licenses
sequencelengths 1
3
| version
stringclasses 677
values | tree_hash
stringlengths 40
40
| path
stringclasses 1
value | type
stringclasses 2
values | size
stringlengths 2
8
| text
stringlengths 25
67.1M
| package_name
stringlengths 2
41
| repo
stringlengths 33
86
|
---|---|---|---|---|---|---|---|---|
[
"Apache-2.0"
] | 0.4.0 | 0736fd885e445c13b7b58e31d1ccc37a4950f7df | code | 4967 | using UnitDiskMapping, Test
using Graphs, GenericTensorNetworks
using UnitDiskMapping: is_independent_set
@testset "crossing connect count" begin
g = smallgraph(:bull)
ug = embed_graph(g; vertex_order=collect(nv(g):-1:1))
gadgets = [
Cross{false}(), Cross{true}(),
Turn(), WTurn(), Branch(), BranchFix(), TCon(), TrivialTurn(),
RotatedGadget(TCon(), 1), ReflectedGadget(Cross{true}(), "y"),
ReflectedGadget(TrivialTurn(), "y"), BranchFixB(),
ReflectedGadget(RotatedGadget(TCon(), 1), "y"),]
for (s, c) in zip(gadgets,
[1,0,
1,1,0,1,1,1,
0, 0,
2, 0,
1,
])
@show s
@test sum(match.(Ref(s), Ref(ug.content), (0:size(ug.content, 1))', 0:size(ug.content,2))) == c
end
mug, tape = apply_crossing_gadgets!(UnitDiskMapping.UnWeighted(), copy(ug))
for s in gadgets
@test sum(match.(Ref(s), Ref(mug.content), (0:size(mug.content, 1))', 0:size(mug.content,2))) == 0
end
ug2 = unapply_gadgets!(copy(mug), tape, [])[1]
@test UnitDiskMapping.padding(ug2) == 2
@test ug == ug2
end
@testset "map configurations back" begin
for graphname in [:petersen, :bull, :cubical, :house, :diamond, :tutte]
@show graphname
g = smallgraph(graphname)
ug = embed_graph(g)
mis_overhead0 = UnitDiskMapping.mis_overhead_copylines(ug)
ug2, tape = apply_crossing_gadgets!(UnitDiskMapping.UnWeighted(), copy(ug))
ug3, tape2 = apply_simplifier_gadgets!(copy(ug2); ruleset=[RotatedGadget(UnitDiskMapping.DanglingLeg(), n) for n=0:3])
mis_overhead1 = sum(x->mis_overhead(x[1]), tape)
mis_overhead2 = sum(x->mis_overhead(x[1]), tape2)
@show mis_overhead2
gp = GenericTensorNetwork(IndependentSet(SimpleGraph(ug3)); optimizer=GreedyMethod(nrepeat=10))
missize_map = solve(gp, SizeMax())[].n
missize = solve(GenericTensorNetwork(IndependentSet(g)), SizeMax())[].n
@test mis_overhead0 + mis_overhead1 + mis_overhead2 + missize == missize_map
misconfig = solve(gp, SingleConfigMax())[].c
c = zeros(Int, size(ug3.content))
for (i, loc) in enumerate(findall(!isempty, ug3.content))
c[loc] = misconfig.data[i]
end
@test all(ci->UnitDiskMapping.safe_get(c, ci.I...)==0 || (UnitDiskMapping.safe_get(c, ci.I[1], ci.I[2]+1) == 0 && UnitDiskMapping.safe_get(c, ci.I[1]+1, ci.I[2]) == 0 &&
UnitDiskMapping.safe_get(c, ci.I[1]-1, ci.I[2]) == 0 && UnitDiskMapping.safe_get(c, ci.I[1], ci.I[2]-1) == 0 &&
UnitDiskMapping.safe_get(c, ci.I[1]-1, ci.I[2]-1) == 0 && UnitDiskMapping.safe_get(c, ci.I[1]-1, ci.I[2]+1) == 0 &&
UnitDiskMapping.safe_get(c, ci.I[1]+1, ci.I[2]-1) == 0 && UnitDiskMapping.safe_get(c, ci.I[1]+1, ci.I[2]+1) == 0
), CartesianIndices((55, 55)))
res, cs = unapply_gadgets!(copy(ug3), [tape..., tape2...], [copy(c)])
@test count(isone, cs[1]) == missize
@test is_independent_set(g, cs[1])
end
end
@testset "interface K23, empty and path" begin
K23 = SimpleGraph(5)
add_edge!(K23, 1, 5)
add_edge!(K23, 4, 5)
add_edge!(K23, 4, 3)
add_edge!(K23, 3, 2)
add_edge!(K23, 5, 2)
add_edge!(K23, 1, 3)
for g in [K23, SimpleGraph(5), path_graph(5)]
res = map_graph(g)
# checking size
gp = GenericTensorNetwork(IndependentSet(SimpleGraph(res.grid_graph)); optimizer=TreeSA(ntrials=1, niters=10))
missize_map = solve(gp, SizeMax())[].n
missize = solve(GenericTensorNetwork(IndependentSet(g)), SizeMax())[].n
@test res.mis_overhead + missize == missize_map
# checking mapping back
misconfig = solve(gp, SingleConfigMax())[].c
original_configs = map_config_back(res, collect(Bool, misconfig.data))
@test count(isone, original_configs) == missize
@test is_independent_set(g, original_configs)
end
end
@testset "interface" begin
g = smallgraph(:petersen)
res = map_graph(g)
# checking size
gp = GenericTensorNetwork(IndependentSet(SimpleGraph(res.grid_graph)); optimizer=TreeSA(ntrials=1, niters=10))
missize_map = solve(gp, SizeMax())[].n
missize = solve(GenericTensorNetwork(IndependentSet(g)), SizeMax())[].n
@test res.mis_overhead + missize == missize_map
# checking mapping back
misconfig = solve(gp, SingleConfigMax())[].c
original_configs = map_config_back(res, collect(misconfig.data))
@test count(isone, original_configs) == missize
@test is_independent_set(g, original_configs)
@test println(res.grid_graph) === nothing
c = zeros(Int, size(res.grid_graph))
for (i, n) in enumerate(res.grid_graph.nodes)
c[n.loc...] = misconfig.data[i]
end
@test print_config(res, c) === nothing
end
| UnitDiskMapping | https://github.com/QuEraComputing/UnitDiskMapping.jl.git |
|
[
"Apache-2.0"
] | 0.4.0 | 0736fd885e445c13b7b58e31d1ccc37a4950f7df | code | 1475 | using GenericTensorNetworks
using Test, UnitDiskMapping, Graphs
#using LuxorGraphPlot
@testset "multiplier" begin
m, pins = UnitDiskMapping.multiplier()
g, ws = UnitDiskMapping.graph_and_weights(m)
configs = solve(GenericTensorNetwork(IndependentSet(g, ws)), ConfigsMax())[].c
# completeness
inputs = Int[]
for config in configs
ci = config[pins[1:4]]
push!(inputs, ci[1]+ci[2]<<1+ci[3]<<2+ci[4]<<3)
end
@test length(unique(inputs)) == 16
# soundness
for config in configs
ci = Int.(config[pins])
println(ci[1:4], " " ,ci[5])
@test ci[2] == ci[6]
@test ci[3] == ci[8]
@test ci[1] + ci[2]*ci[3] + ci[4] == ci[5] + 2 * ci[7]
end
end
@testset "factoring" begin
mres = UnitDiskMapping.map_factoring(2, 2)
res = UnitDiskMapping.solve_factoring(mres, 6) do g, ws
collect(Int, solve(GenericTensorNetwork(IndependentSet(g, ws)), SingleConfigMax())[].c.data)
end
@test res == (2, 3) || res == (3, 2)
res = UnitDiskMapping.solve_factoring(mres, 9) do g, ws
collect(Int, solve(GenericTensorNetwork(IndependentSet(g, ws)), SingleConfigMax())[].c.data)
end
@test res == (3, 3)
mres = UnitDiskMapping.map_factoring(2, 3)
res = UnitDiskMapping.solve_factoring(mres, 15) do g, ws
collect(Int, solve(GenericTensorNetwork(IndependentSet(g, ws)), SingleConfigMax())[].c.data)
end
@test res == (5, 3) || res == (3, 5)
end | UnitDiskMapping | https://github.com/QuEraComputing/UnitDiskMapping.jl.git |
|
[
"Apache-2.0"
] | 0.4.0 | 0736fd885e445c13b7b58e31d1ccc37a4950f7df | code | 800 | using UnitDiskMapping
using Test
@testset "utils" begin
include("utils.jl")
end
@testset "copyline" begin
include("copyline.jl")
end
@testset "multiplier" begin
include("multiplier.jl")
end
@testset "logic gates" begin
include("logicgates.jl")
end
@testset "mapping" begin
include("mapping.jl")
end
@testset "extracting_results" begin
include("extracting_results.jl")
end
@testset "gadgets" begin
include("gadgets.jl")
end
@testset "path decomposition" begin
include("pathdecomposition/pathdecomposition.jl")
end
@testset "simplifiers" begin
include("simplifiers.jl")
end
@testset "weighted" begin
include("weighted.jl")
end
@testset "drag and drop" begin
include("dragondrop.jl")
end
@testset "visualize" begin
include("visualize.jl")
end
| UnitDiskMapping | https://github.com/QuEraComputing/UnitDiskMapping.jl.git |
|
[
"Apache-2.0"
] | 0.4.0 | 0736fd885e445c13b7b58e31d1ccc37a4950f7df | code | 842 | using UnitDiskMapping, Test, Graphs
@testset "constructor" begin
p = UnitDiskMapping.DanglingLeg()
@test size(p) == (4, 3)
@test UnitDiskMapping.source_locations(p) == UnitDiskMapping.Node.([(2,2), (3,2), (4,2)])
@test UnitDiskMapping.mapped_locations(p) == UnitDiskMapping.Node.([(4,2)])
end
@testset "macros" begin
@gg Test1 = """
. . . .
. . @ .
. @ . .
. @ . .
""" => """
. . . .
. . . .
. . . .
. @ . .
"""
sl, sg, sp = source_graph(Test1())
ml, mg, mp = mapped_graph(Test1())
@show sg, collect(edges(sg))
@test sl == UnitDiskMapping.Node.([(3, 2), (4,2), (2, 3)])
@test sg == UnitDiskMapping.simplegraph([(1,2), (1,3)])
@test sp == [2]
@test ml == [UnitDiskMapping.Node(4,2)]
@test mg == UnitDiskMapping.SimpleGraph(1)
@test mp == [1]
end | UnitDiskMapping | https://github.com/QuEraComputing/UnitDiskMapping.jl.git |
|
[
"Apache-2.0"
] | 0.4.0 | 0736fd885e445c13b7b58e31d1ccc37a4950f7df | code | 382 | using UnitDiskMapping: rotate90, reflectx, reflecty, reflectdiag, reflectoffdiag
using Test
@testset "symmetry operations" begin
center = (2,2)
loc = (4,3)
@test rotate90(loc, center) == (1,4)
@test reflectx(loc, center) == (4,1)
@test reflecty(loc, center) == (0,3)
@test reflectdiag(loc, center) == (1,0)
@test reflectoffdiag(loc, center) == (3,4)
end | UnitDiskMapping | https://github.com/QuEraComputing/UnitDiskMapping.jl.git |
|
[
"Apache-2.0"
] | 0.4.0 | 0736fd885e445c13b7b58e31d1ccc37a4950f7df | code | 1449 | using UnitDiskMapping, Graphs, LuxorGraphPlot, LuxorGraphPlot.Luxor, LinearAlgebra
using Test
@testset "show_graph" begin
g = smallgraph(:petersen)
res = map_graph(g)
@test show_graph(res.grid_graph) isa Luxor.Drawing
@test show_grayscale(res.grid_graph) isa Luxor.Drawing
@test show_pins(res.grid_graph, Dict("red"=>[1,2,4])) isa Luxor.Drawing
config = rand(0:1, length(coordinates(res.grid_graph)))
@test show_config(res.grid_graph, config; show_number=true) isa Drawing
end
@testset "show_graph - weighted" begin
g = smallgraph(:petersen)
res = map_graph(Weighted(), g)
@test show_grayscale(res.grid_graph) isa Luxor.Drawing
@test show_pins(res) isa Luxor.Drawing
end
@testset "show_pins, logic" begin
mres = UnitDiskMapping.map_factoring(2, 2)
@test show_pins(mres) isa Luxor.Drawing
gd = UnitDiskMapping.Gate(:AND)
@test show_pins(gd) isa Luxor.Drawing
end
@testset "show_pins, qubo" begin
n = 7
H = -randn(n) * 0.05
J = triu(randn(n, n) * 0.001, 1); J += J'
qubo = UnitDiskMapping.map_qubo(J, H)
@test show_pins(qubo) isa Luxor.Drawing
m, n = 6, 6
coupling = [
[(i,j,i,j+1,0.01*randn()) for i=1:m, j=1:n-1]...,
[(i,j,i+1,j,0.01*randn()) for i=1:m-1, j=1:n]...
]
onsite = vec([(i, j, 0.01*randn()) for i=1:m, j=1:n])
qubo = UnitDiskMapping.map_qubo_square(coupling, onsite)
@test show_pins(qubo) isa Luxor.Drawing
end | UnitDiskMapping | https://github.com/QuEraComputing/UnitDiskMapping.jl.git |
|
[
"Apache-2.0"
] | 0.4.0 | 0736fd885e445c13b7b58e31d1ccc37a4950f7df | code | 4712 | using Test, UnitDiskMapping, Graphs, GenericTensorNetworks
using GenericTensorNetworks: TropicalF64, content
using Random
using UnitDiskMapping: is_independent_set
@testset "gadgets" begin
for s in [UnitDiskMapping.crossing_ruleset_weighted..., UnitDiskMapping.default_simplifier_ruleset(Weighted())...]
println("Testing gadget:\n$s")
locs1, g1, pins1 = source_graph(s)
locs2, g2, pins2 = mapped_graph(s)
@assert length(locs1) == nv(g1)
w1 = getfield.(locs1, :weight)
w2 = getfield.(locs2, :weight)
w1[pins1] .-= 1
w2[pins2] .-= 1
gp1 = GenericTensorNetwork(IndependentSet(g1, w1), openvertices=pins1)
gp2 = GenericTensorNetwork(IndependentSet(g2, w2), openvertices=pins2)
m1 = solve(gp1, SizeMax())
m2 = solve(gp2, SizeMax())
mm1 = maximum(m1)
mm2 = maximum(m2)
@test nv(g1) == length(locs1) && nv(g2) == length(locs2)
if !(all((mm1 .== m1) .== (mm2 .== m2)))
@show m1
@show m2
end
@test all((mm1 .== m1) .== (mm2 .== m2))
@test content(mm1 / mm2) == -mis_overhead(s)
end
end
@testset "copy lines" begin
for (vstart, vstop, hstop) in [
(3, 7, 8), (3, 5, 8), (5, 9, 8), (5, 5, 8),
(1, 7, 5), (5, 8, 5), (1, 5, 5), (5, 5, 5)]
tc = UnitDiskMapping.CopyLine(1, 5, 5, vstart, vstop, hstop)
locs = UnitDiskMapping.copyline_locations(UnitDiskMapping.WeightedNode, tc; padding=2)
g = SimpleGraph(length(locs))
weights = getfield.(locs, :weight)
for i=1:length(locs)-1
if i==1 || locs[i-1].weight == 1 # starting point
add_edge!(g, length(locs), i)
else
add_edge!(g, i, i-1)
end
end
gp = GenericTensorNetwork(IndependentSet(g, weights))
@test solve(gp, SizeMax())[].n == UnitDiskMapping.mis_overhead_copyline(Weighted(), tc)
end
end
@testset "map configurations back" begin
Random.seed!(2)
for graphname in [:petersen, :bull, :cubical, :house, :diamond, :tutte]
@show graphname
g = smallgraph(graphname)
ug = embed_graph(Weighted(), g)
mis_overhead0 = UnitDiskMapping.mis_overhead_copylines(ug)
ug2, tape = apply_crossing_gadgets!(Weighted(), copy(ug))
ug3, tape2 = apply_simplifier_gadgets!(copy(ug2); ruleset=[UnitDiskMapping.weighted(RotatedGadget(UnitDiskMapping.DanglingLeg(), n)) for n=0:3])
mis_overhead1 = sum(x->mis_overhead(x[1]), tape)
mis_overhead2 = isempty(tape2) ? 0 : sum(x->mis_overhead(x[1]), tape2)
# trace back configurations
mgraph = SimpleGraph(ug3)
weights = fill(0.5, nv(g))
r = UnitDiskMapping.MappingResult(GridGraph(ug3), ug3.lines, ug3.padding, [tape..., tape2...], mis_overhead0+mis_overhead1+mis_overhead2)
mapped_weights = UnitDiskMapping.map_weights(r, weights)
gp = GenericTensorNetwork(IndependentSet(mgraph, mapped_weights); optimizer=GreedyMethod(nrepeat=10))
missize_map = solve(gp, CountingMax())[]
missize = solve(GenericTensorNetwork(IndependentSet(g, weights)), CountingMax())[]
@test mis_overhead0 + mis_overhead1 + mis_overhead2 + missize.n == missize_map.n
@test missize.c == missize_map.c
T = GenericTensorNetworks.sampler_type(nv(mgraph), 2)
misconfig = solve(gp, SingleConfigMax())[].c
c = zeros(Int, size(ug3))
for (i, n) in enumerate(r.grid_graph.nodes)
c[n.loc...] = misconfig.data[i]
end
center_locations = trace_centers(r)
indices = CartesianIndex.(center_locations)
sc = c[indices]
@test count(isone, sc) == missize.n * 2
@test is_independent_set(g, sc)
end
end
@testset "interface" begin
Random.seed!(2)
g = smallgraph(:petersen)
res = map_graph(Weighted(), g)
# checking size
mgraph, _ = graph_and_weights(res.grid_graph)
ws = rand(nv(g))
weights = UnitDiskMapping.map_weights(res, ws)
gp = GenericTensorNetwork(IndependentSet(mgraph, weights); optimizer=TreeSA(ntrials=1, niters=10))
missize_map = solve(gp, SizeMax())[].n
missize = solve(GenericTensorNetwork(IndependentSet(g, ws)), SizeMax())[].n
@test res.mis_overhead + missize == missize_map
# checking mapping back
T = GenericTensorNetworks.sampler_type(nv(mgraph), 2)
misconfig = solve(gp, SingleConfigMax())[].c
original_configs = map_config_back(res, collect(misconfig.data))
@test count(isone, original_configs) == solve(GenericTensorNetwork(IndependentSet(g)), SizeMax())[].n
@test is_independent_set(g, original_configs)
end
| UnitDiskMapping | https://github.com/QuEraComputing/UnitDiskMapping.jl.git |
|
[
"Apache-2.0"
] | 0.4.0 | 0736fd885e445c13b7b58e31d1ccc37a4950f7df | code | 715 | using Random, Test, UnitDiskMapping
using UnitDiskMapping.PathDecomposition: branch_and_bound, vsep, Layout
using Graphs
@testset "B & B" begin
Random.seed!(2)
g = smallgraph(:petersen)
adjm = adjacency_matrix(g)
for i=1:10
pm = randperm(nv(g))
gi = SimpleGraph(adjm[pm, pm])
L = branch_and_bound(gi)
@test vsep(L) == 5
@test vsep(Layout(gi, L.vertices)) == 5
arem = UnitDiskMapping.remove_order(g, vertices(L))
@test sum(length, arem) == nv(g)
end
g = smallgraph(:tutte)
res = pathwidth(g, MinhThiTrick())
@test vsep(res) == 6
g = smallgraph(:tutte)
res = pathwidth(g, Greedy(nrepeat=50))
@test vsep(res) == 6
end | UnitDiskMapping | https://github.com/QuEraComputing/UnitDiskMapping.jl.git |
|
[
"Apache-2.0"
] | 0.4.0 | 0736fd885e445c13b7b58e31d1ccc37a4950f7df | docs | 3804 | # UnitDiskMapping
[](https://github.com/QuEraComputing/UnitDiskMapping.jl/actions/workflows/ci.yml)
[](https://codecov.io/github/QuEraComputing/UnitDiskMapping.jl)
## Installation
<p>
<code>UnitDiskMapping</code> is a
<a href="https://julialang.org">
<img src="https://raw.githubusercontent.com/JuliaLang/julia-logo-graphics/master/images/julia.ico" width="16em">
Julia Language
</a>
package for reducing a <a href="https://en.wikipedia.org/wiki/Independent_set_(graph_theory)">generic maximum (weighted) independent set problem</a>, <a href="https://en.wikipedia.org/wiki/Quadratic_unconstrained_binary_optimization"> quadratic unconstrained binary optimization (QUBO) problem</a> or <a href="https://en.wikipedia.org/wiki/Integer_factorization">integer factorization problem</a> to a maximum independent set problem on a unit disk grid graph (or hardcore lattice gas in physics), which can then be naturally encoded in neutral-atom quantum computers. To install <code>UnitDiskMapping</code>,
please <a href="https://docs.julialang.org/en/v1/manual/getting-started/">open
Julia's interactive session (known as REPL)</a> and press the <kbd>]</kbd> key in the REPL to use the package mode, and then type the commands below.
</p>
For installing the current master branch, please type:
```julia
pkg> add https://github.com/QuEraComputing/UnitDiskMapping.jl.git
```
For stable release (not yet ready):
```julia
pkg> add UnitDiskMapping
```
## Examples
Please check the following notebooks:
1. [Unit Disk Mapping](https://queracomputing.github.io/UnitDiskMapping.jl/notebooks/tutorial.html), which contains the examples in ["Quantum Optimization with Arbitrary Connectivity Using Rydberg Atom Arrays"](https://journals.aps.org/prxquantum/abstract/10.1103/PRXQuantum.4.010316):
* Reduction from a generic weighted or unweighted maximum independent set (MIS) problem to that on a King's subgraph (KSG).
* Reduction from a generic or square-lattice QUBO problem to an MIS problem on a unit-disk grid graph.
* Reduction from an integer factorization problem to an MIS problem on a unit-disk grid graph.
2. [Unweighted KSG reduction of the independent set problem](https://queracomputing.github.io/UnitDiskMapping.jl/notebooks/unweighted.html), which contains the unweighted reduction from a general graph to a King's subgraph. It covers all example graphs in paper: "Computer-Assisted Gadget Design and Problem Reduction of Unweighted Maximum Independent Set" (To be published).

To run the notebook locally, you will need to activate and instantiate the local environment that specified in the [`notebooks`](notebooks) directory:
```bash
$ cd notebooks
$ julia --project -e 'using Pkg; Pkg.instantiate()'
```
To run the notebook, just type in the same terminal:
```bash
julia --project -e "import Pluto; Pluto.run()"
```
At this point, your browser should automatically launch and display a list of available notebooks you can run. You should just see the notebooks listed.
## Supporting and Citing
Much of the software in this ecosystem was developed as a part of an academic research project. If you would like to help support it, please star the repository. If you use our software as part of your research, teaching, or other activities, we would like to request you to cite our [work](https://arxiv.org/abs/2209.03965). The [CITATION.bib](CITATION.bib) file in the root of this repository lists the relevant papers.
| UnitDiskMapping | https://github.com/QuEraComputing/UnitDiskMapping.jl.git |
|
[
"MIT"
] | 0.3.0 | 9b79e996ba9ceda798f9cf4dab30aa69fc3e537f | code | 2016 | """
NumaAllocators.LibNUMA
NUMA Support for Linux
See https://github.com/numactl/numactl
"""
module LibNUMA
using ..NumaAllocators: AbstractNumaAllocator
import ArrayAllocators: AbstractArrayAllocator, nbytes, allocate
import ArrayAllocators: lineage_finalizer
using NUMA_jll
@static if ( VERSION >= v"1.6" && NUMA_jll.is_available() ) || isdefined(NUMA_jll, :libnuma)
const libnuma = NUMA_jll.libnuma
else
const libnuma = nothing
end
function numa_alloc_onnode(size, node)
return ccall((:numa_alloc_onnode, libnuma), Ptr{Nothing}, (Csize_t, Cint), size, node)
end
function numa_alloc_local(size)
return ccall((:numa_alloc_local, libnuma), Ptr{Nothing}, (Csize_t,), size)
end
function numa_free(arr::AbstractArray)
numa_free(arr, sizeof(arr))
end
function numa_free(mem, size)
return ccall((:numa_free, libnuma), Nothing, (Ptr{Nothing}, Csize_t), mem, size)
end
function numa_num_task_nodes()
return ccall((:numa_numa_task_nodes, libnuma), Cint, ())
end
function numa_max_node()
return ccall((:numa_max_node, libnuma), Cint, ())
end
function numa_node_of_cpu(cpu = sched_getcpu())
return ccall((:numa_node_of_cpu, libnuma), Cint, (Cint,), cpu)
end
function sched_getcpu()
return ccall(:sched_getcpu, Cint, ())
end
function wrap_numa(::Type{ArrayType}, ptr::Ptr{T}, dims) where {T, ArrayType <: AbstractArray{T}}
if ptr == C_NULL
throw(OutOfMemoryError())
end
arr = unsafe_wrap(ArrayType, ptr, dims; own = false)
lineage_finalizer(numa_free, arr)
return arr
end
abstract type AbstractLibNumaAllocator{B} <: AbstractNumaAllocator{B} end
Base.unsafe_wrap(::AbstractLibNumaAllocator, args...) = wrap_numa(args...)
"""
LibNumaAllocator{B}
Allocate memory via `numa_alloc_onnode`.
See https://linux.die.net/man/3/numa
"""
struct LibNumaAllocator{B} <: AbstractLibNumaAllocator{B}
node::Cint
end
function allocate(n::LibNumaAllocator, num_bytes)
return numa_alloc_onnode(num_bytes, n.node)
end
end # module LibNUMA
| ArrayAllocators | https://github.com/mkitti/ArrayAllocators.jl.git |
|
[
"MIT"
] | 0.3.0 | 9b79e996ba9ceda798f9cf4dab30aa69fc3e537f | code | 2009 | """
NumaAllocators
Extends `ArrayAllocators` to allocate memory on specific NUMA nodes.
# Examples
```julia
using NumaAllocators
Array{UInt8}(numa(0), 100)
Array{UInt8}(NumaAllocator(1), 100)
```
"""
module NumaAllocators
@static if VERSION >= v"1.3"
using NUMA_jll
end
using ArrayAllocators: AbstractArrayAllocator
export NumaAllocator, numa
export current_numa_node, highest_numa_node
abstract type AbstractNumaAllocator{B} <: AbstractArrayAllocator{B} end
include("Windows.jl")
include("LibNUMA.jl")
@static if Sys.iswindows()
import .Windows: WinNumaAllocator
const NumaAllocator = WinNumaAllocator
elseif ( VERSION >= v"1.6" && NUMA_jll.is_available() ) || isdefined(NUMA_jll, :libnuma)
import .LibNUMA: LibNumaAllocator
const NumaAllocator = LibNumaAllocator
end
if @isdefined(NumaAllocator)
numa(node) = NumaAllocator(node)
end
"""
NumaAllocator(node)
Cross-platform NUMA allocator
# Example
```jldoctest
julia> using NumaAllocators
julia> Array{UInt8}(NumaAllocator(0), 32, 32);
```
"""
NumaAllocator
"""
numa(node)
Create a `NumaAllocator` on NUMA node `node`. Short hand for [`NumaAllocator`](@ref) constructor.
# Example
```jldoctest
julia> using NumaAllocators
julia> Array{UInt8}(numa(0), 32, 32);
```
"""
numa
"""
current_numa_node()::Int
Returns the current NUMA node as an Int
"""
function current_numa_node()::Int
@static if Sys.iswindows()
return Int(Windows.GetNumaProcessorNode())
elseif Sys.islinux()
return Int(LibNUMA.numa_node_of_cpu())
else
error("current_numa_node is not implemented for this platform")
end
end
"""
highest_numa_node()::Int
Returns the highest NUMA node as an Int
"""
function highest_numa_node()::Int
@static if Sys.iswindows()
return Int(Windows.GetNumaHighestNodeNumber())
elseif Sys.islinux()
return Int(LibNUMA.numa_max_node())
else
error("highest_numa_node is not implemented for this platform")
end
end
end
| ArrayAllocators | https://github.com/mkitti/ArrayAllocators.jl.git |
|
[
"MIT"
] | 0.3.0 | 9b79e996ba9ceda798f9cf4dab30aa69fc3e537f | code | 2598 | """
NumaAllocators.Windows
NUMA support for Windows.
See also https://docs.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-virtualallocexnuma
"""
module Windows
using ..NumaAllocators: AbstractNumaAllocator
import ArrayAllocators: allocate, iszeroinit
using ArrayAllocators.ByteCalculators: nbytes
using ArrayAllocators.Windows: wrap_virtual, hCurrentProcess, MEM_COMMIT_RESERVE, PAGE_READWRITE, kernel32
function GetNumaProcessorNode(processor = GetCurrentProcessorNumber())
node_number = Ref{Cuchar}(0)
status = ccall((:GetNumaProcessorNode, kernel32), Cint, (Cuchar, Ptr{Cuchar}), processor, node_number)
if status == 0
error("Could not retrieve NUMA node for processor $processor.")
end
return node_number[]
end
# https://docs.microsoft.com/en-us/windows/win32/api/systemtopologyapi/nf-systemtopologyapi-getnumahighestnodenumber
function GetNumaHighestNodeNumber()
node_number = Ref{Culong}(0)
status = ccall((:GetNumaHighestNodeNumber, kernel32), Cint, (Ptr{Culong},), node_number)
if status == 0
error("Could not retrieve highest NUMA node.")
end
return node_number[]
end
function GetCurrentProcessorNumber()
return ccall((:GetCurrentProcessorNumber, "kernel32"), Cint, ())
end
#=
LPVOID VirtualAllocExNuma(
[in] HANDLE hProcess,
[in, optional] LPVOID lpAddress,
[in] SIZE_T dwSize,
[in] DWORD flAllocationType,
[in] DWORD flProtect,
[in] DWORD nndPreferred
);
=#
function VirtualAllocExNuma(hProcess, lpAddress, dwSize, flAllocationType, flProtect, nndPreferred)
ccall((:VirtualAllocExNuma, kernel32),
Ptr{Nothing}, (Ptr{Nothing}, Ptr{Nothing}, Csize_t, Culong, Culong, Culong),
hProcess, lpAddress, dwSize, flAllocationType, flProtect, nndPreferred)
end
function VirtualAllocExNuma(dest_size, numa_node)
VirtualAllocExNuma(hCurrentProcess, C_NULL, dest_size, MEM_COMMIT_RESERVE, PAGE_READWRITE, numa_node)
end
abstract type AbstractWinNumaAllocator{B} <: AbstractNumaAllocator{B} end
"""
WinNumaAllocator
Allocate memory on a specific NUMA node with `VirtualAllocExNuma`.
See also https://docs.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-virtualallocexnuma
"""
struct WinNumaAllocator{B} <: AbstractWinNumaAllocator{B}
node::Int
end
function allocate(n::WinNumaAllocator, num_bytes)
return VirtualAllocExNuma(num_bytes, n.node)
end
Base.unsafe_wrap(::WinNumaAllocator, args...) = wrap_virtual(args...)
iszeroinit(::Type{A}) where A <: WinNumaAllocator = true
end # module Windows
| ArrayAllocators | https://github.com/mkitti/ArrayAllocators.jl.git |
|
[
"MIT"
] | 0.3.0 | 9b79e996ba9ceda798f9cf4dab30aa69fc3e537f | code | 694 | """
SafeByteCalculators
Extension of [`ArrayAllocators.ByteCalculators`](@ref) using [SaferIntegers.jl](https://github.com/JeffreySarnoff/SaferIntegers.jl).
"""
module SafeByteCalculators
import ArrayAllocators
using ArrayAllocators.ByteCalculators: AbstractByteCalculator
using SaferIntegers: SafeInt
export SafeByteCalculator
"""
SafeByteCalculator
Use `SafeInt` from SaferIntegers.jl to calculate the number of bytes to allocate for an Array.
"""
struct SafeByteCalculator{T} <: AbstractByteCalculator{T}
dims::Dims
SafeByteCalculator{T}(dims::Dims) where T = new{T}(dims)
end
Base.length(b::SafeByteCalculator) = prod(SafeInt.(b.dims))
end # module SafeByteCalculator
| ArrayAllocators | https://github.com/mkitti/ArrayAllocators.jl.git |
|
[
"MIT"
] | 0.3.0 | 9b79e996ba9ceda798f9cf4dab30aa69fc3e537f | code | 1197 | using ArrayAllocators
using SafeByteCalculators
using NumaAllocators
using Documenter
DocMeta.setdocmeta!(ArrayAllocators, :DocTestSetup, :(using ArrayAllocators); recursive=true)
makedocs(;
modules=[ArrayAllocators, SafeByteCalculators, NumaAllocators],
authors="Mark Kittisopikul <[email protected]> and contributors",
repo="https://github.com/mkitti/ArrayAllocators.jl/blob/{commit}{path}#{line}",
sitename="ArrayAllocators.jl",
format=Documenter.HTML(;
prettyurls=get(ENV, "CI", "false") == "true",
canonical="https://mkitti.github.io/ArrayAllocators.jl",
assets=String[],
),
pages=[
"Home" => "index.md",
"Detailed Overview" => "detailed_overview.md",
"Byte Calculators" => "bytecalculators.md",
"NUMA Allocators" => "numa.md",
"Compositions" => "compositions.md",
"API" => [
"ArrayAllocators.jl" => "api.md",
"ArrayAllocators.ByteCalculators" => "bytecalculators_api.md",
"NumaAllocators.jl" => "numa_api.md",
]
],
)
deploydocs(;
repo="github.com/mkitti/ArrayAllocators.jl",
devbranch="main",
push_preview = true
)
| ArrayAllocators | https://github.com/mkitti/ArrayAllocators.jl.git |
|
[
"MIT"
] | 0.3.0 | 9b79e996ba9ceda798f9cf4dab30aa69fc3e537f | code | 6519 | """
ArrayAllocators
Defines an array allocator interface and concrete array allocators using `malloc`, `calloc`, and memory alignment.
# Examples
```julia
using ArrayAllocators
Array{UInt8}(malloc, 100)
Array{UInt8}(calloc, 1024, 1024)
Array{UInt8}(MemAlign(2^16), (1024, 1024, 16))
```
See also `NumaAllocators`, `SafeByteCalculators`
"""
module ArrayAllocators
import Core: Array
export malloc, calloc
include("ByteCalculators.jl")
using .ByteCalculators
"""
DefaultByteCalculator
Alias for [`ByteCalculators.CheckedMulByteCalculator`](@ref) representing the
byte calculator used with subtypes of `AbstractArrayAllocator` when one is not
specified.
"""
const DefaultByteCalculator = CheckedMulByteCalculator
export AbstractArrayAllocator, UndefAllocator, MallocAllocator, CallocAllocator
export MemAlign
"""
lineage_finalizer(f, x)
Attach a finalizer function `f` to `x` or an ancestor of `x` using
`parent`.
"""
function lineage_finalizer(f, x)
try
finalizer(f, x)
catch err
if applicable(parent, x)
lineage_finalizer(f, parent(x))
else
rethrow(err)
end
end
end
"""
AbstractArrayAllocator{B}
Parent abstract type for array allocators. Parameter `B` is an AbstractByteCalculator
Defines `Array{T}(allocator, dims...) where T = Array{T}(allocator, dims)`
"""
abstract type AbstractArrayAllocator{B} end
# Allocate arrays when the dims are given as arguments rather than as a tuple
function (::Type{ArrayType})(alloc::A, dims...) where {T, ArrayType <: AbstractArray{T}, A <: AbstractArrayAllocator}
return ArrayType(alloc, dims)
end
function (::Type{ArrayType})(alloc::A, dims) where {T, ArrayType <: AbstractArray{T}, B, A <: AbstractArrayAllocator{B}}
num_bytes = nbytes(B{T}(dims))
ptr = allocate(alloc, T, num_bytes)
return unsafe_wrap(alloc, ArrayType, ptr, dims)
end
function allocate(alloc::A, ::Type{T}, num_bytes) where {A <: AbstractArrayAllocator, T}
iszeroinit(A) || isbitstype(T) || throw(ArgumentError("$T is not a bitstype"))
return Ptr{T}(allocate(alloc, num_bytes))
end
(::Type{A})(args...) where A <: AbstractArrayAllocator = A{DefaultByteCalculator}(args...)
iszeroinit(::Type{A}) where A <: AbstractArrayAllocator = false
"""
UndefAllocator{B}
Allocate arrays using the builtin `undef` method. The `B` parameter is a `ByteCalculator`
"""
struct UndefAllocator{B} <: AbstractArrayAllocator{B}
end
allocate(::UndefAllocator, num_bytes) = C_NULL
Base.unsafe_wrap(::UndefAllocator, ::Type{ArrayType}, ::Ptr, dims::Dims) where {T, ArrayType <: AbstractArray{T}} = ArrayType(Core.undef, dims)
abstract type LibcArrayAllocator{B} <: AbstractArrayAllocator{B} end
"""
wrap_libc_pointer(::Type{A}, ptr::Ptr{T}, dims) where {T, A <: AbstractArray{T}}
wrap_libc_pointer(ptr::Ptr{T}, dims) where {T, A <: AbstractArray{T}}
Checks to see if `ptr` is C_NULL for an OutOfMemoryError.
Owns the array such that `Libc.free` is used.
"""
function wrap_libc_pointer(::Type{A}, ptr::Ptr{T}, dims) where {T, A <: AbstractArray{T}}
if ptr == C_NULL
throw(OutOfMemoryError())
end
# We use own = true, so we do not need Libc.free explicitly
arr = unsafe_wrap(A, ptr, dims; own = true)
return arr
end
wrap_libc_pointer(ptr::Ptr{T}, dims) where T = wrap_libc_pointer(Array{T}, ptr, dims)
Base.unsafe_wrap(alloc::A, args...) where A <: LibcArrayAllocator = wrap_libc_pointer(args...)
"""
MallocAllocator()
Allocate array using [`Libc.malloc`](https://docs.julialang.org/en/v1/base/libc/#Base.Libc.malloc). This is not meant to be useful
but rather just to prototype the concept for a custom array allocator
concept. This should be similar to using `undef`.
See also https://en.cppreference.com/w/c/memory/malloc .
"""
struct MallocAllocator{B} <: LibcArrayAllocator{B}
end
allocate(::MallocAllocator, num_bytes) = Libc.malloc(num_bytes)
"""
malloc
[`MallocAllocator`](@ref) singleton instance. `malloc` will only allocate memory. It does not initialize memory is is similar
in use as `undef`. See the type and the [C standard library function](https://en.cppreference.com/w/c/memory/malloc) for details.
# Example
```jldoctest
julia> Array{UInt8}(malloc, 16, 16);
```
"""
const malloc = MallocAllocator()
"""
CallocAllocator()
Use [`Libc.calloc`](https://docs.julialang.org/en/v1/base/libc/#Base.Libc.calloc) to allocate an array. This is similar to `zeros`, except
that the Libc implementation or the operating system may allocate and
zero the memory in a lazy fashion.
See also https://en.cppreference.com/w/c/memory/calloc .
"""
struct CallocAllocator{B} <: LibcArrayAllocator{B}
end
allocate(::CallocAllocator, num_bytes) = Libc.calloc(num_bytes, 1)
iszeroinit(::Type{A}) where A <: CallocAllocator = true
"""
calloc
[`CallocAllocator`](@ref) singleton instance. `calloc` will allocate memory and guarantee initialization to `0`.
See the type for details and the [C standard library function](https://en.cppreference.com/w/c/memory/calloc) for further details.
# Example
```jldoctest
julia> A = Array{UInt8}(calloc, 16, 16);
julia> sum(A)
0x0000000000000000
```
"""
const calloc = CallocAllocator()
"""
MemAlign([alignment::Integer])
Allocate aligned memory. Alias for platform specific implementations.
`alignment` must be a power of 2.
On POSIX systems, `alignment` must be a multiple of `sizeof(Ptr)`.
On Windows, `alignment` must be a multiple of 2^16.
If `alignment` is not specified, it will be set to `min_alignment(MemAlign)`.
`MemAlign` is a constant alias for one the following platform specific implementations.
* POSIX (Linux and macOS): [`POSIX.PosixMemAlign`](@ref)
* Windows: [`Windows.WinMemAlign`](@ref).
"""
MemAlign
"""
AbstractMemAlign{B} <: AbstractArrayAllocator{B}
Abstract supertype for aligned memory allocators.
"""
abstract type AbstractMemAlign{B} <: AbstractArrayAllocator{B} end
"""
alignment(alloc::AbstractMemAlign)
Get byte alignment of the AbstractMemAlign array allocator.
"""
alignment(alloc::AbstractMemAlign) = alloc.alignment
"""
min_alignment(::AbstractMemAlign)
Get the minimum byte alignment of the AbstractMemAlign array allocator.
"""
function min_alignment() end
include("Windows.jl")
include("POSIX.jl")
import .Windows: WinMemAlign
import .POSIX: PosixMemAlign
@static if Sys.iswindows()
const MemAlign = WinMemAlign
elseif Sys.isunix()
const MemAlign = PosixMemAlign
end
include("zeros.jl")
end # module ArrayAllocators
| ArrayAllocators | https://github.com/mkitti/ArrayAllocators.jl.git |
|
[
"MIT"
] | 0.3.0 | 9b79e996ba9ceda798f9cf4dab30aa69fc3e537f | code | 3382 | """
ArrayAllocators.ByteCalculators
Defines calculators for computing the number of bytes needed to allocate an array while detecting integer overflow.
# Examples
```julia
using ArrayAllocators.ByteCalculators
bc = CheckedMulByteCalculator{UInt8}(1024, 2048)
elsize(bc)
nbytes(bc)
```
"""
module ByteCalculators
export nbytes, elsize
export UnsafeByteCalculator, CheckedMulByteCalculator, WideningByteCalculator
"""
AbstractByteCalculator
Parent abstract type for byte calculators, which calculate the total number of bytes of memory to allocate.
"""
abstract type AbstractByteCalculator{T} end
# Allow dimensions to be passed as individual arguments
function (::Type{B})(dims::Int...) where {T, B <: AbstractByteCalculator{T}}
return B(dims)
end
function (::Type{B})(dims::AbstractUnitRange...) where {T, B <: AbstractByteCalculator{T}}
return B(length.(dims))
end
function (::Type{B})(dims::NTuple{N, AbstractUnitRange}) where {N, T, B <: AbstractByteCalculator{T}}
return B(length.(dims))
end
elsize(::AbstractByteCalculator{T}) where T = isbitstype(T) ? sizeof(T) : sizeof(Ptr)
nbytes(b::AbstractByteCalculator{T}) where T = elsize(b) * length(b)
"""
UnsafeByteCalculator
Calculate number of bytes to allocate for an array without any integer overflow checking.
"""
struct UnsafeByteCalculator{T} <: AbstractByteCalculator{T}
dims::Dims
UnsafeByteCalculator{T}(dims::Dims) where T = new{T}(dims)
end
Base.length(b::UnsafeByteCalculator{T}) where T = prod(b.dims)
"""
CheckedMulByteCalculator
Calculate the number of bytes by using `Base.checked_mul` to check if the product of the dimensions (length)
or the product of the length and the element size will cause an integer overflow.
"""
struct CheckedMulByteCalculator{T} <: AbstractByteCalculator{T}
dims::Dims
CheckedMulByteCalculator{T}(dims::Dims) where T = new{T}(dims)
end
function Base.length(b::CheckedMulByteCalculator)
try
return reduce(Base.checked_mul, b.dims)
catch err
if err isa OverflowError
rethrow(OverflowError("The product of the dimensions results in integer overflow."))
else
rethrow(err)
end
end
end
function nbytes(b::CheckedMulByteCalculator{T}) where T
element_size = sizeof(T)
len = length(b)
if len > typemax(typeof(element_size)) ÷ element_size
throw(OverflowError("The product of array length and element size will cause an overflow."))
end
return element_size * len
end
"""
WideningByteCalculator
Widens `eltype(Dims)`, Int in order to catch integer overflow.
"""
struct WideningByteCalculator{T} <: AbstractByteCalculator{T}
dims::Dims
WideningByteCalculator{T}(dims::Dims) where T = new{T}(dims)
end
function Base.length(bc::WideningByteCalculator)
D = eltype(Dims)
M = typemax(D)
W = widen(D)
len = reduce(bc.dims) do a,b
c = W(a) * W(b)
if c > M
throw(OverflowError("The product of the dimensions results in integer overflow."))
end
return D(c)
end
return len
end
function nbytes(b::WideningByteCalculator{T}) where T
nb = widen(sizeof(T)) * widen(length(b))
if nb > typemax(eltype(Dims))
throw(OverflowError("The product of array length and element size will cause an overflow."))
end
return nb
end
end # module ByteCalculators
| ArrayAllocators | https://github.com/mkitti/ArrayAllocators.jl.git |
|
[
"MIT"
] | 0.3.0 | 9b79e996ba9ceda798f9cf4dab30aa69fc3e537f | code | 2169 | """
ArrayAllocators.POSIX
Defines ArrayAllocators for POSIX systems such as macOS or Linux.
# Example
```julia
using ArrayAllocators.POSIX
Array{UInt16}(PosixMemAlign(), 1024)
```
"""
module POSIX
using ..ArrayAllocators: AbstractArrayAllocator, wrap_libc_pointer, LibcArrayAllocator
import ..ArrayAllocators: AbstractMemAlign, min_alignment, alignment
import ..ArrayAllocators: allocate
export PosixMemAlign
# Copied from https://github.com/JuliaPerf/BandwidthBenchmark.jl/blob/main/src/allocate.jl
# Copyright (c) 2021 Carsten Bauer <[email protected]> and contributors
# Originating from https://discourse.julialang.org/t/julia-alignas-is-there-a-way-to-specify-the-alignment-of-julia-objects-in-memory/57501/2
# Copyright (c) 2021 Steven G. Johnson
const POSIX_MEMALIGN_MIN_ALIGNMENT = sizeof(Ptr)
function check_alignment(alignment)
ispow2(alignment) || throw(ArgumentError("$alignment is not a power of 2"))
alignment ≥ POSIX_MEMALIGN_MIN_ALIGNMENT || throw(ArgumentError("$alignment is not a multiple of $POSIX_MEMALIGN_MIN_ALIGNMENT"))
return nothing
end
function posix_memalign(alignment, num_bytes)
ptr = Ref{Ptr{Cvoid}}()
err = ccall(:posix_memalign, Cint, (Ref{Ptr{Cvoid}}, Csize_t, Csize_t), ptr, alignment, num_bytes)
iszero(err) || throw(OutOfMemoryError())
return ptr[]
end
"""
PosixMemAlign([alignment::Integer])
Uses `posix_memalign` to allocate aligned memory.
`alignment` must be a power of 2 and larger than `sizeof(Ptr)`.
If `alignment` is provided, it will be set to `min_alignment(PosixMemAlign)`.
# Example
```julia
julia> Array{UInt8}(PosixMemAlign(32), 16, 16);
```
"""
struct PosixMemAlign{B} <: AbstractMemAlign{B}
alignment::Integer
function PosixMemAlign{B}(alignment) where B
check_alignment(alignment)
return new{B}(alignment)
end
end
PosixMemAlign() = PosixMemAlign(POSIX_MEMALIGN_MIN_ALIGNMENT)
Base.unsafe_wrap(::PosixMemAlign, args...) = wrap_libc_pointer(args...)
min_alignment(::Type{PosixMemAlign}) = POSIX_MEMALIGN_MIN_ALIGNMENT
allocate(alloc::PosixMemAlign{B}, num_bytes) where B = posix_memalign(alloc.alignment, num_bytes)
end # module POSIX
| ArrayAllocators | https://github.com/mkitti/ArrayAllocators.jl.git |
|
[
"MIT"
] | 0.3.0 | 9b79e996ba9ceda798f9cf4dab30aa69fc3e537f | code | 7764 | """
ArrayAllocators.Windows
Defines array allocators on Windows.
# Examples
```julia
using ArrayAllocators.Windows
Array{UInt8}(WinMemAlign(2^16), 1024)
```
"""
module Windows
import ..ArrayAllocators: AbstractArrayAllocator, nbytes, allocate
import ..ArrayAllocators: AbstractMemAlign, min_alignment, alignment
import ..ArrayAllocators: iszeroinit, lineage_finalizer
import Base: Array
export WinMemAlign
@static if Sys.iswindows()
const hCurrentProcess = ccall((:GetCurrentProcess, "kernel32"), Ptr{Nothing}, ())
else
# The value below is the typical default value on Windows when executing the above
const hCurrentProcess = Ptr{Nothing}(0xffffffffffffffff)
end
const kernel32 = "kernel32"
const kernelbase = "kernelbase"
const MEM_COMMIT = 0x00001000
const MEM_RESERVE = 0x00002000
const MEM_RESET = 0x00080000
const MEM_RESET_UNDO = 0x10000000
const MEM_LARGE_PAGES = 0x20000000
const MEM_PHYSICAL = 0x00400000
const MEM_TOP_DOWN = 0x00100000
const MEM_COMMIT_RESERVE = MEM_COMMIT | MEM_RESERVE
const PAGE_READWRITE = 0x04
const MEM_DECOMMIT = 0x00004000
const MEM_RELEASE = 0x00008000
const DWORD = Culong
abstract type MemExtendedParameterType end
"""
MemAddressRequirements
See https://docs.microsoft.com/en-us/windows/win32/api/winnt/ns-winnt-mem_address_requirements
"""
struct MemAddressRequirements
lowestStartingAddress::Ptr{Nothing}
highestStartingAddress::Ptr{Nothing}
alignment::Csize_t
end
MemAddressRequirements(alignment) = MemAddressRequirements(C_NULL, C_NULL, alignment)
"""
MemExtendedParameterAddressRequirements
This is a Julian structure where the `requirements` field is `Base.RefValue{MemAddressRequirements}`
See https://docs.microsoft.com/en-us/windows/win32/api/winnt/ns-winnt-mem_extended_parameter
See also `_MemExtendedParameterAddressRequirements`
"""
struct MemExtendedParameterAddressRequirements <: MemExtendedParameterType
type::UInt64
requirements::Base.RefValue{MemAddressRequirements}
function MemExtendedParameterAddressRequirements(requirements)
new(1, Ref(requirements))
end
end
#=
_MemExtendedParameterAddressRequirements
Internal structure compatible with C definition
See https://docs.microsoft.com/en-us/windows/win32/api/winnt/ns-winnt-mem_extended_parameter
=#
struct _MemExtendedParameterAddressRequirements
type::UInt64
pointer::Ptr{MemAddressRequirements}
end
function Base.convert(::Type{_MemExtendedParameterAddressRequirements}, p::MemExtendedParameterAddressRequirements)
_MemExtendedParameterAddressRequirements(p.type, pointer_from_objref(p.requirements))
end
#=
LPVOID VirtualAllocEx(
[in] HANDLE hProcess,
[in, optional] LPVOID lpAddress,
[in] SIZE_T dwSize,
[in] DWORD flAllocationType,
[in] DWORD flProtect
);
=#
function VirtualAllocEx(hProcess, lpAddress, dwSize, flAllocationType, flProtect)
ccall((:VirtualAllocEx, kernel32), Ptr{Nothing},
(Ptr{Nothing}, Ptr{Nothing}, Csize_t, DWORD, DWORD),
hProcess, lpAddress, dwSize, flAllocationType, flProtect
)
end
function VirtualAllocEx(dwSize)
VirtualAllocEx(hCurrentProcess, C_NULL, dwSize, MEM_COMMIT_RESERVE, PAGE_READWRITE)
end
#=
PVOID VirtualAlloc2(
[in, optional] HANDLE Process,
[in, optional] PVOID BaseAddress,
[in] SIZE_T Size,
[in] ULONG AllocationType,
[in] ULONG PageProtection,
[in, out, optional] MEM_EXTENDED_PARAMETER *ExtendedParameters,
[in] ULONG ParameterCount
);
=#
# https://docs.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-virtualalloc2
function VirtualAlloc2(Process, BaseAddress, Size, AllocationType, PageProtection, ExtendedParameters, ParameterCount)
# Docs say
ccall((:VirtualAlloc2, kernelbase), Ptr{Nothing},
(Ptr{Nothing}, Ptr{Nothing}, Csize_t, Culong, Culong, Ptr{Nothing}, Culong),
Process, BaseAddress, Size, AllocationType, PageProtection, ExtendedParameters, ParameterCount
)
end
function VirtualAlloc2(Process, BaseAddress, Size, AllocationType, PageProtection, ParameterCount)
VirtualAlloc2(Process, BaseAddress, Size, AllocationType, PageProtection, C_NULL, ParameterCount)
end
function win_memalign(alignment, num_bytes; lowestStartingAddress::Ptr{Nothing} = C_NULL, highestStartingAddress::Ptr{Nothing} = C_NULL)
reqs = MemAddressRequirements(lowestStartingAddress, highestStartingAddress, alignment)
pr = MemExtendedParameterAddressRequirements(reqs)
p = Ref{_MemExtendedParameterAddressRequirements}(pr)
GC.@preserve reqs pr p begin
ptr = VirtualAlloc2(hCurrentProcess, C_NULL, num_bytes, MEM_COMMIT_RESERVE, PAGE_READWRITE, p, 1)
end
return ptr
end
const WIN_MEMALIGN_MIN_ALIGNMENT = 2^16
function check_alignment(alignment)
ispow2(alignment) || throw(ArgumentError("Alignment must be a power of 2"))
alignment ≥ WIN_MEMALIGN_MIN_ALIGNMENT || throw(ArgumentError("Alignment must be a multiple of $(WIN_MEMALIGN_MIN_ALIGNMENT)"))
return nothing
end
#=
BOOL VirtualFreeEx(
[in] HANDLE hProcess,
[in] LPVOID lpAddress,
[in] SIZE_T dwSize,
[in] DWORD dwFreeType
);
=#
const BOOL = Cint
function VirtualFreeEx(hProcess, lpAddress, dwSize, dwFreeType)
ccall((:VirtualFreeEx, kernel32),
BOOL, (Ptr{Nothing}, Ptr{Nothing}, Csize_t, DWORD),
hProcess, lpAddress, dwSize, dwFreeType
)
end
function VirtualFreeEx(lpAddress)
VirtualFreeEx(hCurrentProcess, lpAddress, 0, MEM_RELEASE)
end
function virtual_free(array::Array{T}) where T
VirtualFreeEx(array)
end
function wrap_virtual(::Type{A}, ptr::Ptr{T}, dims) where {T, A <: AbstractArray{T}}
if ptr == C_NULL
throw(OutOfMemoryError())
end
arr = unsafe_wrap(A, ptr, dims; own = false)
lineage_finalizer(virtual_free, arr)
return arr
end
wrap_virtual(ptr::Ptr{T}, dims) where T = wrap_virtual(Array{T}, ptr, dims)
# == AbstractWinVirtualAllocator == #
abstract type AbstractWinVirtualAllocator{B} <: AbstractArrayAllocator{B} end
allocate(::AbstractWinVirtualAllocator, num_bytes) = VirtualAllocEx(num_bytes)
Base.unsafe_wrap(::AbstractWinVirtualAllocator, args...) = wrap_virtual(args...)
iszeroinit(::Type{A}) where A <: AbstractWinVirtualAllocator = true
# == WinVirtualAllocator == #
struct WinVirtualAllocator{B} <: AbstractWinVirtualAllocator{B}
end
const virtual = WinVirtualAllocator()
# == WindowsMemAlign == #
"""
WinMemAlign([alignment, lowestStartingAddress, highestStartingAddress])
Uses `VirtualAlloc2` to allocate aligned memory. `alignment` must be a power of 2 and larger than $(WIN_MEMALIGN_MIN_ALIGNMENT).
"""
struct WinMemAlign{B} <: AbstractMemAlign{B}
alignment::Int
lowestStartingAddress::Ptr{Nothing}
highestStartingAddress::Ptr{Nothing}
function WinMemAlign{B}(alignment, lowestStartingAddress = C_NULL, highestStartingAddress = C_NULL) where B
check_alignment(alignment)
return new{B}(
alignment,
reinterpret(Ptr{Nothing}, lowestStartingAddress),
reinterpret(Ptr{Nothing}, highestStartingAddress)
)
end
end
WinMemAlign() = WinMemAlign(WIN_MEMALIGN_MIN_ALIGNMENT)
allocate(alloc::WinMemAlign, num_bytes) = win_memalign(
alloc.alignment,
num_bytes;
lowestStartingAddress = alloc.lowestStartingAddress,
highestStartingAddress = alloc.highestStartingAddress
)
Base.unsafe_wrap(::WinMemAlign, args...) = wrap_virtual(args...)
min_alignment(::Type{WinMemAlign}) = WIN_MEMALIGN_MIN_ALIGNMENT
iszeroinit(::Type{A}) where A <: WinMemAlign = true
end # module Windows
| ArrayAllocators | https://github.com/mkitti/ArrayAllocators.jl.git |
|
[
"MIT"
] | 0.3.0 | 9b79e996ba9ceda798f9cf4dab30aa69fc3e537f | code | 996 | """
ArrayAllocators.zeros(T=Float64, dims::Integer...)
ArrayAllocators.zeros(T=Float64, dims::Dims)
Return an Array with element type `T` with size `dims` filled by `0`s via
`calloc`. Depending on the libc implementation, the operating system may lazily
wait for a page fault before obtaining memory initialized to `0`.
This is an alternative to `Base.zeros` that always fills the array with `0`
eagerly.
# Examples
```julia
julia> @time ArrayAllocators.zeros(Int, 3200, 3200);
0.000026 seconds (4 allocations: 78.125 MiB)
julia> @time Base.zeros(Int, 3200, 3200);
0.133595 seconds (2 allocations: 78.125 MiB, 67.36% gc time)
julia> ArrayAllocators.zeros(Int, 256, 256) == Base.zeros(Int, 256, 256)
true
```
"""
function zeros(::Type{T}, dims::Integer...) where T
return Array{T}(calloc, dims...)
end
function zeros(::Type{T}, dims::Dims) where T
return Array{T}(calloc, dims)
end
zeros(dims::Integer...) = zeros(Float64, dims)
zeros(dims::Dims) = zeros(Float64, dims)
| ArrayAllocators | https://github.com/mkitti/ArrayAllocators.jl.git |
|
[
"MIT"
] | 0.3.0 | 9b79e996ba9ceda798f9cf4dab30aa69fc3e537f | code | 2561 | using Pkg
using ArrayAllocators
using ArrayAllocators.ByteCalculators
using OffsetArrays
using Test
# Load in subpackages
Pkg.develop(PackageSpec(path=joinpath(dirname(@__DIR__), "./NumaAllocators")))
Pkg.develop(PackageSpec(path=joinpath(dirname(@__DIR__), "./SafeByteCalculators")))
using NumaAllocators
using SafeByteCalculators
@testset "ArrayAllocators.jl" begin
A = zeros(UInt8, 2048, 2048);
B = Array{UInt8}(calloc, 2048, 2048);
M = Array{UInt8}(malloc, 1024, 4096)
Z = ArrayAllocators.zeros(UInt8, 2048, 2048)
Z2 = ArrayAllocators.zeros(UInt8, (2048, 2048))
@test A == B
@test A == Z
@test size(Z) == (2048, 2048)
@test size(Z2) == (2048, 2048)
@test size(M) == (1024, 4096)
@test_throws OverflowError Array{UInt8}(calloc, 20480000, typemax(Int64))
@test_throws OverflowError Array{UInt16}(calloc, 2, typemax(Int64)÷2)
@test_throws OverflowError Array{UInt16}(MallocAllocator(), 2, typemax(Int64)÷2)
@test_throws OverflowError Array{UInt16}(MallocAllocator{CheckedMulByteCalculator}(), 2, typemax(Int64)÷2)
@test_throws OverflowError Array{UInt16}(MallocAllocator{WideningByteCalculator}(), 2, typemax(Int64)÷2)
@test_throws OverflowError Array{UInt16}(MallocAllocator{SafeByteCalculator}(), 2, typemax(Int64)÷2)
@static if Sys.iswindows()
WV = Array{UInt8}(ArrayAllocators.Windows.virtual, 64, 1024);
@test size(WV) == (64, 1024)
@test WV == zeros(UInt8, 64, 1024)
end
@static if Sys.islinux() || Sys.iswindows()
C = Array{UInt8}(NumaAllocator(0), 2048, 2048);
@test A == C
@test current_numa_node() isa Int
@test highest_numa_node() isa Int
end
@static if Sys.isunix() || Sys.iswindows()
D = Array{UInt8}(MemAlign(), 1024, 4096)
@test size(D) == (1024, 4096)
@test reinterpret(Int, pointer(D)) % ArrayAllocators.alignment(MemAlign()) == 0
E = Array{UInt8}(MemAlign(2^16), 1024, 2048)
@test size(E) == (1024, 2048)
@test reinterpret(Int, pointer(E)) % 2^16 == 0
end
end
@testset "Composition with OffsetArrays.jl" begin
OA = OffsetArray{UInt8}(calloc, -1024:1023, -5:5)
@test all(OA .== 0)
@test size(OA) == (2048,11)
@test OA[-1024,-3] == 0
OA = OffsetArray{UInt8}(calloc, -5:3, Base.OneTo(9))
@test all(OA .== 0)
@test size(OA) == (9,9)
@test OA[-1,5] == 0
@static if Sys.islinux() || Sys.iswindows()
numaOA = OffsetArray{UInt8}(numa(0), -5:5, 1:9)
@test numaOA[-5, 1] == numaOA[1]
end
end
| ArrayAllocators | https://github.com/mkitti/ArrayAllocators.jl.git |
|
[
"MIT"
] | 0.3.0 | 9b79e996ba9ceda798f9cf4dab30aa69fc3e537f | docs | 3628 | # ArrayAllocators.jl
[](https://mkitti.github.io/ArrayAllocators.jl/stable)
[](https://mkitti.github.io/ArrayAllocators.jl/dev)
[](https://github.com/mkitti/ArrayAllocators.jl/actions/workflows/CI.yml?query=branch%3Amain)
ArrayAllocators.jl is a Julia language package that provides various methods to allocate memory for arrays. It also implements various ways of calculating the total number of bytes in order to detect integer overflow conditions when multiplying the dimensions of an array and the size of the array elements.
For example, [`calloc`](https://en.cppreference.com/w/c/memory/calloc) is a standard C function that allocates memory while initializing the bytes in the memory to `0`, which may be done lazily by some operating sytems as needed. Contrast this with Julia's `Base.zeros` which eagerly fills sets all the bytes in memory to `0`. This often means that allocating memory via `calloc` may be initially faster than using `Base.zeros`.
The Python package NumPy for example, implements [`numpy.zeros`](https://numpy.org/doc/stable/reference/generated/numpy.zeros.html) with `calloc`.
At times, `numpy.zeros` and Python code using this method may seem to outperform Julia code using `Base.zeros`. See the Discourse link under
the discussion below for further details.
Other examples of specialized array allocation techniques include aligned memory on POSIX systems or virtual allocations on Windows systems.
Multiple processor socket systems may also implement Non-Uniform Memory Access (NUMA) memory architecture. To optimally use the NUMA architecture, memory must be explicitly allocated on a specific NUMA node. The subpackage [NumaAllocators.jl](NumaAllocators) implements this functionality for Windows and Linux operating systems.
`AbstractArrayAllocator` can be provided as first argument when constructing any subtype of `AbstractArray` where `undef` is usually provided.
Any C function that returns a pointer can be wrapped by the `AbstractArrayAllocator` interface by implementing the `allocate` method and overriding
`Base.unsafe_wrap`.
## Installation
```julia
using Pkg
Pkg.add("ArrayAllocators")
```
## Usage
```
julia> using ArrayAllocators
julia> @time zeros(UInt8, 2048, 2048);
0.000514 seconds (2 allocations: 4.000 MiB)
julia> @time Array{UInt8}(undef, 2048, 2048);
0.000017 seconds (2 allocations: 4.000 MiB)
julia> @time Array{UInt8}(calloc, 2048, 2048); # Allocates zeros, but is much faster than `Base.zeros`
0.000015 seconds (2 allocations: 4.000 MiB)
julia> @time Array{UInt8}(calloc, 20480000, typemax(Int64));
ERROR: OverflowError: 20480000 * 9223372036854775807 overflowed for type Int64
...
julia> using NumaAllocators
julia> @time Array{UInt8}(NumaAllocator(0), 2048, 2048);
0.000010 seconds (2 allocations: 80 bytes)
```
## Subpackages
* [NumaAllocators.jl](NumaAllocators): Allocate memory on Non-Uniform Memory Access (NUMA) nodes
* [SafeByteCalculators.jl](SafeByteCalculators): Implement byte calculations using SaferIntegers.jl to detect integer overflow. Note that a form of integer overflow detection is implemented in ArrayAllocators.jl itself. This package just provides an alternative implementation.
## Discussion
See https://discourse.julialang.org/t/faster-zeros-with-calloc/69860 for discussion about this approach.
## License
Per [LICENSE](LICENSE), ArrayAllocators.jl is licensed under the MIT License.
| ArrayAllocators | https://github.com/mkitti/ArrayAllocators.jl.git |
|
[
"MIT"
] | 0.3.0 | 9b79e996ba9ceda798f9cf4dab30aa69fc3e537f | docs | 1127 | # NumaAllocators.jl
[](https://mkitti.github.io/ArrayAllocators.jl/stable)
[](https://mkitti.github.io/ArrayAllocators.jl/dev)
[](https://github.com/mkitti/ArrayAllocators.jl/actions/workflows/CI.yml?query=branch%3Amain)
Extends [ArrayAllocators.jl](https://github.com/mkitti/ArrayAllocators.jl) to handle Non-Uniform Memory Access (NUMA) allocation on Windows and Linux.
See the ArrayAllocators.jl documentation for more information.
## Installation
```julia
using Pkg
Pkg.add("NumaAllocators")
```
## Basic Usage
```julia
julia> A = Array{UInt8}(numa(0), 1024, 1024); # Allocate 1 MB Matrix on NUMA Node 0
julia> B = Array{UInt8}(numa(1), 1024, 1024); # Allocate 1 MB Matrix on NUMA Node 1
```
## Documentation
See the [documentation](https://mkitti.github.io/ArrayAllocators.jl) for ArrayAllocators.jl.
## License
Per [LICENSE](LICENSE), NumaAllocators.jl is licenesed under the MIT License.
| ArrayAllocators | https://github.com/mkitti/ArrayAllocators.jl.git |
|
[
"MIT"
] | 0.3.0 | 9b79e996ba9ceda798f9cf4dab30aa69fc3e537f | docs | 1500 | # SafeByteCalculators
[](https://mkitti.github.io/ArrayAllocators.jl/stable)
[](https://mkitti.github.io/ArrayAllocators.jl/dev)
[](https://github.com/mkitti/ArrayAllocators.jl/actions/workflows/CI.yml?query=branch%3Amain)
Implements `ArrayAllocators.AbstractByteCalculator` by using `SaferIntegers.jl` in order to detect integer overflow when calculating the number of bytes to allocate.
## Installation
```julia
using Pkg
Pkg.add(url="https://github.com/mkitti/ArrayAllocators.jl", subdir="SafeByteCalculators")
```
Currently, I do have not have plans to register this package. It mainly serves as an example of how to implement a custom `AbstractByteCalculator`.
## Basic usage
```julia
julia> using ArrayAllocators
julia> using SafeByteCalculators
julia> const safe_malloc = MallocAllocator{SafeByteCalculator}()
MallocAllocator{SafeByteCalculator}()
julia> A = Array{UInt8}(safe_malloc, 1024, 1024);
julia> A = Array{UInt8}(safe_malloc, 1024, typemax(Int));
ERROR: OverflowError: 1024 * 9223372036854775807 overflowed for type Int64
```
## Documentation
See the ArrayAllocators.jl [documentation](https://mkitti.github.io/ArrayAllocators.jl) for more information.
## License
Per [LICENSE](LICENSE), SafeByteCalculators.jl is licenesed under the MIT License.
| ArrayAllocators | https://github.com/mkitti/ArrayAllocators.jl.git |
|
[
"MIT"
] | 0.3.0 | 9b79e996ba9ceda798f9cf4dab30aa69fc3e537f | docs | 690 | ```@meta
CurrentModule = ArrayAllocators
```
# Application Programming Interface for ArrayAllocators.jl
```@docs
ArrayAllocators
```
## Allocators
```@docs
calloc
malloc
```
## Aligned Memory
```@docs
MemAlign
alignment
min_alignment
```
## Types
```@docs
CallocAllocator
MallocAllocator
UndefAllocator
```
## Internals
```@docs
AbstractArrayAllocator
AbstractMemAlign
DefaultByteCalculator
wrap_libc_pointer
lineage_finalizer
```
## Platform Specific Interface
### Windows
```@docs
ArrayAllocators.Windows
Windows.WinMemAlign
Windows.MemAddressRequirements
Windows.MemExtendedParameterAddressRequirements
```
### POSIX
```@docs
ArrayAllocators.POSIX
POSIX.PosixMemAlign
```
| ArrayAllocators | https://github.com/mkitti/ArrayAllocators.jl.git |
|
[
"MIT"
] | 0.3.0 | 9b79e996ba9ceda798f9cf4dab30aa69fc3e537f | docs | 800 | ```@meta
CurrentModule = ArrayAllocators.ByteCalculators
```
# ByteCalculators
Byte calculators perform the task of computing the total number of bytes to calculate. In doing so, they try to detect integer overflow conditions.
## Example
```julia
julia> using ArrayAllocators, ArrayAllocators.ByteCalculators
julia> bc = ArrayAllocators.DefaultByteCalculator{UInt16}(typemax(Int))
CheckedMulByteCalculator{UInt16}((9223372036854775807,))
julia> length(bc)
9223372036854775807
julia> nbytes(bc)
ERROR: OverflowError: The product of array length and element size will cause an overflow.
Stacktrace:
[...]
julia> bc = ByteCalculators.UnsafeByteCalculator{UInt16}(typemax(Int))
UnsafeByteCalculator{UInt16}((9223372036854775807,))
julia> length(bc)
9223372036854775807
julia> nbytes(bc)
-2
```
| ArrayAllocators | https://github.com/mkitti/ArrayAllocators.jl.git |
|
[
"MIT"
] | 0.3.0 | 9b79e996ba9ceda798f9cf4dab30aa69fc3e537f | docs | 562 | ```@meta
CurrentModule = ArrayAllocators.ByteCalculators
```
# Application Programming Interface for ArrayAllocators.ByteCalculators
```@docs
ByteCalculators
```
## Default Byte Calculator
```@docs
CheckedMulByteCalculator
```
## Alternative Byte Calculators
```@docs
WideningByteCalculator
UnsafeByteCalculator
```
```@meta
CurrentModule = SafeByteCalculators
```
```@docs
SafeByteCalculators
SafeByteCalculators.SafeByteCalculator
```
```@meta
CurrentModule = ArrayAllocators.ByteCalculators
```
## Abstract Type
```@docs
AbstractByteCalculator
```
| ArrayAllocators | https://github.com/mkitti/ArrayAllocators.jl.git |
|
[
"MIT"
] | 0.3.0 | 9b79e996ba9ceda798f9cf4dab30aa69fc3e537f | docs | 1272 |
# Compositions with other packages
## Compositions that are tested
### OffsetArrays.jl
[OffsetArrays.jl](https://github.com/JuliaArrays/OffsetArrays.jl) allows for the use of shifted indices. Composition is enabled by
1. `OffsetArrays` implements `Base.unsafe_wrap`
2. `AbstractByteCalculators` accept `AbstractUnitRange` arguments
```jldoctest
julia> using ArrayAllocators, OffsetArrays
julia> OffsetArray{Int}(calloc, -5:5, Base.OneTo(3))
11×3 OffsetArray(::Matrix{Int64}, -5:5, 1:3) with eltype Int64 with indices -5:5×1:3:
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
julia> OffsetArray{Int}(calloc, 2, 3)
2×3 OffsetArray(::Matrix{Int64}, 1:2, 1:3) with eltype Int64 with indices 1:2×1:3:
0 0 0
0 0 0
```
## Adding to the list of known compositions
Does your package compose well with ArrayAllocators or its subpackages?
If so, please let me know by [creating an issue](https://github.com/mkitti/ArrayAllocators.jl/issues/new).
It is important to list known compositions so users know which packages are known to work well together.
Additionally, this helps to make sure that packages continue to compose over time. Beyond listing the
known composition, I will also add additional tests for them.
| ArrayAllocators | https://github.com/mkitti/ArrayAllocators.jl.git |
|
[
"MIT"
] | 0.3.0 | 9b79e996ba9ceda798f9cf4dab30aa69fc3e537f | docs | 2662 | # Detailed Overview
The original inspiration for this package is the memory allocator [`calloc`](https://en.cppreference.com/w/c/memory/calloc).
`calloc` allocates the memory and guarantees that the memory will be initialized by zeros. By this definition, it would appear
equivalent to `Base.zeros`. However, `calloc` is potentially able to take advantage of operating system facilities that allocate
memory lazily on demand rather than eagerly. Additionally, it may be able to obtain memory from the operating system that has
already been initialized by zeros due to security constraints. On many systems, this allocator returns as quickly as `malloc`,
the allocator used by `Array{T}(undef, dims)`. In particular, in Python, [`numpy.zeros`](https://github.com/juliantaylor/numpy/commit/d271d977bdfb977959db1ff26956666f3836b56b) uses `calloc`, which may at times appear faster than `Base.zeros` in Julia.
In contrast, `Base.zeros` allocates memory using `malloc` and then uses `fill!` to eagerly and explicitly fill the array with zeros.
On some systems, this may be a redundant operation since the operating system may already know the allocated memory is filled with zeros.
This package makes `calloc` and other allocators available. Some of these allocators are specific to particular kinds of systems.
One example is allocating on Non-Uniform Memory Access (NUMA) nodes. On a NUMA system, random-access memory (RAM) may be accessible
by certain processor cores at lower latency and higher bandwidth than other cores. Thus, it makes sense to allocate memory on particular
NUMA nodes. On Linux, this is facilitated by [`numactl`](https://github.com/numactl/numactl) software which includes `libnuma`.
On Windows, NUMA-aware memory allocation is exposed via the Kernel32 memory application programming interface such as via the function
[`VirtualAllocExNuma`](https://docs.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-virtualallocexnuma`). This package
provides an abstraction over the two libraries.
Another application is memory alignment which may facilitate the use of advanced vector instructions in modern processors.
One other feature of this package is implementation of "Safe" allocators. These allocators provide extra protection by detecting
integer overflow situations. Integer overflow can occur when multiplying large numbers causing the result to potentially wrap around.
Memory allocators may report success after allocating an wrapped around number of bytes. The "Safe" allocators use the
[`SaferIntegers`](https://github.com/JeffreySarnoff/SaferIntegers.jl) to detect integer overflow avoiding this erroneous situation.
| ArrayAllocators | https://github.com/mkitti/ArrayAllocators.jl.git |
|
[
"MIT"
] | 0.3.0 | 9b79e996ba9ceda798f9cf4dab30aa69fc3e537f | docs | 2545 | ```@meta
CurrentModule = ArrayAllocators
```
# ArrayAllocators
*Documentation for [ArrayAllocators](https://github.com/mkitti/ArrayAllocators.jl).*
# Introduction
This Julia package provides mechanisms to allocate arrays beyond that provided in the `Base` module of Julia.
The instances of the sub types of [`AbstractArrayAllocator`](@ref) take the place of `undef` in the `Array{T}(undef, dims)` invocation.
This allows us to take advantage of alternative ways of allocating memory. The allocators take advantage of `Base.unsafe_wrap`
in order to create arrays from pointers. A finalizer is also added for allocators that do not use `Libc.free`.
In the base `ArrayAllocators` package, the following allocators are provided.
* [`calloc`](@ref)
* [`malloc`](@ref)
* [`MemAlign(alignment)`](@ref MemAlign)
An extension for use with Non-Uniform Memory Access allocations is available via the subpackage [NumaAllocators.jl](@ref NumaAllocators).
## Example Basic Usage
Each of the methods below allocate 1 MiB of memory. Using `undef` as the first argument allocate uninitialized memory. The values are not guaranteed to be `0` or any other value.
In `Base`, the method `zeros` can be used to explicitly fill the memory with zeros. This is equivalent to using `fill!(..., 0)`. Using `calloc` guarantees the values will be `0`, yet is often as fast as using
`undef` initialization.
```julia
julia> using ArrayAllocators
julia> @time U = Array{Int8}(undef, 1024, 1024);
0.000019 seconds (2 allocations: 1.000 MiB)
julia> @time Z1 = zeros(Int8, 1024, 1024);
0.000327 seconds (2 allocations: 1.000 MiB)
julia> @time Z2 = fill!(Array{UInt8}(undef, 1024, 1024), 0);
0.000301 seconds (2 allocations: 1.000 MiB)
julia> @time C = Array{Int8}(calloc, 1024, 1024);
0.000020 seconds (4 allocations: 1.000 MiB)
julia> sum(C)
0
```
## Caveats
Above `calloc` appears to be much faster than `zeros` at generating an array full of `0`s. However, some
of the array created with `zeros` has already been fully allocated. The array allocated with `calloc` take
longer to initialize since the operating system may have deferred the actual allocation of memory.
```julia
julia> @time Z = zeros(Int8, 1024, 1024);
0.000324 seconds (2 allocations: 1.000 MiB)
julia> @time fill!(Z, 1);
0.000138 seconds
julia> @time fill!(Z, 2);
0.000136 seconds
julia> @time U = Array{Int8}(calloc, 1024, 1024);
0.000020 seconds (4 allocations: 1.000 MiB)
julia> @time fill!(U, 1);
0.000349 seconds
julia> @time fill!(U, 2);
0.000136 seconds
```
| ArrayAllocators | https://github.com/mkitti/ArrayAllocators.jl.git |
|
[
"MIT"
] | 0.3.0 | 9b79e996ba9ceda798f9cf4dab30aa69fc3e537f | docs | 1542 | ```@meta
CurrentModule = NumaAllocators
```
# NumaAllocators
Non-Uniform Memory Access (NUMA) array allocators allow you to allocate memory on specific NUMA nodes.
## Basic Usage
A `NumaAllocator` can be instantiated via `numa(node)` and passed to the `Array` constructor as below.
```julia
julia> using NumaAllocators
julia> a0 = Array{Int8}(numa(0), 1024, 1024);
julia> b0 = Array{Int8}(numa(0), 1024, 1024);
julia> a1 = Array{Int8}(numa(1), 1024, 1024);
julia> b1 = Array{Int8}(numa(1), 1024, 1024);
```
Depending on your processor architecture, some operations may be between NUMA nodes may be faster than others.
```julia
julia> @time fill!(a0, 1);
0.000374 seconds
julia> @time fill!(b0, 2);
0.000307 seconds
julia> @time fill!(a1, 3);
0.000418 seconds
julia> @time fill!(b1, 4);
0.000383 seconds
julia> @time copyto!(b0, a0);
0.000439 seconds
julia> @time copyto!(b1, a0);
0.000287 seconds
julia> @time copyto!(b1, a1);
0.000376 seconds
julia> @time copyto!(b0, a1);
0.000455 seconds
julia> current_numa_node()
0
julia> highest_numa_node()
1
julia> versioninfo()
Julia Version 1.7.2
Commit bf53498635 (2022-02-06 15:21 UTC)
Platform Info:
OS: Windows (x86_64-w64-mingw32)
CPU: Intel(R) Xeon(R) Gold 5220R CPU @ 2.20GHz
WORD_SIZE: 64
LIBM: libopenlibm
LLVM: libLLVM-12.0.1 (ORCJIT, cascadelake)
```
In the example above, copying 1 MB of data from NUMA node 0 to NUMA node 1 is faster than copying between
memory local to either NUMA node or copying data from NUMA node 1 to NUMA node 0.
| ArrayAllocators | https://github.com/mkitti/ArrayAllocators.jl.git |
|
[
"MIT"
] | 0.3.0 | 9b79e996ba9ceda798f9cf4dab30aa69fc3e537f | docs | 430 | ```@meta
CurrentModule = NumaAllocators
```
# Application Programming Interface for NumaAllocators.jl
```@docs
NumaAllocators
```
## Main Interface
```@docs
numa
NumaAllocator
current_numa_node
highest_numa_node
```
## Platform Specific Interface
### Windows
```@docs
NumaAllocators.Windows
NumaAllocators.Windows.WinNumaAllocator
```
### Linux
```@docs
NumaAllocators.LibNUMA
NumaAllocators.LibNUMA.LibNumaAllocator
```
| ArrayAllocators | https://github.com/mkitti/ArrayAllocators.jl.git |
|
[
"MIT"
] | 0.5.2 | 1a94764b239bd1867078fcf9eed76af9c07b7dc0 | code | 185 | using Documenter
makedocs(
sitename = "Jabalizer Documentation",
modules = [Jabalizer]
)
# deploydocs(
# deps = Deps.pip("pygments", "mkdocs", "python-markdown-math")
# )
| Jabalizer | https://github.com/QSI-BAQS/Jabalizer.jl.git |
|
[
"MIT"
] | 0.5.2 | 1a94764b239bd1867078fcf9eed76af9c07b7dc0 | code | 1266 | using Jabalizer
using PythonCall, Compose
cirq = pyimport("cirq");
circuit_file_name = "circuits/control_v.json"
circuit_string = cirq.read_json(circuit_file_name)
cirq_circuit = cirq.read_json(json_text=circuit_string)
println("\n-------------")
println("Input circuit")
println("-------------\n")
println(cirq_circuit)
gates_to_decomp = ["T", "T^-1"];
icm_input = Jabalizer.load_circuit_from_cirq_json("circuits/control_v.json")
(icm_circuit, _) = Jabalizer.compile(icm_input, gates_to_decomp)
Jabalizer.save_circuit_to_cirq_json(icm_circuit, "icm_output.json");
cirq_circuit = cirq.read_json("icm_output.json")
rm("icm_output.json")
println("\n-----------------")
println("ICM decomposition")
println("-----------------\n")
println(cirq_circuit)
n_qubits = Jabalizer.count_qubits(icm_circuit)
state = Jabalizer.zero_state(n_qubits);
print("\n Initial Stabilizer State\n")
println(state)
Jabalizer.execute_circuit(state, icm_circuit)
print("\n Final Stabilizer State\n")
print(state)
(g,A,seq) = Jabalizer.to_graph(state)
# Save generated graph as image file
draw(SVG("ctrl_v_graph.svg", 16cm, 16cm), Jabalizer.gplot(g))
println("\nGraph State")
println(g)
println("Adjacency matrix")
display(A)
println("\n\nLocal corrections")
println(seq)
| Jabalizer | https://github.com/QSI-BAQS/Jabalizer.jl.git |
|
[
"MIT"
] | 0.5.2 | 1a94764b239bd1867078fcf9eed76af9c07b7dc0 | code | 651 | using Jabalizer
# Prepare a 6-qubit GHZ state
n = 6
state = zero_state(n)
println("\nInitial State")
print(state)
state |> Jabalizer.H(1) |> Jabalizer.CNOT(1,2) |> Jabalizer.CNOT(1,3) |> Jabalizer.CNOT(1,4) |> Jabalizer.CNOT(1,5) |> Jabalizer.CNOT(1,6)
println("\nGHZ state")
print(state)
# Convert to graph state
graph_state = GraphState(state)
println("\nGraph adjacency matrix")
display(graph_state.A)
# This requires some kind of plotting backend.
# Works with Atom and VScode.
display(Jabalizer.gplot(graph_state))
# Convert back to stabilizer state
stab_state = StabilizerState(graph_state)
println("\nStabilizer State")
print(stab_state)
| Jabalizer | https://github.com/QSI-BAQS/Jabalizer.jl.git |
|
[
"MIT"
] | 0.5.2 | 1a94764b239bd1867078fcf9eed76af9c07b7dc0 | code | 532 | using Revise
using Jabalizer
frames = Jabalizer.Frames()
for i in 0:7
frames.new_qubit(i)
end
frame_flags = []
frames.into_py_dict_recursive()
# frame_flags = collect(2:5)
qubits = collect(2:5)
# track
frames.track_z(2)
frames.track_x(2)
frames.track_z(3)
frames.track_x(3)
#update frame_flags
append!(frame_flags, [6, 0, 7, 1,2,4])
# Jabalizer.pauli_corrections(frames, frame_flags, qubits)
# apply gates
frames.cx(2,3)
frames.cx(2,4)
frames.cx(4,5)
frames.cx(3,5)
Jabalizer.pauli_corrections(frames, frame_flags, qubits) | Jabalizer | https://github.com/QSI-BAQS/Jabalizer.jl.git |
|
[
"MIT"
] | 0.5.2 | 1a94764b239bd1867078fcf9eed76af9c07b7dc0 | code | 5560 | #!/usr/bin/env julia
# Copyright 2022-2024 Rigetti & Co, LLC
#
# This Computer Software is developed under Agreement HR00112230006 between Rigetti & Co, LLC and
# the Defense Advanced Research Projects Agency (DARPA). Use, duplication, or disclosure is subject
# to the restrictions as stated in Agreement HR00112230006 between the Government and the Performer.
# This Computer Software is provided to the U.S. Government with Unlimited Rights; refer to LICENSE
# file for Data Rights Statements. Any opinions, findings, conclusions or recommendations expressed
# in this material are those of the author(s) and do not necessarily reflect the views of the DARPA.
#
# Use of this work other than as specifically authorized by the U.S. Government is licensed under
# the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software distributed under the License
# is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express
# or implied. See the License for the specific language governing permissions and limitations under
# the License.
# A julia wrapper script to manage RRE's default FT-compiler, Jabalizer.
#
# Parts of the following code are inspired and/or customized from the original templates in the
# open-source references of:
# [1] https://github.com/QSI-BAQS/Jabalizer.jl
# [2] https://github.com/zapatacomputing/benchq
# [1] is distributed under the MIT License and includes the following copyright and permission
# statements:
# Copyright (c) 2021 Peter Rohde, Madhav Krishnan Vijayan, Simon Devitt, Alexandru Paler.
# Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
# associated documentation files (the "Software"), to deal in the Software without restriction,
# including without limitation the rights to use, copy, modify, merge, publish, distribute,
# sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
# The above copyright notice and this permission notice shall be included in all copies or
# substantial portions of the Software.
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT
# NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
# DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
if !isinteractive()
import Pkg
Pkg.activate("Jabalizer.jl/")
end
using Jabalizer
# circuit is an orquestra.quantum.circuits.Circuit object
function run_jabalizer(circuit, circuit_fname, suffix, debug_flag=false)
if debug_flag
println("\nRRE: Jabalizer FT-compiler starts ...\n")
end
mkpath("output/$(circuit_fname)/")
# circuit is an orquestra.quantum.circuits.Circuit object representing
# a quantum circuit acting on [0,1,...,n_qubits-1] qubits
# Reading the orquestra circuit and convert to one-based indexing
onebased_circuit = Gate[]
for op in circuit.operations
name = Jabalizer.pyconvert(String, op.gate.name)
cargs = nothing # Thinh: read in rotation gate angles, for example if RX(0.5) then cargs = [0.5] a list of one Float64
qargs = [Jabalizer.pyconvert(Int, qubit) + 1 for qubit in op.qubit_indices] # one-based indexing
push!(onebased_circuit, Jabalizer.Gate(name, cargs, qargs))
end
n_qubits = Jabalizer.pyconvert(Int, circuit.n_qubits)
# Warning: from now on assume input_circuit is a list of Jabalizer.Gate
# acting on [1,2,...,n_qubits]. Please ensure this when splitting qasm files.
filepath = "output/$(circuit_fname)/$(circuit_fname)$(suffix)_all0init_jabalizer.out.json"
if debug_flag
@info "RRE: Running `Jabalizer.mbqccompile` ...\n"
end
# ASSUME qubits are indexed from 1 to n_qubits
js = Jabalizer.mbqccompile(
Jabalizer.QuantumCircuit([1:n_qubits], onebased_circuit);
universal=true,
ptracking=true,
filepath=filepath,
)
return js # return the Jabalizer output in JSON format
# js = JSON.json(Dict(
# :time => time, # length(steps) how many time steps
# :space => space, # maximum number of qubits required
# :steps => steps, # actual MBQC instructions: for each step in steps init nodes and CZ based on spacialgraph
# :spacialgraph => [zerobasing(nb) for nb in Graphs.SimpleGraphs.adj(fullgraph)], # description of CZ gates to be applied (edge = apply CZ gate)
# :correction => [(g, zerobasing(q)) for (g, q) in correction], # potential local Clifford correction on each nodes right after CZ above
# :measurements => map(unpackGate, measurements), # list of measurements
# :statenodes => zerobasing(labels[:state]), # nodes where the input state is currently in
# :outputnodes => zerobasing(labels[:output]), # get the output state returned by the circuit from these nodes
# :frameflags => ptracker[:frameflags], # already zero-based # used to be frame_maps
# :initializer => initializer, # what was passed in from caller
# ))
end
| Jabalizer | https://github.com/QSI-BAQS/Jabalizer.jl.git |
|
[
"MIT"
] | 0.5.2 | 1a94764b239bd1867078fcf9eed76af9c07b7dc0 | code | 476 | using Revise
using Jabalizer
using JSON
input_file = "examples/mwe.qasm"
qc = parse_file(input_file)
# g, loc_corr, mseq, data_qubits, ptracker = gcompile(qc,
# universal=true,
# ptracking=true)
output = mbqccompile(qc, pcorrctions=true)
outfile = "examples/test.qasm"
qasm_instruction(outfile, output)
# output_dict = JSON.parse(output)
# output_dict["steps"]
| Jabalizer | https://github.com/QSI-BAQS/Jabalizer.jl.git |
|
[
"MIT"
] | 0.5.2 | 1a94764b239bd1867078fcf9eed76af9c07b7dc0 | code | 3245 | using Revise
using Jabalizer
using GraphPlot
using Graphs
using PythonCall
import Graphs.SimpleGraphs
mbqc_scheduling = pyimport("mbqc_scheduling")
SpacialGraph = pyimport("mbqc_scheduling").SpacialGraph
PartialOrderGraph = pyimport("mbqc_scheduling").PartialOrderGraph
input_file = "examples/mwe.qasm"
# Commented code below shows how to use icmcompile. For graph
# compilation icmcompile can be used directly instead
# qc = parse_file(input_file)
# # Display input circuit
# display(gates(qc))
# universal = true
# ptracking = true
# icm_circuit, mseq, qubit_map, frames_array = icmcompile(qc;
# universal=universal,
# ptracking=ptracking
# )
# # Compiled icm circuit
# display(gates(icm_circuit))
# # Measurement sequence
# display(mseq)
# # input-output map, keys are input and values are output
# display(qubit_map)
# # Frames array is one of [], [frames, frame_flags],
# # or [frames, frame_flags, buffer, buffer_flags] depending on whether universal
# # and ptracking flags are set
# if ptracking
# if universal
# frames, frame_flags, buffer, buffer_flags = frames_array
# else
# frames, frame_flags = frames_array
# end
# end
# Using gcompile directly
ptracking = true
universal = true
graph, loc_corr, mseq, data_qubits, frames_array = gcompile(input_file;
universal=universal,
ptracking=ptracking)
# unpack frames
if ptracking
if universal
frames, frame_flags, buffer, buffer_flags = frames_array
else
frames, frame_flags = frames_array
end
end
index=1
gplot(graph,nodelabel=(1-index):(nv(graph)-index))
# We now generate a spatial graph that includes nodes for incoming state;
# This could be the qubits holding the input state or qubits holding the
# output of a previous graph widget. The spatial graph is stored as
# edge list
# mbqc_scheduling
sparse_rep = SimpleGraphs.adj(graph)
#add state nodes to sparse_rep, this is needed to properly schedule
for (s,i) in zip(data_qubits[:state], data_qubits[:input])
insert!(sparse_rep, s, [i])
end
# shift indices for mbqc_scheduling
sparse_rep = [e.-1 for e in sparse_rep]
# Convert to native types used by mbqc_scheduling
sparse_rep_py = SpacialGraph(sparse_rep)
order = frames.get_py_order(frame_flags)
py_order = PartialOrderGraph(order)
AcceptFunc = pyimport("mbqc_scheduling.probabilistic").AcceptFunc
paths = mbqc_scheduling.run(sparse_rep_py, py_order)
# Time optimal path
for path in paths.into_py_paths()
println("time: $(path.time); space: $(path.space); steps: $(path.steps)")
end
# RRE output
# save path -> decide format
# Full search (only possible for very small graphs)
full_search_path = mbqc_scheduling.run(
sparse_rep_py,
py_order;
do_search=true,
nthreads=3,
# ,timeout=0
# timeout=1,
# probabilistic = (AcceptFunc(), nothing)
)
for path in full_search_path.into_py_paths()
println("time: $(path.time); space: $(path.space); steps: $(path.steps)")
end
| Jabalizer | https://github.com/QSI-BAQS/Jabalizer.jl.git |
|
[
"MIT"
] | 0.5.2 | 1a94764b239bd1867078fcf9eed76af9c07b7dc0 | code | 1348 | # Example of how to use qasm_instruction to output a qasm file
# for the outputs of gcompile and mbqccompile
using Jabalizer
input_file = "examples/mwe.qasm"
# input_file = "examples/toffoli.qasm"
gcompile_outfile = "examples/gcompile_mwe_out.qasm"
mbqccompile_outfile = "examples/mbqccompile_mwe_out.qasm"
# gcompile output -> qasm file
graph, loc_corr, mseq, data_qubits, frames_array = gcompile(input_file;
universal=true,
ptracking=true
)
frames, frame_flags = frames_array
outqubits = data_qubits[:output] .- 1
qubits = [q for q in frame_flags]
# we want to find pauli corrections for measured and output qubits
append!(qubits, outqubits)
# pauli_corrections translates frame information
# into pauli correction information for the specified qubits
pc = Jabalizer.pauli_corrections(frames, frame_flags, qubits);
display(pc)
# qasm_instruction generates a qasm file which generates the graph
# state, applies local corrections, applies pauli corrections and
# measurements and writes it to outfile.
qasm_instruction(gcompile_outfile, graph, loc_corr, mseq, data_qubits, frames_array);
# mbqccompile output -> qasm file
mbqc_output = mbqccompile(qc,pcorrections=true)
qasm_instruction(mbqccompile_outfile, mbqc_output)
| Jabalizer | https://github.com/QSI-BAQS/Jabalizer.jl.git |
|
[
"MIT"
] | 0.5.2 | 1a94764b239bd1867078fcf9eed76af9c07b7dc0 | code | 1292 | using Jabalizer
using PythonCall, Compose
cirq = pyimport("cirq");
circuit_file_name = "circuits/toffoli_circuit_3.json"
circuit_string = cirq.read_json(circuit_file_name)
cirq_circuit = cirq.read_json(json_text=circuit_string)
println("\n-------------")
println("Input circuit")
println("-------------\n")
println(cirq_circuit)
gates_to_decomp = ["T", "T^-1"];
icm_input = Jabalizer.load_circuit_from_cirq_json("circuits/toffoli_circuit_3.json")
(icm_circuit, qubit_dict) = Jabalizer.compile(icm_input, gates_to_decomp)
Jabalizer.save_circuit_to_cirq_json(icm_circuit, "icm_output.json");
cirq_circuit = cirq.read_json("icm_output.json")
rm("icm_output.json")
println("\n-----------------")
println("ICM decomposition")
println("-----------------\n")
println(cirq_circuit)
n_qubits = Jabalizer.count_qubits(icm_circuit)
state = Jabalizer.zero_state(n_qubits);
print("\n Initial Stabilizer State\n")
println(state)
Jabalizer.execute_circuit(state, icm_circuit)
print("\n Final Stabilizer State\n")
print(state)
(g,A,seq) = Jabalizer.to_graph(state)
# Save generated graph as image file
draw(SVG("toffoli_graph.svg", 16cm, 16cm), Jabalizer.gplot(g))
println("\nGraph State")
println(g)
println("Adjacency matrix")
display(A)
println("\n\nLocal corrections")
println(seq)
| Jabalizer | https://github.com/QSI-BAQS/Jabalizer.jl.git |
|
[
"MIT"
] | 0.5.2 | 1a94764b239bd1867078fcf9eed76af9c07b7dc0 | code | 2480 | using Revise
using Jabalizer
using Graphs
using GraphPlot
using PythonCall
import Graphs.SimpleGraphs
mbqc_scheduling = pyimport("mbqc_scheduling")
SpacialGraph = pyimport("mbqc_scheduling").SpacialGraph
PartialOrderGraph = pyimport("mbqc_scheduling").PartialOrderGraph
source_filename = "examples/mwe.qasm"
# source_filename = "examples/toffoli.qasm"
# gates_to_decompose = ["T", "T_Dagger"]
# Some commented code accessing internal functions that gcompile uses.
# uncomment to play with these methods.
# qubits, inp_circ = load_icm_circuit_from_qasm(source_filename)
# data = compile(
# inp_circ,
# qubits,
# gates_to_decompose;
# ptrack=false
# )
# icm_circuit, data_qubits, mseq, frames, frame_flags = data
# icm_q = Jabalizer.count_qubits(icm_circuit)
# state = zero_state(icm_q)
# Jabalizer.execute_circuit(state, icm_circuit)
universal=true
ptracking=true
data = gcompile(
source_filename;
universal=universal,
ptracking=ptracking
)
graph, loc_corr, mseq, data_qubits, frames_array = data
# unpack frames
if ptracking
if universal
frames, frame_flags, buffer, buffer_flags = frames_array
else
frames, frame_flags = frames_array
end
end
# graph plot (requires plotting backend)
gplot(graph, nodelabel=0:nv(graph)-1)
sparse_rep = SimpleGraphs.adj(graph)
# shift indices for mbqc_scheduling
sparse_rep = [e.-1 for e in sparse_rep]
for (s,i) in zip(data_qubits[:state], data_qubits[:input])
insert!(sparse_rep, s, [i])
end
sparse_rep = SpacialGraph(sparse_rep)
order = frames.get_py_order(frame_flags)
order = PartialOrderGraph(order)
paths = mbqc_scheduling.run(sparse_rep, order)
AcceptFunc = pyimport("mbqc_scheduling.probabilistic").AcceptFunc
# Time optimal path
for path in paths.into_py_paths()
println("time: $(path.time); space: $(path.space); steps: $(path.steps)")
end
# Full search
full_search_path = mbqc_scheduling.run(
sparse_rep,
order;
do_search=true,
nthreads=3,
# ,timeout=0
# timeout=1,
# probabilistic = (AcceptFunc(), nothing)
)
for path in full_search_path.into_py_paths()
println("time: $(path.time); space: $(path.space); steps: $(path.steps)")
end
# println("Input Nodes")
# println(input_nodes)
# println("Output Nodes")
# println(output_nodes)
# println("Local Corrections to internal nodes")
# println(loc_corr)
# println("Measurement order")
# println(mseq[1])
# println("Measurement basis")
# println(mseq[2])
| Jabalizer | https://github.com/QSI-BAQS/Jabalizer.jl.git |
|
[
"MIT"
] | 0.5.2 | 1a94764b239bd1867078fcf9eed76af9c07b7dc0 | code | 1126 | module Jabalizer
using Graphs, GraphPlot, LinearAlgebra
using JSON
using Documenter
using PythonCall
# using CondaPkg
export Stabilizer, StabilizerState, GraphState, Gates
export zero_state, to_tableau, tableau_to_state, to_graph, graph_to_state
export measure_x, measure_y, measure_z
include("gates.jl")
using .Gates
const stim = PythonCall.pynew() # initially NULL
const cirq = PythonCall.pynew() # initially NULL
const Frames = PythonCall.pynew()
const mbqc_scheduling = PythonCall.pynew()
function __init__()
PythonCall.pycopy!(stim, pyimport("stim"))
PythonCall.pycopy!(cirq, pyimport("cirq"))
PythonCall.pycopy!(Frames, pyimport("pauli_tracker.frames.map").Frames)
PythonCall.pycopy!(mbqc_scheduling, pyimport("mbqc_scheduling"))
end
include("cirq_io.jl")
include("qasm.jl")
include("icm.jl")
include("stabilizer.jl")
include("stabilizer_state.jl")
include("stabilizer_gates.jl")
include("graph_state.jl")
include("util.jl")
include("fast_tograph.jl")
include("execute_circuit.jl")
include("stabilizer_measurements.jl")
include("gcompile.jl")
include("mbqccompile.jl")
include("qasm_out.jl")
end
| Jabalizer | https://github.com/QSI-BAQS/Jabalizer.jl.git |
|
[
"MIT"
] | 0.5.2 | 1a94764b239bd1867078fcf9eed76af9c07b7dc0 | code | 3592 | """
Parses cirq qubits to qubits in the format needed for icm.
Helper function.
"""
function parse_cirq_qubits(cirq_qubits::Vector{Any})
output_qubits = Vector{String}()
for qubit in cirq_qubits
if qubit["cirq_type"] == "LineQubit"
push!(output_qubits, string(qubit["x"]))
else
throw(DomainError(qubit["cirq_type"], "Only LineQubits are supported right now."))
end
end
return output_qubits
end
"""
Loads cirq circuit from json into a format compatible with icm.
"""
function load_circuit_from_cirq_json(file_name::String)
raw_circuit = JSON.parsefile(file_name)
# Sometimes cirq saves to circuit as json with "\n" characters which require escaping
if typeof(raw_circuit) == String
raw_circuit = JSON.parse(replace(raw_circuit, "\n" => ""))
end
circuit = Vector{Tuple{String,Vector{String}}}()
for moment in raw_circuit["moments"]
for operation in moment["operations"]
if not haskey(operation, "gate")
# There are other types of gates such as PauliStrings which do not have in the json
# the gate attribute
throw(DomainError(cirq_gate_name, "Gate type not supported"))
end
cirq_gate_name = operation["gate"]["cirq_type"]
qubits = parse_cirq_qubits(operation["qubits"])
if cirq_gate_name == "ZPowGate" && operation["gate"]["exponent"] == 0.25
gate_name = "T"
elseif cirq_gate_name == "ZPowGate" && operation["gate"]["exponent"] == -0.25
gate_name = "T^-1"
elseif cirq_gate_name == "HPowGate" && operation["gate"]["exponent"] == 1.0
gate_name = "H"
elseif cirq_gate_name == "CXPowGate" && operation["gate"]["exponent"] == 1.0
gate_name = "CNOT"
else
throw(DomainError(cirq_gate_name, "Gate type not supported"))
end
push!(circuit, (gate_name, qubits))
end
end
return circuit
end
"""
Saves an icm-compatible circuit to CirQ-compatible json.
"""
function save_circuit_to_cirq_json(circuit, file_name::String)
cirq_dict = Dict()
cirq_dict["cirq_type"] = "Circuit"
cirq_dict["moments"] = []
for (gate, qubits) in circuit
moment = Dict()
moment["cirq_type"] = "Moment"
operation = Dict()
operation["cirq_type"] = "GateOperation"
cirq_gate = Dict()
if gate == "T"
cirq_gate["cirq_type"] = "ZPowGate"
cirq_gate["exponent"] = 0.25
elseif gate == "T^-1"
cirq_gate["cirq_type"] = "ZPowGate"
cirq_gate["exponent"] = 0.25
elseif gate == "H"
cirq_gate["cirq_type"] = "HPowGate"
cirq_gate["exponent"] = 1.0
elseif gate == "CNOT"
cirq_gate["cirq_type"] = "CXPowGate"
cirq_gate["exponent"] = 1.0
else
throw(DomainError(gate, "Gate type not supported"))
end
cirq_gate["global_shift"] = 0.0
cirq_qubits = []
for qubit in qubits
cirq_qubit = Dict()
cirq_qubit["cirq_type"] = "NamedQubit"
cirq_qubit["name"] = qubit
push!(cirq_qubits, cirq_qubit)
end
operation["gate"] = cirq_gate
operation["qubits"] = cirq_qubits
moment["operations"] = [operation]
push!(cirq_dict["moments"], moment)
end
json_string = JSON.json(cirq_dict)
open(file_name, "w") do f
write(f, json_string)
end
end | Jabalizer | https://github.com/QSI-BAQS/Jabalizer.jl.git |
|
[
"MIT"
] | 0.5.2 | 1a94764b239bd1867078fcf9eed76af9c07b7dc0 | code | 676 | """
Executes circuit using stim simulator and applies it to a given state.
"""
function execute_circuit(
state::StabilizerState,
circuit::Vector{ICMGate};
)
for (op, qubits) in circuit
gate = gate_map[op]([q + index for q in qubits]...)
gate(state)
end
end
# support QuantumCircuit
function execute_circuit(
state::StabilizerState,
circuit::QuantumCircuit)
for gate in Jabalizer.gates(circuit)
try
state |> gate_map[gate.name](gate.qargs...)
catch err
if isa(err, KeyError)
error(gate.name*" is not a known Stabilizer Gate.")
end
end
end
end
| Jabalizer | https://github.com/QSI-BAQS/Jabalizer.jl.git |
|
[
"MIT"
] | 0.5.2 | 1a94764b239bd1867078fcf9eed76af9c07b7dc0 | code | 3190 | ### Fast to_graph implementation
"""
_swap_row!(svec::Vector{Stabilizer}, r1::Int, r2::Int)
Row swap operation
"""
function _swap_row!(svec::Vector{Stabilizer}, r1::Int, r2::Int)
temp = svec[r1]
svec[r1] = svec[r2]
svec[r2] = temp
end
"""
x_locs(svec::Vector{Stabilizer}, qubits::Int, bit::Int)
Find locations of Xs above or below the diagonal in a tableau column.
By default returns the ones below.
"""
function x_locs(svec::Vector{Stabilizer}, qubits::Int, bit::Int; above::Bool=false)
incr = above ? -1 : 1
stop = above ? 1 : qubits
locs = Int64[]
for i = bit:incr:stop
if svec[i].X[bit]
push!(locs ,i)
end
end
return locs
end
function fast_to_graph(state::StabilizerState)
#TODO: Add a check if state is not empty. If it is, throw an exception.
# update the state tableau from the stim simulator
update_tableau(state)
qubits = state.qubits
svec = deepcopy(state.stabilizers)
# Sequence of local operations performed
op_seq = Tuple{String, Int}[]
# Make X-block upper triangular
for n in 1:qubits
# sort!(svec, rev=true) # getting rid of this sort, also why rev?
# lead_sum = calc_sum(svec, qubits, n)
locs = x_locs(svec, qubits, n)
x_num = length(locs)
if x_num == 0
# Perform Hadamard operation
for stab in svec
x, z = stab.X[n], stab.Z[n]
x == 1 && z == 1 && (stab.phase ⊻= 2) # toggle bit 2 of phase if Y
# Swap bits
stab.X[n], stab.Z[n] = z, x
end
push!(op_seq, ("H", n))
# sort!(svec, rev=true)
locs = x_locs(svec, qubits, n)
x_num = length(locs)
end
# If first X is not on the diagonal
locs[1] != n && _swap_row!(svec,n, locs[1])
# Remove Xs below the diagonal
popfirst!(locs)
for r_idx in locs
_add_row!(svec, n, r_idx)
end
end
# Make diagonal X-block
for n = qubits:-1:2
# Find x locations above the diagonal
locs = x_locs(svec, qubits, n; above=true)
# Remove diagonal index
test_idx = popfirst!(locs)
if test_idx != n
error("No diagonal X in upper-triangular block - algorithm failure!")
end
for idx in locs
_add_row!(svec, n, idx)
end
end
# Adjacency matrix
A = Array{Int}(undef, qubits, qubits)
for n = 1:qubits
stab = svec[n]
# Y correct
if stab.X[n] == 1 && stab.Z[n] == 1
# Change Y to X
stab.Z[n] = 0
push!(op_seq, ("Pdag", n))
end
# Phase correction
if stab.phase != 0
stab.phase = 0
push!(op_seq, ("Z", n))
end
# Copy Z to adjacency matrix
A[n, :] .= stab.Z
# Check diagonal for any non-zero values
A[n, n] == 0 ||
println("Error: invalid graph conversion (non-zero trace).")
end
issymmetric(A) || println("Error: invalid graph conversion (non-symmetric).")
return (graph_to_state(A), A, op_seq)
end
| Jabalizer | https://github.com/QSI-BAQS/Jabalizer.jl.git |
|
[
"MIT"
] | 0.5.2 | 1a94764b239bd1867078fcf9eed76af9c07b7dc0 | code | 2116 | module Gates
const gate_alias =
[("H_XZ", :H),
("P", :S),
("PHASE", :S),
("SQRT_Z", :S),
("SQRT_Z_DAG", :S_DAG),
("S^-1", :S_DAG),
("S_Dagger", :S_DAG),
("CX", :CNOT),
("ZCX", :CNOT),
("ZCY", :CY),
("ZCZ", :CZ),
]
const gate1_list =
[("I", :Id),
("X", :X), # HSSH
("Y", :Y), # SSHSSH
("Z", :Z), # SS
("C_XYZ", :C_XYZ), # SSSH
("C_ZYX", :C_ZYX), # HS
("H", :H),
("H_XY", :H_XY), # HSSHS
("H_YZ", :H_YZ), # HSHSS
("S", :S),
("S_DAG", :S_DAG),
("SQRT_X", :SQRT_X), # HSH
("SQRT_X_DAG", :SQRT_X_DAG), # SHS
("SQRT_Y", :SQRT_Y), # SSH
("SQRT_Y_DAG", :SQRT_Y_DAG), # HSS
]
const gate2_list =
[("CNOT", :CNOT),
("CY", :CY), # S1 S1 S1 CNOT01 S1
("CZ", :CZ), # H1 CNOT01 H1
("XCX", :XCX), # H0 CNOT01 H0
("XCY", :XCY), # H0 S1 S1 S1 CNOT01 H0 S1
("XCZ", :XCZ), # CNOT10
("YCX", :YCX), # S0 S0 S0 H1 CNOT10 S0 H1
("YCY", :YCY), # S0 S0 S0 S1 S1 S1 H0 CNOT01 H0 S0 S1
("YCZ", :YCZ),
("SWAP", :SWAP), # CNOT01 CNOT10 CNOT01
("ISWAP", :ISWAP), # H0 S0 S0 S0 CNOT01 S0 CNOT10 H1 S1 S0
("ISWAP_DAG", :ISWAP_DAG),
# S0 S0 S0 S1 S1 S1 H1 CNOT10 S0 S0 S0 CNOT01 S0 H0
]
abstract type Gate end
abstract type OneQubitGate <: Gate end
abstract type TwoQubitGate <: Gate end
export Gate, OneQubitGate, TwoQubitGate
#=
"Pauli-I"
"Pauli-X"
"Pauli-Y"
"Pauli-Z"
"S (Phase)"
"Hadamard"
"Controlled NOT"
"CZ"
"SWAP"
=#
const gate_map = Dict{String,Type{<:Gate}}()
export gate_map
for (name, sym) in gate1_list
@eval begin
export $sym ; struct $sym <: OneQubitGate ; qubit::Int ; end
end
end
for (name, sym) in gate2_list
@eval begin
export $sym ; struct $sym <: TwoQubitGate ; qubit1::Int ; qubit2::Int ; end
end
end
for (name, sym) in vcat(gate1_list, gate2_list, gate_alias)
@eval gate_map[$name] = $sym
end
# Aliases
const P = S ; export P
const PHASE = S ; export PHASE
end # module Gates
| Jabalizer | https://github.com/QSI-BAQS/Jabalizer.jl.git |
|
[
"MIT"
] | 0.5.2 | 1a94764b239bd1867078fcf9eed76af9c07b7dc0 | code | 3717 | using Graphs
export gcompile
"""
Run a full graph compilation on an input circuit.
"""
function gcompile(
circuit::Vector{ICMGate},
args...;
kwargs...)
icm_circuit, data_qubits, mseq = compile(
circuit,
args...;
kwargs...
)
icm_qubits = Jabalizer.count_qubits(icm_circuit)
state = zero_state(icm_qubits)
Jabalizer.execute_circuit(state, icm_circuit)
adj, op_seq = to_graph(state)[2:3]
g = Graphs.SimpleGraph(adj)
input_nodes = Dict{Int, Int}()
logical_qubits = args[1]
for i in 1:logical_qubits
input_nodes[i] = i + logical_qubits
end
output_nodes = data_qubits
# Add Hadamard corrections to boundry nodes.
del=[]
for (idx, corr) in enumerate(op_seq)
# add H corrections to input nodes
if (corr[1] == "H") && corr[2] in values(input_nodes)
# add new node to graph
add_vertex!(g)
new_node = nv(g)
add_edge!(g, corr[2], new_node)
# add index for deletion
push!(del, idx)
# find the input label for the node
for (k,v) in input_nodes
if v == corr[2]
input_nodes[k] = new_node
break
end
end
# Add measurement to mseq to implement the Hadamard
pushfirst!(mseq, ("X", [new_node] ))
# qubit_map[string(new_node)] = new_node
end
# add H corrections to output nodes
if (corr[1] == "H") && corr[2] in values(output_nodes)
# add new node to graph
add_vertex!(g)
new_node = nv(g)
add_edge!(g, corr[2], new_node)
# add index for deletion from mseq
push!(del, idx)
# find the output label for the node
for (k,v) in output_nodes
if v == corr[2]
push!(mseq, ("X", [corr[2]] ))
output_nodes[k] = new_node
break
end
end
end
end
deleteat!(op_seq, del)
# Measurement sequence
meas_order = []
meas_basis = []
for (gate, qubit) in mseq
push!(meas_order, qubit[1])
push!(meas_basis, gate )
end
mseq = [meas_order, meas_basis]
return g, op_seq, mseq, input_nodes, output_nodes
end
"""
gcompile for QuantumCircuit
"""
function gcompile(
circuit::QuantumCircuit;
universal::Bool,
ptracking::Bool,
teleport=["T", "T_Dagger", "RZ"]
)
icm_circuit, mseq, data_qubits, frames_array = icmcompile(circuit;
universal=universal,
ptracking = ptracking,
teleport = teleport
)
icm_qubits = icm_circuit.registers |> length
state = zero_state(icm_qubits)
Jabalizer.execute_circuit(state, icm_circuit)
adj, loc_corr = to_graph(state)[2:3]
#Hadamard corr TODO
g = Graphs.SimpleGraph(adj)
return g, loc_corr, mseq, data_qubits, frames_array
end
"""
run gcompile on an input file
"""
function gcompile(
filename::String;
kwargs...
)
qc = parse_file(filename)
# qubits, inp_circ = load_icm_circuit_from_qasm(filename)
return gcompile(
qc;
kwargs...
)
end | Jabalizer | https://github.com/QSI-BAQS/Jabalizer.jl.git |
|
[
"MIT"
] | 0.5.2 | 1a94764b239bd1867078fcf9eed76af9c07b7dc0 | code | 1127 | """
Graph state type
Type for a stabilizer state constrained to graph form.
"""
mutable struct GraphState
qubits::Int
A::Matrix{Int}
GraphState() = new(0, Matrix{Int}(undef, 0, 0))
GraphState(A::AbstractMatrix{<:Integer}) = new(size(A, 1), A)
GraphState(state::StabilizerState) = new(state.qubits, to_graph(state)[2])
end
StabilizerState(graphState::GraphState) = graph_to_state(graphState.A)
"""
gplot(graphState)
Plot the graph of a GraphState.
"""
function GraphPlot.gplot(graphState::GraphState; node_dist=5.0)
# Creates an anonymous function to allow changing the layout params
# in gplot. The value of C determines distance between connected nodes.
layout = (args...) -> spring_layout(args...; C=node_dist)
gplot(Graph(graphState.A), nodelabel=1:graphState.qubits)
end
Base.:(==)(g1::GraphState, g2::GraphState) = g1.qubits == g2.qubits && g1.A == g2.A
function Base.display(graphState::GraphState)
println("Adjacency matrix for ", graphState.qubits, " qubits:\n")
display(graphState.A)
end
Base.print(io::IO, graphState::GraphState) = print(io, graphState.A)
| Jabalizer | https://github.com/QSI-BAQS/Jabalizer.jl.git |
|
[
"MIT"
] | 0.5.2 | 1a94764b239bd1867078fcf9eed76af9c07b7dc0 | code | 10553 | const ICMGate = Tuple{String,Vector{Int}}
export icmcompile
# Assume registers(qc) is of the form collect(1:n) for some n
function icmcompile(qc::QuantumCircuit; universal, ptracking, teleport=["T", "T_Dagger", "RZ"], debug=false)
# Register layout: [input, universal, teleport, state]
# We do not write part of the circuit involving state
input = copy(registers(qc)) # teleport state into these nodes
allqubit = copy(registers(qc))
state = zeros(Int, length(input)) # register storing input state
mapping = Dict(zip(input, allqubit))
debug && @info mapping
circuit = Gate[]
measure = Gate[]
if ptracking
# Pauli correction in this widget
frames = Frames(length(input))
debug && @info frames.into_py_dict_recursive()
frame_flags = Int[]
end
if universal
debug && @info "Universal compilation..."
allqubit, mapping = extend!!(allqubit, mapping, registers(qc)) # append universal register
debug && @info mapping
append!(circuit, Gate("H", nothing, [i]) for i in allqubit)
append!(circuit, Gate("CZ", nothing, [i, mapping[i]]) for i in input)
# Not written: immediately before X measurement, needs CZ current state and input
# Add state and input measurements
for i in input
push!(measure, Gate("X", nothing, [-1])) # outcome s
push!(measure, Gate("X", nothing, [i])) # outcome t
end
# append!(measure, Gate("X", nothing, [i]) for i in input) # outcome t
# Not written: X measurement on state register
# push!(measure, Gate("X", nothing, [i]) for i in state) # outcome s
if ptracking # to zero indexing
# buffer frames are used to modify current frames, dont need buffer_flags
buffer = Frames() # Pauli correction from previous widget
buffer_flags = state # adjust zero indexing later # qubits of the PREVIOUS widget?
for i in input
frames.new_qubit(mapping[i]-1)
# Zˢ correction on system mapping[i] from outcome s
frames.track_z(mapping[i]-1)
push!(frame_flags, -1) # placeholder
# push!(frame_flags, state[i]) # adjust zero indexing later MUTABLE...
# Xᵗ correction on system mapping[i] from outcome t
frames.track_x(mapping[i]-1)
push!(frame_flags, i-1)
# Potential correction on system mapping[i] from previous widget
buffer.new_qubit(mapping[i]-1)
buffer.track_z(mapping[i]-1)
buffer.track_x(mapping[i]-1) # Q: use buffer to modify frame and pauli track?
end
end
end
debug && @info "Teleporting all non-Clifford gates..."
for gate in gates(qc) # gate in the original circuit
actingon = [mapping[q] for q in qargs(gate)]
# with teleportation so far, the gate becomes
currentgate = Gate(name(gate), cargs(gate), actingon)
# @info "Current gate: $currentgate"
# previousmapping = copy(mapping) # would remove additional keys to mapping, modify extend!!
if name(gate) in teleport
# specific individual gate
allqubit, mapping = extend!!(allqubit, mapping, actingon) # append teleport register
debug && @info mapping
append!(circuit, Gate("CNOT", nothing, [q, mapping[q]]) for q in actingon)
# append!(circuit, Gate("CNOT", nothing, [previousmapping[q], mapping[q]]) for q in qargs(gate))
push!(measure, Gate(name(gate), cargs(gate), actingon))
if ptracking # to zero indexing
# frames.new_qubit(first(actingon)-1)
frames.new_qubit(mapping[first(actingon)]-1)
frames.cx(first(actingon)-1, mapping[first(actingon)]-1) # could just call ptracking_apply_gate
push!(frame_flags, first(actingon)-1)
frames.track_z(mapping[first(actingon)]-1) # e.g. for exp(iαZ) gates
end
else
push!(circuit, currentgate)
# apply Clifford gates to the pauli tracker
ptracking && ptracking_apply_gate(frames, currentgate)
end
end
debug && @info mapping
output = [mapping[q] for q in input] # store output state
# Calculate the state register and write to frame_flags
state .= collect(length(allqubit)+1:length(allqubit)+length(state))
# Initialise frames for state indices
for i in state
frames.new_qubit(i-1)
end
# add state qubit indices to measure
# @info measure
counter = 0
for m in measure
if qargs(m)[1] == -1
counter += 1
qargs(m)[1] = state[counter]
end
end
# @info measure
if universal && ptracking
counter = 0
for (idx, val) in enumerate(frame_flags)
if val == -1
counter += 1
frame_flags[idx] = state[counter] - 1 # to zero indexing
end
end
@assert counter == length(state)
end
# Check sizes
if ptracking
universal && @assert length(frame_flags) == length(allqubit)
universal || @assert length(frame_flags) == length(allqubit) - length(input)
end
# Preparing return data
circuit = QuantumCircuit(allqubit, circuit)
# labels = (input = input, output = output, state = state)
labels = Dict(:input => input, :output => output, :state => state)
ptracker = (frames = ptracking ? frames : nothing,
frameflags = ptracking ? frame_flags : nothing,
buffer = universal ? buffer : nothing,
bufferflags = universal ? buffer_flags : nothing,
)
return (circuit, measure, labels, ptracker)
end
# Never call with registers = allqubits: infinite loop extension
# Assume allqubits is of the form collect(1:n) for some n
function extend!!(
allqubits::Vector{<:Integer},
mapping::Dict{<:Integer, <:Integer},
registers::Vector{<:Integer}
)
@assert registers ⊆ allqubits
# nextinteger(v, i=1) = i ∈ v ? nextinteger(v, i+1) : i
nextinteger(v) = length(v) + 1
for reg in registers
newqubit = nextinteger(allqubits)
push!(allqubits, newqubit)
# mapping[reg] = newqubit
for key in keys(mapping)
if mapping[key] == reg
mapping[key] = newqubit
end
end
mapping[reg] = newqubit
end
return allqubits, mapping
end
function ptracking_apply_gate(frames, gate::Gate)
bits = qargs(gate) .-1 # Vector{UInt} # to zero indexing
if name(gate) == "H"
frames.h(bits[1])
elseif name(gate) == "S"
frames.s(bits[1])
elseif name(gate) == "CZ"
frames.cz(bits[1], bits[2])
elseif name(gate) == "X" || name(gate) == "Y" || name(gate) == "Z"
# commute or anticommute
elseif name(gate) == "S_DAG"
frames.sdg(bits[1])
elseif name(gate) == "SQRT_X"
frames.sx(bits[1])
elseif name(gate) == "SQRT_X_DAG"
frames.sxdg(bits[1])
elseif name(gate) == "SQRT_Y"
frames.sy(bits[1])
elseif name(gate) == "SQRT_Y_DAG"
frames.sydg(bits[1])
elseif name(gate) == "SQRT_Z"
frames.sz(bits[1])
elseif name(gate) == "SQRT_Z_DAG"
frames.szdg(bits[1])
elseif name(gate) == "CNOT"
frames.cx(bits[1], bits[2])
elseif name(gate) == "SWAP"
frames.swap(bits[1], bits[2])
else
error("Unknown gate: $(name(gate))")
end
end
# BELOW WILL BE DELETED
"""
Perfoms gates decomposition to provide a circuit in the icm format.
Reference: https://arxiv.org/abs/1509.02004
compile expects qubits to be indexed as integers from 1:n_qubits. If the
universal flag is set, input nodes are added which are indexed n+1:2n.
Ancillas introduced for teleportation are indexed starting from 2n+1 onwards.
universal flag = false is not supported yet.
gates_to_decompose are expected to by RZ gates. Rx, Ry and single qubit unitary
support will be added soon.
"""
function compile(circuit::Vector{ICMGate},
n_qubits::Int,
gates_to_decompose::Vector{String};
universal::Bool=true
)
# Initialize dictionary to track teleported qubits
qubit_dict = Dict{Int, Int}()
# Initialise measurement sequence
mseq::Vector{ICMGate} = []
if universal
"""
Generate pairs of Bell states for every logical qubit. Gates on logical
qubits will act on one qubit of the bell pair for that logical qubit. This
allows for injecting arbitrary input states through teleportation using the
other qubit of the Bell pair.
"""
initialize::Vector{ICMGate} = []
for i in 1:n_qubits
# Initialise (graph) Bell states for every logical qubit"
push!(initialize, ("H", [i]))
push!(initialize, ("H", [i + n_qubits]))
push!(initialize, ("CZ",[i, i + n_qubits]))
# Add input measurements to mseq
# This does not include the measurement on the incoming qubit!
push!(mseq, ("X", [i + n_qubits]))
end
# Prepend input initialisation to circuit
circuit = [initialize; circuit]
end
# Initalizse the compiled circuit
compiled_circuit::Vector{ICMGate} = []
ancilla_num = 1
for (gate, qubits) in circuit
# Get the teleported qubit index if qubit has been teleported.
compiled_qubits = [get(qubit_dict, q, q) for q in qubits]
if gate in gates_to_decompose
for (original_qubit, compiled_qubit) in zip(qubits, compiled_qubits)
# Generate index for new ancilla to telport to.
new_qubit = 2 * n_qubits + ancilla_num
# update ancilla count
ancilla_num += 1
# Update data qubit map
qubit_dict[original_qubit] = new_qubit
push!(compiled_circuit, ("CNOT", [compiled_qubit, new_qubit]))
# Update measuremnet sequence
push!(mseq, (gate, [compiled_qubit]))
end
else
push!(compiled_circuit, (gate, compiled_qubits))
end
end
return compiled_circuit, qubit_dict, mseq
end
| Jabalizer | https://github.com/QSI-BAQS/Jabalizer.jl.git |
|
[
"MIT"
] | 0.5.2 | 1a94764b239bd1867078fcf9eed76af9c07b7dc0 | code | 3770 | # using Graphs, PythonCall, JSON # done in Jabalizer.jl
export mbqccompile
# """
# Return MBQC instructions for a given QuantumCircuit
# """
function mbqccompile(
circuit::QuantumCircuit;
universal = true,
ptracking = true,
pcorrections=false,
teleport = ["T", "T_Dagger", "RZ"],
filepath = nothing,
initializer = [],
)
icm, measure, labels, ptracker = icmcompile(circuit; universal=universal, ptracking = ptracking, teleport = teleport)
state = zero_state(width(icm))
Jabalizer.execute_circuit(state, icm)
graphstate, correction = to_graph(state)[2:3]
# Extract MBQC instructions
fullgraph = Graph(graphstate)
add_vertices!(fullgraph, length(labels[:state]))
for (s, i) in zip(labels[:state], labels[:input]) # teleporting state into input registers
add_edge!(fullgraph, s, i)
end # extended graph state with state registers for scheduling
spacialgraph = mbqc_scheduling.SpacialGraph([zerobasing(nb) for nb in Graphs.SimpleGraphs.adj(fullgraph)])
ptracking && (order = mbqc_scheduling.PartialOrderGraph(ptracker[:frames].get_py_order(ptracker[:frameflags]))) # already zero-based
AcceptFunc = pyimport("mbqc_scheduling.probabilistic").AcceptFunc
paths = mbqc_scheduling.run(spacialgraph, order)
path0 = paths.into_py_paths()[0]
time = pyconvert(Int, path0.time)
space = pyconvert(Int, path0.space)
steps = [pyconvert(Vector, step) for step in path0.steps]
# Jabalizer output, converted to zero-based indexing
# measurements = append!(measure, Gate("X", nothing, [i]) for i in labels[:state])
# Generate pauli-tracker for all qubits
if pcorrections
allqubits = reduce(vcat, steps)
pcorrs = pauli_corrections(ptracker[:frames],ptracker[:frameflags], allqubits)
end
jabalizer_out = Dict(
"time" => time, # length(steps) how many time steps
"space" => space, # maximum number of qubits required
"steps" => steps, # actual MBQC instructions: for each step in steps init nodes and CZ based on spacialgraph
"spatialgraph" => [zerobasing(nb) for nb in Graphs.SimpleGraphs.adj(fullgraph)], # description of CZ gates to be applied (edge = apply CZ gate)
"correction" => [[g, zerobasing(q)] for (g, q) in correction], # potential local Clifford correction on each nodes right after CZ above
"measurements" => map(unpackGate, measure), # list of measurements
"statenodes" => zerobasing(labels[:state]), # nodes where the input state is currently in
"outputnodes" => zerobasing(labels[:output]), # get the output state returned by the circuit from these nodes
"frameflags" => ptracker[:frameflags], # already zero-based # used to be frame_maps
"initializer" => initializer, # what was passed in from caller
)
if pcorrections
jabalizer_out["pcorrs"] = pcorrs
end
js = JSON.json(jabalizer_out)
if !isnothing(filepath)
# @info "Jabalizer: writing to $(filepath)"
open(filepath, "w") do f
write(f, js)
end
end
return jabalizer_out
end
function unpackGate(gate::Gate; tozerobased = true)
gatename = name(gate)
@assert !isnothing(qargs(gate)) "Error: $(gatename) must act on some qubits, got $(qargs(gate))."
if length(qargs(gate)) == 1
tozerobased ? (actingon = zerobasing(qargs(gate)[1])) : (actingon = qargs(gate)[1])
else
tozerobased ? (actingon = zerobasing(qargs(gate))) : (actingon = qargs(gate))
end
if !isnothing(cargs(gate)) && length(cargs(gate)) == 1
params = cargs(gate)[1]
else
params = cargs(gate)
end
return [gatename, actingon, params]
end
function zerobasing(index)
return index .- 1
end | Jabalizer | https://github.com/QSI-BAQS/Jabalizer.jl.git |
|
[
"MIT"
] | 0.5.2 | 1a94764b239bd1867078fcf9eed76af9c07b7dc0 | code | 6928 | using OpenQASM
using MLStyle
import RBNF: Token
export Gate, QuantumCircuit, parse_file, width, depth
export cargs, qargs,registers, gates
using OpenQASM.Types
# abstract type QuantumRegister end
# abstract type QuantumCircuit end
# interface getregisters() and getcircuit()
# Wrapper for OpenQASM.Types.Instruction
struct Gate
name
cargs
qargs
end
name(g::Gate) = g.name
cargs(g::Gate) = g.cargs
qargs(g::Gate) = g.qargs
width(g::Gate) = length(qargs(g))
#
struct QuantumCircuit
registers::Vector{Int} # allow tensor product of circuits
circuit::Vector{Gate}
function QuantumCircuit(registers, circuit)
@assert all(qargs(g) ⊆ registers for g in circuit)
return new(registers, circuit)
end
end
width(qc::QuantumCircuit) = length(qc.registers)
depth(qc::QuantumCircuit) = length(qc.circuit)
registers(qc::QuantumCircuit) = qc.registers
gates(qc::QuantumCircuit) = qc.circuit
Base.show(io::IO, qc::QuantumCircuit) = Base.show(io, gates(qc))
# Parse qasm file and return a QuantumCircuit
function parse_file(filename::String)
ast = OpenQASM.parse(read(filename, String))
# Only support the following qasm format
@assert ast.version == v"2.0.0" "Unsupported QASM version: $(ast.version)"
@assert length(filter(x->x isa OpenQASM.Types.Include, ast.prog)) == 1 "Incorrect qasm file format: must have one include statement"
@assert ast.prog[1] isa OpenQASM.Types.Include "Incorrect qasm file format: first statement must be an include statement"
@assert length(filter(x->x isa OpenQASM.Types.RegDecl, ast.prog)) == 1 "Unsupported multiple qubit register declarations"
@assert ast.prog[2] isa OpenQASM.Types.RegDecl "Incorrect qasm file format: second statement must be a qubit register declaration"
return transform(ast)
end
# TODO: expand include statements
function transform(qasm)
return @match qasm begin
t::Token{:id} => convert(Symbol, t)
t::Token{:float64} => convert(Float64, t)
t::Token{:int} => convert(Int, t)
t::Token{:str} => convert(String, t)
t::Token{:reserved} => convert(Symbol, t)
OpenQASM.Types.Include(file) => transform(file)
OpenQASM.Types.RegDecl(type, name, size) => (transform(type), transform(name), transform(size))
OpenQASM.Types.Bit(name=id, address=int) => transform(int) + 1 # convert to one-based indexing
OpenQASM.Types.Instruction(name, cargs, qargs) => @match name begin
"id" => Gate("I", nothing, map(transform, qargs))
"h" => Gate("H", nothing, map(transform, qargs))
"x" => Gate("X", nothing, map(transform, qargs))
"y" => Gate("Y", nothing, map(transform, qargs))
"z" => Gate("Z", nothing, map(transform, qargs))
"cnot" => Gate("CNOT", nothing, map(transform, qargs))
"swap" => Gate("SWAP", nothing, map(transform, qargs))
"s" => Gate("S", nothing, map(transform, qargs))
"sdg" => Gate("S_DAG", nothing, map(transform, qargs))
"t" => Gate("T", nothing, map(transform, qargs))
"tdg" => Gate("T_Dagger", nothing, map(transform, qargs))
"cx" => Gate("CNOT", nothing, map(transform, qargs))
"cz" => Gate("CZ", nothing, map(transform, qargs))
"rz" => Gate("RZ", map(transform, cargs), map(transform, qargs)) #TODO: fix rz(pi/2) q[1];
_ => error("Instruction not supported by Jabalizer yet")
end
OpenQASM.Types.MainProgram(prog=stmts) => let result = map(transform, stmts)
qubits = 1:result[2][3] # ASSUME continuous register declaration
circuit = result[3:end]
QuantumCircuit(qubits, circuit)
end
end
end
# BELOW WILL BE DELETED
const qasm_map =
Dict("id" => "I",
"h" => "H",
"x" => "X",
"y" => "Y",
"z" => "Z",
"cnot" => "CNOT",
"swap" => "SWAP",
"s" => "S",
"sdg" => "S_DAG",
"t" => "T",
"tdg" => "T_Dagger", # Temp hack removed; "T", # "T_Dagger", # Temporary Hack!
"cx" => "CNOT",
"cz" => "CZ")
const hdr3beg = """OPENQASM 3;\ninclude "stdgates.inc";\nqubit["""
const hdr3end = """] _all_qubits;\nlet q = _all_qubits[0:"""
const hdr2 = """OPENQASM 2.0;\ninclude "qelib1.inc";\nqreg q["""
"""
Convert a very specific input string with a OpenQASM 3.0 header to a
OpenQASM 2.0 header, as a convenience hack until we have a real 3.0 parser
"""
function convert3to2(str::String)
pos = sizeof(hdr3beg)
nxt = findnext(']', str, pos)
startswith(SubString(str, nxt), hdr3end) || error("Header doesn't match template")
qubits = parse(Int, str[pos+1:nxt-1])
pos = nxt + sizeof(hdr3end)
nxt = findnext(']', str, pos)
maxqb = parse(Int, str[pos:nxt-1])
maxqb == qubits - 1 || error("Mismatched number of qubits $maxqb != $qubits - 1")
string(hdr2, qubits, SubString(str, nxt))
end
export load_icm_circuit_from_qasm, icm_circuit_from_qasm
"""
Loads icm compatible circuit from a QASM (2.0) file
"""
load_icm_circuit_from_qasm(filename) = icm_circuit_from_qasm(read(filename, String))
"""
Parses icm compatible circuit from a QASM (2.0) input string
Note : qasm is 0 indexed while Jabalizer is 1 indexed so qubits labels will
be transalated from i -> i+1.
"""
function icm_circuit_from_qasm(str::String)
# Hack to handle QASM 3 header
startswith(str, hdr3beg) && (str = convert3to2(str))
ast = OpenQASM.parse(str)
# Check header information
ast.version == v"2.0.0" || error("Unsupported QASM version: $(ast.version)")
ap = ast.prog
inc = ap[1]
(inc isa Include && inc.file isa Token{:str} && inc.file.str == "\"qelib1.inc\"") ||
error("Standard include missing")
reg = ap[2]
(reg isa RegDecl && reg.type isa Token{:reserved} && reg.type.str == "qreg" &&
reg.size isa Token{:int} && reg.name isa Token{:id}) ||
error("Missing qubit register declaration")
# Pick up qubit reg name
nam = reg.name.str
siz = parse(Int, reg.size.str)
circuit = Vector{Tuple{String, Vector{Int}}}()
for i = 3:length(ap)
gate = ap[i]
gate isa Instruction || error("Not an instruction: $gate")
isempty(gate.cargs) || error("Classical bits not supported yet")
ins = get(qasm_map, gate.name, "")
ins == "" && error("Instruction $ins not found")
args = gate.qargs
vals = Int[]
for qarg in args
(qarg isa Bit &&
qarg.name isa Token{:id} && qarg.name.str == nam &&
qarg.address isa Token{:int}) ||
error("Invalid instruction argument: $qarg")
# convert to 1 index from qasm 0 index
push!(vals, parse(Int, qarg.address.str) + 1)
end
push!(circuit, (ins, vals))
end
siz, circuit
end
| Jabalizer | https://github.com/QSI-BAQS/Jabalizer.jl.git |
|
[
"MIT"
] | 0.5.2 | 1a94764b239bd1867078fcf9eed76af9c07b7dc0 | code | 11521 | # write graph compilation to qasm file
using Graphs
using JSON
const qasm_inversemap = Dict(map(reverse,collect(qasm_map)))
qasm_inversemap["RZ"] = "rz"
export qasm_instruction
function correction_controls(frame_bitvector, frame_flags)
corr = []
if sum(frame_bitvector) != 0
for idx in reverse(findall(frame_bitvector .== 1))
push!(corr, frame_flags[idx])
end
end
return corr
end
"""
frame_bitvector(frame_vec, frames_length)
Return a bitvector of Pauli corrections given a vector of python integers
It is assumed that each integer in `frames_vec` represents a 64 bit chunk of the
full bitvector.
"""
function frame_bitvector(frame_vec, frames_length)
intvec = [pyconvert(UInt, pint) for pint in frame_vec]
bitvec = [digits(jint, base=2, pad=64) for jint in intvec]
# concatenate all bitvector chunks and return frame_length bits
return vcat(bitvec...)[1:frames_length]
end
"""
pauli_corrections(frames, frame_flags, qubits)
Returns a dictionary of Pauli correction for every qubit in the vector `qubits`.
`frames` are expected to be `pauli_tracker.frames.map.Frames` class.
"""
function pauli_corrections(frames, frame_flags, qubits)
corr = Dict()
frame_dict = frames.into_py_dict_recursive()
flen = frame_flags |> length
for q in qubits
qcorr = []
z_bitvector = frame_bitvector(frame_dict[q][0], flen)
x_bitvector = frame_bitvector(frame_dict[q][1], flen)
zcontrol = correction_controls(z_bitvector, frame_flags)
xcontrol = correction_controls(x_bitvector, frame_flags)
for mq in reverse(frame_flags)
for z in zcontrol
if z == mq
push!(qcorr, ["z", z])
end
end
for x in xcontrol
if x == mq
push!(qcorr, ["x", x])
end
end
end
if ! isempty(qcorr)
corr[q] = qcorr
end
end
return corr
end
"""
export qasm file given a graph compilation
"""
function qasm_instruction(outfile,
graph::SimpleGraph{Int},
loc_corr,
mseq,
data_qubits,
frames_array)
# open output file
file = open(outfile, "w")
# unpack frames
frames, frame_flags = frames_array
# initialise qasm file
println(file, "OPENQASM 2.0;\ninclude \"qelib1.inc\";" )
# qasm_str = "OPENQASM 2.0;\ninclude qelib1.inc;\n"
# # initialise qregs and cregs
qregs = nv(graph)
qregs_total = qregs + length(data_qubits[:state])
println(file, "\nqreg q[$qregs_total];")
for i in 0:qregs_total-1
println(file, "creg c$(i)[1];")
end
# Graph state generation
println(file, "\n// Graph state generation")
for i in 0:qregs-1
println(file, "h q[$i];")
end
for e in edges(graph)
s = src(e) - 1
d = dst(e) - 1
println(file, "cz q[$s], q[$d];")
end
println(file)
# state input edges
println(file, "// state input edges")
for (s,i) in zip(data_qubits[:state], data_qubits[:input])
println(file, "cz q[$(s-1)], q[$(i-1)];")
end
# local correction
println(file, "\n// Local Clifford correction")
for gate in loc_corr
if gate[1] == "H"
println(file, "h q[$(gate[2]-1)];")
end
if gate[1] == "Z"
println(file, "z q[$(gate[2]-1)];")
end
# inverting local clifford corrections applies the inverse gate
if gate[1] == "Pdag"
println(file, "s q[$(gate[2]-1)];")
end
end
println(file)
println(file, "// Measurement sequence")
# Generate Pauli Corrections
outqubits = data_qubits[:output] .- 1
qubits = [q for q in frame_flags]
append!(qubits, outqubits)
pc = pauli_corrections(frames, frame_flags, qubits)
for m in mseq
gate = qasm_inversemap[m.name]
qargs = m.qargs .- 1
# Add pauli correction
if haskey(pc, qargs[1])
pcorr = pc[qargs[1]]
for p in pcorr
println(file, "if(c$(p[2]) == 1) $(p[1]) q$qargs;")
end
end
if gate == "x"
println(file, "h q$(qargs);")
println(file, "measure q$(qargs) -> c$(qargs[1])[0];")
elseif gate in ["t", "tdg"]
println(file, "$gate q$(qargs);" )
println(file, "h q$(qargs);")
println(file, "measure q$(qargs) -> c$(qargs[1])[0];")
elseif gate == "rz"
println(file, "$(gate)($(m.cargs[1])) q$(qargs);" )
println(file, "h q$qargs;")
println(file, "measure q$(qargs) -> c$(qargs[1])[0];")
end
println(file)
end
# Add pauli corrections to output qubits
println(file, "// Pauli correct output qubits")
for q in outqubits
if haskey(pc, q)
pcorr = pc[q]
for p in pcorr
println(file, "if(c$(p[2]) == 1) $(p[1]) q[$q];")
end
end
end
close(file)
# convert data_qubits to 0 index
d = Dict()
for k in keys(data_qubits)
d[k] = data_qubits[k] .-1
end
data_file = splitext(outfile)[1]*"_dqubits.json"
open(data_file,"w") do f
JSON.print(f, d)
end
return nothing
end
"""
memory allocation helper function
"""
function alloc(logicalq, physicalmap, ram)
if !(logicalq in keys(physicalmap))
physicalmap[logicalq] = pop!(ram)
end
end
"""
memory deallocation helper function
"""
function dealloc(logicalq, physicalmap, ram)
if (logicalq in keys(physicalmap))
freeq = pop!(physicalmap, logicalq)
push!(ram, freeq)
end
end
"""
Generates a qasm file implementing the mbqc instruction
"""
function qasm_instruction(outfile,
mbqc_inst::Dict)
# open output file
file = open(outfile, "w")
# unpack data dictionary
qphysical = mbqc_inst["space"]
mlayers = mbqc_inst["steps"]
pc = mbqc_inst["pcorrs"]
outqubits = mbqc_inst["outputnodes"]
statequbits = mbqc_inst["statenodes"]
# @info statequbits
loc_corr = mbqc_inst["correction"]
measurements = mbqc_inst["measurements"]
graph = mbqc_inst["spatialgraph"]
# initialise map to phyiscal qubits for memory management
mq = Dict{Int, Int}()
# Convert measurement sequence to a dictionary.
# the sequence is now decided by layers
mdict = Dict()
for m in measurements
mdict[m[2]] = (m[1], m[3])
end
# initialise qasm file
println(file, "OPENQASM 2.0;\ninclude \"qelib1.inc\";" )
# # initialise qregs and cregs
# qregs = nv(graph)
# qregs_total = qregs + length(data_qubits[:state])
qlogical = length(measurements) + length(outqubits)
# println(file, "\nqreg q[$qlogical];")
println(file, "\nqreg q[$qphysical];")
# defining a classical register for every logical qubit
for i in 0:qlogical-1
println(file, "creg c$(i)[1];")
end
# keep track of initialised qubits
# init = copy(statequbits)
init = []
# keep track of qubit connections
connection_graph = SimpleGraph(qlogical)
# initialise available physical qubits
ram = collect(qphysical-1:-1:0)
# tracker for state qubit assignment
state_physical = Dict()
state_layer = Dict()
# Generate and measure layers
for (idx,lr) in enumerate(mlayers)
# initialise qubits and neighbors if not initialised
for q in lr
if !(q in init)
# allocate qubit in memory if unallocated
alloc(q, mq, ram)
# skip hadamard for incoming state qubits
if !(q in statequbits)
println(file, "h q[$(mq[q])];")
else
# store state input physical qubit and layer
state_physical[q] = mq[q]
state_layer[q] = idx-1
# @info state_physical
end
push!(init, q)
end
for n in graph[q+1]
if !(n in init)
alloc(n, mq, ram)
# skip hadamard for incoming state qubits
if !(n in statequbits)
println(file, "h q[$(mq[n])];")
else
# store state input physical qubit and layer
state_physical[n] = mq[n]
state_layer[n] = idx-1
end
push!(init, n)
end
end
end
# conect all neighbors of qubits in measurement layer
for q in lr
for n in graph[q+1]
# check if already connected
if !(n+1 in neighbors(connection_graph, q+1))
println(file, "cz q[$(mq[q])], q[$(mq[n])];")
add_edge!(connection_graph, q+1, n+1)
end
end
end
# apply local corrections
for gate in loc_corr
if gate[2] in lr
if gate[1] == "H"
println(file, "h q[$(mq[gate[2]])];")
end
if gate[1] == "Z"
println(file, "z q[$(mq[gate[2]])];")
end
# inverting local clifford corrections applies the inverse gate
if gate[1] == "Pdag"
println(file, "s q[$(mq[gate[2]])];")
end
end
end
# measurement
for q in lr
# apply Pauli corrections.
if haskey(pc, q)
for p in pc[q]
println(file, "if(c$(p[2]) == 1) $(p[1]) q[$(mq[q])];")
end
end
# skip measurement for output qubits
(q in outqubits) && continue
# perform measurements
gate = qasm_inversemap[mdict[q][1]]
if gate == "x"
println(file, "h q[$(mq[q])];")
println(file, "measure q[$(mq[q])] -> c$q[0];")
elseif gate in ["t", "tdg"]
println(file, "$gate q[$(mq[q])];" )
println(file, "h q[$(mq[q])];")
println(file, "measure q[$(mq[q])] -> c$q[0];")
elseif gate == "rz"
# @info mdict[q]
println(file, "$gate($(mdict[q][2])) q[$(mq[q])];" )
println(file, "h q[$(mq[q])];")
println(file, "measure q[$(mq[q])] -> c$q[0];")
else
error("unsupported gate teleportation: ", gate)
end
# reset qubit
println(file, "reset q[$(mq[q])];")
# release measured physical qubit back to ram
dealloc(q, mq, ram)
end
end
close(file)
data_qubits = Dict()
data_qubits[:state] = [state_physical[s] for s in statequbits]
data_qubits[:output] = [mq[o] for o in outqubits]
data_qubits[:state_layer] = [state_layer[s] for s in statequbits]
data_file = splitext(outfile)[1]*"_dqubits.json"
open(data_file,"w") do f
JSON.print(f, data_qubits)
end
return nothing
end
| Jabalizer | https://github.com/QSI-BAQS/Jabalizer.jl.git |
|
[
"MIT"
] | 0.5.2 | 1a94764b239bd1867078fcf9eed76af9c07b7dc0 | code | 3284 | """
Stabilizer type
Type for a single stabilizer in the n-qubit Pauli group.
"""
mutable struct Stabilizer
qubits::Int
X::BitVector
Z::BitVector
phase::Int8
"""
Stabilizer()
Constructor for an empty stabilizer.
"""
Stabilizer() = new(0, falses(0), falses(0), 0)
"""
Stabilizer(n)
Constructor for an n-qubit identity stabilizer.
"""
Stabilizer(n::Int) = new(n, falses(n), falses(n), 0)
"""
Stabilizer(tableau[, row])
Constructor for a stabilizer from tableau form.
"""
function Stabilizer(tab::AbstractMatrix{<:Integer}, row=1)
qubits = size(tab, 2) >> 1
new(qubits, view(tab, row, 1:qubits), view(tab, row, qubits+1:2*qubits), tab[row, end])
end
function Stabilizer(vec::AbstractVector{<:Integer})
qubits = length(vec) >> 1
new(qubits, view(vec, 1:qubits), view(vec, qubits+1:2*qubits), vec[end])
end
"""
Stabilizer(X::BitVector, Z::BitVector, phase)
Constructor for a stabilizer from tableau form.
"""
function Stabilizer(X, Z, phase)
lx, lz = length(X), length(Z)
lx == lz || error("X & Z vectors have different lengths ($lx != $lz)")
new(lx, X, Z, phase)
end
end
"""
Convert stabilizer to vector form (one row of a tableau)
"""
to_tableau_row(stabilizer::Stabilizer) = vcat(stabilizer.X, stabilizer.Z, stabilizer.phase)
"""
adjoint(stabilizer)
Conjugate of a stabilizer.
"""
function Base.adjoint(stabilizer::Stabilizer)::Stabilizer
conj = deepcopy(stabilizer)
conj.phase = mod(-conj.phase, 4)
return conj
end
# This table is used to calculate the product by indexing a vector of tuples of the
# results (X, Z, phase), by the values of the left X, left Z, right X, right Z used
# as a 4 bit index (left X is most signficant bit, right Z is least significant bit)
# (+ 1 for Julia 1-based indexing)
const _prodtab = [(0, 0, 0), (0, 1, 0), (1, 0, 0), (1, 1, 0),
(0, 1, 0), (0, 0, 0), (1, 1, 1), (1, 0, 3),
(1, 0, 0), (1, 1, 3), (0, 0, 0), (0, 1, 1),
(1, 1, 0), (1, 0, 1), (0, 1, 3), (0, 0, 0)]
"""
*(left,right)
Multiplication operator for stabilizers.
"""
function Base.:*(left::Stabilizer, right::Stabilizer)::Stabilizer
left.qubits == right.qubits || return left
qubits = left.qubits
prod = Stabilizer(qubits)
prod.phase = (left.phase + right.phase) & 3
for n = 1:qubits
(prod.X[n], prod.Z[n], phase) =
_prodtab[((left.X[n]<<3)|(left.Z[n]<<2)|(right.X[n]<<1)|right.Z[n])+1]
prod.phase = (prod.phase + phase) & 3
end
return prod
end
Base.:(==)(s1::Stabilizer, s2::Stabilizer) =
s1.qubits == s2.qubits && s1.X == s2.X && s1.Z == s2.Z && s1.phase == s2.phase
function Base.isless(s1::Stabilizer, s2::Stabilizer)
s1.X < s2.X && return true
s1.X > s2.X && return false
s1.Z < s2.Z && return true
s1.Z > s2.Z && return false
s1.phase < s2.phase
end
function Base.print(io::IO, stabilizer::Stabilizer)
print(io, stabilizer.phase == 0 ? '+' : '-')
for (x, z) in zip(stabilizer.X, stabilizer.Z)
print(io, "IXZY"[((z<<1)|x)+1])
end
end
Base.display(stabilizer::Stabilizer) =
println("Stabilizer for ", stabilizer.qubits, " qubits:\n", stabilizer)
| Jabalizer | https://github.com/QSI-BAQS/Jabalizer.jl.git |
|
[
"MIT"
] | 0.5.2 | 1a94764b239bd1867078fcf9eed76af9c07b7dc0 | code | 704 | # Pauli-I no-op operation (normally named I, but that conflicts with a LinearAlgebra name)
function (g::Id)(state::StabilizerState) ; state ; end
# One qubit gates
for (nam, typ) in Gates.gate1_list
typ == :Id && continue # already handled
op = Symbol(lowercase(string(typ)))
@eval function (g::$typ)(state::StabilizerState)
state.is_updated = false
state.simulator.$(op)(g.qubit - 1)
state
end
end
# Two qubit gates
for (nam, typ) in Gates.gate2_list
op = Symbol(lowercase(string(typ)))
@eval function (g::$typ)(state::StabilizerState)
state.is_updated = false
state.simulator.$(op)(g.qubit1 - 1, g.qubit2 - 1)
state
end
end
| Jabalizer | https://github.com/QSI-BAQS/Jabalizer.jl.git |
|
[
"MIT"
] | 0.5.2 | 1a94764b239bd1867078fcf9eed76af9c07b7dc0 | code | 810 | # implement the row reduction procedure as per Gottesman
# randomly choose outcome
# update the state
# return outcome
measure_z(state::StabilizerState, qubit::Int) =
pyconvert(Int, state.simulator.measure(qubit - 1))
function measure_x(state::StabilizerState, qubit::Int)
# Convert to |+>, |-> basis
H(qubit)(state)
# Measure along z (now x)
outcome = measure_z(state, qubit)
# Return to computational basis
H(qubit)(state)
return outcome
end
function measure_y(state::StabilizerState, qubit::Int)
# Map Y eigenstates to X eigenstates
# Note that P^dagger = ZP
state |> Z(qubit) |> P(qubit) |> H(qubit)
# Measure along z (now y)
outcome = measure_z(state, qubit)
# Return to original basis
state |> H(qubit) |> P(qubit)
return outcome
end
| Jabalizer | https://github.com/QSI-BAQS/Jabalizer.jl.git |
|
[
"MIT"
] | 0.5.2 | 1a94764b239bd1867078fcf9eed76af9c07b7dc0 | code | 3194 | """
Stabilizer state type
qubits: number of qubits
stabilizers: set of state stabilizers
simulator: simulator state
is_updated: flag for whether or not Julia state has
been updated to match Stim simulator state
"""
mutable struct StabilizerState
qubits::Int
stabilizers::Vector{Stabilizer}
simulator::Py
is_updated::Bool
StabilizerState(n::Int) = new(n, Stabilizer[], stim.TableauSimulator(), true)
StabilizerState() = StabilizerState(0)
end
const Tableau = Matrix{Int}
"""
zero_state(n::Int)
Generates a state of n qubits in the +1 Z eigenstate.
"""
function zero_state(n::Int)
state = StabilizerState(n)
state.simulator.set_num_qubits(n)
for i in 0:n-1
state.simulator.z(i)
end
state.is_updated = false
return state
end
# This function is problematic with the stim integration
# This doesn't seem to affect the simulator state at all
"""
Generate stabilizer from tableau
"""
function tableau_to_state(tab::AbstractArray{<:Integer})::StabilizerState
qubits = size(tab, 2) >> 1
stabs = size(tab, 1)
state = StabilizerState(qubits)
for row = 1:stabs
stab = Stabilizer(@view tab[row, :])
push!(state.stabilizers, stab)
end
return state
end
"""
to_tableau(state)
Convert state to tableau form.
"""
function to_tableau(state::StabilizerState)::Tableau
tab = Int[]
update_tableau(state)
for s in state.stabilizers
tab = vcat(tab, to_tableau_row(s))
end
Array(transpose(reshape(tab, 2 * state.qubits + 1, length(state.stabilizers),)))
end
function Base.print(io::IO, state::StabilizerState)
update_tableau(state)
for s in state.stabilizers
println(io, s)
end
nothing
end
function Base.display(state::StabilizerState)
update_tableau(state)
println("Stabilizers ($(length(state.stabilizers)) stabilizers, $(state.qubits) qubits):")
println(state)
end
"""
gplot(state)
Plot the graph equivalent of a state.
"""
function GraphPlot.gplot(state::StabilizerState; node_dist=5.0)
# Creates an anonymous function to allow changing the layout params
# in gplot. The value of C determines distance between connected nodes.
layout = (args...) -> GraphPlot.spring_layout(args...; C=node_dist)
gplot(GraphPlot.Graph(GraphState(state).A), nodelabel=1:state.qubits, layout=layout)
end
function graph_to_state(A::AbstractArray{<:Integer})::StabilizerState
n = size(A, 1)
state = zero_state(n)
for i = 1:n
H(i)(state)
end
for i = 1:n, j = (i+1):n
A[i, j] == 1 && CZ(i, j)(state)
end
update_tableau(state)
return state
end
"""
==(state_1::StabilizerState, state_2::StabilizerState)
Checks if two stabilizer states are equal.
"""
function Base.:(==)(state_1::StabilizerState, state_2::StabilizerState)
# Make sure the Julia representation matches the simulator state
update_tableau(state_1)
update_tableau(state_2)
for (stab1, stab2) in zip(state_1.stabilizers, state_2.stabilizers)
(stab1.X == stab2.X && stab1.Z == stab2.Z && stab1.phase == stab2.phase) ||
return false
end
return true
end
| Jabalizer | https://github.com/QSI-BAQS/Jabalizer.jl.git |
|
[
"MIT"
] | 0.5.2 | 1a94764b239bd1867078fcf9eed76af9c07b7dc0 | code | 10671 | const debug_out = Ref(false)
# Debugging timing output (if debug_out is set)
macro disp_time(msg, ex)
quote
if debug_out[]
print($(esc(msg)))
@time $(esc(ex))
else
$(esc(ex))
end
end
end
"""Set debugging output flag"""
set_debug(flag) = (debug_out[] = flag)
export set_debug
"""
stim_tableau(stim_sim::Py)::Matrix{Int}
Return a Jabalizer tableau from a stim TableauSimulator instance
# Arguments
- `stim_sim::Py`: stim.TableauSimulator from which to compute the Jabalizer tableau
"""
function stim_tableau(stim_sim::Py)::Matrix{Int}
forward_tableau = stim_sim.current_inverse_tableau().inverse()
qubits = length(forward_tableau)
tab_arr = [forward_tableau.z_output(i - 1) for i in 1:qubits]
tableau = zeros(Int, qubits, 2 * qubits + 1)
for i in 1:qubits
ps = tab_arr[i] # Get stim PauliString representation
# update sign
pyconvert(Number, ps.sign) == -1 && (tableau[i, end] = 2)
# Stabilizer replacement
for j in 1:qubits
v = pyconvert(Int, get(ps, j - 1, -1))
# Note: 0123 represent IXYZ (different from the xz representation used here)
if v == 1 # X replacement
tableau[i, j] = 1
elseif v == 3 # Z replacement
tableau[i, j+qubits] = 1
elseif v == 2 # Y replacement
tableau[i, j] = 1
tableau[i, j+qubits] = 1
end
end
end
return tableau
end
function out_time(n, a, tottim, totcnt=0)
print("\t$n:\t$(round(a/1000000000,digits=3))s, ")
tim = tottim/1000000000/60
print("elapsed time: ", round(tim, digits=2), " min")
totcnt == 0 || print(", remaining time: ", round(tim/n*(totcnt-n), digits=2), " min")
println()
end
"""
update_tableau(state::StabilizerState)
Update the state tableau with the current state of the stim simulator
"""
function update_tableau(state::StabilizerState)
state.is_updated && return
# Extract the tableau in Jabalizer format
stim_sim = state.simulator
@disp_time "\tcurrent_inverse_tableau: " tb = stim_sim.current_inverse_tableau()
@disp_time "\tinverse: " tb = tb.inverse()
oldlen = state.qubits
state.qubits = qubits = length(tb)
svec = state.stabilizers
pt = t0 = time_ns()
cnt = 0
@disp_time "\tupdate stabilizers: \n" begin
if isempty(svec)
for i in 1:qubits
ps = tb.z_output(i-1)
xs, zs = ps.to_numpy()
xv = pyconvert(BitVector, xs)
zv = pyconvert(BitVector, zs)
push!(svec, Stabilizer(xv, zv, pyconvert(Number, ps.sign) == -1 ? 2 : 0))
if debug_out[] && (cnt += 1) > 9999
tn = time_ns() ; out_time(i, tn-pt, tn-t0, qubits) ; pt = tn
cnt = 0
end
end
else
qubits == oldlen || error("Mismatch qubits $qubits != $oldlen, $(length(svec))")
for i in 1:qubits
ps = tb.z_output(i-1)
xs, zs = ps.to_numpy()
stab = svec[i]
stab.X = pyconvert(BitVector, xs)
stab.Z = pyconvert(BitVector, zs)
stab.phase = pyconvert(Number, ps.sign) == -1 ? 2 : 0
if debug_out[] && (cnt += 1) > 9999
tn = time_ns() ; out_time(i, tn-pt, tn-t0, qubits) ; pt = tn
cnt = 0
end
end
end
debug_out[] && (tn = time_ns() ; out_time(cnt, tn-pt, tn-t0))
end
# mark it as updated
state.is_updated = true
end
"""
rand(StabilizerState, qubits::Int)
Return a random (valid) stabilizer state with the given number of qubits
"""
function Base.rand(::Type{StabilizerState}, qubits::Int)
tableau = stim.Tableau.random(qubits).inverse()
state = StabilizerState(qubits)
state.simulator.set_inverse_tableau(tableau)
svec = state.stabilizers
(_, _, z2x, z2z, _, z_signs) = tableau.to_numpy()
signs = pyconvert(BitVector, z_signs)
for i in 1:qubits
xv = pyconvert(BitVector, z2x[i-1])
zv = pyconvert(BitVector, z2z[i-1])
push!(svec, Stabilizer(xv, zv, signs[i]<<1))
end
# mark it as updated
state.is_updated = true
return state
end
function _is_symmetric(svec::Vector{Stabilizer})
qubits = length(svec)
for i = 1:qubits-1
sz = svec[i].Z
for j = i+1:qubits
sz[j] == svec[j].Z[i] || return false
end
end
return true
end
export graph_as_stabilizer_vector
"""
graph_as_stabilizer_vector(state)
Convert a state to its adjacency graph state equivalent under local operations.
Returns a vector of Stabilizers, and a vector of operations performed
"""
function graph_as_stabilizer_vector(state::StabilizerState)
#TODO: Add a check if state is not empty. If it is, throw an exception.
# update the state tableau from the stim simulator
@disp_time "update_tableau: " update_tableau(state)
qubits = state.qubits
svec = deepcopy(state.stabilizers)
# Sequence of local operations performed
op_seq = Tuple{String, Int}[]
@disp_time "\tsort!: " sort!(svec, rev=true)
@disp_time "\tMake X-block upper triangular: " begin
# Make X-block upper triangular
for n in 1:qubits
# Find first X (or Y) below diagonal.
first_x = find_first_x(svec, qubits, n, n)
# if diagonal is zero,
# 1) perform Hadamard operation if no other X found
# 2) swap rows with first X found
if svec[n].X[n] == 0
if first_x == 0
# Perform Hadamard operation
for stab in svec
x, z = stab.X[n], stab.Z[n]
if xor(x, z) == 1
# Swap bits
stab.X[n], stab.Z[n] = z, x
elseif x == 1 && z == 1
stab.phase ⊻= 2 # toggle bit 2 of phase if Y
end
end
push!(op_seq, ("H", n))
# Recalculate first_x (should always be non-zero,
# since Z column should have at least 1 bit set
first_x = find_first_x(svec, qubits, n, n)
end
# If we are not already at end (i.e. n == qubits), and diagonal is still 0, swap rows
if first_x != 0 && svec[n].X[n] == 0
# Swap rows to bring X to diagonal
svec[n], svec[first_x] = svec[first_x], svec[n]
# Recalculate first_x after swap, starting after first_x row (which now has 0 X)
first_x = find_first_x(svec, qubits, first_x, n)
end
end
# If there are any rows with X set in this column below the diagonal,
# perform rowadd operations
if first_x != 0
for m in first_x:qubits
svec[m].X[n] == 0 || _add_row!(svec, n, m)
end
end
end
end
# Make diagonal X-block
@disp_time "\tMake diagonal: " begin
for n = (qubits-1):-1:1, m = (n+1):qubits
svec[n].X[m] == 1 && _add_row!(svec, m, n)
end
end
@disp_time "\tPhase correction and checks: " begin
for n = 1:qubits
stab = svec[n]
# Phase correction
if stab.phase != 0
stab.phase = 0
push!(op_seq, ("Z", n))
end
# Y correct
if stab.Z[n] == 1
if stab.X[n] == 1
# Change Y to X
stab.Z[n] = 0
push!(op_seq, ("Pdag", n))
else
# Check diagonal for any non-zero values
println("Error: invalid graph conversion (non-zero trace).")
end
end
end
end
@disp_time "\tCheck symmetry: " begin
if !_is_symmetric(svec)
println("Error: invalid graph conversion (non-symmetric).")
if debug_out[] && qubits < 33
show(to_tableau(state))
println()
show(state)
println()
end
end
end
return (svec, op_seq)
end
export adjacency_matrix
"""
adjacency_matrix(::Vector{Stabilizer})
Convert an adjacency graph stored in the Z bits of a vector of Stabilizers to an adjacency matrix
"""
function adjacency_matrix(svec::Vector{Stabilizer})
qubits = length(svec)
# Adjacency matrix
A = BitMatrix(undef, qubits, qubits)
for n = 1:qubits
stab = svec[n]
# Copy Z to adjacency matrix
A[n, :] .= stab.Z
end
A
end
"""
adjacency_matrix(state::StabilizerState)
Convert a state to its adjacency graph state equivalent under local operations.
"""
adjacency_matrix(state::StabilizerState) = adjacency_matrix(graph_as_stabilizer_vector(state)[1])
"""
to_graph(state)
Convert a state to its adjacency graph state equivalent under local operations.
Returns stabilizer state, adjacency matrix, and sequence of operations.
"""
function to_graph(state::StabilizerState)
@disp_time "to_graph: " begin
svec, op_seq = graph_as_stabilizer_vector(state)
@disp_time "\tCreate Adjacency Matrix: " A = adjacency_matrix(svec)
@disp_time "\tgraph_to_state: " g = graph_to_state(A)
end
g, A, op_seq
end
"""Find first X set below the diagonal in column col"""
function find_first_x(svec, qubits, row, col)
while (row += 1) <= qubits
svec[row].X[col] == 0 || return row
end
return 0
end
"""
_add_row!(tableau, source, dest)
Row addition operation
"""
function _add_row!(svec::Vector{Stabilizer}, source::Int, dest::Int)
left = svec[source]
right = svec[dest]
# Calculate product of source & dest rows
right.phase = (left.phase + right.phase) & 3
for n = 1:length(svec)
(right.X[n], right.Z[n], phase) =
_prodtab[((left.X[n]<<3)|(left.Z[n]<<2)|(right.X[n]<<1)|right.Z[n])+1]
right.phase = (right.phase + phase) & 3
end
return
end
"""
Returns number of qubits in the icm-compatible circuit.
"""
function count_qubits(circuit::Vector{ICMGate})
qubit_ids = Set()
for gate in circuit
union!(qubit_ids, Set(gate[2]))
end
return length(qubit_ids)
end
export write_adjlist
"""
Output adjacency list from adjacency matrix in stabilizer Z bits
"""
function write_adjlist(svec::Vector{Stabilizer}, nam)
len = length(svec)
open(nam, "w") do io
print(io, "# $len")
for i = 1:len
z = svec[i].Z
print(io, '\n', i-1)
for j = i+1:len
z[j] && print(io, ' ', j-1)
end
end
println(io)
end
end
| Jabalizer | https://github.com/QSI-BAQS/Jabalizer.jl.git |
|
[
"MIT"
] | 0.5.2 | 1a94764b239bd1867078fcf9eed76af9c07b7dc0 | code | 3272 |
module QiskitSim
using CondaPkg
using PythonCall
using Jabalizer
using JSON
# add qiskit python backends for circuit simulation
if !(haskey(CondaPkg.current_pip_packages(), "qiskit-aer"))
CondaPkg.add_pip("qiskit-aer")
end
qaer = pyimport("qiskit_aer")
qiskit = pyimport("qiskit")
Aer = qaer.Aer
"""
Simulate the compiled circuit + input_circuit.inverse() on
the computational basis. Returns the measured shots for each
basis input for the outcome 0^n.
"""
function simulate(input_qasm,
shots;
compiled_qasm="",
data_qubits=Dict())
# flag to cleanup any generated files
clean = false
if compiled_qasm == ""
clean = true
compiled_qasm = "outfile.qasm"
graph, loc_corr, mseq, data_qubits, frames_array = gcompile(input_qasm;
universal=true,
ptracking=true
)
# write qasm instructions to outfile
qasm_instruction(compiled_qasm, graph, loc_corr, mseq, data_qubits, frames_array);
data_qubits[:output] = data_qubits[:output] .- 1
data_qubits[:state] = data_qubits[:state] .- 1
end
output_qubits = data_qubits[:output]
state_qubits = data_qubits[:state]
# check that for mbqccompile, path is time optimal
sl = get(data_qubits, :state_layer, [0])
all([i ==0 for i in sl]) || error("Only time optimal paths are supported")
# @info state_qubits
# @info output_qubits
# load circuits into qiskit
simulator = Aer.get_backend("aer_simulator")
input_circ = qiskit.QuantumCircuit.from_qasm_file(input_qasm)
# @info compiled_qasm
compiled_circ = qiskit.QuantumCircuit.from_qasm_file(compiled_qasm)
compiled_circ.barrier()
# println(compiled_circ)
qtot = length(output_qubits)
meas_outcomes = []
for i in 0:2^qtot-1
new_circ = compiled_circ.compose(input_circ.inverse(), output_qubits)
x_locs = digits(i, base=2, pad=qtot)
# input state
local input_state = qiskit.QuantumCircuit(length(output_qubits))
x_locs = findall(!iszero, x_locs) .- 1
if ! isempty(x_locs)
input_state.x(x_locs)
end
# append input state and invert at output
new_circ = new_circ.compose(input_state, qubits=state_qubits, front=true)
new_circ = new_circ.compose(input_state.inverse(), qubits=output_qubits)
for q in output_qubits
new_circ.measure(q,q)
end
# might need a transpile step
job = simulator.run(new_circ, shots=shots)
result = job.result()
measured_statistics = qiskit.result.marginal_counts(result, indices=output_qubits).get_counts()
# println(measured_statistics)
# Obtain statisics of 0^n
meas_0 = measured_statistics[repeat("0 ", length(output_qubits)) |> rstrip]
meas_0 = pyconvert(Int,meas_0)
push!(meas_outcomes, meas_0)
end
# clean generated output files
if clean
rm(compiled_qasm)
rm(splitext(compiled_qasm)[1]*"_dqubits.json")
end
return meas_outcomes
end
end | Jabalizer | https://github.com/QSI-BAQS/Jabalizer.jl.git |
|
[
"MIT"
] | 0.5.2 | 1a94764b239bd1867078fcf9eed76af9c07b7dc0 | code | 1190 | using LinearAlgebra
const graph_state_test_cases = (
("star", [0 1 1 1 1; 1 0 0 0 0; 1 0 0 0 0; 1 0 0 0 0; 1 0 0 0 0]),
("diagonal", [1 0 0; 0 1 0; 0 0 1]),
("empty", [0 0 0; 0 0 0; 0 0 0]),
)
@testset "GraphState to State conversion" begin
for (name, A) in graph_state_test_cases
@testset "Graph $name" begin
graph_state = GraphState(A)
stabilizer_state = StabilizerState(graph_state)
n_qubits = size(A)[1]
target_x_matrix = Diagonal(ones(n_qubits))
# Target Z matrix is the same as the adjacency matrix, but with diagonal elements ignored
target_z_matrix = A
target_z_matrix[diagind(A)] .= 0
target_phase = zeros(n_qubits)
intermediate_tableau = to_tableau(stabilizer_state)
@test intermediate_tableau[:, 1:n_qubits] == target_x_matrix
@test intermediate_tableau[:, n_qubits+1:2*n_qubits] == target_z_matrix
@test intermediate_tableau[:, 2*n_qubits+1] == target_phase
recovered_graph_state = GraphState(stabilizer_state)
@test graph_state == recovered_graph_state
end
end
end | Jabalizer | https://github.com/QSI-BAQS/Jabalizer.jl.git |
|
[
"MIT"
] | 0.5.2 | 1a94764b239bd1867078fcf9eed76af9c07b7dc0 | code | 698 | using Jabalizer
@testset "E2E Jabalizer test" begin
circuit = Vector{Tuple{String,Vector{String}}}(
[("CNOT", Vector(["0", "anc_0"])),
("H", ["1"]),
("CNOT", ["1", "anc_0"]),
("CNOT", ["anc_0", "anc_1"]),
("CNOT", ["1", "anc_2"]),
("CNOT", ["anc_2", "anc_0"]),
("H", ["anc_2"])
]
)
gates_to_decomp = ["T", "T^-1"]
(icm_circuit, data_qubits_map) = compile(circuit, gates_to_decomp)
n_qubits = count_qubits(icm_circuit)
state = zero_state(n_qubits)
execute_circuit(state, icm_circuit)
(g, A, seq) = to_graph(state)
Jabalizer.gplot(g)
# TODO: check if the result is correct
@test true
end
| Jabalizer | https://github.com/QSI-BAQS/Jabalizer.jl.git |
|
[
"MIT"
] | 0.5.2 | 1a94764b239bd1867078fcf9eed76af9c07b7dc0 | code | 1157 | using Test
using Jabalizer
@testset "Executing cirq circuits" begin
# TODO: Add the following tests:
# 1. Check if it fails if the circuit has gates that are not allowed
# 2. Check if it correctly transoforms all the different combinations of stabilizer state and gates
# 3. Check if it correctly skips the measurement gate
# 4. Check if it works correctly if the size of the state doesn't match the size of the circuit
# Input Circuits -> generate canonical clifford circuits, e.g.: GHZ state, trivial circuits
# Input states -> Zero states,
# Output states ->
# See cases in runtests.jl
# gate_map = Dict(cirq.I => Jabalizer.Id,
# cirq.H => Jabalizer.H,
# cirq.X => Jabalizer.X,
# cirq.Y => Jabalizer.Y,
# cirq.Z => Jabalizer.Z,
# cirq.CNOT => Jabalizer.CNOT,
# cirq.SWAP => Jabalizer.SWAP,
# cirq.S => Jabalizer.P,
# cirq.CZ => Jabalizer.CZ
# TEST CASE 1:
# Input -> circuit(I(0))
# Outputs -> Zero state
# Compare ToTableau(state) == target_tableau
# TEST CASE 2:
# Input -> circuit(H(0))
# Outputs -> STH
end
| Jabalizer | https://github.com/QSI-BAQS/Jabalizer.jl.git |
|
[
"MIT"
] | 0.5.2 | 1a94764b239bd1867078fcf9eed76af9c07b7dc0 | code | 1252 | using Test
using Jabalizer
@testset "GraphState initialization" begin
# Check if initialization of empty Graph state works
graph_state = GraphState() # Why simply GraphState() doesn't work?
@test graph_state.qubits == 0
@test graph_state.A isa AbstractMatrix{<:Integer}
@test isempty(graph_state.A)
# Check if initialization from an adjacency matrix works
A = [0 1; 1 0]
graph_state = GraphState(A)
@test graph_state.qubits == 2
@test graph_state.A == A
stabilizer_state = zero_state(4)
graph_state = GraphState(stabilizer_state)
A = [0 0 0 0; 0 0 0 0; 0 0 0 0; 0 0 0 0]
@test graph_state.qubits == 4
@test graph_state.A == A
end
@testset "GraphState to State conversion" begin
A = [0 1 1 1 1; 1 0 0 0 0; 1 0 0 0 0; 1 0 0 0 0; 1 0 0 0 0]
graph_state = GraphState(A)
stabilizer_state = StabilizerState(graph_state)
# TODO: test whether StabilizerState is what we expect it to be
recovered_graph_state = GraphState(stabilizer_state)
@test graph_state.qubits == recovered_graph_state.qubits
@test graph_state.A == recovered_graph_state.A
@test graph_state == recovered_graph_state
@test graph_state.qubits == 5
@test graph_state.A == A
end
| Jabalizer | https://github.com/QSI-BAQS/Jabalizer.jl.git |
|
[
"MIT"
] | 0.5.2 | 1a94764b239bd1867078fcf9eed76af9c07b7dc0 | code | 847 | const qasm2hdr = """
OPENQASM 2.0;
include "qelib1.inc";
qreg q[8];
"""
const qasm3hdr = """
OPENQASM 3;
include "stdgates.inc";
qubit[8] _all_qubits;
let q = _all_qubits[0:7];
"""
const qasmbody = """
h q[0];
x q[1];
y q[2];
z q[3];
cnot q[4],q[5];
swap q[6],q[7];
s q[0];
sdg q[1];
t q[2];
tdg q[3];
cz q[4],q[5];
"""
const icminput =
(8,
[("H", [1]),
("X", [2]),
("Y", [3]),
("Z", [4]),
("CNOT", [5, 6]),
("SWAP", [7, 8]),
("S", [1]),
("S_DAG", [2]),
("T", [3]),
("T_Dagger", [4]), # Will need to change to T_DAG when that is handled directly
("CZ", [5, 6])]
)
@testset "QASM file input" begin
circ2 = icm_circuit_from_qasm(qasm2hdr * qasmbody)
circ3 = icm_circuit_from_qasm(qasm3hdr * qasmbody)
@test circ2 == icminput
@test circ3 == icminput
end
| Jabalizer | https://github.com/QSI-BAQS/Jabalizer.jl.git |
|
[
"MIT"
] | 0.5.2 | 1a94764b239bd1867078fcf9eed76af9c07b7dc0 | code | 1392 | using Jabalizer
using JSON
test_circuits = ["test_circuits/mwe.qasm", "test_circuits/toffoli.qasm"]
shots = 1024
@testset "gcompile simulation with Qiskit" begin
for inp in test_circuits
meas_outcomes = QiskitSim.simulate(inp, shots)
@test all(m == shots for m in meas_outcomes)
end
end
outfile = "mbqcoutfile.qasm"
json_filepath = "jsonout.json"
@testset "mbqccompile simulation with Qiskit" begin
for inp in test_circuits
qc = parse_file(inp)
output = mbqccompile(qc; pcorrections=true, filepath=json_filepath)
testjson = JSON.parsefile(json_filepath)
# convert pcorrs keys from String to Int
testjson["pcorrs"] = Dict(parse(Int, k) => v for (k,v) in testjson["pcorrs"])
# check that saved JSON file is the same as output
@test testjson == output
qasm_instruction(outfile, output)
dq = JSON.parsefile(splitext(outfile)[1]*"_dqubits.json")
# Keeps data_qubits def consistent with gcompile output
dq = Dict( Symbol(k) => v for (k,v) in dq)
meas_id = [s == shots for s in QiskitSim.simulate(inp, shots, compiled_qasm=outfile, data_qubits=dq)]
@test all(meas_id)
end
end
# clean
if isfile(json_filepath)
rm(json_filepath)
end
if isfile(splitext(outfile)[1]*"_dqubits.json")
rm(splitext(outfile)[1]*"_dqubits.json")
end
| Jabalizer | https://github.com/QSI-BAQS/Jabalizer.jl.git |
|
[
"MIT"
] | 0.5.2 | 1a94764b239bd1867078fcf9eed76af9c07b7dc0 | code | 431 | using Jabalizer
using Jabalizer.Gates
using Test
# include("end_to_end.jl")
include("QiskitSim.jl")
include("qasm_simulation.jl")
# include("mbqccompile.jl")
# include("circuit_sim.jl")
include("graph_state.jl")
include("to_graph_test.jl")
include("stabilizer_gates.jl")
include("stabilizer_measurements.jl")
include("stabilizer_state.jl")
include("stabilizer.jl")
include("conversions.jl")
include("util.jl")
include("qasm.jl")
| Jabalizer | https://github.com/QSI-BAQS/Jabalizer.jl.git |
|
[
"MIT"
] | 0.5.2 | 1a94764b239bd1867078fcf9eed76af9c07b7dc0 | code | 1807 |
@testset "Stabilizer initialization" begin
@testset "Empty stabilizer" begin
stabilizer = Stabilizer()
@test stabilizer.qubits == 0
@test stabilizer.X == []
@test stabilizer.Z == []
@test stabilizer.phase == 0
end
for i in 1:5
@testset "Empty stabilizer with n = $i" begin
stabilizer = Stabilizer(i)
@test stabilizer.qubits == i
@test stabilizer.X == zeros(i)
@test stabilizer.Z == zeros(i)
@test stabilizer.phase == 0
end
end
@testset "Stabilizer from tableau" begin
tableau = [0 1 0]
stabilizer = Stabilizer(tableau)
@test stabilizer.qubits == 1
@test stabilizer.X == [0]
@test stabilizer.Z == [1]
@test stabilizer.phase == 0
tableau = [0 1 1 0 2; 1 0 0 1 2]
stabilizer = Stabilizer(tableau)
@test stabilizer.qubits == 2
@test stabilizer.X == [0, 1]
@test stabilizer.Z == [1, 0]
@test stabilizer.phase == 2
end
end
@testset "Stabilizer to Tableau conversion" begin
# TODO: Add the following tests:
# 1. Check if the conversion works (both ways?)
# TODO: what are some good test cases?
end
@testset "Stabilizer operations" begin
# TODO: This is failing
# tableau = [0 0 1 0 0]
# stabilizer = Stabilizer(tableau)
# adjoint_stabilizer = adjoint(stabilizer)
# @test adjoint_stabilizer.qubits == stabilizer.qubits
# @test adjoint_stabilizer.X == stabilizer.X
# @test adjoint_stabilizer.Z == stabilizer.Z
# @test adjoint_stabilizer.phase == 0
# TODO: Add the following tests:
# 1. Check if adjoint operation works well
# 2. Check if multiplication works well
# TODO: come up with some test cases.
end
| Jabalizer | https://github.com/QSI-BAQS/Jabalizer.jl.git |
|
[
"MIT"
] | 0.5.2 | 1a94764b239bd1867078fcf9eed76af9c07b7dc0 | code | 8794 | """
Generates one-qubit states used for testing
"""
function generate_one_qubit_state(state_chr)
state = zero_state(1)
(state_chr == '1' || state_chr == '-') && X(1)(state)
(state_chr == '+' || state_chr == '-') && H(1)(state)
return state
end
"""
Returns the state H_2^d H_1^c X_2^b X_1^a | 0 0 >, where arr = [a b c d].
for arr in {0,1}^4 this generates all the computational and conjugate basis
state combinations (e.g. |0 +> for [0 0 0 1] )
"""
function generate_two_qubit_state(arr)
a, b, c, d = arr
state = zero_state(2)
Bool(a) && X(1)(state)
Bool(b) && X(2)(state)
Bool(c) && H(1)(state)
Bool(d) && H(2)(state)
return state
end
# Test cases for basic one qubit gates (P,X,Y,Z,H)
const one_qubit_test_cases =
(('0', P, [0 1 0]),
('0', X, [0 1 2]),
('0', Y, [0 1 2]),
('0', Z, [0 1 0]),
('0', H, [1 0 0]),
('1', P, [0 1 2]),
('1', X, [0 1 0]),
('1', Y, [0 1 0]),
('1', Z, [0 1 2]),
('1', H, [1 0 2]),
('+', P, [1 1 0]),
('+', X, [1 0 0]),
('+', Y, [1 0 2]),
('+', Z, [1 0 2]),
('+', H, [0 1 0]),
('-', P, [1 1 2]),
('-', X, [1 0 2]),
('-', Y, [1 0 0]),
('-', Z, [1 0 0]),
('-', H, [0 1 2]))
@testset "One qubit gates" begin
for (state_chr, op, target_tableau) in one_qubit_test_cases
@testset "Gate $op on state $state_chr" begin
state = generate_one_qubit_state(state_chr)
op(1)(state)
@test target_tableau == to_tableau(state)
end
end
end
# Test cases for basic two qubit gates (CNOT, CZ, SWAP)
# Tableau dictionary contains result of applying CNOT to
# H_2^d H_1^c X_2^b X_1^a | 0 0 > with key [a b c d]
const cnot_output =
Dict((0,0,0,0) => [0 0 1 0 0; 0 0 1 1 0], # |0 0> => |0 0>
(0,0,0,1) => [0 0 1 0 0; 0 1 0 0 0], # |0 +> => |0 +>
(0,0,1,0) => [1 1 0 0 0; 0 0 1 1 0], # |+ 0> => |00> + |11>
(0,0,1,1) => [1 1 0 0 0; 0 1 0 0 0], # |+ +> => |++>
(0,1,0,0) => [0 0 1 0 0; 0 0 1 1 2], # |0 1> => |0 1>
(0,1,0,1) => [0 0 1 0 0; 0 1 0 0 2], # |0 -> => |0 1>
(0,1,1,0) => [1 1 0 0 0; 0 0 1 1 2], # |0 -> => |0 ->
(0,1,1,1) => [1 1 0 0 0; 0 1 0 0 2], # |+ -> => |- ->
(1,0,0,0) => [0 0 1 0 2; 0 0 1 1 0], # |1 0> => |1 1>
(1,0,0,1) => [0 0 1 0 2; 0 1 0 0 0], # |1 +> => |1 +>
(1,0,1,0) => [1 1 0 0 2; 0 0 1 1 0], # |1 +> => |1 +>
(1,0,1,1) => [1 1 0 0 2; 0 1 0 0 0], # |- +> => |- +>
(1,1,0,0) => [0 0 1 0 2; 0 0 1 1 2], # |1 1> => |1 0>
(1,1,0,1) => [0 0 1 0 2; 0 1 0 0 2], # |1 -> => -|1 ->
(1,1,1,0) => [1 1 0 0 2; 0 0 1 1 2], # |- 1> => |0 1> - |10>
(1,1,1,1) => [1 1 0 0 2; 0 1 0 0 2]) # |- -> => |+ ->
const cz_output =
Dict((0,0,0,0) => [0 0 1 0 0; 0 0 0 1 0], # |0 0> => |0 0>
(0,0,0,1) => [0 0 1 0 0; 0 1 1 0 0], # |0 +> => |0 +>
(0,0,1,0) => [1 0 0 1 0; 0 0 0 1 0], # |+ 0> => |00> + |11>
(0,0,1,1) => [1 0 0 1 0; 0 1 1 0 0], # |+ +> => |++>
(0,1,0,0) => [0 0 1 0 0; 0 0 0 1 2], # |0 1> => |0 1>
(0,1,0,1) => [0 0 1 0 0; 0 1 1 0 2], # |0 -> => |0 1>
(0,1,1,0) => [1 0 0 1 0; 0 0 0 1 2], # |+ 1> => |0 1> + |10>
(0,1,1,1) => [1 0 0 1 0; 0 1 1 0 2], # |+ -> => |- ->
(1,0,0,0) => [0 0 1 0 2; 0 0 0 1 0], # |1 0> => |1 1>
(1,0,0,1) => [0 0 1 0 2; 0 1 1 0 0], # |1 +> => |1 +>
(1,0,1,0) => [1 0 0 1 2; 0 0 0 1 0], # |- 0> => |00> - |11>
(1,0,1,1) => [1 0 0 1 2; 0 1 1 0 0], # |- +> => |- +>
(1,1,0,0) => [0 0 1 0 2; 0 0 0 1 2], # |1 1> => |1 0>
(1,1,0,1) => [0 0 1 0 2; 0 1 1 0 2], # |1 -> => -|1 ->
(1,1,1,0) => [1 0 0 1 2; 0 0 0 1 2], # |- 1> => |0 1> - |10>
(1,1,1,1) => [1 0 0 1 2; 0 1 1 0 2]) # |- -> => |+ ->
const swap_output =
Dict((0,0,0,0) => [0 0 0 1 0; 0 0 1 0 0],
(0,0,0,1) => [0 0 0 1 0; 1 0 0 0 0],
(0,0,1,0) => [0 1 0 0 0; 0 0 1 0 0],
(0,0,1,1) => [0 1 0 0 0; 1 0 0 0 0],
(0,1,0,0) => [0 0 0 1 0; 0 0 1 0 2],
(0,1,0,1) => [0 0 0 1 0; 1 0 0 0 2],
(0,1,1,0) => [0 1 0 0 0; 0 0 1 0 2],
(0,1,1,1) => [0 1 0 0 0; 1 0 0 0 2],
(1,0,0,0) => [0 0 0 1 2; 0 0 1 0 0],
(1,0,0,1) => [0 0 0 1 2; 1 0 0 0 0],
(1,0,1,0) => [0 1 0 0 2; 0 0 1 0 0],
(1,0,1,1) => [0 1 0 0 2; 1 0 0 0 0],
(1,1,0,0) => [0 0 0 1 2; 0 0 1 0 2],
(1,1,0,1) => [0 0 0 1 2; 1 0 0 0 2],
(1,1,1,0) => [0 1 0 0 2; 0 0 1 0 2],
(1,1,1,1) => [0 1 0 0 2; 1 0 0 0 2])
@testset "Two qubit gates" begin
# Loop generates all arrays (a, b, c, d) with a,b,c,d in {0,1}
for bitarr in Base.Iterators.product(0:1, 0:1, 0:1, 0:1)
@testset "CNOT for array: $bitarr " begin
state = generate_two_qubit_state(bitarr)
CNOT(1, 2)(state)
@test cnot_output[bitarr] == to_tableau(state)
end
@testset "CZ for array: $bitarr " begin
state = generate_two_qubit_state(bitarr)
CZ(1, 2)(state)
@test cz_output[bitarr] == to_tableau(state)
end
@testset "SWAP for array: $bitarr " begin
state = generate_two_qubit_state(bitarr)
SWAP(1, 2)(state)
@test swap_output[bitarr] == to_tableau(state)
end
end
end
@testset "Gate Aliases" begin
@test gate_map["H_XZ"] == H
@test gate_map["P"] == S
@test gate_map["PHASE"] == S
@test gate_map["SQRT_Z"] == S
@test gate_map["SQRT_Z_DAG"] == S_DAG
@test gate_map["S^-1"] == S_DAG
@test gate_map["S_Dagger"] == S_DAG
@test gate_map["CX"] == CNOT
@test gate_map["ZCX"] == CNOT
@test gate_map["ZCY"] == CY
@test gate_map["ZCZ"] == CZ
end
# Test cases for more complex one qubit gates supported by STIM
# which can be decomposed into a series of S and H gates
const gate1_decomp =
[(C_XYZ, "SSSH"),
(C_ZYX, "HS"),
(H_XY, "HSSHS"),
(H_YZ, "HSHSS"),
(S_DAG, "SSS"),
(SQRT_X, "HSH"),
(SQRT_X_DAG, "SHS"),
(SQRT_Y, "SSH"),
(SQRT_Y_DAG, "HSS")]
@testset "Single qubit operations" begin
for (gate, oplist) in gate1_decomp, state_chr in ('0', '1', '+', '-')
@testset "Gate $gate on state $state_chr" begin
state1 = generate_one_qubit_state(state_chr)
state2 = generate_one_qubit_state(state_chr)
for op in oplist
(op == 'H' ? H : S)(1)(state1)
end
gate(1)(state2)
@test state1 == state2
end
end
end
# Test cases for more complex two qubit gates supported by STIM
# which can be decomposed into a series of S, H, and CNOT gates
const gate2_decomp =
[(CY, (S(2), S(2), S(2), CNOT(1,2), S(2))),
(CZ, (H(2), CNOT(1,2), H(2))),
(XCX, (H(1), CNOT(1,2), H(1))),
(XCY, (H(1), S(2), S(2), S(2), CNOT(1,2), H(1), S(2))),
(XCZ, (CNOT(2,1),)),
(YCX, (S(1), S(1), S(1), H(2), CNOT(2,1), S(1), H(2))),
(YCY, (S(1), S(1), S(1), S(2), S(2), S(2), H(1), CNOT(1,2), H(1), S(1), S(2))),
(YCZ, (S(1), S(1), S(1), CNOT(2, 1), S(1))),
# stim ops that don't have function calls
#(CXSWAP, (CNOT(2,1), CNOT(1,2))),
#(SWAPCX, (CNOT(1,2), CNOT(2,1))),
(ISWAP, (H(1), S(1), S(1), S(1), CNOT(1,2), S(1), CNOT(2,1), H(2), S(2), S(1))),
(ISWAP_DAG,
(S(1), S(1), S(1), S(2), S(2), S(2), H(2), CNOT(2,1),
S(1), S(1), S(1), CNOT(1,2), S(1), H(1))),
#=
# stim ops that don't have function calls
(SQRT_XX,
(H(1), CNOT(1,2), H(2), S(1), S(2), H(1), H(2))),
(SQRT_XX_DAG,
(H(1), CNOT(1,2), H(2), S(1), S(1), S(1), S(2), S(2), S(2), H(1), H(2))),
(SQRT_YY,
(S(1), S(1), S(1), S(2), S(2), S(2), H(1), CNOT(1,2),
H(2), S(1), S(2), H(1), H(2), S(1), S(2))),
(SQRT_YY_DAG,
(S(1), S(1), S(1), S(2), H(1), CNOT(1,2),
H(2), S(1), S(2), H(1), H(2), S(1), S(2), S(2), S(2))),
(SQRT_ZZ,
(H(2), CNOT(1,2), H(2), S(1), S(2))),
(SQRT_ZZ_DAG,
(H(2), CNOT(1,2), H(2), S(1), S(1), S(1), S(2), S(2), S(2)))
=#
]
@testset "Two qubit operations" begin
# Loop generates all arrays (a, b, c, d) with a,b,c,d in {0,1}
for (gate, oplist) in gate2_decomp
@testset "Gate $gate:" begin
for bitarr in Base.Iterators.product(0:1, 0:1, 0:1, 0:1)
state1 = generate_two_qubit_state(bitarr)
state2 = generate_two_qubit_state(bitarr)
for op in oplist
op(state1)
end
gate(1, 2)(state2)
@test state1 == state2
end
end
end
end
| Jabalizer | https://github.com/QSI-BAQS/Jabalizer.jl.git |
|
[
"MIT"
] | 0.5.2 | 1a94764b239bd1867078fcf9eed76af9c07b7dc0 | code | 938 | const measurement_test_cases =
(("0", measure_z, 0, [0 1 0]),
("1", measure_z, 1, [0 1 2]),
("+", measure_x, 0, [1 0 0]),
("-", measure_x, 1, [1 0 2]),
("+y", measure_y, 0, [1 1 0]),
("-y", measure_y, 1, [1 1 2]))
const init_operations =
Dict("0" => (),
"1" => (X,),
"+" => (H,),
"-" => (X, H),
"+y" => (H, P),
"-y" => (X, H, P))
@testset "Measurements" begin
for (init_state_str, measurement_op, target_output, target_tableau) in measurement_test_cases
@testset "Measurement $measurement_op on state $init_state_str" begin
state = zero_state(1)
for init_op in init_operations[init_state_str]
init_op(1)(state)
end
measurement = measurement_op(state, 1)
@test measurement == target_output
@test to_tableau(state) == target_tableau
end
end
end
| Jabalizer | https://github.com/QSI-BAQS/Jabalizer.jl.git |
|
[
"MIT"
] | 0.5.2 | 1a94764b239bd1867078fcf9eed76af9c07b7dc0 | code | 1279 |
@testset "StabilizerState initialization" begin
state = StabilizerState()
@test state.qubits == 0
@test isempty(state.stabilizers)
for i in 1:4
state = StabilizerState(i)
@test state.qubits == i
@test isempty(state.stabilizers)
end
end
@testset "zero_state initialization" begin
for i in 1:4
target_tableau = zeros(Int8, (i, 2 * i + 1))
for j in 1:i
target_tableau[j, i+j] = 1
end
state = zero_state(i)
@test state.qubits == i
@test to_tableau(state) == target_tableau
end
end
@testset "Tableau <> State conversion" begin
# TODO: Add the following tests:
# 1. Checks whether the conversions both ways works well
# TODO: come up with good test cases.
end
@testset "State to Tableau conversion" begin
# TODO: Add the following tests:
# 1. Checks whether the conversions works well
# TODO: come up with good test cases.
end
@testset "StabilizerState to string conversion" begin
# TODO: Add the following tests:
# 1. Checks whether the conversions works well
end
@testset "Graph to StabilizerState conversion" begin
# TODO: Add the following tests:
# 1. Check if works
# TODO: come up with some good test cases.
end
| Jabalizer | https://github.com/QSI-BAQS/Jabalizer.jl.git |
|
[
"MIT"
] | 0.5.2 | 1a94764b239bd1867078fcf9eed76af9c07b7dc0 | code | 502 | @testset "Graph conversion tests" begin
state = zero_state(5)
for i in 1:state.qubits
H(i)(state)
end
CZ(1,2)(state)
H(1)(state)
CNOT(1,2)(state)
CZ(2,3)(state)
CNOT(3,4)(state)
P(4)(state)
Z(4)(state)
CZ(4,5)(state)
H(5)(state)
gs, adj, mseq = Jabalizer.fast_to_graph(state)
A = [0 0 0 0 0; 0 0 0 0 0; 0 0 0 0 0; 0 0 0 0 1; 0 0 0 1 0]
M = [("H", 2), ("H", 5), ("Pdag", 4), ("Z", 4)]
@test adj == A
@test mseq == M
end
| Jabalizer | https://github.com/QSI-BAQS/Jabalizer.jl.git |
|
[
"MIT"
] | 0.5.2 | 1a94764b239bd1867078fcf9eed76af9c07b7dc0 | code | 1480 |
@testset "stim tableau to tableau" begin
# TODO: Add the following tests:
# 1. Check if the conversion works well.
# TODO: What should the test cases be?
end
@testset "Update tableau" begin
# TODO: Add the following tests:
# 1. Check if update works correctly
# TODO: What should the test cases be?
end
@testset "Generate random stabilizer state" begin
# TODO: Add more validity checks
len = 5
ss = rand(StabilizerState, len)
@test ss.qubits == len
@test length(ss.stabilizers) == len
st = ss.stabilizers
for i = 1:len
stab = st[i]
@test stab.qubits == len
@test length(stab.X) == len
@test length(stab.Z) == len
@test 0 <= stab.phase <= 3
end
end
@testset "Stabilizer State to Graph" begin
# TODO: Add the following tests:
# 1. Check if the conversion works back and forth
# TODO: What should the test cases be?
end
@testset "Test Tab operations" begin
# TODO: Add the following tests:
# 1. Check if H works properly
# 2. Check if RowAdd works properly
# TODO: What should the test cases be?
end
@testset "Test Pauli - Tableau conversion" begin
# TODO: Add the following tests:
# 1. Check if the conversion works back and forth
# TODO: What should the test cases be?
end
@testset "Test Pauli operations" begin
# TODO: Add the following tests:
# 1. Check if PauliProd works well
# TODO: What should the test cases be?
end
| Jabalizer | https://github.com/QSI-BAQS/Jabalizer.jl.git |
|
[
"MIT"
] | 0.5.2 | 1a94764b239bd1867078fcf9eed76af9c07b7dc0 | docs | 7759 | # Jabalizer
[](https://github.com/madhavkrishnan/Jabalizer.jl/actions)
[](https://ci.appveyor.com/project/madhavkrishnan/Jabalizer-jl)
[](https://codecov.io/gh/QSI-BAQS/Jabalizer.jl)
[](https://coveralls.io/github/QSI-BAQS/Jabalizer.jl?branch=main)
# Developers
+ Madhav Krishnan Vijayan ([[email protected]](mailto:[email protected]))
+ Simon Devitt
+ Peter Rohde ([[email protected]](mailto:[email protected]), [www.peterrohde.org](https://www.peterrohde.org))
+ Alexandru Paler
+ Casey Myers
+ Jason Gavriel
+ Michał Stęchły([[email protected]](mailto:[email protected]))
+ Scott Jones ([[email protected]](mailto:[email protected]))
+ Athena Caesura
# About
Jabalizer is a quantum graph state compiler for quantum circuits written in Julia. It has the functionality to manipulate stabilizer states and graph states and provides generic functions able to operate within both pictures and dynamically convert between them, allowing arbitrary Clifford circuits to be simulated and converted into graph state language, and vice-versa.
Jabalizer also provides functionality to convert Clifford + T gate circuits to an aglorithm specific graph state using the ``icm`` module. The computation can now be implemented by passing this graph state and a measurement procedure to a quantum backend.
You can learn more about the Julia language at [www.julialang.org](https://www.julialang.org).
# Technical Manuscript
A techical paper on Jabalizer can be found here [https://arxiv.org/abs/2209.07345](https://arxiv.org/abs/2209.07345)
# Installation
Jabalizer can be installed like any Julia package.
type `]` in the Julia REPL to enter the pkg mode and enter
```
pkg> add Jabalizer
```
The module can be tested using
```
pkg> test Jabalizer
```
# Stabilizer circuits
While simulating arbitrary quantum circuits is classically inefficient with exponential resource overhead, via the [Gottesman-Knill theorem](https://arxiv.org/abs/quant-ph/9807006) it is known that circuits comprising only Clifford operations (ones that commute with the Pauli group) can be efficiently simulated using the stabilizer formalism. In the stabilizer formalism an _n_-qubit state is defined as the simultaneous positive eigenstate of _n_ 'stabilizers', each of which is an _n_-fold tensor product of Pauli operators (_I_,_X_,_Y_,_Z_) and a sign (+/-). That is, for each stabilizer $S_i$ (for $i\in 1\dots n$) the state,
$$ |\psi\rangle $$
satisfies
$$ S_i|\psi\rangle = |\psi\rangle. $$
As an example, the Bell state
$$ \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle) $$
can equivalently be represented by the two stabilizers
$$ S_1 = XX, $$
$$ S_2 = ZZ. $$
The orthogonal Bell state
$$ \frac{1}{\sqrt{2}}(|01\rangle + |10\rangle) $$
differs only slightly with stabilizers,
$$ S_1 = XX, $$
$$ S_2 = -ZZ. $$
Similarly, the three-qubit GHZ state
$$ \frac{1}{\sqrt{2}}(|000\rangle + |111\rangle) $$
can be represented by the three stabilizers,
$$ S_1 = XXX, $$
$$ S_2 = ZZI, $$
$$ S_3 = IZZ. $$
Evolving stabilizer states can be performed in the Heisenberg picture by conjugating the stabilizers with the unitary operations acting upon the state since for the evolution,
$$ |\psi'\rangle = U |\psi\rangle, $$
we can equivalently write,
$$ |\psi'\rangle = U S_i |\psi\rangle = U S_i U^\dagger U |\psi\rangle = U S_i U^\dagger |\psi'\rangle = S_i' |\psi'\rangle, $$
where,
$$ S_i' = U S_i U^\dagger, $$
stabilizes the evolved state
$$|\psi'\rangle = U |\psi\rangle. $$
Thus the rule for evolving states in the stabilizer formalism is to simply update each of the _n_ stabilizers via
$$ S_i' = U S_i U^\dagger. $$
The efficiency of classically simulating stabilizer circuits was subsequently improved upon by [Aaronson & Gottesman](https://arxiv.org/abs/quant-ph/0406196) using the so-called CHP approach which tracks both stabilizers and anti-stabilizers, improving the performance of measurements within this model. Jabalizer employs the highly-optimised [STIM simulator](https://github.com/quantumlib/Stim) as its CHP backend.
# Graph states
A graph state is defined as a set of _n_ qubits represented as vertices in a graph, where qubits are initialised into the
$$ |+\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle) $$
state and edges between them represent the application of controlled-phase (CZ) gates. This leads to the general stabilizer representation for graph states,
$$ S_i = X_i \prod_{j\in n_i} Z_j, $$
for each qubit _i_, where $$ n_i $$ denotes the graph neighbourhood of vertex _i_.
For example, the set of stabilizers associated with the graph,
<p align="center"><img src="https://user-images.githubusercontent.com/4382522/123741542-96930b80-d8ed-11eb-9b9a-1caf37f5fcf0.jpeg" width="50%"></p>
<!---  --->
is given by,
$$ S_1 = XZII, $$
$$ S_2 = ZXZZ, $$
$$ S_3 = IZXZ, $$
$$ S_4 = IZZX. $$
Viewing this as a matrix note that the _X_ operators appear along the main diagonal, which the locations of the _Z_ operators define the adjacency matrix for the graph.
All stabilizer states can be converted to graph states via local operations, achieved via a tailored Gaussian elimination procedure on the stabilizer tableau. Jabalizer allows an arbitrary stabilizer state to be converted to a locally equivalent graph state and provide the associated adjacency matrix for the respective graph.
# Example code
Here's some simple Jabalizer code that executes the gate sequence used to generate a GHZ state, display the associated set of stabilizers, and then convert it to its locally equivalent graph state, which is then manipulated via several Pauli measurements and finally converted back to stabilizer form.
```julia
using Jabalizer
# Prepare a 6-qubit GHZ state
n = 6
state = zero_state(n)
Jabalizer.H(1)(state)
Jabalizer.CNOT(1,2)(state)
Jabalizer.CNOT(1,3)(state)
Jabalizer.CNOT(1,4)(state)
Jabalizer.CNOT(1,5)(state)
Jabalizer.CNOT(1,6)(state)
# Display the stabilizer tableau
Jabalizer.update_tableau(state)
tab = Jabalizer.to_tableau(state)
display(tab)
# Convert to graph state
graphState = GraphState(state)
# Display graph adjacency matrix
display(graphState.A)
# Plot graph
Jabalizer.gplot(Jabalizer.Graph(graphState.A))
# Convert back to stabilizer state
stabState = StabilizerState(graphState)
```
Produces the output:
```julia
6×13 Matrix{Int64}:
1 1 1 1 1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 0 0 0 0 0
0 0 0 0 0 0 1 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0 0 1 0 0
0 0 0 0 0 0 1 0 0 0 0 1 0
6×6 Matrix{Int64}:
0 1 1 1 1 1
1 0 0 0 0 0
1 0 0 0 0 0
1 0 0 0 0 0
1 0 0 0 0 0
```
<p align="center"><img src="https://user-images.githubusercontent.com/4382522/123879677-b45f7f80-d984-11eb-8590-67a3714eec71.png" width="50%"></p>
# Acknowledgements
We especially thank [Craig Gidney](https://algassert.com) and co-developers for developing the [STIM package](https://github.com/quantumlib/Stim) which provides the CHP backend upon which Jabalizer is based, and especially for implementing some modifications that provided the functionality necessary for this integration. The technical whitepaper for STIM is available [here](https://arxiv.org/abs/2103.02202).
| Jabalizer | https://github.com/QSI-BAQS/Jabalizer.jl.git |
|
[
"MIT"
] | 0.5.2 | 1a94764b239bd1867078fcf9eed76af9c07b7dc0 | docs | 653 | ---
name: Bug report
about: Create a report to help us improve
title: ''
labels: ''
assignees: ''
---
**Describe the bug**
A clear and concise description of what the bug is.
**To Reproduce**
Steps to reproduce the behavior:
1. Go to '...'
2. Click on '....'
3. Scroll down to '....'
4. See error
**Expected behavior**
A clear and concise description of what you expected to happen.
**Screenshots**
If applicable, add screenshots to help explain your problem.
**Desktop (please complete the following information):**
- OS: [e.g. OSX, Windows]
- Python version [e.g. 3.7.11]
**Additional context**
Add any other context about the problem here.
| Jabalizer | https://github.com/QSI-BAQS/Jabalizer.jl.git |
|
[
"MIT"
] | 0.5.2 | 1a94764b239bd1867078fcf9eed76af9c07b7dc0 | docs | 595 | ---
name: Feature request
about: Suggest an idea for this project
title: ''
labels: ''
assignees: ''
---
**Is your feature request related to a problem? Please describe.**
A clear and concise description of what the problem is. Ex. I'm always frustrated when [...]
**Describe the solution you'd like**
A clear and concise description of what you want to happen.
**Describe alternatives you've considered**
A clear and concise description of any alternative solutions or features you've considered.
**Additional context**
Add any other context or screenshots about the feature request here.
| Jabalizer | https://github.com/QSI-BAQS/Jabalizer.jl.git |
|
[
"MIT"
] | 0.5.2 | 1a94764b239bd1867078fcf9eed76af9c07b7dc0 | docs | 490 | # Jabalizer Documentation
```@meta
CurrentModule = Jabalizer
```
## Contents
```@contents
```
## Types
```@docs
Stabilizer
StabilizerState
GraphState
```
## Functions
### State preparation
```@docs
AddQubit
AddQubits
AddBell
AddGHZ
AddGraph
```
### Gates
```@docs
Id
X
Y
Z
H
P
SWAP
CNOT
CZ
FusionI
FusionII
```
### Channels
```@docs
ChannelX
ChannelY
ChannelZ
ChannelPauli
ChannelDepol
ChannelLoss
```
### Utilities
```@docs
RowAdd
print
string
*
```
## Index
```@index
```
| Jabalizer | https://github.com/QSI-BAQS/Jabalizer.jl.git |
|
[
"MIT"
] | 1.1.0 | 82fd3c3088a45c7d9f23318992417dc39f539ac6 | code | 13197 | module Polyomino
using DataStructures
using MatrixNetworks
using JuMP
using HiGHS
using ProgressMeter
struct Poly
tiles::Set{Pair{Int64, Int64}}
vertices::Int64
edges::Int64
end
include("algorithms.jl")
include("min-line-cover.jl")
Base.show(io::IO, x::Poly) = begin
minX, maxX, minY, maxY = dimensionPoly(x)
for i in minX:maxX
for j in minY:maxY
(Pair(i, j) in x.tiles) ? print(io, "*") : print(io, " ")
end
println()
end
end
@inline function dimensionPoly(p::Poly)
minX = typemax(Int64); minY = typemax(Int64);
maxX = typemin(Int64); maxY = typemin(Int64);
for i in p.tiles
maxX = (i.first > maxX) ? i.first : maxX
maxY = (i.second > maxY) ? i.second : maxY
minX = (i.first < minX) ? i.first : minX
minY = (i.second < minY) ? i.second : minY
end
return minX, maxX, minY, maxY
end
@inline function holes(p::Poly)
return p.edges - p.vertices - length(p.tiles) + 1 # number of holes with euler characteristic
end
function demo()
println("<Polyomino Generation (n = 30)>")
println("Shuffling (p = 0):")
show(Poly(30, 0.0))
println("Shuffling (p = 0.8):")
show(Poly(30, 0.8))
println("Eden Model:")
show(Poly(30))
println("<Polyomino Analysis (n = 100)>")
poly = Poly(100)
println("Maximal Rook Setup:")
printSet(poly, maxRooks(poly)[2])
println("Maximal Queen Setup:")
printSet(poly, maxQueens(poly, output=false)[2])
println("Minimal Rook Setup:")
printSet(poly, minRooks(poly, output=false)[2])
println("Minimal Queen Setup:")
printSet(poly, minQueens(poly; output=false)[2])
println("Minimal Line Cover:")
printMinLineCover(poly)
end
"""
Poly(size, p)
Polyomino generation wih shuffling model
Generates uniformly distributed polyominoes after size^3 successful shuffles.
# Arguments
* `size`: Number of tiles of polyomino
* `p`: Perculation probability between 0 and 1, higher p results in more compact polyominoes
"""
function Poly(size::Int64, p::Float64)
tiles = Set{Pair{Int64, Int64}}()
neighbours = Set{Pair{Int64, Int64}}([0 => 0, 0 => size + 1])
for i in 1:size
push!(tiles, 0 => i)
push!(neighbours, 1 => i)
push!(neighbours, -1 => i)
end
euler = [2 * size + 2, (2 * size + 2) + (size - 1)] # vertices, edges
@showprogress 1 "Shuffling..." for i in 1 : size^3
while (!shuffle(tiles, neighbours, p, euler))
end
end
Poly(tiles, euler[1], euler[2])
end
@inline function shuffle(tiles::Set{Pair{Int64, Int64}}, neighbours::Set{Pair{Int64, Int64}}, p::Float64, euler::Vector{Int64})
diff = 0 # circumfrence difference
vertexDiff = 0
edgeDiff = 0
ranTile = rand(tiles) # move random tile to new position
ranNeigh = rand(neighbours)
delete!(tiles, ranTile)
# vertex update from tile remval
if !(Pair(ranTile.first - 1, ranTile.second) in tiles) && !(Pair(ranTile.first - 1, ranTile.second - 1) in tiles) && !(Pair(ranTile.first, ranTile.second - 1) in tiles) # left upper corner
vertexDiff -= 1
end
if !(Pair(ranTile.first, ranTile.second - 1) in tiles) && !(Pair(ranTile.first + 1, ranTile.second - 1) in tiles) && !(Pair(ranTile.first + 1, ranTile.second) in tiles) # left lower corner
vertexDiff -= 1
end
if !(Pair(ranTile.first + 1, ranTile.second) in tiles) && !(Pair(ranTile.first + 1, ranTile.second + 1) in tiles) && !(Pair(ranTile.first, ranTile.second + 1) in tiles) # right lower corner
vertexDiff -= 1
end
if !(Pair(ranTile.first, ranTile.second + 1) in tiles) && !(Pair(ranTile.first - 1, ranTile.second + 1) in tiles) && !(Pair(ranTile.first - 1, ranTile.second) in tiles) # right upper corner
vertexDiff -= 1
end
# vertex change from tile addition
if !(Pair(ranNeigh.first - 1, ranNeigh.second) in tiles) && !(Pair(ranNeigh.first - 1, ranNeigh.second - 1) in tiles) && !(Pair(ranNeigh.first, ranNeigh.second - 1) in tiles) # left upper corner
vertexDiff += 1
end
if !(Pair(ranNeigh.first, ranNeigh.second - 1) in tiles) && !(Pair(ranNeigh.first + 1, ranNeigh.second - 1) in tiles) && !(Pair(ranNeigh.first + 1, ranNeigh.second) in tiles) # left lower corner
vertexDiff += 1
end
if !(Pair(ranNeigh.first + 1, ranNeigh.second) in tiles) && !(Pair(ranNeigh.first + 1, ranNeigh.second + 1) in tiles) && !(Pair(ranNeigh.first, ranNeigh.second + 1) in tiles) # right lower corner
vertexDiff += 1
end
if !(Pair(ranNeigh.first, ranNeigh.second + 1) in tiles) && !(Pair(ranNeigh.first - 1, ranNeigh.second + 1) in tiles) && !(Pair(ranNeigh.first - 1, ranNeigh.second) in tiles) # right upper corner
vertexDiff += 1
end
#edge change from tile removal
edgeDiff -= !(Pair(ranTile.first - 1, ranTile.second) in tiles) + !(Pair(ranTile.first, ranTile.second - 1) in tiles) + !(Pair(ranTile.first + 1, ranTile.second) in tiles) + !(Pair(ranTile.first, ranTile.second + 1) in tiles)
#edge change from tile addition
edgeDiff += !(Pair(ranNeigh.first - 1, ranNeigh.second) in tiles) + !(Pair(ranNeigh.first, ranNeigh.second - 1) in tiles) + !(Pair(ranNeigh.first + 1, ranNeigh.second) in tiles) + !(Pair(ranNeigh.first, ranNeigh.second + 1) in tiles)
push!(tiles, ranNeigh)
toCheck = Pair{Int64, Int64}[] # collect neighbours to check connectivity
if ((Pair(ranTile.first - 1, ranTile.second) in tiles))
push!(toCheck, Pair(ranTile.first - 1, ranTile.second))
diff += 1
end
if ((Pair(ranTile.first, ranTile.second - 1) in tiles))
push!(toCheck, Pair(ranTile.first, ranTile.second - 1))
diff += 1
end
if ((Pair(ranTile.first + 1, ranTile.second) in tiles))
push!(toCheck, Pair(ranTile.first + 1, ranTile.second))
diff += 1
end
if ((Pair(ranTile.first, ranTile.second + 1) in tiles))
push!(toCheck, Pair(ranTile.first, ranTile.second + 1))
diff += 1
end
connected = true # check connectivity
for i = 1 : length(toCheck) - 1
if !(bfs(tiles, toCheck[i], toCheck[i + 1]))
connected = false
break
end
end
if (connected)
if ((Pair(ranNeigh.first - 1, ranNeigh.second) in tiles)) # calculate diffrence in polyomino neighbour count
diff -= 1
end
if ((Pair(ranNeigh.first, ranNeigh.second - 1) in tiles))
diff -= 1
end
if ((Pair(ranNeigh.first + 1, ranNeigh.second) in tiles))
diff -= 1
end
if ((Pair(ranNeigh.first, ranNeigh.second + 1) in tiles))
diff -= 1
end
accepted = true # accepted shuffle with probability (1 - p)^diff
if !iszero(p)
accepted = rand() < (1 - p)^diff;
end
if accepted
push!(neighbours, ranTile)
if (!(Pair(ranTile.first - 1, ranTile.second - 1) in tiles) && !(Pair(ranTile.first - 2, ranTile.second) in tiles) && !(Pair(ranTile.first - 1, ranTile.second + 1) in tiles))
delete!(neighbours, Pair(ranTile.first - 1, ranTile.second)) # neighbour above does not stay neighbour
end
if (!(Pair(ranTile.first + 1, ranTile.second - 1) in tiles) && !(Pair(ranTile.first, ranTile.second - 2) in tiles) && !(Pair(ranTile.first - 1, ranTile.second - 1) in tiles))
delete!(neighbours, Pair(ranTile.first, ranTile.second - 1)) # neighbour to the left does not stay neighbour
end
if (!(Pair(ranTile.first + 1, ranTile.second + 1) in tiles) && !(Pair(ranTile.first + 2, ranTile.second) in tiles) && !(Pair(ranTile.first + 1, ranTile.second - 1) in tiles))
delete!(neighbours, Pair(ranTile.first + 1, ranTile.second)) # neighbour below does not stay neighbour
end
if (!(Pair(ranTile.first - 1, ranTile.second + 1) in tiles) && !(Pair(ranTile.first, ranTile.second + 2) in tiles) && !(Pair(ranTile.first + 1, ranTile.second + 1) in tiles))
delete!(neighbours, Pair(ranTile.first, ranTile.second + 1)) # neighbour to the right does not stay neighbour
end
delete!(neighbours, ranNeigh) # update neighbours
if (!(Pair(ranNeigh.first - 1, ranNeigh.second) in tiles))
push!(neighbours, Pair(ranNeigh.first - 1, ranNeigh.second))
end
if (!(Pair(ranNeigh.first, ranNeigh.second - 1) in tiles))
push!(neighbours, Pair(ranNeigh.first, ranNeigh.second - 1))
end
if (!(Pair(ranNeigh.first + 1, ranNeigh.second) in tiles))
push!(neighbours, Pair(ranNeigh.first + 1, ranNeigh.second))
end
if (!(Pair(ranNeigh.first, ranNeigh.second + 1) in tiles))
push!(neighbours, Pair(ranNeigh.first, ranNeigh.second + 1))
end
euler[1] += vertexDiff
euler[2] += edgeDiff
return true
end
end
delete!(tiles, ranNeigh) # undo shuffle
push!(tiles, ranTile)
return false
end
@inline function bfs(tiles::Set{Pair{Int64, Int64}}, start::Pair{Int64, Int64}, goal::Pair{Int64, Int64})
if (abs(start.first - goal.first) == 1 && abs(start.second - goal.second) == 1) # start and goal directly connect via corner
if Pair(start.first, goal.second) in tiles
return true
elseif Pair(goal.first, start.second) in tiles
return true
end
end
q = Queue{Pair{Int64, Int64}}()
done = Set{Pair{Int64, Int64}}()
enqueue!(q, start); push!(done, start)
while (!isempty(q))
tile = dequeue!(q)
if (tile == goal)
return true
end
if ((Pair(tile.first - 1, tile.second) in tiles) && !(Pair(tile.first - 1, tile.second) in done)) # above
enqueue!(q, Pair(tile.first - 1, tile.second))
push!(done, Pair(tile.first - 1, tile.second))
end
if ((Pair(tile.first, tile.second - 1) in tiles) && !(Pair(tile.first, tile.second - 1) in done)) # left
enqueue!(q, Pair(tile.first, tile.second - 1))
push!(done, Pair(tile.first, tile.second - 1))
end
if ((Pair(tile.first + 1, tile.second) in tiles) && !(Pair(tile.first + 1, tile.second) in done)) # below
enqueue!(q, Pair(tile.first + 1, tile.second))
push!(done, Pair(tile.first + 1, tile.second))
end
if ((Pair(tile.first, tile.second + 1) in tiles) && !(Pair(tile.first, tile.second + 1) in done)) # right
enqueue!(q, Pair(tile.first, tile.second + 1))
push!(done, Pair(tile.first, tile.second + 1))
end
end
return false
end
"""
Poly(size)
Polyomino generation wih Eden model
Start with one tile and iteratively add random neighbour tile. Linear runtime, but compact polyominoes with few holes.
# Arguments
* `size`: Number of tiles of polyomino
"""
function Poly(size::Int64)
tiles = Set{Pair{Int64, Int64}}([0 => 0])
neighbours = Set{Pair{Int64, Int64}}([-1 => 0, 0 => -1, 1 => 0, 0 => 1])
vertices = 0
edges = 0
for i in 1 : size - 1
ranElem = rand(neighbours) # choose random element from set
push!(tiles, ranElem)
delete!(neighbours, ranElem)
# edge update
edges += !(Pair(ranElem.first - 1, ranElem.second) in tiles) + !(Pair(ranElem.first, ranElem.second - 1) in tiles) + !(Pair(ranElem.first + 1, ranElem.second) in tiles) + !(Pair(ranElem.first, ranElem.second + 1) in tiles)
# vertex update
if !(Pair(ranElem.first - 1, ranElem.second) in tiles) && !(Pair(ranElem.first - 1, ranElem.second - 1) in tiles) && !(Pair(ranElem.first, ranElem.second - 1) in tiles) # left upper corner
vertices += 1
end
if !(Pair(ranElem.first, ranElem.second - 1) in tiles) && !(Pair(ranElem.first + 1, ranElem.second - 1) in tiles) && !(Pair(ranElem.first + 1, ranElem.second) in tiles) # left lower corner
vertices += 1
end
if !(Pair(ranElem.first + 1, ranElem.second) in tiles) && !(Pair(ranElem.first + 1, ranElem.second + 1) in tiles) && !(Pair(ranElem.first, ranElem.second + 1) in tiles) # right lower corner
vertices += 1
end
if !(Pair(ranElem.first, ranElem.second + 1) in tiles) && !(Pair(ranElem.first - 1, ranElem.second + 1) in tiles) && !(Pair(ranElem.first - 1, ranElem.second) in tiles) # right upper corner
vertices += 1
end
!(Pair(ranElem.first - 1, ranElem.second) in tiles) && push!(neighbours, Pair(ranElem.first - 1, ranElem.second)) # update neighbours set
!(Pair(ranElem.first, ranElem.second - 1) in tiles) && push!(neighbours, Pair(ranElem.first, ranElem.second - 1))
!(Pair(ranElem.first + 1, ranElem.second) in tiles) && push!(neighbours, Pair(ranElem.first + 1, ranElem.second))
!(Pair(ranElem.first, ranElem.second + 1) in tiles) && push!(neighbours, Pair(ranElem.first, ranElem.second + 1))
end
Poly(tiles, vertices, edges)
end
end # module
| Polyomino | https://github.com/PhoenixSmaug/Polyomino.jl.git |
|
[
"MIT"
] | 1.1.0 | 82fd3c3088a45c7d9f23318992417dc39f539ac6 | code | 10489 | function printSet(p::Poly, set::Vector{Pair{Int64, Int64}})
minX, maxX, minY, maxY = dimensionPoly(p)
for i in minX : maxX
for j in minY : maxY
if (Pair(i, j) in p.tiles)
(Pair(i, j) in set) ? print("+") : print("*")
else
print(" ")
end
end
println()
end
end
"""
maxRooks(p)
Solves the maximal non-attacking rook set problem
Polynomial runtime as translation of maximal matching problem in corresponding biparite graph,
details in https://link.springer.com/content/pdf/10.1007/s00373-020-02272-8.pdf Chapter 4
# Arguments
* `p`: Polyomino to calculate the rook set on
"""
function maxRooks(p::Poly)
minX, maxX, minY, maxY = dimensionPoly(p)
start = Dict{Pair{Int64, Int64}, Int64}() # key = position of tile, value = start of edge in bipartite graph
counter = 0
previous = false
for i in minX - 1 : maxX + 1
for j in minY - 1 : maxY + 1
if (Pair(i, j) in p.tiles)
if (!previous) counter += 1 end
start[i => j] = counter
previous = true
else
previous = false
end
end
end
finish = Dict{Pair{Int64, Int64}, Int64}() # key = position of tile, value = end of edge in bipartite graph
counter = 0
previous = false
for j in minY - 1 : maxY + 1
for i in minX - 1 : maxX + 1
if (Pair(i, j) in p.tiles)
if (!previous) counter += 1 end
finish[i => j] = counter
previous = true
else
previous = false
end
end
end
edgeStart = Int64[]; edgeEnd = Int64[]
biGraphOrder = Dict{Pair{Int64, Int64}, Pair{Int64, Int64}}() # key = edge in bipartite graph, value = position of tile
for i in minX : maxX # convert to required form
for j in minY : maxY
if (Pair(i, j) in p.tiles)
push!(edgeStart, start[i => j])
push!(edgeEnd, finish[i => j])
biGraphOrder[Pair(start[i => j], finish[i => j])] = i => j
end
end
end
weights = fill(1, length(edgeStart))
matching = bipartite_matching(weights, edgeStart, edgeEnd) # calculate matching
matchingStart = edge_list(matching)[1]
matchingEnd = edge_list(matching)[2]
rooks = Pair{Int64, Int64}[]
for i in 1 : length(matchingStart)
push!(rooks, biGraphOrder[Pair(matchingStart[i], matchingEnd[i])])
end
return matching.cardinality, rooks # number, set
end
"""
maxQueens(p)
Solves the maximal non-attacking queen set problem
NP complete problem, solve as LIP with HiGHS optimizer
# Arguments
* `p`: Polyomino to calculate the queen set on
* `output`: If logging of HiGHS is enabled
"""
function maxQueens(p::Poly; output=true)
tileId = Dict{Pair{Int64, Int64}, Int64}() # enumerate tiles
tileIdRev = Pair{Int64, Int64}[]
t = 1
for i in p.tiles
tileId[i] = t
push!(tileIdRev, i)
t += 1
end
tileRow = Dict{Int64, Vector{Int64}}() # key: tile by id, value: ids of attackable tiles in this direction
tileColumn = Dict{Int64, Vector{Int64}}()
tileDiagDown = Dict{Int64, Vector{Int64}}()
tileDiagUp = Dict{Int64, Vector{Int64}}()
for (key, value) in tileId
tileRow[value] = Vector{Int64}([value])
tileColumn[value] = Vector{Int64}([value])
tileDiagDown[value] = Vector{Int64}([value])
tileDiagUp[value] = Vector{Int64}([value])
t = 1
while (Pair(key.first - t, key.second) in p.tiles) # up
push!(tileColumn[value], tileId[Pair(key.first - t, key.second)])
t += 1
end
t = 1
while (Pair(key.first - t, key.second - t) in p.tiles) # up left
push!(tileDiagUp[value], tileId[Pair(key.first - t, key.second - t)])
t += 1
end
t = 1
while (Pair(key.first, key.second - t) in p.tiles) # left
push!(tileRow[value], tileId[Pair(key.first, key.second - t)])
t += 1
end
t = 1
while (Pair(key.first + t, key.second - t) in p.tiles) # down left
push!(tileDiagDown[value], tileId[Pair(key.first + t, key.second - t)])
t += 1
end
t = 1
while (Pair(key.first + t, key.second) in p.tiles) # down
push!(tileColumn[value], tileId[Pair(key.first + t, key.second)])
t += 1
end
t = 1
while (Pair(key.first + t, key.second + t) in p.tiles) # down right
push!(tileDiagUp[value], tileId[Pair(key.first + t, key.second + t)])
t += 1
end
t = 1
while (Pair(key.first, key.second + t) in p.tiles) # right
push!(tileRow[value], tileId[Pair(key.first, key.second + t)])
t += 1
end
t = 1
while (Pair(key.first - t, key.second + t) in p.tiles) # up right
push!(tileDiagDown[value], tileId[Pair(key.first - t, key.second + t)])
t += 1
end
end
model = Model(HiGHS.Optimizer) # construct linear integer programm
set_optimizer_attribute(model, "log_to_console", output)
@variable(model, x[1 : length(p.tiles)], Bin)
for (key, value) in tileId
@constraint(model, sum(x[i] for i in tileRow[value]) <= 1) # one queen per row
@constraint(model, sum(x[i] for i in tileColumn[value]) <= 1) # one queen per column
@constraint(model, sum(x[i] for i in tileDiagDown[value]) <= 1) # one queen per diagonal
@constraint(model, sum(x[i] for i in tileDiagUp[value]) <= 1)
end
@objective(model, Max, sum(x))
optimize!(model)
return Int(sum(round.(value.(x)))), tileIdRev[round.(value.(x)) .== 1] # number, set
end
"""
minRooks(p)
Solves the minimal guarding rook set problem
NP complete problem, solve as LIP with HiGHS optimizer
# Arguments
* `p`: Polyomino to calculate the rook set on
* `output`: If logging of HiGHS is enabled
"""
function minRooks(p::Poly; output=true)
tileId = Dict{Pair{Int64, Int64}, Int64}() # enumerate tiles
tileIdRev = Pair{Int64, Int64}[]
t = 1
for i in p.tiles
tileId[i] = t
push!(tileIdRev, i)
t += 1
end
tileAttack = Dict{Int64, Vector{Int64}}() # key: tile id, value: ids of attackable tiles
for (key, value) in tileId
tileAttack[value] = Vector{Int64}([value])
t = 1
while (Pair(key.first - t, key.second) in p.tiles) # up
push!(tileAttack[value], tileId[Pair(key.first - t, key.second)])
t += 1
end
t = 1
while (Pair(key.first, key.second - t) in p.tiles) # left
push!(tileAttack[value], tileId[Pair(key.first, key.second - t)])
t += 1
end
t = 1
while (Pair(key.first + t, key.second) in p.tiles) # down
push!(tileAttack[value], tileId[Pair(key.first + t, key.second)])
t += 1
end
t = 1
while (Pair(key.first, key.second + t) in p.tiles) # right
push!(tileAttack[value], tileId[Pair(key.first, key.second + t)])
t += 1
end
end
model = Model(HiGHS.Optimizer) # construct linear integer programm
set_optimizer_attribute(model, "log_to_console", output)
@variable(model, x[1 : length(p.tiles)], Bin)
for (key, value) in tileId
@constraint(model, sum(x[i] for i in tileAttack[value]) >= 1) # the tile is guarded
end
@objective(model, Min, sum(x))
optimize!(model)
return Int(sum(round.(value.(x)))), tileIdRev[round.(value.(x)) .== 1] # number, set
end
"""
minQueens(p)
Solves the minimal guarding queen set problem
NP complete problem, solve as LIP with HiGHS optimizer
# Arguments
* `p`: Polyomino to calculate the queen set on
* `output`: If logging of HiGHS is enabled
"""
function minQueens(p::Poly; output=true)
tileId = Dict{Pair{Int64, Int64}, Int64}() # enumerate tiles
tileIdRev = Pair{Int64, Int64}[]
t = 1
for i in p.tiles
tileId[i] = t
push!(tileIdRev, i)
t += 1
end
tileAttack = Dict{Int64, Vector{Int64}}() # key: tile id, value: ids of attackable tiles
for (key, value) in tileId
tileAttack[value] = Vector{Int64}([value])
t = 1
while (Pair(key.first - t, key.second) in p.tiles) # up
push!(tileAttack[value], tileId[Pair(key.first - t, key.second)])
t += 1
end
t = 1
while (Pair(key.first - t, key.second - t) in p.tiles) # up left
push!(tileAttack[value], tileId[Pair(key.first - t, key.second - t)])
t += 1
end
t = 1
while (Pair(key.first, key.second - t) in p.tiles) # left
push!(tileAttack[value], tileId[Pair(key.first, key.second - t)])
t += 1
end
t = 1
while (Pair(key.first + t, key.second - t) in p.tiles) # down left
push!(tileAttack[value], tileId[Pair(key.first + t, key.second - t)])
t += 1
end
t = 1
while (Pair(key.first + t, key.second) in p.tiles) # down
push!(tileAttack[value], tileId[Pair(key.first + t, key.second)])
t += 1
end
t = 1
while (Pair(key.first + t, key.second + t) in p.tiles) # down right
push!(tileAttack[value], tileId[Pair(key.first + t, key.second + t)])
t += 1
end
t = 1
while (Pair(key.first, key.second + t) in p.tiles) # right
push!(tileAttack[value], tileId[Pair(key.first, key.second + t)])
t += 1
end
t = 1
while (Pair(key.first - t, key.second + t) in p.tiles) # up right
push!(tileAttack[value], tileId[Pair(key.first - t, key.second + t)])
t += 1
end
end
model = Model(HiGHS.Optimizer) # construct linear integer programm
set_optimizer_attribute(model, "log_to_console", output)
@variable(model, x[1 : length(p.tiles)], Bin)
for (key, value) in tileId
@constraint(model, sum(x[i] for i in tileAttack[value]) >= 1) # the tile is guarded
end
@objective(model, Min, sum(x))
optimize!(model)
return Int(sum(round.(value.(x)))), tileIdRev[round.(value.(x)) .== 1] # number, set
end | Polyomino | https://github.com/PhoenixSmaug/Polyomino.jl.git |
|
[
"MIT"
] | 1.1.0 | 82fd3c3088a45c7d9f23318992417dc39f539ac6 | code | 7887 | """
minLineCover(p)
Conversion to Minimal Line Cover (MLC)
(I) Find maximal non-attacking rook set and construct vertical and horizontal line through each rook
(II) If one of the lines of a rook has size 1, add the other to the MLC. Otherwise add random horizontal line to MLC. In both cases delete rook of the line.
(III) Repeat II until no rooks are left.
# Arguments
* `p`: Polyomino to be converted
"""
function minLineCover(p::Poly)
_, rooksVec = maxRooks(p)
rooks = Set(rooksVec)
minLineCover = Set{Array{Pair{Int64, Int64}}}()
done = Set{Pair{Int64, Int64}}()
while (!isempty(rooks))
tilesOneLine = Set{Pair{Int64, Int64}}() # find all tiles where one line has size 1
for i in rooks
t = 1
while (Pair(i.first - t, i.second) in p.tiles) # up
(Pair(i.first - t, i.second) in tilesOneLine) ? delete!(tilesOneLine, Pair(i.first - t, i.second)) : push!(tilesOneLine, Pair(i.first - t, i.second))
t += 1
end
t = 1
while (Pair(i.first, i.second - t) in p.tiles) # left
(Pair(i.first, i.second - t) in tilesOneLine) ? delete!(tilesOneLine, Pair(i.first, i.second - t)) : push!(tilesOneLine, Pair(i.first, i.second - t))
t += 1
end
t = 1
while (Pair(i.first + t, i.second) in p.tiles) # down
(Pair(i.first + t, i.second) in tilesOneLine) ? delete!(tilesOneLine, Pair(i.first + t, i.second)) : push!(tilesOneLine, Pair(i.first + t, i.second))
t += 1
end
t = 1
while (Pair(i.first, i.second + t) in p.tiles) # right
(Pair(i.first, i.second + t) in tilesOneLine) ? delete!(tilesOneLine, Pair(i.first, i.second + t)) : push!(tilesOneLine, Pair(i.first, i.second + t))
t += 1
end
end
setdiff!(tilesOneLine, done) # remove all tiles already in the MLC
if (isempty(tilesOneLine))
ranRook = first(rooks) # any rook can be choosen
up = Pair{Int64, Int64}[]; left = Pair{Int64, Int64}[]; down = Pair{Int64, Int64}[]; right = Pair{Int64, Int64}[];
t = 1
while (Pair(ranRook.first - t, ranRook.second) in p.tiles) # up
push!(up, Pair(ranRook.first - t, ranRook.second))
t += 1
end
t = 1
while (Pair(ranRook.first, ranRook.second - t) in p.tiles) # left
push!(left, Pair(ranRook.first, ranRook.second - t))
t += 1
end
t = 1
while (Pair(ranRook.first + t, ranRook.second) in p.tiles) # down
push!(down, Pair(ranRook.first + t, ranRook.second))
t += 1
end
t = 1
while (Pair(ranRook.first, ranRook.second + t) in p.tiles) # right
push!(right, Pair(ranRook.first, ranRook.second + t))
t += 1
end
row = Pair{Int64, Int64}[]; column = Pair{Int64, Int64}[]; # combine parts into vertical and horizontal line
for i in length(left) : -1 : 1
push!(row, left[i])
end
push!(row, ranRook)
for i in 1 : length(right)
push!(row, right[i])
end
for i in length(up) : -1 : 1
push!(column, up[i])
end
push!(column, ranRook)
for i in 1 : length(down)
push!(column, down[i])
end
if (length(row) != 1)
push!(minLineCover, row)
for i in row
push!(done, i)
end
else
push!(minLineCover, column)
for i in column
push!(done, i)
end
end
delete!(rooks, ranRook)
else
rooksCopy = copy(rooks) # prevent change of the object the for loop is iterating on
for i in rooksCopy
horizontal = false; vertical = false
up = Pair{Int64, Int64}[]; left = Pair{Int64, Int64}[]; down = Pair{Int64, Int64}[]; right = Pair{Int64, Int64}[];
t = 1
while (Pair(i.first, i.second - t) in p.tiles)
push!(left, Pair(i.first, i.second - t))
if (Pair(i.first, i.second - t) in tilesOneLine)
horizontal = true
end
t += 1
end
t = 1
while (Pair(i.first, i.second + t) in p.tiles)
push!(right, Pair(i.first, i.second + t))
if (Pair(i.first, i.second + t) in tilesOneLine)
horizontal = true
end
t += 1
end
t = 1
while (Pair(i.first - t, i.second) in p.tiles)
push!(up, Pair(i.first - t, i.second))
if (Pair(i.first - t, i.second) in tilesOneLine)
vertical = true
end
t += 1
end
t = 1
while (Pair(i.first + t, i.second) in p.tiles)
push!(down, Pair(i.first + t, i.second))
if (Pair(i.first + t, i.second) in tilesOneLine)
vertical = true
end
t += 1
end
row = Pair{Int64, Int64}[]; column = Pair{Int64, Int64}[]; # combine parts into vertical and horizontal line
for j in length(left) : -1 : 1
push!(row, left[j])
end
push!(row, i)
for j in 1 : length(right)
push!(row, right[j])
end
for j in length(up) : -1 : 1
push!(column, up[j])
end
push!(column, i)
for j in 1 : length(down)
push!(column, down[j])
end
if (length(column) == 1 || horizontal)
push!(minLineCover, row)
for j in row
push!(done, j)
end
delete!(rooks, i)
end
if (length(row) == 1 || vertical)
push!(minLineCover, column)
for j in column
push!(done, j)
end
delete!(rooks, i)
end
end
end
end
return minLineCover
end
function printMinLineCover(p::Poly) # "-" if tile is part of horizontal line, "|" if tile is part of vertical line, "+" if both
mlc = minLineCover(p)
minX, maxX, minY, maxY = dimensionPoly(p)
for i in minX:maxX
for j in minY:maxY
isRow = false; isColumn = false;
for k in mlc
for l in 1:length(k)
if (k[l].first == i && k[l].second == j)
if (k[l].first == k[l % length(k) + 1].first)
isColumn = true;
end
if (k[l].second == k[l % length(k) + 1].second)
isRow = true;
end
end
end
end
if (isRow && isColumn)
print("+")
elseif (isRow)
print("|")
elseif (isColumn)
print("-")
elseif (Pair(i, j) in p.tiles)
print("X")
else
print(" ")
end
end
println()
end
end | Polyomino | https://github.com/PhoenixSmaug/Polyomino.jl.git |
|
[
"MIT"
] | 1.1.0 | 82fd3c3088a45c7d9f23318992417dc39f539ac6 | code | 1112 | using Test, Polyomino
# polyomino generation
polyominoA = Polyomino.Poly(30)
polyominoB = Polyomino.Poly(20, 0.6)
@test length(polyominoA.tiles) == 30
@test length(polyominoB.tiles) == 20
# min and max rooks
polyomino = Polyomino.Poly(Set([-2 => 1, -2 => 0, -4 => 2, 3 => -2, -2 => -1, -2 => -2, 1 => -4, -1 => 1, -1 => 0, -1 => -1, -3 => 2, -4 => 1, 0 => 1, 1 => -3, 0 => 0, 0 => -1, 1 => 0, 1 => -1, 0 => -2, 2 => -3, 1 => -2, 2 => 1, -3 => 1, 2 => 0, -3 => 0, 2 => -1, -3 => -1, -5 => 2, 3 => -1, 2 => -2]))
min, _ = Polyomino.minRooks(polyomino, false)
max, _ = Polyomino.maxRooks(polyomino)
@test min == 5
@test max == 8
# minimal line cover
mlc = Polyomino.minLineCover(polyomino)
@test issetequal(mlc, Set(Array{Pair{Int64, Int64}}[[0 => -2, 1 => -2, 2 => -2, 3 => -2], [-3 => -1, -2 => -1, -1 => -1, 0 => -1, 1 => -1, 2 => -1, 3 => -1], [-5 => 2, -4 => 2, -3 => 2], [-3 => 0, -2 => 0, -1 => 0, 0 => 0, 1 => 0, 2 => 0], [1 => -4, 1 => -3, 1 => -2, 1 => -1, 1 => 0], [2 => -3, 2 => -2, 2 => -1, 2 => 0, 2 => 1], [-4 => 1, -3 => 1, -2 => 1, -1 => 1, 0 => 1], [-2 => -2, -2 => -1, -2 => 0, -2 => 1]]))
| Polyomino | https://github.com/PhoenixSmaug/Polyomino.jl.git |
|
[
"MIT"
] | 1.1.0 | 82fd3c3088a45c7d9f23318992417dc39f539ac6 | docs | 1482 | # Chess Domination Problems on Polyominoes
### Authors
* Alexis Langlois-Rémillard ([email protected]) https://alexisl-r.github.io/
* Christoph Müßig ([email protected])
* Erika Roldan ([email protected]) https://www.erikaroldan.net/
---
## Overview
A short presentation of all implemented functions is available by calling `Polyomino.demo()`.
### Polyomino generation
* `Poly(size::Int64)`: Eden model, O(n)
* `Poly(size::Int64, p::Float64)`: Shuffling model for uniformly random polyominoes, O(n^3)
### Chess problems
* `maxRooks(p::Poly)`: Solves the maximal non-attacking rook set problem, O(n^4)
* `maxQueens(p::Poly)`: Solves the maximal non-attacking queen set problem, NP-complete
* `minRooks(p::Poly)`: Solves the minimal guarding rook set problem, NP-complete
* `minQueens(p::Poly)`: Solves the minimal guarding queen set problem, NP-complete
### Polyomino analysis
* `minimalLineCover(p::Poly)`: Calculate minimal line cover, O(n^4)
---
### Acknowledgements
Erika Roldan received funding from the European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant agreement No. 754462.
### License
This project is licensed under the MIT License - see LICENSE file for details. If you use this code for academic purposes, please cite the paper:
Alexis Langlois-Rémillard, Christoph Müßig, and Érika Róldan, Complexity of Chess Domination Problems, https://arxiv.org/abs/2211.05651 [math.CO], 2022.
| Polyomino | https://github.com/PhoenixSmaug/Polyomino.jl.git |
|
[
"MIT"
] | 1.3.2 | 20ceb97a9f5eab5b460f7683ee70f48db43bd69c | code | 614 | using Documenter, KadanoffBaym
makedocs(
sitename="KadanoffBaym.jl",
pages = [
"Overview" => "index.md",
"Examples" => ["examples/TightBindingModel.md",
"examples/FermiHubbard2B.md",
"examples/FermiHubbardTM.md",
"examples/OpenBoseDimer.md",
"examples/BoseEinsteinCondensate.md",
"examples/StochasticProcesses.md"]
]
)
deploydocs(
repo = "github.com/NonequilibriumDynamics/KadanoffBaym.jl.git",
)
| KadanoffBaym | https://github.com/NonequilibriumDynamics/KadanoffBaym.jl.git |
|
[
"MIT"
] | 1.3.2 | 20ceb97a9f5eab5b460f7683ee70f48db43bd69c | code | 443 | module KadanoffBaym
using LinearAlgebra
using SpecialMatrices
using AbstractFFTs
using RecursiveArrayTools
include("utils.jl")
include("gf.jl")
export GreenFunction, Symmetrical, SkewHermitian, OnePoint
include("vie.jl")
include("vcabm.jl")
include("kb.jl")
export kbsolve!
include("wigner.jl")
export wigner_transform
include("langreth.jl")
export TimeOrderedGreenFunction, conv
export greater, lesser, advanced, retarded
end # module
| KadanoffBaym | https://github.com/NonequilibriumDynamics/KadanoffBaym.jl.git |
|
[
"MIT"
] | 1.3.2 | 20ceb97a9f5eab5b460f7683ee70f48db43bd69c | code | 6816 | abstract type AbstractSymmetry end
abstract type AbstractGreenFunction{T,N} <: AbstractArray{T,N} end
"""
Symmetrical
Defined as
``G(t,t') = G(t',t)^\\top``
"""
struct Symmetrical <: AbstractSymmetry end
"""
SkewHermitian
Defined as
``G(t,t') = -G(t',t)^\\dagger``
"""
struct SkewHermitian <: AbstractSymmetry end
"""
OnePoint
"""
struct OnePoint <: KadanoffBaym.AbstractSymmetry end
@inline symmetry(::Type{<:AbstractSymmetry}) = error("Not defined")
@inline symmetry(::Type{Symmetrical}) = transpose
@inline symmetry(::Type{SkewHermitian}) = (-) ∘ adjoint
"""
GreenFunction(g::AbstractArray, s::AbstractSymmetry)
A container interface for `g` with array indexing respecting some symmetry rule `s`.
Because of that, `g` must be square in its last 2 dimensions, which can be resized
with [`resize!`](@ref).
The array `g` is not restricted to being contiguous. For example, `g` can have
`Matrix{T}`, `Array{T,4}`, `Matrix{SparseMatrixCSC{T}}`, etc as its type.
# Notes
The GreenFunction *does not* own `g`. Proper care must be taken when using multiple
GreenFunctions since using the same array will result in unexpected behaviour
```julia-repl
julia> data = zeros(2,2)
julia> g1 = GreenFunction(data, Symmetrical)
julia> g2 = GreenFunction(data, Symmetrical)
julia> g1[1,1] = 3
julia> @show g2[1,1]
julia> g1.data === g2.data # they share the same data
```
Indexing with less indices than the dimension of `g` results in a
"take-all-to-the-left" indexing
```julia-repl
julia> gf[i,j] == gf[:,:,...,:,i,j]
julia> gf[i,j,k] == gf[:,:,...,:,i,j,k]
```
In order to ensure a correct behaviour of the symmetries, `setindex!` is only
defined at the level of time coordinates
```julia-repl
julia> gf[i, j] = a # is equivalent to gf[..., i, j] = a[...]
```
Custom symmetries can be implemented via multiple dispatch
```julia-repl
julia> struct MySymmetry <: KadanoffBaym.AbstractSymmetry end
julia> @inline KadanoffBaym.symmetry(::Type{MySymmetry}) = conj
```
# Examples
`GreenFunction` simply takes some data `g` and embeds the symmetry `s` in its indexing
```julia-repl
julia> time_dim = 3
julia> spin_dim = 2
julia> data = zeros(spin_dim, spin_dim, time_dim, time_dim)
julia> gf = GreenFunction(data, Symmetrical)
julia> gf[2,1] = rand(spin_dim, spin_dim)
julia> @show gf[1,2]
julia> @show KadanoffBaym.symmetry(Symmetrical)(gf[2,1])
```
"""
mutable struct GreenFunction{T,N,A,U<:AbstractSymmetry} <: AbstractGreenFunction{T,N}
data::A
end
function GreenFunction(G::AbstractArray, U::Type{<:AbstractSymmetry})
if U <: Union{Symmetrical,SkewHermitian}
@assert ==(last2(size(G)...)...) "Time dimension ($(last2(size(G)...))) must be a square"
end
return GreenFunction{eltype(G),ndims(G),typeof(G),U}(G)
end
@inline Base.size(G::GreenFunction, I...) = size(G.data, I...)
@inline Base.length(G::GreenFunction) = length(G.data)
@inline Base.ndims(G::GreenFunction) = ndims(G.data)
@inline Base.axes(G::GreenFunction, d) = axes(G.data, d)
Base.copy(G::GreenFunction) = oftype(G, copy(G.data))
Base.eltype(::GreenFunction{T}) where {T} = T
@inline Base.getindex(::GreenFunction{T,N,A,U}, I) where {T,N,A,U} = error("Single indexing not allowed")
Base.@propagate_inbounds Base.getindex(G::GreenFunction{T,N,A,U}, I::Vararg{T1,N1}) where {T,N,A,U,T1,N1} = G.data[ntuple(i -> Colon(), N-N1)..., I...]
Base.@propagate_inbounds function Base.setindex!(G::GreenFunction{T,N,A,U}, v, i1::Int, i2::Int) where {T,N,A,U}
G.data[ntuple(i -> Colon(), Val(N - 2))..., i1, i2] = v
if i1 != i2
G.data[ntuple(i -> Colon(), Val(N - 2))..., i2, i1] = symmetry(U)(v)
end
end
Base.@propagate_inbounds Base.getindex(G::GreenFunction{T,N,A,OnePoint}, I::Vararg{T1,N1}) where {T,N,A,T1,N1} = G.data[ntuple(i -> Colon(), N-N1)..., I...]
Base.@propagate_inbounds function Base.setindex!(G::GreenFunction{T,N,A,OnePoint}, v, I::Vararg{T1,N1}) where {T,N,A,T1,N1}
G.data[ntuple(i -> Colon(), N-N1)..., Base.front(I)..., last(I)] = v
end
for g in (:GreenFunction,)
for f in (:-, :conj, :real, :imag, :adjoint, :transpose, :zero)
@eval (Base.$f)(G::$g{T,N,A,U}) where {T,N,A,U} = $g(Base.$f(G.data), U)
end
for f in (:+, :-, :/, :\, :*)
if f != :/
@eval (Base.$f)(a::Number, G::$g{T,N,A,U}) where {T,N,A,U} = $g(Base.$f(a, G.data), U)
end
if f != :\
@eval (Base.$f)(G::$g{T,N,A,U}, b::Number) where {T,N,A,U} = $g(Base.$f(G.data, b), U)
end
end
end
function Base.show(io::IO, x::GreenFunction)
#if get(io, :compact, false) || get(io, :typeinfo, nothing) == GreenFunction
# return Base.show_default(IOContext(io, :limit => true), x)
#else
# # dump(IOContext(io, :limit => true), p, maxdepth=1)
# for field in fieldnames(typeof(x))
# if field === :data
# print(io, "\ndata: ")
# Base.show(io, MIME"text/plain"(), x.data)
# else
# Base.show(io, getfield(x, field))
# end
# end
#end
return show(io, x.data)
end
Base.resize!(A::GreenFunction, t::Int) = (A.data = _resize!(A.data, t); A)
function _resize!(a::Array{T,N}, t::Int) where {T,N}
a′ = Array{T,N}(undef, front2(size(a)...)..., t, t)
k = min(last(size(a)), t)
for t in 1:k, t′ in 1:k
a′[ntuple(i -> Colon(), N-2)..., t′, t] = a[ntuple(i -> Colon(), N-2)..., t′, t]
end
return a′
end
function Base.resize!(g::GreenFunction{T,N,A,OnePoint}, t::Int) where {T,N,A}
a′ = Array{T,N}(undef, Base.front(size(g))..., t)
k = min(last(size(g)), t)
for t in 1:k
a′[ntuple(i -> Colon(), N-1)..., t] = g[t]
end
g.data = a′
return g
end
"""
SkewHermitianArray
Provides a different (but not necessarily more efficient) data storage for
elastic skew-Hermitian data
"""
struct SkewHermitianArray{T,N} <: AbstractGreenFunction{T,N}
data::Vector{Vector{T}}
function SkewHermitianArray(a::T) where {T<:Union{Number,AbstractArray}}
return new{T,2 + ndims(a)}([[a]])
end
end
@inline Base.size(a::SkewHermitianArray{<:Number}) = (length(a.data), length(a.data))
@inline Base.size(a::SkewHermitianArray{<:AbstractArray}) = (size(a.data[1][1])..., length(a.data), length(a.data))
Base.getindex(::SkewHermitianArray, I) = error("Single indexing not allowed")
@inline function Base.getindex(a::SkewHermitianArray{T,N}, i::Int, j::Int) where {T,N}
return (i >= j) ? a.data[i - j + 1][j] : -adjoint(a.data[j - i + 1][i])
end
@inline function Base.setindex!(a::SkewHermitianArray, v, i::Int, j::Int)
if i >= j
a.data[i - j + 1][j] = v
else
a.data[j - i + 1][i] = -adjoint(v)
end
end
Base.resize!(A::SkewHermitianArray, t::Int) = (_resize!(A, t); A)
function _resize!(a::SkewHermitianArray{T}, t::Int) where {T}
l = length(a)
resize!(a.data, t)
for k in 1:min(l, t)
resize!(a.data[k], t - k + 1)
end
for k in (min(l, t) + 1):t
a.data[k] = Array{T}(undef, t - k + 1)
end
end
| KadanoffBaym | https://github.com/NonequilibriumDynamics/KadanoffBaym.jl.git |
|
[
"MIT"
] | 1.3.2 | 20ceb97a9f5eab5b460f7683ee70f48db43bd69c | code | 7439 | """
kbsolve!(fv!::Function, fd!::Function, u0::Vector{<:AbstractGreenFunction}, (t0, tmax)::Tuple{Union{Real, Vector{<:Real}}, Real})
Solves the 2-time Voltera integro-differential equation
``
du(t_1,t_2) / dt_1 = f_v(t_1,t_2) = v[u,t_1,t_2] + ∫_{t0}^{t1} dτ K_1^v[u,t_1,t_2,τ] + ∫_{t0}^{t2} dτ K_2^v[u,t_1,t_2,τ]
``
``
du(t_1,t_2) / dt_2 = f_h(t_1,t_2) = h[u,t_1,t_2] + ∫_{t0}^{t1} dτ K_1^h[u,t_1,t_2,τ] + ∫_{t0}^{t2} dτ K_2^h[u,t_1,t_2,τ]
``
for 2-point functions `u0` from `t0` to `tmax`.
# Parameters
- `fv!(out, ts, w1, w2, t1, t2)`: The right-hand side of ``du(t_1,t_2)/dt_1``
on the time-grid (`ts` x `ts`). The weights `w1` and `w2` can be used to integrate
the Volterra kernels `K1v` and `K2v` as `sum_i w1_i K1v_i` and `sum_i w2_i K2v_i`,
respectively. The output is saved in-place in `out`, which has the same shape as `u0`
- `fd!(out, ts, w1, w2, t1, t2)`: The right-hand side of ``(du(t_1,t_2)/dt_1 + du(t_1,t_2)/dt_2)|_{t_2 → t_1}``
- `u0::Vector{<:GreenFunction}`: List of 2-point functions to be integrated
- `(t0, tmax)`: A tuple with the initial time(s) `t0` – can be a vector of
past times – and final time `tmax`
# Optional keyword parameters
- `f1!(out, ts, w1, t1)`: The right-hand-side of ``dv(t_1)/dt_1``. The weight `w1`
can be used to integrate the Volterra kernel and the output is saved in-place in `out`,
which has the same shape as `v0`
- `v0::Vector{<:GreenFunction}`: List of 1-point functions to be integrated
- `callback(ts, w1, w2, t1, t2)`: A function that gets called everytime the
2-point function at *indices* (`t1`, `t2`) is updated. Can be used to update
functions which are not being integrated, such as self-energies
- `stop(ts)`: A function that gets called at every time-step that stops the
integration when it evaluates to `true`
- `atol::Real`: Absolute tolerance (components with magnitude lower than
`atol` do not guarantee number of local correct digits)
- `rtol::Real`: Relative tolerance (roughly the local number of correct digits)
- `dtini::Real`: Initial step-size
- `dtmax::Real`: Maximal step-size
- `qmax::Real`: Maximum step-size factor when adjusting the time-step
- `qmin::Real`: Minimum step-size factor when adjusting the time-step
- `γ::Real`: Safety factor for the calculated time-step such that it is
accepted with a higher probability
- `kmax::Integer`: Maximum order of the adaptive Adams method
- `kmax_vie::Integer`: Maximum order of interpolant of the Volterra integrals
Heuristically, it seems that having too high of a `kmax_vie` can result in numerical
instabilities
# Notes
- Due to high memory and computation costs, `kbsolve!` mutates the initial condition `u0`
and only works with in-place rhs functions, unlike standard ODE solvers.
- The Kadanoff-Baym timestepper is a 2-time generalization of the variable Adams method
presented in E. Hairer, S. Norsett and G. Wanner, *Solving Ordinary Differential Equations I: Non-
stiff Problems*, vol. 8, Springer-Verlag Berlin Heidelberg, ISBN 978-3-540-56670-0,
[doi:10.1007/978-3-540-78862-1](https://doi.org/10.1007/978-3-540-78862-1) (1993).
"""
function kbsolve!(fv!::Function, fd!::Function, u0::Vector{<:AbstractGreenFunction}, (t0, tmax)::Tuple{Union{Real, Vector{<:Real}}, Real};
f1! =nothing, v0::Vector=[],
callback=(x...)->nothing, stop=(x...)->false,
atol=1e-8, rtol=1e-6, dtini=0.0, dtmax=Inf, qmax=5, qmin=1 // 5, γ=9 // 10, kmax=12, kmax_vie=kmax ÷ 2)
# Support for an initial time-grid
if t0 isa Real
t0 = [t0]
else
@assert issorted(t0) "Initial time-grid is not in ascending order"
end
@assert last(t0) <= tmax "Only t0 <= tmax supported"
# Holds the information about the integration
state = (u=u0, v=v0, t=t0, w=initialize_weights(t0), start=[true])
# Holds the information necessary to integrate
cache = let
t1 = length(state.t)
VCABMCache{eltype(state.t)}(kmax, VectorOfArray([[u[t1, t2] for t2 in 1:t1] for u in state.u]))
end
cache_v = isempty(state.v) ? nothing : let
t1 = length(state.t)
cache_v = VCABMCache{eltype(state.t)}(kmax, VectorOfArray([[v[t1],] for v in state.v]))
cache_v.dts = cache.dts
cache_v
end
# The rhs is reshaped into a univariate problem
f2v!(t1, t2) = fv!(view(cache.f_next, t2, :), state.t, state.w[t1], state.w[t2], t1, t2)
f2d!(t1, t2) = fd!(view(cache.f_next, t2, :), state.t, state.w[t1], state.w[t2], t1, t2)
function f2t!()
t1 = length(state.t)
Threads.@threads for t2 in 1:(t1 - 1)
f2v!(t1, t2)
end
f2d!(t1, t1)
return cache.f_next
end
function f1t!()
t1 = length(state.t)
f1!(view(cache_v.f_next, :), state.t, state.w[t1], t1)
return cache_v.f_next
end
cache.f_prev .= f2t!()
if !isempty(state.v)
cache_v.f_prev .= f1t!()
end
while timeloop!(state, cache, tmax, dtmax, dtini, atol, rtol, qmax, qmin, γ, kmax_vie, stop)
t1 = length(state.t)
# Extend the caches to accomodate the new time column
extend!(cache, state.t, f2v!)
# Predictor
u_next = predict!(cache, state.t)
foreach((u, u′) -> foreach(t2 -> u[t1, t2] = u′[t2], 1:t1), state.u, u_next.u)
if !isempty(state.v)
u_next = predict!(cache_v, state.t)
foreach((v, v′) -> v[t1] = v′[1], state.v, u_next.u)
end
foreach(t2 -> callback(state.t, state.w[t1], state.w[t2], t1, t2), 1:t1)
# Corrector
u_next = correct!(cache, f2t!)
foreach((u, u′) -> foreach(t2 -> u[t1, t2] = u′[t2], 1:t1), state.u, u_next.u)
if !isempty(state.v)
u_next = correct!(cache_v, f1t!)
foreach((v, v′) -> v[t1] = v′[1], state.v, u_next.u)
end
foreach(t2 -> callback(state.t, state.w[t1], state.w[t2], t1, t2), 1:t1)
# Calculate error and adjust order
adjust!(cache, cache_v, state.t, f2t!, f1t!, kmax, atol, rtol)
end # timeloop!
return (t=state.t, w=state.w)
end
# Controls the step size & resizes the Green functions if required
function timeloop!(state, cache, tmax, dtmax, dtini, atol, rtol, qmax, qmin, γ, kmax_vie, stop)
if isone(length(state.t)) || state.start[1]
# Section II.4: Starting Step Size, Eq. (4.14)
dt = iszero(dtini) ? initial_step(cache.f_prev, cache.u_prev, atol, rtol) : dtini
state.start[1] = false
else
# Section II.4: Automatic Step Size Control, Eq. (4.13)
q = max(inv(qmax), min(inv(qmin), cache.error_k^(1 / (cache.k + 1)) / γ))
dt = min((state.t[end] - state.t[end - 1]) / q, dtmax)
end
# Don't go over tmax
if last(state.t) + dt > tmax
dt = tmax - last(state.t)
end
# Remove the last element of the time-grid / weights if last step failed
if cache.error_k > one(cache.error_k)
pop!(state.t)
pop!(state.w)
end
# Reached the end of the integration
if iszero(dt) || stop(state.t)
# trim solution
foreach(u -> resize!(u, length(state.t)), state.u)
foreach(v -> resize!(v, length(state.t)), state.v)
return false
else
if length(state.t) == (last ∘ size ∘ last)(state.u)
l = length(state.t) + min(50, ceil(Int, (tmax - state.t[end]) / dt))
# resize solution
foreach(u -> resize!(u, l), state.u)
foreach(v -> resize!(v, l), state.v)
end
push!(state.t, last(state.t) + dt)
push!(state.w, update_weights(last(state.w), state.t, min(cache.k, kmax_vie)))
return true
end
end
| KadanoffBaym | https://github.com/NonequilibriumDynamics/KadanoffBaym.jl.git |
|
[
"MIT"
] | 1.3.2 | 20ceb97a9f5eab5b460f7683ee70f48db43bd69c | code | 2114 | abstract type AbstractTimeOrderedGreenFunction end
"""
TimeOrderedGreenFunction(L::AbstractMatrix, G::AbstractMatrix)
A simple time-ordered Green function structure for a hassle-free computation of the Langreth rules.
# Parameters
- `L::AbstractMatrix`: The *lesser* component
- `G::AbstractMatrix`: The *greater* component
"""
struct TimeOrderedGreenFunction <: AbstractTimeOrderedGreenFunction
L # Lesser
G # Greater
end
Base.:*(a::Number, g::TimeOrderedGreenFunction) = TimeOrderedGreenFunction(a * lesser(g), a * greater(g))
Base.:+(g1::TimeOrderedGreenFunction, g2::TimeOrderedGreenFunction) = TimeOrderedGreenFunction(lesser(g1) + lesser(g2), greater(g1) + greater(g2))
"""
"""
struct TimeOrderedConvolution{TA<:AbstractTimeOrderedGreenFunction, TB<:AbstractTimeOrderedGreenFunction} <: AbstractTimeOrderedGreenFunction
L::TA
R::TB
ws::UpperTriangular
end
"""
conv(L::AbstractTimeOrderedGreenFunction, R::AbstractTimeOrderedGreenFunction, ws::UpperTriangular)
Calculates a time-convolution between time-ordered Green functions through the Langreth rules.
# Parameters
- `L::AbstractTimeOrderedGreenFunction`: The left time-ordered Green function
- `R::AbstractTimeOrderedGreenFunction`: The right time-ordered Green function
- `ws::UpperTriangular`: An upper-triangular weight matrix containing the integration weights
"""
function conv(L::AbstractTimeOrderedGreenFunction, R::AbstractTimeOrderedGreenFunction, ws::UpperTriangular)
c = TimeOrderedConvolution(L, R, ws)
return TimeOrderedGreenFunction(lesser(c), greater(c))
end
# Langreth's rules
greater(g::TimeOrderedGreenFunction) = g.G
lesser(g::TimeOrderedGreenFunction) = g.L
advanced(g::TimeOrderedGreenFunction) = UpperTriangular(lesser(g) - greater(g))
retarded(g::TimeOrderedGreenFunction) = adjoint(advanced(g))
greater(c::TimeOrderedConvolution) = (retarded(c.L) .* adjoint(c.ws)) * greater(c.R) + greater(c.L) * (c.ws .* advanced(c.R)) |> skew_hermitify!
lesser(c::TimeOrderedConvolution) = (retarded(c.L) .* adjoint(c.ws)) * lesser(c.R) + lesser(c.L) * (c.ws .* advanced(c.R)) |> skew_hermitify!
| KadanoffBaym | https://github.com/NonequilibriumDynamics/KadanoffBaym.jl.git |
|
[
"MIT"
] | 1.3.2 | 20ceb97a9f5eab5b460f7683ee70f48db43bd69c | code | 1722 | # ODE norm: Section II.4 (4.11)
@inline norm(u, y=nothing) = LinearAlgebra.norm(u) / sqrt(total_length(u))
@inline total_length(u::Number) = length(u)
@inline total_length(u::AbstractArray{<:Number}) = length(u)
@inline total_length(u::AbstractArray{<:AbstractArray}) = sum(total_length, u)
@inline total_length(u::VectorOfArray) = sum(total_length, u.u)
# Error estimation and norm: Section II.4 Eq. (4.11)
@inline function calculate_residuals!(out::AbstractArray, ũ::AbstractArray, u₀::AbstractArray, u₁::AbstractArray, atol, rtol, norm)
@. out = calculate_residuals!(out, ũ, u₀, u₁, atol, rtol, norm)
return out
end
@inline function calculate_residuals!(out::AbstractArray{<:Number}, ũ::AbstractArray{<:Number}, u₀::AbstractArray{<:Number}, u₁::AbstractArray{<:Number}, atol, rtol, norm)
@. out = calculate_residuals(ũ, u₀, u₁, atol, rtol, norm)
return out
end
@inline function calculate_residuals(ũ::Number, u₀::Number, u₁::Number, atol::Real, rtol::Real, norm)
return ũ / (atol + max(norm(u₀), norm(u₁)) * rtol)
end
# Starting Step Size: Section II.4
function initial_step(f0, u0, atol, rtol)
sc = atol + rtol * norm(u0)
d0 = norm(u0 ./ sc)
d1 = norm(f0 ./ sc)
return dt0 = min(d0, d1) < 1e-5 ? 1e-6 : 1e-2 * d0 / d1
end
# Returns a `Tuple` consisting of all but the last 2 components of `t`.
@inline front2(v1, v2) = ()
@inline front2(v, t...) = (v, front2(t...)...)
# Returns a `Tuple` consisting of the last 2 components of `t`.
@inline last2(v1, v2) = (v1, v2)
@inline last2(v, t...) = last2(t...)
function skew_hermitify!(x)
for i in 1:size(x, 1)
for j in 1:(i - 1)
x[j,i] = -conj(x[i,j])
end
x[i,i] = eltype(x) <: Real ? 0.0 : im * imag(x[i,i])
end
return x
end
| KadanoffBaym | https://github.com/NonequilibriumDynamics/KadanoffBaym.jl.git |
|
[
"MIT"
] | 1.3.2 | 20ceb97a9f5eab5b460f7683ee70f48db43bd69c | code | 6481 | # Part of the following code is licensed under the MIT "Expact" Lience,
# from https://github.com/SciML/OrdinaryDiffEq.jl
mutable struct VCABMCache{T,U}
u_prev::U
u_next::U
u_erro::U
f_prev::U
f_next::U
ϕ_n::Vector{U}
ϕ_np1::Vector{U}
ϕstar_n::Vector{U}
ϕstar_nm1::Vector{U}
c::Matrix{T}
g::Vector{T}
k::Int
error_k::T
β::Vector{T}
dts::Vector{T}
ξ::T
ξ0::T
function VCABMCache{T}(kmax, u_prev::U) where {T,U}
return new{T,typeof(u_prev)}(u_prev, zero.(u_prev), zero.(u_prev), zero.(u_prev), zero.(u_prev), [zero.(u_prev) for _ in 1:(kmax + 1)],
[zero.(u_prev) for _ in 1:(kmax + 2)], [zero.(u_prev) for _ in 1:(kmax + 1)], [zero.(u_prev) for _ in 1:(kmax + 1)],
zeros(T, kmax + 1, kmax + 1), zeros(T, kmax + 1), 1, zero(T), zeros(T, kmax + 1), zeros(T, kmax + 1), zero(T), zero(T))
end
end
# Explicit Adams: Section III.5 Eq. (5.5)
function predict!(cache::VCABMCache, times)
(; u_prev, u_next, g, ϕstar_n, k) = cache
@inbounds begin
ϕ_and_ϕstar!(cache, times, k + 1 == length(times) ? k : k + 1)
g_coeffs!(cache, times, k + 1 == length(times) ? k : k + 1)
@. u_next = muladd(g[1], ϕstar_n[1], u_prev)
for i in 2:(k - 1)
@. u_next = muladd(g[i], ϕstar_n[i], u_next)
end
end
return u_next
end
# Implicit Adams: Section III.5 Eq (5.7)
function correct!(cache::VCABMCache, f)
(; u_next, g, ϕ_np1, ϕstar_n, k) = cache
@inbounds begin
ϕ_np1!(cache, f(), k + 1)
@. u_next = muladd(g[k], ϕ_np1[k], u_next)
end
return u_next
end
# Control order: Section III.7 Eq. (7.7)
function adjust!(cache::VCABMCache, cache_v, times, f2, f1, kmax, atol, rtol)
(; u_prev, u_next, g, ϕ_np1, ϕstar_n, k, u_erro) = cache
@inbounds begin
# Calculate error: Section III.7 Eq. (7.3)
calculate_residuals!(u_erro, ϕ_np1[k + 1], u_prev, u_next, atol, rtol, norm)
cache.error_k = norm(g[k + 1] - g[k]) * norm(u_erro)
# Fail step: Section III.7 Eq. (7.4)
if cache.error_k > one(cache.error_k)
return
end
cache.f_prev .= f2()
if !isnothing(cache_v)
cache_v.f_prev .= f1()
end
if length(times) <= 5 || k < 3
cache.k = min(k + 1, 3, kmax)
else
calculate_residuals!(u_erro, ϕ_np1[k], u_prev, u_next, atol, rtol, norm)
error_k1 = norm(g[k] - g[k - 1]) * norm(u_erro)
calculate_residuals!(u_erro, ϕ_np1[k - 1], u_prev, u_next, atol, rtol, norm)
error_k2 = norm(g[k - 1] - g[k - 2]) * norm(u_erro)
if max(error_k2, error_k1) <= cache.error_k
cache.k = k - 1
else
ϕ_np1!(cache, cache.f_prev, k + 2)
if !isnothing(cache_v)
ϕ_np1!(cache_v, cache_v.f_prev, k + 2)
end
calculate_residuals!(u_erro, ϕ_np1[k + 2], u_prev, u_next, atol, rtol, norm)
error_kstar = norm((times[end] - times[end - 1]) * γstar[k + 2]) * norm(u_erro)
if error_kstar < cache.error_k
cache.k = min(k + 1, kmax)
cache.error_k = one(cache.error_k) # constant dt
end
end
end
@. cache.u_prev = cache.u_next
cache.ϕstar_nm1, cache.ϕstar_n = cache.ϕstar_n, cache.ϕstar_nm1
if !isnothing(cache_v)
cache_v.k = cache.k
@. cache_v.u_prev = cache_v.u_next
cache_v.ϕstar_nm1, cache_v.ϕstar_n = cache_v.ϕstar_n, cache_v.ϕstar_nm1
end
end
end
function extend!(cache::VCABMCache, times, fv!)
(; f_prev, f_next, u_prev, u_next, u_erro, ϕ_n, ϕ_np1, ϕstar_n, ϕstar_nm1, error_k) = cache
@inbounds begin
t = length(times) - 1 # `t` from the last iteration
k = t == cache.k ? cache.k - 1 : cache.k
if error_k > one(error_k)
return
end
_ϕ_n = [zero.(f_next[t, :]) for _ in eachindex(ϕ_n)]
_ϕ_np1 = [zero.(f_next[t, :]) for _ in eachindex(ϕ_np1)]
_ϕstar_n = [zero.(f_next[t, :]) for _ in eachindex(ϕstar_n)]
_ϕstar_nm1 = [zero.(f_next[t, :]) for _ in eachindex(ϕstar_nm1)]
# When extending, i.e., adding a new time column, an interpolant for the rhs in this column
# has to be built. Since sometimes fv! is discontinuous at the diagonal it is assumed that
# fv! is built always assuming t1 > t2. This way, the interpolant (which requires points t1 < t2)
# is smooth and the solver does not stall.
for k′ in 1:k
fv!(max(1, t - 1 - k + k′), t) # result is stored in f_next
ϕ_and_ϕstar!((f_prev=f_next[t, :], ϕ_n=_ϕ_n, ϕstar_n=_ϕstar_n, ϕstar_nm1=_ϕstar_nm1), view(times, 1:(t - k + k′)), k′)
_ϕstar_nm1, _ϕstar_n = _ϕstar_n, _ϕstar_nm1
end
for i in eachindex(f_prev.u)
foreach((ϕ, ϕ′) -> insert!(ϕ.u[i], t, ϕ′[i]), ϕ_n, _ϕ_n)
foreach((ϕ, ϕ′) -> insert!(ϕ.u[i], t, ϕ′[i]), ϕ_np1, _ϕ_np1)
foreach((ϕ, ϕ′) -> insert!(ϕ.u[i], t, ϕ′[i]), ϕstar_n, _ϕstar_n)
foreach((ϕ, ϕ′) -> insert!(ϕ.u[i], t, ϕ′[i]), ϕstar_nm1, _ϕstar_nm1)
end
fv!(t, t) # result is stored in f_next
for i in eachindex(u_prev.u)
insert!(f_prev.u[i], t, copy(f_next[t, i]))
insert!(f_next.u[i], t, zero(f_next[t, i]))
insert!(u_prev.u[i], t, copy(u_prev[t, i]))
insert!(u_next.u[i], t, zero(u_prev[t, i]))
insert!(u_erro.u[i], t, zero(u_prev[t, i]))
end
end
end
# Section III.5: Eq (5.9-5.10)
function ϕ_and_ϕstar!(cache, times, k)
(; f_prev, ϕstar_nm1, ϕ_n, ϕstar_n) = cache
@inbounds begin
t = reverse(times)
β = one(eltype(times))
ϕ_n[1] .= f_prev
ϕstar_n[1] .= f_prev
for i in 2:k
β = β * (t[1] - t[i]) / (t[2] - t[i + 1])
@. ϕ_n[i] = ϕ_n[i - 1] - ϕstar_nm1[i - 1]
@. ϕstar_n[i] = β * ϕ_n[i]
end
end
end
function g_coeffs!(cache, times, k)
(; c, g) = cache
@inbounds begin
t = reverse(times)
dt = t[1] - t[2]
for i in 1:k
for q in 1:(k - (i - 1))
if i > 2
c[i, q] = muladd(-dt / (t[1] - t[i]), c[i - 1, q + 1], c[i - 1, q])
elseif i == 1
c[i, q] = inv(q)
elseif i == 2
c[i, q] = inv(q * (q + 1))
end
end
g[i] = c[i, 1] * dt
end
end
end
function ϕ_np1!(cache, du_np1, k)
(; ϕ_np1, ϕstar_n) = cache
@inbounds begin
for i in 1:k
if i != 1
@. ϕ_np1[i] = ϕ_np1[i - 1] - ϕstar_n[i - 1]
else
@. ϕ_np1[i] = du_np1
end
end
end
end
const γstar = [1, -1 / 2, -1 / 12, -1 / 24, -19 / 720, -3 / 160, -863 / 60480, -275 / 24192, -33953 / 3628800, -0.00789255, -0.00678585, -0.00592406, -0.00523669, -0.0046775, -0.00421495, -0.0038269]
| KadanoffBaym | https://github.com/NonequilibriumDynamics/KadanoffBaym.jl.git |
|
[
"MIT"
] | 1.3.2 | 20ceb97a9f5eab5b460f7683ee70f48db43bd69c | code | 569 | function initialize_weights(ts::Vector{T}) where T
ws = [zeros(T, 1), ]
for i in 2:length(ts)
push!(ws, update_weights(last(ws), ts[1:i], 1))
end
return ws
end
function update_weights(ws, ts, k)
ws = copy(ws)
push!(ws, zero(eltype(ws)))
l = length(ts)
r = max(1, l - k):l
t0 = ts[r[1]] # This subtraction controls large numerical errors when `ts` >> 1. For large Δts, switch to weight integration (see previous implementation)
ws[r] += Vandermonde(ts[r] .- t0)' \ [((ts[l] - t0)^j - (ts[l-1] - t0)^j) / j for j in eachindex(r)]
return ws
end
| KadanoffBaym | https://github.com/NonequilibriumDynamics/KadanoffBaym.jl.git |
|
[
"MIT"
] | 1.3.2 | 20ceb97a9f5eab5b460f7683ee70f48db43bd69c | code | 2915 | """
wigner_transform(x::AbstractMatrix; ts=1:size(x,1), fourier=true)
Wigner-Ville transformation
``x_W(ω, T) = i ∫dt x(T + t/2, T - t/2) e^{+i ω t}``
or
``x_W(τ, T) = x(T + t/2, T - t/2)``
of a 2-point function `x`. Returns a tuple of `x_W` and the corresponding
axes (`ω, T`) or (`τ`, `T`), depending on the `fourier` keyword.
The motivation for the Wigner transformation is that, given an autocorrelation
function `x`, it reduces to the spectral density function at all times `T` for
stationary processes, yet it is fully equivalent to the non-stationary
autocorrelation function. Therefore, the Wigner (distribution) function tells
us, roughly, how the spectral density changes in time.
# Optional keyword parameters
- `ts::AbstractVector`: Time grid for `x`. Defaults to a `UnitRange`.
- `fourier::Bool`: Whether to Fourier transform. Defaults to `true`.
# Notes
The algorithm only works when `ts` – and consequently `x` – is equidistant.
# References
<https://en.wikipedia.org/wiki/Wigner_distribution_function>
<http://tftb.nongnu.org>
"""
function wigner_transform(x::AbstractMatrix; ts=1:size(x, 1), fourier=true)
# LinearAlgebra.checksquare(x)
Nt = size(x, 1)
@assert length(ts) == Nt
@assert let x = diff(ts); all(z -> z ≈ x[1], x) end "`ts` is not equidistant"
# Change of basis x(t1, t2) → x_W(t1 - t2, (t1 + t2)/2)
x_W = zero(x)
for T in 1:Nt
# For a certain T ≡ (t1 + t2)/2, τ ≡ (t1 - t2) can be at most τ_max
τ_max = minimum([T - 1, Nt - T, Nt ÷ 2 - 1])
τs = (-τ_max):τ_max
is = 1 .+ rem.(Nt .+ τs, Nt)
for (i, τᵢ) in zip(is, τs)
x_W[i, T] = x[T + τᵢ, T - τᵢ]
end
τ = Nt ÷ 2
if T <= Nt - τ && T >= τ + 1
x_W[τ + 1, T] = 0.5 * (x[T + τ, T - τ] + x[T - τ, T + τ])
end
end
x_W = fftshift(x_W, 1)
τs = ts - reverse(ts)
τs = τs .- (isodd(Nt) ? 0.0 : 0.5(τs[2] - τs[1]))
if !fourier
return x_W, (τs, ts)
else
ωs = ft(τs, τs)[1]
x_Ŵ = mapslices(x -> ft(τs, x; inverse = false)[2], x_W; dims=1)
return x_Ŵ, (ωs, ts)
end
end
"""
ft(xs, ys; inverse = false)
Fourier transform of the points `(xs, ys)`:
if `inverse`
``ŷ(t) = ∫dω/(2π) y(ω) e^{- i ω t}``
else
``ŷ(ω) = ∫dt y(t) e^{+ i ω t}``
Returns a tuple of the Fourier transformed points `(x̂s, ŷs)`
"""
function ft(xs, ys; inverse::Bool = false)
@assert issorted(xs)
L = length(xs)
dx = xs[2] - xs[1]
# Because the FFT calculates the transform as
# ỹ_k = \sum_j e^{±2pi i j k/n} y_j, from j=0 to j=n-1,
# we need to transform this into the time and frequency units,
# which ends up scaling the frequencies `x̂s` by (2pi / dx).
x̂s = fftfreq(L, 2π / dx)
# The resulting Fourier transform also picks up a phase
ℯⁱᵠ = (inverse ? 1 / (2π) : 1.0) * dx * exp.((inverse ? -1.0 : 1.0) * im * xs[1] .* x̂s)
# FFT
ŷs = ℯⁱᵠ .* (inverse ? fft : bfft)(ys)
return fftshift(x̂s), fftshift(ŷs)
end
| KadanoffBaym | https://github.com/NonequilibriumDynamics/KadanoffBaym.jl.git |
|
[
"MIT"
] | 1.3.2 | 20ceb97a9f5eab5b460f7683ee70f48db43bd69c | code | 1733 | N = 10
@testset "2D GF" begin
# Test 2d getindex setindex!
data = zeros(ComplexF64, N, N)
lgf = GreenFunction(copy(data), SkewHermitian)
ggf = GreenFunction(copy(data), SkewHermitian)
v = 30 + 30im
lgf[2, N] = v
ggf[N, 2] = v
@test lgf.data[N, 2] == -adjoint(v)
@test ggf.data[2, N] == -adjoint(v)
@test lgf[2, N] == -adjoint(lgf.data[N, 2])
@test ggf.data[2, N] == -adjoint(ggf[N, 2])
end
@testset "4D GF" begin
# Test 4d getindex setindex!
data = zeros(ComplexF64, N, N, N, N)
lgf = GreenFunction(copy(data), SkewHermitian)
ggf = GreenFunction(copy(data), SkewHermitian)
v = rand(ComplexF64, N, N)
lgf[2, N] = v
ggf[N, 2] = v
@test lgf.data[:, :, N, 2] == -adjoint(v)
@test ggf.data[:, :, 2, N] == -adjoint(v)
@test lgf[2, N] == -adjoint(lgf.data[:, :, N, 2])
@test ggf.data[:, :, 2, N] == -adjoint(ggf[N, 2])
end
@testset "Base functions & setindex!" begin
# Test AbstractArray-like behaviour
data = rand(ComplexF64, N, N, N, N)
gf = GreenFunction(copy(data), SkewHermitian)
@test (-gf).data == (-data)
@test (conj(gf)).data == conj(data)
@test (real(gf)).data == real(data)
@test (imag(gf)).data == imag(data)
end
@testset "setindex!" begin
data = zeros(ComplexF64, N, N, N, N)
gf = GreenFunction(copy(data), SkewHermitian)
b = rand(ComplexF64, N, N)
gf[1, 2] = b
data[:, :, 1, 2] = b
data[:, :, 2, 1] = -adjoint(b)
@test gf.data == data
# # this used to fail
# gf[:, :, 2, 1] = b
# data[:, :, 2, 1] = b
# data[:, :, 1, 2] = -adjoint(b)
for i in 1:N, j in 1:i
data[:, :, i, j] = b
if j != i
data[:, :, j, i] = -adjoint(b)
end
end
for i in 1:N, j in 1:i
gf[i, j] = b
end
@test gf.data == data
end
| KadanoffBaym | https://github.com/NonequilibriumDynamics/KadanoffBaym.jl.git |
|
[
"MIT"
] | 1.3.2 | 20ceb97a9f5eab5b460f7683ee70f48db43bd69c | code | 2969 | @testset "1-time benchmark" begin
λ = 0.2
atol = 1e-7
rtol = 1e-5
function fv!(out, ts, h1, h2, t, t′)
out[1] = 1im * L[t, t′]
out[2] = 1im * G[t, t′] - λ * L[t, t′]
end
function fd!(out, ts, h1, h2, t, t′)
out[1] = zero(out[1])
out[2] = zero(out[2])
end
function f1!(out, ts, h1, t)
out[1] = -1.0im * J[t]
end
# two-time initial conditions
G = GreenFunction(zeros(ComplexF64, 1, 1), SkewHermitian)
L = GreenFunction(1im * ones(ComplexF64, 1, 1), SkewHermitian)
# one-time initial conditions
J = GreenFunction(ones(ComplexF64, 1, 1), OnePoint)
kb = kbsolve!(fv!, fd!, [G, L], (0.0, 30.0); atol=atol, rtol=rtol, v0 = [J,], f1! =f1!)
function sol1(t, g0, l0)
s = sqrt(Complex(λ^2 - 4))
return exp(-λ * t / 2) * (l0 * cosh(0.5 * t * s) + (2im * g0 + l0 * λ) * sinh(0.5 * t * s) / s)
end
function sol2(t, g0, l0)
s = sqrt(Complex(λ^2 - 4))
return exp(-λ * t / 2) * (g0 * cosh(0.5 * t * s) + (2im * l0 - g0 * λ) * sinh(0.5 * t * s) / s)
end
@testset begin
@test G[:, 1] ≈ [sol1(t1, L[1, 1], G[1, 1]) for t1 in kb.t] atol = atol rtol = rtol
@test L[:, 1] ≈ [sol2(t1, L[1, 1], G[1, 1]) for t1 in kb.t] atol = atol rtol = rtol
@test real(J).data[:] ≈ cos.(kb.t) atol = atol rtol = rtol
end
end
@testset "1-time Volterra benchmark" begin
atol = 1e-6
rtol = 1e-3
function fv!(out, times, h1, h2, t, t′)
I = sum(h1[s] * G[t′, s] for s in eachindex(h1))
out[1] = (1 - I)
end
function fd!(out, times, h1, h2, t, t′)
out[1] = zero(out[1])
end
G = GreenFunction(ones(1, 1), Symmetrical)
kb = kbsolve!(fv!, fd!, [G], (0.0, 30.0); atol=atol, rtol=rtol)
sol(t) = cos(t) + sin(t)
@test G[:, 1] ≈ [sol(t1) for t1 in kb.t] atol = atol rtol = 2e0rtol
end
@testset "2-time benchmark" begin
λ = 0.2
atol = 1e-8
rtol = 1e-5
function fv!(out, ts, h1, h2, t, t′)
out[1] = -1im * λ * cos(λ * (ts[t] - ts[t′])) * L[t, t′]
end
function fd!(out, ts, h1, h2, t, t′)
out[1] = zero(out[1])
end
L = GreenFunction(-1im * ones(ComplexF64, 1, 1), SkewHermitian)
kb = kbsolve!(fv!, fd!, [L], (0.0, 200.0); atol=atol, rtol=rtol)
sol(t, t′) = -1.0im * exp(-1.0im * sin(λ * (t - t′)))
@test L.data ≈ [sol(t1, t2) for t1 in kb.t, t2 in kb.t] atol = atol rtol = 2e0rtol
end
@testset "2-time Volterra benchmark" begin
atol = 1e-8
rtol = 1e-5
function fv!(out, times, h1, h2, t, t′)
I = sum(h1[s] * G[s, t′] for s in eachindex(h1))
I-= sum(h2[s] * G[s, t′] for s in eachindex(h2))
out[1] = (1 - I)
end
function fd!(out, times, h1, h2, t, t′)
out[1] = zero(out[1])
end
function sol(t)
return cos(t) + sin(t)
end
G = GreenFunction(ones(1, 1), Symmetrical)
kb = kbsolve!(fv!, fd!, [G], (0.0, 1.0); atol=atol, rtol=rtol)
sol_ = hcat([vcat(sol.(kb.t[i] .- kb.t[1:i]), sol.(kb.t[(1 + i):length(kb.t)] .- kb.t[i])) for i in eachindex(kb.t)]...)
@test G.data ≈ sol_ atol = atol rtol = 2e1rtol
end
| KadanoffBaym | https://github.com/NonequilibriumDynamics/KadanoffBaym.jl.git |
|
[
"MIT"
] | 1.3.2 | 20ceb97a9f5eab5b460f7683ee70f48db43bd69c | code | 2078 | function integrate(x::AbstractVector, y::AbstractVector)
if isone(length(y))
return zero(first(y))
end
@inbounds retval = (x[2] - x[1]) * (y[1] + y[2])
@inbounds @fastmath @simd for i in 2:(length(y)-1)
retval += (x[i+1] - x[i]) * (y[i] + y[i+1])
end
return 1 // 2 * retval
end
function compute(A, B, ts)
l = zero(lesser(A))
for i in 1:size(l, 1)
for j in 1:i
l[i,j] += integrate(ts, greater(A)[i, 1:i] .* lesser(B)[1:i, j])
l[i,j] -= integrate(ts, lesser(A)[i, 1:j] .* greater(B)[1:j, j])
l[i,j] -= integrate(ts[j:i], lesser(A)[i, j:i] .* lesser(B)[j:i, j])
l[j,i] = -conj(l[i,j])
end
l[i,i] = eltype(l) <: Real ? 0.0 : im * imag(l[i,i])
end
g = zero(greater(A))
for i in 1:size(g, 1)
for j in 1:i
g[i,j] -= integrate(ts, lesser(A)[i, 1:i] .* greater(B)[1:i, j])
g[i,j] += integrate(ts, greater(A)[i, 1:j] .* lesser(B)[1:j, j])
g[i,j] += integrate(ts[j:i], greater(A)[i, j:i] .* greater(B)[j:i, j])
g[j,i] = -conj(g[i,j])
end
g[i,i] = eltype(g) <: Real ? 0.0 : im * imag(g[i,i])
end
TimeOrderedGreenFunction(l, g)
end
N = 100
# Suppose a non-equidistant time-grid
ts = sort(N*rand(N));
# And 2 time-ordered GFs defined on that grid
a = let
x = rand(ComplexF64,N,N)
y = rand(ComplexF64,N,N)
TimeOrderedGreenFunction(x - x', y - y') # Skew-symmetric L and G components
end
b = let
x = rand(ComplexF64,N,N)
y = rand(ComplexF64,N,N)
TimeOrderedGreenFunction(x - x', y - y') # Skew-symmetric L and G components
end
dts = let
ws = KadanoffBaym.initialize_weights(ts) # Trapezium rule by default
reduce(hcat, [[w; zeros(length(ts) - length(w))] for w in ws]) |> UpperTriangular
end
⋆(a, b) = conv(a, b, dts)
@testset "Langreth's rules" begin
@test greater(a ⋆ b) ≈ greater(compute(a, b, ts))
@test lesser(a ⋆ b) ≈ lesser(compute(a, b, ts))
@test retarded(a ⋆ b) ≈ retarded(compute(a, b, ts))
@test greater(a ⋆ b ⋆ a) ≈ greater(compute(compute(a, b, ts), a, ts))
@test retarded(a ⋆ b ⋆ a) ≈ retarded(compute(compute(a, b, ts), a, ts))
end
| KadanoffBaym | https://github.com/NonequilibriumDynamics/KadanoffBaym.jl.git |
|
[
"MIT"
] | 1.3.2 | 20ceb97a9f5eab5b460f7683ee70f48db43bd69c | code | 335 | using KadanoffBaym
using LinearAlgebra
using Test
@testset verbose=true "KadanoffBaym.jl" begin
@testset "GreenFunction" begin
include("gf.jl")
end
@testset "Solver" begin
include("kb.jl")
end
@testset "Langreth" begin
include("langreth.jl")
end
@testset "Wigner" begin
include("wigner.jl")
end
end
| KadanoffBaym | https://github.com/NonequilibriumDynamics/KadanoffBaym.jl.git |
|
[
"MIT"
] | 1.3.2 | 20ceb97a9f5eab5b460f7683ee70f48db43bd69c | code | 389 | using FFTW
const ft = KadanoffBaym.ft
N = 100
a = rand(ComplexF64, N, N)
a .-= a'
w, _ = wigner_transform(a; fourier = false)
xs = range(-3.0, 3.0, length = N - 1) # needs to be odd and symmetric for double FFT to yield itself
ys = (x -> sin(x^2)).(xs)
@test ft(ft(xs, ys; inverse = true)...; inverse = false)[1] ≈ xs
@test ft(ft(xs, ys; inverse = true)...; inverse = false)[2] ≈ ys
| KadanoffBaym | https://github.com/NonequilibriumDynamics/KadanoffBaym.jl.git |
|
[
"MIT"
] | 1.3.2 | 20ceb97a9f5eab5b460f7683ee70f48db43bd69c | docs | 1720 |
# KadanoffBaym.jl
[](https://nonequilibriumdynamics.github.io/KadanoffBaym.jl/dev/)
[](https://github.com/NonequilibriumDynamics/KadanoffBaym.jl/actions?query=workflow%3ACI)
[](https://codecov.io/gh/NonequilibriumDynamics/KadanoffBaym.jl)
## Overview
`KadanoffBaym.jl` is an *adaptive* solver for Kadanoff-Baym equations written in Julia. To learn more about the solver and Kadanoff-Baym equations, have a look into our [accompanying paper](https://doi.org/10.21468/SciPostPhysCore.5.2.030).
## Documentation
The documentation can be found [here](https://nonequilibriumdynamics.github.io/KadanoffBaym.jl).
## Contributing
This is meant to be a community project and all contributions, via [issues](https://github.com/NonequilibriumDynamics/KadanoffBaym.jl/issues), [PRs](https://github.com/NonequilibriumDynamics/KadanoffBaym.jl/pulls) and [discussions](https://github.com/NonequilibriumDynamics/KadanoffBaym.jl/discussions) are encouraged and greatly appreciated.
## Citing
If you use `KadanoffBaym.jl` in your research, please cite our work:
```
@Article{10.21468/SciPostPhysCore.5.2.030,
title={{Adaptive Numerical Solution of Kadanoff-Baym Equations}},
author={Francisco Meirinhos and Michael Kajan and Johann Kroha and Tim Bode},
journal={SciPost Phys. Core},
volume={5},
issue={2},
pages={30},
year={2022},
publisher={SciPost},
doi={10.21468/SciPostPhysCore.5.2.030},
url={https://scipost.org/10.21468/SciPostPhysCore.5.2.030},
}
```
| KadanoffBaym | https://github.com/NonequilibriumDynamics/KadanoffBaym.jl.git |
|
[
"MIT"
] | 1.3.2 | 20ceb97a9f5eab5b460f7683ee70f48db43bd69c | docs | 2990 | # Welcome!
`KadanoffBaym.jl` is the first fully *adaptive* solver for Kadanoff-Baym equations written in Julia.
!!! tip
To learn more about the solver and Kadanoff-Baym equations, have a look into our [accompanying paper](https://doi.org/10.21468/SciPostPhysCore.5.2.030).
## Installation
To install, use Julia's built-in package manager
```julia
julia> ] add KadanoffBaym
```
## Scalability
For now, `KadanoffBaym.jl` is restricted to run on a single machine, for which the maximum number of threads available will be used. You can set this number by running Julia with the `thread` [flag](https://docs.julialang.org/en/v1/manual/multi-threading/#man-multithreading)
```
julia -t auto
```
## Examples
To learn how to work with `KadanoffBaym.jl`, there are two options:
- The [examples folder](https://github.com/NonequilibriumDynamics/KadanoffBaym.jl/tree/master/examples) of our repository, which contains notebooks for all of the systems studied in [our paper](https://doi.org/10.21468/SciPostPhysCore.5.2.030).
- The examples section of this documentation. If you are interested in _quantum_ dynamics, we recommend you start with the [tight-binding model](@ref TightBinding). More advanced users can jump directly to [Fermi-Hubbard model part I](@ref FHM_I) about the _second Born approximation_. [Part II](@ref FHM_II) shows how to solve the more involved ``T``-matrix approximation.
!!! note
`KadanoffBaym.jl` can also be used to simulate _stochastic processes_. An introduction to this topic is given [here](@ref StochasticProcesses).
## Library
`KadanoffBaym.jl` was designed to be lean and simple and hence only exports a handful of functions, namely [`GreenFunction`](@ref) (together with two possible time symmetries, `Symmetrical` and `SkewHermitian`) and the integrator [`kbsolve!`](@ref). Besides these, [`wigner_transform`](@ref) can be used to analyze data in a Wigner(-Ville) transformed basis and [`TimeOrderedGreenFunction`](@ref) to quickly compute the Keldysh components (`greater`, `lesser`, `retarded` and `advanced`) of time [`conv`](@ref)olutions via the Langreth rules.
!!! note
You need to import an FFT library -- e.g., `FFTW` -- to use `wigner_transform`.
### Index
```@index
```
### Solver
```@docs
kbsolve!
```
### Green Functions
```@docs
GreenFunction
```
### Wigner Transformation
```@docs
wigner_transform
```
### Langreth's rules
```@docs
TimeOrderedGreenFunction
```
```@docs
conv
```
## Citation
If you use `KadanoffBaym.jl` in your research, please cite our [paper](https://scipost.org/SciPostPhysCore.5.2.030):
```
@Article{10.21468/SciPostPhysCore.5.2.030,
title={{Adaptive Numerical Solution of Kadanoff-Baym Equations}},
author={Francisco Meirinhos and Michael Kajan and Johann Kroha and Tim Bode},
journal={SciPost Phys. Core},
volume={5},
issue={2},
pages={30},
year={2022},
publisher={SciPost},
doi={10.21468/SciPostPhysCore.5.2.030},
url={https://scipost.org/10.21468/SciPostPhysCore.5.2.030},
}
``` | KadanoffBaym | https://github.com/NonequilibriumDynamics/KadanoffBaym.jl.git |
|
[
"MIT"
] | 1.3.2 | 20ceb97a9f5eab5b460f7683ee70f48db43bd69c | docs | 3780 | # [Bose-Einstein Condensate] (@id BEC)
In this example we will use `KadanoffBaym.jl` to study _dephasing_ in Bose-Einstein condensates (see Chp. 3 [here](https://bonndoc.ulb.uni-bonn.de/xmlui/handle/20.500.11811/8961)). To do this, we will need to solve _one-time_ differential equations for the condensate amplitude ``\varphi(t)`` and the so-called equal-time _Keldysh Green_ function ``G^K(t, t)``.
!!! hint
A [Jupyter notebook](https://github.com/NonequilibriumDynamics/KadanoffBaym.jl/blob/master/examples/bose-einstein-condensate.ipynb) for this example is available in our [examples folder](https://github.com/NonequilibriumDynamics/KadanoffBaym.jl/tree/master/examples).
The Lindblad master equation describing this systems reads
```math
\begin{align}
\begin{split}
\dot{\hat{\rho}} &= -i\omega_0[a^\dagger a, \hat{\rho}] +\frac{\lambda}{2}\left\{ 2a\hat{\rho} a^{\dagger} - \left( a^{\dagger}a\hat{\rho} + \hat{\rho} a^{\dagger}a \right)\right\} + \frac{\gamma}{2}\left\{ 2a^{\dagger}\hat{\rho} a - \left( aa^{\dagger}\hat{\rho} + \hat{\rho} aa^{\dagger} \right)\right\} \\
&+ D\left\{ 2a^{\dagger}a\hat{\rho} a^{\dagger}a - \left( a^{\dagger}aa^{\dagger}a\hat{\rho} + \hat{\rho} a^{\dagger}aa^{\dagger}a \right)\right\},
\end{split}
\end{align}
```
where $\lambda > 0$ is the loss parameter, $\gamma > 0$ represents the corresponding gain, and $D > 0$ is the constant that introduces dephasing. The derivation for the equations of motion for $\varphi(t)$ and $G^K(t, t)$ is again given [here](https://bonndoc.ulb.uni-bonn.de/xmlui/handle/20.500.11811/8961) and leads to
```math
\begin{align}
\begin{split}
\dot{\varphi}(t) &= -i\omega_0\varphi(t) -\frac{1}{2}{(\lambda - \gamma + {2} D)}\varphi(t), \\
\dot{G}^K(t, t) &= -{(\lambda - \gamma)}G^K(t, t) - i{\left(\lambda + \gamma + {2} D |\varphi(t)|^2\right)}.
\end{split}
\end{align}
```
To make these expressions more transparent, we set $\varphi(t) = \sqrt{2N(t)}\mathrm{e}^{i \theta(t)}$ and $G^K(t, t) = -i{(2\delta N(t) + 1)}$, where $N$ and $\delta N$ are the condensate and non-condensate occupation, respectively. For these quantities, we obtain
```math
\begin{align}
\begin{split}
\dot{N} &= {(\gamma - \lambda -{2} D)}N, \\
\delta \dot{N} &= \gamma{(\delta N + 1)} - \lambda\delta N + {2}DN.
\end{split}
\end{align}
```
Translating all of this into code is now straightforward! We start by defining the condensate and the _Keldysh_ Green function along with their initial conditions:
```julia
using KadanoffBaym, LinearAlgebra
# parameters
ω₀ = 1.0
λ = 0.0
γ = 0.0
D = 1.0
# initial occupations
N = 1.0
δN = 0.0
# One-time function for the condensate
φ = GreenFunction(zeros(ComplexF64, 1), OnePoint)
# Allocate the initial Green functions (time arguments at the end)
GK = GreenFunction(zeros(ComplexF64, 1, 1), SkewHermitian)
# Initial conditions
GK[1, 1] = -im * (2δN + 1)
φ[1] = sqrt(2N)
```
In the next step, we write down the equations of motion:
```julia
# we leave the vertical equation empty since we can solve for GK in equal-time only
function fv!(out, ts, h1, h2, t, t′)
out[1] = zero(out[1])
end
# diagonal equation for GK
function fd!(out, ts, h1, h2, t, _)
out[1] = -(λ - γ) * GK[t, t] - im * (λ + γ + 2D * abs2(φ[t]))
end
# one-time equation for condensate amplitude
function f1!(out, ts, h1, t)
out[1] = -im * ω₀ * φ[t] - (1/2) * (λ - γ + 2D) * φ[t]
end
```
Calling the solver is again a one-liner:
```julia
sol = kbsolve!(fv!, fd!, [GK,], (0.0, 1.0); atol=1e-6, rtol=1e-4, v0 = [φ,], f1! =f1!)
```
If you want a plot of the results, you can find it in our corresponding [Jupyter notebook](https://github.com/NonequilibriumDynamics/KadanoffBaym.jl/blob/master/examples/bose-einstein-condensate.ipynb). | KadanoffBaym | https://github.com/NonequilibriumDynamics/KadanoffBaym.jl.git |
|
[
"MIT"
] | 1.3.2 | 20ceb97a9f5eab5b460f7683ee70f48db43bd69c | docs | 11442 | # [Fermi-Hubbard Model I] (@id FHM_I)
!!! note
A [Jupyter notebook](https://github.com/NonequilibriumDynamics/KadanoffBaym.jl/blob/master/examples/fermi-hubbard.ipynb) related to this example is available in our [examples folder](https://github.com/NonequilibriumDynamics/KadanoffBaym.jl/tree/master/examples).
To see `KadanoffBaym.jl` in full strength, we need to consider an interacting system such as the _Fermi-Hubbard_ model
```math
\begin{align*}
\hat{H} &= - J \sum_{\langle{i,\,j}\rangle}\sum_\sigma \hat{c}^{\dagger}_{i,\sigma} \hat{c}^{\phantom{\dagger}}_{i+1,\sigma} + U\sum_{i=1}^L \hat{c}^{\dagger}_{i,\uparrow} \hat{c}^{\phantom{\dagger}}_{i,\uparrow} \hat{c}^{\dagger}_{i,\downarrow} \hat{c}^{\phantom{\dagger}}_{i,\downarrow},
\end{align*}
```
where the ``\hat{c}_{i,\sigma}^{\dagger},\, \hat{c}_{i,\sigma}^{\phantom{\dagger}}``, ``\sigma=\uparrow, \downarrow`` are now spin-dependent fermionic creation and annihilation operators. The model describes electrons on a lattice that can hop to neighbouring sites via the coupling ``J`` while also feeling an on-site interaction ``U``. The *spin-diagonal* Green functions are defined by
```math
\begin{align*}
\left[\boldsymbol{G}_\sigma^<(t, t')\right]_{ij} &= G^<_{ij, \sigma}(t, t') = \phantom{-} \mathrm{i}\left\langle{\hat{c}_{j, \sigma}^{{\dagger}}(t')\hat{c}_{i, \sigma}^{\phantom{\dagger}}(t)}\right\rangle, \\
\left[\boldsymbol{G}_\sigma^>(t, t')\right]_{ij} &= G^>_{ij, \sigma}(t, t') = -\mathrm{i}\left\langle{\hat{c}_{i, \sigma}^{\phantom{\dagger}}(t)\hat{c}_{j, \sigma}^{{\dagger}}(t')}\right\rangle.
\end{align*}
```
The equations of motion for these Green functions in "vertical" time ``t`` can be written compactly as
```math
\begin{align*}
(\mathrm{i}\partial_t - \boldsymbol{h}) \boldsymbol{G}_\sigma^\lessgtr(t, t') &= \int_{t_0}^{t}\mathrm{d}{s} \left[\boldsymbol{\Sigma}_\sigma^>(t, s) - \boldsymbol{\Sigma}_\sigma^<(t, s) \right] \boldsymbol{G}_\sigma^\lessgtr(s, t') + \int_{t_0}^{t'}\mathrm{d}{s} \boldsymbol{\Sigma}_\sigma^\lessgtr(t, s) \left[\boldsymbol{G}_\sigma^<(s, t') - \boldsymbol{G}_\sigma^>(s, t') \right],
\end{align*}
```
where ``\boldsymbol{h}`` describes the single-particle contributions (i.e. the hopping), and the matrices ``\boldsymbol{G}^\lessgtr`` are assumed to be block-diagonal in the spin degree-of-freedom. The *Hartree-Fock* part of the self-energy now is
```math
\begin{align*}
\Sigma^{\mathrm{HF}}_{\uparrow,\,ij}(t, t') = {\mathrm{i}}\delta_{ij}\delta(t - t') G^<_{\downarrow,ii}(t, t),\\
\Sigma^{\mathrm{HF}}_{\downarrow,\,ij}(t, t') = {\mathrm{i}}\delta_{ij}\delta(t - t') G^<_{\uparrow,ii}(t, t).
\end{align*}
```
In the so-called _second Born approximation_, the contribution to next order in ``U`` is also taken into account:
```math
\begin{align*}
\Sigma^\lessgtr_{ij, \uparrow} (t, t') = U^2 G^\lessgtr_{ij, \uparrow}(t, t') G^\lessgtr_{ij, \downarrow}(t, t') G^\gtrless_{ji, \downarrow}(t', t),\\
\Sigma^\lessgtr_{ij, \downarrow}(t, t') = U^2 G^\lessgtr_{ij, \downarrow}(t, t') G^\lessgtr_{ij, \uparrow}(t, t') G^\gtrless_{ji, \uparrow}(t', t).
\end{align*}
```
Now that we have the equations set up, we import `KadanoffBaym.jl` alongside some auxiliary packages:
```julia
using KadanoffBaym, LinearAlgebra, BlockArrays
```
Then, we use `KadanoffBaym`'s built-in data structure [`GreenFunction`](@ref) to define our lesser and greater Green functions
```julia
# Lattice size
L = 8
# Allocate the initial Green functions (time arguments at the end)
GL_u = GreenFunction(zeros(ComplexF64, L, L, 1, 1), SkewHermitian)
GG_u = GreenFunction(zeros(ComplexF64, L, L, 1, 1), SkewHermitian)
GL_d = GreenFunction(zeros(ComplexF64, L, L, 1, 1), SkewHermitian)
GG_d = GreenFunction(zeros(ComplexF64, L, L, 1, 1), SkewHermitian)
```
Observe that we denote ``\boldsymbol{G}_\uparrow^<`` by `GL_u` and ``\boldsymbol{G}_\downarrow^<`` by `GL_d`, for instance. As a lattice structure, we choose the 8-site _3D qubic lattice_ shown in Fig. 8 of [our paper](https://doi.org/10.21468/SciPostPhysCore.5.2.030).
As an (arbitrary) Gaussian initial condition, we take a non-equilibrium distribution of the charge over the cube (all electrons at the bottom of the cube):
```julia
# Initial conditions
N_u = zeros(L)
N_d = zeros(L)
N_u[1:4] = 0.1 .* [1, 1, 1, 1]
N_d[1:4] = 0.1 .* [1, 1, 1, 1]
N_u[5:8] = 0.0 .* [1, 1, 1, 1]
N_d[5:8] = 0.0 .* [1, 1, 1, 1]
GL_u[1, 1] = 1.0im * diagm(N_u)
GG_u[1, 1] = -1.0im * (I - diagm(N_u))
GL_d[1, 1] = 1.0im * diagm(N_d)
GG_d[1, 1] = -1.0im * (I - diagm(N_d))
```
!!! note
Accessing [`GreenFunction`](@ref) with only *two* arguments gives the whole matrix at a given time, i.e. `GL_u[1, 1]` is equivalent to `GL_u[:, :, 1, 1]`.
To keep our data ordered, we define an auxiliary `struct` to hold them:
```julia
Base.@kwdef struct FermiHubbardData2B{T}
GL_u::T
GG_u::T
GL_d::T
GG_d::T
ΣL_u::T = zero(GL_u)
ΣG_u::T = zero(GG_u)
ΣL_d::T = zero(GL_d)
ΣG_d::T = zero(GG_d)
end
data = FermiHubbardData2B(GL_u=GL_u, GG_u=GG_u, GL_d=GL_d, GG_d=GG_d)
```
Furthermore, we also defined an auxiliary `struct` specifying the parameters of the model:
```julia
Base.@kwdef struct FermiHubbardModel{T}
# interaction strength
U::T
# 8-site 3D cubic lattice
h = begin
h = BlockArray{ComplexF64}(undef_blocks, [4, 4], [4, 4])
diag_block = [0 -1 0 -1; -1 0 -1 0; 0 -1 0 -1; -1 0 -1 0]
setblock!(h, diag_block, 1, 1)
setblock!(h, diag_block, 2, 2)
setblock!(h, Diagonal(-1 .* ones(4)), 1, 2)
setblock!(h, Diagonal(-1 .* ones(4)), 2, 1)
h |> Array
end
H_u = h
H_d = h
end
# Relatively small interaction parameter
const U₀ = 0.25
model = FermiHubbardModel(U = t -> U₀)
```
Note how we have defined the interaction parameter ``U`` as a (constant) Julia `Function` - this enables us to study quenches with time-dependent interaction (s. also [our paper](https://doi.org/10.21468/SciPostPhysCore.5.2.030)).
The final step before setting up the actual equations is to define a callback function for the self-energies in *second Born approximation*:
```julia
# Callback function for the self-energies
function second_Born!(model, data, times, _, _, t, t′)
# Unpack data and model
(; GL_u, GG_u, GL_d, GG_d, ΣL_u, ΣG_u, ΣL_d, ΣG_d) = data
(; U) = model
# Resize self-energies when Green functions are resized
if (n = size(GL_u, 3)) > size(ΣL_u, 3)
resize!(ΣL_u, n)
resize!(ΣG_u, n)
resize!(ΣL_d, n)
resize!(ΣG_d, n)
end
# The interaction varies as a function of the forward time (t+t')/2
U_t = U((times[t] + times[t′])/2)
# Define the self-energies
ΣL_u[t, t′] = U_t^2 .* GL_u[t, t′] .* GL_d[t, t′] .* transpose(GG_d[t′, t])
ΣL_d[t, t′] = U_t^2 .* GL_u[t, t′] .* GL_d[t, t′] .* transpose(GG_u[t′, t])
ΣG_u[t, t′] = U_t^2 .* GG_u[t, t′] .* GG_d[t, t′] .* transpose(GL_d[t′, t])
ΣG_d[t, t′] = U_t^2 .* GG_u[t, t′] .* GG_d[t, t′] .* transpose(GL_u[t′, t])
end
```
!!! note
The omitted arguments `_` in the function definition refer to the _adaptive_ integration weights of `KadanoffBaym`. They are only needed when the self-energy contains actual time integrals (as in the ``T``-matrix approximation).
Unlike for the non-interacting [tight-binding model](@ref TightBinding), the equations of motion above contain _integrals_ over time. This makes them so-called _Volterra integro-differential equations_ (VIDEs). Now the integrals are always either of the _first_ form
``\int_{t_0}^{t}\mathrm{d}{s} \left[\boldsymbol{\Sigma}_\sigma^>(t, s) - \boldsymbol{\Sigma}_\sigma^<(t, s) \right] \boldsymbol{G}_\sigma^\lessgtr(s, t')``
or of the _second_ form
``\int_{t_0}^{t'}\mathrm{d}{s} \boldsymbol{\Sigma}_\sigma^\lessgtr(t, s) \left[\boldsymbol{G}_\sigma^<(s, t') - \boldsymbol{G}_\sigma^>(s, t') \right].`` The discretization of these time convolutions results in a sum of matrix-products over all time indices. To be as efficient as possible, this suggests to introduce two auxiliary functions that handle these integrations by avoiding unnecessary allocations:
```julia
# Auxiliary integrator for the first type of integral
function integrate1(hs::Vector, t1, t2, A::GreenFunction, B::GreenFunction, C::GreenFunction; tmax=t1)
retval = zero(A[t1, t1])
@inbounds for k in 1:tmax
@views LinearAlgebra.mul!(retval, A[t1, k] - B[t1, k], C[k, t2], hs[k], 1.0)
end
return retval
end
# Auxiliary integrator for the second type of integral
function integrate2(hs::Vector, t1, t2, A::GreenFunction, B::GreenFunction, C::GreenFunction; tmax=t2)
retval = zero(A[t1, t1])
@inbounds for k in 1:tmax
@views LinearAlgebra.mul!(retval, A[t1, k], B[k, t2] - C[k, t2], hs[k], 1.0)
end
return retval
end
```
!!! note
The first argument `hs::Vector` denotes the _adaptive_ integration weights provided by `KadanoffBaym`. Since these depend on the boundary points of the integration, there will usually be different weight vectors for the two integrals.
We are finally ready to define the equations of motion! In "vertical" time, we have
```julia
# Right-hand side for the "vertical" evolution
function fv!(model, data, out, times, h1, h2, t, t′)
# Unpack data and model
(; GL_u, GG_u, GL_u, GG_d, ΣL_u, ΣG_u, ΣL_d, ΣG_d) = data
(; H_u, H_d, U) = model
# Real-time collision integrals
∫dt1(A, B, C) = integrate1(h1, t, t′, A, B, C)
∫dt2(A, B, C) = integrate2(h2, t, t′, A, B, C)
# The interaction varies as a function of the forward time (t+t')/2
U_t = U((times[t] + times[t′])/2)
# Hartree-Fock self-energies
ΣHF_u(t, t′) = im * U_t * Diagonal(GL_d[t, t])
ΣHF_d(t, t′) = im * U_t * Diagonal(GL_u[t, t])
# Equations of motion
out[1] = -1.0im * ((H_u + ΣHF_u(t, t′)) * GL_u[t, t′] +
∫dt1(ΣG_u, ΣL_u, GL_u) + ∫dt2(ΣL_u, GL_u, GG_u)
)
out[2] = -1.0im * ((H_u + ΣHF_u(t, t′)) * GG_u[t, t′] +
∫dt1(ΣG_u, ΣL_u, GG_u) + ∫dt2(ΣG_u, GL_u, GG_u)
)
out[3] = -1.0im * ((H_d + ΣHF_d(t, t′)) * GL_d[t, t′] +
∫dt1(ΣG_d, ΣL_d, GL_d) + ∫dt2(ΣL_d, GL_d, GG_d)
)
out[4] = -1.0im * ((H_d + ΣHF_d(t, t′)) * GG_d[t, t′] +
∫dt1(ΣG_d, ΣL_d, GG_d) + ∫dt2(ΣG_d, GL_d, GG_d)
)
return out
end
```
As for the [tight-binding model](@ref TightBinding), the equation of motion in "diagonal" time ``T`` follows by subtracting its own adjoint from the vertical equation:
```julia
# Right-hand side for the "diagonal" evolution
function fd!(model, data, out, times, h1, h2, t, t′)
fv!(model, data, out, times, h1, h2, t, t)
out .-= adjoint.(out)
end
```
After defining a final time and some tolerances, we give everything to [`kbsolve!`](@ref):
```julia
# final time
tmax = 4
# tolerances
atol = 1e-8
rtol = 1e-6
# Call the solver
sol = kbsolve!(
(x...) -> fv!(model, data, x...),
(x...) -> fd!(model, data, x...),
[data.GL_u, data.GG_u, data.GL_d, data.GG_d],
(0.0, tmax);
callback = (x...) -> second_Born!(model, data, x...),
atol = atol,
rtol = rtol,
stop = x -> (println("t: $(x[end])"); flush(stdout); false)
)
```
That's it! Results for `tmax=32` are shown in [our paper](https://doi.org/10.21468/SciPostPhysCore.5.2.030). Note that this implementation via `KadanoffBaym` is about as compact as possible.
| KadanoffBaym | https://github.com/NonequilibriumDynamics/KadanoffBaym.jl.git |
|
[
"MIT"
] | 1.3.2 | 20ceb97a9f5eab5b460f7683ee70f48db43bd69c | docs | 6695 | # [Fermi-Hubbard Model II] (@id FHM_II)
!!! note
This example is the continuation of [Fermi-Hubbard Model I](@ref FHM_I). It is recommended that you familiarize yourself with the latter first.
In part II of our example about the Fermi-Hubbard model, we will solve the so-called ``T``-matrix approximation, which is a "non-perturbative" self-energy resummation. As we saw in [part I](@ref FHM_I), in the standard perturbative second Born approximation, the self-energies are given by
```math
\begin{align*}
\Sigma^\lessgtr_{ij, \uparrow} (t, t') = \mathrm{i}U^2 \Phi^\lessgtr_{ij}(t, t') G^\gtrless_{ji, \downarrow}(t', t),\\
\Sigma^\lessgtr_{ij, \downarrow}(t, t') = \mathrm{i}U^2 \Phi^\lessgtr_{ij}(t, t')G^\gtrless_{ji, \uparrow}(t', t),
\end{align*}
```
where
```math
\begin{align*}
\left[\boldsymbol{\Phi}^\lessgtr(t, t')\right]_{ij} = \Phi^\lessgtr_{ij}(t, t') = -i G^\lessgtr_{ij, \uparrow}(t, t') G^\lessgtr_{ij, \downarrow}(t, t').
\end{align*}
```
If we now define the so-called ``T``-matrix
```math
\begin{align*}
\boldsymbol{T}(t, t') = \boldsymbol{\Phi}(t, t') - U \int_{\mathcal{C}}\mathrm{d}s\; \boldsymbol{\Phi}(t, s) \boldsymbol{T}(s, t'),
\end{align*}
```
the new self-energies in ``T``-matrix approximation become
```math
\begin{align*}
\Sigma^\lessgtr_{ij, \uparrow} (t, t') = \mathrm{i}U^2 T^\lessgtr_{ij}(t, t') G^\gtrless_{ji, \downarrow}(t', t),\\
\Sigma^\lessgtr_{ij, \downarrow}(t, t') = \mathrm{i}U^2 T^\lessgtr_{ij}(t, t')G^\gtrless_{ji, \uparrow}(t', t),
\end{align*}
```
While we keep the _same initial conditions_ as in [Fermi-Hubbard Model I](@ref FHM_I), we intrdoce a new data `struct` that also holds the ``T``-matrix (and the "bubbles" ``\Phi`` since this is more efficient):
```julia
Base.@kwdef struct FermiHubbardDataTM{T}
GL_u::T
GG_u::T
GL_d::T
GG_d::T
ΣL_u::T = zero(GL_u)
ΣG_u::T = zero(GG_u)
ΣL_d::T = zero(GL_d)
ΣG_d::T = zero(GG_d)
TL::T = zero(GL_u)
TG::T = zero(GG_u)
ΦL::T = zero(GL_u)
ΦG::T = zero(GG_u)
end
data = FermiHubbardDataTM(GL_u=GL_u, GG_u=GG_u, GL_d=GL_d, GG_d=GG_d)
# Initialize T-matrix
data.TL[1, 1] = -1.0im .* GL_u[1, 1] .* GL_d[1, 1]
data.TG[1, 1] = -1.0im .* GG_u[1, 1] .* GG_d[1, 1]
data.ΦL[1, 1] = data.TL[1, 1]
data.ΦG[1, 1] = data.TG[1, 1]
```
!!! note
As should be clear from the new definition of the self-energies in terms of the ``T``-matrix, the former now contain additional time integrals. This means that at every time step, on top of the Volterra integro-differential equations (VIDEs), we now also have to solve so-called _Volterra integral equations_ (VIEs). Furthermore, it is important for stability reasons to solve these VIEs _implicitly_. For a more detailed discussion, please consult [our paper](https://doi.org/10.21468/SciPostPhysCore.5.2.030).
Accordingly, we introduce an auxiliary fixed-point solver that does this for us:
```julia
function fixed_point(F::Function, x0::AbstractArray;
mixing::Float64=0.5,
abstol::Float64=1e-12,
maxiter::Int=1000,
verbose::Bool=true,
norm=x -> LinearAlgebra.norm(x, Inf)
)
x_old = copy(x0)
step = 0
while step < maxiter
x = F(x_old)
res = norm(x - x_old)
if verbose
@info "step: $step // res: $res"
end
if res < abstol
break
end
@. x_old = mixing * x + (1.0 - mixing) * x_old
step += 1
end
if step == maxiter
@warn "No convergence reached."
end
return x_old
end
```
Instead of writing one ourselves, we could also have worked directly with [`NLsolve.jl`](https://github.com/JuliaNLSolvers/NLsolve.jl). Note that to keep our number of dependencies low, we have opted for not including this by default.
[As in part I](@ref FHM_I), we define our `FermiHubbardModel`, yet this time with a stronger interaction:
```julia
# Interaction parameter
const U₀ = 2.0
model = FermiHubbardModel(U = t -> U₀)
```
The previous callback `second_Born!` is now replaced with the following:
```julia
# Callback function for the self-energies
function T_matrix!(model, data, times, h1, h2, t, t′)
# Unpack data and model
(; GL_u, GG_u, GL_d, GG_d, TL, TG, ΣL_u, ΣG_u, ΣL_d, ΣG_d, ΦL, ΦG) = data
(; U) = model
# Real-time collision integral
∫dt1(A, B, C) = integrate1(h1, t, t′, A, B, C)
∫dt2(A, B, C) = integrate2(h2, t, t′, A, B, C)
# Resize self-energies etc. when Green functions are resized
if (n = size(GL_u, 3)) > size(ΣL_u, 3)
resize!(ΣL_u, n)
resize!(ΣG_u, n)
resize!(ΣL_d, n)
resize!(ΣG_d, n)
resize!(TL, n)
resize!(TG, n)
resize!(ΦL, n)
resize!(ΦG, n)
end
# The interaction varies as a function of the forward time (t+t')/2
U_t = U((times[t] + times[t′])/2)
# Set all Φs at the very first t′ since they are all known by then
if t′ == 1
for t′ in 1:t
ΦL[t, t′] = -1.0im .* GL_u[t, t′] .* GL_d[t, t′]
ΦG[t, t′] = -1.0im .* GG_u[t, t′] .* GG_d[t, t′]
end
end
# Solve VIEs implicitly
TL[t, t′], TG[t, t′] = fixed_point([ΦL[t, t′], ΦG[t, t′]]; mixing=0.5, verbose=false) do x
TL[t, t′], TG[t, t′] = x[1], x[2]
[
ΦL[t, t′] - U_t * (∫dt1(ΦG, ΦL, TL) + ∫dt2(ΦL, TL, TG)),
ΦG[t, t′] - U_t * (∫dt1(ΦG, ΦL, TG) + ∫dt2(ΦG, TL, TG))
]
end
# Define the self-energies
ΣL_u[t, t′] = 1.0im .* U_t^2 .* TL[t, t′] .* transpose(GG_d[t′, t])
ΣL_d[t, t′] = 1.0im .* U_t^2 .* TL[t, t′] .* transpose(GG_u[t′, t])
ΣG_u[t, t′] = 1.0im .* U_t^2 .* TG[t, t′] .* transpose(GL_d[t′, t])
ΣG_d[t, t′] = 1.0im .* U_t^2 .* TG[t, t′] .* transpose(GL_u[t′, t])
end
```
For a given final time `tmax`, and tolerances `atol` and `rtol`, [`kbsolve!`](@ref) is ready to solve the problem:
```julia
# Call the solver
sol = kbsolve!(
(x...) -> fv!(model, data, x...),
(x...) -> fd!(model, data, x...),
[data.GL_u, data.GG_u, data.GL_d, data.GG_d],
(0.0, tmax);
callback = (x...) -> T_matrix!(model, data, x...),
atol = atol,
rtol = rtol,
dtini=1e-10,
stop = x -> (println("t: $(x[end])"); flush(stdout); false)
)
```
At large `tmax=32` and with `atol = 1e-2 rtol`, we obtain

This confirms that the resummation performed by the T-matrix is indeed superior to the second Born approximation in the current regime of large ``U`` and small occupation numbers!
| KadanoffBaym | https://github.com/NonequilibriumDynamics/KadanoffBaym.jl.git |
|
[
"MIT"
] | 1.3.2 | 20ceb97a9f5eab5b460f7683ee70f48db43bd69c | docs | 6619 | # [Open Bose Dimer] (@id OpenBose)
A nice example to illustrate how one can use `KadanoffBaym.jl` to study *open systems* is the Bose dimer depicted below.
!!! hint
A [Jupyter notebook](https://github.com/NonequilibriumDynamics/KadanoffBaym.jl/blob/master/examples/bosonic-dimer.ipynb) for this example is available in our [examples folder](https://github.com/NonequilibriumDynamics/KadanoffBaym.jl/tree/master/examples).

It consists of two bosonics modes ``\omega_{1,2}`` (you can imagine two single-mode cavities at different frequencies), which are coupled with strength ``J``. Additionally, each mode is coupled to its own reservoir at inverse temperature ``\beta_{1,2}``, respectively. Such a system is described by the master equation
```math
\begin{align*}
\partial_{t} \hat{\rho}=-i\left[\hat{H} \hat{\rho}-\hat{\rho} \hat{H}^{
\dagger}\right]
+ \lambda\sum_{i=1}^L \left[(N_i + 1)\hat{a}^{\phantom{\dagger}}_i \hat{\rho} \hat{a}^{\dagger}_i + N_i \hat{a}^{\dagger}_i\hat{\rho} \hat{a}^{\phantom{\dagger}}_i \right]
\end{align*}
```
for ``[\hat{a}^{\phantom{\dagger}}_i, \hat{a}^{\dagger}_i]=1``, ``i=1, ..., L`` and ``L=2``. The ``N_i=1/(e^{\beta_i \omega_i}-1)`` denote the thermal occupations of the reservoirs. The in this case *non-Hermitian* Hamiltonian is given by
```math
\begin{align*}
\hat{H}=\sum_{i=1}^L (\omega_{i}-i \lambda (N_i + 1/2)) \hat{a}^{\dagger}_i \hat{a}^{\phantom{\dagger}}_i.
\end{align*}
```
The bosonic *lesser* and *greater* Green functions are
```math
\begin{align*}
\left[\boldsymbol{G}^<(t, t')\right]_{ij} &= G^<_{ij}(t, t') = -i\left\langle{\hat{a}_j^{{\dagger}}(t')\hat{a}_i^{\phantom{\dagger}}(t)}\right\rangle, \\
\left[\boldsymbol{G}^>(t, t')\right]_{ij} &= G^>_{ij}(t, t') = -i\left\langle{\hat{a}_i^{\phantom{\dagger}}(t)\hat{a}_j^{{\dagger}}(t')}\right\rangle.
\end{align*}
```
For convenience, we also introduce the (anti-) time-ordered Green functions
```math
\begin{align*}
G^{T}_{ij}(t, t') &= \Theta(t - t') G^>_{ij}(t, t') + \Theta(t' - t) G^<_{ij}(t, t'), \\
G^{\tilde{T}}_{ij}(t, t') &= \Theta(t - t') G^<_{ij}(t, t') + \Theta(t' - t) G^>_{ij}(t, t').
\end{align*}
```
With the help of these, we can express the "vertical" equations of motion compactly:
```math
\begin{align*}
\partial_t \boldsymbol{G}^<(t, t') &= -i \boldsymbol{H} \boldsymbol{G}^<(t, t') + \lambda \operatorname{diag} (N_1, ..., N_L) \boldsymbol{G}^{\tilde{T}}(t, t') , \\
\partial_t \boldsymbol{G}^>(t, t') &= -i \boldsymbol{H}^\dagger \boldsymbol{G}^>(t, t') - \lambda \operatorname{diag} (N_1 + 1, ..., N_L + 1) \boldsymbol{G}^{{T}}(t, t') ,
\end{align*}
```
where ``\boldsymbol{H} = \operatorname{diag}(\omega_{1}- i\lambda (N_1 + 1/2), ..., \omega_{L}- i\lambda(N_L + 1/2))``. As in our [previous example](@ref TightBinding), we also need the equations in the "diaognal" time direction, which in the present case become
```math
\begin{align*}
\partial_T {G}_{{ij}}^<(T, 0)_W &=
-i \left[\boldsymbol{H} \boldsymbol{G}^<(T, 0)_W - \boldsymbol{G}^<(T, 0)_W \boldsymbol{H}^\dagger\right]_{ij} \\
&+ \frac{i\lambda}{2} (N_i + N_j) ({G}_{{ij}}^<(T, 0)_W + {G}_{{ij}}^>(T, 0)_W), \\
\partial_T {G}_{{ij}}^>(T, 0)_W &= -i \left[\boldsymbol{H}^\dagger \boldsymbol{G}^>(T, 0)_W - \boldsymbol{G}^>(T, 0)_W \boldsymbol{H}\right]_{ij}
\\
&- \frac{i\lambda}{2} (N_i + N_j + 2) ({G}_{{ij}}^<(T, 0)_W + {G}_{{ij}}^>(T, 0)_W),
\end{align*}
```
where the subscript ``W`` again indicates *Wigner coordinates*.
Translating all of this into code is now straightforward! We start by defining the Green functions and their initial conditions:
```julia
using KadanoffBaym, LinearAlgebra
# Lattice size
L = 2
# Allocate the initial Green functions (time arguments at the end)
GL = GreenFunction(zeros(ComplexF64, L, L, 1, 1), SkewHermitian)
GG = GreenFunction(zeros(ComplexF64, L, L, 1, 1), SkewHermitian)
# Initial condition
GL[1, 1] = -im * diagm([0.0, 2])
GG[1, 1] = -im * I(2) + GL[1,1]
```
Then we assign all of the parameters we need:
```julia
# Non-Hermitian Hamiltonian
ω₁ = 2.5
ω₂ = 0.0
J = pi / 4
λ = 1
N₁ = 1.
N₂ = 0.1
H = [ω₁ - 0.5im * λ * ((N₁ + 1) + N₁) J; J ω₂ - 0.5im * λ * ((N₂ + 1) + N₂)]
```
As the last step, we write down the equations of motion:
```julia
# Right-hand side for the "vertical" evolution
function fv!(out, _, _, _, t, t′)
out[1] = -1.0im * (H * GL[t, t′] + λ * [[1.0im * N₁, 0] [0, 1.0im * N₂]] * GL[t, t′])
out[2] = -1.0im * (adjoint(H) * GG[t, t′] - 1.0im * λ * [[(N₁ + 1), 0] [0, (N₂ + 1)]] * GG[t, t′])
end
```
Observe how we have converted the (anti-) time-ordered Green functions ``G^{T}, G^{\tilde{T}}`` into lesser and greater functions by explicitly using the fact that we are operating on the ``t>t'`` triangle of the two-time grid ``(t, t')``. By combining `fv!` with its adjoint [as before](@ref TightBinding), we also obtain the "diagonal" equations as
```julia
# Right-hand side for the "diagonal" evolution
function fd!(out, _, _, _, t, t′)
out[1] = (-1.0im * (H * GL[t, t] - GL[t, t] * adjoint(H)
+ 1.0im * λ * [[N₁ * (GL[1, 1, t, t] + GG[1, 1, t, t]), (N₁ + N₂) * (GL[2, 1, t, t] + GG[2, 1, t, t]) / 2] [(N₁ + N₂) * (GL[1, 2, t, t] + GG[1, 2, t, t]) / 2, N₂ * (GL[2, 2, t, t] + GG[2, 2, t, t])]])
)
out[2] = (-1.0im * (adjoint(H) * GG[t, t] - GG[t, t] * H
- 1.0im * λ * [[(N₁ + 1) * (GL[1, 1, t, t] + GG[1, 1, t, t]), (N₁ + N₂ + 2) * (GG[2, 1, t, t] + GL[2, 1, t, t]) / 2] [(N₁ + N₂ + 2) * (GG[1, 2, t, t] + GL[1, 2, t, t]) / 2, (N₂ + 1) * (GL[2, 2, t, t] + GG[2, 2, t, t])]])
)
end
```
Calling the solver is again a one-liner:
```julia
sol = kbsolve!(fv!, fd!, [GL, GG], (0.0, 32.0); atol=1e-6, rtol=1e-4)
```
!!! tip
By importing Julia's `FFTW` and `Interpolations` packages, we can also obtain the Wigner-transformed Green functions.
```julia
using FFTW, Interpolations
function wigner_transform_itp(x::AbstractMatrix, ts::Vector; fourier = true, ts_lin = range(first(ts), last(ts); length = length(ts)))
itp = interpolate((ts, ts), x, Gridded(Linear()))
return wigner_transform([itp(t1, t2) for t1 in ts_lin, t2 in ts_lin]; ts = ts_lin, fourier = fourier)
end
ρ_11_wigner, (taus, ts) = wigner_transform_itp((GG.data - GL.data)[1, 1, :, :], sol.t; fourier=false)
ρ_11_FFT, (ωs, ts) = wigner_transform_itp((GG.data - GL.data)[1, 1, :, :], sol.t; fourier=true)
```
If you want to see plots of all the results, you can find those in our corresponding [Jupyter notebook](https://github.com/NonequilibriumDynamics/KadanoffBaym.jl/blob/master/examples/bosonic-dimer.ipynb). | KadanoffBaym | https://github.com/NonequilibriumDynamics/KadanoffBaym.jl.git |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.