licenses
sequencelengths
1
3
version
stringclasses
677 values
tree_hash
stringlengths
40
40
path
stringclasses
1 value
type
stringclasses
2 values
size
stringlengths
2
8
text
stringlengths
25
67.1M
package_name
stringlengths
2
41
repo
stringlengths
33
86
[ "MIT" ]
0.7.5
104b6a1a358da9b1348ab7cd66ad685ecaca13d4
code
19985
################################################################################ # Utils ################################################################################\ joint_types = [ :Fixed, :Prismatic, :Planar, :FixedOrientation, :Revolute, :Cylindrical, :PlanarAxis, :FreeRevolute, :Orbital, :PrismaticOrbital, :PlanarOrbital, :FreeOrbital, :Spherical, :CylindricalFree, :PlanarFree ] function force_to_jacobian_forward_diff(f,x) if typeof(f(x)) <: AbstractVector return ForwardDiff.jacobian(f,x) else return ForwardDiff.jacobian(x -> [f(x)],x) end end ################################################################################ # Test get and set position and velocities ################################################################################ @testset "Get and set position and velocities" begin @testset "Maximal coordinates" begin mech = DojoEnvironments.get_mechanism(:raiberthopper) timestep= mech.timestep joint1 = mech.joints[1] joint2 = mech.joints[2] pbody = mech.bodies[1] cbody = mech.bodies[2] tra2 = joint2.translational rot2 = joint2.rotational x = srand(1) Δx = Dojo.zerodimstaticadjoint(Dojo.nullspace_mask(tra2)) * x Δq = rand(QuatRotation).q Dojo.set_maximal_configurations!(pbody, cbody; parent_vertex=tra2.vertices[1], child_vertex=tra2.vertices[2], Δx=Δx, Δq=Δq) @test norm(Dojo.minimal_coordinates(tra2, pbody, cbody) - x[1], Inf) < 1.0e-8 v = srand(1) Δv = Dojo.zerodimstaticadjoint(Dojo.nullspace_mask(tra2)) * v Δω = rand(3) Dojo.set_maximal_velocities!(pbody, cbody; parent_vertex=tra2.vertices[1], child_vertex=tra2.vertices[2], Δv=Δv, Δω=Δω) @test norm(Dojo.minimal_velocities(tra2, pbody, cbody, timestep) - v[1], Inf) < 1.0e-8 end @testset "Minimal coordinates" begin for joint_type in joint_types mech = DojoEnvironments.get_snake(; num_bodies=10, joint_type) timestep = mech.timestep for joint in mech.joints joint.rotational.orientation_offset = rand(QuatRotation).q end joint0 = mech.joints[1] tra0 = joint0.translational rot0 = joint0.rotational pnodes0 = [mech.origin; mech.bodies[1:end-1]] cnodes0 = mech.bodies Random.seed!(100) Δθ = rand(input_dimension(rot0)) Δx = rand(input_dimension(tra0)) Δω = rand(input_dimension(rot0)) Δv = rand(input_dimension(tra0)) for i = 1:10 Dojo.set_minimal_coordinates!(rot0, pnodes0[i], cnodes0[i], timestep, Δθ=Δθ) Δθ0 = Dojo.minimal_coordinates(rot0, pnodes0[i], cnodes0[i]) @test norm(Δθ0 - Δθ, Inf) < 1.0e-8 Dojo.set_minimal_coordinates!(tra0, pnodes0[i], cnodes0[i], timestep, Δx=Δx) Δx0 = Dojo.minimal_coordinates(tra0, pnodes0[i], cnodes0[i]) @test norm(Δx0 - Δx, Inf) < 1.0e-8 Dojo.set_minimal_velocities!(joint0, pnodes0[i], cnodes0[i], timestep, Δv=Δv, Δω=Δω) Δω0 = Dojo.minimal_velocities(rot0, pnodes0[i], cnodes0[i], timestep) Δv0 = Dojo.minimal_velocities(tra0, pnodes0[i], cnodes0[i], timestep) @test norm(Δω0 - Δω, Inf) < 1.0e-8 @test norm(Δv0 - Δv, Inf) < 1.0e-8 end end end end ################################################################################ # Test min -> max -> min ################################################################################ @testset "Minimal to maximal to minimal" begin # raiberthopper @testset "Raibert hopper" begin mech = DojoEnvironments.get_mechanism(:raiberthopper); Random.seed!(100) nx = Dojo.minimal_dimension(mech) x0 = rand(nx) z0 = Dojo.minimal_to_maximal(mech, x0) x1 = Dojo.maximal_to_minimal(mech, z0) @test norm(x0[1:3] - x1[1:3], Inf) < 1.0e-8 @test norm(x0[4:6] - x1[4:6]) < 1.0e-8 @test norm(x0[7:9] - x1[7:9], Inf) < 1.0e-8 @test norm(x0[11:12] - x1[11:12], Inf) < 1.0e-8 @test norm(x0[13] - x1[13], Inf) < 1.0e-8 @test norm(x0[14] - x1[14], Inf) < 1.0e-8 end # box @testset "Box" begin mech = DojoEnvironments.get_mechanism(:block) Random.seed!(100) nx = Dojo.minimal_dimension(mech) x0 = rand(nx) z0 = Dojo.minimal_to_maximal(mech, x0) x1 = Dojo.maximal_to_minimal(mech, z0) @test norm(x0 - x1, Inf) < 1.0e-8 end # pendulum @testset "Pendulum" begin mech = DojoEnvironments.get_mechanism(:pendulum) Random.seed!(100) nx = Dojo.minimal_dimension(mech) x0 = rand(nx) z0 = Dojo.minimal_to_maximal(mech, x0) x1 = Dojo.maximal_to_minimal(mech, z0) @test norm(x0 - x1, Inf) < 1.0e-8 end # halfcheetah @testset "Halfcheetah" begin mech = DojoEnvironments.get_mechanism(:halfcheetah) Random.seed!(100) nx = Dojo.minimal_dimension(mech) x0 = rand(nx) z0 = Dojo.minimal_to_maximal(mech, x0) x1 = Dojo.maximal_to_minimal(mech, z0) @test norm(x0 - x1, Inf) < 1.0e-8 end # nslider @testset "Nslider" begin Nb0 = 5 mech = DojoEnvironments.get_mechanism(:nslider; num_bodies=Nb0) Random.seed!(100) nx = Dojo.minimal_dimension(mech) x0 = rand(nx) z0 = Dojo.minimal_to_maximal(mech, x0) x1 = Dojo.maximal_to_minimal(mech, z0) @test norm(x0 - x1, Inf) < 1.0e-8 end # npendulum @testset "Npendulum" begin for joint_type in joint_types # @show joint_type Nb0 = 5 mech = DojoEnvironments.get_mechanism(:npendulum; num_bodies=Nb0, rest_joint_type=joint_type) Random.seed!(100) nx = Dojo.minimal_dimension(mech) x0 = rand(nx) z0 = Dojo.minimal_to_maximal(mech, x0) x1 = Dojo.maximal_to_minimal(mech, z0) @test norm(x0 - x1, Inf) < 1.0e-8 end end # snake @testset "Snake" begin for joint_type in joint_types # @show joint_type Nb0 = 5 mech = DojoEnvironments.get_mechanism(:snake; num_bodies=Nb0, joint_type=joint_type) mech = DojoEnvironments.get_mechanism(:snake; num_bodies=Nb0, joint_type=:Fixed) Random.seed!(100) nx = Dojo.minimal_dimension(mech) x0 = rand(nx) z0 = Dojo.minimal_to_maximal(mech, x0) x1 = Dojo.maximal_to_minimal(mech, z0) @test norm(x0 - x1, Inf) < 1.0e-8 end end # twister @testset "Twister" begin for joint_type in joint_types # @show joint_type Nb0 = 5 mech = DojoEnvironments.get_mechanism(:twister; num_bodies=Nb0, joint_type=joint_type) Random.seed!(100) nx = Dojo.minimal_dimension(mech) x0 = rand(nx) z0 = Dojo.minimal_to_maximal(mech, x0) x1 = Dojo.maximal_to_minimal(mech, z0) @test norm(x0 - x1, Inf) < 1.0e-8 end end # humanoid @testset "Humanoid" begin mech = DojoEnvironments.get_mechanism(:humanoid) Random.seed!(100) nx = Dojo.minimal_dimension(mech) x0 = rand(nx) z0 = Dojo.minimal_to_maximal(mech, x0) x1 = Dojo.maximal_to_minimal(mech, z0) @test norm(x0 - x1, Inf) < 1.0e-8 end # quadruped @testset "Quadruped" begin mech = DojoEnvironments.get_mechanism(:quadruped) Random.seed!(100) nx = Dojo.minimal_dimension(mech) x0 = rand(nx) z0 = Dojo.minimal_to_maximal(mech, x0) x1 = Dojo.maximal_to_minimal(mech, z0) @test norm(x0 - x1, Inf) < 1.0e-8 end # atlas @testset "Atlas" begin mech = DojoEnvironments.get_mechanism(:atlas; urdf=:atlas_simple, contact_feet=true, parse_dampers=false) Random.seed!(100) nx = Dojo.minimal_dimension(mech) x0 = rand(nx) z0 = Dojo.minimal_to_maximal(mech, x0) x1 = Dojo.maximal_to_minimal(mech, z0) @test norm(x0 - x1, Inf) < 1.0e-8 end end ################################################################################ #Test minimal coordinates and velocities Jacobians ################################################################################ @testset "Jacobians" begin @testset "Minimal velocity Jacobian" begin mech = get_mechanism(:humanoid) timestep= mech.timestep for jointcon in mech.joints for joint in [jointcon.translational, jointcon.rotational] # generate random configuration in minimal space x = rand(minimal_dimension(mech)) # convert to maximal z = Dojo.minimal_to_maximal(mech, x) # extract body states Ne = Dojo.length(mech.joints) if Dojo.get_body(mech, jointcon.parent_id).name == :origin zp = [mech.origin.state.x2; mech.origin.state.v15; Dojo.vector(mech.origin.state.q2); mech.origin.state.ω15] else zp = z[(jointcon.parent_id - Ne - 1) * 13 .+ (1:13)] end zc = z[(jointcon.child_id - Ne - 1) * 13 .+ (1:13)] xa = SVector{3}(zp[1:3]) va = SVector{3}(zp[3 .+ (1:3)]) qa = Quaternion(zp[6 .+ (1:4)]...) ωa = SVector{3}(zp[10 .+ (1:3)]) xb = SVector{3}(zc[1:3]) vb = SVector{3}(zc[3 .+ (1:3)]) qb = Quaternion(zc[6 .+ (1:4)]...) ωb = SVector{3}(zc[10 .+ (1:3)]) Dojo.minimal_velocities(joint, xa, va, qa, ωa, xb, vb, qb, ωb, timestep) # Jacobians ∇0 = Dojo.minimal_velocities_jacobian_configuration(:parent, joint, xa, va, qa, ωa, xb, vb, qb, ωb, timestep) ∇1 = force_to_jacobian_forward_diff( xq -> Dojo.minimal_velocities(joint, xq[Dojo.SUnitRange(1,3)], va, Quaternion(xq[4:7]...), ωa, xb, vb, qb, ωb, timestep), [xa; Dojo.vector(qa)]) * cat(I(3), Dojo.LVᵀmat(qa), dims=(1,2)) @test norm(∇0 - ∇1, Inf) < 1.0e-8 ∇0 = Dojo.minimal_velocities_jacobian_configuration(:child, joint, xa, va, qa, ωa, xb, vb, qb, ωb, timestep) ∇1 = force_to_jacobian_forward_diff( xq -> Dojo.minimal_velocities(joint, xa, va, qa, ωa, xq[Dojo.SUnitRange(1,3)], vb, Quaternion(xq[4:7]...), ωb, timestep), [xb; Dojo.vector(qb)]) * cat(I(3), Dojo.LVᵀmat(qb), dims=(1,2)) @test norm(∇0 - ∇1, Inf) < 1.0e-8 ∇0 = Dojo.minimal_velocities_jacobian_velocity(:parent, joint, xa, va, qa, ωa, xb, vb, qb, ωb, timestep) ∇1 = force_to_jacobian_forward_diff( vω -> Dojo.minimal_velocities(joint, xa, vω[Dojo.SUnitRange(1,3)], qa, vω[Dojo.SUnitRange(4,6)], xb, vb, qb, ωb, timestep), [va; ωa]) @test norm(∇0 - ∇1, Inf) < 1.0e-8 ∇0 = Dojo.minimal_velocities_jacobian_velocity(:child, joint, xa, va, qa, ωa, xb, vb, qb, ωb, timestep) ∇1 = force_to_jacobian_forward_diff( vω -> Dojo.minimal_velocities(joint, xa, va, qa, ωa, xb, vω[Dojo.SUnitRange(1,3)], qb, vω[Dojo.SUnitRange(4,6)], timestep), [vb; ωb]) @test norm(∇0 - ∇1, Inf) < 1.0e-8 end end end @testset "Minimal coordinate Jacobian" begin mech = get_mechanism(:humanoid) for jointcon in mech.joints for joint in [jointcon.translational, jointcon.rotational] # generate random configuration in minimal space x = rand(Dojo.minimal_dimension(mech)) # convert to maximal z = Dojo.minimal_to_maximal(mech, x) # extract body states Ne = Dojo.length(mech.joints) if Dojo.get_body(mech, jointcon.parent_id).name == :origin zp = [mech.origin.state.x2; mech.origin.state.v15; Dojo.vector(mech.origin.state.q2); mech.origin.state.ω15] else zp = z[(jointcon.parent_id - Ne - 1) * 13 .+ (1:13)] end zc = z[(jointcon.child_id - Ne - 1) * 13 .+ (1:13)] xa = SVector{3}(zp[1:3]) # va = SVector{3}(zp[3 .+ (1:3)]) qa = Quaternion(zp[6 .+ (1:4)]...) # ωa = SVector{3}(zp[10 .+ (1:3)]) xb = SVector{3}(zc[1:3]) # vb = SVector{3}(zc[3 .+ (1:3)]) qb = Quaternion(zc[6 .+ (1:4)]...) # ωb = SVector{3}(zc[10 .+ (1:3)]) Dojo.minimal_coordinates(joint, xa, qa, xb, qb) ∇0 = Dojo.minimal_coordinates_jacobian_configuration(:parent, joint, xa, qa, xb, qb) ∇1 = force_to_jacobian_forward_diff( xq -> Dojo.minimal_coordinates(joint, xq[1:3], Quaternion(xq[4:7]...), xb, qb), [xa; Dojo.vector(qa)]) * cat(I(3), Dojo.LVᵀmat(qa), dims=(1,2)) @test norm(∇0 - ∇1, Inf) < 1.0e-8 ∇0 = Dojo.minimal_coordinates_jacobian_configuration(:child, joint, xa, qa, xb, qb) ∇1 = force_to_jacobian_forward_diff( xq -> Dojo.minimal_coordinates(joint, xa, qa, xq[1:3], Quaternion(xq[4:7]...)), [xb; Dojo.vector(qb)]) * cat(I(3), Dojo.LVᵀmat(qb), dims=(1,2)) @test norm(∇0 - ∇1, Inf) < 1.0e-8 end end end @testset "Minimal to maximal Jacobian" begin function maximal_to_minimal_jacobian_fd(mechanism::Mechanism, z) J = ForwardDiff.jacobian(y -> Dojo.maximal_to_minimal(mechanism, y), z) G = attitude_jacobian(z, length(mechanism.bodies)) return J * G end # TODO switch to ForwardDiff once it works function maximal_to_minimal_jacobian_fd_finite_diff(mechanism::Mechanism, z) J = FiniteDiff.finite_difference_jacobian(y -> Dojo.maximal_to_minimal(mechanism, y), z) G = attitude_jacobian(z, length(mechanism.bodies)) return J * G end # TODO switch to ForwardDiff once it works function minimal_to_maximal_jacobian_fd(mechanism::Mechanism, x) J = FiniteDiff.finite_difference_jacobian(y -> Dojo.minimal_to_maximal(mechanism, y), x) z = minimal_to_maximal(mechanism, x) G = attitude_jacobian(z, length(mechanism.bodies)) return G' * J end function ctrl!(mechanism, k) Dojo.set_input!(mechanism, 0.1 * srand(Dojo.input_dimension(mechanism))) end # n-pendulum mechanism = DojoEnvironments.get_mechanism(:npendulum; timestep=0.1, gravity=-9.81, num_bodies=1) base_angle = 0.3 * π Dojo.initialize!(mechanism, :npendulum; base_angle) storage = Dojo.simulate!(mechanism, 1.0; record=true, verbose=false) x = Dojo.get_minimal_state(mechanism) z = Dojo.get_maximal_state(mechanism) u = zeros(Dojo.input_dimension(mechanism)) @test norm(minimal_to_maximal(mechanism, x) - z) < 1.0e-5 @test norm(Dojo.maximal_to_minimal(mechanism, z) - x) < 1.0e-8 M_fd = maximal_to_minimal_jacobian_fd(mechanism, z) M_a = Dojo.maximal_to_minimal_jacobian(mechanism, z) @test size(M_fd) == size(M_a) @test norm(M_fd - M_a, Inf) < 1.0e-8 N_fd = minimal_to_maximal_jacobian_fd(mechanism, Dojo.maximal_to_minimal(mechanism, z)) N_a = Dojo.minimal_to_maximal_jacobian(mechanism, Dojo.maximal_to_minimal(mechanism, z)) @test size(N_fd) == size(N_a) @test norm(N_fd - N_a, Inf) < 1.0e-5 @test norm(diag(M_fd * N_fd) .- 1.0, Inf) < 1.0e-5 @test norm(diag(M_a * N_a) .- 1.0, Inf) < 1.0e-8 # n-pendulum mechanism = DojoEnvironments.get_mechanism(:npendulum; timestep=0.1, gravity=-9.81, num_bodies=2) base_angle = 0.3 * π Dojo.initialize!(mechanism, :npendulum; base_angle) storage = Dojo.simulate!(mechanism, 1.0; record=true, verbose=false) x = Dojo.get_minimal_state(mechanism) z = Dojo.get_maximal_state(mechanism) u = zeros(Dojo.input_dimension(mechanism)) @test norm(minimal_to_maximal(mechanism, x) - z) < 1.0e-5 @test norm(Dojo.maximal_to_minimal(mechanism, z) - x) < 1.0e-8 M_fd = maximal_to_minimal_jacobian_fd(mechanism, z) M_a = Dojo.maximal_to_minimal_jacobian(mechanism, z) @test size(M_fd) == size(M_a) @test norm(M_fd - M_a, Inf) < 1.0e-8 N_fd = minimal_to_maximal_jacobian_fd(mechanism, Dojo.maximal_to_minimal(mechanism, z)) N_a = Dojo.minimal_to_maximal_jacobian(mechanism, Dojo.maximal_to_minimal(mechanism, z)) @test size(N_fd) == size(N_a) @test norm(N_fd - N_a, Inf) < 1.0e-5 @test norm(diag(M_fd * N_fd) .- 1.0, Inf) < 1.0e-5 @test norm(diag(M_a * N_a) .- 1.0, Inf) < 1.0e-5 # sphere mechanism = DojoEnvironments.get_mechanism(:sphere; timestep=0.01, gravity=-9.81) Dojo.initialize!(mechanism, :sphere) storage = Dojo.simulate!(mechanism, 1.0; record=true, verbose=false) z = Dojo.get_maximal_state(mechanism) x = Dojo.get_minimal_state(mechanism) u = zeros(Dojo.input_dimension(mechanism)) @test norm(minimal_to_maximal(mechanism, x) - z) < 1.0e-8 @test norm(Dojo.maximal_to_minimal(mechanism, z) - x) < 1.0e-8 M_fd = maximal_to_minimal_jacobian_fd_finite_diff(mechanism, z) M_a = Dojo.maximal_to_minimal_jacobian(mechanism, z) @test size(M_fd) == size(M_a) @test norm(M_fd - M_a, Inf) < 1.0e-5 N_fd = minimal_to_maximal_jacobian_fd(mechanism, Dojo.maximal_to_minimal(mechanism, z)) N_a = Dojo.minimal_to_maximal_jacobian(mechanism, Dojo.maximal_to_minimal(mechanism, z)) @test size(N_fd) == size(N_a) @test norm(N_fd - N_a, Inf) < 1.0e-5 @test norm(diag(M_fd * N_fd) .- 1.0, Inf) < 1.0e-5 @test norm(diag(M_a * N_a) .- 1.0, Inf) < 1.0e-8 # half cheetah mechanism = DojoEnvironments.get_mechanism(:halfcheetah; timestep=0.01, gravity=-9.81) Dojo.initialize!(mechanism, :halfcheetah) storage = Dojo.simulate!(mechanism, 1.0, ctrl!; record=true, verbose=false) z = Dojo.get_maximal_state(mechanism) x = Dojo.get_minimal_state(mechanism) u = zeros(Dojo.input_dimension(mechanism)) @test norm(minimal_to_maximal(mechanism, x) - z) < 1.0e-5 @test norm(Dojo.maximal_to_minimal(mechanism, z) - x) < 1.0e-8 M_fd = maximal_to_minimal_jacobian_fd(mechanism, z) M_a = Dojo.maximal_to_minimal_jacobian(mechanism, z) @test size(M_fd) == size(M_a) @test norm(M_fd - M_a, Inf) < 1.0e-8 N_fd = minimal_to_maximal_jacobian_fd(mechanism, Dojo.maximal_to_minimal(mechanism, z)) N_a = Dojo.minimal_to_maximal_jacobian(mechanism, Dojo.maximal_to_minimal(mechanism, z)) @test size(N_fd) == size(N_a) # @test norm(N_fd - N_a, Inf) < 2.0e-5 # TODO check tolerance # TODO FAILS @test norm(diag(M_fd * N_fd) .- 1.0, Inf) < 1.0e-5 @test norm(diag(M_a * N_a) .- 1.0, Inf) < 1.0e-5 @test norm(diag(M_a * N_fd) .- 1.0, Inf) < 1.0e-5 # atlas mechanism = DojoEnvironments.get_mechanism(:atlas; timestep=0.01, gravity=-9.81, friction_coefficient=0.5, parse_springs=false, parse_dampers=false, dampers=100.0, springs=1.0, contact_feet=true) Dojo.initialize!(mechanism, :atlas) storage = Dojo.simulate!(mechanism, 1.0, ctrl!; record=true, verbose=false) z = Dojo.get_maximal_state(mechanism) x = Dojo.get_minimal_state(mechanism) u = zeros(Dojo.input_dimension(mechanism)) @test norm(minimal_to_maximal(mechanism, x) - z) < 1.0e-5 @test norm(Dojo.maximal_to_minimal(mechanism, z) - x) < 1.0e-8 M_fd = maximal_to_minimal_jacobian_fd(mechanism, z) M_a = Dojo.maximal_to_minimal_jacobian(mechanism, z) @test size(M_fd) == size(M_a) @test norm(M_fd - M_a, Inf) < 1.0e-8 N_fd = minimal_to_maximal_jacobian_fd(mechanism, Dojo.maximal_to_minimal(mechanism, z)) N_a = Dojo.minimal_to_maximal_jacobian(mechanism, Dojo.maximal_to_minimal(mechanism, z)) @test size(N_fd) == size(N_a) # @test norm(N_fd - N_a, Inf) < 5.0e-5 # TODO FAILS @test norm(diag(M_fd * N_fd) .- 1.0, Inf) < 1.0e-5 @test norm(diag(M_a * N_a) .- 1.0, Inf) < 1.0e-5 end @testset "Maximal to minimal Jacobian" begin function maximal_to_minimal_jacobian_fd_finite_diff(mechanism::Mechanism, z) J = FiniteDiff.finite_difference_jacobian(y -> maximal_to_minimal(mechanism, y), z) G = attitude_jacobian(z, length(mechanism.bodies)) return J * G end function maximal_to_minimal_jacobian_fd(mechanism::Mechanism, z) J = ForwardDiff.jacobian(y -> maximal_to_minimal(mechanism, y), z) G = attitude_jacobian(z, length(mechanism.bodies)) return J * G end # 5-link pendulum mech = DojoEnvironments.get_mechanism(:npendulum; timestep=0.01, gravity=-9.81, num_bodies=5) Random.seed!(100) base_angle = 0.3π Dojo.initialize!(mech, :npendulum; base_angle) storage = Dojo.simulate!(mech, 1.0; record=true, verbose=false) Dojo.maximal_dimension(mech) == 13 Dojo.minimal_dimension(mech) == 12 z = Dojo.get_maximal_state(mech) attjac = Dojo.attitude_jacobian(z, length(mech.bodies)) M_fd = maximal_to_minimal_jacobian_fd(mech, z) M_a = Dojo.maximal_to_minimal_jacobian(mech, z) @test size(M_fd) == size(M_a) @test norm(M_fd - M_a, Inf) < 1.0e-8 # # sphere mech = DojoEnvironments.get_mechanism(:sphere; timestep=0.01, gravity=-9.81) Dojo.initialize!(mech, :sphere) storage = Dojo.simulate!(mech, 1.0; record=true, verbose=false) Dojo.maximal_dimension(mech) Dojo.minimal_dimension(mech) z = Dojo.get_maximal_state(mech) attjac = Dojo.attitude_jacobian(z, length(mech.bodies)) M_fd = maximal_to_minimal_jacobian_fd_finite_diff(mech, z) M_a = Dojo.maximal_to_minimal_jacobian(mech, z) @test size(M_fd) == size(M_a) @test norm(M_fd - M_a, Inf) < 2.0e-6 # TODO check tolerance end end
Dojo
https://github.com/dojo-sim/Dojo.jl.git
[ "MIT" ]
0.7.5
104b6a1a358da9b1348ab7cd66ad685ecaca13d4
code
11894
# Controller function controller!(mechanism, k; U=0.5, timestep=0.01) for joint in mechanism.joints nu = input_dimension(joint) u = (nu <= 5 && k ∈ (1:100)) * U * sones(nu) set_input!(joint, u) end return end nocontrol!(mechanism, k) = controller!(mechanism, k, U=0.0) # Parameters ϵ0 = 1e-12 timestep0 = 0.01 gravity0= 0.0 joint_types = [ :Fixed, :Prismatic, :Planar, :FixedOrientation, :Revolute, :Cylindrical, :PlanarAxis, :FreeRevolute, :Orbital, :PrismaticOrbital, :PlanarOrbital, :FreeOrbital, :Spherical, :CylindricalFree, :PlanarFree ] ################################################################################ # Box ################################################################################ # single body # initial linear and angular velocity # no gravity # no spring and damper # no control ################################################################################ @testset "Box" begin mech = get_mechanism(:block; timestep=timestep0, gravity=gravity0, contact=false) v0 = [1,2,3.0] ω0 = [10,10,10.0] initialize!(mech, :block, velocity=v0, angular_velocity=ω0) storage = simulate!(mech, 5.0, nocontrol!; record=true, verbose=false, opts=SolverOptions(rtol=ϵ0, btol=ϵ0)) # visualize(mech, storage, vis = vis) m0 = momentum(mech, storage)[5:end] mlin0 = [Vector(m - m0[1])[1:3] for m in m0] mang0= [Vector(m - m0[1])[4:6] for m in m0] # plot([(i-1) * timestep0 for i in 1:length(m0)], hcat(mlin0...)') # plot([(i-1) * timestep0 for i in 1:length(m0)], hcat(mang0...)') @test all(norm.(mlin0, Inf) .< 1.0e-8) @test all(norm.(mang0, Inf) .< 1.0e-8) end ################################################################################ # SINGLE PENDULUM ################################################################################ # single body # initial angular velocity # no gravity # no spring and damper # no control ################################################################################ @testset "Pendulum" begin mech = get_mechanism(:pendulum; timestep=timestep0, gravity=gravity0) ϕ0 = 0.7 ω0 = 5.0 initialize!(mech, :pendulum, angle=ϕ0, angular_velocity=ω0) storage = simulate!(mech, 5.0, nocontrol!; record=true, verbose=false, opts=SolverOptions(rtol=ϵ0, btol=ϵ0)) # visualize(mech, storage, vis = vis) m0 = momentum(mech, storage)[10:end] mlin0 = [Vector(m - m0[1])[1:3] for m in m0] mang0= [Vector(m - m0[1])[4:6] for m in m0] # plot([(i-1) * timestep0 for i in 1:length(m0)], hcat(mlin0...)') # plot([(i-1) * timestep0 for i in 1:length(m0)], hcat(mang0...)') # @test all(norm.(mlin0, Inf) .< 1e-11) @test all(norm.(mang0, Inf) .< 1.0e-8) end ################################################################################ # HUMANOID ################################################################################ # multiple bodies # initial linear and angular velocity # no gravity # with spring and damper # with control ################################################################################ @testset "Humanoid" begin springs0 = 1.0 dampers0 = 1.0 mech = get_mechanism(:humanoid; timestep=timestep0, gravity=gravity0, parse_springs=false, parse_dampers=false, springs=springs0, dampers=dampers0, contact_feet=false) initialize!(mech, :humanoid) bodies = mech.bodies set_maximal_velocities!.(bodies, ω=1e-0rand(3)) storage = simulate!(mech, 10.0, controller!; record=true, verbose=false, opts=SolverOptions(rtol=ϵ0, btol=ϵ0)) # visualize(mech, storage, vis = vis) m0 = momentum(mech, storage)[1:end] mlin0 = [Vector(m - m0[1])[1:3] for m in m0] mang0= [Vector(m - m0[1])[4:6] for m in m0] # plot([(i-1) * timestep0 for i in 1:length(m0)], hcat(mlin0...)') # plot([(i-1) * timestep0 for i in 1:length(m0)], hcat(mang0...)') @test all(norm.(mlin0, Inf) .< 1.0e-8) @test all(norm.(mang0, Inf) .< 1.0e-8) end ################################################################################ # ATLAS ################################################################################ # multiple bodies # initial linear and angular velocity # no gravity # with spring and damper # with control ################################################################################ @testset "Atlas" begin springs0 = 10.0 dampers0 = 1.0 mech = get_mechanism(:atlas; timestep=timestep0, gravity=gravity0, parse_springs=false, parse_dampers=false, springs=springs0, dampers=dampers0, contact_feet=false, contact_body=false) initialize!(mech, :atlas) storage = simulate!(mech, 5.0, controller!; record=true, verbose=false, opts=SolverOptions(rtol=ϵ0, btol=ϵ0)) # visualize(mech, storage, vis = vis) m0 = momentum(mech, storage)[1:end] mlin0 = [Vector(m - m0[1])[1:3] for m in m0] mang0= [Vector(m - m0[1])[4:6] for m in m0] # plot([(i-1) * timestep0 for i in 1:length(m0)], hcat(mlin0...)') # plot([(i-1) * timestep0 for i in 1:length(m0)], hcat(mang0...)') @test all(norm.(mlin0, Inf) .< 1.0e-8) @test all(norm.(mang0, Inf) .< 1.0e-8) end ################################################################################ # QUADRUPED ################################################################################ # multiple bodies # initial linear and angular velocity # no gravity # with spring and damper # with control ################################################################################ @testset "Quadruped" begin springs0 = 0.3 dampers0 = 0.1 mech = get_mechanism(:quadruped; timestep=timestep0, gravity=gravity0, parse_springs=false, parse_dampers=false, springs=springs0, dampers=dampers0, contact_feet=false, contact_body=false) initialize!(mech, :quadruped) storage = simulate!(mech, 5.0, controller!; record=true, verbose=false, opts=SolverOptions(rtol=ϵ0, btol=ϵ0)) # visualize(mech, storage, vis = vis) m0 = momentum(mech, storage)[1:end] mlin0 = [Vector(m - m0[1])[1:3] for m in m0] mang0= [Vector(m - m0[1])[4:6] for m in m0] # plot([(i-1) * timestep0 for i in 1:length(m0)], hcat(mlin0...)') # plot([(i-1) * timestep0 for i in 1:length(m0)], hcat(mang0...)') @test all(norm.(mlin0, Inf) .< 1.0e-8) @test all(norm.(mang0, Inf) .< 1.0e-8) end ################################################################################ # 5-lINK SNAKE ################################################################################ # multiple bodies # initial linear and angular velocity # no gravity # with spring and damper # with control ################################################################################ @testset "Snake" begin Nb0 = 5 springs0 = 1.0 * 4e0 dampers0 = 1.0 * 2e+1 mech = get_mechanism(:snake; timestep=timestep0, gravity=gravity0, num_bodies=Nb0, springs=springs0, dampers=dampers0, joint_type=:Revolute, contact=false, radius=0.05); v0 = 100.0 * [1, 2, 3] * timestep0 ω0 = 100.0 * [1, 2, 3.0] * timestep0 q10 = Dojo.RotX(0.5*π) initialize!(mech, :snake, base_orientation=q10, base_linear_velocity=v0, base_angular_velocity=ω0) storage = simulate!(mech, 1.50; record=true, verbose=false, opts=SolverOptions(rtol=ϵ0, btol=ϵ0)) # visualize(mech, storage, vis = vis) m0 = momentum(mech, storage)[5:end] mlin0 = [Vector(m - m0[1])[1:3] for m in m0] mang0= [Vector(m - m0[1])[4:6] for m in m0] # plot([(i-1) * timestep0 for i in 1:length(m0)], hcat(mlin0...)') # plot([(i-1) * timestep0 for i in 1:length(m0)], hcat(mang0...)') @test all(norm.(mlin0, Inf) .< 1.0e-8) @test all(norm.(mang0, Inf) .< 1.0e-8) for joint_type in joint_types mech = get_mechanism(:snake; timestep=timestep0, gravity=gravity0, num_bodies=Nb0, springs=springs0, dampers=dampers0, joint_type=joint_type, contact=false, radius=0.05) v0 = 10.0 * [1, 2, 3] * timestep0 ω0 = 10.0 * [1, 2, 3.0] * timestep0 q10 = Dojo.RotX(0.5 * π) initialize!(mech, :snake, base_orientation=q10, base_linear_velocity=v0, base_angular_velocity=ω0) storage = simulate!(mech, 1.50, controller!; record=true, verbose=false, opts=SolverOptions(rtol=ϵ0, btol=ϵ0)) # visualize(mech, storage, vis = vis) m0 = momentum(mech, storage)[5:end] # @show mlin0 = [Vector(m - m0[1])[1:3] for m in m0] # @show mang0= [Vector(m - m0[1])[4:6] for m in m0] # plot([(i-1) * timestep0 for i in 1:length(m0)], hcat(mlin0...)') # plt = plot() # plot!([(i-1) * timestep0 for i in 1:length(m0)], hcat(mang0...)') # display(plt) @test all(norm.(mlin0, Inf) .< 1.0e-8) @test all(norm.(mang0, Inf) .< 1.0e-8) end end ################################################################################ # 5-lINK TWISTER ################################################################################ # multiple bodies # initial linear and angular velocity # no gravity # with spring and damper ################################################################################ @testset "Twister" begin Nb0 = 5 springs0 = 1.0 * 4e0 dampers0 = 1.0 * 2e+1 mech = get_mechanism(:twister; timestep=timestep0, gravity=gravity0, num_bodies=Nb0, springs=springs0, dampers=dampers0, joint_type=:FixedOrientation, contact=false, radius=0.05); v0 = 100.0 * [1, 2, 3] * timestep0 ω0 = 100.0 * [1, 2, 3.0] * timestep0 q10 = Dojo.RotX(0.5*π) initialize!(mech, :twister, base_orientation=q10, base_linear_velocity=v0, base_angular_velocity=ω0) storage = simulate!(mech, 2.5; record=true, verbose=false, opts=SolverOptions(rtol=ϵ0, btol=ϵ0)) # visualize(mech, storage, vis = vis) m0 = momentum(mech, storage)[5:end] mlin0 = [Vector(m - m0[1])[1:3] for m in m0] mang0= [Vector(m - m0[1])[4:6] for m in m0] # plot([(i-1) * timestep0 for i in 1:length(m0)], hcat(mlin0...)') # plot([(i-1) * timestep0 for i in 1:length(m0)], hcat(mang0...)') @test all(norm.(mlin0, Inf) .< 1.0e-8) @test all(norm.(mang0, Inf) .< 1.0e-8) for joint_type in joint_types mech = get_mechanism(:twister; timestep=timestep0, gravity=gravity0, num_bodies=Nb0, springs=springs0, dampers=dampers0, joint_type=joint_type, contact=false, radius=0.05) v0 = 10.0 * [1, 2, 3] * timestep0 ω0 = 10.0 * [1, 2, 3.0] * timestep0 q10 = Dojo.RotX(0.5*π) initialize!(mech, :twister, base_orientation=q10, base_linear_velocity=v0, base_angular_velocity=ω0) storage = simulate!(mech, 1.50; record=true, verbose=false, opts=SolverOptions(rtol=ϵ0, btol=ϵ0)) # visualize(mech, storage, vis = vis) m0 = momentum(mech, storage)[5:end] mlin0 = [Vector(m - m0[1])[1:3] for m in m0] mang0= [Vector(m - m0[1])[4:6] for m in m0] @test all(norm.(mlin0, Inf) .< 1.0e-8) @test all(norm.(mang0, Inf) .< 1.0e-8) end end
Dojo
https://github.com/dojo-sim/Dojo.jl.git
[ "MIT" ]
0.7.5
104b6a1a358da9b1348ab7cd66ad685ecaca13d4
code
1506
@testset "FiniteDiff comparison" begin q = [1,2,3,4.0] q = Quaternion(q ./ norm(q)...) @test norm(Dojo.dmrpdq(Dojo.vector(q)) - ForwardDiff.jacobian(Dojo.mrp, Dojo.vector(q)), Inf) < 1.0e-8 @test norm(Dojo.daxisdq(Dojo.vector(q)) - ForwardDiff.jacobian(Dojo.axis, Dojo.vector(q))) < 1.0e-8 @test norm(Dojo.drotation_vectordq(Dojo.vector(q)) - ForwardDiff.jacobian(Dojo.rotation_vector, Dojo.vector(q))) < 1.0e-8 q = one(Quaternion{Float64}) @test norm(Dojo.dmrpdq(Dojo.vector(q)) - ForwardDiff.jacobian(Dojo.mrp, Dojo.vector(q)), Inf) < 1.0e-8 # TODO For zero rotation, ForwardDiff runs into a numeric singularity @test norm(Dojo.drotation_vectordq(Dojo.vector(q)) - FiniteDiff.finite_difference_jacobian(Dojo.rotation_vector, Dojo.vector(q))) < 1.0e-5 end @testset "axes pair to quaternion" begin n1 = [0,0,0.0] n2 = [0,0,0.0] q = Dojo.axes_pair_to_quaternion(n1, n2) @test norm(n2 - Dojo.vector_rotate(n1, q), Inf) < 1e-8 n1 = rand(3) n1 /= norm(n1) n2 = n1 q = Dojo.axes_pair_to_quaternion(n1, n2) @test norm(n2 - Dojo.vector_rotate(n1, q), Inf) < 1e-8 n1 = rand(3) n1 /= norm(n1) n2 = -n1 q = Dojo.axes_pair_to_quaternion(n1, n2) @test norm(n2 - Dojo.vector_rotate(n1, q), Inf) < 1e-5 n1 = rand(3) n1 /= norm(n1) n2 = rand(3) n2 /= norm(n2) q = Dojo.axes_pair_to_quaternion(n1, n2) @test norm(n2 - Dojo.vector_rotate(n1, q), Inf) < 1e-8 end
Dojo
https://github.com/dojo-sim/Dojo.jl.git
[ "MIT" ]
0.7.5
104b6a1a358da9b1348ab7cd66ad685ecaca13d4
code
1689
using Test using BenchmarkTools using LinearAlgebra using Random using SparseArrays using StaticArrays using FiniteDiff using ForwardDiff using Rotations using Dojo using DojoEnvironments global REG = 1.0e-10 @testset "Integrator" verbose=true begin include("integrator.jl") end @testset "Minimal Coordinates" verbose=true begin include("minimal.jl") end @testset "Modified Rodrigues Parameters" verbose=true begin include("mrp.jl") end @testset "Damper" verbose=true begin include("damper.jl") end @testset "Jacobian (Solution Matrix)" verbose=true begin include("jacobian.jl") end @testset "Data" verbose=true begin include("data.jl") end @testset "Collisions" verbose=true begin include("collisions.jl") end @testset "Momentum" verbose=true begin include("momentum.jl") end @testset "Energy" verbose=true begin include("energy.jl") end @testset "Behavior" verbose=true begin include("behaviors.jl") end @testset "Joint Limits" verbose=true begin include("joint_limits.jl") end @testset "Impulse Map" verbose=true begin include("impulse_map.jl") end @testset "Bodies" verbose=true begin include("bodies.jl") end @testset "Mechanism (Miscellaneous)" verbose=true begin include("mechanism.jl") end @testset "Simulate" verbose=true begin include("simulate.jl") end @testset "Visuals" verbose=true begin include("visuals.jl") end @testset "Utilities" verbose=true begin include("utilities.jl") end
Dojo
https://github.com/dojo-sim/Dojo.jl.git
[ "MIT" ]
0.7.5
104b6a1a358da9b1348ab7cd66ad685ecaca13d4
code
1155
@testset "step!" begin # get mechanism and simulate mechanism = DojoEnvironments.get_mechanism(:pendulum; timestep=0.1, gravity=0.0); # step (no control) z1 = Dojo.get_maximal_state(mechanism) u1 = zeros(Dojo.input_dimension(mechanism)) z2 = Dojo.step!(mechanism, z1, u1) @test norm(z2 - z1) < 1.0e-6 # step (control) z1 = Dojo.get_maximal_state(mechanism) u1 = rand(Dojo.input_dimension(mechanism)) z2 = Dojo.step!(mechanism, z1, u1) @test norm(z2 - z1) > 1.0e-6 end @testset "Storage" begin # get mechanism and simulate mechanism = DojoEnvironments.get_mechanism(:pendulum; timestep=0.1); DojoEnvironments.initialize_pendulum!(mechanism, angle=0.25 * π) storage = Dojo.simulate!(mechanism, 1.0, record=true, verbose=false) # check storage length @test Dojo.length(storage) == 10 # convert to vector of vectors z = Dojo.get_maximal_state(storage) @test length(z) == 10 # convert back to storage s = Dojo.generate_storage(mechanism, z) @test typeof(s) <: Dojo.Storage @test Dojo.length(s) == 10 end
Dojo
https://github.com/dojo-sim/Dojo.jl.git
[ "MIT" ]
0.7.5
104b6a1a358da9b1348ab7cd66ad685ecaca13d4
code
922
@test length(Dojo.module_dir()) > 0 @test Dojo.scn(1.0) == " 1.0e+0" @test Dojo.scn(0.0) == " 0.0e+0" @test Dojo.scn(Inf) == " Inf" @test Dojo.scn(123.1, digits=0) == " 1e+2" # show functions test_origin = Origin{Float64}() display(test_origin) @test true test_body = Box(1.0,2.0,3.0,4.0) display(test_body) display(test_body.shape) display(test_body.state) @test true test_joint = JointConstraint(Fixed(test_origin,test_body)) display(test_joint) display(test_joint.translational) display(test_joint.rotational) @test true test_mechanism = Mechanism(test_origin,[test_body],[test_joint]) display(test_mechanism) # display(test_mechanism.system) # TODO Removed from tests because '_show_with_braille_patterns' fails during tests for Julia 1.6, but it works in GBS for 1.6. @test true test_storage = Storage(3,4) display(test_storage) @test true test_options = SolverOptions() display(test_options) @test true
Dojo
https://github.com/dojo-sim/Dojo.jl.git
[ "MIT" ]
0.7.5
104b6a1a358da9b1348ab7cd66ad685ecaca13d4
code
1373
@testset "Utilities" begin # create visualizer vis = Dojo.Visualizer(); # default background Dojo.set_background!(vis) # add floor Dojo.set_floor!(vis) # add quadratic surface Dojo.set_surface!(vis, x -> x' * x, color=Dojo.RGBA(1.0, 0.0, 0.0, 1.0)) # lighting Dojo.set_light!(vis) # camera Dojo.set_camera!(vis, zoom=0.25) # test that methods don't fail @test true end @testset "MeshCat mechanism" begin # create visualizer vis = Dojo.Visualizer(); # get mechanism and simulate mechanism = DojoEnvironments.get_mechanism(:halfcheetah; timestep=0.1) storage = Dojo.simulate!(mechanism, 0.25; record=true, verbose=true); # visualize simulation Dojo.visualize(mechanism, storage; vis=vis) # test that methods don't fail @test true end @testset "URDF mesh" begin # create visualizer vis = Dojo.Visualizer(); # get mechanism and simulate mechanism = DojoEnvironments.get_mechanism(:quadruped; timestep=0.1) storage = Dojo.simulate!(mechanism, 0.25; record=true, verbose=false) # visualize simulation Dojo.visualize(mechanism, storage; vis=vis) # visualize w/ contact Dojo.visualize(mechanism, storage; vis=vis, show_contact=true) # test that methods don't fail @test true end
Dojo
https://github.com/dojo-sim/Dojo.jl.git
[ "MIT" ]
0.7.5
104b6a1a358da9b1348ab7cd66ad685ecaca13d4
docs
3319
[![CI](https://github.com/dojo-sim/Dojo.jl/actions/workflows/CI.yml/badge.svg)](https://github.com/dojo-sim/Dojo.jl/actions/workflows/CI.yml) [![codecov](https://codecov.io/gh/dojo-sim/Dojo.jl/branch/main/graph/badge.svg?token=NMS3JQZ2OE)](https://codecov.io/gh/dojo-sim/Dojo.jl) [![](https://img.shields.io/badge/docs-dev-blue.svg)](https://dojo-sim.github.io/Dojo.jl/dev) # Dojo A differentiable physics engine for robotics - arXiv preprint: https://arxiv.org/abs/2203.00806 - Python interface: https://github.com/dojo-sim/dojopy - site: https://sites.google.com/view/dojo-sim - video presentation: https://youtu.be/TRtOESXJxJQ [![IMAGE ALT TEXT](https://i.ytimg.com/vi/TRtOESXJxJQ/hq720.jpg?sqp=-oaymwEcCOgCEMoBSFXyq4qpAw4IARUAAIhCGAFwAcABBg==&rs=AOn4CLD1RdCHZ0Z1zSkv1N-PD0Ds79lDiA)](https://youtu.be/TRtOESXJxJQ "Dojo: A Differentiable Simulator for Robotics") # Update April 2023 - We are no longer actively developing Dojo, but pull requests are always welcome. - We have updated or removed examples to account for changes since the initial version of Dojo. - Additional developments on differentiable simulation: - Differentiable collision detection (Kevin Tracy): [capsules](https://arxiv.org/abs/2207.00202), [convex primitives](https://arxiv.org/abs/2207.00669) - Single-level contact dynamics + collision detection (Simon Le Cleac'h): [Silico](https://arxiv.org/pdf/2212.06764.pdf) # Examples ## Simulation <p float="left"> <img src="docs/src/assets/animations/atlas_drop.gif" width="120"/> <img src="docs/src/assets//animations/astronaut.gif" width="210"/> <img src="docs/src/assets/animations/dzhanibekov.gif" width="180"/> <img src="docs/src/assets/animations/tippetop.gif" width="180"/> </p> ## Learning and Control <p float="left"> <img src="docs/src/assets/animations/quadruped.gif" width="275"/> <img src="docs/src/assets/animations/ant_ars.gif" width="275"/> <img src="docs/src/assets/animations/quadrotor.gif" width="175"/> </p> ## System Identification <p float="left"> <img src="docs/src/assets/animations/box_learning.gif" width="200"/> <img src="docs/src/assets/animations/cone_learning.gif" width="200"/> <img src="docs/src/assets/animations/box_toss.gif" width="300"/> </p> ## Interfacing Other Packages | [ReinforcementLearning.jl](https://github.com/JuliaReinforcementLearning/ReinforcementLearning.jl): DQN | [ControlSystems.jl](https://github.com/JuliaControl/ControlSystems.jl): LQR | | - | -| | <img src="docs/src/assets/animations/cartpole_rl.gif" width="250"/> | <img src="docs/src/assets/animations/cartpole_lqr.gif" width="250"/> | ## Installation `Dojo` can be added via the Julia package manager (type `]`): ```julia pkg> add Dojo ``` For convenience mechanisms and environments, add `DojoEnvironments` additionally: ```julia pkg> add DojoEnvironments ``` ## Citing ``` @article{howelllecleach2022, title={Dojo: A Differentiable Simulator for Robotics}, author={Howell, Taylor and Le Cleac'h, Simon and Bruedigam, Jan and Kolter, Zico and Schwager, Mac and Manchester, Zachary}, journal={arXiv preprint arXiv:2203.00806}, url={https://arxiv.org/abs/2203.00806}, year={2022} } ``` ## How To Contribute Please submit a pull request or open an issue. See the [docs](https://dojo-sim.github.io/Dojo.jl/dev/contributing.html) for contribution ideas.
Dojo
https://github.com/dojo-sim/Dojo.jl.git
[ "MIT" ]
0.7.5
104b6a1a358da9b1348ab7cd66ad685ecaca13d4
docs
206
# DojoEnvironments This package contains convenience mechanisms and environments for the [Dojo.jl](https://github.com/dojo-sim/Dojo.jl) package. For explanations, docs, and examples, see the main package.
Dojo
https://github.com/dojo-sim/Dojo.jl.git
[ "MIT" ]
0.7.5
104b6a1a358da9b1348ab7cd66ad685ecaca13d4
docs
1932
# API Documentation Docstrings for Dojo.jl interface members can be [accessed through Julia's built-in documentation system](https://docs.julialang.org/en/v1/manual/documentation/index.html#Accessing-Documentation-1) or in the list below. ```@meta CurrentModule = Dojo ``` ## Contents ```@contents Pages = ["api.md"] ``` ## Index ```@index Pages = ["api.md"] ``` ## Mechanism ```@docs Mechanism get_node get_body get_joint get_contact get_maximal_state get_next_state get_minimal_state set_maximal_state! set_minimal_state! set_input! maximal_dimension minimal_dimension input_dimension input_dimensions zero_coordinates! zero_velocities! root_to_leaves_ordering set_floating_base set_external_force! add_external_force! ``` ### Nodes ```@docs Node Body Origin Constraint Shape EmptyShape Mesh Box Cylinder Capsule Sphere Pyramid FrameShape CombinedShapes ``` ### Joints ```@docs Joint Rotational Translational JointConstraint Floating Fixed Prismatic Planar FixedOrientation Revolute Cylindrical PlanarAxis FreeRevolute Orbital PrismaticOrbital PlanarOrbital FreeOrbital Spherical CylindricalFree PlanarFree ``` ### Contacts ```@docs Contact ImpactContact LinearContact NonlinearContact ContactConstraint contact_constraint contact_location get_sdf Collision SphereHalfSpaceCollision SphereSphereCollision SphereCapsuleCollision SphereBoxCollision contact_normal contact_tangent ``` ### Representations ```@docs State minimal_to_maximal maximal_to_minimal ``` ### Mechanics ```@docs mechanical_energy kinetic_energy potential_energy momentum ``` ## Simulate ```@docs Storage step! step_minimal_coordinates! simulate! ``` ## Gradients ```@docs get_maximal_gradients! get_minimal_gradients! maximal_to_minimal_jacobian minimal_to_maximal_jacobian ``` ## Solver ```@docs SolverOptions mehrotra! ``` ## Visualization ```@docs visualize build_robot set_camera! set_light! set_surface! set_floor! set_arrow! ```
Dojo
https://github.com/dojo-sim/Dojo.jl.git
[ "MIT" ]
0.7.5
104b6a1a358da9b1348ab7cd66ad685ecaca13d4
docs
433
# Citing If you find Dojo useful in your project, we kindly request that you cite the following paper: ``` @article{howelllecleach2022dojo, title={Dojo: {A} {D}ifferentiable {S}imulator for {R}obotics}, author={Howell, Taylor A. and Le Cleac'h, Simon and Bruedigam, Jan and Kolter, J. Zico and Schwager, Mac and Manchester, Zachary}, year={2022} } ``` A preprint can be downloaded from [arXiv](https://arxiv.org/abs/2203.00806).
Dojo
https://github.com/dojo-sim/Dojo.jl.git
[ "MIT" ]
0.7.5
104b6a1a358da9b1348ab7cd66ad685ecaca13d4
docs
2642
# Contributing Contributions are always welcome! * If you want to contribute features, bug fixes, etc, please take a look at our __Code Style Guide__ below * Please report any issues and bugs that you encounter in [Issues](https://github.com/dojo-sim/Dojo.jl/issues) * As an open source project we are also interested in any projects and applications that use Dojo. Please let us know via email to: [email protected] or [email protected] ## Potentially Useful Contributions Here are a list of current to-do's that would make awesome contributions: - reduce allocations by using StaticArrays and https://docs.julialang.org/en/v1/manual/profile/#Line-by-Line-Allocation-Tracking - improved parsing of URDF files - joint limits, friction coefficients - improved collision detection - body-to-body contact - general convex shapes - curved surfaces - GPU support - nice REPL interface - interactive GUI ## Code Style Guide The code in this repository follows the naming and style conventions of [Julia Base](https://docs.julialang.org/en/v1.0/manual/style-guide/#Style-Guide-1) with a few modifications. This style guide is heavily "inspired" by the guides of [John Myles White](https://github.com/johnmyleswhite/Style.jl), [JuMP](http://www.juliaopt.org/JuMP.jl/latest/style), and [COSMO](https://github.com/oxfordcontrol/COSMO.jl) ### Formatting * Use one tab when indenting a new block (except `module`) * Use spaces between operators, except for `^`, `'`, and `:` * Use single space after commas and semicolons * Don't use spaces around parentheses, or braces **Bad**: `f(x,y) = [5*sin(x+y);y']` **Good**: `f(x, y) = [5 * sin(x + y); y']` * Use spacing with keyword arguments **Bad**: `foo(x::Float; y::Integer = 1)` **Good**: `foo(x::Float; y::Integer=1)` * Don't parenthesize conditions **Bad**: `if (a == b)` **Good**: `if a == b` ### Naming * Modules and Type names use capitalization and camel case, e.g. `module LinearAlgebra`, `struct ConvexSets`. * Functions are lowercase and use underscores to separate words, e.g. `has_key(x)`, `is_valid(y)`. * Normal variables are lowercase and use underscores like functions, e.g. `convex_set` * Constants are uppercase, e.g. `const MY_CONSTANT` * **Always** append `!` to names of functions that modify their arguments. * Function arguments that are mutated come first. Otherwise follow the rules layed out in Julia Base [Argument ordering](https://docs.julialang.org/en/v1.0/manual/style-guide/#Write-functions-with-argument-ordering-similar-to-Julia-Base-1) * Files are named like functions, e.g. `my_new_file.jl` ### Syntax * Use `1.0` instead of `1.`
Dojo
https://github.com/dojo-sim/Dojo.jl.git
[ "MIT" ]
0.7.5
104b6a1a358da9b1348ab7cd66ad685ecaca13d4
docs
2269
# Get Started __[Dojo](https://github.com/dojo-sim/Dojo.jl) is a differentiable simulator for robotics__, prioritizing accurate physics and useful gradients. The simulator is written in pure Julia in order to be both performant and easy to use. ## Features * __Maximal-Coordinates Representation__: Fast and efficient conversion between [maximal](background_representations/maximal_representation.md) and [minimal](background_representations/minimal_representation.md) representations * __Smooth Gradients__: Simulation with [hard contact](background_contact/impact.md) and useful [gradients](background_representations/gradients.md) through contact events * __Open Source__: Code is available on [GitHub](https://github.com/dojo-sim/Dojo.jl) and distributed under the MIT License * __Python Interface__: [dojopy](https://github.com/dojo-sim/dojopy) ## Installation Dojo can be installed using the Julia package manager for Julia `v1.6` and higher. Inside the Julia REPL, type `]` to enter the Pkg REPL mode then run `pkg> add Dojo` ## Related talks ## Credits The following people are involved in the development of Dojo: __Primary Development__ * [Simon Le Cleac'h](https://simon-lc.github.io/) (main development, contact modeling, interior-point solver, gradients) * [Taylor Howell](https://thowell.github.io/) (main development, contact modeling, interior-point solver, gradients) * [Jan Bruedigam](https://github.com/janbruedigam) (main development, maximal representation and graph-based solver) * [Zico Kolter](https://zicokolter.com/) * [Mac Schwager](https://web.stanford.edu/~schwager/) * [Zachary Manchester](https://www.ri.cmu.edu/ri-faculty/zachary-manchester/) (principal investigator) __Additional Contributions__ * [Suvansh Sanjeev](https://suvan.sh/) (PyTorch interface) * [Benjamin Bokser](http://www.benbokser.com/) (REx Hopper) Development by the [Robotic Exploration Lab](https://roboticexplorationlab.org/). If this project is useful for your work please consider * [Citing](citing.md) the relevant papers * Leaving a star on the [GitHub repository](https://github.com/dojo-sim/Dojo.jl) ## Licence Dojo.jl is licensed under the MIT License. For more details click [here](https://github.com/dojo-sim/Dojo.jl/blob/main/LICENSE.md).
Dojo
https://github.com/dojo-sim/Dojo.jl.git
[ "MIT" ]
0.7.5
104b6a1a358da9b1348ab7cd66ad685ecaca13d4
docs
527
# Collisions !!! info Only sphere-halfspace collisions (spheres colliding with planes) are fully supported. The other contact models are experimental. Dojo currently implements the following collision models: - [`SphereHalfSpaceCollision`](@ref) - [`SphereSphereCollision`](@ref) - [`SphereCapsuleCollision`](@ref) - [`SphereBoxCollision`](@ref) ```@raw html <img src="../assets/animations/sphere_capsule_drop.gif" width="200"/> ``` ```@raw html <img src="../assets/animations/sphere_box_drop.gif" width="200"/> ```
Dojo
https://github.com/dojo-sim/Dojo.jl.git
[ "MIT" ]
0.7.5
104b6a1a358da9b1348ab7cd66ad685ecaca13d4
docs
1822
# Overview Impact and friction behaviors are modeled, along with the system’s dynamics, as a nonlinear complementarity problem (NCP). This model simulates hard contact without requiring system-specific solver tuning. Additionally, contacts between a system and the environment are treated as a single graph node connected to a rigid body (see below). As a result, the simulator retains efficient linear-time complexity for open-chain mechanical systems. ![graph](../assets/pictures/graph.png) Three contact models are implemented in Dojo: - [`ImpactContact`](@ref) enforces frictionless contact, - [`NonlinearContact`](@ref) enforces contact with a non-linear cone of friction (second-order cone), ![nonlinear_cone](../assets/pictures/nonlinear_cone.png) - [`LinearContact`](@ref) enforces contact with a linearized cone of friction (pyramidal cone). ![linearized_cone](../assets/pictures/linearized_cone.png) All 3 of these contact models implement hard contact i.e., no interpenetration. This means that for both the nonlinear and linearized cones, we concatenate the constraints resulting from friction with the impact constraints. ### Implementation Dojo currently supports contact constraints occurring between a sphere and the ground i.e., a horizontal half-space of altitude 0.0. Each spherical contact is attached to a single [`Body`](@ref). To create a new point of contact, we need to define: - the [`Body`](@ref) to which the contact constraint is attached - radius of the sphere defining the spherical contact - coefficient of friction (except for [`ImpactContact`](@ref)) ### Example For the Quadruped model shown in the picture below, we defined 12 contacts spheres show in red: - 4 for the feet, - 4 for the knees, - 4 for for the hips. ![quadruped_contact](../assets/pictures/quadruped_contact.png)
Dojo
https://github.com/dojo-sim/Dojo.jl.git
[ "MIT" ]
0.7.5
104b6a1a358da9b1348ab7cd66ad685ecaca13d4
docs
911
# Impact ### Mathematical Model We model hard contact via constraints on the system’s configuration and the applied contact forces. For a system with $P$ contact points, we define a signed-distance function, ```math \phi : \mathbf{Z} \rightarrow \mathbf{R}^P ``` subject to the following element-wise constraint: ```math ϕ(z) > 0, ``` Impact forces with magnitude ``\gamma \in \mathbf{R}^P`` are applied to the bodies’ contact points in the direction of their surface normals in order to enforce (5) and prevent interpenetration. A non-negative constraint, ```math \gamma \geq 0, ``` enforces physical behavior that impulses are repulsive (e.g., the floor does not attract bodies), and the complementarity condition, ```math \gamma \circ \phi(z) = 0, ``` where ``\circ`` is an element-wise product operator, enforces zero force if the body is not in contact and allows non-zero force during contact.
Dojo
https://github.com/dojo-sim/Dojo.jl.git
[ "MIT" ]
0.7.5
104b6a1a358da9b1348ab7cd66ad685ecaca13d4
docs
1784
# Linearized Friction Coulomb friction instantaneously maximizes the dissipation of kinetic energy between two objects in contact. ### Mathematical Model For a single contact point, this physical phenomenon can be modeled by the following optimization problem, ```math \begin{align*} \underset{b}{\text{minimize}} & \quad v^T b \\ \text{subject to} & \quad \|b\|_2 \leq \mu \gamma, \end{align*} ``` where ``v \in \mathbf{R}^{2}`` is the tangential velocity at the contact point, ``b \in \mathbf{R}^2`` is the friction force, and ``\mu \in \mathbf{R}_{+}`` is the coefficient of friction between the two objects. ### Linearized Model This above problem is naturally a convex second-order cone program, and can be efficiently and reliably solved. However, classically, an approximate version: ```math \begin{align*} \underset{\beta}{\text{minimize}} & \quad [v^T -v^T] \beta, \\ \text{subject to} & \quad \beta^T \mathbf{1} \leq \mu \gamma, \\ & \quad \beta \geq 0, \end{align*} ``` which satisfies the LCP formulation, is instead solved. Here, the friction cone is linearized and the friction vector, ``\beta \in \mathbf{R}^{4}``, is correspondingly overparameterized and subject to additional non-negative constraints. The optimality conditions of the above problem and constraints used in the LCP are: ```math \begin{align*} [v^T -v^T]^T + \psi \mathbf{1} - \eta &= 0, \\ \mu \gamma -\beta^T \textbf{1} & \geq 0,\\ \psi \cdot (\mu \gamma - \beta^T \textbf{1}) &= 0, \\ \beta \circ \eta &= 0, \\ \beta, \psi, \eta &\geq 0, \end{align*} ``` where ``\psi \in \mathbf{R}`` and ``\eta \in \mathbf{R}^{4}`` are the dual variables associated with the friction cone and positivity constraints, respectively, and ``\textbf{1}`` is a vector of ones.
Dojo
https://github.com/dojo-sim/Dojo.jl.git
[ "MIT" ]
0.7.5
104b6a1a358da9b1348ab7cd66ad685ecaca13d4
docs
3140
# Nonlinear friction In contrast to a LCP approach, we utilize the optimality conditions of in a form amenable to a primal-dual interior-point solver. The associated cone program is, ```math \begin{align*} \underset{\beta}{\text{minimize}} & \hspace{0.5em} \begin{bmatrix} 0 & v^T \end{bmatrix} \beta\\ \text{subject to} & \hspace{0.5em} \beta_{(1)} = \mu \gamma, \\ & \hspace{0.5em} \beta \in \mathcal{Q}^3,\\ \end{align*} ``` where subscripts indicate vector indices and the $n$-dimensional second-order cone $\mathcal{Q}^n$ is defined by: ```math \mathcal{Q}^n = \{(a_{(1)}, a_{(2:n)}) \in \mathbf{R} \times \mathbf{R}^{n-1}\, | \, \|a_{(2:n)}\|_2 \leq a_{(1)} \}, ``` The relaxed optimality conditions for the above problem in interior-point form are: ```math \begin{align*} v - \eta_{(2:3)} &= 0, \\ \beta_{(1)} - \mu \gamma &= 0, \\ \beta \circ \eta &= \kappa \mathbf{e}, \\ \beta, \eta &\in \mathcal{Q}^3, \end{align*} ``` with dual variable $\eta \in \mathcal{Q}^3$ associated with the second-order-cone constraints, and central-path parameter, $\kappa \in \mathbf{R}_{+}$. The second-order-cone product is: ```math \beta \circ \eta = (\beta^T \eta, \beta_{(1)} \eta_{(2:n)} + \eta_{(1)} \beta_{(2:n)}), ``` and, ```math \mathbf{e} = (1, 0, \dots, 0), ``` is its corresponding identity element. Friction is recovered from the solution: $b = \beta^*_{(2:3)}$. The benefits of this model are increased physical fidelity and fewer optimization variables, without substantial increase in computational cost. Nonlinear complementarity problem: To simulate a system represented in maximal coordinates that experiences contact, a solver aims to satisfy the following relaxed feasibility problem: ```math \begin{align*} \text{find} & \quad z_{+}, w, \gamma, \beta^{(1:P)}, \eta^{(1:P)}, s\\ \text{s.t.} & \quad f(z_{-}, z, z_{+}, w) + B(z) u + C(z)^T \lambda = 0, \\ & \quad s - \phi(z_{+}) = 0, \\ & \quad \gamma \circ s = \kappa \textbf{1}, \\ & \quad \beta^{(i)} \circ \eta^{(i)} = \kappa \mathbf{e}, && \quad i = 1, \dots, P,\\ & \quad v^{(i)}(z, z_{+}) - \eta_{(2:3)}^{(i)} = 0, && \quad i = 1, \dots, P, \\ & \quad \beta^{(i)}_{(1)} - \mu^{(i)} \gamma^{(i)} = 0, && \quad i = 1, \dots, P,\\ & \quad \gamma, s \geq 0,\\ & \quad \beta^{(i)}, \eta^{(i)} \in \mathcal{Q}^3, && \quad i = 1, \dots, P, \end{align*} ``` where $u \in \mathbf{R}^m$ is the control input at the current time step, $\lambda = (\beta^{(1)}_{(2:3)}, \gamma^{(1)}, \dots, \beta^{(P)}_{(2:3)}, \gamma^{(P)}) \in \mathbf{\Lambda}$ is the concatenation of impact and friction impulses, $B : \mathbf{Z} \rightarrow \mathbf{R}^{6N \times m}$ is the input Jacobian mapping control inputs into maximal coordinates, $C : \mathbf{Z} \rightarrow \mathbf{R}^{\text{dim}(\mathbf{\Lambda}) \times 6N}$ is a contact Jacobian mapping between maximal coordinates and contact surfaces, $s \in \mathbf{R}^P$ is a slack variable introduced for convenience, and $v^{(i)} : \mathbf{Z} \times \mathbf{Z} \rightarrow \mathbf{R}^2$ is the tangential velocity at contact point $i$. Joint limits and internal friction are readily incorporated into this problem formulation.
Dojo
https://github.com/dojo-sim/Dojo.jl.git
[ "MIT" ]
0.7.5
104b6a1a358da9b1348ab7cd66ad685ecaca13d4
docs
3683
# Background on Gradients ## Implicit Function Theorem An implicit function, ``r : \mathbf{R}^{n_w} \times \mathbf{R}^{n_\theta} \rightarrow \mathbf{R}^{n_w}``, is defined as ```math r(w^*; \theta) = 0, ``` for solution ``w^* \in \mathbf{R}^{n_w}`` and problem data ``\theta \in \mathbf{R}^{n_\theta}``. At a solution point of the above equation the sensitivities of the solution with respect to the problem data, i.e., ``\partial w^* / \partial \theta``, can be computed under certain conditions. First, we approximate the above equation to first order: ```math \frac{\partial r}{\partial w} \delta w + \frac{\partial r}{\partial \theta} \delta \theta = 0, ``` and then solve for the relationship: ```math \frac{\partial w^*}{\partial \theta} = -\Big(\frac{\partial r}{\partial w}\Big)^{-1} \frac{\partial r}{\partial \theta}. \quad \quad(1) ``` In case ``(\partial r / \partial w)^{-1}`` is not well defined, (e.g., not full rank) we can either apply regularization or approximately solve (1) with, for example, a least-squares approach. Often, Newton's method is employed to find solutions to the implicit equation and custom linear-system solvers can efficiently compute search directions for this purpose. Importantly, the factorization of ``\partial r / \partial w`` used to find a solution can be reused to compute (1) at very low computational cost using only back-substitution. Additionally, each element of the problem-data sensitivity can be computed in parallel. ## Dojo's Gradient At a solution point, ``w^*(\theta, \kappa)``, the sensitivity of the solution with respect to the problem data, i.e., ``\partial w^* / \partial \theta``, is efficiently computed using the implicit-function theorem (1) to differentiate through the solver's residual. The efficient linear-system solver used for the simulator, as well as the computation and factorization of ``\partial r / \partial w``, is used to compute the sensitivities for each element of the problem data. Calculations over the individual columns of ``\partial r / \partial \theta`` can be performed in parallel. The problem data for each simulation step include: the previous and current configurations, control input, and additional terms like the time step, friction coefficients, and parameters of each body. The chain rule is utilized to compute gradients with respect to the finite-difference velocities as well as transformations between minimal- and maximal-coordinate representations. In many robotics scenarios, we are interested in gradient information through contact events. Instead of computing gradients for hard contact with zero or very small central-path parameters, we use a relaxed value from intermediate solutions ``w^*(\theta, \kappa > 0)`` corresponding to a soft contact model. In practice, we find that these smooth gradients greatly improve the performance of gradient-based optimization methods. ## Gradient Comparison ```@raw html <img src="../assets/pictures/gradient_comparison.png" width="500"/> ``` Gradient comparison between randomized smoothing and Dojo's smooth gradients. The dynamics for a box in the ``XY`` plane that is resting on a flat surface and displaced an amount ``\Delta`` by an input ``F`` (top left). Its corresponding exact gradients are shown in black. Gradient bundles (right column) are computed using sampling schemes with varying covariances ``\Sigma`` and ``500`` samples. Dojo's gradients (middle column) are computed for different values of ``\kappa``, corresponding to the smoothness of the contact model. Compared to the 500-sample gradient bundle, Dojo's gradients are not noisy and are a 100 times faster to compute with a single worker.
Dojo
https://github.com/dojo-sim/Dojo.jl.git
[ "MIT" ]
0.7.5
104b6a1a358da9b1348ab7cd66ad685ecaca13d4
docs
619
# Maximal Coordinates The ``i``-th body in a mechanism with ``N`` bodies has state: ```math z^{(i)} = (x^{(i)}, v^{(i)}, q^{(i)}, \omega^{(i)}) \in \mathbf{R}^3 \times \mathbf{R}^3 \times \mathbf{H} \times \mathbf{R}^3, ``` represented in maximal coordinates, where ``\mathbf{H}`` is the space of unit quaternions. - ``x``: position in world frame - ``v``: linear velocity in the world frame - ``q``: orientation represented as a unit quaternion - ``\omega``: angular velocity in the body frame The mechanism state: ```math z = (z^{(1)}, \dots, z^{(N)}). ``` is the concatentation of all body states.
Dojo
https://github.com/dojo-sim/Dojo.jl.git
[ "MIT" ]
0.7.5
104b6a1a358da9b1348ab7cd66ad685ecaca13d4
docs
1032
# Minimal Coordinates Dojo simulates systems in [maximal coordinates](maximal_representation.md). For a mechanism with ``M`` joints and ``N`` bodies, the maximal representation ``z`` can be efficiently converted to minimal coordinates: ```math y = (y^{(1)}, \dots, y^{(M)}) \leftarrow z = (z^{(1)}, \dots, z^{(N)}), ``` where ``y^{(j)}`` depends on the degree and type of joint. **Note**: this minimal representation does not stack coordinates followed by velocities, which is a common convention; instead, **coordinates and velocities are grouped by joint**. Each minimal state comprises: ```math y = (p_{\text{translational}}, p_{\text{rotational}}, w_{\text{translational}}, w_{\text{rotational}}) ``` coordinates ``p`` and velocities ``w`` for both translational and rotational degrees of freedom. In the case of a floating-base joint, the minimal-representation orientation is converted to [modified Rodrigues parameters](https://en.wikipedia.org/wiki/Rotation_formalisms_in_three_dimensions) from a unit quaternion.
Dojo
https://github.com/dojo-sim/Dojo.jl.git
[ "MIT" ]
0.7.5
104b6a1a358da9b1348ab7cd66ad685ecaca13d4
docs
4012
# Algorithm ### Overview To simulate the system forward in time, we need to solve a Nonlinear Complementarity Problem (NCP) at each time step. To efficiently and reliably satisfy the NCP, we developed a custom primal-dual interior-point solver for NCPs with cone constraints and quaternions. The algorithm is largely based upon Mehrotra's predictor-corrector algorithm, while borrowing practical numerical features from CVXOPT to handle cones and non-Euclidean optimization to handle quaternions. We also introduce heuristics that further improve reliability and overall performance of the solver for our simulation-step NCPs. The primary advantages of this algorithm are the correction to the classic Newton step, which can greatly reduce the iterations required by the solver (often halving the total number of iterations), and feedback on the problem's central-path parameter that helps avoid premature ill-conditioning and adaptively drives the complementarity violation to zero in order to reliably simulate hard contact. ### Problem formulation The solver aims to satisfy instantiations of the following problem: ```math \begin{align*} \text{find} & \quad x, y, z \\ \text{subject to} & \quad c(x, y, z; \theta) = 0, \\ & \quad y^{(i)} \circ z^{(i)} = \kappa \mathbf{e}, && \quad i = 1,\dots,n, \\ & \quad y^{(i)}, z^{(i)} \in \mathcal{K}, && \quad i = 1,\dots, n, \end{align*} ``` with decision variables ``x \in \mathbf{R}^k`` and ``y, z \in \mathbf{R}^m``, equality-constraint set ``c : \mathbf{R}^k \times \mathbf{R}^m \times \mathbf{R}^m \times \mathbf{R}^l \rightarrow \mathbf{R}^h``, problem data ``\theta \in \mathbf{R}^l``; and where ``\mathcal{K}`` is the Cartesian product of ``n`` total positive-orthant and second-order cones. The variables are partitioned: ``x = (x^{(1)}, \dots, x^{(p)})``, where ``i = 1`` are Euclidean variables and ``i = 2, \dots, p`` are each quaternion variables; and ``y = (y^{(1)}, \dots, y^{(n)})``, ``z = (z^{(1)}, \dots, z^{(n)})``, where ``j = 1`` is the positive-orthant and the remaining ``j = 2, \dots, n`` are second-order cones. For convenience, we denote ``w = (x, y, z)``. The algorithm aims to satisfy a sequence of relaxed problems with ``\kappa > 0`` and ``\kappa \rightarrow 0`` in order to reliably converge to a solution of the original problem (i.e., ``\kappa = 0``). This continuation approach helps avoid premature ill-conditioning and is the basis for numerous convex and non-convex general-purpose interior-point solvers. ### Violation metrics: Two metrics are used to measure progress: The constraint violation, ```math r_{\text{vio}} = \| c(w; \theta) \|_{\infty}, ``` and complementarity violation, ```math b_{\text{vio}} = {\text{max}}_i \{\| y^{(i)} \circ z^{(i)} \|_{\infty}\}. ``` The NCP is considered solved when ``r_{\text{vio}} < r_{\text{tol}}`` and ``b_{\text{vio}} < b_{\text{tol}}``. !!! info "solver options" Both `r_tol` and `b_tol` are options that can easily be accessed and modified via [`SolverOptions`](@ref). ### Newton Steps The main loop of the solver performs Newton's method on the equality-constraint set ``c`` and the bilinear constraints. The solver typically converges in about 10 iterations. !!! info "solver options" The maximal number of Newton's iterations `max_iter` can be set via [`SolverOptions`](@ref). ### Line Search Newton's method provides a search direction, then we perform a line search along this direction to determine the step length ``\alpha``. We use a backtracking line search that accepts the step whenever it decreases ``c_{\text{vio}}`` or ``b_{\text{vio}}``. The line search starts with a step ``\alpha=1``, if the step acceptance conditions are not met the step is decreased geometrically: ``\alpha \leftarrow s \cdot \alpha``. The line search takes at most `max_ls` backtracking steps. !!! info "solver options" The scaling parameter ``s`` is called `ls_scale` and the maximum number of line search iteration `max_ls` can be set via [`SolverOptions`](@ref).
Dojo
https://github.com/dojo-sim/Dojo.jl.git
[ "MIT" ]
0.7.5
104b6a1a358da9b1348ab7cd66ad685ecaca13d4
docs
1680
# Solver Options The solver has several options accessible via [`SolverOptions`](@ref). Below is a list describing their effect on the solver's behavior, typical values, and if they need to be tuned by the user. | option | default |range | effect | tuning | | ----------------------- | --------|-------------------------------------- | ------ | -------------- | | `rtol` | ``10^{-4}`` |``[10^{-6}, 10^{-2}]``| larger leads to faster solve (usually takes the same value as `btol`) | rarely | | `btol` | ``10^{-4}`` |``[10^{-6}, 10^{-2}]``| larger results in smoothed contact dynamics and faster solve | rarely | | `ls_scale` | ``0.5`` |``[0.3, 0.8]`` | larger potentially increase step size at the cost of more residual evaluations | never | | `max_ls` | ``10`` |``[1, 25]`` | larger allows for taking smaller steps | never | | `undercut` | ``+\infty`` |``[2, +\infty]`` | larger is more robust but can generate stiffer gradients | rarely | | `no_progress_max` | ``3`` |``[3, 5]`` | smaller will increase the undercut faster | never | | `no_progress_undercut` | ``10`` |``[3, 100]`` | larger will increase the undercut faster | never | | `verbose` | ``\text{false}`` |``\{\text{true}, \text{false}\}`` | printing the status of the solver | often |
Dojo
https://github.com/dojo-sim/Dojo.jl.git
[ "MIT" ]
0.7.5
104b6a1a358da9b1348ab7cd66ad685ecaca13d4
docs
559
# Using an Existing Environment The following code uses a function defined in `DojoEnvironments` to create a pendulum `Environment`. This `Environment` is a wrapper around the [`Mechanism`](@ref) for easy interfacing with other packages. As with [`Mechanism`](@ref)s, you can use the existing templates as a starting point for your own `Environment`s. ```julia # ### Setup using Dojo using DojoEnvironments # ### Get environment (check DojoEnvironment/environments files for kwargs) environment = get_environment(:pendulum; timestep=0.01, horizon=200) ```
Dojo
https://github.com/dojo-sim/Dojo.jl.git
[ "MIT" ]
0.7.5
104b6a1a358da9b1348ab7cd66ad685ecaca13d4
docs
678
# Directly Build a Mechanism The following code builds a pendulum [`Mechanism`](@ref), consisting of an [`Origin`](@ref), a [`Body`](@ref), and a [`JointConstraint`](@ref). Most [`Mechanism`](@ref)s consist of these three components, sometimes supplemented by [`ContactConstraint`](@ref)s. ```julia # ### Setup using Dojo # ### Parameters radius = 0.1 length = 1 mass = 1 rotation_axis = [1;0;0] connection = [0;0;length/2] # ### Mechanism components origin = Origin() body = Cylinder(radius, length, mass) joint = JointConstraint(Revolute(origin, body, rotation_axis; child_vertex=connection)) # ### Construct Mechanism mechanism = Mechanism(origin, [body], [joint]) ```
Dojo
https://github.com/dojo-sim/Dojo.jl.git
[ "MIT" ]
0.7.5
104b6a1a358da9b1348ab7cd66ad685ecaca13d4
docs
549
# Using an Existing Mechanism The following code uses a function defined in `DojoEnvironments` to create a pendulum [`Mechanism`](@ref). As before, the mechanism consists of an [`Origin`](@ref), a [`Body`](@ref), and a [`JointConstraint`](@ref). You can, of course, use these existing templates as a starting point for your own [`Mechanism`](@ref)s. ```julia # ### Setup using Dojo using DojoEnvironments # ### Get mechanism (check DojoEnvironment/mechanisms files for kwargs) mechanism = get_mechanism(:pendulum; timestep=0.02, length=0.75) ```
Dojo
https://github.com/dojo-sim/Dojo.jl.git
[ "MIT" ]
0.7.5
104b6a1a358da9b1348ab7cd66ad685ecaca13d4
docs
499
# Overview There are three ways to to build and use mechanical systems in Dojo: Build it directly, use an existing mechanism, or use an existing environment. Directly-built and existing mechanism both result in a [`Mechanism`](@ref), and using an existing mechanism is just for convenience. Creating an `Environment` can be useful for more advanced applications like reinforcement learning. We use the pendulum as a simple example for these three methods and later give two more detailed examples.
Dojo
https://github.com/dojo-sim/Dojo.jl.git
[ "MIT" ]
0.7.5
104b6a1a358da9b1348ab7cd66ad685ecaca13d4
docs
4687
# Loading a Mechanism via URDF Another way to build a mechanism is to directly load it from a URDF file. We illustrate this with the A1 quadruped, defined in `DojoEnvironments`. ![quadruped](../assets/pictures/quadruped.png) Note that the [`Mechanism`](@ref) is created simply by passing the path to the URDF file to the constructor. Afterwards, additional features, such as contacts can be added. ```julia function get_quadruped(; timestep=0.01, input_scaling=timestep, gravity=-9.81, urdf=:gazebo_a1, springs=0, dampers=0, parse_springs=true, parse_dampers=true, limits=true, joint_limits=Dict(vcat([[ (Symbol(group,:_hip_joint), [-0.5,0.5]), (Symbol(group,:_thigh_joint), [-0.5,1.5]), (Symbol(group,:_calf_joint), [-2.5,-1])] for group in [:FR, :FL, :RR, :RL]]...)), keep_fixed_joints=true, friction_coefficient=0.8, contact_feet=true, contact_body=true, T=Float64) # mechanism path = joinpath(@__DIR__, "dependencies/$(string(urdf)).urdf") mechanism = Mechanism(path; floating=true, T, gravity, timestep, input_scaling, parse_dampers, keep_fixed_joints) # springs and dampers !parse_springs && set_springs!(mechanism.joints, springs) !parse_dampers && set_dampers!(mechanism.joints, dampers) # joint limits if limits joints = set_limits(mechanism, joint_limits) mechanism = Mechanism(mechanism.origin, mechanism.bodies, joints; gravity, timestep, input_scaling) end # contacts contacts = ContactConstraint{T}[] if contact_feet # feet contacts body_names = [:FR_calf, :FL_calf, :RR_calf, :RL_calf] names = [:FR_calf_contact, :FL_calf_contact, :RR_calf_contact, :RL_calf_contact] contact_bodies = [get_body(mechanism, name) for name in body_names] n = length(contact_bodies) normals = fill(Z_AXIS,n) friction_coefficients = fill(friction_coefficient,n) contact_origins = fill([-0.006; 0; -0.092],n) contact_radii = fill(0.021,n) contacts = [contacts;contact_constraint(contact_bodies, normals; friction_coefficients, contact_origins, contact_radii, names)] end if contact_body # thigh contacts body_names = [:FR_thigh, :FL_thigh, :RR_thigh, :RL_thigh] names = [:FR_thigh_contact, :FL_thigh_contact, :RR_thigh_contact, :RL_thigh_contact] contact_bodies = [get_body(mechanism, name) for name in body_names] n = length(contact_bodies) normals = fill(Z_AXIS,n) friction_coefficients = fill(friction_coefficient,n) contact_origins = [ [-0.005; -0.023; -0.16], [-0.005; 0.023; -0.16], [-0.005; -0.023; -0.16], [-0.005; 0.023; -0.16], ] contact_radii = fill(0.023,n) contacts = [contacts;contact_constraint(contact_bodies, normals; friction_coefficients, contact_origins, contact_radii, names)] # hip contacts body_names = [:FR_hip, :FL_hip, :RR_hip, :RL_hip] names = [:FR_hip_contact, :FL_hip_contact, :RR_hip_contact, :RL_hip_contact] contact_bodies = [get_body(mechanism, name) for name in body_names] n = length(contact_bodies) normals = fill(Z_AXIS,n) friction_coefficients = fill(friction_coefficient,n) contact_origins = fill([0; 0.05; 0],n) contact_radii = fill(0.05,n) contacts = [contacts;contact_constraint(contact_bodies, normals; friction_coefficients, contact_origins, contact_radii, names)] end mechanism = Mechanism(mechanism.origin, mechanism.bodies, mechanism.joints, contacts; gravity, timestep, input_scaling) # zero configuration initialize_quadruped!(mechanism) # construction finished return mechanism end ``` ```julia function initialize_quadruped!(mechanism::Mechanism; body_position=[0, 0, 0], body_orientation=one(Quaternion), hip_angle=0, thigh_angle=pi/4, calf_angle=-pi/2) zero_velocities!(mechanism) zero_coordinates!(mechanism) body_position += [0, 0, 0.43] set_minimal_coordinates!(mechanism, get_joint(mechanism, :floating_base), [body_position; Dojo.rotation_vector(body_orientation)]) for group in [:FR, :FL, :RR, :RL] set_minimal_coordinates!(mechanism, get_joint(mechanism, Symbol(group, :_hip_joint)), [hip_angle]) set_minimal_coordinates!(mechanism, get_joint(mechanism, Symbol(group, :_thigh_joint)), [thigh_angle]) set_minimal_coordinates!(mechanism, get_joint(mechanism, Symbol(group, :_calf_joint)), [calf_angle]) end return end ```
Dojo
https://github.com/dojo-sim/Dojo.jl.git
[ "MIT" ]
0.7.5
104b6a1a358da9b1348ab7cd66ad685ecaca13d4
docs
3896
# Detailed Mechanism Definition Here, we describe in detail how to define your own dynamical system of [`Mechanism`](@ref). After it has been defined, it will be extremely easy to simulate it, control it, perform trajectory optimization on it, or even policy optimization. We're going to build a tippe top: ```@raw html <img src="../assets/animations/tippetop_real.gif" width="300"/> ``` ```@raw html <img src="../assets/animations/tippetop.gif" width="300"/> ``` ### Build Mechanism We will take a look at the definition of `get_tippetop` in `DojoEnvironments`. This function return a [`Mechanism`](@ref) and takes as input a variety of parameters like the simulation time step, gravity etc. You can add as many parameters you want. This example is typical of what you will find in Dojo. To build the mechanism corresponding to the tippe top, we decompose it into two spherical bodies. Each body has its own spherical contact constraint with the floor. The joint between the two bodies is a `Fixed` joint and the joint between the main body and the [`Origin`](@ref) of the frame is a `Floating` joint. ```julia function get_tippetop(; timestep=0.01, input_scaling=timestep, gravity=-9.81, mass=1, radius=0.5, scale=0.2, color=RGBA(0.9, 0.9, 0.9, 1.0), springs=0, dampers=0, limits=false, joint_limits=Dict(), keep_fixed_joints=false, friction_coefficient=0.4, contact=true, contact_type=:nonlinear, T=Float64) # mechanism origin = Origin{T}(name=:origin) bodies = [ Sphere(radius, mass; name=:sphere1, color), Sphere(radius*scale, mass*scale^3; name=:sphere2, color) ] bodies[1].inertia = Diagonal([1.9, 2.1, 2]) joints = [ JointConstraint(Floating(origin, bodies[1]); name=:floating_joint), JointConstraint(Fixed(bodies[1], bodies[2]; parent_vertex=[0,0,radius]), name = :fixed_joint) ] mechanism = Mechanism(origin, bodies, joints; timestep, gravity, input_scaling) # springs and dampers set_springs!(mechanism.joints, springs) set_dampers!(mechanism.joints, dampers) # joint limits if limits joints = set_limits(mechanism, joint_limits) mechanism = Mechanism(mechanism.origin, mechanism.bodies, joints; gravity, timestep, input_scaling) end # contacts contacts = ContactConstraint{T}[] if contact n = length(bodies) normals = fill(Z_AXIS,n) friction_coefficients = fill(friction_coefficient,n) contact_radii = [radius;radius*scale] contacts = [contacts;contact_constraint(bodies, normals; friction_coefficients, contact_radii, contact_type)] end mechanism = Mechanism(mechanism.origin, mechanism.bodies, mechanism.joints, contacts; gravity, timestep, input_scaling) # zero configuration initialize_tippetop!(mechanism) # construction finished return mechanism end ``` ### Initialize Mechanism The second method that we need to look at is `initialize_tippetop!`. This function initialize the dynamical system to a certain state. This means that we set the position orientation, linear and angular velocity of each body in the mechanism. ```julia function initialize_tippetop!(mechanism::Mechanism{T}; body_position=2*Z_AXIS*mechanism.bodies[1].shape.r, body_orientation=one(Quaternion), body_linear_velocity=zeros(3), body_angular_velocity=[0.0, 0.1, 50.0]) where T # zero state zero_velocities!(mechanism) zero_coordinates!(mechanism) # set desired state value floating_joint = mechanism.joints[1] set_minimal_coordinates!(mechanism, floating_joint, [body_position; Dojo.rotation_vector(body_orientation)]) set_minimal_velocities!(mechanism, floating_joint, [body_linear_velocity; body_angular_velocity]) end ```
Dojo
https://github.com/dojo-sim/Dojo.jl.git
[ "MIT" ]
0.7.5
104b6a1a358da9b1348ab7cd66ad685ecaca13d4
docs
1739
# Defining a Controller Here, we explain how to write a controller and simulate its effect on a dynamical system, i.e., a [`Mechanism`](@ref). We focus on the stabilization of the cartpole, which has two joints but only a single input on the cart. The controller is a method that always takes 2 input arguments: - a [`Mechanism`](@ref), - an integer `k` indicating the current simulation step. For the cartpole, the controller computes the control input based on the current state `x`, the goal state `x_goal` and an LQR controller. The simulation step is not used in this example. There are three ways to apply inputs to the system - set an input directly to a joint - set a set of inputs to all joints of the mechanism - set an external force on bodies ```julia # ### Setup using Dojo using DojoEnvironments # ### Mechanism mechanism = get_mechanism(:cartpole) # ### Controller K = [-0.948838; -2.54837; 48.6627; 10.871] function controller!(mechanism, k) ## Target state x_goal = [0;0; 0.0;0] ## Current state x = get_minimal_state(mechanism) ## Control inputs u = -K' * (x - x_goal) ## 3 ways to set input: ## 1: get joint and set input cart_joint = get_joint(mechanism, :cart_joint) set_input!(cart_joint, [u]) ## 2: set input for all joints at once ## set_input!(mechanism, [u;0]) # need to know joint order ## 3: direct external force on body ## cart = get_body(mechanism, :cart) ## set_external_force!(cart; force=[0;u;0]) end # ### Simulate initialize!(mechanism, :cartpole; position=0, orientation=pi/4) storage = simulate!(mechanism, 10.0, controller!, record=true) # ### Visualize vis = visualize(mechanism, storage) render(vis) ```
Dojo
https://github.com/dojo-sim/Dojo.jl.git
[ "MIT" ]
0.7.5
104b6a1a358da9b1348ab7cd66ad685ecaca13d4
docs
893
# Defining a Simulation Here, we explain how to simulate a dynamical system i.e., a [`Mechanism`](@ref) forward in time. The example that we are trying to replicate the Dzhanibekov effect shown below. ![dzhanibekov](../assets/animations/dzhanibekov_nasa.gif) ```julia # ### Setup using Dojo using DojoEnvironments # ### Get mechanism (check DojoEnvironment/mechanisms files for kwargs) mechanism = get_mechanism(:dzhanibekov; timestep=0.01, gravity=0) # ### Initialize mechanism (check DojoEnvironment/mechanisms files for kwargs) initialize!(mechanism, :dzhanibekov; angular_velocity=[15.0; 0.01; 0.0]) # ### Simulate mechanism storage = simulate!(mechanism, 5, record=true) # ### Visualize mechanism vis = visualize(mechanism, storage) render(vis) ``` And voila! You should see something like this; ```@raw html <img src="../assets/animations/dzhanibekov.gif" width="300"/> ```
Dojo
https://github.com/dojo-sim/Dojo.jl.git
[ "MIT" ]
0.7.5
104b6a1a358da9b1348ab7cd66ad685ecaca13d4
docs
1053
# Gradients Dynamical systems, i.e., `Mechanism`s can be differentiated with respect to current state and control input. The results can be used, for example, for defining a linear controller. As an example, we use the `ControlSystemsBase` package to control the cartpole. ```julia # ### Setup using Dojo using DojoEnvironments using ControlSystemsBase using LinearAlgebra # ### Mechanism mechanism = get_mechanism(:cartpole) # ### Controller x0 = zeros(4) u0 = zeros(2) A, B = get_minimal_gradients!(mechanism, x0, u0) Q = I(4) R = I(1) K = lqr(Discrete,A,B[:,1],Q,R) function controller!(mechanism, k) ## Target state x_goal = [0;0; 0.0;0] ## Current state x = get_minimal_state(mechanism) ## Control inputs u = -K * (x - x_goal) set_input!(mechanism, [u;0]) # input only to cart end # ### Simulate initialize!(mechanism, :cartpole; position=0, orientation=pi/4) storage = simulate!(mechanism, 10.0, controller!, record=true) # ### Visualize vis = visualize(mechanism, storage) render(vis) ```
Dojo
https://github.com/dojo-sim/Dojo.jl.git
[ "MIT" ]
0.7.5
104b6a1a358da9b1348ab7cd66ad685ecaca13d4
docs
365
# Overview You can use `Environment`s to interface `Dojo` to other packages, such as `ReinforcementLearning`. Due to current changes in the `ReinforcementLearning` package, we will provide an updated documentation once the changes are done. However, an experimental implementation of training the cartpole with `ReinforcementLearning` is provided in the examples.
Dojo
https://github.com/dojo-sim/Dojo.jl.git
[ "MIT" ]
0.7.5
104b6a1a358da9b1348ab7cd66ad685ecaca13d4
docs
942
# Reinforcement Learning We have implemented a few learning examples. ## Ant ```@raw html <img src="../assets/animations/ant_ars.gif" width="300"/> ``` Policy optimization is performed using the reinforcement-learning algorithm [augmented random search (ARS)](https://arxiv.org/abs/1803.07055) to optimize static linear policies for locomotion. The insect-like robot has rewards on forward velocity and survival and costs on control usage and contact forces. ## Quadruped ```@raw html <img src="../assets/animations/quadruped.gif" width="300"/> ``` A very basic random-sampling algorithm is used to find parameters for the periodic gait of a quadruped. ## Cartpole ```@raw html <img src="../assets/animations/cartpole_rl.gif" width="300"/> ``` We have modified the cartpole example in the `ReinforcementLearning` package to use `Dojo`'s dynamics. This allows us to combine advanced learning algorithms with accurate dynamics simulation.
Dojo
https://github.com/dojo-sim/Dojo.jl.git
[ "MIT" ]
0.7.5
104b6a1a358da9b1348ab7cd66ad685ecaca13d4
docs
1697
# Simulation Dojo can simulate a number of interesting physical behaviors. We include notebooks (generated upon installation) for the examples below. ## Atlas Drop ```@raw html <img src="../assets/animations/atlas_drop.gif" width="100"/> ``` The humanoid [Atlas](https://www.bostondynamics.com/atlas) is dropped onto a flat surface. Dojo is able to simulate hard contact and prevent interpenetration of the robot's feet with the floor. In comparison, when the same system is simulated in [MuJoCo](https://mujoco.org), **centimeters** of interpenetration occur. ## Friction Cone Comparison ```@raw html <img src="../assets/animations/cone_compare_mujoco.gif" width="300"/> ``` Blocks are simulated with initial velocity before impacting and sliding along a flat surface. We compare Dojo's nonlinear cone (blue) with a linearized approximation (orange) and MuJoCo's default linear cone (magenta). The linearized cones exhibit drift due to the approximation, whereas **Dojo's nonlinear cone produces the expected sliding behavior**. ## Dzhanibekov Effect ```@raw html <img src="../assets/animations/dzhanibekov.gif" width="150"/> ``` Dojo simulates the [unstable rotational motion](https://en.wikipedia.org/wiki/Tennis_racket_theorem) of a rigid body about its second primary moment of inertia. Using [non-Euclidean optimization for quaternions](https://roboticexplorationlab.org/papers/planning_with_attitude.pdf) enables continuous simulation of rotating objects without singularity issues. ## Tippetop ```@raw html <img src="../assets/animations/tippetop.gif" width="300"/> ``` A spinning object oscillates between up and down configurations as a result of its mass distribution.
Dojo
https://github.com/dojo-sim/Dojo.jl.git
[ "MIT" ]
0.7.5
104b6a1a358da9b1348ab7cd66ad685ecaca13d4
docs
1960
# System Identification A [real-world dataset](https://github.com/DAIRLab/contact-nets/tree/main/data) is used to learn the geometric and friction properties of a block being tossed onto a flat surface. Gradient-based optimization is employed to regress parameters and real-to-sim validation is performed. The ground truth system is shown in orange and the learned system in blue. ## Geometry ```@raw html <img src="../assets/animations/box_learning.gif" width="300"/> ``` The eight locations of the block's corners relative to its center of mass are learned. ## Friction ```@raw html <img src="../assets/animations/cone_learning.gif" width="200"/> ``` A friction coefficient, describing a friction cone, is learned for all of the contact points. ## Real-To-Sim ```@raw html <img src="../assets/animations/box_toss.gif" width="300"/> ``` The system parameters are learned to within a ``\pm 5 \%`` error from their ground-truth values. These parameters are then compared to the ground-truth system in simulation. ## Learning The cost function: ``\mathcal{L}(\mathcal{D}, \theta) = \sum_{Z \in \mathcal{D}} L(Z, \theta) = \sum_{Z \in \mathcal{D}} \frac{1}{2} ||s(z_{-}, z, \theta) - z_{+}||_W^2``, is used where ``\mathcal{D}`` is a dataset of trajectories containing tuples ``(z_{-}, z, z_{+})`` of state sequences, with system parameters ``\theta \in \mathbf{R}^p``, and where ``s : \mathbf{Z} \times \mathbf{Z} \times \mathbf{R}^p \rightarrow \mathbf{Z}`` represents the simulator. A quasi-Newton method is employed to optimize the cost function and uses gradients: ``\frac{\partial L}{\partial \theta} = {\frac{\partial s}{\partial \theta}}^T W \Big(s(z_{-}, z, \theta) - z_{+} \Big)``, and the following Gauss-Newton approximation: ``\frac{\partial^2 L}{\partial \theta^2} \approx {\frac{\partial s}{\partial \theta}}^T W \frac{\partial s}{\partial \theta}``, of the cost function Hessian, which only relies on Jacobians from Dojo.
Dojo
https://github.com/dojo-sim/Dojo.jl.git
[ "MIT" ]
0.7.5
104b6a1a358da9b1348ab7cd66ad685ecaca13d4
docs
2065
# Trajectory Optimization !!! info The trajectory optimization examples are outdated and currently not available. Dojo provides dynamics constraints and Jacobians in order to perform trajectory optimization using [iterative LQR](https://github.com/thowell/IterativeLQR.jl). ## Quadruped ```@raw html <img src="../assets/animations/quadruped_min.gif" width="200"/> ``` A [Unitree A1](https://www.unitree.com/products/a1/) takes a number of forward steps. There are costs on a kinematic gait and control usage, as well as an augmented Lagrangian (i.e., soft) constraint on the the robot's final pose. The maximal representation is converted to a minimal one for optimization. Additionally, slack controls are utilized early on to aid the optimizer before being driven to zero by a constraint to achieve a dynamically feasible trajectory. ## Atlas ```@raw html <img src="../assets/animations/atlas_ilqr.gif" width="200"/> ``` The Atlas v5 humanoid (sans arms) takes a number of forward steps. Similar to the quadruped example, there are costs on control effort and deviations from a kinematic plan, a minimal representation is utilized, and the optimizer is aided by slack controls. ## Block ```@raw html <img src="../assets/animations/box_right.gif" width="200"/> ``` A block is moved to a goal location by applying forces to its center of mass. The optimizer is initialized with zero control and utilizes smooth gradients from Dojo to find a motion that overcomes friction to slide towards the goal. ## Raibert Hopper ```@raw html <img src="../assets/animations/hopper_max.gif" width="100"/> ``` A hopping robot, inspired by the [Raibert Hopper](https://dspace.mit.edu/handle/1721.1/6820), is tasked with moving to a goal location. The optimizer finds a single hop trajectory to reach its goal pose. ## Cartpole ```@raw html <img src="../assets/animations/cartpole_max.gif" width="200"/> ``` This classic system is tasked with performing a swing-up. Examples are provided performing optimization with both maximal and minimal representations.
Dojo
https://github.com/dojo-sim/Dojo.jl.git
[ "MIT" ]
0.7.5
104b6a1a358da9b1348ab7cd66ad685ecaca13d4
docs
717
# Dojo.jl examples This directory contains examples using Dojo. The `.jl` files in each subdirectory can be executed directly or they can processed using [Literate.jl](https://github.com/fredrikekre/Literate.jl) to obtain notebooks. Building of the `Dojo` package generates notebooks and they can be run locally by performing the following steps: 1. [install Dojo.jl](https://github.com/dojo-sim/Dojo.jl) 2. [install IJulia](https://github.com/JuliaLang/IJulia.jl) (`add` it to the default project) 3. in the Julia REPL, run (do once) ``` using Pkg Pkg.build("Dojo") ``` 4. interact with notebooks ``` using IJulia, Dojo notebook(dir=joinpath(dirname(pathof(Dojo)), "..", "examples")) ````
Dojo
https://github.com/dojo-sim/Dojo.jl.git
[ "MIT" ]
0.1.0
a1a323a509108883bf94f3056027391c6aef4d04
code
400
__precompile__() module PlotSeis using Printf, SeisIO, PyPlot using Statistics: mean using DSP: spectrogram, time, freq, power import SeisIO: t_expand, μs, t_win export plotseis, uptimes, logspec # Time series plots include("TimeSeries/ts_internals.jl") include("TimeSeries/plotseis.jl") # Spectral plots include("Spectral/logspec.jl") # Other plots include("Other/uptimes.jl") end
PlotSeis
https://github.com/jpjones76/PlotSeis.jl.git
[ "MIT" ]
0.1.0
a1a323a509108883bf94f3056027391c6aef4d04
code
3305
function uptimes_bar(S::SeisData, fmt::String, use_name::Bool, nxt::Int64) xmi = 2^63-1 xma = xmi+1 fig = PyPlot.figure(figsize=[8.0, 6.0], dpi=150) ax = PyPlot.axes([0.20, 0.10, 0.72, 0.85]) for i = 1:S.n if S.fs[i] == 0.0 t = view(S.t[i], :, 2) x = rescaled(S.x[i].-mean(S.x[i]),i) plot(t, x, "ko", markersize = 2.0) else rect_x = Array{Float64,1}(undef, 0) rect_y = Array{Float64,1}(undef, 0) t = t_win(S.t[i], S.fs[i]) for j = 1:size(t,1) ts = Float64(t[j,1]) te = Float64(t[j,2]) append!(rect_x, [ts, te, te, ts, ts]) append!(rect_y, [i-0.48, i-0.48, i+0.48, i+0.48, i-0.48]) end p = fill(rect_x, rect_y, linewidth=1.0, edgecolor="k") end xmi = min(xmi, first(t)) xma = max(xma, last(t)) end PyPlot.title("Channel Uptimes", fontweight="bold", fontsize=13.0, family="serif", color="black") # Y scaling and axis manipulation PyPlot.yticks(1:S.n, map((i) -> replace(i, " " => ""), use_name ? S.name : S.id)) PyPlot.ylim(0.5, S.n+0.5) PyPlot.setp(gca().get_yticklabels(), fontsize=8.0, color="black", fontweight="bold", family="serif") # X scaling and axis manipulation xfmt(xmi, xma, fmt, nxt) PyPlot.setp(gca().get_xticklabels(), fontsize=10.0, color="black", fontweight="bold", family="serif") return fig end function uptimes_sum(S::SeisData, fmt::String, use_name::Bool, nxt::Int64) ntr = sum(S.fs.>0) W = Array{Int64, 1}(undef, 0) for i = 1:S.n S.fs[i] == 0.0 && continue w = div.(t_win(S.t[i], S.fs[i]), 1000000) for i = 1:size(w,1) append!(W, collect(w[i,1]:w[i,2])) end end sort!(W) t = collect(first(W):last(W)) y = zeros(Int64, length(t)) i = 0 j = 1 τ = first(t) while i < length(W) i = i + 1 if W[i] == τ y[j] += 1 else while W[i] != τ j += 1 j > length(t) && break τ = t[j] end y[j] += 1 end end fig = PyPlot.figure(figsize=[8.0, 6.0], dpi=150) step(t.*1000000, y, color="k", linewidth=2.0) # Y scaling and axis manipulation dy = ntr > 24 ? 5.0 : ntr > 19 ? 4.0 : ntr > 14 ? 3.0 : ntr > 9 ? 2.0 : 1.0 PyPlot.ylim(0, ntr) PyPlot.yticks(ntr:-dy:0) PyPlot.ylabel("Active Channels", fontweight="bold", fontsize=12.0, family="serif", color="black") PyPlot.setp(gca().get_yticklabels(), fontsize=10.0, color="black", fontweight="bold", family="serif") # X scaling and axis manipulation xfmt(first(t)*1000000, last(t)*1000000, fmt, nxt) PyPlot.setp(gca().get_xticklabels(), fontsize=10.0, color="black", fontweight="bold", family="serif") return fig end """ uptimes(S[, summed=false]) Bar plot of uptimes for each channel in S. If summed==true, plot uptimes for all channels in S that record timeseries data, scaled so that y=1 corresponds to 100% of channels active. Non-timeseries channels in S are not counted toward the cumulative total in a summed uptime plot. """ function uptimes(S::SeisData; summed::Bool=false, fmt::String="auto", use_name::Bool=false, nxt::Int64=5) if summed fig = uptimes_sum(S, fmt, use_name, nxt) else fig = uptimes_bar(S, fmt, use_name, nxt) end return fig end
PlotSeis
https://github.com/jpjones76/PlotSeis.jl.git
[ "MIT" ]
0.1.0
a1a323a509108883bf94f3056027391c6aef4d04
code
3934
function logspec(S::SeisData, k::Union{Int64,String}; nx::Int64=1024, ov::Float64=0.5, fmin::Real=0.0, fmax::Real=Inf, fmt::String="auto") N_ticks = 5 if isa(k, String) j = findid(k, S) j == 0 && error("No matching ID or no channel at the specified #") else j = k end seis = deepcopy(S[j]) T = eltype(seis.x) unscale!(seis) demean!(seis) taper!(seis) tos = seis.t[1,2] fs = T(seis.fs) # Set some image properties sz = Float64[8.0, 5.0] # Size of image in inches cf = 0.05 # Colorbar fraction cp = 0.02 # Colorbar spacing x0 = 0.14 y0 = 0.12 tsh = 0.13 wid = 0.90-x0 sp = (x0, y0+tsh+cp, wid, 0.98-(y0+tsh+cp)) # Spectrogram plot bounds tp = (x0, y0, wid*(1.0-(cf+cp)), tsh) # Timeseries plot bounds fmax = T(min(fmax, 0.5*fs)) # Maximum frequency to plot # Generate spectrogram if fmin != 0.0 nx = nextpow(2, 4.0/fmin) end no = floor(Int64, ov*nx) sg = spectrogram(seis.x, nx, no, fs=fs) t = Int64.(round.(time(sg).*1.0e6)) .+ tos # Time from start (s) f = T.(collect(freq(sg))) # Frequency (Hz) P = T(10.0)*log10.(power(sg)) # Power (dB) # x ticks xti = first(t) : div(last(t) - first(t), N_ticks-1) : last(t) xtl = fill!(Array{String,1}(undef, length(xti)), "") # truncate P, y i0 = max(2, findfirst(f.≥max(0.5*fs/nx, fmin))) # First sane frequency index i1 = findlast(f.≤fmax) # Last sane frequency index P = P[i0:i1, :] y = log10.(f)[i0:i1] # Remove all -∞ mP = maximum(P) pτ = mP - T(60.0) - eps(T) P[P.<pτ] .= pτ # y ticks f0 = log10(f[i0]) # Minimum frequency to show f1 = log10(f[i1]) # Maximum frequency to show yt = collect(ceil(f0) : 0.5 : floor(f1)) yti = T(10.0) .^ vcat(f0, yt, f1) if fmin < 0.1 ytl = vcat("", [@sprintf("%0.1e", T(10.0)^i) for i in yt], "") else ytl = vcat("", [@sprintf("%0.1f", T(10.0)^i) for i in yt], "") end # Figure h = PyPlot.figure(figsize = sz, dpi=150) # Seismogram plot ax_ts = PyPlot.axes(tp) dt = one(T)/fs tx = t_expand(seis.t, seis.fs) xmax = 1.0*maximum(abs.(seis.x)) ts_xl = @sprintf("%0.2e", xmax) PyPlot.plot(tx, seis.x, linewidth=1.0, color="k") PyPlot.ylim(xmax .*(T(-1.05), T(1.05))) xfmt(round(Int64, first(xti)), round(Int64, last(xti)), fmt, N_ticks) PyPlot.xlabel(ax_ts.get_xlabel(), fontsize=12.0, color="black", fontweight="bold", family="serif") PyPlot.yticks([-xmax, zero(T), xmax], ["-"*ts_xl, "0.00e00", "+"*ts_xl]) PyPlot.setp(ax_ts.get_yticklabels(), fontsize=9.0, color="black", fontweight="bold", family="serif") PyPlot.setp(ax_ts.get_xticklabels(), fontsize=9.0, color="black", fontweight="bold", family="serif") # Note: imshow won't work with unevenly-spaced y-ticks ax_sp = PyPlot.axes(sp) img = pcolormesh(t, y, P, cmap="Spectral_r", shading="goraud") PyPlot.ylabel("Frequency [Hz]", fontweight="bold", fontsize=12.0, family="serif", color="black") PyPlot.ylim(f0, f1) PyPlot.yticks(log10.(yti), ytl) PyPlot.setp(ax_sp.get_yticklabels(), fontsize=9.0, color="black", fontweight="bold", family="serif") PyPlot.xlim(minimum(t), maximum(t)) PyPlot.xticks(xti, xtl) # Set color limits and draw colorbar cl = [mP-60.0, mP] PyPlot.clim(cl) cb = PyPlot.colorbar(label="Power [dB]", use_gridspec=false, fraction=cf, pad=cp) PyPlot.setp(cb.ax.get_yticklabels(), fontsize=9.0, color="black", fontweight="bold", family="serif") cb.set_label("Power [dB]", fontsize=10.0, color="black", fontweight="bold", family="serif") return h end
PlotSeis
https://github.com/jpjones76/PlotSeis.jl.git
[ "MIT" ]
0.1.0
a1a323a509108883bf94f3056027391c6aef4d04
code
1345
""" plotseis(S[, fmt=FMT, use_name=false, n=N]) Renormalized, time-aligned trace plot of data in S.x using timestamps in S.t. Keywords: * fmt=FMT formats x-axis labels using C-language `strftime` format string `FMT`. If unspecified, the format is determined by when data in `S` start and end. * use_name=true uses `S.name`, rather than `S.id`, for labels. * n=N sets the number of X-axis ticks. """ function plotseis(S::SeisData; fmt::String="auto", use_name::Bool=false, nxt::Int64=5) xmi = typemax(Int64) xma = typemin(Int64) fig = PyPlot.figure(figsize=[8.0, 6.0], dpi=150) ax = PyPlot.axes([0.20, 0.10, 0.72, 0.85]) for i = 1:S.n x = rescaled(S.x[i].-mean(S.x[i]),i) if S.fs[i] > 0 t = t_expand(S.t[i], S.fs[i]) plot(t, x, linewidth=1.0) else t = view(S.t[i], :, 2) plot(t, x, "o", linewidth=1, markeredgecolor=[0,0,0]) end xmi = min(xmi, t[1]) xma = max(xma, t[end]) end xfmt(xmi, xma, fmt, nxt) PyPlot.setp(gca().get_yticklabels(), fontsize=8.0, color="black", fontweight="bold", family="serif") PyPlot.setp(gca().get_xticklabels(), fontsize=8.0, color="black", fontweight="bold", family="serif") PyPlot.yticks(1:S.n, map((i) -> replace(i, " " => ""), use_name ? S.name : S.id)) PyPlot.ylim(0.5, S.n+0.5) return fig end
PlotSeis
https://github.com/jpjones76/PlotSeis.jl.git
[ "MIT" ]
0.1.0
a1a323a509108883bf94f3056027391c6aef4d04
code
2030
rescaled(x::Array{Float32,1},i::Int) = Float32(i) .+ x.*(1.0f0/(2.0f0*maximum(abs.(x)))) rescaled(x::Array{Float64,1},i::Int) = Float64(i) .+ x.*(1.0/(2.0*maximum(abs.(x)))) # Formatted X labels function xfmt(xmi::Int64, xma::Int64, fmt::String, N::Int64) dt = (xma-xmi) tzcorr = Libc.TmStruct(time())._11 if fmt == "auto" # timespan < one minute x0 = div(xmi, 1000000) x1 = div(xma, 60000000) if x0 == x1 fmt = "%S" xstr = string("Seconds from %s:00 [UTC]", Libc.strftime("%Y-%m-%d %H:%M", xmi*μs - tzcorr)) else # timespan < one hour x0 = div(x0, 60) x1 = div(x1, 60) if x0 == x1 fmt = "%M:%S" xstr = string("MM:SS from %s:00:00 [UTC]", Libc.strftime("%Y-%m-%d %H", xmi*μs - tzcorr)) else # timespan < one day x0 = div(x0, 24) x1 = div(x1, 24) if x0 == x1 fmt = "%H:%M:%S" xstr = string("Time [UTC], ", Libc.strftime("%Y-%m-%d", xmi*μs - tzcorr)) else # timespan < one year if div(xmi, 31536000000000) == div(xma, 31536000000000) fmt = "%j, %T" xstr = string("JDN (", Libc.strftime("%Y", xmi*μs - tzcorr), "), Time [UTC]") else fmt ="%Y-%m-%d %H:%M:%S" xstr = string("DateTime [UTC]") end end end end # plot!(xlabel = xstr) PyPlot.xlabel(xstr, fontsize=12.0, color="black", fontweight="bold", family="serif") else # plot!(xlabel = string("Time [", replace(fmt, "%" => ""), "]")) PyPlot.xlabel(string("Time [", replace(fmt, "%" => ""), "]"), fontsize=12.0, color="black", fontweight="bold", family="serif") end dt = dt / (N-1) xt = Array{Float64,1}(undef, N) xl = Array{String,1}(undef, N) t = xmi for i = 1:N setindex!(xt, t, i) setindex!(xl, Libc.strftime(fmt, xt[i]*μs), i) t = t + dt end PyPlot.xlim(xmi, xma) PyPlot.xticks(xt, xl) return nothing end
PlotSeis
https://github.com/jpjones76/PlotSeis.jl.git
[ "MIT" ]
0.1.0
a1a323a509108883bf94f3056027391c6aef4d04
code
1693
ENV["MPLBACKEND"]="agg" # no GUI using SeisIO, SeisIO.RandSeis, PlotSeis using Random: randn using Dates: now using Printf: @sprintf path = Base.source_dir() cd(dirname(pathof(PlotSeis))*"/../test") test_start = now() printstyled(stdout, string(test_start, ": tests begin, source_dir = ", path, "/\n"), color=:light_green, bold=true) printstyled("Generating data\n", color=:light_green, bold=true) n = (4,5,10,15,20,23,25) A = Array{SeisData,1}(undef, 12) for i = 1:7 A[i] = randSeisData(n[i]) end S = SeisData(randSeisChannel(s=true)) # timespan crosses a year boundary S.x[1] = randn(200000) S.fs[1] = 50.0 S.t[1] = [1 -100000; 200000 0] A[8] = deepcopy(S) # timespan crosses a day boundary S.t[1] = [1 86300000000; 200000 0] A[9] = deepcopy(S) # timespan crosses an hour boundary S.t[1] = [1 1; 200000 0] A[10] = deepcopy(S) # timespan crosses a minute boundary S.x[1] = rand(120000) S.fs[1] = 1000.0 S.t[1] = [1 1; 120000 0] A[11] = deepcopy(S) # timespan under a minute S.x[1] = randn(2000) S.t[1] = [1 0; 2000 0] S.fs[1] = 4000.0 A[12] = deepcopy(S) printstyled("Testing plots\n", color=:light_green, bold=true) for S in A plotseis(S) uptimes(S) uptimes(S, summed=true) for i=1:3 close() end if length(S.x[1]) ≥ 10000 && S.fs[1] > 0.0 logspec(S, 1, fmin = S.fs[1] > 100.0 ? 1.0 : 0.01) close() end end plotseis(A[9], fmt = "%H:%M:%S") test_end = now() δt = 0.001*(test_end-test_start).value mm = round(Int, div(δt, 60)) ss = rem(δt, 60) printstyled(string(test_end, ": tests end, elapsed time (mm:ss.μμμ) = ", @sprintf("%02i", mm), ":", @sprintf("%06.3f", ss), "\n"), color=:light_green, bold=true)
PlotSeis
https://github.com/jpjones76/PlotSeis.jl.git
[ "MIT" ]
0.1.0
a1a323a509108883bf94f3056027391c6aef4d04
docs
1048
## About the choice of PyPlot PyPlot is not intended as a permanent graphics backend for SeisIO visualization. However, we encountered breaking issues as recently as June 2019 with every other Julia graphics package: * `GR` is unstable, poorly documented, and lacks customization. + In my tests, calling `uptimes` after `plotseis` was >50% likely to cause a segmentation fault and core dump Julia; the reverse was also true. + GR depends on QT as an external back-end; while QT is more standardized than `matplotlib`, many external Linux packages are needed for it to work. * `plotlyjs` is profoundly slow and memory-intensive. + On an Intel(R) Core(TM) i7-7500U CPU @ 2.70GHz with nVidia GeForce 940MX and 12 GB RAM, line plots stall after 8-10 traces per plot and require >30 seconds to reach that point. + Increasing line width to 2.0 when plotting lines with ~10^5 points consumes so much memory that Ubuntu 18.04 hangs, forcing a hard reset. * `plotly` uses browser windows, lacks Julia documentation, and lacks axis customization.
PlotSeis
https://github.com/jpjones76/PlotSeis.jl.git
[ "MIT" ]
0.1.0
a1a323a509108883bf94f3056027391c6aef4d04
docs
1165
# PlotSeis.jl [![Build Status](https://travis-ci.org/jpjones76/PlotSeis.jl.svg?branch=master)](https://travis-ci.org/jpjones76/PlotSeis.jl) [![Build status](https://ci.appveyor.com/api/projects/status/ocilv0u1sy41m934/branch/master?svg=true)](https://ci.appveyor.com/project/jpjones76/PlotSeis-jl/branch/master) [![codecov](https://codecov.io/gh/jpjones76/PlotSeis.jl/branch/master/graph/badge.svg)](https://codecov.io/gh/jpjones76/PlotSeis.jl)[![Coverage Status](https://coveralls.io/repos/github/jpjones76/PlotSeis.jl/badge.svg?branch=master)](https://coveralls.io/github/jpjones76/PlotSeis.jl?branch=master) [![Documentation Status](https://readthedocs.org/projects/plotseisjl/badge/?version=latest)](https://readthedocs.org/projects/plotseisjl/badge/?version=latest) A visualization tool for SeisIO.jl [based on PyPlot](./NOTE.md). ## Installation | [Documentation](http://plotseisjl.readthedocs.io) 1. Ensure Python is installed and working on your machine. 2. [Install matplotlib for Python.](https://matplotlib.org/users/installing.html) 3. Run these commands from the Julia prompt: ``` ] add https://github.com/jpjones76/PlotSeis.jl ^C using PlotSeis ```
PlotSeis
https://github.com/jpjones76/PlotSeis.jl.git
[ "MIT" ]
0.5.1
5be547a8340a28bb5547d46fa10d6bfd02543fc9
code
548
# ------------------------------------------------------------------ # Licensed under the MIT License. See LICENSE in the project root. # ------------------------------------------------------------------ module GeoStatsModels using Meshes using GeoTables using GeoStatsFunctions using LinearAlgebra using Distributions using Combinatorics using Distances using Unitful using Tables using Unitful: AffineQuantity include("models.jl") # utility functions include("utils.jl") export # models NN, IDW, LWR, Polynomial, Kriging end
GeoStatsModels
https://github.com/JuliaEarth/GeoStatsModels.jl.git
[ "MIT" ]
0.5.1
5be547a8340a28bb5547d46fa10d6bfd02543fc9
code
1849
# ------------------------------------------------------------------ # Licensed under the MIT License. See LICENSE in the project root. # ------------------------------------------------------------------ """ IDW(exponent=1, distance=Euclidean()) The inverse distance weighting model introduced in the very early days of geostatistics by Shepard 1968. The weights are computed as `λᵢ = 1 / d(x, xᵢ)ᵉ` for a given `distance` denoted by `d` and `exponent` denoted by `e`. ## References * Shepard 1968. [A two-dimensional interpolation function for irregularly-spaced data](https://dl.acm.org/doi/10.1145/800186.810616) """ struct IDW{E,D} <: GeoStatsModel exponent::E distance::D end IDW(exponent) = IDW(exponent, Euclidean()) IDW() = IDW(1) struct IDWState{D<:AbstractGeoTable} data::D end struct FittedIDW{M<:IDW,S<:IDWState} model::M state::S end status(fitted::FittedIDW) = true #-------------- # FITTING STEP #-------------- function fit(model::IDW, data) # record state state = IDWState(data) # return fitted model FittedIDW(model, state) end #----------------- # PREDICTION STEP #----------------- predict(fitted::FittedIDW, var, uₒ) = idw(fitted, weights(fitted, uₒ), var) predictprob(fitted::FittedIDW, var, uₒ) = Dirac(predict(fitted, var, uₒ)) function idw(fitted::FittedIDW, weights, var) d = fitted.state.data c = Tables.columns(values(d)) z = Tables.getcolumn(c, var) w = weights Σw = sum(w) λ(i) = w[i] / Σw if isinf(Σw) # some distance is zero? z[findfirst(isinf, w)] else sum(i -> λ(i) * z[i], eachindex(z)) end end function weights(fitted::FittedIDW, uₒ) e = fitted.model.exponent δ = fitted.model.distance d = fitted.state.data Ω = domain(d) xₒ = to(centroid(uₒ)) x(i) = to(centroid(Ω, i)) λ(i) = 1 / δ(xₒ, x(i)) ^ e map(λ, 1:nelements(Ω)) end
GeoStatsModels
https://github.com/JuliaEarth/GeoStatsModels.jl.git
[ "MIT" ]
0.5.1
5be547a8340a28bb5547d46fa10d6bfd02543fc9
code
5671
# ------------------------------------------------------------------ # Licensed under the MIT License. See LICENSE in the project root. # ------------------------------------------------------------------ """ KrigingModel A Kriging model (e.g. Simple Kriging). """ abstract type KrigingModel <: GeoStatsModel end """ KrigingState(data, LHS, RHS, VARTYPE) A Kriging state stores information needed to perform estimation at any given geometry. """ mutable struct KrigingState{D<:AbstractGeoTable,F<:Factorization,T,V} data::D LHS::F RHS::Vector{T} VARTYPE::V end """ KrigingWeights(λ, ν) An object storing Kriging weights `λ` and Lagrange multipliers `ν`. """ struct KrigingWeights{T<:Real,A<:AbstractVector{T}} λ::A ν::A end """ FittedKriging(model, state) An object that can be used for making predictions using the parameters in Kriging `model` and the current Kriging `state`. """ struct FittedKriging{M<:KrigingModel,S<:KrigingState} model::M state::S end status(fitted::FittedKriging) = issuccess(fitted.state.LHS) #-------------- # FITTING STEP #-------------- function fit(model::KrigingModel, data) # variogram and domain γ = model.γ D = domain(data) # build Kriging system LHS = lhs(model, D) RHS = Vector{eltype(LHS)}(undef, size(LHS, 1)) # factorize LHS FLHS = factorize(model, LHS) # variance type VARTYPE = GeoStatsFunctions.returntype(γ, first(D), first(D)) # record Kriging state state = KrigingState(data, FLHS, RHS, VARTYPE) # return fitted model FittedKriging(model, state) end """ lhs(model, domain) Return LHS of Kriging system for the elements in the `domain`. """ function lhs(model::KrigingModel, domain) γ = model.γ nobs = nelements(domain) ncon = nconstraints(model) # pre-allocate memory for LHS u = first(domain) V² = GeoStatsFunctions.returntype(γ, u, u) m = nobs + ncon G = Matrix{V²}(undef, m, m) # set variogram/covariance block GeoStatsFunctions.pairwise!(G, γ, domain) if isstationary(γ) σ² = sill(γ) for j in 1:nobs, i in 1:nobs @inbounds G[i, j] = σ² - G[i, j] end end # strip units if necessary LHS = ustrip.(G) # set blocks of constraints set_constraints_lhs!(model, LHS, domain) LHS end """ nconstraints(model) Return number of constraints for Kriging `model`. """ function nconstraints end """ set_constraints_lhs!(model, LHS, X) Set constraints in LHS of Kriging system. """ function set_constraints_lhs! end """ factorize(model, LHS) Factorize LHS of Kriging system with appropriate factorization method. """ factorize(::KrigingModel, LHS) = bunchkaufman(Symmetric(LHS), check=false) #----------------- # PREDICTION STEP #----------------- predict(fitted::FittedKriging, var, uₒ) = predictmean(fitted, weights(fitted, uₒ), var) function predictprob(fitted::FittedKriging, var, uₒ) w = weights(fitted, uₒ) μ = predictmean(fitted, w, var) σ² = predictvar(fitted, w) Normal(μ, √σ²) end """ predictmean(fitted, var, weights) Posterior mean of `fitted` Kriging model for variable `var` with Kriging `weights`. """ function predictmean(fitted::FittedKriging, weights::KrigingWeights, var) d = fitted.state.data c = Tables.columns(values(d)) z = Tables.getcolumn(c, var) λ = weights.λ sum(i -> λ[i] * z[i], eachindex(λ, z)) end """ predictvar(fitted, var, weights) Posterior variance of `fitted` Kriging model for variable `var` with Kriging `weights`. """ function predictvar(fitted::FittedKriging, weights::KrigingWeights) γ = fitted.model.γ b = fitted.state.RHS V² = fitted.state.VARTYPE λ = weights.λ ν = weights.ν # compute b⋅[λ;ν] n = length(λ) m = length(b) c₁ = view(b, 1:n) ⋅ λ c₂ = view(b, (n + 1):m) ⋅ ν c = c₁ + c₂ σ² = isstationary(γ) ? sill(γ) - V²(c) : V²(c) max(zero(V²), σ²) end """ weights(model, uₒ) Weights λ (and Lagrange multipliers ν) for the Kriging `model` at geometry `uₒ`. """ function weights(fitted::FittedKriging, uₒ) nobs = nrow(fitted.state.data) set_rhs!(fitted, uₒ) # solve Kriging system s = fitted.state.LHS \ fitted.state.RHS λ = view(s, 1:nobs) ν = view(s, (nobs + 1):length(s)) KrigingWeights(λ, ν) end """ set_rhs!(model, uₒ) Set RHS of Kriging system at geometry `uₒ`. """ function set_rhs!(fitted::FittedKriging, uₒ) γ = fitted.model.γ dom = domain(fitted.state.data) nel = nelements(dom) RHS = fitted.state.RHS # RHS variogram/covariance g = map(u -> γ(u, uₒ), dom) RHS[1:nel] .= ustrip.(g) if isstationary(γ) σ² = ustrip(sill(γ)) RHS[1:nel] .= σ² .- RHS[1:nel] end set_constraints_rhs!(fitted, uₒ) end """ set_constraints_rhs!(model, xₒ) Set constraints in RHS of Kriging system. """ function set_constraints_rhs! end # ---------------- # IMPLEMENTATIONS # ---------------- include("krig/simple.jl") include("krig/ordinary.jl") include("krig/universal.jl") include("krig/externaldrift.jl") """ Kriging(γ) Equivalent to [`OrdinaryKriging`](@ref) with variogram `γ`. Kriging(γ, μ) Equivalent to [`SimpleKriging`](@ref) with variogram `γ` and constant mean `μ`. Kriging(γ, deg, dim) Equivalent to [`UniversalKriging`](@ref) with variogram `γ` and `deg`-order polynomial in `dim`-dimensinal space. Kriging(γ, drifts) Equivalent to [`ExternalDriftKriging`](@ref) with variogram `γ` and `drifts` functions. Please check the docstring of corresponding models for more details. """ Kriging(γ) = OrdinaryKriging(γ) Kriging(γ, μ::Number) = SimpleKriging(γ, μ) Kriging(γ, deg::Int, dim::Int) = UniversalKriging(γ, deg, dim) Kriging(γ, drifts::AbstractVector) = ExternalDriftKriging(γ, drifts)
GeoStatsModels
https://github.com/JuliaEarth/GeoStatsModels.jl.git
[ "MIT" ]
0.5.1
5be547a8340a28bb5547d46fa10d6bfd02543fc9
code
2734
# ------------------------------------------------------------------ # Licensed under the MIT License. See LICENSE in the project root. # ------------------------------------------------------------------ """ LWR(weightfun=h -> exp(-3 * h^2), distance=Euclidean()) The locally weighted regression (a.k.a. LOESS) model introduced by Cleveland 1979. It is the most natural generalization of [`IDW`](@ref) in which one is allowed to use a custom weight function instead of distance-based weights. ## References * Stone 1977. [Consistent non-parametric regression](https://tinyurl.com/4da68xxf) * Cleveland 1979. [Robust locally weighted regression and smoothing scatterplots](https://www.tandfonline.com/doi/abs/10.1080/01621459.1979.10481038) * Cleveland & Grosse 1991. [Computational methods for local regression](https://link.springer.com/article/10.1007/BF01890836) """ struct LWR{F,D} <: GeoStatsModel weightfun::F distance::D end LWR(weightfun) = LWR(weightfun, Euclidean()) LWR() = LWR(h -> exp(-3 * h ^ 2)) mutable struct LWRState{D<:AbstractGeoTable,T} data::D X::T end struct FittedLWR{M<:LWR,S<:LWRState} model::M state::S end status(fitted::FittedLWR) = true #-------------- # FITTING STEP #-------------- function fit(model::LWR, data) Ω = domain(data) n = nelements(Ω) x(i) = to(centroid(Ω, i)) # coordinates matrix X = mapreduce(x, hcat, 1:n) X = [ones(eltype(X), n) X'] # record state state = LWRState(data, X) # return fitted model FittedLWR(model, state) end #----------------- # PREDICTION STEP #----------------- predict(fitted::FittedLWR, var, uₒ) = predictmean(fitted, var, uₒ) function predictprob(fitted::FittedLWR, var, uₒ) X, W, A, x, z = matrices(fitted, var, uₒ) μ = lwrmean(X, W, A, x, z) σ² = lwrvar(X, W, A, x) Normal(μ, √σ²) end function predictmean(fitted::FittedLWR, var, uₒ) X, W, A, x, z = matrices(fitted, var, uₒ) lwrmean(X, W, A, x, z) end function matrices(fitted::FittedLWR, var, uₒ) d = fitted.state.data c = Tables.columns(values(d)) z = Tables.getcolumn(c, var) u = unit(eltype(fitted.state.X)) X = ustrip.(fitted.state.X) W = wmatrix(fitted, uₒ) A = X' * W * X xₒ = ustrip.(u, to(centroid(uₒ))) x = [one(eltype(xₒ)); xₒ] X, W, A, x, z end function wmatrix(fitted::FittedLWR, uₒ) w = fitted.model.weightfun δ = fitted.model.distance d = fitted.state.data Ω = domain(d) n = nelements(Ω) xₒ = to(centroid(uₒ)) x(i) = to(centroid(Ω, i)) δs = map(i -> δ(xₒ, x(i)), 1:n) ws = w.(δs / maximum(δs)) Diagonal(ws) end function lwrmean(X, W, A, x, z) θ = A \ X' * (W * z) sum(i -> x[i] * θ[i], eachindex(x, θ)) end function lwrvar(X, W, A, x) r = W * X * (A \ x) norm(r) end
GeoStatsModels
https://github.com/JuliaEarth/GeoStatsModels.jl.git
[ "MIT" ]
0.5.1
5be547a8340a28bb5547d46fa10d6bfd02543fc9
code
1072
# ------------------------------------------------------------------ # Licensed under the MIT License. See LICENSE in the project root. # ------------------------------------------------------------------ """ GeoStatsModel A geostatistical model that predicts variables over geometries of a geospatial domain that are in between other geometries with samples. """ abstract type GeoStatsModel end """ fit(model, data) Fit `model` to geospatial `data` and return a fitted model. """ function fit end """ predict(model, var, uₒ) Predict variable `var` at geometry `uₒ` with given `model`. """ function predict end """ predictprob(model, var, uₒ) Predict distribution of variable `var` at geometry `uₒ` with given `model`. """ function predictprob end """ status(fitted) Return the status of the `fitted` model. (e.g. the factorization of the linear system was successful) """ function status end # ---------------- # IMPLEMENTATIONS # ---------------- include("nn.jl") include("idw.jl") include("lwr.jl") include("poly.jl") include("krig.jl")
GeoStatsModels
https://github.com/JuliaEarth/GeoStatsModels.jl.git
[ "MIT" ]
0.5.1
5be547a8340a28bb5547d46fa10d6bfd02543fc9
code
1278
# ------------------------------------------------------------------ # Licensed under the MIT License. See LICENSE in the project root. # ------------------------------------------------------------------ """ NN(distance=Euclidean()) A model that assigns the value of the nearest observation. """ struct NN{D} <: GeoStatsModel distance::D end NN() = NN(Euclidean()) struct NNState{D<:AbstractGeoTable} data::D end struct FittedNN{M<:NN,S<:NNState} model::M state::S end status(fitted::FittedNN) = true #-------------- # FITTING STEP #-------------- function fit(model::NN, data) # record state state = NNState(data) # return fitted model FittedNN(model, state) end #----------------- # PREDICTION STEP #----------------- predict(fitted::FittedNN, var, uₒ) = nn(fitted, distances(fitted, uₒ), var) predictprob(fitted::FittedNN, var, uₒ) = Dirac(predict(fitted, var, uₒ)) function nn(fitted::FittedNN, distances, var) d = fitted.state.data c = Tables.columns(values(d)) z = Tables.getcolumn(c, var) z[argmin(distances)] end function distances(fitted::FittedNN, uₒ) δ = fitted.model.distance d = fitted.state.data Ω = domain(d) xₒ = to(centroid(uₒ)) x(i) = to(centroid(Ω, i)) λ(i) = δ(xₒ, x(i)) map(λ, 1:nelements(Ω)) end
GeoStatsModels
https://github.com/JuliaEarth/GeoStatsModels.jl.git
[ "MIT" ]
0.5.1
5be547a8340a28bb5547d46fa10d6bfd02543fc9
code
1895
# ------------------------------------------------------------------ # Licensed under the MIT License. See LICENSE in the project root. # ------------------------------------------------------------------ """ Polynomial(degree=1) A polynomial model with coefficients obtained via regression. """ struct Polynomial <: GeoStatsModel degree::Int end Polynomial() = Polynomial(1) struct PolynomialState{D,U} coeffs::D lenunit::U end struct FittedPolynomial{M<:Polynomial,S<:PolynomialState} model::M state::S end status(fitted::FittedPolynomial) = true #-------------- # FITTING STEP #-------------- function fit(model::Polynomial, data) # retrieve parameters d = model.degree D = domain(data) # multivariate Vandermonde matrix x(i) = ustrip.(to(centroid(D, i))) xs = (x(i) for i in 1:nelements(D)) V = vandermonde(xs, d) # regression matrix P = V'V \ V' # regression coefficients cols = Tables.columns(values(data)) vars = Tables.columnnames(cols) coeffs = map(vars) do var P * Tables.getcolumn(cols, var) end # length units of coordinates lenunit = unit(Meshes.lentype(D)) # record state state = PolynomialState(Dict(vars .=> coeffs), lenunit) # return fitted model FittedPolynomial(model, state) end #----------------- # PREDICTION STEP #----------------- predict(fitted::FittedPolynomial, var, uₒ) = evalpoly(fitted, var, uₒ) predictprob(fitted::FittedPolynomial, var, uₒ) = Dirac(predict(fitted, var, uₒ)) function evalpoly(fitted::FittedPolynomial, var, uₒ) θ = fitted.state.coeffs u = fitted.state.lenunit d = fitted.model.degree xₒ = ustrip.(u, to(centroid(uₒ))) V = vandermonde((xₒ,), d) first(V * θ[var]) end function vandermonde(xs, d) x = first(xs) n = length(x) es = Iterators.flatten(multiexponents(n, d) for d in 0:d) ps = [[prod(x .^ e) for x in xs] for e in es] reduce(hcat, ps) end
GeoStatsModels
https://github.com/JuliaEarth/GeoStatsModels.jl.git
[ "MIT" ]
0.5.1
5be547a8340a28bb5547d46fa10d6bfd02543fc9
code
4024
# ------------------------------------------------------------------ # Licensed under the MIT License. See LICENSE in the project root. # ------------------------------------------------------------------ function fitpredict( model::GeoStatsModel, geotable::AbstractGeoTable, pdomain::Domain; path=LinearPath(), point=true, prob=false, neighbors=true, minneighbors=1, maxneighbors=10, distance=Euclidean(), neighborhood=nothing ) if neighbors _fitpredictneigh(model, geotable, pdomain, path, point, prob, minneighbors, maxneighbors, distance, neighborhood) else _fitpredictall(model, geotable, pdomain, path, point, prob) end end function _fitpredictall(model, geotable, pdomain, path, point, prob) table = values(geotable) ddomain = domain(geotable) vars = Tables.schema(table).names # adjust data data = if point pset = PointSet(centroid(ddomain, i) for i in 1:nelements(ddomain)) _adjustunits(georef(values(geotable), pset)) else _adjustunits(geotable) end # prediction order inds = traverse(pdomain, path) # predict function predfun = prob ? predictprob : predict # fit model to data fmodel = fit(model, data) # predict variable values function pred(var) map(inds) do ind geom = point ? centroid(pdomain, ind) : pdomain[ind] predfun(fmodel, var, geom) end end pairs = (var => pred(var) for var in vars) newtab = (; pairs...) |> Tables.materializer(table) georef(newtab, pdomain) end function _fitpredictneigh( model, geotable, pdomain, path, point, prob, minneighbors, maxneighbors, distance, neighborhood ) table = values(geotable) ddomain = domain(geotable) vars = Tables.schema(table).names # adjust data data = if point pset = PointSet(centroid(ddomain, i) for i in 1:nelements(ddomain)) _adjustunits(georef(values(geotable), pset)) else _adjustunits(geotable) end # fix neighbors limits nobs = nrow(data) if maxneighbors > nobs || maxneighbors < 1 maxneighbors = nobs end if minneighbors > maxneighbors || minneighbors < 1 minneighbors = 1 end # determine bounded search method searcher = if isnothing(neighborhood) # nearest neighbor search with a metric KNearestSearch(ddomain, maxneighbors; metric=distance) else # neighbor search with ball neighborhood KBallSearch(ddomain, maxneighbors, neighborhood) end # pre-allocate memory for neighbors neighbors = Vector{Int}(undef, maxneighbors) # prediction order inds = traverse(pdomain, path) # predict function predfun = prob ? predictprob : predict # predict variable values function pred(var) map(inds) do ind # centroid of estimation center = centroid(pdomain, ind) # find neighbors with data nneigh = search!(neighbors, center, searcher) # predict if enough neighbors if nneigh ≥ minneighbors # final set of neighbors ninds = view(neighbors, 1:nneigh) # view neighborhood with data samples = view(data, ninds) # fit model to samples fmodel = fit(model, samples) # save prediction geom = point ? center : pdomain[ind] predfun(fmodel, var, geom) else # missing prediction missing end end end pairs = (var => pred(var) for var in vars) newtab = (; pairs...) |> Tables.materializer(table) georef(newtab, pdomain) end #-------------- # ADJUST UNITS #-------------- function _adjustunits(geotable::AbstractGeoTable) dom = domain(geotable) tab = values(geotable) cols = Tables.columns(tab) vars = Tables.columnnames(cols) pairs = (var => _absunit(Tables.getcolumn(cols, var)) for var in vars) newtab = (; pairs...) |> Tables.materializer(tab) georef(newtab, dom) end _absunit(x) = _absunit(nonmissingtype(eltype(x)), x) _absunit(::Type, x) = x function _absunit(::Type{Q}, x) where {Q<:AffineQuantity} u = absoluteunit(unit(Q)) map(v -> uconvert(u, v), x) end
GeoStatsModels
https://github.com/JuliaEarth/GeoStatsModels.jl.git
[ "MIT" ]
0.5.1
5be547a8340a28bb5547d46fa10d6bfd02543fc9
code
1541
# ------------------------------------------------------------------ # Licensed under the MIT License. See LICENSE in the project root. # ------------------------------------------------------------------ """ ExternalDriftKriging(γ, drifts) External Drift Kriging with variogram model `γ` and external `drifts` functions. ### Notes * External drift functions should be smooth * Kriging system with external drift is often unstable * Include a constant drift (e.g. `x->1`) for unbiased estimation * [`OrdinaryKriging`](@ref) is recovered for `drifts = [x->1]` * For polynomial mean, see [`UniversalKriging`](@ref) """ struct ExternalDriftKriging{G<:Variogram,D} <: KrigingModel γ::G drifts::Vector{D} end nconstraints(model::ExternalDriftKriging) = length(model.drifts) function set_constraints_lhs!(model::ExternalDriftKriging, LHS::AbstractMatrix, domain) drifts = model.drifts ndrifts = length(drifts) nobs = nelements(domain) # set external drift blocks for i in 1:nobs x = to(centroid(domain, i)) for j in 1:ndrifts LHS[nobs + j, i] = drifts[j](x) LHS[i, nobs + j] = LHS[nobs + j, i] end end # set zero block LHS[(nobs + 1):end, (nobs + 1):end] .= zero(eltype(LHS)) nothing end function set_constraints_rhs!(fitted::FittedKriging{<:ExternalDriftKriging}, uₒ) drifts = fitted.model.drifts RHS = fitted.state.RHS nobs = nrow(fitted.state.data) # set external drift xₒ = to(centroid(uₒ)) for (j, m) in enumerate(drifts) RHS[nobs + j] = m(xₒ) end nothing end
GeoStatsModels
https://github.com/JuliaEarth/GeoStatsModels.jl.git
[ "MIT" ]
0.5.1
5be547a8340a28bb5547d46fa10d6bfd02543fc9
code
713
# ------------------------------------------------------------------ # Licensed under the MIT License. See LICENSE in the project root. # ------------------------------------------------------------------ """ OrdinaryKriging(γ) Ordinary Kriging with variogram model `γ`. """ struct OrdinaryKriging{G<:Variogram} <: KrigingModel γ::G end nconstraints(::OrdinaryKriging) = 1 function set_constraints_lhs!(::OrdinaryKriging, LHS::AbstractMatrix, domain) T = eltype(LHS) LHS[end, :] .= one(T) LHS[:, end] .= one(T) LHS[end, end] = zero(T) nothing end function set_constraints_rhs!(fitted::FittedKriging{<:OrdinaryKriging}, uₒ) RHS = fitted.state.RHS RHS[end] = one(eltype(RHS)) nothing end
GeoStatsModels
https://github.com/JuliaEarth/GeoStatsModels.jl.git
[ "MIT" ]
0.5.1
5be547a8340a28bb5547d46fa10d6bfd02543fc9
code
1117
# ------------------------------------------------------------------ # Licensed under the MIT License. See LICENSE in the project root. # ------------------------------------------------------------------ """ SimpleKriging(γ, μ) Simple Kriging with variogram model `γ` and constant mean `μ`. ### Notes * Simple Kriging requires stationary variograms """ struct SimpleKriging{G<:Variogram,V} <: KrigingModel # input fields γ::G μ::V function SimpleKriging{G,V}(γ, μ) where {G<:Variogram,V} @assert isstationary(γ) "Simple Kriging requires stationary variogram" new(γ, μ) end end SimpleKriging(γ, μ) = SimpleKriging{typeof(γ),typeof(μ)}(γ, μ) nconstraints(::SimpleKriging) = 0 set_constraints_lhs!(::SimpleKriging, LHS::AbstractMatrix, domain) = nothing set_constraints_rhs!(::FittedKriging{<:SimpleKriging}, uₒ) = nothing function predictmean(fitted::FittedKriging{<:SimpleKriging}, weights::KrigingWeights, var) μ = fitted.model.μ d = fitted.state.data c = Tables.columns(values(d)) z = Tables.getcolumn(c, var) λ = weights.λ y = [zᵢ - μ for zᵢ in z] μ + sum(λ .* y) end
GeoStatsModels
https://github.com/JuliaEarth/GeoStatsModels.jl.git
[ "MIT" ]
0.5.1
5be547a8340a28bb5547d46fa10d6bfd02543fc9
code
2240
# ------------------------------------------------------------------ # Licensed under the MIT License. See LICENSE in the project root. # ------------------------------------------------------------------ """ UniversalKriging(γ, degree, dim) Universal Kriging with variogram model `γ` and polynomial `degree` on a geospatial domain of dimension `dim`. ### Notes * [`OrdinaryKriging`](@ref) is recovered for 0th degree polynomial * For non-polynomial mean, see [`ExternalDriftKriging`](@ref) """ struct UniversalKriging{G<:Variogram} <: KrigingModel γ::G degree::Int dim::Int exponents::Matrix{Int} function UniversalKriging{G}(γ, degree, dim) where {G<:Variogram} @assert degree ≥ 0 "degree must be nonnegative" @assert dim > 0 "dimension must be positive" exponents = UKexps(degree, dim) new(γ, degree, dim, exponents) end end UniversalKriging(γ, degree, dim) = UniversalKriging{typeof(γ)}(γ, degree, dim) function UKexps(degree::Int, dim::Int) # multinomial expansion expmats = [hcat(collect(multiexponents(dim, d))...) for d in 0:degree] exponents = hcat(expmats...) # sort expansion for better conditioned Kriging matrices sorted = sortperm(vec(maximum(exponents, dims=1)), rev=true) exponents[:, sorted] end nconstraints(model::UniversalKriging) = size(model.exponents, 2) function set_constraints_lhs!(model::UniversalKriging, LHS::AbstractMatrix, domain) exponents = model.exponents nobs = nelements(domain) nterms = size(exponents, 2) # set polynomial drift blocks for i in 1:nobs x = ustrip.(to(centroid(domain, i))) for j in 1:nterms LHS[nobs + j, i] = prod(x .^ exponents[:, j]) LHS[i, nobs + j] = LHS[nobs + j, i] end end # set zero block LHS[(nobs + 1):end, (nobs + 1):end] .= zero(eltype(LHS)) nothing end function set_constraints_rhs!(fitted::FittedKriging{<:UniversalKriging}, uₒ) exponents = fitted.model.exponents RHS = fitted.state.RHS dom = domain(fitted.state.data) nobs = nrow(fitted.state.data) nterms = size(exponents, 2) # set polynomial drift u = unit(Meshes.lentype(dom)) xₒ = ustrip.(u, to(centroid(uₒ))) for j in 1:nterms RHS[nobs + j] = prod(xₒ .^ exponents[:, j]) end nothing end
GeoStatsModels
https://github.com/JuliaEarth/GeoStatsModels.jl.git
[ "MIT" ]
0.5.1
5be547a8340a28bb5547d46fa10d6bfd02543fc9
code
659
@testset "IDW" begin @testset "Unitful" begin d = georef((; z=[1.0, 0.0, 1.0]u"K")) idw = GeoStatsModels.fit(IDW(), d) pred = GeoStatsModels.predict(idw, :z, Point(0.0)) @test unit(pred) == u"K" # affine units d = georef((; z=[1.0, 0.0, 1.0]u"°C")) idw = GeoStatsModels.fit(IDW(), d) #pred = GeoStatsModels.predict(idw, :z, Point(0.0)) #@test unit(pred) == u"K" end @testset "CoDa" begin d = georef((; z=[Composition(0.1, 0.2), Composition(0.3, 0.4), Composition(0.5, 0.6)])) idw = GeoStatsModels.fit(IDW(), d) pred = GeoStatsModels.predict(idw, :z, Point(0.0)) @test pred isa Composition end end
GeoStatsModels
https://github.com/JuliaEarth/GeoStatsModels.jl.git
[ "MIT" ]
0.5.1
5be547a8340a28bb5547d46fa10d6bfd02543fc9
code
10627
@testset "Kriging" begin rng = StableRNG(2024) tol = 10 * eps(Float64) SK = GeoStatsModels.SimpleKriging OK = GeoStatsModels.OrdinaryKriging UK = GeoStatsModels.UniversalKriging DK = GeoStatsModels.ExternalDriftKriging @testset "Basics" begin dim = 3 nobs = 10 cmat = 10 * rand(rng, dim, nobs) pset = PointSet(Tuple.(eachcol(cmat))) data = georef((z=rand(rng, nobs),), pset) γ = GaussianVariogram(sill=1.0, range=1.0, nugget=0.0) simkrig = SK(γ, mean(data.z)) ordkrig = OK(γ) unikrig = UK(γ, 1, 3) drikrig = DK(γ, [x -> 1.0]) sk = GeoStatsModels.fit(simkrig, data) ok = GeoStatsModels.fit(ordkrig, data) uk = GeoStatsModels.fit(unikrig, data) dk = GeoStatsModels.fit(drikrig, data) # Kriging is an interpolator for j in 1:nobs skdist = GeoStatsModels.predictprob(sk, :z, pset[j]) okdist = GeoStatsModels.predictprob(ok, :z, pset[j]) ukdist = GeoStatsModels.predictprob(uk, :z, pset[j]) dkdist = GeoStatsModels.predictprob(dk, :z, pset[j]) # mean checks @test mean(skdist) ≈ data.z[j] @test mean(okdist) ≈ data.z[j] @test mean(ukdist) ≈ data.z[j] @test mean(dkdist) ≈ data.z[j] # variance checks @test var(skdist) ≥ 0 @test var(okdist) ≥ 0 @test var(ukdist) ≥ 0 @test var(dkdist) ≥ 0 @test var(skdist) ≤ var(okdist) + tol end # save results on a particular location pₒ pₒ = rand(rng, Point) skdist = GeoStatsModels.predictprob(sk, :z, pₒ) okdist = GeoStatsModels.predictprob(ok, :z, pₒ) ukdist = GeoStatsModels.predictprob(uk, :z, pₒ) dkdist = GeoStatsModels.predictprob(dk, :z, pₒ) # Kriging is translation-invariant h = to(rand(rng, Point)) pset_h = PointSet([pset[i] + h for i in 1:nelements(pset)]) data_h = georef((z=data.z,), pset_h) sk_h = GeoStatsModels.fit(SK(γ, mean(data_h.z)), data_h) ok_h = GeoStatsModels.fit(OK(γ), data_h) uk_h = GeoStatsModels.fit(UK(γ, 1, 3), data_h) dk_h = GeoStatsModels.fit(DK(γ, [x -> 1.0]), data_h) skdist_h = GeoStatsModels.predictprob(sk_h, :z, pₒ + h) okdist_h = GeoStatsModels.predictprob(ok_h, :z, pₒ + h) ukdist_h = GeoStatsModels.predictprob(uk_h, :z, pₒ + h) dkdist_h = GeoStatsModels.predictprob(dk_h, :z, pₒ + h) @test mean(skdist_h) ≈ mean(skdist) @test var(skdist_h) ≈ var(skdist) @test mean(okdist_h) ≈ mean(okdist) @test var(okdist_h) ≈ var(okdist) @test mean(ukdist_h) ≈ mean(ukdist) @test var(ukdist_h) ≈ var(ukdist) @test mean(dkdist_h) ≈ mean(dkdist) @test var(dkdist_h) ≈ var(dkdist) # Kriging mean is invariant under covariance scaling # Kriging variance is multiplied by the same factor α = 2.0 γ_α = GaussianVariogram(sill=α, range=1.0, nugget=0.0) sk_α = GeoStatsModels.fit(SK(γ_α, mean(data.z)), data) ok_α = GeoStatsModels.fit(OK(γ_α), data) uk_α = GeoStatsModels.fit(UK(γ_α, 1, 3), data) dk_α = GeoStatsModels.fit(DK(γ_α, [x -> 1.0]), data) skdist_α = GeoStatsModels.predictprob(sk_α, :z, pₒ) okdist_α = GeoStatsModels.predictprob(ok_α, :z, pₒ) ukdist_α = GeoStatsModels.predictprob(uk_α, :z, pₒ) dkdist_α = GeoStatsModels.predictprob(dk_α, :z, pₒ) @test mean(skdist_α) ≈ mean(skdist) @test var(skdist_α) ≈ α * var(skdist) @test mean(okdist_α) ≈ mean(okdist) @test var(okdist_α) ≈ α * var(okdist) @test mean(ukdist_α) ≈ mean(ukdist) @test var(ukdist_α) ≈ α * var(ukdist) @test mean(dkdist_α) ≈ mean(dkdist) @test var(dkdist_α) ≈ α * var(dkdist) # Kriging variance is a function of data configuration, not data values δ = rand(rng, nobs) data_δ = georef((z=data.z .+ δ,), pset) sk_δ = GeoStatsModels.fit(SK(γ, mean(data_δ.z)), data_δ) ok_δ = GeoStatsModels.fit(OK(γ), data_δ) uk_δ = GeoStatsModels.fit(UK(γ, 1, 3), data_δ) dk_δ = GeoStatsModels.fit(DK(γ, [x -> 1.0]), data_δ) skdist_δ = GeoStatsModels.predictprob(sk_δ, :z, pₒ) okdist_δ = GeoStatsModels.predictprob(ok_δ, :z, pₒ) ukdist_δ = GeoStatsModels.predictprob(uk_δ, :z, pₒ) dkdist_δ = GeoStatsModels.predictprob(dk_δ, :z, pₒ) @test var(skdist_δ) ≈ var(skdist) @test var(okdist_δ) ≈ var(okdist) @test var(ukdist_δ) ≈ var(ukdist) @test var(dkdist_δ) ≈ var(dkdist) # Ordinary Kriging ≡ Universal Kriging with 0th degree drift uk_0 = GeoStatsModels.fit(UK(γ, 0, 3), data) okdist = GeoStatsModels.predictprob(ok, :z, pₒ) ukdist_0 = GeoStatsModels.predictprob(uk_0, :z, pₒ) @test mean(okdist) ≈ mean(ukdist_0) @test var(okdist) ≈ var(ukdist_0) # Ordinary Kriging ≡ Kriging with constant external drift dk_c = GeoStatsModels.fit(DK(γ, [x -> 1.0]), data) okdist = GeoStatsModels.predictprob(ok, :z, pₒ) dkdist_c = GeoStatsModels.predictprob(dk_c, :z, pₒ) @test mean(okdist) ≈ mean(dkdist_c) @test var(okdist) ≈ var(dkdist_c) end # non-stationary variograms are allowed @testset "Stationarity" begin dim = 3 nobs = 10 cmat = 10 * rand(rng, dim, nobs) pset = PointSet(Tuple.(eachcol(cmat))) data = georef((z=rand(rng, nobs),), pset) γ_ns = PowerVariogram() ok_ns = GeoStatsModels.fit(OK(γ_ns), data) uk_ns = GeoStatsModels.fit(UK(γ_ns, 1, 3), data) dk_ns = GeoStatsModels.fit(DK(γ_ns, [x -> 1.0]), data) for j in 1:nobs okdist_ns = GeoStatsModels.predictprob(ok_ns, :z, pset[j]) ukdist_ns = GeoStatsModels.predictprob(uk_ns, :z, pset[j]) dkdist_ns = GeoStatsModels.predictprob(dk_ns, :z, pset[j]) # mean checks @test mean(okdist_ns) ≈ data.z[j] @test mean(ukdist_ns) ≈ data.z[j] @test mean(dkdist_ns) ≈ data.z[j] # variance checks @test var(okdist_ns) ≥ 0 @test var(ukdist_ns) ≥ 0 @test var(dkdist_ns) ≥ 0 end end # floating point checks @testset "Floats" begin dim = 3 nobs = 10 X_f = rand(rng, Float32, dim, nobs) z_f = rand(rng, Float32, nobs) X_d = Float64.(X_f) z_d = Float64.(z_f) pset_f = PointSet(Tuple.(eachcol(X_f))) data_f = georef((z=z_f,), pset_f) pset_d = PointSet(Tuple.(eachcol(X_d))) data_d = georef((z=z_d,), pset_d) coords_f = ntuple(i -> rand(rng, Float32), dim) coords_d = Float64.(coords_f) pₒ_f = Point(coords_f) pₒ_d = Point(coords_d) γ_f = GaussianVariogram(sill=1.0f0, range=1.0f0, nugget=0.0f0) sk_f = GeoStatsModels.fit(SK(γ_f, mean(data_f.z)), data_f) ok_f = GeoStatsModels.fit(OK(γ_f), data_f) uk_f = GeoStatsModels.fit(UK(γ_f, 1, 3), data_f) dk_f = GeoStatsModels.fit(DK(γ_f, [x -> 1.0f0]), data_f) γ_d = GaussianVariogram(sill=1.0, range=1.0, nugget=0.0) sk_d = GeoStatsModels.fit(SK(γ_d, mean(data_d.z)), data_d) ok_d = GeoStatsModels.fit(OK(γ_d), data_d) uk_d = GeoStatsModels.fit(UK(γ_d, 1, 3), data_d) dk_d = GeoStatsModels.fit(DK(γ_d, [x -> 1.0]), data_d) skdist_f = GeoStatsModels.predictprob(sk_f, :z, pₒ_f) okdist_f = GeoStatsModels.predictprob(ok_f, :z, pₒ_f) ukdist_f = GeoStatsModels.predictprob(uk_f, :z, pₒ_f) dkdist_f = GeoStatsModels.predictprob(dk_f, :z, pₒ_f) skdist_d = GeoStatsModels.predictprob(sk_d, :z, pₒ_d) okdist_d = GeoStatsModels.predictprob(ok_d, :z, pₒ_d) ukdist_d = GeoStatsModels.predictprob(uk_d, :z, pₒ_d) dkdist_d = GeoStatsModels.predictprob(dk_d, :z, pₒ_d) @test isapprox(mean(skdist_f), mean(skdist_d), atol=1e-4) @test isapprox(var(skdist_f), var(skdist_d), atol=1e-4) @test isapprox(mean(okdist_f), mean(okdist_d), atol=1e-4) @test isapprox(var(okdist_f), var(okdist_d), atol=1e-4) @test isapprox(mean(ukdist_f), mean(ukdist_d), atol=1e-4) @test isapprox(var(ukdist_f), var(ukdist_d), atol=1e-4) @test isapprox(mean(dkdist_f), mean(dkdist_d), atol=1e-4) @test isapprox(var(dkdist_f), var(dkdist_d), atol=1e-4) end # change of support checks @testset "Support" begin dim = 2 nobs = 10 cmat = 10 * rand(rng, dim, nobs) pset = PointSet(Tuple.(eachcol(cmat))) data = georef((z=rand(rng, nobs),), pset) γ = GaussianVariogram(sill=1.0, range=1.0, nugget=0.0) sk = GeoStatsModels.fit(SK(γ, mean(data.z)), data) ok = GeoStatsModels.fit(OK(γ), data) uk = GeoStatsModels.fit(UK(γ, 1, dim), data) dk = GeoStatsModels.fit(DK(γ, [x -> 1.0]), data) # predict on a quadrangle uₒ = Quadrangle((0.0, 0.0), (1.0, 0.0), (1.0, 1.0), (0.0, 1.0)) skdist = GeoStatsModels.predictprob(sk, :z, uₒ) okdist = GeoStatsModels.predictprob(ok, :z, uₒ) ukdist = GeoStatsModels.predictprob(uk, :z, uₒ) dkdist = GeoStatsModels.predictprob(dk, :z, uₒ) # variance checks @test var(skdist) ≥ 0 @test var(okdist) ≥ 0 @test var(ukdist) ≥ 0 @test var(dkdist) ≥ 0 @test var(skdist) ≤ var(okdist) + tol end @testset "CoDa" begin dim = 2 nobs = 10 cmat = 10 * rand(rng, dim, nobs) pset = PointSet(Tuple.(eachcol(cmat))) table = (z=rand(rng, Composition{3}, nobs),) data = georef(table, pset) # basic models γ = GaussianVariogram(sill=1.0, range=1.0, nugget=0.0) sk = GeoStatsModels.fit(SK(γ, mean(data.z)), data) ok = GeoStatsModels.fit(OK(γ), data) uk = GeoStatsModels.fit(UK(γ, 1, dim), data) dk = GeoStatsModels.fit(DK(γ, [x -> 1.0]), data) # prediction on a quadrangle uₒ = Quadrangle((0.0, 0.0), (1.0, 0.0), (1.0, 1.0), (0.0, 1.0)) skmean = GeoStatsModels.predict(sk, :z, uₒ) okmean = GeoStatsModels.predict(ok, :z, uₒ) ukmean = GeoStatsModels.predict(uk, :z, uₒ) dkmean = GeoStatsModels.predict(dk, :z, uₒ) # type tests @test skmean isa Composition @test okmean isa Composition @test ukmean isa Composition @test dkmean isa Composition end @testset "Unitiful" begin dim = 3 nobs = 10 cmat = 10 * rand(rng, dim, nobs) pset = PointSet(Tuple.(eachcol(cmat))) data = georef((z=rand(rng, nobs) * u"K",), pset) γ = GaussianVariogram(sill=1.0u"K^2") sk = GeoStatsModels.fit(SK(γ, mean(data.z)), data) ok = GeoStatsModels.fit(OK(γ), data) uk = GeoStatsModels.fit(UK(γ, 1, dim), data) dk = GeoStatsModels.fit(DK(γ, [x -> 1.0]), data) for _k in [sk, ok, uk, dk] w = GeoStatsModels.weights(_k, Point(0, 0, 0)) μ = GeoStatsModels.predictmean(_k, w, :z) σ² = GeoStatsModels.predictvar(_k, w) @test unit(μ) == u"K" @test unit(σ²) == u"K^2" end end @testset begin "Kriging" γ = GaussianVariogram() @test Kriging(γ) isa OK @test Kriging(γ, 0.0) isa SK @test Kriging(γ, 1, 2) isa UK @test Kriging(γ, [x -> 1]) isa DK end end
GeoStatsModels
https://github.com/JuliaEarth/GeoStatsModels.jl.git
[ "MIT" ]
0.5.1
5be547a8340a28bb5547d46fa10d6bfd02543fc9
code
659
@testset "LWR" begin @testset "Unitful" begin d = georef((; z=[1.0, 0.0, 1.0]u"K")) lwr = GeoStatsModels.fit(LWR(), d) pred = GeoStatsModels.predict(lwr, :z, Point(0.0)) @test unit(pred) == u"K" # affine units d = georef((; z=[1.0, 0.0, 1.0]u"°C")) lwr = GeoStatsModels.fit(LWR(), d) #pred = GeoStatsModels.predict(lwr, :z, Point(0.0)) #@test unit(pred) == u"K" end @testset "CoDa" begin d = georef((; z=[Composition(0.1, 0.2), Composition(0.3, 0.4), Composition(0.5, 0.6)])) lwr = GeoStatsModels.fit(LWR(), d) pred = GeoStatsModels.predict(lwr, :z, Point(0.0)) @test pred isa Composition end end
GeoStatsModels
https://github.com/JuliaEarth/GeoStatsModels.jl.git
[ "MIT" ]
0.5.1
5be547a8340a28bb5547d46fa10d6bfd02543fc9
code
985
@testset "NN" begin @testset "Basics" begin d = georef((; z=["a", "b", "c"])) nn = GeoStatsModels.fit(NN(), d) pred = GeoStatsModels.predict(nn, :z, Point(0.5)) @test pred == "a" pred = GeoStatsModels.predict(nn, :z, Point(1.5)) @test pred == "b" pred = GeoStatsModels.predict(nn, :z, Point(2.5)) @test pred == "c" end @testset "Unitful" begin d = georef((; z=[1.0, 0.0, 1.0]u"K")) nn = GeoStatsModels.fit(NN(), d) pred = GeoStatsModels.predict(nn, :z, Point(0.0)) @test unit(pred) == u"K" # affine units d = georef((; z=[1.0, 0.0, 1.0]u"°C")) nn = GeoStatsModels.fit(NN(), d) #pred = GeoStatsModels.predict(nn, :z, Point(0.0)) #@test unit(pred) == u"K" end @testset "CoDa" begin d = georef((; z=[Composition(0.1, 0.2), Composition(0.3, 0.4), Composition(0.5, 0.6)])) nn = GeoStatsModels.fit(NN(), d) pred = GeoStatsModels.predict(nn, :z, Point(0.0)) @test pred isa Composition end end
GeoStatsModels
https://github.com/JuliaEarth/GeoStatsModels.jl.git
[ "MIT" ]
0.5.1
5be547a8340a28bb5547d46fa10d6bfd02543fc9
code
1922
@testset "Polynomial" begin @testset "Basics" begin d = georef((; z=[1, 2, 3])) poly = GeoStatsModels.fit(Polynomial(), d) pred = GeoStatsModels.predict(poly, :z, Point(0.5)) @test pred ≈ 1 pred = GeoStatsModels.predict(poly, :z, Point(1.5)) @test pred ≈ 2 pred = GeoStatsModels.predict(poly, :z, Point(2.5)) @test pred ≈ 3 fitpredict(m, d) = GeoStatsModels.fitpredict(m, d, domain(d), neighbors=false) # constant trend rng = StableRNG(42) d = georef((z=rand(rng, 100),), CartesianGrid(100)) z̄ = fitpredict(Polynomial(), d).z @test all(abs.(diff(z̄)) .< 0.01) # linear trend rng = StableRNG(42) μ = range(0, stop=1, length=100) ϵ = 0.1rand(rng, 100) d = georef((z=μ + ϵ,), CartesianGrid(100)) z̄ = fitpredict(Polynomial(), d).z @test all([abs(z̄[i] - μ[i]) < 0.1 for i in 1:length(z̄)]) # quadratic trend rng = StableRNG(42) r = range(-1, stop=1, length=100) μ = [x^2 + y^2 for x in r, y in r] ϵ = 0.1rand(rng, 100, 100) d = georef((z=μ + ϵ,)) z̄ = fitpredict(Polynomial(2), d).z @test all([abs(z̄[i] - μ[i]) < 0.1 for i in 1:length(z̄)]) # correct schema rng = StableRNG(42) d = georef((a=rand(rng, 10), b=rand(rng, 10)), rand(rng, Point, 10)) d̄ = fitpredict(Polynomial(), d) t̄ = values(d̄) @test propertynames(t̄) == (:a, :b) @test eltype(t̄.a) == Float64 @test eltype(t̄.b) == Float64 end @testset "Unitful" begin d = georef((; z=[1.0, 0.0, 1.0]u"K")) poly = GeoStatsModels.fit(Polynomial(), d) pred = GeoStatsModels.predict(poly, :z, Point(0.0)) @test unit(pred) == u"K" end @testset "CoDa" begin d = georef((; z=[Composition(0.1, 0.2), Composition(0.3, 0.4), Composition(0.5, 0.6)])) poly = GeoStatsModels.fit(Polynomial(), d) pred = GeoStatsModels.predict(poly, :z, Point(0.0)) @test pred isa Composition end end
GeoStatsModels
https://github.com/JuliaEarth/GeoStatsModels.jl.git
[ "MIT" ]
0.5.1
5be547a8340a28bb5547d46fa10d6bfd02543fc9
code
348
using GeoStatsModels using Meshes using GeoTables using GeoStatsFunctions using CoDa using Unitful using LinearAlgebra using Statistics using Test, StableRNGs # list of tests testfiles = ["nn.jl", "idw.jl", "lwr.jl", "poly.jl", "krig.jl", "utils.jl"] @testset "GeoStatsModels.jl" begin for testfile in testfiles include(testfile) end end
GeoStatsModels
https://github.com/JuliaEarth/GeoStatsModels.jl.git
[ "MIT" ]
0.5.1
5be547a8340a28bb5547d46fa10d6bfd02543fc9
code
930
@testset "fitpredict" begin rng = StableRNG(2024) pset = PointSet(rand(rng, Point, 3)) gtb = georef((a=[1, 2, 3], b=[4, 5, 6]), pset) pred = GeoStatsModels.fitpredict(IDW(), gtb, pset, neighbors=false) @test pred.a == gtb.a @test pred.b == gtb.b @test pred.geometry == gtb.geometry # also works with views vgtb = view(gtb, 1:3) vpred = GeoStatsModels.fitpredict(IDW(), vgtb, pset, neighbors=false) @test vpred == pred gtb = georef((; z=[1.0, 0.0, 1.0]), [(25.0, 25.0), (50.0, 75.0), (75.0, 50.0)]) grid = CartesianGrid((100, 100), (0.5, 0.5), (1.0, 1.0)) linds = LinearIndices(size(grid)) variogram = GaussianVariogram(range=35.0, nugget=0.0) pred = GeoStatsModels.fitpredict(Kriging(variogram), gtb, grid, maxneighbors=3) @test isapprox(pred.z[linds[25, 25]], 1.0, atol=1e-3) @test isapprox(pred.z[linds[50, 75]], 0.0, atol=1e-3) @test isapprox(pred.z[linds[75, 50]], 1.0, atol=1e-3) end
GeoStatsModels
https://github.com/JuliaEarth/GeoStatsModels.jl.git
[ "MIT" ]
0.5.1
5be547a8340a28bb5547d46fa10d6bfd02543fc9
docs
702
# GeoStatsModels.jl [![][build-img]][build-url] [![][codecov-img]][codecov-url] Geostatistical models for the [GeoStats.jl](https://github.com/JuliaEarth/GeoStats.jl) framework. ## Asking for help If you have any questions, please [contact our community](https://juliaearth.github.io/GeoStats.jl/stable/about/community.html). [build-img]: https://img.shields.io/github/actions/workflow/status/JuliaEarth/GeoStatsModels.jl/CI.yml?branch=main&style=flat-square [build-url]: https://github.com/JuliaEarth/GeoStatsModels.jl/actions [codecov-img]: https://img.shields.io/codecov/c/github/JuliaEarth/GeoStatsModels.jl?style=flat-square [codecov-url]: https://codecov.io/gh/JuliaEarth/GeoStatsModels.jl
GeoStatsModels
https://github.com/JuliaEarth/GeoStatsModels.jl.git
[ "MPL-2.0" ]
0.3.9
55c5d8356b684e56e7309386ec86ecd9ef9d17da
code
12740
# Copyright 2017, Chris Coey and Miles Lubin # Copyright 2016, Los Alamos National Laboratory, LANS LLC. # This Source Code Form is subject to the terms of the Mozilla Public # License, v. 2.0. If a copy of the MPL was not distributed with this # file, You can obtain one at http://mozilla.org/MPL/2.0/. #========================================================= MathOptInterface wrapper =========================================================# function MOI.is_empty(model::Optimizer) return ( isnothing(model.mip_optimizer) || MOI.is_empty(model.mip_optimizer) ) && ( isnothing(model.cont_optimizer) || MOI.is_empty(model.cont_optimizer) ) end function MOI.empty!(model::Optimizer) model.mip_optimizer = nothing model.cont_optimizer = nothing model.infeasible_optimizer = nothing model.nlp_obj_var = nothing model.mip_variables = MOI.VariableIndex[] model.cont_variables = MOI.VariableIndex[] model.infeasible_variables = MOI.VariableIndex[] model.nl_slack_variables = nothing model.quad_LT_slack = nothing model.quad_GT_slack = nothing model.quad_LT_infeasible_con = nothing model.quad_GT_infeasible_con = nothing model.int_indices = BitSet() model.nlp_block = nothing model.objective = nothing model.quad_LT = Tuple{MOI.ScalarQuadraticFunction{Float64},MOI.LessThan{Float64}}[] model.quad_GT = Tuple{MOI.ScalarQuadraticFunction{Float64},MOI.GreaterThan{Float64}}[] model.incumbent = Float64[] model.status = MOI.OPTIMIZE_NOT_CALLED return end MOI.get(::Optimizer, ::MOI.SolverName) = "Pavito" MOI.supports_incremental_interface(::Optimizer) = true function MOI.copy_to(model::Optimizer, src::MOI.ModelLike) return MOI.Utilities.default_copy_to(model, src) end MOI.get(model::Optimizer, ::MOI.NumberOfVariables) = length(model.incumbent) function MOI.add_variable(model::Optimizer) push!(model.mip_variables, MOI.add_variable(_mip(model))) push!(model.cont_variables, MOI.add_variable(_cont(model))) push!(model.infeasible_variables, MOI.add_variable(_infeasible(model))) if !isnothing(model.nl_slack_variables) # the slack variables are assumed to be added after all the # `infeasible_variables`, so we delete them now and add back during # `optimize!` if needed _clean_slacks(model) end push!(model.incumbent, NaN) return MOI.VariableIndex(length(model.mip_variables)) end function MOI.supports( ::Optimizer, ::MOI.VariablePrimalStart, ::Type{MOI.VariableIndex}, ) return true end function MOI.set( model::Optimizer, attr::MOI.VariablePrimalStart, vi::MOI.VariableIndex, value, ) MOI.set(_cont(model), attr, vi, value) model.incumbent[vi.value] = something(value, NaN) return end function _map(variables::Vector{MOI.VariableIndex}, x) return MOI.Utilities.map_indices(vi -> variables[vi.value], x) end _is_discrete(::Type{<:MOI.AbstractSet}) = false function _is_discrete( ::Type{<:Union{MOI.Integer,MOI.ZeroOne,MOI.Semiinteger{Float64}}}, ) return true end function MOI.supports_constraint( model::Optimizer, F::Type{MOI.VariableIndex}, S::Type{<:MOI.AbstractScalarSet}, ) return MOI.supports_constraint(_mip(model), F, S) && (_is_discrete(S) || MOI.supports_constraint(_cont(model), F, S)) end function MOI.is_valid( model::Optimizer, ci::MOI.ConstraintIndex{MOI.VariableIndex,<:MOI.AbstractScalarSet}, ) return MOI.is_valid(_mip(model), ci) end function MOI.add_constraint( model::Optimizer, func::MOI.VariableIndex, set::MOI.AbstractScalarSet, ) if _is_discrete(typeof(set)) push!(model.int_indices, func.value) else MOI.add_constraint(_cont(model), _map(model.cont_variables, func), set) MOI.add_constraint( _infeasible(model), _map(model.infeasible_variables, func), set, ) end return MOI.add_constraint(_mip(model), _map(model.mip_variables, func), set) end function MOI.supports_constraint( model::Optimizer, F::Type{MOI.ScalarQuadraticFunction{Float64}}, S::Type{<:Union{MOI.LessThan{Float64},MOI.GreaterThan{Float64}}}, ) return MOI.supports_constraint(_cont(model), F, S) end function MOI.add_constraint( model::Optimizer, func::MOI.ScalarQuadraticFunction{Float64}, set::MOI.LessThan{Float64}, ) _clean_slacks(model) MOI.add_constraint(_cont(model), _map(model.cont_variables, func), set) push!(model.quad_LT, (MOI.Utilities.canonical(func), copy(set))) return MOI.ConstraintIndex{typeof(func),typeof(set)}(length(model.quad_LT)) end function MOI.add_constraint( model::Optimizer, func::MOI.ScalarQuadraticFunction{Float64}, set::MOI.GreaterThan{Float64}, ) _clean_slacks(model) MOI.add_constraint(_cont(model), _map(model.cont_variables, func), set) push!(model.quad_GT, (MOI.Utilities.canonical(func), copy(set))) return MOI.ConstraintIndex{typeof(func),typeof(set)}(length(model.quad_GT)) end function MOI.get( model::Optimizer, attr::MOI.NumberOfConstraints{ MOI.ScalarQuadraticFunction{Float64}, <:Union{MOI.LessThan{Float64},MOI.GreaterThan{Float64}}, }, ) return MOI.get(_cont(model), attr) end function MOI.supports_constraint( model::Optimizer, F::Type{<:MOI.AbstractFunction}, S::Type{<:MOI.AbstractSet}, ) return ( MOI.supports_constraint(_mip(model), F, S) && MOI.supports_constraint(_cont(model), F, S) ) end function MOI.add_constraint( model::Optimizer, func::MOI.AbstractFunction, set::MOI.AbstractSet, ) MOI.add_constraint(_cont(model), _map(model.cont_variables, func), set) MOI.add_constraint( _infeasible(model), _map(model.infeasible_variables, func), set, ) return MOI.add_constraint(_mip(model), _map(model.mip_variables, func), set) end function MOI.get(model::Optimizer, attr::MOI.NumberOfConstraints) return MOI.get(_mip(model), attr) end MOI.supports(::Optimizer, ::MOI.NLPBlock) = true function MOI.set(model::Optimizer, attr::MOI.NLPBlock, block::MOI.NLPBlockData) _clean_slacks(model) model.nlp_block = block if !MOI.supports(_cont(model), MOI.NLPBlock()) error( "Continuous solver (`cont_solver`) is not a derivative-based " * "NLP solver recognized by MathOptInterface (try Pajarito solver " * "if your continuous solver is conic)", ) end MOI.set(_cont(model), attr, block) return end MOI.supports(model::Optimizer, attr::MOI.ObjectiveSense) = true function MOI.set(model::Optimizer, attr::MOI.ObjectiveSense, sense) if sense == MOI.FEASIBILITY_SENSE model.objective = nothing end MOI.set(_mip(model), attr, sense) MOI.set(_cont(model), attr, sense) return end MOI.get(model::Optimizer, attr::MOI.ObjectiveSense) = MOI.get(_mip(model), attr) function MOI.supports(model::Optimizer, attr::MOI.ObjectiveFunction) return MOI.supports(_mip(model), attr) && MOI.supports(_cont(model), attr) end function MOI.supports( model::Optimizer, attr::MOI.ObjectiveFunction{MOI.ScalarQuadraticFunction{Float64}}, ) return MOI.supports(_cont(model), attr) end function MOI.set(model::Optimizer, attr::MOI.ObjectiveFunction, func) # make a copy (as the user might modify it) model.objective = copy(func) MOI.set(_mip(model), attr, _map(model.mip_variables, func)) MOI.set(_cont(model), attr, _map(model.cont_variables, func)) return end function MOI.set( model::Optimizer, attr::MOI.ObjectiveFunction{MOI.ScalarQuadraticFunction{Float64}}, func::MOI.ScalarQuadraticFunction{Float64}, ) # make a copy (as the user might modify it) and canonicalize model.objective = MOI.Utilities.canonical(func) MOI.set(_cont(model), attr, _map(model.cont_variables, func)) return end function MOI.get(model::Optimizer, param::MOI.RawOptimizerAttribute) return getproperty(model, Symbol(param.name)) end function MOI.supports(::Optimizer, param::MOI.RawOptimizerAttribute) return (Symbol(param.name) in fieldnames(Optimizer)) end function MOI.set(model::Optimizer, param::MOI.RawOptimizerAttribute, value) setproperty!(model, Symbol(param.name), value) return end MOI.supports(::Optimizer, ::MOI.Silent) = true function MOI.set(model::Optimizer, ::MOI.Silent, value::Bool) model.log_level = value ? 0 : 1 return end MOI.get(model::Optimizer, ::MOI.Silent) = (model.log_level <= 0) MOI.supports(::Optimizer, ::MOI.TimeLimitSec) = true function MOI.set(model::Optimizer, ::MOI.TimeLimitSec, value::Nothing) MOI.set(model, MOI.RawOptimizerAttribute("timeout"), Inf) return end function MOI.set(model::Optimizer, ::MOI.TimeLimitSec, value) MOI.set(model, MOI.RawOptimizerAttribute("timeout"), value) return end function MOI.get(model::Optimizer, ::MOI.TimeLimitSec) value = MOI.get(model, MOI.RawOptimizerAttribute("timeout")) return isfinite(value) ? value : nothing end MOI.get(model::Optimizer, ::MOI.SolveTimeSec) = model.total_time MOI.get(model::Optimizer, ::MOI.TerminationStatus) = model.status MOI.get(model::Optimizer, ::MOI.RawStatusString) = string(model.status) function MOI.get( model::Optimizer, attr::MOI.VariablePrimal, v::MOI.VariableIndex, ) MOI.check_result_index_bounds(model, attr) return model.incumbent[v.value] end function MOI.get(model::Optimizer, attr::MOI.ObjectiveValue) MOI.check_result_index_bounds(model, attr) return model.objective_value end MOI.get(model::Optimizer, ::MOI.ObjectiveBound) = model.objective_bound function MOI.get(model::Optimizer, attr::MOI.PrimalStatus) if attr.result_index != 1 return MOI.NO_SOLUTION end term_status = MOI.get(model, MOI.TerminationStatus()) if term_status == MOI.LOCALLY_SOLVED return MOI.FEASIBLE_POINT elseif term_status == MOI.ALMOST_LOCALLY_SOLVED return MOI.NEARLY_FEASIBLE_POINT end return MOI.NO_SOLUTION end MOI.get(::Optimizer, ::MOI.DualStatus) = MOI.NO_SOLUTION function MOI.get(model::Optimizer, ::MOI.ResultCount) return MOI.get(model, MOI.PrimalStatus()) == MOI.NO_SOLUTION ? 0 : 1 end # utilities: function _mip(model::Optimizer) if model.mip_optimizer !== nothing return model.mip_optimizer end if model.mip_solver === nothing error("No MIP solver specified (set `mip_solver` attribute)\n") end model.mip_optimizer = MOI.Utilities.CachingOptimizer( MOI.Utilities.UniversalFallback(MOI.Utilities.Model{Float64}()), MOI.instantiate(model.mip_solver, with_bridge_type = Float64), ) supports_lazy = MOI.supports(model.mip_optimizer, MOI.LazyConstraintCallback()) if model.mip_solver_drives === nothing model.mip_solver_drives = supports_lazy elseif model.mip_solver_drives && !supports_lazy error( "MIP solver (`mip_solver`) does not support lazy constraint " * "callbacks (cannot set `mip_solver_drives` attribute to `true`)", ) end return model.mip_optimizer end function _new_cont(optimizer_constructor) if isnothing(optimizer_constructor) error( "No continuous NLP solver specified (set `cont_solver` attribute)", ) end optimizer = MOI.instantiate(optimizer_constructor, with_bridge_type = Float64) return optimizer end function _cont(model::Optimizer) if isnothing(model.cont_optimizer) model.cont_optimizer = _new_cont(model.cont_solver) end return model.cont_optimizer end function _infeasible(model::Optimizer) if isnothing(model.infeasible_optimizer) model.infeasible_optimizer = _new_cont(model.cont_solver) MOI.set(model.infeasible_optimizer, MOI.ObjectiveSense(), MOI.MIN_SENSE) end return model.infeasible_optimizer end function _clean_slacks(model::Optimizer) if !isnothing(model.nl_slack_variables) MOI.delete(_infeasible(model), model.nl_slack_variables) model.nl_slack_variables = nothing end if !isnothing(model.quad_LT_slack) MOI.delete(_infeasible(model), model.quad_LT_slack) model.quad_LT_slack = nothing MOI.delete(_infeasible(model), model.quad_LT_infeasible_con) model.quad_LT_infeasible_con = nothing end if !isnothing(model.quad_GT_slack) MOI.delete(_infeasible(model), model.quad_GT_slack) model.quad_GT_slack = nothing MOI.delete(_infeasible(model), model.quad_GT_infeasible_con) model.quad_GT_infeasible_con = nothing end return end
Pavito
https://github.com/jump-dev/Pavito.jl.git
[ "MPL-2.0" ]
0.3.9
55c5d8356b684e56e7309386ec86ecd9ef9d17da
code
728
# Copyright 2017, Chris Coey and Miles Lubin # Copyright 2016, Los Alamos National Laboratory, LANS LLC. # This Source Code Form is subject to the terms of the Mozilla Public # License, v. 2.0. If a copy of the MPL was not distributed with this # file, You can obtain one at http://mozilla.org/MPL/2.0/. #========================================================= This package contains the mixed-integer convex programming (MICP) solver Pavito See README.md for details =========================================================# module Pavito import Printf import MathOptInterface const MOI = MathOptInterface include("infeasible_nlp.jl") include("optimize.jl") include("cut_utils.jl") include("MOI_wrapper.jl") end
Pavito
https://github.com/jump-dev/Pavito.jl.git
[ "MPL-2.0" ]
0.3.9
55c5d8356b684e56e7309386ec86ecd9ef9d17da
code
7867
# Copyright 2017, Chris Coey and Miles Lubin # Copyright 2016, Los Alamos National Laboratory, LANS LLC. # This Source Code Form is subject to the terms of the Mozilla Public # License, v. 2.0. If a copy of the MPL was not distributed with this # file, You can obtain one at http://mozilla.org/MPL/2.0/. #========================================================= gradient cut utilities =========================================================# # by convexity of g(x), we know that g(x) >= g(c) + g'(c) * (x - c) # given a constraint ub >= g(x), we rewrite it as: # ub - g(x) + g'(c) * c >= g'(x) * x # if the constraint is `g(x) <= lb`, we assume `g(x)` is concave, so: # lb - g(x) + g'(c) * c <= g'(x) * x # if the constraint is `lb <= g(x) <= ub` or `g(x) == lb == ub`, we assume # `g(x)` is linear function _add_cut( model::Optimizer, cont_solution, gc, dgc_idx, dgc_nzv, set, callback_data, ) Δ = 0.0 for i in eachindex(dgc_idx) Δ += dgc_nzv[i] * cont_solution[dgc_idx[i]] end safs = [ MOI.ScalarAffineTerm(dgc_nzv[i], model.mip_variables[dgc_idx[i]]) for i in eachindex(dgc_idx) ] func = MOI.ScalarAffineFunction(safs, 0.0) MOI.Utilities.canonicalize!(func) set = MOI.Utilities.shift_constant(set, Δ - gc) if !isempty(func.terms) if isnothing(callback_data) MOI.add_constraint(model.mip_optimizer, func, set) else _add_lazy_constraint( model, callback_data, func, set, model.mip_solution, ) end end return end function _add_quad_cuts(model::Optimizer, cont_solution, cons, callback_data) for (func, set) in cons gc = _eval_func(cont_solution, func) dgc_idx = Int64[] dgc_nzv = Float64[] for term in func.affine_terms push!(dgc_idx, term.variable.value) push!(dgc_nzv, term.coefficient) end for term in func.quadratic_terms push!(dgc_idx, term.variable_1.value) push!( dgc_nzv, term.coefficient * cont_solution[term.variable_2.value], ) # if variables are the same, the coefficient is already multiplied by # 2 by definition of `MOI.ScalarQuadraticFunction{Float64}` if term.variable_1 != term.variable_2 push!(dgc_idx, term.variable_2.value) push!( dgc_nzv, term.coefficient * cont_solution[term.variable_1.value], ) end end _add_cut(model, cont_solution, gc, dgc_idx, dgc_nzv, set, callback_data) end return end function _add_cuts( model::Optimizer, cont_solution, jac_IJ, jac_V, grad_f, is_max, callback_data = nothing, ) if !isnothing(model.nlp_block) # eval g and jac_g at MIP solution num_constrs = length(model.nlp_block.constraint_bounds) g = zeros(num_constrs) MOI.eval_constraint(model.nlp_block.evaluator, g, cont_solution) MOI.eval_constraint_jacobian( model.nlp_block.evaluator, jac_V, cont_solution, ) # create rows corresponding to constraints in sparse format varidx_new = [zeros(Int, 0) for i in 1:num_constrs] coef_new = [zeros(0) for i in 1:num_constrs] for k in eachindex(jac_IJ) row, col = jac_IJ[k] push!(varidx_new[row], col) push!(coef_new[row], jac_V[k]) end # create constraint cuts for i in 1:num_constrs # create supporting hyperplane set = _bound_set(model, i) _add_cut( model, cont_solution, g[i], varidx_new[i], coef_new[i], set, callback_data, ) end end _add_quad_cuts(model, cont_solution, model.quad_LT, callback_data) _add_quad_cuts(model, cont_solution, model.quad_GT, callback_data) # given an objective `Min nlp_obj_var = f(x)` with a convex `f(x)`: # -f(x) + f'(c) * c >= f'(x) * x - nlp_obj_var # if the objective is `Max`, we assume `g(x)` is concave, so: # -f(x) + f'(c) * c <= f'(x) * x - nlp_obj_var # create objective cut if (!isnothing(model.nlp_block) && model.nlp_block.has_objective) || model.objective isa MOI.ScalarQuadraticFunction{Float64} f = _eval_objective(model, cont_solution) _eval_objective_gradient(model, grad_f, cont_solution) constant = -f func = MOI.Utilities.operate(-, Float64, model.nlp_obj_var) for j in eachindex(grad_f) if !iszero(grad_f[j]) constant += grad_f[j] * cont_solution[j] push!( func.terms, MOI.ScalarAffineTerm(grad_f[j], model.mip_variables[j]), ) end end set = ( is_max ? MOI.GreaterThan{Float64}(constant) : MOI.LessThan{Float64}(constant) ) if isnothing(callback_data) MOI.add_constraint(model.mip_optimizer, func, set) else nlp_obj_var = MOI.get( model.mip_optimizer, MOI.CallbackVariablePrimal(callback_data), model.nlp_obj_var, ) _add_lazy_constraint( model, callback_data, func, set, vcat(model.mip_solution, nlp_obj_var), ) end end return end function _add_lazy_constraint(model, callback_data, func, set, mip_solution) # GLPK does not check whether the new cut is redundant, so we filter it out # see https://github.com/jump-dev/GLPK.jl/issues/153 if !_approx_in(_eval_func(mip_solution, func), set) MOI.submit( model.mip_optimizer, MOI.LazyConstraint(callback_data), func, set, ) end return end function _eval_objective(model::Optimizer, values) if !isnothing(model.nlp_block) && model.nlp_block.has_objective return MOI.eval_objective(model.nlp_block.evaluator, values) else return _eval_func(values, model.objective) end end function _eval_gradient( func::MOI.ScalarQuadraticFunction{Float64}, grad_f, values, ) fill!(grad_f, 0.0) for term in func.affine_terms grad_f[term.variable.value] += term.coefficient end for term in func.quadratic_terms grad_f[term.variable_1.value] += term.coefficient * values[term.variable_2.value] # if variables are the same, the coefficient is already multiplied by 2 if term.variable_1 != term.variable_2 grad_f[term.variable_2.value] += term.coefficient * values[term.variable_1.value] end end return end function _eval_objective_gradient(model::Optimizer, grad_f, values) if (!isnothing(model.nlp_block) && model.nlp_block.has_objective) MOI.eval_objective_gradient(model.nlp_block.evaluator, grad_f, values) else _eval_gradient(model.objective, grad_f, values) end return end # `isapprox(0.0, 1e-16)` is false but `_is_approx(0.0, 1e-16)` is true. _is_approx(x, y) = isapprox(x, y, atol = Base.rtoldefault(Float64)) _approx_in(value, set::MOI.EqualTo) = _is_approx(value, MOI.constant(set)) function _approx_in(value, set::MOI.LessThan{Float64}) return _is_approx(value, MOI.constant(set)) || value < MOI.constant(set) end function _approx_in(value, set::MOI.GreaterThan{Float64}) return _is_approx(value, MOI.constant(set)) || value > MOI.constant(set) end
Pavito
https://github.com/jump-dev/Pavito.jl.git
[ "MPL-2.0" ]
0.3.9
55c5d8356b684e56e7309386ec86ecd9ef9d17da
code
2141
# Copyright 2017, Chris Coey and Miles Lubin # Copyright 2016, Los Alamos National Laboratory, LANS LLC. # This Source Code Form is subject to the terms of the Mozilla Public # License, v. 2.0. If a copy of the MPL was not distributed with this # file, You can obtain one at http://mozilla.org/MPL/2.0/. #========================================================= wrapped NLP solver for infeasible subproblem case =========================================================# struct _InfeasibleNLPEvaluator <: MOI.AbstractNLPEvaluator d::MOI.AbstractNLPEvaluator num_variables::Int minus::BitVector end function MOI.initialize( d::_InfeasibleNLPEvaluator, requested_features::Vector{Symbol}, ) MOI.initialize(d.d, requested_features) return end function MOI.features_available(d::_InfeasibleNLPEvaluator) return intersect([:Grad, :Jac, :Hess], MOI.features_available(d.d)) end function MOI.eval_constraint(d::_InfeasibleNLPEvaluator, g, x) MOI.eval_constraint(d.d, g, x[1:d.num_variables]) for i in eachindex(d.minus) g[i] -= sign(d.minus[i]) * x[d.num_variables+i] end return end function MOI.jacobian_structure(d::_InfeasibleNLPEvaluator) IJ_new = copy(MOI.jacobian_structure(d.d)) for i in eachindex(d.minus) push!(IJ_new, (i, d.num_variables + i)) end return IJ_new end function MOI.eval_constraint_jacobian(d::_InfeasibleNLPEvaluator, J, x) MOI.eval_constraint_jacobian(d.d, J, x[1:d.num_variables]) k = length(J) - length(d.minus) for i in eachindex(d.minus) J[k+i] = (d.minus[i] ? -1.0 : 1.0) end return end # Hessian: add linear terms and remove the objective so the hessian of the # objective is zero and the hessian of the constraints is unaffected; # also set `σ = 0.0` to absorb the contribution of the hessian of the objective function MOI.hessian_lagrangian_structure(d::_InfeasibleNLPEvaluator) return MOI.hessian_lagrangian_structure(d.d) end function MOI.eval_hessian_lagrangian(d::_InfeasibleNLPEvaluator, H, x, σ, μ) return MOI.eval_hessian_lagrangian(d.d, H, x[1:d.num_variables], 0.0, μ) end
Pavito
https://github.com/jump-dev/Pavito.jl.git
[ "MPL-2.0" ]
0.3.9
55c5d8356b684e56e7309386ec86ecd9ef9d17da
code
28613
# Copyright 2017, Chris Coey and Miles Lubin # Copyright 2016, Los Alamos National Laboratory, LANS LLC. # This Source Code Form is subject to the terms of the Mozilla Public # License, v. 2.0. If a copy of the MPL was not distributed with this # file, You can obtain one at http://mozilla.org/MPL/2.0/. #========================================================= Optimizer object and algorithm =========================================================# mutable struct Optimizer <: MOI.AbstractOptimizer log_level::Int # Verbosity flag: 0 for quiet, higher for basic solve info timeout::Float64 # Time limit for algorithm (in seconds) rel_gap::Float64 # Relative optimality gap termination condition mip_solver_drives::Union{Nothing,Bool} # Let MIP solver manage convergence ("branch and cut") mip_solver::Union{Nothing,MOI.OptimizerWithAttributes} # MIP solver constructor cont_solver::Union{Nothing,MOI.OptimizerWithAttributes} # Continuous NLP solver constructor mip_optimizer::Union{Nothing,MOI.ModelLike} # MIP optimizer instantiated from `mip_solver` cont_optimizer::Union{Nothing,MOI.ModelLike} # Continuous NLP optimizer instantiated from `cont_solver` infeasible_optimizer::Union{Nothing,MOI.ModelLike} # Continuous NLP optimizer instantiated from `cont_solver`, used for infeasible subproblems nlp_obj_var::Union{Nothing,MOI.VariableIndex} # new MIP objective function if the original is nonlinear mip_variables::Vector{MOI.VariableIndex} # Variable indices of `mip_optimizer` cont_variables::Vector{MOI.VariableIndex} # Variable indices of `cont_optimizer` infeasible_variables::Vector{MOI.VariableIndex} # Variable indices of `infeasible_optimizer` # Slack variable indices for `infeasible_optimizer` nl_slack_variables::Union{Nothing,Vector{MOI.VariableIndex}} # for the nonlinear constraints quad_LT_slack::Union{Nothing,Vector{MOI.VariableIndex}} # for the less than constraints quad_GT_slack::Union{Nothing,Vector{MOI.VariableIndex}} # for the greater than constraints # Quadratic constraints for `infeasible_optimizer` quad_LT_infeasible_con::Union{ Nothing, Vector{ MOI.ConstraintIndex{ MOI.ScalarQuadraticFunction{Float64}, MOI.LessThan{Float64}, }, }, } # `q - slack <= ub` quad_GT_infeasible_con::Union{ Nothing, Vector{ MOI.ConstraintIndex{ MOI.ScalarQuadraticFunction{Float64}, MOI.GreaterThan{Float64}, }, }, } # `q + slack >= lb` infeasible_evaluator::_InfeasibleNLPEvaluator # NLP evaluator used for `infeasible_optimizer` int_indices::BitSet # Indices of discrete variables nlp_block::Union{Nothing,MOI.NLPBlockData} # NLP block set to `Optimizer` objective::Union{Nothing,MOI.AbstractScalarFunction} # Objective function set to `Optimizer` quad_LT::Vector{ Tuple{MOI.ScalarQuadraticFunction{Float64},MOI.LessThan{Float64}}, } # Cached quadratic less than constraints quad_GT::Vector{ Tuple{MOI.ScalarQuadraticFunction{Float64},MOI.GreaterThan{Float64}}, } # Cached quadratic greater than constraints status::MOI.TerminationStatusCode # Termination status to be returned incumbent::Vector{Float64} # Starting values set and then current best nonlinear feasible solution new_incumb::Bool # `true` if a better nonlinear feasible solution was found mip_solution::Vector{Float64} # MIP solution cached for used to check redundancy of lazy constraint total_time::Float64 # Total solve time objective_value::Float64 # Objective value corresponding to `incumbent` objective_bound::Float64 # Best objective bound found by MIP objective_gap::Float64 # Objective gap between objective value and bound num_iters_or_callbacks::Int # Either the number of iterations or the number of calls to the lazy constraint callback if `mip_solver_drives` function Optimizer() model = new() model.log_level = 1 model.timeout = Inf model.rel_gap = 1e-5 model.mip_solver_drives = nothing model.mip_solver = nothing model.cont_solver = nothing MOI.empty!(model) return model end end function _print_model_summary(model) obj_type = if !isnothing(model.nlp_block) && model.nlp_block.has_objective "nonlinear" elseif model.objective isa MOI.ScalarQuadraticFunction{Float64} "quadratic" else "linear" end ncont = length(model.cont_variables) nint = length(model.int_indices) nnlp = if isnothing(model.nlp_block) 0 else length(model.nlp_block.constraint_bounds) end nquad = length(model.quad_LT) + length(model.quad_GT) println( "\nMINLP has a $obj_type objective, $ncont continuous variables, " * "$nint integer variables, $nnlp nonlinear constraints, and " * "$nquad quadratic constraints", ) alg = model.mip_solver_drives ? "MIP-solver-driven" : "iterative" println("\nPavito started, using $alg method...") return end function _clean_up_algorithm(model, start, mip_time, nlp_time) model.total_time = time() - start if model.log_level > 0 println("\nPavito finished...\n") Printf.@printf("Status %13s\n", model.status) Printf.@printf("Objective value %13.5f\n", model.objective_value) Printf.@printf("Objective bound %13.5f\n", model.objective_bound) Printf.@printf("Objective gap %13.5f\n", model.objective_gap) if !model.mip_solver_drives Printf.@printf( "Iterations %13d\n", model.num_iters_or_callbacks ) else Printf.@printf( "Callbacks %13d\n", model.num_iters_or_callbacks ) end Printf.@printf("Total time %13.5f sec\n", model.total_time) Printf.@printf("MIP total time %13.5f sec\n", mip_time) Printf.@printf("NLP total time %13.5f sec\n", nlp_time) println() end flush(stdout) return end abstract type _AbstractAlgortithm end struct _MIPSolverDrivenAlgorithm end function _run_algorithm( ::_MIPSolverDrivenAlgorithm, model, start, mip_time, nlp_time, jac_IJ, jac_V, grad_f, is_max, ) comp = is_max ? (>) : (<) cache_contsol = Dict{Vector{Float64},Vector{Float64}}() function lazy_callback(cb) model.num_iters_or_callbacks += 1 model.mip_solution = MOI.get( model.mip_optimizer, MOI.CallbackVariablePrimal(cb), model.mip_variables, ) round_mipsol = round.(model.mip_solution) if any( i -> abs(model.mip_solution[i] - round_mipsol[i]) > 1e-5, model.int_indices, ) # The solution is integer-infeasible; see: # https://github.com/jump-dev/GLPK.jl/issues/146 # https://github.com/jump-dev/MathOptInterface.jl/pull/1172 @warn "Integer-infeasible solution in lazy callback" return end # If integer assignment has been seen before, use cached point if haskey(cache_contsol, round_mipsol) cont_solution = cache_contsol[round_mipsol] else # Try to solve new subproblem, update incumbent if feasible. start_nlp = time() cont_solution = _solve_subproblem(model, comp) nlp_time += time() - start_nlp cache_contsol[round_mipsol] = cont_solution end # Add gradient cuts to MIP model from NLP solution if all(isfinite, cont_solution) _add_cuts(model, cont_solution, jac_IJ, jac_V, grad_f, is_max, cb) else @warn "no cuts could be added, Pavito should be terminated" # TODO terminate the solver once there is a # solver-independent callback for that in MOI return end end MOI.set(model.mip_optimizer, MOI.LazyConstraintCallback(), lazy_callback) function heuristic_callback(cb) # If have a new best feasible solution since last heuristic # solution added, set MIP solution to the new incumbent. if !model.new_incumb return elseif isnothing(model.nlp_obj_var) MOI.submit( model.mip_optimizer, MOI.HeuristicSolution(cb), model.mip_variables, model.incumbent, ) else MOI.submit( model.mip_optimizer, MOI.HeuristicSolution(cb), vcat(model.mip_variables, model.nlp_obj_var), vcat(model.incumbent, model.objective_value), ) end model.new_incumb = false return end MOI.set(model.mip_optimizer, MOI.HeuristicCallback(), heuristic_callback) if isfinite(model.timeout) MOI.set( model.mip_optimizer, MOI.TimeLimitSec(), max(1.0, model.timeout - (time() - start)), ) end MOI.optimize!(model.mip_optimizer) mip_status = MOI.get(model.mip_optimizer, MOI.TerminationStatus()) if mip_status == MOI.OPTIMAL model.status = MOI.LOCALLY_SOLVED elseif mip_status == MOI.ALMOST_OPTIMAL model.status = MOI.ALMOST_LOCALLY_SOLVED else model.status = mip_status end model.objective_bound = MOI.get(model.mip_optimizer, MOI.ObjectiveBound()) _update_gap(model, is_max) return mip_time, nlp_time end struct _IterativeAlgorithm end function _run_algorithm( ::_IterativeAlgorithm, model, start, mip_time, nlp_time, jac_IJ, jac_V, grad_f, is_max, ) comp = is_max ? (>) : (<) prev_mip_solution = fill(NaN, length(model.mip_variables)) while time() - start < model.timeout model.num_iters_or_callbacks += 1 # Set remaining time limit on MIP solver if isfinite(model.timeout) MOI.set( model.mip_optimizer, MOI.TimeLimitSec(), max(1.0, model.timeout - (time() - start)), ) end # Solve MIP model start_mip = time() MOI.optimize!(model.mip_optimizer) mip_status = MOI.get(model.mip_optimizer, MOI.TerminationStatus()) mip_time += time() - start_mip # Finish if MIP was infeasible or if problematic status if mip_status in (MOI.INFEASIBLE, MOI.INFEASIBLE_OR_UNBOUNDED) model.status = MOI.LOCALLY_INFEASIBLE break elseif (mip_status != MOI.OPTIMAL) && (mip_status != MOI.ALMOST_OPTIMAL) @warn "MIP solver status was $mip_status, terminating Pavito" model.status = mip_status break end model.mip_solution = MOI.get( model.mip_optimizer, MOI.VariablePrimal(), model.mip_variables, ) # Update best bound from MIP bound mip_obj_bound = MOI.get(model.mip_optimizer, MOI.ObjectiveBound()) if isfinite(mip_obj_bound) && comp(model.objective_bound, mip_obj_bound) model.objective_bound = mip_obj_bound end _update_gap(model, is_max) _print_gap(model, start) if _check_progress(model, prev_mip_solution) break end # Try to solve new subproblem, update incumbent if feasible start_nlp = time() cont_solution = _solve_subproblem(model, comp) nlp_time += time() - start_nlp _update_gap(model, is_max) if _check_progress(model, prev_mip_solution) break end # Add gradient cuts to MIP model from NLP solution if all(isfinite, cont_solution) _add_cuts(model, cont_solution, jac_IJ, jac_V, grad_f, is_max) else @warn "no cuts could be added, terminating Pavito" break end # TODO warmstart MIP from incumbent prev_mip_solution = model.mip_solution flush(stdout) end return mip_time, nlp_time end function MOI.optimize!(model::Optimizer) model.status = MOI.OPTIMIZE_NOT_CALLED fill!(model.incumbent, NaN) model.new_incumb = false model.total_time = 0.0 model.objective_value = NaN model.objective_bound = NaN model.objective_gap = Inf model.num_iters_or_callbacks = 0 if isempty(model.int_indices) && model.log_level >= 1 @warn "No variables of type integer or binary; call the continuous " * "solver directly for pure continuous problems." end if (!isnothing(model.nlp_block) && model.nlp_block.has_objective) || model.objective isa MOI.ScalarQuadraticFunction{Float64} if isnothing(model.nlp_obj_var) model.nlp_obj_var = MOI.add_variable(model.mip_optimizer) MOI.set( model.mip_optimizer, MOI.ObjectiveFunction{MOI.VariableIndex}(), model.nlp_obj_var, ) end else if !isnothing(model.nlp_obj_var) MOI.delete(model.mip_optimizer, model.nlp_obj_var) model.nlp_obj_var = nothing end end start = time() nlp_time = 0.0 mip_time = 0.0 is_max = MOI.get(model.cont_optimizer, MOI.ObjectiveSense()) == MOI.MAX_SENSE model.objective_value = is_max ? -Inf : Inf model.objective_bound = -model.objective_value if model.log_level > 0 _print_model_summary(model) end flush(stdout) if isnothing(model.nlp_block) jac_V = jac_IJ = nothing else MOI.initialize( model.nlp_block.evaluator, intersect( [:Grad, :Jac, :Hess], MOI.features_available(model.nlp_block.evaluator), ), ) jac_IJ = MOI.jacobian_structure(model.nlp_block.evaluator) jac_V = zeros(length(jac_IJ)) end grad_f = zeros(length(model.cont_variables)) # Solve initial continuous relaxation NLP model. start_nlp = time() MOI.optimize!(model.cont_optimizer) nlp_time += time() - start_nlp ini_nlp_status = MOI.get(model.cont_optimizer, MOI.TerminationStatus()) cont_solution, cont_obj = nothing, 0.0 if ini_nlp_status in (MOI.OPTIMAL, MOI.LOCALLY_SOLVED, MOI.ALMOST_OPTIMAL) cont_solution = MOI.get( model.cont_optimizer, MOI.VariablePrimal(), model.cont_variables, ) cont_obj = MOI.get(model.cont_optimizer, MOI.ObjectiveValue()) if isempty(model.int_indices) model.objective_value = cont_obj model.objective_bound = cont_obj _update_gap(model, is_max) model.mip_solution = Float64[] model.incumbent = cont_solution else _add_cuts(model, cont_solution, jac_IJ, jac_V, grad_f, is_max) end elseif ini_nlp_status == MOI.DUAL_INFEASIBLE # The integrality constraints may make the MINLP bounded so we continue @warn "initial NLP relaxation unbounded" elseif ini_nlp_status == MOI.NORM_LIMIT # Ipopt usually ends with `Diverging_Iterates` for unbounded problems, # this gets converted to `MOI.NORM_LIMIT` @warn "initial NLP relaxation terminated with status `NORM_LIMIT` " * "which usually means that the problem is unbounded" else if ini_nlp_status in (MOI.INFEASIBLE, MOI.LOCALLY_INFEASIBLE, MOI.ALMOST_INFEASIBLE) # The original problem is infeasible too @warn "initial NLP relaxation infeasible" model.status = ini_nlp_status else @warn "NLP solver failure: initial NLP relaxation terminated with " * "status $ini_nlp_status" model.status = ini_nlp_status end return end flush(stdout) # If there is no integrality, exit early! We've already solved the NLP. if isempty(model.int_indices) model.status = ini_nlp_status _clean_up_algorithm(model, start, mip_time, nlp_time) return end # Set a VariablePrimalStart if supported by the solver if !isnothing(cont_solution) && MOI.supports( model.mip_optimizer, MOI.VariablePrimalStart(), MOI.VariableIndex, ) && all(isfinite, cont_solution) MOI.set( model.mip_optimizer, MOI.VariablePrimalStart(), model.mip_variables, cont_solution, ) if !isnothing(model.nlp_obj_var) MOI.set( model.mip_optimizer, MOI.VariablePrimalStart(), model.nlp_obj_var, cont_obj, ) end end algorithm = if model.mip_solver_drives _MIPSolverDrivenAlgorithm() else _IterativeAlgorithm() end mip_time, nlp_time = _run_algorithm( algorithm, model, start, mip_time, nlp_time, jac_IJ, jac_V, grad_f, is_max, ) flush(stdout) _clean_up_algorithm(model, start, mip_time, nlp_time) return end function _update_gap(model::Optimizer, is_max::Bool) # Update gap if best bound and best objective are finite if isfinite(model.objective_value) && isfinite(model.objective_bound) model.objective_gap = (model.objective_value - model.objective_bound) / (abs(model.objective_value) + 1e-5) if is_max model.objective_gap = -model.objective_gap end end return end function _check_progress(model::Optimizer, prev_mip_solution) # Finish if optimal or cycling integer solutions. int_ind = collect(model.int_indices) if model.objective_gap <= model.rel_gap model.status = MOI.LOCALLY_SOLVED return true elseif round.(prev_mip_solution[int_ind]) == round.(model.mip_solution[int_ind]) @warn "mixed-integer cycling detected, terminating Pavito" if isfinite(model.objective_gap) model.status = MOI.ALMOST_LOCALLY_SOLVED else model.status = MOI.OTHER_ERROR end return true end return false end function _fix_int_vars( optimizer::MOI.ModelLike, vars, mip_solution, int_indices, ) F = MOI.VariableIndex for i in int_indices x = vars[i] # We need to delete any conflicting bound constraints before we set or # update the x == mip_solution[i] constraint. ci = MOI.ConstraintIndex{F,MOI.Interval{Float64}}(x.value) if MOI.is_valid(optimizer, ci) MOI.delete(optimizer, ci) end ci = MOI.ConstraintIndex{F,MOI.LessThan{Float64}}(x.value) if MOI.is_valid(optimizer, ci) MOI.delete(optimizer, ci) end ci = MOI.ConstraintIndex{F,MOI.GreaterThan{Float64}}(x.value) if MOI.is_valid(optimizer, ci) MOI.delete(optimizer, ci) end ci = MOI.ConstraintIndex{F,MOI.EqualTo{Float64}}(x.value) set = MOI.EqualTo(mip_solution[i]) if MOI.is_valid(optimizer, ci) MOI.set(optimizer, MOI.ConstraintSet(), ci, set) else MOI.add_constraint(optimizer, x, set) end end return end # solve NLP subproblem defined by integer assignment function _solve_subproblem(model::Optimizer, comp::Function) _fix_int_vars( model.cont_optimizer, model.cont_variables, model.mip_solution, model.int_indices, ) MOI.optimize!(model.cont_optimizer) primal_status = MOI.get(model.cont_optimizer, MOI.PrimalStatus()) if primal_status in (MOI.FEASIBLE_POINT, MOI.NEARLY_FEASIBLE_POINT) # Subproblem is feasible, check if solution is new incumbent nlp_objective_value = MOI.get(model.cont_optimizer, MOI.ObjectiveValue()) nlp_solution = MOI.get( model.cont_optimizer, MOI.VariablePrimal(), model.cont_variables, ) if comp(nlp_objective_value, model.objective_value) model.objective_value = nlp_objective_value copyto!(model.incumbent, nlp_solution) model.new_incumb = true end return nlp_solution end # Assume subproblem is infeasible, so solve infeasible recovery NLP # subproblem. if ( !isnothing(model.nlp_block) && !isempty(model.nlp_block.constraint_bounds) && isnothing(model.nl_slack_variables) ) || (!isempty(model.quad_LT) && isnothing(model.quad_LT_slack)) || (!isempty(model.quad_GT) && isnothing(model.quad_GT_slack)) if !isnothing(model.nl_slack_variables) obj = MOI.ScalarAffineFunction( MOI.ScalarAffineTerm.(1.0, model.nl_slack_variables), 0.0, ) else obj = MOI.ScalarAffineFunction(MOI.ScalarAffineTerm{Float64}[], 0.0) end function _add_to_obj(vi::MOI.VariableIndex) return push!(obj.terms, MOI.ScalarAffineTerm(1.0, vi)) end if !isnothing(model.nlp_block) && !isempty(model.nlp_block.constraint_bounds) bounds = copy(model.nlp_block.constraint_bounds) model.infeasible_evaluator = _InfeasibleNLPEvaluator( model.nlp_block.evaluator, length(model.infeasible_variables), falses(length(model.nlp_block.constraint_bounds)), ) model.nl_slack_variables = MOI.add_variables( _infeasible(model), length(model.nlp_block.constraint_bounds), ) for i in eachindex(model.nlp_block.constraint_bounds) _add_to_obj(model.nl_slack_variables[i]) push!(bounds, MOI.NLPBoundsPair(0.0, Inf)) set = _bound_set(model, i) if set isa MOI.LessThan{Float64} model.infeasible_evaluator.minus[i] = true end end MOI.set( _infeasible(model), MOI.NLPBlock(), MOI.NLPBlockData(bounds, model.infeasible_evaluator, false), ) end # We need to add quadratic variables afterwards because # `_InfeasibleNLPEvaluator` assumes the original variables are directly # followed by the NL slacks. if !isempty(model.quad_LT) model.quad_LT_slack = MOI.add_variables(_infeasible(model), length(model.quad_LT)) model.quad_LT_infeasible_con = map(eachindex(model.quad_LT)) do i (func, set) = model.quad_LT[i] new_func = MOI.Utilities.operate( -, Float64, func, model.quad_LT_slack[i], ) return MOI.add_constraint(_infeasible(model), new_func, set) end for vi in model.quad_LT_slack _add_to_obj(vi) end end if !isempty(model.quad_GT) model.quad_GT_slack = MOI.add_variables(_infeasible(model), length(model.quad_GT)) model.quad_GT_infeasible_con = map(eachindex(model.quad_GT)) do i (func, set) = model.quad_GT[i] new_func = MOI.Utilities.operate( +, Float64, func, model.quad_GT_slack[i], ) return MOI.add_constraint(_infeasible(model), new_func, set) end for vi in model.quad_GT_slack _add_to_obj(vi) end end MOI.set(_infeasible(model), MOI.ObjectiveFunction{typeof(obj)}(), obj) end _fix_int_vars( model.infeasible_optimizer, model.infeasible_variables, model.mip_solution, model.int_indices, ) MOI.set( _infeasible(model), MOI.VariablePrimalStart(), model.infeasible_variables, model.mip_solution, ) if !isnothing(model.nlp_block) && !isempty(model.nlp_block.constraint_bounds) fill!(model.infeasible_evaluator.minus, false) g = zeros(length(model.nlp_block.constraint_bounds)) MOI.eval_constraint(model.nlp_block.evaluator, g, model.mip_solution) for i in eachindex(model.nlp_block.constraint_bounds) bounds = model.nlp_block.constraint_bounds[i] val = if model.infeasible_evaluator.minus[i] g[i] - bounds.upper else bounds.lower - g[i] end # Sign of the slack changes if the constraint direction changes. MOI.set( _infeasible(model), MOI.VariablePrimalStart(), model.nl_slack_variables[i], max(0.0, val), ) end end for i in eachindex(model.quad_LT) val = _eval_func(model.mip_solution, model.quad_LT[i][1]) - model.quad_LT[i][2].upper MOI.set( _infeasible(model), MOI.VariablePrimalStart(), model.quad_LT_slack[i], max(0.0, val), ) end for i in eachindex(model.quad_GT) val = model.quad_GT[i][2].lower - _eval_func(model.mip_solution, model.quad_GT[i][1]) MOI.set( _infeasible(model), MOI.VariablePrimalStart(), model.quad_GT_slack[i], max(0.0, val), ) end MOI.optimize!(model.infeasible_optimizer) status = MOI.get(model.infeasible_optimizer, MOI.PrimalStatus()) if status != MOI.FEASIBLE_POINT @warn "Infeasible NLP problem terminated with primal status: $status" end return MOI.get( model.infeasible_optimizer, MOI.VariablePrimal(), model.infeasible_variables, ) end # print objective gap information for iterative function _print_gap(model::Optimizer, start) if model.log_level >= 1 if model.num_iters_or_callbacks == 1 || model.log_level >= 2 Printf.@printf( "\n%-5s | %-14s | %-14s | %-11s | %-11s\n", "Iter.", "Best feasible", "Best bound", "Rel. gap", "Time (s)", ) end if model.objective_gap < 1000 Printf.@printf( "%5d | %+14.6e | %+14.6e | %11.3e | %11.3e\n", model.num_iters_or_callbacks, model.objective_value, model.objective_bound, model.objective_gap, time() - start, ) else obj_gap = isnan(model.objective_gap) ? "Inf" : ">1000" Printf.@printf( "%5d | %+14.6e | %+14.6e | %11s | %11.3e\n", model.num_iters_or_callbacks, model.objective_value, model.objective_bound, obj_gap, time() - start, ) end flush(stdout) flush(stderr) end return end # utilities: function _eval_func(values, func) return MOI.Utilities.eval_variables(vi -> values[vi.value], func) end # because Pavito only supports one bound on NLP constraints: # TODO handle two bounds? _has_upper(bound) = (bound != typemax(bound)) _has_lower(bound) = (bound != typemin(bound)) function _bound_set(model::Optimizer, i::Integer) bounds = model.nlp_block.constraint_bounds[i] return _bound_set(bounds.lower, bounds.upper) end function _bound_set(lb::T, ub::T) where {T} if _has_upper(ub) if _has_lower(lb) error( "An NLP constraint has lower bound $lb and upper bound $ub " * "but only one bound is supported.", ) else return MOI.LessThan{Float64}(ub) end else if _has_lower(lb) return MOI.GreaterThan{Float64}(lb) else error("Pavito needs one bound per NLP constraint.") end end end
Pavito
https://github.com/jump-dev/Pavito.jl.git
[ "MPL-2.0" ]
0.3.9
55c5d8356b684e56e7309386ec86ecd9ef9d17da
code
2578
# Copyright 2017, Chris Coey and Miles Lubin # Copyright 2016, Los Alamos National Laboratory, LANS LLC. # This Source Code Form is subject to the terms of the Mozilla Public # License, v. 2.0. If a copy of the MPL was not distributed with this # file, You can obtain one at http://mozilla.org/MPL/2.0/. module TestMOIWrapper import MathOptInterface import Pavito import Test const MOI = MathOptInterface function runtests(mip_solver, cont_solver) Test.@testset "$(msd)" for msd in (true, false) _run_moi_tests(msd, mip_solver, cont_solver) end return end function _run_moi_tests(msd::Bool, mip_solver, cont_solver) pavito = Pavito.Optimizer() MOI.set(pavito, MOI.Silent(), true) MOI.set(pavito, MOI.RawOptimizerAttribute("mip_solver_drives"), msd) MOI.set(pavito, MOI.RawOptimizerAttribute("mip_solver"), mip_solver) MOI.set(pavito, MOI.RawOptimizerAttribute("cont_solver"), cont_solver) MOI.Test.runtests( MOI.Utilities.CachingOptimizer( MOI.Utilities.UniversalFallback(MOI.Utilities.Model{Float64}()), MOI.Bridges.full_bridge_optimizer(pavito, Float64), ), MOI.Test.Config( atol = 1e-4, rtol = 1e-4, infeasible_status = MOI.LOCALLY_INFEASIBLE, optimal_status = MOI.LOCALLY_SOLVED, exclude = Any[ MOI.ConstraintDual, MOI.ConstraintBasisStatus, MOI.DualObjectiveValue, MOI.NLPBlockDual, ], ), exclude = String[ # Not implemented: "test_attribute_SolverVersion", # Invalid model: "test_constraint_ZeroOne_bounds_3", "test_linear_VectorAffineFunction_empty_row", # CachingOptimizer does not throw if optimizer not attached: "test_model_copy_to_UnsupportedAttribute", "test_model_copy_to_UnsupportedConstraint", # NLP features not supported: "test_nonlinear_invalid", # NORM_LIMIT instead of DUAL_INFEASIBLE "test_linear_DUAL_INFEASIBLE", "test_linear_DUAL_INFEASIBLE_2", "test_solve_TerminationStatus_DUAL_INFEASIBLE", # ITERATION_LIMIT instead of OPTIMAL "test_linear_integer_knapsack", "test_linear_integer_solve_twice", # INFEASIBLE instead of LOCALLY_INFEASIBLE? "test_linear_Semicontinuous_integration", "test_linear_Semiinteger_integration", ], ) return end end
Pavito
https://github.com/jump-dev/Pavito.jl.git
[ "MPL-2.0" ]
0.3.9
55c5d8356b684e56e7309386ec86ecd9ef9d17da
code
9385
# Copyright 2017, Chris Coey and Miles Lubin # Copyright 2016, Los Alamos National Laboratory, LANS LLC. # This Source Code Form is subject to the terms of the Mozilla Public # License, v. 2.0. If a copy of the MPL was not distributed with this # file, You can obtain one at http://mozilla.org/MPL/2.0/. module TestJuMP import JuMP import MINLPTests import Pavito using Test const MOI = JuMP.MOI function runtests(mip_solver, cont_solver) @testset "$(msd)" for msd in (true, false) @testset "MINLPTests" begin run_minlptests(msd, mip_solver, cont_solver, 0, 1e-3) end @testset "QP-NLP" begin run_qp_nlp_tests(msd, mip_solver, cont_solver, 0, 1e-3) end @testset "log_level=$(log_level)" for log_level in 0:2 run_log_level_tests(msd, mip_solver, cont_solver, log_level, 1e-3) end end return end function run_minlptests( mip_solver_drives::Bool, mip_solver, cont_solver, log_level::Int, TOL::Real, ) solver = MOI.OptimizerWithAttributes( Pavito.Optimizer, "timeout" => 120.0, "mip_solver_drives" => mip_solver_drives, "mip_solver" => mip_solver, "cont_solver" => cont_solver, "log_level" => log_level, ) MINLPTests.test_nlp_mi( solver, exclude = String[ # ======================= Unexpected failures ====================== # LOCALLY_SOLVED instead of LOCALLY_INFEASIBLE for MSD algorithm "007_020", # ======================== Expected failures ======================= # Nonconvex: contains sin(x)^2 "003_010", "003_011", "003_012", "003_013", "003_014", "003_015", "003_016", # Non-convex: user-defined function y^3 "006_010", ], objective_tol = TOL, primal_tol = TOL, dual_tol = NaN, primal_target = Dict( MINLPTests.FEASIBLE_PROBLEM => MOI.FEASIBLE_POINT, MINLPTests.INFEASIBLE_PROBLEM => MOI.NO_SOLUTION, ), ) return end function run_qp_nlp_tests( mip_solver_drives::Bool, mip_solver, cont_solver, log_level::Int, TOL::Real, ) solver = JuMP.optimizer_with_attributes( Pavito.Optimizer, "timeout" => 120.0, "mip_solver_drives" => mip_solver_drives, "mip_solver" => mip_solver, "cont_solver" => cont_solver, "log_level" => log_level, ) for name in names(@__MODULE__; all = true) if startswith("$(name)", "_test_qp_") || startswith("$(name)", "_test_nlp_") @testset "$(name)" begin getfield(@__MODULE__, name)(solver, TOL) end end end return end function run_log_level_tests( mip_solver_drives::Bool, mip_solver, cont_solver, log_level::Int, TOL::Real, ) solver = JuMP.optimizer_with_attributes( Pavito.Optimizer, "timeout" => 120.0, "mip_solver_drives" => mip_solver_drives, "mip_solver" => mip_solver, "cont_solver" => cont_solver, "log_level" => log_level, ) for name in names(@__MODULE__; all = true) if startswith("$(name)", "_test_loglevel_") @testset "$(name)" begin getfield(@__MODULE__, name)(solver, TOL) end end end return end ### ### Individual tests go below here. ### function _test_qp_optimal(solver, TOL) m = JuMP.Model(solver) JuMP.@variable(m, x >= 0, Int) JuMP.@variable(m, y >= 0) JuMP.@variable(m, 0 <= u <= 10, Int) JuMP.@variable(m, w == 1) JuMP.@objective(m, Min, -3x - y) JuMP.@constraint(m, 3x + 10 <= 20) JuMP.@constraint(m, y^2 <= u * w) JuMP.optimize!(m) status = JuMP.termination_status(m) @test status == MOI.LOCALLY_SOLVED @test isapprox(JuMP.objective_value(m), -12.162277, atol = TOL) @test isapprox(JuMP.objective_bound(m), -12.162277, atol = TOL) @test isapprox(JuMP.value(x), 3, atol = TOL) @test isapprox(JuMP.value(y), 3.162277, atol = TOL) return end function _test_qp_maximize(solver, TOL) m = JuMP.Model(solver) JuMP.@variable(m, x >= 0, Int) JuMP.@variable(m, y >= 0) JuMP.@variable(m, 0 <= u <= 10, Int) JuMP.@variable(m, w == 1) JuMP.@objective(m, Max, 3x + y) JuMP.@constraint(m, 3x + 2y + 10 <= 20) JuMP.@constraint(m, x^2 <= u * w) JuMP.optimize!(m) status = JuMP.termination_status(m) @test status == MOI.LOCALLY_SOLVED @test isapprox(JuMP.objective_value(m), 9.5, atol = TOL) @test isapprox(JuMP.objective_bound(m), 9.5, atol = TOL) @test isapprox(JuMP.value(x), 3, atol = TOL) @test isapprox(JuMP.value(y), 0.5, atol = TOL) return end function _test_qp_infeasible(solver, TOL) m = JuMP.Model(solver) JuMP.@variable(m, x >= 0, Int) JuMP.@objective(m, Max, x) JuMP.@constraint(m, x^2 <= 3.9) JuMP.@constraint(m, x >= 1.1) JuMP.optimize!(m) status = JuMP.termination_status(m) @test status in (MOI.INFEASIBLE, MOI.LOCALLY_INFEASIBLE) return end function _test_nlp_nonconvex_error(solver, TOL) m = JuMP.Model(solver) JuMP.@variable(m, x >= 0, start = 1, Int) JuMP.@variable(m, y >= 0, start = 1) JuMP.@objective(m, Min, -3x - y) JuMP.@constraint(m, 3x + 2y + 10 <= 20) JuMP.@NLconstraint(m, 8 <= x^2 <= 10) @test_throws ErrorException JuMP.optimize!(m) return end function _test_nlp_optimal(solver, TOL) m = JuMP.Model(solver) JuMP.@variable(m, x >= 0, start = 1, Int) JuMP.@variable(m, y >= 0, start = 1) JuMP.@objective(m, Min, -3x - y) JuMP.@constraint(m, 3x + 2y + 10 <= 20) JuMP.@constraint(m, x >= 1) JuMP.@NLconstraint(m, x^2 <= 5) JuMP.@NLconstraint(m, exp(y) + x <= 7) JuMP.optimize!(m) status = JuMP.termination_status(m) @test status == MOI.LOCALLY_SOLVED @test isapprox(JuMP.value(x), 2.0) return end function _test_nlp_infeasible_1(solver, TOL) m = JuMP.Model(solver) JuMP.@variable(m, x >= 0, start = 1, Int) JuMP.@variable(m, y >= 0, start = 1) JuMP.@objective(m, Min, -3x - y) JuMP.@constraint(m, 3x + 2y + 10 <= 20) JuMP.@NLconstraint(m, x^2 >= 9) JuMP.@NLconstraint(m, exp(y) + x <= 2) JuMP.optimize!(m) status = JuMP.termination_status(m) @test status in (MOI.INFEASIBLE, MOI.LOCALLY_INFEASIBLE) return end function _test_nlp_infeasible_2(solver, TOL) m = JuMP.Model(solver) JuMP.@variable(m, x >= 0, start = 1, Int) JuMP.@objective(m, Max, x) JuMP.@NLconstraint(m, log(x) >= 0.75) JuMP.@constraint(m, x <= 2.9) JuMP.optimize!(m) status = JuMP.termination_status(m) @test status in (MOI.INFEASIBLE, MOI.LOCALLY_INFEASIBLE) return end function _test_nlp_continuous(solver, TOL) m = JuMP.Model(solver) JuMP.@variable(m, x >= 0, start = 1) JuMP.@variable(m, y >= 0, start = 1) JuMP.@objective(m, Min, -3x - y) JuMP.@constraint(m, 3x + 2y + 10 <= 20) JuMP.@constraint(m, x >= 1) JuMP.@NLconstraint(m, x^2 <= 5) JuMP.@NLconstraint(m, exp(y) + x <= 7) JuMP.optimize!(m) status = JuMP.termination_status(m) @test status == MOI.LOCALLY_SOLVED @test isapprox(JuMP.objective_value(m), -8.26928, atol = TOL) @test isapprox(JuMP.objective_bound(m), -8.26928, atol = TOL) @test isapprox(JuMP.value(x), 2.23607, atol = TOL) @test isapprox(JuMP.value(y), 1.56107, atol = TOL) return end function _test_nlp_maximization(solver, TOL) m = JuMP.Model(solver) JuMP.@variable(m, x >= 0, start = 1, Int) JuMP.@variable(m, y >= 0, start = 1) JuMP.@objective(m, Max, 3x + y) JuMP.@constraint(m, 3x + 2y + 10 <= 20) JuMP.@NLconstraint(m, x^2 <= 9) JuMP.optimize!(m) status = JuMP.termination_status(m) @test status == MOI.LOCALLY_SOLVED @test isapprox(JuMP.objective_value(m), 9.5, atol = TOL) return end function _test_nlp_nonlinear_objective(solver, TOL) m = JuMP.Model(solver) JuMP.@variable(m, x >= 0, start = 1, Int) JuMP.@variable(m, y >= 0, start = 1) JuMP.@objective(m, Max, -x^2 - y) JuMP.@constraint(m, x + 2y >= 4) JuMP.@NLconstraint(m, x^2 <= 9) JuMP.optimize!(m) status = JuMP.termination_status(m) @test status == MOI.LOCALLY_SOLVED @test isapprox(JuMP.objective_value(m), -2.0, atol = TOL) @test isapprox(JuMP.objective_bound(m), -2.0, atol = TOL) return end function _test_loglevel_optimal(solver, TOL) m = JuMP.Model(solver) JuMP.@variable(m, x >= 0, Int) JuMP.@objective(m, Max, x) JuMP.@constraint(m, x^2 <= 5) JuMP.@constraint(m, x >= 0.5) JuMP.optimize!(m) status = JuMP.termination_status(m) @test status == MOI.LOCALLY_SOLVED return end function test_loglevel_infeasible(solver, TOL) m = JuMP.Model(solver) JuMP.@variable(m, x >= 0, start = 1, Int) JuMP.@variable(m, y >= 0, start = 1) JuMP.@objective(m, Min, -3x - y) JuMP.@constraint(m, 3x + 2y + 10 <= 20) JuMP.@constraint(m, 6x + 5y >= 30) JuMP.@NLconstraint(m, x^2 >= 8) JuMP.@NLconstraint(m, exp(y) + x <= 7) JuMP.optimize!(m) status = JuMP.termination_status(m) @test status in [MOI.INFEASIBLE, MOI.LOCALLY_INFEASIBLE] return end end
Pavito
https://github.com/jump-dev/Pavito.jl.git
[ "MPL-2.0" ]
0.3.9
55c5d8356b684e56e7309386ec86ecd9ef9d17da
code
1790
# Copyright 2017, Chris Coey and Miles Lubin # Copyright 2016, Los Alamos National Laboratory, LANS LLC. # This Source Code Form is subject to the terms of the Mozilla Public # License, v. 2.0. If a copy of the MPL was not distributed with this # file, You can obtain one at http://mozilla.org/MPL/2.0/. using Test import Cbc import GLPK import Ipopt import MathOptInterface const MOI = MathOptInterface include("MOI_wrapper.jl") include("jump_tests.jl") # !!! info # We test with both Cbc and GLPK because they have very different # implementations of the MOI API: GLPK supports incremental modification and # supports lazy constraints, whereas Cbc supports copy_to and does not # support lazy constraints. In addition, Cbc uses MatrixOfConstraints to # simplify the copy process, needing an additional cache if we modify after # the solve. @testset "MOI" begin TestMOIWrapper.runtests( MOI.OptimizerWithAttributes( GLPK.Optimizer, "msg_lev" => 0, "tol_int" => 1e-9, "tol_bnd" => 1e-7, "mip_gap" => 0.0, ), MOI.OptimizerWithAttributes(Ipopt.Optimizer, MOI.Silent() => true), ) end @testset "Cbc" begin TestMOIWrapper._run_moi_tests( false, # mip_solver_drives MOI.OptimizerWithAttributes(Cbc.Optimizer, MOI.Silent() => true), MOI.OptimizerWithAttributes(Ipopt.Optimizer, MOI.Silent() => true), ) end @testset "JuMP" begin TestJuMP.runtests( MOI.OptimizerWithAttributes( GLPK.Optimizer, "msg_lev" => 0, "tol_int" => 1e-9, "tol_bnd" => 1e-7, "mip_gap" => 0.0, ), MOI.OptimizerWithAttributes(Ipopt.Optimizer, MOI.Silent() => true), ) end
Pavito
https://github.com/jump-dev/Pavito.jl.git
[ "MPL-2.0" ]
0.3.9
55c5d8356b684e56e7309386ec86ecd9ef9d17da
docs
44
Pavito release notes ======================
Pavito
https://github.com/jump-dev/Pavito.jl.git
[ "MPL-2.0" ]
0.3.9
55c5d8356b684e56e7309386ec86ecd9ef9d17da
docs
3453
# Pavito.jl [![Build Status](https://github.com/jump-dev/Pavito.jl/workflows/CI/badge.svg)](https://github.com/jump-dev/Pavito.jl/actions) [![Coverage](https://codecov.io/gh/jump-dev/Pavito.jl/branch/master/graph/badge.svg)](https://codecov.io/gh/jump-dev/Pavito.jl) [Pavito.jl](https://github.com/jump-dev/Pavito.jl) is a mixed-integer convex programming (MICP) solver package written in [Julia](http://julialang.org/). MICP problems are convex, except for restrictions that some variables take binary or integer values. Pavito solves MICP problems by constructing sequential polyhedral outer-approximations of the convex feasible set, similar to [Bonmin](https://projects.coin-or.org/Bonmin). Pavito accesses state-of-the-art MILP solvers and continuous, derivative-based nonlinear programming (NLP) solvers through [MathOptInterface](https://github.com/jump-dev/MathOptInterface.jl). For algorithms that use a conic solver instead of an NLP solver, use [Pajarito](https://github.com/jump-dev/Pajarito.jl). Pajarito is a robust mixed-integer conic solver that can handle such established problem classes as mixed-integer second-order cone programming (MISOCP) and mixed-integer semidefinite programming (MISDP). ## License `Pavito.jl` is licensed under the [MPL 2.0 license](https://github.com/jump-dev/Pavito.jl/blob/master/LICENSE.md). ## Installation Install Pavito using `Pkg.add`: ```julia import Pkg Pkg.add("Pavito") ``` ## Use with JuMP To use Pavito with [JuMP](https://github.com/jump-dev/JuMP.jl), use `Pavito.Optimizer`: ```julia using JuMP, Pavito import GLPK, Ipopt model = Model( optimizer_with_attributes( Pavito.Optimizer, "mip_solver" => optimizer_with_attributes(GLPK.Optimizer), "cont_solver" => optimizer_with_attributes(Ipopt.Optimizer, "print_level" => 0), ), ) ``` The algorithm implemented by Pavito itself is relatively simple; most of the hard work is performed by the MILP solver passed as `mip_solver` and the NLP solver passed as `cont_solver`. **The performance of Pavito depends on these two types of solvers.** For better performance, you should use a commercial MILP solver such as CPLEX or Gurobi. ## Options The following optimizer attributes can set to a `Pavito.Optimizer` to modify its behavior: * `log_level::Int` Verbosity flag: 0 for quiet, higher for basic solve info * `timeout::Float64` Time limit for algorithm (in seconds) * `rel_gap::Float64` Relative optimality gap termination condition * `mip_solver_drives::Bool` Let MILP solver manage convergence ("branch and cut") * `mip_solver::MOI.OptimizerWithAttributes` MILP solver * `cont_solver::MOI.OptimizerWithAttributes` Continuous NLP solver **Pavito is not yet numerically robust and may require tuning of parameters to improve convergence.** If the default parameters don't work for you, please let us know by opening an issue. For improved Pavito performance, MILP solver integrality tolerance and feasibility tolerances should typically be tightened, for example to `1e-8`. ## Bug reports and support Please report any issues via the [GitHub issue tracker](https://github.com/jump-dev/Pavito.jl/issues). All types of issues are welcome and encouraged; this includes bug reports, documentation typos, feature requests, etc. The [Optimization (Mathematical)](https://discourse.julialang.org/c/domain/opt) category on Discourse is appropriate for general discussion.
Pavito
https://github.com/jump-dev/Pavito.jl.git
[ "MIT" ]
1.1.0
e495a1eaee52a513e02fe6ca2c995a7d0ed671a7
code
74
using LatticeQCD using Documenter makedocs(sitename="LatticeQCD.jl")
LatticeQCD
https://github.com/akio-tomiya/LatticeQCD.jl.git
[ "MIT" ]
1.1.0
e495a1eaee52a513e02fe6ca2c995a7d0ed671a7
code
3070
# - - parameters - - - - - - - - - - - #= Symanzik improved gauge actions debuged by https://link.springer.com/article/10.1140/epjc/s10052-017-5392-6 Improved thermodynamics of SU(2) gauge theory Pietro Giudice & Stefano Piemonte =# # Physical setting system["L"] = (8, 8, 8, 8) system["β"] = 1.6 system["NC"] = 2 system["Nthermalization"] = 0 system["Nsteps"] = 201 system["initial"] = "cold" system["initialtrj"] = 1 system["update_method"] = "Heatbath" system["useOR"] = false system["numOR"] = 1 system["Nwing"] = 1 # Physical setting(fermions) system["quench"] = true system["Dirac_operator"] = nothing system["BoundaryCondition"] = [1, 1, 1, -1] # System Control system["log_dir"] = "./logs" system["logfile"] = "Heatbath_L08080808_beta1.6_quenched.txt" system["saveU_dir"] = "" system["saveU_format"] = nothing system["verboselevel"] = 2 system["randomseed"] = 111 measurement["measurement_basedir"] = "./measurements" measurement["measurement_dir"] = "Heatbath_L08080808_beta1.6_quenched" # HMC related # Action parameter for SLMC actions["use_autogeneratedstaples"] = false actions["couplingcoeff"] = Any[] actions["couplinglist"] = Any[] # Measurement set measurement["measurement_methods"] = Dict[ Dict{Any,Any}("methodname" => "Polyakov_loop", "measure_every" => 1 ), Dict{Any,Any}("methodname" => "Plaquette", "measure_every" => 1 ) ] # - - - - - - - - - - - - - - - - - - - #-(\beta/2) Re Tr((5/3) plaquette - (1/12) r beta = 1.6 actions["use_autogeneratedstaples"] = true actions["couplingcoeff"] = [beta*5/3,-beta/12] #actions["couplinglist"] = ["plaq","rect","polyx"] #= function makeplaq() loopset = [] for μ=1:4 for ν=μ:4 if ν == μ continue end push!(loopset,[(μ,1),(ν,1),(μ,-1),(ν,-1)]) end end return loopset end function makechair() loopset = [] set1 = (1,2,3) set2 = (1,2,4) set3 = (2,3,4) set4 = (1,3,4) for set in (set1,set2,set3,set4) mu,nu,rho = set loop = [(mu,1),(nu,1),(rho,1),(mu,-1),(rho,-1),(nu,-1)] push!(loopset,loop) mu,rho,nu = set loop = [(mu,1),(nu,1),(rho,1),(mu,-1),(rho,-1),(nu,-1)] push!(loopset,loop) nu,rho,mu = set loop = [(mu,1),(nu,1),(rho,1),(mu,-1),(rho,-1),(nu,-1)] push!(loopset,loop) nu,mu,rho = set loop = [(mu,1),(nu,1),(rho,1),(mu,-1),(rho,-1),(nu,-1)] push!(loopset,loop) rho,mu,nu = set loop = [(mu,1),(nu,1),(rho,1),(mu,-1),(rho,-1),(nu,-1)] push!(loopset,loop) rho,nu,mu = set loop = [(mu,1),(nu,1),(rho,1),(mu,-1),(rho,-1),(nu,-1)] push!(loopset,loop) end return loopset end =# plaqloops = make_plaqloops() rectloops = make_rectloops(2) #= chairloops = makechair() L = system["L"] poly1loops = make_polyakovloops(1,L[1]) poly2loops = make_polyakovloops(2,L[2]) poly3loops = make_polyakovloops(3,L[3]) poly4loops = make_polyakovloops(4,L[4]) =# actions["coupling_loops"] = [plaqloops,rectloops]
LatticeQCD
https://github.com/akio-tomiya/LatticeQCD.jl.git
[ "MIT" ]
1.1.0
e495a1eaee52a513e02fe6ca2c995a7d0ed671a7
code
2717
# - - parameters - - - - - - - - - - - system["saveU_dir"] = "" system["verboselevel"] = 2 system["L"] = (4, 4, 4, 4) system["Nwing"] = 1 system["Nsteps"] = 100 system["quench"] = true system["logfile"] = "Heatbath_L04040404_beta5.7_quenched.txt" system["initial"] = "cold" system["Dirac_operator"] = nothing system["log_dir"] = "./logs" system["Nthermalization"] = 10 system["update_method"] = "HB" system["randomseed"] = 111 system["NC"] = 3 system["BoundaryCondition"] = [1, 1, 1, -1] system["saveU_format"] = nothing system["β"] = 5.7 actions["use_autogeneratedstaples"] = false actions["couplingcoeff"] = Any[] actions["couplinglist"] = Any[] md["Δτ"] = 0.05 md["N_SextonWeingargten"] = 2 md["SextonWeingargten"] = false md["MDsteps"] = 20 measurement["measurement_methods"] = Dict[Dict{Any,Any}("fermiontype" => nothing,"measure_every" => 1,"methodname" => "Polyakov_loop"), Dict{Any,Any}("fermiontype" => nothing,"measure_every" => 1,"methodname" => "Plaquette")] measurement["measurement_dir"] = "Heatbath_L04040404_beta5.7_quenched" measurement["measurement_basedir"] = "./measurements" actions["use_autogeneratedstaples"] = true actions["couplingcoeff"] = [5.7,1.0,0.5] #actions["couplinglist"] = ["plaq","rect","polyx"] function makeplaq() loopset = [] for μ=1:4 for ν=μ:4 if ν == μ continue end push!(loopset,[(μ,1),(ν,1),(μ,-1),(ν,-1)]) end end return loopset end function makechair() loopset = [] set1 = (1,2,3) set2 = (1,2,4) set3 = (2,3,4) set4 = (1,3,4) for set in (set1,set2,set3,set4) mu,nu,rho = set loop = [(mu,1),(nu,1),(rho,1),(mu,-1),(rho,-1),(nu,-1)] push!(loopset,loop) mu,rho,nu = set loop = [(mu,1),(nu,1),(rho,1),(mu,-1),(rho,-1),(nu,-1)] push!(loopset,loop) nu,rho,mu = set loop = [(mu,1),(nu,1),(rho,1),(mu,-1),(rho,-1),(nu,-1)] push!(loopset,loop) nu,mu,rho = set loop = [(mu,1),(nu,1),(rho,1),(mu,-1),(rho,-1),(nu,-1)] push!(loopset,loop) rho,mu,nu = set loop = [(mu,1),(nu,1),(rho,1),(mu,-1),(rho,-1),(nu,-1)] push!(loopset,loop) rho,nu,mu = set loop = [(mu,1),(nu,1),(rho,1),(mu,-1),(rho,-1),(nu,-1)] push!(loopset,loop) end return loopset end plaqloops = makeplaq() rectloops = make_rectloops(2) chairloops = makechair() L = system["L"] poly1loops = make_polyakovloops(1,L[1]) poly2loops = make_polyakovloops(2,L[2]) poly3loops = make_polyakovloops(3,L[3]) poly4loops = make_polyakovloops(4,L[4]) actions["coupling_loops"] = [plaqloops,rectloops,chairloops] # - - - - - - - - - - - - - - - - - - -
LatticeQCD
https://github.com/akio-tomiya/LatticeQCD.jl.git
[ "MIT" ]
1.1.0
e495a1eaee52a513e02fe6ca2c995a7d0ed671a7
code
4323
module LatticeQCD using Requires include("./mpi/simpleprint.jl") #include("./SLMC/logdet.jl") include("./system/parameter_structs.jl") #include("./rhmc/AlgRemez.jl") #include("./rhmc/rhmc.jl") #include("./gaugefields/SUN_generator.jl") #include("./output/verboseprint.jl") #include("./fermions/cgmethod.jl") #include("./autostaples/wilsonloops.jl") include("./system/transform_oldinputfile.jl") include("./system/system_parameters.jl") include("./system/parameters_TOML.jl") include("./system/universe.jl") include("./md/AbstractMD.jl") include("./updates/AbstractUpdate.jl") include("./measurements/measurement_parameters_set.jl") include("./measurements/Measurement_set.jl") #include("./measurements/AbstractMeasurement.jl") #include("parallel.jl") #include("site.jl") #include("./system/rand.jl") #include("./actions/actions.jl") #include("./gaugefields/gaugefields.jl") #include("gaugefields.jl") #include("./fermions/AbstractFermion.jl") #include("./fermions/WilsonFermion.jl") #include("./fermions/DomainwallFermion.jl") #include("./fermions/StaggeredFermion.jl") #include("./fermions/fermionfields.jl") #include("./liealgebra/liealgebrafields.jl") #include("./rationalapprox/rationalapprox.jl") #include("./fermions/clover.jl") #include("./fermions/diracoperator.jl") #include("./fermions/misc.jl") #include("./output/io.jl") #include("./output/ildg_format.jl") #include("./output/bridge_format.jl") #include("./system/LTK_universe.jl") #include("./gaugefields/smearing.jl") #include("./output/print_config.jl") #include("cg.jl") #include("./measurements/measurements.jl") #include("./heatbath/heatbath.jl") #include("./md/md.jl") include("./system/wizard.jl") #include("./SLMC/SLMC.jl") #include("./system/mainrun.jl") #include("./output/analyze.jl") function __init__() @require Plots = "91a5bcdd-55d7-5caf-9e0b-520d859cae80" begin include("./demo/demo.jl") import .Demo: demo export demo #import .Analyze: plot_plaquette, plot_polyakov, plot_plaq_and_poly #export plot_plaquette, plot_polyakov, plot_plaq_and_poly end @require MPI = "da04e1cc-30fd-572f-bb4f-1f8673147195" begin include("./mpi/mpimodule.jl") import .MPImodules: get_myrank, get_nprocs, println_rank0, set_PEs, get_PEs export get_myrank, get_nprocs, println_rank0, set_PEs, get_PEs end end include("./system/lqcd.jl") #import .LTK_universe: # Universe, show_parameters, make_WdagWmatrix, calc_Action, set_β!, set_βs! #import .Actions: Setup_Gauge_action, Setup_Fermi_action, GaugeActionParam_autogenerator #import .Measurements: # calc_plaquette, # measure_correlator, # Measurement, # calc_polyakovloop, # measure_chiral_cond, # calc_topological_charge, #measurements, # Measurement_set #import .MD: # md_initialize!, MD_parameters_standard, md!, metropolis_update!, construct_MD_parameters import .System_parameters: Params #import .Print_config: write_config #import .Smearing: gradientflow! #import .ILDG_format: ILDG, load_gaugefield #import .Heatbath: heatbath! #import .Wilsonloops: make_plaq #import .IOmodule: saveU, loadU, loadU! import .Wizard: run_wizard #import .Mainrun: run_LQCD #import .RationalApprox: calc_exactvalue, calc_Anϕ, calc_det #,run_LQCD! #import .Analyze: # analyze, # get_plaquette, # get_polyakov, # get_plaquette_average, # get_polyakov_average, # get_trjs import .LQCD: run_LQCD_file, run_LQCD## #import .Fermionfields:make_WdagWmatrix #export Setup_Gauge_action, Setup_Fermi_action, GaugeActionParam_autogenerator #export Universe, set_β!, set_βs! #export calc_plaquette, calc_polyakovloop, calc_topological_charge #export md_initialize!, # MD_parameters_standard, md!, metropolis_update!, construct_MD_parameters #export show_parameters export Params #export measure_correlator, measure_chiral_cond, Measurement, measurements, Measurement_set #export gradientflow! #export ILDG, load_gaugefield #export make_WdagWmatrix #export heatbath! #export make_plaq #export calc_Action #export calc_topological_charge #export saveU, loadU, loadU! export run_LQCD, run_LQCD! #export write_config export run_wizard export analyze, get_plaquette, get_polyakov, get_plaquette_average, get_polyakov_average, get_trjs export run_LQCD_file end
LatticeQCD
https://github.com/akio-tomiya/LatticeQCD.jl.git
[ "MIT" ]
1.1.0
e495a1eaee52a513e02fe6ca2c995a7d0ed671a7
code
378
include("./LatticeQCD.jl") using Plots using .LatticeQCD using Random using Dates #using JLD #using GFlops if length(ARGS) == 0 error(""" Use input file: Like, julia analyze.jl parameters.jl """) end function runtest() plot_plaquette(ARGS[1]) plot_polyakov(ARGS[1]) plot_plaq_and_poly(ARGS[1]) end @time runtest()
LatticeQCD
https://github.com/akio-tomiya/LatticeQCD.jl.git
[ "MIT" ]
1.1.0
e495a1eaee52a513e02fe6ca2c995a7d0ed671a7
code
384
include("./LatticeQCD.jl") using .LatticeQCD using Random using Dates #using JLD function test() Random.seed!(111) A = rand(ComplexF64, 4, 4) * 4 A = A' * A n = 4 ϕ = ComplexF64[1, 2, 3, 4] ϕr = LatticeQCD.calc_exactvalue(n, A, ϕ) println(ϕ' * ϕr) ϕr2 = LatticeQCD.calc_Anϕ(n, A, ϕ) println(ϕ' * ϕr2) #LatticeQCD.calc_det(n,A,ϕ) end test()
LatticeQCD
https://github.com/akio-tomiya/LatticeQCD.jl.git
[ "MIT" ]
1.1.0
e495a1eaee52a513e02fe6ca2c995a7d0ed671a7
code
132
include("./LatticeQCD.jl") using Plots using .LatticeQCD using Random using Dates #using JLD #using GFlops @time demo()
LatticeQCD
https://github.com/akio-tomiya/LatticeQCD.jl.git
[ "MIT" ]
1.1.0
e495a1eaee52a513e02fe6ca2c995a7d0ed671a7
code
59
include("LatticeQCD.jl") using .LatticeQCD run_wizard()
LatticeQCD
https://github.com/akio-tomiya/LatticeQCD.jl.git
[ "MIT" ]
1.1.0
e495a1eaee52a513e02fe6ca2c995a7d0ed671a7
code
383
using MPI include("./LatticeQCD.jl") using .LatticeQCD #using LatticeQCD function main() myrank = get_myrank() nprocs = get_nprocs() println(myrank) println_rank0(nprocs) println_rank0(get_PEs()) println_rank0(ARGS) PEs = parse.(Int64, ARGS[2:5]) set_PEs(PEs) println_rank0(get_PEs()) run_LQCD(ARGS[1]; MPIparallel = true) end main()
LatticeQCD
https://github.com/akio-tomiya/LatticeQCD.jl.git
[ "MIT" ]
1.1.0
e495a1eaee52a513e02fe6ca2c995a7d0ed671a7
code
392
include("./LatticeQCD.jl") using .LatticeQCD using Random using Dates #using JLD #using GFlops if length(ARGS) == 0 error(""" Use input file: Like, julia run.jl parameters.jl """) end function runtest() run_LQCD_file(ARGS[1]) #run_LQCD(ARGS[1]) #parameters = parameterloading() #run_LQCD(parameters) end @time runtest()
LatticeQCD
https://github.com/akio-tomiya/LatticeQCD.jl.git
[ "MIT" ]
1.1.0
e495a1eaee52a513e02fe6ca2c995a7d0ed671a7
code
14457
module Demo using Dates using Plots using TOML #using LaTeXStrings ##import ..System_parameters: Params_set, parameterloading #import ..LTK_universe: Universe #import ..MD: construct_MD_parameters #import ..Measurements: Measurement_set, measurements #import ..Verbose_print: println_verbose1, println_verbose2, Verbose_1 #import ..Heatbath: heatbath! import ..Universe_module: Univ import ..Transform_oldinputfile: transform_to_toml import ..Parameters_TOML: construct_Params_from_TOML import ..AbstractUpdate_module: Updatemethod, update! import Gaugefields: Gradientflow, println_verbose_level1, get_myrank, flow!, save_binarydata, save_textdata, saveU #import ..AbstractMeasurement_module: # Measurement_methods, # calc_measurement_values, # measure, # Plaquette_measurement, # get_temporary_gaugefields using Gaugefields using InteractiveUtils using Dates using Random import ..Simpleprint: println_rank0 #import ..AbstractMeasurement_module: Plaquette_measurement, Polyakov_measurement import ..LatticeQCD: Measurement_methods, calc_measurement_values import QCDMeasurements:measure, Plaquette_measurement, get_temporary_gaugefields, Plaquette_measurement, Polyakov_measurement,get_value system = Dict() actions = Dict() md = Dict() cg = Dict() wilson = Dict() staggered = Dict() measurement = Dict() # - - parameters - - - - - - - - - - - # - - parameters - - - - - - - - - - - system["saveU_dir"] = "" system["verboselevel"] = 1 #system["L"] = (6, 6, 6, 6) system["L"] = (4, 4, 4, 4) system["Nwing"] = 1 system["Nsteps"] = 10000 system["quench"] = true system["logfile"] = "Heatbath_L06060606_beta8.0_quenched.txt" system["initial"] = "hot" system["Dirac_operator"] = nothing system["log_dir"] = "./logs" system["Nthermalization"] = 10 system["update_method"] = "Heatbath" system["randomseed"] = 111 system["NC"] = 3 system["saveU_every"] = 1 system["BoundaryCondition"] = [1, 1, 1, -1] system["saveU_format"] = nothing #system["β"] = 6.93015 system["β"] = 6.75850661032668353 actions["use_autogeneratedstaples"] = false actions["couplingcoeff"] = Any[] actions["couplinglist"] = Any[] md["Δτ"] = 0.05 md["SextonWeingargten"] = false md["MDsteps"] = 20 cg["eps"] = 1.0e-19 cg["MaxCGstep"] = 3000 wilson["Clover_coefficient"] = 0 wilson["r"] = 1 wilson["hop"] = 0 staggered["Nf"] = 0 staggered["mass"] = 0 measurement["measurement_methods"] = Dict[ Dict{Any,Any}( "fermiontype" => nothing, "measure_every" => 1, "methodname" => "Polyakov_loop", ), Dict{Any,Any}( "fermiontype" => nothing, "measure_every" => 1, "methodname" => "Plaquette", ), ] measurement["measurement_dir"] = "Heatbath_L06060606_beta8.0_quenched" measurement["measurement_basedir"] = "./measurements" # - - - - - - - - - - - - - - - - - - - data = """ ["HMC related"] "Δτ" = 0.05 MDsteps = 20 ["Physical setting(fermions)"] Dirac_operator = "nothing" ["Physical setting"] initial = "hot" L = [4, 4, 4, 4] Nthermalization = 10 update_method = "Heatbath" Nwing = 1 Nsteps = 10000 "β" = 6.758506610326683 ["System Control"] logfile = "Heatbath_L06060606_beta8.0_quenched.txt" measurement_dir = "Heatbath_L06060606_beta8.0_quenched" measurement_basedir = "./measurements" log_dir = "./logs" hasgradientflow = false ["Measurement set".measurement_methods.Polyakov_loop] measure_every = 1 methodname = "Polyakov_loop" ["Measurement set".measurement_methods.Plaquette] measure_every = 1 methodname = "Plaquette" [gradientflow_measurements.measurements_for_flow] """ function demo() filename = "./demoparam.toml" parameters = construct_Params_from_TOML(TOML.parse(data)) Random.seed!(parameters.randomseed) univ = Univ(parameters) run_demo!(parameters, univ) return numaccepts = 0 for itrj = parameters.initialtrj:parameters.Nsteps #println_verbose_level1(univ.U[1], "# itrj = $itrj") @time accepted = update!(updatemethod, univ.U) if accepted numaccepts += 1 end #save_gaugefield(savedata,univ.U,itrj) measure(plaq_m, itrj, univ.U; additional_string = "") measure(poly_m, itrj, univ.U; additional_string = "") #calc_measurement_values(measurements,itrj, univ.U) Usmr = deepcopy(univ.U) for istep = 1:numflow τ = istep * dτ flow!(Usmr, gradientflow) additional_string = "$istep $τ " for i = 1:measurements_for_flow.num_measurements interval = measurements_for_flow.intervals[i] if istep % interval == 0 measure( measurements_for_flow.measurements[i], itrj, Usmr, additional_string = additional_string, ) end end end println_verbose_level1( univ.U[1], "Acceptance $numaccepts/$itrj : $(round(numaccepts*100/itrj)) %", ) end end function demo_old() params_set = Params_set(system, actions, md, cg, wilson, staggered, measurement) parameters = parameterloading(params_set) univ = Universe(parameters) mdparams = construct_MD_parameters(parameters) meas = Measurement_set( univ, parameters.measuredir, measurement_methods = parameters.measurement_methods, ) run_demo!(parameters, univ, meas) end function run_demo_old!(parameters, univ, meas) plt1 = histogram([0], label = nothing) #plot1 plt2 = plot([], [], label = nothing) #plot2 ylabel!("Plaquette") xlabel!("MC time") plt3 = histogram([0], label = nothing) #plot3 plt4 = plot([], [], label = nothing) #plot4 ylabel!("|Polyakov loop|") xlabel!("MC time") plt5 = scatter([], [], label = nothing, title = "Polyakov loop") #plot5 scatter ylabel!("Im") xlabel!("Re") plt6 = plot([], [], label = nothing) #plot6 ylabel!("Arg(Polyakov loop)") xlabel!("MC time") plot(plt1, plt2, plt3, plt4, plt5, plt6, layout = 6) hist_plaq = [] hist_poly = [] hist_poly_θ = [] function plot_refresh!( plt1, plt2, plt3, plt4, plt5, plt6, hist_plaq, hist_poly, hist_poly_θ, plaq, poly, itrj, ) bins = round(Int, log(itrj) * 4 + 1) if itrj < 500 bins = round(Int, log(itrj) * 1.5 + 1) elseif itrj < 1000 bins = round(Int, log(itrj) * 2.5 + 1) elseif itrj < 2000 bins = round(Int, log(itrj) * 3.5 + 1) end append!(hist_plaq, plaq) append!(hist_poly, abs(poly)) # omit un-thermalized part if (10 < itrj < 1000) & (itrj % 5 == 0) print("remove unthermalize part $(length(hist_plaq)) -> ") popfirst!(hist_plaq) popfirst!(hist_poly) println(" $(length(hist_plaq))") end # plt1 = histogram(hist_plaq, bins = bins, label = nothing) #plot1 #plot!(plt1,title="SU(3), Quenched, L=6^4,") plot!(plt1, title = "SU(3), Quenched, L=4^4,") xlabel!("Plaquette") plot!(plt2, title = "Heatbath") plt3 = histogram(hist_poly, bins = bins, label = nothing) #plot3 xlabel!("|Polyakov loop|") # if itrj < 500 push!(plt2, 1, itrj, plaq) elseif 500 < itrj < 1000 if itrj % 2 == 0 push!(plt2, 1, itrj, plaq) end elseif 1000 < itrj if itrj % 5 == 0 push!(plt2, 1, itrj, plaq) end end push!(plt4, 1, itrj, abs(poly)) if itrj < 500 push!(plt5, 1, real(poly), imag(poly)) end if 500 < itrj < 1000 if itrj % 10 == 0 push!(plt5, 1, real(poly), imag(poly)) end end if 1000 < itrj if itrj % 50 == 0 push!(plt5, 1, real(poly), imag(poly)) end end # push!(plt6, 1, itrj, angle(poly)) # plot(plt1, plt2, plt3, plt4, plt5, plt6, layout = 6) gui() end @assert parameters.update_method == "Heatbath" verbose = Verbose_1() Nsteps = parameters.Nsteps numaccepts = 0 plaq, poly = measurements(0, univ.U, univ, meas; verbose = verbose) # check consistency of preparation. for itrj = 1:Nsteps @time heatbath!(univ) plaq, poly = measurements(itrj, univ.U, univ, meas; verbose = verbose) plot_refresh!( plt1, plt2, plt3, plt4, plt5, plt6, hist_plaq, hist_poly, hist_poly_θ, plaq, poly, itrj, ) println_verbose1(verbose, "-------------------------------------") #println("-------------------------------------") flush(stdout) flush(verbose) end end function run_demo!(parameters, univ) println_verbose_level1(univ.U[1], "# ", pwd()) println_verbose_level1(univ.U[1], "# ", Dates.now()) io = IOBuffer() InteractiveUtils.versioninfo(io) versioninfo = String(take!(io)) println_verbose_level1(univ.U[1], versioninfo) updatemethod = Updatemethod(parameters, univ) eps_flow = parameters.eps_flow numflow = parameters.numflow Nflow = parameters.Nflow dτ = Nflow * eps_flow gradientflow = Gradientflow(univ.U, Nflow = 1, eps = eps_flow) measurements = Measurement_methods(univ.U, parameters.measuredir, parameters.measurement_methods) i_plaq = 0 for i = 1:measurements.num_measurements if typeof(measurements.measurements[i]) == Plaquette_measurement i_plaq = i plaq_m = measurements.measurements[i] end end if i_plaq == 0 plaq_m = Plaquette_measurement(univ.U, printvalues = false) end plaq_m = Plaquette_measurement(univ.U, printvalues = false) poly_m = Polyakov_measurement(univ.U, printvalues = false) measurements_for_flow = Measurement_methods(univ.U, parameters.measuredir, parameters.measurements_for_flow) numaccepts = 0 plt1 = histogram([0], label = nothing) #plot1 plt2 = plot([], [], label = nothing) #plot2 ylabel!("Plaquette") xlabel!("MC time") plt3 = histogram([0], label = nothing) #plot3 plt4 = plot([], [], label = nothing) #plot4 ylabel!("|Polyakov loop|") xlabel!("MC time") plt5 = scatter([], [], label = nothing, title = "Polyakov loop") #plot5 scatter ylabel!("Im") xlabel!("Re") plt6 = plot([], [], label = nothing) #plot6 ylabel!("Arg(Polyakov loop)") xlabel!("MC time") plot(plt1, plt2, plt3, plt4, plt5, plt6, layout = 6) hist_plaq = [] hist_poly = [] hist_poly_θ = [] function plot_refresh!( plt1, plt2, plt3, plt4, plt5, plt6, hist_plaq, hist_poly, hist_poly_θ, plaq, poly, itrj, ) bins = round(Int, log(itrj) * 4 + 1) if itrj < 500 bins = round(Int, log(itrj) * 1.5 + 1) elseif itrj < 1000 bins = round(Int, log(itrj) * 2.5 + 1) elseif itrj < 2000 bins = round(Int, log(itrj) * 3.5 + 1) end append!(hist_plaq, plaq) append!(hist_poly, abs(poly)) # omit un-thermalized part if (10 < itrj < 1000) & (itrj % 5 == 0) print("remove unthermalize part $(length(hist_plaq)) -> ") popfirst!(hist_plaq) popfirst!(hist_poly) println(" $(length(hist_plaq))") end # plt1 = histogram(hist_plaq, bins = bins, label = nothing) #plot1 #plot!(plt1,title="SU(3), Quenched, L=6^4,") plot!(plt1, title = "SU(3), Quenched, ") xlabel!("Plaquette") plot!(plt2, title = "L=4^4, Heatbath") plt3 = histogram(hist_poly, bins = bins, label = nothing) #plot3 xlabel!("|Polyakov loop|") # if itrj < 500 push!(plt2, 1, itrj, plaq) elseif 500 < itrj < 1000 if itrj % 2 == 0 push!(plt2, 1, itrj, plaq) end elseif 1000 < itrj if itrj % 5 == 0 push!(plt2, 1, itrj, plaq) end end push!(plt4, 1, itrj, abs(poly)) if itrj < 500 push!(plt5, 1, real(poly), imag(poly)) end if 500 < itrj < 1000 if itrj % 10 == 0 push!(plt5, 1, real(poly), imag(poly)) end end if 1000 < itrj if itrj % 50 == 0 push!(plt5, 1, real(poly), imag(poly)) end end # push!(plt6, 1, itrj, angle(poly)) # plot(plt1, plt2, plt3, plt4, plt5, plt6, layout = 6) gui() end #@assert parameters.update_method == "Heatbath" #verbose = Verbose_1() #Nsteps = parameters.Nsteps numaccepts = 0 #plaq, poly = measurements(0, univ.U, univ, meas; verbose = verbose) # check consistency of preparation. plaq = get_value(measure(plaq_m, univ.U; additional_string = "0 ")) poly = get_value(measure(poly_m, univ.U; additional_string = "0 ")) for itrj = 1:parameters.initialtrj:parameters.Nsteps #@time heatbath!(univ) @time update!(updatemethod, univ.U) plaq = get_value(measure(plaq_m, univ.U; additional_string = "$itrj ")) poly = get_value(measure(poly_m, univ.U; additional_string = "$itrj ")) #plaq, poly = measurements(itrj, univ.U, univ, meas; verbose = verbose) plot_refresh!( plt1, plt2, plt3, plt4, plt5, plt6, hist_plaq, hist_poly, hist_poly_θ, plaq, poly, itrj, ) println(itrj, "\t", plaq, " # plaq") println(itrj, "\t", real(poly), "\t", imag(poly), " # poly") println("-----------------------------------") #println_verbose1(verbose, "-------------------------------------") #println("-------------------------------------") flush(stdout) #flush(verbose) end end end
LatticeQCD
https://github.com/akio-tomiya/LatticeQCD.jl.git
[ "MIT" ]
1.1.0
e495a1eaee52a513e02fe6ca2c995a7d0ed671a7
code
1247
system["saveU_dir"] = "" system["verboselevel"] = 1 #system["L"] = (6, 6, 6, 6) system["L"] = (4, 4, 4, 4) system["Nwing"] = 1 system["Nsteps"] = 10000 system["quench"] = true system["logfile"] = "Heatbath_L06060606_beta8.0_quenched.txt" system["initial"] = "hot" system["Dirac_operator"] = nothing system["log_dir"] = "./logs" system["Nthermalization"] = 10 system["update_method"] = "Heatbath" system["randomseed"] = 111 system["NC"] = 3 system["saveU_every"] = 1 system["BoundaryCondition"] = [1, 1, 1, -1] system["saveU_format"] = nothing #system["β"] = 6.93015 system["β"] = 6.75850661032668353 actions["use_autogeneratedstaples"] = false actions["couplingcoeff"] = Any[] actions["couplinglist"] = Any[] md["Δτ"] = 0.05 md["SextonWeingargten"] = false md["MDsteps"] = 20 cg["eps"] = 1.0e-19 cg["MaxCGstep"] = 3000 measurement["measurement_methods"] = Dict[ Dict{Any,Any}( "fermiontype" => nothing, "measure_every" => 1, "methodname" => "Polyakov_loop", ), Dict{Any,Any}( "fermiontype" => nothing, "measure_every" => 1, "methodname" => "Plaquette", ), ] measurement["measurement_dir"] = "Heatbath_L06060606_beta8.0_quenched" measurement["measurement_basedir"] = "./measurements"
LatticeQCD
https://github.com/akio-tomiya/LatticeQCD.jl.git
[ "MIT" ]
1.1.0
e495a1eaee52a513e02fe6ca2c995a7d0ed671a7
code
1490
module Realtimeplot using Plots # prep the plots plt1 = histogram([0], label = nothing) #plot1 plt2 = plot([], [], label = nothing) #plot2 ylabel!("Plaquette") xlabel!("MC time") plt3 = histogram([0], label = nothing) #plot3 plt4 = plot([], [], label = nothing) #plot4 ylabel!("Polyakov loop") xlabel!("MC time") plot(plt1, plt2, plt3, plt4, layout = 4) function mock() #mock data plaq = 0.6 + 0.1 * randn() if rand() < 0.5 poly = -1.5 + randn() / 2 else poly = 1.5 + randn() / 2 end sleep(0.01) return plaq, poly end hist_plaq = [] hist_poly = [] function plot_refresh!(plt1, plt2, plt3, plt4, hist_plaq, hist_poly, plaq, poly, itrj) bins = round(Int, log(itrj) * 5 + 1) append!(hist_plaq, plaq) append!(hist_poly, poly) # plt1 = histogram(hist_plaq, bins = bins, label = nothing) #plot1 xlabel!("Plaquette") plt3 = histogram(hist_poly, bins = bins, label = nothing) #plot3 xlabel!("Polyakov loop") # push!(plt2, 1, itrj, plaq) push!(plt4, 1, itrj, poly) # plot(plt1, plt2, plt3, plt4, layout = 4) gui() end Ntrj = 1000 for itrj = 1:Ntrj plaq, poly = mock() # plot_refresh!(plt1, plt2, plt3, plt4, hist_plaq, hist_poly, plaq, poly, itrj) # end #= plt = plot([0,0.1], Any[rand(2),sin]) for x in 0.2:0.1:π push!(plt, 1, x, rand()) push!(plt, 2, x, sin(x)) gui(); sleep(0.5) end =# #= import PyPlot: plt x = [1,2,3] y = [1,2,3] plt.plot(x,y) plt.show() =# end
LatticeQCD
https://github.com/akio-tomiya/LatticeQCD.jl.git
[ "MIT" ]
1.1.0
e495a1eaee52a513e02fe6ca2c995a7d0ed671a7
code
1675
system["L"] = (8, 8, 8, 8) system["β"] = 5.7 system["NC"] = 3 system["quench"] = true system["SextonWeingargten"] = false system["N_SextonWeingargten"] = 10 md["MDsteps"] = 20 md["Δτ"] = 1 / md["MDsteps"] system["Dirac_operator"] = nothing md["Nthermalization"] = 10 md["Nsteps"] = 100 + md["Nthermalization"] system["update_method"] = "Fileloading" system["loadU_format"] = "JLD" system["loadU_dir"] = "confs" measurement["measurement_methods"] = Array{Dict,1}(undef, 2) for i = 1:length(measurement["measurement_methods"]) measurement["measurement_methods"][i] = Dict() end measurement["measurement_methods"][1]["methodname"] = "Plaquette" measurement["measurement_methods"][1]["measure_every"] = 1 measurement["measurement_methods"][1]["fermiontype"] = nothing measurement["measurement_methods"][2]["methodname"] = "Polyakov_loop" measurement["measurement_methods"][2]["measure_every"] = 1 measurement["measurement_methods"][2]["fermiontype"] = nothing #= measurement["measurement_methods"][3]["methodname"] = "Topological_charge" measurement["measurement_methods"][3]["measure_every"] = 10 measurement["measurement_methods"][3]["fermiontype"] = nothing measurement["measurement_methods"][3]["numflow"] = 10 measurement["measurement_methods"][4]["methodname"] = "Chiral_condensate" measurement["measurement_methods"][4]["measure_every"] = 20 measurement["measurement_methods"][4]["fermiontype"] = "Staggered" measurement["measurement_methods"][4]["Nf"] = 4 measurement["measurement_methods"][5]["methodname"] = "Pion_correlator" measurement["measurement_methods"][5]["measure_every"] = 20 measurement["measurement_methods"][5]["fermiontype"] = "Wilson" =#
LatticeQCD
https://github.com/akio-tomiya/LatticeQCD.jl.git
[ "MIT" ]
1.1.0
e495a1eaee52a513e02fe6ca2c995a7d0ed671a7
code
436
using LatticeQCD betas = ["1.40", "1.65"] println("# beta plaquette") for beta in betas dir = "samples/HMC_L08080808_su2nf8_beta$(beta)_Staggered_mass0.015" p = get_plaquette_average(dir) println("$beta $p #$dir") end println("# ") println("# beta Polyakov loop") for beta in betas dir = "samples/HMC_L08080808_su2nf8_beta$(beta)_Staggered_mass0.015" p = get_polyakov_average(dir) println("$beta $p #$dir") end
LatticeQCD
https://github.com/akio-tomiya/LatticeQCD.jl.git
[ "MIT" ]
1.1.0
e495a1eaee52a513e02fe6ca2c995a7d0ed671a7
code
5135
# https://inspirehep.net/literature/283285 # Lattice setup system["L"] = (12, 12, 12, 8) #system["β"] = 5.4;system["initial"] = "cold";md["MDsteps"] = 35; md["Δτ"] = 1/md["MDsteps"] system["β"] = 5.3; system["initial"] = "cold"; md["MDsteps"] = 35; md["Δτ"] = 1 / md["MDsteps"]; #system["β"] = 5.175;initial = "cold";MDsteps = 40; Δτ = 1/MDsteps #β = 5.1;initial = "hot";MDsteps = 80; Δτ = 0.5/MDsteps system["Dirac_operator"] = "Staggered" system["Nf"] = 4 system["NC"] = 3 staggered["mass"] = 0.025 # HMC system["quench"] = false md["SextonWeingargten"] = false #N_SextonWeingargten = 25 md["Nsteps"] = 5000 system["update_method"] = "HMC" system["saveU_format"] = "JLD" system["saveU_every"] = 1 system["saveU_dir"] = "./beta53_confs" # Measurements measurement["measurement_methods"] = Array{Dict,1}(undef, 3) for i = 1:length(measurement["measurement_methods"]) measurement["measurement_methods"][i] = Dict() end measurement["measurement_methods"][1]["methodname"] = "Plaquette" measurement["measurement_methods"][1]["measure_every"] = 1 measurement["measurement_methods"][1]["fermiontype"] = nothing # measurement["measurement_methods"][2]["methodname"] = "Polyakov_loop" measurement["measurement_methods"][2]["measure_every"] = 1 measurement["measurement_methods"][2]["fermiontype"] = nothing # measurement["measurement_methods"][3]["methodname"] = "Chiral_condensate" measurement["measurement_methods"][3]["fermiontype"] = "Staggered" measurement["measurement_methods"][3]["measure_every"] = staggered["mass"] measurement["measurement_methods"][3]["mass"] = 1 measurement["measurement_methods"][3]["Nf"] = 4 #mass_measurement = mass #Nr = 10 # #= Title: The Finite Temperature Phase Transition in Four Flavor {QCD} on an 8 X 12^{3} Lattice Authors MT(c) Collaboration: R.V. Gavai(Tata Inst. and Bielefeld U. and CERN and Kaiserslautern U. and Illinois U., Urbana), Sourendu Gupta(Tata Inst. and Bielefeld U. and CERN and Kaiserslautern U. and Illinois U., Urbana), A. Irback(Tata Inst. and Bielefeld U. and CERN and Kaiserslautern U. and Illinois U., Urbana), F. Karsch(Tata Inst. and Bielefeld U. and CERN and Kaiserslautern U. and Illinois U., Urbana), S. Meyer(Tata Inst. and Bielefeld U. and CERN and Kaiserslautern U. and Illinois U., Urbana), B. Petersson(Tata Inst. and Bielefeld U. and CERN and Kaiserslautern U. and Illinois U., Urbana), H. Satz(Tata Inst. and Bielefeld U. and CERN and Kaiserslautern U. and Illinois U., Urbana), H.W. Wyld(Tata Inst. and Bielefeld U. and CERN and Kaiserslautern U. and Illinois U., Urbana) Sep, 1989 Abstract: (Elsevier) We present results of a numerical study of lattice QCD with four dynamical flavours of staggered fermions, performed by using a hybrid Monte Carlo algorithm on an 8×12 3 lattice. We find a rapid change in the average value of the Polyakov loop at β c =5.25±0.025 for a quark mass ma =0.025; at this mass value, the behaviour of the chiral order parameter, 〈 Ψ Ψ〉 does not yet allow an independent determination of the transition point. Using existing hadron mass calculations, the value of β c we have obtained here would lead to a transition temperature T ∼100 MeV . DOI: 10.1016/0370-2693(89)90447-4 =# # Results Fig 2b (By plot digitizer) #= β PbP 5.100, 0.662943264422041 5.175, 0.3819303478073508 5.200, 0.2874088522470827 5.250, 0.24762703983851386 5.300, 0.2109864936891166 5.400, 0.1686361007473265 5.600, 0.13783581497147912 =# #= Plot Digitizer json for fig 2 b {"version":[4,2],"axesColl":[{"name":"XY","type":"XYAxes","isLogX":false,"isLogY":false,"calibrationPoints":[{"px":122.93685756240822,"py":475.712187958884,"dx":"5.0","dy":"0.0","dz":null},{"px":391.7180616740088,"py":477.2393538913363,"dx":"5.7","dy":"0.0","dz":null},{"px":77.12187958883995,"py":476.4757709251101,"dx":"5.0","dy":"0.0","dz":null},{"px":80.93979441997062,"py":93.92070484581498,"dx":"5.7","dy":"1.0","dz":null}]}],"datasetColl":[{"name":"Default Dataset","axesName":"XY","metadataKeys":[],"colorRGB":[200,0,0,255],"data":[{"x":353.92070484581495,"y":425.31571218795887,"value":[5.600218584502331,0.13783581497147912]},{"x":277.56240822320115,"y":413.09838472834065,"value":[5.401048695297173,0.1686361007473265]},{"x":239.76505139500736,"y":396.6813509544787,"value":[5.302190097640081,0.2109864936891166]},{"x":230.22026431718064,"y":389.8091042584435,"value":[5.277154942674726,0.2288077930619974]},{"x":220.67547723935388,"y":382.55506607929516,"value":[5.252109864936891,0.24762703983851386]},{"x":211.51248164464025,"y":367.2834067547724,"value":[5.22785067077942,0.2874088522470827]},{"x":192.42290748898682,"y":331.0132158590308,"value":[5.177194917272429,0.3819303478073508]},{"x":164.9339207048458,"y":223.34801762114537,"value":[5.102809845658362,0.662943264422041]}],"autoDetectionData":{"fgColor":[0,0,255],"bgColor":[255,255,255],"mask":[],"colorDetectionMode":"fg","colorDistance":120,"algorithm":{"algoType":"AveragingWindowAlgo","xStep":10,"yStep":10},"name":0,"imageWidth":442,"imageHeight":520}}],"measurementColl":[]} =#
LatticeQCD
https://github.com/akio-tomiya/LatticeQCD.jl.git
[ "MIT" ]
1.1.0
e495a1eaee52a513e02fe6ca2c995a7d0ed671a7
code
2698
module AbstractMD_module using Gaugefields using LatticeDiracOperators using LinearAlgebra import ..Universe_module: Univ, get_gauge_action, is_quenched import ..System_parameters: Params abstract type AbstractMD{Dim,TG} end include("./standardMD.jl") function MD( U, gauge_action, quench, Δτ, MDsteps, fermi_action = nothing, cov_neural_net = nothing; SextonWeingargten = false, Nsw = 2, ) #= if SextonWeingargten if quench == true error("The quench update does not need the SextonWeingargten method. Put SextonWeingargten = false") end else md = StandardMD(U,gauge_action,quench,Δτ,MDsteps,fermi_action) end =# md = StandardMD( U, gauge_action, quench, Δτ, MDsteps, fermi_action, cov_neural_net, SextonWeingargten = SextonWeingargten, Nsw = Nsw, ) return md end function MD(p::Params, univ::Univ) gauge_action = get_gauge_action(univ) quench = is_quenched(univ) md = MD( univ.U, gauge_action, quench, p.cov_neural_net, p.Δτ, p.MDsteps, SextonWeingargten = p.SextonWeingargten, Nsw = p.N_SextonWeingargten, ) return md end function runMD!(U, md::AbstractMD{Dim,TG}) where {Dim,TG} error("runMD! with type $(typeof(md)) is not supported") end function initialize_MD!(U, md::AbstractMD{Dim,TG}) where {Dim,TG} error("initialize_MD! with type $(typeof(md)) is not supported") end function U_update!(U, p, ϵ, md::AbstractMD{Dim,TG}) where {Dim,TG} temps = get_temporary_gaugefields(md.gauge_action) temp1 = temps[1] temp2 = temps[2] expU = temps[3] W = temps[4] for μ = 1:Dim exptU!(expU, ϵ * md.Δτ, p[μ], [temp1, temp2]) mul!(W, expU, U[μ]) substitute_U!(U[μ], W) end end function P_update!(U, p, ϵ, md::AbstractMD{Dim,TG}) where {Dim,TG} # p -> p +factor*U*dSdUμ NC = U[1].NC temps = get_temporary_gaugefields(md.gauge_action) dSdUμ = temps[end] factor = -ϵ * md.Δτ / (NC) #factor = ϵ*md.Δτ/(NC) for μ = 1:Dim calc_dSdUμ!(dSdUμ, md.gauge_action, μ, U) mul!(temps[1], U[μ], dSdUμ) # U*dSdUμ Traceless_antihermitian_add!(p[μ], factor, temps[1]) end end function P_update_fermion!(U, p, ϵ, md::AbstractMD{Dim,TG}) where {Dim,TG} # p -> p +factor*U*dSdUμ #NC = U[1].NC temps = get_temporary_gaugefields(md.gauge_action) UdSfdUμ = temps[1:Dim] factor = -ϵ * md.Δτ calc_UdSfdU!(UdSfdUμ, md.fermi_action, U, md.η) for μ = 1:Dim Traceless_antihermitian_add!(p[μ], factor, UdSfdUμ[μ]) end end end
LatticeQCD
https://github.com/akio-tomiya/LatticeQCD.jl.git
[ "MIT" ]
1.1.0
e495a1eaee52a513e02fe6ca2c995a7d0ed671a7
code
5461
using InteractiveUtils struct StandardMD{Dim,TG,TA,quench,T_FA,TF,TC} <: AbstractMD{Dim,TG} gauge_action::GaugeAction{Dim,TG} quench::Bool Δτ::Float64 MDsteps::Float64 p::Vector{TA} QPQ::Bool fermi_action::T_FA η::TF ξ::TF SextonWeingargten::Bool Nsw::Int64 cov_neural_net::TC dSdU::Union{Nothing,Vector{TG}} function StandardMD( U, gauge_action::GaugeAction{Dim,TG}, quench, Δτ, MDsteps, fermi_action = nothing, cov_neural_net = nothing; QPQ = true, SextonWeingargten = false, Nsw = 2, ) where {Dim,TG} p = initialize_TA_Gaugefields(U) #This is a traceless-antihermitian gauge fields. This has NC^2-1 real coefficients. TA = eltype(p) T_FA = typeof(fermi_action) if quench η = nothing ξ = nothing if SextonWeingargten error( "The quench update does not need the SextonWeingargten method. Put SextonWeingargten = false", ) end else if fermi_action == nothing η = nothing ξ = nothing else η = similar(fermi_action._temporary_fermionfields[1]) ξ = similar(η) end end TF = typeof(η) @assert Nsw % 2 == 0 "Nsw should be even number! now Nsw = $Nsw" TC = typeof(cov_neural_net) if TC != Nothing dSdU = similar(U) else dSdU = nothing end return new{Dim,TG,TA,quench,T_FA,TF,TC}( gauge_action, quench, Δτ, MDsteps, p, QPQ, fermi_action, η, ξ, SextonWeingargten, Nsw, cov_neural_net, dSdU, ) end end function initialize_MD!( U, md::StandardMD{Dim,TG,TA,quench,T_FA,TF,TC}, ) where {Dim,TG,TA,quench,T_FA,TF,TC} gauss_distribution!(md.p) #initial momentum if quench == false if TC != Nothing Uout, Uout_multi, _ = calc_smearedU(U, md.cov_neural_net) gauss_sampling_in_action!(md.ξ, Uout, md.fermi_action) sample_pseudofermions!(md.η, Uout, md.fermi_action, md.ξ) else gauss_sampling_in_action!(md.ξ, U, md.fermi_action) sample_pseudofermions!(md.η, U, md.fermi_action, md.ξ) end #error("not supported yet") end end function runMD!( U, md::StandardMD{Dim,TG,TA,quench,T_FA,TF,TC}, ) where {Dim,TG,TA,quench,T_FA,TF,TC} #p = md.p if md.QPQ if md.SextonWeingargten runMD_QPQ_sw!(U, md) else runMD_QPQ!(U, md) end else if md.SextonWeingargten error("PQP update with SextonWeingargten is not supported") else runMD_PQP!(U, md) end end #error("type $(typeof(md)) is not supported") end function runMD_QPQ!( U, md::StandardMD{Dim,TG,TA,quench,T_FA,TF,TC}, ) where {Dim,TG,TA,quench,T_FA,TF,TC} p = md.p for itrj = 1:md.MDsteps U_update!(U, p, 0.5, md) P_update!(U, p, 1.0, md) if quench == false P_update_fermion!(U, p, 1.0, md) end U_update!(U, p, 0.5, md) end #error("type $(typeof(md)) is not supported") end function runMD_QPQ_sw!( U, md::StandardMD{Dim,TG,TA,quench,T_FA,TF,TC}, ) where {Dim,TG,TA,quench,T_FA,TF,TC} p = md.p for itrj = 1:md.MDsteps for isw = 1:div(md.Nsw, 2) U_update!(U, p, 0.5 / md.Nsw, md) P_update!(U, p, 1.0 / md.Nsw, md) U_update!(U, p, 0.5 / md.Nsw, md) end if quench == false P_update_fermion!(U, p, 1.0, md) end for isw = 1:div(md.Nsw, 2) U_update!(U, p, 0.5 / md.Nsw, md) P_update!(U, p, 1.0 / md.Nsw, md) U_update!(U, p, 0.5 / md.Nsw, md) end end #error("type $(typeof(md)) is not supported") end function runMD_PQP!( U, md::StandardMD{Dim,TG,TA,quench,T_FA,TF,TC}, ) where {Dim,TG,TA,quench,T_FA,TF,TC} p = md.p for itrj = 1:md.MDsteps P_update!(U, p, 0.5, md) if quench == false P_update_fermion!(U, p, 0.5, md) end U_update!(U, p, 1.0, md) P_update!(U, p, 0.5, md) if quench == false P_update_fermion!(U, p, 0.5, md) end end #error("type $(typeof(md)) is not supported") end function P_update_fermion!( U, p, ϵ, md::StandardMD{Dim,TG,TA,quench,T_FA,TF,TC}, ) where {Dim,TG,TA,quench,T_FA,TF,TC<:CovNeuralnet{Dim}} # p -> p +factor*U*dSdUμ #NC = U[1].NC temps = get_temporary_gaugefields(md.gauge_action) UdSfdUμ = temps[1:Dim] factor = -ϵ * md.Δτ Uout, Uout_multi, _ = calc_smearedU(U, md.cov_neural_net) for μ = 1:Dim calc_UdSfdU!(UdSfdUμ, md.fermi_action, Uout, md.η) mul!(md.dSdU[μ], Uout[μ]', UdSfdUμ[μ]) end #calc_UdSfdU!(UdSfdUμ, md.fermi_action, U, md.η) dSdUbare = back_prop(md.dSdU, md.cov_neural_net, Uout_multi, U) for μ = 1:Dim #Traceless_antihermitian_add!(p[μ], factor, UdSfdUμ[μ]) mul!(temps[1], U[μ], dSdUbare[μ]) # U*dSdUμ Traceless_antihermitian_add!(p[μ], factor, temps[1]) end end
LatticeQCD
https://github.com/akio-tomiya/LatticeQCD.jl.git
[ "MIT" ]
1.1.0
e495a1eaee52a513e02fe6ca2c995a7d0ed671a7
code
7353
import Gaugefields.Abstractsmearing function set_parameter_default(method, key, defaultvalue) if haskey(method, key) return method[key] else return defaultvalue end end struct Measurements_set nummeasurements::Int64 measurements::Array{AbstractMeasurement,1} measurement_methods::Array{Dict,1} methodnames::Array{String,1} baremesurement_indices::Array{Int64,1} flowmeasurement_indices::Array{Int64,1} function Measurements_set(U, measurement_dir, measurement_methods) nummeasurements = length(measurement_methods) measurements = Array{AbstractMeasurement,1}(undef, nummeasurements) methodnames = Array{String,1}(undef, nummeasurements) for i = 1:nummeasurements method = measurement_methods[i] methodnames[i] = method["methodname"] if method["methodname"] == "Plaquette" measurements[i] = Plaquette_measurement(U, filename = measurement_dir * "/Plaquette.txt") elseif method["methodname"] == "Polyakov_loop" measurements[i] = Polyakov_measurement( U, filename = measurement_dir * "/Polyakov_loop.txt.txt", ) elseif method["methodname"] == "Topological_charge" TC_methods = set_parameter_default(method, "TC_methods", ["plaquette", "clover"]) measurements[i] = Topological_charge_measurement( U, filename = measurement_dir * "/Topological_charge.txt", TC_methods = TC_methods, ) elseif method["methodname"] == "Energy_density" measurements[i] = Energy_density_measurement( U, filename = measurement_dir * "/Energy_density.txt", ) elseif method["methodname"] == "Chiral_condensate" baremeasure = set_parameter_default(method, "bare measure", true) flowmeasure = set_parameter_default(method, "flow measure", false) fermiontype = set_parameter_default(method, "fermiontype", "Staggered") mass = set_parameter_default(method, "mass", 0.1) Nf = set_parameter_default(method, "Nf", 2) κ = set_parameter_default(method, "hop", 0.141139) r = set_parameter_default(method, "r", 1) M = set_parameter_default(method, "Domainwall_M", -1) L5 = set_parameter_default(method, "Domainwall_L5", 2) mass = set_parameter_default(method, "Domainwall_m", mass) BoundaryCondition = set_parameter_default(method, "BoundaryCondition", nothing) eps_CG = set_parameter_default(method, "eps", 1e-14) MaxCGstep = set_parameter_default(method, "MaxCGstep", 3000) Nr = set_parameter_default(method, "Nr", 10) verbose_level = set_parameter_default(method, "verbose_level", 2) measurements[i] = Chiral_condensate_measurement( U, filename = measurement_dir * "/Chiral_condensate.txt", fermiontype = fermiontype, mass = mass, Nf = Nf, κ = κ, r = r, L5 = L5, M = M, eps_CG = eps_CG, MaxCGstep = MaxCGstep, BoundaryCondition = BoundaryCondition, Nr = Nr, verbose_level = verbose_level, ) #measurements[i] = Measure_chiral_condensate(measurement_dir*"/Chiral_condensate.txt",univ.U,method) elseif method["methodname"] == "Pion_correlator" baremeasure = set_parameter_default(method, "bare measure", true) flowmeasure = set_parameter_default(method, "flow measure", false) fermiontype = set_parameter_default(method, "fermiontype", "Staggered") mass = set_parameter_default(method, "mass", 0.1) Nf = set_parameter_default(method, "Nf", 2) κ = set_parameter_default(method, "hop", 0.141139) r = set_parameter_default(method, "r", 1) M = set_parameter_default(method, "Domainwall_M", -1) L5 = set_parameter_default(method, "Domainwall_L5", 2) mass = set_parameter_default(method, "Domainwall_m", mass) BoundaryCondition = set_parameter_default(method, "BoundaryCondition", nothing) eps_CG = set_parameter_default(method, "eps", 1e-14) MaxCGstep = set_parameter_default(method, "MaxCGstep", 3000) #Nr = set_parameter_default(method,"Nr",10) verbose_level = set_parameter_default(method, "verbose_level", 2) measurements[i] = Pion_correlator_measurement( U, filename = measurement_dir * "/Pion_correlator.txt", fermiontype = fermiontype, mass = mass, Nf = Nf, κ = κ, r = r, L5 = L5, M = M, eps_CG = eps_CG, MaxCGstep = MaxCGstep, BoundaryCondition = BoundaryCondition, verbose_level = verbose_level, ) #measurements[i] = Measure_Pion_correlator(measurement_dir*"/Pion_correlator.txt",univ.U,method) elseif method["methodname"] == "Wilson_loop" baremeasure = set_parameter_default(method, "bare measure", true) flowmeasure = set_parameter_default(method, "flow measure", false) Tmax = set_parameter_default(method, "Tmax", 4) Rmax = set_parameter_default(method, "Rmax", 4) measurements[i] = Pion_correlator_measurement( U, filename = measurement_dir * "/Pion_correlator.txt", Tmax = Tmax, Rmax = Rmax, verbose_level = verbose_level, ) else error("$(method["methodname"]) is not supported") end end return new( nummeasurements,#::Int64 measurements,#::Array{AbstractMeasurement,1} measurement_methods,#::Array{Dict,1} methodnames,#::Array{String,1} ) end end function measure(m::Measurements_set, itrj, U) additional_string = "$itrj 0 0.0 " for i in m.baremesurement_indices measure(m.measurements[i], U, additional_string = additional_string) end end function measure_withflow( m::Measurements_set, itrj, U, smearing::Abstractsmearing, numstep, dτ, ) Usmr = deepcopy(U) for istep = 1:numstep τ = istep * dτ flow!(Usmr, smearing) additional_string = "$itrj $istep $τ " for i in m.flowmeasurement_indices measure(m.measurements[i], Usmr, additional_string = additional_string) end end end
LatticeQCD
https://github.com/akio-tomiya/LatticeQCD.jl.git
[ "MIT" ]
1.1.0
e495a1eaee52a513e02fe6ca2c995a7d0ed671a7
code
3938
mutable struct Wilson_loop_measurement{Dim,TG} <: AbstractMeasurement filename::Union{Nothing,String} _temporary_gaugefields::Vector{TG} Dim::Int8 #factor::Float64 verbose_print::Union{Verbose_print,Nothing} printvalues::Bool function Wilson_loop_measurement( U::Vector{T}; filename = nothing, verbose_level = 2, printvalues = true, ) where {T} myrank = get_myrank(U) #= if U[1].mpi == false myrank = 0 else myrank = U[1].myrank end =# if printvalues verbose_print = Verbose_print(verbose_level, myid = myrank, filename = filename) else verbose_print = nothing end Dim = length(U) numg = 2 _temporary_gaugefields = Vector{T}(undef, numg) _temporary_gaugefields[1] = similar(U[1]) for i = 2:numg _temporary_gaugefields[i] = similar(U[1]) end return new{Dim,T}(filename, _temporary_gaugefields, Dim, verbose_print, printvalues) end end function Wilson_loop_measurement(U::Vector{T}, params::Poly_parameters, filename) where {T} return Wilson_loop_measurement( U, filename = filename, verbose_level = params.verbose_level, printvalues = params.printvalues, ) end function measure(m::M, itrj, U; additional_string = "") where {M<:Wilson_loop_measurement} temps = get_temporary_gaugefields(m) poly = calculate_Polyakov_loop(U, temps[1], temps[2]) measurestring = "" if m.printvalues #println_verbose_level2(U[1],"-----------------") measurestring = "$itrj $additional_string $(real(poly)) $(imag(poly)) # poly" println_verbose_level2(m.verbose_print, measurestring) #println_verbose_level2(U[1],"-----------------") end return poly, measurestring end function calc_Wilson_loop(U::Array{T,1}, Lt, Ls) where {T<:GaugeFields} # Making a ( Ls × Lt) Wilson loop operator for potential calculations WL = 0.0 + 0.0im NV = U[1].NV NC = U[1].NC Wmat = Array{GaugeFields_1d,2}(undef, 4, 4) # calc_large_wiloson_loop!(Wmat, Lt, Ls, U) # make wilon loop operator and evaluate as a field, not traced. WL = calc_Wilson_loop_core(Wmat, U, NV) # tracing over color and average over spacetime and x,y,z. NDir = 3.0 # in 4 diemension, 3 associated staples. t-x plane, t-y plane, t-z plane return real(WL) / NV / NDir / NC end function calc_Wilson_loop_core(Wmat, U::Array{GaugeFields{S},1}, NV) where {S<:SUn} if S == SU3 NC = 3 elseif S == SU2 NC = 2 else NC = U[1].NC #error("NC != 2,3 is not supported") end W = 0.0 + 0.0im for n = 1:NV for μ = 1:3 # spatial directions ν = 4 # T-direction is not summed over W += tr(Wmat[μ, ν][:, :, n]) end end return W end function calc_large_wiloson_loop!(Wmat, Lt, Ls, U) W_operator = make_Wilson_loop(Lt, Ls) calc_large_wiloson_loop!(Wmat, W_operator, U) return end function make_Wilson_loop(Lt, Ls, Dim) #= Making a Wilson loop operator for potential calculations Ls × Lt ν=4 ↑ +--+ | | | | | | +--+ → μ=1,2,3 (averaged) =# Wmatset = Array{Wilsonline{Dim},2}(undef, 4, 4) for μ = 1:3 # spatial directions ν = 4 # T-direction is not summed over loops = Wilsonline{Dim}[] loop = Wilsonline([(μ, Ls), (ν, Lt), (μ, -Ls), (ν, -Lt)]) push!(loops, loop) Wmatset[μ, ν] = loops end return Wmatset end function calc_large_wiloson_loop!(temp_Wmat, loops_μν, U) W = temp_Wmat for μ = 1:3 # spatial directions ν = 4 # T-direction is not summed over loopset = Loops(U, loops_μν[μ, ν]) W[μ, ν] = evaluate_loops(loopset, U) end return end
LatticeQCD
https://github.com/akio-tomiya/LatticeQCD.jl.git
[ "MIT" ]
1.1.0
e495a1eaee52a513e02fe6ca2c995a7d0ed671a7
code
3269
#import ..Parameter_structs:construct_Measurement_parameters_from_dict,Measurement_parameters import QCDMeasurements: construct_Measurement_parameters_from_dict, Measurement_parameters, AbstractMeasurement, prepare_measurement, get_string import QCDMeasurements: Plaquette_measurement, measure, get_value, Polyakov_measurement, Pion_correlator_measurement, Chiral_condensate_measurement, Energy_density_measurement, Topological_charge_measurement, Wilson_loop_measurement struct Measurement_methods measurement_parameters_set::Vector{Measurement_parameters} measurements::Vector{AbstractMeasurement} num_measurements::Int64 intervals::Vector{Int64} end function calc_measurement_values(m::Measurement_methods, itrj, U; additional_string = "") measurestrings = String[] for i = 1:m.num_measurements interval = m.intervals[i] if itrj % interval == 0 outputvalue = measure( m.measurements[i], U, additional_string = "$itrj " * additional_string, ) push!(measurestrings, get_string(outputvalue)) end end return measurestrings end #= function prepare_measurement(U,measurement_parameters::T,filename) where T if T == Plaq_parameters measurement = Plaquette_measurement(U,measurement_parameters,filename) elseif T == Poly_parameters measurement = Polyakov_measurement(U,measurement_parameters,filename) elseif T == TopologicalCharge_parameters measurement = Topological_charge_measurement(U,measurement_parameters,filename) elseif T == ChiralCondensate_parameters measurement = Chiral_condensate_measurement(U,measurement_parameters,filename) elseif T == Pion_parameters measurement = Pion_correlator_measurement(U,measurement_parameters,filename) elseif T == Energy_density_parameters measurement = Energy_density_measurement(U,measurement_parameters,filename) else error(T, " is not supported in measurements") end return measurement end =# function Measurement_methods( U, measurement_dir, measurement_methods::T, ) where {T<:Vector{Dict}} #println( measurement_methods) nummeasurements = length(measurement_methods) measurements = Vector{AbstractMeasurement}(undef, nummeasurements) measurement_parameters_set = Vector{Measurement_parameters}(undef, nummeasurements) intervals = zeros(Int64, nummeasurements) for (i, method) in enumerate(measurement_methods) measurement_parameters = construct_Measurement_parameters_from_dict(method) #println(measurement_parameters) intervals[i] = measurement_parameters.measure_every filename = measurement_dir * "/" * measurement_parameters.methodname * ".txt" measurements[i] = prepare_measurement(U, measurement_parameters, filename) measurement_parameters_set[i] = deepcopy(measurement_parameters) end #= for i=1:nummeasurements println(measurement_parameters_set[i] ) end =# return Measurement_methods( measurement_parameters_set, measurements, nummeasurements, intervals, ) end
LatticeQCD
https://github.com/akio-tomiya/LatticeQCD.jl.git
[ "MIT" ]
1.1.0
e495a1eaee52a513e02fe6ca2c995a7d0ed671a7
code
1586
module AbstractMeasurement_module import QCDMeasurements: Plaquette_measurement, measure, get_value, Polyakov_measurement, Pion_correlator_measurement, Chiral_condensate_measurement, Energy_density_measurement, Topological_charge_measurement, Wilson_loop_measurement #= using Wilsonloop using Gaugefields import Gaugefields.Verbose_print import Gaugefields.println_verbose_level2 import Gaugefields.AbstractGaugefields_module.get_myrank import Gaugefields: AbstractGaugefields import Gaugefields.Abstractsmearing using LinearAlgebra using LatticeDiracOperators import LatticeDiracOperators.Dirac_operators: clear_fermion!, AbstractFermionfields_4D, Z4_distribution_fermi! import Wilsonloop.make_cloverloops import ..Parameter_structs:Plaq_parameters,Poly_parameters, TopologicalCharge_parameters, ChiralCondensate_parameters, Pion_parameters, Energy_density_parameters abstract type AbstractMeasurement end function get_temporary_gaugefields(m::AbstractMeasurement) return m._temporary_gaugefields end function get_temporary_fermionfields(m::AbstractMeasurement) return m._temporary_fermionfields end include("measure_plaquette.jl") include("measure_polyakov.jl") include("measure_topological_charge.jl") include("measure_energy_density.jl") include("measure_chiral_condensate.jl") include("measure_Pion_correlator.jl") include("measurement_parameters_set.jl") include("Measurement_set.jl") function measure(measurement::M, itrj, U) where {M<:AbstractMeasurement} error("measure with a type $M is not supported") end =# end
LatticeQCD
https://github.com/akio-tomiya/LatticeQCD.jl.git
[ "MIT" ]
1.1.0
e495a1eaee52a513e02fe6ca2c995a7d0ed671a7
code
12726
mutable struct Pion_correlator_measurement{Dim,TG,TD,TF,TF_vec,Dim_2} <: AbstractMeasurement filename::String _temporary_gaugefields::Vector{TG} Dim::Int8 verbose_print::Union{Verbose_print,Nothing} printvalues::Bool D::TD fermi_action::TF _temporary_fermionfields::Vector{TF_vec} #Nr::Int64 Nspinor::Int64 S::Array{ComplexF64,Dim_2} function Pion_correlator_measurement( U::Vector{T}; filename = nothing, verbose_level = 2, printvalues = true, fermiontype = "Staggered", mass = 0.1, Nf = 2, κ = 1, r = 1, L5 = 2, M = -1, eps_CG = 1e-14, MaxCGstep = 3000, BoundaryCondition = nothing, ) where {T} NC = U[1].NC Dim = length(U) if BoundaryCondition == nothing if Dim == 4 boundarycondition = BoundaryCondition_4D_default elseif Dim == 2 boundarycondition = BoundaryCondition_2D_default end else boundarycondition = BoundaryCondition end #println(boundarycondition) params = Dict() parameters_action = Dict() if fermiontype == "Staggered" x = Initialize_pseudofermion_fields(U[1], "staggered") params["Dirac_operator"] = "staggered" params["mass"] = mass parameters_action["Nf"] = Nf Nfbase = 4 #Nfbase = ifelse( m.fparam.Dirac_operator == "Staggered",4,1) factor = Nf / Nfbase elseif fermiontype == "Wilson" x = Initialize_pseudofermion_fields(U[1], "Wilson", nowing = true) params["Dirac_operator"] = "Wilson" params["κ"] = κ params["r"] = r params["faster version"] = true elseif fermiontype == "Domainwall" params["Dirac_operator"] = "Domainwall" params["mass"] = mass params["L5"] = L5 params["M"] = M x = Initialize_pseudofermion_fields(U[1], "Domainwall", L5 = L5) else error( "fermion type $fermiontype is not supported in chiral condensate measurement", ) end Nspinor = ifelse(fermiontype == "Staggered", 1, 4) _, _, NN... = size(U[1]) S = zeros(ComplexF64, NN..., Nspinor * NC, Nspinor * NC) params["eps_CG"] = eps_CG params["verbose_level"] = verbose_level params["MaxCGstep"] = MaxCGstep params["boundarycondition"] = boundarycondition D = Dirac_operator(U, x, params) fermi_action = FermiAction(D, parameters_action) TD = typeof(D) TF = typeof(fermi_action) myrank = get_myrank(U) if printvalues verbose_print = Verbose_print(verbose_level, myid = myrank, filename = filename) else verbose_print = nothing end numg = 1 _temporary_gaugefields = Vector{T}(undef, numg) _temporary_gaugefields[1] = similar(U[1]) for i = 2:numg _temporary_gaugefields[i] = similar(U[1]) end numf = 2 TF_vec = typeof(x) _temporary_fermionfields = Vector{TF_vec}(undef, numf) for i = 1:numf _temporary_fermionfields[i] = similar(x) end Dim_2 = Dim + 2 return new{Dim,T,TD,TF,TF_vec,Dim_2}( filename, #::String _temporary_gaugefields,#::Vector{TG} Dim,#::Int8 verbose_print,#::Union{Verbose_print,Nothing} printvalues,#::Bool D,#::TD fermi_action,#::TF _temporary_fermionfields,#::Vector{TF_vec} Nspinor,#::Int64 S,#::Array{ComplexF64,3} ) end end function Pion_correlator_measurement( U::Vector{T}, params::Pion_parameters, filename, ) where {T} if params.smearing_for_fermion != "nothing" error("smearing is not implemented in Pion correlator") end fermionparameters = params.fermion_parameters if params.fermiontype == "Staggered" method = Pion_correlator_measurement( U; filename = filename, verbose_level = params.verbose_level, printvalues = params.printvalues, fermiontype = params.fermiontype, mass = fermionparameters.mass, Nf = fermionparameters.Nf, eps_CG = params.eps, MaxCGstep = params.MaxCGstep, ) elseif params.fermiontype == "Wilson" || params.fermiontype == "WilsonClover" if fermionparameters.hasclover error("WilsonClover is not implemented in Pion measurement") end method = Pion_correlator_measurement( U; filename = filename, verbose_level = params.verbose_level, printvalues = params.printvalues, fermiontype = params.fermiontype, κ = fermionparameters.hop, r = fermionparameters.r, eps_CG = params.eps, MaxCGstep = params.MaxCGstep, ) elseif params.fermiontype == "Domainwall" error("Domainwall fermion is not implemented in Pion measurement!") method = Pion_correlator_measurement( U; filename = filename, verbose_level = params.verbose_level, printvalues = params.printvalues, fermiontype = params.fermiontype, L5 = fermionparameters.N5, M = fermionparameters.M, eps_CG = params.eps, MaxCGstep = params.MaxCGstep, ) end return method end @inline function spincolor(ic, is, NC) return ic - 1 + (is - 1) * NC + 1 end function measure( m::M, itrj, U::Array{<:AbstractGaugefields{NC,Dim},1}; additional_string = "", ) where {M<:Pion_correlator_measurement,NC,Dim} S = m.S S .= 0 measurestring = "" st = "Hadron spectrum started" measurestring *= st * "\n" println_verbose_level2(U[1], st) Nspinor = m.Nspinor #D = m.D(U) # calculate quark propagators from a point source at he origin propagators, st = calc_quark_propagators_point_source(m, U) measurestring *= st * "\n" #= #println(propagators) for ic=1:NC for is=1:Nspinor icum = (ic-1)*Nspinor+is println("$icum ", dot(propagators[icum],propagators[icum])) end end #error("prop") =# _, _, NN... = size(U[1]) #println("NN = $NN") #ctr = 0 # a counter for ic = 1:NC for is = 1:Nspinor icum = (ic - 1) * Nspinor + is propagator = propagators[icum] α0 = spincolor(ic, is, NC) # source(color-spinor) index # reconstruction if Dim == 4 @inbounds for t = 1:NN[4] for z = 1:NN[3] for y = 1:NN[2] for x = 1:NN[1] for ic2 = 1:NC @inbounds @simd for is2 = 1:Nspinor # Nspinor is the number of spinor index in 4d. β = spincolor(ic2, is2, NC) S[x, y, z, t, α0, β] += propagator[ic, x, y, z, t, is] #println( propagator[ic,x,y,z,t,is]) end end end end end end else error("Dim = $Dim is not supported") end # end for the substitution #ctr+=1 end end #println(sum(S)) #error("prop") # contruction end. st = "Hadron spectrum: Reconstruction" measurestring *= st * "\n" println_verbose_level2(U[1], st) #println("Hadron spectrum: Reconstruction") Cpi = zeros(NN[end]) #Cpi = zeros( univ.NT ) # Construct Pion propagator if Dim == 4 @inbounds for t = 1:NN[4] tmp = 0.0 + 0.0im for z = 1:NN[3] for y = 1:NN[2] for x = 1:NN[1] for ic = 1:NC for is = 1:Nspinor # Nspinor is the number of spinor index in 4d. α = spincolor(ic, is, NC) for ic2 = 1:NC for is2 = 1:Nspinor # Nspinor is the number of spinor index in 4d. β = spincolor(ic2, is2, NC) tmp += S[x, y, z, t, α, β] * S[x, y, z, t, α, β]'#inner product. # complex conjugate = g5 S g5. end end # complex conjugate = g5 S g5. end end end end end # staggered Pion correlator relies on https://itp.uni-frankfurt.de/~philipsen/theses/breitenfelder_ba.pdf (3.33) # we adopt ignoreing the staggering factor. See detail above reference. ksfact = 1.0 #ifelse( meas.fparam.Dirac_operator == "Staggered" , (-1)^(t-1) * 64, 1) Cpi[t] = real(tmp) * ksfact end end #println(typeof(verbose),"\t",verbose) st = "Hadron spectrum end" measurestring *= st * "\n" println_verbose_level2(U[1], st) #println("Hadron spectrum end") if m.printvalues stringcc = "$itrj " #println_verbose_level1(U[1],"$itrj ") #println_verbose_level1(m.verbose_print,"$itrj ") for it = 1:length(Cpi) cc = Cpi[it] #println_verbose_level1(U[1],"$cc ") stringcc *= "$cc " end #println_verbose_level1(U[1],stringcc) measurestring *= stringcc * "\n" println_verbose_level1(m.verbose_print, stringcc) #println_verbose_level1(U[1],"#pioncorrelator") st = "#pioncorrelator" measurestring *= st * "\n" println_verbose_level1(m.verbose_print, st) end return Cpi, measurestring end function calc_quark_propagators_point_source( m, U::Array{<:AbstractGaugefields{NC,Dim},1}, ) where {NC,Dim} # D^{-1} for each spin x color element D = m.D(U) stvec = String[] propagators = map( i -> calc_quark_propagators_point_source_each(m, U, D, i, stvec), 1:NC*m.Nspinor, ) st = "" for i = 1:NC*m.Nspinor st *= stvec[i] * "\n" end return propagators, st end function calc_quark_propagators_point_source_each(m, U, D, i, stvec) # calculate D^{-1} for a given source at the origin. # Nc*Ns (Ns: dim of spinor, Wilson=4, ks=1) elements has to be gathered. # staggered Pion correlator relies on https://itp.uni-frankfurt.de/~philipsen/theses/breitenfelder_ba.pdf (3.33) temps_fermi = get_temporary_fermionfields(m) measurestring = "" b = temps_fermi[1] p = temps_fermi[2] #b = similar(meas._temporal_fermions[1]) # source is allocated #p = similar(b) # sink is allocated (propagator to sink position) #k = meas._temporal_fermi2[2] #clear_fermion!(b) Nspinor = m.Nspinor#ifelse( meas.fparam.Dirac_operator == "Staggered" ,1,4) is = ((i - 1) % Nspinor) + 1 # spin index ic = ((i - is) ÷ Nspinor) + 1 # color index st = "$ic $is" measurestring *= st * "\n" println_verbose_level1(U[1], st) v = 1 clear_fermion!(b) clear_fermion!(p) #b[ic,1,1,1,1,is] = v #println(dot(b,b)) p#rintln("ic = $ic is = $is") iorigin = (1, 1, 1, 1) setindex_global!(b, v, ic, iorigin..., is) # source at the origin #= mul!(p,D,b) for it=1:U[1].NT for iz=1:U[1].NZ for iy=1:U[1].NY for ix=1:U[1].NX val = p[ic,ix,iy,iz,it,is] if abs(val) > 1e-16 println("$ix $iy $iz $it $val") end end end end end =# #println(p[ic,1,1,1,1,is]) #println(p[ic,2,1,1,1,is]) #Z4_distribution_fermi!(b) #error("dd") @time solve_DinvX!(p, D, b) #error("dd") #println("norm p ",dot(p,p)) st = "Hadron spectrum: Inversion $(i)/$(U[1].NC*m.Nspinor) is done" measurestring *= st * "\n" println_verbose_level1(U[1], st) flush(stdout) push!(stvec, measurestring) return deepcopy(p) end
LatticeQCD
https://github.com/akio-tomiya/LatticeQCD.jl.git
[ "MIT" ]
1.1.0
e495a1eaee52a513e02fe6ca2c995a7d0ed671a7
code
6696
const BoundaryCondition_4D_default = [1, 1, 1, -1] const BoundaryCondition_2D_default = [1, -1] mutable struct Chiral_condensate_measurement{Dim,TG,TD,TF,TF_vec} <: AbstractMeasurement filename::String _temporary_gaugefields::Vector{TG} Dim::Int8 #factor::Float64 verbose_print::Union{Verbose_print,Nothing} printvalues::Bool D::TD fermi_action::TF _temporary_fermionfields::Vector{TF_vec} Nr::Int64 factor::Float64 function Chiral_condensate_measurement( U::Vector{T}; filename = nothing, verbose_level = 2, printvalues = true, fermiontype = "Staggered", mass = 0.1, Nf = 2, κ = 1, r = 1, L5 = 2, M = -1, eps_CG = 1e-14, MaxCGstep = 3000, BoundaryCondition = nothing, Nr = 10, ) where {T} Dim = length(U) if BoundaryCondition == nothing if Dim == 4 boundarycondition = BoundaryCondition_4D_default elseif Dim == 2 boundarycondition = BoundaryCondition_2D_default end else boundarycondition = BoundaryCondition end Nfbase = 1 factor = 1 params = Dict() parameters_action = Dict() if fermiontype == "Staggered" x = Initialize_pseudofermion_fields(U[1], "staggered") params["Dirac_operator"] = "staggered" params["mass"] = mass parameters_action["Nf"] = Nf Nfbase = 4 #Nfbase = ifelse( m.fparam.Dirac_operator == "Staggered",4,1) factor = Nf / Nfbase elseif fermiontype == "Wilson" x = Initialize_pseudofermion_fields(U[1], "Wilson", nowing = true) params["Dirac_operator"] = "Wilson" params["κ"] = κ params["r"] = r params["faster version"] = true elseif fermiontype == "Domainwall" params["Dirac_operator"] = "Domainwall" params["mass"] = mass params["L5"] = L5 params["M"] = M x = Initialize_pseudofermion_fields(U[1], "Domainwall", L5 = L5) else error( "fermion type $fermiontype is not supported in chiral condensate measurement", ) end params["eps_CG"] = eps_CG params["verbose_level"] = verbose_level params["MaxCGstep"] = MaxCGstep params["boundarycondition"] = boundarycondition D = Dirac_operator(U, x, params) fermi_action = FermiAction(D, parameters_action) TD = typeof(D) TF = typeof(fermi_action) myrank = get_myrank(U) #= if U[1].mpi == false myrank = 0 else myrank = U[1].myrank end =# if printvalues verbose_print = Verbose_print(verbose_level, myid = myrank, filename = filename) else verbose_print = nothing end numg = 1 _temporary_gaugefields = Vector{T}(undef, numg) _temporary_gaugefields[1] = similar(U[1]) for i = 2:numg _temporary_gaugefields[i] = similar(U[1]) end numf = 2 TF_vec = typeof(x) _temporary_fermionfields = Vector{TF_vec}(undef, numf) for i = 1:numf _temporary_fermionfields[i] = similar(x) end return new{Dim,T,TD,TF,TF_vec}( filename, _temporary_gaugefields, Dim, verbose_print, printvalues, D,#::TD fermi_action,#::TF, _temporary_fermionfields, Nr, factor, ) end end function Chiral_condensate_measurement( U::Vector{T}, params::ChiralCondensate_parameters, filename, ) where {T} if params.fermiontype == "Staggered" method = Chiral_condensate_measurement( U; filename = filename, verbose_level = params.verbose_level, printvalues = params.printvalues, fermiontype = params.fermiontype, mass = params.mass, Nf = params.Nf, eps_CG = params.eps, MaxCGstep = params.MaxCGstep, Nr = params.Nr, ) else error("$(params.fermiontype) is not supported in Chiral_condensate_measurement") end #途中 return method end function measure( m::M, itrj, U::Array{<:AbstractGaugefields{NC,Dim},1}; additional_string = "", ) where {M<:Chiral_condensate_measurement,NC,Dim} temps_fermi = get_temporary_fermionfields(m) p = temps_fermi[1] r = temps_fermi[2] D = m.D(U) pbp = 0.0 #Nr = 100 Nr = m.Nr measurestring = "" for ir = 1:Nr clear_fermion!(p) Z4_distribution_fermi!(r) solve_DinvX!(p, D, r) tmp = dot(r, p) # hermitian inner product if m.printvalues #println_verbose_level2(U[1],"# $itrj $ir $(real(tmp)/U[1].NV) # itrj irand chiralcond") measurestring_ir = "# $itrj $ir $additional_string $(real(tmp)/U[1].NV) # itrj irand chiralcond" println_verbose_level2(m.verbose_print, measurestring_ir) measurestring *= measurestring_ir * "\n" end pbp += tmp end pbp_value = real(pbp / Nr) / U[1].NV * m.factor if m.printvalues measurestring_ir = "$itrj $pbp_value # pbp Nr=$Nr" println_verbose_level1(m.verbose_print, measurestring_ir) measurestring *= measurestring_ir * "\n" flush(stdout) end return pbp_value, measurestring end #= """ c-------------------------------------------------c c Random number function Z4 Noise c https://arxiv.org/pdf/1611.01193.pdf c-------------------------------------------------c """ function Z4_distribution_fermion!(x::AbstractFermionfields_4D{NC}) where NC NX = x.NX NY = x.NY NZ = x.NZ NT = x.NT n6 = size(x.f)[6] θ = 0.0 N::Int32 = 4 Ninv = Float64(1/N) for ialpha = 1:n6 for it=1:NT for iz=1:NZ for iy=1:NY for ix=1:NX @inbounds @simd for ic=1:NC θ = Float64(rand(0:N-1))*π*Ninv # r \in [0,π/4,2π/4,3π/4] x[ic,ix,iy,iz,it,ialpha] = cos(θ)+im*sin(θ) end end end end end end set_wing_fermion!(x) return end =#
LatticeQCD
https://github.com/akio-tomiya/LatticeQCD.jl.git