licenses
sequencelengths 1
3
| version
stringclasses 677
values | tree_hash
stringlengths 40
40
| path
stringclasses 1
value | type
stringclasses 2
values | size
stringlengths 2
8
| text
stringlengths 25
67.1M
| package_name
stringlengths 2
41
| repo
stringlengths 33
86
|
---|---|---|---|---|---|---|---|---|
[
"MIT"
] | 0.11.14 | 3d6a6516d6940a93b732e8ec7127652a0ead89c6 | code | 611 | module SCIP
import LinearAlgebra
import OpenBLAS32_jll
# assorted utility functions
include("util.jl")
# load deps, version check
include("init.jl")
# wrapper of SCIP library
include("wrapper.jl")
# memory management
include("scip_data.jl")
include("sepa.jl")
include("cut_selector.jl")
include("heuristic.jl")
include("branching_rule.jl")
# constraint handlers
include("conshdlr.jl")
# constraints from nonlinear expressions
include("nonlinear.jl")
# implementation of MOI
include("MOI_wrapper.jl")
# convenience functions
include("convenience.jl")
# warn about rewrite
include("compat.jl")
end
| SCIP | https://github.com/scipopt/SCIP.jl.git |
|
[
"MIT"
] | 0.11.14 | 3d6a6516d6940a93b732e8ec7127652a0ead89c6 | code | 7914 | # branching rule interface
# it is recommended to check https://scipopt.org/doc/html/BRANCH.php for key concepts and interface
"""
Abstract class for branching rule.
A branching rule must implement the `branch` method.
It also stores all user data that must be available to select a branching variable.
"""
abstract type AbstractBranchingRule end
"""
The type of solution we branch on.
The three subtypes are BranchingLP, BranchingPseudoSolution, BranchingExternalCandidate
"""
abstract type BranchingType end
"""
Branching for LP candidate, corresponds to the SCIP `SCIP_DECL_BRANCHEXECLP` callback.
"""
struct BranchingLP <: BranchingType end
"""
Branching for pseudo-solution candidate, corresponds to the SCIP `SCIP_DECL_BRANCHEXECPS` callback.
"""
struct BranchingPseudoSolution <: BranchingType end
"""
Branching for external candidate, corresponds to the SCIP `SCIP_DECL_BRANCHEXECEXT` callback.
"""
struct BranchingExternalCandidate <: BranchingType end
"""
branch(branching_rule, scip, allow_additional_constraints, type)
Perform branching with the current `branching_rule`.
`allow_additional_constraints` is a Boolean indicating if the branching rule
is allowed to add constraints to the current node in order to cut off the current solution instead of creating a branching.
That method must return a tuple (return_code::LibSCIP.SCIP_RETCODE, result::SCIP.LibSCIP.SCIP_RESULT).
If no branching was performed, use `SCIP_DIDNOTRUN` as a result to pass on to the following branching rule.
`type` is the `BranchingType` to branch on, i.e. on LP solution, pseudo-solution or external candidate.
"""
function branch(branching_rule::AbstractBranchingRule, scip, allow_additional_constraints, type::BranchingType)
return (LibSCIP.SCIP_OKAY, LibSCIP.SCIP_DIDNOTRUN)
end
"""
get_branching_candidates(scip)
returns a tuple with branching candidate information, including:
`(candidates, candidates_values, candidates_fractionalities, npriolpcands, nfracimplvars)`
with:
- `candidates` a vector of variables with the branching candidates
- `candidates_values` the corresponding values at the LP relaxation
- `candidates_fractionalities` the corresponding fractionalities
- `npriolpcands` the number of candidates with maximal priority that MUST be branched on
- `nfracimplvars` the number of fractional implicit integer variables, that should not be branched on.
"""
function get_branching_candidates(scip)
lpcands = Ref{Ptr{Ptr{SCIP_VAR}}}(C_NULL)
lpcandssol = Ref{Ptr{SCIP_Real}}(C_NULL)
lpcandsfrac = Ref{Ptr{SCIP_Real}}(C_NULL)
nlpcands = Ref{Cint}(-1)
npriolpcands = Ref{Cint}(-1)
nfracimplvars = Ref{Cint}(-1)
@SCIP_CALL SCIPgetLPBranchCands(
scip,
lpcands,
lpcandssol,
lpcandsfrac,
nlpcands,
npriolpcands,
nfracimplvars,
)
@assert lpcands[] != C_NULL
@assert nlpcands[] > 0
@assert npriolpcands[] >= 0
candidates = unsafe_wrap(Array, lpcands[], nlpcands[])
@assert lpcandssol[] != C_NULL
candidates_values = unsafe_wrap(Array, lpcandssol[], nlpcands[])
@assert lpcandsfrac[] != C_NULL
candidates_fractionalities = unsafe_wrap(Array, lpcandsfrac[], nlpcands[])
@assert nfracimplvars[] >= 0
return (
candidates,
candidates_values,
candidates_fractionalities,
npriolpcands[],
nfracimplvars[],
)
end
function branch_on_candidate!(scip, var)
@SCIP_CALL LibSCIP.SCIPbranchVar(scip, var, C_NULL, C_NULL, C_NULL)
return nothing
end
function _branchrulefree(::Ptr{SCIP_}, branching::Ptr{SCIP_BRANCHRULE})
# just like sepa, free the data on the SCIP side,
# the Julia GC will take care of the objects
SCIPbranchruleSetData(branching, C_NULL)
return SCIP_OKAY
end
#####
# Low-level SCIP callbacks
## These are defined here to match the C function signature expected by SCIP
#####
function _branchrule_exec_lp(scip::Ptr{SCIP_}, branchrule_::Ptr{SCIP_BRANCHRULE}, allowaddcons::SCIP_Bool, result_::Ptr{SCIP_RESULT})
branchruledata::Ptr{SCIP_BRANCHRULEDATA} = SCIPbranchruleGetData(branchrule_)
branchrule = unsafe_pointer_to_objref(branchruledata)
(retcode, result) = branch(branchrule, scip, allowaddcons == 1, BranchingLP())::Tuple{SCIP_RETCODE,SCIP_RESULT}
if retcode != SCIP_OKAY
return retcode
end
unsafe_store!(result_, result)
return retcode
end
function _branchrule_exec_ps(scip::Ptr{SCIP_}, branchrule_::Ptr{SCIP_BRANCHRULE}, allowaddcons::SCIP_Bool, result_::Ptr{SCIP_RESULT})
branchruledata::Ptr{SCIP_BRANCHRULEDATA} = SCIPbranchruleGetData(branchrule_)
branchrule = unsafe_pointer_to_objref(branchruledata)
(retcode, result) = branch(branchrule, scip, allowaddcons == 1, BranchingPseudoSolution())::Tuple{SCIP_RETCODE,SCIP_RESULT}
if retcode != SCIP_OKAY
return retcode
end
unsafe_store!(result_, result)
return retcode
end
function _branchrule_exec_external(scip::Ptr{SCIP_}, branchrule_::Ptr{SCIP_BRANCHRULE}, allowaddcons::SCIP_Bool, result_::Ptr{SCIP_RESULT})
branchruledata::Ptr{SCIP_BRANCHRULEDATA} = SCIPbranchruleGetData(branchrule_)
branchrule = unsafe_pointer_to_objref(branchruledata)
(retcode, result) = branch(branchrule, scip, allowaddcons == 1, BranchingExternalCandidate())::Tuple{SCIP_RETCODE,SCIP_RESULT}
if retcode != SCIP_OKAY
return retcode
end
unsafe_store!(result_, result)
return retcode
end
"""
Includes a branching rule in SCIP and stores it in branchrule_storage.
Keyword of interests can be:
`maxdepth` corresponding to SCIP `BRANCHRULE_MAXDEPTH`. Use -1 for no depth limit,
`max_bound_distance` corresponding to `BRANCHRULE_MAXBOUNDDIST`.
"""
function include_branchrule(
scip::Ptr{SCIP_},
branchrule::BR,
branchrule_storage::Dict{Any,Ptr{SCIP_BRANCHRULE}};
name="",
description="",
priority=10000,
maxdepth=-1,
max_bound_distance=1.0,
) where {BR<:AbstractBranchingRule}
# ensure a unique name for the cut selector
if name == ""
name = "branchrule_$(string(BR))"
end
branchrule__ = Ref{Ptr{SCIP_BRANCHRULE}}(C_NULL)
if !ismutable(branchrule)
throw(
ArgumentError("The branching rule structure must be a mutable type"),
)
end
branchruledata_ = pointer_from_objref(branchrule)
branchrule_callback_lp = @cfunction(
_branchrule_exec_lp,
SCIP_RETCODE,
(
Ptr{SCIP_},
Ptr{SCIP_BRANCHRULE},
SCIP_Bool,
Ptr{SCIP_RESULT},
),
)
branchrule_callback_ps = @cfunction(
_branchrule_exec_ps,
SCIP_RETCODE,
(
Ptr{SCIP_},
Ptr{SCIP_BRANCHRULE},
SCIP_Bool,
Ptr{SCIP_RESULT},
),
)
branchrule_callback_ext = @cfunction(
_branchrule_exec_external,
SCIP_RETCODE,
(
Ptr{SCIP_},
Ptr{SCIP_BRANCHRULE},
SCIP_Bool,
Ptr{SCIP_RESULT},
),
)
@SCIP_CALL SCIPincludeBranchruleBasic(
scip,
branchrule__,
name,
description,
priority,
maxdepth,
max_bound_distance,
branchruledata_,
)
@assert branchrule__[] != C_NULL
@SCIP_CALL SCIPsetBranchruleFree(
scip,
branchrule__[],
@cfunction(_branchrulefree, SCIP_RETCODE, (Ptr{SCIP_}, Ptr{SCIP_BRANCHRULE})),
)
@SCIP_CALL SCIPsetBranchruleExecLp(
scip,
branchrule__[],
branchrule_callback_lp,
)
@SCIP_CALL SCIPsetBranchruleExecPs(
scip,
branchrule__[],
branchrule_callback_ps,
)
@SCIP_CALL SCIPsetBranchruleExecExt(
scip,
branchrule__[],
branchrule_callback_ext,
)
# store branching rule (avoids GC-ing it)
branchrule_storage[branchrule] = branchrule__[]
end
| SCIP | https://github.com/scipopt/SCIP.jl.git |
|
[
"MIT"
] | 0.11.14 | 3d6a6516d6940a93b732e8ec7127652a0ead89c6 | code | 268 | export SCIPSolver
# dummy implementation to tell users about transition to MathOptInterface
function SCIPSolver(args...; kwargs...)
error(
"Support for MathProgBase was dropped. " *
"Please downgrade to v0.6.1, see README for details.",
)
end
| SCIP | https://github.com/scipopt/SCIP.jl.git |
|
[
"MIT"
] | 0.11.14 | 3d6a6516d6940a93b732e8ec7127652a0ead89c6 | code | 15781 | #
# Wrappers for implementing SCIP constraint handlers in Julia.
#
# Please study the corresponding SCIP documentation first, to become familiar
# with basic concepts and terms: https://www.scipopt.org/doc/html/CONS.php
#
# The basic idea is that you create a new subtype of `AbstractConstraintHandler`
# to store the constraint handler data and implement the fundamental callbacks
# by adding methods to the functions `check`, `enforce_lp_sol`,
# `enforce_pseudo_sol` and `lock`.
#
# If your constraint handler uses constraint objects (`needs_constraints`), you
# create a subtype of the parametrized `AbstractConstraint`.
#
#
# Current limitations:
# - We now use fixed values for some properties:
# - SEPAPRIORITY = 0
# - SEPAFREQ = -1
# - DELAYSEPA = FALSE
# - PROPFREQ = -1
# - DELAYPROP = -1
# - PROP_TIMING = SCIP_PROPTIMING_BEFORELP
# - PRESOLTIMING = SCIP_PRESOLTIMING_MEDIUM
# - MAXPREROUNDS = -1
# - We don't support these optional methods: CONSHDLRCOPY, CONSFREE, CONSINIT,
# CONSEXIT, CONSINITPRE, CONSEXITPRE, CONSINITSOL, CONSEXITSOL, CONSDELETE,
# CONSTRANS, CONSINITLP, CONSSEPALP, CONSSEPASOL, CONSENFORELAX, CONSPROP,
# CONSPRESOL, CONSRESPROP, CONSACTIVE, CONSDEACTIVE, CONSENABLE, CONSDISABLE,
# CONSDELVARS, CONSPRINT, CONSCOPY, CONSPARSE, CONSGETVARS, CONSGETNVARS,
# CONSGETDIVEBDCHGS
# - We don't support linear or nonlinear constraint upgrading.
#
#
# Abstract Supertypes:
#
"""
AbstractConstraintHandler
Abstract supertype for objects that store all user data belonging to the
constraint handler. This object is also used for method dispatch with the
callback functions.
From SCIP's point-of-view, this objects corresponds to the SCIP_CONSHDLRDATA,
but its memory is managed by Julia's GC.
It's recommended to store a reference to your instance of `SCIP.Optimizer`
here so that you can use it within your callback methods.
"""
abstract type AbstractConstraintHandler end
"""
AbstractConstraint{Handler}
Abstract supertype for objects that store all user data belonging to an
individual constraint. It's parameterized by the type of constraint handler.
From SCIP's point-of-view, this objects corresponds to the SCIP_CONSDATA,
but its memory is managed by Julia's GC.
"""
abstract type AbstractConstraint{Handler} end
#
# Fundamental Callbacks for Julia.
#
"""
check(
constraint_handler::CH,
constraints::Array{Ptr{SCIP_CONS}},
sol::Ptr{SCIP_SOL},
checkintegrality::Bool,
checklprows::Bool,
printreason::Bool,
completely::Bool
)::SCIP_RESULT
Check whether the solution candidate given by `sol` satisfies all constraints in
`constraints`.
Use the functions `user_constraint` and `sol_values` to access your
constraint-specific user data and solution values, respectively.
Acceptable result values are:
* `SCIP_FEASIBLE`: The solution candidate satisfies all constraints.
* `SCIP_INFEASIBLE`: The solution candidate violates at least one constraint.
There is nothing else to do for the user in terms of dealing with the violation.
"""
function check end
"""
enforce_lp_sol(
constraint_handler::CH,
constraints::Array{Ptr{SCIP_CONS}},
nusefulconss::Cint,
solinfeasible::Bool
)::SCIP_RESULT
Enforce the current solution for the LP relaxation. That is, check all given
constraints for violation and deal with it in some way (see below).
Use the functions `user_constraint` and `sol_values` to access your
constraint-specific user data and solution values, respectively.
Acceptable result values are:
* `SCIP_FEASIBLE`: The solution candidate satisfies all constraints.
* `SCIP_CUTOFF`: The current subproblem is infeasible.
* `SCIP_CONSADDED`: Added a constraint that resolves the infeasibility.
* `SCIP_REDUCEDDOM`: Reduced the domain of a variable.
* `SCIP_SEPARATED`: Added a cutting plane.
* `SCIP_BRANCHED`: Performed a branching.
* `SCIP_INFEASIBLE`: The solution candidate violates at least one constraint.
"""
function enforce_lp_sol end
"""
enforce_pseudo_sol(
constraint_handler::CH,
constraints::Array{Ptr{SCIP_CONS}},
nusefulconss::Cint,
solinfeasible::Bool
)::SCIP_RESULT
Enforce the current pseudo solution (the LP relaxation was not solved). That is,
check all given constraints for violation and deal with it in some way (see
below).
Use the functions `user_constraint` and `sol_values` to access your
constraint-specific user data and solution values, respectively.
Acceptable result values are:
* `SCIP_FEASIBLE`: The solution candidate satisfies all constraints.
* `SCIP_CUTOFF`: The current subproblem is infeasible.
* `SCIP_CONSADDED`: Added a constraint that resolves the infeasibility.
* `SCIP_REDUCEDDOM`: Reduced the domain of a variable.
* `SCIP_SEPARATED`: Added a cutting plane.
* `SCIP_BRANCHED`: Performed a branching.
* `SCIP_SOLVELP`: Force the solving of the LP relaxation.
* `SCIP_INFEASIBLE`: The solution candidate violates at least one constraint.
"""
function enforce_pseudo_sol end
"""
lock(
constraint_handler::CH,
constraint::Ptr{SCIP_CONS},
locktype::SCIP_LOCKTYPE,
nlockspos::Cint,
nlocksneg::Cint
)
Define the variable locks that the given constraint implies. For each related
variable, call `SCIPaddVarLocksType` to let SCIP know whether rounding the value
up or down might lead to constraint violation.
"""
function lock end
#
# Fundamental callback functions with SCIP's C API.
#
# There is only a single, generic implementation for each of these, which are
# passed to all user-defined SCIP constraint handlers, but they will call the
# user's method in the function body.
#
"""
Generic `check` function, matching the signature from SCIP's C API.
"""
function _conscheck(
scip::Ptr{SCIP_},
conshdlr::Ptr{SCIP_CONSHDLR},
conss::Ptr{Ptr{SCIP_CONS}},
nconss::Cint,
sol::Ptr{SCIP_SOL},
checkintegrality::SCIP_Bool,
checklprows::SCIP_Bool,
printreason::SCIP_Bool,
completely::SCIP_Bool,
result::Ptr{SCIP_RESULT},
)
# get Julia object out of constraint handler data
conshdlrdata::Ptr{SCIP_CONSHDLRDATA} = SCIPconshdlrGetData(conshdlr)
constraint_handler = unsafe_pointer_to_objref(conshdlrdata)
# get Julia array from C pointer
constraints = unsafe_wrap(Vector{Ptr{SCIP_CONS}}, conss, nconss)
# call user method via dispatch
res = check(
constraint_handler,
constraints,
sol,
convert(Bool, checkintegrality),
convert(Bool, checklprows),
convert(Bool, printreason),
convert(Bool, completely),
)
unsafe_store!(result, res)
return SCIP_OKAY
end
"""
Generic `enfolp` function, matching the signature from SCIP's C API.
"""
function _consenfolp(
scip::Ptr{SCIP_},
conshdlr::Ptr{SCIP_CONSHDLR},
conss::Ptr{Ptr{SCIP_CONS}},
nconss::Cint,
nusefulconss::Cint,
solinfeasible::SCIP_Bool,
result::Ptr{SCIP_RESULT},
)
# get Julia object out of constraint handler data
conshdlrdata::Ptr{SCIP_CONSHDLRDATA} = SCIPconshdlrGetData(conshdlr)
constraint_handler = unsafe_pointer_to_objref(conshdlrdata)
# get Julia array from C pointer
constraints = unsafe_wrap(Vector{Ptr{SCIP_CONS}}, conss, nconss)
# call user method via dispatch
res = enforce_lp_sol(
constraint_handler,
constraints,
nusefulconss,
convert(Bool, solinfeasible),
)
unsafe_store!(result, res)
return SCIP_OKAY
end
"""
Generic `enfops` function, matching the signature from SCIP's C API.
"""
function _consenfops(
scip::Ptr{SCIP_},
conshdlr::Ptr{SCIP_CONSHDLR},
conss::Ptr{Ptr{SCIP_CONS}},
nconss::Cint,
nusefulconss::Cint,
solinfeasible::SCIP_Bool,
objinfeasible::SCIP_Bool,
result::Ptr{SCIP_RESULT},
)
# get Julia object out of constraint handler data
conshdlrdata::Ptr{SCIP_CONSHDLRDATA} = SCIPconshdlrGetData(conshdlr)
constraint_handler = unsafe_pointer_to_objref(conshdlrdata)
# get Julia array from C pointer
constraints = unsafe_wrap(Vector{Ptr{SCIP_CONS}}, conss, nconss)
# call user method via dispatch
res = enforce_pseudo_sol(
constraint_handler,
constraints,
nusefulconss,
convert(Bool, solinfeasible),
convert(Bool, objinfeasible),
)
unsafe_store!(result, res)
return SCIP_OKAY
end
"""
Generic `lock` function, matching the signature from SCIP's C API.
"""
function _conslock(
scip::Ptr{SCIP_},
conshdlr::Ptr{SCIP_CONSHDLR},
cons::Ptr{SCIP_CONS},
locktype::SCIP_LOCKTYPE,
nlockspos::Cint,
nlocksneg::Cint,
)
# get Julia object out of constraint handler data
conshdlrdata::Ptr{SCIP_CONSHDLRDATA} = SCIPconshdlrGetData(conshdlr)
constraint_handler = unsafe_pointer_to_objref(conshdlrdata)
# call user method via dispatch
lock(constraint_handler, cons, locktype, nlockspos, nlocksneg)
return SCIP_OKAY
end
#
# Additional callback functions for memory management.
#
# The implementation should work for all constraint handlers defined in Julia,
# so there is no method for the user to implement.
#
"""
Generic `free` function, matching the signature from SCIP's C API.
"""
function _consfree(scip::Ptr{SCIP_}, conshdlr::Ptr{SCIP_CONSHDLR})
# Here, we should free the constraint handler data. But because this is an
# object created and owned by Julia, we will let GC do it.
# Instead, we will just set the pointer to NULL, so that SCIP will think
# that it is taken care of.
SCIPconshdlrSetData(conshdlr, C_NULL)
return SCIP_OKAY
end
"""
Generic `delete` function, matching the signature from SCIP's C API.
"""
function _consdelete(
scip::Ptr{SCIP_},
conshdlr::Ptr{SCIP_CONSHDLR},
cons::Ptr{SCIP_CONS},
consdata::Ptr{Ptr{SCIP_CONSDATA}},
)
# Here, we should free the constraint data. But because this is an object
# created and owned by Julia, we will let GC do it.
# Instead, we will just set the pointer to NULL, so that SCIP will think
# that it is taken care of.
unsafe_store!(consdata, C_NULL)
return SCIP_OKAY
end
#
# Adding constraint handlers and constraints to SCIP.
#
"""
include_conshdlr(
scip::Ptr{SCIP_},
conshdlrs::Dict{Any, Ptr{SCIP_CONSHDLR}},
ch::CH;
name::String,
description::String,
enforce_priority::Int,
check_priority::Int,
eager_frequency::Int,
needs_constraints::Bool
)
Include a user defined constraint handler `ch` to the SCIP instance `scip`.
All parameters have default values that can be set as keyword arguments.
In particular, note the boolean `needs_constraints`:
* If set to `true`, then the callbacks are only called for the constraints that
were added explicitly using `add_constraint`.
* If set to `false`, the callback functions will always be called, even if no
corresponding constraint was added. It probably makes sense to set
`misc/allowdualreds` to `FALSE` in this case.
"""
function include_conshdlr(
scip::Ptr{SCIP_},
conshdlrs::Dict{Any,Ptr{SCIP_CONSHDLR}},
ch::CH;
name="",
description="",
enforce_priority=-15,
check_priority=-7000000,
eager_frequency=100,
needs_constraints=true,
) where {CH<:AbstractConstraintHandler}
# Get C function pointers from Julia functions
_enfolp = @cfunction(
_consenfolp,
SCIP_RETCODE,
(
Ptr{SCIP_},
Ptr{SCIP_CONSHDLR},
Ptr{Ptr{SCIP_CONS}},
Cint,
Cint,
SCIP_Bool,
Ptr{SCIP_RESULT},
)
)
_enfops = @cfunction(
_consenfops,
SCIP_RETCODE,
(
Ptr{SCIP_},
Ptr{SCIP_CONSHDLR},
Ptr{Ptr{SCIP_CONS}},
Cint,
Cint,
SCIP_Bool,
SCIP_Bool,
Ptr{SCIP_RESULT},
)
)
_check = @cfunction(
_conscheck,
SCIP_RETCODE,
(
Ptr{SCIP_},
Ptr{SCIP_CONSHDLR},
Ptr{Ptr{SCIP_CONS}},
Cint,
Ptr{SCIP_SOL},
SCIP_Bool,
SCIP_Bool,
SCIP_Bool,
SCIP_Bool,
Ptr{SCIP_RESULT},
)
)
_lock = @cfunction(
_conslock,
SCIP_RETCODE,
(
Ptr{SCIP_},
Ptr{SCIP_CONSHDLR},
Ptr{SCIP_CONS},
SCIP_LOCKTYPE,
Cint,
Cint,
)
)
# Store pointer to SCIP structure (for future C API calls)
conshdlr__ = Ref{Ptr{SCIP_CONSHDLR}}(C_NULL)
# Hand over Julia object as constraint handler data:
conshdlrdata_ = pointer_from_objref(ch)
# Try to create unique name, or else SCIP will complain!
if name == ""
name = "__ch__$(length(conshdlrs))"
end
# Register constraint handler with SCIP instance.
@SCIP_CALL SCIPincludeConshdlrBasic(
scip,
conshdlr__,
name,
description,
enforce_priority,
check_priority,
eager_frequency,
needs_constraints,
_enfolp,
_enfops,
_check,
_lock,
conshdlrdata_,
)
# Sanity checks
@assert conshdlr__[] != C_NULL
# Set additional callbacks.
@SCIP_CALL SCIPsetConshdlrFree(
scip,
conshdlr__[],
@cfunction(_consfree, SCIP_RETCODE, (Ptr{SCIP_}, Ptr{SCIP_CONSHDLR}))
)
@SCIP_CALL SCIPsetConshdlrDelete(
scip,
conshdlr__[],
@cfunction(
_consdelete,
SCIP_RETCODE,
(
Ptr{SCIP_},
Ptr{SCIP_CONSHDLR},
Ptr{SCIP_CONS},
Ptr{Ptr{SCIP_CONSDATA}},
)
)
)
# Register constraint handler (for GC-protection and mapping).
conshdlrs[ch] = conshdlr__[]
end
"""
add_constraint(
scipd::SCIPData,
ch::CH,
c::C;
initial=true,
separate=true,
enforce=true,
check=true,
propagate=true,
_local=false,
modifiable=false,
dynamic=false,
removable=false,
stickingatnode=false
)::ConsRef
Add constraint `c` belonging to user-defined constraint handler `ch` to model.
Returns constraint reference.
All keyword arguments are passed to the `SCIPcreateCons` call.
"""
function add_constraint(
scipd::SCIPData,
ch::CH,
c::C;
initial=true,
separate=true,
enforce=true,
check=true,
propagate=true,
_local=false,
modifiable=false,
dynamic=false,
removable=false,
stickingatnode=false,
) where {CH<:AbstractConstraintHandler,C<:AbstractConstraint{CH}}
# Find matching SCIP constraint handler plugin.
conshdlr_::Ptr{SCIP_CONSHDLR} = get(scipd.conshdlrs, ch, C_NULL)
conshdlr_ != C_NULL || error("No matching constraint handler registered!")
# Hand over Julia object as constraint data:
consdata_ = pointer_from_objref(c)
# Create SCIP constraint (and attach constraint data).
cons__ = Ref{Ptr{SCIP_CONS}}(C_NULL)
@SCIP_CALL SCIPcreateCons(
scipd,
cons__,
"",
conshdlr_,
consdata_,
initial,
separate,
enforce,
check,
propagate,
_local,
modifiable,
dynamic,
removable,
stickingatnode,
)
# Sanity check.
@assert cons__[] != C_NULL
# Register constraint data (for GC-protection).
scipd.conshdlrconss[c] = cons__[]
# Add constraint to problem.
@SCIP_CALL SCIPaddCons(scipd, cons__[])
# Register constraint and return reference.
return store_cons!(scipd, cons__)
end
| SCIP | https://github.com/scipopt/SCIP.jl.git |
|
[
"MIT"
] | 0.11.14 | 3d6a6516d6940a93b732e8ec7127652a0ead89c6 | code | 536 | ## Related to constraint handlers
"""
Recover Julia object which is attached to user constraint (via constraint data).
"""
function user_constraint(cons_::Ptr{SCIP_CONS})
@assert cons_ != C_NULL
consdata_::Ptr{SCIP.SCIP_CONSDATA} = SCIPconsGetData(cons_)
return unsafe_pointer_to_objref(consdata_)
end
"""
Extract solution values for given variables.
"""
function sol_values(
o::Optimizer,
vars::AbstractArray{VI},
sol::Ptr{SCIP_SOL}=C_NULL,
)
return [SCIPgetSolVal(o, sol, var(o, vi)) for vi in vars]
end
| SCIP | https://github.com/scipopt/SCIP.jl.git |
|
[
"MIT"
] | 0.11.14 | 3d6a6516d6940a93b732e8ec7127652a0ead89c6 | code | 8176 | # cut selection interface
# it is recommended to check https://scipopt.org/doc/html/CUTSEL.php for key concepts and interface
"""
Abstract class for cut selector.
A cut selector must implement `select_cuts`.
It also stores all user data that must be available to select cuts.
"""
abstract type AbstractCutSelector end
"""
select_cuts(
cutsel::AbstractCutSelector,
scip::Ptr{SCIP_},
cuts::Vector{Ptr{SCIP_ROW}},
forced_cuts::Vector{Ptr{SCIP_ROW}},
root::Bool,
maxnslectedcuts::Integer
) -> (retcode, nselectedcuts, result)
It must operate the selection of cuts by placing the selected cuts first in the selected cut vector.
`nselectedcuts` must be the number of selected cuts, retcode indicates whether the selection went well.
A typical result would be `SCIP_SUCCESS`, and retcode `SCIP_OKAY`.
`forced_cuts` is a vector of cuts that will be added to the problem, they should not be tampered with by the function.
"""
function select_cuts(cutsel, scip, cuts, forced_cuts, root, maxnslectedcuts) end
function _select_cut_callback(
scip::Ptr{SCIP_},
cutsel_::Ptr{SCIP_CUTSEL},
cuts_::Ptr{Ptr{SCIP_ROW}},
ncuts::Cint,
forced_cuts_::Ptr{Ptr{SCIP_ROW}},
nforced_cuts::Cint,
root_::SCIP_Bool,
maxnslectedcuts::Cint,
nselectedcuts_::Ptr{Cint},
result_::Ptr{SCIP_RESULT},
)
cutseldata::Ptr{SCIP_CUTSELDATA} = SCIPcutselGetData(cutsel_)
cutsel = unsafe_pointer_to_objref(cutseldata)
cuts = unsafe_wrap(Vector{Ptr{SCIP_ROW}}, cuts_, ncuts)
@assert length(cuts) == ncuts
forced_cuts = unsafe_wrap(Vector{Ptr{SCIP_ROW}}, forced_cuts_, nforced_cuts)
@assert length(forced_cuts) == nforced_cuts
root = root_ == SCIP.TRUE
(retcode, nselectedcuts, result) = select_cuts(
cutsel,
scip,
cuts,
forced_cuts,
root,
maxnslectedcuts,
)::Tuple{SCIP_RETCODE,Integer,SCIP_RESULT}
if retcode != SCIP_OKAY
return retcode
end
if nselectedcuts > maxnslectedcuts
error(
"$nselectedcuts cuts selected by cut selected, maximum $maxnslectedcuts allowed",
)
end
unsafe_store!(nselectedcuts_, Cint(nselectedcuts))
unsafe_store!(result_, result)
return retcode
end
function _cutselfree(::Ptr{SCIP_}, cutsel::Ptr{SCIP_CUTSEL})
# just like sepa, free the data on the SCIP side,
# the Julia GC will take care of the objects
SCIPcutselSetData(cutsel, C_NULL)
return SCIP_OKAY
end
"""
Includes a cut selector in SCIP and stores it in cutsel_storage.
"""
function include_cutsel(
scip::Ptr{SCIP_},
cutsel::CS,
cutsel_storage::Dict{Any,Ptr{SCIP_CUTSEL}};
name="",
description="",
priority=10000,
) where {CS<:AbstractCutSelector}
# ensure a unique name for the cut selector
if name == ""
name = "cutselector_$(string(CS))"
end
cutsel__ = Ref{Ptr{SCIP_CUTSEL}}(C_NULL)
if !ismutable(cutsel)
throw(
ArgumentError("The cut selector structure must be a mutable type"),
)
end
cutseldata_ = pointer_from_objref(cutsel)
cutselselect_callback = @cfunction(
_select_cut_callback,
SCIP_RETCODE,
(
Ptr{SCIP_},
Ptr{SCIP_CUTSEL},
Ptr{Ptr{SCIP_ROW}},
Cint,
Ptr{Ptr{SCIP_ROW}},
Cint,
SCIP_Bool,
Cint,
Ptr{Cint},
Ptr{SCIP_RESULT},
),
)
@SCIP_CALL SCIPincludeCutselBasic(
scip,
cutsel__,
name,
description,
priority,
cutselselect_callback,
cutseldata_,
)
@assert cutsel__[] != C_NULL
@SCIP_CALL SCIPsetCutselFree(
scip,
cutsel__[],
@cfunction(_cutselfree, SCIP_RETCODE, (Ptr{SCIP_}, Ptr{SCIP_CUTSEL})),
)
# store cut selector (avoids GC-ing it)
cutsel_storage[cutsel] = cutsel__[]
end
"""
Extracts information from a SCIP_ROW into a form:
`lhs ≤ aᵀ x + b ≤ rhs`
The row is returned as a named tuple
"""
function get_row_information(scip::SCIPData, row::Ptr{SCIP_ROW})
rhs = SCIProwGetRhs(row)
lhs = SCIProwGetLhs(row)
b = SCIProwGetConstant(row)
n = SCIProwGetNNonz(row)
a_ptr = SCIProwGetVals(row)
a = unsafe_wrap(Vector{Cdouble}, a_ptr, n)
col_ptr = SCIProwGetCols(row)
cols = unsafe_wrap(Vector{Ptr{SCIP_COL}}, col_ptr, n)
x = map(cols) do col
var_ptr = SCIPcolGetVar(col)
var_ref = findfirst(==(var_ptr), scip.vars)
@assert var_ref !== nothing
var_ref
end
return (; rhs, lhs, b, a, x)
end
"""
Utility function to get scores from cut that can be used to evaluate it.
Returns a named tuple with three commonly used scores `(; integer_support, efficacy, objective_parallelism)`.
"""
function get_row_scores(scip::Ptr{SCIP_}, row::Ptr{SCIP_ROW})
integer_support = SCIPgetRowNumIntCols(scip, row) / SCIProwGetNNonz(row)
efficacy = SCIPgetCutEfficacy(scip, C_NULL, row)
objective_parallelism = SCIPgetRowObjParallelism(scip, cuts[i])
return (; integer_support, efficacy, objective_parallelism)
end
"""
Composed cut selector.
Allows for multiple selectors to be chained.
The number of selected cuts for the previous becomes the number of maximum cuts for the following selector.
We don't need to register the inner cut selectors with SCIP.
"""
struct ComposedCutSelector{
N,
CS<:Union{
AbstractVector{<:AbstractCutSelector},
NTuple{N,AbstractCutSelector},
},
} <: AbstractCutSelector
cutsels::CS
end
function ComposedCutSelector(
cutsels::CS,
) where {N,CS<:NTuple{N,AbstractCutSelector}}
return ComposedCutSelector{N,CS}(cutsels)
end
function ComposedCutSelector(
cutsels::CS,
) where {CS<:AbstractVector{<:AbstractCutSelector}}
return ComposedCutSelector{1,CS}(cutsels)
end
function select_cuts(
cutsel::ComposedCutSelector,
scip,
cuts,
forced_cuts,
root,
maxnslectedcuts,
)
(retcode, nselectedcuts, result) = select_cuts(
cutsel.cutsels[1],
scip,
cuts,
forced_cuts,
root,
maxnslectedcuts,
)
for idx in 2:length(cutsel.cutsels)
if retcode != SCIP_OKAY || nselectedcuts == 0
return (retcode, nselectedcuts, result)
end
(retcode, nselectedcuts, result) = select_cuts(
cutsel.cutsels[idx],
scip,
cuts,
forced_cuts,
root,
nselectedcuts,
)
end
return (retcode, nselectedcuts, result)
end
"""
Native SCIP cut selector, see SCIP source code for a description of the parameters and the underlying algorithm.
See "Adaptive Cut Selection in Mixed-Integer Linear Programming" for a high-level overview.
"""
Base.@kwdef mutable struct HybridCutSelector <: AbstractCutSelector
good_score_frac::Float64 = 0.9
bas_score_frac::Float64 = 0.0
max_parallelism::Float64 = 0.9
max_parallelism_root::Float64 = 0.9
weight_dircutoff_distance::Float64 = 0.0
weight_efficacy::Float64 = 1.0
weight_objective_parallelism::Float64 = 0.1
weight_int_support::Float64 = 0.1
end
function select_cuts(
cutsel::HybridCutSelector,
scip,
cuts,
forced_cuts,
root,
maxnslectedcuts,
)
nselected_cuts = Ref{Cint}(-1)
maxparalellism = root ? cutsel.max_parallelism_root : cutsel.max_parallelism
max_good_parallelism = max(maxparalellism, 0.5)
retcode = LibSCIP.SCIPselectCutsHybrid(
scip,
cuts,
forced_cuts,
C_NULL, # random number generator
cutsel.good_score_frac,
cutsel.bas_score_frac,
max_good_parallelism,
maxparalellism,
cutsel.weight_dircutoff_distance,
cutsel.weight_efficacy,
cutsel.weight_objective_parallelism,
cutsel.weight_int_support,
length(cuts),
length(forced_cuts),
maxnslectedcuts,
nselected_cuts,
)
# if SCIP_OKAY, should have nonnegative number of cuts
@assert retcode != SCIP_OKAY || nselected_cuts[] >= 0
return (retcode, nselected_cuts[], SCIP_SUCCESS)
end
| SCIP | https://github.com/scipopt/SCIP.jl.git |
|
[
"MIT"
] | 0.11.14 | 3d6a6516d6940a93b732e8ec7127652a0ead89c6 | code | 3716 | # heuristic interface
# it is recommended to check https://scipopt.org/doc/html/HEUR.php for key concepts and interface
"""
Abstract class for Heuristic.
A heuristic must implement `find_primal_solution`.
It also stores all user data that must be available to run the heuristic.
"""
abstract type Heuristic end
"""
find_primal_solution(
scip::Ptr{SCIP_},
heur::Heuristic,
heurtiming::Heurtiming,
nodeinfeasible::Bool,
heur_ptr::Ptr{SCIP_HEUR},
) -> (retcode, result)
It must attempt to find primal solution(s).
`retcode` indicates whether the selection went well.
A typical result would be `SCIP_SUCCESS`, and retcode `SCIP_OKAY`.
Use the methods `create_empty_scipsol` and `SCIPsetSolVal` to build solutions.
Submit it to SCIP with `SCIPtrySolFree`
"""
function find_primal_solution(scip, heur, heurtiming, nodeinfeasible, heur_ptr) end
function _find_primal_solution_callback(
scip::Ptr{SCIP_},
heur_::Ptr{SCIP_HEUR},
heurtiming::SCIP_HEURTIMING,
nodeinfeasible_::SCIP_Bool,
result_::Ptr{SCIP_RESULT},
)
heurdata::Ptr{SCIP_HEURDATA} = SCIPheurGetData(heur_)
heur = unsafe_pointer_to_objref(heurdata)
nodeinfeasible = nodeinfeasible_ == SCIP.TRUE
(retcode, result) = find_primal_solution(
scip,
heur,
heurtiming,
nodeinfeasible,
heur_,
)::Tuple{SCIP_RETCODE,SCIP_RESULT}
if retcode != SCIP_OKAY
return retcode
end
unsafe_store!(result_, result)
return retcode
end
function _heurfree(::Ptr{SCIP_}, heur::Ptr{SCIP_HEUR})
# just like sepa, free the data on the SCIP side,
# the Julia GC will take care of the objects
SCIPheurSetData(heur, C_NULL)
return SCIP_OKAY
end
"""
Includes a heuristic plugin in SCIP and stores it in heuristic_storage.
"""
function include_heuristic(
scip::Ptr{SCIP_},
heuristic::HT,
heuristic_storage::Dict{Any,Ptr{SCIP_HEUR}};
name="",
description="",
dispchar='_',
priority=10000,
frequency=1,
frequency_offset=0,
maximum_depth=-1,
timing_mask=SCIP_HEURTIMING_BEFORENODE,
usessubscip=false,
) where {HT<:Heuristic}
# ensure a unique name for the cut selector
if name == ""
name = "heuristic_$(string(HT))"
end
if dispchar == '_'
dispchar = name[end]
end
heur__ = Ref{Ptr{SCIP_HEUR}}(C_NULL)
if !ismutable(heuristic)
throw(
ArgumentError("The heuristic structure must be a mutable type"),
)
end
heurdata_ = pointer_from_objref(heuristic)
heur_callback = @cfunction(
_find_primal_solution_callback,
SCIP_RETCODE,
(
Ptr{SCIP_},
Ptr{SCIP_HEUR},
SCIP_HEURTIMING,
SCIP_Bool,
Ptr{SCIP_RESULT},
),
)
@SCIP_CALL SCIPincludeHeurBasic(
scip,
heur__,
name,
description,
dispchar,
priority,
frequency,
frequency_offset,
maximum_depth,
timing_mask,
usessubscip,
heur_callback,
heurdata_,
)
@assert heur__[] != C_NULL
@SCIP_CALL SCIPsetHeurFree(
scip,
heur__[],
@cfunction(_heurfree, SCIP_RETCODE, (Ptr{SCIP_}, Ptr{SCIP_HEUR})),
)
# store heuristic in storage (avoids GC-ing it)
heuristic_storage[heuristic] = heur__[]
end
"""
create_empty_scipsol(scip::Ptr{SCIP_}, heur_::Ptr{SCIP_HEUR}) -> Ptr{SCIP_SOL}
Convenience wrapper to create an empty solution
"""
function create_empty_scipsol(scip::Ptr{SCIP_}, heur_::Ptr{SCIP_HEUR})
sol__ = Ref{Ptr{SCIP_SOL}}(C_NULL)
@SCIP_CALL SCIPcreateSol(scip, sol__, heur_)
return sol__[]
end
| SCIP | https://github.com/scipopt/SCIP.jl.git |
|
[
"MIT"
] | 0.11.14 | 3d6a6516d6940a93b732e8ec7127652a0ead89c6 | code | 1053 | import Libdl
const depsjl_path = joinpath(@__DIR__, "..", "deps", "deps.jl")
if isfile(depsjl_path)
# User-provided SCIP library
include(depsjl_path)
else
# Artifact from BinaryBuilder package
import SCIP_PaPILO_jll
if SCIP_PaPILO_jll.is_available()
using SCIP_PaPILO_jll: libscip
else
using SCIP_jll: libscip
end
end
function __init__()
if VERSION >= v"1.9"
config = LinearAlgebra.BLAS.lbt_get_config()
if !any(lib -> lib.interface == :lp64, config.loaded_libs)
LinearAlgebra.BLAS.lbt_forward(OpenBLAS32_jll.libopenblas_path)
end
end
major = SCIPmajorVersion()
minor = SCIPminorVersion()
patch = SCIPtechVersion()
current = VersionNumber("$major.$minor.$patch")
required = VersionNumber("8")
upperbound = VersionNumber("9")
if current < required || current >= upperbound
@error(
"SCIP is installed at version $current, " *
"supported are $required up to (excluding) $upperbound."
)
end
end
| SCIP | https://github.com/scipopt/SCIP.jl.git |
|
[
"MIT"
] | 0.11.14 | 3d6a6516d6940a93b732e8ec7127652a0ead89c6 | code | 10460 |
# Set of allowed Julia operators (as given by MOI)
const OPS = [
:+, # n-ary
:-, # unary, binary
:*, # n-ary
:/, # unary
:^, # binary (or INTPOWER)
:sqrt, # unary
:exp, # unary
:log, # unary
:abs, # unary
]
const UNARY_OPS_LOOKUP = (
exp=SCIPcreateExprExp,
log=SCIPcreateExprLog,
abs=SCIPcreateExprAbs,
cos=SCIPcreateExprCos,
sin=SCIPcreateExprSin,
)
"""
Extract operators from Julia expr recursively and convert to SCIP expressions.
Returns the SCIP expression pointer, whether the expression is a pure value (without variables).
"""
function push_expr!(
nonlin::NonlinExpr,
scip::Ptr{SCIP_},
vars::Dict{VarRef,Ref{Ptr{SCIP_VAR}}},
expr::Expr,
)
# Storage for SCIP_EXPR*
expr__ = Ref{Ptr{SCIP_EXPR}}(C_NULL)
num_children = length(expr.args) - 1
pure_value = false
if Meta.isexpr(expr, :comparison) # range constraint
# args: [lhs, <=, mid, <=, rhs], lhs and rhs constant
@assert length(expr.args) == 5
@assert expr.args[2][1] == expr.args[4][1] == :<=
# just call on middle expression, bounds are handled outside
return push_expr!(nonlin, scip, vars, expr.args[3])
elseif Meta.isexpr(expr, :call) # operator
op = expr.args[1]
if op in (:(==), :<=, :>=)
# args: [op, lhs, rhs], rhs constant
@assert length(expr.args) == 3
# just call on lhs expression, bounds are handled outside
return push_expr!(nonlin, scip, vars, expr.args[2])
elseif op == :^
# Special case: power with constant exponent.
# The Julia expression considers the base and exponent to be
# subexpressions. SCIP does in principle support constant
# expressions, but in the case of SCIP_EXPR_REALPOWER, the exponent
# value is stored directly, as the second child.
@assert num_children == 2
# Base (first child) is proper sub-expression.
base, pure_value = push_expr!(nonlin, scip, vars, expr.args[2])
# Exponent (second child) is stored as value.
@assert isa(expr.args[3], Number)
if !pure_value
exponent = Cdouble(expr.args[3])
@SCIP_CALL SCIPcreateExprPow(
scip,
expr__,
base[],
exponent,
C_NULL,
C_NULL,
)
end
elseif op in (:-, :+)
@assert num_children >= 1
if op === :- && num_children == 1
# Special case: unary version of minus.
# Then, insert the actual subexpression:
right, pure_value = push_expr!(nonlin, scip, vars, expr.args[2])
if !pure_value
# Finally, add the (binary) minus:
@SCIP_CALL SCIPcreateExprSum(
scip,
expr__,
Cint(1),
[right[]],
[-1.0],
0.0,
C_NULL,
C_NULL,
)
end
else
coef_mul = if op === :-
-1.0
else
1.0
end
subexprs_pairs = [
push_expr!(nonlin, scip, vars, expr.args[i+1]) for
i in 1:num_children
]
if all(pair -> pair[2], subexprs_pairs)
pure_value = true
else
# replace pure-value expression by its evaluated value, since no expression has been evaluated yet
subexprs = map(eachindex(subexprs_pairs)) do idx
(subexpr, is_pure_value) = subexprs_pairs[idx]
if is_pure_value
expr_val = Meta.eval(expr.args[idx+1])
expr_ptr, _ =
push_expr!(nonlin, scip, vars, expr_val)
expr_ptr[]
else
subexpr[]
end
end
coefs = fill(coef_mul, num_children)
coefs[1] = 1.0
@SCIP_CALL SCIPcreateExprSum(
scip,
expr__,
Cint(num_children),
subexprs,
coefs,
0.0,
C_NULL,
C_NULL,
)
pure_value = false
end
end
elseif op == :*
@assert num_children >= 1
subexprs_pairs = [
push_expr!(nonlin, scip, vars, expr.args[i+1]) for
i in 1:num_children
]
if all(pair -> pair[2], subexprs_pairs)
pure_value = true
else
subexprs = map(eachindex(subexprs_pairs)) do idx
(subexpr, is_pure_value) = subexprs_pairs[idx]
if is_pure_value
expr_val = Meta.eval(expr.args[idx+1])
expr_ptr, _ =
push_expr!(nonlin, scip, vars, expr_val)
expr_ptr[]
else
subexpr[]
end
end
@SCIP_CALL SCIPcreateExprProduct(
scip,
expr__,
num_children,
subexprs,
1.0,
C_NULL,
C_NULL,
)
pure_value = false
end
elseif op in keys(UNARY_OPS_LOOKUP)
# Unary operators
@assert num_children == 1
# Insert child expression:
child, pure_value = push_expr!(nonlin, scip, vars, expr.args[2])
if !pure_value
@SCIP_CALL UNARY_OPS_LOOKUP[op](
scip,
expr__,
child[],
C_NULL,
C_NULL,
)
end
elseif op == :sqrt
child, pure_value = push_expr!(nonlin, scip, vars, expr.args[2])
if !pure_value
@SCIP_CALL SCIPcreateExprPow(
scip,
expr__,
child[],
0.5,
C_NULL,
C_NULL,
)
end
elseif op == :/
@assert num_children == 2
# Transform L / R => L * R^-1.0
# Create left and right subexpression.
left, pure_left = push_expr!(nonlin, scip, vars, expr.args[2])
inverse_right_expr = :($(expr.args[3])^-1.0)
right, pure_right =
push_expr!(nonlin, scip, vars, inverse_right_expr)
if pure_left && pure_right
pure_value = true
else
if pure_left && expr.args[2] isa Expr
val = Meta.eval(expr.args[2])
left, _ = push_expr!(nonlin, scip, vars, val)
end
if pure_right
val = Meta.eval(inverse_right_expr)
right, _ = push_expr!(nonlin, scip, vars, val)
end
# TODO evaluate left or right
@SCIP_CALL SCIPcreateExprProduct(
scip,
expr__,
num_children,
[left[], right[]],
1.0,
C_NULL,
C_NULL,
)
end
else
# attempt computation of pure value
try
Meta.eval(expr)
catch e
error("Operator $op (in $expr) not supported by SCIP.jl!")
end
# if reaching this point, the expression is a pure value
pure_value = true
end
elseif Meta.isexpr(expr, :ref) # variable
# It should look like this:
# :(x[MathOptInterface.VariableIndex(1)])
@assert expr.args[1] == :x
@assert num_children == 1
vi = expr.args[2] # MOI.VariableIndex
vr = VarRef(vi.value)
v = vars[vr][]
@SCIP_CALL SCIPcreateExprVar(scip, expr__, v, C_NULL, C_NULL)
pure_value = false
else
error("Expression $expr not supported by SCIP.jl!")
end
if !pure_value
# Return this expression to be referenced by parent expressions
push!(nonlin.exprs, expr__)
end
return expr__, pure_value
end
function push_expr!(
nonlin::NonlinExpr,
scip::Ptr{SCIP_},
vars::Dict{VarRef,Ref{Ptr{SCIP_VAR}}},
expr::Number,
)
# Storage for SCIP_EXPR*
expr__ = Ref{Ptr{SCIP_EXPR}}(C_NULL)
value = Cdouble(expr)
@SCIP_CALL SCIPcreateExprValue(scip, expr__, value, C_NULL, C_NULL)
@assert SCIPisExprValue(scip, expr__[]) == TRUE
push!(nonlin.exprs, expr__)
pure_value = true
return expr__, pure_value
end
"""
Add nonlinear constraint to problem, return cons ref.
lhs ≤ expression ≤ rhs
# Arguments
- `expr::Expr`: Julia expression of nonlinear function, as given by MOI.
- `lhs::Float64`: left-hand side for ranged constraint
- `rhs::Float64`: right-hand side for ranged constraint
"""
function add_nonlinear_constraint(
scipd::SCIPData,
expr::Expr,
lhs::Float64,
rhs::Float64,
)
nonlin = NonlinExpr()
# convert expression recursively, extract root and variable pointers
root_expr, pure_value = push_expr!(nonlin, scipd.scip[], scipd.vars, expr)
if pure_value
# TODO
error("Constraint $expr with pure value")
end
# create and add cons_nonlinear
cons__ = Ref{Ptr{SCIP_CONS}}(C_NULL)
@SCIP_CALL SCIPcreateConsBasicNonlinear(
scipd,
cons__,
"",
root_expr[],
lhs,
rhs,
)
@SCIP_CALL SCIPaddCons(scipd, cons__[])
# register and return cons ref
push!(scipd.nonlinear_storage, nonlin)
return store_cons!(scipd, cons__)
end
| SCIP | https://github.com/scipopt/SCIP.jl.git |
|
[
"MIT"
] | 0.11.14 | 3d6a6516d6940a93b732e8ec7127652a0ead89c6 | code | 11912 | "Type-safe wrapper for `Int64`, references a variable."
struct VarRef
val::Int64
end
"Type-safe wrapper for `Int64`, references a constraint."
struct ConsRef
val::Int64
end
"""
Subexpressions and variables referenced in an expression tree.
Used to convert Julia expression to SCIP expression using recursive calls to the
mutating push_expr!.
"""
mutable struct NonlinExpr
exprs::Vector{Ref{Ptr{SCIP_EXPR}}}
end
NonlinExpr() = NonlinExpr([])
#to be moved to MOI_wrapper
"""
SCIPData holds pointers to SCIP data.
It does not perform memory management and should not be created directly.
"""
mutable struct SCIPData
scip::Ref{Ptr{SCIP_}}
vars::Dict{VarRef,Ref{Ptr{SCIP_VAR}}}
conss::Dict{ConsRef,Ref{Ptr{SCIP_CONS}}}
var_count::Int64
cons_count::Int64
# Map from user-defined Julia types (keys are <: AbstractConstraintHandler
# or <: AbstractConstraint, respectively) to the corresponding SCIP objects.
# The reverse mapping is handled by SCIP itself.
# This also serves to prevent premature GC.
conshdlrs::Dict{Any,Ptr{SCIP_CONSHDLR}}
conshdlrconss::Dict{Any,Ptr{SCIP_CONS}}
# Map from user-defined types (keys are <: AbstractSeparator) to the
# corresponding SCIP objects.
sepas::Dict{Any,Ptr{SCIP_SEPA}}
# User-defined cut selectors and branching rules
cutsel_storage::Dict{Any,Ptr{SCIP_CUTSEL}}
branchrule_storage::Dict{Any,Ptr{SCIP_BRANCHRULE}}
heuristic_storage::Dict{Any,Ptr{SCIP_HEUR}}
# to store expressions for release
nonlinear_storage::Vector{NonlinExpr}
end
# Protect SCIPData from GC for ccall with Ptr{SCIP_} argument.
Base.unsafe_convert(::Type{Ptr{SCIP_}}, scipd::SCIPData) = scipd.scip[]
function free_scip(scipd::SCIPData)
# Avoid double-free (SCIP will set the pointers to NULL).
if scipd.scip[] != C_NULL
for c in values(scipd.conss)
@SCIP_CALL SCIPreleaseCons(scipd, c)
end
for nonlin in scipd.nonlinear_storage
for expr in nonlin.exprs
@SCIP_CALL SCIPreleaseExpr(scipd.scip[], expr)
end
end
for v in values(scipd.vars)
@SCIP_CALL SCIPreleaseVar(scipd, v)
end
@SCIP_CALL SCIPfree(scipd.scip)
end
@assert scipd.scip[] == C_NULL
end
"Set a parameter's current value."
function get_parameter(scipd::SCIPData, name::AbstractString)
param = SCIPgetParam(scipd, name)
if param == C_NULL
error("Unrecognized parameter: $name")
end
paramtype = SCIPparamGetType(param)
if paramtype === SCIP_PARAMTYPE_BOOL
value = Ref{SCIP_Bool}()
@SCIP_CALL SCIPgetBoolParam(scipd, name, value)
if value[] == TRUE
return true
elseif value[] == FALSE
return false
else
error("encountered invalid value for a boolean: $(value[])")
end
elseif paramtype === SCIP_PARAMTYPE_INT
value = Ref{Cint}()
@SCIP_CALL SCIPgetIntParam(scipd, name, value)
return value[]
elseif paramtype === SCIP_PARAMTYPE_LONGINT
value = Ref{Clonglong}()
@SCIP_CALL SCIPgetLongintParam(scipd, name, value)
return value[]
elseif paramtype === SCIP_PARAMTYPE_REAL
value = Ref{Cdouble}()
@SCIP_CALL SCIPgetRealParam(scipd, name, value)
return value[]
elseif paramtype === SCIP_PARAMTYPE_CHAR
value = Ref{Cchar}()
@SCIP_CALL SCIPgetCharParam(scipd, name, value)
return Char(value[])
elseif paramtype === SCIP_PARAMTYPE_STRING
value = Ref{Ptr{Cchar}}()
@SCIP_CALL SCIPgetStringParam(scipd, name, value)
return unsafe_string(value[])
else
error("Unexpected parameter type: $paramtype")
end
end
"Set a parameter."
function set_parameter(scipd::SCIPData, name::AbstractString, value)
param = SCIPgetParam(scipd, name)
if param == C_NULL
error("Unrecognized parameter: $name")
end
paramtype = SCIPparamGetType(param)
if paramtype === SCIP_PARAMTYPE_BOOL
@SCIP_CALL SCIPsetBoolParam(scipd, name, value)
elseif paramtype === SCIP_PARAMTYPE_INT
@SCIP_CALL SCIPsetIntParam(scipd, name, value)
elseif paramtype === SCIP_PARAMTYPE_LONGINT
@SCIP_CALL SCIPsetLongintParam(scipd, name, value)
elseif paramtype === SCIP_PARAMTYPE_REAL
@SCIP_CALL SCIPsetRealParam(scipd, name, value)
elseif paramtype === SCIP_PARAMTYPE_CHAR
@SCIP_CALL SCIPsetCharParam(scipd, name, value)
elseif paramtype === SCIP_PARAMTYPE_STRING
@SCIP_CALL SCIPsetStringParam(scipd, name, value)
else
error("Unexpected parameter type: $paramtype")
end
return nothing
end
"Return pointer to SCIP variable."
function var(scipd::SCIPData, vr::VarRef)::Ptr{SCIP_VAR}
return scipd.vars[vr][]
end
"Return pointer to SCIP constraint."
function cons(scipd::SCIPData, cr::ConsRef)::Ptr{SCIP_CONS}
return scipd.conss[cr][]
end
"Store reference to variable, return VarRef"
function store_var!(scipd::SCIPData, var__::Ref{Ptr{SCIP_VAR}})
scipd.var_count += 1
vr = VarRef(scipd.var_count)
scipd.vars[vr] = var__
return vr
end
"Store reference to constraint, return ConsRef"
function store_cons!(scipd::SCIPData, cons__::Ref{Ptr{SCIP_CONS}})
scipd.cons_count += 1
cr = ConsRef(scipd.cons_count)
scipd.conss[cr] = cons__
return cr
end
"Add variable to problem (continuous, no bounds), return var ref."
function add_variable(scipd::SCIPData)
var__ = Ref{Ptr{SCIP_VAR}}(C_NULL)
@SCIP_CALL SCIPcreateVarBasic(
scipd,
var__,
"",
-SCIPinfinity(scipd),
SCIPinfinity(scipd),
0.0,
SCIP_VARTYPE_CONTINUOUS,
)
@SCIP_CALL SCIPaddVar(scipd, var__[])
return store_var!(scipd, var__)
end
"Delete variable from problem."
function delete(scipd::SCIPData, vr::VarRef)
# delete variable from SCIP problem
deleted = Ref{SCIP_Bool}()
@SCIP_CALL SCIPdelVar(scipd, var(scipd, vr), deleted)
deleted[] == TRUE || error("Variable at $(vr.val) could not be deleted!")
# release memory and remove reference
@SCIP_CALL SCIPreleaseVar(scipd, scipd.vars[vr])
delete!(scipd.vars, vr)
return nothing
end
"Delete constraint from problem."
function delete(scipd::SCIPData, cr::ConsRef)
@SCIP_CALL SCIPdelCons(scipd, cons(scipd, cr))
# release memory and remove reference
@SCIP_CALL SCIPreleaseCons(scipd, scipd.conss[cr])
delete!(scipd.conss, cr)
return nothing
end
"""
Add (ranged) linear constraint to problem, return cons ref.
# Arguments
- `varrefs::AbstractArray{VarRef}`: variable references for affine terms.
- `coefs::AbstractArray{Float64}`: coefficients for affine terms.
- `lhs::Float64`: left-hand side for ranged constraint
- `rhs::Float64`: right-hand side for ranged constraint
Use `(-)SCIPinfinity(scip)` for one of the bounds if not applicable.
"""
function add_linear_constraint(scipd::SCIPData, varrefs, coefs, lhs, rhs)
@assert length(varrefs) == length(coefs)
vars = [var(scipd, vr) for vr in varrefs]
cons__ = Ref{Ptr{SCIP_CONS}}(C_NULL)
@SCIP_CALL SCIPcreateConsBasicLinear(
scipd,
cons__,
"",
length(vars),
vars,
coefs,
lhs,
rhs,
)
@SCIP_CALL SCIPaddCons(scipd, cons__[])
return store_cons!(scipd, cons__)
end
"""
Add (ranged) quadratic constraint to problem, return cons ref.
# Arguments
- `linrefs::AbstractArray{VarRef}`: variable references for affine terms.
- `lincoefs::AbstractArray{Float64}`: coefficients for affine terms.
- `quadrefs1::AbstractArray{VarRef}`: first variable references for quadratic terms.
- `quadrefs2::AbstractArray{VarRef}`: second variable references for quadratic terms.
- `quadcoefs::AbstractArray{Float64}`: coefficients for quadratic terms.
- `lhs::Float64`: left-hand side for ranged constraint
- `rhs::Float64`: right-hand side for ranged constraint
Use `(-)SCIPinfinity(scip)` for one of the bounds if not applicable.
"""
function add_quadratic_constraint(
scipd::SCIPData,
linrefs,
lincoefs,
quadrefs1,
quadrefs2,
quadcoefs,
lhs,
rhs,
)
@assert length(linrefs) == length(lincoefs)
@assert length(quadrefs1) == length(quadrefs2)
@assert length(quadrefs1) == length(quadcoefs)
linvars = [var(scipd, vr) for vr in linrefs]
quadvars1 = [var(scipd, vr) for vr in quadrefs1]
quadvars2 = [var(scipd, vr) for vr in quadrefs2]
cons__ = Ref{Ptr{SCIP_CONS}}(C_NULL)
@SCIP_CALL SCIPcreateConsBasicQuadraticNonlinear(
scipd,
cons__,
"",
length(linvars),
linvars,
lincoefs,
length(quadvars1),
quadvars1,
quadvars2,
quadcoefs,
lhs,
rhs,
)
@SCIP_CALL SCIPaddCons(scipd, cons__[])
return store_cons!(scipd, cons__)
end
"""
Add special-ordered-set of type 1 to problem, return cons ref.
# Arguments
- `varrefs::AbstractArray{VarRef}`: variable references
- `weights::AbstractArray{Float64}`: numeric weights
"""
function add_special_ordered_set_type1(scipd::SCIPData, varrefs, weights)
@assert length(varrefs) == length(weights)
vars = [var(scipd, vr) for vr in varrefs]
cons__ = Ref{Ptr{SCIP_CONS}}(C_NULL)
@SCIP_CALL SCIPcreateConsBasicSOS1(
scipd,
cons__,
"",
length(vars),
vars,
weights,
)
@SCIP_CALL SCIPaddCons(scipd, cons__[])
return store_cons!(scipd, cons__)
end
"""
Add special-ordered-set of type 2 to problem, return cons ref.
# Arguments
- `varrefs::AbstractArray{VarRef}`: variable references
- `weights::AbstractArray{Float64}`: numeric weights
"""
function add_special_ordered_set_type2(scipd::SCIPData, varrefs, weights)
@assert length(varrefs) == length(weights)
vars = [var(scipd, vr) for vr in varrefs]
cons__ = Ref{Ptr{SCIP_CONS}}(C_NULL)
@SCIP_CALL SCIPcreateConsBasicSOS2(
scipd,
cons__,
"",
length(vars),
vars,
weights,
)
@SCIP_CALL SCIPaddCons(scipd, cons__[])
return store_cons!(scipd, cons__)
end
"""
Add indicator constraint to problem, return cons ref.
y = 1 ==> a^T x ≤ rhs
y has to be a binary variable, or SCIP will error.
# Arguments
- `y::VarRef`: reference for binary indicator variable
- `x::Vector{VarRef}`: reference vector for variables
- `a::Float64`: coefficients for x variable
- `rhs::Float64`: right-hand side for linear constraint
"""
function add_indicator_constraint(scipd::SCIPData, y, x, a, rhs)
SCIPvarIsBinary(var(scipd, y)) > 0 ||
error("indicator variable must be binary.")
cons__ = Ref{Ptr{SCIP_CONS}}(C_NULL)
xref = [var(scipd, x[i]) for i in eachindex(x)]
@SCIP_CALL SCIPcreateConsBasicIndicator(
scipd,
cons__,
"",
var(scipd, y),
length(x),
xref,
a,
rhs,
)
@SCIP_CALL SCIPaddCons(scipd, cons__[])
return store_cons!(scipd, cons__)
end
# Transform SCIP C function name as follows:
# 1. Remove leading "SCIP" part (drop the first four characters).
# 2. Convert camel case to snake case.
# For example, `SCIPprintStatusStatistics` becomes `print_status_statistics`.
const STATISTICS_FUNCS = map(
x -> Symbol(camel_case_to_snake_case(string(x)[5:end])),
SCIP_STATISTICS_FUNCS,
)
for (scip_statistics_func, statistics_func) in
zip(SCIP_STATISTICS_FUNCS, STATISTICS_FUNCS)
@eval begin
"""
$($statistics_func)(scipd::SCIPData)
Print statistics (calls `$($scip_statistics_func)`) to standard output.
"""
function $statistics_func end
function $statistics_func(scipd::SCIPData)
ret = $scip_statistics_func(scipd, C_NULL)
ret !== nothing && @assert ret == SCIP_OKAY
return nothing
end
end
end
| SCIP | https://github.com/scipopt/SCIP.jl.git |
|
[
"MIT"
] | 0.11.14 | 3d6a6516d6940a93b732e8ec7127652a0ead89c6 | code | 6675 | #
# Wrapper for implementing SCIP separators in Julia.
#
# Please study the corresponding SCIP documentation first, to become familiar
# with basic concepts and terms: https://www.scipopt.org/doc/html/SEPA.php
#
# The basic idea is that you create a new subtype of `AbstractSeparator`
# to store the separator data and implement the fundamental callback by
# adding a method to the function `exec_lp`. In `test/sepa.jl` and
# `test/sepa_support.jl` you can find examples on how to use separators
#
#
# Current limitations:
# - We only support SEPAEXECLP, not SEPAEXECSOL.
# - We don't support these optional methods: SEPAFREE, SEPACOPY, SEPAINIT,
# SEPAINITSOL, SEPAEXITSOL
#
#
# Abstract Supertypes:
#
"""
AbstractSeparator
Abstract supertype for objects that store all user data belonging to the
separator. This object is also used for method dispatch with the callback
functions.
From SCIP's point-of-view, this objects corresponds to the SCIP_SEPADATA,
but its memory is managed by Julia's GC.
It's recommended to store a reference to your instance of `SCIPData` or
`SCIP.Optimizer` here, so that you can use it within `exec_lp`.
"""
abstract type AbstractSeparator end
#
# Fundamental Callback for Julia.
#
"""
exec_lp(separator::SEPA)::SCIP_RESULT
Adds cutting planes to the model. Feasible solutions may be cutted off, as long
as at least one optimal solution stays feasible.
Use the functions `sol_values` to access the solution values.
Acceptable result values are:
* `SCIP_CUTOFF`: The current subproblem is infeasible.
* `SCIP_CONSADDED`: Added a constraint.
* `SCIP_REDUCEDDOM`: Reduced the domain of a variable.
* `SCIP_SEPARATED`: Added a cutting plane.
* `SCIP_DIDNOTFIND`: Searched for domain reductions or cutting planes, but did
not find any.
* `SCIP_DIDNOTRUN`: Separator was skipped.
* `SCIP_DELAYED`: Separator was skipped, but should be called again.
* `SCIP_NEWROUND`: A new separator round should be started without calling the
remaining separator methods.
"""
function exec_lp end
#
# Fundamental callback functions with SCIP's C API.
#
# There is only a single, generic implementation for each of these, which are
# passed to all user-defined SCIP separators, but they will call the user's
# method in the function body.
#
"""
Generic `exec_lp` function, matching the signature from SCIP's C API.
"""
function _sepaexeclp(
scip::Ptr{SCIP_},
sepa::Ptr{SCIP_SEPA},
result::Ptr{SCIP_RESULT},
allowlocal::SCIP_Bool,
)
# get Julia object out of separator data
sepadata::Ptr{SCIP_SEPADATA} = SCIPsepaGetData(sepa)
separator = unsafe_pointer_to_objref(sepadata)
# call user method via dispatch
res = exec_lp(separator)
unsafe_store!(result, res)
return SCIP_OKAY
end
"""
Generic `free` function, matching the signature from SCIP's C API.
"""
function _sepafree(scip::Ptr{SCIP_}, sepa::Ptr{SCIP_SEPA})
# Here, we should free the separator data. But because this is an object
# created and owned by Julia, we will let GC do it.
# Instead, we will just set the pointer to NULL, so that SCIP will think
# that it is taken care of.
SCIPsepaSetData(sepa, C_NULL)
return SCIP_OKAY
end
#
# Adding a separator to SCIP.
#
"""
include_sepa(
scip::Ptr{SCIP_},
sepas::Dict{Any, Ptr{SCIP_SEPA}},
sepa::SEPA;
name::String,
description::String,
priority::Int,
freq::Int,
maxbounddist::Float,
usesubscip::Bool,
delay::Bool
)
Include a user defined separator `sepa` to the SCIP instance `scip`.
"""
function include_sepa(
scip::Ptr{SCIP_},
sepas::Dict{Any,Ptr{SCIP_SEPA}},
sepa::SEPA;
name="",
description="",
priority=0,
freq=1,
maxbounddist=0.0,
usessubscip=false,
delay=false,
) where {SEPA<:AbstractSeparator}
# Get C function pointers from Julia functions
_execlp = @cfunction(
_sepaexeclp,
SCIP_RETCODE,
(Ptr{SCIP_}, Ptr{SCIP_SEPA}, Ptr{SCIP_RESULT}, SCIP_Bool)
)
_execsol = C_NULL
# Store pointer to SCIP structure (for future C API calls)
sepa__ = Ref{Ptr{SCIP_SEPA}}(C_NULL)
# Hand over Julia object as separator data:
sepadata_ = pointer_from_objref(sepa)
# Try to create unique name, or else SCIP will complain!
if name == ""
name = "__sepa__$(length(sepas))"
end
# Register separator with SCIP instance.
@SCIP_CALL SCIPincludeSepaBasic(
scip,
sepa__,
name,
description,
priority,
freq,
maxbounddist,
usessubscip,
delay,
_execlp,
_execsol,
sepadata_,
)
# Sanity checks
@assert sepa__[] != C_NULL
# Set additional callbacks.
@SCIP_CALL SCIPsetSepaFree(
scip,
sepa__[],
@cfunction(_sepafree, SCIP_RETCODE, (Ptr{SCIP_}, Ptr{SCIP_SEPA}))
)
# Register separator (for GC-protection and mapping).
sepas[sepa] = sepa__[]
end
"""
add_cut_sepa(
scip::Ptr{SCIP_},
vars::Dict{VarRef, Ref{Ptr{SCIP_VAR}}}
sepas::Dict{Any, Ptr{SCIP_SEPA}}
sepa::SEPA,
varrefs::AbstractArray{VarRef},
coefs::AbstractArray{Float64},
lhs::Float64,
rhs::Float64,
islocal::Bool,
modifiable::Bool,
removable::Bool
)
Add the cut given by `varrefs`, `coefs`, `lhs` and `rhs` to `scip`.
`add_cut_sepa` is intended to be called from the method `exec_lp`, that is
associated to the separator `sepa`.
# Arguments
- islocal: is cut only valid locally?
- modifiable: is row modifiable during node processing (subject to column generation)?
- removable: should the row be removed from the LP due to aging or cleanup?
"""
function add_cut_sepa(
scip::Ptr{SCIP_},
vars::Dict{VarRef,Ref{Ptr{SCIP_VAR}}},
sepas::Dict{Any,Ptr{SCIP_SEPA}},
sepa::SEPA,
varrefs,
coefs,
lhs,
rhs;
islocal=false,
modifiable=false,
removable=true,
) where {SEPA<:AbstractSeparator}
@assert length(varrefs) == length(coefs)
vars = [vars[vr][] for vr in varrefs]
row__ = Ref{Ptr{SCIP_ROW}}(C_NULL)
sepa__ = sepas[sepa]
@SCIP_CALL SCIPcreateEmptyRowSepa(
scip,
row__,
sepa__,
"",
lhs,
rhs,
islocal,
modifiable,
removable,
)
@SCIP_CALL SCIPaddVarsToRow(scip, row__[], length(vars), vars, coefs)
if islocal
infeasible = Ref{SCIP_Bool}()
@SCIP_CALL SCIPaddRow(scip, row__[], true, infeasible)
else
@SCIP_CALL SCIPaddPoolCut(scip, row__[])
end
@SCIP_CALL SCIPreleaseRow(scip, row__)
end
| SCIP | https://github.com/scipopt/SCIP.jl.git |
|
[
"MIT"
] | 0.11.14 | 3d6a6516d6940a93b732e8ec7127652a0ead89c6 | code | 552 |
function camel_case_to_snake_case(x::AbstractString)
# from https://stackoverflow.com/questions/1175208/elegant-python-function-to-convert-camelcase-to-snake-case
s1 = replace(x, r"(.)([A-Z][a-z]+)" => s"\1_\2")
return lowercase(replace(s1, r"([a-z0-9])([A-Z])" => s"\1_\2"))
end
"""
SCIP_versionnumber() -> VersionNumber
Current version of the SCIP binary
"""
function SCIP_versionnumber()
major = SCIPmajorVersion()
minor = SCIPminorVersion()
patch = SCIPtechVersion()
return VersionNumber(major, minor, patch)
end
| SCIP | https://github.com/scipopt/SCIP.jl.git |
|
[
"MIT"
] | 0.11.14 | 3d6a6516d6940a93b732e8ec7127652a0ead89c6 | code | 1218 | include("LibSCIP.jl")
using .LibSCIP
const SCIP_ = LibSCIP.SCIP
const TRUE = LibSCIP.TRUE
const FALSE = LibSCIP.FALSE
# SCIP_CALL: macro to check return codes
macro SCIP_CALL(ex)
quote
v = $(esc(ex))
if v != SCIP_OKAY
s = $(string(ex))
error("$s yielded SCIP code $v")
end
end
end
const SCIP_STATISTICS_FUNCS = [
:SCIPprintStatusStatistics,
:SCIPprintTimingStatistics,
:SCIPprintOrigProblemStatistics,
:SCIPprintTransProblemStatistics,
:SCIPprintPresolverStatistics,
:SCIPprintConstraintStatistics,
:SCIPprintConstraintTimingStatistics,
:SCIPprintPropagatorStatistics,
:SCIPprintConflictStatistics,
:SCIPprintSeparatorStatistics,
:SCIPprintPricerStatistics,
:SCIPprintBranchruleStatistics,
:SCIPprintHeuristicStatistics,
:SCIPprintCompressionStatistics,
:SCIPprintLPStatistics,
:SCIPprintNLPStatistics,
:SCIPprintRelaxatorStatistics,
:SCIPprintTreeStatistics,
:SCIPprintRootStatistics,
:SCIPprintSolutionStatistics,
:SCIPprintConcsolverStatistics,
:SCIPprintBendersStatistics,
:SCIPprintStatistics,
:SCIPprintReoptStatistics,
:SCIPprintBranchingStatistics,
]
| SCIP | https://github.com/scipopt/SCIP.jl.git |
|
[
"MIT"
] | 0.11.14 | 3d6a6516d6940a93b732e8ec7127652a0ead89c6 | code | 3293 | #
# Adding constraint handlers, constraints, and cut selectors to SCIP.Optimizer.
#
"""
include_conshdlr(
o::Optimizer,
ch::CH;
name::String,
description::String,
enforce_priority::Int,
check_priority::Int,
eager_frequency::Int,
needs_constraints::Bool
)
Include a user defined constraint handler `ch` to SCIP optimizer instance `o`.
All parameters have default values that can be set as keyword arguments.
In particular, note the boolean `needs_constraints`:
* If set to `true`, then the callbacks are only called for the constraints that
were added explicitly using `add_constraint`.
* If set to `false`, the callback functions will always be called, even if no
corresponding constraint was added. It probably makes sense to set
`misc/allowdualreds` to `FALSE` in this case.
"""
function include_conshdlr(
o::Optimizer,
ch::CH;
name="",
description="",
enforce_priority=-15,
check_priority=-7000000,
eager_frequency=100,
needs_constraints=true,
) where {CH<:AbstractConstraintHandler}
include_conshdlr(
o.inner.scip[],
o.inner.conshdlrs,
ch;
name=name,
description=description,
enforce_priority=enforce_priority,
check_priority=check_priority,
eager_frequency=eager_frequency,
needs_constraints=needs_constraints,
)
end
"""
add_constraint(
o::Optimizer,
ch::CH,
c::C;
initial=true,
separate=true,
enforce=true,
check=true,
propagate=true,
_local=false,
modifiable=false,
dynamic=false,
removable=false,
stickingatnode=false
)::ConsRef
Add constraint `c` belonging to user-defined constraint handler `ch` to model.
Returns constraint reference.
All keyword arguments are passed to the `SCIPcreateCons` call.
"""
function add_constraint(
o::Optimizer,
ch::CH,
c::C;
initial=true,
separate=true,
enforce=true,
check=true,
propagate=true,
_local=false,
modifiable=false,
dynamic=false,
removable=false,
stickingatnode=false,
) where {CH<:AbstractConstraintHandler,C<:AbstractConstraint{CH}}
return add_constraint(
o.inner,
ch,
c;
initial=initial,
separate=separate,
enforce=enforce,
check=check,
propagate=propagate,
_local=_local,
modifiable=modifiable,
dynamic=dynamic,
removable=removable,
stickingatnode=stickingatnode,
)
end
function include_cutsel(
o::Optimizer,
cutsel::CS;
name="",
description="",
priority=10000,
) where {CS<:AbstractCutSelector}
return include_cutsel(
o.inner.scip[],
cutsel,
o.inner.cutsel_storage;
name=name,
description=description,
priority=priority,
)
end
function include_branchrule(
o::Optimizer,
branchrule::BR;
name="",
description="",
priority=10000,
) where {BR<:AbstractBranchingRule}
return include_branchrule(
o.inner.scip[],
branchrule,
o.inner.branchrule_storage;
name=name,
description=description,
priority=priority,
)
end
| SCIP | https://github.com/scipopt/SCIP.jl.git |
|
[
"MIT"
] | 0.11.14 | 3d6a6516d6940a93b732e8ec7127652a0ead89c6 | code | 1206 | # generic constraints
function MOI.get(o::Optimizer, ::MOI.ConstraintName, ci::CI)::String
return GC.@preserve o unsafe_string(SCIPconsGetName(cons(o, ci)))
end
function MOI.set(o::Optimizer, ::MOI.ConstraintName, ci::CI, name::String)
@SCIP_CALL SCIPchgConsName(o, cons(o, ci), name)
return nothing
end
function MOI.set(o::Optimizer, ::MOI.ConstraintName, ci::CI{VI}, name::String)
throw(MOI.VariableIndexConstraintNameError())
return nothing
end
function MOI.is_valid(o::Optimizer, c::CI{F,S}) where {F,S}
cons_set = get(o.constypes, (F, S), nothing)
if cons_set === nothing
return false
end
if !in(ConsRef(c.value), cons_set)
return false
end
return haskey(o.inner.conss, SCIP.ConsRef(c.value))
end
function MOI.get(o::Optimizer, ::Type{MOI.ConstraintIndex}, name::String)
ptr = SCIPfindCons(o, name)
if ptr == C_NULL
return nothing
end
cref = get(o.reference, ptr, nothing)
if cref === nothing
return cref
end
for ((F, S), setref) in o.constypes
if cref in setref
return CI{F,S}(cref.val)
end
end
error("Constraint type not found for constraint $cref")
end
| SCIP | https://github.com/scipopt/SCIP.jl.git |
|
[
"MIT"
] | 0.11.14 | 3d6a6516d6940a93b732e8ec7127652a0ead89c6 | code | 3076 |
function include_heuristic(
o::Optimizer,
heuristic::HT;
name="",
description="",
dispchar='_',
priority=10000,
frequency=1,
frequency_offset=0,
maximum_depth=-1,
timing_mask=SCIP_HEURTIMING_BEFORENODE,
usessubscip=false,
) where {HT}
return include_heuristic(
o.inner.scip[],
heuristic,
o.inner.heuristic_storage;
name=name,
description=description,
dispchar=dispchar,
priority=priority,
frequency=frequency,
frequency_offset=frequency_offset,
maximum_depth=maximum_depth,
timing_mask=timing_mask,
usessubscip=usessubscip,
)
end
mutable struct HeuristicCb <: Heuristic
scipd::SCIPData
heurcallback::Function
end
# If no cut callback is given, the cut callback does nothing.
HeuristicCb(scipd::SCIPData) = HeuristicCb(scipd, cb_data -> nothing)
"""
Used for an argument to the heuristic callback, which in turn uses that argument to
obtain the LP-solution via `MOI.get` and to add solutions via `MOI.submit`.
"""
mutable struct HeuristicCbData
heur::HeuristicCb
submit_called::Bool
heurtiming::SCIP_HEURTIMING
nodeinfeasible::Bool
heur_ptr::Ptr{SCIP_HEUR}
end
function find_primal_solution(scip, heur::HeuristicCb, heurtiming, nodeinfeasible, heur_ptr)
cb_data = HeuristicCbData(heur, false, heurtiming, nodeinfeasible, heur_ptr)
heur.heurcallback(cb_data)
result = cb_data.submit_called ? SCIP_FOUNDSOL : SCIP_DIDNOTFIND
return SCIP_OKAY, result
end
#
# MOI Interface for heuristic callbacks
#
function MOI.get(o::Optimizer, ::MOI.CallbackVariablePrimal{HeuristicCbData}, vs::Vector{VI})
return [SCIPgetSolVal(o, C_NULL, var(o, vi)) for vi in vs]
end
function MOI.set(o::Optimizer, ::MOI.HeuristicCallback, cb::Function)
if o.moi_heuristic === nothing
o.moi_heuristic = HeuristicCb(o.inner, cb)
include_heuristic(o, o.moi_heuristic, name="MOI_heuristic", description="Heuristic set in the MOI optimizer")
else
o.moi_heuristic.cutcallback = cb
end
return nothing
end
MOI.supports(::Optimizer, ::MOI.HeuristicCallback) = true
function MOI.submit(
o::Optimizer,
cb::MOI.HeuristicSolution{HeuristicCbData},
x::Vector{MOI.VariableIndex},
values::Vector{<:Real},
)
callback_data = cb.callback_data
heuristic = callback_data.heur
heur_ = o.inner.heuristic_storage[heuristic]
sol = create_empty_scipsol(o.inner.scip[], heur_)
for idx in eachindex(x)
SCIP.@SCIP_CALL SCIP.SCIPsetSolVal(
o.inner.scip[],
sol,
var(o, x[idx]),
values[idx],
)
end
stored = Ref{SCIP_Bool}(SCIP.FALSE)
@SCIP_CALL SCIPtrySolFree(
o.inner.scip[],
Ref(sol),
SCIP.FALSE,
SCIP.FALSE,
SCIP.TRUE,
SCIP.TRUE,
SCIP.TRUE,
stored,
)
if stored[] == SCIP.TRUE
callback_data.submit_called = true
end
end
MOI.supports(::Optimizer, ::MOI.HeuristicSolution{HeuristicCbData}) = true
| SCIP | https://github.com/scipopt/SCIP.jl.git |
|
[
"MIT"
] | 0.11.14 | 3d6a6516d6940a93b732e8ec7127652a0ead89c6 | code | 3199 | # Indicator constraints
function MOI.supports_constraint(
::Optimizer,
::Type{<:MOI.VectorAffineFunction},
::Type{<:MOI.Indicator{MOI.ACTIVATE_ON_ONE,<:MOI.LessThan}},
)
true
end
function MOI.add_constraint(
o::Optimizer,
func::MOI.VectorAffineFunction{T},
set::MOI.Indicator{MOI.ACTIVATE_ON_ONE,LT},
) where {T<:Real,LT<:MOI.LessThan}
allow_modification(o)
first_index_terms =
[v.scalar_term for v in func.terms if v.output_index == 1]
scalar_index_terms =
[v.scalar_term for v in func.terms if v.output_index != 1]
length(first_index_terms) == 1 || error(
"There should be exactly one term in output_index 1, found $(length(first_index_terms))",
)
y = VarRef(first_index_terms[1].variable.value)
x = [VarRef(vi.variable.value) for vi in scalar_index_terms]
a = [vi.coefficient for vi in scalar_index_terms]
b = func.constants[2]
# a^T x + b <= c ===> a^T <= c - b
cr = add_indicator_constraint(o.inner, y, x, a, MOI.constant(set.set) - b)
ci = CI{MOI.VectorAffineFunction{T},MOI.Indicator{MOI.ACTIVATE_ON_ONE,LT}}(
cr.val,
)
register!(o, ci)
register!(o, cons(o, ci), cr)
return ci
end
function MOI.get(
o::Optimizer,
::MOI.ConstraintFunction,
ci::CI{MOI.VectorAffineFunction{T},MOI.Indicator{MOI.ACTIVATE_ON_ONE,LT}},
) where {T<:Real,LT<:MOI.LessThan}
_throw_if_invalid(o, ci)
indicator_cons = cons(o, ci)::Ptr{SCIP_CONS}
bin_var = SCIPgetBinaryVarIndicator(indicator_cons)::Ptr{SCIP_VAR}
slack_var = SCIPgetSlackVarIndicator(indicator_cons)::Ptr{SCIP_VAR}
linear_cons = SCIPgetLinearConsIndicator(indicator_cons)::Ptr{SCIP_CONS}
nvars::Int = SCIPgetNVarsLinear(o, linear_cons)
vars = unsafe_wrap(
Array{Ptr{SCIP_VAR}},
SCIPgetVarsLinear(o, linear_cons),
nvars,
)
orig_vars = get_original_variables(vars, nvars)
vals = unsafe_wrap(Array{Float64}, SCIPgetValsLinear(o, linear_cons), nvars)
aff_terms = [
AFF_TERM(vals[i], VI(ref(o, orig_vars[i]).val)) for
i in 1:nvars if orig_vars[i] != slack_var
]
ind_terms = [VEC_TERM(1, AFF_TERM(1.0, VI(ref(o, bin_var).val)))]
vec_terms = [VEC_TERM(2, term) for term in aff_terms]
return VAF(vcat(ind_terms, vec_terms), [0.0, 0.0])
end
function MOI.get(
o::Optimizer,
::MOI.ConstraintSet,
ci::CI{MOI.VectorAffineFunction{T},MOI.Indicator{MOI.ACTIVATE_ON_ONE,LT}},
) where {T<:Real,LT<:MOI.LessThan}
_throw_if_invalid(o, ci)
indicator_cons = cons(o, ci)::Ptr{SCIP_CONS}
linear_cons = SCIPgetLinearConsIndicator(indicator_cons)::Ptr{SCIP_CONS}
lhs = SCIPgetLhsLinear(o, linear_cons)
rhs = SCIPgetRhsLinear(o, linear_cons)
lhs == -SCIPinfinity(o) ||
error("Have lower bound on indicator constraint!")
return MOI.Indicator{MOI.ACTIVATE_ON_ONE}(MOI.LessThan(rhs))
end
function MOI.get(
o::Optimizer,
::MOI.ListOfConstraintIndices{F,S},
) where {
F<:MOI.VectorAffineFunction{Float64},
S<:MOI.Indicator{MOI.ACTIVATE_ON_ONE,MOI.LessThan{Float64}},
}
return [
MOI.ConstraintIndex{F,S}(consref.val) for consref in o.constypes[F, S]
]
end
| SCIP | https://github.com/scipopt/SCIP.jl.git |
|
[
"MIT"
] | 0.11.14 | 3d6a6516d6940a93b732e8ec7127652a0ead89c6 | code | 2288 | # linear constraints
MOI.supports_constraint(o::Optimizer, ::Type{SAF}, ::Type{<:BOUNDS}) = true
function MOI.add_constraint(
o::Optimizer,
func::F,
set::S,
) where {F<:SAF,S<:BOUNDS}
if func.constant != 0.0
throw(MOI.ScalarFunctionConstantNotZero{Float64,F,S}(func.constant))
end
allow_modification(o)
varrefs = [VarRef(t.variable.value) for t in func.terms]
coefs = [t.coefficient for t in func.terms]
lhs, rhs = bounds(set)
lhs = lhs === nothing ? -SCIPinfinity(o) : lhs
rhs = rhs === nothing ? SCIPinfinity(o) : rhs
cr = add_linear_constraint(o.inner, varrefs, coefs, lhs, rhs)
ci = CI{F,S}(cr.val)
register!(o, ci)
register!(o, cons(o, ci), cr)
return ci
end
function MOI.set(
o::SCIP.Optimizer,
::MOI.ConstraintSet,
ci::CI{<:SAF,S},
set::S,
) where {S<:BOUNDS}
allow_modification(o)
lhs, rhs = bounds(set)
lhs = lhs === nothing ? -SCIPinfinity(o) : lhs
rhs = rhs === nothing ? SCIPinfinity(o) : rhs
@SCIP_CALL SCIPchgLhsLinear(o, cons(o, ci), lhs)
@SCIP_CALL SCIPchgRhsLinear(o, cons(o, ci), rhs)
return nothing
end
function MOI.get(
o::Optimizer,
::MOI.ConstraintFunction,
ci::CI{<:SAF,S},
) where {S<:BOUNDS}
_throw_if_invalid(o, ci)
c = cons(o, ci)
nvars::Int = SCIPgetNVarsLinear(o, c)
vars = unsafe_wrap(Array{Ptr{SCIP_VAR}}, SCIPgetVarsLinear(o, c), nvars)
vals = unsafe_wrap(Array{Float64}, SCIPgetValsLinear(o, c), nvars)
orig_vars = get_original_variables(vars, nvars)
terms = [AFF_TERM(vals[i], VI(ref(o, orig_vars[i]).val)) for i in 1:nvars]
# can not identify constant anymore (is merged with lhs,rhs)
return SAF(terms, 0.0)
end
function MOI.get(
o::Optimizer,
::MOI.ConstraintSet,
ci::CI{<:SAF,S},
) where {S<:BOUNDS}
_throw_if_invalid(o, ci)
lhs = SCIPgetLhsLinear(o, cons(o, ci))
rhs = SCIPgetRhsLinear(o, cons(o, ci))
return from_bounds(S, lhs, rhs)
end
function MOI.modify(
o::Optimizer,
ci::CI{<:SAF,<:BOUNDS},
change::MOI.ScalarCoefficientChange{Float64},
)
allow_modification(o)
@SCIP_CALL SCIPchgCoefLinear(
o,
cons(o, ci),
var(o, change.variable),
change.new_coefficient,
)
return nothing
end
| SCIP | https://github.com/scipopt/SCIP.jl.git |
|
[
"MIT"
] | 0.11.14 | 3d6a6516d6940a93b732e8ec7127652a0ead89c6 | code | 907 | # Nonlinear constraints (objective not supported)
MOI.supports(::Optimizer, ::MOI.NLPBlock) = true
function MOI.set(o::Optimizer, ::MOI.NLPBlock, data::MOI.NLPBlockData)
# We don't actually store the data (to be queried later during the solve
# process). Instead, we extract the expression graphs and add the
# corresponding constraints to the model directly.
if data.has_objective
error("Nonlinear objective not supported by SCIP.jl!")
end
# go back to problem stage
allow_modification(o::Optimizer)
MOI.initialize(data.evaluator, [:ExprGraph])
for i in 1:length(data.constraint_bounds)
expr = MOI.constraint_expr(data.evaluator, i)
bounds = data.constraint_bounds[i]
cr = add_nonlinear_constraint(o.inner, expr, bounds.lower, bounds.upper)
# Not registering or returning constraint reference!
end
return nothing
end
| SCIP | https://github.com/scipopt/SCIP.jl.git |
|
[
"MIT"
] | 0.11.14 | 3d6a6516d6940a93b732e8ec7127652a0ead89c6 | code | 2278 | # Objective function & sense.
#
# SCIP only supports affine objectives. For quadratic or nonlinear objectives,
# the solver will depend on bridges with auxiliary variables. Single variable
# objectives are also accepted, but the type is not correctly remembered.
MOI.supports(::Optimizer, ::MOI.ObjectiveSense) = true
MOI.supports(::Optimizer, ::MOI.ObjectiveFunction{SAF}) = true
function MOI.set(o::Optimizer, ::MOI.ObjectiveFunction{SAF}, obj::SAF)
allow_modification(o)
# reset objective coefficient of all variables first
for v in values(o.inner.vars)
@SCIP_CALL SCIPchgVarObj(o, v[], 0.0)
end
# set new objective coefficients, summing coefficients
for t in obj.terms
v = var(o, t.variable)
oldcoef = SCIPvarGetObj(v)
newcoef = oldcoef + t.coefficient
@SCIP_CALL SCIPchgVarObj(o, v, newcoef)
end
@SCIP_CALL SCIPaddOrigObjoffset(o, obj.constant - SCIPgetOrigObjoffset(o))
o.objective_function_set = true
return nothing
end
function MOI.get(o::Optimizer, ::MOI.ObjectiveFunction{SAF})
terms = AFF_TERM[]
for vr in keys(o.inner.vars)
vi = VI(vr.val)
coef = SCIPvarGetObj(var(o, vi))
coef == 0.0 || push!(terms, AFF_TERM(coef, vi))
end
constant = SCIPgetOrigObjoffset(o)
return SAF(terms, constant)
end
function MOI.set(
o::Optimizer,
::MOI.ObjectiveSense,
sense::MOI.OptimizationSense,
)
allow_modification(o)
if sense == MOI.MIN_SENSE
@SCIP_CALL SCIPsetObjsense(o, SCIP_OBJSENSE_MINIMIZE)
elseif sense == MOI.MAX_SENSE
@SCIP_CALL SCIPsetObjsense(o, SCIP_OBJSENSE_MAXIMIZE)
else
# erasing objective
MOI.set(o, MOI.ObjectiveFunction{SAF}(), SAF([], 0.0))
end
o.objective_sense = sense
return nothing
end
function MOI.get(o::Optimizer, ::MOI.ObjectiveSense)
return something(o.objective_sense, MOI.FEASIBILITY_SENSE)
end
function MOI.modify(
o::Optimizer,
::MOI.ObjectiveFunction{SAF},
change::MOI.ScalarCoefficientChange{Float64},
)
allow_modification(o)
@SCIP_CALL SCIPchgVarObj(o, var(o, change.variable), change.new_coefficient)
o.objective_function_set = true
return nothing
end
MOI.get(::Optimizer, ::MOI.ObjectiveFunctionType) = SAF
| SCIP | https://github.com/scipopt/SCIP.jl.git |
|
[
"MIT"
] | 0.11.14 | 3d6a6516d6940a93b732e8ec7127652a0ead89c6 | code | 5627 | # quadratic constraints
MOI.supports_constraint(o::Optimizer, ::Type{SQF}, ::Type{<:BOUNDS}) = true
function MOI.add_constraint(o::Optimizer, func::SQF, set::S) where {S<:BOUNDS}
if func.constant != 0.0
error(
"SCIP does not support quadratic constraints with a constant offset.",
)
end
allow_modification(o)
# affine terms
linrefs = [VarRef(t.variable.value) for t in func.affine_terms]
lincoefs = [t.coefficient for t in func.affine_terms]
# quadratic terms
quadrefs1 = [VarRef(t.variable_1.value) for t in func.quadratic_terms]
quadrefs2 = [VarRef(t.variable_2.value) for t in func.quadratic_terms]
# Divide coefficients by 2 iff they come from the diagonal:
# Take coef * x * y as-is, but turn coef * x^2 into coef/2 * x^2.
factor = 1.0 .- 0.5 * (quadrefs1 .== quadrefs2)
quadcoefs = factor .* [t.coefficient for t in func.quadratic_terms]
# range
lhs, rhs = bounds(set)
lhs = lhs === nothing ? -SCIPinfinity(o) : lhs
rhs = rhs === nothing ? SCIPinfinity(o) : rhs
cr = add_quadratic_constraint(
o.inner,
linrefs,
lincoefs,
quadrefs1,
quadrefs2,
quadcoefs,
lhs,
rhs,
)
ci = CI{SQF,S}(cr.val)
register!(o, ci)
register!(o, cons(o, ci), cr)
return ci
end
function MOI.set(
o::SCIP.Optimizer,
::MOI.ConstraintSet,
ci::CI{SQF,S},
set::S,
) where {S<:BOUNDS}
allow_modification(o)
lhs, rhs = bounds(set)
lhs = lhs === nothing ? -SCIPinfinity(o) : lhs
rhs = rhs === nothing ? SCIPinfinity(o) : rhs
@SCIP_CALL SCIPchgLhsQuadratic(o, cons(o, ci), lhs)
@SCIP_CALL SCIPchgRhsQuadratic(o, cons(o, ci), rhs)
return nothing
end
function MOI.get(
o::Optimizer,
::MOI.ConstraintFunction,
ci::CI{SQF,S},
) where {S<:BOUNDS}
_throw_if_invalid(o, ci)
c = cons(o, ci)
expr_ref = SCIPgetExprNonlinear(c)
# This call is required to get quaddata computed in the expression
isq = Ref{UInt32}(100)
@SCIP_CALL LibSCIP.SCIPcheckExprQuadratic(o, expr_ref, isq)
if isq[] != 1
error(
"Constraint index $ci pointing to a non-quadratic expression $expr_ref",
)
end
constant_ref = Ref{Cdouble}(-1.0)
n_linear_terms_ref = Ref{Cint}(-1)
linear_exprs = Ref{Ptr{Ptr{LibSCIP.SCIP_EXPR}}}()
lincoefs = Ref{Ptr{Cdouble}}()
n_quad_terms_ref = Ref{Cint}(-1)
n_bilinear_terms_ref = Ref{Cint}(-1)
LibSCIP.SCIPexprGetQuadraticData(
expr_ref,
constant_ref,
n_linear_terms_ref,
linear_exprs,
lincoefs,
n_quad_terms_ref,
n_bilinear_terms_ref,
C_NULL,
C_NULL,
)
lin_expr_vec =
unsafe_wrap(Vector{Ptr{Cvoid}}, linear_exprs[], n_linear_terms_ref[])
lin_coeff_vec =
unsafe_wrap(Vector{Cdouble}, lincoefs[], n_linear_terms_ref[])
func = SCIP.SQF([], [], constant_ref[])
for idx in 1:n_linear_terms_ref[]
var_ptr = LibSCIP.SCIPgetVarExprVar(lin_expr_vec[idx])
func += lin_coeff_vec[idx] * MOI.VariableIndex(o.reference[var_ptr].val)
end
for term_idx in 1:n_quad_terms_ref[]
var_expr = Ref{Ptr{Cvoid}}()
lin_coef_ref = Ref{Cdouble}()
sqr_coef_ref = Ref{Cdouble}()
LibSCIP.SCIPexprGetQuadraticQuadTerm(
expr_ref,
term_idx - 1, # 0-indexed terms
var_expr,
lin_coef_ref,
sqr_coef_ref,
C_NULL,
C_NULL,
C_NULL,
)
@assert lin_coef_ref[] == 0.0
if sqr_coef_ref[] != 0.0
var_ptr = LibSCIP.SCIPgetVarExprVar(var_expr[])
var_idx = MOI.VariableIndex(o.reference[var_ptr].val)
MOI.Utilities.operate!(
+,
Float64,
func,
sqr_coef_ref[] * var_idx * var_idx,
)
end
end
for term_idx in 1:n_bilinear_terms_ref[]
var_expr1 = Ref{Ptr{Cvoid}}()
var_expr2 = Ref{Ptr{Cvoid}}()
coef_ref = Ref{Cdouble}()
LibSCIP.SCIPexprGetQuadraticBilinTerm(
expr_ref,
term_idx - 1,
var_expr1,
var_expr2,
coef_ref,
C_NULL,
C_NULL,
)
if coef_ref[] != 0.0
var_ptr1 = LibSCIP.SCIPgetVarExprVar(var_expr1[])
var_idx1 = MOI.VariableIndex(o.reference[var_ptr1].val)
var_ptr2 = LibSCIP.SCIPgetVarExprVar(var_expr2[])
var_idx2 = MOI.VariableIndex(o.reference[var_ptr2].val)
MOI.Utilities.operate!(
+,
Float64,
func,
coef_ref[] * var_idx1 * var_idx2,
)
end
end
return func
end
function MOI.get(
o::Optimizer,
::MOI.ConstraintSet,
ci::CI{SQF,S},
) where {S<:BOUNDS}
_throw_if_invalid(o, ci)
c = cons(o, ci)
lhs = SCIPgetLhsNonlinear(c)
rhs = SCIPgetRhsNonlinear(c)
return from_bounds(S, lhs, rhs)
end
function MOI.get(
o::Optimizer,
::MOI.ConstraintPrimal,
ci::CI{SQF,S},
) where {S<:BOUNDS}
_throw_if_invalid(o, ci)
c = cons(o, ci)
expr_ref = SCIPgetExprNonlinear(c)
isq = Ref{UInt32}(100)
@SCIP_CALL LibSCIP.SCIPcheckExprQuadratic(o, expr_ref, isq)
if isq[] != 1
error(
"Constraint index $ci pointing to a non-quadratic expression $expr_ref",
)
end
sol = SCIPgetBestSol(o)
@SCIP_CALL SCIPevalExpr(o, expr_ref, sol, Clonglong(0))
return SCIPexprGetEvalValue(expr_ref)
end
| SCIP | https://github.com/scipopt/SCIP.jl.git |
|
[
"MIT"
] | 0.11.14 | 3d6a6516d6940a93b732e8ec7127652a0ead89c6 | code | 4302 | # results
term_status_map = Dict(
SCIP_STATUS_UNKNOWN => MOI.OPTIMIZE_NOT_CALLED,
SCIP_STATUS_USERINTERRUPT => MOI.INTERRUPTED,
SCIP_STATUS_NODELIMIT => MOI.NODE_LIMIT,
SCIP_STATUS_TOTALNODELIMIT => MOI.NODE_LIMIT,
SCIP_STATUS_STALLNODELIMIT => MOI.OTHER_LIMIT,
SCIP_STATUS_TIMELIMIT => MOI.TIME_LIMIT,
SCIP_STATUS_MEMLIMIT => MOI.MEMORY_LIMIT,
SCIP_STATUS_GAPLIMIT => MOI.OPTIMAL,
SCIP_STATUS_SOLLIMIT => MOI.SOLUTION_LIMIT,
SCIP_STATUS_BESTSOLLIMIT => MOI.OTHER_LIMIT,
SCIP_STATUS_RESTARTLIMIT => MOI.OTHER_LIMIT,
SCIP_STATUS_OPTIMAL => MOI.OPTIMAL,
SCIP_STATUS_INFEASIBLE => MOI.INFEASIBLE,
SCIP_STATUS_UNBOUNDED => MOI.DUAL_INFEASIBLE,
SCIP_STATUS_INFORUNBD => MOI.INFEASIBLE_OR_UNBOUNDED,
SCIP_STATUS_TERMINATE => MOI.INTERRUPTED,
)
function MOI.get(o::Optimizer, ::MOI.TerminationStatus)
return term_status_map[SCIPgetStatus(o)]
end
function MOI.get(o::Optimizer, attr::MOI.PrimalStatus)
return if 1 <= attr.result_index <= MOI.get(o, MOI.ResultCount())
MOI.FEASIBLE_POINT
else
MOI.NO_SOLUTION
end
end
function MOI.get(::Optimizer, ::MOI.DualStatus)
return MOI.NO_SOLUTION
end
function MOI.get(o::Optimizer, ::MOI.ResultCount)::Int
status = SCIPgetStatus(o)
if status in [SCIP_STATUS_UNBOUNDED, SCIP_STATUS_INFORUNBD]
return 0
end
return SCIPgetNSols(o)
end
function MOI.get(o::Optimizer, ::MOI.RawStatusString)
return string(SCIPgetStatus(o))
end
"Make sure that SCIP is currently in one of the allowed stages."
function assert_stage(o::Optimizer, stages)
stage = SCIPgetStage(o)
if !(stage in stages)
error("SCIP is wrong stage ($stage, need $stages)!")
end
end
"Make sure that the problem was solved (SCIP is in SOLVED stage)."
function assert_solved(o::Optimizer)
# SCIP's stage is SOLVING when stopped by user limit!
assert_stage(
o,
(
SCIP_STAGE_PRESOLVING,
SCIP_STAGE_SOLVING,
SCIP_STAGE_PRESOLVED,
SCIP_STAGE_SOLVED,
),
)
# Check for invalid status (when stage is SOLVING).
status = SCIPgetStatus(o)
if status in
(SCIP_STATUS_UNKNOWN, SCIP_STATUS_USERINTERRUPT, SCIP_STATUS_TERMINATE)
error("SCIP's solving was interrupted, but not by a user-given limit!")
end
end
"Make sure that: TRANSFORMED ≤ stage ≤ SOLVED."
assert_after_prob(o::Optimizer) = assert_stage(o, SCIP_Stage.(3:10))
function MOI.get(o::Optimizer, attr::MOI.ObjectiveValue)
assert_solved(o)
MOI.check_result_index_bounds(o, attr)
sols = unsafe_wrap(Array{Ptr{SCIP_SOL}}, SCIPgetSols(o), SCIPgetNSols(o))
return SCIPgetSolOrigObj(o, sols[attr.result_index])
end
function MOI.get(o::Optimizer, attr::MOI.VariablePrimal, vi::VI)
assert_solved(o)
MOI.check_result_index_bounds(o, attr)
sols = unsafe_wrap(Array{Ptr{SCIP_SOL}}, SCIPgetSols(o), SCIPgetNSols(o))
return SCIPgetSolVal(o, sols[attr.result_index], var(o, vi))
end
function MOI.get(o::Optimizer, attr::MOI.ConstraintPrimal, ci::CI{VI,<:BOUNDS})
assert_solved(o)
MOI.check_result_index_bounds(o, attr)
sols = unsafe_wrap(Array{Ptr{SCIP_SOL}}, SCIPgetSols(o), SCIPgetNSols(o))
return SCIPgetSolVal(o, sols[attr.result_index], var(o, VI(ci.value)))
end
function MOI.get(
o::Optimizer,
attr::MOI.ConstraintPrimal,
ci::CI{<:SAF,<:BOUNDS},
)
assert_solved(o)
MOI.check_result_index_bounds(o, attr)
sols = unsafe_wrap(Array{Ptr{SCIP_SOL}}, SCIPgetSols(o), SCIPgetNSols(o))
return SCIPgetActivityLinear(o, cons(o, ci), sols[attr.result_index])
end
function MOI.get(o::Optimizer, ::MOI.ObjectiveBound)
assert_after_prob(o)
return SCIPgetDualbound(o)
end
function MOI.get(o::Optimizer, ::MOI.RelativeGap)
assert_stage(
o,
[SCIP_STAGE_PRESOLVING, SCIP_STAGE_SOLVING, SCIP_STAGE_SOLVED],
)
return SCIPgetGap(o)
end
function MOI.get(o::Optimizer, ::MOI.SolveTimeSec)
return SCIPgetSolvingTime(o)
end
function MOI.get(o::Optimizer, ::MOI.SimplexIterations)
assert_stage(
o,
[SCIP_STAGE_PRESOLVING, SCIP_STAGE_SOLVING, SCIP_STAGE_SOLVED],
)
return SCIPgetNLPIterations(o)
end
function MOI.get(o::Optimizer, ::MOI.NodeCount)
return SCIPgetNNodes(o)
end
| SCIP | https://github.com/scipopt/SCIP.jl.git |
|
[
"MIT"
] | 0.11.14 | 3d6a6516d6940a93b732e8ec7127652a0ead89c6 | code | 2803 | #
# Adding separators to SCIP.Optimizer.
#
"""
include_sepa(
o::Optimizer,
sepa::SEPA;
name::String,
description::String,
priority::Int,
freq::Int,
maxbounddist::Float,
usesubscip::Bool,
delay::Bool
)
Include a user defined separator `sepa` to the SCIP optimizer instance `o`.
All parameters have default values, that can be set as keyword arguments.
"""
function include_sepa(
o::Optimizer,
sepa::SEPA;
name="",
description="",
priority=0,
freq=1,
maxbounddist=0.0,
usessubscip=false,
delay=false,
) where {SEPA<:AbstractSeparator}
include_sepa(
o.inner.scip[],
o.inner.sepas,
sepa;
name=name,
description=description,
priority=priority,
freq=freq,
maxbounddist=maxbounddist,
usessubscip=usessubscip,
delay=delay,
)
end
#
# Separator for cutcallbacks.
#
mutable struct CutCbSeparator <: AbstractSeparator
scipd::SCIPData
cutcallback::Function
end
# If no cut callback is given, the cut callback does nothing.
CutCbSeparator(scipd::SCIPData) = CutCbSeparator(scipd, cb_data -> nothing)
"""
Used for an argument to the cut callback, which in turn uses that argument to
obtain the LP-solution via `MOI.get` and to add cuts via `MOI.submit`.
"""
mutable struct CutCbData
sepa::CutCbSeparator
"Did the cut callback call submit?"
submit_called::Bool
end
function exec_lp(sepa::CutCbSeparator)
cb_data = CutCbData(sepa, false)
sepa.cutcallback(cb_data)
return cb_data.submit_called ? SCIP_SEPARATED : SCIP_DIDNOTFIND
end
#
# MOI Interface for cutcallbacks
#
function MOI.get(o::Optimizer, ::MOI.CallbackVariablePrimal{CutCbData}, vi)
return SCIPgetSolVal(o, C_NULL, var(o, vi))
end
function MOI.set(o::Optimizer, ::MOI.UserCutCallback, cb::Function)
if o.moi_separator === nothing
o.moi_separator = CutCbSeparator(o.inner, cb)
include_sepa(o, o.moi_separator)
else
o.moi_separator.cutcallback = cb
end
end
MOI.supports(::Optimizer, ::MOI.UserCutCallback) = true
function MOI.submit(
o::Optimizer,
cb_data::MOI.UserCut{CutCbData},
func::SAF,
set::S,
) where {S<:BOUNDS}
varrefs = [VarRef(t.variable.value) for t in func.terms]
coefs = [t.coefficient for t in func.terms]
lhs, rhs = bounds(set)
lhs = lhs === nothing ? -SCIPinfinity(o) : lhs
rhs = rhs === nothing ? SCIPinfinity(o) : rhs
add_cut_sepa(
o.inner.scip[],
o.inner.vars,
o.inner.sepas,
cb_data.callback_data.sepa,
varrefs,
coefs,
lhs,
rhs,
)
cb_data.callback_data.submit_called = true
end
MOI.supports(::Optimizer, ::MOI.UserCut{CutCbData}) = true
| SCIP | https://github.com/scipopt/SCIP.jl.git |
|
[
"MIT"
] | 0.11.14 | 3d6a6516d6940a93b732e8ec7127652a0ead89c6 | code | 2003 | # Special-Ordered-Set type 1
MOI.supports_constraint(o::Optimizer, ::Type{VECTOR}, ::Type{SOS1}) = true
function MOI.add_constraint(o::Optimizer, func::VECTOR, set::SOS1)
allow_modification(o)
varrefs = [VarRef(vi.value) for vi in func.variables]
cr = add_special_ordered_set_type1(o.inner, varrefs, set.weights)
ci = CI{VECTOR,SOS1}(cr.val)
register!(o, ci)
register!(o, cons(o, ci), cr)
return ci
end
function MOI.get(o::Optimizer, ::MOI.ConstraintFunction, ci::CI{VECTOR,SOS1})
_throw_if_invalid(o, ci)
c = cons(o, ci)
nvars::Int = SCIPgetNVarsSOS1(o, c)
vars = unsafe_wrap(Array{Ptr{SCIP_VAR}}, SCIPgetVarsSOS1(o, c), nvars)
return VECTOR([VI(ref(o, v).val) for v in vars])
end
function MOI.get(o::Optimizer, ::MOI.ConstraintSet, ci::CI{VECTOR,SOS1})
_throw_if_invalid(o, ci)
c = cons(o, ci)
nvars::Int = SCIPgetNVarsSOS1(o, c)
weights = unsafe_wrap(Array{Float64}, SCIPgetWeightsSOS1(o, c), nvars)
return SOS1(weights)
end
# Special-Ordered-Set type 2
MOI.supports_constraint(o::Optimizer, ::Type{VECTOR}, ::Type{SOS2}) = true
function MOI.add_constraint(o::Optimizer, func::VECTOR, set::SOS2)
allow_modification(o)
varrefs = [VarRef(vi.value) for vi in func.variables]
cr = add_special_ordered_set_type2(o.inner, varrefs, set.weights)
ci = CI{VECTOR,SOS2}(cr.val)
register!(o, ci)
register!(o, cons(o, ci), cr)
return ci
end
function MOI.get(o::Optimizer, ::MOI.ConstraintFunction, ci::CI{VECTOR,SOS2})
_throw_if_invalid(o, ci)
c = cons(o, ci)
nvars::Int = SCIPgetNVarsSOS2(o, c)
vars = unsafe_wrap(Array{Ptr{SCIP_VAR}}, SCIPgetVarsSOS2(o, c), nvars)
return VECTOR([VI(ref(o, v).val) for v in vars])
end
function MOI.get(o::Optimizer, ::MOI.ConstraintSet, ci::CI{VECTOR,SOS2})
_throw_if_invalid(o, ci)
c = cons(o, ci)
nvars::Int = SCIPgetNVarsSOS2(o, c)
weights = unsafe_wrap(Array{Float64}, SCIPgetWeightsSOS2(o, c), nvars)
return SOS2(weights)
end
| SCIP | https://github.com/scipopt/SCIP.jl.git |
|
[
"MIT"
] | 0.11.14 | 3d6a6516d6940a93b732e8ec7127652a0ead89c6 | code | 11589 | ## variables (general)
function MOI.add_variable(o::Optimizer)
allow_modification(o)
vr = add_variable(o.inner)
var::Ptr{SCIP_VAR} = o.inner.vars[vr][]
register!(o, var, vr)
return MOI.VariableIndex(vr.val)
end
MOI.add_variables(o::Optimizer, n) = [MOI.add_variable(o) for i in 1:n]
MOI.get(o::Optimizer, ::MOI.NumberOfVariables) = length(o.inner.vars)
function MOI.get(o::Optimizer, ::MOI.ListOfVariableIndices)
sort!([VI(k.val) for k in keys(o.inner.vars)]; by=v -> v.value)
end
MOI.is_valid(o::Optimizer, vi::VI) = haskey(o.inner.vars, VarRef(vi.value))
function MOI.get(o::Optimizer, ::MOI.VariableName, vi::VI)::String
return GC.@preserve o unsafe_string(SCIPvarGetName(var(o, vi)))
end
function MOI.set(o::Optimizer, ::MOI.VariableName, vi::VI, name::String)
@SCIP_CALL SCIPchgVarName(o, var(o, vi), name)
return nothing
end
MOI.supports(::Optimizer, ::MOI.VariableName, ::Type{MOI.VariableIndex}) = true
function MOI.get(o::Optimizer, ::Type{MOI.VariableIndex}, name::String)
ptr = SCIPfindVar(o, name)
if ptr == C_NULL
return nothing
end
var_ref = get(o.reference, ptr, nothing)
if var_ref === nothing
return var_ref
end
return MOI.VariableIndex(var_ref.val)
end
function MOI.delete(o::Optimizer, vi::VI)
# Note: SCIP does not currently support deletion of variables that are still
# present in some constraint. We don't want the overhead of keeping track of
# the variable-in-constraint relation, so, to be conservative, we only allow
# to delete a variable when there are no constraints in the model.
if length(o.inner.conss) > 0
throw(
MOI.DeleteNotAllowed(
vi,
"Can not delete variable while model contains constraints!",
),
)
end
allow_modification(o)
if !haskey(o.inner.vars, VarRef(vi.value))
throw(MOI.InvalidIndex(vi))
end
# TODO still necessary?
if !haskey(o.reference, var(o, vi))
throw(MOI.InvalidIndex(vi))
end
haskey(o.binbounds, vi) && delete!(o.binbounds, vi)
delete!(o.reference, var(o, vi))
delete(o.inner, VarRef(vi.value))
return nothing
end
## variable types (binary, integer)
MOI.supports_constraint(o::Optimizer, ::Type{VI}, ::Type{<:VAR_TYPES}) = true
scip_vartype(::Type{MOI.ZeroOne}) = SCIP_VARTYPE_BINARY
scip_vartype(::Type{MOI.Integer}) = SCIP_VARTYPE_INTEGER
function MOI.add_constraint(o::Optimizer, vi::VI, set::S) where {S<:VAR_TYPES}
allow_modification(o)
v = var(o, vi)
infeasible = Ref{SCIP_Bool}()
@SCIP_CALL SCIPchgVarType(o, v, scip_vartype(S), infeasible)
# TODO: warn if infeasible[] == TRUE?
if S <: MOI.ZeroOne
# Need to adjust bounds for SCIP, which fails with an error otherwise.
# Check for conflicts with existing bounds first:
lb, ub = SCIPvarGetLbOriginal(v), SCIPvarGetUbOriginal(v)
if lb == -SCIPinfinity(o) && ub == SCIPinfinity(o)
@debug "Implicitly setting bounds [0,1] for binary variable at $(vi.value)!"
@SCIP_CALL SCIPchgVarLb(o, v, 0.0)
@SCIP_CALL SCIPchgVarUb(o, v, 1.0)
else
# Store old bounds for later recovery.
o.binbounds[vi] = MOI.Interval(lb, ub)
if ub > 1.0
@debug "Tightening upper bound $ub to 1 for binary variable at $(vi.value)!"
@SCIP_CALL SCIPchgVarUb(o, v, 1.0)
end
if lb < 0.0
@debug "Tightening lower bound $lb to 0 for binary variable at $(vi.value)!"
@SCIP_CALL SCIPchgVarLb(o, v, 0.0)
end
end
end
# use var index for cons index of this type
i = vi.value
return register!(o, CI{VI,S}(i))
end
function MOI.delete(o::Optimizer, ci::CI{VI,S}) where {S<:VAR_TYPES}
_throw_if_invalid(o, ci)
allow_modification(o)
vi = VI(ci.value)
v = var(o, vi)
# Reset bounds from constraint if this was a binary, see below.
reset_bounds = SCIPvarGetType(v) == SCIP_VARTYPE_BINARY
# don't actually delete any SCIP constraint, just reset type
infeasible = Ref{SCIP_Bool}()
@SCIP_CALL SCIPchgVarType(
o,
var(o, vi),
SCIP_VARTYPE_CONTINUOUS,
infeasible,
)
# TODO: warn if infeasible[] == TRUE?
# Can only change bounds after changing the var type.
if reset_bounds
bounds = get(o.binbounds, vi, nothing)
if bounds !== nothing
@SCIP_CALL SCIPchgVarLb(o, v, bounds.lower)
@SCIP_CALL SCIPchgVarUb(o, v, bounds.upper)
end
end
# but do delete the constraint reference
delete!(o.constypes[VI, S], ConsRef(ci.value))
return nothing
end
## variable bounds
MOI.supports_constraint(o::Optimizer, ::Type{VI}, ::Type{<:BOUNDS}) = true
function MOI.add_constraint(o::Optimizer, vi::VI, set::S) where {S<:BOUNDS}
allow_modification(o)
v = var(o, vi)
inf = SCIPinfinity(o)
newlb, newub = bounds(set)
newlb = newlb === nothing ? -inf : newlb
newub = newub === nothing ? inf : newub
# Check for existing bounds first.
oldlb, oldub = SCIPvarGetLbOriginal(v), SCIPvarGetUbOriginal(v)
if (oldlb != -inf && newlb != -inf || oldub != inf && newub != inf)
# special case: implicit bounds for binaries
if SCIPvarGetType(v) == SCIP_VARTYPE_BINARY
# Store new bounds
o.binbounds[vi] = MOI.Interval(newlb, newub)
if newlb < 0.0
@debug "Ignoring relaxed lower bound $newlb for binary variable at $(vi.value)!"
newlb = oldlb
end
if newub > 1.0
@debug "Ignoring relaxed upper bounds $newub for binary variable at $(vi.value)!"
newub = oldub
end
if newlb != oldlb || newub != oldub
@debug "Overwriting existing bounds [0.0,1.0] with [$newlb,$newub] for binary variable at $(vi.value)!"
end
else # general case (non-binary variable)
# TODO find initially-set bound constraint
throw(MOI.LowerBoundAlreadySet{S,S}(vi))
end
end
if newlb != -inf
@SCIP_CALL SCIPchgVarLb(o, v, newlb)
end
if newub != inf
@SCIP_CALL SCIPchgVarUb(o, v, newub)
end
# use var index for cons index of this type
i = vi.value
return register!(o, CI{VI,S}(i))
end
function reset_bounds(
o::Optimizer,
v,
lb,
ub,
ci::CI{VI,S},
) where {S<:Union{MOI.Interval{Float64},MOI.EqualTo{Float64}}}
@SCIP_CALL SCIPchgVarLb(o, v, lb)
@SCIP_CALL SCIPchgVarUb(o, v, ub)
end
function reset_bounds(
o::Optimizer,
v,
lb,
ub,
ci::CI{VI,MOI.GreaterThan{Float64}},
)
@SCIP_CALL SCIPchgVarLb(o, v, lb)
end
function reset_bounds(o::Optimizer, v, lb, ub, ci::CI{VI,MOI.LessThan{Float64}})
@SCIP_CALL SCIPchgVarUb(o, v, ub)
end
function MOI.delete(o::Optimizer, ci::CI{VI,S}) where {S<:BOUNDS}
_throw_if_invalid(o, ci)
allow_modification(o)
# Don't actually delete any SCIP constraint, just reset bounds
vi = VI(ci.value)
v = var(o, vi)
if SCIPvarGetType(v) == SCIP_VARTYPE_BINARY
reset_bounds(o, v, 0.0, 1.0, ci)
else
inf = SCIPinfinity(o)
reset_bounds(o, v, -inf, inf, ci)
end
# but do delete the constraint reference
haskey(o.binbounds, vi) && delete!(o.binbounds, vi)
delete!(o.constypes[VI, S], ConsRef(ci.value))
return nothing
end
function MOI.set(
o::Optimizer,
::MOI.ConstraintSet,
ci::CI{VI,S},
set::S,
) where {S<:BOUNDS}
allow_modification(o)
v = var(o, VI(ci.value)) # cons index is actually var index
lb, ub = bounds(set)
old_interval = get(o.binbounds, VI(ci.value), MOI.Interval(0.0, 1.0))
if lb !== nothing
if SCIPvarGetType(v) == SCIP_VARTYPE_BINARY
lb = max(lb, 0.0)
end
@SCIP_CALL SCIPchgVarLb(o, v, lb)
o.binbounds[VI(ci.value)] = MOI.Interval(lb, old_interval.upper)
end
if ub !== nothing
if SCIPvarGetType(v) == SCIP_VARTYPE_BINARY
ub = min(ub, 1.0)
end
@SCIP_CALL SCIPchgVarUb(o, v, ub)
o.binbounds[VI(ci.value)] = MOI.Interval(old_interval.lower, ub)
end
return nothing
end
# TODO: is actually wrong for unbounded variables?
function MOI.is_valid(o::Optimizer, ci::CI{VI,S}) where {S<:BOUNDS}
if !haskey(o.inner.vars, VarRef(ci.value))
return false
end
cons_set = get(o.constypes, (VI, S), nothing)
if cons_set === nothing
return false
end
return ConsRef(ci.value) in o.constypes[VI, S]
end
function MOI.get(
o::Optimizer,
::MOI.ConstraintFunction,
ci::CI{VI,S},
) where {S<:BOUNDS}
if !MOI.is_valid(o, ci)
throw(MOI.InvalidIndex(ci))
end
return VI(ci.value)
end
function MOI.get(
o::Optimizer,
::MOI.ConstraintSet,
ci::CI{VI,S},
) where {S<:BOUNDS}
if !MOI.is_valid(o, ci)
throw(MOI.InvalidIndex(ci))
end
vi = VI(ci.value)
v = var(o, vi)
lb, ub = SCIPvarGetLbOriginal(v), SCIPvarGetUbOriginal(v)
if SCIPvarGetType(v) == SCIP_VARTYPE_BINARY
bounds = o.binbounds[vi]
lb, ub = bounds.lower, bounds.upper
end
return from_bounds(S, lb, ub)
end
function MOI.is_valid(
o::Optimizer,
ci::CI{VI,S},
) where {S<:Union{MOI.ZeroOne,MOI.Integer}}
if !haskey(o.inner.vars, VarRef(ci.value))
return false
end
return ConsRef(ci.value) in o.constypes[VI, S]
end
function MOI.get(o::Optimizer, ::MOI.ConstraintSet, ci::CI{VI,MOI.ZeroOne})
vi = VI(ci.value)
v = var(o, vi)
if SCIPvarGetType(v) == SCIP_VARTYPE_BINARY
return MOI.ZeroOne()
end
throw(MOI.InvalidIndex(ci))
end
function MOI.get(o::Optimizer, ::MOI.ConstraintSet, ci::CI{VI,MOI.Integer})
vi = VI(ci.value)
v = var(o, vi)
if SCIPvarGetType(v) == SCIP_VARTYPE_INTEGER
return MOI.Integer()
end
throw(MOI.InvalidIndex(ci))
end
function MOI.get(o::Optimizer, ::MOI.ConstraintFunction, ci::CI{VI,MOI.ZeroOne})
vi = VI(ci.value)
v = var(o, vi)
if SCIPvarGetType(v) == SCIP_VARTYPE_BINARY
return vi
end
throw(MOI.InvalidIndex(ci))
end
function MOI.get(o::Optimizer, ::MOI.ConstraintFunction, ci::CI{VI,MOI.Integer})
vi = VI(ci.value)
v = var(o, vi)
if SCIPvarGetType(v) == SCIP_VARTYPE_INTEGER
return vi
end
throw(MOI.InvalidIndex(ci))
end
# (partial) warm starts
MOI.supports(::Optimizer, ::MOI.VariablePrimalStart, ::Type{VI}) = true
function MOI.get(o::Optimizer, ::MOI.VariablePrimalStart, vi::VI)
return if haskey(o.start, vi)
o.start[vi]
else
nothing
end
end
function MOI.set(
o::Optimizer,
::MOI.VariablePrimalStart,
vi::VI,
value::Float64,
)
o.start[vi] = value
return
end
function MOI.set(
o::Optimizer,
::MOI.VariablePrimalStart,
vi::VI,
value::Nothing,
)
if haskey(o.start, vi)
delete!(o.start, vi)
end
return
end
function MOI.set(::Optimizer, ::MOI.ConstraintFunction, ::CI{VI}, ::VI)
throw(MOI.SettingVariableIndexNotAllowed())
end
function get_original_variables(vars::Array{Ptr{SCIP_VAR}}, nvars::Int)
scalar = Ref(1.0)
constant = Ref(0.0)
orig_vars = map(1:nvars) do i
var = Ref(vars[i])
@SCIP_CALL SCIPvarGetOrigvarSum(var, scalar, constant)
@assert scalar[] == 1.0
@assert constant[] == 0.0
var[]
end
return orig_vars
end
| SCIP | https://github.com/scipopt/SCIP.jl.git |
|
[
"MIT"
] | 0.11.14 | 3d6a6516d6940a93b732e8ec7127652a0ead89c6 | code | 18360 | using MathOptInterface
const MOI = MathOptInterface
const MOIB = MOI.Bridges
const MOIT = MOI.Test
const VI = MOI.VariableIndex
const CI = MOI.ConstraintIndex
function var_bounds(o::SCIP.Optimizer, vi::VI)
return MOI.get(
o,
MOI.ConstraintSet(),
CI{VI,MOI.Interval{Float64}}(vi.value),
)
end
function chg_bounds(o::SCIP.Optimizer, vi::VI, set::S) where {S}
ci = CI{VI,S}(vi.value)
MOI.set(o, MOI.ConstraintSet(), ci, set)
return nothing
end
@testset "SOS1" begin
optimizer = SCIP.Optimizer(; display_verblevel=0)
x, y, z = MOI.add_variables(optimizer, 3)
MOI.add_constraint(optimizer, x, MOI.LessThan(1.0))
MOI.add_constraint(optimizer, y, MOI.LessThan(1.0))
MOI.add_constraint(optimizer, z, MOI.LessThan(1.0))
c = MOI.add_constraint(
optimizer,
MOI.VectorOfVariables([x, y, z]),
MOI.SOS1([1.0, 2.0, 3.0]),
)
MOI.set(
optimizer,
MOI.ObjectiveFunction{MOI.ScalarAffineFunction{Float64}}(),
MOI.ScalarAffineFunction(
MOI.ScalarAffineTerm.([1.0, 2.0, 3.0], [x, y, z]),
0.0,
),
)
MOI.set(optimizer, MOI.ObjectiveSense(), MOI.MAX_SENSE)
@test MOI.get(optimizer, MOI.ConstraintFunction(), c) ==
MOI.VectorOfVariables([x, y, z])
@test MOI.get(optimizer, MOI.ConstraintSet(), c) ==
MOI.SOS1([1.0, 2.0, 3.0])
MOI.optimize!(optimizer)
@test MOI.get(optimizer, MOI.TerminationStatus()) == MOI.OPTIMAL
@test MOI.get(optimizer, MOI.PrimalStatus()) == MOI.FEASIBLE_POINT
atol, rtol = 1e-6, 1e-6
@test MOI.get(optimizer, MOI.ObjectiveValue()) ≈ 3.0 atol = atol rtol = rtol
@test MOI.get(optimizer, MOI.VariablePrimal(), x) ≈ 0.0 atol = atol rtol =
rtol
@test MOI.get(optimizer, MOI.VariablePrimal(), y) ≈ 0.0 atol = atol rtol =
rtol
@test MOI.get(optimizer, MOI.VariablePrimal(), z) ≈ 1.0 atol = atol rtol =
rtol
end
@testset "SOS2" begin
optimizer = SCIP.Optimizer(; display_verblevel=0)
x, y, z = MOI.add_variables(optimizer, 3)
MOI.add_constraint(optimizer, x, MOI.LessThan(1.0))
MOI.add_constraint(optimizer, y, MOI.LessThan(1.0))
MOI.add_constraint(optimizer, z, MOI.LessThan(1.0))
c = MOI.add_constraint(
optimizer,
MOI.VectorOfVariables([x, y, z]),
MOI.SOS2([1.0, 2.0, 3.0]),
)
MOI.set(
optimizer,
MOI.ObjectiveFunction{MOI.ScalarAffineFunction{Float64}}(),
MOI.ScalarAffineFunction(
MOI.ScalarAffineTerm.([1.0, 2.0, 3.0], [x, y, z]),
0.0,
),
)
MOI.set(optimizer, MOI.ObjectiveSense(), MOI.MAX_SENSE)
@test MOI.get(optimizer, MOI.ConstraintFunction(), c) ==
MOI.VectorOfVariables([x, y, z])
@test MOI.get(optimizer, MOI.ConstraintSet(), c) ==
MOI.SOS2([1.0, 2.0, 3.0])
MOI.optimize!(optimizer)
@test MOI.get(optimizer, MOI.TerminationStatus()) == MOI.OPTIMAL
@test MOI.get(optimizer, MOI.PrimalStatus()) == MOI.FEASIBLE_POINT
atol, rtol = 1e-6, 1e-6
@test MOI.get(optimizer, MOI.ObjectiveValue()) ≈ 5.0 atol = atol rtol = rtol
@test MOI.get(optimizer, MOI.VariablePrimal(), x) ≈ 0.0 atol = atol rtol =
rtol
@test MOI.get(optimizer, MOI.VariablePrimal(), y) ≈ 1.0 atol = atol rtol =
rtol
@test MOI.get(optimizer, MOI.VariablePrimal(), z) ≈ 1.0 atol = atol rtol =
rtol
end
@testset "indicator constraints" begin
optimizer = SCIP.Optimizer()
x1 = MOI.add_variable(optimizer)
x2 = MOI.add_variable(optimizer)
x3 = MOI.add_variable(optimizer)
y = MOI.add_variable(optimizer)
t = MOI.add_constraint(optimizer, y, MOI.ZeroOne())
iset = MOI.Indicator{MOI.ACTIVATE_ON_ONE}(MOI.LessThan(1.0))
ind_func = MOI.VectorAffineFunction(
[
MOI.VectorAffineTerm(1, MOI.ScalarAffineTerm(1.0, y)),
MOI.VectorAffineTerm(2, MOI.ScalarAffineTerm(1.0, x1)),
MOI.VectorAffineTerm(2, MOI.ScalarAffineTerm(1.0, x2)),
MOI.VectorAffineTerm(2, MOI.ScalarAffineTerm(1.0, x3)),
],
[0.0, 0.0],
)
c = MOI.add_constraint(optimizer, ind_func, iset)
@test MOI.get(optimizer, MOI.ConstraintFunction(), c) ≈ ind_func
@test MOI.get(optimizer, MOI.ConstraintSet(), c) == iset
@test MOI.delete(optimizer, c) === nothing
# adding incorrect function throws
ind_func_wrong = MOI.VectorAffineFunction(
[
MOI.VectorAffineTerm(1, MOI.ScalarAffineTerm(1.0, y)),
MOI.VectorAffineTerm(1, MOI.ScalarAffineTerm(1.0, x1)),
MOI.VectorAffineTerm(2, MOI.ScalarAffineTerm(1.0, x2)),
MOI.VectorAffineTerm(2, MOI.ScalarAffineTerm(1.0, x3)),
],
[0.0, 0.0],
)
@test_throws ErrorException MOI.add_constraint(
optimizer,
ind_func_wrong,
iset,
)
ind_func_wrong2 = MOI.VectorAffineFunction(
[
MOI.VectorAffineTerm(2, MOI.ScalarAffineTerm(1.0, x2)),
MOI.VectorAffineTerm(2, MOI.ScalarAffineTerm(1.0, x3)),
],
[0.0, 0.0],
)
@test_throws ErrorException MOI.add_constraint(
optimizer,
ind_func_wrong2,
iset,
)
end
@testset "deleting variables" begin
optimizer = SCIP.Optimizer()
# add variable and constraint
x = MOI.add_variable(optimizer)
c = MOI.add_constraint(
optimizer,
MOI.ScalarAffineFunction([MOI.ScalarAffineTerm(1.0, x)], 0.0),
MOI.EqualTo(0.0),
)
@test !MOI.is_empty(optimizer)
# delete them (constraint first!)
MOI.delete(optimizer, c)
MOI.delete(optimizer, x)
@test MOI.is_empty(optimizer)
# add variable and constraint (again)
x = MOI.add_variable(optimizer)
c = MOI.add_constraint(
optimizer,
MOI.ScalarAffineFunction([MOI.ScalarAffineTerm(1.0, x)], 0.0),
MOI.EqualTo(0.0),
)
@test !MOI.is_empty(optimizer)
# fail to delete them in wrong order
@test_throws MOI.DeleteNotAllowed MOI.delete(optimizer, x)
end
@testset "set_parameter" begin
# bool
optimizer = SCIP.Optimizer(; branching_preferbinary=true)
@test MOI.get(
optimizer,
MOI.RawOptimizerAttribute("branching/preferbinary"),
) == true
# int
optimizer = SCIP.Optimizer(; conflict_minmaxvars=1)
@test MOI.get(
optimizer,
MOI.RawOptimizerAttribute("conflict/minmaxvars"),
) == 1
# long int
optimizer = SCIP.Optimizer(; heuristics_alns_maxnodes=2)
@test MOI.get(
optimizer,
MOI.RawOptimizerAttribute("heuristics/alns/maxnodes"),
) == 2
# real
optimizer = SCIP.Optimizer(; branching_scorefac=0.15)
@test MOI.get(optimizer, MOI.RawOptimizerAttribute("branching/scorefac")) ==
0.15
# char
optimizer = SCIP.Optimizer(; branching_scorefunc='s')
@test MOI.get(
optimizer,
MOI.RawOptimizerAttribute("branching/scorefunc"),
) == 's'
# string
optimizer = SCIP.Optimizer(; heuristics_alns_rewardfilename="abc.txt")
@test MOI.get(
optimizer,
MOI.RawOptimizerAttribute("heuristics/alns/rewardfilename"),
) == "abc.txt"
# invalid
@test_throws ErrorException SCIP.Optimizer(some_invalid_param_name=true)
end
@testset "use RawParameter" begin
optimizer = SCIP.Optimizer()
# bool
MOI.set(
optimizer,
MOI.RawOptimizerAttribute("branching/preferbinary"),
true,
)
@test MOI.get(
optimizer,
MOI.RawOptimizerAttribute("branching/preferbinary"),
) == true
# int
MOI.set(optimizer, MOI.RawOptimizerAttribute("conflict/minmaxvars"), 1)
@test MOI.get(
optimizer,
MOI.RawOptimizerAttribute("conflict/minmaxvars"),
) == 1
# long int
MOI.set(optimizer, MOI.RawOptimizerAttribute("heuristics/alns/maxnodes"), 2)
@test MOI.get(
optimizer,
MOI.RawOptimizerAttribute("heuristics/alns/maxnodes"),
) == 2
# real
MOI.set(optimizer, MOI.RawOptimizerAttribute("branching/scorefac"), 0.15)
@test MOI.get(optimizer, MOI.RawOptimizerAttribute("branching/scorefac")) ==
0.15
# char
MOI.set(optimizer, MOI.RawOptimizerAttribute("branching/scorefunc"), 's')
@test MOI.get(
optimizer,
MOI.RawOptimizerAttribute("branching/scorefunc"),
) == 's'
# string
MOI.set(
optimizer,
MOI.RawOptimizerAttribute("heuristics/alns/rewardfilename"),
"abc.txt",
)
@test MOI.get(
optimizer,
MOI.RawOptimizerAttribute("heuristics/alns/rewardfilename"),
) == "abc.txt"
# invalid
@test_throws ErrorException MOI.set(
optimizer,
MOI.RawOptimizerAttribute("some/invalid/param/name"),
true,
)
end
@testset "Silent" begin
optimizer = SCIP.Optimizer()
@test MOI.supports(optimizer, MOI.Silent())
# "loud" by default
@test MOI.get(optimizer, MOI.Silent()) == false
@test MOI.get(optimizer, MOI.RawOptimizerAttribute("display/verblevel")) ==
4
# make it silent
MOI.set(optimizer, MOI.Silent(), true)
@test MOI.get(optimizer, MOI.Silent()) == true
@test MOI.get(optimizer, MOI.RawOptimizerAttribute("display/verblevel")) ==
0
# but a user can override it
MOI.set(optimizer, MOI.RawOptimizerAttribute("display/verblevel"), 1)
@test MOI.get(optimizer, MOI.Silent()) == false
@test MOI.get(optimizer, MOI.RawOptimizerAttribute("display/verblevel")) ==
1
end
@testset "Query results (before/after solve)" begin
optimizer = SCIP.Optimizer(; display_verblevel=0)
atol, rtol = 1e-6, 1e-6
x, y = MOI.add_variables(optimizer, 2)
MOI.add_constraint(optimizer, x, MOI.GreaterThan(0.0))
MOI.add_constraint(optimizer, y, MOI.GreaterThan(0.0))
c = MOI.add_constraint(
optimizer,
MOI.ScalarAffineFunction(
MOI.ScalarAffineTerm.([1.0, 1.0], [x, y]),
0.0,
),
MOI.LessThan(1.0),
)
MOI.set(
optimizer,
MOI.ObjectiveFunction{MOI.ScalarAffineFunction{Float64}}(),
MOI.ScalarAffineFunction(
MOI.ScalarAffineTerm.([1.0, 2.0], [x, y]),
0.0,
),
)
MOI.set(optimizer, MOI.ObjectiveSense(), MOI.MAX_SENSE)
# before optimize: can not query most results
@test MOI.get(optimizer, MOI.TerminationStatus()) == MOI.OPTIMIZE_NOT_CALLED
@test MOI.get(optimizer, MOI.PrimalStatus()) == MOI.NO_SOLUTION
@test_throws ErrorException MOI.get(optimizer, MOI.ObjectiveValue())
@test_throws ErrorException MOI.get(optimizer, MOI.VariablePrimal(), x)
@test_throws ErrorException MOI.get(optimizer, MOI.ConstraintPrimal(), c)
@test_throws ErrorException MOI.get(optimizer, MOI.ObjectiveBound())
@test_throws ErrorException MOI.get(optimizer, MOI.RelativeGap())
@test MOI.get(optimizer, MOI.SolveTimeSec()) ≈ 0.0 atol = atol rtol = rtol
@test_throws ErrorException MOI.get(optimizer, MOI.SimplexIterations())
@test MOI.get(optimizer, MOI.NodeCount()) == 0
# after optimize
MOI.optimize!(optimizer)
@test MOI.get(optimizer, MOI.TerminationStatus()) == MOI.OPTIMAL
@test MOI.get(optimizer, MOI.PrimalStatus()) == MOI.FEASIBLE_POINT
@test MOI.get(optimizer, MOI.ObjectiveValue()) ≈ 2.0 atol = atol rtol = rtol
@test MOI.get(optimizer, MOI.VariablePrimal(), x) ≈ 0.0 atol = atol rtol =
rtol
@test MOI.get(optimizer, MOI.VariablePrimal(), y) ≈ 1.0 atol = atol rtol =
rtol
@test MOI.get(optimizer, MOI.ConstraintPrimal(), c) ≈ 1.0 atol = atol rtol =
rtol
@test MOI.get(optimizer, MOI.ObjectiveBound()) ≈ 2.0 atol = atol rtol = rtol
@test MOI.get(optimizer, MOI.RelativeGap()) ≈ 0.0 atol = atol rtol = rtol
@test MOI.get(optimizer, MOI.SolveTimeSec()) < 1.0
@test MOI.get(optimizer, MOI.SimplexIterations()) <= 3 # conservative
@test MOI.get(optimizer, MOI.NodeCount()) <= 1 # conservative
end
@testset "Primal start values" begin
# stop after first feasible solution
optimizer = SCIP.Optimizer(;
display_verblevel=0,
limits_solutions=1,
presolving_maxrounds=0,
)
atol, rtol = 1e-6, 1e-6
# x, y binary
x, y = MOI.add_variables(optimizer, 2)
b1 = MOI.add_constraint(optimizer, x, MOI.ZeroOne())
b2 = MOI.add_constraint(optimizer, y, MOI.ZeroOne())
# x + y <= 1
c = MOI.add_constraint(optimizer, 1.0x + y, MOI.LessThan(1.0))
# max x + 2y
MOI.set(
optimizer,
MOI.ObjectiveFunction{MOI.ScalarAffineFunction{Float64}}(),
1.0x + 2.0y,
)
MOI.set(optimizer, MOI.ObjectiveSense(), MOI.MAX_SENSE)
# optimal solution: x = 0, y = 1, value = 2
# we submit the suboptimal x = 1 as start value
@test MOI.supports(optimizer, MOI.VariablePrimalStart(), MOI.VariableIndex)
# first set only the value for one variable
MOI.set(optimizer, MOI.VariablePrimalStart(), x, 1.0)
@test MOI.get(optimizer, MOI.VariablePrimalStart(), x) == 1.0
@test MOI.get(optimizer, MOI.VariablePrimalStart(), y) === nothing
# unset the value
MOI.set(optimizer, MOI.VariablePrimalStart(), x, nothing)
@test MOI.get(optimizer, MOI.VariablePrimalStart(), x) === nothing
@test MOI.get(optimizer, MOI.VariablePrimalStart(), y) === nothing
# set all values (again)
MOI.set(optimizer, MOI.VariablePrimalStart(), [x, y], [1.0, nothing])
@test MOI.get(optimizer, MOI.VariablePrimalStart(), x) == 1.0
@test MOI.get(optimizer, MOI.VariablePrimalStart(), y) === nothing
# "solve"
MOI.optimize!(optimizer)
@test MOI.get(optimizer, MOI.TerminationStatus()) == MOI.SOLUTION_LIMIT
@test MOI.get(optimizer, MOI.PrimalStatus()) == MOI.FEASIBLE_POINT
end
@testset "No dual solution" begin
optimizer = SCIP.Optimizer(; display_verblevel=0)
MOI.optimize!(optimizer)
@test MOI.get(optimizer, MOI.DualStatus()) == MOI.NO_SOLUTION
end
@testset "broken indicator test" for presolving in (1, 0)
model = MOIB.full_bridge_optimizer(
SCIP.Optimizer(; display_verblevel=0, presolving_maxrounds=presolving),
Float64,
)
config = MOIT.Config(;
atol=5e-3,
rtol=1e-4,
exclude=Any[
MOI.ConstraintDual,
MOI.ConstraintName,
MOI.DualObjectiveValue,
MOI.VariableBasisStatus,
MOI.ConstraintBasisStatus,
],
)
T = Float64
x1 = MOI.add_variable(model)
x2 = MOI.add_variable(model)
z1 = MOI.add_variable(model)
z2 = MOI.add_variable(model)
vc1 = MOI.add_constraint(model, z1, MOI.ZeroOne())
@test vc1.value == z1.value
vc2 = MOI.add_constraint(model, z2, MOI.ZeroOne())
@test vc2.value == z2.value
f1 = MOI.VectorAffineFunction(
[
MOI.VectorAffineTerm(1, MOI.ScalarAffineTerm(T(1), z1)),
MOI.VectorAffineTerm(2, MOI.ScalarAffineTerm(T(1), x2)),
],
T[0, 0],
)
iset1 = MOI.Indicator{MOI.ACTIVATE_ON_ZERO}(MOI.LessThan(T(8)))
MOI.add_constraint(model, f1, iset1)
f2 = MOI.VectorAffineFunction(
[
MOI.VectorAffineTerm(1, MOI.ScalarAffineTerm(T(1), z2)),
MOI.VectorAffineTerm(2, MOI.ScalarAffineTerm(T(1 // 5), x1)),
MOI.VectorAffineTerm(2, MOI.ScalarAffineTerm(T(1), x2)),
],
T[0, 0],
)
iset2 = MOI.Indicator{MOI.ACTIVATE_ON_ONE}(MOI.LessThan(T(9)))
MOI.add_constraint(model, f2, iset2)
# Additional regular constraint.
MOI.add_constraint(
model,
MOI.ScalarAffineFunction(
[MOI.ScalarAffineTerm(T(1), x1), MOI.ScalarAffineTerm(T(1), x2)],
T(0),
),
MOI.LessThan(T(10)),
)
# Disjunction (1-z1) ⋁ z2
MOI.add_constraint(
model,
MOI.ScalarAffineFunction(
[MOI.ScalarAffineTerm(T(-1), z1), MOI.ScalarAffineTerm(T(1), z2)],
T(0),
),
MOI.GreaterThan(T(0)),
)
MOI.set(
model,
MOI.ObjectiveFunction{MOI.ScalarAffineFunction{T}}(),
MOI.ScalarAffineFunction(
MOI.ScalarAffineTerm.(T[2, 3], [x1, x2]),
T(0),
),
)
MOI.set(model, MOI.ObjectiveSense(), MOI.MAX_SENSE)
@test MOI.get(model, MOI.TerminationStatus()) == MOI.OPTIMIZE_NOT_CALLED
MOI.optimize!(model)
if presolving == 1 && v"8.0.1" <= SCIP.SCIP_versionnumber() <= v"8.0.2"
@test_broken MOI.get(model, MOI.TerminationStatus()) ==
config.optimal_status
@test_broken MOI.get(model, MOI.PrimalStatus()) == MOI.FEASIBLE_POINT
else
@test MOI.get(model, MOI.TerminationStatus()) == config.optimal_status
@test MOI.get(model, MOI.PrimalStatus()) == MOI.FEASIBLE_POINT
@test ≈(MOI.get(model, MOI.ObjectiveValue()), T(115 // 4), config)
@test ≈(MOI.get(model, MOI.VariablePrimal(), x1), T(5 // 4), config)
@test ≈(MOI.get(model, MOI.VariablePrimal(), x2), T(35 // 4), config)
@test ≈(MOI.get(model, MOI.VariablePrimal(), z1), T(1), config)
@test ≈(MOI.get(model, MOI.VariablePrimal(), z2), T(1), config)
end
end
@testset "Presolving $presolving" for presolving in (true, false)
optimizer = SCIP.Optimizer(; display_verblevel=0)
atol, rtol = 1e-6, 1e-6
x, y = MOI.add_variables(optimizer, 2)
MOI.add_constraint(optimizer, x, MOI.GreaterThan(0.0))
MOI.add_constraint(optimizer, y, MOI.GreaterThan(0.0))
c = MOI.add_constraint(
optimizer,
MOI.ScalarAffineFunction(
MOI.ScalarAffineTerm.([1.0, 1.0], [x, y]),
0.0,
),
MOI.LessThan(1.0),
)
MOI.set(
optimizer,
MOI.ObjectiveFunction{MOI.ScalarAffineFunction{Float64}}(),
MOI.ScalarAffineFunction(
MOI.ScalarAffineTerm.([1.0, 2.0], [x, y]),
0.0,
),
)
MOI.set(optimizer, MOI.ObjectiveSense(), MOI.MAX_SENSE)
@test MOI.get(optimizer, SCIP.Presolving()) == true
MOI.set(optimizer, SCIP.Presolving(), presolving)
@test MOI.get(optimizer, SCIP.Presolving()) == presolving
# after optimize
MOI.optimize!(optimizer)
MOI.set(optimizer, SCIP.Presolving(), presolving)
@test MOI.get(optimizer, SCIP.Presolving()) == presolving
end
| SCIP | https://github.com/scipopt/SCIP.jl.git |
|
[
"MIT"
] | 0.11.14 | 3d6a6516d6940a93b732e8ec7127652a0ead89c6 | code | 8447 | using MathOptInterface
const MOI = MathOptInterface
@testset "NaiveAllDiff (two binary vars)" begin
optimizer = SCIP.Optimizer(; display_verblevel=0)
atol, rtol = 1e-6, 1e-6
# add two binary variables: x, y
x, y = MOI.add_variables(optimizer, 2)
MOI.add_constraint(optimizer, x, MOI.ZeroOne())
MOI.add_constraint(optimizer, y, MOI.ZeroOne())
# maximize 2x + y
MOI.set(
optimizer,
MOI.ObjectiveFunction{MOI.ScalarAffineFunction{Float64}}(),
MOI.ScalarAffineFunction(
MOI.ScalarAffineTerm.([2.0, 1.0], [x, y]),
0.0,
),
)
MOI.set(optimizer, MOI.ObjectiveSense(), MOI.MAX_SENSE)
# add constraint handler with constraint all-diff(x, y)
alldiffch = NaiveAllDiff.NADCH(optimizer)
SCIP.include_conshdlr(optimizer, alldiffch; needs_constraints=true)
alldiffcons = NaiveAllDiff.NADCons([x, y])
cr = SCIP.add_constraint(optimizer, alldiffch, alldiffcons)
# solve problem and query result
MOI.optimize!(optimizer)
@test MOI.get(optimizer, MOI.TerminationStatus()) == MOI.OPTIMAL
@test MOI.get(optimizer, MOI.PrimalStatus()) == MOI.FEASIBLE_POINT
@test MOI.get(optimizer, MOI.ObjectiveValue()) ≈ 2.0 atol = atol rtol = rtol
@test MOI.get(optimizer, MOI.VariablePrimal(), x) ≈ 1.0 atol = atol rtol =
rtol
@test MOI.get(optimizer, MOI.VariablePrimal(), y) ≈ 0.0 atol = atol rtol =
rtol
end
@testset "NaiveAllDiff (3 bin.vars, 2 pairwise conss)" begin
optimizer = SCIP.Optimizer(; display_verblevel=0)
atol, rtol = 1e-6, 1e-6
# add three binary variables
x, y, z = MOI.add_variables(optimizer, 3)
MOI.add_constraint(optimizer, x, MOI.ZeroOne())
MOI.add_constraint(optimizer, y, MOI.ZeroOne())
MOI.add_constraint(optimizer, z, MOI.ZeroOne())
# maximize 2x + 3y + 2z
MOI.set(
optimizer,
MOI.ObjectiveFunction{MOI.ScalarAffineFunction{Float64}}(),
MOI.ScalarAffineFunction(
MOI.ScalarAffineTerm.([2.0, 3.0, 2.0], [x, y, z]),
0.0,
),
)
MOI.set(optimizer, MOI.ObjectiveSense(), MOI.MAX_SENSE)
# add constraint handler with constraints all-diff(x, y), all-diff(y, x)
alldiffch = NaiveAllDiff.NADCH(optimizer)
SCIP.include_conshdlr(optimizer, alldiffch; needs_constraints=true)
SCIP.add_constraint(optimizer, alldiffch, NaiveAllDiff.NADCons([x, y]))
SCIP.add_constraint(optimizer, alldiffch, NaiveAllDiff.NADCons([y, z]))
# solve problem and query result
MOI.optimize!(optimizer)
@test MOI.get(optimizer, MOI.TerminationStatus()) == MOI.OPTIMAL
@test MOI.get(optimizer, MOI.PrimalStatus()) == MOI.FEASIBLE_POINT
@test MOI.get(optimizer, MOI.ObjectiveValue()) ≈ 4.0 atol = atol rtol = rtol
@test MOI.get(optimizer, MOI.VariablePrimal(), x) ≈ 1.0 atol = atol rtol =
rtol
@test MOI.get(optimizer, MOI.VariablePrimal(), y) ≈ 0.0 atol = atol rtol =
rtol
@test MOI.get(optimizer, MOI.VariablePrimal(), z) ≈ 1.0 atol = atol rtol =
rtol
end
@testset "NaiveAllDiff (3 bin.vars, 3 pairwise conss)" begin
optimizer = SCIP.Optimizer(; display_verblevel=0)
atol, rtol = 1e-6, 1e-6
# add three binary variables
x, y, z = MOI.add_variables(optimizer, 3)
MOI.add_constraint(optimizer, x, MOI.ZeroOne())
MOI.add_constraint(optimizer, y, MOI.ZeroOne())
MOI.add_constraint(optimizer, z, MOI.ZeroOne())
# maximize 2x + 3y + 2z
MOI.set(
optimizer,
MOI.ObjectiveFunction{MOI.ScalarAffineFunction{Float64}}(),
MOI.ScalarAffineFunction(
MOI.ScalarAffineTerm.([2.0, 3.0, 2.0], [x, y, z]),
0.0,
),
)
MOI.set(optimizer, MOI.ObjectiveSense(), MOI.MAX_SENSE)
# add constraint handler with constraints all-diff(x, y, z)
alldiffch = NaiveAllDiff.NADCH(optimizer)
SCIP.include_conshdlr(optimizer, alldiffch; needs_constraints=true)
SCIP.add_constraint(optimizer, alldiffch, NaiveAllDiff.NADCons([x, y]))
SCIP.add_constraint(optimizer, alldiffch, NaiveAllDiff.NADCons([x, z]))
SCIP.add_constraint(optimizer, alldiffch, NaiveAllDiff.NADCons([y, z]))
# solve problem and query result
MOI.optimize!(optimizer)
@test MOI.get(optimizer, MOI.TerminationStatus()) == MOI.INFEASIBLE
@test MOI.get(optimizer, MOI.PrimalStatus()) == MOI.NO_SOLUTION
@test MOI.get(optimizer, MOI.NodeCount()) >= 8 # complete enumeration
end
@testset "NaiveAllDiff (3 bin.vars, 1 cons with all)" begin
optimizer = SCIP.Optimizer(; display_verblevel=0)
atol, rtol = 1e-6, 1e-6
# add three binary variables
x, y, z = MOI.add_variables(optimizer, 3)
MOI.add_constraint(optimizer, x, MOI.ZeroOne())
MOI.add_constraint(optimizer, y, MOI.ZeroOne())
MOI.add_constraint(optimizer, z, MOI.ZeroOne())
# maximize 2x + 3y + 2z
MOI.set(
optimizer,
MOI.ObjectiveFunction{MOI.ScalarAffineFunction{Float64}}(),
MOI.ScalarAffineFunction(
MOI.ScalarAffineTerm.([2.0, 3.0, 2.0], [x, y, z]),
0.0,
),
)
MOI.set(optimizer, MOI.ObjectiveSense(), MOI.MAX_SENSE)
# add constraint handler with constraints all-diff(x, y, z)
alldiffch = NaiveAllDiff.NADCH(optimizer)
SCIP.include_conshdlr(optimizer, alldiffch; needs_constraints=true)
SCIP.add_constraint(optimizer, alldiffch, NaiveAllDiff.NADCons([x, y, z]))
# solve problem and query result
MOI.optimize!(optimizer)
@test MOI.get(optimizer, MOI.TerminationStatus()) == MOI.INFEASIBLE
@test MOI.get(optimizer, MOI.PrimalStatus()) == MOI.NO_SOLUTION
@test MOI.get(optimizer, MOI.NodeCount()) >= 8 # complete enumeration
end
@testset "NaiveAllDiff (3 int.vars, 1 cons with all)" begin
optimizer = SCIP.Optimizer(; display_verblevel=0)
atol, rtol = 1e-6, 1e-6
# add three integer variables, in {0, 1, 2}
x, y, z = MOI.add_variables(optimizer, 3)
for v in [x, y, z]
MOI.add_constraint(optimizer, v, MOI.Integer())
MOI.add_constraint(optimizer, v, MOI.Interval(0.0, 2.0))
end
# maximize 2x + y
MOI.set(
optimizer,
MOI.ObjectiveFunction{MOI.ScalarAffineFunction{Float64}}(),
MOI.ScalarAffineFunction(
MOI.ScalarAffineTerm.([2.0, 1.0], [x, y]),
0.0,
),
)
MOI.set(optimizer, MOI.ObjectiveSense(), MOI.MAX_SENSE)
# add constraint handler with constraints all-diff(x, y, z)
alldiffch = NaiveAllDiff.NADCH(optimizer)
SCIP.include_conshdlr(optimizer, alldiffch; needs_constraints=true)
SCIP.add_constraint(optimizer, alldiffch, NaiveAllDiff.NADCons([x, y, z]))
# solve problem and query result
MOI.optimize!(optimizer)
@test MOI.get(optimizer, MOI.TerminationStatus()) == MOI.OPTIMAL
@test MOI.get(optimizer, MOI.PrimalStatus()) == MOI.FEASIBLE_POINT
@test MOI.get(optimizer, MOI.ObjectiveValue()) ≈ 5.0 atol = atol rtol = rtol
@test MOI.get(optimizer, MOI.VariablePrimal(), x) ≈ 2.0 atol = atol rtol =
rtol
@test MOI.get(optimizer, MOI.VariablePrimal(), y) ≈ 1.0 atol = atol rtol =
rtol
@test MOI.get(optimizer, MOI.VariablePrimal(), z) ≈ 0.0 atol = atol rtol =
rtol
end
@testset "NoGoodCounter (2 binary vars)" begin
optimizer = SCIP.Optimizer(; display_verblevel=0, presolving_maxrounds=0)
allow_dual_reductions =
MOI.RawOptimizerAttribute("misc/allowstrongdualreds")
MOI.set(optimizer, allow_dual_reductions, SCIP.FALSE)
atol, rtol = 1e-6, 1e-6
# add binary variables
x, y = MOI.add_variables(optimizer, 2)
MOI.add_constraint(optimizer, x, MOI.ZeroOne())
MOI.add_constraint(optimizer, y, MOI.ZeroOne())
# maximize 2x + y
MOI.set(
optimizer,
MOI.ObjectiveFunction{MOI.ScalarAffineFunction{Float64}}(),
MOI.ScalarAffineFunction(
MOI.ScalarAffineTerm.([2.0, 1.0], [x, y]),
0.0,
),
)
MOI.set(optimizer, MOI.ObjectiveSense(), MOI.MAX_SENSE)
# add constraint handler with constraints
counter = NoGoodCounter.Counter(optimizer, [x, y])
SCIP.include_conshdlr(optimizer, counter; needs_constraints=false)
# solve problem and query result
MOI.optimize!(optimizer)
@test MOI.get(optimizer, MOI.TerminationStatus()) == MOI.INFEASIBLE
@test MOI.get(optimizer, MOI.PrimalStatus()) == MOI.NO_SOLUTION
@test length(counter.solutions) == 4
end
| SCIP | https://github.com/scipopt/SCIP.jl.git |
|
[
"MIT"
] | 0.11.14 | 3d6a6516d6940a93b732e8ec7127652a0ead89c6 | code | 5160 | using MathOptInterface
const MOI = MathOptInterface
# Simple evaluator for testing
struct ExprEvaluator <: MOI.AbstractNLPEvaluator
constraints::Vector{Expr}
end
function MOI.initialize(d::ExprEvaluator, requested_features::Vector{Symbol})
if requested_features != [:ExprGraph]
error("Only supports expression graph!")
end
end
MOI.constraint_expr(evaluator::ExprEvaluator, i) = evaluator.constraints[i]
@testset "linear expressions" begin
optimizer = SCIP.Optimizer(; display_verblevel=0)
@test MOI.supports(optimizer, MOI.NLPBlock()) == true
# min. -x
# s.t. 2x + y <= 1.5
# x,y >= 0
x, y = MOI.add_variables(optimizer, 2)
# bounds
MOI.add_constraint(optimizer, x, MOI.GreaterThan(0.0))
MOI.add_constraint(optimizer, y, MOI.GreaterThan(0.0))
# "nonlinear" constraints (x => x[1], y => x[2])
data = MOI.NLPBlockData(
[MOI.NLPBoundsPair(-Inf, 1.5)],
ExprEvaluator([:(2 * x[$x] + x[$y] <= 1.5)]),
false, # no objective
)
MOI.set(optimizer, MOI.NLPBlock(), data)
# objective
MOI.set(
optimizer,
MOI.ObjectiveFunction{MOI.ScalarAffineFunction{Float64}}(),
MOI.ScalarAffineFunction(MOI.ScalarAffineTerm.([-1.0], [x]), 0.0),
)
MOI.set(optimizer, MOI.ObjectiveSense(), MOI.MIN_SENSE)
# solve
MOI.optimize!(optimizer)
@test MOI.get(optimizer, MOI.TerminationStatus()) == MOI.OPTIMAL
@test MOI.get(optimizer, MOI.PrimalStatus()) == MOI.FEASIBLE_POINT
atol, rtol = 1e-6, 1e-6
@test MOI.get(optimizer, MOI.ObjectiveValue()) ≈ -0.75 atol = atol rtol =
rtol
@test MOI.get(optimizer, MOI.VariablePrimal(), x) ≈ 0.75 atol = atol rtol =
rtol
@test MOI.get(optimizer, MOI.VariablePrimal(), y) ≈ 0.0 atol = atol rtol =
rtol
end
@testset "pot pourri" begin
optimizer = SCIP.Optimizer(; display_verblevel=0)
@test MOI.supports(optimizer, MOI.NLPBlock()) == true
num_vars = 21
x = MOI.add_variables(optimizer, num_vars)
for i in 1:num_vars
MOI.add_constraint(optimizer, x[i], MOI.Interval(0.1, 10.0))
end
# Nonlinear equations.
rhs = 2.0
expressions = Expr[
:(x[$(x[1])] + 0.5 == rhs), # VARIDX / CONSTANT
:(x[$(x[2])] - x[$(x[3])] == rhs), # MINUS (binary)
:(-x[$(x[4])] + 4.0 == rhs), # MINUS (unary)
:(x[$(x[5])] + x[$(x[6])] + x[$(x[7])] == rhs), # SUM
:(x[$(x[8])] * x[$(x[9])] * x[$(x[10])] == rhs), # PRODUCT
:((x[$(x[11])])^3 == rhs), # INTPOWER
:((x[$(x[12])])^0.8 == rhs), # REALPOWER
:(x[$(x[13])] / x[$(x[14])] == rhs), # DIV
:(sqrt(x[$(x[15])]) == rhs), # SQRT
:(exp(x[$(x[16])]) == rhs), # EXP
:(log(x[$(x[17])]) == rhs), # LOG
:(abs(x[$(x[18])] - 11) == rhs), # ABS
:(cos(x[$(x[19])]) + 1 == rhs), # COS
:(sin(x[$(x[20])]) + 2 == rhs), # SIN
:(x[$(x[21])] + tan(rand()) / (1 + 1.2^4.2) - 2 * 1 / 4 == rhs), # additional terms
]
data = MOI.NLPBlockData(
[MOI.NLPBoundsPair(rhs, rhs) for i in 1:length(expressions)],
ExprEvaluator(expressions),
false, # no objective
)
MOI.set(optimizer, MOI.NLPBlock(), data)
# Solve and get results.
MOI.optimize!(optimizer)
@test MOI.get(optimizer, MOI.TerminationStatus()) == MOI.OPTIMAL
@test MOI.get(optimizer, MOI.PrimalStatus()) == MOI.FEASIBLE_POINT
sol = MOI.get(optimizer, MOI.VariablePrimal(), x)
# Evaluate lhs of all the expressions with solution values.
atol, rtol = 1e-6, 1e-6
@test sol[1] + 0.5 ≈ rhs atol = atol rtol = rtol
@test sol[2] - sol[3] ≈ rhs atol = atol rtol = rtol
@test -sol[4] + 4.0 ≈ rhs atol = atol rtol = rtol
@test sol[5] + sol[6] + sol[7] ≈ rhs atol = atol rtol = rtol
@test sol[8] * sol[9] * sol[10] ≈ rhs atol = atol rtol = rtol
@test (sol[11])^3 ≈ rhs atol = atol rtol = rtol
@test (sol[12])^0.8 ≈ rhs atol = atol rtol = rtol
@test sol[13] / sol[14] ≈ rhs atol = atol rtol = rtol
@test sqrt(sol[15]) ≈ rhs atol = atol rtol = rtol
@test exp(sol[16]) ≈ rhs atol = atol rtol = rtol
@test log(sol[17]) ≈ rhs atol = atol rtol = rtol
@test abs(sol[18] - 11) ≈ rhs atol = atol rtol = rtol
@test cos(sol[19]) ≈ 1.0 atol = atol rtol = rtol
@test sin(sol[20]) ≈ 0.0 atol = atol rtol = rtol
@test isfinite(sin(sol[21]))
end
@testset "add nonlinear constraint after solve" begin
optimizer = SCIP.Optimizer(; display_verblevel=0)
MOI.set(optimizer, MOI.RawOptimizerAttribute("display/verblevel"), 0)
x, y = MOI.add_variables(optimizer, 2)
data1 = MOI.NLPBlockData(
[MOI.NLPBoundsPair(rhs, rhs) for rhs in [1.0, 2.0]],
ExprEvaluator([:(x[$x] == 1.0), :(x[$y] == 2.0)]),
false,
)
MOI.set(optimizer, MOI.NLPBlock(), data1)
MOI.optimize!(optimizer)
data2 = MOI.NLPBlockData(
[MOI.NLPBoundsPair(rhs, rhs) for rhs in [1.0, 2.0, 3.0]],
ExprEvaluator([
:(x[$x] == 1.0),
:(x[$y] == 2.0),
:(x[$x] + x[$y] == 3.0),
]),
false,
)
MOI.set(optimizer, MOI.NLPBlock(), data2)
end
| SCIP | https://github.com/scipopt/SCIP.jl.git |
|
[
"MIT"
] | 0.11.14 | 3d6a6516d6940a93b732e8ec7127652a0ead89c6 | code | 1844 | using MathOptInterface
const MOI = MathOptInterface
const MOIB = MOI.Bridges
const MOIT = MOI.Test
const BRIDGED =
MOIB.full_bridge_optimizer(SCIP.Optimizer(; display_verblevel=0), Float64)
const CONFIG_BRIDGED = MOIT.Config(;
atol=5e-3,
rtol=1e-4,
exclude=Any[
MOI.ConstraintDual,
MOI.ConstraintName,
MOI.DualObjectiveValue,
MOI.VariableBasisStatus,
MOI.ConstraintBasisStatus,
],
)
@testset "MOI unit tests" begin
excluded = copy(MOI_BASE_EXCLUDED)
append!(
excluded,
[
"test_linear_Interval_inactive",
# Can not delete variable while model contains constraints
"test_linear_integration",
"test_basic_ScalarQuadraticFunction_ZeroOne",
"test_basic_VectorAffineFunction_NormOneCone",
"test_basic_VectorAffineFunction_SOS1",
"test_basic_VectorAffineFunction_SOS2",
"test_basic_VectorQuadraticFunction_NormOneCone",
"test_basic_VectorQuadraticFunction_SOS1",
"test_basic_VectorQuadraticFunction_SOS2",
"test_quadratic_duplicate_terms", # Can not delete variable while model contains constraints
"test_quadratic_nonhomogeneous", # unsupported by bridge
"ScalarAffineFunction_ZeroOne",
"test_model_delete",
"test_conic_GeometricMeanCone_Vector",
"test_basic_VectorOfVariables_GeometricMeanCone",
"test_basic_VectorQuadraticFunction_GeometricMeanCone",
"test_basic_VectorAffineFunction_GeometricMeanCone",
"test_variable_delete_SecondOrderCone",
"test_linear_Indicator_ON_ZERO",
],
)
MOIT.runtests(
BRIDGED,
CONFIG_BRIDGED;
warn_unsupported=false,
exclude=excluded,
)
end
| SCIP | https://github.com/scipopt/SCIP.jl.git |
|
[
"MIT"
] | 0.11.14 | 3d6a6516d6940a93b732e8ec7127652a0ead89c6 | code | 1144 | using MathOptInterface
const MOI = MathOptInterface
@testset "MOI_wrapper_cached" begin
MOI.Test.runtests(
MOI.Bridges.full_bridge_optimizer(
MOI.Utilities.CachingOptimizer(
MOI.Utilities.UniversalFallback(MOI.Utilities.Model{Float64}()),
SCIP.Optimizer(; display_verblevel=0),
),
Float64,
),
MOI.Test.Config(;
atol=5e-3,
rtol=1e-4,
exclude=Any[
MOI.ConstraintDual,
MOI.DualObjectiveValue,
MOI.VariableBasisStatus,
MOI.ConstraintBasisStatus,
],
);
exclude=[
# Upstream problem in MOI.Test: InexactError: trunc(Int64, 1.0e20)
"test_cpsat_CountGreaterThan",
# SCIP does not support nonlinear objective functions.
"test_nonlinear_hs071_NLPBlockDual",
"test_nonlinear_invalid",
"test_nonlinear_objective",
"test_nonlinear_objective_and_moi_objective_test",
"test_linear_Indicator_ON_ZERO", # error on SCIP
],
)
end
| SCIP | https://github.com/scipopt/SCIP.jl.git |
|
[
"MIT"
] | 0.11.14 | 3d6a6516d6940a93b732e8ec7127652a0ead89c6 | code | 913 | using MathOptInterface
const MOI = MathOptInterface
const MOIT = MOI.Test
const OPTIMIZER = SCIP.Optimizer(; display_verblevel=0)
const CONFIG_DIRECT = MOIT.Config(;
atol=5e-3,
rtol=1e-4,
exclude=Any[
MOI.ConstraintDual,
MOI.ConstraintName,
MOI.DualObjectiveValue,
MOI.VariableBasisStatus,
MOI.ConstraintBasisStatus,
],
)
@testset "MOI unit tests" begin
excluded = copy(MOI_BASE_EXCLUDED)
append!(
excluded,
[
"test_linear_integration", # Can not delete variable while model contains constraints
"test_basic_VectorOfVariables_SecondOrderCone",
"test_conic_SecondOrderCone_nonnegative_post_bound",
"test_variable_delete_SecondOrderCone",
],
)
MOIT.runtests(
OPTIMIZER,
CONFIG_DIRECT;
warn_unsupported=false,
exclude=excluded,
)
end
| SCIP | https://github.com/scipopt/SCIP.jl.git |
|
[
"MIT"
] | 0.11.14 | 3d6a6516d6940a93b732e8ec7127652a0ead89c6 | code | 2605 | using SCIP
import MathOptInterface as MOI
using Test
using LinearAlgebra
using Random
Random.seed!(42)
"""
Select the most fractional variable to branch on.
"""
mutable struct MostFractional <: SCIP.AbstractBranchingRule
ncalls::Int
end
MostFractional() = MostFractional(0)
# we only specialize the branching on LP rule
function SCIP.branch(branchrule::MostFractional, scip, allow_additional_constraints, type::SCIP.BranchingLP)
branchrule.ncalls += 1
(candidates, _, candidates_fractionalities, nprio, nimplied) = SCIP.get_branching_candidates(scip)
candidate_idx = argmax(idx -> abs(candidates_fractionalities[idx] - 0.5), 1:nprio)
var = candidates[candidate_idx]
SCIP.branch_on_candidate!(scip, var)
return (SCIP.SCIP_OKAY, SCIP.SCIP_BRANCHED)
end
@testset "branchrule" begin
# removing presolving and cuts to solve a non-trivial problem that requires some branching
o = SCIP.Optimizer(; presolving_maxrounds=0)
MOI.set(o, MOI.RawOptimizerAttribute("separating/maxrounds"), 0)
MOI.set(o, MOI.RawOptimizerAttribute("separating/maxcutsroot"), 0)
MOI.set(o, MOI.RawOptimizerAttribute("separating/maxaddrounds"), 0)
MOI.set(o, MOI.Silent(), true)
branchrule = MostFractional()
name = "my_branchrule"
description = "a most infeasible branching rule"
priority = 15_000
SCIP.include_branchrule(
o,
branchrule,
name=name,
description=description,
priority=priority,
)
branchrule_pointer = o.inner.branchrule_storage[branchrule]
@test unsafe_string(SCIP.LibSCIP.SCIPbranchruleGetName(branchrule_pointer)) == name
@test unsafe_string(SCIP.LibSCIP.SCIPbranchruleGetDesc(branchrule_pointer)) ==
description
@test SCIP.LibSCIP.SCIPbranchruleGetPriority(branchrule_pointer) == priority
@test SCIP.LibSCIP.SCIPbranchruleGetData(branchrule_pointer) ==
pointer_from_objref(branchrule)
n = 20
x = MOI.add_variables(o, n)
MOI.add_constraint.(o, x, MOI.Integer())
MOI.add_constraint.(o, x, MOI.GreaterThan(-0.1))
MOI.add_constraint.(o, x, MOI.LessThan(2.3))
MOI.add_constraint(o, sum(x; init=0.0), MOI.LessThan(12.5))
for _ in 1:10
MOI.add_constraint(
o,
2.0 * dot(rand(n), x),
MOI.LessThan(10.0 + 2 * rand()),
)
end
func = -dot(rand(n), x)
MOI.set(o, MOI.ObjectiveFunction{typeof(func)}(), func)
MOI.set(o, MOI.ObjectiveSense(), MOI.MIN_SENSE)
MOI.optimize!(o)
@test MOI.get(o, MOI.TerminationStatus()) == MOI.OPTIMAL
@test branchrule.ncalls > 0
end
| SCIP | https://github.com/scipopt/SCIP.jl.git |
|
[
"MIT"
] | 0.11.14 | 3d6a6516d6940a93b732e8ec7127652a0ead89c6 | code | 3690 | @testset "dummy conshdlr (always satisfied, no constraint)" begin
# create an empty problem
o = SCIP.Optimizer()
MOI.set(o, MOI.Silent(), true)
SCIP.set_parameter(o.inner, "display/verblevel", 0)
# add the constraint handler
ch = Dummy.DummyConsHdlr()
SCIP.include_conshdlr(
o.inner.scip[],
o.inner.conshdlrs,
ch;
needs_constraints=false,
)
# solve the problem
SCIP.@SCIP_CALL SCIP.SCIPsolve(o.inner.scip[])
@test ch.check_called >= 1
@test ch.enfo_called == 0
@test ch.lock_called == 1
# free the problem
finalize(o)
end
@testset "dummy conshdlr (always satisfied, with constraint)" begin
# create an empty problem
o = SCIP.Optimizer()
MOI.set(o, MOI.Silent(), true)
# add the constraint handler
ch = Dummy.DummyConsHdlr()
SCIP.include_conshdlr(
o.inner.scip[],
o.inner.conshdlrs,
ch;
needs_constraints=true,
)
# add dummy constraint
cr = SCIP.add_constraint(o.inner, ch, Dummy.DummyCons())
# solve the problem
SCIP.@SCIP_CALL SCIP.SCIPsolve(o.inner.scip[])
@test ch.check_called >= 1
@test ch.enfo_called == 0
@test ch.lock_called == 1
# free the problem
finalize(o)
end
@testset "dummy conshdlr (always satisfied, no constraint, but needs it)" begin
# create an empty problem
o = SCIP.Optimizer()
MOI.set(o, MOI.Silent(), true)
# add the constraint handler
ch = Dummy.DummyConsHdlr()
SCIP.include_conshdlr(
o.inner.scip[],
o.inner.conshdlrs,
ch;
needs_constraints=true,
)
# solve the problem
SCIP.@SCIP_CALL SCIP.SCIPsolve(o.inner.scip[])
@test ch.check_called == 0
@test ch.enfo_called == 0
@test ch.lock_called == 0
# free the problem
finalize(o)
end
@testset "never satisfied conshdlr (does not need constraint)" begin
# create an empty problem
o = SCIP.Optimizer()
MOI.set(o, MOI.Silent(), true)
# add the constraint handler
ch = NeverSatisfied.NSCH()
SCIP.include_conshdlr(
o.inner.scip[],
o.inner.conshdlrs,
ch;
needs_constraints=false,
)
# solve the problem
SCIP.@SCIP_CALL SCIP.SCIPsolve(o.inner.scip[])
@test ch.check_called >= 1
@test ch.enfo_called in 0:1 # depends on SCIP presolver behavior
@test ch.lock_called == 1
# free the problem
finalize(o)
end
@testset "never satisfied conshdlr (needs constraint but does not have it)" begin
# create an empty problem
o = SCIP.Optimizer()
MOI.set(o, MOI.Silent(), true)
# add the constraint handler
ch = NeverSatisfied.NSCH()
SCIP.include_conshdlr(
o.inner.scip[],
o.inner.conshdlrs,
ch;
needs_constraints=true,
)
# solve the problem
SCIP.@SCIP_CALL SCIP.SCIPsolve(o.inner.scip[])
@test ch.check_called == 0
@test ch.enfo_called == 0
@test ch.lock_called == 0
# free the problem
finalize(o)
end
@testset "never satisfied conshdlr (needs constraint and has one)" begin
# create an empty problem
o = SCIP.Optimizer()
MOI.set(o, MOI.Silent(), true)
# add the constraint handler
ch = NeverSatisfied.NSCH()
SCIP.include_conshdlr(
o.inner.scip[],
o.inner.conshdlrs,
ch;
needs_constraints=true,
)
# add one constraint
cr = SCIP.add_constraint(o.inner, ch, NeverSatisfied.Cons())
# solve the problem
SCIP.@SCIP_CALL SCIP.SCIPsolve(o.inner.scip[])
@test ch.check_called >= 1
@test ch.enfo_called == 1
@test ch.lock_called == 1
# free the problem
finalize(o)
end
| SCIP | https://github.com/scipopt/SCIP.jl.git |
|
[
"MIT"
] | 0.11.14 | 3d6a6516d6940a93b732e8ec7127652a0ead89c6 | code | 6451 | module Dummy
using SCIP
# Define a minimal no-op constraint handler.
# Needs to be mutable for `pointer_from_objref` to work.
mutable struct DummyConsHdlr <: SCIP.AbstractConstraintHandler
check_called::Int64
enfo_called::Int64
lock_called::Int64
DummyConsHdlr() = new(0, 0, 0)
end
# Implement only the fundamental callbacks:
function SCIP.check(
ch::DummyConsHdlr,
constraints::Array{Ptr{SCIP.SCIP_CONS}},
sol::Ptr{SCIP.SCIP_SOL},
checkintegrality::Bool,
checklprows::Bool,
printreason::Bool,
completely::Bool,
)
ch.check_called += 1
return SCIP.SCIP_FEASIBLE
end
function SCIP.enforce_lp_sol(
ch::DummyConsHdlr,
constraints::Array{Ptr{SCIP.SCIP_CONS}},
nusefulconss::Cint,
solinfeasible::Bool,
)
ch.enfo_called += 1
return SCIP.SCIP_FEASIBLE
end
function SCIP.enforce_pseudo_sol(
ch::DummyConsHdlr,
constraints::Array{Ptr{SCIP.SCIP_CONS}},
nusefulconss::Cint,
solinfeasible::Bool,
objinfeasible::Bool,
)
ch.enfo_called += 1
return SCIP.SCIP_FEASIBLE
end
function SCIP.lock(
ch::DummyConsHdlr,
constraint::Ptr{SCIP.SCIP_CONS},
locktype::SCIP.SCIP_LOCKTYPE,
nlockspos::Cint,
nlocksneg::Cint,
)
ch.lock_called += 1
end
# Corresponding, empty constraint (data) object
mutable struct DummyCons <: SCIP.AbstractConstraint{DummyConsHdlr} end
end # module Dummy
module NeverSatisfied
using SCIP
mutable struct NSCH <: SCIP.AbstractConstraintHandler
check_called::Int64
enfo_called::Int64
lock_called::Int64
NSCH() = new(0, 0, 0)
end
function SCIP.check(
ch::NSCH,
constraints,
sol,
checkintegrality,
checklprows,
printreason,
completely,
)
ch.check_called += 1
return SCIP.SCIP_INFEASIBLE
end
function SCIP.enforce_lp_sol(ch::NSCH, constraints, nusefulconss, solinfeasible)
ch.enfo_called += 1
return SCIP.SCIP_INFEASIBLE
end
function SCIP.enforce_pseudo_sol(
ch::NSCH,
constraints,
nusefulconss,
solinfeasible,
objinfeasible,
)
ch.enfo_called += 1
return SCIP.SCIP_INFEASIBLE
end
function SCIP.lock(ch::NSCH, constraint, locktype, nlockspos, nlocksneg)
ch.lock_called += 1
end
# Corresponding, empty constraint (data) object
mutable struct Cons <: SCIP.AbstractConstraint{NSCH} end
end # module AlwaysSatisfied
module NaiveAllDiff
using MathOptInterface
using SCIP
const MOI = MathOptInterface
mutable struct NADCH <: SCIP.AbstractConstraintHandler
scip::SCIP.Optimizer # for SCIP* and var maps
end
# Constraint data, referencing variables of a single constraint.
mutable struct NADCons <: SCIP.AbstractConstraint{NADCH}
variables::Vector{MOI.VariableIndex}
end
# Helper function used in several callbacks
function anyviolated(ch, constraints, sol=C_NULL)
for cons_::Ptr{SCIP.SCIP_CONS} in constraints
cons::NADCons = SCIP.user_constraint(cons_)
# extract solution values
values = SCIP.sol_values(ch.scip, cons.variables, sol)
# check for constraint violation
if !allunique(values)
return true
end
end
return false
end
function SCIP.check(
ch::NADCH,
constraints,
sol,
checkintegrality,
checklprows,
printreason,
completely,
)
if anyviolated(ch, constraints, sol)
return SCIP.SCIP_INFEASIBLE
else
return SCIP.SCIP_FEASIBLE
end
end
function SCIP.enforce_lp_sol(
ch::NADCH,
constraints,
nusefulconss,
solinfeasible,
)
if anyviolated(ch, constraints, C_NULL)
return SCIP.SCIP_INFEASIBLE
else
return SCIP.SCIP_FEASIBLE
end
end
function SCIP.enforce_pseudo_sol(
ch::NADCH,
constraints,
nusefulconss,
solinfeasible,
objinfeasible,
)
if anyviolated(ch, constraints, C_NULL)
return SCIP.SCIP_INFEASIBLE
else
return SCIP.SCIP_FEASIBLE
end
end
function SCIP.lock(ch::NADCH, constraint, locktype, nlockspos, nlocksneg)
cons::NADCons = SCIP.user_constraint(constraint)
# look all variables in both directions
for vi in cons.variables
# TODO: understand why lock is called during SCIPfree, after the
# constraint should have been deleted already. Does it mean we should
# implement CONSTRANS?
var_::Ptr{SCIP.SCIP_VAR} = SCIP.var(ch.scip, vi)
var_ != C_NULL || continue # avoid segfault!
SCIP.@SCIP_CALL SCIP.SCIPaddVarLocksType(
ch.scip,
var_,
locktype,
nlockspos + nlocksneg,
nlockspos + nlocksneg,
)
end
end
end # module NaiveAllDiff
module NoGoodCounter
using MathOptInterface
using SCIP
const MOI = MathOptInterface
mutable struct Counter <: SCIP.AbstractConstraintHandler
scip::SCIP.Optimizer # for SCIP* and var maps
variables::Vector{MOI.VariableIndex}
solutions::Set{Array{Float64}}
Counter(scip, variables) = new(scip, variables, Set())
end
function SCIP.check(
ch::Counter,
constraints,
sol,
checkintegrality,
checklprows,
printreason,
completely,
)
return SCIP.SCIP_INFEASIBLE
end
function enforce(ch::Counter)
values = SCIP.sol_values(ch.scip, ch.variables)
# Store solution
if values in ch.solutions
# Getting the same solution twice?
return SCIP.SCIP_INFEASIBLE
end
push!(ch.solutions, values)
# Add no-good constraint: sum_zeros(x) + sum_ones(1-x) >= 1
zeros = values .≈ 0.0
ones = values .≈ 1.0
others = .!zeros .& .!ones
if any(others)
error("Found non-binary solution value for $(vars[others])")
end
terms = vcat(
[MOI.ScalarAffineTerm(1.0, vi) for vi in ch.variables[zeros]],
[MOI.ScalarAffineTerm(-1.0, vi) for vi in ch.variables[ones]],
)
ci = MOI.add_constraint(
ch.scip,
MOI.ScalarAffineFunction(terms, 0.0),
MOI.GreaterThan(1.0 - sum(ones)),
)
return SCIP.SCIP_CONSADDED
end
function SCIP.enforce_lp_sol(
ch::Counter,
constraints,
nusefulconss,
solinfeasible,
)
@assert length(constraints) == 0
return enforce(ch)
end
function SCIP.enforce_pseudo_sol(
ch::Counter,
constraints,
nusefulconss,
solinfeasible,
objinfeasible,
)
@assert length(constraints) == 0
return enforce(ch)
end
function SCIP.lock(ch::Counter, constraint, locktype, nlockspos, nlocksneg) end
end # module NoGoodCounter
| SCIP | https://github.com/scipopt/SCIP.jl.git |
|
[
"MIT"
] | 0.11.14 | 3d6a6516d6940a93b732e8ec7127652a0ead89c6 | code | 5840 | using MathOptInterface
const MOI = MathOptInterface
# Test, whether the cut callback is actually called and whether
# `callback_value` works as intended.
@testset "obtaining the LP-solution" begin
atol, rtol = 1e-6, 1e-6
# create an empty problem
optimizer = SCIP.Optimizer()
inner = optimizer.inner
sepa_set_scip_parameters((par, val) -> SCIP.set_parameter(inner, par, val))
# add variables
x, y = MOI.add_variables(optimizer, 2)
MOI.add_constraint(optimizer, x, MOI.ZeroOne())
MOI.add_constraint(optimizer, y, MOI.ZeroOne())
# add constraint: x + y ≤ 1.5
MOI.add_constraint(
optimizer,
MOI.ScalarAffineFunction(
MOI.ScalarAffineTerm.([1.0, 1.0], [x, y]),
0.0,
),
MOI.LessThan(1.5),
)
# maximize x + y
MOI.set(
optimizer,
MOI.ObjectiveFunction{MOI.ScalarAffineFunction{Float64}}(),
MOI.ScalarAffineFunction(
MOI.ScalarAffineTerm.([1.0, 1.0], [x, y]),
0.0,
),
)
MOI.set(optimizer, MOI.ObjectiveSense(), MOI.MAX_SENSE)
calls = 0
x_val::Float64 = -1
y_val::Float64 = -1
function cutcallback(cb_data)
x_val = MOI.get(
optimizer,
MOI.CallbackVariablePrimal{SCIP.CutCbData}(cb_data),
x,
)
y_val = MOI.get(
optimizer,
MOI.CallbackVariablePrimal{SCIP.CutCbData}(cb_data),
y,
)
calls += 1
end
MOI.set(optimizer, MOI.UserCutCallback(), cutcallback)
# solve the problem
SCIP.@SCIP_CALL SCIP.SCIPsolve(inner.scip[])
# The cut callback was called and obtaining the LP-solution worked.
@test calls >= 1
@test x_val + y_val >= 1.0 - min(atol, 1.0 * rtol)
# SCIP found an optimal solution
@test MOI.get(optimizer, MOI.TerminationStatus()) == MOI.OPTIMAL
@test MOI.get(optimizer, MOI.PrimalStatus()) == MOI.FEASIBLE_POINT
@test MOI.get(optimizer, MOI.ObjectiveValue()) ≈ 1.0 atol = atol rtol = rtol
# free the problem
finalize(inner)
end
# Test, whether adding cuts within cut callbacks via `submit` works [1/2].
@testset "cutting one optimal solution" begin
atol, rtol = 1e-6, 1e-6
# create an empty problem
optimizer = SCIP.Optimizer()
inner = optimizer.inner
sepa_set_scip_parameters((par, val) -> SCIP.set_parameter(inner, par, val))
# add variables
x, y = MOI.add_variables(optimizer, 2)
MOI.add_constraint(optimizer, x, MOI.ZeroOne())
MOI.add_constraint(optimizer, y, MOI.ZeroOne())
# add constraint: x + y ≤ 1.5
MOI.add_constraint(
optimizer,
MOI.ScalarAffineFunction(
MOI.ScalarAffineTerm.([1.0, 1.0], [x, y]),
0.0,
),
MOI.LessThan(1.5),
)
# maximize x + y
MOI.set(
optimizer,
MOI.ObjectiveFunction{MOI.ScalarAffineFunction{Float64}}(),
1.0 * x + 1.0 * y,
)
MOI.set(optimizer, MOI.ObjectiveSense(), MOI.MAX_SENSE)
calls = 0
function cutcallback(cb_data)
MOI.submit(
optimizer,
MOI.UserCut{SCIP.CutCbData}(cb_data),
1.0 * x,
MOI.LessThan(0.0),
)
calls += 1
end
MOI.set(optimizer, MOI.UserCutCallback(), cutcallback)
# solve the problem
MOI.optimize!(optimizer)
# The cut callback was called.
@test calls >= 1
# SCIP found the single remaining optimal solution
@test MOI.get(optimizer, MOI.TerminationStatus()) == MOI.OPTIMAL
@test MOI.get(optimizer, MOI.PrimalStatus()) == MOI.FEASIBLE_POINT
@test MOI.get(optimizer, MOI.ObjectiveValue()) ≈ 1.0 atol = atol rtol = rtol
@test MOI.get(optimizer, MOI.VariablePrimal(), x) ≈ 0.0 atol = atol rtol =
rtol
@test MOI.get(optimizer, MOI.VariablePrimal(), y) ≈ 1.0 atol = atol rtol =
rtol
end
# Test, whether adding cuts within cut callbacks via `submit` works [2/2].
@testset "cutting another optimal solution" begin
atol, rtol = 1e-6, 1e-6
# create an empty problem
optimizer = SCIP.Optimizer()
inner = optimizer.inner
sepa_set_scip_parameters((par, val) -> SCIP.set_parameter(inner, par, val))
# add variables
x, y = MOI.add_variables(optimizer, 2)
MOI.add_constraint(optimizer, x, MOI.ZeroOne())
MOI.add_constraint(optimizer, y, MOI.ZeroOne())
# add constraint: x + y ≤ 1.5
MOI.add_constraint(
optimizer,
MOI.ScalarAffineFunction(
MOI.ScalarAffineTerm.([1.0, 1.0], [x, y]),
0.0,
),
MOI.LessThan(1.5),
)
# maximize x + y
MOI.set(
optimizer,
MOI.ObjectiveFunction{MOI.ScalarAffineFunction{Float64}}(),
MOI.ScalarAffineFunction(
MOI.ScalarAffineTerm.([1.0, 1.0], [x, y]),
0.0,
),
)
MOI.set(optimizer, MOI.ObjectiveSense(), MOI.MAX_SENSE)
calls = 0
function cutcallback(cb_data)
MOI.submit(
optimizer,
MOI.UserCut{SCIP.CutCbData}(cb_data),
MOI.ScalarAffineFunction(MOI.ScalarAffineTerm.([1.0], [y]), 0.0),
MOI.LessThan(0.0),
)
calls += 1
end
MOI.set(optimizer, MOI.UserCutCallback(), cutcallback)
# solve the problem
MOI.optimize!(optimizer)
# The cut callback was called.
@test calls >= 1
# SCIP found the single remaining optimal solution
@test MOI.get(optimizer, MOI.TerminationStatus()) == MOI.OPTIMAL
@test MOI.get(optimizer, MOI.PrimalStatus()) == MOI.FEASIBLE_POINT
@test MOI.get(optimizer, MOI.ObjectiveValue()) ≈ 1.0 atol = atol rtol = rtol
@test MOI.get(optimizer, MOI.VariablePrimal(), x) ≈ 1.0 atol = atol rtol =
rtol
@test MOI.get(optimizer, MOI.VariablePrimal(), y) ≈ 0.0 atol = atol rtol =
rtol
end
| SCIP | https://github.com/scipopt/SCIP.jl.git |
|
[
"MIT"
] | 0.11.14 | 3d6a6516d6940a93b732e8ec7127652a0ead89c6 | code | 6718 | using SCIP
import MathOptInterface
const MOI = MathOptInterface
using Test
using LinearAlgebra
using Random
Random.seed!(42)
"""
Selects cut by efficacy only, selects up to `nmax_cuts` cuts.
"""
mutable struct EfficacyCutSelector <: SCIP.AbstractCutSelector
o::SCIP.Optimizer
nmax_cuts::Int
ncalls::Int
end
function SCIP.select_cuts(
cutsel::EfficacyCutSelector,
scip,
cuts::Vector{Ptr{SCIP.SCIP_ROW}},
forced_cuts::Vector{Ptr{SCIP.SCIP_ROW}},
root::Bool,
maxnslectedcuts::Integer,
)
function efficacy_function(cut)
return SCIP.LibSCIP.SCIPgetCutEfficacy(scip, C_NULL, cut)
end
sort!(cuts; by=efficacy_function, rev=true)
nselected_cuts = min(cutsel.nmax_cuts, maxnslectedcuts)
nselected_cuts = max(nselected_cuts, 0)
nselected_cuts = min(nselected_cuts, length(cuts))
cutsel.ncalls += 1
return (SCIP.SCIP_OKAY, nselected_cuts, SCIP.SCIP_SUCCESS)
end
@testset "test cut selector" begin
# removing presolving to solve a non-trivial problem that requires some separation
o = SCIP.Optimizer(; presolving_maxrounds=0)
MOI.set(o, MOI.Silent(), true)
cutsel = EfficacyCutSelector(o, 10, 0)
name = "my_cut_selector"
description = "a selector using efficacy only"
priority = 15_000
SCIP.include_cutsel(
o,
cutsel;
name=name,
description=description,
priority=priority,
)
cutsel_pointer = o.inner.cutsel_storage[cutsel]
@test unsafe_string(SCIP.LibSCIP.SCIPcutselGetName(cutsel_pointer)) == name
@test unsafe_string(SCIP.LibSCIP.SCIPcutselGetDesc(cutsel_pointer)) ==
description
@test SCIP.LibSCIP.SCIPcutselGetPriority(cutsel_pointer) == priority
@test SCIP.LibSCIP.SCIPcutselGetData(cutsel_pointer) ==
pointer_from_objref(cutsel)
x = MOI.add_variables(o, 10)
MOI.add_constraint.(o, x, MOI.Integer())
MOI.add_constraint.(o, x, MOI.GreaterThan(-0.1))
MOI.add_constraint.(o, x, MOI.LessThan(2.3))
MOI.add_constraint(o, sum(x; init=0.0), MOI.LessThan(12.5))
for _ in 1:5
MOI.add_constraint(
o,
2.0 * dot(rand(10), x),
MOI.LessThan(10.0 + 2 * rand()),
)
end
func = -dot(rand(10), x)
MOI.set(o, MOI.ObjectiveFunction{typeof(func)}(), func)
MOI.set(o, MOI.ObjectiveSense(), MOI.MIN_SENSE)
MOI.optimize!(o)
@test MOI.get(o, MOI.TerminationStatus()) == MOI.OPTIMAL
@test cutsel.ncalls > 0
end
# select by removing cuts that are too parallel to a forced cut
mutable struct SecondSelector <: SCIP.AbstractCutSelector
o::SCIP.Optimizer
nmax_cuts::Int
ncalls::Int
min_orthogonality::Float64
end
function SCIP.select_cuts(
cutsel::SecondSelector,
scip,
cuts::Vector{Ptr{SCIP.SCIP_ROW}},
forced_cuts::Vector{Ptr{SCIP.SCIP_ROW}},
root::Bool,
maxnslectedcuts::Integer,
)
rem_cuts = Set{Ptr{SCIP.SCIP_ROW}}()
for cut in cuts
for fcut in forced_cuts
o_score = SCIP.LibSCIP.SCIProwGetOrthogonality(cut, fcut, 'e')
if o_score < cutsel.min_orthogonality
push!(rem_cuts, cut)
break
end
end
end
function sorting_function(cut)
if cut in rem_cuts
return -1.0
end
return SCIP.LibSCIP.SCIPgetCutEfficacy(scip, C_NULL, cut)
end
sort!(cuts; by=sorting_function, rev=true)
nselected_cuts = min(cutsel.nmax_cuts, maxnslectedcuts)
nselected_cuts = max(nselected_cuts, 0)
nselected_cuts = min(nselected_cuts, length(cuts) - length(rem_cuts))
cutsel.ncalls += 1
return (SCIP.SCIP_OKAY, nselected_cuts, SCIP.SCIP_SUCCESS)
end
@testset "test cut selector parallelism" begin
# removing presolving to solve a non-trivial problem that requires some separation
o = SCIP.Optimizer(; presolving_maxrounds=0)
MOI.set(o, MOI.Silent(), true)
cutsel = SecondSelector(o, 10, 0, 0.05)
name = "my_cut_selector_parallelism"
description = "a selector using efficacy and parallelism"
priority = 15_000
SCIP.include_cutsel(
o,
cutsel;
name=name,
description=description,
priority=priority,
)
cutsel_pointer = o.inner.cutsel_storage[cutsel]
@test unsafe_string(SCIP.LibSCIP.SCIPcutselGetName(cutsel_pointer)) == name
@test unsafe_string(SCIP.LibSCIP.SCIPcutselGetDesc(cutsel_pointer)) ==
description
@test SCIP.LibSCIP.SCIPcutselGetPriority(cutsel_pointer) == priority
@test SCIP.LibSCIP.SCIPcutselGetData(cutsel_pointer) ==
pointer_from_objref(cutsel)
x = MOI.add_variables(o, 10)
MOI.add_constraint.(o, x, MOI.Integer())
MOI.add_constraint.(o, x, MOI.GreaterThan(-0.1))
MOI.add_constraint.(o, x, MOI.LessThan(2.3))
MOI.add_constraint(o, sum(x; init=0.0), MOI.LessThan(12.5))
for _ in 1:5
MOI.add_constraint(
o,
2.0 * dot(rand(10), x),
MOI.LessThan(10.0 + 2 * rand()),
)
end
func = -dot(rand(10), x)
MOI.set(o, MOI.ObjectiveFunction{typeof(func)}(), func)
MOI.set(o, MOI.ObjectiveSense(), MOI.MIN_SENSE)
MOI.optimize!(o)
@test MOI.get(o, MOI.TerminationStatus()) == MOI.OPTIMAL
@test cutsel.ncalls > 0
end
@testset "test default hybrid cut selector" begin
o = SCIP.Optimizer(; presolving_maxrounds=0)
MOI.set(o, MOI.Silent(), true)
cutsel = SCIP.HybridCutSelector()
name = "hybrid_cut_selector"
description = "default cut selector"
priority = 15_000
SCIP.include_cutsel(
o,
cutsel;
name=name,
description=description,
priority=priority,
)
cutsel_pointer = o.inner.cutsel_storage[cutsel]
@test unsafe_string(SCIP.LibSCIP.SCIPcutselGetName(cutsel_pointer)) == name
@test unsafe_string(SCIP.LibSCIP.SCIPcutselGetDesc(cutsel_pointer)) ==
description
@test SCIP.LibSCIP.SCIPcutselGetPriority(cutsel_pointer) == priority
@test SCIP.LibSCIP.SCIPcutselGetData(cutsel_pointer) ==
pointer_from_objref(cutsel)
x = MOI.add_variables(o, 10)
MOI.add_constraint.(o, x, MOI.Integer())
MOI.add_constraint.(o, x, MOI.GreaterThan(-0.1))
MOI.add_constraint.(o, x, MOI.LessThan(2.3))
MOI.add_constraint(o, sum(x; init=0.0), MOI.LessThan(12.5))
for _ in 1:5
MOI.add_constraint(
o,
2.0 * dot(rand(10), x),
MOI.LessThan(10.0 + 2 * rand()),
)
end
func = -dot(rand(10), x)
MOI.set(o, MOI.ObjectiveFunction{typeof(func)}(), func)
MOI.set(o, MOI.ObjectiveSense(), MOI.MIN_SENSE)
MOI.optimize!(o)
@test MOI.get(o, MOI.TerminationStatus()) == MOI.OPTIMAL
end
| SCIP | https://github.com/scipopt/SCIP.jl.git |
|
[
"MIT"
] | 0.11.14 | 3d6a6516d6940a93b732e8ec7127652a0ead89c6 | code | 2446 | # Test raw wrapper with direct library calls
@testset "create small problem and solve" begin
scip__ = Ref{Ptr{SCIP.SCIP_}}() # SCIP**
rc = SCIP.SCIPcreate(scip__)
@test rc == SCIP.SCIP_OKAY
scip_ = scip__[] # dereference to SCIP*
@test scip_ != C_NULL
rc = SCIP.SCIPincludeDefaultPlugins(scip_)
@test rc == SCIP.SCIP_OKAY
# disable output
rc = SCIP.SCIPsetIntParam(scip_, "display/verblevel", 0)
@test rc == SCIP.SCIP_OKAY
# create problem
rc = SCIP.SCIPcreateProbBasic(scip_, "")
@test rc == SCIP.SCIP_OKAY
# add variable: x >= 0, objcoef: 1
var__ = Ref{Ptr{SCIP.SCIP_VAR}}()
rc = SCIP.SCIPcreateVarBasic(
scip_,
var__,
"x",
0.0,
SCIP.SCIPinfinity(scip_),
1.0,
SCIP.SCIP_VARTYPE_CONTINUOUS,
)
@test rc == SCIP.SCIP_OKAY
var_ = var__[]
@test var_ != C_NULL
rc = SCIP.SCIPaddVar(scip_, var_)
@test rc == SCIP.SCIP_OKAY
# add constraint: 2x >= 3 ( really: 3 <= 2 * x <= inf )
cons__ = Ref{Ptr{SCIP.SCIP_CONS}}()
rc = SCIP.SCIPcreateConsBasicLinear(
scip_,
cons__,
"c",
0,
C_NULL,
C_NULL,
3.0,
SCIP.SCIPinfinity(scip_),
)
@test rc == SCIP.SCIP_OKAY
cons_ = cons__[]
@test cons_ != C_NULL
rc = SCIP.SCIPaddCoefLinear(scip_, cons_, var_, 2.0)
@test rc == SCIP.SCIP_OKAY
rc = SCIP.SCIPaddCons(scip_, cons_)
@test rc == SCIP.SCIP_OKAY
# solve problem
rc = SCIP.SCIPsolve(scip_)
@test rc == SCIP.SCIP_OKAY
# check solution value
sol_ = SCIP.SCIPgetBestSol(scip_)
@test sol_ != C_NULL
val = SCIP.SCIPgetSolVal(scip_, sol_, var_)
@test val ≈ 3.0 / 2.0
# release variables and solver
rc = SCIP.SCIPreleaseCons(scip_, cons__)
@test rc == SCIP.SCIP_OKAY
rc = SCIP.SCIPreleaseVar(scip_, var__)
@test rc == SCIP.SCIP_OKAY
rc = SCIP.SCIPfree(scip__)
@test rc == SCIP.SCIP_OKAY
end
@testset "SCIP_CALL macro (@SCIP_CALL)" begin
# should do nothing
SCIP.@SCIP_CALL SCIP.SCIP_OKAY
@test_throws ErrorException SCIP.@SCIP_CALL SCIP.SCIP_ERROR
f() = SCIP.SCIP_OKAY
g(args...) = SCIP.SCIP_ERROR
SCIP.@SCIP_CALL f()
h() = SCIP.@SCIP_CALL(g(1, 2))
@test_throws ErrorException("g() yielded SCIP code SCIP_ERROR") SCIP.@SCIP_CALL g()
@test_throws ErrorException("g(1, 2) yielded SCIP code SCIP_ERROR") h()
end
| SCIP | https://github.com/scipopt/SCIP.jl.git |
|
[
"MIT"
] | 0.11.14 | 3d6a6516d6940a93b732e8ec7127652a0ead89c6 | code | 3425 | import MathOptInterface as MOI
using SCIP
using LinearAlgebra
using Test
mutable struct ZeroHeuristic <: SCIP.Heuristic
end
function SCIP.find_primal_solution(scip, ::ZeroHeuristic, heurtiming, nodeinfeasible::Bool, heur_ptr)
@assert SCIP.SCIPhasCurrentNodeLP(scip) == SCIP.TRUE
result = SCIP.SCIP_DIDNOTRUN
sol = SCIP.create_empty_scipsol(scip, heur_ptr)
vars = SCIP.SCIPgetVars(scip)
nvars = SCIP.SCIPgetNVars(scip)
var_vec = unsafe_wrap(Array, vars, nvars)
for var in var_vec
SCIP.@SCIP_CALL SCIP.SCIPsetSolVal(
scip,
sol,
var,
0.0,
)
end
stored = Ref{SCIP.SCIP_Bool}(SCIP.FALSE)
SCIP.@SCIP_CALL SCIP.SCIPtrySolFree(
scip,
Ref(sol),
SCIP.FALSE,
SCIP.FALSE,
SCIP.TRUE,
SCIP.TRUE,
SCIP.TRUE,
stored,
)
result = if stored[] != SCIP.TRUE
SCIP.SCIP_DIDNOTFIND
else
SCIP.SCIP_FOUNDSOL
end
return (SCIP.SCIP_OKAY, result)
end
@testset "Basic heuristic properties" begin
o = SCIP.Optimizer(; presolving_maxrounds=0, display_verblevel=0)
name = "zero_heuristic"
description = "description"
priority = 1
heur = ZeroHeuristic()
SCIP.include_heuristic(o, heur, name=name, description=description, priority=priority)
heur_pointer = o.inner.heuristic_storage[heur]
@test unsafe_string(SCIP.LibSCIP.SCIPheurGetName(heur_pointer)) == name
@test unsafe_string(SCIP.LibSCIP.SCIPheurGetDesc(heur_pointer)) ==
description
@test SCIP.LibSCIP.SCIPheurGetPriority(heur_pointer) == priority
@test SCIP.LibSCIP.SCIPheurGetData(heur_pointer) ==
pointer_from_objref(heur)
x = MOI.add_variables(o, 10)
MOI.add_constraint.(o, x, MOI.Integer())
MOI.add_constraint.(o, x, MOI.GreaterThan(-0.1))
MOI.add_constraint.(o, x, MOI.LessThan(2.3))
MOI.add_constraint(o, sum(x; init=0.0), MOI.LessThan(12.5))
for _ in 1:5
MOI.add_constraint(
o,
2.0 * dot(rand(10), x),
MOI.LessThan(10.0 + 2 * rand()),
)
end
func = -dot(rand(10), x)
MOI.set(o, MOI.ObjectiveFunction{typeof(func)}(), func)
MOI.set(o, MOI.ObjectiveSense(), MOI.MIN_SENSE)
MOI.optimize!(o)
@test MOI.get(o, MOI.TerminationStatus()) == MOI.OPTIMAL
end
@testset "Heuristic through MOI" begin
o = SCIP.Optimizer(; presolving_maxrounds=0, display_verblevel=0)
n = 10
x = MOI.add_variables(o, n)
MOI.add_constraint.(o, x, MOI.ZeroOne())
MOI.add_constraint(
o,
sum(x; init=0.0),
MOI.LessThan(3.0),
)
MOI.set(o, MOI.ObjectiveFunction{MOI.ScalarAffineFunction{Float64}}(), dot(rand(n), x))
MOI.set(o, MOI.ObjectiveSense(), MOI.MAX_SENSE)
ncalls = Ref(0)
function heuristic_callback(callback_data::SCIP.HeuristicCbData)
# LP solution
x_frac = MOI.get(o, MOI.CallbackVariablePrimal(callback_data), x)
# setting heuristic solution with three values at 1
values = 0 * x_frac
values[findmax(x_frac)[2]] = 1.0
values[1] = 1.0
values[2] = 1.0
MOI.submit(
o,
MOI.HeuristicSolution(callback_data),
x,
values,
)
global ncalls[] +=1
end
MOI.set(o, MOI.HeuristicCallback(), heuristic_callback)
MOI.optimize!(o)
@test ncalls[] > 0
end
| SCIP | https://github.com/scipopt/SCIP.jl.git |
|
[
"MIT"
] | 0.11.14 | 3d6a6516d6940a93b732e8ec7127652a0ead89c6 | code | 2508 | using Test
using SCIP
using SCIP_jll
using SCIP_PaPILO_jll
@static if VERSION >= v"1.7"
import LinearAlgebra, OpenBLAS32_jll
LinearAlgebra.BLAS.lbt_forward(OpenBLAS32_jll.libopenblas_path)
end
@show(@eval(SCIP, libscip) == SCIP_jll.libscip)
@show(
SCIP_PaPILO_jll.is_available() &&
@eval(SCIP, libscip) == SCIP_PaPILO_jll.libscip
)
@show SCIP.SCIP_versionnumber()
@testset "MathOptInterface nonlinear expressions" begin
include("MOI_nonlinear_exprs.jl")
end
@testset "direct library calls" begin
include("direct_library_calls.jl")
end
@testset "managed memory" begin
include("scip_data.jl")
end
# new type definitions in module (needs top level)
include("conshdlr_support.jl")
@testset "constraint handlers" begin
include("conshdlr.jl")
end
include("sepa_support.jl")
@testset "separators" begin
include("sepa.jl")
end
@testset "cut callbacks" begin
include("cutcallback.jl")
end
@testset "branching rule" begin
include("branchrule.jl")
end
@testset "heuristic" begin
include("heuristic.jl")
end
const MOI_BASE_EXCLUDED = [
"Indicator_LessThan", # indicator must be binary error in SCIP
"Indicator_ACTIVATE_ON_ZERO", # odd MOI bug?
"test_constraint_get_ConstraintIndex", # accessing constraint from string name
"BoundAlreadySet", # see TODO,
"ScalarAffineFunction_ConstraintName", # get(::SCIP.Optimizer, ::Type{MathOptInterface.ConstraintIndex}, ::String)
"duplicate_VariableName", # two identical variable names should error at get time
"test_model_VariableName", # same issue
"test_model_Name_VariableName_ConstraintName",
"test_modification_delete_variables_in_a_batch",
"test_modification_set_function_single_variable",
"test_modification_set_scalaraffine_",
"test_modification_set_singlevariable_",
"test_modification_transform_",
"test_nonlinear_", # None of tests provide expression graphs in the evaluator.
"ObjectiveFunction_ScalarAffineFunction", # requires conversion of objective function
"test_objective_set_via_modify", # ListOfModelAttributesSet
]
@testset "MathOptInterface tests (direct)" begin
include("MOI_wrapper_direct.jl")
end
@testset "MathOptInterface additional tests" begin
include("MOI_additional.jl")
end
@testset "MathOptInterface tests (bridged)" begin
include("MOI_wrapper_bridged.jl")
end
@testset "MathOptInterface tests (bridged & cached)" begin
include("MOI_wrapper_cached.jl")
end
include("MOI_conshdlr.jl")
include("cutsel.jl")
| SCIP | https://github.com/scipopt/SCIP.jl.git |
|
[
"MIT"
] | 0.11.14 | 3d6a6516d6940a93b732e8ec7127652a0ead89c6 | code | 4775 | # Test memory management
using MathOptInterface
@testset "create and manual free" begin
o = SCIP.Optimizer()
@test o.inner.scip[] != C_NULL
SCIP.free_scip(o)
@test o.inner.scip[] == C_NULL
end
@testset "create, add var and cons, and manual free" begin
o = SCIP.Optimizer()
@test o.inner.scip[] != C_NULL
x = SCIP.add_variable(o.inner)
y = SCIP.add_variable(o.inner)
c = SCIP.add_linear_constraint(o.inner, [x, y], [2.0, 3.0], 1.0, 9.0)
SCIP.free_scip(o)
@test o.inner.scip[] == C_NULL
end
@testset "create and semi-manual free" begin
o = SCIP.Optimizer()
@test o.inner.scip[] != C_NULL
finalize(o)
@test o.inner.scip[] == C_NULL
end
@testset "create with vars and cons, and free" begin
for i in 1:2 # run twice, with(out) solving
o = SCIP.Optimizer()
@test o.inner.scip[] != C_NULL
SCIP.set_parameter(o.inner, "display/verblevel", 0)
t = SCIP.add_variable(o.inner)
# set lower bound for assertion in cons_soc.c
SCIP.@SCIP_CALL SCIP.SCIPchgVarLb(o, SCIP.var(o.inner, t), 0.0)
x = SCIP.add_variable(o.inner)
y = SCIP.add_variable(o.inner)
c = SCIP.add_linear_constraint(o.inner, [x, y], [2.0, 3.0], 1.0, 9.0)
q = SCIP.add_quadratic_constraint(
o.inner,
[x],
[2.0],
[x, x],
[x, y],
[4.0, 5.0],
1.0,
9.0,
)
s1 = SCIP.add_special_ordered_set_type1(o.inner, [t, x], [1.0, 2.0])
s2 = SCIP.add_special_ordered_set_type2(o.inner, [x, y], [1.0, 2.0])
# nonlinear: x^0.2 == 1
vi = MathOptInterface.VariableIndex(x.val)
# n = SCIP.add_nonlinear_constraint(o.inner, :(x[$vi]^0.2 == 1.0), 1.0, 1.0)
# indicator constraint: z = 1 ==> 𝟙^T [x, y] <= 1.
z = SCIP.add_variable(o.inner)
SCIP.@SCIP_CALL SCIP.SCIPchgVarType(
o,
SCIP.var(o.inner, z),
SCIP.SCIP_VARTYPE_BINARY,
Ref{SCIP.SCIP_Bool}(),
)
SCIP.@SCIP_CALL SCIP.SCIPchgVarLb(o, SCIP.var(o.inner, z), 0.0)
SCIP.@SCIP_CALL SCIP.SCIPchgVarUb(o, SCIP.var(o.inner, z), 1.0)
ic = SCIP.add_indicator_constraint(o.inner, z, [x, y], ones(2), 1.0)
if i == 2
# solve, but don't check results (this test is about memory mgmt)
SCIP.@SCIP_CALL SCIP.SCIPsolve(o.inner.scip[])
end
finalize(o)
for var in values(o.inner.vars)
@test var[] == C_NULL
end
for cons in values(o.inner.conss)
@test cons[] == C_NULL
end
@test o.inner.scip[] == C_NULL
end
end
@testset "create vars and cons, delete some, and free" begin
for i in 1:2 # run twice, with(out) solving
o = SCIP.Optimizer()
@test o.inner.scip[] != C_NULL
SCIP.set_parameter(o.inner, "display/verblevel", 0)
x = SCIP.add_variable(o.inner)
y = SCIP.add_variable(o.inner)
z = SCIP.add_variable(o.inner)
c = SCIP.add_linear_constraint(o.inner, [x, y], [2.0, 3.0], 1.0, 9.0)
d = SCIP.add_linear_constraint(o.inner, [x, z], [2.0, 1.0], 2.0, 8.0)
SCIP.delete(o.inner, d)
SCIP.delete(o.inner, z) # only occured in constraint 'd'
if i == 2
# solve, but don't check results (this test is about memory mgmt)
SCIP.@SCIP_CALL SCIP.SCIPsolve(o)
end
finalize(o)
for var in values(o.inner.vars)
@test var[] == C_NULL
end
for cons in values(o.inner.conss)
@test cons[] == C_NULL
end
@test o.inner.scip[] == C_NULL
end
end
@testset "print statistics" begin
o = SCIP.Optimizer()
SCIP.set_parameter(o.inner, "display/verblevel", 0)
x = SCIP.add_variable(o.inner)
y = SCIP.add_variable(o.inner)
z = SCIP.add_variable(o.inner)
c = SCIP.add_linear_constraint(o.inner, [x, y], [2.0, 3.0], 1.0, 9.0)
SCIP.@SCIP_CALL SCIP.SCIPsolve(o)
@testset "$statistics_func" for statistics_func in map(
x -> eval(:(SCIP.$x)),
SCIP.STATISTICS_FUNCS,
)
mktempdir() do dir
filename = joinpath(dir, "statistics.txt")
@test !isfile(filename)
open(filename; write=true) do io
redirect_stdout(io) do
statistics_func(o.inner)
end
end
@test isfile(filename)
if statistics_func == SCIP.print_statistics
# Ensure that at least `print_statistics` produces output
# (Not all statistics functions do for this simple model.)
@test filesize(filename) > 0
end
end
end
end
| SCIP | https://github.com/scipopt/SCIP.jl.git |
|
[
"MIT"
] | 0.11.14 | 3d6a6516d6940a93b732e8ec7127652a0ead89c6 | code | 6773 | using MathOptInterface
const MOI = MathOptInterface
# Test, whether the callback of the separator is called.
@testset "DummySepa (no separation)" begin
# create an empty problem
optimizer = SCIP.Optimizer()
inner = optimizer.inner
sepa_set_scip_parameters((par, val) -> SCIP.set_parameter(inner, par, val))
# add variables
x, y = MOI.add_variables(optimizer, 2)
MOI.add_constraint(optimizer, x, MOI.ZeroOne())
MOI.add_constraint(optimizer, y, MOI.ZeroOne())
# add constraint: x + y ≤ 1.5
MOI.add_constraint(
optimizer,
MOI.ScalarAffineFunction(
MOI.ScalarAffineTerm.([1.0, 1.0], [x, y]),
0.0,
),
MOI.LessThan(1.5),
)
# maximize x + y
MOI.set(
optimizer,
MOI.ObjectiveFunction{MOI.ScalarAffineFunction{Float64}}(),
MOI.ScalarAffineFunction(
MOI.ScalarAffineTerm.([1.0, 1.0], [x, y]),
0.0,
),
)
MOI.set(optimizer, MOI.ObjectiveSense(), MOI.MAX_SENSE)
# add the separator
sepa = DummySepa.Sepa()
SCIP.include_sepa(inner.scip[], inner.sepas, sepa)
# solve the problem
SCIP.@SCIP_CALL SCIP.SCIPsolve(inner.scip[])
# the separator is called
@test sepa.called >= 1
# free the problem
finalize(inner)
end
# Test, whether adding cuts in `exec_lp` via `add_cut_sepa` works [1/2].
@testset "AddSingleCut (cut off one optimal solution)" begin
atol, rtol = 1e-6, 1e-6
# create an empty problem
optimizer = SCIP.Optimizer()
inner = optimizer.inner
sepa_set_scip_parameters((par, val) -> SCIP.set_parameter(inner, par, val))
# add variables
x, y = MOI.add_variables(optimizer, 2)
MOI.add_constraint(optimizer, x, MOI.ZeroOne())
MOI.add_constraint(optimizer, y, MOI.ZeroOne())
# add constraint: x + y ≤ 1.5
MOI.add_constraint(
optimizer,
MOI.ScalarAffineFunction(
MOI.ScalarAffineTerm.([1.0, 1.0], [x, y]),
0.0,
),
MOI.LessThan(1.5),
)
# maximize x + y
MOI.set(
optimizer,
MOI.ObjectiveFunction{MOI.ScalarAffineFunction{Float64}}(),
MOI.ScalarAffineFunction(
MOI.ScalarAffineTerm.([1.0, 1.0], [x, y]),
0.0,
),
)
MOI.set(optimizer, MOI.ObjectiveSense(), MOI.MAX_SENSE)
# add the separator
varrefs = [SCIP.VarRef(x.value)]
coefs = [1.0]
sepa = AddSingleCut.Sepa(inner, varrefs, coefs, 0.0, 0.0)
SCIP.include_sepa(inner.scip[], inner.sepas, sepa)
# solve the problem
SCIP.@SCIP_CALL SCIP.SCIPsolve(inner.scip[])
# SCIP found the single remaining optimal solution
@test MOI.get(optimizer, MOI.TerminationStatus()) == MOI.OPTIMAL
@test MOI.get(optimizer, MOI.PrimalStatus()) == MOI.FEASIBLE_POINT
@test MOI.get(optimizer, MOI.ObjectiveValue()) ≈ 1.0 atol = atol rtol = rtol
@test MOI.get(optimizer, MOI.VariablePrimal(), x) ≈ 0.0 atol = atol rtol =
rtol
@test MOI.get(optimizer, MOI.VariablePrimal(), y) ≈ 1.0 atol = atol rtol =
rtol
# free the problem
finalize(inner)
end
# Test, whether adding cuts in `exec_lp` via `add_cut_sepa` works [2/2].
@testset "AddSingleCut (cut off another optimal solution)" begin
atol, rtol = 1e-6, 1e-6
# create an empty problem
optimizer = SCIP.Optimizer()
inner = optimizer.inner
sepa_set_scip_parameters((par, val) -> SCIP.set_parameter(inner, par, val))
# add variables
x, y = MOI.add_variables(optimizer, 2)
MOI.add_constraint(optimizer, x, MOI.ZeroOne())
MOI.add_constraint(optimizer, y, MOI.ZeroOne())
# add constraint: x + y ≤ 1.5
MOI.add_constraint(
optimizer,
MOI.ScalarAffineFunction(
MOI.ScalarAffineTerm.([1.0, 1.0], [x, y]),
0.0,
),
MOI.LessThan(1.5),
)
# maximize x + y
MOI.set(
optimizer,
MOI.ObjectiveFunction{MOI.ScalarAffineFunction{Float64}}(),
MOI.ScalarAffineFunction(
MOI.ScalarAffineTerm.([1.0, 1.0], [x, y]),
0.0,
),
)
MOI.set(optimizer, MOI.ObjectiveSense(), MOI.MAX_SENSE)
# add the separator
varrefs = [SCIP.VarRef(y.value)]
coefs = [1.0]
sepa = AddSingleCut.Sepa(inner, varrefs, coefs, 0.0, 0.0)
SCIP.include_sepa(inner.scip[], inner.sepas, sepa)
# solve the problem
SCIP.@SCIP_CALL SCIP.SCIPsolve(inner.scip[])
# SCIP found the single remaining optimal solution
@test MOI.get(optimizer, MOI.TerminationStatus()) == MOI.OPTIMAL
@test MOI.get(optimizer, MOI.PrimalStatus()) == MOI.FEASIBLE_POINT
@test MOI.get(optimizer, MOI.ObjectiveValue()) ≈ 1.0 atol = atol rtol = rtol
@test MOI.get(optimizer, MOI.VariablePrimal(), x) ≈ 1.0 atol = atol rtol =
rtol
@test MOI.get(optimizer, MOI.VariablePrimal(), y) ≈ 0.0 atol = atol rtol =
rtol
# free the problem
finalize(inner)
end
# Test, whether we can cut the optimal solution.
@testset "AddSingleCut (too strong cut)" begin
atol, rtol = 1e-6, 1e-6
# create an empty problem
optimizer = SCIP.Optimizer()
inner = optimizer.inner
sepa_set_scip_parameters((par, val) -> SCIP.set_parameter(inner, par, val))
# add variables
x, y = MOI.add_variables(optimizer, 2)
MOI.add_constraint(optimizer, x, MOI.ZeroOne())
MOI.add_constraint(optimizer, y, MOI.ZeroOne())
# add constraint: x + y ≤ 1.5
MOI.add_constraint(
optimizer,
MOI.ScalarAffineFunction(
MOI.ScalarAffineTerm.([1.0, 1.0], [x, y]),
0.0,
),
MOI.LessThan(1.5),
)
# maximize x + y
MOI.set(
optimizer,
MOI.ObjectiveFunction{MOI.ScalarAffineFunction{Float64}}(),
MOI.ScalarAffineFunction(
MOI.ScalarAffineTerm.([1.0, 1.0], [x, y]),
0.0,
),
)
MOI.set(optimizer, MOI.ObjectiveSense(), MOI.MAX_SENSE)
# add the separator
varrefs = [SCIP.VarRef(x.value), SCIP.VarRef(y.value)]
coefs = [1.0, 1.0]
sepa = AddSingleCut.Sepa(inner, varrefs, coefs, 0.0, 0.0)
SCIP.include_sepa(inner.scip[], inner.sepas, sepa)
# solve the problem
SCIP.@SCIP_CALL SCIP.SCIPsolve(inner.scip[])
# SCIP found the non-optimal solution, that remains after the cut.
@test MOI.get(optimizer, MOI.TerminationStatus()) == MOI.OPTIMAL
@test MOI.get(optimizer, MOI.PrimalStatus()) == MOI.FEASIBLE_POINT
@test MOI.get(optimizer, MOI.ObjectiveValue()) ≈ 0.0 atol = atol rtol = rtol
@test MOI.get(optimizer, MOI.VariablePrimal(), x) ≈ 0.0 atol = atol rtol =
rtol
@test MOI.get(optimizer, MOI.VariablePrimal(), y) ≈ 0.0 atol = atol rtol =
rtol
# free the problem
finalize(inner)
end
| SCIP | https://github.com/scipopt/SCIP.jl.git |
|
[
"MIT"
] | 0.11.14 | 3d6a6516d6940a93b732e8ec7127652a0ead89c6 | code | 4802 | module DummySepa
using SCIP
"""
A minimal no-op separator.
"""
mutable struct Sepa <: SCIP.AbstractSeparator
called::Int64
Sepa() = new(0)
end
function SCIP.exec_lp(sepa::Sepa)
sepa.called += 1
return SCIP.SCIP_DIDNOTRUN
end
end # module DummySepa
module AddSingleCut
using SCIP
"""
A separator, that adds one predefined cut.
"""
mutable struct Sepa <: SCIP.AbstractSeparator
scipd::SCIP.SCIPData
varrefs::AbstractArray{SCIP.VarRef}
coefs::AbstractArray{Float64}
lhs::Float64
rhs::Float64
end
function SCIP.exec_lp(sepa::Sepa)
SCIP.add_cut_sepa(
sepa.scipd.scip[],
sepa.scipd.vars,
sepa.scipd.sepas,
sepa,
sepa.varrefs,
sepa.coefs,
sepa.lhs,
sepa.rhs;
removable=false,
)
return SCIP.SCIP_SEPARATED
end
end # module AddSingleCut
"""
sepa_set_scip_parameters(setter::Function)
Set all SCIP parameters, that are needed for the sepa-tests using `setter`.
# Arguments
- `setter(parameter::String, value::Int64)`
"""
function sepa_set_scip_parameters(setter::Function)
setter("display/verblevel", 0)
# All the following parameters make sure, that the separator is called and
# the cut is added to the LP.
setter("presolving/maxrounds", 0)
setter("misc/usesymmetry", 0)
setter("separating/minefficacy", 0)
setter("separating/minefficacyroot", 0)
setter("cutselection/hybrid/minortho", 0)
setter("cutselection/hybrid/minorthoroot", 0)
setter("separating/poolfreq", 1)
# These parameters come from `SCIP> set sepa emph off`
setter("separating/disjunctive/freq", -1)
setter("separating/impliedbounds/freq", -1)
setter("separating/gomory/freq", -1)
setter("separating/strongcg/freq", -1)
setter("separating/aggregation/freq", -1)
setter("separating/clique/freq", -1)
setter("separating/zerohalf/freq", -1)
setter("separating/mcf/freq", -1)
setter("separating/flowcover/freq", -1)
setter("separating/cmir/freq", -1)
setter("separating/rapidlearning/freq", -1)
setter("constraints/cardinality/sepafreq", -1)
setter("constraints/SOS1/sepafreq", -1)
setter("constraints/SOS2/sepafreq", -1)
setter("constraints/varbound/sepafreq", -1)
setter("constraints/knapsack/sepafreq", -1)
setter("constraints/setppc/sepafreq", -1)
setter("constraints/linking/sepafreq", -1)
setter("constraints/or/sepafreq", -1)
setter("constraints/and/sepafreq", -1)
setter("constraints/xor/sepafreq", -1)
setter("constraints/linear/sepafreq", -1)
setter("constraints/orbisack/sepafreq", -1)
setter("constraints/symresack/sepafreq", -1)
setter("constraints/logicor/sepafreq", -1)
setter("constraints/cumulative/sepafreq", -1)
setter("constraints/nonlinear/sepafreq", -1)
setter("constraints/indicator/sepafreq", -1)
# These parameters come from `SCIP> set heuristics off`
setter("heuristics/padm/freq", -1)
setter("heuristics/ofins/freq", -1)
setter("heuristics/trivialnegation/freq", -1)
setter("heuristics/reoptsols/freq", -1)
setter("heuristics/trivial/freq", -1)
setter("heuristics/clique/freq", -1)
setter("heuristics/locks/freq", -1)
setter("heuristics/vbounds/freq", -1)
setter("heuristics/shiftandpropagate/freq", -1)
setter("heuristics/completesol/freq", -1)
setter("heuristics/simplerounding/freq", -1)
setter("heuristics/randrounding/freq", -1)
setter("heuristics/zirounding/freq", -1)
setter("heuristics/rounding/freq", -1)
setter("heuristics/shifting/freq", -1)
setter("heuristics/intshifting/freq", -1)
setter("heuristics/oneopt/freq", -1)
setter("heuristics/indicator/freq", -1)
setter("heuristics/adaptivediving/freq", -1)
setter("heuristics/farkasdiving/freq", -1)
setter("heuristics/feaspump/freq", -1)
setter("heuristics/conflictdiving/freq", -1)
setter("heuristics/pscostdiving/freq", -1)
setter("heuristics/fracdiving/freq", -1)
setter("heuristics/nlpdiving/freq", -1)
setter("heuristics/veclendiving/freq", -1)
setter("heuristics/distributiondiving/freq", -1)
setter("heuristics/objpscostdiving/freq", -1)
setter("heuristics/rootsoldiving/freq", -1)
setter("heuristics/linesearchdiving/freq", -1)
setter("heuristics/guideddiving/freq", -1)
setter("heuristics/rens/freq", -1)
setter("heuristics/alns/freq", -1)
setter("heuristics/rins/freq", -1)
setter("heuristics/gins/freq", -1)
setter("heuristics/lpface/freq", -1)
setter("heuristics/crossover/freq", -1)
setter("heuristics/undercover/freq", -1)
setter("heuristics/subnlp/freq", -1)
setter("heuristics/mpec/freq", -1)
setter("heuristics/multistart/freq", -1)
setter("heuristics/trysol/freq", -1)
end
| SCIP | https://github.com/scipopt/SCIP.jl.git |
|
[
"MIT"
] | 0.11.14 | 3d6a6516d6940a93b732e8ec7127652a0ead89c6 | code | 1711 | using MINLPTests, JuMP, SCIP, Test
@static if VERSION >= v"1.7"
import LinearAlgebra, OpenBLAS32_jll
LinearAlgebra.BLAS.lbt_forward(OpenBLAS32_jll.libopenblas_path)
end
const OPTIMIZER =
JuMP.optimizer_with_attributes(SCIP.Optimizer, "display/verblevel" => 0)
const OBJTOL = 1e-4
const PRIMALTOL = 1e-3
const DUALTOL = NaN # to disable the query
MINLPTests.test_directory(
"nlp",
OPTIMIZER;
objective_tol=OBJTOL,
primal_tol=PRIMALTOL,
dual_tol=DUALTOL,
termination_target=MINLPTests.TERMINATION_TARGET_GLOBAL,
primal_target=MINLPTests.PRIMAL_TARGET_GLOBAL,
include=["005_010", "007_010"],
)
MINLPTests.test_directory(
"nlp-cvx",
OPTIMIZER;
objective_tol=OBJTOL,
primal_tol=PRIMALTOL,
dual_tol=DUALTOL,
termination_target=MINLPTests.TERMINATION_TARGET_GLOBAL,
primal_target=MINLPTests.PRIMAL_TARGET_GLOBAL,
include=[
"001_010",
"002_010",
"101_010",
"101_012",
"102_010",
"102_011",
"102_012",
"103_010",
"103_011",
"103_012",
"103_013",
"103_014",
"104_010",
"105_010",
"105_011",
"105_012",
"105_013",
"201_010",
"201_011",
"202_010",
"202_011",
"202_012",
"202_013",
"202_014",
"203_010",
"204_010",
"205_010",
],
)
MINLPTests.test_directory(
"nlp-mi",
OPTIMIZER;
objective_tol=OBJTOL,
primal_tol=PRIMALTOL,
dual_tol=DUALTOL,
termination_target=MINLPTests.TERMINATION_TARGET_GLOBAL,
primal_target=MINLPTests.PRIMAL_TARGET_GLOBAL,
include=["005_010", "007_010", "007_020"],
)
| SCIP | https://github.com/scipopt/SCIP.jl.git |
|
[
"MIT"
] | 0.11.14 | 3d6a6516d6940a93b732e8ec7127652a0ead89c6 | docs | 2921 | # News
## v0.10.0
SCIP.jl was upgraded to MathOptInterface `v0.10`.
Removed `ManagedSCIP` as a logic layer. Memory management is now done at the `SCIP.Optimizer` layer.
## v0.9.8
Support for SCIP 7.0.2.
Automatic SCIP binary installation through [SCIP_jll](https://github.com/JuliaBinaryWrappers/SCIP_jll.jl)
built by BinaryBuilder [#177](https://github.com/scipopt/SCIP.jl/pull/177).
## v0.9.7
- support MOI user cut callbacks [#179](https://github.com/SCIP-Interfaces/SCIP.jl/pull/179)
## v0.9.6
- add local CEnum submodule to avoid version conflicts [#175](https://github.com/SCIP-Interfaces/SCIP.jl/pull/175)
- support SCIP 7.0.1 [#173](https://github.com/SCIP-Interfaces/SCIP.jl/pull/173)
- fix SCIP status bug when adding nonlinear constraints after solving [#171](https://github.com/SCIP-Interfaces/SCIP.jl/pull/171)
## v0.9.5
- implement MOI.DualStatus [#158](https://github.com/SCIP-Interfaces/SCIP.jl/pull/158)
## v0.9.4
- support SCIP 7.0.0 [#149](https://github.com/SCIP-Interfaces/SCIP.jl/pull/149)
## v0.9.3
- add support for VariablePrimalStart [#138](https://github.com/SCIP-Interfaces/SCIP.jl/pull/138)
- fix indicator constraints [#137](https://github.com/SCIP-Interfaces/SCIP.jl/pull/137)
## v0.9.2
- support (and require) MOI v0.9.5 [#134](https://github.com/SCIP-Interfaces/SCIP.jl/pull/134)
- implement more MOI methods to better support JuMP with `direct_model` [#133](https://github.com/SCIP-Interfaces/SCIP.jl/pull/133)
## v0.9.1
- Add a Julia wrapper for constraint handlers. [#109](https://github.com/SCIP-Interfaces/SCIP.jl/pull/109)
## v0.9.0
- support MOI v0.9 [#126](https://github.com/SCIP-Interfaces/SCIP.jl/pull/126)
- SCIP-specific MOI indicator constraint replaced by the new MOI definition [#121](https://github.com/SCIP-Interfaces/SCIP.jl/pull/121)
## v0.8.0
- support Windows [#122](https://github.com/SCIP-Interfaces/SCIP.jl/pull/122)
- switch from REQUIRE to Project.toml [#119](https://github.com/SCIP-Interfaces/SCIP.jl/pull/119)
## v0.7.4
- support indicator constraints: [#113](https://github.com/SCIP-Interfaces/SCIP.jl/pull/113)
- fix segfaults when accessing solution before solving: [#115](https://github.com/SCIP-Interfaces/SCIP.jl/pull/115)
## v0.7.3
- Support OS X: [#110](https://github.com/SCIP-Interfaces/SCIP.jl/issues/110).
## v0.7.2
- Fix handling of value types when setting parameters:
[#15](https://github.com/SCIP-Interfaces/SCIP.jl/issues/15).
## v0.7.1
- Fix translation of coefficients in quadratic constraints:
[#106](https://github.com/SCIP-Interfaces/SCIP.jl/issues/106).
## v0.7.0
- Major rewrite with Clang.jl generated wrapper of SCIP headers:
[#76](https://github.com/SCIP-Interfaces/SCIP.jl/pull/76).
- Add support for MathOptInterface (and JuMP v0.19).
- Drop support for MathProgBase.
- Drop intermediate layer CSIP between SCIP.jl and SCIP.
## v0.6.1
- Last version to support MathProgBase and JuMP v0.18
| SCIP | https://github.com/scipopt/SCIP.jl.git |
|
[
"MIT"
] | 0.11.14 | 3d6a6516d6940a93b732e8ec7127652a0ead89c6 | docs | 5239 | # SCIP.jl
[](https://github.com/scipopt/SCIP.jl/actions?query=workflow%3ACI)
[](https://codecov.io/gh/scipopt/SCIP.jl)
[](https://pkgs.genieframework.com?packages=SCIP)
[SCIP.jl](https://github.com/scipopt/SCIP.jl) is a Julia interface to the
[SCIP](https://scipopt.org) solver.
## Affiliation
This wrapper is maintained by the [SCIP project](https://www.scipopt.org/) with
the help of the JuMP community.
## License
`SCIP.jl` is licensed under the [MIT License](https://github.com/scipopt/SCIP.jl/blob/master/LICENSE).
The underlying solver, [scipopt/scip](https://github.com/scipopt/scip), is
licensed under the [Apache 2.0 license](https://github.com/scipopt/scip/blob/master/LICENSE).
## Installation
Install SCIP.jl using `Pkg.add`:
```julia
import Pkg
Pkg.add("SCIP")
```
On MacOS and Linux, installing the SCIP Julia package will work out of the box
and install the [`SCIP_jll.jl`](https://github.com/JuliaBinaryWrappers/SCIP_jll.jl) and
[`SCIP_PaPILO_jll.jl`](https://github.com/JuliaBinaryWrappers/SCIP_PaPILO_jll.jl)
dependencies.
On Windows, a separate installation of SCIP is still mandatory, as detailed in
the "Custom installation" section below.
## Custom installations
If you use an older Julia version, Windows, or you want a custom SCIP
installation, you must manually install the SCIP binaries.
Once installed, set the `SCIPOPTDIR` environment variable to point to the
installation path, that is, depending on your operating system,
`$SCIPOPTDIR/lib/libscip.so`, `$SCIPOPTDIR/lib/libscip.dylib`, or
`$SCIPOPTDIR/bin/scip.dll` must exist.
Then, install `SCIP.jl` using `Pkg.add` and `Pkg.build`:
```julia
ENV["SCIPOPTDIR"] = "/Users/Oscar/code/SCIP"
import Pkg
Pkg.add("SCIP")
Pkg.build("SCIP")
```
## Use with JuMP
Use SCIP with JuMP as follows:
```julia
using JuMP, SCIP
model = Model(SCIP.Optimizer)
set_attribute(model, "display/verblevel", 0)
set_attribute(model, "limits/gap", 0.05)
```
## Options
See the [SCIP documentation](https://scip.zib.de/doc-8.0.0/html/PARAMETERS.php)
for a list of supported options.
## MathOptInterface API
The SCIP optimizer supports the following constraints and attributes.
List of supported objective functions:
* [`MOI.ObjectiveFunction{MOI.ScalarAffineFunction{Float64}}`](@ref)
List of supported variable types:
* [`MOI.Reals`](@ref)
List of supported constraint types:
* [`MOI.ScalarAffineFunction{Float64}`](@ref) in [`MOI.EqualTo{Float64}`](@ref)
* [`MOI.ScalarAffineFunction{Float64}`](@ref) in [`MOI.GreaterThan{Float64}`](@ref)
* [`MOI.ScalarAffineFunction{Float64}`](@ref) in [`MOI.Interval{Float64}`](@ref)
* [`MOI.ScalarAffineFunction{Float64}`](@ref) in [`MOI.LessThan{Float64}`](@ref)
* [`MOI.ScalarQuadraticFunction{Float64}`](@ref) in [`MOI.EqualTo{Float64}`](@ref)
* [`MOI.ScalarQuadraticFunction{Float64}`](@ref) in [`MOI.GreaterThan{Float64}`](@ref)
* [`MOI.ScalarQuadraticFunction{Float64}`](@ref) in [`MOI.Interval{Float64}`](@ref)
* [`MOI.ScalarQuadraticFunction{Float64}`](@ref) in [`MOI.LessThan{Float64}`](@ref)
* [`MOI.VariableIndex`](@ref) in [`MOI.EqualTo{Float64}`](@ref)
* [`MOI.VariableIndex`](@ref) in [`MOI.GreaterThan{Float64}`](@ref)
* [`MOI.VariableIndex`](@ref) in [`MOI.Integer`](@ref)
* [`MOI.VariableIndex`](@ref) in [`MOI.Interval{Float64}`](@ref)
* [`MOI.VariableIndex`](@ref) in [`MOI.LessThan{Float64}`](@ref)
* [`MOI.VariableIndex`](@ref) in [`MOI.ZeroOne`](@ref)
* [`MOI.VectorOfVariables`](@ref) in [`MOI.SOS1{Float64}`](@ref)
* [`MOI.VectorOfVariables`](@ref) in [`MOI.SOS2{Float64}`](@ref)
List of supported model attributes:
* [`MOI.NLPBlock()`](@ref)
* [`MOI.ObjectiveSense()`](@ref)
* [`MOI.UserCutCallback()`](@ref)
## Design considerations
### Wrapping the public API
All of the public API methods are wrapped and available within the `SCIP`
package. This includes the `scip_*.h` and `pub_*.h` headers that are collected
in `scip.h`, as well as all default constraint handlers (`cons_*.h`.)
The wrapped functions do not transform any data structures and work on the *raw*
pointers (for example, `SCIP*` in C, `Ptr{SCIP_}` in Julia). Convenience wrapper
functions based on Julia types are added as needed.
### Memory management
Programming with SCIP requires dealing with variable and constraint objects that
use [reference counting](https://scip.zib.de/doc-8.0.0/html/OBJ.php) for memory
management.
The `SCIP.Optimizer` wrapper type collects lists of `SCIP_VAR*` and `SCIP_CONS*`
under the hood, and it releases all references when it is garbage collected
itself (via `finalize`).
When adding a variable (`add_variable`) or a constraint (`add_linear_constraint`),
an integer index is returned. This index can be used to retrieve the `SCIP_VAR*`
or `SCIP_CONS*` pointer via `get_var` and `get_cons` respectively.
### Supported nonlinear operators
Supported operators in nonlinear expressions are as follows:
* `+`
* `-`
* `*`
* `/`
* `^`
* `sqrt`
* `exp`
* `log`
* `abs`
* `cos`
* `sin`
| SCIP | https://github.com/scipopt/SCIP.jl.git |
|
[
"MIT"
] | 0.15.0 | 40acc20cfb253cf061c1a2a2ea28de85235eeee1 | code | 603 | using Documenter, LsqFit
makedocs(
format = Documenter.HTML(prettyurls = true, canonical="https://julianlsolvers.github.io/LsqFit.jl/stable/"),
sitename = "LsqFit.jl",
doctest = false,
warnonly = true,
pages = Any[
"Home" => "index.md",
"Getting Started" => "getting_started.md",
"Tutorial" => "tutorial.md",
"API References" => "api.md",
],
)
deploydocs(
repo = "github.com/JuliaNLSolvers/LsqFit.jl.git",
target = "build",
versions = ["stable" => "v^", "v#.#"],
deps = nothing,
make = nothing,
)
| LsqFit | https://github.com/JuliaNLSolvers/LsqFit.jl.git |
|
[
"MIT"
] | 0.15.0 | 40acc20cfb253cf061c1a2a2ea28de85235eeee1 | code | 591 | module LsqFit
export curve_fit,
margin_error,
make_hessian,
Avv,
# StatsAPI reexports
dof,
coef,
confint,
nobs,
mse,
rss,
stderror,
weights,
residuals,
vcov
using Distributions
using LinearAlgebra
using ForwardDiff
using Printf
using StatsAPI
import NLSolversBase:
value, value!, jacobian, jacobian!, value_jacobian!!, OnceDifferentiable
using StatsAPI: coef, confint, dof, nobs, rss, stderror, weights, residuals, vcov
import Base.summary
include("geodesic.jl")
include("levenberg_marquardt.jl")
include("curve_fit.jl")
end
| LsqFit | https://github.com/JuliaNLSolvers/LsqFit.jl.git |
|
[
"MIT"
] | 0.15.0 | 40acc20cfb253cf061c1a2a2ea28de85235eeee1 | code | 10061 | struct LsqFitResult{P,R,J,W <: AbstractArray,T}
param::P
resid::R
jacobian::J
converged::Bool
trace::T
wt::W
end
StatsAPI.coef(lfr::LsqFitResult) = lfr.param
StatsAPI.dof(lfr::LsqFitResult) = nobs(lfr) - length(coef(lfr))
StatsAPI.nobs(lfr::LsqFitResult) = length(lfr.resid)
StatsAPI.rss(lfr::LsqFitResult) = sum(abs2, lfr.resid)
StatsAPI.weights(lfr::LsqFitResult) = lfr.wt
StatsAPI.residuals(lfr::LsqFitResult) = lfr.resid
mse(lfr::LsqFitResult) = rss(lfr) / dof(lfr)
isconverged(lsr::LsqFitResult) = lsr.converged
function check_data_health(xdata, ydata)
if any(ismissing, xdata) || any(ismissing, ydata)
error("Data contains `missing` values and a fit cannot be performed")
end
if any(isinf, xdata) || any(isinf, ydata) || any(isnan, xdata) || any(isnan, ydata)
error("Data contains `Inf` or `NaN` values and a fit cannot be performed")
end
end
# provide a method for those who have their own Jacobian function
function lmfit(f, g, p0::AbstractArray, wt::AbstractArray; kwargs...)
r = f(p0)
R = OnceDifferentiable(f, g, p0, copy(r); inplace=false)
lmfit(R, p0, wt; kwargs...)
end
# for inplace f and inplace g
function lmfit(f!, g!, p0::AbstractArray, wt::AbstractArray, r::AbstractArray; kwargs...)
R = OnceDifferentiable(f!, g!, p0, copy(r); inplace=true)
lmfit(R, p0, wt; kwargs...)
end
# for inplace f only
function lmfit(
f,
p0::AbstractArray,
wt::AbstractArray,
r::AbstractArray;
autodiff=:finite,
kwargs...,
)
R = OnceDifferentiable(f, p0, copy(r); inplace=true, autodiff=autodiff)
lmfit(R, p0, wt; kwargs...)
end
function lmfit(f, p0::AbstractArray, wt::AbstractArray; autodiff=:finite, kwargs...)
# this is a convenience function for the curve_fit() methods
# which assume f(p) is the cost functionj i.e. the residual of a
# model where
# model(xpts, params...) = ydata + error (noise)
# this minimizes f(p) using a least squares sum of squared error:
# rss = sum(f(p)^2)
#
# returns p, f(p), g(p) where
# p : best fit parameters
# f(p) : function evaluated at best fit p, (weighted) residuals
# g(p) : estimated Jacobian at p (Jacobian with respect to p)
# construct Jacobian function, which uses finite difference method
r = f(p0)
autodiff = autodiff == :forwarddiff ? :forward : autodiff
R = OnceDifferentiable(f, p0, copy(r); inplace=false, autodiff=autodiff)
lmfit(R, p0, wt; kwargs...)
end
function lmfit(
R::OnceDifferentiable,
p0::AbstractArray,
wt::AbstractArray;
autodiff=:finite,
kwargs...,
)
results = levenberg_marquardt(R, p0; kwargs...)
p = results.minimizer
converged = isconverged(results)
return LsqFitResult(p, value!(R, p), jacobian!(R, p), converged, results.trace, wt)
end
"""
curve_fit(model, xdata, ydata, p0) -> fit
curve_fit(model, xdata, ydata, wt, p0) -> fit
Fit data to a non-linear `model`. `p0` is an initial model parameter guess (see Example),
and `wt` is an optional array of weights.
The return object is a composite type (`LsqFitResult`), with some interesting values:
* `fit.resid` : residuals = vector of residuals
* `fit.jacobian` : estimated Jacobian at solution
additionally, it is possible to query the degrees of freedom with
* `dof(fit)`
* `coef(fit)`
## Example
```julia
# a two-parameter exponential model
# x: array of independent variables
# p: array of model parameters
model(x, p) = p[1]*exp.(-x.*p[2])
# some example data
# xdata: independent variables
# ydata: dependent variable
xdata = range(0, stop=10, length=20)
ydata = model(xdata, [1.0 2.0]) + 0.01*randn(length(xdata))
p0 = [0.5, 0.5]
fit = curve_fit(model, xdata, ydata, p0)
```
"""
function curve_fit end
function curve_fit(
model,
xdata::AbstractArray,
ydata::AbstractArray,
p0::AbstractArray;
inplace=false,
kwargs...,
)
check_data_health(xdata, ydata)
# construct the cost function
T = eltype(ydata)
if inplace
f! = (F, p) -> (model(F, xdata, p); @. F = F - ydata)
lmfit(f!, p0, T[], ydata; kwargs...)
else
f = (p) -> model(xdata, p) - ydata
lmfit(f, p0, T[]; kwargs...)
end
end
function curve_fit(
model,
jacobian_model,
xdata::AbstractArray,
ydata::AbstractArray,
p0::AbstractArray;
inplace=false,
kwargs...,
)
check_data_health(xdata, ydata)
T = eltype(ydata)
if inplace
f! = (F, p) -> (model(F, xdata, p); @. F = F - ydata)
g! = (G, p) -> jacobian_model(G, xdata, p)
lmfit(f!, g!, p0, T[], copy(ydata); kwargs...)
else
f = (p) -> model(xdata, p) - ydata
g = (p) -> jacobian_model(xdata, p)
lmfit(f, g, p0, T[]; kwargs...)
end
end
function curve_fit(
model,
xdata::AbstractArray,
ydata::AbstractArray,
wt::AbstractArray,
p0::AbstractArray;
inplace=false,
kwargs...,
)
check_data_health(xdata, ydata)
# construct a weighted cost function, with a vector weight for each ydata
# for example, this might be wt = 1/sigma where sigma is some error term
u = sqrt.(wt) # to be consistant with the matrix form
if inplace
f! = (F, p) -> (model(F, xdata, p); @. F = u * (F - ydata))
lmfit(f!, p0, wt, ydata; kwargs...)
else
f = (p) -> u .* (model(xdata, p) - ydata)
lmfit(f, p0, wt; kwargs...)
end
end
function curve_fit(
model,
jacobian_model,
xdata::AbstractArray,
ydata::AbstractArray,
wt::AbstractArray,
p0::AbstractArray;
inplace=false,
kwargs...,
)
check_data_health(xdata, ydata)
u = sqrt.(wt) # to be consistant with the matrix form
if inplace
f! = (F, p) -> (model(F, xdata, p); @. F = u * (F - ydata))
g! = (G, p) -> (jacobian_model(G, xdata, p); @. G = u * G)
lmfit(f!, g!, p0, wt, ydata; kwargs...)
else
f = (p) -> u .* (model(xdata, p) - ydata)
g = (p) -> u .* (jacobian_model(xdata, p))
lmfit(f, g, p0, wt; kwargs...)
end
end
function curve_fit(
model,
xdata::AbstractArray,
ydata::AbstractArray,
wt::AbstractMatrix,
p0::AbstractArray;
kwargs...,
)
check_data_health(xdata, ydata)
# as before, construct a weighted cost function with where this
# method uses a matrix weight.
# for example: an inverse_covariance matrix
# Cholesky is effectively a sqrt of a matrix, which is what we want
# to minimize in the least-squares of levenberg_marquardt()
# This requires the matrix to be positive definite
u = cholesky(wt).U
f(p) = u * (model(xdata, p) - ydata)
lmfit(f, p0, wt; kwargs...)
end
function curve_fit(
model,
jacobian_model,
xdata::AbstractArray,
ydata::AbstractArray,
wt::AbstractMatrix,
p0::AbstractArray;
kwargs...,
)
check_data_health(xdata, ydata)
u = cholesky(wt).U
f(p) = u * (model(xdata, p) - ydata)
g(p) = u * (jacobian_model(xdata, p))
lmfit(f, g, p0, wt; kwargs...)
end
function StatsAPI.vcov(fit::LsqFitResult)
# computes covariance matrix of fit parameters
J = fit.jacobian
if isempty(fit.wt)
r = fit.resid
# compute the covariance matrix from the QR decomposition
Q, R = qr(J)
Rinv = inv(R)
covar = Rinv * Rinv' * mse(fit)
else
covar = inv(J' * J)
end
return covar
end
function StatsAPI.stderror(fit::LsqFitResult; rtol::Real=NaN, atol::Real=0)
# computes standard error of estimates from
# fit : a LsqFitResult from a curve_fit()
# atol : absolute tolerance for approximate comparisson to 0.0 in negativity check
# rtol : relative tolerance for approximate comparisson to 0.0 in negativity check
covar = vcov(fit)
# then the standard errors are given by the sqrt of the diagonal
vars = diag(covar)
vratio = minimum(vars) / maximum(vars)
if !isapprox(
vratio,
0.0,
atol=atol,
rtol=isnan(rtol) ? Base.rtoldefault(vratio, 0.0, 0) : rtol,
) && vratio < 0.0
error("Covariance matrix is negative for atol=$atol and rtol=$rtol")
end
return sqrt.(abs.(vars))
end
function margin_error(fit::LsqFitResult, alpha=0.05; rtol::Real=NaN, atol::Real=0)
# computes margin of error at alpha significance level from
# fit : a LsqFitResult from a curve_fit()
# alpha : significance level, e.g. alpha=0.05 for 95% confidence
# atol : absolute tolerance for approximate comparisson to 0.0 in negativity check
# rtol : relative tolerance for approximate comparisson to 0.0 in negativity check
std_errors = stderror(fit; rtol=rtol, atol=atol)
dist = TDist(dof(fit))
critical_values = eltype(coef(fit))(quantile(dist, Float64(1 - alpha / 2)))
# scale standard errors by quantile of the student-t distribution (critical values)
return std_errors * critical_values
end
function StatsAPI.confint(fit::LsqFitResult; level=0.95, rtol::Real=NaN, atol::Real=0)
# computes confidence intervals at alpha significance level from
# fit : a LsqFitResult from a curve_fit()
# level : confidence level
# atol : absolute tolerance for approximate comparisson to 0.0 in negativity check
# rtol : relative tolerance for approximate comparisson to 0.0 in negativity check
std_errors = stderror(fit; rtol=rtol, atol=atol)
margin_of_errors = margin_error(fit, 1 - level; rtol=rtol, atol=atol)
return collect(zip(coef(fit) - margin_of_errors, coef(fit) + margin_of_errors))
end
@deprecate(confidence_interval(fit::LsqFitResult, alpha=0.05; rtol::Real=NaN, atol::Real=0),
confint(fit; level=(1 - alpha), rtol=rtol, atol=atol))
@deprecate estimate_covar(fit::LsqFitResult) vcov(fit)
@deprecate standard_errors(args...; kwargs...) stderror(args...; kwargs...)
@deprecate estimate_errors(
fit::LsqFitResult,
confidence=0.95;
rtol::Real=NaN,
atol::Real=0,
) margin_error(fit, 1 - confidence; rtol=rtol, atol=atol)
| LsqFit | https://github.com/JuliaNLSolvers/LsqFit.jl.git |
|
[
"MIT"
] | 0.15.0 | 40acc20cfb253cf061c1a2a2ea28de85235eeee1 | code | 1989 | # see related https://discourse.julialang.org/t/nested-forwarddiff-jacobian-calls-with-inplace-function/21232/7
function make_out_of_place_func(f!, x, make_buffer)
y = make_buffer(f!, x) # make_buffer overloads will be defined below
x -> f!(y, x)
end
struct OutOfPlace{F,D}
f!::F
out_of_place_funcs::Dict{Type,D}
make_buffer::D
function OutOfPlace(f!::T, dict::Dict{Type,D}, shape::Tuple) where {T,D}
mk(::T, p) = similar(p, shape)
new{T,D}(f!, dict, mk)
end
end
OutOfPlace(f!, shape) = OutOfPlace(f!, Dict{Type,Function}(), shape) #no sure how to remove the `Function` here
eval_f(f::F, x) where {F} = f(x) # function barrier
function (oop::OutOfPlace{F})(x) where {F}
T = eltype(x)
f = get!(
() -> make_out_of_place_func(oop.f!, x, oop.make_buffer),
oop.out_of_place_funcs,
T,
)
eval_f(f, x)
end
function make_hessian(f!, x0, p0)
f = OutOfPlace(f!, (length(x0),))
g! = (outjac, p) -> (ForwardDiff.jacobian!(outjac, f, p); outjac = outjac')
g = OutOfPlace(g!, (length(x0), length(p0)))
h! = (outjac2, p) -> (ForwardDiff.jacobian!(outjac2, g, p);
reshape(outjac2', length(p0), length(p0), length(x0)))
h!
end
struct Avv
h!::Function
hessians::Array{Float64}
function Avv(h!::Function, n::Int, m::Int)
hessians = Array{Float64}(undef, m * n, n)
new(h!, hessians)
end
end
function (avv::Avv)(dir_deriv::AbstractVector, p::AbstractVector, v::AbstractVector)
hess = avv.h!(avv.hessians, p) #half of the runtime
vHv!(dir_deriv, hess, v) #half of the runtime, almost all the memory
end
function vHv!(dir_deriv::AbstractVector, hessians::AbstractArray, v::AbstractVector)
tmp = similar(v) #v shouldn't be too large in general, so I kept it here
vt = v'
for i = 1:length(dir_deriv)
@views mul!(tmp, hessians[:, :, i], v) #this line is particularly expensive memory-wise
dir_deriv[i] = vt * tmp
end
end
| LsqFit | https://github.com/JuliaNLSolvers/LsqFit.jl.git |
|
[
"MIT"
] | 0.15.0 | 40acc20cfb253cf061c1a2a2ea28de85235eeee1 | code | 10533 | struct LMState{T}
iteration::Int
value::Float64
g_norm::Float64
metadata::Dict
end
function Base.show(io::IO, t::LMState)
@printf io "%6d %14e %14e\n" t.iteration t.value t.g_norm
if !isempty(t.metadata)
for (key, value) in t.metadata
@printf io " * %s: %s\n" key value
end
end
return
end
LMTrace{T} = Vector{LMState{T}}
function Base.show(io::IO, tr::LMTrace)
@printf io "Iter Function value Gradient norm \n"
@printf io "------ -------------- --------------\n"
for state in tr
show(io, state)
end
return
end
struct LMResults{O,T,Tval,N}
method::O
initial_x::Array{T,N}
minimizer::Array{T,N}
minimum::Tval
iterations::Int
iteration_converged::Bool
x_converged::Bool
g_converged::Bool
g_tol::Tval
trace::LMTrace{O}
f_calls::Int
g_calls::Int
end
minimizer(lsr::LMResults) = lsr.minimizer
isconverged(lsr::LMResults) = lsr.x_converged || lsr.g_converged
struct LevenbergMarquardt end
Base.summary(::LevenbergMarquardt) = "Levenberg-Marquardt"
"""
`levenberg_marquardt(f, g, initial_x; <keyword arguments>`
Returns the argmin over x of `sum(f(x).^2)` using the Levenberg-Marquardt
algorithm, and an estimate of the Jacobian of `f` at x.
The function `f` should take an input vector of length n and return an output
vector of length m. The function `g` is the Jacobian of f, and should return an m x
n matrix. `initial_x` is an initial guess for the solution.
Implements box constraints as described in Kanzow, Yamashita, Fukushima (2004; J
Comp & Applied Math).
# Keyword arguments
* `x_tol::Real=1e-8`: search tolerance in x
* `g_tol::Real=1e-12`: search tolerance in gradient
* `maxIter::Integer=1000`: maximum number of iterations
* `min_step_quality=1e-3`: for steps below this quality, the trust region is shrinked
* `good_step_quality=0.75`: for steps above this quality, the trust region is expanded
* `lambda::Real=10`: (inverse of) initial trust region radius
* `tau=Inf`: set initial trust region radius using the heuristic : tau*maximum(jacobian(df)'*jacobian(df))
* `lambda_increase=10.0`: `lambda` is multiplied by this factor after step below min quality
* `lambda_decrease=0.1`: `lambda` is multiplied by this factor after good quality steps
* `show_trace::Bool=false`: print a status summary on each iteration if true
* `lower,upper=[]`: bound solution to these limits
"""
# I think a smarter way to do this *might* be to create a type similar to `OnceDifferentiable`
# and the like. This way we could not only merge the two functions, but also have a convenient
# way to provide an autodiff-made acceleration when someone doesn't provide an `avv`.
# it would probably be very inefficient performace-wise for most cases, but it wouldn't hurt to have it somewhere
function levenberg_marquardt(
df::OnceDifferentiable,
initial_x::AbstractVector{T};
x_tol::Real=1e-8,
g_tol::Real=1e-12,
maxIter::Integer=1000,
maxTime::Float64=Inf,
lambda=T(10),
tau=T(Inf),
lambda_increase::Real=10.0,
lambda_decrease::Real=0.1,
min_step_quality::Real=1e-3,
good_step_quality::Real=0.75,
show_trace::Bool=false,
store_trace::Bool=false,
lower::AbstractVector{T}=Array{T}(undef, 0),
upper::AbstractVector{T}=Array{T}(undef, 0),
avv!::Union{Function,Nothing,Avv}=nothing,
) where {T}
# First evaluation
value_jacobian!!(df, initial_x)
if isfinite(tau)
lambda = tau * maximum(jacobian(df)' * jacobian(df))
end
# check parameters
(
(isempty(lower) || length(lower) == length(initial_x)) &&
(isempty(upper) || length(upper) == length(initial_x))
) || throw(
ArgumentError(
"Bounds must either be empty or of the same length as the number of parameters.",
),
)
(
(isempty(lower) || all(initial_x .>= lower)) &&
(isempty(upper) || all(initial_x .<= upper))
) || throw(ArgumentError("Initial guess must be within bounds."))
(0 <= min_step_quality < 1) ||
throw(ArgumentError(" 0 <= min_step_quality < 1 must hold."))
(0 < good_step_quality <= 1) ||
throw(ArgumentError(" 0 < good_step_quality <= 1 must hold."))
(min_step_quality < good_step_quality) ||
throw(ArgumentError("min_step_quality < good_step_quality must hold."))
# other constants
MAX_LAMBDA = 1e16 # minimum trust region radius
MIN_LAMBDA = 1e-16 # maximum trust region radius
MIN_DIAGONAL = 1e-6 # lower bound on values of diagonal matrix used to regularize the trust region step
converged = false
x_converged = false
g_converged = false
iterCt = 0
x = copy(initial_x)
delta_x = copy(initial_x)
a = similar(x)
trial_f = similar(value(df))
residual = sum(abs2, value(df))
Tval = typeof(residual)
# Create buffers
n = length(x)
m = length(value(df))
JJ = Matrix{T}(undef, n, n)
n_buffer = Vector{T}(undef, n)
Jdelta_buffer = similar(value(df))
# and an alias for the jacobian
J = jacobian(df)
dir_deriv = Array{T}(undef, m)
v = Array{T}(undef, n)
# Maintain a trace of the system.
tr = LMTrace{LevenbergMarquardt}()
if show_trace || store_trace
d = Dict("lambda" => lambda)
os = LMState{LevenbergMarquardt}(iterCt, sum(abs2, value(df)), NaN, d)
push!(tr, os)
if show_trace
println(os)
end
end
startTime = time()
while (~converged && iterCt < maxIter && maxTime > time() - startTime)
# jacobian! will check if x is new or not, so it is only actually
# evaluated if x was updated last iteration.
jacobian!(df, x) # has alias J
# we want to solve:
# argmin 0.5*||J(x)*delta_x + f(x)||^2 + lambda*||diagm(J'*J)*delta_x||^2
# Solving for the minimum gives:
# (J'*J + lambda*diagm(DtD)) * delta_x == -J' * f(x), where DtD = sum(abs2, J,1)
# Where we have used the equivalence: diagm(J'*J) = diagm(sum(abs2, J,1))
# It is additionally useful to bound the elements of DtD below to help
# prevent "parameter evaporation".
DtD = vec(sum(abs2, J, dims=1))
for i = 1:length(DtD)
if DtD[i] <= MIN_DIAGONAL
DtD[i] = MIN_DIAGONAL
end
end
# delta_x = ( J'*J + lambda * Diagonal(DtD) ) \ ( -J'*value(df) )
mul!(JJ, transpose(J), J)
@simd for i = 1:n
@inbounds JJ[i, i] += lambda * DtD[i]
end
# n_buffer is delta C, JJ is g compared to Mark's code
mul!(n_buffer, transpose(J), value(df))
rmul!(n_buffer, -1)
v .= JJ \ n_buffer
if avv! != nothing
# GEODESIC ACCELERATION PART
avv!(dir_deriv, x, v)
mul!(a, transpose(J), dir_deriv)
rmul!(a, -1) # we multiply by -1 before the decomposition/division
LAPACK.potrf!('U', JJ) # in place cholesky decomposition
LAPACK.potrs!('U', JJ, a) # divides a by JJ, taking into account the fact that JJ is now the `U` cholesky decoposition of what it was before
rmul!(a, 0.5)
delta_x .= v .+ a
# end of the GEODESIC ACCELERATION PART
else
delta_x = v
end
# apply box constraints
if !isempty(lower)
@simd for i = 1:n
@inbounds delta_x[i] = max(x[i] + delta_x[i], lower[i]) - x[i]
end
end
if !isempty(upper)
@simd for i = 1:n
@inbounds delta_x[i] = min(x[i] + delta_x[i], upper[i]) - x[i]
end
end
# if the linear assumption is valid, our new residual should be:
mul!(Jdelta_buffer, J, delta_x)
Jdelta_buffer .= Jdelta_buffer .+ value(df)
predicted_residual = sum(abs2, Jdelta_buffer)
# try the step and compute its quality
# compute it inplace according to NLSolversBase value(obj, cache, state)
# interface. No bang (!) because it doesn't update df besides mutating
# the number of f_calls
# re-use n_buffer
n_buffer .= x .+ delta_x
value(df, trial_f, n_buffer)
# update the sum of squares
trial_residual = sum(abs2, trial_f)
# step quality = residual change / predicted residual change
rho = (trial_residual - residual) / (predicted_residual - residual)
if trial_residual < residual && rho > min_step_quality
# apply the step to x - n_buffer is ready to be used by the delta_x
# calculations after this step.
x .= n_buffer
# There should be an update_x_value to do this safely
copyto!(df.x_f, x)
copyto!(value(df), trial_f)
residual = trial_residual
if rho > good_step_quality
# increase trust region radius
lambda = max(lambda_decrease * lambda, MIN_LAMBDA)
end
else
# decrease trust region radius
lambda = min(lambda_increase * lambda, MAX_LAMBDA)
end
iterCt += 1
# show state
if show_trace || store_trace
g_norm = norm(J' * value(df), Inf)
d = Dict("g(x)" => g_norm, "dx" => copy(delta_x), "lambda" => lambda)
os = LMState{LevenbergMarquardt}(iterCt, sum(abs2, value(df)), g_norm, d)
push!(tr, os)
if show_trace
println(os)
end
end
# check convergence criteria:
# 1. Small gradient: norm(J^T * value(df), Inf) < g_tol
# 2. Small step size: norm(delta_x) < x_tol
if norm(J' * value(df), Inf) < g_tol
g_converged = true
end
if norm(delta_x) < x_tol * (x_tol + norm(x))
x_converged = true
end
converged = g_converged | x_converged
end
LMResults(
LevenbergMarquardt(), # method
initial_x, # initial_x
x, # minimizer
sum(abs2, value(df)), # minimum
iterCt, # iterations
!converged, # iteration_converged
x_converged, # x_converged
g_converged, # g_converged
Tval(g_tol), # g_tol
tr, # trace
first(df.f_calls), # f_calls
first(df.df_calls), # g_calls
)
end
| LsqFit | https://github.com/JuliaNLSolvers/LsqFit.jl.git |
|
[
"MIT"
] | 0.15.0 | 40acc20cfb253cf061c1a2a2ea28de85235eeee1 | code | 4358 | using LsqFit, Test, StableRNGs, LinearAlgebra
@testset "curve fit" begin
# before testing the model, check whether missing/null data is rejected
tdata = [rand(1:10, 5)..., missing]
@test_throws ErrorException(
"Data contains `missing` values and a fit cannot be performed",
) LsqFit.check_data_health(tdata, tdata)
tdata = [rand(1:10, 5)..., Inf]
@test_throws ErrorException(
"Data contains `Inf` or `NaN` values and a fit cannot be performed",
) LsqFit.check_data_health(tdata, tdata)
tdata = [rand(1:10, 5)..., NaN]
@test_throws ErrorException(
"Data contains `Inf` or `NaN` values and a fit cannot be performed",
) LsqFit.check_data_health(tdata, tdata)
for T in (Float64, BigFloat)
# fitting noisy data to an exponential model
# TODO: Change to `.-x` when 0.5 support is dropped
model(x, p) = p[1] .* exp.(-x .* p[2])
# some example data
rng = StableRNG(125)
xdata = range(0, stop = 10, length = 20)
ydata = T.(model(xdata, [1.0, 2.0]) + 0.01 * randn(rng, length(xdata)))
p0 = T.([0.5, 0.5])
for ad in (:finite, :forward, :forwarddiff)
fit = curve_fit(model, xdata, ydata, p0; autodiff = ad)
@test norm(fit.param - [1.0, 2.0]) < 0.05
@test fit.converged
# can also get error estimates on the fit parameters
errors = margin_error(fit, 0.05)
@test norm(errors - [0.025, 0.11]) < 0.01
end
# if your model is differentiable, it can be faster and/or more accurate
# to supply your own jacobian instead of using the finite difference
function jacobian_model(x, p)
J = Array{Float64}(undef, length(x), length(p))
J[:, 1] = exp.(-x .* p[2]) #dmodel/dp[1]
J[:, 2] = -x .* p[1] .* J[:, 1] #dmodel/dp[2]
J
end
jacobian_fit = curve_fit(model, jacobian_model, xdata, ydata, p0;show_trace=true)
@test norm(jacobian_fit.param - [1.0, 2.0]) < 0.05
@test jacobian_fit.converged
@testset "#195" begin
@test length(jacobian_fit.trace) > 1
@test jacobian_fit.trace[end].metadata["dx"][1] != jacobian_fit.trace[end-1].metadata["dx"][1]
end
# some example data
yvars = T.(1e-6 * rand(rng, length(xdata)))
ydata = T.(model(xdata, [1.0, 2.0]) + sqrt.(yvars) .* randn(rng, length(xdata)))
fit = curve_fit(model, xdata, ydata, 1 ./ yvars, T.([0.5, 0.5]))
@test norm(fit.param - [1.0, 2.0]) < 0.05
@test fit.converged
# test matrix valued weights ( #161 )
weights = LinearAlgebra.diagm(1 ./ yvars)
fit_matrixweights = curve_fit(model, xdata, ydata, weights, T.([0.5, 0.5]))
@test fit.param == fit_matrixweights.param
# can also get error estimates on the fit parameters
errors = margin_error(fit, T(0.1))
@test norm(errors - [0.017, 0.075]) < 0.1
# test with user-supplied jacobian and weights
fit = curve_fit(model, jacobian_model, xdata, ydata, 1 ./ yvars, p0)
println("norm(fit.param - [1.0, 2.0]) < 0.05 ? ", norm(fit.param - [1.0, 2.0]))
@test norm(fit.param - [1.0, 2.0]) < 0.05
@test fit.converged
# Parameters can also be inferred using arbitrary precision
fit = curve_fit(
model,
xdata,
ydata,
1 ./ yvars,
BigFloat.(p0);
x_tol = T(1e-20),
g_tol = T(1e-20),
)
@test fit.converged
fit = curve_fit(
model,
jacobian_model,
xdata,
ydata,
1 ./ yvars,
BigFloat.(p0);
x_tol = T(1e-20),
g_tol = T(1e-20),
)
@test fit.converged
curve_fit(model, jacobian_model, xdata, ydata, 1 ./ yvars, [0.5, 0.5]; tau = 0.0001)
end
end
@testset "#167" begin
x = collect(1:10)
y = copy(x)
@. model(x, p) = p[1] * x + p[2]
p0 = [0.0, -5.0]
fit = curve_fit(model, x, y, p0) # no bounds
fit_bounded = curve_fit(model, x, y, p0; upper = [+Inf, -5.0]) # with bounds
@test coef(fit)[1] < coef(fit_bounded)[1]
@test coef(fit)[1] ≈ 1
@test coef(fit_bounded)[1] ≈ 1.22727271
end
| LsqFit | https://github.com/JuliaNLSolvers/LsqFit.jl.git |
|
[
"MIT"
] | 0.15.0 | 40acc20cfb253cf061c1a2a2ea28de85235eeee1 | code | 5689 | using LsqFit, Test, StableRNGs, LinearAlgebra
@testset "inplace" begin
# fitting noisy data to an exponential model
# TODO: Change to `.-x` when 0.5 support is dropped
@. model(x, p) = p[1] * exp(-x * p[2])
model_inplace(F, x, p) = (@. F = p[1] * exp(-x * p[2]))
# some example data
rng = StableRNG(123)
xdata = range(0, stop = 10, length = 500000)
ydata = model(xdata, [1.0, 2.0]) + 0.01 * randn(rng, length(xdata))
p0 = [0.5, 0.5]
# if your model is differentiable, it can be faster and/or more accurate
# to supply your own jacobian instead of using the finite difference
function jacobian_model(x, p)
J = Array{Float64}(undef, length(x), length(p))
@. J[:, 1] = exp(-x * p[2]) #dmodel/dp[1]
@. @views J[:, 2] = -x * p[1] * J[:, 1]
J
end
function jacobian_model_inplace(J::Array{Float64,2}, x, p)
@. J[:, 1] = exp(-x * p[2]) #dmodel/dp[1]
@. @views J[:, 2] = -x * p[1] * J[:, 1]
end
f(p) = model(xdata, p) - ydata
g(p) = jacobian_model(xdata, p)
df = OnceDifferentiable(f, g, p0, similar(ydata); inplace = false)
evalf(x) = NLSolversBase.value!!(df, x)
evalg(x) = NLSolversBase.jacobian!!(df, x)
r = evalf(p0)
j = evalg(p0)
f_inplace = (F, p) -> (model_inplace(F, xdata, p); @. F = F - ydata)
g_inplace = (G, p) -> jacobian_model_inplace(G, xdata, p)
df_inplace =
OnceDifferentiable(f_inplace, g_inplace, p0, similar(ydata); inplace = true)
evalf_inplace(x) = NLSolversBase.value!!(df_inplace, x)
evalg_inplace(x) = NLSolversBase.jacobian!!(df_inplace, x)
r_inplace = evalf_inplace(p0)
j_inplace = evalg_inplace(p0)
@test r == r_inplace
@test j == j_inplace
println("--------------\nPerformance of non-inplace")
println("\t Evaluation function")
stop = 8 #8 because the tests afterwards will call the eval function 8 or 9 times, so it makes it easy to compare
step = 1
@time for i in range(0, stop = stop, step = step)
evalf(p0)
end
println("\t Jacobian function")
@time for i in range(0, stop = stop, step = step)
evalg(p0)
end
println("--------------\nPerformance of inplace")
println("\t Evaluation function")
@time for i in range(0, stop = stop, step = step)
evalf_inplace(p0)
end
println("\t Jacobian function")
@time for i in range(0, stop = stop, step = step)
evalg_inplace(p0)
end
curve_fit(model, xdata, ydata, p0; maxIter = 100) #warmup
curve_fit(model_inplace, xdata, ydata, p0; inplace = true, maxIter = 100)
#explicit jac
curve_fit(model, jacobian_model, xdata, ydata, p0; maxIter = 100)
curve_fit(
model_inplace,
jacobian_model_inplace,
xdata,
ydata,
p0;
inplace = true,
maxIter = 100,
)
println("--------------\nPerformance of curve_fit")
println("\t Non-inplace")
fit = @time curve_fit(model, xdata, ydata, p0; maxIter = 100)
@test fit.converged
println("\t Inplace")
fit_inplace =
@time curve_fit(model_inplace, xdata, ydata, p0; inplace = true, maxIter = 100)
@test fit_inplace.converged
@test fit_inplace.param == fit.param
println("\t Non-inplace with jacobian")
fit_jac = @time curve_fit(model, jacobian_model, xdata, ydata, p0; maxIter = 100)
@test fit_jac.converged
println("\t Inplace with jacobian")
fit_inplace_jac = @time curve_fit(
model_inplace,
jacobian_model_inplace,
xdata,
ydata,
p0;
inplace = true,
maxIter = 100,
)
@test fit_inplace_jac.converged
@test fit_jac.param == fit_inplace_jac.param
# some example data
yvars = 1e-6 * rand(rng, length(xdata))
ydata = model(xdata, [1.0, 2.0]) + sqrt.(yvars) .* randn(rng, length(xdata))
println("--------------\nPerformance of curve_fit with weights")
curve_fit(model, xdata, ydata, 1 ./ yvars, [0.5, 0.5])
curve_fit(
model_inplace,
xdata,
ydata,
1 ./ yvars,
[0.5, 0.5];
inplace = true,
maxIter = 100,
)
curve_fit(model, jacobian_model, xdata, ydata, 1 ./ yvars, [0.5, 0.5])
curve_fit(
model_inplace,
jacobian_model_inplace,
xdata,
ydata,
1 ./ yvars,
[0.5, 0.5];
inplace = true,
maxIter = 100,
)
println("\t Non-inplace with weights")
fit_wt = @time curve_fit(
model,
jacobian_model,
xdata,
ydata,
1 ./ yvars,
[0.5, 0.5];
maxIter = 100,
)
@test fit_wt.converged
println("\t Inplace with weights")
fit_inplace_wt = @time curve_fit(
model_inplace,
xdata,
ydata,
1 ./ yvars,
[0.5, 0.5];
inplace = true,
maxIter = 100,
)
@test fit_inplace_wt.converged
@test maximum(abs.(fit_wt.param - fit_inplace_wt.param)) < 1e-15
println("\t Non-inplace with jacobian with weights")
fit_wt_jac = @time curve_fit(
model,
jacobian_model,
xdata,
ydata,
1 ./ yvars,
[0.5, 0.5];
maxIter = 100,
)
@test fit_wt_jac.converged
println("\t Inplace with jacobian with weights")
fit_inplace_wt_jac = @time curve_fit(
model_inplace,
jacobian_model_inplace,
xdata,
ydata,
1 ./ yvars,
[0.5, 0.5];
inplace = true,
maxIter = 100,
)
@test fit_inplace_wt_jac.converged
@test maximum(abs.(fit_wt_jac.param - fit_inplace_wt_jac.param)) < 1e-15
end
| LsqFit | https://github.com/JuliaNLSolvers/LsqFit.jl.git |
|
[
"MIT"
] | 0.15.0 | 40acc20cfb253cf061c1a2a2ea28de85235eeee1 | code | 5050 | using LsqFit, Test, StableRNGs
@testset "geodesic" begin
# fitting noisy data to an exponential model
model(x, p) = @. p[1] * exp(-x * p[2])
#model(x,p) = [p[1],100*(p[2]-p[1]^2)]
# some example data
rng = StableRNG(345)
xdata = range(0, stop = 10, length = 50_000)
ydata = model(xdata, [1.0, 2.0]) + 0.01 * randn(rng, length(xdata))
p0 = [0.5, 0.5]
function jacobian_model(x, p)
J = Array{Float64}(undef, length(x), length(p))
@. J[:, 1] = exp(-x * p[2]) #dmodel/dp[1]
@. @views J[:, 2] = -x * p[1] * J[:, 1]
J
end
#Generating the "automatic" avv
model_inplace(out, p) = @. out = p[1] * exp(-xdata * p[2])
hessians = Array{Float64}(undef, length(xdata) * length(p0), length(p0))
h! = make_hessian(model_inplace, xdata, p0)
auto_avv! = Avv(h!, length(p0), length(xdata))
# a couple notes on the Avv function:
# - the basic idea is to see the model output as simply a collection of functions: f1...fm
# - then Avv return an array of size m, where each elements corresponds to
# v'H(p)v, with H an n*n Hessian matrix of the m-th function, with n the size of p
function manual_avv!(dir_deriv, p, v)
v1 = v[1]
v2 = v[2]
for i = 1:length(xdata)
#compute all the elements of the H matrix
h11 = 0
h12 = (-xdata[i] * exp(-xdata[i] * p[2]))
#h21 = h12
h22 = (xdata[i]^2 * p[1] * exp(-xdata[i] * p[2]))
# manually compute v'Hv. This whole process might seem cumbersome, but
# allocating temporary matrices quickly becomes REALLY expensive and might even
# render the use of geodesic acceleration terribly inefficient
dir_deriv[i] = h11 * v1^2 + 2 * h12 * v1 * v2 + h22 * v2^2
end
end
curve_fit(model, jacobian_model, xdata, ydata, p0; maxIter = 1) #warmup
curve_fit(
model,
jacobian_model,
xdata,
ydata,
p0;
maxIter = 1,
avv! = manual_avv!,
lambda = 0,
min_step_quality = 0,
) #lambda = 0 to match Mark's code
curve_fit(
model,
jacobian_model,
xdata,
ydata,
p0;
maxIter = 10,
avv! = auto_avv!,
lambda = 0,
min_step_quality = 0,
)
println("--------------\nPerformance of curve_fit vs geo")
println("\t Non-inplace")
fit = @time curve_fit(model, jacobian_model, xdata, ydata, p0; maxIter = 1000)
@test fit.converged
println("\t Geodesic")
fit_geo = @time curve_fit(
model,
jacobian_model,
xdata,
ydata,
p0;
maxIter = 10,
avv! = manual_avv!,
lambda = 0,
min_step_quality = 0,
)
@test fit_geo.converged
println("\t Geodesic - auto avv!")
fit_geo_auto = @time curve_fit(
model,
jacobian_model,
xdata,
ydata,
p0;
maxIter = 10,
avv! = auto_avv!,
lambda = 0,
min_step_quality = 0,
)
@test fit_geo_auto.converged
@test maximum(abs.(fit.param - [1.0, 2.0])) < 1e-1
@test maximum(abs.(fit.param - fit_geo.param)) < 1e-6
@test maximum(abs.(fit.param - fit_geo_auto.param)) < 1e-6
#with noise
yvars = 1e-6 * rand(rng, length(xdata))
ydata = model(xdata, [1.0, 2.0]) + sqrt.(yvars) .* randn(rng, length(xdata))
#warm up
curve_fit(model, jacobian_model, xdata, ydata, 1 ./ yvars, p0; maxIter = 1)
curve_fit(
model,
jacobian_model,
xdata,
ydata,
1 ./ yvars,
p0;
maxIter = 1,
avv! = manual_avv!,
lambda = 0,
min_step_quality = 0,
)
curve_fit(
model,
jacobian_model,
xdata,
ydata,
1 ./ yvars,
p0;
maxIter = 1,
avv! = auto_avv!,
lambda = 0,
min_step_quality = 0,
)
println("--------------\nPerformance of curve_fit vs geo with weights")
println("\t Non-inplace")
fit_wt =
@time curve_fit(model, jacobian_model, xdata, ydata, 1 ./ yvars, p0; maxIter = 100)
@test fit_wt.converged
println("\t Geodesic")
fit_geo_wt = @time curve_fit(
model,
jacobian_model,
xdata,
ydata,
1 ./ yvars,
p0;
maxIter = 100,
avv! = manual_avv!,
lambda = 0,
min_step_quality = 0,
)
@test fit_geo_wt.converged
println("\t Geodesic - auto avv!")
fit_geo_auto_wt = @time curve_fit(
model,
jacobian_model,
xdata,
ydata,
1 ./ yvars,
p0;
maxIter = 100,
avv! = auto_avv!,
lambda = 0,
min_step_quality = 0,
)
@test fit_geo_auto_wt.converged
@test maximum(abs.(fit_wt.param - [1.0, 2.0])) < 1e-1
@test maximum(abs.(fit_wt.param - fit_geo_wt.param)) < 1e-6
@test maximum(abs.(fit_wt.param - fit_geo_auto_wt.param)) < 1e-6
end
| LsqFit | https://github.com/JuliaNLSolvers/LsqFit.jl.git |
|
[
"MIT"
] | 0.15.0 | 40acc20cfb253cf061c1a2a2ea28de85235eeee1 | code | 3698 | using LsqFit, Test, StableRNGs, NLSolversBase
@testset "optimization" begin
function f_lm(x)
[x[1], 2.0 - x[2]]
end
function g_lm(x)
[1.0 0.0; 0.0 -1.0]
end
initial_x = [100.0, 100.0]
R1 = OnceDifferentiable(f_lm, g_lm, zeros(2), zeros(2); inplace = false)
results = LsqFit.levenberg_marquardt(R1, initial_x)
@assert norm(results.minimizer - [0.0, 2.0]) < 0.01
function rosenbrock_res(r, x)
r[1] = 10.0 * (x[2] - x[1]^2)
r[2] = 1.0 - x[1]
return r
end
function rosenbrock_jac(j, x)
j[1, 1] = -20.0 * x[1]
j[1, 2] = 10.0
j[2, 1] = -1.0
j[2, 2] = 0.0
return j
end
initial_xrb = [-1.2, 1.0]
R2 = OnceDifferentiable(
rosenbrock_res,
rosenbrock_jac,
zeros(2),
zeros(2);
inplace = true,
)
results = LsqFit.levenberg_marquardt(R2, initial_xrb)
@assert norm(results.minimizer - [1.0, 1.0]) < 0.01
# check estimate is within the bound PR #278
result = LsqFit.levenberg_marquardt(
R2,
[150.0, 150.0];
lower = [10.0, 10.0],
upper = [200.0, 200.0],
)
@test LsqFit.minimizer(result)[1] >= 10.0
@test LsqFit.minimizer(result)[2] >= 10.0
let
rng = StableRNG(12345)
model(x, p) = @. p[1] * exp(-x * p[2])
_nobs = 20
xdata = range(0, stop = 10, length = _nobs)
ydata = model(xdata, [1.0 2.0]) + 0.01 * randn(rng, _nobs)
f_lsq = p -> model(xdata, p) - ydata
g_lsq = p -> NLSolversBase.FiniteDiff.finite_difference_jacobian(f_lsq, p)
R3 = OnceDifferentiable(f_lsq, g_lsq, zeros(2), zeros(_nobs); inplace = false)
results = LsqFit.levenberg_marquardt(R3, [0.5, 0.5])
@assert norm(results.minimizer - [1.0, 2.0]) < 0.05
end
let
rng = StableRNG(12345)
# TODO: Change to `.-x` when 0.5 support is dropped
model(x, p) = @. p[1] * exp(x / p[2]) + p[3]
xdata = 1:100
p_generate = [10.0, 10.0, 10.0]
ydata = model(xdata, p_generate) + 0.1 * randn(rng, length(xdata))
f_lsq = p -> model(xdata, p) - ydata
g_lsq = p -> NLSolversBase.FiniteDiff.finite_difference_jacobian(f_lsq, p)
R4 = OnceDifferentiable(
f_lsq,
g_lsq,
similar(p_generate),
zeros(length(xdata));
inplace = false,
)
# tests for box constraints, PR #196
@test_throws ArgumentError LsqFit.levenberg_marquardt(
R4,
[15.0, 15.0, 15.0],
lower = [5.0, 11.0],
)
@test_throws ArgumentError LsqFit.levenberg_marquardt(
R4,
[5.0, 5.0, 5.0],
upper = [15.0, 9.0],
)
@test_throws ArgumentError LsqFit.levenberg_marquardt(
R4,
[15.0, 10.0, 15.0],
lower = [5.0, 11.0, 5.0],
)
@test_throws ArgumentError LsqFit.levenberg_marquardt(
R4,
[5.0, 10.0, 5.0],
upper = [15.0, 9.0, 15.0],
)
lower = [5.0, 11.0, 5.0]
results = LsqFit.levenberg_marquardt(R4, [15.0, 15.0, 15.0], lower = lower)
results.minimizer
@test LsqFit.isconverged(results)
@test all(results.minimizer .>= lower)
upper = [15.0, 9.0, 15.0]
results = LsqFit.levenberg_marquardt(R4, [5.0, 5.0, 5.0], upper = upper)
results.minimizer
@test LsqFit.isconverged(results)
@test all(results.minimizer .<= upper)
# tests for PR #267
LsqFit.levenberg_marquardt(R4, [15.0, 15.0, 15.0], show_trace = true)
end
end
| LsqFit | https://github.com/JuliaNLSolvers/LsqFit.jl.git |
|
[
"MIT"
] | 0.15.0 | 40acc20cfb253cf061c1a2a2ea28de85235eeee1 | code | 278 | #
# Correctness Tests
#
using LsqFit, Test, LinearAlgebra
using NLSolversBase
my_tests = ["curve_fit.jl", "levenberg_marquardt.jl", "curve_fit_inplace.jl", "geodesic.jl"]
println("Running tests:")
for my_test in my_tests
println(" * $(my_test)")
include(my_test)
end
| LsqFit | https://github.com/JuliaNLSolvers/LsqFit.jl.git |
|
[
"MIT"
] | 0.15.0 | 40acc20cfb253cf061c1a2a2ea28de85235eeee1 | docs | 11131 | LsqFit.jl
===========
The LsqFit package is a small library that provides basic least-squares fitting in pure Julia under an MIT license. The basic functionality was originally in [Optim.jl](https://github.com/JuliaNLSolvers/Optim.jl), before being separated into this library. At this time, `LsqFit` only utilizes the Levenberg-Marquardt algorithm for non-linear fitting.
[](https://github.com/JuliaNLSolvers/LsqFit.jl/actions/workflows/ci.yml)
[](https://julianlsolvers.github.io/LsqFit.jl/latest/)
Basic Usage
-----------
There are top-level methods `curve_fit()` and `margin_error()` that are useful for fitting data to non-linear models. See the following example. Let's first define the model function:
```julia
using LsqFit
# a two-parameter exponential model
# x: array of independent variables
# p: array of model parameters
# model(x, p) will accept the full data set as the first argument `x`.
# This means that we need to write our model function so it applies
# the model to the full dataset. We use `@.` to apply the calculations
# across all rows.
@. model(x, p) = p[1]*exp(-x*p[2])
```
The function applies the per observation function `p[1]*exp(-x[i]*p[2])` to the full dataset in `x`, with `i` denoting an observation row. We simulate some data and chose our "true" parameters.
```julia
# some example data
# xdata: independent variables
# ydata: dependent variable
xdata = range(0, stop=10, length=20)
ydata = model(xdata, [1.0 2.0]) + 0.01*randn(length(xdata))
p0 = [0.5, 0.5]
```
Now, we're ready to fit the model.
```julia
fit = curve_fit(model, xdata, ydata, p0)
# fit is a composite type (LsqFitResult), with some interesting values:
# dof(fit): degrees of freedom
# coef(fit): best fit parameters
# fit.resid: residuals = vector of residuals
# fit.jacobian: estimated Jacobian at solution
lb = [1.1, -0.5]
ub = [1.9, Inf]
p0_bounds = [1.2, 1.2] # we have to start inside the bounds
# Optional upper and/or lower bounds on the free parameters can be passed as an argument.
# Bounded and unbouded variables can be mixed by setting `-Inf` if no lower bounds
# is to be enforced for that variable and similarly for `+Inf`
fit_bounds = curve_fit(model, xdata, ydata, p0_bounds, lower=lb, upper=ub)
# We can estimate errors on the fit parameters,
# to get standard error of each parameter:
sigma = stderror(fit)
# to get margin of error and confidence interval of each parameter at 5% significance level:
margin_of_error = margin_error(fit, 0.05)
confidence_inter = confint(fit; level=0.95)
# The finite difference method is used above to approximate the Jacobian.
# Alternatively, a function which calculates it exactly can be supplied instead.
function jacobian_model(x,p)
J = Array{Float64}(undef, length(x), length(p))
@. J[:,1] = exp(-x*p[2]) #dmodel/dp[1]
@. @views J[:,2] = -x*p[1]*J[:,1] #dmodel/dp[2], thanks to @views we don't allocate memory for the J[:,1] slice
J
end
fit = curve_fit(model, jacobian_model, xdata, ydata, p0)
```
Multivariate regression
-----------------------
There's nothing inherently different if there are more than one variable entering the problem. We just need to specify the columns appropriately in our model specification.
```julia
using LsqFit
x = collect(range(0, stop=200, length=201))
y = collect(range(0, stop=200, length=201))
xy = hcat(x, y)
function twoD_Gaussian(xy, p)
amplitude, xo, yo, sigma_x, sigma_y, theta, offset = p
a = (cos(theta)^2)/(2*sigma_x^2) + (sin(theta)^2)/(2*sigma_y^2)
b = -(sin(2*theta))/(4*sigma_x^2) + (sin(2*theta))/(4*sigma_y^2)
c = (sin(theta)^2)/(2*sigma_x^2) + (cos(theta)^2)/(2*sigma_y^2)
# creating linear meshgrid from xy
x = xy[:, 1]
y = xy[:, 2]
g = offset .+ amplitude .* exp.( - (a.*((x .- xo).^2) + 2 .* b .* (x .- xo) .* (y .- yo) + c * ((y .- yo).^2)))
return g[:]
end
p0 = Float64.([3, 100, 100, 20, 40, 0, 10])
data = twoD_Gaussian(xy, p0)
# Noisy data
data_noisy = data + 0.2 * randn(size(data))
fit = LsqFit.curve_fit(twoD_Gaussian, xy, data_noisy, p0)
```
Evaluating the Jacobian and using automatic differentiation
-------------------------
The default is to calculate the Jacobian using a central finite differences scheme if no Jacobian function is provided. The default is to use central differences because it can be more accurate than forward finite differences, but at the expense of computational cost. It is possible to switch to forward finite differences, like MINPACK uses for example, by specifying
```julia
fit = curve_fit(model, xdata, ydata, p0; autodiff=:finiteforward)
```
It is also possible to use forward mode automatic differentiation as implemented in ForwardDiff.jl by using the `autodiff=:forwarddiff` keyword.
```julia
fit = curve_fit(model, xdata, ydata, p0; autodiff=:forwarddiff)
```
Here, you have to be careful not to manually restrict any types in your code to, say, `Float64`, because ForwardDiff.jl works by passing a special number type through your functions, to auto*magically* calculate the value and gradient with one evaluation.
In-place model and Jacobian
-------------------------
It is possible to either use an in-place model, or an in-place model *and* an in-place Jacobian. It might be pertinent to use this feature when `curve_fit` is slow, or consumes a lot of memory.
```julia
model_inplace(F, x, p) = (@. F = p[1] * exp(-x * p[2]))
function jacobian_inplace(J::Array{Float64,2},x,p)
@. J[:,1] = exp(-x*p[2])
@. @views J[:,2] = -x*p[1]*J[:,1]
end
fit = curve_fit(model_inplace, jacobian_inplace, xdata, ydata, p0; inplace = true)
```
Geodesic acceleration
---------------------
This package implements optional geodesic acceleration, as outlined by [this paper](https://arxiv.org/pdf/1010.1449.pdf). To enable it, one needs to specify the function computing the *[directional second derivative](https://math.stackexchange.com/questions/2342410/why-is-mathbfdt-h-mathbfd-the-second-directional-derivative)* of the function that is fitted, as the `avv!` parameter. It is also preferable to set `lambda` and `min_step_quality`to `0`:
```julia
curve_fit(model, xdata, ydata, p0; avv! = Avv!,lambda=0, min_step_quality = 0)
```
`Avv!` must have the following form:
* `p` is the array of parameters
* `v`is the direction in which the direction is taken
* `dir_deriv` is the output vector (the function is necessarily in-place)
```julia
function Avv!(dir_deriv,p,v)
v1 = v[1]
v2 = v[2]
for i=1:length(xdata)
#compute all the elements of the Hessian matrix
h11 = 0
h12 = (-xdata[i] * exp(-xdata[i] * p[2]))
#h21 = h12
h22 = (xdata[i]^2 * p[1] * exp(-xdata[i] * p[2]))
# manually compute v'Hv. This whole process might seem cumbersome, but
# allocating temporary matrices quickly becomes REALLY expensive and might even
# render the use of geodesic acceleration terribly inefficient
dir_deriv[i] = h11*v1^2 + 2*h12*v1*v2 + h22*v2^2
end
end
```
Typically, if the model to fit outputs `[y_1(x),y_2(x),...,y_m(x)]`, and that the input data is `xdata` then `Avv!`should output an array of size `m`, where each element is `v'*H_i(xdata,p)*v`, where `H_i`is the Hessian matrix of the output `y_i`with respect to the parameter vector `p`.
Depending on the size of the dataset, the complexity of the model and the desired tolerance in the fit result, it may be worthwhile to use automatic differentiation (e.g. via `Zygote.jl` or `ForwardDiff.jl`) to determine the directional derivative. Although this is potentially less efficient than calculating the directional derivative manually, this additional information will generally lead to more accurate results.
An example of such an implementation is given by:
```julia
using LinearAlgebra, Zygote
function Avv!(dir_deriv,p,v)
for i=1:length(xdata)
dir_deriv[i] = transpose(v) * Zygote.hessian(z->model(xdata[i],z),p) * v
end
end
```
Existing Functionality
----------------------
`fit = curve_fit(model, [jacobian], x, y, [w,] p0; kwargs...)`:
* `model`: function that takes two arguments (x, params)
* `jacobian`: (optional) function that returns the Jacobian matrix of `model`
* `x`: the independent variable
* `y`: the dependent variable that constrains `model`
* `w`: (optional) weight applied to the residual; can be a vector (of `length(x)` size or empty) or matrix (inverse covariance matrix)
* `p0`: initial guess of the model parameters
* `kwargs`: tuning parameters for fitting, passed to `levenberg_marquardt`, such as `maxIter`, `show_trace` or `lower` and `upper` bounds
* `fit`: composite type of results (`LsqFitResult`)
This performs a fit using a non-linear iteration to minimize the (weighted) residual between the model and the dependent variable data (`y`). The weight (`w`) can be neglected (as per the example) to perform an unweighted fit. An unweighted fit is the numerical equivalent of `w=1` for each point (although unweighted error estimates are handled differently from weighted error estimates even when the weights are uniform).
----
`sigma = stderror(fit; atol, rtol)`:
* `fit`: result of curve_fit (a `LsqFitResult` type)
* `atol`: absolute tolerance for negativity check
* `rtol`: relative tolerance for negativity check
This returns the error or uncertainty of each parameter fit to the model and already scaled by the associated degrees of freedom. Please note, this is a LOCAL quantity calculated from the Jacobian of the model evaluated at the best fit point and NOT the result of a parameter exploration.
If no weights are provided for the fits, the variance is estimated from the mean squared error of the fits. If weights are provided, the weights are assumed to be the inverse of the variances or of the covariance matrix, and errors are estimated based on these and the Jacobian, assuming a linearization of the model around the minimum squared error point.
`margin_of_error = margin_error(fit, alpha=0.05; atol, rtol)`:
* `fit`: result of curve_fit (a `LsqFitResult` type)
* `alpha`: significance level
* `atol`: absolute tolerance for negativity check
* `rtol`: relative tolerance for negativity check
This returns the product of standard error and critical value of each parameter at `alpha` significance level.
`confidence_interval = confint(fit; level=0.05, atol, rtol)`:
* `fit`: result of curve_fit (a `LsqFitResult` type)
* `level`: confidence level
* `atol`: absolute tolerance for negativity check
* `rtol`: relative tolerance for negativity check
This returns confidence interval of each parameter at `level` significance level.
----
`covar = vcov(fit)`:
* `fit`: result of curve_fit (a `LsqFitResult` type)
* `covar`: parameter covariance matrix calculated from the Jacobian of the model at the fit point, using the weights (if specified) as the inverse covariance of observations
This returns the parameter covariance matrix evaluated at the best fit point.
| LsqFit | https://github.com/JuliaNLSolvers/LsqFit.jl.git |
|
[
"MIT"
] | 0.15.0 | 40acc20cfb253cf061c1a2a2ea28de85235eeee1 | docs | 302 | # TODO for Optim.jl
* more tests for curve_fit()
* more documentation
# Things to consider
* tweak a lighterweight package that does not have Distribution dependency?
* simple linear fitting?
* use DualNumbers for finite difference (like in Optim.jl)?
* add algorithms besides Levenberg-Marquardt?
| LsqFit | https://github.com/JuliaNLSolvers/LsqFit.jl.git |
|
[
"MIT"
] | 0.15.0 | 40acc20cfb253cf061c1a2a2ea28de85235eeee1 | docs | 107 | # API
```@autodocs
Modules = [LsqFit]
Private = false
Pages = ["curve_fit.jl"]
Order = [:function]
```
| LsqFit | https://github.com/JuliaNLSolvers/LsqFit.jl.git |
|
[
"MIT"
] | 0.15.0 | 40acc20cfb253cf061c1a2a2ea28de85235eeee1 | docs | 1893 |
# Getting Started
First, import the package.
```julia
julia> using LsqFit
```
Define a two-parameter exponential decay model, where ``t`` is a one-element independent variable, ``p_1`` and ``p_2`` are parameters.
The model function is:
```math
m(t, \boldsymbol{p}) = p_1 \exp(-p_2 t)
```
```julia
julia> # t: array of independent variable
julia> # p: array of model parameters
julia> model(t, p) = p[1] * exp.(-p[2] * t)
```
For illustration purpose, we generate some fake data.
```julia
julia> # tdata: data of independent variable
julia> # ydata: data of dependent variable
julia> tdata = range(0, stop=10, length=20)
julia> ydata = model(tdata, [1.0 2.0]) + 0.01*randn(length(tdata))
```
Before fitting the data, we also need a initial value of parameters for `curve_fit()`.
```julia
julia> p0 = [0.5, 0.5]
```
Run `curve_fit()` to fit the data and get the estimated parameters.
```julia
julia> fit = curve_fit(model, tdata, ydata, p0)
julia> param = fit.param
2-element Array{Float64,1}:
1.01105
2.0735
```
`LsqFit.jl` also provides functions to examinep0 = [0.5, 0.5] the goodness of fit. `vcov(fit)` computes the estimated covariance matrix.
```Julia
julia> cov = vcov(fit)
2×2 Array{Float64,2}:
0.000116545 0.000174633
0.000174633 0.00258261
```
`stderror(fit)` returns the standard error of each parameter.
```Julia
julia> se = stderror(fit)
2-element Array{Float64,1}:
0.0107956
0.0508193
```
To get the confidence interval at 10% significance level, run `confint(fit; level=0.9)`, which essentially computes `the estimate parameter value` ± (`standard error` * `critical value from t-distribution`).
```Julia
julia> confidence_interval = confint(fit; level=0.9)
2-element Array{Tuple{Float64,Float64},1}:
(0.992333, 1.02977)
(1.98537, 2.16162)
```
For more details of `LsqFit.jl`, check [Tutorial](./tutorial.md) and [API References](./api.md) section.
| LsqFit | https://github.com/JuliaNLSolvers/LsqFit.jl.git |
|
[
"MIT"
] | 0.15.0 | 40acc20cfb253cf061c1a2a2ea28de85235eeee1 | docs | 1358 | # LsqFit.jl
Basic least-squares fitting in pure Julia under an MIT license.
The basic functionality was originaly in [Optim.jl](https://github.com/JuliaNLSolvers/Optim.jl), before being separated into this library. At this time, `LsqFit` only utilizes the Levenberg-Marquardt algorithm for non-linear fitting.
`LsqFit.jl` is part of the [JuliaNLSolvers](https://github.com/JuliaNLSolvers) family.
|Source|Package Evaluator|Build Status|
|:----:|:---------------:|:----------:|
| [](https://github.com/JuliaNLSolvers/Optim.jl) |[](http://pkg.julialang.org/?pkg=LsqFit&ver=0.4) [](http://pkg.julialang.org/?pkg=LsqFit&ver=0.5) [](http://pkg.julialang.org/?pkg=LsqFit&ver=0.6) [](http://pkg.julialang.org/?pkg=LsqFit&ver=0.7)|[](https://travis-ci.org/JuliaNLSolvers/LsqFit.jl)|
## Install
To install the package, run
```julia
Pkg.add("LsqFit")
```
If you want the latest features, also run
```julia
Pkg.checkout("LsqFit")
```
To use the package in your code
```julia
julia> using LsqFit
```
| LsqFit | https://github.com/JuliaNLSolvers/LsqFit.jl.git |
|
[
"MIT"
] | 0.15.0 | 40acc20cfb253cf061c1a2a2ea28de85235eeee1 | docs | 16132 | # Tutorial
## Introduction to Nonlinear Regression
Assume that, for the $i$th observation, the relationship between independent variable $\mathbf{x_i}=\begin{bmatrix} x_{1i},\, x_{2i},\, \ldots\, x_{pi}\ \end{bmatrix}'$ and dependent variable $Y_i$ follows:
```math
Y_i = m(\mathbf{x_i}, \boldsymbol{\gamma}) + \epsilon_i
```
where $m$ is a non-linear model function depends on the independent variable $\mathbf{x_i}$ and the parameter vector $\boldsymbol{\gamma}$. In order to find the parameter $\boldsymbol{\gamma}$ that "best" fit our data, we choose the parameter ${\boldsymbol{\gamma}}$ which minimizes the sum of squared residuals from our data, i.e. solves the problem:
```math
\underset{\boldsymbol{\gamma}}{\mathrm{min}} \quad s(\boldsymbol{\gamma})= \sum_{i=1}^{n} [m(\mathbf{x_i}, \boldsymbol{\gamma}) - y_i]^2
```
Given that the function $m$ is non-linear, there's no analytical solution for the best $\boldsymbol{\gamma}$. We have to use computational tools, which is `LsqFit.jl` in this tutorial, to find the least squares solution.
One example of non-linear model is the exponential model, which takes a one-element predictor variable $t$. The model function is:
```math
m(t, \boldsymbol{\gamma}) = \gamma_1 \exp(\gamma_2 t)
```
and the model becomes:
```math
Y_i = \gamma_1 \exp(\gamma_2 t_i) + \epsilon_i
```
To fit data using `LsqFit.jl`, pass the defined model function (`m`), data (`tdata` and `ydata`) and the initial parameter value (`p0`) to `curve_fit()`. For now, `LsqFit.jl` only supports the Levenberg Marquardt algorithm.
```julia
julia> # t: array of independent variables
julia> # p: array of model parameters
julia> m(t, p) = p[1] * exp.(p[2] * t)
julia> p0 = [0.5, 0.5]
julia> fit = curve_fit(m, tdata, ydata, p0)
```
It will return a composite type `LsqFitResult`, with some interesting values:
* `dof(fit)`: degrees of freedom
* `coef(fit)`: best fit parameters
* `fit.resid`: vector of residuals
* `fit.jacobian`: estimated Jacobian at the solution
## Jacobian Calculation
The Jacobian $J_f(\mathbf{x})$ of a vector function $f(\mathbf{x}): \mathbb{R}_m \to \mathbb{R}_n$ is defined as the matrix with elements:
```math
[J_f(\mathbf{x})]_{ij} = \frac{\partial f_i(\mathbf{x})}{\partial x_j}
```
The matrix is therefore:
```math
J_f(\mathbf{x}) = \begin{bmatrix}
\frac{\partial f_1}{\partial x_1}&\frac{\partial f_1}{\partial x_2}&\dots&\frac{\partial f_1}{\partial x_m}\\
\frac{\partial f_2}{\partial x_1}&\frac{\partial f_2}{\partial x_2}&\dots&\frac{\partial f_2}{\partial x_m}\\
\vdots&\vdots&\ddots&\vdots\\
\frac{\partial f_n}{\partial x_1}&\frac{\partial f_n}{\partial x_2}&\dots&\frac{\partial f_n}{\partial x_m}\\
\end{bmatrix}
```
The Jacobian of the exponential model function with respect to $\boldsymbol{\gamma}$ is:
```math
J_m(t, \boldsymbol{\gamma}) = \begin{bmatrix}
\frac{\partial m}{\partial \gamma_1} &
\frac{\partial m}{\partial \gamma_2} \\
\end{bmatrix}
= \begin{bmatrix}
\exp(\gamma_2 t) &
t \gamma_1 \exp(\gamma_2 t) \\
\end{bmatrix}
```
By default, the finite differences is used (see [NLSolversBase.jl](https://github.com/JuliaNLSolvers/NLSolversBase.jl) for more information), is used to approximate the Jacobian for the data fitting algorithm and covariance computation. Alternatively, a function which calculates the Jacobian can be supplied to `curve_fit()` for faster and/or more accurate results.
```Julia
function j_m(t,p)
J = Array{Float64}(length(t),length(p))
J[:,1] = exp.(p[2] .* t) #df/dp[1]
J[:,2] = t .* p[1] .* J[:,1] #df/dp[2]
J
end
fit = curve_fit(m, j_m, tdata, ydata, p0)
```
## Linear Approximation
The non-linear function $m$ can be approximated as a linear function by Talor expansion:
```math
m(\mathbf{x_i}, \boldsymbol{\gamma}+\boldsymbol{h}) \approx m(\mathbf{x_i}, \boldsymbol{\gamma}) + \nabla m(\mathbf{x_i}, \boldsymbol{\gamma})'\boldsymbol{h}
```
where $\boldsymbol{\gamma}$ is a fixed vector, $\boldsymbol{h}$ is a very small-valued vector and $\nabla m(\mathbf{x_i}, \boldsymbol{\gamma})$ is the gradient at $\mathbf{x_i}$.
Consider the residual vector functon $r({\boldsymbol{\gamma}})=\begin{bmatrix}
r_1({\boldsymbol{\gamma}}) \\
r_2({\boldsymbol{\gamma}}) \\
\vdots\\
r_n({\boldsymbol{\gamma}})
\end{bmatrix}$
with entries:
```math
r_i({\boldsymbol{\gamma}}) = m(\mathbf{x_i}, {\boldsymbol{\gamma}}) - Y_i
```
Each entry's linear approximation can hence be written as:
```math
\begin{align}
r_i({\boldsymbol{\gamma}}+\boldsymbol{h}) &= m(\mathbf{x_i}, \boldsymbol{\gamma}+\boldsymbol{h}) - Y_i\\
&\approx m(\mathbf{x_i}, \boldsymbol{\gamma}) + \nabla m(\mathbf{x_i}, \boldsymbol{\gamma})'h - Y_i\\
&= r_i({\boldsymbol{\gamma}}) + \nabla m(\mathbf{x_i}, \boldsymbol{\gamma})'h
\end{align}
```
Since the $i$th row of $J(\boldsymbol{\gamma})$ equals the transpose of the gradient of $m(\mathbf{x_i}, \boldsymbol{\gamma})$, the vector function $r({\boldsymbol{\gamma}}+\boldsymbol{h})$ can be approximated as:
```math
r({\boldsymbol{\gamma}}+\boldsymbol{h}) \approx r({\boldsymbol{\gamma}}) + J(\boldsymbol{\gamma})h
```
which is a linear function on $\boldsymbol{h}$ since ${\boldsymbol{\gamma}}$ is a fixed vector.
## Goodness of Fit
The linear approximation of the non-linear least squares problem leads to the approximation of the covariance matrix of each parameter, from which we can perform regression analysis.
Consider a least squares solution $\boldsymbol{\gamma}^*$, which is a local minimizer of the non-linear problem:
```math
\boldsymbol{\gamma}^* = \underset{\boldsymbol{\gamma}}{\mathrm{arg\,min}} \ \sum_{i=1}^{n} [m(\mathbf{x_i}, \boldsymbol{\gamma}) - y_i]^2
```
Set $\boldsymbol{\gamma}^*$ as the fixed point in linear approximation, $r({\boldsymbol{\gamma^*}}) = r$ and $J(\boldsymbol{\gamma^*}) = J$. A parameter vector near $\boldsymbol{\gamma}^*$ can be expressed as $\boldsymbol{\gamma}=\boldsymbol{\gamma^*} + h$. The local approximation for the least squares problem is:
```math
\underset{\boldsymbol{\gamma}}{\mathrm{min}} \quad s(\boldsymbol{\gamma})=s(\boldsymbol{\gamma}^*+\boldsymbol{h}) \approx [Jh + r]'[Jh + r]
```
which is essentially the linear least squares problem:
```math
\underset{\boldsymbol{\beta}}{\mathrm{min}} \quad [X\beta-Y]'[X\beta-Y]
```
where $X=J$, $\beta=\boldsymbol{h}$ and $Y=-r({\boldsymbol{\gamma}})$. Solve the equation where the partial derivatives equal to $0$, the analytical solution is:
```math
\hat{\boldsymbol{h}}=\hat{\boldsymbol{\gamma}}-\boldsymbol{\gamma}^*\approx-[J'J]^{-1}J'r
```
The covariance matrix for the analytical solution is:
```math
\mathbf{Cov}(\hat{\boldsymbol{\gamma}}) = \mathbf{Cov}(\boldsymbol{h}) = [J'J]^{-1}J'\mathbf{E}(rr')J[J'J]^{-1}
```
Note that $r$ is the residual vector at the best fit point $\boldsymbol{\gamma^*}$, with entries $r_i = Y_i - m(\mathbf{x_i}, \boldsymbol{\gamma^*})=\epsilon_i$. $\hat{\boldsymbol{\gamma}}$ is very close to $\boldsymbol{\gamma^*}$ and therefore can be replaced by $\boldsymbol{\gamma^*}$.
```math
\mathbf{Cov}(\boldsymbol{\gamma}^*) \approx \mathbf{Cov}(\hat{\boldsymbol{\gamma}})
```
Assume the errors in each sample are independent, normal distributed with zero mean and same variance, i.e. $\epsilon \sim N(0, \sigma^2I)$, the covariance matrix from the linear approximation is therefore:
```math
\mathbf{Cov}(\boldsymbol{\gamma}^*) = [J'J]^{-1}J'\mathbf{Cov}(\epsilon)J[J'J]^{-1} = \sigma^2[J'J]^{-1}
```
where $\sigma^2$ could be estimated as residual sum of squares devided by degrees of freedom:
```math
\hat{\sigma}^2=\frac{s(\boldsymbol{\gamma}^*)}{n-p}
```
In `LsqFit.jl`, the covariance matrix calculation uses QR decomposition to [be more computationally stable](http://www.seas.ucla.edu/~vandenbe/133A/lectures/ls.pdf), which has the form:
```math
\mathbf{Cov}(\boldsymbol{\gamma}^*) = \hat{\sigma}^2 \mathrm{R}^{-1}(\mathrm{R}^{-1})'
```
`vcov()` computes the covariance matrix of fit:
```Julia
julia> cov = vcov(fit)
2×2 Array{Float64,2}:
0.000116545 0.000174633
0.000174633 0.00258261
```
The standard error is then the square root of each diagonal elements of the covariance matrix. `stderror()` returns the standard error of each parameter:
```Julia
julia> se = stderror(fit)
2-element Array{Float64,1}:
0.0114802
0.0520416
```
`margin_error()` computes the product of standard error and the critical value of each parameter at a certain significance level (default is 5%) from t-distribution. The margin of error at 10% significance level can be computed by:
```Julia
julia> margin_of_error = margin_error(fit, 0.1)
2-element Array{Float64,1}:
0.0199073
0.0902435
```
`confint()` returns the confidence interval of each parameter at certain significance level, which is essentially the estimate value ± margin of error. To get the confidence interval at 10% significance level, run:
```Julia
julia> confidence_intervals = confint(fit; level=0.9)
2-element Array{Tuple{Float64,Float64},1}:
(0.976316, 1.01613)
(1.91047, 2.09096)
```
## Weighted Least Squares
`curve_fit()` also accepts weight parameter (`wt`) to perform Weighted Least Squares and General Least Squares, where the parameter $\boldsymbol{\gamma}^*$ minimizes the weighted residual sum of squares.
Weight parameter (`wt`) is an array or a matrix of weights for each sample. To perform Weighted Least Squares, pass the weight array `[w_1, w_2, ..., w_n]` or the weight matrix `W`:
```math
\mathbf{W} = \begin{bmatrix}
w_1 & 0 & \cdots & 0\\
0 & w_2 & \cdots & 0\\
\vdots & \vdots & \ddots & \vdots\\
0 & 0 & \cdots & w_n\\
\end{bmatrix}
```
The weighted least squares problem becomes:
```math
\underset{\boldsymbol{\gamma}}{\mathrm{min}} \quad s(\boldsymbol{\gamma})= \sum_{i=1}^{n} w_i[m(\mathbf{x_i}, \boldsymbol{\gamma}) - Y_i]^2
```
in matrix form:
```math
\underset{\boldsymbol{\gamma}}{\mathrm{min}} \quad s(\boldsymbol{\gamma})= r(\boldsymbol{\gamma})'Wr(\boldsymbol{\gamma})
```
where $r({\boldsymbol{\gamma}})=\begin{bmatrix}
r_1({\boldsymbol{\gamma}}) \\
r_2({\boldsymbol{\gamma}}) \\
\vdots\\
r_n({\boldsymbol{\gamma}})
\end{bmatrix}$
is a residual vector function with entries:
```math
r_i({\boldsymbol{\gamma}}) = m(\mathbf{x_i}, {\boldsymbol{\gamma}}) - Y_i
```
The algorithm in `LsqFit.jl` will then provide a least squares solution $\boldsymbol{\gamma}^*$.
!!! note
In `LsqFit.jl`, the residual function passed to `levenberg_marquardt()` is in different format, if the weight is a vector:
```julia
r(p) = sqrt.(wt) .* ( model(xpts, p) - ydata )
lmfit(r, g, p0, wt; kwargs...)
```
```math
r_i({\boldsymbol{\gamma}}) = \sqrt{w_i} \cdot [m(\mathbf{x_i}, {\boldsymbol{\gamma}}) - Y_i]
```
Cholesky decomposition, which is effectively a sqrt of a matrix, will be performed if the weight is a matrix:
```julia
u = chol(wt)
r(p) = u * ( model(xpts, p) - ydata )
lmfit(r, p0, wt; kwargs...)
```
```math
r_i({\boldsymbol{\gamma}}) = \sqrt{w_i} \cdot [m(\mathbf{x_i}, {\boldsymbol{\gamma}}) - Y_i]
```
The solution will be the same as the least squares problem mentioned in the tutorial.
Set $r({\boldsymbol{\gamma^*}}) = r$ and $J(\boldsymbol{\gamma^*}) = J$, the linear approximation of the weighted least squares problem is then:
```math
\underset{\boldsymbol{\gamma}}{\mathrm{min}} \quad s(\boldsymbol{\gamma}) = s(\boldsymbol{\gamma}^* + \boldsymbol{h}) \approx [J\boldsymbol{h}+r]'W[J\boldsymbol{h}+r]
```
The analytical solution to the linear approximation is:
```math
\hat{\boldsymbol{h}}=\hat{\boldsymbol{\gamma}}-\boldsymbol{\gamma}^*\approx-[J'WJ]^{-1}J'Wr
```
Assume the errors in each sample are independent, normal distributed with zero mean and **different** variances (heteroskedastic error), i.e. $\epsilon \sim N(0, \Sigma)$, where:
```math
\Sigma = \begin{bmatrix}
\sigma_1^2 & 0 & \cdots & 0\\
0 & \sigma_2^2 & \cdots & 0\\
\vdots & \vdots & \ddots & \vdots\\
0 & 0 & \cdots & \sigma_n^2\\
\end{bmatrix}
```
We know the error variance and we set the weight as the inverse of the variance (the optimal weight), i.e. $W = \Sigma^{-1}$:
```math
\mathbf{W} = \begin{bmatrix}
w_1 & 0 & \cdots & 0\\
0 & w_2 & \cdots & 0\\
\vdots & \vdots & \ddots & \vdots\\
0 & 0 & \cdots & w_n\\
\end{bmatrix}
= \begin{bmatrix}
\frac{1}{\sigma_1^2} & 0 & \cdots & 0\\
0 & \frac{1}{\sigma_2^2} & \cdots & 0\\
\vdots & \vdots & \ddots & \vdots\\
0 & 0 & \cdots & \frac{1}{\sigma_n^2}\\
\end{bmatrix}
```
The covariance matrix is now:
```math
{Cov}(\boldsymbol{\gamma}^*) \approx [J'WJ]^{-1}J'W \Sigma W'J[J'W'J]^{-1} = [J'WJ]^{-1}
```
If we only know **the relative ratio of different variances**, i.e. $\epsilon \sim N(0, \sigma^2W^{-1})$, the covariance matrix will be:
```math
\mathbf{Cov}(\boldsymbol{\gamma}^*) = \sigma^2[J'WJ]^{-1}
```
where $\sigma^2$ is estimated. In this case, if we set $W = I$, the result will be the same as the unweighted version. However, `curve_fit()` currently **does not support** this implementation. `curve_fit()` assumes the weight as the inverse of **the error covariance matrix** rather than **the ratio of error covariance matrix**, i.e. the covariance of the estimated parameter is calculated as `covar = inv(J'*fit.wt*J)`.
!!! note
Passing vector of ones as the weight vector will cause mistakes in covariance estimation.
Pass the vector of `1 ./ var(ε)` or the matrix `inv(covar(ε))` as the weight parameter (`wt`) to the function `curve_fit()`:
```Julia
julia> wt = inv(cov_ε)
julia> fit = curve_fit(m, tdata, ydata, wt, p0)
julia> cov = vcov(fit)
```
!!! note
If the weight matrix is not a diagonal matrix, General Least Squares will be performed.
## General Least Squares
Assume the errors in each sample are **correlated**, normal distributed with zero mean and **different** variances (heteroskedastic and autocorrelated error), i.e. $\epsilon \sim N(0, \Sigma)$.
Set the weight matrix as the inverse of the error covariance matrix (the optimal weight), i.e. $W = \Sigma^{-1}$, we will get the parameter covariance matrix:
```math
\mathbf{Cov}(\boldsymbol{\gamma}^*) \approx [J'WJ]^{-1}J'W \Sigma W'J[J'W'J]^{-1} = [J'WJ]^{-1}
```
Pass the matrix `inv(covar(ε))` as the weight parameter (`wt`) to the function `curve_fit()`:
```Julia
julia> wt = 1 ./ yvar
julia> fit = curve_fit(m, tdata, ydata, wt, p0)
julia> cov = vcov(fit)
```
## Estimate the Optimal Weight
In most cases, the variances of errors are unknown. To perform Weighted Least Square, we need estimate the variances of errors first, which is the squared residual of $i$th sample:
```math
\widehat{\mathbf{Var}(\epsilon_i)} = \widehat{\mathbf{E}(\epsilon_i \epsilon_i)} = r_i(\boldsymbol{\gamma}^*)
```
Unweighted fitting (OLS) will return the residuals we need, since the estimator of OLS is unbiased. Then pass the reciprocal of the residuals as the estimated optimal weight to perform Weighted Least Squares:
```Julia
julia> fit_OLS = curve_fit(m, tdata, ydata, p0)
julia> wt = 1 ./ fit_OLS.resid
julia> fit_WLS = curve_fit(m, tdata, ydata, wt, p0)
julia> cov = vcov(fit_WLS)
```
## References
Hansen, P. C., Pereyra, V. and Scherer, G. (2013) Least squares data fitting with applications. Baltimore, Md: Johns Hopkins University Press, p. 147-155.
Kutner, M. H. et al. (2005) Applied Linear statistical models.
Weisberg, S. (2014) Applied linear regression. Fourth edition. Hoboken, NJ: Wiley (Wiley series in probability and statistics).
| LsqFit | https://github.com/JuliaNLSolvers/LsqFit.jl.git |
|
[
"MPL-2.0"
] | 0.2.5 | 3a6ed6c55afc461d479b8ef5114cf6733f2cef56 | code | 1276 | using ElectronGas
using Documenter
DocMeta.setdocmeta!(ElectronGas, :DocTestSetup, :(using ElectronGas); recursive=true)
makedocs(;
modules=[ElectronGas],
authors="Kun Chen",
repo="https://github.com/numericalEFT/ElectronGas.jl/blob/{commit}{path}#{line}",
sitename="ElectronGas.jl",
format=Documenter.HTML(;
prettyurls=get(ENV, "CI", "false") == "true",
canonical="https://numericalEFT.github.io/ElectronGas.jl",
assets=String[]
),
pages=[
"Home" => "index.md",
"Manual" => [
"manual/fock.md",
"manual/polarization_3D.md",
"manual/polarization_2D.md",
"manual/ladder_3D.md",
"manual/polarization_approx.md",
"manual/legendreinteraction.md",
"manual/G_plus_Moroni.md",
"manual/quasiparticle.md",
],
"Reference" => Any[
"lib/convention.md",
"lib/parameter.md",
"lib/selfenergy.md",
"lib/polarization.md",
"lib/interaction.md",
"lib/legendreinteraction.md",
"lib/twopoint.md",
"lib/BSeq.md",
]
]
)
deploydocs(;
repo="github.com/numericalEFT/ElectronGas.jl",
devbranch="master"
)
| ElectronGas | https://github.com/numericalEFT/ElectronGas.jl.git |
|
[
"MPL-2.0"
] | 0.2.5 | 3a6ed6c55afc461d479b8ef5114cf6733f2cef56 | code | 1587 | """
In this demo, we analysis the contribution of the exchange KO interaction to the Landau parameters
"""
using ElectronGas, Parameters
using Lehmann, GreenFunc, CompositeGrids
const rs = 5.0
const beta = 1000.0
const mass2 = 1e-8
const dim = 3
θ = 1e-3
param = Parameter.defaultUnit(θ, rs)
kF, β = param.kF, param.β
Euv, rtol = 1000 * param.EF, 1e-11
# Nk, order = 8, 4
# maxK, minK = 10kF, 1e-7kF
# Nk, order = 11, 8
maxK, minK = 20kF, 1e-8kF
Nk, order = 16, 12
# maxK, minK = 10kF, 1e-9kF
# Euv, rtol = 1000 * param.EF, 1e-11
# maxK, minK = 20param.kF, 1e-9param.kF
# Nk, order = 16, 12
# test G0
kgrid = CompositeGrid.LogDensedGrid(:gauss, [0.0, maxK], [0.0, kF], Nk, minK, order)
G0 = SelfEnergy.G0wrapped(Euv, rtol, kgrid, param)
kF_label = searchsortedfirst(kgrid.grid, kF)
G_tau = GreenFunc.toTau(G0)
# println(G_tau.timeGrid.grid)
# println(real(G_tau.dynamic[1, 1, :, end]) .* (-1))
G_ins = tau2tau(G_tau.dlrGrid, G_tau.dynamic, [β,], G_tau.timeGrid.grid; axis=4)[1, 1, :, 1] .* (-1)
# println(real(G_ins))
integrand = real(G_ins) .* kgrid.grid .* kgrid.grid
density0 = CompositeGrids.Interp.integrate1D(integrand, kgrid) / π^2
# println("$density0, $(param.n)")
# @test isapprox(param.n, density0, rtol=3e-5)
Σ = SelfEnergy.G0W0(param, Euv, rtol, Nk, maxK, minK, order, :ko)
Σ = SelfEnergy.GreenFunc.toMatFreq(Σ)
Z0 = (SelfEnergy.zfactor(Σ))
#z = zlist[ind]
# @test isapprox(Z0, z, rtol=3e-3)
mratio = SelfEnergy.massratio(param, Σ)
#m = mlist[ind]
# @test isapprox(mratio, m, rtol=3e-3)
println("θ = $θ, rs= $rs")
println("Z-factor = $Z0")
println("m*/m = $mratio")
| ElectronGas | https://github.com/numericalEFT/ElectronGas.jl.git |
|
[
"MPL-2.0"
] | 0.2.5 | 3a6ed6c55afc461d479b8ef5114cf6733f2cef56 | code | 3826 | """
calculate the Z factor of UEG using MC
"""
using Printf, LinearAlgebra
using CompositeGrids
using ElectronGas
using Parameters, Random
using MCIntegration
using Lehmann
const steps = 1e7
# include("parameter.jl")
dim = 3
beta = 100.0
rs = 5.0
mass2 = 1.e-3
# const para = Parameter.rydbergUnit(1.0 / beta, rs, dim, Λs = mass2)
const para = Parameter.defaultUnit(1.0 / beta, rs, dim, Λs=mass2)
const kF = para.kF
const EF = para.EF
const β = para.β
# qgrid = CompositeGrid.LogDensedGrid(:uniform, [0.0, 6 * kF], [0.0, 2kF], 16, 0.01 *kF , 8)
qgrid = CompositeGrid.LogDensedGrid(:uniform, [0.0, 6 * kF], [0.0, 2kF], 16, 1e-6 * kF, 8)
τgrid = CompositeGrid.LogDensedGrid(:uniform, [0.0, β], [0.0, β], 16, β * 1e-4, 8)
# dlr = DLRGrid(Euv = 10EF, β = β, rtol = 1e-10, isFermi = false, symmetry = :ph)
# W = zeros(length(qgrid), dlr.size)
# for (qi, q) in enumerate(qgrid.grid)
# for (ni, n) in enumerate(dlr.n)
# # W[qi, ni] = Interaction.RPA(q, n, para, regular = true, pifunc = Polarization.Polarization0_FiniteTemp)[1]
# W[qi, ni] = Interaction.RPA(q, n, para, regular = true, pifunc = Polarization.Polarization0_ZeroTemp)[1]
# end
# end
# const dW0 = matfreq2tau(dlr, W, τgrid.grid, axis = 2)
Ws, Wa = Interaction.RPAwrapped(10EF, 1e-10, qgrid.grid, para)
const dW0 = real.(matfreq2tau(Ws.dlrGrid, Ws.dynamic, τgrid.grid, axis=4))[1, 1, :, :]
function integrand(config)
if config.curr == 1
return eval2(config)
else
error("impossible!")
end
end
function interactionDynamic(qd, τIn, τOut)
dτ = abs(τOut - τIn)
kDiQ = sqrt(dot(qd, qd))
# vd = 4π * para.e0^2 / (kDiQ^2 + para.Λs)
vs, va = Interaction.coulomb_2d(kDiQ, para)
# vs, va = Interaction.coulomb(kDiQ, para)
if kDiQ <= qgrid.grid[1]
q = qgrid.grid[1] + 1.0e-6
wd = vs * Interp.linear2D(dW0, qgrid, τgrid, q, dτ)
# the current interpolation vanishes at q=0, which needs to be corrected!
else
wd = vs * Interp.linear2D(dW0, qgrid, τgrid, kDiQ, dτ) # dynamic interaction, don't forget the singular factor vq
end
return wd
end
function eval2(config)
K, T = config.var[1], config.var[2]
k, τ = K[1], T[1]
k0 = zeros(para.dim)
k0[end] = kF # external momentum
kq = k + k0
ω = (dot(kq, kq) - kF^2) / (2 * para.me)
g = Spectral.kernelFermiT(τ, ω, β)
dW = interactionDynamic(k, 0.0, τ)
phase = 1.0 / (2π)^para.dim
return g * dW * phase
end
function measure(config)
factor = 1.0 / config.reweight[config.curr]
τ = config.var[2][1]
# println(config.observable[1][1])
if config.curr == 1
weight = integrand(config)
config.observable[1] += weight * sin(π / β * τ) / abs(weight) * factor
config.observable[2] += weight * sin(3π / β * τ) / abs(weight) * factor
else
return
end
end
function fock(extn)
K = MCIntegration.FermiK(para.dim, kF, 0.2 * kF, 10.0 * kF)
T = MCIntegration.Tau(β, β / 2.0)
dof = [[1, 1],] # degrees of freedom of the Fock diagram
obs = zeros(2) # observable for the Fock diagram
config = MCIntegration.Configuration(steps, (K, T), dof, obs; para=para)
avg, std = MCIntegration.sample(config, integrand, measure; print=0, Nblock=16)
if isnothing(avg) == false
@printf("%10.6f %10.6f ± %10.6f\n", -1.0, avg[1], std[1])
@printf("%10.6f %10.6f ± %10.6f\n", 0.0, avg[2], std[2])
dS_dw = (avg[1] - avg[2]) / (2π / β)
error = (std[1] + std[2]) / (2π / β)
println("dΣ/diω= $dS_dw ± $error")
Z = (1 / (1 + dS_dw))
Zerror = error / Z^2
println("Z= $Z ± $Zerror")
# TODO: add errorbar estimation
# println
end
end
if abspath(PROGRAM_FILE) == @__FILE__
# using Gaston
ngrid = [-1, 0, 1]
@time fock(ngrid)
end | ElectronGas | https://github.com/numericalEFT/ElectronGas.jl.git |
|
[
"MPL-2.0"
] | 0.2.5 | 3a6ed6c55afc461d479b8ef5114cf6733f2cef56 | code | 3486 | """
calculate the Z factor of UEG using MC
"""
using Printf, LinearAlgebra
using CompositeGrids
using ElectronGas
using Parameters, Random
using MCIntegration
using Lehmann
const steps = 1e6
include("parameter.jl")
include("interaction.jl")
kgrid = CompositeGrid.LogDensedGrid(:uniform, [0.0, 3kF], [0.0, kF], 8, 0.01 * kF, 8) # external K grid for sigma
dlr = DLRGrid(Euv = 10EF, β = β, isFermi = true, rtol = 1e-10)
# const basic = Parameter.rydbergUnit(1 / beta, rs, dim, Λs = mass2)
struct Para{Q,T}
dW0::Matrix{Float64}
qgrid::Q
τgrid::T # dedicated τgrid for dynamic interaction
function Para()
qgrid = CompositeGrid.LogDensedGrid(:uniform, [0.0, 6 * kF], [0.0, 2kF], 16, 0.01 * kF, 8)
τgrid = CompositeGrid.LogDensedGrid(:uniform, [0.0, β], [0.0, β], 16, β * 1e-4, 8)
vqinv = [(q^2 + mass2) / (4π * e0^2) for q in qgrid.grid] # 3D Yukawa
# vqinv = [√(q^2 + mass2) / (2π * e0^2) for q in qgrid.grid] # 2D Yukawa
dW0 = TwoPoint.dWRPA(vqinv, qgrid.grid, τgrid.grid, dim, EF, kF, β, spin, me) # dynamic part of the effective interaction
# dW0 = TwoPoint.dWKO(vqinv, qgrid.grid, τgrid.grid, dim, EF, kF, β, spin, me, fp, fm) # dynamic part of the effective interaction
return new{typeof(qgrid),typeof(τgrid)}(dW0, qgrid, τgrid)
# Ws, Wa = Interaction.RPAwrapped(10EF, 1e-10, qgrid.grid, basic)
# dW0 = real.(matfreq2tau(Ws.dlrGrid, Ws.dynamic, τgrid.grid, axis = 4))
# return new{typeof(qgrid),typeof(τgrid)}(dW0[1, 1, :, :], qgrid, τgrid)
end
end
function integrand(config)
if config.curr == 1
return eval2(config)
else
error("impossible!")
end
end
function eval2(config)
para = config.para
K, T = config.var[1], config.var[2]
k, τ = K[1], T[1]
k0 = zeros(dim)
k0[end] = kF # external momentum
kq = k + k0
ω = (dot(kq, kq) - kF^2) / (2 * me)
g = Spectral.kernelFermiT(τ, ω, β)
v, dW = interactionDynamic(para, k, 0.0, τ, dim)
phase = 1.0 / (2π)^dim
return g * dW * phase
end
function measure(config)
factor = 1.0 / config.reweight[config.curr]
τ = config.var[2][1]
# println(config.observable[1][1])
if config.curr == 1
weight = integrand(config)
config.observable[1] += weight * sin(π / β * τ) / abs(weight) * factor
config.observable[2] += weight * sin(3π / β * τ) / abs(weight) * factor
else
return
end
end
function fock(extn)
para = Para()
Ksize = length(kgrid.grid)
K = MCIntegration.FermiK(dim, kF, 0.2 * kF, 10.0 * kF)
T = MCIntegration.Tau(β, β / 2.0)
# Ext =
dof = [[1, 1],] # degrees of freedom of the Fock diagram
obs = zeros(2) # observable for the Fock diagram
config = MCIntegration.Configuration(steps, (K, T), dof, obs; para = para)
avg, std = MCIntegration.sample(config, integrand, measure; print = 0, Nblock = 16)
if isnothing(avg) == false
@printf("%10.6f %10.6f ± %10.6f\n", -1.0, avg[1], std[1])
@printf("%10.6f %10.6f ± %10.6f\n", 0.0, avg[2], std[2])
dS_dw = (avg[1] - avg[2]) / (2π / β)
error = (std[1] + std[2]) / (2π / β)
println("dΣ/diω= $dS_dw ± $error")
Z = (1 / (1 + dS_dw))
Zerror = error / Z^2
println("Z= $Z ± $Zerror")
# TODO: add errorbar estimation
# println
end
end
if abspath(PROGRAM_FILE) == @__FILE__
# using Gaston
ngrid = [-1, 0, 1]
@time fock(ngrid)
end | ElectronGas | https://github.com/numericalEFT/ElectronGas.jl.git |
|
[
"MPL-2.0"
] | 0.2.5 | 3a6ed6c55afc461d479b8ef5114cf6733f2cef56 | code | 2539 | # This example demonstrated how to calculate the bubble diagram of free electrons using the Monte Carlo module
using LinearAlgebra, Random, Printf, BenchmarkTools, InteractiveUtils, Parameters
using ElectronGas
using StaticArrays
using Lehmann
using MCIntegration
# using ProfileView
const Steps = 1e7
# include("parameter.jl")
beta = 1000.0
rs = 2.0
const basic = Parameter.rydbergUnit(1 / beta, rs, 2)
const β = basic.β
const kF = basic.kF
const me = basic.me
const spin = basic.spin
@with_kw struct Para
dim::Int = 2
n::Int = 10 # external Matsubara frequency
Qsize::Int = 16
extQ::Vector{SVector{2,Float64}} = [@SVector [q, 0.0] for q in LinRange(0.0, 3.0 * kF, Qsize)]
end
function integrand(config)
if config.curr != 1
error("impossible")
end
para = config.para
T, K, Ext = config.var[1], config.var[2], config.var[3]
k = K[1]
Tin, Tout = T[1], T[2]
extidx = Ext[1]
q = para.extQ[extidx] # external momentum
kq = k + q
τ = (Tout - Tin)
ω1 = (dot(k, k) - kF^2) / (2me)
g1 = Spectral.kernelFermiT(τ, ω1, β)
ω2 = (dot(kq, kq) - kF^2) / (2me)
g2 = Spectral.kernelFermiT(-τ, ω2, β)
phase = 1.0 / (2π)^para.dim
return g1 * g2 * spin * phase * cos(2π * para.n * τ / β) / β
end
function measure(config)
obs = config.observable
factor = 1.0 / config.reweight[config.curr]
extidx = config.var[3][1]
weight = integrand(config)
obs[extidx] += weight / abs(weight) * factor
end
function run(steps)
para = Para()
@unpack dim, extQ, Qsize = para
T = MCIntegration.Tau(β, β / 2.0)
K = MCIntegration.FermiK(dim, kF, 0.2 * kF, 10.0 * kF)
Ext = MCIntegration.Discrete(1, length(extQ)) # external variable is specified
dof = [[2, 1, 1],] # degrees of freedom of the normalization diagram and the bubble
obs = zeros(Float64, Qsize) # observable for the normalization diagram and the bubble
config = MCIntegration.Configuration(steps, (T, K, Ext), dof, obs; para=para)
avg, std = MCIntegration.sample(config, integrand, measure; print=0, Nblock=16)
# @profview MonteCarlo.sample(config, integrand, measure; print=0, Nblock=1)
# sleep(100)
if isnothing(avg) == false
@unpack n, extQ = Para()
for (idx, q) in enumerate(extQ)
q = q[1]
p = Polarization.Polarization0_ZeroTemp(q, para.n, basic) * spin
@printf("%10.6f %10.6f ± %10.6f %10.6f\n", q / basic.kF, avg[idx], std[idx], p)
end
end
end
run(Steps)
# @time run(Steps) | ElectronGas | https://github.com/numericalEFT/ElectronGas.jl.git |
|
[
"MPL-2.0"
] | 0.2.5 | 3a6ed6c55afc461d479b8ef5114cf6733f2cef56 | code | 3338 | """
In this demo, we analysis the contribution of the exchange KO interaction to the Landau parameters
"""
using ElectronGas, Parameters
using Lehmann, GreenFunc, CompositeGrids
const rs = 7.0
const beta = 25.0
const mass2 = 1e-8
const dim = 3
const z = 1.0
Fp = -1.5
Fm = -0.0
# U = -0.456
U = 0.0
Cp, Cm = U / 2, -U / 2
massratio = 1.0
para = Parameter.rydbergUnit(1 / beta, rs, dim; Λs = mass2)
println(para)
const kF = para.kF
const EF = para.EF
const β = para.β
const spin = para.spin
const NF = para.NF * massratio
println(NF)
function exchange_interaction(Fp, Fm, massratio, Cp = 0.0, Cm = 0.0)
θgrid = CompositeGrid.LogDensedGrid(:gauss, [0.0, π], [0.0, π], 16, 0.001, 16)
qs = [2 * kF * sin(θ / 2) for θ in θgrid.grid]
Wp = zeros(Float64, length(qs))
Wm = zeros(Float64, length(qs))
for (qi, q) in enumerate(qs)
Wp[qi], Wm[qi] = Interaction.KO_total(q, 0, para;
pifunc = Polarization.Polarization0_ZeroTemp_Quasiparticle,
landaufunc = Interaction.landauParameterConst,
Vinv_Bare = Interaction.coulombinv,
counter_term = Interaction.countertermConst,
Fs = -Fp, Fa = -Fm, Cs = -Cp, Ca = -Cm, massratio = massratio)
# instantS[qi] = Interaction.coulombinv(q, para)[1]
# println(q, " -> ", Wp[qi] * NF, ", ", Wm[qi] * NF)
end
Wp *= -NF * z^2 # additional minus sign because the interaction is exchanged
Wm *= -NF * z^2
return Wp, Wm, θgrid
end
function Legrendre(l, func, θgrid)
if l == 0
return Interp.integrate1D(func .* sin.(θgrid.grid), θgrid) / 2
elseif l == 1
return Interp.integrate1D(func .* cos.(θgrid.grid) .* sin.(θgrid.grid), θgrid) / 2
else
error("not implemented!")
end
end
# exchange interaction (Ws + Wa \sigma\sigma)_ex to a direct interaction Ws'+Wa' \sigma\sigma
# # exchange S/A interaction projected to the spin-symmetric and antisymmetric parts
function exchange2direct(Wse, Wae)
Ws = (Wse + 3 * Wae) / 2
Wa = (Wse - Wae) / 2
return Ws, Wa
end
function projected_exchange_interaction(l, Fp, Fm, massratio, verbose = 1)
println("l=$l:")
Wse, Wae, θgrid = exchange_interaction(Fp, Fm, massratio)
Wse0 = Legrendre(l, Wse, θgrid)
Wae0 = Legrendre(l, Wae, θgrid)
verbose > 1 && println("Wse_l=$l=", Wse0)
verbose > 1 && println("Wae_l=$l=", Wae0)
Ws0, Wa0 = exchange2direct(Wse0, Wae0)
verbose > 0 && println("Ws_l=$l=", Ws0)
verbose > 0 && println("Wa_l=$l=", Wa0)
return Ws0, Wa0
end
Ws0, Wa0 = projected_exchange_interaction(0, Fp, Fm, massratio)
Wsc, Wac = exchange2direct(Fp, Fm)
println(Ws0 + Wsc)
println(Wa0 + Wac)
# projected_exchange_interaction(1, Fp, Fm, massratio)
exit(0)
Fs, Fa = Fp, Fm
mix = 0.2
for i = 1:100
println("iteration: $i")
global Fs, Fa
nFs, nFa = projected_exchange_interaction(0, Fs, Fa, massratio)
Fs = Fs * (1 - mix) + 2 * nFs * mix
Fa = Fa * (1 - mix) + nFa * mix
Fa = 0.0
end
println("Fs = ", Fs)
println("Fa = ", Fa)
# Ws1 = Interp.integrate1D(Ws .* cos.(θgrid.grid) .* sin.(θgrid.grid), θgrid) / 2
# Wa1 = Interp.integrate1D(Wa .* cos.(θgrid.grid) .* sin.(θgrid.grid), θgrid) / 2
# println("l=1:")
# println("F1+=", Ws1)
# println("F1-=", Wa1)
# println("m^*/m = ", 1 + Ws1)
# println(sqrt(4π * para.e0^2 * para.NF) / para.kF)
| ElectronGas | https://github.com/numericalEFT/ElectronGas.jl.git |
|
[
"MPL-2.0"
] | 0.2.5 | 3a6ed6c55afc461d479b8ef5114cf6733f2cef56 | code | 7832 | """
Calculate gap-function equation
"""
using LinearAlgebra
using ElectronGas
using ElectronGas.GreenFunc
using ElectronGas.Parameters
using ElectronGas.Lehmann
using ElectronGas.CompositeGrids
using ElectronGas.Convention
const dim = 2
# const beta, rs = 1e5, 1.5
function G02wrapped(fdlr, kgrid, param)
# return G0(K)G0(-K)
@unpack me, kF, β, μ = param
green_dyn = zeros(Float64, (kgrid.size, fdlr.size))
for (ki, k) in enumerate(kgrid)
for (ni, n) in enumerate(fdlr.n)
ω = k^2 / 2 / me - μ
green_dyn[ki, ni] = 1 / (
((2n + 1) * π / β)^2
+
(ω)^2
)
end
end
return green_dyn
end
function G2wrapped(fdlr, kgrid, param, Σ::GreenFunc.Green2DLR)
# return G(K)G(-K)
@unpack me, kF, β, μ = param
Σ_freq = GreenFunc.toMatFreq(Σ, fdlr.n)
Σ_shift = real(GreenFunc.dynamic(Σ_freq, π / β, kF, 1, 1) + GreenFunc.instant(Σ_freq, kF, 1, 1))
green_dyn = zeros(Float64, (kgrid.size, fdlr.size))
for (ki, k) in enumerate(kgrid)
for (ni, n) in enumerate(fdlr.n)
ω = k^2 / 2 / me - μ
ΣR, ΣI = real(Σ_freq.dynamic[1, 1, ki, ni] + Σ_freq.instant[1, 1, ki] - Σ_shift), imag(Σ_freq.dynamic[1, 1, ki, ni])
green_dyn[ki, ni] = 1 / (
((2n + 1) * π / β - ΣI)^2
+
(ω + ΣR)^2
)
end
end
return green_dyn
end
function ΔFinit(fdlr, kgrid)
delta = zeros(Float64, (kgrid.size, fdlr.size))
F = zeros(Float64, (kgrid.size, fdlr.size))
delta0 = zeros(Float64, kgrid.size)
for (ki, k) in enumerate(kgrid)
delta0[ki] = 1.0
for (τi, τ) in enumerate(fdlr.τ)
delta[ki, τi] = 1.0
end
end
return delta, delta0, F
end
function dotΔ(fdlr, kgrid, Δ, Δ0, Δ2=Δ, Δ02=Δ0)
# kF_label = searchsortedfirst(kgrid.grid, param.kF)
# return Δ0[kF_label] + real(Lehmann.tau2matfreq(fdlr, view(Δ, kF_label, :), fdlr.n))[1]
# return (dot(Δ, Δ2) + dot(Δ0, Δ02))
return (dot(Δ, Δ2))
end
function calcF!(F, fdlr, kgrid, Δ, Δ0, G2)
Δ_freq = real(Lehmann.tau2matfreq(fdlr, Δ, fdlr.n; axis=2))
for (ki, k) in enumerate(kgrid.grid)
for (ni, n) in enumerate(fdlr.n)
F[ki, ni] = (Δ_freq[ki, ni] + Δ0[ki]) * G2[ki, ni]
end
end
end
function calcΔ!(Δ, Δ0, fdlr, kgrid, qgrids, F, kernel, kernel_bare)
F_tau = real(Lehmann.matfreq2tau(fdlr, F, fdlr.τ; axis=2))
F_ins = -real(tau2tau(fdlr, F_tau, [fdlr.β,]; axis=2))[:, 1]
for (ki, k) in enumerate(kgrid.grid)
for (τi, τ) in enumerate(fdlr.τ)
Fk = CompositeGrids.Interp.interp1DGrid(view(F_tau, :, τi), kgrid, qgrids[ki].grid)
integrand = view(kernel, ki, 1:qgrids[ki].size, τi) .* Fk
Δ[ki, τi] = CompositeGrids.Interp.integrate1D(integrand, qgrids[ki]) ./ (-4 * π * π)
if τi == 1
Fk = CompositeGrids.Interp.interp1DGrid(F_ins, kgrid, qgrids[ki].grid)
integrand = view(kernel_bare, ki, 1:qgrids[ki].size) .* Fk
Δ0[ki] = CompositeGrids.Interp.integrate1D(integrand, qgrids[ki]) ./ (-4 * π * π)
end
end
end
end
function calcΔ_2d!(Δ, Δ0, fdlr, kgrid, qgrids, F, kernel, kernel_bare)
F_tau = real(Lehmann.matfreq2tau(fdlr, F, fdlr.τ; axis=2))
F_ins = -real(tau2tau(fdlr, F_tau, [fdlr.β,]; axis=2))[:, 1]
for (ki, k) in enumerate(kgrid.grid)
for (τi, τ) in enumerate(fdlr.τ)
Fk = CompositeGrids.Interp.interp1DGrid(view(F_tau, :, τi), kgrid, qgrids[ki].grid)
integrand = view(kernel, ki, 1:qgrids[ki].size, τi) .* Fk .* k
Δ[ki, τi] = CompositeGrids.Interp.integrate1D(integrand, qgrids[ki]) ./ (-4 * π * π)
if τi == 1
Fk = CompositeGrids.Interp.interp1DGrid(F_ins, kgrid, qgrids[ki].grid)
integrand = view(kernel_bare, ki, 1:qgrids[ki].size) .* Fk .* k
Δ0[ki] = CompositeGrids.Interp.integrate1D(integrand, qgrids[ki]) ./ (-4 * π * π)
end
end
end
end
function gapIteration(param, fdlr, kgrid, qgrids, kernel, kernel_bare, G2;
Nstep=1e2, rtol=1e-6, shift=2.0)
@unpack dim = param
Δ, Δ0, F = ΔFinit(fdlr, kgrid)
delta = zeros(Float64, (kgrid.size, fdlr.size))
delta0 = zeros(Float64, (kgrid.size))
n = 0
lamu, lamu0 = 1.0, 2.0
err = 1.0
while (n < Nstep && err > rtol)
calcF!(F, fdlr, kgrid, Δ, Δ0, G2)
n = n + 1
delta = copy(Δ)
delta0 = copy(Δ0)
if dim == 3
calcΔ!(Δ, Δ0, fdlr, kgrid, qgrids, F, kernel, kernel_bare)
elseif dim == 2
calcΔ_2d!(Δ, Δ0, fdlr, kgrid, qgrids, F, kernel, kernel_bare)
end
lamu = dotΔ(fdlr, kgrid, Δ, Δ0, delta, delta0)
# dotΔ(fdlr, kgrid, Δ, Δ0, Δ2 = Δ, Δ02 = Δ0)
Δ0 = Δ0 .+ shift .* delta0
Δ = Δ .+ shift .* delta
#modulus = Normalization(delta_0_new, delta_0_new, kgrid)
modulus = sqrt(dotΔ(fdlr, kgrid, Δ, Δ0))
Δ = Δ ./ modulus
Δ0 = Δ0 ./ modulus
err = abs(lamu - lamu0) / abs(lamu + EPS)
lamu0 = lamu
# println(lamu)
end
return lamu, Δ, Δ0, F
end
# if abspath(PROGRAM_FILE) == @__FILE__
function gapfunction(beta, rs, channel::Int, dim::Int, sigmatype)
#--- parameters ---
param = Parameter.defaultUnit(1 / beta, rs, dim)
# Euv, rtol = 100 * param.EF, 1e-11
# maxK, minK = 20param.kF, 1e-8param.kF
# Nk, order = 12, 10
Euv, rtol = 100 * param.EF, 1e-10
maxK, minK = 10param.kF, 1e-7param.kF
Nk, order = 8, 8
int_type = :rpa
# print(param)
#--- prepare kernel ---
if dim == 3
@time W = LegendreInteraction.DCKernel0(param;
Euv=Euv, rtol=rtol, Nk=Nk, maxK=maxK, minK=minK, order=order,
int_type=int_type, channel=channel)
elseif dim == 2
@time W = LegendreInteraction.DCKernel_2d(param;
Euv=Euv, rtol=rtol, Nk=Nk, maxK=maxK, minK=minK, order=order,
int_type=int_type, channel=channel)
else
error("No support for $dim dimension!")
end
fdlr = Lehmann.DLRGrid(Euv, param.β, rtol, true, :pha)
bdlr = W.dlrGrid
kgrid = W.kgrid
qgrids = W.qgrids
kernel_bare = W.kernel_bare
kernel_freq = W.kernel
kernel = real(Lehmann.matfreq2tau(bdlr, kernel_freq, fdlr.τ, bdlr.n; axis=3))
kF_label = searchsortedfirst(kgrid.grid, param.kF)
qF_label = searchsortedfirst(qgrids[kF_label].grid, param.kF)
println("static kernel at (kF, kF):$(kernel_bare[kF_label, qF_label])")
# println("dynamic kernel at (kF, kF):")
# println(view(kernel_freq, kF_label, qF_label, :))
#--- prepare Σ ---
if sigmatype == :g0w0
Σ = SelfEnergy.G0W0(param, Euv, rtol, Nk, maxK, minK, order, int_type)
end
#--- prepare G2 ---
if sigmatype == :none
G2 = G02wrapped(fdlr, kgrid, param)
elseif sigmatype == :g0w0
G2 = G2wrapped(fdlr, kgrid, param, Σ)
end
# println("G2 at kF:")
# println(view(G2, kF_label, :))
lamu, Δ, Δ0, F = gapIteration(param, fdlr, kgrid, qgrids, kernel, kernel_bare, G2; shift=4.0)
println("beta = $beta, rs = $rs")
println("channel = $channel")
println("lamu = $lamu")
Δ_freq = real(Lehmann.tau2matfreq(fdlr, Δ, fdlr.n; axis=2))
println(fdlr.ωn ./ param.EF)
println(view(Δ_freq, kF_label, :))
# println(view(F, kF_label, :))
end
if abspath(PROGRAM_FILE) == @__FILE__
# sigmatype = :none
sigmatype = :g0w0
rs = 2.0
# rs = 0.5
channel = 0
# blist = [1e2, 1e3, 1e4, 1e5, 2e5]
blist = [5e5]
# blist = [1e2, 1e3, 5e3, 1e4]
for (ind, beta) in enumerate(blist)
gapfunction(beta, rs, channel, dim, sigmatype)
end
end | ElectronGas | https://github.com/numericalEFT/ElectronGas.jl.git |
|
[
"MPL-2.0"
] | 0.2.5 | 3a6ed6c55afc461d479b8ef5114cf6733f2cef56 | code | 3580 | # global constant e0 and mass2 is expected
"""
linear2D(data, xgrid, ygrid, x, y)
linear interpolation of data(x, y)
#Arguments:
- xgrid: one-dimensional grid of x
- ygrid: one-dimensional grid of y
- data: two-dimensional array of data
- x: x
- y: y
"""
@inline function linear2D(data, xgrid, ygrid, x, y)
xarray, yarray = xgrid.grid, ygrid.grid
xi0, xi1, yi0, yi1 = 0, 0, 0, 0
if (x <= xarray[firstindex(xgrid)])
xi0 = 1
xi1 = 2
elseif (x >= xarray[lastindex(xgrid)])
xi0 = lastindex(xgrid) - 1
xi1 = xi0 + 1
else
xi0 = floor(xgrid, x)
xi1 = xi0 + 1
end
if (y <= yarray[firstindex(ygrid)])
yi0 = 1
yi1 = 2
elseif (y >= yarray[lastindex(ygrid)])
yi0 = lastindex(ygrid) - 1
yi1 = yi0 + 1
else
yi0 = floor(ygrid, y)
yi1 = yi0 + 1
end
dx0, dx1 = x - xarray[xi0], xarray[xi1] - x
dy0, dy1 = y - yarray[yi0], yarray[yi1] - y
d00, d01 = data[xi0, yi0], data[xi0, yi1]
d10, d11 = data[xi1, yi0], data[xi1, yi1]
g0 = data[xi0, yi0] * dx1 + data[xi1, yi0] * dx0
g1 = data[xi0, yi1] * dx1 + data[xi1, yi1] * dx0
gx = (g0 * dy1 + g1 * dy0) / (dx0 + dx1) / (dy0 + dy1)
return gx
end
function lindhard(x)
if (abs(x) < 1.0e-4)
return 1.0
elseif (abs(x - 1.0) < 1.0e-4)
return 0.5
else
return 0.5 - (x^2 - 1) / 4.0 / x * log(abs((1 + x) / (1 - x)))
end
end
function KOstatic(Fp, Fm, cp, cm, mr, qgrid)
fp = Fp / NF / mr
fm = Fm / NF / mr
cp = cp / NF / mr
cm = cm / NF / mr
Wp = similar(qgrid)
Wm = similar(qgrid)
for (qi, q) in enumerate(qgrid)
Π = mr * NF * lindhard(q / 2 / kF)
Wp[qi] = (4π * e0^2 + fp * q^2) / ((1 + fp * Π) * q^2 + 4π * e0^2 * Π) - fp
Wm[qi] = fm / (1 + fm * Π) - fm
# Wp[qi] = (4π * e0^2 + fp * q^2) / ((1 + fp * Π) * q^2 + 4π * e0^2 * Π) + cp
# Wm[qi] = fm / (1 + fm * Π) + cm
# Wp[qi] = (4π * e0^2 + fp * (q^2 + mass2)) / ((1 + fp * Π) * (q^2 + mass2) + 4π * e0^2 * Π)
# Wm[qi] = fm / (1 + fm * Π)
end
return Wp, Wm
end
function interactionDynamic(para, qd, τIn, τOut, dim = 3)
dτ = abs(τOut - τIn)
kDiQ = sqrt(dot(qd, qd))
if dim == 3
vd = 4π * e0^2 / (kDiQ^2 + mass2) + fp
elseif dim == 2
vd = 2π * e0^2 / √(kDiQ^2 + mass2) + fp
end
if kDiQ <= para.qgrid.grid[1]
q = para.qgrid.grid[1] + 1.0e-6
wd = vd * linear2D(para.dW0, para.qgrid, para.τgrid, q, dτ)
# the current interpolation vanishes at q=0, which needs to be corrected!
else
wd = vd * linear2D(para.dW0, para.qgrid, para.τgrid, kDiQ, dτ) # dynamic interaction, don't forget the singular factor vq
end
# return vd / β, wd
#TODO introduce a fake tau variable to alleviate sign cancellation between the static and the dynamic interactions
vd = 4π * e0^2 / (kDiQ^2 + mass2 + 4π * e0^2 * NF * lindhard(kDiQ / 2.0 / kF)) / β
vd -= wd
return vd, wd
end
function interactionStatic(para, qd, τIn, τOut)
dτ = abs(τOut - τIn)
kDiQ = sqrt(dot(qd, qd))
vd = 4π * e0^2 / (kDiQ^2 + mass2) / β
return vd, 0.0
end
function vertexDynamic(para, qd, qe, τIn, τOut)
vd, wd = interactionDynamic(para, qd, τIn, τOut)
ve, we = interactionDynamic(para, qe, τIn, τOut)
return -vd, -wd, ve, we
end
function vertexStatic(para, qd, qe, τIn, τOut)
vd, wd = interactionStatic(para, qd, τIn, τOut)
ve, we = interactionStatic(para, qe, τIn, τOut)
return -vd, -wd, ve, we
end | ElectronGas | https://github.com/numericalEFT/ElectronGas.jl.git |
|
[
"MPL-2.0"
] | 0.2.5 | 3a6ed6c55afc461d479b8ef5114cf6733f2cef56 | code | 1436 |
module MeasureChi
using ElectronGas
using ElectronGas.GreenFunc
using ElectronGas.CompositeGrids
using DelimitedFiles
export measure_chi
function measure_chi(F_freq::GreenFunc.MeshArray)
F_dlr = F_freq |> to_dlr
F_ins = real(dlr_to_imtime(F_dlr, [F_freq.mesh[1].representation.β,])) * (-1)
kgrid = F_ins.mesh[2]
integrand = view(F_ins, 1, :)
return real(CompositeGrids.Interp.integrate1D(integrand, kgrid))
end
function measure_chi(dim, θ, rs; kwargs...)
param = Parameter.rydbergUnit(θ, rs, dim)
channel = 0
lamu, R_freq, F_freq = BSeq.linearResponse(param, channel
; kwargs...)
result = measure_chi(F_freq)
println("1/chi=", 1 / result)
data = [1 / θ 1 / result lamu channel rs]
dir = "./run/"
fname = "gap_chi_rs$(rs)_l$(channel).txt"
open(dir * fname, "a+") do io
writedlm(io, data, ' ')
end
return 1 / result
end
end
using Test
using .MeasureChi
@testset "measure chi" begin
# println(measure_chi(3, 1e-2, 2.0))
dim = 3
rs = 7.0
num = 20
# beta = [6.25 * 2^i for i in LinRange(0, num - 1, num)]
# beta = [2000, 2200.0, 2229.78,]
beta = [3200,]
# num = 18
# beta = [6.25 * sqrt(2)^i for i in LinRange(0, num - 1, num)]
# chi = [measure_chi(dim, 1 / b, rs; sigmatype=:g0w0) for b in beta]
chi = [measure_chi(dim, 1 / b, rs; atol=1e-10, rtol=1e-10, verbose=true) for b in beta]
println(chi)
end | ElectronGas | https://github.com/numericalEFT/ElectronGas.jl.git |
|
[
"MPL-2.0"
] | 0.2.5 | 3a6ed6c55afc461d479b8ef5114cf6733f2cef56 | code | 1066 | # We work with Rydberg units, length scale Bohr radius a_0, energy scale: Ry
using StaticArrays
###### constants ###########
const e0 = sqrt(2) # electric charge
const me = 0.5 # electron mass
const dim = 3 # dimension (D=2 or 3, doesn't work for other D!!!)
const spin = 2 # number of spins
const rs = 1.0
const kF = (dim == 3) ? (9π / (2spin))^(1 / 3) / rs : sqrt(4 / spin) / rs
const EF = kF^2 / (2me)
const beta = 1000
const β = beta / EF
const mass2 = 1e-6
const NF = (dim == 3) ? spin * me * kF / 2 / π^2 : spin * me / 2 / π
const qTF = sqrt(4π * e0^2 * NF)
const fp = -0.0
const fm = -0.0
# const Weight = SVector{2,Float64}
const INL, OUTL, INR, OUTR = 1, 2, 3, 4
const DI, EX = 1, 2
# const Nf = (D==3) ?
mutable struct Weight <: FieldVector{2,Float64}
d::Float64
e::Float64
Weight() = new(0.0, 0.0)
Weight(d, e) = new(d, e)
end
const Base.zero(::Type{Weight}) = Weight(0.0, 0.0)
const Base.abs(w::Weight) = abs(w.d) + abs(w.e) # define abs(Weight)
println("rs=$rs, β=$β, kF=$kF, EF=$EF, mass2=$mass2, NF=$NF, qTF/kF=$(qTF/kF)") | ElectronGas | https://github.com/numericalEFT/ElectronGas.jl.git |
|
[
"MPL-2.0"
] | 0.2.5 | 3a6ed6c55afc461d479b8ef5114cf6733f2cef56 | code | 2769 | """
Check how the sigma function changes with the external momentum within the G0W0 approximation.
Both the z-factor and band mass ratio are calculated.
It is found that that the plasma approximation for the polarization didn't change the result much.
The locality of the z-factor and band mass seems to be protected by the condition that ω_p >> E_F
"""
using ElectronGas
using Plots
using LaTeXStrings
using GreenFunc
rs = 5.0
beta = 1000.0
mass2 = 1e-6
para = Parameter.rydbergUnit(1.0 / beta, rs, 3; Λs=mass2)
# create the benchmark self-energy with the standard polarization
sigma0 = SelfEnergy.G0W0(para; pifunc=Polarization.Polarization0_3dZeroTemp);
kgrid = [k for k in sigma0.spaceGrid.grid if k < para.kF * 2]
z0 = [SelfEnergy.zfactor(para, sigma0; kamp=k)[1] for k in kgrid]
mass0 = [SelfEnergy.bandmassratio(para, sigma0; kamp=k)[1] for k in kgrid]
factorList = [0.1875, 0.75, 3.0, 18.74, 300.0, 30000.0]
# factorList = [1.0, 3.0]
z = zeros(length(factorList), length(kgrid))
mass = zeros(length(factorList), length(kgrid))
plasmafreq(factor) = round(1 / sqrt(factor / 3), sigdigits=3) # fake plasma freq vesus physical one
ef(factor) = round(plasmafreq(factor) * para.ωp / para.EF, sigdigits=3) # fake plasma freq vesus physical EF
# plasmafreq(factor) = round(factor, sigdigits=3)
Threads.@threads for fi in eachindex(factorList)
factor = factorList[fi]
println("factor $factor")
sigma = SelfEnergy.G0W0(para, Euv=1000.0 * para.EF, Nk=12, order=8; pifunc=Polarization.Polarization0_3dZeroTemp_Plasma, factor=factor)
# sigma = SelfEnergy.G0W0(para; pifunc=Polarization.Polarization0_3dZeroTemp_Plasma, factor=factor)
for (i, k) in enumerate(kgrid)
z[fi, i] = SelfEnergy.zfactor(para, sigma; kamp=k)[1]
# mass[fi, i] = SelfEnergy.bandmassratio(para, sigma; kamp=k)
mass[fi, i] = SelfEnergy.bandmassratio(para, sigma; kamp=k)[1]
# mass[fi, i] = sigma.dynamic[]
end
end
let
p = plot(xlabel=L"$k/k_F$", ylabel=L"$z_k$", legend=:bottomright)
plot!(p, kgrid ./ para.kF, z0, label="physical")
for (fi, factor) in enumerate(factorList[1:end-1])
plot!(p, kgrid ./ para.kF, z[fi, :], label=L"$\tilde{\omega}_p = %$(plasmafreq(factor))\omega_p = %$(ef(factor))E_F$")
end
savefig(p, "sigma_locality_z.pdf")
display(p)
end
let
p = plot(xlabel=L"$k/k_F$", ylabel=L"$m^*_k/m_0$", legend=:topright, xlim=[0.1, kgrid[end] / para.kF], ylim=[0.75, 1.401])
plot!(p, kgrid ./ para.kF, mass0, label="physical")
for (fi, factor) in enumerate(factorList[1:end-1])
plot!(p, kgrid ./ para.kF, mass[fi, :], label=L"$\tilde{\omega}_p = %$(plasmafreq(factor))\omega_p = %$(ef(factor))E_F$")
end
savefig(p, "sigma_locality_massratio.pdf")
display(p)
end | ElectronGas | https://github.com/numericalEFT/ElectronGas.jl.git |
|
[
"MPL-2.0"
] | 0.2.5 | 3a6ed6c55afc461d479b8ef5114cf6733f2cef56 | code | 2006 | # Self-energy for spin-fermion model
using ElectronGas
using Test, Printf, DelimitedFiles
using Gaston, LaTeXStrings
bexp = 3
ExtQ = 0
dim = 2
beta, rs = 10^bexp, 1.0
ga = 1.0
param = Interaction.Parameter.rydbergUnit(1 / beta, rs, dim)
Λa = param.Λa + Polarization.Polarization0_ZeroTemp(0.0, 0, param) * param.spin * ga * (-param.e0a^2) / param.ϵ0
println(Λa)
param = Parameter.Para(param, gs = 0.0, ga = ga, Λa = Λa)
function sigma(param)
Euv, rtol = 100 * param.EF, 1e-10
Nk, order, minK = 8, 8, 1e-7
# Nk, order, minK = 11, 4, 1e-8
Σ = SelfEnergy.G0W0(param, Euv, rtol, Nk, 10 * param.kF, minK * param.kF, order, :rpa)
Σ = SelfEnergy.GreenFunc.toMatFreq(Σ)
kgrid = Σ.spaceGrid
println(kgrid)
kF = kgrid.panel[3]
kF_label = searchsortedfirst(kgrid.grid, kF)
println(kF_label)
ωgrid = Σ.dlrGrid
ΣR = real(Σ.dynamic)
ΣI = imag(Σ.dynamic)
println(real(Σ.instant[1, 1, :]))
println(ΣR[1, 1, kF_label, :])
label = 1
print([ωgrid.n ωgrid.ωn ΣR[1, 1, label, :] ΣI[1, 1, label, :]])
# open("./plot/sigma_b1e$(bexp)_q$(ExtQ)kf_m0.txt", "w") do io
# writedlm(io, [ωgrid.n ωgrid.ωn ΣR[1, 1, label, :] ΣI[1, 1, label, :]])
# end
end
if abspath(PROGRAM_FILE) == @__FILE__
sigma(param)
data = readdlm("./plot/sigma_b1e$(bexp)_q$(ExtQ)kf_m0.txt", '\t', Float64, '\n')
# using Gaston
# x = ωgrid.ωn / param.EF
# y = ΣI[1, 1, kF_label, :]
x = data[:, 2] / param.EF
y = -data[:, end]
plot(x, y, curveconf = "notit w lp lw 1 lc '#08F7FE'",
Axes(xrange = (0, 0.1),
# yrange = (-4, 1.2),
ylabel = "'-Im Σ'",
# ylabel = "'f_{xc} N_F (q/ω_n)^2'",
xlabel = "'ω_n/E_F'",
key = "t l",
title = "'beta=$beta, r_s=$rs'")
)
x = 0:1e-2:2
y = x .^ (2 / 3) .* 0.16
plot!(x, y, curveconf = "tit 'ω_n^{2/3}'")
save(term = "pdf", output = "./plot/SigmaIm_b1e$(bexp)_rs$(rs)_q$(ExtQ)kf.pdf", linewidth = 1)
end | ElectronGas | https://github.com/numericalEFT/ElectronGas.jl.git |
|
[
"MPL-2.0"
] | 0.2.5 | 3a6ed6c55afc461d479b8ef5114cf6733f2cef56 | code | 17697 | """
Bethe-Slapter-type equation solver and the application to Cooper-pair linear response approach.
"""
module BSeq
using ..Parameter, ..Convention, ..LegendreInteraction
using ..Parameters, ..GreenFunc, ..Lehmann, ..CompositeGrids
using ..SelfEnergy
const freq_sep = 0.01
"""
function initFR(Euv, rtol, sgrid, param)
Initalize the Bethe-Slapter amplitude `F` in imaginary-frequency space and `R ≡ F(GG)⁻¹` in imaginary-time space.
# Arguments:
- `Euv`: the UV energy scale of the spectral density. parameter for DLR grids.
- `rtol`: tolerance absolute error. parameter for DLR grids.
- `sgrid`: momentum grid of F and R
- `param`: parameters of ElectronGas.
# Return
- ``F(\\omega_n, k)=0`` as a `GreenFunc.MeshArray`
- the dynamical part of `R` in the imaginary-time space as a `GreenFunc.MeshArray`. In the imaginary-frequency space,
```math
R(\\omega_n, k) = \\frac{1}{\\Omega_c^2+e^2}\\left(1- \\frac{2\\omega_n^2}{\\omega_n^2+\\Omega_c^2} \\right)
```
where ``e=k^2/(2m)-\\mu`` and ``\\Omega_c =0.01``.
- the instant part of `R` as a `GreenFunc.MeshArray`, ``R_{\\mathrm{ins}}(k)=0``.
"""
function initFR(Euv, rtol, sgrid, param)
@unpack β, me, μ = param
Ω_c = freq_sep
wn_mesh = GreenFunc.ImFreq(β, FERMION; Euv=Euv, rtol=rtol, symmetry=:pha)
R_freq = GreenFunc.MeshArray(wn_mesh, sgrid; dtype=Float64)
F_freq = similar(R_freq)
for ind in eachindex(R_freq)
ni, ki = ind[1], ind[2]
ωn, k = wn_mesh[ni], sgrid[ki]
e = k^2 / 2 / me - μ
R_freq[ni, ki] = (1.0 - 2.0 * ωn^2 / (ωn^2 + Ω_c^2)) / (Ω_c^2 + e^2)
end
R_imt = real(R_freq |> to_dlr |> to_imtime)
R_ins = GreenFunc.MeshArray([1], sgrid; dtype=Float64, data=zeros(1, sgrid.size))
return F_freq, R_imt, R_ins
end
"""
function calcF!(F::GreenFunc.MeshArray, R::GreenFunc.MeshArray, R_ins::GreenFunc.MeshArray, G2::GreenFunc.MeshArray)
Calculation of the Bethe-Slapter amplitude `F` from the product of single-particle Green's function `G2`
and the dynamical and instant parts of `R`, `R_ins`. Compute in frequency space to avoid \\tau integration.
```math
F(\\omega_n, k) = G^{(2)}(\\omega_n, k) [R(\\omega_n, k)+R_{\\mathrm{ins}}(k)]
```
"""
function calcF!(F::GreenFunc.MeshArray, R::GreenFunc.MeshArray, R_ins::GreenFunc.MeshArray, G2::GreenFunc.MeshArray)
R_freq = R |> to_dlr |> to_imfreq
# algebraic in frequency space
for ind in eachindex(F)
F[ind] = real(R_freq[ind] + R_ins[1, ind[2]]) * G2[ind]
end
end
"""
function calcR!(F::GreenFunc.MeshArray, R::GreenFunc.MeshArray, R_ins::GreenFunc.MeshArray,
source::Union{Nothing,GreenFunc.MeshArray}, kernel, kernel_ins, qgrids::Vector{CompositeGrid.Composite})
Calculate ``kR(\\tau, k)`` in three dimensions by given `pF(\\tau, p)` and `kernel`.
Compute in imaginary time space to aviod frequency convolution.
```math
kR(\\tau, k) = k\\eta(\\tau, k) - \\int \\frac{dp}{4\\pi^2} H(\\tau,k,p) pF(\\tau,p),
```
where ``H(\\tau,k,p)\\equiv kp W(\\tau,k,p)`` is the helper function of interaction (see [Legendre Decomposition of Interaction](https://numericaleft.github.io/ElectronGas.jl/dev/manual/legendreinteraction/))
and the kernel argument. The dynamical `source` ``k\\eta(\\tau, k)`` will be added if it is given as `GreenFunc.MeshArray`.
"""
function calcR!(F::GreenFunc.MeshArray, R::GreenFunc.MeshArray, R_ins::GreenFunc.MeshArray,
source::Union{Nothing,GreenFunc.MeshArray}, kernel, kernel_ins, qgrids::Vector{CompositeGrid.Composite})
kgrid = F.mesh[2]
F_dlr = F |> to_dlr
# switch to τ space
F_imt = real(F_dlr |> to_imtime)
F_ins = real(dlr_to_imtime(F_dlr, [F.mesh[1].representation.β,])) * (-1)
for ind in eachindex(R)
# for each τ, k, integrate over q
τi, ki = ind[1], ind[2]
# interpolate F to q grid of given k
Fq = CompositeGrids.Interp.interp1DGrid(view(F_imt, τi, :), kgrid, qgrids[ki].grid)
integrand = view(kernel, ki, 1:qgrids[ki].size, τi) .* Fq
R[τi, ki] = CompositeGrids.Interp.integrate1D(integrand, qgrids[ki]) ./ (-4 * π * π)
if τi == 1
# same for instant part
Fq = CompositeGrids.Interp.interp1DGrid(view(F_ins, 1, :), kgrid, qgrids[ki].grid)
integrand = view(kernel_ins, ki, 1:qgrids[ki].size) .* Fq
R_ins[1, ki] = CompositeGrids.Interp.integrate1D(integrand, qgrids[ki]) ./ (-4 * π * π)
end
end
!(source isa Nothing) && (R += source)
end
"""
function calcR_2d!(F::GreenFunc.MeshArray, R::GreenFunc.MeshArray, R_ins::GreenFunc.MeshArray,
source::Union{Nothing,GreenFunc.MeshArray}, kernel, kernel_ins, qgrids::Vector{CompositeGrid.Composite})
Calculate ``kR(\\tau, k)`` in two dimensions by given `pF(p)` and `kernel`
Compute in imaginary time space to aviod frequency convolution.
```math
kR(\\tau, k) = k\\eta(\\tau, k) - \\int \\frac{pdp}{4\\pi^2} W(\\tau,k,p) pF(\\tau,p),
```
where ``W`` is the interaction and the kernel argument.
The dynamical `source` ``k\\eta(\\tau, k)`` will be added if it is given as `GreenFunc.MeshArray`.
"""
function calcR_2d!(F::GreenFunc.MeshArray, R::GreenFunc.MeshArray, R_ins::GreenFunc.MeshArray,
source::Union{Nothing,GreenFunc.MeshArray}, kernel, kernel_ins, qgrids::Vector{CompositeGrid.Composite})
# similar to 3d
kgrid = F.mesh[2]
F_dlr = F |> to_dlr
F_imt = real(F_dlr |> to_imtime)
F_ins = real(dlr_to_imtime(F_dlr, [F.mesh[1].representation.β,])) * (-1)
for ind in eachindex(R)
τi, ki = ind[1], ind[2]
k = R.mesh[2][ki]
Fq = CompositeGrids.Interp.interp1DGrid(view(F_imt, τi, :), kgrid, qgrids[ki].grid)
integrand = view(kernel, ki, 1:qgrids[ki].size, τi) .* Fq .* k
R[τi, ki] = CompositeGrids.Interp.integrate1D(integrand, qgrids[ki]) ./ (-4 * π * π)
if τi == 1
Fq = CompositeGrids.Interp.interp1DGrid(view(F_ins, 1, :), kgrid, qgrids[ki].grid)
integrand = view(kernel_ins, ki, 1:qgrids[ki].size) .* Fq .* k
R_ins[1, ki] = CompositeGrids.Interp.integrate1D(integrand, qgrids[ki]) ./ (-4 * π * π)
end
end
!(source isa Nothing) && (R += source)
end
"""
function G02wrapped(Euv, rtol, sgrid, param)
Returns the product of two bare single-particle Green's function.
```math
G_0^{(2)}(\\omega_n, k) = 1/(\\omega_n^2+\\omega^2)
```
where ``\\omega= k^2/(2m)-\\mu``.
"""
function G02wrapped(Euv, rtol, sgrid, param)
@unpack me, β, μ = param
wn_mesh = GreenFunc.ImFreq(β, FERMION; Euv=Euv, rtol=rtol, symmetry=:pha)
green = GreenFunc.MeshArray(wn_mesh, sgrid; dtype=Float64)
for ind in eachindex(green)
ni, ki = ind[1], ind[2]
ωn = wn_mesh[ni]
ω = sgrid.grid[ki]^2 / 2 / me - μ
green[ind] = 1 / (ωn^2 + ω^2)
end
return green
end
"""
function G2wrapped(Σ::GreenFunc.MeshArray, Σ_ins::GreenFunc.MeshArray, param)
Returns the product of two single-particle Green's function from given dynamical and instant parts of self-energy (`Σ` and `Σ_ins`).
```math
G_0^{(2)}(\\omega_n, k) = 1/\\left([\\omega_n - \\mathrm{Im} \\Sigma(\\omega_n, k)]^2+
[\\omega+ \\mathrm{Re} \\Sigma(\\omega_n, k) - \\Sigma_{\\mathrm{shift}}]^2\\right)
```
where ``\\omega= k^2/(2m)-\\mu`` and ``\\Sigma_{\\mathrm{shift}}=\\mathrm{Re} \\Sigma(\\omega_0, k_F)``.
"""
function G2wrapped(Σ::GreenFunc.MeshArray, Σ_ins::GreenFunc.MeshArray, param)
@unpack me, kF, β, μ = param
Σ_freq = Σ |> to_dlr |> to_imfreq
green = similar(Σ_freq)
w0i_label = locate(Σ_freq.mesh[1], 0)
kf_label = locate(Σ_freq.mesh[2], kF)
Σ_shift = real(Σ_freq[w0i_label, kf_label] + Σ_ins[1, kf_label])
for ind in eachindex(green)
ni, ki = ind[1], ind[2]
ωn = green.mesh[1][ni]
ω = green.mesh[2][ki]^2 / 2 / me - μ
ΣR, ΣI = real(Σ_freq[ind] + Σ_ins[1, ki] - Σ_shift), imag(Σ_freq[ind])
green[ind] = 1 / ((ωn - ΣI)^2 + (ω + ΣR)^2)
end
return green
end
"""
function BSeq_solver(param, G2::GreenFunc.MeshArray, kernel, kernel_ins, qgrids::Vector{CompositeGrid.Composite},
Euv; Ntherm=120, rtol=1e-10, α=0.7, source::Union{Nothing,GreenFunc.MeshArray}=nothing,
source_ins::GreenFunc.MeshArray=GreenFunc.MeshArray([1], G2.mesh[2]; dtype=Float64, data=ones(1, G2.mesh[2].size))
)
Bethe-Slapter equation solver by self-consistent iterations.
```math
R(\\omega_n, k) = \\eta(\\omega_n, k) - \\frac{1}{\\beta} \\sum_m \\frac{d^dp}{(2\\pi)^d} \\Gamma(\\omega_n,k;\\omega_m,p) G^{(2)}(\\omega_m,p)R(\\omega_m,p) ,
```
where ``\\eta(\\omega_n, k)`` is the sourced term, ``\\Gamma(k,\\omega_n;p,\\omega_m)`` is the particle-particle four-point vertex
with zero incoming momentum and frequency, and ``G^{(2)}(p,\\omega_m)`` is the product of two single-particle Green's function.
# Arguments
- `param`: parameters of ElectronGas.
- `G2`: product of two single-particle Green's function (::GreenFunc.MeshArray).
- `kernel`: dynamical kernel of the Legendre decomposed effective interaction.
- `kernel_ins`: instant part of the the Legendre decomposed effective interaction.
- `qgrids`: momentum grid of kernel (::Vector{CompositeGrid.Composite}).
- `Euv`: the UV energy scale of the spectral density.
- `Ntherm`: thermalization step. By defalut, `Ntherm=120`.
- `rtol`: tolerance absolute error. By defalut, `rtol=1e-10`.
- `α`: mixing parameter in the self-consistent iteration. By default, `α=0.7`.
- `source`: dynamical part of sourced term in imaginary-time space. By default, `source=nothing`.
- `source_ins`: instant part of sourced term. By default, `source_ins=1`.
# Return
- Inverse of low-energy linear response `1/R₀` (``R_0=R(\\omega_0, k_F)``)
- Bethe-Slapter amplitude `F` in imaginary-frequency space
```math
F(\\omega_m, p) = G^{(2)}(\\omega_m,p)R(\\omega_m,p)
```
- dynamical part of `R` in imaginary-time space
- instant part of `R` in imaginary-time space
"""
function BSeq_solver(param, G2::GreenFunc.MeshArray, kernel, kernel_ins, qgrids::Vector{CompositeGrid.Composite},
Euv; Ntherm=30, rtol=1e-10, atol=1e-10, α=0.8, source::Union{Nothing,GreenFunc.MeshArray}=nothing,
source_ins::GreenFunc.MeshArray=GreenFunc.MeshArray([1], G2.mesh[2]; dtype=Float64, data=ones(1, G2.mesh[2].size)),
verbose=false, Ncheck=5)
if verbose
println("atol=$atol,rtol=$rtol")
end
@unpack dim, kF = param
kgrid = G2.mesh[2]
kF_label = locate(kgrid, kF)
if !(source isa Nothing)
@assert source.mesh[1] isa MeshGrids.ImTime "ImTime is expect for the dim = 1 source."
for ni in eachindex(F_freq.mesh[1])
source[ni, :] .*= kgrid.grid
end
end
source_ins[1, :] .*= kgrid.grid
source0 = source_ins[1, kF_label]
# Initalize F and R
F_freq, R_imt, R_ins = initFR(Euv, G2.mesh[1].representation.rtol, kgrid, param)
R0, R0_sum = 1.0, 0.0
dR0, dR0_sum = zeros(Float64, (kgrid.size)), zeros(Float64, (kgrid.size))
R_sum = zeros(Float64, (R_imt.mesh[1].representation.size, kgrid.size))
lamu, lamu0 = 0.0, 1.0
n = 0
# self-consistent iteration with mixing α
# Note!: all quantites about R, F, and source in the `while` loop are multiplied by momentum k.
while (true)
n = n + 1
# switch between imtime and imfreq to avoid convolution
# dlr Fourier transform is much faster than brutal force convolution
# calculation from imtime R to imfreq F
calcF!(F_freq, R_imt, R_ins, G2)
# calculation from imfreq F to imtime R
if dim == 3
calcR!(F_freq, R_imt, R_ins, source, kernel, kernel_ins, qgrids)
elseif dim == 2
calcR_2d!(F_freq, R_imt, R_ins, source, kernel, kernel_ins, qgrids)
else
error("Not implemented for $dim dimensions.")
end
R_kF = real(dlr_to_imfreq(to_dlr(R_imt), [0])[1, kF_label] + R_ins[1, kF_label])
# split the low-energy part R0=R(ω₀,kF) and the remaining instant part dR0 for iterative calcualtions
R0_sum = source0 + R_kF + R0_sum * α
dR0_sum = view(R_ins, 1, :) + view(source_ins, 1, :) .- (source0 + R_kF) + dR0_sum .* α
R0 = R0_sum * (1 - α)
dR0 = dR0_sum .* (1 - α)
R_ins[1, :] = dR0 .+ R0
# iterative calculation of the dynamical part
R_sum = view(R_imt, :, :) + R_sum .* α
R_imt[:, :] = R_sum .* (1 - α)
@debug "R(ω0, kF) = $R_kF, 1/R0 = $(-1/R0) ($(-1/(kF + R_kF)))"
# println("R(ω0, kF) = $R_kF, 1/R0 = $(-1/R0) ($(-1/(kF + R_kF)))")
# record lamu=1/R0 if iterative step n > Ntherm
if n > Ntherm && (n % Ncheck == 1)
lamu = -1 / (1 + R_kF / kF)
if lamu > 0
# this condition does not necessarily mean something wrong
# it only indicates lamu is not converge to correct sign within Ntherm steps
# normally α>0.8 guarantees convergence, then it means Ntherm is too small
@warn ("α = $α or Ntherm=$Ntherm is too small!")
end
# err = abs(lamu - lamu0)
# Exit the loop if the iteration converges
isapprox(lamu, lamu0, rtol=rtol, atol=atol) && break
lamu0 = lamu
if verbose
println("lamu=$lamu")
end
end
end
println("α = $α, iteration step: $n")
lamu = -kF / R0 # calculate 1/R0
# calculate real physical quantites F and R
for ni in eachindex(F_freq.mesh[1])
F_freq[ni, :] ./= kgrid.grid
R_imt[ni, :] ./= kgrid.grid
end
R_ins[1, :] ./= kgrid.grid
return lamu, F_freq, R_imt, R_ins
end
"""
function linearResponse(param, channel::Int; Euv=100 * param.EF, rtol=1e-10,
maxK=10param.kF, minK=1e-7param.kF, Nk=8, order=8, sigmatype=:none, int_type=:rpa, α=0.7)
Implmentation of Cooper-pair linear response approach.
# Arguments:
- `param`: parameters of ElectronGas.
- `channel::Int`: orbital angular channel (0: s-wave, 1: p-wave, ...)
- `Euv`: the UV energy scale of the spectral density. By default, `Euv=100EF`.
- `rtol`: tolerance absolute error. By defalut, `rtol=1e-10`.
- `maxK`: maximum momentum of kgrid and qgrids. By default, `maxK=10kF`.
- `minK`: minimum interval of panel kgrid and qgrids. By default, `minK=1e-7kF`.
- `Nk`: number of grid points of panel kgrid and qgrids. By defalut, `Nk=8`.
- `order`: number of grid points of subgrid of kgrid and qgrids. By defalut, `order=8`.
- `sigmatype`: type of fermionic self-energy. (no self-energy :none, G0W0 approximation :g0w0)
- `int_type`: type of effective interaction. By default, `int_type=:rpa`.
- `α`: mixing parameter in the self-consistent iteration. By default, `α=0.7`.
# Return:
- Inverse of low-energy linear response `1/R₀` (``R_0=R(\\omega_0, k_F)``)
- Linear response `R(ωₙ, k)`, which is calculated by the Bethe-Slapter-type equation
```math
R(\\omega_n, k) = 1 - \\frac{1}{\\beta} \\sum_m \\int \\frac{d^dp}{(2\\pi)^d} \\Gamma(\\omega_n,k;\\omega_m,p) G^{(2)}(\\omega_m,p)R(\\omega_m,p)
```
where ``1`` is the default sourced term, ``\\Gamma(k,\\omega_n;p,\\omega_m)`` is the particle-particle four-point vertex
with zero incoming momentum and frequency, and ``G^{(2)}(p,\\omega_m)`` is the product of two single-particle Green's function.
"""
function linearResponse(param, channel::Int; Euv=100 * param.EF, rtol=1e-10, atol=1e-10,
maxK=10param.kF, minK=1e-7param.kF, Nk=8, order=8,
sigmatype=:none, int_type=:rpa, α=0.8, verbose=false, Ntherm=30)
@unpack dim, rs, β, kF = param
if verbose
println("atol=$atol,rtol=$rtol")
end
# prepare Legendre decomposed effective interaction
if dim == 3
if channel == 0
@time W = LegendreInteraction.DCKernel0(param; Euv=Euv, rtol=rtol, Nk=Nk, maxK=maxK,
minK=minK, order=order, int_type=int_type, channel=channel)
else
@time W = LegendreInteraction.DCKernel_old(param; Euv=Euv, rtol=rtol, Nk=Nk, maxK=maxK,
minK=minK, order=order, int_type=int_type, channel=channel)
end
elseif dim == 2
@time W = LegendreInteraction.DCKernel_2d(param; Euv=Euv, rtol=rtol, Nk=Nk, maxK=maxK,
minK=minK, order=order, int_type=int_type, channel=channel)
else
error("No support for $dim dimension!")
end
fdlr = Lehmann.DLRGrid(Euv, β, rtol, true, :pha)
bdlr = W.dlrGrid
kgrid = W.kgrid
qgrids = W.qgrids
# prepare kernel, interpolate into τ-space with fdlr.τ
kernel_ins = W.kernel_bare
kernel_freq = W.kernel
kernel = real(Lehmann.matfreq2tau(bdlr, kernel_freq, fdlr.τ, bdlr.n; axis=3))
kF_label = locate(kgrid, kF)
qF_label = locate(qgrids[kF_label], kF)
println("static kernel at (kF, kF):$(kernel_ins[kF_label, qF_label])")
# prepare G2 as sigmatype
if sigmatype == :none
G2 = G02wrapped(Euv, rtol, kgrid, param)
elseif sigmatype == :g0w0
@unpack me, β, μ = param
wn_mesh = GreenFunc.ImFreq(β, FERMION; Euv=Euv, rtol=rtol, symmetry=:pha)
Σ, Σ_ins = SelfEnergy.G0W0(param, Euv, rtol, Nk, maxK, minK, order, int_type)
# self energy should be converted to proper frequency grid
Σ_dlr = Σ |> to_dlr
Σ_wn = dlr_to_imfreq(Σ_dlr, wn_mesh)
G2 = G2wrapped(Σ_wn, Σ_ins, param)
end
# calculate F, R by Bethe-Slapter iteration.
lamu, F_freq, R_imt, R_ins = BSeq_solver(param, G2, kernel, kernel_ins, qgrids, Euv;
rtol=rtol, α=α, atol=atol, verbose=verbose, Ntherm=Ntherm)
println("1/R₀ = $lamu")
R_freq = R_imt |> to_dlr |> to_imfreq
# println(view(R_freq, :, kF_label))
return lamu, R_freq, F_freq
end
end | ElectronGas | https://github.com/numericalEFT/ElectronGas.jl.git |
|
[
"MPL-2.0"
] | 0.2.5 | 3a6ed6c55afc461d479b8ef5114cf6733f2cef56 | code | 489 | module ElectronGas
using Parameters, GreenFunc, CompositeGrids, Lehmann, LegendrePolynomials
# Write your package code here.
include("twopoint.jl")
export TwoPoint
include("convention.jl")
export Convention
include("parameter.jl")
export Parameter
include("polarization.jl")
export Polarization
include("interaction.jl")
export Interaction
include("legendreinteraction.jl")
export LegendreInteraction
include("selfenergy.jl")
export SelfEnergy
include("BSeq.jl")
export BSeq
end
| ElectronGas | https://github.com/numericalEFT/ElectronGas.jl.git |
|
[
"MPL-2.0"
] | 0.2.5 | 3a6ed6c55afc461d479b8ef5114cf6733f2cef56 | code | 484 | """
Template of convention.
Stores conventions that will not change for all purposes.
"""
module Convention
# using StaticArrays
# const Weight = SVector{2,Float64}
# const Base.abs(w::Weight) = abs(w[1]) + abs(w[2]) # define abs(Weight)
const INL, OUTL, INR, OUTR = 1, 2, 3, 4
const EPS = 1e-16
# export all conventions
for n in names(@__MODULE__; all = true)
if Base.isidentifier(n) && n ∉ (Symbol(@__MODULE__), :eval, :include)
@eval export $n
end
end
end
| ElectronGas | https://github.com/numericalEFT/ElectronGas.jl.git |
|
[
"MPL-2.0"
] | 0.2.5 | 3a6ed6c55afc461d479b8ef5114cf6733f2cef56 | code | 16669 | module Interaction
# using Parameters, GreenFunc
# include(srcdir*"/parameter.jl")
# using .Parameter
# include(srcdir*"/convention.jl")
# using .Convention
# include(srcdir*"/polarization.jl")
# using .Polarization
using ..Parameter, ..Convention, ..Polarization
using ..Parameters, ..CompositeGrids, ..GreenFunc
export RPA, KO, RPAwrapped, KOwrapped, coulomb, coulomb_2d, landauParameterMoroni
function inf_sum(q, n)
# Calculate a series sum for Takada anzats
# See Takada(doi:10.1103/PhysRevB.47.5202)(Eq.2.16).
a = q * q
sum = 1.0
i = 0
j = 1.0
k = 2.0
for i in 1:n
sum = sum + a / j / k
a = a * q * q
j = j * (i + 1.0)
k = k * (i + 2.0)
end
return 1.0 / sum / sum
end
"""
function coulomb(q,param)
Bare interaction in momentum space. Coulomb interaction if Λs=0, Yukawa otherwise.
#Arguments:
- q: momentum
- param: other system parameters
"""
function coulomb(q, param)
@unpack me, kF, rs, e0s, e0a, β, Λs, Λa, ϵ0, gs, ga = param
if gs ≈ 0.0
Vs = 0.0
else
if (q^2 + Λs) ≈ 0.0
Vs = Inf
else
Vs = e0s^2 / ϵ0 / (q^2 + Λs) * gs
end
end
if ga ≈ 0.0
Va = 0.0
else
if (q^2 + Λa) ≈ 0.0
Va = Inf
else
Va = e0a^2 / ϵ0 / (q^2 + Λa) * ga
end
end
return Vs, Va
end
"""
function coulomb_2d(q,param)
Bare interaction in 2D momentum space. Coulomb interaction if Λs=0, Yukawa otherwise.
#Arguments:
- q: momentum
- param: other system parameters
"""
function coulomb_2d(q, param)
@unpack me, kF, rs, e0s, e0a, β, Λs, Λa, ϵ0, gs, ga = param
if gs ≈ 0.0
Vs = 0.0
else
if (q^2 + Λs) ≈ 0.0
Vs = Inf
else
Vs = e0s^2 / 2ϵ0 / √(q^2 + Λs) * gs
end
end
if ga ≈ 0.0
Va = 0.0
else
if (q^2 + Λa) ≈ 0.0
Va = Inf
else
# Va = e0a^2 / 2ϵ0 / √(q^2 + Λa)
Va = e0a^2 / ϵ0 / (q^2 + Λa) * ga
end
end
return Vs, Va
end
"""
function coulombinv(q,param)
Inverse of bare interaction in 3D momentum space. Coulomb interaction if Λs=0, Yukawa otherwise.
#Arguments:
- q: momentum
- param: other system parameters
"""
function coulombinv(q, param)
@unpack me, kF, rs, e0s, e0a, β, Λs, Λa, ϵ0, gs, ga = param
if gs ≈ 0.0
Vinvs = Inf
else
Vinvs = ϵ0 * (q^2 + Λs) / e0s^2 / gs
end
if ga ≈ 0.0
Vinva = Inf
else
Vinva = ϵ0 * (q^2 + Λa) / e0a^2 / ga
end
return Vinvs, Vinva
end
"""
function coulombinv_2d(q,param)
Inverse of bare interaction in 2D momentum space. Coulomb interaction if Λs=0, Yukawa otherwise.
#Arguments:
- q: momentum
- param: other system parameters
"""
function coulombinv_2d(q, param)
@unpack me, kF, rs, e0s, e0a, β, Λs, Λa, ϵ0, gs, ga = param
if gs ≈ 0.0
Vinvs = Inf
else
Vinvs = 2ϵ0 * √(q^2 + Λs) / e0s^2 / gs
end
if ga ≈ 0.0
Vinva = Inf
else
Vinva = ϵ0 * (q^2 + Λa) / e0a^2 / ga
# Vinva = 2ϵ0 * √(q^2 + Λa) / e0a^2
end
return Vinvs, Vinva
end
"""
function bubbledyson(Vinv::Float64, F::Float64, Π::Float64)
Return (V - F)^2 Π / (1 - (V - F)Π), which is the dynamic part of effective interaction.
#Arguments:
- Vinv: inverse bare interaction
- F: Landau parameter
- Π: polarization
"""
function bubbledyson(Vinv::Float64, F::Float64, Π::Float64)
K = 0
if Vinv ≈ Inf
if F ≈ 0
K = 0
else
K = Π / (1.0 / (-F) - (Π)) * (-F)
end
else
K = Π / (Vinv / (1 - F * Vinv) - (Π)) * (1 - F * Vinv) / Vinv
end
@assert !isnan(K) "nan at Vinv=$Vinv, F=$F, Π=$Π"
return K
end
"""
function bubbledysonreg(Vinv::Float64, F::Float64, Π::Float64)
Return (V - F) Π / (1 - (V - F)Π), which is the dynamic part of effective interaction divided by (V - F).
#Arguments:
- Vinv: inverse bare interaction
- F: Landau parameter
- Π: polarization
"""
function bubbledysonreg(Vinv::Float64, F::Float64, Π::Float64)
K = 0
if Vinv ≈ Inf
if F ≈ 0
K = 0
else
K = Π / (1.0 / (-F) - (Π))
end
else
K = Π / (Vinv / (1 - F * Vinv) - (Π))
end
@assert !isnan(K) "nan at Vinv=$Vinv, F=$F, Π=$Π"
return K
end
function bubblecorrection(q::Float64, n::Int, param;
pifunc=Polarization0_ZeroTemp, landaufunc=landauParameterTakada, Vinv_Bare=coulombinv, regular=false, massratio=1.0, kwargs...)
Fs::Float64, Fa::Float64 = landaufunc(q, n, param; massratio=massratio, kwargs...)
Ks::Float64, Ka::Float64 = 0.0, 0.0
Vinvs::Float64, Vinva::Float64 = Vinv_Bare(q, param)
@unpack spin = param
if abs(q) < EPS
q = EPS
end
Πs::Float64 = spin * pifunc(q, n, param; kwargs...) * massratio
Πa::Float64 = spin * pifunc(q, n, param; kwargs...) * massratio
if regular
Ks = bubbledysonreg(Vinvs, Fs, Πs)
Ka = bubbledysonreg(Vinva, Fa, Πa)
else
Ks = bubbledyson(Vinvs, Fs, Πs)
Ka = bubbledyson(Vinva, Fa, Πa)
end
return Ks, Ka
end
"""
function RPA(q, n, param; pifunc = Polarization0_ZeroTemp, Vinv_Bare = coulombinv, regular = false)
Dynamic part of RPA interaction.
#Arguments:
- q: momentum
- n: matsubara frequency given in integer s.t. ωn=2πTn
- param: other system parameters
- pifunc: caller to the polarization function
- Vinv_Bare: caller to the bare Coulomb interaction
- regular: regularized RPA or not
# Return:
If set to be regularized, it returns the dynamic part of effective interaction divided by ``v_q - f_q``
```math
\\frac{v_q^{\\pm} Π_0} {1 - v_q^{\\pm} Π_0}.
```
otherwise, return
```math
\\frac{(v_q^{\\pm})^2 Π_0} {1 - v_q^{\\pm} Π_0}.
```
"""
function RPA(q, n, param; pifunc=Polarization0_ZeroTemp, Vinv_Bare=coulombinv, regular=false, kwargs...)
return bubblecorrection(q, n, param; pifunc=pifunc, landaufunc=landauParameter0, Vinv_Bare=Vinv_Bare, regular=regular, kwargs...)
end
"""
function RPAwrapped(Euv, rtol, sgrid::SGT, param;
pifunc=Polarization0_ZeroTemp, landaufunc=landauParameterTakada, Vinv_Bare=coulombinv, kwargs...) where {SGT}
Return dynamic part and instant part of RPA-interaction Green's function separately. Each part is a MeshArray with inner state
(1: spin symmetric part, 2: asymmetric part), and ImFreq and q-grid mesh.
#Arguments:
- Euv: Euv of DLRGrid
- rtol: rtol of DLRGrid
- sgrid: momentum grid
- param: other system parameters
- pifunc: caller to the polarization function
- landaufunc: caller to the Landau parameter (exchange-correlation kernel)
- Vinv_Bare: caller to the bare Coulomb interaction
"""
function RPAwrapped(Euv, rtol, sgrid::SGT, param;
pifunc=Polarization0_ZeroTemp, landaufunc=landauParameterTakada, Vinv_Bare=coulombinv, kwargs...) where {SGT}
# TODO: innerstate should be in the outermost layer of the loop. Hence, the functions such as RPA and Vinv_Bare should be fixed with inner state as argument.
@unpack β = param
wn_mesh = GreenFunc.ImFreq(β, BOSON; Euv=Euv, rtol=rtol, symmetry=:ph)
green_dyn = GreenFunc.MeshArray(1:2, wn_mesh, sgrid; dtype=ComplexF64)
green_ins = GreenFunc.MeshArray(1:2, [0,], sgrid; dtype=ComplexF64)
for (ki, k) in enumerate(sgrid)
for (ni, n) in enumerate(wn_mesh.grid)
green_dyn[1, ni, ki], green_dyn[2, ni, ki] = RPA(k, n, param; pifunc=pifunc, Vinv_Bare=Vinv_Bare, regular=true, kwargs...)
end
green_ins[1, 1, ki], green_ins[2, 1, ki] = Vinv_Bare(k, param)
end
return green_dyn, green_ins
end
"""
function landauParameterTakada(q, n, param)
G factor with Takada's anzats. See Takada(doi:10.1103/PhysRevB.47.5202)(Eq.2.13-2.16).
Now Landau parameter F. F(+-)=G(+-)*V
#Arguments:
- q: momentum
- n: matsubara frequency given in integer s.t. ωn=2πTn
- param: other system parameters
"""
function landauParameterTakada(q, n, param; kwargs...)
@unpack me, kF, rs, e0s, e0, e0a, β, Λs, Λa, ϵ0 = param
if e0 ≈ 0.0
return 0.0, 0.0
end
r_s_dl = sqrt(4 * 0.521 * rs / π)
C1 = 1 - r_s_dl * r_s_dl / 4.0 * (1 + 0.07671 * r_s_dl * r_s_dl * ((1 + 12.05 * r_s_dl) * (1 + 12.05 * r_s_dl) + 4.0 * 4.254 / 3.0 * r_s_dl * r_s_dl * (1 + 7.0 / 8.0 * 12.05 * r_s_dl) + 1.5 * 1.363 * r_s_dl * r_s_dl * r_s_dl * (1 + 8.0 / 9.0 * 12.05 * r_s_dl)) / (1 + 12.05 * r_s_dl + 4.254 * r_s_dl * r_s_dl + 1.363 * r_s_dl * r_s_dl * r_s_dl) / (1 + 12.05 * r_s_dl + 4.254 * r_s_dl * r_s_dl + 1.363 * r_s_dl * r_s_dl * r_s_dl))
C2 = 1 - r_s_dl * r_s_dl / 4.0 * (1 + r_s_dl * r_s_dl / 8.0 * (log(r_s_dl * r_s_dl / (r_s_dl * r_s_dl + 0.990)) - (1.122 + 1.222 * r_s_dl * r_s_dl) / (1 + 0.533 * r_s_dl * r_s_dl + 0.184 * r_s_dl * r_s_dl * r_s_dl * r_s_dl)))
D = inf_sum(r_s_dl, 100)
#A1 = (2.0 - C1 - C2) / 4.0 / e0^2 * π
A1 = (2.0 - C1 - C2) * (kF * ϵ0 * π^2) / (2 * e0^2 * me)
A2 = (C2 - C1) * (kF * ϵ0 * π^2) / (2 * e0^2 * me)
B1 = 6 * A1 / (D + 1.0)
B2 = 2 * A2 / (1.0 - D)
F_s = A1 * e0^2 / ϵ0 / (kF^2 + B1 * q^2) + A2 * e0^2 / ϵ0 / (kF^2 + B2 * q^2)
F_a = A1 * e0^2 / ϵ0 / (kF^2 + B1 * q^2) - A2 * e0^2 / ϵ0 / (kF^2 + B2 * q^2)
return F_s, F_a
end
"""
function landauParameterMoroni(q, n, param)
Analytic expression of G+ factor from diffusion Monte Carlo.(doi:10.1103/PhysRevB.57.14569).
Return Landau parameter F+=(G+)*V
#Arguments:
- q: momentum
- n: matsubara frequency given in integer s.t. ωn=2πTn
- param: other system parameters
"""
function landauParameterMoroni(q, n, param; kwargs...)
@unpack me, kF, rs, e0s, e0, e0a, β, ϵ0, a0 = param
n0 = (kF)^3 / 3 / π^2
if e0 ≈ 0.0
return 0.0, 0.0
end
xc = -0.10498
bc = 3.72744
cc = 12.9352
Ac = 0.0621814
function E_corr(rs_dum)
result = 0
x = sqrt(rs_dum)
X = (x^2 + bc * x + cc)
X0 = (xc^2 + bc * xc + cc)
Q = sqrt(4 * cc - bc^2)
#print("x^2/X=",x^2/X,"\n")
#print("x-xc^2/X=",(x-xc)^2/X, "\n")
result = Ac * (log(x^2 / X) + 2 * bc / Q * atan(Q / (2 * x + bc)) - bc * xc / X0 * (log((x - xc)^2 / X) + 2 * (bc + 2 * xc) / Q * atan(Q / (2 * x + bc))))
# This expression is in Rydberg unit
result = result / (2 * me * a0^2)
return result
end
# step for numerical derivatives
step = 0.0000001
x = sqrt(rs)
# Calculate parameter A
rs1 = (n0 / (n0 + step))^(1.0 / 3.0) * rs
rs_1 = (n0 / (n0 - step))^(1.0 / 3.0) * rs
deriv_1 = (E_corr(rs1) - E_corr(rs)) / step
deriv_2 = (E_corr(rs1) + E_corr(rs_1) - 2 * E_corr(rs)) / step^2
A = 0.25 - kF^2 / 4 / π / e0^2 * (2 * deriv_1 + n0 * deriv_2)
#println("A=$(A)")
# Calculate parameter B
a1 = 2.15
a2 = 0.435
b1 = 1.57
b2 = 0.409
B = (1 + a1 * x + a2 * x^3) / (3 + b1 * x + b2 * x^3)
#println("B=$(B)")
# Calculate parameter C
step = 0.0000001
deriv_1 = (E_corr(rs + step) - E_corr(rs)) / step
#deriv_1 = E_corr_p(rs)
C = -π / 2 / kF / e0^2 * (E_corr(rs) + rs * deriv_1)
#println("C=$(C)")
D = B / (A - C)
α = 1.5 / rs^0.25 * A / B / D
β_0 = 1.2 / B / D
Q = q / kF
G_s = C * Q^2 + B * Q^2 / (D + Q^2) + α * Q^4 * exp(-β_0 * Q^2)
F_s = 4 * π * e0^2 * G_s / q^2
return F_s
end
@inline function landauParameter0(q, n, param; kwargs...)
return 0.0, 0.0
end
@inline function landauParameterConst(q, n, param; Fs=0.0, Fa=0.0, massratio=1.0, kwargs...)
return Fs / param.NF / massratio, Fa / param.NF / massratio
end
@inline function counterterm(q, n, param; landaufunc, kwargs...)
fs, fa = landaufunc(q, n, param; kwargs...)
return fs, fa
end
@inline function countertermConst(q, n, param; landaufunc, Cs=0.0, Ca=0.0, massratio=1.0, kwargs...)
return Cs / param.NF / massratio, Ca / param.NF / massratio
end
"""
function KO(q, n, param; pifunc = Polarization0_ZeroTemp, landaufunc = landauParameterTakada, Vinv_Bare = coulombinv, regular = false, kwargs...)
Dynamic part of KO interaction. Returns the spin symmetric part and asymmetric part separately.
#Arguments:
- q: momentum
- n: matsubara frequency given in integer s.t. ωn=2πTn
- param: other system parameters
- pifunc: caller to the polarization function
- landaufunc: caller to the Landau parameter (exchange-correlation kernel)
- Vinv_Bare: caller to the bare Coulomb interaction
- regular: regularized RPA or not
# Return:
If set to be regularized, it returns the dynamic part of effective interaction divided by ``v_q - f_q``
```math
\\frac{(v_q^{\\pm} - f_q^{\\pm}) Π_0} {1 - (v_q^{\\pm} - f_q^{\\pm}) Π_0}.
```
otherwise, return
```math
\\frac{(v_q^{\\pm} - f_q^{\\pm})^2 Π_0} {1 - (v_q^{\\pm} - f_q^{\\pm}) Π_0}.
```
"""
function KO(q, n, param; pifunc=Polarization0_ZeroTemp, landaufunc=landauParameterTakada, Vinv_Bare=coulombinv, regular=false, kwargs...)
return bubblecorrection(q, n, param; pifunc=pifunc, landaufunc=landaufunc, Vinv_Bare=Vinv_Bare, regular=regular, kwargs...)
end
"""
function KOwrapped(Euv, rtol, sgrid::SGT, param; int_type=:ko,
pifunc=Polarization0_ZeroTemp, landaufunc=landauParameterTakada, Vinv_Bare=coulombinv, kwargs...) where {SGT}
Return dynamic part and instant part of KO-interaction Green's function separately. Each part is a MeshArray with inner state
(1: spin symmetric part, 2: asymmetric part), and ImFreq and q-grid mesh.
#Arguments:
- Euv: Euv of DLRGrid
- rtol: rtol of DLRGrid
- sgrid: momentum grid
- param: other system parameters
- pifunc: caller to the polarization function
- landaufunc: caller to the Landau parameter (exchange-correlation kernel)
- Vinv_Bare: caller to the bare Coulomb interaction
"""
function KOwrapped(Euv, rtol, sgrid::SGT, param; int_type=:ko,
pifunc=Polarization0_ZeroTemp, landaufunc=landauParameterTakada, Vinv_Bare=coulombinv, kwargs...) where {SGT}
# TODO: innerstate should be in the outermost layer of the loop. Hence, the functions such as KO and Vinv_Bare should be fixed with inner state as argument.
@unpack β = param
wn_mesh = GreenFunc.ImFreq(β, BOSON; Euv=Euv, rtol=rtol, symmetry=:ph)
green_dyn = GreenFunc.MeshArray(1:2, wn_mesh, sgrid; dtype=ComplexF64)
green_ins = GreenFunc.MeshArray(1:2, [0,], sgrid; dtype=ComplexF64)
for (ki, k) in enumerate(sgrid)
for (ni, n) in enumerate(wn_mesh.grid)
green_dyn[1, ni, ki], green_dyn[2, ni, ki] = KO(k, n, param; pifunc=pifunc, landaufunc=landaufunc, Vinv_Bare=Vinv_Bare, kwargs...)
end
green_ins[1, 1, ki], green_ins[2, 1, ki] = Vinv_Bare(k, param)
end
return green_dyn, green_ins
end
"""
function KO_total(q, n, param; pifunc = Polarization0_ZeroTemp, landaufunc = landauParameterTakada, Vinv_Bare = coulombinv, counter_term = counterterm, kwargs...)
Dynamic part of KO interaction. Returns the spin symmetric part and asymmetric part separately.
#Arguments:
- q: momentum
- n: matsubara frequency given in integer s.t. ωn=2πTn
- param: other system parameters
- pifunc: caller to the polarization function
- landaufunc: caller to the Landau parameter (exchange-correlation kernel)
- Vinv_Bare: caller to the bare Coulomb interaction
- counter_term: counterterm, by default, it is the landaufunc
# Return:
Return the total effective interaction
```math
W^{\\pm} = \\frac{(v_q^{\\pm} - f_q^{\\pm}) Π_0} {1 - (v_q^{\\pm} - f_q^{\\pm}) Π_0} + C_q^{\\pm}.
```
which reduces to the convential KO interaction if ``C_q^{\\pm} \\equiv f_q^{\\pm}``
"""
function KO_total(q, n, param; pifunc=Polarization0_ZeroTemp, landaufunc=landauParameterTakada, Vinv_Bare=coulombinv, counter_term=counterterm, kwargs...)
@unpack spin = param
if abs(q) < EPS
q = EPS
end
Π::Float64 = spin * pifunc(q, n, param; kwargs...)
fs, fa = landaufunc(q, n, param; kwargs...)
Cs, Ca = counter_term(q, n, param; landaufunc=landaufunc, kwargs...)
Vinvs, Vinva = Vinv_Bare(q, param)
if param.gs ≈ 0.0
Ka = (-fs) / (1 - (-fs) * Π) + Cs
else
Ks = 1.0 / (Vinvs / (1 - fs * Vinvs) - Π) + Cs
end
if param.ga ≈ 0.0
Ka = (-fa) / (1 - (-fa) * Π) + Ca
else
Ka = 1.0 / (Vinva / (1 - fa * Vinva) - Π) + Ca
end
return Ks, Ka
end
function RPA_total(q, n, param; pifunc=Polarization0_ZeroTemp, Vinv_Bare=coulombinv, kwargs...)
@unpack spin = param
if abs(q) < EPS
q = EPS
end
Π::Float64 = spin * pifunc(q, n, param)
Vinvs, Vinva = Vinv_Bare(q, param)
Ws = 1.0 / (Vinvs - (Π))
Wa = 1.0 / (Vinva - (Π))
return Ws, Wa
end
end
| ElectronGas | https://github.com/numericalEFT/ElectronGas.jl.git |
|
[
"MPL-2.0"
] | 0.2.5 | 3a6ed6c55afc461d479b8ef5114cf6733f2cef56 | code | 15480 | """
Provide Legendre decomposed interaction that could be useful for calculating self-energy and solving gap-function
equation of superconductivity problems.
"""
module LegendreInteraction
# using Parameters, GreenFunc, Lehmann, LegendrePolynomials, CompositeGrids
# include(srcdir*"/parameter.jl")
# using .Parameter
# include(srcdir*"/convention.jl")
# using .Convention
# include(srcdir*"/polarization.jl")
# using .Polarization
# include(srcdir*"/interaction.jl")
# using .Interaction
using Base.Threads
using ..Parameter, ..Convention, ..Polarization, ..Interaction
using ..Parameters, ..GreenFunc, ..Lehmann, ..LegendrePolynomials, ..CompositeGrids
export DCKernel
@inline function spin_factor(spin_state)
if spin_state == :singlet
factor = 1.0
elseif spin_state == :triplet
factor = -3.0
elseif spin_state == :sigma
factor = 3.0
else
throw(UndefVarError(spin_state))
end
return factor
end
function interaction_dynamic(q, n, param, int_type, spin_state; kwargs...)
# a wrapper for dynamic part of effective interaction
# for rpa simply return rpa
# for ko return ks+ka for singlet, ks-3ka for triplet
@unpack dim = param
if dim != 2 && dim != 3
throw(UndefVarError(dim))
end
if int_type == :rpa
if dim == 3
# ks, ka = RPA(q, n, param)
ks, ka = RPA(q, n, param; regular=true, kwargs...) .* Interaction.coulomb(q, param)
elseif dim == 2
# ks, ka = RPA(q, n, param; Vinv_Bare=Interaction.coulombinv_2d)
ks, ka = RPA(q, n, param; Vinv_Bare=Interaction.coulombinv_2d, regular=true, kwargs...) .* Interaction.coulomb_2d(q, param)
end
elseif int_type == :ko
if dim == 3
# ks, ka = KO(q, n, param)
ks, ka = KO(q, n, param; regular=true, kwargs...) .* (Interaction.coulomb(q, param) .- Interaction.landauParameterTakada(q, n, param))
elseif dim == 2
ks, ka = KO(q, n, param; Vinv_Bare=Interaction.coulombinv_2d, kwargs...)
end
elseif int_type == :ko_const
if dim == 3
# ks, ka = KO(q, n, param)
ks, ka = KO(q, n, param; regular=true, landaufunc=Interaction.landauParameterConst, kwargs...) .* (Interaction.coulomb(q, param) .- Interaction.landauParameterConst(q, n, param))
elseif dim == 2
error("not implemented!")
end
else
throw(UndefVarError(int_type))
end
return ks + spin_factor(spin_state) * ka
end
@inline function interaction_instant(q, param, spin_state; kwargs...)
@unpack dim = param
if dim != 2 && dim != 3
throw(UndefVarError(dim))
end
if dim == 3
Vs, Va = coulomb(q, param)
elseif dim == 2
Vs, Va = coulomb_2d(q, param)
end
return (Vs + spin_factor(spin_state) * Va)
end
@inline function kernel_integrand(k, p, q, n, channel, param, int_type, spin_state; kwargs...)
legendre_x = (k^2 + p^2 - q^2) / 2 / k / p
if (abs(abs(legendre_x) - 1) < 1e-12)
legendre_x = sign(legendre_x) * 1
end
# convention changed, now interaction_dynamic already included the V_Bare
return q * Pl(legendre_x, channel) * interaction_dynamic(q, n, param, int_type, spin_state; kwargs...)
end
@inline function kernel0_integrand(k, p, q, channel, param, spin_state; kwargs...)
legendre_x = (k^2 + p^2 - q^2) / 2 / k / p
if (abs(abs(legendre_x) - 1) < 1e-12)
legendre_x = sign(legendre_x) * 1
end
@assert -1 <= legendre_x <= 1 "k=$k,p=$p,q=$q"
return q * Pl(legendre_x, channel) * interaction_instant(q, param, spin_state; kwargs...)
end
@inline function kernel_integrand2d(k, p, θ, n, channel, param, int_type, spin_state; kwargs...)
x = cos(θ)
q2 = (k - p)^2 + 2k * p * (1 - x)
if x == 1 || q2 <= 0
q2 = (k - p)^2 + k * p * θ^2
end
return cos(channel * θ) * interaction_dynamic(√q2, n, param, int_type, spin_state; kwargs...)
end
@inline function kernel0_integrand2d(k, p, θ, channel, param, spin_state; kwargs...)
x = cos(θ)
q2 = (k - p)^2 + 2k * p * (1 - x)
if x == 1 || q2 <= 0
q2 = (k - p)^2 + k * p * θ^2
# println("$k, $p, $q2, $((k - p)^2), $x, $θ")
end
return cos(channel * θ) * interaction_instant(√q2, param, spin_state; kwargs...)
end
function helper_function(y::Float64, n::Int, W, param; Nk::Int=40, minK::Float64=1e-12 * param.kF, order::Int=6)
# return the helper function
@unpack kF, β = param
# generate a new grid for every calculation
kgrid = CompositeGrid.LogDensedGrid(:gauss, [0.0, y], [0.0, min(y, 2kF)], Nk, minK, order)
integrand = zeros(Float64, kgrid.size)
for (ki, k) in enumerate(kgrid)
integrand[ki] = k^n * W(k)
end
H = Interp.integrate1D(integrand, kgrid)
return H
end
function helper_function_grid(ygrid, intgrid, n::Int, W, param)
# return the helper function
@unpack kF, β, e0, ϵ0 = param
# generate a new grid for every calculation
#kgrid = CompositeGrid.LogDensedGrid(:uniform, [0.0, grid[end]], [0.0,min(grid[end],2kF)], Nk, minK, order)
kgrid = intgrid
grid = ygrid
helper = zeros(Float64, length(grid))
integrand = zeros(Float64, kgrid.size)
for (ki, k) in enumerate(kgrid)
# integrand[ki] = k^(n-2) * W(k) * e0^2 / ϵ0
integrand[ki] = k^(n) * W(k)
end
for i in 1:length(grid)
if i == 1
x1, x2, hprev = 0.0, grid[1], 0.0
else
x1, x2, hprev = grid[i-1], grid[i], helper[i-1]
end
helper[i] = Interp.integrate1D(integrand, kgrid, [x1, x2]) + hprev
# helper[i] = Interp.integrate1D(integrand, kgrid, [EPS,grid[i]])
# @assert isfinite(helper[i]) "fail at $(grid[i])"
end
return helper
end
struct DCKernel{C}
int_type::Symbol
spin_state::Symbol
channel::Int
param::Parameter.Para
kgrid::C
qgrids::Vector{CompositeGrid.Composite}
dlrGrid::DLRGrid
kernel_bare::Array{Float64,2}
kernel::Array{Float64,3}
function DCKernel(int_type, spin_state, channel, param, kgrid::C, qgrids, dlrGrid, kernel_bare, kernel) where {C}
return new{C}(int_type, spin_state, channel, param, kgrid, qgrids, dlrGrid, kernel_bare, kernel)
end
end
function DCKernel_2d(param, Euv, rtol, Nk, maxK, minK, order, int_type, channel, spin_state=:auto;
kgrid=CompositeGrid.LogDensedGrid(:cheb, [0.0, maxK], [0.0, param.kF], Nk, minK, order),
kwargs...)
@unpack kF, β = param
if spin_state == :sigma
# for self-energy, always use ℓ=0
channel = 0
elseif spin_state == :auto
# automatically assign spin_state, triplet for even, singlet for odd channel
spin_state = (channel % 2 == 0) ? (:triplet) : (:singlet)
end
bdlr = DLRGrid(Euv, β, rtol, false, :ph)
qgrids = [CompositeGrid.LogDensedGrid(:gauss, [0.0, maxK], [k, kF], Nk, minK, order) for k in kgrid.grid]
qgridmax = maximum([qg.size for qg in qgrids])
# θgrid = SimpleGrid.GaussLegendre{Float64}([0, 2π], 100)
# θgrid = CompositeGrid.LogDensedGrid(:gauss, [0.0, π], [0.0, π], Nk, 1e-7, order)
θgrid = CompositeGrid.LogDensedGrid(:gauss, [0.0, π], [0.0, π], Nk, 1e-7 * kF, order)
# println(θgrid.size)
# println(θgrid.grid)
kernel_bare = zeros(Float64, (length(kgrid.grid), (qgridmax)))
kernel = zeros(Float64, (length(kgrid.grid), (qgridmax), length(bdlr.n)))
data0 = zeros(Float64, length(θgrid.grid))
# data = zeros(Float64, (length(θgrid.grid), length(bdlr.n)))
for (ki, k) in enumerate(kgrid.grid)
for (pi, p) in enumerate(qgrids[ki].grid)
for (θi, θ) in enumerate(θgrid.grid)
data0[θi] = kernel0_integrand2d(k, p, θ, channel, param, spin_state; kwargs...)
end
kernel_bare[ki, pi] = Interp.integrate1D(data0, θgrid) * 2
# println("$ki,$pi, $(kernel_bare[ki,pi])")
@assert isfinite(kernel_bare[ki, pi]) "fail kernel_bare at $ki,$pi, ($k, $p) with $(kernel_bare[ki,pi]) \n $data"
# @threads for (ni, n) in collect(enumerate(bdlr.n))
for (ni, n) in enumerate(bdlr.n)
for (θi, θ) in enumerate(θgrid.grid)
# data[θi, ni] = kernel_integrand2d(k, p, θ, n, channel, param, int_type, spin_state)
data0[θi] = kernel_integrand2d(k, p, θ, n, channel, param, int_type, spin_state; kwargs...)
end
# data[:, ni] = [kernel_integrand2d(k, p, θ, n, channel, param, int_type, spin_state) for θ in θgrid.grid]
kernel[ki, pi, ni] = Interp.integrate1D(data0, θgrid) * 2
# kernel[ki, pi, ni] = Interp.integrate1D(data[:, ni], θgrid) * 2
# ni == 1 && println("$ki,$pi, $n $(kernel[ki, pi, ni])")
@assert isfinite(kernel[ki, pi, ni]) "fail kernel at $ki,$pi,$ni, with $(kernel[ki,pi,ni])"
end
end
end
return DCKernel(int_type, spin_state, channel, param, kgrid, qgrids, bdlr, kernel_bare, kernel)
end
function DCKernel_2d(param; Euv=param.EF * 100, rtol=1e-10, Nk=8, maxK=param.kF * 10, minK=param.kF * 1e-7, order=4, int_type=:rpa, channel=0, spin_state=:auto, kwargs...)
return DCKernel_2d(param, Euv, rtol, Nk, maxK, minK, order, int_type, channel, spin_state; kwargs...)
end
function DCKernel_old(param, Euv, rtol, Nk, maxK, minK, order, int_type, channel, spin_state=:auto;
kgrid=CompositeGrid.LogDensedGrid(:cheb, [0.0, maxK], [0.0, param.kF], Nk, minK, order),
kwargs...)
@unpack kF, β = param
if spin_state == :sigma
# for self-energy, always use ℓ=0
channel = 0
elseif spin_state == :auto
# automatically assign spin_state, triplet for even, singlet for odd channel
spin_state = (channel % 2 == 0) ? (:triplet) : (:singlet)
end
bdlr = DLRGrid(Euv, β, rtol, false, :ph)
qgrids = [CompositeGrid.LogDensedGrid(:gauss, [0.0, maxK], [k, kF], Nk, minK, order) for k in kgrid.grid]
qgridmax = maximum([qg.size for qg in qgrids])
#println(qgridmax)
kernel_bare = zeros(Float64, (length(kgrid.grid), (qgridmax)))
kernel = zeros(Float64, (length(kgrid.grid), (qgridmax), length(bdlr.n)))
int_grid_base = CompositeGrid.LogDensedGrid(:uniform, [0.0, 2.1 * maxK], [0.0, 2kF], 2Nk, 0.01minK, 2)
for (ki, k) in enumerate(kgrid.grid)
for (pi, p) in enumerate(qgrids[ki].grid)
if abs(k - p) > EPS
kmp = abs(k - p) < EPS ? EPS : abs(k - p)
kpp = k + p
im, ip = floor(int_grid_base, kmp), floor(int_grid_base, kpp)
int_panel = Float64[]
push!(int_panel, kmp)
if im < ip
for i in im+1:ip
push!(int_panel, int_grid_base[i])
end
end
push!(int_panel, kpp)
int_panel = SimpleGrid.Arbitrary{Float64}(int_panel)
SubGridType = SimpleGrid.GaussLegendre{Float64}
subgrids = subgrids = Vector{SubGridType}([])
for i in 1:int_panel.size-1
_bound = [int_panel[i], int_panel[i+1]]
push!(subgrids, SubGridType(_bound, order))
end
int_grid = CompositeGrid.Composite{Float64,typeof(int_panel),SubGridType}(int_panel, subgrids)
data = [kernel0_integrand(k, p, q, channel, param, spin_state; kwargs...) for q in int_grid.grid]
kernel_bare[ki, pi] = Interp.integrate1D(data, int_grid)
for (ni, n) in enumerate(bdlr.n)
data = [kernel_integrand(k, p, q, n, channel, param, int_type, spin_state; kwargs...) for q in int_grid.grid]
kernel[ki, pi, ni] = Interp.integrate1D(data, int_grid)
@assert isfinite(kernel[ki, pi, ni]) "fail kernel at $ki,$pi,$ni, with $(kernel[ki,pi,ni])"
end
else
kernel_bare[ki, pi] = 0
for (ni, n) in enumerate(bdlr.n)
kernel[ki, pi, ni] = 0
end
end
end
end
return DCKernel(int_type, spin_state, channel, param, kgrid, qgrids, bdlr, kernel_bare, kernel)
end
function DCKernel_old(param; Euv=param.EF * 100, rtol=1e-10, Nk=8, maxK=param.kF * 10, minK=param.kF * 1e-7, order=4, int_type=:rpa, channel=0, spin_state=:auto)
return DCKernel_old(param, Euv, rtol, Nk, maxK, minK, order, int_type, channel, spin_state)
end
function DCKernel0(param; Euv=param.EF * 100, rtol=1e-10, Nk=8, maxK=param.kF * 10, minK=param.kF * 1e-7, order=4, int_type=:rpa, spin_state=:auto, kwargs...)
return DCKernel0(param, Euv, rtol, Nk, maxK, minK, order, int_type, spin_state; kwargs...)
end
function DCKernel0(param, Euv, rtol, Nk, maxK, minK, order, int_type, spin_state=:auto;
kgrid=CompositeGrid.LogDensedGrid(:cheb, [0.0, maxK], [0.0, param.kF], Nk, minK, order),
kwargs...)
# use helper function
@unpack kF, β = param
channel = 0
if spin_state == :sigma
# for self-energy, always use ℓ=0
channel = 0
elseif spin_state == :auto
# automatically assign spin_state, triplet for even, singlet for odd channel
spin_state = (channel % 2 == 0) ? (:triplet) : (:singlet)
end
bdlr = DLRGrid(Euv, β, rtol, false, :ph)
qgrids = [CompositeGrid.LogDensedGrid(:gauss, [0.0, maxK], [k, kF], Nk, minK, order) for k in kgrid.grid]
qgridmax = maximum([qg.size for qg in qgrids])
#println(qgridmax)
kernel_bare = zeros(Float64, (length(kgrid.grid), (qgridmax)))
kernel = zeros(Float64, (length(kgrid.grid), (qgridmax), length(bdlr.n)))
helper_grid = CompositeGrid.LogDensedGrid(:cheb, [0.0, 2.1 * maxK], [0.0, 2kF], 2Nk, 0.01minK, 2order)
intgrid = CompositeGrid.LogDensedGrid(:cheb, [0.0, helper_grid[end]], [0.0, 2kF], 2Nk, 0.01minK, 2order)
# dynamic
for (ni, n) in enumerate(bdlr.n)
# helper = zeros(Float64, helper_grid.size)
# for (yi, y) in enumerate(helper_grid)
# helper[yi] = helper_function(y, 1, u->interaction_dynamic(u,n,param,int_type,spin_state),param)
# end
helper = helper_function_grid(helper_grid, intgrid, 1, u -> interaction_dynamic(u, n, param, int_type, spin_state; kwargs...), param)
for (ki, k) in enumerate(kgrid.grid)
for (pi, p) in enumerate(qgrids[ki].grid)
Hp, Hm = Interp.interp1D(helper, helper_grid, k + p), Interp.interp1D(helper, helper_grid, abs(k - p))
kernel[ki, pi, ni] = (Hp - Hm)
end
end
end
# instant
# helper = zeros(Float64, helper_grid.size)
# for (yi, y) in enumerate(helper_grid)
# helper[yi] = helper_function(y, 1, u->interaction_instant(u,param,spin_state),param)
# end
helper = helper_function_grid(helper_grid, intgrid, 1, u -> interaction_instant(u, param, spin_state; kwargs...), param)
# helper = helper_function_grid(helper_grid, intgrid, 1, u -> 1.0, param)
for (ki, k) in enumerate(kgrid.grid)
for (pi, p) in enumerate(qgrids[ki].grid)
Hp, Hm = Interp.interp1D(helper, helper_grid, k + p), Interp.interp1D(helper, helper_grid, abs(k - p))
kernel_bare[ki, pi] = (Hp - Hm)
end
end
return DCKernel(int_type, spin_state, channel, param, kgrid, qgrids, bdlr, kernel_bare, kernel)
end
end
| ElectronGas | https://github.com/numericalEFT/ElectronGas.jl.git |
|
[
"MPL-2.0"
] | 0.2.5 | 3a6ed6c55afc461d479b8ef5114cf6733f2cef56 | code | 6943 | """
Template of parameter. A submodule of ElectronGas.
Use the convention where ħ=1, k_B=1.
Only stores parameters that might change for purposes.
"""
module Parameter
# using Parameters
using ..Parameters
# using Roots, SpecialFunctions
# using Polylogarithms
@with_kw struct Para
WID::Int = 1
dim::Int = 3 # dimension (D=2 or 3, doesn't work for other D!!!)
spin::Int = 2 # number of spins
# prime parameters
ϵ0::Float64 = 1 / (4π)
e0::Float64 = sqrt(2) # electron charge
me::Float64 = 0.5 # electron mass
EF::Float64 = 1.0 #kF^2 / (2me)
β::Float64 = 200 # bare inverse temperature
μ::Float64 = 1.0
# artificial parameters
Λs::Float64 = 0.0 # Yukawa-type spin-symmetric interaction ~1/(q^2+Λs)
Λa::Float64 = 0.0 # Yukawa-type spin-antisymmetric interaction ~1/(q^2+Λa)
gs::Float64 = 1.0 # spin-symmetric coupling
ga::Float64 = 0.0 # spin-antisymmetric coupling
# derived parameters
beta::Float64 = β * EF
Θ::Float64 = 1.0 / β / EF
T::Float64 = 1.0 / β
n::Float64 = (dim == 3) ? (EF * 2 * me)^(3 / 2) / (6π^2) * spin : me * EF / π
Rs::Float64 = (dim == 3) ? (3 / (4π * n))^(1 / 3) : sqrt(1 / (π * n))
a0::Float64 = 4π * ϵ0 / (me * e0^2)
rs::Float64 = Rs / a0
kF::Float64 = sqrt(2 * me * EF)
espin::Float64 = e0
e0s::Float64 = e0
e0a::Float64 = espin
NF::Float64 = (dim == 3) ? spin * me * kF / 2 / π^2 : spin * me / 2 / π
ωp::Float64 = (dim == 3) ? sqrt(4π * e0^2 * n / me) : 0.0 # plasma frequency
qTF::Float64 = (dim == 3) ? sqrt(4π * e0^2 * NF) : 0.0 # inverse thomas-fermi screening length
# for spin-2 and 3d case, ω_p=v_F*q_TF/sqrt(3)
end
derived_para_names = (:beta, :Θ, :T, :n, :Rs, :a0, :rs, :kF, :espin, :e0s, :e0a, :NF, :ωp, :qTF)
"""
function derive(param::Para; kws...)
Reconstruct a new Para with given key word arguments.
This is needed because the default reconstruct generated by Parameters.jl
could not handle derived parameters correctly.
#Arguments:
- param: only "non-derived" fields that's not mentioned in kws are extracted from param
- kws...: new values
"""
derive(param::Para; kws...) = _reconstruct(param, kws)
derive(param::Para, di::Union{AbstractDict,Tuple{Symbol,Any}}) = _reconstruct(param, di)
# reconstruct(pp::Para, di) = reconstruct(Para, pp, di)
# reconstruct(pp; kws...) = reconstruct(pp, kws)
# reconstruct(Para::Type, pp; kws...) = reconstruct(Para, pp, kws)
function _reconstruct(pp::Para, di)
# default reconstruct can't handle derived parameters correctly
di = !isa(di, AbstractDict) ? Dict(di) : copy(di)
ns = fieldnames(Para)
args = []
for (i, n) in enumerate(ns)
if n ∉ derived_para_names
# if exist in di, use value from di
# the default value is from pp
push!(args, (n, pop!(di, n, getfield(pp, n))))
else
pop!(di, n, getfield(pp, n))
end
end
length(di) != 0 && error("Fields $(keys(di)) not in type $T")
dargs = Dict(args)
return Para(; dargs...)
end
# function Base.getproperty(obj::Para, sym::Symbol)
# if sym === :beta # dimensionless beta
# return obj.β * obj.EF
# elseif sym === :Θ # dimensionless temperature
# return 1.0 / obj.β / obj.EF
# elseif sym === :T
# return 1.0 / obj.β
# elseif sym === :n
# return (obj.dim == 3) ? (obj.EF * 2 * obj.me)^(3 / 2) / (6π^2) * obj.spin : obj.me * obj.EF / π
# elseif sym === :Rs
# return (obj.dim == 3) ? (3 / (4π * obj.n))^(1 / 3) : sqrt(1 / (π * obj.n))
# elseif sym === :a0
# return 4π * obj.ϵ0 / (obj.me * obj.e0^2)
# elseif sym === :rs
# return obj.Rs / obj.a0
# elseif sym === :kF
# return sqrt(2 * obj.me * obj.EF)
# elseif sym === :e0s
# return obj.e0
# elseif sym === :e0a
# return obj.espin
# else # fallback to getfield
# return getfield(obj, sym)
# end
# end
# """
# function chemical_potential(beta)
# generate chemical potential μ with given beta and density conservation.
# #Arguments:
# - beta: dimensionless inverse temperature
# """
# function chemical_potential(beta, dim)
# f(β, μ) = real(polylog(dim / 2, -exp(β * μ))) + 1 / gamma(1 + dim / 2) * (β)^(dim / 2)
# g(μ) = f(beta, μ)
# return find_zero(g, (-1e4, 1))
# end
"""
function fullUnit(ϵ0, e0, me, EF, β)
generate Para with a complete set of parameters, no value presumed.
#Arguments:
- ϵ0: vacuum permittivity
- e0: electron charge
- me: electron mass
- EF: Fermi energy
- β: inverse temperature
"""
@inline function fullUnit(ϵ0, e0, me, EF, β, dim=3, spin=2; kwargs...)
# μ = try
# chemical_potential(β * EF, dim) * EF
# catch e
# # if isa(e, StackOverflowError)
# EF
# end
μ = EF
# println(kwargs)
para = Para(dim=dim,
spin=spin,
ϵ0=ϵ0,
e0=e0,
me=me,
EF=EF,
β=β,
μ=μ
)
# return para
return derive(para, kwargs)
end
"""
function defaultUnit(Θ, rs)
assume 4πϵ0=1, me=0.5, EF=1
#Arguments:
- Θ: dimensionless temperature. Since EF=1 we have β=beta
- rs: Wigner-Seitz radius over Bohr radius.
"""
@inline function defaultUnit(Θ, rs, dim=3, spin=2; kwargs...)
ϵ0 = 1 / (4π)
e0 = (dim == 3) ? sqrt(2 * rs / (9π / (2spin))^(1 / 3)) : sqrt(sqrt(2) * rs)
me = 0.5
EF = 1
β = 1 / Θ / EF
return fullUnit(ϵ0, e0, me, EF, β, dim, spin; kwargs...)
end
"""
function rydbergUnit(Θ, rs, dim = 3, spin = 2; kwargs...)
assume 4πϵ0=1, me=0.5, e0=sqrt(2)
#Arguments:
- Θ: dimensionless temperature. beta could be different from β
- rs: Wigner-Seitz radius over Bohr radius.
- dim: dimension of the system
- spin: spin = 1 or 2
- kwargs: user may explicity set other paramters using the key/value pairs
"""
@inline function rydbergUnit(Θ, rs, dim=3, spin=2; kwargs...)
ϵ0 = 1 / (4π)
e0 = sqrt(2)
me = 0.5
kF = (dim == 3) ? (9π / (2spin))^(1 / 3) / rs : sqrt(4 / spin) / rs
EF = kF^2 / (2me)
β = 1 / Θ / EF
return fullUnit(ϵ0, e0, me, EF, β, dim, spin; kwargs...)
end
"""
function atomicUnit(Θ, rs, dim = 3, spin = 2; kwargs...)
assume 4πϵ0=1, me=1, e0=1
#Arguments:
- Θ: dimensionless temperature. beta could be different from β
- rs: Wigner-Seitz radius over Bohr radius.
- dim: dimension of the system
- spin: spin = 1 or 2
- kwargs: user may explicity set other paramters using the key/value pairs
"""
@inline function atomicUnit(Θ, rs, dim=3, spin=2; kwargs...)
ϵ0 = 1 / (4π)
e0 = 1
me = 1
kF = (dim == 3) ? (9π / (2spin))^(1 / 3) / rs : sqrt(4 / spin) / rs
EF = kF^2 / (2me)
β = 1 / Θ / EF
return fullUnit(ϵ0, e0, me, EF, β, dim, spin; kwargs...)
end
"""
isZeroT(para) = (para.β == Inf)
check if it is at zero temperature or not.
"""
isZeroT(para) = (para.β == Inf)
export Para, Param
end
| ElectronGas | https://github.com/numericalEFT/ElectronGas.jl.git |
|
[
"MPL-2.0"
] | 0.2.5 | 3a6ed6c55afc461d479b8ef5114cf6733f2cef56 | code | 24870 | module Polarization
using ..GreenFunc, ..CompositeGrids
using ..Parameter
using ..Parameters
using ..Convention
export Polarization0_ZeroTemp, Polarization0_FiniteTemp
# Analytical calculated integrand of Π0 in 2D.
@inline function _ΠT2d_integrand(k, q, ω, param)
@unpack me, β, μ = param
density = me / 2π
nk = 1.0 / (exp(β * (k^2 / 2 / me - μ)) + 1)
error("not implemeted!")
return nothing
end
# Analytical calculated integrand of Π0 in 3D.
@inline function _ΠT3d_integrand(k, q, ω, param)
@unpack me, β, μ = param
# ω only appears as ω^2 so no need to check sign of ω
nk = 1.0 / (exp(β * (k^2 / 2 / me - μ)) + 1)
# if q is too small, use safe form
if q < 1e-16 && ω ≈ 0
if abs(q - 2 * k)^2 < 1e-16
return 0.0
else
return -k * me / (4 * π^2) * nk * ((8 * k) / ((q - 2 * k)^2))
end
elseif q < 1e-16 && !(ω ≈ 0)
return -k * me / (4 * π^2) * nk * ((8 * k * q^2) / (4 * me^2 * ω^2 + (q^2 - 2 * k * q)^2))
else
return -k * me / (4 * π^2 * q) * nk * log1p((8 * k * q^3) / (4 * me^2 * ω^2 + (q^2 - 2 * k * q)^2))
end
# if ω==0 && abs(q*(k*2-q)*β)<1e-16
# return 0.0
# elseif ω!=0 && k^2*q^2/4/me^2<ω^2*1e-16
# 2*q^2*k^2/(π^2*ω^2)/(exp(β*(k^2/2/me-μ))+1)/(8*me)
# else
# return k*me/(2*π^2*q)/(exp(β*(k^2/2/me-μ))+1)*log((4*me^2*ω^2+(q^2+2*k*q)^2)/(4*me^2*ω^2+(q^2-2*k*q)^2))
# return k*me/(2*π^2*q)/(exp(β*(k^2/2/me-μ))+1)*log1p((8*k*q^3)/(4*me^2*ω^2+(q^2-2*k*q)^2))
# end
end
# Analytical calculated integrand of the ladder in 3D.
@inline function _LadderT3d_integrand(x, q, ω, param)
@unpack me, β, μ = param
# ω only appears as ω^2 so no need to check sign of ω
k = x / (1 - x)
nk = 1.0 / (exp(β * (k^2 / 2 / me - μ)) + 1)
if q > 1e-6 * param.kF
a = ω * 1im - k^2 / me - q^2 / 2 / me + 2μ
b = q * k / me
return me / (2π)^2 * (k / q * (log(a + b) - log(a - b)) * (2 * nk - 1) - 2) / (1 - x)^2 # additional factor 1/(1-x)^2 is from the Jacobian
else
return me / (2π)^2 * (2k^2 / me / (ω * 1im - k^2 / me + 2μ) * (2 * nk - 1) - 2) / (1 - x)^2 # additional factor 1/(1-x)^2 is from the Jacobian
end
# if q is too small, use safe form
# if q < 1e-16 && ω ≈ 0
# if abs(q - 2 * k)^2 < 1e-16
# return 0.0
# else
# return -k * me / (4 * π^2) * nk * ((8 * k) / ((q - 2 * k)^2))
# end
# elseif q < 1e-16 && !(ω ≈ 0)
# return -k * me / (4 * π^2) * nk * ((8 * k * q^2) / (4 * me^2 * ω^2 + (q^2 - 2 * k * q)^2))
# else
# return -k * me / (4 * π^2 * q) * nk * log1p((8 * k * q^3) / (4 * me^2 * ω^2 + (q^2 - 2 * k * q)^2))
# end
end
function finitetemp_kgrid(q::Float64, kF::Float64, maxk=20, scaleN=20, minterval=1e-6, gaussN=10)
mink = (q < 1e-16 / minterval) ? minterval * kF : minterval * min(q, kF)
# dense point near k_F and q/2
kgrid = CompositeGrid.LogDensedGrid(:gauss, [0.0, maxk * kF], [0.5 * q, kF], scaleN, mink, gaussN)
return kgrid
end
function finitetemp_kgrid_ladder(μ::Float64, m::Float64, q::Float64, kF::Float64, scaleN=20, minterval=1e-6, gaussN=10)
# the grid k=(0, \infty) of the momentum is maked to x=k/(1+k) where x is in (0,1)
# the reverse map is k=x/(1-x)
# See the box in the link https://numericaleft.github.io/MCIntegration.jl/dev/ titled as "Integrate over different domains"
mink = (q < 1e-16 / minterval) ? minterval * kF : minterval * min(q, kF)
mixX = mink / (1 + mink)
if q >= sqrt(8 * μ * m)
x = kF / (1 + kF)
kgrid = CompositeGrid.LogDensedGrid(:gauss, [0.0, 1.0], [0.0, x], scaleN, mink, gaussN)
else
k1 = abs(q - sqrt(8 * μ * m - q^2)) / 2
k2 = (q + sqrt(8 * μ * m - q^2)) / 2
x1 = k1 / (1 + k1)
x2 = k2 / (1 + k2)
x3 = kF / (1 + kF)
kgrid = CompositeGrid.LogDensedGrid(:gauss, [0.0, 1.0], sort([x1, x2, x3]), scaleN, mink, gaussN)
end
return kgrid
end
"""
function Ladder0_FiniteTemp(q::Float64, n::Int, param, scaleN=20, minterval=1e-6, gaussN=10)
Finite temperature ladder function for matsubara frequency and momentum. Analytically sum over total incoming frequency and angular
dependence of momentum, and numerically calculate integration of magnitude of momentum.
Assume G_0^{-1} = iω_n - (k^2/(2m) - mu)
The ladder function is defined as
```math
\\int \\frac{d^3 \\vec{p}}{\\left(2π^3\\right)} T \\sum_{i ω_n} \\frac{1}{iω_n+iΩ_n-\\frac{(\\vec{k}+\\vec{p})^2}{2 m}+μ} \\frac{1}{-iω_n-\\frac{p^2}{2 m}+μ} - \\frac{m}{2π^2}Λ
```
where we subtract the UV divergent term that is a constant proportional to the UV cutoff Λ.
#Arguments:
- q: momentum
- n: matsubara frequency given in integer s.t. Ωn=2πTn
- param: other system parameters
- scaleN: optional, N of Log grid in LogDensedGrid, check CompositeGrids for more detail
- minterval: optional, actual minterval of grid is this value times min(q,kF)
- gaussN: optional, N of GaussLegendre grid in LogDensedGrid.
"""
function Ladder0_FiniteTemp(q::Float64, n::Int, param; scaleN=20, minterval=1e-6, gaussN=10)
@unpack dim, kF, β, me, μ = param
if dim != 3
error("No support for finite-temperature polarization in $dim dimension!")
end
# check sign of q, use -q if negative
if q < 0
q = -q
end
# mink = (q < 1e-16 / minterval) ? minterval * kF : minterval * min(q, kF)
# kgrid = CompositeGrid.LogDensedGrid(:gauss, [0.0, maxk * kF], [0.5 * q, kF], scaleN, mink, gaussN)
kgrid = finitetemp_kgrid_ladder(μ, me, q, kF, scaleN, minterval, gaussN)
integrand = zeros(ComplexF64, kgrid.size)
if dim == 3
for (ki, k) in enumerate(kgrid.grid)
integrand[ki] = _LadderT3d_integrand(k, q, 2π * n / β, param)
@assert !isnan(integrand[ki]) "nan at k=$k, q=$q"
end
end
return Interp.integrate1D(integrand, kgrid)
end
"""
function Polarization0_FiniteTemp(q::Float64, n::Int, param, maxk=20, scaleN=20, minterval=1e-6, gaussN=10)
Finite temperature one-spin Π0 function for matsubara frequency and momentum. Analytically sum over transfer frequency and angular
dependence of momentum, and numerically calculate integration of magnitude of momentum.
Slower(~200μs) than Polarization0_ZeroTemp.
Assume G_0^{-1} = iω_n - (k^2/(2m) - mu)
#Arguments:
- q: momentum
- n: matsubara frequency given in integer s.t. ωn=2πTn
- param: other system parameters
- maxk: optional, upper limit of integral -> maxk*kF
- scaleN: optional, N of Log grid in LogDensedGrid, check CompositeGrids for more detail
- minterval: optional, actual minterval of grid is this value times min(q,kF)
- gaussN: optional, N of GaussLegendre grid in LogDensedGrid.
"""
function Polarization0_FiniteTemp(q::Float64, n::Int, param; maxk=20, scaleN=20, minterval=1e-6, gaussN=10)
@unpack dim, kF, β = param
if dim != 2 && dim != 3
error("No support for finite-temperature polarization in $dim dimension!")
end
####################### ! temprary fix #######################################
# !TODO: fix _ΠT2d_integrand, and calculate the finiteT polarization for 2d
if dim == 2
return Polarization0_2dZeroTemp(q, n, param)
end
####################### ! temprary fix #######################################
# check sign of q, use -q if negative
if q < 0
q = -q
end
# mink = (q < 1e-16 / minterval) ? minterval * kF : minterval * min(q, kF)
# kgrid = CompositeGrid.LogDensedGrid(:gauss, [0.0, maxk * kF], [0.5 * q, kF], scaleN, mink, gaussN)
kgrid = finitetemp_kgrid(q, kF, maxk, scaleN, minterval, gaussN)
integrand = zeros(Float64, kgrid.size)
if dim == 2
for (ki, k) in enumerate(kgrid.grid)
integrand[ki] = _ΠT2d_integrand(k, q, 2π * n / β, param)
@assert !isnan(integrand[ki]) "nan at k=$k, q=$q"
end
elseif dim == 3
for (ki, k) in enumerate(kgrid.grid)
integrand[ki] = _ΠT3d_integrand(k, q, 2π * n / β, param)
@assert !isnan(integrand[ki]) "nan at k=$k, q=$q"
end
end
return Interp.integrate1D(integrand, kgrid)
end
"""
function Ladder0_FiniteTemp(q::Float64, n::AbstractVector, param, scaleN=20, minterval=1e-6, gaussN=10)
Finite temperature ladder function for matsubara frequency and momentum. Analytically sum over total incoming frequency and angular
dependence of momentum, and numerically calculate integration of magnitude of momentum.
Assume G_0^{-1} = iω_n - (k^2/(2m) - mu)
The ladder function is defined as
```math
\\int \\frac{d^3 \\vec{p}}{\\left(2π^3\\right)} T \\sum_{i ω_n} \\frac{1}{iω_n+iΩ_n-\\frac{(\\vec{k}+\\vec{p})^2}{2 m}+μ} \\frac{1}{-iω_n-\\frac{p^2}{2 m}+μ} - \\frac{m}{2π^2}Λ
```
where we subtract the UV divergent term that is a constant proportional to the UV cutoff Λ.
#Arguments:
- q: momentum
- n: matsubara frequency given in integer s.t. Ωn=2πTn
- param: other system parameters
- scaleN: optional, N of Log grid in LogDensedGrid, check CompositeGrids for more detail
- minterval: optional, actual minterval of grid is this value times min(q,kF)
- gaussN: optional, N of GaussLegendre grid in LogDensedGrid.
"""
function Ladder0_FiniteTemp(q::Float64, n::AbstractVector, param; scaleN=20, minterval=1e-6, gaussN=10)
@unpack dim, kF, β, me, μ = param
if dim != 3
error("No support for finite-temperature polarization in $dim dimension!")
end
# check sign of q, use -q if negative
if q < 0
q = -q
end
# mink = (q < 1e-16 / minterval) ? minterval * kF : minterval * min(q, kF)
# kgrid = CompositeGrid.LogDensedGrid(:gauss, [0.0, maxk * kF], [0.5 * q, kF], scaleN, mink, gaussN)
kgrid = finitetemp_kgrid_ladder(μ, me, q, kF, scaleN, minterval, gaussN)
integrand = zeros(ComplexF64, (kgrid.size, length(n)))
if dim == 3
for (ki, k) in enumerate(kgrid.grid)
for (mi, m) in enumerate(n)
integrand[ki, mi] = _LadderT3d_integrand(k, q, 2π * m / β, param)
@assert !isnan(integrand[ki, mi]) "nan at k=$k, q=$q"
end
end
end
return Interp.integrate1D(integrand, kgrid; axis=1)
end
"""
function Polarization0_FiniteTemp(q::Float64, n::AbstractVector, param, maxk=20, scaleN=20, minterval=1e-6, gaussN=10)
Finite temperature one-spin Π0 function for matsubara frequency and momentum. Analytically sum over transfer frequency and angular
dependence of momentum, and numerically calculate integration of magnitude of momentum.
Slower(~200μs) than Polarization0_ZeroTemp.
Assume G_0^{-1} = iω_n - (k^2/(2m) - mu)
#Arguments:
- q: momentum
- n: Matsubara frequencies given in an AbstractVector s.t. ωn=2πTn
- param: other system parameters
- maxk: optional, upper limit of integral -> maxk*kF
- scaleN: optional, N of Log grid in LogDensedGrid, check CompositeGrids for more detail
- minterval: optional, actual minterval of grid is this value times min(q,kF)
- gaussN: optional, N of GaussLegendre grid in LogDensedGrid.
"""
function Polarization0_FiniteTemp(q::Float64, n::AbstractVector, param; maxk=20, scaleN=20, minterval=1e-6, gaussN=10)
@unpack dim, kF, β = param
if dim != 2 && dim != 3
error("No support for finite-temperature polarization in $dim dimension!")
end
# check sign of q, use -q if negative
if q < 0
q = -q
end
# mink = (q < 1e-16 / minterval) ? minterval * kF : minterval * min(q, kF)
# kgrid = CompositeGrid.LogDensedGrid(:gauss, [0.0, maxk * kF], [0.5 * q, kF], scaleN, mink, gaussN)
kgrid = finitetemp_kgrid(q, kF, maxk, scaleN, minterval, gaussN)
integrand = zeros(Float64, (kgrid.size, length(n)))
if dim == 2
for (ki, k) in enumerate(kgrid.grid)
for (mi, m) in enumerate(n)
integrand[ki, mi] = _ΠT2d_integrand(k, q, 2π * m / β, param)
@assert !isnan(integrand[ki, mi]) "nan at k=$k, q=$q"
end
end
elseif dim == 3
for (ki, k) in enumerate(kgrid.grid)
for (mi, m) in enumerate(n)
integrand[ki, mi] = _ΠT3d_integrand(k, q, 2π * m / β, param)
@assert !isnan(integrand[ki, mi]) "nan at k=$k, q=$q"
end
end
end
return Interp.integrate1D(integrand, kgrid; axis=1)
end
"""
function Polarization0_FiniteTemp!(obj::MeshArray{T,N,MT}, param; massratio=1.0, maxk=20, scaleN=20, minterval=1e-6, gaussN=10) where {T,N,MT}
Store the finite-temperature one-spin Π0 function for Matsubara frequencies and momenta from `obj.mesh` within `obj.data`
as specified by given parameters `param`. Analytically sum over transfer frequency and angular dependence of momentum, and numerically calculate integration of magnitude of momentum.
Assume G_0^{-1} = iω_n - (k^2/(2m) - mu)
#Arguments:
- `obj`: MeshArray with ImFreq TemporalGrid and transfer-momentum grid (two-dimensional mesh) for polarization function.
- `param`: other system parameters. `param.β` must be equal to `β` from `obj.mesh`.
- `massratio`: optional, effective mass ratio. By default, `massratio=1.0`.
- `maxk`: optional, upper limit of integral -> maxk*kF
- `scaleN`: optional, N of Log grid in LogDensedGrid, check CompositeGrids for more detail
- `minterval`: optional, actual minterval of grid is this value times min(q,kF)
- `gaussN`: optional, N of GaussLegendre grid in LogDensedGrid.
"""
function Polarization0_FiniteTemp!(obj::MeshArray{T,N,MT}, param; massratio=1.0, maxk=20, scaleN=20, minterval=1e-6, gaussN=10) where {T,N,MT}
@unpack β = param
dn = GreenFunc._find_mesh(MT, ImFreq)
@assert dn > 0 "No ImFreq in MeshArray for polarization."
# @assert dn <= N "Dimension must be <= $N."
@assert N == 2 "Polarization's mesh dimension must be 2."
dk = 3 - dn
@assert β ≈ obj.mesh[dn].β "Target grid has to have the same inverse temperature as param.β."
for (qi, q) in enumerate(obj.mesh[dk])
if dn == 1
obj[:, qi] = Polarization0_FiniteTemp(q, obj.mesh[dn].grid, param, maxk=maxk,
scaleN=scaleN, minterval=minterval, gaussN=gaussN) * massratio
elseif dn == 2
obj[qi, :] = Polarization0_FiniteTemp(q, obj.mesh[dn].grid, param, maxk=maxk,
scaleN=scaleN, minterval=minterval, gaussN=gaussN) * massratio
end
end
end
@inline function Polarization0_2dZeroTemp(q, n, param)
@unpack me, kF, β = param
density = me / 2π
# check sign of q, use -q if negative
if q < 0
q = -q
end
# if q is too small, set to 1000eps
if q < eps(0.0) * 1e6
q = eps(0.0) * 1e6
end
Π = 0.0
ω_n = 2 * π * n / β
v = me * ω_n / q / kF * im + q / 2 / kF
# v2 = me * ω_n / q / kF * im - q / 2 / kF
if q < EPS && n != 0
Π = 0.0
else
Π = 1.0 - real(√(v^2 - 1)) * 2kF / q
# Π = 1.0 - real(√(v^2 - 1) + √(v2^2 - 1)) * kF / q
end
return -density * Π
end
@inline function Polarization0_3dZeroTemp(q, n, param)
@unpack me, kF, β = param
density = me * kF / (2π^2)
# check sign of q, use -q if negative
if q < 0
q = -q
end
if n < 0
n = -n
end
# if q is too small, set to 1000eps
if q < eps(0.0) * 1e6
q = eps(0.0) * 1e6
end
Π = 0.0
x = q / 2 / kF
ω_n = 2 * π * n / β
if n == 0
if abs(q - 2 * kF) > EPS
Π = density * (1 + (1 - x^2) * log1p(4 * x / ((1 - x)^2)) / 4 / x)
else
Π = density
end
else
y = me * ω_n / q / kF
if abs(q - 2 * kF) > EPS
if y^2 < 1e-4 / EPS
theta = atan(2 * y / (y^2 + x^2 - 1))
if theta < 0
theta = theta + π
end
@assert theta >= 0 && theta <= π
Π = density * (1 + (1 - x^2 + y^2) * log1p(4 * x / ((1 - x)^2 + y^2)) / 4 / x - y * theta)
else
Π = density * (2.0 / 3.0 / y^2 - 2.0 / 5.0 / y^4) #+ (6.0 - 14.0*(ω_n/4.0)^2)/21.0/y^6)
end
else
theta = atan(2 / y)
if theta < 0
theta = theta + π
end
@assert theta >= 0 && theta <= π
Π = density * (1 + y^2 * log1p(4 / (y^2)) / 4 - y * theta)
end
end
# initially derived for spin=1/2
return -Π / 2
end
"""
@inline function Polarization0_3dZeroTemp_LinearDispersion(q, n, param)
Polarization for electrons with dispersion linearized near the Fermi surface. See "Condensed Matter Field Theory" by Altland, Eq. (5.30).
```math
Π_{q, ω_n}=-\\frac{1}{2} N_F \\left[1-\\frac{i ω_n}{2 v_F q} \\operatorname{ln} \\left(\\frac{i ω_n+v_F q}{i ω_n-v_F q}\\right)\\right]
```
The log function can be replaced with arctan,
```math
\\operatorname{arctan}(x) = \\frac{i}{2} \\ln \\frac{i+x}{i-x}
```
"""
@inline function Polarization0_3dZeroTemp_LinearDispersion(q, n, param)
@unpack me, kF, β = param
density = me * kF / (2π^2) #spinless density of states
# check sign of q, use -q if negative
if q < 0
q = -q
end
if n < 0
n = -n
end
# if q is too small, set to 1000eps
if q < eps(0.0) * 1e6
q = eps(0.0) * 1e6
end
Π = 0.0
if n == 0
Π = density
else
vF = kF / me
ω_n = 2 * π * n / β
x = q * vF / ω_n
# y = ω_n / (q * vF)
if abs(x) > 1e-6
Π = density * (1 - atan(x) / x)
else
Π = density * (x^2 / 3 - x^4 / 5)
end
end
# initially derived for spin=1/2
return -Π
end
"""
@inline function Polarization0_3dZeroTemp_Q(q, n, param)
Polarization for electrons ansatz inspired by "Condensed Matter Field Theory" by Altland, Problem 6.7.
```math
Π(q, iω_n) = -\\frac{1}{2} N_F \\left(1-\\frac{π}\\sqrt{\\left(\\frac{2v_F q}{ω_n} \\right)^2+π^2}\\right)
```
This ansatz is asymtotically exact in the large q limit, and is only qualitatively correct in the small q limit.
# Remark:
For the exact free-electron polarization, we expect
In the limit q ≫ ω_n,
```math
Π(q, iω_n) → -\\frac{1}{2} N_F \\left(1-\\frac{π}{2}\\frac{|ω_n|}{v_F q}\\right)
```
and in the limit q ≪ ω_n,
```math
Π(q, iω_n) → -\\frac{1}{2} N_F \\frac{1}{3}\\left(\\frac{v_F q}{ω_n}\\right)^2
```
The above ansatz has the right large-q behavior, while its small-q is slightly different (prefactor 1/3 is modified to 2/π^2≈0.2026)
"""
@inline function Polarization0_3dZeroTemp_Q(q, n, param)
@unpack me, kF, β = param
density = me * kF / (2π^2)
vF = kF / me
# check sign of q, use -q if negative
if q < 0
q = -q
end
if n < 0
n = -n
end
# if q is too small, set to 1000eps
if q < eps(0.0) * 1e6
q = eps(0.0) * 1e6
end
if n == 0
Π = density
else
Π = 0.0
ω_n = 2 * π * n / β
x = q * vF / ω_n
Π = density * (1 - π / sqrt(π^2 + 4 * x^2))
# Π = density * (1 - π / sqrt(π^2 + 4 * x^2 + 0.3 * abs(x)))
# Π = density * (1 - π / sqrt(π^2 + 0 * x^2 + 4.0 * x^4))
# Π = density * (1 - π / sqrt(π^2 + 4 * x^2 + 0.01 * q^2 / kF^2))
end
# initially derived for spin=1/2
return -Π
end
"""
@inline function Polarization0_3dZeroTemp_Plasma(q, n, param; factor = 3.0)
This polarization ansatz preserves the plasma frequency and the static limit.
```math
Π(q, iω_n) = -\\frac{1}{2} \\frac{q^2}{4πe^2} \\frac{ω_p^2}{ω_n^2 + ω_p^2\\cdot (q/q_{TF})^2} = -\\frac{N_F}{2}\\left(1-\\frac{3}{3+(q \\cdot vF/ω_n)^2}\\right)
```
where ω_p is the plasma frequency, and
```math
ω_p = v_F q_{TF}/\\sqrt{3}
```
User may change the parameter `factor` to modify the plasma frequency in this ansatz.
"""
@inline function Polarization0_3dZeroTemp_Plasma(q, n, param; factor=3.0)
@unpack me, kF, β, ωp, qTF, e0, NF = param
density = me * kF / (2π^2)
vF = kF / me
# check sign of q, use -q if negative
if q < 0
q = -q
end
if n < 0
n = -n
end
# if q is too small, set to 1000eps
if q < eps(0.0) * 1e6
q = eps(0.0) * 1e6
end
Π = 0.0
ω_n = 2 * π * n / β
x = q * vF / ω_n
if n == 0
Π = density
else
Π = density * (x^2.0 / (factor + x^2.0))
end
# initially derived for spin=1/2
return -Π
end
"""
function Polarization0_ZeroTemp(q::Float64, n::Int, param)
Zero temperature one-spin Π0 function for matsubara frequency and momentum. For low temperature the finite temperature
polarization could be approximated with this function to run faster(~200ns).
Assume G_0^{-1} = iω_n - (k^2/(2m) - E_F).
#Arguments:
- q: momentum
- n: matsubara frequency given in integer s.t. ωn=2πTn
- param: other system parameters
"""
function Polarization0_ZeroTemp(q::Float64, n::Int, param; kwargs...)
@unpack dim = param
if dim == 2
return Polarization0_2dZeroTemp(q, n, param)
elseif dim == 3
return Polarization0_3dZeroTemp(q, n, param)
else
error("No support for zero-temperature polarization in $dim dimension!")
end
end
"""
function Polarization0_ZeroTemp(q::Float64, n::AbstractVector, param)
Zero temperature one-spin Π0 function for Matsubara-frequency grid `n` and momentum `q`. For low temperature the finite temperature
polarization could be approximated with this function to run faster(~200ns).
Assume G_0^{-1} = iω_n - (k^2/(2m) - E_F).
#Arguments:
- `q`: momentum
- `n`: Matsubara frequencies given in a AbstractVector s.t. ωn=2πTn
- `param`: other system parameters
"""
function Polarization0_ZeroTemp(q::Float64, n::AbstractVector, param; kwargs...)
@unpack dim = param
result = zeros(Float64, length(n))
if dim == 2
for (mi, m) in enumerate(n)
result[mi] = Polarization0_2dZeroTemp(q, m, param)
end
elseif dim == 3
for (mi, m) in enumerate(n)
result[mi] = Polarization0_3dZeroTemp(q, m, param)
end
else
error("No support for zero-temperature polarization in $dim dimension!")
end
return result
end
"""
function Polarization0_ZeroTemp!(obj::MeshArray{T,N,MT}, param; massratio=1.0, kwargs...) where {T,N,MT}
Store the zero-temperature one-spin Π0 function for Matsubara frequencies and momenta from `obj.mesh` within `obj.data`
as specified by given parameters `param`.
Assume G_0^{-1} = iω_n - (k^2/(2m) - mu)
#Arguments:
- `obj`: MeshArray with ImFreq TemporalGrid and transfer-momentum grid (two-dimensional mesh) for polarization function.
- `param`: other system parameters. `param.β` must be equal to `β` from `obj.mesh`.
- `massratio`: optional, effective mass ratio. By default, `massratio=1.0`.
"""
function Polarization0_ZeroTemp!(obj::MeshArray{T,N,MT}, param; massratio=1.0, kwargs...) where {T,N,MT}
@unpack dim, β = param
dn = GreenFunc._find_mesh(MT, ImFreq)
@assert dn > 0 "No ImFreq in MeshArray for polarization."
# @assert dn <= N "Dimension must be <= $N."
@assert N == 2 "Polarization's mesh dimension must be 2."
dk = 3 - dn
@assert β ≈ obj.mesh[dn].β "Target grid has to have the same inverse temperature as param.β."
if dim == 2
for ind in eachindex(obj)
q = obj.mesh[dk][ind[dk]]
n = obj.mesh[dn].grid[ind[dn]]
obj[ind] = Polarization0_2dZeroTemp(q, n, param) * massratio
end
elseif dim == 3
for ind in eachindex(obj)
q = obj.mesh[dk][ind[dk]]
n = obj.mesh[dn].grid[ind[dn]]
obj[ind] = Polarization0_3dZeroTemp(q, n, param) * massratio
end
else
error("No support for zero-temperature polarization in $dim dimension!")
end
end
function Polarization0_ZeroTemp_Quasiparticle(q::Float64, n, param; massratio=1.0, kwargs...)
return Polarization0_ZeroTemp(q, n, param; kwargs...) * massratio
end
"""
function Polarization0wrapped(Euv, rtol, sgrid::SGT, param, pifunc = Polarization0_ZeroTemp) where{TGT, SGT}
Π0 function for matsubara frequency and momentum. Use Polarization0_ZeroTemp by default,
`Polarization0_ZeroTemp!` when pifunc is specified.
Assume G_0^{-1} = iω_n - (k^2/(2m) - E_F).
Return full polarization0 function stored in GreenFunc.MeshArray.
#Arguments:
- Euv: Euv of DLRGrid
- rtol: rtol of DLRGrid
- sgrid: momentum grid
- param: other system parameters
- pifunc: single point Π0 function used. Require form with pifunc(::MeshArray, param).
"""
function Polarization0wrapped(Euv, rtol, sgrid::SGT, param; pifunc=Polarization0_ZeroTemp!) where {SGT}
@unpack β = param
wn_mesh = GreenFunc.ImFreq(β, BOSON; Euv=Euv, rtol=rtol, symmetry=:ph)
green = GreenFunc.MeshArray(wn_mesh, sgrid; dtype=ComplexF64)
pifunc(green, param)
return green
end
end
| ElectronGas | https://github.com/numericalEFT/ElectronGas.jl.git |
|
[
"MPL-2.0"
] | 0.2.5 | 3a6ed6c55afc461d479b8ef5114cf6733f2cef56 | code | 12104 | """
Calculate self-energy
"""
module SelfEnergy
using ..Parameter, ..Convention, ..Polarization, ..Interaction, ..LegendreInteraction
using ..Parameters, ..GreenFunc, ..Lehmann, ..LegendrePolynomials, ..CompositeGrids
@inline function Fock0_3dZeroTemp(k, param)
@assert param.ga ≈ 0 "current implementation only supports spin-symmetric interaction"
@assert param.dim == 3
@assert k >= 0
# TODO: add spin-asymmetric interaction
@unpack me, kF, Λs, e0 = param
if k < 1e-6
k = 1e-6
end
l = sqrt(Λs)
if l > 1e-14
fock = 1 + l / kF * (atan((k - kF) / l) - atan((k + kF) / l))
fock -= (l^2 - k^2 + kF^2) / 4 / k / kF * log((l^2 + (k - kF)^2) / (l^2 + (k + kF)^2))
else
if abs(k - kF) > 1e-10
fock = 1 + (k^2 - kF^2) / 4 / k / kF * log((k - kF)^2 / (k + kF)^2)
else
fock = 1
end
end
return fock * (-e0^2 * kF) / π
end
@inline function Fock0_2dZeroTemp(k, param)
@assert param.ga ≈ 0 "current implementation only supports spin-symmetric interaction"
@assert param.dim == 2
# TODO: add spin-asymmetric interaction
@unpack me, kF, Λs, e0 = param
l2 = Λs
x = √((k - kF)^2 + l2)
y = √((k + kF)^2 + l2)
z = √(k^2 + l2)
if abs(k) > EPS
if l2 < EPS
fock = abs(k - kF) * (1 - kF / k) + abs(k + kF) * (1 + kF / k) - 2 * abs(k)
else
fock = (k - kF) * x / k + (k + kF) * y / k - 2z
fock += l2 * log((k - kF + x) * (k + kF + y) / (k + z)^2) / k
end
else
fock = 4 * (√(kF^2 + l2) - sqrt(Λs))
end
return fock * (-e0^2) / 4π
end
# @inline function Fock0_2dZeroTemp(k, param)
# @assert param.e0a ≈ 0 "current implementation only supports spin-symmetric interaction"
# @assert param.dim == 2
# # TODO: add spin-asymmetric interaction
# @unpack me, kF, Λs, e0 = param
# @assert !(Λs ≈ 0.0) "Fock diverges diverges for the bare Coulomb interaction"
# l2 = Λs
# x = kF^2 + l2 - k^2
# c = 4 * k^2 * l2
# return -e0^2 * log((sqrt(x^2 + c) + x) / 2 / l2)
# end
"""
function Fock0_ZeroTemp(q, n, param)
Zero temperature one-spin Fock function for momentum.
Assume G_0^{-1} = iω_n - (k^2/(2m) - E_F) and Yukawa/Coulomb instant interaction.
#Arguments:
- q: momentum
- n: matsubara frequency given in integer s.t. ωn=2πTn
- param: other system parameters
"""
function Fock0_ZeroTemp(k::Float64, param)
@unpack dim = param
if dim == 2
return Fock0_2dZeroTemp(k, param)
elseif dim == 3
return Fock0_3dZeroTemp(k, param)
else
error("No support for zero-temperature Fock in $dim dimension!")
end
end
function G0wrapped(Euv, rtol, sgrid, param)
@unpack me, β, μ = param
wn_mesh = GreenFunc.ImFreq(β, FERMION; Euv=Euv, rtol=rtol)
green = GreenFunc.MeshArray(wn_mesh, sgrid; dtype=ComplexF64)
for ind in eachindex(green)
green[ind] = 1 / (im * wn_mesh[ind[1]] - (green.mesh[2][ind[2]]^2 / 2 / me - μ))
end
return green
end
function Gwrapped(Σ::GreenFunc.MeshArray, Σ_ins::GreenFunc.MeshArray, param)
@unpack me, kF, β, μ = param
Σ_freq = Σ |> to_dlr |> to_imfreq
green = similar(Σ_freq)
w0i_label = locate(Σ_freq.mesh[1], 0)
kf_label = locate(Σ_freq.mesh[2], kF)
Σ_shift = real(Σ_freq[w0i_label, kf_label] + Σ_ins[1, kf_label])
for ind in eachindex(green)
green[ind] = 1 / (im * green.mesh[1][ind[1]] - (green.mesh[2][ind[2]]^2 / 2 / me - μ)
-
Σ_freq[ind] - Σ_ins[1, ind[2]] + Σ_shift)
end
return green
end
function calcΣ_2d(G::GreenFunc.MeshArray, W::LegendreInteraction.DCKernel)
@unpack β = W.param
kgrid = W.kgrid
qgrids = W.qgrids
fdlr = G.mesh[1].representation
bdlr = W.dlrGrid
G_dlr = G |> to_dlr
G_imt = G_dlr |> to_imtime
# prepare kernel, interpolate into τ-space with fdlr.τ
kernel_bare = W.kernel_bare
kernel_freq = W.kernel
kernel = Lehmann.matfreq2tau(bdlr, kernel_freq, fdlr.τ, bdlr.n; axis=3)
# container of Σ
Σ = GreenFunc.MeshArray(G_imt.mesh[1], kgrid; dtype=ComplexF64)
# equal-time green (instant)
G_ins = dlr_to_imtime(G_dlr, [β,]) * (-1)
Σ_ins = GreenFunc.MeshArray(G_ins.mesh[1], kgrid; dtype=ComplexF64)
for τi in eachindex(G_imt.mesh[1])
for ki in eachindex(kgrid)
Gq = CompositeGrids.Interp.interp1DGrid(G_imt[τi, :], G_imt.mesh[2], qgrids[ki].grid)
integrand = kernel[ki, 1:qgrids[ki].size, τi] .* Gq .* qgrids[ki].grid
Σ[τi, ki] = CompositeGrids.Interp.integrate1D(integrand, qgrids[ki])
@assert isfinite(Σ[τi, ki]) "fail Δ at $τi, $ki"
if τi == 1
Gq = CompositeGrids.Interp.interp1DGrid(G_ins[1, :], G_ins.mesh[2], qgrids[ki].grid)
integrand = kernel_bare[ki, 1:qgrids[ki].size] .* Gq .* qgrids[ki].grid
Σ_ins[1, ki] = CompositeGrids.Interp.integrate1D(integrand, qgrids[ki])
@assert isfinite(Σ_ins[1, ki]) "fail Δ0 at $ki"
end
end
end
return Σ / (-4 * π^2), Σ_ins / (-4 * π^2)
end
function calcΣ_3d(G::GreenFunc.MeshArray, W::LegendreInteraction.DCKernel)
@unpack β = W.param
kgrid = W.kgrid
qgrids = W.qgrids
fdlr = G.mesh[1].representation
bdlr = W.dlrGrid
G_dlr = G |> to_dlr
G_imt = G_dlr |> to_imtime
# prepare kernel, interpolate into τ-space with fdlr.τ
kernel_bare = W.kernel_bare
kernel_freq = W.kernel
kernel = Lehmann.matfreq2tau(bdlr, kernel_freq, fdlr.τ, bdlr.n; axis=3)
# container of Σ
Σ = GreenFunc.MeshArray(G_imt.mesh[1], kgrid; dtype=ComplexF64)
# equal-time green (instant)
G_ins = dlr_to_imtime(G_dlr, [β,]) * (-1)
Σ_ins = GreenFunc.MeshArray(G_ins.mesh[1], kgrid; dtype=ComplexF64)
for τi in eachindex(G_imt.mesh[1])
for ki in eachindex(kgrid)
k = kgrid[ki]
Gq = CompositeGrids.Interp.interp1DGrid(G_imt[τi, :], G_imt.mesh[2], qgrids[ki].grid)
integrand = kernel[ki, 1:qgrids[ki].size, τi] .* Gq ./ k .* qgrids[ki].grid
Σ[τi, ki] = CompositeGrids.Interp.integrate1D(integrand, qgrids[ki])
@assert isfinite(Σ[τi, ki]) "fail Δ at $τi, $ki"
if τi == 1
Gq = CompositeGrids.Interp.interp1DGrid(G_ins[1, :], G_ins.mesh[2], qgrids[ki].grid)
integrand = kernel_bare[ki, 1:qgrids[ki].size] .* Gq ./ k .* qgrids[ki].grid
Σ_ins[1, ki] = CompositeGrids.Interp.integrate1D(integrand, qgrids[ki])
@assert isfinite(Σ_ins[1, ki]) "fail Δ0 at $ki"
end
end
end
return Σ / (-4 * π^2), Σ_ins / (-4 * π^2)
end
function G0W0(param, Euv, rtol, Nk, maxK, minK, order, int_type, kgrid::Union{AbstractGrid,AbstractVector,Nothing}=nothing; kwargs...)
@unpack dim = param
# kernel = SelfEnergy.LegendreInteraction.DCKernel_old(param;
# Euv = Euv, rtol = rtol, Nk = Nk, maxK = maxK, minK = minK, order = order, int_type = int_type, spin_state = :sigma)
# kernel = SelfEnergy.LegendreInteraction.DCKernel0(param;
# Euv = Euv, rtol = rtol, Nk = Nk, maxK = maxK, minK = minK, order = order, int_type = int_type, spin_state = :sigma)
# G0 = G0wrapped(Euv, rtol, kernel.kgrid, param)
kGgrid = CompositeGrid.LogDensedGrid(:cheb, [0.0, maxK], [0.0, param.kF], Nk, minK, order)
if dim == 2
if isnothing(kgrid)
kernel = SelfEnergy.LegendreInteraction.DCKernel_2d(param;
Euv=Euv, rtol=rtol, Nk=Nk, maxK=maxK, minK=minK, order=order, int_type=int_type, spin_state=:sigma, kwargs...)
else
if (kgrid isa AbstractVector)
kgrid = SimpleG.Arbitrary{eltype(kgrid)}(kgrid)
end
kernel = SelfEnergy.LegendreInteraction.DCKernel_2d(param;
Euv=Euv, rtol=rtol, Nk=Nk, maxK=maxK, minK=minK, order=order, int_type=int_type, spin_state=:sigma, kgrid=kgrid, kwargs...)
end
G0 = G0wrapped(Euv, rtol, kGgrid, param)
Σ, Σ_ins = calcΣ_2d(G0, kernel)
elseif dim == 3
if isnothing(kgrid)
kernel = SelfEnergy.LegendreInteraction.DCKernel0(param;
Euv=Euv, rtol=rtol, Nk=Nk, maxK=maxK, minK=minK, order=order, int_type=int_type, spin_state=:sigma, kwargs...)
else
if (kgrid isa AbstractVector)
kgrid = SimpleG.Arbitrary{eltype(kgrid)}(kgrid)
end
kernel = SelfEnergy.LegendreInteraction.DCKernel0(param;
Euv=Euv, rtol=rtol, Nk=Nk, maxK=maxK, minK=minK, order=order, int_type=int_type, spin_state=:sigma, kgrid=kgrid, kwargs...)
end
G0 = G0wrapped(Euv, rtol, kGgrid, param)
Σ, Σ_ins = calcΣ_3d(G0, kernel)
else
error("No support for G0W0 in $dim dimension!")
end
return Σ, Σ_ins
end
function G0W0(param, kgrid::Union{AbstractGrid,AbstractVector,Nothing}=nothing; Euv=100 * param.EF, rtol=1e-14, Nk=12, maxK=6 * param.kF, minK=1e-8 * param.kF, order=8, int_type=:rpa,
kwargs...)
return G0W0(param, Euv, rtol, Nk, maxK, minK, order, int_type, kgrid; kwargs...)
end
"""
function zfactor(param, Σ::GreenFunc.MeshArray; kamp=param.kF, ngrid=[0, 1])
calculate the z-factor of the self-energy at the momentum kamp
```math
z_k=\\frac{1}{1-\\frac{\\partial Im\\Sigma(k, 0^+)}{\\partial \\omega}}
```
"""
function zfactor(param, Σ::GreenFunc.MeshArray; kamp=param.kF, ngrid=[0, 1])
@unpack kF, β = param
k_label = locate(Σ.mesh[2], kamp)
kamp = Σ.mesh[2][k_label]
Σ_freq = dlr_to_imfreq(to_dlr(Σ), ngrid[1:2])
ΣI = imag(Σ_freq[:, k_label])
ds_dw = (ΣI[2] - ΣI[1]) / 2 / π * β
Z0 = 1 / (1 - ds_dw)
return Z0, kamp
end
"""
function massratio(param, Σ::GreenFunc.MeshArray, Σ_ins::GreenFunc.MeshArray, δK=5e-6; kamp=param.kF)
calculate the effective mass of the self-energy at the momentum kamp
```math
\\frac{m^*_k}{m}=\\frac{1}{z_k} \\cdot \\left(1+\\frac{m}{k}\\frac{\\partial Re\\Sigma(k, 0)}{\\partial k}\\right)^{-1}
```
"""
function massratio(param, Σ::GreenFunc.MeshArray, Σ_ins::GreenFunc.MeshArray, δK=5e-6; kamp=param.kF)
# one can achieve ~1e-5 accuracy with δK = 5e-6
@unpack kF, me = param
δK *= kF
k_label = locate(Σ.mesh[2], kamp)
kamp = Σ.mesh[2][k_label]
z = zfactor(param, Σ; kamp=kamp)[1]
Σ_freq = dlr_to_imfreq(to_dlr(Σ), [0, 1])
k1, k2 = k_label, k_label + 1
while abs(Σ.mesh[2][k2] - Σ.mesh[2][k1]) < δK
k2 += 1
end
# @assert kF < kgrid.grid[k1] < kgrid.grid[k2] "k1 and k2 are not on the same side! It breaks $kF > $(kgrid.grid[k1]) > $(kgrid.grid[k2])"
sigma1 = real(Σ_freq[1, k1] + Σ_ins[1, k1])
sigma2 = real(Σ_freq[1, k2] + Σ_ins[1, k2])
ds_dk = (sigma1 - sigma2) / (Σ.mesh[2][k1] - Σ.mesh[2][k2])
return 1.0 / z / (1 + me / kamp * ds_dk), kamp
end
"""
function bandmassratio(param, Σ::GreenFunc.MeshArray, Σ_ins::GreenFunc.MeshArray; kamp=param.kF)
calculate the effective band mass of the self-energy at the momentum kamp
```math
\\frac{m^*_k}{m}=\\frac{1}{z_k}\\cdot \\left(1+\\frac{Re\\Sigma(k, 0) - Re\\Sigma(0, 0)}{k^2/2m}\\right)^{-1}
```
"""
function bandmassratio(param, Σ::GreenFunc.MeshArray, Σ_ins::GreenFunc.MeshArray; kamp=param.kF)
# one can achieve ~1e-5 accuracy with δK = 5e-6
@unpack me = param
z = zfactor(param, Σ; kamp=kamp)[1]
k_label = locate(Σ.mesh[2], kamp)
kamp = Σ.mesh[2][k_label]
Σ_freq = dlr_to_imfreq(to_dlr(Σ), [0, 1])
sigma1 = real(Σ_freq[1, k_label] + Σ_ins[1, k_label])
sigma2 = real(Σ_freq[1, 1] + Σ_ins[1, 1])
ds_dk = (sigma1 - sigma2) / (kamp^2 / 2 / me)
return 1.0 / z / (1 + ds_dk), kamp
end
function chemicalpotential(param, Σ::GreenFunc.MeshArray, Σ_ins::GreenFunc.MeshArray)
# one can achieve ~1e-5 accuracy with δK = 5e-6
@unpack kF, me = param
k_label = locate(Σ.mesh[2], kF)
Σ_freq = dlr_to_imfreq(to_dlr(Σ), [-1, 0])
return real(Σ_freq[1, k_label] + Σ_ins[1, k_label])
end
end
| ElectronGas | https://github.com/numericalEFT/ElectronGas.jl.git |
|
[
"MPL-2.0"
] | 0.2.5 | 3a6ed6c55afc461d479b8ef5114cf6733f2cef56 | code | 6307 | """
Provide N-body response and correlation functions
"""
module TwoPoint
export freePropagatorT, freePropagatorΩ
export freePolarizationT
using Lehmann
using Cuba
"""
freePropagatorT(type, τ, ω, β)
Imaginary-time propagator.
# Arguments
- `type`: symbol :fermi, :bose
- `τ`: the imaginary time, must be (-β, β]
- `ω`: dispersion ϵ_k-μ
- `β = 1.0`: the inverse temperature
"""
@inline function freePropagatorT(type, τ, ω, β)
return kernelT(type, τ, ω, β)
end
"""
freePropagatorΩ(type, n, ω, β=1.0)
Matsubara-frequency kernel of different type
# Arguments
- `type`: symbol :fermi, :bose, :corr
- `n`: index of the Matsubara frequency
- `ω`: dispersion ϵ_k-μ
- `β`: the inverse temperature
"""
@inline function freePropagatorΩ(type, n::Int, ω, β)
return kernelΩ(type, n, ω, β)
end
@inline function freeFermiDoS(dim, kF, m, spin)
if dim == 3
return spin * m * kF / 2 / π^2
else
error("Dimension $dim not implemented!")
# return spin/4/π
end
end
# function LindhardΩn(dim, q, ω, β, kF, m, spin)
# q < 0.0 && (q = -q) # Lindhard function is q symmetric
# q2 = q^2
# kFq = 2kF * q
# ωn = 2π * n / β
# D = 1 / (8kF * q)
# NF = freeFermiDoS(dim, kF, m, spin)
# # if ωn<=20*(q2+kFq)/(2m)
# # careful for small q or large w
# iw = ωn * im
# wmq2 = iw * 2m - q^2
# wpq2 = iw * 2m + q^2
# C1 = log(wmq2 - kFq) - log(wmq2 + kFq)
# C2 = log(wpq2 - kFq) - log(wpq2 + kFq)
# res = real(-NF / 2 * (1 - D * (wmq2^2 / q^2 - 4 * kF^2) * C1 + D * (wpq2^2 / q^2 - 4 * kF^2) * C2))
# # else
# # b2 = q2 * ( q2 + 12/5 * kF^2 )
# # c = 2*EF*kF*q2/(3*pi**2)
# # res = -c/(w**2 + b2)
# # end
# return res
# end
"""
LindhardΩnFiniteTemperature(dim::Int, q::T, n::Int, μ::T, kF::T, β::T, m::T, spin) where {T <: AbstractFloat}
Compute the polarization function of free electrons at a given frequency. Relative Accuracy is about ~ 1e-6
# Arguments
- `dim`: dimension
- `q`: external momentum, q<1e-4 will be treated as q=0
- `n`: externel Matsubara frequency, ωn=2π*n/β
- `μ`: chemical potential
- `kF`: Fermi momentum
- `β`: inverse temperature
- `m`: mass
- `spin` : number of spins
"""
@inline function LindhardΩnFiniteTemperature(dim::Int, q::T, n::Int, μ::T, kF::T, β::T, m::T, spin) where {T<:AbstractFloat}
if q < 0.0
q = -q
end
if q / kF < 1.0e-10
q = 1.0e-10 * kF
end
function polar(k)
phase = T(1.0)
if dim == 3
phase *= k^2 / (4π^2)
else
error("not implemented")
end
ω = 2π * n / β
ϵ = (k^2 - μ) / (2m)
p = phase * Spectral.fermiDirac(ϵ, β) * m / k / q * log(((q^2 - 2k * q)^2 + 4m^2 * ω^2) / ((q^2 + 2k * q)^2 + 4m^2 * ω^2)) * spin
if isnan(p)
println("warning: integrand at ω=$ω, q=$q, k=$k is NaN!")
end
# println(p)
return p
end
function integrand(x, f)
# x[1]:k
f[1] = polar(x[1] / (1 - x[1])) / (1 - x[1])^2
end
# TODO: use CompositeGrids to perform the integration
result, err = Cuba.cuhre(integrand, 2, 1, rtol = 1.0e-10)
# result, err = Cuba.vegas(integrand, 1, 1, rtol=rtol)
return result[1], err[1]
end
"""
3D Imaginary-time effective interaction derived from random phase approximation.
Return ``dW_0(q, τ)/v_q`` where ``v_q`` is the bare Coulomb interaction and ``dW_0`` is the dynamic part of the effective interaction.
The total effective interaction can be recoverd using,
```math
W_0(q, τ) = v_q δ(τ) + dW_0(q, τ).
```
The dynamic contribution is the fourier transform of,
```math
dW_0(q, iω_n)=v_q^2 Π(q, iω_n)/(1-v_q Π(q, iω_n))
```
Note that this dynamic contribution ``dW_0'' diverges at small q. For this reason, this function returns ``dW_0/v_q``
# Arguments
- `vqinv`: inverse bare interaction as a function of q
- `qgrid`: one-dimensional array of the external momentum q
- `τgrid`: one-dimensional array of the imaginary-time
- `dim`: dimension
- `μ`: chemical potential
- `kF`: Fermi momentum
- `β`: inverse temperature
- `spin` : number of spins
- `mass`: mass
"""
function dWRPA(vqinv, qgrid, τgrid, dim, μ, kF, β, spin, mass)
# @assert all(qgrid .!= 0.0)
EF = kF^2 / (2mass)
dlr = DLRGrid(Euv = 10EF, β = β, rtol = 1e-10, isFermi = false, symmetry = :ph) # effective interaction is a correlation function of the form <O(τ)O(0)>
Nq, Nτ = length(qgrid), length(τgrid)
Π = zeros(Complex{Float64}, (Nq, dlr.size)) # Matsubara grid is the optimized sparse DLR grid
dW0norm = similar(Π)
for (ni, n) in enumerate(dlr.n)
for (qi, q) in enumerate(qgrid)
Π[qi, ni] = LindhardΩnFiniteTemperature(dim, q, n, μ, kF, β, mass, spin)[1]
end
dW0norm[:, ni] = @. Π[:, ni] / (vqinv - Π[:, ni])
# println("ω_n=2π/β*$(n), Π(q=0, n=0)=$(Π[1, ni])")
# println("$ni $(dW0norm[2, ni])")
end
# display(dW0norm)
dW0norm = matfreq2tau(dlr, dW0norm, τgrid, axis = 2) # dW0/vq in imaginary-time representation, real-valued but in complex format
# println(dW0norm[1, :])
# println(DLR.matfreq2tau(:corr, dW0norm[1, :], dlr, τgrid, axis=1))
# println(DLR.matfreq2tau(:corr, dW0norm[2, :], dlr, τgrid, axis=1))
# coeff = DLR.matfreq2dlr(:corr, dW0norm[1, :], dlr)
# fitted = DLR.dlr2matfreq(:corr, coeff, dlr, dlr.n)
# for (ni, n) in enumerate(dlr.n)
# println(dW0norm[1, ni], " vs ", fitted[ni])
# end
return real.(dW0norm)
end
function interactionDynamic(config, qd, τIn, τOut)
para = config.para
dτ = abs(τOut - τIn)
kDiQ = sqrt(dot(qd, qd))
vd = 4π * e0^2 / (kDiQ^2 + mass2)
if kDiQ <= para.qgrid.grid[1]
q = para.qgrid.grid[1] + 1.0e-6
wd = vd * Grid.linear2D(para.dW0, para.qgrid, para.τgrid, q, dτ)
# the current interpolation vanishes at q=0, which needs to be corrected!
else
wd = vd * Grid.linear2D(para.dW0, para.qgrid, para.τgrid, kDiQ, dτ) # dynamic interaction, don't forget the singular factor vq
end
return vd / β, wd
end
function vertexDynamic(config, qd, qe, τIn, τOut)
vd, wd = interactionDynamic(config, qd, τIn, τOut)
ve, we = interactionDynamic(config, qe, τIn, τOut)
return -vd, -wd, ve, we
end
end | ElectronGas | https://github.com/numericalEFT/ElectronGas.jl.git |
|
[
"MPL-2.0"
] | 0.2.5 | 3a6ed6c55afc461d479b8ef5114cf6733f2cef56 | code | 1146 | @testset "Bethe-Slapter equation" begin
@testset "Cooper-pair linear response in 3D" begin
dim, θ, rs = 3, 1e-2, 2.0
param = Parameter.rydbergUnit(θ, rs, dim)
channel = 0
lamu, R_freq, F_freq = BSeq.linearResponse(param, channel;
Ntherm=50)
@test isapprox(lamu, -2.34540, rtol=1e-4)
# lamu, R_freq = BSeq.linearResponse(param, 1)
# @test isapprox(lamu, -1.23815, rtol=1e-5)
# test stop condition. When SC, converge to 0.0
dim, θ, rs = 3, 1 / 3200, 7.0
param = Parameter.rydbergUnit(θ, rs, dim)
channel = 0
lamu, R_freq, F_freq = BSeq.linearResponse(param, channel)
@test isapprox(lamu, 0.0, rtol=1e-10, atol=1e-10)
end
# @testset "Cooper-pair linear response in 2D" begin
# dim, θ, rs = 2, 1e-2, 1.5
# param = Parameter.rydbergUnit(θ, rs, dim)
# channel = 0
# lamu, R_freq = BSeq.linearResponse(param, channel)
# @test isapprox(lamu, -1.60555, rtol=1e-5)
# lamu, R_freq = BSeq.linearResponse(param, 1)
# @test isapprox(lamu, -1.05989, rtol=1e-5)
# end
end | ElectronGas | https://github.com/numericalEFT/ElectronGas.jl.git |
|
[
"MPL-2.0"
] | 0.2.5 | 3a6ed6c55afc461d479b8ef5114cf6733f2cef56 | code | 2595 | using MCIntegration
using ElectronGas
const k0, p0 = 1.000000000017037, 1.0000000000422837
param = LegendreInteraction.Parameter.defaultUnit(1e-4, 1.0, dim = 2)
const e0 = param.e0
# Define the integrand
function integrand(config)
#config.var is a tuple of variable types specified in the second argument of `MCIntegration.Configuration(...)`
X = config.var[1]
x = cos(X[1])
q2 = (k0 - p0)^2 + 2k0 * p0 * (1 - x)
if x == 1 || q2 <= 0
q2 = (k0 - p0)^2 + k0 * p0 * (X[1])^2
end
if config.curr == 1 #config.curr is the index of the currently sampled integral by MC
# return 4π / sqrt(q2)
return 4π * e0^2 / sqrt(q2)
end
end
# Define how to measure the observable
function measure(config)
factor = 1.0 / config.reweight[config.curr]
weight = integrand(config)
config.observable[config.curr] += weight / abs(weight) * factor #note that config.observable is an array with two elements as discussed below
end
# MC step of each block
const blockStep = 1e7
# Define the types variables, the first argument sets the range, the second argument gives the largest change to the variable in one MC update. see the section [variable](#variable) for more details.
T = MCIntegration.Continuous([0.0, π], 0.5)
# Define how many (degrees of freedom) variables of each type.
# For example, [[n1, n2], [m1, m2], ...] means the first integral involves n1 varibales of type 1, and n2 variables of type2, while the second integral involves m1 variables of type 1 and m2 variables of type 2.
dof = [[1],]
# Define the container for the observable. It must be a number or an array-like object. In this case, the observable has two elements, corresponds to the results for the two integrals.
obs = [0.0,]
# Define the configuration struct which is container of all kinds of internal data for MC,
# the second argument is a tuple listing all types of variables, one then specify the degrees of freedom of each variable type in the third argument.
config = MCIntegration.Configuration(blockStep, (T,), dof, obs)
# perform MC integration. Nblock is the number of independent blocks to estimate the error bar. In MPI mode, the blocks will be sent to different workers. Set "print=n" to control the level of information to print.
avg, err = MCIntegration.sample(config, integrand, measure; Nblock = 64, print = 1)
#avg, err are the same shape as obs. In MPI mode, only the root node return meaningful estimates. All other workers simply return nothing
if isnothing(avg) == false
println("bare kernel: $(avg[1]) +- $(err[1]) (exact: )")
end | ElectronGas | https://github.com/numericalEFT/ElectronGas.jl.git |
|
[
"MPL-2.0"
] | 0.2.5 | 3a6ed6c55afc461d479b8ef5114cf6733f2cef56 | code | 2399 | @testset "Interaction" begin
beta = 400
rs = 4.0
param = Parameter.defaultUnit(1 / beta, rs)
@testset "bubble dyson" begin
@test Interaction.coulombinv(0.0, Parameter.derive(param, gs=0.0, ga=0.0, Λs=0.0, Λa=0.0)) == (Inf, Inf)
@test Interaction.coulomb(0.0, Parameter.derive(param, gs=0.0, ga=0.0, Λs=0.0, Λa=0.0)) == (0.0, 0.0)
@test Interaction.coulombinv(0.0, Parameter.derive(param, ga=1.0, Λs=0.0, Λa=0.0)) == (0.0, 0.0)
@test Interaction.coulomb(0.0, Parameter.derive(param, ga=1.0, Λs=0.0, Λa=0.0)) == (Inf, Inf)
@test Interaction.coulombinv(1.0, Parameter.derive(param, gs=0.0, ga=0.0, Λs=0.0, Λa=0.0)) == (Inf, Inf)
@test Interaction.coulomb(1.0, Parameter.derive(param, gs=0.0, ga=0.0, Λs=0.0, Λa=0.0)) == (0.0, 0.0)
@test Interaction.bubbledyson(Inf, 1.0, 1.0) == 0.5
@test Interaction.bubbledyson(Inf, 0.0, 1.0) == 0.0
@test Interaction.bubbledyson(0.0, 1.0, 1.0) == -Inf
@test Interaction.bubbledyson(0.0, 0.0, 1.0) == -Inf
end
@testset "RPA and KO" begin
testq = [-1.0, 0.0, 1e-160, 1e-8, 0.5, 1.0, 2.0, 10.0]
val = Interaction.RPA(1.0, 1, param)[1] / Interaction.coulomb(1.0, param)[1]
@test isapprox(Interaction.RPA(1.0, 1, param; regular=true)[1], val, rtol=1e-10)
println(Interaction.KO(1.0, 1, param))
for q in testq
println(Interaction.RPA(q, 1, param; regular=true))
end
println(Interaction.KO(1.0, 1, param; regular=true))
# println(Interaction.RPA(1.0, 1, param; pifunc = Interaction.Polarization.Polarization0_FiniteTemp))
# println(Interaction.KO(1.0, 1, param; pifunc = Interaction.Polarization.Polarization0_FiniteTemp))
RPA_dyn, RPA_ins = Interaction.RPAwrapped(100 * param.EF, 1e-8, [1e-8, 0.5, 1.0, 2.0, 10.0], param)
show(RPA_dyn)
show(RPA_ins)
# println(RPA_dyn[1, :, :])
# println(RPA_dyn[2, :, :])
# println(RPA_ins[1, :, :])
# println(RPA_ins[2, :, :])
KO_dyn, KO_ins = Interaction.KOwrapped(100 * param.EF, 1e-8, [1e-8, 0.5, 1.0, 2.0, 10.0], param)
show(KO_dyn)
show(KO_ins)
# println(KO_dyn[1, :, :])
# println(KO_dyn[2, :, :])
# println(KO_ins[1, :, :])
# println(KO_ins[2, :, :])
F_s = Interaction.landauParameterMoroni(1.0, 0, param)
end
end
| ElectronGas | https://github.com/numericalEFT/ElectronGas.jl.git |
|
[
"MPL-2.0"
] | 0.2.5 | 3a6ed6c55afc461d479b8ef5114cf6733f2cef56 | code | 1270 | using MCIntegration
using ElectronGas
const para = Parameter.rydbergUnit(1.0 / 10, 4.0, 3)
const n = 0
const k = 0.1 * para.kF
function integrand(vars, config)
n, k, para = config.userdata
β, me, μ = para.β, para.me, para.μ
# f(k) = 1.0 / (exp(β * (k^2 / 2 / me - μ)) + 1)
function f(ek)
ek = β * ek
if ek > 0.0
return exp(-ek) / (exp(-ek) + 1)
else
return 1.0 / (exp(ek) + 1)
end
end
x, θ = vars[1][1], vars[2][1]
p = x / (1 - x)
freq = n * 2π / β * 1im
factor = 1 / (2π)^2 * sin(θ) * p^2 / (1 - x)^2
Ekp = (k^2 + p^2 + 2 * k * p * cos(θ)) / 2 / me - μ
Ep = p^2 / 2 / me - μ
w = (f(Ekp) - f(-Ep)) / (freq - Ekp - Ep) - me / p^2
if isfinite(w) && isfinite(factor)
return w * factor
#return 0.0 + imag(w * factor) * 1im
else
return 0.0 * 1im
end
end
function ladder(n::Int, k::Float64, para)
return integrate(integrand;
# var=(Continuous(2 * para.kF, 1000 * para.kF), Continuous(0.0, π * 1.0)),
var=(Continuous(0.0, 1.0 - 1e-6), Continuous(0.0, π * 1.0)),
dof=[[1, 1],],
userdata=(n, k, para),
type=ComplexF64,
print=1,
neval=1e6
)
end
println(ladder(n, k, para)) | ElectronGas | https://github.com/numericalEFT/ElectronGas.jl.git |
|
[
"MPL-2.0"
] | 0.2.5 | 3a6ed6c55afc461d479b8ef5114cf6733f2cef56 | code | 4995 | @testset "LegendreInteraction" begin
beta = 1e5
# set parameters
param = LegendreInteraction.Parameter.defaultUnit(1 / beta, 1.0)
kF = param.kF
Nk, minK, order, maxK = 16, 1e-8, 6, 10.0
# print(param)
@testset "Helper function" begin
println("Test helper function")
# test helper function
# test with known result: bare coulomb interaction
H1 = LegendreInteraction.helper_function(
1.0, 1, u -> LegendreInteraction.interaction_instant(u, param, :sigma), param;
Nk=Nk, minK=minK, order=order
)
H2 = LegendreInteraction.helper_function(
2.0, 1, u -> LegendreInteraction.interaction_instant(u, param, :sigma), param;
Nk=Nk, minK=minK, order=order
)
# println("$(H2-H1) == $(4*π*param.e0^2*log(2))")
@test isapprox(H2 - H1, 4 * π * param.e0^2 * log(2), rtol=1e-4)
helper_grid = CompositeGrid.LogDensedGrid(:cheb, [0.0, 2.1 * maxK], [0.0, 2kF], 4, 0.001, 4)
intgrid = CompositeGrid.LogDensedGrid(:cheb, [0.0, helper_grid[end]], [0.0, 2kF], 2Nk, 0.01minK, 2order)
helper = LegendreInteraction.helper_function_grid(helper_grid, intgrid, 1, u -> LegendreInteraction.interaction_instant(u, param, :sigma), param)
helper_analytic = (4 * π * param.e0^2) .* log.(helper_grid.grid)
helper_old = zeros(Float64, helper_grid.size)
for (yi, y) in enumerate(helper_grid)
helper_old[yi] = LegendreInteraction.helper_function(y, 1, u -> LegendreInteraction.interaction_instant(u, param, :sigma), param)
end
# println(helper .- helper[1])
# println(helper_old .- helper_old[1])
# println(helper_analytic .- helper_analytic[1])
rtol = 1e-6
for (yi, y) in enumerate(helper_grid)
@test isapprox(helper[yi] - helper[1], helper_analytic[yi] - helper_analytic[1], rtol=rtol)
@test isapprox(helper_old[yi] - helper_old[1], helper_analytic[yi] - helper_analytic[1], rtol=rtol)
end
end
@testset "DCKernel_2d" begin
println("Test DCKernel_2d")
# set parameters
param = LegendreInteraction.Parameter.defaultUnit(1 / beta, 1.0, dim=2)
kF = param.kF
println("kF = $kF")
Euv, rtol = 100 * param.EF, 1e-10
Nk, minK, order, maxK = 8, 1e-7kF, 8, 10kF
# Euv, rtol = 100 * param.EF, 1e-12
# maxK, minK = 20param.kF, 1e-9param.kF
# Nk, order = 16, 6
int_type = :rpa
W = LegendreInteraction.DCKernel_2d(param;
Euv=Euv, rtol=rtol, Nk=Nk, maxK=maxK, minK=minK, order=order, int_type=int_type, spin_state=:sigma)
fdlr = ElectronGas.Lehmann.DLRGrid(Euv, param.β, rtol, true, :pha)
bdlr = W.dlrGrid
kgrid = W.kgrid
qgrids = W.qgrids
kernel_bare = W.kernel_bare
kernel_freq = W.kernel
kernel = real(ElectronGas.Lehmann.matfreq2tau(bdlr, kernel_freq, fdlr.τ, bdlr.n; axis=3))
kF_label = searchsortedfirst(kgrid.grid, kF)
qF_label = searchsortedfirst(qgrids[kF_label].grid, kF)
println("static kernel at (kF, kF): $(kgrid.grid[kF_label]), $(qgrids[kF_label].grid[qF_label])")
println("$(kernel_bare[kF_label, qF_label])")
# println(kernel_bare[kF_label, :])
@test isapprox(kernel_bare[kF_label, qF_label], 284, rtol=0.04)
println("dynamic kernel at (kF, kF):")
println(view(kernel, kF_label, qF_label, :))
end
@testset "Test case: r_s=4, β=400, 3D" begin
println("Test 3D, rs=4, beta=400")
param = Parameter.defaultUnit(1 / beta, 4.0) # 3D UEG
Euv, rtol = 100 * param.EF, 1e-12
maxK, minK = 20param.kF, 1e-9param.kF
Nk, order = 16, 6
int_type = :rpa
#--- prepare kernel ---
W = LegendreInteraction.DCKernel0(param;
Euv=Euv, rtol=rtol, Nk=Nk, maxK=maxK, minK=minK, order=order,
int_type=int_type)
fdlr = ElectronGas.Lehmann.DLRGrid(Euv, param.β, rtol, true, :pha)
bdlr = W.dlrGrid
kgrid = W.kgrid
qgrids = W.qgrids
kernel_bare = W.kernel_bare
kernel_freq = W.kernel
kernel = real(ElectronGas.Lehmann.matfreq2tau(bdlr, kernel_freq, fdlr.τ, bdlr.n; axis=3))
kF_label = searchsortedfirst(kgrid.grid, param.kF)
qF_label = searchsortedfirst(qgrids[kF_label].grid, param.kF)
k, p = kgrid.grid[kF_label], qgrids[kF_label].grid[qF_label]
w0 = 4π * param.e0^2 * log((k + p) / abs(k - p)) / k / p
println("static kernel at (kF, kF): $k, $p")
println("$(kernel_bare[kF_label, qF_label]), Analytic: $w0")
@test isapprox(kernel_bare[kF_label, qF_label], w0, rtol=1e-6)
# @test isapprox(kernel_bare[kF_label, qF_label], 1314.5721928, rtol = 1e-6)
# println(kernel_bare[kF_label, :])
println("dynamic kernel at (kF, kF):")
println(view(kernel, kF_label, qF_label, :))
end
end
| ElectronGas | https://github.com/numericalEFT/ElectronGas.jl.git |
|
[
"MPL-2.0"
] | 0.2.5 | 3a6ed6c55afc461d479b8ef5114cf6733f2cef56 | code | 838 | @testset "Parameter" begin
# test constructor and reconstruct of Para
beta = 1e4
rs = 2.0
param = Parameter.defaultUnit(1 / beta, rs)
@test param.me == 0.5
@test param.EF == 1.0
@test param.kF == 1.0
@test param.β == beta
@test param.gs == 1.0
@test param.ga == 0.0
@test param.ωp ≈ sqrt(4 * param.kF^3 * param.e0^2 / 3 / param.me / π)
@test param.qTF ≈ sqrt(4 * π * param.e0^2 * param.NF)
newbeta = 1e3
ga = 1.0
newparam = Parameter.derive(param, β=newbeta, ga=ga)
@test newparam.me == 0.5
@test newparam.EF == 1.0
@test newparam.kF == 1.0
@test newparam.β == newbeta
@test newparam.ga == ga
@test newparam.ωp ≈ sqrt(4 * newparam.kF^3 * newparam.e0^2 / 3 / newparam.me / π)
@test newparam.qTF ≈ sqrt(4 * π * newparam.e0^2 * newparam.NF)
end
| ElectronGas | https://github.com/numericalEFT/ElectronGas.jl.git |
|
[
"MPL-2.0"
] | 0.2.5 | 3a6ed6c55afc461d479b8ef5114cf6733f2cef56 | code | 3651 | # using Gaston
@testset "Polarization" begin
beta, rs = 1e8, 1.0
param3d = Parameter.defaultUnit(1 / beta, rs, 3)
param2d = Parameter.defaultUnit(1 / beta, rs, 2)
@testset "Polarization: ZeroTemp vs. FiniteTemp" begin
# for low temp, Π from zero temp and finite temp should be close
qgrid = [-1.0, 0.0, 1e-16, 1e-8, 1e-7, 1e-6, 1e-5, 5e-5, 1e-4, 1e-3, 0.01, 0.05, 0.1, 0.25, 0.5, 1.0, 2.0, 3.0]
ngrid = [n for n in -5:20]
for (qi, q) in enumerate(qgrid)
for (ni, n) in enumerate(ngrid)
# println("q=$q, n=$n")
@test isapprox(
Polarization.Polarization0_ZeroTemp(q, n, param3d),
Polarization.Polarization0_FiniteTemp(q, n, param3d),
rtol=1e-6
)
end
end
for (qi, q) in enumerate(qgrid)
for (ni, n) in enumerate(ngrid)
@test isapprox(
Polarization.Polarization0_ZeroTemp(q, n, param2d),
Polarization.Polarization0_FiniteTemp(q, n, param2d),
rtol=1e-4
)
end
end
end
qgrid = [-1.0, 0.0, 1e-16, 1e-8, 1e-7, 1e-6, 1e-5, 5e-5, 1e-4, 1e-3, 0.01, 0.05, 0.1, 0.25, 0.5, 1.0, 2.0, 3.0]
ngrid = [n for n in -5:20]
@testset "Polarization0!: 3D ZeroTemp vs. FiniteTemp" begin
# param = Parameter.defaultUnit(1 / beta, rs, 3)
nmesh = MeshGrids.ImFreq(param3d.β, BOSON; grid=ngrid)
PZ = MeshArray(nmesh, qgrid; dtype=Float64)
PF = similar(PZ)
Polarization.Polarization0_ZeroTemp!(PZ, param3d)
Polarization.Polarization0_FiniteTemp!(PF, param3d)
for ind in eachindex(PZ)
@test isapprox(PZ[ind], PF[ind], rtol=1e-6)
end
end
@testset "Polarization: wrapped" begin
PZ = Polarization.Polarization0wrapped(100param3d.EF, 1e-10, qgrid, param3d, pifunc=Polarization.Polarization0_ZeroTemp!)
PF = Polarization.Polarization0wrapped(100param3d.EF, 1e-10, qgrid, param3d, pifunc=Polarization.Polarization0_FiniteTemp!)
PZ = Polarization.Polarization0wrapped(100param2d.EF, 1e-10, qgrid, param2d, pifunc=Polarization.Polarization0_ZeroTemp!)
# PZ = Polarization.Polarization0wrapped(100param.EF, 1e-10, qgrid, param, pifunc=Polarization.Polarization0_ZeroTemp)
# PF = Polarization.Polarization0wrapped(100param.EF, 1e-10, qgrid, param, pifunc=Polarization.Polarization0_FiniteTemp)
end
@testset "Ladder" begin
para = Parameter.rydbergUnit(1.0 / 10, 4.0, 3)
ladder = Polarization.Ladder0_FiniteTemp(0.1 * para.kF, 1, para, gaussN=16, minterval=1e-8)
@test abs(real(ladder) - 0.0053666) < 3 * 1.7e-5
@test abs(imag(ladder) - 0.006460) < 3 * 1.1e-5
ladder = Polarization.Ladder0_FiniteTemp(0.1 * para.kF, 0, para, gaussN=16, minterval=1e-8) #zero frequency
@test abs(real(ladder) - 0.021199) < 3 * 2.0e-5
@test abs(imag(ladder) - 0.0) < 3 * 3.3e-11
end
# while true
# print("Please enter a whole number between 1 and 5: ")
# input = readline(stdin)
# value = tryparse(Int, input)
# if value !== nothing && 1 <= value <= 5
# println("You entered $(input)")
# break
# else
# @warn "Enter a whole number between 1 and 5"
# end
# end
# plt = plot(qgrid, polar, ytics = -0.08:0.01, ls = 1, Axes(grid = :on, key = "left"))
# display(plt)
# save(term = "png", output = "polar_2d.png",
# saveopts = "font 'Consolas,10' size 1280,900 lw 1")
end
| ElectronGas | https://github.com/numericalEFT/ElectronGas.jl.git |
|
[
"MPL-2.0"
] | 0.2.5 | 3a6ed6c55afc461d479b8ef5114cf6733f2cef56 | code | 408 | using ElectronGas
using CompositeGrids
using Test
using GreenFunc, Lehmann
@testset "ElectronGas.jl" begin
# Write your tests here.
if isempty(ARGS)
include("parameter.jl")
include("polarization.jl")
include("interaction.jl")
include("legendreinteraction.jl")
include("selfenergy.jl")
include("BSeq.jl")
else
include(ARGS[1])
end
end
| ElectronGas | https://github.com/numericalEFT/ElectronGas.jl.git |
|
[
"MPL-2.0"
] | 0.2.5 | 3a6ed6c55afc461d479b8ef5114cf6733f2cef56 | code | 7836 | @testset "Self Energy" begin
@testset "3D Fock" begin
θ, rs = 0.1, 1.0
para = Parameter.rydbergUnit(θ, rs, 3)
println("$(para.μ), $(para.EF)")
factor = -para.e0^2 * para.kF / π
#test edge case when k → 0
@test isapprox(SelfEnergy.Fock0_ZeroTemp(0.0, para) / factor, 2.0, rtol=1e-6)
@test isapprox(SelfEnergy.Fock0_ZeroTemp(1e-6, para) / factor, 2.0, rtol=1e-6)
#test edge case when k → 0
@test isapprox(SelfEnergy.Fock0_ZeroTemp(para.kF, para) / factor, 1.0, rtol=1e-6)
@test isapprox(SelfEnergy.Fock0_ZeroTemp(para.kF + 1e-7, para) / factor, 1.0, rtol=1e-6)
@test isapprox(SelfEnergy.Fock0_ZeroTemp(para.kF - 1e-7, para) / factor, 1.0, rtol=1e-6)
#test edge case when Λs → 0
para = Parameter.rydbergUnit(θ, rs, 3, Λs=1e-12)
@test isapprox(SelfEnergy.Fock0_ZeroTemp(0.0, para) / factor, 2.0, rtol=1e-6)
end
@testset "2D Fock" begin
θ, rs = 0.1, 1.0
para = Parameter.rydbergUnit(θ, rs, 2, Λs=0.1)
println("$(para.μ), $(para.EF)")
#test edge case when k → 0
f1 = SelfEnergy.Fock0_ZeroTemp(0.0, para)
f2 = SelfEnergy.Fock0_ZeroTemp(1e-7, para)
@test isapprox(f1, f2, rtol=1e-6)
para1 = Parameter.rydbergUnit(θ, rs, 2)
para2 = Parameter.rydbergUnit(θ, rs, 2, Λs=1e-12)
@test isapprox(SelfEnergy.Fock0_ZeroTemp(para1.kF, para1), SelfEnergy.Fock0_ZeroTemp(para2.kF, para2), rtol=1e-6)
end
@testset "RPA based on the user-defined kgrid" begin
θ, rs = 0.01, 4.0
para = Parameter.rydbergUnit(θ, rs, 3, Λs=1e-5)
sigma1 = SelfEnergy.G0W0(para)
kFidx = locate(sigma1[1].mesh[2], para.kF)
sigma2 = SelfEnergy.G0W0(para, [sigma1[1].mesh[2][kFidx],])
@test isapprox(sigma1[1][1, kFidx], sigma2[1][1, 1], rtol=1e-6)
@test isapprox(sigma1[2][1, kFidx], sigma2[2][1, 1], rtol=1e-6)
para = Parameter.rydbergUnit(θ, rs, 2, Λs=1e-5)
sigma1 = SelfEnergy.G0W0(para)
kFidx = locate(sigma1[1].mesh[2], para.kF)
sigma2 = SelfEnergy.G0W0(para, [sigma1[1].mesh[2][kFidx],])
@test isapprox(sigma1[1][1, kFidx], sigma2[1][1, 1], rtol=1e-6)
@test isapprox(sigma1[2][1, kFidx], sigma2[2][1, 1], rtol=1e-6)
end
@testset "3D RPA" begin
# make sure everything works for different unit sets
θ = 0.001
# rslist = [1.0, 2.0, 3.0, 4.0, 5.0, 6.0]
# zlist = [0.859, 0.764, 0.700, 0.645, 0.602, 0.568]
# mlist = [0.970, 0.992, 1.016, 1.039, 1.059, 1.078]
## our results: zlist = [0.859, 0.764, 0.693, 0.637, 0.591]
# rslist = [5.0,]
# zlist = [0.5913,]
# mlist = [1.059,]
# rslist = [1.0, 2.0]
# zlist = [0.859, 0.764]
# mlist = [0.970, 0.992]
rslist = [2.0,]
zlist = [0.764,]
mlist = [0.992,]
for (ind, rs) in enumerate(rslist)
param = Parameter.rydbergUnit(θ, rs)
kF, β = param.kF, param.β
Euv, rtol = 1000 * param.EF, 1e-11
# Nk, order = 8, 4
# maxK, minK = 10kF, 1e-7kF
# Nk, order = 11, 8
maxK, minK = 20kF, 1e-8kF
Nk, order = 12, 8
# maxK, minK = 10kF, 1e-9kF
# Euv, rtol = 1000 * param.EF, 1e-11
# maxK, minK = 20param.kF, 1e-9param.kF
# Nk, order = 16, 12
kgrid = CompositeGrid.LogDensedGrid(:gauss, [0.0, maxK], [0.0, kF], Nk, minK, order)
# test G0
G0 = SelfEnergy.G0wrapped(Euv, rtol, kgrid, param)
# kF_label = searchsortedfirst(kgrid.grid, kF)
kF_label = locate(G0.mesh[2], kF)
G0_dlr = G0 |> to_dlr
G0_tau = G0_dlr |> to_imtime
G0_ins = dlr_to_imtime(G0_dlr, [β,]) * (-1)
integrand = real(G0_ins[1, :]) .* kgrid.grid .* kgrid.grid
density0 = CompositeGrids.Interp.integrate1D(integrand, kgrid) / π^2
@test isapprox(param.n, density0, rtol=3e-5)
@time Σ, Σ_ins = SelfEnergy.G0W0(param, Euv, rtol, Nk, maxK, minK, order, :rpa)
Z0 = (SelfEnergy.zfactor(param, Σ))[1]
z = zlist[ind]
@test isapprox(Z0, z, rtol=3e-3)
mratio = SelfEnergy.massratio(param, Σ, Σ_ins)[1]
mratio1 = SelfEnergy.massratio(param, Σ, Σ_ins, 1e-5)[1]
m = mlist[ind]
@test isapprox(mratio, m, rtol=3e-3)
@test isapprox(mratio, mratio1, rtol=1e-4)
println("θ = $θ, rs= $rs")
println("Z-factor = $Z0 ($z), rtol=$(Z0/z-1)")
println("m*/m = $mratio ($m), rtol=$(mratio/m-1)")
## test G_RPA
G = SelfEnergy.Gwrapped(Σ, Σ_ins, param)
G_dlr = G |> to_dlr
G_tau = G_dlr |> to_imtime
G_ins = dlr_to_imtime(G_dlr, [β,]) * (-1)
integrand = real(G_ins[1, :]) .* kgrid.grid .* kgrid.grid
density = CompositeGrids.Interp.integrate1D(integrand, kgrid) / π^2
@test isapprox(param.n, density, rtol=5e-3)
println("density n, from G0, from G_RPA: $(param.n), $density0 (rtol=$(density0/param.n-1)), $density (rtol=$(density/param.n-1))")
end
end
@testset "2D RPA" begin
dim = 2
θ = 1e-5
# rslist = [0.5, 1.0, 2.0, 3.0, 4.0, 5.0, 8.0, 10.0]
# zlist = [0.786, 0.662, 0.519, 0.437, 0.383, 0.344, 0.270, 0.240]
# mlist = [0.981, 1.020, 1.078, 1.117, 1.143, 1.162, 1.196, 1.209]
rslist = [1.0,]
zlist = [0.662,]
mlist = [1.02,]
# zlist = [0.786, 0.662, 0.519]
# mlist = [0.981, 1.020, 1.078]
for (ind, rs) in enumerate(rslist)
param = Parameter.rydbergUnit(θ, rs, dim)
kF, β = param.kF, param.β
Euv, rtol = 1000 * param.EF, 1e-10
# set Nk, minK = 8, 1e-7 for β<1e6; 11, 1e-8 for β<1e7
# Nk, order, minK = 11, 8, 1e-8
Nk, order = 8, 8
maxK, minK = 10kF, 1e-7kF
# Euv, rtol = 100 * param.EF, 1e-12
# maxK, minK = 20param.kF, 1e-9param.kF
# Nk, order = 16, 6
kgrid = CompositeGrid.LogDensedGrid(:cheb, [0.0, maxK], [0.0, kF], Nk, minK, order)
## test G0
G0 = SelfEnergy.G0wrapped(Euv, rtol, kgrid, param)
kF_label = locate(G0.mesh[2], kF)
G0_dlr = G0 |> to_dlr
G0_tau = G0_dlr |> to_imtime
G0_ins = dlr_to_imtime(G0_dlr, [β,]) * (-1)
integrand = real(G0_ins[1, :]) .* kgrid.grid
density0 = CompositeGrids.Interp.integrate1D(integrand, kgrid) / π
@test isapprox(param.n, density0, rtol=3e-5)
@time Σ, Σ_ins = SelfEnergy.G0W0(param, Euv, rtol, Nk, maxK, minK, order, :rpa)
Z0 = (SelfEnergy.zfactor(param, Σ))[1]
z = zlist[ind]
@test isapprox(Z0, z, rtol=3e-3)
mratio = SelfEnergy.massratio(param, Σ, Σ_ins)[1]
m = mlist[ind]
@test isapprox(mratio, m, rtol=3e-3)
println("θ = $θ, rs= $rs")
println("Z-factor = $Z0 ($z), rtol=$(Z0/z-1)")
println("m*/m = $mratio ($m), rtol=$(mratio/m-1)")
## test G_RPA
G = SelfEnergy.Gwrapped(Σ, Σ_ins, param)
G_dlr = G |> to_dlr
G_tau = G_dlr |> to_imtime
G_ins = dlr_to_imtime(G_dlr, [β,]) * (-1)
integrand = real(G_ins[1, :]) .* kgrid.grid
density = CompositeGrids.Interp.integrate1D(integrand, kgrid) / π
@test isapprox(param.n, density, atol=3e-4)
println("density n, from G0, from G_RPA: $(param.n), $density0 (rtol=$(density0/param.n-1)), $density (rtol=$(density/param.n-1))")
end
end
end | ElectronGas | https://github.com/numericalEFT/ElectronGas.jl.git |
|
[
"MPL-2.0"
] | 0.2.5 | 3a6ed6c55afc461d479b8ef5114cf6733f2cef56 | docs | 612 | # ElectronGas
[](https://numericalEFT.github.io/ElectronGas.jl/stable)
[](https://numericalEFT.github.io/ElectronGas.jl/dev)
[](https://github.com/numericalEFT/ElectronGas.jl/actions/workflows/CI.yml?query=branch%3Amaster)
[](https://codecov.io/gh/numericalEFT/ElectronGas.jl)
| ElectronGas | https://github.com/numericalEFT/ElectronGas.jl.git |
|
[
"MPL-2.0"
] | 0.2.5 | 3a6ed6c55afc461d479b8ef5114cf6733f2cef56 | docs | 367 | ```@meta
CurrentModule = ElectronGas
```
# ElectronGas
Documentation for [ElectronGas](https://github.com/numericalEFT/ElectronGas.jl).
```@index
```
## Library Outline
```@contents
Pages = [
"lib/parameter.md",
"lib/selfenergy.md",
"lib/polarization.md",
"lib/interaction.md",
"lib/legendreinteraction.md",
"lib/BSeq.md",
]
Depth = 1
```
| ElectronGas | https://github.com/numericalEFT/ElectronGas.jl.git |
|
[
"MPL-2.0"
] | 0.2.5 | 3a6ed6c55afc461d479b8ef5114cf6733f2cef56 | docs | 83 | # Bethe-Slapter-type equation solver
```@autodocs
Modules = [ElectronGas.BSeq]
``` | ElectronGas | https://github.com/numericalEFT/ElectronGas.jl.git |
|
[
"MPL-2.0"
] | 0.2.5 | 3a6ed6c55afc461d479b8ef5114cf6733f2cef56 | docs | 66 | # Convention
```@autodocs
Modules = [ElectronGas.Convention]
```
| ElectronGas | https://github.com/numericalEFT/ElectronGas.jl.git |
|
[
"MPL-2.0"
] | 0.2.5 | 3a6ed6c55afc461d479b8ef5114cf6733f2cef56 | docs | 68 | # Interaction
```@autodocs
Modules = [ElectronGas.Interaction]
```
| ElectronGas | https://github.com/numericalEFT/ElectronGas.jl.git |
|
[
"MPL-2.0"
] | 0.2.5 | 3a6ed6c55afc461d479b8ef5114cf6733f2cef56 | docs | 96 | # Legendre Decomposed Interaction
```@autodocs
Modules = [ElectronGas.LegendreInteraction]
```
| ElectronGas | https://github.com/numericalEFT/ElectronGas.jl.git |
|
[
"MPL-2.0"
] | 0.2.5 | 3a6ed6c55afc461d479b8ef5114cf6733f2cef56 | docs | 64 | # Parameter
```@autodocs
Modules = [ElectronGas.Parameter]
```
| ElectronGas | https://github.com/numericalEFT/ElectronGas.jl.git |
|
[
"MPL-2.0"
] | 0.2.5 | 3a6ed6c55afc461d479b8ef5114cf6733f2cef56 | docs | 70 | # Polarization
```@autodocs
Modules = [ElectronGas.Polarization]
```
| ElectronGas | https://github.com/numericalEFT/ElectronGas.jl.git |
|
[
"MPL-2.0"
] | 0.2.5 | 3a6ed6c55afc461d479b8ef5114cf6733f2cef56 | docs | 67 | # Self Energy
```@autodocs
Modules = [ElectronGas.SelfEnergy]
```
| ElectronGas | https://github.com/numericalEFT/ElectronGas.jl.git |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.