 9.23E-01 -9.30E-02 2.00E+00 1.00E+00 6.52E+00 2.00E+00 7.44E-01 1.09E+00 1.08E+00; 3.00 502.41 9.27E-01 -9.51E-02 2.00E+00 1.00E+00 6.52E+00 2.00E+00 7.57E-01 1.09E+00 1.07E+00; 3.50 502.41 9.27E-01 -9.25E-02 2.00E+00 1.00E+00 6.01E+00 2.00E+00 7.57E-01 1.09E+00 1.08E+00; 4.00 502.41 9.18E-01 -9.25E-02 2.00E+00 1.00E+00 6.01E+00 2.00E+00 7.57E-01 1.09E+00 1.08E+00; 4.50 502.41 8.63E-01 -1.46E-02 2.00E+00 1.00E+00 4.55E+00 2.00E+00 8.12E-01 1.07E+00 1.07E+00; 5.00 502.41 8.64E-01 -3.31E-02 2.00E+00 1.00E+00 3.53E+00 2.00E+00 8.25E-01 1.09E+00 1.08E+00; 5.50 502.41 9.22E-01 -6.59E-02 2.00E+00 1.00E+00 3.32E+00 2.00E+00 9.05E-01 1.07E+00 1.07E+00; 6.00 502.41 9.16E-01 -5.09E-02 2.00E+00 1.00E+00 2.01E+00 2.00E+00 9.57E-01 1.07E+00 1.06E+00; 6.50 502.41 8.75E-01 9.81E-03 2.00E+00 1.00E+00 1.25E+00 2.00E+00 9.97E-01 1.06E+00 1.05E+00; 7.00 502.41 7.79E-01 9.10E-02 2.00E+00 1.00E+00 5.57E-01 2.00E+00 1.07E+00 1.07E+00 1.05E+00; 7.50 502.41 7.96E-01 9.16E-02 2.00E+00 1.00E+00 2.64E-01 2.00E+00 1.16E+00 1.06E+00 1.04E+00; 8.00 502.41 8.53E-01 3.23E-02 2.00E+00 1.00E+00 1.92E-01 2.00E+00 1.17E+00 1.06E+00 1.00E+00; 2.00 796.26 9.17E-01 -8.91E-02 2.00E+00 1.00E+00 3.60E+00 2.00E+00 7.48E-01 1.09E+00 1.07E+00; 2.50 796.26 9.17E-01 -7.64E-02 2.00E+00 1.00E+00 3.60E+00 2.00E+00 7.79E-01 1.08E+00 1.08E+00; 3.00 796.26 9.14E-01 -7.40E-02 2.00E+00 1.00E+00 3.33E+00 2.00E+00 7.79E-01 1.08E+00 1.08E+00; 3.50 796.26 9.16E-01 -7.70E-02 2.00E+00 1.00E+00 3.36E+00 2.00E+00 7.86E-01 1.08E+00 1.08E+00; 4.00 796.26 9.18E-01 -7.88E-02 2.00E+00 1.00E+00 3.51E+00 2.00E+00 7.89E-01 1.08E+00 1.08E+00; 4.50 796.26 8.72E-01 -3.31E-02 2.00E+00 1.00E+00 2.60E+00 2.00E+00 8.12E-01 1.08E+00 1.08E+00; 5.00 796.26 8.72E-01 -3.09E-02 2.00E+00 1.00E+00 2.55E+00 2.00E+00 8.06E-01 1.08E+00 1.08E+00; 5.50 796.26 9.24E-01 -8.56E-02 2.00E+00 1.00E+00 2.12E+00 2.00E+00 8.66E-01 1.09E+00 1.08E+00; 6.00 796.26 9.02E-01 -5.29E-02 2.00E+00 1.00E+00 1.89E+00 2.00E+00 8.98E-01 1.08E+00 1.07E+00; 6.50 796.26 8.50E-01 9.81E-03 2.00E+00 1.00E+00 1.17E+00 2.00E+00 9.79E-01 1.07E+00 1.06E+00; 7.00 796.26 8.49E-01 8.98E-03 2.00E+00 1.00E+00 6.98E-01 2.00E+00 9.83E-01 1.07E+00 1.05E+00; 7.50 796.26 8.61E-01 2.80E-02 2.00E+00 1.00E+00 3.00E-01 2.00E+00 1.14E+00 1.06E+00 1.04E+00; 8.00 796.26 8.65E-01 2.74E-02 2.00E+00 1.00E+00 8.62E-02 2.00E+00 1.23E+00 1.06E+00 1.02E+00; 2.00 1262.00 7.65E-01 8.02E-02 2.00E+00 1.00E+00 8.90E-01 2.00E+00 8.18E-01 1.08E+00 1.07E+00; 2.50 1262.00 7.63E-01 8.02E-02 2.00E+00 1.00E+00 7.95E-01 2.00E+00 8.14E-01 1.08E+00 1.07E+00; 3.00 1262.00 7.64E-01 8.05E-02 2.00E+00 1.00E+00 7.48E-01 2.00E+00 8.18E-01 1.08E+00 1.07E+00; 3.50 1262.00 7.50E-01 8.04E-02 2.00E+00 1.00E+00 7.40E-01 2.00E+00 8.03E-01 1.09E+00 1.08E+00; 4.00 1262.00 9.87E-01 -1.40E-01 2.00E+00 1.00E+00 1.68E+00 2.00E+00 8.39E-01 1.08E+00 1.07E+00; 4.50 1262.00 9.82E-01 -1.45E-01 2.00E+00 1.00E+00 1.35E+00 2.00E+00 8.20E-01 1.09E+00 1.07E+00; 5.00 1262.00 9.93E-01 -1.40E-01 2.00E+00 1.00E+00 1.68E+00 2.00E+00 8.50E-01 1.07E+00 1.08E+00; 5.50 1262.00 9.72E-01 -1.21E-01 2.00E+00 1.00E+00 1.20E+00 2.00E+00 8.71E-01 1.08E+00 1.07E+00; 6.00 1262.00 9.00E-01 -5.20E-02 2.00E+00 1.00E+00 1.10E+00 2.00E+00 9.00E-01 1.08E+00 1.07E+00; 6.50 1262.00 8.51E-01 -8.69E-03 2.00E+00 1.00E+00 2.15E-01 2.00E+00 9.31E-01 1.08E+00 1.07E+00; 7.00 1262.00 8.74E-01 -4.90E-03 2.00E+00 1.00E+00 2.06E-03 2.00E+00 1.03E+00 1.07E+00 1.06E+00; 7.50 1262.00 9.11E-01 -2.45E-02 2.00E+00 1.00E+00 5.54E-06 2.00E+00 1.17E+00 1.06E+00 1.05E+00; 8.00 1262.00 9.16E-01 -2.36E-02 2.00E+00 1.00E+00 1.51E-09 2.00E+00 1.21E+00 1.05E+00 1.04E+00 ] const coefs_ena_bt15 = [ 2.00 2.00 9.29E-01 -1.27E-02 2.00E+00 1.00E+00 1.41E+00 1.90E+00 1.15E+00 1.05E+00 1.05E+00; 2.50 2.00 9.20E-01 -2.34E-02 2.00E+00 1.00E+00 1.19E+00 1.89E+00 1.11E+00 1.05E+00 1.05E+00; 3.00 2.00 9.38E-01 -2.74E-02 2.00E+00 1.00E+00 8.36E-01 1.91E+00 1.19E+00 1.05E+00 1.05E+00; 3.50 2.00 9.80E-01 -5.66E-02 2.00E+00 1.00E+00 5.75E-01 1.89E+00 1.35E+00 1.05E+00 1.03E+00; 4.00 2.00 1.03E+00 -1.01E-01 2.00E+00 1.00E+00 5.04E-01 1.85E+00 1.34E+00 1.06E+00 1.02E+00; 4.50 2.00 1.04E+00 -1.14E-01 2.00E+00 1.00E+00 4.30E-01 1.79E+00 1.37E+00 1.05E+00 1.01E+00; 5.00 2.00 1.06E+00 -1.41E-01 2.00E+00 1.00E+00 3.77E-01 1.76E+00 1.43E+00 1.05E+00 9.81E-01; 5.50 2.00 1.06E+00 -1.41E-01 2.00E+00 1.00E+00 3.48E-01 1.72E+00 1.43E+00 1.06E+00 9.55E-01; 6.00 2.00 9.48E-01 -5.23E-02 2.00E+00 1.00E+00 2.23E-01 1.77E+00 1.29E+00 1.07E+00 9.54E-01; 6.50 2.00 9.48E-01 -5.22E-02 2.00E+00 1.00E+00 2.06E-01 1.77E+00 1.28E+00 1.07E+00 9.36E-01; 7.00 2.00 8.56E-01 2.30E-02 2.00E+00 1.00E+00 1.34E-01 1.88E+00 1.22E+00 1.08E+00 9.23E-01; 7.50 2.00 8.52E-01 2.46E-02 2.00E+00 1.00E+00 1.24E-01 1.88E+00 1.22E+00 1.08E+00 9.08E-01; 8.00 2.00 8.45E-01 2.16E-02 2.00E+00 1.00E+00 1.13E-01 1.82E+00 1.13E+00 1.08E+00 9.05E-01; 2.00 3.17 9.11E-01 -3.46E-02 2.00E+00 1.00E+00 2.70E+00 2.06E+00 9.58E-01 1.05E+00 1.06E+00; 2.50 3.17 9.10E-01 -3.94E-02 2.00E+00 1.00E+00 1.92E+00 2.03E+00 9.58E-01 1.07E+00 1.06E+00; 3.00 3.17 9.50E-01 -6.92E-02 2.00E+00 1.00E+00 1.21E+00 2.10E+00 1.07E+00 1.05E+00 1.06E+00; 3.50 3.17 9.73E-01 -4.57E-02 2.00E+00 1.00E+00 7.38E-01 2.05E+00 1.28E+00 1.06E+00 1.04E+00; 4.00 3.17 9.96E-01 -1.01E-01 2.00E+00 1.00E+00 5.96E-01 1.99E+00 1.19E+00 1.06E+00 1.03E+00; 4.50 3.17 9.99E-01 -9.17E-02 2.00E+00 1.00E+00 4.77E-01 1.90E+00 1.28E+00 1.05E+00 1.02E+00; 5.00 3.17 1.05E+00 -1.29E-01 2.00E+00 1.00E+00 4.23E-01 1.84E+00 1.41E+00 1.06E+00 9.81E-01; 5.50 3.17 9.97E-01 -8.61E-02 2.00E+00 1.00E+00 3.50E-01 1.73E+00 1.35E+00 1.07E+00 9.76E-01; 6.00 3.17 9.51E-01 -6.70E-02 2.00E+00 1.00E+00 2.86E-01 1.76E+00 1.30E+00 1.06E+00 9.45E-01; 6.50 3.17 9.04E-01 -1.56E-02 2.00E+00 1.00E+00 2.05E-01 1.78E+00 1.27E+00 1.07E+00 9.32E-01; 7.00 3.17 8.44E-01 3.24E-02 2.00E+00 1.00E+00 1.34E-01 1.88E+00 1.22E+00 1.08E+00 9.28E-01; 7.50 3.17 8.44E-01 3.26E-02 2.00E+00 1.00E+00 1.16E-01 1.89E+00 1.22E+00 1.07E+00 8.98E-01; 8.00 3.17 8.28E-01 3.91E-02 2.00E+00 1.00E+00 9.04E-02 1.87E+00 1.12E+00 1.09E+00 8.98E-01; 2.00 5.02 9.03E-01 -2.31E-02 2.00E+00 1.00E+00 4.70E+00 2.03E+00 9.16E-01 1.06E+00 1.06E+00; 2.50 5.02 9.09E-01 -1.77E-02 2.00E+00 1.00E+00 2.89E+00 2.06E+00 1.01E+00 1.07E+00 1.06E+00; 3.00 5.02 9.08E-01 -3.10E-02 2.00E+00 1.00E+00 2.07E+00 2.04E+00 1.00E+00 1.06E+00 1.05E+00; 3.50 5.02 9.40E-01 -4.10E-02 2.00E+00 1.00E+00 1.21E+00 2.08E+00 1.11E+00 1.07E+00 1.06E+00; 4.00 5.02 9.56E-01 -6.43E-02 2.00E+00 1.00E+00 7.86E-01 2.04E+00 1.15E+00 1.06E+00 1.04E+00; 4.50 5.02 9.53E-01 -6.41E-02 2.00E+00 1.00E+00 6.75E-01 1.92E+00 1.15E+00 1.07E+00 1.04E+00; 5.00 5.02 9.77E-01 -7.32E-02 2.00E+00 1.00E+00 5.21E-01 1.81E+00 1.28E+00 1.06E+00 1.01E+00; 5.50 5.02 1.02E+00 -1.24E-01 2.00E+00 1.00E+00 4.02E-01 1.81E+00 1.31E+00 1.06E+00 9.69E-01; 6.00 5.02 9.36E-01 -4.62E-02 2.00E+00 1.00E+00 2.86E-01 1.78E+00 1.28E+00 1.07E+00 9.61E-01; 6.50 5.02 8.92E-01 -1.15E-02 2.00E+00 1.00E+00 2.10E-01 1.80E+00 1.18E+00 1.07E+00 9.36E-01; 7.00 5.02 8.21E-01 5.64E-02 2.00E+00 1.00E+00 1.34E-01 1.89E+00 1.19E+00 1.07E+00 9.40E-01; 7.50 5.02 8.21E-01 4.97E-02 2.00E+00 1.00E+00 1.11E-01 1.92E+00 1.17E+00 1.08E+00 9.23E-01; 8.00 5.02 8.09E-01 5.00E-02 2.00E+00 1.00E+00 9.04E-02 1.90E+00 1.11E+00 1.08E+00 8.94E-01; 2.00 7.96 8.92E-01 -7.58E-03 2.00E+00 1.00E+00 8.62E+00 2.04E+00 9.17E-01 1.07E+00 1.07E+00; 2.50 7.96 8.96E-01 -1.84E-02 2.00E+00 1.00E+00 5.22E+00 2.06E+00 9.44E-01 1.07E+00 1.05E+00; 3.00 7.96 8.97E-01 -3.22E-02 2.00E+00 1.00E+00 3.75E+00 2.07E+00 9.16E-01 1.08E+00 1.06E+00; 3.50 7.96 8.92E-01 -3.79E-02 2.00E+00 1.00E+00 2.45E+00 2.05E+00 9.15E-01 1.08E+00 1.06E+00; 4.00 7.96 9.00E-01 -2.92E-02 2.00E+00 1.00E+00 1.44E+00 1.95E+00 9.95E-01 1.06E+00 1.04E+00; 4.50 7.96 9.52E-01 -6.98E-02 2.00E+00 1.00E+00 7.96E-01 2.06E+00 1.11E+00 1.06E+00 1.04E+00; 5.00 7.96 9.51E-01 -7.59E-02 2.00E+00 1.00E+00 5.52E-01 1.97E+00 1.11E+00 1.07E+00 1.02E+00; 5.50 7.96 9.58E-01 -7.26E-02 2.00E+00 1.00E+00 4.54E-01 1.88E+00 1.20E+00 1.07E+00 9.80E-01; 6.00 7.96 9.61E-01 -6.65E-02 2.00E+00 1.00E+00 3.30E-01 1.84E+00 1.18E+00 1.07E+00 9.59E-01; 6.50 7.96 8.89E-01 -1.09E-02 2.00E+00 1.00E+00 2.11E-01 1.85E+00 1.17E+00 1.07E+00 9.38E-01; 7.00 7.96 8.21E-01 5.64E-02 2.00E+00 1.00E+00 1.34E-01 1.89E+00 1.13E+00 1.08E+00 9.44E-01; 7.50 7.96 8.21E-01 5.26E-02 2.00E+00 1.00E+00 1.10E-01 1.95E+00 1.16E+00 1.07E+00 9.13E-01; 8.00 7.96 8.09E-01 5.02E-02 2.00E+00 1.00E+00 9.48E-02 1.89E+00 1.06E+00 1.08E+00 9.04E-01; 2.00 12.62 8.80E-01 -1.09E-02 2.00E+00 1.00E+00 1.44E+01 1.97E+00 8.61E-01 1.08E+00 1.07E+00; 2.50 12.62 8.77E-01 -1.29E-02 2.00E+00 1.00E+00 1.09E+01 1.98E+00 8.50E-01 1.08E+00 1.07E+00; 3.00 12.62 8.94E-01 -2.13E-02 2.00E+00 1.00E+00 6.61E+00 2.11E+00 9.07E-01 1.07E+00 1.07E+00; 3.50 12.62 8.92E-01 -3.71E-02 2.00E+00 1.00E+00 4.01E+00 2.16E+00 9.08E-01 1.08E+00 1.07E+00; 4.00 12.62 9.01E-01 -3.09E-02 2.00E+00 1.00E+00 2.09E+00 2.06E+00 9.64E-01 1.08E+00 1.06E+00; 4.50 12.62 9.45E-01 -7.00E-02 2.00E+00 1.00E+00 1.35E+00 2.15E+00 1.03E+00 1.07E+00 1.04E+00; 5.00 12.62 9.77E-01 -1.02E-01 2.00E+00 1.00E+00 9.01E-01 2.07E+00 1.06E+00 1.07E+00 1.01E+00; 5.50 12.62 1.01E+00 -1.29E-01 2.00E+00 1.00E+00 5.91E-01 2.00E+00 1.11E+00 1.07E+00 9.96E-01; 6.00 12.62 9.42E-01 -6.54E-02 2.00E+00 1.00E+00 3.90E-01 1.88E+00 1.14E+00 1.07E+00 9.74E-01; 6.50 12.62 9.40E-01 -7.12E-02 2.00E+00 1.00E+00 3.00E-01 1.87E+00 1.12E+00 1.07E+00 9.46E-01; 7.00 12.62 7.88E-01 8.40E-02 2.00E+00 1.00E+00 1.30E-01 1.94E+00 1.13E+00 1.08E+00 9.46E-01; 7.50 12.62 7.88E-01 8.09E-02 2.00E+00 1.00E+00 8.08E-02 2.11E+00 1.15E+00 1.07E+00 9.23E-01; 8.00 12.62 7.92E-01 7.05E-02 2.00E+00 1.00E+00 4.83E-02 2.28E+00 1.07E+00 1.08E+00 9.09E-01; 2.00 20.00 8.54E-01 -3.91E-03 2.00E+00 1.00E+00 6.77E+01 1.83E+00 7.47E-01 1.09E+00 1.08E+00; 2.50 20.00 8.48E-01 -3.92E-03 2.00E+00 1.00E+00 4.46E+01 1.85E+00 7.70E-01 1.09E+00 1.08E+00; 3.00 20.00 8.43E-01 -1.93E-03 2.00E+00 1.00E+00 2.99E+01 1.88E+00 7.54E-01 1.09E+00 1.07E+00; 3.50 20.00 8.38E-01 -5.17E-03 2.00E+00 1.00E+00 1.71E+01 1.87E+00 7.58E-01 1.08E+00 1.08E+00; 4.00 20.00 8.28E-01 2.97E-03 2.00E+00 1.00E+00 8.98E+00 1.85E+00 7.70E-01 1.08E+00 1.06E+00; 4.50 20.00 9.01E-01 -6.28E-02 2.00E+00 1.00E+00 5.92E+00 2.30E+00 8.47E-01 1.08E+00 1.06E+00; 5.00 20.00 8.99E-01 -5.38E-02 2.00E+00 1.00E+00 2.99E+00 2.14E+00 8.59E-01 1.08E+00 1.04E+00; 5.50 20.00 8.99E-01 -4.81E-02 2.00E+00 1.00E+00 1.45E+00 2.03E+00 9.10E-01 1.08E+00 1.02E+00; 6.00 20.00 8.89E-01 -4.06E-02 2.00E+00 1.00E+00 7.91E-01 1.94E+00 9.21E-01 1.07E+00 1.01E+00; 6.50 20.00 8.99E-01 -3.99E-02 2.00E+00 1.00E+00 5.11E-01 1.92E+00 1.02E+00 1.08E+00 9.93E-01; 7.00 20.00 9.00E-01 -4.37E-02 2.00E+00 1.00E+00 3.20E-01 1.92E+00 1.05E+00 1.07E+00 9.73E-01; 7.50 20.00 9.00E-01 -4.30E-02 2.00E+00 1.00E+00 2.34E-01 1.91E+00 1.08E+00 1.08E+00 9.42E-01; 8.00 20.00 7.78E-01 7.59E-02 2.00E+00 1.00E+00 4.83E-02 2.56E+00 1.06E+00 1.08E+00 9.28E-01; 2.00 31.70 8.45E-01 2.02E-03 2.00E+00 1.00E+00 2.00E+02 1.76E+00 7.32E-01 1.09E+00 1.09E+00; 2.50 31.70 8.45E-01 -5.58E-03 2.00E+00 1.00E+00 1.08E+02 1.70E+00 7.30E-01 1.10E+00 1.09E+00; 3.00 31.70 8.41E-01 -1.08E-02 2.00E+00 1.00E+00 8.64E+01 1.77E+00 6.97E-01 1.09E+00 1.09E+00; 3.50 31.70 8.33E-01 -5.48E-03 2.00E+00 1.00E+00 4.94E+01 1.81E+00 7.33E-01 1.09E+00 1.08E+00; 4.00 31.70 8.34E-01 -5.48E-03 2.00E+00 1.00E+00 2.98E+01 1.80E+00 7.21E-01 1.09E+00 1.08E+00; 4.50 31.70 8.34E-01 -5.48E-03 2.00E+00 1.00E+00 1.37E+01 1.86E+00 7.39E-01 1.09E+00 1.07E+00; 5.00 31.70 9.04E-01 -6.29E-02 2.00E+00 1.00E+00 8.88E+00 2.32E+00 8.18E-01 1.08E+00 1.06E+00; 5.50 31.70 8.92E-01 -5.15E-02 2.00E+00 1.00E+00 3.99E+00 2.16E+00 8.12E-01 1.08E+00 1.05E+00; 6.00 31.70 8.92E-01 -4.99E-02 2.00E+00 1.00E+00 2.05E+00 2.11E+00 8.49E-01 1.08E+00 1.02E+00; 6.50 31.70 8.97E-01 -5.50E-02 2.00E+00 1.00E+00 1.02E+00 2.04E+00 8.86E-01 1.07E+00 1.00E+00; 7.00 31.70 9.12E-01 -5.74E-02 2.00E+00 1.00E+00 5.88E-01 2.00E+00 9.85E-01 1.08E+00 9.96E-01; 7.50 31.70 8.98E-01 -4.83E-02 2.00E+00 1.00E+00 4.22E-01 1.88E+00 9.88E-01 1.08E+00 9.61E-01; 8.00 31.70 7.14E-01 1.34E-01 2.00E+00 1.00E+00 4.68E-02 2.85E+00 9.96E-01 1.08E+00 9.41E-01; 2.00 50.24 8.23E-01 9.71E-03 2.00E+00 1.00E+00 1.99E+02 1.45E+00 6.53E-01 1.10E+00 1.09E+00; 2.50 50.24 8.17E-01 4.57E-03 2.00E+00 1.00E+00 1.92E+02 1.52E+00 6.37E-01 1.10E+00 1.09E+00; 3.00 50.24 8.16E-01 4.75E-03 2.00E+00 1.00E+00 1.21E+02 1.53E+00 6.53E-01 1.09E+00 1.09E+00; 3.50 50.24 8.31E-01 -1.80E-03 2.00E+00 1.00E+00 6.94E+01 1.64E+00 7.11E-01 1.09E+00 1.08E+00; 4.00 50.24 8.28E-01 -1.80E-03 2.00E+00 1.00E+00 4.47E+01 1.70E+00 7.11E-01 1.09E+00 1.08E+00; 4.50 50.24 8.40E-01 -8.55E-03 2.00E+00 1.00E+00 2.47E+01 1.86E+00 7.43E-01 1.08E+00 1.08E+00; 5.00 50.24 8.41E-01 -1.05E-02 2.00E+00 1.00E+00 1.42E+01 1.87E+00 7.48E-01 1.09E+00 1.07E+00; 5.50 50.24 8.81E-01 -4.36E-02 2.00E+00 1.00E+00 7.52E+00 2.11E+00 8.01E-01 1.09E+00 1.06E+00; 6.00 50.24 9.08E-01 -6.64E-02 2.00E+00 1.00E+00 3.80E+00 2.20E+00 8.44E-01 1.08E+00 1.06E+00; 6.50 50.24 9.03E-01 -6.34E-02 2.00E+00 1.00E+00 1.81E+00 2.17E+00 8.72E-01 1.09E+00 1.04E+00; 7.00 50.24 8.99E-01 -6.06E-02 2.00E+00 1.00E+00 9.85E-01 2.07E+00 9.32E-01 1.08E+00 1.01E+00; 7.50 50.24 9.06E-01 -5.68E-02 2.00E+00 1.00E+00 5.25E-01 2.06E+00 9.78E-01 1.09E+00 9.83E-01; 8.00 50.24 9.02E-01 -5.65E-02 2.00E+00 1.00E+00 4.38E-01 1.85E+00 9.78E-01 1.09E+00 9.61E-01; 2.00 79.62 8.13E-01 9.64E-03 2.00E+00 1.00E+00 1.62E+02 1.47E+00 6.28E-01 1.10E+00 1.09E+00; 2.50 79.62 8.15E-01 4.60E-03 2.00E+00 1.00E+00 1.40E+02 1.52E+00 6.36E-01 1.10E+00 1.09E+00; 3.00 79.62 8.15E-01 3.78E-03 2.00E+00 1.00E+00 9.38E+01 1.57E+00 6.57E-01 1.09E+00 1.09E+00; 3.50 79.62 8.31E-01 -1.75E-03 2.00E+00 1.00E+00 5.71E+01 1.64E+00 7.08E-01 1.09E+00 1.08E+00; 4.00 79.62 8.31E-01 -1.58E-03 2.00E+00 1.00E+00 3.60E+01 1.73E+00 7.29E-01 1.09E+00 1.08E+00; 4.50 79.62 8.47E-01 -1.34E-02 2.00E+00 1.00E+00 2.20E+01 1.91E+00 7.56E-01 1.08E+00 1.08E+00; 5.00 79.62 8.40E-01 -1.03E-02 2.00E+00 1.00E+00 1.29E+01 1.85E+00 7.45E-01 1.08E+00 1.07E+00; 5.50 79.62 8.80E-01 -4.34E-02 2.00E+00 1.00E+00 6.95E+00 2.11E+00 8.01E-01 1.09E+00 1.06E+00; 6.00 79.62 9.08E-01 -6.79E-02 2.00E+00 1.00E+00 3.68E+00 2.18E+00 8.43E-01 1.08E+00 1.06E+00; 6.50 79.62 9.02E-01 -6.39E-02 2.00E+00 1.00E+00 1.76E+00 2.15E+00 8.73E-01 1.09E+00 1.04E+00; 7.00 79.62 8.99E-01 -6.06E-02 2.00E+00 1.00E+00 9.65E-01 2.07E+00 9.32E-01 1.08E+00 1.02E+00; 7.50 79.62 9.06E-01 -5.68E-02 2.00E+00 1.00E+00 5.25E-01 2.05E+00 9.78E-01 1.08E+00 9.87E-01; 8.00 79.62 9.06E-01 -6.15E-02 2.00E+00 1.00E+00 4.35E-01 1.87E+00 9.92E-01 1.09E+00 9.67E-01; 2.00 126.20 8.07E-01 1.13E-02 2.00E+00 1.00E+00 9.27E+01 1.48E+00 6.28E-01 1.10E+00 1.10E+00; 2.50 126.20 7.99E-01 1.14E-02 2.00E+00 1.00E+00 7.95E+01 1.51E+00 6.28E-01 1.10E+00 1.10E+00; 3.00 126.20 8.15E-01 1.60E-03 2.00E+00 1.00E+00 6.07E+01 1.56E+00 6.60E-01 1.10E+00 1.09E+00; 3.50 126.20 8.21E-01 4.21E-03 2.00E+00 1.00E+00 4.81E+01 1.68E+00 6.96E-01 1.09E+00 1.09E+00; 4.00 126.20 8.21E-01 4.21E-03 2.00E+00 1.00E+00 2.97E+01 1.68E+00 7.06E-01 1.09E+00 1.08E+00; 4.50 126.20 8.39E-01 -8.12E-03 2.00E+00 1.00E+00 1.85E+01 1.84E+00 7.39E-01 1.09E+00 1.08E+00; 5.00 126.20 8.36E-01 -9.62E-03 2.00E+00 1.00E+00 1.02E+01 1.85E+00 7.46E-01 1.08E+00 1.07E+00; 5.50 126.20 8.37E-01 2.48E-03 2.00E+00 1.00E+00 4.92E+00 1.91E+00 8.11E-01 1.08E+00 1.06E+00; 6.00 126.20 9.19E-01 -7.39E-02 2.00E+00 1.00E+00 3.31E+00 2.14E+00 8.67E-01 1.08E+00 1.05E+00; 6.50 126.20 9.04E-01 -6.36E-02 2.00E+00 1.00E+00 1.55E+00 2.12E+00 8.89E-01 1.08E+00 1.04E+00; 7.00 126.20 9.10E-01 -6.30E-02 2.00E+00 1.00E+00 9.99E-01 2.01E+00 9.37E-01 1.08E+00 1.01E+00; 7.50 126.20 9.10E-01 -5.98E-02 2.00E+00 1.00E+00 4.80E-01 2.11E+00 9.96E-01 1.09E+00 9.99E-01; 8.00 126.20 9.11E-01 -6.10E-02 2.00E+00 1.00E+00 3.88E-01 1.98E+00 1.03E+00 1.08E+00 9.65E-01; 2.00 200.01 8.03E-01 1.14E-02 2.00E+00 1.00E+00 5.52E+01 1.54E+00 6.35E-01 1.10E+00 1.10E+00; 2.50 200.01 8.05E-01 1.04E-02 2.00E+00 1.00E+00 5.48E+01 1.56E+00 6.42E-01 1.10E+00 1.10E+00; 3.00 200.01 7.96E-01 9.85E-03 2.00E+00 1.00E+00 4.57E+01 1.61E+00 6.42E-01 1.10E+00 1.09E+00; 3.50 200.01 8.17E-01 4.13E-03 2.00E+00 1.00E+00 3.42E+01 1.67E+00 6.94E-01 1.09E+00 1.09E+00; 4.00 200.01 8.21E-01 3.96E-03 2.00E+00 1.00E+00 2.26E+01 1.69E+00 7.14E-01 1.09E+00 1.09E+00; 4.50 200.01 8.36E-01 -5.16E-03 2.00E+00 1.00E+00 1.55E+01 1.81E+00 7.40E-01 1.08E+00 1.09E+00; 5.00 200.01 8.58E-01 -1.69E-02 2.00E+00 1.00E+00 8.78E+00 1.94E+00 7.98E-01 1.08E+00 1.08E+00; 5.50 200.01 8.57E-01 -2.11E-02 2.00E+00 1.00E+00 5.28E+00 1.92E+00 8.12E-01 1.08E+00 1.08E+00; 6.00 200.01 9.16E-01 -7.26E-02 2.00E+00 1.00E+00 3.31E+00 2.12E+00 8.67E-01 1.07E+00 1.05E+00; 6.50 200.01 9.12E-01 -6.39E-02 2.00E+00 1.00E+00 1.72E+00 2.09E+00 9.05E-01 1.07E+00 1.04E+00; 7.00 200.01 9.13E-01 -5.82E-02 2.00E+00 1.00E+00 9.01E-01 2.07E+00 9.64E-01 1.07E+00 1.01E+00; 7.50 200.01 9.09E-01 -4.69E-02 2.00E+00 1.00E+00 5.33E-01 2.03E+00 1.01E+00 1.07E+00 1.01E+00; 8.00 200.01 9.11E-01 -6.10E-02 2.00E+00 1.00E+00 3.73E-01 1.98E+00 1.06E+00 1.08E+00 9.65E-01; 2.00 317.00 7.96E-01 1.29E-02 2.00E+00 1.00E+00 3.56E+01 1.54E+00 6.16E-01 1.10E+00 1.10E+00; 2.50 317.00 8.04E-01 1.04E-02 2.00E+00 1.00E+00 3.17E+01 1.56E+00 6.42E-01 1.10E+00 1.09E+00; 3.00 317.00 7.98E-01 9.68E-03 2.00E+00 1.00E+00 2.78E+01 1.60E+00 6.45E-01 1.10E+00 1.09E+00; 3.50 317.00 8.17E-01 6.15E-03 2.00E+00 1.00E+00 2.27E+01 1.66E+00 6.91E-01 1.09E+00 1.08E+00; 4.00 317.00 8.07E-01 1.58E-02 2.00E+00 1.00E+00 1.68E+01 1.60E+00 7.06E-01 1.09E+00 1.09E+00; 4.50 317.00 8.36E-01 -2.58E-03 2.00E+00 1.00E+00 1.51E+01 1.77E+00 7.40E-01 1.08E+00 1.08E+00; 5.00 317.00 8.62E-01 -1.75E-02 2.00E+00 1.00E+00 9.30E+00 1.84E+00 7.97E-01 1.08E+00 1.08E+00; 5.50 317.00 8.50E-01 -1.08E-02 2.00E+00 1.00E+00 5.28E+00 1.90E+00 8.12E-01 1.08E+00 1.07E+00; 6.00 317.00 9.11E-01 -6.30E-02 2.00E+00 1.00E+00 3.75E+00 2.16E+00 8.89E-01 1.07E+00 1.06E+00; 6.50 317.00 9.01E-01 -4.47E-02 2.00E+00 1.00E+00 1.85E+00 2.09E+00 9.26E-01 1.07E+00 1.05E+00; 7.00 317.00 8.90E-01 -4.04E-02 2.00E+00 1.00E+00 1.17E+00 2.12E+00 9.31E-01 1.07E+00 1.03E+00; 7.50 317.00 9.09E-01 -4.71E-02 2.00E+00 1.00E+00 6.17E-01 2.27E+00 1.04E+00 1.08E+00 1.02E+00; 8.00 317.00 9.47E-01 -8.14E-02 2.00E+00 1.00E+00 5.15E-01 2.08E+00 1.13E+00 1.08E+00 9.94E-01; 2.00 502.41 7.98E-01 1.55E-02 2.00E+00 1.00E+00 1.93E+01 1.55E+00 6.24E-01 1.10E+00 1.09E+00; 2.50 502.41 8.09E-01 7.96E-03 2.00E+00 1.00E+00 1.93E+01 1.64E+00 6.51E-01 1.09E+00 1.09E+00; 3.00 502.41 7.97E-01 1.72E-02 2.00E+00 1.00E+00 1.70E+01 1.59E+00 6.58E-01 1.10E+00 1.09E+00; 3.50 502.41 7.99E-01 2.10E-02 2.00E+00 1.00E+00 1.63E+01 1.56E+00 6.81E-01 1.09E+00 1.09E+00; 4.00 502.41 7.99E-01 2.48E-02 2.00E+00 1.00E+00 1.17E+01 1.60E+00 7.12E-01 1.09E+00 1.09E+00; 4.50 502.41 8.36E-01 -3.24E-03 2.00E+00 1.00E+00 1.12E+01 1.77E+00 7.52E-01 1.09E+00 1.09E+00; 5.00 502.41 8.35E-01 -4.26E-03 2.00E+00 1.00E+00 8.83E+00 1.78E+00 7.54E-01 1.09E+00 1.09E+00; 5.50 502.41 8.53E-01 -1.36E-02 2.00E+00 1.00E+00 5.88E+00 1.89E+00 8.12E-01 1.08E+00 1.07E+00; 6.00 502.41 9.13E-01 -6.23E-02 2.00E+00 1.00E+00 4.09E+00 2.11E+00 8.79E-01 1.08E+00 1.07E+00; 6.50 502.41 9.03E-01 -4.36E-02 2.00E+00 1.00E+00 2.47E+00 2.11E+00 9.26E-01 1.08E+00 1.06E+00; 7.00 502.41 9.03E-01 -4.38E-02 2.00E+00 1.00E+00 1.52E+00 2.16E+00 9.33E-01 1.07E+00 1.05E+00; 7.50 502.41 1.14E+00 -2.86E-01 2.00E+00 1.00E+00 1.83E+00 2.33E+00 1.02E+00 1.08E+00 1.03E+00; 8.00 502.41 1.16E+00 -2.90E-01 2.00E+00 1.00E+00 1.29E+00 2.17E+00 1.10E+00 1.07E+00 1.02E+00; 2.00 796.26 9.55E-01 -1.31E-01 2.00E+00 1.00E+00 1.76E+01 2.00E+00 6.96E-01 1.10E+00 1.10E+00; 2.50 796.26 7.94E-01 2.00E-02 2.00E+00 1.00E+00 9.44E+00 1.60E+00 6.70E-01 1.10E+00 1.10E+00; 3.00 796.26 8.02E-01 1.36E-02 2.00E+00 1.00E+00 9.54E+00 1.62E+00 6.63E-01 1.10E+00 1.09E+00; 3.50 796.26 8.02E-01 1.34E-02 2.00E+00 1.00E+00 9.54E+00 1.54E+00 6.63E-01 1.10E+00 1.09E+00; 4.00 796.26 7.68E-01 5.02E-02 2.00E+00 1.00E+00 7.31E+00 1.51E+00 6.90E-01 1.10E+00 1.09E+00; 4.50 796.26 8.23E-01 6.32E-03 2.00E+00 1.00E+00 8.01E+00 1.74E+00 7.33E-01 1.10E+00 1.09E+00; 5.00 796.26 8.28E-01 1.78E-04 2.00E+00 1.00E+00 6.91E+00 1.75E+00 7.51E-01 1.09E+00 1.08E+00; 5.50 796.26 8.55E-01 -1.67E-02 2.00E+00 1.00E+00 5.63E+00 1.85E+00 7.99E-01 1.08E+00 1.07E+00; 6.00 796.26 8.52E-01 -1.20E-02 2.00E+00 1.00E+00 4.44E+00 2.00E+00 8.20E-01 1.08E+00 1.08E+00; 6.50 796.26 9.03E-01 -4.83E-02 2.00E+00 1.00E+00 3.06E+00 2.26E+00 9.14E-01 1.08E+00 1.07E+00; 7.00 796.26 9.35E-01 -7.41E-02 2.00E+00 1.00E+00 2.38E+00 2.05E+00 9.55E-01 1.08E+00 1.06E+00; 7.50 796.26 1.15E+00 -2.85E-01 2.00E+00 1.00E+00 2.49E+00 2.45E+00 1.03E+00 1.08E+00 1.05E+00; 8.00 796.26 1.18E+00 -3.10E-01 2.00E+00 1.00E+00 1.39E+00 2.42E+00 1.15E+00 1.07E+00 1.04E+00; 2.00 1262.00 1.06E+00 -2.31E-01 2.00E+00 1.00E+00 1.08E+01 1.97E+00 7.07E-01 1.10E+00 1.09E+00; 2.50 1262.00 1.06E+00 -2.32E-01 2.00E+00 1.00E+00 1.04E+01 1.94E+00 7.08E-01 1.10E+00 1.09E+00; 3.00 1262.00 1.06E+00 -2.32E-01 2.00E+00 1.00E+00 1.02E+01 1.94E+00 7.08E-01 1.09E+00 1.09E+00; 3.50 1262.00 1.06E+00 -2.36E-01 2.00E+00 1.00E+00 9.57E+00 1.96E+00 7.05E-01 1.10E+00 1.09E+00; 4.00 1262.00 1.05E+00 -2.36E-01 2.00E+00 1.00E+00 1.03E+01 1.96E+00 7.01E-01 1.10E+00 1.09E+00; 4.50 1262.00 1.07E+00 -2.37E-01 2.00E+00 1.00E+00 1.12E+01 2.07E+00 7.37E-01 1.10E+00 1.09E+00; 5.00 1262.00 8.30E-01 4.11E-03 2.00E+00 1.00E+00 4.26E+00 1.62E+00 7.53E-01 1.10E+00 1.08E+00; 5.50 1262.00 8.48E-01 -2.00E-02 2.00E+00 1.00E+00 4.02E+00 1.83E+00 7.85E-01 1.08E+00 1.08E+00; 6.00 1262.00 8.53E-01 -1.28E-02 2.00E+00 1.00E+00 3.56E+00 1.94E+00 8.23E-01 1.09E+00 1.09E+00; 6.50 1262.00 9.03E-01 -4.83E-02 2.00E+00 1.00E+00 3.17E+00 2.25E+00 9.14E-01 1.08E+00 1.07E+00; 7.00 1262.00 9.52E-01 -8.82E-02 2.00E+00 1.00E+00 3.14E+00 2.59E+00 9.79E-01 1.07E+00 1.06E+00; 7.50 1262.00 1.16E+00 -2.85E-01 2.00E+00 1.00E+00 2.56E+00 2.52E+00 1.04E+00 1.08E+00 1.06E+00; 8.00 1262.00 1.18E+00 -3.07E-01 2.00E+00 1.00E+00 3.10E+00 3.15E+00 1.15E+00 1.07E+00 1.05E+00 ]
StochasticGroundMotionSimulation
https://github.com/pstafford/StochasticGroundMotionSimulation.jl.git
[ "MIT" ]
0.2.6
b88d988a6a59a7ac37d73f8517a7022613997c68
code
20808
""" SourceParameters Custom type defining the source parameters of a Fourier spectrum. Constructed with signature `SourceParameters{S<:Float64, T<:Real}` with fields: - `Δσ::T` is the stress parameter in bars - `RΘϕ::S` is the radiation pattern - `V::S` is the partition factor (for splitting to horizontal components) - `F::S` is the free surface factor - `β::S` is the source velocity in units of km/s - `ρ::S` is the source density in units of t/m³ or g/cm³ - `model::Symbol` identifies the type of source spectrum (`:Brune`, `:Atkinson_Silva_2000`) """ struct SourceParameters{S<:Float64,T<:Real,U<:Real} # source parameters Δσ::T# stressParameter RΘϕ::S # radiationPattern V::S # partitionFactor F::S # freeSurfaceFactor β::S # sourceVelocity ρ::S # sourceDensity n::U # high-frequency fall-off rate for Beresnev (2019) model::Symbol # source spectrum model end SourceParameters(Δσ::T) where {T<:Float64} = SourceParameters(Δσ, 0.55, 1.0 / sqrt(2.0), 2.0, 3.5, 2.75, 1.0, :Brune) SourceParameters(Δσ::T) where {T<:Real} = SourceParameters(Δσ, 0.55, 1.0 / sqrt(2.0), 2.0, 3.5, 2.75, 1.0, :Brune) SourceParameters(Δσ::T, model::Symbol) where {T<:Real} = SourceParameters(Δσ, 0.55, 1.0 / sqrt(2.0), 2.0, 3.5, 2.75, 1.0, model) SourceParameters(Δσ::T, βs::S, ρs::S) where {S<:Float64,T<:Real} = SourceParameters(Δσ, 0.55, 1.0 / sqrt(2.0), 2.0, βs, ρs, 1.0, :Brune) SourceParameters(Δσ::T, βs::T, ρs::T) where {T<:Float64} = SourceParameters(Δσ, 0.55, 1.0 / sqrt(2.0), 2.0, βs, ρs, 1.0, :Brune) SourceParameters(Δσ::T, n::T) where {T<:Real} = SourceParameters(Δσ, 0.55, 1.0 / sqrt(2.0), 2.0, 3.5, 2.75, n, :Beresnev_2019) SourceParameters(Δσ::T, n::U) where {T<:Real,U<:Real} = SourceParameters(Δσ, 0.55, 1.0 / sqrt(2.0), 2.0, 3.5, 2.75, n, :Beresnev_2019) """ get_parametric_type(src::SourceParameters{S,T}) where {S,T} = T Extract type of `T` from parametric `SourceParameters` struct """ get_parametric_type(src::SourceParameters{S,T}) where {S,T} = T """ GeometricSpreadingParameters Struct for geometric spreading parameters. Holds fields: - `Rrefi` are reference distances, these are `<:Real` but will generally be `Float64` values - `γconi` are constant spreading rates, meaning that they will not be free for AD purposes - `γvari` are variable spreading rates, meaning that they can be represented as `Dual` numbers for AD - `γfree` is a vector of `Bool` instances, or a `BitVector` that indicates which segments are constant or variable. Variable spreading rates are given `1` or `true` - `model` is a symbol defining the type of spreading model `:Piecewise`, `:CY14`, `:CY14mod` """ struct GeometricSpreadingParameters{S<:Real,T<:Real,U<:Real,V<:AbstractVector{Bool}} Rrefi::Vector{S} γconi::Vector{T} γvari::Vector{U} γfree::V model::Symbol end GeometricSpreadingParameters(Rrefi::Vector{S}, γconi::Vector{T}) where {S<:Real,T<:Real} = GeometricSpreadingParameters{S,T,Float64,BitVector}(Rrefi, γconi, Vector{Float64}(), BitVector(zeros(length(γconi))), :Piecewise) GeometricSpreadingParameters(Rrefi::Vector{S}, γconi::Vector{T}, model::Symbol) where {S<:Real,T<:Real} = GeometricSpreadingParameters{S,T,Float64,BitVector}(Rrefi, γconi, Vector{Float64}(), BitVector(zeros(length(γconi))), model) GeometricSpreadingParameters(Rrefi::Vector{S}, γvari::Vector{U}) where {S<:Real,U<:Dual} = GeometricSpreadingParameters{S,Float64,U,BitVector}(Rrefi, Vector{Float64}(), γvari, BitVector(ones(length(γvari))), :Piecewise) GeometricSpreadingParameters(Rrefi::Vector{S}, γvari::Vector{U}, model::Symbol) where {S<:Real,U<:Dual} = GeometricSpreadingParameters{S,Float64,U,BitVector}(Rrefi, Vector{Float64}(), γvari, BitVector(ones(length(γvari))), model) """ get_parametric_type(geo::GeometricSpreadingParameters{S,T,U}) where {S,T,U} = T Extract type of `T` from parametric `GeometricSpreadingParameters` struct """ get_parametric_type(geo::GeometricSpreadingParameters{S,T,U,V}) where {S,T,U,V} = (S <: Dual) ? S : ((T <: Dual) ? T : U) """ NearSourceSaturationParameters Struct for near-source saturation parameters. Mimic structure of the `GeometricSpreadingParameters` struct. Holds fields: - `mRefi` reference magnitudes - `hconi` constrained coefficients, not free for AD purposes - `hvari` variable coefficients, free for AD purposes - `hfree` is a vector of `Bool` instances, or a `BitVector` indicating which parameters are constant or variable - `exponent` is the exponent used within equivalent point-source distance calculations: ``r_{ps} = \\left[r_{rup}^n + h(m)^n\\right]^{1/n}`` - `model` is a symbol defining the type of saturation model: - `:BT15` is Boore & Thompson (2015) - `:YA15` is Yenier & Atkinson (2015) - `:CY14` is average Chiou & Youngs (2014) - `:None` returns zero saturation length - `:ConstantConstrained` is a fixed saturation length not subject to AD operations - `:ConstantVariable` is a fixed saturation length that is subject to AD operations (i.e., is a `<:Dual`) """ struct NearSourceSaturationParameters{S<:Real,T<:Real,U<:AbstractVector{Bool}} mRefi::Vector{S} hconi::Vector{S} hvari::Vector{T} hfree::U exponent::Int model::Symbol end NearSourceSaturationParameters(model::Symbol) = NearSourceSaturationParameters(Vector{Float64}(), Vector{Float64}(), Vector{Float64}(), BitVector(), 2, model) NearSourceSaturationParameters(exponent::Int, model::Symbol) = NearSourceSaturationParameters(Vector{Float64}(), Vector{Float64}(), Vector{Float64}(), BitVector(), exponent, model) NearSourceSaturationParameters(mRefi::Vector{T}, hconi::Vector{T}, model::Symbol) where {T} = NearSourceSaturationParameters(mRefi, hconi, Vector{T}(), BitVector(undef, length(hconi)), 2, model) NearSourceSaturationParameters(mRefi::Vector{S}, hvari::Vector{T}, model::Symbol) where {S,T} = NearSourceSaturationParameters(mRefi, Vector{S}(), hvari, BitVector(ones(length(hvari))), 2, model) NearSourceSaturationParameters(mRefi::Vector{T}, hconi::Vector{T}) where {T} = NearSourceSaturationParameters(mRefi, hconi, Vector{T}(), BitVector(undef, length(hconi)), 2, :FullyConstrained) NearSourceSaturationParameters(mRefi::Vector{S}, hvari::Vector{T}) where {S,T} = NearSourceSaturationParameters(mRefi, Vector{S}(), hvari, BitVector(ones(length(hvari))), 2, :FullyVariable) # specialisation for a constant saturation term NearSourceSaturationParameters(hcon::Float64) = NearSourceSaturationParameters(Vector{Float64}(), [hcon], Vector{Float64}(), BitVector(undef, 1), 2, :ConstantConstrained) NearSourceSaturationParameters(hvar::T) where {T<:Dual} = NearSourceSaturationParameters(Vector{Float64}(), Vector{Float64}(), Vector{T}([hvar]), BitVector([1]), 2, :ConstantVariable) # with exponents NearSourceSaturationParameters(hcon::Float64, exponent::Int) = NearSourceSaturationParameters(Vector{Float64}(), [hcon], Vector{Float64}(), BitVector(undef, 1), exponent, :ConstantConstrained) NearSourceSaturationParameters(hvar::T, exponent::Int) where {T<:Dual} = NearSourceSaturationParameters(Vector{Float64}(), Vector{Float64}(), Vector{T}([hvar]), BitVector([1]), exponent, :ConstantVariable) """ get_parametric_type(sat::NearSourceSaturationParameters{S,T,U}) where {S,T,U} = T Extract type of `T` from parametric `NearSourceSaturationParameters` struct """ get_parametric_type(sat::NearSourceSaturationParameters{S,T,U}) where {S,T,U} = T """ AnelasticAttenuationParameters Struct for anelastic attenuation parameters. Holds fields: - `Q0` quality factor at 1 Hz - `η` quality exponent ∈ [0,1) - `cQ` velocity (km/s) along propagation path used to determine `Q(f)` - `rmetric` is a symbol `:Rrup` or `:Rps` to define which distance metric is used for anelastic attenuation """ struct AnelasticAttenuationParameters{S<:Real,T<:Real,U<:AbstractVector{Bool}} Rrefi::Vector{S} Q0coni::Vector{S} Q0vari::Vector{T} ηconi::Vector{S} ηvari::Vector{T} cQ::Vector{Float64} Qfree::U ηfree::U rmetric::Symbol end AnelasticAttenuationParameters(Q0::T) where {T<:Float64} = AnelasticAttenuationParameters([0.0, Inf], [Q0], Vector{Float64}(), [0.0], Vector{Float64}(), [3.5], BitVector(zeros(1)), BitVector(zeros(1)), :Rps) AnelasticAttenuationParameters(Q0::T) where {T<:Real} = AnelasticAttenuationParameters([0.0, Inf], Vector{Float64}(), [Q0], [0.0], Vector{T}(), [3.5], BitVector(ones(1)), BitVector(zeros(1)), :Rps) AnelasticAttenuationParameters(Q0::T, η::T) where {T<:Float64} = AnelasticAttenuationParameters([0.0, Inf], [Q0], Vector{T}(), [η], Vector{T}(), [3.5], BitVector(zeros(1)), BitVector(zeros(1)), :Rps) AnelasticAttenuationParameters(Q0::T, η::T, rmetric::Symbol) where {T<:Float64} = AnelasticAttenuationParameters([0.0, Inf], [Q0], Vector{T}(), [η], Vector{T}(), [3.5], BitVector(zeros(1)), BitVector(zeros(1)), rmetric) AnelasticAttenuationParameters(Q0::T, η::T) where {T<:Real} = AnelasticAttenuationParameters([0.0, Inf], Vector{Float64}(), [Q0], Vector{Float64}(), [η], [3.5], BitVector(ones(1)), BitVector(ones(1)), :Rps) AnelasticAttenuationParameters(Q0::T, η::T, rmetric::Symbol) where {T<:Real} = AnelasticAttenuationParameters([0.0, Inf], Vector{Float64}(), [Q0], Vector{Float64}(), [η], [3.5], BitVector(ones(1)), BitVector(ones(1)), rmetric) AnelasticAttenuationParameters(Q0::S, η::T) where {S<:Float64,T<:Real} = AnelasticAttenuationParameters([0.0, Inf], [Q0], Vector{T}(), Vector{S}(), [η], [3.5], BitVector(zeros(1)), BitVector(ones(1)), :Rps) AnelasticAttenuationParameters(Q0::S, η::T, rmetric::Symbol) where {S<:Float64,T<:Real} = AnelasticAttenuationParameters([0.0, Inf], [Q0], Vector{T}(), Vector{S}(), [η], [3.5], BitVector(zeros(1)), BitVector(ones(1)), rmetric) AnelasticAttenuationParameters(Q0::S, η::T) where {S<:Real,T<:Float64} = AnelasticAttenuationParameters([0.0, Inf], Vector{T}(), [Q0], [η], Vector{S}(), [3.5], BitVector(ones(1)), BitVector(zeros(1)), :Rps) AnelasticAttenuationParameters(Q0::S, η::T, rmetric::Symbol) where {S<:Real,T<:Float64} = AnelasticAttenuationParameters([0.0, Inf], Vector{T}(), [Q0], [η], Vector{S}(), [3.5], BitVector(ones(1)), BitVector(zeros(1)), rmetric) AnelasticAttenuationParameters(Q0, η, cQ::Float64) = AnelasticAttenuationParameters([0.0, Inf], [Q0], Vector{Float64}(), [η], Vector{Float64}(), [cQ], BitVector(zeros(1)), BitVector(zeros(1)), :Rps) AnelasticAttenuationParameters(Q0, η, cQ::Float64, rmetric::Symbol) = AnelasticAttenuationParameters([0.0, Inf], [Q0], Vector{Float64}(), [η], Vector{Float64}(), [cQ], BitVector(zeros(1)), BitVector(zeros(1)), rmetric) AnelasticAttenuationParameters(Rrefi::Vector{T}, Q0coni::Vector{T}) where {T<:Float64} = AnelasticAttenuationParameters{T,T,BitVector}(Rrefi, Q0coni, Vector{T}(), zeros(T, length(Q0coni)), Vector{T}(), 3.5 * ones(T, length(Q0coni)), BitVector(zeros(length(Q0coni))), BitVector(zeros(length(Q0coni))), :Rps) AnelasticAttenuationParameters(Rrefi::Vector{T}, Q0coni::Vector{T}, rmetric::Symbol) where {T<:Float64} = AnelasticAttenuationParameters{T,T,BitVector}(Rrefi, Q0coni, Vector{T}(), zeros(T, length(Q0coni)), Vector{T}(), 3.5 * ones(T, length(Q0coni)), BitVector(zeros(length(Q0coni))), BitVector(zeros(length(Q0coni))), rmetric) AnelasticAttenuationParameters(Rrefi::Vector{S}, Q0vari::Vector{T}) where {S<:Float64,T<:Real} = AnelasticAttenuationParameters{S,T,BitVector}(Rrefi, Vector{S}(), Q0vari, zeros(S, length(Q0vari)), Vector{S}(), 3.5 * ones(S, length(Q0vari)), BitVector(ones(length(Q0vari))), BitVector(zeros(length(Q0vari))), :Rps) AnelasticAttenuationParameters(Rrefi::Vector{S}, Q0vari::Vector{T}, rmetric::Symbol) where {S<:Float64,T<:Real} = AnelasticAttenuationParameters{S,T,BitVector}(Rrefi, Vector{S}(), Q0vari, zeros(S, length(Q0vari)), Vector{S}(), 3.5 * ones(S, length(Q0vari)), BitVector(ones(length(Q0vari))), BitVector(zeros(length(Q0vari))), rmetric) AnelasticAttenuationParameters(Rrefi::Vector{T}, Q0coni::Vector{T}, ηconi::Vector{T}) where {T<:Float64} = AnelasticAttenuationParameters{T,T,BitVector}(Rrefi, Q0coni, Vector{T}(), ηconi, Vector{T}(), 3.5 * ones(T, length(Q0coni)), BitVector(zeros(length(Q0coni))), BitVector(zeros(length(ηconi))), :Rps) AnelasticAttenuationParameters(Rrefi::Vector{T}, Q0coni::Vector{T}, ηconi::Vector{T}, rmetric::Symbol) where {T<:Float64} = AnelasticAttenuationParameters{T,T,BitVector}(Rrefi, Q0coni, Vector{T}(), ηconi, Vector{T}(), 3.5 * ones(T, length(Q0coni)), BitVector(zeros(length(Q0coni))), BitVector(zeros(length(ηconi))), rmetric) AnelasticAttenuationParameters(Rrefi::Vector{S}, Q0vari::Vector{T}, ηvari::Vector{T}) where {S<:Float64,T<:Real} = AnelasticAttenuationParameters{S,T,BitVector}(Rrefi, Vector{S}(), Q0vari, zeros(S, length(Q0vari)), ηvari, 3.5 * ones(S, length(Q0vari)), BitVector(ones(length(Q0vari))), BitVector(ones(length(ηvari))), :Rps) AnelasticAttenuationParameters(Rrefi::Vector{S}, Q0vari::Vector{T}, ηvari::Vector{T}, rmetric::Symbol) where {S<:Float64,T<:Real} = AnelasticAttenuationParameters{S,T,BitVector}(Rrefi, Vector{S}(), Q0vari, zeros(S, length(Q0vari)), ηvari, 3.5 * ones(S, length(Q0vari)), BitVector(ones(length(Q0vari))), BitVector(ones(length(Q0vari))), rmetric) AnelasticAttenuationParameters(Rrefi::Vector{S}, Q0coni::Vector{S}, ηvari::Vector{T}) where {S<:Float64,T<:Real} = AnelasticAttenuationParameters{S,T,BitVector}(Rrefi, Q0coni, Vector{T}(), Vector{S}(), ηvari, 3.5 * ones(S, length(Q0coni)), BitVector(zeros(length(Q0coni))), BitVector(ones(length(ηvari))), :Rps) AnelasticAttenuationParameters(Rrefi::Vector{S}, Q0coni::Vector{S}, ηvari::Vector{T}, rmetric::Symbol) where {S<:Float64,T<:Real} = AnelasticAttenuationParameters{S,T,BitVector}(Rrefi, Q0coni, Vector{T}(), Vector{S}(), ηvari, 3.5 * ones(S, length(Q0coni)), BitVector(zeros(length(Q0coni))), BitVector(ones(length(ηvari))), rmetric) AnelasticAttenuationParameters(Rrefi::Vector{S}, Q0vari::Vector{T}, ηconi::Vector{S}) where {S<:Float64,T<:Real} = AnelasticAttenuationParameters{S,T,BitVector}(Rrefi, Vector{S}(), Q0vari, ηconi, Vector{T}(), 3.5 * ones(S, length(Q0vari)), BitVector(ones(length(Q0vari))), BitVector(zeros(length(ηconi))), :Rps) AnelasticAttenuationParameters(Rrefi::Vector{S}, Q0vari::Vector{T}, ηconi::Vector{S}, rmetric::Symbol) where {S<:Float64,T<:Real} = AnelasticAttenuationParameters{S,T,BitVector}(Rrefi, Vector{S}(), Q0vari, ηconi, Vector{T}(), 3.5 * ones(S, length(Q0vari)), BitVector(ones(length(Q0vari))), BitVector(zeros(length(ηconi))), rmetric) """ get_parametric_type(anelastic::AnelasticAttenuationParameters{S,T,U}) where {S,T,U} Extract type most elaborate type `S` or `T` from parametric `AnelasticAttenuationParameters` struct """ function get_parametric_type(anelastic::AnelasticAttenuationParameters{S,T,U}) where {S,T,U} if S <: Float64 if T <: Float64 return S else return T end else return S end end """ PathParameters Custom type defining the path parameters of a Fourier spectrum. Consists of three other custom structs - `geometric` is a `GeometricSpreadingParameters` type - `saturation` is a `NearSourceSaturationParameters` type - `anelastic` is an `AnelasticAttenuationParameters` type The base constructor is: `PathParameters(geo::G, sat::S, ane::A) where {G<:GeometricSpreadingParameters, S<:NearSourceSaturationParameters, A<:AnelasticAttenuationParameters}` See also: [`FourierParameters`](@ref) """ struct PathParameters{G<:GeometricSpreadingParameters,S<:NearSourceSaturationParameters,A<:AnelasticAttenuationParameters} geometric::G saturation::S anelastic::A end PathParameters(geometric::GeometricSpreadingParameters, anelastic::AnelasticAttenuationParameters) = PathParameters(geometric, NearSourceSaturationParameters(:None), anelastic) """ get_parametric_type(path::PathParameters) Extract type most elaborate type from parametric `PathParameters` struct. This requires dropping down to lower level structs within `path`. """ function get_parametric_type(path::PathParameters) T = get_parametric_type(path.geometric) U = get_parametric_type(path.saturation) V = get_parametric_type(path.anelastic) if T <: Float64 if U <: Float64 return V else return U end else return T end end @doc raw""" SiteParameters Custom type defining the site parameters of a Fourier spectrum - `κ0::T where T<:Real` is the site kappa in units of s - `ζ0::U where U<:Real` is the Haendel et al. (2020) ζ parameter (for a reference frequency of ``f_0=1`` Hz) - `η::V where V<:Real` is the Haendel et al. (2020) η parameter - `model::W where W<:SiteAmplification` is a site amplification model defining the impedance function The argument `model` is currently one of: - `SiteAmpUnit` for a generic unit amplification - `SiteAmpBoore2016` for the Boore (2016) amplification for ``V_{S,30}=760`` m/s - `SiteAmpAlAtikAbrahamson2021_ask14_620` for the Al Atik & Abrahamson (2021) inversion of ASK14 for ``V_{S,30}=620`` m/s - `SiteAmpAlAtikAbrahamson2021_ask14_760` for the Al Atik & Abrahamson (2021) inversion of ASK14 for ``V_{S,30}=760`` m/s - `SiteAmpAlAtikAbrahamson2021_ask14_1100` for the Al Atik & Abrahamson (2021) inversion of ASK14 for ``V_{S,30}=1100`` m/s - `SiteAmpAlAtikAbrahamson2021_bssa14_620` for the Al Atik & Abrahamson (2021) inversion of BSSA14 for ``V_{S,30}=620`` m/s - `SiteAmpAlAtikAbrahamson2021_bssa14_760` for the Al Atik & Abrahamson (2021) inversion of BSSA14 for ``V_{S,30}=760`` m/s - `SiteAmpAlAtikAbrahamson2021_bssa14_1100` for the Al Atik & Abrahamson (2021) inversion of BSSA14 for ``V_{S,30}=1100`` m/s - `SiteAmpAlAtikAbrahamson2021_cb14_620` for the Al Atik & Abrahamson (2021) inversion of CB14 for ``V_{S,30}=620`` m/s - `SiteAmpAlAtikAbrahamson2021_cb14_760` for the Al Atik & Abrahamson (2021) inversion of CB14 for ``V_{S,30}=760`` m/s - `SiteAmpAlAtikAbrahamson2021_cb14_1100` for the Al Atik & Abrahamson (2021) inversion of CB14 for ``V_{S,30}=1100`` m/s - `SiteAmpAlAtikAbrahamson2021_cy14_620` for the Al Atik & Abrahamson (2021) inversion of CY14 for ``V_{S,30}=620`` m/s - `SiteAmpAlAtikAbrahamson2021_cy14_760` for the Al Atik & Abrahamson (2021) inversion of CY14 for ``V_{S,30}=760`` m/s - `SiteAmpAlAtikAbrahamson2021_cy14_1100` for the Al Atik & Abrahamson (2021) inversion of CY14 for ``V_{S,30}=1100`` m/s See also: [`FourierParameters`](@ref), [`site_amplification`](@ref) """ struct SiteParameters{T<:Real,U<:Real,V<:Real,W<:SiteAmplification} # site parameters κ0::T # site kappa ζ0::U # zeta parameter for f0=1 Hz η::V # eta parameter model::W # site amplification model end SiteParameters(κ0::T) where {T<:Real} = SiteParameters(κ0, NaN, NaN, SiteAmpAlAtikAbrahamson2021_cy14_760()) SiteParameters(κ0::T, model::S) where {T<:Real,S<:SiteAmplification} = SiteParameters(κ0, NaN, NaN, model) SiteParameters(ζ0::T, η::U) where {T<:Real,U<:Real} = SiteParameters(NaN, ζ0, η, SiteAmpAlAtikAbrahamson2021_cy14_760()) SiteParameters(ζ0::T, η::U, model::V) where {T<:Real,U<:Real,V<:SiteAmplification} = SiteParameters(NaN, ζ0, η, model) """ get_parametric_type(site::SiteParameters{T}) where {T} = T Extract type of `T` from parametric `SiteParameters` struct """ get_parametric_type(site::SiteParameters{T}) where {T} = T """ FourierParameters Custom type for the parameters the Fourier amplitude spectrum. This type is comprised of source, path and site types, and so has a base constructor of: `FourierParameters(src::S, path::T, site::U) where {S<:SourceParameters, T<:PathParameters, U<:SiteParameters}` See also: [`SourceParameters`](@ref), [`PathParameters`](@ref), [`SiteParameters`](@ref) """ struct FourierParameters{S<:SourceParameters,T<:PathParameters,U<:SiteParameters} source::S # source parameters path::T # path parameters site::U # site parameters end # initialiser focussing upon source and path response only. Uses zero kappa and unit amplification FourierParameters(src::S, path::T) where {S<:SourceParameters,T<:PathParameters} = FourierParameters(src, path, SiteParameters(0.0, SiteAmpUnit())) """ get_parametric_type(fas::FourierParameters) Extract type most elaborate type from parametric `FourierParameters` struct. This requires dropping down to lower level structs within `fas`. """ function get_parametric_type(fas::FourierParameters) T = get_parametric_type(fas.source) U = get_parametric_type(fas.path) V = get_parametric_type(fas.site) if T <: Float64 if U <: Float64 return V else return U end else return T end end
StochasticGroundMotionSimulation
https://github.com/pstafford/StochasticGroundMotionSimulation.jl.git
[ "MIT" ]
0.2.6
b88d988a6a59a7ac37d73f8517a7022613997c68
code
26420
""" fourier_constant(src::SourceParameters) Define the constant source term for the Fourier Amplitude Spectrum. The value provided corresponds to Fourier displacement units of cm-s. Constant set to permit distances to be passed in km, densities in t/m^3, and velocities in km/s. The reference distance is set to 1.0 km (and interpreted to be a rupture distance). """ function fourier_constant(src::SourceParameters) # note that the 1e-20 factor allows one to pass in distances in km, density in t/m^3, velocity in km/s Rref0 = 1.0 return src.RΘϕ * src.V * src.F * 1e-20 / (4π * src.ρ * src.β^3 * Rref0) end fourier_constant(fas::FourierParameters) = fourier_constant(fas.source) """ fourier_source_shape(f::Float64, fa::T, fb::T, ε::T, src::SourceParameters) where T<:Real Fourier amplitude spectral shape for _displacement_ defined by corner frequencies. See also: [`fourier_source_shape`](@ref) """ function fourier_source_shape(f::Float64, fa::T, fb::T, ε::T, src::SourceParameters) where {T<:Real} if src.model == :Brune # use single corner, with fa=fc return 1.0 / (1.0 + (f / fa)^2) elseif src.model == :Atkinson_Silva_2000 # use double corner model return (1.0 - ε) / (1.0 + (f / fa)^2) + ε / (1.0 + (f / fb)^2) elseif src.model == :Beresnev_2019 # include a high-frequency roll-off parameter n rolloff = (src.n + 1.0) / 2.0 return 1.0 / ((1.0 + (f / fa)^2)^rolloff) else # use single corner, with fa=fc return 1.0 / (1.0 + (f / fa)^2) end end """ fourier_source_shape(f::Float64, fa::T, fb::T, ε::T, fas::FourierParameters) where T<:Real Fourier amplitude spectral shape for _displacement_ defined by corner frequencies. See also: [`fourier_source_shape`](@ref) """ fourier_source_shape(f, fa, fb, ε, fas::FourierParameters) = fourier_source_shape(f, fa, fb, ε, fas.source) """ fourier_source_shape(f::T, m::S, src::SourceParameters) where {S<:Real,T<:Float64} Source shape of the Fourier Amplitude Spectrum of _displacement_, without the constant term or seismic moment. This simply includes the source spectral shape. The nature of the source spectral shape depends upon `src.model`: - `:Brune` gives the single corner omega-squared spectrum (this is the default) - `:Atkinson_Silva_2000` gives the double corner spectrum of Atkinson & Silva (2000) - `:Beresnev_2019` gives a single-corner spectrum with arbitrary fall off rate related to `src.n` from Beresnev (2019) """ function fourier_source_shape(f::T, m::S, src::SourceParameters) where {S<:Real,T<:Float64} fa, fb, ε = corner_frequency(m, src) return fourier_source_shape(f, fa, fb, ε, src) end """ fourier_source_shape(f, m, fas::FourierParameters) Source shape of the Fourier amplitude spectrum of _displacement_, without the constant term or seismic moment. Defined using a `FourierParameters` instance for the source model. See also: [`fourier_source_shape`](@ref) """ fourier_source_shape(f, m, fas::FourierParameters) = fourier_source_shape(f, m, fas.source) """ fourier_source_shape(f::Vector{S}, fa::T, fb::T, ε::T, src::SourceParameters) where {S<:Real,T<:Real} Fourier amplitude spectral shape for _displacement_ defined by corner frequencies. See also: [`fourier_source_shape`](@ref) """ function fourier_source_shape(f::Vector{S}, fa::T, fb::T, ε::T, src::SourceParameters) where {S<:Real,T<:Real} if src.model == :Brune # use single corner, with fa=fc return @. 1.0 / (1.0 + (f / fa)^2) elseif src.model == :Atkinson_Silva_2000 # use double corner model return @. (1.0 - ε) / (1.0 + (f / fa)^2) + ε / (1.0 + (f / fb)^2) elseif src.model == :Beresnev_2019 # include a high-frequency roll-off parameter n rolloff = (src.n + 1.0) / 2.0 return @. 1.0 / ((1.0 + (f / fa)^2)^rolloff) else # use single corner, with fa=fc return @. 1.0 / (1.0 + (f / fa)^2) end end """ fourier_source_shape(f::Vector{T}, m::S, src::SourceParameters) where {S<:Real,T<:Float64} Source shape of the Fourier Amplitude Spectrum of _displacement_, without the constant term or seismic moment. This simply includes the source spectral shape. The nature of the source spectral shape depends upon `src.model`: - `:Brune` gives the single corner omega-squared spectrum (this is the default) - `:Atkinson_Silva_2000` gives the double corner spectrum of Atkinson & Silva (2000) - `:Beresnev_2019` gives a single-corner spectrum with arbitrary fall off rate related to `src.n` from Beresnev (2019) """ function fourier_source_shape(f::Vector{S}, m::T, src::SourceParameters) where {S<:Real,T<:Real} fa, fb, ε = corner_frequency(m, src) return fourier_source_shape(f, fa, fb, ε, src) end """ fourier_source(f::T, m::S, src::SourceParameters) where {S<:Real,T<:Float64} Source Fourier Amplitude Spectrum of displacement, without the constant term. This simply includes the seismic moment and the source spectral shape. See also: [`fourier_source_shape`](@ref) """ function fourier_source(f::T, m::S, src::SourceParameters) where {S<:Real,T<:Float64} Mo = magnitude_to_moment(m) return Mo * fourier_source_shape(f, m, src) end """ fourier_source(f, m, fas::FourierParameters) Source Fourier Amplitude Spectrum of displacement, without the constant term. This simply includes the seismic moment and the source spectral shape. Defined using a `FourierParameters` instance for the source model. See also: [`fourier_source_shape`](@ref) """ fourier_source(f, m, fas::FourierParameters) = fourier_source(f, m, fas.source) """ fourier_path(f::U, r_ps::T, m::S, geo::GeometricSpreadingParameters, sat::NearSourceSaturationParameters, ane::AnelasticAttenuationParameters) where {S<:Real,T<:Real,U<:Float64} Path scaling of Fourier spectral model -- combination of geometric spreading and anelastic attenuation. See also: [`geometric_spreading`](@ref), [`anelastic_attenuation`](@ref) """ function fourier_path(f::U, r_ps::T, m::S, geo::GeometricSpreadingParameters, sat::NearSourceSaturationParameters, ane::AnelasticAttenuationParameters) where {S<:Real,T<:Real,U<:Float64} Zr = geometric_spreading(r_ps, m, geo, sat) if ane.rmetric == :Rrup r_rup = rupture_distance_from_equivalent_point_source_distance(r_ps, m, sat) Qr = anelastic_attenuation(f, r_rup, ane) else Qr = anelastic_attenuation(f, r_ps, ane) end return Zr * Qr end fourier_path(f, r_ps, m, path::PathParameters) = fourier_path(f, r_ps, m, path.geometric, path.saturation, path.anelastic) fourier_path(f, r_ps, m, fas::FourierParameters) = fourier_path(f, r_ps, m, fas.path) # simplified cases where m is not required fourier_path(f, r_ps, path::PathParameters) = fourier_path(f, r_ps, NaN, path.geometric, path.saturation, path.anelastic) fourier_path(f, r_ps, fas::FourierParameters) = fourier_path(f, r_ps, fas.path) """ fourier_attenuation(f::S, r::T, ane::AnelasticAttenuationParameters{U,V}, site::SiteParameters{W}) where {S<:Float64,T<:Real,U<:Real,V<:Real,W<:Real} Combined full-path attenuation, including `Q(f)` effects and `κ0` filter for frequency `f` Distance defined in terms of an equivalent point source distance `r_ps` or rupture distance `r_rup` depending upon what metric is defined in `ane.rmetric` """ function fourier_attenuation(f::S, r::T, ane::AnelasticAttenuationParameters{U,V}, site::SiteParameters{W}) where {S<:Float64,T<:Real,U<:Real,V<:Real,W<:Real} if f < eps() return oneunit(promote_type(T, U, V, W)) else Qr = anelastic_attenuation(f, r, ane) Kf = kappa_filter(f, site) return Qr * Kf end end fourier_attenuation(f::S, r::T, path::PathParameters, site::SiteParameters) where {S<:Float64,T<:Real} = fourier_attenuation(f, r, path.anelastic, site) fourier_attenuation(f::S, r::T, fas::FourierParameters) where {S<:Float64,T<:Real} = fourier_attenuation(f, r, fas.path, fas.site) """ fourier_attenuation(f::Vector{S}, r::T, ane::AnelasticAttenuationParameters{U,V}, site::SiteParameters{W}) where {S<:Float64,T<:Real,U<:Real,V<:Real,W<:Real} Combined full-path attenuation, including `Q(f)` effects and `κ0` filter for frequency `f` Distance defined in terms of an equivalent point source distance `r_ps` or rupture distance `r_rup` depending upon what metric is defined in `ane.rmetric` """ function fourier_attenuation(f::Vector{S}, r::T, ane::AnelasticAttenuationParameters{U,V}, site::SiteParameters{W}) where {S<:Float64,T<:Real,U<:Real,V<:Real,W<:Real} f = clamp!(f, eps(), Inf) Qr = anelastic_attenuation(f, r, ane) Kf = kappa_filter(f, site) return Qr .* Kf end fourier_attenuation(f::Vector{S}, r::T, path::PathParameters, site::SiteParameters) where {S<:Float64,T<:Real} = fourier_attenuation(f, r, path.anelastic, site) fourier_attenuation(f::Vector{S}, r::T, fas::FourierParameters) where {S<:Float64,T<:Real} = fourier_attenuation(f, r, fas.path, fas.site) """ apply_fourier_attenuation!(Af::Vector{T}, f::Vector{U}, r::V, ane::AnelasticAttenuationParameters, site::SiteParameters) where {T<:Real,U<:Real,V<:Real} Apply the fourier attenuation (`Q(f)` and `κ₀`) filters to an existing FAS `Af`. Combined full-path attenuation, including `Q(f)` effects and `κ₀` filter for frequency `f` Distance defined in terms of an equivalent point source distance `r_ps` or rupture distance `r_rup` depending upon what metric is defined in `ane.rmetric` """ function apply_fourier_attenuation!(Af::Vector{T}, f::Vector{U}, r::V, ane::AnelasticAttenuationParameters, site::SiteParameters) where {T<:Real,U<:Real,V<:Real} f = clamp!(f, eps(), Inf) apply_anelastic_attenuation!(Af, f, r, ane) apply_kappa_filter!(Af, f, site) end apply_fourier_attenuation!(Af::Vector{T}, f::Vector{U}, r::V, path::PathParameters, site::SiteParameters) where {T<:Real,U<:Real,V<:Real} = apply_fourier_attenuation!(Af, f, r, path.anelastic, site) apply_fourier_attenuation!(Af::Vector{T}, f::Vector{U}, r::V, fas::FourierParameters) where {T<:Real,U<:Real,V<:Real} = apply_fourier_attenuation!(Af, f, r, fas.path, fas.site) """ apply_fourier_path_and_site_attenuation!(Af::Vector{T}, f::Vector{U}, r::V, anelastic::AnelasticAttenuationParameters, site::SiteParameters) where {T<:Real,U<:Real,V<:Real} Apply both the anelastic and site kappa attenuation effects to an existing FAS `Af` """ function apply_fourier_path_and_site_attenuation!(Af::Vector{T}, f::Vector{U}, r::V, anelastic::AnelasticAttenuationParameters, site::SiteParameters) where {T<:Real,U<:Real,V<:Real} numAf = length(Af) numf = length(f) numAf == numf || error("length of vector `f` must match the length of vector `Af`") f = clamp!(f, eps(), Inf) jq = jη = 1 kq = kη = 1 nsegs = length(anelastic.Qfree) exp_arg = zeros(T, numf) for i = 1:nsegs @inbounds Rr0 = anelastic.Rrefi[i] @inbounds Rr1 = anelastic.Rrefi[i+1] @inbounds cQ_r = anelastic.cQ[i] # get the relevant constrained or free quality factor for this path segment @inbounds if anelastic.Qfree[i] == 0 @inbounds Q0_r = anelastic.Q0coni[jq] jq += 1 else @inbounds Q0_r = anelastic.Q0vari[kq] kq += 1 end # get the relevant constrained of free quality exponent for this path segment @inbounds if anelastic.ηfree[i] == 0 @inbounds η_r = anelastic.ηconi[jη] jη += 1 else @inbounds η_r = anelastic.ηvari[kη] kη += 1 end if η_r ≈ 0.0 fpow = f else if nsegs == 1 fpow = @. f^(1.0 - η_r) else # this avoids f^(1-η) fpow = @. exp((1.0 - η_r) * log(f)) end end if r < Rr1 rlim = r else rlim = Rr1 end for (j, fp) in pairs(fpow) @inbounds exp_arg[j] += -π * fp * (rlim - Rr0) / (Q0_r * cQ_r) end end if isnan(site.κ0) # Eq. 20 of Haendel et al. (2020) (frequency dependent kappa) # specified for a reference frequency of f0=1 Hz for (i, ea) in pairs(exp_arg) @inbounds Af[i] *= exp(ea -π * site.ζ0 * (1.0 - site.η) * exp((1.0 - site.η) * log(f[i]))) end else for (i, ea) in pairs(exp_arg) @inbounds Af[i] *= exp(ea - π * site.κ0 * f[i]) end end return nothing end apply_fourier_path_and_site_attenuation!(Af::Vector{T}, f::Vector{U}, r::V, path::PathParameters, site::SiteParameters) where {T<:Real,U<:Real,V<:Real} = apply_fourier_path_and_site_attenuation!(Af, f, r, path.anelastic, site) apply_fourier_path_and_site_attenuation!(Af::Vector{T}, f::Vector{U}, r::V, fas::FourierParameters) where {T<:Real,U<:Real,V<:Real} = apply_fourier_path_and_site_attenuation!(Af, f, r, fas.path, fas.site) """ fourier_site(f::Float64, site::SiteParameters) Combined site amplification and kappa filter for frequency `f` """ function fourier_site(f::Float64, site::SiteParameters) # kappa filter Kf = kappa_filter(f, site) # site impedance function Sf = site_amplification(f, site) return Sf * Kf end fourier_site(f::Float64, fas::FourierParameters) = fourier_site(f, fas.site) """ fourier_spectral_ordinate(f::S, m::S, r_ps::T, src::SourceParameters, geo::GeometricSpreadingParameters, ane::AnelasticAttenuationParameters, site::SiteParameters) where {S<:Float64,T<:Real} Fourier acceleration spectral ordinate (m/s) based upon an equivalent point source distance `r_ps` - `f` is frequency (Hz) - `m` is magnitude - `r_ps` is the equivalent point source distance including saturation effects (km) - `src` are the source parameters `SourceParameters` - `geo` are the geometric spreading parameters `GeometricSpreadingParameters` - `sat` are the near source saturation parameters `NearSourceSaturationParameters` - `ane` are the anelastic attenuation parameters `AnelasticAttenuationParameters` - `site` are the site parameters `SiteParameters` See also: [`fourier_spectrum`](@ref), [`fourier_spectrum!`](@ref) """ function fourier_spectral_ordinate(f::U, m::S, r_ps::T, src::SourceParameters, geo::GeometricSpreadingParameters, sat::NearSourceSaturationParameters, ane::AnelasticAttenuationParameters, site::SiteParameters) where {S<:Real,T<:Real,U<:Float64} # define all constant terms here C = fourier_constant(src) # source term Ef = fourier_source(f, m, src) # geometric spreading Gr = geometric_spreading(r_ps, m, geo, sat) # combined attenuation of both path (κr) and site (κ0) if ane.rmetric == :Rrup r_rup = rupture_distance_from_equivalent_point_source_distance(r_ps, m, sat) Kf = fourier_attenuation(f, r_rup, ane, site) else Kf = fourier_attenuation(f, r_ps, ane, site) end # site impedance Sf = site_amplification(f, site) # overall displacement spectrum (in cms) is Ef*Pf*Sf # the division by 10^2 below is to convert from units of cm/s to m/s return (2π * f)^2 * C * Ef * Gr * Kf * Sf / 100.0 end """ fourier_spectral_ordinate(f::U, m::S, r_ps::T, src::SourceParameters, path::PathParameters, site::SiteParameters) where {S<:Real,T<:Real,U<:Float64} Fourier acceleration spectral ordinate (m/s) based upon an equivalent point source distance `r_ps` - `f` is frequency (Hz) - `m` is magnitude - `r_ps` is the equivalent point source distance including saturation effects (km) - `src` are the source parameters `SourceParameters` - `path` are the path parameters `PathParameters` - `site` are the site parameters `SiteParameters` """ fourier_spectral_ordinate(f::U, m::S, r_ps::T, src::SourceParameters, path::PathParameters, site::SiteParameters) where {S<:Real,T<:Real,U<:Float64} = fourier_spectral_ordinate(f, m, r_ps, src, path.geometric, path.saturation, path.anelastic, site) """ fourier_spectral_ordinate(f::U, m::S, r_ps::T, fas::FourierParameters) where {S<:Real,T<:Real,U<:Float64} Fourier acceleration spectral ordinate (m/s) based upon an equivalent point source distance `r_ps` - `f` is frequency (Hz) - `m` is magnitude - `r_ps` is the equivalent point source distance including saturation effects (km) - `fas` are the Fourier spectral parameters `FourierParameters` """ fourier_spectral_ordinate(f::U, m::S, r_ps::T, fas::FourierParameters) where {S<:Real,T<:Real,U<:Float64} = fourier_spectral_ordinate(f, m, r_ps, fas.source, fas.path, fas.site) """ squared_fourier_spectral_ordinate(f::U, m::S, r_ps::T, src::SourceParameters, geo::GeometricSpreadingParameters, ane::AnelasticAttenuationParameters, site::SiteParameters) where {S<:Real,T<:Real} Squared Fourier acceleration spectral ordinate (m^2/s^2) based upon an equivalent point source distance `r_ps` - `f` is frequency (Hz) - `m` is magnitude - `r_ps` is the equivalent point source distance including saturation effects (km) - `src` are the source parameters `SourceParameters` - `geo` are the geometric spreading parameters `GeometricSpreadingParameters` - `sat` are the near source saturation parameters `NearSourceSaturationParameters` - `ane` are the anelastic attenuation parameters `AnelasticAttenuationParameters` - `site` are the site parameters `SiteParameters` See also: [`fourier_spectral_ordinate`](@ref), [`squared_fourier_spectrum`](@ref) """ function squared_fourier_spectral_ordinate(f::S, m::S, r_ps::T, src::SourceParameters, geo::GeometricSpreadingParameters, sat::NearSourceSaturationParameters, ane::AnelasticAttenuationParameters, site::SiteParameters) where {S<:Real,T<:Real} return fourier_spectral_ordinate(f, m, r_ps, src, geo, sat, ane, site)^2 end squared_fourier_spectral_ordinate(f::U, m::S, r_ps::T, src::SourceParameters, path::PathParameters, site::SiteParameters) where {S<:Real,T<:Real,U<:Float64} = squared_fourier_spectral_ordinate(f, m, r_ps, src, path.geometric, path.saturation, path.anelastic, site) squared_fourier_spectral_ordinate(f::U, m::S, r_ps::T, fas::FourierParameters) where {S<:Real,T<:Real,U<:Float64} = squared_fourier_spectral_ordinate(f, m, r_ps, fas.source, fas.path, fas.site) """ fourier_spectrum(f::Vector{U}, m::S, r_ps::T, fas::FourierParameters) where {S<:Real,T<:Real,U<:Float64} Fourier acceleration spectrum (m/s) based upon an equivalent point source distance `r_ps` - `f` is `Vector` of frequencies (Hz) - `m` is magnitude - `r_ps` is the equivalent point source distance including saturation effects (km) - `fas` are the Fourier spectral parameters `FourierParameters` See also: [`fourier_spectral_ordinate`](@ref) """ function fourier_spectrum(f::Vector{U}, m::S, r_ps::T, fas::FourierParameters) where {S<:Real,T<:Real,U<:Float64} numf = length(f) V = get_parametric_type(fas) W = promote_type(S, T, U, V) # if V <: Dual # W = V # elseif S <: Dual # W = S # else # W = U # end if numf == 0 return Vector{W}() else # define all frequency independent terms here C = fourier_constant(fas) # source amplitude and corner frequencies Mo = magnitude_to_moment(m) fa, fb, ε = corner_frequency(m, fas) # geometric spreading Gr = geometric_spreading(r_ps, m, fas) # site impedance Sfi = site_amplification(f, fas) factor = 4π^2 * C * Mo * Gr / 100.0 if fas.path.anelastic.rmetric == :Rrup r_rup = rupture_distance_from_equivalent_point_source_distance(r_ps, m, fas) end Af = Vector{W}(undef, numf) for i in 1:numf fi = f[i] # source term Ef = fourier_source_shape(fi, fa, fb, ε, fas) # combined attenuation if fas.path.anelastic.rmetric == :Rrup Kf = fourier_attenuation(fi, r_rup, fas) else Kf = fourier_attenuation(fi, r_ps, fas) end # site impedance # Sf = site_amplification(fi, fas) # apply factor and convert to acceleration in appropriate units (m/s) Af[i] = Ef * Kf * Sfi[i] * factor * fi^2 end return Af end end """ squared_fourier_spectrum(f::Vector{U}, m::S, r_ps::T, fas::FourierParameters) where {S<:Real,T<:Real,U<:Float64} Squared Fourier amplitude spectrum. Useful within spectral moment calculations. See also: [`fourier_spectrum`](@ref), [`squared_fourier_spectral_ordinate`](@ref) """ function squared_fourier_spectrum(f::Vector{U}, m::S, r_ps::T, fas::FourierParameters) where {S<:Real,T<:Real,U<:Float64} Af = fourier_spectrum(f, m, r_ps, fas) return Af .^ 2 end """ fourier_spectrum!(Af::Vector{U}, f::Vector{V}, m::S, r_ps::T, fas::FourierParameters) where {S<:Real,T<:Real,U<:Real,V<:Float64} Fourier acceleration spectrum (m/s) based upon an equivalent point source distance `r_ps` - `Af` is the vector of fas amplitudes to be filled (m/s) - `f` is `Vector` of frequencies (Hz) - `m` is magnitude - `r_ps` is the equivalent point source distance including saturation effects (km) - `fas` are the Fourier spectral parameters `FourierParameters` See also: [`fourier_spectrum`](@ref) """ function fourier_spectrum!(Af::Vector{U}, f::Vector{V}, m::S, r_ps::T, fas::FourierParameters) where {S<:Real,T<:Real,U<:Real,V<:Float64} numf = length(f) numAf = length(Af) numf == numAf || error("length of `f` and `Af` must be equal") if numf == 0 Af = Vector{U}() else # define all frequency independent terms here C = fourier_constant(fas) # source amplitude and corner frequencies Mo = magnitude_to_moment(m) fa, fb, ε = corner_frequency(m, fas) # geometric spreading Gr = geometric_spreading(r_ps, m, fas) # site impedance Sfi = site_amplification(f, fas) factor = 4π^2 * C * Mo * Gr / 100.0 if fas.path.anelastic.rmetric == :Rrup r_rup = rupture_distance_from_equivalent_point_source_distance(r_ps, m, fas) end for i in 1:numf fi = f[i] # source term Ef = fourier_source_shape(fi, fa, fb, ε, fas) # combined attenuation if fas.path.anelastic.rmetric == :Rrup Kf = fourier_attenuation(fi, r_rup, fas) else Kf = fourier_attenuation(fi, r_ps, fas) end # site impedance # Sf = site_amplification(fi, fas) # apply factor and convert to acceleration in appropriate units (m/s) Af[i] = Ef * Kf * Sfi[i] * factor * fi^2 end end return nothing end """ squared_fourier_spectrum!(Afsq::Vector{U}, f::Vector{V}, m::S, r_ps::T, fas::FourierParameters) where {S<:Real,T<:Real,U<:Real,V<:Float64} Fourier acceleration spectrum (m/s) based upon an equivalent point source distance `r_ps` - `Afsq` is the vector of squared fas amplitudes to be filled (m^2/s^2) - `f` is `Vector` of frequencies (Hz) - `m` is magnitude - `r_ps` is the equivalent point source distance including saturation effects (km) - `fas` are the Fourier spectral parameters `FourierParameters` See also: [`squared_fourier_spectrum`](@ref), ['squared_fourier_spectral_ordinate'](@ref) """ function squared_fourier_spectrum!(Afsq::Vector{U}, f::Vector{V}, m::S, r_ps::T, fas::FourierParameters) where {S<:Real,T<:Real,U<:Real,V<:Float64} numf = length(f) numAfsq = length(Afsq) numf == numAfsq || error("length of `f` and `Afsq` must be equal") if numf == 0 Afsq = Vector{U}() else # define all frequency independent terms here C = fourier_constant(fas) # source amplitude and corner frequencies Mo = magnitude_to_moment(m) fa, fb, ε = corner_frequency(m, fas) # geometric spreading Gr = geometric_spreading(r_ps, m, fas) # scale factor factor = 4 * π * π * C * Mo * Gr / 100.0 # frequency dependent terms # initialise the return vector with ones for (i, fi) in pairs(f) Afsq[i] = oneunit(U) * factor * fi * fi end # source term Afsq .*= fourier_source_shape(f, fa, fb, ε, fas) # combined attenuation if fas.path.anelastic.rmetric == :Rrup r_rup = rupture_distance_from_equivalent_point_source_distance(r_ps, m, fas) # apply_fourier_attenuation!(Afsq, f, r_rup, fas) apply_fourier_path_and_site_attenuation!(Afsq, f, r_rup, fas) else # apply_fourier_attenuation!(Afsq, f, r_ps, fas) apply_fourier_path_and_site_attenuation!(Afsq, f, r_ps, fas) end # site impedance apply_site_amplification!(Afsq, f, fas) # square the computed FAS Afsq .*= Afsq end return nothing end """ combined_kappa_frequency(r::T, Af2target::Float64, ane::AnelasticAttenuationParameters, site::SiteParameters) where T<:Real Frequency at which the combined κ_r and κ_0 filters (squared versions) give a value of `Af2target`. `r` can be either `r_ps` or `r_rup` depending upon what matches `ane.rmetric` """ function combined_kappa_frequency(r::T, Af2target::Float64, ane::AnelasticAttenuationParameters, site::SiteParameters) where {T<:Real} Q0_eff, η_eff, cQ_eff = effective_quality_parameters(r, ane) if η_eff < 0.1 # a closed form solution exists (for effectively η=0) return log(1.0 / Af2target) / (2π * (r / (Q0_eff * cQ_eff) + site.κ0)) else g(f) = Af2target - (fourier_attenuation(f, r, ane, site)^2) f_0 = find_zero(g, (0.01, 100.0), Bisection(); xatol=1e-2) # fk = min(max(f_0, 0.2), 1.0) fk = max(f_0, 0.1) U = get_parametric_type(ane) V = get_parametric_type(site) if T <: Float64 if U <: Float64 unit = oneunit(V) else unit = oneunit(U) end else unit = oneunit(T) end return fk * unit end end combined_kappa_frequency(r::T, Af2target::Float64, path::PathParameters, site::SiteParameters) where {T<:Real} = combined_kappa_frequency(r, Af2target, path.anelastic, site) combined_kappa_frequency(r::T, Af2target::Float64, fas::FourierParameters) where {T<:Real} = combined_kappa_frequency(r, Af2target, fas.path, fas.site)
StochasticGroundMotionSimulation
https://github.com/pstafford/StochasticGroundMotionSimulation.jl.git
[ "MIT" ]
0.2.6
b88d988a6a59a7ac37d73f8517a7022613997c68
code
20902
""" geometric_spreading(r_ps::T, m::S, geo::GeometricSpreadingParameters, sat::NearSourceSaturationParameters) where {S<:Real, T<:Real} Geometric spreading function, switches between different approaches on `path.geo_model`. """ function geometric_spreading(r_ps::T, m::S, geo::GeometricSpreadingParameters, sat::NearSourceSaturationParameters) where {S<:Real,T<:Real} if geo.model == :Piecewise return geometric_spreading_piecewise(r_ps, geo) elseif geo.model == :CY14 return geometric_spreading_cy14(r_ps, geo) elseif geo.model == :CY14mod return geometric_spreading_cy14mod(r_ps, m, geo, sat) else return NaN * oneunit(get_parametric_type(geo)) end end geometric_spreading(r_ps::T, m::S, path::PathParameters) where {S<:Real,T<:Real} = geometric_spreading(r_ps, m, path.geometric, path.saturation) geometric_spreading(r_ps::T, m::S, fas::FourierParameters) where {S<:Real,T<:Real} = geometric_spreading(r_ps, m, fas.path) # special variants that don't require a magnitude input geometric_spreading(r_ps::T, path::PathParameters) where {T<:Real} = geometric_spreading(r_ps, NaN, path.geometric, path.saturation) geometric_spreading(r_ps::T, fas::FourierParameters) where {T<:Real} = geometric_spreading(r_ps, fas.path) """ geometric_spreading_piecewise(r_ps::W, geo::GeometricSpreadingParameters{S,T,U,V}) where {S<:Real, T<:Real, U<:Real, V<:AbstractVector{Bool}, W<:Real} Piecewise linear (in log-log space) geometric spreading function. Makes use of the reference distances `Rrefi` and spreading rates `γi` in `path`. """ function geometric_spreading_piecewise(r_ps::W, geo::GeometricSpreadingParameters{S,T,U,V}) where {S<:Real,T<:Real,U<:Real,V<:AbstractVector{Bool},W<:Real} z_r = oneunit(get_parametric_type(geo)) j = 1 k = 1 for i = 1:length(geo.γfree) @inbounds Rr0 = geo.Rrefi[i] @inbounds Rr1 = geo.Rrefi[i+1] γ_r = oneunit(get_parametric_type(geo)) if geo.γfree[i] == 0 @inbounds γ_r *= geo.γconi[j] j += 1 else @inbounds γ_r *= geo.γvari[k] k += 1 end if r_ps < Rr1 z_r *= (Rr0 / r_ps)^γ_r return z_r else z_r *= (Rr0 / Rr1)^γ_r end end return z_r end geometric_spreading_piecewise(r_ps, path::PathParameters) = geometric_spreading_piecewise(r_ps, path.geometric) geometric_spreading_piecewise(r_ps, fas::FourierParameters) = geometric_spreading_piecewise(r_ps, fas.path) """ geometric_spreading_cy14(r_ps::W, geo::GeometricSpreadingParameters{S,T,U,V}) where {S<:Real, T<:Real, U<:Real, V<:AbstractVector{Bool}, W<:Real} Geometric spreading function from Chiou & Youngs (2014). Defines a smooth transition from one rate `γi[1]` to another `γi[2]`, with a spreading bandwidth of `Rrefi[2]` km. """ function geometric_spreading_cy14(r_ps::W, geo::GeometricSpreadingParameters{S,T,U,V}) where {S<:Real,T<:Real,U<:Real,V<:AbstractVector{Bool},W<:Real} unit = oneunit(get_parametric_type(geo)) j = 1 k = 1 if geo.γfree[1] == 0 γ1 = geo.γconi[j] * unit j += 1 else γ1 = geo.γvari[k] k += 1 end if geo.γfree[2] == 0 γ2 = geo.γconi[j] * unit else γ2 = geo.γvari[k] end R0sq = (geo.Rrefi[1])^2 Rrsq = (geo.Rrefi[2])^2 ln_z_r = -γ1 * log(r_ps) + (-γ2 + γ1) / 2 * log((r_ps^2 + Rrsq) / (R0sq + Rrsq)) z_r = exp(ln_z_r) return z_r end geometric_spreading_cy14(r_ps, path::PathParameters) = geometric_spreading_cy14(r_ps, path.geometric) geometric_spreading_cy14(r_ps, fas::FourierParameters) = geometric_spreading_cy14(r_ps, fas.path) """ geometric_spreading_cy14mod(r_ps::W, m::X, geo::GeometricSpreadingParameters{S,T,U,V}, sat::NearSourceSaturationParameters) where {S<:Real, T<:Real, U<:Real, V<:AbstractVector{Bool}, W<:Real, X<:Real} Geometric spreading function from Chiou & Youngs (2014). Modified to make use of both `r_ps` and `r_rup` so that only the first saturation term contaminates the source amplitudes. Defines a smooth transition from one rate `γi[1]` to another `γi[2]`, with a spreading bandwidth of `Rrefi[2]` km. """ function geometric_spreading_cy14mod(r_ps::W, m::X, geo::GeometricSpreadingParameters{S,T,U,V}, sat::NearSourceSaturationParameters) where {S<:Real,T<:Real,U<:Real,V<:AbstractVector{Bool},W<:Real,X<:Real} unit = oneunit(get_parametric_type(geo)) j = 1 k = 1 if geo.γfree[1] == 0 γ1 = geo.γconi[j] * unit j += 1 else γ1 = geo.γvari[k] k += 1 end if geo.γfree[2] == 0 γ2 = geo.γconi[j] * unit else γ2 = geo.γvari[k] end R0sq = (geo.Rrefi[1])^2 Rrsq = (geo.Rrefi[2])^2 r_rup = rupture_distance_from_equivalent_point_source_distance(r_ps, m, sat) ln_z_r = -γ1 * log(r_ps) + (-γ2 + γ1) / 2 * log((r_rup^2 + Rrsq) / (R0sq + Rrsq)) z_r = exp(ln_z_r) return z_r end geometric_spreading_cy14mod(r_ps, m, path::PathParameters) = geometric_spreading_cy14mod(r_ps, m, path.geometric, path.saturation) geometric_spreading_cy14mod(r_ps, m, fas::FourierParameters) = geometric_spreading_cy14mod(r_ps, m, fas.path) """ near_source_saturation(m, sat::NearSourceSaturationParameters) Near-source saturation term. Used to create equivalent point-source distance. Switches methods based upon `sat.model`. # Arguments Options for `sat.model` are: - `:BT15` for Boore & Thompson (2015) finite fault factor - `:YA15` for Yenier & Atkinson (2014) finite fault factor - `:CY14` for a model fitted to the Chiou & Youngs (2014) saturation lengths (over all periods) - `:SEA21` for the Stafford et al. (2021) saturation model obtained from inversion of Chiou & Youngs (2014) - `:None` for zero saturation length - `:ConstantConstrained` for a constant value, `sat.hconi[1]`, not subject to AD operations - `:ConstantVariable` for a constant value, `sat.hvari[1]`, that is subject to AD operations Any other symbol passed will return `NaN`. See also: [`near_source_saturation`](@ref) """ function near_source_saturation(m, sat::NearSourceSaturationParameters) unit = oneunit(get_parametric_type(sat)) if sat.model == :BT15 # use the Boore & Thompson (2015) finite fault factor return finite_fault_factor_bt15(m) * unit elseif sat.model == :YA15 # use the Yenier & Atkinson (2015) finite fault factor return finite_fault_factor_ya15(m) * unit elseif sat.model == :CY14 # use the fitted model averaging over Chiou & Youngs (2014) return finite_fault_factor_cy14(m) * unit elseif sat.model == :SEA21 # use the near-source saturation model of Stafford et al. (2021)'s inversion of CY14 return finite_fault_factor_sea21(m) * unit elseif sat.model == :None return zero(get_parametric_type(sat)) elseif sat.model == :ConstantConstrained return sat.hconi[1] * unit elseif sat.model == :ConstantVariable return sat.hvari[1] * unit else return NaN * unit end end """ near_source_saturation(m, path::PathParameters) Near-source saturation term taking a `PathParameters` struct. See also: [`near_source_saturation`](@ref) """ near_source_saturation(m, path::PathParameters) = near_source_saturation(m, path.saturation) """ near_source_saturation(m, fas::FourierParameters) Near-source saturation term taking a `FourierParameters` struct. See also: [`near_source_saturation`](@ref) """ near_source_saturation(m, fas::FourierParameters) = near_source_saturation(m, fas.path) """ finite_fault_factor_bt15(m::T) where T<:Real Finite fault factor from Boore & Thompson (2015) used to create equivalent point-source distance. See also: [`near_source_saturation`](@ref), [`finite_fault_factor_ya15`](@ref), [`finite_fault_factor_cy14`](@ref), [`finite_fault_factor_sea21`](@ref) """ function finite_fault_factor_bt15(m::T) where {T<:Real} Mt1 = 5.744 Mt2 = 7.744 if m <= Mt1 a1 = 0.7497 b1 = 0.4300 h = a1 + b1 * (m - Mt1) elseif m >= Mt2 a2 = 1.4147 b2 = 0.2350 h = a2 + b2 * (m - Mt2) else c0 = 0.7497 c1 = 0.4300 c2 = -0.04875 c3 = 0.0 h = c0 + c1 * (m - Mt1) + c2 * (m - Mt1)^2 + c3 * (m - Mt1)^3 end return 10.0^h end """ finite_fault_factor_ya15(m::T) where T<:Real Finite fault factor from Yenier & Atkinson (2015) used to create equivalent point-source distance. See also: [`near_source_saturation`](@ref), [`finite_fault_factor_bt15`](@ref), [`finite_fault_factor_cy14`](@ref), [`finite_fault_factor_sea21`](@ref) """ function finite_fault_factor_ya15(m::T) where {T<:Real} return 10.0^(-0.405 + 0.235 * m) end """ finite_fault_factor_cy14(m::T) where T<:Real Finite fault factor for Chiou & Youngs (2014) used to create equivalent point-source distance. This is a model developed to match the average saturation length over the full period range. See also: [`near_source_saturation`](@ref), [`finite_fault_factor_bt15`](@ref), [`finite_fault_factor_ya15`](@ref), [`finite_fault_factor_sea21`](@ref) """ function finite_fault_factor_cy14(m::T) where {T<:Real} hα = 7.308 hβ = 0.4792 hγ = 3.556 return hα * cosh(hβ * max(m - hγ, 0.0)) end """ finite_fault_factor_sea21(m::T) where T<:Real Finite fault factor for Stafford et al. (2021) used to create equivalent point-source distance. See also: [`near_source_saturation`](@ref), [`finite_fault_factor_bt15`](@ref), [`finite_fault_factor_ya15`](@ref), [`finite_fault_factor_cy14`](@ref) """ function finite_fault_factor_sea21(m::T) where {T<:Real} hα = -0.8712 hβ = 0.4451 hγ = 1.1513 hδ = 5.0948 hε = 7.2725 lnh = hα + hβ * m + ((hβ - hγ)/hδ) * log( 1.0 + exp(-hδ * (m - hε)) ) return exp(lnh) end """ equivalent_point_source_distance(r, m, sat::NearSourceSaturationParameters) Compute equivalent point source distance - `r` is ``r_{hyp}`` or ``r_{rup}`` (depending upon the size of the event -- but is nominally ``r_{rup}``) - `m` is magnitude - `sat` contains the `NearSourceSaturationParameters` See also: [`near_source_saturation`](@ref) """ function equivalent_point_source_distance(r, m, sat::NearSourceSaturationParameters) h = near_source_saturation(m, sat) n = sat.exponent return (r^n + h^n)^(1 / n) end equivalent_point_source_distance(r, m, path::PathParameters) = equivalent_point_source_distance(r, m, path.saturation) equivalent_point_source_distance(r, m, fas::FourierParameters) = equivalent_point_source_distance(r, m, fas.path) """ rupture_distance_from_equivalent_point_source_distance(r_ps, m, sat::NearSourceSaturationParameters) Compute rupture distance from equivalent point source distance - `r_ps` is the equivalent point source distance - `m` is magnitude - `sat` contains the `NearSourceSaturationParameters` """ function rupture_distance_from_equivalent_point_source_distance(r_ps, m, sat::NearSourceSaturationParameters) h = near_source_saturation(m, sat) n = sat.exponent return (r_ps^n - h^n)^(1 / n) end rupture_distance_from_equivalent_point_source_distance(r_ps, m, path::PathParameters) = rupture_distance_from_equivalent_point_source_distance(r_ps, m, path.saturation) rupture_distance_from_equivalent_point_source_distance(r_ps, m, fas::FourierParameters) = rupture_distance_from_equivalent_point_source_distance(r_ps, m, fas.path) """ anelastic_attenuation(f::S, r::T, anelastic::AnelasticAttenuationParameters) where {S<:Float64,T<:Real} Anelastic attenuation filter, computed using equivalent point source distance metric or a standard rupture distance. """ function anelastic_attenuation(f::S, r::T, anelastic::AnelasticAttenuationParameters) where {S<:Float64,T<:Real} PT = get_parametric_type(anelastic) Qfilt = oneunit(PT) jq = jη = 1 kq = kη = 1 nsegs = length(anelastic.Qfree) @inbounds for i = 1:nsegs Rr0 = anelastic.Rrefi[i] Rr1 = anelastic.Rrefi[i+1] cQ_r = anelastic.cQ[i] # get the relevant constrained or free quality factor for this path segment if anelastic.Qfree[i] == 0 Q0_r = anelastic.Q0coni[jq] jq += 1 else Q0_r = anelastic.Q0vari[kq] kq += 1 end # get the relevant constrained of free quality exponent for this path segment if anelastic.ηfree[i] == 0 η_r = anelastic.ηconi[jη] jη += 1 else η_r = anelastic.ηvari[kη] kη += 1 end if nsegs == 1 fpow = f^(1.0 - η_r) else # this avoids f^(1-η) fpow = exp((1.0 - η_r) * log(f)) end if r < Rr1 Qfilt *= exp(-π * fpow * (r - Rr0) / (Q0_r * cQ_r)) return Qfilt else Qfilt *= exp(-π * fpow * (Rr1 - Rr0) / (Q0_r * cQ_r)) end end end anelastic_attenuation(f, r, path::PathParameters) = anelastic_attenuation(f, r, path.anelastic) anelastic_attenuation(f, r, fas::FourierParameters) = anelastic_attenuation(f, r, fas.path) """ anelastic_attenuation(f::Vector{S}, r::T, anelastic::AnelasticAttenuationParameters) where {S<:Float64,T<:Real} Anelastic attenuation filter, computed using equivalent point source distance metric or a standard rupture distance. """ function anelastic_attenuation(f::Vector{S}, r::T, anelastic::AnelasticAttenuationParameters) where {S<:Float64,T<:Real} PT = promote_type(get_parametric_type(anelastic), T) nf = length(f) Qfilt = ones(PT, nf) jq = jη = 1 kq = kη = 1 nsegs = length(anelastic.Qfree) @inbounds for i = 1:nsegs Rr0 = anelastic.Rrefi[i] Rr1 = anelastic.Rrefi[i+1] cQ_r = anelastic.cQ[i] # get the relevant constrained or free quality factor for this path segment if anelastic.Qfree[i] == 0 Q0_r = anelastic.Q0coni[jq] jq += 1 else Q0_r = anelastic.Q0vari[kq] kq += 1 end # get the relevant constrained of free quality exponent for this path segment if anelastic.ηfree[i] == 0 η_r = anelastic.ηconi[jη] jη += 1 else η_r = anelastic.ηvari[kη] kη += 1 end if nsegs == 1 fpow = f .^ (1.0 - η_r) else # this avoids f^(1-η) fpow = @. exp((1.0 - η_r) * log(f)) end if r < Rr1 for i in 1:nf Qfilt[i] *= exp(-π * fpow[i] * (r - Rr0) / (Q0_r * cQ_r)) end return Qfilt else for i in 1:nf Qfilt[i] *= exp(-π * fpow[i] * (Rr1 - Rr0) / (Q0_r * cQ_r)) end end end end """ anelastic_attenuation!(Qfilt::Vector{U}, f::Vector{S}, r::T, anelastic::AnelasticAttenuationParameters) where {S<:Float64,T<:Real,U<:Real} Anelastic attenuation filter, computed using equivalent point source distance metric or a standard rupture distance. """ function anelastic_attenuation!(Qfilt::Vector{U}, f::Vector{S}, r::T, anelastic::AnelasticAttenuationParameters) where {S<:Float64,T<:Real,U<:Real} length(Qfilt) == length(f) || error("length of frequency vector must match the filter vector length") jq = jη = 1 kq = kη = 1 nsegs = length(anelastic.Qfree) for i = 1:nsegs @inbounds Rr0 = anelastic.Rrefi[i] @inbounds Rr1 = anelastic.Rrefi[i+1] @inbounds cQ_r = anelastic.cQ[i] # get the relevant constrained or free quality factor for this path segment if anelastic.Qfree[i] == 0 @inbounds Q0_r = anelastic.Q0coni[jq] jq += 1 else @inbounds Q0_r = anelastic.Q0vari[kq] kq += 1 end # get the relevant constrained of free quality exponent for this path segment if anelastic.ηfree[i] == 0 @inbounds η_r = anelastic.ηconi[jη] jη += 1 else @inbounds η_r = anelastic.ηvari[kη] kη += 1 end if nsegs == 1 fpow = @. f^(1.0 - η_r) else # this avoids f^(1-η) fpow = @. exp((1.0 - η_r) * log(f)) end if r < Rr1 if i == 1 Qfilt .= @. exp(-π * fpow * (r - Rr0) / (Q0_r * cQ_r)) else Qfilt .*= @. exp(-π * fpow * (r - Rr0) / (Q0_r * cQ_r)) end return Qfilt else if i == 1 Qfilt .= @. exp(-π * fpow * (Rr1 - Rr0) / (Q0_r * cQ_r)) else Qfilt .*= @. exp(-π * fpow * (Rr1 - Rr0) / (Q0_r * cQ_r)) end end end end """ apply_anelastic_attenuation!(Af::Vector{T}, f::Vector{U}, r::V, anelastic::AnelasticAttenuationParameters) where {T<:Real,U<:Real,V<:Real} Apply an anelastic attenuation filter to a FAS, computed using equivalent point source distance metric or a standard rupture distance. """ function apply_anelastic_attenuation!(Af::Vector{T}, f::Vector{U}, r::V, anelastic::AnelasticAttenuationParameters) where {T<:Real,U<:Real,V<:Real} numAf = length(Af) numf = length(f) numAf == numf || error("length of vector `f` must match the length of vector `Af`") jq = jη = 1 kq = kη = 1 nsegs = length(anelastic.Qfree) exp_arg = zeros(T, numf) for i = 1:nsegs @inbounds Rr0 = anelastic.Rrefi[i] @inbounds Rr1 = anelastic.Rrefi[i+1] @inbounds cQ_r = anelastic.cQ[i] # get the relevant constrained or free quality factor for this path segment @inbounds if anelastic.Qfree[i] == 0 @inbounds Q0_r = anelastic.Q0coni[jq] jq += 1 else @inbounds Q0_r = anelastic.Q0vari[kq] kq += 1 end # get the relevant constrained of free quality exponent for this path segment @inbounds if anelastic.ηfree[i] == 0 @inbounds η_r = anelastic.ηconi[jη] jη += 1 else @inbounds η_r = anelastic.ηvari[kη] kη += 1 end if η_r ≈ 0.0 fpow = f else if nsegs == 1 fpow = @. f^(1.0 - η_r) else # this avoids f^(1-η) fpow = @. exp((1.0 - η_r) * log(f)) end end if r < Rr1 rlim = r else rlim = Rr1 end for (j, fp) in pairs(fpow) @inbounds exp_arg[j] += -π * fp * (rlim - Rr0) / (Q0_r * cQ_r) end # for (j, fp) in pairs(fpow) # @inbounds Af[j] *= exp(-π * fp * (rlim - Rr0) / (Q0_r * cQ_r)) # end end for (i, ea) in pairs(exp_arg) @inbounds Af[i] *= exp(ea) end return nothing end apply_anelastic_attenuation!(Af::Vector{T}, f::Vector{U}, r::V, path::PathParameters) where {T<:Real,U<:Real,V<:Real} = apply_anelastic_attenuation!(Af, f, r, path.anelastic) apply_anelastic_attenuation!(Af::Vector{T}, f::Vector{U}, r::V, fas::FourierParameters) where {T<:Real,U<:Real,V<:Real} = apply_anelastic_attenuation!(Af, f, r, fas.path) """ effective_quality_parameters(r::T, anelastic::AnelasticAttenuationParameters) where {T<:Real} Distance weighted quality parameters for segmented model. Returns a tuple of effective Q0, η & cQ values from a weighted sum, weighted by relative distance in each path segment. """ function effective_quality_parameters(r::T, anelastic::AnelasticAttenuationParameters) where {T<:Real} PT = get_parametric_type(anelastic) Q_eff = zero(PT) η_eff = zero(PT) cQ_eff = zero(PT) jq = jη = 1 kq = kη = 1 for i = 1:length(anelastic.Qfree) @inbounds Rr0 = anelastic.Rrefi[i] @inbounds Rr1 = anelastic.Rrefi[i+1] Q0_r = oneunit(PT) η_r = oneunit(PT) cQ_r = anelastic.cQ[i] # get the relevant constrained or free quality factor for this path segment if anelastic.Qfree[i] == 0 @inbounds Q0_r *= anelastic.Q0coni[jq] jq += 1 else @inbounds Q0_r *= anelastic.Q0vari[kq] kq += 1 end # get the relevant constrained of free quality exponent for this path segment if anelastic.ηfree[i] == 0 @inbounds η_r *= anelastic.ηconi[jη] jη += 1 else @inbounds η_r *= anelastic.ηvari[kη] kη += 1 end if r < Rr1 rfrac = (r - Rr0) / r Q_eff += rfrac * Q0_r η_eff += rfrac * η_r cQ_eff += rfrac * cQ_r return (Q_eff, η_eff, cQ_eff) else rfrac = (Rr1 - Rr0) / r Q_eff += rfrac * Q0_r η_eff += rfrac * η_r cQ_eff += rfrac * cQ_r end end end
StochasticGroundMotionSimulation
https://github.com/pstafford/StochasticGroundMotionSimulation.jl.git
[ "MIT" ]
0.2.6
b88d988a6a59a7ac37d73f8517a7022613997c68
code
4753
""" site_amplification(f::T, amp_model::S; fmin=1e-3, fmax=999.99) where {T<:Real,S<:SiteAmplification} Computes the site amplification (impedance) for a given frequency `f`. The argument `amp_model` is a subtype of the abstract type `SiteAmplification`. # Examples ```julia-repl f = 5.0 # returns the amplification from AlAtik (2021) in both cases Af = site_amplification(f) Af = site_amplification(f, SiteAmpAlAtikAbrahamson2021_cy14_760()) # returns the Boore (2016) amplification Af = site_amplification(f, SiteAmpBoore2016_760()) # returns 1.0 Af = site_amplification(f, SiteAmpUnit()) ``` """ function site_amplification(f::T, amp_model::S; fmin=1e-3, fmax=999.99) where {T<:Real,S<:SiteAmplification} if f < fmin f = fmin elseif f > fmax f = fmax end return amp_model.amplification(f)::T end """ site_amplification(f::Vector{T}, amp_model::S; fmin=1e-3, fmax=999.99) where {T<:Real,S<:SiteAmplification} Computes the site amplification (impedance) for a given frequency `f`. The argument `amp_model` is a subtype of the abstract type `SiteAmplification`. # Examples ```julia-repl f = 5.0 # returns the amplification from AlAtik (2021) in both cases Af = site_amplification(f) Af = site_amplification(f, SiteAmpAlAtikAbrahamson2021_cy14_760()) # returns the Boore (2016) amplification Af = site_amplification(f, SiteAmpBoore2016_760()) # returns 1.0 Af = site_amplification(f, SiteAmpUnit()) ``` """ function site_amplification(f::Vector{T}, amp_model::S; fmin=1e-3, fmax=999.99) where {T<:Real,S<:SiteAmplification} clamp!(f, fmin, fmax) return amp_model.amplification.(f)::Vector{T} end """ apply_site_amplification!(Af::Vector{T}, f::Vector{U}, amp_model::S; fmin=1e-3, fmax=999.99) where {T<:Real,U<:Real,S<:SiteAmplification} Apply site impedance effects to an existing FAS `Af` for a vector of frequencies `f`. """ function apply_site_amplification!(Af::Vector{T}, f::Vector{U}, amp_model::S; fmin=1e-3, fmax=999.99) where {T<:Real,U<:Real,S<:SiteAmplification} numAf = length(Af) numf = length(f) numAf == numf || error("length of `f` must match length of `Af`") clamp!(f, fmin, fmax) Af .*= amp_model.amplification.(f) return nothing end apply_site_amplification!(Af::Vector{T}, f::Vector{U}, site::SiteParameters; fmin=1e-3, fmax=999.99) where {T<:Real,U<:Real} = apply_site_amplification!(Af, f, site.model, fmin=fmin, fmax=fmax) apply_site_amplification!(Af::Vector{T}, f::Vector{U}, fas::FourierParameters; fmin=1e-3, fmax=999.99) where {T<:Real,U<:Real} = apply_site_amplification!(Af, f, fas.site, fmin=fmin, fmax=fmax) """ site_amplification(f, site::SiteParameters) Computes the site amplification (impedance) for a given frequency `f`. """ site_amplification(f, site::SiteParameters) = site_amplification(f, site.model) """ site_amplification(f, fas::FourierParameters) Computes the site amplification (impedance) for a given frequency `f`. """ site_amplification(f, fas::FourierParameters) = site_amplification(f, fas.site) """ kappa_filter(f, site::SiteParameters) Kappa filter for a given frequency `f` """ function kappa_filter(f, site::SiteParameters) if isnan(site.κ0) # Eq. 20 of Haendel et al. (2020) (frequency dependent kappa) # specified for a reference frequency of f0=1 Hz return exp(-π * site.ζ0 * (1.0 - site.η) * f^(1.0 - site.η)) else return exp(-π * f * site.κ0) end end """ kappa_filter(f::Vector{T}, site::SiteParameters) where {T<:Real} Kappa filter for a given frequency vector `f` """ function kappa_filter(f::Vector{T}, site::SiteParameters) where {T<:Real} if isnan(site.κ0) # Eq. 20 of Haendel et al. (2020) (frequency dependent kappa) # specified for a reference frequency of f0=1 Hz return @. exp(-π * site.ζ0 * (1.0 - site.η) * exp((1.0 - site.η) * log(f))) else return @. exp(-π * f * site.κ0) end end """ apply_kappa_filter!(Af::Vector{T}, f::Vector{U}, site::SiteParameters) where {T<:Real,U<:Real} Apply a kappa filter to a FAS `Af` for a given frequency vector `f` """ function apply_kappa_filter!(Af::Vector{T}, f::Vector{U}, site::SiteParameters) where {T<:Real,U<:Real} numAf = length(Af) numf = length(f) numAf == numf || error("length of `f` must match `Af`") if isnan(site.κ0) # Eq. 20 of Haendel et al. (2020) (frequency dependent kappa) # specified for a reference frequency of f0=1 Hz for i in 1:numf Af[i] *= exp(-π * site.ζ0 * (1.0 - site.η) * exp((1.0 - site.η) * log(f[i]))) end else for i in 1:numf Af[i] *= exp(-π * f[i] * site.κ0) end end return nothing end
StochasticGroundMotionSimulation
https://github.com/pstafford/StochasticGroundMotionSimulation.jl.git
[ "MIT" ]
0.2.6
b88d988a6a59a7ac37d73f8517a7022613997c68
code
139455
""" abstract type SiteAmplification Abstract type to allow dispatch for the `amplification` functions for different site profiles """ abstract type SiteAmplification end """ construct_interpolant(fi::T, Ai::T) where {T<:SVector} Construct a fast interpolant from `StaticArrays` defining the frequencies and amplifications with arbitrary spacing. Returns a function that takes a frequency input and returns the amplification. Interpolant is defined to work over the frequency range [0.001, 1000.0) Hz """ function construct_interpolant(fi::T, Ai::T) where {T<:SVector} f_min = 0.001 f_max = 1000.0 num_lnf = 1001 lnf_min = log(f_min) # define initial linear interpolation once using the above irregular grid and extrapolation itp = linear_interpolation(fi, Ai, extrapolation_bc=Flat()) # compute the amp function values at the regular (log-spaced) frequencies lnfi = range(lnf_min, stop=log(f_max), length=num_lnf) fi_reg = exp.(lnfi) Δlnf_reg = lnfi[2] - lnfi[1] Ai_reg = itp.(fi_reg) # define a new interpolant that is highly efficient and works on the regular-spaced grid itp_reg = interpolate(Ai_reg, BSpline(Linear())) # return the interpolation function on the regular grid, that takes a scaled logarithmic frequency input interpolant = function(f) Tf = typeof(f) return itp_reg((log(f) - lnf_min) / Δlnf_reg + 1.0)::Tf end return interpolant # return (f) -> itp_reg((log(f) - lnf_min) / Δlnf_reg + 1.0) end """ struct SiteAmpUnit <: SiteAmplification Unit amplification function. """ struct SiteAmpUnit <: SiteAmplification amplification::Function function SiteAmpUnit() new((f) -> oneunit(typeof(f))) end end """ struct SiteAmpConstant <: SiteAmplification Constant amplification function """ struct SiteAmpConstant <: SiteAmplification constant::Real amplification::Function function SiteAmpConstant(constant::T) where {T<:Real} new(constant, (f) -> constant * oneunit(typeof(f))) end end """ struct SiteAmpBoore2016_760 <: SiteAmplification Implementation of the Boore (2016) amplification function for Vs30 = 760 m/s # Examples ```julia-repl f = 5.0 sa = SiteAmpBoore2016_760() Af = sa.amplification(f) ``` """ struct SiteAmpBoore2016_760 <: SiteAmplification amplification::Function function SiteAmpBoore2016_760() fi = @SVector [0.001, 0.010, 0.015, 0.021, 0.031, 0.045, 0.065, 0.095, 0.138, 0.200, 0.291, 0.423, 0.615, 0.894, 1.301, 1.892, 2.751, 4.000, 5.817, 8.459, 12.301, 17.889, 26.014, 37.830, 55.012, 80.000, 1e3] Ai = @SVector [1.00, 1.00, 1.01, 1.02, 1.02, 1.04, 1.06, 1.09, 1.13, 1.18, 1.25, 1.32, 1.41, 1.51, 1.64, 1.80, 1.99, 2.18, 2.38, 2.56, 2.75, 2.95, 3.17, 3.42, 3.68, 3.96, 3.96] new(construct_interpolant(fi, Ai)) end end """ struct SiteAmpAlAtikAbrahamson2021_ask14_620 <: SiteAmplification Implementation of the Al Atik & Abrahamson (2021) amplification function for the Abrahamson _et al._ (2014) GMM, for Vs30 = 620 m/s # Examples ```julia-repl f = 5.0 sa = SiteAmpAlAtikAbrahamson2021_ask14_620() Af = sa.amplification(f) ``` """ struct SiteAmpAlAtikAbrahamson2021_ask14_620 <: SiteAmplification amplification::Function function SiteAmpAlAtikAbrahamson2021_ask14_620() fi = @SVector [0.001, 0.100000007176552, 0.102329297485949, 0.104712901552804, 0.107151924117949, 0.109647824895946, 0.112201838507376, 0.114815405225881, 0.117489810861085, 0.1202264325802, 0.123026894039802, 0.12589255240632, 0.128824937117037, 0.131825709632546, 0.134896310600769, 0.138038400222065, 0.141253728327524, 0.144543992885956, 0.147910847244603, 0.151356116586059, 0.154881690648375, 0.158489312312177, 0.162181015370784, 0.16595871040885, 0.169824400428869, 0.173780103299513, 0.177828027447085, 0.181970116933159, 0.186208693439478, 0.19054610704757, 0.194984446661483, 0.199526230171352, 0.204173816020742, 0.208929612284355, 0.213796203551149, 0.218776177399838, 0.223872101209225, 0.229086813628305, 0.234422912331458, 0.239883270624677, 0.245470912442472, 0.251188578932815, 0.257039572485661, 0.26302683611382, 0.269153491176368, 0.275422860904314, 0.281838254809002, 0.288403100119285, 0.295120975682464, 0.301995149403153, 0.309029540026393, 0.316227757343325, 0.32359371997251, 0.331131183335223, 0.338844155010958, 0.346736907560462, 0.354813428224786, 0.36307811068037, 0.371535201243506, 0.380189408253386, 0.389045048821185, 0.398107252613262, 0.407380348956526, 0.416869343532483, 0.426579617417572, 0.436515672690002, 0.446683568718976, 0.457088323168438, 0.46773496922304, 0.478630314385223, 0.489778634661086, 0.501187255130982, 0.512861174281571, 0.524807531745957, 0.537031651679684, 0.549540848799636, 0.562341293577962, 0.575440237707926, 0.588843920258061, 0.602559902463521, 0.616594560798692, 0.630957710395976, 0.645654500162755, 0.660693848816064, 0.676082985461142, 0.691831301966495, 0.707945920028427, 0.724435954327771, 0.741310203831773, 0.758578319149634, 0.776247687487606, 0.794327531427445, 0.812831173158537, 0.831763755397804, 0.851137596165377, 0.87096361786093, 0.891250634906882, 0.912011758905137, 0.933255273423412, 0.954993810779107, 0.97723694421474, 0.999999633853153, 1.02329446506163, 1.04713043607716, 1.07151861129162, 1.09647640754566, 1.12201876367331, 1.14815236598752, 1.17489778192726, 1.20226469308904, 1.23026864708192, 1.25892719937347, 1.28824883491205, 1.31825422392517, 1.3489604744997, 1.38038656412012, 1.41253927391579, 1.44543987371868, 1.47911238259783, 1.51355825072426, 1.54881301667269, 1.5848905633235, 1.62181335008947, 1.65958238778041, 1.69824558697017, 1.73779898879862, 1.77828608776837, 1.8197035816424, 1.86208766520357, 1.90546503948543, 1.94984960247986, 1.99525559982877, 2.04173404813673, 2.08928745324258, 2.13795640238707, 2.18776989034643, 2.23872242386584, 2.29087401375753, 2.34423462055453, 2.39884036376148, 2.45470413173396, 2.51189897015488, 2.57038387151322, 2.63027372689445, 2.69152817520359, 2.75424481862134, 2.81838055555125, 2.88404782351028, 2.95120276858626, 3.01997665364079, 3.09027755270178, 3.16230509000893, 3.23591072890429, 3.3113196772554, 3.38845209360351, 3.46738703485683, 3.54810342861765, 3.6307572259458, 3.71538006523731, 3.80192328047219, 3.89049469017383, 3.98103970987384, 4.07377433470771, 4.16865402930154, 4.2658313673159, 4.36514888139538, 4.46688390379777, 4.57086791742096, 4.67741779690484, 4.78635650780478, 4.89775486557788, 5.0118487428658, 5.12859210973947, 5.24809233553927, 5.37040163878342, 5.49543147519744, 5.62335167756751, 5.75435700895086, 5.88845342866043, 6.02563531956834, 6.16588674725113, 6.30967936692519, 6.45651776048592, 6.60689624674967, 6.76082112782712, 6.91828688137004, 7.07959143533954, 7.24441582209855, 7.41306014051683, 7.58587311664298, 7.76249492667347, 7.94328044747604, 8.12822348094524, 8.31774103516475, 8.51139783908034, 8.70962052040683, 8.91240272293129, 9.12024982306876, 9.33264060910502, 9.55009706721427, 9.77261961256125, 10.0001910578874, 10.2327752801061, 10.4710140255772, 10.7149240936345, 10.9645054455084, 11.2205435989428, 11.4814213469585, 11.7487266632786, 12.0224913181046, 12.3027285474753, 12.5894301931157, 12.8825650343572, 13.1820751213882, 13.4902184788619, 13.8035252713909, 14.125541280801, 14.4537496705297, 14.7907638870534, 15.1352457785712, 15.4886663451631, 15.8495022769038, 16.2176073176065, 16.5963627451878, 16.9822974547711, 17.3771048059986, 17.7827957753744, 18.1974302837793, 18.6209015547347, 19.0554232691428, 19.4986547279176, 19.9529560695692, 20.4184012173967, 20.8921832484195, 21.3798822495437, 21.8787484054886, 22.3887129884931, 22.909659227327, 23.4414188072464, 23.9875410094608, 24.4615137952709, 25.0329093218529, 25.6148235017154, 26.2158518759445, 26.8272698465536, 27.4534661797527, 28.09446691795, 28.7502506564272, 29.4207416293659, 30.1117961312001, 30.811505268715, 31.5318949237336, 32.2666451061469, 33.0225752670797, 33.7926308086556, 34.5841820564937, 35.3893524130691, 36.216097853598, 37.0647605768429, 37.9260703333401, 38.8089621672073, 39.7241178868006, 40.6510900911763, 41.599966407565, 42.5707143949687, 43.5632194319038, 44.5772785797191, 45.6125872923706, 46.6833395460697, 47.7757780217904, 48.8893240325792, 50.0400743989436, 51.1942947913361, 52.4039387563387, 53.614957723063, 54.8639426278079, 56.152230540486, 57.4589003466977, 58.8055074891377, 60.168839494608, 61.5723166498931, 63.0170569484297, 64.5041794807385, 66.0052452133238, 67.5480638430476, 69.1334956085096, 70.7283580177624, 72.3998158815981, 74.0787547857259, 75.7996039156837, 77.5626562679972, 79.3680950075974, 81.2610319483109, 83.153414381699, 85.0880264319602, 87.0644638111256, 89.0821208913822, 91.1971203357681, 93.2971759818561, 95.4979057213378, 97.7410868864205, 100.025195173882, 1e3] Ai = @SVector [1.0, 1.27131849966856, 1.27364786217161, 1.27603634853953, 1.27848592867056, 1.28099895478186, 1.28357786099471, 1.28622520519563, 1.2889434388998, 1.29173520188997, 1.29460344588835, 1.2975509498314, 1.30058076546606, 1.3036961769696, 1.30690034122135, 1.31019676038717, 1.31358915842919, 1.31708133239743, 1.3206771759199, 1.32438092055858, 1.32819702647961, 1.33212991697744, 1.33618459681898, 1.34036614557702, 1.34467994891009, 1.34913162943125, 1.353727283232, 1.35847298456236, 1.363375527856, 1.36844207057665, 1.37367981612773, 1.3790968414493, 1.3847014608445, 1.39050247305961, 1.39650939948657, 1.40273226553584, 1.40918165695063, 1.41586914366152, 1.42280665323052, 1.43000721599896, 1.43748488902678, 1.44525416858638, 1.45333038870041, 1.46172679282892, 1.47045481180741, 1.47952423032643, 1.48894310672955, 1.49871805295238, 1.50885449107557, 1.51935602406904, 1.5302260715545, 1.54146650237406, 1.55307876107356, 1.56506319254866, 1.57741983233271, 1.5901485779998, 1.60324838288661, 1.61671852084641, 1.63055775591691, 1.64476547137603, 1.65934039368577, 1.67428237920358, 1.68958701478223, 1.70524054060058, 1.72121790294409, 1.73748150584534, 1.75398619883415, 1.77067606186742, 1.78748731066872, 1.80435348984646, 1.82120683669339, 1.83799488215409, 1.85467197895587, 1.87120483603363, 1.88756584928089, 1.90373730740876, 1.91970625040889, 1.93546650295583, 1.9510152593158, 1.96635530570864, 1.98149114618527, 1.99643229005328, 2.01118329485831, 2.02575247931318, 2.04014641122666, 2.05437358672245, 2.06844032117375, 2.08235468419301, 2.09612436216508, 2.10975761252428, 2.12326084225104, 2.13664192539445, 2.14991154487293, 2.16307443060873, 2.17614033344739, 2.18911787206594, 2.20201423012552, 2.21483920620629, 2.22759955370566, 2.24030456464251, 2.25296154148033, 2.26557971725804, 2.27816467473245, 2.29071788271264, 2.3032400469491, 2.31572599647585, 2.32815556505631, 2.34054940209122, 2.35290715713082, 2.36522238277542, 2.37749051831689, 2.38970715274537, 2.4018633734267, 2.41395490786702, 2.42597554460696, 2.43791940595674, 2.4497757462845, 2.4615391505608, 2.47320480678957, 2.4847601322214, 2.49620408246273, 2.50752668443819, 2.51871060672102, 2.5297596074038, 2.54067584282881, 2.55144664044525, 2.56207261663909, 2.57254204204221, 2.58285360931613, 2.59300361000181, 2.60298551195721, 2.61279323256054, 2.6224286470533, 2.63188354354167, 2.64115762996102, 2.65024527504853, 2.65912810778427, 2.66782060123297, 2.67631755269486, 2.68461815999178, 2.69271817986727, 2.70062213382974, 2.70831871725709, 2.71581770156889, 2.72310883251496, 2.73019894373201, 2.73707865846449, 2.74375568118252, 2.75022140641828, 2.75648433771688, 2.76253232665129, 2.76837869241064, 2.77400770979689, 2.77943316921774, 2.7846347466576, 2.78961027235924, 2.79437303506795, 2.79892953960913, 2.80327862430555, 2.80741548398516, 2.81134322510281, 2.81505764409859, 2.81856591128218, 2.82186444735045, 2.82495695789317, 2.82783721427689, 2.83051212126031, 2.83297633132674, 2.83523639953662, 2.8372877156902, 2.83913143401513, 2.84077094014203, 2.84220512105643, 2.84338239396761, 2.84453752539754, 2.84569170133826, 2.84684594137068, 2.84800140850567, 2.84915737319923, 2.85031344233642, 2.85146887884798, 2.85262696721866, 2.85378303053006, 2.85494041625843, 2.85609851104183, 2.85725669775932, 2.85841651300168, 2.85957503865203, 2.86073384714995, 2.86189466638097, 2.86305449974859, 2.86421506638288, 2.86537569117408, 2.86653838525032, 2.86769978356148, 2.86886195554912, 2.87002416833799, 2.87118870499014, 2.87235206291314, 2.87351642567287, 2.87468120313107, 2.87584574300883, 2.87700920982724, 2.87817424036366, 2.87934030037972, 2.880506679293, 2.88167640401134, 2.88284155564091, 2.88400866295102, 2.88517716959085, 2.88634646120449, 2.88751592098892, 2.88868480884237, 2.88985237467466, 2.89102661665717, 2.89219376110607, 2.89336648561349, 2.89453497549384, 2.895707904823, 2.89687997662864, 2.89805545284443, 2.89922873972961, 2.90039879683353, 2.90157572463167, 2.90274806501943, 2.90392049668863, 2.90509824676344, 2.90627496465686, 2.90744978512103, 2.90862824445576, 2.90980342588609, 2.91098091930798, 2.91216025898202, 2.91333379520812, 2.91451474592521, 2.91569566571787, 2.91687578300107, 2.91805431552053, 2.91923034618551, 2.92041104624385, 2.92141282611799, 2.92259748894795, 2.92377684076637, 2.92496752931683, 2.92615159941094, 2.92733703087574, 2.92852325524016, 2.92970958073521, 2.93089524852177, 2.93208979416362, 2.93327213905911, 2.93446206595989, 2.93564847728727, 2.93684161114483, 2.93802978805933, 2.93922366236317, 2.94041080702049, 2.94160236434546, 2.94279806654809, 2.94398427376105, 2.94517293468467, 2.94637732449283, 2.94756988100288, 2.94876318656724, 2.94995654384797, 2.95114925098669, 2.95234047346702, 2.95352936452941, 2.9547313446324, 2.9559301177744, 2.95712457557147, 2.95833123099914, 2.95951433263599, 2.96072642625698, 2.96191259644968, 2.96310852156839, 2.96431434309621, 2.96550991642039, 2.96671434950427, 2.96790632397305, 2.96910584323222, 2.97031288839944, 2.97152742012084, 2.9727258335987, 2.97392991530171, 2.97513951470086, 2.97632893885952, 2.97754748893125, 2.97874405828706, 2.97994290437603, 2.98114356152975, 2.98234550965926, 2.98357737374197, 2.98478124669835, 2.98598439797552, 2.98718591838467, 2.98838495124345, 2.98961366346154, 2.99080627211428, 2.9920279941566, 2.99324532515824, 2.99445681071514, 2.99445681071514] new(construct_interpolant(fi, Ai)) end end """ struct SiteAmpAlAtikAbrahamson2021_ask14_760 <: SiteAmplification Implementation of the Al Atik & Abrahamson (2021) amplification function for the Abrahamson _et al._ (2014) GMM, for Vs30 = 760 m/s """ struct SiteAmpAlAtikAbrahamson2021_ask14_760 <: SiteAmplification amplification::Function function SiteAmpAlAtikAbrahamson2021_ask14_760() fi = @SVector [0.001, 0.102329291629789, 0.104712890010164, 0.107151914957207, 0.109647813102497, 0.112201836659156, 0.114815393694835, 0.117489795185623, 0.120226421637391, 0.123026889157653, 0.125892536389367, 0.128824935296206, 0.13182570291595, 0.134896294354494, 0.138038411921428, 0.141253715584794, 0.144543993245758, 0.147910831725714, 0.151356107872253, 0.154881694399225, 0.158489303339742, 0.162180978112495, 0.165958692627976, 0.169824387200124, 0.173780087479412, 0.177827987159618, 0.181970098272324, 0.186208709701579, 0.1905460700907, 0.194984407472064, 0.199526184904639, 0.204173763555912, 0.208929612563225, 0.213796165486253, 0.218776181039101, 0.223872120331069, 0.229086778100748, 0.234422848322377, 0.239883277899045, 0.245470899315408, 0.251188601619759, 0.257039480147694, 0.263026791244529, 0.269153392326978, 0.275422840939865, 0.281838278374961, 0.288403066962298, 0.295120927437312, 0.301995171485957, 0.309029453737916, 0.316227724229087, 0.323593559416164, 0.331131050939781, 0.338844123996532, 0.346736740907403, 0.354813422978372, 0.363078118172697, 0.37153517036869, 0.380189278371953, 0.389045079100575, 0.398107032945674, 0.407380141046479, 0.416869301624597, 0.426579390461964, 0.436515671631233, 0.446683430400802, 0.457088039005123, 0.46773511556702, 0.478629897807854, 0.489778872693707, 0.50118719863843, 0.512861176181064, 0.524807303576546, 0.537031671638095, 0.549540677985814, 0.562341420837777, 0.575439915771869, 0.588843687408805, 0.602559095335443, 0.616594498178253, 0.630956838282629, 0.645654416042027, 0.660693435579826, 0.676082666603497, 0.691830720734741, 0.707945795957969, 0.72443532781887, 0.741309624084325, 0.758577203919982, 0.77624745769222, 0.794328291514734, 0.812830676987017, 0.831763916668987, 0.851137859274074, 0.870962885444047, 0.891249875528529, 0.912010167053346, 0.933253679988854, 0.954992166274483, 0.977237551755246, 0.999999168813753, 1.0232925177164, 1.04712953459331, 1.07151857211678, 1.09647732276226, 1.12201805278287, 1.14815183764178, 1.17489782100591, 1.20226477971155, 1.23026962056445, 1.25892432815131, 1.28825074454752, 1.31825825555489, 1.34896263627262, 1.38038268450569, 1.41253552190051, 1.44544086549261, 1.47910458530454, 1.51356159519225, 1.54881530453188, 1.58489389973832, 1.62180870243341, 1.65958562234269, 1.69824588904663, 1.73779618369895, 1.77827624579108, 1.8196950734287, 1.86208930506452, 1.90545964702916, 1.94984645250691, 1.99526156164151, 2.04173991259483, 2.08929510892326, 2.137953540857, 2.18775791681998, 2.23871166806337, 2.29086258407858, 2.3442317459986, 2.39882309610215, 2.45471229794924, 2.51188920081331, 2.57039958766811, 2.63027351343954, 2.69154338255738, 2.7542199774598, 2.8183904204513, 2.88401933081082, 2.95120421062146, 3.01993722938914, 3.0903013725065, 3.1622906167405, 3.23592899478649, 3.31131792994546, 3.38845538724139, 3.46737641623156, 3.54811898133175, 3.63077222275196, 3.7153395206109, 3.80187246745282, 3.89042877823982, 3.98107343300018, 4.0738177070868, 4.16866925869073, 4.26577105198063, 4.36514527469599, 4.46681233698773, 4.57087241800643, 4.67735553529616, 4.7862938382588, 4.89782051909636, 5.01186817841011, 5.12857475720548, 5.24810170023344, 5.37028292809851, 5.49540706428733, 5.6234241270191, 5.75440312419696, 5.8884201663215, 6.02555999282607, 6.16591694805352, 6.3095969885328, 6.45646411719527, 6.60690986461733, 6.7607663559943, 6.91819515641402, 7.07936445998824, 7.2442336646087, 7.4129855022168, 7.58582915560075, 7.76246351980547, 7.94336389185347, 8.12819629982869, 8.31748830322892, 8.51120311935212, 8.70963007766765, 8.91236851110203, 9.12007863057234, 9.3323253763062, 9.54985042066809, 9.77218486971381, 10.0001661852962, 10.2327950905944, 10.4714698810819, 10.7151053301551, 10.9646942099711, 11.2202000511668, 11.481556688206, 11.7486642307561, 12.0228136506425, 12.3025402876746, 12.5892110270895, 12.882800311789, 13.1823742451315, 13.489549091985, 13.8033527682673, 14.1256461792077, 14.4543590459429, 14.7914832545465, 15.1358306960742, 15.4884466073567, 15.849255728102, 16.218139360028, 16.5963896654057, 16.9824668860576, 17.3777129943964, 17.7820306844788, 18.197062425104, 18.6209884397816, 19.0535517185925, 19.4986028224736, 19.9519735653357, 20.4178297858679, 20.8938834506942, 21.3798774703834, 21.8781767449478, 22.3859358255223, 22.9086386304349, 23.4434555840424, 23.9868906474195, 24.4617728210289, 25.030627194913, 25.6181897205504, 26.2130148419347, 26.8266427207605, 27.455172621907, 28.0937811170387, 28.751449890638, 29.4234015101268, 30.1092477949067, 30.8142629304006, 31.5326307205745, 32.2700319384226, 33.019847133834, 33.7952661610636, 34.5823741527521, 35.3877712008252, 36.2111912675171, 37.0609536812008, 37.9287301761387, 38.8139433054402, 39.7158673476879, 40.6442831286205, 41.5997404939946, 42.5709162935017, 43.5564642909024, 44.5810126496729, 45.6191146627162, 46.6833433167586, 47.7736556953069, 48.8898915488733, 50.0317617900903, 51.1988284390013, 52.3904910767017, 53.6257146986582, 54.86494081583, 56.1476929120039, 57.4528069787863, 58.8029351241702, 60.1743686855608, 61.5919359491351, 63.0290608028603, 64.4831587917317, 65.9825678305874, 67.5286047970775, 69.1225735455047, 70.7292127373549, 72.3826406821742, 74.0837712670898, 75.7908268990384, 77.5877527784319, 79.3872762217308, 81.2324006210061, 83.1231186036943, 85.0592352916312, 87.0403434241269, 89.0657885682727, 91.1988372294617, 93.31288331588, 95.4676758375373, 97.736133375685, 99.9701348747591, 1e3] Ai = @SVector [1.0, 1.06703864090064, 1.06875586797083, 1.07052163674707, 1.07233767092153, 1.07420559831727, 1.07612720782859, 1.07810426753169, 1.08013864965441, 1.08223245944135, 1.08438765651816, 1.08660643976537, 1.08889111257429, 1.09124392886396, 1.0936674099055, 1.09616412964452, 1.09873685225255, 1.10138828109655, 1.10412144985124, 1.10693950131562, 1.10984556771971, 1.1128431741543, 1.11593592797726, 1.11912755522829, 1.12242200847979, 1.12582355013723, 1.12933647239317, 1.13296549688731, 1.13671552415173, 1.14059166416224, 1.14459947837975, 1.14874470649292, 1.15303347155909, 1.15747217527575, 1.16206785456776, 1.16682764058575, 1.1717593713337, 1.17687122452897, 1.18217209241337, 1.18767127364443, 1.1933786811155, 1.19930504685837, 1.20546194467564, 1.21186127452283, 1.2185164725599, 1.22544143262654, 1.2326512596971, 1.24016254091402, 1.24799260877242, 1.25616050094805, 1.26468707947706, 1.2735944077208, 1.2829069921853, 1.29265118602082, 1.30285389938649, 1.31343991498885, 1.32435199509725, 1.33559513989266, 1.34716756579281, 1.35906051889546, 1.37125849333225, 1.38374060422001, 1.39648017467787, 1.4094453018432, 1.42259992584518, 1.43590386337062, 1.4493134964406, 1.46278257976503, 1.4762620608898, 1.48970313149132, 1.50305925969573, 1.51629469007934, 1.52938261848903, 1.54230348253616, 1.55504478055455, 1.56759746094461, 1.57995140591516, 1.59212079860389, 1.60411040817598, 1.61592672351486, 1.62757481023298, 1.63906073226851, 1.65038876459038, 1.66156504265066, 1.67259543567938, 1.68348536624952, 1.69423966460146, 1.70486495800563, 1.71536659731093, 1.72575036157773, 1.73602109634979, 1.74618529536434, 1.75624844105561, 1.76621620848404, 1.77609444960205, 1.78588917663348, 1.79560652952295, 1.80525187170047, 1.81483135608769, 1.82435110438271, 1.83380601841381, 1.84321060533599, 1.85257372146419, 1.86189989720152, 1.87119722716341, 1.88047164444702, 1.88972866173761, 1.89897657283838, 1.90822005722035, 1.91746655581289, 1.92672185454918, 1.93599454630268, 1.94528802955623, 1.95460611351215, 1.96395205545783, 1.97332730096478, 1.98273292143254, 1.99216504568077, 2.00162710949167, 2.01111304111233, 2.02062288684835, 2.03015160820196, 2.03969749825877, 2.04925721106831, 2.05882351678941, 2.06839692816824, 2.07797039280434, 2.08754308076974, 2.09710589275194, 2.1066585347477, 2.11619441379135, 2.12571175557418, 2.13520445916782, 2.1446690118278, 2.15410507762589, 2.16350489052618, 2.17286898918743, 2.18219307462439, 2.19147010421682, 2.20070531634737, 2.20988960997688, 2.21902327005749, 2.22810402779576, 2.23713014542967, 2.24609682660765, 2.25501024943307, 2.26385952749534, 2.27265206044218, 2.2813812360854, 2.29005222814591, 2.29865916703363, 2.30720011746131, 2.31568211747521, 2.32410039642848, 2.33245450833281, 2.34074443847271, 2.34897537825235, 2.35714380777201, 2.36525112972899, 2.37329932311726, 2.38129096270607, 2.38922384784986, 2.39709585164769, 2.40491607654021, 2.41268355383092, 2.42039742245455, 2.42806297630066, 2.4356801397874, 2.4432482878922, 2.45077192942042, 2.45824908637873, 2.46568721066236, 2.47309486262213, 2.48046030626912, 2.48779963178117, 2.49510858410167, 2.50239001812315, 2.50964719361091, 2.51688373994356, 2.52410380233782, 2.53131197866005, 2.53847199813543, 2.54567344943883, 2.55289148164837, 2.56012610679884, 2.56738118224535, 2.57465113016471, 2.58194018564737, 2.58925340653725, 2.59657426728633, 2.60391872734924, 2.6112694708612, 2.61864366195085, 2.62603595781132, 2.63345331423361, 2.64087701333467, 2.64832730374271, 2.65578474655584, 2.66327146067633, 2.67076739569765, 2.67829669322392, 2.6858224787706, 2.6933861205713, 2.7009492293435, 2.70853884164594, 2.71614966449537, 2.72377572648241, 2.73141037067914, 2.73908620702659, 2.74675827002529, 2.75446014579853, 2.76218683742717, 2.7699100106748, 2.77766734440365, 2.7854302232962, 2.79324032632552, 2.80104324587815, 2.80888175823791, 2.81672477235592, 2.82459207194985, 2.83247784701687, 2.84037545866793, 2.84830823844775, 2.8562398498425, 2.86419400677171, 2.87216448824192, 2.88017916580779, 2.88819854391081, 2.89621418090161, 2.90429286386946, 2.91235462550598, 2.92046936044239, 2.92859258203706, 2.9367161877715, 2.94487552787013, 2.95301996803807, 2.96123304387097, 2.96946515777201, 2.97765917855897, 2.98467401591372, 2.99293053573537, 3.00128425508161, 3.00956834985056, 3.01793944199022, 3.02633874110576, 3.03469831060109, 3.04313136509235, 3.05157156429415, 3.06001024454111, 3.0685075676036, 3.07698897569764, 3.08551723420504, 3.0940118092181, 3.10261703281621, 3.11117372728503, 3.11975023387862, 3.12833938497636, 3.1370223080821, 3.14570846940482, 3.15438835859857, 3.16305136839715, 3.17178669857566, 3.18059320558372, 3.18936213624136, 3.19807901730661, 3.20695586331613, 3.21576683056899, 3.22461519007999, 3.23349546791687, 3.24240152116193, 3.2513263387366, 3.26026211950977, 3.26920006983149, 3.27827611014175, 3.28719598262357, 3.29624070601799, 3.30525544156978, 3.31439112122328, 3.32348222079511, 3.33268797330732, 3.34183110712135, 3.35089374047133, 3.36004796521199, 3.36929457925546, 3.37863434820875, 3.38785704285932, 3.39715515061964, 3.40652726934536, 3.41574060072069, 3.42524186793735, 3.434563876053, 3.44392739058654, 3.45332707129066, 3.46275674855456, 3.4722093556338, 3.48167703081897, 3.49144617416317, 3.50093264847628, 3.51040514481747, 3.5201753622639, 3.52959082307405, 3.52959082307405] new(construct_interpolant(fi, Ai)) end end """ struct SiteAmpAlAtikAbrahamson2021_ask14_1100 <: SiteAmplification Implementation of the Al Atik & Abrahamson (2021) amplification function for the Abrahamson _et al._ (2014) GMM, for Vs30 = 1100 m/s """ struct SiteAmpAlAtikAbrahamson2021_ask14_1100 <: SiteAmplification amplification::Function function SiteAmpAlAtikAbrahamson2021_ask14_1100() fi = @SVector [0.001, 0.0977009871629398, 0.0999999974066191, 0.102329292723223, 0.10471289115513, 0.107151916156133, 0.109647814357927, 0.112201837973753, 0.114815395071387, 0.117489796627051, 0.12022642314675, 0.123026890738146, 0.125892538044346, 0.128824937029181, 0.131825698037974, 0.134896294629028, 0.138038396066939, 0.141253712785238, 0.144543994114778, 0.147910821002263, 0.151356111737264, 0.15488169624427, 0.158489284937044, 0.162180990779373, 0.165958686142594, 0.169824397487713, 0.173780077682896, 0.177827989905068, 0.181970075789458, 0.186208696802254, 0.190546089530823, 0.194984390967264, 0.19952619872714, 0.204173791156713, 0.208929578476893, 0.213796157219783, 0.218776182483442, 0.223872073974258, 0.229086805382967, 0.234422887101731, 0.239883242654684, 0.245470849447296, 0.251188575845802, 0.257039494058099, 0.263026750987176, 0.269153396051622, 0.275422838647827, 0.281838211787, 0.288403047254166, 0.295120911515252, 0.30199515230416, 0.309029461082775, 0.316227810959307, 0.323593528220054, 0.331131014939867, 0.338843995274008, 0.346736787224427, 0.354813408075398, 0.363078003101169, 0.371535229845431, 0.380189370412531, 0.389045015362505, 0.398107129653939, 0.407380169972867, 0.416869387998658, 0.426579460490376, 0.436515642062981, 0.446683603942946, 0.457088011726756, 0.467735030372381, 0.478630059436938, 0.48977886174253, 0.501186900923732, 0.512861101135527, 0.524807426977635, 0.537031806989445, 0.549540539495192, 0.562341256619687, 0.575439855356368, 0.588843529560242, 0.602559464658751, 0.616594793588158, 0.630957122685767, 0.645653967098973, 0.660693346609629, 0.676082476533705, 0.691830380094231, 0.707945190893355, 0.724435846540562, 0.741309834383654, 0.758576929235547, 0.776246740734158, 0.794327667258409, 0.812830478038647, 0.831763668856544, 0.851138257025319, 0.870963800915754, 0.891250342744557, 0.912011002228203, 0.933253426960802, 0.954992169704093, 0.977237337184143, 0.999999431520578, 1.02329258802432, 1.04712873284538, 1.07151870290434, 1.09647737309909, 1.12201694252587, 1.14815218303086, 1.17489685409032, 1.20226345909574, 1.23026747271141, 1.25892554890496, 1.28824801873988, 1.31825585970448, 1.34896088340374, 1.38038380739445, 1.41253790846537, 1.44543991146322, 1.47910741518123, 1.51355897881738, 1.54881424565928, 1.58489013888922, 1.62180826292029, 1.65958737746723, 1.69824256006834, 1.73779828792432, 1.7782759683263, 1.81969809878839, 1.86208300469775, 1.90546073274021, 1.94984206152573, 1.99525798039047, 2.04173612727008, 2.08929487780124, 2.13796268150687, 2.18775720016312, 2.23872156828875, 2.29086319409698, 2.34422279927247, 2.39882720656895, 2.45470437951388, 2.5118831262352, 2.57039286287139, 2.63026340393243, 2.69153643345486, 2.75423092461459, 2.81837601483687, 2.88402755531517, 2.95120221165731, 3.01994301176439, 3.0902943436397, 3.16226791918128, 3.23592343978858, 3.31130639900788, 3.38844346520425, 3.46735829075066, 3.54813796982173, 3.63076229148808, 3.71534669081613, 3.801892180906, 3.89044610656452, 3.98105751405223, 4.07380854238369, 4.16869221231179, 4.26579468976477, 4.36513953987965, 4.46682411265725, 4.57087674263924, 4.67732286510221, 4.78627663067936, 4.89777211817101, 5.01184183117266, 5.12862521542859, 5.24805454537812, 5.37028060850859, 5.49541580776269, 5.62338453092948, 5.75437227828415, 5.88844607464468, 6.02559802172859, 6.16589398182084, 6.30958607432139, 6.45649876349053, 6.60690890495408, 6.760828758235, 6.91826280879999, 7.0794443841581, 7.24439895822411, 7.41301413135051, 7.58570315772501, 7.7623709696718, 7.94320167603534, 8.12824505786064, 8.31755037303491, 8.51135148759121, 8.70953361675237, 8.91256121414362, 9.12012223126881, 9.33243620666656, 9.54994255437179, 9.77238579015416, 9.99998079300324, 10.232879861281, 10.4712538288613, 10.7152949734939, 10.9648844956418, 11.2202146864893, 11.4815052803655, 11.7490074721504, 12.0225917857968, 12.3025220369835, 12.589103564177, 12.8821971342623, 13.1826526141445, 13.4892888965139, 13.8035425565483, 14.1253154493635, 14.4544590583405, 14.7907677635153, 15.1354174421594, 15.4882980859825, 15.8484371645514, 16.2180328252238, 16.5961517672835, 16.9825665808237, 17.3779810898009, 17.7821741443577, 18.1970908347437, 18.6203446881932, 19.053982058617, 19.4978468737616, 19.9531057948348, 20.4167255747922, 20.8927512271844, 21.3795343032608, 21.8767465388772, 22.3876321461927, 22.9083678904629, 23.4424212027064, 23.987524339405, 24.4611328388709, 25.0316992744836, 25.6170945647467, 26.2146717990403, 26.8266726818231, 27.4528300428137, 28.0927699486552, 28.7493251169649, 29.4223987334913, 30.108087751031, 30.813343104761, 31.5300579809116, 32.2657695904908, 33.0204385313945, 33.7939274806613, 34.5808256137391, 35.3908395432242, 36.212760526797, 37.0632487171366, 37.9240601780719, 38.8135353154471, 39.7182173175756, 40.6442660545585, 41.5912069613362, 42.5668541119602, 43.5627905245868, 44.5780338296613, 45.6213470331911, 46.6823109274263, 47.770375329313, 48.885319197145, 50.026760373473, 51.1941325267533, 52.4005309523462, 53.617862354211, 54.873591949379, 56.1522828539384, 57.469459825696, 58.807519879041, 60.1833856512864, 61.5769801307731, 63.0282396696194, 64.4949557174051, 65.9973082892216, 67.534697485468, 69.1064003046458, 70.7394762496497, 72.3771421349366, 74.0762326373562, 75.8061756762341, 77.5645386722037, 79.3856821717277, 81.2327436035212, 83.1435705160823, 85.0764783644605, 87.0731307538662, 89.0863780489238, 91.1620407295812, 93.3015037249044, 95.5060564600769, 97.7157245280178, 99.986853832442, 1e3] Ai = @SVector [1.0, 1.07272009904468, 1.07461824650246, 1.07655171146224, 1.07854109520397, 1.08058819823652, 1.0826951497798, 1.08486397812369, 1.08709690939917, 1.08939615726736, 1.09176406893817, 1.09420327652032, 1.09671625725455, 1.09930578290889, 1.10191017953457, 1.10452493872894, 1.10715174175041, 1.10979243811057, 1.11244890835546, 1.11512289913659, 1.11781643572506, 1.12053128512129, 1.12326817918572, 1.12602703376797, 1.12880658505047, 1.13160477706513, 1.13441869676906, 1.13724495190875, 1.14007928263506, 1.14291720161923, 1.14575415957275, 1.14858592660218, 1.1514089643221, 1.15421987995924, 1.15701571909552, 1.15979392670495, 1.16255225966834, 1.1652885983998, 1.16800137297815, 1.1706889570505, 1.1733501619506, 1.1759840652315, 1.17858995753545, 1.18116744880569, 1.1837163884907, 1.18623676205161, 1.1887288695556, 1.19119303022579, 1.19362984302879, 1.19604001630278, 1.19842427160126, 1.20078352793097, 1.20311886539246, 1.20543119825006, 1.20772183720017, 1.20999191388274, 1.21224273635681, 1.21447550065783, 1.21669141739463, 1.21889180892343, 1.22107784804006, 1.22325078247076, 1.22541190626654, 1.22756238349845, 1.2297035270306, 1.23183650163022, 1.23396258564557, 1.23608311850285, 1.23819921920532, 1.24031229009923, 1.24242356583984, 1.24453433506328, 1.24664581247653, 1.24875948751423, 1.25087663538713, 1.25299853195304, 1.25512650122771, 1.25726208863782, 1.25940652727078, 1.26156125549539, 1.26372771341754, 1.26590732199988, 1.26810155720129, 1.27031189425135, 1.27253985810081, 1.27478687788863, 1.27705462288155, 1.27934276014941, 1.28165462411655, 1.28399198654355, 1.28635664067962, 1.28875037455688, 1.29117481695682, 1.29363193024651, 1.29612338951354, 1.29865122116436, 1.30121727928775, 1.30382351199079, 1.30647227682148, 1.30916528339693, 1.31190513928398, 1.31469392835841, 1.31753382854405, 1.32042751764099, 1.3233774564062, 1.32638600650979, 1.32945610373235, 1.3325904068269, 1.3357919662761, 1.33906372372302, 1.34240837939107, 1.34582891467241, 1.34932837994988, 1.35290898209872, 1.35657421353127, 1.36032641355398, 1.36416901384907, 1.36810455249425, 1.37213602407855, 1.37626657040445, 1.38049951606509, 1.38483839009469, 1.38928649325937, 1.39384780778565, 1.39852608936178, 1.40332475364739, 1.40824856544542, 1.41330205729258, 1.41849009964461, 1.42381723127328, 1.42928970963458, 1.43491029213688, 1.44068661703736, 1.44662599002522, 1.45273328458737, 1.45901308812765, 1.46546705130721, 1.47209871424575, 1.47890568795647, 1.48588873879748, 1.4930457675397, 1.50037382724259, 1.50786922046871, 1.5155275540678, 1.52334376876346, 1.53131376413294, 1.53942995149464, 1.54768560954972, 1.55607705944115, 1.56459529185976, 1.57323440509721, 1.58198845237596, 1.59084726340846, 1.59980654657903, 1.60886015557629, 1.61799967868031, 1.6272164217661, 1.63650914557563, 1.64586429703662, 1.65528391515161, 1.66475725330086, 1.67427892813077, 1.68384389875844, 1.69345075089038, 1.70308898687821, 1.71275793566168, 1.72245078705748, 1.73216819740151, 1.7419043416768, 1.7516534515231, 1.76141811934267, 1.77119384316637, 1.78097628509195, 1.79077051451167, 1.80056435016061, 1.81036399461194, 1.8201724868708, 1.82997835699894, 1.83979059989863, 1.84960922116068, 1.85942898812654, 1.86925038215246, 1.87908693190678, 1.88892282798721, 1.89877320923897, 1.90863559957257, 1.91850741363785, 1.92840065402361, 1.93831442165585, 1.94823997845153, 1.95819986775019, 1.96818692768151, 1.9782102887716, 1.98827162803559, 1.99837290811246, 2.00852605664248, 2.01872488554179, 2.02899325647068, 2.03931573558146, 2.04967418993201, 2.0601133763512, 2.07060372382565, 2.08113528731286, 2.09170972954, 2.10232933167292, 2.11299710662163, 2.12370244067942, 2.13444816749834, 2.14523802190605, 2.15607680791983, 2.1669537059346, 2.17787370041792, 2.1888430487277, 2.19985080665347, 2.21092307478773, 2.22201077493362, 2.23316030693854, 2.24436218544429, 2.2556054542483, 2.26687757989132, 2.27821218094849, 2.28959953097319, 2.3010027281741, 2.31248545169504, 2.32401250633251, 2.33557124555343, 2.34717697245005, 2.35881738764232, 2.37054226352417, 2.3822781308288, 2.39407600270815, 2.4059253507225, 2.4178508849077, 2.42976745923843, 2.44177306889645, 2.45381964595755, 2.46589329495152, 2.47806620561788, 2.49024109523032, 2.50249301689143, 2.51476373848892, 2.52522141545063, 2.53761560316165, 2.55010070088297, 2.56260604499172, 2.57517234514276, 2.58778760568597, 2.60043804807758, 2.61317290555668, 2.62598316336768, 2.63878838235406, 2.65171176644399, 2.6645984212046, 2.67757777859987, 2.69064164695608, 2.70378040744139, 2.71689614902714, 2.73014380516897, 2.74333383153553, 2.75672624835215, 2.77002707680706, 2.78351299093379, 2.79697254163969, 2.81049145410968, 2.82405589121605, 2.83776993956185, 2.85150757506944, 2.86524932646822, 2.87910670960228, 2.89293465834964, 2.90684990634723, 2.92084194148866, 2.9348985163986, 2.94900553381421, 2.96331261610237, 2.97748015891666, 2.99182138611405, 3.00615236768523, 3.02063939169015, 3.03508181862186, 3.04965531487661, 3.06414077639189, 3.07894459447328, 3.09362811047786, 3.10838779315418, 3.12321003239785, 3.13807573868171, 3.15323511660044, 3.16815460160513, 3.18334535102935, 3.19852502461294, 3.21366680703337, 3.22905782659867, 3.24437839387357, 3.25993439598707, 3.27537896464421, 3.29103764303801, 3.30653383328533, 3.32221368542922, 3.33807718010097, 3.35412348943361, 3.36991091436369, 3.3858217188871, 3.3858217188871] new(construct_interpolant(fi, Ai)) end end """ struct SiteAmpAlAtikAbrahamson2021_bssa14_620 <: SiteAmplification Implementation of the Al Atik & Abrahamson (2021) amplification function for the Boore _et al._ (2014) GMM, for Vs30 = 620 m/s """ struct SiteAmpAlAtikAbrahamson2021_bssa14_620 <: SiteAmplification amplification::Function function SiteAmpAlAtikAbrahamson2021_bssa14_620() fi = @SVector [0.001, 0.0988597583233483, 0.10000000905698, 0.102329313938003, 0.104712907225502, 0.107151928415835, 0.109647833806917, 0.112201853536817, 0.114815416755257, 0.11748980899071, 0.120226447690601, 0.123026907889884, 0.125892549490764, 0.128824947136627, 0.131825713083256, 0.134896318640697, 0.138038418217646, 0.141253742621104, 0.144544010331342, 0.147910858264061, 0.151356135757439, 0.154881715984271, 0.158489343800596, 0.162181024977386, 0.165958714245848, 0.169824426384122, 0.173780119618491, 0.177828026653765, 0.181970149492778, 0.186208745413493, 0.190546136191941, 0.194984472771739, 0.199526244867303, 0.204173849648116, 0.208929632051863, 0.213796259156406, 0.218776225790489, 0.223872160502327, 0.229086863604599, 0.234422963882157, 0.239883331593177, 0.245470952735973, 0.251188631268231, 0.257039566972664, 0.263026867052165, 0.269153479193755, 0.275422981993268, 0.281838430665289, 0.288403183240027, 0.295121036430249, 0.30199532016941, 0.309029681385659, 0.316227959453922, 0.323593815430701, 0.331131125293165, 0.33884413965573, 0.346736844105946, 0.354813571718636, 0.363078097884058, 0.37153533489662, 0.380189432953379, 0.389045387684826, 0.398107382434792, 0.40738045458149, 0.416869559055489, 0.426579848570301, 0.43651596623884, 0.44668400463115, 0.457088385344204, 0.467735261703718, 0.478630157887024, 0.489778747086552, 0.501187335766022, 0.512861581142204, 0.524807498332346, 0.537032210612533, 0.549540852571808, 0.562341870630425, 0.57544046521564, 0.588844308449063, 0.602559995333324, 0.616595844987953, 0.630957558958681, 0.645654794797108, 0.660694177542891, 0.676083899673177, 0.691830990537161, 0.707945672573651, 0.724437042167066, 0.741310651761912, 0.758578903635447, 0.776248662527666, 0.794328058553149, 0.812831315341774, 0.831763429555492, 0.85113774549701, 0.870964759497601, 0.89125283141736, 0.912012782125235, 0.933254304756467, 0.954991789969289, 0.977238521026131, 1.0000023432413, 1.02329199301602, 1.04713005392984, 1.07152077887013, 1.09647780112639, 1.12202176953535, 1.14815566129574, 1.17489868642837, 1.20226720726246, 1.23026752889531, 1.25892566850813, 1.28825121936761, 1.31825790247562, 1.34896343274778, 1.38038719333504, 1.41253637652755, 1.44544512052703, 1.47910568445794, 1.51356696971057, 1.54882323535081, 1.58489888950969, 1.62180984611921, 1.65958587061972, 1.69824796089502, 1.73780552331717, 1.77828217420365, 1.81970422254956, 1.86208515275049, 1.9054724229932, 1.94985012740896, 1.99527070787577, 2.04173630344276, 2.0893083951811, 2.13797175768858, 2.18777328777465, 2.23871864068967, 2.29087073444947, 2.34423024579319, 2.39883177562053, 2.45471482650006, 2.51189259796148, 2.5704096362536, 2.63028194393451, 2.69152489765904, 2.75422829217587, 2.81837812414992, 2.88403590342629, 2.95122773545922, 3.01998066568673, 3.09032260868609, 3.16228244386608, 3.23594330407204, 3.31134484354241, 3.38847095643201, 3.46735834163272, 3.54817498394486, 3.63078349322634, 3.71536572639437, 3.80190149002748, 3.8904465796713, 3.98106213681025, 4.07381551219341, 4.16869054376005, 4.2658511826137, 4.36518885955019, 4.46687936557587, 4.57090821709747, 4.67736536907894, 4.78635192086503, 4.89785462271124, 5.01184961533696, 5.12857918519133, 5.24806034044961, 5.3703242692595, 5.49549088729441, 5.62338735195922, 5.75448188593756, 5.88839072224789, 6.0256295160731, 6.16597957071741, 6.30960270593151, 6.45668573120628, 6.60695695440333, 6.76084384119688, 6.91831606724392, 7.07960762923677, 7.24439292930821, 7.41320680717793, 7.58569585774497, 7.76246077056568, 7.94348611541068, 8.12835237807942, 8.31775252136749, 8.51123657664752, 8.70959011881566, 8.91280701501557, 9.12036374628954, 9.33265604127413, 9.55015246249384, 9.77224591631989, 10.0000125297722, 10.2328175845497, 10.4712208696213, 10.7151748001665, 10.9646022666217, 11.2201783962418, 11.4818755272534, 11.7487660694211, 12.022458611423, 12.3029582831401, 12.5892293159785, 12.8821305829416, 13.1826882436444, 13.4897550794907, 13.8044007269437, 14.1252831922455, 14.4548879516212, 14.7918546960737, 15.1360273793202, 15.488804126609, 15.8484759238666, 16.2182817980509, 16.5965079631525, 16.9830034334309, 17.3775626417757, 17.7820985331221, 18.1966079272567, 18.6210449358712, 19.0553168235015, 19.499277325153, 19.9527202232158, 20.4183315756054, 20.8930982542792, 21.3798880657389, 21.8786989662917, 22.3894775667764, 22.9082936233792, 23.4424310548708, 23.9879960081905, 24.460383892312, 25.0326798266495, 25.6158540067528, 26.2145168077636, 26.8287704886367, 27.4529619590147, 28.0982185506974, 28.7527007922617, 29.4219449727912, 30.1126649436645, 30.8108103109316, 31.5303245328492, 32.2717738292055, 33.0185315147938, 33.7956233897451, 34.5857748541972, 35.3879391515523, 36.2219479825103, 37.0673806362718, 37.9227145659252, 38.8107470771415, 39.7202499156505, 40.6510388144964, 41.6028169233534, 42.5751549892028, 43.5674822949736, 44.5790713196024, 45.6265840882283, 46.6930952545201, 47.7774087260323, 48.8985833402475, 50.0364866202866, 51.2119943690208, 52.4025439343416, 53.6309809757702, 54.8720174783855, 56.1506397828695, 57.4677958921276, 58.8244100721625, 60.1888854751973, 61.5912822397116, 63.0321122532365, 64.5118013476349, 65.9908327291353, 67.5471812303265, 69.142876649141, 70.7313612927305, 72.4030445720195, 74.0616476165949, 75.8068914427253, 77.5886895663998, 79.4057707792604, 81.2565744543678, 83.1391628600678, 85.0512132395375, 87.0635050988493, 89.1065997043318, 91.1772654809007, 93.3575399968966, 95.475486683051, 97.7030783533799, 100.049025578562, 1e3] Ai = @SVector [1.0, 1.16852001022416, 1.17079775558813, 1.17549243576777, 1.18035547957409, 1.18539461708148, 1.19061868119862, 1.1960365289652, 1.20165797121848, 1.20749309515359, 1.21355290678476, 1.21984946681944, 1.22639509922126, 1.23312093381688, 1.24002947681618, 1.24713134299229, 1.25443816901358, 1.2619624592546, 1.26971741940921, 1.27771686651422, 1.28597600573522, 1.29451111209051, 1.30333920927558, 1.3124791779239, 1.32195116574899, 1.331776707716, 1.34197893269775, 1.35258350017443, 1.36361750527889, 1.37510904143418, 1.38708171703191, 1.39955296281825, 1.4125356109455, 1.42603688229788, 1.44005869074998, 1.45459892974749, 1.46965020833269, 1.48520096709046, 1.50123586514995, 1.51773493846986, 1.53467480819576, 1.55202818636721, 1.5697632073289, 1.58784565595421, 1.60623781051806, 1.62489866043229, 1.6437868179371, 1.66285738790428, 1.68206487297593, 1.70136404384849, 1.72070760504375, 1.74004892012907, 1.75934194810429, 1.77854057540207, 1.79759995294883, 1.81647718025617, 1.83513000935443, 1.8535217521019, 1.87162242214568, 1.88941255272572, 1.90687780076733, 1.92401130377593, 1.94080941457954, 1.95727409653831, 1.97340995514258, 1.98922292272048, 2.00471807179774, 2.01990253139759, 2.03478072842117, 2.04935948180341, 2.06364451072219, 2.07764156534066, 2.09135709660062, 2.10479651336051, 2.11796557822619, 2.13087108092475, 2.14351749873696, 2.15591249225738, 2.16806034482347, 2.17996751811304, 2.19163921833107, 2.20308196703137, 2.21429984014348, 2.22529984531861, 2.23608642044641, 2.24666491296, 2.25703971450002, 2.26721707265114, 2.27720216870615, 2.28699795474133, 2.29661115471612, 2.30604515456765, 2.31530390963179, 2.32439429955309, 2.33331838340306, 2.34208211949183, 2.3506898685418, 2.35914131868225, 2.36744029516954, 2.37559564395953, 2.38361262925028, 2.39149589239825, 2.39924798897435, 2.40687177159353, 2.41437445939354, 2.42175720647081, 2.42902406190093, 2.43618092346483, 2.4432285288167, 2.45017201572293, 2.45701559261216, 2.46376077865167, 2.47041383682226, 2.47697697116147, 2.48344866944727, 2.48983434058688, 2.49614062074161, 2.50236906034215, 2.50852637608938, 2.51461125832967, 2.52063267268482, 2.52658971422462, 2.5324866539671, 2.53832634427074, 2.54411360296373, 2.54985171915201, 2.55554230033366, 2.56118889604372, 2.56679533022657, 2.57236361999384, 2.57790010899007, 2.58340298087726, 2.58887894228097, 2.59432847601493, 2.59975896910812, 2.60516895357878, 2.6105638526664, 2.61594465116197, 2.62131162282258, 2.62667189090808, 2.63202999377162, 2.63739013876162, 2.64275403769574, 2.6481263238693, 2.65350897203928, 2.65890396728779, 2.66431975476579, 2.66975569031906, 2.67521757147602, 2.68070832446159, 2.6862308772798, 2.69178829914687, 2.69738385815032, 2.703025010902, 2.70871579015758, 2.7144561228457, 2.72024997289303, 2.72611086425046, 2.73202821223489, 2.7380150018984, 2.74407462239375, 2.75021246773453, 2.75643435613377, 2.76274653322121, 2.76914970570235, 2.77565668059431, 2.78226217154989, 2.78897992990252, 2.79581117814499, 2.80276420246199, 2.80984800738925, 2.81706434550368, 2.82441438827793, 2.83191675510894, 2.83956602158246, 2.84729329742131, 2.85505124280977, 2.86281624903587, 2.87061255837141, 2.87841327596513, 2.88624430284398, 2.89408887463845, 2.90195206115551, 2.90983974040536, 2.91773332989093, 2.92565126054603, 2.93358774421819, 2.94155024897269, 2.94951865660694, 2.95751467858713, 2.96551741714752, 2.97355058849505, 2.98160897361581, 2.98966977885218, 2.9977591619403, 3.00585374518061, 3.0139820603, 3.02213920730227, 3.030300031461, 3.03847616292749, 3.04668114964609, 3.05488803711364, 3.06313216351745, 3.07138615416919, 3.07966556741002, 3.08796430757199, 3.09627552139215, 3.10461727824668, 3.1129839706072, 3.12134204688819, 3.12973759800806, 3.13816589795524, 3.14659154116638, 3.15503581308473, 3.16352345588758, 3.17201745225504, 3.1805430287924, 3.18905965203779, 3.1976286540199, 3.20620987311826, 3.21479525292585, 3.22341511426585, 3.23202358553016, 3.24069342682608, 3.24937927136952, 3.25807342197179, 3.26676729053254, 3.2754984735271, 3.28426181654091, 3.29305153896602, 3.3018610313924, 3.31068286760127, 3.3195087452895, 3.32838606965378, 3.33725279004637, 3.3461580434439, 3.35509655927376, 3.36406242922311, 3.37298303508608, 3.38197912197677, 3.39097974086048, 3.39861081876226, 3.40769614800642, 3.41676669713791, 3.42588721246344, 3.43505355499458, 3.44417723770067, 3.45341565746253, 3.46259423551111, 3.47178723635246, 3.4810808152818, 3.49028183382626, 3.49956986722198, 3.50894508089, 3.51819394054556, 3.52762120844497, 3.53701090587155, 3.54634776514436, 3.55585653517976, 3.56529847733069, 3.57465489115539, 3.58416958708424, 3.59371498600585, 3.60328401161063, 3.61286860245501, 3.62245992941058, 3.63204804986045, 3.64162183958739, 3.65133273396139, 3.66101764112691, 3.67066253687125, 3.68043122375501, 3.69014283075682, 3.69997010038884, 3.70971955082135, 3.71957348975725, 3.72932468594816, 3.7391652025581, 3.74909504558002, 3.75911382258568, 3.76898484207798, 3.77892230726438, 3.78892335989724, 3.7989844773555, 3.80883512598476, 3.81898849111315, 3.82918672185962, 3.83913128373885, 3.8493826833476, 3.8593459041022, 3.86961490702734, 3.87988549633358, 3.89014608065431, 3.90038312046918, 3.91058256858265, 3.92072913548489, 3.9311894664449, 3.94159368252546, 3.95192307260851, 3.96257802419261, 3.97271726066907, 3.98316253500384, 3.99393943022028, 3.99393943022028] new(construct_interpolant(fi, Ai)) end end """ struct SiteAmpAlAtikAbrahamson2021_bssa14_760 <: SiteAmplification Implementation of the Al Atik & Abrahamson (2021) amplification function for the Boore _et al._ (2014) GMM, for Vs30 = 760 m/s """ struct SiteAmpAlAtikAbrahamson2021_bssa14_760 <: SiteAmplification amplification::Function function SiteAmpAlAtikAbrahamson2021_bssa14_760() fi = @SVector [0.001, 0.0911162626259868, 0.093260321030032, 0.0954548276537386, 0.097700983456623, 0.0999999820952542, 0.102329288657437, 0.104712886897726, 0.107151898576338, 0.109647795949619, 0.112201818697888, 0.114815374887065, 0.117489775491468, 0.120226401015101, 0.123026884861295, 0.125892513777469, 0.128824911618647, 0.131825678122484, 0.134896268392557, 0.138038384735951, 0.141253709921094, 0.144543963437463, 0.147910800512607, 0.151356075188123, 0.154881660174717, 0.158489267502305, 0.162180970646285, 0.165958653333, 0.169824346053222, 0.173780044393326, 0.177827942042926, 0.181970051029366, 0.186208660232139, 0.190546059784457, 0.194984353229929, 0.199526128106147, 0.204173751722764, 0.20892955028489, 0.213796152511466, 0.218776112752252, 0.223872048825969, 0.229086703225714, 0.234422832723251, 0.239883195800222, 0.245470813347372, 0.25118851160021, 0.257039461393428, 0.263026692540031, 0.269153371763333, 0.275422819407075, 0.281838165047044, 0.288402948293457, 0.295120803175706, 0.301995031395083, 0.309029397959102, 0.316227608503954, 0.323593446557635, 0.331130969998632, 0.338843906713985, 0.346736597226246, 0.354813252116192, 0.363077901142721, 0.371535031156678, 0.380189215767494, 0.389044984220145, 0.398106816830357, 0.407380136811554, 0.416869160401731, 0.426579333548684, 0.436515548592194, 0.446683272378262, 0.45708795418994, 0.467734860095858, 0.478629668696382, 0.489778445447913, 0.501186718043336, 0.512861077069637, 0.524807326731799, 0.537031164483197, 0.549540349983891, 0.562340880014143, 0.575439553575671, 0.58884341827149, 0.602558931622333, 0.61659402334075, 0.630956723964703, 0.645653291142765, 0.66069312756252, 0.676082650590049, 0.69183056836225, 0.707945076523136, 0.724434752191284, 0.741308974581602, 0.758576209627959, 0.776246773030056, 0.79432748801736, 0.812829309782221, 0.831763442447971, 0.851137724527408, 0.870962906834318, 0.891249503642188, 0.912009605000737, 0.933252826456988, 0.954990037596422, 0.977236096699494, 0.999997856190628, 1.02329086792856, 1.04712732847849, 1.07151799175662, 1.09647479135, 1.12201789771688, 1.14815282104044, 1.17489622351163, 1.20226311696289, 1.23026620148268, 1.25892388582697, 1.28824778446107, 1.31825530797311, 1.34896087152802, 1.38038032106668, 1.41253692508557, 1.445439022341, 1.47910778317774, 1.51355422248531, 1.54881134487854, 1.58488795476428, 1.62180838171325, 1.65958368858436, 1.69824238595341, 1.73779847972394, 1.77827603600399, 1.81969150631633, 1.86208329217625, 1.90545034897491, 1.94983902731283, 1.9952507815335, 2.04172779890817, 2.08928355129046, 2.13795963836794, 2.18775727215626, 2.23870620493322, 2.29085569085141, 2.34422606728919, 2.39881914486294, 2.45469203673004, 2.51186859307884, 2.57039504560511, 2.63025420967004, 2.69151733278799, 2.75421557941965, 2.81838194026748, 2.88402339612077, 2.9512028216528, 3.0199292355183, 3.09027425274607, 3.16225046034222, 3.23590414452624, 3.31128592143274, 3.38841127459114, 3.46733561384397, 3.54812049289905, 3.63074056844326, 3.71530742348746, 3.8018467209065, 3.89043759863809, 3.98105454269997, 4.07378124969755, 4.16864907801435, 4.26575643477429, 4.36514527255278, 4.46678500319695, 4.57086520270523, 4.67728048823422, 4.78624047019078, 4.89771957141816, 5.01186900211919, 5.12856311530136, 5.2480628160809, 5.37023313546781, 5.49536746546279, 5.62332291499947, 5.754303052447, 5.88840999817014, 6.02547308113461, 6.1658736760049, 6.30943605583888, 6.4564762291969, 6.60681845059276, 6.7607717254324, 6.918312929425, 7.07936588393754, 7.24425747015809, 7.41292207965159, 7.58574578518812, 7.76242899518572, 7.94312555149321, 8.12829407379905, 8.31759010959621, 8.5112050404209, 8.70936112698272, 8.91231611946591, 9.12000099309567, 9.33231502050119, 9.54994079660182, 9.77239944707185, 10.0000001597799, 10.2326263405644, 10.471136803066, 10.7149551224552, 10.9644882366261, 11.2202174216049, 11.481450273086, 11.7486508677961, 12.0223720914911, 12.3025291219287, 12.5889952804829, 12.8824194005891, 13.1827051012315, 13.4897101260208, 13.8032410529247, 14.1250867438041, 14.4541781486353, 14.7903148709324, 15.1356308586337, 15.4876465864803, 15.8486432543548, 16.2171642979246, 16.5958596666274, 16.9816664566089, 17.3774298143529, 17.7831140008936, 18.1967920767022, 18.6199724968074, 19.0544793670653, 19.498175111712, 19.9529754896924, 20.4163755211705, 20.892912346942, 21.3800507670956, 21.8774716691975, 22.3877472701828, 22.9076855975856, 23.4400018755962, 23.9879916115976, 24.4597343241965, 25.0308911841329, 25.6135859625918, 26.2116059288632, 26.824939523369, 27.4535021675955, 28.0920598160859, 28.7502419903201, 29.4228448805403, 30.1093798910821, 30.8092265190817, 31.5282456680064, 32.2665483915277, 33.0167888291429, 33.793334298587, 34.5807677450142, 35.3862124015741, 36.2092233431454, 37.0588715126563, 37.9257367673275, 38.8089638768307, 39.7188586552412, 40.6439586236746, 41.5954881087888, 42.5604131037149, 43.5650231077962, 44.5818544068736, 45.6085878997718, 46.675623757658, 47.7676222037955, 48.884049300592, 50.0241840099151, 51.1870940695605, 52.3932632105272, 53.6218239035964, 54.8712133818895, 56.1395620572865, 57.451503152175, 58.8086644682486, 60.1827801874379, 61.5707814890962, 63.0024208862257, 64.4788171831622, 66.0011049249864, 67.5311883608651, 69.105169857874, 70.7236199043905, 72.3869859093085, 74.0470212505932, 75.7986325153462, 77.5413587183516, 79.3804361813949, 81.2035291512659, 83.1273218954462, 85.093198969761, 87.0288650268165, 89.0705440454914, 91.1483073695668, 93.2592711043505, 95.4876919544843, 97.75081441754, 99.9469401041666, 1e3] Ai = @SVector [1.0, 1.08364234398491, 1.08586162583744, 1.08814730526576, 1.09050179138363, 1.09292756623953, 1.09540190454842, 1.0979513931251, 1.10057866656408, 1.10328683758114, 1.10607887745956, 1.10895805670094, 1.11192766354774, 1.11499119483819, 1.11815257551917, 1.12141549472601, 1.12478418772514, 1.12826304356699, 1.13185647450966, 1.13556938629872, 1.13940688690809, 1.14337436963043, 1.14747740913594, 1.15172210207447, 1.15611487583144, 1.16066228586858, 1.16537169899678, 1.17025063312829, 1.17530721624628, 1.18054999059327, 1.1859882627106, 1.19163164309922, 1.19749071384348, 1.20357671924515, 1.20990135521117, 1.21647779168358, 1.22331975755045, 1.23044186720427, 1.23786023490562, 1.24559202968568, 1.25365580305696, 1.26207173145057, 1.27086160427698, 1.28004897777845, 1.28965982494954, 1.29972199871975, 1.3102664347014, 1.32132661705483, 1.33293942599418, 1.34514560498503, 1.35798957118111, 1.37152116257721, 1.38579572462222, 1.40076722859397, 1.4157251995136, 1.43055370729663, 1.44522537197278, 1.45971823971733, 1.47401401012578, 1.48809929035606, 1.50196367821462, 1.51559921109471, 1.52900107663852, 1.54216660353197, 1.5550946936694, 1.56778559787145, 1.58024206161631, 1.59246616999708, 1.60446241798237, 1.61623515256263, 1.6277895136788, 1.63913048246185, 1.65026272448572, 1.66119120826138, 1.67192117847526, 1.68245722468501, 1.69280480837492, 1.70296852990295, 1.71295281949093, 1.72276364578743, 1.73240541599026, 1.74188303497685, 1.75120138626003, 1.76036482936819, 1.76937853375415, 1.77824754652269, 1.78697561303618, 1.79556821706716, 1.80402894254375, 1.81236248801982, 1.82057312873887, 1.82866517275189, 1.8366317010579, 1.84448535974719, 1.85223437956147, 1.85988175704966, 1.86743216710123, 1.87489020709522, 1.88225899266416, 1.88954271455607, 1.89674532185353, 1.90387123546318, 1.91092387874021, 1.91790706239415, 1.92482573751064, 1.93168227941724, 1.93848164305175, 1.9452276783545, 1.95192374244991, 1.95857353251229, 1.96518281160841, 1.97175341983825, 1.9782900454899, 1.98479687919082, 1.99127750153894, 1.99773677421567, 2.00417793311796, 2.01060551046604, 2.0170233256773, 2.02343547276264, 2.02984749436382, 2.03626191085848, 2.04268353875561, 2.049114602113, 2.05556084771603, 2.06202287844052, 2.0685036548133, 2.07500332318476, 2.08152466608446, 2.08806765067701, 2.09463361199228, 2.10122238518265, 2.10783707036405, 2.11447432622988, 2.12113499884932, 2.12781424713384, 2.13451956963627, 2.14124951350918, 2.14800661022883, 2.15478765632886, 2.16159339682423, 2.1684271104748, 2.17528816557151, 2.18217362577078, 2.18908761935105, 2.19603002639163, 2.20300351368397, 2.21000319758685, 2.21703470694882, 2.22409898451505, 2.2311972221775, 2.23832781958321, 2.24549538117795, 2.2526987664562, 2.25994346481583, 2.26722888065824, 2.27455793921908, 2.28193411358852, 2.28935753459416, 2.29683236874686, 2.3043633905498, 2.31194745870387, 2.31959420135704, 2.32730538253537, 2.33508774151048, 2.34293887835729, 2.35086603625359, 2.35887211445266, 2.36696575744595, 2.37515092948982, 2.38342582596344, 2.39180677070733, 2.40028643357407, 2.40888278386229, 2.41759536090252, 2.42643775463242, 2.43540229532395, 2.44451132297608, 2.45375713864841, 2.46316480256067, 2.47272675848702, 2.4824616712993, 2.49238096112596, 2.50247621182259, 2.51278005644824, 2.52328459530469, 2.53400459669908, 2.54482080340439, 2.55569228691112, 2.56660276366681, 2.57754142971351, 2.58852482518397, 2.59954284066688, 2.61061488013636, 2.62171598016116, 2.63285030329271, 2.64404020662793, 2.65525905027419, 2.66651256824853, 2.6778079007294, 2.68915376033145, 2.70054028705822, 2.7119562393715, 2.72343228376484, 2.73493710925336, 2.74648102444296, 2.75805235043705, 2.76968764453411, 2.78135267969627, 2.79306102505984, 2.80482891692235, 2.8166185142729, 2.82844500757262, 2.84032661392745, 2.85225330543254, 2.86421363347959, 2.8762285042368, 2.88828754085377, 2.90037895881915, 2.91248939932882, 2.92468148368883, 2.93690801495623, 2.9491556390582, 2.96149548540931, 2.97383256600454, 2.98624067565195, 2.99866340382951, 3.01118335725144, 3.02369287827608, 3.03627804951518, 3.04893057785931, 3.06158415136629, 3.07427892426899, 3.08706261807415, 3.09986553992361, 3.11273641536514, 3.12559813082232, 3.13856985463709, 3.15157524789462, 3.16459965605965, 3.17770366601632, 3.1907987943681, 3.20394736944601, 3.21722278176947, 3.22842357616881, 3.24176833114294, 3.25512378677881, 3.26856595639597, 3.2820866712014, 3.29567642336465, 3.30921614709875, 3.32290298108548, 3.33662052652846, 3.35035255916578, 3.36408076000853, 3.37791285360432, 3.39184244115442, 3.40572446603041, 3.41981670509913, 3.43383179087081, 3.44789098701598, 3.46197960670245, 3.47624422758958, 3.49051829584613, 3.5047817650066, 3.51919309288275, 3.53356349271198, 3.54806006042791, 3.5624775690411, 3.57719953201365, 3.59181448730171, 3.60628635222813, 3.62103589912565, 3.63584052451261, 3.65068559075673, 3.66555440665079, 3.68042816483525, 3.69555904026841, 3.71067592274549, 3.72575410093648, 3.74076605300308, 3.75599484014451, 3.77144717971867, 3.7867934023843, 3.80199625298696, 3.81737457761158, 3.83293031529568, 3.84866317013457, 3.86417349493963, 3.87982169469459, 3.89560324156142, 3.91151251638117, 3.92708445960429, 3.94319976493462, 3.95892568992393, 3.97520292066274, 3.99102935641841, 4.00740962554074, 4.02383037958937, 4.03968828470414, 4.05609239283177, 4.07246729952653, 4.0887846867556, 4.10568188902212, 4.1225184203158, 4.13853906719252, 4.13853906719252] new(construct_interpolant(fi, Ai)) end end """ struct SiteAmpAlAtikAbrahamson2021_bssa14_1100 <: SiteAmplification Implementation of the Al Atik & Abrahamson (2021) amplification function for the Boore _et al._ (2014) GMM, for Vs30 = 1100 m/s """ struct SiteAmpAlAtikAbrahamson2021_bssa14_1100 <: SiteAmplification amplification::Function function SiteAmpAlAtikAbrahamson2021_bssa14_1100() fi = @SVector [0.001, 0.0999999942707916, 0.102329289439609, 0.104712887716761, 0.107151912555722, 0.109647810587833, 0.11220183402598, 0.114815390937559, 0.117489792298401, 0.120226418614101, 0.123026885991878, 0.125892533074394, 0.128824931825004, 0.131825679420567, 0.134896290548396, 0.138038407935955, 0.141253711030388, 0.14454397891139, 0.147910809014606, 0.151356098582797, 0.154881696694555, 0.158489297243423, 0.162180974138637, 0.165958674331861, 0.169824392157856, 0.173780066819787, 0.177827977607297, 0.181970093315908, 0.186208684639896, 0.190546064687612, 0.194984400298219, 0.199526151255418, 0.204173764851596, 0.208929596943051, 0.213796152899848, 0.218776165415316, 0.223872062165998, 0.229086795091157, 0.234422839210589, 0.239883288165173, 0.245470839468972, 0.251188557388039, 0.25703952116282, 0.263026714586751, 0.269153406683434, 0.275422798880656, 0.281838241124289, 0.288403025855549, 0.295120803536784, 0.301995173753911, 0.309029502480207, 0.316227782943992, 0.323593500466634, 0.331130953508207, 0.338844036623896, 0.34673675462895, 0.354813392739313, 0.363078026106895, 0.371535181708974, 0.380189334311823, 0.389045073797216, 0.398107089497488, 0.407380173586767, 0.416869210701438, 0.426579417203211, 0.43651559882169, 0.446683401771556, 0.457088029401324, 0.467735011805406, 0.478629925081276, 0.489778715181216, 0.501187031937496, 0.512861236791132, 0.524807370945154, 0.537031434094109, 0.549540627902458, 0.562340918238859, 0.575439503820714, 0.588843301006728, 0.602559271619929, 0.616594838924024, 0.630956918926108, 0.645653987282243, 0.660693278719166, 0.676082386262125, 0.691830704330551, 0.707945463071725, 0.724435696155354, 0.74131024499222, 0.758576833362888, 0.776246967350283, 0.79432765983909, 0.812829847543139, 0.831763295436004, 0.851137257381919, 0.870963647695458, 0.89125063310826, 0.912010190336213, 0.933253876719992, 0.954991323260685, 0.977236674564363, 0.999999376704014, 1.02329216650515, 1.04712858016108, 1.07151802029997, 1.09647705386315, 1.12201813106039, 1.14815232082574, 1.17489711452937, 1.2022632761053, 1.23026893465442, 1.25892478169571, 1.28824925286246, 1.31825476678541, 1.34896226936176, 1.38038331625282, 1.41253536157361, 1.44544002786044, 1.47910755205328, 1.51355783588285, 1.54881556831327, 1.58489238265031, 1.62180711433383, 1.65958346288574, 1.69824231541703, 1.73780089595023, 1.77827646757433, 1.81969641187082, 1.86208481433417, 1.90545626586434, 1.94984475199332, 1.99526162858629, 2.04173373924813, 2.08929105688858, 2.13796119637597, 2.18776046050659, 2.2387215306585, 2.29086418676164, 2.34422580916097, 2.3988291206262, 2.45470634410607, 2.51188114589687, 2.57038711926446, 2.63025902311945, 2.69153260246708, 2.75421969068968, 2.81837995348003, 2.88402365216443, 2.95119935757395, 3.01994331510937, 3.09029180950475, 3.16226398102817, 3.23592925568545, 3.31130709484967, 3.38843294207687, 3.46736315436668, 3.54813581847585, 3.6307651436782, 3.71533568298211, 3.80188946845371, 3.89044115666823, 3.98105964067485, 4.07378964803908, 4.16867752173957, 4.26577171067028, 4.36516053182719, 4.4668254158747, 4.57086030476262, 4.67732851465, 4.78629925533731, 4.89774978439209, 5.01185370947343, 5.12859423484337, 5.24805927489683, 5.37028645796196, 5.49537951621125, 5.6233878102801, 5.75436328712337, 5.88843917410242, 6.02560553448902, 6.16592821030288, 6.30957217415461, 6.45653608003565, 6.60691210897118, 6.760804602669, 6.91833243844884, 7.07938781287924, 7.24434482940889, 7.41310826719381, 7.58569409562697, 7.76241731627088, 7.94317188337215, 8.12832595039509, 8.3176023537528, 8.51140752074882, 8.70962908279862, 8.91253998805093, 9.12001705818987, 9.33259809073417, 9.54976840803428, 9.77223833172881, 10.0000154584674, 10.23300524141, 10.4710754835424, 10.7150266728374, 10.9647907700409, 11.2202630001957, 11.4812971912249, 11.7489102165068, 12.0226227359966, 12.3027246006294, 12.5890770378463, 12.8824938912425, 13.1823630974293, 13.4895877351951, 13.8034850183452, 14.1250621277036, 14.4542171297727, 14.7907986463695, 15.1353290208207, 15.4876534354551, 15.8483711149959, 16.2181900174972, 16.5961299741433, 16.9819204095141, 17.37824271703, 17.7830169525712, 18.1970367629386, 18.6200661560741, 19.0542962143714, 19.4984106230298, 19.952167919195, 20.4166708483612, 20.8932695398002, 21.3786496995455, 21.8773864462395, 22.3877335357594, 22.90750432443, 23.4421462082247, 23.9875431882539, 24.4595049310709, 25.0319269878903, 25.6166097703306, 26.2130779475033, 26.8263113471932, 27.4535149251717, 28.0943122232752, 28.7514900856313, 29.4214814188544, 30.1071964789614, 30.8121657464104, 31.5324826105913, 32.2675988220233, 33.0213566963618, 33.7936159040409, 34.579074170418, 35.3872354433233, 36.2127668867604, 37.0609573167903, 37.9256441289802, 38.8124796011373, 39.7213308469351, 40.6445318091086, 41.5961301188189, 42.5685278399345, 43.5610008566936, 44.5726281197036, 45.6216075347537, 46.6789911567352, 47.773980830181, 48.8853621422687, 50.0351078965322, 51.1992803651972, 52.3886636425958, 53.6164785697481, 54.8689227094684, 56.1447051106333, 57.4588446996262, 58.8120630745198, 60.1679954909794, 61.5799079121313, 63.0304154891204, 64.497885722967, 66.0018126389695, 67.5418009953363, 69.117236380239, 70.7272485242521, 72.3706846807164, 74.0761580253903, 75.8148416156396, 77.5847393108404, 79.3834328727271, 81.245390419232, 83.1336688348237, 85.0861844185969, 87.0612501896228, 89.1005448083237, 91.1570157956521, 93.3280977544332, 95.4597653710987, 97.7091485760571, 99.9714285714285, 1e3] Ai = @SVector [1.0, 1.07377424172191, 1.07568340471177, 1.07764765689837, 1.07966876479455, 1.08174881857823, 1.08388980782557, 1.08609391640319, 1.08836331477285, 1.09070030404772, 1.09310746523746, 1.09558722513272, 1.0981422996958, 1.10077552311629, 1.10348975891098, 1.10628809163659, 1.10913843677795, 1.1119862441656, 1.11482032357681, 1.11763348969258, 1.12041986774419, 1.12317468498611, 1.12589456554055, 1.12857701666666, 1.13122044460195, 1.13382399537393, 1.13638771748597, 1.13891205161871, 1.14139812609109, 1.14384729457583, 1.14626080510911, 1.14864002376794, 1.15098626482962, 1.15330074743668, 1.15558472198198, 1.15783950909849, 1.16006624659493, 1.16226627242009, 1.16444066637276, 1.16659074938093, 1.16871763839306, 1.17082256875985, 1.17290674545382, 1.17497098881197, 1.17701661304444, 1.17904472323173, 1.1810564402846, 1.18305283340685, 1.18503506676802, 1.18700424346501, 1.1889613920927, 1.19090768763071, 1.19284414873617, 1.19477198498936, 1.19669227954613, 1.19860612604854, 1.20051467448373, 1.2024189984736, 1.20432027155042, 1.20621964116529, 1.20811825260841, 1.21001727350919, 1.21191787262328, 1.21382122429834, 1.2157285626702, 1.21764102751111, 1.21955990799381, 1.22148640147232, 1.22342175358253, 1.22536721997457, 1.22732410176577, 1.22929364971439, 1.23127722537588, 1.23327612965734, 1.23529166096294, 1.23732531195325, 1.23937836912328, 1.24145231559765, 1.24354749289177, 1.24566554333833, 1.24780897539437, 1.2499792569878, 1.25217809355537, 1.25440701343445, 1.2566676191693, 1.25896178257908, 1.26129108887827, 1.26365739381181, 1.26606255846768, 1.26850829677884, 1.27099689683087, 1.27353004434842, 1.27611001171338, 1.27873893586496, 1.28141893992751, 1.28415254235385, 1.28694181625922, 1.28978939335592, 1.2926979191094, 1.29566982523915, 1.29870824175611, 1.30181572532181, 1.30499534613735, 1.30825038999295, 1.31158365403668, 1.31499901534591, 1.31849988955826, 1.32208961620671, 1.32577251378186, 1.32955179855246, 1.33343132606967, 1.33741357887289, 1.34150179466669, 1.34569812166275, 1.35000567098599, 1.3544260520849, 1.35896154743919, 1.36361490236401, 1.36838718131483, 1.37328072536624, 1.37829854584582, 1.38344177665736, 1.38871258893308, 1.39411388408896, 1.39964824530506, 1.40531779136425, 1.41112476128775, 1.41707296818823, 1.423165914765, 1.42940562445159, 1.43579526073916, 1.44233948342952, 1.44904300900007, 1.45591026098732, 1.46294377577838, 1.4701430068133, 1.47750842207663, 1.48503741802188, 1.49272885060967, 1.50057846594505, 1.50858248846468, 1.51673514116072, 1.52503138142624, 1.53346570997836, 1.54203225573951, 1.55072136469112, 1.55952965490261, 1.56844664272352, 1.57746682872857, 1.5865828595448, 1.59578726004598, 1.60507023827321, 1.61442848210392, 1.62385227018904, 1.63333398385059, 1.64286864207467, 1.65244910763165, 1.66206559908029, 1.67171669047243, 1.68139615123491, 1.69109489130831, 1.70081005746505, 1.7105363237882, 1.72026875507274, 1.73000284207063, 1.73973826625622, 1.74946440275484, 1.75918182984198, 1.76888828501048, 1.77858223152089, 1.7882542429275, 1.79791222543811, 1.80754789891303, 1.81716203507685, 1.82675150733127, 1.83631855455804, 1.84586136433489, 1.85537854764995, 1.8648747408499, 1.87434449935178, 1.88378803080827, 1.89321224044973, 1.90261311295528, 1.91199291860342, 1.92135475667402, 1.93070261245488, 1.94002726561405, 1.94934764561085, 1.95865579899324, 1.96795051189792, 1.97724668214133, 1.98653689629335, 1.99583838905708, 2.00513582401076, 2.01444803976094, 2.02376863922482, 2.03310968744784, 2.04246501089894, 2.05181609311956, 2.06121173032725, 2.07066458274414, 2.08015734029654, 2.08968114874409, 2.09922590184368, 2.10881876661101, 2.11845189129642, 2.12811625143497, 2.1378015484207, 2.14754048090738, 2.15731038499326, 2.16711663195644, 2.17694945369856, 2.18683162558877, 2.19673745095695, 2.2066916515308, 2.21666701444773, 2.22669041520284, 2.23675336485491, 2.24684609768205, 2.25697912727245, 2.26714268360788, 2.27734887295641, 2.28761212076916, 2.29789987370863, 2.30819997235961, 2.31857847380772, 2.32897531728647, 2.3394058792482, 2.3498590462889, 2.36038337973389, 2.37094068336684, 2.38151809194227, 2.3921384760639, 2.40282679650948, 2.4135035480742, 2.42426389889233, 2.43506415004308, 2.44585309227987, 2.45673813861894, 2.46762963485226, 2.47687509577523, 2.48790470398334, 2.49895459013647, 2.51001074938325, 2.52115955775645, 2.53234387408955, 2.54355153871219, 2.55482544462744, 2.56609879830649, 2.57741526963207, 2.58882656935048, 2.60026315087013, 2.61171104942407, 2.62322430649175, 2.63479438821278, 2.64633662881618, 2.65798476086959, 2.66965548300257, 2.68141714192981, 2.6931782663281, 2.70500988439125, 2.71690361145269, 2.72875549295849, 2.74073817576405, 2.7527489711529, 2.76477328510593, 2.77679473796317, 2.78902190862775, 2.80111149742784, 2.81339155369115, 2.82561739127939, 2.83802390290198, 2.85034656746604, 2.86269510132692, 2.87519926745502, 2.88771129849868, 2.90021311182686, 2.91284514811118, 2.92560594571757, 2.93814853329408, 2.95095963812371, 2.96387158874595, 2.97668665984961, 2.98957013452994, 3.00251182166991, 3.01549984515371, 3.02852071664694, 3.04155909263268, 3.05483342147564, 3.06811110345284, 3.08137173364153, 3.09459254417313, 3.10801932770893, 3.12137858766394, 3.13493150812508, 3.14838227829193, 3.16200828231978, 3.17548946061531, 3.18945462042179, 3.20290819766718, 3.21683654256236, 3.23041469686689, 3.23041469686689] new(construct_interpolant(fi, Ai)) end end """ struct SiteAmpAlAtikAbrahamson2021_cb14_620 <: SiteAmplification Implementation of the Al Atik & Abrahamson (2021) amplification function for the Campbell & Bozorgnia (2014) GMM, for Vs30 = 620 m/s """ struct SiteAmpAlAtikAbrahamson2021_cb14_620 <: SiteAmplification amplification::Function function SiteAmpAlAtikAbrahamson2021_cb14_620() fi = @SVector [0.001, 0.0999999960075922, 0.102329291970146, 0.104712897083861, 0.107151915826179, 0.109647820193404, 0.112201826611791, 0.11481539188404, 0.117489781977474, 0.120226413052329, 0.123026878155944, 0.125892534108239, 0.12882492604089, 0.131825673462998, 0.134896299505685, 0.138038403078452, 0.141253717665068, 0.144543977586134, 0.147910828038878, 0.1513561097844, 0.154881688910334, 0.158489270249457, 0.162180956299533, 0.165958652768952, 0.169824403593973, 0.17378007921449, 0.177827963368866, 0.181970051450291, 0.186208690172977, 0.190546100984621, 0.194984442453321, 0.199526172070992, 0.204173806745097, 0.208929601318305, 0.213796149585515, 0.218776122992034, 0.223872028310857, 0.229086734657301, 0.234422921222406, 0.23988324885248, 0.245470785537473, 0.251188484278206, 0.25703946055711, 0.263026674560631, 0.269153407076944, 0.275422773948591, 0.281838261914018, 0.288402967980864, 0.295120835838376, 0.301995143474081, 0.309029499502454, 0.31622766697645, 0.323593638658402, 0.331131118022553, 0.338844074067532, 0.346736845850547, 0.354813149043298, 0.363078172132964, 0.3715349775957, 0.380189376407706, 0.389044877600162, 0.398107205333068, 0.407380389280958, 0.416869425800305, 0.426579396739984, 0.436515457062149, 0.446683422598966, 0.457087947174548, 0.467734897047422, 0.478630212709465, 0.489778263708941, 0.501187178344085, 0.512861085254938, 0.524807227283619, 0.537031938860528, 0.549540293640881, 0.56234113214465, 0.575439992722043, 0.588842984739594, 0.602559388702931, 0.61659446082985, 0.630956660969879, 0.64565404595163, 0.660692477482551, 0.676083233360251, 0.691830448958141, 0.707945639355109, 0.724436060249336, 0.741309595360551, 0.758577006429437, 0.776245814931473, 0.794326521676393, 0.812830781572186, 0.831763706566927, 0.851138659821746, 0.870961957609269, 0.891249239427603, 0.91200862589844, 0.933252340414934, 0.954990587903553, 0.977234624287875, 1.00000079350021, 1.02329093361383, 1.04712770534758, 1.07151859370928, 1.09647590648705, 1.12201792525089, 1.14815429506382, 1.17489476400895, 1.2022611083602, 1.23026524717676, 1.25892597737345, 1.28825017880555, 1.31825834042905, 1.34895940575925, 1.38038211863746, 1.41253579162943, 1.44543802508952, 1.47910766627126, 1.51355508362719, 1.54881083941909, 1.58488860908463, 1.62180200826005, 1.65958603883503, 1.69824394199126, 1.73780316909269, 1.77828002289597, 1.81969123986389, 1.86208484018179, 1.90545082777332, 1.94984212098705, 1.99526550027925, 2.04172582192457, 2.08928518503298, 2.13795270811858, 2.18775757035363, 2.23870838137221, 2.29086039430598, 2.34422567655106, 2.39881473984119, 2.45469305825437, 2.51187628530218, 2.57037914400445, 2.63024799909587, 2.69154184700609, 2.75420699435402, 2.81836339944471, 2.88403732099006, 2.95121327088087, 3.01995632802365, 3.09029370438711, 3.16225327413674, 3.23591509294214, 3.31131632426641, 3.38843926600486, 3.46737644862356, 3.54810871326601, 3.63073920182982, 3.71532481633097, 3.80191715301573, 3.8904168412904, 3.98102517597589, 4.07381013041093, 4.16866930569122, 4.2657516979992, 4.36513308947507, 4.46679458151173, 4.57081398335729, 4.67727807509726, 4.78628382607805, 4.8978150175713, 5.01184374683731, 5.12860406183254, 5.24811501763448, 5.370354782551, 5.49541292766055, 5.62344224121309, 5.75440929301849, 5.88845028920835, 6.02552436197588, 6.16598535533968, 6.30959896434349, 6.45652784724631, 6.60695947044187, 6.76085595082843, 6.91816011314, 7.07935425017163, 7.24441981839727, 7.41300823943585, 7.58566898806598, 7.76236722449045, 7.94340960477486, 8.1283883699323, 8.31760068839723, 8.51139597978318, 8.70973668407653, 8.91256157472234, 9.12027591191496, 9.33231580217011, 9.54962715813997, 9.77218973081615, 9.99995871260699, 10.2328608720273, 10.4714644143944, 10.7150241702049, 10.9648567889945, 11.2201869719567, 11.4817058148805, 11.7484937722766, 12.0221659434902, 12.3027358475711, 12.5891758955214, 12.8823542344927, 13.1821839463439, 13.489720878884, 13.8037291969212, 14.1253071115601, 14.4543872700214, 14.79086154007, 15.1361059392185, 15.4885379957005, 15.847907430289, 16.2174688117694, 16.5955044741655, 16.9818658755626, 17.3784310156056, 17.7830619796974, 18.1977471964094, 18.6200176357248, 19.0545238754325, 19.4988048035604, 19.9526560907815, 20.4158065492293, 20.8910452127662, 21.3784189555268, 21.8779299082402, 22.3858674720414, 22.9092727160828, 23.4404201902772, 23.9869860567893, 24.4596396776056, 25.033196582825, 25.6177357509289, 26.2127288715371, 26.8284448979696, 27.454199013626, 28.0951754246842, 28.7512564075941, 29.4222442059403, 30.1078484229437, 30.807682121848, 31.5290964772775, 32.2643964180019, 33.0215786275117, 33.7919505340467, 34.5842004039283, 35.3885014295223, 36.2142816944529, 37.0616880861435, 37.9308016109299, 38.8091308114225, 39.7209573241117, 40.6403219683072, 41.5939194340003, 42.5680815430318, 43.5622048396415, 44.5755162204328, 45.6249575267801, 46.6744166561296, 47.7792678540101, 48.881282995356, 50.0196194346816, 51.1955716818627, 52.3860799284434, 53.6143917622613, 54.8816520551667, 56.1605432543999, 57.4478309651699, 58.8028448839455, 60.1646294174391, 61.5638001377288, 63.03757035448, 64.4757104760039, 65.9891828579598, 67.541089429508, 69.1313510023053, 70.7121318222854, 72.3758936550096, 74.076537038047, 75.8131413932449, 77.5844999532611, 79.3891069111205, 81.225118605628, 83.1585169339083, 85.0534289506107, 87.0474892610037, 89.0690364359942, 91.1982199782074, 93.2671864620731, 95.4439739205107, 97.7371972733264, 99.9502534854245, 1e3] Ai = @SVector [1.0, 1.57033405486421, 1.57928537133846, 1.5882443552979, 1.59719965835096, 1.60615037691665, 1.61509589890235, 1.62403759131615, 1.63297715737857, 1.64191774399028, 1.65086388085234, 1.65982006375264, 1.66879202990905, 1.67778637671133, 1.68680976820965, 1.69586826072783, 1.70496711026745, 1.71411049690332, 1.7233013788726, 1.73254246374991, 1.74183579026946, 1.75118236586368, 1.7605837096383, 1.77004039615484, 1.77955290426151, 1.78912098882984, 1.79874517521443, 1.80842472278825, 1.81815838538661, 1.8279431990001, 1.83777482204266, 1.847648503946, 1.85755867843565, 1.86749840056441, 1.87746076155485, 1.88743842572507, 1.89742324314167, 1.90740740560039, 1.91738236364302, 1.92733937216075, 1.93727021584822, 1.94716638283987, 1.95701954525294, 1.96682109681485, 1.97656301068436, 1.9862370314421, 1.99583558310959, 2.00535062368774, 2.0147754565186, 2.02410291471308, 2.0333271817398, 2.04244361570107, 2.05144870568788, 2.06033931876222, 2.06911334678662, 2.0777696281856, 2.08630686305669, 2.09472576134762, 2.10302521344491, 2.11120721842349, 2.11927181347662, 2.12722134686463, 2.13505684751389, 2.14278036248588, 2.15039416362452, 2.15790068229876, 2.16530297151385, 2.17260321315676, 2.17980459911455, 2.18691032613591, 2.19392264524007, 2.20084615356824, 2.20768298715709, 2.21443711451096, 2.22111186161534, 2.22770982191876, 2.23423547911001, 2.24069159042248, 2.24708108770116, 2.25340840278104, 2.25967593176321, 2.26588752258148, 2.27204672331724, 2.27815610589955, 2.28422037781563, 2.2902413531033, 2.29622360202804, 2.30217007026641, 2.3080838666615, 2.31396904022813, 2.31982851395299, 2.32566610644972, 2.33148596514866, 2.33729013362996, 2.34308321614512, 2.34886759750601, 2.35464841876891, 2.3604284216875, 2.36621096026657, 2.37199820664638, 2.37779200513412, 2.38359500514961, 2.38940563224986, 2.39522716042303, 2.40105877713631, 2.40690047817613, 2.41275338473018, 2.4186163420362, 2.42448810932507, 2.43036984728744, 2.43626037019897, 2.44215988899846, 2.44806594190473, 2.45397887637024, 2.45989462958907, 2.46581733300886, 2.47174498373146, 2.4776771502338, 2.48361352566415, 2.48955235871665, 2.49549539168965, 2.50144029099867, 2.50738476075224, 2.51333259842791, 2.51928106312458, 2.52523129344264, 2.53118274865988, 2.5371349827321, 2.54309212911242, 2.54905001572751, 2.5550133144793, 2.56098043050294, 2.56694957836074, 2.57292648938209, 2.57890996786651, 2.58490147540621, 2.59089995904754, 2.59691000574735, 2.60293102740605, 2.60896245116745, 2.61500977726282, 2.62107303848077, 2.6271522095401, 2.63325068832288, 2.63936831634584, 2.64550058510771, 2.65166151868542, 2.65785253051351, 2.66407117592585, 2.67032266126765, 2.67660876019877, 2.6829313842409, 2.68929710317829, 2.69570878361406, 2.70216475706617, 2.70867278351802, 2.71523137759699, 2.72184913944897, 2.72852724055432, 2.73527126533899, 2.74207639150456, 2.74895873025397, 2.75592417006905, 2.76296587824797, 2.77009595428481, 2.77732099249509, 2.78464089712506, 2.79206268905525, 2.79959408419579, 2.80724358071353, 2.81501183363214, 2.82289893456872, 2.83092330320293, 2.83907582550249, 2.84730018640715, 2.85555328637664, 2.86383095493905, 2.87212663469594, 2.88044452184487, 2.88877774715998, 2.89714331231447, 2.9055228463282, 2.91392149979111, 2.92234551866876, 2.93078838320923, 2.93924265146354, 2.94772982803101, 2.95624421000921, 2.9647634804854, 2.97331109764328, 2.98188075759158, 2.99048268860332, 2.99909303455435, 3.00772136112323, 3.01637899018538, 3.02505962628115, 3.0337560497031, 3.04248113777928, 3.0512068177085, 3.05996757109523, 3.06875768335127, 3.07757061462058, 3.08639905796099, 3.09525984142472, 3.10412083889499, 3.11302529099264, 3.12194082614448, 3.13088687907477, 3.13982764732355, 3.14881265843947, 3.15783705140395, 3.16686309421443, 3.17591375916796, 3.18498164952413, 3.19409373759506, 3.20320853771863, 3.21235342726676, 3.22152158334157, 3.23070531974662, 3.23993702000599, 3.24916962731165, 3.25839259184477, 3.26768430453487, 3.27699608714072, 3.28631970927527, 3.29569529879741, 3.30506739375089, 3.31447732989456, 3.32386468982047, 3.33332789297788, 3.34280760438601, 3.3522949155104, 3.36177981099647, 3.37131453562767, 3.38089422257278, 3.39051328314514, 3.40009606457532, 3.40977020114658, 3.41938819505795, 3.42908426997333, 3.43729703928329, 3.44708996317642, 3.45687126433619, 3.46662471908397, 3.47651254297438, 3.48635738496203, 3.49623660010644, 3.50614293449502, 3.5160682080079, 3.52600342040139, 3.53593824695989, 3.54597106668068, 3.55598908309274, 3.56609567812751, 3.57616939738255, 3.58631878730317, 3.59641309240748, 3.60656607584072, 3.61677334812992, 3.62702952128797, 3.6371837435942, 3.64751090270576, 3.6577117152396, 3.66807717840373, 3.67845146777531, 3.68882335291022, 3.6991805679675, 3.70968940062124, 3.71998474093807, 3.73060326020412, 3.74097956442553, 3.75147967527224, 3.76210655840206, 3.77264675104285, 3.78330083425741, 3.79407041521322, 3.80471878819626, 3.8152187962405, 3.82604651276174, 3.83670771854379, 3.8474388315386, 3.85851371609353, 3.86910186430903, 3.88001792479987, 3.89098475034529, 3.90199566072941, 3.91271860783396, 3.92377506043213, 3.93484827303173, 3.94592700775264, 3.95699898517208, 3.96805033005292, 3.97906573257979, 3.99043107177771, 4.00134459652396, 4.0125958139824, 4.02377110140484, 4.03530425374715, 4.04628442747604, 4.05760168138967, 4.0692845999532, 4.08033135924049, 4.08033135924049] new(construct_interpolant(fi, Ai)) end end """ struct SiteAmpAlAtikAbrahamson2021_cb14_760 <: SiteAmplification Implementation of the Al Atik & Abrahamson (2021) amplification function for the Campbell & Bozorgnia (2014) GMM, for Vs30 = 760 m/s """ struct SiteAmpAlAtikAbrahamson2021_cb14_760 <: SiteAmplification amplification::Function function SiteAmpAlAtikAbrahamson2021_cb14_760() fi = @SVector [0.001, 0.100000014603706, 0.102329318159967, 0.104712915012989, 0.107151944005561, 0.109647834841026, 0.112201860006149, 0.114815417052971, 0.117489816119846, 0.120226465083992, 0.123026917598311, 0.12589255847292, 0.128824980611895, 0.131825718608755, 0.13489631959351, 0.138038448458978, 0.141253778162648, 0.144544046818743, 0.14791085550833, 0.15135613998006, 0.154881728490947, 0.158489361043098, 0.162181066114414, 0.165958739473193, 0.169824462314567, 0.173780134007044, 0.177828057012465, 0.181970178254594, 0.186208750403258, 0.190546170351366, 0.194984503373748, 0.199526253525846, 0.204173881532292, 0.208929659763176, 0.213796267563971, 0.218776303013584, 0.223872214384926, 0.229086862026185, 0.23442302280373, 0.239883411745978, 0.245470999998042, 0.251188676985345, 0.257039624252806, 0.263026937897839, 0.269153625701278, 0.27542302191172, 0.281838464424222, 0.288403301147695, 0.29512107452525, 0.301995393129344, 0.30902977845631, 0.316228002125454, 0.323593765761453, 0.331131283999689, 0.338844310340282, 0.346736913437449, 0.354813558809766, 0.363078396657601, 0.371535418861104, 0.380189571348915, 0.389045434107864, 0.398107399490668, 0.407380657208765, 0.416869685071214, 0.42657993322434, 0.436516004536019, 0.446683859270794, 0.457088421802735, 0.46773557493424, 0.478630341437807, 0.489779219952398, 0.501187729749159, 0.51286184118858, 0.524808020308976, 0.537032011051797, 0.549541310846063, 0.562342002103819, 0.575440541048431, 0.588843839501076, 0.60256016086967, 0.616595892595373, 0.630957770918203, 0.64565488528681, 0.660694099005814, 0.676083721255284, 0.691831588655876, 0.707947245243919, 0.724437261196506, 0.741311001398856, 0.758578542847393, 0.77624787433371, 0.7943289003767, 0.812832326143451, 0.83176463922089, 0.851139588339233, 0.87096487176409, 0.89125241684504, 0.912013175488765, 0.933256759031112, 0.954993351540294, 0.977238752862432, 1.00000281507724, 1.02329589536783, 1.04713183702237, 1.07151977051983, 1.09647863942794, 1.12201969918408, 1.14815484858075, 1.17490036562259, 1.20226644031, 1.23027166414146, 1.25892824290883, 1.28825410786601, 1.31826027308295, 1.3489636293766, 1.38038825747881, 1.41253934332401, 1.44544429134379, 1.47910969949534, 1.51356676547177, 1.5488237651326, 1.58489501625938, 1.62181751695932, 1.65959380063872, 1.6982485957995, 1.73780868148322, 1.77828487949496, 1.81970612142534, 1.86209381862123, 1.90547035876538, 1.94984787932165, 1.99527276508788, 2.04174773586109, 2.08929818858466, 2.1379648707227, 2.18776405288898, 2.23872658201823, 2.29086951510372, 2.34424314082561, 2.39885056394356, 2.45470985693216, 2.51189788648169, 2.57039937860281, 2.63027865661929, 2.69153980303586, 2.75423167942888, 2.81840878980984, 2.88405112983486, 2.95121458203317, 3.01996235953973, 3.09030294817901, 3.16230771221273, 3.23595279682673, 3.31131420269854, 3.38847875979375, 3.46738234844352, 3.54815630214939, 3.63081856141197, 3.71538457921618, 3.80191738456751, 3.89048765512902, 3.9811191290653, 4.07383423833312, 4.16871555438765, 4.26585690197907, 4.36516008275251, 4.46685890411257, 4.57092745527101, 4.67740612206366, 4.78633645892996, 4.89784971892356, 5.01191184077053, 5.12866862527161, 5.24808342973394, 5.37031988154554, 5.49545434590912, 5.62345032003805, 5.75450629367736, 5.88845682702725, 6.02564882727567, 6.16605471650829, 6.30963041580404, 6.45668342983238, 6.60703911972332, 6.76082665306519, 6.91837183250296, 7.07962072387972, 7.24449391639376, 7.41310687103337, 7.58582639814176, 7.76259086720391, 7.9433108188294, 8.12841975058345, 8.3178495102927, 8.51150146777084, 8.70989612339629, 8.91262221663962, 9.12025383033394, 9.33271197764874, 9.54988323105152, 9.7724721984205, 9.99996812811373, 10.2331611680284, 10.4714887348519, 10.7153094829665, 10.9650477156109, 11.2206102509667, 11.4818638675441, 11.7492897173357, 12.0227614826089, 12.3028436308968, 12.5894276885153, 12.8823599384561, 13.183168411495, 13.4900328731246, 13.8045707148106, 14.1256810079244, 14.4552285070842, 14.7909197203426, 15.1359344891696, 15.4890678426225, 15.8488063029024, 16.2189403486686, 16.5966169802554, 16.9830373797447, 17.3779909265311, 17.7829518929512, 18.1978387440727, 18.6205542822369, 19.054714481358, 19.4981687206825, 19.9528554447325, 20.4186812309659, 20.892918427583, 21.3803477657443, 21.8781975901788, 22.3890774682986, 22.9097567367247, 23.4429911673855, 23.9885714919413, 24.4601011242133, 25.0325539431898, 25.6166830021738, 26.2163678794803, 26.8269705537117, 27.4525567236701, 28.0980792478464, 28.7531530453907, 29.4222858562447, 30.1110072308346, 30.8131796776573, 31.534781791216, 32.26876583596, 33.0215757243594, 33.793093567672, 34.5830953354176, 35.3912379831092, 36.2170412322082, 37.0598739432464, 37.9294021644798, 38.8152454026809, 39.7162806545213, 40.6434811545621, 41.5971967887437, 42.5639610481806, 43.5707930432651, 44.5893263185931, 45.617083905354, 46.6853663549747, 47.7782634755642, 48.8951335569009, 50.0351265950035, 51.1971650151556, 52.4023375999969, 53.6289101690096, 54.8751195274679, 56.1652603104612, 57.4731641472552, 58.8255726590189, 60.1929261276225, 61.6046338578044, 63.0272953425698, 64.4932276749624, 66.0033220481268, 67.558393760812, 69.1160679775367, 70.761078527248, 72.4046872926073, 74.0902793585822, 75.8175739578802, 77.5860562396035, 79.3949372542713, 81.2431323797365, 83.1292864603112, 85.1218876134366, 87.0813329925696, 89.1504849158889, 91.1729673616224, 93.3072493997223, 95.4704730122531, 97.7555535899792, 100.06993006993, 1e3] Ai = @SVector [1.0, 1.32056069012663, 1.32603400047941, 1.33153115429065, 1.33704192096276, 1.34256105272891, 1.34808429250704, 1.35360891684945, 1.3591331271623, 1.36465634908849, 1.37017920927597, 1.37570278846732, 1.38122931992161, 1.38676157440047, 1.39230292960457, 1.3978573940284, 1.40342899645319, 1.40902181854226, 1.41463965646993, 1.42028685431035, 1.42596752147355, 1.43168565135368, 1.43744569958573, 1.44325194656313, 1.44910894930871, 1.45502037208018, 1.46098871709202, 1.46701423830498, 1.47309610841515, 1.4792322941317, 1.48541907997794, 1.49165227506658, 1.49792662436597, 1.50423577746584, 1.51057319564515, 1.51693156350907, 1.5233028433285, 1.52967904845444, 1.53605176524847, 1.54241298337792, 1.54875602626771, 1.55507511477207, 1.56136568270716, 1.56762385269554, 1.57384639125894, 1.58003107047782, 1.58617624104497, 1.59228080478892, 1.59834428373847, 1.60436669894146, 1.61034833855344, 1.61629007677353, 1.62219297364697, 1.62805880524461, 1.63388915306101, 1.63968607693572, 1.6454520901278, 1.65118961694146, 1.65690111890984, 1.66258981922363, 1.66825878629818, 1.67391107830085, 1.67955023403617, 1.68517890218943, 1.69079974948912, 1.69641437838303, 1.70202471010731, 1.70763166851762, 1.71323631309792, 1.71883895859837, 1.72444036202574, 1.73004057600699, 1.73563963802825, 1.74123765381658, 1.74683425086243, 1.75242969974443, 1.75802350982855, 1.7636153048555, 1.76920481084361, 1.77479224587072, 1.78037702574427, 1.78595866540977, 1.79153755443377, 1.79711323880513, 1.80268579842259, 1.80825510826782, 1.81382167385918, 1.81938506363411, 1.82494595688218, 1.83050542748661, 1.83606399854169, 1.84162298907452, 1.84718406429254, 1.852747728261, 1.85831676939687, 1.86389228560237, 1.86947671242034, 1.87507227354385, 1.88068091427872, 1.88630483353614, 1.89194774475376, 1.89761189731552, 1.90329977019013, 1.90901476642492, 1.9147592278953, 1.92053788888662, 1.92635372575522, 1.93220991902594, 1.9381107690584, 1.94405923379357, 1.950060256213, 1.95611727020876, 1.96223429816703, 1.96841298305583, 1.97465537155953, 1.98096419972217, 1.98733776515465, 1.9937782279461, 2.00028311901377, 2.00685433181804, 2.0134889397255, 2.02018492074876, 2.02694410658894, 2.03376179348014, 2.04063710890531, 2.04756937194912, 2.05455497856335, 2.06159336288426, 2.06868261205738, 2.07582086545397, 2.0830046205529, 2.09023590329493, 2.0975097114807, 2.10482473610792, 2.1121819717276, 2.11957875797072, 2.12701462950716, 2.13448719883305, 2.1419988887457, 2.14954551624292, 2.15712513438802, 2.16474387518341, 2.17239548283667, 2.18008437807076, 2.18780727810779, 2.19556666765425, 2.20336574388772, 2.21119878208701, 2.21906941973291, 2.22698205773577, 2.23493480695697, 2.24293300965878, 2.25097155398781, 2.25905654209919, 2.26719527668687, 2.27537932962888, 2.28362096166113, 2.29192080670653, 2.30027952855885, 2.30870270580237, 2.31719669394349, 2.3257634597216, 2.33440500590197, 2.34312913380319, 2.3519446901907, 2.36084323440092, 2.36984638829516, 2.37895267180433, 2.38816669309536, 2.3974934303111, 2.40694575307286, 2.41652262380314, 2.42623847874389, 2.43609278812133, 2.44610183134625, 2.45627494375819, 2.46661267459907, 2.47713485083718, 2.48783244747041, 2.49873779400636, 2.50985379201636, 2.52118247263782, 2.53273926231377, 2.54440279665817, 2.5561160609005, 2.56788748643363, 2.57970669214853, 2.59156182988486, 2.60345523756733, 2.61540659871786, 2.62740531921539, 2.6394392357933, 2.65153103963213, 2.66366987863253, 2.67584337963277, 2.68807792889929, 2.70034186549141, 2.71266375198116, 2.72503238119288, 2.73743498722108, 2.74990532665102, 2.76240829303884, 2.77498078554551, 2.78758597969827, 2.80023652556741, 2.8129478327389, 2.82570852837824, 2.83850546334257, 2.85135577225083, 2.86424685261516, 2.87719856224376, 2.89019917903797, 2.90323515645431, 2.91636738285546, 2.92950965958332, 2.94272471175322, 2.9559595897534, 2.96928421491422, 2.98259927045833, 2.99602405710977, 3.00950399150925, 3.02297516196798, 3.03657236069564, 3.05018336872153, 3.06384496491314, 3.07754284824993, 3.09132098863743, 3.10516899701852, 3.11901029556148, 3.13295621206184, 3.14693022663014, 3.1609861656685, 3.17511338319784, 3.18922267849747, 3.20344899745745, 3.21770382372386, 3.23205424552593, 3.24640249313657, 3.26081762014288, 3.27528649552171, 3.28754788245527, 3.30219388807186, 3.31686139493491, 3.33163320089763, 3.3463878501201, 3.36121668688659, 3.37622764355535, 3.39117157622034, 3.40614554704339, 3.42126474829806, 3.43638635248179, 3.45163103083242, 3.46684254774001, 3.48214729260749, 3.49753420443772, 3.51299048002675, 3.52850132810062, 3.54404996064957, 3.55961726221174, 3.57537260062747, 3.59111910556542, 3.60683088921204, 3.62269107170706, 3.63869537055127, 3.65461051656197, 3.6708713142347, 3.68701037951836, 3.70298531929649, 3.71927379598479, 3.73562181986193, 3.75201168809436, 3.76842341990972, 3.78483438783388, 3.80153176224347, 3.81820445242663, 3.83482245355856, 3.85170026708352, 3.86848651721064, 3.88551555883894, 3.90240684772645, 3.91951572335549, 3.93643008056024, 3.9535269898401, 3.97080506478297, 3.98826204144463, 4.0054168678399, 4.0231911021823, 4.04061583790366, 4.05814659523329, 4.07577071255674, 4.09347341856746, 4.11123788393748, 4.12904466415009, 4.14686985021962, 4.16534497497708, 4.18317065401943, 4.20163867675546, 4.21934796252626, 4.23767970135547, 4.25590810783666, 4.27480156227835, 4.29357949644977, 4.29357949644977] new(construct_interpolant(fi, Ai)) end end """ struct SiteAmpAlAtikAbrahamson2021_cb14_1100 <: SiteAmplification Implementation of the Al Atik & Abrahamson (2021) amplification function for the Campbell & Bozorgnia (2014) GMM, for Vs30 = 1100 m/s """ struct SiteAmpAlAtikAbrahamson2021_cb14_1100 <: SiteAmplification amplification::Function function SiteAmpAlAtikAbrahamson2021_cb14_1100() fi = @SVector [0.001, 0.107151935453737, 0.109647834565003, 0.112201844745437, 0.11481541722802, 0.117489804052062, 0.120226447440993, 0.123026916177356, 0.125892546569393, 0.128824945955999, 0.131825714078132, 0.134896306042729, 0.138038424160509, 0.141253751203674, 0.14454400666565, 0.147910845778061, 0.151356122586865, 0.154881709807325, 0.158489319473994, 0.162181025067334, 0.165958710318836, 0.169824438685114, 0.173780141390804, 0.177828043611803, 0.181970119541417, 0.18620873197305, 0.190546134906447, 0.194984475342449, 0.199526210475698, 0.204173837974327, 0.208929640601348, 0.213796247084416, 0.218776211782296, 0.223872152523143, 0.229086871788025, 0.234422946424962, 0.239883314860486, 0.245470938018794, 0.251188642147164, 0.257039598092891, 0.263026835681957, 0.269153521651332, 0.275422976359149, 0.281838329395954, 0.288403215446539, 0.295120983380726, 0.301995230065901, 0.309029624220641, 0.316227902746474, 0.323593746346755, 0.331131246680177, 0.3388441977443, 0.346736961606689, 0.354813433633056, 0.363078259538029, 0.371535260202758, 0.380189545842012, 0.389045181735103, 0.39810727171514, 0.407380375529606, 0.416869489133838, 0.426579731304667, 0.43651591390959, 0.446683836016586, 0.457088344310272, 0.467735362157079, 0.478630277106537, 0.489778904972026, 0.501187289285747, 0.51286142354831, 0.524807868760027, 0.537032155540723, 0.549541011276866, 0.562341531322902, 0.575440020570062, 0.588843861667092, 0.602560003343154, 0.616595264861423, 0.630957736954371, 0.645654518798835, 0.660693557110258, 0.676083280102802, 0.691831491646336, 0.707945991428218, 0.724436553358675, 0.74131051179263, 0.758577769375232, 0.776247559858663, 0.794328977075606, 0.812830810032516, 0.831764029522309, 0.851138571729408, 0.870963922685582, 0.891251996967617, 0.912011247769634, 0.933254698528794, 0.954992787026339, 0.97723758486003, 1.0000005062702, 1.02329347485744, 1.04713040496121, 1.07152004409775, 1.09647897265996, 1.12201844543814, 1.14815528026766, 1.17489835814305, 1.20226604254383, 1.23027018193224, 1.25892734508558, 1.28825079908837, 1.318259163803, 1.34896505843724, 1.38038665711632, 1.41253792667885, 1.44544207656103, 1.47910913805971, 1.51356162108749, 1.5488172358058, 1.58489465883479, 1.62181367335723, 1.65958733700612, 1.69824539848406, 1.7378031878117, 1.77828083283144, 1.81970452337863, 1.86208794334205, 1.90546520741094, 1.94984557553173, 1.99526746389236, 2.04174258587913, 2.08929688261176, 2.137968038963, 2.18776325462817, 2.23872789932023, 2.29087330073668, 2.34423561131071, 2.39883687869452, 2.45471125310074, 2.51189079709591, 2.57040089862653, 2.63027799720795, 2.69153693925965, 2.75423946975239, 2.81838862731573, 2.88403684826771, 2.9512120467315, 3.01995664775724, 3.09029886559892, 3.16228306310782, 3.23593774690871, 3.31132894099924, 3.3884479777074, 3.46738448436814, 3.54814938834072, 3.63079641398924, 3.71535811383629, 3.80189371410457, 3.89046814362258, 3.98109246261088, 4.07380423161549, 4.16870979107803, 4.26582434364337, 4.3651582267743, 4.46683722178704, 4.57088071215204, 4.67734925332799, 4.78630945056098, 4.89778471638987, 5.01190281582109, 5.12864306805199, 5.24809157322569, 5.37034653309144, 5.49545357878399, 5.62346020566487, 5.75441680055487, 5.88845685362517, 6.02565210012032, 6.16599284660048, 6.30964647562554, 6.45661147569388, 6.60698203384398, 6.76088045132855, 6.91830256679691, 7.07948784544066, 7.24446554472023, 7.41312220760793, 7.58574960014797, 7.76254169346153, 7.94339746512847, 8.12835461278235, 8.31763266541652, 8.51149031718433, 8.70962148345103, 8.91249964207197, 9.12023990175558, 9.33250964785959, 9.55009558905348, 9.77253934629245, 10.0000507473303, 10.2330980382324, 10.4712975342726, 10.7151532131155, 10.9649166549558, 11.2201404474293, 11.4818091737881, 11.7490636915642, 12.0225588043305, 12.3026241711845, 12.5891610107431, 12.8825325867975, 13.1826273392915, 13.489849571919, 13.8040774158165, 14.1257655547166, 14.4547859850637, 14.7909591027162, 15.135516773819, 15.4883873310213, 15.8494511209435, 16.2185340183152, 16.596310619533, 16.9826200621376, 17.3782522441654, 17.7830741509695, 18.196892983888, 18.6206353014046, 19.0554026077809, 19.4985300407455, 19.9523177626254, 20.4180811199692, 20.89272169942, 21.3806209556572, 21.8784563347614, 22.387569371586, 22.9095949660671, 23.442429963151, 23.987749119062, 24.4620357500815, 25.0316841957193, 25.6180740535195, 26.2162255117421, 26.8283164660661, 27.4540559607676, 28.096132775273, 28.7512675224258, 29.4222766176383, 30.1089392418281, 30.8147536270626, 31.5318189879249, 32.2674699378919, 33.0216612714318, 33.7942567772711, 34.5850167285209, 35.388313764356, 36.2195077508899, 37.0620713160324, 37.9266985360148, 38.8133730566014, 39.7219756846267, 40.645001386875, 41.5962694155783, 42.5683179538513, 43.5604570068404, 44.5808076412297, 45.6201979729562, 46.6873914210834, 47.771880369061, 48.8942482643485, 50.0324439699154, 51.1966799577741, 52.399433145376, 53.6281299541173, 54.8672478615497, 56.1594363974676, 57.4592813129032, 58.8139200609086, 60.1905090554239, 61.5868188953173, 63.0203244915951, 64.491094304094, 65.9990752044332, 67.5440188946363, 69.1254709414305, 70.7427414108178, 72.394877541108, 74.080632612254, 75.7984354316832, 77.5788807365932, 79.3904112524522, 81.2304780583983, 83.1342530299609, 85.1041774559473, 87.057646940651, 89.1183937383861, 91.2006398887539, 93.299093611543, 95.5130345351385, 97.7408567124562, 100.035271317829, 1e3] Ai = @SVector [1.0, 1.02754725519808, 1.02820826952511, 1.02888599630737, 1.02958091766671, 1.03029346852874, 1.03102414038011, 1.0317734650096, 1.03254191876817, 1.03333005763436, 1.03413844319424, 1.03496760589708, 1.03581815111239, 1.03669068782925, 1.03758584430214, 1.03850424100261, 1.03944656285786, 1.04041351096469, 1.04140575375438, 1.04242407109357, 1.04346920356693, 1.04454195496302, 1.04564310667862, 1.04677353699283, 1.04793407015976, 1.04912565608339, 1.05034923240789, 1.05160572535366, 1.0528961688031, 1.05422162980225, 1.05558313657458, 1.05698183992073, 1.0584188948002, 1.05989550117098, 1.06141294102939, 1.06297246082026, 1.06457544425836, 1.06622331610232, 1.06791749739882, 1.06965954942584, 1.07145103252663, 1.07329359100737, 1.0751889615415, 1.07713887192198, 1.07914525536852, 1.08121001390809, 1.08333518446315, 1.08552288943526, 1.08777533980318, 1.09009480033728, 1.0924837416722, 1.09494462221245, 1.09748016882279, 1.10009305244087, 1.1027862863768, 1.10556272234172, 1.10842568083809, 1.11136784469061, 1.11435355003379, 1.11738141633584, 1.12045031913697, 1.12355927550719, 1.12670731516118, 1.12989390082523, 1.13311829129987, 1.13638018549887, 1.13967921599906, 1.14301524754049, 1.14638830840526, 1.14979850858202, 1.15324621483428, 1.1567315885543, 1.16025523623697, 1.16381793878799, 1.16742036336823, 1.17106355608351, 1.17474853091004, 1.17847636368001, 1.18224854983406, 1.18606641729104, 1.18993161151923, 1.19384598114918, 1.19781129475583, 1.20182909102924, 1.20590103406501, 1.21002786120417, 1.21421064602407, 1.21845006862633, 1.22274654155754, 1.2271002381186, 1.23151168439212, 1.2359810313511, 1.24050823143457, 1.24509370110001, 1.24973701876179, 1.25443874469405, 1.25919884040249, 1.26401760004218, 1.26889519984859, 1.27383192291399, 1.27882851643492, 1.28388468478728, 1.28900180359891, 1.29418021864743, 1.2994214782991, 1.30472560497598, 1.31009459262257, 1.31552915024034, 1.32103083952586, 1.3266005801871, 1.33224028006065, 1.33795072191015, 1.34373376089976, 1.3495905021026, 1.35552379964638, 1.36153418186804, 1.36762450845223, 1.37379687912623, 1.38005366319019, 1.38639754202026, 1.3928301859908, 1.39935624048714, 1.40597807171151, 1.41269903285634, 1.41952366414661, 1.42645419789768, 1.43349703021265, 1.44065490973256, 1.44793524785183, 1.45534128438651, 1.46287749715587, 1.47054851918107, 1.47835265120915, 1.4862927780237, 1.49436524717492, 1.50256914493868, 1.51090030083193, 1.51935419619566, 1.52792774102079, 1.53661503766433, 1.54541127373826, 1.55430795530326, 1.56330300769557, 1.572385566197, 1.58155154577689, 1.59079317030895, 1.60010452227965, 1.6094776474509, 1.61890670396021, 1.62838374933906, 1.63790564281385, 1.64745986727507, 1.65704624667635, 1.66665499794966, 1.67628164844266, 1.6859193933619, 1.69556462637196, 1.70521444996092, 1.71486024791311, 1.72449656312858, 1.73412525344792, 1.7437389062475, 1.75333004291949, 1.76290258170278, 1.77245033628628, 1.78197124553899, 1.7914639265763, 1.80092341488628, 1.8103537955354, 1.81974693738443, 1.82910370605815, 1.83842595995007, 1.84771158226806, 1.85695887787945, 1.86616654981164, 1.87533922635142, 1.88447723531203, 1.89357569237835, 1.90264145845155, 1.91167063861534, 1.92066553222247, 1.92962642827777, 1.93855244152431, 1.94745576840511, 1.95633525932969, 1.96518249341382, 1.97401063388319, 1.982827379544, 1.99162573649249, 2.00040599974566, 2.00917715895918, 2.01794974150186, 2.02670878822112, 2.03547434661141, 2.04425042070715, 2.05297568659385, 2.06177350989524, 2.07060345759516, 2.07945917170465, 2.08835423592739, 2.09726942461957, 2.10621907638622, 2.11520760348828, 2.12421430988326, 2.13326921145113, 2.14233790152115, 2.15143812801247, 2.16057604753109, 2.16974365971957, 2.17894779640365, 2.18818016422479, 2.19744841549616, 2.2067440754367, 2.21607579216373, 2.22543502484972, 2.23481207869526, 2.24423642137433, 2.25370092138661, 2.26319737877306, 2.27271645916396, 2.28227072290856, 2.29185122267207, 2.30147255470604, 2.31112645511759, 2.32080343019524, 2.33052018144713, 2.34029652509159, 2.35006769198692, 2.35987972916044, 2.36975549721751, 2.37962439286674, 2.38957173268132, 2.39952367822879, 2.4095037248115, 2.4195385338672, 2.42958260764245, 2.43966263551656, 2.44826127984448, 2.4584168763621, 2.46866791868729, 2.47892169787595, 2.48921070944454, 2.49952484697339, 2.5099029094798, 2.52028649474119, 2.53071515346962, 2.54117997379675, 2.55172823308834, 2.56223680122082, 2.57280835156284, 2.58343616926067, 2.59411244055014, 2.60482814951695, 2.61550255073071, 2.62633360410579, 2.63710025127131, 2.64793443436663, 2.65882964397415, 2.6697782751069, 2.68068520784913, 2.69170797485315, 2.70275373008123, 2.71380949891863, 2.72495971113114, 2.73609837531697, 2.74731382544185, 2.75849047719981, 2.76983395569256, 2.78111529169552, 2.79243132399273, 2.80389605864023, 2.81538267075703, 2.82674275161086, 2.83836055592965, 2.84982179705231, 2.86153584939425, 2.87321111527154, 2.88482520854258, 2.89651828163281, 2.9082846005574, 2.92011638767014, 2.9320050701364, 2.94394078416375, 2.95591231132987, 2.96790691104069, 2.97991020185413, 2.991905991553, 3.00410033351606, 3.01626982969244, 3.02839336223732, 3.0406957276131, 3.05318299686852, 3.06532876423155, 3.07789607819706, 3.09035278260366, 3.10266558971082, 3.11540789445756, 3.12798668687108, 3.14066648243057, 3.14066648243057] new(construct_interpolant(fi, Ai)) end end """ struct SiteAmpAlAtikAbrahamson2021_cy14_620 <: SiteAmplification Implementation of the Al Atik & Abrahamson (2021) amplification function for the Chiou & Youngs (2014) GMM, for Vs30 = 620 m/s """ struct SiteAmpAlAtikAbrahamson2021_cy14_620 <: SiteAmplification amplification::Function function SiteAmpAlAtikAbrahamson2021_cy14_620() fi = @SVector [0.001, 0.0999999976652677, 0.102329302559524, 0.104712899705854, 0.107151922989684, 0.109647828995156, 0.112201842696072, 0.11481541089106, 0.117489809378079, 0.120226445776095, 0.123026909458668, 0.125892543532019, 0.128824940148533, 0.131825713266556, 0.134896296983383, 0.138038409311518, 0.141253749305678, 0.144543997655653, 0.147910842278198, 0.151356137537707, 0.15488169337686, 0.158489303595042, 0.162181004512454, 0.165958719179296, 0.169824391893398, 0.173780092333096, 0.177827996145802, 0.181970117416829, 0.186208734415521, 0.190546109357795, 0.194984457628401, 0.199526242691258, 0.204173813286818, 0.208929592034584, 0.213796238584529, 0.2187762493612, 0.223872144370144, 0.229086835045603, 0.23442290250074, 0.239883271573778, 0.245470902647703, 0.25118864038462, 0.257039633852038, 0.263026746068401, 0.269153491549264, 0.27542291591493, 0.281838388993556, 0.288403255925135, 0.295121024058995, 0.301995126127994, 0.309029604841999, 0.316227931529218, 0.323593614975621, 0.331131069452825, 0.338844245205114, 0.346736772309639, 0.354813575838685, 0.363078225718974, 0.371535219004033, 0.380189390728033, 0.389045046146597, 0.398107161691699, 0.407380508152432, 0.416869557404415, 0.426579406652838, 0.436515931430506, 0.446683454307402, 0.457088153096857, 0.467735056430679, 0.478629876540239, 0.489779099866922, 0.50118693836304, 0.512861667967552, 0.524807676772549, 0.537031867432931, 0.549541200445333, 0.56234152115601, 0.575440464532454, 0.588844296122595, 0.602559893922469, 0.616594876327047, 0.630957658073171, 0.645654646063062, 0.66069423786917, 0.676082399828016, 0.691830540350792, 0.707945998165234, 0.724436595494636, 0.741310700488815, 0.758577297086523, 0.776248385474137, 0.794327772623156, 0.812831358119426, 0.831763986545778, 0.851138538780708, 0.870963429537979, 0.89125049813546, 0.912012592563694, 0.933253442052435, 0.954994171529599, 0.977235937307919, 0.999998805375704, 1.02329280366624, 1.04712852187349, 1.07152197527833, 1.09647602264793, 1.12201883715915, 1.14815530337399, 1.17489542276462, 1.20226202750818, 1.23026811928943, 1.25892769214851, 1.2882486488801, 1.31825399709005, 1.34896180039626, 1.38038352538763, 1.41254005943251, 1.44544529540811, 1.47911398130551, 1.51356193372786, 1.54881707745128, 1.58489956887586, 1.62180735282214, 1.65958637551936, 1.69824989899918, 1.73779729406129, 1.77828448946428, 1.81969887518605, 1.86208779112509, 1.9054543333368, 1.94985352787541, 1.99527311144687, 2.04173508683357, 2.0893051336317, 2.13797123362986, 2.18776191655018, 2.23873283609303, 2.29087102929548, 2.34423796842628, 2.39884781988837, 2.45471400144894, 2.511880091243, 2.57039510551677, 2.63027965310721, 2.69155421647587, 2.75423951576535, 2.81839609775087, 2.88405090257416, 2.95123164803845, 3.01996716410099, 3.09028750979791, 3.16227509284513, 3.23591745184899, 3.31130626470979, 3.38842932293713, 3.46738992240694, 3.54811160360915, 3.63076945311162, 3.71535442092829, 3.80192419136001, 3.89046340636454, 3.98111235975458, 4.0737739992345, 4.16868824170493, 4.2657561712032, 4.36515121132422, 4.4668652059137, 4.57088048539599, 4.67739949206702, 4.786295133735, 4.89778717629173, 5.01186630518887, 5.1286521059794, 5.24808226229213, 5.37027721599142, 5.49538226227858, 5.62336817840178, 5.75436927581519, 5.88853864913959, 6.02565307702634, 6.16606017862807, 6.30951109892382, 6.45662098303551, 6.60690524504259, 6.76079098661223, 6.91824567875567, 7.07950157366777, 7.24452892812175, 7.41327778010241, 7.58567623087047, 7.76232417539447, 7.94320265842556, 8.12827310567713, 8.31747401364312, 8.5115727059095, 8.70968476478233, 8.91261544753868, 9.12033265272673, 9.33278033873792, 9.54987524925011, 9.77266347562167, 9.99995236582352, 10.2328495146228, 10.4713310895162, 10.7153467856455, 10.9648168734375, 11.220415214923, 11.481281797322, 11.7489745722971, 12.0226074114367, 12.3030150474414, 12.589154319388, 12.8829520048479, 13.1822172447431, 13.4901993826242, 13.8033298484174, 14.1251356107456, 14.4543495498987, 14.7908540561393, 15.1360143919102, 15.4882383432476, 15.848957724656, 16.2181055509997, 16.5955707472823, 16.9831652499188, 17.3788959801615, 17.782498830651, 18.1982415618891, 18.6215754095712, 19.0545903354785, 19.4998054296033, 19.9517653945402, 20.4186748032945, 20.8916998179073, 21.3798185481755, 21.876592318871, 22.388724887306, 22.9089776595424, 23.4406285116069, 23.9876462125801, 24.4611810638043, 25.0304353881407, 25.6151373396459, 26.2154380805413, 26.8260113521301, 27.4518039604166, 28.0927715913549, 28.7488005082378, 29.4196999330841, 30.1122048289434, 30.8122344526922, 31.5337746712797, 32.269216867667, 33.0178739029947, 33.7970297127673, 34.5798334266531, 35.3939002732706, 36.2198517187626, 37.0674347729588, 37.9250384135495, 38.815527268243, 39.7146910637927, 40.6476598657917, 41.6017669360864, 42.5614794901379, 43.5557410416839, 44.5861329379982, 45.6190677798908, 46.6879684576793, 47.7748219499769, 48.8987423243348, 50.0395561486413, 51.1954464339143, 52.3882302992812, 53.6190884819327, 54.8626899373696, 56.1440795380313, 57.4642183008033, 58.7931299932705, 60.192060004592, 61.5980795163853, 63.0427913269658, 64.4886848417301, 66.0101801162325, 67.5292356025776, 69.1279644465855, 70.7196167323996, 72.3947924900772, 74.057021287325, 75.8062482577471, 77.5922945719624, 79.4139009601905, 81.2694908799235, 83.1571343713345, 85.0745198625965, 87.0926546875546, 89.0642939141243, 91.2194706679196, 93.3207893198619, 95.5324228492403, 97.7678473288137, 100.021978021978, 1e3] Ai = @SVector [1.0, 1.43770241338022, 1.45016787169638, 1.46262454089254, 1.47506954446146, 1.4875032820005, 1.49992636965784, 1.51234180697138, 1.5247529223422, 1.53716475354566, 1.54958405816321, 1.56201737581464, 1.57447313258116, 1.58696060323328, 1.59948897271967, 1.61206931166247, 1.62471240114601, 1.63742528130861, 1.65021024760093, 1.66306589337842, 1.67598680368875, 1.6889641838872, 1.70198714824542, 1.71504181008475, 1.72811216588793, 1.7411807603792, 1.75422891589671, 1.76723619345155, 1.78018337692914, 1.79305328990608, 1.80583076079616, 1.8185032630888, 1.83105967940179, 1.84349068085707, 1.85578895086534, 1.86794800786156, 1.87996254635489, 1.89182916026216, 1.90354456326478, 1.91510698529507, 1.92651538016369, 1.93776906215491, 1.94886842373616, 1.95981376147573, 1.97060694489046, 1.98124927169874, 1.99174289867486, 2.00209017936097, 2.01229386115204, 2.02235673002841, 2.0322825729852, 2.04207439107915, 2.05173532871477, 2.06126973721357, 2.07068138943787, 2.07997366611491, 2.08915149661157, 2.09821815137207, 2.107177996807, 2.11603566959446, 2.1247952191208, 2.13346129161745, 2.14203831430708, 2.15053031049951, 2.15894190392058, 2.16727828847451, 2.17554324021112, 2.18374201605683, 2.19187893599667, 2.199958720043, 2.20798664627671, 2.21596612288845, 2.22390264827575, 2.23179796019478, 2.23965456530301, 2.24747416994563, 2.25525698088987, 2.26300369255647, 2.27071359119099, 2.27838589422441, 2.28601973247664, 2.29361432874004, 2.30116749996813, 2.3086778356036, 2.31614246908875, 2.32356100141267, 2.33093092939542, 2.33824981714173, 2.34551537549608, 2.35272554679509, 2.3598793895228, 2.36697264291035, 2.37400578716703, 2.38097495005529, 2.38787931996052, 2.39471648051213, 2.40148541810272, 2.40818570002686, 2.41481417437546, 2.42137350269376, 2.42786038034924, 2.43427730762559, 2.44062404245448, 2.44690066141568, 2.45310879514176, 2.45924683690326, 2.46531959118402, 2.47132617807982, 2.47726715655229, 2.4831459587665, 2.48896386728503, 2.49472238892009, 2.50042193775653, 2.50606585942444, 2.5116565033774, 2.51719510112322, 2.52268444138543, 2.52812616926381, 2.53352210977711, 2.53887424152971, 2.54418639048603, 2.54946111207599, 2.55469777767125, 2.55990258293713, 2.56507702827636, 2.57022091276869, 2.57534127336485, 2.58043642448844, 2.58551213835869, 2.59056876953017, 2.59561273694766, 2.60064266491665, 2.60566114763947, 2.61067538498963, 2.61568429867945, 2.62069108211207, 2.62570155924051, 2.63071474081604, 2.63573686785813, 2.64076965035807, 2.64581473404395, 2.65087659127751, 2.6559599807492, 2.66106717721275, 2.66620056913522, 2.6713624883885, 2.67655862119629, 2.68179180173664, 2.68706503247137, 2.69238140763953, 2.69774416968228, 2.70316051272804, 2.70863043864547, 2.71416182660125, 2.71975477246343, 2.72541777755935, 2.73114690776991, 2.73695590437774, 2.74284555208644, 2.74882134784057, 2.75488382444996, 2.76104426912801, 2.76729788279163, 2.7736627502061, 2.78013423665675, 2.78672602937371, 2.79343983347924, 2.80027692924534, 2.80725315077232, 2.814362847559, 2.82162331360779, 2.82903694748673, 2.83661476441152, 2.8443206041498, 2.8520511877403, 2.8598037746113, 2.86757243990086, 2.875361246825, 2.88317505759392, 2.89099690156617, 2.89884252206407, 2.90669402806585, 2.91458089482491, 2.92247297709132, 2.93038865266971, 2.93832205666209, 2.94628067082922, 2.95425865017668, 2.9622495348731, 2.97024603444418, 2.97827180113265, 2.98632157144484, 2.99438928056263, 3.00246817559146, 3.01058658006503, 3.0187032248018, 3.026847073473, 3.03501243241576, 3.04319282444565, 3.05138099124304, 3.05961193178662, 3.06783730096053, 3.07609307589279, 3.08437380669606, 3.09267333573152, 3.10098467953501, 3.10932597146677, 3.11766492555021, 3.12604695408217, 3.13443972680896, 3.14286435755985, 3.15128526682163, 3.15975469356089, 3.16820522174391, 3.176723970201, 3.18520799445835, 3.19374858930422, 3.20230709657814, 3.2108761883538, 3.21948596929976, 3.22809231538926, 3.23672600296876, 3.24538073379847, 3.25404942554169, 3.26276879153558, 3.2714892521925, 3.28020129743411, 3.28899195109764, 3.29776022041696, 3.30654556003318, 3.31539381860346, 3.3241924704965, 3.33309635042727, 3.34193250145537, 3.35086420237266, 3.35976851638599, 3.36876064179229, 3.37770877149997, 3.38666591577686, 3.39569365553722, 3.40336128011046, 3.41240444748267, 3.42150263892667, 3.43065244885735, 3.43976835149571, 3.4489200680504, 3.4581017634771, 3.46730683156448, 3.47652774775042, 3.48585109898529, 3.49508310600139, 3.5044040094006, 3.51371021423701, 3.52298951241011, 3.53244940197633, 3.5417593689859, 3.55124314831317, 3.56066891069682, 3.57014379913305, 3.57953452542909, 3.58908587962355, 3.59853308319482, 3.60813502113749, 3.61775428403747, 3.62723216085909, 3.63685006074365, 3.64661438492979, 3.65620309560786, 3.66592287374757, 3.67560418251516, 3.68541142885049, 3.69516310864239, 3.70484159030479, 3.71462470355701, 3.7245142324531, 3.73430225802669, 3.74418162900315, 3.7541524596334, 3.76398469248638, 3.77412429347026, 3.78410841347155, 3.79415840059195, 3.80401131424911, 3.81416782825724, 3.82410151631852, 3.83434326044182, 3.84433203673702, 3.85463092634442, 3.86464222983466, 3.87496297029135, 3.88528746895873, 3.89560403281376, 3.90589970622295, 3.91616032332114, 3.92637033463232, 3.93689861761273, 3.94697505070503, 3.95776590239446, 3.96807466174167, 3.97870464642664, 3.98923199048823, 3.99963202873836, 3.99963202873836] new(construct_interpolant(fi, Ai)) end end """ struct SiteAmpAlAtikAbrahamson2021_cy14_760 <: SiteAmplification Implementation of the Al Atik & Abrahamson (2021) amplification function for the Chiou & Youngs (2014) GMM, for Vs30 = 760 m/s """ struct SiteAmpAlAtikAbrahamson2021_cy14_760 <: SiteAmplification amplification::Function function SiteAmpAlAtikAbrahamson2021_cy14_760() fi = @SVector [0.001, 0.100000005278119, 0.102329305685959, 0.104712901088038, 0.10715191734136, 0.1096478161355, 0.112201844312325, 0.114815399493054, 0.117489811269133, 0.120226426884127, 0.123026912673429, 0.125892543180806, 0.128824943888933, 0.131825701931171, 0.134896292542321, 0.138038419685919, 0.141253726031804, 0.144543991682274, 0.147910841016824, 0.15135612531762, 0.154881699105396, 0.158489298275321, 0.162180994731809, 0.165958688177051, 0.169824406249264, 0.173780124732544, 0.177827987234069, 0.181970104503309, 0.18620874216892, 0.190546088276735, 0.194984413397179, 0.199526234462532, 0.204173818378493, 0.208929629962364, 0.213796203501538, 0.218776216272469, 0.223872092751581, 0.229086773295876, 0.234422913440041, 0.239883346374602, 0.245470959191782, 0.251188647299664, 0.257039583965111, 0.263026839625322, 0.269153386068061, 0.275422892536035, 0.281838357206786, 0.288403136014915, 0.29512088643951, 0.301995147118928, 0.309029636270837, 0.316227726764557, 0.323593743035287, 0.331131074274485, 0.338844138033324, 0.346736738117816, 0.354813374379999, 0.363078069427477, 0.371535318437207, 0.38018929961147, 0.389044995694541, 0.398107060813636, 0.407380379735427, 0.416869369537323, 0.426579727361764, 0.436515887692042, 0.446683606986212, 0.457088019319652, 0.46773532542682, 0.478629981874554, 0.489778948828998, 0.501187304961605, 0.512861186273828, 0.524807402402299, 0.537031596210482, 0.549541299892976, 0.562341327015613, 0.575439822942147, 0.588843516357273, 0.602559763585899, 0.61659488244124, 0.630957589108888, 0.645654602589703, 0.660693172670039, 0.676083352446191, 0.69183061540227, 0.707945609900711, 0.724435639005472, 0.741310319666438, 0.758577791401586, 0.776247032532349, 0.794327972885161, 0.812829888313304, 0.83176450189098, 0.85113745411528, 0.870963690655165, 0.891251760400126, 0.912010408577856, 0.933255245295474, 0.954991724274509, 0.977236931585538, 0.99999931915226, 1.0232926583713, 1.04712871370939, 1.07151972559382, 1.09647839861261, 1.12201798920987, 1.14815239015486, 1.17489619113164, 1.20226482282661, 1.230270509361, 1.25892568257472, 1.28825221490343, 1.31825970420816, 1.34896234511787, 1.38038569480746, 1.4125355875376, 1.44544035634817, 1.4791067005516, 1.51355991769356, 1.54881419338307, 1.58489135570109, 1.62180741098713, 1.65958724224312, 1.69824098493074, 1.73780538614063, 1.77828384029801, 1.81969768325487, 1.86209132642581, 1.90545951786295, 1.94984000723927, 1.99526323502638, 2.04173666608573, 2.08929373051144, 2.13795720949869, 2.18776679563686, 2.23871864940605, 2.29087274897834, 2.34422665758295, 2.398830455509, 2.45470143491059, 2.51187774934974, 2.57040187591233, 2.63027473614656, 2.69154228983537, 2.75423051595883, 2.81839385215467, 2.88403692114349, 2.95122086420034, 3.01995215562392, 3.09030065678915, 3.16227642295472, 3.23592346631478, 3.31132891490246, 3.3884299172534, 3.46735946910046, 3.54813821074709, 3.63078533725135, 3.71536846377799, 3.80191135853523, 3.89043708383884, 3.98108381905827, 4.07382969500055, 4.16870567544569, 4.26581070164795, 4.36518697265844, 4.46680411703705, 4.57085377834242, 4.67739610111622, 4.78632242414544, 4.89776678860413, 5.0118843229469, 5.12865332406043, 5.24803935339088, 5.37032511094351, 5.49537847413284, 5.62339713074269, 5.75435457691296, 5.88847905118778, 6.02561155450687, 6.16599641750948, 6.30960714497232, 6.45659960120723, 6.60689861529496, 6.76084973072587, 6.91824357308313, 7.07938541613807, 7.24442301919855, 7.41307142632331, 7.58568641738688, 7.76244066564601, 7.94326569146627, 8.12834448596361, 8.31759182767968, 8.51151566867657, 8.70973318814878, 8.91245786665494, 9.12030564789694, 9.33246351716575, 9.54996668260048, 9.77234156401459, 9.99990153906584, 10.2330151684908, 10.4711008559889, 10.7150364469821, 10.964750490257, 11.2201347329491, 11.4816670597186, 11.7492496241653, 12.022742813086, 12.3026981000034, 12.5889920759082, 12.8822769465087, 13.182459265256, 13.489400932834, 13.8038791736706, 14.1258004265005, 14.4539459356652, 14.7913578984967, 15.1357324856635, 15.4880193842308, 15.8493619845298, 16.2183086824161, 16.5960326767835, 16.9823769767776, 17.3787778053556, 17.7834601578259, 18.1979135417807, 18.6200418512582, 19.0554824815177, 19.49807748989, 19.9517012657342, 20.4186610376656, 20.8940733113534, 21.379997361205, 21.8789412825561, 22.387937087537, 22.9096392147486, 23.4439269263859, 23.9870856553391, 24.46058662679, 25.0340588613218, 25.6152039490899, 26.2158596298214, 26.8275446219964, 27.4542925051998, 28.0959151088508, 28.7521309339848, 29.4225501552548, 30.1066616578723, 30.8101318295223, 31.5331607803149, 32.2688473500071, 33.0235676906087, 33.7894041350745, 34.5814827413102, 35.3920282683592, 36.2114034095699, 37.0570384215831, 37.9296731960298, 38.808356830246, 39.7246511532133, 40.6446342457211, 41.5904771517877, 42.5624316552899, 43.5606664842275, 44.58525356566, 45.6203356517073, 46.679926731282, 47.7811828082431, 48.889095202211, 50.0392749799897, 51.1923784631563, 52.3876989427786, 53.6271327545174, 54.8639723203735, 56.1438945185322, 57.4685744162854, 58.8111011775592, 60.1686734628619, 61.6017896398734, 63.0158092367494, 64.5080917430415, 66.010239337733, 67.5570266517399, 69.1074610525002, 70.7437395379651, 72.3800126937281, 74.0584033514694, 75.8305646487854, 77.5949512656221, 79.4004309784528, 81.2461188644527, 83.1308139099541, 85.0529665055861, 87.0822300450569, 89.0763954752011, 91.1807407221922, 93.3202913166248, 95.4916631049442, 97.6908631563263, 100.012267904509, 1e3] Ai = @SVector [1.0, 1.26474365754693, 1.27187168763244, 1.27901461204394, 1.2861668468288, 1.29332769860997, 1.30049545713136, 1.30766852765824, 1.3148448358383, 1.32202240367609, 1.32920111176275, 1.33638102751286, 1.34356422475535, 1.35075365610266, 1.35795288790118, 1.36516683588672, 1.37240078818257, 1.37965956984633, 1.38694651866824, 1.3942644665929, 1.40161534480099, 1.40900004959024, 1.41641948596057, 1.42387361692424, 1.43136209798135, 1.43888401061133, 1.44643774756037, 1.45402034276764, 1.46162798960857, 1.46925573360015, 1.47689789847254, 1.48454848588452, 1.49220043010574, 1.49984643882526, 1.50747891120157, 1.51509009761108, 1.52267156234887, 1.53021542332592, 1.53771329159611, 1.54515767577195, 1.5525423017734, 1.55986193063354, 1.56711260297083, 1.57429107685139, 1.58139470109949, 1.58842230933339, 1.59537254872675, 1.60224497526539, 1.6090399193016, 1.61575793863017, 1.62240013364471, 1.62896756722738, 1.63546241542315, 1.64188624895108, 1.64824169962538, 1.65453105215902, 1.660757253143, 1.66692298962119, 1.67303139815318, 1.67908545861599, 1.68508877287354, 1.69104474095905, 1.69695691445104, 1.70282847890391, 1.70866337029487, 1.71446466460501, 1.72023619436562, 1.72598137429174, 1.73170412937894, 1.73740741092509, 1.74309547823134, 1.74877153446106, 1.7544392973187, 1.76010278844154, 1.7657654338474, 1.77143153644529, 1.77710410272141, 1.7827876649385, 1.78848607318854, 1.79420347226643, 1.79994358407784, 1.80571108575488, 1.81150988535825, 1.81734412132426, 1.82321904347219, 1.82913817252675, 1.83510670026067, 1.84112756121076, 1.84720347424249, 1.85333562714735, 1.85952470296974, 1.8657708979849, 1.87207351949043, 1.87843213317722, 1.8848436987637, 1.89130781117208, 1.89782159094484, 1.90438189213204, 1.91098741512956, 1.91763345905683, 1.92431870117879, 1.93103904302077, 1.9377917893536, 1.94457361968632, 1.95138121657727, 1.95821137709387, 1.96506101732005, 1.97192719683423, 1.97880718423323, 1.98569844861012, 1.99259770558709, 1.99950182429154, 2.00641002878188, 2.01331868946611, 2.02022543975041, 2.02713050388327, 2.03402982723964, 2.04092437374658, 2.04781056500155, 2.05468885904031, 2.0615574700588, 2.06841626488153, 2.0752640907423, 2.08210150758018, 2.08892649642953, 2.09574183898203, 2.10254459906843, 2.10933506179724, 2.11611724811337, 2.12288728136106, 2.12964821625687, 2.13640189502178, 2.14314680483325, 2.14988534511825, 2.15661842855298, 2.16334930355606, 2.17007541648867, 2.17680275350116, 2.18352920748937, 2.19025940643645, 2.19699395722506, 2.2037360384332, 2.21048929651311, 2.21725267854449, 2.22403035334881, 2.23082429847101, 2.23763960582685, 2.24447608988636, 2.25133959947153, 2.25823040581599, 2.26515517696813, 2.27211465284156, 2.279113030692, 2.28615863788022, 2.29324589179053, 2.30038750095143, 2.30758593730311, 2.31484372550238, 2.32216775190769, 2.32956116012962, 2.33702714372695, 2.34457871599795, 2.35221548594714, 2.35994167884065, 2.36776709937289, 2.37569708603435, 2.38373136578869, 2.39188740715789, 2.4001723655651, 2.40858055742088, 2.41712532444938, 2.42582176653978, 2.43467176969305, 2.44367644631041, 2.45286124704223, 2.46222059889919, 2.47177408512471, 2.48152482557902, 2.49149534670758, 2.50167973724668, 2.5121025424396, 2.52276859362371, 2.53368621015369, 2.54471244064013, 2.55579887509383, 2.56691556730856, 2.57807828112741, 2.58929124755218, 2.60052938345122, 2.61181075197994, 2.6231406506567, 2.63450877844716, 2.64592079024619, 2.65736566297975, 2.66886801235028, 2.68039925680379, 2.6919660621504, 2.70359735310195, 2.71524178942724, 2.72695021810889, 2.73869095536778, 2.75047462230107, 2.76231402600025, 2.77417366427405, 2.78609125336844, 2.79805689620922, 2.81005922472766, 2.82211450958847, 2.83421194016232, 2.84633914825058, 2.85851444304052, 2.87072623771478, 2.88299593842877, 2.89531316315953, 2.90766594630464, 2.92007909343311, 2.93254220452969, 2.94500235859685, 2.95756836203094, 2.97014763145451, 2.98276880579325, 2.99546605253435, 3.00818177435952, 3.02095009321979, 3.03375911466721, 3.04664949155654, 3.05955682058631, 3.07252220143771, 3.08547407825541, 3.09857806889149, 3.11164189991262, 3.1247740454825, 3.13803326445637, 3.15127392356254, 3.16454764394741, 3.17791564782097, 3.19129151012199, 3.20473834661461, 3.21824566667958, 3.23171364822652, 3.24322176393691, 3.25693690766748, 3.27057303493195, 3.28439587776679, 3.2982023981508, 3.3120769920673, 3.32600819520374, 3.33998266349085, 3.35398523152793, 3.36799876948903, 3.38213175244099, 3.39637913151413, 3.41059795760726, 3.42490457070842, 3.43914277447917, 3.45358581167583, 3.46808249458969, 3.4824554766011, 3.49700354471659, 3.51172864029507, 3.52627127838015, 3.54114568729358, 3.55579375948015, 3.57056350893963, 3.58544956703106, 3.60044533617299, 3.61554285093282, 3.63050282206819, 3.64552230305604, 3.66083358332543, 3.67594250063318, 3.69132730927766, 3.70645512356833, 3.72183502705042, 3.73747813266146, 3.75278864636778, 3.76832751756716, 3.78410258957844, 3.79978518957619, 3.81533904720756, 3.83144482482593, 3.84703224899097, 3.86316870335808, 3.87910227339303, 3.89519546271496, 3.91101665356257, 3.92739373576442, 3.94345781904698, 3.95961844868298, 3.97635732852111, 3.99270630339808, 4.00911573850308, 4.02556924273202, 4.04204836767728, 4.05853233081845, 4.07560361892911, 4.09205960420983, 4.10909253284836, 4.12608173443567, 4.14299493817811, 4.15979664012907, 4.17719144318364, 4.17719144318364] new(construct_interpolant(fi, Ai)) end end """ struct SiteAmpAlAtikAbrahamson2021_cy14_1100 <: SiteAmplification Implementation of the Al Atik & Abrahamson (2021) amplification function for the Chiou & Youngs (2014) GMM, for Vs30 = 1100 m/s """ struct SiteAmpAlAtikAbrahamson2021_cy14_1100 <: SiteAmplification amplification::Function function SiteAmpAlAtikAbrahamson2021_cy14_1100() fi = @SVector [0.001, 0.0977010025977648, 0.100000002147813, 0.102329309655048, 0.104712908884942, 0.107151921599752, 0.109647820058097, 0.112201843942563, 0.114815401321503, 0.117489803171727, 0.120226429999859, 0.123026915212088, 0.125892545558633, 0.128824944897604, 0.131825712969856, 0.134896304882222, 0.138038422945309, 0.141253749931204, 0.144544005333209, 0.147910844382825, 0.151356121125874, 0.154881708277479, 0.158489317872049, 0.162181023389891, 0.165958708562337, 0.169824403885452, 0.173780104951092, 0.177828005454721, 0.181970117429641, 0.18620872976175, 0.190546132590931, 0.194984429467593, 0.199526207936787, 0.204173835315759, 0.208929637817485, 0.213796244169354, 0.218776208729851, 0.223872149326841, 0.229086808463051, 0.234422942920286, 0.239883311190641, 0.245470934175994, 0.25118863812326, 0.257039593879345, 0.263026831269832, 0.26915351703127, 0.275422971521348, 0.281838324330158, 0.288403210141998, 0.295120977826189, 0.301995224249587, 0.309029618130213, 0.31622789636901, 0.323593739668733, 0.331131114375592, 0.338844190421997, 0.346736816537615, 0.354813425604309, 0.363078100472879, 0.371535251399413, 0.380189508791034, 0.389045231112729, 0.398107137135727, 0.407380370581322, 0.416869580502438, 0.426579602266325, 0.436515915885663, 0.446683660333047, 0.457088251100418, 0.467735265470384, 0.478630196128666, 0.489779026173635, 0.501187390878715, 0.512861330755075, 0.524807658522541, 0.537032041448618, 0.549541127929602, 0.56234162744386, 0.575440262356433, 0.588843710293594, 0.602559835951633, 0.616595216384171, 0.630957615277879, 0.645654729513682, 0.660693600957462, 0.676083165254278, 0.691831208109039, 0.707945826928056, 0.724436133611112, 0.74131042217303, 0.758578038308524, 0.77624736932336, 0.794328682342172, 0.812830431366386, 0.831763953983852, 0.851138672022375, 0.87096442965993, 0.891251525828283, 0.91201081083974, 0.933254870536159, 0.954992557324465, 0.977237796174617, 1.00000050289132, 1.02329361857925, 1.04712955845278, 1.07151999189293, 1.09647874351814, 1.12201896666043, 1.14815462914034, 1.17489878135328, 1.20226520272396, 1.23027062883789, 1.25892726545553, 1.2882504677093, 1.31825698358287, 1.34896511219286, 1.38038441048487, 1.41253793942796, 1.44543969181007, 1.47911015332597, 1.51356193891812, 1.54881767314568, 1.58489488713915, 1.621811871956, 1.65958777981605, 1.69824683685932, 1.73780222064615, 1.77828027313385, 1.81970479554162, 1.86209113089599, 1.90546494045257, 1.94984823759762, 1.99526402188307, 2.04174270078569, 2.08929854854814, 2.13796117486418, 2.18776490616744, 2.23872629924922, 2.2908704807379, 2.3442329469835, 2.39883512074943, 2.45470793115014, 2.5118939542785, 2.57039815360423, 2.63027562282402, 2.69154135747925, 2.75423171284814, 2.8183845786919, 2.88403946249489, 2.95120968480996, 3.01995159639335, 3.09030429791269, 3.16227816307602, 3.23594997794318, 3.31131159033704, 3.38844532186045, 3.46738106905059, 3.54814747811791, 3.63079559295023, 3.71535519042189, 3.80190823989626, 3.89046320082663, 3.98108192520036, 4.07380120055439, 4.16869189434466, 4.26579788322738, 4.36516522519641, 4.4668426288625, 4.57088216476806, 4.67734021450466, 4.78632839646284, 4.89777907530505, 5.01190181635595, 5.12862260920556, 5.24807767416142, 5.37030248071806, 5.49539859737328, 5.6234130037025, 5.75439508692842, 5.88847553534566, 6.02564127802564, 6.16595510961186, 6.30957907152021, 6.45660585885845, 6.60693292036847, 6.76086350668524, 6.91829867839757, 7.07947441276088, 7.24441264482972, 7.41313009899397, 7.58578237749003, 7.76255094245573, 7.9433251675949, 8.1282996056464, 8.3177033323344, 8.51142533453252, 8.7097194742949, 8.91246199817186, 9.12016156219638, 9.332696243291, 9.55003805171751, 9.77239450509741, 10.0000029907508, 10.2330553726513, 10.4714586173544, 10.7154077869287, 10.9647806593532, 11.2201385083976, 11.4817667385852, 11.749182692662, 12.0226308508435, 12.3028451426025, 12.5892753879456, 12.8827326835533, 13.1825992921692, 13.4897749635231, 13.8041598088759, 14.1256063708026, 14.4545696058549, 14.7908914452525, 15.1358192657506, 15.4885347993343, 15.8488225194303, 16.2181192725222, 16.5963419405375, 16.9823973303689, 17.3779567228685, 17.7829075841531, 18.1970772186461, 18.6214126043814, 19.0545338392523, 19.4986930161533, 19.9524286446679, 20.416864999908, 20.8933470739312, 21.3801959413476, 21.877050819294, 22.3871039554581, 22.908439141657, 23.4427335942745, 23.9877078447875, 24.4615823340943, 25.031202431116, 25.6177047771876, 26.2161483984282, 26.8259478798891, 27.4552051755687, 28.0951333985226, 28.751315395343, 29.4236385219517, 30.1082477908273, 30.811958621233, 31.5308613988034, 32.2686893997017, 33.0208884169828, 33.7914032028601, 34.579975130502, 35.391548861299, 36.2152106058876, 37.0613062814607, 37.9299347343757, 38.8144960833807, 39.7208188221605, 40.6486334289266, 41.5975541496905, 42.5669911664598, 43.5648564777589, 44.5824470987695, 45.6186722516438, 46.6823777382087, 47.7735736024154, 48.8921454797594, 50.0378325855946, 51.1975836707781, 52.395445399495, 53.6185421737629, 54.8658219542705, 56.1516372230445, 57.4603259933358, 58.8075338769039, 60.175447350898, 61.5810960994084, 63.024723286493, 64.5063997612122, 66.0032231305981, 67.5354572618034, 69.1279139189578, 70.7299653329548, 72.3931067306596, 74.0903777983319, 75.8201354700951, 77.5803564100812, 79.4038019330799, 81.2559529418577, 83.1336398315252, 85.0745163971121, 87.0807659823219, 89.1084652652259, 91.2011614865688, 93.3092685329326, 95.4805967926651, 97.7163690175498, 100.018001618123, 1e3] Ai = @SVector [1.0, 1.02292145226887, 1.02347193269187, 1.02403057751128, 1.02460319134443, 1.02519011266872, 1.02579176831187, 1.02640853342845, 1.02704082826441, 1.02768905430581, 1.02835363474967, 1.02903505952671, 1.02973373980831, 1.03045017460176, 1.0311848633099, 1.03193827633036, 1.0327109513952, 1.03350342871595, 1.03431626515321, 1.0351500096106, 1.03600526856439, 1.03688266214622, 1.03778277978816, 1.0387063108895, 1.03965390800433, 1.04062627142124, 1.04162410427155, 1.04264817195258, 1.04369920691201, 1.04477802541463, 1.04588545877383, 1.04702230584016, 1.04818950553136, 1.04938795776172, 1.05061856972311, 1.05188234591929, 1.05318029207605, 1.05451345188998, 1.05588292447437, 1.05728983693677, 1.05873534230198, 1.06022069021328, 1.06174710746976, 1.06331594325248, 1.06492854161542, 1.06658631765947, 1.06829076469872, 1.07004336284863, 1.0718457712776, 1.07369961506345, 1.07560663398471, 1.07756863757093, 1.07958750732489, 1.08166516497738, 1.08380367238586, 1.08600521377592, 1.08827195000029, 1.09060628203965, 1.0930105879726, 1.09548742323904, 1.09803949700572, 1.10066953312697, 1.10338046279428, 1.10617545421057, 1.10905764392622, 1.11203034763532, 1.11509721225581, 1.11825553420698, 1.12144917852688, 1.1246796539187, 1.12794829299106, 1.13125624742406, 1.13460429000094, 1.13799306931939, 1.14142322536332, 1.14489489015684, 1.14840831096586, 1.15196361033023, 1.15556079375142, 1.15919975704052, 1.16288063682518, 1.16660315861036, 1.17036730769621, 1.17417302685345, 1.17802006078517, 1.18190862619046, 1.18583863984576, 1.18981011780842, 1.19382332702879, 1.19787836695458, 1.20197562199144, 1.20611528409883, 1.21029802809752, 1.21452416846484, 1.21879471752033, 1.22311033084606, 1.22747180290555, 1.23188011703117, 1.23633643956717, 1.24084239220589, 1.24539887918669, 1.25000795860436, 1.25467094418524, 1.2593898676351, 1.26416675226572, 1.2690035743003, 1.27390284995903, 1.27886707264258, 1.28389900631067, 1.28900137786973, 1.29417717088048, 1.29942997972775, 1.30476222314791, 1.3101765352044, 1.31567550654443, 1.32126173528755, 1.32693599996809, 1.33270134122456, 1.33855901638881, 1.34451134371996, 1.3505591519097, 1.35670499399946, 1.36295050038664, 1.36929744696008, 1.37574778516408, 1.38230438623046, 1.388968313675, 1.39574296878562, 1.40263144734258, 1.40963555128996, 1.41675897819501, 1.42400498055988, 1.43137720353972, 1.43888069172586, 1.44651763482068, 1.45429126519843, 1.46220404573045, 1.47025422831336, 1.4784401930991, 1.48676085496561, 1.49521194341356, 1.50378978556612, 1.51249174592764, 1.52130875754207, 1.53023878441403, 1.5392732835319, 1.54840646886376, 1.55763243232209, 1.56694520621564, 1.57633446807761, 1.58579484589713, 1.5953215555526, 1.60490419160944, 1.61454123113567, 1.6242199810549, 1.63393955229688, 1.64369237447499, 1.65347088883277, 1.66327040535463, 1.67308386455574, 1.68291038791816, 1.69274086388146, 1.70257239762523, 1.71239953852971, 1.72222060085856, 1.73203128225791, 1.74182768716387, 1.75160641484959, 1.76136461193462, 1.7710999990701, 1.78081437519508, 1.79049296371695, 1.80015003736033, 1.80977303709577, 1.81936727071378, 1.82892990714556, 1.83846347170023, 1.84796639243239, 1.85743750459596, 1.86688165331811, 1.87629358252266, 1.8856736527025, 1.8950288840274, 1.90436165066947, 1.91366219165397, 1.92294620623536, 1.93220485121666, 1.94144937133627, 1.95067852479334, 1.95989108471327, 1.96909361501791, 1.97829392522576, 1.9874846673211, 1.99667446850001, 2.00587343176446, 2.01507515603444, 2.02429093618278, 2.03351451411184, 2.0427685885531, 2.05200835048918, 2.06129846975702, 2.07063233834377, 2.08000295297832, 2.08941323937857, 2.09885457878688, 2.10832985289235, 2.11782956098308, 2.12737020834432, 2.13695728579534, 2.14656816953363, 2.15620690857747, 2.16589428783657, 2.17560626370137, 2.18536526516532, 2.19514576543929, 2.20497210102333, 2.2148358498885, 2.22472736252484, 2.23465562018838, 2.24461085240881, 2.25462463207177, 2.26466785090401, 2.27472952825745, 2.28484459422524, 2.29500521882397, 2.30517703409137, 2.31539895840579, 2.32566256141126, 2.3359582202847, 2.34630404776055, 2.35666125692194, 2.36707841037313, 2.37751582151233, 2.38799409394066, 2.39853782035382, 2.4091042877289, 2.41968080309917, 2.43032975604236, 2.44100536528213, 2.45173644910413, 2.46247192861055, 2.47162153106358, 2.48244396248787, 2.49337663294825, 2.50431761351121, 2.5152516264796, 2.52631760041526, 2.53735514381143, 2.54845541134747, 2.5596102315799, 2.5707504876661, 2.5819814097096, 2.59323437974958, 2.60456179747344, 2.61588810012201, 2.6272672323506, 2.63868932517327, 2.65021919295664, 2.66169639382403, 2.67325977972402, 2.68490368042331, 2.69653388068794, 2.70822161597118, 2.71995708946518, 2.73172820368481, 2.74352318663082, 2.7554315670374, 2.76734304435521, 2.77924007834796, 2.79121828669927, 2.80327079986881, 2.81538948486291, 2.82756495832855, 2.83965389962159, 2.85190084056504, 2.86416685159584, 2.87643600596561, 2.88884248273541, 2.90122863794132, 2.91373609924084, 2.92619338563946, 2.93874979637281, 2.95139980678776, 2.96413759574585, 2.97676045753032, 2.98943468223343, 3.00235625109584, 3.0151082390744, 3.02809427260794, 3.04109550561551, 3.05409394159766, 3.06706942999362, 3.08025557152477, 3.09339547933017, 3.10646287098568, 3.11971287329116, 3.13315030041192, 3.14647480120328, 3.15996638094659, 3.17329994536433, 3.18677262243827, 3.20038298587724, 3.21412318639176, 3.21412318639176] new(construct_interpolant(fi, Ai)) end end
StochasticGroundMotionSimulation
https://github.com/pstafford/StochasticGroundMotionSimulation.jl.git
[ "MIT" ]
0.2.6
b88d988a6a59a7ac37d73f8517a7022613997c68
code
2809
""" magnitude_to_moment(m::T) where T<:Real Converts moment magnitude to seismic moment (in dyne-cm). # Examples ```julia-repl m = 6.0 M0 = magnitude_to_moment(m) ``` """ function magnitude_to_moment(m::T) where T<:Real # equivalent to: return 10.0^( 1.5*( m + 10.7 ) ) return 10.0^( 1.5m + 16.05 ) end """ corner_frequency_brune(m::S, Δσ::T, β::Float64=3.5) where {S<:Real, T<:Real} Computes the corner frequency using the Brune model. - `m` is the moment magnitude - `Δσ` is the stress drop in units of bars - `β` is the shear-wave velocity at the source in units of km/s # Examples ```julia-repl m = 6.0 Δσ = 100.0 β = 3.5 fc = corner_frequency_brune(m, Δσ, β) ``` """ function corner_frequency_brune(m::S, Δσ::T, β::Float64=3.5) where {S<:Real, T<:Real} Mo = magnitude_to_moment(m) return 4.9058e6 * β * ( Δσ / Mo )^(1/3) end """ corner_frequency_atkinson_silva_2000(m::T) where T<:Real Computes the corner frequencies, `fa`, `fb`, and the mixing parameter `ε` from the Atkinson & Silva (2000) double corner frequency model. This is the default source corner frequency model used by Boore & Thompson (2014) to define their source duration. But note that they just use fa. This function returns fb and ε also # Examples ```julia-repl m = 6.0 fa, fb, ε = corner_frequency_atkinson_silva_2000(m) ``` See also: [`corner_frequency`](@ref) """ function corner_frequency_atkinson_silva_2000(m::T) where T<:Real fa = 10.0^( 2.181 - 0.496*m ) fb = 10.0^( 2.410 - 0.408*m ) ε = 10.0^( 0.605 - 0.255*m ) return fa, fb, ε end """ corner_frequency(m::U, src::SourceParameters{S,T}) where {S<:Float64, T<:Real, U<:Real} Computes a 3-tuple of corner frequency components, depending upon source spectrum type. By default the single-corner Brune spectrum is considered, but if `src.model` equals `:Atkinson_Silva_2000` then the components of the double-corner spectrum are returned. If some other symbol is passed then the Brune model is returned. # Examples ```julia-repl m = 6.0 Δσ = 100.0 κ0 = 0.035 fas = FASParams(Δσ, κ0) # compute single corner frequency src.model = :Brune fc, tmp1, tmp2 = corner_frequency(m, src) # compute double corner frequencies src.model = :Atkinson_Silva_2000 fa, fb, ε = corner_frequency(m, src) ``` """ function corner_frequency(m::U, src::SourceParameters{S,T}) where {S<:Float64, T<:Real, U<:Real} if src.model == :Atkinson_Silva_2000 fa, fb, ε = corner_frequency_atkinson_silva_2000(m) if T <: Dual return T(fa), T(fb), T(ε) else return fa, fb, ε end else # default to Brune fc = corner_frequency_brune(m, src.Δσ, src.β) V = typeof(fc) return fc, V(NaN), V(NaN) end end corner_frequency(m, fas::FourierParameters) = corner_frequency(m, fas.source)
StochasticGroundMotionSimulation
https://github.com/pstafford/StochasticGroundMotionSimulation.jl.git
[ "MIT" ]
0.2.6
b88d988a6a59a7ac37d73f8517a7022613997c68
code
4015
""" Oscillator{T<:Float64} Custom type to represent a SDOF oscillator. The type has two fields: - `f_n` is the natural frequency of the oscillator - `ζ_n` is the damping ratio # Examples ```julia-repl sdof = Oscillator( 1.0, 0.05 ) ``` """ struct Oscillator{T<:Float64} f_n::T ζ_n::T end """ Oscillator(f_n) Default initializer setting the damping ratio to 5% of critical - `f_n` is the natural frequency of the oscillator (in Hz) # Examples ```julia-repl f_n = 2.0 sdof = Oscillator(f_n) ``` """ Oscillator(f_n::T) where {T<:Float64} = Oscillator(f_n, 0.05) """ period(sdof::Oscillator) Natural period (s) of the sdof Oscillator. """ function period(sdof::Oscillator) return 1.0/sdof.f_n end @doc raw""" transfer(f::T, sdof::Oscillator) where {T<:Real} Compute the modulus of the transfer function for a SDOF system. The transfer function is defined as: ```math |H(f,f_n,\zeta_n)| = \frac{1}{\sqrt{ \left(1 - \beta^2 \right)^2 + \left(2\zeta_n\beta\right)^2 }} ``` where ``\beta`` is the tuning ratio defined by ``f/f_n``. # Examples ```julia-repl f = 2.0 sdof = Oscillator(1.0, 0.05) Hf = transfer(f, sdof) ``` See also: [`squared_transfer`](@ref) """ function transfer(f, sdof::Oscillator) # tuning ratio β = f / sdof.f_n return 1.0 / sqrt( (1.0 - β^2)^2 + (2sdof.ζ_n*β)^2 ) end """ squared_transfer(f, sdof::Oscillator) Compute the square of the transfer function for a SDOF system, `sdof`, at frequency `f`. # Examples ```julia-repl f = 2.0 # create sdof with natural frequency f_n=1.0 and damping ζ=0.05 sdof = Oscillator( 1.0, 0.05 ) Hf2 = squared_transfer( f, sdof ) ``` See also: [`transfer`](@ref) """ function squared_transfer(f, sdof::Oscillator) # tuning ratio β = f / sdof.f_n return 1.0 / ( (1.0 - β^2)^2 + (2sdof.ζ_n*β)^2 ) end """ transfer(f::Vector{T}, sdof::Oscillator) where T<:Real Computes the modulus of the transfer function of a SDOF for a vector of frequencies - `f::Vector` is the vector of frequencies - `sdof::Oscillator` is the oscillator instance # Examples ```julia-repl f = collect(range(0.1, stop=10.0, step=0.01)) sdof = Oscillator(1.0) Hf = transfer(f, sdof) ``` """ function transfer(f::Vector{T}, sdof::Oscillator) where T<:Real # tuning ratio Hf = similar(f) for (i, fi) in pairs(f) # for i in 1:lastindex(f) @inbounds Hf[i] = transfer(fi, sdof) end return Hf end """ transfer!(Hf::Vector{T}, f::Vector{T}, sdof::Oscillator) where T<:Real Computes the modulus of the transfer function of a SDOF for a vector of frequencies in place - `Hf::Vector` is the pre-allocated vector into which the results are stored - `f::Vector` is the vector of frequencies - `sdof::Oscillator` is the oscillator instance # Examples ```julia-repl f = collect(range(0.1, stop=10.0, step=0.01)) sdof = Oscillator(1.0) Hf = similar(f) transfer!(Hf, f, sdof) ``` """ function transfer!(Hf::Vector{T}, f::Vector{T}, sdof::Oscillator) where T<:Real for (i, fi) in pairs(f) # for i in 1:lastindex(f) @inbounds Hf[i] = transfer(fi, sdof) end return nothing end """ squared_transfer!(Hf2::Vector{T}, f::Vector{T}, sdof::Oscillator) where T<:Real Computes the square of the modulus of the transfer function of a SDOF for a vector of frequencies in place: - `Hf2::Vector` is the pre-allocated vector into which the results are stored - `f::Vector` is the vector of frequencies - `sdof::Oscillator` is the oscillator instance Inputs derive from the `Real` type and so are differentiable. # Examples ```julia-repl f = collect(range(0.1, stop=10.0, step=0.01)) sdof = Oscillator(1.0) Hf2 = similar(f) squared_transfer!(Hf2, f, sdof) ``` """ function squared_transfer!(Hf2::Vector{T}, f::Vector{U}, sdof::Oscillator) where {T<:Real,U<:Real} for (i, fi) in pairs(f) # for i in 1:lastindex(f) @inbounds Hf2[i] = squared_transfer(fi, sdof) end return nothing end
StochasticGroundMotionSimulation
https://github.com/pstafford/StochasticGroundMotionSimulation.jl.git
[ "MIT" ]
0.2.6
b88d988a6a59a7ac37d73f8517a7022613997c68
code
2129
""" simpsons_rule(x::Vector, y::Vector) Numerical integration via Simpson's rule. Lengths of vectors must be equal to each other, and be odd (to have an even number of intervals). Values in `x` represent abcissa values, while `y` are the integrand counterparts. """ function simpsons_rule(x::Vector, y::Vector) n = length(y)-1 n % 2 == 0 || error("`y` length (number of intervals) must be odd") length(x)-1 == n || error("`x` and `y` length must be equal") h = (x[end]-x[1])/n @inbounds @views s = sum(y[1:2:n] .+ 4y[2:2:n] .+ y[3:2:n+1]) return h/3 * s end """ trapezoidal_rule(x::Vector, y::Vector) Numerical integration via the Trapezoidal rule. Lengths of vectors must be equal to each other. Values in `x` represent equally-spaced abcissa values, while `y` are the integrand counterparts. """ function trapezoidal_rule(x::Vector, y::Vector) return (x[2] - x[1]) * ( sum(y) - (y[1] + y[end])/2 ) end """ trapezoidal(fun::Function, n, flim...) Applies the `trapezoidal_rule` using `n` points over the frequency intervals specified by `flim...`. """ function trapezoidal(fun::Function, n, flim...) ii = 0.0 for i in 2:lastindex(flim) xi = collect(range(flim[i-1], stop=flim[i], length=n)) yi = fun.(xi) ii += trapezoidal_rule(xi, yi) end return ii end """ gauss_interval(integrand::Function, n, fmin, fmax) Computes Gauss-Legendre integration using `n` nodes and weights over the intervals `[fmin,fmax]`. """ function gauss_interval(integrand::Function, n, fmin, fmax) xi, wi = gausslegendre(n) ifi = @. integrand( (fmax-fmin)/2 * xi + (fmin+fmax)/2 ) return (fmax-fmin)/2 * dot( wi, ifi ) end """ gauss_intervals(fun::Function, n, flim...) Computes Gauss-Legendre integration using `n` nodes and weights of the intervals specified in `flim...`. """ function gauss_intervals(fun::Function, n, flim...) xi, wi = gausslegendre(n) ii = 0.0 for i in 2:lastindex(flim) ii += (flim[i]-flim[i-1])/2 * dot( wi, fun.( (flim[i]-flim[i-1])/2 * xi .+ (flim[i]+flim[i-1])/2 ) ) end return ii end
StochasticGroundMotionSimulation
https://github.com/pstafford/StochasticGroundMotionSimulation.jl.git
[ "MIT" ]
0.2.6
b88d988a6a59a7ac37d73f8517a7022613997c68
code
13581
@doc raw""" peak_factor_cl56(m::S, r_ps::T, fas::FourierParameters, sdof::Oscillator; glxi::Vector{Float64}=xn31i, glwi::Vector{Float64}=wn31i, nodes::Int=length(glxi)) where {S<:Real,T<:Real} Peak factor computed using the Cartwright and Longuet-Higgins (1956) formulation. Evaluates the integral to obtain the peak factor ``\psi``: ```math \psi = \sqrt{2} \int_0^\infty 1 - \left( 1 - \xi \exp\left( -z^2 \right)\right)^{n_e} dz ``` where ``n_e`` is the number of extrema, ``\xi`` is the ratio ``n_z/n_e`` with ``n_z`` being the number of zero crossings. The integral is evaluated using Gauss-Legendre integration -- and is suitable for use within an automatic differentiation environment. See also: [`peak_factor`](@ref), [`peak_factor_dk80`](@ref) """ function peak_factor_cl56(m::S, r_ps::T, fas::FourierParameters, sdof::Oscillator; glxi::Vector{Float64}=xn31i, glwi::Vector{Float64}=wn31i, nodes::Int=length(glxi)) where {S<:Real,T<:Real} # get the numbers of zero crossing and extrema rvt = RandomVibrationParameters(:CL56) n_z, n_e = zeros_extrema_numbers(m, r_ps, fas, sdof, rvt) # get the ratio of zero crossings to extrema ξ = n_z / n_e # compute the Gauss Legendre nodes and weights if nodes != length(glxi) glxi, glwi = gausslegendre(nodes) end z_min = 0.0 z_max = 8.0 dfac = (z_max-z_min)/2 pfac = (z_max+z_min)/2 # scale the nodes to the appropriate range zi = @. dfac * glxi + pfac # define the integrand integrand(z) = 1.0 - (1.0 - ξ*exp(-z^2))^n_e int_sum = dfac * dot( glwi, integrand.(zi) ) return sqrt(2.0) * int_sum end @doc raw""" peak_factor_cl56(Dex::U, mi::SpectralMoments; glxi::Vector{Float64}=xn31i, glwi::Vector{Float64}=wn31i, nodes::Int=length(glxi)) where {U<:Real} Peak factor computed using the Cartwright and Longuet-Higgins (1956) formulation, using pre-computed `Dex` and `m0` values. Evaluates the integral to obtain the peak factor ``\psi``: ```math \psi = \sqrt{2} \int_0^\infty 1 - \left( 1 - \xi \exp\left( -z^2 \right)\right)^{n_e} dz ``` where ``n_e`` is the number of extrema, ``\xi`` is the ratio ``n_z/n_e`` with ``n_z`` being the number of zero crossings. The integral is evaluated using Gauss-Legendre integration -- and is suitable for use within an automatic differentiation environment. See also: [`peak_factor`](@ref), [`peak_factor_dk80`](@ref) """ function peak_factor_cl56(Dex::U, mi::SpectralMoments; glxi::Vector{Float64}=xn31i, glwi::Vector{Float64}=wn31i, nodes::Int=length(glxi)) where {U<:Real} # get all necessary spectral moments m0 = mi.m0 m2 = mi.m2 m4 = mi.m4 # get the peak factor n_z = Dex * sqrt( m2 / m0 ) / π n_e = Dex * sqrt( m4 / m2 ) / π # get the ratio of zero crossings to extrema ξ = n_z / n_e # compute the Gauss Legendre nodes and weights if nodes != length(glxi) glxi, glwi = gausslegendre(nodes) end z_min = 0.0 z_max = 8.0 dfac = (z_max-z_min)/2 pfac = (z_max+z_min)/2 # scale the nodes to the appropriate range zi = @. dfac * glxi + pfac # define the integrand integrand(z) = 1.0 - (1.0 - ξ*exp(-z^2))^n_e int_sum = dfac * dot( glwi, integrand.(zi) ) return sqrt(2.0) * int_sum end @doc raw""" peak_factor_cl56(n_z::T, n_e::T; glxi::Vector{Float64}=xn31i, glwi::Vector{Float64}=wn31i, nodes::Int=length(glxi)) where T<:Real Peak factor computed using the Cartwright and Longuet-Higgins (1956) formulation, using pre-computed `n_z` and `n_e` values. Evaluates the integral to obtain the peak factor ``\psi``: ```math \psi = \sqrt{2} \int_0^\infty 1 - \left( 1 - \xi \exp\left( -z^2 \right)\right)^{n_e} dz ``` where ``n_e`` is the number of extrema, ``\xi`` is the ratio ``n_z/n_e`` with ``n_z`` being the number of zero crossings. The integral is evaluated using Gauss-Legendre integration -- and is suitable for use within an automatic differentiation environment. See also: [`peak_factor`](@ref), [`peak_factor_dk80`](@ref) """ function peak_factor_cl56(n_z::T, n_e::T; glxi::Vector{Float64}=xn31i, glwi::Vector{Float64}=wn31i, nodes::Int=length(glxi)) where T<:Real # get the ratio of zero crossings to extrema ξ = n_z / n_e # compute the Gauss Legendre nodes and weights if nodes != length(glxi) glxi, glwi = gausslegendre(nodes) end z_min = 0.0 z_max = 8.0 dfac = (z_max-z_min)/2 pfac = (z_max+z_min)/2 # scale the nodes to the appropriate range zi = @. dfac * glxi + pfac # define the integrand integrand(z) = 1.0 - (1.0 - ξ*exp(-z^2))^n_e int_sum = dfac * dot( glwi, integrand.(zi) ) pf = sqrt(2.0) * int_sum return pf end @doc raw""" peak_factor_cl56_gk(m::S, r_ps::T, fas::FourierParameters, sdof::Oscillator) where {S<:Real,T<:Real} Peak factor computed using the Cartwright and Longuet-Higgins (1956) formulation, using adaptive Gauss-Kronrod integration. Evaluates the integral to obtain the peak factor ``\psi``: ```math \psi = \sqrt{2} \int_0^\infty 1 - \left( 1 - \xi \exp\left( -z^2 \right)\right)^{n_e} dz ``` where ``n_e`` is the number of extrema, ``\xi`` is the ratio ``n_z/n_e`` with ``n_z`` being the number of zero crossings. The integral is evaluated using Gauss-Kronrod integration via the QuadGK.jl package -- and is not suitable for use within an automatic differentiation environment. See also: [`peak_factor`](@ref), [`peak_factor_dk80`](@ref) """ function peak_factor_cl56_gk(m::S, r_ps::T, fas::FourierParameters, sdof::Oscillator) where {S<:Real,T<:Real} # get the numbers of zero crossing and extrema rvt = RandomVibrationParameters(:CL56) n_z, n_e = zeros_extrema_numbers(m, r_ps, fas, sdof, rvt) # get the ratio of zero crossings to extrema ξ = n_z / n_e # define the integrand integrand(z) = 1.0 - (1.0 - ξ*exp(-z^2))^n_e return sqrt(2.0) * quadgk(integrand, 0.0, Inf)[1] end """ peak_factor_integrand_cl56(z, n_z, n_e) Integrand of the Cartwright Longuet-Higgins (1956) peak factor formulation. See also: [`peak_factor_cl56`](@ref) """ function peak_factor_integrand_cl56(z, n_z, n_e) ξ = n_z / n_e return 1.0 - (1.0 - ξ*exp(-z^2))^n_e end """ vanmarcke_cdf(x, n_z::T, δeff::T) where T<:Real CDF of the Vanmarcke (1975) peak factor distribution -- used within the Der Kiureghian (1980) peak factor expression. """ function vanmarcke_cdf(x, n_z::T, δeff::T) where T<:Real if x < eps() return zero(T) else xsq = x^2 eδe = exp( -sqrt(π/2) * δeff * x ) Fx = ( 1.0 - exp(-xsq/2) ) * exp( -n_z * (1.0 - eδe)/(exp(xsq/2) - 1.0) ) return Fx end end """ vanmarcke_ccdf(x, n_z::T, δeff::T) where T<:Real CCDF of the Vanmarcke (1975) peak factor distribution -- used within the Der Kiureghian (1980) peak factor expression. """ function vanmarcke_ccdf(x, n_z::T, δeff::T) where T<:Real return 1.0 - vanmarcke_cdf(x, n_z, δeff) end @doc raw""" peak_factor_dk80(m::S, r_ps::T, fas::FourierParameters, sdof::Oscillator; glxi::Vector{Float64}=xn31i, glwi::Vector{Float64}=wn31i, nodes::Int=length(glxi)) where {S<:Real,T<:Real} Peak factor computed using the Der Kiureghian (1980)/Vanmarcke (1975) formulation. Evaluates the integral to obtain the peak factor ``\psi``: ```math \psi = \int_0^\infty 1 - F_Z(z)dz ``` where ``F_Z(z)`` is the CDF defined by: ```math F_Z(z) = \left[ 1-\exp\left(-\frac{z^2}{2}\right) \right] \exp\left[ -n_z \frac{1 - \exp\left( -\sqrt{\frac{\pi}{2}}\delta_{eff} z \right)}{\exp\left(\frac{z^2}{2}\right) - 1} \right] ``` The effective bandwidth ``\delta_{eff}=\delta^{1.2}`` where the bandwidth is: ```math \delta = \sqrt{ 1 - \frac{m_1^2}{m_0 m_2} } ``` The integral is evaluated using Gauss-Legendre integration -- and is suitable for use within an automatic differentiation environment. See also: [`peak_factor`](@ref), [`peak_factor_cl56`](@ref) """ function peak_factor_dk80(m::S, r_ps::T, fas::FourierParameters, sdof::Oscillator; glxi::Vector{Float64}=xn31i, glwi::Vector{Float64}=wn31i, nodes::Int=length(glxi)) where {S<:Real,T<:Real} # compute first three spectral moments mi = spectral_moments([0, 1, 2], m, r_ps, fas, sdof) m0 = mi.m0 m1 = mi.m1 m2 = mi.m2 # bandwidth, and effective bandwidth δ = sqrt( 1.0 - (m1^2 / (m0*m2)) ) δeff = δ^1.2 # excitation duration Dex = boore_thompson_2014(m, r_ps, fas) # number of zero crossings n_z = Dex * sqrt( m2/m0 ) / π # compute the Gauss Legendre nodes and weights if nodes != length(glxi) glxi, glwi = gausslegendre(nodes) end z_min = 0.0 z_max = 6.0 dfac = (z_max-z_min)/2 pfac = (z_max+z_min)/2 # scale the nodes to the appropriate range zi = @. dfac * glxi + pfac # evaluate integrand yy = vanmarcke_ccdf.(zi, n_z, δeff) return dfac * dot( glwi, yy ) end @doc raw""" peak_factor_dk80(Dex::U, mi::SpectralMoments; glxi::Vector{Float64}=xn31i, glwi::Vector{Float64}=wn31i, nodes::Int=length(glxi)) where {U<:Real} Peak factor computed using the Der Kiureghian (1980)/Vanmarcke (1975) formulation, using precomputed `Dex` and `m0`. Evaluates the integral to obtain the peak factor ``\psi``: ```math \psi = \int_0^\infty 1 - F_Z(z)dz ``` where ``F_Z(z)`` is the CDF defined by: ```math F_Z(z) = \left[ 1-\exp\left(-\frac{z^2}{2}\right) \right] \exp\left[ -n_z \frac{1 - \exp\left( -\sqrt{\frac{\pi}{2}}\delta_{eff} z \right)}{\exp\left(\frac{z^2}{2}\right) - 1} \right] ``` The effective bandwidth ``\delta_{eff}=\delta^{1.2}`` where the bandwidth is: ```math \delta = \sqrt{ 1 - \frac{m_1^2}{m_0 m_2} } ``` The integral is evaluated using Gauss-Legendre integration -- and is suitable for use within an automatic differentiation environment. See also: [`peak_factor`](@ref), [`peak_factor_cl56`](@ref) """ function peak_factor_dk80(Dex::U, mi::SpectralMoments; glxi::Vector{Float64}=xn31i, glwi::Vector{Float64}=wn31i, nodes::Int=length(glxi)) where {U<:Real} # compute first three spectral moments m0 = mi.m0 m1 = mi.m1 m2 = mi.m2 # bandwidth, and effective bandwidth δ = sqrt( 1.0 - (m1^2 / (m0*m2)) ) δeff = δ^1.2 # number of zero crossings n_z = Dex * sqrt( m2/m0 ) / π # compute the Gauss Legendre nodes and weights if nodes != length(glxi) glxi, glwi = gausslegendre(nodes) end z_min = 0.0 z_max = 6.0 dfac = (z_max-z_min)/2 pfac = (z_max+z_min)/2 # scale the nodes to the appropriate range zi = @. dfac * glxi + pfac # evaluate integrand yy = vanmarcke_ccdf.(zi, n_z, δeff) return dfac * dot( glwi, yy ) end @doc raw""" peak_factor_dk80_gk(m::S, r_ps::T, fas::FourierParameters, sdof::Oscillator) where {S<:Float64,T<:Real} Peak factor computed using the Der Kiureghian (1980)/Vanmarcke (1975) formulation, using precomputed `Dex` and `m0`. Evaluates the integral to obtain the peak factor ``\psi``: ```math \psi = \int_0^\infty 1 - F_Z(z)dz ``` where ``F_Z(z)`` is the CDF defined by: ```math F_Z(z) = \left[ 1-\exp\left(-\frac{z^2}{2}\right) \right] \exp\left[ -n_z \frac{1 - \exp\left( -\sqrt{\frac{\pi}{2}}\delta_{eff} z \right)}{\exp\left(\frac{z^2}{2}\right) - 1} \right] ``` The effective bandwidth ``\delta_{eff}=\delta^{1.2}`` where the bandwidth is: ```math \delta = \sqrt{ 1 - \frac{m_1^2}{m_0 m_2} } ``` The integral is evaluated using adaptive Gauss-Kronrod integration from the QuadGK.jl package -- and is therefore not suitable for use within an automatic differentiation environment. See also: [`peak_factor`](@ref), [`peak_factor_dk80`](@ref), [`peak_factor_cl56`](@ref) """ function peak_factor_dk80_gk(m::S, r_ps::T, fas::FourierParameters, sdof::Oscillator) where {S<:Float64,T<:Real} # compute first three spectral moments mi = spectral_moments([0, 1, 2], m, r_ps, fas, sdof) m0 = mi.m0 m1 = mi.m1 m2 = mi.m2 # bandwidth, and effective bandwidth δ = sqrt( 1.0 - (m1^2 / (m0*m2)) ) δeff = δ^1.2 # excitation duration Dex = boore_thompson_2014(m, r_ps, fas) # number of zero crossings n_z = Dex * sqrt( m2/m0 ) / π integrand(x) = vanmarcke_ccdf(x, n_z, δeff) return quadgk(integrand, 0.0, Inf)[1] end @doc raw""" peak_factor(m::S, r_ps::T, fas::FourierParameters, sdof::Oscillator, rvt::RandomVibrationParameters; glxi::Vector{Float64}=xn31i, glwi::Vector{Float64}=wn31i, nodes::Int=length(glxi)) where {S<:Real,T<:Real} Peak factor ``u_{max} / u_{rms}`` with a switch of `pf_method` to determine the approach adopted. `rvt.pf_method` can currently be one of: - `:CL56` for Cartright Longuet-Higgins (1956) - `:DK80` for Der Kiureghian (1980), building on Vanmarcke (1975) Defaults to `:DK80`. """ function peak_factor(m::S, r_ps::T, fas::FourierParameters, sdof::Oscillator, rvt::RandomVibrationParameters; glxi::Vector{Float64}=xn31i, glwi::Vector{Float64}=wn31i) where {S<:Real,T<:Real} if rvt.pf_method == :CL56 return peak_factor_cl56(m, r_ps, fas, sdof, glxi=glxi, glwi=glwi) elseif rvt.pf_method == :DK80 return peak_factor_dk80(m, r_ps, fas, sdof, glxi=glxi, glwi=glwi) else U = get_parametric_type(fas) return U(NaN) end end """ peak_factor(Dex::U, m0::V, rvt::RandomVibrationParameters; glxi::Vector{Float64}=xn31i, glwi::Vector{Float64}=wn31i, nodes::Int=length(glxi)) where {U<:Real} Peak factor u_max / u_rms with a switch of `pf_method` to determine the approach adopted. `pf_method` can currently be one of: - `:CL56` for Cartright Longuet-Higgins (1956) - `:DK80` for Der Kiureghian (1980), building on Vanmarcke (1975) Defaults to `:DK80`. """ function peak_factor(Dex::U, mi::SpectralMoments, rvt::RandomVibrationParameters; glxi::Vector{Float64}=xn31i, glwi::Vector{Float64}=wn31i) where {U<:Real} if rvt.pf_method == :CL56 return peak_factor_cl56(Dex, mi, glxi=glxi, glwi=glwi) elseif rvt.pf_method == :DK80 return peak_factor_dk80(Dex, mi, glxi=glxi, glwi=glwi) else return U(NaN) end end
StochasticGroundMotionSimulation
https://github.com/pstafford/StochasticGroundMotionSimulation.jl.git
[ "MIT" ]
0.2.6
b88d988a6a59a7ac37d73f8517a7022613997c68
code
6927
const xn31i, wn31i = gausslegendre(31) @doc raw""" zeros_extrema_frequencies(m::S, r_ps::T, fas::FourierParameters, sdof::Oscillator; glxi::Vector{Float64}=xn31i, glwi::Vector{Float64}=wn31i) where {S<:Real,T<:Real} Defines the frequencies of extrema and zero-crossings using moments ``m_0``, ``m_2`` and ``m_4``. Returns a tuple of ``(f_z,f_e)``. The frequency of zero crossings is: ```math f_{z} = \frac{1}{2\pi}\sqrt{\frac{m_2}{m_0}} ``` The frequency of extrema is: ```math f_{e} = \frac{1}{2\pi}\sqrt{\frac{m_4}{m_2}} ``` See also: [`zeros_extrema_numbers`](@ref) """ function zeros_extrema_frequencies(m::S, r_ps::T, fas::FourierParameters, sdof::Oscillator; glxi::Vector{Float64}=xn31i, glwi::Vector{Float64}=wn31i) where {S<:Real,T<:Real} mi = spectral_moments([0, 2, 4], m, r_ps, fas, sdof, glxi=glxi, glwi=glwi) m_0 = mi.m0 m_2 = mi.m2 m_4 = mi.m4 fzero = sqrt( m_2 / m_0 ) / (2π) fextrema = sqrt( m_4 / m_2 ) / (2π) return fzero, fextrema end @doc raw""" zeros_extrema_numbers(m::S, r_ps::T, fas::FourierParameters, sdof::Oscillator, rvt::RandomVibrationParameters) where {S<:Real,T<:Real} Defines the numbers of extrema and zero-crossings using moments ``m_0``, ``m_2`` and ``m_4``. Returns a tuple of ``(2f_z D_{ex}, 2f_e D_{ex})``. The frequency of zero crossings is: ```math n_{z} = \frac{D_{ex}}{\pi}\sqrt{\frac{m_2}{m_0}} ``` The frequency of extrema is: ```math n_{e} = \frac{D_{ex}}{\pi}\sqrt{\frac{m_4}{m_2}} ``` In both cases, the excitaion duration, ``D_{ex}`` is computed from the `excitation_duration` function. See also: [`zeros_extrema_frequencies`](@ref), [`excitation_duration`](@ref) """ function zeros_extrema_numbers(m::S, r_ps::T, fas::FourierParameters, sdof::Oscillator, rvt::RandomVibrationParameters; glxi::Vector{Float64}=xn31i, glwi::Vector{Float64}=wn31i) where {S<:Real,T<:Real} fz, fe = zeros_extrema_frequencies(m, r_ps, fas, sdof, glxi=glxi, glwi=glwi) Dex = excitation_duration(m, r_ps, fas, rvt) return 2fz*Dex, 2fe*Dex end @doc raw""" rvt_response_spectral_ordinate(m::S, r_ps::T, fas::FourierParameters, sdof::Oscillator, rvt::RandomVibrationParameters; glxi::Vector{Float64}=xn31i, glwi::Vector{Float64}=wn31i) where {S<:Real,T<:Real} Response spectral ordinate (units of ``g``) for the specified scenario. The spectral ordinate is computed using the expression: ```math S_a = \psi \sqrt{\frac{m_0}{D_{rms}}} ``` where ``\psi`` is the peak factor computed from `peak_factor`, ``m_0`` is the zeroth order spectral moment from `spectral_moment`, and ``D_{rms}`` is the RMS duration computed from `rms_duration`. See also: [`rvt_response_spectral_ordinate`](@ref), [`rvt_response_spectrum`](@ref), [`rvt_response_spectrum!`](@ref) """ function rvt_response_spectral_ordinate(m::S, r_ps::T, fas::FourierParameters, sdof::Oscillator, rvt::RandomVibrationParameters; glxi::Vector{Float64}=xn31i, glwi::Vector{Float64}=wn31i) where {S<:Real,T<:Real} # get the duration metrics Drms, Dex, ~ = rms_duration(m, r_ps, fas, sdof, rvt) # compute the necessary spectral moments if rvt.pf_method == :DK80 order = [0, 1, 2] elseif rvt.pf_method == :CL56 order = [0, 2, 4] end mi = spectral_moments(order, m, r_ps, fas, sdof, glxi=glxi, glwi=glwi) # get the rms response y_rms = sqrt(mi.m0 / Drms) # get the peak factor pf = peak_factor(Dex, mi, rvt, glxi=glxi, glwi=glwi) # response spectral value (in g) Sa = pf * y_rms / 9.80665 return Sa end @doc raw""" rvt_response_spectral_ordinate(period::U, m::S, r_ps::T, fas::FourierParameters, rvt::RandomVibrationParameters; glxi::Vector{Float64}=xn31i, glwi::Vector{Float64}=wn31i) where {S<:Real,T<:Real,U<:Float64} Response spectral ordinate (units of ``g``) for the specified scenario. The spectral ordinate is computed using the expression: ```math S_a = \psi \sqrt{\frac{m_0}{D_{rms}}} ``` where ``\psi`` is the peak factor computed from `peak_factor`, ``m_0`` is the zeroth order spectral moment from `spectral_moment`, and ``D_{rms}`` is the RMS duration computed from `rms_duration`. See also: [`rvt_response_spectral_ordinate`](@ref), [`rvt_response_spectrum`](@ref), [`rvt_response_spectrum!`](@ref) """ function rvt_response_spectral_ordinate(period::U, m::S, r_ps::T, fas::FourierParameters, rvt::RandomVibrationParameters; glxi::Vector{Float64}=xn31i, glwi::Vector{Float64}=wn31i) where {S<:Real,T<:Real,U<:Float64} # create a sdof instance sdof = Oscillator(1.0/period) return rvt_response_spectral_ordinate(m, r_ps, fas, sdof, rvt, glxi=glxi, glwi=glwi) end @doc raw""" rvt_response_spectrum(period::Vector{U}, m::S, r_ps::T, fas::FourierParameters, rvt::RandomVibrationParameters; glxi::Vector{Float64}=xn31i, glwi::Vector{Float64}=wn31i) where {S<:Real,T<:Real,U<:Float64} Response spectrum (units of ``g``) for the vector of periods `period` and the specified scenario. Each spectral ordinate is computed using the expression: ```math S_a = \psi \sqrt{\frac{m_0}{D_{rms}}} ``` where ``\psi`` is the peak factor computed from `peak_factor`, ``m_0`` is the zeroth order spectral moment from `spectral_moment`, and ``D_{rms}`` is the RMS duration computed from `rms_duration`. The various terms are all functions of the oscillator period. See also: [`rvt_response_spectral_ordinate`](@ref), [`rvt_response_spectrum!`](@ref) """ function rvt_response_spectrum(period::Vector{U}, m::S, r_ps::T, fas::FourierParameters, rvt::RandomVibrationParameters; glxi::Vector{Float64}=xn31i, glwi::Vector{Float64}=wn31i) where {S<:Real,T<:Real,U<:Float64} if S <: Dual Sa = zeros(S,length(period)) else V = get_parametric_type(fas) Sa = zeros(V,length(period)) end for i in 1:length(period) @inbounds Sa[i] = rvt_response_spectral_ordinate(period[i], m, r_ps, fas, rvt, glxi=glxi, glwi=glwi) end return Sa end @doc raw""" rvt_response_spectrum!(Sa::Vector{U}, period::Vector{V}, m::S, r_ps::T, fas::FourierParameters, rvt::RandomVibrationParameters) where {S<:Real,T<:Real,U<:Real,V<:Float64} In-place response spectrum (units of ``g``) for the vector of periods `period` and the specified scenario. Each spectral ordinate is computed using the expression: ```math S_a = \psi \sqrt{\frac{m_0}{D_{rms}}} ``` where ``\psi`` is the peak factor computed from `peak_factor`, ``m_0`` is the zeroth order spectral moment from `spectral_moment`, and ``D_{rms}`` is the RMS duration computed from `rms_duration`. The various terms are all functions of the oscillator period. See also: [`rvt_response_spectral_ordinate`](@ref), [`rvt_response_spectrum!`](@ref) """ function rvt_response_spectrum!(Sa::Vector{U}, period::Vector{V}, m::S, r_ps::T, fas::FourierParameters, rvt::RandomVibrationParameters; glxi::Vector{Float64}=xn31i, glwi::Vector{Float64}=wn31i) where {S<:Real,T<:Real,U<:Real,V<:Float64} for i in 1:length(period) @inbounds Sa[i] = rvt_response_spectral_ordinate(period[i], m, r_ps, fas, rvt, glxi=glxi, glwi=glwi) end end
StochasticGroundMotionSimulation
https://github.com/pstafford/StochasticGroundMotionSimulation.jl.git
[ "MIT" ]
0.2.6
b88d988a6a59a7ac37d73f8517a7022613997c68
code
1852
""" RandomVibrationParameters Struct holding parameters/methods for Random Vibration Theory. - `pf_method` is the method used for peak factor computation - `:DK80` (default) is Der Kiureghian (1980), building on Vanmarcke (1975) - `:CL56` is Cartwright Longuet-Higgins (1956) - `dur_ex` is the model for excitation duration - `:BT14` (default) is the Boore & Thompson (2014) model for ACRs - note that this is adpated to work with `r_ps` - `:BT15` is the Boore & Thompson (2015) model for SCRs - `:BE23` is an excitation duration model from Ben Edwards (2023), suggested for a South African NPP project - `dur_rms` is the model for rms duration - `:BT12` is the Boore & Thompson (2012) model - `:BT15` (default) is the Boore & Thompson (2015) model - `:LP99` is the Liu & Pezeshk (1999) model linking rms, excitation and oscillator durations - `dur_region` is the region specified for the duration model - `:ACR` (default) is active crustal regions (like western North America) - `:SCR` is stable crustal regions (like eastern North America) Note that only certain combinations are meaningful: - `:CL56` peak factor method should be paired with `:BT12` or `:LP99` rms duration - `:DK80` peak factor method should be paired with `:BT15` rms duration Constructors that take only the peak factor as input, or the peak factor and duration region automatically assign the appropriate rms duration method. """ struct RandomVibrationParameters pf_method::Symbol dur_ex::Symbol dur_rms::Symbol dur_region::Symbol end RandomVibrationParameters() = RandomVibrationParameters(:DK80, :BT15, :BT15, :ACR) RandomVibrationParameters(pf) = RandomVibrationParameters(pf, :BT15, ((pf == :DK80) ? :BT15 : :BT12), :ACR) RandomVibrationParameters(pf, region) = RandomVibrationParameters(pf, :BT15, ((pf == :DK80) ? :BT15 : :BT12), region)
StochasticGroundMotionSimulation
https://github.com/pstafford/StochasticGroundMotionSimulation.jl.git
[ "MIT" ]
0.2.6
b88d988a6a59a7ac37d73f8517a7022613997c68
code
8284
""" @kwdef struct SpectralMoments{T<:Real} Struct holding spectral moments `m0` to `m4` """ @kwdef struct SpectralMoments{T<:Real} m0::T = NaN m1::T = NaN m2::T = NaN m3::T = NaN m4::T = NaN end """ create_spectral_moments(order::Vector{Int}, value::Vector{T}) where {T<:Real} Create a `SpectralMoments` instance from vectors of order integers and moment values. Allows for encapsulation of named moments within the returned instance. """ function create_spectral_moments(order::Vector{Int}, value::Vector{T}) where {T<:Real} dict = Dict{Symbol, T}() for (i, o) in enumerate(order) dict[Symbol("m$o")] = value[i] end return SpectralMoments{T}(; dict...) end @doc raw""" spectral_moment(order::Int, m::S, r_ps::T, fas::FourierParameters, sdof::Oscillator; nodes::Int=31, control_freqs::Vector{Float64}=[1e-3, 1e-1, 1.0, 10.0, 100.0, 300.0] ) where {S<:Real,T<:Real} Compute spectral moment of a specified order. Evaluates the expression: ```math m_k = 2\int_{0}^{\infty} \left(2\pi f\right)^k |H(f;f_n,\zeta_n)|^2 |A(f)|^2 df ``` where ``k`` is the order of the moment. Integration is performed using Gauss-Legendre integration using `nodes` nodes and weights. The integration domain is partitioned over the `control_freqs` as well as two inserted frequencies at `f_n/1.5` and `f_n*1.5` in order to ensure good approximation of the integral around the `sdof` resonant frequency. See also: [`spectral_moments`](@ref) """ function spectral_moment(order::Int, m::S, r_ps::T, fas::FourierParameters, sdof::Oscillator; glxi::Vector{Float64}=xn31i, glwi::Vector{Float64}=wn31i, nodes::Int = length(glxi), control_freqs::Vector{Float64}=[1e-3, 1e-1, 1.0, 10.0, 100.0, 300.0]) where {S<:Real,T<:Real} # pre-allocate for squared fourier amplitude spectrum if S <: Dual Af2 = Vector{S}(undef, nodes) Hf2 = Vector{S}(undef, nodes) int_sum = zero(S) else U = get_parametric_type(fas) Af2 = Vector{U}(undef, nodes) Hf2 = Vector{U}(undef, nodes) int_sum = zero(U) end # partition the integration domain to make sure the integral captures the key change in the integrand f_n = sdof.f_n # note that we start slightly above zero to avoid a numerical issue with the frequency dependent Q(f) gradients fidLO = findall(control_freqs .< f_n/1.5) fidHI = findall(control_freqs .> f_n*1.5) # perform the integration with a logarithmic transformation lnflims = log.([ control_freqs[fidLO]; f_n/1.5; f_n*1.5; control_freqs[fidHI] ]) # compute the Gauss Legendre nodes and weights if nodes != length(glxi) glxi, glwi = gausslegendre(nodes) end for i in 2:lastindex(lnflims) @inbounds dfac = (lnflims[i]-lnflims[i-1])/2 @inbounds pfac = (lnflims[i]+lnflims[i-1])/2 lnfi = @. dfac * glxi + pfac fi = exp.(lnfi) squared_transfer!(Hf2, fi, sdof) squared_fourier_spectrum!(Af2, fi, m, r_ps, fas) # note that the integrand here is scaled by exp(lnfi)=fi for the logarithmic transformation of the integrand Yf2 = @. (2π * fi)^order * Hf2 * Af2 * fi # weighted combination of amplitudes with Gauss-Legendre weights int_sum += dfac * dot( glwi, Yf2 ) end # return 2.0 * int_sum return create_spectral_moments([order], [2.0 * int_sum]) end @doc raw""" spectral_moments(order::Vector{Int}, m::S, r_ps::T, fas::FourierParameters, sdof::Oscillator; glxi::Vector{Float64}=xn31i, glwi::Vector{Float64}=wn31i, nodes::Int=length(glxi), control_freqs::Vector{Float64}=[1e-3, 1e-1, 1.0, 10.0, 100.0, 300.0] ) where {S<:Real,T<:Real} Compute a vector of spectral moments for the specified `order`. Evaluates the expression: ```math m_k = 2\int_{0}^{\infty} \left(2\pi f\right)^k |H(f;f_n,\zeta_n)|^2 |A(f)|^2 df ``` for each order, where ``k`` is the order of the moment. Integration is performed using Gauss-Legendre integration using `nodes` nodes and weights. The integration domain is partitioned over the `control_freqs` as well as two inserted frequencies at `f_n/1.5` and `f_n*1.5` in order to ensure good approximation of the integral around the `sdof` resonant frequency. See also: [`spectral_moment`](@ref), [`spectral_moments_gk`](@ref) """ function spectral_moments(order::Vector{Int}, m::S, r_ps::T, fas::FourierParameters, sdof::Oscillator; glxi::Vector{Float64}=xn31i, glwi::Vector{Float64}=wn31i, nodes::Int=length(glxi), control_freqs::Vector{Float64}=[1e-3, 1e-1, 1.0, 10.0, 100.0, 300.0]) where {S<:Real,T<:Real} # partition the integration domain to make sure the integral captures the key change in the integrand f_n = sdof.f_n # note that we start slightly above zero to avoid a numerical issue with the frequency dependent Q(f) gradients fidLO = findall(control_freqs .< f_n / 1.5) fidHI = findall(control_freqs .> f_n * 1.5) # perform the integration with a logarithmic transformation lnflims = log.([control_freqs[fidLO]; f_n / 1.5; f_n * 1.5; control_freqs[fidHI]]) # number of frequency segments num_freq_segs = length(lnflims) - 1 # compute the Gauss Legendre nodes and weights if nodes != length(glxi) glxi, glwi = gausslegendre(nodes) end # pre-allocate for squared fourier amplitude spectrum if S <: Dual Af2 = Vector{S}(undef, nodes * num_freq_segs) Hf2 = Vector{S}(undef, nodes * num_freq_segs) int_sumi = zeros(S, length(order)) else U = get_parametric_type(fas) Af2 = Vector{U}(undef, nodes * num_freq_segs) Hf2 = Vector{U}(undef, nodes * num_freq_segs) int_sumi = zeros(U, length(order)) end # make sure the orders are listed as increasing for the following loop approach sort!(order) dorder = diff(order) # generate a single set of frequencies and weights dfaci = diff(lnflims) / 2 pfaci = (lnflims[1:(end-1)] .+ lnflims[2:end]) / 2 lnfii = zeros(nodes * num_freq_segs) wii = zeros(nodes * num_freq_segs) j = 1 for i in 1:num_freq_segs k = j + nodes - 1 lnfii[j:k] .= @. dfaci[i] * glxi + pfaci[i] wii[j:k] .= @. dfaci[i] * glwi j = k + 1 end fi = exp.(lnfii) # now populate FAS and transfer function for these frequencies squared_transfer!(Hf2, fi, sdof) squared_fourier_spectrum!(Af2, fi, m, r_ps, fas) # compute default zeroth order integrand amplitude # note that the integrand here is scaled by exp(lnfi)=fi for the logarithmic transformation of the integrand Yf2 = @. Hf2 * Af2 * fi for (idx, o) in enumerate(order) if idx == 1 Yf2 .*= (2π * fi) .^ o else @inbounds Yf2 .*= (2π * fi) .^ (dorder[idx-1]) end # weighted combination of amplitudes with Gauss-Legendre weights @inbounds int_sumi[idx] = dot(wii, Yf2) end # return the spectral moments in a named tuple using the `create_spectral_moments` function return create_spectral_moments(order, 2.0 * int_sumi) end @doc raw""" spectral_moments_gk(order::Vector{Int}, m::S, r_ps::T, fas::FourierParameters, sdof::Oscillator) where {S<:Real,T<:Real} Compute a vector of spectral moments for the specified `order` using Gauss-Kronrod integration from the `QuadGK.jl` package. Evaluates the expression: ```math m_k = 2\int_{0}^{\infty} \left(2\pi f\right)^k |H(f;f_n,\zeta_n)|^2 |A(f)|^2 df ``` for each order, where ``k`` is the order of the moment. Integration is performed using adaptive Gauss-Kronrod integration with the domain split over two intervals from ``[0,f_n]`` and ``[f_n,\infty]`` to ensure that the resonant peak is not missed. Note that due to the default tolerances, the moments computed by this method are more accurate than those from `spectral_moments` using the Gauss-Legendre approximation. However, this method is also significantly slower, and cannot be used within an automatic differentiation environment. See also: [`spectral_moment`](@ref), [`spectral_moments`](@ref) """ function spectral_moments_gk(order::Vector{Int}, m::S, r_ps::T, fas::FourierParameters, sdof::Oscillator) where {S<:Real,T<:Real} int_sumi = zeros(length(order)) for (i, o) in enumerate(order) moment_integrand(f) = squared_transfer(f, sdof) * squared_fourier_spectral_ordinate(f, m, r_ps, fas) * (2π*f)^o int_sumi[i] = quadgk(moment_integrand, 0.0, sdof.f_n, Inf)[1] end # return 2.0 * int_sumi return create_spectral_moments(order, 2.0 * int_sumi) end
StochasticGroundMotionSimulation
https://github.com/pstafford/StochasticGroundMotionSimulation.jl.git
[ "MIT" ]
0.2.6
b88d988a6a59a7ac37d73f8517a7022613997c68
code
109862
using StochasticGroundMotionSimulation using Test using ForwardDiff using ForwardDiff: Dual using FastGaussQuadrature using QuadGK using LinearAlgebra using StaticArrays # using Distributions # using BenchmarkTools @testset "StochasticGroundMotionSimulation.jl" begin @testset "Performance" begin # @testset "Allocation Testing" begin # src = SourceParameters(100.0) # geo = GeometricSpreadingParameters([1.0, Inf], [1.0], :Piecewise) # sat = NearSourceSaturationParameters(:BT15) # ane = AnelasticAttenuationParameters(180.0, 0.45, :Rps) # path = PathParameters(geo, sat, ane) # site = SiteParameters(0.03) # fas = FourierParameters(src, path, site) # rvt = RandomVibrationParameters() # function run_sims(T, num_sims, fas, rvt) # md = Uniform(2.0, 8.0) # rd = Uniform(1.0, 100.0) # mi = rand(md, num_sims) # ri = rand(rd, num_sims) # Sai = zeros(num_sims) # for i in 1:num_sims # Sai[i] = rvt_response_spectral_ordinate(T, mi[i], ri[i], fas, rvt) # end # return sum(Sai) # end # T = 0.123 # num_sims = 100 # @benchmark run_sims(T, num_sims, fas, rvt) # num_sims = 1_000 # @benchmark run_sims(T, num_sims, fas, rvt) # end Ti = [0.01, 0.02, 0.03, 0.04, 0.05, 0.075, 0.1, 0.15, 0.2, 0.3, 0.4, 0.5, 0.75, 1.0, 1.5, 2.0, 3.0, 5.0, 7.5, 10.0] m = 4.0 + π r = 500.0 + π src = SourceParameters(100.0) geo = GeometricSpreadingParameters([1.0, 50.0, Inf], [1.0, 0.5]) ane = AnelasticAttenuationParameters(200.0, 0.4) sat = NearSourceSaturationParameters(:BT15) path = PathParameters(geo, sat, ane) site = SiteParameters(0.039) fas = FourierParameters(src, path, site) rvt = RandomVibrationParameters(:DK80) sdof = Oscillator(1.0) # @code_warntype Oscillator(1.0) # @code_warntype period(sdof) # @code_warntype transfer(1.0, sdof) # @code_warntype rvt_response_spectral_ordinate(Ti[1], m, r, fas, rvt) # @code_warntype rvt_response_spectrum(Ti, m, r, fas, rvt) # @time Sai = rvt_response_spectrum(Ti, m, r, fas, rvt) # @profile Sai = rvt_response_spectrum(Ti, m, r, fas, rvt) end @testset "Source" begin m = 6.0 Δσ = 100.0 β = 3.5 # @code_warntype magnitude_to_moment(m) # # @code_warntype corner_frequency_brune(m, Δσ) # @code_warntype corner_frequency_brune(m, Δσ, β) # @code_warntype corner_frequency_atkinson_silva_2000(m) srcf = SourceParameters(Δσ) srcd = SourceParameters(Dual{Float64}(Δσ)) # @code_warntype corner_frequency(m, srcf) # @code_warntype corner_frequency(m, srcd) # @code_warntype corner_frequency(Dual(m), srcf) # @code_warntype corner_frequency(Dual(m), srcd) T = StochasticGroundMotionSimulation.get_parametric_type(srcf) @test T == Float64 T = StochasticGroundMotionSimulation.get_parametric_type(srcd) @test T <: Dual faf, fbf, fεf = corner_frequency(m, srcf) fad, fbd, fεd = corner_frequency(m, srcd) # @time faf, fbf, fεf = corner_frequency(m, srcf) # @time fad, fbd, fεd = corner_frequency(m, srcd) @test faf == fad.value srcf = SourceParameters(Δσ, :Atkinson_Silva_2000) srcd = SourceParameters(Dual{Float64}(Δσ), :Atkinson_Silva_2000) faf, fbf, fεf = corner_frequency(m, srcf) fad, fbd, fεd = corner_frequency(m, srcd) # @time faf, fbf, fεf = corner_frequency(m, srcf) # @time fad, fbd, fεd = corner_frequency(m, srcd) @test faf == fad.value @test fbf == fbd.value @test fεf == fεd.value srcd = SourceParameters(Dual(100.0), 3.5, 2.75) srcf = SourceParameters(100.0, 3.5, 2.75) @test srcd.Δσ.value == srcf.Δσ @test StochasticGroundMotionSimulation.magnitude_to_moment(6.0) ≈ exp10(25.05) @testset "Beresnev (2019)" begin Δσ = 100.0 n = 1.0 srcb = SourceParameters(Δσ, n) srcω = SourceParameters(Δσ) f = 25.0 m = 5.0 Afb = fourier_source_shape(f, m, srcb) Afω = fourier_source_shape(f, m, srcω) @test Afb ≈ Afω srcb1p5 = SourceParameters(Δσ, 1.5) Afb1p5 = fourier_source_shape(f, m, srcb1p5) @test Afb > Afb1p5 Δσd = Dual{Float64}(Δσ) nd = Dual{Float64}(n) srcdd = SourceParameters(Δσd, nd) srcdf = SourceParameters(Δσd, n) @test fourier_source_shape(f, m, srcdd) ≈ fourier_source_shape(f, m, srcb) @test fourier_source_shape(f, m, srcdf) ≈ fourier_source_shape(f, m, srcb) end end @testset "Path" begin Rrefi = [1.0, 50.0, Inf] γi = [1.0, 0.5] @testset "Geometric Spreading Constructors" begin # test floating point instantiation @test typeof(GeometricSpreadingParameters(Rrefi, γi)) <: GeometricSpreadingParameters # test Dual instantiation @test typeof(GeometricSpreadingParameters(Rrefi, [0.5], [Dual{Float64}(1.0)], BitVector([1, 0]), :Piecewise)) <: GeometricSpreadingParameters geo = GeometricSpreadingParameters([1.0, 50.0, Inf], [1.0, 0.5]) geoc = GeometricSpreadingParameters([1.0, 50.0, Inf], [1.0, 0.5], :CY14) @test geo.model == :Piecewise @test geoc.model == :CY14 geod = GeometricSpreadingParameters([1.0, 50.0, Inf], [Dual(1.0), Dual(0.5)]) @test geo.γconi[1] == geod.γvari[1].value geo_mix = GeometricSpreadingParameters([1.0, Dual{Float64}(50.0), Inf], [1.0, 0.5]) @test geo_mix.model == :Piecewise end geof = GeometricSpreadingParameters(Rrefi, γi) geod = GeometricSpreadingParameters(Rrefi, [0.5], [Dual{Float64}(1.0)], BitVector([1, 0]), :Piecewise) geom = GeometricSpreadingParameters([1.0, Dual{Float64}(50.0), Inf], [1.0, 0.5]) @testset "Geometric Spreading Types" begin T = StochasticGroundMotionSimulation.get_parametric_type(geof) @test T == Float64 T = StochasticGroundMotionSimulation.get_parametric_type(geod) @test T <: Dual T = StochasticGroundMotionSimulation.get_parametric_type(geom) @test T <: Dual end @testset "Near Source Saturation Constructors" begin # test standard instantiation with known models @test typeof(NearSourceSaturationParameters(:BT15)) <: NearSourceSaturationParameters @test typeof(NearSourceSaturationParameters(:YA15)) <: NearSourceSaturationParameters @test typeof(NearSourceSaturationParameters(:CY14)) <: NearSourceSaturationParameters @test typeof(NearSourceSaturationParameters(:CY14mod)) <: NearSourceSaturationParameters @test typeof(NearSourceSaturationParameters(1, :BT15)) <: NearSourceSaturationParameters @test typeof(NearSourceSaturationParameters([5.5, 7.0, Inf], [4.0, 6.0], :ConstantConstrained)) <: NearSourceSaturationParameters @test typeof(NearSourceSaturationParameters([5.5, 7.0, Inf], [Dual(4.0), Dual(6.0)], :ConstantVariable)) <: NearSourceSaturationParameters @test typeof(NearSourceSaturationParameters([5.5, 7.0, Inf], [4.0, 6.0])) <: NearSourceSaturationParameters @test typeof(NearSourceSaturationParameters([5.5, 7.0, Inf], [Dual(4.0), Dual(6.0)])) <: NearSourceSaturationParameters @test typeof(NearSourceSaturationParameters(5.0)) <: NearSourceSaturationParameters @test typeof(NearSourceSaturationParameters(Dual(5.0))) <: NearSourceSaturationParameters @test typeof(NearSourceSaturationParameters(5.0, 2)) <: NearSourceSaturationParameters @test typeof(NearSourceSaturationParameters(Dual(5.0), 2)) <: NearSourceSaturationParameters end sat = NearSourceSaturationParameters(:BT15) satd = NearSourceSaturationParameters(Dual{Float64}(5.0)) @testset "Near Source Saturation Types" begin T = StochasticGroundMotionSimulation.get_parametric_type(sat) @test T == Float64 end @testset "Anelastic Attenuation Constructors" begin # test floating point instantiation @test typeof(AnelasticAttenuationParameters(200.0)) <: AnelasticAttenuationParameters # test Dual instantiation @test typeof(AnelasticAttenuationParameters(Dual{Float64}(200.0))) <: AnelasticAttenuationParameters ane = AnelasticAttenuationParameters(200.0, 0.5, 3.5) @test ane.rmetric == :Rps ane = AnelasticAttenuationParameters(200.0, 0.5, 3.5, :Rrup) @test ane.rmetric == :Rrup # test the segmented versions # scalar inputs (internally mapped to vectors) @test typeof(AnelasticAttenuationParameters(200.0, 0.5, :Rrup)) <: AnelasticAttenuationParameters @test typeof(AnelasticAttenuationParameters(200.0, Dual{Float64}(0.5), :Rrup)) <: AnelasticAttenuationParameters @test typeof(AnelasticAttenuationParameters(Dual{Float64}(200.0), 0.5, :Rrup)) <: AnelasticAttenuationParameters @test typeof(AnelasticAttenuationParameters(Dual{Float64}(200.0), Dual{Float64}(0.5), :Rrup)) <: AnelasticAttenuationParameters # vector inputs @test typeof(AnelasticAttenuationParameters([0.0, 80.0, Inf], [200.0, 200.0])) <: AnelasticAttenuationParameters @test typeof(AnelasticAttenuationParameters([0.0, 80.0, Inf], [200.0, 200.0], :Rrup)) <: AnelasticAttenuationParameters @test typeof(AnelasticAttenuationParameters([0.0, 80.0, Inf], [Dual{Float64}(200.0), Dual{Float64}(200.0)])) <: AnelasticAttenuationParameters @test typeof(AnelasticAttenuationParameters([0.0, 80.0, Inf], [Dual{Float64}(200.0), Dual{Float64}(200.0)], :Rrup)) <: AnelasticAttenuationParameters @test typeof(AnelasticAttenuationParameters([0.0, 80.0, Inf], [200.0, 200.0], [0.5, 0.5])) <: AnelasticAttenuationParameters @test typeof(AnelasticAttenuationParameters([0.0, 80.0, Inf], [200.0, 200.0], [0.5, 0.5], :Rrup)) <: AnelasticAttenuationParameters @test typeof(AnelasticAttenuationParameters([0.0, 80.0, Inf], [Dual{Float64}(200.0), Dual{Float64}(200.0)], [Dual{Float64}(0.5), Dual{Float64}(0.5)])) <: AnelasticAttenuationParameters @test typeof(AnelasticAttenuationParameters([0.0, 80.0, Inf], [Dual{Float64}(200.0), Dual{Float64}(200.0)], [Dual{Float64}(0.5), Dual{Float64}(0.5)], :Rrup)) <: AnelasticAttenuationParameters @test typeof(AnelasticAttenuationParameters([0.0, 80.0, Inf], [200.0, 200.0], [Dual{Float64}(0.5), Dual{Float64}(0.5)])) <: AnelasticAttenuationParameters @test typeof(AnelasticAttenuationParameters([0.0, 80.0, Inf], [200.0, 200.0], [Dual{Float64}(0.5), Dual{Float64}(0.5)], :Rrup)) <: AnelasticAttenuationParameters @test typeof(AnelasticAttenuationParameters([0.0, 80.0, Inf], [Dual{Float64}(200.0), Dual{Float64}(200.0)], [0.5, 0.5])) <: AnelasticAttenuationParameters @test typeof(AnelasticAttenuationParameters([0.0, 80.0, Inf], [Dual{Float64}(200.0), Dual{Float64}(200.0)], [0.5, 0.5], :Rrup)) <: AnelasticAttenuationParameters end Q0 = 200.0 anef = AnelasticAttenuationParameters(Q0) aned = AnelasticAttenuationParameters(Dual{Float64}(Q0)) @testset "Anelastic Attenuation Types" begin T = StochasticGroundMotionSimulation.get_parametric_type(anef) @test T == Float64 T = StochasticGroundMotionSimulation.get_parametric_type(aned) @test T <: Dual # artificial test, but for ensuring complete coverage anet = AnelasticAttenuationParameters([Dual{Float64}(0.0), Dual{Float64}(Inf)], [Dual{Float64}(200.0)], Vector{Dual{Float64,Float64,0}}(), zeros(Dual{Float64,Float64,0}, 1), zeros(Dual{Float64,Float64,0}, 1), [3.5], BitVector(ones(1)), BitVector(ones(1)), :Rps) T = StochasticGroundMotionSimulation.get_parametric_type(anet) @test T <: Dual end @testset "Path Constructors" begin # test floating point components @test typeof(PathParameters(geof, sat, anef)) <: PathParameters # test Dual components @test typeof(PathParameters(geod, sat, aned)) <: PathParameters path = PathParameters(geof, anef) @test path.saturation.model == :None path = PathParameters(geof, satd, anef) @test StochasticGroundMotionSimulation.get_parametric_type(path) <: Dual end pathf = PathParameters(geof, sat, anef) pathd = PathParameters(geod, sat, aned) @testset "Path Types" begin T = StochasticGroundMotionSimulation.get_parametric_type(pathf) @test T == Float64 T = StochasticGroundMotionSimulation.get_parametric_type(pathd) @test T <: Dual end r = 10.0 m = 6.0 @testset "Geometric Spreading Functionality" begin geo_cy14 = GeometricSpreadingParameters([1.0, 50.0, Inf], [1.0, 0.5], :CY14) geo_cy14mod = GeometricSpreadingParameters([1.0, 50.0, Inf], [1.0, 0.5], :CY14mod) geo_null = GeometricSpreadingParameters([1.0, 50.0, Inf], [1.0, 0.5], :Null) sat = NearSourceSaturationParameters(:BT15) r_ps = equivalent_point_source_distance(r, m, sat) gr_cy14 = geometric_spreading(r_ps, m, geo_cy14, sat) gr_cy14mod = geometric_spreading(r_ps, m, geo_cy14mod, sat) @test gr_cy14mod < gr_cy14 @test isnan(geometric_spreading(r_ps, m, geo_null, sat)) grp = geometric_spreading(r_ps, pathf) fasf = FourierParameters(SourceParameters(50.0), pathf) grf = geometric_spreading(r_ps, fasf) @test grp == grf geop = GeometricSpreadingParameters([1.0, Inf], [1.0], Vector{Float64}(), BitVector(undef, 0), :Piecewise) @test StochasticGroundMotionSimulation.geometric_spreading_piecewise(r_ps, geop) == 1.0 @test StochasticGroundMotionSimulation.geometric_spreading_piecewise(Dual(r_ps), geop) == 1.0 fasp = FourierParameters(SourceParameters(50.0), PathParameters(geop, sat, anef)) @test StochasticGroundMotionSimulation.geometric_spreading_piecewise(r_ps, fasp) == 1.0 @test StochasticGroundMotionSimulation.geometric_spreading_piecewise(Dual(r_ps), fasp) == 1.0 geo_cy14d = GeometricSpreadingParameters([1.0, 50.0, Inf], [Dual(1.0), Dual(1.0)], :CY14) sat = NearSourceSaturationParameters(:None) r_ps = equivalent_point_source_distance(1.0, -5.0, sat) fas_cy14d = FourierParameters(SourceParameters(50.0), PathParameters(geo_cy14d, sat, anef)) @test StochasticGroundMotionSimulation.geometric_spreading_cy14(r_ps, fas_cy14d).value ≈ 1.0 geo_cy14d = GeometricSpreadingParameters([1.0, 50.0, Inf], [Dual(1.0), Dual(1.0)], :CY14mod) sat = NearSourceSaturationParameters(:None) r_ps = equivalent_point_source_distance(1.0, -5.0, sat) fas_cy14d = FourierParameters(SourceParameters(50.0), PathParameters(geo_cy14d, sat, anef)) @test StochasticGroundMotionSimulation.geometric_spreading_cy14mod(r_ps, -5.0, fas_cy14d).value ≈ 1.0 # @code_warntype equivalent_point_source_distance(r, m, pathf) # @code_warntype equivalent_point_source_distance(r, m, pathd) r_psf = equivalent_point_source_distance(r, m, pathf) r_psd = equivalent_point_source_distance(r, m, pathd) # @code_warntype StochasticGroundMotionSimulation.geometric_spreading_piecewise(r, geof) # @code_warntype StochasticGroundMotionSimulation.geometric_spreading_piecewise(r, geod) grf = StochasticGroundMotionSimulation.geometric_spreading_piecewise(r, geof) grd = StochasticGroundMotionSimulation.geometric_spreading_piecewise(r, geod) @test grf == grd.value # @code_warntype StochasticGroundMotionSimulation.geometric_spreading_cy14(r, geof) # @code_warntype StochasticGroundMotionSimulation.geometric_spreading_cy14(r, geod) grf = StochasticGroundMotionSimulation.geometric_spreading_cy14(r, geof) grd = StochasticGroundMotionSimulation.geometric_spreading_cy14(r, geod) @test grf == grd.value # @code_warntype geometric_spreading(r, geof) # @code_warntype geometric_spreading(r, geod) grf = geometric_spreading(r, m, geof, sat) grd = geometric_spreading(r, m, geod, sat) @test grf == grd.value end @testset "Near Source Saturation Functionality" begin # @code_warntype near_source_saturation(m, pathf.saturation) # @code_warntype near_source_saturation(m, pathd.saturation) hf = near_source_saturation(m, pathf.saturation) hd = near_source_saturation(m, pathd.saturation) if StochasticGroundMotionSimulation.get_parametric_type(pathd.saturation) <: Dual @test hf == hd.value else @test hf == hd end src = SourceParameters(100.0) geo = GeometricSpreadingParameters([1.0, Inf], [1.0]) ane = AnelasticAttenuationParameters(200.0, 0.5) sat_ya = NearSourceSaturationParameters(:YA15) sat_cy = NearSourceSaturationParameters(:CY14) sat_sea = NearSourceSaturationParameters(:SEA21) sat_none = NearSourceSaturationParameters(:None) sat_con = NearSourceSaturationParameters(5.0) sat_var = NearSourceSaturationParameters(Dual(5.0)) sat_null = NearSourceSaturationParameters(:Null) path_ya = PathParameters(geo, sat_ya, ane) path_cy = PathParameters(geo, sat_cy, ane) path_sea = PathParameters(geo, sat_sea, ane) path_none = PathParameters(geo, sat_none, ane) path_con = PathParameters(geo, sat_con, ane) path_var = PathParameters(geo, sat_var, ane) path_null = PathParameters(geo, sat_null, ane) h_ya = near_source_saturation(5.0, sat_ya) h_cy = near_source_saturation(5.0, sat_cy) h_sea = near_source_saturation(5.0, sat_sea) h_none = near_source_saturation(5.0, sat_none) h_con = near_source_saturation(5.0, sat_con) h_var = near_source_saturation(5.0, sat_var) h_null = near_source_saturation(5.0, sat_null) @test h_con == h_var.value end f = 1.0 r = 100.0 @testset "Anelastic Attenuation Functionality" begin # @code_warntype anelastic_attenuation(f, r, anef) # @code_warntype anelastic_attenuation(f, r, aned) qrf = anelastic_attenuation(f, r, anef) qrd = anelastic_attenuation(f, r, aned) @test qrf ≈ qrd.value fas = FourierParameters(SourceParameters(100.0), pathf) q_r = anelastic_attenuation(f, r, fas) @test qrf ≈ q_r f = [0.01, 0.1, 1.0, 10.0, 100.0] nf = length(f) qrf = anelastic_attenuation(f, r, anef) qrd = anelastic_attenuation(f, r, aned) @test qrf ≈ map(q -> q.value, qrd) fasf = FourierParameters(SourceParameters(100.0), pathf) fasd = FourierParameters(SourceParameters(100.0), pathd) q_r = anelastic_attenuation(f, r, fas) @test qrf ≈ q_r Aff = ones(eltype(qrf), nf) Afd = ones(eltype(qrd), nf) StochasticGroundMotionSimulation.apply_anelastic_attenuation!(Aff, f, r, anef) StochasticGroundMotionSimulation.apply_anelastic_attenuation!(Afd, f, r, aned) @test Aff ≈ map(a -> a.value, Afd) Aff = ones(eltype(qrf), nf) Afd = ones(eltype(qrd), nf) StochasticGroundMotionSimulation.apply_anelastic_attenuation!(Aff, f, r, fasf) StochasticGroundMotionSimulation.apply_anelastic_attenuation!(Afd, f, r, fasd) @test Aff ≈ map(a -> a.value, Afd) Qff = ones(nf) Qfd = ones(eltype(qrd), nf) StochasticGroundMotionSimulation.anelastic_attenuation!(Qff, f, r, anef) StochasticGroundMotionSimulation.anelastic_attenuation!(Qfd, f, r, aned) @test Qff ≈ map(a -> a.value, Qfd) end @testset "Anelastic Attenuation Segmentation" begin # test the vector descriptions of anelastic attenuation ane_vec = AnelasticAttenuationParameters([0.0, 80.0, Inf], [200.0, 200.0], [0.4, 0.4]) ane_con = AnelasticAttenuationParameters(200.0, 0.4) @test anelastic_attenuation(5.0, 50.0, ane_vec) ≈ anelastic_attenuation(5.0, 50.0, ane_con) @test anelastic_attenuation(5.0, 150.0, ane_vec) ≈ anelastic_attenuation(5.0, 150.0, ane_con) ane_vecd = AnelasticAttenuationParameters([0.0, 80.0, Inf], [Dual(200.0), Dual(200.0)], [0.4, 0.4]) ane_cond = AnelasticAttenuationParameters(Dual(200.0), 0.4) @test anelastic_attenuation(5.0, 50.0, ane_vecd) ≈ anelastic_attenuation(5.0, 50.0, ane_cond) @test anelastic_attenuation(5.0, 150.0, ane_vecd) ≈ anelastic_attenuation(5.0, 150.0, ane_cond) ane_vecd = AnelasticAttenuationParameters([0.0, 80.0, Inf], [200.0, 200.0], [Dual(0.4), Dual(0.4)]) ane_cond = AnelasticAttenuationParameters(200.0, Dual(0.4)) @test anelastic_attenuation(5.0, 50.0, ane_vecd) ≈ anelastic_attenuation(5.0, 50.0, ane_cond) @test anelastic_attenuation(5.0, 150.0, ane_vecd) ≈ anelastic_attenuation(5.0, 150.0, ane_cond) ane_vecd = AnelasticAttenuationParameters([0.0, 80.0, Inf], [200.0], [Dual(200.0)], [0.4], [Dual(0.4)], 3.5 * ones(2), BitVector([1, 0]), BitVector([0, 1]), :Rrup) ane_cond = AnelasticAttenuationParameters(200.0, 0.4) @test anelastic_attenuation(5.0, 50.0, ane_vecd) ≈ anelastic_attenuation(5.0, 50.0, ane_cond) @test anelastic_attenuation(5.0, 150.0, ane_vecd) ≈ anelastic_attenuation(5.0, 150.0, ane_cond) ane_vecd = AnelasticAttenuationParameters([0.0, 80.0, Inf], [200.0], [Dual(200.0)], [0.4], [Dual(0.4)], 3.5 * ones(2), BitVector([0, 1]), BitVector([1, 0]), :Rrup) ane_cond = AnelasticAttenuationParameters(200.0, 0.4) @test anelastic_attenuation(5.0, 50.0, ane_vecd) ≈ anelastic_attenuation(5.0, 50.0, ane_cond) @test anelastic_attenuation(5.0, 150.0, ane_vecd) ≈ anelastic_attenuation(5.0, 150.0, ane_cond) ane_inf = AnelasticAttenuationParameters([0.0, 80.0, Inf], [Inf], [Dual{Float64}(200.0)], [0.0], [Dual{Float64}(0.5)], 3.5 * ones(2), BitVector([0, 1]), BitVector([0, 1]), :Rrup) @test anelastic_attenuation(5.0, 50.0, ane_inf) == 1.0 f_vec = [0.1, 1.0, 10.0, 100.0] nf = length(f_vec) q_vec = anelastic_attenuation(f_vec, 200.0, ane_vec) q_con = anelastic_attenuation(f_vec, 200.0, ane_con) @test q_vec ≈ q_con Afv = ones(nf) Afc = ones(nf) ζ0f = 0.039 ηf = 0.75 site = SiteParameters(ζ0f, ηf) StochasticGroundMotionSimulation.apply_fourier_path_and_site_attenuation!(Afv, f_vec, 200.0, ane_vec, site) StochasticGroundMotionSimulation.apply_fourier_path_and_site_attenuation!(Afc, f_vec, 200.0, ane_con, site) @test Afv ≈ Afc Afv = ones(nf) Afc = ones(nf) StochasticGroundMotionSimulation.apply_anelastic_attenuation!(Afv, f_vec, 200.0, ane_vec) StochasticGroundMotionSimulation.apply_anelastic_attenuation!(Afc, f_vec, 200.0, ane_con) @test Afv ≈ Afc Kfv = ones(nf) Kfc = ones(nf) StochasticGroundMotionSimulation.anelastic_attenuation!(Kfv, f_vec, 200.0, ane_vec) StochasticGroundMotionSimulation.anelastic_attenuation!(Kfc, f_vec, 200.0, ane_con) @test Kfv ≈ Kfc @test Kfv ≈ Afv Kfv = anelastic_attenuation(f_vec, 200.0, ane_vecd) Kfc = anelastic_attenuation(f_vec, 200.0, ane_cond) StochasticGroundMotionSimulation.anelastic_attenuation!(Kfv, f_vec, 200.0, ane_vecd) StochasticGroundMotionSimulation.anelastic_attenuation!(Kfc, f_vec, 200.0, ane_cond) @test Kfv ≈ Kfc @test Kfv ≈ Afv end end @testset "Site" begin κ0f = 0.039 κ0d = Dual{Float64}(κ0f) ζ0f = 0.039 ζ0d = Dual{Float64}(ζ0f) ηf = 0.75 ηd = Dual{Float64}(ηf) @testset "Site Constructors" begin @test typeof(SiteAmpUnit()) <: StochasticGroundMotionSimulation.SiteAmplification @test typeof(SiteAmpConstant(2.0)) <: StochasticGroundMotionSimulation.SiteAmplification @test typeof(SiteAmpBoore2016_760()) <: StochasticGroundMotionSimulation.SiteAmplification @test typeof(SiteAmpAlAtikAbrahamson2021_ask14_620()) <: StochasticGroundMotionSimulation.SiteAmplification @test typeof(SiteAmpAlAtikAbrahamson2021_ask14_760()) <: StochasticGroundMotionSimulation.SiteAmplification @test typeof(SiteAmpAlAtikAbrahamson2021_ask14_1100()) <: StochasticGroundMotionSimulation.SiteAmplification @test typeof(SiteAmpAlAtikAbrahamson2021_bssa14_620()) <: StochasticGroundMotionSimulation.SiteAmplification @test typeof(SiteAmpAlAtikAbrahamson2021_bssa14_760()) <: StochasticGroundMotionSimulation.SiteAmplification @test typeof(SiteAmpAlAtikAbrahamson2021_bssa14_1100()) <: StochasticGroundMotionSimulation.SiteAmplification @test typeof(SiteAmpAlAtikAbrahamson2021_cb14_620()) <: StochasticGroundMotionSimulation.SiteAmplification @test typeof(SiteAmpAlAtikAbrahamson2021_cb14_760()) <: StochasticGroundMotionSimulation.SiteAmplification @test typeof(SiteAmpAlAtikAbrahamson2021_cb14_1100()) <: StochasticGroundMotionSimulation.SiteAmplification @test typeof(SiteAmpAlAtikAbrahamson2021_cy14_620()) <: StochasticGroundMotionSimulation.SiteAmplification @test typeof(SiteAmpAlAtikAbrahamson2021_cy14_760()) <: StochasticGroundMotionSimulation.SiteAmplification @test typeof(SiteAmpAlAtikAbrahamson2021_cy14_1100()) <: StochasticGroundMotionSimulation.SiteAmplification @test typeof(SiteParameters(κ0f)) <: SiteParameters @test typeof(SiteParameters(κ0f, SiteAmpAlAtikAbrahamson2021_cy14_760())) <: SiteParameters @test typeof(SiteParameters(κ0f, SiteAmpBoore2016_760())) <: SiteParameters @test typeof(SiteParameters(κ0f, SiteAmpUnit())) <: SiteParameters @test typeof(SiteParameters(κ0f, SiteAmpConstant(2.0))) <: SiteParameters @test typeof(SiteParameters(κ0d)) <: SiteParameters @test typeof(SiteParameters(κ0d, SiteAmpAlAtikAbrahamson2021_cy14_760())) <: SiteParameters @test typeof(SiteParameters(κ0d, SiteAmpBoore2016_760())) <: SiteParameters @test typeof(SiteParameters(κ0d, SiteAmpUnit())) <: SiteParameters @test typeof(SiteParameters(ζ0f, ηf)) <: SiteParameters @test typeof(SiteParameters(ζ0d, ηf)) <: SiteParameters @test typeof(SiteParameters(ζ0f, ηd)) <: SiteParameters @test typeof(SiteParameters(ζ0d, ηd)) <: SiteParameters @test typeof(SiteParameters(ζ0f, ηf, SiteAmpAlAtikAbrahamson2021_cy14_760())) <: SiteParameters @test typeof(SiteParameters(ζ0d, ηf, SiteAmpAlAtikAbrahamson2021_cy14_760())) <: SiteParameters @test typeof(SiteParameters(ζ0f, ηd, SiteAmpAlAtikAbrahamson2021_cy14_760())) <: SiteParameters @test typeof(SiteParameters(ζ0d, ηd, SiteAmpAlAtikAbrahamson2021_cy14_760())) <: SiteParameters end site0f = SiteParameters(κ0f) siteAf = SiteParameters(κ0f, SiteAmpAlAtikAbrahamson2021_cy14_760()) siteBf = SiteParameters(κ0f, SiteAmpBoore2016_760()) siteUf = SiteParameters(κ0f, SiteAmpUnit()) siteCf = SiteParameters(κ0f, SiteAmpConstant(2.0)) site0d = SiteParameters(κ0d) siteAd = SiteParameters(κ0d, SiteAmpAlAtikAbrahamson2021_cy14_760()) siteBd = SiteParameters(κ0d, SiteAmpBoore2016_760()) siteUd = SiteParameters(κ0d, SiteAmpUnit()) siteCd = SiteParameters(κ0d, SiteAmpConstant(2.0)) f = 0.05 @testset "Site Amplification" begin # @code_warntype site_amplification(f, site0f) # @code_warntype site_amplification(f, site0d) Sff = site_amplification(f, site0f) Sfd = site_amplification(f, site0d) @test Sff == Sfd Af0f = site_amplification(f, site0f) Af1f = site_amplification(f, siteAf) Af2f = site_amplification(f, siteBf) Af3f = site_amplification(f, siteUf) Af4f = site_amplification(f, siteCf) @test Af0f == Af1f @test Af3f == 1.0 @test Af2f < Af1f @test Af4f == 2.0 Af0d = site_amplification(f, site0d) Af1d = site_amplification(f, siteAd) Af2d = site_amplification(f, siteBd) Af3d = site_amplification(f, siteUd) Af4d = site_amplification(f, siteCd) @test Af0d == Af1d @test Af3d == 1.0 @test Af2d < Af1d @test Af4d == 2.0 @test Af0f == Af0d @test Af4f == Af4d f0 = 80.0 f1 = 100.0 Af0 = site_amplification(f0, siteBf) Af1 = site_amplification(f1, siteBf) @test Af0 ≈ Af1 atol=1e-2 ft = 10.0 Af620 = site_amplification(ft, SiteParameters(0.039, SiteAmpAlAtikAbrahamson2021_ask14_620())) Af760 = site_amplification(ft, SiteParameters(0.039, SiteAmpAlAtikAbrahamson2021_ask14_760())) Af1100 = site_amplification(ft, SiteParameters(0.039, SiteAmpAlAtikAbrahamson2021_ask14_1100())) @test Af620 > Af760 @test Af760 > Af1100 Af620 = site_amplification(ft, SiteParameters(0.039, SiteAmpAlAtikAbrahamson2021_bssa14_620())) Af760 = site_amplification(ft, SiteParameters(0.039, SiteAmpAlAtikAbrahamson2021_bssa14_760())) Af1100 = site_amplification(ft, SiteParameters(0.039, SiteAmpAlAtikAbrahamson2021_bssa14_1100())) @test Af620 > Af760 @test Af760 > Af1100 Af620 = site_amplification(ft, SiteParameters(0.039, SiteAmpAlAtikAbrahamson2021_cb14_620())) Af760 = site_amplification(ft, SiteParameters(0.039, SiteAmpAlAtikAbrahamson2021_cb14_760())) Af1100 = site_amplification(ft, SiteParameters(0.039, SiteAmpAlAtikAbrahamson2021_cb14_1100())) @test Af620 > Af760 @test Af760 > Af1100 Af620 = site_amplification(ft, SiteParameters(0.039, SiteAmpAlAtikAbrahamson2021_cy14_620())) Af760 = site_amplification(ft, SiteParameters(0.039, SiteAmpAlAtikAbrahamson2021_cy14_760())) Af1100 = site_amplification(ft, SiteParameters(0.039, SiteAmpAlAtikAbrahamson2021_cy14_1100())) @test Af620 > Af760 @test Af760 > Af1100 end @testset "Impedance Functions" begin sa = SiteAmpBoore2016_760() @test sa.amplification(0.015) ≈ 1.01 rtol = 1e-5 fi = @SVector [0.001, 0.010, 0.015, 0.021, 0.031, 0.045, 0.065, 0.095, 0.138, 0.200, 0.291, 0.423, 0.615, 0.894, 1.301, 1.892, 2.751, 4.000, 5.817, 8.459, 12.301, 17.889, 26.014, 37.830, 55.012, 80.000, 1e3] Ai = @SVector [1.00, 1.00, 1.01, 1.02, 1.02, 1.04, 1.06, 1.09, 1.13, 1.18, 1.25, 1.32, 1.41, 1.51, 1.64, 1.80, 1.99, 2.18, 2.38, 2.56, 2.75, 2.95, 3.17, 3.42, 3.68, 3.96, 3.96] numf = length(fi) - 1 for i = 1:numf f = fi[i] @test sa.amplification(f) ≈ Ai[i] rtol = 1e-2 end sa = SiteAmpAlAtikAbrahamson2021_cy14_760() fi = @SVector [0.001, 0.100000005278119, 0.102329305685959, 0.104712901088038, 0.10715191734136, 0.1096478161355, 0.112201844312325, 0.114815399493054, 0.117489811269133, 0.120226426884127, 0.123026912673429, 0.125892543180806, 0.128824943888933, 0.131825701931171, 0.134896292542321, 0.138038419685919, 0.141253726031804, 0.144543991682274, 0.147910841016824, 0.15135612531762, 0.154881699105396, 0.158489298275321, 0.162180994731809, 0.165958688177051, 0.169824406249264, 0.173780124732544, 0.177827987234069, 0.181970104503309, 0.18620874216892, 0.190546088276735, 0.194984413397179, 0.199526234462532, 0.204173818378493, 0.208929629962364, 0.213796203501538, 0.218776216272469, 0.223872092751581, 0.229086773295876, 0.234422913440041, 0.239883346374602, 0.245470959191782, 0.251188647299664, 0.257039583965111, 0.263026839625322, 0.269153386068061, 0.275422892536035, 0.281838357206786, 0.288403136014915, 0.29512088643951, 0.301995147118928, 0.309029636270837, 0.316227726764557, 0.323593743035287, 0.331131074274485, 0.338844138033324, 0.346736738117816, 0.354813374379999, 0.363078069427477, 0.371535318437207, 0.38018929961147, 0.389044995694541, 0.398107060813636, 0.407380379735427, 0.416869369537323, 0.426579727361764, 0.436515887692042, 0.446683606986212, 0.457088019319652, 0.46773532542682, 0.478629981874554, 0.489778948828998, 0.501187304961605, 0.512861186273828, 0.524807402402299, 0.537031596210482, 0.549541299892976, 0.562341327015613, 0.575439822942147, 0.588843516357273, 0.602559763585899, 0.61659488244124, 0.630957589108888, 0.645654602589703, 0.660693172670039, 0.676083352446191, 0.69183061540227, 0.707945609900711, 0.724435639005472, 0.741310319666438, 0.758577791401586, 0.776247032532349, 0.794327972885161, 0.812829888313304, 0.83176450189098, 0.85113745411528, 0.870963690655165, 0.891251760400126, 0.912010408577856, 0.933255245295474, 0.954991724274509, 0.977236931585538, 0.99999931915226, 1.0232926583713, 1.04712871370939, 1.07151972559382, 1.09647839861261, 1.12201798920987, 1.14815239015486, 1.17489619113164, 1.20226482282661, 1.230270509361, 1.25892568257472, 1.28825221490343, 1.31825970420816, 1.34896234511787, 1.38038569480746, 1.4125355875376, 1.44544035634817, 1.4791067005516, 1.51355991769356, 1.54881419338307, 1.58489135570109, 1.62180741098713, 1.65958724224312, 1.69824098493074, 1.73780538614063, 1.77828384029801, 1.81969768325487, 1.86209132642581, 1.90545951786295, 1.94984000723927, 1.99526323502638, 2.04173666608573, 2.08929373051144, 2.13795720949869, 2.18776679563686, 2.23871864940605, 2.29087274897834, 2.34422665758295, 2.398830455509, 2.45470143491059, 2.51187774934974, 2.57040187591233, 2.63027473614656, 2.69154228983537, 2.75423051595883, 2.81839385215467, 2.88403692114349, 2.95122086420034, 3.01995215562392, 3.09030065678915, 3.16227642295472, 3.23592346631478, 3.31132891490246, 3.3884299172534, 3.46735946910046, 3.54813821074709, 3.63078533725135, 3.71536846377799, 3.80191135853523, 3.89043708383884, 3.98108381905827, 4.07382969500055, 4.16870567544569, 4.26581070164795, 4.36518697265844, 4.46680411703705, 4.57085377834242, 4.67739610111622, 4.78632242414544, 4.89776678860413, 5.0118843229469, 5.12865332406043, 5.24803935339088, 5.37032511094351, 5.49537847413284, 5.62339713074269, 5.75435457691296, 5.88847905118778, 6.02561155450687, 6.16599641750948, 6.30960714497232, 6.45659960120723, 6.60689861529496, 6.76084973072587, 6.91824357308313, 7.07938541613807, 7.24442301919855, 7.41307142632331, 7.58568641738688, 7.76244066564601, 7.94326569146627, 8.12834448596361, 8.31759182767968, 8.51151566867657, 8.70973318814878, 8.91245786665494, 9.12030564789694, 9.33246351716575, 9.54996668260048, 9.77234156401459, 9.99990153906584, 10.2330151684908, 10.4711008559889, 10.7150364469821, 10.964750490257, 11.2201347329491, 11.4816670597186, 11.7492496241653, 12.022742813086, 12.3026981000034, 12.5889920759082, 12.8822769465087, 13.182459265256, 13.489400932834, 13.8038791736706, 14.1258004265005, 14.4539459356652, 14.7913578984967, 15.1357324856635, 15.4880193842308, 15.8493619845298, 16.2183086824161, 16.5960326767835, 16.9823769767776, 17.3787778053556, 17.7834601578259, 18.1979135417807, 18.6200418512582, 19.0554824815177, 19.49807748989, 19.9517012657342, 20.4186610376656, 20.8940733113534, 21.379997361205, 21.8789412825561, 22.387937087537, 22.9096392147486, 23.4439269263859, 23.9870856553391, 24.46058662679, 25.0340588613218, 25.6152039490899, 26.2158596298214, 26.8275446219964, 27.4542925051998, 28.0959151088508, 28.7521309339848, 29.4225501552548, 30.1066616578723, 30.8101318295223, 31.5331607803149, 32.2688473500071, 33.0235676906087, 33.7894041350745, 34.5814827413102, 35.3920282683592, 36.2114034095699, 37.0570384215831, 37.9296731960298, 38.808356830246, 39.7246511532133, 40.6446342457211, 41.5904771517877, 42.5624316552899, 43.5606664842275, 44.58525356566, 45.6203356517073, 46.679926731282, 47.7811828082431, 48.889095202211, 50.0392749799897, 51.1923784631563, 52.3876989427786, 53.6271327545174, 54.8639723203735, 56.1438945185322, 57.4685744162854, 58.8111011775592, 60.1686734628619, 61.6017896398734, 63.0158092367494, 64.5080917430415, 66.010239337733, 67.5570266517399, 69.1074610525002, 70.7437395379651, 72.3800126937281, 74.0584033514694, 75.8305646487854, 77.5949512656221, 79.4004309784528, 81.2461188644527, 83.1308139099541, 85.0529665055861, 87.0822300450569, 89.0763954752011, 91.1807407221922, 93.3202913166248, 95.4916631049442, 97.6908631563263, 100.012267904509, 1e3] Ai = @SVector [1.0, 1.26474365754693, 1.27187168763244, 1.27901461204394, 1.2861668468288, 1.29332769860997, 1.30049545713136, 1.30766852765824, 1.3148448358383, 1.32202240367609, 1.32920111176275, 1.33638102751286, 1.34356422475535, 1.35075365610266, 1.35795288790118, 1.36516683588672, 1.37240078818257, 1.37965956984633, 1.38694651866824, 1.3942644665929, 1.40161534480099, 1.40900004959024, 1.41641948596057, 1.42387361692424, 1.43136209798135, 1.43888401061133, 1.44643774756037, 1.45402034276764, 1.46162798960857, 1.46925573360015, 1.47689789847254, 1.48454848588452, 1.49220043010574, 1.49984643882526, 1.50747891120157, 1.51509009761108, 1.52267156234887, 1.53021542332592, 1.53771329159611, 1.54515767577195, 1.5525423017734, 1.55986193063354, 1.56711260297083, 1.57429107685139, 1.58139470109949, 1.58842230933339, 1.59537254872675, 1.60224497526539, 1.6090399193016, 1.61575793863017, 1.62240013364471, 1.62896756722738, 1.63546241542315, 1.64188624895108, 1.64824169962538, 1.65453105215902, 1.660757253143, 1.66692298962119, 1.67303139815318, 1.67908545861599, 1.68508877287354, 1.69104474095905, 1.69695691445104, 1.70282847890391, 1.70866337029487, 1.71446466460501, 1.72023619436562, 1.72598137429174, 1.73170412937894, 1.73740741092509, 1.74309547823134, 1.74877153446106, 1.7544392973187, 1.76010278844154, 1.7657654338474, 1.77143153644529, 1.77710410272141, 1.7827876649385, 1.78848607318854, 1.79420347226643, 1.79994358407784, 1.80571108575488, 1.81150988535825, 1.81734412132426, 1.82321904347219, 1.82913817252675, 1.83510670026067, 1.84112756121076, 1.84720347424249, 1.85333562714735, 1.85952470296974, 1.8657708979849, 1.87207351949043, 1.87843213317722, 1.8848436987637, 1.89130781117208, 1.89782159094484, 1.90438189213204, 1.91098741512956, 1.91763345905683, 1.92431870117879, 1.93103904302077, 1.9377917893536, 1.94457361968632, 1.95138121657727, 1.95821137709387, 1.96506101732005, 1.97192719683423, 1.97880718423323, 1.98569844861012, 1.99259770558709, 1.99950182429154, 2.00641002878188, 2.01331868946611, 2.02022543975041, 2.02713050388327, 2.03402982723964, 2.04092437374658, 2.04781056500155, 2.05468885904031, 2.0615574700588, 2.06841626488153, 2.0752640907423, 2.08210150758018, 2.08892649642953, 2.09574183898203, 2.10254459906843, 2.10933506179724, 2.11611724811337, 2.12288728136106, 2.12964821625687, 2.13640189502178, 2.14314680483325, 2.14988534511825, 2.15661842855298, 2.16334930355606, 2.17007541648867, 2.17680275350116, 2.18352920748937, 2.19025940643645, 2.19699395722506, 2.2037360384332, 2.21048929651311, 2.21725267854449, 2.22403035334881, 2.23082429847101, 2.23763960582685, 2.24447608988636, 2.25133959947153, 2.25823040581599, 2.26515517696813, 2.27211465284156, 2.279113030692, 2.28615863788022, 2.29324589179053, 2.30038750095143, 2.30758593730311, 2.31484372550238, 2.32216775190769, 2.32956116012962, 2.33702714372695, 2.34457871599795, 2.35221548594714, 2.35994167884065, 2.36776709937289, 2.37569708603435, 2.38373136578869, 2.39188740715789, 2.4001723655651, 2.40858055742088, 2.41712532444938, 2.42582176653978, 2.43467176969305, 2.44367644631041, 2.45286124704223, 2.46222059889919, 2.47177408512471, 2.48152482557902, 2.49149534670758, 2.50167973724668, 2.5121025424396, 2.52276859362371, 2.53368621015369, 2.54471244064013, 2.55579887509383, 2.56691556730856, 2.57807828112741, 2.58929124755218, 2.60052938345122, 2.61181075197994, 2.6231406506567, 2.63450877844716, 2.64592079024619, 2.65736566297975, 2.66886801235028, 2.68039925680379, 2.6919660621504, 2.70359735310195, 2.71524178942724, 2.72695021810889, 2.73869095536778, 2.75047462230107, 2.76231402600025, 2.77417366427405, 2.78609125336844, 2.79805689620922, 2.81005922472766, 2.82211450958847, 2.83421194016232, 2.84633914825058, 2.85851444304052, 2.87072623771478, 2.88299593842877, 2.89531316315953, 2.90766594630464, 2.92007909343311, 2.93254220452969, 2.94500235859685, 2.95756836203094, 2.97014763145451, 2.98276880579325, 2.99546605253435, 3.00818177435952, 3.02095009321979, 3.03375911466721, 3.04664949155654, 3.05955682058631, 3.07252220143771, 3.08547407825541, 3.09857806889149, 3.11164189991262, 3.1247740454825, 3.13803326445637, 3.15127392356254, 3.16454764394741, 3.17791564782097, 3.19129151012199, 3.20473834661461, 3.21824566667958, 3.23171364822652, 3.24322176393691, 3.25693690766748, 3.27057303493195, 3.28439587776679, 3.2982023981508, 3.3120769920673, 3.32600819520374, 3.33998266349085, 3.35398523152793, 3.36799876948903, 3.38213175244099, 3.39637913151413, 3.41059795760726, 3.42490457070842, 3.43914277447917, 3.45358581167583, 3.46808249458969, 3.4824554766011, 3.49700354471659, 3.51172864029507, 3.52627127838015, 3.54114568729358, 3.55579375948015, 3.57056350893963, 3.58544956703106, 3.60044533617299, 3.61554285093282, 3.63050282206819, 3.64552230305604, 3.66083358332543, 3.67594250063318, 3.69132730927766, 3.70645512356833, 3.72183502705042, 3.73747813266146, 3.75278864636778, 3.76832751756716, 3.78410258957844, 3.79978518957619, 3.81533904720756, 3.83144482482593, 3.84703224899097, 3.86316870335808, 3.87910227339303, 3.89519546271496, 3.91101665356257, 3.92739373576442, 3.94345781904698, 3.95961844868298, 3.97635732852111, 3.99270630339808, 4.00911573850308, 4.02556924273202, 4.04204836767728, 4.05853233081845, 4.07560361892911, 4.09205960420983, 4.10909253284836, 4.12608173443567, 4.14299493817811, 4.15979664012907, 4.17719144318364, 4.17719144318364] numf = length(fi) - 1 for i = 1:numf f = fi[i] @test sa.amplification(f) ≈ Ai[i] rtol = 1e-2 end f_hi = 500.0 f_max = 999.99 mms = [SiteAmpUnit(), SiteAmpBoore2016_760(), SiteAmpAlAtikAbrahamson2021_ask14_620(), SiteAmpAlAtikAbrahamson2021_ask14_760(), SiteAmpAlAtikAbrahamson2021_ask14_1100(), SiteAmpAlAtikAbrahamson2021_bssa14_620(), SiteAmpAlAtikAbrahamson2021_bssa14_760(), SiteAmpAlAtikAbrahamson2021_bssa14_1100(), SiteAmpAlAtikAbrahamson2021_cb14_620(), SiteAmpAlAtikAbrahamson2021_cb14_760(), SiteAmpAlAtikAbrahamson2021_cb14_1100(), SiteAmpAlAtikAbrahamson2021_cy14_620(), SiteAmpAlAtikAbrahamson2021_cy14_760(), SiteAmpAlAtikAbrahamson2021_cy14_1100()] for mm in mms @test site_amplification(f_hi, mm) ≈ site_amplification(f_max, mm) end # @code_warntype site_amplification(f_hi, mms[3]) end @testset "Kappa Filter" begin f = 10.0 # @code_warntype kappa_filter(f, siteAf) # @code_warntype kappa_filter(f, siteAd) Kff = kappa_filter(f, siteAf) Kfd = kappa_filter(f, siteAd) @test Kff == Kfd.value nf = 100 fi = exp.(range(log(1e-2), stop=log(1e2), length=nf)) Kf0fi = kappa_filter(fi, siteAf) Kf0di = kappa_filter(fi, siteAd) for i in 1:nf @test Kf0fi[i] == Kf0di[i].value end Affi = ones(eltype(Kf0fi), nf) Afdi = ones(eltype(Kf0di), nf) StochasticGroundMotionSimulation.apply_kappa_filter!(Affi, fi, siteAf) StochasticGroundMotionSimulation.apply_kappa_filter!(Afdi, fi, siteAd) for i in 1:nf @test Affi[i] == Afdi[i].value end end @testset "Zeta Filter" begin f = 10.0 # @code_warntype kappa_filter(f, siteAf) # @code_warntype kappa_filter(f, siteAd) siteAzf = SiteParameters(ζ0f, ηf) siteAzd = SiteParameters(ζ0d, ηd) Kff = kappa_filter(f, siteAzf) Kfd = kappa_filter(f, siteAzd) @test Kff == Kfd.value nf = 100 fi = exp.(range(log(1e-2), stop=log(1e2), length=nf)) Kf0fi = kappa_filter(fi, siteAzf) Kf0di = kappa_filter(fi, siteAzd) for i in 1:nf @test Kf0fi[i] == Kf0di[i].value end Affi = ones(eltype(Kf0fi), nf) Afdi = ones(eltype(Kf0di), nf) StochasticGroundMotionSimulation.apply_kappa_filter!(Affi, fi, siteAzf) StochasticGroundMotionSimulation.apply_kappa_filter!(Afdi, fi, siteAzd) for i in 1:nf @test Affi[i] == Afdi[i].value end end end @testset "Oscillator" begin ζ = 0.05 f_n = 1.0 sdof = Oscillator(f_n, ζ) @test f_n ≈ 1.0 / period(sdof) @test transfer(0.5, sdof)^2 ≈ StochasticGroundMotionSimulation.squared_transfer(0.5, sdof) fi = [0.5, 1.0, 2.0] # @code_warntype transfer(fi, sdof) Hfi = transfer(fi, sdof) tfi = 2 * fi transfer!(Hfi, tfi, sdof) @test Hfi ≈ transfer(tfi, sdof) StochasticGroundMotionSimulation.squared_transfer!(Hfi, fi, sdof) @test Hfi ≈ transfer(fi, sdof) .^ 2 end @testset "Duration" begin src = SourceParameters(100.0) geo = GeometricSpreadingParameters([1.0, 50.0, Inf], [1.0, 0.5]) ane = AnelasticAttenuationParameters(200.0, 0.4) sat = NearSourceSaturationParameters(:BT15) path = PathParameters(geo, sat, ane) site = SiteParameters(0.039) fas = FourierParameters(src, path, site) # Boore & Thompson 2014 m = 6.0 fa, fb, ε = corner_frequency(m, src) Ds = 1.0 / fa Δσf = 100.0 Δσd = Dual{Float64}(Δσf) srcf = SourceParameters(Δσf) srcd = SourceParameters(Δσd) fasf = FourierParameters(srcf, path, site) fasd = FourierParameters(srcd, path, site) faf, fbf, εf = corner_frequency(m, srcf) # @code_warntype StochasticGroundMotionSimulation.boore_thompson_2014(m, 0.0, srcf) Dsf = StochasticGroundMotionSimulation.boore_thompson_2014(m, 0.0, srcf) @test Dsf ≈ 1.0 / faf @test isnan(fbf) @test isnan(εf) fad, fbd, εd = corner_frequency(m, srcd) # @code_warntype StochasticGroundMotionSimulation.boore_thompson_2014(m, 0.0, srcd) Dsd = StochasticGroundMotionSimulation.boore_thompson_2014(m, 0.0, srcd) @test Dsd ≈ 1.0 / fad @test isnan(fbd) @test isnan(εd) # @code_warntype StochasticGroundMotionSimulation.boore_thompson_2014(m, 0.0, fasf) @test StochasticGroundMotionSimulation.boore_thompson_2014(m, 0.0, fasf) ≈ Ds @test StochasticGroundMotionSimulation.boore_thompson_2014(m, 0.0, fasd) ≈ Ds @test StochasticGroundMotionSimulation.boore_thompson_2015(m, 0.0, fasf, :ACR) ≈ Ds @test StochasticGroundMotionSimulation.boore_thompson_2015(m, 0.0, fasd, :ACR) ≈ Ds rti = range(0.1, stop=700.0, step=1.0) m = -8.0 rvt_acr = RandomVibrationParameters(:DK80, :BT14, :BT15, :ACR) rvt_scr = RandomVibrationParameters(:DK80, :BT15, :BT15, :SCR) for i in 1:lastindex(rti) if (rti[i] < 17.0) | (rti[i] > 281.0) @test excitation_duration(m, rti[i], src, rvt_scr) .<= excitation_duration(m, rti[i], src, rvt_acr) else @test excitation_duration(m, rti[i], src, rvt_scr) .> excitation_duration(m, rti[i], src, rvt_acr) end end @test excitation_duration(m, 10.0, src, rvt_acr) == excitation_duration(m, 10.0, fas, rvt_acr) m = 6.0 r = 7.0 fa, fb, ε = corner_frequency(m, fasf) Dur = 1.0 / fa + 2.4 @test StochasticGroundMotionSimulation.boore_thompson_2014(m, r, fasf) ≈ Dur fa, fb, ε = corner_frequency(m, fasd) Dur = 1.0 / fa + 2.4 @test StochasticGroundMotionSimulation.boore_thompson_2014(m, r, fasd) ≈ Dur srcAS = SourceParameters(Δσf, :Atkinson_Silva_2000) fa, fb, ε = corner_frequency(m, srcAS) Ds = 0.5 * (1.0 / fa + 1.0 / fb) @test StochasticGroundMotionSimulation.boore_thompson_2014(m, 0.0, srcAS) ≈ Ds @test isnan(fb) == false @test isnan(ε) == false @test fa < fb # test gradient of BT14 duration model w.r.t. magnitude h = 0.05 m1 = 8.0 m2 = m1 + h r_ps1 = 1.0 + near_source_saturation(m1, fasf) r_ps2 = 1.0 + near_source_saturation(m2, fasf) Dex1 = StochasticGroundMotionSimulation.boore_thompson_2014(m1, r_ps1, fasf) Dex2 = StochasticGroundMotionSimulation.boore_thompson_2014(m2, r_ps2, fasf) fdg = log(Dex2 / Dex1) / h d(x) = log(StochasticGroundMotionSimulation.boore_thompson_2014(x[1], 1.0 + near_source_saturation(x[1], fasf), fasf)) gd(x) = ForwardDiff.gradient(d, x) adg = gd([8.0])[1] @test fdg ≈ adg atol = 1e-2 rvt = RandomVibrationParameters() # @code_warntype excitation_duration(m, r, fasf, rvt) # @code_warntype excitation_duration(m, r, fasd, rvt) Dexf = excitation_duration(m, r, fasf, rvt) Dexd = excitation_duration(m, r, fasd, rvt) @test Dexf == Dexd.value rvt = RandomVibrationParameters(:DK80, :BT15, :BT15, :SCR) Dexf = excitation_duration(m, r, fasf, rvt) Dexd = excitation_duration(m, r, fasd, rvt) @test Dexf == Dexd.value c11 = [8.4312e-01, -2.8671e-02, 2.0, 1.7316e+00, 1.1695e+00, 2.1671e+00, 9.6224e-01] c11f = StochasticGroundMotionSimulation.StochasticGroundMotionSimulation.boore_thompson_2012_coefs(1, 1) @test c11f[1] == c11[1] @test all(isapprox.(c11, c11f)) # @code_warntype StochasticGroundMotionSimulation.StochasticGroundMotionSimulation.boore_thompson_2012_coefs(1, 1) m = 8.0 r = 1.0 Dex = StochasticGroundMotionSimulation.boore_thompson_2014(m, r, srcf) # get the oscillator period sdof = Oscillator(100.0) T_n = period(sdof) ζ = sdof.ζ_n # define the η parameter as T_n/Dex η = T_n / Dex # @time c = StochasticGroundMotionSimulation.StochasticGroundMotionSimulation.boore_thompson_2012_coefs(1, 1) # @time StochasticGroundMotionSimulation.boore_thompson_2012_base(η, c, ζ) # # @time StochasticGroundMotionSimulation.boore_thompson_2012(m, r, srcf, sdof, rvt) # @code_warntype StochasticGroundMotionSimulation.boore_thompson_2012(m, r, srcf, sdof, rvt) # # @time StochasticGroundMotionSimulation.boore_thompson_2012(m, r, srcd, sdof, rvt) # @code_warntype StochasticGroundMotionSimulation.boore_thompson_2012(m, r, srcd, sdof, rvt) sdof = Oscillator(1.0) Drms, Dex, Dratio = StochasticGroundMotionSimulation.boore_thompson_2012(m, r, fas, sdof, rvt) Dex0 = StochasticGroundMotionSimulation.boore_thompson_2014(m, r, fas) @test Dex != Dex0 # test combinations of :pf_method and :dur_rms methods rvt0 = RandomVibrationParameters() rvt1 = RandomVibrationParameters(:DK80) rvt2 = RandomVibrationParameters(:DK80, :SCR) rvt3 = RandomVibrationParameters(:CL56) rvt4 = RandomVibrationParameters(:CL56, :SCR) @test rvt0 == rvt1 @test rvt0 != rvt2 @test rvt0.pf_method == rvt2.pf_method @test rvt0.dur_ex == :BT15 @test rvt0.dur_rms == :BT15 @test rvt3 != rvt4 @test rvt3.pf_method != rvt0.pf_method @test rvt3.dur_region == :ACR @test rvt3.pf_method == rvt4.pf_method @test rvt3.dur_rms == :BT12 # check that the excitation durations are matching rvt = RandomVibrationParameters(:CL56, :BT14, :BT12, :ACR) Drms, Dex, Dratio = StochasticGroundMotionSimulation.boore_thompson_2012(m, r, fas, sdof, rvt) Dex0 = StochasticGroundMotionSimulation.boore_thompson_2014(m, r, fas) @test Dex == Dex0 # confirm that incorrect combinations of peak factor and rms duration gives NaN result rvt = RandomVibrationParameters(:DK80, :BT14, :BT12, :ACR) Drms, Dex, Dratio = rms_duration(m, r, fas, sdof, rvt) @test isnan(Dex) # check that rms and excitation duration wrapper functions work as intended Dex0 = excitation_duration(m, r, fas, rvt0) Drms, Dex1, Dratio = rms_duration(m, r, fas, sdof, rvt0) @test Dex0 == Dex1 Dex0 = excitation_duration(m, r, fas, rvt2) Drms, Dex1, Dratio = rms_duration(m, r, fas, sdof, rvt0) @test Dex0 != Dex1 # @code_warntype rms_duration(m, r, srcf, path, sdof, rvt) # @code_warntype rms_duration(m, r, srcd, path, sdof, rvt) # @code_warntype rms_duration(m, r, fasf, sdof, rvt) # @code_warntype rms_duration(m, r, fasd, sdof, rvt) # @time Drmsf, Dexf, Dratiof = rms_duration(m, r, fasf, sdof, rvt) # @time Drmsd, Dexd, Dratiod = rms_duration(m, r, fasd, sdof, rvt) rvt = RandomVibrationParameters() Drmsf, Dexf, Dratiof = rms_duration(m, r, fasf, sdof, rvt) Drmsd, Dexd, Dratiod = rms_duration(m, r, fasd, sdof, rvt) @test Drmsf == Drmsd.value @test Dexf == Dexd.value @test Dratiof == Dratiod.value rvt = RandomVibrationParameters(:CL56, :BT14, :BT12, :ACR) Drmsf, Dexf, Dratiof = rms_duration(m, r, fasf, sdof, rvt) Drmsf1, Dexf1, Dratiof1 = StochasticGroundMotionSimulation.boore_thompson_2012(m, r, fasf, sdof, rvt) @test Drmsf == Drmsf1 @test Dexf == Dexf1 @test Dratiof == Dratiof1 @test isnan(StochasticGroundMotionSimulation.boore_thompson_2015(m, -1.0, srcf, :ACR)) @test isnan(StochasticGroundMotionSimulation.boore_thompson_2015(m, -1.0, srcd, :ACR)) @test isnan(StochasticGroundMotionSimulation.boore_thompson_2015(m, -1.0, SourceParameters(1), :ACR)) # Boore & Thompson 2014 m = 6.0 fa, fb, ε = corner_frequency(m, src) Ds = 1.0 / fa Dex270 = Ds + 34.2 Dex300 = Dex270 + 0.156 * 30.0 @test Dex270 ≈ StochasticGroundMotionSimulation.boore_thompson_2014(m, 270.0, src) @test Dex300 ≈ StochasticGroundMotionSimulation.boore_thompson_2014(m, 300.0, src) @test isnan(StochasticGroundMotionSimulation.boore_thompson_2014(m, -1.0, src)) @test isnan(StochasticGroundMotionSimulation.boore_thompson_2014(m, -1.0, srcd)) @test isnan(StochasticGroundMotionSimulation.boore_thompson_2014(m, Dual(-1.0), src)) @test isnan(excitation_duration(m, -1.0, src, rvt)) @test isnan(excitation_duration(m, -1.0, srcd, rvt)) @test isnan(excitation_duration(m, Dual(-1.0), src, rvt)) c = StochasticGroundMotionSimulation.StochasticGroundMotionSimulation.boore_thompson_2012_coefs(1, 1, region=:SCR) idx = 1 @test all(isapprox(c, StochasticGroundMotionSimulation.coefs_ena_bt12[idx, 3:9])) d1a, d2a, d3a = StochasticGroundMotionSimulation.boore_thompson_2012(6.1234, 2.0, src, sdof, rvt) d1b, d2b, d3b = StochasticGroundMotionSimulation.boore_thompson_2012(6.1234, 2.1234, src, sdof, rvt) d1c, d2c, d3c = StochasticGroundMotionSimulation.boore_thompson_2012(6.0, 2.1234, src, sdof, rvt) d1d, d2d, d3d = StochasticGroundMotionSimulation.boore_thompson_2012(6.0, 2.0, src, sdof, rvt) @test d1a < d1b @test d2a < d2b @test d3a > d3b @test d1a > d1c @test d1d < d1a c = StochasticGroundMotionSimulation.boore_thompson_2015_coefs(1, 1, region=:SCR) idx = 1 @test all(isapprox(c, StochasticGroundMotionSimulation.coefs_ena_bt15[idx, 3:9])) d1a, d2a, d3a = StochasticGroundMotionSimulation.boore_thompson_2015(6.1234, 2.0, src, sdof, rvt) d1b, d2b, d3b = StochasticGroundMotionSimulation.boore_thompson_2015(6.1234, 2.1234, src, sdof, rvt) d1c, d2c, d3c = StochasticGroundMotionSimulation.boore_thompson_2015(6.0, 2.1234, src, sdof, rvt) d1d, d2d, d3d = StochasticGroundMotionSimulation.boore_thompson_2015(6.0, 2.0, src, sdof, rvt) @test d1a < d1b @test d2a < d2b @test d3a > d3b @test d1a > d1c @test d1d < d1a d1as, d2as, d3as = StochasticGroundMotionSimulation.boore_thompson_2015(6.1234, 2.0, src, sdof, rvt) d1af, d2af, d3af = StochasticGroundMotionSimulation.boore_thompson_2015(6.1234, 2.0, fas, sdof, rvt) @test d1as == d1af @test d2as == d2af @test d3as == d3af rvt = RandomVibrationParameters(:PS, :PS, :PS, :PS) d1, d2, d3 = rms_duration(6.0, 1.0, fas, sdof, rvt) @test isnan(d1) @test isnan(d2) @test isnan(d3) srcf = SourceParameters(100.0) srcd = SourceParameters(Dual(100.0)) rvt = RandomVibrationParameters(:PS, :PS, :PS, :PS) @test isnan(excitation_duration(6.0, 10.0, srcf, rvt)) @test isnan(excitation_duration(6.0, 10.0, srcd, rvt)) @test isnan(excitation_duration(6.0, Dual(10.0), srcf, rvt)) D50 = excitation_duration(6.0, 50.0, srcf, RandomVibrationParameters()) D150 = excitation_duration(6.0, 150.0, srcf, RandomVibrationParameters()) @test D150 > D50 @test isnan(StochasticGroundMotionSimulation.boore_thompson_2014_path_duration(-1.0)) @test isnan(StochasticGroundMotionSimulation.boore_thompson_2015_path_duration_acr(-1.0)) @test isnan(StochasticGroundMotionSimulation.boore_thompson_2015_path_duration_scr(-1.0)) rpi = range(0.0, stop=1000.0, step=1.0) DexAi = zeros(length(rpi)) DexSi = zeros(length(rpi)) DpAi = zeros(length(rpi)) DpSi = zeros(length(rpi)) rvtA = RandomVibrationParameters(:DK80, :ACR) rvtS = RandomVibrationParameters(:DK80, :SCR) src = SourceParameters(100.0) m = 2.0 fc, d1, d2 = corner_frequency(m, src) Ds = 1.0 / fc for (i, r) in enumerate(rpi) DexAi[i] = excitation_duration(m, r, src, rvtA) DexSi[i] = excitation_duration(m, r, src, rvtS) DpAi[i] = StochasticGroundMotionSimulation.boore_thompson_2015_path_duration_acr(r) DpSi[i] = StochasticGroundMotionSimulation.boore_thompson_2015_path_duration_scr(r) end @test all(isapprox.(DexAi .- Ds, DpAi)) @test all(isapprox.(DexSi .- Ds, DpSi)) @test isnan(StochasticGroundMotionSimulation.boore_thompson_2015(m, -1.0, src, rvtA)) @test isnan(StochasticGroundMotionSimulation.boore_thompson_2015(m, -1.0, src, rvtS)) @test isnan(StochasticGroundMotionSimulation.boore_thompson_2015(m, -1.0, src, :PJS)) @test isnan(StochasticGroundMotionSimulation.boore_thompson_2015(m, -1.0, src, :PJS)) @test isnan(StochasticGroundMotionSimulation.boore_thompson_2015(m, -1.0, fas, rvtA)) @test isnan(StochasticGroundMotionSimulation.boore_thompson_2015(m, -1.0, fas, rvtS)) @test isnan(StochasticGroundMotionSimulation.boore_thompson_2015(m, -1.0, fas, :PJS)) @test isnan(StochasticGroundMotionSimulation.boore_thompson_2015(m, -1.0, fas, :PJS)) src = SourceParameters(100.0, :Atkinson_Silva_2000) @test isnan(StochasticGroundMotionSimulation.boore_thompson_2015(m, -1.0, src, rvtA)) @test isnan(StochasticGroundMotionSimulation.boore_thompson_2015(m, -1.0, src, rvtS)) @test isnan(StochasticGroundMotionSimulation.boore_thompson_2015(m, -1.0, src, :PJS)) @test isnan(StochasticGroundMotionSimulation.boore_thompson_2015(m, -1.0, src, :PJS)) @testset "Edwards (2023) duration" begin src = SourceParameters(50.0) geo = GeometricSpreadingParameters([1.0, 50.0, Inf], [1.0, 0.7], :Piecewise) sat = NearSourceSaturationParameters(:BT15) ane = AnelasticAttenuationParameters(3000.0, 0.0) path = PathParameters(geo, sat, ane) site = SiteParameters(0.03, SiteAmpUnit()) fas = FourierParameters(src, path, site) rvt = RandomVibrationParameters(:CL56, :BE23, :LP99, :ACR) sdof = Oscillator(1.0) m = 6.0 r_rup = 10.0 r_ps = equivalent_point_source_distance(r_rup, m, fas) Dex = excitation_duration(m, r_ps, fas, rvt) (Drms, Dex0, Drat) = rms_duration(m, r_ps, fas, sdof, rvt) @test Dex == Dex0 # @code_warntype rms_duration(m, r_ps, fas, sdof, rvt) src = SourceParameters(50.0, :AtkinsonSilva2000) fas = FourierParameters(src, path, site) m = 1.0 r_rup = 40.0 r_ps = equivalent_point_source_distance(r_rup, m, fas) Dex = excitation_duration(m, r_ps, fas, rvt) (Drms, Dex0, Drat) = rms_duration(m, r_ps, fas, sdof, rvt) @test Dex == Dex0 @test StochasticGroundMotionSimulation.edwards_2023_path_duration(-1.0) == 0.0 end @testset "UK duration models" begin src = SourceParameters(50.0) geo = GeometricSpreadingParameters([1.0, 50.0, Inf], [1.0, 0.7], :Piecewise) sat = NearSourceSaturationParameters(:BT15) ane = AnelasticAttenuationParameters(3000.0, 0.0) path = PathParameters(geo, sat, ane) site = SiteParameters(0.03, SiteAmpUnit()) fas = FourierParameters(src, path, site) rvt_free = RandomVibrationParameters(:DK80, :UKfree, :BT15, :ACR) rvt_fixed = RandomVibrationParameters(:DK80, :UKfixed, :BT15, :ACR) sdof = Oscillator(1.0) m = 1.0 r_rup = 40.0 r_ps = equivalent_point_source_distance(r_rup, m, fas) Dex_free = excitation_duration(m, r_ps, fas, rvt_free) (Drms_free, Dex0_free, Drat_free) = rms_duration(m, r_ps, fas, sdof, rvt_free) @test Dex_free == Dex0_free Dex_fixed = excitation_duration(m, r_ps, fas, rvt_fixed) (Drms_fixed, Dex0_fixed, Drat_fixed) = rms_duration(m, r_ps, fas, sdof, rvt_fixed) @test Dex_fixed == Dex0_fixed # @code_warntype StochasticGroundMotionSimulation.uk_path_duration_free(r_ps) @test StochasticGroundMotionSimulation.uk_path_duration_free(-1.0) == 0.0 @test StochasticGroundMotionSimulation.uk_path_duration_fixed(-1.0) == 0.0 m = 0.0 for r_rup in range(-4.0, stop=600.0, step=5.0) r_ps = equivalent_point_source_distance(r_rup, m, fas) # StochasticGroundMotionSimulation.uk_path_duration_free(r_ps) # StochasticGroundMotionSimulation.uk_duration_free(m, r_ps, src) Dex_free = excitation_duration(m, r_ps, fas, rvt_free) (Drms_free, Dex0_free, Drat_free) = rms_duration(m, r_ps, fas, sdof, rvt_free) @test Dex_free == Dex0_free Dex_fixed = excitation_duration(m, r_ps, fas, rvt_fixed) (Drms_fixed, Dex0_fixed, Drat_fixed) = rms_duration(m, r_ps, fas, sdof, rvt_fixed) @test Dex_fixed == Dex0_fixed end src = SourceParameters(50.0, :AtkinsonSilva2000) fas = FourierParameters(src, path, site) m = 1.0 r_rup = 40.0 r_ps = equivalent_point_source_distance(r_rup, m, fas) Dex_free = excitation_duration(m, r_ps, fas, rvt_free) (Drms_free, Dex0_free, Drat_free) = rms_duration(m, r_ps, fas, sdof, rvt_free) @test Dex_free == Dex0_free Dex_fixed = excitation_duration(m, r_ps, fas, rvt_fixed) (Drms_fixed, Dex0_fixed, Drat_fixed) = rms_duration(m, r_ps, fas, sdof, rvt_fixed) @test Dex_fixed == Dex0_fixed end end @testset "Fourier" begin Δσf = 100.0 γ1f = 1.0 γ2f = 0.5 Q0f = 200.0 ηf = 0.4 κ0f = 0.039 Δσd = Dual{Float64}(Δσf) γ1d = Dual{Float64}(γ1f) γ2d = Dual{Float64}(γ2f) Q0d = Dual{Float64}(Q0f) ηd = Dual{Float64}(ηf) κ0d = Dual{Float64}(κ0f) srcf = SourceParameters(Δσf) srcd = SourceParameters(Δσd) Rrefi = [1.0, 50.0, Inf] geof = GeometricSpreadingParameters(Rrefi, [γ1f, γ2f]) geod = GeometricSpreadingParameters(Rrefi, [γ1d, γ2d]) geom = GeometricSpreadingParameters(Rrefi, [γ1f], [γ2d], BitVector([0, 1]), :Piecewise) anef = AnelasticAttenuationParameters(Q0f, ηf) aned = AnelasticAttenuationParameters(Q0d, ηd) anem = AnelasticAttenuationParameters(Q0f, ηd) sat = NearSourceSaturationParameters(:BT15) pathf = PathParameters(geof, sat, anef) pathd = PathParameters(geod, sat, aned) pathm = PathParameters(geom, sat, anem) sitef = SiteParameters(κ0f) sited = SiteParameters(κ0d) fasf = FourierParameters(srcf, pathf, sitef) fasd = FourierParameters(srcd, pathd, sited) fasm = FourierParameters(srcf, pathm, sited) Tf = StochasticGroundMotionSimulation.get_parametric_type(fasf) Td = StochasticGroundMotionSimulation.get_parametric_type(fasd) Tm = StochasticGroundMotionSimulation.get_parametric_type(fasm) @test Tf == Float64 @test Td <: Dual @test Tm <: Dual @test Td == Tm # @code_warntype fourier_constant(srcf) Cfs = fourier_constant(srcf) Cff = fourier_constant(fasf) @test Cfs == Cff # @code_warntype fourier_constant(srcd) Cfsd = fourier_constant(srcd) Cffd = fourier_constant(fasd) @test Cfsd == Cffd @testset "Fourier Source Shape" begin f = 0.001 m = 6.0 # @code_warntype fourier_source_shape(f, m, srcf) # @code_warntype fourier_source_shape(f, m, srcd) Affs = fourier_source_shape(f, m, srcf) Afff = fourier_source_shape(f, m, fasf) Afds = fourier_source_shape(f, m, srcd) Afdf = fourier_source_shape(f, m, fasd) @test Affs == Afds.value @test Afff == Afdf.value @test Affs == Afff @test Afds == Afdf @test Afff ≈ 1.0 atol = 1e-3 fa, fb, ε = corner_frequency(m, srcf) # @code_warntype fourier_source_shape(f, fa, fb, ε, srcf.model) Afc = fourier_source_shape(f, fa, fb, ε, srcf) @test Afc ≈ 1.0 atol = 1e-3 fa, fb, ε = corner_frequency(m, srcd) # @code_warntype fourier_source_shape(f, fa, fb, ε, srcd.model) Afcd = fourier_source_shape(f, fa, fb, ε, srcd) @test Afcd ≈ 1.0 atol = 1e-3 src_a = SourceParameters(100.0, :Atkinson_Silva_2000) Af_a = fourier_source_shape(f, m, src_a) @test Af_a ≈ 1.0 atol = 1e-3 src_n = SourceParameters(100.0, :Null) Af_n = fourier_source_shape(f, m, src_n) src_b = SourceParameters(100.0) Af_b = fourier_source_shape(f, m, src_b) @test Af_n == Af_b fa, fb, ε = corner_frequency(m, src_a) Af_a = fourier_source_shape(f, fa, fb, ε, src_a) @test Af_a ≈ 1.0 atol = 1e-3 fa, fb, ε = corner_frequency(m, src_b) Af_n = fourier_source_shape(f, fa, fb, ε, src_n) @test Af_n ≈ Af_b f = [0.001, 0.01, 0.1, 1.0, 10.0, 100.0] nf = length(f) # @code_warntype fourier_source_shape(f, m, srcf) # @code_warntype fourier_source_shape(f, m, srcd) Affs = fourier_source_shape(f, m, srcf) Afff = fourier_source_shape(f, m, fasf) Afds = fourier_source_shape(f, m, srcd) Afdf = fourier_source_shape(f, m, fasd) for i in 1:nf @test Affs[i] == Afds[i].value @test Afff[i] == Afdf[i].value @test Affs[i] == Afff[i] @test Afds[i] == Afdf[i] end fa, fb, ε = corner_frequency(m, srcf) # @code_warntype fourier_source_shape(f, fa, fb, ε, srcf.model) Afc = fourier_source_shape(f, fa, fb, ε, srcf) @test Afc[1] ≈ 1.0 atol = 1e-3 fa, fb, ε = corner_frequency(m, srcd) # @code_warntype fourier_source_shape(f, fa, fb, ε, srcd.model) Afcd = fourier_source_shape(f, fa, fb, ε, srcd) @test Afcd[1] ≈ 1.0 atol = 1e-3 src_a = SourceParameters(100.0, :Atkinson_Silva_2000) Af_a = fourier_source_shape(f, m, src_a) @test Af_a[1] ≈ 1.0 atol = 1e-3 src_n = SourceParameters(100.0, :Null) Af_n = fourier_source_shape(f, m, src_n) src_b = SourceParameters(100.0) Af_b = fourier_source_shape(f, m, src_b) @test Af_n == Af_b fa, fb, ε = corner_frequency(m, src_a) Af_a = fourier_source_shape(f, fa, fb, ε, src_a) @test Af_a[1] ≈ 1.0 atol = 1e-3 fa, fb, ε = corner_frequency(m, src_b) Af_n = fourier_source_shape(f, fa, fb, ε, src_n) @test Af_n ≈ Af_b src = SourceParameters(100.0, :Beresnev_2019) fa, fb, ε = corner_frequency(m, src) Af = fourier_source_shape(f, fa, fb, ε, src) @test Af[1] ≈ 1.0 atol = 1e-3 fasbf = FourierParameters(src, pathf, sitef) fa, fb, ε = corner_frequency(m, fasbf) Af = fourier_source_shape(f, fa, fb, ε, fasbf) @test Af[1] ≈ 1.0 atol = 1e-3 end @testset "Fourier Source" begin f = 0.001 m = 6.0 # @code_warntype fourier_source(f, m, srcf) # @code_warntype fourier_source(f, m, srcd) Afs = fourier_source(f, m, srcf) Aff = fourier_source(f, m, fasf) @test Afs == Aff # @time fourier_source(f, m, srcd) # @time fourier_source(f, m, fasd) end @testset "Fourier Path" begin f = 10.0 r = 100.0 m = 6.0 ane = AnelasticAttenuationParameters(200.0, 0.5, :Rrup) Pfr = fourier_path(f, r, m, geof, sat, ane) path = PathParameters(geof, sat, ane) Pfp = fourier_path(f, r, m, path) fas = FourierParameters(SourceParameters(100.0), path) Pff = fourier_path(f, r, m, fas) @test Pfr == Pfp @test Pfr == Pff # @code_warntype fourier_path(f, r, geof, anef) # @code_warntype fourier_path(f, r, geod, aned) # @code_warntype fourier_path(f, r, geom, anef) # @code_warntype fourier_path(f, r, pathf) # @code_warntype fourier_path(f, r, pathd) # @code_warntype fourier_path(f, r, pathm) # @code_warntype fourier_path(f, r, fasf) # @code_warntype fourier_path(f, r, fasd) # @code_warntype fourier_path(f, r, fasm) Pf = fourier_path(f, r, fasf) Pd = fourier_path(f, r, fasd) Pm = fourier_path(f, r, fasm) @test Pf == Pd.value @test Pd == Pm end @testset "Fourier attenuation" begin f = 10.0 r = 200.0 # @code_warntype fourier_attenuation(f, r, anef, sitef) # @code_warntype fourier_attenuation(f, r, aned, sited) # @code_warntype fourier_attenuation(f, r, anef, sited) # @code_warntype fourier_attenuation(f, r, pathf, sitef) # @code_warntype fourier_attenuation(f, r, pathd, sited) # @code_warntype fourier_attenuation(f, r, pathm, sited) # @code_warntype fourier_attenuation(f, r, fasf) # @code_warntype fourier_attenuation(f, r, fasd) # @code_warntype fourier_attenuation(f, r, fasm) Qf = fourier_attenuation(f, r, fasf) Qd = fourier_attenuation(f, r, fasd) Qm = fourier_attenuation(f, r, fasm) @test Qf == Qd.value @test Qd == Qm @test fourier_attenuation(-1.0, r, fasf) == 1.0 f = [0.01, 0.1, 1.0, 10.0, 100.0] nf = length(f) Qf = fourier_attenuation(f, r, fasf) Qd = fourier_attenuation(f, r, fasd) Qm = fourier_attenuation(f, r, fasm) @test Qf == map(q -> q.value, Qd) @test Qd == Qm Aff = ones(eltype(Qf), nf) Afd = ones(eltype(Qd), nf) Afm = ones(eltype(Qm), nf) StochasticGroundMotionSimulation.apply_fourier_attenuation!(Aff, f, r, fasf) StochasticGroundMotionSimulation.apply_fourier_attenuation!(Afd, f, r, fasd) StochasticGroundMotionSimulation.apply_fourier_attenuation!(Afm, f, r, fasm) @test Aff == map(a -> a.value, Afd) @test Aff == map(a -> a.value, Afm) end @testset "Fourier site" begin # @code_warntype fourier_site(f, sitef) # @code_warntype fourier_site(f, sited) # @time fourier_site(f, sitef) # @time fourier_site(f, sited) f = 0.5 Sf = fourier_site(f, fasf) Sd = fourier_site(f, fasd) Sm = fourier_site(f, fasm) @test Sf == Sd.value @test Sd == Sm end @testset "Point source distance" begin f = 1.0 m = 6.0 r = 10.0 r_psf = equivalent_point_source_distance(r, m, fasf) r_psd = equivalent_point_source_distance(r, m, fasd) r_psm = equivalent_point_source_distance(r, m, fasm) @test r_psf ≈ r_psd @test r_psf ≈ r_psm end # @code_warntype fourier_spectral_ordinate(f, m, r_psf, fasf) # @code_warntype fourier_spectral_ordinate(f, m, r_psd, fasd) # @code_warntype fourier_spectral_ordinate(f, m, r_psm, fasm) f = 1.0 m = 6.0 r = 10.0 r_psf = equivalent_point_source_distance(r, m, fasf) r_psd = equivalent_point_source_distance(r, m, fasd) r_psm = equivalent_point_source_distance(r, m, fasm) Af = fourier_spectral_ordinate(f, m, r_psf, fasf) Ad = fourier_spectral_ordinate(f, m, r_psd, fasd) Am = fourier_spectral_ordinate(f, m, r_psm, fasm) @test Af == Ad.value @test Ad == Am # test Beresnev source spectrum srcb1p0 = SourceParameters(100.0, 1.0) srcb1p5 = SourceParameters(100.0, 1.5) fasb1p0 = FourierParameters(srcb1p0, pathf, sitef) fasb1p5 = FourierParameters(srcb1p5, pathf, sitef) f = 10.0 m = 6.0 r = 10.0 r_ps = equivalent_point_source_distance(r, m, fasb1p0) Afb1p0 = fourier_spectral_ordinate(f, m, r_ps, fasb1p0) Afb1p5 = fourier_spectral_ordinate(f, m, r_ps, fasb1p5) @test Afb1p0 > Afb1p5 f = 1e-3 Afb1p0 = fourier_spectral_ordinate(f, m, r_ps, fasb1p0) Afb1p5 = fourier_spectral_ordinate(f, m, r_ps, fasb1p5) @test Afb1p0 ≈ Afb1p5 rtol = 1e-3 fi = [0.01, 0.1, 1.0, 10.0, 100.0] # @code_warntype fourier_spectrum(fi, m, r_psf, fasf) # @code_warntype fourier_spectrum(fi, m, r_psf, fasd) # @code_warntype fourier_spectrum(fi, m, r_psd, fasd) # @code_warntype fourier_spectrum(fi, m, r_psd, fasm) Afif = fourier_spectrum(fi, m, r_psf, fasf) Afid = fourier_spectrum(fi, m, r_psf, fasd) Afim = fourier_spectrum(fi, m, r_psd, fasm) for i = 1:length(fi) @test Afif[i] == Afid[i].value end @test all(isapprox.(Afid, Afim)) fourier_spectrum!(Afif, fi, m, r_psf, fasf) fourier_spectrum!(Afid, fi, m, r_psf, fasd) fourier_spectrum!(Afim, fi, m, r_psd, fasm) for i = 1:length(fi) @test Afif[i] == Afid[i].value end @test all(isapprox.(Afid, Afim)) StochasticGroundMotionSimulation.squared_fourier_spectrum!(Afif, fi, m, r_psf, fasf) StochasticGroundMotionSimulation.squared_fourier_spectrum!(Afid, fi, m, r_psf, fasd) StochasticGroundMotionSimulation.squared_fourier_spectrum!(Afim, fi, m, r_psd, fasm) for i = 1:length(fi) @test Afif[i] == Afid[i].value end @test all(isapprox.(Afid, Afim)) anef = AnelasticAttenuationParameters(Q0f, ηf, :Rrup) aned = AnelasticAttenuationParameters(Q0d, ηd, :Rrup) anem = AnelasticAttenuationParameters(Q0f, ηd, :Rrup) pathf = PathParameters(geof, sat, anef) pathd = PathParameters(geod, sat, aned) pathm = PathParameters(geom, sat, anem) fasf = FourierParameters(srcf, pathf, sitef) fasd = FourierParameters(srcd, pathd, sited) fasm = FourierParameters(srcf, pathm, sited) r_psf = equivalent_point_source_distance(r, m, fasf) r_psd = equivalent_point_source_distance(r, m, fasd) r_psm = equivalent_point_source_distance(r, m, fasm) Afif = fourier_spectrum(fi, m, r_psf, fasf) Afid = fourier_spectrum(fi, m, r_psf, fasd) Afim = fourier_spectrum(fi, m, r_psd, fasm) StochasticGroundMotionSimulation.squared_fourier_spectrum!(Afif, fi, m, r_psf, fasf) StochasticGroundMotionSimulation.squared_fourier_spectrum!(Afid, fi, m, r_psf, fasd) StochasticGroundMotionSimulation.squared_fourier_spectrum!(Afim, fi, m, r_psd, fasm) for i = 1:length(fi) @test Afif[i] == Afid[i].value end @test all(isapprox.(Afid, Afim)) # test parallel threading of fourier spectrum computation # fi = exp10.(range(-2.0, stop=2.0, length=31)) # Afif = fourier_spectrum(fi, m, r_psf, fasf) # @benchmark StochasticGroundMotionSimulation.squared_fourier_spectrum!(Afif, fi, m, r_psf, fasf) # @benchmark StochasticGroundMotionSimulation.squared_fourier_spectrum_par!(Afif, fi, m, r_psf, fasf) ane = AnelasticAttenuationParameters(200.0, 0.0, :Rrup) path = PathParameters(geof, sat, ane) fas = FourierParameters(SourceParameters(100.0), path) m = Dual(6.0) r_rup = 10.0 r_ps = equivalent_point_source_distance(r_rup, m, fas) Afid = fourier_spectrum(Vector{Float64}(), m, r_ps, fas) @test eltype(Afid) <: Dual Afid = fourier_spectrum(fi, m, r_ps, fas) sqAfid = StochasticGroundMotionSimulation.squared_fourier_spectrum(fi, m, r_ps, fas) @test any(isapprox.(sqAfid, Afid .^ 2)) # @code_warntype fourier_spectrum!(Afif, fi, m, r_psf, fasf) # @code_warntype fourier_spectrum!(Afid, fi, m, r_psf, fasd) # @code_warntype fourier_spectrum!(Afim, fi, m, r_psd, fasm) Afid = fourier_spectrum(Vector{Float64}(), m, r_ps, fas) fourier_spectrum!(Afid, Vector{Float64}(), m, r_ps, fas) StochasticGroundMotionSimulation.squared_fourier_spectrum!(Afid, Vector{Float64}(), m, r_ps, fas) Afid = fourier_spectrum(fi, m, r_ps, fas) fourier_spectrum!(Afid, fi, m, r_ps, fas) StochasticGroundMotionSimulation.get_parametric_type(fas) StochasticGroundMotionSimulation.get_parametric_type(fas.path.anelastic) fi = exp.(range(log(1e-2), stop=log(1e2), length=1000)) Afid = fourier_spectrum(fi, m, r_ps, fas) # @benchmark StochasticGroundMotionSimulation.fourier_spectrum!(Afid, fi, m, r_ps, fas) # @benchmark StochasticGroundMotionSimulation.squared_fourier_spectrum!(Afid, fi, m, r_ps, fas) # @ballocated StochasticGroundMotionSimulation.squared_fourier_spectrum!(Afid, fi, m, r_ps, fas) # @profview @benchmark StochasticGroundMotionSimulation.fourier_spectrum!(Afid, fi, m, r_ps, fas) # @profview @benchmark StochasticGroundMotionSimulation.squared_fourier_spectrum!(Afid, fi, m, r_ps, fas) # @benchmark Afsqid = StochasticGroundMotionSimulation.squared_fourier_spectrum(fi, m, r_ps, fas) # @code_warntype StochasticGroundMotionSimulation.squared_fourier_spectrum!(Afif, fi, m, r_psf, fasf) # @code_warntype StochasticGroundMotionSimulation.squared_fourier_spectrum!(Afid, fi, m, r_psf, fasd) # @code_warntype StochasticGroundMotionSimulation.squared_fourier_spectrum!(Afim, fi, m, r_psd, fasm) # @code_warntype combined_kappa_frequency(r_psf, fasf) # @code_warntype combined_kappa_frequency(r_psd, fasd) fkf = combined_kappa_frequency(r_psf, 0.5, fasf) fkd = combined_kappa_frequency(r_psd, 0.5, fasd) @test fkf == fkd.value fkf = combined_kappa_frequency(r_psf, 0.5, fasf) fkfd = combined_kappa_frequency(Dual(r_psf), 0.5, fasf) @test fkf == fkfd.value fkf0 = combined_kappa_frequency(r_psf, 0.5, fas) fkf1 = combined_kappa_frequency(r_psf, 0.5, fasf) @test fkf0 > fkf1 end @testset "RVT" begin @testset "Integration" begin Δσf = 100.0 γ1f = 1.158 γ2f = 0.5 Q0f = 212.5 ηf = 0.65 κ0f = 0.038 Δσd = Dual{Float64}(Δσf) γ1d = Dual{Float64}(γ1f) γ2d = Dual{Float64}(γ2f) Q0d = Dual{Float64}(Q0f) ηd = Dual{Float64}(ηf) κ0d = Dual{Float64}(κ0f) srcf = SourceParameters(Δσf) srcd = SourceParameters(Δσd) Rrefi = [1.0, 50.0, Inf] geof = GeometricSpreadingParameters(Rrefi, [γ1f, γ2f]) geod = GeometricSpreadingParameters(Rrefi, [γ1d, γ2d]) geom = GeometricSpreadingParameters(Rrefi, [γ1f], [γ2d], BitVector([0, 1]), :Piecewise) anef = AnelasticAttenuationParameters(Q0f, ηf) aned = AnelasticAttenuationParameters(Q0d, ηd) anem = AnelasticAttenuationParameters(Q0f, ηd) sat = NearSourceSaturationParameters(:BT15) pathf = PathParameters(geof, sat, anef) pathd = PathParameters(geod, sat, aned) pathm = PathParameters(geom, sat, anem) sitef = SiteParameters(κ0f, SiteAmpBoore2016_760()) sited = SiteParameters(κ0d, SiteAmpBoore2016_760()) fasf = FourierParameters(srcf, pathf, sitef) fasd = FourierParameters(srcd, pathd, sited) fasm = FourierParameters(srcf, pathm, sited) m = 5.5 r = 10.88 r_psf = equivalent_point_source_distance(r, m, fasf) r_psd = equivalent_point_source_distance(r, m, fasd) r_psm = equivalent_point_source_distance(r, m, fasm) sdof = Oscillator(100.0) # Boore comparison (assume his are cgs units) ps2db(f) = (1.0 / (2π * sdof.f_n))^2 * 1e4 dbm0_integrand(f) = StochasticGroundMotionSimulation.squared_fourier_spectral_ordinate(f, m, r_psf, fasf) * StochasticGroundMotionSimulation.squared_transfer(f, sdof) * ps2db(f) dbm0ln_integrand(lnf) = exp(lnf) * StochasticGroundMotionSimulation.squared_fourier_spectral_ordinate(exp(lnf), m, r_psf, fasf) * StochasticGroundMotionSimulation.squared_transfer(exp(lnf), sdof) * ps2db(exp(lnf)) dbm1_integrand(f) = (2π * f) * StochasticGroundMotionSimulation.squared_fourier_spectral_ordinate(f, m, r_psf, fasf) * StochasticGroundMotionSimulation.squared_transfer(f, sdof) * ps2db(f) dbm1ln_integrand(lnf) = exp(lnf) * (2π * exp(lnf)) * StochasticGroundMotionSimulation.squared_fourier_spectral_ordinate(exp(lnf), m, r_psf, fasf) * StochasticGroundMotionSimulation.squared_transfer(exp(lnf), sdof) * ps2db(exp(lnf)) dbm2_integrand(f) = (2π * f)^2 * StochasticGroundMotionSimulation.squared_fourier_spectral_ordinate(f, m, r_psf, fasf) * StochasticGroundMotionSimulation.squared_transfer(f, sdof) * ps2db(f) dbm2ln_integrand(lnf) = exp(lnf) * (2π * exp(lnf))^2 * StochasticGroundMotionSimulation.squared_fourier_spectral_ordinate(exp(lnf), m, r_psf, fasf) * StochasticGroundMotionSimulation.squared_transfer(exp(lnf), sdof) * ps2db(exp(lnf)) dbm4_integrand(f) = (2π * f)^4 * StochasticGroundMotionSimulation.squared_fourier_spectral_ordinate(f, m, r_psf, fasf) * StochasticGroundMotionSimulation.squared_transfer(f, sdof) * ps2db(f) dbm4ln_integrand(lnf) = exp(lnf) * (2π * exp(lnf))^4 * StochasticGroundMotionSimulation.squared_fourier_spectral_ordinate(exp(lnf), m, r_psf, fasf) * StochasticGroundMotionSimulation.squared_transfer(exp(lnf), sdof) * ps2db(exp(lnf)) @time igk = 2 * quadgk(dbm0_integrand, 0.0, Inf)[1] @time igk = 2 * quadgk(dbm0_integrand, exp(-7.0), exp(7.0))[1] @time iglelnm = 2 * StochasticGroundMotionSimulation.gauss_intervals(dbm0ln_integrand, 250, -7.0, log(sdof.f_n), 7.0) @test igk ≈ iglelnm rtol = 1e-4 @time igk = 2 * quadgk(dbm1_integrand, exp(-7.0), exp(7.0))[1] @time iglelnm = 2 * StochasticGroundMotionSimulation.gauss_intervals(dbm1ln_integrand, 250, -7.0, log(sdof.f_n), 7.0) @test igk ≈ iglelnm rtol = 1e-4 @time igk = 2 * quadgk(dbm2_integrand, exp(-7.0), exp(7.0))[1] @time iglelnm = 2 * StochasticGroundMotionSimulation.gauss_intervals(dbm2ln_integrand, 250, -7.0, log(sdof.f_n), 7.0) @test igk ≈ iglelnm rtol = 1e-3 @time igk = 2 * quadgk(dbm4_integrand, exp(-7.0), exp(7.0))[1] @time iglelnm = 2 * StochasticGroundMotionSimulation.gauss_intervals(dbm4ln_integrand, 250, -7.0, log(sdof.f_n), 7.0) @test igk ≈ iglelnm rtol = 1e-3 m0_integrand(f) = StochasticGroundMotionSimulation.squared_fourier_spectral_ordinate(f, m, r_psf, fasf) * StochasticGroundMotionSimulation.squared_transfer(f, sdof) m0ln_integrand(lnf) = exp(lnf) * StochasticGroundMotionSimulation.squared_fourier_spectral_ordinate(exp(lnf), m, r_psf, fasf) * StochasticGroundMotionSimulation.squared_transfer(exp(lnf), sdof) m1_integrand(f) = (2π * f) * StochasticGroundMotionSimulation.squared_fourier_spectral_ordinate(f, m, r_psf, fasf) * StochasticGroundMotionSimulation.squared_transfer(f, sdof) m1ln_integrand(lnf) = exp(lnf) * (2π * exp(lnf)) * StochasticGroundMotionSimulation.squared_fourier_spectral_ordinate(exp(lnf), m, r_psf, fasf) * StochasticGroundMotionSimulation.squared_transfer(exp(lnf), sdof) m2_integrand(f) = (2π * f)^2 * StochasticGroundMotionSimulation.squared_fourier_spectral_ordinate(f, m, r_psf, fasf) * StochasticGroundMotionSimulation.squared_transfer(f, sdof) m2ln_integrand(lnf) = exp(lnf) * (2π * exp(lnf))^2 * StochasticGroundMotionSimulation.squared_fourier_spectral_ordinate(exp(lnf), m, r_psf, fasf) * StochasticGroundMotionSimulation.squared_transfer(exp(lnf), sdof) m4_integrand(f) = (2π * f)^4 * StochasticGroundMotionSimulation.squared_fourier_spectral_ordinate(f, m, r_psf, fasf) * StochasticGroundMotionSimulation.squared_transfer(f, sdof) m4ln_integrand(lnf) = exp(lnf) * (2π * exp(lnf))^4 * StochasticGroundMotionSimulation.squared_fourier_spectral_ordinate(exp(lnf), m, r_psf, fasf) * StochasticGroundMotionSimulation.squared_transfer(exp(lnf), sdof) @time igk = quadgk(m0_integrand, exp(-7.0), exp(7.0))[1] @time igle = StochasticGroundMotionSimulation.gauss_interval(m0_integrand, 2000, 0.0, 300.0) @time igleln = StochasticGroundMotionSimulation.gauss_interval(m0ln_integrand, 750, -7.0, 7.0) @time iglelnm = StochasticGroundMotionSimulation.gauss_intervals(m0ln_integrand, 250, -7.0, log(sdof.f_n), 7.0) # @test igk ≈ igle rtol=1e-2 @test igk ≈ igleln rtol = 1e-4 @test igk ≈ iglelnm rtol = 1e-4 lnfi = log.([1e-3, 1e-2, 1e-1, 1e0, 1e1, 1e2, 1e3, sdof.f_n]) sort!(lnfi) @time igk = quadgk(m1_integrand, exp(-7.0), exp(7.0))[1] @time igle = StochasticGroundMotionSimulation.gauss_interval(m1_integrand, 1500, 0.0, 300.0) @time igleln = StochasticGroundMotionSimulation.gauss_interval(m1ln_integrand, 750, -7.0, 7.0) @time iglelnm = StochasticGroundMotionSimulation.gauss_intervals(m1ln_integrand, 250, -7.0, log(sdof.f_n), 7.0) @time iglelnm = StochasticGroundMotionSimulation.gauss_intervals(m1ln_integrand, 30, lnfi...) @time itr = StochasticGroundMotionSimulation.trapezoidal(m1ln_integrand, 60, lnfi...) # @test igk ≈ igle rtol=1e-2 @test igk ≈ iglelnm rtol = 1e-4 @test igk ≈ itr rtol = 1e-3 @time igk = quadgk(m2_integrand, exp(-7.0), exp(7.0))[1] @time iglelnm = StochasticGroundMotionSimulation.gauss_intervals(m2ln_integrand, 30, lnfi...) @time itr = StochasticGroundMotionSimulation.trapezoidal(m2ln_integrand, 60, lnfi...) @test igk ≈ iglelnm rtol = 1e-4 @test igk ≈ itr rtol = 1e-3 @time igk = quadgk(m4_integrand, exp(-7.0), exp(7.0))[1] @time iglelnm = StochasticGroundMotionSimulation.gauss_intervals(m4ln_integrand, 30, lnfi...) @time itr = StochasticGroundMotionSimulation.trapezoidal(m4ln_integrand, 60, lnfi...) @test igk ≈ iglelnm rtol = 1e-4 @test igk ≈ itr rtol = 1e-3 integrand(x) = sin(x) intervals = 101 x_min = 0.0 x_max = 2π xx = collect(range(x_min, stop=x_max, length=intervals)) yy = integrand.(xx) isr = StochasticGroundMotionSimulation.simpsons_rule(xx, yy) ist = StochasticGroundMotionSimulation.trapezoidal_rule(xx, yy) igk = quadgk(integrand, x_min, x_max)[1] @test isr ≈ igk atol = 10 * eps() @test ist ≈ igk atol = 10 * eps() m = 6.0 r = 100.0 src = SourceParameters(100.0) geo = GeometricSpreadingParameters([1.0, 50.0, Inf], [1.0, 0.5]) sat = NearSourceSaturationParameters(:BT15) ane = AnelasticAttenuationParameters(200.0, 0.4, :Rrup) path = PathParameters(geo, sat, ane) site = SiteParameters(0.039) fas = FourierParameters(src, path, site) sdof = Oscillator(1.0) integrand1(f) = StochasticGroundMotionSimulation.squared_transfer(f, sdof) * fourier_spectral_ordinate(f, m, r, fas)^2 intervals = 101 x_min = sdof.f_n / 1.1 x_max = sdof.f_n * 1.1 xx = collect(range(x_min, stop=x_max, length=intervals)) yy = integrand1.(xx) isr = StochasticGroundMotionSimulation.simpsons_rule(xx, yy) igk = quadgk(integrand1, x_min, x_max)[1] @test isr ≈ igk rtol = 1e-6 @test isr ≈ igk atol = 1e-6 integrand2(f) = StochasticGroundMotionSimulation.squared_transfer(f, sdof) * fourier_spectral_ordinate(f, m, r, fas)^2 intervals = 101 x_min = 100.0 x_max = 200.0 xx = collect(range(x_min, stop=x_max, length=intervals)) yy = integrand2.(xx) isr = StochasticGroundMotionSimulation.simpsons_rule(xx, yy) igk = quadgk(integrand2, x_min, x_max)[1] @test isr ≈ igk rtol = 1e-3 @test isr ≈ igk atol = 1e-6 integrand3(f) = (2π * f)^4 * StochasticGroundMotionSimulation.squared_transfer(f, sdof) * fourier_spectral_ordinate(f, m, r, fas)^2 intervals = 101 x_min = 100.0 x_max = 200.0 xx = collect(range(x_min, stop=x_max, length=intervals)) yy = integrand3.(xx) isr = StochasticGroundMotionSimulation.simpsons_rule(xx, yy) igk = quadgk(integrand3, x_min, x_max)[1] @test isr ≈ igk rtol = 1e-3 @test isr ≈ igk atol = 1e-6 x_min = 300.0 x_max = 500.0 xx = collect(range(x_min, stop=x_max, length=intervals)) yy = integrand3.(xx) isr = StochasticGroundMotionSimulation.simpsons_rule(xx, yy) igk = quadgk(integrand3, x_min, x_max)[1] @test isr ≈ igk rtol = 1e-3 @test isr ≈ igk atol = 1e-6 end @testset "Spectral Moments" begin Δσf = 100.0 γ1f = 1.0 γ2f = 0.5 Q0f = 200.0 ηf = 0.4 κ0f = 0.039 Δσd = Dual{Float64}(Δσf) γ1d = Dual{Float64}(γ1f) γ2d = Dual{Float64}(γ2f) Q0d = Dual{Float64}(Q0f) ηd = Dual{Float64}(ηf) κ0d = Dual{Float64}(κ0f) srcf = SourceParameters(Δσf) srcd = SourceParameters(Δσd) Rrefi = [1.0, 50.0, Inf] geof = GeometricSpreadingParameters(Rrefi, [γ1f, γ2f]) geod = GeometricSpreadingParameters(Rrefi, [γ1d, γ2d]) geom = GeometricSpreadingParameters(Rrefi, [γ1f], [γ2d], BitVector([0, 1]), :Piecewise) anef = AnelasticAttenuationParameters(Q0f, ηf) aned = AnelasticAttenuationParameters(Q0d, ηd) anem = AnelasticAttenuationParameters(Q0f, ηd) sat = NearSourceSaturationParameters(:BT15) pathf = PathParameters(geof, sat, anef) pathd = PathParameters(geod, sat, aned) pathm = PathParameters(geom, sat, anem) sitef = SiteParameters(κ0f) sited = SiteParameters(κ0d) fasf = FourierParameters(srcf, pathf, sitef) fasd = FourierParameters(srcd, pathd, sited) fasm = FourierParameters(srcf, pathm, sited) m = 6.0 r = 10.0 r_psf = equivalent_point_source_distance(r, m, fasf) r_psd = equivalent_point_source_distance(r, m, fasd) r_psm = equivalent_point_source_distance(r, m, fasm) sdof = Oscillator(0.1) order = 0 m0f = spectral_moment(order, m, r_psf, fasf, sdof) m0d = spectral_moment(order, m, r_psd, fasd, sdof) m0m = spectral_moment(order, m, r_psm, fasm, sdof) @test m0f.m0 ≈ m0d.m0.value @test m0d.m0 ≈ m0m.m0 order = 0 m0f = spectral_moment(order, m, r_psf, fasf, sdof, nodes=50) m0d = spectral_moment(order, m, r_psd, fasd, sdof, nodes=50) m0m = spectral_moment(order, m, r_psm, fasm, sdof, nodes=50) @test m0f.m0 ≈ m0d.m0.value @test m0d.m0 ≈ m0m.m0 # @code_warntype spectral_moment(order, m, r_psf, fasf, sdof) # @code_warntype spectral_moment(order, m, r_psd, fasd, sdof) # @code_warntype spectral_moment(order, m, r_psm, fasm, sdof) # @time spectral_moments([0, 1, 2, 4], m, r_psf, fasf, sdof) # @time spectral_moments([0, 1, 2, 4], m, r_psd, fasd, sdof) # @time spectral_moments([0, 1, 2, 4], m, r_psm, fasm, sdof) # @code_warntype spectral_moments([0, 1, 2, 4], m, r_psf, fasf, sdof) # @code_warntype spectral_moments([0, 1, 2, 4], m, r_psd, fasd, sdof) # @code_warntype spectral_moments([0, 1, 2, 4], m, r_psm, fasm, sdof) smi = spectral_moments([0, 1, 2, 3, 4], m, r_psf, fasf, sdof) smigk = StochasticGroundMotionSimulation.spectral_moments_gk([0, 1, 2, 3, 4], m, r_psf, fasf, sdof) @test smi.m0 ≈ smigk.m0 rtol=1e-3 @test smi.m1 ≈ smigk.m1 rtol=1e-3 @test smi.m2 ≈ smigk.m2 rtol=1e-3 @test smi.m3 ≈ smigk.m3 rtol=1e-3 @test smi.m4 ≈ smigk.m4 rtol=1e-3 smi = spectral_moments([0, 1, 2, 3, 4], m, r_psf, fasf, sdof, nodes=50) smigk = StochasticGroundMotionSimulation.spectral_moments_gk([0, 1, 2, 3, 4], m, r_psf, fasf, sdof) @test smi.m0 ≈ smigk.m0 rtol = 1e-5 @test smi.m1 ≈ smigk.m1 rtol = 1e-5 @test smi.m2 ≈ smigk.m2 rtol = 1e-5 @test smi.m3 ≈ smigk.m3 rtol = 1e-5 @test smi.m4 ≈ smigk.m4 rtol = 1e-5 sdof = Oscillator(1 / 3) smi = spectral_moments([0, 1, 2, 3, 4], m, r_psf, fasf, sdof) # smai = spectral_moments_alt([0, 1, 2, 3, 4], m, r_psf, fasf, sdof) smigk = StochasticGroundMotionSimulation.spectral_moments_gk([0, 1, 2, 3, 4], m, r_psf, fasf, sdof) # @code_warntype spectral_moments([0, 1, 2, 3, 4], m, r_psf, fasf, sdof) # @code_warntype spectral_moments_alt([0, 1, 2, 3, 4], m, r_psf, fasf, sdof) # @benchmark spectral_moments([0, 1, 2, 3, 4], m, r_psf, fasf, sdof) # @benchmark spectral_moments_alt([0, 1, 2, 3, 4], m, r_psf, fasf, sdof) # @benchmark spectral_moments([0, 1, 2, 3, 4], m, r_psf, fasf, sdof) # @profview @benchmark spectral_moments_alt([0, 1, 2, 3, 4], m, r_psf, fasf, sdof) @test smi.m0 ≈ smigk.m0 rtol = 1e-3 @test smi.m1 ≈ smigk.m1 rtol = 1e-3 @test smi.m2 ≈ smigk.m2 rtol = 1e-3 @test smi.m3 ≈ smigk.m3 rtol = 1e-3 @test smi.m4 ≈ smigk.m4 rtol = 1e-3 m = Dual(6.0) smdi = spectral_moments([0, 1, 2, 3, 4], m, r_psf, fasf, sdof) smfi = spectral_moments([0, 1, 2, 3, 4], m.value, r_psf, fasf, sdof) @test smdi.m0 ≈ smfi.m0 rtol = 1e-3 @test smdi.m1 ≈ smfi.m1 rtol = 1e-3 @test smdi.m2 ≈ smfi.m2 rtol = 1e-3 @test smdi.m3 ≈ smfi.m3 rtol = 1e-3 @test smdi.m4 ≈ smfi.m4 rtol = 1e-3 m = Dual(6.0) smdi = spectral_moment(0, m, r_psf, fasf, sdof) smfi = spectral_moment(0, m.value, r_psf, fasf, sdof) @test smdi.m0 ≈ smfi.m0 rvt = RandomVibrationParameters() Ti = [0.01, 0.1, 1.0] m = Dual(6.0) Sadi = rvt_response_spectrum(Ti, m, 10.0, fasf, rvt) Safi = rvt_response_spectrum(Ti, m.value, 10.0, fasf, rvt) for i = 1:length(Ti) @test Sadi[i].value ≈ Safi[i] end rvt_response_spectrum!(Sadi, Ti, m, 10.0, fasf, rvt) rvt_response_spectrum!(Safi, Ti, m.value, 10.0, fasf, rvt) for i = 1:length(Ti) @test Sadi[i].value ≈ Safi[i] end end @testset "Peak Factor" begin Δσf = 100.0 γ1f = 1.0 γ2f = 0.5 Q0f = 200.0 ηf = 0.4 κ0f = 0.039 Δσd = Dual{Float64}(Δσf) γ1d = Dual{Float64}(γ1f) γ2d = Dual{Float64}(γ2f) Q0d = Dual{Float64}(Q0f) ηd = Dual{Float64}(ηf) κ0d = Dual{Float64}(κ0f) srcf = SourceParameters(Δσf) srcd = SourceParameters(Δσd) Rrefi = [1.0, 50.0, Inf] geof = GeometricSpreadingParameters(Rrefi, [γ1f, γ2f]) geod = GeometricSpreadingParameters(Rrefi, [γ1d, γ2d]) geom = GeometricSpreadingParameters(Rrefi, [γ1f], [γ2d], BitVector([0, 1]), :Piecewise) anef = AnelasticAttenuationParameters(Q0f, ηf) aned = AnelasticAttenuationParameters(Q0d, ηd) anem = AnelasticAttenuationParameters(Q0f, ηd) sat = NearSourceSaturationParameters(:BT15) pathf = PathParameters(geof, sat, anef) pathd = PathParameters(geod, sat, aned) pathm = PathParameters(geom, sat, anem) sitef = SiteParameters(κ0f) sited = SiteParameters(κ0d) fasf = FourierParameters(srcf, pathf, sitef) fasd = FourierParameters(srcd, pathd, sited) fasm = FourierParameters(srcf, pathm, sited) m = 7.0 r = 1.0 r_psf = equivalent_point_source_distance(r, m, fasf) r_psd = equivalent_point_source_distance(r, m, fasd) r_psm = equivalent_point_source_distance(r, m, fasm) sdof = Oscillator(1.0) @time pfps = StochasticGroundMotionSimulation.peak_factor_dk80(m, r_psf, fasf, sdof) @time pfpsn = StochasticGroundMotionSimulation.peak_factor_dk80(m, r_psf, fasf, sdof, nodes=30) @time pfgk = StochasticGroundMotionSimulation.peak_factor_dk80_gk(m, r_psf, fasf, sdof) # @code_warntype StochasticGroundMotionSimulation.peak_factor_dk80(m, r_psf, fasf, sdof) @test pfps ≈ pfgk rtol = 1e-6 @test pfpsn ≈ pfgk rtol = 1e-6 @time pfps = StochasticGroundMotionSimulation.peak_factor_cl56(m, r_psf, fasf, sdof) @time pfpsn = StochasticGroundMotionSimulation.peak_factor_cl56(m, r_psf, fasf, sdof, nodes=40) @time pfgk = StochasticGroundMotionSimulation.peak_factor_cl56_gk(m, r_psf, fasf, sdof) @test pfps ≈ pfgk rtol = 1e-5 @test pfpsn ≈ pfgk rtol = 1e-5 @test StochasticGroundMotionSimulation.vanmarcke_cdf(-1.0, 10.0, 0.5) == 0.0 rvt = RandomVibrationParameters(:CL56) pf = peak_factor(6.0, 10.0, fasf, sdof, rvt) rvt = RandomVibrationParameters(:DK80) pf = peak_factor(6.0, 10.0, fasf, sdof, rvt) rvt = RandomVibrationParameters(:PS) pf = peak_factor(6.0, 10.0, fasf, sdof, rvt) @test isnan(pf) m = 6.0 r_rup = 10.0 r_ps = equivalent_point_source_distance(r_rup, m, fasf) Dexf = excitation_duration(m, r_ps, fasf, rvt) Dexd = excitation_duration(Dual(m), r_ps, fasf, rvt) m0f = spectral_moment(0, m, r_ps, fasf, sdof) m0d = spectral_moment(0, Dual(m), r_ps, fasf, sdof) rvt = RandomVibrationParameters(:PS) pf = peak_factor(Dexf, m0f, rvt) @test isnan(pf) pf = peak_factor(Dexd, m0d, rvt) @test isnan(pf) pf = peak_factor(Dexf, m0d, rvt) @test isnan(pf) rvt = RandomVibrationParameters(:CL56) pf = peak_factor(Dexf, m0f, rvt) @test isnan(pf) # @test pf ≈ peak_factor(m, r_ps, fasf, sdof, RandomVibrationParameters(:CL56)) m0f = spectral_moments([0, 1, 2, 3, 4], m, r_ps, fasf, sdof) m0d = spectral_moments([0, 1, 2, 3, 4], Dual(m), r_ps, fasf, sdof) pff = peak_factor(Dexf, m0f, rvt) pfd = peak_factor(Dexd, m0d, rvt) pfm = peak_factor(Dexf, m0d, rvt) @test pff ≈ pfd.value @test pff ≈ pfm.value pfi = StochasticGroundMotionSimulation.peak_factor_integrand_cl56(0.0, 10.0, 10.0) @test pfi ≈ 1.0 pfi = StochasticGroundMotionSimulation.peak_factor_integrand_cl56(Inf, 10.0, 10.0) @test pfi ≈ 0.0 pfi = StochasticGroundMotionSimulation.peak_factor_integrand_cl56(0.0, 10.0, 10.0) @test pfi ≈ 1.0 pfi = StochasticGroundMotionSimulation.peak_factor_integrand_cl56(Inf, 10.0, 10.0) @test pfi ≈ 0.0 pf0 = StochasticGroundMotionSimulation.peak_factor_cl56(10.0, 10.0) pf1 = StochasticGroundMotionSimulation.peak_factor_cl56(10.0, 10.0, nodes=50) @test pf0 ≈ pf1 rtol=1e-7 pf2 = StochasticGroundMotionSimulation.peak_factor_cl56(10.0, m0f) pf3 = StochasticGroundMotionSimulation.peak_factor_cl56(10.0, m0f, nodes=50) @test pf2 ≈ pf3 rtol=1e-6 pf4 = StochasticGroundMotionSimulation.peak_factor_dk80(10.0, m0f) pf5 = StochasticGroundMotionSimulation.peak_factor_dk80(10.0, m0f, nodes=50) @test pf4 ≈ pf5 rtol = 1e-7 rvt = RandomVibrationParameters(:DK80) @test rvt.dur_rms == :BT15 end @testset "Response Spectra" begin Δσf = 100.0 γ1f = 1.0 γ2f = 0.5 Q0f = 200.0 ηf = 0.4 κ0f = 0.039 Δσd = Dual{Float64}(Δσf) γ1d = Dual{Float64}(γ1f) γ2d = Dual{Float64}(γ2f) Q0d = Dual{Float64}(Q0f) ηd = Dual{Float64}(ηf) κ0d = Dual{Float64}(κ0f) srcf = SourceParameters(Δσf) srcd = SourceParameters(Δσd) Rrefi = [1.0, 50.0, Inf] geof = GeometricSpreadingParameters(Rrefi, [γ1f, γ2f]) geod = GeometricSpreadingParameters(Rrefi, [γ1d, γ2d]) geom = GeometricSpreadingParameters(Rrefi, [γ1f], [γ2d], BitVector([0, 1]), :Piecewise) anef = AnelasticAttenuationParameters(Q0f, ηf) aned = AnelasticAttenuationParameters(Q0d, ηd) anem = AnelasticAttenuationParameters(Q0f, ηd) sat = NearSourceSaturationParameters(:BT15) pathf = PathParameters(geof, sat, anef) pathd = PathParameters(geod, sat, aned) pathm = PathParameters(geom, sat, anem) sitef = SiteParameters(κ0f) sited = SiteParameters(κ0d) fasf = FourierParameters(srcf, pathf, sitef) fasd = FourierParameters(srcd, pathd, sited) fasm = FourierParameters(srcf, pathm, sited) m = 7.0 r = 1.0 r_psf = equivalent_point_source_distance(r, m, fasf) r_psd = equivalent_point_source_distance(r, m, fasd) r_psm = equivalent_point_source_distance(r, m, fasm) Ti = [0.01, 0.02, 0.03, 0.04, 0.05, 0.075, 0.1, 0.15, 0.2, 0.3, 0.4, 0.5, 0.75, 1.0, 1.5, 2.0, 3.0, 5.0, 7.5, 10.0] rvt = RandomVibrationParameters() Saif = rvt_response_spectrum(Ti, m, r_psf, fasf, rvt) Said = rvt_response_spectrum(Ti, m, r_psd, fasd, rvt) Saim = rvt_response_spectrum(Ti, m, r_psm, fasm, rvt) for i = 1:length(Ti) @test Saif[i] ≈ Said[i].value end @test all(isapprox.(Said, Saim)) # test Beresnev source spectrum srcb1p0 = SourceParameters(100.0, 1.0) srcb1p5 = SourceParameters(100.0, 1.5) fasb1p0 = FourierParameters(srcb1p0, pathf, sitef) fasb1p5 = FourierParameters(srcb1p5, pathf, sitef) T = 0.05 m = 6.0 r = 10.0 r_ps = equivalent_point_source_distance(r, m, fasb1p0) Sab1p0 = rvt_response_spectral_ordinate(T, m, r_ps, fasb1p0, rvt) Sab1p5 = rvt_response_spectral_ordinate(T, m, r_ps, fasb1p5, rvt) @test Sab1p0 > Sab1p5 @test Sab1p5 < Sab1p0 rvt = RandomVibrationParameters(:CL56) Sab1p0 = rvt_response_spectral_ordinate(T, m, r_ps, fasb1p0, rvt) Sab1p5 = rvt_response_spectral_ordinate(T, m, r_ps, fasb1p5, rvt) @test Sab1p0 > Sab1p5 @test Sab1p5 < Sab1p0 # @code_warntype rvt_response_spectrum(Ti, m, r_psf, fasf, rvt) # @code_warntype rvt_response_spectrum(Ti, m, r_psd, fasd, rvt) # @code_warntype rvt_response_spectrum(Ti, m, r_psm, fasm, rvt) end end end
StochasticGroundMotionSimulation
https://github.com/pstafford/StochasticGroundMotionSimulation.jl.git
[ "MIT" ]
0.2.6
b88d988a6a59a7ac37d73f8517a7022613997c68
docs
3625
# StochasticGroundMotionSimulation [![Stable](https://img.shields.io/badge/docs-stable-blue.svg)](https://pstafford.github.io/StochasticGroundMotionSimulation.jl/stable) [![Dev](https://img.shields.io/badge/docs-dev-blue.svg)](https://pstafford.github.io/StochasticGroundMotionSimulation.jl/dev) [![Build Status](https://github.com/pstafford/StochasticGroundMotionSimulation.jl/workflows/CI/badge.svg)](https://github.com/pstafford/StochasticGroundMotionSimulation.jl/actions) [![codecov](https://codecov.io/gh/pstafford/StochasticGroundMotionSimulation.jl/branch/master/graph/badge.svg?token=EDEF06FN61)](https://codecov.io/gh/pstafford/StochasticGroundMotionSimulation.jl) [![DOI](https://zenodo.org/badge/DOI/10.5281/zenodo.4667333.svg)](https://doi.org/10.5281/zenodo.4667333) [Julia](http://www.julialang.org) package to simulate response spectral ordinates via random vibration theory. The package also provides general functionality for working with Fourier amplitude spectra and duration models. Package defines new custom types: - `FourierParameters`: representing the parameters of the Fourier amplitude spectrum - `Oscillator`: representing a single degree-of-freedom oscillator, and - `RandomVibrationParameters`: defining methods/models used for random vibration calculations The `FourierParameters` type is constructed from three components: - `SourceParameters`: representing source properties, such as stress parameter, source velocity and density, _etc_ - `PathParameters`: representing the path scaling. This component is itself comprised of three components: - `GeometricSpreadingParameters`: defines the geometric spreading model - `NearSourceSaturationParameters`: defines the near-source saturation model, and - `AnelasticAttenuationParameters`: defines the anelastic attenuation - `SiteParameters`: defines both the site amplification/impedance function and the site damping (via a kappa filter) The package is developed in a manner to enable automatic differentiation operations to be performed via `ForwardDiff.jl`. This makes the package suitable for gradient-based inversions of ground-motion data, as well as inversions of published ground-motion models. ## Installation First, a working version of [Julia](http://www.julialang.org) needs to be installed. The relevant binary (or source code) can be downloaded from the [Julia Downloads Page](https://julialang.org/downloads/). `StochasticGroundMotionSimulation.jl` is a registered package and can be installed directly from the package manager. Within a Julia REPL session, access the package manager via `]`, and then at the `pkg>` prompt type (below the `pkg>` component is part of the prompt, so only the `add ...` portion is necessary). ```julia pkg> add StochasticGroundMotionSimulation ``` ## Usage Within a Julia session, bring the functionality of `StochasticGroundMotionSimulation.jl` into scope by typing (here the `julia>` component represents the prompt within a REPL session, within a text editor, simply type `using StochasticGroundMotionSimulation`): ```julia julia> using StochasticGroundMotionSimulation ``` ## Accessing Help Aside from the [documentation](https://pstafford.github.io/StochasticGroundMotionSimulation.jl/stable) accessible from the links at the top of this page, descriptions of methods and types within the package can be accessed within REPL sessions (or within Juno). Within, a REPL session, enter `?` to access the help prompt. Then, type the relevant item. For example: ```julia help?> FourierParameters ``` ## Citing See [`CITATION.bib`](CITATION.bib) for the relevant reference(s).
StochasticGroundMotionSimulation
https://github.com/pstafford/StochasticGroundMotionSimulation.jl.git
[ "MIT" ]
0.2.6
b88d988a6a59a7ac37d73f8517a7022613997c68
docs
3726
```@meta CurrentModule = StochasticGroundMotionSimulation ``` # Fourier Parameters Definition of the various custom types within the `StochasticGroundMotionSimulation` module. Types to store properties related to source, path, and site components of the Fourier spectral model are provided. ```@docs FourierParameters ``` ## Source Parameters The type `SourceParameters` holds the properties required to define the source spectrum of the Fourier Amplitude Spectrum. ```@docs SourceParameters ``` ## Path Parameters The type `PathParameters` holds the properties required to define the path scaling of the Fourier Amplitude Spectrum. ```@docs PathParameters ``` This type also hold instances of three other custom types that define aspects of the path scaling: - `GeometricSpreadingParameters` defined in [Geometric Spreading Parameters](@ref) - `NearSourceSaturationParameters` defined in [Near Source Saturation Parameters](@ref) - `AnelasticAttenuationParameters` defined in [Anelastic Attenuation Parameters](@ref) ### Geometric Spreading Parameters ```@docs GeometricSpreadingParameters ``` ### Near-Source Saturation Parameters Near source saturation models are represented within the `NearSourceSaturationParameters` type. This type can simply identify existing models that are implemented, such as: - Yenier & Atkinson (2015) - Boore & Thompson (2015) - Chiou & Youngs (2014) (the average of their ``h(\bm{M})`` term over all periods) But, specific fixed values can also be provided as well as parameters that are subsequently operated upon: ```@docs NearSourceSaturationParameters ``` Consider defining a new saturation model that was a simply bilinear model in ``\ln h(\bm{M})-\bm{M}`` space. We simply pass in the various parameters that would be required for our saturation model into the available fields of `NearSourceSaturationParameters`, and then define a custom function that operates upon these fields. ```@setup ex1 using StochasticGroundMotionSimulation ``` ```@example ex1 m_min = 3.0 h_min = 0.5 m_hinge = 6.0 h_hinge = 5.0 m_max = 8.0 h_max = 30.0 sat = NearSourceSaturationParameters([m_min, m_hinge, m_max], [h_min, h_hinge, h_max]) function bilinear_saturation(m, sat) if m <= sat.mRefi[1] return sat.hconi[1] elseif m <= sat.mRefi[2] return sat.hconi[1] + (m - sat.mRefi[1])/(sat.mRefi[2]-sat.mRefi[1])*(sat.hconi[2] - sat.hconi[1]) elseif m <= sat.mRefi[3] return sat.hconi[2] + (m - sat.mRefi[2])/(sat.mRefi[3]-sat.mRefi[2])*(sat.hconi[3] - sat.hconi[2]) else return sat.hconi[3] end end ``` Any subsequent calculation for a particular magnitude could then make use of this function along with a new `NearSourceSaturationParameters` instance that just contains a fixed saturation length. ```@setup ex2 using StochasticGroundMotionSimulation m_min = 3.0 h_min = 0.5 m_hinge = 6.0 h_hinge = 5.0 m_max = 8.0 h_max = 30.0 sat = NearSourceSaturationParameters([m_min, m_hinge, m_max], [h_min, h_hinge, h_max]) function bilinear_saturation(m, sat) if m <= sat.mRefi[1] return sat.hconi[1] elseif m <= sat.mRefi[2] return sat.hconi[1] + (m - sat.mRefi[1])/(sat.mRefi[2]-sat.mRefi[1])*(sat.hconi[2] - sat.hconi[1]) elseif m <= sat.mRefi[3] return sat.hconi[2] + (m - sat.mRefi[2])/(sat.mRefi[3]-sat.mRefi[2])*(sat.hconi[3] - sat.hconi[2]) else return sat.hconi[3] end end ``` ```@example ex2 m = 5.0 h_m = bilinear_saturation(m, sat) new_sat = NearSourceSaturationParameters(h_m) ``` ### Anelastic Attenuation Parameters ```@docs AnelasticAttenuationParameters ``` ## Site Parameters The type `SiteParameters` holds information related to the site response -- both impedance effects and damping. ```@docs SiteParameters ```
StochasticGroundMotionSimulation
https://github.com/pstafford/StochasticGroundMotionSimulation.jl.git
[ "MIT" ]
0.2.6
b88d988a6a59a7ac37d73f8517a7022613997c68
docs
1249
```@meta CurrentModule = StochasticGroundMotionSimulation ``` # Fourier Amplitude Spectrum The Fourier amplitude spectrum (FAS) can be represented as the product of source, path and site contributions. Specifically, the Fourier amplitude spectrum ``|A(f)|`` of acceleration (in units of m/s) is defined as: ```math |A(f; \bm{\theta})| = E(f; \bm{\theta}_E)\times P(f; \bm{\theta}_P) \times S(f; \bm{\theta}_S) ``` where ``f`` is a frequency in Hz, and ``\bm{\theta}`` holds all of the relevant model parameters and predictor variables. The [Fourier Source Spectrum](@ref), ``E(f; \bm{\theta}_E)`` is a function of the earthquake magnitude ``m``, as well as other properties of the source. The [Path Scaling](@ref), ``P(f; \bm{\theta}_P)`` accounts for the effects of both geometric spreading and anelastic attenuation. The [Site Scaling](@ref), ``S(f; \bm{\theta}_S)`` includes the effects of near-surface impedance as well as damping (``\kappa_0``) effects. Fourier spectral ordinates, or complete Fourier spectra are obtained via the functions: ```@docs fourier_spectrum fourier_spectrum! fourier_spectral_ordinate ``` Individual contributions to the Fourier spectrum are also available, for example: ```@docs fourier_path fourier_site ```
StochasticGroundMotionSimulation
https://github.com/pstafford/StochasticGroundMotionSimulation.jl.git
[ "MIT" ]
0.2.6
b88d988a6a59a7ac37d73f8517a7022613997c68
docs
3367
```@meta CurrentModule = StochasticGroundMotionSimulation ``` # StochasticGroundMotionSimulation Documentation for the Julia package `StochasticGroundMotionSimulation.jl`. The main module `StochasticGroundMotionSimulation` provides an interface to the stochastic method for the simulation of response spectral ordinates via Random Vibration Theory. The package makes use of three main components: - `FourierParameters`: defining the properties of the Fourier amplitude spectrum - `RandomVibrationParameters`: defining the properties of the random vibration theory calculations. Specifically, defining the duration model(s) to be used along with the peak factor method - `Oscillator`: defines the properties of the single degree-of-freedom oscillator for which response spectral ordinates are computed. To compute a response spectrum, or a response spectral ordinate, the above components along with a definition of a magnitude-distance scenario are required. The package is written to enable automatic differentiation operations to be applied to the principle parameters defining the Fourier amplitude spectrum. This is done in order to facilitate the use of this package for gradient-based inversions of observed ground-motions, or inversions of published empirical ground-motion models. ## Contents ```@contents Pages = ["fourier_parameters.md","random_vibration_parameters.md","sdof_parameters.md] Depth = 4 ``` ## Example A number of default parameters are already set within the package. ```@example using StochasticGroundMotionSimulation # specify some parameters defining the Fourier amplitude spectrum Δσ = 100.0 # the stress parameter (in bar) Rrefi = [ 1.0, 50.0, Inf ] # reference distances for the geometric spreading γi = [ 1.0, 0.5 ] # geometric spreading rates for distances between the references distances Q0 = 200.0 # quality factor ``Q_0 \in Q(f) = Q_0 f^\eta`` η = 0.5 # quality exponent ``\eta \in Q(f) = Q_0 f^\eta`` κ0 = 0.039 # site kappa value # construct a `SourceParameters` instance src = SourceParameters(Δσ) # construct a `GeometricSpreadingParameters` instance using the reference distances, spreading rates, and spreading model geo = GeometricSpreadingParameters(Rrefi, γi, :CY14) # define the near-source saturation model sat = NearSourceSaturationParameters(:BT15) # define the anelastic attenuation properties ane = AnelasticAttenuationParameters(Q0, η) # use the `geo`, `sat` and `ane` instances to construct a `PathParameters` instance path = PathParameters(geo, sat, ane) # define the `SiteParameters` site = SiteParameters(κ0, SiteAmpBoore2016_760()) # combine `src`, `path` and `site` instances to define the overall `FourierParameters` fas = FourierParameters(src, path, site) # use default properties for the `RandomVibrationParameters` rvt = RandomVibrationParameters() # define the response period, and magnitude-distance scenario of interest T = 1.0 m = 6.0 r_rup = 10.0 # compute the equivalent point-source distance for this scenario r_ps = equivalent_point_source_distance(r_rup, m, fas) # compute the response spectral ordinate Sa = rvt_response_spectral_ordinate(T, m, r_ps, fas, rvt) # write out the results println("Sa = $(round(Sa, sigdigits=4)) g, for m = $m, r_rup = $r_rup km, and a period of T = $(T) s") ```
StochasticGroundMotionSimulation
https://github.com/pstafford/StochasticGroundMotionSimulation.jl.git
[ "MIT" ]
0.2.6
b88d988a6a59a7ac37d73f8517a7022613997c68
docs
77
```@meta CurrentModule = StochasticGroundMotionSimulation ``` ```@index ```
StochasticGroundMotionSimulation
https://github.com/pstafford/StochasticGroundMotionSimulation.jl.git
[ "MIT" ]
0.2.6
b88d988a6a59a7ac37d73f8517a7022613997c68
docs
3086
```@meta CurrentModule = StochasticGroundMotionSimulation ``` # Path Scaling The path scaling can be broken into geometric spreading -- including the effects of near-source saturation -- and anelastic attenuation. Within `StochasticGroundMotionSimulation` the `PathParameters` type holds custom structs that relate to each of these three components: - `GeometricSpreadingParameters` defines the geometric spreading model (spreading rates, transition distances, and functional scaling) - `NearSourceSaturationParameters` defines the near-source saturation model, or the finite fault factors - `AnelasticAttenuationParameters` defines the properties of the anelastic attenuation model. ## Geometric Spreading Parameters for representing geometric spreading are contained within a `GeometricSpreadingParameters` instance. To compute the actual geometric spreading for a given distance we make use of the `geometric_spreading` function: ```@docs geometric_spreading ``` This function takes different options that define different spreading functions. For example, the `:CY14` option uses the functional form of Chiou & Youngs (2014), but uses an equivalent point-source distance throughout. ```math \ln g(r_{ps}) = -\gamma_1 \ln(r_{ps}) + \frac{\left(\gamma_1 -\gamma_f\right)}{2} \ln\left( \frac{ r_{ps}^2 + r_t^2 }{r_{0}^2 + r_t^2} \right) ``` The alternative `:CY14mod` option combines a point-source distance in the near field, with `r_rup` scaling in the far field. ```math \ln g(r_{ps},r_{rup}) = -\gamma_1 \ln(r_{ps}) + \frac{\left(\gamma_1 -\gamma_f\right)}{2} \ln\left( \frac{ r_{rup}^2 + r_t^2 }{r_{0}^2 + r_t^2} \right) ``` In both of the above cases, the ``r_{0}`` term is the reference distance that is used to define the source spectral amplitude. The ``r_{ps}`` is the equivalent point-source distance that can be defined using: ```@docs equivalent_point_source_distance ``` ## Near Source Saturation The `NearSourceSaturationParameters` are crucial for computing the equivalent point-source distance metric. Generally, the equivalent point-source distance can be computed via: ```math r_{ps} = \left( r_{rup}^n + h(\bm{M})^n \right)^{1/n} ``` and it is most common to follow Boore & Thompson (2015) and to use ``n=2`` so that: ```math r_{ps} = \sqrt{ r_{rup}^2 + h(\bm{M})^2 } ``` ### Functionality ```@docs near_source_saturation ``` ## Anelastic Attenuation The anelastic attenuation filter has the general form: ```math \exp\left[ -\frac{\pi f r}{Q(f) c_Q} \right] ``` where, normally, ``Q(f)=Q_0 f^\eta`` such that: ```math \exp\left[ -\frac{\pi f^{1-\eta} r}{Q_0 c_Q} \right] ``` The `AnelasticAttenuationParameters` type therefore holds the values of ``Q0``, ``\eta``, and ``c_Q``. In addition, it holds a field `rmetric` that can take values of `:Rrup` and `:Rps` depending upon whether one wishes to interpret the distance within the exponential function as the rupture distance, `:Rrup`, or the equivalent point-source distance, `:Rps`. ### Functionality ```@docs anelastic_attenuation fourier_attenuation combined_kappa_frequency ```
StochasticGroundMotionSimulation
https://github.com/pstafford/StochasticGroundMotionSimulation.jl.git
[ "MIT" ]
0.2.6
b88d988a6a59a7ac37d73f8517a7022613997c68
docs
2479
```@meta CurrentModule = StochasticGroundMotionSimulation ``` # Random Vibration Theory Parameters Definition of the custom type `RandomVibrationParameters` to represent the model components/approaches used for the random vibration theory calculations. In particular, the type stores symbols to define the: - `pf_method` the peak factor model/method to use. - `dur_ex` specifies the excitation duration model to use, - `dur_rms` specifies the model to use for converting excitation to RMS duration, and - `dur_region`: the region or tectonic setting for excitation duration predictions, _i.e._ `:ACR` or `:SCR` for active and stable crustal regions ```@docs RandomVibrationParameters ``` Note that the default specification is: ```@example RandomVibrationParameters() = RandomVibrationParameters(:DK80, :BT14, :BT15, :ACR) ``` However, an alternative constructor exists that takes a `pf_method` as a single argument, or that take a `pf_method` and `dur_region` specification. For these constructors, the `dur_rms` model is linked to the `pf_method` peak factor method: - `DK80` is paired with `:BT15`, and is the default - `CL56` is paired with `:BT12` As these are currently the only two `dur_rms` models implemented, the constructor is specified as: ```@example RandomVibrationParameters(pf) = RandomVibrationParameters(pf, :BT14, ((pf == :DK80) ? :BT15 : :BT12), :ACR) ``` In all cases, the Boore & Thompson (2014, 2015) excitation duration model is employed as that is the only model currently implemented. This model uses a standard source duration definition, related to the source corner frequencies, and then applies a path duration model that is purely a function of the equivalent point-source distance. The path duration model depends upon the region, as in active crustal regions or stable crustal regions. ## Functionality The overall goal of these random vibration methods is to compute: ```math S_a = \psi \sqrt{ \frac{m_0}{D_{rms}}} ``` where ``\psi`` is the peak factor computed from `peak_factor`, ``m_0`` is the zeroth order spectral moment computed from `spectral_moment`, and ``D_{rms}`` is the root-mean-square duration computed from `dur_rms`. The main methods used to interact with `RandomVibrationParameters` are: ```@docs SpectralMoments create_spectral_moments spectral_moment spectral_moments spectral_moments_gk excitation_duration rms_duration peak_factor rvt_response_spectral_ordinate rvt_response_spectrum rvt_response_spectrum! ```
StochasticGroundMotionSimulation
https://github.com/pstafford/StochasticGroundMotionSimulation.jl.git
[ "MIT" ]
0.2.6
b88d988a6a59a7ac37d73f8517a7022613997c68
docs
485
```@meta CurrentModule = StochasticGroundMotionSimulation ``` # Single Degree of Freedom Oscillator Parameters Definition of the custom type, `Oscillator` to represent a single degree of freedom (SDOF) oscillator. Type simply stores the oscillator frequency and damping ratio. ```@docs Oscillator ``` ## Functionality The main methods that are used to interact with `Oscillator` instances are: ```@docs period transfer transfer! squared_transfer squared_transfer! ```
StochasticGroundMotionSimulation
https://github.com/pstafford/StochasticGroundMotionSimulation.jl.git
[ "MIT" ]
0.2.6
b88d988a6a59a7ac37d73f8517a7022613997c68
docs
4261
```@meta CurrentModule = StochasticGroundMotionSimulation ``` # Site Scaling Site response is defined in terms of site amplification, or impedance effects, as well as damping -- via a _kappa_ filter. The overall site model is therefore written as: `` S(f; \bm{\theta}_S) = S_I(f) \times S_K(f) `` with ``S_I(f)`` representing the impedance effects, and ``S_K(f)`` being the kappa filter. ## Impedance functions Impedance effects are represented using custom types that define an `amplification` function. These functions take a frequency as an argument and return the corresponding amplification level. Each of these custom types is a subtype of the abstract type `SiteAmplification` Currently, the following impedance functions (custom types) are implemented: - `SiteAmpBoore2016_760`: is the Boore (2016) impedance function for a Western US generic rock profile with ``V_{S,30}=760`` m/s - `SiteAmpAlAtikAbrahamson2021_ask14_620`: is the Al Atik & Abrahamson (2021) impedance function obtained by inverting the Abrahamson _et al._ (2014) GMM. The reference profile has a ``V_{S,30}=620`` m/s - `SiteAmpAlAtikAbrahamson2021_ask14_760`: is the Al Atik & Abrahamson (2021) impedance function obtained by inverting the Abrahamson _et al._ (2014) GMM. The reference profile has a ``V_{S,30}=760`` m/s - `SiteAmpAlAtikAbrahamson2021_ask14_1100`: is the Al Atik & Abrahamson (2021) impedance function obtained by inverting the Abrahamson _et al._ (2014) GMM. The reference profile has a ``V_{S,30}=1100`` m/s - `SiteAmpAlAtikAbrahamson2021_bssa14_620`: is the Al Atik & Abrahamson (2021) impedance function obtained by inverting the Boore _et al._ (2014) GMM. The reference profile has a ``V_{S,30}=620`` m/s - `SiteAmpAlAtikAbrahamson2021_bssa14_760`: is the Al Atik & Abrahamson (2021) impedance function obtained by inverting the Boore _et al._ (2014) GMM. The reference profile has a ``V_{S,30}=760`` m/s - `SiteAmpAlAtikAbrahamson2021_bssa14_1100`: is the Al Atik & Abrahamson (2021) impedance function obtained by inverting the Boore _et al._ (2014) GMM. The reference profile has a ``V_{S,30}=1100`` m/s - `SiteAmpAlAtikAbrahamson2021_cb14_620`: is the Al Atik & Abrahamson (2021) impedance function obtained by inverting the Campbell & Bozorgnia (2014) GMM. The reference profile has a ``V_{S,30}=620`` m/s - `SiteAmpAlAtikAbrahamson2021_cb14_760`: is the Al Atik & Abrahamson (2021) impedance function obtained by inverting the Campbell & Bozorgnia (2014) GMM. The reference profile has a ``V_{S,30}=760`` m/s - `SiteAmpAlAtikAbrahamson2021_cb14_1100`: is the Al Atik & Abrahamson (2021) impedance function obtained by inverting the Campbell & Bozorgnia (2014) GMM. The reference profile has a ``V_{S,30}=1100`` m/s - `SiteAmpAlAtikAbrahamson2021_cy14_620`: is the Al Atik & Abrahamson (2021) impedance function obtained by inverting the Chiou & Youngs (2014) GMM. The reference profile has a ``V_{S,30}=620`` m/s - `SiteAmpAlAtikAbrahamson2021_cy14_760`: is the Al Atik & Abrahamson (2021) impedance function obtained by inverting the Chiou & Youngs (2014) GMM. The reference profile has a ``V_{S,30}=760`` m/s - `SiteAmpAlAtikAbrahamson2021_cy14_1100`: is the Al Atik & Abrahamson (2021) impedance function obtained by inverting the Chiou & Youngs (2014) GMM. The reference profile has a ``V_{S,30}=1100`` m/s - `SiteAmpUnit`: simply provides a unit impedance for all frequencies, _i.e._, ``S_I(f)=1.0`` - `SiteAmpConstant`: provides a constant, `c`, impedance for all frequencies, _i.e._, ``S_I(f)=c`` ```@docs site_amplification SiteAmpUnit SiteAmpConstant SiteAmpBoore2016_760 SiteAmpAlAtikAbrahamson2021_ask14_620 SiteAmpAlAtikAbrahamson2021_ask14_760 SiteAmpAlAtikAbrahamson2021_ask14_1100 SiteAmpAlAtikAbrahamson2021_bssa14_620 SiteAmpAlAtikAbrahamson2021_bssa14_760 SiteAmpAlAtikAbrahamson2021_bssa14_1100 SiteAmpAlAtikAbrahamson2021_cb14_620 SiteAmpAlAtikAbrahamson2021_cb14_760 SiteAmpAlAtikAbrahamson2021_cb14_1100 SiteAmpAlAtikAbrahamson2021_cy14_620 SiteAmpAlAtikAbrahamson2021_cy14_760 SiteAmpAlAtikAbrahamson2021_cy14_1100 ``` ## Kappa filter In addition to the impedance effects, the near surface damping is represented by a generic kappa filter: ```math S_K(f) = \exp\left( -\pi \kappa_0 f \right) ``` ```@docs kappa_filter ```
StochasticGroundMotionSimulation
https://github.com/pstafford/StochasticGroundMotionSimulation.jl.git
[ "MIT" ]
0.2.6
b88d988a6a59a7ac37d73f8517a7022613997c68
docs
874
```@meta CurrentModule = StochasticGroundMotionSimulation ``` # Fourier Source Spectrum The source spectrum can be computed through interaction with the `SourceParameters` type, or the higher level `FourierParameters` type that holds a `SourceParameters` instance as a property. The source spectrum ``E(f; \bm{\theta}E)`` is most commonly written in terms of: ```math E(f; \bm{\theta}_E) = \mathcal{C} M_0 E_s(f; \bm{\theta}_E) ``` where ``\mathcal{C}`` is a constant term, to be defined shortly, ``M_0`` is the seismic moment, and ``E_s(f; \bm{\theta}_E)`` is the source spectral shape. The most commonly adopted source spectral shape is the ``\omega^2`` model that has the form: ```math E_s(f) = \frac{1}{1 + \left(\frac{f}{f_c}\right)^2} ``` ## Functionality ```@docs fourier_constant fourier_source_shape fourier_source corner_frequency magnitude_to_moment ```
StochasticGroundMotionSimulation
https://github.com/pstafford/StochasticGroundMotionSimulation.jl.git
[ "MIT" ]
0.4.2
2dab0221fe2b0f2cb6754eaa743cc266339f527e
code
9405
module MappedArrays using Base: @propagate_inbounds export AbstractMappedArray, MappedArray, ReadonlyMappedArray, mappedarray, of_eltype abstract type AbstractMappedArray{T,N} <: AbstractArray{T,N} end abstract type AbstractMultiMappedArray{T,N} <: AbstractMappedArray{T,N} end struct ReadonlyMappedArray{T,N,A<:AbstractArray,F} <: AbstractMappedArray{T,N} f::F data::A end struct MappedArray{T,N,A<:AbstractArray,F,Finv} <: AbstractMappedArray{T,N} f::F finv::Finv data::A end struct ReadonlyMultiMappedArray{T,N,AAs<:Tuple{Vararg{AbstractArray}},F} <: AbstractMultiMappedArray{T,N} f::F data::AAs function ReadonlyMultiMappedArray{T,N,AAs,F}(f, data) where {T,N,AAs,F} inds = axes(first(data)) checkinds(inds, Base.tail(data)...) new(f, data) end end struct MultiMappedArray{T,N,AAs<:Tuple{Vararg{AbstractArray}},F,Finv} <: AbstractMultiMappedArray{T,N} f::F finv::Finv data::AAs function MultiMappedArray{T,N,AAs,F,Finv}(f::F, finv::Finv, data) where {T,N,AAs,F,Finv} inds = axes(first(data)) checkinds(inds, Base.tail(data)...) new(f, finv, data) end end @inline function checkinds(inds, A, As...) @noinline throw1(i, j) = throw(DimensionMismatch("arrays do not all have the same axes (got $i and $j)")) iA = axes(A) iA == inds || throw1(inds, iA) checkinds(inds, As...) end checkinds(inds) = nothing """ M = mappedarray(f, A) M = mappedarray(f, A, B, C...) Create a view `M` of the array `A` that applies `f` to every element of `A`; `M == map(f, A)`, with the difference that no storage is allocated for `M`. The view is read-only (you can get values but not set them). When multiple input arrays are supplied, `M[i] = f(A[i], B[i], C[i]...)`. """ function mappedarray(f, data::AbstractArray) infer_eltype() = Base._return_type(f, eltypes(data)) T = infer_eltype() ReadonlyMappedArray{T,ndims(data),typeof(data),typeof(f)}(f, data) end function mappedarray(::Type{T}, data::AbstractArray) where T ReadonlyMappedArray{T,ndims(data),typeof(data),Type{T}}(T, data) end function mappedarray(f, data::AbstractArray...) infer_eltype() = Base._return_type(f, eltypes(data)) T = infer_eltype() ReadonlyMultiMappedArray{T,ndims(first(data)),typeof(data),typeof(f)}(f, data) end function mappedarray(::Type{T}, data::AbstractArray...) where T ReadonlyMultiMappedArray{T,ndims(first(data)),typeof(data),Type{T}}(T, data) end """ M = mappedarray(f, finv, A) M = mappedarray(f, finv, A, B, C...) creates a view of the array `A` that applies `f` to every element of `A`. The inverse function, `finv`, allows one to also set values of the view and, correspondingly, the values in `A`. When multiple input arrays are supplied, `M[i] = f(A[i], B[i], C[i]...)`. """ function mappedarray(f, finv, data::AbstractArray) infer_eltype() = Base._return_type(f, eltypes(data)) T = infer_eltype() MappedArray{T,ndims(data),typeof(data),typeof(f),typeof(finv)}(f, finv, data) end function mappedarray(f, finv, data::AbstractArray...) infer_eltype() = Base._return_type(f, eltypes(data)) T = infer_eltype() MultiMappedArray{T,ndims(first(data)),typeof(data),typeof(f),typeof(finv)}(f, finv, data) end function mappedarray(::Type{T}, finv, data::AbstractArray...) where T MultiMappedArray{T,ndims(first(data)),typeof(data),Type{T},typeof(finv)}(T, finv, data) end function mappedarray(f, ::Type{Finv}, data::AbstractArray...) where Finv infer_eltype() = Base._return_type(f, eltypes(data)) T = infer_eltype() MultiMappedArray{T,ndims(first(data)),typeof(data),typeof(f),Type{Finv}}(f, Finv, data) end function mappedarray(::Type{T}, ::Type{Finv}, data::AbstractArray...) where {T,Finv} MultiMappedArray{T,ndims(first(data)),typeof(data),Type{T},Type{Finv}}(T, Finv, data) end """ M = of_eltype(T, A) M = of_eltype(val::T, A) creates a view of `A` that lazily-converts the element type to `T`. """ of_eltype(::Type{T}, data::AbstractArray{S}) where {S,T} = mappedarray(x->convert(T,x)::T, y->convert(S,y)::S, data) of_eltype(::Type{T}, data::AbstractArray{T}) where {T} = data of_eltype(::T, data::AbstractArray{S}) where {S,T} = of_eltype(T, data) Base.parent(A::AbstractMappedArray) = A.data Base.size(A::AbstractMappedArray) = size(A.data) Base.size(A::AbstractMultiMappedArray) = size(first(A.data)) Base.axes(A::AbstractMappedArray) = axes(A.data) Base.axes(A::AbstractMultiMappedArray) = axes(first(A.data)) parenttype(::Type{ReadonlyMappedArray{T,N,A,F}}) where {T,N,A,F} = A parenttype(::Type{MappedArray{T,N,A,F,Finv}}) where {T,N,A,F,Finv} = A parenttype(::Type{ReadonlyMultiMappedArray{T,N,A,F}}) where {T,N,A,F} = A parenttype(::Type{MultiMappedArray{T,N,A,F,Finv}}) where {T,N,A,F,Finv} = A Base.IndexStyle(::Type{MA}) where {MA<:AbstractMappedArray} = IndexStyle(parenttype(MA)) @inline Base.IndexStyle(M::AbstractMultiMappedArray) = IndexStyle(M.data...) Base.IndexStyle(::Type{MA}) where {MA<:AbstractMultiMappedArray} = _indexstyle(MA) Base.@pure _indexstyle(::Type{MA}) where {MA<:AbstractMultiMappedArray} = _indexstyle(map(IndexStyle, parenttype(MA).parameters)...) _indexstyle(a, b, c...) = _indexstyle(IndexStyle(a, b), c...) _indexstyle(a, b) = IndexStyle(a, b) # IndexLinear implementations @propagate_inbounds Base.getindex(A::AbstractMappedArray, i::Int) = A.f(A.data[i]) @propagate_inbounds Base.getindex(M::AbstractMultiMappedArray, i::Int) = M.f(_getindex(i, M.data...)...) @propagate_inbounds function Base.setindex!(A::MappedArray{T}, val, i::Int) where {T} A.data[i] = A.finv(convert(T, val)::T) end @propagate_inbounds function Base.setindex!(A::MultiMappedArray{T}, val, i::Int) where {T} vals = A.finv(convert(T, val)::T) _setindex!(A.data, vals, i) return vals end # IndexCartesian implementations @propagate_inbounds function Base.getindex(A::AbstractMappedArray{T,N}, i::Vararg{Int,N}) where {T,N} A.f(A.data[i...]) end @propagate_inbounds function Base.getindex(A::AbstractMultiMappedArray{T,N}, i::Vararg{Int,N}) where {T,N} A.f(_getindex(CartesianIndex(i), A.data...)...) end @propagate_inbounds function Base.setindex!(A::MappedArray{T,N}, val, i::Vararg{Int,N}) where {T,N} A.data[i...] = A.finv(convert(T, val)::T) end @propagate_inbounds function Base.setindex!(A::MultiMappedArray{T,N}, val, i::Vararg{Int,N}) where {T,N} vals = A.finv(convert(T, val)::T) _setindex!(A.data, vals, i...) return vals end @propagate_inbounds _getindex(i, A, As...) = (A[i], _getindex(i, As...)...) _getindex(i) = () @propagate_inbounds function _setindex!(as::As, vals::Vs, inds::Vararg{Int,N}) where {As,Vs,N} a1, atail = as[1], Base.tail(as) v1, vtail = vals[1], Base.tail(vals) a1[inds...] = v1 return _setindex!(atail, vtail, inds...) end _setindex!(as::Tuple{}, vals::Tuple{}, inds::Vararg{Int,N}) where N = nothing function testvalue(data) if !isempty(data) first(data) else zero(eltype(data)) end::eltype(data) end ## Display function Base.showarg(io::IO, A::AbstractMappedArray{T,N}, toplevel=false) where {T,N} print(io, "mappedarray(") func_print(io, A.f, eltypes(A.data)) if isa(A, Union{MappedArray,MultiMappedArray}) print(io, ", ") func_print(io, A.finv, Tuple{T}) end if isa(A, AbstractMultiMappedArray) for a in A.data print(io, ", ") Base.showarg(io, a, false) end else print(io, ", ") Base.showarg(io, A.data, false) end print(io, ')') toplevel && print(io, " with eltype ", T) end function func_print(io, f, types) ft = typeof(f) mt = ft.name.mt name = string(mt.name) if startswith(name, '#') # This is an anonymous function. See if it can be printed nicely lwrds = code_lowered(f, types) if length(lwrds) != 1 show(io, f) return nothing end lwrd = lwrds[1] c = lwrd.code if length(c) == 2 && ((isa(c[2], Expr) && c[2].head === :return) || (isdefined(Core, :ReturnNode) && isa(c[2], Core.ReturnNode))) # This is a single-line anonymous function, we should handle it s = lwrd.slotnames[2:end] if length(s) == 1 print(io, s[1], "->") else print(io, tuple(s...), "->") end c1 = string(c[1]) for i = 1:length(s) c1 = replace(c1, "_"*string(i+1)=>string(s[i])) end print(io, c1) else show(io, f) end else show(io, f) end end eltypes(A::AbstractArray) = Tuple{eltype(A)} @Base.pure eltypes(A::Tuple{Vararg{AbstractArray}}) = Tuple{(eltype.(A))...} ## Deprecations @deprecate mappedarray(f_finv::Tuple{Any,Any}, args::AbstractArray...) mappedarray(f_finv[1], f_finv[2], args...) end # module
MappedArrays
https://github.com/JuliaArrays/MappedArrays.jl.git
[ "MIT" ]
0.4.2
2dab0221fe2b0f2cb6754eaa743cc266339f527e
code
8078
using MappedArrays using Test @test isempty(detect_ambiguities(MappedArrays, Base, Core)) using FixedPointNumbers, OffsetArrays, Colors @testset "ReadonlyMappedArray" begin a = [1,4,9,16] s = view(a', 1:1, [1,2,4]) b = @inferred(mappedarray(sqrt, a)) @test parent(b) === a @test eltype(b) == Float64 @test @inferred(getindex(b, 1)) == 1 @test b[2] == 2 @test b[3] == 3 @test b[4] == 4 if isdefined(Base, :CanonicalIndexError) @test_throws CanonicalIndexError b[3] = 0 else @test_throws ErrorException b[3] = 0 end @test isa(eachindex(b), AbstractUnitRange) b = mappedarray(sqrt, a') @test isa(eachindex(b), AbstractUnitRange) b = mappedarray(sqrt, s) @test isa(eachindex(b), CartesianIndices) end @testset "MappedArray" begin intsym = Int == Int64 ? :Int64 : :Int32 a = [1,4,9,16] s = view(a', 1:1, [1,2,4]) c = @inferred(mappedarray(sqrt, x->x*x, a)) @test parent(c) === a @test @inferred(getindex(c, 1)) == 1 @test c[2] == 2 @test c[3] == 3 @test c[4] == 4 c[3] = 2 @test a[3] == 4 @test_throws InexactError(intsym, Int, 2.2^2) c[3] = 2.2 # because the backing array is Array{Int} @test isa(eachindex(c), AbstractUnitRange) b = @inferred(mappedarray(sqrt, a')) @test isa(eachindex(b), AbstractUnitRange) c = @inferred(mappedarray(sqrt, x->x*x, s)) @test isa(eachindex(c), CartesianIndices) sb = similar(b) @test isa(sb, Array{Float64}) @test size(sb) == size(b) a = [0x01 0x03; 0x02 0x04] b = @inferred(mappedarray(y->N0f8(y,0), x->x.i, a)) for i = 1:4 @test b[i] == N0f8(i/255) end b[2,1] = 10/255 @test a[2,1] == 0x0a end @testset "of_eltype" begin a = [0.1 0.3; 0.2 0.4] b = @inferred(of_eltype(N0f8, a)) @test b[1,1] === N0f8(0.1) b = @inferred(of_eltype(zero(N0f8), a)) @test b[1,1] === N0f8(0.1) b[2,1] = N0f8(0.5) @test a[2,1] == N0f8(0.5) @test !(b === a) b = @inferred(of_eltype(Float64, a)) @test b === a b = @inferred(of_eltype(0.0, a)) @test b === a end @testset "OffsetArrays" begin a = OffsetArray(randn(5), -2:2) aabs = mappedarray(abs, a) @test axes(aabs) == (-2:2,) for i = -2:2 @test aabs[i] == abs(a[i]) end end @testset "No zero(::T)" begin astr = @inferred(mappedarray(length, ["abc", "onetwothree"])) @test eltype(astr) == Int @test astr == [3, 11] a = @inferred(mappedarray(x->x+0.5, Int[])) @test eltype(a) == Float64 # typestable string astr = @inferred(mappedarray(uppercase, ["abc", "def"])) @test eltype(astr) == String @test astr == ["ABC","DEF"] end @testset "ReadOnlyMultiMappedArray" begin a = reshape(1:6, 2, 3) # @test @inferred(axes(a)) == (Base.OneTo(2), Base.OneTo(3)) b = fill(10.0f0, 2, 3) M = @inferred(mappedarray(+, a, b)) @test @inferred(eltype(M)) == Float32 @test @inferred(IndexStyle(M)) == IndexLinear() @test @inferred(IndexStyle(typeof(M))) == IndexLinear() @test @inferred(size(M)) === size(a) @test @inferred(axes(M)) === axes(a) @test M == a + b @test @inferred(M[1]) === 11.0f0 @test @inferred(M[CartesianIndex(1, 1)]) === 11.0f0 c = view(reshape(1:9, 3, 3), 1:2, :) M = @inferred(mappedarray(+, c, b)) @test @inferred(eltype(M)) == Float32 @test @inferred(IndexStyle(M)) == IndexCartesian() @test @inferred(IndexStyle(typeof(M))) == IndexCartesian() @test @inferred(axes(M)) === axes(c) @test M == c + b @test @inferred(M[1]) === 11.0f0 @test @inferred(M[CartesianIndex(1, 1)]) === 11.0f0 end @testset "MultiMappedArray" begin intsym = Int == Int64 ? :Int64 : :Int32 a = [0.1 0.2; 0.3 0.4] b = N0f8[0.6 0.5; 0.4 0.3] c = [0 1; 0 1] f = RGB{N0f8} finv = c->(red(c), green(c), blue(c)) M = @inferred(mappedarray(f, finv, a, b, c)) @test @inferred(eltype(M)) == RGB{N0f8} @test @inferred(IndexStyle(M)) == IndexLinear() @test @inferred(IndexStyle(typeof(M))) == IndexLinear() @test @inferred(size(M)) === size(a) @test @inferred(axes(M)) === axes(a) @test M[1,1] === RGB{N0f8}(0.1, 0.6, 0) @test M[2,1] === RGB{N0f8}(0.3, 0.4, 0) @test M[1,2] === RGB{N0f8}(0.2, 0.5, 1) @test M[2,2] === RGB{N0f8}(0.4, 0.3, 1) M[1,2] = RGB(0.25, 0.35, 0) @test M[1,2] === RGB{N0f8}(0.25, 0.35, 0) @test a[1,2] == N0f8(0.25) @test b[1,2] == N0f8(0.35) @test c[1,2] == 0 try M[1,2] = RGB(0.25, 0.35, 0.45) catch err # Can't use `@test_throws` because is differs by FPN version, and we support multiple versions @test err == InexactError(intsym, Int, N0f8(0.45)) || err == InexactError(:Integer, N0f8, N0f8(0.45)) end R = reinterpret(N0f8, M) @test R == N0f8[0.1 0.25; 0.6 0.35; 0 0; 0.3 0.4; 0.4 0.3; 0 1] R[2,1] = 0.8 @test b[1,1] === N0f8(0.8) a = view(reshape(0.1:0.1:0.6, 3, 2), 1:2, 1:2) M = @inferred(mappedarray(f, finv, a, b, c)) @test @inferred(eltype(M)) == RGB{N0f8} @test @inferred(IndexStyle(M)) == IndexCartesian() @test @inferred(IndexStyle(typeof(M))) == IndexCartesian() @test @inferred(axes(M)) === axes(a) @test M[1,1] === RGB{N0f8}(0.1, 0.8, 0) @test_throws ErrorException("indexed assignment fails for a reshaped range; consider calling collect") M[1,2] = RGB(0.25, 0.35, 0) a = reshape(0.1:0.1:0.6, 3, 2) @test_throws DimensionMismatch mappedarray(f, finv, a, b, c) end @testset "Display" begin a = [1,2,3,4] b = mappedarray(sqrt, a) @test summary(b) == "4-element mappedarray(sqrt, ::$(Vector{Int})) with eltype Float64" c = mappedarray(sqrt, x->x*x, a) @test summary(c) == "4-element mappedarray(sqrt, x->x * x, ::$(Vector{Int})) with eltype Float64" # issue #26 M = @inferred mappedarray((x1,x2)->x1+x2, a, a) io = IOBuffer() show(io, MIME("text/plain"), M) str = String(take!(io)) @test occursin("x1 + x2", str) end @testset "eltype (issue #32)" begin # Tests fix for # https://github.com/JuliaArrays/MappedArrays.jl/issues/32#issuecomment-682985419 T = Union{Missing, Float32} @test eltype(of_eltype(T, [missing, 3])) == T @test eltype(of_eltype(T, [3, missing])) == T @test eltype(of_eltype(Union{Missing, Float64}, [1, 2])) == Float64 @test eltype(mappedarray(identity, [1, missing])) == Union{Missing, Int} @test eltype(mappedarray(identity, [missing, 1])) == Union{Missing, Int} # ReadonlyMappedArray and MappedArray _zero(x) = x === missing ? missing : x > 0 ? x : 0 @test eltype(mappedarray(_zero, [1, 1.0])) == Union{Float64,Int} @test eltype(mappedarray(_zero, [1.0, 1])) == Union{Float64,Int} @test eltype(mappedarray(_zero, [1, 1])) == Int @test eltype(mappedarray(_zero, identity, [1, 1.0])) == Union{Float64,Int} @test eltype(mappedarray(_zero, identity, [1.0, 1])) == Union{Float64,Int} @test eltype(mappedarray(_zero, identity, [1, 1])) == Int # MultiMappedArray and ReadonlyMultiMappedArray _sum(x, y) = _zero(x) + _zero(y) inferred_type = Union{Missing, Float64, Int64} @test eltype(mappedarray(_sum, [1, 1.0], [1.0, missing])) == inferred_type @test eltype(mappedarray(_sum, [1, 1], [2, 2])) == Int @test eltype(mappedarray(_sum, identity, [1, 1.0], [1.0, missing])) == inferred_type @test eltype(mappedarray(_sum, identity, [1, 1], [2, 2])) == Int _maybe_int(x) = x > 0 ? x : Int(x) @test eltype(mappedarray(_maybe_int, Float64, [1.0, 1, -1, -1.0])) == Union{Float64, Int64} @test eltype(mappedarray(_maybe_int, Float64, [1.0, -1.0])) == Union{Float64, Int64} @test eltype(mappedarray(_maybe_int, Float64, [1, -1])) == Int64 @test eltype(mappedarray(Float64, _maybe_int, [1.0, 1, -1, -1.0])) == Float64 @test eltype(mappedarray(Float64, _maybe_int, [1, -1])) == Float64 X = rand(Lab{Float32}, 4, 4) @test eltype(of_eltype(RGB{Float32}, X)) == RGB{Float32} X = Any[1, 2, 3] @test eltype(of_eltype(Int, X)) == Int end
MappedArrays
https://github.com/JuliaArrays/MappedArrays.jl.git
[ "MIT" ]
0.4.2
2dab0221fe2b0f2cb6754eaa743cc266339f527e
docs
5784
# MappedArrays [![CI](https://github.com/JuliaArrays/MappedArrays.jl/workflows/CI/badge.svg)](https://github.com/JuliaArrays/MappedArrays.jl/actions?query=workflow%3ACI) [![codecov.io](http://codecov.io/github/JuliaArrays/MappedArrays.jl/coverage.svg?branch=master)](http://codecov.io/github/JuliaArrays/MappedArrays.jl?branch=master) This package implements "lazy" in-place elementwise transformations of arrays for the Julia programming language. Explicitly, it provides a "view" `M` of an array `A` so that `M[i] = f(A[i])` for a specified (but arbitrary) function `f`, without ever having to compute `M` explicitly (in the sense of allocating storage for `M`). The name of the package comes from the fact that `M == map(f, A)`. ## Usage ### Single source arrays ```jl julia> using MappedArrays julia> a = [1,4,9,16] 4-element Array{Int64,1}: 1 4 9 16 julia> b = mappedarray(sqrt, a) 4-element mappedarray(sqrt, ::Array{Int64,1}) with eltype Float64: 1.0 2.0 3.0 4.0 julia> b[3] 3.0 ``` Note that you can't set values in the array: ```jl julia> b[3] = 2 ERROR: setindex! not defined for ReadonlyMappedArray{Float64,1,Array{Int64,1},typeof(sqrt)} Stacktrace: [1] error(::String, ::Type) at ./error.jl:42 [2] error_if_canonical_setindex at ./abstractarray.jl:1005 [inlined] [3] setindex!(::ReadonlyMappedArray{Float64,1,Array{Int64,1},typeof(sqrt)}, ::Int64, ::Int64) at ./abstractarray.jl:996 [4] top-level scope at none:0 ``` **unless** you also supply the inverse function, using `mappedarray(f, finv, A)`: ``` julia> c = mappedarray(sqrt, x->x*x, a) 4-element mappedarray(sqrt, x->x * x, ::Array{Int64,1}) with eltype Float64: 1.0 2.0 3.0 4.0 julia> c[3] 3.0 julia> c[3] = 2 2 julia> a 4-element Array{Int64,1}: 1 4 4 16 ``` Naturally, the "backing" array `a` has to be able to represent any value that you set: ```jl julia> c[3] = 2.2 ERROR: InexactError: Int64(Int64, 4.840000000000001) Stacktrace: [1] Type at ./float.jl:692 [inlined] [2] convert at ./number.jl:7 [inlined] [3] setindex! at ./array.jl:743 [inlined] [4] setindex!(::MappedArray{Float64,1,Array{Int64,1},typeof(sqrt),getfield(Main, Symbol("##5#6"))}, ::Float64, ::Int64) at /home/tim/.julia/dev/MappedArrays/src/MappedArrays.jl:173 [5] top-level scope at none:0 ``` because `2.2^2 = 4.84` is not representable as an `Int`. In contrast, ```jl julia> a = [1.0, 4.0, 9.0, 16.0] 4-element Array{Float64,1}: 1.0 4.0 9.0 16.0 julia> c = mappedarray(sqrt, x->x*x, a) 4-element mappedarray(sqrt, x->x * x, ::Array{Float64,1}) with eltype Float64: 1.0 2.0 3.0 4.0 julia> c[3] = 2.2 2.2 julia> a 4-element Array{Float64,1}: 1.0 4.0 4.840000000000001 16.0 ``` works without trouble. So far our examples have all been one-dimensional, but this package also supports arbitrary-dimensional arrays: ```jl julia> a = randn(3,5,2) 3×5×2 Array{Float64,3}: [:, :, 1] = 1.47716 0.323915 0.448389 -0.56426 2.67922 -0.255123 -0.752548 -0.41303 0.306604 1.5196 0.154179 0.425001 -1.95575 -0.982299 0.145111 [:, :, 2] = -0.799232 -0.301813 -0.457817 -0.115742 -1.22948 -0.486558 -1.27959 -1.59661 1.05867 2.06828 -0.315976 -0.188828 -0.567672 0.405086 1.06983 julia> b = mappedarray(abs, a) 3×5×2 mappedarray(abs, ::Array{Float64,3}) with eltype Float64: [:, :, 1] = 1.47716 0.323915 0.448389 0.56426 2.67922 0.255123 0.752548 0.41303 0.306604 1.5196 0.154179 0.425001 1.95575 0.982299 0.145111 [:, :, 2] = 0.799232 0.301813 0.457817 0.115742 1.22948 0.486558 1.27959 1.59661 1.05867 2.06828 0.315976 0.188828 0.567672 0.405086 1.06983 ``` ### Multiple source arrays Just as `map(f, a, b)` can take multiple containers `a` and `b`, `mappedarray` can too: ```julia julia> a = [0.1 0.2; 0.3 0.4] 2×2 Array{Float64,2}: 0.1 0.2 0.3 0.4 julia> b = [1 2; 3 4] 2×2 Array{Int64,2}: 1 2 3 4 julia> c = mappedarray(+, a, b) 2×2 mappedarray(+, ::Array{Float64,2}, ::Array{Int64,2}) with eltype Float64: 1.1 2.2 3.3 4.4 ``` In some cases you can also supply an inverse function, which should return a tuple (one value for each input array): ```julia julia> using ColorTypes julia> redchan = [0.1 0.2; 0.3 0.4]; julia> greenchan = [0.8 0.75; 0.7 0.65]; julia> bluechan = [0 1; 0 1]; julia> m = mappedarray(RGB{Float64}, c->(red(c), green(c), blue(c)), redchan, greenchan, bluechan) 2×2 mappedarray(RGB{Float64}, getfield(Main, Symbol("##11#12"))(), ::Array{Float64,2}, ::Array{Float64,2}, ::Array{Int64,2}) with eltype RGB{Float64}: RGB{Float64}(0.1,0.8,0.0) RGB{Float64}(0.2,0.75,1.0) RGB{Float64}(0.3,0.7,0.0) RGB{Float64}(0.4,0.65,1.0) julia> m[1,2] = RGB(0,0,0) RGB{N0f8}(0.0,0.0,0.0) julia> redchan 2×2 Array{Float64,2}: 0.1 0.0 0.3 0.4 ``` Note that in some cases the function or inverse-function is too complicated to print nicely in the summary line. ### of_eltype This package defines a convenience method, `of_eltype`, which "lazily-converts" arrays to a specific `eltype`. (It works simply by defining `convert` functions for both `f` and `finv`.) Using `of_eltype` you can "convert" a series of arrays to a chosen element type: ```julia julia> arrays = (rand(2,2), rand(Int,2,2), [0x01 0x03; 0x02 0x04]) ([0.984799 0.871579; 0.106783 0.0619827], [-6481735407318330164 5092084295348224098; -6063116549749853620 -8721118838052351006], UInt8[0x01 0x03; 0x02 0x04]) julia> arraysT = map(A->of_eltype(Float64, A), arrays) ([0.984799 0.871579; 0.106783 0.0619827], [-6.48174e18 5.09208e18; -6.06312e18 -8.72112e18], [1.0 3.0; 2.0 4.0]) ``` This construct is inferrable (type-stable), so it can be a useful means to "coerce" arrays to a common type. This can sometimes solve type-stability problems without requiring that one copy the data.
MappedArrays
https://github.com/JuliaArrays/MappedArrays.jl.git
[ "Apache-2.0" ]
0.1.1
dc526f48c4a839accaa9bbb52a01d76ce882d720
code
336
push!(LOAD_PATH, "../src/", "../test/src/") DOCUMENTER_DEBUG=true using Documenter, PartialSvdStoch makedocs( format = Documenter.HTML(prettyurls = false), sitename = "PartialSvdStoch", pages = Any[ "Introduction" => "INTRO.md", "PartialSvdStoch.jl " => "index.md", "Tests" => "Test.md" ] )
PartialSvdStoch
https://github.com/jean-pierreBoth/PartialSvdStoch.jl.git
[ "Apache-2.0" ]
0.1.1
dc526f48c4a839accaa9bbb52a01d76ce882d720
code
522
module PartialSvdStoch using Match using Logging using Base.CoreLogging using Printf using LinearAlgebra using LowRankApprox using Base.CoreLogging using Statistics debug_log = stdout logger = ConsoleLogger(stdout, CoreLogging.Info) global_logger(logger) export VrPCA, SvdMode, LowRankApproxMc, reduceToRank, reduceToEpsil, iterateVrPCA, getindex, getResidualError, SvdApprox, isConverged include("vrpca.jl") include("lowRankApproxMc.jl") end
PartialSvdStoch
https://github.com/jean-pierreBoth/PartialSvdStoch.jl.git
[ "Apache-2.0" ]
0.1.1
dc526f48c4a839accaa9bbb52a01d76ce882d720
code
14828
using LinearAlgebra """ # enum SvdMode . leftsv means that alogrithm operates on columns of data passed in LowRankApproxMc and thus giving a orthonormal basis of left singular vector. . rightsv means that algorithm stores the transpose of data passed in LowRankApproxMc and thus runs on row of original data , thus giving a orthonormal basis of right singular vector. """ @enum SvdMode begin leftsv rightsv end """ # LowRankApproxMc structure as described in: 1. Vempala Spectral Book (2009) paragraph on Iterative Fast Svd P 85 and Th 7.2 7.3 2. Lectures in Randomized Linear Algebra. Mahoney 2016 P121 and seq. Cf also Deshpande Rademacher Vempala Wang Matrix Approximation and Projective Clustering via Volume Sampling 2006 For a data matrix X(d,n) compute a orthogonal set of left singular vectors in a matrix W(rank, n) Right singular vector are computed as W'*X. FIELDS ------ - X : the (d,n) matrix we want to reduce. - targetRank : the rank of the data matrix we want to extract - currentRank : the rank reached at current iteration - U : Union{ Some{Matrix{Float64}}, Nothing} the matrix of left singular vectors if any - S : Union{ Some{Vector{Float64}}, Nothing} the vecor of singular values if any - Vt: Union{ Some{Matrix{Float64}}, Nothing} the transposed matrix of right singular vectors if any CONSTRUCTORS ----------- 1. `function LowRankApproxMc(data::Matrix{Float64}, targetRank::Int64)` initialize structure and rank of the approximation """ mutable struct LowRankApproxMc X::Matrix{Float64} # leftOrRight::SvdMode # rank we want in output targetRank::Int64 targetEpsil::Float64 # number of column sampling in a pass samplingSize::Int64 # currentRank::Int64 # store relative error residualErr::Float64 # currentIter::Int64 U::Union{ Some{Matrix{Float64}}, Nothing} S::Union{ Some{Vector{Float64}}, Nothing} Vt::Union{ Some{Matrix{Float64}}, Nothing} # function LowRankApproxMc(data::Matrix{Float64}; mode = leftsv) if mode == leftsv @info "LowRankApproxMc in left singular vector mode" new(data, mode, 0, 1. , 0, 0, 1. , 0, nothing, nothing, nothing) else @info "LowRankApproxMc in right singular vector mode, transposing data" new(transpose(data), mode, 0, 1. , 0, 0, 1. , 0, nothing, nothing, nothing) end end end # # The data matrix are supposed to be stored in columns of length data dimension. # We operate on columns so we ouptut Left singular vectors. # So our implementation conforms to Mahoney "Lecture Notes on Randomized Algebra" # paragraph 15.4 Th 21 as opposed to Kannan-Vempala "Spectral Algorithms" # which operates on rows and output right singular vectors. # function reduceIfast(datapb::LowRankApproxMc, stop::Function) @debug "in LowRankApproxMc reduceIfast v2" epsil = 1.E-5 d,n = size(datapb.X) datapb.currentIter = 1 datapb.currentRank = 0 E = Matrix(datapb.X) acceptanceRatio = 1. normX = norm(E,2) residualAtIter= Vector{Float64}() meanL2NormC = sqrt(normX * normX / n) @debug "meanL2NormC" meanL2NormC # We could use c as in Deshpande Vempala and let c decrease with iterations # to accelerate ? probaC = Vector{Float64}(undef,n) normC = Vector{Float64}(undef,n) A = Matrix{Float64}(undef, d, 0) more = true while more @debug "\n\n iteration " datapb.currentIter # sampled columns at this iter tSet = Set{Int64}() keptIdxNonZero = Vector{Int64}() # sample columns according to L2-norm of each columns normE = 0 Threads.@threads for i = 1:n normC[i] = norm(E[:,i]) * norm(E[:,i]) end for i = 1:n probaC[i] = i > 1 ? probaC[i-1] + normC[i] : normC[i] normE += normC[i] end if probaC[end] <= 0 @debug "\n non positive proba for last slot= : " probaC[end] error("cannot sample column") end map!(x -> x/probaC[end], probaC, probaC) # get minimum non null column norm at iter t meanL2NormIter = mean(sqrt.(normC)) @debug "\n c meanL2Norm at Iter : " meanL2NormIter for j = 1:datapb.samplingSize xsi = rand(Float64) s = searchsortedfirst(probaC, xsi) if s > length(probaC) @warn "\n sampling column failed xsi = : " xsi exit(1) end # avoid selecting some already sampled column or already a if !(s in tSet) push!(tSet, s) end end acceptanceRatio = length(tSet)/datapb.samplingSize @debug "acceptanceRatio" acceptanceRatio # get index of selected columns idxc = collect(tSet) At = datapb.X[:, idxc] # orthogonalize ... with preceding columns in A. Compute transpose(At)*A AttA = BLAS.gemm('T', 'N', At, A) Threads.@threads for i = 1:length(idxc) # with preceding columns in A. At[:,i] not normalized, A[:,j] is @simd for j = 1:size(A)[2] At[:,i] = At[:,i] - A[:,j] * AttA[i,j] end end @debug "QR orthogonalizing new block size At" size(At) At,tau = LAPACK.geqrf!(At) Q=LAPACK.orgqr!(At, tau, length(tau)) for i = 1:size(Q)[2] # within this block of columns in A. normi = norm(Q[:,i]) # how much remains of At[:,i]. Should check with initial norm of column i if abs(normi - 1.) < 1.E-5 push!(keptIdxNonZero, i) # @debug "adding a column vector of norm" normi idxc[i] A = hcat(A, Q[:,i]) if size(A)[2] >= min(d,n) @debug "max dim reached" more = false break end else @debug "column not normalized" normi end end @info "A size" size(A) # datapb.currentRank = size(A)[2] # stopping criteria if stop(datapb) more = false else @debug "updating E" if length(keptIdxNonZero) < length(idxc) E = E - At[:, keptIdxNonZero] * BLAS.gemm('T', 'N', At[:, keptIdxNonZero], datapb.X) else E = E - At * BLAS.gemm('T', 'N', At, datapb.X) end datapb.residualErr = norm(E,2)/normX push!(residualAtIter, datapb.residualErr) # protection against stationarity if datapb.currentIter > 3 && residualAtIter[end] > 0.95 * residualAtIter[end-1] @warn "stationary iterations , stopping. perhaps increase rank" more = false end @info " iteration , ||E|| set size " datapb.currentIter datapb.residualErr datapb.currentRank # if in reduceToEpsil mode we have to test now that we have datapb.residualErr if stop(datapb) more = false else datapb.currentIter += 1 end end end # go from left singular to right singular vectors # @debug "computing right vectors" Vt = Matrix{Float64}(undef, size(A)[2], n) BLAS.gemm!('T', 'N', 1., A, datapb.X, 0., Vt) eigenValues = zeros(size(A)[2]) Threads.@threads for i in 1:size(A)[2] eigenValues[i] = norm(Vt[i,:]) Vt[i,:] = Vt[i,:] / eigenValues[i] end @debug "exiting LowRankApproxMc reduceIfast" datapb.U = Some(A) datapb.S = Some(eigenValues) datapb.Vt = Some(Vt) end """ # function getResidualError(lrmc::LowRankApproxMc) if X is the data matrix and U computation succeeded return the 2-uple (error, relerr) with : ```math error = norm(X - U * transpose(U) * X) ``` and : ```math relerr = Error/norm(X) ``` else throws an error """ function getResidualError(lrmc::LowRankApproxMc) U = something(lrmc.U) resErr = norm(lrmc.X - U* BLAS.gemm('T', 'N', U, lrmc.X)) return resErr , resErr/norm(lrmc.X) end """ # function getindex(LowRankApproxMc, Symbol) returns U,S,Vt,V or rank according to Symbol :S , :U, :Vt , V or :k """ function getindex(datapb::LowRankApproxMc, d::Symbol) @match d begin :S => datapb.S :U => datapb.U :V => datapb.Vt' :Vt => datapb.Vt :k => length(datapb.S) _ => throw(KeyError(d)) end end """ # function reduceToRank(datapb::LowRankApproxMc, expectedRank::Int64; nbiter = 2) Implements incremental range approximation as described in 1: Vempala Spectral Book (2009) paragraph on Iterative Fast Svd P 85 and Th 7.2 7.3. ## Args - expectedRank asked for. It must be noted that the returned rank can be different from expectedRank, especially if some columns are dominant in the data matrix. In this case The sampling size used to select colmuns is set to ``\\frac{expectedRank}{nbiter}`` - number of iterations. Default to 2. Can be set to 1 ito get get a faster result at the expense of precision. ## Output The function does not return any output, instead it fills the fields U, S, Vt of the structure LowRankApproxMc. The fields can be retrieved by the function getIndex. If the rank extracted from the algorithm extractedRank we get as output : - U: a (d,extractedRank) matrix of orthonormalized left singular vector - S : a vector of singular values up to extractedRank - Vt : a (extractedRank , n) matrix , transposed of right singular vector. Nota the vector are not orthonormal. The svd approximation of data is: `` B = U * S * transpose(V) `` and verifies: `` E(|| data - B||^{2}) <= 1/(1-\\epsilon) * E(|| data - A_{k}|| ^{2}) + \\epsilon^{t} E(|| data ||^{2}) `` where ``A_{k}`` is the L2 best rank k approximation of data. B is of the form U * transpose(U) * data with U orthogonal made of left singular vectors. To get the corresponding result with right singular vector use a transpose Matrix as input. ## NOTA: **The Singular values are NOT sorted** """ function reduceToRank(datapb::LowRankApproxMc, rank::Int64; nbiter = 2) if rank > size(datapb.X)[1] error("reduceToRank reduction to rank greater than dimension") end maxdim = size(datapb.X)[2] datapb.currentIter = 1 datapb.targetRank = rank # reset Epsil target in case of successive calls datapb.targetEpsil = 1. # we have rank target, 2 iterations should do if nbiter > 1 datapb.samplingSize = floor(Int64,(1.05 * rank /nbiter)) datapb.samplingSize = min(size(datapb.X)[2], datapb.samplingSize) @debug "LowRankApproxMc.reduceToRank setting samplingSize: " datapb.samplingSize maxiter = min(nbiter, 5) @warn "LowRankApproxMc.reduceToRank using maxiter " maxiter fstop2(datapb) = datapb.currentIter >= maxiter || datapb.currentRank >= datapb.targetRank ? true : false reduceIfast(datapb, fstop2) else # only one iter maxiter = 1 datapb.samplingSize = floor(Int64,(1.10 * rank /nbiter)) datapb.samplingSize = min(size(datapb.X)[2], datapb.samplingSize) @debug "LowRankApproxMc.reduceToRank setting samplingSize: " datapb.samplingSize fstop1(datapb) = datapb.currentIter >= maxiter ? true : false reduceIfast(datapb, fstop1) end # check we got rank if isnothing(datapb.U) @warn "reduceToRank got not get left singular vectors" elseif size(datapb.U.value)[2] < rank @warn "reduceToRank got only up to rank" size(datapb.U.value)[2] end # return rank approx end """ # function reduceToEpsil(datapb::LowRankApproxMc, samplingSize::Int64, epsil::Float64;maxiter = 5) This function computes an approximate svd up to a precision epsil. It computes U, S and Vt so that the matrix B = U*S*Vt verifies : `` E(|| data - B||_{2}) / E(|| data ||_{2}) <= epsil `` It iterates until either the precision asked for is reached or *maxiter* iterations are done or rank reached is maximal. ## Args ------ - samplingSize: the number of columns tentatively sampled by iteration. - epsil : precision asked for. It is clear that a very small epsil will cause a full to be done with the corresponding costs. In this case possibly, a call to LAPACK.svd will be better. - maxiter : the maximum number of iterations. default to 5 ## Output: The function does not return any output, instead it fills the fields U, S, Vt of the structure LowRankApproxMc. The fields can be retrieved by the function getIndex. If the rank extracted from the algorithm extractedRank we get as output : - U: a (d,extractedRank) matrix of orthonormalized left singular vector - S : a vector of singular values up to extractedRank - Vt : a (extractedRank , n) matrix , transposed of right singular vector. Nota the vector are not orthonormal. The svd approximation of data is: `` B = U * S * transpose(V) `` and verifies: `` E(|| data - B||^{2}) <= 1/(1-\\epsilon) * E(|| data - A_{k}|| ^{2}) + \\epsilon^{t} E(|| data ||^{2}) `` where ``A_{k}`` is the L2 rank k approximation of data. B is of the form U * transpose(U) * data with U orthogonal made of left singular vectors. ## NOTA: **The Singular values are NOT sorted** """ function reduceToEpsil(datapb::LowRankApproxMc, samplingSize::Int64, epsil::Float64; maxiter = 5) datapb.targetEpsil = epsil # reset targetRank in case of successive calls # rank is set to full dimension datapb.targetRank = min(size(datapb.X)[1], size(datapb.X)[2]) if samplingSize <= 0 throw("non strict positive samplingSize") end samplingSize = min(size(datapb.X)[2], samplingSize) datapb.samplingSize = samplingSize # epsil target # avoid doing one more iteration just for 1% of epsil fstop(datapb) = datapb.currentIter >= maxiter || datapb.residualErr <= epsil*(1.01) || datapb.currentRank >= datapb.targetRank ? true : false reduceIfast(datapb, fstop) end # the following is faster as we do not ask for Vt function getRangeApprox(data::Matrix{Float64}, rank::Int64) @debug " in getRangeApprox" svdpb = LowRankApproxMc(data) reduceToRank(svdpb, rank) U = something(svdpb.U) @debug "reduceToRank returned size" size(U) # compute all U columns and 0 columns of Vt U,S,Vt = LAPACK.gesvd!('A', 'O', U) @debug "lapack returned size U,S,Vt" size(U) size(S) size(Vt) # return first k columns of U and first k values of diagonal of S U[:, (1:rank)],S[1:rank] end
PartialSvdStoch
https://github.com/jean-pierreBoth/PartialSvdStoch.jl.git
[ "Apache-2.0" ]
0.1.1
dc526f48c4a839accaa9bbb52a01d76ce882d720
code
11214
export VrPCA, reduceToRank, getindex, SvdApprox, isConverged """ # enum SvdApprox . Lrapprox encodes for the initialization of vrpca with the LowRankApprox package . Ifsvd encodes for the initialization of vrpca with incremental svd of Vempala-Kunnan """ @enum SvdApprox begin lrapprox ifsvd end """ # VrPCA returns an orthonormal matrix W with columns vectors the first k left singular vectors spanning the range of X. **k is supposed to be small compared to d**. If X = U S Vt, the methode computes in W the matrix U[:, 1:k] This structure gathers data to do stochastic svd as described in : ***Fast Stochastic Algorithms for SVD and PCA : convergences Properties and Convexity Ohad Shamir 2015*** FIELDS ------ - X the (d,n) matrix we want to reduce. - k the dimension into which we want to reducte the data Matrix ***Note : If the obtained rank is less than asked for value of k is reset!*** - W orthogonal (d,k) matrix - eta step size - m epoch length - U : Union{ Some{Matrix{Float64}}, Nothing} the matrix of left singular vectors if any - S : Union{ Some{Vector{Float64}}, Nothing} the vecor of singular values if any - Vt: Union{ Some{Matrix{Float64}}, Nothing} the transposed matrix of right singular vectors if any """ mutable struct VrPCA X::Matrix{Float64} k::Int64 # orthogonal matrix (d,k) W::Matrix{Float64} converged::Bool relerr::Float64 # U::Union{ Some{Matrix{Float64}}, Nothing} S::Union{ Some{Vector{Float64}}, Nothing} Vt::Union{ Some{Matrix{Float64}}, Nothing} end """ # function VrPCA(data::Matrix{Float64}, k::Int64) This function initialize a VrPCA problem with the LowRankApprox package ## Args . data : the data matrix with data vectors in column . k : the rank we want as output """ function VrPCA(data::Matrix{Float64}, k::Int64) @debug "VrPCA initialized by LowRankApprox and rank target" # get an initial W0, we do not need very good precision opts = LowRankApprox.LRAOptions(rank=k, rtol = 0.001) # get W such that Mdata ~ W*W'*Mdata in Froebenius norm W = prange(data, opts) if size(W)[2] < k @warn "VrPCA initialization got less than asked rank, got : " size(W)[2] end @debug "got rank " size(W)[2] VrPCA(data, size(W)[2] , W, false, 1., nothing,nothing,nothing) end """ # function VrPCA(data::Matrix{Float64}, epsil::Float64) This function initialize a VrPCA problem with the LowRankApprox package ## Args - data : the data matrix with data vectors in column - epsil: the precision we ask at initialisation, the VrPCA iteration will further reduce error when iterating with the rank obtained at initialization """ function VrPCA(data::Matrix{Float64}, epsil::Float64) @debug "VrPCA initialized by Vempala's LowRankApproxMc and epsil target" lrmc = LowRankApproxMc(data) samplingSize = 100 reduceToEpsil(lrmc, samplingSize, epsil) U = PartialSvdStoch.getindex(lrmc, :U) if U === nothing throw("initialization of VrPCA with epsil failed") end W = something(U) @debug "initialization got rank " size(W)[2] VrPCA(data, size(W)[2], W, false, 1. , nothing, nothing, nothing) end """ # function iterateVrPCA(pcaPb::VrPCA, eta::Float64, m::Int64) ## Args - eta : the gradient step. Should be sufficiently small to ensure inversibility of the (k,k) matrix W*transpose(W) obtained during iterations on W(d,k) - m : the batch size. Roughly inversely proportional to eta. eta = 0.01 and m = 20 is a good compromises. m does not need to be large as sampling is weighted by L2-norm of data column. Output : The function does not return any output. It fills the fields U, S, Vt of the structure VrPCA. The fields can be retrieved by the function getIndex. """ function iterateVrPCA(pcaPb::VrPCA, eta::Float64, m::Int64) @debug "entering VrPCA reduce eta m block version" eta m small = 1.E-5 d,n = size(pcaPb.X) k = pcaPb.k # allocates once and for all 3 temproray matrices Us = zeros(Float64, d, k) # is (d,k) B_t = zeros(Float64, k, k) # Bt_1 is Wt*W so it is a (k,k) matrix W_tmp = zeros(Float64, d, k) pcaPb.converged = false s = 1 W_s = pcaPb.W W_t = pcaPb.W deltaWIter = Vector{Float64}() # get L2 proba per column probaC = Vector{Float64}(undef,n) normC = Vector{Float64}(undef,n) normX = 0 Threads.@threads for i = 1:n normC[i] = norm(pcaPb.X[:,i]) * norm(pcaPb.X[:,i]) end for i = 1:n probaC[i] = i > 1 ? probaC[i-1] + normC[i] : normC[i] normX += normC[i] end if probaC[end] <= 0 @debug "\n non positive proba for last slot= : " probaC[end] error("cannot sample column") end map!(x -> x/probaC[end], probaC, probaC) # @debug " W_s dim" size(W_s) more = true while more fill!(Us,0.) # split in block the update of Us to get speed from BLAS.gemm blockSize = 1000 y = zeros(k, blockSize) nbblocs = floor(Int64, n / blockSize) for numbloc = 1:nbblocs blocfirst = 1 + (numbloc -1) * blockSize bloclast = min(blockSize * numbloc, n) # get W_s' * pcaPb.X[:,i] in y BLAS.gemm!('T', 'N', 1., W_s , pcaPb.X[:,blocfirst:bloclast], 0., y) # Us = Us + pcaPb.X[:,i] * y' (= transpose(pcaPb.X[:,i]) * W_s) for i in 1:blockSize j = (numbloc - 1) * blockSize + i BLAS.ger!(1.,pcaPb.X[:,j], y[:,i], Us) end # Us = Us + pcaPb.X[:,i] * (transpose(pcaPb.X[:,i]) * W_s) end # do not forget the residual part of block splitting!! if n % blockSize > 0 y = zeros(k) for i in 1 + nbblocs * blockSize:n BLAS.gemm!('T', 'N', 1., W_s , pcaPb.X[:,i], 0., y) BLAS.ger!(1.,pcaPb.X[:,i], y, Us) end end Us = Us / n # stochastic update pass # we need to store Wt W_{s-1} (Ws1 in the code) W_{t-1} (Wt in the code) for t = 1:m # compute in place to avoid allocator transpose(W_{t_1}) * W_{s-1}, B_t is (k,k) BLAS.gemm!('T', 'N', 1., W_t, W_s, 0., B_t) # compute svd of transpose(W_{t_1}) * W_{s-1} i.e do a svd of a (k,k) matrix U,S,Vt = LAPACK.gesvd!('A', 'A', B_t) # compute B_t as V*Ut BLAS.gemm!('T', 'T', 1., Vt, U, 0., B_t) # # biased sampling instead of it = rand(1:n) xsi = rand(Float64) it = searchsortedfirst(probaC, xsi) s_weight = 1. / (n * probaC[it]) # update Wt, vaux1 is (1,k) vaux1 = transpose(pcaPb.X[:,it]) * W_t - (transpose(pcaPb.X[:,it]) * W_s) * B_t # vaux2 is (d,k) vaux2 = s_weight * pcaPb.X[:,it] * vaux1 + BLAS.gemm('N', 'N', Us, B_t) # @debug "norm vaux2" norm(vaux2) # W_s1 * B_t1 is (d,k), so W_t1 and W_s1. W_tmp _s (d,k) W_tmp = W_t + eta * vaux2 # # final update of W_t, compute sqrt(transpose(W_t1)*W_{t}), (k,k) # in fact we want to orthonormalize U and Vt are (k,k) U,S,Vt = LAPACK.gesvd!('A', 'A', transpose(W_tmp) * W_tmp) # @debug "\n size U , Vt" size(U), size(Vt) # check for null values of S nbsmall = count( x -> x < small, S) if nbsmall > 0 @debug "too small values " S @warn "could not do W update, ||W|| " norm(W_tmp, 2) end map!(x -> 1/sqrt(x) , S, S) # compute the inverse, BLAS.gemm does not seem to spped up things here Wnorminv = transpose(Vt) * diagm(0 => S) * transpose(U) # orthonormalize W. compute: W_t / sqrt(transpose(W_t)*W_t) # @debug "\n size W_tmp Wnorminv" size(W_tmp) size(Wnorminv) W_t = BLAS.gemm('N', 'N', W_tmp, Wnorminv) # Cshould check W_t orthogonality : OK! # @debug "\n W orthogonality check " norm(transpose(W_t) * W_t - Matrix{Float64}(I,k,k)) end # # convergence detection normWt = norm(W_t) * norm(W_t) deltaW = norm(W_t - W_s) * norm(W_t - W_s) lastDeltaW = 0 if length(deltaWIter) > 0 lastDeltaW = deltaWIter[end] end push!(deltaWIter, deltaW) @debug " iter , ||W_t - W_s||_2 , ||W_t||_2" s deltaW normWt W_s = W_t # # do a convergence test if normWt > 0 && deltaW/normWt < 1.E-3 pcaPb.W = W_t pcaPb.relerr = deltaW/normWt more = false pcaPb.converged = true else if s >= 3 if deltaW >= 0.8 * lastDeltaW || deltaW <= 0.05 * deltaWIter[1] @warn "\n reached stationarity s deltaW ||W|| , exiting : " s deltaW normWt pcaPb.relerr = deltaW/normWt pcaPb.W = W_t pcaPb.converged = true more = false elseif s > 5 # we stop without setting pcaPb.converged... @warn "\n stopping iteration" s deltaW normWt pcaPb.relerr = deltaW/normWt pcaPb.W = W_t more = false end end s = s+1 end end # end of while # now we have a converged matrix W (d,k) consisting in k left singular vectors # compute singular values and right singular vectors # = (k,d) * (d,n) # Vt = transpose(W_t) * pcaPb.X Vt = Matrix{Float64}(undef, k, n) BLAS.gemm!('T', 'N', 1., W_t, pcaPb.X, 0., Vt) S = map(i -> norm(Vt[i,:]), (1:size(Vt)[1])) for i in 1:length(S) Vt[i,:] /= S[i] end pcaPb.U = Some(W_t) pcaPb.S = Some(S) pcaPb.Vt = Some(Vt) end """ # function getindex(VrPCA, Symbol) returns U,S,Vt,V or rank according to Symbol :S , :U, :Vt , V or :k """ function getindex(pcaPb::VrPCA, d::Symbol) @match d begin :S => pcaPb.S :U => pcaPb.U :V => pcaPb.Vt' :Vt => pcaPb.Vt :k => length(pcaPb.S) _ => throw(KeyError(d)) end end """ # function getResidualError(vrpca::VrPCA) if X is the data matrix and U computation succeeded return the 2-uple (error, relerr) with: ```math error = norm(X - U * transpose(U) * X) ``` and ```math relerror = norm(X - U * transpose(U) * X)/norm(X) ``` else throws an error """ function getResidualError(vrpca::VrPCA) U = something(vrpca.U) resErr = norm(vrpca.X - U* BLAS.gemm('T', 'N', U, vrpca.X)) return resErr,resErr/norm(vrpca.X) end """ # function isConverged(pcaPb::VrPCA) return true if stationarity criteria were satisfied during iterations. """ function isConverged(pcaPb::VrPCA) return pcaPb.converged end
PartialSvdStoch
https://github.com/jean-pierreBoth/PartialSvdStoch.jl.git
[ "Apache-2.0" ]
0.1.1
dc526f48c4a839accaa9bbb52a01d76ce882d720
code
3195
using Test, PartialSvdStoch, Serialization, Distributions using Logging using Base.CoreLogging logger = ConsoleLogger(stdout, CoreLogging.Debug) global_logger(logger) include("testvrpca.jl") include("testifsvd.jl") # a data file for a matrix(11520, 22499) can be found in ./data/plimat.serialized # mass spectrometry image plimat = Some(Matrix{Float64}) dataf = "data/plimat.serialized" if isfile(dataf) plimat = Some(Serialization.deserialize(open(dataf, "r"))) end # This test compares singular values from exact svd with those extracted from # incremental svd from LowRankApproxMc @testset "ifsvd_versus_svd" begin @info "=========================================================" @info "\n\n in test ifsvd_versus_svd" d = 500 n = 5000 k = 50 mat = rand(d,n) for j in 1:k mat[:,j] = mat[:,j] * 20. end for j in 1:5 mat[:,j+k] = mat[:,j+k] * 100. end @test testifastsvd_S(mat, 200) end # This test shows how in presence high variability of data # it is possible to get a competitive approximation with incremental svd. @testset "ifsvd_lowRankApproxEpsil" begin @info "=========================================================" @info "\n\n in test ifsvd_lowRankApproxEpsil" d = 10000 n = 20000 mat = zeros(d,n) # Xlaw = Normal(0, 1000.) # multiply some columns blocsize = 100 for bloc in 1:round(Int,n/blocsize) val = abs(rand(Xlaw)) for i in 1:d if rand() < 0.01 for j in 1:blocsize mat[i,(bloc-1)*blocsize+j] = val * (1. - rand()/10.) end end end end @test testifastsvd_epsil(mat, 100, 0.05) end # # test vrpca_epsil # This tests asks for an approx at 0.01 # It extracts a rank 100 matrix at 0.005 precision within 3s (after first compilation). # With LowRankApprox.prange alone we need to go up to rank=500 (initialized with # opts = LowRankApprox.LRAOptions(rank=500, rtol = 0.0001) to achieve a relative # Froebonius error of 0.005. It then runs in 1.15s. # So we see that LowRankApprox is really fast but needs many more singular vectors # and that VrPCA gives a clear reduction of relative error. # Of course VrPCA initialized with LowRankApprox would give an analogous reduction # in relative error. Cf testset "vrpca_withLoxwRankApprox" # @testset "vrpca_epsil" begin @info "=========================================================" @info "\n\n in test vrpca_epsil" d = 5000 n = 10000 k = 100 maxval = 1000 mat = rand(d,n) # multiply some columns for i in 1:k mat[:,i] = mat[:,i] * maxval end @test testvrpca_withepsil(mat, 0.01) end @testset "vrpca_withLowRankApprox" begin @info "=========================================================" @info "\n\n in test vrpca_withLowRankApprox" d = 5000 n = 10000 k = 100 maxval = 1000 mat = rand(d,n) # multiply some columns. but do not sample them( some will be sampled twice and will affect sketching) for i in 1:k mat[:,i] = mat[:,i] * maxval end @test testvrpca_withLowRankApprox(mat, 100) end
PartialSvdStoch
https://github.com/jean-pierreBoth/PartialSvdStoch.jl.git
[ "Apache-2.0" ]
0.1.1
dc526f48c4a839accaa9bbb52a01d76ce882d720
code
3081
using PartialSvdStoch, LinearAlgebra, Test # reduceToRank comparison with exact svd # we check that the reconstructed matrix has nearly the same singular values function testifastsvd_S(mat, rank) @info "doing exact svd ..." @time Uexact,Sexact,Vtexact = svd(mat) # # svdpb = LowRankApproxMc(mat) @time reduceToRank(svdpb, rank, nbiter = 2) U = PartialSvdStoch.getindex(svdpb,:U) S = PartialSvdStoch.getindex(svdpb,:S) Vt = PartialSvdStoch.getindex(svdpb,:Vt) rankReached = svdpb.currentRank matApprox = U.value * diagm(S.value) * Vt.value @info "relative residual error LowRankApproxMc " norm(matApprox - mat)/norm(mat) # doing exact svd of matApprox @time Urecons,Srecons,Vtrecons = svd(matApprox) deltaRecons = norm(Srecons[1:rankReached]-Sexact[1:rankReached]) relerr = deltaRecons/norm(Sexact[1:rankReached]) @info "relative error on eigen values after reconstruction : " relerr relerr < 0.1 ? true : false end # reduceToEpsil comparison with exact svd function testifastsvd_epsil(mat) @debug "doing exact svd ..." @time Uexact,Sexact,Vtexact = svd(mat) # @info "reducing to epsil " 0.1 svdpb = LowRankApproxMc(mat) @time reduceToEpsil(svdpb, 50, 0.01) U = PartialSvdStoch.getindex(svdpb,:U) S = PartialSvdStoch.getindex(svdpb,:S) Vt = PartialSvdStoch.getindex(svdpb,:Vt) rankReached = svdpb.currentRank deltaS = norm(S.value[1:rankReached]-Sexact[1:rankReached])/norm(Sexact[1:rankReached]) matApprox = U.value * diagm(S.value) * Vt.value relerrMat = norm(matApprox - mat)/norm(mat) @info "delta mat after LowRankApproxMc reduce" deltaS relerrMat relerrMat < 0.05 ? true : false end # ifsvd and epsil iterations function testifastsvd_epsil(mat, samplingSize, epsil) # @debug "doing LowRankApproxMc reduceToRank" svdpb = LowRankApproxMc(mat) @time reduceToEpsil(svdpb, samplingSize , epsil) U = PartialSvdStoch.getindex(svdpb,:U) S = PartialSvdStoch.getindex(svdpb,:S) Vt = PartialSvdStoch.getindex(svdpb,:Vt) rankReached = svdpb.currentRank matApprox = U.value * BLAS.gemm('T','N', U.value, mat) relerrMat = norm(matApprox - mat)/norm(mat) @info "delta mat after LowRankApproxMc reduce" norm(matApprox - mat) norm(mat) @info "relative residual error" norm(matApprox - mat)/norm(mat) relerrMat < 0.05 ? true : false end # ifsvd and rank control function testifastsvd_rank(mat, k) # @info "\n doing LowRankApproxMc reduceToRank" svdpb = LowRankApproxMc(mat) @time reduceToRank(svdpb, k) U = PartialSvdStoch.getindex(svdpb,:U) S = PartialSvdStoch.getindex(svdpb,:S) Vt = PartialSvdStoch.getindex(svdpb,:Vt) rankReached = svdpb.currentRank matApprox = U.value * BLAS.gemm('T','N', U.value, mat) relerrMat = norm(matApprox - mat)/norm(mat) @info "delta mat after LowRankApproxMc reduce" norm(matApprox - mat) norm(mat) @info "relative residual error" norm(matApprox - mat)/norm(mat) relerrMat < 0.05 ? true : false end
PartialSvdStoch
https://github.com/jean-pierreBoth/PartialSvdStoch.jl.git
[ "Apache-2.0" ]
0.1.1
dc526f48c4a839accaa9bbb52a01d76ce882d720
code
2126
using PartialSvdStoch, Test using LowRankApprox function testvrpca_withLowRankApprox(mat, k) # normMat = norm(mat) # get initial spectrum from psvd opts = LRAOptions(rank=k, rtol=0.001) @info "testvrpca_withLowRankApprox : initialization" @time Uguess, Sguess, Vguess = psvd(mat,opts) matGuess = Uguess * diagm(Sguess) * transpose(Vguess) deltaMatGuess = norm(matGuess - mat) @info "rank obtained : " size(Uguess)[2] @info " residual Error , initial L2 norm " deltaMatGuess normMat @info " relative error at initialization " deltaMatGuess/normMat # eta = 0.01 batchSize = 20 @info "doing vrpca svd with rank initialization..." eta batchSize pcaPb = VrPCA(mat, k) @time iterateVrPCA(pcaPb, eta, batchSize) U = PartialSvdStoch.getindex(pcaPb,:U) S = PartialSvdStoch.getindex(pcaPb,:S) Vt = PartialSvdStoch.getindex(pcaPb,:Vt) # it happens that the obtained rank is less than asked for obtainedRank = pcaPb.k matVrpca = U.value * diagm(S.value) * Vt.value deltaMatIter = norm(matVrpca - mat) normMat = norm(mat) @info "deltaS after vr" norm(matVrpca - mat) normMat relErr = deltaMatIter/normMat @info " relative error after vrpca iterations : " deltaMatIter/normMat relErr < 0.05 ? true : false end """ # function testvrpca_withepsil(mat, epsil) This test extracts the rank to get approximation at given precision epsil see test : vrpca_epsil """ function testvrpca_withepsil(mat, epsil) # normMat = norm(mat) @info "testvrpca_withepsil : doing vrpca initialization with epsil" epsil pcaPb = VrPCA(mat, epsil) # eta = 0.01 batchSize = 20 @info "doing vrpca svd iteration" eta batchSize @time iterateVrPCA(pcaPb, eta, batchSize) # U = PartialSvdStoch.getindex(pcaPb,:U) S = PartialSvdStoch.getindex(pcaPb,:S) Vt = PartialSvdStoch.getindex(pcaPb,:Vt) matVrpca = U.value * diagm(S.value) * Vt.value relErr = norm(matVrpca - mat)/normMat @info "residual error after vr" norm(matVrpca - mat) normMat relErr relErr < 0.05 ? true : false end
PartialSvdStoch
https://github.com/jean-pierreBoth/PartialSvdStoch.jl.git
[ "Apache-2.0" ]
0.1.1
dc526f48c4a839accaa9bbb52a01d76ce882d720
docs
2998
# PartialSvdStoch This package provides approximate partial SVD using stochastic methods. It implements two SVD related algorithms, the real purpose of the package being in fact the Shamir algorithm described in the first item. The algorithms are the following: 1. The paper by **Ohad Shamir: Fast Stochastic Algorithms for SVD and PCA : convergences Properties and Convexity(2015)**. The algorithm combines a stochastic gradient approach and iterative techniques. It requires a correct initialization of the left singular vectors obtained here using the **impressive LowRankApprox** package if the rank is imposed or the algorithm descrided below in the second item if we search the rank for a target precision. It then provides in a few iterations a further 25%-50% diminution of the relative error in the Froebonius norm. This can correspond to a reduction by up to a factor of 4 of the rank necessary to obtain the same accuracy by any of the 2 initializations possible. (Cf by example the test *vrpca_epsil*) The combination of the Shamir algorithm with the initializing algorithms mentionned above provide accurate truncated SVD or range approximation for a good performance compromise and can thus save computation in further processing. 2. The chapter on fast incremental Monte-Carlo Svd from **Spectral Algorithms. S. Vempala and R. Kannan(2009)** (chapter 7 P 85 and Th 7.2 7.3). The algorithm relies on an iterative decomposition of the range of the data matrix. Each iteration does successive sampling of columns data vectors proportionally to their L2-norm, construct a range approximation, and substract the current range approximation before next iteration. Due to its incremental construction it is also possible to ask for an approximation at a given precision without asking for a given rank and let the computation give the rank as an output. It is not as fast as the *LowRankApprox* package but can provide an alternative depending on the data structure. Run times are about 4s for a (10000, 20000) matrix and a rank=100 approximation with 2 iterations on a 2 core laptop and 8 threads (See test *ifsvd_lowRankApproxEpsil*). On the same matrix, it runs in 14s if we search the rank giving a 0.05 approximation. ## Testing In the directory test are some tests providing examples of the different uses including timing and precision comparisons with matrix sizes up to (10000, 20000). Tests can be run going in the test directory and just execute *include("runtest.jl")* in the Julia REPL. The Html documentation is generated by executing *julia make.jl* in the doc directory from a shell. ## License Licensed under either of * Apache License, Version 2.0, [LICENSE-APACHE](LICENSE-APACHE) or <http://www.apache.org/licenses/LICENSE-2.0> * MIT license [LICENSE-MIT](LICENSE-MIT) or <http://opensource.org/licenses/MIT> at your option. This software was written on my own while working at [CEA](http://www.cea.fr/), [CEA-LIST](http://www-list.cea.fr/en/)
PartialSvdStoch
https://github.com/jean-pierreBoth/PartialSvdStoch.jl.git
[ "Apache-2.0" ]
0.1.1
dc526f48c4a839accaa9bbb52a01d76ce882d720
docs
3383
# PartialSvdStoch This package provides approximate partial SVD using stochastic methods. It implements algorithms descrided in : 1. The paper by Ohad Shamir: **Fast Stochastic Algorithms for SVD and PCA : convergences Properties and Convexity(2015)**. The algorithm combines a stochastic gradient approach and iterative techniques. It requires a correct (see the paper) initialization of the rank k matrix of first left singular vectors, then exponential convergence to the exact rank-k approximation is proven in the paper. The first left singular vectors can be initialized using the *impressive* LowRankApprox package if the rank of approximation required is known, or by the algorithm of Vempala-Kannan (Cf below) if the requirement is a given precision. The structure related to the implementation of the algorithm is **VrPCA**. **The implementation deviates from the original article on one point**: \ We sample column vectors from the data matrix in the iteration pass proportionally to their L2-norm (as in the Vempala book see below) and do a weight correction to keep an unbiaised estimator. Tests shows a faster numerical convergence. The test *vrpca_epsil* shows a case where we can get the same relative error with a rank 5 times less than without the VrPCA iterations. 2. The chapter on fast incremental Monte-Carlo Svd from **Spectral Algorithms. S. Vempala and R. Kannan(2009)** (chapter 7 P 85 and Th 7.2 7.3). The algorithm consists in sampling columns a fixed number *samplingSize* of data vectors proportionally to their L2-norm without replacement. Vectors sampled are orthogonalised thus constructing a first pass of the range approximation. To get a more precise estimation another iteration can be done. Then the first approximation is substracted from the range of the data and another set of columns vectors are sampled from the residual to get smaller components of the range. The process can be iterated providing exponential convergence to the rank-k approximation as proved in Vempala. \ Our implementation deviates slightly from the paper as we let the final rank obtained fluctuate depending on the nature of data. As some columns can be rejected if alredy sampled in a pass, we can get a variable rank at the end of the algorithm. This method is not as fast as the *LowRankApprox* package but can provide a competitive approximation when the matrix of data has large variations of L2-norm between columns as the sampling construct the approximation with the largest contribution of the L2-norm of the data matrix. (Cf tests for examples). The function *reduceToEpsil* computes an approximation B at a given precision $\epsilon$ : $\frac{E(|| data - B||_{2})}{E(|| data ||_{2})} <= \epsilon$ and determines the rank accordingly. The function *reduceToRank* needs usually 2 iterations to achieve a good compromise and that is the default used in the code. Run times are of the order of 4.5s for a (10000, 20000) matrix with 2 iterations for a rank = 100 approximation. ## Miscellaneous There is a logger installed in the code which is in the Info mode (See beginning of PartialSvdStoch.jl). It can be set in Debug mode and will then provide some log on variables monitoring convergence. It must be noted that our package computes residual errors with the Froebonius norm and that the package LowRankApprox uses the spectral norm.
PartialSvdStoch
https://github.com/jean-pierreBoth/PartialSvdStoch.jl.git
[ "Apache-2.0" ]
0.1.1
dc526f48c4a839accaa9bbb52a01d76ce882d720
docs
2368
# Tests To run test, **in the julia REPL** go to the test directory, and run : **include("runtests.jl")**. In fact to avoid compilation times, it is best to execute twice the inclusion of the *runtests.jl* file. The logger is by default (during tests) in Debug configuration and will output time, and intermediary convergence results (See file runtests.jl) All the tests uses randomly generated matrices, moreover the algorithms use random sampling so the cpu times needed, and precisions obtained can fluctuate but the order of magnitude should be consistent with the results announced for a laptop with 2 cores [email protected] , 32 Gb of Memory and Julia running with 8 threads. ## ifsvd\_versus\_svd This compares LowRankApproxMc with exact svd, computing the L2 norm of the difference of singular values. ## ifsvd_lowRankApproxEpsil This test runs on a matrix of size (10000, 20000). It has the structure encountered in hyperspectral images where a column is a pixel, and rows represent a canal (a mass in mass spectrometry imaging). The matrix has some blocks of related pixels which have expressions in some common rows. The iterations of incremental svd with sampling size 100, we can reach in 14s a 5% relative error with an adjusted rank=391, or depending on random data, in 18s to reach a 3.8% relative error and an adjusted rank= 495 ## vrpca_epsil This tests asks for an approx at 0.01. It extracts a rank 100 matrix at 0.005 precision within 1.8s. With LowRankApprox.prange we need to go up to rank=500 (initialized with *opts = LowRankApprox.LRAOptions(rank=500, rtol = 0.0001)* to achieve a relative Froebonius error of 0.005. It then runs in 1.15s. So we see that LowRankApprox is really fast but needs many more singular vectors to achieve the same relative error, so that VrPCA gives a clear reduction of relative error. Of course VrPCA initialized with LowRankApprox give an analogous reduction in relative error as in the following test. ## vrpca_withLowRankApprox This test runs on the same data as vrpca_epsil. It initialize VrPCA with *LRAOptions(rank=100, rtol=0.001)* and does a svd of order 100. This pass runs in 0.7s and gives a relative error of 0.02. The VrPCA iterations run in 3.2s and take us to a relative error of 0.0049. Once again LowRankApprox is really fast and VrPCA gives a division by 4 of the relative error.
PartialSvdStoch
https://github.com/jean-pierreBoth/PartialSvdStoch.jl.git
[ "Apache-2.0" ]
0.1.1
dc526f48c4a839accaa9bbb52a01d76ce882d720
docs
228
# PartialSvdStoch ```@meta CurrentModule = PartialSvdStoch ``` ## User types ```@docs VrPCA LowRankApproxMc ``` ## Public Functions ```@docs getindex reduceToRank reduceToEpsil iterateVrPCA getResidualError isConverged ```
PartialSvdStoch
https://github.com/jean-pierreBoth/PartialSvdStoch.jl.git
[ "MIT" ]
0.2.20
131cd2b2ae892b6949a0b9aa375c689802e99c9d
code
240
using Combinatorics open("load_combos.sh", "w") do f for (a, b, c, d) in permutations(ARGS) write(f, "julia --project -e 'using $a; using $b; using $c; using $d' && \\\n") end return write(f, "echo -e \\\\nDone!\n") end
PoreMatMod
https://github.com/SimonEnsemble/PoreMatMod.jl.git
[ "MIT" ]
0.2.20
131cd2b2ae892b6949a0b9aa375c689802e99c9d
code
1765
using Documenter, PoreMatMod, PlutoSliderServer # run the Pluto example notebooks and export them to HTML for inclusion in the docs cd("examples") # next line fails if not actually in examples/ PlutoSliderServer.export_directory() # runs each notebook in examples/ and exports to HTML rm("index.html") # previous line makes additional table-of-contents page (not needed) export_path = "../docs/src/examples/" if !isdir(export_path) mkdir(export_path) end for file in readdir() # loop over files in examples/ if length(split(file, ".html")) > 1 # select only the HTML files @info "Staging file $file" mv(file, export_path * file; force=true) # move HTML files to docs source folder for build end end cd("..") # return to root for running deploydocs # build the docs makedocs(; # to test docs, run this call to `makedocs` in the REPL root=joinpath(dirname(pathof(PoreMatMod)), "..", "docs"), modules=[PoreMatMod, Xtals], sitename="PoreMatMod.jl", clean=true, pages=[ "PoreMatMod" => "index.md", "Manual" => [ "Getting Started" => "manual/start.md", "Loading Data" => "manual/inputs.md", "Substructure Search" => "manual/find.md", "Substructure Find/Replace" => "manual/replace.md" ], "Examples" => "examples.md", "PoreMatModGO" => "PoreMatModGO.md", "Contribute/Report Issues" => "collab.md" ], format=Documenter.HTML(; assets=["assets/flux.css"]), push_preview=true, doctest=false # doctests are run in testing; running them here is redundant and slow ) # deploy the docs deploydocs(; repo="github.com/SimonEnsemble/PoreMatMod.jl.git", versions=["latest" => "v^", "v#.#.#", "dev" => "master"] )
PoreMatMod
https://github.com/SimonEnsemble/PoreMatMod.jl.git
[ "MIT" ]
0.2.20
131cd2b2ae892b6949a0b9aa375c689802e99c9d
code
4151
### A Pluto.jl notebook ### # v0.19.11 using Markdown using InteractiveUtils # ╔═╡ 0069ec00-f42b-40bb-a82e-c91ec78583e4 # ╔═╡ 37939a7a-0651-11ec-11c1-6b5ef0a19ec2 # load required packages (Pluto.jl will automatically install them) using PoreMatMod, PlutoUI # ╔═╡ 2889e30d-442d-4620-b5f6-0216e21c623b begin using PoreMatMod.ExampleHelpers check_example_data() end # ╔═╡ 8d523993-6e85-443a-9949-12030552b457 md""" ## Example: append missing hydrogen atoms to linkers of a MOF """ # ╔═╡ ab9b556e-5082-48fa-a7ca-b37ef895d703 input_file_message() # ╔═╡ 9a9bd9fd-5fea-4c01-a87a-5a5a0d332c1a xtal_folder_message() # ╔═╡ fcebd06c-9607-42a5-ba1b-e7683b0924ab rc[:paths][:crystals] # ╔═╡ af6f9a09-17ad-45dd-b1fd-50f9cc5a692e moiety_folder_message() # ╔═╡ 62439d74-601c-40fc-a488-c0838b9ada69 rc[:paths][:moieties] # ╔═╡ 026100b5-0708-48bb-840d-931605524874 md""" !!! example \"the task\" We have an IRMOF-1 crystal structure with hydrogen atoms missing on the linkers, presumably owing to artifacts of X-ray structure determination. We wish to append hydrogen atoms onto the missing positions on the linkers. **Parent crystal structure**: first, we read in the `.cif` file describing the parent structure, which is not simulation-ready owing to the missing hydrogen atoms. """ # ╔═╡ 0433da26-4f59-424f-9603-875d904c0fd5 begin # read in the parent xtal parent = Crystal("IRMOF-1_noH.cif") # load .cif file infer_bonds!(parent, true) # infer bonds view_structure(parent) # view structure end # ╔═╡ 4ad53cf5-d063-4bb6-ae20-1b6cc29902c8 fragment_construction_note() # ╔═╡ 64b95411-07da-44af-a06e-9e6676328ffd md""" **Query fragment**: next, we construct a query fragment to match the corrupted fragment in the IRMOF-1 parent structure. """ # ╔═╡ 83532414-6471-4002-b23c-1600243318d1 query = moiety("1,4-C-phenylene_noH.xyz"); # ╔═╡ fc9e8e21-02c0-43ca-980f-55496526d7f3 view_query_or_replacement("1,4-C-phenylene_noH.xyz") # ╔═╡ f68335d7-b4e0-40b3-b10d-bf406ab42c1c with_terminal() do return display_query_or_replacement_file("1,4-C-phenylene_noH.xyz") end # ╔═╡ c53f896d-fa27-4290-aa6d-aa8c0c467f3b md""" **Replacement fragment**: then, we construct a replacement fragment as a corrected version of the query fragment (with hydrogen atoms appropriately appended). """ # ╔═╡ 0d8ac0fd-c7b1-4781-aaa2-33cc8c1c08ae replacement = moiety("1,4-C-phenylene.xyz"); # ╔═╡ 836f6d08-c507-44c6-b927-c9ea240f40f8 view_query_or_replacement("1,4-C-phenylene.xyz") # ╔═╡ b172c36b-80bf-4620-b2e4-5c39d719962e with_terminal() do return display_query_or_replacement_file("1,4-C-phenylene.xyz") end # ╔═╡ 5b71d14a-be80-4ac3-8983-62571d0d4e7d md""" **Find and replace**: finally, we search the parent MOF for the query fragment and effect the replacements. Voila; we have a simulation-ready IRMOF-1 structure. 🚀 """ # ╔═╡ 74aa19d2-b1a4-4333-9ff9-e6ea74e7d989 begin child = replace(parent, query => replacement) view_structure(child) end # ╔═╡ 5869bf7a-958e-4e51-997a-18497e7deaba write_cif_message() # ╔═╡ dbf3a196-dd4d-4ac8-8396-42ac7c7e0ba1 write_cif(child, "simulation_ready_IRMOF-1.cif") # ╔═╡ Cell order: # ╠═0069ec00-f42b-40bb-a82e-c91ec78583e4 # ╟─8d523993-6e85-443a-9949-12030552b457 # ╠═37939a7a-0651-11ec-11c1-6b5ef0a19ec2 # ╠═2889e30d-442d-4620-b5f6-0216e21c623b # ╟─ab9b556e-5082-48fa-a7ca-b37ef895d703 # ╟─9a9bd9fd-5fea-4c01-a87a-5a5a0d332c1a # ╠═fcebd06c-9607-42a5-ba1b-e7683b0924ab # ╟─af6f9a09-17ad-45dd-b1fd-50f9cc5a692e # ╠═62439d74-601c-40fc-a488-c0838b9ada69 # ╟─026100b5-0708-48bb-840d-931605524874 # ╠═0433da26-4f59-424f-9603-875d904c0fd5 # ╟─4ad53cf5-d063-4bb6-ae20-1b6cc29902c8 # ╟─64b95411-07da-44af-a06e-9e6676328ffd # ╠═83532414-6471-4002-b23c-1600243318d1 # ╟─fc9e8e21-02c0-43ca-980f-55496526d7f3 # ╟─f68335d7-b4e0-40b3-b10d-bf406ab42c1c # ╟─c53f896d-fa27-4290-aa6d-aa8c0c467f3b # ╠═0d8ac0fd-c7b1-4781-aaa2-33cc8c1c08ae # ╟─836f6d08-c507-44c6-b927-c9ea240f40f8 # ╟─b172c36b-80bf-4620-b2e4-5c39d719962e # ╟─5b71d14a-be80-4ac3-8983-62571d0d4e7d # ╠═74aa19d2-b1a4-4333-9ff9-e6ea74e7d989 # ╟─5869bf7a-958e-4e51-997a-18497e7deaba # ╠═dbf3a196-dd4d-4ac8-8396-42ac7c7e0ba1
PoreMatMod
https://github.com/SimonEnsemble/PoreMatMod.jl.git
[ "MIT" ]
0.2.20
131cd2b2ae892b6949a0b9aa375c689802e99c9d
code
5894
### A Pluto.jl notebook ### # v0.17.3 using Markdown using InteractiveUtils # ╔═╡ 8738d1c4-6907-4a7c-96bf-0467b6eb696d # ╔═╡ ee100c2d-30aa-4b29-b85e-49417e1ed91c # load required packages (Pluto.jl will automatically install them) using PoreMatMod, PlutoUI # ╔═╡ 172f819b-fca8-433a-9a72-e533078e814c begin using PoreMatMod.ExampleHelpers check_example_data() end # ╔═╡ 8d523993-6e85-443a-9949-12030552b457 md""" ## Example: correct disorder and remove guest molecules from experimental data """ # ╔═╡ 33992496-1700-4033-8deb-694f82bdd1bc input_file_message() # ╔═╡ dc03627f-3da3-4175-b52e-664522df2302 xtal_folder_message() # ╔═╡ 4be347c1-3f1a-40c1-ae38-f82ed692381e rc[:paths][:crystals] # ╔═╡ de84b4a3-a365-4860-9729-2377367c64db moiety_folder_message() # ╔═╡ b6dff24a-d0a0-4824-8bb2-2dcb60196b0a rc[:paths][:moieties] # ╔═╡ 5b71d14a-be80-4ac3-8983-62571d0d4e7d md""" !!! example \"the task\" we have the experimental structure of SIFSIX-Cu-2-i, which features disordered pyridyl rings in the linkers---presumably as an artifact of X-ray structure determination---and acetylene guest molecules in the pores. We wish to (i) correct the disorder by selecting a single conformation for each ring and (ii) remove the guest molecules from its pores. **Parent crystal structure**: first, we read in the `.cif` file describing the SIFSIX-Cu-2-i parent structure, which presents disordered ligands and guest molecules in the pores. """ # ╔═╡ 6d9c3b97-fd26-470c-8acf-8ce10b33b82d begin # read in the parent xtal parent = Crystal("SIFSIX-2-Cu-i.cif"; check_overlap=false) infer_bonds!(parent, true) # infer bonds view_structure(parent) # view structure end # ╔═╡ c0feae1a-a228-40eb-a234-e58617fa71dd fragment_construction_note() # ╔═╡ ba265b61-9341-48fd-9f93-befd3e65d315 md""" **Query fragment 1 (disordered ring)**: second, we construct a query fragment to match the disordered rings in the parent structure by cutting one out of the parent structure. we mask all atoms of the query fragment except those belonging to a single conformation of the ring. the masked hydrogen and carbon atoms below are shown in light pink and dark pink, respectively. """ # ╔═╡ f2907335-798c-4f9f-bbab-fa8763fb43bb query_disordered_ring = moiety("disordered_ligand!.xyz"); # ╔═╡ efd5d374-929c-4851-9219-d8e2b86ebb85 view_query_or_replacement("disordered_ligand!.xyz") # ╔═╡ 3077d0db-01e7-4aab-b183-c0f69a1f2da3 with_terminal() do return display_query_or_replacement_file("disordered_ligand!.xyz") end # ╔═╡ 10911157-64eb-485b-86f1-e83dc201b054 md""" **Query fragment 2 (guest molecule)**: we also construct an acetylene query fragment to match the guest molecules in the parent structure. """ # ╔═╡ db0efdc0-9d29-46ca-8992-39cd7a9ad36c query_guest = moiety("acetylene.xyz"); # ╔═╡ b5a090eb-5796-44bf-a19c-3705e99d26dd view_query_or_replacement("acetylene.xyz") # ╔═╡ 83d00463-ae3b-47d8-b65d-ff8a0aa522e8 with_terminal() do return display_query_or_replacement_file("acetylene.xyz") end # ╔═╡ 25ed4da3-525c-4045-82c4-b3cbf8e707e3 md""" **Replacement fragment**: next, we construct a replacement fragment---a (non-disordered) pyridyl ring---as a corrected version of the first query fragment that represented the disordered ligand. """ # ╔═╡ b57e57d8-897b-466a-b2b5-517afd969123 replacement_ring = moiety("4-pyridyl.xyz"); # ╔═╡ fee26c78-75c2-4844-acdb-d2c4cd71d654 view_query_or_replacement("4-pyridyl.xyz") # ╔═╡ e85d27a8-ec86-4e38-92a4-f8a2ad9a0ce3 with_terminal() do return display_query_or_replacement_file("4-pyridyl.xyz") end # ╔═╡ da89adc2-0688-44c6-9fd2-791bd13c8d74 md""" **Find and replace**: finally, 1. search the parent MOF for the first query fragment (disordered rings) and effect the replacements with the corrected (single-conformation ring), then 2. search the parent for the second query fragment (guest molecules) as disconnected components, and delete them. Hooray; we have a simulation-ready SIFSIX-Cu-2-i structure. 💖 n.b. * if we had not passed the `disconnected_component=true` kwarg, the algorithm would have found and removed the sides of the pyridyl rings which contain a H-C-C-H fragment! """ # ╔═╡ 74aa19d2-b1a4-4333-9ff9-e6ea74e7d989 begin # repair ring disorder child = replace(parent, query_disordered_ring => replacement_ring) # search for disconnected acetylene components search = substructure_search(query_guest, child; disconnected_component=true) # delete guest molecules child = substructure_replace(search, nothing) view_structure(child) end # ╔═╡ 11095805-7c76-42f4-836d-919c2cb27d1c write_cif_message() # ╔═╡ c5e14b94-427d-4684-9dd7-bc44d965c570 write_cif(child, "simulation_ready_SIFSIX-Cu-2-i.cif") # ╔═╡ Cell order: # ╟─8738d1c4-6907-4a7c-96bf-0467b6eb696d # ╟─8d523993-6e85-443a-9949-12030552b457 # ╠═ee100c2d-30aa-4b29-b85e-49417e1ed91c # ╠═172f819b-fca8-433a-9a72-e533078e814c # ╟─33992496-1700-4033-8deb-694f82bdd1bc # ╟─dc03627f-3da3-4175-b52e-664522df2302 # ╠═4be347c1-3f1a-40c1-ae38-f82ed692381e # ╟─de84b4a3-a365-4860-9729-2377367c64db # ╠═b6dff24a-d0a0-4824-8bb2-2dcb60196b0a # ╟─5b71d14a-be80-4ac3-8983-62571d0d4e7d # ╠═6d9c3b97-fd26-470c-8acf-8ce10b33b82d # ╟─c0feae1a-a228-40eb-a234-e58617fa71dd # ╟─ba265b61-9341-48fd-9f93-befd3e65d315 # ╠═f2907335-798c-4f9f-bbab-fa8763fb43bb # ╟─efd5d374-929c-4851-9219-d8e2b86ebb85 # ╟─3077d0db-01e7-4aab-b183-c0f69a1f2da3 # ╟─10911157-64eb-485b-86f1-e83dc201b054 # ╠═db0efdc0-9d29-46ca-8992-39cd7a9ad36c # ╟─b5a090eb-5796-44bf-a19c-3705e99d26dd # ╟─83d00463-ae3b-47d8-b65d-ff8a0aa522e8 # ╟─25ed4da3-525c-4045-82c4-b3cbf8e707e3 # ╠═b57e57d8-897b-466a-b2b5-517afd969123 # ╟─fee26c78-75c2-4844-acdb-d2c4cd71d654 # ╟─e85d27a8-ec86-4e38-92a4-f8a2ad9a0ce3 # ╟─da89adc2-0688-44c6-9fd2-791bd13c8d74 # ╠═74aa19d2-b1a4-4333-9ff9-e6ea74e7d989 # ╟─11095805-7c76-42f4-836d-919c2cb27d1c # ╠═c5e14b94-427d-4684-9dd7-bc44d965c570
PoreMatMod
https://github.com/SimonEnsemble/PoreMatMod.jl.git
[ "MIT" ]
0.2.20
131cd2b2ae892b6949a0b9aa375c689802e99c9d
code
4917
### A Pluto.jl notebook ### # v0.17.3 using Markdown using InteractiveUtils # ╔═╡ 8ae2593a-cb48-44c9-b9dc-ab901c358a06 # ╔═╡ 16f0e183-f48d-4dcd-8751-d3c61c875e18 # load required packages (Pluto.jl will automatically install them) using PoreMatMod, PlutoUI # ╔═╡ 3cca5289-a829-4717-b796-0834229995d1 begin using PoreMatMod.ExampleHelpers check_example_data() end # ╔═╡ 8d523993-6e85-443a-9949-12030552b457 md""" ## example: generate a hypothetical MOF structure by decorating its linkers with functional groups """ # ╔═╡ 74b45651-21d5-4332-a4a5-866ea1bb02b8 input_file_message() # ╔═╡ 3ff0cd63-8bdf-4ba5-92b6-e2a52f7573c2 xtal_folder_message() # ╔═╡ ccc7fc86-5f48-4cc9-bd5c-349fc1d55b0c rc[:paths][:crystals] # ╔═╡ b66dd0d5-5bac-4b23-a33f-17305b0d4728 moiety_folder_message() # ╔═╡ a76e79ee-c82c-4771-818d-5380a5fb4c18 rc[:paths][:moieties] # ╔═╡ be86f07e-0669-46c2-8c79-80e65dfcc6f2 md""" !!! example \"the task\" we have the IRMOF-1 crystal structure, and wish to append acetamido functional groups to six of its (randomly chosen) BDC (1,4-benzodicarboxylate) linkers to give a mixed-linker IRMOF-1 derivative. **Parent crystal structure**: first, we read in the `.cif` file describing the parent IRMOF-1 crystal structure. """ # ╔═╡ b53e7c38-d8f5-4f28-a9dc-f7902a86fdb2 begin # read in the parent xtal parent = Crystal("IRMOF-1.cif") # load .cif file infer_bonds!(parent, true) # infer bonds view_structure(parent) # view structure end # ╔═╡ b402e79a-784b-4d8b-82f1-df4fe1cedad1 fragment_construction_note() # ╔═╡ 9b2d534a-4f78-4950-add1-9ba645669bb9 md""" **Query fragment**: next, we construct a query fragment as a _p_-phenylene fragment to match that on the BCD linker of the IRMOF-1 parent structure. we mark one hydrogen atom on the query fragment as "masked" (shown in pink) by tagging its species label with `!` in the input. we need to mask this hydrogen atom because it will eventually be replaced by the acetamido functional group. """ # ╔═╡ 4be03110-61ab-4cd6-b3fe-7d51ac5ee771 query = moiety("2-!-p-phenylene.xyz"); # ╔═╡ e5eaaef4-13a0-48bd-9f2b-5040b2d10ac1 view_query_or_replacement("2-!-p-phenylene.xyz") # ╔═╡ 559ef3c3-a176-4d65-8958-810c9b0b32c5 with_terminal() do return display_query_or_replacement_file("2-!-p-phenylene.xyz") end # ╔═╡ d1aa8a19-3702-40f6-b73e-b9ebfc1a7a71 md""" **Replacement fragment**: next, we construct a replacement fragment as a modified version of the query fragment (with acetamido group in place of one hydrogen atom). """ # ╔═╡ 44e7e665-ae68-4cd4-b45f-138a0fb8910e replacement = moiety("2-acetylamido-p-phenylene.xyz"); # ╔═╡ af606f02-fbd5-4033-a5f3-56a8f740b1a1 view_query_or_replacement("2-acetylamido-p-phenylene.xyz") # ╔═╡ c8f8dbd3-4191-460d-944f-f5e456ce8b83 with_terminal() do return display_query_or_replacement_file("2-!-p-phenylene.xyz") end # ╔═╡ 127a2bef-3903-4801-bc75-00a6dde2bc6e md""" **Find and replace**: finally, we (i) search the parent MOF for the query fragment and (ii) effect the replacements. Ta-da; we have a hypothetical derivatized IRMOF-1 structure. 🎈 n.b. * the `nb_loc=6` kwarg indicates that we wish to randomly select 6 matches on the IRMOF-1 parent structure to effect the replacement. the `loc` kwarg grants more control over which BDC linkers are functionalized. * the acetamido functional groups are appended at random positions on each BDC ligand. the `ori` kwarg grants more control over which positions on each linker are functionalized. * if we omit `nb_loc=6` as a kwarg, a functional group is appended on all BDC linkers of the parent. """ # ╔═╡ 74aa19d2-b1a4-4333-9ff9-e6ea74e7d989 begin child = replace(parent, query => replacement; nb_loc=6) view_structure(child) end # ╔═╡ 986ecdc4-455f-457e-a964-f00ddfeb53a2 write_cif_message() # ╔═╡ 71209370-c445-4ff2-a873-b6e31c46419b write_cif(child, "acetamido-functionalized_IRMOF-1.cif") # ╔═╡ Cell order: # ╟─8ae2593a-cb48-44c9-b9dc-ab901c358a06 # ╟─8d523993-6e85-443a-9949-12030552b457 # ╠═16f0e183-f48d-4dcd-8751-d3c61c875e18 # ╠═3cca5289-a829-4717-b796-0834229995d1 # ╠═74b45651-21d5-4332-a4a5-866ea1bb02b8 # ╟─3ff0cd63-8bdf-4ba5-92b6-e2a52f7573c2 # ╠═ccc7fc86-5f48-4cc9-bd5c-349fc1d55b0c # ╟─b66dd0d5-5bac-4b23-a33f-17305b0d4728 # ╠═a76e79ee-c82c-4771-818d-5380a5fb4c18 # ╟─be86f07e-0669-46c2-8c79-80e65dfcc6f2 # ╠═b53e7c38-d8f5-4f28-a9dc-f7902a86fdb2 # ╟─b402e79a-784b-4d8b-82f1-df4fe1cedad1 # ╟─9b2d534a-4f78-4950-add1-9ba645669bb9 # ╠═4be03110-61ab-4cd6-b3fe-7d51ac5ee771 # ╟─e5eaaef4-13a0-48bd-9f2b-5040b2d10ac1 # ╟─559ef3c3-a176-4d65-8958-810c9b0b32c5 # ╟─d1aa8a19-3702-40f6-b73e-b9ebfc1a7a71 # ╠═44e7e665-ae68-4cd4-b45f-138a0fb8910e # ╟─af606f02-fbd5-4033-a5f3-56a8f740b1a1 # ╟─c8f8dbd3-4191-460d-944f-f5e456ce8b83 # ╟─127a2bef-3903-4801-bc75-00a6dde2bc6e # ╠═74aa19d2-b1a4-4333-9ff9-e6ea74e7d989 # ╟─986ecdc4-455f-457e-a964-f00ddfeb53a2 # ╠═71209370-c445-4ff2-a873-b6e31c46419b
PoreMatMod
https://github.com/SimonEnsemble/PoreMatMod.jl.git
[ "MIT" ]
0.2.20
131cd2b2ae892b6949a0b9aa375c689802e99c9d
code
5071
### A Pluto.jl notebook ### # v0.17.3 using Markdown using InteractiveUtils # ╔═╡ 53071de7-da2f-4628-9313-2124693ce525 # ╔═╡ d4e77120-8ee6-4514-b066-6127aaa1d6c9 # load required packages (Pluto.jl will automatically install them) using PoreMatMod, PlutoUI # ╔═╡ 468c12c0-886f-409b-b36f-b6ff90063e40 begin using PoreMatMod.ExampleHelpers check_example_data() end # ╔═╡ 8d523993-6e85-443a-9949-12030552b457 md""" ## Example: introduce missing-linker defects into a MOF structure """ # ╔═╡ e2877131-2e59-4e00-b549-70529d8e71e4 input_file_message() # ╔═╡ 3eb0313b-0a64-482e-930a-14bd0353a00c xtal_folder_message() # ╔═╡ d47c97d5-614e-4c61-b65d-f3fb44014cd1 rc[:paths][:crystals] # ╔═╡ 528b29d8-847a-4723-8fde-fa319a7b8f3f moiety_folder_message() # ╔═╡ 1a62d3bf-95f5-4b1b-af12-6f9db700e5f4 rc[:paths][:moieties] # ╔═╡ 5b71d14a-be80-4ac3-8983-62571d0d4e7d md""" !!! example \"the task\" we have the crystal structure for the MOF UiO-66, and we wish to introduce missing-linker defects by removing BDC (1,4-benzodicarboxylate) linkers and adding formate ion capping groups in their place. **Parent crystal structure**: first, we read in the `.cif` file describing the parent structure (the UiO-66 unit cell, replicated twice on each crystallographic axis). """ # ╔═╡ 8819797c-f1a2-4c46-999d-00316bd21e44 begin # read in the parent xtal parent = Crystal("UiO-66.cif") # load .cif file infer_bonds!(parent, true) # infer bonds view_structure(parent) # view structure end # ╔═╡ 103d3258-5f1c-4b6f-81e3-f45c2bbac844 fragment_construction_note() # ╔═╡ 15ae88e9-b886-4cc6-9ba7-41111bfa06b0 md""" **Query fragment**: next, we construct a query fragment to be the BDC linker in the parent structure. the masked atoms to be deleted are tagged with `!` in the `.xyz` input file: the masked hydrogen and carbon atoms are shown in light pink and dark pink, respectively. """ # ╔═╡ 1a443428-e283-4205-986e-d0c4ac09bbaa query = moiety("BDC.xyz"); # ╔═╡ 19282148-e649-4d6e-833d-43fa3cde14c6 view_query_or_replacement("BDC.xyz") # ╔═╡ d56f8ef4-9a3a-4607-99b1-26034bb23757 with_terminal() do return display_query_or_replacement_file("BDC.xyz") end # ╔═╡ b3a0b763-f9ae-480a-8ad0-ff35f12dc68f md""" **Replacement fragment**: next, we construct a replacement fragment as the BDC linker with the _p_-phenylene ring removed, giving a pair of formate ions, spaced so as to neatly replace (but in effect keep) the carboxyl groups of the BDC linker (and in effect remove the _p_-phenylene ring). """ # ╔═╡ 6a3779f7-dbc5-47b7-a261-1b6144304d5f replacement = moiety("formate_caps.xyz"); # ╔═╡ 5d62cc3f-4834-4755-b398-922336a26ed8 view_query_or_replacement("formate_caps.xyz") # ╔═╡ a9005ea7-9fe4-4112-bd9b-a5bb124b0d04 with_terminal() do return display_query_or_replacement_file("formate_caps.xyz") end # ╔═╡ 03b88236-08cb-4f1f-b23d-5f78581373b4 md""" **Find and replace**: finally, we search the parent MOF for the query fragment and effect the replacements. nice; we have a UiO-66 crystal structure model harboring engineered missing-linker defects. 🎆 n.b. * the `loc` kwarg indicates which matches to effect the replacement; we carefully chose these locations to introduce a new channel into the MOF. """ # ╔═╡ 74aa19d2-b1a4-4333-9ff9-e6ea74e7d989 begin child = replace(parent, query => replacement; loc=[3, 9]) view_structure(child) end # ╔═╡ 7b34f300-4815-43f3-8f10-18cb6c76c7f4 write_cif_message() # ╔═╡ 14f1459b-f505-4950-80f4-7e641abb6b7a write_cif(child, "defected_UiO-66.cif") # ╔═╡ a31ddf3a-561c-4240-bb8e-481ed3a5083d md""" !!! note \"Regarding fragment selection\" The astute observer will note that a seemingly simpler pair of query/replacement fragments might be chosen, so as to replace each *half* of a BDC linker with a formate ion. This is perfectly fine, but leaves the user with the task of determining twice as many locations upon which to operate, such that the correct *six halves* of BDC linkers (making three complete linkers) are replaced. """ # ╔═╡ Cell order: # ╟─53071de7-da2f-4628-9313-2124693ce525 # ╟─8d523993-6e85-443a-9949-12030552b457 # ╠═d4e77120-8ee6-4514-b066-6127aaa1d6c9 # ╠═468c12c0-886f-409b-b36f-b6ff90063e40 # ╟─e2877131-2e59-4e00-b549-70529d8e71e4 # ╠═3eb0313b-0a64-482e-930a-14bd0353a00c # ╠═d47c97d5-614e-4c61-b65d-f3fb44014cd1 # ╠═528b29d8-847a-4723-8fde-fa319a7b8f3f # ╠═1a62d3bf-95f5-4b1b-af12-6f9db700e5f4 # ╟─5b71d14a-be80-4ac3-8983-62571d0d4e7d # ╠═8819797c-f1a2-4c46-999d-00316bd21e44 # ╟─103d3258-5f1c-4b6f-81e3-f45c2bbac844 # ╟─15ae88e9-b886-4cc6-9ba7-41111bfa06b0 # ╠═1a443428-e283-4205-986e-d0c4ac09bbaa # ╟─19282148-e649-4d6e-833d-43fa3cde14c6 # ╟─d56f8ef4-9a3a-4607-99b1-26034bb23757 # ╟─b3a0b763-f9ae-480a-8ad0-ff35f12dc68f # ╠═6a3779f7-dbc5-47b7-a261-1b6144304d5f # ╟─5d62cc3f-4834-4755-b398-922336a26ed8 # ╟─a9005ea7-9fe4-4112-bd9b-a5bb124b0d04 # ╟─03b88236-08cb-4f1f-b23d-5f78581373b4 # ╠═74aa19d2-b1a4-4333-9ff9-e6ea74e7d989 # ╟─7b34f300-4815-43f3-8f10-18cb6c76c7f4 # ╠═14f1459b-f505-4950-80f4-7e641abb6b7a # ╟─a31ddf3a-561c-4240-bb8e-481ed3a5083d
PoreMatMod
https://github.com/SimonEnsemble/PoreMatMod.jl.git
[ "MIT" ]
0.2.20
131cd2b2ae892b6949a0b9aa375c689802e99c9d
code
6877
### A Pluto.jl notebook ### # v0.17.3 using Markdown using InteractiveUtils # ╔═╡ 359a6c00-c9a6-441d-b258-55bfb5deb4b5 # ╔═╡ a948f8b3-4ec5-40b9-b2c1-fcf5b8ad67fa # load required packages (Pluto.jl will automatically install them) using PoreMatMod, PlutoUI # ╔═╡ 77c63e60-2708-4fef-a6ea-cb394f114b88 begin using PoreMatMod.ExampleHelpers check_example_data() end # ╔═╡ 8d523993-6e85-443a-9949-12030552b457 md""" ## example: generating hypothetical MOF structures with different replacement styles """ # ╔═╡ 74b45651-21d5-4332-a4a5-866ea1bb02b8 input_file_message() # ╔═╡ 3ff0cd63-8bdf-4ba5-92b6-e2a52f7573c2 xtal_folder_message() # ╔═╡ ccc7fc86-5f48-4cc9-bd5c-349fc1d55b0c rc[:paths][:crystals] # ╔═╡ b66dd0d5-5bac-4b23-a33f-17305b0d4728 moiety_folder_message() # ╔═╡ a76e79ee-c82c-4771-818d-5380a5fb4c18 rc[:paths][:moieties] # ╔═╡ be86f07e-0669-46c2-8c79-80e65dfcc6f2 md""" !!! example \"the task\" we have the IRMOF-1 crystal structure, and wish to explore appending the acetamido functional group its BDC linkers using different replacement styles. **Parent crystal structure**: first, we read in the `.cif` file describing the parent IRMOF-1 crystal structure. """ # ╔═╡ b53e7c38-d8f5-4f28-a9dc-f7902a86fdb2 begin # read in the parent xtal parent = Crystal("IRMOF-1.cif") # load .cif file infer_bonds!(parent, true) # infer bonds view_structure(parent) # view structure end # ╔═╡ b402e79a-784b-4d8b-82f1-df4fe1cedad1 fragment_construction_note() # ╔═╡ 9b2d534a-4f78-4950-add1-9ba645669bb9 md""" **Query fragment**: next, we construct a query fragment as a _p_-phenylene fragment to match that on the BCD linker of the IRMOF-1 parent structure. we mark one hydrogen atom on the query fragment as "masked" (shown in pink) by tagging its species label with `!` in the input. we need to mask this hydrogen atom because it will eventually be replaced by the acetamido functional group. """ # ╔═╡ 4be03110-61ab-4cd6-b3fe-7d51ac5ee771 query = moiety("2-!-p-phenylene.xyz"); # ╔═╡ e5eaaef4-13a0-48bd-9f2b-5040b2d10ac1 view_query_or_replacement("2-!-p-phenylene.xyz") # ╔═╡ 559ef3c3-a176-4d65-8958-810c9b0b32c5 with_terminal() do return display_query_or_replacement_file("2-!-p-phenylene.xyz") end # ╔═╡ d1aa8a19-3702-40f6-b73e-b9ebfc1a7a71 md""" **Replacement fragment**: next, we construct a replacement fragment as a modified version of the query fragment (with acetamido group in place of one hydrogen atom). """ # ╔═╡ 44e7e665-ae68-4cd4-b45f-138a0fb8910e replacement = moiety("2-nitro-p-phenylene.xyz"); # ╔═╡ af606f02-fbd5-4033-a5f3-56a8f740b1a1 view_query_or_replacement("2-nitro-p-phenylene.xyz") # ╔═╡ c8f8dbd3-4191-460d-944f-f5e456ce8b83 with_terminal() do return display_query_or_replacement_file("2-nitro-p-phenylene.xyz") end # ╔═╡ 127a2bef-3903-4801-bc75-00a6dde2bc6e md""" ### Replacement Modes There are several options when performing a replacement that control how the replacement fragments will be positioned in the parent structure. With all three file inputs loaded (IRMOF-1 as `parent`, 2-!-*p*-phenylene as `query`, and 2-nitro-*p*-phenylene as `replacement`) and a `search` performed, replacements can be made. `PoreMatMod.jl` has several replacement modes, one of which must be specified. """ # ╔═╡ 0e3f7334-9e7f-483b-a0ac-70777902bf51 md""" !!! note \"Note\" Multiple replacements can be done with a single search. """ # ╔═╡ b7b46022-aee0-4d51-8a5e-0c8c005f341a search = query ∈ parent # ╔═╡ 68557426-3204-45a1-8801-84c459e5ac66 md""" #### Default: optimal orientation at all locations Optimal configurations will be chosen for each location in `search.isomorphisms`, so that each occurrence of the `query` in the `parent` is replaced with minimal perturbation of the conserved atoms from the parent structure. """ # ╔═╡ 74aa19d2-b1a4-4333-9ff9-e6ea74e7d989 begin local child = substructure_replace(search, replacement) view_structure(child) end # ╔═╡ bed9d62f-d61d-4fb1-9a12-188a864fff21 md""" #### Optimal Orientation at *n* random locations If only some of the linkers should be replaced, the `nb_loc` argument lets us specify how many. """ # ╔═╡ 9dbf7859-762d-4edc-8300-ac3bba151a8a begin local child = substructure_replace(search, replacement; nb_loc=8) view_structure(child) end # ╔═╡ 95215fe9-a7e6-4563-94b6-5ed1d5dde03b md""" #### Optimal orientation at specific locations Specific locations are chosen by providing the `loc` argument. """ # ╔═╡ 8c22f94c-b235-40b2-8fc8-6052c31a6b6e begin local child = substructure_replace(search, replacement; loc=[17, 18, 19, 20]) view_structure(child) end # ╔═╡ 6297833a-ea26-4958-ad56-fc76aeabee69 md""" #### Specific replacements Providing both the `loc` and `ori` arguments allows specifying the exact configuration used in each replacement. A zero value for any element of `ori` means to use the optimal replacement at the corresponding location. """ # ╔═╡ 183f9ff1-810a-4062-a3c6-cdb82dbd8a7a begin local child = substructure_replace(search, replacement; loc=[1, 2, 3, 13], ori=[0, 1, 2, 3]) view_structure(child) end # ╔═╡ 0347c45c-899b-4c4d-9b31-f09a205636f0 md""" #### Random orientations By using the `random` keyword argument, the search for optimal alignment can be skipped, and an arbitrary alignment option will be used. """ # ╔═╡ b7064b05-6e57-4e81-8cbc-b2075166a1af begin local child = substructure_replace(search, replacement; nb_loc=24, random=true) view_structure(child) end # ╔═╡ Cell order: # ╟─359a6c00-c9a6-441d-b258-55bfb5deb4b5 # ╟─8d523993-6e85-443a-9949-12030552b457 # ╠═a948f8b3-4ec5-40b9-b2c1-fcf5b8ad67fa # ╠═77c63e60-2708-4fef-a6ea-cb394f114b88 # ╟─74b45651-21d5-4332-a4a5-866ea1bb02b8 # ╟─3ff0cd63-8bdf-4ba5-92b6-e2a52f7573c2 # ╠═ccc7fc86-5f48-4cc9-bd5c-349fc1d55b0c # ╟─b66dd0d5-5bac-4b23-a33f-17305b0d4728 # ╠═a76e79ee-c82c-4771-818d-5380a5fb4c18 # ╟─be86f07e-0669-46c2-8c79-80e65dfcc6f2 # ╠═b53e7c38-d8f5-4f28-a9dc-f7902a86fdb2 # ╟─b402e79a-784b-4d8b-82f1-df4fe1cedad1 # ╟─9b2d534a-4f78-4950-add1-9ba645669bb9 # ╠═4be03110-61ab-4cd6-b3fe-7d51ac5ee771 # ╟─e5eaaef4-13a0-48bd-9f2b-5040b2d10ac1 # ╟─559ef3c3-a176-4d65-8958-810c9b0b32c5 # ╟─d1aa8a19-3702-40f6-b73e-b9ebfc1a7a71 # ╠═44e7e665-ae68-4cd4-b45f-138a0fb8910e # ╟─af606f02-fbd5-4033-a5f3-56a8f740b1a1 # ╟─c8f8dbd3-4191-460d-944f-f5e456ce8b83 # ╟─127a2bef-3903-4801-bc75-00a6dde2bc6e # ╟─0e3f7334-9e7f-483b-a0ac-70777902bf51 # ╠═b7b46022-aee0-4d51-8a5e-0c8c005f341a # ╟─68557426-3204-45a1-8801-84c459e5ac66 # ╠═74aa19d2-b1a4-4333-9ff9-e6ea74e7d989 # ╟─bed9d62f-d61d-4fb1-9a12-188a864fff21 # ╠═9dbf7859-762d-4edc-8300-ac3bba151a8a # ╟─95215fe9-a7e6-4563-94b6-5ed1d5dde03b # ╠═8c22f94c-b235-40b2-8fc8-6052c31a6b6e # ╟─6297833a-ea26-4958-ad56-fc76aeabee69 # ╠═183f9ff1-810a-4062-a3c6-cdb82dbd8a7a # ╟─0347c45c-899b-4c4d-9b31-f09a205636f0 # ╠═b7064b05-6e57-4e81-8cbc-b2075166a1af
PoreMatMod
https://github.com/SimonEnsemble/PoreMatMod.jl.git
[ "MIT" ]
0.2.20
131cd2b2ae892b6949a0b9aa375c689802e99c9d
code
3287
### A Pluto.jl notebook ### # v0.17.3 using Markdown using InteractiveUtils # ╔═╡ 64b72493-6cac-4b92-9a81-6a5df12f7875 begin import Pkg Pkg.add(; url="https://github.com/SimonEnsemble/PoreMatMod.jl") end # ╔═╡ 5401e009-923e-4a7f-9f3a-fd534f06d8b0 # load required packages (Pluto.jl will automatically install them) using PoreMatMod, PlutoUI # ╔═╡ 0f99b225-db96-485c-9e2c-1b4179601e53 begin using PoreMatMod.ExampleHelpers check_example_data() end # ╔═╡ 8d523993-6e85-443a-9949-12030552b457 md""" ## example: performing a substructure search to find the linkers in a MOF """ # ╔═╡ 74b45651-21d5-4332-a4a5-866ea1bb02b8 input_file_message() # ╔═╡ 3ff0cd63-8bdf-4ba5-92b6-e2a52f7573c2 xtal_folder_message() # ╔═╡ ccc7fc86-5f48-4cc9-bd5c-349fc1d55b0c rc[:paths][:crystals] # ╔═╡ b66dd0d5-5bac-4b23-a33f-17305b0d4728 moiety_folder_message() # ╔═╡ a76e79ee-c82c-4771-818d-5380a5fb4c18 rc[:paths][:moieties] # ╔═╡ be86f07e-0669-46c2-8c79-80e65dfcc6f2 md""" !!! example \"the task\" we have the IRMOF-1 crystal structure, and wish to explore appending the acetamido functional group its BDC linkers using different replacement styles. **Parent crystal structure**: first, we read in the `.cif` file describing the parent IRMOF-1 crystal structure. """ # ╔═╡ b53e7c38-d8f5-4f28-a9dc-f7902a86fdb2 begin # read in the parent xtal parent = Crystal("IRMOF-1.cif") # load .cif file infer_bonds!(parent, true) # infer bonds view_structure(parent) # view structure end # ╔═╡ b402e79a-784b-4d8b-82f1-df4fe1cedad1 fragment_construction_note() # ╔═╡ 9b2d534a-4f78-4950-add1-9ba645669bb9 md""" **Query fragment**: next, we construct a query fragment as a _p_-phenylene fragment to match that on the BCD linker of the IRMOF-1 parent structure. """ # ╔═╡ 4be03110-61ab-4cd6-b3fe-7d51ac5ee771 query = moiety("p-phenylene.xyz"); # ╔═╡ e5eaaef4-13a0-48bd-9f2b-5040b2d10ac1 view_query_or_replacement("p-phenylene.xyz") # ╔═╡ 559ef3c3-a176-4d65-8958-810c9b0b32c5 with_terminal() do return display_query_or_replacement_file("p-phenylene.xyz") end # ╔═╡ 127a2bef-3903-4801-bc75-00a6dde2bc6e md""" ### Substructure Search Find substructures in the `parent` that match the `query`: """ # ╔═╡ b7b46022-aee0-4d51-8a5e-0c8c005f341a search = query ∈ parent # ╔═╡ 536d3474-bc9c-4576-a120-826020f8d772 hits = isomorphic_substructures(search) # ╔═╡ ec84ba70-b83e-4a46-9037-aed54bb07b07 view_structure(hits) # ╔═╡ Cell order: # ╟─64b72493-6cac-4b92-9a81-6a5df12f7875 # ╟─8d523993-6e85-443a-9949-12030552b457 # ╠═5401e009-923e-4a7f-9f3a-fd534f06d8b0 # ╠═0f99b225-db96-485c-9e2c-1b4179601e53 # ╟─74b45651-21d5-4332-a4a5-866ea1bb02b8 # ╟─3ff0cd63-8bdf-4ba5-92b6-e2a52f7573c2 # ╠═ccc7fc86-5f48-4cc9-bd5c-349fc1d55b0c # ╟─b66dd0d5-5bac-4b23-a33f-17305b0d4728 # ╠═a76e79ee-c82c-4771-818d-5380a5fb4c18 # ╟─be86f07e-0669-46c2-8c79-80e65dfcc6f2 # ╠═b53e7c38-d8f5-4f28-a9dc-f7902a86fdb2 # ╟─b402e79a-784b-4d8b-82f1-df4fe1cedad1 # ╟─9b2d534a-4f78-4950-add1-9ba645669bb9 # ╠═4be03110-61ab-4cd6-b3fe-7d51ac5ee771 # ╟─e5eaaef4-13a0-48bd-9f2b-5040b2d10ac1 # ╟─559ef3c3-a176-4d65-8958-810c9b0b32c5 # ╟─127a2bef-3903-4801-bc75-00a6dde2bc6e # ╠═b7b46022-aee0-4d51-8a5e-0c8c005f341a # ╠═536d3474-bc9c-4576-a120-826020f8d772 # ╠═ec84ba70-b83e-4a46-9037-aed54bb07b07
PoreMatMod
https://github.com/SimonEnsemble/PoreMatMod.jl.git
[ "MIT" ]
0.2.20
131cd2b2ae892b6949a0b9aa375c689802e99c9d
code
4973
### A Pluto.jl notebook ### # v0.17.3 using Markdown using InteractiveUtils # ╔═╡ fd82b765-7a62-4f85-bf60-28c83b1731aa begin import Pkg Pkg.add(; url="https://github.com/SimonEnsemble/PoreMatMod.jl") end # ╔═╡ 3bb3966e-a7dd-46c1-b649-33169ce424d2 using PoreMatMod, PlutoUI # ╔═╡ d3eef6f4-ff15-47f3-8686-2c0cb0fb882d begin using PoreMatMod.ExampleHelpers check_example_data() end # ╔═╡ 8e4fd703-f53e-4056-9466-66f07bacad8d md"## Example: substructure replacement in a high-symmetry parent" # ╔═╡ 49ce8a40-3c99-48a8-9403-f5538d1d9a67 input_file_message() # ╔═╡ 98ee7a1e-1c27-4819-b752-01602cde2799 xtal_folder_message() # ╔═╡ f5a08f77-9830-4e8e-b746-6a1d61f39009 rc[:paths][:crystals] # ╔═╡ 8c4c9c65-61a3-4ac8-9413-48aab281237e moiety_folder_message() # ╔═╡ 4c5e0230-4db5-49de-b9d7-152ebc834d48 rc[:paths][:moieties] # ╔═╡ e7be5fba-b120-47f5-a952-8577ee847d99 md""" !!! example \"the task\" We have a crystallographic unit cell of NiPyC. We wish to append methyl groups onto the PyC linkers. **Parent crystal structure**: first, we read in the `.cif` file describing the parent structure, which is in a high-symmetry representation, meaning this structure must be reproduced according to the symmetry rules of the unit cell's space group. Normally, structures are automatically transformed to P1 symmetry, so we must specify that we wish to preserve the original unit cell. """ # ╔═╡ c0e2ffbd-fb85-4187-b8b5-73edea90969a begin # read in the parent xtal, keeping it in its original space group parent = Crystal("NiPyC_experiment.cif"; convert_to_p1=false) # load cif file infer_bonds!(parent, true) # infer bonds view_structure(parent) # view structure end # ╔═╡ 0bbe1bf4-89e8-4372-8f6a-93fc89334b00 fragment_construction_note() # ╔═╡ f02fdbf1-2c43-40df-a678-e3c535751f3e md""" **Query fragment**: next, we construct a query fragment to match the linker in NiPyC. """ # ╔═╡ 16faf8c8-d5c2-4755-945b-546cdac27350 query = moiety("PyC.xyz"); # ╔═╡ 75610c4a-9218-406c-b28f-8e299e197135 view_query_or_replacement("PyC.xyz") # ╔═╡ 5e90af51-f777-47f9-980b-19bca38de5d4 with_terminal() do return display_query_or_replacement_file("PyC.xyz") end # ╔═╡ 70468997-24fa-4c1b-9f02-379823f97db8 md""" **Replacement fragment**: then, we construct a replacement fragment as a corrected version of the query fragment (with hydrogen atoms appropriately appended). """ # ╔═╡ aac504f5-080e-47b8-9a33-d43c16dc87e7 replacement = moiety("PyC-CH3.xyz"); # ╔═╡ 976795e6-e696-4a37-9cd1-83b4d2695a96 view_query_or_replacement("PyC-CH3.xyz") # ╔═╡ 7f82be68-558d-4dce-8492-bcc585ddf448 with_terminal() do return display_query_or_replacement_file("PyC-CH3.xyz") end # ╔═╡ 2e3299b5-3b63-48d9-90d7-b8dde5715907 md""" **Find and replace**: finally, we search the parent MOF for the query fragment and effect the replacement. """ # ╔═╡ 0fd8b373-9fec-4b18-b1a6-1b11741e5215 search = query in parent # ╔═╡ 0b287f09-a121-430a-a749-dc93492d1680 child = substructure_replace(search, replacement; nb_loc=1, wrap=false) # ╔═╡ d8ea8d5e-f17a-412b-8461-15ba6d9621ec write_cif(child) # ╔═╡ eae2225c-40f0-4d68-a9a2-43a39a82f029 view_structure(child) # ╔═╡ 000144c6-be54-4774-b449-698e9da0741a write_cif(child, "data/crystals/symmetry_child.cif") # ╔═╡ 47efaf2e-6758-42c5-aab2-80c1d7725b4a md""" **making the super-cell** once we have the high-symmetry structure modified, we can apply the symmetry rules and get a replicated super-cell. """ # ╔═╡ 36a1be30-db0e-4c45-8894-859e36793482 begin p1_child = Crystal("symmetry_child.cif"; check_overlap=false) p1_child = replicate(p1_child, (2, 2, 2)) infer_bonds!(p1_child, true) write_cif(p1_child, "supercell.cif") view_structure(p1_child) end # ╔═╡ Cell order: # ╟─fd82b765-7a62-4f85-bf60-28c83b1731aa # ╟─8e4fd703-f53e-4056-9466-66f07bacad8d # ╠═3bb3966e-a7dd-46c1-b649-33169ce424d2 # ╠═d3eef6f4-ff15-47f3-8686-2c0cb0fb882d # ╟─49ce8a40-3c99-48a8-9403-f5538d1d9a67 # ╠═98ee7a1e-1c27-4819-b752-01602cde2799 # ╠═f5a08f77-9830-4e8e-b746-6a1d61f39009 # ╟─8c4c9c65-61a3-4ac8-9413-48aab281237e # ╠═4c5e0230-4db5-49de-b9d7-152ebc834d48 # ╟─e7be5fba-b120-47f5-a952-8577ee847d99 # ╠═c0e2ffbd-fb85-4187-b8b5-73edea90969a # ╟─0bbe1bf4-89e8-4372-8f6a-93fc89334b00 # ╟─f02fdbf1-2c43-40df-a678-e3c535751f3e # ╠═16faf8c8-d5c2-4755-945b-546cdac27350 # ╟─75610c4a-9218-406c-b28f-8e299e197135 # ╟─5e90af51-f777-47f9-980b-19bca38de5d4 # ╟─70468997-24fa-4c1b-9f02-379823f97db8 # ╠═aac504f5-080e-47b8-9a33-d43c16dc87e7 # ╟─976795e6-e696-4a37-9cd1-83b4d2695a96 # ╟─7f82be68-558d-4dce-8492-bcc585ddf448 # ╟─2e3299b5-3b63-48d9-90d7-b8dde5715907 # ╠═0fd8b373-9fec-4b18-b1a6-1b11741e5215 # ╠═0b287f09-a121-430a-a749-dc93492d1680 # ╠═d8ea8d5e-f17a-412b-8461-15ba6d9621ec # ╠═eae2225c-40f0-4d68-a9a2-43a39a82f029 # ╠═000144c6-be54-4774-b449-698e9da0741a # ╟─47efaf2e-6758-42c5-aab2-80c1d7725b4a # ╠═36a1be30-db0e-4c45-8894-859e36793482
PoreMatMod
https://github.com/SimonEnsemble/PoreMatMod.jl.git
[ "MIT" ]
0.2.20
131cd2b2ae892b6949a0b9aa375c689802e99c9d
code
1741
### A Pluto.jl notebook ### # v0.17.3 using Markdown using InteractiveUtils # ╔═╡ d757a3a8-1ee3-4afd-b0bd-9d8429250f96 begin import Pkg Pkg.add(; url="https://github.com/SimonEnsemble/PoreMatMod.jl") end # ╔═╡ 322d1bd1-86ae-47e7-b49d-38687eb3885a using PoreMatMod # ╔═╡ 494d2664-b5cf-43fe-850b-538a090dd0e8 using PoreMatMod.ExampleHelpers # ╔═╡ 095d18b8-b8ab-4bd8-89dc-4382f9375b42 begin parent = Crystal("UiO-66.cif") for x in parent.atoms.coords.xf if x == 1.0 x -= eps(Float64) elseif x == 0.0 x += eps(Float64) end end end # ╔═╡ ac94ddb2-314c-49a7-b0bb-4371f93c0429 infer_bonds!(parent, true) # ╔═╡ ecb86319-1c5c-48f8-98b9-8bccca5e9953 SBU = moiety("SBU.xyz") # ╔═╡ d7b5abf5-13fb-4644-9502-6c54106be51a bimetallic_SBU = moiety("bimetallic_SBU.xyz") # ╔═╡ 44b0cc75-036b-468f-9da7-04c2d97536a9 begin multi_metal = replace(parent, SBU => bimetallic_SBU) translate_by!(multi_metal.atoms.coords, Frac([-0.25, -0.25, 0.0])) end # ╔═╡ 780437f4-3a42-4aa2-b2e8-599d8d232dc2 write_cif(multi_metal, "multi-metal.cif") # ╔═╡ ad888be3-2123-4d2f-865a-ff7a63cebf9e begin shifted_uio66 = deepcopy(parent) translate_by!(shifted_uio66.atoms.coords, Frac([-0.25, -0.25, 0.0])) write_cif(shifted_uio66, "shifted_parent.cif") end # ╔═╡ Cell order: # ╠═d757a3a8-1ee3-4afd-b0bd-9d8429250f96 # ╠═322d1bd1-86ae-47e7-b49d-38687eb3885a # ╠═494d2664-b5cf-43fe-850b-538a090dd0e8 # ╠═095d18b8-b8ab-4bd8-89dc-4382f9375b42 # ╠═ac94ddb2-314c-49a7-b0bb-4371f93c0429 # ╠═ecb86319-1c5c-48f8-98b9-8bccca5e9953 # ╠═d7b5abf5-13fb-4644-9502-6c54106be51a # ╠═44b0cc75-036b-468f-9da7-04c2d97536a9 # ╠═780437f4-3a42-4aa2-b2e8-599d8d232dc2 # ╠═ad888be3-2123-4d2f-865a-ff7a63cebf9e
PoreMatMod
https://github.com/SimonEnsemble/PoreMatMod.jl.git
[ "MIT" ]
0.2.20
131cd2b2ae892b6949a0b9aa375c689802e99c9d
code
19197
### A Pluto.jl notebook ### # v0.17.2 using Markdown using InteractiveUtils # ╔═╡ 2065e50f-1bba-4182-ae16-70feecaa1942 using PoreMatMod # ╔═╡ 5e702404-3665-411e-a4d2-cb7fba303c91 using PoreMatMod.ExampleHelpers # ╔═╡ 52318187-a575-4864-8185-416faeea27ab begin rc[:paths][:crystals] = realpath(joinpath(pwd(), "..", "test", "data", "crystals")) rc[:paths][:moieties] = realpath(joinpath(pwd(), "..", "test", "data", "moieties")) end # ╔═╡ 6922e27b-b848-418b-bf1a-df17315baa80 begin parent = replicate(Crystal("diamond.cif"; remove_duplicates=true), (2, 2, 1)) strip_numbers_from_atom_labels!(parent) infer_bonds!(parent, true) end # ╔═╡ 418a7421-92ed-406f-9578-34187529c307 write_cif(parent, "diamond_cell.cif") # ╔═╡ f7d3cb8c-9d12-4f78-94c6-30a308648e69 view_structure(parent) # ╔═╡ 90f53a39-89b3-41c5-ad8b-c0683b96c9e4 query = moiety("adamantane_C5.xyz") # ╔═╡ 58b79260-8a7a-4ca4-bdee-4c3c463334ba replacement = moiety("nitrogen_vacancy.xyz") # ╔═╡ b835a642-0a24-4796-8e01-e3c4041a6bff child = replace(parent, query => replacement; loc=[8]) # ╔═╡ 3c003a65-3983-42ed-b445-5618ae21a4a3 write_cif(child, "child.cif") # ╔═╡ caf947dc-11bd-455d-8fd6-434fa52edada view_structure(child) # ╔═╡ 00000000-0000-0000-0000-000000000001 PLUTO_PROJECT_TOML_CONTENTS = """ [deps] Bio3DView = "99c8bb3a-9d13-5280-9740-b4880ed9c598" PoreMatMod = "2de0d7f0-0963-4438-8bc8-7e7ffe3dc69a" [compat] Bio3DView = "~0.1.3" PoreMatMod = "~0.2.7" """ # ╔═╡ 00000000-0000-0000-0000-000000000002 PLUTO_MANIFEST_TOML_CONTENTS = """ # This file is machine-generated - editing it directly is not advised [[ANSIColoredPrinters]] git-tree-sha1 = "574baf8110975760d391c710b6341da1afa48d8c" uuid = "a4c015fc-c6ff-483c-b24f-f7ea428134e9" version = "0.0.1" [[AbstractPlutoDingetjes]] deps = ["Pkg"] git-tree-sha1 = "abb72771fd8895a7ebd83d5632dc4b989b022b5b" uuid = "6e696c72-6542-2067-7265-42206c756150" version = "1.1.2" [[ArgTools]] uuid = "0dad84c5-d112-42e6-8d28-ef12dabb789f" [[ArnoldiMethod]] deps = ["LinearAlgebra", "Random", "StaticArrays"] git-tree-sha1 = "62e51b39331de8911e4a7ff6f5aaf38a5f4cc0ae" uuid = "ec485272-7323-5ecc-a04f-4719b315124d" version = "0.2.0" [[Artifacts]] uuid = "56f22d72-fd6d-98f1-02f0-08ddc0907c33" [[Base64]] uuid = "2a0f44e3-6c83-55bd-87e4-b1978d98bd5f" [[BinaryProvider]] deps = ["Libdl", "Logging", "SHA"] git-tree-sha1 = "ecdec412a9abc8db54c0efc5548c64dfce072058" uuid = "b99e7846-7c00-51b0-8f62-c81ae34c0232" version = "0.5.10" [[Bio3DView]] deps = ["Requires"] git-tree-sha1 = "7f472efd9b6af772307dd017f9deeff2a243754f" uuid = "99c8bb3a-9d13-5280-9740-b4880ed9c598" version = "0.1.3" [[CSV]] deps = ["Dates", "Mmap", "Parsers", "PooledArrays", "SentinelArrays", "Tables", "Unicode"] git-tree-sha1 = "b83aa3f513be680454437a0eee21001607e5d983" uuid = "336ed68f-0bac-5ca0-87d4-7b16caf5d00b" version = "0.8.5" [[CategoricalArrays]] deps = ["DataAPI", "Future", "JSON", "Missings", "Printf", "Statistics", "StructTypes", "Unicode"] git-tree-sha1 = "18d7f3e82c1a80dd38c16453b8fd3f0a7db92f23" uuid = "324d7699-5711-5eae-9e2f-1d82baa6b597" version = "0.9.7" [[ChainRulesCore]] deps = ["Compat", "LinearAlgebra", "SparseArrays"] git-tree-sha1 = "4c26b4e9e91ca528ea212927326ece5918a04b47" uuid = "d360d2e6-b24c-11e9-a2a3-2a2ae2dbcce4" version = "1.11.2" [[ChangesOfVariables]] deps = ["LinearAlgebra", "Test"] git-tree-sha1 = "9a1d594397670492219635b35a3d830b04730d62" uuid = "9e997f8a-9a97-42d5-a9f1-ce6bfc15e2c0" version = "0.1.1" [[Compat]] deps = ["Base64", "Dates", "DelimitedFiles", "Distributed", "InteractiveUtils", "LibGit2", "Libdl", "LinearAlgebra", "Markdown", "Mmap", "Pkg", "Printf", "REPL", "Random", "SHA", "Serialization", "SharedArrays", "Sockets", "SparseArrays", "Statistics", "Test", "UUIDs", "Unicode"] git-tree-sha1 = "dce3e3fea680869eaa0b774b2e8343e9ff442313" uuid = "34da2185-b29b-5c13-b0c7-acf172513d20" version = "3.40.0" [[Conda]] deps = ["Downloads", "JSON", "VersionParsing"] git-tree-sha1 = "6cdc8832ba11c7695f494c9d9a1c31e90959ce0f" uuid = "8f4d0f93-b110-5947-807f-2305c1781a2d" version = "1.6.0" [[Configurations]] deps = ["ExproniconLite", "OrderedCollections", "TOML"] git-tree-sha1 = "79e812c535bb9780ba00f3acba526bde5652eb13" uuid = "5218b696-f38b-4ac9-8b61-a12ec717816d" version = "0.16.6" [[Crayons]] git-tree-sha1 = "3f71217b538d7aaee0b69ab47d9b7724ca8afa0d" uuid = "a8cc5b0e-0ffa-5ad4-8c14-923d3ee1735f" version = "4.0.4" [[DataAPI]] git-tree-sha1 = "cc70b17275652eb47bc9e5f81635981f13cea5c8" uuid = "9a962f9c-6df0-11e9-0e5d-c546b8b5ee8a" version = "1.9.0" [[DataFrames]] deps = ["CategoricalArrays", "Compat", "DataAPI", "Future", "InvertedIndices", "IteratorInterfaceExtensions", "LinearAlgebra", "Markdown", "Missings", "PooledArrays", "PrettyTables", "Printf", "REPL", "Reexport", "SortingAlgorithms", "Statistics", "TableTraits", "Tables", "Unicode"] git-tree-sha1 = "d50972453ef464ddcebdf489d11885468b7b83a3" uuid = "a93c6f00-e57d-5684-b7b6-d8193f3e46c0" version = "0.22.7" [[DataStructures]] deps = ["Compat", "InteractiveUtils", "OrderedCollections"] git-tree-sha1 = "7d9d316f04214f7efdbb6398d545446e246eff02" uuid = "864edb3b-99cc-5e75-8d2d-829cb0a9cfe8" version = "0.18.10" [[DataValueInterfaces]] git-tree-sha1 = "bfc1187b79289637fa0ef6d4436ebdfe6905cbd6" uuid = "e2d170a0-9d28-54be-80f0-106bbe20a464" version = "1.0.0" [[Dates]] deps = ["Printf"] uuid = "ade2ca70-3891-5945-98fb-dc099432e06a" [[DelimitedFiles]] deps = ["Mmap"] uuid = "8bb1440f-4735-579b-a4ab-409b98df4dab" [[Distributed]] deps = ["Random", "Serialization", "Sockets"] uuid = "8ba89e20-285c-5b6f-9357-94700520ee1b" [[DocStringExtensions]] deps = ["LibGit2"] git-tree-sha1 = "b19534d1895d702889b219c382a6e18010797f0b" uuid = "ffbed154-4ef7-542d-bbb7-c09d3a79fcae" version = "0.8.6" [[Documenter]] deps = ["ANSIColoredPrinters", "Base64", "Dates", "DocStringExtensions", "IOCapture", "InteractiveUtils", "JSON", "LibGit2", "Logging", "Markdown", "REPL", "Test", "Unicode"] git-tree-sha1 = "f425293f7e0acaf9144de6d731772de156676233" uuid = "e30172f5-a6a5-5a46-863b-614d45cd2de4" version = "0.27.10" [[Downloads]] deps = ["ArgTools", "LibCURL", "NetworkOptions"] uuid = "f43a241f-c20a-4ad4-852c-f6b1247861c6" [[ExproniconLite]] git-tree-sha1 = "8b08cc88844e4d01db5a2405a08e9178e19e479e" uuid = "55351af7-c7e9-48d6-89ff-24e801d99491" version = "0.6.13" [[FileIO]] deps = ["Pkg", "Requires", "UUIDs"] git-tree-sha1 = "2db648b6712831ecb333eae76dbfd1c156ca13bb" uuid = "5789e2e9-d7fb-5bc7-8068-2c6fae9b9549" version = "1.11.2" [[FileWatching]] uuid = "7b1f6079-737a-58dc-b8bc-7a2ca5c1b5ee" [[Formatting]] deps = ["Printf"] git-tree-sha1 = "8339d61043228fdd3eb658d86c926cb282ae72a8" uuid = "59287772-0a20-5a39-b81b-1366585eb4c0" version = "0.4.2" [[FromFile]] git-tree-sha1 = "81e918d0ed5978fcdacd06b7c64c0c5074c4d55a" uuid = "ff7dd447-1dcb-4ce3-b8ac-22a812192de7" version = "0.1.2" [[Future]] deps = ["Random"] uuid = "9fa8497b-333b-5362-9e8d-4d0656e87820" [[FuzzyCompletions]] deps = ["REPL"] git-tree-sha1 = "2cc2791b324e8ed387a91d7226d17be754e9de61" uuid = "fb4132e2-a121-4a70-b8a1-d5b831dcdcc2" version = "0.4.3" [[GitHubActions]] deps = ["JSON", "Logging"] git-tree-sha1 = "56e01ec63d13e1cf015d9ff586156eae3cc7cd6f" uuid = "6b79fd1a-b13a-48ab-b6b0-aaee1fee41df" version = "0.1.4" [[Graphs]] deps = ["ArnoldiMethod", "DataStructures", "Distributed", "Inflate", "LinearAlgebra", "Random", "SharedArrays", "SimpleTraits", "SparseArrays", "Statistics"] git-tree-sha1 = "92243c07e786ea3458532e199eb3feee0e7e08eb" uuid = "86223c79-3864-5bf0-83f7-82e725a168b6" version = "1.4.1" [[HTTP]] deps = ["Base64", "Dates", "IniFile", "Logging", "MbedTLS", "NetworkOptions", "Sockets", "URIs"] git-tree-sha1 = "0fa77022fe4b511826b39c894c90daf5fce3334a" uuid = "cd3eb016-35fb-5094-929b-558a96fad6f3" version = "0.9.17" [[Hyperscript]] deps = ["Test"] git-tree-sha1 = "8d511d5b81240fc8e6802386302675bdf47737b9" uuid = "47d2ed2b-36de-50cf-bf87-49c2cf4b8b91" version = "0.0.4" [[HypertextLiteral]] git-tree-sha1 = "2b078b5a615c6c0396c77810d92ee8c6f470d238" uuid = "ac1192a8-f4b3-4bfe-ba22-af5b92cd3ab2" version = "0.9.3" [[IOCapture]] deps = ["Logging", "Random"] git-tree-sha1 = "f7be53659ab06ddc986428d3a9dcc95f6fa6705a" uuid = "b5f81e59-6552-4d32-b1f0-c071b021bf89" version = "0.2.2" [[Inflate]] git-tree-sha1 = "f5fc07d4e706b84f72d54eedcc1c13d92fb0871c" uuid = "d25df0c9-e2be-5dd7-82c8-3ad0b3e990b9" version = "0.1.2" [[IniFile]] deps = ["Test"] git-tree-sha1 = "098e4d2c533924c921f9f9847274f2ad89e018b8" uuid = "83e8ac13-25f8-5344-8a64-a9f2b223428f" version = "0.5.0" [[InteractiveUtils]] deps = ["Markdown"] uuid = "b77e0a4c-d291-57a0-90e8-8db25a27a240" [[InverseFunctions]] deps = ["Test"] git-tree-sha1 = "a7254c0acd8e62f1ac75ad24d5db43f5f19f3c65" uuid = "3587e190-3f89-42d0-90ee-14403ec27112" version = "0.1.2" [[InvertedIndices]] git-tree-sha1 = "bee5f1ef5bf65df56bdd2e40447590b272a5471f" uuid = "41ab1584-1d38-5bbf-9106-f11c6c58b48f" version = "1.1.0" [[IrrationalConstants]] git-tree-sha1 = "7fd44fd4ff43fc60815f8e764c0f352b83c49151" uuid = "92d709cd-6900-40b7-9082-c6be49f344b6" version = "0.1.1" [[IteratorInterfaceExtensions]] git-tree-sha1 = "a3f24677c21f5bbe9d2a714f95dcd58337fb2856" uuid = "82899510-4779-5014-852e-03e436cf321d" version = "1.0.0" [[JLD2]] deps = ["DataStructures", "FileIO", "MacroTools", "Mmap", "Pkg", "Printf", "Reexport", "TranscodingStreams", "UUIDs"] git-tree-sha1 = "46b7834ec8165c541b0b5d1c8ba63ec940723ffb" uuid = "033835bb-8acc-5ee8-8aae-3f567f8a3819" version = "0.4.15" [[JSON]] deps = ["Dates", "Mmap", "Parsers", "Unicode"] git-tree-sha1 = "8076680b162ada2a031f707ac7b4953e30667a37" uuid = "682c06a0-de6a-54ab-a142-c8b1cf79cde6" version = "0.21.2" [[LibCURL]] deps = ["LibCURL_jll", "MozillaCACerts_jll"] uuid = "b27032c2-a3e7-50c8-80cd-2d36dbcbfd21" [[LibCURL_jll]] deps = ["Artifacts", "LibSSH2_jll", "Libdl", "MbedTLS_jll", "Zlib_jll", "nghttp2_jll"] uuid = "deac9b47-8bc7-5906-a0fe-35ac56dc84c0" [[LibGit2]] deps = ["Base64", "NetworkOptions", "Printf", "SHA"] uuid = "76f85450-5226-5b5a-8eaa-529ad045b433" [[LibSSH2_jll]] deps = ["Artifacts", "Libdl", "MbedTLS_jll"] uuid = "29816b5a-b9ab-546f-933c-edad1886dfa8" [[Libdl]] uuid = "8f399da3-3557-5675-b5ff-fb832c97cbdb" [[LinearAlgebra]] deps = ["Libdl"] uuid = "37e2e46d-f89d-539d-b4ee-838fcccc9c8e" [[LogExpFunctions]] deps = ["ChainRulesCore", "ChangesOfVariables", "DocStringExtensions", "InverseFunctions", "IrrationalConstants", "LinearAlgebra"] git-tree-sha1 = "be9eef9f9d78cecb6f262f3c10da151a6c5ab827" uuid = "2ab3a3ac-af41-5b50-aa03-7779005ae688" version = "0.3.5" [[Logging]] uuid = "56ddb016-857b-54e1-b83d-db4d58db5568" [[MacroTools]] deps = ["Markdown", "Random"] git-tree-sha1 = "3d3e902b31198a27340d0bf00d6ac452866021cf" uuid = "1914dd2f-81c6-5fcd-8719-6d5c9610ff09" version = "0.5.9" [[Markdown]] deps = ["Base64"] uuid = "d6f4376e-aef5-505a-96c1-9c027394607a" [[MbedTLS]] deps = ["Dates", "MbedTLS_jll", "Random", "Sockets"] git-tree-sha1 = "1c38e51c3d08ef2278062ebceade0e46cefc96fe" uuid = "739be429-bea8-5141-9913-cc70e7f3736d" version = "1.0.3" [[MbedTLS_jll]] deps = ["Artifacts", "Libdl"] uuid = "c8ffd9c3-330d-5841-b78e-0817d7145fa1" [[MetaGraphs]] deps = ["Graphs", "JLD2", "Random"] git-tree-sha1 = "2af69ff3c024d13bde52b34a2a7d6887d4e7b438" uuid = "626554b9-1ddb-594c-aa3c-2596fe9399a5" version = "0.7.1" [[Missings]] deps = ["DataAPI"] git-tree-sha1 = "f8c673ccc215eb50fcadb285f522420e29e69e1c" uuid = "e1d29d7a-bbdc-5cf2-9ac0-f12de2c33e28" version = "0.4.5" [[Mmap]] uuid = "a63ad114-7e13-5084-954f-fe012c677804" [[MozillaCACerts_jll]] uuid = "14a3606d-f60d-562e-9121-12d972cd8159" [[MsgPack]] deps = ["Serialization"] git-tree-sha1 = "a8cbf066b54d793b9a48c5daa5d586cf2b5bd43d" uuid = "99f44e22-a591-53d1-9472-aa23ef4bd671" version = "1.1.0" [[NetworkOptions]] uuid = "ca575930-c2e3-43a9-ace4-1e988b2c1908" [[OrderedCollections]] git-tree-sha1 = "85f8e6578bf1f9ee0d11e7bb1b1456435479d47c" uuid = "bac558e1-5e72-5ebc-8fee-abe8a469f55d" version = "1.4.1" [[Parsers]] deps = ["Dates"] git-tree-sha1 = "bfd7d8c7fd87f04543810d9cbd3995972236ba1b" uuid = "69de0a69-1ddd-5017-9359-2bf0b02dc9f0" version = "1.1.2" [[Pkg]] deps = ["Artifacts", "Dates", "Downloads", "LibGit2", "Libdl", "Logging", "Markdown", "Printf", "REPL", "Random", "SHA", "Serialization", "TOML", "Tar", "UUIDs", "p7zip_jll"] uuid = "44cfe95a-1eb2-52ea-b672-e2afdf69b78f" [[Pluto]] deps = ["Base64", "Configurations", "Dates", "Distributed", "FileWatching", "FuzzyCompletions", "HTTP", "InteractiveUtils", "Logging", "Markdown", "MsgPack", "Pkg", "REPL", "Sockets", "TableIOInterface", "Tables", "UUIDs"] git-tree-sha1 = "669c67f837da26719ff9102cd9b193e0d2114472" uuid = "c3e4b0f8-55cb-11ea-2926-15256bba5781" version = "0.17.3" [[PlutoSliderServer]] deps = ["Base64", "Configurations", "Distributed", "FromFile", "GitHubActions", "HTTP", "Logging", "Pkg", "Pluto", "SHA", "Sockets", "TOML", "UUIDs"] git-tree-sha1 = "ed9660bb2c9eee9d389601bd80a10cee3dd64f0b" uuid = "2fc8631c-6f24-4c5b-bca7-cbb509c42db4" version = "0.2.7" [[PlutoUI]] deps = ["AbstractPlutoDingetjes", "Base64", "Dates", "Hyperscript", "HypertextLiteral", "IOCapture", "InteractiveUtils", "JSON", "Logging", "Markdown", "Random", "Reexport", "UUIDs"] git-tree-sha1 = "b68904528fd538f1cb6a3fbc44d2abdc498f9e8e" uuid = "7f904dfe-b85e-4ff6-b463-dae2292396a8" version = "0.7.21" [[PooledArrays]] deps = ["DataAPI", "Future"] git-tree-sha1 = "db3a23166af8aebf4db5ef87ac5b00d36eb771e2" uuid = "2dfb63ee-cc39-5dd5-95bd-886bf059d720" version = "1.4.0" [[PoreMatMod]] deps = ["Bio3DView", "CSV", "DataFrames", "Graphs", "LinearAlgebra", "MetaGraphs", "Pluto", "PlutoSliderServer", "PlutoUI", "Reexport", "StatsBase", "Xtals"] git-tree-sha1 = "53bccf1b4a3c0b5e3c7d70cbc93a6bbda802edaa" uuid = "2de0d7f0-0963-4438-8bc8-7e7ffe3dc69a" version = "0.2.7" [[PrettyTables]] deps = ["Crayons", "Formatting", "Markdown", "Reexport", "Tables"] git-tree-sha1 = "574a6b3ea95f04e8757c0280bb9c29f1a5e35138" uuid = "08abe8d2-0d0c-5749-adfa-8a2ac140af0d" version = "0.11.1" [[Printf]] deps = ["Unicode"] uuid = "de0858da-6303-5e67-8744-51eddeeeb8d7" [[PyCall]] deps = ["Conda", "Dates", "Libdl", "LinearAlgebra", "MacroTools", "Serialization", "VersionParsing"] git-tree-sha1 = "4ba3651d33ef76e24fef6a598b63ffd1c5e1cd17" uuid = "438e738f-606a-5dbb-bf0a-cddfbfd45ab0" version = "1.92.5" [[REPL]] deps = ["InteractiveUtils", "Markdown", "Sockets", "Unicode"] uuid = "3fa0cd96-eef1-5676-8a61-b3b8758bbffb" [[Random]] deps = ["Serialization"] uuid = "9a3f8284-a2c9-5f02-9a11-845980a1fd5c" [[Reexport]] git-tree-sha1 = "45e428421666073eab6f2da5c9d310d99bb12f9b" uuid = "189a3867-3050-52da-a836-e630ba90ab69" version = "1.2.2" [[Requires]] deps = ["UUIDs"] git-tree-sha1 = "4036a3bd08ac7e968e27c203d45f5fff15020621" uuid = "ae029012-a4dd-5104-9daa-d747884805df" version = "1.1.3" [[SHA]] uuid = "ea8e919c-243c-51af-8825-aaa63cd721ce" [[SentinelArrays]] deps = ["Dates", "Random"] git-tree-sha1 = "f45b34656397a1f6e729901dc9ef679610bd12b5" uuid = "91c51154-3ec4-41a3-a24f-3f23e20d615c" version = "1.3.8" [[Serialization]] uuid = "9e88b42a-f829-5b0c-bbe9-9e923198166b" [[SharedArrays]] deps = ["Distributed", "Mmap", "Random", "Serialization"] uuid = "1a1011a3-84de-559e-8e89-a11a2f7dc383" [[SimpleTraits]] deps = ["InteractiveUtils", "MacroTools"] git-tree-sha1 = "5d7e3f4e11935503d3ecaf7186eac40602e7d231" uuid = "699a6c99-e7fa-54fc-8d76-47d257e15c1d" version = "0.9.4" [[Sockets]] uuid = "6462fe0b-24de-5631-8697-dd941f90decc" [[SortingAlgorithms]] deps = ["DataStructures", "Random", "Test"] git-tree-sha1 = "03f5898c9959f8115e30bc7226ada7d0df554ddd" uuid = "a2af1166-a08f-5f64-846c-94a0d3cef48c" version = "0.3.1" [[SparseArrays]] deps = ["LinearAlgebra", "Random"] uuid = "2f01184e-e22b-5df5-ae63-d93ebab69eaf" [[StaticArrays]] deps = ["LinearAlgebra", "Random", "Statistics"] git-tree-sha1 = "3c76dde64d03699e074ac02eb2e8ba8254d428da" uuid = "90137ffa-7385-5640-81b9-e52037218182" version = "1.2.13" [[Statistics]] deps = ["LinearAlgebra", "SparseArrays"] uuid = "10745b16-79ce-11e8-11f9-7d13ad32a3b2" [[StatsAPI]] git-tree-sha1 = "0f2aa8e32d511f758a2ce49208181f7733a0936a" uuid = "82ae8749-77ed-4fe6-ae5f-f523153014b0" version = "1.1.0" [[StatsBase]] deps = ["DataAPI", "DataStructures", "LinearAlgebra", "LogExpFunctions", "Missings", "Printf", "Random", "SortingAlgorithms", "SparseArrays", "Statistics", "StatsAPI"] git-tree-sha1 = "2bb0cb32026a66037360606510fca5984ccc6b75" uuid = "2913bbd2-ae8a-5f71-8c99-4fb6c76f3a91" version = "0.33.13" [[StructTypes]] deps = ["Dates", "UUIDs"] git-tree-sha1 = "d24a825a95a6d98c385001212dc9020d609f2d4f" uuid = "856f2bd8-1eba-4b0a-8007-ebc267875bd4" version = "1.8.1" [[TOML]] deps = ["Dates"] uuid = "fa267f1f-6049-4f14-aa54-33bafae1ed76" [[TableIOInterface]] git-tree-sha1 = "9a0d3ab8afd14f33a35af7391491ff3104401a35" uuid = "d1efa939-5518-4425-949f-ab857e148477" version = "0.1.6" [[TableTraits]] deps = ["IteratorInterfaceExtensions"] git-tree-sha1 = "c06b2f539df1c6efa794486abfb6ed2022561a39" uuid = "3783bdb8-4a98-5b6b-af9a-565f29a5fe9c" version = "1.0.1" [[Tables]] deps = ["DataAPI", "DataValueInterfaces", "IteratorInterfaceExtensions", "LinearAlgebra", "TableTraits", "Test"] git-tree-sha1 = "fed34d0e71b91734bf0a7e10eb1bb05296ddbcd0" uuid = "bd369af6-aec1-5ad0-b16a-f7cc5008161c" version = "1.6.0" [[Tar]] deps = ["ArgTools", "SHA"] uuid = "a4e569a6-e804-4fa4-b0f3-eef7a1d5b13e" [[Test]] deps = ["InteractiveUtils", "Logging", "Random", "Serialization"] uuid = "8dfed614-e22c-5e08-85e1-65c5234f0b40" [[TranscodingStreams]] deps = ["Random", "Test"] git-tree-sha1 = "216b95ea110b5972db65aa90f88d8d89dcb8851c" uuid = "3bb67fe8-82b1-5028-8e26-92a6c54297fa" version = "0.9.6" [[URIs]] git-tree-sha1 = "97bbe755a53fe859669cd907f2d96aee8d2c1355" uuid = "5c2747f8-b7ea-4ff2-ba2e-563bfd36b1d4" version = "1.3.0" [[UUIDs]] deps = ["Random", "SHA"] uuid = "cf7118a7-6976-5b1a-9a39-7adc72f591a4" [[Unicode]] uuid = "4ec0a83e-493e-50e2-b9ac-8f72acf5a8f5" [[VersionParsing]] git-tree-sha1 = "e575cf85535c7c3292b4d89d89cc29e8c3098e47" uuid = "81def892-9a0e-5fdd-b105-ffc91e053289" version = "1.2.1" [[Xtals]] deps = ["Bio3DView", "CSV", "DataFrames", "Documenter", "Graphs", "JLD2", "LinearAlgebra", "Logging", "MetaGraphs", "Printf", "PyCall", "UUIDs"] git-tree-sha1 = "3147503cd35c4f2b3744fe36301c7de3efee98c5" uuid = "ede5f01d-793e-4c47-9885-c447d1f18d6d" version = "0.3.9" [[Zlib_jll]] deps = ["Libdl"] uuid = "83775a58-1f1d-513f-b197-d71354ab007a" [[nghttp2_jll]] deps = ["Artifacts", "Libdl"] uuid = "8e850ede-7688-5339-a07c-302acd2aaf8d" [[p7zip_jll]] deps = ["Artifacts", "Libdl"] uuid = "3f19e933-33d8-53b3-aaab-bd5110c3b7a0" """ # ╔═╡ Cell order: # ╠═2065e50f-1bba-4182-ae16-70feecaa1942 # ╠═5e702404-3665-411e-a4d2-cb7fba303c91 # ╠═52318187-a575-4864-8185-416faeea27ab # ╠═6922e27b-b848-418b-bf1a-df17315baa80 # ╠═418a7421-92ed-406f-9578-34187529c307 # ╠═f7d3cb8c-9d12-4f78-94c6-30a308648e69 # ╠═90f53a39-89b3-41c5-ad8b-c0683b96c9e4 # ╠═58b79260-8a7a-4ca4-bdee-4c3c463334ba # ╠═b835a642-0a24-4796-8e01-e3c4041a6bff # ╠═3c003a65-3983-42ed-b445-5618ae21a4a3 # ╠═caf947dc-11bd-455d-8fd6-434fa52edada # ╟─00000000-0000-0000-0000-000000000001 # ╟─00000000-0000-0000-0000-000000000002
PoreMatMod
https://github.com/SimonEnsemble/PoreMatMod.jl.git
[ "MIT" ]
0.2.20
131cd2b2ae892b6949a0b9aa375c689802e99c9d
code
3853
### A Pluto.jl notebook ### # v0.17.3 using Markdown using InteractiveUtils # ╔═╡ 5b182574-5656-4035-85c1-89d1c92ff719 begin import Pkg Pkg.add(; url="https://github.com/SimonEnsemble/PoreMatMod.jl") end # ╔═╡ 1a73bdc4-9394-4212-9ae8-3b8654a496c0 using PoreMatMod # ╔═╡ f05cdf05-1661-41c7-863d-15a436791ac4 using PoreMatMod.ExampleHelpers # ╔═╡ 0b644231-c25a-4d9f-895d-16fc612613ec md"# Azepine" # ╔═╡ 916b9bc9-c6c9-444b-9281-e3709c248b75 begin benzodiazepine_parent = moiety("benzodiazepine.xyz") remove_bonds!(benzodiazepine_parent) local new_box = replicate(unit_cube(), (20, 20, 20)) local new_atoms = Frac(Cart(benzodiazepine_parent.atoms, benzodiazepine_parent.box), new_box) local new_charges = Frac(Cart(benzodiazepine_parent.charges, benzodiazepine_parent.box), new_box) benzodiazepine_parent = Crystal(benzodiazepine_parent.name, new_box, new_atoms, new_charges) infer_bonds!(benzodiazepine_parent, false) benzo_fragment = moiety("benzo_fragment.xyz") chloro_benzo_fragment = moiety("chloro_benzo_fragment.xyz") diazepine_fragment = moiety("diazepine_fragment.xyz") N_methyl_diazepine = moiety("N_methyl_diazepine.xyz") end # ╔═╡ da1f22fb-8e16-439b-934a-280ed31635df begin intermediate = replace(benzodiazepine_parent, diazepine_fragment => N_methyl_diazepine) diazepam = replace(intermediate, benzo_fragment => chloro_benzo_fragment) end # ╔═╡ 7d73fa2e-9ee5-4002-97a6-496f4d186512 begin local temp = deepcopy(intermediate) translate_by!(temp.atoms.coords, Frac([0.5, 0.5, 0.5])) wrap!(temp) write_cif(temp, "intermediate.cif") local temp = deepcopy(diazepam) translate_by!(temp.atoms.coords, Frac([0.5, 0.5, 0.5])) wrap!(temp) write_cif(temp, "diazepam.cif") end # ╔═╡ 6fe41bf5-cf36-4313-8886-cfca2825c6cd md"# Slab" # ╔═╡ faff7bea-0d3a-45fe-8a88-b288b390e35b function read_poscar(filename::String)::Crystal filedata = readlines(filename) box_matrix = Matrix(reduce(hcat, [parse.(Float64, row) for row in split.(filedata[3:5])])') species = Symbol.(split(filedata[6])) atom_counts = parse.(Int, split(filedata[7])) nb_atoms = sum(atom_counts) species_vec = reduce( vcat, [[element for _ in 1:atom_counts[i]] for (i, element) in enumerate(species)] ) box = Box(box_matrix) coords = Frac( reduce(hcat, [parse.(Float64, row) for row in split.(filedata[9:(nb_atoms + 8)])]) ) atoms = Atoms(nb_atoms, species_vec, coords) charges = Charges(nb_atoms, zeros(nb_atoms), coords) return Crystal(filename, box, atoms, charges) end # ╔═╡ db771098-8097-4748-85c7-ece4faed4e43 begin poscar = read_poscar("data/crystals/POSCAR") infer_bonds!(poscar, true) end # ╔═╡ 35c1c1d5-ea01-4d15-80c3-63330744b037 write_cif(poscar, "poscar.cif") # ╔═╡ b09ea1c5-67b5-4953-8fef-c5144f09186b hydrated_Pd2 = moiety("hydrated_Pd2.xyz") # ╔═╡ b7a6a162-39cc-4137-b803-94c2a5326b6e OA_Pd2 = moiety("OA_Pd2.xyz") # ╔═╡ e232cfc8-a954-4089-be59-a9fa5b3a2736 oxidative_addition = replace(poscar, hydrated_Pd2 => OA_Pd2) # ╔═╡ 908ab709-c12a-455b-994b-89e600d47b06 write_cif(oxidative_addition, "oxidative_addition.cif") # ╔═╡ Cell order: # ╟─5b182574-5656-4035-85c1-89d1c92ff719 # ╠═1a73bdc4-9394-4212-9ae8-3b8654a496c0 # ╠═f05cdf05-1661-41c7-863d-15a436791ac4 # ╟─0b644231-c25a-4d9f-895d-16fc612613ec # ╠═916b9bc9-c6c9-444b-9281-e3709c248b75 # ╠═da1f22fb-8e16-439b-934a-280ed31635df # ╠═7d73fa2e-9ee5-4002-97a6-496f4d186512 # ╟─6fe41bf5-cf36-4313-8886-cfca2825c6cd # ╠═faff7bea-0d3a-45fe-8a88-b288b390e35b # ╠═db771098-8097-4748-85c7-ece4faed4e43 # ╠═35c1c1d5-ea01-4d15-80c3-63330744b037 # ╠═b09ea1c5-67b5-4953-8fef-c5144f09186b # ╠═b7a6a162-39cc-4137-b803-94c2a5326b6e # ╠═e232cfc8-a954-4089-be59-a9fa5b3a2736 # ╠═908ab709-c12a-455b-994b-89e600d47b06
PoreMatMod
https://github.com/SimonEnsemble/PoreMatMod.jl.git
[ "MIT" ]
0.2.20
131cd2b2ae892b6949a0b9aa375c689802e99c9d
code
5936
module ExampleHelpers using Graphs, Logging, Markdown, Reexport, MetaGraphs, LinearAlgebra using Bio3DView: viewfile @reexport using Xtals include("moiety.jl") function __init__() # list of required files for examples global required_files = Dict( :crystals => [ "IRMOF-1.cif", "SIFSIX-2-Cu-i.cif", "IRMOF-1_noH.cif", "UiO-66.cif", "NiPyC_fragment_trouble.cif" ], :moieties => [ "2-!-p-phenylene.xyz", "2-acetylamido-p-phenylene.xyz", "1,4-C-phenylene_noH.xyz", "1,4-C-phenylene.xyz", "4-pyridyl.xyz", "acetylene.xyz", "BDC.xyz", "disordered_ligand!.xyz", "formate_caps.xyz", "SBU.xyz" ] ) rc[:r_tag] = '!' return rc[:paths][:moieties] = joinpath(rc[:paths][:data], "moieties") end function check_example_data() # make sure directories are present and the right files for the examples for file_type in [:moieties, :crystals] # make sure directories exist if !isdir(rc[:paths][file_type]) @warn "$(rc[:paths][file_type]) directory not present; creating it." mkpath(rc[:paths][file_type]) end for required_file in required_files[file_type] where_it_shld_be = joinpath(rc[:paths][file_type], required_file) if !isfile(where_it_shld_be) @warn "$where_it_shld_be not present; copying it from src." where_it_is = normpath( joinpath( @__DIR__, "..", "examples", "data", String(file_type), required_file ) ) cp(where_it_is, where_it_shld_be) end end end end function input_file_message() return md""" !!! note \"input files for the example Pluto notebooks\" if the input files required for the example Pluto notebooks are not present in the correct folders, `ExampleHelpers` automatically copies the required input files from the `examples/data` directory of the `PoreMatMod.jl` source code to the folders `rc[:paths][:crystals]` and `rc[:paths][:moieties]`. all input files for the examples are also on Github [here](https://github.com/SimonEnsemble/PoreMatMod.jl/tree/master/examples/data). n.b. you may change the folders from which `PoreMatMod.jl` reads input files by setting `rc[:paths][:crystals]` and `rc[:paths][:moieties]` as the desired path. for example, if you desire to store your crystal structures in a folder `~/my_xtals/` (a folder in your home directory), set: ```julia rc[:paths][:crystals] = joinpath(homedir(), \"my_xtals\"). ``` """ end function xtal_folder_message() return md""" 📕 folder from which `PoreMatMod.jl` reads `.cif` files that represent crystal structures: """ end function moiety_folder_message() return md""" 📕 folder from which `PoreMatMod.jl` reads `.xyz` files that represent fragments/moities: """ end function fragment_construction_note() return md""" !!! note \"how can we construct the query/replacement fragments?\" two options we use: (1) use Avogadro as a molecule builder/editor and export it as `.xyz` or (2) cut the appropriate fragment out of the MOF crystal structure in the `.cif` file using e.g. iRASPA. """ end write_cif_message() = md""" write the child crystal structure to file for downstream molecular simulations """ # function to visualize a crystal in the notebook function view_structure(xtal::Crystal; drop_cross_pb=true) # write the box mesh write_vtk(xtal.box, "temp_unit_cell.vtk") # drop symmetry info and charges x = deepcopy( Crystal( xtal.name, xtal.box, xtal.atoms, Charges{Frac}(0), xtal.bonds, Xtals.SymmetryInfo() ) ) # drop cross-boundary bonds (they don't render correctly) if drop_cross_pb # drop the cross-boundary bonds drop_cross_pb_bonds!(x) end write_mol2(x; filename="temp_view.mol2") output = nothing try output = viewfile("temp_view.mol2", "mol2"; vtkcell="temp_unit_cell.vtk") catch output = viewfile("temp_view.mol2", "mol2"; vtkcell="temp_unit_cell.vtk", html=true) finally rm("temp_unit_cell.vtk") rm("temp_view.mol2") end return output end # function to visualize a moiety in the notebook function view_query_or_replacement(filename::String) moty = moiety(filename) # load the moiety for i in 1:(moty.atoms.n) # fix H! atom bonding bug (tagged atom covalent radius too large in JMol) if moty.atoms.species[i] == :H! moty.atoms.species[i] = :He end if moty.atoms.species[i] == :C! moty.atoms.species[i] = :Ne end end # write temporary modified file, view it, and delete it filename = joinpath(rc[:paths][:moieties], "temp_" * filename) write_xyz(moty, filename) output = nothing try output = viewfile(filename, "xyz") catch output = viewfile(filename, "xyz"; html=true) finally rm(filename) end return output end # function to print the contents of a moiety file function display_query_or_replacement_file(filename::String) filename = joinpath(rc[:paths][:moieties], filename) println("contents of: ", filename, "\n") open(filename, "r") do io return print(read(io, String)) end end export display_query_or_replacement_file, view_query_or_replacement, view_structure, write_cif_message, xtal_folder_message, moiety_folder_message, fragment_construction_note, input_file_message, check_example_data end
PoreMatMod
https://github.com/SimonEnsemble/PoreMatMod.jl.git
[ "MIT" ]
0.2.20
131cd2b2ae892b6949a0b9aa375c689802e99c9d
code
700
module PoreMatMod using DataFrames, Graphs, LinearAlgebra, MetaGraphs, Pluto, Reexport, StatsBase @reexport using Xtals using PrecompileSignatures: @precompile_signatures import Base.(∈), Base.show, Base.replace __init__() = add_bonding_rules(tagged_bonding_rules()) export # search.jl Search, substructure_search, nb_isomorphisms, nb_locations, nb_ori_at_loc, isomorphic_substructures, # replace.jl substructure_replace, # moiety.jl moiety, # misc.jl PoreMatModGO include("Ullmann.jl") include("moiety.jl") include("search.jl") include("replace.jl") include("ExampleHelpers.jl") include("misc.jl") @precompile_signatures(PoreMatMod) end
PoreMatMod
https://github.com/SimonEnsemble/PoreMatMod.jl.git
[ "MIT" ]
0.2.20
131cd2b2ae892b6949a0b9aa375c689802e99c9d
code
25484
### A Pluto.jl notebook ### # v0.18.2 using Markdown using InteractiveUtils # This Pluto notebook uses @bind for interactivity. When running this notebook outside of Pluto, the following 'mock version' of @bind gives bound variables a default value (instead of an error). macro bind(def, element) quote local iv = try Base.loaded_modules[Base.PkgId( Base.UUID("6e696c72-6542-2067-7265-42206c756150"), "AbstractPlutoDingetjes" )].Bonds.initial_value catch b -> missing end local el = $(esc(element)) global $(esc(def)) = Core.applicable(Base.get, el) ? Base.get(el) : iv(el) el end end # ╔═╡ 6c1969e0-02f5-11eb-3fa2-09931a63b1ac begin using PoreMatMod, PlutoUI, Bio3DView HOME = joinpath(homedir(), ".PoreMatModGO") rc[:paths][:crystals] = HOME rc[:paths][:moieties] = HOME if !isdir(HOME) mkdir(HOME) end cd(HOME) md""" # 💠 PoreMatModGO 🚀 This notebook interactively substitutes moieties within a crystal using a modified implementation of Ullmann's algorithm to perform substructure searches and applying singular value decomposition to align fragments of the generated materials. Read the docs [here](SimonEnsemble.github.io/PoreMatMod.jl). See the original publication on PoreMatMod.jl here: [(article)](https://doi.org/10.33774/chemrxiv-2021-vx5r3) [(GitHub)](https://github.com/SimonEnsemble/PoreMatMod.jl) """ end # ╔═╡ 5dc43a20-10b8-11eb-26dc-7fb98e9aeb1a md""" Adrian Henle, [Simon Ensemble](http://simonensemble.github.io), 2021 $(Resource("https://simonensemble.github.io/osu_logo.jpg", :width => 250)) """ # ╔═╡ 90696d20-10b7-11eb-20b5-6174faeaf613 @bind load_inputs Button("Reset") # ╔═╡ 50269ffe-02ef-11eb-0614-f11975d991fe begin load_inputs # input fields: query, replacement, xtal md""" ##### Input Files Parent Crystal $(@bind parent_crystal FilePicker()) Search Moiety $(@bind search_moiety FilePicker()) Replace Moiety $(@bind replace_moiety FilePicker()) """ end # ╔═╡ 33b1fb50-0f73-11eb-2ab2-9d2cb6c5a533 # write file input strings to files in temp directory begin # dict for tracking load status of inputs isloaded = Dict([:replacement => false, :query => false, :parent => false]) # replacement loader if !isnothing(replace_moiety) write("replacement.xyz", replace_moiety["data"]) replacement = moiety("replacement.xyz") isloaded[:replacement] = true end # query loader if !isnothing(search_moiety) write("query.xyz", search_moiety["data"]) query = moiety("query.xyz") isloaded[:query] = true end # xtal loader if !isnothing(parent_crystal) write("parent.cif", parent_crystal["data"]) xtal = Crystal("parent.cif"; check_overlap=false) Xtals.strip_numbers_from_atom_labels!(xtal) infer_bonds!(xtal, true) isloaded[:parent] = true end # run search and display terminal message if isloaded[:query] && isloaded[:parent] search = query ∈ xtal with_terminal() do @info "Search Results" isomorphisms = nb_isomorphisms(search) locations = nb_locations(search) end end end # ╔═╡ 415e9210-0f71-11eb-15c8-e7484b5be309 # choose replacement type if all(values(isloaded)) md""" ### Find/Replace Options Mode $(@bind replace_mode Select(["", "random replacement at each location", "random replacement at n random locations", "random replacement at specific locations", "specific replacements"])) """ end # ╔═╡ 3997c4d0-0f75-11eb-2976-c161879b8d0c # options populated w/ conditional logic based on mode selection if all(values(isloaded)) local output = nothing x = ["$(x)" for x in 1:nb_locations(search)] if replace_mode == "random replacement at each location" output = nothing elseif replace_mode == "random replacement at n random locations" output = md"Number of locations $(@bind nb_loc Slider(1:nb_locations(search)))" elseif replace_mode == "random replacement at specific locations" output = md"Locations $(@bind loc MultiSelect(x))" elseif replace_mode == "specific replacements" output = md""" Locations $(@bind loc MultiSelect(x)) Orientations $(@bind ori TextField()) """ end output end # ╔═╡ 69edca20-0f94-11eb-13ba-334438ca2406 if all(values(isloaded)) new_xtal_flag = true if replace_mode == "random replacement at each location" new_xtal = substructure_replace(search, replacement) elseif replace_mode == "random replacement at n random locations" && nb_loc > 0 new_xtal = substructure_replace(search, replacement; nb_loc=nb_loc) elseif replace_mode == "random replacement at specific locations" && loc ≠ [] new_xtal = substructure_replace(search, replacement; loc=[parse(Int, x) for x in loc]) elseif replace_mode == "specific replacements" if loc ≠ [] && ori ≠ "" && length(loc) == length(split(ori, ",")) new_xtal = substructure_replace( search, replacement; loc=[parse(Int, x) for x in loc], ori=[parse(Int, x) for x in split(ori, ",")] ) else new_xtal_flag = false end else new_xtal_flag = false end if new_xtal_flag with_terminal() do if replace_mode == "random replacement at each location" @info replace_mode new_xtal elseif replace_mode == "random replacement at n random locations" @info replace_mode nb_loc new_xtal elseif replace_mode == "random replacement at specific locations" @info replace_mode loc new_xtal elseif replace_mode == "specific replacements" @info replace_mode loc ori new_xtal end end end end; # ╔═╡ 5918f770-103d-11eb-0537-81036bd3e675 if all(values(isloaded)) && new_xtal_flag write_cif(new_xtal, "crystal.cif") write_xyz(new_xtal, "atoms.xyz") write_vtk(new_xtal.box, "unit_cell.vtk") write_bond_information(new_xtal, "bonds.vtk") no_pb = deepcopy(new_xtal) drop_cross_pb_bonds!(no_pb) write_mol2(new_xtal; filename="crystal.mol2") write_mol2(no_pb; filename="view.mol2") viewfile("view.mol2", "mol2"; vtkcell="unit_cell.vtk", axes=Axes(4, 0.25)) end # ╔═╡ 31832e30-1054-11eb-24ed-219fd3e236a1 if all(values(isloaded)) && new_xtal_flag download_cif = DownloadButton(read("crystal.cif"), "crystal.cif") download_box = DownloadButton(read("unit_cell.vtk"), "unit_cell.vtk") download_xyz = DownloadButton(read("atoms.xyz"), "atoms.xyz") download_bonds = DownloadButton(read("bonds.vtk"), "bonds.vtk") download_mol2 = DownloadButton(read("crystal.mol2"), "crystal.mol2") md""" ### Output Files Complete Crystal $download_mol2 $download_cif Components $download_xyz $download_bonds $download_box """ end # ╔═╡ 00000000-0000-0000-0000-000000000001 PLUTO_PROJECT_TOML_CONTENTS = """ [deps] Bio3DView = "99c8bb3a-9d13-5280-9740-b4880ed9c598" PlutoUI = "7f904dfe-b85e-4ff6-b463-dae2292396a8" PoreMatMod = "2de0d7f0-0963-4438-8bc8-7e7ffe3dc69a" [compat] Bio3DView = "~0.1.3" PlutoUI = "~0.7.14" PoreMatMod = "~0.2.0" """ # ╔═╡ 00000000-0000-0000-0000-000000000002 PLUTO_MANIFEST_TOML_CONTENTS = """ # This file is machine-generated - editing it directly is not advised [[ANSIColoredPrinters]] git-tree-sha1 = "574baf8110975760d391c710b6341da1afa48d8c" uuid = "a4c015fc-c6ff-483c-b24f-f7ea428134e9" version = "0.0.1" [[AbstractPlutoDingetjes]] deps = ["Pkg"] git-tree-sha1 = "abb72771fd8895a7ebd83d5632dc4b989b022b5b" uuid = "6e696c72-6542-2067-7265-42206c756150" version = "1.1.2" [[ArgTools]] uuid = "0dad84c5-d112-42e6-8d28-ef12dabb789f" [[ArnoldiMethod]] deps = ["LinearAlgebra", "Random", "StaticArrays"] git-tree-sha1 = "62e51b39331de8911e4a7ff6f5aaf38a5f4cc0ae" uuid = "ec485272-7323-5ecc-a04f-4719b315124d" version = "0.2.0" [[Artifacts]] uuid = "56f22d72-fd6d-98f1-02f0-08ddc0907c33" [[Base64]] uuid = "2a0f44e3-6c83-55bd-87e4-b1978d98bd5f" [[BinaryProvider]] deps = ["Libdl", "Logging", "SHA"] git-tree-sha1 = "ecdec412a9abc8db54c0efc5548c64dfce072058" uuid = "b99e7846-7c00-51b0-8f62-c81ae34c0232" version = "0.5.10" [[Bio3DView]] deps = ["Requires"] git-tree-sha1 = "7f472efd9b6af772307dd017f9deeff2a243754f" uuid = "99c8bb3a-9d13-5280-9740-b4880ed9c598" version = "0.1.3" [[CSV]] deps = ["Dates", "Mmap", "Parsers", "PooledArrays", "SentinelArrays", "Tables", "Unicode"] git-tree-sha1 = "b83aa3f513be680454437a0eee21001607e5d983" uuid = "336ed68f-0bac-5ca0-87d4-7b16caf5d00b" version = "0.8.5" [[CategoricalArrays]] deps = ["DataAPI", "Future", "JSON", "Missings", "Printf", "Statistics", "StructTypes", "Unicode"] git-tree-sha1 = "18d7f3e82c1a80dd38c16453b8fd3f0a7db92f23" uuid = "324d7699-5711-5eae-9e2f-1d82baa6b597" version = "0.9.7" [[ChainRulesCore]] deps = ["Compat", "LinearAlgebra", "SparseArrays"] git-tree-sha1 = "f885e7e7c124f8c92650d61b9477b9ac2ee607dd" uuid = "d360d2e6-b24c-11e9-a2a3-2a2ae2dbcce4" version = "1.11.1" [[ChangesOfVariables]] deps = ["LinearAlgebra", "Test"] git-tree-sha1 = "9a1d594397670492219635b35a3d830b04730d62" uuid = "9e997f8a-9a97-42d5-a9f1-ce6bfc15e2c0" version = "0.1.1" [[Compat]] deps = ["Base64", "Dates", "DelimitedFiles", "Distributed", "InteractiveUtils", "LibGit2", "Libdl", "LinearAlgebra", "Markdown", "Mmap", "Pkg", "Printf", "REPL", "Random", "SHA", "Serialization", "SharedArrays", "Sockets", "SparseArrays", "Statistics", "Test", "UUIDs", "Unicode"] git-tree-sha1 = "dce3e3fea680869eaa0b774b2e8343e9ff442313" uuid = "34da2185-b29b-5c13-b0c7-acf172513d20" version = "3.40.0" [[CompilerSupportLibraries_jll]] deps = ["Artifacts", "Libdl"] uuid = "e66e0078-7015-5450-92f7-15fbd957f2ae" [[Conda]] deps = ["JSON", "VersionParsing"] git-tree-sha1 = "299304989a5e6473d985212c28928899c74e9421" uuid = "8f4d0f93-b110-5947-807f-2305c1781a2d" version = "1.5.2" [[Configurations]] deps = ["ExproniconLite", "OrderedCollections", "TOML"] git-tree-sha1 = "79e812c535bb9780ba00f3acba526bde5652eb13" uuid = "5218b696-f38b-4ac9-8b61-a12ec717816d" version = "0.16.6" [[Crayons]] git-tree-sha1 = "3f71217b538d7aaee0b69ab47d9b7724ca8afa0d" uuid = "a8cc5b0e-0ffa-5ad4-8c14-923d3ee1735f" version = "4.0.4" [[DataAPI]] git-tree-sha1 = "cc70b17275652eb47bc9e5f81635981f13cea5c8" uuid = "9a962f9c-6df0-11e9-0e5d-c546b8b5ee8a" version = "1.9.0" [[DataFrames]] deps = ["CategoricalArrays", "Compat", "DataAPI", "Future", "InvertedIndices", "IteratorInterfaceExtensions", "LinearAlgebra", "Markdown", "Missings", "PooledArrays", "PrettyTables", "Printf", "REPL", "Reexport", "SortingAlgorithms", "Statistics", "TableTraits", "Tables", "Unicode"] git-tree-sha1 = "d50972453ef464ddcebdf489d11885468b7b83a3" uuid = "a93c6f00-e57d-5684-b7b6-d8193f3e46c0" version = "0.22.7" [[DataStructures]] deps = ["Compat", "InteractiveUtils", "OrderedCollections"] git-tree-sha1 = "7d9d316f04214f7efdbb6398d545446e246eff02" uuid = "864edb3b-99cc-5e75-8d2d-829cb0a9cfe8" version = "0.18.10" [[DataValueInterfaces]] git-tree-sha1 = "bfc1187b79289637fa0ef6d4436ebdfe6905cbd6" uuid = "e2d170a0-9d28-54be-80f0-106bbe20a464" version = "1.0.0" [[Dates]] deps = ["Printf"] uuid = "ade2ca70-3891-5945-98fb-dc099432e06a" [[DelimitedFiles]] deps = ["Mmap"] uuid = "8bb1440f-4735-579b-a4ab-409b98df4dab" [[Distributed]] deps = ["Random", "Serialization", "Sockets"] uuid = "8ba89e20-285c-5b6f-9357-94700520ee1b" [[DocStringExtensions]] deps = ["LibGit2"] git-tree-sha1 = "b19534d1895d702889b219c382a6e18010797f0b" uuid = "ffbed154-4ef7-542d-bbb7-c09d3a79fcae" version = "0.8.6" [[Documenter]] deps = ["ANSIColoredPrinters", "Base64", "Dates", "DocStringExtensions", "IOCapture", "InteractiveUtils", "JSON", "LibGit2", "Logging", "Markdown", "REPL", "Test", "Unicode"] git-tree-sha1 = "f425293f7e0acaf9144de6d731772de156676233" uuid = "e30172f5-a6a5-5a46-863b-614d45cd2de4" version = "0.27.10" [[Downloads]] deps = ["ArgTools", "LibCURL", "NetworkOptions"] uuid = "f43a241f-c20a-4ad4-852c-f6b1247861c6" [[ExproniconLite]] git-tree-sha1 = "8b08cc88844e4d01db5a2405a08e9178e19e479e" uuid = "55351af7-c7e9-48d6-89ff-24e801d99491" version = "0.6.13" [[FileIO]] deps = ["Pkg", "Requires", "UUIDs"] git-tree-sha1 = "2db648b6712831ecb333eae76dbfd1c156ca13bb" uuid = "5789e2e9-d7fb-5bc7-8068-2c6fae9b9549" version = "1.11.2" [[FileWatching]] uuid = "7b1f6079-737a-58dc-b8bc-7a2ca5c1b5ee" [[Formatting]] deps = ["Printf"] git-tree-sha1 = "8339d61043228fdd3eb658d86c926cb282ae72a8" uuid = "59287772-0a20-5a39-b81b-1366585eb4c0" version = "0.4.2" [[FromFile]] git-tree-sha1 = "81e918d0ed5978fcdacd06b7c64c0c5074c4d55a" uuid = "ff7dd447-1dcb-4ce3-b8ac-22a812192de7" version = "0.1.2" [[Future]] deps = ["Random"] uuid = "9fa8497b-333b-5362-9e8d-4d0656e87820" [[FuzzyCompletions]] deps = ["REPL"] git-tree-sha1 = "2cc2791b324e8ed387a91d7226d17be754e9de61" uuid = "fb4132e2-a121-4a70-b8a1-d5b831dcdcc2" version = "0.4.3" [[GitHubActions]] deps = ["JSON", "Logging"] git-tree-sha1 = "56e01ec63d13e1cf015d9ff586156eae3cc7cd6f" uuid = "6b79fd1a-b13a-48ab-b6b0-aaee1fee41df" version = "0.1.4" [[Graphs]] deps = ["ArnoldiMethod", "DataStructures", "Distributed", "Inflate", "LinearAlgebra", "Random", "SharedArrays", "SimpleTraits", "SparseArrays", "Statistics"] git-tree-sha1 = "92243c07e786ea3458532e199eb3feee0e7e08eb" uuid = "86223c79-3864-5bf0-83f7-82e725a168b6" version = "1.4.1" [[HTTP]] deps = ["Base64", "Dates", "IniFile", "Logging", "MbedTLS", "NetworkOptions", "Sockets", "URIs"] git-tree-sha1 = "0fa77022fe4b511826b39c894c90daf5fce3334a" uuid = "cd3eb016-35fb-5094-929b-558a96fad6f3" version = "0.9.17" [[Hyperscript]] deps = ["Test"] git-tree-sha1 = "8d511d5b81240fc8e6802386302675bdf47737b9" uuid = "47d2ed2b-36de-50cf-bf87-49c2cf4b8b91" version = "0.0.4" [[HypertextLiteral]] git-tree-sha1 = "2b078b5a615c6c0396c77810d92ee8c6f470d238" uuid = "ac1192a8-f4b3-4bfe-ba22-af5b92cd3ab2" version = "0.9.3" [[IOCapture]] deps = ["Logging", "Random"] git-tree-sha1 = "f7be53659ab06ddc986428d3a9dcc95f6fa6705a" uuid = "b5f81e59-6552-4d32-b1f0-c071b021bf89" version = "0.2.2" [[Inflate]] git-tree-sha1 = "f5fc07d4e706b84f72d54eedcc1c13d92fb0871c" uuid = "d25df0c9-e2be-5dd7-82c8-3ad0b3e990b9" version = "0.1.2" [[IniFile]] deps = ["Test"] git-tree-sha1 = "098e4d2c533924c921f9f9847274f2ad89e018b8" uuid = "83e8ac13-25f8-5344-8a64-a9f2b223428f" version = "0.5.0" [[InteractiveUtils]] deps = ["Markdown"] uuid = "b77e0a4c-d291-57a0-90e8-8db25a27a240" [[InverseFunctions]] deps = ["Test"] git-tree-sha1 = "a7254c0acd8e62f1ac75ad24d5db43f5f19f3c65" uuid = "3587e190-3f89-42d0-90ee-14403ec27112" version = "0.1.2" [[InvertedIndices]] git-tree-sha1 = "bee5f1ef5bf65df56bdd2e40447590b272a5471f" uuid = "41ab1584-1d38-5bbf-9106-f11c6c58b48f" version = "1.1.0" [[IrrationalConstants]] git-tree-sha1 = "7fd44fd4ff43fc60815f8e764c0f352b83c49151" uuid = "92d709cd-6900-40b7-9082-c6be49f344b6" version = "0.1.1" [[IteratorInterfaceExtensions]] git-tree-sha1 = "a3f24677c21f5bbe9d2a714f95dcd58337fb2856" uuid = "82899510-4779-5014-852e-03e436cf321d" version = "1.0.0" [[JLD2]] deps = ["DataStructures", "FileIO", "MacroTools", "Mmap", "Pkg", "Printf", "Reexport", "TranscodingStreams", "UUIDs"] git-tree-sha1 = "46b7834ec8165c541b0b5d1c8ba63ec940723ffb" uuid = "033835bb-8acc-5ee8-8aae-3f567f8a3819" version = "0.4.15" [[JSON]] deps = ["Dates", "Mmap", "Parsers", "Unicode"] git-tree-sha1 = "8076680b162ada2a031f707ac7b4953e30667a37" uuid = "682c06a0-de6a-54ab-a142-c8b1cf79cde6" version = "0.21.2" [[LibCURL]] deps = ["LibCURL_jll", "MozillaCACerts_jll"] uuid = "b27032c2-a3e7-50c8-80cd-2d36dbcbfd21" [[LibCURL_jll]] deps = ["Artifacts", "LibSSH2_jll", "Libdl", "MbedTLS_jll", "Zlib_jll", "nghttp2_jll"] uuid = "deac9b47-8bc7-5906-a0fe-35ac56dc84c0" [[LibGit2]] deps = ["Base64", "NetworkOptions", "Printf", "SHA"] uuid = "76f85450-5226-5b5a-8eaa-529ad045b433" [[LibSSH2_jll]] deps = ["Artifacts", "Libdl", "MbedTLS_jll"] uuid = "29816b5a-b9ab-546f-933c-edad1886dfa8" [[Libdl]] uuid = "8f399da3-3557-5675-b5ff-fb832c97cbdb" [[LinearAlgebra]] deps = ["Libdl", "libblastrampoline_jll"] uuid = "37e2e46d-f89d-539d-b4ee-838fcccc9c8e" [[LogExpFunctions]] deps = ["ChainRulesCore", "ChangesOfVariables", "DocStringExtensions", "InverseFunctions", "IrrationalConstants", "LinearAlgebra"] git-tree-sha1 = "be9eef9f9d78cecb6f262f3c10da151a6c5ab827" uuid = "2ab3a3ac-af41-5b50-aa03-7779005ae688" version = "0.3.5" [[Logging]] uuid = "56ddb016-857b-54e1-b83d-db4d58db5568" [[MacroTools]] deps = ["Markdown", "Random"] git-tree-sha1 = "3d3e902b31198a27340d0bf00d6ac452866021cf" uuid = "1914dd2f-81c6-5fcd-8719-6d5c9610ff09" version = "0.5.9" [[Markdown]] deps = ["Base64"] uuid = "d6f4376e-aef5-505a-96c1-9c027394607a" [[MbedTLS]] deps = ["Dates", "MbedTLS_jll", "Random", "Sockets"] git-tree-sha1 = "1c38e51c3d08ef2278062ebceade0e46cefc96fe" uuid = "739be429-bea8-5141-9913-cc70e7f3736d" version = "1.0.3" [[MbedTLS_jll]] deps = ["Artifacts", "Libdl"] uuid = "c8ffd9c3-330d-5841-b78e-0817d7145fa1" [[MetaGraphs]] deps = ["Graphs", "JLD2", "Random"] git-tree-sha1 = "2af69ff3c024d13bde52b34a2a7d6887d4e7b438" uuid = "626554b9-1ddb-594c-aa3c-2596fe9399a5" version = "0.7.1" [[Missings]] deps = ["DataAPI"] git-tree-sha1 = "f8c673ccc215eb50fcadb285f522420e29e69e1c" uuid = "e1d29d7a-bbdc-5cf2-9ac0-f12de2c33e28" version = "0.4.5" [[Mmap]] uuid = "a63ad114-7e13-5084-954f-fe012c677804" [[MozillaCACerts_jll]] uuid = "14a3606d-f60d-562e-9121-12d972cd8159" [[MsgPack]] deps = ["Serialization"] git-tree-sha1 = "a8cbf066b54d793b9a48c5daa5d586cf2b5bd43d" uuid = "99f44e22-a591-53d1-9472-aa23ef4bd671" version = "1.1.0" [[NetworkOptions]] uuid = "ca575930-c2e3-43a9-ace4-1e988b2c1908" [[OpenBLAS_jll]] deps = ["Artifacts", "CompilerSupportLibraries_jll", "Libdl"] uuid = "4536629a-c528-5b80-bd46-f80d51c5b363" [[OrderedCollections]] git-tree-sha1 = "85f8e6578bf1f9ee0d11e7bb1b1456435479d47c" uuid = "bac558e1-5e72-5ebc-8fee-abe8a469f55d" version = "1.4.1" [[Parsers]] deps = ["Dates"] git-tree-sha1 = "bfd7d8c7fd87f04543810d9cbd3995972236ba1b" uuid = "69de0a69-1ddd-5017-9359-2bf0b02dc9f0" version = "1.1.2" [[Pkg]] deps = ["Artifacts", "Dates", "Downloads", "LibGit2", "Libdl", "Logging", "Markdown", "Printf", "REPL", "Random", "SHA", "Serialization", "TOML", "Tar", "UUIDs", "p7zip_jll"] uuid = "44cfe95a-1eb2-52ea-b672-e2afdf69b78f" [[Pluto]] deps = ["Base64", "Configurations", "Dates", "Distributed", "FileWatching", "FuzzyCompletions", "HTTP", "InteractiveUtils", "Logging", "Markdown", "MsgPack", "Pkg", "REPL", "Sockets", "TableIOInterface", "Tables", "UUIDs"] git-tree-sha1 = "a5b3fee95de0c0a324bab53a03911395936d15d9" uuid = "c3e4b0f8-55cb-11ea-2926-15256bba5781" version = "0.17.2" [[PlutoSliderServer]] deps = ["Base64", "Configurations", "Distributed", "FromFile", "GitHubActions", "HTTP", "Logging", "Pkg", "Pluto", "SHA", "Sockets", "TOML", "UUIDs"] git-tree-sha1 = "ed9660bb2c9eee9d389601bd80a10cee3dd64f0b" uuid = "2fc8631c-6f24-4c5b-bca7-cbb509c42db4" version = "0.2.7" [[PlutoUI]] deps = ["AbstractPlutoDingetjes", "Base64", "Dates", "Hyperscript", "HypertextLiteral", "IOCapture", "InteractiveUtils", "JSON", "Logging", "Markdown", "Random", "Reexport", "UUIDs"] git-tree-sha1 = "b68904528fd538f1cb6a3fbc44d2abdc498f9e8e" uuid = "7f904dfe-b85e-4ff6-b463-dae2292396a8" version = "0.7.21" [[PooledArrays]] deps = ["DataAPI", "Future"] git-tree-sha1 = "db3a23166af8aebf4db5ef87ac5b00d36eb771e2" uuid = "2dfb63ee-cc39-5dd5-95bd-886bf059d720" version = "1.4.0" [[PoreMatMod]] deps = ["Bio3DView", "CSV", "DataFrames", "Graphs", "LinearAlgebra", "MetaGraphs", "PlutoSliderServer", "PlutoUI", "Reexport", "StatsBase", "Xtals"] git-tree-sha1 = "e4b40bedba7a4aadefe93b52b809de10539bc915" uuid = "2de0d7f0-0963-4438-8bc8-7e7ffe3dc69a" version = "0.2.6" [[PrettyTables]] deps = ["Crayons", "Formatting", "Markdown", "Reexport", "Tables"] git-tree-sha1 = "574a6b3ea95f04e8757c0280bb9c29f1a5e35138" uuid = "08abe8d2-0d0c-5749-adfa-8a2ac140af0d" version = "0.11.1" [[Printf]] deps = ["Unicode"] uuid = "de0858da-6303-5e67-8744-51eddeeeb8d7" [[PyCall]] deps = ["Conda", "Dates", "Libdl", "LinearAlgebra", "MacroTools", "Serialization", "VersionParsing"] git-tree-sha1 = "4ba3651d33ef76e24fef6a598b63ffd1c5e1cd17" uuid = "438e738f-606a-5dbb-bf0a-cddfbfd45ab0" version = "1.92.5" [[REPL]] deps = ["InteractiveUtils", "Markdown", "Sockets", "Unicode"] uuid = "3fa0cd96-eef1-5676-8a61-b3b8758bbffb" [[Random]] deps = ["SHA", "Serialization"] uuid = "9a3f8284-a2c9-5f02-9a11-845980a1fd5c" [[Reexport]] git-tree-sha1 = "45e428421666073eab6f2da5c9d310d99bb12f9b" uuid = "189a3867-3050-52da-a836-e630ba90ab69" version = "1.2.2" [[Requires]] deps = ["UUIDs"] git-tree-sha1 = "4036a3bd08ac7e968e27c203d45f5fff15020621" uuid = "ae029012-a4dd-5104-9daa-d747884805df" version = "1.1.3" [[SHA]] uuid = "ea8e919c-243c-51af-8825-aaa63cd721ce" [[SentinelArrays]] deps = ["Dates", "Random"] git-tree-sha1 = "f45b34656397a1f6e729901dc9ef679610bd12b5" uuid = "91c51154-3ec4-41a3-a24f-3f23e20d615c" version = "1.3.8" [[Serialization]] uuid = "9e88b42a-f829-5b0c-bbe9-9e923198166b" [[SharedArrays]] deps = ["Distributed", "Mmap", "Random", "Serialization"] uuid = "1a1011a3-84de-559e-8e89-a11a2f7dc383" [[SimpleTraits]] deps = ["InteractiveUtils", "MacroTools"] git-tree-sha1 = "5d7e3f4e11935503d3ecaf7186eac40602e7d231" uuid = "699a6c99-e7fa-54fc-8d76-47d257e15c1d" version = "0.9.4" [[Sockets]] uuid = "6462fe0b-24de-5631-8697-dd941f90decc" [[SortingAlgorithms]] deps = ["DataStructures", "Random", "Test"] git-tree-sha1 = "03f5898c9959f8115e30bc7226ada7d0df554ddd" uuid = "a2af1166-a08f-5f64-846c-94a0d3cef48c" version = "0.3.1" [[SparseArrays]] deps = ["LinearAlgebra", "Random"] uuid = "2f01184e-e22b-5df5-ae63-d93ebab69eaf" [[StaticArrays]] deps = ["LinearAlgebra", "Random", "Statistics"] git-tree-sha1 = "3c76dde64d03699e074ac02eb2e8ba8254d428da" uuid = "90137ffa-7385-5640-81b9-e52037218182" version = "1.2.13" [[Statistics]] deps = ["LinearAlgebra", "SparseArrays"] uuid = "10745b16-79ce-11e8-11f9-7d13ad32a3b2" [[StatsAPI]] git-tree-sha1 = "0f2aa8e32d511f758a2ce49208181f7733a0936a" uuid = "82ae8749-77ed-4fe6-ae5f-f523153014b0" version = "1.1.0" [[StatsBase]] deps = ["DataAPI", "DataStructures", "LinearAlgebra", "LogExpFunctions", "Missings", "Printf", "Random", "SortingAlgorithms", "SparseArrays", "Statistics", "StatsAPI"] git-tree-sha1 = "2bb0cb32026a66037360606510fca5984ccc6b75" uuid = "2913bbd2-ae8a-5f71-8c99-4fb6c76f3a91" version = "0.33.13" [[StructTypes]] deps = ["Dates", "UUIDs"] git-tree-sha1 = "d24a825a95a6d98c385001212dc9020d609f2d4f" uuid = "856f2bd8-1eba-4b0a-8007-ebc267875bd4" version = "1.8.1" [[TOML]] deps = ["Dates"] uuid = "fa267f1f-6049-4f14-aa54-33bafae1ed76" [[TableIOInterface]] git-tree-sha1 = "9a0d3ab8afd14f33a35af7391491ff3104401a35" uuid = "d1efa939-5518-4425-949f-ab857e148477" version = "0.1.6" [[TableTraits]] deps = ["IteratorInterfaceExtensions"] git-tree-sha1 = "c06b2f539df1c6efa794486abfb6ed2022561a39" uuid = "3783bdb8-4a98-5b6b-af9a-565f29a5fe9c" version = "1.0.1" [[Tables]] deps = ["DataAPI", "DataValueInterfaces", "IteratorInterfaceExtensions", "LinearAlgebra", "TableTraits", "Test"] git-tree-sha1 = "fed34d0e71b91734bf0a7e10eb1bb05296ddbcd0" uuid = "bd369af6-aec1-5ad0-b16a-f7cc5008161c" version = "1.6.0" [[Tar]] deps = ["ArgTools", "SHA"] uuid = "a4e569a6-e804-4fa4-b0f3-eef7a1d5b13e" [[Test]] deps = ["InteractiveUtils", "Logging", "Random", "Serialization"] uuid = "8dfed614-e22c-5e08-85e1-65c5234f0b40" [[TranscodingStreams]] deps = ["Random", "Test"] git-tree-sha1 = "216b95ea110b5972db65aa90f88d8d89dcb8851c" uuid = "3bb67fe8-82b1-5028-8e26-92a6c54297fa" version = "0.9.6" [[URIs]] git-tree-sha1 = "97bbe755a53fe859669cd907f2d96aee8d2c1355" uuid = "5c2747f8-b7ea-4ff2-ba2e-563bfd36b1d4" version = "1.3.0" [[UUIDs]] deps = ["Random", "SHA"] uuid = "cf7118a7-6976-5b1a-9a39-7adc72f591a4" [[Unicode]] uuid = "4ec0a83e-493e-50e2-b9ac-8f72acf5a8f5" [[VersionParsing]] git-tree-sha1 = "e575cf85535c7c3292b4d89d89cc29e8c3098e47" uuid = "81def892-9a0e-5fdd-b105-ffc91e053289" version = "1.2.1" [[Xtals]] deps = ["Bio3DView", "CSV", "DataFrames", "Documenter", "Graphs", "JLD2", "LinearAlgebra", "Logging", "MetaGraphs", "Printf", "PyCall", "UUIDs"] git-tree-sha1 = "3147503cd35c4f2b3744fe36301c7de3efee98c5" uuid = "ede5f01d-793e-4c47-9885-c447d1f18d6d" version = "0.3.9" [[Zlib_jll]] deps = ["Libdl"] uuid = "83775a58-1f1d-513f-b197-d71354ab007a" [[libblastrampoline_jll]] deps = ["Artifacts", "Libdl", "OpenBLAS_jll"] uuid = "8e850b90-86db-534c-a0d3-1478176c7d93" [[nghttp2_jll]] deps = ["Artifacts", "Libdl"] uuid = "8e850ede-7688-5339-a07c-302acd2aaf8d" [[p7zip_jll]] deps = ["Artifacts", "Libdl"] uuid = "3f19e933-33d8-53b3-aaab-bd5110c3b7a0" """ # ╔═╡ Cell order: # ╟─6c1969e0-02f5-11eb-3fa2-09931a63b1ac # ╟─50269ffe-02ef-11eb-0614-f11975d991fe # ╟─33b1fb50-0f73-11eb-2ab2-9d2cb6c5a533 # ╟─415e9210-0f71-11eb-15c8-e7484b5be309 # ╟─3997c4d0-0f75-11eb-2976-c161879b8d0c # ╟─69edca20-0f94-11eb-13ba-334438ca2406 # ╟─5918f770-103d-11eb-0537-81036bd3e675 # ╟─31832e30-1054-11eb-24ed-219fd3e236a1 # ╟─5dc43a20-10b8-11eb-26dc-7fb98e9aeb1a # ╟─90696d20-10b7-11eb-20b5-6174faeaf613 # ╟─00000000-0000-0000-0000-000000000001 # ╟─00000000-0000-0000-0000-000000000002
PoreMatMod
https://github.com/SimonEnsemble/PoreMatMod.jl.git
[ "MIT" ]
0.2.20
131cd2b2ae892b6949a0b9aa375c689802e99c9d
code
6853
# "compatibility matrix" # M₀[α, β] = 1 if any only if: # deg(β ∈ graph) ≥ deg(α ∈ subgraph) # and # species(α ∈ subgraph) == species(β ∈ graph) function compatibility_matrix( subgraph::MetaGraph, subgraph_species::Array{Symbol, 1}, graph::MetaGraph, graph_species::Array{Symbol, 1}, disconnected_component::Bool )::Array{Bool, 2} # allocate M. rows correspond to subgraph nodes, columns to graph nodes. M₀ = zeros(Bool, nv(subgraph), nv(graph)) # Get adjacency matrices and 4th/8th degree path matrices adjmat_S = adjacency_matrix(subgraph) adjmat_G = adjacency_matrix(graph) deg_S = adjmat_S^2 deg_G = adjmat_G^2 path4_S = deg_S^2 path4_G = deg_G^2 path8_S = path4_S^2 path8_G = path4_G^2 if !disconnected_component # search for substructures @inbounds for β in 1:nv(graph) # Loop over rows (subgraph nodes) @inbounds for α in 1:nv(subgraph) # Loop over columns (graph nodes) # Record Bool for each (i,j): true if atom species match, graph node degree is sufficient, and 4 and 8 length self-paths are sufficient. M₀[α, β] = subgraph_species[α] == graph_species[β] && deg_G[β, β] ≥ deg_S[α, α] && path4_G[β, β] ≥ path4_S[α, α] && path8_G[β, β] ≥ path8_S[α, α] end end else # search only for exact, isolated matches (no substructures) @inbounds for β in 1:nv(graph) # Loop over rows (subgraph nodes) @inbounds for α in 1:nv(subgraph) # Loop over columns (graph nodes) # Record Bool for each (i,j): true if atom species match, and graph node degree matches. M₀[α, β] = subgraph_species[α] == graph_species[β] && deg_G[β, β] == deg_S[α, α] end end end return M₀ end # list of nodes β ∈ graph that could possibly correpond with node α ∈ subgraph function candidate_list(M::Array{Bool, 2}, α::Int)::Array{Int, 1} @inbounds @views return findall(M[α, :]) end # does node α have possible candidate matches in the graph? function has_candidates(M::Array{Bool, 2}, α::Int)::Bool @inbounds return any([M[α, β] for β in 1:size(M, 2)]) end function is_isomorphism(M::Array{Bool, 2})::Bool # (1) each row of M, corresponding to a node α ∈ subgraph, contains exactly one 1. # i.e., every subgraph node has exactly one correspondence # (2) no column of M, corresponding to a node β ∈ graph, contains more than one 1. # i.e., a graph node does not correspond to more than 1 subgraph node. @inbounds return !( any([sum(M[α, :]) ≠ 1 for α in 1:size(M, 1)]) || any([sum(M[:, β]) > 1 for β in 1:size(M, 2)]) ) end # idea here: # if any subgraph node α has no possible correspondence w/ a node β in the graph, no point in continuing # return true iff M has no empty candidate lists for subgraph nodes. function possibly_contains_isomorphism(M::Array{Bool, 2})::Bool @inbounds return all([has_candidates(M, α) for α in 1:size(M, 1)]) end function prune!(M::Array{Bool, 2}, subgraph::MetaGraph, graph::MetaGraph) pruned = true # to enter while loop while pruned pruned = false @inbounds for α in 1:size(M, 1) # loop thru subgraph nodes # get neighbors of node α neighbors_of_α = neighbors(subgraph, α) # loop thru candidate matches β ∈ graph for this subgraph node α @inbounds for β in candidate_list(M, α) neighbors_of_β = neighbors(graph, β) # now, suppose α ∈ subgraph and β ∈ graph correspond... @inbounds for x in neighbors_of_α # if there is no neighbor of β that could correspond to x, neighbor of α, then, contradiction. if isdisjoint(candidate_list(M, x), neighbors_of_β) M[α, β] = false pruned = true end end end end end end function assign_correspondence!(M::Array{Bool, 2}, α::Int, β::Int) M[α, :] .= false # zero out row of subgraph node M[:, β] .= false # zero out column of graph node return M[α, β] = true # assign correspondence at intersection end # soln: # soln[α ∈ subgraph] = β ∈ graph where α corresponds to β function depth_first_search!( α::Int, subgraph::MetaGraph, graph::MetaGraph, M::Array{Bool, 2}, soln::Array{Int, 1}, β_mapped::Array{Bool, 1}, solns::Array{Array{Int, 1}, 1} ) # if reached here from previous solution, exit. if α > size(M, 1) return nothing end # loop thru un-assigned graph nodes β that could possibly correspond to subnode α @inbounds for β in candidate_list(M, α) # if βraph is already mapped, not a viable solution. # (not sure if necessary, i.e. if M already knows this) if β_mapped[β] continue end # make a copy so we can restore later. M′ = deepcopy(M) # explore scenario where α ∈ subgraph corresponds to β ∈ graph assign_correspondence!(M′, α, β) soln[α] = β β_mapped[β] = true # prune tree prune!(M′, subgraph, graph) # if we reached bottom of tree, iso-morphism is found! if α == size(M′, 1) # do we hv to check if it's a sol'n or is it guarenteed? why prune then? if is_isomorphism(M′) push!(solns, deepcopy(soln)) end # don't return b/c we need to look at other candidates end if M′[α, β] && possibly_contains_isomorphism(M′) # we've assigned α, go deeper in the depth first search depth_first_search!(α + 1, subgraph, graph, M′, soln, β_mapped, solns) end β_mapped[β] = false soln[α] = 0 end end @doc raw""" returns an array of arrays, each containing one unique subgraph isomorphism """ function find_subgraph_isomorphisms( subgraph::MetaGraph, subgraph_species::Array{Symbol, 1}, graph::MetaGraph, graph_species::Array{Symbol, 1}, disconnected_component::Bool=false ) # store list of solutions here solns = Array{Array{Int, 1}, 1}() # encodes an isomorhism. maps α ∈ subgraph --> β ∈ graph soln = [0 for _ in 1:nv(subgraph)] # tell us which β ∈ graph are mapped already. # entry β true iff β mapped β_mapped = [false for _ in 1:nv(graph)] # initial compatability matrix based on degrees of nodes and species M₀ = compatibility_matrix( subgraph, subgraph_species, graph, graph_species, disconnected_component ) depth_first_search!(1, subgraph, graph, M₀, soln, β_mapped, solns) return solns end
PoreMatMod
https://github.com/SimonEnsemble/PoreMatMod.jl.git
[ "MIT" ]
0.2.20
131cd2b2ae892b6949a0b9aa375c689802e99c9d
code
639
""" PoreMatModGO() Launches the GUI Pluto notebook. """ function PoreMatModGO() try # notebook path pmmg_ntbk = joinpath(pathof(PoreMatMod), "..", "PoreMatModGO.jl") # run the notebook in Pluto Pluto.run(; notebook=pmmg_ntbk) catch # download as a temporary file in case of access issues pmmg_ntbk = download( "https://raw.githubusercontent.com/SimonEnsemble/PoreMatMod.jl/master/src/PoreMatModGO.jl" ) Pluto.run(; notebook=pmmg_ntbk) end end BANNER = String(read(joinpath(dirname(pathof(PoreMatMod)), "banner.txt"))) banner() = println(BANNER)
PoreMatMod
https://github.com/SimonEnsemble/PoreMatMod.jl.git
[ "MIT" ]
0.2.20
131cd2b2ae892b6949a0b9aa375c689802e99c9d
code
4405
""" Returns bonding rules involving R-group-tagged atoms """ function tagged_bonding_rules()::Array{BondingRule} newrules = [] for rule in rc[:bonding_rules] if rule.species_i != :* push!( newrules, BondingRule(Symbol("$(rule.species_i)!"), rule.species_j, rule.max_dist) ) push!( newrules, BondingRule(Symbol("$(rule.species_j)!"), rule.species_i, rule.max_dist) ) push!( newrules, BondingRule( Symbol("$(rule.species_i)!"), Symbol("$(rule.species_j)!"), rule.max_dist ) ) end end return newrules end """ Returns R group indices (whichever atoms have species symbols appended by '!') """ function r_group_indices(xtal::Crystal)::Array{Int} R = [] for (idx, label) in enumerate(xtal.atoms.species) # loop over crystal atoms to find tags # if String representation of label Symbol ends in !, atom is in R tokens = split("$label", rc[:r_tag]) if length(tokens) == 2 && tokens[2] == "" # other ! in symbol not tolerated. push!(R, idx) end end return R end """ Un-tags R group atoms (removes '!' suffix) """ function untag_r_group!(xtal::Crystal) r = r_group_indices(xtal) # get indices of R group for i in r xtal.atoms.species[i] = Symbol(split("$(xtal.atoms.species[i])", rc[:r_tag])[1]) end end """ Returns a copy of a crystal w/ R group atoms deleted """ function subtract_r_group(xtal::Crystal)::Crystal not_r = [i for i in eachindex(xtal.atoms.species) if !(i ∈ r_group_indices(xtal))] coords = xtal.atoms.coords[not_r] species = xtal.atoms.species[not_r] return Crystal("no_r_$(xtal.name)", xtal.box, Atoms(species, coords), xtal.charges) end ## moiety import function (exposed) @doc raw""" q = moiety(xyz_filename) Generates a moiety (`Crystal`) from an .xyz file found in `rc[:paths][:moieties]`. Use `set_path_to_data` or set `rc[:paths][:moieties]` to change the path from which the XYZ file is read. Atoms appended with '!' are tagged for replacement via `substructure_replace`. Bonds are inferred automatically via `infer_bonds!`. # Arguments - `xyz_filename::Union{String,Nothing}` the moiety input file name, an `.xyz` file; if set to `nothing` the moiety is the null set. - `bonding_rules::Union{Vector{BondingRule},Nothing}` (optional) a list of rules to use for inferring the bonding network of the atoms loaded from the XYZ file. If set to `nothing`, the default rules are used. - `presort::Bool` whether to sort the atoms by bonding order for structure search efficiency. Set `false` to skip pre-sorting and maintain indexing order with source file. Does not apply to !-tagged atoms, which will still be moved to the end of the list. """ function moiety( name::Union{String, Nothing}; bonding_rules::Union{Vector{BondingRule}, Nothing}=nothing, presort::Bool=true )::Crystal # make box (arbitrary unit cube) box = unit_cube() # handle deletion option (replace-with-nothing) if !isnothing(name) xf = Frac(read_xyz("$(rc[:paths][:moieties])/$name"), box) else name = "nothing" xf = Atoms{Frac}(0) end # generate Crystal from moiety XYZ coords charges = Charges{Frac}(0) moiety = Crystal(name, box, xf, charges) # ID R group R_group_indices = r_group_indices(moiety) # handle custom vs. default bonding rules if isnothing(bonding_rules) infer_bonds!(moiety, false) else infer_bonds!(moiety, false; bonding_rules=bonding_rules) end # sort by node degree sp = sortperm(degree(moiety.bonds); rev=true) order = presort ? sp : eachindex(sp) # ordered atoms if length(R_group_indices) > 0 order_wo_R = order[[i for i in eachindex(order) if !(order[i] ∈ R_group_indices)]] else order_wo_R = order end # append R-group to the end order = vcat(order_wo_R, R_group_indices) # rebuild Atoms atoms = Atoms(moiety.atoms.species[order], moiety.atoms.coords[order]) # nodes are sorted by bond order, and R group is moved to end & tagged w/ ! moiety = Crystal(name, box, atoms, charges) infer_bonds!(moiety, false) return moiety end
PoreMatMod
https://github.com/SimonEnsemble/PoreMatMod.jl.git
[ "MIT" ]
0.2.20
131cd2b2ae892b6949a0b9aa375c689802e99c9d
code
18263
""" child = replace(parent, query => replacement) Generates a `child` crystal structure by (i) searches the `parent` crystal structure for subgraphs that match the `query` then (ii) replaces the substructures of the `parent` matching the `query` fragment with the `replacement` fragment. Equivalent to calling `substructure_replace(query ∈ parent, replacement)`. Accepts the same keyword arguments as [`substructure_replace`](@ref). """ function replace(p::Crystal, pair::Pair; kwargs...) return substructure_replace(pair[1] ∈ p, pair[2]; kwargs...) end """ alignment = Alignment(rot::Matrix{Float64}, shift_1::Vector{Float64}, shift_2::Vector{Float64}, err::Float64) Data structure for tracking alignment in substructure find/replace operations. """ struct Alignment rot::Matrix{Float64} # before rotation shift_1::Vector{Float64} # after rotation shift_2::Vector{Float64} # error err::Float64 end struct Installation aligned_replacement::Crystal q2p::Dict{Int, Int} r2p::Dict{Int, Int} end function get_r2p_alignment( replacement::Crystal, parent::Crystal, r2p::Dict{Int, Int}, q2p::Dict{Int, Int} ) center = (X::Matrix{Float64}) -> sum(X; dims=2)[:] / size(X, 2) # when both centered to origin @assert replacement.atoms.n ≥ 3 && parent.atoms.n ≥ 3 "Parent and replacement must each be at least 3 atoms for SVD alignment." ### # compute centered Cartesian coords of the atoms of # replacement fragment involved in alignment ### atoms_r = Cart(replacement.atoms[[r for (r, p) in r2p]], replacement.box) X_r = atoms_r.coords.x x_r_center = center(X_r) X_r = X_r .- x_r_center ### # compute centered Cartesian coords of the atoms of # parent involved in alignment ### # handle fragments cut across the PB using the parent subset isomorphic to query parent_substructure = deepcopy(parent[[p for (q, p) in q2p]]) conglomerate!(parent_substructure) # must do this for when replacement fragment is disconnected # prepare parent substructure having correspondence with replacement p2ps = Dict([p => i for (i, p) in enumerate([p for (q, p) in q2p])]) # parent to parent subset map parent_substructure_to_align_to = parent_substructure[[p2ps[p] for p in [p for (r, p) in r2p]]] atoms_p = Cart(parent_substructure_to_align_to.atoms, parent.box) X_p = atoms_p.coords.x x_p_center = center(X_p) X_p = X_p .- x_p_center # solve the orthogonal procrustes probelm via SVD F = svd(X_r * X_p') # optimal rotation matrix rot = F.V * F.U' err = norm(rot * X_r - X_p) return Alignment(rot, -x_r_center, x_p_center, err) end function conglomerate!(parent_substructure::Crystal) # snip the cross-PB bonds bonds = deepcopy(parent_substructure.bonds) if length(connected_components(bonds)) > 1 @warn "# connected components in parent substructure > 1. assuming the substructure does not cross the periodic boundary..." return end drop_cross_pb_bonds!(bonds) # find connected components of bonding graph without cross-PB bonds # these are the components split across the boundary conn_comps = connected_components(bonds) # if substructure is entireline in the unit cell, it's already conglomerated :) if length(conn_comps) == 1 return end # we wish to shift all connected components to a reference component, # defined to be the largest component for speed. conn_comps_shifted = [false for c in eachindex(conn_comps)] ref_comp_id = argmax(length.(conn_comps)) conn_comps_shifted[ref_comp_id] = true # consider it shifted. # has atom p been shifted? function shifted_atom(p::Int) # loop over all connected components that have been shifted for conn_comp in conn_comps[conn_comps_shifted] # if parent substructure atom in this, yes! if p in conn_comp return true end end # reached this far, atom p is not in component that has been shifted. return false end # to which component does atom p belong? find_component(p::Int) = for c in eachindex(conn_comps) if p in conn_comps[c] return c end end # until all components have been shifted to the reference component... while !all(conn_comps_shifted) # loop over cross-PB edges in the parent substructure for ed in edges(parent_substructure.bonds) if get_prop(parent_substructure.bonds, ed, :cross_boundary) # if one edge belongs to unshifted component and another belogs to any component that has been shifted... if shifted_atom(ed.src) && !shifted_atom(ed.dst) p_ref, p = ed.src, ed.dst elseif shifted_atom(ed.dst) && !shifted_atom(ed.src) p_ref, p = ed.dst, ed.src else continue # both are shifted or both are unshifted. ignore this cross-PB edge end # here's the unshifted component we will shift next, to be next to the shifted components. comp_id = find_component(p) # find displacement vector for this cross-PB edge. dx = parent_substructure.atoms.coords.xf[:, p_ref] - parent_substructure.atoms.coords.xf[:, p] # get distance to nearest image n_dx = copy(dx) nearest_image!(n_dx) # shift all atoms in this component by this vector. for atom_idx in conn_comps[comp_id] parent_substructure.atoms.coords.xf[:, atom_idx] .+= dx - n_dx end # mark that we've shifted this component. conn_comps_shifted[comp_id] = true end end end return end function aligned_replacement( replacement::Crystal, parent::Crystal, r2p_alignment::Alignment ) # put replacement into cartesian space atoms_r = Cart(replacement.atoms, replacement.box) # rotate replacement to align with parent_subset atoms_r.coords.x[:, :] = r2p_alignment.rot * (atoms_r.coords.x .+ r2p_alignment.shift_1) .+ r2p_alignment.shift_2 # cast atoms back to Frac return Crystal( replacement.name, parent.box, Frac(atoms_r, parent.box), Charges{Frac}(0), replacement.bonds, replacement.symmetry ) end function effect_replacements( search::Search, replacement::Crystal, configs::Vector{Tuple{Int, Int}}, name::String )::Crystal nb_not_masked = sum(.!occursin.(rc[:r_tag], String.(search.query.atoms.species))) if replacement.atoms.n > 0 q_unmasked_in_r = substructure_search(search.query[1:nb_not_masked], replacement) q2r = Dict([q => q_unmasked_in_r.isomorphisms[1][1][q] for q in 1:nb_not_masked]) else q2r = Dict{Int, Int}() end installations = [ optimal_replacement(search, replacement, q2r, loc_id, [ori_id]) for (loc_id, ori_id) in configs ] child = install_replacements(search.parent, installations, name) # handle `missing` values in edge :cross_boundary attribute for edge in edges(child.bonds) # loop over edges # check if cross-boundary info is missing if ismissing(get_prop(child.bonds, edge, :cross_boundary)) # check if bond crosses boundary distance_e = get_prop(child.bonds, edge, :distance) # distance in edge property dxa = Cart( Frac( child.atoms.coords.xf[:, src(edge)] - child.atoms.coords.xf[:, dst(edge)] ), child.box ) # Cartesian displacement distance_a = norm(dxa.x) # current euclidean distance by atom coords set_prop!( child.bonds, edge, :cross_boundary, !isapprox(distance_e, distance_a; atol=0.1) ) end end return child end function install_replacements( parent::Crystal, replacements::Vector{Installation}, name::String )::Crystal # create child w/o symmetry rules for sake of crystal addition child = Crystal( name, parent.box, parent.atoms, parent.charges, parent.bonds, Xtals.SymmetryInfo() ) obsolete_atoms = Int[] # to delete at the end # loop over replacements to install for installation in replacements replacement, q2p, r2p = installation.aligned_replacement, installation.q2p, installation.r2p #add into parent if replacement.atoms.n > 0 child = +(child, replacement; check_overlap=false) end # reconstruct bonds for (r, p) in r2p # p is in parent_subst p_nbrs = neighbors(parent.bonds, p) for p_nbr in p_nbrs if !(p_nbr in values(q2p)) # p_nbr not in parent_subst # need bond nbr => r in child, where r is in replacement e = (p_nbr, child.atoms.n - replacement.atoms.n + r) # create edge add_edge!(child.bonds, e) # copy edge attributes from parent (:cross_boundary will need to be reassessed later) set_props!(child.bonds, e[1], e[2], props(parent.bonds, p, p_nbr)) set_prop!(child.bonds, e[1], e[2], :cross_boundary, missing) end end end # accumulate atoms to delete obsolete_atoms = vcat(obsolete_atoms, values(q2p)...) end # delete obsolete atoms obsolete_atoms = unique(obsolete_atoms) keep_atoms = [p for p in 1:(child.atoms.n) if !(p in obsolete_atoms)] child = child[keep_atoms] # restore symmetry rules child = Crystal(name, child.box, child.atoms, child.charges, child.bonds, parent.symmetry) # return result return child end function optimal_replacement( search::Search, replacement::Crystal, q2r::Dict{Int, Int}, loc_id::Int, ori_ids::Vector{Int} ) # unpack search arg isomorphisms, parent = search.isomorphisms, search.parent if q2r == Dict{Int, Int}() # "replace-with-nothing" operation q2p = isomorphisms[loc_id][1] r2p = Dict([0 => p for p in values(q2p)]) return Installation(replacement, q2p, r2p) end if ori_ids == [0] ori_ids = [1:nb_ori_at_loc(search)[loc_id]...] end # loop over ori_ids to find best r2p_alignment r2p_alignment = Alignment(zeros(1, 1), [0.0], [0.0], Inf) best_ori = 0 best_r2p = Dict{Int, Int}() for ori_id in ori_ids # find r2p isom q2p = isomorphisms[loc_id][ori_id] r2p = Dict([r => q2p[q] for (q, r) in q2r]) # calculate alignment test_alignment = get_r2p_alignment(replacement, parent, r2p, q2p) # keep best alignment and generating ori_id if test_alignment.err < r2p_alignment.err r2p_alignment = test_alignment best_ori = ori_id best_r2p = r2p end end opt_aligned_replacement = aligned_replacement(replacement, parent, r2p_alignment) # return the replacement modified according to r2p_alignment @assert ne(opt_aligned_replacement.bonds) == ne(replacement.bonds) return Installation(opt_aligned_replacement, isomorphisms[loc_id][best_ori], best_r2p) end @doc raw""" child = substructure_replace(search, replacement; random=false, nb_loc=0, loc=Int[], ori=Int[], name="new_xtal", verbose=false, remove_duplicates=false, periodic_boundaries=true) Replace the substructures of `search.parent` matching the `search.query` fragment with the `replacement` fragment, at locations and orientations specified by the keyword arguments `random`, `nb_loc`, `loc`, and `ori`. Default behavior is to effect replacements at all "hit" locations in the parent structure and, at each location, choose the orientation giving the optimal (lowest error) spatial aligment. Returns a new `Crystal` with the specified modifications (returns `search.parent` if no replacements are made). # Arguments - `search::Search` the `Search` for a substructure moiety in the parent crystal - `replacement::Crystal` the moiety to use for replacement of the searched substructure - `random::Bool` set `true` to select random replacement orientations - `nb_loc::Int` assign a value to select random replacement at `nb_loc` random locations - `loc::Array{Int}` assign value(s) to select specific locations for replacement. If `ori` is not specified, replacement orientation is random. - `ori::Array{Int}` assign value(s) when `loc` is assigned to specify exact configurations for replacement. `0` values mean the configuration at that location should be selected for optimal alignment with the parent. - `name::String` assign to give the generated `Crystal` a name ("new_xtal" by default) - `verbose::Bool` set `true` to print console messages about the replacement(s) being performed - `remove_duplicates::Bool` set `true` to automatically combine overlapping atoms of the same species in generated structures. - `reinfer_bonds::Bool` set `true` to re-infer bonds after producing a structure - `periodic_boundaries::Bool` set `false` to disable periodic boundary conditions when checking for atom duplication or re-inferring bonds """ function substructure_replace( search::Search, replacement::Crystal; random::Bool=false, nb_loc::Int=0, loc::Array{Int}=Int[], ori::Array{Int}=Int[], name::String="new_xtal", verbose::Bool=false, remove_duplicates::Bool=false, periodic_boundaries::Bool=true, reinfer_bonds::Bool=false, wrap::Bool=true )::Crystal # replacement at all locations (default) if nb_loc == 0 && loc == Int[] && ori == Int[] nb_loc = nb_locations(search) loc = [1:nb_loc...] if random ori = [rand(1:nb_ori_at_loc(search)[i]) for i in loc] if verbose @info "Replacing" q_in_p = search r = replacement.name mode = "random ori @ all loc" end else ori = zeros(Int, nb_loc) if verbose @info "Replacing" q_in_p = search r = replacement.name mode = "optimal ori @ all loc" end end # replacement at nb_loc random locations elseif nb_loc > 0 && ori == Int[] && loc == Int[] loc = sample([1:nb_locations(search)...], nb_loc; replace=false) if random ori = [rand(1:nb_ori_at_loc(search)[i]) for i in loc] if verbose @info "Replacing" q_in_p = search r = replacement.name mode = "random ori @ $nb_loc loc" end else ori = zeros(Int, nb_loc) if verbose @info "Replacing" q_in_p = search r = replacement.name mode = "optimal ori @ $nb_loc loc" end end # specific replacements elseif ori ≠ Int[] && loc ≠ Int[] @assert length(loc) == length(ori) "one orientation per location" nb_loc = length(ori) if verbose @info "Replacing" q_in_p = search r = replacement.name mode = "loc: $loc\tori: $ori" end # replacement at specific locations elseif loc ≠ Int[] nb_loc = length(loc) if random ori = [rand(1:nb_ori_at_loc(search)[i]) for i in loc] if verbose @info "Replacing" q_in_p = search r = replacement.name mode = "random ori @ loc: $loc" end else ori = zeros(Int, nb_loc) if verbose @info "Replacing" q_in_p = search r = replacement.name mode = "optimal ori @ loc: $loc" end end end # remove charges from parent if search.parent.charges.n > 0 @warn "Dropping charges from parent." p = search.parent search = Search( Crystal(p.name, p.box, p.atoms, Charges{Frac}(0), p.bonds, p.symmetry), search.query, search.isomorphisms ) end # generate configuration tuples (location, orientation) configs = Tuple{Int, Int}[(loc[i], ori[i]) for i in 1:nb_loc] # process replacements child = effect_replacements(search, replacement, configs, name) if remove_duplicates child = Crystal( child.name, child.box, Xtals.remove_duplicates(child.atoms, child.box, periodic_boundaries), Xtals.remove_duplicates(child.charges, child.box, periodic_boundaries) ) end if wrap # throw error if installed replacement fragment spans the unit cell if any(abs.(child.atoms.coords.xf) .> 2.0) error( "installed replacement fragment too large for the unit cell; replicate the parent and try again." ) end # wrap coordinates wrap!(child.atoms.coords) # check :cross_boundary edge attributes for edge in edges(child.bonds) # loop over edges distance_e = get_prop(child.bonds, edge, :distance) # distance in edge property dxa = Cart( Frac( child.atoms.coords.xf[:, src(edge)] - child.atoms.coords.xf[:, dst(edge)] ), child.box ) # Cartesian displacement distance_a = norm(dxa.x) # current euclidean distance by atom coords set_prop!( child.bonds, edge, :cross_boundary, !isapprox(distance_e, distance_a; atol=0.1) ) end end if reinfer_bonds remove_bonds!(child) infer_bonds!(child, periodic_boundaries) end return child end function substructure_replace(search::Search, replacement::Nothing; kwargs...) return substructure_replace(search, moiety(nothing); kwargs...) end
PoreMatMod
https://github.com/SimonEnsemble/PoreMatMod.jl.git
[ "MIT" ]
0.2.20
131cd2b2ae892b6949a0b9aa375c689802e99c9d
code
4651
""" search = Search(parent, query, results) Stores the `parent` and `query` used for a substructure search and the results (isomorphisms) of the subgraph matching algorithm. ## attributes - `search.parent::Crystal` # the parent in the search - `search.query::Crystal` # the query in the search - `search.isomorphisms::Vector{Vector{Vector{Int}}}` # the query-to-parent correspondences The isomorphisms are grouped by location in the parent `Crystal` and can be examined using `nb_isomorphisms`, `nb_locations`, and `nb_ori_at_loc`. Subgraph isomorphisms are encoded like isom = search.isomorphisms[i_loc][i_ori] = [7, 21, 9] where `isom[k]` is the index of the atom in `search.parent` corresponding to atom `k` in `search.query` for the isomorphism at location `i_loc` and orientation `i_ori`. """ struct Search parent::Crystal query::Crystal isomorphisms::Vector{Vector{Dict{Int, Int}}} end function Base.show(io::IO, s::Search) begin println(io, s.query.name, " ∈ ", s.parent.name) print(io, nb_isomorphisms(s), " hits in ", nb_locations(s), " locations.") end end """ nb_isomorphisms(search::Search) Returns the number of isomorphisms found in the specified `Search` # Arguments - `search::Search` a substructure `Search` object """ function nb_isomorphisms(search::Search)::Int return sum(nb_ori_at_loc(search)) end """ nb_locations(search::Search) Returns the number of unique locations in the `parent` (sets of atoms in the `parent`) at which the specified `Search` results contain isomorphisms. # Arguments - `search::Search` a substructure `Search` object """ function nb_locations(search::Search)::Int return length(search.isomorphisms) end """ nb_ori_at_loc(search) Returns a array containing the number of isomorphic configurations at a given location (collection of atoms) for which the specified `Search` results contain isomorphisms. # Arguments - `search::Search` a substructure `Search` object """ function nb_ori_at_loc(search::Search)::Array{Int} return length.(search.isomorphisms) end # extension of infix `in` operator for syntactic sugar # this allows all of the following: # s ∈ g → find the moiety in the crystal # [s1, s2] .∈ [g] → find each moiety in a crystal # s .∈ [g1, g2] → find the moiety in each crystal # [s1, s2] .∈ [g1, g2] → find each moiety in each crystal (∈)(s::Crystal, g::Crystal) = substructure_search(s, g) """ iso_structs = isomorphic_substructures(s::Search)::Crystal Returns a crystal consisting of the atoms of the `parent` involved in subgraph isomorphisms in the search `s` """ function isomorphic_substructures(s::Search)::Crystal return s.parent[reduce( vcat, collect.(values.([s.isomorphisms[i][1] for i in 1:nb_locations(s)])) )] end """ substructure_search(query, parent; disconnected_component=false) Searches for a substructure within a `Crystal` and returns a `Search` struct containing all identified subgraph isomorphisms. Matches are made on the basis of atomic species and chemical bonding networks, including bonds across unit cell periodic boundaries. The search moiety may optionally contain markup for designating atoms to replace with other moieties. # Arguments - `query::Crystal` the search moiety - `parent::Crystal` the parent structure - `disconnected_component::Bool=false` if true, disables substructure searching (e.g. for finding guest molecules) """ function substructure_search( query::Crystal, parent::Crystal; disconnected_component::Bool=false )::Search if parent.atoms.n == 0 return end @assert ne(parent.bonds) > 0 "The parent structure must have bonds. Use `infer_bonds!(xtal, pbc)` to create them." # Make a copy w/o R tags for searching moty = deepcopy(query) untag_r_group!(moty) # Get array of configuration arrays configs = find_subgraph_isomorphisms( moty.bonds, moty.atoms.species, parent.bonds, parent.atoms.species, disconnected_component ) df = DataFrame(; p_subset=[sort(c) for c in configs], isomorphism=configs) results = Vector{Dict{Int, Int}}[] for (i, df_loc) in enumerate(groupby(df, :p_subset)) q2p_loc = Dict{Int, Int}[] for isomorphism in df_loc.isomorphism q2p = Dict([q => p for (q, p) in enumerate(isomorphism)]) push!(q2p_loc, q2p) end push!(results, q2p_loc) end return Search(parent, query, results) end
PoreMatMod
https://github.com/SimonEnsemble/PoreMatMod.jl.git
[ "MIT" ]
0.2.20
131cd2b2ae892b6949a0b9aa375c689802e99c9d
code
387
using PoreMatMod import Aqua # ambiguity testing finds many "problems" outside the scope of this package ambiguities = false # to skip when checking for stale dependencies and missing compat entries # Aqua is added in a separate CI job, so (ironically) does not work w/ itself stale_deps = (ignore=[:Aqua],) Aqua.test_all(PoreMatMod; ambiguities=ambiguities, stale_deps=stale_deps)
PoreMatMod
https://github.com/SimonEnsemble/PoreMatMod.jl.git
[ "MIT" ]
0.2.20
131cd2b2ae892b6949a0b9aa375c689802e99c9d
code
589
module PoreMatMod_Test using Test, PoreMatMod @testset "correct_missing_Hs" begin include("../examples/correct_missing_Hs.jl") @test true end @testset "disorder_and_guests" begin include("../examples/disorder_and_guests.jl") @test true end @testset "make_hypothetical_MOF" begin include("../examples/make_hypothetical_MOF.jl") @test true end @testset "missing_linker_defect" begin include("../examples/missing_linker_defect.jl") @test true end @testset "replacement_modes" begin include("../examples/replacement_modes.jl") @test true end end
PoreMatMod
https://github.com/SimonEnsemble/PoreMatMod.jl.git
[ "MIT" ]
0.2.20
131cd2b2ae892b6949a0b9aa375c689802e99c9d
code
7071
module PoreMatMod_Test using Test, Graphs, PoreMatMod, LinearAlgebra NiPyC_fragment_trouble = Crystal("NiPyC_fragment_trouble.cif") irmof1 = Crystal("IRMOF-1.cif") PyC = moiety("PyC.xyz") p_phenylene = moiety("p-phenylene.xyz") tagged_p_phenylene = moiety("2-!-p-phenylene.xyz") acetamido_p_phen = moiety("2-acetylamido-p-phenylene.xyz") @testset "replacement split across PB" begin parent = deepcopy(NiPyC_fragment_trouble) query = deepcopy(PyC) replacement = moiety("PyC-CH3.xyz") @test_throws AssertionError replace(parent, query => replacement) infer_bonds!(parent, true) child = replace(parent, query => replacement) @test ne(child.bonds) == ne(parent.bonds) + 3 * 2 # added H -> CH3 on two PyC ligands # test conglomerate worked. remove_bonds!(child) infer_bonds!(child, true) @test ne(child.bonds) == ne(parent.bonds) + 3 * 2 # added H -> CH3 on two PyC ligands end @testset "split across PB, non-connected replacement" begin parent = Crystal("NiPyC_fragment_trouble.cif"; convert_to_p1=false) infer_bonds!(parent, true) query = moiety("PyC_split.xyz") replacement = moiety("PyC_split_replacement.xyz") child = replace(parent, query => replacement) # ensure O atoms aligned parent_Os = parent[parent.atoms.species .== :O] child_Os = child[child.atoms.species .== :O] nb_Os = parent_Os.atoms.n @test parent_Os.atoms.n == nb_Os min_distances = [Inf for _ in 1:nb_Os] # from parent for i in 1:nb_Os for j in 1:nb_Os r = norm(parent_Os.atoms.coords.xf[:, i] - child_Os.atoms.coords.xf[:, j]) if r < min_distances[i] min_distances[i] = r end end end @test all(min_distances .< 0.01) end @testset "replacement spans twice the unit cell" begin parent = deepcopy(NiPyC_fragment_trouble) infer_bonds!(parent, true) query = deepcopy(PyC) replacement = moiety("PyC-long_chain.xyz") @test_throws Exception replace(parent, query => replacement) end @testset "substructure_search" begin xtal = deepcopy(irmof1) strip_numbers_from_atom_labels!(xtal) infer_bonds!(xtal, true) timil125 = Crystal("Ti-MIL-125.cif") strip_numbers_from_atom_labels!(timil125) infer_bonds!(timil125, true) query = deepcopy(p_phenylene) p_phenylene_w_R_grp = deepcopy(tagged_p_phenylene) search1 = query ∈ xtal @test nb_isomorphisms(search1) == 96 @test nb_locations(search1) == 24 @test nb_ori_at_loc(search1)[1] == 4 @test search1.isomorphisms[1][1] == Dict([ q => p for (q, p) in enumerate([233, 306, 318, 245, 185, 197, 414, 329, 402, 341]) ]) search2 = query ∈ timil125 @test nb_isomorphisms(search2) == 48 @test nb_locations(search2) == 12 @test nb_ori_at_loc(search2)[1] == 4 @test search2.isomorphisms[1][1] == Dict([ q => p for (q, p) in enumerate([8, 140, 144, 141, 7, 133, 186, 185, 190, 189]) ]) search3 = p_phenylene_w_R_grp ∈ timil125 @test nb_isomorphisms(search3) == 48 @test nb_locations(search3) == 12 @test nb_ori_at_loc(search3)[1] == 4 @test search3.isomorphisms[1][1] == Dict([ q => p for (q, p) in enumerate([8, 140, 144, 141, 7, 133, 185, 190, 189, 186]) ]) query = moiety("!-S-bromochlorofluoromethane.xyz") parent = moiety("S-bromochlorofluoromethane.xyz") search = query ∈ parent @test search.isomorphisms[1][1] == Dict([q => p for (q, p) in enumerate([1, 2, 3, 4, 5])]) @test [parent.atoms.species[search.isomorphisms[1][1][i]] for i in 1:4] == query.atoms.species[1:4] && query.atoms.species[5] == :H! && parent.atoms.species[search.isomorphisms[1][1][5]] == :H query = deepcopy(p_phenylene) parent = Crystal("IRMOF-1_one_ring.cif") strip_numbers_from_atom_labels!(parent) infer_bonds!(parent, true) search = query ∈ parent @test search.isomorphisms[1][1] == Dict([q => p for (q, p) in enumerate([34, 38, 39, 36, 26, 27, 51, 46, 50, 48])]) q1 = moiety("glycine_res.xyz") q2 = moiety("glycine_res.xyz"; presort=false) search = q1 ∈ q2 @test q1.atoms.coords.xf ≠ q2.atoms.coords.xf @test length(search.isomorphisms) == 1 end # test set: substructure_search @testset "find_replace" begin parent = deepcopy(irmof1) strip_numbers_from_atom_labels!(parent) infer_bonds!(parent, true) query = deepcopy(tagged_p_phenylene) replacement = deepcopy(acetamido_p_phen) new_xtal = replace(parent, query => replacement) @test new_xtal.atoms.n == 592 new_xtal = replace(parent, query => replacement; nb_loc=1) @test new_xtal.atoms.n == 431 new_xtal = replace(parent, query => replacement; loc=[2, 3]) @test new_xtal.atoms.n == 438 new_xtal = replace(parent, query => replacement; loc=[2, 3, 4], ori=[1, 1, 1]) @test new_xtal.atoms.n == 445 replacement = deepcopy(p_phenylene) new_xtal = replace(parent, query => replacement) @test ne(new_xtal.bonds) == ne(parent.bonds) replacement = deepcopy(acetamido_p_phen) new_xtal = replace(parent, query => replacement; nb_loc=1) @test ne(new_xtal.bonds) == (ne(parent.bonds) - ne(query.bonds) + ne(replacement.bonds)) xtal = deepcopy(irmof1) strip_numbers_from_atom_labels!(xtal) infer_bonds!(xtal, true) query = deepcopy(tagged_p_phenylene) nb_bonds(xtal) = ne(xtal.bonds) # test that a "no-op" leaves the number of bonds unchanged replacement = deepcopy(p_phenylene) @test nb_bonds(replace(xtal, query => replacement)) == nb_bonds(xtal) # test that adding a new moiety increases the number of bonds correctly replacement = deepcopy(acetamido_p_phen) @test ne((replace(xtal, query => replacement; nb_loc=1)).bonds) == (ne(xtal.bonds) - ne(query.bonds) + ne(replacement.bonds)) end @testset "conglomerate test" begin xtal = Crystal("conglomerate_test.cif") infer_bonds!(xtal, false) @test ne(xtal.bonds) == 1 remove_bonds!(xtal) @test ne(xtal.bonds) == 0 infer_bonds!(xtal, true) @test ne(xtal.bonds) == 5 PoreMatMod.conglomerate!(xtal) remove_bonds!(xtal) translate_by!(xtal.atoms.coords, Frac([0.5, 0.5, 0.5])) infer_bonds!(xtal, false) @test ne(xtal.bonds) == 5 end @testset "remove duplicates" begin parent = moiety("ADC.xyz") new_box = replicate(unit_cube(), (10, 10, 10)) new_atoms = Frac(Cart(parent.atoms, parent.box), new_box) new_charges = Frac(Cart(parent.charges, parent.box), new_box) parent = Crystal(parent.name, new_box, new_atoms, new_charges) infer_bonds!(parent, false) query = moiety("naphthyl_fragment.xyz") replacement = moiety("F_naphthyl_fragment.xyz") child = replace( parent, query => replacement; nb_loc=2, remove_duplicates=true, reinfer_bonds=true ) @test child.atoms.n == parent.atoms.n @test nv(child.bonds) == nv(parent.bonds) && ne(child.bonds) == ne(parent.bonds) end end
PoreMatMod
https://github.com/SimonEnsemble/PoreMatMod.jl.git
[ "MIT" ]
0.2.20
131cd2b2ae892b6949a0b9aa375c689802e99c9d
code
1191
module Moiety_Test using Test, PoreMatMod # function for a specific test case. NOT a generally useful function! # frag and moty inputs are expected to be permuted sets of atoms with unique species function test_is_equiv(frag::Crystal, moty::Crystal)::Bool for (f, f_label) in enumerate(frag.atoms.species) for (m, m_label) in enumerate(moty.atoms.species) if f_label == m_label for i in 1:3 if frag.atoms.coords.xf[i, f] ≠ moty.atoms.coords.xf[i, m] return false # detected an atom w/ inconsistent coordinates end end end end end return true end @testset "Moiety Tests" begin moiety_bcfm = moiety("S-bromochlorofluoromethane.xyz") moiety_2!bcfm = moiety("!-S-bromochlorofluoromethane.xyz") @test moiety_bcfm.atoms.species == [:C, :Cl, :F, :Br, :H] @test moiety_2!bcfm.atoms.species == [:C, :Cl, :F, :Br, :H!] @test PoreMatMod.subtract_r_group(moiety_2!bcfm).atoms.species == [:C, :Cl, :F, :Br] null_moiety = moiety(nothing; bonding_rules=rc[:bonding_rules]) @test null_moiety.atoms.n == 0 end end # module
PoreMatMod
https://github.com/SimonEnsemble/PoreMatMod.jl.git
[ "MIT" ]
0.2.20
131cd2b2ae892b6949a0b9aa375c689802e99c9d
code
363
testfiles = [ "moiety.jl" "ullmann.jl" "findreplace.jl" "examples.jl" ] @assert VERSION.major == 1 @assert VERSION.minor ≥ 6 using Test, Documenter, PoreMatMod PoreMatMod.banner() for testfile in testfiles @info "Running test/$testfile" @time include(testfile) end if VERSION.minor ≥ 7 @time doctest(PoreMatMod) end @info "Done."
PoreMatMod
https://github.com/SimonEnsemble/PoreMatMod.jl.git
[ "MIT" ]
0.2.20
131cd2b2ae892b6949a0b9aa375c689802e99c9d
code
1537
module Ullmann_Test using Test, Graphs, MetaGraphs, PoreMatMod # add a list of edges to a graph add_edges!(g, edges) = for edge in edges add_edge!(g, edge[1], edge[2]) end # make a graph with the listed labels and edges function build_graph(labels, edges) g = MetaGraph() add_vertices!(g, length(labels)) add_edges!(g, edges) return g, labels end @testset "Ullmann Tests" begin # (graph, labels) (g, lg) = build_graph( [:A, :B, :B, :C, :A, :A], [(1, 2), (2, 3), (3, 4), (4, 2), (3, 5), (5, 6)] ) (s1, l1) = build_graph([:B, :C], [(1, 2)]) (s2, l2) = build_graph([:A, :B], [(1, 2)]) (s3, l3) = build_graph([:B, :B, :C], [(1, 2), (2, 3), (3, 1)]) (s4, l4) = build_graph([:B, :D, :C], [(1, 2), (2, 3), (3, 1)]) (s5, l5) = build_graph([:B, :A, :B, :C, :D], [(1, 2), (1, 3), (1, 4), (1, 5)]) (s6, l6) = build_graph([:A, :A], []) (s7, l7) = build_graph([:A, :A, :B], [(1, 2), (2, 3)]) @test PoreMatMod.find_subgraph_isomorphisms(g, lg, g, lg) == [[1, 2, 3, 4, 5, 6]] @test PoreMatMod.find_subgraph_isomorphisms(s1, l1, g, lg) == [[2, 4], [3, 4]] @test PoreMatMod.find_subgraph_isomorphisms(s2, l2, g, lg) == [[1, 2], [5, 3]] @test PoreMatMod.find_subgraph_isomorphisms(s3, l3, g, lg) == [[2, 3, 4], [3, 2, 4]] @test PoreMatMod.find_subgraph_isomorphisms(s4, l4, g, lg) == [] @test PoreMatMod.find_subgraph_isomorphisms(s5, l5, g, lg) == [] @test PoreMatMod.find_subgraph_isomorphisms(s7, l7, g, lg) == [[6, 5, 3]] end end
PoreMatMod
https://github.com/SimonEnsemble/PoreMatMod.jl.git
[ "MIT" ]
0.2.20
131cd2b2ae892b6949a0b9aa375c689802e99c9d
docs
188
If you are interested in contributing, find a bug, want a new feature, or have questions about the software, please [open an issue.](https://github.com/SimonEnsemble/PoreMatMod.jl/issues)
PoreMatMod
https://github.com/SimonEnsemble/PoreMatMod.jl.git
[ "MIT" ]
0.2.20
131cd2b2ae892b6949a0b9aa375c689802e99c9d
docs
5178
## ![logo.JPG](logo.jpg) `PoreMatMod.jl` is a [Julia](https://julialang.org/) package for (i) subgraph matching and (ii) modifying crystal structures such as metal-organic frameworks (MOFs). Functioning as a "find-and-replace" tool on atomistic crystal structure models of porous materials, `PoreMatMod.jl` is useful for: :hammer: subgraph matching to filter databases of crystal structures :hammer: constructing hypothetical crystal structure models of functionalized structures :hammer: introducing defects into crystal structures :hammer: repairing artifacts of X-ray structure determination, such as missing hydrogen atoms, disorder, and guest molecules N.b. while `PoreMatMod.jl` was developed for MOFs and other porous crystalline materials, its find-and-replace operations can be applied to discrete, molecular structures as well by assigning an arbitrary unit cell. | **Documentation** | **Build Status** | **Test Coverage** | |:------------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:| | [![Docs Badge](https://img.shields.io/badge/docs-dev-blue.svg)](https://SimonEnsemble.github.io/PoreMatMod.jl/dev) | [![CI](https://github.com/SimonEnsemble/PoreMatMod.jl/actions/workflows/CI_build.yml/badge.svg)](https://github.com/SimonEnsemble/PoreMatMod.jl/actions/workflows/CI_build.yml) [![Docs](https://github.com/SimonEnsemble/PoreMatMod.jl/actions/workflows/doc_deployment.yml/badge.svg)](https://github.com/SimonEnsemble/PoreMatMod.jl/actions/workflows/doc_deployment.yml) [![weekly](https://github.com/SimonEnsemble/PoreMatMod.jl/actions/workflows/weekly.yml/badge.svg)](https://github.com/SimonEnsemble/PoreMatMod.jl/actions/workflows/weekly.yml) | [![codecov](https://codecov.io/gh/SimonEnsemble/PoreMatMod.jl/branch/master/graph/badge.svg?token=Z9VMLXS3U9)](https://codecov.io/gh/SimonEnsemble/PoreMatMod.jl) [![Aqua QA](https://raw.githubusercontent.com/JuliaTesting/Aqua.jl/master/badge.svg)](https://github.com/JuliaTesting/Aqua.jl) | ## Installation `PoreMatMod.jl` is a registered Julia package and can be installed by entering the following line in the Julia REPL when in package mode (type `]` to enter package mode): ``` pkg> add PoreMatMod ``` ## Gallery of examples Link to examples [here](https://simonensemble.github.io/PoreMatMod.jl/dev/examples/) with raw [Pluto](https://github.com/fonsp/Pluto.jl) notebooks [here](https://github.com/SimonEnsemble/PoreMatMod.jl/tree/master/examples). ## Citing If you found `PoreMatMod.jl` useful, please cite our paper in *J. Chem. Inf. Model.* (ACS Editors' Choice) [here](https://pubs.acs.org/doi/10.1021/acs.jcim.1c01219) [preprint [here](https://chemrxiv.org/engage/chemrxiv/article-details/615cf5127d3da5dd7bee4a22)]. :point_down: ```latex @article{Henle2022, doi = {10.1021/acs.jcim.1c01219}, url = {https://doi.org/10.1021/acs.jcim.1c01219}, year = {2022}, month = jan, publisher = {American Chemical Society ({ACS})}, volume = {62}, number = {3}, pages = {423--432}, author = {E. Adrian Henle and Nickolas Gantzler and Praveen K. Thallapally and Xiaoli Z. Fern and Cory M. Simon}, title = {{PoreMatMod}.jl: Julia Package for in Silico Postsynthetic Modification of Crystal Structure Models}, journal = {Journal of Chemical Information and Modeling} } ``` ## Contributing We encourage feature requests and feedback [on GitHub](https://github.com/SimonEnsemble/PoreMatMod.jl/issues).
PoreMatMod
https://github.com/SimonEnsemble/PoreMatMod.jl.git
[ "MIT" ]
0.2.20
131cd2b2ae892b6949a0b9aa375c689802e99c9d
docs
829
# PoreMatModGO To make `PoreMatMod.jl` more accessible, an express graphical interface, `PoreMatModGO`, is provided. The `PoreMatModGO` interface, built on `Pluto.jl`, enables interactive application of chemical substructure find/replace operations with minimal setup and no code provided by the user. Follow the steps in [Getting Started](../manual/start). Then, simply launch the GUI notebook via `Pluto`: ```julia using PoreMatMod PoreMatModGO() ``` The notebook may take several minutes to launch the first time, especially on Windows. Prepare file inputs per the [manual](../manual/inputs) and load them into `PoreMatModGO` using the graphical interface. All [replacement](../manual/replace) modes are available with interactive visual previews and outputs are downloadable in `.cif`, `.xyz`, and `.vtk` file formats.
PoreMatMod
https://github.com/SimonEnsemble/PoreMatMod.jl.git
[ "MIT" ]
0.2.20
131cd2b2ae892b6949a0b9aa375c689802e99c9d
docs
404
# Contributing/Reporting Issues ### Reporting Issues Please report any bugs or make suggestions for improvements by filing an issue on Github [here](https://github.com/SimonEnsemble/PoreMatMod.jl/issues). ### `PoreMatMod.jl` Wants You! We welcome contributions (pull requests) for bug fixes, improvements, new features, etc. If the change is fundamental/major, please post an issue to discuss first.
PoreMatMod
https://github.com/SimonEnsemble/PoreMatMod.jl.git
[ "MIT" ]
0.2.20
131cd2b2ae892b6949a0b9aa375c689802e99c9d
docs
2360
```@meta DocTestSetup = quote using PoreMatMod end ``` ## Examples The [Pluto notebooks](https://github.com/fonsp/Pluto.jl) (`.jl`) containing the Julia code and the input files for all examples are in the [examples directory](https://github.com/SimonEnsemble/PoreMatMod.jl/tree/master/examples). Click on the images or descriptions below to see Pluto notebooks demonstrating each use case. !!! example "Example: Find substructures in a crystal" Identify the *p*-phenylene fragments in IRMOF-1. [link](../examples/substructure_search.html) [ ![search example](../assets/examples/search.png) ](../examples/substructure_search.html) !!! example "Example: Generate hypothetical structures" Decorate IRMOF-1 with a functional group: *ortho* substitution with an acetylamido group at one quarter of the *p*-phenylene moieties. [link](../examples/make_hypothetical_MOF.html) [ ![example 1](../assets/examples/example1.png) ](../examples/make_hypothetical_MOF.html) !!! example "Example: Using different replacement modes" Replace BDC with nitro-BDC in IRMOF-1 using the different replacement modes to control (i) which linkers are functionalized and (ii) the substitution site on each linker. [link](../examples/replacement_modes.html) [ ![example1.5](../assets/examples/example1.5.png) ](../examples/replacement_modes.html) !!! example "Example: Insert missing hydrogen atoms" Insert missing H atoms in IRMOF-1. [link](../examples/correct_missing_Hs.html) [ ![example 2](../assets/examples/example2.png) ](../examples/correct_missing_Hs.html) !!! example "Example: Repair Disorder and Remove Adsorbates" Correct the crystallographic disorder of the PyC-2 ligands and remove guest molecules from the pores of SIFSIX-Cu-2-i. [link](../examples/disorder_and_guests.html) [ ![example 3](../assets/examples/example3.png) ](../examples/disorder_and_guests.html) !!! example "Example: Generate Missing-Linker Defects" Create a new channel in UiO-66 by introducing missing-linker defects and formate ion capping. [link](../examples/missing_linker_defect.html) [ ![example 4](../assets/examples/example4.png) ](../examples/missing_linker_defect.html)
PoreMatMod
https://github.com/SimonEnsemble/PoreMatMod.jl.git
[ "MIT" ]
0.2.20
131cd2b2ae892b6949a0b9aa375c689802e99c9d
docs
2538
![logo.JPG](assets/index/logo.JPG) `PoreMatMod.jl` is a software package in [Julia](https://julialang.org/) for (i) subgraph matching and (ii) modifying crystal structures. Functioning as a "find-and-replace" tool on atomistic crystal structure models of porous materials, `PoreMatMod.jl` can: - search crystals for chemical substructures - create libraries of hypothetical structures by e.g. decoration with functional groups - correct artifacts of X-ray structure determination (missing H, disorder, guests) - introduce defects into crystal structures `PoreMatMod.jl` implements 1. (for find operations) Ullmann's algorithm for subgraph isomorphism search 2. (for replace operations) the orthogonal Procrustes algorithm for point cloud alignment. Periodic boundary conditions are respected, and the unit cell is preserved. While developed primarily for porous crystals such as metal-organic frameworks (MOFs), `PoreMatMod.jl` can operate on any periodic atomistic system as well as discrete molecules. ### Introductory example: creating a functionalized MOF structure Suppose we wish to decorate the linkers of IRMOF-1 with trifluoromethyl (tfm) groups. The `PoreMatMod.jl` code below accomplishes this by (i) searching the parent IRMOF-1 structure for a phenylene query fragment and (ii) replacing each instance with a tfm-phenylene replacement fragment to give the child structure. ```julia # read crystal structure of the parent MOF parent_xtal = Crystal("IRMOF-1.cif") # read query and replacement fragments query_fragment = moiety("p-phenylene.xyz") # masked atoms marked with ! replacement_fragment = moiety("tfm-p-phenylene.xyz") # (1) search parent structure for query fragment # (2) replace occurrences of query fragment with replacement fragments # (with randomly chosen orientations) child_xtal = replace(parent_xtal, query_fragment => replacement_fragment) ``` ![](s_moty-to-r_moty.png) !!! example "Further examples" See the [examples page](https://simonensemble.github.io/PoreMatMod.jl/examples/) for links to Pluto notebooks with `PoreMatMod.jl` code to accomplish various find-and-replace tasks. !!! note "Please cite our paper!" If you found `PoreMatMod.jl` useful, please cite our paper: > A. Henle, N. Gantzler, P. Thallapally, X. Fern, C. Simon. `PoreMatMod.jl`: Julia package for _in silico_ post-synthetic modification of crystal structure models. [Journal of Chemical Information and Modeling](https://pubs.acs.org/doi/10.1021/acs.jcim.1c01219). (2022)
PoreMatMod
https://github.com/SimonEnsemble/PoreMatMod.jl.git