licenses
sequencelengths
1
3
version
stringclasses
677 values
tree_hash
stringlengths
40
40
path
stringclasses
1 value
type
stringclasses
2 values
size
stringlengths
2
8
text
stringlengths
25
67.1M
package_name
stringlengths
2
41
repo
stringlengths
33
86
[ "MIT" ]
0.2.20
131cd2b2ae892b6949a0b9aa375c689802e99c9d
docs
14265
```@meta DocTestSetup = quote using PoreMatMod parent = Crystal("IRMOF-1.cif") infer_bonds!(parent, true) query = moiety("p-phenylene.xyz") end ``` # Subgraph matching (substructure searches) `PoreMatMod.jl` conducts subgraph matching, i.e. searches for subgraphs of a `parent` graph isomorphic to a `query` graph, using [Ullmann's algorithm for subgraph isomorphisms](https://doi.org/10.1145/321921.321925). For subgraph matching, both the `parent` crystal structure and `query` fragment are represented by node-labeled (by the chemical species) graphs (nodes = atoms, edges = bonds). For crystals, bonds across the unit cell boundaries of periodic materials are accounted for, allowing us to find subgraph isomorphisms when the fragment is split across a unit cell boundary. # Substructure Searches: how to To learn by example, suppose we wish to search the IRMOF-1 crystal structure for *p*-phenylene fragments. ![find graphic](../../assets/find/s_moty-in-xtal.png) First, we load the `query` fragment and `parent` crystal structure: ```julia parent = Crystal("IRMOF-1.cif") infer_bonds!(parent_xtal, true) # true to infer bonds across the periodic boundary query = moiety("p-phenylene.xyz") ``` then execute a search for subgraphs of the `parent` that "match" (are isomorphic to) the graph of the `query` fragment: ```jldoctest find search = substructure_search(query, parent) # output p-phenylene.xyz ∈ IRMOF-1.cif 96 hits in 24 locations. ``` !!! note "Syntactic sugar for substructure search" The `∈` (`\in` then hit `Tab` for this Unicode character) or `in` infix operators will also execute the search: ```jldoctest find; output=false search = query ∈ parent # or search = query in parent # or search = substructure_search(query, parent) # output p-phenylene.xyz ∈ IRMOF-1.cif 96 hits in 24 locations. ``` Both functions `substructure_search` and `∈` return a `Search` object with attributes: - `search.query`: the query in the search - `search.parent`: the parent in the search - `search.isomorphisms`: the result of a search---a nested vector giving the query-to-parent correpondence dictionaries. ```jldoctest find search.isomorphisms # output 24-element Vector{Vector{Dict{Int64, Int64}}}: [Dict(5 => 185, 4 => 245, 6 => 197, 7 => 414, 2 => 306, 10 => 341, 9 => 402, 8 => 329, 3 => 318, 1 => 233…), Dict(5 => 197, 4 => 233, 6 => 185, 7 => 402, 2 => 318, 10 => 329, 9 => 414, 8 => 341, 3 => 306, 1 => 245…), Dict(5 => 185, 4 => 318, 6 => 197, 7 => 341, 2 => 233, 10 => 414, 9 => 329, 8 => 402, 3 => 245, 1 => 306…), Dict(5 => 197, 4 => 306, 6 => 185, 7 => 329, 2 => 245, 10 => 402, 9 => 341, 8 => 414, 3 => 233, 1 => 318…)] [Dict(5 => 186, 4 => 246, 6 => 198, 7 => 413, 2 => 305, 10 => 342, 9 => 401, 8 => 330, 3 => 317, 1 => 234…), Dict(5 => 198, 4 => 234, 6 => 186, 7 => 401, 2 => 317, 10 => 330, 9 => 413, 8 => 342, 3 => 305, 1 => 246…), Dict(5 => 186, 4 => 317, 6 => 198, 7 => 342, 2 => 234, 10 => 413, 9 => 330, 8 => 401, 3 => 246, 1 => 305…), Dict(5 => 198, 4 => 305, 6 => 186, 7 => 330, 2 => 246, 10 => 401, 9 => 342, 8 => 413, 3 => 234, 1 => 317…)] [Dict(5 => 187, 4 => 248, 6 => 200, 7 => 415, 2 => 308, 10 => 344, 9 => 404, 8 => 331, 3 => 319, 1 => 235…), Dict(5 => 200, 4 => 235, 6 => 187, 7 => 404, 2 => 319, 10 => 331, 9 => 415, 8 => 344, 3 => 308, 1 => 248…), Dict(5 => 187, 4 => 319, 6 => 200, 7 => 344, 2 => 235, 10 => 415, 9 => 331, 8 => 404, 3 => 248, 1 => 308…), Dict(5 => 200, 4 => 308, 6 => 187, 7 => 331, 2 => 248, 10 => 404, 9 => 344, 8 => 415, 3 => 235, 1 => 319…)] [Dict(5 => 188, 4 => 247, 6 => 199, 7 => 416, 2 => 307, 10 => 343, 9 => 403, 8 => 332, 3 => 320, 1 => 236…), Dict(5 => 199, 4 => 236, 6 => 188, 7 => 403, 2 => 320, 10 => 332, 9 => 416, 8 => 343, 3 => 307, 1 => 247…), Dict(5 => 188, 4 => 320, 6 => 199, 7 => 343, 2 => 236, 10 => 416, 9 => 332, 8 => 403, 3 => 247, 1 => 307…), Dict(5 => 199, 4 => 307, 6 => 188, 7 => 332, 2 => 247, 10 => 403, 9 => 343, 8 => 416, 3 => 236, 1 => 320…)] [Dict(5 => 189, 4 => 255, 6 => 207, 7 => 376, 2 => 262, 10 => 351, 9 => 358, 8 => 333, 3 => 280, 1 => 237…), Dict(5 => 207, 4 => 237, 6 => 189, 7 => 358, 2 => 280, 10 => 333, 9 => 376, 8 => 351, 3 => 262, 1 => 255…), Dict(5 => 189, 4 => 280, 6 => 207, 7 => 351, 2 => 237, 10 => 376, 9 => 333, 8 => 358, 3 => 255, 1 => 262…), Dict(5 => 207, 4 => 262, 6 => 189, 7 => 333, 2 => 255, 10 => 358, 9 => 351, 8 => 376, 3 => 237, 1 => 280…)] [Dict(5 => 190, 4 => 256, 6 => 208, 7 => 375, 2 => 261, 10 => 352, 9 => 357, 8 => 334, 3 => 279, 1 => 238…), Dict(5 => 208, 4 => 238, 6 => 190, 7 => 357, 2 => 279, 10 => 334, 9 => 375, 8 => 352, 3 => 261, 1 => 256…), Dict(5 => 190, 4 => 279, 6 => 208, 7 => 352, 2 => 238, 10 => 375, 9 => 334, 8 => 357, 3 => 256, 1 => 261…), Dict(5 => 208, 4 => 261, 6 => 190, 7 => 334, 2 => 256, 10 => 357, 9 => 352, 8 => 375, 3 => 238, 1 => 279…)] [Dict(5 => 191, 4 => 254, 6 => 206, 7 => 373, 2 => 264, 10 => 350, 9 => 360, 8 => 335, 3 => 277, 1 => 239…), Dict(5 => 206, 4 => 239, 6 => 191, 7 => 360, 2 => 277, 10 => 335, 9 => 373, 8 => 350, 3 => 264, 1 => 254…), Dict(5 => 191, 4 => 277, 6 => 206, 7 => 350, 2 => 239, 10 => 373, 9 => 335, 8 => 360, 3 => 254, 1 => 264…), Dict(5 => 206, 4 => 264, 6 => 191, 7 => 335, 2 => 254, 10 => 360, 9 => 350, 8 => 373, 3 => 239, 1 => 277…)] [Dict(5 => 192, 4 => 253, 6 => 205, 7 => 374, 2 => 263, 10 => 349, 9 => 359, 8 => 336, 3 => 278, 1 => 240…), Dict(5 => 205, 4 => 240, 6 => 192, 7 => 359, 2 => 278, 10 => 336, 9 => 374, 8 => 349, 3 => 263, 1 => 253…), Dict(5 => 192, 4 => 278, 6 => 205, 7 => 349, 2 => 240, 10 => 374, 9 => 336, 8 => 359, 3 => 253, 1 => 263…), Dict(5 => 205, 4 => 263, 6 => 192, 7 => 336, 2 => 253, 10 => 359, 9 => 349, 8 => 374, 3 => 240, 1 => 278…)] [Dict(5 => 193, 4 => 252, 6 => 204, 7 => 395, 2 => 290, 10 => 348, 9 => 386, 8 => 337, 3 => 299, 1 => 241…), Dict(5 => 204, 4 => 241, 6 => 193, 7 => 386, 2 => 299, 10 => 337, 9 => 395, 8 => 348, 3 => 290, 1 => 252…), Dict(5 => 193, 4 => 299, 6 => 204, 7 => 348, 2 => 241, 10 => 395, 9 => 337, 8 => 386, 3 => 252, 1 => 290…), Dict(5 => 204, 4 => 290, 6 => 193, 7 => 337, 2 => 252, 10 => 386, 9 => 348, 8 => 395, 3 => 241, 1 => 299…)] [Dict(5 => 194, 4 => 251, 6 => 203, 7 => 396, 2 => 289, 10 => 347, 9 => 385, 8 => 338, 3 => 300, 1 => 242…), Dict(5 => 203, 4 => 242, 6 => 194, 7 => 385, 2 => 300, 10 => 338, 9 => 396, 8 => 347, 3 => 289, 1 => 251…), Dict(5 => 194, 4 => 300, 6 => 203, 7 => 347, 2 => 242, 10 => 396, 9 => 338, 8 => 385, 3 => 251, 1 => 289…), Dict(5 => 203, 4 => 289, 6 => 194, 7 => 338, 2 => 251, 10 => 385, 9 => 347, 8 => 396, 3 => 242, 1 => 300…)] ⋮ [Dict(5 => 212, 4 => 271, 6 => 219, 7 => 392, 2 => 283, 10 => 367, 9 => 379, 8 => 356, 3 => 296, 1 => 260…), Dict(5 => 219, 4 => 260, 6 => 212, 7 => 379, 2 => 296, 10 => 356, 9 => 392, 8 => 367, 3 => 283, 1 => 271…), Dict(5 => 212, 4 => 296, 6 => 219, 7 => 367, 2 => 260, 10 => 392, 9 => 356, 8 => 379, 3 => 271, 1 => 283…), Dict(5 => 219, 4 => 283, 6 => 212, 7 => 356, 2 => 271, 10 => 379, 9 => 367, 8 => 392, 3 => 260, 1 => 296…)] [Dict(5 => 213, 4 => 276, 6 => 224, 7 => 419, 2 => 314, 10 => 372, 9 => 410, 8 => 361, 3 => 323, 1 => 265…), Dict(5 => 224, 4 => 265, 6 => 213, 7 => 410, 2 => 323, 10 => 361, 9 => 419, 8 => 372, 3 => 314, 1 => 276…), Dict(5 => 213, 4 => 323, 6 => 224, 7 => 372, 2 => 265, 10 => 419, 9 => 361, 8 => 410, 3 => 276, 1 => 314…), Dict(5 => 224, 4 => 314, 6 => 213, 7 => 361, 2 => 276, 10 => 410, 9 => 372, 8 => 419, 3 => 265, 1 => 323…)] [Dict(5 => 214, 4 => 275, 6 => 223, 7 => 420, 2 => 313, 10 => 371, 9 => 409, 8 => 362, 3 => 324, 1 => 266…), Dict(5 => 223, 4 => 266, 6 => 214, 7 => 409, 2 => 324, 10 => 362, 9 => 420, 8 => 371, 3 => 313, 1 => 275…), Dict(5 => 214, 4 => 324, 6 => 223, 7 => 371, 2 => 266, 10 => 420, 9 => 362, 8 => 409, 3 => 275, 1 => 313…), Dict(5 => 223, 4 => 313, 6 => 214, 7 => 362, 2 => 275, 10 => 409, 9 => 371, 8 => 420, 3 => 266, 1 => 324…)] [Dict(5 => 215, 4 => 273, 6 => 221, 7 => 418, 2 => 316, 10 => 369, 9 => 412, 8 => 363, 3 => 322, 1 => 267…), Dict(5 => 221, 4 => 267, 6 => 215, 7 => 412, 2 => 322, 10 => 363, 9 => 418, 8 => 369, 3 => 316, 1 => 273…), Dict(5 => 215, 4 => 322, 6 => 221, 7 => 369, 2 => 267, 10 => 418, 9 => 363, 8 => 412, 3 => 273, 1 => 316…), Dict(5 => 221, 4 => 316, 6 => 215, 7 => 363, 2 => 273, 10 => 412, 9 => 369, 8 => 418, 3 => 267, 1 => 322…)] [Dict(5 => 216, 4 => 274, 6 => 222, 7 => 417, 2 => 315, 10 => 370, 9 => 411, 8 => 364, 3 => 321, 1 => 268…), Dict(5 => 222, 4 => 268, 6 => 216, 7 => 411, 2 => 321, 10 => 364, 9 => 417, 8 => 370, 3 => 315, 1 => 274…), Dict(5 => 216, 4 => 321, 6 => 222, 7 => 370, 2 => 268, 10 => 417, 9 => 364, 8 => 411, 3 => 274, 1 => 315…), Dict(5 => 222, 4 => 315, 6 => 216, 7 => 364, 2 => 274, 10 => 411, 9 => 370, 8 => 417, 3 => 268, 1 => 321…)] [Dict(5 => 225, 4 => 303, 6 => 231, 7 => 424, 2 => 310, 10 => 399, 9 => 406, 8 => 381, 3 => 328, 1 => 285…), Dict(5 => 231, 4 => 285, 6 => 225, 7 => 406, 2 => 328, 10 => 381, 9 => 424, 8 => 399, 3 => 310, 1 => 303…), Dict(5 => 225, 4 => 328, 6 => 231, 7 => 399, 2 => 285, 10 => 424, 9 => 381, 8 => 406, 3 => 303, 1 => 310…), Dict(5 => 231, 4 => 310, 6 => 225, 7 => 381, 2 => 303, 10 => 406, 9 => 399, 8 => 424, 3 => 285, 1 => 328…)] [Dict(5 => 226, 4 => 304, 6 => 232, 7 => 423, 2 => 309, 10 => 400, 9 => 405, 8 => 382, 3 => 327, 1 => 286…), Dict(5 => 232, 4 => 286, 6 => 226, 7 => 405, 2 => 327, 10 => 382, 9 => 423, 8 => 400, 3 => 309, 1 => 304…), Dict(5 => 226, 4 => 327, 6 => 232, 7 => 400, 2 => 286, 10 => 423, 9 => 382, 8 => 405, 3 => 304, 1 => 309…), Dict(5 => 232, 4 => 309, 6 => 226, 7 => 382, 2 => 304, 10 => 405, 9 => 400, 8 => 423, 3 => 286, 1 => 327…)] [Dict(5 => 227, 4 => 302, 6 => 230, 7 => 421, 2 => 312, 10 => 398, 9 => 408, 8 => 383, 3 => 325, 1 => 287…), Dict(5 => 230, 4 => 287, 6 => 227, 7 => 408, 2 => 325, 10 => 383, 9 => 421, 8 => 398, 3 => 312, 1 => 302…), Dict(5 => 227, 4 => 325, 6 => 230, 7 => 398, 2 => 287, 10 => 421, 9 => 383, 8 => 408, 3 => 302, 1 => 312…), Dict(5 => 230, 4 => 312, 6 => 227, 7 => 383, 2 => 302, 10 => 408, 9 => 398, 8 => 421, 3 => 287, 1 => 325…)] [Dict(5 => 228, 4 => 301, 6 => 229, 7 => 422, 2 => 311, 10 => 397, 9 => 407, 8 => 384, 3 => 326, 1 => 288…), Dict(5 => 229, 4 => 288, 6 => 228, 7 => 407, 2 => 326, 10 => 384, 9 => 422, 8 => 397, 3 => 311, 1 => 301…), Dict(5 => 228, 4 => 326, 6 => 229, 7 => 397, 2 => 288, 10 => 422, 9 => 384, 8 => 407, 3 => 301, 1 => 311…), Dict(5 => 229, 4 => 311, 6 => 228, 7 => 384, 2 => 301, 10 => 407, 9 => 397, 8 => 422, 3 => 288, 1 => 326…)] ``` In this example, the `query` fragment (*p*-phenylene) occurs in 24 different location in the `parent` crystal structure, with 4 symmetry-equivalent isomorphisms at each location, for a total of 96 subgraph isomorphisms. The number of locations---the number of unique substructures of the `parent` to which the `query` is isomorphic---is the length of `search.isomorphisms`. ```jldoctest find nb_locations(search) # = length(search.isomorphisms) # output 24 ``` Element `i_loc` of `search.isomorphisms`, `search.isomorphisms[i_loc]`, is a vector of isomorphisms that share the same subset of atoms in the `parent`, each of which correspond to a different orientation of the `query` overlaying that `parent` substructure. The function `nb_ori_at_loc` outputs a vector whose element `i_loc` is the number of overlay orientations at that location. ```jldoctest find; output=false nb_ori_at_loc(search) # 24-element Vector{Int64}: [4, 4, 4, ..., 4] # output 24-element Vector{Int64}: 4 4 4 4 4 4 4 4 4 4 ⋮ 4 4 4 4 4 4 4 4 4 ``` Each individual isomorphism `isom = search.isomorphisms[i_loc][i_ori]` for a specific location `i_loc` and orientation `i_ori` indicates the correspondence from the `query` to the `parent` struture: if atom `q` of the `query` maps to atom `p` of the `parent`, then `isom[q] == p`. The total number of isomorphisms is given by `nb_isomorphisms(search)`. ```jldoctest find nb_isomorphisms(search) # = sum(nb_ori_at_loc(search)) # output 96 ``` N.b. to generate a `Crystal` containing only the substructures of the `parent` which are isomorphic to the `query`, use: ```jldoctest find isomorphic_substructures(search) # output Crystal(C₁₄₄H₉₆, periodic = TTT): bounding_box : [ 25.832 0 0; 1.58175e-15 25.832 0; 1.58175e-15 1.58175e-15 25.832]u"Å" ``` ## Stereochemistry and Isomorphism The node-labeled graph representation of a molecule/crystal structure is invariant with respect to stereochemistry. In other words, every rotational/conformational state and stereoisomer of a structure share the same graph representation. What this means is that `PoreMatMod.jl` may find more subgraph matches than you may first expect. *Example 1*: Suppose we search for a carboxylate with beta hydrogen in acrylate. ![symmetry viz](../../assets/find/symmetry.png) There is clearly only one substructure of acrylate that matches the query. However, there are two subgraph isomorphisms, because swapping the oxygen atoms in the point cloud representation results in the same graph representation. The above image gives a closer look at how these degenerate representations translate to multiple isomorphisms for a single occurence of a fragment in a structure. *Example 2*: Suppose we search the IRMOF-1 `parent` structure for the [BDC.xyz](../../../assets/find/BDC.xyz) linker as the `query` instead of the more minimal *p*-phenylene `query` fragment. Thanks to the two carboxyl groups, the total number of isomorphisms is multiplied by a factor of 4, due to the 180 degree rotation of these groups having no effect on the graph representation. The number of _locations_ at which the isomorphisms are found, however, is unchanged. ```jldoctest find query = moiety("BDC.xyz") search = query ∈ parent nb_isomorphisms(search) # output 384 ``` ```jldoctest find nb_locations(search) # output 24 ``` **Note**: We advise to define the `query` using the most minimal structure that matches the targeted `parent` substructure. ## Documentation for functions ```@docs Search substructure_search nb_ori_at_loc nb_isomorphisms nb_locations isomorphic_substructures ```
PoreMatMod
https://github.com/SimonEnsemble/PoreMatMod.jl.git
[ "MIT" ]
0.2.20
131cd2b2ae892b6949a0b9aa375c689802e99c9d
docs
5239
```@meta DocTestSetup = quote using PoreMatMod end ``` # Reading data from crystal structure and chemical fragment files into `PoreMatMod.jl` This section details how to load data into `PoreMatMod.jl`, including the handling of paths to data and input file formats. ## Crystal structures Accepted file formats for crystal structures (containing atomic coordinates and unit cell information) are `.cif` (see [here](https://en.wikipedia.org/wiki/Crystallographic_Information_File)) and `.cssr`. Crystal structure files (`.cif`, `.cssr`) are read from the path `rc[:paths][:crystals]`. !!! example Read in the crystal structure of [IRMOF-1.cif](../../../assets/inputs/IRMOF-1.cif) and infer its bonding graph: ```jldoctest; output=false parent = Crystal("IRMOF-1.cif") infer_bonds!(parent, true) # true b/c we want periodic bonds included # output true ``` The `Crystal` constructor returns a [`Crystal`](@ref) data structure. The [`infer_bonds!`](@ref) function infers the bonding graph of the crystal structure (nodes: atoms, edges: bonds) based on interatomic distances---necessary for subgraph matching. Both `Crystal` and `infer_bonds!` are inherited from `Xtals.jl` (see the [`docs`](https://simonensemble.github.io/Xtals.jl/dev/crystal/#Xtals.Crystal)). ## Query and Replacement Fragments Accepted file formats for chemical fragments (list of atoms and their Cartesian coordinates) are `.xyz` (see [here](https://en.wikipedia.org/wiki/XYZ_file_format)). Query and replacement fragment files (`.xyz`) are read from the path `rc[:paths][:moieties]`. N.b. masked atoms of query fragments must be labeled with `!` for [`replace` operations](../../replace). For [substructure searches](../../find) using `substructure_search`, any `!` tags are ignored (the atoms are treated according to their chemical species). !!! example Read in the chemical fragment [`p-phenylene.xyz`](../../../assets/inputs/p-phenylene.xyz): ```jldoctest; output=false query = moiety("p-phenylene.xyz") # output Crystal(C₆H₄, periodic = TTT): bounding_box : [ 1 0 0; 6.12323e-17 1 0; 6.12323e-17 6.12323e-17 1]u"Å" ``` The [`moiety`](@ref) reader also returns a `Crystal` data structure but with a (arbitrary) unit cube unit cell. Note that the order of atoms as stored in the `Crystal` returned by `moiety` may be different than the order in the file. This is to speed up structure searches. If it is important that your `Crystal` have its atoms indexed identically to the source file, one solution is to save a new version of the file using [`write_xyz`](@ref). !!! example Sort the atoms in [`glycine_res.xyz`](../../../assets/inputs/glycine_res.xyz): ```jldoctest; output=false # read the original data, pre-sorting the atoms q1 = moiety("glycine_res.xyz") # q1 is now indexed differently than the input data # save a new source file write_xyz(q1, joinpath(rc[:paths][:moieties], "glycine_res_sorted.xyz")) # q2 is ordered the same as the new file q2 = moiety("glycine_res_sorted.xyz") # q1 and q2 are identical @assert isapprox(q1.atoms.coords.xf, q2.atoms.coords.xf; atol=0.01) # output ``` The pre-sorting can also be disabled for non-!-tagged atoms, but at the risk of degraded search efficiency. !!! example Load [`glycine_res.xyz`](../../../assets/inputs/glycine_res.xyz) without changing the atom order: ```jldoctest; output=false moiety("glycine_res.xyz"; presort=false) # output Crystal(C₂H₃NO, periodic = TTT): bounding_box : [ 1 0 0; 6.12323e-17 1 0; 6.12323e-17 6.12323e-17 1]u"Å" Atoms{Frac}(1, [:N], Frac([-2.4029152; -2.23405082; 0.0;;])) Atoms{Frac}(1, [:H], Frac([-1.4033551999999998; -2.26371682; 0.0;;])) Atoms{Frac}(1, [:C], Frac([-3.0898692; -0.95823882; 0.0;;])) Atoms{Frac}(1, [:C], Frac([-2.0853462; 0.18518518; 0.0;;])) Atoms{Frac}(1, [:H], Frac([-3.7147022; -0.88143582; -0.889823;;])) Atoms{Frac}(1, [:H], Frac([-3.7147022; -0.88143582; 0.889823;;])) Atoms{Frac}(1, [:O], Frac([-0.8513402; -0.06139382; 0.0;;])) ``` ## Changing the Data Directories `rc[:paths][:crystals]` and `rc[:paths][:moieties]` default to `./data/crystals` and `./data/moieties`, respectively. To change the paths from where the input files are read, change `rc[:paths][:crystals]` and `rc[:paths][:moieties]`. !!! example Suppose we wish to store our `.cif` files in `~/my_xtals` and our `.xyz` files in our present working directory. ```julia rc[:paths][:crystals] = joinpath(homedir(), "my_xtals") rc[:paths][:moiety] = pwd() ``` ## Other data `PoreMatMod.jl` draws atomic masses and covalent radii from [`Xtals.jl`](https://github.com/SimonEnsemble/Xtals.jl/). ## Detailed documentation for functions ```@docs moiety Crystal infer_bonds! BondingRule strip_numbers_from_atom_labels! ```
PoreMatMod
https://github.com/SimonEnsemble/PoreMatMod.jl.git
[ "MIT" ]
0.2.20
131cd2b2ae892b6949a0b9aa375c689802e99c9d
docs
5303
```@meta DocTestSetup = quote using PoreMatMod end ``` # Find/Replace Operations Suppose we wish to conduct the find-and-replace operations illustrated in the figure below, to produce an acetylamido-functionalized IRMOF-1 structure. ![replacement scheme](../../assets/replace/rep_header.png) #### the `parent` structure First, we load the `parent` IRMOF-1 structure and infer its bonds. ```jldoctest replace_md; output=false parent = Crystal("IRMOF-1.cif") infer_bonds!(parent, true) # output true ``` #### the `query` fragment Next, we define a `query` fragment as a *p*-phenylene moiety. To guide the replacement, the masked atoms of the `query` fragment must be annotated with `!` in the `.xyz` input file by appending a `!` character at the end of their atomic symbols. The atom property viewer feature in [iRASPA](https://iraspa.org/) is useful for figuring out which atom(s) to mask. !!! note A masked atom (marked with `!`) in the `query` fragment implies that the corresponding atom of the `parent` crystal structure (i) must be removed [e.g., to make room for replacement with a different functionality] but (ii) does not correspond with an atom on the `replacement` fragment and thus cannot be used in the process of aligning the `replacement` fragment onto the `parent` crystal. In our example, in `2-!-p-phenylene.xyz` input file describing our *p*-phenylene `query` fragment, one H atom is masked (see figure above): ``` 10 C -1.71069 0.96969 -0.46280 C -0.48337 1.30874 0.11690 C -2.33707 -0.23371 -0.12103 C 0.11757 0.44439 1.03836 C -0.50881 -0.75900 1.38013 C -1.73613 -1.09805 0.80043 H! 1.06706 0.70670 1.48683 H 0.00122 2.23972 -0.14750 H -3.28655 -0.49601 -0.56950 H -2.22071 -2.02904 1.06484 ``` We then read the input file for the `query` fragment. ```jldoctest replace_md; output=false query = moiety("2-!-p-phenylene.xyz") # output Crystal(C₆H!H₃, periodic = TTT): bounding_box : [ 1 0 0; 6.12323e-17 1 0; 6.12323e-17 6.12323e-17 1]u"Å" ``` #### the `replacement` fragment Next, we read in the acetylamido-functionalized version of the `query` fragment, [2-acetylamido-p-phenylene.xyz](../../../assets/replace/2-acetylamido-p-phenylene.xyz), as the `replacement` fragment: ```jldoctest replace_md; output=false replacement = moiety("2-acetylamido-p-phenylene.xyz") # output Crystal(C₈H₇NO, periodic = TTT): bounding_box : [ 1 0 0; 6.12323e-17 1 0; 6.12323e-17 6.12323e-17 1]u"Å" ``` #### the find step We search for subgraphs of the `parent` structure that match the `query` fragment. Note the `!` tags are ignored during the `substructure_search`. ```jldoctest replace_md; output=false search = query in parent # equivalent to substructure_search(query, parent) # output 2-!-p-phenylene.xyz ∈ IRMOF-1.cif 96 hits in 24 locations. ``` #### the replace step The code below will, at each location in the `parent` where a substructure matched the `query` fragment, choose a random orientation (corresponding to an overlay of the `query` with the substructure), align and install the replacement fragment, then remove the original substructure, giving the `child` structure shown in the figure above. ```jldoctest replace_md; output=false child = substructure_replace(search, replacement) # output Crystal(C₂₄₀H₁₆₈N₂₄O₁₂₈Zn₃₂, periodic = TTT): bounding_box : [ 25.832 0 0; 1.58175e-15 25.832 0; 1.58175e-15 1.58175e-15 25.832]u"Å" ``` To direct the number, location, and orientation of the replacements, use the keyword arguments for [`substructure_replace`](@ref). Particularly, the location `loc` and orientation `ori` keyword arguments specify a particular isomorphism to use (in reference to `search.isomorphisms`) when conducting a replacement operation. The figure below illustrates. ![loc/ori example](../../assets/replace/loc_ori_example.png) For more details, see the [search docs](../../find) and the [replacement modes example](../../../examples/replacement_modes.html). ### quick find-and-replace syntax For one-shot find-and-replace operations, the `replace` function may be used: ```jldoctest replace_md; output=false child = replace(parent, query => replacement) # output Crystal(C₂₄₀H₁₆₈N₂₄O₁₂₈Zn₃₂, periodic = TTT): bounding_box : [ 25.832 0 0; 1.58175e-15 25.832 0; 1.58175e-15 1.58175e-15 25.832]u"Å" ``` !!! note Generally, it is advisable to perform the search using `substructure_replace` then pass it to `replace`, as multiple replacement tasks can then be performed on the basis of the search step as opposed to repeating it for each replacement. The search is usually the slowest step, and it is desirable not to perform it repeatedly. ## Documentation of functions ```@docs substructure_replace replace ```
PoreMatMod
https://github.com/SimonEnsemble/PoreMatMod.jl.git
[ "MIT" ]
0.2.20
131cd2b2ae892b6949a0b9aa375c689802e99c9d
docs
1185
# Getting Started ## Installation Download and install the [Julia programming language](https://julialang.org/), at version 1.6 or higher. `PoreMatMod.jl` is not currently stable on version 1.7. To install `PoreMadMod.jl` (officially registered as a Julia package), in the Julia REPL, enter the package manager by typing `]` and enter: ``` pkg> add PoreMatMod ``` ## Loading the `PoreMatMod.jl` package To load the `PoreMatMod.jl` package, so that its functions are imported into your namespace, in your Julia code: ```julia julia> using PoreMatMod ``` We recommend writing Julia code and performing find-and-replace tasks with `PoreMadMod.jl` using interactive [Pluto notebooks](https://github.com/fonsp/Pluto.jl). ## Running tests (optional) Run the unit tests associated with `PoreMatMod.jl` by entering package mode in the Julia REPL via (`]`) and entering: ``` pkg> test PoreMatMod ``` !!! note `PoreMatMod.jl` is built on [`Xtals.jl`](https://github.com/SimonEnsemble/Xtals.jl), which provides: - the data structure and reader, `Crystal`, for crystal structures - the `infer_bonds!` function that assigns bonds between atoms of a `Crystal`
PoreMatMod
https://github.com/SimonEnsemble/PoreMatMod.jl.git
[ "MIT" ]
0.2.0
fb6803dafae4a5d62ea5cab204b1e657d9737e7f
code
5929
module LeftChildRightSiblingTrees using AbstractTrees # See `abstracttrees.jl` for the only dependency of this package export Node, addchild, addsibling, depth, graftchildren!, isroot, isleaf, islastsibling, lastsibling, prunebranch! mutable struct Node{T} data::T parent::Node{T} child::Node{T} sibling::Node{T} """ root = Node(data) Construct a disconnected node, which can serve as the root of a new tree. `root.data` holds `data`. """ function Node{T}(data) where T n = new{T}(data) n.parent = n n.child = n n.sibling = n n end """ node = Node(data, parent::Node) Construct a `node` with `parent` as its parent node. `node.data` stores `data`. Node that this does *not* update any links in, e.g., `parent`'s other children. For a higher-level interface, see [`addchild`](@ref). """ function Node{T}(data, parent::Node) where T n = new{T}(data, parent) n.child = n n.sibling = n n end end Node(data::T) where {T} = Node{T}(data) Node(data, parent::Node{T}) where {T} = Node{T}(data, parent) """ node = lastsibling(child) Return the last sibling of `child`. """ function lastsibling(sib::Node) newsib = sib.sibling while !islastsibling(sib) sib = newsib newsib = sib.sibling end sib end """ node = addsibling(oldersib, data) Append a new "youngest" sibling, storing `data` in `node`. `oldersib` must be the previously-youngest sibling (see [`lastsibling`](@ref)). """ function addsibling(oldersib::Node{T}, data) where T if oldersib.sibling != oldersib error("Truncation of sibling list") end youngersib = Node(data, oldersib.parent) oldersib.sibling = youngersib youngersib end """ node = addchild(parent::Node, data) Create a new child of `parent`, storing `data` in `node.data`. This adjusts all links to ensure the integrity of the tree. """ function addchild(parent::Node{T}, data) where T newc = Node(data, parent) prevc = parent.child if prevc == parent parent.child = newc else prevc = lastsibling(prevc) prevc.sibling = newc end newc end """ isroot(node) Returns `true` if `node` is the root of a tree (meaning, it is its own parent). """ AbstractTrees.isroot(n::Node) = n == n.parent """ islastsibling(node) Returns `true` if `node` is the last sibling """ islastsibling(n::Node) = n === n.sibling """ isleaf(node) Returns `true` if `node` has no children. """ isleaf(n::Node) = n == n.child makeleaf!(n::Node) = n.child = n makelastsibling!(n::Node) = n.sibling = n Base.show(io::IO, n::Node) = print(io, "Node(", n.data, ')') # Iteration over children # for c in parent # # do something # end Base.IteratorSize(::Type{<:Node}) = Base.SizeUnknown() Base.eltype(::Type{Node{T}}) where T = Node{T} function Base.iterate(n::Node, state::Node = n.child) n === state && return nothing return state, islastsibling(state) ? n : state.sibling end # To support Base.pairs struct PairIterator{T} parent::Node{T} end Base.pairs(node::Node) = PairIterator(node) Base.IteratorSize(::Type{<:PairIterator}) = Base.SizeUnknown() function Base.iterate(iter::PairIterator, state::Node=iter.parent.child) iter.parent === state && return nothing return state=>state, islastsibling(state) ? iter.parent : state.sibling end function showedges(io::IO, parent::Node, printfunc = identity) str = printfunc(parent.data) if str != nothing if isleaf(parent) println(io, str, " has no children") else print(io, str, " has the following children: ") for c in parent print(io, printfunc(c.data), " ") end print(io, "\n") for c in parent showedges(io, c, printfunc) end end end end showedges(parent::Node) = showedges(stdout, parent) depth(node::Node) = depth(node, 1) function depth(node::Node, d) childd = d + 1 for c in node d = max(d, depth(c, childd)) end return d end """ graftchildren!(dest, src) Move the children of `src` to become children of `dest`. `src` becomes a leaf node. """ function graftchildren!(dest, src) for c in src c.parent = dest end if isleaf(dest) dest.child = src.child else lastsib = lastsibling(dest.child) lastsib.sibling = src.child end makeleaf!(src) return dest end """ prunebranch!(node) Eliminate `node` and all its children from the tree. """ function prunebranch!(node) isroot(node) && error("cannot prune the root") p = node.parent if p.child == node # `node` is the first child of p if islastsibling(node) makeleaf!(p) # p is now a leaf else p.child = node.sibling end else # `node` is a middle or last child of p child = p.child sib = child.sibling while sib != node @assert sib != child child = sib sib = child.sibling end if islastsibling(sib) # node is the last child of p, just truncate makelastsibling!(child) else # skip over node child.sibling = sib.sibling end end return p end function Base.:(==)(a::Node, b::Node) a.data == b.data || return false reta, retb = iterate(a), iterate(b) while true reta === retb === nothing && return true (reta === nothing) || (retb === nothing) && return false childa, statea = reta childb, stateb = retb childa == childb || return false reta, retb = iterate(a, statea), iterate(b, stateb) end end include("abstracttrees.jl") end # module
LeftChildRightSiblingTrees
https://github.com/JuliaCollections/LeftChildRightSiblingTrees.jl.git
[ "MIT" ]
0.2.0
fb6803dafae4a5d62ea5cab204b1e657d9737e7f
code
553
AbstractTrees.nodetype(::Type{<:Node{T}}) where T = Node{T} AbstractTrees.NodeType(::Type{<:Node{T}}) where T = HasNodeType() AbstractTrees.parent(node::Node) = node.parent ≡ node ? nothing : node.parent AbstractTrees.ParentLinks(::Type{<:Node{T}}) where T = StoredParents() AbstractTrees.SiblingLinks(::Type{<:Node{T}}) where T = StoredSiblings() AbstractTrees.children(node::Node) = node function AbstractTrees.nextsibling(node::Node) ns = node.sibling return node ≡ ns ? nothing : ns end AbstractTrees.nodevalue(node::Node) = node.data
LeftChildRightSiblingTrees
https://github.com/JuliaCollections/LeftChildRightSiblingTrees.jl.git
[ "MIT" ]
0.2.0
fb6803dafae4a5d62ea5cab204b1e657d9737e7f
code
3108
using LeftChildRightSiblingTrees, AbstractTrees using Test function mumtree() # from the README mum = Node("Mum") me = addchild(mum, "Me") son = addchild(me, "Son") daughter = addchild(me, "Daughter") brother = addsibling(me, "Brother") return mum end @testset "LeftChildRightSiblingTrees" begin root = Node(0) @test isroot(root) @test isleaf(root) @test islastsibling(root) nchildren = 0 for c in root nchildren += 1 end @test nchildren == 0 c1 = addchild(root, 1) @test islastsibling(c1) c2 = addchild(root, 2) @test !islastsibling(c1) @test islastsibling(c2) c3 = addsibling(c2, 3) @test lastsibling(c1) == c3 @test islastsibling(c3) @test !islastsibling(c2) c21 = addchild(c2, 4) c22 = addchild(c2, 5) @test isroot(root) @test !isleaf(root) nchildren = 0 for c in root @test !isroot(c) nchildren += 1 end @test nchildren == 3 @test isleaf(c1) @test !isleaf(c2) @test isleaf(c3) for c in c2 @test !isroot(c) @test isleaf(c) end children2 = [c21,c22] i = 0 for c in c2 @test c == children2[i+=1] end io = IOBuffer() show(io, c2) str = String(take!(io)) @test str == "Node(2)" LeftChildRightSiblingTrees.showedges(io, root) str = String(take!(io)) @test occursin("2 has the following children", str) @test depth(root) == 3 @test depth(c3) == 1 root1 = deepcopy(root) node = collect(root1)[2] graftchildren!(root1, node) @test isleaf(node) @test [c.data for c in root1] == [1,2,3,4,5] for c in root1 @test c.parent == root1 end prunebranch!(node) @test [c.data for c in root1] == [1,3,4,5] root1 = deepcopy(root) chlds = collect(root1) p, node = chlds[1], chlds[2] @test isleaf(p) graftchildren!(p, node) @test isleaf(node) @test [c.data for c in root1] == [1,2,3] @test [c.data for c in p] == [4,5] for c in p @test c.parent == p end root1 = deepcopy(root) chlds = collect(root1) prunebranch!(chlds[end]) @test [c.data for c in root1] == [1,2] root1 = deepcopy(root) chlds = collect(root1) prunebranch!(chlds[1]) @test [c.data for c in root1] == [2,3] @test_throws ErrorException("cannot prune the root") prunebranch!(root1) tree1 = mumtree() tree2 = mumtree() @test tree1 == tree2 c = collect(tree1) addchild(last(c), "Kid") @test tree1 != tree2 end @testset "AbstractTrees" begin root = Node(0) c1 = addchild(root, 1) c2 = addchild(root, 2) c3 = addsibling(c2, 3) c21 = addchild(c2, 4) c22 = addchild(c2, 5) io = IOBuffer() print_tree(io, root) @test strip(String(take!(io))) == "0\n├─ 1\n├─ 2\n│ ├─ 4\n│ └─ 5\n└─ 3" @test map(x->x.data, @inferred(collect(PostOrderDFS(root)))) == [1,4,5,2,3,0] @test map(x->x.data, @inferred(collect(PreOrderDFS(root)))) == [0,1,2,4,5,3] @test map(x->x.data, @inferred(collect(Leaves(root)))) == [1,4,5,3] end
LeftChildRightSiblingTrees
https://github.com/JuliaCollections/LeftChildRightSiblingTrees.jl.git
[ "MIT" ]
0.2.0
fb6803dafae4a5d62ea5cab204b1e657d9737e7f
docs
2998
# LeftChildRightSiblingTrees A [left child, right sibling tree](https://en.wikipedia.org/wiki/Left-child_right-sibling_binary_tree) (frequently abbreviated as "LCRS") is a rooted tree data structure that allows a parent node to have multiple child nodes. Rather than maintain a list of children (which requires one array per node), instead it is represented as a binary tree, where the "left" branch is the first child, whose "right" branch points to its first sibling. Concretely, suppose a particular node, `A`, has 3 children, `a`, `b`, and `c`. Then: - `a`, `b`, and `c` link to `A` as their parent. - `A` links `a` as its child (via `A`'s left branch); `a` links `b` as its sibling (via `a`'s right branch), and `b` links `c` as its sibling (via `b`'s right branch). - `A`'s right branch would link to any of its siblings (e.g., `B`), if they exist. - Any missing links (e.g., `c` does not have a sibling) link back to itself (`c.sibling == c`). ## Tradeoffs An LCRS tree is typically more memory efficient than an equivalent multi-way tree representation that uses an array to store the children of each node. However, for certain tasks it can be less performant, because some operations that modify the tree structure require iterating over all the children of a node. ## Demo ### Creating a Tree Can `addchild` or `addsibling`. ```julia julia> using LeftChildRightSiblingTrees julia> mum = Node("Mum"); julia> me = addchild(mum, "Me"); julia> son = addchild(me, "Son"); julia> daughter = addchild(me, "Daughter"); julia> brother = addsibling(me, "Brother"); # equivalent: to `addchild(mum, "Brother")` ``` ### Querying about nodes: ```julia julia> lastsibling(me) Node(Brother) julia> isroot(mum) true julia> isleaf(me) false julia> isleaf(daughter) true ``` ### Iterating the Tree/Nodes Iteration goes through all (direct) children. The `.data` field holds the information put in the tree. we can use this to draw a simple visualization of the tree via recursion. ```julia julia> for child in mum println(child) end Node(Me) Node(Brother) julia> function showtree(node, indent=0) println("\t"^indent, node.data) for child in node showtree(child, indent + 1) end end showtree (generic function with 2 methods) julia> showtree(mum) Mum Me Son Daughter Brother ``` LeftChildRightSiblingTrees also has a built in function for showing this kind of info: ```julia julia> LeftChildRightSiblingTrees.showedges(mum) Mum has the following children: Me Brother Me has the following children: Son Daughter Son has no children Daughter has no children Brother has no children ``` ## Manipulating the tree See the docstrings for `graftchildren!` and `prunebranch!`. ## Credits This existed as an internal component of [ProfileView](https://github.com/timholy/ProfileView.jl) since its inception until it was split out as an independent package.
LeftChildRightSiblingTrees
https://github.com/JuliaCollections/LeftChildRightSiblingTrees.jl.git
[ "MIT" ]
0.1.0
52d5c95f041496a7262a538682625153fe9849bc
code
481
module HardwareAbstractions using ControlSystemsBase, LinearAlgebra export @periodically, chirp, show_measurements export control, measure, inputrange, outputrange, isstable, isasstable, sampletime, bias, initialize, finalize, ninputs, noutputs, nstates import Base: finalize import ControlSystemsBase: sampletime, isstable, ninputs, noutputs, nstates include("utilities.jl") include("interface.jl") include("reference_generators.jl") include("controllers.jl") end # module
HardwareAbstractions
https://github.com/baggepinnen/HardwareAbstractions.jl.git
[ "MIT" ]
0.1.0
52d5c95f041496a7262a538682625153fe9849bc
code
1395
export run_control_2DOF """ y,u,r = run_control_2DOF(process, sysFB[, sysFF]; duration = 10, reference(t) = sign(sin(2π*t))) Perform control experiemnt on process where the feedback and feedforward controllers are given by `sysFB` and `sysFF`, both of type `StateSpace`. `reference` is a reference generating function that accepts a scalar `t` (time in seconds) and outputs a scalar `r`, default is `reference(t) = sign(sin(2π*t))`. The outputs `y,u,r` are the beam angle, control signal and reference respectively. ![block diagram](feedback4.png) """ function run_control_2DOF(P::AbstractProcess,sysFB, sysFF=nothing; duration = 10, reference = t->sign(sin(2π*t))) nu = num_inputs(P) ny = num_outputs(P) h = sampletime(P) y = zeros(ny, length(0:h:duration)) u = zeros(nu, length(0:h:duration)) r = zeros(ny, length(0:h:duration)) Gfb = SysFilter(sysFB) if sysFF != nothing Gff = SysFilter(sysFF) end function calc_control(i) rf = sysFF == nothing ? r[:,i] : Gff(r[:,i]) e = rf-y[:,i] ui = Gfb(e) ui .+ bias(P) end simulation = isa(P, SimulatedProcess) initialize(P) for (i,t) = enumerate(0:h:duration) @periodically h simulation begin y[:,i] .= measure(P) r[:,i] .= reference(t) u[:,i] .= calc_control(i) # y,r must be updated before u control(P, [clamp.(u[j,i], inputrange(P)[j]...) for j=1:nu]) end end finalize(P) y',u',r' end
HardwareAbstractions
https://github.com/baggepinnen/HardwareAbstractions.jl.git
[ "MIT" ]
0.1.0
52d5c95f041496a7262a538682625153fe9849bc
code
3234
export AbstractProcess, PhysicalProcess, SimulatedProcess, processtype export outputrange, inputrange, ninputs, noutputs, nstates, isstable, isasstable, sampletime, bias, control, measure, initialize, finalize # Interface specification =================================================================== """ AbstractProcess Base abstract type for all lab processes. This should not be inherited from directly, see [`PhysicalProcess`](@ref), [`SimulatedProcess`](@ref) """ abstract type AbstractProcess end """ PhysicalProcess <: AbstractProcess Pysical processes should have this trait when queried with [`processtype`](@ref). """ struct PhysicalProcess <: AbstractProcess end """ SimulatedProcess <: AbstractProcess Simulated processes should have this trait when queried with [`processtype`](@ref). """ struct SimulatedProcess <: AbstractProcess end """ processtype(P::AbstractProcess) Return the type of process `P`, either `PhysicalProcess` or `SimulatedProcess`. """ function processtype end ## Function definitions ===================================================================== """ range = outputrange(P::AbstractProcess) Return the range of outputs (measurement signals) of the process. `range` is a vector of tuples, `length(range) = num_outputs(P), eltype(range) = Tuple(Real, Real)` """ function outputrange end """ range = inputrange(P::AbstractProcess) Return the range of inputs (control signals) of the process. `range` is a vector of tuples, `length(range) = num_inputs(P), eltype(range) = Tuple(Real, Real)` """ function inputrange end """ isstable(P::AbstractProcess) Return true/false indicating whether or not the process is stable """ function isstable end """ isasstable(P::AbstractProcess) Return true/false indicating whether or not the process is asymptotically stable """ function isasstable end """ h = sampletime(P::AbstractProcess) Return the sample time of the process in seconds. """ function sampletime end """ b = bias(P::AbstractProcess) Return an input bias for the process. This could be, i.e., the constant input u₀ around which a nonlinear system is linearized, or whatever other bias might exist on the input. `length(b) = num_inputs(P)` """ function bias end """ control(P::AbstractProcess, u) Send a control signal to the process. `u` must have dimension equal to `num_inputs(P)` """ function control end """ y = measure(P::AbstractProcess) Return a measurement from the process. `y` has length `num_outputs(P)` """ function measure end """ initialize(P::AbstractProcess) This function is called before any control or measurement operations are performed. During a call to `initialize`, one might set up external communications etc. After control is done, the function [`finalize`](@ref) is called. """ function initialize end """ finalize(P::AbstractProcess) This function is called after any control or measurement operations are performed. During a call to `finalize`, one might finalize external communications etc. Before control is done, the function [`initialize`](@ref) is called. """ function finalize end
HardwareAbstractions
https://github.com/baggepinnen/HardwareAbstractions.jl.git
[ "MIT" ]
0.1.0
52d5c95f041496a7262a538682625153fe9849bc
code
659
export PRBSGenerator #PRBS """ r = PRBSGenerator() Generates a pseudo-random binary sequence. Call like `random_input = r()`. """ mutable struct PRBSGenerator state::Int end PRBSGenerator() = PRBSGenerator(Int(1)) function (r::PRBSGenerator)(args...) state = r.state bit = ((state >> 0) ⊻ (state >> 2) ⊻ (state >> 3) ⊻ (state >> 5) ) & 1 r.state = (state >> 1) | (bit << 15) bit end """ chirp(t, f0, f1, Tf; logspace = true) If `t` is a symbolic variable, a symbolic expression in `t` is returned. """ function chirp(t, f0, f1, Tf; logspace=true) f = logspace ? f0*(f1/f0)^(t/Tf) : f0 + t/Tf*(f1-f0) sin(2π*f*t) end
HardwareAbstractions
https://github.com/baggepinnen/HardwareAbstractions.jl.git
[ "MIT" ]
0.1.0
52d5c95f041496a7262a538682625153fe9849bc
code
5257
export @periodically, @periodically_yielding, init_sysfilter, sysfilter!, SysFilter """ @periodically(h, body) Ensures that the body is run with an interval of `h >= 0.001` seconds. """ macro periodically(h, body) quote local start_time = time() $(esc(body)) local execution_time = time()-start_time Libc.systemsleep(max(0,$(esc(h))-execution_time)) end end macro periodically_yielding(h, body) quote local start_time = time() $(esc(body)) local execution_time = time()-start_time sleep(max(0,$(esc(h))-execution_time)) end end """ @periodically(h, simulation::Bool, body) Ensures that the body is run with an interval of `h >= 0.001` seconds. If `simulation == false`, no sleep is done """ macro periodically(h, simulation, body) quote local start_time = time() $(esc(body)) local execution_time = time()-start_time $(esc(simulation)) || Libc.systemsleep(max(0,$(esc(h))-execution_time)) end end """ Csf = SysFilter(sys_discrete::StateSpace) Csf = SysFilter(sys_continuous::StateSpace, sampletime) Csf = SysFilter(sys::StateSpace, state::AbstractVector) Returns an object used for filtering signals through LTI systems. Create a SysFilter object that can be used to implement control loops and simulators with LTI systems, i.e., `U(z) = C(z)E(z)`. To filter a signal `u` through the filter, call like `y = Csf(u)`. Calculates the filtered output `y` in `y = Cx+Du, x'=Ax+Bu` """ struct SysFilter{T<:StateSpace} sys::T state::Vector{Float64} function SysFilter(sys::StateSpace, state::AbstractVector) @assert !ControlSystemsBase.iscontinuous(sys) "Can not filter using continuous time model." @assert length(state) == sys.nx "length(state) != sys.nx" new{typeof(sys)}(sys, state) end function SysFilter(sys::StateSpace) @assert !ControlSystemsBase.iscontinuous(sys) "Can not filter using continuous time model. Supply sample time." new{typeof(sys)}(sys, init_sysfilter(sys)) end function SysFilter(sys::StateSpace, h::Real) @assert ControlSystemsBase.iscontinuous(sys) "Sample time supplied byt system model is already in discrete time." sysd = c2d(sys, h)[1] new{typeof(sysd)}(sysd, init_sysfilter(sysd)) end end (s::SysFilter)(input) = sysfilter!(s.state, s.sys, input) """ state = init_sysfilter(sys::StateSpace) Use together with [`sysfilter!`](@ref) """ function init_sysfilter(sys::StateSpace) zeros(sys.nx) end """ output = sysfilter!(s::SysFilter, input) output = sysfilter!(state, sys::StateSpace, input) Returns the filtered output `y` in `y = Cx+Du, x'=Ax+Bu` This function is used to implement control loops where a signal is filtered through a dynamical system, i.e., `U(z) = C(z)E(z)`. Initialize `state` using [`init_sysfilter`](@ref). """ function sysfilter!(state::AbstractVector, sys::StateSpace, input) state .= vec(sys.A*state + sys.B*input) output = vec(sys.C*state + sys.D*input) end sysfilter!(s::SysFilter, input) = sysfilter!(s.state, s.sys, input) """ f_discrete = rk4(f, Ts; supersample = 1) Discretize `f` using RK4 with sample time `Ts`. See also [`MPCIntegrator`](@ref) for more advanced integration possibilities. More details are available at https://help.juliahub.com/juliasimcontrol/stable/mpc_details/#Discretization """ function rk4(f::F, Ts0; supersample::Integer = 1) where {F} supersample ≥ 1 || throw(ArgumentError("supersample must be positive.")) # Runge-Kutta 4 method Ts = Ts0 / supersample # to preserve type stability in case Ts0 is an integer let Ts = Ts function (x, u, p, t) T = typeof(x) f1 = f(x, u, p, t) f2 = f(x + Ts / 2 * f1, u, p, t + Ts / 2) f3 = f(x + Ts / 2 * f2, u, p, t + Ts / 2) f4 = f(x + Ts * f3, u, p, t + Ts) add = Ts / 6 * (f1 + 2 * f2 + 2 * f3 + f4) # This gymnastics with changing the name to y is to ensure type stability when x + add is not the same type as x. The compiler is smart enough to figure out the type of y y = x + add for i in 2:supersample f1 = f(y, u, p, t) f2 = f(y + Ts / 2 * f1, u, p, t + Ts / 2) f3 = f(y + Ts / 2 * f2, u, p, t + Ts / 2) f4 = f(y + Ts * f3, u, p, t + Ts) add = Ts / 6 * (f1 + 2 * f2 + 2 * f3 + f4) y += add end return y end end end function show_measurements(fun, p; Tf = 3600) data = Vector{Float64}[] Ts = sampletime(p) N = round(Int, Tf/Ts) try for i = 1:N @periodically_yielding Ts begin y = measure(p) push!(data, y) fun(data) end end catch e @info e finally @info "Going to the pub" end data end function collect_data(p; Tf = 10) data = Vector{Float64}[] Ts = sampletime(p) N = round(Int, Tf/Ts) sizehint!(data, N) GC.enable(false); GC.gc() t_start = time() try for i = 1:N @periodically Ts begin y = measure(p) t = time() - t_start push!(data, [t; y]) end end catch e @info e finally GC.enable(true); GC.gc() @info "Going to the pub" end data end
HardwareAbstractions
https://github.com/baggepinnen/HardwareAbstractions.jl.git
[ "MIT" ]
0.1.0
52d5c95f041496a7262a538682625153fe9849bc
code
4742
# Interface implementation Ball And Beam ==================================================== # The ball and beam can be used in two modes, either just the Beam, in which case there is a # single output (measurement signal) or the BallAndBeam, in which case there are two. # There are a few union types defined for convenience, these are # AbstractBeam = Union{Beam, BeamSimulator} # AbstractBallAndBeam = Union{BallAndBeam, BallAndBeamSimulator} # AbstractBeamOrBallAndBeam = All types # Although not Abstract per se, the names AbstractBeam etc. were chosen since this reflects # their usage in dispatch. export Beam, BeamSimulator, AbstractBeam, BallAndBeam, BallAndBeamSimulator, AbstractBeamOrBallAndBeam # @with_kw allows specification of default values for fields. If none is given, this value must be supplied by the user. replaces many constructors that would otherwise only supply default values. # Call constructor like Beam(bias=1.0) if you want a non-default value for bias """ Beam(;kwargs...) Physical beam process #Arguments (fields) - `h::Float64 = 0.01` - `bias::Float64 = 0.0` - `stream::LabStream = ComediStream()` - `measure::AnalogInput10V = AnalogInput10V(0)` - `control::AnalogOutput10V = AnalogOutput10V(1)` """ struct Beam <: PhysicalProcess h::Float64 bias::Float64 stream::LabStream measure::AnalogInput10V control::AnalogOutput10V end function Beam(; h::Float64 = 0.01, bias::Float64 = 0., stream::LabStream = ComediStream(), measure::AnalogInput10V = AnalogInput10V(0), control::AnalogOutput10V = AnalogOutput10V(1)) p = Beam(Float64(h),Float64(bias),stream,measure,control) init_devices!(p.stream, p.measure, p.control) p end include("define_beam_system.jl") const beam_system, nice_beam_controller = define_beam_system() # nice_beam_controller gives ϕₘ=56°, Aₘ=4, Mₛ = 1.6. Don't forget to discretize it before use struct BeamSimulator <: SimulatedProcess h::Float64 s::SysFilter BeamSimulator(;h::Real = 0.01, bias=0) = new(Float64(h), SysFilter(beam_system, h)) end struct BallAndBeam <: PhysicalProcess h::Float64 bias::Float64 stream::LabStream measure1::AnalogInput10V measure2::AnalogInput10V control::AnalogOutput10V end function BallAndBeam(; h = 0.01, bias = 0., stream = ComediStream(), measure1::AnalogInput10V = AnalogInput10V(0), measure2::AnalogInput10V = AnalogInput10V(1), control::AnalogOutput10V = AnalogOutput10V(1)) p = BallAndBeam(h,bias,stream,measure1,measure2,control) init_devices!(p.stream, p.measure1, p.measure2, p.control) p end struct BallAndBeamSimulator <: SimulatedProcess h::Float64 s::SysFilter end const AbstractBeam = Union{Beam, BeamSimulator} const AbstractBallAndBeam = Union{BallAndBeam, BallAndBeamSimulator} const AbstractBeamOrBallAndBeam = Union{AbstractBeam, AbstractBallAndBeam} num_outputs(p::AbstractBeam) = 1 num_outputs(p::AbstractBallAndBeam) = 2 num_inputs(p::AbstractBeamOrBallAndBeam) = 1 outputrange(p::AbstractBeam) = [(-10,10)] outputrange(p::AbstractBallAndBeam) = [(-10,10),(-1,1)] # Beam angle, Ball position inputrange(p::AbstractBeamOrBallAndBeam) = [(-10,10)] isstable(p::AbstractBeam) = true isstable(p::AbstractBallAndBeam) = false isasstable(p::AbstractBeamOrBallAndBeam) = false sampletime(p::AbstractBeamOrBallAndBeam) = p.h bias(p::AbstractBeamOrBallAndBeam) = p.bias bias(p::BeamSimulator) = 0 bias(p::BallAndBeamSimulator) = 0 function control(p::AbstractBeamOrBallAndBeam, u::AbstractArray) length(u) == 1 || error("Process $(typeof(p)) only accepts one control signal, tried to send u=$u.") control(p,u[1]) end control(p::AbstractBeamOrBallAndBeam, u::Number) = send(p.control,u) control(p::BeamSimulator, u::Number) = p.s(u) control(p::BallAndBeamSimulator, u::Number) = error("Not yet implemented") measure(p::Beam) = read(p.measure) measure(p::BallAndBeam) = [read(p.measure1), read(p.measure2)] measure(p::BeamSimulator) = dot(p.s.sys.C,p.s.state) measure(p::BallAndBeamSimulator) = error("Not yet implemented") initialize(p::Beam) = nothing initialize(p::BallAndBeam) = nothing finalize(p::AbstractBeamOrBallAndBeam) = foreach(close, p.stream.devices) initialize(p::BallAndBeamSimulator) = nothing finalize(p::BallAndBeamSimulator) = nothing initialize(p::BeamSimulator) = p.s.state .*= 0 finalize(p::BeamSimulator) = nothing
HardwareAbstractions
https://github.com/baggepinnen/HardwareAbstractions.jl.git
[ "MIT" ]
0.1.0
52d5c95f041496a7262a538682625153fe9849bc
code
2981
# Interface implementation Ball And Beam ==================================================== # There is a union type defined for convenience: # AbstractETHHelicopter = Union{ETHHelicopter, ETHHelicopterSimulator} # Although not Abstract per se, the names AbstractETHHelicopter etc. were chosen since this # reflects the usage in dispatch. export ETHHelicopter, ETHHelicopterSimulator, AbstractETHHelicopter # @with_kw allows specification of default values for fields. If none is given, this value must be supplied by the user. replaces many constructors that would otherwise only supply default values. # Call constructor like ETHHelicopter(bias=1.0) if you want a non-default value for bias """ ETHHelicopter(;kwargs...) Physical ETH helicopter process # Arguments (fields) - `h::Float64 = 0.05` - `bias::Float64 = 0.0` - `stream::LabStream = ComediStream()` - `measure1::AnalogInput10V = AnalogInput10V(0)` - `measure2::AnalogInput10V = AnalogInput10V(1)` - `control1::AnalogOutput10V = AnalogOutput10V(0)` - `control2::AnalogOutput10V = AnalogOutput10V(1)` """ @with_kw struct ETHHelicopter <: PhysicalProcess h::Float64 bias::Float64 stream::LabStream measure1::AnalogInput10V measure2::AnalogInput10V control1::AnalogOutput10V control2::AnalogOutput10V end function ETHHelicopter(; h = 0.05, bias = 0., stream = ComediStream(), measure1::AnalogInput10V = AnalogInput10V(0), measure2::AnalogInput10V = AnalogInput10V(1), control1::AnalogOutput10V = AnalogOutput10V(0), control2::AnalogOutput10V = AnalogOutput10V(1)) p = ETHHelicopter(h,bias,stream,measure1,measure2,control1,control2) init_devices!(p.stream, p.measure1, p.measure2, p.control1, p.control2) p end struct ETHHelicopterSimulator <: SimulatedProcess h::Float64 bias::Float64 state::Vector{Float64} end ETHHelicopterSimulator() = ETHHelicopterSimulator(0.01, zeros(4)) const AbstractETHHelicopter = Union{ETHHelicopter, ETHHelicopterSimulator} num_outputs(p::AbstractETHHelicopter) = 2 num_inputs(p::AbstractETHHelicopter) = 2 outputrange(p::AbstractETHHelicopter) = [(-10,10),(-10,10)] inputrange(p::AbstractETHHelicopter) = [(-10,10),(-10,10)] isstable(p::AbstractETHHelicopter) = false isasstable(p::AbstractETHHelicopter) = false sampletime(p::AbstractETHHelicopter) = p.h bias(p::AbstractETHHelicopter) = p.bias function control(p::ETHHelicopter, u) send(p.control1,u[1]) send(p.control2,u[2]) end measure(p::ETHHelicopter) = [read(p.measure1), read(p.measure2)] control(p::ETHHelicopterSimulator, u) = error("Not yet implemented") measure(p::ETHHelicopterSimulator) = error("Not yet implemented") initialize(p::ETHHelicopter) = nothing finalize(p::ETHHelicopter) = foreach(close, p.stream.devices) initialize(p::ETHHelicopterSimulator) = nothing finalize(p::ETHHelicopterSimulator) = nothing
HardwareAbstractions
https://github.com/baggepinnen/HardwareAbstractions.jl.git
[ "MIT" ]
0.1.0
52d5c95f041496a7262a538682625153fe9849bc
code
765
using HardwareAbstractions, ControlSystemsBase, DSP using Test # Reference generators r = PRBSGenerator(Int(4)) seq = [r() for i = 1:10] @test all(seq .== [1,0,1,0,0,0,0,0,0,0]) foreach(r,1:10_000) function test_sysfilter() N = 10 u = randn(N) b = [1, 1] a = [1, 0.1, 1] sys = ss(tf(b,a,1)) state = init_sysfilter(sys) yf = filt(b,a,u) yff = similar(yf) for i in eachindex(u) yff[i] = sysfilter!(state, sys, u[i])[1] end @test sum(abs,yf - yff) < √(eps()) sysfilt = SysFilter(sys) for i in eachindex(u) yff[i] = sysfilter!(sysfilt, u[i])[1] end @test sum(abs,yf - yff) < √(eps()) sysfilt = SysFilter(sys) for i in eachindex(u) yff[i] = sysfilt(u[i])[1] end @test sum(abs,yf - yff) < √(eps()) end test_sysfilter()
HardwareAbstractions
https://github.com/baggepinnen/HardwareAbstractions.jl.git
[ "MIT" ]
0.1.0
52d5c95f041496a7262a538682625153fe9849bc
docs
694
# HardwareAbstractions **Work in progress** An interface to communicate with hardware devices for the purposes of automatic control. This package does not do much itself other than defining the interface for other packages to implement. The interface is defined by [`interface.jl`](https://github.com/baggepinnen/HardwareAbstractions.jl/blob/main/src/interface.jl) ## Utilities The package also contains some utilities for working with hardware devices and control loops, such as - `@periodically`: Ensures that the body is run with an interval of `h >= 0.001` seconds. - `SysFilter`: Returns an object used for filtering signals through LTI systems. - `rk4`: A Runge-Kutta 4 integrator.
HardwareAbstractions
https://github.com/baggepinnen/HardwareAbstractions.jl.git
[ "MIT" ]
0.1.0
eaa980f5a721579635e085676efe307873bbab55
code
294
# Inside make.jl using Documenter, Proportions makedocs( sitename = "Proportions.jl", modules = [Proportions], doctest = true, pages=[ "Home" => "index.md" ]) deploydocs(; repo="github.com/hillelawaskar/Proportions.jl", )
Proportions
https://github.com/hillelawaskar/Proportions.jl.git
[ "MIT" ]
0.1.0
eaa980f5a721579635e085676efe307873bbab55
code
262
module Proportions export get_proportion,get_proportion_round, get_proportion_round_add1251, get_proportion_2d,get_proportion_round_2d,get_proportion_round_add1251_2d # Include functions include("onedproportion.jl") include("twodproportion.jl") #moduleend end
Proportions
https://github.com/hillelawaskar/Proportions.jl.git
[ "MIT" ]
0.1.0
eaa980f5a721579635e085676efe307873bbab55
code
2851
""" get_proportion(for_prop_arr::AbstractVector{Float64})::AbstractVector{Float64} Compute the proportional values for each element in the 1D array. returns a AbstractVector{Float64} # Example ``` julia> get_proportion([1.0,2.0,3.0,4.0,5.0,34.0000034,2423,5656.98988]) =[0.00012301651427098885, 0.0002460330285419777, 0.00036904954281296654, 0.0004920660570839554, 0.0006150825713549442, 0.004182561903469769, 0.298069014078606, 0.6959031763038594] ``` """ function get_proportion(for_prop_arr::AbstractVector{Float64})::AbstractVector{Float64} return for_prop_arr ./ sum(for_prop_arr) end """ get_proportion_round(for_prop_arr::AbstractVector{Float64};round_digits::Int64)::AbstractVector{Float64} Compute the proportional values for each element in the array and round to a specified decimal digits. If the sum of all the elements is not 1 , then the adjustment is done in the 1st largest element returns a AbstractVector{Float64} # Example ``` julia> get_proportion_round([1.33,1.33,1.23,1.1111],round_digits = 2) =[0.26, 0.27, 0.25, 0.22] ``` """ function get_proportion_round(for_prop_arr::AbstractVector{Float64};round_digits::Int64 = 2)::AbstractVector{Float64} temparr= round.(for_prop_arr ./ sum(for_prop_arr), digits=round_digits, base = 10) diff = 1 - sum(temparr) #delta naming if diff != 0.0 max = argmax(temparr) temparr[max] = round(temparr[max] + diff, digits=round_digits, base = 10) end return temparr end """ get_proportion_round_add1251(for_prop_arr::AbstractVector{Float64};round_digits::Int64)::AbstractVector{Float64} Compute the proportional values for each element in the array and round to a specified decimal digits. If the sum of all the elements is not 1 , then add 1251 to the array and try looking for proportional correctness after 2 itterations , the adjustment is done in the 1st largest element returns a AbstractVector{Float64} # Example ``` julia> get_proportion_round_add1251([1.33,1.33,1.23,1.1111],round_digits = 2) =[0.26, 0.27, 0.25, 0.22] ``` """ function get_proportion_round_add1251(for_prop_arr::AbstractVector{Float64};round_digits::Int64 = 2)::AbstractVector{Float64} temparr= round.(for_prop_arr ./ sum(for_prop_arr), digits=round_digits, base = 10) diff = 1 - sum(temparr) if diff != 0.0 check = 1 while check < 2 sqarr= (for_prop_arr) .+1251 temparr= round.(sqarr ./ sum(sqarr), digits=round_digits, base = 10) diff = 1 - sum(temparr) if diff != 0.00 check = check + 1 if check == 2 max = argmax(temparr) temparr[max] = round(temparr[max]+diff,digits=round_digits, base = 10) end else break end end end return temparr end
Proportions
https://github.com/hillelawaskar/Proportions.jl.git
[ "MIT" ]
0.1.0
eaa980f5a721579635e085676efe307873bbab55
code
2851
""" get_proportion_2d(for_prop_arr::AbstractArray{Float64, 2})::AbstractArray{Float64, 2} Compute the proportional values for each element in the 2d array. returns a AbstractArray{Float64, 2} # Example ``` julia> get_proportion_2d([1.0 2.0 ; 4.0 5.0]) =[0.08333333333333333 0.16666666666666666; 0.3333333333333333 0.4166666666666667] ``` """ function get_proportion_2d(for_prop_arr::AbstractArray{Float64,2})::AbstractArray{Float64,2} return for_prop_arr ./ sum(for_prop_arr) end """ get_proportion_round_2d(for_prop_arr::AbstractArray{Float64, 2};round_digits::Int64)::AbstractArray{Float64, 2} Compute the proportional values for each element in the 2d array and round to a specified decimal digits. If the sum of all the elements is not 1 , then the adjustment is done in the 1st largest element returns a AbstractArray{Float64, 1} # Example ``` julia> get_proportion_round_2d([1.1101 2.243 ; 4.9898 5.87],round_digits=5) =[0.07811 0.15781; 0.35108 0.413] ``` """ function get_proportion_round_2d(for_prop_arr::AbstractArray{Float64,2};round_digits::Int64 = 2)::AbstractArray{Float64,2} temparr= round.(for_prop_arr ./ sum(for_prop_arr), digits=round_digits, base = 10) diff = 1 - sum(temparr) #delta naming if diff != 0.0 max = argmax(temparr) temparr[max] = round(temparr[max] + diff, digits=round_digits, base = 10) end return temparr end """ get_proportion_round_add1251(for_prop_arr::AbstractArray{Float64, 2};round_digits::Int64)::AbstractArray{Float64, 2} Compute the proportional values for each element in the 2d array and round to a specified decimal digits. If the sum of all the elements is not 1 , then add 1251 to the array and try looking for proportional correctness after 2 itterations , the adjustment is done in the 1st largest element returns a AbstractArray{Float64, 2} # Example ``` julia> get_proportion_round_add1251_2d([1.1101 2.243 ; 4.9898 5.87 ; 34.333 6.78],round_digits=8) =[0.16559399 0.16574381; 0.16610708 0.16622349; 0.16998779 0.16634384] ``` """ function get_proportion_round_add1251_2d(for_prop_arr::AbstractArray{Float64,2};round_digits::Int64 = 2)::AbstractArray{Float64,2} temparr= round.(for_prop_arr ./ sum(for_prop_arr), digits=round_digits, base = 10) diff = 1 - sum(temparr) if diff != 0.0 check = 1 while check < 2 sqarr= (for_prop_arr) .+1251 temparr= round.(sqarr ./ sum(sqarr), digits=round_digits, base = 10) diff = 1 - sum(temparr) if diff != 0.00 check = check + 1 if check == 2 max = argmax(temparr) temparr[max] = round(temparr[max]+diff,digits=round_digits, base = 10) end else break end end end return temparr end
Proportions
https://github.com/hillelawaskar/Proportions.jl.git
[ "MIT" ]
0.1.0
eaa980f5a721579635e085676efe307873bbab55
code
1094
using Proportions using Test @testset "Proportions.jl" begin # Write your tests here. @test Proportions.get_proportion([1.0,1.0,1.0,1.0]) == [0.25,0.25,0.25,0.25] @test Proportions.get_proportion([1.0,1.0,1.0,2.5]) != [0.25,0.25,0.25,0.25] @test Proportions.get_proportion_round([1.33,1.33,1.23,1.1111],round_digits=2) ==[0.26, 0.27, 0.25, 0.22] @test Proportions.get_proportion_round([33,33,33.23,33.1111],round_digits=6) ==[0.249356, 0.249356, 0.251093, 0.250195] @test Proportions.get_proportion_round_add1251([33.009, 33.31223, 33.2113, 33.111122],round_digits=6) ==[0.24997, 0.25003, 0.25001, 0.24999] @test Proportions.get_proportion_2d([1.0 2.0 ; 4.0 5.0]) == [0.08333333333333333 0.16666666666666666; 0.3333333333333333 0.4166666666666667] @test Proportions.get_proportion_round_2d([1.1101 2.243 ; 4.9898 5.87],round_digits=5) == [0.07811 0.15781; 0.35108 0.413] @test Proportions.get_proportion_round_add1251_2d([1.1101 2.243 ; 4.9898 5.87 ; 34.333 6.78],round_digits=8) == [0.16559399 0.16574381; 0.16610708 0.16622349; 0.16998779 0.16634384] end
Proportions
https://github.com/hillelawaskar/Proportions.jl.git
[ "MIT" ]
0.1.0
eaa980f5a721579635e085676efe307873bbab55
docs
7813
# Proportions [![Build Status](https://travis-ci.com/hillelawaskar/Proportions.jl.svg?branch=main)](https://travis-ci.com/hillelawaskar/Proportions.jl) [![Build Status](https://ci.appveyor.com/api/projects/status/github/hillelawaskar/Proportions.jl?svg=true)](https://ci.appveyor.com/project/hillelawaskar/Proportions-jl) [![Coverage](https://codecov.io/gh/hillelawaskar/Proportions.jl/branch/main/graph/badge.svg)](https://codecov.io/gh/hillelawaskar/Proportions.jl) [![Coverage](https://coveralls.io/repos/github/hillelawaskar/Proportions.jl/badge.svg?branch=main)](https://coveralls.io/github/hillelawaskar/Proportions.jl?branch=main) </a><a class="docs-settings-button fas fa-cog" id="documenter-settings-button" href="#" title="Settings"></a><a class="docs-sidebar-button fa fa-bars is-hidden-desktop" id="documenter-sidebar-button" href="#"></a></div></header><article class="content" id="documenter-page"><h1 id="Proportions"><a class="docs-heading-anchor" href="#Proportions">Proportions</a><a id="Proportions-1"></a><a class="docs-heading-anchor-permalink" href="#Proportions" title="Permalink"></a></h1><p><em>The best Proportions package.</em></p><h2 id="Package-Features"><a class="docs-heading-anchor" href="#Package-Features">Package Features</a><a id="Package-Features-1"></a><a class="docs-heading-anchor-permalink" href="#Package-Features" title="Permalink"></a></h2><ul><li>Provides functions to provide proportionality for vector/matrix data</li><li>It can be used in various applications to split any values in a particular proportion</li><li>Examples:</li><li>1 Split a Number in proportions of a factor in vector/matrix</li><li>2 Split an payment schedule in various proportions</li><li>3 Split an payment based on the deliver of goods received</li></ul><h1 id="Documentation"><a class="docs-heading-anchor" href="#Documentation">Documentation</a><a id="Documentation-1"></a><a class="docs-heading-anchor-permalink" href="#Documentation" title="Permalink"></a></h1><article class="docstring"><header><a class="docstring-binding" id="Proportions.get_proportion-Tuple{AbstractVector{Float64}}" href="#Proportions.get_proportion-Tuple{AbstractVector{Float64}}"><code>Proportions.get_proportion</code></a> — <span class="docstring-category">Method</span></header><section><div><pre><code class="language-julia hljs">get_proportion(for_prop_arr::AbstractVector{Float64})::AbstractVector{Float64}</code></pre><p>Compute the proportional values for each element in the 1D array. returns a AbstractVector{Float64}</p><p><strong>Example</strong></p><pre><code class="nohighlight hljs">julia&gt; get_proportion([1.0,2.0,3.0,4.0,5.0,34.0000034,2423,5656.98988]) [0.00012301651427098885, 0.0002460330285419777, 0.00036904954281296654, 0.0004920660570839554, 0.0006150825713549442, 0.004182561903469769, 0.298069014078606, 0.6959031763038594]</code></pre></div></section></article><article class="docstring"><header><a class="docstring-binding" id="Proportions.get_proportion_2d-Tuple{AbstractMatrix{Float64}}" href="#Proportions.get_proportion_2d-Tuple{AbstractMatrix{Float64}}"><code>Proportions.get_proportion_2d</code></a> — <span class="docstring-category">Method</span></header><section><div><pre><code class="language-julia hljs">get_proportion_2d(for_prop_arr::AbstractArray{Float64, 2})::AbstractArray{Float64, 2}</code></pre><p>Compute the proportional values for each element in the 2d array. returns a AbstractArray{Float64, 2}</p><p><strong>Example</strong></p><pre><code class="nohighlight hljs">julia&gt; get_proportion_2d([1.0 2.0 ; 4.0 5.0]) =[0.08333333333333333 0.16666666666666666; 0.3333333333333333 0.4166666666666667]</code></pre></div></section></article><article class="docstring"><header><a class="docstring-binding" id="Proportions.get_proportion_round-Tuple{AbstractVector{Float64}}" href="#Proportions.get_proportion_round-Tuple{AbstractVector{Float64}}"><code>Proportions.get_proportion_round</code></a> — <span class="docstring-category">Method</span></header><section><div><pre><code class="language-julia hljs">get_proportion_round(for_prop_arr::AbstractVector{Float64};round_digits::Int64)::AbstractVector{Float64}</code></pre><p>Compute the proportional values for each element in the array and round to a specified decimal digits. If the sum of all the elements is not 1 , then the adjustment is done in the 1st largest element returns a AbstractVector{Float64}</p><p><strong>Example</strong></p><pre><code class="nohighlight hljs">julia&gt; get_proportion_round([1.33,1.33,1.23,1.1111],round_digits = 2) =[0.26, 0.27, 0.25, 0.22]</code></pre></div></section></article><article class="docstring"><header><a class="docstring-binding" id="Proportions.get_proportion_round_2d-Tuple{AbstractMatrix{Float64}}" href="#Proportions.get_proportion_round_2d-Tuple{AbstractMatrix{Float64}}"><code>Proportions.get_proportion_round_2d</code></a> — <span class="docstring-category">Method</span></header><section><div><pre><code class="language-julia hljs">get_proportion_round_2d(for_prop_arr::AbstractArray{Float64, 2};round_digits::Int64)::AbstractArray{Float64, 2}</code></pre><p>Compute the proportional values for each element in the 2d array and round to a specified decimal digits. If the sum of all the elements is not 1 , then the adjustment is done in the 1st largest element returns a AbstractArray{Float64, 1}</p><p><strong>Example</strong></p><pre><code class="nohighlight hljs">julia&gt; get_proportion_round_2d([1.1101 2.243 ; 4.9898 5.87],round_digits=5) =[0.07811 0.15781; 0.35108 0.413]</code></pre></div></section></article><article class="docstring"><header><a class="docstring-binding" id="Proportions.get_proportion_round_add1251-Tuple{AbstractVector{Float64}}" href="#Proportions.get_proportion_round_add1251-Tuple{AbstractVector{Float64}}"><code>Proportions.get_proportion_round_add1251</code></a> — <span class="docstring-category">Method</span></header><section><div><pre><code class="language-julia hljs">get_proportion_round_add1251(for_prop_arr::AbstractVector{Float64};round_digits::Int64)::AbstractVector{Float64}</code></pre><p>Compute the proportional values for each element in the array and round to a specified decimal digits. If the sum of all the elements is not 1 , then add 1251 to the array and try looking for proportional correctness after 2 itterations , the adjustment is done in the 1st largest element returns a AbstractVector{Float64}</p><p><strong>Example</strong></p><pre><code class="nohighlight hljs">julia&gt; get_proportion_round_add1251([1.33,1.33,1.23,1.1111],round_digits = 2) =[0.26, 0.27, 0.25, 0.22]</code></pre></div></section></article><article class="docstring"><header><a class="docstring-binding" id="Proportions.get_proportion_round_add1251_2d-Tuple{AbstractMatrix{Float64}}" href="#Proportions.get_proportion_round_add1251_2d-Tuple{AbstractMatrix{Float64}}"><code>Proportions.get_proportion_round_add1251_2d</code></a> — <span class="docstring-category">Method</span></header><section><div><pre><code class="language-julia hljs">get_proportion_round_add1251(for_prop_arr::AbstractArray{Float64, 2};round_digits::Int64)::AbstractArray{Float64, 2}</code></pre><p>Compute the proportional values for each element in the 2d array and round to a specified decimal digits. If the sum of all the elements is not 1 , then add 1251 to the array and try looking for proportional correctness after 2 itterations , the adjustment is done in the 1st largest element returns a AbstractArray{Float64, 2}</p><p><strong>Example</strong></p><pre><code class="nohighlight hljs">julia&gt; get_proportion_round_add1251_2d([1.1101 2.243 ; 4.9898 5.87 ; 34.333 6.78],round_digits=8) =[0.16559399 0.16574381; 0.16610708 0.16622349; 0.16998779 0.16634384]</code></pre></div></section></article></article></div></div></div></body></html>
Proportions
https://github.com/hillelawaskar/Proportions.jl.git
[ "MIT" ]
0.1.0
eaa980f5a721579635e085676efe307873bbab55
docs
561
# Proportions *The best Proportions package.* ## Package Features - Provides functions to provide proportionality for vector/matrix data - It can be used in various applications to split any values in a particular proportion - Examples: - 1 Split a Number in proportions of a factor in vector/matrix - 2 Split an payment schedule in various proportions - 3 Split an payment based on the deliver of goods received # Documentation ```@meta CurrentModule = Proportions DocTestSetup = quote using Proportions end ``` ```@autodocs Modules = [Proportions] ```
Proportions
https://github.com/hillelawaskar/Proportions.jl.git
[ "MIT" ]
0.0.1
e785a3d1d3bd6dd66ffd313f06d03b00d1a0a9b4
code
1612
using PhyloGaussianBeliefProp using Documenter using DocumenterCitations DocMeta.setdocmeta!(PhyloGaussianBeliefProp, :DocTestSetup, :(using PhyloGaussianBeliefProp); recursive=true) bib = CitationBibliography(joinpath(@__DIR__, "src", "refs.bib")) makedocs(; modules=[PhyloGaussianBeliefProp], authors="Cecile Ane <[email protected]>, Benjamin Teo <[email protected]>, and contributors", sitename="PhyloGaussianBeliefProp.jl", format=Documenter.HTML(; mathengine=Documenter.KaTeX(), prettyurls=get(ENV, "CI", "false") == "true", size_threshold = 600 * 2^10, size_threshold_warn = 500 * 2^10, # 600 KiB canonical="https://cecileane.github.io/PhyloGaussianBeliefProp.jl/stable/", edit_link="main", assets=String["assets/citations.css"], ), pages=[ "Home" => "index.md", "Manual" => [ "Installation" => "man/installation.md", "Getting started" => "man/getting_started.md", "Background" => "man/background.md", "Evolutionary models" => "man/evolutionary_models.md", "Cluster graphs" => "man/clustergraphs.md", "Regularization" => "man/regularization.md", "Message schedules" => "man/message_schedules.md" ] ], doctestfilters=[ # Ignore any digit after the 5th digit after a decimal, throughout the docs r"(?<=\d\.\d{5})\d+", ], plugins=[bib], ) deploydocs(; repo="github.com/cecileane/PhyloGaussianBeliefProp.jl.git", push_preview=true, devbranch="main", )
PhyloGaussianBeliefProp
https://github.com/JuliaPhylo/PhyloGaussianBeliefProp.jl.git
[ "MIT" ]
0.0.1
e785a3d1d3bd6dd66ffd313f06d03b00d1a0a9b4
code
902
module PhyloGaussianBeliefProp import Base: show using Distributions: MvNormalCanon, MvNormal, AbstractMvNormal using Graphs import LinearAlgebra as LA using MetaGraphsNext using Optim, PreallocationTools, ForwardDiff using PDMats using StaticArrays using StatsFuns using Tables using DataStructures: DefaultDict import PhyloNetworks as PN using PhyloNetworks: HybridNetwork, getparents, getparent, getparentedge, getchild, getchildren, getchildedge, hassinglechild include("utils.jl") include("clustergraph.jl") include("evomodels/evomodels.jl") # abstract evomodel must be included before all other models include("evomodels/homogeneousbrownianmotion.jl") include("evomodels/homogeneousornsteinuhlenbeck.jl") include("evomodels/heterogeneousmodels.jl") include("beliefs.jl") include("beliefupdates.jl") include("clustergraphbeliefs.jl") include("calibration.jl") include("score.jl") end
PhyloGaussianBeliefProp
https://github.com/JuliaPhylo/PhyloGaussianBeliefProp.jl.git
[ "MIT" ]
0.0.1
e785a3d1d3bd6dd66ffd313f06d03b00d1a0a9b4
code
33849
@enum BeliefType bclustertype=1 bsepsettype=2 abstract type AbstractBelief{T} end struct FamilyFactor{T<:Real,P<:AbstractMatrix{T},V<:AbstractVector{T}} <: AbstractBelief{T} h::V J::P g::MVector{1,T} # mutable "metadata, e.g. index of cluster in cluster graph" metadata::Symbol # because clusters have metadata of type Symbol end function Base.show(io::IO, b::FamilyFactor) print(io, "factor for node family" * " $(b.metadata)") print(io, "\nexponential quadratic belief, parametrized by\nh: $(b.h)\nJ: $(b.J)\ng: $(b.g[1])\n") end """ FamilyFactor(belief::AbstractBelief{T}) where T Constructor to allocate memory for one family factor, with canonical parameters and metadata initialized to be a copy of those in `belief`. `FamilyFactor`s metadata are supposed to be symbols, so this constructor should fail if its input is a sepset belief, whose `metadata` is a Tuple of Symbols. """ function FamilyFactor(belief::AbstractBelief{T}) where T h = deepcopy(belief.h) J = deepcopy(belief.J) g = deepcopy(belief.g) FamilyFactor{T,typeof(J),typeof(h)}(h,J,g,belief.metadata) end """ Belief{T<:Real,Vlabel<:AbstractVector,P<:AbstractMatrix{T},V<:AbstractVector{T},M} <: AbstractBelief{T} A "belief" is an exponential quadratic form, using the canonical parametrization: C(x | J,h,g) = exp( -(1/2)x'Jx + h'x + g ) It is a *normalized* distribution density if g = - (1/2) (log(2πΣ) + μ'Jμ) = - entropy of normalized distribution + (1/2) dim(μ) - (1/2) μ'Jμ. - μ is the mean, of type V (stored but typically not updated) - h = inv(Σ)μ is the potential, also of type V, - Σ is the variance matrix (not stored) - J = inv(Σ) is the precision matrix, of type P - g is a scalar to get the unnormalized belief: of type `MVector{1,T}` to be mutable. See `MvNormalCanon{T,P,V}` in [Distributions.jl](https://juliastats.org/Distributions.jl/stable/multivariate/#Distributions.MvNormalCanon) Other fields are used to track which cluster or edge the belief corresponds to, and which traits of which variables are in scope: - `nodelabel` of type `Vlabel` - `ntraits` - `inscope` - `type`: cluster or sepset - `metadata` of type `M`: `Symbol` for clusters, `Tuple{Symbol,Symbol}` for sepsets. Methods for a belief `b`: - `nodelabels(b)`: vector of node labels, of type `Vlabel`, e.g. Int8 if nodes are labelled by their preorder index in the original phylogeny - `ntraits(b)`: number of traits (dimension of the random variable x above) - `inscope(b)`: matrix of booleans (trait i in row i and and node j in column j) - `nodedimensions(b)`: vector of integers, with jth value giving the dimension (number of traits in scope) of node j. - `dimension(b)`: total dimension of the belief, that is, total number of traits in scope. Without any missing data, that would be ntraits × length of nodelabels. """ struct Belief{T<:Real,Vlabel<:AbstractVector,P<:AbstractMatrix{T},V<:AbstractVector{T},M} <: AbstractBelief{T} "Integer label for nodes in the cluster" nodelabel::Vlabel # StaticVector{N,Tlabel} "Total number of traits at each node" ntraits::Int """Matrix inscope[i,j] is `false` if trait `i` at node `j` is / will be removed from scope, to avoid issues from 0 precision or infinite variance; or when there is no data for trait `i` below node `j` (in which case tracking this variable is only good for prediction, not for learning parameters). """ inscope::BitArray μ::V h::V J::P # PDMat(J) not easily mutable, stores cholesky computed upon construction only g::MVector{1,T} "belief type: cluster (node in cluster graph) or sepset (edge in cluster graph)" type::BeliefType "metadata, e.g. index in cluster graph, of type (M) `Symbol` for clusters or Tuple{Symbol,Symbol} for edges." metadata::M end nodelabels(b::Belief) = b.nodelabel ntraits(b::Belief) = b.ntraits inscope(b::Belief) = b.inscope nodedimensions(b::Belief) = map(sum, eachslice(inscope(b), dims=2)) dimension(b::Belief) = sum(inscope(b)) function Base.show(io::IO, b::Belief) disp = "belief for " * (b.type == bclustertype ? "Cluster" : "SepSet") * " $(b.metadata)," disp *= " $(ntraits(b)) traits × $(length(nodelabels(b))) nodes, dimension $(dimension(b)).\n" disp *= "Node labels: " print(io, disp) print(io, nodelabels(b)) print(io, "\ntrait × node matrix of non-degenerate beliefs:\n") show(io, inscope(b)) print(io, "\nexponential quadratic belief, parametrized by\nμ: $(b.μ)\nh: $(b.h)\nJ: $(b.J)\ng: $(b.g[1])\n") end """ Belief(nodelabels, numtraits, inscope, belieftype, metadata, T=Float64) Constructor to allocate memory for one cluster, and initialize objects with 0s to initialize the belief with the constant function exp(0)=1. """ function Belief(nl::AbstractVector{Tlabel}, numtraits::Integer, inscope::BitArray, belief, metadata, T::Type=Float64) where Tlabel<:Integer nnodes = length(nl) nodelabels = SVector{nnodes}(nl) size(inscope) == (numtraits,nnodes) || error("inscope of the wrong size") cldim = sum(inscope) μ = MVector{cldim,T}(zero(T) for _ in 1:cldim) # zeros(T, cldim) h = MVector{cldim,T}(zero(T) for _ in 1:cldim) J = MMatrix{cldim,cldim,T}(zero(T) for _ in 1:(cldim*cldim)) g = MVector{1,T}(0) Belief{T,typeof(nodelabels),typeof(J),typeof(h),typeof(metadata)}( nodelabels,numtraits,inscope,μ,h,J,g,belief,metadata) end """ inscope_onenode(node_label, b:Belief) AbstractVector: view of the row vector in `b`'s inscope matrix corresponding to node `node_label`, indicating whether a trait at that node is in scope or not. """ function inscope_onenode(node_label, belief::Belief) node_j = findfirst(isequal(node_label), nodelabels(belief)) return view(inscope(belief), :, node_j) end """ scopeindex(j::Integer, belief::AbstractBelief) Indices in the belief's μ,h,J vectors and matrices of the traits in scope for node indexed `j` in `nodelabels(belief)`. """ function scopeindex(j::Integer, belief::AbstractBelief) binscope = inscope(belief) # subset_inscope = falses(size(belief_inscope)) # subset_inscope[:,j] .= binscope[:,j] # return findall(subset_inscope[binscope]) node_dims = map(sum, eachslice(binscope, dims=2)) k0 = sum(node_dims[1:(j-1)]) # 0 if j=1 collect(k0 .+ (1:node_dims[j])) end """ scopeindex(node_labels::Union{Tuple,AbstractVector}, belief::AbstractBelief) Indices in the belief's μ,h,J vectors and matrices of the variables for nodes labeled `node_labels`. The belief's `inscope` matrix of booleans says which node (column) and trait (row) is in the belief's scope. These variables are vectorized by stacking up columns, that is, listing all in-scope traits of the first node, then all in-scope traits of the second node etc. """ function scopeindex(node_labels::Union{Tuple,AbstractVector}, belief::AbstractBelief) binscope = inscope(belief) node_j = indexin(node_labels, nodelabels(belief)) any(isnothing.(node_j)) && error("some label is not in the belief's node labels") node_dims = map(sum, eachslice(binscope, dims=2)) node_cumsum = cumsum(node_dims) res = Vector{Int}(undef, sum(node_dims[node_j])) i0=0 for jj in node_j k0 = (jj==1 ? 0 : node_cumsum[jj-1]) for _ in 1:node_dims[jj] i0 += 1; k0 += 1 res[i0] = k0 end end return res end """ scopeindex(sepset::AbstractBelief, cluster::AbstractBelief) Indices `ind`, in the cluster in-scope variables (that is, in the cluster's μ,h,J vectors and matrices) of the sepset in-scope variables, such that `cluster.μ[ind]` correspond to the same variables as `sepset.μ`, for example. These sepset in-scope variables can be a subset of traits for each node in the sepset, as indicated by `inscope(sepset)`. Warning: the labels in the sepset are assumed to be ordered as in the cluster. An error is returned if `sepset` contains labels not in the `cluster`, or if a variable in the `sepset`'s scope is not in scope in the `cluster`. """ scopeindex(sep::AbstractBelief, clu::AbstractBelief) = scopeindex(nodelabels(sep), inscope(sep), nodelabels(clu), inscope(clu)) function scopeindex(subset_labels::AbstractVector, subset_inscope::BitArray, belief_labels::AbstractVector, belief_inscope::BitArray) node_index = indexin(subset_labels, belief_labels) issorted(node_index) || error("subset labels come in a different order in the belief") any(isnothing.(node_index)) && error("subset_labels not a subset of belief_labels") any(subset_inscope .&& .!view(belief_inscope,:,node_index)) && error("some variable(s) in subset's scope yet not in full belief's scope") subset_inclusterscope = falses(size(belief_inscope)) subset_inclusterscope[:,node_index] .= subset_inscope return findall(subset_inclusterscope[belief_inscope]) end """ scopeindex(node_label, sepset::AbstractBelief, cluster::AbstractBelief) Tuple of 2 index vectors `(ind_in_sepset, ind_in_cluster)` in the sepset and in the cluster in-scope variables (that is, in the cluster's μ,h,J vectors and matrices) of the *shared* in-scope traits for node `node_label`, such that `sepset.μ[ind_in_sepset]` correspond to all the node's traits in the sepset scope and `cluster.μ[ind_in_cluster]` correspond to the same traits in the cluster scope, which may be a subset of all the node's traits in scope for that cluster. If not, an error is thrown. """ function scopeindex(node_lab, sep::AbstractBelief, clu::AbstractBelief) s_j = findfirst(isequal(node_lab), nodelabels(sep)) isnothing(s_j) && error("$node_lab not in sepset") sep_inscope = inscope(sep) s_insc_node = view(sep_inscope, :,s_j) # column for node in sepset inscope c_j = findfirst(isequal(node_lab), nodelabels(clu)) isnothing(c_j) && error("$node_lab not in cluster") clu_inscope = inscope(clu) c_insc_node = view(clu_inscope, :,c_j) # column for node in cluster inscope any(s_insc_node .& .!c_insc_node) && error("some traits are in sepset's but not in cluster's scope for node $node_lab") s_insc = falses(size(sep_inscope)) s_insc[:,s_j] .= s_insc_node ind_sep = findall(s_insc[sep_inscope]) c_insc = falses(size(clu_inscope)) c_insc[:,c_j] .= s_insc_node # !! not c_insc_node: to get *shared* traits ind_clu = findall(c_insc[clu_inscope]) return (ind_sep, ind_clu) end # todo perhaps: add option to turn off checks, and # add function to run these checks once between all incident sepset-cluster """ init_beliefs_allocate(tbl::Tables.ColumnTable, taxa, net, clustergraph, evolutionarymodel) Vector of beliefs, initialized to the constant function exp(0)=1, one for each cluster then one for each sepset in `clustergraph`. `tbl` is used to know which leaf in `net` has data for which trait, so as to remove from the scope each variable without data below it. `taxa` should be a vector with taxon names in the same order as they come in the table of data `tbl`. The root is removed from scope if the evolutionary model has a fixed root: so as to use the model's fixed root value as data if the root as zero prior variance. Also removed from scope is any hybrid node that is degenerate and who has a single child edge of positive length. Warnings: this function might need to be re-run to re-do allocation if - the data changed: different number of traits, or different pattern of missing data at the tips - the model changed: with the root changed from fixed to random, see [`init_beliefs_allocate_atroot!`](@ref) in that case. """ function init_beliefs_allocate(tbl::Tables.ColumnTable, taxa::AbstractVector, net::HybridNetwork, clustergraph, model::EvolutionaryModel{T}) where T numtraits = length(tbl) nnodes = length(net.nodes_changed) nnodes > 0 || error("the network should have been pre-ordered, with indices used in cluster graph") fixedroot = isrootfixed(model) #= hasdata: to know, for each node, whether that node has a descendant with data, for each trait. If not: that node can be removed from all clusters & sepsets. If yes and the node is a tip: the evidence should be used later, then the tip can be removed the evidence is absorbed. =# hasdata = falses(numtraits, nnodes) for i_node in reverse(eachindex(net.nodes_changed)) node = net.nodes_changed[i_node] nodelab = node.name i_row = findfirst(isequal(nodelab), taxa) if !isnothing(i_row) # the node has data: it should be a tip! node.leaf || error("A node with data is internal, should be a leaf") for v in 1:numtraits hasdata[v,i_node] = !ismissing(tbl[v][i_row]) end end if node.leaf all(!hasdata[v,i_node] for v in 1:numtraits) && @error("tip $nodelab in network without any data") continue end for e in node.edge ch = getchild(e) ch !== node || continue # skip parent edges i_child = findfirst( n -> n===ch, net.nodes_changed) isempty(i_child) && error("oops, child (number $(ch.number)) not found in nodes_changed") hasdata[:,i_node] .|= hasdata[:,i_child] # bitwise or end all(!hasdata[v,i_node] for v in 1:numtraits) && @error("internal node $nodelab without any data below") end #= next: create a belief for each cluster and sepset. inscope = 'has partial information and non-degenerate variance or precision?' = - false at the root if "fixedroot", else: - 'hasdata?' at internal nodes (assumes non-degenerate transitions) - false at tips (assumes all data are at tips) - false at degenerate hybrid node with 1 tree child edge of positive length =# function build_inscope(set_nodeindices) inscope = falses(numtraits, length(set_nodeindices)) # remove from scope by default for (i,i_node) in enumerate(set_nodeindices) node = net.nodes_changed[i_node] (node.leaf || (isdegenerate(node) && unscope(node))) && continue # inscope[:,i] already false fixedroot && i_node==1 && continue # keep 'false' at the root if fixed inscope[:,i] .= hasdata[:,i_node] end return inscope end beliefs = Belief{T}[] for cllab in labels(clustergraph) nodeindices = clustergraph[cllab][2] inscope = build_inscope(nodeindices) push!(beliefs, Belief(nodeindices, numtraits, inscope, bclustertype, cllab,T)) end for sslab in edge_labels(clustergraph) nodeindices = clustergraph[sslab...] inscope = build_inscope(nodeindices) push!(beliefs, Belief(nodeindices, numtraits, inscope, bsepsettype, sslab,T)) end return beliefs end """ init_factors_allocate(beliefs::AbstractVector{<:Belief}, nclusters::Integer) Vector of `nclusters` factors of type [`FamilyFactor`](@ref), whose canonical parameters and metadata are initialized to be a copy of those in `beliefs`. Assumption: `beliefs[1:nclusters]` are cluster beliefs, and `beliefs[nclusters+1:end]` (if any) are sepset beliefs. This is not checked. """ function init_factors_allocate(beliefs::AbstractVector{B}, nclusters::Integer) where B<:Belief{T} where T factors = FamilyFactor{T}[] for i in 1:nclusters push!(factors, FamilyFactor(beliefs[i])) end return factors end """ init_beliefs_allocate_atroot!(beliefs, factors, messageresiduals, model) Update the scope and re-allocate memory for cluster & sepset `beliefs`, `factors` and `messageresiduals` to include or exclude the root, depending on whether the root variable is random or fixed in `model`. To change the dimension of canonical parameters μ,h,J, new memory is allocated and initilized to 0. This function can be used to update beliefs when the root model changes from fixed to non-fixed or vice-versa. It re-allocates less memory than [`init_beliefs_allocate`](@ref) (which would need to be followed by [`init_factors_allocate`](@ref)) because clusters and sepsets that do not have the root are not modified. Assumptions: - all traits at the root have at least one descendant with non-missing data, - beliefs were previously initialized with a model that had the same number of traits as the current `model`. """ function init_beliefs_allocate_atroot!(beliefs, factors, messageresidual, model::EvolutionaryModel{T}) where T numtraits = dimension(model) fixedroot = isrootfixed(model) # root *not* in scope if fixed; else *in* scope bc we assume data below update_inscope!(inscope, root_ind) = inscope[:,root_ind] .= !fixedroot for (i_b, be) in enumerate(beliefs) root_ind = findfirst(nl -> 1 == nl, nodelabels(be)) isnothing(root_ind) && continue # skip: root ∉ belief iscluster = be.type == bclustertype be_insc = be.inscope update_inscope!(be_insc, root_ind) beliefs[i_b] = Belief(be.nodelabel, numtraits, be_insc, be.type, be.metadata, T) if iscluster # re-allocate the corresponding factor. if sepset: nothing to do factors[i_b] = FamilyFactor(beliefs[i_b]) end issepset = beliefs[i_b].type == bsepsettype if issepset # re-allocate the corresponding messages for sepsets (clustlab1, clustlab2) = beliefs[i_b].metadata messageresidual[(clustlab1, clustlab2)] = MessageResidual(beliefs[i_b].J, beliefs[i_b].h) messageresidual[(clustlab2, clustlab1)] = MessageResidual(beliefs[i_b].J, beliefs[i_b].h) end end end """ init_beliefs_reset!(beliefs::Vector{<:Belief}) Reset all beliefs (which can be cluster and/or sepset beliefs) to h=0, J=0, g=0 (μ unchanged). They can later be re-initialized for different model parameters and re-calibrated, without re-allocating memory. """ function init_beliefs_reset!(beliefs::AbstractVector{B}) where B<:Belief{T} where T for be in beliefs be.h .= zero(T) be.J .= zero(T) be.g[1] = zero(T) end end """ init_factors_frombeliefs!(factors, beliefs, checkmetadata::Bool=false) Reset all `factors` by copying h,J,g from `beliefs`. Assumption: the cluster beliefs match the factors exactly: for a valid factor index `i`, `beliefs[i]` is of cluster type and has the same dimension as `factors[i]`. Set `checkmetadata` to true to check that `beliefs[i]` and `factors[i]` have the same metadata. """ function init_factors_frombeliefs!(factors, beliefs, checkmetadata::Bool=false) for (fa,be) in zip(factors,beliefs) if checkmetadata fa.metadata == be.metadata || error("factor $(fa.metadata) mismatched with belief $(be.metadata)") end fa.h .= be.h fa.J .= be.J fa.g[1] = be.g[1] end end """ init_beliefs_assignfactors!(beliefs, evolutionarymodel, columntable, taxa, nodevector_preordered) Initialize cluster beliefs prior to belief propagation, by assigning each factor to one cluster. Sepset beliefs are reset to 0. There is one factor for each node v in the vector of nodes: the density of X\\_v conditional on its parent X\\_pa(v) if v is not the root, or the prior density for X_root. - for each leaf, the factor is reduced by absorbing the evidence for that leaf, that is, the data found in the `columntable`, whose rows should be ordered by taxa as they appear in `taxa`. - for each leaf, missing trait values are removed from scope. - for each internal node, any trait not in scope (e.g. if all descendant leaves are missing a value for this trait) is marginalized out of the factor. Assumptions: - In vector `nodevector_preordered`, nodes are assumed to be preordered. Typically, this vector is `net.nodes_changed` after the network is preordered. - Belief node labels correspond to the index of each node in `nodevector_preordered`. - In `beliefs`, cluster beliefs come first and sepset beliefs come last, as when created by [`init_beliefs_allocate`](@ref) Output: vector `node2belief` such that, if `i` is the preorder index of a node in the network, `node2belief[i]` is the index of the belief that the node family was assigned to. The `beliefs` vector is modified in place. """ function init_beliefs_assignfactors!( beliefs::Vector{<:Belief}, model::EvolutionaryModel, tbl::Tables.ColumnTable, taxa::AbstractVector, prenodes::Vector{PN.Node}) init_beliefs_reset!(beliefs) numtraits = dimension(model) visited = falses(length(prenodes)) node2belief = Vector{Int}(undef, length(prenodes)) # node preorder index → belief index for (i_node,node) in enumerate(prenodes) visited[i_node] && continue # skip child of unscoped degenerate hybrid nodelab = node.name if i_node == 1 # root isrootfixed(model) && continue # h,J,g all 0: nothing to do i_b = findfirst(b -> 1 ∈ nodelabels(b), beliefs) isnothing(i_b) && error("no cluster containing the root, number $(node.number).") i_inscope = (1,) h,J,g = factor_root(model) elseif node.hybrid pae = PN.Edge[] # collect parent edges, parent nodes, and their pa = PN.Node[] # preorder indices, sorted in postorder i_parents = Int[] for e in node.edge # loop over parent edges getchild(e) === node || continue pn = getparent(e) # parent node pi = findfirst(n -> n===pn, prenodes) # parent index ii = findfirst(i_parents .< pi) # i_parents is reverse-sorted if isnothing(ii) ii = length(i_parents) + 1; end insert!(i_parents, ii, pi) insert!(pa, ii, pn) insert!(pae, ii, e) end if isdegenerate(node) && unscope(node) che = getchildedge(node) ch = getchild(che) i_child = findfirst(n -> n===ch, prenodes) visited[i_child] = true h,J,g = factor_tree_degeneratehybrid(model, pae, che) if ch.leaf i_datarow = findfirst(isequal(ch.name), taxa) h,J,g = absorbleaf!(h,J,g, i_datarow, tbl) i_inscope = (i_parents...,) else i_inscope = (i_child, i_parents...) end else i_inscope = (i_node, i_parents...) h,J,g = factor_hybridnode(model, pae) @debug "node $(node.name), lengths $([e.length for e in pae]), gammas $([p.gamma for p in pae])\nh=$h, J=$J, g=$g" end i_b = findfirst(b -> issubset(i_inscope, nodelabels(b)), beliefs) isnothing(i_b) && error("no cluster containing the scope for hybrid $(node.number).") else e = getparentedge(node) pa = getparent(e) i_parent = findfirst(n -> n===pa, prenodes) i_b = findfirst(x -> i_parent ∈ x && i_node ∈ x, nodelabels(b) for b in beliefs) isnothing(i_b) && error("no cluster containing nodes $(node.number) and $(pa.number).") h,J,g = factor_treeedge(model, e) if node.leaf i_datarow = findfirst(isequal(nodelab), taxa) h,J,g = absorbleaf!(h,J,g, i_datarow, tbl) i_inscope = (i_parent,) else i_inscope = (i_node,i_parent) end end node2belief[i_node] = i_b be = beliefs[i_b] be.type == bclustertype || error("belief $(be.metadata) is of type $(be.type)") if isrootfixed(model) && 1 ∈ i_inscope # the node's parents include the root 1 == i_inscope[end] || error("expected the root to be listed last (postorder)") i_inscope = i_inscope[1:(end-1)] # remove last entry '1' rootindex = (length(h) - numtraits + 1):length(h) h,J,g = absorbevidence!(h,J,g, rootindex, rootpriormeanvector(model)) end factorind = scopeindex(i_inscope, be) @debug """ factor for node $(node.name), nodes in scope have preorder $i_inscope, cluster $i_b with labels $(nodelabels(be)), inscope: $(inscope(be)), their variable belief indices $factorind. before marginalizing: h=$(round.(h, digits=2)), J=$(round.(J, digits=2)), g=$g """ if length(factorind) != numtraits * length(i_inscope) # then marginalize variables not in scope, e.g. bc no data below var_inscope = view(inscope(be), :, indexin(i_inscope, nodelabels(be))) keep_index = LinearIndices(var_inscope)[var_inscope] @debug """factor for node $(node.name), cluster $i_b with labels $(nodelabels(be)), need to marginalize, keep index $keep_index. h=$(round.(h, digits=2)), J=$(round.(J, digits=2)), g=$g""" h,J,g = marginalizebelief(h,J,g, keep_index, be.metadata) end view(be.h, factorind) .+= h view(be.J, factorind, factorind) .+= J be.g[1] += g end return node2belief end #= messages in ReactiveMP.jl have an `addons` field that stores computation history: https://biaslab.github.io/ReactiveMP.jl/stable/lib/message/#ReactiveMP.Message Here, similar "in spirit" to track progress towards calibration or to facilitate adaptive scheduling (e.g. residual BP), we store a message residual: difference (on log-scale) between a message *received* by a cluster and the belief that the sepset previously had. =# abstract type AbstractResidual{T} end """ MessageResidual{T<:Real, P<:AbstractMatrix{T}, V<:AbstractVector{T}} <: AbstractResidual{T} Structure to store the most recent computation history of a message, in the form of the ratio: sent\\_message / current\\_sepset\\_belief, when a message is sent from one cluster to another along a given sepset. At calibration, this ratio is 1. For Gaussian beliefs, this ratio is an exponential quadratic form, stored using its canonical parametrization, excluding the constant. Fields: - `Δh`: canonical parameter vector of the message residual - `ΔJ`: canonical parameter matrix of the message residual - `kldiv`: kl divergence between the message that was last sent and the sepset belief before the last update - `iscalibrated_resid`: true if the last message and prior sepset belief were approximately equal, false otherwise. see [`iscalibrated_residnorm!`](@ref) - `iscalibrated_kl`: same, but in terms of the KL divergence, see [`iscalibrated_kl!`](@ref). """ struct MessageResidual{T<:Real, P<:AbstractMatrix{T}, V<:AbstractVector{T}} <: AbstractResidual{T} Δh::V ΔJ::P kldiv::MVector{1,T} iscalibrated_resid::MVector{1,Bool} iscalibrated_kl::MVector{1,Bool} end """ MessageResidual(J::AbstractMatrix{T}, h::AbstractVector{T}) Constructor to allocate memory for a `MessageResidual` with canonical parameters `(ΔJ, Δh)` of the same dimension and type as `J` and `h`, initialized to zeros. `kldiv` is initalized to `[-1.0]` and the flags `iscalibrated_{resid,kl}` are initialized to `false` if the message is of positive dimension. If the message is empty (ΔJ and Δh of dimension 0) then the message is initialized as being calibrated: `kldiv` is set to 0 and `iscalibrated` flags set to true. `(ΔJ, Δh)` of zero suggest calibration, but the flags `iscalibrated_{resid,kl}` being false indicate otherwise. """ function MessageResidual(J::AbstractMatrix{T}, h::AbstractVector{T}) where {T <: Real} Δh = zero(h) ΔJ = zero(J) kldiv, iscal_res, iscal_kl = (isempty(h) ? (MVector(zero(T)), MVector(true), MVector(true) ) : (MVector(-one(T)), MVector(false), MVector(false)) ) MessageResidual{T,typeof(ΔJ),typeof(Δh)}(Δh, ΔJ, kldiv, iscal_res, iscal_kl) end """ init_messageresidual_allocate(beliefs::Vector{B}, nclusters) Dictionary of `2k` residuals of type [`MessageResidual`](@ref), whose canonical parameters (Δh,ΔJ) are initialized using [`MessageResidual`](@ref), to be of the same size as sepsets in `beliefs`, where `k` is `length(beliefs) - nclusters`. Assumption: the first `nclusters` beliefs are cluster beliefs, and the next `k` beliefs are sepset beliefs. This is not checked. The sepset for edge `(label1,label2)` is associated with 2 messages, for the 2 directions in which beliefs can be propagated along the edge. The keys for these messages are `(label1,label2)` and `(label2,label1)`. """ function init_messageresidual_allocate(beliefs::Vector{B}, nclusters) where B<:Belief{T} where T<:Real messageresidual = Dict{Tuple{Symbol,Symbol}, MessageResidual{T}}() for j in (nclusters+1):length(beliefs) ssbe = beliefs[j] # sepset belief (clustlab1, clustlab2) = ssbe.metadata messageresidual[(clustlab1, clustlab2)] = MessageResidual(ssbe.J, ssbe.h) messageresidual[(clustlab2, clustlab1)] = MessageResidual(ssbe.J, ssbe.h) end return messageresidual end """ init_messagecalibrationflags_reset!(mr::AbstractResidual, reset_kl::Bool) For a non-empty message residual `mr`, reset its `iscalibrated_*` flags to false, and if `reset_kl` is true, reset its `kldiv` to -1. Its `ΔJ` and `Δh` fields are *not* reset here, because they are overwritten during a belief propagation step. Nothing is done for empty messages. """ function init_messagecalibrationflags_reset!(mr::AbstractResidual{T}, resetkl::Bool) where T if isempty(mr.Δh) return nothing; end if resetkl mr.kldiv[1] = - one(T); end mr.iscalibrated_resid[1] = false mr.iscalibrated_kl[1] = false return nothing end iscalibrated_residnorm(res::AbstractResidual) = res.iscalibrated_resid[1] iscalibrated_kl(res::AbstractResidual) = res.iscalibrated_kl[1] """ iscalibrated_residnorm!(res::AbstractResidual, atol=1e-5, p::Real=Inf) True if the canonical parameters `res.Δh` and `res.ΔJ` of the message residual have `p`-norm within `atol` of 0; false otherwise. `res.iscalibrated_resid` is updated accordingly. With `p` infinite, the max norm is used by default, meaning that `res.Δh` and `res.ΔJ` should be close to 0 element-wise. """ function iscalibrated_residnorm!(res::AbstractResidual{T}, atol=T(1e-5), p::Real=Inf) where T res.iscalibrated_resid[1] = isapprox(LA.norm(res.Δh, p), zero(T), atol=atol) && isapprox(LA.norm(res.ΔJ, p), zero(T), atol=atol) end """ iscalibrated_kl!(res::AbstractResidual, atol=1e-5) True if the KL divergence stored in `res.kldiv` is within `atol` of 0; false otherwise. `res.iscalibrated_kl` is modified accordingly. This KL divergence should have been previously calculated: between a sepset belief, equal to the message that was passed most recently, and its belief just prior to passing that message. """ function iscalibrated_kl!(res::AbstractResidual{T}, atol=T(1e-5)) where T res.iscalibrated_kl[1] = isapprox(res.kldiv[1], zero(T), atol=atol) end """ residual_kldiv!(residual::AbstractResidual, sepset::AbstractBelief, canonicalparams::Tuple) Update `residual.kldiv` with the [Kullback-Leibler](https://en.wikipedia.org/wiki/Kullback-Leibler_divergence#Multivariate_normal_distributions) divergence between a message sent through a sepset (normalized to a probability distribution), and the sepset belief before the belief update (also normalized). `sepset` should contain the updated belief, and `residual` the difference in the `J` and `h` parameters due to the belief update (after - before), such that the previous belief is: `sepset` belief - `residual`. As a side product, `sepset.μ` is updated. Output: `true` if the KL divergence is close to 0, `false` otherwise. See [`iscalibrated_kl!`](@ref) for the tolerance. If the current or previous `sepset` belief is degenerate, in the sense that its precision matrix is not positive definite and the belief cannot be normalized to a proper distribution, then `residual` and `sepset` are not updated, and `false` is returned. No warning and no error is sent, because sepset beliefs are initialized at 0 and this case is expected to be frequent before enough messages are sent. ## Calculation: sepset after belief-update (i.e. message sent): C(x | Jₘ, hₘ, gₘ) ∝ density for X ~ 𝒩(μ=Jₘ⁻¹hₘ, Σ=Jₘ⁻¹) sepset before belief-update: C(x | Jₛ, hₛ, gₛ) residual: ΔJ = Jₘ - Jₛ, Δh = hₘ - hₛ p: dimension of X (number of variables: number of nodes * number of traits). Below, we use the notation Δg for the change in constants to normalize each message, which is *not* gₘ-gₛ because the stored beliefs are not normalized. KL(C(Jₘ, hₘ, _) || C(Jₛ, hₛ, _)) = Eₘ[log C(x | Jₘ,hₘ,_)/C(x | Jₛ,hₛ,_)] where x ∼ C(Jₘ,hₘ,_) = Eₘ[-(1/2) x'ΔJx + Δh'x + Δg)] = ( tr(JₛJₘ⁻¹) - p + (μₛ-μₘ)'Jₛ(μₛ-μₘ) + log(det(Jₘ)/det(Jₛ)) ) /2 See also: [`average_energy!`](@ref), which only requires the sepset belief to be positive definite. """ function residual_kldiv!(res::AbstractResidual{T}, sepset::AbstractBelief{T}) where {T <: Real} # isposdef returns true for empty matrices e.g. isposdef(Real[;;]) and isposdef(MMatrix{0,0}(Real[;;])) isempty(sepset.J) && return true (J0, μ0) = try getcholesky_μ!(sepset) # current (m): message that was passed catch return false end (J1, μ1) = try getcholesky_μ(sepset.J .- res.ΔJ, sepset.h .- res.Δh) # before (s) catch return false end res.kldiv[1] = ( - LA.tr(J0 \ res.ΔJ) + # tr(JₛJₘ⁻¹-I) = tr((Jₛ-Jₘ)Jₘ⁻¹) = tr(-ΔJ Jₘ⁻¹) quad(J1, μ1-μ0) + # (μ1-μ0)' J1 (μ1-μ0) LA.logdet(J0) - LA.logdet(J1) )/2 iscalibrated_kl!(res) end
PhyloGaussianBeliefProp
https://github.com/JuliaPhylo/PhyloGaussianBeliefProp.jl.git
[ "MIT" ]
0.0.1
e785a3d1d3bd6dd66ffd313f06d03b00d1a0a9b4
code
8702
""" BPPosDefException Exception thrown when a belief message cannot be computed, that is, when the submatrix of the precision `J`, subsetted to the variables to be integrated out, is not [positive definite](https://en.wikipedia.org/wiki/Definiteness_of_a_matrix). It has a message `msg` field (string), and an `info` field (integer) inherited from `LinearAlgebra.PosDefException`, to indicate the location of (one of) the eigenvalue(s) which is (are) less than/equal to 0. """ struct BPPosDefException <: Exception msg::String info::LA.BlasInt end function Base.showerror(io::IO, ex::BPPosDefException) print(io, "BPPosDefException: $(ex.msg)\nmatrix is not ") if ex.info == -1 print(io, "Hermitian.") else print(io, "positive definite.") end end """ marginalizebelief(belief::AbstractBelief, keep_index) marginalizebelief(h,J,g, keep_index, beliefmetadata) marginalizebelief(h,J,g, keep_index, integrate_index, beliefmetadata) Canonical form (h,J,g) of the input belief, after all variables except those at indices `keep_index` have been integrated out. If we use `I` and `S` subscripts to denote subvectors and submatrices at indices to integrate out (I: `integrate_index`) and indices to keep (S: save for sepset, `keep_index`) then the returned belief parameters are: ``h_S - J_{S,I} J_I^{-1} h_I`` ``J_S - J_{S,I} J_I^{-1} J_{I,S}`` and ``g + (\\log|2\\pi J_I^{-1}| + h_I^{T} J_I^{-1} h_I)/2 .`` These operations fail if the Cholesky decomposition of ``J_I`` fails. In that case, an error of type [`BPPosDefException`](@ref) is thrown with a message about the `beliefmetadata`, which can be handled by downstream functions. """ marginalizebelief(b::AbstractBelief, keepind) = marginalizebelief(b.h, b.J, b.g[1], keepind, b.metadata) function marginalizebelief(h,J,g::Real, keep_index, metadata) integrate_index = setdiff(1:length(h), keep_index) marginalizebelief(h,J,g, keep_index, integrate_index, metadata) end function marginalizebelief(h,J,g::Real, keep_index, integrate_index, metadata) isempty(integrate_index) && return (h,J,g) ni = length(integrate_index) Ji = view(J, integrate_index, integrate_index) Jk = view(J, keep_index, keep_index) Jki = view(J, keep_index, integrate_index) hi = view(h, integrate_index) hk = view(h, keep_index) # Ji = Jki = hi = 0 if missing data: fake issue ϵ = eps(eltype(J)) if all(isapprox.(Ji, 0, atol=ϵ)) && all(isapprox.(hi, 0, atol=ϵ)) && all(isapprox.(Jki, 0, atol=ϵ)) return (hk, Jk, g) end Ji = try # re-binds Ji PDMat(Ji) # fails if non positive definite, e.g. Ji=0 catch pdmat_ex if isa(pdmat_ex, LA.PosDefException) ex = BPPosDefException("belief $metadata, integrating $(integrate_index)", pdmat_ex.info) throw(ex) else rethrow(pdmat_ex) end end messageJ = Jk - X_invA_Xt(Ji, Jki) # Jk - Jki Ji^{-1} Jki' without inv(Ji) μi = Ji \ hi messageh = hk - Jki * μi messageg = g + (ni*log2π - LA.logdet(Ji) + LA.dot(hi, μi))/2 return (messageh, messageJ, messageg) end """ integratebelief!(belief::AbstractBelief) integratebelief(h,J,g) (μ,g) from fully integrating the belief, that is: ``μ = J^{-1} h`` and ``g + (\\log|2\\pi J^{-1}| + h^{T} J^{-1} h)/2 .`` The first form updates `belief.μ`. """ function integratebelief!(b::AbstractBelief) μ, g = integratebelief(b.h, b.J, b.g[1]) b.μ .= μ return (μ,g) end function integratebelief(h,J,g) Ji = PDMat(J) # fails if cholesky fails, e.g. if J=0 integratebelief(h,Ji,g) end function integratebelief(h,J::Union{LA.Cholesky{T},PDMat{T}},g::T) where T<:Real n = length(h) μ = J \ h messageg = g + (n*T(log2π) - LA.logdet(J) + sum(h .* μ))/2 return (μ, messageg) end """ absorbevidence!(h,J,g, dataindex, datavalues) Absorb evidence, at indices `dataindex` and using `datavalues`. Warnings: - a subset of `h` is modified in place - traits are assumed to come in the same order in `dataindex` as in `datavalues`. """ function absorbevidence!(h,J,g, dataindex, datavalues) numt = length(datavalues) length(dataindex) == numt || error("data values and indices have different numbers of traits") hasdata = .!ismissing.(datavalues) absorb_ind = dataindex[hasdata] nvar = length(h) keep_ind = setdiff(1:nvar, absorb_ind) # index of variables with missing data, after removing variables with data: missingdata_indices = indexin(dataindex[.!hasdata], keep_ind) data_nm = view(datavalues, hasdata) # non-missing data values length(absorb_ind) + length(keep_ind) == nvar || error("data indices go beyond belief size") Jkk = view(J, keep_ind, keep_ind) # avoid copying if isempty(absorb_ind) return h, Jkk, g, missingdata_indices end Jk_data = view(J, keep_ind, absorb_ind) * data_nm Ja_data = view(J, absorb_ind, absorb_ind) * data_nm g += sum(view(h, absorb_ind) .* data_nm) - sum(Ja_data .* data_nm)/2 hk = view(h, keep_ind) .- Jk_data # modifies h in place for a subset of indices return hk, Jkk, g, missingdata_indices end """ absorbleaf!(h,J,g, rowindex, columntable) Absorb evidence from a leaf, given in `col[rowindex]` of each column in the table, then marginalizes out any variable for a missing trait at that leaf. See [`absorbevidence!`](@ref) and [`marginalizebelief`](@ref). Warning: The leaf traits are assumed to correspond to the first variables in `h` (and `J`), as is output by [`factor_treeedge`](@ref). """ function absorbleaf!(h,J,g, rowindex, tbl) datavalues = [col[rowindex] for col in tbl] h,J,g,missingindices = absorbevidence!(h,J,g, 1:length(datavalues), datavalues) if !isempty(missingindices) @debug "leaf data $(join(datavalues,',')), J=$(round.(J, digits=2)), will integrate at index $(join(missingindices,','))" h,J,g = marginalizebelief(h,J,g, setdiff(1:length(h), missingindices), missingindices, "leaf row $rowindex") end return h,J,g end """ propagate_belief!(cluster_to, sepset, cluster_from, residual) Update the canonical parameters of the beliefs in `cluster_to` and in `sepset`, by marginalizing the belief in `cluster_from` to the sepset's variable and passing that message. The change in sepset belief (`Δh` and `ΔJ`: new - old) is stored in `residual`. ## Degeneracy Propagating a belief requires the `cluster_from` belief to have a non-degenerate `J_I`: submatrix of `J` for the indices to be integrated out. Problems arise if this submatrix has one or more 0 eigenvalues, or infinite values (see [`marginalizebelief`](@ref)). If so, a [`BPPosDefException`](@ref) is returned **but not thrown**. Downstream functions should try & catch these failures, and decide how to proceed. See [`regularizebeliefs_bycluster!`](@ref) to reduce the prevalence of degeneracies. ## Output - `nothing` if the message was calculated with success - a [`BPPosDefException`](@ref) object if marginalization failed. In this case, *the error is not thrown*: downstream functions should check for failure (and may choose to throw the output error object). ## Warnings - only the `h`, `J` and `g` parameters are updated, not `μ`. - Does not check that `cluster_from` and `cluster_to` are of cluster type, or that `sepset` is of sepset type, but does check that the labels and scope of `sepset` are included in each cluster. """ function propagate_belief!( cluster_to::AbstractBelief, sepset::AbstractBelief, cluster_from::AbstractBelief, residual::AbstractResidual ) # 1. compute message: marginalize cluster_from to variables in sepset # requires cluster_from.J[I,I] to be invertible, I = indices other than `keepind` # marginalizebelief sends BPPosDefException otherwise. # `keepind` can be empty (e.g. if `cluster_from` is entirely "clamped") keepind = scopeindex(sepset, cluster_from) h,J,g = try marginalizebelief(cluster_from, keepind) catch ex isa(ex, BPPosDefException) && return ex # output the exception: not thrown rethrow(ex) # exception thrown if other than BPPosDefException end # calculate residual residual.Δh .= h .- sepset.h residual.ΔJ .= J .- sepset.J # 2. extend message to scope of cluster_to and propagate upind = scopeindex(sepset, cluster_to) # indices to be updated view(cluster_to.h, upind) .+= residual.Δh view(cluster_to.J, upind, upind) .+= residual.ΔJ cluster_to.g[1] += g - sepset.g[1] # 3. update sepset belief sepset.h .= h sepset.J .= J sepset.g[1] = g return nothing end
PhyloGaussianBeliefProp
https://github.com/JuliaPhylo/PhyloGaussianBeliefProp.jl.git
[ "MIT" ]
0.0.1
e785a3d1d3bd6dd66ffd313f06d03b00d1a0a9b4
code
20624
""" calibrate!(beliefs::ClusterGraphBelief, schedule, niterations=1; auto::Bool=false, info::Bool=false, verbose::Bool=true, update_residualnorm::Bool=true, update_residualkldiv::Bool=false) Propagate messages in postorder then preorder for each tree in the `schedule` list, for `niterations`. Each schedule "tree" should be a tuple of 4 vectors as output by [`spanningtree_clusterlist`](@ref), where each vector provides the parent/child label/index of an edge along which to pass a message, and where these edges are listed in preorder. For example, the parent of the first edge is taken to be the root of the schedule tree. Calibration is evaluated after each schedule tree is run, and said to be reached if all message residuals have a small norm, based on [`iscalibrated_residnorm`](@ref). Output: `true` if calibration is reached, `false` otherwise. Optional keyword arguments: - `auto`: If true, then belief updates are stopped after calibration is found to be reached. Otherwise belief updates continue for the full number of iterations. - `info`: Is true, information is logged with the iteration number and schedule tree index when calibration is reached. - `verbose`: log error messages about degenerate messages - `update_residualnorm` - `update_residualkldiv` See also: [`iscalibrated_residnorm`](@ref) and [`iscalibrated_residnorm!`](@ref) for the tolerance and norm used by default, to declare calibration for a given sepset message (in 1 direction). """ function calibrate!(beliefs::ClusterGraphBelief, schedule::AbstractVector, niter::Integer=1; auto::Bool=false, info::Bool=false, verbose::Bool=true, update_residualnorm::Bool=true, update_residualkldiv::Bool=false, ) iscal = false for i in 1:niter for (j, spt) in enumerate(schedule) iscal = calibrate!(beliefs, spt, verbose, update_residualnorm, update_residualkldiv) if iscal info && @info "calibration reached: iteration $i, schedule tree $j" auto && return true end end end return iscal end """ calibrate!(beliefs::ClusterGraphBelief, scheduletree::Tuple, verbose::Bool=true, up_resnorm::Bool=true, up_reskldiv::Bool=false) Propage messages along the `scheduletree`, in postorder then preorder: see [`propagate_1traversal_postorder!`](@ref). Output: `true` if all message residuals have a small norm, based on [`iscalibrated_residnorm`](@ref), `false` otherwise. """ function calibrate!(beliefs::ClusterGraphBelief, spt::Tuple, verbose::Bool=true, up_resnorm::Bool=true, up_reskldiv::Bool=false, ) propagate_1traversal_postorder!(beliefs, spt..., verbose, up_resnorm, up_reskldiv) propagate_1traversal_preorder!(beliefs, spt..., verbose, up_resnorm, up_reskldiv) return iscalibrated_residnorm(beliefs) end """ propagate_1traversal_postorder!(beliefs::ClusterGraphBelief, spanningtree...) propagate_1traversal_preorder!(beliefs::ClusterGraphBelief, spanningtree...) Messages are propagated along the spanning tree, from the tips to the root by `propagate_1traversal_postorder!` and from the root to the tips by `propagate_1traversal_preorder!`. The "spanning tree" should be a tuple of 4 vectors as output by [`spanningtree_clusterlist`](@ref), meant to list edges in preorder. Its nodes (resp. edges) should correspond to clusters (resp. sepsets) in `beliefs`: labels and indices in the spanning tree information should correspond to indices in `beliefs`. This condition holds if beliefs are produced on a given cluster graph and if the tree is produced by [`spanningtree_clusterlist`](@ref) on the same graph. Optional positional arguments after spanning tree, in this order (default value): - `verbose` (true): log error messages about degenerate messages that failed to be passed. - `update_residualnorm` (true): to update each message residual's `iscalibrated_resid` - `update_residualkldiv` (false): to update each message residual's field `kldiv`: KL divergence between the new and old sepset beliefs, normalized to be considered as (conditional) distributions. """ function propagate_1traversal_postorder!( beliefs::ClusterGraphBelief, pa_lab, ch_lab, pa_j, ch_j, verbose::Bool=true, update_residualnorm::Bool=true, update_residualkldiv::Bool=false, ) b = beliefs.belief mr = beliefs.messageresidual # (parent <- sepset <- child) in postorder for i in reverse(1:length(pa_lab)) ss_j = sepsetindex(pa_lab[i], ch_lab[i], beliefs) sepset = b[ss_j] mrss = mr[(pa_lab[i], ch_lab[i])] flag = propagate_belief!(b[pa_j[i]], sepset, b[ch_j[i]], mrss) if isnothing(flag) update_residualnorm && iscalibrated_residnorm!(mrss) update_residualkldiv && residual_kldiv!(mrss, sepset) elseif verbose @error flag.msg end end end function propagate_1traversal_preorder!( beliefs::ClusterGraphBelief, pa_lab, ch_lab, pa_j, ch_j, verbose::Bool=true, update_residualnorm::Bool=true, update_residualkldiv::Bool=false, ) b = beliefs.belief mr = beliefs.messageresidual # (child <- sepset <- parent) in preorder for i in eachindex(pa_lab) ss_j = sepsetindex(pa_lab[i], ch_lab[i], beliefs) sepset = b[ss_j] mrss = mr[(ch_lab[i], pa_lab[i])] flag = propagate_belief!(b[ch_j[i]], sepset, b[pa_j[i]], mrss) if isnothing(flag) update_residualnorm && iscalibrated_residnorm!(mrss) update_residualkldiv && residual_kldiv!(mrss, sepset) elseif verbose @error flag.msg end end end """ calibrate_optimize_cliquetree!(beliefs::ClusterGraphBelief, clustergraph, nodevector_preordered, tbl::Tables.ColumnTable, taxa::AbstractVector, evolutionarymodel_name, evolutionarymodel_startingparameters) Optimize model parameters using belief propagation along `clustergraph`, assumed to be a clique tree for the input network, whose nodes in preorder are `nodevector_preordered`. Optimization aims to maximize the likelihood of the data in `tbl` at leaves in the network. The taxon names in `taxa` should appear in the same order as they come in `tbl`. The parameters being optimized are the variance rate(s) and prior mean(s) at the root. The prior variance at the root is fixed. The calibration does a postorder of the clique tree only, to get the likelihood at the root *without* the conditional distribution at all nodes, modifying `beliefs` in place. Therefore, if the distribution of ancestral states is sought, an extra preorder calibration would be required. Warning: there is *no* check that the cluster graph is in fact a clique tree. """ function calibrate_optimize_cliquetree!(beliefs::ClusterGraphBelief, cgraph, prenodes::Vector{PN.Node}, tbl::Tables.ColumnTable, taxa::AbstractVector, evomodelfun, # constructor function evomodelparams) spt = spanningtree_clusterlist(cgraph, prenodes) rootj = spt[3][1] # spt[3] = indices of parents. parent 1 = root mod = evomodelfun(evomodelparams...) # model with starting values function score(θ) # θ: unconstrained parameters, e.g. log(σ2) model = evomodelfun(params_original(mod, θ)...) # reset beliefs based on factors from new model parameters init_beliefs_assignfactors!(beliefs.belief, model, tbl, taxa, prenodes) # no need to reset factors: free_energy not used on a clique tree init_messagecalibrationflags_reset!(beliefs, false) propagate_1traversal_postorder!(beliefs, spt...) _, res = integratebelief!(beliefs, rootj) # drop conditional mean return -res # score to be minimized (not maximized) end # autodiff does not currently work with ForwardDiff, ReverseDiff of Zygote, # because they cannot differentiate array mutation, as in: view(be.h, factorind) .+= h # consider solutions suggested here: https://fluxml.ai/Zygote.jl/latest/limitations/ # Could this cache technique be used ? # https://github.com/JuliaDiff/ForwardDiff.jl/issues/136#issuecomment-237941790 # https://juliadiff.org/ForwardDiff.jl/dev/user/limitations/ # See PreallocationTools.jl package (below) opt = Optim.optimize(score, params_optimize(mod), Optim.LBFGS()) loglikscore = -Optim.minimum(opt) bestθ = Optim.minimizer(opt) bestmodel = evomodelfun(params_original(mod, bestθ)...) return bestmodel, loglikscore, opt end function calibrate_optimize_cliquetree_autodiff!(bufferbeliefs::GeneralLazyBufferCache, cgraph, prenodes::Vector{PN.Node}, tbl::Tables.ColumnTable, taxa::AbstractVector, evomodelfun, # constructor function evomodelparams) spt = spanningtree_clusterlist(cgraph, prenodes) rootj = spt[3][1] # spt[3] = indices of parents. parent 1 = root mod = evomodelfun(evomodelparams...) # model with starting values #= TODO: externalize the cache to avoid re-alocation (as done here) ? Or define cache inside of the function ? Note that the second option needs net in the arguments. lbc = PreallocationTools.GeneralLazyBufferCache(function (paramOriginal) model = evomodelfun(paramOriginal...) belief = init_beliefs_allocate(tbl, taxa, net, cgraph, model); return ClusterGraphBelief(belief) end) =# #= TODO: GeneralLazyBufferCache is the "laziest" solution from PreallocationTools there might be more efficient solutions using lower level caches. =# # score function using cache function score(θ) # θ: unconstrained parameters, e.g. log(σ2) paramOriginal = params_original(mod, θ) model = evomodelfun(paramOriginal...) dualBeliefs = bufferbeliefs[paramOriginal] # reset beliefs based on factors from new model parameters init_beliefs_assignfactors!(dualBeliefs.belief, model, tbl, taxa, prenodes) # no need to reset factors: free_energy not used on a clique tree init_messagecalibrationflags_reset!(dualBeliefs, false) propagate_1traversal_postorder!(dualBeliefs, spt...) _, res = integratebelief!(dualBeliefs, rootj) # drop conditional mean return -res # score to be minimized (not maximized) end # optim using autodiff od = OnceDifferentiable(score, params_optimize(mod); autodiff = :forward); opt = Optim.optimize(od, params_optimize(mod), Optim.LBFGS()) loglikscore = -Optim.minimum(opt) bestθ = Optim.minimizer(opt) bestmodel = evomodelfun(params_original(mod, bestθ)...) return bestmodel, loglikscore, opt end """ calibrate_optimize_clustergraph!(beliefs::ClusterGraphBelief, clustergraph, nodevector_preordered, tbl::Tables.ColumnTable, taxa::AbstractVector, evolutionarymodel_name, evolutionarymodel_startingparameters, max_iterations=100) Same as [`calibrate_optimize_cliquetree!`](@ref) above, except that the user can supply an arbitrary `clustergraph` (including a clique tree) for the input network. Optimization aims to maximize the [`factored_energy`](@ref) approximation to the ELBO for the log-likelihood of the data (which is also the negative Bethe [`free_energy`](@ref)). When `clustergraph` is a clique tree, the factored energy approximation is exactly equal to the ELBO and the log-likelihood. Cluster beliefs are regularized using [`regularizebeliefs_bycluster!`](@ref) (other options are likely to be available in future versions) before calibration. The calibration repeatedly loops through a minimal set of spanning trees (see [`spanningtrees_clusterlist`](@ref)) that covers all edges in the cluster graph, and does a postorder-preorder traversal for each tree. The loop runs till calibration is detected or till `max_iterations` have passed, whichever occurs first. """ function calibrate_optimize_clustergraph!(beliefs::ClusterGraphBelief, cgraph, prenodes::Vector{PN.Node}, tbl::Tables.ColumnTable, taxa::AbstractVector, evomodelfun, # constructor function evomodelparams, maxiter::Integer=100) sch = spanningtrees_clusterlist(cgraph, prenodes) mod = evomodelfun(evomodelparams...) # model with starting values function score(θ) model = evomodelfun(params_original(mod, θ)...) init_beliefs_assignfactors!(beliefs.belief, model, tbl, taxa, prenodes) init_factors_frombeliefs!(beliefs.factor, beliefs.belief) init_messagecalibrationflags_reset!(beliefs) regularizebeliefs_bycluster!(beliefs, cgraph) calibrate!(beliefs, sch, maxiter, auto=true) return free_energy(beliefs)[3] # to be minimized end opt = Optim.optimize(score, params_optimize(mod), Optim.LBFGS()) iscalibrated_residnorm(beliefs) || @warn "calibration was not reached. increase maxiter ($maxiter) or use a different cluster graph?" fenergy = -Optim.minimum(opt) bestθ = Optim.minimizer(opt) bestmodel = evomodelfun(params_original(mod, bestθ)...) return bestmodel, fenergy, opt end """ calibrate_exact_cliquetree!(beliefs::ClusterGraphBelief, schedule, nodevector_preordered, tbl::Tables.ColumnTable, taxa::AbstractVector, evolutionarymodel_name) For a Brownian Motion with a fixed root, compute the maximum likelihood estimate of the prior mean at the root and the restricted maximum likelihood (REML) estimate of the variance/covariance rate matrix using analytical formulas relying on belief propagation, using the data in `tbl` at leaves in the network. These estimates are for the model with a prior variance of 0 at the root, that is, a root state equal to the prior mean. output: `(bestmodel, loglikelihood_score)` where `bestmodel` is an evolutionary model created by `evolutionarymodel_name`, containing the estimated model parameters. assumptions: - `taxa` should list the taxon names in the same order in which they come in the rows of `tbl`. - `schedule` should provide a schedule to transmit messages between beliefs in `beliefs` (containing clusters first then sepsets). This schedule is assumed to traverse a clique tree for the input phylogeny, with the root cluster containing the root of the phylogeny in its scope. - `nodevector_preordered` should list the nodes in this phylogeny, in preorder. - `beliefs` should be of size and scope consistent with `evolutionarymodel_name` and data in `tbl`. - a leaf should either have complete data, or be missing data for all traits. Steps: 1. Calibrate `beliefs` in place according to the `schedule`, under a model with an infinite prior variance at the root. 2. Estimate parameters analytically. 3. Re-calibrate `beliefs`, to calculate the maximum log-likelihood of the fixed-root model at the estimated optimal parameters, again modifying `beliefs` in place. (Except that beliefs with the root node in scope are re-assigned to change their scoping dimension.) Warning: there is *no* check that the beliefs and schedule are consistent with each other. """ function calibrate_exact_cliquetree!(beliefs::ClusterGraphBelief{B}, spt, # node2belief may be needed if pre & post calibrations are moved outside prenodes::Vector{PN.Node}, tbl::Tables.ColumnTable, taxa::AbstractVector, evomodelfun # constructor function ) where B<:Belief{T} where T evomodelfun ∈ (UnivariateBrownianMotion, MvFullBrownianMotion) || error("Exact optimization is only implemented for the univariate or full Brownian Motion.") p = length(tbl) # check for "clean" data at the tips: data at 0 or all p traits function clean(v) s = sum(v); s==0 || s==p; end for ic in 1:nclusters(beliefs) b = beliefs.belief[ic] all(map(clean, eachslice(inscope(b), dims=2))) || error("some leaf must have partial data: cluster $(b.metadata) has partial traits in scope") end ## calibrate beliefs using infinite root and identity rate variance calibrationparams = evomodelfun(LA.diagm(ones(p)), zeros(p), LA.diagm(repeat([Inf], p))) init_beliefs_allocate_atroot!(beliefs.belief, beliefs.factor, beliefs.messageresidual, calibrationparams) # in case root status changed node2belief = init_beliefs_assignfactors!(beliefs.belief, calibrationparams, tbl, taxa, prenodes) # no need to reset factors: free_energy not used on a clique tree init_messagecalibrationflags_reset!(beliefs, false) calibrate!(beliefs, [spt]) ## Compute μ hat from root belief rootj = spt[3][1] # spt[3] = indices of parents. parent 1 = root exp_root, _ = integratebelief!(beliefs, rootj) mu_hat = exp_root[scopeindex((1,), beliefs.belief[rootj])] ## Compute σ² hat from conditional moments tmp_num = zeros(T, p, p) tmp_den = zero(T) for i in 2:length(prenodes) # loop over non-root notes (1=root in pre-order) nodechild = prenodes[i] clusterindex = node2belief[i] # index of cluster to which its node family factor was assigned b = beliefs.belief[clusterindex] dimclus = length(b.nodelabel) childind = findfirst(lab == i for lab in b.nodelabel) # child index in cluster # parents should all be in the cluster, if node2belief is valid all_parent_edges = PN.Edge[]; parind = Int[] # parent(s) indices in cluster edge_length = zero(T) # parent edge length if 1 parent; sum of γ² t over all parent edges all_gammas = zeros(T, dimclus) for ee in nodechild.edge getchild(ee) === nodechild || continue # skip below if child edge push!(all_parent_edges, ee) pn = getparent(ee) # parent node pi = findfirst(prenodes[j].name == pn.name for j in b.nodelabel) push!(parind, pi) all_gammas[pi] = ee.gamma edge_length += ee.gamma * ee.gamma * ee.length end edge_length == 0.0 && continue # 0 length => variance parameter absent from factor # moments exp_be, _ = integratebelief!(b) vv = inv(b.J) if nodechild.leaf # tip node # there should be only 1 parent length(parind) == 1 || error("leaf $(nodechild.name) does not have 1 parent...") inscope_i_pa = scopeindex(parind[1], b) isempty(inscope_i_pa) && continue # no data at or below: do nothing # find tip data # TODO later: replace tbl,taxa by tipvalue, to avoid re-constructing it over and over i_row = findfirst(isequal(nodechild.name), taxa) !isnothing(i_row) || error("leaf $(nodechild.name) is missing from the data's list of taxa") tipvalue = [tbl[v][i_row] for v in eachindex(tbl)] diffExp = view(exp_be, inscope_i_pa) - tipvalue tmp_num += diffExp * transpose(diffExp) ./ edge_length # assumes that vv ∝ (co)variance rate matrix R_test tmp_den += 1 - vv[1, 1] / edge_length else # internal node inscope_i_ch = scopeindex(childind, b) isempty(inscope_i_ch) && continue # no data at or below: do nothing begic = inscope_i_ch[1] diffExp = view(exp_be, inscope_i_ch) # init with child node diffVar = vv[begic, begic] # sum over parent nodes inscope_i_pa = [scopeindex(j, b) for j in parind] for (j1, j1_ii) in zip(parind, inscope_i_pa) # exp and covar with child diffExp -= all_gammas[j1] .* view(exp_be, j1_ii) diffVar -= 2 * all_gammas[j1] * vv[begic, j1_ii[1]] # parents var covar for (j2, j2_ii) in zip(parind, inscope_i_pa) diffVar += all_gammas[j1] * all_gammas[j2] * vv[j1_ii[1], j2_ii[1]] end end tmp_num += diffExp * transpose(diffExp) ./ edge_length tmp_den += 1 - diffVar / edge_length end end sigma2_hat = tmp_num ./ tmp_den ## Get optimal paramters bestθ = (sigma2_hat, mu_hat, zeros(T, p, p)) # zero variance at the root: fixed bestmodel = evomodelfun(bestθ...) ## Get associated likelihood loglikscore = NaN init_beliefs_allocate_atroot!(beliefs.belief, beliefs.factor, beliefs.messageresidual, bestmodel) init_beliefs_assignfactors!(beliefs.belief, bestmodel, tbl, taxa, prenodes) init_messagecalibrationflags_reset!(beliefs, false) calibrate!(beliefs, [spt]) _, loglikscore = integratebelief!(beliefs, rootj) return bestmodel, loglikscore end
PhyloGaussianBeliefProp
https://github.com/JuliaPhylo/PhyloGaussianBeliefProp.jl.git
[ "MIT" ]
0.0.1
e785a3d1d3bd6dd66ffd313f06d03b00d1a0a9b4
code
45932
@inline function vgraph_eltype(net::HybridNetwork) nn = 2max(length(net.node), length(net.edge)) (nn < typemax(Int8) ? Int8 : (nn < typemax(Int16) ? Int16 : Int)) end @enum EdgeType etreetype=1 ehybridtype=2 moralizedtype=3 filltype=4 """ preprocessnet!(net::HybridNetwork, prefix="I") Create or update the pre-ordering of nodes in `net` using `PhyloNetworks.preorder!`, then name unnamed internal nodes, with names starting with `prefix`. Nodes in phylogenetic networks need to have names to build cluster graphs, in which a cluster contains network nodes. Pre-ordering is also used to traverse the network for building cluster graphs. See [`clustergraph!`](@ref). """ function preprocessnet!(net::HybridNetwork, prefix="I") PN.preorder!(net) PN.nameinternalnodes!(net, prefix) end """ moralize!(net::HybridNetwork, prefix="I") moralize(net) Undirected graph `g` of type [MetaGraph](https://github.com/JuliaGraphs/MetaGraphsNext.jl) with the same nodes as in `net`, labelled by their names in `net`, with extra edges to moralize the graph, that is, to connect any nodes with a common child. Node data, accessed as `g[:nodelabel]`, is their index in the network's preordering. Edge data, accessed as `g[:label1, :label2]` is a type to indicate if the edge was an original tree edge or hybrid edge, or added to moralize the graph. Another type, not used here, if for fill edges that may need to be added to triangulate `g` (make it chordal). The first version modifies `net` to name its internal nodes (used as labels in `g`) and to create or update its node preordering, then calls the second version. """ function moralize!(net::HybridNetwork, prefix="I") preprocessnet!(net, prefix) moralize(net) end @doc (@doc moralize!) moralize function moralize(net::HybridNetwork) T = vgraph_eltype(net) mg = MetaGraph(Graph{T}(0), # simple graph Symbol, # label type: Symbol(original node name) T, # vertex data type: store postorder EdgeType, # edge data type :moralized, # graph data edge_data -> one(T), # weight function zero(T)) # add vertices in preorder, which saves their index to access them in net. sym2code = Dict{Symbol,T}() for (code,n) in enumerate(net.nodes_changed) ns = Symbol(n.name) vt = T(code) push!(sym2code, ns => vt) add_vertex!(mg, ns, vt) end for e in net.edge et = (e.hybrid ? ehybridtype : etreetype) add_edge!(mg, Symbol(getparent(e).name), Symbol(getchild(e).name), et) end # moralize for n in net.node n.hybrid || continue plab = [Symbol(node.name) for node in getparents(n)] # parent labels npar = length(plab) for (i1,p1) in enumerate(plab), i2 in (i1+1):npar p2 = plab[i2] has_edge(mg.graph, sym2code[p1], sym2code[p2]) && continue add_edge!(mg, p1, p2, moralizedtype) end end return mg end """ triangulate_minfill!(graph) Ordering for node elimination, chosen to greedily minimize the number of fill edges necessary to eliminate the node (to connect all its neighbors with each other). Ties are broken by favoring the post-ordering of nodes. `graph` is modified with these extra fill edges, making it chordal. """ function triangulate_minfill!(graph::AbstractGraph{T}) where T ordering = typeof(label_for(graph, one(T)))[] g2 = deepcopy(graph) fe = Tuple{T,T}[] # to reduce memory allocation scorefun = v -> (min_fill!(fe,v,g2), - g2[label_for(g2,v)]) # break ties using post-ordering while nv(g2) > 1 i = argmin(scorefun, vertices(g2)) # add fill edges in both graph and g2, then delete i from g2 filledges!(fe, T(i), g2) for (v1,v2) in fe l1 = label_for(g2,v1); l2 = label_for(g2,v2) add_edge!(g2, l1, l2, filltype) add_edge!(graph, l1, l2, filltype) end lab = label_for(g2,i) push!(ordering, lab) delete!(g2, lab) end push!(ordering, label_for(g2,one(T))) return ordering end function min_fill!(fe, vertex_code, graph::AbstractGraph) filledges!(fe, vertex_code, graph::AbstractGraph) return length(fe) end function filledges!(fe, vertex_code, graph::AbstractGraph) empty!(fe) neighb = inneighbors(graph, vertex_code) nn = length(neighb) for (i1,n1) in enumerate(neighb), i2 in (i1+1):nn n2 = neighb[i2] has_edge(graph, n1,n2) || push!(fe, (n1,n2)) end return nothing # nn end """ nodefamilies(net) Vector `v` with elements of type `Vector{T}`. `v[i]` first lists `i`, the preorder index of node `net.nodes_changed[i]`, followed by the preorder index of all of this node's parents in `net`, sorted in decreasing order. Due to pre-ordering, all of the parents' indices are listed after the node (their child) index. A given node and its parents is called a "node family". **Warning**: `net` is assumed preordered, see [`preprocessnet!`](@ref) and [`PhyloNetworks.preorder!`](https://crsl4.github.io/PhyloNetworks.jl/latest/lib/public/#PhyloNetworks.preorder!)). """ function nodefamilies(net::HybridNetwork) T = vgraph_eltype(net) prenodes = net.nodes_changed node2family = Vector{Vector{T}}(undef, length(prenodes)) for (code, n) in enumerate(prenodes) o = sort!(indexin(getparents(n), prenodes), rev=true) pushfirst!(o, code) node2family[code] = o # then node2family[code][1] = code end return node2family end """ isfamilypreserving(clusters, net) Tuple `(ispreserving, isfamily_incluster)`: 1. `ispreserving`: true (false) if `clusters` is (is not) family-preserving with respect to `net`, that is: if each node family (a node and all of its parents) in `net` is contained in at least 1 cluster in `clusters`. `clusters` should be a vector, where each element describes one cluster, given as a vector of preorder indices. Index `i` corresponds to node number `i` in `net` according the node pre-ordering: `net.nodes_changed[i]`. 2. `isfamily_incluster`: vector of `BitVector`s. `isfamily_incluster[i][j]` is true (false) if the family of node `i` is (is not) fully contained in cluster [j]. `i` is taken as the preorder index of a node in `net`. `ispreserving` is true if every element (bit vector) in `isfamily_incluster` contains at least 1 true value. **Warning**: assumes that `net` is preordered, see [`PhyloNetworks.preorder!`](https://crsl4.github.io/PhyloNetworks.jl/latest/lib/public/#PhyloNetworks.preorder!)). See also [`nodefamilies`](@ref) to get node families. """ function isfamilypreserving(clusters::Vector{Vector{T}}, net::HybridNetwork) where {T <: Integer} node2family = nodefamilies(net) # vectors of type vgraph_eltype(net) isfamilyincluster = Vector{BitVector}(undef, length(node2family)) for nf in node2family ch = nf[1] # preorder index of family's child. also: node2family[ch] = nf isfamilyincluster[ch] = BitArray(nf ⊆ cl for cl in clusters) end ifp = all(any.(isfamilyincluster)) # *every* node family is in *some* cluster return (ifp, isfamilyincluster) end """ check_runningintersection(clustergraph, net) Vector of tuples. Each tuple is of the form `(nodelabel, istree)`, where `nodelabel::Symbol` is the label of a node in `net` and `istree` is true (false) if the node's cluster subgraph is (is not) a tree. This "cluster subgraph" for a given node is the subgraph of `clustergraph` induced by the clusters containing the node and by the edges whose sepset contain the node: see [`nodesubtree`](@ref). `clustergraph` satisfies the generalized *running-intersection* property if `istree` is true for all nodes in `net`. **Warning**: - assumes that `net` has been preordered, and - does *not* check if `clustergraph` has been correctly constructed. """ function check_runningintersection(clustergraph::MetaGraph, net::HybridNetwork) res = Tuple{Symbol, Bool}[] for (nod_ind, n) in enumerate(net.nodes_changed) nodelab = Symbol(n.name) sg, _ = nodesubtree(clustergraph, nodelab, nod_ind) push!(res, (nodelab, is_tree(sg))) end return res end """ nodesubtree(clustergraph::MetaGraph, node_symbol) nodesubtree(clustergraph::MetaGraph, node_symbol, node_preorderindex) MetaGraph subgraph of `clustergraph` induced by the clusters and sepsets containing the node labelled `node_symbol` (of specified preorder index if known, not checked). If `clustergraph` satisfies the generalized running-intersection property, then this subgraph should be a tree. """ function nodesubtree(cgraph::MetaGraph, ns::Symbol) # find 1 cluster containing the node of interest clu = findfirst(ns ∈ cgraph[clab][1] for clab in labels(cgraph)) isnothing(clu) && error("no cluster with node labelled $ns") # find preorder index of node of interest: stored in cluster data n1data = cgraph[label_for(cgraph,clu)] node_ind = n1data[2][findfirst(isequal(ns), n1data[1])] nodesubtree(cgraph, ns, node_ind) end function nodesubtree(cgraph::MetaGraph, ns::Symbol, node_ind) # indices of clusters containing the node of interest clusters_i = findall(ns ∈ cgraph[clab][1] for clab in labels(cgraph)) isempty(clusters_i) && error("no cluster with node labelled $ns") sg, vmap = induced_subgraph(cgraph, clusters_i) # in subgraph, delete any edge whose sepset lacks node_ind, the node's preorder index for e in edge_labels(sg) if node_ind ∉ sg[e...] # edge data = vector of nodes preorder indices delete!(sg, e...) end end return sg, vmap end """ AbstractClusterGraphMethod Abstract type for cluster graph construction algorithms. """ abstract type AbstractClusterGraphMethod end getclusters(obj::AbstractClusterGraphMethod) = hasfield(typeof(obj), :clusters) ? obj.clusters : nothing getmaxclustersize(obj::AbstractClusterGraphMethod) = hasfield(typeof(obj), :maxclustersize) ? obj.maxclustersize : nothing """ Bethe Subtype of [`AbstractClusterGraphMethod`](@ref). ## Algorithm A Bethe cluster graph (also known as factor graph) has: - a factor-cluster `{v, parents(v}}` for each node-family in the network, that is, for each non-root node `v` (a family is a child node and all of its parents) * with one exception: if `v`'s family is included in another family, then no factor-cluster is created for `v`. - a variable-cluster `{v}` for each non-leaf node `v` in the network, or more specifically, for each node `v` that belongs in more than 1 factor. Each variable-cluster `{v}` is joined to the factor-clusters that contain `v`, by an edge labelled with sepset `{v}`. ## References D. Koller and N. Friedman. *Probabilistic graphical models: principles and techniques*. MIT Press, 2009. ISBN 9780262013192. """ struct Bethe <: AbstractClusterGraphMethod end """ LTRIP{T<:Integer} Subtype of [`AbstractClusterGraphMethod`](@ref). A HybridNetwork and a valid LTRIP are passed to [`clustergraph!`](@ref) to construct a cluster graph from the user-provided clusters based on the *Layered Trees Running Intersection Property* algorithm of Streicher & du Preez (2017). ## Fieldnames - clusters: vector of clusters, required to be family-preserving with respect to some HybridNetwork -- see [`isfamilypreserving`](@ref). Within each cluster, nodes (identified by their preorder index in the network) are required to be sorted in decreasing order (for postorder) ## Constructors - `LTRIP(net)`: uses [`nodefamilies(net)`](@ref) as input clusters, which are guaranteed to be family-preserving - `LTRIP(clusters, net)`: checks if that clusters provided are family-preserving, then sorts each cluster in decreasing order (modifying them in place!) before creating the LTRIP object. They assume, *with no check*, that `net` already has a preordering. ## Algorithm 1. An initial graph G is considered, in which each input cluster is a node. An edge (C1,C2) is added if clusters C1 and C2 share at least 1 node (in `net`). The weight of edge (C1,C2) is defined as the size of the intersection C1 ∩ C2. 2. For each node `n` in `net`, the subgraph of G induced by the clusters containing `n`, G_n, has its weights adjusted as follows: * the edges of maximum weight (within G_n) are identified, then * the weight of each edge is increased by the number of max-weight edges that either of its endpoints adjacent to. Then, LTRIP finds a maximum-weight spanning tree of G_n. The edges of this tree are all labelled with `{n}` (or its label or preorder index). 3. The spanning trees for each node are layered on one another to form a cluster graph. In other words, an edge (C1,C2) is added if it is present is any spanning tree. If so, its sepset is the union of its labels across the different spanning trees. ## References S. Streicher and J. du Preez. Graph Coloring: Comparing Cluster Graphs to Factor Graphs. In *Proceedings of the ACM Multimedia 2017 Workshop on South African Academic Participation*, pages 35-42, 2017. doi: [10.1145/3132711.3132717](https://doi.org/10.1145/3132711.3132717). """ struct LTRIP{T<:Integer} <: AbstractClusterGraphMethod clusters::Vector{Vector{T}} end function LTRIP(net::HybridNetwork) clusters = nodefamilies(net) return LTRIP(clusters) end function LTRIP(clusters::Vector{Vector{T}}, net::HybridNetwork) where {T <: Integer} isfamilypreserving(clusters, net)[1] || error("`clusters` is not family preserving with respect to `net`") for cl in clusters issorted(cl, rev=true) || sort!(cl, rev=true) end return LTRIP(clusters) end """ JoinGraphStructuring Subtype of [`AbstractClusterGraphMethod`](@ref). ## Fieldnames - `maxclustersize`: upper limit for cluster size. This value must be at least the size of the largest node family in the input phylogenetic network, normally 3 if the network is bicombining (each hybrid node has 2 parents, never more). See [`nodefamilies(net)`](@ref). ## Constructors - `JoinGraphStructuring(maxclustersize, net)`: checks that the input `maxclustersize` is valid for `net` ## Algorithm, by Mateescu et al. (2010) Requires: - a user-specified maximum cluster size - an elimination order for the nodes in the HybridNetwork, hopefully yielding a small induced-width, e.g. from a heuristic such as greedy min-fill (see [`triangulate_minfill!(graph)`](@ref)). 1. Each node in `net` labels a "bucket", and these buckets are ordered according to the elimination order, e.g. the highest-priority bucket is labelled by the first node in the elimination order. 2. Node families are assigned to buckets based on the highest-priority node they contain. For example, if {1,4,9} forms a node family and if node 4 is higher in the elimination order than nodes 1 or 9, then {1,4,9} gets assigned to bucket 4. 3. Node families are clusters (of nodes), and we refer to the clusters within a bucket as "minibuckets". Minibuckets within a bucket can be merged as long as the size of their union does not exceed the maximum cluster size allowed. Sometimes, this can be done in multiple ways. 4. Starting with the highest-priority bucket, we create new minibuckets by "marginalizing out" the bucket label from each existing minibucket (these are left unchanged in the process). 5. Each new minibucket is joined to its "originator" minibucket by an edge that is labeled by their intersection (i.e. the variables in the new minibucket). Each new minibucket is then reassigned to a new (and necessarily lower-priority) bucket based on its highest priority node. Merging can take place during reassignment as long as the the maximum cluster size is respected. The union of 2 minibuckets retains the edges of each of minibucket. 6. Steps 4 & 5 are carried out for each bucket in order of priority. 7. The resulting minibuckets in each bucket are then joined in a chain (there is some degree of freedom for how this can be done), where each edge is labelled by the bucket label. ## References R. Mateescu, K. Kask, V.Gogate, and R. Dechter. Join-graph propagation algorithms. *Journal of Artificial Intelligence Research*, 37:279-328, 2010 doi: [10.1613/jair.2842](https://doi.org/10.1613/jair.2842). """ struct JoinGraphStructuring <: AbstractClusterGraphMethod maxclustersize::Integer end function JoinGraphStructuring(maxclustersize::Integer, net::HybridNetwork) maxindegree = maximum(n -> length(getparents(n)), net.hybrid) maxclustersize ≥ (maxindegree + 1) || error("maxclustersize $maxclustersize is smaller than the size of largest node family $(maxindegree+1).") return JoinGraphStructuring(maxclustersize) end """ Cliquetree Subtype of [`AbstractClusterGraphMethod`](@ref). ## Algorithm 1. [`moralize`](@ref) the network (connect partners that share a child). 2. triangulate the resulting undirected graph using greedy min-fill, see [`triangulate_minfill!(graph)`](@ref). 3. extract the maximal cliques of the resulting chordal graph. 4. calculate the edge weight between each pair of maximal cliques as the size of their intersection 5. find a maximum-weight spanning tree 6. label the retained edges (in the spanning tree) by the intersection of the two cliques they connect. ## References D. Koller and N. Friedman. *Probabilistic graphical models: principles and techniques*. MIT Press, 2009. ISBN 9780262013192. """ struct Cliquetree <: AbstractClusterGraphMethod end """ clustergraph!(net, method) clustergraph(net, method) Cluster graph `U` for an input network `net` and a `method` of cluster graph construction. The following methods are supported: - [`Bethe`](@ref) - [`LTRIP`](@ref) - [`JoinGraphStructuring`](@ref) - [`Cliquetree`](@ref) The first method pre-processes `net`, which may modify it in place, see [`preprocessnet!`](@ref). The second method assumes that `net` is already pre-processed. """ function clustergraph!(net::HybridNetwork, method::AbstractClusterGraphMethod) preprocessnet!(net) return clustergraph(net, method) end @doc (@doc clustergraph!) clustergraph clustergraph(net::HybridNetwork, ::Bethe) = betheclustergraph(net) clustergraph(net::HybridNetwork, method::LTRIP) = ltripclustergraph(net, method) clustergraph(net::HybridNetwork, method::JoinGraphStructuring) = joingraph(net, JoinGraphStructuring(getmaxclustersize(method), net)) function clustergraph(net::HybridNetwork, ::Cliquetree) g = moralize(net) triangulate_minfill!(g) return cliquetree(g) end """ betheclustergraph(net) See [`Bethe`](@ref) """ function betheclustergraph(net::HybridNetwork) T = vgraph_eltype(net) clustergraph = init_clustergraph(T, :Bethe) node2cluster = Dict{T, Tuple{Symbol, Vector{Symbol}}}() # for joining clusters later node2code = Dict{T,T}() # node preorder index -> code of family(node) in cluster graph code = zero(T) prenodes = net.nodes_changed prenodes_names = [Symbol(n.name) for n in prenodes] # add a factor-cluster for each non-root node for noi in reverse(eachindex(prenodes)) # postorder: see fam(h) before fam(p) in case fam(p) ⊆ fam(h) n = prenodes[noi] vt = T(noi) o = sort!(indexin(getparents(n), prenodes), rev=true) # for postorder nodeind = pushfirst!(T.(o), vt) # preorder indices of nodes in factor nodesym = prenodes_names[nodeind] # node symbol of nodes in factor # (nodesym, nodeind) = factor-cluster data, its nodes listed in postorder length(nodeind) > 1 || continue # skip the root # if n's family ⊆ another family: would have in one of its children's isfamilysubset = false for ch in getchildren(n) ch_code = node2code[findfirst(x -> x===ch, prenodes)] if nodeind ⊆ clustergraph[label_for(clustergraph, ch_code)][2] isfamilysubset = true node2code[noi] = ch_code # family(n) assigned to its child's cluster break # do not check other children's families end end isfamilysubset && continue # to next node: do *not* create a new cluster in graph factorCname = Symbol(nodesym...) # factor-cluster name: label in metagraph code += one(T) node2code[noi] = code add_vertex!(clustergraph, factorCname, (nodesym, nodeind)) for (nns, nni) in zip(nodesym, nodeind) if haskey(node2cluster, nni) push!(node2cluster[nni][2], factorCname) else node2cluster[nni] = (nns, [factorCname]) end end end # add a variable-cluster for each non-leaf node, and its adjacent edges (sepsets) for ni in sort!(collect(keys(node2cluster)), rev=true) # add nodes in postorder ns, clusterlist = node2cluster[ni] length(clusterlist) > 1 || continue # skip leaves: in only 1 factor-cluster add_vertex!(clustergraph, ns, ([ns], [ni])) for lab in clusterlist # lab: factor-cluster name, for each factor that contains the node add_edge!(clustergraph, ns, lab, [ni]) # sepset: singleton {ni} end end return clustergraph end """ ltripclustergraph(net, method::LTRIP) See [`LTRIP`](@ref) """ function ltripclustergraph(net::HybridNetwork, method::LTRIP) T = vgraph_eltype(net) clustg = init_clustergraph(T, :ltrip) # 'clustergraph' is a function already cg = MetaGraph(Graph{T}(0), # auxiliary graph to hold connection weights Symbol, # vertex label Tuple{Vector{Symbol}, Vector{T}}, # vertex data: nodes in cluster T, # edge data holds edge weight :connectionweights, # tag for the whole graph edge_data -> edge_data, zero(T)) # default weight node2cluster = Dict{T, Vector{T}}() # for joining clusters later clusters = getclusters(method) prenodes_names = [Symbol(n.name) for n in net.nodes_changed] # build nodes in clustg and in auxiliary cg for (code, nodeindlist) in enumerate(clusters) # nodeindlist assumed sorted, decreasing cdat = prenodes_names[nodeindlist] cname = Symbol(cdat...) # cluster data: (node labels, node preorder index), sorted in postorder add_vertex!(clustg, cname, (cdat, nodeindlist)) add_vertex!(cg, cname, (cdat, nodeindlist)) for ni in nodeindlist if haskey(node2cluster, ni) push!(node2cluster[ni], T(code)) else node2cluster[ni] = [T(code)] end end # add edges in auxiliary cg: to calculate intersection size only once for code2 in 1:(code-1) c2name = label_for(cg, code2) c2nodeindlist = clusters[code2] w = length(intersect(nodeindlist, c2nodeindlist)) w > 0 && add_edge!(cg, cname, c2name, w) end end clustweight = Dict(lab => 0 for lab in labels(cg)) # clusters score in cg's subgraph sg for ni in sort!(collect(keys(node2cluster)), rev=true) # sepsets will be sorted by nodes' postorder clusterindlist = node2cluster[ni] # build subgraph sg of auxiliary cg, then adjust its edge weights sg, _ = induced_subgraph(cg, clusterindlist) ne(sg) > 0 || continue # e.g leaves: only 1 cluster, no edge to add maxw = maximum(sg[e...] for e in edge_labels(sg)) for e in edge_labels(sg) if sg[e...] == maxw # if a sepset edge has maximum weigh, then clustweight[e[1]] += 1 # add 1 to each adjacent cluster's score clustweight[e[2]] += 1 end end # separate loop below: adjust weights *after* testing for max weight for e in edge_labels(sg) sg[e...] += clustweight[e[1]] + clustweight[e[2]] end # reset clustweight before next cluster for cl in keys(clustweight) clustweight[cl]=0; end mst_edges = kruskal_mst(sg, minimize=false) # mst: maximum spanning tree # augment sepsets in clustg, based on edges in max spanning tree for e in mst_edges lab1 = label_for(sg, src(e)) lab2 = label_for(sg, dst(e)) if haskey(clustg, lab1, lab2) # if (lab1, lab2) is an edge clustg[lab1, lab2] = push!(clustg[lab1, lab2], ni) # augment sepset else # create the edge, initialize sepset add_edge!(clustg, lab1, lab2, [ni]) end end end return clustg end """ joingraph(net, method::JoinGraphStructuring) See [`JoinGraphStructuring`](@ref) """ function joingraph(net::HybridNetwork, method::JoinGraphStructuring) g = moralize(net) ordering = triangulate_minfill!(g) # node labels in elimination order T = vgraph_eltype(net) # preorder indices sorted in elimination order eliminationorder2preorder = [g[ns] for ns in ordering] #= steps 1-3: initialize `buckets` and their minibuckets i: elimination order for the node labeling the bucket buckets[i][1]: node symbol buckets[i][2]: dictionary minibucket size => minibucket(s) =# buckets = Dict{T, Tuple{Symbol, Dict{T, Vector{Vector{T}}}}}( i => (ns, Dict()) for (i, ns) in enumerate(ordering) ) # node families (represented as vectors of preorder indices) = initial factors node2family = nodefamilies(net) maxclustersize = T(getmaxclustersize(method)) # size limit for minibuckets cg = init_clustergraph(T, :auxiliary) for nf in node2family # minibucket: node family, represented then sorted by elimination order mb = Vector{T}(indexin(nf, eliminationorder2preorder)) sort!(mb) # first node has lowest elimination order: highest priority bi = mb[1] # assign `mb` to bucket corresponding to this first node di = buckets[bi][2] # dictionary minibucket size => minibucket(s) # merge `mb` with existing minibucket or add as new minibucket, depending on max size assign!(di, mb, maxclustersize) end # steps 4-6: marginalize the bucket label from each minibucket for i in eachindex(ordering) _, bd = buckets[i] # bucket symbol, bucket dictionary # @info "node $i, bd has $(sum(length(mb) for mb in values(bd))) minibuckets" bi = eliminationorder2preorder[i] # preorder index of bucket labeling node previous_mb_label = nothing for minibuckets in values(bd), mb in minibuckets # create cluster in `cg` corresponding to minibucket `mb` nodeindlist = eliminationorder2preorder[mb] o = sortperm(nodeindlist, rev=true) nodeindlist .= nodeindlist[o] vdat = ordering[mb][o] lab = Symbol(vdat...) add_vertex!(cg, lab, (vdat, nodeindlist)) # nothing happens if cg already has lab # chain minibuckets: sepset = bucket labeling node, whose preorder is bi isnothing(previous_mb_label) || # connect `mb` to chain of current bucket # sepset is [bi] even if minibuckets have a larger intersection add_edge!(cg, previous_mb_label, lab, [bi]) previous_mb_label = lab # `mb` becomes new tail of "chain" # new minibucket: marginalize bucket labeling node bi mb_new = copy(mb) popfirst!(mb_new) isempty(mb_new) && continue # below: mb_new is not empty #= Assign to bucket labeled by highest priority element mb_new[1]: merge mb_new with an existing minibucket (mb2) to get mb1. - if possible: great. It may be that mb1=mb2, if mb_new is a subset of mb2. - else: mb1=mb_new and mb2 is empty. =# (mb1, mb2) = assign!(buckets[mb_new[1]][2], mb_new, maxclustersize) # create cluster corresponding to marginalized & merged minibucket nodeindlist1 = eliminationorder2preorder[mb1] o1 = sortperm(nodeindlist1, rev=true) nodeindlist1 .= nodeindlist1[o1] vdat1 = ordering[mb1][o1] lab1 = Symbol(vdat1...) add_vertex!(cg, lab1, (vdat1, nodeindlist1)) # nothing happens if cg already has lab1 # connect mb to mb1 in cluster graph cg add_edge!(cg, lab, lab1, filter(ni -> ni != bi, nodeindlist)) # if mb2 ⊂ mb1 strictly and if mb2 was already a cluster in cg # then contract mb1-mb2, leaving mb1 only if length(mb1) != length(mb2) # mb1 ≠ mb2 bc mb2 ⊆ mb1 o2 = sortperm(eliminationorder2preorder[mb2], rev=true) vdat2 = ordering[mb2][o2] lab2 = Symbol(vdat2...) if haskey(cg, lab2) # then replace mb2 by mb1: for labn in neighbor_labels(cg, lab2) # connect mb2's neibhbors to mb1 add_edge!(cg, lab1, labn, cg[lab2, labn]) end delete!(cg, lab2) # delete mb2 from cg end end end end return cg end """ assign!(bucket, new_minibucket, max_minibucket_size) Merge `new_minibucket` with one of the minibuckets contained in `bucket` (in order of decreasing size) subject to the constraint that the resulting minibucket does not exceed `max_minibucket_size`. If this is not possible, then `new_minibucket` is added to `bucket` as a new minibucket. The bucket should be represented as a dictionary: minibucket_size => vector of minibuckets of that size, where each minibucket is itself represented as a vector of indices. Output: - (`resulting_minibucket`, `minibucket_merged_into`) if a successful merge is found - (`new_minibucket`, []) otherwise """ function assign!(bucket::Dict{T, Vector{Vector{T}}}, new::Vector{T}, maxsize::T) where {T <: Integer} for sz in sort(collect(keys(bucket)), rev=true) # favor merging with large minibuckets minibuckets = bucket[sz] # minibuckets of size `sz` for (i, mb) in enumerate(minibuckets) merged = sort(union(new, mb)) mergedsz = length(merged) if mergedsz ≤ maxsize popat!(minibuckets, i) # remove minibucket being merged with isempty(minibuckets) && pop!(bucket, sz) # remove any empty size categories # insert result of merge into appropriate size category if haskey(bucket, mergedsz) push!(bucket[mergedsz], merged) else bucket[mergedsz] = [merged] end return (merged, mb) end end end # no merging: insert `new` to `bucket` sz = length(new) if haskey(bucket, sz) push!(bucket[sz], new) else bucket[sz] = [new] end return (new, T[]) end """ cliquetree(chordal_graph) Clique tree `U` for an input graph `g` assumed to be chordal (triangulated), e.g. using [`triangulate_minfill!`](@ref). **Warning**: does *not* check that the graph is already triangulated. - Each node in `U` is a maximal clique of `g` whose data is the tuple of vectors (node_labels, node_data) using the labels and data from `g`, with nodes sorted by decreasing data. If `g` was originally built from a phylogenetic network using [`moralize`](@ref), then the nodes' data are their preorder index, making them sorted in postorder within in each clique. The clique label is the concatenation of the node labels. - For each edge (clique1, clique2) in `U`, the edge data hold the sepset (separating set) information as a vector of node data, for nodes shared by both clique1 and clique2. In this sepset, nodes are sorted by decreasing data. Uses `maximal_cliques` and `kruskal_mst` (for min/maximum spanning trees) from [Graphs.jl](https://juliagraphs.org/Graphs.jl/stable/). """ function cliquetree(graph::AbstractGraph{T}) where T mc = maximal_cliques(graph) mg = init_clustergraph(T, :cliquetree) node2clique = Dict{T,Vector{T}}() # to connect cliques faster later for (code, cl) in enumerate(mc) nodeindlist = [graph[label_for(graph,u)] for u in cl] # preorder index o = sortperm(nodeindlist, rev=true) # order to list nodes in postorder vdat = [label_for(graph,cl[i]) for i in o] nodeindlist .= nodeindlist[o] # clique data: (node labels, node preorder index), sorted in postorder add_vertex!(mg, Symbol(vdat...), (vdat, nodeindlist)) for ni in nodeindlist if haskey(node2clique, ni) push!(node2clique[ni], T(code)) else node2clique[ni] = [T(code)] end end end # create edges between pairs of cliques sharing the same node for node in sort!(collect(keys(node2clique)), rev=true) # sepsets will be sorted by nodes' postorder cliquelist = node2clique[node] # add node to the sepset between each pair of cliques that has that node for (i1, cl1) in enumerate(cliquelist) lab1 = label_for(mg, cl1) for i2 in 1:(i1-1) cl2 = cliquelist[i2] lab2 = label_for(mg, cl2) if has_edge(mg, cl1, cl2) elabs = MetaGraphsNext.arrange(mg, lab1, lab2) haskey(mg.edge_data, elabs) || error("hmm, mg.graph has the edge, but mg has no edge data") push!(mg.edge_data[elabs], node) else add_edge!(mg, lab1, lab2, [node]) end end end end #= altenate way to create edges between cliques # would be faster for a complex graph with many nodes but few (large) cliques. for cl1 in vertices(mg) lab1 = label_for(mg, cl1) ni1 = mg[lab1][2] # node indices: preorder index of nodes in the clique for cl2 in Base.OneTo(cl1 - one(T)) lab2 = label_for(mg, cl2) ni2 = mg[lab2][2] sepset = intersect(ni1, ni2) # would be nice to take advantage of the fact that ni1 and ni2 are both sorted (descending) isempty(sepset) && continue add_edge!(mg, lab1, lab2, sepset) end end =# # find maximum spanning tree: with maximum sepset sizes mst_edges = kruskal_mst(mg, minimize=false) # delete the other edges to get the clique tree # complication: edge iterator is invalidated by the first edge deletion todelete = setdiff!(collect(edges(mg)), mst_edges) for e in todelete rem_edge!(mg, src(e), dst(e)) end return mg end """ init_clustergraph(T::Type{<:Integer}, clustergraph_method::Symbol) `MetaGraph` with an empty base graph (0 vertices, 0 edges), meta-graph data `clustergraph_method`, edge-weight function counting the length of the edge-data vector, and the following types: - vertex indices in the base graph: `T` - vertex labels: `Symbol` - vertex data: `Tuple{Vector{Symbol}, Vector{T}}` to hold information about the variables (nodes in phylogenetic network) in the cluster (vertex in cluster graph): node names as symbols, and node preorder indices - edge data: `Vector{T}` to hold information about the sepset: preorder index of nodes in the sepset. See packages [MetaGraphsNext](https://juliagraphs.org/MetaGraphsNext.jl/dev/) and [Graphs](https://juliagraphs.org/Graphs.jl/dev/). The empty graph above is of type `Graphs.SimpleGraphs.SimpleGraph{T}`: undirected, with vertex indices of type `T`. After addition of `n` vertices, the vertex indices range from 1 to `n`, technically in `Base.OneTo{T}(n)`. """ function init_clustergraph(T::Type{<:Integer}, method::Symbol) clustergraph = MetaGraph( Graph{T}(0), Symbol, # vertex label Tuple{Vector{Symbol}, Vector{T}}, # vertex data: nodes in cluster Vector{T}, # edge data: nodes in sepset method, # tag for the whole graph edge_data -> T(length(edge_data)), zero(T)) # default weight return clustergraph end function get_nodesymbols2index(clustergraph::MetaGraph) Dict(ns => ni for l in labels(clustergraph) for (ns, ni) in zip(clustergraph[l][1], clustergraph[l][2]) ) end """ spanningtree_clusterlist(clustergraph, root_index) spanningtree_clusterlist(clustergraph, nodevector_preordered) Build the depth-first search spanning tree of the cluster graph, starting from the cluster indexed `root_index` in the underlying simple graph; find the associated topological ordering of the clusters (preorder); then return a tuple of these four vectors: 1. `parent_labels`: labels of the parents' child clusters. The first one is the root. 2. `child_labels`: labels of clusters in pre-order, except for the cluster choosen to be the root. 3. `parent_indices`: indices of the parent clusters 4. `child_indices`: indices of the child clusters, listed in preorder as before. In the second version in which `root_index` is not provided, the root of the spanning tree is chosen to be a cluster that contains the network's root. If multiple clusters contain the network's root, then one is chosen containing the smallest number of taxa: see [`default_rootcluster`](@ref). """ function spanningtree_clusterlist(cgraph::MetaGraph, prenodes::Vector{PN.Node}) rootj = default_rootcluster(cgraph, prenodes) spanningtree_clusterlist(cgraph, rootj) end function spanningtree_clusterlist(cgraph::MetaGraph, rootj::Integer) par = dfs_parents(cgraph.graph, rootj) spt = Graphs.tree(par) # or directly: spt = dfs_tree(cgraph.graph, rootj) # spt.fadjlist # forward adjacency list: sepsets, but edges not indexed childclust_j = topological_sort(spt)[2:end] # cluster in preorder, excluding the root cluster parentclust_j = par[childclust_j] # parent of each cluster in spanning tree childclust_lab = [cgraph.vertex_labels[j] for j in childclust_j] parentclust_lab = [cgraph.vertex_labels[j] for j in parentclust_j] return parentclust_lab, childclust_lab, parentclust_j, childclust_j end """ spanningtrees_clusterlist(clustergraph, nodevector_preordered) Vector of spanning trees for `clustergraph`, that together cover all edges. Each spanning tree is specified as a tuple of 4 vectors describing a depth-first search traversal of the tree, starting from a cluster that contains the network's root, as in [`spanningtree_clusterlist`](@ref). The spanning trees are iteratively obtained using Kruskal's minimum-weight spanning tree algorithm, with edge weights defined as the number of previous trees covering the edge. """ function spanningtrees_clusterlist(cgraph::MetaGraph{T}, prenodes::Vector{PN.Node}) where T # graph with same clusters and edges, but different edge data & edge weights cg = MetaGraph(Graph{T}(0), Symbol, Tuple{Vector{Symbol}, Vector{T}}, T, # edge data type: edge data = number of spanning trees containing the edge :edgeweights, # graph tag: hold edge weights to compute min spanning tree edge_data -> edge_data, # edge data holds edge weight typemax(T)) # default weight for absent edges # copy clusters (same order) and edges from cgraph, but set edge data to 0 for l in labels(cgraph) add_vertex!(cg, l, cgraph[l]); end for (l1,l2) in edge_labels(cgraph) add_edge!(cg, l1, l2, 0); end # schedule: initialize vector of spanning trees sched = Tuple{Vector{Symbol}, Vector{Symbol}, Vector{T}, Vector{T}}[] # repeat until every edge has data > 0: used in ≥1 spanning tree while any(cg[l1,l2] == 0 for (l1,l2) in edge_labels(cg)) mst_edges = kruskal_mst(cg) # vector of edges in min spanning tree sg, vmap = induced_subgraph(cg, mst_edges) # spanning tree as `metagraph` spt = spanningtree_clusterlist(sg, prenodes) spt[3] .= vmap[spt[3]] # code i in `sg` maps to code vmap[i] in `cg` spt[4] .= vmap[spt[4]] push!(sched, spt) # update edge data: +1 for each edge in spanning tree, to prioritize # unused (or rarely used) in future spanning trees for e in mst_edges parentlab = label_for(cg, src(e)) childlab = label_for(cg, dst(e)) cg[parentlab, childlab] += 1 end end return sched end """ nodesubtree_clusterlist(clustergraph::MetaGraph, nodesymbol) Spanning tree of the subgraph of `clustergraph` induced by the clusters and sepsets that contain the node labelled `nodesymbol`, see [`nodesubtree`](@ref). If `clustergraph` satisfies the generalized running-intersection property, then this subgraph should be a tree anyway, but this is not assumed (via extracting a spanning tree). Output: tuple of 4 vectors describing a depth-first search traversal of the tree, starting from a cluster containing the node of smallest preorder index, as determined by [`default_rootcluster`](@ref). Each element in this tuple is a vector: see [`spanningtree_clusterlist`](@ref). """ function nodesubtree_clusterlist(cgraph::MetaGraph, ns::Symbol) sg, vmap = nodesubtree(cgraph, ns) # to root sg: pick a cluster containing a node with smallest preorder index rootj = default_rootcluster(sg) spt = spanningtree_clusterlist(sg, rootj) # map cluster indices back to those for `cgraph` spt[3] .= vmap[spt[3]] spt[4] .= vmap[spt[4]] return spt end # """ # minimal_valid_schedule(clustergraph, clusterswithevidence) # Generate a minimal valid schedule of messages to be computed on a initialized # Bethe cluster graph, so that any schedule of messages following is valid. # Return the schedule as a tuple of four vectors: (`parent_labels`, `child_labels`, # `parent_indices`, `child_indices`) as in [`spanningtree_clusterlist`](@ref). # """ # function minimal_valid_schedule(cgraph::MetaGraph, wevidence::Vector{Symbol}) # !isempty(wevidence) || error("`wevidence` cannot be empty") # #= `received` tracks clusters that have received evidence (through messages # during initialization). Only clusters that have received evidence can # transmit this (such clusters get added to `cansend`) to neighbor clusters # through a message. =# # received = Set{Symbol}(wevidence) # cansend = copy(wevidence) # T = typeof(cgraph[cansend[1]][2][1]) # childclust_j = T[] # child cluster indices # parentclust_j = T[] # parent cluster indices # childclust_lab = Symbol[] # child cluster labels # parentclust_lab = Symbol[] # parent cluster labels # while !isempty(cansend) # #= For each cluster in `cansend`, send a message to any neighbors that # have not received evidence (all such neighbors get added to `cansend`), # then remove it from `cansend`. Since the cluster graph represented by # `cgraph` is connected, all clusters will eventually be added to `cansend` # and processed in order. Hence, this generates a minimal sequence of # messages that can be computed, so that the updated cluster beliefs will # be non-degenerate wrt any messages they are allowed to compute (i.e. # any schedule of messages following is valid). =# # cl = popfirst!(cansend) # remove node to be processed # nb = neighbor_labels(cgraph, cl) # for cl2 in nb # if cl2 ∉ received # push!(childclust_j, code_for(cgraph, cl2)) # push!(parentclust_j, code_for(cgraph, cl)) # push!(childclust_lab, cl2) # push!(parentclust_lab, cl) # push!(received, cl2) # `cl2` can no longer receive messages # push!(cansend, cl2) # `cl2` can now send messages # end # end # end # return parentclust_lab, childclust_lab, parentclust_j, childclust_j # end """ default_rootcluster(clustergraph, nodevector_preordered) Index of a cluster that contains the network's root, whose label is assumed to be `1` (preorder index). If multiple clusters contain the network's root, then one is chosen with the smallest number of taxa (leaves in the network). For cluster with label `:lab`, its property `clustergraph[:lab][2]` should list the nodes in the cluster, by the index of each node in `nodevector_preordered` such that `1` corresponds to the network's root. Typically, this vector is `net.nodes_changed` after the network is preordered. """ function default_rootcluster(cgraph::MetaGraph, prenodes::Vector{PN.Node}) hasroot = lab -> begin # Inf if the cluster does not contain the root 1 nodelabs = cgraph[lab][2] # number of taxa in the cluster otherwise (1 ∈ nodelabs ? sum(prenodes[i].leaf for i in nodelabs) : Inf) end rootj = argmin(hasroot(lab) for lab in labels(cgraph)) return rootj end """ default_rootcluster(clustergraph) Index of a cluster that contains the node with the smallest preorder index. If multiple clusters contain that node, then one is chosen that *only* has that node. If all clusters containing that node have more than 1 node, then a cluster is chosen containing a node with the second-smallest-preorder index. For cluster with label `:lab`, its property `clustergraph[:lab][2]` should list the nodes in the cluster by their preorder index, sorted in decreasingly order (so the smallest is at the end). """ function default_rootcluster(cgraph::MetaGraph) i0 = minimum(cgraph[lab][2][end] for lab in labels(cgraph)) # smallest preorder index rootscore = lab -> begin # Inf if the cluster does not contain i0 nodelabs = cgraph[lab][2] # second smallest index otherwise (i0 ∈ nodelabs ? (length(nodelabs)==1 ? 0 : nodelabs[end-1]) : Inf) end rootj = argmin(rootscore(lab) for lab in labels(cgraph)) return rootj end
PhyloGaussianBeliefProp
https://github.com/JuliaPhylo/PhyloGaussianBeliefProp.jl.git
[ "MIT" ]
0.0.1
e785a3d1d3bd6dd66ffd313f06d03b00d1a0a9b4
code
16908
""" ClusterGraphBelief{B<:Belief, F<:FamilyFactor, M<:MessageResidual} Structure to hold a vector of beliefs, with cluster beliefs coming first and sepset beliefs coming last. Fields: - `belief`: vector of beliefs - `factor`: vector of initial cluster beliefs after factor assignment - `nclusters`: number of clusters - `cdict`: dictionary to get the index of a cluster belief from its node labels - `sdict`: dictionary to get the index of a sepset belief from the labels of its two incident clusters - `messageresidual`: dictionary to log information about sepset messages, which can be used to track calibration or help adaptive scheduling with residual BP. See [`MessageResidual`](@ref). The keys of `messageresidual` are tuples of cluster labels, similar to a sepset's metadata. Each edge in the cluster graph has 2 messages corresponding to the 2 directions in which a message can be passed, with keys: `(label1, label2)` and `(label2, label1)`. The cluster receiving the message is the first label in the tuple, and the sending cluster is the second. Assumptions: - For a cluster belief, the cluster's nodes are stored in the belief's `metadata`. - For a sepset belief, its incident clusters' nodes are in the belief's metadata. """ struct ClusterGraphBelief{B<:Belief, F<:FamilyFactor, M<:MessageResidual} "vector of beliefs, cluster beliefs first and sepset beliefs last" belief::Vector{B} """vector of initial factors from the graphical model, one per cluster. Each node family defines the conditional probability of the node conditional to its parent, and the root has its prior probability. Each such density is assigned to 1 cluster. A cluster belief can be assigned 0, 1 or more such density. Cluster beliefs are modified during belief propagation, but factors are not. They are useful to approximate the likelihood by the factored energy.""" factor::Vector{F} "number of clusters" nclusters::Int "dictionary: cluster label => cluster index" cdict::Dict{Symbol,Int} "dictionary: cluster neighbor labels => sepset index" sdict::Dict{Set{Symbol},Int} "dictionary: message labels (cluster_to, cluster_from) => residual information" messageresidual::Dict{Tuple{Symbol,Symbol}, M} end nbeliefs(obj::ClusterGraphBelief) = length(obj.belief) nclusters(obj::ClusterGraphBelief) = obj.nclusters nsepsets(obj::ClusterGraphBelief) = nbeliefs(obj) - nclusters(obj) function Base.show(io::IO, b::ClusterGraphBelief) disp = "beliefs for $(nclusters(b)) clusters and $(nsepsets(b)) sepsets.\nclusters:\n" for (k, v) in b.cdict disp *= " $(rpad(k,10)) => $v\n" end disp *= "sepsets:\n" for (k, v) in b.sdict disp *= " $(rpad(join(k,", "),20)) => $v\n" end print(io, disp) end clusterindex(c, obj::ClusterGraphBelief) = clusterindex(c, obj.cdict) function clusterindex(clusterlabel, clusterdict) clusterdict[clusterlabel] end sepsetindex(c1, c2, obj::ClusterGraphBelief) = sepsetindex(c1, c2, obj.sdict) function sepsetindex(clustlabel1, clustlabel2, sepsetdict) sepsetdict[Set((clustlabel1, clustlabel2))] end """ ClusterGraphBelief(belief_vector::Vector{B}) Constructor of a `ClusterGraphBelief` with belief `belief_vector` and all other fields constructed accordingly. New memory is allocated for these other fields, e.g. for factors (with data copied from cluster beliefs) and message residuals (with data initialized to 0 but of size matching that from sepset beliefs) To construct the input vector of beliefs, see [`init_beliefs_allocate`](@ref) and [`init_beliefs_assignfactors!`](@ref) """ function ClusterGraphBelief(beliefs::Vector{B}) where B<:Belief i = findfirst(b -> b.type == bsepsettype, beliefs) nc = (isnothing(i) ? length(beliefs) : i - 1) all(beliefs[i].type == bclustertype for i in 1:nc) || error("clusters are not consecutive") all(beliefs[i].type == bsepsettype for i in (nc+1):length(beliefs)) || error("sepsets are not consecutive") cdict = get_clusterindexdictionary(beliefs, nc) sdict = get_sepsetindexdictionary(beliefs, nc) mr = init_messageresidual_allocate(beliefs, nc) factors = init_factors_allocate(beliefs, nc) return ClusterGraphBelief{B,eltype(factors),valtype(mr)}(beliefs,factors,nc,cdict,sdict,mr) end function get_clusterindexdictionary(beliefs, nclusters) Dict(beliefs[j].metadata => j for j in 1:nclusters) end function get_sepsetindexdictionary(beliefs, nclusters) Dict(Set(beliefs[j].metadata) => j for j in (nclusters+1):length(beliefs)) end """ init_beliefs_reset_fromfactors!(beliefs::ClusterGraphBelief) Reset cluster beliefs to existing factors, and sepset beliefs to h=0, J=0, g=0 This is not used so far, as changing model parameters requires a reset of both factors and beliefs, done by [`init_beliefs_assignfactors!`](@ref). """ function init_beliefs_reset_fromfactors!(beliefs::ClusterGraphBelief) nc, nb = nclusters(beliefs), length(beliefs.belief) b, f = beliefs.belief, beliefs.factor for i in 1:nc b[i].h .= f[i].h b[i].J .= f[i].J b[i].g[1] = f[i].g[1] end for i in (nc+1):nb b[i].h .= 0.0 b[i].J .= 0.0 b[i].g[1] = 0.0 end end """ init_messagecalibrationflags_reset!(beliefs::ClusterGraphBelief, reset_kl=true) Reset all non-empty message residuals in `beliefs`. """ function init_messagecalibrationflags_reset!(beliefs::ClusterGraphBelief, reset_kl=true) for m in values(beliefs.messageresidual) init_messagecalibrationflags_reset!(m, reset_kl) end end """ iscalibrated_residnorm(beliefs::ClusterGraphBelief) iscalibrated_kl(beliefs::ClusterGraphBelief) True if all edges in the cluster graph have calibrated messages in both directions, in that their latest message residuals have norm close to 0 (`residnorm`) or KL divergence close to 0 between the message received and prior sepset belief. False if not all edges have calibrated messages. This condition is sufficient but not necessary for calibration. Calibration was determined for each individual message residual by [`iscalibrated_residnorm!`](@ref) and [`iscalibrated_kl!`](@ref) using some tolerance value. """ iscalibrated_residnorm(cb::ClusterGraphBelief) = all(x -> iscalibrated_residnorm(x), values(cb.messageresidual)) iscalibrated_kl(cb::ClusterGraphBelief) = all(x -> iscalibrated_kl(x), values(cb.messageresidual)) """ integratebelief!(obj::ClusterGraphBelief, beliefindex) integratebelief!(obj::ClusterGraphBelief) integratebelief!(obj::ClusterGraphBelief, clustergraph, nodevector_preordered) `(μ,g)` from fully integrating the object belief indexed `beliefindex`. This belief is modified, with its `belief.μ`'s values updated to those in `μ`. The second method uses the first sepset containing a single node. This is valid if the beliefs are fully calibrated (including a pre-order traversal), but invalid otherwise. The third method uses the default cluster containing the root, see [`default_rootcluster`](@ref). This is valid if the same cluster was used as the root of the cluster graph, if this graph is a clique tree, and after a post-order traversal to start the calibration. """ function integratebelief!(obj::ClusterGraphBelief, cgraph::MetaGraph, prenodes) integratebelief!(obj, default_rootcluster(cgraph, prenodes)) end integratebelief!(b::ClusterGraphBelief) = integratebelief!(b, default_sepset1(b)) integratebelief!(b::ClusterGraphBelief, j::Integer) = integratebelief!(b.belief[j]) # first sepset containing a single node default_sepset1(b::ClusterGraphBelief) = default_sepset1(b.belief, nclusters(b) + 1) function default_sepset1(beliefs::AbstractVector, n::Integer) j = findnext(b -> length(nodelabels(b)) == 1, beliefs, n) isnothing(j) && error("no sepset with a single node") # should not occur: degree-1 taxa return j end """ regularizebeliefs_bycluster!(beliefs::ClusterGraphBelief, clustergraph) regularizebeliefs_bycluster!(beliefs::ClusterGraphBelief, clustergraph, cluster_label) Modify beliefs of cluster graph by adding positive values to some diagonal elements of precision matrices `J`, while preserving the full graphical model (product of cluster beliefs over product of sepset beliefs, invariant during belief propagation) so that all beliefs are non-degenerate. This regularization could be done after initialization with [`init_beliefs_assignfactors!`](@ref) for example. The goal is that at each later step of belief propagation, the sending cluster has a non-degenerate (positive definite) precision matrix for the variables to be integrated, so that the message to be sent is well-defined (i.e. can be computed) and positive semidefinite. ## Algorithm For each cluster Ci (or for only for 1 cluster, labeled `cluster_label`): 1. Find a regularization parameter adaptively for that cluster: ϵ = maximum absolute value of all entries in Ci's precision matrix J, and of the machine epsilon. Then loop through its incident edges: 2. For each neighbor cluster Cj and associated sepset Sij, add ϵ > 0 to the diagonal entries of Ci's precision matrix `J` corresponding to the traits in Sij. 3. To preserve the graphical model's joint distribution for the full set of variables (invariant during BP), the same ϵ is added to each diagonal entry of Sij's precision matrix. """ function regularizebeliefs_bycluster!(beliefs::ClusterGraphBelief, cgraph::MetaGraph) for lab in labels(cgraph) regularizebeliefs_bycluster!(beliefs, cgraph, lab) end end function regularizebeliefs_bycluster!(beliefs::ClusterGraphBelief{B}, cgraph::MetaGraph, clusterlab) where B<:Belief{T} where T b = beliefs.belief cluster_to = b[clusterindex(clusterlab, beliefs)] # receiving-cluster ϵ = max(eps(T), maximum(abs, cluster_to.J)) # regularization constant for nblab in neighbor_labels(cgraph, clusterlab) sepset = b[sepsetindex(clusterlab, nblab, beliefs)] regularizebeliefs_1clustersepset!(cluster_to, sepset, ϵ) end end """ regularizebeliefs_1clustersepset!(cluster::AbstractBelief, sepset::AbstractBelief, ϵ) Modify beliefs of 1 cluster and 1 of sepset, assumed to be neighbors in a cluster graph (such that the sepset's scope is a subset of the cluster's scope) by adding ϵ to all diagonal elements of the sepset precision matrice `J` and to the corresponding diagonal elements of the cluster precision, so as to preserve the full graphical model. Used by [`regularizebeliefs_bycluster!`](@ref) and [`regularizebeliefs_onschedule!`](@ref). """ function regularizebeliefs_1clustersepset!(cluster::AbstractBelief, sepset::AbstractBelief, ϵ) upind = scopeindex(sepset, cluster) # indices to be updated isempty(upind) && return ΔJ = ϵ*LA.I(length(upind)) view(cluster.J, upind, upind) .+= ΔJ # regularize cluster precision sepset.J .+= ΔJ # preserve the graph invariant return end """ regularizebeliefs_bynodesubtree!(beliefs::ClusterGraphBelief, clustergraph) Modify beliefs of cluster graph by adding positive values to some diagonal elements of precision matrices `J`, while preserving the full graphical model (product of cluster beliefs over product of sepset beliefs, invariant during belief propagation) so that all beliefs are non-degenerate. The goal is the same as [`regularizebeliefs_bycluster!`](@ref) and [`regularizebeliefs_onschedule!`](@ref), but the algorithm is different. ## Algorithm For each node (or variable) v: 1. Consider the subgraph T of clusters & edges that have v. If `clustergraph` has the generalized running-intersection property, this subgraph is a tree. 2. Root T at a cluster containing a node with the largest postorder index. 3. Find a regularization parameter adaptively for that node: ϵ = maximum absolute value of all entries in Ci's precision matrix J, and of the machine epsilon, over clusters Ci in T. 4. For each trait j, find the subtree Tj of clusters and sepsets that have trait j of node v in their scope. 5. For each cluster and sepset in Tj, except at its cluster root: add ϵ on the diagonal of their belief precision matrix `J` corresponding to trait j of node v. 6. Check that graphical model invariant is preserved, that is: for each trait j, ϵ was added to the same number of clusters as number of sepsets. """ function regularizebeliefs_bynodesubtree!(beliefs::ClusterGraphBelief, cgraph::MetaGraph) for (node_symbol, node_ind) in get_nodesymbols2index(cgraph) regularizebeliefs_bynodesubtree!(beliefs, cgraph, node_symbol, node_ind) end end function regularizebeliefs_bynodesubtree!(beliefs::ClusterGraphBelief{B}, cgraph::MetaGraph, node_symbol, node_ind) where B<:Belief{T} where T b = beliefs.belief sg, _ = nodesubtree(cgraph, node_symbol, node_ind) nv(sg) <= 1 && return nothing is_tree(sg) || error("running intersection violated for node / variable $node_symbol") rootj = argmax(sg[l][2][1] for l in labels(sg)) # cluster with largest preorder index # degree(sg, rootj) == 1 || @warn "cluster $(label_for(sg, rootj)) not a leaf in subtree for $node_symbol, I had hoped so." spt = spanningtree_clusterlist(sg, rootj) # ! cluster indices refer to those in sg, not cgraph ϵ = eps(T) for l in labels(sg) ϵ = max(ϵ, maximum(abs, b[clusterindex(l, beliefs)].J)) end for (par_l, chi_l, _, _) in zip(spt...) # traverse node subtree childbelief = b[clusterindex(chi_l, beliefs)] sepsetbelief = b[sepsetindex(par_l, chi_l, beliefs)] s_ind, c_ind = scopeindex(node_ind, sepsetbelief, childbelief) d = length(s_ind) view(childbelief.J, c_ind, c_ind) .+= ϵ*LA.I(d) view(sepsetbelief.J, s_ind, s_ind) .+= ϵ*LA.I(d) end return nothing end """ regularizebeliefs_onschedule!(beliefs::ClusterGraphBelief, clustergraph) Modify beliefs of the cluster graph so that all beliefs are non-degenerate, by (1) adding positive values to some diagonal elements of precision matrices `J` while preserving the full graphical model, and (2) propagating messages by marginalizing cluster beliefs. The goal is the same as [`regularizebeliefs_bycluster!`](@ref) and [`regularizebeliefs_bynodesubtree!`](@ref), but the algorithm is different. ## Algorithm The outcomes depends on a "schedule", that is, on an order in which clusters are considered. Here, the method simply takes the order given by `labels(clustergraph)`. Mark all messages Ci → Cj as un-sent. For each cluster Ci in order: 1. For each neighbor cluster Cj of Ci, if the message Cj → Ci has not been sent, then: - add ϵ_i to the diagonal entries of sepset Sij's precision matrix Jij - add ϵ_i to the diagonal entries of Ci's precision matrix Ji that correspond to the inscope variables of Sij - mark Cj → Ci as sent. Notes: + ϵ_i is taken as the maximum of all absolute values of entries in Ji, and of the square root of machine epsilon. + This is equivalent to "sending" a default message, that is not computed from Cj's belief, with diagonal precision matrix ϵ⋅I and other canonical parameters h=0, g=0. 2. For each neighbor cluster Cj of Ci, if Ci → Cj has not been sent then - send a message from Ci to Cj by marginalizing Ci's belief (that is, using belief propagation). - mark the message Ci → Cj as sent. """ function regularizebeliefs_onschedule!(beliefs::ClusterGraphBelief, cgraph::MetaGraph) # (cluster1, cluster2) ∈ messagesent if cluster1 has sent a message to cluster2 messagesent = Set{NTuple{2,Symbol}}() tosend = Tuple{Tuple{Symbol,Int},Int}[] # indices for step 2, reset at each cluster ϵ0 = sqrt(eps(Float64)) b = beliefs.belief mr = beliefs.messageresidual for clusterlab in labels(cgraph) empty!(tosend) ci = clusterindex(clusterlab, beliefs) # cluster index ϵ = max(maximum(abs, b[ci].J), ϵ0) # regularization parameter for nblab in neighbor_labels(cgraph, clusterlab) nb_i = clusterindex(nblab, beliefs) # neighbor cluster index ss_i = sepsetindex(clusterlab, nblab, beliefs) # sepset index if (nblab, clusterlab) ∉ messagesent # step 1: regularize precisions regularizebeliefs_1clustersepset!(b[ci], b[ss_i], ϵ) push!(messagesent, (nblab, clusterlab)) end if (clusterlab, nblab) ∉ messagesent # store indices for step 2 later push!(tosend, ((nblab, nb_i), ss_i)) push!(messagesent, (clusterlab, nblab)) end end for ((nblab, nb_i), ss_i) in tosend # step 2: pass message with BP propagate_belief!(b[nb_i], b[ss_i], b[ci], mr[(nblab, clusterlab)]) end end end
PhyloGaussianBeliefProp
https://github.com/JuliaPhylo/PhyloGaussianBeliefProp.jl.git
[ "MIT" ]
0.0.1
e785a3d1d3bd6dd66ffd313f06d03b00d1a0a9b4
code
6164
""" getcholesky(J::AbstractMatrix) Cholesky decomposition of J, assumed to be symmetric *positive* definite, stored as a `PDMat` object. Warning: PDMat is not a subtype of Cholesky. [PDMats.jl](https://github.com/JuliaStats/PDMats.jl) is efficient for structured matrices (e.g diagonal or sparse) and has efficient methods for linear algebra, e.g. `\\`, `invquad`, `X_invA_Xt` etc. """ function getcholesky(J::AbstractMatrix) return PDMat(J) # LA.cholesky(b.J) end """ getcholesky_μ(J::AbstractMatrix, h) getcholesky_μ!(belief::Belief) Tuple `(Jchol, μ)` where `Jchol` is a cholesky representation of `J` or `belief.J` and `μ` is J⁻¹h, used to update `belief.μ` (by the second method). """ function getcholesky_μ(J::AbstractMatrix, h) Jchol = getcholesky(J) μ = Jchol \ h return (Jchol, μ) end @doc (@doc getcholesky_μ) getcholesky_μ! function getcholesky_μ!(b::Belief) (Jchol, μ) = getcholesky_μ(b.J, b.h) b.μ .= μ return (Jchol, μ) end """ entropy(J::Cholesky) entropy(J::AbstractMatrix) entropy(belief::AbstractBelief) Entropy of a multivariate Gaussian distribution with precision matrix `J`, assumed to be square and symmetric (not checked). It is 0 if `J` is empty (of size 0×0). It may be `Inf` if `J` is semi-definite. The second version applies the first to the belief precision `belief.J`. `entropy` is defined for discrete distributions in [StatsBase.jl](https://juliastats.org/StatsBase.jl/stable/scalarstats/#StatsBase.entropy) and extended to Gaussian distributions in Distributions.jl around [here](https://github.com/JuliaStats/Distributions.jl/blob/master/src/multivariate/mvnormal.jl#L95) """ function entropy(J::Union{LA.Cholesky{T},PDMat{T}}) where T<:Real n = size(J,2) n == 0 && return zero(T) (n * (T(log2π) + 1) - LA.logdet(J)) / 2 end function entropy(J::AbstractMatrix{T}) where T<:Real n = size(J,2) n == 0 && return zero(T) (n * (T(log2π) + 1) - LA.logdet(LA.Symmetric(J))) / 2 end entropy(cluster::AbstractBelief) = entropy(cluster.J) """ average_energy!(ref::Belief, target::AbstractBelief) average_energy!(ref::Belief, Jₜ, hₜ, gₜ) average_energy(Jᵣ::Union{LA.Cholesky,PDMat}, μᵣ, Jₜ, hₜ, gₜ) Average energy (i.e. negative expected log) of a `target` canonical form with parameters `(Jₜ, hₜ, gₜ)` with respect to a normalized non-degenerate reference canonical form `ref` with parameters `(Jᵣ, hᵣ)`. The reference distribution is normalized, so specifying `gᵣ` is unnecessary. When the target canonical form is also normalized and non-degenerate, this is equal to their cross-entropy: H(fᵣ, fₜ) = - Eᵣ(log fₜ) = - ∫ fᵣ log fₜ . `ref` is assumed to be non-degenerate, that is, `Jᵣ` should be positive definite. `average_energy!` modifies the reference belief by updating `ref.μ` to J⁻¹h. It calls `average_energy` after a cholesky decomposition of `ref.J`, stored in `Jᵣ`: see [`getcholesky_μ!`](@ref). ## Calculation: ref: f(x) = C(x | Jᵣ, hᵣ, _) is the density of 𝒩(μ=Jᵣ⁻¹hᵣ, Σ=Jᵣ⁻¹) target: C(x | Jₜ, hₜ, gₜ) = exp( - (1/2)x'Jₜx + hₜ'x + gₜ ) E[-log C(X | Jₜ, hₜ, gₜ)] where X ∼ C(Jᵣ, hᵣ, _) = 0.5 (μᵣ'Jₜ μᵣ + tr(Jᵣ⁻¹Jₜ)) - hₜ'μᵣ - gₜ With empty vectors and matrices (J's of dimension 0×0 and h's of length 0), the result is simply: - gₜ. """ function average_energy!(ref::Belief, target::AbstractBelief) average_energy!(ref, target.J, target.h, target.g[1]) end function average_energy!(ref::Belief, Jₜ, hₜ, gₜ) (Jᵣ, μᵣ) = getcholesky_μ!(ref) average_energy(Jᵣ, μᵣ, Jₜ, hₜ, gₜ) end @doc (@doc average_energy!) average_energy function average_energy(Jᵣ::Union{LA.Cholesky,PDMat}, μᵣ, Jₜ, hₜ, gₜ) isempty(Jₜ) && return -gₜ # dot(x,A,x) fails on empty x & A (LA.tr(Jᵣ \ Jₜ) + LA.dot(μᵣ, Jₜ, μᵣ)) / 2 - LA.dot(hₜ, μᵣ) - gₜ end """ factored_energy(beliefs::ClusterGraphBelief) Factored energy functional for general cluster graphs (Koller & Friedman 2009), which approximates the evidence lower bound (ELBO), a lower bound for the log-likelihood. It is also called the (negative) Bethe free energy in the context of factor graphs It is the sum of the cluster average energies and entropies, minus the sepset entropies. It is assumed but not checked that `beliefs` are calibrated (neighbor clusters and sepset beliefs are consistent, used as local marginals). For a calibrated clique tree, the factored energy is equal to the log-likelihood. For a calibrated cluster graph, it can serve as as approximation. output: tuple of 3 values, the 3rd being the factored energy: (average energy, approximate entropy, factored energy = -energy + entropy). See also: [`free_energy`](@ref), [`entropy`](@ref), [`average_energy!`](@ref) ## References D. Koller and N. Friedman. *Probabilistic graphical models: principles and techniques*. MIT Press, 2009. ISBN 9780262013192. D. M. Blei, A. Kucukelbir, and J. D. McAuliffe. Variational inference: A Review for Statisticians, Journal of the American statistical Association, 112:518, 859-877, 2017, doi: [10.1080/01621459.2017.1285773](https://doi.org/10.1080/01621459.2017.1285773). """ function factored_energy(b::ClusterGraphBelief) res = free_energy(b) return (res[1], res[2], -res[3]) end """ free_energy(beliefs::ClusterGraphBelief) negative [`factored_energy`](@ref) to approximate the negative log-likelihood. The approximation is exact on a clique tree after calibration. """ function free_energy(beliefs::ClusterGraphBelief{B}) where B<:Belief{T} where T<:Real b = beliefs.belief init_b = beliefs.factor nclu = nclusters(beliefs) ave_energy = zero(T) approx_entropy = zero(T) for i in 1:nclu fac = init_b[i] if isempty(fac.J) # then b[i].J should be empty too ave_energy -= fac.g[1] else # do 1 cholesky of b[i], use it twice (Jclu, μclu) = getcholesky_μ!(b[i]) ave_energy += average_energy(Jclu, μclu, fac.J, fac.h, fac.g[1]) approx_entropy += entropy(Jclu) end end for i in (nclu+1):length(b) approx_entropy -= entropy(b[i]) end return (ave_energy, approx_entropy, ave_energy - approx_entropy) end
PhyloGaussianBeliefProp
https://github.com/JuliaPhylo/PhyloGaussianBeliefProp.jl.git
[ "MIT" ]
0.0.1
e785a3d1d3bd6dd66ffd313f06d03b00d1a0a9b4
code
4528
""" isdegenerate(node) `true` if *all* parent edges of `node` have length 0, `false` otherwise. Intended for hybrid nodes, as tree edges of length 0 should be suppressed before trait evolution analysis. """ function isdegenerate(node::PN.Node) nparents = 0 for e in node.edge # loop over parent edges getchild(e)===node || continue nparents += 1 e.length > 0.0 && return false end return nparents > 0 # true unless it's the root end """ ishybridsinglepositivechild(node) `true` if `node` is a hybrid node with a single child edge of positive length. If it [`isdegenerate`](@ref)) (all its parent edges have length 0) and if its child is a tree node, then it could be removed from scope: see [`unscope`](@ref). """ ishybridsinglepositivechild(v::PN.Node) = v.hybrid && hassinglechild(v) && getchildedge(v).length > 0.0 """ unscope(node) `true` if `node` is a hybrid node with a single child edge of positive length, and if its child node is a tree node. If it [`isdegenerate`](@ref)) (all its parent edges have length 0) then it could be removed from scope: see [`addtreenode_belowdegeneratehybrid!`](@ref). """ unscope(v::PN.Node) = ishybridsinglepositivechild(v) && !(getchild(v).hybrid) """ hasdegenerate(net) `true` if degenerate nodes remain in scope, that is, if there exists a tree edge of length 0, or if there exists a hybrid node with all parent edges of length 0 and with 2 or more children edges, or with 1 child edge of length 0. """ hasdegenerate(net::HybridNetwork) = any(isdegenerate(v) && !unscope(v) for v in net.node) """ parentinformation(node, net) Tuple of (edge length, edge γ, index of parent node in `net.nodes_changed`) for all parent edges of `node`. Assumes that `net` has been preordered before. """ function parentinformation(hyb::PN.Node, net::HybridNetwork) t = Float64[] γ = Float64[] i_par = Int[] for e in hyb.edge # loop over parent edges getchild(e)===hyb || continue push!(t, e.length) push!(γ, e.gamma) push!(i_par, findfirst(isequal(getparent(e)), net.nodes_changed)) end return (t, γ, i_par) end """ shrinkdegenerate_treeedges(net::HybridNetwork) Network obtained from `net` with any non-external tree edge of length 0 suppressed. Returns an error if any edge length is missing or negative, or if any γ is missing or non positive. It is assumed that γs sum to 1 across partner hybrid edges. """ function shrinkdegenerate_treeedges(net::HybridNetwork) str = "Trait evolution models need the network to have edge lengths and γs." PN.check_nonmissing_nonnegative_edgelengths(net, str) if any(e.gamma <= 0 for e in net.edge) error("Branch number $(e.number) has a missing or non-positive γ.\n" * str) end net = deepcopy(net) redo = true while redo for e in net.edge e.hybrid && continue if e.length == 0.0 getchild(e).leaf && error("external edge $(e.number) has length 0") PN.shrinkedge!(net, e) # changes net.edge break # of for loop over net.edge end end redo = false end return net end """ addtreenode_belowdegeneratehybrid!(net::HybridNetwork) If a degenerate hybrid node h1 has 1 child edge of length t>0 to a hybrid child h2: break the edge by adding a tree node at distance t from h1 and 0 from h2. That way, h1 may be removed from scope. This is done iteratively, as h2 may become degenerate after this operation. See [`shrinkdegenerate_treeedges`](@ref) to remove degenerate internal tree nodes, and [`hasdegenerate`](@ref) to check if `net` still has degenerate nodes. """ function addtreenode_belowdegeneratehybrid!(net::HybridNetwork) restart = true # find prefix for naming new nodes m = match(r"(^\D+)\d+$", net.node[net.root].name) prefix = (isnothing(m) ? "I" : m.captures[1]) while restart for hyb in net.hybrid (isdegenerate(hyb) && ishybridsinglepositivechild(hyb)) || continue che = getchildedge(hyb) getchild(che).hybrid || continue t = che.length _,newe = PN.breakedge!(che, net) # hyb --newe--> newv --che--> hybridchild newe.length = t che.length = 0.0 # the hybrid child may now be degenerate, so restart preprocessnet!(net, prefix) # name new node, update net.nodes_changed break end restart=false end return net end
PhyloGaussianBeliefProp
https://github.com/JuliaPhylo/PhyloGaussianBeliefProp.jl.git
[ "MIT" ]
0.0.1
e785a3d1d3bd6dd66ffd313f06d03b00d1a0a9b4
code
17093
""" EvolutionaryModel{T} Evolutionary model type, with `T` the element type in all parameter vector and matrices. Implemented models include the [`UnivariateBrownianMotion`](@ref). An object of this type must contain at least the following elements: * μ: the mean of the trait at the root. * v: the variance of the trait at the root. Can be zero (fixed root) or infinite. New evolutionary models must implement the following interfaces: ```julia params(obj::EvolutionaryModel) params_optimize(obj::EvolutionaryModel) params_original(obj::EvolutionaryModel, transformedparams::AbstractArray) ``` """ abstract type EvolutionaryModel{T} end # Trait for univariate / multivariate models abstract type UnivariateType end struct IsUnivariate <: UnivariateType end struct IsMultivariate <: UnivariateType end # Default to multivariate models UnivariateType(::Type) = IsMultivariate() # generic methods modelname(obj::EvolutionaryModel) = string(typeof(obj)) variancename(obj::EvolutionaryModel) = "variance" varianceparam(obj::EvolutionaryModel) = error("varianceparam not implemented for type $(typeof(obj))") nonrootparamnames(obj::EvolutionaryModel) = (variancename(obj), ) paramnames(obj::EvolutionaryModel) = isrootfixed(obj) ? (nonrootparamnames(obj)..., "root mean μ") : (nonrootparamnames(obj)..., "root mean μ", "root variance v") ## Root # requires all models to have a field named μ rootpriormeanvector(obj::T) where {T <: EvolutionaryModel} = rootpriormeanvector(UnivariateType(T), obj) rootpriormeanvector(::IsMultivariate, obj) = obj.μ rootpriormeanvector(::IsUnivariate, obj) = [obj.μ] # requires all models to have a field named v isrootfixed(obj::EvolutionaryModel) = all(obj.v .== 0) rootpriorvariance(obj::EvolutionaryModel) = obj.v rootpriorprecision(obj::EvolutionaryModel) = inv(rootpriorvariance(obj)) # default root variance function getrootvarianceunivariate(T, v=nothing) if isnothing(v) v = zero(T); end typeof(v) <: Number || error("root variance v=$v must be a number") v >= 0 || error("root variance v=$v must be non-negative") return v end function getrootvariancediagonal(T, numt, v=nothing) SV = SVector{numt, T} if isnothing(v) v = SV(zero(T) for _ in 1:numt) else length(v) == numt || error("v and μ have different lengths") all(v .>= 0.0) || error("root variances v=$v must all be non-negative") end return v end function getrootvariancemultivariate(T, numt, v=nothing) if isnothing(v) v = LA.Symmetric(zeros(T, numt, numt)) else size(v) == (numt,numt) || error("v and μ have conflicting sizes") LA.issymmetric(v) || error("v should be symmetric") v = LA.Symmetric(Matrix{T}(v)) # `min(LA.eigvals(v)...) ≥ 0` catches the zero matrix (e.g. fixed root) # `LA.isposdef(v)` catches symmetric matrices with ≥1 `Inf` on the diagonal LA.isposdef(v) || min(LA.eigvals(v)...) ≥ 0 || error("v is not positive semi-definite") # LA.isposdef(v) || error("v is not positive semi-definite") end return v end """ dimension(m::EvolutionaryModel) Number of traits, e.g. 1 for univariate models. """ dimension(obj::EvolutionaryModel) = length(rootpriormeanvector(obj)) """ params(m::EvolutionaryModel) Tuple of parameters, the same that can be used to construct the evolutionary model. """ params(m::EvolutionaryModel) = isrootfixed(m) ? (varianceparam(m), m.μ) : (varianceparam(m), m.μ, m.v) """ params_optimize(m::EvolutionaryModel) Tuple of transformed parameters for model `m`, in an unconstrained space that can be used for numerical optimization. """ params_optimize(obj::EvolutionaryModel) = error("params_optimize not implemented for type $(typeof(obj))") """ params_original(m::EvolutionaryModel, transformedparams::AbstractArray) Tuple of parameters for model `m` in the original space, corresponding to back-transformed parameters of `transformedparams`, and that can be used as input to the model constructor. """ params_original(obj::EvolutionaryModel, ::AbstractArray) = error("params_original' not implemented for type $(typeof(obj))") function Base.show(io::IO, obj::EvolutionaryModel) disp = modelname(obj) * "\n" parnames = paramnames(obj) par = params(obj) for (n,p) in zip(parnames, par) disp *= "\n- " * n * " :\n$(p)" end print(io, disp) end ################################################################ ## factor_treeedge ################################################################ """ branch_actualization(obj::EvolutionaryModel, edge::PN.Edge) branch_displacement(obj::EvolutionaryModel, edge::PN.Edge) branch_precision(obj::EvolutionaryModel, edge::PN.Edge) branch_variance(obj::EvolutionaryModel, edge::PN.Edge) branch_logdet(obj::EvolutionaryModel, edge::PN.Edge, precision::AbstractMatrix) branch_transition_qωjg(obj::EvolutionaryModel, edge) branch_transition_qωv!(q, obj::EvolutionaryModel, edge) Under the most general linear Gaussian model, X₀ given X₁ is Gaussian with conditional mean q X₁ + ω and conditional variance Σ independent of X₁. `branch_actualization`, `branch_displacement` and `branch_variance` return, respectively, q, ω and Σ. `branch_precision` and `branch_variance` should return a matrix of symmetric type. `branch_variance` defaults to the inverse of `branch_precision`. `branch_logdet` defaults to g = -0.5\\*log(|2πΣ|), the log normalizing constant of the Gaussian density in the traditional form. `branch_transition_*` return or modify in place the corresponding transition matrices. Under a Brownian motion, we have q=I, ω=0, and conditional variance t*R where R is the model's variance rate and t the branch length. """ function branch_actualization(obj::EvolutionaryModel{T}, edge::PN.Edge) where T p = dimension(obj) M = Matrix{T}(undef, p, p) branch_actualization!(M, obj, edge) end function branch_actualization!(::AbstractMatrix, obj::EvolutionaryModel, ::PN.Edge) error("branch_actualization! not implemented for type $(typeof(obj)).") end @doc (@doc branch_actualization) branch_displacement function branch_displacement(obj::EvolutionaryModel, ::PN.Edge) error("`branch_displacement` not implemented for type $(typeof(obj)).") end @doc (@doc branch_actualization) branch_precision function branch_precision(obj::EvolutionaryModel, ::PN.Edge) error("`branch_precision` not implemented for type $(typeof(obj)).") end @doc (@doc branch_actualization) branch_variance function branch_variance(obj::EvolutionaryModel, edge::PN.Edge) return inv(branch_precision(obj, edge)) end function branch_logdet(obj::EvolutionaryModel, ::PN.Edge, precision::AbstractMatrix) return branch_logdet_precision(dimension(obj), precision) end function branch_logdet_precision(dim::Int, precision::AbstractMatrix) return (- dim * log2π + LA.logdet(precision))/2 end function branch_logdet_variance(dim::Int, variance::AbstractMatrix) return - (dim * log2π + LA.logdet(variance))/2 end function branch_transition_qωjg(obj::EvolutionaryModel, edge::PN.Edge) j = branch_precision(obj, edge) ω = branch_displacement(obj, edge) q = branch_actualization(obj, edge) g = branch_logdet(obj, edge, j) return (q,ω,j,g) end function branch_transition_qωv!(q::AbstractMatrix, obj::EvolutionaryModel, edge::PN.Edge) v = branch_variance(obj, edge) ω = branch_displacement(obj, edge) branch_actualization!(q, obj, edge) return (ω,v) end """ factor_treeedge(evolutionarymodel, edge) Canonical parameters `h,J,g` of factor ϕ(X0,X1) from the given evolutionary model along one edge, where X₀ is the state of the child node and X₁ the state of the parent node. In `h` and `J`, the first p coordinates are for the child and the last p for the parent, where p is the number of traits (determined by the model). Under the most general linear Gaussian model, X₀ given X₁ is Gaussian with conditional mean q X₁ + ω and conditional variance Σ independent of X₁. The generic fallback method uses functions [`branch_actualization`](@ref) for q, [`branch_displacement`](@ref) for ω, [`branch_precision`](@ref) for Σ⁻¹. Under a Brownian motion, we have q=I, ω=0, and Σ=tR where R is the model's variance rate and t is the length of the branch. In that case, a specific (more efficient) method is implemented, and the default fallback is not used. """ function factor_treeedge(m::EvolutionaryModel, edge::PN.Edge) (q,ω,j,g0) = branch_transition_qωjg(m, edge) factor_treeedge(q, ω, j, 1, dimension(m), g0) end # factor from precision, actualization, displacement function factor_treeedge(q::AbstractMatrix{T}, ω::AbstractVector{T}, j::AbstractMatrix{T}, nparents::Int, ntraits::Int, g0::T) where T J, ntot, jq = _factor_treeedge_get_J(q, j, nparents, ntraits) qjomega = transpose(jq) * ω jomega = j * ω gen = ((u,tu) for u in 0:nparents for tu in 1:ntraits) huv = (u,tu) -> (u==0 ? jomega[tu] : qjomega[(u-1)*ntraits+tu]) h = SVector{ntot,T}(huv(x...) for x in gen) g = g0 - LA.dot(ω, jomega) / 2 return(h,J,g) end # frequent case when ω=0 function factor_treeedge(q::AbstractMatrix{T}, j::AbstractMatrix{T}, nparents::Int, ntraits::Int, g::T) where T J, ntot, _ = _factor_treeedge_get_J(q, j, nparents, ntraits) h = SVector{ntot,T}(zero(T) for _ in 1:ntot) return(h,J,g) end # computes only J function _factor_treeedge_get_J(q::AbstractMatrix{T}, j::AbstractMatrix{T}, nparents::Int, ntraits::Int) where T nn = 1 + nparents; ntot = ntraits * nn jq = - j * q qjq = - transpose(q) * jq # J = [j -jq; -q'j q'jq] gen = ((u,tu,v,tv) for u in 0:nparents for tu in 1:ntraits for v in 0:nparents for tv in 1:ntraits) Juv = (u,tu,v,tv) -> (u==0 ? (v==0 ? j[tu,tv] : jq[tu,(v-1)*ntraits+tv]) : (v==0 ? jq[tv,(u-1)*ntraits+tu] : qjq[(u-1)*ntraits+tu,(v-1)*ntraits+tv])) J = LA.Symmetric(SMatrix{ntot,ntot,T}(Juv(x...) for x in gen)) return(J, ntot, jq) end ################################################################ ## factor_hybridnode ################################################################ """ hybridnode_displacement(obj::EvolutionaryModel, parentedges::AbstractVector{PN.Edge}) hybridnode_precision(obj::EvolutionaryModel, parentedges::AbstractVector{PN.Edge}) hybridnode_variance(obj::EvolutionaryModel, parentedges::AbstractVector{PN.Edge}) Under the most general weighted average Gaussian model, X₀ given its parents X₁, X₂, ... is Gaussian with conditional mean the weighted average of the parents plus a displacement vector ω and conditional variance Σ independent of X₁, X₂, ... . The weights are given by the inheritance probabilities contained in the `PN.Edge` objects. `hybridnode_displacement` and `hybridnode_variance` return, respectively, ω and Σ. `hybridnode_variance` and `hybridnode_precision` should return a matrix of symmetric type. `hybridnode_precision` defaults to the inverse of `hybridnode_variance`. `hybridnode_displacement` and `hybridnode_variance` default to a vector or matrix of zeros. """ function hybridnode_displacement(obj::EvolutionaryModel{T}, ::AbstractVector{PN.Edge}) where T zeros(T, dimension(obj)) end @doc (@doc hybridnode_displacement) hybridnode_variance function hybridnode_variance(obj::EvolutionaryModel{T}, ::AbstractVector{PN.Edge}) where T ntraits = dimension(obj) zeros(T, ntraits, ntraits) end @doc (@doc hybridnode_displacement) hybridnode_precision # TODO: this function is never used ? function hybridnode_precision(obj::EvolutionaryModel, parentedges::AbstractVector{PN.Edge}) return inv(hybridnode_variance(obj, parentedges)) end """ factor_hybridnode(evolutionarymodel, ts::AbstractVector, γs) factor_tree_degeneratehybrid(model, t0::Real, γs) Canonical parameters `h,J,g` of factor ϕ(X₀, X₁, X₂, ...) from the evolutionary model for a hybrid node: where X₀ is the state at the hybrid node and X₁, X₂, ... the states of the parent nodes. **Warning:** `γs` is modified in placed, changed to `[1 -γs]`. It is assumed that the conditional mean is a simple weighted average: ``E[X_0 | X_1, X_2, ...] = \\sum_k \\gamma_k X_k = q \\mathrm{vec}(X_1,X_2,...) + \\omega`` where q has one block for each parent, and each block is diagonal scalar: ``\\gamma_k I_p``. More complex models could consider adding a shift ω to the conditional mean. If all the parent hybrid edges edges have length 0, then it is assumed that the model gives a degenerate distribution, with 0 conditional variance. More complex models could consider adding a hybrid conditional variance Σ. - The first form assumes that at least 1 parent edge length is positive, with conditional variance ``\\sum_k \\gamma_k^2 V_k`` where ``V_k`` is the conditional variance from the kth parent edge. - The second form can be used in case all parent edges have 0 length, to integrate out the hybrid node state and the factor ϕ(X₀, X₁, X₂, ...) when X₀ is its **child** state, along an edge of length `t0` between the hybrid node and its child. This second form is appropriate when this hybrid's child is a tree node, and `t0>0`.` In `h` and `J`, the first p coordinates are for the hybrid (or its child) and the last coordinates for the parents, in the same order in which the edge lengths and γs are given. """ function factor_hybridnode(m::EvolutionaryModel{T}, pae::AbstractVector{PN.Edge}) where T ntraits = dimension(m) nparents = length(pae) v = hybridnode_variance(m, pae) # extra node variance ω = hybridnode_displacement(m, pae) # extra node displacement q = Matrix{T}(undef, ntraits, nparents * ntraits) # init actualisation for (k, edge) in enumerate(pae) qe = view(q, :, ((k-1) * ntraits + 1):(k*ntraits)) (ωe, ve) = branch_transition_qωv!(qe, m, edge) qe .*= edge.gamma v .+= edge.gamma^2 .* ve ω .+= edge.gamma .* ωe end j = inv(v) # bloc variance g0 = branch_logdet_precision(ntraits, j) factor_treeedge(q, ω, j, nparents, ntraits, g0) end # j = Sigma_child^{-1} # omega = q_child * (sum_k gamma_k omega_k + omega_hybrid) # q = q_child [gamma_k q_k] # TODO: is this necessary ? function factor_tree_degeneratehybrid(m::EvolutionaryModel{T}, pae::AbstractVector{PN.Edge}, che::PN.Edge) where T ntraits = dimension(m) nparents = length(pae) # hybridnode_variance(m, pae) is zero if degenerate, as well as branch_variance(m, edge) for all edge in pae j = branch_precision(m, che) # hybrid displacement and actualisation ωh = hybridnode_displacement(m, pae) qh = Matrix{T}(undef, ntraits, nparents * ntraits) for (k, edge) in enumerate(pae) ωh .+= edge.gamma .* qche * branch_displacement(m, edge) branch_actualization!(view(qh, :, ((k-1) * ntraits + 1):(k*ntraits)), m, edge) end # child displacement and actualization # TODO: can we avoid re-allocation here ? qche = branch_actualization(m, che) ω = branch_displacement(m, che) + qche * ωh q = qche * qh factor_treeedge(q, ω, j, nparents, ntraits) end ################################################################ ## factor_root ################################################################ """ factor_root(m::EvolutionaryModel) Canonical parameters `h,J,g` of the prior density at the root, from model `m`. Assumes that `isrootfixed(m)` returns `false` (in which case the root value should be absorbed as evidence and the root removed from scope). More strongly, the root variance is assumed to be invertible, in particular, traits are all non-fixed at the root. The prior is improper if the prior variance is infinite. In this case this prior is not a distribution (total probability ≠ 1) but is taken as the constant function 1, which corresponds to h,J,g all 0 (and an irrelevant mean). If the root variance is not invertible (e.g., fixed root), this function fails and should never be called (see `isrootfixed`) """ factor_root(obj::T) where {T <: EvolutionaryModel} = factor_root(UnivariateType(T), obj) function factor_root(::IsUnivariate, m::EvolutionaryModel{T}) where T j = T(1/m.v) # improper prior: j=0, v=Inf, factor ≡ 1: h,J,g all 0 g = (j == 0.0 ? zero(T) : -(log2π + log(m.v) + m.μ^2 * j)/2) return(m.μ*j, j, g) end function factor_root(::IsMultivariate, m::EvolutionaryModel{T}) where T #= check if improper from m.v since inv(m.v), called by `rootpriorprecision`, errors if m.v contains Infs or NaNs for m.v == Symmetric =# improper = any(LA.diag(rootpriorvariance(m)) .== Inf) j = improper ? zeros(T, size(rootpriorvariance(m))) : rootpriorprecision(m) # j = rootpriorprecision(m) μ = rootpriormeanvector(m) h = j * μ # improper = any(LA.diag(j) .== 0.0) # then assumes that *all* are 0 g = (improper ? zero(T) : (-dimension(m) * log2π + LA.logdet(j) - LA.dot(m.μ, h))/2) return(h, j, g) end
PhyloGaussianBeliefProp
https://github.com/JuliaPhylo/PhyloGaussianBeliefProp.jl.git
[ "MIT" ]
0.0.1
e785a3d1d3bd6dd66ffd313f06d03b00d1a0a9b4
code
7264
""" PaintedParameter{T} Type with 2 fields: - `parameter`: vector whose elements are of type `T` - `color`: `DefaultDict` dictionary mapping integers to integers, with a default value of 1. `ncolors(pp)` returns the number of parameters, that is, the length of `pp.parameter` This type is meant to store several values for a given evolutionary parameter (say, Brownian motion variance rate), each one being used on some edges or nodes of a phylogenetic network. The default parameter value is the first one. For an edge number `i`, color `j=pp.color[i]` indexes its parameter value, that is, evolution along edge number `i` should use `pp.parameter[j]`. This parameter value is obtained with `getparameter(pp, j)` for the parameter value of color `j`, or `getparameter(pp, edge)` for the parameter value of `edge`. """ struct PaintedParameter{T} parameter::Vector{T} color::DefaultDict{Int,Int} end function PaintedParameter(parameter::Vector{T}, d::Dict=Dict{Int,Int}()) where T PaintedParameter{T}(parameter, DefaultDict(1, d)) end ncolors(pp::PaintedParameter) = length(pp.parameter) getparameter(pp::PaintedParameter, e::PN.Edge) = getparameter(pp, e.number) getparameter(pp::PaintedParameter, number::Int) = pp.parameter[pp.color[number]] function Base.show(io::IO, obj::PaintedParameter) disp = "Painted parameter on a network with $(ncolors(obj)) different parameters:" for (ind, pp) in enumerate(obj.parameter) disp *= "\n$ind: $pp" end disp *= "\nmapping of edge/node number to parameter color:\n$(obj.color)" print(io, disp) end ################################################################ ## Heterogeneous Model ################################################################ abstract type HeterogeneousEvolutionaryModel{T} <: EvolutionaryModel{T} end # subtype with a BM along each branch, so q=I along each edge abstract type HeterogeneousBM{T} <: HeterogeneousEvolutionaryModel{T} end """ HeterogeneousBrownianMotion{T,U,V,W} <: HeterogeneousBM{T} Type for a heterogeneous Brownian motion model, univariate or multivariate. Along each edge, evolution follows a Brownian motion. Each edge can have its own variance rate. This model has no shifts, and no extra hybrid variance. By default, the root is fixed with prior variance 0. `T` is the scalar type, `U` is the type for the root mean (vector of length d, where `d` is the trait dimension, even if univariate), `V` is a matrix type for the root variance, and `W` the matrix type of each variance rate, one per color. For a univariate BM, we may have `W=T` and `V=Vector{T}`. For a multivariate BM, we may have `W=V<:Matrix{T}`. This is such that each field is mutable, so we can update model parameters in place within the model object, itself immutable. """ struct HeterogeneousBrownianMotion{T<:Real, U<:AbstractVector{T}, V<:AbstractMatrix{T}, W<:Union{T, V, PDMats.PDMat{T}}} <: HeterogeneousBM{T} "variance rate" variancerate::PaintedParameter{W} "inverse variance (precision) rate" inverserate::PaintedParameter{W} "prior mean at the root" μ::U "prior variance at the root" v::V "g0: -log(2π variancerate)/2" g0::PaintedParameter{T} end modelname(m::HeterogeneousBrownianMotion) = "Heterogeneous Brownian motion" variancename(m::HeterogeneousBM) = "evolutionary variance rates" varianceparam(m::HeterogeneousBM) = m.variancerate function HeterogeneousBrownianMotion(R::AbstractMatrix, μ, v=nothing) HeterogeneousBrownianMotion([R], Dict{Int,Int}(), μ, v) end function HeterogeneousBrownianMotion(Rvec, colors::AbstractDict, μ, v=nothing) if !isa(μ, Array) μ = [μ]; end numt = length(μ) length(Rvec) >= 1 || error("Rvec must have at list one component") T = promote_type(Float64, eltype(Rvec[1]), eltype(μ)) v = getrootvariancemultivariate(T, numt, v) all(size(R) == (numt,numt) for R in Rvec) || error("R and μ have conflicting sizes") all(LA.issymmetric(R) for R in Rvec) || error("R should be symmetric") Rvec = [PDMat(R) for R in Rvec] Jvec = inv.(Rvec) # uses cholesky. fails if not symmetric positive definite gvec = [branch_logdet_variance(numt, R) for R in Rvec] HeterogeneousBrownianMotion{T, typeof(μ), typeof(v), typeof(Rvec[1])}( PaintedParameter(Rvec, colors), PaintedParameter(Jvec, colors), μ, v, PaintedParameter(gvec, colors) ) end function HeterogeneousBrownianMotion(paintedrates::PaintedParameter, μ, v=nothing) HeterogeneousBrownianMotion(paintedrates.parameter, paintedrates.color, μ, v) end # params(m::HeterogeneousBrownianMotion) = isrootfixed(m) ? (m.R, m.μ) : (m.R, m.μ, m.v) function branch_actualization(obj::HeterogeneousBM{T}, ::PN.Edge) where T ScalMat(dimension(obj), one(T)) end # below: would error if `q` is a ScalMat but used on a Matrix created by factor_hybridnode function branch_actualization!(q::AbstractMatrix, ::HeterogeneousBM, ::PN.Edge) q[LA.diagind(q)] .= 1.0 LA.tril!(q) LA.triu!(q) end function branch_precision(obj::HeterogeneousBM, edge::PN.Edge) getparameter(obj.inverserate, edge) ./ edge.length end function branch_variance(obj::HeterogeneousBM, edge::PN.Edge) edge.length .* getparameter(obj.variancerate, edge) end function branch_logdet(obj::HeterogeneousBM, edge::PN.Edge) getparameter(obj.g0, edge) - dimension(obj) * log(edge.length)/2 end function factor_treeedge(m::HeterogeneousBrownianMotion, edge::PN.Edge) ntraits = dimension(m) q = branch_actualization(m, edge) j = branch_precision(m, edge) g = branch_logdet(m, edge) factor_treeedge(q,j,1,ntraits,g) end function factor_hybridnode(m::HeterogeneousBrownianMotion{T}, pae::AbstractVector{PN.Edge}) where T ntraits = dimension(m) nparents = length(pae) v = zeros(T, ntraits, ntraits) # no extra node variance q = Matrix{T}(undef, ntraits, nparents * ntraits) # init actualisation for (k, edge) in enumerate(pae) qe = view(q, :, ((k-1) * ntraits + 1):(k*ntraits)) ve = branch_variance(m, edge) branch_actualization!(qe, m, edge) qe .*= edge.gamma v .+= edge.gamma^2 .* ve end j = inv(v) # block variance g0 = branch_logdet_precision(ntraits, j) factor_treeedge(q,j,nparents,ntraits,g0) end """ HeterogeneousShiftedBrownianMotion{T,U,V,W} <: HeterogeneousBM{T} Type for a heterogeneous Brownian motion model like [`HeterogeneousBrownianMotion`](@ref) but with a possible shift in the mean along each edge. """ struct HeterogeneousShiftedBrownianMotion{T<:Real, U<:AbstractVector{T}, V<:AbstractMatrix{T}, W<:Union{T, V, PDMats.PDMat{T}}} <: HeterogeneousBM{T} "variance rate" variancerate::PaintedParameter{W} "inverse variance (precision) rate" inverserate::PaintedParameter{W} "shift in the mean along edges" shiftmean::PaintedParameter{U} "prior mean at the root" μ::U "prior variance at the root" v::V "g0: -log(2π variancerate)/2" g0::PaintedParameter{T} end modelname(m::HeterogeneousShiftedBrownianMotion) = "Heterogeneous Brownian motion with mean shifts" # fixit: write a constructor function branch_displacement(obj::HeterogeneousShiftedBrownianMotion, ::PN.Edge) getparameter(obj.shiftmean, edge) end
PhyloGaussianBeliefProp
https://github.com/JuliaPhylo/PhyloGaussianBeliefProp.jl.git
[ "MIT" ]
0.0.1
e785a3d1d3bd6dd66ffd313f06d03b00d1a0a9b4
code
10768
################################################################ ## Model Definitions ################################################################ ## Abstract BM type abstract type HomogeneousBrownianMotion{T} <: EvolutionaryModel{T} end """ UnivariateBrownianMotion{T} <: HomogeneousBrownianMotion{T} The univariate Brownian motion, homogeneous across the phylogeny, that is, with the same variance rate `σ2` across all edges. `μ` is the prior mean at the root. `v` the prior variance at the root, 0 by default. """ struct UnivariateBrownianMotion{T<:Real} <: HomogeneousBrownianMotion{T} "variance rate" σ2::T "inverse variance (precision) rate" J::T "prior mean at the root" μ::T "prior variance at the root" v::T "g0: -log(2π σ2)/2" g0::T end UnivariateType(::Type{<:UnivariateBrownianMotion}) = IsUnivariate() modelname(m::UnivariateBrownianMotion) = "Univariate Brownian motion" variancename(m::UnivariateBrownianMotion) = "evolutionary variance rate σ2" varianceparam(m::UnivariateBrownianMotion) = m.σ2 function UnivariateBrownianMotion(σ2::Number, μ::Number, v=nothing) T = promote_type(Float64, typeof(σ2), typeof(μ)) v = getrootvarianceunivariate(T, v) σ2 > 0 || error("evolutionary variance rate σ2 = $(σ2) must be positive") UnivariateBrownianMotion{T}(σ2, 1/σ2, μ, v, -(log2π + log(σ2))/2) end function UnivariateBrownianMotion(σ2::Union{U1,V1}, μ::Union{U2,V2}, v=nothing) where {U1<:Number, U2<:Number, V1<:AbstractArray{U1}, V2<:AbstractArray{U2}} if (isnothing(v)) (length(σ2) == 1 && length(μ) == 1) || error("UnivariateBrownianMotion can only take scalars as entries.") UnivariateBrownianMotion(σ2[1], μ[1]) else (length(σ2) == 1 && length(μ) == 1 && length(v) == 1) || error("UnivariateBrownianMotion can only take scalars as entries.") UnivariateBrownianMotion(σ2[1], μ[1], v[1]) end end params(m::UnivariateBrownianMotion) = isrootfixed(m) ? (m.σ2, m.μ) : (m.σ2, m.μ, m.v) params_optimize(m::UnivariateBrownianMotion) = [-2*m.g0 - log2π, m.μ] # log(σ2),μ params_original(m::UnivariateBrownianMotion, logσ2μ::AbstractArray) = (exp(logσ2μ[1]), logσ2μ[2], m.v) """ MvDiagBrownianMotion{T,V} <: HomogeneousBrownianMotion{T} The multivariate Brownian motion with diagonal variance rate matrix, that is, traits with independent evolution. It is homogeneous across the phylogeny. `R` is the variance rate (stored as a vector of type `V`), `μ` is the prior mean at the root and `v` the prior variance at the root, 0 by default (and both also of type `V`) """ struct MvDiagBrownianMotion{T<:Real, V<:AbstractVector{T}} <: HomogeneousBrownianMotion{T} "diagonal entries of the diagonal variance rate matrix" R::V "inverse variance rates (precision) on the diagonal inverse rate matrix" J::V "prior mean vector at the root" μ::V "prior variance vector at the root" v::V "g0: -log(det(2πR))/2" g0::T end modelname(m::MvDiagBrownianMotion) = "Multivariate Diagonal Brownian motion" variancename(m::MvDiagBrownianMotion) = "evolutionary variance rates (diagonal values in the rate matrix): R" varianceparam(m::MvDiagBrownianMotion) = m.R function MvDiagBrownianMotion(R, μ, v=nothing) numt = length(μ) # number of traits length(R) == numt || error("R and μ have different lengths") T = promote_type(Float64, eltype(R), eltype(μ)) v = getrootvariancediagonal(T, numt, v) all(R .> 0.0) || error("evolutionary variance rates R = $R must all be positive") SV = SVector{numt, T} R = SV(R) J = 1 ./R MvDiagBrownianMotion{T, SV}(R, J, SV(μ), SV(v), -(numt * log2π + sum(log.(R)))/2) end params(m::MvDiagBrownianMotion) = isrootfixed(m) ? (m.R, m.μ) : (m.R, m.μ, m.v) params_optimize(m::MvDiagBrownianMotion) = [log.(m.R)..., m.μ...] params_original(m::MvDiagBrownianMotion, logRμ::AbstractArray) = (exp.(logRμ[1:dimension(m)]), logRμ[(dimension(m)+1):end], m.v) rootpriorvariance(obj::MvDiagBrownianMotion) = LA.Diagonal(obj.v) """ MvFullBrownianMotion{T,P1,V,P2} <: HomogeneousBrownianMotion{T} The full multivariate Brownian motion. It is homogeneous across the phylogeny. `R` is the variance rate (of matrix type `P1`), `μ` is the prior mean at the root (of vector type `V`) and `v` the prior variance at the root, 0 by default (of matrix type `P2`). """ struct MvFullBrownianMotion{T<:Real, P1<:AbstractMatrix{T}, V<:AbstractVector{T}, P2<:AbstractMatrix{T}} <: HomogeneousBrownianMotion{T} "variance rate matrix" R::P1 "inverse variance (precision) rate matrix" J::P1 "prior mean vector at the root" μ::V "prior variance/covariance matrix at the root" v::P2 "g0: -log(det(2πR))/2" g0::T end modelname(m::MvFullBrownianMotion) = "Multivariate Brownian motion" variancename(m::MvFullBrownianMotion) = "evolutionary variance rate matrix: R" varianceparam(m::MvFullBrownianMotion) = m.R function MvFullBrownianMotion(R::AbstractMatrix, μ, v=nothing) numt = length(μ) T = promote_type(Float64, eltype(R), eltype(μ)) v = getrootvariancemultivariate(T, numt, v) SV = SVector{numt, T} size(R) == (numt,numt) || error("R and μ have conflicting sizes") LA.issymmetric(R) || error("R should be symmetric") R = PDMat(R) J = inv(R) # uses cholesky. fails if not symmetric positive definite MvFullBrownianMotion{T, typeof(R), SV, typeof(v)}(R, J, SV(μ), v, branch_logdet_variance(numt, R)) end """ MvFullBrownianMotion(R::AbstractMatrix, μ, v=nothing) MvFullBrownianMotion(U::AbstractVector, μ, v=nothing) Constructor for a full multivariate Brownian motion (homogeneous) with variance rate matrix `V` and prior mean vector `μ` at the root. If not provided, the prior variance matrix at the root `v` is set to 0. If a vector `U` is provided, it is used as the Upper cholesky factor of R=U'U, vectorized, so U should be of length p(p+1)/2 where p is the number of traits (also the length of μ). """ function MvFullBrownianMotion(Uvec::AbstractVector{T}, μ, v=nothing) where T # TODO: tested, but not used anywhere numt = length(μ) (numt*(1+numt)) ÷ 2 == length(Uvec) || error("Uvec and μ have conflicting sizes") R = zeros(T, numt, numt) for (k, (i,j)) in enumerate(((i,j) for i in 1:numt for j in i:numt)) R[i,j] = Uvec[k] end R .= R' * R MvFullBrownianMotion(R, μ, v) end params(m::MvFullBrownianMotion) = isrootfixed(m) ? (m.R, m.μ) : (m.R, m.μ, m.v) #= TODO: implement params_optimize and params_original for MvFullBrownianMotion - optimize variances with a log transformation - optimize the correlation matrix using a good parametrization =# ################################################################ ## factor_treeedge ################################################################ factor_treeedge(m::HomogeneousBrownianMotion, edge::PN.Edge) = factor_treeedge(m, edge.length) function factor_treeedge(m::UnivariateBrownianMotion{T}, t::Real) where T j = T(m.J / t) J = LA.Symmetric(SMatrix{2,2}(j,-j, -j,j)) h = SVector{2,T}(zero(T), zero(T)) g = m.g0 - dimension(m) * log(t)/2 return(h,J,g) end function factor_treeedge(m::MvDiagBrownianMotion{T,V}, t::Real) where {T,V} numt = dimension(m); ntot = numt * 2 j = m.J ./ T(t) # diagonal elements # J = [diag(j) -diag(j); -diag(j) diag(j)] gen = ((u,tu,v,tv) for u in 1:2 for tu in 1:numt for v in 1:2 for tv in 1:numt) Juv = (u,tu,v,tv) -> (tu==tv ? (u==v ? j[tu] : -j[tu]) : 0) J = LA.Symmetric(SMatrix{ntot,ntot}(Juv(x...) for x in gen)) h = SVector{ntot,T}(zero(T) for _ in 1:ntot) g = m.g0 - numt * log(t)/2 return(h,J,g) end function factor_treeedge(m::MvFullBrownianMotion{T,P1,V,P2}, t::Real) where {T,P1,V,P2} numt = dimension(m); ntot = numt * 2 j = m.J ./ T(t) # J = [j -j; -j j] gen = ((u,tu,v,tv) for u in 1:2 for tu in 1:numt for v in 1:2 for tv in 1:numt) Juv = (u,tu,v,tv) -> (u==v ? j[tu,tv] : -j[tu,tv]) J = LA.Symmetric(SMatrix{ntot,ntot}(Juv(x...) for x in gen)) h = SVector{ntot,T}(zero(T) for _ in 1:ntot) g = m.g0 - numt * log(t)/2 return(h,J,g) end ################################################################ ## factor_hybridnode ################################################################ factor_hybridnode(m::HomogeneousBrownianMotion, pae::AbstractVector{PN.Edge}) = factor_hybridnode(m, [e.length for e in pae], [p.gamma for p in pae]) factor_tree_degeneratehybrid(m::HomogeneousBrownianMotion, pae::AbstractVector{PN.Edge}, che::PN.Edge) = factor_tree_degeneratehybrid(m, che.length, [p.gamma for p in pae]) function factor_hybridnode(m::HomogeneousBrownianMotion{T}, t::AbstractVector, γ::AbstractVector) where T t0 = T(sum(γ.^2 .* t)) # >0 if hybrid node is not degenerate factor_tree_degeneratehybrid(m, t0, γ) end function factor_tree_degeneratehybrid(m::UnivariateBrownianMotion{T}, t0::Real, γ::AbstractVector) where T j = T(m.J / t0) nparents = length(γ); nn = 1 + nparents # modifies γ in place below, to get longer vector: [1 -γ] γ .= -γ; pushfirst!(γ, one(eltype(γ))) J = LA.Symmetric(SMatrix{nn,nn, T}(j*x*y for x in γ, y in γ)) h = SVector{nn,T}(zero(T) for _ in 1:nn) g = m.g0 - dimension(m) * log(t0)/2 return(h,J,g) end function factor_tree_degeneratehybrid(m::MvDiagBrownianMotion{T,V}, t0::Real, γ::AbstractVector) where {T,V} j = m.J ./ T(t0) # diagonal elements. Dj = diag(j) nparents = length(γ); nn = 1 + nparents numt = dimension(m); ntot = nn * numt # J = [Dj -γ1Dj -γ2Dj; -γ1Dj γ1γ1Dj γ1γ2Dj; -γ2Dj γ1γ2Dj γ2γ2Dj] gen = ((u,tu,v,tv) for u in 0:nparents for tu in 1:numt for v in 0:nparents for tv in 1:numt) Juv = (u,tu,v,tv) -> (tu==tv ? (u==0 ? (v==0 ? j[tu] : -γ[v] * j[tu]) : (v==0 ? -γ[u] * j[tu] : γ[u] * γ[v] * j[tu])) : zero(T)) J = LA.Symmetric(SMatrix{ntot,ntot, T}(Juv(x...) for x in gen)) h = SVector{ntot,T}(zero(T) for _ in 1:ntot) g = m.g0 - numt * log(t0)/2 return(h,J,g) end function factor_tree_degeneratehybrid(m::MvFullBrownianMotion{T,P1,V,P2}, t0::Real, γ::AbstractVector) where {T,P1,V,P2} j = m.J ./ T(t0) nparents = length(γ); nn = 1 + nparents numt = dimension(m); ntot = nn * numt # J = [j -γ1j -γ2j; -γ1j γ1γ1j γ1γ2j; -γ2j γ1γ2j γ2γ2j] gen = ((u,tu,v,tv) for u in 0:nparents for tu in 1:numt for v in 0:nparents for tv in 1:numt) Juv = (u,tu,v,tv) -> (u==0 ? (v==0 ? j[tu,tv] : -γ[v] * j[tu,tv]) : (v==0 ? -γ[u] * j[tu,tv] : γ[u] * γ[v] * j[tu,tv])) J = LA.Symmetric(SMatrix{ntot,ntot, T}(Juv(x...) for x in gen)) h = SVector{ntot,T}(zero(T) for _ in 1:ntot) g = m.g0 - numt * log(t0)/2 return(h,J,g) end
PhyloGaussianBeliefProp
https://github.com/JuliaPhylo/PhyloGaussianBeliefProp.jl.git
[ "MIT" ]
0.0.1
e785a3d1d3bd6dd66ffd313f06d03b00d1a0a9b4
code
2740
################################################################ ## Homogeneous OU Model ################################################################ abstract type HomogeneousOrnsteinUhlenbeck{T} <: EvolutionaryModel{T} end """ UnivariateOrnsteinUhlenbeck{T} <: HomogeneousOrnsteinUhlenbeck{T} The univariate Ornstein-Uhlenbeck model. It is homogeneous, that is, has the same parameters across all edges in the phylogeny. `σ2` is the variance rate, `α` the selection strength, `θ` the optimal value, `μ` the prior mean at the root, and `v` the prior variance at the root, 0 by default. """ struct UnivariateOrnsteinUhlenbeck{T<:Real} <: HomogeneousOrnsteinUhlenbeck{T} "stationary variance rate" γ2::T "inverse stationary variance (precision) rate" J::T "selection strength" α::T "optimal value" θ::T "prior mean at the root" μ::T "prior variance at the root" v::T "g0: -log(2π γ2)/2" g0::T end UnivariateType(::Type{<:UnivariateOrnsteinUhlenbeck}) = IsUnivariate() modelname(m::UnivariateOrnsteinUhlenbeck) = "homogeneous univariate Ornstein-Uhlenbeck" variancename(m::UnivariateOrnsteinUhlenbeck) = "stationary evolutionary variance γ2" varianceparam(m::UnivariateOrnsteinUhlenbeck) = m.γ2 nonrootparamnames(m::UnivariateOrnsteinUhlenbeck) = (variancename(m), "selection strength α", "optimal value θ") function UnivariateOrnsteinUhlenbeck(σ2::U1, α::U2, θ::U3, μ::U4, v=nothing) where {U1<:Number, U2<:Number, U3<:Number, U4<:Number} T = promote_type(Float64, typeof(σ2), typeof(α), typeof(θ), typeof(μ)) v = getrootvarianceunivariate(T, v) σ2 > 0 || error("evolutionary variance rate σ2 = $(σ2) must be positive") α > 0 || error("selection strength α = $(α) must be positive") γ2 = σ2 / (2 * α) UnivariateOrnsteinUhlenbeck{T}(γ2, 1/γ2, α, θ, μ, v, -(log2π + log(γ2))/2) end params(m::UnivariateOrnsteinUhlenbeck) = isrootfixed(m) ? (m.γ2, m.α, m.θ, m.μ) : (m.γ2, m.α, m.θ, m.μ, m.v) params_optimize(m::UnivariateOrnsteinUhlenbeck) = [-2*m.g0 - log2π, log(m.α), m.θ, m.μ] params_original(m::UnivariateOrnsteinUhlenbeck, transparams::AbstractArray) = (exp(transparams[1]), exp(transparams[2]), transparams[3], transparams[4], m.v) function branch_transition_qωjg(obj::UnivariateOrnsteinUhlenbeck, edge::PN.Edge) q = exp(-obj.α * edge.length) facvar = (1 - q^2) j = 1 / obj.γ2 / facvar ω = (1 - q) * obj.θ g = obj.g0 - log(facvar)/2 return ([q;;],[ω],[j;;],g) end function branch_transition_qωv!(q::AbstractMatrix, obj::UnivariateOrnsteinUhlenbeck, edge::PN.Edge) actu = exp(-obj.α * edge.length) facvar = (1 - actu^2) v = obj.γ2 * facvar ω = (1 - actu) * obj.θ q[1,1] = actu return ([ω],[v;;]) end
PhyloGaussianBeliefProp
https://github.com/JuliaPhylo/PhyloGaussianBeliefProp.jl.git
[ "MIT" ]
0.0.1
e785a3d1d3bd6dd66ffd313f06d03b00d1a0a9b4
code
562
using PhyloGaussianBeliefProp using DataFrames using Graphs, MetaGraphsNext using LinearAlgebra using PhyloNetworks using PreallocationTools using Tables using Test const PGBP = PhyloGaussianBeliefProp @testset "PhyloGaussianBeliefProp.jl" begin include("test_clustergraph.jl") include("test_evomodels.jl") include("test_canonicalform.jl") include("test_calibration.jl") # include("test_optimization.jl") redundant with test_calibration.jl, but future tests could use networks in there to vary networks used in test include("test_exactBM.jl") end
PhyloGaussianBeliefProp
https://github.com/JuliaPhylo/PhyloGaussianBeliefProp.jl.git
[ "MIT" ]
0.0.1
e785a3d1d3bd6dd66ffd313f06d03b00d1a0a9b4
code
15501
@testset "calibration" begin netstr_unnamed = "(A:2.5,((B:1,#H1:0.5::0.1):1,(C:1,(D:0.5)#H1:0.5::0.9):1):0.5);" netstr_named = "(((A:4.0,((B1:1.0,B2:1.0)i6:0.6)#H5:1.1::0.9)i4:0.5,(#H5:2.0::0.1,C:0.1)i2:1.0)i1:3.0);" @testset "miscellaneous" begin ex = PGBP.BPPosDefException("belief 1, integrate 3,4", 1) io = IOBuffer() showerror(io, ex) @test String(take!(io)) == """BPPosDefException: belief 1, integrate 3,4 matrix is not positive definite.""" end @testset "residual_kldiv!" begin """ ref distr (new belief): μ=[0, 1], Σ=[1 0; 0 1], J=[1 0; 0 1], h=[0, 1] approx distr (prev belief): μ=[1, 0], Σ=[2 1; 1 2], J=(1/3)[2 -1; -1 2], h=(1/3)[2, -1] resid distr (ref-approx): ΔJ=(1/3)[1 1; 1 1], Δh=(1/3)[-2, 4] --- Using R to compute KL divergence: > library(rags2ridges) > KLdiv(c(1,0),c(0,1),matrix(c(2,1,1,2),nrow=2),matrix(c(1,0,0,1),nrow=2)) [1] 1.215973 """ # allocate memory for ::MessageResidual object (resid distr) res = PGBP.MessageResidual(zeros(2,2), zeros(2,)) res.ΔJ .= ones(2,2)/3 res.Δh .= [-2,4]/3 # allocate memory for ::Belief object (ref distr) sepset = PGBP.Belief([1, 2], 1, BitArray([1 1]), PGBP.bsepsettype, (:A,:B)) sepset.J .= [1 0; 0 1] sepset.h .= [0, 1] PGBP.residual_kldiv!(res, sepset) @test res.kldiv[1] ≈ 1.215973 rtol=1e-6 end @testset "no optimization" begin @testset "Level-1 w/ 4 tips. Univariate. Clique tree" begin net = readTopology(netstr_named) df = DataFrame(taxon=["A","B1","B2","C"], y=[1.0,.9,1,-1]) tbl_y = columntable(select(df, :y)) #= fitBM = phylolm(@formula(y ~ 1), df, net; tipnames=:taxon) sigma2_phylo(fitBM) # reml variance-rate: 0.4714735834478196 # reconstructed root mean and variance coef(fitBM)[1] # reconstructed root mean: -0.26000871507162693 ancestralStateReconstruction(fitBM).variances_nodes[5,5] # 0.33501871740664146 loglikelihood(fitBM) # restricted likelihood: -4.877930583154144 Assume reml variance-rate (0.471474) and compute posterior mean, posterior variance and likelihood for comparison. =# m = PGBP.UnivariateBrownianMotion(0.471474, 0, Inf) # 𝒩(0, ∞) prior on root mean ct = PGBP.clustergraph!(net, PGBP.Cliquetree()) spt = PGBP.spanningtree_clusterlist(ct, net.nodes_changed) b = PGBP.init_beliefs_allocate(tbl_y, df.taxon, net, ct, m); PGBP.init_beliefs_assignfactors!(b, m, tbl_y, df.taxon, net.nodes_changed); ctb = PGBP.ClusterGraphBelief(b) PGBP.calibrate!(ctb, [spt]) llscore = -4.877930583154144 for i in eachindex(ctb.belief) _, tmp = PGBP.integratebelief!(ctb, i) # llscore from norm. constant @test tmp ≈ llscore end @test PGBP.factored_energy(ctb)[3] ≈ llscore root_ind = findfirst(be -> 1 ∈ PGBP.nodelabels(be), b) # 5 @test PGBP.integratebelief!(b[root_ind])[1][end] ≈ -0.26000871507162693 rtol=1e-5 # posterior root mean @test (b[root_ind].J \ I)[end,end] ≈ 0.33501871740664146 rtol=1e-5 # posterior root variance PGBP.init_beliefs_reset_fromfactors!(ctb) @testset "regularization by cluster" begin PGBP.init_beliefs_assignfactors!(b, m, tbl_y, df.taxon, net.nodes_changed); PGBP.regularizebeliefs_bynodesubtree!(ctb, ct); PGBP.calibrate!(ctb, [spt]); _, tmp = PGBP.integratebelief!(ctb, 1) @test tmp ≈ llscore PGBP.init_beliefs_assignfactors!(b, m, tbl_y, df.taxon, net.nodes_changed); PGBP.regularizebeliefs_bycluster!(ctb, ct); PGBP.calibrate!(ctb, [spt]); _, tmp = PGBP.integratebelief!(ctb, 1) @test tmp ≈ llscore # graph invariant was preserved end end @testset "Level-1 w/ 4 tips. Univariate. Bethe, regularize on a schedule" begin net = readTopology(netstr_unnamed) # tip data simulated from ParamsBM(0,1) df = DataFrame(y=[-1.81358, 0.468158, 0.658486, 0.643821], taxon=["A","B","C", "D"]) tbl_y = columntable(select(df, :y)) #= Reroot network at I3 for ancestral reconstruction. net0 = rootatnode!(deepcopy(net), "I3") PhyloNetworks.setBranchLength!(net0.edge[1], 0.5) # A now represents I4 df = DataFrame(y=[0.0, 0.468158, 0.658486, 0.643821], taxon=["A","B","C", "D"]) fitBM = phylolm(@formula(y ~ 1), df, net0; tipnames=:taxon) sigma2_phylo(fitBM) # reml variance-rate: 0.08612487128235946 coef(fitBM)[1] # reconstructed root mean: 0.21511454631828986 Compare with posterior mean for I3. =# m = PGBP.UnivariateBrownianMotion(0.0861249, 0) # 𝒩(0, 0) prior on root mean cg = PGBP.clustergraph!(net, PGBP.Bethe()) b = PGBP.init_beliefs_allocate(tbl_y, df.taxon, net, cg, m); PGBP.init_beliefs_assignfactors!(b, m, tbl_y, df.taxon, net.nodes_changed); cgb = PGBP.ClusterGraphBelief(b) PGBP.regularizebeliefs_onschedule!(cgb, cg) sched = PGBP.spanningtrees_clusterlist(cg, net.nodes_changed) @test PGBP.calibrate!(cgb, sched, 20; auto=true) # [ Info: Calibration detected: iter 5, sch 1 ind = PGBP.clusterindex(:I3, cgb) @test PGBP.integratebelief!(b[ind])[1][end] ≈ 0.21511454631828986 rtol=1e-5 # posterior root mean end @testset "level-3, 2 tips, 2 traits, 1 missing unscoped in 2 nodes. Join-graph, regularize by node subtree" begin netstr = "((#H1:0.1::0.4,#H2:0.1::0.4)I1:1.0,(((A:1.0)#H1:0.1::0.6,#H3:0.1::0.4)#H2:0.1::0.6,(B:1.0)#H3:0.1::0.6)I2:1.0)I3;" net = readTopology(netstr) # y1 simulated from ParamsBM(2,0.1) df = DataFrame(taxon=["A","B"], y1=[2.11,2.15], y2=[30.0,missing]) tbl_y = columntable(select(df, :y1, :y2)) m = PGBP.MvFullBrownianMotion([1 0.5; 0.5 1], [0,0], [Inf 0; 0 Inf]) # improper root cg = PGBP.clustergraph!(net, PGBP.JoinGraphStructuring(3)) b = PGBP.init_beliefs_allocate(tbl_y, df.taxon, net, cg, m); PGBP.init_beliefs_assignfactors!(b, m, tbl_y, df.taxon, net.nodes_changed); cgb = PGBP.ClusterGraphBelief(b) PGBP.regularizebeliefs_bynodesubtree!(cgb, cg) sch = [] # schedule based on 1 subtree per variable for n in net.nodes_changed subtree = PGBP.nodesubtree_clusterlist(cg, Symbol(n.name)) isempty(subtree[1]) && continue push!(sch, subtree) end @test (@test_logs (:info, "calibration reached: iteration 4, schedule tree 1") PGBP.calibrate!(cgb, sch, 10; auto=true, info=true)) #= Compare posterior means against clique tree estimates: ct = PGBP.clustergraph!(net, PGBP.Cliquetree()); b_ct = PGBP.init_beliefs_allocate(tbl_y, df.taxon, net, ct, m); PGBP.init_beliefs_assignfactors!(b_ct, m, tbl_y, df.taxon, net.nodes_changed); ctb = PGBP.ClusterGraphBelief(b_ct); PGBP.calibrate!(ctb, [PGBP.spanningtree_clusterlist(ct, net.nodes_changed)]); PGBP.integratebelief!(b_ct[6]) # cluster I1I2I3: PGBP.clusterindex(:I1I2I3, ctb) # ([2.121105154896223, 30.005552577448075, 2.1360649504455984, 30.013032475222563, 2.128585052670908, 30.00929252633532], -1.39059577242449) PGBP.integratebelief!(b_ct[2]) # cluster H1H2I1 # ([2.125583120364, 30.007791560181964, 2.129918967774073, 30.009959483886966, 2.121105154896214, 30.00555257744811], -1.390595772423012) =# tmp = PGBP.integratebelief!(b[6]) # 6: PGBP.clusterindex(:I1I2I3, cgb) @test tmp[2] ≈ -1.390595772423 @test all(tmp[1] .≈ [2.121105154896223, 30.005552577448075, 2.1360649504455984, 30.013032475222563, 2.128585052670943, 30.00929252633547]) tmp = PGBP.integratebelief!(b[2]) # cluster 2: H1H2I1 @test tmp[2] ≈ -1.390595772423 @test all(tmp[1] .≈ [2.125583120364, 30.007791560181964, 2.129918967774073, 30.009959483886966, 2.121105154896214, 30.00555257744811]) #= likelihood using PN.vcv and matrix inversion Σnet = kron(Matrix(vcv(net)[!,[:A,:B]]), [1 0.5; 0.5 1]) Σnet_y2Bmissing = Σnet[1:3,1:3]; invΣ = inv(Σnet_y2Bmissing) yvec = [df[1,:y1], df[1,:y2], df[2,:y1]] X = [1 0; 0 1; 1 0]; Xt = transpose(X) μ = X * inv(Xt * invΣ * X) * Xt * invΣ * yvec # [2.128585052670943, 30.00929252633547, 2.128585052670943] # great: same as posterior at I3 = root loglikelihood(MvNormal(μ, Σnet_y2Bmissing), yvec) # -3.3498677834866997 but not same model: fixed root here =# m = PGBP.MvFullBrownianMotion([1 0.5; 0.5 1], [2.128585052670943,30.00929252633547]) # fixed root b = PGBP.init_beliefs_allocate(tbl_y, df.taxon, net, cg, m); PGBP.init_beliefs_assignfactors!(b, m, tbl_y, df.taxon, net.nodes_changed); cgb = PGBP.ClusterGraphBelief(b) PGBP.regularizebeliefs_bynodesubtree!(cgb, cg) @test (@test_logs PGBP.calibrate!(cgb, sch, 10; auto=true, info=false)) tmp = PGBP.integratebelief!(b[6]) # I3 un-scoped bc fixed root, same posterior mean for I1 and I2 @test tmp[2] ≈ -3.3498677834866997 @test all(tmp[1] .≈ [2.121105154896223, 30.005552577448075, 2.1360649504455984, 30.013032475222563]) end end @testset "with optimization" begin @testset "Level-1 w/ 4 tips. Univariate. Bethe + Optim." begin net = readTopology(netstr_unnamed) df = DataFrame(y=[11.275034507978296, 10.032494469945764, 11.49586603350308, 11.004447427824012], taxon=["A","B","C", "D"]) tbl_y = columntable(select(df, :y)) cg = PGBP.clustergraph!(net, PGBP.Bethe()) m = PGBP.UnivariateBrownianMotion(1, 0) b = PGBP.init_beliefs_allocate(tbl_y, df.taxon, net, cg, m); cgb = PGBP.ClusterGraphBelief(b) mod, fenergy, opt = PGBP.calibrate_optimize_clustergraph!(cgb, cg, net.nodes_changed, tbl_y, df.taxon, PGBP.UnivariateBrownianMotion, (1,0)) # Compare with RxInfer + Optim @test fenergy ≈ -3.4312133894974126 rtol=1e-4 @test mod.μ ≈ 10.931640613828181 rtol=1e-4 @test mod.σ2 ≈ 0.15239159696122745 rtol=1e-4 end @testset "Level-1 w/ 4 tips. Univariate. Clique tree + Optim / Autodiff" begin net = readTopology(netstr_named) df = DataFrame(taxon=["A","B1","B2","C"], x=[10,10,missing,0], y=[1.0,.9,1,-1]) df_var = select(df, Not(:taxon)) tbl = columntable(df_var) tbl_y = columntable(select(df, :y)) # 1 trait, for univariate models tbl_x = columntable(select(df, :x)) m = PGBP.UnivariateBrownianMotion(2, 3, 0) ct = PGBP.clustergraph!(net, PGBP.Cliquetree()) spt = PGBP.spanningtree_clusterlist(ct, net.nodes_changed) # y: 1 trait, no missing values #= calibrate_optimize_cliquetree! already tested later b = PGBP.init_beliefs_allocate(tbl_y, df.taxon, net, ct, m); PGBP.init_beliefs_assignfactors!(b, m, tbl_y, df.taxon, net.nodes_changed); ctb = PGBP.ClusterGraphBelief(b) mod, llscore, opt = PGBP.calibrate_optimize_cliquetree!(ctb, ct, net.nodes_changed, tbl_y, df.taxon, PGBP.UnivariateBrownianMotion, (1,-2)) @test PGBP.integratebelief!(ctb, spt[3][1])[2] ≈ llscore @test llscore ≈ -5.174720533524127 @test mod.μ ≈ -0.26000871507162693 @test PGBP.varianceparam(mod) ≈ 0.35360518758586457 =# lbc = GeneralLazyBufferCache(function (paramOriginal) mo = PGBP.UnivariateBrownianMotion(paramOriginal...) bel = PGBP.init_beliefs_allocate(tbl_y, df.taxon, net, ct, mo) return PGBP.ClusterGraphBelief(bel) end) mod2, llscore2, opt2 = PGBP.calibrate_optimize_cliquetree_autodiff!(lbc, ct, net.nodes_changed, tbl_y, df.taxon, PGBP.UnivariateBrownianMotion, (1, -2)) index_ctb = findfirst(isassigned(lbc.bufs.vals, i) for i in 1:length(lbc.bufs.vals)) @test PGBP.integratebelief!(lbc.bufs.vals[index_ctb], spt[3][1])[2].value ≈ llscore2 @test llscore2 ≈ -5.174720533524127 @test mod2.μ ≈ -0.26000871507162693 @test PGBP.varianceparam(mod2) ≈ 0.35360518758586457 #= using BenchmarkTools @benchmark PGBP.calibrate_optimize_cliquetree_autodiff!(lbc, ct, net.nodes_changed, tbl_y, df.taxon, PGBP.UnivariateBrownianMotion, (1, -2)) @benchmark PGBP.calibrate_optimize_cliquetree!(ctb, ct, net.nodes_changed, tbl_y, df.taxon, PGBP.UnivariateBrownianMotion, (1, -2)) =# #= ML solution the matrix-way, analytical for BM: # for y: univariate Σ = Matrix(vcv(net)[!,Symbol.(df.taxon)]) n=4 # number of data points i = ones(n) # intercept μhat = inv(transpose(i) * inv(Σ) * i) * (transpose(i) * inv(Σ) * tbl.y) # -0.26000871507162693 r = tbl.y .- μhat σ2hat_ML = (transpose(r) * inv(Σ) * r) / n # 0.35360518758586457 llscore = - n/2 - logdet(2π * σ2hat_ML .* Σ)/2 # -5.174720533524127 # for x: third value is missing xind = [1,2,4]; n = length(xind); i = ones(n) # intercept Σ = Matrix(vcv(net)[!,Symbol.(df.taxon)])[xind,xind] μhat = inv(transpose(i) * inv(Σ) * i) * (transpose(i) * inv(Σ) * tbl.x[xind]) # 3.500266520382341 r = tbl.x[xind] .- μhat σ2hat_ML = (transpose(r) * inv(Σ) * r) / n # 11.257682945973125 llscore = - n/2 - logdet(2π * σ2hat_ML .* Σ)/2 # -9.215574122592923 =# # x,y: 2 traits, some missing values m = PGBP.MvDiagBrownianMotion((2,1), (3,-3), (0,0)) b = PGBP.init_beliefs_allocate(tbl, df.taxon, net, ct, m); PGBP.init_beliefs_assignfactors!(b, m, tbl, df.taxon, net.nodes_changed); ctb = PGBP.ClusterGraphBelief(b) mod, llscore, opt = PGBP.calibrate_optimize_cliquetree!(ctb, ct, net.nodes_changed, tbl, df.taxon, PGBP.MvDiagBrownianMotion, ((2,1), (1,-1))) @test PGBP.integratebelief!(ctb, spt[3][1])[2] ≈ llscore @test llscore ≈ -14.39029465611705 # -5.174720533524127 -9.215574122592923 @test mod.μ ≈ [3.500266520382341, -0.26000871507162693] @test PGBP.varianceparam(mod) ≈ [11.257682945973125,0.35360518758586457] #= calibrate_optimize_cliquetree_autodiff! already tested earlier lbc = GeneralLazyBufferCache(function (paramOriginal) mo = PGBP.MvDiagBrownianMotion(paramOriginal...) bel = PGBP.init_beliefs_allocate(tbl, df.taxon, net, ct, mo) return PGBP.ClusterGraphBelief(bel) end) mod2, llscore2, opt2 = PGBP.calibrate_optimize_cliquetree_autodiff!(lbc, ct, net.nodes_changed, tbl, df.taxon, PGBP.MvDiagBrownianMotion, ((2, 1), (1, -1))) @test llscore2 ≈ -14.39029465611705 # -5.174720533524127 -9.215574122592923 @test mod2.μ ≈ [3.500266520382341, -0.26000871507162693] @test PGBP.varianceparam(mod2) ≈ [11.257682945973125, 0.35360518758586457] =# #= using BenchmarkTools @benchmark PGBP.calibrate_optimize_cliquetree_autodiff!(lbc, ct, net.nodes_changed, tbl, df.taxon, PGBP.MvDiagBrownianMotion, ((2, 1), (1, -1))) @benchmark PGBP.calibrate_optimize_cliquetree!(ctb, ct, net.nodes_changed, tbl, df.taxon, PGBP.MvDiagBrownianMotion, ((2, 1), (1, -1))) =# end end end
PhyloGaussianBeliefProp
https://github.com/JuliaPhylo/PhyloGaussianBeliefProp.jl.git
[ "MIT" ]
0.0.1
e785a3d1d3bd6dd66ffd313f06d03b00d1a0a9b4
code
4914
@testset "canonical form" begin netstr = "(((A:4.0,((B1:1.0,B2:1.0)i6:0.6)#H5:1.1::0.9)i4:0.5,(#H5:2.0::0.1,C)i2:1.0)i1:3.0);" df = DataFrame(taxon=["A","B1","B2","C"], x=[10, 10,missing, 0], y=[1.0, 0.9,1.0, -1.0]) df_var = select(df, Not(:taxon)) tbl = columntable(df_var) tbl_y = columntable(select(df, :y)) # 1 trait, for univariate models @testset "basics" begin net = readTopology(netstr) @test_throws ErrorException PGBP.shrinkdegenerate_treeedges(net) net.edge[8].length=0.0 # external edge @test_throws ErrorException PGBP.shrinkdegenerate_treeedges(net) net.edge[8].length=0.1 net.edge[4].length=0.0 # tree edge below hybrid net_polytomy = PGBP.shrinkdegenerate_treeedges(net) @test writeTopology(net_polytomy) == "((A:4.0,(B1:1.0,B2:1.0)#H5:1.1::0.9)i4:0.5,(#H5:2.0::0.1,C:0.1)i2:1.0)i1;" @test PGBP.isdegenerate.(net.node) == [0,0,0, 1,0,0,0,0,0] @test PGBP.hasdegenerate(net) for i in [5,7] net.edge[i].length=0.0; end # hybrid edge: makes the hybrid degenerate net.edge[4].length=0.6 # back to original @test PGBP.isdegenerate.(net.node) == [0,0,0,0, 1,0,0,0,0] @test PGBP.unscope(net.hybrid[1]) nm = trues(3,2); nm[2,1]=false b1 = PGBP.Belief(Int8[5,6], 3, nm, PGBP.bclustertype, 1) @test PGBP.nodelabels(b1) == [5,6] @test size(b1.inscope) == (3,2) @test length(b1.μ) == 5 @test size(b1.J) == (5,5) end # of basic testset @testset "degenerate hybrid: complex case" begin net = readTopology(netstr) net.edge[8].length=0.1 # was missing for i in [5,7] net.edge[i].length=0.0; end # hybrid edge: makes the hybrid degenerate g = PGBP.moralize!(net) PGBP.triangulate_minfill!(g) ct = PGBP.cliquetree(g) # 6 sepsets, 7 cliques #= ne(ct), nv(ct) [ct[lab] for lab in labels(ct)] [ct[lab...] for lab in edge_labels(ct)] [(n.name, n.number) for n in net.nodes_changed] =# # fixit: one clique should have both the child & parents of the degenerate hybrid b = PGBP.init_beliefs_allocate(tbl, df.taxon, net, ct, PGBP.UnivariateBrownianMotion(1,0,1)) beliefnodelabels = [[6,5], [7,6], [8,6], [5,4,2], [4,2,1], [3,2], [9,4], [6], [6], [5], [4,2], [2], [4]] @test [PGBP.nodelabels(be) for be in b] == beliefnodelabels @test PGBP.inscope(b[5]) == trues(2,3) @test isempty(PGBP.scopeindex([5], b[1])) @test PGBP.scopeindex([6], b[1]) == [1,2] @test_throws ErrorException PGBP.scopeindex([2], b[1]) b = PGBP.init_beliefs_allocate(tbl, df.taxon, net, ct, PGBP.UnivariateBrownianMotion(1,0,0)) @test [PGBP.nodelabels(be) for be in b] == beliefnodelabels @test PGBP.inscope(b[5]) == [true true false; true true false] # root not in scope end # of degenerate testset @testset "non-degenerate hybrid: simpler case" begin net = readTopology(netstr) net.edge[8].length=0.1 # was missing g = PGBP.moralize!(net) PGBP.triangulate_minfill!(g) ct = PGBP.cliquetree(g) m = PGBP.UnivariateBrownianMotion(2, 3, 0) # 0 root prior variance: fixed root b = PGBP.init_beliefs_allocate(tbl_y, df.taxon, net, ct, m); PGBP.init_beliefs_assignfactors!(b, m, tbl_y, df.taxon, net.nodes_changed); # ["$(be.type): $(be.nodelabel)" for be in b] @test b[1].J ≈ m.J/net.edge[4].length .* [1 -1; -1 1] @test b[1].h == [0,0] @test b[1].g[1] ≈ -log(2π * net.edge[4].length * m.σ2)/2 bp = m.J/net.edge[3].length # bp for Belief Precision @test b[2].J ≈ bp .* [1;;] # external edge to B2 @test b[2].h ≈ bp * [tbl_y.y[3]] @test b[2].g[1] ≈ -(log(2π/bp) + bp*tbl_y.y[3]^2)/2 bp = m.J/net.edge[2].length @test b[3].J ≈ bp .* [1;;] # external edge to B1 @test b[3].h ≈ bp * [tbl_y.y[2]] @test b[3].g[1] ≈ -(log(2π/bp) + bp*tbl_y.y[2]^2)/2 bp = m.J/(net.edge[7].gamma^2 * net.edge[7].length + net.edge[5].gamma^2 * net.edge[5].length) @test b[4].J ≈ bp .* [1 -.9 -.1;-.9 .81 .09;-.1 .09 .01] @test b[4].h ≈ [0,0,0] @test b[4].g[1] ≈ -log(2π/bp)/2 # 3 factors in b[5]: 1->4, 1->2, root 1: N(μ, l4 σ2) x N(μ, l2 σ2) bp = m.J ./[net.edge[6].length, net.edge[9].length] @test b[5].J ≈ [bp[1] 0; 0 bp[2]] # LinearAlgebra.diagm(bp) @test b[5].h ≈ bp .* [m.μ, m.μ] @test b[5].g[1] ≈ - (sum(log.(2π ./ bp) .+ bp .* m.μ^2))/2 # 7 clusters, so b[7+1] = first sepset s=b[8]; PGBP.propagate_belief!(b[1],s,b[2], PGBP.MessageResidual(s.J,s.h)) s=b[9]; PGBP.propagate_belief!(b[1],s,b[3], PGBP.MessageResidual(s.J,s.h)) s=b[10];PGBP.propagate_belief!(b[4],s,b[1], PGBP.MessageResidual(s.J,s.h)) s=b[12];PGBP.propagate_belief!(b[4],s,b[6], PGBP.MessageResidual(s.J,s.h)) s=b[13];PGBP.propagate_belief!(b[4],s,b[7], PGBP.MessageResidual(s.J,s.h)) s=b[11];PGBP.propagate_belief!(b[5],s,b[4], PGBP.MessageResidual(s.J,s.h)) # tree traversed once to cluster 5 as root rootstate, dataloglik = PGBP.integratebelief!(b[5]) @test dataloglik ≈ -10.732857817537196 #= likelihood using PN.vcv and matrix inversion Σnet = m.σ2 .* Matrix(vcv(net)[!,Symbol.(df.taxon)]) loglikelihood(MvNormal(repeat([m.μ],4), Σnet), tbl.y) # -10.732857817537196 r = tbl.y .- m.μ; - transpose(r) * inv(Σnet) * r /2 - logdet(2π .* Σnet)/2 =# end # of non-degenerate testset end
PhyloGaussianBeliefProp
https://github.com/JuliaPhylo/PhyloGaussianBeliefProp.jl.git
[ "MIT" ]
0.0.1
e785a3d1d3bd6dd66ffd313f06d03b00d1a0a9b4
code
6822
@testset "cluster graphs" begin netstr = "(((A:4.0,(B:1.0)#H1:1.1::0.9):0.5,((#H1:1.0::0.1,C:0.6):1.0,C2):1.0):3.0,D:5.0);" # network from Mateescu et al. (2010) with 2 extra leaves mateescu = "((((g:1)#H4:1)#H2:2.04,(d:1,(#H2:0.01::0.5,#H4:1::0.5)#H3:1)D:1,(#H3:1::0.5)#H1:0.01)B:1,#H1:1.01::0.5)A;" @testset "Utilities" begin net = readTopology(netstr) g = PhyloGaussianBeliefProp.moralize!(net) @test nv(g) == net.numNodes @test ne(g) == net.numEdges + 1 # 1 extra: moralized @test PhyloGaussianBeliefProp.triangulate_minfill!(g) == [:A,:B,:H1,:C,:C2,:D,:I5,:I1,:I2,:I3,:I4] @test ne(g) == 13 # 1 extra fill edge @test PGBP.parentinformation(net.node[1], net) == ([4.0], [1.0], [8]) @test PGBP.parentinformation(net.hybrid[1], net) == ([1.1,1.], [.9,.1], [8,6]) # hybrid ladder H2 -> H1; and H2 child of root net6 = readTopology("(#H2:0::0.2,((C:1,((B:1)#H1:100::0.6)#H2:0::0.8),(#H1:0,(A1:0.1,A2:0.1):0.2):0.3):0.1,O:3);") PGBP.preprocessnet!(net6, "i") PGBP.addtreenode_belowdegeneratehybrid!(net6) @test net6.node[13].name == "i6" @test length(net6.nodes_changed) == 13 end #= function metaplot(gr) elab = [gr[label_for(gr,src(e)),label_for(gr,dst(e))] for e in edges(gr)] gplothtml(gr, nodelabel=collect(labels(gr)), edgelabel=elab); end metaplot(ct) =# @testset "Bethe cluster graph" begin net = readTopology(netstr) cg = PGBP.clustergraph!(net, PGBP.Bethe()) #= number of clusters: 1. factor clusters: 1 / node family = 1 per non-root node, except when a family is a subset of another 2. variable clusters: 1 / internal node (including the root, excluding leaves) =# numfactorclusters = net.numNodes-1 numvarclusters = net.numNodes-net.numTaxa @test nv(cg) == numfactorclusters + numvarclusters #= number of edges in the cluster graph, assuming * leaves are not hybrids * bicombining: hybrid nodes have 2 parents 1. external edge in net: 1 per leaf → 1 edge in cluster graph 2. internal tree edge in net, e.g. internal tree node → 2 edges in graph 3. hybrid node family, 1 per hybrid node in net → 3 edges in graph =# ninternal_tree = sum(!e.hybrid for e in net.edge) - net.numTaxa @test ne(cg) == (net.numTaxa + 2*ninternal_tree + 3*net.numHybrids) @test length(connected_components(cg)) == 1 # check for 1 connected component @test all(t[2] for t in PGBP.check_runningintersection(cg, net)) cluster_properties = cg.vertex_properties clusters = [v[2][2] for v in values(cluster_properties)] # variable clusters: [1], [3], [4], [6], [8], [9] # factor clusters: [2, 1], [3, 1], [4, 3], [5, 4], [6, 4], [7, 6], [8, 3], # [9, 8, 6], [10, 9], [11, 8] @test PGBP.isfamilypreserving(clusters, net)[1] # case with 3-cycle: one node family is a subset of another deleteleaf!(net, "C"); deleteleaf!(net, "C2"); removedegree2nodes!(net) preorder!(net) cg = PGBP.clustergraph!(net, PGBP.Bethe()) @test nv(cg) == 4+3 # not (5-1) node families + 3 internal nodes @test ne(cg) == 6 # each internal node is 2 clusters clusters = [v[2][2] for v in values(cg.vertex_properties)] @test PGBP.isfamilypreserving(clusters, net)[1] end @testset "LTRIP cluster graph" begin net = readTopology(netstr) clusters = Vector{Int8}[ # node families, nodes specified as preorder indices [11, 8], [10, 9], [7, 6], [5, 4], [2, 1], [9, 8, 6], [8, 3], [6, 4], [4, 3], [3, 1]] # below: would error (test would fail) if `clusters` not family-preserving for net cg = PGBP.clustergraph!(net, PGBP.LTRIP(clusters, net)) output_clusters = collect(v[2][2] for v in values(cg.vertex_properties)) @test sort(clusters) == sort(output_clusters) @test is_connected(cg) @test all(t[2] for t in PGBP.check_runningintersection(cg, net)) cg = PGBP.clustergraph!(net, PGBP.LTRIP(net)) @test all(t[2] for t in PGBP.check_runningintersection(cg, net)) clusters2 = [v[2][2] for v in values(cg.vertex_properties)] # has extra root cluster @test PGBP.isfamilypreserving(clusters2, net)[1] clusters3 = Vector{Int8}[ [11, 8], [10, 9], [7, 6], [5, 4], [2, 1], [9, 8], [8, 3], [6, 4], [4, 3], [3, 1]] # not family-preserving @test_throws ErrorException PGBP.LTRIP(clusters3, net) end @testset "Join-graph structuring" begin net = readTopology(mateescu) # Mateescu network: 1 bucket has multiple minibuckets cg = PGBP.clustergraph!(net, PGBP.JoinGraphStructuring(3)) @test all(t[2] for t in PGBP.check_runningintersection(cg, net)) @test !is_tree(cg) clusters = [[1],[2,1],[3,2,1],[4,3,2],[5,2],[5,4,3],[6,5,2],[7,6,5],[8,7],[9,4]] # clusters for netstr: [[2,1],[3],[3,1],[4,3],[5,4],[6,4,3],[7,6],[8,6,3],[9,8,6],[10,9],[11,8]] @test sort([v[2][2] for v in values(cg.vertex_properties)]) == clusters sepsets = [[1],[2],[2,1],[3,2],[4],[4,3],[5],[5,2],[6,5],[7]] # sepstes for netstr: [[1],[3],[3],[4],[4,3],[6],[6,3],[8],[8,6],[9]] @test sort([cg[l1,l2] for (l1,l2) in edge_labels(cg)]) == sepsets @test PGBP.isfamilypreserving(clusters, net)[1] # maxclustersize smaller than largest family: @test_throws ErrorException PGBP.clustergraph!(net, PGBP.JoinGraphStructuring(2)) end @testset "Clique tree" begin net = readTopology(netstr) ct = PGBP.clustergraph!(net, PGBP.Cliquetree()) @test ne(ct) == 8 @test sort([ct[lab...] for lab in edge_labels(ct)]) == [[1],[3],[4],[6], [6,3],[8],[8,6],[9]] @test is_tree(ct) @test all(t[2] for t in PGBP.check_runningintersection(ct, net)) cliques = [v[2][2] for v in values(ct.vertex_properties)] @test PGBP.isfamilypreserving(cliques, net)[1] net = readTopology(mateescu) ct = PGBP.clustergraph!(net, PGBP.Cliquetree()) @test is_tree(ct) @test ct[:H3DH1B][2] == [5,4,3,2] # largest clique end @testset "Traversal" begin net = readTopology(netstr) cg = PGBP.clustergraph!(net, PGBP.Bethe()) clusterlabs = Set(labels(cg)) n = length(clusterlabs) - 1 # number of edges in each spanning tree c_edges = Set(MetaGraphsNext.arrange(cg, e...) for e in edge_labels(cg)) s_edges = Set{eltype(c_edges)}() # edges covered by schedule sched = PGBP.spanningtrees_clusterlist(cg, net.nodes_changed) for spt in sched # check: spt is a tree spanning all clusters @test length(spt[1]) == n spt_edgecodes = [Edge(code_for(cg, spt[1][i]), code_for(cg, spt[2][i])) for i in 1:n] sg, _ = induced_subgraph(cg, spt_edgecodes) @test Set(labels(sg)) == clusterlabs @test is_tree(sg) for i in 1:n push!(s_edges, MetaGraphsNext.arrange(cg, spt[1][i], spt[2][i])); end end @test c_edges == s_edges # check: `sched` covers all edges end end
PhyloGaussianBeliefProp
https://github.com/JuliaPhylo/PhyloGaussianBeliefProp.jl.git
[ "MIT" ]
0.0.1
e785a3d1d3bd6dd66ffd313f06d03b00d1a0a9b4
code
14150
@testset "evolutionary models parameters" begin m = PGBP.MvDiagBrownianMotion([1,0.5], [-1,1]) # default 0 root variance m = PGBP.MvDiagBrownianMotion([1,0.5], [-1,1], [0,1]) par = PGBP.params_optimize(m) oripar = PGBP.params_original(m, par) @test oripar == PGBP.params(m) @test PGBP.dimension(m) == 2 m = PGBP.MvFullBrownianMotion([1.0, .5, 0.8660254037844386], [-1,1]) # default 0 root variance @test PGBP.varianceparam(m) ≈ [1 0.5; 0.5 1] @test PGBP.rootpriorvariance(m) == [0 0; 0 0] m = PGBP.MvFullBrownianMotion([1 0.5; 0.5 1], [-1,1], [10^10 0; 0 10^10]) @test PGBP.dimension(m) == 2 m = PGBP.UnivariateBrownianMotion(2, 3) par = PGBP.params_optimize(m) oripar = PGBP.params_original(m, par) @test oripar[1] ≈ PGBP.params(m)[1] @test oripar[2] ≈ PGBP.params(m)[2] h,J,g = PGBP.factor_treeedge(m, 1) @test h == [0.0,0] @test J == [.5 -.5; -.5 .5] @test g ≈ -1.2655121234846454 m2 = PGBP.UnivariateBrownianMotion(2, 3, 0) @test m == m2 m2 = PGBP.UnivariateBrownianMotion(2.0, 3, 0) @test m == m2 m2 = PGBP.UnivariateBrownianMotion([2], [3]) @test m == m2 m2 = PGBP.UnivariateBrownianMotion([2], [3.0]) @test m == m2 m2 = PGBP.UnivariateBrownianMotion([2], 3) @test m == m2 m2 = PGBP.UnivariateBrownianMotion([2], 3.0) @test m == m2 m2 = PGBP.UnivariateBrownianMotion([2], 3, 0) @test m == m2 m2 = PGBP.UnivariateBrownianMotion([2.0], 3, 0) @test m == m2 m2 = PGBP.UnivariateBrownianMotion([2], 3, [0]) @test m == m2 m2 = PGBP.UnivariateBrownianMotion([2], 3.0, [0]) @test m == m2 @test_throws "scalars" PGBP.UnivariateBrownianMotion([2,2], [3], [0]) @test_throws "scalars" PGBP.UnivariateBrownianMotion([2,2], 3, 0) @test_throws "scalars" PGBP.UnivariateBrownianMotion([2], [3,3]) @test_throws "scalars" PGBP.UnivariateBrownianMotion([2], 3, [0,0]) end @testset "evolutionary models likelihood" begin netstr = "(((A:4.0,((B1:1.0,B2:1.0)i6:0.6)#H5:1.1::0.9)i4:0.5,(#H5:2.0::0.1,C:0.1)i2:1.0)i1:3.0);" net = readTopology(netstr) df = DataFrame(taxon=["A","B1","B2","C"], x=[10,10,missing,0], y=[1.0,.9,1,-1]) df_var = select(df, Not(:taxon)) tbl = columntable(df_var) tbl_y = columntable(select(df, :y)) # 1 trait, for univariate models tbl_x = columntable(select(df, :x)) ct = PGBP.clustergraph!(net, PGBP.Cliquetree()) spt = PGBP.spanningtree_clusterlist(ct, net.nodes_changed) rootclusterindex = spt[3][1] # allocate beliefs to avoid re-allocation of same sizes for multiple tests m_uniBM_fixedroot = PGBP.UnivariateBrownianMotion(2, 3, 0) b_y_fixedroot = PGBP.init_beliefs_allocate(tbl_y, df.taxon, net, ct, m_uniBM_fixedroot) m_uniBM_randroot = PGBP.UnivariateBrownianMotion(2, 3, Inf) b_y_randroot = PGBP.init_beliefs_allocate(tbl_y, df.taxon, net, ct, m_uniBM_randroot) m_biBM_fixedroot = PGBP.MvDiagBrownianMotion((2,1), (3,-3), (0,0)) b_xy_fixedroot = PGBP.init_beliefs_allocate(tbl, df.taxon, net, ct, m_biBM_fixedroot) m_biBM_randroot = PGBP.MvDiagBrownianMotion((2,1), (3,-3), (0.1,10)) b_xy_randroot = PGBP.init_beliefs_allocate(tbl, df.taxon, net, ct, m_biBM_randroot) @testset "homogeneous univariate BM" begin @testset "Fixed Root, no missing" begin # y no missing, fixed root show(devnull, m_uniBM_fixedroot) PGBP.init_beliefs_assignfactors!(b_y_fixedroot, m_uniBM_fixedroot, tbl_y, df.taxon, net.nodes_changed); ctb = PGBP.ClusterGraphBelief(b_y_fixedroot) PGBP.propagate_1traversal_postorder!(ctb, spt...) _, tmp = PGBP.integratebelief!(ctb, rootclusterindex) @test tmp ≈ -10.732857817537196 end @testset "Infinite Root, no missing" begin # y no missing, infinite root variance PGBP.init_beliefs_assignfactors!(b_y_randroot, m_uniBM_randroot, tbl_y, df.taxon, net.nodes_changed); ctb = PGBP.ClusterGraphBelief(b_y_randroot) PGBP.propagate_1traversal_postorder!(ctb, spt...) _, tmp = PGBP.integratebelief!(ctb, rootclusterindex) @test tmp ≈ -5.899094849099194 end @testset "Random Root, with missing" begin # x with missing, random root m = PGBP.UnivariateBrownianMotion(2, 3, 0.4) b = (@test_logs (:error,"tip B2 in network without any data") PGBP.init_beliefs_allocate(tbl_x, df.taxon, net, ct, m);) PGBP.init_beliefs_assignfactors!(b, m, tbl_x, df.taxon, net.nodes_changed); ctb = PGBP.ClusterGraphBelief(b) PGBP.propagate_1traversal_postorder!(ctb, spt...) _, tmp = PGBP.integratebelief!(ctb, rootclusterindex) @test tmp ≈ -13.75408386332493 end end @testset "homogeneous univariate OU" begin @testset "Random Root, no missing" begin m = PGBP.UnivariateOrnsteinUhlenbeck(2, 3, -2, 0.0, 0.4) show(devnull, m) PGBP.init_beliefs_assignfactors!(b_y_randroot, m, tbl_y, df.taxon, net.nodes_changed); ctb = PGBP.ClusterGraphBelief(b_y_randroot) PGBP.propagate_1traversal_postorder!(ctb, spt...) _, tmp = PGBP.integratebelief!(ctb, rootclusterindex) @test tmp ≈ -42.31401134496844 #= code to compute the univariate OU likelihood by hand # 1. calculate vcv of all nodes in preorder V(t::Number) = (1-exp(-2m.α * t)) * m.γ2 # variance conditional on parent, one edge q(t::Number) = exp(-m.α * t) # actualization along tree edge: weight of parent value q(edge) = q(edge.length) * edge.gamma V(parentedges) = sum(V(e.length) * e.gamma * e.gamma for e in parentedges) net_vcv = zeros(9,9) # all 9 nodes net_vcv[1,1] = PGBP.rootpriorvariance(m) net_mean = zeros(9,1) # all 9 nodes expectations net_mean[1] = m.μ for i in 2:9 # non-root nodes n = net.nodes_changed[i] pae = [PhyloNetworks.getparentedge(n)] if n.hybrid push!(pae, PhyloNetworks.getparentedgeminor(n)); end nparents = length(pae) pa = [PhyloNetworks.getparent(e) for e in pae] pai = indexin(pa, net.nodes_changed) # var(Xi) net_vcv[i,i] = V(pae) # initialize for (j1,e1) in zip(pai, pae) for (j2,e2) in zip(pai, pae) net_vcv[i,i] += q(e1) * q(e2) * net_vcv[j1,j2] end; end # cov(Xi,Xj) for j<i in preorder for j in 1:(i-1) for (j1,e1) in zip(pai, pae) net_vcv[i,j] += q(e1) * net_vcv[j1,j] end net_vcv[j,i] = net_vcv[i,j] end # E[Xi] for (j1,e1) in zip(pai, pae) net_mean[i] += q(e1) * net_mean[j1] + (e1.gamma - q(e1)) * m.θ end end net_vcv [n.name for n in net.nodes_changed] # i1,i2,C,i4,H5,i6,B2,B1,A df.taxon # A,B1,B2,C with preorder indices: 9,8,7,3 taxon_ind = [findfirst(isequal(tax), n.name for n in net.nodes_changed) for tax in df.taxon] print(net_vcv[taxon_ind,taxon_ind]) # copy-pasted below Σnet = [ 0.3333333333334586 5.651295717406613e-10 5.651295717406613e-10 2.0226125393342098e-8; 5.651295717406613e-10 0.33332926986180506 0.000822187254027199 1.4032919760109094e-6; 5.651295717406613e-10 0.000822187254027199 0.33332926986180506 1.4032919760109094e-6; 2.0226125393342098e-8 1.4032919760109094e-6 1.4032919760109094e-6 0.3334240245358365] print(net_mean[taxon_ind]) # copy-pasted below Mnet = [-1.9999972580818273, -1.9998778851480223, -1.9998778851480223, -1.92623366519752] loglikelihood(MvNormal(Mnet, Σnet), tbl.y) # -42.31401134496844 =# end end @testset "Diagonal BM" begin @testset "homogeneous, fixed root" begin PGBP.init_beliefs_assignfactors!(b_xy_fixedroot, m_biBM_fixedroot, tbl, df.taxon, net.nodes_changed); ctb = PGBP.ClusterGraphBelief(b_xy_fixedroot) PGBP.propagate_1traversal_postorder!(ctb, spt...) _, tmp = PGBP.integratebelief!(ctb, rootclusterindex) @test tmp ≈ -24.8958130127972 end @testset "homogeneous, random root" begin PGBP.init_beliefs_assignfactors!(b_xy_randroot, m_biBM_randroot, tbl, df.taxon, net.nodes_changed); ctb = PGBP.ClusterGraphBelief(b_xy_randroot) PGBP.propagate_1traversal_postorder!(ctb, spt...) _, tmp = PGBP.integratebelief!(ctb, rootclusterindex) @test tmp ≈ -21.347496753649892 end @testset "homogeneous, improper root" begin m = PGBP.MvDiagBrownianMotion((2,1), (1,-3), (Inf,Inf)) PGBP.init_beliefs_assignfactors!(b_xy_randroot, m, tbl, df.taxon, net.nodes_changed); ctb = PGBP.ClusterGraphBelief(b_xy_randroot) PGBP.propagate_1traversal_postorder!(ctb, spt...) _, tmp = PGBP.integratebelief!(ctb, rootclusterindex) @test tmp ≈ -17.66791635814575 end end @testset "Full BM" begin @testset "homogeneous, fixed root" begin m = PGBP.MvFullBrownianMotion([2.0 0.5; 0.5 1.0], [3.0,-3.0]) PGBP.init_beliefs_assignfactors!(b_xy_fixedroot, m, tbl, df.taxon, net.nodes_changed); ctb = PGBP.ClusterGraphBelief(b_xy_fixedroot) PGBP.propagate_1traversal_postorder!(ctb, spt...) _, tmp = PGBP.integratebelief!(ctb, rootclusterindex) @test tmp ≈ -24.312323855394055 end @testset "homogeneous, random root" begin m = PGBP.MvFullBrownianMotion([2.0 0.5; 0.5 1.0], [3.0,-3.0], [0.1 0.01; 0.01 0.2]) PGBP.init_beliefs_assignfactors!(b_xy_randroot, m, tbl, df.taxon, net.nodes_changed); ctb = PGBP.ClusterGraphBelief(b_xy_randroot) PGBP.propagate_1traversal_postorder!(ctb, spt...) _, tmp = PGBP.integratebelief!(ctb, rootclusterindex) @test tmp ≈ -23.16482738327936 end @testset "homogeneous, improper root" begin m = PGBP.MvFullBrownianMotion([2.0 0.5; 0.5 1.0], [3.0,-3.0], [Inf 0; 0 Inf]) PGBP.init_beliefs_assignfactors!(b_xy_randroot, m, tbl, df.taxon, net.nodes_changed); ctb = PGBP.ClusterGraphBelief(b_xy_randroot) PGBP.propagate_1traversal_postorder!(ctb, spt...) _, tmp = PGBP.integratebelief!(ctb, rootclusterindex) @test tmp ≈ -16.9626044836951 end end @testset "heterogeneous BM" begin @testset "Fixed Root one mv rate" begin m = PGBP.HeterogeneousBrownianMotion([2.0 0.5; 0.5 1.0], [3.0, -3.0]) show(devnull, m) PGBP.init_beliefs_assignfactors!(b_xy_fixedroot, m, tbl, df.taxon, net.nodes_changed); ctb = PGBP.ClusterGraphBelief(b_xy_fixedroot) PGBP.propagate_1traversal_postorder!(ctb, spt...) _, tmp = PGBP.integratebelief!(ctb, rootclusterindex) @test tmp ≈ -24.312323855394055 end @testset "Random root several mv rates" begin rates = [[2.0 0.5; 0.5 1.0], [2.0 0.5; 0.5 1.0]] colors = Dict(9 => 2, 7 => 2, 8 => 2) # includes one hybrid edge pp = PGBP.PaintedParameter(rates, colors) show(devnull, pp) m = PGBP.HeterogeneousBrownianMotion(pp, [3.0, -3.0], [0.1 0.01; 0.01 0.2]) show(devnull, m) PGBP.init_beliefs_assignfactors!(b_xy_randroot, m, tbl, df.taxon, net.nodes_changed); ctb = PGBP.ClusterGraphBelief(b_xy_randroot) PGBP.propagate_1traversal_postorder!(ctb, spt...) _, tmp = PGBP.integratebelief!(ctb, rootclusterindex) @test tmp ≈ -23.16482738327936 end end #= likelihood using PN.vcv and matrix inversion using Distributions Σnet = Matrix(vcv(net)[!,Symbol.(df.taxon)]) ## univariate y loglikelihood(MvNormal(repeat([3.0],4), Σnet), tbl.y) # -10.732857817537196 ## univariate x xind = [1,2,4]; n = length(xind); i = ones(n) # intercept Σ = 2.0 * Σnet[xind,xind] .+ 0.4 loglikelihood(MvNormal(repeat([3.0],3), Σ), Vector{Float64}(tbl.x[xind])) # -13.75408386332493 ## Univariate y, REML ll(μ) = loglikelihood(MvNormal(repeat([μ],4), Σnet), tbl.y) using Integrals log(solve(IntegralProblem((x,p) -> exp(ll(x)), -Inf, Inf), QuadGKJL()).u) # -5.899094849099194 ## Diagonal x, y loglikelihood(MvNormal(repeat([3],3), 2 .* Σnet[xind,xind]), Vector{Float64}(tbl.x[xind])) + loglikelihood(MvNormal(repeat([-3],4), 1 .* Σnet), tbl.y) ## Diagonal x y random root loglikelihood(MvNormal(repeat([3],3), 2 .* Σnet[xind,xind] .+ 0.1), Vector{Float64}(tbl.x[xind])) + loglikelihood(MvNormal(repeat([-3],4), 1 .* Σnet .+ 10), tbl.y) # Diagonal x y REML ll(μ) = loglikelihood(MvNormal(repeat([μ[1]],3), 2 .* Σnet[xind,xind]), Vector{Float64}(tbl.x[xind])) + loglikelihood(MvNormal(repeat([μ[2]],4), 1 .* Σnet), tbl.y) using Integrals log(solve(IntegralProblem((x,p) -> exp(ll(x)), [-Inf, -Inf], [Inf, Inf]), HCubatureJL(), reltol = 1e-16, abstol = 1e-16).u) # -17.66791635814575 # Full x y fixed root R = [2.0 0.5; 0.5 1.0] varxy = kron(R, Σnet) xyind = vcat(xind, 4 .+ [1,2,3,4]) varxy = varxy[xyind, xyind] meanxy = vcat(repeat([3.0],3), repeat([-3.0],4)) datxy = Vector{Float64}(vcat(tbl.x[xind], tbl.y)) loglikelihood(MvNormal(meanxy, varxy), datxy) # -24.312323855394055 # Full x y random root R = [2.0 0.5; 0.5 1.0] V = [0.1 0.01; 0.01 0.2] varxy = kron(R, Σnet) + kron(V, ones(4, 4)) xyind = vcat(xind, 4 .+ [1,2,3,4]) varxy = varxy[xyind, xyind] meanxy = vcat(repeat([3.0],3), repeat([-3.0],4)) datxy = Vector{Float64}(vcat(tbl.x[xind], tbl.y)) loglikelihood(MvNormal(meanxy, varxy), datxy) # -23.16482738327936 # Full x y improper root R = [2.0 0.5; 0.5 1.0] varxy = kron(R, Σnet) xyind = vcat(xind, 4 .+ [1,2,3,4]) varxy = varxy[xyind, xyind] meanxy = vcat(repeat([3.0],3), repeat([-3.0],4)) datxy = Vector{Float64}(vcat(tbl.x[xind], tbl.y)) ll(μ) = loglikelihood(MvNormal(vcat(repeat([μ[1]],3),repeat([μ[2]],4)), varxy), datxy) using Integrals log(solve(IntegralProblem((x,p) -> exp(ll(x)), [-Inf, -Inf], [Inf, Inf]), HCubatureJL(), reltol = 1e-16, abstol = 1e-16).u) # -16.9626044836951 =# end
PhyloGaussianBeliefProp
https://github.com/JuliaPhylo/PhyloGaussianBeliefProp.jl.git
[ "MIT" ]
0.0.1
e785a3d1d3bd6dd66ffd313f06d03b00d1a0a9b4
code
12467
@testset "exact tree calibration for the BM" begin netstr = "((A:1.5,B:1.5):1,(C:1,(D:0.5, E:0.5):0.5):1.5);" df = DataFrame(taxon=["A","B","C","D","E"], x=[10,10,3,0,1], y=[1.0,.9,1,-1,-0.9]) n = 5 df_var = select(df, Not(:taxon)) tbl = columntable(df_var) tbl_y = columntable(select(df, :y)) # 1 trait, for univariate models tbl_x = columntable(select(df, :x)) net = readTopology(netstr) g = PGBP.moralize!(net) PGBP.triangulate_minfill!(g) ct = PGBP.cliquetree(g) spt = PGBP.spanningtree_clusterlist(ct, net.nodes_changed) @testset "comparison with PhyloEM" begin # of PhyloEM m = PGBP.UnivariateBrownianMotion(1, 0, 10000000000) # "infinite" root variance to match phyloEM b = PGBP.init_beliefs_allocate(tbl_y, df.taxon, net, ct, m); PGBP.init_beliefs_assignfactors!(b, m, tbl_y, df.taxon, net.nodes_changed); cgb = PGBP.ClusterGraphBelief(b) PGBP.calibrate!(cgb, [spt]) # Test conditional expectations and variances @test PGBP.default_sepset1(cgb) == 9 llscore = -18.83505 condexp = [1,0.9,1,-1,-0.9,0.4436893,0.7330097,0.009708738,-0.6300971] condexp = condexp[[6,8,9,5,4,3,7,2,1]] tmp1, tmp = PGBP.integratebelief!(cgb) @test tmp1 ≈ [condexp[cgb.belief[9].nodelabel[1]]] atol=1e-6 @test tmp ≈ llscore atol=1e-6 for i in eachindex(cgb.belief) tmp1, tmp = PGBP.integratebelief!(cgb, i) @test tmp1[end] ≈ condexp[cgb.belief[i].nodelabel[end]] atol=1e-6 @test tmp ≈ llscore atol=1e-6 end # Test conditional variances condvar = [0.0000000,0.0000000,0.0000000,0.0000000,0.0000000,0.9174757,0.5970874,0.3786408,0.2087379] condvar = condvar[[6,8,9,5,4,3,7,2,1]] for i in eachindex(cgb.belief) vv = inv(cgb.belief[i].J)[end,end] @test vv ≈ condvar[cgb.belief[i].nodelabel[end]] atol=1e-6 end # Test conditional covariances condcovar = [0.0000000,0.0000000,0.0000000,0.0000000,0.0000000,NaN,0.3932039,0.2038835,0.1262136] condcovar = condcovar[[6,8,9,5,4,3,7,2,1]] for i in eachindex(cgb.belief) vv = inv(cgb.belief[i].J) size(vv, 1) == 2 && @test vv[1,2] ≈ condcovar[cgb.belief[i].nodelabel[1]] atol=1e-6 end #= likelihood and moments using PhylogeneticEM from R library(PhylogeneticEM) # tree and data tree <- read.tree(text = "((A:1.5,B:1.5):1,(C:1,(D:0.5, E:0.5):0.5):1.5);") tree <- reorder(tree, "postorder") ntips <- length(tree$tip.label) Y_data <- c(1.0,.9,1,-1,-0.9) names(Y_data) <- c("A", "B", "C", "D", "E") Y_data <- t(Y_data) # tree traversal theta_var <- 1 params_random <- params_BM(p = 1, variance = diag(theta_var, 1, 1), value.root = rep(0, 1), random = TRUE, var.root = diag(10000000000, 1, 1)) resE <- PhylogeneticEM:::compute_E.upward_downward(phylo = tree, Y_data = Y_data, process = "BM", params_old = params_random) # likelihood log_likelihood(params_random, phylo = tree, Y_data = Y_data) # -18.83505 # conditional expectations resE$conditional_law_X$expectations # 1 0.9 1 -1 -0.9 0.4436893 0.7330097 0.009708738 -0.6300971 # conditional variances resE$conditional_law_X$variances[1, 1, ] # 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.9174757 0.5970874 0.3786408 0.2087379 # conditional covariances resE$conditional_law_X$covariances[1,1,] # 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 NA 0.3932039 0.2038835 0.1262136 # mu hat resE$conditional_law_X$expectations[ntips + 1] # 0.4436893 # sigma2 hat num <- 0 den <- 0 for (i in 1:nrow(tree$edge)) { par <- tree$edge[i, 1] child <- tree$edge[i, 2] num <- num + (resE$conditional_law_X$expectations[par] - resE$conditional_law_X$expectations[child])^2 / tree$edge.length[i] den <- den + 1 - (resE$conditional_law_X$variances[,,par] + resE$conditional_law_X$variances[,,child] - 2 * resE$conditional_law_X$covariances[,,child]) / tree$edge.length[i] / theta_var } num / den =# end # of PhyloEM @testset "update root status" begin # Check that an update from a fixed root to a random root is possible # y: 1 trait, no missing values m1 = PGBP.UnivariateBrownianMotion(1, 0, 0.9) b1 = PGBP.init_beliefs_allocate(tbl_y, df.taxon, net, ct, m1); f1 = PGBP.init_factors_allocate(b1, nv(ct)) mess1 = PGBP.init_messageresidual_allocate(b1, nv(ct)) PGBP.init_beliefs_assignfactors!(b1, m1, tbl_y, df.taxon, net.nodes_changed); m2 = PGBP.UnivariateBrownianMotion(1, 0, 0) # fixed root b2 = PGBP.init_beliefs_allocate(tbl_y, df.taxon, net, ct, m2); f2 = PGBP.init_factors_allocate(b2, nv(ct)) mess2 = PGBP.init_messageresidual_allocate(b2, nv(ct)) PGBP.init_beliefs_assignfactors!(b2, m2, tbl_y, df.taxon, net.nodes_changed); PGBP.init_beliefs_allocate_atroot!(b1, f1, mess1, m2) PGBP.init_beliefs_assignfactors!(b1, m2, tbl_y, df.taxon, net.nodes_changed); for ind in eachindex(b1) @test b1[ind].nodelabel == b2[ind].nodelabel @test b1[ind].ntraits == b2[ind].ntraits @test b1[ind].inscope == b2[ind].inscope @test b1[ind].μ == b2[ind].μ @test b1[ind].h == b2[ind].h @test b1[ind].J == b2[ind].J @test b1[ind].type == b2[ind].type @test b1[ind].metadata == b2[ind].metadata end PGBP.init_beliefs_allocate_atroot!(b1, f1, mess1, m1) PGBP.init_beliefs_assignfactors!(b1, m1, tbl_y, df.taxon, net.nodes_changed); PGBP.init_beliefs_allocate_atroot!(b2, f2, mess2, m1) PGBP.init_beliefs_assignfactors!(b2, m1, tbl_y, df.taxon, net.nodes_changed); for ind in eachindex(b1) @test b1[ind].nodelabel == b2[ind].nodelabel @test b1[ind].ntraits == b2[ind].ntraits @test b1[ind].inscope == b2[ind].inscope @test b1[ind].μ == b2[ind].μ @test b1[ind].h == b2[ind].h @test b1[ind].J == b2[ind].J @test b1[ind].type == b2[ind].type @test b1[ind].metadata == b2[ind].metadata end # x,y: 2 traits, no missing values m1 = PGBP.MvDiagBrownianMotion((1,1), (0,0), (1.2,3)) b1 = PGBP.init_beliefs_allocate(tbl, df.taxon, net, ct, m1); f1 = PGBP.init_factors_allocate(b1, nv(ct)) mess1 = PGBP.init_messageresidual_allocate(b1, nv(ct)) PGBP.init_beliefs_assignfactors!(b1, m1, tbl, df.taxon, net.nodes_changed); m2 = PGBP.MvDiagBrownianMotion((1,1), (0,0), (0,0)) b2 = PGBP.init_beliefs_allocate(tbl, df.taxon, net, ct, m2); mess2 = PGBP.init_messageresidual_allocate(b2, nv(ct)) PGBP.init_beliefs_assignfactors!(b2, m2, tbl, df.taxon, net.nodes_changed); PGBP.init_beliefs_allocate_atroot!(b1, f1, mess1, m2) PGBP.init_beliefs_assignfactors!(b1, m2, tbl, df.taxon, net.nodes_changed); for ind in eachindex(b1) @test b1[ind].nodelabel == b2[ind].nodelabel @test b1[ind].ntraits == b2[ind].ntraits @test b1[ind].inscope == b2[ind].inscope @test b1[ind].μ == b2[ind].μ @test b1[ind].h == b2[ind].h @test b1[ind].J == b2[ind].J @test b1[ind].type == b2[ind].type @test b1[ind].metadata == b2[ind].metadata end end # of root update end # of exact, on a tree @testset "exact network calibration for the BM" begin netstr = "(((A:4.0,((B1:1.0,B2:1.0)i6:0.6)#H5:1.1::0.9)i4:0.5,(#H5:2.0::0.1,C:0.1)i2:1.0)i1:3.0);" df = DataFrame(taxon=["A","B1","B2","C"], x=[10,10,2,0], y=[1.0,.9,1,-1]) df_var = select(df, Not(:taxon)) tbl = columntable(df_var) tbl_y = columntable(select(df, :y)) # 1 trait, for univariate models tbl_x = columntable(select(df, :x)) net = readTopology(netstr) g = PGBP.moralize!(net) PGBP.triangulate_minfill!(g) ct = PGBP.cliquetree(g) spt = PGBP.spanningtree_clusterlist(ct, net.nodes_changed) @testset "exact formulas (REML)" begin # y: 1 trait, no missing values m = PGBP.UnivariateBrownianMotion(1, 0, Inf) # infinite root variance b = PGBP.init_beliefs_allocate(tbl_y, df.taxon, net, ct, m); cgb = PGBP.ClusterGraphBelief(b) mod, llscore = PGBP.calibrate_exact_cliquetree!(cgb, spt, net.nodes_changed, tbl_y, df.taxon, PGBP.UnivariateBrownianMotion) @test PGBP.integratebelief!(cgb, spt[3][1])[2] ≈ llscore @test llscore ≈ -5.250084678427689 @test mod.μ ≈ -0.260008715071627 @test PGBP.varianceparam(mod) ≈ 0.4714735834478194 #= numerical optim, ML -- redundant with test_calibration m = PGBP.UnivariateBrownianMotion(0.5,0.5,0) b = PGBP.init_beliefs_allocate(tbl_y, df.taxon, net, ct, m); PGBP.init_beliefs_assignfactors!(b, m, tbl_y, df.taxon, net.nodes_changed); cgb = PGBP.ClusterGraphBelief(b) PGBP.calibrate!(cgb, [spt]) modopt, llscoreopt, opt = PGBP.calibrate_optimize_cliquetree!(cgb, ct, net.nodes_changed, tbl_y, df.taxon, PGBP.UnivariateBrownianMotion, (0.5,-3)) @test PGBP.integratebelief!(cgb, spt[3][1])[2] ≈ llscoreopt @test llscoreopt ≈ -5.174720533524127 @test modopt.μ ≈ mod.μ n=4 @test PGBP.varianceparam(modopt) ≈ PGBP.varianceparam(mod) * (n-1) / n =# # x,y: 2 traits, no missing values m = PGBP.MvDiagBrownianMotion((1,1), (0,0), (Inf,Inf)) b = PGBP.init_beliefs_allocate(tbl, df.taxon, net, ct, m); cgb = PGBP.ClusterGraphBelief(b) mod, llscore = PGBP.calibrate_exact_cliquetree!(cgb, spt, net.nodes_changed, tbl, df.taxon, PGBP.MvFullBrownianMotion) #@test PGBP.integratebelief!(cgb, spt[3][1])[2] ≈ llscore #@test llscore ≈ -6.851098376474686 @test mod.μ ≈ [2.791001688545128 ; -0.260008715071627] @test PGBP.varianceparam(mod) ≈ [17.93326111121198 1.6089749098736517 ; 1.6089749098736517 0.4714735834478195] #= ML solution the matrix-way, analytical for BM: # for y: univariate Σ = Matrix(vcv(net)[!,Symbol.(df.taxon)]) n=4 # number of data points i = ones(n) # intercept μhat = inv(transpose(i) * inv(Σ) * i) * (transpose(i) * inv(Σ) * tbl.y) r = tbl.y .- μhat σ2hat_REML = (transpose(r) * inv(Σ) * r) / (n-1) σ2hat_ML = (transpose(r) * inv(Σ) * r) / n llscorereml = - (n-1)/2 - logdet(2π * σ2hat_REML .* Σ)/2 llscore = - n/2 - logdet(2π * σ2hat_ML .* Σ)/2 # for x,y: multivariate Σ = Matrix(vcv(net)[!,Symbol.(df.taxon)]) n=4 # number of data points datatbl = [tbl.x tbl.y] i = ones(n) # intercept μhat = inv(transpose(i) * inv(Σ) * i) * (transpose(i) * inv(Σ) * datatbl) r = datatbl - i * μhat σ2hat_REML = (transpose(r) * inv(Σ) * r) / (n-1) llscore = - n/2 - logdet(2π * σ2hat_ML .* Σ)/2 =# end # of exact formulas # new network: clade of 2 sisters below a tree node, *not* a hybrid node, # fixit: calibration fails if fully missing data below hybrid node net = readTopology("((((B1:1.0,B2:1.0)i6:4.0,(A:0.6)#H5:1.1::0.9)i4:0.5,(#H5:2.0::0.1,C:0.1)i2:1.0)i1:3.0);") g = PGBP.moralize!(net); PGBP.triangulate_minfill!(g); ct = PGBP.cliquetree(g) spt = PGBP.spanningtree_clusterlist(ct, net.nodes_changed) tbl = (x=[10,missing,missing,0], y=[1.0,.9,1,-1]) tbl_x = (x=tbl[:x], ) @testset "exact formulas, with missing values" begin # x: 2 sister taxa with fully-missing values. #tipswithdata=2 > #traits=1 m = PGBP.UnivariateBrownianMotion(1, 0, 0) # wrong starting model cgb = (@test_logs (:error,r"^tip") (:error,r"^tip") (:error,r"^internal") PGBP.ClusterGraphBelief(PGBP.init_beliefs_allocate(tbl_x, df.taxon, net, ct, m))) mod, llscore = PGBP.calibrate_exact_cliquetree!(cgb, spt, net.nodes_changed, tbl_x, df.taxon, PGBP.MvFullBrownianMotion) # mv instead of univariate @test mod.μ ≈ [3.538570417551306] @test PGBP.varianceparam(mod) ≈ [35.385704175513084;;] @test llscore ≈ -6.2771970782154565 # x,y: B1,B2 with partial data m = PGBP.MvDiagBrownianMotion((1,1), (0,0), (Inf,Inf)) cgb = PGBP.ClusterGraphBelief(PGBP.init_beliefs_allocate(tbl, df.taxon, net, ct, m)) # error: some leaf must have partial data: cluster i6i4 has partial traits in scope @test_throws ["partial data", "partial traits in scope"] PGBP.calibrate_exact_cliquetree!(cgb, spt, net.nodes_changed, tbl, df.taxon, PGBP.MvFullBrownianMotion) end # of exact formulas end # of exact, on a network
PhyloGaussianBeliefProp
https://github.com/JuliaPhylo/PhyloGaussianBeliefProp.jl.git
[ "MIT" ]
0.0.1
e785a3d1d3bd6dd66ffd313f06d03b00d1a0a9b4
code
6782
@testset "calibration w/ optimization" begin # univariate, multivariate, missing, fixed/proper/improper root examplenetdir = joinpath(dirname(Base.find_package("PhyloGaussianBeliefProp")), "..", "test","example_networks") @testset "univariate, no missing, fixed root" begin net = readTopology(joinpath(examplenetdir, "mateescu_2010.phy")) # 9 nodes: 2 tips, 4 hybrids # level-4, not tree-child, has hybrid ladder, has deg-4 hybrid df = DataFrame(taxon=["d","g"], y=[1.0,-1.0]) tbl_y = columntable(select(df, :y)) ct = PGBP.clustergraph!(net, PGBP.Cliquetree()) m = PGBP.UnivariateBrownianMotion(1.0, 0.0) # σ2 = 1.0, μ = 0.0 b = PGBP.init_beliefs_allocate(tbl_y, df.taxon, net, ct, m); ctb = PGBP.ClusterGraphBelief(b) ## reference is from a previous call to `calibrate_optimize_cliquetree!` refμ = -0.07534357691418593 refσ2 = 0.5932930079336234 refll = -3.2763180687070053 mod, llscore, opt = PGBP.calibrate_optimize_cliquetree!(ctb, ct, net.nodes_changed, tbl_y, df.taxon, PGBP.UnivariateBrownianMotion, (1.0,0.0)) @test mod.μ ≈ refμ @test mod.σ2 ≈ refσ2 @test llscore ≈ refll ## test against `calibrate_optimize_cliquetree_autodiff!` lbc = GeneralLazyBufferCache(function (paramOriginal) mo = PGBP.UnivariateBrownianMotion(paramOriginal...) bel = PGBP.init_beliefs_allocate(tbl_y, df.taxon, net, ct, mo) return PGBP.ClusterGraphBelief(bel) end) mod, llscore, opt = PGBP.calibrate_optimize_cliquetree_autodiff!(lbc, ct, net.nodes_changed, tbl_y, df.taxon, PGBP.UnivariateBrownianMotion, (1.0,0,0)) @test mod.μ ≈ refμ rtol=4e-10 @test mod.σ2 ≈ refσ2 rtol=3e-11 @test llscore ≈ refll rtol=3e-16 ## compare with Bethe cg = PGBP.clustergraph!(net, PGBP.Bethe()) b = PGBP.init_beliefs_allocate(tbl_y, df.taxon, net, cg, m) cgb = PGBP.ClusterGraphBelief(b) mod, fenergy, opt = PGBP.calibrate_optimize_clustergraph!(cgb, cg, net.nodes_changed, tbl_y, df.taxon, PGBP.UnivariateBrownianMotion, (1.0,0.0)) @test mod.μ ≈ refμ rtol=2e-5 @test mod.σ2 ≈ refσ2 rtol=2e-6 @test fenergy ≈ refll rtol=3e-2 end # norm(mod.μ-refμ)/max(norm(mod.μ),norm(refμ)) # norm(mod.σ2-refσ2)/max(norm(mod.σ2),norm(refσ2)) # norm(fenergy+refll)/max(norm(fenergy),norm(refll)) # norm(llscore-refll)/max(norm(llscore),norm(refll)) @testset "bivariate, no missing, improper root" begin net = readTopology(joinpath(examplenetdir, "sun_2023.phy")) # 42 nodes: 10 tips, 6 hybrids # level-6, not tree-child, has hybrid ladder, has deg-4 hybrid #= tip data simulated from ParamsMultiBM(): rootmean = [0.0, 0.0]; rate = [2.0 1.0; 1.0 2.0] sim = simulate(net, ParamsMultiBM(rootmean, rate)) y1 = sim[:Tips][1,:]; y2 = sim[:Tips][2,:] =# df = DataFrame(taxon=tipLabels(net), y1=[-1.001, 0.608, -3.606, -7.866, -5.977, -6.013, -7.774, -5.511, -6.392, -6.471], y2=[0.262, 5.124, -5.076, -6.223, -7.033, -6.062, -6.42, -6.34, -6.516, -6.501]) df_var = select(df, Not(:taxon)) tbl = columntable(df_var) ct = PGBP.clustergraph!(net, PGBP.Cliquetree()) # min cluster size: 2, max cluster size: 5 m = PGBP.MvFullBrownianMotion([2.0 1.0; 1.0 2.0], [0.0 0.0], [Inf 0.0; 0.0 Inf]) b = PGBP.init_beliefs_allocate(tbl, df.taxon, net, ct, m); PGBP.init_beliefs_assignfactors!(b, m, tbl, df.taxon, net.nodes_changed); ctb = PGBP.ClusterGraphBelief(b) # note: reaches max iterations before converging, so just save results for now # mod, llscore, opt = PGBP.calibrate_optimize_cliquetree!(ctb, ct, # net.nodes_changed, tbl, df.taxon, PGBP.MvFullBrownianMotion, # ([2.0 1.0; 1.0 2.0], [0.0 0.0], [Inf 0.0; 0.0 Inf])) # Multivariate Brownian motion # - evolutionary variance rate matrix: R: # [3.717085841556895 1.7464551312269698; 1.7464551312269698 2.0994767855707854] # - root mean: μ = [0.0, 0.0] # - root variance: v = [Inf 0.0; 0.0 Inf], -32.22404541422671, # * Status: failure (reached maximum number of iterations) # * Candidate solution # Final objective value: 3.222405e+01 # * Found with # Algorithm: L-BFGS # * Convergence measures # |x - x'| = 4.05e-09 ≰ 0.0e+00 # |x - x'|/|x'| = 6.16e-09 ≰ 0.0e+00 # |f(x) - f(x')| = 5.68e-13 ≰ 0.0e+00 # |f(x) - f(x')|/|f(x')| = 1.76e-14 ≰ 0.0e+00 # |g(x)| = 9.97e-08 ≰ 1.0e-08 # * Work counters # Seconds run: 248 (vs limit Inf) # Iterations: 1000 # f(x) calls: 3180 # ∇f(x) calls: 3180 cg = PGBP.clustergraph!(net, PGBP.JoinGraphStructuring(4)); # min cluster size: 1, max cluster size: 4 b_jg = PGBP.init_beliefs_allocate(tbl, df.taxon, net, cg, m); PGBP.init_beliefs_assignfactors!(b_jg, m, tbl, df.taxon, net.nodes_changed); cgb = PGBP.ClusterGraphBelief(b_jg) # note: reaches max iterations before converging, so just save results for now # mod, fenergy, opt = PGBP.calibrate_optimize_clustergraph!(cgb, cg, # net.nodes_changed, tbl, df.taxon, PGBP.MvFullBrownianMotion, # ([2.0 1.0; 1.0 2.0], [0.0 0.0], [Inf 0.0; 0.0 Inf])) # Multivariate Brownian motion # - evolutionary variance rate matrix: R: # [3.7170858696599423 1.7464551640805306; 1.7464551640805306 2.0994768084399875] # - root mean: μ = [0.0, 0.0] # - root variance: v = [Inf 0.0; 0.0 Inf], 32.270019493029075, # * Status: failure (reached maximum number of iterations) # * Candidate solution # Final objective value: 3.227002e+01 # * Found with # Algorithm: L-BFGS # * Convergence measures # |x - x'| = 1.16e-10 ≰ 0.0e+00 # |x - x'|/|x'| = 1.76e-10 ≰ 0.0e+00 # |f(x) - f(x')| = 6.39e-14 ≰ 0.0e+00 # |f(x) - f(x')|/|f(x')| = 1.98e-15 ≰ 0.0e+00 # |g(x)| = 2.55e-07 ≰ 1.0e-08 # * Work counters # Seconds run: 338 (vs limit Inf) # Iterations: 1000 # f(x) calls: 3270 # ∇f(x) calls: 3270 end end
PhyloGaussianBeliefProp
https://github.com/JuliaPhylo/PhyloGaussianBeliefProp.jl.git
[ "MIT" ]
0.0.1
e785a3d1d3bd6dd66ffd313f06d03b00d1a0a9b4
docs
1479
# PhyloGaussianBeliefProp [![Stable](https://img.shields.io/badge/docs-stable-blue.svg)](https://cecileane.github.io/PhyloGaussianBeliefProp.jl/stable/) [![Dev](https://img.shields.io/badge/docs-dev-blue.svg)](https://cecileane.github.io/PhyloGaussianBeliefProp.jl/dev/) [![Build Status](https://github.com/cecileane/PhyloGaussianBeliefProp.jl/actions/workflows/CI.yml/badge.svg?branch=main)](https://github.com/cecileane/PhyloGaussianBeliefProp.jl/actions/workflows/CI.yml?query=branch%3Amain) [![Coverage](https://codecov.io/gh/cecileane/PhyloGaussianBeliefProp.jl/branch/main/graph/badge.svg)](https://codecov.io/gh/cecileane/PhyloGaussianBeliefProp.jl) [![Code Style: Blue](https://img.shields.io/badge/code%20style-blue-4495d1.svg)](https://github.com/invenia/BlueStyle) [![ColPrac: Contributor's Guide on Collaborative Practices for Community Packages](https://img.shields.io/badge/ColPrac-Contributor's%20Guide-blueviolet)](https://github.com/SciML/ColPrac) [![PkgEval](https://JuliaCI.github.io/NanosoldierReports/pkgeval_badges/P/PhyloGaussianBeliefProp.svg)](https://JuliaCI.github.io/NanosoldierReports/pkgeval_badges/report.html) [Julia](http://julialang.org) package for the analysis of Gaussian models on phylogenetic networks and admixture graphs using belief propagation (aka message passing). It depends on utilities from [PhyloNetworks](https://github.com/crsl4/PhyloNetworks.jl). ## Citing See [`CITATION.bib`](CITATION.bib) for the relevant reference(s).
PhyloGaussianBeliefProp
https://github.com/JuliaPhylo/PhyloGaussianBeliefProp.jl.git
[ "MIT" ]
0.0.1
e785a3d1d3bd6dd66ffd313f06d03b00d1a0a9b4
docs
657
```@meta CurrentModule = PhyloGaussianBeliefProp ``` # PhyloGaussianBeliefProp [PhyloGaussianBeliefProp](https://github.com/cecileane/PhyloGaussianBeliefProp.jl) is a [Julia](http://julialang.org) package for the analysis of Gaussian models on phylogenetic networks using belief propagation (aka message passing). --- ## Manual ```@contents Pages = [ "man/installation.md", "man/getting_started.md", "man/background.md", "man/evolutionary_models.md", "man/clustergraphs.md", "man/regularization.md", "man/message_schedules.md" ] Depth = 3 ``` ## Library ```@index ``` ```@autodocs Modules = [PhyloGaussianBeliefProp] ```
PhyloGaussianBeliefProp
https://github.com/JuliaPhylo/PhyloGaussianBeliefProp.jl.git
[ "MIT" ]
0.0.1
e785a3d1d3bd6dd66ffd313f06d03b00d1a0a9b4
docs
4559
# Background ## Trait evolution on a phylogeny The evolution of molecular and phenotypic traits is commonly modeled using [Markov processes](https://en.wikipedia.org/wiki/Markov_chain) along a rooted phylogeny. For example, most models of continuous trait evolution on a phylogenetic tree are extensions of the [Brownian motion](https://en.wikipedia.org/wiki/Wiener_process) (BM) to capture features such as: - evolutionary trends - adaptation - rate variation across lineages ## Factoring the joint model A Markov process along the phylogeny induces a *joint distribution* ``p_\theta(x_1,\dots,x_m)``, with parameters ``\theta``, over all nodes (trait vectors) ``X_1,\dots,X_m``. ``p_\theta(x_1,\dots,x_m)`` can also be factored as the product of *conditional distributions* ``\phi_v`` for each node ``X_v``, where ``\phi_v=p_\theta(x_v\mid x_{\mathrm{pa}(v)})`` is the distribution of ``X_v`` given its parent(s) ``X_{\mathrm{pa}(v)}``, e.g. ``X_{\mathrm{pa}(v)}=\begin{bmatrix} X_{p_1} \\ X_{p_2}\end{bmatrix}``: ```math p_\theta(x_1,\dots,x_m) = \prod_{v=1}^n \phi_v ``` We focus on the case where all conditional distributions are *linear Gaussian*. That is, for each node ``X_v``: ```math \begin{aligned} X_v\mid X_{\mathrm{pa}(v)} &\sim \mathcal{N}(\omega_v+ \bm{q}_v X_{\mathrm{pa}(v)},\bm{V}_v) \\ \phi_v &= (|2\pi\bm{V}_v|)^{-1/2}\exp(-||x_v-(\omega_v+\bm{q}_v x_{\mathrm{pa}(v)})||_{\bm{V}_v^{-1}}/2) \end{aligned} ``` with trend vector ``\omega_v``, actualization matrix ``\bm{q}_v``, and covariance matrix ``\bm{V}_v``. For example, the BM on a phylogeny (and most of its extensions) satisfies this characterization [mitov2020fast](@cite). ## Parameter inference Typically, we observe the tips of the phylogeny ``X_1=\mathrm{x}_1,\dots,X_n=\mathrm{x}_n`` and use these data for parameter inference by optimizing the log-likelihood ``\mathrm{LL}(\theta)=\log\int p_\theta(\mathrm{x}_1,\dots,\mathrm{x}_n,x_{n+1}, \dots x_m)dx_{n+1}\dots dx_m``: ```math \widehat{\theta} = \argmax_{\theta} \ \mathrm{LL}(\theta) ``` For simpler models, it is possible to derive a closed-form expression for ``\widehat{\theta}`` by solving: ```math \nabla_\theta \ [\mathrm{LL}(\theta)]|_{\theta=\widehat{\theta}}=0 ``` for the zero of the log-likelihood gradient, and to compute it directly. For more complicated models however, ``\widehat{\theta}`` must be obtained by iterative methods that evaluate ``\mathrm{LL}(\theta)`` over different parameter values. In general, evaluating ``\mathrm{LL}(\theta)`` is costly as the size and complexity of the phylogeny grows. ## BP for exact inference [Belief propagation](https://en.wikipedia.org/wiki/Belief_propagation) (BP) is a framework for efficiently computing various marginals of a joint distribution ``p_\theta`` that can be factored into conditional distributions ``\phi_v\in\Phi``, where ``\Phi`` denotes the full set of conditional distributions. We refer to the reference book by Koller and Friedman (2009) [koller2009probabilistic](@cite) for more background on BP, and only sketch the main steps involved here: 1. Construct a tree data structure called a [*clique tree*](https://en.wikipedia.org/wiki/Tree_decomposition) (also known by junction tree, join tree, or tree decomposition), whose nodes ``\mathcal{C}_i``, called *clusters*, are subsets of ``\{X_1,\dots,X_m\}``. 2. Each conditional distribution is assigned (``\mapsto``) to a cluster of the clique tree, and the product of all conditional distributions assigned to a cluster ``\mathcal{C}_i`` initializes its *belief* ``\beta_i = \prod_{\phi_v\mapsto\mathcal{C}_i,\ \phi_v\in\Phi}\phi_v`` 3. Each cluster computes messages from its belief, and propagates these to its neighbor clusters to update their beliefs. ``\mathrm{LL}(\theta)`` can be computed by passing messages according to a single postorder traversal of the clique tree, An additional preorder traversal guarantees that every cluster belief is the corresponding marginal of ``p_\theta``. That is, every cluster belief reflects the conditional distribution of the cluster given the data. ## Loopy BP for approximate inference A clique tree is a special case of a graph data structure called a *cluster graph*. In general, cluster graphs can be non-treelike with cycles. BP on a *loopy cluster graph* (i.e. a cluster graph with cycles), abbreviated as *loopy BP*, can approximate the likelihood and conditional distributions of the unobserved, ancestral nodes, and be more computationally efficient than BP. ## References ```@bibliography ```
PhyloGaussianBeliefProp
https://github.com/JuliaPhylo/PhyloGaussianBeliefProp.jl.git
[ "MIT" ]
0.0.1
e785a3d1d3bd6dd66ffd313f06d03b00d1a0a9b4
docs
7579
```@meta CurrentModule = PhyloGaussianBeliefProp ``` # Cluster graphs A cluster graph groups the nodes ``X_1,\dots,X_m`` of the phylogeny into several (possibly intersecting) clusters/subsets, such that for any node: - there is ``\ge 1`` cluster that contains it and its parents (i.e. the clusters are (node) *family-preserving*) - the clusters that contain it are always joined as a tree, whose edge labels contain that node Each edge between two clusters ``\mathcal{C}_i,\mathcal{C}_j`` is labeled with a node subset ``\mathcal{S}_{i,j}\subseteq\mathcal{C}_i\cap\mathcal{C}_j`` based on the second property. These labels are referred to as sepsets (i.e a "sep(arating) sets"). Intuitively, if the factors of a joint distribution ``p_\theta`` over the nodes are distributed among the clusters, then the topology of the cluster graph implies the possible computational pathways in which these factors may be sequentially "combined" by product or marginalization. For example, a cluster's belief is the cumulative result of computations that might follow some walk along the cluster graph, ending at that cluster. This is then interpreted as an estimate of its conditional distribution given the data. ## Clique tree A cluster graph whose topology is a tree is known as a clique tree. We provide the option to construct a clique tree, and 3 further options (below) for constructing (potentially) loopy cluster graphs. A clique tree tends to have more clusters of larger size than a loopy cluster graph. The time-complexity of message passing on a cluster graph is parametrized by maximum cluster size, and so clique trees allow for exact inference but at a greater cost than approximate inference on a loopy cluster graph. Below is an example using a virus recombination network from [Müller et al. (2022, Fig 1a)](https://doi.org/10.1038/s41467-022-31749-8) [muller2022bayesian](@cite), with inheritance probabilities estimated from the inferred recombination breakpoints (see [muller2022_nexus2newick.jl](https://github.com/bstkj/graphicalmodels_for_phylogenetics_code/blob/5f61755c4defe804fd813113e883d49445971ade/real_networks/muller2022_nexus2newick.jl)). ```jldoctest clustergraphs; setup = :(using PhyloNetworks, PhyloGaussianBeliefProp; const PGBP = PhyloGaussianBeliefProp) julia> net = readTopology(pkgdir(PhyloGaussianBeliefProp, "test/example_networks", "muller_2022.phy")); # 1161 edges, 801 nodes: 40 tips, 361 hybrid nodes, 400 internal tree nodes. julia> preorder!(net) julia> ct = PGBP.clustergraph!(net, PGBP.Cliquetree()); julia> PGBP.labels(ct) |> length # no. of vertices/clusters in clique tree 664 julia> PGBP.edge_labels(ct) |> length # no. of edges in clique tree, one less than no. of clusters 663 julia> clusters = PGBP.labels(ct) |> collect; # vector of cluster labels julia> clusters[1] # cluster label is the concatenation of node labels :I300I301I302I189 julia> ct[clusters[1]] # access metadata for `cluster[1]`: (node labels, preorder indices), nodes are arranged by decreasing preorder index ([:I300, :I301, :I302, :I189], Int16[722, 719, 717, 487]) julia> using StatsBase # `summarystats` julia> (length(ct[cl][1]) for cl in PGBP.labels(ct)) |> collect |> summarystats # distribution of cluster sizes Summary Stats: Length: 664 Missing Count: 0 Mean: 6.728916 Std. Deviation: 6.120608 Minimum: 2.000000 1st Quartile: 4.000000 Median: 5.000000 3rd Quartile: 7.000000 Maximum: 54.000000 ``` ## Bethe / Factor graph The Bethe cluster graph has a cluster for each node family (*factor clusters*) and for each node (*variable clusters*). Each factor cluster is joined to the variable cluster for any node it contains. ```jldoctest clustergraphs julia> fg = PGBP.clustergraph!(net, PGBP.Bethe()); julia> (PGBP.labels(fg) |> length, PGBP.edge_labels(fg) |> length) # (no. of clusters, no. of edges) (1557, 1914) julia> (length(fg[cl][1]) for cl in PGBP.labels(fg)) |> collect |> summarystats Summary Stats: Length: 1557 Missing Count: 0 Mean: 1.743738 Std. Deviation: 0.809151 Minimum: 1.000000 1st Quartile: 1.000000 Median: 2.000000 3rd Quartile: 2.000000 Maximum: 3.000000 ``` If each hybrid node has 2 parents (as for `net`), then the maximum cluster size is 3. ## Join-graph structuring [Join-graph structuring](https://doi.org/10.1613/jair.2842) allows the user to specify the maximum cluster size ``k^*``. See [`JoinGraphStructuring`](@ref) for more details on the algorithm. ```jldoctest clustergraphs julia> jg = PGBP.clustergraph!(net, PGBP.JoinGraphStructuring(10)); julia> (PGBP.labels(jg) |> length, PGBP.edge_labels(jg) |> length) (1001, 1200) julia> (length(jg[cl][1]) for cl in PGBP.labels(jg)) |> collect |> summarystats Summary Stats: Length: 1001 Missing Count: 0 Mean: 6.036963 Std. Deviation: 2.177070 Minimum: 1.000000 1st Quartile: 4.000000 Median: 6.000000 3rd Quartile: 8.000000 Maximum: 10.000000 ``` Since the set of clusters has to be family-preserving (see above), ``k^*`` cannot be smaller than the largest node family (i.e. a node and its parents). For example, if the network has hybrid nodes, then ``k^*\ge 3`` necessarily. ```jldoctest clustergraphs julia> jg = PGBP.clustergraph!(net, PGBP.JoinGraphStructuring(2)); ERROR: maxclustersize 2 is smaller than the size of largest node family 3. ``` On the other extreme, suppose we set ``k^*=54``, the maximum cluster size of the clique tree above: ```jldoctest clustergraphs julia> jg2 = PGBP.clustergraph!(net, PGBP.JoinGraphStructuring(54)); julia> (PGBP.labels(jg2) |> length, PGBP.edge_labels(jg2) |> length) (801, 800) julia> (length(jg2[cl][1]) for cl in PGBP.labels(jg2)) |> collect |> summarystats Summary Stats: Length: 801 Missing Count: 0 Mean: 9.539326 Std. Deviation: 9.953078 Minimum: 1.000000 1st Quartile: 4.000000 Median: 5.000000 3rd Quartile: 10.000000 Maximum: 54.000000 ``` then it turns out the `jg2` is a clique tree (since the number of clusters and edges differ by 1), though not the same one as `ct`. Generally, a cluster graph with larger clusters is less likely to be loopy than one with smaller clusters. ## LTRIP For [LTRIP](https://doi.org/10.1145/3132711.3132717), the user provides the set of clusters, which are assumed to be family-preserving (see above). 1. For each node, the clusters that contain it are joined as a tree, prioritizing edges formed with clusters that intersect heavily with others. See [`LTRIP`](@ref) for details. 2. The trees for each node are layered on one another (the sepsets for an edge are merged) to produce the cluster graph. As an example, we use the clusters from join-graph structuring: ```jldoctest clustergraphs julia> clusters = (jg[cl][2] for cl in PGBP.labels(jg)) |> collect; # vector of clusters, each given as a vector of preorder indices in decreasing order julia> lg = PGBP.clustergraph!(net, PGBP.LTRIP(clusters, net)); julia> (PGBP.labels(lg) |> length, PGBP.edge_labels(lg) |> length) (1001, 1249) ``` The summary statistics would be the same as for `jg`'s clusters, though it appears that `lg` is more densely connected than `jg`. If the user does not provide the clusters, then the set of node families (see [`nodefamilies`](@ref)) is used by default: ```jldoctest clustergraphs julia> lg = PGBP.clustergraph!(net, PGBP.LTRIP(net)); julia> (PGBP.labels(lg) |> length, PGBP.edge_labels(lg) |> length) (801, 1158) ``` There are 801 clusters, 1 per node (family), as expected.
PhyloGaussianBeliefProp
https://github.com/JuliaPhylo/PhyloGaussianBeliefProp.jl.git
[ "MIT" ]
0.0.1
e785a3d1d3bd6dd66ffd313f06d03b00d1a0a9b4
docs
4140
```@meta CurrentModule = PhyloGaussianBeliefProp ``` # Evolutionary models ## Specifying a process Each trait evolutionary model is specified as a linear Gaussian process, such as a BM or some extension of it, that evolves along the phylogeny. Minimally, the user provides a variance rate ``\Sigma``, and a prior mean ``\mu`` and variance ``\bm{V}_{\!\!\rho}`` for the root state ``X_\rho``. For example, ``\bm{V}_{\!\!\rho}=0`` treats ``X_\rho=\mu`` as known, while ``\bm{V}_{\!\!\rho}=\infty`` disregards all prior beliefs about ``X_\rho``. For example, the univariate BM can be specified as: ```jldoctest evolutionary_models; setup = :(using PhyloGaussianBeliefProp; const PGBP = PhyloGaussianBeliefProp) julia> PGBP.UnivariateBrownianMotion(1, 0) # root variance v = 0 (fixed root) Univariate Brownian motion - evolutionary variance rate σ2 : 1.0 - root mean μ : 0.0 julia> PGBP.UnivariateBrownianMotion(1, 0, Inf) # root variance v = Inf (improper prior) Univariate Brownian motion - evolutionary variance rate σ2 : 1.0 - root mean μ : 0.0 - root variance v : Inf ``` The multivariate BM is available to model multivariate traits. If the components of a multivariate trait evolve in an uncorrelated manner, then ``\Sigma`` is a diagonal matrix and is specified its diagonal entries (e.g. `MvDiagBrownianMotion`). Otherwise, ``\Sigma`` is potentially dense and is passed in whole (e.g. `MvFullBrownianMotion`). ```jldoctest evolutionary_models julia> PGBP.MvDiagBrownianMotion([1, 0.5], [-1, 1]) # v = [0, 0] Multivariate Diagonal Brownian motion - evolutionary variance rates (diagonal values in the rate matrix): R : [1.0, 0.5] - root mean μ : [-1.0, 1.0] julia> PGBP.MvFullBrownianMotion([1 0.5; 0.5 1], [-1,1], [10^10 0; 0 10^10]) Multivariate Brownian motion - evolutionary variance rate matrix: R : [1.0 0.5; 0.5 1.0] - root mean μ : [-1.0, 1.0] - root variance v : [1.0e10 0.0; 0.0 1.0e10] ``` ``\Sigma`` can vary along the phylogeny. If path length ``t\ge 0`` from the root represents evolutionary time, then the Early Burst (EB) model and Accelerating Rate (AC) model respectively allow ``\Sigma`` to decay (``b<0``) and grow (``b>0``) along a *time-consistent* phylogeny: ```math \Sigma(t) = \Sigma_0\exp(bt), \text{ where } \Sigma_0 = \Sigma(0) ``` This model is not implemented at the moment. Selection can be additionally modeled by the [Ornstein-Uhlenbeck](https://en.wikipedia.org/wiki/Ornstein–Uhlenbeck_process) (OU) process, which allows a trait to diffuse with variance rate ``\Sigma`` yet drift towards some optimal value ``\theta`` (with selection "strength" ``\bm{A}``). ```jldoctest evolutionary_models julia> PGBP.UnivariateOrnsteinUhlenbeck(2, 3, -2, 0, 0.4) # σ2=2, below showing γ2 = σ2/(2α) homogeneous univariate Ornstein-Uhlenbeck - stationary evolutionary variance γ2 : 0.3333333333333333 - selection strength α : 3.0 - optimal value θ : -2.0 - root mean μ : 0.0 - root variance v : 0.4 ``` ## Edge factors After specifying the evolutionary model (e.g. `m = PGBP.UnivariateBrownianMotion(1, 0)`), it is eventually passed to [`init_beliefs_assignfactors!`](@ref) (see [4\. Initialize cluster graph beliefs](@ref)), which infers the conditional distribution for each node and assigns it to a cluster. We refer to these conditional distributions as *edge factors* since they relate the states of a parent node and its child. ## Hybrid factors Each reticulation node ``X_h`` has multiple parents ``X_{p_1},\dots,X_{p_k}``, and is thus potentially associated with multiple edge factors. We reconcile these by modeling ``X_h`` as a weighted-average of its "immediate parents", the child states for each of these edge factors. Imagine that we introduce ``k`` copies ``X_{(p_1,h)},\dots,X_{(p_k,h)}`` of ``X_h``, each of which descends from the corresponding ``X_{p_i}``. Then ``X_h`` is modeled as a weighted-average of ``X_{(p_1,h)},\dots,X_{(p_k,h)}``: ```math X_h = \sum_{i=1}^k \gamma_{(p_i,h)} X_{(p_i,h)} ``` where the inheritance weights ``\gamma_{(p_i,h)}`` are positive and sum to 1. Thus, each tree node is associated with an edge factor, and each hybrid node with a hybrid factor.
PhyloGaussianBeliefProp
https://github.com/JuliaPhylo/PhyloGaussianBeliefProp.jl.git
[ "MIT" ]
0.0.1
e785a3d1d3bd6dd66ffd313f06d03b00d1a0a9b4
docs
14835
```@meta CurrentModule = PhyloGaussianBeliefProp ``` # Getting started This version of the package is a proof of concept, and not all methods have been fully implemented. A minimal API is still incomplete, and so we demonstrate the package's various capabilities as pipelines involving multiple internal functions. A complete API that wraps these pipelines will be made available later. In what follows, we use simulated trait data. In most of this manual, we use as an example the network topology from [Lazaridis et al. (2014), Figure 3](https://doi.org/10.1038/nature13673) [lazaridis2014ancient](@cite), displayed below, with branch lengths arbitrarily set to 1 and inheritance probabilities (admixture proportions) set arbibitrarily to 0.4 and 0.6 at each hybrid node. ![](../assets/lazaridis_2014_trim.png) ## Exact likelihood for fixed parameters ### 1\. Read in the network and the tip data ```jldoctest getting_started julia> using PhyloGaussianBeliefProp julia> const PGBP = PhyloGaussianBeliefProp; julia> using PhyloNetworks # `readTopology`, `tipLabels`, `preorder!` julia> using DataFrames # `DataFrame` julia> net = readTopology(pkgdir(PGBP, "test/example_networks", "lazaridis_2014.phy")) PhyloNetworks.HybridNetwork, Rooted Network 23 edges 20 nodes: 7 tips, 4 hybrid nodes, 9 internal tree nodes. tip labels: Mbuti, Onge, Karitiana, MA1, ... (Mbuti:1.0,(((Onge:1.0,#H1:0.01::0.4)EasternNorthAfrican:1.0,(((Karitiana:1.0)#H1:0.01::0.6,(MA1:1.0,#H3:0.01::0.4)ANE:1.0)AncientNorthEurasian:1.0,(((#H2:0.01::0.4)#H3:0.01::0.6,Loschbour:1.0)WHG:1.0,#H4:0.01::0.4)WestEurasian:1.0)I1:1.0)I2:1.0,((European:1.0)#H2:0.01::0.6,Stuttgart:1.0)#H4:0.01::0.6)NonAfrican:1.0)I3; julia> preorder!(net) # updates net.nodes_changed to contain network nodes listed in preorder julia> df = DataFrame(taxon=tipLabels(net), # simulated using `simulate(net, ParamsBM(0, 1))` from PhyloNetworks x=[1.343, 0.841, -0.623, -1.483, 0.456, -0.081, 1.311]) 7×2 DataFrame Row │ taxon x │ String Float64 ─────┼──────────────────── 1 │ Mbuti 1.343 2 │ Onge 0.841 3 │ Karitiana -0.623 4 │ MA1 -1.483 5 │ Loschbour 0.456 6 │ European -0.081 7 │ Stuttgart 1.311 ``` In this example, the trait `x` is univariate. We have mapped the observed data to the corresponding species in the dataframe `df`. The call to `preorder!` updates `net` to contain a list of its nodes arranged in preorder (or topological ordering). Many internals in the package assume that this information is available, and so it is important that this be called immediately after reading in the network! ### 2\. Choose an evolutionary model At the moment, models available are: [`UnivariateBrownianMotion`](@ref), [`UnivariateOrnsteinUhlenbeck`](@ref), [`MvDiagBrownianMotion`](@ref), [`MvFullBrownianMotion`](@ref). Note however that not all methods may be implemented across all models. See section [Evolutionary models](@ref) for more details on the available models. ```jldoctest getting_started julia> m = PGBP.UnivariateBrownianMotion(1, 0) # σ2 = 1.0, μ = 0.0 Univariate Brownian motion - evolutionary variance rate σ2 : 1.0 - root mean μ : 0.0 ``` We specify a univariate Brownian motion with mean ``\mu=0`` and variance rate ``\sigma^2=1``. We want to compute the likelihood for these particular values, though other values may better fit the data. ### 3\. Build a cluster graph from the network Methods available are: [`Bethe`](@ref), [`LTRIP`](@ref), [`JoinGraphStructuring`](@ref), [`Cliquetree`](@ref). We first choose `Cliquetree` to compute the likelihood exactly. Other methods may return a loopy cluster graph, which gives an approximate likelihood. See section [Cluster graphs](@ref) for more background on cluster graphs. ```jldoctest getting_started julia> ct = PGBP.clustergraph!(net, PGBP.Cliquetree()) Meta graph based on a Graphs.SimpleGraphs.SimpleGraph{Int8} with vertex labels of type Symbol, vertex metadata of type Tuple{Vector{Symbol}, Vector{Int8}}, edge metadata of type Vector{Int8}, graph metadata given by :cliquetree, and default weight 0 julia> PGBP.labels(ct) |> collect # cluster labels 17-element Vector{Symbol}: :H1EasternNorthAfricanAncientNorthEurasian :EasternNorthAfricanAncientNorthEurasianI2 :OngeEasternNorthAfrican :StuttgartH4 :MbutiI3 :H2H3H4 :H3ANEWHGH4 :ANEWHGH4WestEurasian :LoschbourWHG :KaritianaH1 :EuropeanH2 :AncientNorthEurasianWestEurasianI1NonAfrican :ANEH4WestEurasianNonAfrican :ANEAncientNorthEurasianWestEurasianNonAfrican :AncientNorthEurasianI1I2NonAfrican :NonAfricanI3 :MA1ANE ``` See that each cluster's label is derived by concatenating the labels of the nodes it contains. ### 4\. Initialize cluster graph beliefs `ct` describes the topology of our cluster graph, but does not track the beliefs for each cluster. Next, we: - allocate memory for these beliefs - initialize their values using the evolutionary model - wrap them within another data structure to facilitate message passing. ```jldoctest getting_started julia> using Tables # `columntable` julia> tbl_x = columntable(select(df, :x)) # extract trait `x` from `df` as a column table (x = [1.343, 0.841, -0.623, -1.483, 0.456, -0.081, 1.311],) julia> b = PGBP.init_beliefs_allocate(tbl_x, df.taxon, net, ct, m); # allocate memory for beliefs julia> length(b) # no. of beliefs 33 julia> b[1] # belief for cluster {H1, EasternNorthAfrican, AncientNorthEurasian} before factor assignment belief for Cluster H1EasternNorthAfricanAncientNorthEurasian, 1 traits × 3 nodes, dimension 3. Node labels: Int8[17, 16, 10] trait × node matrix of non-degenerate beliefs: Bool[1 1 1] exponential quadratic belief, parametrized by μ: [0.0, 0.0, 0.0] h: [0.0, 0.0, 0.0] J: [0.0 0.0 0.0; 0.0 0.0 0.0; 0.0 0.0 0.0] g: 0.0 julia> PGBP.init_beliefs_assignfactors!(b, m, tbl_x, df.taxon, net.nodes_changed); # initialize beliefs from evolutionary model julia> b[1] # belief for cluster {H1, EasternNorthAfrican, AncientNorthEurasian} after factor assignment belief for Cluster H1EasternNorthAfricanAncientNorthEurasian, 1 traits × 3 nodes, dimension 3. Node labels: Int8[17, 16, 10] trait × node matrix of non-degenerate beliefs: Bool[1 1 1] exponential quadratic belief, parametrized by μ: [0.0, 0.0, 0.0] h: [0.0, 0.0, 0.0] J: [192.30769230769232 -76.92307692307693 -115.38461538461539; -76.92307692307693 30.769230769230774 46.15384615384616; -115.38461538461539 46.15384615384616 69.23076923076923] g: 1.7106097934927051 julia> ctb = PGBP.ClusterGraphBelief(b); # wrap beliefs to facilitate message passing julia> PGBP.nclusters(ctb) # no. of cluster beliefs 17 julia> PGBP.nsepsets(ctb) # no. of edge/sepset beliefs 16 ``` `b` is a vector of all beliefs, one for each cluster and edge (also known as *sepset*) in the cluster graph. The edge beliefs store the most recent messages passed between neighboring clusters. Recall that each cluster or edge is associated with a set of nodes. The *scope* ``x`` of its belief comes from stacking the trait vectors for these nodes. A belief with scope ``x`` is parametrized by ``(\bm{J},h,g)`` as follows: ```math \exp(-x^{\top}\bm{J}x/2 + h^{\top}x + g) ``` We show belief `b[1]` before and after factor (i.e. conditional distribution) assignment. Note that its `J` and `g` parameters are changed. `ctb` contains `b` with added information to locate specific beliefs in `b` from their corresponding cluster/edge labels in `ct`, and added storage to log information during message passing. ### 5\. Propose a schedule from the cluster graph A message schedule can be described by a sequence of cluster pairs. Each pairing tells us to send a message between these clusters (which must be neighbors), while the order within the pair indicates the sender and the recipient. We build a message schedule `sched` from `ct` by finding a minimal set of spanning trees for the cluster graph that together cover all its edges (i.e. neighbor cluster pairs). Each spanning tree is represented as a sequence of edges following some preorder traversal of `ct`. See section [Message schedules](@ref) for more details on message schedules. Since `ct` is a clique tree, there is a single spanning tree (`sched[1]`). We extract and display the preorder sequence of edges from `sched[1]`. In this example, `NonAfricanI3` is the root cluster of `ct`, and `KaritianaH1` is a leaf cluster. ```jldoctest getting_started julia> sched = PGBP.spanningtrees_clusterlist(ct, net.nodes_changed); julia> DataFrame(parent=sched[1][1], child=sched[1][2]) # edges of tree 1 in preorder 16×2 DataFrame Row │ parent child │ Symbol Symbol ─────┼────────────────────────────────────────────────────────────────────── 1 │ NonAfricanI3 AncientNorthEurasianWestEurasian… 2 │ AncientNorthEurasianWestEurasian… ANEAncientNorthEurasianWestEuras… 3 │ ANEAncientNorthEurasianWestEuras… ANEH4WestEurasianNonAfrican 4 │ ANEH4WestEurasianNonAfrican ANEWHGH4WestEurasian 5 │ ANEWHGH4WestEurasian H3ANEWHGH4 6 │ H3ANEWHGH4 LoschbourWHG 7 │ H3ANEWHGH4 MA1ANE 8 │ NonAfricanI3 MbutiI3 9 │ H3ANEWHGH4 H2H3H4 10 │ H2H3H4 EuropeanH2 11 │ H2H3H4 StuttgartH4 12 │ AncientNorthEurasianWestEurasian… AncientNorthEurasianI1I2NonAfric… 13 │ AncientNorthEurasianI1I2NonAfric… EasternNorthAfricanAncientNorthE… 14 │ EasternNorthAfricanAncientNorthE… H1EasternNorthAfricanAncientNort… 15 │ H1EasternNorthAfricanAncientNort… OngeEasternNorthAfrican 16 │ H1EasternNorthAfricanAncientNort… KaritianaH1 ``` ### 6\. Calibrate beliefs with the schedule We apply one iteration of belief propagation on `ctb` following the schedule `sched`. Since `ct` is a clique tree, the resulting beliefs are guaranteed to be *calibrated* (i.e. the beliefs of neighbor clusters agree marginally over the sepset between them). ```jldoctest getting_started julia> PGBP.calibrate!(ctb, sched); ``` ### 7\. Extract the log-likelihood On a calibrated clique tree, there are two ways to obtain the log-likelihood: - integrate any belief over its scope to get its normalization constant (`norm`) - compute the [`factored_energy`](@ref), which approximates the log-likelihood on loopy cluster graphs but is exact on a clique tree ```jldoctest getting_started julia> (_, norm) = PGBP.integratebelief!(b[1]); # `norm` is the integral of `b[1]` over its scope julia> norm -11.273958980921249 julia> (_, _, fe) = PGBP.factored_energy(ctb); # `fe` is the factored energy from the cluster/edge beliefs julia> fe -11.273958980921272 ``` The first approach is more efficient (it uses only one belief, rather than all beliefs), but only works for a clique tree. The normalization constant of a belief from a calibrated loopy cluster graph cannot be similarly interpreted. We see that both approaches return the same value, modulo rounding error. ## Exact inference In the section above, we computed the log-likelihood for ``\mu=0``, ``\sigma^2=1``. Now we find ``\mu=\widehat{\mu}`` and ``\sigma^2=\widehat{\sigma}^2`` that maximize the log-likelihood. There are two options: - iterative optimization - exact computation using belief propagation ```jldoctest getting_started julia> mod, ll, _ = PGBP.calibrate_optimize_cliquetree!( # iterative optimization ctb, # beliefs ct, # clique tree net.nodes_changed, # network nodes in preorder tbl_x, # trait data df.taxon, # tip labels PGBP.UnivariateBrownianMotion, # type of evolutionary model (1.0, 0)); # starting parameters: σ2 = 1.0, μ = 0.0 julia> mod # ML estimates Univariate Brownian motion - evolutionary variance rate σ2 : 0.31812948857664464 - root mean μ : 1.1525789703803826 julia> ll # log-likelihood for ML estimates -8.656529929205773 julia> mod, _ = PGBP.calibrate_exact_cliquetree!( # exact computation ctb, sched[1], # schedule the order in which edges (sepsets) are traversed net.nodes_changed, tbl_x, df.taxon, PGBP.UnivariateBrownianMotion); julia> mod # REML estimate for σ2, ML estimate for μ Univariate Brownian motion - evolutionary variance rate σ2 : 0.37115107002903314 - root mean μ : 1.1525789703844822 ``` Both options return the maximum-likelihood (ML) estimate for ``\mu``, though the latter returns the restricted maximum-likelihood (REML) estimate for ``\sigma^2``. Strictly speaking, the estimates from the latter option do not jointly maximize the log-likelihood. However, the REML estimate for ``\sigma^2`` is generally less biased than its ML counterpart. In this simple model, the REML estimate is just equal to the ML estimate up to a factor $(n-1)/n$, with $n$ the number of tips in the network: ```jldoctest getting_started julia> PGBP.varianceparam(mod) * (net.numTaxa - 1) / net.numTaxa # sigma2_REML = (n-1)/n * sigma2_ML 0.3181294885963141 ``` ## Approximate inference Suppose now that we use a loopy cluster graph instead of a clique tree. We choose `Bethe` to construct a Bethe cluster graph (also known as factor graph) `fg`. As before, we set up a data structure `fgb` to track the beliefs of the factor graph during message passing. Then we call [`calibrate_optimize_clustergraph!`](@ref), the analog of [`calibrate_optimize_cliquetree!`](@ref) from earlier: ```jldoctest getting_started julia> fg = PGBP.clustergraph!(net, PGBP.Bethe()) # factor graph Meta graph based on a Graphs.SimpleGraphs.SimpleGraph{Int8} with vertex labels of type Symbol, vertex metadata of type Tuple{Vector{Symbol}, Vector{Int8}}, edge metadata of type Vector{Int8}, graph metadata given by :Bethe, and default weight 0 julia> b_fg = PGBP.init_beliefs_allocate(tbl_x, df.taxon, net, fg, m); # allocate memory for beliefs julia> fgb = PGBP.ClusterGraphBelief(b_fg); # wrap beliefs to facilitate message passing julia> mod, fe, _ = PGBP.calibrate_optimize_clustergraph!(fgb, fg, net.nodes_changed, tbl_x, df.taxon, PGBP.UnivariateBrownianMotion, (1.0, 0)); julia> mod # parameter estimates Univariate Brownian motion - evolutionary variance rate σ2 : 0.3181295330492941 - root mean μ : 1.1525789120595669 julia> fe # factored energy approximation to the log-likelihood -8.587925093657454 ``` We see that both parameter estimates are very close to their maximum-likelihood counterparts (within 10⁻⁴ percent), and the factored energy slightly overestimates the log-likelihood for these values (within 1 percent).
PhyloGaussianBeliefProp
https://github.com/JuliaPhylo/PhyloGaussianBeliefProp.jl.git
[ "MIT" ]
0.0.1
e785a3d1d3bd6dd66ffd313f06d03b00d1a0a9b4
docs
728
# Installation For information on how to install Julia and PhyloNetworks, see [here](https://crsl4.github.io/PhyloNetworks.jl/dev/man/installation/#Installation). PhyloGaussianBeliefProp depends on PhyloNetworks. To install [PhyloGaussianBeliefProp](https://github.com/cecileane/PhyloGaussianBeliefProp.jl) in the Julia REPL, do: ```julia julia> using Pkg julia> Pkg.add("PhyloGaussianBeliefProp") ``` Or enter `]` in the Julia REPL to access the package mode, and do: ``` pkg> add PhyloGaussianBeliefProp ``` In this manual, we will also use [PhyloNetworks](https://github.com/crsl4/PhyloNetworks.jl) and other packages, to be installed similarly, here in package mode: ``` pkg> add PhyloNetworks pkg> add DataFrames ```
PhyloGaussianBeliefProp
https://github.com/JuliaPhylo/PhyloGaussianBeliefProp.jl.git
[ "MIT" ]
0.0.1
e785a3d1d3bd6dd66ffd313f06d03b00d1a0a9b4
docs
4181
```@meta CurrentModule = PhyloGaussianBeliefProp DocTestSetup = quote using DataFrames, Tables, PhyloNetworks, PhyloGaussianBeliefProp; const PGBP = PhyloGaussianBeliefProp; end ``` # Message schedules As described in [5. Propose a schedule from the cluster graph](@ref), we build a message schedule by calling [`spanningtrees_clusterlist`](@ref) on our given cluster graph (output by [`clustergraph!`](@ref)). A schedule of messages can be visualized as a sequence of edge traversals (from sender to recipient) on the cluster graph. Since the calibration of a cluster graph requires neighbor clusters to reach some state of agreement with each other, it is reasonable to expect that multiple messages may need to be sent back and forth on each edge. Thus, *proper* message schedules require that each edge is traversed in both directions, infinitely often (until stopping criteria are met). `spanningtrees_clusterlist` satisfies the requirements of a proper message schedule by specifying a finite sequence of edge traversals that together account for all possible messages on the cluster graph. This sequence can then be repeated as needed. Specifically: - the sequence of edge traversals is returned as a collection of edge sets for different spanning trees of the cluster graph - each edge set is ordered as a preorder traversal of a spanning tree Each time [`calibrate!`](@ref) is called with a particular tree, it passes messages according to a postorder then preorder traversal of the tree. Returning to the last few edges of the tree schedule from [5. Propose a schedule from the cluster graph](@ref): ```jldoctest; setup = :(net = readTopology(pkgdir(PGBP, "test/example_networks", "lazaridis_2014.phy")); preorder!(net); ct = PGBP.clustergraph!(net, PGBP.Cliquetree()); sched = PGBP.spanningtrees_clusterlist(ct, net.nodes_changed);) julia> DataFrame(parent=sched[1][1], child=sched[1][2])[13:end,:] # last 4 edges of tree 1 in preorder 4×2 DataFrame Row │ parent child │ Symbol Symbol ─────┼────────────────────────────────────────────────────────────────────── 1 │ AncientNorthEurasianI1I2NonAfric… EasternNorthAfricanAncientNorthE… 2 │ EasternNorthAfricanAncientNorthE… H1EasternNorthAfricanAncientNort… 3 │ H1EasternNorthAfricanAncientNort… OngeEasternNorthAfrican 4 │ H1EasternNorthAfricanAncientNort… KaritianaH1 ``` According to a postorder, the first message to be sent is from `KaritianaH1` to `H1EasternNorthAfricanAncientNort…`, followed by `OngeEasternNorthAfrican` to `H1EasternNorthAfricanAncientNort…` and so on. An *iteration* of calibration refers to `calibrate!` being called once for each schedule tree in the collection. Continuing with the code example from [A heuristic](@ref), we: - increase the number of iterations of calibration to 100 (the default is 1) - tell `calibrate!` to return once calibration is detected (`auto=true`) - log information on when calibration was detected (`info=true`) ```jldoctest; setup = :(net = readTopology(pkgdir(PGBP, "test/example_networks", "lipson_2020b.phy")); preorder!(net); df = DataFrame(taxon=tipLabels(net), x=[0.431, 1.606, 0.72, 0.944, 0.647, 1.263, 0.46, 1.079, 0.877, 0.748, 1.529, -0.469]); m = PGBP.UnivariateBrownianMotion(1, 0); fg = PGBP.clustergraph!(net, PGBP.Bethe()); tbl_x = columntable(select(df, :x)); b = PGBP.init_beliefs_allocate(tbl_x, df.taxon, net, fg, m); fgb = PGBP.ClusterGraphBelief(b); sched = PGBP.spanningtrees_clusterlist(fg, net.nodes_changed);) julia> PGBP.init_beliefs_assignfactors!(b, m, tbl_x, df.taxon, net.nodes_changed); # reset to initial beliefs julia> PGBP.regularizebeliefs_bynodesubtree!(fgb, fg); # regularize by node subtree julia> PGBP.calibrate!(fgb, sched, 100; auto=true, info=true) [ Info: calibration reached: iteration 20, schedule tree 1 true ``` Similarly, during iterative optimization (e.g [`calibrate_optimize_clustergraph!`](@ref)), multiple iterations of calibration are run for each set of candidate parameter values (till beliefs are calibrated) to determine the associated factored energy.
PhyloGaussianBeliefProp
https://github.com/JuliaPhylo/PhyloGaussianBeliefProp.jl.git
[ "MIT" ]
0.0.1
e785a3d1d3bd6dd66ffd313f06d03b00d1a0a9b4
docs
8465
```@meta CurrentModule = PhyloGaussianBeliefProp ``` # Regularization ## Ill-defined messages Propagating a message ``\tilde{\mu}_{i\rightarrow j}`` from a cluster ``\mathcal{C}_i`` to its neighbor ``\mathcal{C}_j`` involves 3 steps: 1\. ``\mathcal{C}_i``'s belief ``\beta_i`` is marginalized over the sepset nodes ``\mathcal{S}_{i,j}``: ```math \tilde{\mu}_{i\rightarrow j} = \int\beta_i d(\mathcal{C}_i\setminus \mathcal{S}_{i,j}) ``` 2\. The message ``\tilde{\mu}_{i\rightarrow j}`` is divided by the current edge belief ``\mu_{i,j}``, and the result is multiplied into ``\mathcal{C}_j``'s belief ``\beta_j``: ```math \beta_j \leftarrow \beta_j\tilde{\mu}_{i\rightarrow j}/\mu_{i,j} ``` 3\. The edge belief ``\mu_{i,j}`` is updated to the message just passed: ```math \mu_{i,j} \leftarrow \tilde{\mu}_{i\rightarrow j} ``` In the linear Gaussian setting, where each belief has the form ``\exp(-x^{\top}\bm{J}x/2 + h^{\top}x + g)``, where ``x`` denotes its scope, these steps can be concisely expressed in terms of the ``(\bm{J},h,g)`` parameters of the beliefs involved. Crucially, the precision matrix ``\bm{J}`` for ``\beta_i`` has to be full-rank / invertible with respect to the nodes to be integrated out. For example, if ``\mathcal{C}_i=\{X_1,X_2,X_3\}``, ``\mathcal{S}_{i,j}=\{X_1\}`` and: ```math \beta_i = \exp\left(-\begin{bmatrix}x_1 \\ x_2 \\ x_3\end{bmatrix}^{\top}\bm{J} \begin{bmatrix}x_1 \\ x_2 \\ x_3\end{bmatrix}/2 + h^{\top}\begin{bmatrix}x_1 \\ x_2 \\ x_3\end{bmatrix} + g\right), \text{ where } \bm{J} = \begin{matrix}x_1 \\ x_2 \\ x_3\end{matrix}\!\! \begin{bmatrix}1 & -1/2 & -1/2 \\ -1/2 & 1/4 & 1/4 \\ -1/2 & 1/4 & 1/4\end{bmatrix} ``` then the ``2\times 2`` submatrix of ``\bm{J}`` for ``\mathcal{C}_i\setminus\mathcal{S}_{i,j}=\{X_2,X_3\}`` (annotated above) consists only of ``1/4``s, is not full-rank, and thus ``\tilde{\mu}_{i\rightarrow j}`` is ill-defined / cannot be computed. On a clique tree, a schedule of messages that follows a postorder traversal of the tree (from the tip clusters to a root cluster) can always be computed. On a loopy cluster graph however, it may be unclear how to find a schedule such that each message is well-defined, or if such a schedule even exists. This is a problem since a loopy cluster graph typically requires multiple traversals to reach convergence. ## A heuristic One approach to deal with ill-defined messages is to skip their computation and proceed on with the schedule. A more robust, yet simple, alternative is to *regularize* cluster beliefs by increasing some diagonal elements of their precision matrix so that the relevant submatrices are full-rank: ```math \begin{matrix}x_1 \\ x_2 \\ x_3\end{matrix}\!\! \begin{bmatrix}1 & -1/2 & -1/2 \\ -1/2 & 1/4 & 1/4 \\ -1/2 & 1/4 & 1/4\end{bmatrix} \longrightarrow \begin{bmatrix}1 & -1/2 & -1/2 \\ -1/2 & 1/4\textcolor{red}{+\epsilon} & 1/4 \\ -1/2 & 1/4 & 1/4\textcolor{red}{+\epsilon}\end{bmatrix} ``` To maintain the probability model, the product of all cluster beliefs divided by the product of all edge beliefs must remain equal to the joint distribution ``p_\theta`` (this is satisfied after factor assignment, and everytime a message is passed). Thus, each time a cluster belief is regularized, we "balance" this change by a similar modification to one or more associated edge beliefs. For example, if ``\mathcal{C}_i`` above was connected to another sepset ``\mathcal{S}_{i,k}=\{X_2,X_3\}`` with ``\bm{J}=\bm{0}`` then we might do: ```math \begin{matrix}x_2 \\ x_3\end{matrix}\!\! \begin{bmatrix}0 & 0 \\ 0 & 0\end{bmatrix} \longrightarrow \begin{bmatrix}0\textcolor{red}{+\epsilon} & 0 \\ 0 & \textcolor{red}{+\epsilon}\end{bmatrix} ``` We provide several options for regularization below. A typical usage of these methods is after the initial assignment of factors. ### By cluster [`regularizebeliefs_bycluster!`](@ref) performs regularization separately from message passing. The algorithm loops over each cluster. For each incident sepset, ``\epsilon`` is added to all the diagonal entries of its precision, and to the corresponding diagonal entries of the cluster's precision. Currently, [`calibrate_optimize_clustergraph!`](@ref) calls `regularizebeliefs_bycluster!` for each set of candidate parameter values, before calibration is run. Other options are likely to be available in future versions. ### Along node subtrees [`regularizebeliefs_bynodesubtree!`](@ref) performs regularization separately from message passing. A *node subtree* of a cluster graph is the subtree induced by all clusters that contain that node. The algorithm loops over each node subtree. For all edges and all but one cluster in a given node subtree, it adds ``\epsilon`` to the diagonal entries of the precision matrix that correspond to that node. ### On a schedule [`regularizebeliefs_onschedule!`](@ref) interleaves regularization with message passing. The algorithm loops over each cluster and tracks which messages have been sent: - Each cluster ``\mathcal{C}_i`` is regularized only if it has not received a message from ``\ge 1`` of its neighbors. - Regularization proceeds by adding ``\epsilon`` to the diagonal entries of ``\mathcal{C}_i``'s precision that correspond to the nodes in ``\mathcal{S}_{i,j}``, and to all diagonal entries of ``\mathcal{S}_{i,j}``'s precision, if neighbor ``\mathcal{C}_j`` has not sent a message to ``\mathcal{C}_i``. - After being regularized, ``\mathcal{C}_i`` sends a message to each neighbor for which it has not already done so. The example below shows how regularization methods can help to minimize ill-defined messages. We use here a network from [Lipson et al. (2020, Extended Data Fig. 4)](https://doi.org/10.1038/s41586-020-1929-1) [lipson2020ancient](@cite), with degree-2 nodes suppressed and any resulting length 0 edges assigned length 1 (see [lipson2020b_notes.jl](https://github.com/bstkj/graphicalmodels_for_phylogenetics_code/blob/5f61755c4defe804fd813113e883d49445971ade/real_networks/lipson2020b_notes.jl)), and follow the steps in [Exact likelihood for fixed parameters](@ref): ```jldoctest regularization julia> using DataFrames, Tables, PhyloNetworks, PhyloGaussianBeliefProp julia> const PGBP = PhyloGaussianBeliefProp; julia> net = readTopology(pkgdir(PGBP, "test/example_networks", "lipson_2020b.phy")); # 54 edges; 44 nodes: 12 tips, 11 hybrid nodes, 21 internal tree nodes. julia> preorder!(net) julia> df = DataFrame(taxon=tipLabels(net), # simulated using `simulate(net, ParamsBM(0, 1))` from PhyloNetworks x=[0.431, 1.606, 0.72, 0.944, 0.647, 1.263, 0.46, 1.079, 0.877, 0.748, 1.529, -0.469]); julia> m = PGBP.UnivariateBrownianMotion(1, 0); # choose model: σ2 = 1.0, μ = 0.0 julia> fg = PGBP.clustergraph!(net, PGBP.Bethe()); # build factor graph julia> tbl_x = columntable(select(df, :x)); # trait data as column table julia> b = PGBP.init_beliefs_allocate(tbl_x, df.taxon, net, fg, m); # allocate memory for beliefs julia> PGBP.init_beliefs_assignfactors!(b, m, tbl_x, df.taxon, net.nodes_changed); # assign factors based on model julia> fgb = PGBP.ClusterGraphBelief(b); # wrap beliefs for message passing julia> sched = PGBP.spanningtrees_clusterlist(fg, net.nodes_changed); # generate schedule ``` Without regularization, errors indicating ill-defined messages (which are skipped) are returned when we run a single iteration of calibration: ```jldoctest regularization; filter = r"└ @ PhyloGaussianBeliefProp.*" => s"" julia> PGBP.calibrate!(fgb, sched); # there are ill-defined messages (which are skipped) ┌ Error: belief H5I5I16, integrating [2, 3] └ @ PhyloGaussianBeliefProp ... ┌ Error: belief H6I10I15, integrating [2, 3] └ @ PhyloGaussianBeliefProp ... ``` However, with regularization, there are no ill-defined messages for a single iteration of calibration: ```jldoctest regularization julia> PGBP.init_beliefs_assignfactors!(b, m, tbl_x, df.taxon, net.nodes_changed); # reset to initial beliefs julia> PGBP.regularizebeliefs_bynodesubtree!(fgb, fg); # regularize by node subtree julia> PGBP.calibrate!(fgb, sched); # no ill-defined messages julia> PGBP.init_beliefs_assignfactors!(b, m, tbl_x, df.taxon, net.nodes_changed); # reset to initial beliefs julia> PGBP.regularizebeliefs_onschedule!(fgb, fg); # regularize by on schedule julia> PGBP.calibrate!(fgb, sched); # no ill-defined messages ``` Note that this does not necessarily guarantee that subsequent iterations avoid ill-defined messages.
PhyloGaussianBeliefProp
https://github.com/JuliaPhylo/PhyloGaussianBeliefProp.jl.git
[ "MIT" ]
0.0.1
e785a3d1d3bd6dd66ffd313f06d03b00d1a0a9b4
docs
1567
# Example networks The `Source` column indicates which figure of which study the network was coded from. | Network | Source | | --- | --- | | `lazaridis_2014.phy` | [Fig 3](https://doi.org/10.1038/nature13673) | | `lipson_2020b.phy` | [Extended Data Fig 4](https://doi.org/10.1038/s41586-020-1929-1) | | `mateescu_2010.phy` | [Fig 2a](https://doi.org/10.1613/jair.2842) | | `muller_2022.phy` | [Fig 1a](https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9297283/) | | `sun_2023.phy` | [Fig 4c](https://doi.org/10.1038/s41559-023-02185-8) | | `maier_2023.phy` | [Fig 1e](https://doi.org/10.7554/eLife.85492)| Networks (coded in extended newick format) were preprocessed as follows: - `mateescu_2020.phy`, `lazaridis_2014.phy`: edge lengths and inheritance probabilities were set arbitrarily. - `muller_2022.phy`: the inheritance probabilities were estimated from the inferred recombination breakpoints (see [muller2022_nexus2newick.jl](https://github.com/bstkj/graphicalmodels_for_phylogenetics_code/blob/5f61755c4defe804fd813113e883d49445971ade/real_networks/muller2022_nexus2newick.jl)). - `lipson_2020b.phy`: degree-2 nodes were suppressed and any resulting length 0 edges assigned length 1 (see [lipson2020b_notes.jl](https://github.com/bstkj/graphicalmodels_for_phylogenetics_code/blob/5f61755c4defe804fd813113e883d49445971ade/real_networks/lipson2020b_notes.jl)). - `sun_2023.phy`: degree-2 nodes were not suppressed. All admixture edges were assigned a length of 1.0 (the minimum length among all drift edges). - `maier_2023.phy`: Edge lengths were set arbitrarily.
PhyloGaussianBeliefProp
https://github.com/JuliaPhylo/PhyloGaussianBeliefProp.jl.git
[ "MIT" ]
0.1.12
46a00c75bb6eb7fdaf5b15d75e9a544c0f91484d
code
1061
using Documenter using AnyMOD makedocs(sitename="AnyMOD.jl", authors = "Leonard Goeke", pages = [ "Introduction" => "index.md", "Model Elements" => Any["Model object" => "model_object.md", "Sets and Mappings" => "sets.md", "Parts" => "parts.md", "Parameter" => Any["Parameter overview" => "parameter_overview.md","Parameter list" => "parameter_list.md"], "Variables" => "variables.md", "Constraints" => "constraints.md"], "Tools" => Any["Reporting" => Any["Error handling" => "error.md","Data files" => "data.md","Plots" => "plots.md",], "Performance and stability" => "performance.md"], "Annex" => Any["Tips" => "tips.md", "API" => "api.md", "Related material" => "related.md"] ], ) deploydocs( repo = "github.com/leonardgoeke/AnyMOD.jl.git", devbranch = "master" )
AnyMOD
https://github.com/leonardgoeke/AnyMOD.jl.git
[ "MIT" ]
0.1.12
46a00c75bb6eb7fdaf5b15d75e9a544c0f91484d
code
1708
module AnyMOD # XXX enforce use of Julia's own python distribution to avoid interference with local python installations using Pkg # save current value of environment variable if "PYTHON" in keys(ENV) envPy = ENV["PYTHON"] else envPy = "" end # build python package with Julia distribution ENV["PYTHON"]="" Pkg.build("PyCall") # re-sets environment to former status if envPy == "" delete!(ENV,"PYTHON") else ENV["PYTHON"] = envPy end using Base.Threads, CSV, Dates, LinearAlgebra, Requires, DataFrames, JuMP using MathOptInterface, Reexport, Statistics, PyCall, SparseArrays, CategoricalArrays @reexport using JuMP pyimport_conda("networkx","networkx") pyimport_conda("matplotlib.pyplot","matplotlib") pyimport_conda("plotly","plotly") include("objects.jl") include("tools.jl") include("modelCreation.jl") include("optModel/exchange.jl") include("optModel/objective.jl") include("optModel/other.jl") include("optModel/tech.jl") include("dataHandling/mapping.jl") include("dataHandling/parameter.jl") include("dataHandling/readIn.jl") include("dataHandling/tree.jl") include("dataHandling/util.jl") export anyModel, initializeModel, createOptModel!, setObjective! export reportResults, reportTimeSeries, printObject, printDuals export plotTree, plotEnergyFlow, moveNode! # XXX define function to print subset of infeasible constraints, if gurobi can be used (has to be installed separately) function __init__() @require Gurobi="2e9cd046-0924-5485-92f1-d5272153d98b" include("dataHandling/gurobiTools.jl") end end
AnyMOD
https://github.com/leonardgoeke/AnyMOD.jl.git
[ "MIT" ]
0.1.12
46a00c75bb6eb7fdaf5b15d75e9a544c0f91484d
code
4641
# XXX create optimization model after anyModel has been initialized """ ```julia createOptModel!(model_object::anyModel) ``` Create all elements of the model's underlying optimization problem except for the objective function. """ function createOptModel!(anyM::anyModel) # <editor-fold desc="create technology related variables and constraints" techSym_arr = collect(keys(anyM.parts.tech)) parDef_dic = defineParameter(anyM.options,anyM.report) # XXX get dimension of expansion and capacity variables and mapping of capacity constraints tsYear_dic = Dict(zip(anyM.supTs.step,collect(0:anyM.options.shortExp:(length(anyM.supTs.step)-1)*anyM.options.shortExp))) prepVar_dic = Dict{Symbol,Dict{Symbol,NamedTuple}}() prepareTechs!(techSym_arr,prepVar_dic,tsYear_dic,anyM) if any(getindex.(anyM.report,1) .== 3) print(getElapsed(anyM.options.startTime)); errorTest(anyM.report,anyM.options) end # remove technologies without any potential capacity variables techSym_arr = collect(keys(prepVar_dic)) foreach(x -> delete!(anyM.parts.tech, x),setdiff(collect(keys(anyM.parts.tech)),techSym_arr)) # XXX create all technology related elements # creates dictionary that assigns combination of superordinate dispatch timestep and dispatch level to dispatch timesteps allLvlTsDis_arr = unique(getfield.(values(anyM.cInfo),:tsDis)) ts_dic = Dict((x[1], x[2]) => anyM.sets[:Ts].nodes[x[1]].lvl == x[2] ? [x[1]] : getDescendants(x[1],anyM.sets[:Ts],false,x[2]) for x in Iterators.product(anyM.supTs.step,allLvlTsDis_arr)) # creates dictionary that assigns combination of expansion region and dispatch level to dispatch region allLvlR_arr = union(getindex.(getfield.(getfield.(values(anyM.parts.tech),:balLvl),:exp),2),map(x -> x.rDis,values(anyM.cInfo))) allRExp_arr = union([getfield.(getNodesLvl(anyM.sets[:R],x),:idx) for x in allLvlR_arr]...) r_dic = Dict((x[1], x[2]) => (anyM.sets[:R].nodes[x[1]].lvl <= x[2] ? getDescendants(x[1], anyM.sets[:R],false,x[2]) : getAncestors(x[1],anyM.sets[:R],:int,x[2])[end]) |> (z -> typeof(z) <: Array ? z : [z]) for x in Iterators.product(allRExp_arr,allLvlR_arr)) produceMessage(anyM.options,anyM.report, 3," - Determined dimension of expansion and capacity variables for technologies") # constraints for technologies are prepared in threaded loop and stored in an array of dictionaries techCnsDic_arr = Array{Dict{Symbol,cnsCont}}(undef,length(techSym_arr)) tech_itr = collect(enumerate(techSym_arr)) @threads for (idx,tSym) in tech_itr techCnsDic_arr[idx] = createTech!(techInt(tSym,anyM.sets[:Te]),anyM.parts.tech[tSym],prepVar_dic[tSym],copy(parDef_dic),ts_dic,r_dic,anyM) end # loops over array of dictionary with constraint container for each technology to create actual jump constraints for (idx,cnsDic) in enumerate(techCnsDic_arr), cnsSym in keys(cnsDic) anyM.parts.tech[techSym_arr[idx]].cns[cnsSym] = createCns(cnsDic[cnsSym],anyM.optModel) end produceMessage(anyM.options,anyM.report, 1," - Created variables and constraints for all technologies") # </editor-fold> # <editor-fold desc="create exchange related variables and constraints" prepExc_dic = Dict{Symbol,NamedTuple}() partExc = anyM.parts.exc partLim = anyM.parts.lim # obtain dimensions of expansion variables for exchange potExc_df = prepareExcExpansion!(partExc,partLim,prepExc_dic,tsYear_dic,anyM) # obtain capacity dimensions solely based on expansion variables prepareCapacity!(partExc,prepExc_dic,prepExc_dic[:expExc].var,:capaExc,anyM) addResidualCapaExc!(partExc,prepExc_dic,potExc_df,anyM) if !all(map(x -> isempty(x),values(prepExc_dic[:capaExc]))) # create expansion and capacity variables createExpCap!(partExc,prepExc_dic,anyM) # create capacity constraint createCapaExcCns!(partExc,anyM) produceMessage(anyM.options,anyM.report, 2," - Created all variables and constraints related to expansion and capacity for exchange") # create dispatch related variables createExcVar!(partExc,ts_dic,anyM) produceMessage(anyM.options,anyM.report, 2," - Created all dispatch variables for exchange") # create capacity restrictions createRestrExc!(ts_dic,partExc,anyM) produceMessage(anyM.options,anyM.report, 2," - Created all capacity restrictions for exchange") produceMessage(anyM.options,anyM.report, 1," - Created variables and constraints for exchange") end # </editor-fold> createTradeVarCns!(anyM.parts.trd,anyM) createEnergyBal!(techSym_arr,anyM) createLimitCns!(anyM.parts.lim,anyM) produceMessage(anyM.options,anyM.report, 1," - Completed model creation") end
AnyMOD
https://github.com/leonardgoeke/AnyMOD.jl.git
[ "MIT" ]
0.1.12
46a00c75bb6eb7fdaf5b15d75e9a544c0f91484d
code
21341
# <editor-fold desc="definition and handling of parameters" # XXX defines struct for handling parameter data """ ```julia mutable struct ParElement name::Symbol dim::Tuple defVal::Union{Nothing,Float64} herit::Tuple data::DataFrame techPre::NamedTuple{(:preset,:mode),Tuple{Symbol,Tuple{Vararg{Symbol,N} where N}}} end ``` Type to store parameter data. Includes data and additional information specified in [Parameter list](@ref). **Fields** - `name::Symbol`: name of the parameter - `dim::Tuple`: potential dimensions of parameter data - `defVal::Union{Nothing,Float64}`: default value - `herit::Tuple`: inheritance rules for parameter, see [Parameter overview](@ref) - `data::DataFrame`: parameter data """ mutable struct ParElement name::Symbol dim::Tuple defVal::Union{Nothing,Float64} herit::Tuple data::DataFrame techPre::NamedTuple{(:preset,:mode),Tuple{Symbol,Tuple{Vararg{Symbol,N} where N}}} function ParElement(paraData_df::DataFrame,paraDef_ntup::NamedTuple,name::Symbol,report::Array{Tuple,1}) setLongShort_dic = Dict(:Ts => :timestep, :R => :region, :C => :carrier, :Te => :technology, :M => :mode) if isempty(paraData_df) return new(name,paraDef_ntup.dim,paraDef_ntup.defVal,paraDef_ntup.herit,DataFrame()) end # XXX check consistency of rows in input dataframe and definition of set and rename columns according to set defintion # assigns array of used suffixes according to parameter defintion to each set splitDim_arr = map(x -> map(y -> Symbol(y), split(String(x),"_")),collect(paraDef_ntup.dim)) setSuf_dic = Dict(x => map(y -> length(y) == 1 ? Symbol() : y[end],filter(z -> z[1] == x,splitDim_arr)) for x in unique(map(x -> x[1],splitDim_arr))) # loops over set columns in input dataframe and assigns them to the sets defined for the parameter newCol_dic = Dict(:val => :val) sufNum_dic = Dict(:b => 2, :c => 3, :d => 4, :e => 5, :f => 6, :g => 7) for colNam in setdiff(namesSym(paraData_df),[:val]) colNam_arr = split(String(colNam),"_") setNam = Symbol(colNam_arr[1]) if !haskey(setSuf_dic,setNam) # parameter provided for a set not appearing in definition (e.g. demand depending on the technology) push!(report,(2, "parameter assignment", string(name), "parameter data was specified for $(setLongShort_dic[setNam]) set, but it is not defined to depend on this set")) continue elseif length(setSuf_dic[setNam]) == 1 && length(colNam_arr) > 1 # they are several instances of the set provided, but it only depends on one instance (e.g. two region sets for efficiency) push!(report,(2, "parameter assignment", string(name), "parameter data was specified for several instances of $(setLongShort_dic[setNam]) set, but it is defined to depend only on one instance, additonal instances were ignored")) continue elseif setSuf_dic[setNam][1] == Symbol() # set has only one instance and no suffix => no change when converting from read-in dataframe to parameter element newCol_dic[colNam] = colNam elseif length(setSuf_dic[setNam]) == 1 || length(colNam_arr) == 1 # column name in dataframe has no underscore, but defintion of parameter element has one newCol_dic[colNam] = Symbol(setNam, "_", setSuf_dic[setNam][1]) else cntRep_int = sufNum_dic[Symbol(colNam_arr[2])] # set defined for several instances newCol_dic[colNam] = Symbol(setNam, "_", setSuf_dic[setNam][cntRep_int]) end end # filters only used coulumns, renames them accordingly and converts to table writeData_df = paraData_df[:,collect(keys(newCol_dic))] DataFrames.rename!(writeData_df,newCol_dic) new_obj = new(name,paraDef_ntup.dim,paraDef_ntup.defVal,paraDef_ntup.herit,writeData_df) # defines on which level parameter is presetted and which capacity restrictions are affected by different modes for all dispatch parameters, where this is specified if haskey(paraDef_ntup,:techPre) new_obj.techPre = paraDef_ntup.techPre end return new_obj end ParElement() = new() end # XXX specific struct for read in process of parameter data mutable struct parEntry colSet::Symbol entry::Array{String,1} lvl::Array{Int,1} startLvl::Int end # </editor-fold> # <editor-fold desc="import and extensions of base functions" # XXX functions to copy parameter structs of parameter data import Base.copy function copy(par_obj::ParElement) out = ParElement() out.name = par_obj.name out.dim = par_obj.dim out.defVal = par_obj.defVal out.herit = par_obj.herit out.data = copy(par_obj.data) if isdefined(par_obj,:techPre) out.techPre = par_obj.techPre end return out end function copy(par_obj::ParElement,data_df::DataFrame) out = ParElement() out.name = par_obj.name out.dim = par_obj.dim out.defVal = par_obj.defVal out.herit = par_obj.herit out.data = data_df if isdefined(par_obj,:techPre) out.techPre = par_obj.techPre end return out end # XXX usual collect sometimes creates a mysterious error if used on dictionary keys, this command avoids this import Base._collect import Base.SizeUnknown collectKeys(itr) = _collect(Symbol, itr, SizeUnknown()) # </editor-fold> # <editor-fold desc="struct for individual parts of the model" # XXX defines parts of the model abstract type AbstractModelPart end """ ```julia mutable struct TechPart <: AbstractModelPart name::Tuple{Vararg{String,N} where N} par::Dict{Symbol,ParElement} var::Dict{Symbol,DataFrame} cns::Dict{Symbol,DataFrame} carrier::NamedTuple balLvl::NamedTuple{(:exp,:ref),Tuple{Tuple{Int,Int},Union{Nothing,Tuple{Int,Int}}}} capaRestr::DataFrame actSt::Tuple type::Symbol disAgg::Bool modes::Tuple{Vararg{Int,N} where N} TechPart(name::Tuple{Vararg{String,N} where N}) = new(name,Dict{Symbol,ParElement}(),Dict{Symbol,DataFrame}(),Dict{Symbol,DataFrame}()) TechPart() = new() end ``` Type used for technology model parts. **General fields** - `par`: dictionary of parameters with names as keys (see [Parameter list](@ref)) - `var`: dictionary of variables with names as keys (see [Variables](@ref)) - `cns`: dictionary of constraints with names as key (see [Constraints](@ref)) **Technology specific fields** See [Technologies](@ref) for details. - `name`: full name of technology as a series of nodes from the technology tree - `carrier`: ids of energy carriers assigned to technology by groups (e.g. generation, use, ...) - `balLvl`: temporal and spatial resolution for expansion and conversion balance of the technology - `capaRestr`: specification of capacity restrictions required for technology - `actSt`: ids of carriers actively stored although they are not leafs - `type`: type of technology (`stock`, `mature`, or `evolving`) - `disAgg`: if `true`, dispatch is modelled at expansion resolution instead of dispatch resolution - `modes`: different operational modes of technology """ mutable struct TechPart <: AbstractModelPart name::Tuple{Vararg{String,N} where N} par::Dict{Symbol,ParElement} var::Dict{Symbol,DataFrame} cns::Dict{Symbol,DataFrame} carrier::NamedTuple balLvl::NamedTuple{(:exp,:ref),Tuple{Tuple{Int,Int},Union{Nothing,Tuple{Int,Int}}}} capaRestr::DataFrame actSt::Tuple type::Symbol disAgg::Bool modes::Tuple{Vararg{Int,N} where N} TechPart(name::Tuple{Vararg{String,N} where N}) = new(name,Dict{Symbol,ParElement}(),Dict{Symbol,DataFrame}(),Dict{Symbol,DataFrame}()) TechPart() = new() end """ ```julia mutable struct TechPart <: AbstractModelPart par::Dict{Symbol,ParElement} var::Dict{Symbol,DataFrame} cns::Dict{Symbol,DataFrame} OthPart() = new(Dict{Symbol,ParElement}(),Dict{Symbol,DataFrame}(),Dict{Symbol,DataFrame}( end ``` Type used for 'exchange', 'trade', 'balance', 'limits', and 'objective' model parts. **Fields** - `par`: dictionary of parameters with names as keys (see [Parameter list](@ref)) - `var`: dictionary of variables with names as keys (see [Variables](@ref)) - `cns`: dictionary of constraints with names as keys (see [Constraints](@ref)) """ mutable struct OthPart <: AbstractModelPart par::Dict{Symbol,ParElement} var::Dict{Symbol,DataFrame} cns::Dict{Symbol,DataFrame} OthPart() = new(Dict{Symbol,ParElement}(),Dict{Symbol,DataFrame}(),Dict{Symbol,DataFrame}()) end # XXX container to store data defining a constraint (used to separate definition and actual jump creation of constraints) struct cnsCont data::DataFrame sign::Symbol end # </editor-fold> # <editor-fold desc="structs for nodes that then make up the trees to save set data" # XXX define nodes for set tree and tree itself """ ```julia mutable struct Node idx::Int val::String lvl::Int subIdx::Int down::Array{Int,1} end ``` Type to store nodes of hierarchical trees. **Fields** - `idx`: internal node id - `val`: name originally assigned - `lvl`: level of node within hierarchical tree - `subIdx`: numbered position among all nodes sharing the same direct ancestor - `down`: array of children """ mutable struct Node idx::Int val::String lvl::Int subIdx::Int down::Array{Int,1} end """ ```julia mutable struct Tree nodes::Dict{Int,Node} srcTup::Dict{Tuple,Array{Int,1}} srcStr::Dict{Tuple{String,Int},Array{Int,1}} up::Dict{Int,Int} height::Int Tree() = new(Dict{Int,Node}(),Dict{Tuple,Int}(),Dict{String,Array{Int,1}}(),Dict{Int,Int}(),1) end ``` Type to store hierarchical trees. **Fields** - `nodes`: dictionary of nodes with node ids as keys - `srcTup`: assigns a tuple of consecutive node names to the corresponding id - `srcStr`: assigns a tuple with a node name and a level to the corresponding id - `up`: assigns the id of each node to the id of its ancestor - `height`: maximum level of tree """ mutable struct Tree nodes::Dict{Int,Node} srcTup::Dict{Tuple,Array{Int,1}} srcStr::Dict{Tuple{String,Int},Array{Int,1}} up::Dict{Int,Int} height::Int Tree() = new(Dict{Int,Node}(),Dict{Tuple,Int}(),Dict{String,Array{Int,1}}(),Dict{Int,Int}(),1) end # </editor-fold> # <editor-fold desc="options for model and model itself" # create abstract model object to reference before creation (avoid circular type definiton) abstract type AbstractModel end # XXX defines final model object and its options struct modOptions # data in- and output inDir::Array{String,1} outDir::String objName::String csvDelim::String outStamp::String # model generation decomm::Symbol interCapa::Symbol supTsLvl::Int shortExp::Int redStep::Float64 # managing numerical issues emissionLoss::Bool coefRng::NamedTuple{(:mat,:rhs),Tuple{Tuple{Float64,Float64},Tuple{Vararg{Float64,2}}}} scaFac::NamedTuple{(:capa,:oprCapa,:dispConv,:dispSt,:dispExc, :dispTrd, :costDisp,:costCapa,:obj),Tuple{Vararg{Float64,9}}} bound::NamedTuple{(:capa,:disp,:obj),Tuple{Vararg{Float64,3}}} avaMin::Float64 checkRng::Float64 # reporting related options reportLvl::Int errCheckLvl::Int errWrtLvl::Int startTime::DateTime end # XXX flow graph object that defines relations between technologies and carriers (and among carriers) mutable struct flowGraph nodeC::Dict{Int64,Int64} nodeTe::Dict{Int64,Int64} edgeC::Array{Pair{Int,Int},1} edgeTe::Array{Pair{Int,Int},1} nodePos::Dict{Int,Array{Float64,1}} function flowGraph(anyM::AbstractModel) # creates dictionary mapping carrier id to node id nodeC_dic = Dict(x[2] => x[1] for x in enumerate(sort(filter(x -> x != 0,getfield.(collect(values(anyM.sets[:C].nodes)),:idx))))) # get all relevant technology, a technology is not relevant, where all children of a parent have the same carriers (in this case only the parent is relevant) t_tree = anyM.sets[:Te] allTech_arr = getfield.(collect(values(t_tree.nodes)),:idx) tleaf_dic = Dict(x => unique(filter(y -> techSym(y,anyM.sets[:Te]) in keys(anyM.parts.tech), [x,getDescendants(x,t_tree,true)...])) for x in allTech_arr) relTech_arr = Array{Int,1}() for t in keys(tleaf_dic) subCar_arr = map(y -> anyM.parts.tech[techSym(y,anyM.sets[:Te])].carrier,tleaf_dic[t]) if length(unique(subCar_arr)) == 1 push!(relTech_arr,t) else append!(relTech_arr,collect(tleaf_dic[t])) end end # creates dictionary mapping each relevant id to node id nodeTe_dic = Dict(x[2] => x[1] + length(nodeC_dic) for x in enumerate(filter(x -> isempty(intersect(getAncestors(x,t_tree,:int),relTech_arr)),unique(relTech_arr)))) # creates edges between technologies edgeTe_arr = Array{Pair{Int,Int},1}() for t in keys(nodeTe_dic) gotTech_boo = false; tItr = t while !gotTech_boo if techSym(tItr,anyM.sets[:Te]) in keys(anyM.parts.tech) gotTech_boo = true else tItr = intersect(getDescendants(t,anyM.sets[:Te],true),map(x -> techInt(x,anyM.sets[:Te]),collectKeys(keys(anyM.parts.tech))))[1] end end car_ntup = anyM.parts.tech[techSym(tItr,anyM.sets[:Te])].carrier for cIn in map(x -> getfield(car_ntup,x),intersect(keys(car_ntup),(:use,:stExtIn))) |> (y -> isempty(y) ? y : union(y...)) push!(edgeTe_arr, nodeC_dic[cIn] => nodeTe_dic[t]) end for cOut in map(x -> getfield(car_ntup,x),intersect(keys(car_ntup),(:gen,:stExtOut))) |> (y -> isempty(y) ? y : union(y...)) push!(edgeTe_arr, nodeTe_dic[t] => nodeC_dic[cOut]) end end # creates edges between carriers edgeC_arr = Array{Pair{Int,Int},1}() for c in keys(nodeC_dic) for cChild in anyM.sets[:C].nodes[c].down push!(edgeC_arr, nodeC_dic[cChild] => nodeC_dic[c]) end end return new(nodeC_dic,nodeTe_dic,edgeC_arr,edgeTe_arr) end end # XXX specific information for graphical evaluation """ ```julia mutable struct graInfo graph::flowGraph names::Dict{String,String} colors::Dict{String,Tuple{Float64,Float64,Float64}} end ``` Type to store information on styling of graphs. See [Styling](@ref). **Fields** - `graph`: saved layout for the qualitative energy flow graph - `names`: assigns names of nodes to labels used in plots - `colors`: assigns names or label of nodes to RGB color specified as tuple of three numbers between 0 and 1 """ mutable struct graInfo graph::flowGraph names::Dict{String,String} colors::Dict{String,Tuple{Float64,Float64,Float64}} function graInfo(anyM::AbstractModel) # create default options for names and colors graph_obj = flowGraph(anyM) # specify some default names and colors used in visualisations namesDef_arr = ["coalPlant" => "coal plant", "gasPlant" => "gas plant", "districtHeat" => "district heat", "naturalGas" => "natural gas", "synthGas" => "synthetic gas", "fossilGas" => "fossil gas", "demand" => "final demand", "export" => "export", "import" => "import", "crt" => "curtailment", "lss" => "loss of load", "trdSell" => "trade sell", "trdBuy" => "trade buy"] # create dictionary assigning internal model names to names used within visualisations allVal_arr = unique(vcat(map(x -> getfield.(values(anyM.sets[x].nodes),:val) ,collect(keys(anyM.sets)))...)) names_dic = setdiff(allVal_arr,getindex.(namesDef_arr,1)) |> (z -> Dict(vcat(namesDef_arr,Pair.(z,z)))) # define default colors for default energy carriers colorsCar_arr = ["electricity" => (1.0, 0.9215, 0.2313),"heat" => (0.769,0.176,0.290),"districtHeat" => (0.6,0.0,0.169), "gas" => (1.0,0.416,0.212), "naturalGas" => (1.0,0.506,0.294),"fossilGas" => (0.898,0.259,0.075), "synthGas" => (0.235,0.506,0.325), "hydrogen" => (0.329,0.447,0.827), "coal" => (0.459,0.286,0.216),"biomass" => (0.682,0.898,0.443),"bioGas" => (0.682,0.898,0.443)] colors_dic = setdiff(getfield.(values(anyM.sets[:C].nodes),:val),getindex.(colorsCar_arr,1)) |> (z -> Dict(vcat(colorsCar_arr,Pair.(z,fill((0.85,0.85,0.85),length(z)))))) return new(graph_obj,names_dic,colors_dic) end end # XXX finally, the model object itself """ ```julia mutable struct anyModel <: AbstractModel options::modOptions report::Array{Tuple,1} optModel::Model lock::ReentrantLock supTs::NamedTuple{(:lvl,:step,:sca),Tuple{Int,Tuple{Vararg{Int,N} where N},Dict{Tuple{Int,Int},Float64}}} cInfo::Dict{Int,NamedTuple{(:tsDis,:tsExp,:rDis,:rExp,:eq),Tuple{Int,Int,Int,Int,Bool}}} sets::Dict{Symbol,Tree} parts::NamedTuple{(:tech,:trd,:exc,:bal,:lim,:obj),Tuple{Dict{Symbol,TechPart},OthPart,OthPart,OthPart,OthPart,OthPart}} graInfo::graInfo end ``` The core model object containing all related data and subordinate objects. **Fields** - `options`: model options provided as keyword arguments to constructor - `report`: entries for writing to the reporting file [Error handling](@ref) - `optModel::Model`: the actual [JuMP](https://github.com/JuliaOpt/JuMP.jl) object of the model's underlying optimization problem - `lock`: lock used for multi-threading - `supTs`: information and mappings for superordinate time-steps - `cInfo`: information on resolution of energy carriers - `sets`: sets organized as [Tree](@ref) objects (see [Sets and Mappings](@ref)) - `parts::NamedTuple`: all part objects of the model (see [Parts](@ref)) - `graInfo::graInfo`: properties for creation of plots and graphics, can be used to adjust colors and labels (see [Styling](@ref)) **Constructor** ```julia anyModel(inDir::Union{String,Array{String,1}},outDir::String; kwargs) ``` See [Model object](@ref) for a detailed list of arguments. """ mutable struct anyModel <: AbstractModel options::modOptions report::Array{Tuple,1} optModel::Model lock::ReentrantLock supTs::NamedTuple{(:lvl,:step,:sca),Tuple{Int,Tuple{Vararg{Int,N} where N},Dict{Tuple{Int,Int},Float64}}} cInfo::Dict{Int,NamedTuple{(:tsDis,:tsExp,:rDis,:rExp,:eq),Tuple{Int,Int,Int,Int,Bool}}} sets::Dict{Symbol,Tree} parts::NamedTuple{(:tech,:trd,:exc,:bal,:lim,:obj),Tuple{Dict{Symbol,TechPart},OthPart,OthPart,OthPart,OthPart,OthPart}} graInfo::graInfo function anyModel(inDir::Union{String,Array{String,1}},outDir::String; objName = "", csvDelim = ",", decomm = :decomm, interCapa = :linear, supTsLvl = 0, shortExp = 10, redStep = 1.0, emissionLoss = true, reportLvl = 2, errCheckLvl = 1, errWrtLvl = 1, coefRng = (mat = (1e-2,1e5), rhs = (1e-2,1e2)), scaFac = (capa = 1e1, oprCapa = 1e2, dispConv = 1e3, dispSt = 1e4, dispExc = 1e3, dispTrd = 1e3, costDisp = 1e1, costCapa = 1e2, obj = 1e0), bound = (capa = NaN, disp = NaN, obj = NaN), avaMin = 0.01, checkRng = NaN) anyM = new() # <editor-fold desc="initialize report and options" # XXX creates dataframe to which reporting is written anyM.report = Array{Tuple,1}() anyM.optModel = Model() anyM.lock = ReentrantLock() # XXX sets whole options object from specified directories TODO arbeite mit kwargs später outStamp_str = string(objName,"_",Dates.format(now(),"yyyymmddHHMM")) defOpt_ntup = (inDir = typeof(inDir) == String ? [inDir] : inDir, outDir = outDir, objName = objName, csvDelim = csvDelim, outStamp = outStamp_str, decomm = decomm, interCapa = interCapa, supTsLvl = supTsLvl, shortExp = shortExp, redStep = redStep, emissionLoss = emissionLoss, coefRng = coefRng, scaFac = scaFac, bound = bound, avaMin = avaMin, checkRng = checkRng, reportLvl = reportLvl, errCheckLvl = errCheckLvl, errWrtLvl = errWrtLvl, startTime = now()) anyM.options = modOptions(defOpt_ntup...) # </editor-fold> # <editor-fold desc= read in set and parameter data> files_dic = readInputFolder(anyM.options.inDir) # XXX read-in sets and parameters setData_dic = readSets!(files_dic,anyM) paraTemp_dic = readParameters!(files_dic,setData_dic,anyM) produceMessage(anyM.options,anyM.report, 1," - Read-in all set and parameter files") # </editor-fold> # <editor-fold desc="create part objects and general mappings" # assign actual tech to parents relTech_df = setData_dic[:Te][!,Symbol.(filter(x -> occursin("technology",x) && !isnothing(tryparse(Int16,string(x[end]))), string.(namesSym(setData_dic[:Te]))))] relTech_df = DataFrame(filter(x -> any(collect(x) .!= ""), eachrow(relTech_df))) techIdx_arr = filter(z -> isempty(anyM.sets[:Te].nodes[z].down), map(x -> lookupTupleTree(tuple(collect(x)...),anyM.sets[:Te],1)[1], eachrow(relTech_df))) anyM.parts = (tech = Dict(techSym(x,anyM.sets[:Te]) => TechPart(getUniName(x,anyM.sets[:Te])) for x in techIdx_arr), trd = OthPart(), exc = OthPart(), bal = OthPart(), lim = OthPart(), obj = OthPart()) createCarrierMapping!(setData_dic,anyM) createTimestepMapping!(anyM) # XXX write general info about technologies for t in techIdx_arr createTechInfo!(techSym(t,anyM.sets[:Te]), setData_dic, anyM) end produceMessage(anyM.options,anyM.report, 2," - Created all mappings among sets") # XXX assign parameters to model parts parDef_dic = parameterToParts!(paraTemp_dic, techIdx_arr, anyM) produceMessage(anyM.options,anyM.report, 2," - Assigned parameter data to model parts") # XXX create object for data visualization anyM.graInfo = graInfo(anyM) produceMessage(anyM.options,anyM.report, 1," - Prepared creation of optimization model") # </editor-fold> return anyM end anyModel() = new() end # </editor-fold>
AnyMOD
https://github.com/leonardgoeke/AnyMOD.jl.git
[ "MIT" ]
0.1.12
46a00c75bb6eb7fdaf5b15d75e9a544c0f91484d
code
50629
# XXX prints dataframe to csv file """ ```julia printObject(print_df::DataFrame, model_object::anyModel) ``` Writes a DataFrame of parameters, constraints, or variables to a `.csv` file in readable format (strings instead of ids). See [Individual elements](@ref). """ function printObject(print_df::DataFrame,anyM::anyModel; fileName::String = "", rtnDf::Tuple{Vararg{Symbol,N} where N} = (:csv,), filterFunc::Function = x -> true) sets = anyM.sets options = anyM.options colNam_arr = namesSym(print_df) cntCol_int = size(colNam_arr,1) # filters values according to filter function, print_df = copy(filter(filterFunc,print_df)) # converts variable column to value of variable if :var in colNam_arr print_df[!,:var] = value.(print_df[!,:var]) end for i = 1:cntCol_int lookUp_sym = Symbol(split(String(colNam_arr[i]),"_")[1]) if !(lookUp_sym in keys(sets)) && lookUp_sym == :eqn print_df[!,i] = string.(print_df[!,i]) elseif lookUp_sym in keys(sets) print_df[!,i] = map(x -> createFullString(x,sets[lookUp_sym]),print_df[!,i]) end end # rename columns colName_dic = Dict(:Ts_dis => :timestep_dispatch, :Ts_exp => :timestep_expansion, :Ts_expSup => :timestep_superordinate_expansion, :Ts_disSup => :timestep_superordinate_dispatch, :R => :region, :R_dis => :region_dispatch, :R_exp => :region_expansion, :R_to => :region_to, :R_from => :region_from, :C => :carrier, :Te => :technology, :cns => :constraint, :var => :variable) rename!(print_df,map(x -> x in keys(colName_dic) ? colName_dic[x] : x, namesSym(print_df)) ) if :csv in rtnDf CSV.write("$(options.outDir)/$(fileName)_$(options.outStamp).csv", print_df) end if :csvDf in rtnDf return print_df end end # <editor-fold desc="report results to csv files" """ ```julia reportResults(reportType::Symbol, model_object::anyModel; rtnOpt::Tuple = (:csv,)) ``` Writes results to `.csv` file with content depending on `reportType`. Available types are `:summary`, `:exchange`, and `:costs`. See [Analysed results](@ref). """ reportResults(reportType::Symbol,anyM::anyModel; kwargs...) = reportResults(Val{reportType}(),anyM::anyModel; kwargs...) # XXX summary of all capacity and dispatch results function reportResults(objGrp::Val{:summary},anyM::anyModel; wrtSgn::Bool = true, rtnOpt::Tuple{Vararg{Symbol,N} where N} = (:csv,)) techSym_arr = collect(keys(anyM.parts.tech)) allData_df = DataFrame(Ts_disSup = Int[], R_dis = Int[], Te = Int[], C = Int[], variable = Symbol[], value = Float64[]) # XXX get demand values dem_df = copy(anyM.parts.bal.par[:dem].data) if !isempty(dem_df) dem_df[!,:lvlR] = map(x -> anyM.cInfo[x].rDis, :C in namesSym(dem_df) ? dem_df[!,:C] : filter(x -> x != 0,getfield.(values(anyM.sets[:C].nodes),:idx))) # aggregates demand values # artificially add dispatch dimensions, if none exist if :Ts_dis in namesSym(dem_df) ts_dic = Dict(x => anyM.sets[:Ts].nodes[x].lvl == anyM.supTs.lvl ? x : getAncestors(x,anyM.sets[:Ts],:int,anyM.supTs.lvl)[end] for x in unique(dem_df[!,:Ts_dis])) dem_df[!,:Ts_disSup] = map(x -> ts_dic[x],dem_df[!,:Ts_dis]) else dem_df[!,:Ts_disSup] .= anyM.supTs.step dem_df = flatten(dem_df,:Ts_disSup) end dem_df[!,:val] = dem_df[!,:val] .* getResize(dem_df,anyM.sets[:Ts],anyM.supTs) ./ anyM.options.redStep allR_arr = :R_dis in namesSym(dem_df) ? unique(dem_df[!,:R_dis]) : getfield.(getNodesLvl(anyM.sets[:R],1),:idx) allLvlR_arr = unique(dem_df[!,:lvlR]) r_dic = Dict((x[1], x[2]) => (anyM.sets[:R].nodes[x[1]].lvl < x[2] ? getDescendants(x[1], anyM.sets[:R],false,x[2]) : getAncestors(x[1],anyM.sets[:R],:int,x[2])[end]) for x in Iterators.product(allR_arr,allLvlR_arr)) if :R_dis in namesSym(dem_df) dem_df[!,:R_dis] = map(x -> r_dic[x.R_dis,x.lvlR],eachrow(dem_df[!,[:R_dis,:lvlR]])) else dem_df[!,:R_dis] .= 0 end dem_df = combine(groupby(dem_df,[:Ts_disSup,:R_dis,:C]),:val => ( x -> sum(x) / 1000) => :value) dem_df[!,:Te] .= 0 dem_df[!,:variable] .= :demand if wrtSgn dem_df[!,:value] = dem_df[!,:value] .* -1 end allData_df = vcat(allData_df,dem_df) end # XXX get expansion and capacity variables for t in techSym_arr part = anyM.parts.tech[t] tech_df = DataFrame(Ts_disSup = Int[], R_dis = Int[], Te = Int[], C = Int[], variable = Symbol[], value = Float64[]) # get installed capacity values for va in intersect(keys(part.var),(:expConv, :expStIn, :expStOut, :expStSize, :expExc, :capaConv, :capaStIn, :capaStOut, :capaStSize, :oprCapaConv, :oprCapaStIn, :oprCapaStOut, :oprCapaStSize)) capa_df = copy(part.var[va]) if va in (:expConv, :expStIn, :expStOut, :expStSize) capa_df = flatten(capa_df,:Ts_expSup) select!(capa_df,Not(:Ts_disSup)) rename!(capa_df,:Ts_expSup => :Ts_disSup) end # set carrier column to zero for conversion capacities and add a spatial dispatch column if va in (:expConv,:capaConv,:oprCapaConv) capa_df[!,:C] .= 0 capa_df[!,:R_dis] = map(x -> getAncestors(x,anyM.sets[:R],:int,part.balLvl.ref[2])[end],capa_df[!,:R_exp]) else capa_df[!,:R_dis] = map(x -> getAncestors(x.R_exp,anyM.sets[:R],:int,anyM.cInfo[x.C].rDis)[end],eachrow(capa_df)) end select!(capa_df,Not(:R_exp)) # aggregate values and add to tech data frame capa_df = combine(groupby(capa_df,[:Ts_disSup,:R_dis,:C,:Te]),:var => ( x -> value.(sum(x))) => :value) capa_df[!,:variable] .= va tech_df = vcat(tech_df,capa_df) end # add tech dataframe to overall data frame allData_df = vcat(allData_df,tech_df) end # XXX get dispatch variables for va in (:use, :gen, :stIn, :stOut, :stExtIn, :stExtOut, :stIntIn, :stIntOut, :emission, :crt, :lss, :trdBuy, :trdSell) # get all variables, group them and get respective values allVar_df = getAllVariables(va,anyM) if isempty(allVar_df) continue end disp_df = combine(groupby(allVar_df,intersect(intCol(allVar_df),[:Ts_disSup,:R_dis,:C,:Te])),:var => (x -> value(sum(x))) => :value) # scales values to twh (except for emissions of course) if va != :emission disp_df[!,:value] = disp_df[!,:value] ./ 1000 end disp_df[!,:variable] .= va # add empty values for non-existing columns for dim in (:Te,:C) if !(dim in namesSym(disp_df)) disp_df[:,dim] .= 0 end end # adjust sign, if enabled if wrtSgn && va in (:use,:stIn,:stIntIn,:stExtIn,:crt,:trdSell) disp_df[!,:value] = disp_df[!,:value] .* -1 end allData_df = vcat(allData_df,disp_df) end # XXX get exchange variables aggregated by import and export allExc_df = getAllVariables(:exc,anyM) if !isempty(allExc_df) # add losses to all exchange variables allExc_df = getExcLosses(convertExcCol(allExc_df),anyM.parts.exc.par,anyM.sets) # compute export and import of each region, losses are considered at import excFrom_df = rename(combine(groupby(allExc_df,[:Ts_disSup,:R_a,:C]),:var => ( x -> value(sum(x))/1000) => :value),:R_a => :R_dis) excFrom_df[!,:variable] .= :export; excFrom_df[!,:Te] .= 0 if wrtSgn excFrom_df[!,:value] = excFrom_df[!,:value] .* -1 end excTo_df = rename(combine(x -> (value = value(dot(x.var,(1 .- x.loss)))/1000,),groupby(allExc_df,[:Ts_disSup,:R_b,:C])),:R_b => :R_dis) excTo_df[!,:variable] .= :import; excTo_df[!,:Te] .= 0 allData_df = vcat(allData_df,vcat(excFrom_df,excTo_df)) end # XXX get full load hours for conversion, storage input and storage output if anyM.options.decomm == :none flh_dic = Dict(:capaConv => :flhConv, :capaStIn => :flhStIn, :capaStOut => :flhStOut) else flh_dic = Dict(:oprCapaConv => :flhConv, :oprCapaStIn => :flhStIn, :oprCapaStOut => :flhStOut) end flhAss_dic = Dict(:capaConv => [:use,:stIntOut,:gen,:stIntIn],:oprCapaConv => [:use,:stIntOut,:gen,:stIntIn], :capaStIn => [:stIntIn,:stExtIn],:oprCapaStIn => [:stIntIn,:stExtIn], :capaStOut => [:stIntOut,:stExtOut],:oprCapaStOut => [:stIntOut,:stExtOut]) for flhCapa in collect(keys(flh_dic)) # gets relevant capacity variables capaFlh_df = rename(filter(x -> x.variable == flhCapa && x.value > 0.0, allData_df),:variable => :varCapa, :value => :valCapa) if isempty(capaFlh_df) continue end # expand with relevant dispatch variables capaFlh_df[!,:varDisp] = map(x -> flhAss_dic[x.varCapa],eachrow(capaFlh_df)) capaFlh_df = flatten(capaFlh_df,:varDisp) intCol(capaFlh_df,:varDisp) # omit carrier in case of conversion capacity if flhCapa in (:capaConv,:oprCapaConv) select!(capaFlh_df,Not([:C])) end # joins capacity and with relevant dispatch variables allFLH_df = innerjoin(capaFlh_df,rename(allData_df,:variable => :varDisp), on = intCol(capaFlh_df,:varDisp)) # remove row for gen variables in case gen exists as well and compute full load hours for conversion allFLH_df = combine(combine(y -> filter(x -> :use in y[!,:varDisp] ? x.varDisp != :gen : true,y), groupby(allFLH_df, intCol(capaFlh_df,:varCapa)), ungroup = false), AsTable([:value,:valCapa]) => (x -> 1000*abs(sum(x.value)/x.valCapa[1])) => :value) allFLH_df[!,:variable] = map(x -> flh_dic[x], allFLH_df[!,:varCapa]) # adds carrier again in case of conversion capacity allFLH_df[!,:C] .= 0 allData_df = vcat(allData_df, select(allFLH_df,Not([:varCapa]))) end # XXX comptue storage cycles if anyM.options.decomm == :none cyc_dic = Dict(:capaStIn => :cycStIn, :capaStOut => :cycStOut) else cyc_dic = Dict(:oprCapaStIn => :cycStIn, :oprCapaStOut => :cycStOut) end cycAss_dic = Dict(:oprCapaStIn => [:stIntIn,:stExtIn], :capaStIn => [:stIntIn,:stExtIn], :oprCapaStOut => [:stIntOut,:stExtOut], :capaStOut => [:stIntOut,:stExtOut]) for cycCapa in collect(keys(cyc_dic)) capaCyc_df = rename(filter(x -> x.variable == :capaStSize && x.value > 0.0, allData_df),:variable => :varCapa, :value => :valCapa) if isempty(capaCyc_df) continue end # expand with relevant dispatch variables capaCyc_df[!,:varDisp] = map(x -> cycAss_dic[cycCapa],eachrow(capaCyc_df)) capaCyc_df = flatten(capaCyc_df,:varDisp) # joins capacity and with relevant dispatch variables capaCyc_df = innerjoin(capaCyc_df,rename(allData_df,:variable => :varDisp), on = intCol(capaCyc_df,:varDisp)) # compute cycling value and add to overall capaCyc_df = combine(groupby(capaCyc_df, intCol(capaCyc_df,:varCapa)), AsTable([:value,:valCapa]) => (x -> 1000*abs(sum(x.value)/x.valCapa[1])) => :value) capaCyc_df[!,:variable] = map(x -> cyc_dic[cycCapa], capaCyc_df[!,:varCapa]) allData_df = vcat(allData_df,select(capaCyc_df,Not([:varCapa]))) end # return dataframes and write csv files based on specified inputs if :csv in rtnOpt || :csvDf in rtnOpt csvData_df = printObject(allData_df,anyM, fileName = "results_summary",rtnDf = rtnOpt) end if :raw in rtnOpt CSV.write("$(anyM.options.outDir)/results_summary_$(anyM.options.outStamp).csv", allData_df) end if :rawDf in rtnOpt && :csvDf in rtnOpt return allData_df, csvData_df else if :rawDf in rtnOpt return allData_df end if :csvDf in rtnOpt return csvData_df end end end # XXX results for costs function reportResults(objGrp::Val{:costs},anyM::anyModel; rtnOpt::Tuple{Vararg{Symbol,N} where N} = (:csv,)) # prepare empty dataframe allData_df = DataFrame(Ts_disSup = Int[], R = Int[], Te = Int[], C = Int[], variable = Symbol[], value = Float64[]) # loops over all objective variables with keyword "cost" in it for cst in filter(x -> occursin("cost",string(x)),keys(anyM.parts.obj.var)) cost_df = copy(anyM.parts.obj.var[cst]) # rename all dispatch and expansion regions simply to region if !isempty(intersect([:R_dis,:R_exp],namesSym(cost_df))) rename!(cost_df,:R_dis in namesSym(cost_df) ? :R_dis : :R_exp => :R) end # add empty column for non-existing dimensions for dim in (:Te,:C,:R) if !(dim in namesSym(cost_df)) cost_df[:,dim] .= 0 end end # obtain values and write to dataframe cost_df[:,:variable] .= string(cst) cost_df[:,:value] = value.(cost_df[:,:var]) if :Ts_exp in namesSym(cost_df) cost_df = rename(cost_df,:Ts_exp => :Ts_disSup) end allData_df = vcat(allData_df,cost_df[:,Not(:var)]) end # return dataframes and write csv files based on specified inputs if :csv in rtnOpt || :csvDf in rtnOpt csvData_df = printObject(allData_df,anyM, fileName = "results_costs", rtnDf = rtnOpt) end if :raw in rtnOpt CSV.write("$(anyM.options.outDir)/results_costs_$(anyM.options.outStamp).csv", allData_df) end if :rawDf in rtnOpt && :csvDf in rtnOpt return allData_df, csvData_df else if :rawDf in rtnOpt return allData_df end if :csvDf in rtnOpt return csvData_df end end end # XXX results for exchange function reportResults(objGrp::Val{:exchange},anyM::anyModel; rtnOpt::Tuple{Vararg{Symbol,N} where N} = (:csv,)) allData_df = DataFrame(Ts_disSup = Int[], R_from = Int[], R_to = Int[], C = Int[], variable = Symbol[], value = Float64[]) if isempty(anyM.parts.exc.var) error("No exchange data found") end # XXX expansion variables if :expExc in keys(anyM.parts.exc.var) exp_df = copy(anyM.parts.exc.var[:expExc]) |> (x -> vcat(x,rename(x,:R_from => :R_to, :R_to => :R_from))) exp_df = flatten(exp_df,:Ts_expSup) select!(exp_df,Not(:Ts_disSup)) rename!(exp_df,:Ts_expSup => :Ts_disSup) exp_df = combine(groupby(exp_df,[:Ts_disSup,:R_from,:R_to,:C]), :var => (x -> value.(sum(x))) => :value) exp_df[!,:variable] .= :expExc else exp_df = DataFrame(Ts_disSup = Int[], R_from = Int[], R_to = Int[], C = Int[], variable = Symbol[], value = Float64[]) end # XXX capacity variables capa_df = copy(anyM.parts.exc.var[:capaExc]) capa_df = vcat(capa_df,rename(filter(x -> x.dir == 0, capa_df),:R_from => :R_to, :R_to => :R_from)) capa_df = combine(groupby(capa_df,[:Ts_disSup,:R_from,:R_to,:C]), :var => (x -> value.(sum(x))) => :value) capa_df[!,:variable] .= :capaExc if anyM.options.decomm != :none oprCapa_df = copy(anyM.parts.exc.var[:oprCapaExc]) oprCapa_df = vcat(oprCapa_df,rename(filter(x -> x.dir == 0, oprCapa_df),:R_from => :R_to, :R_to => :R_from)) oprCapa_df = combine(groupby(oprCapa_df,[:Ts_disSup,:R_from,:R_to,:C]), :var => (x -> value.(sum(x))) => :value) oprCapa_df[!,:variable] .= :oprCapaExc capa_df = vcat(capa_df,oprCapa_df) end # XXX dispatch variables disp_df = getAllVariables(:exc,anyM) disp_df = combine(groupby(disp_df,[:Ts_disSup,:R_from,:R_to,:C]), :var => (x -> value.(sum(x)) ./ 1000) => :value) disp_df[!,:variable] .= :exc # XXX get full load hours capaExt_df = replCarLeafs(copy(capa_df),anyM.sets[:C]) flh_df = innerjoin(rename(select(capaExt_df,Not(:variable)),:value => :capa),rename(select(disp_df,Not(:variable)),:value => :disp),on = [:Ts_disSup,:R_from,:R_to,:C]) flh_df[!,:value] = flh_df[!,:disp] ./ flh_df[!,:capa] .* 1000 flh_df[!,:variable] .= :flhExc # XXX merge and print all data allData_df = vcat(exp_df,capa_df,disp_df,select(flh_df,Not([:capa,:disp]))) # return dataframes and write csv files based on specified inputs if :csv in rtnOpt || :csvDf in rtnOpt csvData_df = printObject(allData_df,anyM, fileName = "results_exchange", rtnDf = rtnOpt) end if :raw in rtnOpt CSV.write("$(anyM.options.outDir)/results_exchange_$(anyM.options.outStamp).csv", allData_df) end if :rawDf in rtnOpt && :csvDf in rtnOpt return allData_df, csvData_df else if :rawDf in rtnOpt return allData_df end if :csvDf in rtnOpt return csvData_df end end end # XXX print time series for in and out into separate tables """ ```julia reportTimeSeries(car_sym::Symbol, model_object::anyModel) ``` Writes elements of energy balance for carrier specified by `car_sym` to `.csv` file. See [Time-series](@ref). """ function reportTimeSeries(car_sym::Symbol, anyM::anyModel; filterFunc::Function = x -> true, unstck::Bool = true, signVar::Tuple = (:in,:out), minVal::Number = 1e-3, mergeVar::Bool = true, rtnOpt::Tuple{Vararg{Symbol,N} where N} = (:csv,)) # XXX converts carrier named provided to index node_arr = filter(x -> x.val == string(car_sym),collect(values(anyM.sets[:C].nodes))) if length(node_arr) != 1 error("no carrier named $car_sym defined") return end c_int = node_arr[1].idx # XXX initialize dictionary to save data allData_dic = Dict{Symbol,DataFrame}() for signItr in signVar allData_dic[signItr] = DataFrame(Ts_disSup = Int[], Ts_dis = Int[], R_dis = Int[], variable = String[], value = Float64[]) end # XXX initialize relevant dimensions and carriers relDim_df = filter(filterFunc,createPotDisp([c_int],anyM)) sort!(relDim_df,sort(intCol(relDim_df))) relC_arr = unique([c_int,getDescendants(c_int,anyM.sets[:C])...]) cRes_tup = anyM.cInfo[c_int] |> (x -> (Ts_dis = x.tsDis, R_dis = x.rDis, C = anyM.sets[:C].nodes[c_int].lvl)) # XXX add demand and size it if :out in signVar dem_df = matchSetParameter(relDim_df,anyM.parts.bal.par[:dem],anyM.sets,newCol = :value) dem_df[!,:value] = dem_df[!,:value] .* getResize(dem_df,anyM.sets[:Ts],anyM.supTs) .* -1 dem_df[!,:variable] .= "demand" filter!(x -> abs(x.value) > minVal, dem_df) allData_dic[:out] = vcat(allData_dic[:out],select!(dem_df,Not(:C))) end # XXX adds all technology related variables cBalRes_tup = anyM.cInfo[c_int] |> (x -> (x.tsDis, x.rDis)) relType_tup = map(x -> x in signVar ? (x == :in ? (:use, :stExtIn) : (:gen,:stExtOut)) : tuple(),(:in,:out)) |> (x -> tuple(vcat(collect.(x)...)...)) for c in relC_arr # gets technologies relevant for respective filterCarrier relTech_arr = getRelTech(c,anyM.parts.tech,anyM.sets[:C]) if isempty(relTech_arr) continue end for x in relTech_arr # gets resolution and adjusts add_df in case of an agggregated technology add_df = select(filter(r -> r.C == c,anyM.parts.tech[x[1]].var[x[2]]),[:Ts_disSup,:Ts_dis,:R_dis,:var]) tRes_tup = anyM.parts.tech[x[1]].disAgg ? (cRes_tup[1], anyM.parts.tech[x[1]].balLvl.exp[2]) : (cRes_tup[1], cRes_tup[2]) checkTechReso!(tRes_tup,cBalRes_tup,add_df,anyM.sets) # filter values based on filter function and minimum value reported add_df = combine(groupby(add_df,[:Ts_disSup,:Ts_dis,:R_dis]), :var => (x -> sum(x)) => :var) filter!(filterFunc,add_df) if isempty(add_df) continue end add_df[!,:value] = value.(add_df[!,:var]) .* (x[2] in (:use,:stExtIn) ? -1.0 : 1.0) add_df[!,:variable] .= string(x[2],"; ", x[1]) filter!(x -> abs(x.value) > minVal, add_df) # add to dictionary of dataframe for in or out sign_sym = x[2] in (:use,:stExtIn) ? :out : :in allData_dic[sign_sym] = vcat(allData_dic[sign_sym] ,select(add_df,Not(:var))) end end # XXX add import and export variables if :exc in keys(anyM.parts.exc.var) exc_df = filterCarrier(anyM.parts.exc.var[:exc],relC_arr) if :out in signVar excFrom_df = combine(groupby(filter(filterFunc,rename(copy(exc_df),:R_from => :R_dis)), [:Ts_disSup,:Ts_dis,:R_dis]), :var => (x -> value(sum(x)) * -1) => :value) excFrom_df[!,:variable] .= :export filter!(x -> abs(x.value) > minVal, excFrom_df) if !isempty(excFrom_df) allData_dic[:out] = vcat(allData_dic[:out],excFrom_df) end end if :in in signVar addLoss_df = rename(getExcLosses(convertExcCol(exc_df),anyM.parts.exc.par,anyM.sets),:R_b => :R_dis) excTo_df = combine(x -> (value = value(dot(x.var,(1 .- x.loss))),),groupby(filter(filterFunc,addLoss_df), [:Ts_disSup,:Ts_dis,:R_dis])) excTo_df[!,:variable] .= :import filter!(x -> abs(x.value) > minVal, excTo_df) if !isempty(excTo_df) allData_dic[:in] = vcat(allData_dic[:in],excTo_df) end end end # XXX add trade agg_arr = [:Ts_dis, :R_dis, :C] if !isempty(anyM.parts.trd.var) for trd in intersect(keys(anyM.parts.trd.var),(:trdBuy,:trdSell)) trdVar_df = copy(relDim_df) trdVar_df[!,:value] = value.(filterCarrier(anyM.parts.trd.var[trd],relC_arr) |> (x -> aggUniVar(x,relDim_df,agg_arr,cRes_tup,anyM.sets))) .* (trd == :trdBuy ? 1.0 : -1.0) trdVar_df[!,:variable] .= trd filter!(x -> abs(x.value) > minVal, trdVar_df) sign_sym = :trdBuy == trd ? :in : :out allData_dic[sign_sym] = vcat(allData_dic[sign_sym],select(trdVar_df,Not(:C))) end end # XXX add curtailment if :crt in keys(anyM.parts.bal.var) crt_df = copy(relDim_df) crt_df[!,:value] = value.(filterCarrier(anyM.parts.bal.var[:crt],relC_arr) |> (x -> aggUniVar(x,crt_df,agg_arr, cRes_tup,anyM.sets))) .* -1.0 crt_df[!,:variable] .= :crt filter!(x -> abs(x.value) > minVal, crt_df) allData_dic[:out] = vcat(allData_dic[:out],select(crt_df,Not(:C))) end # XXX add losted load if :lss in keys(anyM.parts.bal.var) lss_df = copy(relDim_df) lss_df[!,:value] = value.(filterCarrier(anyM.parts.bal.var[:lss],relC_arr) |> (x -> aggUniVar(x,lss_df,agg_arr, cRes_tup,anyM.sets))) lss_df[!,:variable] .= :lss filter!(x -> abs(x.value) > minVal, lss_df) allData_dic[:in] = vcat(allData_dic[:in],select(lss_df,Not(:C))) end # XXX unstack data and write to csv if mergeVar # merges in and out files and writes to same csv file data_df = vcat(values(allData_dic)...) if unstck && !isempty(data_df) data_df[!,:variable] = CategoricalArray(string.(data_df[!,:variable])) data_df = unstack(data_df,:variable,:value) end if :csv in rtnOpt || :csvDf in rtnOpt csvData_df = printObject(data_df,anyM, fileName = string("timeSeries_",car_sym,), rtnDf = rtnOpt) end if :raw in rtnOpt CSV.write("$(anyM.options.outDir)/$(string("timeSeries_",car_sym,))_$(anyM.options.outStamp).csv", data_df) end else # loops over different signs and writes to different csv files for signItr in signVar data_df = allData_dic[signItr] if unstck && !isempty(data_df) data_df[!,:variable] = CategoricalArray(string.(data_df[!,:variable])) data_df = unstack(data_df,:variable,:value) end if :csv in rtnOpt || :csvDf in rtnOpt csvData_df = printObject(data_df,anyM, fileName = string("timeSeries_",car_sym,"_",signItr), rtnDf = rtnOpt) end if :raw in rtnOpt CSV.write("$(anyM.options.outDir)/$(string("timeSeries_",car_sym,"_",signItr))_$(anyM.options.outStamp).csv", data_df) end end end # return dataframes based on specified inputs if :rawDf in rtnOpt && :csvDf in rtnOpt return data_df, csvData_df else if :rawDf in rtnOpt return data_df end if :csvDf in rtnOpt return csvData_df end end end # XXX write dual values for constraint dataframe """ ```julia printDuals(print_df::DataFrame, model_object::anyModel) ``` Writes duals of a constraint DataFrame to a `.csv` file in readable format (strings instead of ids). See [Individual elements](@ref). """ function printDuals(cns_df::DataFrame,anyM::anyModel;filterFunc::Function = x -> true, fileName::String = "", rtnOpt::Tuple{Vararg{Symbol,N} where N} = (:csv,)) if !(:cns in namesSym(cns_df)) error("No constraint column found!") end cns_df = copy(filter(filterFunc,cns_df)) cns_df[!,:dual] = dual.(cns_df[!,:cns]) if :csv in rtnOpt || :csvDf in rtnOpt csvData_df = printObject(select(cns_df,Not(:cns)),anyM;fileName = string("dual",fileName != "" ? "_" : "",fileName), rtnDf = rtnOpt) end if :rawDf in rtnOpt CSV.write("$(anyM.options.outDir)/$(string("dual",fileName != "" ? "_" : "",fileName))_$(anyM.options.outStamp).csv", data_df) end # return dataframes based on specified inputs if :rawDf in rtnOpt && :csvDf in rtnOpt return select(cns_df,Not(:cns)), csvData_df else if :rawDf in rtnOpt return data_df end if :csvDf in rtnOpt return csvData_df end end end # </editor-fold> # <editor-fold desc="plotting tools" # XXX plots tree graph for input set """ ```julia plotTree(tree_sym::Symbol, model_object::anyModel) ``` Plots the hierarchical tree of nodes for the set specified by `tree_sym`. See [Node trees](@ref). """ function plotTree(tree_sym::Symbol, anyM::anyModel; plotSize::Tuple{Float64,Float64} = (8.0,4.5), fontSize::Int = 12, useColor::Bool = true, wide::Array{Float64,1} = fill(1.0,30)) netw = pyimport("networkx") plt = pyimport("matplotlib.pyplot") PyCall.fixqtpath() # <editor-fold desc="initialize variables" treeName_dic = Dict(:region => :R,:timestep => :Ts,:carrier => :C,:technology => :Te) # convert tree object into a data frame tree_obj = anyM.sets[treeName_dic[tree_sym]] data_arr = filter(x -> x.idx != 0,collect(values(tree_obj.nodes))) |> (y -> map(x -> getfield.(y,x),(:idx,:val,:lvl,:down,:subIdx))) tree_df = DataFrame(idx = data_arr[1], val = data_arr[2], lvl = data_arr[3], down = data_arr[4], subIdx = data_arr[5], up =map(x -> tree_obj.up[x],data_arr[1])) # sets options col_dic = Dict(:region => (0.133, 0.545, 0.133),:timestep => (0.251,0.388,0.847),:carrier => (0.584, 0.345, 0.698),:technology => (0.796,0.235,0.2)) # </editor-fold> # <editor-fold desc="computes positon of nodes" # adds a new dummy top node push!(tree_df,(0,"",0,tree_obj.nodes[0].down ,0,1)) nodes_int = nrow(tree_df) idxPos_dic = Dict(zip(tree_df[:,:idx], 1:(nodes_int))) # create vertical position and labels from input tree locY_arr = float(tree_df[!,:lvl]) .+ 1.2 # horizontal position is computed in a two step process locX_arr = zeros(Float64, nodes_int) # first step, filter all nodes at end of a respective branch and sort them correctly lowLvl_df = tree_df[isempty.(tree_df[!,:down]),:] lowLvl_df = lowLvl_df[map(y -> findall(x -> x == y, lowLvl_df[:,:idx])[1],sortSiblings(convert(Array{Int64,1},lowLvl_df[:,:idx]),tree_obj)),:] # sets distance from next node on the left depending on if they are part of the same subtree for (idx2, lowNode) in Iterators.drop(enumerate(eachrow(lowLvl_df)),1) if lowNode[:up] == lowLvl_df[idx2-1,:up] distance_fl = wide[lowNode[:lvl]] else distance_fl = 1 end locX_arr[idxPos_dic[lowNode[:idx]]] = locX_arr[idxPos_dic[lowLvl_df[idx2-1,:idx]]] + distance_fl end # second step, remaining horizontal nodes are placed in the middle of their children highLvl_df = tree_df[false .== isempty.(tree_df[!,:down]),:] highLvl_df = highLvl_df[map(y -> findall(x -> x == y, highLvl_df[:,:idx])[1],sortSiblings(convert(Array{Int64,1},highLvl_df[:,:idx]),tree_obj)),:] for highNode in reverse(eachrow(highLvl_df)) locX_arr[idxPos_dic[highNode[:idx]]] = Statistics.mean(locX_arr[map(x -> idxPos_dic[x],highNode.down)]) end locX_arr[end] = Statistics.mean(locX_arr[map(x -> idxPos_dic[x],tree_df[findall(tree_df[:,:lvl] .== 1),:idx])]) locY_arr = abs.(locY_arr .- maximum(locY_arr)) # compute dictionary of final node positions pos_dic = Dict(x => (locX_arr[x]/maximum(locX_arr),locY_arr[x]/maximum(locY_arr)) for x in 1:nodes_int) posIdx_dic = collect(idxPos_dic) |> (z -> Dict(Pair.(getindex.(z,2),getindex.(z,1)))) # </editor-fold> # <editor-fold desc="determine node colors and labels" name_dic = anyM.graInfo.names label_dic = Dict(x[1] => x[2] == "" ? "" : name_dic[x[2]] for x in enumerate(tree_df[!,:val])) if useColor col_arr = [col_dic[tree_sym]] else col_arr = getNodeColors(collect(1:nodes_int),label_dic,anyM) end # </editor-fold> # <editor-fold desc="draw final tree" # draw single nodes edges_arr = Array{Tuple{Int,Int},1}() for rowTree in eachrow(tree_df)[1:end-1] # 0 node in tree_df becomes last node in graph, because there is 0 node within the plots if rowTree[:up] == 0 pare_int = nodes_int else pare_int = idxPos_dic[rowTree[:up]] end push!(edges_arr, (idxPos_dic[rowTree[:idx]], pare_int)) end # draw graph object plt.clf() graph_obj = netw.Graph() netw.draw_networkx_nodes(graph_obj, pos_dic; nodelist = collect(1:nodes_int), node_color = col_arr) netw.draw_networkx_edges(graph_obj, pos_dic; edgelist = edges_arr) posLabOff_dic = netw.draw_networkx_labels(graph_obj, pos_dic, font_family = "arial", font_size = fontSize, labels = label_dic) figure = plt.gcf() figure.set_size_inches(plotSize[1],plotSize[2]) r = figure.canvas.get_renderer() trans = plt.gca().transData.inverted() for x in collect(posLabOff_dic) down_boo = isempty(tree_obj.nodes[posIdx_dic[x[1]]].down) bb = x[2].get_window_extent(renderer=r) bbdata = bb.transformed(trans) # computes offset of label for leaves and non-leaves by first moving according to size auf letters itself (bbdata) and then by size of the node # (node-size in pixel is devided by dpi and plot size to get relative offset) offset_arr = [down_boo ? 0.0 : (bbdata.width/2.0 + (150/plotSize[1]/600)), down_boo ? (-bbdata.height/2.0 - 150/plotSize[2]/600) : 0.0] x[2].set_position([x[2]."_x" + offset_arr[1],x[2]."_y" + offset_arr[2]]) x[2].set_clip_on(false) end # size plot and save plt.axis("off") plt.savefig("$(anyM.options.outDir)/$(tree_sym)_$(anyM.options.outStamp)", dpi = 600, bbox_inches="tight") # </editor-fold> end """ ```julia plotEnergyFlow(plotType::Symbol, model_object::anyModel) ``` Plots the energy flow in a model. Set `plotType` to `:graph` for a qualitative node graph or to `:sankey` for a quantitative Sankey diagram. See [Energy flow](@ref). """ plotEnergyFlow(plotType::Symbol,anyM::anyModel; kwargs...) = plotEnergyFlow(Val{plotType}(),anyM::anyModel; kwargs...) # XXX plot qualitative energy flow graph (applies python modules networkx and matplotlib via PyCall package) function plotEnergyFlow(objGrp::Val{:graph},anyM::anyModel; plotSize::Tuple{Number,Number} = (16.0,9.0), fontSize::Int = 12, replot::Bool = true, scaDist::Number = 0.5, maxIter::Int = 5000, initTemp::Number = 2.0, useTeColor::Bool = false) # XXX import python function netw = pyimport("networkx") plt = pyimport("matplotlib.pyplot") PyCall.fixqtpath() # <editor-fold desc="create graph and map edges" graph_obj = netw.DiGraph() flowGrap_obj = anyM.graInfo.graph edges_arr = vcat(collect.(flowGrap_obj.edgeC),collect.(flowGrap_obj.edgeTe)) for x in edges_arr graph_obj.add_edge(x[1],x[2]) end # </editor-fold> # <editor-fold desc="obtain and order graph properties (colors, names, etc.)" # get carriers that should be plotted, because they are connected with a technology relNodeC1_arr = filter(x -> x[2] in vcat(getindex.(flowGrap_obj.edgeTe,1),getindex.(flowGrap_obj.edgeTe,2)), collect(flowGrap_obj.nodeC)) # get carriers that shold be plotted, because they are connected with another carrier that should be plotted relNodeC2_arr = filter(x -> any(map(y -> x[2] in y && !isempty(intersect(getindex.(relNodeC1_arr,2),y)) , collect.(flowGrap_obj.edgeC))), collect(flowGrap_obj.nodeC)) # maps node id to node names idToC_arr = map(x -> x[2] => anyM.sets[:C].nodes[x[1]].val, filter(y -> y[2] in union(edges_arr...), intersect(flowGrap_obj.nodeC, union(relNodeC1_arr,relNodeC2_arr)))) idToTe_arr = map(x -> x[2] => anyM.sets[:Te].nodes[x[1]].val, filter(y -> y[2] in union(edges_arr...), collect(flowGrap_obj.nodeTe))) idToName_dic = Dict(vcat(idToC_arr,idToTe_arr)) # obtain colors of nodes ordC_arr = intersect(unique(vcat(edges_arr...)), getindex.(idToC_arr,1)) ordTe_arr = intersect(unique(vcat(edges_arr...)), getindex.(idToTe_arr,1)) nodeC_arr = getNodeColors(ordC_arr,idToName_dic,anyM) nodeTe_arr = useTeColor ? getNodeColors(ordTe_arr,idToName_dic,anyM) : [(0.85,0.85,0.85)] nodesCnt_int = length(idToName_dic) # converts edges to sparse matrix for flowLayout function id_arr = vcat(getindex.(idToC_arr,1), getindex.(idToTe_arr,1)) edges_mat = convert(Array{Int64,2},zeros(nodesCnt_int,nodesCnt_int)) foreach(x -> edges_mat[findall(id_arr .== x[1])[1],findall(id_arr .== x[2])[1]] = 1, filter(x -> x[1] in id_arr && x[2] in id_arr,edges_arr)) edges_smat = SparseArrays.sparse(edges_mat) # compute position of nodes if replot || !(isdefined(flowGrap_obj,:nodePos)) pos_dic = flowLayout(nodesCnt_int,edges_smat; scaDist = scaDist, maxIter = maxIter, initTemp = initTemp) flowGrap_obj.nodePos = Dict(id_arr[x] => pos_dic[x] for x in keys(pos_dic)) end # separate into edges between technologies and carriers and between carriers, then get respective colors cEdges_arr = filter(x -> x[1] in ordC_arr && x[2] in ordC_arr, collect(graph_obj.edges)) edgeColC_arr = map(x -> anyM.graInfo.colors[idToName_dic[x[1]]], cEdges_arr) teEdges_arr = filter(x -> x[1] in ordTe_arr || x[2] in ordTe_arr, collect(graph_obj.edges)) edgeColTe_arr = map(x -> x[1] in ordC_arr ? anyM.graInfo.colors[idToName_dic[x[1]]] : anyM.graInfo.colors[idToName_dic[x[2]]], teEdges_arr) # </editor-fold> # <editor-fold desc="draw and save graph with python" # plot final graph object plt.clf() netw.draw_networkx_nodes(graph_obj, flowGrap_obj.nodePos, nodelist = ordC_arr, node_shape="s", node_size = 300, node_color = nodeC_arr) netw.draw_networkx_nodes(graph_obj, flowGrap_obj.nodePos, nodelist = ordTe_arr, node_shape="o", node_size = 185,node_color = nodeTe_arr) netw.draw_networkx_edges(graph_obj, flowGrap_obj.nodePos, edgelist = cEdges_arr, edge_color = edgeColC_arr, arrowsize = 16.2, width = 1.62) netw.draw_networkx_edges(graph_obj, flowGrap_obj.nodePos, edgelist = teEdges_arr, edge_color = edgeColTe_arr) posLabC_dic = netw.draw_networkx_labels(graph_obj, flowGrap_obj.nodePos, font_size = fontSize, labels = Dict(y[1] => anyM.graInfo.names[y[2]] for y in filter(x -> x[1] in ordC_arr,idToName_dic)), font_weight = "bold", font_family = "arial") posLabTe_dic = netw.draw_networkx_labels(graph_obj, flowGrap_obj.nodePos, font_size = fontSize, font_family = "arial", labels = Dict(y[1] => anyM.graInfo.names[y[2]] for y in filter(x -> !(x[1] in ordC_arr),idToName_dic))) # adjusts position of carrier labels so that they are right from node, uses code provided by ImportanceOfBeingErnest from here https://stackoverflow.com/questions/43894987/networkx-node-labels-relative-position figure = plt.gcf() figure.set_size_inches(plotSize[1],plotSize[2]) r = figure.canvas.get_renderer() trans = plt.gca().transData.inverted() for x in vcat(collect(posLabC_dic),collect(posLabTe_dic)) cNode_boo = x[1] in ordC_arr bb = x[2].get_window_extent(renderer=r) bbdata = bb.transformed(trans) # computes offset of label for leaves and non-leaves by first moving according to size auf letters itself (bbdata) and then by size of the node # (node-size in pixel is devided by dpi and plot size to get relative offset) offset_arr = [cNode_boo ? (bbdata.width/2.0 + (500/plotSize[1]/600)) : 0.0, cNode_boo ? 0.0 : (bbdata.height/2.0 + 200/plotSize[2]/600)] x[2].set_position([x[2]."_x" + offset_arr[1],x[2]."_y" + offset_arr[2]]) x[2].set_clip_on(false) end plt.axis("off") # size plot and save plt.savefig("$(anyM.options.outDir)/energyFlowGraph_$(anyM.options.outStamp)", dpi = 600) # </editor-fold> end # XXX plot quantitative energy flow sankey diagramm (applies python module plotly via PyCall package) function plotEnergyFlow(objGrp::Val{:sankey},anyM::anyModel; plotSize::Tuple{Number,Number} = (16.0,9.0), minVal::Float64 = 0.1, filterFunc::Function = x -> true, dropDown::Tuple{Vararg{Symbol,N} where N} = (:region,:timestep), rmvNode::Tuple{Vararg{String,N} where N} = tuple(), useTeColor = true) plt = pyimport("plotly") flowGrap_obj = anyM.graInfo.graph # <editor-fold desc="initialize data" if !isempty(setdiff(dropDown,[:region,:timestep])) error("dropDown only accepts array :region and :timestep as content") end # get mappings to create buttons of dropdown menue drop_dic = Dict(:region => :R_dis, :timestep => :Ts_disSup) dropDim_arr = collect(map(x -> drop_dic[x], dropDown)) # get summarised data and filter dispatch variables data_df = reportResults(:summary,anyM,rtnOpt = (:rawDf,)) filter!(x -> x.variable in (:demand,:gen,:use,:stIn,:stOut,:trdBuy,:trdSell,:demand,:import,:export,:lss,:crt),data_df) # filter non relevant entries filter!(x -> abs(x.value) > minVal, data_df) filter!(filterFunc, data_df) # create dictionaries for nodes that are neither technology nor carrier othNode_dic = maximum(values(flowGrap_obj.nodeTe)) |> (z -> Dict((x[2].C,x[2].variable) => x[1] + z for x in enumerate(eachrow(unique(filter(x -> x.Te == 0,data_df)[!,[:variable,:C]]))))) othNodeId_dic = collect(othNode_dic) |> (z -> Dict(Pair.(getindex.(z,2),getindex.(z,1)))) # </editor-fold> # <editor-fold desc="prepare labels and colors" # prepare name and color assignment names_dic = anyM.graInfo.names revNames_dic = collect(names_dic) |> (z -> Dict(Pair.(getindex.(z,2),getindex.(z,1)))) col_dic = anyM.graInfo.colors sortTe_arr = getindex.(sort(collect(flowGrap_obj.nodeTe),by = x -> x[2]),1) cColor_dic = Dict(x => anyM.sets[:C].nodes[x].val |> (z -> z in keys(col_dic) ? col_dic[z] : (names_dic[z] in keys(col_dic) ? col_dic[col_dic[z]] : (0.85,0.85,0.85))) for x in sort(collect(keys(flowGrap_obj.nodeC)))) # create array of node labels cLabel_arr = map(x -> names_dic[anyM.sets[:C].nodes[x].val],sort(collect(keys(flowGrap_obj.nodeC)))) teLabel_arr = map(x -> names_dic[anyM.sets[:Te].nodes[x].val],sortTe_arr) othLabel_arr = map(x -> names_dic[String(othNodeId_dic[x][2])],sort(collect(keys(othNodeId_dic)))) nodeLabel_arr = vcat(cLabel_arr, teLabel_arr, othLabel_arr) revNodelLabel_arr = map(x -> revNames_dic[x],nodeLabel_arr) # create array of node colors cColor_arr = map(x -> anyM.sets[:C].nodes[x].val |> (z -> z in keys(col_dic) ? col_dic[z] : (names_dic[z] in keys(col_dic) ? col_dic[names_dic[z]] : (0.85,0.85,0.85))),sort(collect(keys(flowGrap_obj.nodeC)))) teColor_arr = map(x -> anyM.sets[:Te].nodes[x].val |> (z -> useTeColor && z in keys(col_dic) ? col_dic[z] : (useTeColor && names_dic[z] in keys(col_dic) ? col_dic[names_dic[z]] : (0.85,0.85,0.85))),sortTe_arr) othColor_arr = map(x -> anyM.sets[:C].nodes[othNodeId_dic[x][1]].val |> (z -> z in keys(col_dic) ? col_dic[z] : (names_dic[z] in keys(col_dic) ? col_dic[names_dic[z]] : (0.85,0.85,0.85))),sort(collect(keys(othNodeId_dic)))) nodeColor_arr = vcat(map(x -> replace.(string.("rgb",string.(map(z -> z .* 255.0,x)))," " => ""),[cColor_arr, teColor_arr, othColor_arr])...) dropData_arr = Array{Dict{Symbol,Any},1}() # </editor-fold> # XXX loop over potential buttons in dropdown menue for drop in eachrow(unique(data_df[!,dropDim_arr])) # <editor-fold desc="filter data and create flow array" dropData_df = copy(data_df) if :region in dropDown subR_arr = [drop.R_dis, getDescendants(drop.R_dis,anyM.sets[:R],true)...] end for d in dropDown filter!(x -> d == :region ? x.R_dis in subR_arr : x.Ts_disSup == drop.Ts_disSup, dropData_df) end flow_arr = Array{Tuple,1}() # write flows reported in data summary for x in eachrow(dropData_df) a = Array{Any,1}(undef,3) # technology related entries if x.variable in (:demand,:export,:trdSell,:crt) a[1] = flowGrap_obj.nodeC[x.C] a[2] = othNode_dic[(x.C,x.variable)] elseif x.variable in (:import,:trdBuy,:lss) a[1] = othNode_dic[(x.C,x.variable)] a[2] = flowGrap_obj.nodeC[x.C] elseif x.variable in (:gen,:stOut) if x.Te in keys(flowGrap_obj.nodeTe) # if technology is not directly part of the graph, use its smallest parent that its a[1] = flowGrap_obj.nodeTe[x.Te] else a[1] = flowGrap_obj.nodeTe[minimum(intersect(keys(flowGrap_obj.nodeTe),getAncestors(x.Te,anyM.sets[:Te],:int)))] end a[2] = flowGrap_obj.nodeC[x.C] else a[1] = flowGrap_obj.nodeC[x.C] if x.Te in keys(flowGrap_obj.nodeTe) a[2] = flowGrap_obj.nodeTe[x.Te] else a[2] = flowGrap_obj.nodeTe[minimum(intersect(keys(flowGrap_obj.nodeTe),getAncestors(x.Te,anyM.sets[:Te],:int)))] end end a[3] = abs(x.value) push!(flow_arr,tuple(a...)) end # create flows connecting different carriers idToC_dic = Dict(map(x -> x[2] => x[1], collect(flowGrap_obj.nodeC))) for x in filter(x -> anyM.sets[:C].up[x] != 0,intersect(union(getindex.(flow_arr,1),getindex.(flow_arr,2)),values(flowGrap_obj.nodeC))) a = Array{Any,1}(undef,3) a[1] = flowGrap_obj.nodeC[x] a[2] = flowGrap_obj.nodeC[anyM.sets[:C].up[x]] a[3] = (getindex.(filter(y -> y[2] == x,flow_arr),3) |> (z -> isempty(z) ? 0.0 : sum(z))) - (getindex.(filter(y -> y[1] == x,flow_arr),3) |> (z -> isempty(z) ? 0.0 : sum(z))) push!(flow_arr,tuple(a...)) end # merges flows for different regions that connect the same nodes flow_arr = map(unique(map(x -> x[1:2],flow_arr))) do fl allFl = filter(y -> y[1:2] == fl[1:2],flow_arr) return (allFl[1][1],allFl[1][2],sum(getindex.(allFl,3))) end # removes nodes accoring function input provided for rmv in rmvNode # splits remove expression by semicolon and searches for first part rmvStr_arr = split(rmv,"; ") relNodes_arr = findall(nodeLabel_arr .== rmvStr_arr[1]) if isempty(relNodes_arr) relNodes_arr = findall(revNodelLabel_arr .== rmvStr_arr[1]) end if isempty(relNodes_arr) continue end if length(rmvStr_arr) == 2 # if rmv contains two strings separated by a semicolon, the second one should relate to a carrier, carrier is searched for and all related flows are removed relC_arr = findall(nodeLabel_arr .== rmvStr_arr[2]) if isempty(relNodes_arr) relC_arr = findall(revNodelLabel_arr .== rmvStr_arr[2]) end if isempty(relC_arr) produceMessage(anyM.options,anyM.report, 1," - Remove string contained a carrier not found in graph, check for typos: "*rmv) continue else c_int = relC_arr[1] end filter!(x -> !((x[1] in relNodes_arr || x[2] in relNodes_arr) && (x[1] == c_int || x[2] == c_int)),flow_arr) elseif length(rmvStr_arr) > 2 error("one remove string contained more then one semicolon, this is not supported") else # if rmv only contains one string, only nodes where in- and outgoing flow are equal or only one of both exists out_tup = filter(x -> x[1] == relNodes_arr[1],flow_arr) in_tup = filter(x -> x[2] == relNodes_arr[1],flow_arr) if length(out_tup) == 1 && length(in_tup) == 1 && out_tup[1][3] == in_tup[1][3] # in- and outgoing are the same filter!(x -> !(x in (out_tup[1],in_tup[1])),flow_arr) push!(flow_arr,(in_tup[1][1],out_tup[1][2],in_tup[1][3])) elseif length(out_tup) == 0 # only ingoing flows filter!(x -> !(x in in_tup),flow_arr) elseif length(in_tup) == 0 # only outgoing flows filter!(x -> !(x in out_tup),flow_arr) end end end # </editor-fold> # <editor-fold desc="create dictionaries for later plotting" # collect data for drop in a dictionary linkColor_arr = map(x -> collect(x[1] in keys(cColor_dic) ? cColor_dic[x[1]] : cColor_dic[x[2]]) |> (z -> replace(string("rgba",string(tuple([255.0 .*z..., (x[1] in keys(cColor_dic) && x[2] in keys(cColor_dic) ? 0.8 : 0.5)]...)))," " => "")), flow_arr) link_dic = Dict(:source => getindex.(flow_arr,1) .- 1, :target => getindex.(flow_arr,2) .- 1, :value => getindex.(flow_arr,3), :color => linkColor_arr) fullData_arr = [Dict(:link => link_dic, :node => Dict(:label => nodeLabel_arr, :color => nodeColor_arr))] # pushes dictionary to overall array label_str = string("<b>",join(map(y -> anyM.sets[Symbol(split(String(y),"_")[1])].nodes[drop[y]].val,dropDim_arr),", "),"</b>") push!(dropData_arr,Dict(:args => fullData_arr, :label => label_str, :method => "restyle")) # </editor-fold> end # <editor-fold desc="create various dictionaries to define format and create plot" menues_dic =[Dict(:buttons => dropData_arr, :direction => "down", :pad => Dict(:l => 10, :t => 10), :font => Dict(:size => 16, :family => "Arial"), :showactive => true, :x => 0.01, :xanchor => "center", :y => 1.1, :yanchor => "middle")] data_dic = Dict(:type => "sankey", :orientation => "h", :valueformat => ".0f", :textfont => Dict(:family => "Arial"), :node => Dict(:pad => 8, :thickness => 36, :line => Dict(:color => "white",:width => 0.01), :hoverinfo => "skip")) layout_dic = Dict(:width => 125*plotSize[1], :height => 125*plotSize[2], :updatemenus => menues_dic, :font => Dict(:size => 32, :family => "Arial")) fig = Dict(:data => [data_dic], :layout => layout_dic) plt.offline.plot(fig, filename="$(anyM.options.outDir)/energyFlowSankey_$(join(string.(dropDown),"_"))_$(anyM.options.outStamp).html") # </editor-fold> end # XXX define postions of nodes in energy flow graph # function is mostly taken from [GraphPlot.jl](https://github.com/JuliaGraphs/GraphPlot.jl), who again reference the following source [IainNZ](https://github.com/IainNZ)'s [GraphLayout.jl](https://github.com/IainNZ/GraphLayout.jl) function flowLayout(nodesCnt_int::Int,edges_smat::SparseMatrixCSC{Int64,Int64}, locsX_arr::Array{Float64,1} = 2*rand(nodesCnt_int).-1.0, locsY_arr::Array{Float64,1} = 2*rand(nodesCnt_int).-1.0; scaDist::Number = 0.5, maxIter::Int=5000, initTemp::Number=2.0) # optimal distance bewteen vertices k = scaDist * sqrt(4.0 / nodesCnt_int) k² = k * k # store forces and apply at end of iteration all at once force_x = zeros(nodesCnt_int) force_y = zeros(nodesCnt_int) # iterate maxIter times @inbounds for iter = 1:maxIter # Calculate forces for i = 1:nodesCnt_int force_vec_x = 0.0 force_vec_y = 0.0 for j = 1:nodesCnt_int i == j && continue d_x = locsX_arr[j] - locsX_arr[i] d_y = locsY_arr[j] - locsY_arr[i] dist² = (d_x * d_x) + (d_y * d_y) dist = sqrt(dist²) if !( iszero(edges_smat[i,j]) && iszero(edges_smat[j,i]) ) # Attractive + repulsive force # F_d = dist² / k - k² / dist # original FR algorithm F_d = dist / k - k² / dist² else # Just repulsive # F_d = -k² / dist # original FR algorithm F_d = -k² / dist² end force_vec_x += F_d*d_x force_vec_y += F_d*d_y end force_x[i] = force_vec_x force_y[i] = force_vec_y end # Cool down temp = initTemp / iter # Now apply them, but limit to temperature for i = 1:nodesCnt_int fx = force_x[i] fy = force_y[i] force_mag = sqrt((fx * fx) + (fy * fy)) scale = min(force_mag, temp) / force_mag locsX_arr[i] += force_x[i] * scale locsY_arr[i] += force_y[i] * scale end end # Scale to unit square min_x, max_x = minimum(locsX_arr), maximum(locsX_arr) min_y, max_y = minimum(locsY_arr), maximum(locsY_arr) function scaler(z, a, b) 2.0*((z - a)/(b - a)) - 1.0 end map!(z -> scaler(z, min_x, max_x), locsX_arr, locsX_arr) map!(z -> scaler(z, min_y, max_y), locsY_arr, locsY_arr) # converts positions into dictionary pos_dic = Dict(z => [locsX_arr[z]*16/9,locsY_arr[z]] for z in 1:nodesCnt_int) return pos_dic end # XXX returns array of colors for input nodes, which labels can be found in label_dic function getNodeColors(node_arr::Array{Int,1}, label_dic::Dict{Int64,String},anyM::anyModel) revName_dic = collect(anyM.graInfo.names) |> (z -> Dict(Pair.(getindex.(z,2),getindex.(z,1)))) col_dic = anyM.graInfo.colors color_arr = map(node_arr) do x str = label_dic[x] if str in keys(col_dic) # label is key in color dictionary return col_dic[str] elseif str in keys(anyM.graInfo.names) && anyM.graInfo.names[str] in keys(col_dic) # internal name is key in dictionary, but label was external return col_dic[anyM.graInfo.names[str]] elseif str in keys(revName_dic) && revName_dic[str] in keys(col_dic) # external name is key in dictionary, but label was internal return col_dic[revName_dic[str]] else # default color return (0.85,0.85,0.85) end end return color_arr end # XXX move a node after positions were created within energy flow graph """ ```julia moveNode!(model_object::anyModel, newPos_arr::Union{Array{Tuple{String,Array{Float64,1}},1},Tuple{String,Array{Float64,1}}}) ``` Moves a node within the current layout of the node graph created with `plotEnergyFlow`. See [Energy flow](@ref). """ function moveNode!(anyM::anyModel,newPos_arr::Union{Array{Tuple{String,Array{Float64,1}},1},Tuple{String,Array{Float64,1}}}) flowGrap_obj = anyM.graInfo.graph if !isdefined(flowGrap_obj,:nodePos) error("Initial positions are not yet defined. Run 'plotEnergyFlow' first.") end # gets assignment between node ids and names edges_arr = vcat(collect.(flowGrap_obj.edgeC),collect.(flowGrap_obj.edgeTe)) cToId_arr = map(x -> anyM.sets[:C].nodes[x[1]].val => x[2], filter(y -> y[2] in union(edges_arr...), collect(flowGrap_obj.nodeC))) teToId_arr = map(x -> anyM.sets[:Te].nodes[x[1]].val => x[2], filter(y -> y[2] in union(edges_arr...), collect(flowGrap_obj.nodeTe))) nameToId_dic = Dict(vcat(teToId_arr,cToId_arr)) # if input is just a single tuple and not an array convert to array if typeof(newPos_arr) == Tuple{String,Array{Float64,1}} newPos_arr = [newPos_arr] end switchNames_dic = Dict(map(x -> x[2] => x[1],collect(anyM.graInfo.names))) # loops overa array of moved notes for newPos in newPos_arr # get id of node depending on whether it is an orignial name or name just used in plot if newPos[1] in keys(nameToId_dic) x = nameToId_dic[newPos[1]] elseif newPos[1] in values(anyM.graInfo.names) x = nameToId_dic[switchNames_dic[newPos[1]]] else error("Node name not recognized!") end # actually adjust node position flowGrap_obj.nodePos[x] = [flowGrap_obj.nodePos[x][1] + newPos[2][1]*2, flowGrap_obj.nodePos[x][2] + newPos[2][2]*2] end end # </editor-fold> # XXX dummy function just do provide a docstring for printIIS (docstring in printIIS wont work, because read-in is conditional) """ ```julia printIIS(model_object::anyModel) ``` Uses Gurobi's computeIIS function to determine the constraints of the optimization problem that cause infeasibility. """ function printIIS(anyM::anyModel,d::Int) end
AnyMOD
https://github.com/leonardgoeke/AnyMOD.jl.git
[ "MIT" ]
0.1.12
46a00c75bb6eb7fdaf5b15d75e9a544c0f91484d
code
1301
using Gurobi function printIIS(anyM::anyModel) # computes iis compute_conflict!(anyM.optModel) if MOI.get(anyM.optModel, MOI.ConflictStatus()) != MOI.ConflictStatusCode(3) return end # loops over constraint tables to find constraints within iis allCns_pair = vcat(collect.(vcat(anyM.parts.bal.cns, anyM.parts.trd.cns, anyM.parts.lim.cns, map(x -> x.cns,values(anyM.parts.tech))...))...) for cns in allCns_pair if cns[1] == :objEqn continue end allConstr_arr = findall(map(x -> MOI.ConflictParticipationStatusCode(0) != MOI.get(anyM.optModel.moi_backend, MOI.ConstraintConflictStatus(), x.index),cns[2][!,:cns])) # prints constraints within iis if !isempty(allConstr_arr) println("$(length(allConstr_arr)) of IIS in $(cns[1]) constraints.") colSet_dic = Dict(x => Symbol(split(string(x),"_")[1]) for x in intCol(cns[2])) for iisConstr in allConstr_arr row = cns[2][iisConstr,:] dimStr_arr = map(x -> row[x] == 0 ? "" : string(x,": ",join(getUniName(row[x], anyM.sets[colSet_dic[x]])," < ")),collect(keys(colSet_dic))) println("$(join(filter(x -> x != "",dimStr_arr),", ")), constraint: $(row[:cns])") end end end end export printIIS
AnyMOD
https://github.com/leonardgoeke/AnyMOD.jl.git
[ "MIT" ]
0.1.12
46a00c75bb6eb7fdaf5b15d75e9a544c0f91484d
code
21522
# XXX maps their different levels to carriers function createCarrierMapping!(setData_dic::Dict,anyM::anyModel) # determines number of specified carrier levels lvlCar_arr = [Symbol("carrier_",i) for i in 1:anyM.sets[:C].height] # tuple of columns with dispatch and expansion resolutions resCol_tup = (:timestep_dispatch, :timestep_expansion, :region_dispatch, :region_expansion) resLongShort_tup = Dict(:timestep_dispatch => :lvlTsDis, :timestep_expansion => :lvlTsExp, :region_dispatch => :lvlRDis, :region_expansion => :lvlRExp) anyM.cInfo = Dict{Int,NamedTuple{(:tsDis,:tsExp,:rDis,:rExp,:eq),Tuple{Int,Int,Int,Int,Bool}}}() # loops over rows in carrier file and writes specific resolutions for row in eachrow(setData_dic[:C]) # gets tuple of strings for respective carrier car_tup = tuple(map(x -> row[x],lvlCar_arr)...) car_int = lookupTupleTree(car_tup,anyM.sets[:C])[1] # gets resolution value and writes them if they can be parsed to numbers resVal_dic = Dict(resLongShort_tup[x] => row[x] for x in resCol_tup) # check, if carrier got an equality constraint or not if :carrier_equality in namesSym(row) if !(row[:carrier_equality] in ("no","yes")) push!(anyM.report,(2,"carrier mapping","","column carrier_equality can only contain keywords 'yes' or 'no'")) continue else eq_boo = row[:carrier_equality] == "yes" ? true : false end else eq_boo = false end # check if level values can be converted to integers if any(map(x -> tryparse(Int,x), values(resVal_dic)) .== nothing) push!(anyM.report,(2,"carrier mapping","","no resolutions written for $(createFullString(car_int,anyM.sets[:C])), provide as integer, carrier was skipped")) continue end res_dic = Dict(resLongShort_tup[x] => parse(Int,row[x]) for x in resCol_tup) # writes levels after consistency check if res_dic[:lvlTsDis] < res_dic[:lvlTsExp] push!(anyM.report,(3,"carrier mapping","","temporal resolution of expansion can not be more detailed than for dispatch for $(createFullString(car_int,anyM.sets[:C]))")) continue elseif res_dic[:lvlRDis] > res_dic[:lvlRExp] push!(anyM.report,(3,"carrier mapping","","spatial resolution of expansion must be at least as detailed as dispatch for $(createFullString(car_int,anyM.sets[:C]))")) continue else anyM.cInfo[car_int] = (tsDis = res_dic[:lvlTsDis],tsExp = res_dic[:lvlTsExp],rDis = res_dic[:lvlRDis],rExp = res_dic[:lvlRExp], eq = eq_boo) end end if any(getindex.(anyM.report,1) .== 3) print(getElapsed(anyM.options.startTime)); errorTest(anyM.report,anyM.options) end # loops over all carriers and check consistency of resolutions and tries to inherit a resolution where none was defined, cannot be carried if above they have already been errors detected for c in filter(x -> x != 0, keys(anyM.sets[:C].nodes)) anyM.cInfo = evaluateReso(c,anyM.sets[:C],anyM.cInfo,anyM.report) end if minimum(map(x -> getfield(x,:tsDis),values(anyM.cInfo))) < maximum(map(x -> getfield(x,:tsExp),values(anyM.cInfo))) push!(anyM.report,(3,"carrier mapping","","one temporal dispatch resoultion is more detailed than one of the temporal expansion resolutions")) end produceMessage(anyM.options,anyM.report, 3," - Created mapping for carriers") end # XXX checks carrier for errors in resolution or derive resolution from lower carriers function evaluateReso(startIdx_int::Int,car_tree::Tree,cInfo_dic::Dict{Int,NamedTuple{(:tsDis,:tsExp,:rDis,:rExp,:eq),Tuple{Int,Int,Int,Int,Bool}}},report::Array{Tuple,1}) # extracts all children and all columns related to resolution carName_str = createFullString(startIdx_int,car_tree) allChildIdx_arr = getDescendants(startIdx_int,car_tree) # all entries need to have a resoultion => otherwise evaluateReso on them for noResoIdx = setdiff(allChildIdx_arr,collect(keys(cInfo_dic))) cInfo_dic = evaluateReso(noResoIdx,car_tree,cInfo_dic,report) end # tries to inherit resolutions from children, if no data exists yet if !haskey(cInfo_dic,startIdx_int) if isempty(allChildIdx_arr) push!(report,(3,"carrier mapping","","carrier $(carName_str) got no resolution and could not inherit from children either")) return cInfo_dic else newReso_dic = Dict(y => minimum([getfield(cInfo_dic[x],y) for x in allChildIdx_arr]) for y in (:tsDis,:tsExp,:rDis,:rExp)) cInfo_dic[startIdx_int] = (tsDis = newReso_dic[:tsDis],tsExp = newReso_dic[:tsExp],rDis = newReso_dic[:rDis],rExp = newReso_dic[:rExp], eq = false) push!(report,(1,"carrier mapping","","carrier $(carName_str) inherited resolution from children")) return cInfo_dic end # checks if existing resolution is flawed else for childIdx in allChildIdx_arr # check if any children got a smaller resolution value if any(map(x -> getfield(cInfo_dic[startIdx_int],x) > getfield(cInfo_dic[childIdx],x),(:tsDis,:tsExp,:rDis,:rExp))) push!(report,(3,"carrier mapping","","carrier $(carName_str) got a resolution more detailed than its childrens'")) end end end return cInfo_dic end # XXX maps information about timesteps used function createTimestepMapping!(anyM::anyModel) # XXX writes the superordinate dispatch level, the timesteps on this level and scaling factor for timesteps depending on the respective superordinate dispatch timestep and the level supTsLvl_int = maximum(map(x -> getfield(x,:tsExp),values(anyM.cInfo))) if anyM.options.supTsLvl != 0 if minimum(map(x -> getfield(x,:tsDis),values(anyM.cInfo))) >= anyM.options.supTsLvl supTsLvl_int = anyM.options.supTsLvl push!(anyM.report,(1,"timestep mapping","","superordinate dispatch level provided via options was used")) else push!(anyM.report,(2,"timestep mapping","","superordinate dispatch level provided via options could not be used, because it was more detailed than at least one dispatch level provided")) end end supTs_tup = tuple(sort(getfield.(filter(x -> x.lvl == supTsLvl_int,collect(values(anyM.sets[:Ts].nodes))),:idx))...) scaSupTs_dic = Dict((x[1],x[2]) => (1/anyM.options.redStep)*8760/length(getDescendants(x[1],anyM.sets[:Ts],false,x[2])) for x in Iterators.product(supTs_tup,filter(x -> x >= supTsLvl_int,1:anyM.sets[:Ts].height))) anyM.supTs = (lvl = supTsLvl_int, step = supTs_tup, sca = scaSupTs_dic) if length(anyM.supTs.step) > 50 push!(anyM.report,(2,"timestep mapping","","problem specification resulted in more than 50 superordinate dispatch timesteps, this looks faulty")) end produceMessage(anyM.options,anyM.report, 3," - Created mapping for time steps") end # XXX writes basic information for each technology function createTechInfo!(tSym::Symbol, setData_dic::Dict,anyM::anyModel) part = anyM.parts.tech[tSym] t_int = techInt(tSym,anyM.sets[:Te]) lvlTech_arr = Symbol.(:technology_,1:anyM.sets[:Te].height) # tuple of columns with input, output and stored carriers typeStr_dic = Dict(:carrier_conversion_in => "conversion input", :carrier_conversion_out => "conversion output", :carrier_stored_in => "storage", :carrier_stored_out => "storage") carCol_tup = (:carrier_conversion_in, :carrier_conversion_out, :carrier_stored_in, :carrier_stored_out) # maps carrier strings to their id nameC_dic = Dict(collect(values(anyM.sets[:C].nodes)) |> (y -> Pair.(getfield.(y,:val),getfield.(y,:idx)))) # maps selected strings of tech types to integers typeStringInt_dic = Dict("stock" => 0, "mature" => 1,"emerging" => 2) # gets datarow for respective technology row_df = anyM.sets[:Te].nodes[t_int].val |> (z -> filter(x -> any(map(y -> z == x[y],lvlTech_arr)) ,setData_dic[:Te])[1,:]) # XXX writes carrier info # gets string array of carriers for input, output and stored, looks up respective ids afterwards and writes to mapping file carStrArr_dic = Dict(y => y in namesSym(row_df) ? split(replace(row_df[y]," " => ""),";") |> (z -> filter(x -> !isempty(x),z)) : String[] for y in carCol_tup) carId_dic = Dict(z => tuple(map(x -> getDicEmpty(nameC_dic,x),carStrArr_dic[z])...) for z in keys(carStrArr_dic)) for x in filter(x -> Int[] in carId_dic[x], collectKeys(keys(carId_dic))) push!(anyM.report,(3,"technology mapping","carrier","$(typeStr_dic[x]) carrier of technology $(string(tSym)) not entered correctly")) carId_dic[x] = tuple(filter(y -> y != Int[],collect(carId_dic[x]))...) end # avoid storage of carriers that are balanced on superordinate dispatch level (e.g. if gas is balanced yearly, there is no need for gas storage) for type in (:carrier_stored_out, :carrier_stored_in) for c in carId_dic[type] if anyM.supTs.lvl == anyM.cInfo[c].tsDis carId_dic[type] = tuple(filter(x -> x != c,collect(carId_dic[type]))...) push!(anyM.report,(2,"technology mapping","carrier","carrier $(createFullString(c,anyM.sets[:C])) of technology $(string(tSym)) cannot be stored, because carrier is balanced on superordinate dispatch level")) end end end # writes all relevant type of dispatch variables and respective carrier carGrp_ntup = (use = carId_dic[:carrier_conversion_in], gen = carId_dic[:carrier_conversion_out], stExtIn = carId_dic[:carrier_stored_in], stExtOut = carId_dic[:carrier_stored_out], stIntIn = tuple(intersect(carId_dic[:carrier_conversion_out],carId_dic[:carrier_stored_out])...), stIntOut = tuple(intersect(carId_dic[:carrier_conversion_in],carId_dic[:carrier_stored_in])...)) if :carrier_stored_active in namesSym(row_df) actStStr_arr = split(replace(row_df[:carrier_stored_active]," " => ""),";") |> (z -> filter(x -> !isempty(x),z)) actSt_tup = tuple(map(x -> getDicEmpty(nameC_dic,x),actStStr_arr)...) else actSt_tup = tuple() end part.actSt = actSt_tup # report on suspicious looking carrier constellations if isempty(union(carId_dic[:carrier_conversion_out],carId_dic[:carrier_stored_out])) push!(anyM.report,(2,"technology mapping","carrier","technology $(string(tSym)) has no output")) end if !isempty(setdiff(carId_dic[:carrier_stored_in],union(carGrp_ntup.stIntOut,carGrp_ntup.stExtOut))) && !isempty(carId_dic[:carrier_stored_in]) push!(anyM.report,(2,"technology mapping","carrier","some carrier of technology $(string(tSym)) can be charged but not discharged")) end if !isempty(setdiff(carId_dic[:carrier_stored_out],union(carGrp_ntup.stIntIn,carGrp_ntup.stExtIn))) && !isempty(carId_dic[:carrier_stored_out]) push!(anyM.report,(2,"technology mapping","carrier","some carrier of technology $(string(tSym)) can be discharged but not charged")) end for c in part.actSt if !(c in vcat(map(x -> vcat(getDescendants(x,anyM.sets[:C],true)...,x), union(carGrp_ntup.stExtIn,carGrp_ntup.stExtOut))...)) push!(anyM.report,(3,"technology mapping","carrier","$(createFullString(c,anyM.sets[:C])) for active storage of technology $(string(tSym)) is not stored or a descendant of a stored carrier")) end end part.carrier = filter(x -> getfield(carGrp_ntup,x) != tuple(),collectKeys(keys(carGrp_ntup))) |> (y -> NamedTuple{Tuple(y)}(map(x -> getfield(carGrp_ntup,x), y)) ) # detects if any in or out carrier is a parent of another in or out carrier, removes carrier in these cases and reports on it for type in (:carrier_conversion_in, :carrier_conversion_out) relCar_tup = carId_dic[type] inherCar_tup = relCar_tup[findall(map(x -> !(isempty(filter(z -> z != x,intersect(getDescendants(x,anyM.sets[:C],true),relCar_tup)))),relCar_tup))] if !isempty(inherCar_tup) for inher in inherCar_tup push!(anyM.report,(3,"technology mapping","carrier","for technology $(string(tSym)) the $(typeStr_dic[type]) carrier $(createFullString(inher,anyM.sets[:C])) is a parent of another $(typeStr_dic[type]) carrier, this is not supported")) end end end # XXX writes technology type # finds technology type and tries to convert to an integer if :technology_type in namesSym(row_df) type_str = row_df[:technology_type] else type_str = "mature" end if !haskey(typeStringInt_dic,String(type_str)) push!(anyM.report,(3,"technology mapping","type","unknown technology type $type_str used, allowed are: $(join(keys(typeStringInt_dic),", "))")) return end part.type = Symbol(type_str) # XXX writes modes of technology if :mode in namesSym(row_df) && length(anyM.sets[:M].nodes) > 1 part.modes = tuple(collect(lookupTupleTree(tuple(string(x),),anyM.sets[:M],1)[1] for x in filter(x -> x != "",split(replace(row_df[:mode]," " => ""),";")))...) else part.modes = tuple() end # XXX determines resolution of expansion # determines carrier based expansion resolutions cEx_boo = true if isempty(vcat(collect.(values(carGrp_ntup))...)) push!(anyM.report,(2,"technology mapping","carrier","for technology $(string(tSym)) no carriers were provided")) cEx_boo = false end tsExp_int = cEx_boo ? maximum(map(y -> getfield(anyM.cInfo[y],:tsExp), vcat(collect.(values(carGrp_ntup))...))) : 0 rExp_int = cEx_boo ? maximum(map(y -> getfield(anyM.cInfo[y],:rExp), vcat(collect.(values(carGrp_ntup))...))) : 0 # check if carrier based temporal resolution is overwritten by a technology specifc value if cEx_boo && :timestep_expansion in namesSym(row_df) tsExpSpc_int = tryparse(Int,row_df[:timestep_expansion]) if !isnothing(tsExpSpc_int) if tsExpSpc_int > anyM.supTs.lvl push!(anyM.report,(2,"technology mapping","expansion level","specific temporal expansion level provided for $(string(tSym)) is below superordinate dispatch level and therefore could not be used")) else push!(anyM.report,(1,"technology mapping","expansion level","specific temporal expansion level provided for $(string(tSym)) was used instead of a carrier based value")) tsExp_int = tsExpSpc_int end end end # check if carrier based spatial resolution is overwritten by a technology specifc value if cEx_boo && :region_expansion in namesSym(row_df) rExpSpc_int = tryparse(Int,row_df[:region_expansion]) if !isnothing(rExpSpc_int) if rExpSpc_int < rExp_int push!(anyM.report,(2,"technology mapping","expansion level","specific spatial expansion level provided for $(string(tSym)) is less detailed than default value obtained from carriers and therefore could not be used")) elseif rExpSpc_int == rExp_int push!(anyM.report,(1,"technology mapping","expansion level","specific spatial expansion level provided for $(string(tSym)) is equal to default value obtained from carriers")) else push!(anyM.report,(1,"technology mapping","expansion level","specific spatial expansion level provided for $(string(tSym)) was used instead of a carrier based value")) rExp_int = rExpSpc_int end end end expLvl_tup = (tsExp_int,rExp_int) # XXX checks if dispatch variables should be disaggregated by expansion regions rExpOrg_int = cEx_boo ? maximum(map(y -> getfield(anyM.cInfo[y],:rDis), vcat(collect.(values(carGrp_ntup))...))) : 0 if :region_disaggregate in namesSym(row_df) && rExp_int > rExpOrg_int # relies on information in explicit column, if disaggregation is possible and column exists daggR_str = row_df[:region_disaggregate] if daggR_str == "yes" disAgg_boo = true elseif daggR_str == "no" disAgg_boo = false else push!(anyM.report,(3,"technology mapping","spatial aggregation","unknown keyword $type_str used to control spatial aggregation, please use 'yes' or 'no'")) return end elseif rExp_int > rExpOrg_int # disaggregate by default, if it makes sense disAgg_boo = true else disAgg_boo = false end part.disAgg = disAgg_boo # XXX determines reference resolution for conversion (takes into account "region_disaggregate" by using spatial expansion instead of dispatch level if set to yes) if !isempty(union(carGrp_ntup.use,carGrp_ntup.gen)) refTs_int = minimum([minimum([getproperty(anyM.cInfo[x],:tsDis) for x in getproperty(carGrp_ntup,z)]) for z in intersect(keys(part.carrier),(:gen, :use))]) refR_int = disAgg_boo ? rExp_int : minimum([minimum([getproperty(anyM.cInfo[x],:rDis) for x in getproperty(carGrp_ntup,z)]) for z in intersect(keys(part.carrier),(:gen, :use))]) refLvl_tup = (refTs_int, refR_int) else refLvl_tup = nothing end part.balLvl = (exp = expLvl_tup, ref = refLvl_tup) produceMessage(anyM.options,anyM.report, 3," - Created mapping for technology $(string(tSym))") end # XXX maps capacity constraints to technology function createCapaRestrMap!(tSym::Symbol,anyM::anyModel) part = anyM.parts.tech[tSym] capaDispRestr_arr = Array{Tuple{String,Array{Int,1},Int,Int},1}() # extract tech info carGrp_ntup = part.carrier balLvl_ntup = part.balLvl disAgg_boo = part.disAgg # XXX writes dimension of capacity restrictions for conversion part (even if there are no inputs) for side in intersect((:use,:gen),keys(carGrp_ntup)) # get respective carrier and their reference level carDis_tup = map(getfield(carGrp_ntup,side)) do x carRow_ntup = anyM.cInfo[x] return x, carRow_ntup.tsDis, disAgg_boo ? balLvl_ntup.exp[2] : carRow_ntup.rDis end carConstr_arr = Tuple{Array{Int,1},Int,Int}[] # writes all relevant combinations by going from finest resolution up, separately for temporal and spatial (2 and 3) for j = [2,3] # sorts descinding by j-th column and ascending by other column carDisSort_arr = sort(collect(carDis_tup), by = x -> x[j], rev=true) carIt_arr = map(1:length(carDis_tup)) do x if j == 2 (sort([carDisSort_arr[y][1] for y in 1:x]), carDisSort_arr[x][2], minimum([carDisSort_arr[y][3] for y in 1:x])) else (sort([carDisSort_arr[y][1] for y in 1:x]), minimum([carDisSort_arr[y][2] for y in 1:x]), carDisSort_arr[x][3]) end end # filters entries that exceed the reference level or are not below the reference level, if already a constraint on the reference level exists from the previous iteration if side == :use && isempty(setdiff((:use,:gen),keys(carGrp_ntup))) carIt_arr = carIt_arr[findall(x -> j == 2 ? x[2] > balLvl_ntup.ref[1] : x[3] > balLvl_ntup.ref[2],carIt_arr)] else carIt_arr = carIt_arr[findall(x -> j == 2 ? x[2] >= balLvl_ntup.ref[1] : x[3] >= balLvl_ntup.ref[2],carIt_arr)] end push!(carConstr_arr, carIt_arr...) end # identifies and addresses "crossings" (one carrier is temporal more but spatially less detailed than another one) by converting into new restriction mappings carConstrUni_arr = unique(carConstr_arr) cross_arr = filter(x -> (any(map(z -> (x[2] > z[2] && x[3] < z[3]) || (x[3] > z[3] && x[2] < z[2]), carConstrUni_arr))),carConstrUni_arr) if !isempty(cross_arr) newEntry_tup = (union(getindex.(cross_arr,1)...), minimum(getindex.(cross_arr,2)),minimum(getindex.(cross_arr,3))) carConstrUni_arr = unique(vcat(newEntry_tup,carConstrUni_arr)) end # filter redundant and "dominated" combinations (less or the same carriers, but not more temporal or spatial detail) carConstrUni_arr2 = map(i -> map(x -> x[i],carConstrUni_arr),1:3) carConFilt_arr = filter(carConstrUni_arr) do x !(any((BitArray(issubset(x[1],y) for y in carConstrUni_arr2[1]) .& (((x[2] .<= carConstrUni_arr2[2]) .& (x[3] .< carConstrUni_arr2[3])) .| ((x[2] .< carConstrUni_arr2[2]) .& (x[3] .<= carConstrUni_arr2[3])) .| ((x[2] .<= carConstrUni_arr2[2]) .& (x[3] .<= carConstrUni_arr2[3])))) .& BitArray(map(y -> y != x,carConstrUni_arr)))) end carConFilt_arr2 = map(i -> map(x -> x[i],carConFilt_arr),1:3) typeCapa_sym = side == :use ? "in" : "out" # adds necessary capacity restrictions below reference level map(x -> push!(capaDispRestr_arr,(typeCapa_sym, carConFilt_arr2[1][x], carConFilt_arr2[2][x], carConFilt_arr2[3][x])),1:length(carConFilt_arr)) end # XXX writes dimension of capacity restrictions for storage stInVar_arr, stOutVar_arr = [intersect(x,keys(carGrp_ntup)) for x in ((:stExtIn,:stIntIn),(:stExtOut,:stIntOut))] if !isempty(stInVar_arr) || !isempty(stOutVar_arr) allCar_arr = unique(vcat(collect.([getproperty(carGrp_ntup,y) for y in union(stInVar_arr,stOutVar_arr)])...)) for x in allCar_arr carRow_ntup = anyM.cInfo[x] # storage on carrier level, but at least on reference level, if region is disaggregated balance on expansion (which is at least lower) tsLvl_int = balLvl_ntup.ref != nothing ? max(balLvl_ntup.ref[1], carRow_ntup.tsDis) : carRow_ntup.tsDis rLvl_int = disAgg_boo ? balLvl_ntup.exp[2] : carRow_ntup.rDis |> (z -> balLvl_ntup.ref != nothing ? max(balLvl_ntup.ref[2], z) : z) if !isempty(stInVar_arr) push!(capaDispRestr_arr,("stIn", [x], tsLvl_int, rLvl_int)) end if !isempty(stOutVar_arr) push!(capaDispRestr_arr,("stOut", [x], tsLvl_int, rLvl_int)) end push!(capaDispRestr_arr,("stSize", [x], tsLvl_int, rLvl_int)) end end part.capaRestr = isempty(capaDispRestr_arr) ? DataFrame() : rename(DataFrame(capaDispRestr_arr), :1 => :cnstrType, :2 => :car, :3 => :lvlTs, :4 => :lvlR) end
AnyMOD
https://github.com/leonardgoeke/AnyMOD.jl.git
[ "MIT" ]
0.1.12
46a00c75bb6eb7fdaf5b15d75e9a544c0f91484d
code
62179
# <editor-fold desc="definition and handling of parameters" # XXX defines all existing parameters function defineParameter(options::modOptions,report::Array{Tuple,1}) parDef_dic = Dict{Symbol, NamedTuple}() # <editor-fold desc="XXX expansion parameters" # XXX general expansion parDef_dic[:rateDisc] = (dim = (:Ts_disSup, :R_exp), defVal = 0.02, herit = (:Ts_disSup => :up, :R_exp => :up, :R_exp => :avg_any, :Ts_disSup => :avg_any), part = :obj) # XXX technology and exchange expansion parDef_dic[:stInToConv] = (dim = (:Ts_exp, :R_exp, :C, :Te), defVal = nothing, herit = (:Te => :up, :Ts_exp => :up, :R_exp => :up), part = :techSt) parDef_dic[:stOutToStIn] = (dim = (:Ts_exp, :R_exp, :C, :Te), defVal = nothing, herit = (:Te => :up, :Ts_exp => :up, :R_exp => :up), part = :techSt) parDef_dic[:sizeToStIn] = (dim = (:Ts_exp, :R_exp, :C, :Te), defVal = nothing, herit = (:Te => :up, :Ts_exp => :up, :R_exp => :up), part = :techSt) parDef_dic[:delConv] = (dim = (:Ts_expSup, :R_exp, :Te), defVal = 0, herit = (:Te => :up, :Ts_expSup => :up, :R_exp => :up), part = :techConv) parDef_dic[:delStIn] = (dim = (:Ts_expSup, :R_exp, :C, :Te), defVal = 0, herit = (:Te => :up, :Ts_expSup => :up, :R_exp => :up), part = :techSt) parDef_dic[:delStOut] = (dim = (:Ts_expSup, :R_exp, :C, :Te), defVal = 0, herit = (:Te => :up, :Ts_expSup => :up, :R_exp => :up), part = :techSt) parDef_dic[:delStSize] = (dim = (:Ts_expSup, :R_exp, :C, :Te), defVal = 0, herit = (:Te => :up, :Ts_expSup => :up, :R_exp => :up), part = :techSt) parDef_dic[:delExc] = (dim = (:Ts_expSup, :R_a, :R_b, :C), defVal = 0, herit = (:Ts_expSup => :up, :R_a => :avg_any, :R_b => :avg_any, :C => :up), part = :exc) parDef_dic[:lifeConv] = (dim = (:Ts_expSup, :R_exp, :Te), defVal = 20, herit = (:Te => :up, :Ts_expSup => :up, :R_exp => :up), part = :techConv) parDef_dic[:lifeStIn] = (dim = (:Ts_expSup, :R_exp, :C, :Te), defVal = 20, herit = (:Te => :up, :Ts_expSup => :up, :R_exp => :up), part = :techSt) parDef_dic[:lifeStOut] = (dim = (:Ts_expSup, :R_exp, :C, :Te), defVal = 20, herit = (:Te => :up, :Ts_expSup => :up, :R_exp => :up), part = :techSt) parDef_dic[:lifeStSize] = (dim = (:Ts_expSup, :R_exp, :C, :Te), defVal = 20, herit = (:Te => :up, :Ts_expSup => :up, :R_exp => :up), part = :techSt) parDef_dic[:lifeExc] = (dim = (:Ts_expSup, :R_a, :R_b, :C), defVal = 50, herit = (:Ts_expSup => :up, :R_a => :avg_any, :R_b => :avg_any, :C => :up), part = :exc) parDef_dic[:lifeEcoConv] = (dim = (:Ts_expSup, :R_exp, :Te), defVal = nothing, herit = (:Te => :up, :Ts_expSup => :up, :R_exp => :up), part = :obj) parDef_dic[:lifeEcoStIn] = (dim = (:Ts_expSup, :R_exp, :C, :Te), defVal = nothing, herit = (:Te => :up, :Ts_expSup => :up, :R_exp => :up), part = :obj) parDef_dic[:lifeEcoStOut] = (dim = (:Ts_expSup, :R_exp, :C, :Te), defVal = nothing, herit = (:Te => :up, :Ts_expSup => :up, :R_exp => :up), part = :obj) parDef_dic[:lifeEcoStSize] = (dim = (:Ts_expSup, :R_exp, :C, :Te), defVal = nothing, herit = (:Te => :up, :Ts_expSup => :up, :R_exp => :up), part = :obj) parDef_dic[:lifeEcoExc] = (dim = (:Ts_expSup, :R_a, :R_b, :C), defVal = nothing, herit = (:Ts_expSup => :up, :R_a => :avg_any, :R_b => :avg_any, :C => :up), part = :obj) parDef_dic[:costExpConv] = (dim = (:Ts_expSup, :R_exp, :Te), defVal = nothing, herit = (:Te => :up, :Ts_expSup => :up, :R_exp => :up), part = :obj) parDef_dic[:costExpStIn] = (dim = (:Ts_expSup, :R_exp, :C, :Te), defVal = nothing, herit = (:Te => :up, :Ts_expSup => :up, :R_exp => :up), part = :obj) parDef_dic[:costExpStOut] = (dim = (:Ts_expSup, :R_exp, :C, :Te), defVal = nothing, herit = (:Te => :up, :Ts_expSup => :up, :R_exp => :up), part = :obj) parDef_dic[:costExpStSize] = (dim = (:Ts_expSup, :R_exp, :C, :Te), defVal = nothing, herit = (:Te => :up, :Ts_expSup => :up, :R_exp => :up), part = :obj) parDef_dic[:costExpExc] = (dim = (:Ts_expSup, :R_a, :R_b, :C), defVal = nothing, herit = (:Ts_expSup => :up, :R_a => :avg_any, :R_b => :avg_any, :C => :up), part = :obj) parDef_dic[:rateExpConv] = (dim = (:Ts_expSup, :R_exp, :Te), defVal = nothing, herit = (:Te => :up, :Ts_expSup => :up, :R_exp => :up), part = :obj) parDef_dic[:rateExpStIn] = (dim = (:Ts_expSup, :R_exp, :C, :Te), defVal = nothing, herit = (:Te => :up, :Ts_expSup => :up, :R_exp => :up), part = :obj) parDef_dic[:rateExpStOut] = (dim = (:Ts_expSup, :R_exp, :C, :Te), defVal = nothing, herit = (:Te => :up, :Ts_expSup => :up, :R_exp => :up), part = :obj) parDef_dic[:rateExpStSize] = (dim = (:Ts_expSup, :R_exp, :C, :Te), defVal = nothing, herit = (:Te => :up, :Ts_expSup => :up, :R_exp => :up), part = :obj) parDef_dic[:rateExpExc] = (dim = (:Ts_expSup, :R_a, :R_b, :C), defVal = nothing, herit = (:Ts_expSup => :up, :R_a => :avg_any, :R_b => :avg_any, :C => :up), part = :obj) parDef_dic[:costOprConv] = (dim = (:Ts_disSup, :Ts_expSup, :R_exp, :Te), defVal = nothing, herit = (:Ts_disSup => :up, :Te => :up, :Ts_expSup => :up, :R_exp => :up), part = :obj) parDef_dic[:costOprStIn] = (dim = (:Ts_disSup, :Ts_expSup, :R_exp, :C, :Te), defVal = nothing, herit = (:Ts_disSup => :up, :Te => :up, :Ts_expSup => :up, :R_exp => :up), part = :obj) parDef_dic[:costOprStOut] = (dim = (:Ts_disSup, :Ts_expSup, :R_exp, :C, :Te), defVal = nothing, herit = (:Ts_disSup => :up, :Te => :up, :Ts_expSup => :up, :R_exp => :up), part = :obj) parDef_dic[:costOprStSize] = (dim = (:Ts_disSup, :Ts_expSup, :R_exp, :C, :Te), defVal = nothing, herit = (:Ts_disSup => :up, :Te => :up, :Ts_expSup => :up, :R_exp => :up), part = :obj) parDef_dic[:costOprExc] = (dim = (:Ts_disSup, :R_a, :R_b, :C), defVal = nothing, herit = (:Ts_disSup => :up, :R_a => :avg_any, :R_b => :avg_any, :R_a => :up, :R_b => :up, :C => :up), part = :obj) # XXX parameters regarding limits on technology and exchange expansion and capacity # expansion limits on conversion, storage and exchange parDef_dic[:expConvUp] = (dim = (:Ts_exp, :R_exp, :Te), defVal = nothing, herit = (:Ts_exp => :sum_full, :R_exp => :sum_full, :Te => :sum_full), part = :lim) parDef_dic[:expConvLow] = (dim = (:Ts_exp, :R_exp, :Te), defVal = nothing, herit = (:Ts_exp => :sum_any, :R_exp => :sum_any, :Te => :sum_any), part = :lim) parDef_dic[:expConvFix] = (dim = (:Ts_exp, :R_exp, :Te), defVal = nothing, herit = (:Ts_exp => :sum_any, :R_exp => :sum_any, :Te => :sum_any), part = :lim) parDef_dic[:expStInUp] = (dim = (:Ts_exp, :R_exp, :C, :Te), defVal = nothing, herit = (:Ts_exp => :sum_full, :R_exp => :sum_full, :Te => :sum_full, :C => :sum_full), part = :lim) parDef_dic[:expStInLow] = (dim = (:Ts_exp, :R_exp, :C, :Te), defVal = nothing, herit = (:Ts_exp => :sum_any, :R_exp => :sum_any, :Te => :sum_any, :C => :sum_any), part = :lim) parDef_dic[:expStInFix] = (dim = (:Ts_exp, :R_exp, :C, :Te), defVal = nothing, herit = (:Ts_exp => :sum_any, :R_exp => :sum_any, :Te => :sum_any, :C => :sum_any), part = :lim) parDef_dic[:expStOutUp] = (dim = (:Ts_exp, :R_exp, :C, :Te), defVal = nothing, herit = (:Ts_exp => :sum_full, :R_exp => :sum_full, :Te => :sum_full, :C => :sum_full), part = :lim) parDef_dic[:expStOutLow] = (dim = (:Ts_exp, :R_exp, :C, :Te), defVal = nothing, herit = (:Ts_exp => :sum_any, :R_exp => :sum_any, :Te => :sum_any, :C => :sum_any), part = :lim) parDef_dic[:expStOutFix] = (dim = (:Ts_exp, :R_exp, :C, :Te), defVal = nothing, herit = (:Ts_exp => :sum_any, :R_exp => :sum_any, :Te => :sum_any, :C => :sum_any), part = :lim) parDef_dic[:expStSizeUp] = (dim = (:Ts_exp, :R_exp, :C, :Te), defVal = nothing, herit = (:Ts_exp => :sum_full, :R_exp => :sum_full, :Te => :sum_full, :C => :sum_full), part = :lim) parDef_dic[:expStSizeLow] = (dim = (:Ts_exp, :R_exp, :C, :Te), defVal = nothing, herit = (:Ts_exp => :sum_any, :R_exp => :sum_any, :Te => :sum_any, :C => :sum_any), part = :lim) parDef_dic[:expStSizeFix] = (dim = (:Ts_exp, :R_exp, :C, :Te), defVal = nothing, herit = (:Ts_exp => :sum_any, :R_exp => :sum_any, :Te => :sum_any, :C => :sum_any), part = :lim) parDef_dic[:expExcUp] = (dim = (:Ts_exp, :R_a, :R_b, :C), defVal = nothing, herit = (:Ts_exp => :sum_full, :R_a => :sum_full, :R_b => :sum_full, :C => :sum_full), part = :lim) parDef_dic[:expExcLow] = (dim = (:Ts_exp, :R_a, :R_b, :C), defVal = nothing, herit = (:Ts_exp => :sum_any, :R_a => :sum_any, :R_b => :sum_any, :C => :sum_any), part = :lim) parDef_dic[:expExcFix] = (dim = (:Ts_exp, :R_a, :R_b, :C), defVal = nothing, herit = (:Ts_exp => :sum_any, :R_a => :sum_any, :R_b => :sum_any, :C => :sum_any), part = :lim) # installed capacity limits and residual capacities on conversion, storage and exchange parDef_dic[:capaConvUp] = (dim = (:Ts_disSup, :Ts_expSup, :R_exp, :Te), defVal = nothing, herit = (:R_exp => :sum_full, :Te => :sum_full, :Ts_disSup => :avg_any, :Ts_expSup => :sum_full), part = :lim) parDef_dic[:capaConvLow] = (dim = (:Ts_disSup, :Ts_expSup, :R_exp, :Te), defVal = nothing, herit = (:R_exp => :sum_any, :Te => :sum_any, :Ts_disSup => :avg_any, :Ts_expSup => :sum_any), part = :lim) parDef_dic[:capaConvFix] = (dim = (:Ts_disSup, :Ts_expSup, :R_exp, :Te), defVal = nothing, herit = (:R_exp => :sum_any, :Te => :sum_any, :Ts_disSup => :avg_any, :Ts_expSup => :sum_any), part = :lim) parDef_dic[:capaStInUp] = (dim = (:Ts_disSup, :Ts_expSup, :R_exp, :C, :Te), defVal = nothing, herit = (:R_exp => :sum_full, :Te => :sum_full, :Ts_disSup => :avg_any, :C => :sum_full, :Ts_expSup => :sum_full), part = :lim) parDef_dic[:capaStInLow] = (dim = (:Ts_disSup, :Ts_expSup, :R_exp, :C, :Te), defVal = nothing, herit = (:R_exp => :sum_any, :Te => :sum_any, :Ts_disSup => :avg_any, :C => :sum_any, :Ts_expSup => :sum_any), part = :lim) parDef_dic[:capaStInFix] = (dim = (:Ts_disSup, :Ts_expSup, :R_exp, :C, :Te), defVal = nothing, herit = (:R_exp => :sum_any, :Te => :sum_any, :Ts_disSup => :avg_any, :C => :sum_any, :Ts_expSup => :sum_any), part = :lim) parDef_dic[:capaStOutUp] = (dim = (:Ts_disSup, :Ts_expSup, :R_exp, :C, :Te), defVal = nothing, herit = (:R_exp => :sum_full, :Te => :sum_full, :Ts_disSup => :avg_any, :C => :sum_full, :Ts_expSup => :sum_full), part = :lim) parDef_dic[:capaStOutLow] = (dim = (:Ts_disSup, :Ts_expSup, :R_exp, :C, :Te), defVal = nothing, herit = (:R_exp => :sum_any, :Te => :sum_any, :Ts_disSup => :avg_any, :C => :sum_any, :Ts_expSup => :sum_any), part = :lim) parDef_dic[:capaStOutFix] = (dim = (:Ts_disSup, :Ts_expSup, :R_exp, :C, :Te), defVal = nothing, herit = (:R_exp => :sum_any, :Te => :sum_any, :Ts_disSup => :avg_any, :C => :sum_any, :Ts_expSup => :sum_any), part = :lim) parDef_dic[:capaStSizeUp] = (dim = (:Ts_disSup, :Ts_expSup, :R_exp, :C, :Te), defVal = nothing, herit = (:R_exp => :sum_full, :Te => :sum_full, :Ts_disSup => :avg_any, :C => :sum_full, :Ts_expSup => :sum_full), part = :lim) parDef_dic[:capaStSizeLow] = (dim = (:Ts_disSup, :Ts_expSup, :R_exp, :C, :Te), defVal = nothing, herit = (:R_exp => :sum_any, :Te => :sum_any, :Ts_disSup => :avg_any, :C => :sum_any, :Ts_expSup => :sum_any), part = :lim) parDef_dic[:capaStSizeFix] = (dim = (:Ts_disSup, :Ts_expSup, :R_exp, :C, :Te), defVal = nothing, herit = (:R_exp => :sum_any, :Te => :sum_any, :Ts_disSup => :avg_any, :C => :sum_any, :Ts_expSup => :sum_any), part = :lim) parDef_dic[:capaExcUp] = (dim = (:Ts_disSup, :R_a, :R_b, :C), defVal = nothing, herit = (:Ts_disSup => :avg_any, :R_a => :sum_any, :R_b => :sum_any, :C => :sum_full), part = :lim) parDef_dic[:capaExcLow] = (dim = (:Ts_disSup, :R_a, :R_b, :C), defVal = nothing, herit = (:Ts_disSup => :avg_any, :R_a => :sum_any, :R_b => :sum_any, :C => :sum_any), part = :lim) parDef_dic[:capaExcFix] = (dim = (:Ts_disSup, :R_a, :R_b, :C), defVal = nothing, herit = (:Ts_disSup => :avg_any, :R_a => :sum_any, :R_b => :sum_any, :C => :sum_any), part = :lim) parDef_dic[:capaConvResi] = (dim = (:Ts_disSup, :Ts_expSup, :R_exp, :Te), defVal = nothing, herit = (:R_exp => :sum_any, :Te => :sum_any, :Ts_disSup => :avg_any, :Ts_expSup => :sum_any, :Ts_disSup => :up), part = :techConv) parDef_dic[:capaStInResi] = (dim = (:Ts_disSup, :Ts_expSup, :R_exp, :C, :Te), defVal = nothing, herit = (:R_exp => :sum_any, :Te => :sum_any, :Ts_disSup => :avg_any, :C => :sum_any, :Ts_expSup => :sum_any, :Ts_disSup => :up), part = :techSt) parDef_dic[:capaStOutResi] = (dim = (:Ts_disSup, :Ts_expSup, :R_exp, :C, :Te), defVal = nothing, herit = (:R_exp => :sum_any, :Te => :sum_any, :Ts_disSup => :avg_any, :C => :sum_any, :Ts_expSup => :sum_any, :Ts_disSup => :up), part = :techSt) parDef_dic[:capaStSizeResi] = (dim = (:Ts_disSup, :Ts_expSup, :R_exp, :C, :Te), defVal = nothing, herit = (:R_exp => :sum_any, :Te => :sum_any, :Ts_disSup => :avg_any, :C => :sum_any, :Ts_expSup => :sum_any, :Ts_disSup => :up), part = :techSt) parDef_dic[:capaExcResi] = (dim = (:Ts_disSup, :R_a, :R_b, :C), defVal = nothing, herit = (:Ts_disSup => :avg_any, :R_a => :sum_any, :R_b => :sum_any, :Ts_disSup => :up), part = :exc) parDef_dic[:capaExcResiDir] = (dim = (:Ts_disSup, :R_a, :R_b, :C), defVal = nothing, herit = (:Ts_disSup => :avg_any, :R_a => :sum_any, :R_b => :sum_any, :Ts_disSup => :up), part = :exc) # commssioned capacity limits on conversion, storage and exchange if options.decomm != :none parDef_dic[:oprCapaConvUp] = (dim = (:Ts_disSup, :Ts_expSup, :R_exp, :Te), defVal = nothing, herit = (:R_exp => :sum_full, :Te => :sum_full, :Ts_disSup => :avg_any, :Ts_expSup => :sum_full), part = :lim) parDef_dic[:oprCapaConvLow] = (dim = (:Ts_disSup, :Ts_expSup, :R_exp, :Te), defVal = nothing, herit = (:R_exp => :sum_any, :Te => :sum_any, :Ts_disSup => :avg_any, :Ts_expSup => :sum_any), part = :lim) parDef_dic[:oprCapaConvFix] = (dim = (:Ts_disSup, :Ts_expSup, :R_exp, :Te), defVal = nothing, herit = (:R_exp => :sum_any, :Te => :sum_any, :Ts_disSup => :avg_any, :Ts_expSup => :sum_any), part = :lim) parDef_dic[:oprCapaStInUp] = (dim = (:Ts_disSup, :Ts_expSup, :R_exp, :C, :Te), defVal = nothing, herit = (:R_exp => :sum_full, :Te => :sum_full, :Ts_disSup => :avg_any, :C => :sum_full, :Ts_expSup => :sum_full), part = :lim) parDef_dic[:oprCapaStInLow] = (dim = (:Ts_disSup, :Ts_expSup, :R_exp, :C, :Te), defVal = nothing, herit = (:R_exp => :sum_any, :Te => :sum_any, :Ts_disSup => :avg_any, :C => :sum_any, :Ts_expSup => :sum_any), part = :lim) parDef_dic[:oprCapaStInFix] = (dim = (:Ts_disSup, :Ts_expSup, :R_exp, :C, :Te), defVal = nothing, herit = (:R_exp => :sum_any, :Te => :sum_any, :Ts_disSup => :avg_any, :C => :sum_any, :Ts_expSup => :sum_any), part = :lim) parDef_dic[:oprCapaStOutUp] = (dim = (:Ts_disSup, :Ts_expSup, :R_exp, :C, :Te), defVal = nothing, herit = (:R_exp => :sum_full, :Te => :sum_full, :Ts_disSup => :avg_any, :C => :sum_full, :Ts_expSup => :sum_full), part = :lim) parDef_dic[:oprCapaStOutLow] = (dim = (:Ts_disSup, :Ts_expSup, :R_exp, :C, :Te), defVal = nothing, herit = (:R_exp => :sum_any, :Te => :sum_any, :Ts_disSup => :avg_any, :C => :sum_any, :Ts_expSup => :sum_any), part = :lim) parDef_dic[:oprCapaStOutFix] = (dim = (:Ts_disSup, :Ts_expSup, :R_exp, :C, :Te), defVal = nothing, herit = (:R_exp => :sum_any, :Te => :sum_any, :Ts_disSup => :avg_any, :C => :sum_any, :Ts_expSup => :sum_any), part = :lim) parDef_dic[:oprCapaStSizeUp] = (dim = (:Ts_disSup, :Ts_expSup, :R_exp, :C, :Te), defVal = nothing, herit = (:R_exp => :sum_full, :Te => :sum_full, :Ts_disSup => :avg_any, :C => :sum_full, :Ts_expSup => :sum_full), part = :lim) parDef_dic[:oprCapaStSizeLow] = (dim = (:Ts_disSup, :Ts_expSup, :R_exp, :C, :Te), defVal = nothing, herit = (:R_exp => :sum_any, :Te => :sum_any, :Ts_disSup => :avg_any, :C => :sum_any, :Ts_expSup => :sum_any), part = :lim) parDef_dic[:oprCapaStSizeFix] = (dim = (:Ts_disSup, :Ts_expSup, :R_exp, :C, :Te), defVal = nothing, herit = (:R_exp => :sum_any, :Te => :sum_any, :Ts_disSup => :avg_any, :C => :sum_any, :Ts_expSup => :sum_any), part = :lim) parDef_dic[:oprCapaExcUp] = (dim = (:Ts_disSup, :R_a, :R_b, :C), defVal = nothing, herit = (:Ts_disSup => :avg_any, :R_a => :sum_any, :R_b => :sum_any, :C => :sum_full), part = :lim) parDef_dic[:oprCapaExcLow] = (dim = (:Ts_disSup, :R_a, :R_b, :C), defVal = nothing, herit = (:Ts_disSup => :avg_any, :R_a => :sum_any, :R_b => :sum_any, :C => :sum_any), part = :lim) parDef_dic[:oprCapaExcFix] = (dim = (:Ts_disSup, :R_a, :R_b, :C), defVal = nothing, herit = (:Ts_disSup => :avg_any, :R_a => :sum_any, :R_b => :sum_any, :C => :sum_any), part = :lim) end # XXX limits on quantites (including emissions and emission factors) upHerit_tup = (:Ts_dis => :sum_full, :Ts_expSup => :sum_full, :R_dis => :sum_full, :C => :sum_full, :Te => :sum_full, :M => :sum_full) ofHerit_tup = (:Ts_dis => :sum_any, :Ts_expSup => :sum_any, :R_dis => :sum_any, :C => :sum_any, :Te => :sum_any, :M => :sum_any) # actual energy limits on use, generation and storage parDef_dic[:useUp] = (dim = (:Ts_dis, :Ts_expSup, :R_dis, :C, :Te, :M), defVal = nothing, herit = upHerit_tup, part = :lim) parDef_dic[:useLow] = (dim = (:Ts_dis, :Ts_expSup, :R_dis, :C, :Te, :M), defVal = nothing, herit = ofHerit_tup, part = :lim) parDef_dic[:useFix] = (dim = (:Ts_dis, :Ts_expSup, :R_dis, :C, :Te, :M), defVal = nothing, herit = ofHerit_tup, part = :lim) parDef_dic[:genUp] = (dim = (:Ts_dis, :Ts_expSup, :R_dis, :C, :Te, :M), defVal = nothing, herit = upHerit_tup, part = :lim) parDef_dic[:genLow] = (dim = (:Ts_dis, :Ts_expSup, :R_dis, :C, :Te, :M), defVal = nothing, herit = ofHerit_tup, part = :lim) parDef_dic[:genFix] = (dim = (:Ts_dis, :Ts_expSup, :R_dis, :C, :Te, :M), defVal = nothing, herit = ofHerit_tup, part = :lim) parDef_dic[:stOutUp] = (dim = (:Ts_dis, :Ts_expSup, :R_dis, :C, :Te, :M), defVal = nothing, herit = upHerit_tup, part = :lim) parDef_dic[:stOutLow] = (dim = (:Ts_dis, :Ts_expSup, :R_dis, :C, :Te, :M), defVal = nothing, herit = ofHerit_tup, part = :lim) parDef_dic[:stOutFix] = (dim = (:Ts_dis, :Ts_expSup, :R_dis, :C, :Te, :M), defVal = nothing, herit = ofHerit_tup, part = :lim) parDef_dic[:stInUp] = (dim = (:Ts_dis, :Ts_expSup, :R_dis, :C, :Te, :M), defVal = nothing, herit = upHerit_tup, part = :lim) parDef_dic[:stInLow] = (dim = (:Ts_dis, :Ts_expSup, :R_dis, :C, :Te, :M), defVal = nothing, herit = ofHerit_tup, part = :lim) parDef_dic[:stInFix] = (dim = (:Ts_dis, :Ts_expSup, :R_dis, :C, :Te, :M), defVal = nothing, herit = ofHerit_tup, part = :lim) parDef_dic[:excUp] = (dim = (:Ts_dis, :R_from, :R_to, :C), defVal = nothing, herit = (:Ts_dis => :sum_full, :R_from => :sum_full, :R_to => :sum_full, :C => :sum_full), part = :lim) parDef_dic[:excLow] = (dim = (:Ts_dis, :R_from, :R_to, :C), defVal = nothing, herit = (:Ts_dis => :sum_any, :R_from => :sum_any, :R_to => :sum_any, :C => :sum_any), part = :lim) parDef_dic[:excFix] = (dim = (:Ts_dis, :R_from, :R_to, :C), defVal = nothing, herit = (:Ts_dis => :sum_any, :R_from => :sum_any, :R_to => :sum_any, :C => :sum_any), part = :lim) parDef_dic[:excDirUp] = (dim = (:Ts_dis, :R_from, :R_to, :C), defVal = nothing, herit = (:Ts_dis => :sum_full, :R_from => :sum_full, :R_to => :sum_full, :C => :sum_full), part = :lim) parDef_dic[:excDirLow] = (dim = (:Ts_dis, :R_from, :R_to, :C), defVal = nothing, herit = (:Ts_dis => :sum_any, :R_from => :sum_any, :R_to => :sum_any, :C => :sum_any), part = :lim) parDef_dic[:excDirFix] = (dim = (:Ts_dis, :R_from, :R_to, :C), defVal = nothing, herit = (:Ts_dis => :sum_any, :R_from => :sum_any, :R_to => :sum_any, :C => :sum_any), part = :lim) parDef_dic[:crtUp] = (dim = (:Ts_dis, :R_dis, :C), defVal = nothing, herit = (:Ts_dis => :sum_full, :R_dis => :sum_full, :C => :sum_full), part = :lim) parDef_dic[:crtLow] = (dim = (:Ts_dis, :R_dis, :C), defVal = nothing, herit = (:Ts_dis => :sum_full, :R_dis => :sum_full, :C => :sum_full), part = :lim) parDef_dic[:crtFix] = (dim = (:Ts_dis, :R_dis, :C), defVal = nothing, herit = (:Ts_dis => :sum_full, :R_dis => :sum_full, :C => :sum_full), part = :lim) parDef_dic[:lssUp] = (dim = (:Ts_dis, :R_dis, :C), defVal = nothing, herit = (:Ts_dis => :sum_full, :R_dis => :sum_full, :C => :sum_full), part = :lim) parDef_dic[:lssLow] = (dim = (:Ts_dis, :R_dis, :C), defVal = nothing, herit = (:Ts_dis => :sum_full, :R_dis => :sum_full, :C => :sum_full), part = :lim) parDef_dic[:lssFix] = (dim = (:Ts_dis, :R_dis, :C), defVal = nothing, herit = (:Ts_dis => :sum_full, :R_dis => :sum_full, :C => :sum_full), part = :lim) parDef_dic[:trdBuyUp] = (dim = (:Ts_dis, :R_dis, :C), defVal = nothing, herit = (:Ts_dis => :sum_full, :R_dis => :sum_full, :C => :sum_full), part = :lim) parDef_dic[:trdBuyLow] = (dim = (:Ts_dis, :R_dis, :C), defVal = nothing, herit = (:Ts_dis => :sum_any, :R_dis => :sum_any, :C => :sum_any), part = :lim) parDef_dic[:trdBuyFix] = (dim = (:Ts_dis, :R_dis, :C), defVal = nothing, herit = (:Ts_dis => :sum_any, :R_dis => :sum_any, :C => :sum_any), part = :lim) parDef_dic[:trdSellUp] = (dim = (:Ts_dis, :R_dis, :C), defVal = nothing, herit = (:Ts_dis => :sum_full, :R_dis => :sum_full, :C => :sum_full), part = :lim) parDef_dic[:trdSellLow] = (dim = (:Ts_dis, :R_dis, :C), defVal = nothing, herit = (:Ts_dis => :sum_any, :R_dis => :sum_any, :C => :sum_any), part = :lim) parDef_dic[:trdSellFix] = (dim = (:Ts_dis, :R_dis, :C), defVal = nothing, herit = (:Ts_dis => :sum_any, :R_dis => :sum_any, :C => :sum_any), part = :lim) # emission limits and factors (are computed as net values of trade and exchange) parDef_dic[:emissionUp] = (dim = (:Ts_dis, :Ts_expSup, :R_dis, :C, :Te, :M), defVal = nothing, herit = upHerit_tup, part = :lim) parDef_dic[:emissionFac] = (dim = (:Ts_dis, :Ts_expSup, :R_dis, :C, :Te, :M), defVal = nothing, herit = tuple(:Ts_expSup => :up, :Ts_dis => :up, :R_dis => :up, :C => :up, :Te => :up, :M => :up), part = :lim) parDef_dic[:emissionPrc] = (dim = (:Ts_dis, :Ts_expSup, :R_dis, :C, :Te, :M), defVal = nothing, herit = tuple(:Ts_expSup => :up, :Ts_dis => :up, :R_dis => :up, :C => :up, :Te => :up, :M => :up), part = :obj) # </editor-fold> # <editor-fold desc="XXX dispatch parameters" # XXX technology dispatch properties # availability parameters parDef_dic[:avaConv] = (dim = (:Ts_dis, :Ts_expSup, :R_dis, :Te, :M), defVal = 1.0, herit = (:Ts_expSup => :up, :Ts_dis => :up, :R_dis => :up, :Te => :up, :Ts_dis => :avg_any, :R_dis => :avg_any), part = :techConv, techPre = (preset = :lowest, mode = (:in, :out))) parDef_dic[:avaStIn] = (dim = (:Ts_dis, :Ts_expSup, :R_dis, :C, :Te, :M), defVal = 1.0, herit = (:Ts_expSup => :up, :Ts_dis => :up, :R_dis => :up, :C => :up, :Te => :up, :Ts_dis => :avg_any, :R_dis => :avg_any), part = :techSt, techPre = (preset = :carrierSt, mode = (:stIn,:stOut,:stLvl))) parDef_dic[:avaStOut] = (dim = (:Ts_dis, :Ts_expSup, :R_dis, :C, :Te, :M), defVal = 1.0, herit = (:Ts_expSup => :up, :Ts_dis => :up, :R_dis => :up, :C => :up, :Te => :up, :Ts_dis => :avg_any, :R_dis => :avg_any), part = :techSt, techPre = (preset = :carrierSt, mode = (:stIn,:stOut,:stLvl))) parDef_dic[:avaStSize] = (dim = (:Ts_dis, :Ts_expSup, :R_dis, :C, :Te, :M), defVal = 1.0, herit = (:Ts_expSup => :up, :Ts_dis => :up, :R_dis => :up, :C => :up, :Te => :up, :Ts_dis => :avg_any, :R_dis => :avg_any), part = :techSt, techPre = (preset = :carrierSt, mode = (:stIn,:stOut,:stLvl))) # efficiency parameters parDef_dic[:effConv] = (dim = (:Ts_dis, :Ts_expSup, :R_dis, :Te, :M), defVal = 1.0, herit = (:Ts_expSup => :up, :Ts_dis => :up, :R_dis => :up, :Te => :up, :Ts_dis => :avg_any, :R_dis => :avg_any), part = :techConv, techPre = (preset = :reference, mode = (:in, :out))) parDef_dic[:effStIn] = (dim = (:Ts_dis, :Ts_expSup, :R_dis, :C, :Te, :M), defVal = 1.0, herit = (:Ts_expSup => :up, :Ts_dis => :up, :C => :up, :R_dis => :up, :Te => :up, :Ts_dis => :avg_any, :R_dis => :avg_any), part = :techSt, techPre = (preset = :carrierSt, mode = (:stIn,:stOut,:stLvl))) parDef_dic[:effStOut] = (dim = (:Ts_dis, :Ts_expSup, :R_dis, :C, :Te, :M), defVal = 1.0, herit = (:Ts_expSup => :up, :Ts_dis => :up, :C => :up, :R_dis => :up, :Te => :up, :Ts_dis => :avg_any, :R_dis => :avg_any), part = :techSt, techPre = (preset = :carrierSt, mode = (:stIn,:stOut,:stLvl))) # specific storage parameters parDef_dic[:stDis] = (dim = (:Ts_dis, :Ts_expSup, :R_dis, :C, :Te, :M), defVal = nothing, herit = (:Ts_expSup => :up, :Ts_dis => :up, :C => :up, :R_dis => :up, :Te => :up, :Ts_dis => :avg_any, :R_dis => :avg_any), part = :techSt, techPre = (preset = :carrierSt, mode = (:stIn,:stOut,:stLvl))) parDef_dic[:stInflow] = (dim = (:Ts_dis, :Ts_expSup, :R_dis, :C, :Te), defVal = nothing, herit = (:Ts_expSup => :up, :C => :up, :Ts_dis => :sum_any, :R_dis => :sum_any, :Te => :up), part = :techSt, techPre = (preset = :carrierSt, mode = tuple())) # variable costs parDef_dic[:costVarUse] = (dim = (:Ts_dis, :Ts_expSup, :R_dis, :C, :Te, :M), defVal = nothing, herit = (:Ts_expSup => :up, :Ts_dis => :avg_any, :R_dis => :up, :C => :up, :Te => :up, :Ts_dis => :up, :Ts_dis => :avg_any, :R_dis => :avg_any), part = :obj, techPre = (preset = :carrierIn, mode = (:in,))) parDef_dic[:costVarGen] = (dim = (:Ts_dis, :Ts_expSup, :R_dis, :C, :Te, :M), defVal = nothing, herit = (:Ts_expSup => :up, :Ts_dis => :avg_any, :R_dis => :up, :C => :up, :Te => :up, :Ts_dis => :up, :Ts_dis => :avg_any, :R_dis => :avg_any), part = :obj, techPre = (preset = :carrierOut, mode = (:out,))) parDef_dic[:costVarStIn] = (dim = (:Ts_dis, :Ts_expSup, :R_dis, :C, :Te, :M), defVal = nothing, herit = (:Ts_expSup => :up, :Ts_dis => :avg_any, :R_dis => :up, :C => :up, :Te => :up, :Ts_dis => :up, :Ts_dis => :avg_any, :R_dis => :avg_any), part = :obj, techPre = (preset = :carrierSt, mode = (:stIn,:stOut,:stLvl))) parDef_dic[:costVarStOut] = (dim = (:Ts_dis, :Ts_expSup, :R_dis, :C, :Te, :M), defVal = nothing, herit = (:Ts_expSup => :up, :Ts_dis => :avg_any, :R_dis => :up, :C => :up, :Te => :up, :Ts_dis => :up, :Ts_dis => :avg_any, :R_dis => :avg_any), part = :obj, techPre = (preset = :carrierSt, mode = (:stIn,:stOut,:stLvl))) # energy related ratios (x% of energy from/to technology has to be carrier y) parDef_dic[:ratioEnerUseUp] = (dim = (:Ts_dis, :Ts_expSup, :R_dis, :C, :Te, :M), defVal = nothing, herit = (:Ts_expSup => :up, :Ts_dis => :avg_any, :R_dis => :up, :Te => :up, :Ts_dis => :up), part = :techConv, techPre = (preset = :minUse, mode = (:in,))) parDef_dic[:ratioEnerUseLow] = (dim = (:Ts_dis, :Ts_expSup, :R_dis, :C, :Te, :M), defVal = nothing, herit = (:Ts_expSup => :up, :Ts_dis => :avg_any, :R_dis => :up, :Te => :up, :Ts_dis => :up), part = :techConv, techPre = (preset = :minUse, mode = (:in,))) parDef_dic[:ratioEnerUseFix] = (dim = (:Ts_dis, :Ts_expSup, :R_dis, :C, :Te, :M), defVal = nothing, herit = (:Ts_expSup => :up, :Ts_dis => :avg_any, :R_dis => :up, :Te => :up, :Ts_dis => :up), part = :techConv, techPre = (preset = :minUse, mode = (:in,))) parDef_dic[:ratioEnerGenUp] = (dim = (:Ts_dis, :Ts_expSup, :R_dis, :C, :Te, :M), defVal = nothing, herit = (:Ts_expSup => :up, :Ts_dis => :avg_any, :R_dis => :up, :Te => :up, :Ts_dis => :up), part = :techConv, techPre = (preset = :minGen, mode = (:out,))) parDef_dic[:ratioEnerGenLow] = (dim = (:Ts_dis, :Ts_expSup, :R_dis, :C, :Te, :M), defVal = nothing, herit = (:Ts_expSup => :up, :Ts_dis => :avg_any, :R_dis => :up, :Te => :up, :Ts_dis => :up), part = :techConv, techPre = (preset = :minGen, mode = (:out,))) parDef_dic[:ratioEnerGenFix] = (dim = (:Ts_dis, :Ts_expSup, :R_dis, :C, :Te, :M), defVal = nothing, herit = (:Ts_expSup => :up, :Ts_dis => :avg_any, :R_dis => :up, :Te => :up, :Ts_dis => :up), part = :techConv, techPre = (preset = :minGen, mode = (:out,))) # XXX further dispatch properties parDef_dic[:dem] = (dim = (:Ts_dis, :R_dis, :C), defVal = 0.0, herit = (:Ts_dis => :avg_any, :R_dis => :sum_any), part = :bal) parDef_dic[:costCrt] = (dim = (:Ts_dis, :R_dis, :C), defVal = nothing, herit = (:Ts_dis => :up, :R_dis => :up, :Ts_dis => :avg_any, :R_dis => :avg_any), part = :bal) parDef_dic[:costLss] = (dim = (:Ts_dis, :R_dis, :C), defVal = nothing, herit = (:Ts_dis => :up, :R_dis => :up, :Ts_dis => :avg_any, :R_dis => :avg_any), part = :bal) # trade (=sell or buy to an external market) parameters parDef_dic[:trdBuyPrc] = (dim = (:Ts_dis, :R_dis, :C, :id), defVal = nothing, herit = (:Ts_dis => :up, :R_dis => :up, :R_dis => :avg_any, :Ts_dis => :avg_any), part = :trd) parDef_dic[:trdSellPrc] = (dim = (:Ts_dis, :R_dis, :C, :id), defVal = nothing, herit = (:Ts_dis => :up, :R_dis => :up, :R_dis => :avg_any, :Ts_dis => :avg_any), part = :trd) parDef_dic[:trdBuyCap] = (dim = (:Ts_dis, :R_dis, :C, :id), defVal = nothing, herit = (:Ts_dis => :up, :R_dis => :up, :R_dis => :avg_any, :Ts_dis => :avg_any), part = :trd) parDef_dic[:trdSellCap] = (dim = (:Ts_dis, :R_dis, :C, :id), defVal = nothing, herit = (:Ts_dis => :up, :R_dis => :up, :R_dis => :avg_any, :Ts_dis => :avg_any), part = :trd) # exchange (=exchange between explicit regions) parameters parDef_dic[:avaExc] = (dim = (:Ts_dis, :R_a, :R_b, :C), defVal = 1.0, herit = (:Ts_dis => :up, :R_a => :up, :R_b => :up, :R_a => :avg_any, :R_b => :avg_any, :Ts_dis => :avg_any, :C => :up), part = :exc) parDef_dic[:lossExc] = (dim = (:Ts_dis, :R_a, :R_b, :C), defVal = 0.0, herit = (:Ts_dis => :up, :R_a => :up, :R_b => :up, :R_a => :avg_any, :R_b => :avg_any, :Ts_dis => :avg_any, :C => :up), part = :exc) parDef_dic[:costVarExc] = (dim = (:Ts_dis, :R_a, :R_b, :C), defVal = nothing, herit = (:Ts_dis => :up, :R_a => :up, :R_b => :up, :R_a => :avg_any, :R_b => :avg_any, :Ts_dis => :avg_any, :C => :up), part = :obj) parDef_dic[:avaExcDir] = (dim = (:Ts_dis, :R_a, :R_b, :C), defVal = nothing, herit = (:Ts_dis => :up, :R_a => :up, :R_b => :up, :R_a => :avg_any, :R_b => :avg_any, :Ts_dis => :avg_any, :C => :up), part = :exc) parDef_dic[:lossExcDir] = (dim = (:Ts_dis, :R_a, :R_b, :C), defVal = nothing, herit = (:Ts_dis => :up, :R_a => :up, :R_b => :up, :R_a => :avg_any, :R_b => :avg_any, :Ts_dis => :avg_any, :C => :up), part = :exc) parDef_dic[:costVarExcDir] = (dim = (:Ts_dis, :R_a, :R_b, :C), defVal = nothing, herit = (:Ts_dis => :up, :R_a => :up, :R_b => :up, :R_a => :avg_any, :R_b => :avg_any, :Ts_dis => :avg_any, :C => :up), part = :obj) # </editor-fold> # check if sets are illdefined with respect to inheritance heritRules_tup = (:sum_full, :sum_any, :avg_full, :avg_any, :uni_full, :uni_any, :up) wrongSetHerit_arr = filter(x -> !all(map(y -> y[1] in parDef_dic[x].dim,parDef_dic[x].herit)),collectKeys(keys(parDef_dic))) wrongRulesHerit_arr = filter(x -> !all(map(y -> y[2] in heritRules_tup,parDef_dic[x].herit)),collectKeys(keys(parDef_dic))) if !isempty(wrongSetHerit_arr) push!(report,(3, "parameter definition", "", "inheritance rule for a set not defined as a possible dimension: $(join(wrongSetHerit_arr,", "))")) end if !isempty(wrongRulesHerit_arr) push!(report,(3, "parameter read-in", "definition", "invalid inheritance rule: $(join(wrongRulesHerit_arr,", "))")) end return parDef_dic end # XXX assign parameter to model parts function parameterToParts!(paraTemp_dic::Dict{String,Dict{Symbol,DataFrame}}, techIdx_arr::Array{Int,1}, anyM::anyModel) # parameter defined within input data allPar_arr = unique(vcat(collectKeys.(keys.(values(paraTemp_dic)))...)) # parameter actually used in the model (difference are the exchange related parameters, that can be provided both directed and symmetric, but within the model only directed values are being used) parToFile_dic = Dict(x => collectKeys(keys(paraTemp_dic[x])) for x in keys(paraTemp_dic)) # gets defintion of parameters and checks, if all input parameters are defined parDef_dic = defineParameter(anyM.options,anyM.report) undefinedPar_arr = setdiff(unique(vcat(values(parToFile_dic)...)),keys(parDef_dic)) if !isempty(undefinedPar_arr) for undefined in undefinedPar_arr push!(anyM.report,(3,"parameter read-in","definition","parameter with the name $(string(undefined)) does not exist")) end print(getElapsed(anyM.options.startTime)); errorTest(anyM.report,anyM.options) end # maps potential nodes for inheritance from technology tree to "actual" technologies techToPar_dic = Dict{Symbol,Dict{Int32,Array{Int32,1}}}() techToPar_dic[:up] = Dict(x => vcat(x,getAncestors(x,anyM.sets[:Te],:int)...) for x in techIdx_arr) techToPar_dic[:down] = Dict(x => vcat(x,getDescendants(x,anyM.sets[:Te],true)...) for x in techIdx_arr) techToPar_dic[:both] = Dict(x => union(techToPar_dic[:up][x],techToPar_dic[:down][x]) for x in techIdx_arr) techToPar_dic[:none] = Dict(x => [x] for x in techIdx_arr) convTechIdx_arr = filter(r -> !isempty(intersect((:gen,:use),keys(anyM.parts.tech[techSym(r,anyM.sets[:Te])].carrier))),techIdx_arr) stTechIdx_arr = filter(r -> !isempty(intersect((:stExtIn,:stExtOut,:stIntIn,:stIntOut),keys(anyM.parts.tech[techSym(r,anyM.sets[:Te])].carrier))),techIdx_arr) # XXX loop over all actual parameters to assign them to parts of the model @threads for parIt in allPar_arr # ensures all dataframes with data from single files have the same columns so they can be merged relFiles_arr = collect(filter(y -> parIt in parToFile_dic[y],keys(paraTemp_dic))) allCol_arr = unique(vcat(map(x -> namesSym(paraTemp_dic[x][parIt]), relFiles_arr)...)) for parFile in relFiles_arr misCol_arr = setdiff(allCol_arr,namesSym(paraTemp_dic[parFile][parIt])) for mis in misCol_arr paraTemp_dic[parFile][parIt][!,mis] = fill(convert(Int32,0),nrow(paraTemp_dic[parFile][parIt])) end end # actually merge data frames allParData_df = vcat(map(x -> paraTemp_dic[x][parIt],relFiles_arr)...) # order regions in ascending order so regions are not ambivalent anymore and duplicates can be identified if :R_b in namesSym(allParData_df) && !(occursin("Dir",string(parIt))) sortR_mat = sort(hcat([allParData_df[!,x] for x in (:R,:R_b)]...);dims = 2) for (index,col) in enumerate((:R,:R_b)) allParData_df[!,col] = sortR_mat[:,index] end end # XXX checks for duplicates and removes them in case nonUnique_bool = nonunique(allParData_df) if any(nonUnique_bool) push!(anyM.report,(1,"parameter read-in","validity check","non-unique entries discovered for $(string(parIt))")) delete!(allParData_df,nonUnique_bool) end # XXX checks for contradicting values rmvVal_df = removeVal(allParData_df) if !isempty(rmvVal_df) contradic_bool = nonunique(allParData_df[:,rmvVal_df]) if any(contradic_bool) push!(anyM.report,(3,"parameter read-in","validity check","contradicting entries discovered for $(string(parIt))")) end end # XXX assign parameters to parts parDef_tup = parDef_dic[parIt] parPart_sym =parDef_tup.part if parPart_sym != :techSt && parPart_sym != :techConv # adds parameter to non-technology parts getfield(anyM.parts,parPart_sym).par[parIt] = ParElement(allParData_df,parDef_tup,parIt,anyM.report) else allParTech_arr = :Te in namesSym(allParData_df) ? unique(allParData_df[!,:Te]) : [0] # determines how technology might inherit from other technology nodes (not at all, by going up, by going down or both) heritRules_arr = map(x -> x[2],filter(x -> x[1] == :Te, collect(parDef_tup.herit))) if isempty(heritRules_arr) herit_sym = :none else if unique(heritRules_arr) == [:up] herit_sym = :up elseif :up in heritRules_arr herit_sym = :both else herit_sym = :down end end for relTech in filter(x -> !isempty(intersect(allParTech_arr,techToPar_dic[herit_sym][x])), parPart_sym == :techSt ? stTechIdx_arr : convTechIdx_arr) # filters all entries of possible inheritance for each technology filtParData_df = :Te in namesSym(allParData_df) ? filter(row -> row.Te in techToPar_dic[herit_sym][relTech], allParData_df) : allParData_df # removes potential zero columns from data being actually written to part rmvZeroParData_df = filtParData_df[!,filter(x -> unique(filtParData_df[!,x]) != [0] || x == :val,namesSym(filtParData_df))] anyM.parts.tech[techSym(relTech,anyM.sets[:Te])].par[parIt] = ParElement(rmvZeroParData_df,parDef_tup,parIt,anyM.report) end end end # XXX adds parameter object for parameters where no explicit values where provided, but a default value exists for parUndef in keys(filter(r -> r[2].defVal != nothing,parDef_dic)) parPart_sym = parDef_dic[parUndef].part if parPart_sym != :techSt && parPart_sym != :techConv if !haskey(getfield(anyM.parts,parPart_sym).par,parUndef) getfield(anyM.parts,parPart_sym).par[parUndef] = ParElement(DataFrame(),parDef_dic[parUndef],parUndef,anyM.report) end else for relTech in filter(x -> !haskey(anyM.parts.tech[techSym(x,anyM.sets[:Te])].par,parUndef),parPart_sym == :techSt ? stTechIdx_arr : convTechIdx_arr) anyM.parts.tech[techSym(relTech,anyM.sets[:Te])].par[parUndef] = ParElement(DataFrame(),parDef_dic[parUndef],parUndef,anyM.report) end end end return parDef_dic end # XXX perform pre-setting of dispatch parameters for all technologies function presetDispatchParameter!(part::TechPart,prepTech_dic::Dict{Symbol,NamedTuple},parDef_dic::Dict{Symbol,NamedTuple},newHerit_dic::Dict{Symbol,Tuple{Pair{Symbol,Symbol},Pair{Symbol,Symbol}}}, ts_dic::Dict{Tuple{Int64,Int64},Array{Int64,1}},r_dic::Dict{Tuple{Int64,Int64},Array{Int64,1}},anyM::anyModel) relPar_arr = filter(x -> :techPre in keys(parDef_dic[x]) && (!(isempty(part.par[x].data)) || occursin("eff",string(x))), collectKeys(keys(part.par))) parPre_dic = Dict(x => parDef_dic[x].techPre.preset for x in relPar_arr) preType_arr = union(values(parPre_dic)) typeVar_dic = Dict(:out => [:gen, :stIntIn], :in => [:use,:stIntOut], :stIn => [:stExtIn, :stOut], :stOut => [:stExtOut, :stIntOut], :stLvl => [:stLvl]) modeDep_dic = Dict(x => DataFrame(Ts_expSup = Int[], Ts_dis = Int[], R_dis = Int[], C = Int[], Te = Int[]) for x in union(values(typeVar_dic)...)) for preType in preType_arr # get all relevant carriers specMode_boo = !isempty(part.modes) && !isempty(filter(y -> :M in namesSym(part.par[y].data), keys(filter(x -> x[2] == preType,parPre_dic)))) # creates table of relevant capacity resolutions and the level of pre-setting capaLvl_df = unique(vcat(map(x -> select(x,intCol(x)),values(prepTech_dic[preType != :carrierSt ? :capaConv : :capaStSize]))...)) |> (x -> select(copy(x),intCol(x))) # creates dataframe depending on the respective pre-set mode if preType == :lowest carConv_arr = union(map(x -> getfield(part.carrier,x), intersect((:gen,:use),keys(part.carrier)))...) lowest_tup = map(x -> anyM.cInfo[x],carConv_arr) |> (y -> [maximum(getfield.(y,:tsDis)), part.disAgg ? part.balLvl.exp[2] : maximum(getfield.(y,:rDis))]) capaLvl_df[!,:lvlTs] .= lowest_tup[1]; capaLvl_df[!,:lvlR] .= lowest_tup[2] elseif preType == :reference ref_tup = part.balLvl.ref if isempty(ref_tup) continue end capaLvl_df[!,:lvlTs] .= ref_tup[1]; capaLvl_df[!,:lvlR] .= ref_tup[2]; elseif preType == :carrierIn || preType == :carrierOut || preType == :carrierSt if preType == :carrierIn || preType == :carrierOut car_arr = (preType == :carrierIn ? :use : :gen) |> (y -> haskey(part.carrier,y) ? collect(getfield(part.carrier,y)) : Int[]) if isempty(car_arr) continue end capaLvl_df[!,:C] .= car_arr capaLvl_df = flatten(capaLvl_df,:C) else # filter carriers that are can be actively stored, although they got descendants intC_arr = union(collect(part.actSt),map(y -> part.carrier[y],filter(x -> x in keys(part.carrier),[:stIntIn,:stIntOut])) |> (y -> isempty(y) ? Int[] : union(y...))) capaLvl_df = replCarLeafs(capaLvl_df,anyM.sets[:C],noLeaf = intC_arr) # filter entries that are already descendants of carrier being actively stored unique(vcat(map(x -> filter(y -> x != y,getDescendants(x,anyM.sets[:C],true)),unique(capaLvl_df[!,:C]))...)) |> (z -> filter!(x -> !(x.C in z) || x.C in intC_arr,capaLvl_df)) car_arr = unique(capaLvl_df[!,:C]) end resC_dic = Dict(x => anyM.cInfo[x] |> (y -> [getfield(y,:tsDis), part.disAgg ? part.balLvl.exp[2] : getfield(y,:rDis)]) for x in car_arr) capaLvl_df = combine(x -> resC_dic[x.C[1]] |> (y -> (lvlTs = y[1], lvlR = y[2])), groupby(capaLvl_df, namesSym(capaLvl_df))) elseif preType == :minUse || preType == :minGen car_arr = (preType == :minUse ? :use : :gen) |> (y -> haskey(part.carrier,y) ? collect(getfield(part.carrier,y)) : Int[]) if isempty(car_arr) continue end insertcols!(capaLvl_df,1,:C => fill(car_arr,size(capaLvl_df,1))) capaLvl_df = flatten(capaLvl_df,:C) reso_tup = map(x -> anyM.cInfo[x],car_arr) |> (y -> [minimum(getfield.(y,:tsDis)), part.disAgg ? part.balLvl.exp[2] : minimum(getfield.(y,:rDis))]) capaLvl_df[!,:lvlTs] .= reso_tup[1]; capaLvl_df[!,:lvlR] .= reso_tup[2]; end # expand based on code above to full table for pre-setting of dispatch paramters dispReso_df = expandExpToDisp(capaLvl_df,ts_dic,r_dic) # additionally creates mode specific table in case different modes exists for technology if specMode_boo dispResoM_df = copy(dispReso_df) insertcols!(dispResoM_df,1, :M => fill(part.modes,size(dispReso_df,1))) dispResoM_df = flatten(dispResoM_df,:M) end # loops over all parameters of specific pre-setting type for parItr in keys(filter(x -> x[2] == preType,parPre_dic)) parPef_ntup = parDef_dic[parItr] modRel_boo = specMode_boo && :M in namesSym(part.par[parItr].data) # drops mode related parameter data, that does not match the modes of the technology if modRel_boo filter!(x -> x.M in part.modes,part.par[parItr].data) if isempty(part.par[parItr].data) select!(part.par[parItr].data, Not(:M)) end end newPar_obj, report = resetParameter(modRel_boo ? dispResoM_df : dispReso_df, part.par[parItr], part.name[end], anyM.sets, anyM.options, anyM.report, length(part.modes), haskey(newHerit_dic,preType) ? newHerit_dic[preType] : tuple()) # saves mode dependant cases if modRel_boo && !isempty(newPar_obj.data) mode_df = unique(filter(x -> x.M != 0, newPar_obj.data)[!,Not([:val,:M])]) # loops over all types of relevant variables (:gen, :use etc.) that have to be mode specific for va in intersect(union(map(x -> typeVar_dic[x], parPef_ntup.techPre.mode)...),keys(part.carrier) |> (y -> isempty(intersect(y,(:stExtIn,:stIntIn))) ? y : [:stLvl,y...])) modeItr_df = copy(mode_df) # determines relevant carriers of variables if :C in parPef_ntup.dim # carrier is already specified within parameter data car_arr = unique(modeItr_df[!,:C]) else # carrier is not in parameter data, all possible carriers of respective variable need to be obtained car_arr = collect(getfield(part.carrier,va)) modeItr_df[!,:C] .= [car_arr] modeItr_df = flatten(modeItr_df,:C) end # adds temporal and spatial level to dataframe cToLvl_dic = Dict(x => (anyM.cInfo[x].tsDis, part.disAgg ? part.balLvl.exp[2] : anyM.cInfo[x].rDis) for x in car_arr) modeItr_df[!,:lvlTs] = map(x -> cToLvl_dic[x][1],modeItr_df[!,:C]) modeItr_df[!,:lvlR] = map(x -> cToLvl_dic[x][2],modeItr_df[!,:C]) # expands dataframe along spatial and temporal level according to resolution of respective carriers for dim in (:R,:Ts) dimCol = Symbol(dim,:_dis); lvl = Symbol(:lvl,dim) dim_dic = Dict((x[dimCol],x[lvl]) => getDescendants(x[dimCol], anyM.sets[dim],false,x[lvl]) |> (y -> isempty(y) ? getAncestors(x[dimCol],anyM.sets[dim],:int,x[lvl])[end] : y) for x in eachrow(unique(modeItr_df[!,[dimCol,lvl]]))) modeItr_df[!,dimCol] = map(x -> dim_dic[(x[dimCol],x[lvl])],eachrow(modeItr_df[!,[dimCol,lvl]])) modeItr_df = flatten(modeItr_df[!,Not(lvl)],dimCol) end modeDep_dic[va] = unique(vcat(modeDep_dic[va],modeItr_df)) end end # set lower limit for availabilities to avoid really small but non-zero values if parItr in (:avaConv, :avaStIn, :avaStOut, :avaStSize) lowVal_arr = newPar_obj.data[!,:val] .< anyM.options.avaMin newPar_obj.data[lowVal_arr,:val] .= 0.0 end if isempty(newPar_obj.data) delete!(part.par,parItr) else part.par[parItr] = newPar_obj end end end return modeDep_dic end # XXX pre-sets specific dispatch parameter function resetParameter(newData_df::DataFrame, par_obj::ParElement, tStr::String, sets::Dict{Symbol,Tree}, options::modOptions, report::Array{Tuple,1},cntM_int::Int = 0, newHerit_tup::Tuple = ()) # gets dimension of search tables and parameter without mode newData_df = select(newData_df,intersect(namesSym(newData_df),par_obj.dim)) # creates empty report, that entries are written to within subprocess if !(:M in namesSym(newData_df)) # in case modes are not being searched for just directly set data par_obj.data = matchSetParameter(newData_df,par_obj,sets) |> (x -> select(x,orderDim(namesSym(x)))) else # looks up original table without applying default values matchData1_df = matchSetParameter(newData_df,par_obj,sets,newCol = :val, useDef = false) # filter returned table by weather a mode was specified noMode_df = filter(r -> r.M == 0,matchData1_df) mode_df = filter(r -> r.M != 0,matchData1_df) # groups mode related data for further analysis resDim_arr = filter(x -> x != :M ,intersect(par_obj.dim,namesSym(matchData1_df))) if !isempty(mode_df) # filteres entries were there is not one value for each mode modeGrp_gdf = groupby(mode_df, resDim_arr) modeGrpDef_arr = filter(r -> cntM_int == size(r,1), collect(modeGrp_gdf)) if length(modeGrp_gdf.ends) > length(modeGrpDef_arr) push!(report,(2, "parameter pre-setting", string(par_obj.name), "parameter data was not specified for all modes in some cases for $tStr, existing values were ignored")) end # filters entries where mode values are not distinct, reports on it and uses these entries as non-mode specific data disMode_arr = filter(r -> length(unique(r[!,:val])) != 1, modeGrpDef_arr) if length(modeGrpDef_arr) > length(disMode_arr) push!(report,(2, "parameter pre-setting", string(par_obj.name), "parameter data was the same for all modes in some cases for $tStr, no differentiation between modes was applied in these cases")) noMode_df = vcat(noMode_df, vcat(filter(r -> length(unique(r[!,:val])) == 1, modeGrpDef_arr)...) ) end # filters data where distinct mode data is provided for all modes and expends resulting table again finalMode_df = isempty(disMode_arr) ? filter(x -> false ,collect(modeGrp_gdf)[1]) : vcat(disMode_arr...) else finalMode_df = mode_df end # gets all data, where no values where obtained successfully yet and look them up again applying the default value and not specifing the mode anymore # (hence now non mode-specific parameter values for technologies with modes are taken into account => mode-specific parameter values generally overwrite non-mode specific parameter values) newSearch_df = unique(antijoin(newData_df[!,resDim_arr], vcat(finalMode_df, noMode_df)[!,Not(:val)], on = resDim_arr)) if !isempty(newSearch_df) newSearch_df[!,:M] .= 0 matchData2_df = matchSetParameter(newSearch_df,par_obj,sets) noMode_df = vcat(matchData2_df,noMode_df) end # returns tables with and without mode data to parameter object par_obj.data = vcat(noMode_df,finalMode_df) |> (x -> select(x,orderDim(namesSym(x)))) end # sets new inherit rules and default value par_obj.herit = newHerit_tup return par_obj, report end # XXX creates new parameter objects for discount factors from discount rates provided function computeDisFac!(partObj::OthPart,anyM::anyModel) # XXX discount factor for technologies rExp_arr = union(map(x -> getfield.(getNodesLvl(anyM.sets[:R],x),:idx), unique(getfield.(values(anyM.cInfo),:rExp)))...) discR_df = matchSetParameter(flatten(flatten(DataFrame(Ts_disSup = anyM.supTs.step, R_exp = rExp_arr),:Ts_disSup),:R_exp),partObj.par[:rateDisc],anyM.sets) discR_df[!,:disFac] = 1 ./ (1 .+ discR_df[!,:val]).^anyM.options.shortExp discR_df[!,:disFac] = map(x -> filter(y -> y < x.Ts_disSup ,collect(anyM.supTs.step)) |> (z -> prod(filter(y -> y.R_exp == x.R_exp && y.Ts_disSup in z, discR_df)[!,:disFac])*x.disFac),eachrow(discR_df)) select!(discR_df,Not(:val)) discPar_obj = copy(partObj.par[:rateDisc],rename(discR_df,:disFac => :val)) discPar_obj.name = :discFac discPar_obj.defVal = nothing partObj.par[:disFac] = discPar_obj # XXX discount factor for exchange (average of from and to region) discRExc_df = rename(copy(discR_df),:R_exp => :R_from,:disFac => :disFacFrom) discRExc_df[!,:R_to] .= [unique(discRExc_df[!,:R_from])] discRExc_df = flatten(discRExc_df,:R_to) discRExc_df = innerjoin(discRExc_df,discR_df, on = [:Ts_disSup,:R_to] .=> [:Ts_disSup,:R_exp]) discRExc_df[!,:disFac] = (discRExc_df[!,:disFac] + discRExc_df[!,:disFacFrom]) * 0.5 select!(discRExc_df,Not(:disFacFrom)) discPar_obj = copy(partObj.par[:rateDisc],rename(discRExc_df,:disFac => :val)) discPar_obj.name = :disFacExc discPar_obj.defVal = nothing discPar_obj.dim = (:Ts_dis, :R_from, :R_to) discPar_obj.herit = (:Ts_dis => :up, :R_from => :up, :R_to => :up, :Ts_dis => :avg_any, :R_from => :avg_any, :R_to => :avg_any) partObj.par[:disFacExc] = discPar_obj end # XXX extract specified limit parameter from the limit part of the model function getLimPar(partLim::OthPart,par_sym::Symbol, tech_tr::Tree; tech::Int = 0) if par_sym in keys(partLim.par) parLim_obj = copy(partLim.par[par_sym]) if :Te in namesSym(parLim_obj.data) # case for technology limits with values differentiated by tech parLim_obj.data = filter(x -> x.Te in [[tech];getAncestors(tech,tech_tr,:int,0)], parLim_obj.data) if isempty(parLim_obj.data) parLim_obj = ParElement() end end else parLim_obj = ParElement() end return parLim_obj end # </editor-fold> # <editor-fold desc="perform match between dimension tables and parameter data" # XXX matches set with input parameters, uses inheritance rules for unmatched cases function matchSetParameter(srcSetIn_df::DataFrame, par_obj::ParElement, sets::Dict{Symbol,Tree}; newCol::Symbol =:val, useDef::Bool = true, useNew::Bool = true) # directly return search dataframes with added empty column if it is empty itself if isempty(srcSetIn_df) paraMatch_df = copy(srcSetIn_df) paraMatch_df[!,newCol] = Float64[] return paraMatch_df end # directly returns default values if no data was provided for the parameter if isempty(par_obj.data) || length(namesSym(par_obj.data)) == 1 paraMatch_df = copy(srcSetIn_df) paraMatch_df[!,newCol] = fill(isempty(par_obj.data) ? par_obj.defVal : par_obj.data[1,:val],size(paraMatch_df,1)) filter!(x -> x[newCol] != nothing, paraMatch_df) return paraMatch_df end searchCol_arr = namesSym(srcSetIn_df) paraData_df = par_obj.data # removes sets the parameter is not specified for from search table and condenses search table accordingly redunSrc_arr = setdiff(searchCol_arr,namesSym(paraData_df)) searchSet_df = isempty(redunSrc_arr) ? srcSetIn_df : unique(srcSetIn_df[!,Not(redunSrc_arr)]) srcCol_arr = namesSym(searchSet_df) # searches for matches in original data paraMatch_df = innerjoin(searchSet_df, paraData_df; on = srcCol_arr) # boolean that switches to true if all values were matched via inheritance allMatch_boo = false # checks if there are actually unmatched values before startin inheritance process if size(searchSet_df,1) != size(paraMatch_df,1) noMatch_df = antijoin(searchSet_df, paraData_df; on = srcCol_arr) if !isempty(noMatch_df) for herit in filter(x -> x[1] in srcCol_arr, collect(par_obj.herit)) # inherit new values and check for additional matches unmatch_arr = unique(noMatch_df[!,herit[1]]) if herit[2] == :up newData_df = heritParameter_up(herit,unmatch_arr,paraData_df,sets) else newData_df = heritParameter_rest(herit,unmatch_arr,paraData_df,sets) end if isempty(newData_df) continue end newMatch_df = innerjoin(noMatch_df, newData_df; on = srcCol_arr) # report on inheritance cntNewData_int = size(newData_df,1) cntMatch_int = size(newMatch_df,1) # add new rows to both table with matches and parameter data paraData_df = vcat(paraData_df, useNew ? newData_df : antijoin(newData_df,newMatch_df, on = srcCol_arr)) paraMatch_df = vcat(paraMatch_df,newMatch_df) # removes newly matched values from search and leaves loop if everything is matched now if cntMatch_int == size(noMatch_df,1) allMatch_boo = true break else noMatch_df = antijoin(noMatch_df, newMatch_df; on = srcCol_arr ) end end # writes default values for remaining unmatched values cntNoMatch_int = size(noMatch_df,1) if !allMatch_boo && par_obj.defVal != nothing && useDef defaultMatch_df = noMatch_df defaultMatch_df[!,:val] = fill(par_obj.defVal,cntNoMatch_int) paraMatch_df = isempty(paraMatch_df) ? defaultMatch_df : vcat(paraMatch_df,defaultMatch_df) end end end # expands table again by rows if !isempty(redunSrc_arr) paraMatch_df = innerjoin(paraMatch_df, srcSetIn_df; on = srcCol_arr) end rename!(paraMatch_df,:val => newCol) return paraMatch_df end # XXX covers direct inheritance from upper nodes function heritParameter_up(herit_par::Pair{Symbol,Symbol},unmatch_arr::Array{Int,1},paraData_df::DataFrame,sets::Dict{Symbol,Tree}) heritSetShort_sym = Symbol(split(String(herit_par[1]),"_")[1]) unmatch_set = BitSet(unmatch_arr) unmatchChild_dic = Dict(x => intersect(unmatch_set,BitSet(getDescendants(x,sets[heritSetShort_sym],true))) for x in unique(paraData_df[!, herit_par[1]])) # adds children where their data is missing to provided parameter data paraDataIn_df = filter(r -> !isempty(unmatchChild_dic[getproperty(r,herit_par[1])]),paraData_df) if isempty(paraDataIn_df) return paraDataIn_df end paraDataIn_df[!,:child] = map(x -> unmatchChild_dic[x],paraDataIn_df[!,herit_par[1]]) paraDataIn_df = flatten(paraDataIn_df,:child) # determines all columns for groupby statement grpBy_arr = filter(x -> !(x in [:val,herit_par[1]]),namesSym(paraDataIn_df)) # uses closest child with value as new data newData_df = combine(x -> maximum(x[!,herit_par[1]]) |> (z -> NamedTuple{(herit_par[1],:val)}(tuple(z,x.val[findall(x[!,herit_par[1]] .== z)][1]))), groupby(paraDataIn_df, grpBy_arr)) select!(newData_df, Not(herit_par[1])) rename!(newData_df,:child => herit_par[1]) return newData_df end # XXX covers all inheritance from nodes below unmatched nodes function heritParameter_rest(herit_par::Pair{Symbol,Symbol},unmatch_arr::Array{Int,1},paraData_df::DataFrame,sets::Dict{Symbol,Tree}) # XXX reads out specific inheritance options heritSet_sym = herit_par[1] heritSetShort_sym = Symbol(split(String(heritSet_sym),"_")[1]) splHerit_arr = split(String(herit_par[2]),"_") heritAgg_sym = Symbol(splHerit_arr[1]) heritFull_boo = Symbol(splHerit_arr[2]) == :full # XXX initialize values for loop (removes and add val again to control its position) # dimensions not involved in inheritance propcess noHeritSet_tup = tuple(setdiff(namesSym(paraData_df),[:val,herit_par[1]])...) colName_tup = tuple(herit_par[1],noHeritSet_tup...) newData_df = vcat(colName_tup...,:val) |> (y -> select(DataFrame(Dict(x => x != :val ? Int[] : Float64[] for x in y)),y)) # gets all children of unmatched ids to filter relevant part of tree childrenUnmatch_arr = union(map(x -> BitSet(getDescendants(x,sets[heritSetShort_sym],true)),unmatch_arr)...) paraDataFilt_df = filter(r -> getproperty(r,heritSet_sym) in childrenUnmatch_arr,paraData_df) if isempty(paraDataFilt_df) return newData_df end paraDataSrc_df = paraDataFilt_df # loops going upwards within tree trying to obtain new values newVal_boo = true while newVal_boo paraDataSrc_df[!,:pare] = map(x -> sets[heritSetShort_sym].up[x],paraDataSrc_df[!,heritSet_sym]) # saves all children of parents currently used in the grouped table within a dictionary to use below within loop over rows if heritFull_boo childPar_dic = Dict(x => getDescendants(x,sets[heritSetShort_sym], false, x != 0 ? sets[heritSetShort_sym].nodes[x].lvl+1 : 1) for x in unique(paraDataSrc_df[!,:pare])) end # groups table by parents and not used dimensions according to aggregation rule (sum, any, or unique) if heritAgg_sym == :sum paraDataGrp_df = combine(groupby(paraDataSrc_df, vcat(noHeritSet_tup...,:pare)), :val => (x -> sum(x)) => :valAgg) elseif heritAgg_sym == :avg paraDataGrp_df = combine(groupby(paraDataSrc_df, vcat(noHeritSet_tup...,:pare)), :val => (x -> Statistics.mean(x)) => :valAgg) else paraDataGrp_df = dropmissing(combine(groupby(paraDataSrc_df, vcat(noHeritSet_tup...,:pare)), :val => (x -> length(unique(x)) == 1 ? x[1] : missing) => :valAgg)) end existKey_arr = Tuple.(eachrow(newData_df[!,Not(:val)])) if heritFull_boo full_dic = groupby(paraDataSrc_df,vcat(noHeritSet_tup...,:pare)) |> (y -> Dict(x.pare[1] => collect(x[!,heritSet_sym]) for x in y)) end # loops through rows of grouped table to see if any row can be coverted into new data newVal_boo = false for row in eachrow(paraDataGrp_df) # either "full" is not used or for all children an initial value was provided if !heritFull_boo || isempty(setdiff(childPar_dic[row.pare],full_dic[row.pare])) #checkNew_tup = NamedTuple{Tuple(vcat(heritSet_sym,noHeritSet_tup...))}((row.pare,map(x -> getproperty(row,x),noHeritSet_tup)...)) checkNew_tup = (row.pare,map(x -> getproperty(row,x),noHeritSet_tup)...) # writes values if non-existing in table so far if !(checkNew_tup in existKey_arr) newEntry_tup = (row.pare,map(x -> getproperty(row,x),noHeritSet_tup)...,row.valAgg) newVal_boo = true push!(newData_df,newEntry_tup) end end end # add parent column to new data and filters values to consider for further inheritance (= only children of unmatched values) paraDataSrc_df = filter(r -> getproperty(r,heritSet_sym) in childrenUnmatch_arr,newData_df) end return newData_df end # </editor-fold>
AnyMOD
https://github.com/leonardgoeke/AnyMOD.jl.git
[ "MIT" ]
0.1.12
46a00c75bb6eb7fdaf5b15d75e9a544c0f91484d
code
24826
# <editor-fold desc= top-level and general read-in functions for sets and parameter" # XXX read-in all set files function readSets!(files_dic::Dict{String,Array{String,1}},anyM::anyModel) # creates relevant sets, manually adds :mode and assigns short names set_arr = append!(map(x -> Symbol(x[findfirst("set_",x)[1]+4:end-4]),files_dic["set"]), [:mode, :id]) setLngShrt_dic = Dict(:timestep => :Ts, :region => :R, :carrier => :C, :technology => :Te, :mode => :M, :id => :id) setData_dic = Dict{Symbol,DataFrame}() anyM.sets = Dict{Symbol,Tree}() # loop over sets read-in data and create tree objects for setFile in files_dic["set"] setLong_sym = getindex(setFile[findfirst("set_",setFile)[1]+4:end-4] |> (y -> filter(x -> occursin(string(x),y),collectKeys(keys(setLngShrt_dic)))),1) setShort_sym = get!(setLngShrt_dic,setLong_sym,setLong_sym) if setShort_sym in keys(anyM.sets) push!(anyM.report,(3,"set read-in",string(setLong_sym),"multiple input files provided for set")) end setData_dic[setShort_sym] = convertReadIn(CSV.read(setFile, DataFrame ;delim = anyM.options.csvDelim[1]),setFile,set_arr,setLngShrt_dic,anyM.report,anyM.lock) anyM.sets[setShort_sym] = createTree(setData_dic[setShort_sym],setLong_sym,anyM.report) produceMessage(anyM.options,anyM.report, 3," - Read-in set file: ",setFile) end # manually adds mode set, creates a top node for all modes to allow for aggregation later if :mode in namesSym(setData_dic[:Te]) modes_df = DataFrame(mode_1 = vcat(map(y -> split(replace(y," " => ""),";"),filter(x -> x != "",setData_dic[:Te][!,:mode]))...)) else modes_df = DataFrame(mode_1 = String[]) end anyM.sets[:M] = createTree(modes_df,:mode,anyM.report) # reports, if a required set was not defined or if non-unique carrier names were defined for set in filter(x -> !(x in (:mode, :id)), collectKeys(keys(setLngShrt_dic))) if !(setLngShrt_dic[set] in keys(anyM.sets)) push!(anyM.report,(3,"set read-in",string(set),"no file provided to define set")) elseif set == :carrier || set == :technology # reports error if carrier names are non-unique strSet_arr = getfield.(values(anyM.sets[setLngShrt_dic[set]].nodes),:val) if length(strSet_arr) != length(unique(strSet_arr)) push!(anyM.report,(3,"set read-in",set,"non-unique $set names detected")) end end end produceMessage(anyM.options,anyM.report, 2," - Read-in all set files") return setData_dic end # XXX read-in all parameter files, create model parts and assign parameter function readParameters!(files_dic::Dict{String,Array{String,1}},setData_dic::Dict{Symbol,DataFrame},anyM::anyModel) # XXX read-in parameters (do not add to parts yet) paraTemp_dic = Dict{String, Dict{Symbol, DataFrame}}() # creates relevant sets, manually adds :mode and assigns short names set_arr = append!(map(x -> Symbol(x[findfirst("set_",x)[1]+4:end-4]),files_dic["set"]), [:mode, :id]) setLngShrt_dic = Dict(:timestep => :Ts, :region => :R, :carrier => :C, :technology => :Te, :mode => :M, :id => :id) # read-in parameter files and convert their content @threads for parFile in files_dic["par"] parData_df = convertReadIn(CSV.read(parFile, DataFrame;delim = anyM.options.csvDelim[1]),parFile,set_arr,setLngShrt_dic,anyM.report,anyM.lock,anyM.sets) if isempty(parData_df) || any(getindex.(anyM.report,1) .== 3) continue end para_obj = writeParameter(parData_df, anyM.sets, setLngShrt_dic, parFile, anyM.report, anyM.lock) lock(anyM.lock) paraTemp_dic[parFile] = para_obj unlock(anyM.lock) produceMessage(anyM.options,anyM.report, 3," - Read-in parameter file: ",parFile) end produceMessage(anyM.options,anyM.report, 2," - Read-in all parameter files") return paraTemp_dic end # XXX read inputs folders for all 'csv' or 'jl' files starting with 'set', 'par', 'var' and 'eqn' function readInputFolder(inputFolders::Array{String,1},files_dic::Dict{String,Array{String,1}} = Dict(b => String[] for b in ("set","par","var","eqn"))) # loops over main folders provides in constructor for folder in inputFolders for file in readdir(folder) if occursin(".",file) fileType_str = file[findfirst(".",file)[1]+1:end] else fileType_str = "" end fileGrp_str = file[1:3] fileDir_str = string(folder,"/",file) # loops over subfolders, if any exist if (fileType_str == "csv" && fileGrp_str in ("set","par","var","eqn")) files_dic[fileGrp_str] = push!(files_dic[fileGrp_str],fileDir_str) elseif !isfile(fileDir_str) files_dic = readInputFolder([fileDir_str],files_dic) end end end return files_dic end # XXX filters missing and adjusts data according to "all" statements function convertReadIn(readIn_df::DataFrame,fileName_str::String,set_arr::Array{Symbol},setLngShrt_dic::Dict{Symbol,Symbol},report::Array{Tuple,1},lock_::ReentrantLock,sets::Dict{Symbol,Tree} = Dict{Symbol,Tree}()) strTypes_arr = [String, String1, String3, String7, String15, String31, String63, String127, String255] setNames_arr = filterSetColumns(readIn_df,set_arr) oprNames_arr = filterSetColumns(readIn_df,[:parameter,:variable,:value, :id]) readInColAll_tup = tuple(namesSym(readIn_df)...) # drop irrelevant column that do not relate to a set or an operator or are completely empty select!(readIn_df, Not(setdiff(readInColAll_tup,vcat(setNames_arr[1],setNames_arr[2],oprNames_arr[1])))) emptyCol_arr = filter(x -> eltype(readIn_df[!,x]) == Missing,namesSym(readIn_df)) setNames_arr[1] = setdiff(setNames_arr[1],emptyCol_arr) select!(readIn_df, Not(emptyCol_arr)) # filter value columns readInCol_arr = namesSym(readIn_df) valCol_arr = filter(x -> occursin("value",string(x)),readInCol_arr) # XXX convert missing values and change array container type for editing later for j in 1:size(readIn_df,2) col = collect(readIn_df[!,j]) if eltype(col) >: Int col = replace(string.(col),"missing" => "") if readInCol_arr[j] in valCol_arr replace!(col,"" => "NaN") col = parse.(Float64,col) end readIn_df[!,j] = col elseif eltype(col) >: Missing str_type = typeintersect(eltype(col), Union{String, String1, String3, String7, String15, String31, String63, String127, String255}) act_type = any(eltype(col) .>: strTypes_arr) ? str_type : Float64 # convert column at least to String3, because String1 cannot take empty string if act_type == String1 col = convert(Array{Union{Missing, String3},1},col) readIn_df[!,j] = convert(Array{Union{Missing, String3},1},readIn_df[!,j]) end # convert remaining columns to strings and replace 'missing' with empty string col[findall(ismissing.(col))] .= act_type == str_type ? "" : NaN readIn_df[!,j] = convert(Array{act_type == String1 ? String3 : act_type,1},col) else readIn_df[!,j] = col end end # XXX check types of columns if !isempty(valCol_arr) && any(map(x -> x in strTypes_arr, map(x -> eltype(readIn_df[!,x]), findall(map(x -> x in valCol_arr, readInCol_arr))))) lock(lock_) push!(report,(3,"parameter read-in",fileName_str,"detected strings in value column, file was not read-in")) unlock(lock_) return DataFrame() end for supCol in findall(.!map(x -> x in strTypes_arr, eltype.(eachcol(readIn_df)))) if !occursin("value",string(readInCol_arr[supCol])) lock(lock_) push!(report,(3,"parameter read-in",fileName_str,"entries in $(readInCol_arr[supCol]) could not be converted to strings (probably provided as floats), file was not read-in")) unlock(lock_) return DataFrame() end end # XXX rewrites rows with all commands into full format for col in setNames_arr[1] colVal_arr = readIn_df[!, col] # check column for keywords rowsAll_arr = map(x -> length(x) >= 3 && lowercase(x[1:3]) == "all",colVal_arr) if all(!,rowsAll_arr) continue end # determine relevant reference for "all", if parameter are read in if !isempty(sets) # take reference from readin sets specSet_arr = split(String(col),"_") relSet_obj = sets[setLngShrt_dic[Symbol(specSet_arr[1])]] colValUni_arr = unique(map(x -> x.val,getNodesLvl(relSet_obj, parse(Int,specSet_arr[2])))) else # take reference from other column values, relevant when sets are currently read in colValUni_arr = sort(unique(filter(x -> !isempty(x),colVal_arr[(!).(rowsAll_arr)]))) end readIn_df[!,col] = convert.(String,readIn_df[!,col]) # loop over rows with all for row in eachrow(readIn_df[rowsAll_arr,:]) # append new rows to dataframe addRow_df = row allInfo_str = reduce(replace, ["all"=>"", "("=>"", ")"=>""], init=addRow_df[col]) if occursin(":",allInfo_str) allVal_arr = split(allInfo_str,":") rplVal_arr = colValUni_arr[findall(x->x==allVal_arr[1], colValUni_arr)[1]:findall(x->x==allVal_arr[2], colValUni_arr)[1]] # reports if values within all expression could not be matched to sets if length(rplVal_arr) != length(allVal_arr) lock(lock_) push!(report,(2,"parameter read-in",fileName_str,"at least one value within all expression $(allInfo_str) could not be matched to an existing set")) unlock(lock_) end elseif occursin(",",allInfo_str) allVal_arr = split(allInfo_str,",") rplVal_arr = colValUni_arr[map(x -> in(x,allVal_arr),colValUni_arr)] # reports if values within all expression could not be matched to sets if length(rplVal_arr) != length(allVal_arr) lock(lock_) push!(report,(2,"parameter read-in",fileName_str,"at least one value within all expression $(allInfo_str) could not be matched to an existing set")) unlock(lock_) end else rplVal_arr = colValUni_arr end for addVal in rplVal_arr addRow_df[col] = addVal push!(readIn_df, [addRow_df[col] for col in readInCol_arr]) end end #remove inital rows with all# deleteat!(readIn_df,findall(rowsAll_arr)) end # XXX convert column names if sets are defined for multiple instances (e.g. two regions in case of trade related parameters) if split(fileName_str,"/")[end][1:3] == "par" # creates a dictionary that assigns everything after the set name separated with a "_" to the respective set splitCol_arr = map(x -> split(String(x),"_"),setdiff(namesSym(readIn_df),oprNames_arr[1])) setCol_arr = unique(map(x -> Symbol(x[1]),splitCol_arr)) grpCol_dic = Dict(x => map(z -> z[2:end],filter(y -> String(x) == y[1],splitCol_arr)) for x in setCol_arr) # loop over dictionary to check for irregular names and two sets having two columns assigned letters_arr = ("b","c","d","e","f","g","h") for set in keys(grpCol_dic) newCol_dic = Dict{Symbol,Symbol}() if any(map(x -> tryparse(Int,x),vcat(grpCol_dic[set]...)) .== nothing) lock(lock_) push!(report,(3,"parameter read-in",fileName_str,"column for set $(set) does not contain a number after _")) unlock(lock_) continue end # get the unique number of "_" that appear in columns assigned to the respective set # if the csv file has several columns of the same name JULIA adds a "_1" to the second column when reading in as a dataframe => so this checks if set is defined for multiple instances uniLen_arr = unique(map(x -> length(x),grpCol_dic[set])) if length(uniLen_arr) == 2 setNumbers_arr = map(x -> parse(Int,x[1]),grpCol_dic[set]) switchBool_arr = fill(false,length(setNumbers_arr)) for i in 2:length(setNumbers_arr) if setNumbers_arr[i-1] >= setNumbers_arr[i] switchBool_arr[i] = true end end switchInt_arr = findall(switchBool_arr) z = 0 for (idx,k) in enumerate(grpCol_dic[set]) if idx in switchInt_arr z = z+1 end if z == 0 newCol_dic[Symbol(join([set,k...],"_"))] = Symbol(set,"_",k[1]) else newCol_dic[Symbol(join([set,k...],"_"))] = Symbol(set,"_",letters_arr[z],"_",k[1]) end end DataFrames.rename!(readIn_df,newCol_dic) end end end return readIn_df end # </editor-fold> # <editor-fold desc= creation of tree objects for sets" # XXX creates tree object for set function createTree(readIn_df::DataFrame, setLoad_sym::Symbol, report::Array{Tuple,1}) setLoad_str = string(setLoad_sym) height_int = maximum((map(x -> parse(Int,x[end]), filter(x-> (tryparse(Int,string(x[end])) != nothing) && x[1:minimum([length(x),length(setLoad_str)])] .== setLoad_str,[String(namesSym(readIn_df)[i]) for i = 1:size(readIn_df,2)])))) # checks if set definitions are unique or if one set is defined multiple times if setLoad_sym != :mode relSet_df = select(readIn_df, map(x -> setLoad_str * "_" * string(x), 1:height_int)) if size(relSet_df,1) != size(unique(relSet_df),1) push!(report,(2,"set read-in",setLoad_str,"non-unique set definition provided, only the first set will be considered")) end end # create tree object and add the top node tree_obj = Tree() tree_obj.nodes[0] = Node(0,"none",0,1,Int[]) # writes values of first column firstCol_sym = Symbol(setLoad_str,"_1") topNodes_arr = filter(x -> !isempty(x),unique(hcat(map(x -> readIn_df[!,namesSym(readIn_df) .== firstCol_sym][!,x],1:sum(namesSym(readIn_df) .== firstCol_sym))...))) for (idx, node) in enumerate(sort(topNodes_arr)) tree_obj.nodes[idx] = Node(idx,node,1,idx,Int[]) tree_obj.srcTup[(node,)] = [idx] tree_obj.up[idx] = 0 end tree_obj.nodes[0].down = collect(keys(tree_obj.up)) # adds dictionary for occurrence of single strings for v in getNodesLvl(tree_obj, 1) a = v.val if haskey(tree_obj.srcStr,(a,1)) push!(tree_obj.srcStr[(a,1)],v.idx) else tree_obj.srcStr[(a,1)] = [v.idx] end end # loop over subsequent columns and add respective tree levels for i in 2:height_int createTreeLevel!(readIn_df, tree_obj, setLoad_str, i, report) end # adds max level tree_obj.height = height_int return tree_obj end # XXX adds nodex on level i to tree object function createTreeLevel!(readIn_df::DataFrame, tree_obj::Tree, setLoad_str::String, i::Int, report::Array{Tuple,1}) colNames_arr = filter(x -> occursin(setLoad_str,string(x)), namesSym(readIn_df)) loLvl_Sym = Symbol(setLoad_str,"_",i) # removes upper columns with empty values only grpCol_arr = filter(x -> x in colNames_arr[1:(i-1)], colNames_arr) grpIn_df = unique(readIn_df[readIn_df[!,loLvl_Sym] .!= "",filter(x -> x in colNames_arr[1:i], colNames_arr)]) grpRel_arr = setdiff(grpCol_arr,filter(x -> [""] == unique(grpIn_df[!,x]), grpCol_arr)) select!(grpIn_df,Not(setdiff(grpCol_arr,grpRel_arr))) # provides the nodes of the lower level grouped by the upper nodes lowerNodes_gdf = groupby(grpIn_df,grpRel_arr) # checks for nodes wihtout any upper node assigned noUp_arr = findall(map(x -> all(x .== ""), [collect(parent(lowerNodes_gdf)[i, groupcols(lowerNodes_gdf)]) for i in lowerNodes_gdf.starts])) up_arr = setdiff(1:length(lowerNodes_gdf),noUp_arr) if !isempty(noUp_arr) noUpVal_arr = setdiff(union(map(x -> collect(x[!,i]),collect(lowerNodes_gdf[noUp_arr]))...),union(map(x -> collect(x[!,i]),collect(lowerNodes_gdf[up_arr]))...)) for i in noUpVal_arr push!(report,(3,"set read-in",setLoad_str,"node named $(i) could not be assigned to an upper node")) end end # XXX assigns the upper nodes by id to strings of corresponding lower nodes startLvl_int = parse(Int,string(grpRel_arr[1])[end]) upToLow_dic = Dict(lookupTupleTree(tuple(collect(lowerNode[1,grpRel_arr])...), tree_obj,startLvl_int)[1] => lowerNode[!,loLvl_Sym] for lowerNode in lowerNodes_gdf[up_arr]) # XXX iterates over dict to write new nodes into tree createNodes!(upToLow_dic,tree_obj,i) # adds dictionary for occurrence of single strings for v in getNodesLvl(tree_obj, i) a = v.val if haskey(tree_obj.srcStr,(a,i)) push!(tree_obj.srcStr[(a,i)],v.idx) else tree_obj.srcStr[(a,i)] = [v.idx] end end end # XXX create specific node on branch function createNodes!(upToLow_dic::Dict,tree_obj::Tree,i::Int) upToLowSort_dic = Dict(map(x -> x => upToLow_dic[x] ,sort(collect(keys(upToLow_dic))))) up_arr = sort(collect(keys(upToLowSort_dic))) for upperNodeId in (i == 2 ? up_arr : sortSiblings(up_arr,tree_obj)) numRow_int = length(tree_obj.nodes) -1 exUp_int = length(tree_obj.nodes[upperNodeId].down) for (idx, lowerNode) in enumerate(sort(upToLowSort_dic[upperNodeId])) newIdx_int = numRow_int + idx tree_obj.nodes[newIdx_int] = Node(newIdx_int,lowerNode,i,idx+exUp_int,Int[]) tree_obj.up[newIdx_int] = upperNodeId keyStr_tup = fill("",i) keyStr_tup[i] = lowerNode foreach(x -> keyStr_tup[x[2]] = tree_obj.nodes[x[1]].val, getAncestors(newIdx_int,tree_obj,:tup,1)) tree_obj.srcTup[tuple(keyStr_tup...)] = [newIdx_int] end tree_obj.nodes[upperNodeId].down = union(tree_obj.nodes[upperNodeId].down,collect((numRow_int+1):(numRow_int+length(upToLowSort_dic[upperNodeId])))) end end # </editor-fold> # <editor-fold desc= read-in of parameter data" # XXX reads-in parameter data for respective sheet function writeParameter(parData_df::DataFrame, sets::Dict{Symbol,Tree}, setLngShrt_dic::Dict{Symbol,Symbol}, fileName_str::String, report::Array{Tuple,1},lock_::ReentrantLock) setShrtLng_dic = Dict(value => key for (key, value) in setLngShrt_dic) set_arr = vcat(collect(setShrtLng_dic[key] for key in keys(sets))...,:id) setNames_arr = filterSetColumns(parData_df,set_arr)[1] para_dic = Dict{Symbol, DataFrame}() # creates array of all levels provided per set grouped by set setIndex_arr = map(setdiff(setNames_arr,set_arr)) do x splitSet = split(String(x),"_") return length(splitSet) == 1 ? (Symbol(splitSet[1]),1) : (Symbol(join(splitSet[1:end-1],"_")),parse(Int,splitSet[end])) end setIndex_arr = map(y -> (y,map(w -> w[2],filter(z -> z[1] == y,setIndex_arr))),unique(map(x -> x[1],setIndex_arr))) # creates array that is later edited to lookup and save set values, entries: set, blank for set values, levels, start level setIni_arr = [parEntry(z[1],initializeLookup(maximum(z[2])-minimum(z[2])+1),z[2],minimum(z[2])) for z in setIndex_arr] # creates special entry for sets with only one level, because they do not need to have a number at the end for i in intersect(set_arr,setNames_arr) push!(setIni_arr,parEntry(i,String[""],Int[],1)) end # throws error, if column level exceeds level of the respective set used for ele in setIndex_arr set = Symbol(split(string(ele[1]),"_")[1]) # extracts just the actual set name, if it has a letter in the end, because set is used multiple times if set != :id && sets[setLngShrt_dic[set]].height < maximum(ele[2]) lock(lock_) push!(report,(2,"parameter read-in",fileName_str,"columns provided for $(ele[1]) exceed level of definition, parameter input ignored")) unlock(lock_) return para_dic end end # assigns relevant columns to sets setCol_dic = Dict{Symbol,Array}() for i in setIni_arr if isempty(i.lvl) setCol_dic[i.colSet] = [i.colSet]; i.lvl = [1] else setCol_dic[i.colSet] = [Symbol(i.colSet,"_",j) for j in i.lvl] end end # determines relevant parameter/value columns oprNames_arr = filterSetColumns(parData_df,[:parameter,:variable,:value],true)[1] oprLvl_arr = filter(x -> x != nothing,map(x -> tryparse(Int,split(x,"_")[end]),oprNames_arr)) parVal_arr = isempty(oprLvl_arr) ? [[:parameter,:value]] : [[Symbol("parameter_",j),Symbol("value_",j)] for j in unique(oprLvl_arr)] # converts parameter columns to symbols for i in parVal_arr parData_df[!,i[1]] = map(x -> Symbol(x),parData_df[!,i[1]]) end # loop over rows to read respective parameter values convertParameter!(parData_df,sets,setIni_arr,parVal_arr,para_dic,setCol_dic,setLngShrt_dic,fileName_str,report,lock_) return para_dic end # XXX gets idx from set names and orders all data in dataframe for respective parameter function convertParameter!(parData_df::DataFrame,sets::Dict{Symbol,Tree},setIni_arr::Array{parEntry,1},parVal_arr::Array{Array{Symbol,1},1},para_dic::Dict{Symbol,DataFrame},setCol_dic::Dict{Symbol,Array},setLngShrt_dic::Dict{Symbol,Symbol},fileName_str::String,report::Array{Tuple,1},lock_::ReentrantLock) setShrtLng_dic = Dict(value => key for (key, value) in setLngShrt_dic) for row in eachrow(parData_df) setId_dic = Dict{Symbol,Union{Int,Array{Int,1}}}() # XXX obtains node ids for row # overwrites default values for specific row in setIni_arr for i in setIni_arr, (index,j) in enumerate(i.lvl) i.entry[j+1-i.startLvl] = row[setCol_dic[i.colSet][index]] end # extracts specific set values and looks them up to obtain the respective node ids, in case of an id column just directly writes value relSets_arr = filter(x ->!all(("" .== x.entry) .| (false .== x.entry)),setIni_arr) for ele in relSets_arr if ele.colSet == :id setId_dic[:id] = parse(Int,ele.entry[1]) else split_arr = split(string(ele.colSet),"_") setShort_sym = setLngShrt_dic[Symbol(split_arr[1])] saveDic_sym = length(split_arr) == 1 ? setShort_sym : Symbol(setShort_sym,"_",split_arr[2]) setId_dic[saveDic_sym] = lookupTupleTree(tuple(ele.entry...),sets[setShort_sym],ele.startLvl) end end # goes to next iteration and writes report, if any set used is undefined if Int[] in values(setId_dic) undefinedDim_arr = map(filter(x -> setId_dic[x] == Int[],collect(keys(setId_dic)))) do x split_arr = split(String(x),"_") setName = setShrtLng_dic[Symbol(split_arr[1])] return length(split_arr) == 1 ? setName : Symbol(setName,"_",split_arr[2]) end undefinedSets_arr = map(y -> join(map(z -> string(y.entry[z]," (lvl ",y.lvl[z],")") ,1:length(y.lvl))," > "),filter(x -> x.colSet in undefinedDim_arr,relSets_arr)) lock(lock_) for undef in undefinedSets_arr push!(report,(2,"parameter read-in",fileName_str,"values provided for undefined set $(undef...)")) end unlock(lock_) continue end # creates all possible combinations of found values agnNodes_mat = [] for i in Iterators.product(collect(values(setId_dic))...) push!(agnNodes_mat,collect(i)) end ordAgnNodes_ord = hcat(agnNodes_mat...) addEntry_df = DataFrame() for (index,y) in enumerate(keys(setId_dic)) addEntry_df[!,y] = ordAgnNodes_ord[index,:] end # XXX loop over parameter/value columns, prepares and writes for i in parVal_arr # extract parameter type and value par_sym = row[i[1]] if par_sym == Symbol() continue end # adds values to dataframe if isempty(addEntry_df) if isnan(row[i[2]]) continue end addEntry_df = DataFrame(val = row[i[2]]) else if isnan(row[i[2]]) continue end addEntry_df[!,:val] .= row[i[2]] end # creates empty dataframe for parameter, if non-existent so far if !in(par_sym,keys(para_dic)) para_dic[par_sym] = DataFrame(val = Float64[]) end # adds 0 to dictionary for sets the parameter depends on, but that dont appear in the current file/row for missKey in setdiff(namesSym(para_dic[par_sym]),namesSym(addEntry_df)) addEntry_df[!,missKey] .= 0 end # adds new column to dataframe for respective parameter if required rows_int = nrow(para_dic[par_sym]) for key in setdiff(namesSym(addEntry_df),namesSym(para_dic[par_sym])) para_dic[par_sym][!,key] = zeros(Int, rows_int) end select!(addEntry_df, namesSym(para_dic[par_sym])) append!(para_dic[par_sym],addEntry_df) end end end # XXX filters all columns of dataframe that are related to the sets function filterSetColumns(input_df::DataFrame,input_arr::Array{Symbol},outStr_boo::Bool = false) colNames_arr = [String(namesSym(input_df)[i]) for i = 1:size(input_df,2)] # filters columns that relate to input array and further splits them based on "_" seperators inRelColNames_arr = collect(Iterators.flatten(map(y -> filter(x -> x[1:minimum([length(y),length(x)])] == y, colNames_arr),map(x-> string(x),input_arr)))) # columns that relate to input because of numbering or identity ctrColNames_arr = vcat(filter(x -> isa(tryparse(Int,x[end:end]),Int),inRelColNames_arr),intersect(colNames_arr,map(x -> String(x),input_arr))) # remaining columns, solely used to filter mapping set files mapColNames_arr = setdiff(inRelColNames_arr,ctrColNames_arr) return_arr = [ctrColNames_arr, mapColNames_arr] # convert to symbol unless optional input is set to true if !outStr_boo return_arr = map(y -> map(x -> Symbol(x),y),return_arr) end return return_arr end # XXX initializes dictionary that saves lookups in tree function initializeLookup(size_int::Int) Ini_arr = Array{String}(undef,size_int) Ini_arr .= "" return Ini_arr end # </editor-fold>
AnyMOD
https://github.com/leonardgoeke/AnyMOD.jl.git
[ "MIT" ]
0.1.12
46a00c75bb6eb7fdaf5b15d75e9a544c0f91484d
code
5667
# XXX finds provided string tuple in tree structure and returns node id (or false), tuple does not need to start at the top level of tree, in that case function can return an array instead of a number function lookupTupleTree(input_uni::Tuple{Vararg{Union{InlineString,String},N} where N},tree_obj::Tree, startLvl_int::Int= 1) if isempty(tree_obj.nodes) return false end # find leading and trailing empty entries firstVal_int = findfirst(x -> x != "",input_uni) lastVal_int = findlast(x -> x != "",input_uni) # adjust input uni and start level according to removed values startLvl_int = plus(firstVal_int,startLvl_int) - 1 input_uni = input_uni[firstVal_int:lastVal_int] gap_arr = findall(input_uni .== "") if startLvl_int == 1 && isempty(gap_arr) return getDicEmpty(tree_obj.srcTup,input_uni) else noGap_arr = reverse(setdiff(1:length(input_uni),gap_arr)) # initialize by searching for last entry in input tuple crtLvl_int = noGap_arr[1] + startLvl_int - 1 found_arr = getDicEmpty(tree_obj.srcStr,(input_uni[noGap_arr[1]],crtLvl_int)) # checks which nodes found initially actually comply with rest of input_uni for i in noGap_arr[2:end] crtLvlItr_int = i + startLvl_int - 1 found_arr = getDicEmpty(tree_obj.srcStr,(input_uni[i],crtLvlItr_int)) |> (y -> filter(x -> goUp(x,tree_obj.up,crtLvl_int-crtLvlItr_int,tree_obj.nodes) in y,found_arr)) end end return found_arr end # XXX sorts inputs nodes according to their tree position function sortSiblings(nodesIndex_arr::Array{Int,1},tree_obj::Tree) hertiLine_mat = map(x -> getAncestors(x, tree_obj,:tup),nodesIndex_arr) rowNum_int = length(nodesIndex_arr) colNum_int = maximum([hertiLine_mat[i][1][2] .+ 1 for i = 1:rowNum_int]) herti_mat = zeros(Int64, rowNum_int, colNum_int) for (row, row_arr) in enumerate(hertiLine_mat) for ele in row_arr herti_mat[row,tree_obj.nodes[ele[1]].lvl+1] = ele[1] end end order_mat = sortslices(hcat(nodesIndex_arr,herti_mat), dims=1, by = x-> x[2:end,1]) return order_mat[:,1] end # XXX goes up the tree from x for the number of steps defined by steps_int function goUp(x::Int,up::Dict{Int,Int},steps_int::Int,nodes_dic::Dict{Int,Node}) startLvl_int = nodes_dic[x].lvl steps_ctr = 0 while steps_ctr < steps_int x = up[x] steps_ctr = startLvl_int - nodes_dic[x].lvl end return x end # XXX gets all parents (id, level) combination, if node is already on top level returns itself, if limitLvl_int is set only provide parents until that level getAncestors(startNode_int::Int,tree_obj::Tree,retType::Symbol,limitLvl_int::Int=0) = getAncestors(startNode_int::Int,tree_obj::Tree,Val{retType}(),limitLvl_int::Int) # XXX returns an array of tuples with ancestors (idx,level) function getAncestors(startNode_int::Int,tree_obj::Tree,retType::Val{:tup},limitLvl_int::Int=0) # gets level of start node currLvl_int = tree_obj.nodes[startNode_int].lvl # return array, if no further going up the tree is required if currLvl_int == 0 || limitLvl_int == currLvl_int return [(startNode_int, currLvl_int)] end # initialize move up the tree heri_arr = Array{Tuple{Int,Int},1}() next = startNode_int # loops up the tree and obtains (id, level) combinations while limitLvl_int < currLvl_int next = tree_obj.up[next] currLvl_int = tree_obj.nodes[next].lvl push!(heri_arr, (next, currLvl_int)) end return heri_arr end # XXX returns an array of integers with ancestors function getAncestors(startNode_int::Int,tree_obj::Tree,retType::Val{:int},limitLvl_int::Int=0) # gets level of start node currLvl_int = tree_obj.nodes[startNode_int].lvl # return array, if no further going up the tree is required if currLvl_int == 0 || limitLvl_int == currLvl_int return [startNode_int] end # initialize move up the tree heri_arr = Array{Int,1}() next = startNode_int # loops up the tree and obtains (id, level) combinations while limitLvl_int < currLvl_int next = tree_obj.up[next] currLvl_int = tree_obj.nodes[next].lvl push!(heri_arr, next) end return heri_arr end # XXX gets all children of node function getDescendants(startNode_int::Int,tree_obj::Tree,getAll::Bool = false, limitLvl_int::Int=0) # determines starting point startLvl_int = tree_obj.nodes[startNode_int].lvl # sets limits to maximum value if none provided if limitLvl_int == 0 limitLvl_int = tree_obj.height end if startLvl_int == limitLvl_int || (getAll && isempty(tree_obj.nodes[startNode_int].down)) return [startNode_int] end startIdx_arr = tree_obj.nodes[startNode_int].down curLvl_int = startLvl_int # initialize array of all children if getAll allIdx_arr = startIdx_arr end while curLvl_int < (limitLvl_int-1) lookUp_arr = vcat(map(x -> tree_obj.nodes[x].down,startIdx_arr)...) if isempty(lookUp_arr) #break; else startIdx_arr = lookUp_arr if getAll allIdx_arr = vcat(allIdx_arr,startIdx_arr) end end curLvl_int = curLvl_int + 1 end return getAll ? allIdx_arr : startIdx_arr end # XXX returns all nodes of tree on the level provided getNodesLvl(tree_obj::Tree, level_int::Int) = filter(r -> r.lvl == level_int, sort(collect(values(tree_obj.nodes)), by = x -> x.idx)) # XXX returns (unique) tuple with strings of node itself and its parents function getUniName(nodeIdx_int::Int, tree_obj::Tree) if nodeIdx_int == 0 return ("none",) end relNodes_arr = tree_obj.nodes[nodeIdx_int].lvl == 1 ? [nodeIdx_int] : vcat(reverse(getAncestors(nodeIdx_int,tree_obj,:tup,1))..., nodeIdx_int) return tuple(map(x -> tree_obj.nodes[x[1]].val, relNodes_arr)...) end createFullString(nodeIdx_int::Int,tree_obj::Tree) = join(getUniName(nodeIdx_int,tree_obj)," < ")
AnyMOD
https://github.com/leonardgoeke/AnyMOD.jl.git
[ "MIT" ]
0.1.12
46a00c75bb6eb7fdaf5b15d75e9a544c0f91484d
code
25301
# <editor-fold desc="reporting of calculation progress and error handling" # XXX return elapsed time since Start_date function getElapsed(start::DateTime) elapSec_per = Dates.value(floor(now() - start,Dates.Second(1))) if elapSec_per < 3600*24 elap_str = Dates.format(DateTime(2015,01,01,Int(floor(elapSec_per / 3600)),Int(floor(elapSec_per % 3600/ 60)),elapSec_per % 60), "HH:MM:SS") else elap_str = Dates.format(DateTime(2015,01,Int(floor(elapSec_per / (3600*24))),Int(floor(elapSec_per % (3600*24) / 3600)),Int(floor(elapSec_per % 3600/ 60)),elapSec_per % 60), "dd:HH:MM:SS") end return elap_str end # XXX teste for errors so far and optional writes report file, even if no serious errrors occured yet function errorTest(report::Array{Tuple,1},options::modOptions;write::Bool = false, inCode::Bool = false) errStatus_dic = Dict(1 => :green, 2 => :yellow,3 => :red) if any(getindex.(report,1) .== 3) output_df = DataFrame(map(idx -> getindex.(report, idx), eachindex(first(report))), [:type, :section, :location, :message]) CSV.write("$(options.outDir)/reporting_$(options.outStamp).csv", insertcols!(output_df[!,2:end], 1, :errStatus => map(x -> errStatus_dic[x],output_df[!,:type]))) printstyled("$(inCode ? "" : " - " )Errors encountered! Wrote reporting_$(options.outStamp).csv for details!"; color = :light_red) error() else numWarn = length(findall(getindex.(report,1) .== 2)) if write && length(report) > 0 output_df = DataFrame(map(idx -> getindex.(report, idx), eachindex(first(report))), [:type, :section, :location, :message]) CSV.write("$(options.outDir)/reporting_$(options.outStamp).csv", insertcols!(output_df[!,2:end], 1, :errStatus => map(x -> errStatus_dic[x],output_df[!,:type]))) printstyled("$(inCode ? "" : " - " )No errors and $numWarn warning(s) encountered. Wrote reporting_$(options.outStamp).csv for details! \n"; color = numWarn > 0 ? :light_yellow : :light_green) else printstyled("$(inCode ? "" : " - " )No errors and $numWarn warning(s) encountered. \n"; color = numWarn > 0 ? :light_yellow : :light_green) end end end # XXX produces a output message and tests for errors accordingly to globally set reporting values function produceMessage(options::modOptions,report::Array{Tuple,1},currentLvl::Int64,fixedString::String,dynamicString::Any="") sty_dic = Dict(1 => :bold, 2 => :normal, 3 => :light_black) sty_dic[currentLvl] if options.reportLvl >= currentLvl if options.errCheckLvl >= currentLvl printstyled(options.objName; color = :underline); printstyled(" ", getElapsed(options.startTime), fixedString, dynamicString; color = sty_dic[currentLvl]) else printstyled(options.objName; color = :underline); printstyled(" ",getElapsed(options.startTime), fixedString, dynamicString, "\n"; color = sty_dic[currentLvl]) end end if options.errCheckLvl >= currentLvl errorTest(report,options,write = options.errWrtLvl >= currentLvl) end end # </editor-fold> # <editor-fold desc="miscellaneous data processing" # XXX new plus function to avoid error when one element being added up is nothing plus(a::Int,b::Int) = a + b plus(a::Int,b::Nothing) = a plus(a::Nothing,b::Int) = b # XXX provides names of columns as array of symbols ('names' function itself was changed from strings to symbols) namesSym(df::DataFrame) = map(x -> Symbol(x),names(df)) namesSym(df::DataFrameRow) = map(x -> Symbol(x),names(df)) # XXX returns dataframe columns without value column removeVal(input_df::DataFrame) = filter(x -> !(x in (:val,:ratio)),namesSym(input_df)) removeVal(col_arr::Array{Symbol,1}) = filter(x -> !(x in (:val,:ratio)),col_arr) # XXX return an empty integer array instead of an error, if a key is not in a dictionary getDicEmpty(dic::Dict,key::Any) = key in keys(dic) ? dic[key] : Int[] # XXX get names of column of type integer intCol(in_df::DataFrame) = getindex.(filter(x -> eltype(x[2]) <: Int, collect(pairs(eachcol(in_df)))),1) intCol(in_df::DataFrame,add_sym::Symbol) = union(intCol(in_df),intersect(namesSym(in_df),[add_sym])) # XXX puts relevant dimensions in consistent order and adds remaining entries at the end orderDim(inDim_arr::Array{Symbol,1},intCol_arr::Array{Symbol,1}) = intersect([:Ts_exp, :Ts_expSup, :Ts_disSup, :Ts_dis, :R_exp, :R_dis, :R_from, :R_to, :C, :Te], intersect(inDim_arr,intCol_arr)) |> (x -> [x...,setdiff(inDim_arr,x)...]) orderDim(inDim_arr::Array{Symbol,1}) = intersect([:Ts_exp, :Ts_expSup, :Ts_disSup, :Ts_dis, :R_exp, :R_dis, :R_from, :R_to, :R_a, :R_b, :C, :Te], inDim_arr) |> (x -> [x...,setdiff(inDim_arr,x)...]) # XXX puts dataframes columns in consistent order orderDf(in_df::DataFrame) = select(in_df,orderDim(namesSym(in_df),intCol(in_df) |> (z -> isempty(z) ? Symbol[] : z))) # XXX writes all tuples occuring in a tuple of pairs and tuples mixedTupToTup(x) = typeof(x) <: Pair ? map(y -> mixedTupToTup(y),collect(x)) : x # XXX check if dataframe should be considered, if energy balance is created for carriers in array filterCarrier(var_df::DataFrame,c_arr::Array{Int,1}) = :C in namesSym(var_df) ? filter(r -> r.C in c_arr,var_df) : var_df # XXX create dataframe with all potential dimensions for carrier provided function createPotDisp(c_arr::Array{Int,1},anyM::anyModel) lvl_arr = map(x -> anyM.cInfo[x], c_arr) |> (y -> map(z -> getfield.(y,z),[:tsDis, :rDis])) allLvl_df = DataFrame(C = c_arr, lvlTs = lvl_arr[1], lvlR = lvl_arr[2]) tsDis_dic, rDis_dic = [Dict(x => getfield.(getNodesLvl(anyM.sets[z[2]],x),:idx) for x in unique(lvl_arr[z[1]])) for z in enumerate([:Ts,:R])] allLvl_df[!,:Ts_dis] = map(x -> tsDis_dic[x],allLvl_df[!,:lvlTs]) allLvl_df[!,:R_dis] = map(x -> rDis_dic[x],allLvl_df[!,:lvlR]) var_df = flatten(flatten(select(allLvl_df,Not([:lvlTs,:lvlR])),:Ts_dis),:R_dis) # add column for superordinate dispatch timestep supTs_dic = Dict(x => getAncestors(x,anyM.sets[:Ts],:int,anyM.supTs.lvl)[end] for x in unique(var_df[!,:Ts_dis])) var_df[!,:Ts_disSup] = map(x -> supTs_dic[x], var_df[!,:Ts_dis]) return var_df end # XXX gets technology name as symbol from id and the other way around techSym(tInt::Int,tech_tree::Tree) = Symbol(getUniName(tInt,tech_tree)[end]) techInt(tSym::Symbol,tech_tree::Tree) = filter(x -> x.val == string(tSym),collect(values(tech_tree.nodes)))[1].idx # </editor-fold> # <editor-fold desc="data frame based manipulations" # XXX finds entries where expansion or capacity would be fixed to zero function filterZero(src_df::DataFrame,par_obj::ParElement,anyM::anyModel) if isdefined(par_obj,:name) # copies parameter obj and adds ":up" to inheritance for any dimensions, otherwise variables would be created, but fixed to zero due to a zero limit on a higher level in the tree modPar_obj = par_obj modPar_obj.herit = modPar_obj.herit |> (y -> tuple(vcat(y..., map(x -> x => :up,getindex.(y,1))...)...)) # filter zero cases zero_df = select!(filter(r -> r.val == 0, matchSetParameter(src_df, modPar_obj, anyM.sets)),Not(:val)) else zero_df = src_df[[],:] end return zero_df end # XXX removes all entries occuring in remove array from input table function removeEntries(remove_arr::Array{DataFrame,1},input_df::DataFrame) if !isempty(remove_arr) remove_df = length(remove_arr) == 1 ? remove_arr[1] : vcat(remove_arr...) colRemove_arr = namesSym(remove_df) out_df = antijoin(input_df,remove_df; on = colRemove_arr) return out_df else return input_df end end # XXX merge provided dataframe into prep_dic function mergePrepDic!(key_sym::Symbol,prep_dic::Dict{Symbol,NamedTuple},capaResi_df::DataFrame,capaRatio_df::DataFrame = DataFrame()) if key_sym in keys(prep_dic) prep_dic[key_sym]= (var = prep_dic[key_sym].var, ratio = capaRatio_df, resi = capaResi_df) else prep_dic[key_sym] = (var = intCol(capaResi_df) |> (x -> DataFrame(Pair.(x,fill(Int[],length(x))))), ratio = capaRatio_df, resi = capaResi_df) end end # XXX performs a left or outer join operation and replaces any missing values function joinMissing(leftData_df::DataFrame, rightData_df::DataFrame, key_arr::Union{Array{Symbol,1},Array{Pair{Symbol,Symbol},1}}, how_sym::Symbol, missVal_dic::Dict, uni_boo::Bool = false) # perform join operation if how_sym == :left joinData_df = leftjoin(leftData_df,rightData_df; on = key_arr, makeunique = uni_boo) elseif how_sym == :outer joinData_df = outerjoin(leftData_df,rightData_df; on = key_arr, makeunique = uni_boo) end miss_col = filter(x -> any(ismissing.(x[2])), collect(pairs(eachcol(joinData_df)))) # check, if any column contains missing values if isempty(miss_col) return dropmissing(joinData_df) end # replace missing value, cases differ depending if data type needs to be adjusted for col in miss_col joinData_df[!,col[1]] = map(x -> coalesce(x,missVal_dic[col[1]]),col[2]) end return dropmissing(joinData_df) end # XXX get array of scaling factors for add_df function getResize(add_df::DataFrame,time_obj::Tree,supDis::NamedTuple{(:lvl,:step,:sca),Tuple{Int,Tuple{Vararg{Int,N} where N},Dict{Tuple{Int,Int},Float64}}}) tsDisLvl_dic = Dict(x => x == 0 ? 1 : getfield(time_obj.nodes[x],:lvl) for x in unique(add_df[!,:Ts_dis])) lvl_arr = map(x -> tsDisLvl_dic[x],add_df[!,:Ts_dis]) aboveSupResize_fl = maximum(values(supDis.sca)) * length(supDis.step) # scaling value used for variables above the superordinate dispatch level sca_arr = map(x -> supDis.lvl > x[1] ? aboveSupResize_fl : supDis.sca[(x[2],x[1])] ,zip(lvl_arr,add_df[!,:Ts_disSup])) return sca_arr end # XXX gets the upper bound used for dispatch variables function getUpBound(in_df::DataFrame,dispBound_fl::Float64,supTs::NamedTuple{(:lvl,:step,:sca),Tuple{Int,Tuple{Vararg{Int,N} where N},Dict{Tuple{Int,Int},Float64}}},treeTs::Tree) if !isnan(dispBound_fl) upBound_arr = dispBound_fl * getResize(in_df,treeTs,supTs) else upBound_arr = fill(NaN,size(in_df,1)) end return upBound_arr end # </editor-fold> # <editor-fold desc="functions and sub-functions to aggregate variables" # XXX aggregates variables in aggEtr_df to rows in srcEtr_df, function used, if all entries of search have the same resolution (all entries in a relevant column are on the same level) function aggUniVar(aggEtr_df::DataFrame, srcEtr_df::DataFrame, agg_arr::Array{Symbol,1},srcRes_tup::NamedTuple,sets_dic::Dict{Symbol,Tree}) if isempty(aggEtr_df) return fill(AffExpr(),size(srcEtr_df,1)) end # only selects relevant columns aggEtr_df = select(aggEtr_df,vcat(:var,agg_arr...)) # adjusts entries in aggregation dataframe to comply with resolution of search dataframe for dim in intersect(keys(srcRes_tup),agg_arr) set_sym = Symbol(split(string(dim),"_")[1]) dim_dic = Dict(x => getAncestors(x,sets_dic[set_sym],:int,getfield(srcRes_tup,dim))[end] for x in unique(aggEtr_df[!,dim])) aggEtr_df[!,dim] .= map(x -> dim_dic[x],aggEtr_df[!,dim]) end aggEtrGrp_df = combine(groupby(aggEtr_df,agg_arr), :var => (x -> sum(x)) => :var) joined_df = joinMissing(srcEtr_df,aggEtrGrp_df,agg_arr,:left,Dict(:var => AffExpr())) sort!(joined_df,sort(intCol(joined_df))) return joined_df[!,:var] end # XXX aggregates variables in aggEtr_df to rows in srcEtr_df, function used, if entries of search can have different resolutions (not all entries in a relevant column are on the same level) function aggDivVar(aggEtr_df::DataFrame, srcEtr_df::DataFrame, agg_tup::Tuple, sets_dic::Dict{Symbol,Tree}; aggFilt::Tuple = ()) # XXX sanity checks regarding columns if all(namesSym(aggEtr_df) |> (y -> map(x -> !(x in y),agg_tup))) error("tried to perform aggregation on column not existing in dataframe to be aggregated") end if all(namesSym(srcEtr_df) |> (y -> map(x -> !(x in y),agg_tup))) error("tried to perform aggregation on column not existing in dataframe to aggregate") end select!(aggEtr_df,intCol(aggEtr_df,:var)) # XXX filter entries from aggEtr_df, that based on isolated analysis of columns will not be aggregated for dim in intersect(aggFilt,agg_tup) set_sym = Symbol(split(string(dim),"_")[1]) allSrc_set = unique(srcEtr_df[!,dim]) |> (z -> union(BitSet(z),map(x -> BitSet(getDescendants(x,sets_dic[set_sym],true)),z)...)) aggEtr_df = aggEtr_df[findall(map(x -> (x in allSrc_set),aggEtr_df[!,dim])),:] end if isempty(aggEtr_df) return fill(AffExpr(),size(srcEtr_df,1)) end # XXX filter entries from srcEtr_df, that based on isolated anlysis of columns will not have any values aggregated to idxRel_set = BitSet(1:size(srcEtr_df,1)) for dim in agg_tup set_sym = Symbol(split(string(dim),"_")[1]) allAgg_set = unique(aggEtr_df[!,dim]) |> (z -> union(BitSet(z),map(y -> BitSet(getAncestors(y,sets_dic[set_sym],:int,0)), z)...)) idxRel_set = intersect(idxRel_set,BitSet(findall(map(x -> x in allAgg_set, srcEtr_df[!,dim])))) end srcEtrAct_df = srcEtr_df[collect(idxRel_set),:] # group aggregation dataframe to relevant columns and removes unrequired columns aggEtrGrp_df = combine(groupby(aggEtr_df,collect(agg_tup)), :var => (x -> sum(x)) => :var) # XXX create dictionaries in each dimension that assign rows suited for aggregation for each value chldRows = Dict{Symbol,Dict{Int,BitSet}}() for col in agg_tup # row that are potentially aggregated findCol_arr = aggEtrGrp_df[!,col] findCol_set = BitSet(findCol_arr) # entries that other entries can be aggregated to searchVal_set = BitSet(unique(srcEtrAct_df[!,col])) # to every unique value in column the value itself and its children are assigned set_sym = Symbol(split(string(col),"_")[1]) idxChild_dic = Dict(x => intersect(findCol_set,[x,getDescendants(x,sets_dic[set_sym],true)...]) for x in searchVal_set) # for each unique value in column the rows with children are assigned grp_df = groupby(DataFrame(val = findCol_arr, id = 1:length(findCol_arr)),:val) dicVal_dic = Dict(x.val[1] => BitSet(sort(x[!,:id])) for x in grp_df) |> (dic -> Dict(x => union(map(y -> dic[y],collect(idxChild_dic[x]))...) for x in keys(idxChild_dic))) # excludes column from search, if based on it, every entry in find could be aggregated to every row in search # (if this holds true for all columns, make an exception for the last one and dont remove it to, because otherwise correct aggregation cannot happen ) if all(length.(values(dicVal_dic)) .== length(findCol_arr)) && !(col == agg_tup[end] && length(chldRows) < 1) select!(srcEtrAct_df,Not(col)); continue else chldRows[col] = dicVal_dic end end # XXX finds aggregation by intersecting suited rows in each dimension if isempty(chldRows) aggRow_arr = fill(BitSet(),size(srcEtrAct_df,1)) else aggRow_arr = collectKeys(keys(chldRows)) |> (y -> map(x -> intersect(map(y -> chldRows[y][x[y]],y)...) ,eachrow(srcEtrAct_df))) end # XXX aggregates values according to lookup out_arr = Array{AffExpr}(undef,size(srcEtr_df,1)) out_arr[collect(idxRel_set)] = map(x -> sum(aggEtrGrp_df[x,:var]), collect.(aggRow_arr)) out_arr[setdiff(1:size(srcEtr_df,1),idxRel_set)] .= AffExpr() return out_arr end # </editor-fold> # <editor-fold desc="manipulate model related data frames" # XXX add superordinate dispatch timestep to expansion dataframe function addSupTsToExp(expMap_df::DataFrame,para_obj::Dict{Symbol,ParElement},type_sym::Symbol,tsYear_dic::Dict{Int,Int},anyM::anyModel) if !isempty(expMap_df) lftm_df = matchSetParameter(flatten(expMap_df,:Ts_expSup),para_obj[Symbol(:life,type_sym)],anyM.sets,newCol = :life) lftmDel_df = matchSetParameter(lftm_df,para_obj[Symbol(:del,type_sym)],anyM.sets,newCol = :del) lftmDel_df[!,:Ts_disSup] = map(x -> filter(y -> (tsYear_dic[y] >= tsYear_dic[x.Ts_expSup] + x.del) && (tsYear_dic[y] <= tsYear_dic[x.Ts_expSup] + x.life + x.del),collect(anyM.supTs.step)), eachrow(lftmDel_df)) select!(lftmDel_df,Not([:life,:del])) grpCol_arr = intCol(expMap_df) |> (x -> :ratio in namesSym(expMap_df) ? vcat(:ratio,x...) : x) expMap_df = combine(groupby(lftmDel_df,grpCol_arr), [:Ts_expSup,:Ts_disSup] .=> (x -> [x]) .=> [:Ts_expSup,:Ts_disSup]) else expMap_df[!,:Ts_disSup] = Array{Array{Int,1},1}() end return expMap_df end # XXX expand expansion dataframe to capacity dataframe function expandExpToCapa(in_df::DataFrame) noExpCol_arr = intCol(in_df) allDf_arr = map(eachrow(in_df)) do x l_arr = length.(x.Ts_disSup) rem_df = repeat(DataFrame(x[noExpCol_arr]), inner = sum(l_arr), outer = 1) ext_df = DataFrame(Ts_expSup = vcat(map(y -> fill(x.Ts_expSup[y],l_arr[y]),1:length(l_arr))...), Ts_disSup = vcat(x.Ts_disSup...)) return hcat(rem_df,ext_df) end if !isempty(allDf_arr) capa_df = select(vcat(allDf_arr...),orderDim(namesSym(allDf_arr[1])))[!,Not(:Ts_exp)] else capa_df = select(in_df,Not(:Ts_exp)); capa_df[!,:Ts_disSup] = Int[]; end return orderDf(capa_df) end # XXX expands any table including columns with temporal and spatial dispatch levels and the corresponding expansion regions and superordinate dispatch steps to full dispatch table function expandExpToDisp(inData_df::DataFrame,ts_dic::Dict{Tuple{Int,Int},Array{Int,1}},r_dic::Dict{Tuple{Int64,Int64},Array{Int64,1}},preserveTsSupTs::Bool = false) # adds regional timesteps and check if this causes non-unique values (because spatial expansion level can be below dispatch level) expR_df = unique(combine(x -> (R_dis = r_dic[(x.R_exp[1],x.lvlR[1])],), groupby(inData_df,namesSym(inData_df)))[!,Not([:R_exp,:lvlR])]) expTs_df = combine(x -> (Ts_dis = ts_dic[(x.Ts_disSup[1],x.lvlTs[1])],), groupby(expR_df,namesSym(expR_df)))[!,Not(:lvlTs)] # adds dispatch timesteps to table and returns if !preserveTsSupTs select!(expTs_df,Not(:Ts_disSup)) end return expTs_df end # XXX obtains residual capacities for technologies function checkResiCapa(var_sym::Symbol, stockCapa_df::DataFrame, part::AbstractModelPart, anyM::anyModel, addSym::Symbol = Symbol()) resiPar_sym = Symbol(var_sym,:Resi,addSym) if resiPar_sym in tuple(keys(part.par)...) # search for defined residual values stock_df = filter(r -> r.val != 0.0, matchSetParameter(stockCapa_df, part.par[resiPar_sym], anyM.sets)) else stock_df = filter(x -> false,stockCapa_df) stock_df[!,:val] = Float64[] end # convers returned value to affine expression stock_df[!,:var] = AffExpr.(stock_df[!,:val]) select!(stock_df,Not(:val)) return stock_df end # XXX get a dataframe with all variable of the specified type function getAllVariables(va::Symbol,anyM::anyModel; reflectRed::Bool = true, filterFunc::Function = x -> true) varToPart_dic = Dict(:exc => :exc, :capaExc => :exc, :oprCapaExc => :exc, :expExc => :exc, :crt => :bal, :lss => :bal, :trdSell => :trd, :trdBuy => :trd, :emission => Symbol()) techSym_arr = collect(keys(anyM.parts.tech)) if va == :excDir va = :exc end if !(va in keys(varToPart_dic)) # get all variables for technologies va_dic = Dict(:stIn => (:stExtIn, :stIntIn), :stOut => (:stExtOut, :stIntOut)) techType_arr = filter(x -> !isempty(x[2]),[(vaSpec,filter(y -> vaSpec in keys(anyM.parts.tech[y].var), techSym_arr)) for vaSpec in (va in keys(va_dic) ? va_dic[va] : (va,))]) if !isempty(techType_arr) allVar_df = vcat(map(x -> anyM.parts.tech[x[2]].var[x[1]], vcat(map(x -> collect(zip(fill(x[1],length(x[2])),x[2])),techType_arr)...))...) else allVar_df = DataFrame() end elseif va != :emission # get variables from other parts if va in keys(getfield(anyM.parts,varToPart_dic[va]).var) allVar_df = getfield(anyM.parts,varToPart_dic[va]).var[va] else allVar_df = DataFrame() end else va == :emission # for emission all use variables are obtained and then already matched with emission factors if !(:emissionFac in keys(anyM.parts.lim.par)) lock(anyM.lock) push!(anyM.report,(2,"limits","emissionUp","upper emission limits but no emission factors provided")) unlock(anyM.lock) allVar_df = DataFrame() else # get all carriers and technologies that might be relevant to compute emissions if :Te in namesSym(anyM.parts.lim.par[:emissionFac].data) emC_arr = unique(vcat(map(x -> [x,getDescendants(x,anyM.sets[:C],true)...],unique(filter(x -> x.Te == 0, anyM.parts.lim.par[:emissionFac].data)[!,:C]))...)) emTe_arr = unique(vcat(map(x -> [x,getDescendants(x,anyM.sets[:Te],true)...],unique(filter(x -> x.Te != 0, anyM.parts.lim.par[:emissionFac].data)[!,:Te]))...)) else emC_arr = unique(vcat(map(x -> [x,getDescendants(x,anyM.sets[:C],true)...],unique(anyM.parts.lim.par[:emissionFac].data[!,:C]))...)) emTe_arr = Array{Int64,1}() end # get use variables allVar_df = getAllVariables(:use,anyM, filterFunc = x -> x.C in emC_arr || x.Te in emTe_arr) # get expressions for storage and exchange losses, if this is enabled if anyM.options.emissionLoss # get all carriers being stored allSt_arr = unique(vcat(vcat(map(x -> map(y -> collect(x.carrier[y]),intersect(keys(x.carrier),(:stExtIn,:stExtOut,:stIntIn,:stIntOut))),values(anyM.parts.tech))...)...)) if !isempty(intersect(emC_arr,vcat(map(x -> [x,getDescendants(x,anyM.sets[:C],true)...],allSt_arr)...))) # get all storage variables where storage losses can lead to emissions stVar_dic = Dict((string(st) |> (y -> Symbol(uppercase(y[1]),y[2:end]))) => getAllVariables(st,anyM, filterFunc = x -> x.C in emC_arr || x.Te in emTe_arr) for st in (:stIn,:stOut)) stLvl_df = getAllVariables(:stLvl,anyM, filterFunc = x -> x.C in emC_arr) # loop over relevant storage technologies to obtain loss vallues tSt_arr = unique(stLvl_df[!,:Te]) for tInt in tSt_arr part = anyM.parts.tech[techSym(tInt,anyM.sets[:Te])] # add expression quantifying storage losses for storage in- and and output for st in keys(stVar_dic) stVar_df = stVar_dic[st] stVar_df = matchSetParameter(filter(x -> x.Te == tInt,stVar_df),part.par[Symbol(:eff,st)],anyM.sets) stVar_df[!,:var] = stVar_df[!,:var] .* (1 .- stVar_df[!,:val]) select!(stVar_df,Not(:val)) allVar_df = vcat(allVar_df,stVar_df) end # add expression quantifying storage losses for storage discharge if :stDis in keys(part.par) sca_arr = getResize(stLvl_df,anyM.sets[:Ts],anyM.supTs) stLvl_df = matchSetParameter(filter(x -> x.Te == tInt,stLvl_df),part.par[:stDis],anyM.sets) stLvl_df[!,:var] = stLvl_df[!,:var] .* (1 .- (1 .- stLvl_df[!,:val]) .^ sca_arr) select!(stLvl_df,Not(:val)) allVar_df = vcat(allVar_df,stLvl_df) end end end # add expressions for exchange losses if :exc in keys(anyM.parts.exc.var) exc_df = getAllVariables(:exc,anyM, filterFunc = x -> x.C in emC_arr) exc_df = getExcLosses(convertExcCol(exc_df),anyM.parts.exc.par,anyM.sets) # exchange losses are equally split between import and export region filter!(x -> x.loss != 0.0,exc_df) if !isempty(exc_df) exc_df[!,:var] = exc_df[!,:var] .* exc_df[!,:loss] .* 0.5 exc_df = rename(combine(groupby(vcat(exc_df,rename(exc_df,:R_a => :R_b,:R_b => :R_a)),filter(x -> x != :R_b,intCol(exc_df))),:var => (x -> sum(x)) => :var),:R_a => :R_dis) # dimensions not relevant for exchange are set to 0 exc_df[!,:Te] .= 0; exc_df[!,:Ts_expSup] .= 0; exc_df[!,:M] .= 0 allVar_df = vcat(allVar_df,exc_df) end end end allVar_df = matchSetParameter(allVar_df,anyM.parts.lim.par[:emissionFac],anyM.sets) end if !isempty(allVar_df) allVar_df[!,:var] = allVar_df[!,:val] ./ 1e6 .* allVar_df[!,:var] select!(allVar_df,Not(:val)) end end if !(va in (:capaConv,:capaStIn,:capaStOut,:capaStSize,:oprCapaConv,:oprCapaStIn,:oprCapaStOut,:oprCapaStSize,:expConv,:expStIn,:expStOut,:expStSize)) && !isempty(allVar_df) && reflectRed allVar_df[!,:var] .= allVar_df[!,:var] .* anyM.options.redStep end return filter(filterFunc,allVar_df) end # XXX replaces orginal carriers in var_df with all leafes connected to respective carrier (and itself) and flattens it function replCarLeafs(var_df::DataFrame,c_tree::Tree;cCol::Symbol=:C,noLeaf::Array{Int,1} = Int[]) cToLeafs_dic = Dict(x => filter(y -> isempty(c_tree.nodes[y].down) || y in noLeaf,[x,getDescendants(x,c_tree,true)...]) for x in unique(var_df[!,cCol])) var_df[!,:C] = map(x -> cToLeafs_dic[x],var_df[!,cCol]) var_df = flatten(var_df,:C) return var_df end # XXX returns array of technologies and respective dispatch variables relevant for input carrier function getRelTech(c::Int,tech_dic::Dict{Symbol,TechPart},c_tree::Tree) techSym_arr = collect(keys(tech_dic)) relTech_arr = Array{Tuple{Symbol,Symbol},1}() for tSym in techSym_arr addConvTech_arr = intersect((:use,:gen),filter(y -> c in tech_dic[tSym].carrier[y], collect(keys(tech_dic[tSym].carrier)))) if isempty(c_tree.nodes[c].down) # actual dispatch variables for storage only exists for carriers that are leaves addStTech_arr = intersect((:stExtIn,:stExtOut),filter(y -> c in union(map(z -> union([z],getDescendants(z,c_tree,true)),tech_dic[tSym].carrier[y])...), collect(keys(tech_dic[tSym].carrier)))) else addStTech_arr = Array{Tuple{Int,Symbol},1}() end union(addConvTech_arr,addStTech_arr) |> (y -> append!(relTech_arr,collect(zip(fill(tSym,length(y)),y)))) end return relTech_arr end # </editor-fold>
AnyMOD
https://github.com/leonardgoeke/AnyMOD.jl.git
[ "MIT" ]
0.1.12
46a00c75bb6eb7fdaf5b15d75e9a544c0f91484d
code
13982
# <editor-fold desc= prepare and create exchange related variables" # XXX prepare expansion and capacity variables for exchange function prepareExcExpansion!(partExc::OthPart,partLim::OthPart,prepExc_dic::Dict{Symbol,NamedTuple},tsYear_dic::Dict{Int,Int},anyM::anyModel) # XXX determine dimensions of expansion variables (expansion for exchange capacities is NOT directed!) # get all possible dimensions of exchange potDim_df = DataFrame(map(x -> (lvlTs = x[2].tsExp, lvlR = x[2].rDis, C = x[1]), collect(anyM.cInfo))) tsLvl_dic = Dict(x => getfield.(getNodesLvl(anyM.sets[:Ts],x),:idx) for x in unique(potDim_df[!,:lvlTs])) rLvl_dic = Dict(x => getfield.(getNodesLvl(anyM.sets[:R],x),:idx) for x in unique(potDim_df[!,:lvlR])) potExc_df = flatten(flatten(flatten(combine(x -> (Ts_exp = map(y -> tsLvl_dic[y],x.lvlTs), R_a = map(y -> rLvl_dic[y],x.lvlR), R_b = map(y -> rLvl_dic[y],x.lvlR)), groupby(potDim_df,:C)),:Ts_exp),:R_a),:R_b) # get dimensions where exchange should actually be defined exExp_df = DataFrame(R_a = Int[], R_b = Int[], C = Int[]) for excPar in intersect((:capaExcResi,:capaExcResiDir),keys(partExc.par)) append!(exExp_df,matchSetParameter(potExc_df,partExc.par[excPar],anyM.sets)[!,[:R_a,:R_b,:C]]) end # ensure expansion entries are not directed exExp_df = unique(exExp_df) |> (x -> filter(y -> y.R_a < y.R_b,vcat(x,rename(x,replace(namesSym(x),:R_a => :R_b, :R_b => :R_a))))) |> (z -> unique(z)) # add supordiante timesteps of expansion allExExp_df = innerjoin(potExc_df,exExp_df, on = namesSym(exExp_df)) allExExp_df[!,:Ts_expSup] = map(x -> getDescendants(x,anyM.sets[:Ts],false,anyM.supTs.lvl) |> (y -> typeof(y) == Array{Int,1} ? y : [y] ), allExExp_df[!,:Ts_exp]) # filter cases where expansion is fixed to zero if :expExcFix in keys(anyM.parts.lim.par) allExExp_df = removeEntries([filterZero(allExExp_df,getLimPar(anyM.parts.lim,:expExcFix,anyM.sets[:Te]),anyM)],allExExp_df) end # filter cases where in and out region are the same filter!(x -> x.R_a != x.R_b, allExExp_df) # save result to dictionary for variable creation exp_df = addSupTsToExp(allExExp_df,partExc.par,:Exc,tsYear_dic,anyM) prepExc_dic[:expExc] = (var = convertExcCol(exp_df),ratio = DataFrame(), resi = DataFrame()) return potExc_df end # XXX create exchange variables function createExcVar!(partExc::OthPart,ts_dic::Dict{Tuple{Int,Int},Array{Int,1}},anyM::anyModel) # XXX extend capacity variables to dispatch variables capa_df = partExc.var[:capaExc][!,Not([:var,:dir])] |> (x -> unique(vcat(x,rename(x,replace(namesSym(x),:R_from => :R_to, :R_to => :R_from))))) # replace orginal carrier with leafs capa_df = replCarLeafs(capa_df,anyM.sets[:C]) cToLvl_dic = Dict(x => (anyM.cInfo[x].tsDis, anyM.cInfo[x].rDis) for x in unique(capa_df[!,:C])) capa_df[!,:lvlTs] = map(x -> cToLvl_dic[x][1],capa_df[!,:C]) capa_df[!,:lvlR] = map(x -> cToLvl_dic[x][2],capa_df[!,:C]) rExc_dic = Dict(x => anyM.sets[:R].nodes[x[1]].lvl != x[2] ? getDescendants(x[1],anyM.sets[:R],false,x[2]) : [x[1]] for x in union([map(x -> (x[y],x.lvlR), eachrow(unique(capa_df[!,[y,:lvlR]]))) for y in (:R_from,:R_to)]...)) capa_df[!,:R_from] = map(x -> rExc_dic[x.R_from,x.lvlR],eachrow(capa_df[!,[:R_from,:lvlR]])) capa_df[!,:R_to] = map(x -> rExc_dic[x.R_to,x.lvlR],eachrow(capa_df[!,[:R_to,:lvlR]])) capa_df = flatten(select(capa_df,Not(:lvlR)),:R_from); capa_df = unique(flatten(capa_df,:R_to)) disp_df = combine(x -> (Ts_dis = ts_dic[(x.Ts_disSup[1],x.lvlTs[1])],),groupby(capa_df,namesSym(capa_df)))[!,Not(:lvlTs)] # filter entries where availability is zero if !isempty(partExc.par[:avaExc].data) && 0.0 in partExc.par[:avaExc].data[!,:val] disp_df = filter(x -> x.val != 0.0, matchSetParameter(disp_df,partExc.par[:avaExc],anyM.sets))[!,Not(:val)] end # computes value to scale up the global limit on dispatch variable that is provied per hour and create variables partExc.var[:exc] = orderDf(createVar(disp_df,"exc",getUpBound(disp_df,anyM.options.bound.disp / anyM.options.scaFac.dispExc,anyM.supTs,anyM.sets[:Ts]),anyM.optModel,anyM.lock,anyM.sets, scaFac = anyM.options.scaFac.dispExc)) end # XXX add residual capacties for exchange (both symmetric and directed) function addResidualCapaExc!(partExc::OthPart,prepExc_dic::Dict{Symbol,NamedTuple},potExc_df::DataFrame,anyM::anyModel) expSup_dic = Dict(x => getDescendants(x,anyM.sets[:Ts],true,anyM.supTs.lvl) for x in unique(potExc_df[!,:Ts_exp])) potExc_df[!,:Ts_disSup] = map(x -> expSup_dic[x],potExc_df[!,:Ts_exp]) potExc_df = flatten(potExc_df[!,Not(:Ts_exp)],:Ts_disSup) # obtain symmetric residual capacites capaResi_df = filter(x -> x.R_a != x.R_b, checkResiCapa(:capaExc,potExc_df, partExc, anyM)) sortR_mat = sort(hcat([capaResi_df[!,x] for x in (:R_a,:R_b)]...);dims = 2) for (index,col) in enumerate((:R_a,:R_b)) capaResi_df[!,col] = sortR_mat[:,index] end # manipulate entries in case directed residual capacities are defined if :capaExcResiDir in keys(partExc.par) directExc_df = matchSetParameter(potExc_df,partExc.par[:capaExcResiDir],anyM.sets) directExc_df[!,:var] = map(x -> AffExpr(x), directExc_df[!,:val]); select!(directExc_df,Not(:val)) excDim_arr = [:C, :R_a, :R_b, :Ts_disSup] excDimP_arr = replace(excDim_arr,:R_a => :R_b, :R_b => :R_a) # entries, where a directed capacity is provided and a symmetric one already exists bothExc_df = vcat(innerjoin(directExc_df, capaResi_df; on = excDim_arr, makeunique = true), innerjoin(directExc_df, capaResi_df; on = Pair.(excDim_arr,excDimP_arr), makeunique = true)) bothExc_df = combine(x -> (var = x.var + x.var_1,), groupby(bothExc_df,excDim_arr)) if !(:var in namesSym(bothExc_df)) bothExc_df[!,:var] = AffExpr[] end # entries, where only a directed capacity was provided onlyDirExc_df = antijoin(directExc_df, bothExc_df; on = excDim_arr ) # entries originally symmetric that now become directed, because a directed counterpart was introduced flipSym_df = antijoin(innerjoin(capaResi_df, bothExc_df[!,Not(:var)]; on = excDim_arr),bothExc_df[!,Not(:var)]; on = excDim_arr .=> excDimP_arr) swtExc_df = vcat(bothExc_df,flipSym_df) # solely directed entries dirExc_df = vcat(onlyDirExc_df,swtExc_df) dirExc_df[!,:dir] .= true # entries who become directed because their counterpart became directed becomDirExc_df = innerjoin(rename(dirExc_df[!,Not([:var,:dir])],:R_a => :R_b, :R_b => :R_a),vcat(capaResi_df,rename(capaResi_df,:R_a => :R_b, :R_b => :R_a)); on = excDim_arr) becomDirExc_df[!,:dir] .= true # entries entries originally symmetric that remain symmetric unDirExc_df = antijoin(capaResi_df, vcat(dirExc_df, rename(dirExc_df,:R_a => :R_b, :R_b => :R_a)); on = excDim_arr ) unDirExc_df[!,:dir] .= false # adjust dataframe of residual capacities according to directed values capaResi_df = vcat(dirExc_df,vcat(unDirExc_df,becomDirExc_df)) # adjust dataframe of capacities determining where variables will be created to reflect which of these correspond to directed cases now allVar_df = prepExc_dic[:capaExc].var if !isempty(prepExc_dic[:capaExc].var) undirBoth_df = vcat(dirExc_df,rename(dirExc_df,replace(namesSym(dirExc_df),:R_a => :R_b, :R_b => :R_a)))[!,Not(:dir)] dirVar_df = convertExcCol(innerjoin(convertExcCol(allVar_df[!,Not(:dir)]), vcat(undirBoth_df,swtExc_df)[!,Not(:var)],on = excDim_arr)) dirVar_df[!,:dir] .= true adjVar_df = vcat(dirVar_df,antijoin(allVar_df,dirVar_df,on = [:C, :R_from, :R_to, :Ts_disSup] )) else adjVar_df = allVar_df end else capaResi_df[!,:dir] .= false adjVar_df = prepExc_dic[:capaExc].var end # filter cases where in and out region are the same filter!(x -> x.R_a != x.R_b, capaResi_df) # adjust dictionary accordingly capaResi_df[!,:Ts_expSup] .= 0 prepExc_dic[:capaExc] = (var = unique(adjVar_df), ratio = DataFrame(), resi = convertExcCol(capaResi_df)) end # XXX converts table where exchange regins are given as "R_a" and "R_b" to "R_to" and "R_from" and the other way around convertExcCol(in_df::DataFrame) = rename(in_df, namesSym(in_df) |> (x -> :R_a in x ? replace(x,:R_a => :R_from, :R_b => :R_to) : replace(x,:R_from => :R_a, :R_to => :R_b))) # converts dataframe where exchange regions are given as "a -> b" or "from -> to" to other way round switchExcCol(in_df::DataFrame) = rename(in_df, replace(namesSym(in_df),:R_from => :R_to, :R_to => :R_from)) # appends input dataframe to version of itself with from and to column exchanged function flipExc(in_df::DataFrame) sw_df = switchExcCol(in_df) # if input dataframe had only a to or from column respective other column is added if !(:R_to in namesSym(in_df)) in_df[!,:R_to] .= 0 sw_df[!,:R_from] .= 0 elseif !(:R_from in namesSym(in_df)) in_df[!,:R_from] .= 0 sw_df[!,:R_to] .= 0 end return orderDf(vcat(in_df,sw_df)) end # </editor-fold> # <editor-fold desc= create exchange related constraints" # XXX connect capacity and expansion constraints for exchange function createCapaExcCns!(partExc::OthPart,anyM::anyModel) capaVar_df = rename(partExc.var[:capaExc],:var => :capaVar) if :expExc in keys(partExc.var) expVar_df = flatten(partExc.var[:expExc],:Ts_disSup)[!,Not(:Ts_exp)] cns_df = innerjoin(capaVar_df, combine(groupby(expVar_df,[:Ts_disSup, :R_from, :R_to, :C]), :var => (x -> sum(x)) => :expVar); on = [:Ts_disSup, :R_from, :R_to, :C]) # prepare, scale and create constraints cns_df[!,:cnsExpr] = map(x -> x.capaVar - x.capaVar.constant - x.expVar, eachrow(cns_df)) cns_df = intCol(cns_df,:dir) |> (x -> orderDf(cns_df[!,[x...,:cnsExpr]])) scaleCnsExpr!(cns_df,anyM.options.coefRng,anyM.options.checkRng) partExc.cns[:excCapa] = createCns(cnsCont(cns_df,:equal),anyM.optModel) end # create and control operated capacity variables if anyM.options.decomm != :none && :capaExc in keys(partExc.var) # constraints for operated capacities are saved into a dictionary of containers and then actually created cns_dic = Dict{Symbol,cnsCont}() createOprVarCns!(partExc,cns_dic,anyM) for cnsSym in keys(cns_dic) scaleCnsExpr!(cns_dic[cnsSym].data,anyM.options.coefRng,anyM.options.checkRng) partExc.cns[cnsSym] = createCns(cns_dic[cnsSym],anyM.optModel) end end end # XXX create capacity restriction for exchange function createRestrExc!(ts_dic::Dict{Tuple{Int64,Int64},Array{Int64,1}},partExc::OthPart,anyM::anyModel) # group exchange capacities by carrier grpCapa_df = groupby(rename(partExc.var[anyM.options.decomm != :none ? :oprCapaExc : :capaExc],:var => :capa),:C) # pre-allocate array of dataframes for restrictions restr_arr = Array{DataFrame}(undef,length(grpCapa_df)) itrRestr = collect(enumerate(grpCapa_df)) # create restrictions @threads for x in itrRestr restr_arr[x[1]] = prepareRestrExc(copy(x[2]),ts_dic,partExc,anyM) end anyM.parts.exc.cns[:excRestr] = createCns(cnsCont(vcat(restr_arr...),:smaller),anyM.optModel) end # XXX prepare capacity restriction for specific carrier function prepareRestrExc(cns_df::DataFrame,ts_dic::Dict{Tuple{Int64,Int64},Array{Int64,1}},partExc::OthPart,anyM::anyModel) c_int = cns_df[1,:C] leafes_arr = filter(y -> isempty(anyM.sets[:C].nodes[y].down), [c_int,getDescendants(c_int,anyM.sets[:C],true)...]) cRes_tup = anyM.cInfo[c_int] |> (x -> (Ts_dis = x.tsDis, R_from = x.rDis, R_to = x.rDis)) # extend constraint dataframe to dispatch levels cns_df[!,:Ts_dis] .= map(x -> ts_dic[x,cRes_tup.Ts_dis],cns_df[!,:Ts_disSup]) cns_df = flatten(cns_df,:Ts_dis) sort!(cns_df,sort(intCol(cns_df,:dir))) # resize capacity variables cns_df[!,:capa] = cns_df[!,:capa] .* map(x -> anyM.supTs.sca[(x,cRes_tup.Ts_dis)], cns_df[!,:Ts_disSup]) # filter relevant dispatch variables relDisp_df = filter(x -> x.C in leafes_arr, partExc.var[:exc]) # first aggregate symmetric and directed entries in one direction, then directed entries in the other direction cns_df[!,:disp] = aggUniVar(relDisp_df,cns_df,[:Ts_dis,:R_from,:R_to],cRes_tup,anyM.sets) dir_arr = findall(.!cns_df[!,:dir]) cns_df[dir_arr,:disp] = cns_df[dir_arr,:disp] .+ aggUniVar(rename(relDisp_df,:R_from => :R_to, :R_to => :R_from),cns_df[dir_arr,:],[:Ts_dis,:R_from,:R_to],cRes_tup,anyM.sets) # add availablities to dataframe cns_df = matchSetParameter(convertExcCol(cns_df),partExc.par[:avaExc],anyM.sets, newCol = :avaSym) if :avaExcDir in keys(partExc.par) dirAva_df = matchSetParameter(cns_df[!,intCol(cns_df,:dir)],partExc.par[:avaExcDir],anyM.sets, newCol = :avaDir) cns_df = joinMissing(cns_df,dirAva_df,[:Ts_disSup,:Ts_dis,:R_a,:R_b,:C,:dir],:left, Dict(:avaDir => nothing)) else cns_df[!,:avaDir] .= nothing end # prepare, scale and create constraints cns_df[!,:cnsExpr] = map(x -> x.disp - x.capa * (isnothing(x.avaDir) ? x.avaSym : x.avaDir), eachrow(cns_df)) scaleCnsExpr!(cns_df,anyM.options.coefRng,anyM.options.checkRng) return convertExcCol(cns_df) |> (x -> select(x,intCol(x,:cnsExpr))) end # </editor-fold> # <editor-fold desc= utility functions for exchange" # XXX obtain values for exchange losses function getExcLosses(exc_df::DataFrame,excPar_dic::Dict{Symbol,ParElement},sets_dic::Dict{Symbol,Tree}) lossPar_obj = copy(excPar_dic[:lossExc]) if :R_a in namesSym(lossPar_obj.data) && :R_b in namesSym(lossPar_obj.data) lossPar_obj.data = lossPar_obj.data |> (x -> vcat(x,rename(x,:R_a => :R_b, :R_b => :R_a))) end excLoss_df = matchSetParameter(exc_df,lossPar_obj,sets_dic,newCol = :loss) # overwrite symmetric losses with any directed losses provided if :lossExcDir in keys(excPar_dic) oprCol_arr = intCol(excLoss_df) dirLoss_df = matchSetParameter(excLoss_df[!,oprCol_arr],excPar_dic[:lossExcDir],sets_dic,newCol = :lossDir) excLoss_df = joinMissing(excLoss_df,dirLoss_df,oprCol_arr,:left,Dict(:lossDir => nothing)) excLoss_df[!,:loss] = map(x -> isnothing(x.lossDir) ? x.loss : x.lossDir,eachrow(excLoss_df[!,[:loss,:lossDir]])) select!(excLoss_df,Not(:lossDir)) end return excLoss_df end # </editor-fold>
AnyMOD
https://github.com/leonardgoeke/AnyMOD.jl.git
[ "MIT" ]
0.1.12
46a00c75bb6eb7fdaf5b15d75e9a544c0f91484d
code
15972
# XXX sets the objective function according to the arguments provided in obj_dic """ Set the objective of the model's underlying optimization problem. ```julia setObjective!(obj_dic::Union{Dict{Symbol,Float64},Symbol}, model_object::anyModel) ``` `obj_dic` is a keyword argument that specifies the respective objective. To perform a multi-criteria optimization, it can also be a dictionary with the keywords as keys and weights as values. So far, the only supported key-word is `:costs`. """ function setObjective!(obj_dic::Union{Dict{Symbol,Float64},Symbol},anyM::anyModel,minimize::Bool=true) # XXX converts input into dictionary, if only a symbol was provided, if :none keyword was provided returns a dummy objective function if typeof(obj_dic) == Symbol if obj_dic == :none @objective(anyM.optModel, Min, 1); return, produceMessage(anyM.options,anyM.report, 1," - Set an empty objective function") end obj_dic = Dict(obj_dic => 1.0) end # XXX create empty variables table for objective variables, if already other object defined, these variables and equations are removed from the model partObj = anyM.parts.obj if !(:objVar in keys(partObj.var)) partObj.var[:objVar] = DataFrame(name = Symbol[], group = Symbol[], var = AffExpr[]) partObj.cns[:objEqn] = DataFrame(name = Symbol[], group = Symbol[], cns = ConstraintRef[]) end # XXX create variables and equations required for specified objectives for objGrp in setdiff(keys(obj_dic),unique(partObj.var[:objVar][!,:group])) createObjective!(objGrp,partObj,anyM) end # XXX sets overall objective variable with upper limits and according to weights provided in dictionary objBd_flt = anyM.options.bound.obj |> (x -> isnan(x) ? NaN : x / anyM.options.scaFac.obj) obj_var = JuMP.add_variable(anyM.optModel, JuMP.build_variable(error, VariableInfo(false, NaN, !isnan(objBd_flt), objBd_flt, false, NaN, false, NaN, false, false)),"obj") * anyM.options.scaFac.obj obj_eqn = @constraint(anyM.optModel, obj_var == sum(map(x -> sum(filter(r -> r.group == x,partObj.var[:objVar])[!,:var])*obj_dic[x], collectKeys(keys(obj_dic))))) if minimize @objective(anyM.optModel, Min, obj_var / anyM.options.scaFac.obj) else @objective(anyM.optModel, Max, obj_var / anyM.options.scaFac.obj) end produceMessage(anyM.options,anyM.report, 1," - Set objective function according to inputs") end createObjective!(objGrp::Symbol, partObj::OthPart,anyM::anyModel) = createObjective!(Val{objGrp}(), partObj::OthPart,anyM::anyModel) # XXX create variables and equations for cost objective function createObjective!(objGrp::Val{:costs},partObj::OthPart,anyM::anyModel) parObj_arr = collectKeys(keys(partObj.par)) techSym_arr = collect(keys(anyM.parts.tech)) varToPart_dic = Dict(:exc => :exc, :ctr => :bal,:trdSell => :trd, :trdBuy => :trd) # computes discount factors from discount rate provided and saves them as new parameter elements computeDisFac!(partObj,anyM) # XXX add elements for expansion costs of technologies for va in (:Conv, :StIn, :StOut, :StSize, :Exc) # XXX compute expansion costs var_sym = Symbol(:exp,va) costPar_sym = Symbol(:costExp,va) if !(costPar_sym in parObj_arr) continue end # get all variables allExp_df = getAllVariables(var_sym,anyM) if isempty(allExp_df) continue else allExp_df = rename(allExp_df,:var => :exp) end # add economic lifetime to table where it is defined if Symbol(:lifeEco,va) in parObj_arr ecoLife_df = matchSetParameter(allExp_df,partObj.par[Symbol(:lifeEco,va)],anyM.sets,newCol = :life) noEcoLife_df = antijoin(allExp_df,ecoLife_df, on = intCol(allExp_df)) noEcoLife_df[!,:life] .= nothing allExp_df = vcat(ecoLife_df,noEcoLife_df) else allExp_df[!,:life] .= nothing end techFilt_arr = filter(y -> var_sym in keys(anyM.parts.tech[y].var), techSym_arr) # use technical lifetime where no economic lifetime could be obtained if va != :Exc allPar_arr = map(w -> isempty(w) ? DataFrame(val = [20.0]) : w,map(x -> anyM.parts.tech[x].par[Symbol(:life,va)].data,filter(y -> var_sym in keys(anyM.parts.tech[y].var), techFilt_arr))) union(intCol.(allPar_arr)...) |> (z -> map(x -> map(y -> insertcols!(x,1,(y => fill(0,size(x,1)))) , setdiff(z,intCol(x)) ) ,allPar_arr)) lifePar_obj = copy(anyM.parts.tech[techFilt_arr[1]].par[Symbol(:life,va)],unique(vcat(allPar_arr...))) else lifePar_obj = anyM.parts.exc.par[:lifeExc] end techLife_df = matchSetParameter(convertExcCol(filter(x -> isnothing(x.life),allExp_df))[!,Not(:life)],lifePar_obj,anyM.sets,newCol = :life) allExp_df = vcat(techLife_df,filter(x -> !isnothing(x.life),convertExcCol(allExp_df))) # gets expansion costs and interest rate to compute annuity allExp_df = matchSetParameter(allExp_df,partObj.par[costPar_sym],anyM.sets,newCol = :costExp) if isempty(allExp_df) continue end # uses tech specific discount rate and fall back on general discount rate as default if Symbol(:rateExp,va) in keys(partObj.par) techRate_df = matchSetParameter(allExp_df,partObj.par[Symbol(:rateExp,va)],anyM.sets,newCol = :rate) else techRate_df = filter(x -> false,allExp_df); techRate_df[!,:rate] .= Float64[] end # obtains general discount rate generRate_df = rename(antijoin(allExp_df,techRate_df,on = intCol(techRate_df)),:Ts_expSup => :Ts_disSup, :Ts_disSup => :Ts_expSup) if va != :Exc generRate_df = matchSetParameter(generRate_df, partObj.par[:rateDisc],anyM.sets,newCol = :rate) else rateB_arr = matchSetParameter(rename(generRate_df,:R_a => :R_exp), partObj.par[:rateDisc],anyM.sets,newCol = :rateA)[!,:rateA] rateA_arr = matchSetParameter(rename(generRate_df,:R_b => :R_exp), partObj.par[:rateDisc],anyM.sets,newCol = :rateB)[!,:rateB] generRate_df[!,:rate] = 0.5 .* (rateA_arr .+ rateB_arr) end allExp_df = vcat(techRate_df,rename(generRate_df, :Ts_expSup => :Ts_disSup, :Ts_disSup => :Ts_expSup)) # compute annuity costs allExp_df[!,:costAnn] = map(x -> x.costExp * (x.rate == 0.0 ? 1/x.life : (x.rate * (1 + x.rate)^x.life) / ((1 + x.rate)^x.life-1)), eachrow(allExp_df)) select!(allExp_df,Not([:costExp,:life,:rate])) allExp_df = flatten(allExp_df,:Ts_disSup) # adds discount factor and computes cost expression allExp_df = matchSetParameter(convertExcCol(allExp_df),partObj.par[va != :Exc ? :disFac : :disFacExc],anyM.sets,newCol = :disFac) # XXX groups cost expressions by technology, scales groups expression and creates a variables for each grouped entry allExp_df = rename(combine(x -> (expr = sum(x.disFac .* x.exp .* x.costAnn),) ,groupby(allExp_df,va != :Exc ? [:Ts_disSup,:R_exp,:Te] : [:Ts_disSup,:C])),:Ts_disSup => :Ts_exp) transferCostEle!(allExp_df, partObj,costPar_sym,anyM.optModel,anyM.lock,anyM.sets,anyM.options.coefRng,anyM.options.scaFac.costCapa,anyM.options.checkRng) end produceMessage(anyM.options,anyM.report, 3," - Created expression for expansion costs") # XXX add elements for operational costs of technologies # if decommissioning is enabled, capacity costs depend on commissioned and not on installed capacities capaTyp_sym = anyM.options.decomm != :none ? :oprCapa : :capa for va in (:Conv, :StIn, :StOut, :StSize, :Exc) var_sym = Symbol(capaTyp_sym,va) costPar_sym = Symbol(:costOpr,va) if !(costPar_sym in parObj_arr) continue end # get all variables allCapa_df = getAllVariables(var_sym,anyM) if isempty(allCapa_df) continue else allCapa_df = rename(allCapa_df,:var => :capa) end # joins costs and discount factors to create cost expression allCapa_df = matchSetParameter(convertExcCol(allCapa_df),partObj.par[costPar_sym],anyM.sets,newCol = :costOpr) allCapa_df = matchSetParameter(convertExcCol(allCapa_df),partObj.par[va != :Exc ? :disFac : :disFacExc],anyM.sets,newCol = :disFac) if isempty(allCapa_df) continue end # XXX groups cost expressions by technology, scales groups expression and creates a variables for each grouped entry allCapa_df = combine(x -> (expr = sum(x.disFac .* x.capa .* x.costOpr),), groupby(allCapa_df,va != :Exc ? [:Ts_disSup,:R_exp,:Te] : [:Ts_disSup,:C])) transferCostEle!(allCapa_df, partObj,costPar_sym,anyM.optModel,anyM.lock,anyM.sets,anyM.options.coefRng,anyM.options.scaFac.costCapa,anyM.options.checkRng) end produceMessage(anyM.options,anyM.report, 3," - Created expression for capacity costs") # XXX add elements for variable costs of technologies for va in (:use,:gen,:stIn,:stOut,:exc) costPar_sym = string(va) |> (x -> Symbol(:costVar,uppercase(x[1]),x[2:end])) if !(costPar_sym in parObj_arr || (va == :use && :emissionPrc in parObj_arr && :emissionFac in keys(anyM.parts.lim.par))) continue end # obtain all variables allDisp_df = getAllVariables(va,anyM) if isempty(allDisp_df) continue else allDisp_df = rename(allDisp_df,:var => :disp) end # special case for variable costs of exchange (direct and symmetric values need to be considered both) and of use (emission price needs to be considered) if va == :exc if :costVarExcDir in parObj_arr dirCost_df = matchSetParameter(convertExcCol(allDisp_df),anyM.parts.obj.par[:costVarExcDir],anyM.sets,newCol = :costVar) else dirCost_df = convertExcCol(allDisp_df[[],:]) dirCost_df[!,:costVar] .= 0.0 end noDirCost_df = matchSetParameter(antijoin(convertExcCol(allDisp_df),dirCost_df, on = intCol(dirCost_df)),anyM.parts.obj.par[costPar_sym],anyM.sets,newCol = :costVar) allDisp_df = convertExcCol(vcat(dirCost_df,noDirCost_df)) elseif va == :use && :emissionPrc in parObj_arr && :emissionFac in keys(anyM.parts.lim.par) # get emission prices as a costs entry emPrc_df = matchSetParameter(select(allDisp_df,Not(:disp)),partObj.par[:emissionPrc],anyM.sets, newCol = :prc) emPrc_df = matchSetParameter(emPrc_df,anyM.parts.lim.par[:emissionFac],anyM.sets, newCol = :fac) emPrc_df[!,:costEms] = emPrc_df[!,:prc] .* emPrc_df[!,:fac] ./ 1000 select!(emPrc_df,Not([:prc,:fac])) # merge emission costs with other variable costs or just use emission costs if there are not any other if costPar_sym in parObj_arr otherVar_df = matchSetParameter(select(allDisp_df,Not(:disp)),anyM.parts.obj.par[costPar_sym],anyM.sets,newCol = :costVar) allCost_df = joinMissing(otherVar_df,emPrc_df,intCol(emPrc_df),:outer,merge(Dict{Symbol,Any}(:costVar => 0.0, :costEms => 0.0),Dict{Symbol,Any}(x => 0 for x in intCol(emPrc_df))) ) allCost_df[!,:costVar] = allCost_df[!,:costVar] .+ allCost_df[!,:costEms] select!(allCost_df,Not(:costEms)) else allCost_df = emPrc_df rename!(allCost_df,:costEms => :costVar) end allDisp_df = innerjoin(allCost_df,allDisp_df, on = intCol(allDisp_df)) else allDisp_df = matchSetParameter(allDisp_df,anyM.parts.obj.par[costPar_sym],anyM.sets,newCol = :costVar) end if isempty(allDisp_df) continue end # renames dispatch regions to enable join with discount factors if va != :exc rename!(allDisp_df,:R_dis => :R_exp) end allDisp_df = matchSetParameter(allDisp_df,partObj.par[va != :exc ? :disFac : :disFacExc],anyM.sets,newCol = :disFac) # XXX groups cost expressions by technology, scales groups expression and creates a variables for each grouped entry allDisp_df = combine(x -> (expr = sum(x.disFac .* x.disp .* x.costVar) ./ 1000.0 .* anyM.options.redStep,) ,groupby(allDisp_df,va != :exc ? [:Ts_disSup,:R_exp,:Te] : [:Ts_disSup,:C])) transferCostEle!(allDisp_df, partObj,costPar_sym,anyM.optModel,anyM.lock,anyM.sets,anyM.options.coefRng,anyM.options.scaFac.costDisp,anyM.options.checkRng,(va == :gen ? NaN : 0.0)) end produceMessage(anyM.options,anyM.report, 3," - Created expression for variables costs") # XXX add elements for curtailment and loss of load costs of energy carriers for varType in [:crt,:lss] if varType in keys(anyM.parts.bal.var) cost_sym = varType == :crt ? :costCrt : :costLss # compute discounted curtailment costs allVar_df = rename(matchSetParameter(anyM.parts.bal.var[varType],anyM.parts.bal.par[cost_sym],anyM.sets,newCol = :cost),:var => varType) allVar_df = matchSetParameter(rename(allVar_df,:R_dis => :R_exp),partObj.par[:disFac],anyM.sets,newCol = :disFac) # groups cost expressions by carrier, scales groups expression and creates a variables for each grouped entry allVar_df = combine(x -> (expr = sum(x.disFac .* x[!,varType] .* x.cost) ./ 1000.0 .* anyM.options.redStep,) ,groupby(allVar_df, [:Ts_disSup,:R_exp,:C])) transferCostEle!(allVar_df, partObj,cost_sym,anyM.optModel,anyM.lock,anyM.sets,anyM.options.coefRng,anyM.options.scaFac.costDisp,anyM.options.checkRng, NaN) end end # XXX add elements for trade costs of energy carriers (buy and sell) for va in (:trdBuy, :trdSell) if va in keys(anyM.parts.trd.var) # compute discounted trade costs allTrd_df = rename(matchSetParameter(anyM.parts.trd.var[va],anyM.parts.trd.par[Symbol(va,:Prc)],anyM.sets,newCol = :costTrd),:var => :trd) allTrd_df = matchSetParameter(rename(allTrd_df,:R_dis => :R_exp),partObj.par[:disFac],anyM.sets,newCol = :disFac) # groups cost expressions by carrier, scales groups expression and creates a variables for each grouped entry allTrd_df = combine(x -> (expr = sum(x.disFac .* x.trd .* x.costTrd) ./ (va == :trdSell ? -1000.0 : 1000.0) .* anyM.options.redStep,), groupby(allTrd_df, [:Ts_disSup,:R_exp,:C])) transferCostEle!(allTrd_df, partObj,Symbol(:cost,uppercase(string(va)[1]),string(va)[2:end]),anyM.optModel,anyM.lock,anyM.sets,anyM.options.coefRng,anyM.options.scaFac.costDisp,anyM.options.checkRng,(va == :trdSell ? NaN : 0.0)) end end produceMessage(anyM.options,anyM.report, 3," - Created expression for curtailment and trade costs") # XXX creates overall costs variable considering scaling parameters relBla = filter(x -> x != :objVar, collectKeys(keys(partObj.var))) objVar_arr = map(relBla) do varName # sets lower limit of zero, except for curtailment and revenues from selling, because these can incure "negative" costs lowBd_tup = !(varName in (:costCrt,:costTrdSell)) |> (x -> (x,x ? 0.0 : NaN)) info = VariableInfo(lowBd_tup[1], lowBd_tup[2], false, NaN, false, NaN, false, NaN, false, false) return JuMP.add_variable(anyM.optModel, JuMP.build_variable(error, info),string(varName)) end # create dataframe with for overall cost equations and scales it objExpr_arr = [objVar_arr[idx] - sum(partObj.var[name][!,:var]) for (idx, name) in enumerate(relBla)] cns_df = DataFrame(group = fill(:costs,length(objExpr_arr)), name = relBla, cnsExpr = objExpr_arr) # add variables and equations to overall objective dataframes partObj.cns[:objEqn] = vcat(partObj.cns[:objEqn],createCns(cnsCont(cns_df,:equal),anyM.optModel)) partObj.var[:objVar] = vcat(partObj.var[:objVar],DataFrame(group = fill(:costs,length(objVar_arr)), name = relBla, var = objVar_arr)) end # XXX transfers provided cost dataframe into dataframe of overall objective variables and equations (and scales them) function transferCostEle!(cost_df::DataFrame, partObj::OthPart,costPar_sym::Symbol,optModel::Model,lock_::ReentrantLock,sets_dic::Dict{Symbol,Tree}, coefRng_tup::NamedTuple{(:mat,:rhs),Tuple{Tuple{Float64,Float64},Tuple{Float64,Float64}}}, scaCost_fl::Float64, checkRng_fl::Float64, lowBd::Float64 = 0.0) # create variables for cost entry and builds corresponding expression for equations controlling them cost_df = createVar(cost_df,string(costPar_sym),NaN,optModel,lock_,sets_dic, scaFac = scaCost_fl, lowBd = lowBd) cost_df[!,:cnsExpr] = map(x -> x.expr - x.var, eachrow(cost_df)) select!(cost_df,Not(:expr)) # scales cost expression scaleCnsExpr!(cost_df,coefRng_tup,checkRng_fl) cost_df[!,:var] = cost_df[!,:var] # writes equations and variables partObj.cns[costPar_sym] = createCns(cnsCont(select(cost_df,Not(:var)),:equal),optModel) partObj.var[costPar_sym] = select(cost_df,Not(:cnsExpr)) end
AnyMOD
https://github.com/leonardgoeke/AnyMOD.jl.git
[ "MIT" ]
0.1.12
46a00c75bb6eb7fdaf5b15d75e9a544c0f91484d
code
28026
# <editor-fold desc= create other elements of model" # XXX create variables and capacity constraints for trade variables function createTradeVarCns!(partTrd::OthPart,anyM::anyModel) for type in (:Buy, :Sell) trdPrc_sym = Symbol(:trd,type,:Prc) trd_sym = Symbol(:trd,type) if trdPrc_sym in keys(partTrd.par) && :C in namesSym(partTrd.par[trdPrc_sym].data) # <editor-fold desc="create trade variables" c_arr = unique(partTrd.par[trdPrc_sym].data[!,:C]) # create dataframe with all potential entries for trade/sell variable var_df = createPotDisp(c_arr,anyM) # match all potential variables with defined prices var_df = matchSetParameter(var_df,partTrd.par[trdPrc_sym],anyM.sets)[!,Not(:val)] var_df = createVar(var_df,string(:trd,type),getUpBound(var_df,anyM.options.bound.disp / anyM.options.scaFac.dispTrd,anyM.supTs,anyM.sets[:Ts]),anyM.optModel,anyM.lock,anyM.sets, scaFac = anyM.options.scaFac.dispTrd) partTrd.var[trd_sym] = orderDf(var_df) produceMessage(anyM.options,anyM.report, 3," - Created variables for $(type == :Buy ? "buying" : "selling") carriers") # </editor-fold> # <editor-fold desc="create capacity constraint on variable" trdCap_sym = Symbol(trd_sym,:Cap) if trdCap_sym in keys(partTrd.par) cns_df = matchSetParameter(var_df,partTrd.par[trdCap_sym],anyM.sets,newCol = :cap) sca_arr = getResize(cns_df,anyM.sets[:Ts],anyM.supTs) cns_df[!,:cap] = cns_df[!,:cap] .* sca_arr # prepare, scale and create constraints cns_df[!,:cnsExpr] = map(x -> x.var - x.cap, eachrow(cns_df)) scaleCnsExpr!(cns_df,anyM.options.coefRng,anyM.options.checkRng) partTrd.cns[trdCap_sym] = createCns(cnsCont(cns_df,:smaller),anyM.optModel) produceMessage(anyM.options,anyM.report, 3," - Created capacity restrictions for $(type == :Buy ? "buying" : "selling") carriers") end # </editor-fold> end produceMessage(anyM.options,anyM.report, 2," - Created variables and constraints for $(type == :Buy ? "buying" : "selling") carriers") end produceMessage(anyM.options,anyM.report, 1," - Created variables and constraints for trade") end # XXX create all energy balances (and curtailment variables if required) function createEnergyBal!(techSym_arr::Array{Symbol,1},anyM::anyModel) partBal = anyM.parts.bal c_arr = filter(x -> x != 0,getfield.(values(anyM.sets[:C].nodes),:idx)) allDim_df = createPotDisp(c_arr,anyM) bal_tup = (:C,:Ts_dis) agg_arr = [:Ts_dis, :R_dis, :C] # <editor-fold desc="create potential curtailment and loss loss load variables for varType in (:crt,:lss) # get defined entries var_df = DataFrame() for par in intersect(keys(partBal.par),vcat(varType == :crt ? :costCrt : :costLss, Symbol.(varType,[:Up,:Low,:Fix])...)) append!(var_df,matchSetParameter(allDim_df,partBal.par[par],anyM.sets)[!,Not(:val)]) end # obtain upper bound for variables and create them if !isempty(var_df) partBal.var[varType] = orderDf(createVar(var_df,string(varType),getUpBound(var_df,anyM.options.bound.disp / anyM.options.scaFac.dispTrd,anyM.supTs,anyM.sets[:Ts]),anyM.optModel,anyM.lock,anyM.sets, scaFac = anyM.options.scaFac.dispTrd)) end end # </editor-fold> # <editor-fold desc="create actual balance" # finds all carriers that require an energy balance (not required for carriers that can only be shifted (temporal or spatial), e.g. that only have storage or exchange defined for them) relC_arr = Array{Int,1}() # if demand does not specify a carrier, it is assumed all carriers are relevant if !isempty(anyM.parts.bal.par[:dem].data) if :C in namesSym(anyM.parts.bal.par[:dem].data) append!(relC_arr,unique(anyM.parts.bal.par[:dem].data[!,:C])) else append!(relC_arr,c_arr) end end if :crt in keys(anyM.parts.bal.var) append!(relC_arr,unique(anyM.parts.bal.var[:crt][!,:C])) end if :lss in keys(anyM.parts.bal.var) append!(relC_arr,unique(anyM.parts.bal.var[:lss][!,:C])) end if :trdSell in keys(anyM.parts.trd.var) append!(relC_arr,unique(anyM.parts.trd.var[:trdSell][!,:C])) end if :trdBuy in keys(anyM.parts.trd.var) append!(relC_arr,unique(anyM.parts.trd.var[:trdBuy][!,:C])) end # add carriers beings generated or used append!(relC_arr,union(union(map(x -> anyM.parts.tech[x].carrier |> (y -> map(z -> getfield(y,z),intersect(keys(y),(:gen,:use)))),techSym_arr)...)...)) relC_arr = unique(relC_arr) # create object to write constraint data too cns_arr = Array{Pair{Symbol,cnsCont}}(undef,length(relC_arr)) itrC_arr = collect(enumerate(relC_arr)) @threads for (idx,c) in itrC_arr subC_arr = unique([c,getDescendants(c,anyM.sets[:C],true)...]) cRes_tup = anyM.cInfo[c] |> (x -> (Ts_dis = x.tsDis, R_dis = x.rDis, C = anyM.sets[:C].nodes[c].lvl)) # XXX add demand and size it cns_df = matchSetParameter(filter(x -> x.C == c,allDim_df),partBal.par[:dem],anyM.sets) cns_df[!,:dem] = cns_df[!,:val] .* getResize(cns_df,anyM.sets[:Ts],anyM.supTs) select!(cns_df,Not(:val)) # XXX get relevant variables sort!(cns_df,sort(intCol(cns_df))) src_df = cns_df[!,Not([:Ts_disSup,:dem])] # add tech variables cns_df[!,:techVar] = getTechEnerBal(c,subC_arr,src_df,anyM.parts.tech,anyM.cInfo,anyM.sets) # add curtailment variables for varType in (:crt,:lss) if varType in keys(partBal.var) cns_df[!,Symbol(varType,:Var)] = filterCarrier(partBal.var[varType],subC_arr) |> (x -> aggUniVar(x,src_df,agg_arr, cRes_tup,anyM.sets)) else cns_df[!,Symbol(varType,:Var)] .= AffExpr() end end # add trade variables if !isempty(anyM.parts.trd.var) cns_df[!,:trdVar] = sum([filterCarrier(anyM.parts.trd.var[trd],subC_arr) |> (x -> aggUniVar(x,src_df,agg_arr,cRes_tup,anyM.sets) |> (y -> trd != :trdSell ? y : -1.0 * y)) for trd in keys(anyM.parts.trd.var)]) else cns_df[!,:trdVar] .= AffExpr() end # add exchange variables if !isempty(anyM.parts.exc.var) excVarTo_df = filterCarrier(anyM.parts.exc.var[:exc],subC_arr) excVarFrom_df = convertExcCol(copy(excVarTo_df)) # get loss values and apply them to variables excVarFrom_df = getExcLosses(excVarFrom_df,anyM.parts.exc.par,anyM.sets) excVarFrom_df[!,:var] = excVarFrom_df[!,:var] .* (1.0 .- excVarFrom_df[!,:loss]) select!(excVarFrom_df,Not(:loss)) balTo_tup, balFrom_tup = [tuple(replace(collect(bal_tup),:R_dis => x)...) for x in [:R_to, :R_from]] excFrom_arr = aggUniVar(convertExcCol(excVarFrom_df),rename(src_df,:R_dis => :R_to),[:Ts_dis,:R_to,:C],(Ts_dis = cRes_tup[1], R_to = cRes_tup[2], C = cRes_tup[3]),anyM.sets) excTo_arr = aggUniVar(excVarTo_df,rename(src_df,:R_dis => :R_from),[:Ts_dis,:R_from,:C],(Ts_dis = cRes_tup[1], R_from = cRes_tup[2], C = cRes_tup[3]),anyM.sets) cns_df[!,:excVar] = excFrom_arr .- excTo_arr else cns_df[!,:excVar] .= AffExpr() end # prepare, scale and save constraints to dictionary c_str = Symbol(anyM.sets[:C].nodes[c].val) cns_df[!,:cnsExpr] = map(x -> x.techVar + x.excVar + x.trdVar + x.lssVar - x.dem - x.crtVar, eachrow(cns_df)) cns_df = orderDf(cns_df[!,[intCol(cns_df)...,:cnsExpr]]) filter!(x -> x.cnsExpr != AffExpr(),cns_df) scaleCnsExpr!(cns_df,anyM.options.coefRng,anyM.options.checkRng) cns_arr[idx] = Symbol(c_str) => cnsCont(cns_df,anyM.cInfo[c].eq ? :equal : :greater) produceMessage(anyM.options,anyM.report, 2," - Prepared energy balance for $(c_str)") end # loops over stored constraints outside of threaded loop to create actual jump constraints for cns in cns_arr partBal.cns[cns[1]] = createCns(cns[2],anyM.optModel) end produceMessage(anyM.options,anyM.report, 1," - Created energy balances for all carriers") # </editor-fold> end # XXX aggregate all technology variables for energy balance function getTechEnerBal(cBal_int::Int,subC_arr::Array{Int,1},src_df::DataFrame,tech_dic::Dict{Symbol,TechPart}, cInfo_dic::Dict{Int,NamedTuple{(:tsDis,:tsExp,:rDis,:rExp,:eq),Tuple{Int,Int,Int,Int,Bool}}},sets_dic::Dict{Symbol,Tree}) techVar_arr = Array{Array{AffExpr,1}}(undef,length(subC_arr)) # get temporal and spatial resolution for carrier being balanced cBalRes_tup = cInfo_dic[cBal_int] |> (x -> (x.tsDis, x.rDis)) # loops over all carriers relevant for respective energy balance for (idx,c) in enumerate(subC_arr) # gets technologies relevant for respective filterCarrier relTech_arr = getRelTech(c,tech_dic,sets_dic[:C]) # leaves loop for carrier, if no relevant technologies could be obtained if isempty(relTech_arr) techVar_arr[idx] = fill(AffExpr(),size(src_df,1)) continue end # prepare loop over tech for c by creating empty dataframe and get temporal and spatial resolution for carrier being balanced allVar_df = DataFrame(Ts_dis = Int[], R_dis = Int[], var = AffExpr[]) cRes_tup = cInfo_dic[c] |> (x -> (x.tsDis, x.rDis)) for x in relTech_arr # gets resolution and adjusts add_df in case of an agggregated technology add_df = select(filter(r -> r.C == c,tech_dic[x[1]].var[x[2]]),[:Ts_dis,:R_dis,:var]) if isempty(add_df) continue end tRes_tup = tech_dic[x[1]].disAgg ? (cRes_tup[1], tech_dic[x[1]].balLvl.exp[2]) : cRes_tup checkTechReso!(tRes_tup,cBalRes_tup,add_df,sets_dic) # adds sign to variables and adds them to overall dataframe add_df[!,:var] = add_df[!,:var] .* (x[2] in (:use,:stExtIn) ? -1.0 : 1.0) append!(allVar_df, add_df) end # returns empty expression if no variales could be obtained if isempty(allVar_df) techVar_arr[idx] = fill(AffExpr(),size(src_df,1)) else grpVar_df = combine(groupby(allVar_df, [:Ts_dis, :R_dis]), :var => (x -> sum(x)) => :var) joined_df = joinMissing(src_df,grpVar_df, [:Ts_dis, :R_dis], :left, Dict(:var => AffExpr())) sort!(joined_df,sort(intCol(joined_df))) techVar_arr[idx] = joined_df[!,:var] end end return map(x -> sum(x),eachrow(hcat(techVar_arr...))) end # XXX create constarints that enforce any type of limit (Up/Low/Fix) on any type of variable function createLimitCns!(partLim::OthPart,anyM::anyModel) parLim_arr = String.(collectKeys(keys(partLim.par))) techLim_arr = filter(x -> any(map(y -> occursin(y,x),["Up","Low","Fix"])),parLim_arr) limVar_arr = map(x -> map(k -> Symbol(k[1]) => Symbol(k[2][1]), filter(z -> length(z[2]) == 2,map(y -> y => split(x,y),["Up","Low","Fix"])))[1], techLim_arr) varToPar_dic = Dict(y => getindex.(filter(z -> z[2] == y,limVar_arr),1) for y in unique(getindex.(limVar_arr,2))) # loop over all variables that are subject to any type of limit (except emissions) allKeys_arr = collect(keys(varToPar_dic)) cns_dic = Dict{Symbol,cnsCont}() signLim_dic= Dict(:Up => :smaller, :Low => :greater, :Fix => :equal) @threads for va in allKeys_arr varToPart_dic = Dict(:exc => :exc, :crt => :bal,:trdSell => :trd, :trdBuy => :trd) # obtain all variables relevant for limits allVar_df = getAllVariables(va,anyM) # aggregates exchange variables on the same line if va == :exc allVar_df[!,:var] = aggDivVar(flipExc(allVar_df),select(allVar_df,Not([:var])),(:Ts_disSup, :R_from, :R_to, :Ts_dis, :C), anyM.sets) end # check if acutally any variables were obtained if isempty(allVar_df) lock(anyM.lock) push!(anyM.report,(2,"limit",string(va),"limits for variable provided, but none of these variables are actually created")) unlock(anyM.lock) continue end allLimit_df = DataFrame(var = AffExpr[]) # XXX loop over respective type of limits to obtain data for lim in varToPar_dic[va] par_obj = copy(partLim.par[Symbol(va,lim)]) if va in (:capaExc,:oprCapaExc) && :R_a in namesSym(par_obj.data) && :R_b in namesSym(par_obj.data) par_obj.data = vcat(par_obj.data,rename(par_obj.data,:R_a => :R_b,:R_b => :R_a)) end agg_tup = tuple(intCol(par_obj.data)...) if :R_a in agg_tup && !(:R_a in namesSym(allVar_df)) allVar_df = convertExcCol(allVar_df) end # aggregate search variables according to dimensions in limit parameter if isempty(agg_tup) grpVar_df = allVar_df else grpVar_df = combine(groupby(allVar_df,collect(agg_tup)), :var => (x -> sum(x)) => :var) end # try to aggregate variables to limits directly provided via inputs limit_df = copy(par_obj.data) if size(limit_df,2) != 1 limit_df[!,:var] = aggDivVar(grpVar_df, limit_df[!,Not(:val)], agg_tup, anyM.sets, aggFilt = agg_tup) else limit_df[!,:var] .= sum(grpVar_df[!,:var]) end # gets provided limit parameters, that no variables could assigned to so far and tests if via inheritance any could be assigned mtcPar_arr, noMtcPar_arr = findall(map(x -> x != AffExpr(),limit_df[!,:var])) |> (x -> [x, setdiff(1:size(par_obj.data,1),x)]) # removes entries with no parameter assigned from limits limit_df = limit_df[mtcPar_arr,:] if !isempty(noMtcPar_arr) # tries to inherit values to existing variables only for parameters without variables aggregated so far aggPar_obj = copy(par_obj,par_obj.data[noMtcPar_arr,:]) aggPar_obj.data = matchSetParameter(grpVar_df[!,Not(:var)],aggPar_obj,anyM.sets, useNew = false) # again performs aggregation for inherited parameter data and merges if original limits aggLimit_df = copy(aggPar_obj.data) if !isempty(aggLimit_df) aggLimit_df[!,:var] = aggDivVar(grpVar_df, aggLimit_df, agg_tup, anyM.sets, aggFilt = agg_tup) limit_df = vcat(limit_df,aggLimit_df) end end # merge limit constraint to other limits for the same variables limit_df = convertExcCol(rename(limit_df,:val => lim)) join_arr = [intersect(intCol(allLimit_df),intCol(limit_df))...,:var] miss_arr = [intCol(allLimit_df),intCol(limit_df)] |> (y -> union(setdiff(y[1],y[2]), setdiff(y[2],y[1]))) allLimit_df = joinMissing(allLimit_df, limit_df, join_arr, :outer, merge(Dict(z => 0 for z in miss_arr),Dict(:Up => nothing, :Low => nothing, :Fix => nothing))) end # XXX check for contradicting values colSet_dic = Dict(x => Symbol(split(string(x),"_")[1]) for x in intCol(allLimit_df)) limitCol_arr = intersect(namesSym(allLimit_df),(:Fix,:Up,:Low)) entr_int = size(allLimit_df,1) if :Low in limitCol_arr || :Up in limitCol_arr # ! errors # upper and lower limit contradicting each other if :Low in limitCol_arr && :Up in limitCol_arr for x in findall(replace(allLimit_df[!,:Low],nothing => 0.0) .> replace(allLimit_df[!,:Up],nothing => Inf)) dim_str = join(map(y -> allLimit_df[x,y] == 0 ? "" : string(y,": ",join(getUniName(allLimit_df[x,y], anyM.sets[colSet_dic[y]])," < ")),intCol(allLimit_df)),"; ") lock(anyM.lock) push!(anyM.report,(3,"limit",string(va),"contradicting values for upper and lower limit detected for: " * dim_str)) unlock(anyM.lock) end end # fix and upper limit contradicting each other if :Fix in limitCol_arr && :Up in limitCol_arr for x in findall(replace(allLimit_df[!,:Fix],nothing => 0.0) .> (replace(allLimit_df[!,:Up],nothing => Inf) .+ 0.0001)) dim_str = join(map(y -> allLimit_df[x,y] == 0 ? "" : string(y,": ",join(getUniName(allLimit_df[x,y], anyM.sets[colSet_dic[y]])," < ")),intCol(allLimit_df)),"; ") lock(anyM.lock) push!(anyM.report,(3,"limit",string(va),"fixed limit exceeds upper limit for: " * dim_str)) unlock(anyM.lock) end end # fix and lower limit contradicting each other if :Fix in limitCol_arr && :Low in limitCol_arr for x in findall(replace(allLimit_df[!,:Fix],nothing => Inf) .< replace(allLimit_df[!,:Low],nothing => 0.0) .- 0.0001) dim_str = join(map(y -> allLimit_df[x,y] == 0 ? "" : string(y,": ",join(getUniName(allLimit_df[x,y], anyM.sets[colSet_dic[y]])," < ")),intCol(allLimit_df)),"; ") lock(anyM.lock) push!(anyM.report,(3,"limit",string(va),"fixed limit is smaller than lower limit for: " * dim_str)) unlock(anyM.lock) end end # residual values already violate limits resiVal_arr = getfield.(allLimit_df[!,:var],:constant) if :Up in limitCol_arr for x in findall(resiVal_arr .> replace(allLimit_df[!,:Up],nothing => Inf)) dim_str = join(map(y -> allLimit_df[x,y] == 0 ? "" : string(y,": ",join(getUniName(allLimit_df[x,y], anyM.sets[colSet_dic[y]])," < ")),intCol(allLimit_df)),"; ") lock(anyM.lock) push!(anyM.report,(3,"limit",string(va),"residual values already exceed the upper limit for: " * dim_str)) unlock(anyM.lock) end end # ! warnings # upper or lower limit of zero if !isempty(limitCol_arr |> (y -> filter(x -> collect(x[y]) |> (z -> any(isnothing.(z)) ? false : any(z .== 0)),allLimit_df))) && va != :emission lock(anyM.lock) push!(anyM.report,(2,"limit",string(va),"upper or lower limit of zero detected, please consider to use fix or omit limit instead")) unlock(anyM.lock) entr_int = size(allLimit_df,1) end # value is fixed, but still a upper a lower limit is provided if :Fix in limitCol_arr if !isempty(filter(x -> x != :Fix, limitCol_arr) |> (z -> filter(x -> all([!isnothing(x.Fix),any(.!isnothing.(collect(x[z])))]) ,eachrow(allLimit_df)))) lock(anyM.lock) push!(anyM.report,(2,"limit",string(va),"upper and/or lower limit detected, although variable is already fixed")) unlock(anyM.lock) end end end # if installed capacities differ depending on the direction, because residual values were defined and at the same time fixed limits on the installed capacity were provided # an error will occur, because a value cannot be fixed but and the same time differ by direction, this is detected here if :Fix in limitCol_arr && va == :capaExc # filters fixed exchange capacities and extracts residual values fix_df = select(filter(x -> x.Fix != nothing, allLimit_df) ,intCol(allLimit_df,:var)) fix_df[!,:resi] .= getfield.(fix_df[!,:var],:constant) # joins together capacities in both directions joinA_df = rename(select(fix_df,Not([:var])),:resi => :resiA) joinB_df = rename(joinA_df,:resiA => :resiB) comp_df = innerjoin(joinA_df,joinB_df, on = intCol(joinA_df) .=> replace(intCol(joinB_df),:R_from => :R_to,:R_to => :R_from)) # finds cases that lead to contradiction and reports on them contraExc_df = filter(x -> x.resiA != x.resiB && x.R_from > x.R_to,comp_df) for x in eachrow(contraExc_df) dim_str = join(map(y -> x[y] == 0 ? "" : string(y,": ",join(getUniName(x[y], anyM.sets[colSet_dic[y]])," < ")),intCol(contraExc_df)),"; ") lock(anyM.lock) push!(anyM.report,(3,"limit",string(va),"for the exchange capacity '" * dim_str * "' residual capacites differ by direction but at the same time the installed capacity in both directions is fixed to the same value by capaExcFix, this is a contradiction and would lead to an infeasible model")) unlock(anyM.lock) end end # XXX check for suspicious entries for capacity where limits are provided for the sum of capacity over several years if occursin("capa",string(va)) if !(:Ts_disSup in namesSym(allLimit_df)) lock(anyM.lock) push!(anyM.report,(2,"limit","capacity","capacity limits were provided without specificing the superordinate dispatch timestep, this means the sum of capacity over all years was limited instead of enforcing the same limit for each year (see https://leonardgoeke.github.io/AnyMOD.jl/stable/parameter_list/#Limits-on-quantities-dispatched)")) unlock(anyM.lock) elseif 0 in unique(allLimit_df[!,:Ts_disSup]) relEntr_df = filter(x -> x.Ts_disSup == 0, allLimit_df) if :Te in namesSym(relEntr_df) allTe_arr = unique(relEntr_df[!,:Te]) for tInt in allTe_arr push!(anyM.report,(2,"limit","capacity","capacity limits were provided for $(string(techSym(tInt,anyM.sets[:Te]))) without specificing the superordinate dispatch timestep, this means the sum of capacity over all years was limited instead of enforcing the same limit for each year (see https://leonardgoeke.github.io/AnyMOD.jl/stable/parameter_list/#Limits-on-quantities-dispatched)")) end else lock(anyM.lock) push!(anyM.report,(2,"limit","capacity","capacity limits were provided without specificing the superordinate dispatch timestep, this means the sum of capacity over all years was limited instead of enforcing the same limit for each year (see https://leonardgoeke.github.io/AnyMOD.jl/stable/parameter_list/#Limits-on-quantities-dispatched)")) unlock(anyM.lock) end end end # XXX write constraint containers for lim in limitCol_arr # filter respective limits (low, fix or up) out of the entire dataframe relLim_df = filter(x -> !isnothing(x[lim]),allLimit_df[!,Not(filter(x -> x != lim,limitCol_arr))]) relLim_df = filter(x -> x.var != AffExpr() || x.Fix != 0.0, relLim_df) if isempty(relLim_df) continue end rename!(relLim_df,lim => :Lim) # prepare, scale and save constraints to dictionary relLim_df[!,:cnsExpr] = map(x -> x.var - x.Lim, eachrow(relLim_df)) relLim_df = orderDf(relLim_df[!,[intCol(relLim_df)...,:cnsExpr]]) scaleCnsExpr!(relLim_df,anyM.options.coefRng,anyM.options.checkRng) cns_dic[Symbol(va,lim)] = cnsCont(relLim_df,signLim_dic[lim]) produceMessage(anyM.options,anyM.report, 3," - Created constraints for $(lim == :Up ? "upper" : (lim == :Low ? "lower" : "fixed")) limit of variable $va") end typeLim_sym = va in (:emission,) ? "term" : "variable" produceMessage(anyM.options,anyM.report, 2," - Prepared constraints to limit $typeLim_sym $va") end # loops over stored constraints outside of threaded loop to create actual jump constraints for cnsSym in keys(cns_dic) partLim.cns[cnsSym] = createCns(cns_dic[cnsSym],anyM.optModel) end produceMessage(anyM.options,anyM.report, 1," - Created all limiting constraints") end # </editor-fold> # <editor-fold desc= utility functions" # XXX connect capacity and expansion variables function createCapaCns!(part::TechPart,prepTech_dic::Dict{Symbol,NamedTuple},cns_dic::Dict{Symbol,cnsCont}) for capaVar in filter(x -> occursin("capa",string(x)),keys(prepTech_dic)) index_arr = intCol(part.var[capaVar]) join_arr = part.type != :mature ? index_arr : filter(x -> x != :Ts_expSup,collect(index_arr)) # joins corresponding capacity and expansion variables together expVar_sym = Symbol(replace(string(capaVar),"capa" => "exp")) if !(expVar_sym in keys(part.var)) continue end expVar_df = flatten(part.var[expVar_sym],:Ts_disSup) cns_df = rename(innerjoin(part.var[capaVar],combine(groupby(expVar_df,join_arr), :var => (x -> sum(x)) => :exp); on = join_arr),:var => :capa) # creates final constraint object cns_df[!,:cnsExpr] = map(x -> x.capa - x.capa.constant - x.exp,eachrow(cns_df)) cns_dic[Symbol(capaVar)] = cnsCont(select(cns_df,Not([:capa,:exp])),:equal) end end # XXX adds column with JuMP variable to dataframe function createVar(setData_df::DataFrame,name_str::String,upBd_fl::Union{Float64,Array{Float64,1}},optModel::Model,lock_::ReentrantLock,sets::Dict{Symbol,Tree}; scaFac::Float64 = 1.0, lowBd::Float64 = 0.0) # adds an upper bound to all variables if provided within the options #if isempty(setData_df) return DataFrame(var = AffExpr[]) end arr_boo = typeof(upBd_fl) <: Array if arr_boo info = VariableInfo.(!isnan(lowBd), lowBd, .!isnan.(upBd_fl), upBd_fl, false, NaN, false, NaN, false, false) var_obj = JuMP.build_variable.(error, info) else info = VariableInfo(!isnan(lowBd), lowBd, !isnan(upBd_fl), upBd_fl, false, NaN, false, NaN, false, false) var_obj = JuMP.build_variable(error, info) end # writes full name for each variable setData_df = orderDf(setData_df) dim_arr = map(x -> Symbol(split(String(x),"_")[1]), filter(r -> r != :id,intCol(setData_df))) dim_int = length(dim_arr) setData_df[!,:name] = string.(name_str,"[",map(x -> join(map(y -> sets[dim_arr[y]].nodes[x[y]].val,1:dim_int),", "),eachrow(setData_df)),"]") lock(lock_) if arr_boo setData_df[!,:var] = [AffExpr(0,JuMP.add_variable(optModel, nameItr[1], nameItr[2]) => scaFac) for nameItr in zip(var_obj,setData_df[!,:name])] else setData_df[!,:var] = [AffExpr(0,JuMP.add_variable(optModel, var_obj, nameItr) => scaFac) for nameItr in setData_df[!,:name]] end unlock(lock_) return setData_df[!,Not(:name)] end # XXX scales expressions in the dataframe to be within the range defined within options function scaleCnsExpr!(cnsExpr_df::DataFrame,coefRng::NamedTuple{(:mat,:rhs),Tuple{Tuple{Float64,Float64},Tuple{Float64,Float64}}},checkRng_fl::Float64) if isempty(cnsExpr_df) return end # filters variables with factor zero, because they will lead to scaling errors foreach(z -> foreach(y -> delete!(z.terms,y), filter(x -> z.terms[x] == 0.0 ,collect(keys(z.terms)))), cnsExpr_df[!,:cnsExpr]) if !all(isnan.(coefRng.rhs)) # scale expression defining constraint so rhs coefficients are within desired range rhs_arr = abs.(getfield.(cnsExpr_df[!,:cnsExpr],:constant)) findall(rhs_arr .!= 0.0) |> (x -> cnsExpr_df[x,:cnsExpr] = scaleRng(cnsExpr_df[x,:cnsExpr],rhs_arr[x],coefRng.rhs, true)) end if !all(isnan.(coefRng.mat)) # scale expression defining constraint so matrix coefficients are within desired range matRng_arr = map(x -> abs.(values(x.terms)) |> (y -> isempty(y) ? (0.0,0.0) : (minimum(y),maximum(y))), cnsExpr_df[!,:cnsExpr]) findall(map(x -> x != (0.0,0.0),matRng_arr)) |> (x -> cnsExpr_df[x,:cnsExpr] = scaleRng(cnsExpr_df[x,:cnsExpr],matRng_arr[x],coefRng.mat,false)) end if !isnan(checkRng_fl) checkExprRng(cnsExpr_df[:,:cnsExpr],checkRng_fl) end end # XXX used to perform scaling of expression array based on range of coefficients provided function scaleRng(expr_arr::Array{AffExpr,1},rng_arr::Array,rng_tup::Tuple{Float64,Float64}, rhs_boo::Bool) scaRel_arr = rhs_boo ? union(findall(rng_arr .< rng_tup[1]), findall(rng_arr .> rng_tup[2])) : union(findall(getindex.(rng_arr,1) .< rng_tup[1]), findall(getindex.(rng_arr,2) .> rng_tup[2])) if !isempty(scaRel_arr) expr_arr[scaRel_arr] = map(x -> x[1] < rng_tup[1] ? rng_tup[1]/x[1] : rng_tup[2]/x[rhs_boo ? 1 : 2], rng_arr[scaRel_arr]) .* expr_arr[scaRel_arr] end return expr_arr end # XXX check range of coefficients in expressions within input array function checkExprRng(expr_arr::Array{AffExpr,1},rngThres_fl::Float64) # obtains range of coefficients for matrix and rhs matRng_arr = map(x -> abs.(values(x.terms)) |> (y -> isempty(y) ? (0.0,0.0) : (minimum(y),maximum(y))), expr_arr) rhs_arr = abs.(getfield.(expr_arr,:constant)) both_arr = max.(getindex.(matRng_arr,2),replace(rhs_arr,0.0 => -Inf)) ./ min.(getindex.(matRng_arr,1),replace(rhs_arr,0.0 => Inf)) # filters rows where reange of coefficients is above threshold aboveThres_arr = findall(both_arr .> rngThres_fl) for expr in expr_arr[aboveThres_arr] println(expr) end end # XXX creates an actual jump constraint based on the constraint container provided function createCns(cnsCont_obj::cnsCont,optModel::Model) cns_df = cnsCont_obj.data if cnsCont_obj.sign == :equal cns_df[!,:cns] = map(x -> @constraint(optModel, x.cnsExpr == 0),eachrow(cns_df)) elseif cnsCont_obj.sign == :greater cns_df[!,:cns] = map(x -> @constraint(optModel, x.cnsExpr >= 0),eachrow(cns_df)) elseif cnsCont_obj.sign == :smaller cns_df[!,:cns] = map(x -> @constraint(optModel, x.cnsExpr <= 0),eachrow(cns_df)) end return select!(cns_df,Not(:cnsExpr)) end # XXX adjusts resolution of var_df according to information in first two tuples function checkTechReso!(tRes_tup::Tuple{Int,Int},cBalRes_tup::Tuple{Int,Int},var_df::DataFrame,sets_dic::Dict{Symbol,Tree}) # if dispatch regions for technology were disaggregated, replace the disaggregated with the ones relevant for the carrier for (idx,dim) in enumerate([:Ts_dis,:R_dis]) if cBalRes_tup[idx] != tRes_tup[idx] set_sym = Symbol(split(string(dim),"_")[1]) dim_dic = Dict(x => getAncestors(x,sets_dic[set_sym],:int,cBalRes_tup[idx])[end] for x in unique(var_df[!,dim])) var_df[!,dim] = map(x -> dim_dic[x],var_df[!,dim]) end end end # </editor-fold>
AnyMOD
https://github.com/leonardgoeke/AnyMOD.jl.git
[ "MIT" ]
0.1.12
46a00c75bb6eb7fdaf5b15d75e9a544c0f91484d
code
36005
# XXX iteration over all technologies to create variables and constraints function createTech!(tInt::Int,part::TechPart,prepTech_dic::Dict{Symbol,NamedTuple},parDef_dic::Dict{Symbol,NamedTuple},ts_dic::Dict{Tuple{Int64,Int64},Array{Int64,1}},r_dic::Dict{Tuple{Int64,Int64},Array{Int64,1}},anyM::anyModel) cns_dic = Dict{Symbol,cnsCont}() newHerit_dic = Dict(:lowest => (:Ts_dis => :avg_any, :R_dis => :avg_any),:reference => (:Ts_dis => :up, :R_dis => :up)) # inheritance rules after presetting ratioVar_dic = Dict(:StIn => ("StIn" => "Conv"), :StOut => ("StOut" => "StIn"), :StSize => ("StSize" => "StIn")) # assignment of tech types for ratios stuff tech_str = createFullString(tInt,anyM.sets[:Te]) # presets all dispatch parameter and obtains mode-dependant variables modeDep_dic = presetDispatchParameter!(part,prepTech_dic,parDef_dic,newHerit_dic,ts_dic,r_dic,anyM) # creates expansion and capacity variables createExpCap!(part,prepTech_dic,anyM,ratioVar_dic) # connect capacity and expansion variables if part.type != :stock createCapaCns!(part,prepTech_dic,cns_dic) end # create and control operated capacity variables if anyM.options.decomm != :none createOprVarCns!(part,cns_dic,anyM) end produceMessage(anyM.options,anyM.report, 3," - Created all variables and prepared all constraints related to expansion and capacity for technology $(tech_str)") # create dispatch variables createDispVar!(part,modeDep_dic,ts_dic,r_dic,anyM) produceMessage(anyM.options,anyM.report, 3," - Created all dispatch variables for technology $(tech_str)") # create conversion balance for conversion technologies if keys(part.carrier) |> (x -> any(map(y -> y in x,(:use,:stIntOut))) && any(map(y -> y in x,(:gen,:stIntIn)))) cns_dic[:convBal] = createConvBal(part,anyM) produceMessage(anyM.options,anyM.report, 3," - Prepared conversion balance for technology $(tech_str)") end # create storage balance for storage technologies if :stLvl in keys(part.var) cns_dic[:stBal] = createStBal(part,anyM) produceMessage(anyM.options,anyM.report, 3," - Prepared storage balance for technology $(tech_str)") end # create capacity restrictions createCapaRestr!(part,ts_dic,r_dic,cns_dic,anyM) produceMessage(anyM.options,anyM.report, 3," - Prepared capacity restrictions for technology $(tech_str)") # create ratio constraints if any(map(x -> occursin("ratioEner",string(x)), collectKeys(keys(part.par)))) createRatioCns!(part,cns_dic,anyM) produceMessage(anyM.options,anyM.report, 3," - Prepared constraints controlling energy ratios for technology $(tech_str)") end # all constraints are scaled and then written into their respective array position foreach(x -> scaleCnsExpr!(x[2].data,anyM.options.coefRng,anyM.options.checkRng), collect(cns_dic)) produceMessage(anyM.options,anyM.report, 2," - Created all variables and prepared constraints for technology $(tech_str)") return cns_dic end # <editor-fold desc= prepare to create expansion and capacity variables" # XXX sets dimensions for expansion and capacity variables function prepareTechs!(techSym_arr::Array{Symbol,1},prepVar_dic::Dict{Symbol,Dict{Symbol,NamedTuple}},tsYear_dic::Dict{Int,Int},anyM::anyModel) for tSym in techSym_arr prepTech_dic = Dict{Symbol,NamedTuple}() part = anyM.parts.tech[tSym] tInt = techInt(tSym,anyM.sets[:Te]) # dimension of expansion and corresponding capacity variables if part.type != :stock prepareExpansion!(prepTech_dic, tsYear_dic, part, tInt, anyM) for expan in collectKeys(keys(prepTech_dic)) prepareCapacity!(part,prepTech_dic,vcat(map(x -> x[!,removeVal(x)],prepTech_dic[expan])...),Symbol(replace(string(expan),"exp" => "capa")),anyM, tech = tInt) end end # check for capacities variables that have to be created, because of residual capacities provided addResidualCapa!(prepTech_dic, part, tInt, anyM) # map required capacity constraints createCapaRestrMap!(tSym, anyM) # if any capacity variables or residuals were prepared, add these to overall dictionary if collect(values(prepTech_dic)) |> (z -> any(map(x -> any(.!isempty.(getfield.(z,x))), (:var,:resi)))) prepVar_dic[tSym] = prepTech_dic # write reporting, if not all 3 kind of storage capacities will be created if map(x -> x in keys(prepTech_dic),(:capaStIn,:capaStOut,:capaStSize)) |> (y -> any(y) && !all(y)) push!(anyM.report,(3,"technology dimensions","storage","in case of $(string(tSym)) information for one storage capacity is missing (capaStIn, capaStOut or capaStSize)")) end end end end # XXX dimensions for expansion variables function prepareExpansion!(prepTech_dic::Dict{Symbol,NamedTuple},tsYear_dic::Dict{Int,Int},part::AbstractModelPart,tInt::Int,anyM::anyModel) # extract tech info carGrp_ntup = part.carrier balLvl_ntup = part.balLvl defPar_tup = tuple(keys(part.par)...) tsExp_arr, rExp_arr = [getfield.(getNodesLvl(anyM.sets[x[2]], balLvl_ntup.exp[x[1]]),:idx) for x in enumerate([:Ts,:R])] tsExpSup_arr = map(x -> getDescendants(x,anyM.sets[:Ts],false,anyM.supTs.lvl) |> (y -> typeof(y) == Array{Int,1} ? y : [y] ), tsExp_arr) if anyM.options.interCapa != :linear tsExp_arr = map(x -> [minimum(x)],tsExp_arr) end expDim_arr = vcat(collect(Iterators.product(Iterators.zip(tsExp_arr,tsExpSup_arr),rExp_arr))...) allMap_df = getindex.(expDim_arr,1) |> (x -> DataFrame(Ts_exp = getindex.(x,1), Ts_expSup = getindex.(x,2), R_exp = getindex.(expDim_arr,2), Te = fill(tInt,length(expDim_arr)))) # prepares expansion dimensions for conversion capacity if !isempty(intersect((:gen,:use),keys(carGrp_ntup))) # filters cases where expansion is fixed to zero convMap_df = removeEntries([filterZero(allMap_df,getLimPar(anyM.parts.lim,:expConvFix, anyM.sets[:Te], tech = tInt),anyM)],allMap_df) if !isempty(convMap_df) prepTech_dic[:expConv] = (var = addSupTsToExp(convMap_df,part.par,:Conv,tsYear_dic,anyM), ratio = DataFrame(), resi = DataFrame()) end end stCar_arr::Array{Int,1} = unique(vcat(collect.(map(x -> getproperty(carGrp_ntup,x),intersect(keys(carGrp_ntup),(:stExtIn,:stExtOut,:stIntIn,:stIntOut))))...)) # prepares expansion dimensions for storage capacity if !isempty(stCar_arr) stMap_df = combine(groupby(allMap_df,namesSym(allMap_df)), :Te => (x -> stCar_arr) => :C) for st in (:StIn, :StOut, :StSize) remove_arr = Array{DataFrame,1}() # filters cases where expansion is fixed to zero if Symbol(:exp,st,:Fix) in defPar_tup push!(remove_arr,filterZero(stMap_df,getLimPar(anyM.parts.lim,Symbol(:exp,st,:Fix), anyM.sets[:Te], tech = tInt),anyM)) end remove_arr, ratioTab_df = findStorageRatio(tInt,stMap_df,st, remove_arr, part, :exp, anyM) specStMap_df = removeEntries(remove_arr,stMap_df) if !(isempty(specStMap_df) && isempty(ratioTab_df)) prepTech_dic[Symbol(:exp,st)] = (var = addSupTsToExp(specStMap_df,part.par,st,tsYear_dic,anyM), ratio = addSupTsToExp(ratioTab_df,part.par,st,tsYear_dic,anyM), resi = DataFrame()) end end end end # XXX dimensions for capacity variables function prepareCapacity!(part::AbstractModelPart,prep_dic::Dict{Symbol,NamedTuple},exp_df::DataFrame,capaVar::Symbol,anyM::anyModel; tech::Int = 0) # XXX initialize assignments and data defPar_tup = tuple(keys(part.par)...) techType_sym = :type in fieldnames(typeof(part)) ? part.type : :mature capaVar_df = expandExpToCapa(exp_df) # groups by expansion time steps in case of mature technologies if techType_sym == :mature select!(capaVar_df,Not(:Ts_expSup)) capaVar_df = unique(capaVar_df) capaVar_df[!,:Ts_expSup] .= 0 end # filters cases where capacity is fixed to zero varFix_sym = Symbol(capaVar,:Fix) if varFix_sym in defPar_tup capaVar_df = removeEntries([filterZero(capaVar_df,getLimPar(anyM.parts.lim,Symbol(capaVar,:Fix),anyM.sets[:Te], tech = tech),anyM)],capaVar_df) end # for exchange capacities add column to indicate these values are symmetric if capaVar == :capaExc capaVar_df[!,:dir] .= false; select!(capaVar_df,Not(:Ts_expSup)) end prep_dic[capaVar] = (var = orderDf(capaVar_df), ratio = DataFrame(), resi = DataFrame()) end # XXX checks if a storage capacity is defined via a ratio somewhere function findStorageRatio(t_int::Int,find_df::DataFrame,st_sym::Symbol,remove_arr::Array{DataFrame,1},part::AbstractModelPart,kind_sym::Symbol,anyM::anyModel) expTypeRatio_dic = Dict(:StIn => :stInToConv, :StOut => :stOutToStIn, :StSize => :sizeToStIn) strRatio_dic = Dict(:StIn => "storage input", :StOut => "storage output", :StSize => "storage size") strLim_dic = Dict(:Up => "upper limits", :Low => "lower limits", :Fix => "fixed limits",:Resi => "residual capacities") ratio_sym = expTypeRatio_dic[st_sym] if ratio_sym in tuple(keys(part.par)...) ratioTab_df = filter(r -> r.ratio != 0, matchSetParameter(find_df,part.par[ratio_sym],anyM.sets, newCol = :ratio)) push!(remove_arr, ratioTab_df[!,Not(:ratio)]) else ratioTab_df = filter(x -> false,find_df) end # writes a report, if limits (upper/lower/fixed) on the storage expansion were ignored due to these ratios provided if !isempty(ratioTab_df) && (kind_sym == :exp || (kind_sym == :capa && part.type == :stock) ) for limPar in intersect(keys(part.par),map(x -> Symbol(kind_sym,st_sym,x),kind_sym == :exp ? [:Up,:Low,:Fix] : [:Up,:Low,:Fix,:Resi])) lim_obj = getLimPar(anyM.parts.lim,limPar,anyM.sets[:Te], tech = t_int) if !(isdefined(lim_obj,:name)) continue end both_df = innerjoin(ratioTab_df,lim_obj.data, on = intersect(intCol(ratioTab_df),intCol(lim_obj.data))) if !isempty(both_df) push!(anyM.report,(1,:variable,:expansion,"for $(join(part.name, " < ")) $(strLim_dic[Symbol(split(string(limPar),string(st_sym))[end])]) for $(strRatio_dic[st_sym]) were ignored since an conversion/storage input ratio was provided")) end end end return remove_arr, ratioTab_df end # </editor-fold> # <editor-fold desc= create technology related variables" # XXX create expansion and capacity variables function createExpCap!(part::AbstractModelPart,prep_dic::Dict{Symbol,NamedTuple},anyM::anyModel,ratioVar_dic::Dict{Symbol,Pair{String,String}} = Dict{Symbol,Pair{String,String}}()) for expVar in sort(collectKeys(keys(prep_dic))) varMap_tup = prep_dic[expVar] # create dataframe of capacity or expansion variables by creating the required capacity variables and join them with pure residual values var_df = createVar(varMap_tup.var,string(expVar),anyM.options.bound.capa,anyM.optModel,anyM.lock,anyM.sets, scaFac = anyM.options.scaFac.capa) if !isempty(varMap_tup.resi) if expVar == :capaExc # flips and repeats entries for directed exchange variabes before moving on var_df = filter(r -> r.dir,var_df) |> (x -> vcat(filter(r -> !r.dir,var_df),vcat(x,rename(x,replace(namesSym(x),:R_to => :R_from, :R_from => :R_to))))) end join_arr = intCol(var_df,:dir) var_df = combine(x -> (var = x.var + x.var_1,), groupby(joinMissing(var_df,varMap_tup.resi[!,vcat(:var,join_arr...)], join_arr, :outer, Dict(:var => AffExpr(),:var_1 => AffExpr()),true),intCol(var_df,:dir))) end # expands table of expansion variables to superordinate timesteps and modifies expansion variable accordingly if occursin("exp",string(expVar)) && !isempty(var_df) noExpCol_arr = intCol(var_df) allDf_arr = map(eachrow(var_df)) do x l_int = length(x.Ts_disSup) rem_df = repeat(DataFrame(x[noExpCol_arr]), inner = l_int, outer = 1) ext_df = DataFrame(Ts_expSup = x.Ts_expSup, Ts_disSup = x.Ts_disSup, var = x.var ./ fill(l_int,l_int) ) return hcat(rem_df,ext_df) end var_df = vcat(allDf_arr...) end # check for ratios for expansion or (in case of stock technologies) capacities if !isempty(varMap_tup.ratio) ratioVar_sym = Symbol(replace(string(expVar),ratioVar_dic[Symbol(replace(replace(string(expVar),"exp" => ""),"capa" => ""))])) if occursin("exp",string(expVar)) # ratios controlling expansion noExpCol_arr = vcat(:ratio,intCol(var_df)...) ratio_arr = map(eachrow(varMap_tup.ratio)) do x l_int = length(x.Ts_expSup) rem_df = repeat(DataFrame(x[noExpCol_arr]), inner = l_int, outer = 1) ext_df = DataFrame(Ts_expSup = x.Ts_expSup) return hcat(rem_df,ext_df) end preRatio_df = vcat(ratio_arr...) else # ratios controlling stock capacities preRatio_df = varMap_tup.ratio end join_arr = intCol(part.var[ratioVar_sym]) # join ratios and corresponding select_arr = expVar in [:capaStIn,:expStIn] ? [:var,:ratio,:Ts_disSup,:C] : [:var,:ratio,:Ts_disSup] ratio_df = select(innerjoin(preRatio_df,part.var[ratioVar_sym]; on = join_arr),unique(vcat(join_arr,select_arr))) ratio_df[!,:var] = ratio_df[!,:var] .* ratio_df[!,:ratio] var_df = ratio_df[!,Not(:ratio)] |> (x -> isempty(var_df) ? x : vcat(x,antijoin(select(var_df,names(x)),x, on = join_arr))) end if !isempty(var_df) part.var[expVar] = orderDf(var_df) end end end # XXX create all dispatch variables function createDispVar!(part::TechPart,modeDep_dic::Dict{Symbol,DataFrame},ts_dic::Dict{Tuple{Int64,Int64},Array{Int64,1}},r_dic::Dict{Tuple{Int64,Int64},Array{Int64,1}},anyM::anyModel) # assign relevant availability parameters to each type of variable relAva_dic = Dict(:gen => (:avaConv,), :use => (:avaConv,), :stIntIn => (:avaConv, :avaStIn), :stIntOut => (:avaConv, :avaStOut), :stExtIn => (:avaStIn,), :stExtOut => (:avaStOut,), :stLvl => (:avaStSize,)) for va in collectKeys(keys(part.carrier)) |> (x -> :capaStIn in keys(part.var) ? [:stLvl,x...] : x) # loop over all relevant kind of variables conv_boo = va in (:gen,:use) # obtains relevant capacity variable if conv_boo basis_df = copy(part.var[:capaConv])[!,Not(:var)] basis_df[!,:C] .= [collect(getfield(part.carrier,va))] basis_df = orderDf(flatten(basis_df,:C)) else lock(anyM.lock) basis_df = orderDf(copy(part.var[:capaStIn])[!,Not(:var)]) unlock(anyM.lock) # filter carriers that are can be actively stored, although they got descendants intC_arr = union(collect(part.actSt),map(y -> part.carrier[y],filter(x -> x in keys(part.carrier),[:stIntIn,:stIntOut])) |> (y -> isempty(y) ? Int[] : union(y...))) basis_df = replCarLeafs(basis_df,anyM.sets[:C],noLeaf = intC_arr) # filter entries that are already descendants of carrier being actively stored unique(vcat(map(x -> filter(y -> x != y,getDescendants(x,anyM.sets[:C],true)),unique(basis_df[!,:C]))...)) |> (z -> filter!(x -> !(x.C in z) || x.C in intC_arr,basis_df)) end # adds temporal and spatial level to dataframe cToLvl_dic = Dict(x => (anyM.cInfo[x].tsDis, part.disAgg ? part.balLvl.exp[2] : anyM.cInfo[x].rDis) for x in unique(basis_df[!,:C])) basis_df[!,:lvlTs] = map(x -> cToLvl_dic[x][1],basis_df[!,:C]) basis_df[!,:lvlR] = map(x -> cToLvl_dic[x][2],basis_df[!,:C]) allVar_df = orderDf(expandExpToDisp(basis_df,ts_dic,r_dic,true)) # add mode dependencies modeDep_df = copy(modeDep_dic[va]) modeDep_df[!,:M] .= isempty(modeDep_df) ? [0] : [collect(part.modes)] modeDep_df = flatten(modeDep_df,:M) allVar_df = joinMissing(allVar_df,modeDep_df,namesSym(modeDep_dic[va]),:left,Dict(:M => 0)) # filter entries where availability is zero for avaPar in relAva_dic[va] if !isempty(part.par[avaPar].data) && 0.0 in part.par[avaPar].data[!,:val] allVar_df = filter(x -> x.val != 0.0, matchSetParameter(allVar_df,part.par[avaPar],anyM.sets))[!,Not(:val)] end end # computes value to scale up the global limit on dispatch variable that is provied per hour and create variable if conv_boo scaFac_fl = anyM.options.scaFac.dispConv else scaFac_fl = anyM.options.scaFac.dispSt end part.var[va] = orderDf(createVar(allVar_df,string(va), getUpBound(allVar_df,anyM.options.bound.disp / scaFac_fl,anyM.supTs,anyM.sets[:Ts]),anyM.optModel,anyM.lock,anyM.sets, scaFac = scaFac_fl)) end end # XXX create variables and constraints regarding operated variables function createOprVarCns!(part::AbstractModelPart,cns_dic::Dict{Symbol,cnsCont},anyM::anyModel) for capaVar in filter(x -> occursin("capa",string(x)),keys(part.var)) oprVar_sym = string(capaVar) |> (x -> Symbol(:opr,uppercase(x[1]),x[2:end])) # XXX create operated variable var_df = copy(part.var[capaVar])[!,Not(:var)] var_df = createVar(var_df,string(oprVar_sym),NaN,anyM.optModel,anyM.lock,anyM.sets, scaFac = anyM.options.scaFac.oprCapa) part.var[oprVar_sym] = orderDf(var_df) # XXX create constraint to connect operated and installed capacity var_df[!,:cnsExpr] = map(x -> x[1] - x[2],zip(var_df[!,:var],part.var[capaVar][!,:var])) cns_dic[oprVar_sym] = cnsCont(select(var_df,Not(:var)),:smaller) # XXX create constraint to prevent re-commissioning of capacity once decommissioned if anyM.options.decomm == :decomm # add previous period and its capacity variable to table prevTs_dic = Dict(x => anyM.supTs.step[findall(x .== anyM.supTs.step)[1]]-1 for x in anyM.supTs.step[2:end]) select!(var_df, Not(:cnsExpr)) cns_df = rename(filter(r -> r.Ts_disSup != anyM.supTs.step[1],var_df),:var => :oprNow) cns_df[!,:Ts_disSupPrev] = map(x -> prevTs_dic[x] ,cns_df[!,:Ts_disSup]) cns_df = rename(innerjoin(cns_df,var_df; on = intCol(var_df,:dir) |> (x -> Pair.(replace(x,:Ts_disSup => :Ts_disSupPrev),x))),:var => :oprPrev) # add expansion variable to dataframe if (!(:type in fieldnames(typeof(part))) || part.type != :stock) && Symbol(replace(string(capaVar),"capa" => "exp")) in keys(part.var) exp_df = part.var[Symbol(replace(string(capaVar),"capa" => "exp"))][!,Not(:Ts_disSup)] join_arr = filter(x -> x != :Ts_expSup,intCol(var_df)) cns_df = joinMissing(cns_df,exp_df, Pair.(join_arr,replace(join_arr,:Ts_disSup => :Ts_expSup)),:left,Dict(:var => AffExpr(),:Ts_exp => 0)) cns_df = rename(cns_df[!,Not(:Ts_exp)],:var => :expNow) else cns_df[!,:expNow] .= AffExpr() end # add residual capacities of current and previous period joinResi_arr = filter(x -> x != :Ts_disSupPrev, intCol(cns_df,:dir)) cns_df = rename(innerjoin(cns_df,part.var[capaVar],on = joinResi_arr),:var => :resiNow) cns_df[!,:resiNow] = getfield.(cns_df[!,:resiNow],:constant) cns_df = rename(joinMissing(cns_df, part.var[capaVar], Pair.(replace(joinResi_arr,:Ts_disSup => :Ts_disSupPrev),joinResi_arr),:left, Dict(:resiNow => AffExpr(),:var => AffExpr())),:var => :resiPrev) cns_df[!,:resiPrev] = getfield.(cns_df[!,:resiPrev],:constant) # create actual constraint information cns_df[!,:cnsExpr] = map(x -> - x.oprNow + x.oprPrev + x.expNow + (x.resiNow - x.resiPrev |> (l -> l > 0.0 ? l : 0.0)),eachrow(cns_df)) select!(cns_df,Not([:Ts_disSupPrev,:oprNow,:oprPrev,:expNow,:resiNow,:resiPrev])) cns_dic[string(oprVar_sym) |> (x -> Symbol(:re,uppercase(x[1]),x[2:end]))] = cnsCont(orderDf(cns_df),:greater) end end end # XXX capacity values for stock technologies function addResidualCapa!(prepTech_dic::Dict{Symbol,NamedTuple},part::TechPart,tInt::Int,anyM::anyModel) carGrp_ntup = part.carrier stCar_arr = unique(vcat(collect.(map(x -> getproperty(carGrp_ntup,x),intersect(keys(carGrp_ntup),(:stExtIn,:stExtOut,:stIntIn,:stIntOut))))...)) defPar_tup = tuple(keys(part.par)...) # checks conversion capacities for stock data if !isempty(intersect((:gen,:use),keys(carGrp_ntup))) permutDim_arr = [getindex.(vcat(collect(Iterators.product(getfield.(getNodesLvl(anyM.sets[:R], part.balLvl.exp[2]),:idx), anyM.supTs.step))...),i) for i in (1,2)] potCapa_df = DataFrame(Ts_expSup = fill(0,length(permutDim_arr[1])), Ts_disSup = permutDim_arr[2], R_exp = permutDim_arr[1], Te = fill(tInt,length(permutDim_arr[1]))) # filters stock technologies with residual values provided and saves these in dictionary capaResi_df = checkResiCapa(:capaConv,potCapa_df, part, anyM) if !isempty(capaResi_df) mergePrepDic!(:capaConv,prepTech_dic,capaResi_df) end end # checks storage capacities for stock data if !isempty(stCar_arr) permutDim_arr = [getindex.(vcat(collect(Iterators.product(getfield.(getNodesLvl(anyM.sets[:R], part.balLvl.exp[2]),:idx), anyM.supTs.step,stCar_arr))...),i) for i in (1,2,3)] potCapa_df = DataFrame(Ts_expSup = fill(0,length(permutDim_arr[1])), Ts_disSup = permutDim_arr[2], R_exp = permutDim_arr[1], C = permutDim_arr[3], Te = fill(tInt,length(permutDim_arr[1]))) # loops over different type of storage for st in (:StIn, :StOut, :StSize) capaResi_df = checkResiCapa(Symbol(:capa,st),potCapa_df, part, anyM) capa_sym = Symbol(:capa,st) remove_arr, ratioTab_df = findStorageRatio(tInt,potCapa_df,st, Array{DataFrame,1}(), part, :capa, anyM) if !isempty(capaResi_df) capaResi_df = removeEntries(remove_arr,capaResi_df) end if !(isempty(capaResi_df) && isempty(ratioTab_df)) mergePrepDic!(capa_sym,prepTech_dic,capaResi_df,ratioTab_df) end end end end # </editor-fold> # <editor-fold desc= create technology related constraints" # XXX create conversion balance function createConvBal(part::TechPart,anyM::anyModel) cns_df = rename(part.par[:effConv].data,:val => :eff) sort!(cns_df,sort(intCol(cns_df))) agg_arr = filter(x -> !(x in (:M, :Te)) && (part.type == :emerging || x != :Ts_expSup), intCol(cns_df)) # defines tuple specificing dimension of aggregation later if part.type == :emerging srcRes_ntup = part.balLvl |> (x -> (Ts_expSup = anyM.supTs.lvl, Ts_dis = x.ref[1], R_dis = x.ref[2])) else srcRes_ntup = part.balLvl |> (x -> (Ts_dis = x.ref[1], R_dis = x.ref[2])) end # if modes are specified, gets rows of conversion dataframe where they are relevant and creates different tuples to define grouping dimensions if :M in namesSym(cns_df) srcResM_ntup = (; zip(tuple(:M,keys(srcRes_ntup)...),tuple(1,values(srcRes_ntup)...))...) srcResNoM_ntup = (; zip(tuple(:M,keys(srcRes_ntup)...),tuple(0,values(srcRes_ntup)...))...) m_arr = findall(0 .!= cns_df[!,:M]) noM_arr = setdiff(1:size(cns_df,1),m_arr) end # add variables via aggregation in_arr = intersect(keys(part.carrier),(:use,:stIntOut)) out_arr = intersect(keys(part.carrier),(:gen,:stIntIn)) for va in union(in_arr,out_arr) if :M in namesSym(cns_df) # aggregated dispatch variables, if a mode is specified somewhere, mode dependant and non-mode dependant balances have to be aggregated separately cns_df[!,va] .= AffExpr() cns_df[m_arr,va] = aggUniVar(part.var[va], select(cns_df[m_arr,:],intCol(cns_df)), [:M,agg_arr...], srcResM_ntup, anyM.sets) cns_df[noM_arr,va] = aggUniVar(part.var[va], select(cns_df[noM_arr,:],intCol(cns_df)), [:M,agg_arr...], srcResNoM_ntup, anyM.sets) else cns_df[!,va] = aggUniVar(part.var[va], select(cns_df,intCol(cns_df)), agg_arr, srcRes_ntup, anyM.sets) end end # aggregate in and out variables respectively cns_df[!,:in] = map(x -> sum(x),eachrow(cns_df[!,in_arr])) cns_df[!,:out] = map(x -> sum(x),eachrow(cns_df[!,out_arr])) select(cns_df,Not(vcat(in_arr,out_arr))) # create actual constraint cns_df[!,:cnsExpr] = map(x -> x.in*x.eff - x.out,eachrow(cns_df)) return cnsCont(orderDf(cns_df[!,[intCol(cns_df)...,:cnsExpr]]),:equal) end # XXX create storage balance function createStBal(part::TechPart,anyM::anyModel) # XXX get variables for storage level # get variables for current storage level cns_df = rename(part.var[:stLvl],:var => :stLvl) cnsDim_arr = filter(x -> x != :Ts_disSup, intCol(cns_df)) # join variables for previous storage level tsChildren_dic = Dict((x,y) => getDescendants(x,anyM.sets[:Ts],false,y) for x in anyM.supTs.step, y in unique(map(x -> getfield(anyM.sets[:Ts].nodes[x],:lvl), cns_df[!,:Ts_dis]))) firstLastTs_dic = Dict(minimum(tsChildren_dic[z]) => maximum(tsChildren_dic[z]) for z in keys(tsChildren_dic)) firstTs_arr = collect(keys(firstLastTs_dic)) cns_df[!,:Ts_disPrev] = map(x -> x in firstTs_arr ? firstLastTs_dic[x] : x - 1, cns_df[!,:Ts_dis]) cns_df = rename(joinMissing(cns_df,part.var[:stLvl], intCol(part.var[:stLvl]) |> (x -> Pair.(replace(x,:Ts_dis => :Ts_disPrev),x)), :left, Dict(:var => AffExpr())),:var => :stLvlPrev) # determines dimensions for aggregating dispatch variables agg_arr = filter(x -> !(x in (:M, :Te)) && (part.type == :emerging || x != :Ts_expSup), cnsDim_arr) # obtain all different carriers of level variable and create array to store the respective level constraint data uniC_arr = unique(cns_df[!,:C]) cCns_arr = Array{DataFrame}(undef,length(uniC_arr)) for (idx,c) in enumerate(uniC_arr) # get constraints relevant for carrier and find rows where mode is specified cnsC_df = filter(x -> x.C == c,cns_df) sort!(cnsC_df,sort(intCol(cnsC_df))) m_arr = findall(0 .!= cnsC_df[!,:M]) noM_arr = setdiff(1:size(cnsC_df,1),m_arr) if part.type == :emerging srcRes_ntup = anyM.cInfo[c] |> (x -> (Ts_expSup = anyM.supTs.lvl, Ts_dis = x.tsDis, R_dis = x.rDis, C = anyM.sets[:C].nodes[c].lvl, M = 1)) else srcRes_ntup = anyM.cInfo[c] |> (x -> (Ts_dis = x.tsDis, R_dis = x.rDis, C = anyM.sets[:C].nodes[c].lvl, M = 1)) end # XXX join in and out dispatch variables and adds efficiency to them (hence efficiency can be specific for different carriers that are stored in and out) for typ in (:in,:out) typVar_df = copy(cns_df[!,cnsDim_arr]) # create array of all dispatch variables allType_arr = intersect(keys(part.carrier),typ == :in ? (:stExtIn,:stIntIn) : (:stExtOut,:stIntOut)) effPar_sym = typ == :in ? :effStIn : :effStOut # adds dispatch variables typExpr_arr = map(allType_arr) do va typVar_df = filter(x -> x.C == c,part.par[effPar_sym].data) |> (x -> innerjoin(part.var[va],x; on = intCol(x))) if typ == :in typVar_df[!,:var] = typVar_df[!,:var] .* typVar_df[!,:val] else typVar_df[!,:var] = typVar_df[!,:var] ./ typVar_df[!,:val] end return typVar_df[!,Not(:val)] end # adds dispatch variable to constraint dataframe, mode dependant and non-mode dependant balances have to be aggregated separately dispVar_df = vcat(typExpr_arr...) cnsC_df[!,typ] .= AffExpr() if isempty(dispVar_df) continue end cnsC_df[m_arr,typ] = aggUniVar(dispVar_df, select(cnsC_df[m_arr,:],intCol(cnsC_df)), [:M,agg_arr...], (M = 1,), anyM.sets) cnsC_df[noM_arr,typ] = aggUniVar(dispVar_df, select(cnsC_df[noM_arr,:],intCol(cnsC_df)), [:M,agg_arr...], (M = 0,), anyM.sets) end # XXX adds further parameters that depend on the carrier specified in storage level (superordinate or the same as dispatch carriers) sca_arr = getResize(cnsC_df,anyM.sets[:Ts],anyM.supTs) # add discharge parameter, if defined if :stDis in keys(part.par) part.par[:stDis].defVal = 0.0 cnsC_df = matchSetParameter(cnsC_df,part.par[:stDis],anyM.sets) cnsC_df[!,:stDis] = (1 .- cnsC_df[!,:val]) .^ sca_arr select!(cnsC_df,Not(:val)) else cnsC_df[!,:stDis] .= 1.0 end # add inflow parameter, if defined if :stInflow in keys(part.par) part.par[:stInflow].defVal = 0.0 cnsC_df = matchSetParameter(cnsC_df,part.par[:stInflow],anyM.sets, newCol = :stInflow) if !isempty(part.modes) cnsC_df[!,:stInflow] = cnsC_df[!,:stInflow] ./ length(part.modes) .* sca_arr end else cnsC_df[!,:stInflow] .= 0.0 end # XXX create final equation cnsC_df[!,:cnsExpr] = map(x -> x.stLvlPrev * x.stDis + x.stInflow + x.in - x.out - x.stLvl,eachrow(cnsC_df)) cCns_arr[idx] = cnsC_df end cns_df = vcat(cCns_arr...) return cnsCont(orderDf(cns_df[!,[cnsDim_arr...,:cnsExpr]]),:equal) end # XXX create all capacity restrictions for technology function createCapaRestr!(part::TechPart,ts_dic::Dict{Tuple{Int64,Int64},Array{Int64,1}},r_dic::Dict{Tuple{Int64,Int64},Array{Int64,1}},cns_dic::Dict{Symbol,cnsCont},anyM::anyModel) cnstrType_dic = Dict(:out => (dis = (:gen, :stIntIn), capa = :Conv), :in => (dis = (:use,:stIntOut), capa = :Conv), :stIn => (dis = (:stExtIn, :stIntIn), capa = :StIn), :stOut => (dis = (:stExtOut, :stIntOut), capa = :StOut), :stSize => (dis = (:stLvl,), capa = :StSize)) capa_sym = anyM.options.decomm != :none ? :oprCapa : :capa capaRestr_gdf = groupby(part.capaRestr,:cnstrType) # loop over groups of capacity restrictions (like out, stIn, ...) for restrGrp in capaRestr_gdf # relevant capacity variables type_sym = Symbol(restrGrp.cnstrType[1]) info_ntup = cnstrType_dic[type_sym] allCns_arr = Array{DataFrame}(undef,size(restrGrp,1)) # loop over indiviudal constraints for (idx,restr) in enumerate(eachrow(restrGrp)) allCns_arr[idx] = createRestr(part,copy(part.var[Symbol(capa_sym,info_ntup.capa)]),restr,type_sym,info_ntup,ts_dic,r_dic,anyM.sets,anyM.supTs) end allCns_df = vcat(allCns_arr...) # add all constraints to part allCns_df[!,:cnsExpr] = map(x -> x.disp - x.capa,eachrow(allCns_df)) cns_dic[Symbol(type_sym,:Restr)] = cnsCont(orderDf(allCns_df[!,[intCol(allCns_df)...,:cnsExpr]]),:smaller) end end # XXX sub-function to create restriction function createRestr(part::TechPart, capaVar_df::DataFrame, restr::DataFrameRow, type_sym::Symbol, info_ntup::NamedTuple, ts_dic::Dict{Tuple{Int64,Int64},Array{Int64,1}}, r_dic::Dict{Tuple{Int64,Int64},Array{Int64,1}}, sets_dic::Dict{Symbol,Tree}, supTs_ntup::NamedTuple) conv_boo = type_sym in (:out,:in) dim_arr = conv_boo ? [:Ts_expSup,:Ts_dis,:R_dis,:Te] : [:Ts_expSup,:Ts_dis,:R_dis,:C,:Te] agg_arr = [:Ts_expSup,:Ts_dis,:R_dis] |> (x -> filter(x -> part.type == :emerging || x != :Ts_expSup,x)) # get relevant carriers for conversion and storage variables relConv_arr = restr.car intC_arr = union(collect(part.actSt),map(y -> part.carrier[y],filter(x -> x in keys(part.carrier),[:stIntIn,:stIntOut])) |> (y -> isempty(y) ? Int[] : union(y...))) relSt_arr = filter(y -> isempty(sets_dic[:C].nodes[y].down) || y in intC_arr, [restr.car[1],getDescendants(restr.car[1],sets_dic[:C],true)...]) # determines dimensions for aggregating dispatch variables capaVar_df[!,:lvlTs] .= restr.lvlTs capaVar_df[!,:lvlR] .= restr.lvlR # resize capacity variables (expect for stSize since these are already provided in energy units) if type_sym != :stSize capaVar_df[!,:var] = capaVar_df[!,:var] .* map(x -> supTs_ntup.sca[(x.Ts_disSup,x.lvlTs)], eachrow(capaVar_df[!,[:Ts_disSup,:lvlTs]])) end # replaces expansion with dispatch regions and aggregates capacity variables accordingy if required grpCapaVar_df = copy(select(capaVar_df,Not(:var))) |> (y -> unique(combine(x -> (R_dis = r_dic[(x.R_exp[1],x.lvlR[1])],),groupby(y,namesSym(y)))[!,Not([:R_exp,:lvlR])])) resExp_ntup = :Ts_expSup in agg_arr ? (Ts_expSup = part.balLvl.exp[1], Ts_disSup = supTs_ntup.lvl, R_dis = restr.lvlR, scr = 1) : (Ts_disSup = supTs_ntup.lvl, R_dis = restr.lvlR, scr = 1) sort!(grpCapaVar_df,sort(intCol(grpCapaVar_df))) grpCapaVar_df[!,:var] = aggUniVar(rename(capaVar_df,:R_exp => :R_dis),grpCapaVar_df,replace(agg_arr,:Ts_dis => :Ts_disSup),resExp_ntup,sets_dic) # expand capacity to dimension of dispatch capaDim_df = combine(x -> (Ts_dis = ts_dic[(x.Ts_disSup[1],x.lvlTs[1])],), groupby(grpCapaVar_df[!,Not(:var)],namesSym(grpCapaVar_df[!,Not(:var)])))[!,Not(:lvlTs)] sort!(capaDim_df,sort(intCol(capaDim_df))) select!(grpCapaVar_df,Not(:lvlTs)) # obtain all relevant dispatch variables dispVar_arr = type_sym != :stSize ? intersect(keys(part.carrier),info_ntup.dis) : collect(info_ntup.dis) resDis_ntup = :Ts_expSup in agg_arr ? (Ts_expSup = part.balLvl.exp[1], Ts_dis = restr.lvlTs, R_dis = restr.lvlR) : (Ts_dis = restr.lvlTs, R_dis = restr.lvlR) for va in dispVar_arr # filter dispatch variables not belonging to relevant carrier if va in (:gen,:use) relC_arr = relConv_arr else relC_arr = relSt_arr end allVar_df = filter(r -> r.C in relC_arr, part.var[va])[!,Not(:Ts_disSup)] # get availablity (and in case of paramter of type out also efficiency since capacities refer to input capacity) parameter and add to dispatch variable ava_arr = matchSetParameter(allVar_df,part.par[Symbol(:ava,info_ntup.capa)],sets_dic, newCol = :ava)[!,:ava] if type_sym in (:out,:stOut) ava_arr = matchSetParameter(allVar_df,part.par[type_sym == :out ? :effConv : :effStOut],sets_dic,newCol = :eff)[!,:eff] .* ava_arr end allVar_df[!,:var] = allVar_df[!,:var] .* 1 ./ ava_arr # aggregate dispatch variables capaDim_df[!,va] = aggUniVar(allVar_df, select(capaDim_df,intCol(capaDim_df)), agg_arr, resDis_ntup, sets_dic) end # sum dispatch variables and filter cases without any capaDim_df[!,:disp] = map(x -> sum(x),eachrow(capaDim_df[!,dispVar_arr])) select!(capaDim_df,Not(dispVar_arr)) capaDim_df = filter(x -> !(x.disp == AffExpr()),capaDim_df) # join capacity and dispatch variables to create final constraint grpCapaVar_df = combine(groupby(grpCapaVar_df,replace(dim_arr,:Ts_dis => :Ts_disSup)), :var => (x -> sum(x)) => :capa) cns_df = innerjoin(capaDim_df,grpCapaVar_df,on = intCol(grpCapaVar_df)) return cns_df end # XXX create ratio constraints (Fix, Low and Up for use and gen) function createRatioCns!(part::TechPart,cns_dic::Dict{Symbol,cnsCont},anyM::anyModel) # collects all tables for equations for type in intersect(keys(part.carrier),(:use, :gen)), limit in (:Up, :Low, :Fix) typeUp_sym = string(type) |> (x -> Symbol(uppercase(x[1]),x[2:end])) ratioName_sym = Symbol(:ratioEner,typeUp_sym,limit) if !(ratioName_sym in keys(part.par)) continue end # obtain variable name and parameter data cns_df = rename(copy(part.par[ratioName_sym].data),:val => :ratio) sort!(cns_df,sort(intCol(cns_df))) # joins parameter data with ratio controlled variable and all variables agg_arr = filter(r -> r != :Te && (part.type == :emerging || r != :Ts_expSup), intCol(cns_df)) if part.type == :emerging srcRes_ntup = (anyM.sets[:Ts].nodes[cns_df[1,:Ts_dis]].lvl, anyM.sets[:R].nodes[cns_df[1,:R_dis]].lvl) |> (x -> (Ts_expSup = anyM.supTs.lvl, Ts_dis = x[1], R_dis = x[2])) else srcRes_ntup = (anyM.sets[:Ts].nodes[cns_df[1,:Ts_dis]].lvl, anyM.sets[:R].nodes[cns_df[1,:R_dis]].lvl) |> (x -> (Ts_dis = x[1], R_dis = x[2])) end if :M in namesSym(cns_df) # aggregates dispatch variables, if a mode is specified somewhere, mode dependant and non-mode dependant balances have to be aggregated separately # find cases where ratio constraint is mode dependant srcResM_ntup = (; zip(tuple(:M,keys(srcRes_ntup)...),tuple(1,values(srcRes_ntup)...))...) srcResNoM_ntup = (; zip(tuple(:M,keys(srcRes_ntup)...),tuple(0,values(srcRes_ntup)...))...) m_arr = findall(0 .!= cns_df[!,:M]) noM_arr = setdiff(1:size(cns_df,1),m_arr) # aggregate variables with defined ratio cns_df[!,:ratioVar] .= AffExpr() cns_df[m_arr,:ratioVar] = aggUniVar(part.var[type], select(cns_df[m_arr,:],intCol(cns_df)), agg_arr, srcResM_ntup, anyM.sets) cns_df[noM_arr,:ratioVar] = aggUniVar(part.var[type], select(cns_df[noM_arr,:],intCol(cns_df)), agg_arr, srcResNoM_ntup, anyM.sets) # aggregate all variables cns_df[!,:allVar] .= AffExpr() cns_df[m_arr,:allVar] = aggUniVar(part.var[type], select(cns_df[m_arr,:],intCol(cns_df)), filter(x -> x != :C,agg_arr), srcResM_ntup, anyM.sets) cns_df[noM_arr,:allVar] = aggUniVar(part.var[type], select(cns_df[noM_arr,:],intCol(cns_df)), filter(x -> x != :C,agg_arr), srcResNoM_ntup, anyM.sets) else cns_df[!,:ratioVar] = aggUniVar(part.var[type], select(cns_df,intCol(cns_df)), agg_arr, srcRes_ntup, anyM.sets) cns_df[!,:allVar] = aggUniVar(part.var[type], select(cns_df,intCol(cns_df)), filter(x -> x != :C,agg_arr), srcRes_ntup, anyM.sets) end # create corresponding constraint if occursin("Fix",string(limit)) sign_sym = :equal elseif occursin("Low",string(limit)) sign_sym = :greater else sign_sym = :smaller end cns_df[!,:cnsExpr] = map(x -> x.ratioVar - x.allVar * x.ratio, eachrow(cns_df)) cns_dic[ratioName_sym] = cnsCont(orderDf(cns_df[!,[intCol(cns_df)...,:cnsExpr]]),sign_sym) end end # </editor-fold>
AnyMOD
https://github.com/leonardgoeke/AnyMOD.jl.git
[ "MIT" ]
0.1.12
46a00c75bb6eb7fdaf5b15d75e9a544c0f91484d
code
1337
using AnyMOD, Cbc, Test @testset "run_rest" begin # create model anyM = anyModel("testModel","testModel", objName = "test", shortExp = 10, checkRng = 1e8) createOptModel!(anyM) setObjective!(:costs,anyM) # solve model set_optimizer(anyM.optModel,Cbc.Optimizer) optimize!(anyM.optModel) # write data reports reportResults(:summary,anyM, rtnOpt = (:raw,:rawDf,:csv,:csvDf)) reportResults(:exchange,anyM, rtnOpt = (:raw,:rawDf,:csv,:csvDf)) reportResults(:costs,anyM, rtnOpt = (:raw,:rawDf,:csv,:csvDf)) reportTimeSeries(:electricity, anyM, rtnOpt = (:raw,:rawDf,:csv,:csvDf)) reportTimeSeries(:electricity, anyM, rtnOpt = (:raw,:rawDf,:csv,:csvDf), mergeVar = false) # create plots plotEnergyFlow(:sankey,anyM, rmvNode = ("electricity; export","import")) plotTree(:region,anyM) plotEnergyFlow(:graph,anyM) moveNode!(anyM,("coal",[0.1,0.1])) @test length(anyM.report) == 33 @test round(objective_value(anyM.optModel),digits = 1) == 137566.6 # create additional models with several errors anyM = anyModel(["testModel","errorTest"],"testModel", objName = "test", shortExp = 10, checkRng = 1e8) err = false try createOptModel!(anyM) catch err = true end @test err @test length(anyM.report) == 46 end
AnyMOD
https://github.com/leonardgoeke/AnyMOD.jl.git
[ "MIT" ]
0.1.12
46a00c75bb6eb7fdaf5b15d75e9a544c0f91484d
docs
2043
[![Build Status](https://travis-ci.org/leonardgoeke/AnyMOD.jl.svg?branch=master)](https://travis-ci.org/leonardgoeke/AnyMOD.jl) [![codecov](https://codecov.io/gh/leonardgoeke/AnyMOD.jl/branch/master/graph/badge.svg)](https://codecov.io/gh/leonardgoeke/AnyMOD.jl) [![Gitter chat](https://badges.gitter.im/AnyMOD-jl/typedoc.svg)](https://gitter.im/AnyMOD-jl/community) [![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT) <img src="docs/src/assets/schriftzug_plus_logo.png" alt="logo" width="950px"/> [AnyMOD.jl](https://github.com/leonardgoeke/AnyMOD.jl) is a [Julia](https://julialang.org/) framework for creating large scale energy system models with multiple periods of capacity expansion formulated as linear optimization problems. It was developed to address the challenges in modelling high-levels of intermittent generation and sectoral integration. A comprehensive description of the framework's graph based methodology can found in the working paper [Göke (2020), AnyMOD - A graph-based framework for energy system modelling with high levels of renewables and sector integration](https://arxiv.org/abs/2004.10184). The software itself is seperately introduced in [Göke (2020), AnyMOD.jl: A Julia package for creating energy system models](https://arxiv.org/abs/2011.00895). Any questions, suggestions, feature requests, or contributions are welcome. To get in touch open an [issue](https://github.com/leonardgoeke/AnyMOD.jl/issues) or use the [chat](https://gitter.im/AnyMOD-jl/community). ## Documentation - [**STABLE**](https://leonardgoeke.github.io/AnyMOD.jl/stable/) &mdash; **last thoroughly tested and fully documented version** - [**DEV**](https://leonardgoeke.github.io/AnyMOD.jl/dev/) &mdash; *in-development version of the tool* ## Acknowledgement The development of AnyMOD is receiving funding from the European Union’s Horizon 2020 research and innovation programme within the [OSMOSE project](https://www.osmose-h2020.eu/) under grant agreement No 773406.
AnyMOD
https://github.com/leonardgoeke/AnyMOD.jl.git
[ "MIT" ]
0.1.12
46a00c75bb6eb7fdaf5b15d75e9a544c0f91484d
docs
333
```@meta CurrentModule = AnyMOD ``` # API ```@index Pages = ["api.md"] Modules = [AnyMOD] ``` ## Functions ```@docs createOptModel! setObjective! reportResults reportTimeSeries printObject printDuals printIIS plotTree plotEnergyFlow moveNode! ``` ## Types ```@docs anyModel TechPart OthPart Node Tree ParElement graInfo ```
AnyMOD
https://github.com/leonardgoeke/AnyMOD.jl.git
[ "MIT" ]
0.1.12
46a00c75bb6eb7fdaf5b15d75e9a544c0f91484d
docs
31772
```@raw html <style> table.tabelle td { border-left: 1px solid; border-color: #dbdbdb; } table.tabelle td:first-child { border-right: 2.5px solid; border-color: #dbdbdb; border-left: none; } ul.liste { list-style-position: inside; margin-left: 0em; margin-top: 0em; white-space: nowrap; display:inline-block; text-align: left; } </style> ``` # Constraints ```@raw html <p class="norm"> In the following, all constraints used in AnyMOD are listed. Information includes the name used throughout the model, its dimensions, and a stylized formulation of the constraint itself (see <a href="https://arxiv.org/abs/2004.10184)">Göke (2020)</a> for details). Within these constraints, variables are printed in bold. In addition, the parameters, variables, and the model part associated with the constraints are listed. </p> <p class="norm"> To increase performance, AnyMOD stores constraints within DataFrames instead of using JuMPs native containers. Each dimension is represented by a column and integers in these columns relate to nodes within the hierarchical trees of sets (see <a href="../data/#printObject"><code>printObject</code></a> on how to export these in a readable format). An additional <code>cns</code> column stores the corresponding constraint. Note that final constraints will look unintuitive, because they are <a href="../performance/#Scaling">scaled</a> to increase performance and converted to standard form by JuMP. </p> <p class="norm"> New constraints beyond those listed here can freely be added to a model by using standard JuMP commands. </p> ``` # Balances ### Energy balance Constraints supply to at least exceed demand. The energy balance can alternatively be enforced as an equality constraint (see [Carriers](@ref) for details). Instead of having a fixed name the constraint is always assigned the name of the carrier being balanced. ```@raw html <table class="tabelle"> <tbody> <tr> <td><strong>name</strong></td> <td><em>carrier name</em></td> </tr> <tr> <td><strong>dimension</strong></td> <td>$Ts_{dis}$, $R_{dis}$, $C$</td> </tr> <tr> <td><strong>instances</strong></td> <td><ul class="liste"> <li>dispatch resolution of carrier</li> </ul></td> </tr> <tr> <td rowspan = "2"><strong>formulation</strong></td> <td style="text-align:left;border-bottom:none;padding-bottom:0px">$ \scriptstyle dem \, + \, \sum\bm{use} \, + \, \sum\bm{stExt_{in}} \, + \, \sum \bm{exc_{exp}}\, + \, \sum\bm{trd_{sell}} \, + \, \bm{lss} \, \leq \, $</td> </tr> <tr> <td style="text-align:right;border-right:none;border-top:none;padding-top:0px">$ \scriptstyle \; \; \; \; \sum\bm{gen} \, + \, \sum\bm{stExt_{out}} \, + \, \sum (1-lossExc) \bm{exc_{imp}} \, + \, \sum\bm{trd_{buy}} \, + \, \bm{crt} $</td> </tr> <tr> <td><strong>parameter</strong></td> <td><ul class="liste"> <li><a href="../parameter_list/#Demand-1">demand</a></li> <li><a href="../parameter_list/#Exchange-losses-1">exchange losses</a></li> </ul></td> </tr> <tr> <td><strong>variables</strong></td> <td><ul class="liste"> <li><a href="../variables/#Generation-and-use-1">generation and use</a></li> <li><a href="../variables/#Charging-and-discharging-1">charging and discharging</a></li> <li><a href="../variables/#Exchange-1">exchange</a></li> <li><a href="../variables/#Buy-and-sell-1">buy and sell</a></li> <li><a href="../variables/#Curtailment-and-loss-of-load-1">curtailment and loss-of-load</a></li> </ul></td> </tr> <tr> <td><strong>part</strong></td> <td><a href="../parts/#Balance-1">balance</a></td> </tr> </tbody> </table> ``` ### Conversion balance Controls the ratio between used and generated quantities. ```@raw html <table class="tabelle"> <tbody> <tr> <td><strong>name</strong></td> <td>convBal</td> </tr> <tr> <td><strong>dimension</strong></td> <td>$Ts_{exp}$, $Ts_{dis}$, $R_{dis}$, $Te$, ($M$)</td> </tr> <tr> <td><strong>instances</strong></td> <td><ul class="liste"> <li>reference resolution of technology</li> <li>expansion time-steps of technology</li> <li>relevant modes of technology</li> </ul></td> </tr> <tr> <td><strong>formulation</strong></td> <td>$ \scriptstyle eff_{conv} (\sum\bm{use} \, + \, \sum\bm{stInt_{out}}) \, = \, \sum\bm{gen} \, + \, \sum\bm{stInt_{in}} $</td> </tr> <tr> <td><strong>parameter</strong></td> <td><ul class="liste"> <li><a href="../parameter_list/#Efficiency-1">conversion efficiency</a></li> </ul></td> </tr> <tr> <td><strong>variables</strong></td> <td><ul class="liste"> <li><a href="../variables/#Generation-and-use-1">generation and use</a></li> <li><a href="../variables/#Charging-and-discharging-1">charging and discharging</a></li> </ul></td> </tr> <tr> <td><strong>part</strong></td> <td><a href="../parts/#Technology-1">technology</a></td> </tr> </tbody> </table> ``` ### Storage Balance Ensures storage levels comply with charged and discharged quantities. ```@raw html <table class="tabelle"> <tbody> <tr> <td><strong>name</strong></td> <td>stBal</td> </tr> <tr> <td><strong>dimension</strong></td> <td>$Ts_{exp}$, $Ts_{dis}$, $R_{dis}$, $Te$, $C$, ($M$)</td> </tr> <tr> <td><strong>instances</strong></td> <td><ul class="liste"> <li>dispatch resolution of carrier</li> <li>expansion time-steps of technology</li> <li>relevant modes of technology</li> </ul></td> </tr> <tr> <td><strong>formulation</strong></td> <td>$ \scriptstyle \bm{stLvl_{t}} \, = \, \frac{\bm{stLvl_{t-1}}}{1\,-\,stDis} \, + \, stInflow \, + \, \frac{\bm{stExt_{in}} \, + \, \bm{stInt_{in}}}{1/effSt_{in}} \, - \, \frac{\bm{stExt_{out}} \, + \, \bm{stInt_{out}}}{effSt_{out}} $</td> </tr> <tr> <td><strong>parameter</strong></td> <td><ul class="liste"> <li><a href="../parameter_list/#Efficiency-1">storage efficiencies</a></li> <li><a href="../parameter_list/#Storage-self-discharge-1">storage self-discharge</a></li> <li><a href="../parameter_list/#Storage-inflow-1">storage inflow</a></li> </ul></td> </tr> <tr> <td><strong>variables</strong></td> <td><ul class="liste"> <li><a href="../variables/#Charging-and-discharging-1">charging and discharging</a></li> <li><a href="../variables/#Storage-level-1">storage level</a></li> </ul></td> </tr> <tr> <td><strong>part</strong></td> <td><a href="../parts/#Technology-1">technology</a></td> </tr> </tbody> </table> ``` # Dispatch restrictions ### Conversion capacity restriction Ensures quantities converted comply with the operated conversion capacity. ```@raw html <p class="norm"> The graph-based approach that allows to vary resolution by energy carrier within the same model complicates the formulation of capacity constraints for conversion technologies. What kind of constraints are necessary is specified in the <code>capaRestr</code> of the technology <a href="../api/#AnyMOD.TechPart"><code>part object</code></a> (see <a href="https://arxiv.org/abs/2004.10184)">Göke (2020)</a> on how this is derived). Capacity constraints are either enforced on used or generated quantities. In the latter case, quantities have to be corrected for the respective efficiency since AnyMOD always denotes capacities <u>after efficiency</u>. </p> <table class="tabelle"> <tbody> <tr> <td><strong>name</strong></td> <td>inRestr</td> <td>outRestr</td> </tr> <tr> <td><strong>dimension</strong></td> <td colspan="2"; style="text-align:center">$Ts_{exp}$, $Ts_{dis}$, $R_{dis}$, $Te$</td> </tr> <tr> <td><strong>instances</strong></td> <td colspan="2"; style="text-align:center"><ul class="liste"> <li>required capacity restrictions according to <code>capaRestr</code> field of part</li> </ul></td> </tr> <tr> <td><strong>formulation</strong></td> <td>$ \scriptstyle \frac{\bm{use} \, + \, \bm{stInt_{out}}}{ava_{conv}} \, \leq \, \bm{oprCapa_{conv}} $</td> <td>$ \scriptstyle \frac{\bm{gen} \, + \, \bm{stInt_{in}}}{eff_{conv} \, ava_{conv}} \, \leq \, \bm{oprCapa_{conv}} $</td> </tr> <tr> <td rowspan="2"><strong>parameter</strong></td> <td colspan="2"; style="text-align:center;border-bottom:none;padding-bottom:0.1875em"> <ul class="liste"> <li><a href="../parameter_list/#Availability-1">conversion availability</a></li> </ul> </td> </tr> <tr> <td colspan="1"; style="text-align:center;border-right:none;border-top:none;padding-top:0px"> </td> <td colspan="1"; style="text-align:center;padding-top:0px"> <ul class="liste"> <li><a href="../parameter_list/#Efficiency-1">conversion efficiency</a></li> </ul> </td> </tr> <tr> <td><strong>variables</strong></td> <td colspan="2"; style="text-align:left;padding-left:10.25em"><ul class="liste"> <li><a href="../variables/#Generation-and-use-1">generation and use</a></li> <li><a href="../variables/#Charging-and-discharging-1">charging and discharging</a></li> <li><a href="../variables/#Operated-capacity-1">operated conversion capacity</a></li> </ul></td> </tr> <tr> <td><strong>part</strong></td> <td colspan="2"; style="text-align:center"><a href="../parts/#Technology-1">technology</a></td> </tr> </tbody> </table> ``` ### Storage capacity restriction Ensures quantities stored comply with the operated storage-input, storage-output, storage-size capacity. ```@raw html <table class="tabelle"> <tbody> <tr> <td><strong>name</strong></td> <td>stInRestr</td> <td>stOutRestr</td> <td>stSizeRestr</td> </tr> <tr> <td><strong>dimension</strong></td> <td colspan="3"; style="text-align:center">$Ts_{exp}$, $Ts_{dis}$, $R_{dis}$, $Te$, $C$</td> </tr> <tr> <td><strong>instances</strong></td> <td colspan="3"; style="text-align:center"><ul class="liste"> <li>dispatch resolution of carrier</li> <li>expansion time-steps of technology</li> </ul></td> </tr> <tr> <td><strong>formulation</strong></td> <td>$ \scriptstyle \frac{\bm{stExt_{in}} \, + \, \bm{stInt_{in}}}{ava_{stIn}} \, \leq \, \bm{oprCapa_{stIn}} $</td> <td>$ \scriptstyle \frac{\bm{stExt_{out}} \, + \, \bm{stInt_{out}}}{ava_{stOut}} \, \leq \, \bm{oprCapa_{stOut}} $</td> <td>$ \scriptstyle \frac{\bm{stLvl}}{ava_{stOut}} \, \leq \, \bm{oprCapa_{stSize}} $</td> </tr> <tr> <td><strong>parameter</strong></td> <td colspan="3"; style="text-align:center"><ul class="liste"> <li><a href="../parameter_list/#Availability-1">storage availability</a></li> </ul></td> </tr> <tr> <td rowspan="2"><strong>variables</strong></td> <td colspan="3"; style="text-align:center;border-bottom:none;padding-bottom:0.1875em"> <ul class="liste"> <li><a href="../variables/#Operated-capacity-1">operated storage capacity</a></li> </ul> </td> </tr> <tr> <td colspan="2"; style="text-align:center;border-right:none;border-top:none;padding-top:0px"> <ul class="liste"> <li><a href="../variables/#Charging-and-discharging-1">charging and discharging</a></li> </ul> </td> <td colspan="1"; style="text-align:left;padding-top:0px"> <ul class="liste"> <li><a href="../variables/#Storage-level-1">storage level</a></li> </ul> </td> </tr> <tr> <td><strong>part</strong></td> <td colspan="3"; style="text-align:center"><a href="../parts/#Technology-1">technology</a></td> </tr> </tbody> </table> ``` ### Energy ratio restriction Ensures used and generated quantities comply with the specified ratios. ```@raw html <table class="tabelle"> <tbody> <tr> <td><strong>name</strong></td> <td>ratioEnerUse{Fix/Low/Up}</td> <td>ratioEnerGen{Fix/Low/Up}</td> </tr> <tr> <td><strong>dimension</strong></td> <td colspan="2"; style="text-align:center">$Ts_{exp}$, $Ts_{dis}$, $R_{dis}$, $Te$, $C$, ($M$)</td> </tr> <tr> <td><strong>instances</strong></td> <td colspan="2"; style="text-align:center"><ul class="liste"> <li><a href="../parameter_list/#Ratios-of-carrier-use-and-generation-1">ratios</a> defined</li> </ul></td> </tr> <tr> <td><strong>formulation</strong></td> <td>$ \scriptstyle \bm{use} \; \begin{smallmatrix} = \\[0.5pt] \geq \\[2pt] \leq \end{smallmatrix} \; ratioEner^{use}_{fix/low/up} \sum \bm{use} $</td> <td>$ \scriptstyle \bm{gen} \; \begin{smallmatrix} = \\[0.5pt] \geq \\[2pt] \leq \end{smallmatrix} \; ratioEner^{gen}_{fix/low/up} \sum \bm{gen} $</td> </tr> <tr> <td><strong>parameter</strong></td> <td colspan="2"; style="text-align:center"> <ul class="liste"> <li><a href="../variables/#Ratios-of-carrier-use-and-generation">generation and use ratios</a></li> </ul></td> </tr> <tr> <td><strong>variables</strong></td> <td colspan="2"; style="text-align:left;padding-left:8.25em"> <ul class="liste"> <li><a href="../variables/#Generation-and-use-1">generation and use</a></li> </ul></td> </tr> <tr> <td><strong>part</strong></td> <td colspan="2"; style="text-align:center"><a href="../parts/#Technology-1">technology</a></td> </tr> </tbody> </table> ``` ### Exchange capacity restriction Ensures exchanged quantities comply with the operated exchange capacity. ```@raw html <table class="tabelle"> <tbody> <tr> <td><strong>name</strong></td> <td>excRestr</td> </tr> <tr> <td><strong>dimension</strong></td> <td>$Ts_{dis}$, $R_{from}$, $R_{to}$, $C$</td> </tr> <tr> <td><strong>instances</strong></td> <td><ul class="liste"> <li>dispatch resolution of carrier and descendant carriers</li> <li>regions can exchange carrier</li> </ul></td> </tr> <tr> <td><strong>formulation</strong></td> <td>$ \scriptstyle \sum \frac{\bm{exc}}{ava_{exc}} \, \leq \, \bm{oprCapa_{exc}} $</td> </tr> <tr> <td><strong>parameter</strong></td> <td><ul class="liste"> <li><a href="../parameter_list/#Exchange-availability-1">exchange availablity</a></li> </ul></td> </tr> <tr> <td><strong>variables</strong></td> <td><ul class="liste"> <li><a href="../variables/#Exchange-1">exchange</a></li> <li><a href="../variables/#Operated-capacity-1">operated exchange capacity</a></li> </ul></td> </tr> <tr> <td><strong>part</strong></td> <td><a href="../parts/#Exchange-1">exchange</a></td> </tr> </tbody> </table> ``` ### Trade capacity restriction Ensures traded quantities comply with the specified trade capacity. ```@raw html <table class="tabelle"> <tbody> <tr> <td><strong>name</strong></td> <td>trdBuyCap</td> <td>trdSellCap</td> </tr> <tr> <td><strong>dimension</strong></td> <td colspan="2"; style="text-align:center">$Ts_{dis}$, $R_{dis}$, $C$, $id$</td> </tr> <tr> <td><strong>instances</strong></td> <td colspan="2"; style="text-align:center"><ul class="liste"> <li><a href="../parameter_list/#Trade-price-1">trade price</a> defined</li> <li><a href="../parameter_list/#Trade-capacity-1">trade capacity</a> defined</li> </ul></td> </tr> <tr> <td><strong>formulation</strong></td> <td>$ \scriptstyle \bm{trdBuy} \, \leq \, trdBuyCap $</td> <td>$ \scriptstyle \bm{trdSell} \, \leq \, trdSellCap $</td> </tr> <tr> <td><strong>parameter</strong></td> <td colspan="2"; style="text-align:center"><ul class="liste"> <li><a href="../parameter_list/#Trade-capacity-1">trade capacity</a></li> </ul></td> </tr> <tr> <td><strong>variables</strong></td> <td colspan="2"; style="text-align:left;padding-left:6.4em"><ul class="liste"> <li><a href="../variables/#Buy-and-sell-1">buy and sell</a></li> </ul></td> </tr> <tr> <td><strong>part</strong></td> <td colspan="2"><a href="../parts/#Trade-1">trade</a></td> </tr> </tbody> </table> ``` # Capacity expansion ### Definition of installed capacity ```@raw html <p class="norm"> Connects installed capacities to expansion variables and residual capacities. </p> <table class="tabelle"> <tbody> <tr> <td><strong>name</strong></td> <td>capaConv</td> <td><nobr>capaSt{In/Out/Size}</nobr></td> <td>capaExc</td> </tr> <tr> <td><strong>dimension</strong></td> <td>$Ts_{exp}$, $R_{exp}$, $Te$</td> <td>$Ts_{exp}$, $R_{exp}$, $C$, $Te$</td> <td>$Ts_{exp}$, $R_{from}$, $R_{to}$, $C$</td> </tr> <tr> <td rowspan="3"><strong>instance</strong></td> <td colspan="3"; style="text-align:center;border-bottom:none;padding-bottom:0px"> <ul class="liste"> <li>superordinate dispatch resolution (usually years)</li> </ul> </td> </tr> <tr> <td colspan="2"; style="text-align:center;border-right:none;border-top:none;border-bottom:none;padding-top:0px;padding-bottom:0px"> <ul class="liste"> <li>spatial expansion resolution of technology</li> </ul> </td> <td colspan="1"; rowspan="2"; style="text-align:center;border-right:none;padding-top:0px;padding-right:0.0px"> <ul class="liste"> <li>spatial expansion resolution of carrier</li> <li>regions can exchange carrier</li> </ul> </td> </tr> <tr> <td colspan="1"; style="text-align:center;border-right:none;padding-top:0px"> <ul class="liste"; start="4"> <li>if uses or generates carriers</li> </ul> </td> <td colspan="1"; style="text-align:center;padding-top:0px"> <ul class="liste"; start="4"> <li>each stored carrier</li> </ul> </td> </tr> <tr> <td><strong>formulation</strong></td> <td colspan="3"; style="text-align:center">$ \scriptstyle \bm{capa_{t}} \, = \, resiCapa_{t} \, + \, \sum\limits_{t' \in (t \, + \, del, t \, +\,del \, + \, life]} \bm{exp_{t'}} $</td> </tr> <tr> <td><strong>parameter</strong></td> <td colspan="3"; style="text-align:left;padding-left:18.5em"><ul class="liste"> <li><a href="../parameter_list/#Residual-capacities-1">residual capacity</a></li> <li><a href="../parameter_list/#Technical-lifetime-1">technical lifetime</a></li> <li><a href="../parameter_list/#Construction-time-1">construction time</a></li> </ul></td> </tr> <tr> <td><strong>variables</strong></td> <td colspan="3"; style="text-align:left;padding-left:18.5em"><ul class="liste"> <li><a href="../variables/#Installed-capacity-1">installed capacity</a></li> <li><a href="../variables/#Expansion-1">capacity expansion</a></li> </ul></td> </tr> <tr> <td><strong>part</strong></td> <td colspan="2"; style="text-align:center"><a href="../parts/#Technology-1">technology</a></td> <td style="text-align:center"><a href="../parts/#Exchange-1">exchange</a></td> </tr> </tbody> </table> ``` ### Decommissioning of operated capacity Ensures operated capacities comply with installed capacities. ```@raw html <p class="norm"> Decommissioning behaviour is determined by the <code>decomm</code> argument of the <a href="../model_object">model constructor</a>. For <code>none</code>, the equations listed here are not enforced. Instead operated and installed capacities are identical. When the argument is set to <code>recomm</code>, only the first equation that limits operated capacities to installed capacities is enforced. </p> <p class="norm"> Lastly, for <code>decomm</code> both equations apply. The second equation will then ensure, that once decommissioned capacities cannot be re-decommissioned again. The expression $\displaystyle \Delta Resi_{+}$ in the equation denotes any increase of residual capacities from $\displaystyle t-1$ to $\displaystyle t$. </p> <table class="tabelle"> <tbody> <tr> <td><strong>name</strong></td> <td>oprCapaConv</td> <td style="padding-right:0.52em"><nobr>oprCapaSt{In/Out/Size}</nobr></td> <td>oprCapaExc</td> </tr> <tr> <td><strong>dimension</strong></td> <td>$Ts_{exp}$, $R_{exp}$, $Te$</td> <td>$Ts_{exp}$, $R_{exp}$, $C$, $Te$</td> <td>$Ts_{exp}$, $R_{from}$, $R_{to}$, $C$</td> </tr> <tr> <td rowspan="3"><strong>instance</strong></td> <td colspan="3"; style="text-align:center;border-bottom:none;padding-bottom:0px"> <ul class="liste"> <li>superordinate dispatch resolution (usually years)</li> </ul> </td> </tr> <tr> <td colspan="2"; style="text-align:center;border-right:none;border-top:none;border-bottom:none;padding-top:0px;padding-bottom:0px"> <ul class="liste"> <li>spatial expansion resolution of technology</li> </ul> </td> <td colspan="1"; rowspan="2"; style="text-align:center;border-right:none;padding-top:0px;padding-right:0px"> <ul class="liste"> <li>spatial expansion resolution of carrier</li> <li>regions can exchange carrier</li> </ul> </td> </tr> <tr> <td colspan="1"; style="text-align:center;border-right:none;padding-top:0px;padding-right:0.52em"> <ul class="liste"; start="4"> <li>if uses or generates carriers</li> </ul> </td> <td colspan="1"; style="text-align:center;padding-top:0px"> <ul class="liste"; start="4"> <li>each stored carrier</li> </ul> </td> </tr> <tr> <td rowspan = "2"><strong>formulation</strong></td> <td colspan = "3"; style="text-align:center;border-bottom:none">$ \scriptstyle \bm{oprCapa} \, \leq \, \bm{capa}$</td> </tr> <tr> <td colspan = "3"; style="text-align:center;border-right:none;border-top:none;padding-top:0px">$ \scriptstyle \bm{oprCapa_{t}} \, \leq \, \bm{oprCapa_{t\,-\,1}} \, + \, \bm{exp_{t}} \, + \, \Delta Resi_{+} $</td> </tr> <tr> <td><strong>parameter</strong></td> <td colspan="3"; style="text-align:left;padding-left:18.1em"><ul class="liste"> <li><a href="../parameter_list/#Residual-capacities-1">residual capacity</a></li> </ul></td> </tr> <tr> <td><strong>variables</strong></td> <td colspan="3"; style="text-align:left;padding-left:18.1em"><ul class="liste"> <li><a href="../variables/#Operated-capacity-1">operated capacity</a></li> <li><a href="../variables/#Installed-capacity-1">installed capacity</a></li> <li><a href="../variables/#Expansion-1">capacity expansion</a></li> </ul></td> </tr> <tr> <td><strong>part</strong></td> <td colspan="2"; style="text-align:center"><a href="../parts/#Technology-1">technology</a></td> <td style="text-align:center"><a href="../parts/#Exchange-1">exchange</a></td> </tr> </tbody> </table> ``` # Cost equations ```@raw html <p class="norm"> Within the cost equations the discount factor is used to discount costs to the present. The discount factor for a year $t$ is computed from the <a href="../parameter_list/#Discount-rate-1">discount rates</a> of the current and the previous years as follows: </p> <p class="norm"> $\scriptstyle discFac_{t} = \displaystyle \prod_{t' = t_{0}}^{t}(1 \, + \, rateDisc_{t'})^{-1}$ </p> ``` ### Expansion cost equation Determines costs of capacity expansion. ```@raw html <table class="tabelle"> <tbody> <tr> <td><strong>name</strong></td> <td>costExp{Conv,StIn,StOut,StSize}</td> <td>costExp{Exc}</td> </tr> <tr> <td><strong>dimension</strong></td> <td>$Ts_{sup}$, $R_{exp}$, $Te$</td> <td>$Ts_{sup}$, $C$</td> </tr> <tr> <td rowspan="2"><strong>formulation</strong></td> <td colspan="2"; style="text-align:center;border-bottom:none"> $ \scriptstyle \bm{costExp\{...\}} \, = \, \sum discFac \, \cdot \, ann\{...\} \, \cdot \, \bm{exp\{...\}} $ </td> </tr> <tr> <td colspan="2"; style="text-align:center;border-right:none;border-top:none;padding-top:0px"> $ \scriptstyle ann\{...\} \, = \, costExp\{...\} \, \cdot \, \frac{rateExp\{...\} \, (1\,+\,rateExp\{...\})^{lifeEco\{...\}}}{(1\,+\,rateExp\{...\})^{lifeEco\{...\}}\,-\,1}$ </td> </tr> <tr> <td><strong>parameter</strong></td> <td colspan="2"; style="text-align:left;padding-left:8em"> <ul class="liste"> <li><a href="../parameter_list/#Discount-rate-1">discount rate</a></li> <li><a href="../parameter_list/#Interest-rate-1">interest rate</a></li> <li><a href="../parameter_list/#Expansion-cost-1">expansion cost</a></li> <li><a href="../parameter_list/#Economic-lifetime-1">economic lifetime</a></li> </ul> </td> </tr> <tr> <td><strong>variables</strong></td> <td colspan="2"; style="text-align:left;padding-left:8em"> <ul class="liste"> <li><a href="../variables/#Expansion-1">expansion</a></li> <li><a href="../variables/#Expansion-cost-1">expansion cost</a></li> </ul> </td> </tr> <tr> <td><strong>part</strong></td> <td colspan="3"; style="text-align:center"><a href="../parts/#Objective-1">objective</a></td> </tr> </tbody> </table> ``` ### Operating cost equation Determines costs of operating capacity. ```@raw html <table class="tabelle"> <tbody> <tr> <td><strong>name</strong></td> <td>costOpr{Conv,StIn,StOut,StSize}</td> <td>costOpr{Exc}</td> </tr> <tr> <td><strong>dimension</strong></td> <td>$Ts_{sup}$, $R_{exp}$, $Te$</td> <td>$Ts_{sup}$, $C$</td> </tr> <tr> <td><strong>formulation</strong></td> <td colspan="2"; style="text-align:center"> $ \scriptstyle \bm{costOpr\{...\}} \, = \, \sum discFac \, \cdot \, costOpr\{...\} \, \cdot \, \bm{oprCapa\{...\}} $ </td> </tr> <tr> <td><strong>parameter</strong></td> <td colspan="2"; style="text-align:left;padding-left:8em"> <ul class="liste"> <li><a href="../parameter_list/#Discount-rate-1">discount rate</a></li> <li><a href="../parameter_list/#Operating-cost-1">operating cost</a></li> </ul> </td> </tr> <tr> <td><strong>variables</strong></td> <td colspan="2"; style="text-align:left;padding-left:8em"> <ul class="liste"> <li><a href="../variables/#Operated-capacity-1">operated capacity</a></li> <li><a href="../variables/#Operating-cost-1">operating cost</a></li> </ul> </td> </tr> <tr> <td><strong>part</strong></td> <td colspan="3"; style="text-align:center"><a href="../parts/#Objective-1">objective</a></td> </tr> </tbody> </table> ``` ### Variable cost equation ```@raw html <p class="norm"> Determines costs associated with quantities dispatched. Costs incurred by <a href="../parameter_list/#Emission-price-1">emission prices</a> are included in <code>costVarUse</code>. </p> <table class="tabelle"> <tbody> <tr> <td><strong>name</strong></td> <td>costVar{Use,Gen}</td> <td>costVar{StIn,StOut}</td> <td>costVar{Exc}</td> </tr> <tr> <td><strong>dimension</strong></td> <td>$Ts_{sup}$, $R_{exp}$, $Te$</td> <td>$Ts_{sup}$, $R_{exp}$, $Te$</td> <td>$Ts_{sup}$, $C$</td> </tr> <tr> <td rowspan="2"><strong>formulation</strong></td> <td colspan="3"; style="text-align:center;border-bottom:none;padding-bottom:0px"> $ \scriptstyle \bm{costVar\{...\}} \, = \, \sum discFac \, \cdot \, costVar\{...\} \, \cdot \, \{use,gen,stIn,stOut,exc\} \, \cdot \, 10^3 $ </td> </tr> <tr> <td colspan="1"; style="text-align:center;border-right:none;border-top:none;padding-top:0px"> $ \scriptstyle + \, \sum emFac \, \cdot \, emPrc \, \cdot \, \bm{use} \, \cdot \, 10^3$ </td> <td colspan="2"; style="text-align:left;padding-top:0px"> </td> </tr> <tr> <td rowspan="3"><strong>parameter</strong></td> <td colspan="3"; style="text-align:center;border-bottom:none;padding-bottom:0.1875em"> <ul class="liste"> <li><a href="../parameter_list/#Discount-rate-1">discount rate</a></li> </ul> </td> </tr> <tr> <td colspan="2"; style="text-align:center;border-right:none;border-top:none;padding-top:0px;border-bottom:none;padding-bottom:0.1875em"> <ul class="liste"> <li><a href="../parameter_list/#Variable-cost-1">variable cost of technologies</a></li> </ul> </td> <td colspan="1"; style="text-align:left;padding-top:0px;border-bottom:none"> <ul class="liste"> <li><a href="../parameter_list/#Exchange-cost-1">exchange cost</a></li> </ul> </td> </tr> <tr> <td style="text-align:center;border-right:none;border-top:none;padding-top:0px"> <ul class="liste"> <li><a href="../parameter_list/#Emission-factor-1">emission factor</a></li> <li><a href="../parameter_list/#Emission-price-1">emission price</a></li> </ul> </td> <td></td> <td></td> </tr> <tr> <td rowspan="2"><strong>variables</strong></td> <td colspan="3"; style="text-align:center;border-bottom:none;padding-bottom:0.1875em"> <ul class="liste"> <li><a href="../variables/#Variable-cost-1">variable cost</a></li> </ul> </td> </tr> <tr> <td colspan="1"; style="text-align:left;border-right:none;border-top:none;padding-top:0px"> <ul class="liste"> <li><a href="../variables/#Generation-and-use-1">generation and use</a></li> </ul> </td> <td colspan="1"; style="text-align:left;border-right:none;border-top:none;padding-top:0px"> <ul class="liste"> <li><a href="../variables/#Charging-and-discharging-1">charging and discharging</a></li> </ul> </td> <td colspan="1"; style="text-align:left;padding-top:0px"> <ul class="liste"> <li><a href="../variables/#Exchange-quantities-1">exchange quantities</a></li> </ul> </td> </tr> <tr> <td><strong>part</strong></td> <td colspan="3"; style="text-align:center"><a href="../parts/#Objective-1">objective</a></td> </tr> </tbody> </table> ``` ### Trade cost equation Determines costs and revenues from buying or selling carriers on an external market. ```@raw html <table class="tabelle"> <tbody> <tr> <td><strong>name</strong></td> <td>costTrdBuy</td> <td>costTrdSell</td> </tr> <tr> <td><strong>dimension</strong></td> <td colspan="2"; style="text-align:center">$Ts_{sup}$, $R_{exp}$, $C$</td> </tr> <tr> <td rowspan="2"><strong>formulation</strong></td> <td style="text-align:left;border-bottom:none;padding-bottom:0px"> $ \scriptstyle \bm{costTrdBuy} \, = $ </td> <td style="text-align:left;border-bottom:none;padding-bottom:0px"> $ \scriptstyle \bm{costTrdSell} \, = $ </td> </tr> <tr> <td style="text-align:right;border-right:none;border-top:none;padding-top:0px"> $ \scriptstyle \sum discFac \, \cdot \, trdBuyPrc \, \cdot \, \bm{trdBuy} \, \cdot \, 10^3 $ </td> <td style="text-align:right;border-top:none;padding-top:0px"> $ \scriptstyle \sum discFac \, \cdot \, trdSellPrc \, \cdot \, \bm{trdSell} \, \cdot \, 10^3 $ </td> </tr> <tr> <td><strong>parameter</strong></td> <td colspan="2"; style="text-align:left;padding-left:13.2em"> <ul class="liste"> <li><a href="../parameter_list/#Discount-rate-1">discount rate</a></li> <li><a href="../parameter_list/#Trade-price-1">trade price</a></li> </ul> </td> </tr> <tr> <td><strong>variables</strong></td> <td colspan="2"; style="text-align:left;padding-left:13.2em"> <ul class="liste"> <li><a href="../variables/#Buy-and-sell-1">buy and sell</a></li> <li><a href="../variables/#Trade-cost-1">trade cost</a></li> </ul> </td> </tr> <tr> <td><strong>part</strong></td> <td colspan="2"; style="text-align:center"><a href="../parts/#Objective-1">objective</a></td> </tr> </tbody> </table> ``` ### Curtailment and loss-of-load cost equation Determines costs of curtailment and unmet demand. ```@raw html <table class="tabelle"> <tbody> <tr> <td><strong>name</strong></td> <td>costCrt</td> <td>costLss</td> </tr> <tr> <td><strong>dimension</strong></td> <td colspan="2"; style="text-align:center">$Ts_{sup}$, $R_{exp}$, $C$</td> </tr> <tr> <td rowspan="2"><strong>formulation</strong></td> <td style="text-align:left;border-bottom:none;padding-bottom:0px"> $ \scriptstyle \bm{costCrt} \, = $ </td> <td style="text-align:left;border-bottom:none;padding-bottom:0px"> $ \scriptstyle \bm{costLss} \, = $ </td> </tr> <tr> <td style="text-align:right;border-right:none;border-top:none;padding-top:0px"> $ \scriptstyle \sum discFac \, \cdot \, costCrt \, \cdot \, \bm{crt} \, \cdot \, 10^3 $ </td> <td style="text-align:right;border-top:none;padding-top:0px"> $ \scriptstyle \sum discFac \, \cdot \, costLss \, \cdot \, \bm{lss} \, \cdot \, 10^3 $ </td> </tr> <tr> <td><strong>parameter</strong></td> <td colspan="2"; style="text-align:left;padding-left:5.3em"> <ul class="liste"> <li><a href="../parameter_list/#Discount-rate-1">discount rate</a></li> <li><a href="../parameter_list/#Cost-of-curtailment-and-loss-of-load-1">cost of curtailment and loss of load</a></li> </ul> </td> </tr> <tr> <td><strong>variables</strong></td> <td colspan="2"; style="text-align:left;padding-left:5.3em"> <ul class="liste"> <li><a href="../variables/#Curtailment-and-loss-of-load-1">curtailment and loss-of-load</a></li> <li><a href="../variables/#Curtailment-and-loss-of-load cost-1">curtailment and loss-of-load cost</a></li> </ul> </td> </tr> <tr> <td><strong>part</strong></td> <td colspan="2"; style="text-align:center"><a href="../parts/#Objective-1">objective</a></td> </tr> </tbody> </table> ``` # Limiting constraints ```@raw html <p class="norm"> Limiting constraints are largely shaped by the corresponding limit parameters on <a href="../parameter_list/#Limits-on-quantities-dispatched">quantities dispatched</a>, <a href="../parameter_list/#Limits-on-expansion-and-capacity">expansion and capacity</a>, and by the <a href="../parameter_list/#Emission-limit">emission limit</a>. </p> <p class="norm"> The name of the constraint will correspond to the name of the respective parameter. Dimension and formulation depend on the way parameter data was provided, as explained <a href="../parameter_list/#Limits-on-quantities-dispatched">here</a>. Lastly, all constraints are stored in the <a href="../parts/#Limit">limit part</a>. </p> ```
AnyMOD
https://github.com/leonardgoeke/AnyMOD.jl.git
[ "MIT" ]
0.1.12
46a00c75bb6eb7fdaf5b15d75e9a544c0f91484d
docs
10415
```@raw html <style> table.tabelle2 td { padding-left: 0.57em; padding-right: 0.57em; border-right: solid 1px; border-color: #dbdbdb; font-size: small; } ul.liste { list-style-position: outside; padding-left: 1em; margin-left: 0em; margin-top: 0em; white-space: nowrap; display:inline-block; text-align: left; } </style> ``` # Data files AnyMOD includes several functions to obtain the results of a solved model. # Analysed results Different analysis can be printed with the `reportResults` functions depending on the `reportType` keyword. ```julia reportResults(reportType::Symbol, model_object::anyModel; rtnOpt::Tuple = (:csv,)) ``` The keyword argument `rtnOpt` controls the output format. Available options are: - `:csv`: writes a "readable" `.csv` file - `:csvDf`: returns the same "readable" data as a DataFrame - `:raw`: writes a `.csv` file with "raw" data, this means sets are not indicated by their name, but their internal id - `:rawDf`: returns the same "raw" data as a DataFrame ### Summary Using the `reportType` keyword `:summary` will provide a general overview of results. If the optional argument `wrtSgn` is set to `true`, output quantities (e.g. use or storage input) are given a negative sign. The table below lists all variables included. ```@raw html <table class="tabelle2"> <tbody> <tr> <td><strong>explanation</strong></td> <td style="border-right:none"><strong>definition</strong></td> </tr> <tr> <td><code>exp{Conv/StIn/StOut/StSize}</code></td> <td style="border-right:none"><ul class="liste"> <li><a href="../variables/#Expansion-1">expansion variable</a></li> </ul></td> </tr> <tr> <td><code>capa{Conv/StIn/StOut/StSize}</code></td> <td style="border-right:none"><ul class="liste"> <li><a href="../variables/#Installed-capacity-1">installed capacity variable</a></li> </ul></td> </tr> <tr> <td><code>oprCapa{Conv/StIn/StOut/StSize}</code></td> <td style="border-right:none"><ul class="liste"> <li><a href="../variables/#Operated-capacity-1">operated capacity variable</a></li> </ul></td> </tr> <tr> <td><code>demand</code></td> <td style="border-right:none"><ul class="liste"> <li>aggregated <a href="../parameter_list/#Demand-1">demand parameter</a></li> </ul></td> </tr> <tr> <td><code>use</code> & <code>gen</code></td> <td style="border-right:none"><ul class="liste"> <li>aggregated <a href="../variables/#Generation-and-use-1">generation and use variables</a></li> </ul></td> </tr> <tr> <td><code>stIn</code> & <code>stOut</code></td> <td style="border-right:none"><ul class="liste"> <li>aggregated <a href="../variables/#Charging-and-discharging-1">charging and discharging variables</a> (both in- and external)</li> </ul></td> </tr> <tr> <td><code>stExt{In/Out}</code> & <code>stInt{In/Out}</code></td> <td style="border-right:none"><ul class="liste"> <li>aggregated <a href="../variables/#Charging-and-discharging-1">charging and discharging variables</a></li> </ul></td> </tr> <tr> <td><code>import</code> & <code>export</code></td> <td style="border-right:none"><ul class="liste"> <li>net aggregation of <a href="../variables/#Exchange-1">exchange variables</a></li> </ul></td> </tr> <tr> <td><code>trdBuy</code> & <code>trdSell</code></td> <td style="border-right:none"><ul class="liste"> <li>aggregated <a href="../variables/#Buy-and-sell-1">buy and sell variables</a></li> </ul></td> </tr> <tr> <td><code>crt</code> & <code>lss</code></td> <td style="border-right:none"><ul class="liste"> <li>aggregated <a href="../variables/#Curtailment-and-loss-of-load-1">curtailment and loss-of-load variables</a></li> </ul></td> </tr> <tr> <td><code>emission</code></td> <td style="border-right:none"><ul class="liste"> <li>aggregated emissions</li> <li>defined as $emFac \cdot \bm{use} \cdot 10^3$</li> </ul></td> </tr> <tr> <td><code>flhConv</code></td> <td style="border-right:none"> <ul class="liste"> <li>measure of conversion capacity utilization</li> <li>defined as $\frac{oprCapaConv}{\sum use + stIntOut}$ or $\frac{oprCapaConv}{\sum gen + stIntIn}$ if no carriers are used</li> </ul> </td> </tr> <tr> <td><code>flhStIn</code></td> <td style="border-right:none"> <ul class="liste"> <li>measure of capacity utilization regarding storage input</li> <li>defined as $\frac{oprCapaStIn}{\sum stExtIn + stIntIn}$</li> </ul> </td> </tr> <tr> <td><code>flhStOut</code></td> <td style="border-right:none"> <ul class="liste"> <li>measure of capacity utilization regarding storage output</li> <li>defined as $\frac{oprCapaStOut}{\sum stExtOut + stIntOut}$</li> </ul> </td> </tr> <tr> <td><code>cycStIn</code></td> <td style="border-right:none"> <ul class="liste"> <li>measure to characterize utilization of storage size based on charged quantities</li> <li>small values indicate long- and large values short-term storage</li> <li>defined as $\frac{oprCapaStSize}{\sum stExtIn + stIntIn}$</li> </ul> </td> </tr> <tr> <td><code>cycStOut</code></td> <td style="border-right:none"> <ul class="liste"> <li>measure to characterize utilization of storage size based on discharged quantities</li> <li>small values indicate long- and large values short-term storage</li> <li>defined as $\frac{oprCapaStSize}{\sum stExtOut + stIntOut}$</li> </ul> </td> </tr> </tbody> </table><h3 id="Exchange"><a class="docs-heading-anchor" href="#Exchange">Exchange</a><a id="Exchange-1"></a><a class="docs-heading-anchor-permalink" href="#Exchange" title="Permalink"></a></h3><p>The keyword <code>:exchange</code> gives detailed results on exchange capacities and quantities. Again, reported variables are listed below.</p><table class="tabelle2"> <tbody> <tr> <td><strong>explanation</strong></td> <td style="border-right:none"><strong>definition</strong></td> </tr> <tr> <td><code>expExc</code></td> <td style="border-right:none"><ul class="liste"> <li><a href="../variables/#Expansion-1">exchange expansion variable</a></li> </ul></td> </tr> <tr> <td><code>capaExc</code></td> <td style="border-right:none"><ul class="liste"> <li><a href="../variables/#Installed-capacity-1">installed exchange capacity variable</a></li> </ul></td> </tr> <tr> <td><code>oprCapaExc</code></td> <td style="border-right:none"><ul class="liste"> <li><a href="../variables/#Operated-capacity-1">operated exchange capacity variable</a></li> </ul></td> </tr> <tr> <td><code>flhExc</code></td> <td style="border-right:none"><ul class="liste"> <li>utilization of exchange capacities</li> <li>defined as $\frac{oprCapaExc}{exc}$</li> </ul></td> </tr> <tr> <td><code>exc</code></td> <td style="border-right:none"><ul class="liste"> <li><a href="../variables/#Exchange-1">exchange variables</a></li> </ul></td> </tr> </tbody> </table> ``` ### Costs ```@raw html The keyword <code>:costs</code> provides the values of all <a href="../variables/#Costs">cost variables</a>. All costs are provided in million Euros. ``` # Time-series The `reportTimeSeries` function writes a table with the values of all elements occuring in the energy balance of a respective `carrier`. ```julia reportTimeSeries(carrier::Symbol, model_object::anyModel) ``` Optional arguments include: ```@raw html <table class="tabelle2"> <tbody> <tr> <td><strong>argument</strong></td> <td><strong>explanation</strong></td> <td><strong>default</strong></td> </tr> <tr> <td><code>filterFunc</code></td> <td> <ul class="liste"> <li>function to filter certain time-series data</li> <li>for example <code>x -> x.R_dis == 1</code> will only provide time-series data for the region with id 1 (see <br> documentation of <a href="../api/#AnyMOD.Tree"><code>tree objects</code></a> on how to obtain ids)</li> </ul> </td> <td><code>x -> true</code></td> </tr> <tr> <td><code>unstck</code></td> <td> <ul class="liste"> <li>controls if data is provided as an unstacked table or in pivot format</li> </ul> </td> <td><code>true</code></td> </tr> <tr> <td><code>signVar</code></td> <td> <ul class="liste"> <li>specifies groups of variables to write to output table</li> <li><code>:in</code> refers to energy inputs (e.g. <a href="../variables/#Generation-and-use-1">generated</a> or <a href="../variables/#Buy-and-sell-1">bought</a> quantities) and <code>:out</code> refers to energy out- <br> puts (e.g. <a href="../variables/#Generation-and-use-1">used</a>, <a href="../parameter_list/#Demand-1">demanded</a>, or <a href="../variables/#Buy-and-sell-1">sold</a> quantities)</li> </ul> </td> <td><code>(:in,:out)</code></td> </tr> <tr> <td><code>mergeVar</code></td> <td> <ul class="liste"> <li>if set to <code>false</code> results for energy in- and output are written to separate files</li> </ul> </td> <td><code>true</code></td> </tr> <tr> <td><code>minVal</code></td> <td> <ul class="liste"> <li>threshold for values to be included</li> <li>useful to filter out really small but non-zero values that result from using Barrier without Crossover</li> </ul> </td> <td><code>1e-3</code></td> </tr> <tr> <td><code>rtnOpt</code></td> <td> <ul class="liste"> <li>controls the output format as documentated for <a href="#Analysed-results">Analysed results</a></li> </ul> </td> <td><code>(:csv,)</code></td> </tr> </tbody> </table> ``` # Individual elements ```@raw html <p class="norm"> In addition to the <code>reportResults</code> and <code>reportTimeSeries</code> that aggregate various model elements and report on them, individual variables or constraints can also be printed directly. In this case, the DataFrames used to store variables and constraints within the <a href="../api/#AnyMOD.TechPart"><code>model part</code></a> objects serve as inputs. </p> ``` The `printObject` function writes a copy of the respective inputted DataFrame, but replaces the internal node ids with their written name. ```julia printObject(element::DataFrame, model_object::anyModel) ``` For variables, the table will provide their value and for constraints the corresponding constraint expression. The `printDuals` function works analogously, but returns the duals or shadow prices for the respective elements. ```julia printDuals(element::DataFrame, model_object::anyModel) ``` ```@raw html <p class="norm"> For both functions the optional arguments <code>filterFunc</code> and <code>rtnOpt</code> as introduced for <a href="#Analysed-results">Analysed results</a> and <a href="#Time-series">Time series</a> are available. In addition, the argument <code>fileName</code> can be used to specify the name of the output file. </p> ```
AnyMOD
https://github.com/leonardgoeke/AnyMOD.jl.git
[ "MIT" ]
0.1.12
46a00c75bb6eb7fdaf5b15d75e9a544c0f91484d
docs
2545
```@raw html <style> table.tabelle2 td { padding-left: 0.57em; padding-right: 0.57em; border-right: solid 1px; border-color: #dbdbdb; font-size: small; } ul.liste { list-style-position: outside; padding-left: 1em; margin-left: 0em; margin-top: 0em; white-space: nowrap; display:inline-block; text-align: left; } </style> ``` # Error handling To report on errors during model initialization and construction, status reports are printed into the console and a detailed report is written to the output directory. In the report are three different types of entries: ```@raw html <ul class="liste"> <li><span style="color:rgb(0,188,0);font-weight:bold">green</span>: information on some automated modelling decision</li> <li><span style="color:rgb(240,237,27);font-weight:bold">yellow</span>: some aspects of the model setup look suspicious</li> <li><span style="color:rgb(205,49,49);font-weight:bold">red</span>: current model setup contains logical inconsistencies and will lead to an infeasible model</li> </ul> <p class="norm"> Entries of the third kind will throw an error and cause termination. If for example a wrong name is provided for the <a href="../parameter_list/#Emission-factor-1">emission factor</a> parameter in <a href="https://github.com/leonardgoeke/AnyMOD.jl/blob/master/examples/demo/par_emissions.csv"><code>par_emissions.csv</code></a>, the following reporting file results: </p> <table class="tabelle2"> <tbody> <tr> <td><strong>errStatus</strong></td> <td><strong>section</strong></td> <td><strong>location</strong></td> <td style="border-right:none"><strong>message</strong></td> </tr> <tr> <td><p style="color:rgb(0,188,0)">green</p></td> <td>carrier mapping</td> <td></td> <td style="border-right:none">carrier heat inherited resolution from children</td> </tr> <tr> <td><p style="color:rgb(0,188,0)">green</p></td> <td>carrier mapping</td> <td></td> <td style="border-right:none">carrier gas inherited resolution from children</td> </tr> <tr> <td><p style="color:rgb(205,49,49)">red</p></td> <td>parameter read-in</td> <td>definition</td> <td style="border-right:none">parameter with the name emissionFactor does not exist</td> </tr> </tbody> </table> <p class="norm"> Optional arguments of the <a href="../model_object">model constructor</a> can be set to values between 1 and 3 to adjust the frequency of reporting: </p> ``` - `reportLvl`: frequency of writing updates to the console - `errWrtLvl`: frequency of writing to the report file - `errCheckLvl`: frequency of checking for errors
AnyMOD
https://github.com/leonardgoeke/AnyMOD.jl.git
[ "MIT" ]
0.1.12
46a00c75bb6eb7fdaf5b15d75e9a544c0f91484d
docs
6908
# AnyMOD [AnyMOD.jl](https://github.com/leonardgoeke/AnyMOD.jl) is a [Julia](https://julialang.org/) framework for creating large scale energy system models with multiple periods of capacity expansion formulated as linear optimization problems. It was developed to address the challenges in modelling high-levels of intermittent generation and sectoral integration. A comprehensive description of the framework's graph based methodology can found in the working paper [Göke (2020), A graph-based formulation for modeling macro-energy systems](https://arxiv.org/abs/2004.10184). The software itself is separately introduced in [Göke (2020), AnyMOD.jl: A Julia package for creating energy system models](https://arxiv.org/abs/2011.00895). AnyMODs key characteristic is that all sets (time-steps, regions, energy carriers, and technologies) are organized within a hierarchical tree structure. This enables two unique features: * The level of temporal and spatial granularity can be varied by energy carrier. For instance, electricity can be modeled with hourly resolution, while supply and demand of gas is balanced daily. As a result, a substantial decrease of computational effort can be achieved. In addition, flexibility inherent to the system, for example in the gas network, can be accounted for. * The degree to which energy carriers are substitutable when converted, stored, transported, or consumed can be modeled to achieve a detailed but flexible representation of sector integration. As an example, residential and district heat can both equally satisfy heat demand, but technologies to produce these carriers are different. The framework uses [DataFrames](https://juliadata.github.io/DataFrames.jl/stable/) to store model elements and relies on [JuMP](https://github.com/JuliaOpt/JuMP.jl) as a back-end. In addition, Julia's multi-threading capabilities are heavily deployed to increase performance. Since models entirely consist of .csv files, they can be developed open and collaboratively using version control (see [Model repositories](@ref) for examples). # Installation The current version of [AnyMOD](https://github.com/leonardgoeke/AnyMOD.jl) was developed for [Julia 1.3.1](https://julialang.org/downloads/oldreleases/). AnyMOD is installed by switching into Julia's package mode by typing `]` into the console and then execute `add AnyMOD`. # Getting started To introduce the packages’ workflow and core functions, a small-scale example model is created, solved and analyzed. The files of this model can either be found in the installation directory of the package (`user/.julia/packages/AnyMOD/.../examples`) or manually loaded from the [GitHub repository](https://github.com/leonardgoeke/AnyMOD.jl/tree/master/examples/demo). Before we can start working with AnyMOD, it needs to be imported via the `using` command. Afterwards, the function `anyModel` constructs an AnyMOD model object by reading in the `.csv` files found within the directory specified by the first argument. The second argument specifies a directory all model outputs are written to. Furthermore, default model options can be overwritten via optional arguments. In this case, the optional argument `objName` is used to name the model "demo". This name will appear during reporting and added to each output file. The optional argument `shortExp` defines the span of year between different time-steps of capacity expansion. ```julia using AnyMOD model_object = anyModel("../demo","results", objName = "demo", shortExp = 10) ``` During the construction process, all input files are read-in and checked for errors. Afterwards sets are mapped to each other and parameter data is assigned to the different model parts. During the whole process status updates are printed to the console and comprehensive reports are written to a dedicated `.csv` file. Since after construction, all qualitative model information, meaning all sets and their interrelations, is written, several graphs describing a models´ structure can be plotted. ```julia plotTree(:region, model_object) plotTree(:carrier, model_object) plotTree(:technology, model_object, plotSize = (28.0,5.0)) plotEnergyFlow(:graph, model_object) ``` All of these plots will be written to the specified results folder. The first three graphs plotted by `plotTree` show the rooted tree defining the sets of regions, carriers, and technologies, respectively. As an example, the rooted tree for carriers is displayed below. ![](assets/carrier.png) The fourth graph created by using `plotEnergyFlow` with keyword `:graph` gives a qualitative overview of all energy flows within a model. Nodes either correspond to technologies (grey dots) or energy carriers (colored squares). Edges between technology and energy carrier nodes indicate the carrier is either an input (entering edge) or an output (leaving edge) of the respective technology. Edges between carriers indicate the same relationships as displayed in the tree above. ![](assets/energyFlowGraph.png) To create the variables and constraints of the model's underlying optimization problem, the model object is passed to the `createOptModel!` function. Afterwards, the `setObjective!` function is used to set the objective function for optimizing. The function requires a keyword input to indicate what is optimized, but so far only `:costs` has been implemented. Again, updates and reports are written to the console and to a dedicated reporting file. ```julia createOptModel!(model_object) setObjective!(:costs, model_object) ``` To actually solve the created optimization problem, the field of the model structure containing the corresponding JuMP object is passed to the functions of the [JuMP](https://github.com/JuliaOpt/JuMP.jl) package used for this purpose. The JuMP package itself is part of AnyMOD’s dependencies and therefore does not have to be added separately, but the solver does. In this case we used Gurobi, but CPLEX or a non-commercial solver could have been used as well. ```julia using Gurobi set_optimizer(model_object.optModel, Gurobi.Optimizer) optimize!(model_object.optModel) ``` Once a model is solved, results can be obtained and analyzed by the following functions: ```julia reportResults(:summary, model_object) reportTimeSeries(:electricity, model_object) plotEnergyFlow(:sankey, model_object) ``` Depending on the keyword provided, `reportResults` writes aggregated results to a csv file. `:summary` gives an overview of installed capacities and yearly use and generation of energy carriers. Other keywords available are `:costs` and `:exchange`. `reportTimeSeries` will write the energy balance and the value of each term within the energy balance of the carrier provided as a keyword. Finally, `plotEnergyFlow` used with the keyword `:sankey` creates a sankey diagram that visualizes the quantitative energy flows in the solved model. ![](assets/sankey.png)
AnyMOD
https://github.com/leonardgoeke/AnyMOD.jl.git
[ "MIT" ]
0.1.12
46a00c75bb6eb7fdaf5b15d75e9a544c0f91484d
docs
8905
```@raw html <style> table.tabelle2 td { padding-left: 0.57em; padding-right: 0.57em; border-right: solid 1px; border-color: #dbdbdb; font-size: small; } ul.liste { list-style-position: outside; padding-left: 1em; margin-left: 0em; margin-top: 0em; white-space: nowrap; display:inline-block; text-align: left; } pre.inline { display: inline; } </style> ``` # Model object ```@raw html <p class="norm"> The <a href="../api/#AnyMOD.anyModel"><code>anyModel</code></a> object is the overarching structure that contains all data and objects of particular energy system model created with AnyMOD. </p> ``` ```julia anyModel(inDir::Union{String,Array{String,1}}, outDir::String; kwargs) ``` ## In- and output files ```@raw html <p class="norm"> The constructor function above has two mandatory arguments that the directories for in- and output files. <code class="language-julia">inDir::Union{String,Array{String,1}}</code> specifies the directory (or directories) of input files. This can either be a string or an array of strings if input files are spread across different directories. </p> <p class="norm"> All <code>.csv</code> files within the provided directories (and their sub-directories) starting with <code>set_</code> or <code>par_</code> will be read-in as an input file. Other files are ignored and can be used for documentation. Within the specific files, only columns whose name contains one of the following keywords are actually read-in: <code>parameter</code>, <code>variable</code>, <code>value</code>, <code>id</code>, <code>region</code>, <code>timestep</code>, <code>carrier</code>, <code>technology</code>, and <code>mode</code>. Other columns can be used freely for documentation. </p> ``` !!! warning "Reserved keywords" Within the input files `all` is a reserved keyword. For an explanation on how it is used, see [Time-steps](@ref). ```@raw html <p class="norm"> <code class="language-julia">outDir::String</code>: defines the directory of output files. All reporting files including status reports, results, or graphs are written to this directory. </p> ``` ## Optional arguments Additionally, the constructor accepts a list of optional arguments listed in the table below. ```@raw html <table class="tabelle2"> <tbody> <tr> <td><strong>argument</strong></td> <td><strong>explanation</strong></td> <td><strong>default</strong></td> <td style="border-right:none"><strong>group</strong></td> </tr> <tr> <td><code>objName</code></td> <td> <ul class="liste"> <li>internal name of the model object</li> <li>added to the name of output files and printed during reporting</li> </ul> </td> <td><code>""</code></td> <td rowspan="2"; style="border-right:none">data handling</td> </tr> <tr> <td><code>csvDelim</code></td> <td> <ul class="liste"> <li>specifies the delimiter used within the read-in csv files</li> </ul> </td> <td><code>","</code></td> </tr> <tr> <td><code>shortExp</code></td> <td> <ul class="liste"> <li>interval in years between steps of capacity expansion</li> </ul> </td> <td><code>10</code></td> <td rowspan="5"; style="border-right:none">model generation</td> </tr> <tr> <td><code>supTsLvl</code></td> <td> <ul class="liste"> <li>depth in the tree of time-steps that defines the superordinate dispatch level (usually years)</li> </ul> </td> <td><code>0</code></td> <tr> <td><code>redStep</code></td> <td> <ul class="liste"> <li>scales down energy quantities within the model, relevant when working <br> with reduced time-series</li> </ul> </td> <td><code>1.0</code></td> </tr> <tr> <td><code>decomm</code></td> <td> <ul class="liste"> <li>controls if the model performs endogenous decommissioning, see <a href="#Decommissioning-of-operated-capacitiy">decommissioning <br> constraints</a> for implementation</li> <li>available options are: <ul style="margin-top:0px"> <li style="margin-top:0px"><code>decomm</code>: capacities are decommissioned endogenously, once decommissioned <br> capacities cannot be put into operation again </li> <li><code>recomm</code>: no endogenous decommissioning, operated capacities equal installed capacities</li> <li><code>none</code>: capacities are decommissioned endogenously and can be put back into operation</li> </ul> </ul> </ul> </td> <td><code>:decomm</code></td> </td> </tr> <tr> <td><code>interCapa</code></td> <td> <ul class="liste"> <li>capacity expansion can be modeled at a resolution less detailed than yearly, this option <br> determines how capacities are distributed among the subsequent years in this case</li> <li>available options are: <ul style="margin-top:0px"> <li style="margin-top:0px"><code>linear</code>: expansion is equally distributed among years resulting in a linear increase</li> <li><code>none</code>: all expansion occurs in the first year</li> </ul> </ul> </ul> </td> <td><code>:linear</code></td> </td> </tr> <tr> <td><code>reportLvl</code></td> <td> <ul class="liste"> <li>controls the frequency of writing updates to the console</li> </ul> </td> <td><code>2</code></td> </td> <td rowspan="3"; style="border-right:none"> <a href="../error/#Error-handling">reporting</a> </td> </tr> <tr> <td><code>errCheckLvl</code></td> <td> <ul class="liste"> <li>controls the frequency of checking for errors</li> </ul> </td> <td><code>2</code></td> </td> </tr> </tr> <tr> <td><code>errWrtLvl</code></td> <td> <ul class="liste"> <li>controls the frequency of writing to the report file</li> </ul> </td> <td><code>1</code></td> </tr> <tr> <td><code>avaMin</code></td> <td> <ul class="liste"> <li>availabilities smaller than this value are set to zero</li> <li>avoids high coefficients in <a href="../constraints/#Conversion-capacity-restriction">conversion</a> and <a href="../constraints/#Storage-capacity-restriction">storage capacity restriction</a>, because availabilities <br> are inversed (see <a href="../performance/#Range-of-factors">Range of factors</a>)</li> </ul> </td> <td><code>0.01</code></td> <td rowspan="6"; style="border-right:none;border-bottom:none"> <a href="../performance/#Performance-and-stability">performance and stability</a> </td> </tr> <tr> <td><code>emissionLoss</code></td> <td> <ul class="liste"> <li>determines if losses from exchange and self-discharge of storage are subject to emissions <br> (see <a href="../performance/#Range-of-factors">Range of factors</a>)</li> </ul> </td> <td><code>true</code></td> </tr> <tr> <td><code>checkRng</code></td> <td> <ul class="liste"> <li>if set, reports all constraints whose range exceeds the specified value</li> <li>type is <code>Float64</code></li> </ul> </td> <td><code>NaN</code></td> </tr> <tr> <td><code>scaFac</code></td> <td colspan = "2"> <ul class="liste"> <li>scales different groups of variables within the model</li> <li>format for argument is <code>(capa = 1e1, oprCapa = 1e2, dispConv = 1e3, ...)</code> </li> <li>see <a href="../performance/#Scaling">Column scaling</a> for details and defaults</li> </ul> </tr> <tr> <td><code>coefRng</code></td> <td colspan = "2"> <ul class="liste"> <li>specifies the maximum range of coefficients in the matrix and right-hand side of the model's underlying <br> optimization problem</li> <li>format for argument is <code>(mat = (1e-2,1e5), rhs = (1e-2,1e2))</code></li> <li>see <a href="../performance/#Scaling">Row scaling</a> for details and defaults</li> </ul> </td> </td> </tr> <tr> <td><code>bound</code></td> <td colspan = "2"> <ul class="liste"> <li>sets external bounds for all capacities and dispatch variables (in GW) and for the objective value (in Mil. €)</li> <li>see <a href="../performance/#Variable-limits">Variable limits</a> for details and defaults</li> <li>format for argument is <code>(capa = NaN, disp = NaN, obj = NaN)</code></li> </ul> </td> </tr> </tr> </tbody> </table> ``` ## Fields ```@raw html Relevant fields of the model object include: <ul> <li><code class="language-julia">sets::Dict{Symbol,Tree}</code>: sets defined within the model and their tree structure each saved as <a href="../api/#AnyMOD.Tree"><code>Tree</code></a> object (see <a href="../sets_and_mappings">Sets and mappings</a> for details)</li> <li><code class="language-julia">parts::NamedTuple</code>: all parts of the model, these contain the specific parameters, variables, and constraints (see <a href="../parts">Parts</a> for details)</li> <li><code class="language-julia">report::Array{Tuple,1}</code>: entries for writing to the reporting file (see <a href="../error/#Error-handling">Error handling</a> for details)</li> <li><code class="language-julia">graInfo::graInfo</code>: properties for creation of plots and graphics, can be used to adjust colors and labels (see <a href="../plots/#Styling">Styling</a> for details)</li> <li><code class="language-julia">optModel::Model</code>: the actual <a href="https://github.com/JuliaOpt/JuMP.jl">JuMP</a> object of the models underlying optimization problem</li> </ul> ```
AnyMOD
https://github.com/leonardgoeke/AnyMOD.jl.git
[ "MIT" ]
0.1.12
46a00c75bb6eb7fdaf5b15d75e9a544c0f91484d
docs
69429
```@raw html <style> table.tabelle2 td { padding-left: 0.57em; padding-right: 0.57em; border-right: solid 1px; border-bottom: none; border-color: #dbdbdb; font-size: small; font-weight: normal; } table.tabelle td { border-left: 1px solid; border-color: #dbdbdb; } table.tabelle td:first-child { border-right: 2.5px solid; border-color: #dbdbdb; border-left: none; } ol.liste { list-style-position: inside; margin-left: 0em; margin-top: 0em; white-space: nowrap; display:inline-block; text-align: left; } ul.liste { list-style-position: inside; margin-left: 0em; margin-top: 0em; white-space: nowrap; display:inline-block; text-align: left; } </style> ``` # Parameter list In the following all parameters available in AnyMOD are listed. Information includes the name used in the input files and throughout the model, the parameters' unit, its dimensions according to the symbols introduced in [Sets and Mappings](@ref), the default value and the inheritance rules. In addition, related model elements and the part a parameter is assigned are documented. # Dispatch of technologies The parameters listed here describe the conversion and storage of energy carriers by technologies. As a result, each of these parameters can vary by operational mode. If any mode specific values are provided, these replace mode unspecific data. The following two diagrams serve as a remainder on how conversion and storage are generally modeled in AnyMOD. ```@raw html <p style="text-align:center;"><img src="../assets/convTech.svg" width="64%"/> <p style="text-align:center;"><img src="../assets/stTech.svg" width="80%"/> ``` ### Availability Technical availability of the operated capacity. Since operated capacity is split into conversion, storage-input, storage-output, and storage-size, the same distinction applies to availabilities. ```@raw html <table class="tabelle"> <tbody> <tr> <td><strong>name</strong></td> <td>avaConv</td> <td>avaSt{In/Out/Size}</td> </tr> <tr> <td><strong>unit</strong></td> <td colspan="2"; style="text-align:center">percent as decimal</td> </tr> <tr> <td><strong>dimension</strong></td> <td>$Ts_{dis}$, $Ts_{exp}$, $R_{dis}$, $Te$, $M$</td> <td>$Ts_{dis}$, $Ts_{exp}$, $R_{dis}$, $C$, $Te$, $M$</td> </tr> <tr> <td><strong>default value</strong></td> <td colspan="2"; style="text-align:center">1.0</td> </tr> <tr> <td rowspan="2"><strong>inheritance rules</strong></td> <td colspan="2"; style="text-align:center;border-bottom:none;padding-bottom:0.1875em"> <ol class="liste"> <li>$Ts_{exp}$ &#8594; <em>upwards</em></li> <li>$Ts_{dis}$ &#8594; <em>upwards</em></li> <li>$R_{dis}$ &#8594; <em>upwards</em></li> </ol> </td> </tr> <tr> <td colspan="1"; style="text-align:center;border-right:none;border-top:none;padding-top:0px"> <ol class="liste"; start="4"> <li>$Te$ &#8594; <em>upwards</em></li> <li>$Ts_{dis}$ &#8594; <em>average</em></li> <li>$R_{dis}$ &#8594; <em>average</em></li> </ol> </td> <td colspan="1"; style="text-align:center;padding-top:0px"> <ol class="liste"; start="4"> <li>$C$ &#8594; <em>upwards</em></li> <li>$Te$ &#8594; <em>upwards</em></li> <li>$Ts_{dis}$ &#8594; <em>average</em></li> <li>$R_{dis}$ &#8594; <em>average</em></li> </ol> </td> </tr> <tr> <td><strong>related elements</strong></td> <td> <ul class="liste"> <li><a href="../constraints/#Conversion-capacity-restriction-1">conversion capacity restriction</a></li> <li><a href="../variables/#Generation-and-use-1">conversion variables</a> only created <br> where availability is not zero</li> </ul> </td> <td> <ul class="liste"> <li><a href="../constraints/#Storage-capacity-restriction-1">storage capacity restriction</a></li> <li><a href="../variables/#Charging-and-discharging-1">storage variables</a> only created <br> where availability is not zero</li> </ul> </td> </tr> <tr> <td><strong>part</strong></td> <td colspan="2"; style="text-align:center"><a href="../parts/#Technology-1">technology</a></td> </tr> </tbody> </table> ``` ### Efficiency Efficiency of converting or storing energy carriers. For conversion the parameter controls the ratio between in- and output carriers. For storage it determines the losses charging to and discharging from the storage system is subjected to. ```@raw html <table class="tabelle"> <tbody> <tr> <td><strong>name</strong></td> <td>effConv</td> <td>effSt{In/Out}</td> </tr> <tr> <td><strong>unit</strong></td> <td colspan="2"; style="text-align:center">percent as decimal</td> </tr> <tr> <td><strong>dimension</strong></td> <td>$Ts_{dis}$, $Ts_{exp}$, $R_{dis}$, $Te$, $M$</td> <td>$Ts_{dis}$, $Ts_{exp}$, $R_{dis}$, $C$, $Te$, $M$</td> </tr> <tr> <td><strong>default value</strong></td> <td colspan="2"; style="text-align:center">1.0</td> </tr> <tr> <td rowspan="2"><strong>inheritance rules</strong></td> <td colspan="2"; style="text-align:center;border-bottom:none;padding-bottom:0.1875em"> <ol class="liste"> <li>$Ts_{exp}$ &#8594; <em>upwards</em></li> <li>$Ts_{dis}$ &#8594; <em>upwards</em></li> <li>$R_{dis}$ &#8594; <em>upwards</em></li> </ol> </td> </tr> <tr> <td colspan="1"; style="text-align:center;border-right:none;border-top:none;padding-top:0px"> <ol class="liste"; start="4"> <li>$Te$ &#8594; <em>upwards</em></li> <li>$Ts_{dis}$ &#8594; <em>average</em></li> <li>$R_{dis}$ &#8594; <em>average</em></li> </ol> </td> <td colspan="1"; style="text-align:center;padding-top:0px"> <ol class="liste"; start="4"> <li>$C$ &#8594; <em>upwards</em></li> <li>$Te$ &#8594; <em>upwards</em></li> <li>$Ts_{dis}$ &#8594; <em>average</em></li> <li>$R_{dis}$ &#8594; <em>average</em></li> </ol> </td> </tr> <tr> <td><strong>related elements</strong></td> <td> <ul class="liste"> <li><a href="../constraints/#Conversion-balance-1">conversion balance</a></li> <li><a href="../constraints/#Conversion-capacity-restriction-1">conversion capacity restriction</a></li> </ul> </td> <td> <ul class="liste"> <li><a href="../constraints/#Storage-balance-1">storage balance</a></li> </ul> </td> </tr> <tr> <td><strong>part</strong></td> <td colspan="2"; style="text-align:center"><a href="../parts/#Technology-1">technology</a></td> </tr> </tbody> </table> ``` ### Variable cost Costs imposed on different types of quantities dispatched. Note that for storage costs are incurred on quantities as specified in the diagram above. This means `stIn` quantities still include charging losses, while `stOut` quantities are already corrected for losses from discharging. ```@raw html <table class="tabelle"> <tbody> <tr> <td><strong>name</strong></td> <td>costVar{Use/Gen/StIn/StOut}</td> </tr> <tr> <td><strong>unit</strong></td> <td>€/MWh</td> </tr> <tr> <td><strong>dimension</strong></td> <td>$Ts_{dis}$, $Ts_{exp}$, $R_{dis}$, $C$, $Te$, $M$</td> </tr> <tr> <td><strong>default value</strong></td> <td>0.0</td> </tr> <tr> <td><strong>inheritance rules</strong></td> <td> <ol class="liste"> <li>$Ts_{exp}$ &#8594; <em>upwards</em></li> <li>$Ts_{dis}$ &#8594; <em>average</em></li> <li>$R_{dis}$ &#8594; <em>upwards</em></li> <li>$C$ &#8594; <em>upwards</em></li> <li>$Te$ &#8594; <em>upwards</em></li> <li>$Ts_{dis}$ &#8594; <em>upwards</em></li> <li>$Ts_{dis}$ &#8594; <em>average</em></li> <li>$R_{dis}$ &#8594; <em>average</em></li> </ol> </td></tr> <tr> <td><strong>related constraints</strong></td> <td> <ul class="liste"> <li><a href="../constraints/#Variable-cost-equation-1">variable cost equation</a></li> </ul> </td> </tr> <tr> <td><strong>part</strong></td> <td><a href="../parts/#Technology-1">technology</a></td> </tr> </tbody> </table> ``` ### Ratios of carrier use and generation Restricting the share of a single carrier on total use or generation. The share can either be fixed or imposed as a lower or upper limit. One practical example for the application of this parameter is modelling the power-to-heat ratio of cogeneration plants (see [`par_techDispatch.csv`](https://github.com/leonardgoeke/AnyMOD.jl/blob/master/examples/demo/par_techDispatch.csv)). ```@raw html <table class="tabelle"> <tbody> <tr> <td><strong>name</strong></td> <td>ratioEnerUse{Fix/Low/Up}</td> <td>ratioEnerGen{Fix/Low/Up}</td> </tr> <tr> <td><strong>unit</strong></td> <td colspan="2"; style="text-align:center">percent as decimal</td> </tr> <tr> <td><strong>dimension</strong></td> <td colspan="2"; style="text-align:center">$Ts_{dis}$, $Ts_{exp}$, $R_{dis}$, $C$, $Te$, $M$</td> </tr> <tr> <td><strong>default value</strong></td> <td colspan="2"; style="text-align:center">none</td> </tr> <tr> <td><strong>inheritance rules</strong></td> <td colspan="2"; style="text-align:center"> <ol class="liste"> <li>$Ts_{exp}$ &#8594; <em>upwards</em></li> <li>$Ts_{dis}$ &#8594; <em>average</em></li> <li>$R_{dis}$ &#8594; <em>upwards</em></li> <li>$Te$ &#8594; <em>upwards</em></li> <li>$Ts_{dis}$ &#8594; <em>upwards</em></li> </ol> </td></tr> <tr> <td><strong>related elements</strong></td> <td colspan="2"; style="text-align:center"> <ul class="liste"> <li><a href="../constraints/#Energy-ratio-restriction-1">energy ratio restriction</a></li> </ul> </td> </tr> <tr> <td><strong>part</strong></td> <td colspan="2"; style="text-align:center"><a href="../parts/#Technology-1">technology</a></td> </tr> </tbody> </table> ``` ### Storage self-discharge ```@raw html <p class="norm"> Automatic reduction of stored energy within a storage system. </p> <p class="norm"> If the stored carrier is assigned an <a href="../parameter_list/#Emission-factor-1">emission factor</a> and <a href="../model_object/#Optional-arguments-1"><code>emissionLoss</code></a> is set to <code>true</code>, these losses are subject to emissions. </p> <table class="tabelle"> <tbody> <tr> <td><strong>name</strong></td> <td>stDis</td> </tr> <tr> <td><strong>unit</strong></td> <td>percent as decimal per hour</td> </tr> <tr> <td><strong>dimension</strong></td> <td>$Ts_{dis}$, $Ts_{exp}$, $R_{dis}$, $C$, $Te$, $M$</td> </tr> <tr> <td><strong>default value</strong></td> <td>0.0</td> </tr> <tr> <td><strong>inheritance rules</strong></td> <td> <ol class="liste"> <li>$Ts_{exp}$ &#8594; <em>upwards</em></li> <li>$Ts_{dis}$ &#8594; <em>upwards</em></li> <li>$C$ &#8594; <em>upwards</em></li> <li>$R_{dis}$ &#8594; <em>upwards</em></li> <li>$Te$ &#8594; <em>upwards</em></li> <li>$Ts_{dis}$ &#8594; <em>average</em></li> <li>$R_{dis}$ &#8594; <em>average</em></li> </ol> </td></tr> <tr> <td><strong>related elements</strong></td> <td> <ul class="liste"> <li><a href="../constraints/#Storage-Balance-1">storage balance</a></li> </ul> </td> </tr> <tr> <td><strong>part</strong></td> <td><a href="../parts/#Technology-1">technology</a></td> </tr> </tbody> </table> ``` ### Storage inflow ```@raw html <p class="norm"> External charging of the storage system. Inflows can also be negative and are not subject to charging losses. </p> <p class="norm"> Flows have to be provided in power units and are converted into energy quantities according to the temporal resolution of the respective carrier (e.g. at a daily resolution 2 GW translate into of 48 GWh). This approach ensures parameters do not need to be adjusted when the temporal resolution is changed. The most important application of this parameter are natural inflows into hydro storages. </p> <table class="tabelle"> <tbody> <tr> <td><strong>name</strong></td> <td>stInflow</td> </tr> <tr> <td><strong>unit</strong></td> <td>GW</td> </tr> <tr> <td><strong>dimension</strong></td> <td>$Ts_{dis}$, $Ts_{exp}$, $R_{dis}$, $C$, $Te$, $M$</td> </tr> <tr> <td><strong>default value</strong></td> <td>0.0</td> </tr> <tr> <td><strong>inheritance rules</strong></td> <td> <ol class="liste"> <li>$Ts_{exp}$ &#8594; <em>upwards</em></li> <li>$C$ &#8594; <em>upwards</em></li> <li>$Ts_{dis}$ &#8594; <em>sum</em></li> <li>$R_{dis}$ &#8594; <em>sum</em></li> <li>$Te$ &#8594; <em>upwards</em></li> </ol> </td></tr> <tr> <td><strong>related elements</strong></td> <td> <ul class="liste"> <li><a href="../constraints/#Storage-Balance-1">storage balance</a></li> </ul> </td> </tr> <tr> <td><strong>part</strong></td> <td><a href="../parts/#Technology-1">technology</a></td> </tr> </tbody> </table> ``` # Dispatch of exchange and trade ### Exchange availability Technical availability of exchange capacities. The parameter `avaExc` applies for both directions and will be overwritten by the directed `avaExcDir`. ```@raw html <table class="tabelle"> <tbody> <tr> <td><strong>name</strong></td> <td>avaExc</td> <td>avaExcDir</td> </tr> <tr> <td><strong>unit</strong></td> <td colspan="2"; style="text-align:center">percent in decimal</td> </tr> <tr> <td><strong>dimension</strong></td> <td style="text-align:center">$Ts_{dis}$, $R_{a}$, $R_{b}$, $C$</td> <td style="text-align:center">$Ts_{dis}$, $R_{from}$, $R_{to}$, $C$</td> </tr> <tr> <td><strong>default value</strong></td> <td colspan="2"; style="text-align:center">1.0</td> </tr> <tr> <td rowspan="3"><strong>inheritance rules</strong></td> <td colspan="2"; style="text-align:center;border-bottom:none;padding-bottom:0.1875em"> <ol class="liste"> <li>$Ts_{dis}$ &#8594; <em>upwards</em></li> </ol> </td> </tr> <tr> <td colspan="1"; style="text-align:center;border-right:none;border-top:none;border-bottom:none;padding-top:0px;padding-bottom:0px"> <ol class="liste"; start="2"> <li>$R_{a}$ &#8594; <em>upwards</em></li> <li>$R_{b}$ &#8594; <em>upwards</em></li> <li>$R_{a}$ &#8594; <em>average</em></li> <li>$R_{b}$ &#8594; <em>average</em></li> </ol> </td> <td colspan="1"; style="text-align:center;border-bottom:none;padding-top:0px;padding-bottom:0px"> <ol class="liste"; start="2"> <li>$R_{from}$ &#8594; <em>upwards</em></li> <li>$R_{to}$ &#8594; <em>upwards</em></li> <li>$R_{from}$ &#8594; <em>average</em></li> <li>$R_{to}$ &#8594; <em>average</em></li> </ol> </td> </tr> <tr> <td colspan="2"; style="text-align:center;border-right:none;border-top:none;padding-top:0.1875em"> <ol class="liste"; start="6"> <li>$Ts_{dis}$ &#8594; <em>average</em></li> </ol> </td> </tr> <tr> <td><strong>related elements</strong></td> <td colspan="2"; style="text-align:center"> <ul class="liste"> <li><a href="../constraints/#Exchange-capacity-restriction-1">exchange capacity restriction</a></li> <li><a href="../variables/#Exchange-quantities-1">exchange variables</a> only created where availability is not zero</li> </ul> </td> </tr> <td><strong>part</strong></td> <td colspan="2"; style="text-align:center"><a href="../parts/#Exchange-1">exchange</a></td> </tr> </tbody> </table> ``` ### Exchange losses ```@raw html <p class="norm"> Losses occurring when energy is exchanged between two regions. The parameter <code>lossExc</code> applies for both directions and will be overwritten by the directed <code>lossExcDir</code>. </p> <p class="norm"> If the exchanged carrier is assigned an <a href="../parameter_list/#Emission-factor-1">emission factor</a> and <a href="../model_object/#Optional-arguments-1"><code>emissionLoss</code></a> is set to <code>true</code>, these losses are subject to emissions. </p> <table class="tabelle"> <tbody> <tr> <td><strong>name</strong></td> <td>lossExc</td> <td>lossExcDir</td> </tr> <tr> <td><strong>unit</strong></td> <td colspan="2"; style="text-align:center">percent in decimal</td> </tr> <tr> <td><strong>dimension</strong></td> <td style="text-align:center">$Ts_{dis}$, $R_{a}$, $R_{b}$, $C$</td> <td style="text-align:center">$Ts_{dis}$, $R_{from}$, $R_{to}$, $C$</td> </tr> <tr> <td><strong>default value</strong></td> <td colspan="2"; style="text-align:center">0.0</td> </tr> <tr> <td rowspan="3"><strong>inheritance rules</strong></td> <td colspan="2"; style="text-align:center;border-bottom:none;padding-bottom:0.1875em"> <ol class="liste"> <li>$Ts_{dis}$ &#8594; <em>upwards</em></li> </ol> </td> </tr> <tr> <td colspan="1"; style="text-align:center;border-right:none;border-top:none;border-bottom:none;padding-top:0px;padding-bottom:0px"> <ol class="liste"; start="2"> <li>$R_{a}$ &#8594; <em>upwards</em></li> <li>$R_{b}$ &#8594; <em>upwards</em></li> <li>$R_{a}$ &#8594; <em>average</em></li> <li>$R_{b}$ &#8594; <em>average</em></li> </ol> </td> <td colspan="1"; style="text-align:center;border-bottom:none;padding-top:0px;padding-bottom:0px"> <ol class="liste"; start="2"> <li>$R_{from}$ &#8594; <em>upwards</em></li> <li>$R_{to}$ &#8594; <em>upwards</em></li> <li>$R_{from}$ &#8594; <em>average</em></li> <li>$R_{to}$ &#8594; <em>average</em></li> </ol> </td> </tr> <tr> <td colspan="2"; style="text-align:center;border-right:none;border-top:none;padding-top:0.1875em"> <ol class="liste"; start="6"> <li>$Ts_{dis}$ &#8594; <em>average</em></li> </ol> </td> </tr> <tr> <td><strong>related elements</strong></td> <td colspan="2"; style="text-align:center"> <ul class="liste"> <li><a href="../constraints/#Conversion-balance-1">conversion balance</a></li> </ul> </td> </tr> <tr> <td><strong>part</strong></td> <td colspan="2"; style="text-align:center"><a href="../parts/#Exchange-1">exchange</a></td> </tr> </tbody> </table> ``` ### Exchange cost Costs imposed on the exchange of quantities. Cost are equally split between the exporting and importing region. The parameter `costVarExc` applies for both directions and will be overwritten by the directed `costVarExcDir`. ```@raw html <table class="tabelle"> <tbody> <tr> <td><strong>name</strong></td> <td>costVarExc</td> <td>costVarExcDir</td> </tr> <tr> <td><strong>unit</strong></td> <td colspan="2"; style="text-align:center">€/MWh</td> </tr> <tr> <td><strong>dimension</strong></td> <td style="text-align:center">$Ts_{dis}$, $R_{a}$, $R_{b}$, $C$</td> <td style="text-align:center">$Ts_{dis}$, $R_{from}$, $R_{to}$, $C$</td> </tr> <tr> <td><strong>default value</strong></td> <td colspan="2"; style="text-align:center">none</td> </tr> <tr> <td rowspan="3"><strong>inheritance rules</strong></td> <td colspan="2"; style="text-align:center;border-bottom:none;padding-bottom:0.1875em"> <ol class="liste"> <li>$Ts_{dis}$ &#8594; <em>upwards</em></li> </ol> </td> </tr> <tr> <td colspan="1"; style="text-align:center;border-right:none;border-top:none;border-bottom:none;padding-top:0px;padding-bottom:0px"> <ol class="liste"; start="2"> <li>$R_{a}$ &#8594; <em>upwards</em></li> <li>$R_{b}$ &#8594; <em>upwards</em></li> <li>$R_{a}$ &#8594; <em>average</em></li> <li>$R_{b}$ &#8594; <em>average</em></li> </ol> </td> <td colspan="1"; style="text-align:center;border-bottom:none;padding-top:0px;padding-bottom:0px"> <ol class="liste"; start="2"> <li>$R_{from}$ &#8594; <em>upwards</em></li> <li>$R_{to}$ &#8594; <em>upwards</em></li> <li>$R_{from}$ &#8594; <em>average</em></li> <li>$R_{to}$ &#8594; <em>average</em></li> </ol> </td> </tr> <tr> <td colspan="2"; style="text-align:center;border-right:none;border-top:none;padding-top:0.1875em"> <ol class="liste"; start="6"> <li>$Ts_{dis}$ &#8594; <em>average</em></li> </ol> </td> </tr> <tr> <td><strong>related elements</strong></td> <td colspan="2"; style="text-align:center"> <ul class="liste"> <li><a href="../constraints/#Variable-cost-equation-1">variable cost equation</a></li> </ul> </td> </tr> <tr> <td><strong>part</strong></td> <td colspan="2"; style="text-align:center"><a href="../parts/#Exchange-1">exchange</a></td> </tr> </tbody> </table> ``` ### Trade price ```@raw html <p class="norm"> Price for buying or selling an energy carrier on an external market. </p> <p class="norm"> Can be combined with the parameter <a href="../parameter_list/#Trade-capacity-1">trade capacity</a> to create stepped demand and supply curves (see following documentation for details). </p> <table class="tabelle"> <tbody> <tr> <td><strong>name</strong></td> <td>trdBuyPrc</td> <td>trdSellPrc</td> </tr> <tr> <td><strong>unit</strong></td> <td colspan="2"; style="text-align:center">€/MWh</td> </tr> <tr> <td><strong>dimension</strong></td> <td colspan="2"; style="text-align:center">$Ts_{dis}$, $R_{dis}$, $C$, $id$</td> </tr> <tr> <td><strong>default value</strong></td> <td colspan="2"; style="text-align:center">none</td> </tr> <tr> <td><strong>inheritance rules</strong></td> <td colspan="2"; style="text-align:center"> <ol class="liste"> <li>$Ts_{dis}$ &#8594; <em>upwards</em></li> <li>$R_{dis}$ &#8594; <em>upwards</em></li> <li>$Ts_{dis}$ &#8594; <em>average</em></li> <li>$R_{dis}$ &#8594; <em>average</em></li> </ol> </td></tr> <tr> <td><strong>related elements</strong></td> <td colspan="2"; style="text-align:center"> <ul class="liste"> <li><a href="../constraints/#Trade-cost-equation-1">trade cost equation</a></li> <li><a href="../variables/#Buy-and-sell-1">trade variables</a> only created where costs defined</li> </ul> </td> </tr> <tr> <td><strong>part</strong></td> <td colspan="2"; style="text-align:center"><a href="../parts/#Trade-1">trade</a></td> </tr> </tbody> </table> ``` ### Trade capacity ```@raw html <p class="norm"> Capacity available for buying or selling an energy carrier on an external market. </p> <p class="norm"> Capacity has to be provided in power units and is converted into energy quantities according to the temporal resolution of the respective carrier (e.g. at a daily resolution 2 GW translate into 48 GWh). This approach ensures parameters do not need to be adjusted when the temporal resolution is changed. </p> <table class="tabelle"> <tbody> <tr> <td><strong>name</strong></td> <td>trdBuyCap</td> <td>trdSellCap</td> </tr> <tr> <td><strong>unit</strong></td> <td colspan="2"; style="text-align:center">GW</td> </tr> <tr> <td><strong>dimension</strong></td> <td colspan="2"; style="text-align:center">$Ts_{dis}$, $R_{dis}$, $C$, $id$</td> </tr> <tr> <td><strong>default value</strong></td> <td colspan="2"; style="text-align:center">none</td> </tr> <tr> <td><strong>inheritance rules</strong></td> <td colspan="2"; style="text-align:center"> <ol class="liste"> <li>$Ts_{dis}$ &#8594; <em>upwards</em></li> <li>$R_{dis}$ &#8594; <em>upwards</em></li> <li>$Ts_{dis}$ &#8594; <em>average</em></li> <li>$R_{dis}$ &#8594; <em>average</em></li> </ol> </td></tr> <tr> <td><strong>related elements</strong></td> <td colspan="2"; style="text-align:center"> <ul class="liste"> <li><a href="../constraints/#Trade-capacity-restriction-1">trade capacity restriction</a></li> </ul> </td> </tr> <tr> <td><strong>part</strong></td> <td colspan="2"; style="text-align:center"><a href="../parts/#Trade-1">trade</a></td> </tr> </tbody> </table> <p class="norm"> By assigning the same <code>id</code> to a <a href="../parameter_list/#Trade-price-1">trade price</a> and capacity the amount of energy that can be bought or sold at the given price can be limited. As a result, stepped supply and demand curves for energy carriers can be created. </p> <p class="norm"> For example, the table below enables the import of <code>hydrogen</code> to the region <code>West</code> at 100 €/MWh, but limits the import capacity to 20 GW. When imposing this limit, the capacity is scaled according to the temporal resolution hydrogen is modeled at. So, at a yearly resolution 20 GW would translate to 175.2 TWh (= 20 GW &times; 8760 h). </p> <table class="tabelle2"> <tbody> <tr> <td style="border-right:none;border-bottom: solid 1px;border-color: #dbdbdb"><strong>region_1</strong></td> <td style="border-right:none;border-bottom: solid 1px;border-color: #dbdbdb"><strong>carrier_1</strong></td> <td style="border-bottom: solid 1px;border-color: #dbdbdb"><strong>id</strong></td> <td style="border-right:none;border-bottom: solid 1px;border-color: #dbdbdb"><strong>parameter</strong></td> <td style="border-right:none;border-bottom: solid 1px;border-color: #dbdbdb"><strong>value</strong></td> </tr> <tr> <td style="border-right:none">West</td> <td style="border-right:none">hydrogen</td> <td>1</td> <td style="border-right:none">trdBuyPrc</td> <td style="border-right:none;text-align:center">100.0</td> </tr> <tr> <td style="border-right:none">West</td> <td style="border-right:none">hydrogen</td> <td>1</td> <td style="border-right:none">trdBuyCap</td> <td style="border-right:none;text-align:center">20.0</td> </tr> </tbody> </table> <p class="norm"> Alternatively, this definition creates an additional electricity demand of 2.0 and 1.0 GW with a willingness-to-pay of 60 and 90 €/MWh, respectively. By adding more columns values could be further differentiated by time-step and region. <table class="tabelle2"> <tbody> <tr> <td style="border-right:none;border-bottom: solid 1px;border-color: #dbdbdb"><strong>carrier_1</strong></td> <td style="border-bottom: solid 1px;border-color: #dbdbdb"><strong>id</strong></td> <td style="border-right:none;border-bottom: solid 1px;border-color: #dbdbdb"><strong>parameter</strong></td> <td style="border-right:none;border-bottom: solid 1px;border-color: #dbdbdb"><strong>value</strong></td> </tr> <tr> <td style="border-right:none">electricity</td> <td>1</td> <td style="border-right:none">trdSellPrc</td> <td style="border-right:none;text-align:center">60.0</td> </tr> <tr> <td style="border-right:none">electricity</td> <td>2</td> <td style="border-right:none">trdSellPrc</td> <td style="border-right:none;text-align:center">90.0</td> </tr> <tr> <td style="border-right:none">electricity</td> <td>1</td> <td style="border-right:none">trdSellCap</td> <td style="border-right:none;text-align:center">2.0</td> </tr> <tr> <td style="border-right:none">electricity</td> <td>2</td> <td style="border-right:none">trdSellCap</td> <td style="border-right:none;text-align:center">1.0</td> </tr> </tbody> </table> </p> ``` # Other dispatch ### Demand Inelastic demand for an energy carrier. Capacity has to be provided in power units and is converted into energy quantities according to the temporal resolution of the respective carrier (e.g. at a daily resolution 20 GW translate into 480 GWh). This approach ensures parameters do not need to be adjusted when the temporal resolution is changed. ```@raw html <table class="tabelle"> <tbody> <tr> <td><strong>name</strong></td> <td>dem</td> </tr> <tr> <td><strong>unit</strong></td> <td>GW</td> </tr> <tr> <td><strong>dimension</strong></td> <td>$Ts_{dis}$, $R_{dis}$, $C$</td> </tr> <tr> <td><strong>default value</strong></td> <td>0.0</td> </tr> <tr> <td><strong>inheritance rules</strong></td> <td> <ol class="liste"> <li>$Ts_{dis}$ &#8594; <em>average</em></li> <li>$R_{dis}$ &#8594; <em>sum</em></li> </ol> </td></tr> <tr> <td><strong>related elements</strong></td> <td> <ul class="liste"> <li><a href="../constraints/#Energy-balance-1">energy balance</a></li> </ul> </td> </tr> <tr> <td><strong>part</strong></td> <td><a href="../parts/#Balance-1">balance</a></td> </tr> </tbody> </table> ``` ### Cost of curtailment and loss of load Variable costs excess generation or unmet demand is subjected to. Costs can also be negative (=revenues). ```@raw html <table class="tabelle"> <tbody> <tr> <td><strong>name</strong></td> <td>costCrt</td> <td>costLss</td> </tr> <tr> <td><strong>unit</strong></td> <td colspan="2"; style="text-align:center">€/MWh</td> </tr> <tr> <td><strong>dimension</strong></td> <td colspan="2"; style="text-align:center">$Ts_{dis}$, $R_{dis}$, $C$</td> </tr> <tr> <td><strong>default value</strong></td> <td colspan="2"; style="text-align:center">none</td> </tr> <tr> <td><strong>inheritance rules</strong></td> <td colspan="2"; style="text-align:center"> <ol class="liste"> <li>$Ts_{dis}$ &#8594; <em>upwards</em></li> <li>$R_{dis}$ &#8594; <em>upwards</em></li> <li>$Ts_{dis}$ &#8594; <em>average</em></li> <li>$R_{dis}$ &#8594; <em>average</em></li> </ol> </td></tr> <tr> <td><strong>related elements</strong></td> <td colspan="2"; style="text-align:center"> <ul class="liste"> <li><a href="../constraints/#Curtailment-and-loss-of-load-cost-equation-1">curtailment and loss-of-load cost equation</a></li> <li><a href="../variables/#Curtailment-and-loss-of-load-1">respective variables</a> only created where costs defined</li> </ul> </td> </tr> <tr> <td><strong>part</strong></td> <td colspan="2"; style="text-align:center"><a href="../parts/#Balance-1">balance</a></td> </tr> </tbody> </table> ``` # Capacity expansion ```@raw html <p class="norm"> Here, all parameters relevant to the expansion of conversion, storage, and exchange capacity are listed. </p> <p class="norm"> At this point it is important to stress that, as displayed in the <a href="#Dispatch-of-technologies">technology diagrams</a>, <strong>AnyMOD always indicates capacities before efficiency losses!</strong> For instance capacity of a gas power plant does not denote its maximum electricity output, but the maximum gas input. This approach is pursued, because <a href="../parameter_list/#Efficiency-1">efficiency</a> is not a constant and can differ by time-step, region, and mode. As a result, maximum output varies within the dispatch too and is not suited to universally describe installed capacities. </p> ``` ### Discount rate Overall rate to discount all costs to the present. See [Cost equations](@ref) for details on use. ```@raw html <table class="tabelle"> <tbody> <tr> <td><strong>name</strong></td> <td>rateDisc</td> </tr> <tr> <td><strong>unit</strong></td> <td>percent as decimal</td> </tr> <tr> <td><strong>dimension</strong></td> <td>$Ts_{sup}$, $R_{exp}$</td> </tr> <tr> <td><strong>default value</strong></td> <td>0.02</td> </tr> <tr> <td><strong>inheritance rules</strong></td> <td> <ol class="liste"> <li>$Ts_{sup}$ &#8594; <em>upwards</em></li> <li>$R_{exp}$ &#8594; <em>upwards</em></li> <li>$Ts_{sup}$ &#8594; <em>average</em></li> <li>$R_{exp}$ &#8594; <em>average</em></li> </ol> </td></tr> <tr> <td><strong>related elements</strong></td> <td> <ul class="liste"> <li>all <a href="../constraints/#Cost-equations-1">cost equations</a></li> </ul> </td> </tr> <tr> <td><strong>part</strong></td> <td><a href="../parts/#Objective-1">objective</a></td> </tr> </tbody> </table> ``` ### Interest rate Interest rate to compute annuity costs of investments. See [Cost equations](@ref) for details on use. ```@raw html <table class="tabelle"> <tbody> <tr> <td><strong>name</strong></td> <td>rateExpConv</td> <td>rateExpSt{In/Out/Size}</td> <td>rateExpExc</td> </tr> <tr> <td><strong>unit</strong></td> <td colspan="3"; style="text-align:center">percent as decimal</td> </tr> <tr> <td><strong>dimension</strong></td> <td>$Ts_{exp}$, $R_{exp}$, $Te$</td> <td>$Ts_{exp}$, $R_{exp}$, $C$, $Te$</td> <td>$Ts_{exp}$, $R_{a}$, $R_{b}$, $C$</td> </tr> <tr> <td><strong>default value</strong></td> <td colspan="3"; style="text-align:center">respective discount rate is used as a default</td> </tr> <tr> <td><strong>inheritance rules</strong></td> <td colspan="2"; style="text-align:center" > <div style = "width: 50%; margin: 0 auto;"> <ol class="liste"> <li>$Te$ &#8594; <em>upwards</em></li> <li>$Ts_{exp}$ &#8594; <em>upwards</em></li> <li>$R_{exp}$ &#8594; <em>upwards</em></li> </ol> </div> </td> <td> <ol class="liste"> <li>$Ts_{exp}$ &#8594; <em>upwards</em></li> <li>$R_{a}$ &#8594; <em>average</em></li> <li>$R_{b}$ &#8594; <em>average</em></li> <li>$C$ &#8594; <em>upwards</em></li> </ol> </td></tr> <tr> <td><strong>related elements</strong></td> <td colspan="3"; style="text-align:center"> <ul class="liste"> <li><a href="../constraints/#Expansion-cost-equation-1">expansion cost equation</a></li> </ul> </td> </tr> <tr> <td><strong>part</strong></td> <td colspan="3"; style="text-align:center"><a href="../parts/#Objective-1">objective</a></td> </tr> </tbody> </table> ``` ### Expansion cost Costs of capacity expansion (or investment). !!! warning "Cost data before efficiency" Ensure the cost data provided relates to capacity **before efficiency** (see beginning of section)! Costs before efficiency can be obtained by multiplying costs after efficiency with a nominal efficiency ``K_{before} = K_{after} \cdot \eta``. ```@raw html <table class="tabelle"> <tbody> <tr> <td><strong>name</strong></td> <td>costExpConv</td> <td>costExpSt{In/Out/Size}</td> <td>costExpExc</td> </tr> <tr> <td><strong>unit</strong></td> <td>Mil.€/GW</td> <td>Mil.€/GWh</td> <td>Mil.€/GW</td> </tr> <tr> <td><strong>dimension</strong></td> <td>$Ts_{exp}$, $R_{exp}$, $Te$</td> <td>$Ts_{exp}$, $R_{exp}$, $C$, $Te$</td> <td>$Ts_{exp}$, $R_{a}$, $R_{b}$, $C$</td> </tr> <tr> <td><strong>default value</strong></td> <td colspan="3"; style="text-align:center">0</td> </tr> <tr> <td><strong>inheritance rules</strong></td> <td colspan="2"; style="text-align:center" > <div style = "width: 50%; margin: 0 auto;"> <ol class="liste"> <li>$Te$ &#8594; <em>upwards</em></li> <li>$Ts_{exp}$ &#8594; <em>upwards</em></li> <li>$R_{exp}$ &#8594; <em>upwards</em></li> </ol> </div> </td> <td> <ol class="liste"> <li>$Ts_{exp}$ &#8594; <em>upwards</em></li> <li>$R_{a}$ &#8594; <em>average</em></li> <li>$R_{b}$ &#8594; <em>average</em></li> <li>$C$ &#8594; <em>upwards</em></li> </ol> </td></tr> <tr> <td><strong>related elements</strong></td> <td colspan="3"; style="text-align:center"> <ul class="liste"> <li><a href="../constraints/#Expansion-cost-equation-1">expansion cost equation</a></li> </ul> </td> </tr> <tr> <td><strong>part</strong></td> <td colspan="3"; style="text-align:center"><a href="../parts/#Objective-1">objective</a></td> </tr> </tbody> </table> ``` ### Operating cost Costs of operating installed capacities. !!! warning "Cost data before efficiency" Ensure the cost data provided relates to capacity **before efficiency** (see beginning of section)! Costs before efficiency can be obtained by multiplying costs after efficiency with a nominal efficiency ``K_{before} = K_{after} \cdot \eta``. ```@raw html <table class="tabelle"> <tbody> <tr> <td><strong>name</strong></td> <td>costOprConv</td> <td>costOprSt{In/Out/Size}</td> <td>costOprExc</td> </tr> <tr> <td><strong>unit</strong></td> <td>Mil.€/GW/a</td> <td>Mil.€/GWh/a</td> <td>Mil.€/GW/a</td> </tr> <tr> <td><strong>dimension</strong></td> <td>$Ts_{exp}$, $R_{exp}$, $Te$</td> <td>$Ts_{exp}$, $R_{exp}$, $C$, $Te$</td> <td>$Ts_{exp}$, $R_{a}$, $R_{b}$, $C$</td> </tr> <tr> <td><strong>default value</strong></td> <td colspan="3"; style="text-align:center">0</td> </tr> <tr> <td><strong>inheritance rules</strong></td> <td colspan="2"; style="text-align:center" > <div style = "width: 50%; margin: 0 auto;"> <ol class="liste"> <li>$Ts_{sup}$ &#8594; <em>upwards</em></li> <li>$Te$ &#8594; <em>upwards</em></li> <li>$Ts_{exp}$ &#8594; <em>upwards</em></li> <li>$R_{exp}$ &#8594; <em>upwards</em></li> </ol> </div> </td> <td> <ol class="liste"> <li>$Ts_{sup}$ &#8594; <em>upwards</em></li> <li>$R_{a}$ &#8594; <em>average</em></li> <li>$R_{b}$ &#8594; <em>average</em></li> <li>$R_{a}$ &#8594; <em>upwards</em></li> <li>$R_{b}$ &#8594; <em>upwards</em></li> <li>$C$ &#8594; <em>upwards</em></li> </ol> </td></tr> <tr> <td><strong>related elements</strong></td> <td colspan="3"; style="text-align:center"> <ul class="liste"> <li><a href="../constraints/#Operating-cost-equation-1">operating cost equation</a></li> </ul> </td> </tr> <tr> <td><strong>part</strong></td> <td colspan="3"; style="text-align:center"><a href="../parts/#Objective-1">objective</a></td> </tr> </tbody> </table> ``` ### Technical lifetime Time in years a capacity can be operated after construction. To avoid distortions lifetimes are advised to be divisible by the steps-size of capacity modelling (e.g rather using 20 or 25 instead of 23 when using 5-year steps). ```@raw html <table class="tabelle"> <tbody> <tr> <td><strong>name</strong></td> <td>lifeConv</td> <td>lifeSt{In/Out/Size}</td> <td>lifeExc</td> </tr> <tr> <td><strong>unit</strong></td> <td colspan="3"; style="text-align:center">years</td> </tr> <tr> <td><strong>dimension</strong></td> <td>$Ts_{exp}$, $R_{exp}$, $Te$</td> <td>$Ts_{exp}$, $R_{exp}$, $C$, $Te$</td> <td>$Ts_{exp}$, $R_{a}$, $R_{b}$, $C$</td> </tr> <tr> <td><strong>default value</strong></td> <td colspan="2"; style="text-align:center">20</td> <td>50</td> </tr> <tr> <td><strong>inheritance rules</strong></td> <td colspan="2"; style="text-align:center" > <div style = "width: 50%; margin: 0 auto;"> <ol class="liste"> <li>$Te$ &#8594; <em>upwards</em></li> <li>$Ts_{exp}$ &#8594; <em>upwards</em></li> <li>$R_{exp}$ &#8594; <em>upwards</em></li> </ol> </div> </td> <td> <ol class="liste"> <li>$Ts_{exp}$ &#8594; <em>upwards</em></li> <li>$R_{a}$ &#8594; <em>average</em></li> <li>$R_{b}$ &#8594; <em>average</em></li> <li>$C$ &#8594; <em>upwards</em></li> </ol> </td></tr> <tr> <td><strong>related elements</strong></td> <td colspan="3"; style="text-align:center"> <ul class="liste"> <li><a href="../constraints/#Definition-of-installed-capacity-1">definition of installed capacity</a></li> </ul> </td> </tr> <tr> <td><strong>part</strong></td> <td colspan="2"; style="text-align:center"><a href="../parts/#Technology-1">technology</a></td> <td style="text-align:center"><a href="../parts/#Exchange-1">exchange</a></td> </tr> </tbody> </table> ``` ### Economic lifetime Time in years to compute annuity costs of investment. Also determines the time-frame annuity costs are incurred over. To avoid distortions lifetimes are advised to be divisible by the steps-size of capacity modelling (e.g rather using 20 or 25 instead of 23 when using 5-year steps). ```@raw html <table class="tabelle"> <tbody> <tr> <td><strong>name</strong></td> <td>lifeEcoConv</td> <td>lifeEcoSt{In/Out/Size}</td> <td>lifeEcoExc</td> </tr> <tr> <td><strong>unit</strong></td> <td colspan="3"; style="text-align:center">years</td> </tr> <tr> <td><strong>dimension</strong></td> <td>$Ts_{exp}$, $R_{exp}$, $Te$</td> <td>$Ts_{exp}$, $R_{exp}$, $C$, $Te$</td> <td>$Ts_{exp}$, $R_{a}$, $R_{b}$, $C$</td> </tr> <tr> <td><strong>default value</strong></td> <td colspan="3"; style="text-align:center">respective technical lifetime is used as a default</td> </tr> <tr> <td><strong>inheritance rules</strong></td> <td colspan="2"; style="text-align:center" > <div style = "width: 50%; margin: 0 auto;"> <ol class="liste"> <li>$Te$ &#8594; <em>upwards</em></li> <li>$Ts_{exp}$ &#8594; <em>upwards</em></li> <li>$R_{exp}$ &#8594; <em>upwards</em></li> </ol> </div> </td> <td> <ol class="liste"> <li>$Ts_{exp}$ &#8594; <em>upwards</em></li> <li>$R_{a}$ &#8594; <em>average</em></li> <li>$R_{b}$ &#8594; <em>average</em></li> <li>$C$ &#8594; <em>upwards</em></li> </ol> </td></tr> <tr> <td><strong>related elements</strong></td> <td colspan="3"; style="text-align:center"> <ul class="liste"> <li><a href="../constraints/#Expansion-cost-equation-1">expansion cost equation</a></li> </ul> </td> </tr> <tr> <td><strong>part</strong></td> <td colspan="2"; style="text-align:center"><a href="../parts/#Technology-1">technology</a></td> <td style="text-align:center"><a href="../parts/#Exchange-1">exchange</a></td> </tr> </tbody> </table> ``` ### Construction time Time in years for construction of capacity. This parameter introduces an offset between the start of the economic and technical lifetime. To avoid distortions lifetimes are advised to be divisible by the steps-size of capacity modelling (e.g rather using 0 or 5 instead of 3 when using 5-year steps). ```@raw html <table class="tabelle"> <tbody> <tr> <td><strong>name</strong></td> <td>delConv</td> <td>delSt{In/Out/Size}</td> <td>delExc</td> </tr> <tr> <td><strong>unit</strong></td> <td colspan="3"; style="text-align:center">years</td> </tr> <tr> <td><strong>dimension</strong></td> <td>$Ts_{exp}$, $R_{exp}$, $Te$</td> <td>$Ts_{exp}$, $R_{exp}$, $C$, $Te$</td> <td>$Ts_{exp}$, $R_{a}$, $R_{b}$, $C$</td> </tr> <tr> <td><strong>default value</strong></td> <td colspan="3"; style="text-align:center">0</td> </tr> <tr> <td><strong>inheritance rules</strong></td> <td colspan="2"; style="text-align:center" > <div style = "width: 50%; margin: 0 auto;"> <ol class="liste"> <li>$Te$ &#8594; <em>upwards</em></li> <li>$Ts_{exp}$ &#8594; <em>upwards</em></li> <li>$R_{exp}$ &#8594; <em>upwards</em></li> </ol> </div> </td> <td> <ol class="liste"> <li>$Ts_{exp}$ &#8594; <em>upwards</em></li> <li>$R_{a}$ &#8594; <em>average</em></li> <li>$R_{b}$ &#8594; <em>average</em></li> <li>$C$ &#8594; <em>upwards</em></li> </ol> </td></tr> <tr> <td><strong>related elements</strong></td> <td colspan="3"; style="text-align:center"> <ul class="liste"> <li><a href="../constraints/#Definition-of-installed-capacity-1">definition of installed capacity</a></li> </ul> </td> </tr> <tr> <td><strong>part</strong></td> <td colspan="2"; style="text-align:center"><a href="../parts/#Technology-1">technology</a></td> <td style="text-align:center"><a href="../parts/#Exchange-1">exchange</a></td> </tr> </tbody> </table> ``` # Limits on quantities dispatched ```@raw html <p class="norm"> Limits on variables also utilize the <a href="../parameter_overview/#Inheritance">inheritance algorithm</a>. Therefore, the way parameter data is provided determines how limits are enforced. For example, in the table below the upper limit of 100 GWh on the use of <code>biomass</code> will be imposed on the sum of use across <u>all years</u>, because the time-step dimension is undefined. </p> <table class="tabelle2"> <tbody> <tr> <td style="border-right:none;border-bottom: solid 1px;border-color: #dbdbdb"><strong>carrier_1</strong></td> <td style="border-bottom: solid 1px;border-color: #dbdbdb"><strong>timestep_1</strong></td> <td style="border-right:none;border-bottom: solid 1px;border-color: #dbdbdb"><strong>parameter</strong></td> <td style="border-right:none;border-bottom: solid 1px;border-color: #dbdbdb"><strong>value</strong></td> </tr> <tr> <td style="border-right:none">biomass</td> <td></td> <td style="border-right:none">useUp</td> <td style="border-right:none;text-align:center">100.0</td> </tr> </tbody> </table> <p class="norm"> If instead the limit should apply to <u>each year</u> seperately, each of these years needs to be specified. </p> <table class="tabelle2"> <tbody> <tr> <td style="border-right:none;border-bottom: solid 1px;border-color: #dbdbdb"><strong>carrier_1</strong></td> <td style="border-bottom: solid 1px;border-color: #dbdbdb"><strong>timestep_1</strong></td> <td style="border-right:none;border-bottom: solid 1px;border-color: #dbdbdb"><strong>parameter</strong></td> <td style="border-right:none;border-bottom: solid 1px;border-color: #dbdbdb"><strong>value</strong></td> </tr> <tr> <td style="border-right:none;border-right:none">biomass</td> <td>2020</td> <td style="border-right:none">useUp</td> <td style="border-right:none;text-align:center">100.0</td> </tr> <tr> <td style="border-right:none;border-right:none">biomass</td> <td>2030</td> <td style="border-right:none">useUp</td> <td style="border-right:none;text-align:center">100.0</td> </tr> </tbody> </table> <p class="norm"> As an abbrevation we could also apply the keyword <code>all</code> (see <a href="../sets/#Time-steps">Time-steps</a> for details) to reduce the number of required rows. </p> <table class="tabelle2"> <tbody> <tr> <td style="border-right:none;border-bottom: solid 1px;border-color: #dbdbdb"><strong>carrier_1</strong></td> <td style="border-bottom: solid 1px;border-color: #dbdbdb"><strong>timestep_1</strong></td> <td style="border-right:none;border-bottom: solid 1px;border-color: #dbdbdb"><strong>parameter</strong></td> <td style="border-right:none;border-bottom: solid 1px;border-color: #dbdbdb"><strong>value</strong></td> </tr> <tr> <td style="border-right:none">biomass</td> <td>all</td> <td style="border-right:none">useUp</td> <td style="border-right:none;text-align:center">100.0</td> </tr> </tbody> </table> <p class="norm"> So far, the limit for each year still applies to the summed use of biomass across all regions. This could again be altered by adding a respective column. </p> <p class="norm"> Applying limits on the sum of variables across different years can be insightful in some case (for example in case of an emission budget from now until 2050). But it also is a likely and severe mistake to make if unfamiliar with AnyMOD's specific mechanics. For this reason defining a limit that sums up variables from different years will cause a warning within the <a href="../error/#Error-handling">reporting file</a> </p> ``` ### Limits on technology dispatch ```@raw html <p class="norm"> Limits on technology dispatch. In the inheritance rules <em>sum*</em> only applies for upper limits. </p> <table class="tabelle"> <tbody> <tr> <td><strong>name</strong></td> <td>use{Fix/Low/Up}</td> <td>gen{Fix/Low/Up}</td> <td>stOut{Fix/Low/Up}</td> <td>stIn{Fix/Low/Up}</td> </tr> <tr> <td><strong>unit</strong></td> <td colspan="4"; style="text-align:center">GWh</td> </tr> <tr> <td><strong>dimension</strong></td> <td colspan="4"; style="text-align:center">$Ts_{dis}$, $Ts_{exp}$, $R_{dis}$, $C$, $Te$, $M$</td> </tr> <tr> <td><strong>default value</strong></td> <td colspan="4"; style="text-align:center">none</td> </tr> <tr> <td><strong>inheritance rules</strong></td> <td colspan="4"; style="text-align:center"> <ol class="liste"> <li>$Ts_{dis}$ &#8594; <em>sum</em>/<em>sum*</em></li> <li>$Ts_{exp}$ &#8594; <em>sum</em>/<em>sum*</em></li> <li>$R_{dis}$ &#8594; <em>sum</em>/<em>sum*</em></li> <li>$C$ &#8594; <em>sum</em>/<em>sum*</em></li> <li>$Te$ &#8594; <em>sum</em>/<em>sum*</em></li> <li>$M$ &#8594; <em>sum</em>/<em>sum*</em></li> </ol> </td></tr> <tr> <td><strong>related elements</strong></td> <td colspan="4"; style="text-align:center"> <ul class="liste"> <li>see <a href="../constraints/#Limiting-constraints-1">limiting constraints</a></li> </ul> </td> </tr> <tr> <td><strong>part</strong></td> <td colspan="4"; style="text-align:center"><a href="../parts/#Limit-1">limit</a></td> </tr> </tbody> </table> ``` ### Limits on exchange ```@raw html <p class="norm"> Limits on exchange quantities. In the inheritance rules <em>sum*</em> only applies for upper limits. </p> <table class="tabelle"> <tbody> <tr> <td><strong>name</strong></td> <td>exc{Fix/Low/Up}</td> <td>excDir{Fix/Low/Up}</td> </tr> <tr> <td><strong>unit</strong></td> <td colspan="2"; style="text-align:center">GWh</td> </tr> <tr> <td><strong>dimension</strong></td> <td colspan="2"; style="text-align:center">$Ts_{dis}$, $R_{a}$, $R_{b}$, $C$</td> </tr> <tr> <td><strong>default value</strong></td> <td colspan="2"; style="text-align:center">none</td> </tr> <tr> <td><strong>inheritance rules</strong></td> <td colspan="2"; style="text-align:center"> <ol class="liste"> <li>$Ts_{dis}$ &#8594; <em>sum</em>/<em>sum*</em></li> <li>$R_{a}$ &#8594; <em>sum</em>/<em>sum*</em></li> <li>$R_{b}$ &#8594; <em>sum</em>/<em>sum*</em></li> <li>$C$ &#8594; <em>sum</em>/<em>sum*</em></li> </ol> </td></tr> <tr> <tr> <td><strong>related elements</strong></td> <td colspan="2"; style="text-align:center"> <ul class="liste"> <li>see <a href="../constraints/#Limiting-constraints-1">limiting constraints</a></li> </ul> </td> </tr> <td><strong>part</strong></td> <td colspan="2"; style="text-align:center"><a href="../parts/#Limit-1">limit</a></td> </tr> </tbody> </table> ``` ### Limits on trade, curtailment and loss of load ```@raw html <p class="norm"> Limits on traded and curtailed quantities as well as on unmet demand. In the inheritance rules <em>sum*</em> only applies for upper limits. </p> <table class="tabelle"> <tbody> <tr> <td><strong>name</strong></td> <td>trdBuy{Fix/Low/Up}</td> <td>trdSell{Fix/Low/Up}</td> <td>crt{Fix/Low/Up}</td> <td>lss{Fix/Low/Up}</td> </tr> <tr> <td><strong>unit</strong></td> <td colspan="4"; style="text-align:center">GWh</td> </tr> <tr> <td><strong>dimension</strong></td> <td colspan="4"; style="text-align:center">$Ts_{dis}$, $R_{dis}$, $C$</td> </tr> <tr> <td><strong>default value</strong></td> <td colspan="4"; style="text-align:center">none</td> </tr> <tr> <td><strong>inheritance rules</strong></td> <td colspan="4"; style="text-align:center"> <ol class="liste"> <li>$Ts_{dis}$ &#8594; <em>sum</em>/<em>sum*</em></li> <li>$R_{dis}$ &#8594; <em>sum</em>/<em>sum*</em></li> <li>$C$ &#8594; <em>sum</em>/<em>sum*</em></li> </ol> </td></tr> <tr> <td><strong>related elements</strong></td> <td colspan="4"; style="text-align:center"> <ul class="liste"> <li>see <a href="../constraints/#Limiting-constraints-1">limiting constraints</a></li> </ul> </td> </tr> <tr> <td><strong>part</strong></td> <td colspan="4"; style="text-align:center"><a href="../parts/#Limit-1">limit</a></td> </tr> </tbody> </table> ``` # Limits on expansion and capacity ```@raw html <p class="norm"> Limits on expansion and capacity are enforced analogously to <a href="#Limits-on-quantities-dispatched">limits on dispatch quantities</a>. Therefore, the same caution with regard to how limits are defined should be exercised. As explained for dispatched quantities in greater detail, the table below will impose an upper limit of 80 GW on the installed capacity of <code>wind</code> summed across <u>all years</u>. </p> <table class="tabelle2"> <tbody> <tr> <td style="border-right:none;border-bottom: solid 1px;border-color: #dbdbdb"><strong>technology_1</strong></td> <td style="border-bottom: solid 1px;border-color: #dbdbdb"><strong>timestep_1</strong></td> <td style="border-right:none;border-bottom: solid 1px;border-color: #dbdbdb"><strong>parameter</strong></td> <td style="border-right:none;border-bottom: solid 1px;border-color: #dbdbdb"><strong>value</strong></td> </tr> <tr> <td style="border-right:none">wind</td> <td></td> <td style="border-right:none">capaConvUp</td> <td style="border-right:none;text-align:center">80.0</td> </tr> </tbody> </table> <p class="norm"> While this table will actually enforce separate limits of 80 GW on the installed capacity of <code>wind</code> in <u>each year</u>. </p> <table class="tabelle2"> <tbody> <tr> <td style="border-right:none;border-bottom: solid 1px;border-color: #dbdbdb"><strong>technology_1</strong></td> <td style="border-bottom: solid 1px;border-color: #dbdbdb"><strong>timestep_1</strong></td> <td style="border-right:none;border-bottom: solid 1px;border-color: #dbdbdb"><strong>parameter</strong></td> <td style="border-right:none;border-bottom: solid 1px;border-color: #dbdbdb"><strong>value</strong></td> </tr> <tr> <td style="border-right:none">wind</td> <td>all</td> <td style="border-right:none">capaConvUp</td> <td style="border-right:none;text-align:center">80.0</td> </tr> </tbody> </table> ``` ### Storage ratios ```@raw html One technology can have four different kinds of capacity variables (see <a href="../sets/#Technologies">Technologies</a> for details): conversion, storage-input, storage-output, and storage-size. The ratios between these capacities can be fixed by the following parameters: ``` - `stInToConv`: ratio between conversion and storage-input capacity - `stOutToStIn`: ratio between storage-output and storage-input capacity - `sizeToStIn`: ratio between storage-size and storage-input capacity, commonly referred to energy-to-power ratio ```@raw html <p class="norm"> Ratios are not directly applied to <a href="../variables/#Installed-capacity-1">installed capacities</a>, but to <a href="../variables/#Expansion-1">expansion variables</a> instead. Consequently, acutally installed capacities can deviate from the specified ratios, if any <a href="../parameter_list/#Residual-capacities-1">residual capacities</a> are provided. In case of <code>stock</code> technologies, which are not expanded, ratios are directly enforced to capacities. In this case any deviating <a href="../parameter_list/#Residual-capacities-1">residual capacities</a> are ignored. </p> ``` !!! note "Upper and lower limits on ratios" So far, AnyMOD does not support the setting of upper and lower limits on these ratios instead of fixing them. As a workaround, the code below shows how an upper limit of 10 on the energy-to-power ratio can be manually added to a model. ```julia for x in 1:size(model_object.parts.tech[:battery].var[:capaStIn],1) var = model_object.parts.tech[:battery].var stIn, stSize = [var[y][x,:var] for y in [:capaStIn,:capaStSize]] @constraint(model_object.optModel, fixEP, stIn*10 >= stSize) end ``` ```@raw html <table class="tabelle"> <tbody> <tr> <td><strong>name</strong></td> <td>stInToConv</td> <td>stOutToStIn</td> <td>sizeToStIn</td> </tr> <tr> <td><strong>unit</strong></td> <td colspan="3"; style="text-align:center">dimensionless</td> </tr> <tr> <td><strong>dimension</strong></td> <td colspan="3"; style="text-align:center">$Ts_{exp}$, $R_{exo}$, $C$, $Te$, $M$</td> </tr> <tr> <td><strong>default value</strong></td> <td colspan="3"; style="text-align:center">none</td> </tr> <tr> <td><strong>inheritance rules</strong></td> <td colspan="3"; style="text-align:center"> <ol class="liste"> <li>$Te$ &#8594; <em>upwards</em></li> <li>$Ts_{exp}$ &#8594; <em>upwards</em></li> <li>$R_{exp}$ &#8594; <em>upwards</em></li> </ol> </td></tr> <tr> <td><strong>related elements</strong></td> <td colspan="3"; style="text-align:center"> <ul class="liste"> <li><a href="../variables/#Installed-capacity-1">capacity variables</a> substituted by product of ratio and connected variable</li> </ul> </td> </tr> <tr> <td><strong>part</strong></td> <td colspan="3"; style="text-align:center"><a href="../parts/#Technology-1">technology</a></td> </tr> </tbody> </table> ``` ### Residual capacities Installed capacities for technologies that already exist without any expansion. ```@raw html <table class="tabelle"> <tbody> <tr> <td><strong>name</strong></td> <td>capaConvResi</td> <td>capa{StIn/StOut/StSize}Resi</td> </tr> <tr> <td><strong>unit</strong></td> <td colspan="2"; style="text-align:center">GW</td> </tr> <tr> <td><strong>dimension</strong></td> <td>$Ts_{sup}$, $Ts_{exp}$, $R_{exp}$, $Te$</td> <td>$Ts_{sup}$, $Ts_{exp}$, $R_{exp}$, $C$, $Te$</td> </tr> <tr> <td><strong>default value</strong></td> <td colspan="2"; style="text-align:center">none</td> </tr> <tr> <td rowspan="2"><strong>inheritance rules</strong></td> <td colspan="2"; style="text-align:center;border-bottom:none;padding-bottom:0.1875em"> <ol class="liste"> <li>$R_{exp}$ &#8594; <em>sum</em></li> <li>$Te$ &#8594; <em>sum</em></li> <li>$Ts_{sup}$ &#8594; <em>average</em></li> </ol> </td> </tr> <tr> <td colspan="1"; style="text-align:center;border-right:none;border-top:none;padding-top:0px"> <ol class="liste"; start="4"> <li>$Ts_{exp}$ &#8594; <em>sum</em></li> <li>$Ts_{sup}$ &#8594; <em>upwards</em></li> </ol> </td> <td colspan="1"; style="text-align:center;padding-top:0px"> <ol class="liste"; start="4"> <li>$C$ &#8594; <em>sum</em></li> <li>$Ts_{exp}$ &#8594; <em>sum</em></li> <li>$Ts_{sup}$ &#8594; <em>upwards</em></li> </ol> </td> </tr> <tr> <td><strong>related elements</strong></td> <td colspan="2"; style="text-align:left"> <ul class="liste"> <li><a href="../constraints/#Definition-of-installed-capacity-1">definition of installed capacity</a></li> <li><a href="../constraints/#Decommissioning-of-operated-capacitiy-1">decommissioning of operated capacitiy</a></li> </ul> </td> </tr> <tr> <td><strong>part</strong></td> <td colspan="2"; style="text-align:center"><a href="../parts/#Technology-1">technology</a></td> </tr> </tbody> </table> ``` Installed exchange capacities that already exist without any expansion. Defining a residual capacity between two regions generally enables exchange of a specific carrier between these regions. If exchange should be enabled, but no pre-existing capacity exists, a residual capacity of zero can be provided. ```@raw html <table class="tabelle"> <tbody> <tr> <td><strong>name</strong></td> <td>capaExcResi</td> <td>capaExcResiDir</td> </tr> <tr> <td><strong>unit</strong></td> <td colspan="2"; style="text-align:center">GW</td> </tr> <tr> <td><strong>dimension</strong></td> <td style="text-align:center">$Ts_{dis}$, $R_{a}$, $R_{b}$, $C$</td> <td style="text-align:center">$Ts_{dis}$, $R_{from}$, $R_{to}$, $C$</td> </tr> <tr> <td><strong>default value</strong></td> <td colspan="2"; style="text-align:center">none</td> </tr> <tr> <td rowspan="3"><strong>inheritance rules</strong></td> <td colspan="2"; style="text-align:center;border-bottom:none;padding-bottom:0.1875em"> <ol class="liste"> <li>$Ts_{dis}$ &#8594; <em>upwards</em></li> </ol> </td> </tr> <tr> <td colspan="1"; style="text-align:center;border-right:none;border-top:none;border-bottom:none;padding-top:0px;padding-bottom:0px"> <ol class="liste"; start="2"> <li>$R_{a}$ &#8594; <em>sum</em></li> <li>$R_{b}$ &#8594; <em>sum</em></li> </ol> </td> <td colspan="1"; style="text-align:center;border-bottom:none;padding-top:0px;padding-bottom:0px"> <ol class="liste"; start="2"> <li>$R_{from}$ &#8594; <em>sum</em></li> <li>$R_{to}$ &#8594; <em>sum</em></li> </ol> </td> </tr> <tr> <td colspan="2"; style="text-align:center;border-right:none;border-top:none;padding-top:0.1875em"> <ol class="liste"; start="4"> <li>$Ts_{dis}$ &#8594; <em>average</em></li> </ol> </td> </tr> <tr> <td><strong>related elements</strong></td> <td colspan="2"; style="text-align:left"> <ul class="liste"> <li><a href="../constraints/#Definition-of-installed-capacity-1">definition of installed capacity</a></li> <li><a href="../constraints/#Decommissioning-of-operated-capacitiy-1">decommissioning of operated capacitiy</a></li> </ul> </td> </tr> <tr> <td><strong>part</strong></td> <td colspan="2"; style="text-align:center"><a href="../parts/#Exchange-1">exchange</a></td> </tr> </tbody> </table> ``` `capaExcResi` refers to capacity in both directions, while `capaExcResiDir` refers to directed capacities and is added to any undirected values. Consequently, the table below will result in an residual capacity of 4 GW from `East` to `West` and 3 GW from `West` to `East`. ```@raw html <table class="tabelle2"> <tbody> <tr> <td style="border-right:none;border-bottom: solid 1px;border-color: #dbdbdb"><strong>region_1</strong></td> <td style="border-right:none;border-bottom: solid 1px;border-color: #dbdbdb"><strong>region_1</strong></td> <td style="border-bottom: solid 1px;border-color: #dbdbdb"><strong>carrier_1</strong></td> <td style="border-right:none;border-bottom: solid 1px;border-color: #dbdbdb"><strong>parameter</strong></td> <td style="border-right:none;border-bottom: solid 1px;border-color: #dbdbdb"><strong>value</strong></td> </tr> <tr> <td style="border-right:none">East</td> <td style="border-right:none">West</td> <td>electricity</td> <td style="border-right:none">capaExcResi</td> <td style="border-right:none;text-align:center">3.0</td> </tr> <tr> <td style="border-right:none">East</td> <td style="border-right:none">West</td> <td>electricity</td> <td style="border-right:none">capaExcResiDir</td> <td style="border-right:none;text-align:center">1.0</td> </tr> </tbody> </table> ``` ### Limits on expansion ```@raw html <p class="norm"> Limits on capacity expansion. In the inheritance rules <em>sum*</em> only applies for upper limits. </p> <table class="tabelle"> <tbody> <tr> <td><strong>name</strong></td> <td>expConv{Fix/Low/Up}</td> <td>exp{StIn/StOut/StSize}{Fix/Low/Up}</td> <td>expExc{Fix/Low/Up}</td> </tr> <tr> <td><strong>unit</strong></td> <td colspan="3"; style="text-align:center">GW</td> </tr> <tr> <td><strong>dimension</strong></td> <td>$Ts_{exp}$, $R_{exp}$, $Te$</td> <td>$Ts_{exp}$, $R_{exp}$, $C$, $Te$</td> <td>$Ts_{exp}$, $R_{a}$, $R_{b}$, $C$</td> </tr> <tr> <td><strong>default value</strong></td> <td colspan="3"; style="text-align:center">none</td> </tr> <tr> <td rowspan="2"><strong>inheritance rules</strong></td> <td colspan="2"; style="text-align:center;border-bottom:none;padding-bottom:0.1875em"> <ol class="liste"> <li>$Ts_{exp}$ &#8594; <em>sum</em>/<em>sum*</em></li> <li>$R_{exp}$ &#8594; <em>sum</em>/<em>sum*</em></li> <li>$Te$ &#8594; <em>sum</em>/<em>sum*</em></li> </ol> </td> <td colspan="1"; rowspan="2"> <ol class="liste"> <li>$Ts_{exp}$ &#8594; <em>sum</em>/<em>sum*</em></li> <li>$R_{a}$ &#8594; <em>sum</em>/<em>sum*</em></li> <li>$R_{b}$ &#8594; <em>sum</em>/<em>sum*</em></li> <li>$C$ &#8594; <em>sum</em>/<em>sum*</em></li> </ol> </td> </tr> <tr> <td colspan="1"; style="text-align:center;border-right:none;padding-top:0px"> </td> <td colspan="1"; style="text-align:center;padding-top:0px"> <ol class="liste"; start="4"> <li>$C$ &#8594; <em>sum</em>/<em>sum*</em></li> </ol> </td> </tr> <tr> <td><strong>related elements</strong></td> <td colspan="3"; style="text-align:center"> <ul class="liste"> <li>see <a href="../constraints/#Limiting-constraints-1">limiting constraints</a></li> </ul> </td> </tr> <tr> <td><strong>part</strong></td> <td colspan="3"; style="text-align:center"><a href="../parts/#Limit-1">limit</a></td> </tr> </tbody> </table> ``` ### Limits on capacity ```@raw html <p class="norm"> Limits on installed capacity. In the inheritance rules <em>sum*</em> only applies for upper limits. </p> <table class="tabelle"> <tbody> <tr> <td><strong>name</strong></td> <td>capaConv{Fix/Low/Up}</td> <td>capa{StIn/StOut/StSize}{Fix/Low/Up}</td> <td>capaExc{Fix/Low/Up}</td> </tr> <tr> <td><strong>unit</strong></td> <td colspan="3"; style="text-align:center">GW</td> </tr> <tr> <td><strong>dimension</strong></td> <td>$Ts_{sup}$, $Ts_{exp}$, $R_{exp}$, $Te$</td> <td>$Ts_{sup}$,$Ts_{exp}$, $R_{exp}$, $C$, $Te$</td> <td>$Ts_{sup}$, $R_{a}$, $R_{b}$, $C$</td> </tr> <tr> <td><strong>default value</strong></td> <td colspan="3"; style="text-align:center">none</td> </tr> <tr> <td rowspan="2"><strong>inheritance rules</strong></td> <td colspan="2"; style="text-align:center;border-bottom:none;padding-bottom:0px"> <ol class="liste"> <li>$R_{exp}$ &#8594; <em>sum</em>/<em>sum*</em></li> <li>$Te$ &#8594; <em>sum</em>/<em>sum*</em></li> <li>$Ts_{sup}$ &#8594; <em>average</em></li> </ol> </td> <td colspan="1"; rowspan="2"> <ol class="liste"> <li>$Ts_{sup}$ &#8594; <em>average</em></li> <li>$R_{a}$ &#8594; <em>sum</em>/<em>sum*</em></li> <li>$R_{b}$ &#8594; <em>sum</em>/<em>sum*</em></li> <li>$C$ &#8594; <em>sum</em>/<em>sum*</em></li> </ol> </td> </tr> <tr> <td colspan="1"; style="text-align:center;border-right:none;padding-top:0px"> <ol class="liste"; start="4"> <li>$Ts_{exp}$ &#8594; <em>sum</em>/<em>sum*</em></li> </ol> </td> <td colspan="1"; style="text-align:center;padding-top:0px"> <ol class="liste"; start="4"> <li>$C$ &#8594; <em>sum</em>/<em>sum*</em></li> <li>$Ts_{exp}$ &#8594; <em>sum</em>/<em>sum*</em></li> </ol> </td> </tr> <tr> <td><strong>related elements</strong></td> <td colspan="3"; style="text-align:center"> <ul class="liste"> <li>see <a href="../constraints/#Limiting-constraints-1">limiting constraints</a></li> </ul> </td> </tr> <tr> <td><strong>part</strong></td> <td colspan="3"; style="text-align:center"><a href="../parts/#Limit-1">limit</a></td> </tr> </tbody> </table> ``` ### Limits on operated capacity ```@raw html <p class="norm"> Limits on operated capacity. In the inheritance rules <em>sum*</em> only applies for upper limits. </p> <table class="tabelle"> <tbody> <tr> <td><strong>name</strong></td> <td>oprCapaConv{Fix/Low/Up}</td> <td>oprCapa{StIn/StOut/StSize}{Fix/Low/Up}</td> <td>oprCapaExc{Fix/Low/Up}</td> </tr> <tr> <td><strong>unit</strong></td> <td colspan="3"; style="text-align:center">GW</td> </tr> <tr> <td><strong>dimension</strong></td> <td>$Ts_{sup}$, $Ts_{exp}$, $R_{exp}$, $Te$</td> <td>$Ts_{sup}$,$Ts_{exp}$, $R_{exp}$, $C$, $Te$</td> <td>$Ts_{sup}$, $R_{a}$, $R_{b}$, $C$</td> </tr> <tr> <td><strong>default value</strong></td> <td colspan="3"; style="text-align:center">none</td> </tr> <tr> <td rowspan="2"><strong>inheritance rules</strong></td> <td colspan="2"; style="text-align:center;border-bottom:none;padding-bottom:0px"> <ol class="liste"> <li>$R_{exp}$ &#8594; <em>sum</em>/<em>sum*</em></li> <li>$Te$ &#8594; <em>sum</em>/<em>sum*</em></li> <li>$Ts_{sup}$ &#8594; <em>average</em></li> </ol> </td> <td colspan="1"; rowspan="2"> <ol class="liste"> <li>$Ts_{sup}$ &#8594; <em>average</em></li> <li>$R_{a}$ &#8594; <em>sum</em>/<em>sum*</em></li> <li>$R_{b}$ &#8594; <em>sum</em>/<em>sum*</em></li> <li>$C$ &#8594; <em>sum</em>/<em>sum*</em></li> </ol> </td> </tr> <tr> <td colspan="1"; style="text-align:center;border-right:none"> <ol class="liste"; start="4"> <li>$Ts_{exp}$ &#8594; <em>sum</em>/<em>sum*</em></li> </ol> </td> <td colspan="1"; style="text-align:center"> <ol class="liste"; start="4"> <li>$C$ &#8594; <em>sum</em>/<em>sum*</em></li> <li>$Ts_{exp}$ &#8594; <em>sum</em>/<em>sum*</em></li> </ol> </td> </tr> <tr> <td><strong>related elements</strong></td> <td colspan="3"; style="text-align:center;vertical-align:middle"> <ul class="liste"> <li>see <a href="../constraints/#Limiting-constraints-1">limiting constraints</a></li> </ul> </td> </tr> <tr> <td><strong>part</strong></td> <td colspan="3"; style="text-align:center"><a href="../parts/#Limit-1">limit</a></td> </tr> </tbody> </table> ``` # Emissions ### Emission limit Upper limit on carbon emissions. ```@raw html <p class="norm"> Upper limits on emissions are enforced analogously to <a href="#Limits-on-quantities-dispatched">limits on dispatch quantities</a>. Therefore, the same caution with regard to how limits are defined should be exercised. As explained for dispatched quantities in greater detail, the table below will impose a carbon budget, meaning an upper limit on the sum of carbon emitted across <u>all years</u>. </p> <table class="tabelle2"> <tbody> <tr> <td style="border-bottom: solid 1px;border-color: #dbdbdb"><strong>timestep_1</strong></td> <td style="border-right:none;border-bottom: solid 1px;border-color: #dbdbdb"><strong>parameter</strong></td> <td style="border-right:none;border-bottom: solid 1px;border-color: #dbdbdb"><strong>value</strong></td> </tr> <tr> <td></td> <td style="border-right:none">emissionUp</td> <td style="border-right:none;text-align:center">80.0</td> </tr> </tbody> </table> <p class="norm"> While this table will enforce separate limits for <u>each year</u>. </p> <table class="tabelle2"> <tbody> <tr> <td style="border-bottom: solid 1px;border-color: #dbdbdb"><strong>timestep_1</strong></td> <td style="border-right:none;border-bottom: solid 1px;border-color: #dbdbdb"><strong>parameter</strong></td> <td style="border-right:none;border-bottom: solid 1px;border-color: #dbdbdb"><strong>value</strong></td> </tr> <tr> <td>all</td> <td style="border-right:none">emissionUp</td> <td style="border-right:none;text-align:center">80.0</td> </tr> </tbody> </table> <table class="tabelle"> <tbody> <tr> <td><strong>name</strong></td> <td>emissionUp</td> </tr> <tr> <td><strong>unit</strong></td> <td>Mil. tCO<sub>2</sub></td> </tr> <tr> <td><strong>dimension</strong></td> <td>$Ts_{dis}$, $Ts_{exp}$, $R_{dis}$, $C$, $Te$, $M$</td> </tr> <tr> <td><strong>default value</strong></td> <td>none</td> </tr> <tr> <td><strong>inheritance rules</strong></td> <td> <ol class="liste"> <li>$Ts_{dis}$ &#8594; <em>sum*</em></li> <li>$Ts_{exp}$ &#8594; <em>sum*</em></li> <li>$R_{dis}$ &#8594; <em>sum*</em></li> <li>$C$ &#8594; <em>sum*</em></li> <li>$Te$ &#8594; <em>sum*</em></li> <li>$M$ &#8594; <em>sum*</em></li> </ol> </td></tr> <tr> <td><strong>related elements</strong></td> <td> <ul class="liste"> <li>see <a href="../constraints/#Limiting-constraints-1">limiting constraints</a></li> </ul> </td> </tr> <tr> <td><strong>part</strong></td> <td><a href="../parts/#Limit-1">limit</a></td> </tr> </tbody> </table> ``` ### Emission factor Relative emissions associated with the use of a carrier. ```@raw html <table class="tabelle"> <tbody> <tr> <td><strong>name</strong></td> <td>emissionFac</td> </tr> <tr> <td><strong>unit</strong></td> <td>tCO<sub>2</sub>/GWh</td> </tr> <tr> <td><strong>dimension</strong></td> <td>$Ts_{dis}$, $Ts_{exp}$, $R_{dis}$, $C$, $Te$, $M$</td> </tr> <tr> <td><strong>default value</strong></td> <td>none</td> </tr> <tr> <td><strong>inheritance rules</strong></td> <td> <ol class="liste"> <li>$Ts_{exp}$ &#8594; <em>upwards</em></li> <li>$Ts_{dis}$ &#8594; <em>upwards</em></li> <li>$R_{dis}$ &#8594; <em>upwards</em></li> <li>$C$ &#8594; <em>upwards</em></li> <li>$Te$ &#8594; <em>upwards</em></li> <li>$M$ &#8594; <em>upwards</em></li> </ol> </td></tr> <tr> <td><strong>related elements</strong></td> <td> <ul class="liste"> <li>see <a href="../constraints/#Limiting-constraints-1">limiting constraints</a></li> <li><a href="../constraints/#Variable-cost-equation-1">variable cost equation</a></li> </ul> </td> </tr> <tr> <td><strong>part</strong></td> <td><a href="../parts/#Limit-1">limit</a></td> </tr> </tbody> </table> ``` ### Emission price Costs imposed on emitting carbon. ```@raw html <table class="tabelle"> <tbody> <tr> <td><strong>name</strong></td> <td>emissionPrc</td> </tr> <tr> <td><strong>unit</strong></td> <td>€/tCO<sub>2</sub></td> </tr> <tr> <td><strong>dimension</strong></td> <td>$Ts_{dis}$, $Ts_{exp}$, $R_{dis}$, $C$, $Te$, $M$</td> </tr> <tr> <td><strong>default value</strong></td> <td>none</td> </tr> <tr> <td><strong>inheritance rules</strong></td> <td> <ol class="liste"> <li>$Ts_{exp}$ &#8594; <em>upwards</em></li> <li>$Ts_{dis}$ &#8594; <em>upwards</em></li> <li>$R_{dis}$ &#8594; <em>upwards</em></li> <li>$C$ &#8594; <em>upwards</em></li> <li>$Te$ &#8594; <em>upwards</em></li> <li>$M$ &#8594; <em>upwards</em></li> </ol> </td></tr> <tr> <td><strong>related elements</strong></td> <td> <ul class="liste"> <li>see <a href="../constraints/#Limiting-constraints-1">limiting constraints</a></li> <li><a href="../constraints/#Variable-cost-equation-1">variable cost equation</a></li> </ul> </td> </ul> </tr> <tr> <td><strong>part</strong></td> <td><a href="../parts/#Objective-1">objective</a></td> </tr> </tbody> </table> ```
AnyMOD
https://github.com/leonardgoeke/AnyMOD.jl.git
[ "MIT" ]
0.1.12
46a00c75bb6eb7fdaf5b15d75e9a544c0f91484d
docs
23122
```@raw html <style> table.tabelle2 td { padding-left: 0.57em; padding-right: 0.57em; border-right: solid 1px; border-bottom: none; border-color: #dbdbdb; font-size: small; font-weight: normal; } table.tabelle3 td { padding-left: 0.57em; padding-right: 0.57em; border-right: solid 1px; border-color: #dbdbdb; font-size: small; font-weight: normal; } ol.nest { list-style-position: inside; } ol.nest2 { counter-reset: item; list-style-position: inside; } li.nest { display: block; } li.nest li:before { content: "2." counter(item, decimal); counter-increment: item; } li.nest2 li:before { content: "2." counter(item, decimal); counter-increment: item; } p.norm { font-weight: normal; font-size: medium; } </style> ``` # Parameter overview ```@raw html <p class="norm"> Parameter data is provided in <code>.csv</code> csv files starting with <code>par_</code> and transferred into <a href="../api/#AnyMOD.ParElement"><code>ParElement</code></a> objects. The read-in data is used by the inheritance algorithm to compile the parameter data being used in the model's underlying optimization problem. This avoids huge but largely redundant input files and allows for lean and flexible models. </p> ``` # Read-in ```@raw html <p class="norm"> In contrast to sets, the naming of parameter files and what data is provided in which file is entirely up to the user. For instance, data for the same parameter can be spread across different files and within one file multiple parameters can be defined. </p> ``` ### Pivot format ```@raw html <p class="norm"> Parameter data is provided in a pivot format where the column <code>parameter</code> determines the respective parameter and the column <code>value</code> its respective value. Additional columns specify the nodes within the hierarchical trees of sets a value applies to. Therefore, names of these columns are comprised of the set's name and, if the set is organized in a tree with multiple levels, the number of the respective level. </p> <p class="norm"> The <code>all</code> keyword can be used analogously to sets (see <a href="../sets/#Time-steps">Time-steps</a>). Columns that do not contain a set name (i.e. <code>region</code>, <code>timestep</code>, <code>carrier</code>, <code>technology</code>, <code>mode</code>, or <code>id</code>) or keyword (i.e. <code>parameter</code> and <code>value</code>) are not read in and can be used for documentation. To define multiple parameters within the same row, several numbered <code>parameter</code>/<code>value</code> columns can be provided (see <a href="https://github.com/leonardgoeke/AnyMOD.jl/blob/master/examples/demo/par_techCost.csv"><code>par_techCost.csv</code></a>). </p> <p class="norm"> As an example, the table below shows the definition of the <a href="../parameter_list/#Discount-rate-1">discount rate</a> parameter in the demo model found in the <a href="https://github.com/leonardgoeke/AnyMOD.jl/blob/master/examples/demo/par_techInvest.csv"><code>par_techInvest.csv</code></a> file. </p> <table class="tabelle2"> <tbody> <tr> <td style="border-right:none;border-bottom: solid 1px;border-color: #dbdbdb"><strong>timestep_1</strong></td> <td style="border-right:none;border-bottom: solid 1px;border-color: #dbdbdb"><strong>region_1</strong></td> <td style="border-bottom: solid 1px;border-color: #dbdbdb"><strong>region_2</strong></td> <td style="border-right:none;border-bottom: solid 1px;border-color: #dbdbdb"><strong>parameter</strong></td> <td style="border-right:none;border-bottom: solid 1px;border-color: #dbdbdb"><strong>value</strong></td> </tr> <tr> <td style="border-right:none"></td> <td style="border-right:none">West</td> <td></td> <td style="border-right:none">rateDisc</td> <td style="border-right:none;text-align:center">0.0</td> </tr> <tr> <td style="border-right:none">2030</td> <td style="border-right:none">West</td> <td>WestSouth</td> <td style="border-right:none">rateDisc</td> <td style="border-right:none;text-align:center">0.015</td> </tr> <tr> <td style="border-right:none">2030</td> <td style="border-right:none">East</td> <td></td> <td style="border-right:none">rateDisc</td> <td style="border-right:none;text-align:center">0.03</td> </tr> </tbody> </table> ``` In case, a set is included in the dimensions of a parameter, but no node of that set is assigned for a respective value, the very top node of the tree is assigned instead. ### Multiple dependencies on same set ```@raw html <p class="norm"> Parameter can depend on multiple instances of the same set. In case of an <code>emerging</code> technology (see section on optional mappings for <a href="../sets/#Technologies">technologies</a>) <a href="..#Efficiency">efficiency</a> for instance can depend on two different kinds of time-steps: $Ts_{dis}$, the time-step a technology is being used, and $Ts_{exp}$, the time-step a technology was built. Following the order of sets in the definition, the first time-step specified in the input data will always relate to $Ts_{dis}$ and the second to expansion $Ts_{exp}$. </p> <p class="norm"> Accordingly, in table below the first column relates to $Ts_{dis}$ and the second to $Ts_{exp}$. Consequently, the specified efficiency applies to the first hour of every year for all <code>heatpumps</code> constructed <code>2020</code>. </p> <table class="tabelle2"> <tbody> <tr> <td style="border-right:none;border-bottom: solid 1px;border-color: #dbdbdb"><strong>timestep_4</strong></td> <td style="border-right:none;border-bottom: solid 1px;border-color: #dbdbdb"><strong>timestep_1</strong></td> <td style="border-bottom: solid 1px;border-color: #dbdbdb"><strong>technology_1</strong></td> <td style="border-right:none;border-bottom: solid 1px;border-color: #dbdbdb"><strong>parameter</strong></td> <td style="border-right:none;border-bottom: solid 1px;border-color: #dbdbdb"><strong>value</strong></td> </tr> <tr> <td style="border-right:none">h0001</td> <td style="border-right:none">2020</td> <td>heatpump</td> <td style="border-right:none">effConf</td> <td style="border-right:none;text-align:center">5.0</td> </tr> </tbody> </table> <p class="norm"> This concept equally applies if one of the sets is defined by more then one column. In the table below, the first and the second column are attributed to specify $Ts_{dis}$. Since the third column goes back up to the first level, AnyMOD realizes it refers to a different dimension and attributes it to $Ts_{exp}$. As a result, both efficiencies apply to <code>heatpumps</code> constructed <code>2020</code>, but one row relates to the first hour of <code>2020</code> and the other to the first hour of <code>2030</code>. So, this example also shows how the aging process of technologies can be modeled. </p> <table class="tabelle2"> <tbody> <tr> <td style="border-right:none;border-bottom: solid 1px;border-color: #dbdbdb"><strong>timestep_1</strong></td> <td style="border-right:none;border-bottom: solid 1px;border-color: #dbdbdb"><strong>timestep_4</strong></td> <td style="border-right:none;border-bottom: solid 1px;border-color: #dbdbdb"><strong>timestep_1</strong></td> <td style="border-bottom: solid 1px;border-color: #dbdbdb"><strong>technology_1</strong></td> <td style="border-right:none;border-bottom: solid 1px;border-color: #dbdbdb"><strong>parameter</strong></td> <td style="border-right:none;border-bottom: solid 1px;border-color: #dbdbdb"><strong>value</strong></td> </tr> <tr> <td style="border-right:none">2020</td> <td style="border-right:none">h0001</td> <td style="border-right:none">2020</td> <td>heatpump</td> <td style="border-right:none">effConf</td> <td style="border-right:none;text-align:center">5.0</td> </tr> <tr> <td style="border-right:none">2030</td> <td style="border-right:none">h0001</td> <td style="border-right:none">2020</td> <td>heatpump</td> <td style="border-right:none">effConf</td> <td style="border-right:none;text-align:center">4.5</td> </tr> </tbody> </table> ``` # Inheritance ```@raw html <p class="norm"> The combinations of sets or instances parameters are provided for within the input data do not need to match the instances required within the model. The required values are automatically compiled from the data provided. This facilitates the provision of input data and allows for a high level of flexibility in modelling. </p> <p class="norm"> If, for example, for one technology <a href="../parameter_list/#Efficiency-1">efficiency</a> should be dependent on the time-step and for another irrespective of the time-step, this can simply be achieved in the model by providing efficiencies with an hourly granulation in the first and without specifying the temporal domain in the other case. In the demo problem for instance, heat-pump efficiencies are provided hourly in <a href="https://github.com/leonardgoeke/AnyMOD.jl/blob/master/examples/demo/timeseries/par_heatpumps.csv"><code>par_heatpumps.csv</code></a> while for all other technologies <a href="https://github.com/leonardgoeke/AnyMOD.jl/blob/master/examples/demo/par_techDispatch.csv"><code>par_techDispatch.csv</code></a> defines efficiencies without specifying a dispatch time-step. </p> ``` !!! warning "Do not overuse inheritance" Poorly provided input data, especially time-series data, can massively increase the run-time of the inheritance algorithm. For example, if your raw data is provided quarter-hourly, but the most detailed resolution you actually want to model is hourly, you should aggregate the data to hours yourself before providing it to the model. To define a quarter-hourly resolution below the hourly resolution, feed-in the unaltered data and have the inheritance algorithm aggregate it instead, is possible but highly inefficient. ### Modes of inheritance When data is required but not defined for a specific combination of nodes, the algorithm moves along the vertices of the set trees to derive it. There are four different modes to do this, that will be explained based on the graph below. It shows the hierarchical tree of time-steps in the demo problem with data specified for some nodes (green), but not for the one required (red circle). ```@raw html <img src="../assets/inheritance.png" width="80%"/> <p class="norm"> <ul> <li><em><strong>upwards</em></strong><br>Moving upwards the tree until a node with data is reached. In the example this means to assign <code>d001</code> the value <code>8.3</code>. If data would already be provided for <code>2020</code>, the direct ancestor of <code>d001</code>, this value would be used instead. </li> <li><em><strong>average</em></strong><br>Moving downward until nodes with some data are reached and take the average of those value. In the example this means to assign <code>d001</code> the value <code>2.9</code> ($=\frac{2.7 + 3.1}{2}$). </li> <li><em><strong>sum</em></strong><br> Moving downward until nodes with some data are reached and take the sum of those value. In the example this means to assign <code>d001</code> the value <code>5.8</code> ($=2.7 + 3.1$). </li> <li><em><strong>sum*</em></strong><br> Moving downward until nodes who <u>all</u> have data assigned are reached and take the sum of those value. In the example this means to assign <code>d001</code> the value <code>16.6</code> ($=2.1+6.8+4.5+3.2$).</li> </ul> </p> ``` ### Inheritance algorithm ```@raw html <p class="norm"> The actual algorithm is outlined for the example of the <a href="../parameter_list/#Discount-rate-1">discount rate</a> parameter from the demo problem. The instances of the parameter required with in the model are given below, the provided input data was shown above. </p> <table class="tabelle3"> <tbody> <tr> <td style="border-right:none"><strong>timestep_superordinate_dispatch</strong></td> <td style="border-right:none"><strong>region_expansion</strong></td> </tr> <tr> <td style="border-right:none">2020</td> <td style="border-right:none">West < WestNorth</td> </tr> <tr> <td style="border-right:none">2030</td> <td style="border-right:none">West < WestNorth</td> </tr> <tr> <td style="border-right:none">2020</td> <td style="border-right:none">West < WestSouth</td> </tr> <tr> <td style="border-right:none">2030</td> <td style="border-right:none">West < WestSouth</td> </tr> <tr> <td style="border-right:none">2020</td> <td style="border-right:none">East < EastNorth</td> </tr> <tr> <td style="border-right:none">2030</td> <td style="border-right:none">East < EastNorth</td> </tr> <tr> <td style="border-right:none">2020</td> <td style="border-right:none">East < EastSouth</td> </tr> <tr> <td style="border-right:none">2030</td> <td style="border-right:none">East < EastSouth</td> </tr> <tr> <td style="border-right:none">2020</td> <td style="border-right:none">East</td> </tr> <tr> <td style="border-right:none">2030</td> <td style="border-right:none">East</td> </tr> <tr> <td style="border-right:none">2020</td> <td style="border-right:none">West</td> </tr> <tr> <td style="border-right:none">2030</td> <td style="border-right:none">West</td> </tr> </tbody> </table> ``` Three steps are taken to populate the table with the required data: ```@raw html <ol class="nest"; > <li class="nest2"; style="font-size:large;font-weight:bold">&nbsp;&nbsp;&nbspDirect matches</font-size><br> <p class="norm"> First, values are assigned where instances of the required data exactly match the provided input data. For example, data for <code>2020</code> and <code>WestSouth</code> is specifically provided and can be used directly. <table class="tabelle3"> <tbody> <tr> <td style="border-right:none"><strong>timestep_superordinate_dispatch</strong></td> <td><strong>region_expansion</strong></td> <td style="border-right:none"><strong>value</strong></td> </tr> <tr> <td style="border-right:none">2020</td> <td>West < WestNorth</td> <td style="border-right:none;text-align:center"></td> </tr> <tr> <td style="border-right:none">2030</td> <td>West < WestNorth</td> <td style="border-right:none;text-align:center"></td> </tr> <tr> <td style="border-right:none">2020</td> <td>West < WestSouth</td> <td style="border-right:none;text-align:center"></td> </tr> <tr> <td style="border-right:none">2030</td> <td>West < WestSouth</td> <td style="border-right:none;text-align:center"><strong style="color:#60ad51">0.015</strong></td> </tr> <tr> <td style="border-right:none">2020</td> <td>East < EastNorth</td> <td style="border-right:none;text-align:center"></td> </tr> <tr> <td style="border-right:none">2030</td> <td>East < EastNorth</td> <td style="border-right:none;text-align:center"></td> </tr> <tr> <td style="border-right:none">2020</td> <td>East < EastSouth</td> <td style="border-right:none;text-align:center"></td> </tr> <tr> <td style="border-right:none">2030</td> <td>East < EastSouth</td> <td style="border-right:none;text-align:center"></td> </tr> <tr> <td style="border-right:none">2020</td> <td>East</td> <td style="border-right:none;text-align:center"></td> </tr> <tr> <td style="border-right:none">2030</td> <td>East</td> <td style="border-right:none;text-align:center"><strong style="color:#60ad51">0.03</strong></td> </tr> <tr> <td style="border-right:none">2020</td> <td>West</td> <td style="border-right:none;text-align:center"></td> </tr> <tr> <td style="border-right:none">2030</td> <td>West</td> <td style="border-right:none;text-align:center"></td> </tr> </tbody> </table> </p> </li> <li class="nest2"; style="font-size:large;font-weight:bold">&nbsp;&nbsp;&nbspGo along inheritance rules<br> <p class="norm"; style = "text-indent:0em"> Next, the algorithm consecutively applies the inheritance rules of the respective parameter. For each parameter these rules are documented in the <a href="../parameter_list">parameter list</a>. These rules assign sets to the modes of inheritance introduced above. <ol class="nest2"> <li class="nest"; style="font-size:medium;font-weight:bold">&nbsp;&nbsp;&nbsp;$Ts_{sup}$ &#8594; <em>upwards</em><br> <p class="norm"> For discount rates, the first rule is to try to obtain additional values by moving upwards in the hierarchical trees of time-steps. In the first row of input data, a value was provided irrespective of time-step, but only for the region <code>West</code>. This value is now assigned to the missing entries of that region. <table class="tabelle3"> <tbody> <tr> <td style="border-right:none"><strong>timestep_superordinate_dispatch</strong></td> <td><strong>region_expansion</strong></td> <td style="border-right:none"><strong>value</strong></td> </tr> <tr> <td style="border-right:none">2020</td> <td>West < WestNorth</td> <td style="border-right:none;text-align:center"></td> </tr> <tr> <td style="border-right:none">2030</td> <td>West < WestNorth</td> <td style="border-right:none;text-align:center"></td> </tr> <tr> <td style="border-right:none">2020</td> <td>West < WestSouth</td> <td style="border-right:none;text-align:center"></td> </tr> <tr> <td style="border-right:none">2030</td> <td>West < WestSouth</td> <td style="border-right:none;text-align:center">0.015</td> </tr> <tr> <td style="border-right:none">2020</td> <td>East < EastNorth</td> <td style="border-right:none;text-align:center"></td> </tr> <tr> <td style="border-right:none">2030</td> <td>East < EastNorth</td> <td style="border-right:none;text-align:center"></td> </tr> <tr> <td style="border-right:none">2020</td> <td>East < EastSouth</td> <td style="border-right:none;text-align:center"></td> </tr> <tr> <td style="border-right:none">2030</td> <td>East < EastSouth</td> <td style="border-right:none;text-align:center"></td> </tr> <tr> <td style="border-right:none">2020</td> <td>East</td> <td style="border-right:none;text-align:center"></td> </tr> <tr> <td style="border-right:none">2030</td> <td>East</td> <td style="border-right:none;text-align:center">0.03</td> </tr> <tr> <td style="border-right:none">2020</td> <td>West</td> <td style="border-right:none;text-align:center"><strong style="color:#60ad51">0.00</strong></td> </tr> <tr> <td style="border-right:none">2030</td> <td>West</td> <td style="border-right:none;text-align:center"><strong style="color:#60ad51">0.00</strong></td> </tr> </tbody> </table> </li> </p> <li class="nest"; style="font-size:medium;font-weight:bold">&nbsp;&nbsp;&nbsp;$R_{exp}$ &#8594; <em>upwards</em><br> <p class="norm"> Next, the concept is analogously applied to regions. By moving up the tree the value provided for <code>East</code> is now assigned for the descendant regions <code>EastNorth</code> and <code>EastSouth</code> as well. <table class="tabelle3"> <tbody> <tr> <td style="border-right:none"><strong>timestep_superordinate_dispatch</strong></td> <td><strong>region_expansion</strong></td> <td style="border-right:none"><strong>value</strong></td> </tr> <tr> <td style="border-right:none">2020</td> <td>West < WestNorth</td> <td style="border-right:none;text-align:center"><strong style="color:#60ad51">0.00</strong></td> </tr> <tr> <td style="border-right:none">2030</td> <td>West < WestNorth</td> <td style="border-right:none;text-align:center"><strong style="color:#60ad51">0.00</strong></td> </tr> <tr> <td style="border-right:none">2020</td> <td>West < WestSouth</td> <td style="border-right:none;text-align:center"><strong style="color:#60ad51">0.00</strong></td> </tr> <tr> <td style="border-right:none">2030</td> <td>West < WestSouth</td> <td style="border-right:none;text-align:center">0.015</td> </tr> <tr> <td style="border-right:none">2020</td> <td>East < EastNorth</td> <td style="border-right:none;text-align:center"></td> </tr> <tr> <td style="border-right:none">2030</td> <td>East < EastNorth</td> <td style="border-right:none;text-align:center"><strong style="color:#60ad51">0.03</strong></td> </tr> <tr> <td style="border-right:none">2020</td> <td>East < EastSouth</td> <td style="border-right:none;text-align:center"></td> </tr> <tr> <td style="border-right:none">2030</td> <td>East < EastSouth</td> <td style="border-right:none;text-align:center"><strong style="color:#60ad51">0.03</strong></td> </tr> <tr> <td style="border-right:none">2020</td> <td>East</td> <td style="border-right:none;text-align:center"></td> </tr> <tr> <td style="border-right:none">2030</td> <td>East</td> <td style="border-right:none;text-align:center">0.03</td> </tr> <tr> <td style="border-right:none">2020</td> <td>West</td> <td style="border-right:none;text-align:center">0.00</td> </tr> <tr> <td style="border-right:none">2030</td> <td>West</td> <td style="border-right:none;text-align:center">0.00</td> </tr> </tbody> </table> </p> </li> <li class="nest"; style="font-size:medium;font-weight:bold">&nbsp;&nbsp;&nbsp;$Ts_{sup}$ &#8594; <em>average</em> and $R_{exp}$ &#8594; <em>average</em><br> <p class="norm"> The <em>average</em> mode tries to inherit values from descendant carriers. In this case, for none of these any data is defined, and consequently no additional data can be compiled. </p> </li> </ol></li> <li class="nest2"; style="font-size:large;font-weight:bold">&nbsp;&nbsp;&nbspUse default value<br> <p class="norm"; style = "text-indent:0em"> Finally, for all cases where no data was assigned, the default value is used instead. In case a parameter does not have a default, cases are dropped. <table class="tabelle3"> <tbody> <tr> <td style="border-right:none"><strong>timestep_superordinate_dispatch</strong></td> <td><strong>region_expansion</strong></td> <td style="border-right:none"><strong>value</strong></td> </tr> <tr> <td style="border-right:none">2020</td> <td>West < WestNorth</td> <td style="border-right:none;text-align:center">0.00</td> </tr> <tr> <td style="border-right:none">2030</td> <td>West < WestNorth</td> <td style="border-right:none;text-align:center">0.00</td> </tr> <tr> <td style="border-right:none">2020</td> <td>West < WestSouth</td> <td style="border-right:none;text-align:center">0.00</td> </tr> <tr> <td style="border-right:none">2030</td> <td>West < WestSouth</td> <td style="border-right:none;text-align:center">0.015</td> </tr> <tr> <td style="border-right:none">2020</td> <td>East < EastNorth</td> <td style="border-right:none;text-align:center"><strong style="color:#60ad51">0.02</strong></td> </tr> <tr> <td style="border-right:none">2030</td> <td>East < EastNorth</td> <td style="border-right:none;text-align:center">0.03</td> </tr> <tr> <td style="border-right:none">2020</td> <td>East < EastSouth</td> <td style="border-right:none;text-align:center"><strong style="color:#60ad51">0.02</strong></td> </tr> <tr> <td style="border-right:none">2030</td> <td>East < EastSouth</td> <td style="border-right:none;text-align:center">0.03</td> </tr> <tr> <td style="border-right:none">2020</td> <td>East</td> <td style="border-right:none;text-align:center"><strong style="color:#60ad51">0.02</strong></td> </tr> <tr> <td style="border-right:none">2030</td> <td>East</td> <td style="border-right:none;text-align:center">0.03</td> </tr> <tr> <td style="border-right:none">2020</td> <td>West</td> <td style="border-right:none;text-align:center">0.00</td> </tr> <tr> <td style="border-right:none">2030</td> <td>West</td> <td style="border-right:none;text-align:center">0.00</td> </tr> </tbody> </table> </p> </li> </ol> ```
AnyMOD
https://github.com/leonardgoeke/AnyMOD.jl.git
[ "MIT" ]
0.1.12
46a00c75bb6eb7fdaf5b15d75e9a544c0f91484d
docs
2988
# Parts ```@raw html <p class="norm"> The <code>parts</code> field of the <a href="../api/#AnyMOD.anyModel"><code>anyModel</code></a> object structures the elements of a model's underlying optimization problem. Each of these parts has again three fields: <ul> <li> <code>par::Dict{Symbol,ParElement}</code> &#8594; <a href="../parameter_overview">parameter</a></li> <li> <code>var::Dict{Symbol,DataFrame}</code> &#8594; <a href="../variables">variables</a></li> <li> <code>cns::Dict{Symbol,DataFrame}</code> &#8594; <a href="../constraints">constraints</a></li> </ul> </p> ``` ### Technology ```@raw html <p class="norm"> The <a href="../api/#AnyMOD.TechPart"><code>part</code></a> for technologies is accessed via <code>modelObject.parts.tech[:techName]</code>. These objects include all expansion and dispatch related elements for the respective technology. Technology parts have additional fields to store information specific to technologies. </p> ``` ### Exchange ```@raw html <p class="norm"> The <a href="../api/#AnyMOD.OthPart"><code>part</code></a> object for exchange is accessed via <code>modelObject.parts.exc</code>. It includes all model elements relating to the exchange of energy carriers between regions. Exchange between two regions is enabled, if a value for the <a href="../parameter_list/#Residual-capacities-1">residual exchange capacity</a> parameter can be obtained between these two regions. </p> ``` ### Trade ```@raw html <p class="norm"> For trade the <a href="../api/#AnyMOD.OthPart"><code>part</code></a> object is accessed via <code>modelObject.parts.trd</code>. It includes all model elements relating to buying and selling energy carriers from "outside" the model. Most importantly these are trade prices and variables for traded quantities. </p> ``` ### Balance ```@raw html <p class="norm"> The <a href="../api/#AnyMOD.OthPart"><code>part</code></a> object for energy balances is accessed via <code>modelObject.parts.bal</code>. It is used to store all model elements relevant for the energy balance. For example, this includes the demand parameter, curtailment variables or the energy balance constraint itself. </p> ``` ### Limit ```@raw html <p class="norm"> Model elements used to impose certain limits on model variables are stored in <code>modelObject.parts.lim</code>. These include <a href="../parameter_list/#Limits-on-expansion-and-capacity">limiting parameters</a> and the corresponding constraints enforcing these limits. </p> ``` ### Objective ```@raw html <p class="norm"> The field <code>modelObject.parts.obj</code> gathers elements relating to the objective function of a model's underlying optimization problem. So far, the only available objective in AnyMOD is cost minimization and set by the <a href="../api/#AnyMOD.setObjective!"><code>setObjective!</code></a> function. </p> ``` ```julia setObjective!(:costs, model_object) ``` An objective function has to be set after the optimization problem itself was created.
AnyMOD
https://github.com/leonardgoeke/AnyMOD.jl.git
[ "MIT" ]
0.1.12
46a00c75bb6eb7fdaf5b15d75e9a544c0f91484d
docs
9757
```@raw html <style> p.norm { font-weight: normal; font-size: medium; } table.tabelle3 td { padding-left: 0.57em; padding-right: 0.57em; font-size: small; border-right: solid 1px; border-color: #dbdbdb; font-weight: normal; } ul.liste { list-style-position: inside; margin-left: 0em; margin-top: 0em; white-space: nowrap; display:inline-block; text-align: left; } </style> ``` Performance and stability ================= The by far fastest way to solve large linear problems are commercial solvers using the Barrier algorithm. But Barrier is very sensitive to the numerical properties of the problem and often the algorithm is slowed or aborted due to numerical issues. For this reason, AnyMOD provides a range of tools that adjust the problem in order to improve solver performance. These measures are based on recommendations from the [Gurobi documentation](https://www.gurobi.com/documentation/9.0/refman/num_grb_guidelines_for_num.html). # Scaling ```@raw html <p class="norm"> The coefficients within the matrix of an optimization problem are advised be kept between $10^{-3}$ to $10^6$, which implies a maximum range of coefficients of $10^9$ within each row. To achieve this, AnyMOD automatically applies a two-step scaling process to each model that is created. This process is outlined based on the simplified optimization problem (excluding an objective) given below. </p> <p class="norm"> <img src="../assets/matrix1.svg" width="70%"/> </p> <p class="norm"> In the example, currently the first and second row do not comply with the targeted range. Also, the maximum range of coefficients in the second row is $10^{11}$ (= $\frac{10^{2}}{10^{-9}}$), which exceeds $10^9$. </p> ``` ### 1. Column substitution ```@raw html <p class="norm"> The first step substitutes columns (= variables) of the optimization problem. In the example, the variable $x_1$ is substituted with $10^3 \, x'_1$: </p> <p> <img src="../assets/matrix2.svg" width="70%"/> </p> <p class="norm"> After substitution the range of coefficients still does not lie within $10^{-3}$ to $10^6$, but the range of coefficients within each row does not exceed $10^9$ anymore. This is a prerequisite to move all coefficients to the desired range in the next step. </p> <p class="norm"> In AnyMOD substitution is done directly within the <code>var</code> column of a variable's dataframe. As a result, only the value of the variable within the optimization problem is affected, but the value accessed by the user is already corrected and always complies with the units provided in the <a href="../variables">Variables section</a>. The optional argument <code>scaFac</code> of the <a href="../model_object">model constructor</a> overwrites the default factors used for column scaling. As long as no numerical problems occur, it is not advised to change the defaults. The table below lists the fields of the optional argument, to what variables they apply, and what their default value is. </p> <p> <table class="tabelle3"> <tbody> <tr> <td><strong>field</strong></td> <td><strong>scaled variables</strong></td> <td style="border-right:none"><strong>default factor</strong></td> </tr> <tr> <td><code>capa</code></td> <td><ul class="liste"> <li><a href="../variables/#Installed-capacity-1">installed capacity</a></li> <li><a href="../variables/#Expansion-1">capacity expansion</a></li> </ul></td> <td style="text-align:center;border-right:none">$10^{1}$</td> </tr> <tr> <td><code>oprCapa</code></td> <td><ul class="liste"> <li><a href="../variables/#Operated-capacity-1">operated capacity</a></li> </ul></td> <td style="text-align:center;border-right:none">$10^{2}$</td> </tr> <tr> <td><code>dispConv</code></td> <td><ul class="liste"> <li><a href="../variables/#Generation-and-use-1">generation and use</a></li> </ul></td> <td style="text-align:center;border-right:none">$10^{3}$</td> </tr> <tr> <td><code>dispSt</code></td> <td><ul class="liste"> <li><a href="../variables/#Charging-and-discharging-1">charging and discharging</a></li> <li><a href="../variables/#Storage-level-1">storage level</a></li> </ul></td> <td style="text-align:center;border-right:none">$10^{4}$</td> </tr> <tr> <td><code>dispExc</code></td> <td><ul class="liste"> <li><a href="../variables/#Exchange-1">exchange</a></li> </ul></td> <td style="text-align:center;border-right:none">$10^{3}$</td> </tr> <tr> <td><code>dispTrd</code></td> <td><ul class="liste"> <li><a href="../variables/#Buy-and-sell-1">buy and sell</a></li> <li><a href="../variables/#Curtailment-and-loss-of-load-1">curtailment and loss-of-load</a></li> </ul></td> <td style="text-align:center;border-right:none">$10^{3}$</td> </tr> <tr> <td><code>costDisp</code></td> <td><ul class="liste"> <li><a href="../variables/#Variable-costs-1">variable costs</a></li> <li><a href="../variables/#Trade-costs-1">trade costs</a></li> <li><a href="../variables/#Curtailment-and-loss-of-load-costs-1">curtailment and loss of load costs</a></li> </ul></td> <td style="text-align:center;border-right:none">$10^{3}$</td> </tr> <tr> <td><code>costCapa</code></td> <td><ul class="liste"> <li><a href="../variables/#Operating-costs-1">operating costs</a></li> <li><a href="../variables/#Expansion-costs-1">expansion costs</a></li> </ul></td> <td style="text-align:center;border-right:none">$10^{3}$</td> </tr> <td><code>obj</code></td> <td>objective variable</td> <td style="text-align:center;border-right:none">$10^{0}$</td> </tr> </tbody> </table> </p> <p class="norm"> The optional argument <code>checkRng</code> can be used to specify a maximum range of coefficients for each row. Rows (= constraints) that violate this range after column scaling will be printed to the REPL. This helps to test and adjust the factors used for substitution. </p> ``` ### 2. Row scaling ```@raw html <p class="norm"> The second step scales the rows (= constraints) of the optimization problem by multiplying them with a constant factor. If the scaling of columns successfully decreased the range of coefficients to $10^9$, this allows to move coefficients into a range from $10^{-3}$ to $10^6$. In the example, the used factors are $10^{2}$ and $10^4$ for the first and second row, respectively, which results in the following optimization problem: </p> <p> <img src="../assets/matrix4.svg" width="70%"/> </p> <p class="norm" > By default, ranges in anyMOD are more narrow than in the example: matrix coefficients range from $10^{-2}$ to $10^{5}$ and values on the right-hand side from $10^{-2}$ to $10^{2}$. Again, these defaults can be overwritten by the <code>coefRng</code> argument of the <a href="../model_object">model constructor</a>. </p> ``` # Variable limits ```@raw html <p class="norm"> Numerical stability of the Barrier algorithm can be increased by imposing additional upper limits on model variables. For this purpose, general variable limits can be added to a model by using the <code>bound</code> argument of the <a href="../model_object">model constructor</a>. Since the sole purpose of these limits is to increase solver performance, they are not intended to have any real world equivalents. Consequently, they should be set to high values that prevent them from becoming binding constraints. </p> <p class="norm" > Limits are provided as a NamedTuple with fields for dispatch variables, capacity variables, and for the objective itself: <code>(disp = NaN, capa = NaN, obj = NaN)</code> For capacity and dispatch, values are provided in GW and limits on dispatch are scaled to energy units to comply with the temporal resolution of the respective carrier. The limit on the objective function is provided in million Euros. </p> <p class="norm" > In general, it is strongly advised to provide a limit for the objective function. Doing so achieves a noticeable increase in performance without risking to distort model results. Instead, a model will just turn infeasible, if the set limit is below the actual objective value. </p> <p class="norm" > General limits on dispatch and capacity variables should only be set with great caution and used as a measure of last resort against numerical instability. Improper limits could create binding constraints that impact final results but remain undetected by the user. In addition, their positive impact on performance is not as clear, because they also cause a substantial increase in model size. </p> ``` # Range of factors ```@raw html <p class="norm"> Since numerical stability is closely linked to the range of factors in the optimization problem, two more options are available to limit that range. Again, both these options are set as optional arguments of the <a href="../model_object">model constructor</a>. </p> <p class="norm"> <code>avaMin</code> sets a lower limit for the <a href="../parameter_list/#Availability-1">availablity parameter</a> meaning all availabilities below this limit are replaced by zero. Since the parameter is inversed within the <a href="../constraints/#Conversion-capacity-restriction-1">capacity restrictions</a>, small availabilites can lead to large factors and cause numerical instability. The default value is 0.01 (= 1%). </p> <p class="norm"> The argument <code>emissionLoss</code> controls, if losses incurred by <a href="../parameter_list/#Exchange-losses-1">exchange</a> and <a href="../parameter_list/#Storage-self-discharge-1">self-discharge of storage</a> are taken into account when emissions are computed. Due to the high range of factors, emissions constraints are already neuralgic points when it comes to numerical stability. Adding even smaller factors to account for the named losses adds to this problem. The default is <code>true</code> meaning self-discharge and exchange losses are accounted for. </p> ```
AnyMOD
https://github.com/leonardgoeke/AnyMOD.jl.git
[ "MIT" ]
0.1.12
46a00c75bb6eb7fdaf5b15d75e9a544c0f91484d
docs
10089
```@raw html <style> table.tabelle2 td { padding-left: 0.57em; padding-right: 0.57em; border-right: solid 1px; border-color: #dbdbdb; font-size: small; } ul.liste { list-style-position: outside; padding-left: 1em; margin-left: 0em; margin-top: 0em; white-space: nowrap; display:inline-block; text-align: left; } pre.inline { display: inline; } </style> ``` # Plots The graphs that build the conceptual basis for the modelling approach pursued by AnyMOD can be plotted. All plots are created with [plotly](https://github.com/plotly/plotly.py) which is accessed from Julia using [PyCall](https://github.com/JuliaPy/PyCall.jl). # Node trees The `plotTree` function is used to plot the hierarchical trees of sets as introduced in [Sets and Mappings](@ref). ```julia plotTree(tree_sym::Symbol, model_object::anyModel) ``` The input `tree_sym` indicates which set should be plotted (`:region`,`:timestep`,`:carrier`, or `:technology`). As an example, the tree for `:carrier` from the [demo problem](https://github.com/leonardgoeke/AnyMOD.jl/tree/master/examples/demo) is plotted below. ```@raw html <p style="text-align:center;"><img src="../assets/carrier.png" width="80%"/> ``` Optional arguments include: ```@raw html <table class="tabelle2"> <tbody> <tr> <td><strong>argument</strong></td> <td><strong>explanation</strong></td> <td style="border-right:none"><strong>default</strong></td> </tr> <tr> <td><code>plotSize</code></td> <td> <ul class="liste"> <li>length and width of the plot in inches</li> </ul> </td> <td style="border-right:none"><code>(8.0,4.5)</code></td> </tr> <tr> <td><code>fontSize</code></td> <td> <ul class="liste"> <li>font size of labels in plot</li> </ul> </td> <td style="border-right:none"><code>12</code></td> </tr> <tr> <td><code>useColor</code></td> <td> <ul class="liste"> <li>if <code>true</code>, tries to obtain <a href="#Styling">node specific colors</a>, otherwise the same color is used for all nodes</li> </ul> </td> <td style="border-right:none"><code>true</code></td> </tr> <tr> <td><code>wide</code></td> <td> <ul class="liste"> <li>controls ratio of horizontal distances between nodes that are on the same level, but have <br> different ancestors (e.g. distance between 'synthetic gas' and 'natural gas' relative to <br> distance between 'natural gas' and 'district heat')</li> <li>first element of input array refers to ratio on the first level and so on</li> </ul> </td> <td style="border-right:none"><code>fill(1.0,30)</code></td> </tr> </tbody> </table> ``` # Energy flow The `plotEnergyFlow` function provides two ways to visualize the flow of energy within a model: Either as a qualitative node graph or as a quantitative Sankey diagram. ### Node graph To plot a qualitative node graph use the `plotEnergyFlow` command with the `:graph` argument. ```julia plotEnergyFlow(:graph, model_object::anyModel) ``` Nodes either correspond to technologies (grey dots) or energy carriers (colored squares). Edges between technology and energy carrier nodes indicate the carrier is either an input (entering edge) or an output (leaving edge) of the respective technology. Edges between carriers result from inheritance relationships between carriers. These are included, because, according to AnyMOD's graph-based approach, descendants can satisfy the demand for an ancestral carrier (see [Göke (2020)](https://arxiv.org/abs/2004.10184) for details). ```@raw html <p style="text-align:center;"><img src="../assets/energyFlowGraph.png"/> ``` The layout of the graph is created using a [force-directed drawing algorithm](https://en.wikipedia.org/wiki/Force-directed_graph_drawing) originally implemented in [GraphLayout.jl](https://github.com/IainNZ/GraphLayout.jl). In many cases the resulting layout will be sufficient to get an overview of energy flows for debugging, but inadequate for publication. For this reason, the `moveNode!` function can be used to adjust the layout. ```julia moveNode!(model_object::anyModel, newPos_arr::Array{Tuple{String,Array{Float64,1}},1}) ``` `moveNode!` requires an initial layout within that specific nodes are moved. In the example below, an initial layout is created by calling `plotEnergyFlow`. Afterwards, the node for 'ocgt' is moved 0.2 units to the right and 0.1 units up. The node for 'coal' is moved accordingly. Afterwards, the graph is plotted again with the new layout. ```julia plotEnergyFlow(:graph, model_object) moveNode!(model_object, [("ocgt",[0.2,0.1]),("coal",[0.15,0.0])]) plotEnergyFlow(:graph, model_object, replot = false) ``` When plotting again, it is important to set the optional `replot` argument to `false`. Otherwise, the original layout algorithm will be run again and overwrite any changes made manually. Optional arguments for plotting the qualitative node graph are listed below: ```@raw html <table class="tabelle2"> <tbody> <tr> <td><strong>argument</strong></td> <td><strong>explanation</strong></td> <td style="border-right:none"><strong>default</strong></td> </tr> <tr> <td><code>plotSize</code></td> <td> <ul class="liste"> <li>length and width of the plot in inches</li> </ul> </td> <td style="border-right:none"><code>(16.0,9.0)</code></td> </tr> <tr> <td><code>fontSize</code></td> <td> <ul class="liste"> <li>font size of labels in plot</li> </ul> </td> <td style="border-right:none"><code>12</code></td> </tr> <tr> <td><code>useTeColor</code></td> <td> <ul class="liste"> <li>if <code>true</code>, tries to obtain <a href="#Styling">node specific colors</a> for technologies, otherwise <br> technology nodes are displayed in grey</li> </ul> </td> <td style="border-right:none"><code>false</code></td> </tr> <tr> <td><code>replot</code></td> <td> <ul class="liste"> <li>if <code>false</code>, the current layout of the plot is used instead of computing a new one</li> </ul> </td> <td style="border-right:none"><code>true</code></td> </tr> <tr> <td><code>scaDist</code></td> <td rowspan="3"; style="border-bottom:none"> <ul class="liste"> <li>control parameters for the graph's layout algorithm (see <a href="https://github.com/IainNZ/GraphLayout.jl/blob/master/src/spring.jl">spring.jl</a> for original <br> implementation)</li> </ul> </td> <td style="border-right:none"><code>0.5</code></td> </tr> <tr> <td><code>maxIter</code></td> <td style="border-right:none"><code>5000</code></td> </tr> <tr> <td><code>initTemp</code></td> <td style="border-right:none"><code>2.0</code></td> </tr> </tbody> </table> ``` ### Sankey diagram To plot the qualitative energy flows for a solved model use `plotEnergyFlow` command with the `:sankey` argument: ```julia plotEnergyFlow(:sankey, model_object::anyModel) ``` ```@raw html <p class="norm"> The command will create an entire <a href="../assets/sankey_example.html">html application</a> including a dropdown menu and drag-and-drop capabilities. Below is a screenshot of one graph from the solved <a href="https://github.com/leonardgoeke/AnyMOD.jl/tree/master/examples/demo">demo problem</a>. </p> ``` ![](assets/sankey.png) Optional arguments for plotting a Sankey diagram are: ```@raw html <table class="tabelle2"> <tbody> <tr> <td><strong>argument</strong></td> <td><strong>explanation</strong></td> <td style="border-right:none"><strong>default</strong></td> </tr> <tr> <td><code>plotSize</code></td> <td> <ul class="liste"> <li>length and width of the plot in inches</li> </ul> </td> <td style="border-right:none"><code>(16.0,9.0)</code></td> </tr> <tr> <td><code>minVal</code></td> <td> <ul class="liste"> <li>threshold for energy flows being plotted</li> </ul> </td> <td style="border-right:none"><code>0.1</code></td> </tr> <tr> <td><code>filterFunc</code></td> <td> <ul class="liste"> <li>function to filter certain carriers and technologies from graph</li> <li>for example <code>x -> x.C == 1</code> will only include flows associated to the energy carrier with <br> id 1 (see documentation of <a href="../api/#AnyMOD.Tree"><code>tree objects</code></a> on how to obtain ids)</li> </ul> </td> <td style="border-right:none"><code>x -> true</code></td> </tr> <tr> <td><code>dropDown</code></td> <td> <ul class="liste"> <li>for each relevant set of the dimensions specified here separate diagrams are created, sets <br> then appear in the dropdown menu within the html output</li> <li>for example <code>dropDown = (:timestep,)</code> will create diagrams aggregating values <br> across all regions, instead of creating a separate diagram for each region</li> </ul> </td> <td style="border-right:none"><code>(:region,:timestep)</code></td> </tr> <tr> <td><code>rmvNode</code></td> <td> <ul class="liste"> <li>removes specified nodes from the Sankey diagram</li> <li>removal is only possible for nodes that either only have an in- or outgoing flow or exactly <br> one in- and exactly one outgoing flow of equal size</li> <li>in the diagram above for instance, the nodes for 'district heat' or 'curtailment' could be <br> removed, but not for 'ocgt'</li> </ul> </td> <td style="border-right:none"><code>tuple()</code></td> </tr> <tr> <td><code>useTeColor</code></td> <td> <ul class="liste"> <li>if <code>true</code>, tries to obtain <a href="#Styling">node specific colors</a> for technologies, otherwise technology nodes <br> are displayed in grey</li> </ul> </td> <td style="border-right:none"><code>true</code></td> </tr> </tbody> </table> ``` # Styling The colors and labels of nodes within plots can be adjusted using the `graInfo` field of the model object. The sub-field `graInfo.names` provides a dictionary that maps node names as specified in the input files to node labels used for plotting. By default, some names occurring in the [demo problem](https://github.com/leonardgoeke/AnyMOD.jl/tree/master/examples/demo) are already assigned labels within the dictionary. Analogously, `graInfo.colors` assigns colors used for plotting to nodes. Both the actual node name or an assigned label can serve as a key. The assigned value is a tuple of three numbers between 0 and 1 corresponding to a RGB color code.
AnyMOD
https://github.com/leonardgoeke/AnyMOD.jl.git
[ "MIT" ]
0.1.12
46a00c75bb6eb7fdaf5b15d75e9a544c0f91484d
docs
886
# Related material # Publications ### Method * [Göke (2020), AnyMOD - A graph-based framework for energy system modelling with high levels of renewables and sector integration, Working Paper.](https://arxiv.org/abs/2004.10184) * [Göke (2020), AnyMOD.jl: A Julia package for creating energy system models](https://arxiv.org/abs/2011.00895) ### Applications * [Hainsch et al. (2020), European Green Deal: Using Ambitious Climate Targets and Renewable Energy to Climb out of the Economic Crisis, DIW Weekly Report.](https://www.diw.de/de/diw_01.c.793359.de/publikationen/weekly_reports/2020_28_1/european_green_deal__using_ambitious_climate_targets_and_renewable_energy_to_climb_out_of_the_economic_crisis.html) # Model repositories * [AnyMOD\_example\_model](https://github.com/leonardgoeke/AnyMOD_example_model): example model used in [Göke (2020)](https://arxiv.org/abs/2004.10184)
AnyMOD
https://github.com/leonardgoeke/AnyMOD.jl.git
[ "MIT" ]
0.1.12
46a00c75bb6eb7fdaf5b15d75e9a544c0f91484d
docs
23698
```@raw html <style> table.tabelle2 td { padding-left: 0.57em; padding-right: 0.57em; border-right: solid 1px; border-color: #dbdbdb; font-size: small; } ul.liste { list-style-position: outside; padding-left: 1em; margin-left: 0em; margin-top: 0em; white-space: nowrap; display:inline-block; text-align: left; } </style> ``` # Sets and Mappings ```@raw html <p class="norm"> In AnyMOD sets like regions, time-steps, carriers, and technologies are organized as <a href="../api/#AnyMOD.Node"><code>Nodes</code></a> within hierarchical <a href="../api/#AnyMOD.Tree"><code>Trees</code></a>. They are defined by a mandatory input files named <code>set_region.csv</code>, <code>set_timestep.csv</code>, <code>set_carrier.csv</code>, and <code>set_technology.csv</code>, respectively. Relations between different sets (e.g. between carriers and technologies) are represented by mapping nodes within these trees to each other. This graph-based modelling approach is explained in detail in <a href="https://arxiv.org/abs/2004.10184">Göke (2020)</a>.</p> ``` Next, these key sets and how their tree structure and mappings are obtained from input files are introduced based on the [demo problem](https://github.com/leonardgoeke/AnyMOD.jl/tree/master/examples/demo). Also, additional sets not organized as hierarchical trees are briefly listed as well. ## Regions The `set_region.csv` file defines all modelling regions. The file consists out of consecutive columns named `region_1`, `region_2` etc. with each column relating to a level in the resulting tree. A region on a specific level is defined by writing its name into the respective column. To connect regions from different levels, they both need to be written into the same column. Names of regions are not required to be unique, not even on the same level. The set file for regions from the demo problem is provided below. ```@raw html <table class="tabelle2"> <tbody> <tr> <td style="border-right:none !important"><strong>region_1</strong></td> <td style="border-right:none"><strong>region_2</strong></td> </tr> <tr> <td style="border-right:none">East</td> <td style="border-right:none">EastNorth</td> </tr> <tr> <td style="border-right:none">East</td> <td style="border-right:none">EastSouth</td> </tr> <tr> <td style="border-right:none">West</td> <td style="border-right:none">WestNorth</td> </tr> <tr> <td style="border-right:none">West</td> <td style="border-right:none">WestSouth</td> </tr> </tbody> </table> ``` Consequently, this file defines six regions on two different levels. `East` and `West` are on level 1 and their descendants `EastNorth` and `EastSouth` as well as `WestNorth` and `WestSouth` are on level 2. Since names of regions are not required to be unique, alternatively each of the four descendant regions could have also been named `North` or `South`. By using the `plotTree` function the corresponding hierarchical tree can be visualized and exported to the output directory: ```@raw html <img src="../assets/region.png" width="80%"/> ``` ### Application context Throughout the model regions are used in different contexts and depending on the context different symbols are used: - ``R_{exp}``: Region of capacity expansion, used in all investment related model elements - ``R_{disp}``: Region of dispatch, used in all dispatch related model elements - ``R_a``, ``R_b``: Regions of exchange, element is not differentiated by direction of exchange (e.g. exchange capacities from ``R_a`` to ``R_b`` also apply from ``R_b`` to ``R_a``) - ``R_{from}``, ``R_{to}``​: Regions of exchange, element is differentiated by direction of exchange (e.g. the exchange loses from ``R_{from}`` to ``R_{to}``​ do not apply from ``R_{to}`` to ``R_{from}``) ## Time-steps The `set_timestep.csv` file defines all modelling time-steps, for both capacity expansion (usually years) and dispatch (for example hours). The file is structured analogously to the file for regions. Just as regions, names of time-steps are not required to be unique. The first lines of the corresponding file in the demo problem are provided below. ```@raw html <table class="tabelle2"> <tbody> <tr> <td style="border-right:none"><strong>timestep_1</strong></td> <td style="border-right:none"><strong>timestep_2</strong></td> <td style="border-right:none"><strong>timestep_3</strong></td> <td style="border-right:none"><strong>timestep_4</strong></td> </tr> <tr> <td style="border-right:none">2020</td> <td style="border-right:none"></td> <td style="border-right:none"></td> <td style="border-right:none"></td> </tr> <tr> <td style="border-right:none">2030</td> <td style="border-right:none"></td> <td style="border-right:none"></td> <td style="border-right:none"></td> </tr> <tr> <td style="border-right:none">all</td> <td style="border-right:none">d001</td> <td style="border-right:none">hh0001</td> <td style="border-right:none">h0001</td> </tr> <tr> <td style="border-right:none">all</td> <td style="border-right:none">d001</td> <td style="border-right:none">hh0001</td> <td style="border-right:none">h0002</td> </tr> <tr> <td colspan="4"; style="text-align:center;border-right:none">&#8942;</td> </tr> </tbody> </table> ``` This file makes use of the `all` keyword to reduce the number of rows required in the input file. This keyword serves as a placeholder for all nodes defined on the respective level. Consequently, in this case the following row ```@raw html <table class="tabelle2"> <tbody> <tr> <td style="border-right:none"><strong>timestep_1</strong></td> <td style="border-right:none"><strong>timestep_2</strong></td> <td style="border-right:none"><strong>timestep_3</strong></td> <td style="border-right:none"><strong>timestep_4</strong></td> </tr> <tr> <td style="border-right:none">all</td> <td style="border-right:none">d001</td> <td style="border-right:none">hh0001</td> <td style="border-right:none">h0001</td> </tr> </tbody> </table> ``` is equivalent to these two rows: ```@raw html <table class="tabelle2"> <tbody> <tr> <td style="border-right:none"><strong>timestep_1</strong></td> <td style="border-right:none"><strong>timestep_2</strong></td> <td style="border-right:none"><strong>timestep_3</strong></td> <td style="border-right:none"><strong>timestep_4</strong></td> </tr> <tr> <td style="border-right:none">2020</td> <td style="border-right:none">d001</td> <td style="border-right:none">hh0001</td> <td style="border-right:none">h0001</td> </tr> <tr> <td style="border-right:none">2030</td> <td style="border-right:none">d001</td> <td style="border-right:none">hh0001</td> <td style="border-right:none">h0001</td> </tr> </tbody> </table> ``` The keyword `all` can be extended to assign specific nodes: * `all(node1,node2,node3)` assigns all listed nodes. Accordingly, in the example above `all(2020,2030)` would have achieved the same result as using `all`. * `all(node1:node2)` assigns not only `node1` and `node2`, but also all nodes in between according to alphabetical order. In the example above, the use of `all` results in each year having descendant nodes that represent days (level 2), 4-hour steps (level 3) and hours (level 4). Since names of time-steps are not required to be unique, these different nodes for each year can share the same names. A reduced version of the corresponding tree is plotted below: ```@raw html <img src="../assets/timestep.png" width="80%"/> ``` ### Application context The following symbols are used to refer to time-steps depending on the context: - ``Ts_{exp}``: Time-steps of capacity expansion - ``Ts_{dis}``: Time-steps of dispatch - ``Ts_{sup}``: Superordinate dispatch time-steps (usually years) ## Carriers The hierarchical tree of energy carriers is defined analogously to regions and time-steps. The respective `.csv` table from the demo problem is given below. Unlike regions and timestep, carrier names are required to be unique. Carriers are always represented by the symbol ``C``. ```@raw html <table class="tabelle2"> <tbody> <tr> <td style="border-right:none"><strong>carrier_1</strong></td> <td><strong>carrier_2</strong></td> <td style="border-right:none"><strong>timestep_dispatch</strong></td> <td style="border-right:none"><strong>timestep_expansion</strong></td> <td style="border-right:none"><strong>region_dispatch</strong></td> <td style="border-right:none"><strong>region_expansion</strong></td> </tr> <tr> <td style="border-right:none">electricity</td> <td></td> <td style="text-align:center;border-right:none">4</td> <td style="text-align:center;border-right:none">1</td> <td style="text-align:center;border-right:none">1</td> <td style="text-align:center;border-right:none">2</td> </tr> <tr> <td style="border-right:none">heat</td> <td>districtHeat</td> <td style="text-align:center;border-right:none">3</td> <td style="text-align:center;border-right:none">1</td> <td style="text-align:center;border-right:none">2</td> <td style="text-align:center;border-right:none">2</td> </tr> <tr> <td style="border-right:none">gas</td> <td>naturalGas</td> <td style="text-align:center;border-right:none">2</td> <td style="text-align:center;border-right:none">1</td> <td style="text-align:center;border-right:none">2</td> <td style="text-align:center;border-right:none">2</td> </tr> <tr> <td style="border-right:none">gas</td> <td>synthGas</td> <td style="text-align:center;border-right:none">2</td> <td style="text-align:center;border-right:none">1</td> <td style="text-align:center;border-right:none">1</td> <td style="text-align:center;border-right:none">1</td> </tr> <tr> <td style="border-right:none">coal</td> <td></td> <td style="text-align:center;border-right:none">1</td> <td style="text-align:center;border-right:none">1</td> <td style="text-align:center;border-right:none">1</td> <td style="text-align:center;border-right:none">1</td> </tr> <tr> <td style="border-right:none">hydrogen</td> <td></td> <td style="text-align:center;border-right:none">1</td> <td style="text-align:center;border-right:none">1</td> <td style="text-align:center;border-right:none">1</td> <td style="text-align:center;border-right:none">1</td> </tr> </tbody> </table> ``` The table above corresponds to the following tree: ```@raw html <img src="../assets/carrier2.png" width="80%"/> ``` ### Mapping **Carrier resolution** In addition to defining carriers, the `set_carrier.csv` file also maps them to regions and time-steps to specify the resolution there are modeled at. This is done separately for dispatch and expansion in the columns `timestep_dispatch`,`timestep_expansion`,`region_dispatch`, and `region_expansion`. The numbers in these columns correspond to levels of the respective trees. In the example displayed below, `4` in the `timestep_dispatch` column for `electricity` means, dispatch for electricity is modeled for each time-step on level 4. Going back to the definition of time-steps above, this corresponds to an hourly resolution. !!! tip "Less detailed resolution for debugging" Creating and especially solving a model is much faster if the temporal resolution of dispatch is decreased. Therefore, it is advisable to first test new models at a less detailed temporal resolution. In the example this would be achieved by replacing the `4` for electricity with `2` to switch to a daily resolution. This will help you to spot and fix mistakes or unintended effects more efficiently. AnyMOD checks the specified resolutions and will throw an error, if any logical inconsistencies are detected. Resolutions provided in a specific row only apply to the last carrier in that row. However, carrier on higher levels without a specified resolution, like `gas` in the example, automatically inherit a resolution from their descendants. **Optional mappings** For reasons elaborated in [Göke (2020)](https://arxiv.org/abs/2004.10184), be default energy balances in AnyMOD are not formulated as equality constraints meaning supply can exceed demand. To overwrite this behaviour, an optional column named `carrier_equality` using the keywords `yes` and `no` can be added to the file, where `yes` will enforce an equality constraint. Carriers are represented by the symbol ``Te``. ## Technologies The hierarchical tree of technologies is defined analogously to regions and time-steps. The respective `.csv` table from the demo problem is given below. Unlike regions and timesteps, technology names are required to be unique. ```@raw html <table class="tabelle2"> <tbody> <tr> <td style="border-right:none"><strong>technology_1</strong></td> <td style="border-right:none"><strong>technology_2</strong></td> <td><strong>technology_3</strong></td> <td style="border-right:none"><strong>carrier_conversion_in</strong></td> <td style="border-right:none"><strong>carrier_conversion_out</strong></td> <td style="border-right:none"><strong>carrier_stored_in</strong></td> <td style="border-right:none"><strong>carrier_stored_out</strong></td> </tr> <tr> <td style="border-right:none">wind</td> <td style="border-right:none"></td> <td></td> <td style="border-right:none"></td> <td style="border-right:none">electricity</td> <td style="border-right:none"></td> <td style="border-right:none"></td> </tr> <tr> <td style="border-right:none">solar</td> <td style="border-right:none">openspace</td> <td></td> <td style="border-right:none"></td> <td style="border-right:none">electricity</td> <td style="border-right:none"></td> <td style="border-right:none"></td> </tr> <tr> <td style="border-right:none">solar</td> <td style="border-right:none">rooftop</td> <td>photovoltaic</td> <td style="border-right:none"></td> <td style="border-right:none">electricity</td> <td style="border-right:none"></td> <td style="border-right:none">electricity</td> </tr> <tr> <td style="border-right:none">solar</td> <td style="border-right:none">rooftop</td> <td>solarThermal</td> <td style="border-right:none"></td> <td style="border-right:none">heat</td> <td style="border-right:none"></td> <td style="border-right:none">heat</td> </tr> <tr> <td style="border-right:none">gasPlant</td> <td style="border-right:none">ccgt</td> <td>ccgtNoCHP</td> <td style="border-right:none">gas</td> <td style="border-right:none">electricity</td> <td style="border-right:none"></td> <td style="border-right:none"></td> </tr> <tr> <td style="border-right:none">gasPlant</td> <td style="border-right:none">ccgt</td> <td>ccgtCHP</td> <td style="border-right:none">gas</td> <td style="border-right:none">electricity; districtHeat</td> <td style="border-right:none"></td> <td style="border-right:none"></td> </tr> <tr> <td style="border-right:none">gasPlant</td> <td style="border-right:none">ocgt</td> <td></td> <td style="border-right:none">gas</td> <td style="border-right:none">electricity</td> <td style="border-right:none"></td> <td style="border-right:none"></td> </tr> <tr> <td style="border-right:none">coalPlant</td> <td style="border-right:none"></td> <td></td> <td style="border-right:none">coal</td> <td style="border-right:none">electricity; districtHeat</td> <td style="border-right:none"></td> <td style="border-right:none"></td> </tr> <tr> <td style="border-right:none">heatpump</td> <td style="border-right:none"></td> <td></td> <td style="border-right:none">electricity</td> <td style="border-right:none">heat</td> <td style="border-right:none"></td> <td style="border-right:none"></td> </tr> <tr> <td style="border-right:none">gasStorage</td> <td style="border-right:none"></td> <td></td> <td style="border-right:none"></td> <td style="border-right:none"></td> <td style="border-right:none">gas</td> <td style="border-right:none">gas</td> </tr> <tr> <td style="border-right:none">gasBoiler</td> <td style="border-right:none"></td> <td></td> <td style="border-right:none">gas</td> <td style="border-right:none">heat</td> <td style="border-right:none"></td> <td style="border-right:none"></td> </tr> <tr> <td style="border-right:none">hydro</td> <td style="border-right:none"></td> <td></td> <td style="border-right:none"></td> <td style="border-right:none"></td> <td style="border-right:none">electricity</td> <td style="border-right:none">electricity</td> </tr> <tr> <td style="border-right:none">electrolysis</td> <td style="border-right:none"></td> <td></td> <td style="border-right:none">electricity</td> <td style="border-right:none">hydrogen</td> <td style="border-right:none"></td> <td style="border-right:none"></td> </tr> <tr> <td style="border-right:none">methanation</td> <td style="border-right:none"></td> <td></td> <td style="border-right:none">hydrogen</td> <td style="border-right:none">synthGas</td> <td style="border-right:none"></td> <td style="border-right:none"></td> </tr> <tr> <td style="border-right:none">fuelCell</td> <td style="border-right:none"></td> <td></td> <td style="border-right:none">hydrogen</td> <td style="border-right:none">electricity; districtHeat</td> <td style="border-right:none"></td> <td style="border-right:none"></td> </tr> </tbody> </table> ``` Within a model only nodes without any descendants are actual technologies. The remaining nodes have the sole purpose of organizing them. This facilitates the read-in of parameter data and formulation of certain constraints (e.g. the available rooftop area limiting the summed capacity of `photovoltaic` and `solarThermal`). The resulting hierarchical tree from the table above is displayed below. ```@raw html <img src="../assets/tech.png" width="100%"/> ``` ### Mappings **Converted and stored carriers** The `.csv` table above does not only define the hierarchical tree of technologies, but also maps carriers to these technologies. This assignment differentiates between in- and output carriers and between conversion and storage. ```@raw html <p class="norm"> In AnyMOD conversion generally refers to one or multiple carrier being used or generated as displayed in the diagram below. In the diagram expressions in italic refer to <a href="../variables">model variables</a> and expressions in boxes to <a href="../parameter_list">parameters</a>. </p> <p style="text-align:center;"><img src="../assets/convTech.svg" width="80%"/> ``` The technology `ccgtCHP` from the example is a pure conversion technology converting `gas` to `electricity` and `districtHeat`, because `conversion_input` and `conversion_output` are assigned accordingly. It is not necessary for a conversion technology to have both, an in- and and output carrier. For instance, in the example renewables like `wind` only have an output. Storage is analogously described by the diagram below. In the example, `hydro` is a pure storage technology, because `electricity` is assigned to both `storage_input` and `storage_output`. Storage is not limited to a single carrier and a technology can store an arbitrary number of different carriers. ```@raw html <p style="text-align:center;"><img src="../assets/stTech.svg" width="100%"/> ``` Assigning carriers as a storage output (or input) means they can be discharged to (or charged from) the general energy balance. Technologies that can only discharge but not charge a carrier from the energy balance are conceivable as well. However, this only makes sense, if the carrier can be generated internally to charge the storage in the first place. The interplay of conversion and storage in such a case is illustrated by the following diagram: ```@raw html <p style="text-align:center;"><img src="../assets/mixTech1.svg" width="100%"/> ``` Such a technology is created by assigning the same carrier to `conversion_output` and `storage_output`, but not to `storage_output`. In the example, this is the case for the technology `photovoltaic`. It is intended to represent a residental photovoltaic panel combined with a home battery that cannot be charged from the gird, but from the panel. Also the opposite case can be modeled: A carrier charged from outside, but only discharged within the technology. This only makes sense if the carrier is being used within the technology's conversion process. The corresponding diagram is given below and could represent a gas power plant with an onside gas storage. ```@raw html <p style="text-align:center;"><img src="../assets/mixTech2.svg" width="100%"/> ``` **Optional mappings** The following table lists all optional columns that can be specified within in `set_technology.csv` file to overwrite a default behaviour. ```@raw html <p class="norm"> An important option to point out is <code>technology_type</code>. Three different technology types exist: <code>stock</code>, <code>mature</code> and <code>emerging</code>. Stock technologies cannot be expended and are limited to <a href="../parameter_list/#Residual-capacities-1">pre-existing capacities</a>. Emerging technologies differ from mature technologies in the sense that their capacities are differentiated by time-step of construction $Ts_{exp}$. This allows to account for technological improvement over time, but increases the required numbers of variables and constraints. </p> <table class="tabelle2"> <tbody> <tr> <td><strong>column name</strong></td> <td><strong>explanation</strong></td> <td style="border-right:none"><strong>default</strong></td> </tr> <tr> <td><code>mode</code></td> <td> <ul class="liste"> <li>different operational modes separated by a semicolon and a space</li> <li>e.g. <code>moreHeat; moreElec</code> for CHP plant in the example</li> </ul> </td> <td style="border-right:none">none</td> </tr> <tr> <td><code>technology_type</code></td> <td> <ul class="liste"> <li>types control expansion behaviour of technology, see <a href="https://arxiv.org/abs/2004.10184">Göke (2020)</a> for details</li> <li>available options are: <ul style="margin-top:0px"> <li style="margin-top:0px"><code>stock</code>: no expansion</li> <li><code>mature</code>: expansion without differentiation by time-step of construction</li> <li><code>emerging</code>: expansion with differentiation by time-step of construction</li> </ul> </ul> </li> </ul> </td> <td style="border-right:none"><code>mature</code></td> </tr> <tr> <td><code>region_disaggregate</code></td> <td> <ul class="liste"> <li>if expansion is spatially more detailed than dispatch, by default the resolution of dispatch <br> is increased to the expansion level</li> <li>using the keyword <code>no</code> prevents this behaviour and enforces the orginal dispatch resolution</li> </ul> </td> <td style="border-right:none"><code>yes</code></td> </tr> <tr> <td><code>timestep_expansion</code></td> <td> <ul class="liste"> <li>sets the resolution of expansion time-steps</li> <li>cannot be more detailed than the superordinate dispatch level (usually years)</li> </ul> </td> <td style="border-right:none">most detailed resolution <br> of carriers</td> </tr> <tr> <td><code>region_expansion</code></td> <td><ul class="liste"> <li>sets the resolution of expansion regions</li> <li>default corresponds to the smallest value feasible</li> </ul></td> <td style="border-right:none">most detailed resolution <br> of carriers</td> </tr> <tr> <td><code>carrier_stored_active</code></td> <td><ul class="liste"> <li>by default, only leafs (nodes without any descendants) of stored carriers are actively <br> stored (see <a href="https://arxiv.org/abs/2004.10184">Göke (2020)</a> for details)</li> <li>non-leaf carriers to be stored actively can be added here</li> <li>carriers are separated by a semicolon and a space just like modes</li> </ul></td> <td style="border-right:none">none</td> </tr> </tbody> </table> ``` ## Other Sets Other sets in AnyMOD are not organized in hierarchical trees and might even be empty in a specific model. These are listed here. ### Modes The set of modes includes operational modes defined for technologies. Modes are represented by the symbol ``M``.
AnyMOD
https://github.com/leonardgoeke/AnyMOD.jl.git
[ "MIT" ]
0.1.12
46a00c75bb6eb7fdaf5b15d75e9a544c0f91484d
docs
3724
# Tips In addition to the tips listed here, it is always strongly advised to check the reporting files as introduced in the [Error handling](@ref) section. ### Performance See the [Performance and stability](@ref) section for greater detail on this issue. ```@raw html <p class="norm"> <ul> <li>Use a commercial solver and the Barrier algorithm. Also, consider to skip Crossover and set a greater conversion tolerance ('BarConvTool' option in Gurobi).</li> <li>Set <a href="../performance/#Variable-limits">general upper limits</a>, ideally only for the objective value.</li> <li>Define <a href="../parameter_list/#Cost-of-curtailment-and-loss-of-load-1">loss-of-load costs</a> in order to create <a href="../variables/#Curtailment-and-loss-of-load-1">loss-of-load variables</a> for each energy carrier.</li> <li>Reduce the temporal resolution for selected <a href="../sets/#Carriers">carriers</a> and set the temporal resolution of expansion to years.</li> <li>Disable endogenous decommissioning by setting the <code>decomm</code> argument of the <a href="../model_object">model constructor</a> to <code>:none</code>.</li> </ul> </p> ``` ### Debugging ```@raw html <p class="norm"> <ul> <li>Check, if you provided your parameter data according to the units given in the <a href="../parameter_list">parameter list</a>.</li> <li>To save time, do not read-in your time-series data until the rest of your model is fully functioning.</li> <li>Set a less detailed temporal resolution for debugging to speed up the process.</li> <li>If your model is infeasible and you use Gurobi, try AnyMODs <a href="../api/#AnyMOD.printIIS"><code>printIIS(model_object)</code></a> function. It uses Gurobi's computeIIS function to obtain a set of constraints causing the infeasibility. Generally, this works better the more obvious a contradiction is (e.g. upper limits on expansion contradicts lower limit on installed capacity).</li> <li>Define <a href="../parameter_list/#Cost-of-curtailment-and-loss-of-load-1">loss-of-load costs</a> in order to create <a href="../variables/#Curtailment-and-loss-of-load-1">loss-of-load variables</a> for each energy carrier.</li> </ul> </p> ``` ### Workflow ```@raw html <p class="norm"> <ul> <li>Input files can be taken from different directories. For example, if you have different models with different regional scope, you could have a shared directory for technology data, that each of these models uses.</li> <li>Additional columns within the input files and additional files within the input directories can be used for documentation.</li> <li>The read-in parameter data can be manipulated between the construction of the <a href="../model_object">model object</a> and creation of the optimization problem using <code>createOptModel!(model_object)</code>. This is particular useful for sensitivity analyses.</li> <li>Models can be extended using standard JuMP commands.</li> <li>Version control can be used for model development.</li> </ul> </p> ``` ### Common mistakes (or at least mistakes that I believe to be common, because I made them when working with AnyMOD) ```@raw html <p class="norm"> <ul> <li><a href="../parameter_list/#Expansion-cost-1">Expansion</a> or <a href="../parameter_list/#Operation-cost-1">operating costs</a> not relating to capacity **before efficiency**.</li> <li>Capacity limits of zero for certain technologies in certain regions (e.g. for wind offshore in Austria) are not explicitly set and as a result capacity is unlimited.</li> <li>Limiting parameters are not defined correctly and limit the sum of variables across all years (see <a href="../parameter_list/#Limits-on-quantities-dispatched">Limits on quantities dispatched</a>).</li> </ul> </p> ```
AnyMOD
https://github.com/leonardgoeke/AnyMOD.jl.git
[ "MIT" ]
0.1.12
46a00c75bb6eb7fdaf5b15d75e9a544c0f91484d
docs
23772
```@raw html <style> table.tabelle td { border-left: 1px solid; border-color: #dbdbdb; } table.tabelle td:first-child { border-right: 2.5px solid; border-color: #dbdbdb; border-left: none; } ul.liste { list-style-position: inside; margin-left: 0em; margin-top: 0em; white-space: nowrap; display:inline-block; text-align: left; } </style> ``` # Variables In the following, all variables used in AnyMOD are listed. Information includes the name used throughout the model, the variables' unit, and its dimensions according to the symbols introduced in [Sets and Mappings](@ref). Also, it is specified what determines the instances a variable is actually created for, in which constraints a variable appears, and the model part it is assigned to. ```@raw html <p class="norm"> To increase performance, AnyMOD stores variables within DataFrames instead of using JuMPs native containers. Each variable dimension is represented by a column and integers in these columns relate to nodes within the hierarchical trees of sets (see <a href="../data/#printObject"><code>printObject</code></a> on how to export these in a readable format). An additional <code>var</code> column stores the corresponding variables. These variables are not JuMP variable objects, but JuMP expressions, that already include <a href="../performance/#Scaling">scaling factors</a>. </p> <p class="norm"> All variables are defined positive. New variables beyond those listed here can freely be added to a model by using standard JuMP commands. </p> ``` # Dispatch of technologies ### Generation and use Quantities generated and used by technology. ```@raw html <p class="norm"> To reduce model size variables are not created, if the <a href="../parameter_list/#Availability-1">availability</a> is zero. Also, mode dependant variables are only created where required. For example, for a technology with mode specific <a href="../parameter_list/#Ratios-of-carrier-use-and-generation-1">generation ratios</a>, different variables for each mode are only created for <code>gen</code>, but not for <code>use</code>. </p> <table class="tabelle"> <tbody> <tr> <td><strong>name</strong></td> <td>gen</td> <td>use</td> </tr> <tr> <td><strong>unit</strong></td> <td colspan="2"; style="text-align:center">GWh</td> </tr> <tr> <td><strong>dimension</strong></td> <td colspan="2"; style="text-align:center">$Ts_{exp}$, $Ts_{dis}$, $R_{dis}$, $C$, $Te$, ($M$)</td> </tr> <tr> <td><strong>instances</strong></td> <td colspan="2"; style="text-align:center"><ul class="liste"> <li>dispatch resolution of carrier</li> <li>expansion time-steps of technology</li> <li>relevant modes of technology</li> <li><a href="../parameter_list/#Availability-1">respective availability</a> exceeds zero</li> </ul></td> </tr> <tr> <td><strong>related constraints</strong></td> <td colspan="2"; style="text-align:left"> <ul class="liste"> <li><a href="../constraints/#Energy-balance-1">energy balance</a></li> <li><a href="../constraints/#Conversion-balance-1">conversion balance</a></li> <li><a href="../constraints/#Conversion-capacity-restriction-1">conversion capacity restriction</a></li> <li><a href="../constraints/#Energy-ratio-restriction-1">energy ratio restriction</a></li> <li><a href="../constraints/#Variable-cost-equation-1">variable cost equation</a></li> </ul> </td> </tr> <tr> <td><strong>part</strong></td> <td colspan="2"; style="text-align:center"><a href="../parts/#Technology-1">technology</a></td> </tr> </tbody> </table> ``` ### Charging and discharging Externally and internally charged and discharged quantities (see [Technologies](@ref) for explanation). ```@raw html <p class="norm"> To reduce model size variables are not created, if the <a href="../parameter_list/#Availability-1">availability</a> is zero. Also, mode dependant variables are only created where required. </p> <table class="tabelle"> <tbody> <tr> <td><strong>name</strong></td> <td>stExt{In/Out}</td> <td>stInt{In/Out}</td> </tr> <tr> <td><strong>unit</strong></td> <td colspan="2"; style="text-align:center">GWh</td> </tr> <tr> <td><strong>dimension</strong></td> <td colspan="2"; style="text-align:center">$Ts_{exp}$, $Ts_{dis}$, $R_{dis}$, $C$, $Te$, ($M$)</td> </tr> <tr> <td><strong>instances</strong></td> <td colspan="2"; style="text-align:center"><ul class="liste"> <li>dispatch resolution of carrier</li> <li>expansion time-steps of technology</li> <li>relevant modes of technology</li> <li><a href="../parameter_list/#Availability-1">respective availability</a> exceeds zero</li> </ul></td> </tr> <tr> <td rowspan="2"><strong>related constraints</strong></td> <td colspan="2"; style= "text-align:left;border-bottom:none;padding-bottom:0px"> <ul class="liste"> <li><a href="../constraints/#Energy-balance-1">energy balance</a></li> <li><a href="../constraints/#Storage-balance-1">storage balance</a></li> <li><a href="../constraints/#Storage-capacity-restriction-1">storage capacity restriction</a></li> <li><a href="../constraints/#Variable-cost-equation-1">variable cost equation</a></li> </ul> </td> </tr> <tr> <td colspan="1"; style="text-align:left;border-right:none;padding-top:0px"> <ul class="liste"> </ul> </td> <td colspan="1"; style="text-align:left;border-right:none;padding-top:0px"> <ul class="liste"> <li><a href="../constraints/#Conversion-balance-1">conversion balance</a></li> </ul> </td> </tr> <tr> <td><strong>part</strong></td> <td colspan="2"; style="text-align:center"><a href="../parts/#Technology-1">technology</a></td> </tr> </tbody> </table> ``` ### Storage level Quantity stored by storage system. ```@raw html <p class="norm"> To reduce model size variables are not created, if the <a href="../parameter_list/#Availability-1">availability</a> is zero. Also, mode dependant variables are only created where required. </p> <table class="tabelle"> <tbody> <tr> <td><strong>name</strong></td> <td>stLvl</td> </tr> <tr> <td><strong>unit</strong></td> <td>GWh</td> </tr> <tr> <td><strong>dimension</strong></td> <td>$Ts_{exp}$, $Ts_{dis}$, $R_{dis}$, $C$, $Te$, ($M$)</td> </tr> <tr> <td><strong>instances</strong></td> <td><ul class="liste"> <li>dispatch resolution of carrier</li> <li>expansion time-steps of technology</li> <li>relevant modes of technology</li> <li><a href="../parameter_list/#Availability-1">availability</a> exceeds zero</li> </ul></td> </tr> <tr> <td><strong>related constraints</strong></td> <td colspan="2"; style="text-align:left"> <ul class="liste"> <li><a href="../constraints/#Storage-balance-1">storage balance</a></li> <li><a href="../constraints/#Storage-capacity-restriction-1">storage capacity restriction</a></li> </ul> </td> </tr> <tr> <td><strong>part</strong></td> <td><a href="../parts/#Technology-1">technology</a></td> </tr> </tbody> </table> ``` # Non-technology dispatch ### Exchange quantities Quantity exchanged from one region to the other. The variable is directed meaning it only denotes exchange into one direction. ```@raw html <p class="norm"> Variables are only created between regions that can actually exchange energy, which depends on the definition of <a href="../parameter_list/#Residual-capacities-1">residual capacity</a>. </p> <table class="tabelle"> <tbody> <tr> <td><strong>name</strong></td> <td>exc</td> </tr> <tr> <td><strong>unit</strong></td> <td>GWh</td> </tr> <tr> <td><strong>dimension</strong></td> <td>$Ts_{dis}$, $R_{from}$, $R_{to}$, $C$</td> </tr> <tr> <td><strong>instances</strong></td> <td><ul class="liste"> <li>dispatch resolution of carrier</li> <li><a href="../parameter_list/#Residual-capacities-1">residual capacity</a> between regions defined</li> </ul></td> </tr> <tr> <td><strong>related constraints</strong></td> <td colspan="2"; style="text-align:left"> <ul class="liste"> <li><a href="../constraints/#Energy-balance-1">energy balance</a></li> <li><a href="../constraints/#Exchange-capacity-restriction-1">exchange capacity restriction</a></li> <li><a href="../constraints/#Variable-cost-equation-1">variable cost equation</a></li> </ul> </td> </tr> <tr> <td><strong>part</strong></td> <td><a href="../parts/#Exchange-1">exchange</a></td> </tr> </tbody> </table> ``` ### Buy and sell Quantities bought or sold on an external market. ```@raw html <table class="tabelle"> <tbody> <tr> <td><strong>name</strong></td> <td>trdBuy</td> <td>trdSell</td> </tr> <tr> <td><strong>unit</strong></td> <td colspan="2"; style="text-align:center">GWh</td> </tr> <tr> <td><strong>dimension</strong></td> <td colspan="2"; style="text-align:center">$Ts_{dis}$, $R_{dis}$, $C$</td> </tr> <tr> <td><strong>instances</strong></td> <td colspan="2"; style="text-align:left"><ul class="liste"> <li>dispatch resolution of carrier</li> <li><a href="../parameter_list/#Trade-price-1">trade price</a> defined</li> </ul></td> </tr> <tr> <td><strong>related constraints</strong></td> <td colspan="2"; style="text-align:left"> <ul class="liste"> <li><a href="../constraints/#Energy-balance-1">energy balance</a></li> <li><a href="../constraints/#Trade-capacity-restriction-1">trade capacity restriction</a></li> <li><a href="../constraints/#Trade-cost-equation-1">trade cost equation</a></li> </ul> </td> </tr> <tr> <td><strong>part</strong></td> <td colspan="2"><a href="../parts/#Trade-1">trade</a></td> </tr> </tbody> </table> ``` ### Curtailment and loss-of-load Curtailed quantities and unmet demand. ```@raw html <table class="tabelle"> <tbody> <tr> <td><strong>name</strong></td> <td>lss</td> <td>crt</td> </tr> <tr> <td><strong>unit</strong></td> <td colspan="2"; style="text-align:center">GWh</td> </tr> <tr> <td><strong>dimension</strong></td> <td colspan="2"; style="text-align:left">$Ts_{dis}$, $R_{dis}$, $C$</td> </tr> <tr> <td><strong>instances</strong></td> <td colspan="2"; style="text-align:left"><ul class="liste"> <li>dispatch resolution of carrier</li> <li><a href="../parameter_list/#Cost-of-curtailment-and-loss-of-load-1">respective costs</a> defined</li> </ul></td> </tr> <tr> <td><strong>related constraints</strong></td> <td colspan="2"; style="text-align:center"> <ul class="liste"> <li><a href="../constraints/#Energy-balance-1">energy balance</a></li> <li><a href="../constraints/#Curtailment-and-loss-of-load-cost-equation-1">curtailment and loss-of-load cost equation</a></li> </ul> </td> </tr> <tr> <td><strong>part</strong></td> <td colspan="2"><a href="../parts/#Balance-1">balance</a></td> </tr> </tbody> </table> ``` # Capacity expansion ### Expansion Expansion of conversion, storage-input, storage-output, storage-size, and exchange capacity. ```@raw html <p class="norm"> As explained <a href="../parameter_list/#Capacity-expansion">here</a>, capacity refers to <strong>capacity before efficiency</strong>! </p> <table class="tabelle"> <tbody> <tr> <td><strong>name</strong></td> <td>expConv</td> <td>expSt{In/Out/Size}</td> <td>expExc</td> </tr> <tr> <td><strong>unit</strong></td> <td colspan="3"; style="text-align:center">GW</td> </tr> <tr> <td><strong>dimension</strong></td> <td>$Ts_{exp}$, $R_{exp}$, $Te$</td> <td>$Ts_{exp}$, $R_{exp}$, $C$, $Te$</td> <td>$Ts_{exp}$, $R_{from}$, $R_{to}$, $C$</td> </tr> <tr> <td rowspan="2"><strong>instances</strong></td> <td colspan="2"; style="text-align:center;border-bottom:none;padding-bottom:0px"> <ul class="liste"> <li>expansion resolution of technology</li> </ul> </td> <td colspan="1"; rowspan="2"> <ul class="liste"> <li>regions can exchange carrier</li> <li>expansion resolution of carrier</li> </ul> </td> </tr> <tr> <td colspan="1"; style="text-align:left;border-right:none;padding-top:0px"> <ul class="liste"; start="4"> <li>if uses or generates carriers</li> </ul> </td> <td colspan="1"; style="text-align:left;padding-top:0px"> <ul class="liste"; start="4"> <li>each stored carrier</li> </ul> </td> </tr> <tr> <td><strong>related constraints</strong></td> <td colspan="3"; style="text-align:center"> <ul class="liste"> <li><a href="../constraints/#Definition-of-installed-capacity-1">definition of installed capacity</a></li> <li><a href="../constraints/#Expansion-cost-equation-1">expansion cost equation</a></li> </ul> </td> </tr> <tr> <td><strong>part</strong></td> <td colspan="2"; style="text-align:center"><a href="../parts/#Technology-1">technology</a></td> <td style="text-align:center"><a href="../parts/#Exchange-1">exchange</a></td> </tr> </tbody> </table> ``` ### Installed capacity Installed capacity of conversion, storage-input, storage-output, storage-size, and exchange capacity. ```@raw html <p class="norm"> As explained <a href="../parameter_list/#Capacity-expansion">here</a>, capacity refers to <strong>capacity before efficiency</strong>! </p> <table class="tabelle"> <tbody> <tr> <td><strong>name</strong></td> <td>capaConv</td> <td>capaSt{In/Out/Size}</td> <td>capaExc</td> </tr> <tr> <td><strong>unit</strong></td> <td colspan="3"; style="text-align:center">GW</td> </tr> <tr> <td><strong>dimension</strong></td> <td>$Ts_{exp}$, $R_{exp}$, $Te$</td> <td>$Ts_{exp}$, $R_{exp}$, $C$, $Te$</td> <td>$Ts_{exp}$, $R_{from}$, $R_{to}$, $C$</td> </tr> <tr> <td rowspan="3"><strong>instances</strong></td> <td colspan="3"; style="text-align:center;border-bottom:none;padding-bottom:0px"> <ul class="liste"> <li>superordinate dispatch resolution (usually years)</li> </ul> </td> </tr> <tr> <td colspan="2"; style="text-align:center;border-right:none;border-top:none;border-bottom:none;padding-top:0px;padding-bottom:0px"> <ul class="liste"> <li>spatial expansion resolution of technology</li> </ul> </td> <td colspan="1"; rowspan="2"; style="text-align:left;border-right:none;padding-top:0px"> <ul class="liste"> <li>spatial expansion resolution of carrier</li> <li>regions can exchange carrier</li> </ul> </td> </tr> <tr> <td colspan="1"; style="text-align:left;border-right:none;padding-top:0px"> <ul class="liste"; start="4"> <li>if uses or generates carriers</li> </ul> </td> <td colspan="1"; style="text-align:left;padding-top:0px"> <ul class="liste"; start="4"> <li>each stored carrier</li> </ul> </td> </tr> <tr> <td><strong>related constraints</strong></td> <td colspan="3"; style="text-align:center"> <ul class="liste"> <li><a href="../constraints/#Definition-of-installed-capacity-1">definition of installed capacity</a></li> <li><a href="../constraints/#Decommissioning-of-operated-capacitiy-1">decommissioning of operated capacitiy</a></li> </ul> </td> </tr> <tr> <td><strong>part</strong></td> <td colspan="2"; style="text-align:center"><a href="../parts/#Technology-1">technology</a></td> <td style="text-align:center"><a href="../parts/#Exchange-1">exchange</a></td> </tr> </tbody> </table> ``` ### Operated capacity Operated capacity of conversion, storage-input, storage-output, storage-size, and exchange capacity. ```@raw html <p class="norm"> As explained <a href="../parameter_list/#Capacity-expansion">here</a>, capacity refers to <strong>capacity before efficiency</strong>! </p> <table class="tabelle"> <tbody> <tr> <td><strong>name</strong></td> <td>oprCapaConv</td> <td style="padding-right:0.5em"><nobr>oprCapaSt{In/Out/Size}</nobr></td> <td>oprCapaExc</td> </tr> <tr> <td><strong>unit</strong></td> <td colspan="3"; style="text-align:center">GW</td> </tr> <tr> <td><strong>dimension</strong></td> <td>$Ts_{exp}$, $R_{exp}$, $Te$</td> <td>$Ts_{exp}$, $R_{exp}$, $C$, $Te$</td> <td>$Ts_{exp}$, $R_{from}$, $R_{to}$, $C$</td> </tr> <tr> <td rowspan="3"><strong>instances</strong></td> <td colspan="3"; style="text-align:center;border-bottom:none;padding-bottom:0px"> <ul class="liste"> <li>superordinate dispatch resolution (usually years)</li> </ul> </td> </tr> <tr> <td colspan="2"; style="text-align:center;border-right:none;border-top:none;border-bottom:none;padding-top:0px;padding-bottom:0px"> <ul class="liste"> <li>spatial expansion resolution of technology</li> </ul> </td> <td colspan="1"; rowspan="2"; style="text-align:left;border-right:none;padding-top:0px;padding-right:0.0px"> <ul class="liste"> <li>spatial expansion resolution of carrier</li> <li>regions can exchange carrier</li> </ul> </td> </tr> <tr> <td colspan="1"; style="text-align:left;border-right:none;padding-top:0px"> <ul class="liste"; start="4"> <li>if uses or generates carriers</li> </ul> </td> <td colspan="1"; style="text-align:left;padding-top:0px"> <ul class="liste"; start="4"> <li>each stored carrier</li> </ul> </td> </tr> <tr> <td rowspan="2"><strong>related constraints</strong></td> <td colspan="3"; style="text-align:center;border-bottom:none;padding-bottom:0.2em"> <ul class="liste"> <li><a href="../constraints/#Decommissioning-of-operated-capacitiy-1">decommissioning of operated capacitiy</a></li> <li><a href="../constraints/#Operating-cost-equation-1">operating cost equation</a></li> </ul> </td> </tr> <tr> <td colspan="1"; style="text-align:left;border-right:none;padding-top:0px"> <ul class="liste"> <li><a href="../constraints/#Conversion-capacity-restriction-1">conversion capacity <br> restriction</a></li> </ul> </td> <td colspan="1"; style="text-align:left;border-right:none;padding-top:0px"> <ul class="liste"> <li><a href="../constraints/#Storage-capacity-restriction-1">storage capacity <br> restriction</a></li> </ul> </td> <td colspan="1"; style="text-align:left;border-right:none;padding-top:0px";padding-right:0.0px> <ul class="liste"> <li><a href="../constraints/#Exchange-capacity-restriction-1">exchange capacity <br> restriction</a></li> </ul> </td> </tr> <tr> <td><strong>part</strong></td> <td colspan="2"; style="text-align:center"><a href="../parts/#Technology-1">technology</a></td> <td style="text-align:center"><a href="../parts/#Exchange-1">exchange</a></td> </tr> </tbody> </table> ``` # Costs The variables listed here solely serve the purpose to aggregate different kinds of costs and do not have any other function within the model. Therefore, their structure is a bit arbitrary and was chosen to facilitate reporting without adversely affecting performance. ### Expansion cost Costs of capacity expansion. ```@raw html <p class="norm"> As explained <a href="../parameter_list/#Capacity-expansion">here</a>, capacity and thus also costs of capacity expansion, refer to <strong>capacity before efficiency</strong>! </p> <table class="tabelle"> <tbody> <tr> <td><strong>name</strong></td> <td>costExp{Conv,StIn,StOut,StSize}</td> <td>costExp{Exc}</td> </tr> <tr> <td><strong>unit</strong></td> <td colspan="2"; style="text-align:center">Mil.€</td> </tr> <tr> <td><strong>dimension</strong></td> <td>$Ts_{exp}$, $R_{exp}$, $Te$</td> <td>$Ts_{exp}$, $C$</td> </tr> <tr> <td><strong>instances</strong></td> <td colspan="2"; style="text-align:left"><ul class="liste"> <li><a href="../parameter_list/#Expansion-cost-1">expansion cost</a> defined</li> </ul></td> </tr> <tr> <td><strong>related constraints</strong></td> <td colspan="2"; style="text-align:left"> <ul class="liste"> <li><a href="../constraints/#Expansion-cost-equation-1">expansion cost equation</a></li> </ul> </td> </tr> <tr> <td><strong>part</strong></td> <td colspan="2"; style="text-align:center"><a href="../parts/#Objective-1">objective</a></td> </tr> </tbody> </table> ``` ### Operating cost Costs of operating capacity. ```@raw html <p class="norm"> As explained <a href="../parameter_list/#Capacity-expansion">here</a>, capacity and thus also operating costs, refer to <strong>capacity before efficiency</strong>! </p> <table class="tabelle"> <tbody> <tr> <td><strong>name</strong></td> <td>costOpr{Conv,StIn,StOut,StSize}</td> <td>costOpr{Exc}</td> </tr> <tr> <td><strong>unit</strong></td> <td colspan="2"; style="text-align:center">Mil.€</td> </tr> <tr> <td><strong>dimension</strong></td> <td>$Ts_{sup}$, $R_{exp}$, $Te$</td> <td>$Ts_{sup}$, $C$</td> </tr> <tr> <td><strong>instances</strong></td> <td colspan="2"; style="text-align:left"><ul class="liste"> <li><a href="../parameter_list/#Operation-cost-1">operating cost</a> defined</li> </ul></td> </tr> <tr> <td><strong>related constraints</strong></td> <td colspan="2"; style="text-align:left"> <ul class="liste"> <li><a href="../constraints/#Operating-cost-equation-1">operating cost equation</a></li> </ul> </td> </tr> <tr> <td><strong>part</strong></td> <td colspan="2"; style="text-align:center"><a href="../parts/#Objective-1">objective</a></td> </tr> </tbody> </table> ``` ### Variable cost ```@raw html <p class="norm"> Variable costs associated with quantities dispatched. Costs incurred by <a href="../parameter_list/#Emission-price-1">emission prices</a> are included in <code>costVarUse</code>. </p> <table class="tabelle"> <tbody> <tr> <td><strong>name</strong></td> <td>costVar{Use,Gen,StIn,StOut}</td> <td>costVar{Exc}</td> </tr> <tr> <td><strong>unit</strong></td> <td colspan="2"; style="text-align:center">Mil.€</td> </tr> <tr> <td><strong>dimension</strong></td> <td>$Ts_{sup}$, $R_{exp}$, $Te$</td> <td>$Ts_{sup}$, $C$</td> </tr> <tr> <td><strong>instances</strong></td> <td colspan="2"; style="text-align:left"><ul class="liste"> <li><a href="../parameter_list/#Variable-cost-1">variable cost</a> defined</li> <li><a href="../parameter_list/#Emission-factor-1">emission factor</a> and <a href="../parameter_list/#Emission-price-1">emission price</a> defined in case of use</li> </ul></td> </tr> <tr> <td><strong>related constraints</strong></td> <td colspan="2"; style="text-align:left"> <ul class="liste"> <li><a href="../constraints/#Variable-cost-equation-1">variable cost equation</a></li> </ul> </td> </tr> <tr> <td><strong>part</strong></td> <td colspan="2"; style="text-align:center"><a href="../parts/#Objective-1">objective</a></td> </tr> </tbody> </table> ``` ### Trade cost Costs and revenues from buying or selling carriers on an external market. ```@raw html <table class="tabelle"> <tbody> <tr> <td><strong>name</strong></td> <td>costTrdBuy</td> <td>costTrdSell</td> </tr> <tr> <td><strong>unit</strong></td> <td colspan="2"; style="text-align:center">Mil.€</td> </tr> <tr> <td><strong>dimension</strong></td> <td colspan="2"; style="text-align:center">$Ts_{sup}$, $R_{exp}$, $C$</td> </tr> <tr> <td><strong>instances</strong></td> <td colspan="2"; style="text-align:left"><ul class="liste"> <li><a href="../parameter_list/#Trade-price-1">trade price</a> defined</li> </ul></td> </tr> <tr> <td><strong>related constraints</strong></td> <td colspan="2"; style="text-align:left"> <ul class="liste"> <li><a href="../constraints/#Trade-cost-equation-1">trade cost equation</a></li> </ul> </td> </tr> <tr> <td><strong>part</strong></td> <td colspan="2"; style="text-align:center"><a href="../parts/#Objective-1">objective</a></td> </tr> </tbody> </table> ``` ### Curtailment and loss-of-load cost Cost of curtailment and unmet demand. To allow for revenues and costs from curtailment, `costCrt` is the only model variable that can also take negative values. ```@raw html <table class="tabelle"> <tbody> <tr> <td><strong>name</strong></td> <td>costCrt</td> <td>costLss</td> </tr> <tr> <td><strong>unit</strong></td> <td colspan="2"; style="text-align:center">Mil.€</td> </tr> <tr> <td><strong>dimension</strong></td> <td colspan="2"; style="text-align:center">$Ts_{sup}$, $R_{exp}$, $C$</td> </tr> <tr> <td><strong>instances</strong></td> <td colspan="2"; style="text-align:left"><ul class="liste"> <li><a href="../parameter_list/#Cost-of-curtailment-and-loss-of-load-1">respective costs</a> defined</li> </ul></td> </tr> <tr> <td><strong>related constraints</strong></td> <td colspan="2"; style="text-align:left"> <ul class="liste"> <li><a href="../constraints/#Curtailment-and-loss-of-load-cost-equation-1">curtailment and loss-of-load cost equation</a></li> </ul> </td> </tr> <tr> <td><strong>part</strong></td> <td colspan="2"; style="text-align:center"><a href="../parts/#Objective-1">objective</a></td> </tr> </tbody> </table> ```
AnyMOD
https://github.com/leonardgoeke/AnyMOD.jl.git
[ "MIT" ]
0.4.6
eb8ab2e2d972100fc42a86845076e01fdc0d55b4
code
4245
module Embeddings using Statistics: norm using DataDeps using AutoHashEquals using GoogleDrive using PrecompileTools export load_embeddings, language_files export Word2Vec, GloVe, FastText_Text, Paragram abstract type EmbeddingSystem{LANG} end include("fasttext.jl") include("glove.jl") include("word2vec.jl") include("Paragram.jl") include("common.jl") @auto_hash_equals struct EmbeddingTable{M<:AbstractMatrix, A<:AbstractVector} embeddings::M vocab::A end const supported_languages_files = Dict{DataType, Vector{String}}() load_datadep(datadep_name) = @datadep_str datadep_name # makes sure to get __FILE__ right default_file(::Type{T}, file_number) where T = language_files(T)[file_number] |> load_datadep function language_files(::Type{T}) where {T<:EmbeddingSystem{LANG}} where LANG get!(supported_languages_files,T) do String[] end end # Catch the unionall where no type-param given language_files(::Type{T}) where T = language_files(T{:en}) """ load_embeddings(EmbeddingSystem, [embedding_file|default_file_number]) load_embeddings(EmbeddingSystem{:lang}, [embedding_file|default_file_number]) Loaded the embeddings from a embedding file. The embeddings should be of the type given by the Embedding system. If the `embedding file` is not provided, a default embedding file will be used. (It will be automatically installed if required). EmbeddingSystems have a language type parameter. For example `FastText_Text{:fr}` or `Word2Vec{:en}`, if that language parameter is not given it defaults to English. (I am sorry for the poor state of the NLP field that many embedding formats are only available pretrained in English.) Using this the correct default embedding file will be installed for that language. For some languages and embedding systems there are multiple possible files. You can check the list of them using for example `language_files(FastText_Text{:de})`. The first is nominally the most popular, but if you want to default to another you can do so by setting the `default_file_num`. ### Keyword Arguments: - `max_vocab_size` an integer, it specifies the maximum number of words to load (most formats are sorted by frequency so this keeps the the most common words). Default is to keep all of them - `keep_words=Set()` if a non-empty set of words is provided, then only word embeddings for words from that list are loaded. Otherwise (default) all words are loaded. ### Returns an `Embeddings` object. This has 2 fields. - `embeddings` is a matrix, each column is the embedding for a word. - `vocab` is a vector of strings, ordered as per the columns of `embeddings`, such that the first string in vocab is the first column of `embeddings` etc We do not include a method for getting the index of a column from a word. This is trivial to define in code (`vocab2ind(vocab)=Dict(word=>ii for (ii,word) in enumerate(vocab))`), and you might like to be doing this in a more consistant way, e.g using [MLLabelUtils.jl](https://github.com/JuliaML/MLLabelUtils.jl), or you might like to build a much faster Dict solution on top of [InternedStrings.jl](https://github.com/JuliaString/InternedStrings.jl) ``` """ function load_embeddings(::Type{T}, default_file_number::Int=1; max_vocab_size=typemax(Int), keep_words=Set()) where T<:EmbeddingSystem embedding_file = default_file(T, default_file_number) load_embeddings(T, embedding_file; max_vocab_size=max_vocab_size, keep_words=keep_words) end function load_embeddings(::Type{T}, fh::IO; max_vocab_size=typemax(Int), keep_words=Set()) where T<:EmbeddingSystem EmbeddingTable(_load_embeddings(T, fh, max_vocab_size, Set(keep_words))...) end function load_embeddings(::Type{T}, embedding_file::AbstractString; max_vocab_size=typemax(Int), keep_words=Set()) where T<:EmbeddingSystem open(embedding_file, "r") do fh load_embeddings(T, fh; max_vocab_size=max_vocab_size, keep_words=keep_words) end end function init_systems() for T in [Word2Vec, GloVe, FastText, Paragram] init(T) end end @setup_workload begin @compile_workload init_systems() end function __init__() init_systems() end end
Embeddings
https://github.com/JuliaText/Embeddings.jl.git
[ "MIT" ]
0.4.6
eb8ab2e2d972100fc42a86845076e01fdc0d55b4
code
2058
abstract type Paragram{LANG} <: EmbeddingSystem{LANG} end function init(::Type{Paragram}) vectors = [("paragram_300_ws353", " Paragram-WS353 300 dimensional Paragram embeddings tuned on WordSim353 dataset. 1.7 GB download.", "8ed9a19f8bc400cdbca5dae7f024c0310a3e5711a46ba48036a7542614440721", "https://drive.google.com/uc?id=0B9w48e1rj-MOLVdZRzFfTlNsem8&export=download"), # "https://drive.google.com/file/d/0B9w48e1rj-MOLVdZRzFfTlNsem8/view"), ("paragram_300_sl999", "Paragram-SL999 300 dimensional Paragram embeddings tuned on SimLex999 dataset. 1.7 GB download.", "9a16adc7d620642f863278451db4c03a2646016440ccea7e30a37ba17868781d", "https://drive.google.com/uc?id=0B9w48e1rj-MOck1fRGxaZW1LU2M&export=download"), ] #https://drive.google.com/file/d/0B9w48e1rj-MOLVdZRzFfTlNsem8/view?usp=sharing for (depname, description, sha, link) in vectors register(DataDep(depname, """ Pretrained Paragram word embeddings. Website: https://www.cs.cmu.edu/~jwieting/ Author: John Wieting Year: 2015 Licence: Open Data Commons Public Domain Dedication and License (PDDL) Paper: John Wieting, Mohit Bansal, Kevin Gimpel, Karen Livescu, Dan Roth. From Paraphrase Database to Compositional Paraphrase Model and Back. $description """, link, sha, fetch_method = google_download, post_fetch_method = unpack)) append!(language_files(Paragram{:en}), ["$(depname)/$(depname).txt"]) end end _load_embeddings(::Type{<:Paragram}, embedding_file::IO, max_vocab_size, keep_words) = _load_embeddings_csv(embedding_file, max_vocab_size, keep_words , ' ')
Embeddings
https://github.com/JuliaText/Embeddings.jl.git
[ "MIT" ]
0.4.6
eb8ab2e2d972100fc42a86845076e01fdc0d55b4
code
852
function _load_embeddings_csv(fh::IO, max_vocab_size, keep_words, delim::AbstractChar=',') local LL, indexed_words, index if length(keep_words) > 0 max_vocab_size = length(keep_words) end indexed_words = Vector{String}() LL = Vector{Vector{Float32}}() index = 1 for line in eachline(fh) xs = split(line, delim) word = xs[1] if length(keep_words) == 0 || (word in keep_words) index > max_vocab_size && break push!(indexed_words, word) try push!(LL, parse.(Float32, @view(xs[2:end]))) catch err err isa ArgumentError || rethrow() @warn "Could not parse word vector" index word exception=err end index += 1 end end return reduce(hcat, LL), indexed_words end
Embeddings
https://github.com/JuliaText/Embeddings.jl.git
[ "MIT" ]
0.4.6
eb8ab2e2d972100fc42a86845076e01fdc0d55b4
code
15230
abstract type FastText{LANG} <: EmbeddingSystem{LANG} end abstract type FastText_Text{LANG} <: FastText{LANG} end abstract type FastText_Bin{LANG} <: FastText{LANG} end function _load_embeddings(::Type{<:FastText_Bin}, embedding_file, max_vocab_size, keep_words) error("FastText Binary Format not supported. If anyone knows how to parse it please feel encouraged to make a PR.") end function _load_embeddings(::Type{<:FastText_Text}, fh::IO, max_vocab_size, keep_words) #If there are any words in keep_words, then only those are kept, otherwise all are kept local LL, indexed_words, index if length(keep_words) > 0 max_stored_vocab_size = length(keep_words) end vocab_size, vector_size = parse.(Int64, split(readline(fh))) max_stored_vocab_size = min(max_vocab_size, vocab_size) indexed_words = Vector{String}(undef, max_stored_vocab_size) LL = Array{Float32}(undef, vector_size, max_stored_vocab_size) index = 1 @inbounds for _ in 1:vocab_size line = readline(fh) toks = split(line) word = first(toks) if length(keep_words)==0 || word in keep_words indexed_words[index]=word LL[:,index] .= parse.(Float32, @view toks[2:end]) index+=1 if index>max_stored_vocab_size break end end end LL = LL[:,1:index-1] #throw away unused columns indexed_words = indexed_words[1:index-1] #throw away unused columns LL, indexed_words end function init(::Type{FastText}) ######### # English for (source, name, hashstring) in [ ("Common Crawl", "crawl-300d-2M.vec", "5bfffffbabdab299d4c9165c47275e8f982807a6eaca37ee1f71d3a79ddb544d"), ("Wiki News", "wiki-news-300d-1M.vec","bdeb85f44892c505953e3654183e9cb0d792ee51be0992460593e27198d746f8") ] push!(language_files(FastText_Text{:en}), "FastText $(source)/$(name)") register(DataDep("FastText $(source)", """ Dataset: FastText Word Embeddings for English (original release) Author: Bojanowski et. al. (Facebook) License: CC-SA 3.0 Website: https://fasttext.cc/docs/en/english-vectors.html 1 million 300 dimentional word vectors trained on Wikipedia 2017, UMBC webbase corpus and statmt.org news dataset (16B tokens) Citation: P. Bojanowski*, E. Grave*, A. Joulin, T. Mikolov, Enriching Word Vectors with Subword Information Notice: this file is ~ 1GB """, "https://dl.fbaipublicfiles.com/fasttext/vectors-english/$(name).zip", hashstring, post_fetch_method=DataDeps.unpack )); end ######################### # Common Crawl for (lang, text_hashstring, bin_hashstring) in fast_commoncrawl_languages_and_hashes push!(language_files(FastText_Bin{lang}), "FastText $lang CommonCrawl Binary/cc.$(lang).300.bin") push!(language_files(FastText_Text{lang}), "FastText $lang CommonCrawl Text/cc.$(lang).300.vec") for (mode, hashstring, ext) in [("Text", text_hashstring, "vec"), ("Binary", bin_hashstring, "bin")] register(DataDep("FastText $lang CommonCrawl $mode", """ Dataset: 300 dimentional FastText Word Embeddings, for $lang trained on Wikipedia and the CommonCrawl Website: https://fasttext.cc/docs/en/crawl-vectors.html Author: Grave et. al. (Facebook) License: CC-SA 3.0 Citation: E. Grave*, P. Bojanowski*, P. Gupta, A. Joulin, T. Mikolov, Learning Word Vectors for 157 Languages """, "https://dl.fbaipublicfiles.com/fasttext/vectors-crawl/cc.$(lang).300.$(ext).gz", hashstring; post_fetch_method=DataDeps.unpack )); end end for (lang, hashstring) in fast_text_wiki_languages_and_hashes # TODO Add Binary files as well push!(language_files(FastText_Text{lang}), "FastText $lang Wiki Text/wiki.$(lang).vec") register(DataDep("FastText $lang Wiki Text", """ Dataset: 300 dimentional FastText Word Embeddings for $lang, trained on Wikipedia Website: https://fasttext.cc/docs/en/pretrained-vectors.html Author: Bojanowski et. al. (Facebook) License: CC-SA 3.0 Citation: P. Bojanowski*, E. Grave*, A. Joulin, T. Mikolov, Enriching Word Vectors with Subword Information """, "https://dl.fbaipublicfiles.com/fasttext/vectors-wiki/wiki.$(lang).vec", hashstring; )); end end # Lang, TextHash, BinHash const fast_commoncrawl_languages_and_hashes = [ (:af, nothing, nothing), (:als, nothing, nothing), (:am, nothing, nothing), (:an, nothing, nothing), (:ar, nothing, nothing), (:arz, nothing, nothing), (:as, nothing, nothing), (:ast, nothing, nothing), (:az, nothing, nothing), (:azb, nothing, nothing), (:ba, nothing, nothing), (:bar, nothing, nothing), (:bcl, nothing, nothing), (:be, nothing, nothing), (:bg, nothing, nothing), (:bh, nothing, nothing), (:bn, nothing, nothing), (:bo, nothing, nothing), (:bpy, nothing, nothing), (:br, nothing, nothing), (:bs, nothing, nothing), (:ca, nothing, nothing), (:ce, nothing, nothing), (:ceb, nothing, nothing), (:ckb, nothing, nothing), (:co, nothing, nothing), (:cs, nothing, nothing), (:cv, nothing, nothing), (:cy, nothing, nothing), (:da, nothing, nothing), (:de, nothing, nothing), (:diq, nothing, nothing), (:dv, nothing, nothing), (:el, nothing, nothing), (:eml, nothing, nothing), (:eo, nothing, nothing), (:es, "116915c965346a0e3670b0e703e15e3526f31f1d216088eb3b30fc8f94982b82", nothing), (:et, nothing, nothing), (:eu, nothing, nothing), (:fa, nothing, nothing), (:fi, nothing, nothing), (:fr, "ab0dca4ef2a8a38d97ca119b491c701c57e17178cfc2f032f3de973e86fe87aa", nothing), (:frr, nothing, nothing), (:fy, nothing, nothing), (:ga, nothing, nothing), (:gd, nothing, nothing), (:gl, nothing, nothing), (:gom, nothing, nothing), (:gu, nothing, nothing), (:gv, nothing, nothing), (:he, nothing, nothing), (:hi, nothing, nothing), (:hif, nothing, nothing), (:hr, nothing, nothing), (:hsb, nothing, nothing), (:ht, nothing, nothing), (:hu, nothing, nothing), (:hy, nothing, nothing), (:ia, nothing, nothing), (:id, nothing, nothing), (:ilo, nothing, nothing), (:io, nothing, nothing), (:is, nothing, nothing), (:it, nothing, nothing), (:ja, nothing, nothing), (:jv, nothing, nothing), (:ka, nothing, nothing), (:kk, nothing, nothing), (:km, nothing, nothing), (:kn, nothing, nothing), (:ko, nothing, nothing), (:ku, nothing, nothing), (:ky, nothing, nothing), (:la, nothing, nothing), (:lb, nothing, nothing), (:li, nothing, nothing), (:lmo, nothing, nothing), (:lt, nothing, nothing), (:lv, nothing, nothing), (:mai, nothing, nothing), (:mg, nothing, nothing), (:mhr, nothing, nothing), (:min, nothing, nothing), (:mk, nothing, nothing), (:ml, nothing, nothing), (:mn, nothing, nothing), (:mr, nothing, nothing), (:mrj, nothing, nothing), (:ms, nothing, nothing), (:mt, nothing, nothing), (:mwl, nothing, nothing), (:my, nothing, nothing), (:myv, nothing, nothing), (:mzn, nothing, nothing), (:nah, nothing, nothing), (:nap, nothing, nothing), (:nds, nothing, nothing), (:ne, nothing, nothing), (:new, nothing, nothing), (:nl, nothing, nothing), (:nn, nothing, nothing), (:no, nothing, nothing), (:nso, nothing, nothing), (:oc, nothing, nothing), (:or, nothing, nothing), (:os, nothing, nothing), (:pa, nothing, nothing), (:pam, nothing, nothing), (:pfl, nothing, nothing), (:pl, nothing, nothing), (:pms, nothing, nothing), (:pnb, nothing, nothing), (:ps, nothing, nothing), (:pt, nothing, nothing), (:qu, nothing, nothing), (:rm, nothing, nothing), (:ro, nothing, nothing), (:ru, nothing, nothing), (:sa, nothing, nothing), (:sah, nothing, nothing), (:sc, nothing, nothing), (:scn, nothing, nothing), (:sco, nothing, nothing), (:sd, nothing, nothing), (:sh, nothing, nothing), (:si, nothing, nothing), (:sk, nothing, nothing), (:sl, nothing, nothing), (:so, nothing, nothing), (:sq, nothing, nothing), (:sr, nothing, nothing), (:su, nothing, nothing), (:sv, nothing, nothing), (:sw, nothing, nothing), (:ta, nothing, nothing), (:te, nothing, nothing), (:tg, nothing, nothing), (:th, nothing, nothing), (:tk, nothing, nothing), (:tl, nothing, nothing), (:tr, nothing, nothing), (:tt, nothing, nothing), (:ug, nothing, nothing), (:uk, nothing, nothing), (:ur, nothing, nothing), (:uz, nothing, nothing), (:vec, nothing, nothing), (:vi, nothing, nothing), (:vls, nothing, nothing), (:vo, nothing, nothing), (:wa, nothing, nothing), (:war, nothing, nothing), (:xmf, nothing, nothing), (:yi, nothing, nothing), (:yo, nothing, nothing), (:zea, nothing, nothing), (:zh, nothing, nothing), ] const fast_text_wiki_languages_and_hashes = [ (:en, "f4d87723baad28804f89c0ecf74fd0f52ac2ae194c270cb4c89b0a84f0bcf53b"), # PR Welcome to add Hashes for the ones below (:ab, nothing), (:ace, nothing), (:ady, nothing), (:aa, nothing), (:af, nothing), (:ak, nothing), (:sq, nothing), (:als, nothing), (:am, nothing), (:ang, nothing), (:ar, nothing), (:an, nothing), (:arc, nothing), (:hy, nothing), (:roa_rup, nothing), (:as, nothing), (:ast, nothing), (:av, nothing), (:ay, nothing), (:az, nothing), (:bm, nothing), (:bjn, nothing), (:map_bms, nothing), (:ba, nothing), (:eu, nothing), (:bar, nothing), (:be, nothing), (:bn, nothing), (:bh, nothing), (:bpy, nothing), (:bi, nothing), (:bs, nothing), (:br, nothing), (:bug, nothing), (:bg, nothing), (:my, nothing), (:bxr, nothing), (:zh_yue, nothing), (:ca, nothing), (:ceb, nothing), (:bcl, nothing), (:ch, nothing), (:cbk_zam, nothing), (:ce, nothing), (:chr, nothing), (:chy, nothing), (:ny, nothing), (:zh, nothing), (:cho, nothing), (:cv, nothing), (:zh_classical, nothing), (:kw, nothing), (:co, nothing), (:cr, nothing), (:crh, nothing), (:hr, nothing), (:cs, nothing), (:da, nothing), (:dv, nothing), (:nl, nothing), (:nds_nl, nothing), (:dz, nothing), (:pa, nothing), (:arz, nothing), (:eml, nothing), (:myv, nothing), (:eo, nothing), (:et, nothing), (:ee, nothing), (:ext, nothing), (:fo, nothing), (:hif, nothing), (:fj, nothing), (:fi, nothing), (:frp, nothing), (:fr, nothing), (:fur, nothing), (:ff, nothing), (:gag, nothing), (:gl, nothing), (:gan, nothing), (:ka, nothing), (:de, nothing), (:glk, nothing), (:gom, nothing), (:got, nothing), (:el, nothing), (:kl, nothing), (:gn, nothing), (:gu, nothing), (:ht, nothing), (:hak, nothing), (:ha, nothing), (:haw, nothing), (:he, nothing), (:hz, nothing), (:mrj, nothing), (:hi, nothing), (:ho, nothing), (:hu, nothing), (:is, nothing), (:io, nothing), (:ig, nothing), (:ilo, nothing), (:id, nothing), (:ia, nothing), (:ie, nothing), (:iu, nothing), (:ik, nothing), (:ga, nothing), (:it, nothing), (:jam, nothing), (:ja, nothing), (:jv, nothing), (:kbd, nothing), (:kab, nothing), (:xal, nothing), (:kn, nothing), (:kr, nothing), (:pam, nothing), (:krc, nothing), (:kaa, nothing), (:ks, nothing), (:csb, nothing), (:kk, nothing), (:km, nothing), (:ki, nothing), (:rw, nothing), (:ky, nothing), (:rn, nothing), (:kv, nothing), (:koi, nothing), (:kg, nothing), (:ko, nothing), (:kj, nothing), (:ku, nothing), (:ckb, nothing), (:lad, nothing), (:lbe, nothing), (:lo, nothing), (:ltg, nothing), (:la, nothing), (:lv, nothing), (:lez, nothing), (:lij, nothing), (:li, nothing), (:ln, nothing), (:lt, nothing), (:olo, nothing), (:jbo, nothing), (:lmo, nothing), (:nds, nothing), (:dsb, nothing), (:lg, nothing), (:lb, nothing), (:mk, nothing), (:mai, nothing), (:mg, nothing), (:ms, nothing), (:ml, nothing), (:mt, nothing), (:gv, nothing), (:mi, nothing), (:mr, nothing), (:mh, nothing), (:mzn, nothing), (:mhr, nothing), (:cdo, nothing), (:zh_min_nan, nothing), (:min, nothing), (:xmf, nothing), (:mwl, nothing), (:mdf, nothing), (:mo, nothing), (:mn, nothing), (:mus, nothing), (:nah, nothing), (:na, nothing), (:nv, nothing), (:ng, nothing), (:nap, nothing), (:ne, nothing), (:new, nothing), (:pih, nothing), (:nrm, nothing), (:frr, nothing), (:lrc, nothing), (:se, nothing), (:nso, nothing), (:no, nothing), (:nn, nothing), (:nov, nothing), (:ii, nothing), (:oc, nothing), (:cu, nothing), (:or, nothing), (:om, nothing), (:os, nothing), (:pfl, nothing), (:pi, nothing), (:pag, nothing), (:pap, nothing), (:ps, nothing), (:pdc, nothing), (:fa, nothing), (:pcd, nothing), (:pms, nothing), (:pl, nothing), (:pnt, nothing), (:pt, nothing), (:qu, nothing), (:ksh, nothing), (:rmy, nothing), (:ro, nothing), (:rm, nothing), (:ru, nothing), (:rue, nothing), (:sah, nothing), (:sm, nothing), (:bat_smg, nothing), (:sg, nothing), (:sa, nothing), (:sc, nothing), (:stq, nothing), (:sco, nothing), (:gd, nothing), (:sr, nothing), (:sh, nothing), (:st, nothing), (:sn, nothing), (:scn, nothing), (:szl, nothing), (:simple, nothing), (:sd, nothing), (:si, nothing), (:sk, nothing), (:sl, nothing), (:so, nothing), (:azb, nothing), (:es, nothing), (:srn, nothing), (:su, nothing), (:sw, nothing), (:ss, nothing), (:sv, nothing), (:tl, nothing), (:ty, nothing), (:tg, nothing), (:ta, nothing), (:roa_tara, nothing), (:tt, nothing), (:te, nothing), (:tet, nothing), (:th, nothing), (:bo, nothing), (:ti, nothing), (:tpi, nothing), (:to, nothing), (:ts, nothing), (:tn, nothing), (:tcy, nothing), (:tum, nothing), (:tr, nothing), (:tk, nothing), (:tyv, nothing), (:tw, nothing), (:udm, nothing), (:uk, nothing), (:hsb, nothing), (:ur, nothing), (:ug, nothing), (:uz, nothing), (:ve, nothing), (:vec, nothing), (:vep, nothing), (:vi, nothing), (:vo, nothing), (:fiu_vro, nothing), (:wa, nothing), (:war, nothing), (:cy, nothing), (:vls, nothing), (:fy, nothing), (:pnb, nothing), (:wo, nothing), (:wuu, nothing), (:xh, nothing), (:yi, nothing), (:yo, nothing), (:diq, nothing), (:zea, nothing), (:za, nothing), (:zu, nothing), ]
Embeddings
https://github.com/JuliaText/Embeddings.jl.git
[ "MIT" ]
0.4.6
eb8ab2e2d972100fc42a86845076e01fdc0d55b4
code
2536
abstract type GloVe{LANG} <: EmbeddingSystem{LANG} end const glove_max_size = 4_000_000 function init(::Type{GloVe}) vectors = [("glove.6B", "Trained on 6B tokens (Wikipedia 2014, Gigaword 5), 400K vocab, uncased. Includes 50d, 100d, 200d, & 300d vectors. 822 MB download.", "617afb2fe6cbd085c235baf7a465b96f4112bd7f7ccb2b2cbd649fed9cbcf2fb", ["50d", "100d", "200d", "300d"]), ("glove.42B.300d", "Trained on 42B tokens (Common Crawl), 1.9M vocab, uncased, Includes 300d vectors. 1.75 GB download.", "03d5d7fa28e58762ace4b85fb71fe86a345ef0b5ff39f5390c14869da0fc1970", []), ("glove.840B.300d", "Trained on 840B tokens (Common Crawl), 2.2M vocab, cased. Includes 300d vectors. 2.03 GB download.", "c06db255e65095393609f19a4cfca20bf3a71e20cc53e892aafa490347e3849f", []), ("glove.twitter.27B", "Trained on 2B tweets, 27B tokens, 1.2M vocab, uncased, 25d, 50d, 100d, & 200d vectors, 1.42 GB download.", "792af52f795d1a32c9842a3240f5f3fe5e941a8ff6df5eb0f9d668092ebc019c", ["25d", "50d", "100d", "200d"])] for (depname, description, sha, dims) in vectors register(DataDep(depname, """ Pretrained GloVe word embeddings. Website: https://nlp.stanford.edu/projects/glove/ Author: Jeffrey Pennington, Richard Socher, Christopher D. Manning Year: 2014 Licence: Open Data Commons Public Domain Dedication and License (PDDL) Paper: Jeffrey Pennington, Richard Socher, Christopher D. Manning. GloVe: Global Vectors for Word Representation. In Proceedings of EMNLP, 2014. $description """, "https://nlp.stanford.edu/data/$(depname).zip", sha, post_fetch_method = unpack)) if length(dims) >= 1 append!(language_files(GloVe{:en}), ["$(depname)/$(depname).$(dim).txt" for dim in dims]) else push!(language_files(GloVe{:en}), "$depname/$depname.txt") end end end _load_embeddings(::Type{<:GloVe}, embedding_file::IO, max_vocab_size, keep_words) = _load_embeddings_csv(embedding_file, max_vocab_size, keep_words, ' ')
Embeddings
https://github.com/JuliaText/Embeddings.jl.git
[ "MIT" ]
0.4.6
eb8ab2e2d972100fc42a86845076e01fdc0d55b4
code
2051
abstract type Word2Vec{LANG} <: EmbeddingSystem{LANG} end function init(::Type{Word2Vec}) register(DataDep("word2vec 300d", """ Pretrained Word2Vec Word emeddings Website: https://code.google.com/archive/p/word2vec/ Author: Mikolov et al. Year: 2013 Pre-trained vectors trained on part of Google News dataset (about 100 billion words). The model contains 300-dimensional vectors for 3 million words and phrases. Paper: Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, and Jeffrey Dean. Distributed Representations of Words and Phrases and their Compositionality. In Proceedings of NIPS, 2013. """, "https://s3.amazonaws.com/dl4j-distribution/GoogleNews-vectors-negative300.bin.gz", "21c05ae916a67a4da59b1d006903355cced7de7da1e42bff9f0504198c748da8"; post_fetch_method=DataDeps.unpack )) push!(language_files(Word2Vec{:en}), "word2vec 300d/GoogleNews-vectors-negative300.bin") end function _load_embeddings(::Type{<:Word2Vec}, fh::IO, max_vocab_size, keep_words) local LL, indexed_words, index vocab_size, vector_size = parse.(Int64, split(readline(fh))) max_stored_vocab_size = min(max_vocab_size, vocab_size) indexed_words = Vector{String}(undef, max_stored_vocab_size) LL = Array{Float32}(undef, vector_size, max_stored_vocab_size) index = 1 @inbounds for _ in 1:vocab_size word = readuntil(fh, ' ', keep=false) vector = Vector{Float32}(undef, vector_size) @inbounds for i = 1:vector_size vector[i] = read(fh, Float32) end if !occursin("_", word) && (length(keep_words)==0 || word in keep_words ) #If it isn't a phrase LL[:,index]=vector./norm(vector) indexed_words[index] = word index+=1 if index>max_stored_vocab_size break end end end LL = LL[:,1:index-1] #throw away unused columns indexed_words = indexed_words[1:index-1] #throw away unused columns LL, indexed_words end
Embeddings
https://github.com/JuliaText/Embeddings.jl.git
[ "MIT" ]
0.4.6
eb8ab2e2d972100fc42a86845076e01fdc0d55b4
code
5261
using Embeddings using Test using DataDeps """ tempdatadeps(fun) Run the function and delete all created datadeps afterwards """ function tempdatadeps(fun) tempdir = mktempdir() try @info "sending all datadeps to $tempdir" withenv("DATADEPS_LOAD_PATH"=>tempdir) do fun() end finally try @info "removing $tempdir" rm(tempdir, recursive=true, force=true) catch err @warn "Something went wrong with removing tempdir" tempdir exception=err end end end # uncomment the below to not use tempdatadeps (i.e. if not debugging) # tempdatadeps(fun) = fun() """ @testset_nokeep_data Use just like @testset, but know that it deletes any downloaded data dependencies when it is done. """ macro testset_nokeep_data(name, expr) quote tempdatadeps() do println("Testing ", $name) @testset $name $expr end end |> esc end @testset_nokeep_data "Word2Vec" begin embs_full = load_embeddings(Word2Vec) @test size(embs_full.embeddings) == (300, length(embs_full.vocab)) embs_mini = load_embeddings(Word2Vec; max_vocab_size=100) @test length(embs_mini.vocab)==100 @test embs_mini.embeddings == embs_full.embeddings[:, 1:100] @test embs_mini.vocab == embs_full.vocab[1:100] @test "for" ∈ embs_mini.vocab embs_specific = load_embeddings(Word2Vec; keep_words=Set(["red", "green", "blue"])) @test size(embs_specific.embeddings) == (300, 3) @test Set(embs_specific.vocab) == Set(["red", "green", "blue"]) end @testset "GloVe" begin # just test one file from each of provided sets tests = ["glove.6B/glove.6B.50d.txt", #"glove.42B.300d/glove.42B.300d.txt", # These files are too slow to download #"glove.840B.300d/glove.840B.300d.txt", # They are not that big but are on a slow server #"glove.twitter.27B/glove.twitter.27B.25d.txt" ] # read dimensionality from name (e.g. glove.6B.300d.txt -> 300) dim(x) = parse(Int, match(r"\.([0-9]+)d\.", x).captures[1]) for file in tests filename = split(file, Base.Filesystem.path_separator)[end] @testset_nokeep_data "$filename" begin @testset "Basic" begin glove = load_embeddings(GloVe{:en}, @datadep_str(file), max_vocab_size=1000) @test length(glove.vocab) == 1000 @test size(glove.embeddings) == (dim(file), 1000) @test "for" ∈ glove.vocab end @testset "Specific" begin colors = ["red", "green", "blue"] glove_colors = load_embeddings(GloVe, @datadep_str(file), keep_words=colors) @test length(glove_colors.vocab) == 3 @test size(glove_colors.embeddings) == (dim(file), 3) @test Set(glove_colors.vocab) == Set(colors) end end end @testset "Custom" begin # first 100 lines of official glove.6B.50d.txt custom_glove_file = joinpath(@__DIR__, "data", "custom.glove.txt") @testset "Basic" begin glove = load_embeddings(GloVe, custom_glove_file) @test length(glove.vocab) == 100 @test size(glove.embeddings) == (50, 100) @test "the" ∈ glove.vocab end @testset "Specific" begin punct = [".", ","] glove_punct = load_embeddings(GloVe, custom_glove_file, keep_words=punct) @test length(glove_punct.vocab) == 2 @test size(glove_punct.embeddings) == (50, 2) @test Set(glove_punct.vocab) == Set(punct) end end @testset "non-breaking-space" begin # https://github.com/JuliaText/Embeddings.jl/issues/24 # This includes the text with nonbreaking space in the work custom_glove_file = joinpath(@__DIR__, "data", "nbsp.glove.txt") @testset "Basic" begin glove = load_embeddings(GloVe, custom_glove_file) @test ".\U00A0.\U00A0." ∈ glove.vocab @test size(glove.embeddings) == (300, 3) end end end @testset "FastText" begin @testset_nokeep_data "English 1" begin @testset "Basic" begin embs1 = load_embeddings(FastText_Text; max_vocab_size=100) @test length(embs1.vocab)==100 @test size(embs1.embeddings) == (300, 100) end @testset "Specific" begin embs_specific = load_embeddings(FastText_Text; keep_words=Set(["red", "green", "blue"])) @test size(embs_specific.embeddings) == (300, 3) @test Set(embs_specific.vocab) == Set(["red", "green", "blue"]) end end @testset_nokeep_data "French" begin embs_fr = load_embeddings(FastText_Text{:fr}; max_vocab_size=100) @test length(embs_fr.vocab)==100 @test size(embs_fr.embeddings) == (300, 100) end @testset_nokeep_data "English file number 2" begin embs_specific = load_embeddings(FastText_Text, 2; keep_words=Set(["red", "green", "blue"])) @test size(embs_specific.embeddings) == (300, 3) @test Set(embs_specific.vocab) == Set(["red", "green", "blue"]) end end
Embeddings
https://github.com/JuliaText/Embeddings.jl.git
[ "MIT" ]
0.4.6
eb8ab2e2d972100fc42a86845076e01fdc0d55b4
docs
10224
# Embeddings [![Build Status](https://travis-ci.org/JuliaText/Embeddings.jl.svg?branch=master)](https://travis-ci.org/JuliaText/Embeddings.jl) [![CodeCov](https://codecov.io/gh/JuliaText/Embeddings.jl/branch/master/graph/badge.svg)](https://codecov.io/gh/JuliaText/Embeddings.jl) ## Introduction Word Embeddings present words as high-dimensional vectors, where every dimension corresponds to some latent feature [1]. This makes it possible to utilize different mathematical operations between words. With these we can discover semantic relationships between words. E.g. when using [Word2Vec](https://code.google.com/archive/p/word2vec/) embeddings and utilizing cosine similarity between vectors, the calculation `vector(“Madrid”) - vector(“Spain”) + vector(“France”)` gives as an answer the vector for word “Paris” [2]. Pretraining Word Embeddings are commonly uses to initialize the bottom layer of a more advanced NLP method, such as a LSTM [3]. Simply summing the embeddings in a sentence or phrase can in and of itself be a surprisingly powerful way to represent the sentence/phrase, and can be used as a input to simple ML models like SVM 4]. This package gives access to pretrained embeddings. At its current state it includes following word embeddings: [Word2Vec](https://code.google.com/archive/p/word2vec/) (English), [GloVe](https://nlp.stanford.edu/projects/glove/) (English), and [FastText](https://fasttext.cc/) (hundreds of languages). ### Installation The package can be installed using the [julia package manager in the normal way](https://julialang.github.io/Pkg.jl/v1/managing-packages/#Adding-packages-1). Open the REPL, press <kbd>]</kbd> to enter package mode, and then: ```julia pkg> add Embeddings ``` There are no further steps. Pretrained embeddings will be downloaded the first time you use them. ## Details ### `load_embeddings` load_embeddings(EmbeddingSystem, [embedding_file|default_file_number]) load_embeddings(EmbeddingSystem{:lang}, [embedding_file|default_file_number]) Loaded the embeddings from a embedding file. The embeddings should be of the type given by the Embedding system. If the `embedding file` is not provided, a default embedding file will be used. (It will be automatically installed if required). EmbeddingSystems have a language type parameter. For example `FastText_Text{:fr}` or `Word2Vec{:en}`, if that language parameter is not given it defaults to English. (I am sorry for the poor state of the NLP field that many embedding formats are only available pretrained in English.) Using this the correct default embedding file will be installed for that language. For some languages and embedding systems there are multiple possible files. You can check the list of them using for example `language_files(FastText_Text{:de})`. The first is nominally the most popular, but if you want to default to another you can do so by setting the `default_file_num`. ### This returns an `EmbeddingTable` object. This has 2 fields. - `embeddings` is a matrix, each column is the embedding for a word. - `vocab` is a vector of strings, ordered as per the columns of `embeddings`, such that the first string in vocab is the first column of `embeddings` etc We do not include a method for getting the index of a column from a word. This is trivial to define in code (`vocab2ind(vocab)=Dict(word=>ii for (ii,word) in enumerate(vocab))`), and you might like to be doing this in a more consistant way, e.g using [MLLabelUtils.jl](https://github.com/JuliaML/MLLabelUtils.jl), or you might like to build a much faster Dict solution on top of [InternedStrings.jl](https://github.com/JuliaString/InternedStrings.jl) ## Configuration This package is build on top of [DataDeps.jl](https://github.com/oxinabox/DataDeps.jl). To configure, e.g., where downloaded files save to, and read from (and to understand how that works), see the DataDeps.jl readme. ## Examples Load the package with ``` julia> using Embeddings ``` ### Basic example The Following script loads up the embeddings, and defines a `Dict` to map from vocabulary word to index, in the embedding matrix, and a function that used it to get an embedding vector. This is a basic way to access the embedding for a word. ``` using Embeddings const embtable = load_embeddings(Word2Vec) # or load_embeddings(FastText_Text) or ... const get_word_index = Dict(word=>ii for (ii,word) in enumerate(embtable.vocab)) function get_embedding(word) ind = get_word_index[word] emb = embtable.embeddings[:,ind] return emb end ``` This can be used like so: ``` julia> get_embedding("blue") 300-element Array{Float32,1}: 0.01540828 0.03409082 0.0882124 0.04680265 -0.03409082 ... ``` ### Loading different Embeddings load up the default word2vec embeddings: ``` julia> load_embeddings(Word2Vec) Embeddings.EmbeddingTable{Array{Float32,2},Array{String,1}}(Float32[0.0673199 0.0529562 … -0.21143 0.0136373; -0.0534466 0.0654598 … -0.0087888 -0.0742876; … ; -0.00733469 0.0108946 … -0.00405157 0.0156112; -0.00514565 -0.0470722 … -0.0341579 0.0396559], String["</s>", "in", "for", "that", "is", "on", "##", "The", "with", "said" … "#-###-PA-PARKS", "Lackmeyer", "PERVEZ", "KUNDI", "Budhadeb", "Nautsch", "Antuane", "tricorne", "VISIONPAD", "RAFFAELE"]) ``` Load up the first 100 embeddings from the default French FastText embeddings: ``` julia> load_embeddings(FastText_Text{:fr}; max_vocab_size=100) Embeddings.EmbeddingTable{Array{Float32,2},Array{String,1}}(Float32[0.0058 -0.0842 … -0.062 -0.0687; 0.0478 -0.0388 … 0.0064 -0.339; … ; 0.023 -0.0106 … -0.022 -0.1581; 0.0378 0.0579 … 0.0417 0.0714], String[",", "de", ".", "</s>", "la", "et", ":", "à", "le", "\"" … "faire", "c'", "aussi", ">", "leur", "%", "si", "entre", "qu", "€"]) ``` List all the default files for FastText in English: ``` julia> language_files(FastText_Text{:en}) # List all the possible default files for FastText in English 3-element Array{String,1}: "FastText Common Crawl/crawl-300d-2M.vec" "FastText Wiki News/wiki-news-300d-1M.vec" "FastText en Wiki Text/wiki.en.vec" ``` From the second of those default files, load the embeddings just for "red", "green", and "blue": ``` julia> load_embeddings(FastText_Text{:en}, 2; keep_words=Set(["red", "green", "blue"])) Embeddings.EmbeddingTable{Array{Float32,2},Array{String,1}}(Float32[-0.0054 0.0404 -0.0293; 0.0406 0.0621 0.0224; … ; 0.218 0.1542 0.2256; 0.1315 0.1528 0.1051], String["red", "green", "blue"]) ``` List all the default files for GloVe in English: ``` julia> language_files(GloVe{:en}) 10-element Array{String,1}: "glove.6B/glove.6B.50d.txt" "glove.6B/glove.6B.100d.txt" "glove.6B/glove.6B.200d.txt" "glove.6B/glove.6B.300d.txt" "glove.42B.300d/glove.42B.300d.txt" "glove.840B.300d/glove.840B.300d.txt" "glove.twitter.27B/glove.twitter.27B.25d.txt" "glove.twitter.27B/glove.twitter.27B.50d.txt" "glove.twitter.27B/glove.twitter.27B.100d.txt" "glove.twitter.27B/glove.twitter.27B.200d.txt" ``` Load the 200d GloVe embedding matrix for the top 10000 words trained on 6B words: ``` julia> glove = load_embeddings(GloVe{:en}, 3, max_vocab_size=10000) Embeddings.EmbeddingTable{Array{Float32,2},Array{String,1}}(Float32[-0.071549 0.17651 … 0.19765 -0.22419; 0.093459 0.29208 … -0.31357 0.039311; … ; 0.030591 -0.23189 … -0.72917 0.49645; 0.25577 -0.10814 … 0.07403 0.41581], ["the", ",", ".", "of", "to", "and", "in", "a", "\"", "'s" … "slashed", "23-year", "communique", "hawk", "necessity", "petty", "stretching", "taxpayer", "resistant", "quinn"]) julia> size(glove) (200, 10000) ``` ## Contributing Contributions, in the form of bug-reports, pull requests, additional documentation are encouraged. They can be made to the Github repository. **All contributions and communications should abide by the [Julia Community Standards](https://julialang.org/community/standards/).** The following software contributions would particularly be appreciated: - Provide Hashstrings: I have only filled in the checksums for the FastText Embeddings that I have downloaded, which is only a small fraction. If you using embeddings files for a language that doesn't have its hashstring set, then DataDeps.jl will tell you the hashstring that need to be added to the file. It is a quick and easy PR. - Provide Implementations of other loaders: If you have implementations of code to load another format (e.g. Binary FastText) it would be great if you could contribute them. I know I have a few others kicking around somewhere. Software contributions should follow the prevailing style within the code-base. If your pull request (or issues) are not getting responses within a few days do not hesitate to "bump" them, by posting a comment such as "Any update on the status of this?". Sometimes Github notifications get lost. ## Support Feel free to ask for help on the [Julia Discourse forum](https://discourse.julialang.org/), or in the `#natural-language` channel on julia-slack. (Which you can [join here](https://slackinvite.julialang.org/)). You can also raise issues in this repository to request improvements to the documentation. ## Sources [1]: [Turian, Joseph, Lev Ratinov, and Yoshua Bengio. "Word representations: a simple and general method for semi-supervised learning." Proceedings of the 48th annual meeting of the association for computational linguistics. Association for Computational Linguistics, 2010.](https://www.aclweb.org/anthology/P10-1040/) [2]: [Mikolov, Tomas, et al. "Distributed representations of words and phrases and their compositionality." Advances in neural information processing systems. 2013.](https://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf) [3]: [White, Lyndon et al. Neural Representations of Natural Language. Springer: Studies in Computational Intelligence. 2018.](https://www.springer.com/us/book/9789811300615) [4]: [White, Lyndon. On the surprising capacity of linear combinations of embeddings for natural language processing. Doctorial Thesis, The University of Western Australia. 2019](https://research-repository.uwa.edu.au/en/publications/on-the-surprising-capacity-of-linear-combinations-of-embeddings-f)
Embeddings
https://github.com/JuliaText/Embeddings.jl.git
[ "MIT" ]
0.4.6
eb8ab2e2d972100fc42a86845076e01fdc0d55b4
docs
2652
--- title: 'Embeddings.jl: easy access to pretrained word embeddings from Julia' tags: - julialang - opendata - natural language processing - NLP - word embeddings - machine learning authors: - name: Lyndon White orcid: 0000-0003-1386-1646 affiliation: 1 - name: David Ellison orcid: 0000-0002-2431-3963 affiliation: 2 affiliations: - name: The University of Western Australia index: 1 - name: None index: 2 date: 30 Aug 2018 bibliography: paper.bib --- # Summary Embeddings.jl is a tool to help users of the Julia programming language [@Julia] make use of pretrained word embeddings for natural language processing. Word embeddings are a very important feature representation in natural language processing. The use of embeddings pretrained on very large corpora can be seen as a form of transfer learning. It allows knowledge of lexical semantics derived from the distributional hypothesis-- that words occurring in similar contexts have similar meaning-- to be injected into models which may have only limited amounts of supervised, task oriented training data. Many creators of word embedding methods have generously made sets of pretrained word representations publicly available. Embeddings.jl exposes these as a standard matrix of numbers and a corresponding array of strings. This lets Julia programs use word embeddings easily, either on their own or alongside machine learning packages such as Flux [@flux]. In such deep learning packages, it is common to use word embeddings as an input layer of a LSTM (long short term memory) network or other machine learning model, where they may be kept invariant or used as initialization for fine-tuning on the supervised task. They can be summed to represent a bag of words, concatenated to form a matrix representation of a sentence or document, or used otherwise in a wide variety of natural language processing tasks. Embeddings.jl makes use of DataDeps.jl [@DataDeps], to allow for convenient automatic downloading of the data when and if required. It also uses the DataDeps.jl prompt to ensure the user of the embeddings has full knowledge of the original source of the data, and which papers to cite etc. It currently provides access to: - multiple sets of word2vec embeddings [@word2vec] for English - multiple sets of GLoVE embeddings [@glove] for English - multiple sets of FastText embeddings [@fasttext157lang; @fasttext] for several hundred languages It is anticipated that as more pretrained embeddings are made available for more languages and using newer methods, the Embeddings.jl package will be updated to support them. # References
Embeddings
https://github.com/JuliaText/Embeddings.jl.git
[ "MIT" ]
0.4.0
fc6c301b221ae65a75ac85cc7fe1fc52bfd0a338
code
102
using Documenter, RandomMatrixDistributions makedocs( sitename = "Random Matrix Distributions" )
RandomMatrixDistributions
https://github.com/damian-t-p/RandomMatrixDistributions.jl.git
[ "MIT" ]
0.4.0
fc6c301b221ae65a75ac85cc7fe1fc52bfd0a338
code
142
export eigmax function eigmax(A::Symmetric{T,<:BandedMatrix{T}}) where T <: Real maximum(KrylovKit.eigsolve(A, issymmetric=true)[1]) end
RandomMatrixDistributions
https://github.com/damian-t-p/RandomMatrixDistributions.jl.git
[ "MIT" ]
0.4.0
fc6c301b221ae65a75ac85cc7fe1fc52bfd0a338
code
1425
export Jacobi """ Jacobi Distribution If E ~ Wishart<sub>p</sub>(I, n<sub>1</sub>) and H ~ Wishart<sub>p</sub>(I, n<sub>2</sub>) are independent, then E(E + H)<sup>-1</sup> has Jacobi(n<sub>1</sub>, n<sub>2</sub>, p) distribution. If λ<sub>i</sub> are the eigenvalues of EH<sup>-1</sup> and μ<sub>i</sub> are the Jacobi eigenvalues, then μ<sub>i</sub> = λ<sub>i</sub>/(1 + λ<sub>i</sub>) and λ<sub>i</sub> = μ<sub>i</sub>/(1 - μ<sub>i</sub>) """ struct Jacobi <: ContinuousMatrixDistribution beta::Integer n1::Integer n2::Integer p::Integer end function randreduced(d::Jacobi) randtridiagonal(d) end function randtridiagonal(d::Jacobi) a = d.beta/2 * (d.n1 - d.p + 1) - 1; b = d.beta/2 * (d.n2 - d.p + 1) - 1; alphaeven = [2*rand(Beta((2*d.p - k - 2)*d.beta/4 + a + 1, (2*d.p - k - 2) * d.beta/4 + b + 1)) - 1 for k in 0:(2 * d.p-2) if k%2 == 0] alphaodd = [2*rand(Beta((2*d.p - k - 1)*d.beta/4, (2*d.p - k - 3) * d.beta/4 + a + b + 2)) - 1 for k in 0:(2 * d.p-2) if k%2 == 1] alphaevenleft = [alphaeven; 0] alphaevenright = [0; alphaeven] alphaodd = [-1; alphaodd; -1] dv = (1 .- alphaodd) .* alphaevenleft - (1 .+ alphaodd).* alphaevenright dv = dv[1:(end-1)] ev = sqrt.((1 .- alphaodd[1:(end-1)]) .* (1 .- alphaeven.^2) .* (1 .+ alphaodd[2:end])) ev = ev[1:end-1] (SymTridiagonal(dv, ev) + 2I)/4 end
RandomMatrixDistributions
https://github.com/damian-t-p/RandomMatrixDistributions.jl.git
[ "MIT" ]
0.4.0
fc6c301b221ae65a75ac85cc7fe1fc52bfd0a338
code
1080
module RandomMatrixDistributions #import RandomMatrices using Random, Distributions using LinearAlgebra using BandedMatrices using KrylovKit import LinearAlgebra: eigmax import Distributions: minimum, maximum, quantile import Distributions: ContinuousUnivariateDistribution, ContinuousMatrixDistribution, cdf, pdf, entropy, insupport, mean, median, modes, kurtosis, skewness, std, var, moment export randeigvals, randeigstat, minimum, maximum, quantile cdf, pdf, entropy, insupport, mean, median, modes, kurtosis, skewness, std, var, moment, eigmax # Generic eigenvalue sampling functions function randeigvals(d) eigvals(randreduced(d)) end function randeigstat(d, eigstat, nsims::Int) statvals = Array{Float64, 1}(undef, nsims) for i in 1:nsims statvals[i] = eigstat(randreduced(d)) end statvals end include("BandedHelpers.jl") include("SpikedWigner.jl") include("SpikedWishart.jl") include("Jacobi.jl") include("densities/MarchenkoPastur.jl") include("densities/TracyWidom.jl") include("densities/Wachter.jl") end
RandomMatrixDistributions
https://github.com/damian-t-p/RandomMatrixDistributions.jl.git
[ "MIT" ]
0.4.0
fc6c301b221ae65a75ac85cc7fe1fc52bfd0a338
code
1812
export SpikedWigner struct SpikedWigner <: ContinuousMatrixDistribution beta::Integer n::Integer spikes::Array{Float64, 1} scaled::Bool end SpikedWigner(beta, n, spikes; scaled=false) = SpikedWigner(beta, n, spikes, scaled) SpikedWigner(beta, n; scaled=false) = SpikedWigner(beta, n, [], scaled) # SAMPLERS function scaling(d::SpikedWigner) d.scaled ? 1/sqrt(d.n) : 1 end function randreduced(d::SpikedWigner) if length(d.spikes) <= 1 return randtridiagonal(d) else return randbanded(d) end end function randtridiagonal(d::SpikedWigner) # diagonal and superdiagonal of B dv = rand(Normal(0, sqrt(2)), d.n)/sqrt(d.beta) ev = [rand(Chi(d.beta*(d.n-k))) for k in 1:(d.n-1)]/sqrt(d.beta) if length(d.spikes) == 1 dv[1] += d.spikes[1] * sqrt(d.n) end SymTridiagonal(dv, ev) * scaling(d) end function randbanded(d::SpikedWigner) @assert d.beta in [1, 2] r = length(d.spikes) if d.beta == 1 U = BandedMatrix{Float64}(undef, (d.n, d.n), (r, r)) elseif d.beta == 2 U = BandedMatrix{Complex{Float64}}(undef, (d.n, d.n), (r, r)) end dv = randn(d.n) * sqrt(2/d.beta) @. dv[1:r] += d.spikes * sqrt(d.n) U[band(0)] .= dv for k = 1:(r-1) if d.beta == 1 ev = randn(d.n - k) elseif d.beta == 2 ev = (randn(d.n - k) + im * randn(d.n-k))/sqrt(2) end U[band(k)] .= ev end U[band(r)] .= [rand(Chi(d.beta*(d.n - k)))/sqrt(d.beta) for k in r:(d.n-1)] if d.beta == 1 Symmetric(U) * scaling(d) elseif d.beta == 2 # The conjugate transpose is done like this rather than with ' because # U'U is not automatically a banded matrix Hermitian(U) * scaling(d) end end
RandomMatrixDistributions
https://github.com/damian-t-p/RandomMatrixDistributions.jl.git