licenses
sequencelengths
1
3
version
stringclasses
677 values
tree_hash
stringlengths
40
40
path
stringclasses
1 value
type
stringclasses
2 values
size
stringlengths
2
8
text
stringlengths
25
67.1M
package_name
stringlengths
2
41
repo
stringlengths
33
86
[ "MIT" ]
3.0.4
c0a87e41e018a0cb93b6670b7f0e40e6615e5cf8
code
9236
# # TEST 13H: square plate under harmonic loading. Modal model # Source code: [`TEST13H_mod_tut.jl`](TEST13H_mod_tut.jl) # ## Description # Harmonic forced vibration problem is solved for a homogeneous square plate, # simply-supported on the circumference. This is the TEST 13H from the Abaqus v # 6.12 Benchmarks manual. The test is recommended by the National Agency for # Finite Element Methods and Standards (U.K.): Test 13 from NAFEMS “Selected # Benchmarks for Forced Vibration,” R0016, March 1993. # The plate is discretized with hexahedral solid elements. The simple support # condition is approximated by distributed rollers on the boundary. Because # only the out of plane displacements are prevented, the structure has three # rigid body modes in the plane of the plate. # Homogeneous square plate, simply-supported on the circumference from the test # 13 from NAFEMS “Selected Benchmarks for Forced Vibration,” R0016, March 1993. # The nonzero benchmark frequencies are (in hertz): 2.377, 5.961, 5.961, 9.483, # 12.133, 12.133, 15.468, 15.468 [Hz]. # The magnitude of the displacement for the fundamental frequency (2.377 Hz) is # 45.42mm according to the reference solution. # ![](test13h_real_imag.png) # This is the so-called modal model: the response is expressed as a linear # combination of the eigenvectors. The finite element model is transformed into # the modal space. The reduced matrices are in fact diagonal for the Rayleigh # damping. The model natural frequencies can be evaluated fairly quickly, given # the small size of the model, and a lot more frequencies can therefore be # processed in the frequency sweep. # ## References # [1] NAFEMS “Selected Benchmarks for Forced Vibration,” R0016, March 1993. # ## Goals # - Show how to generate hexahedral mesh, mirroring and merging together parts. # - Execute frequency sweep using a modal model. ## # ## Definitions # Bring in required support. using FinEtools using FinEtools.AlgoBaseModule: matrix_blocked, vector_blocked using FinEtoolsDeforLinear using LinearAlgebra using Arpack # The input parameters come from [1]. E = 200*phun("GPa");# Young's modulus nu = 0.3;# Poisson ratio rho = 8000*phun("kg*m^-3");# mass density qmagn = 100.0*phun("Pa") L = 10.0*phun("m"); # side of the square plate t = 0.05*phun("m"); # thickness of the square plate nL = 16; nt = 4; tolerance = t/nt/100; frequencies = vcat(linearspace(0.0,2.377,150), linearspace(2.377,15.0,400)) # Compute the parameters of Rayleigh damping. For the two selected # frequencies we have the relationship between the damping ratio and # the Rayleigh parameters # # $\xi_m=a_0/\omega_m+a_1\omega_m$ # where $m=1,2$. Solving for the Rayleigh parameters $a_0,a_1$ yields: zeta1 = 0.02; zeta2 = 0.02; o1 = 2*pi*2.377; o2 = 2*pi*15.468; a0 = 2*(o1*o2)/(o2^2-o1^2)*(o2*zeta1-o1*zeta2);# a0 a1 = 2*(o1*o2)/(o2^2-o1^2)*(-1/o2*zeta1+1/o1*zeta2);# a1 ## # ## Discrete model # Generate the finite element domain as a block. fens,fes = H8block(L, L, t, nL, nL, nt) # Create the geometry field. geom = NodalField(fens.xyz) # Create the displacement field. Note that it holds complex numbers. u = NodalField(zeros(ComplexF64, size(fens.xyz,1), 3)) # displacement field # In order to apply the essential boundary conditions we need to select the # nodes along the side faces of the plate and support them in the Z direction. nl = selectnode(fens, box=[0.0 0.0 -Inf Inf -Inf Inf], inflate=tolerance) setebc!(u, nl, true, 3) nl = selectnode(fens, box=[L L -Inf Inf -Inf Inf], inflate=tolerance) setebc!(u, nl, true, 3) nl = selectnode(fens, box=[-Inf Inf 0.0 0.0 -Inf Inf], inflate=tolerance) setebc!(u, nl, true, 3) nl = selectnode(fens, box=[-Inf Inf L L -Inf Inf], inflate=tolerance) setebc!(u, nl, true, 3) # Those boundary conditions can now be applied to the displacement field,... applyebc!(u) # ... and the degrees of freedom can be numbered. numberdofs!(u) println("nfreedofs = $(nfreedofs(u))") # The model is three-dimensional. MR = DeforModelRed3D material = MatDeforElastIso(MR, rho, E, nu, 0.0) # Given how relatively thin the plate is we choose an effective element: the # mean-strain hexahedral element which is quite tolerant of the high aspect # ratio. femm = FEMMDeforLinearMSH8(MR, IntegDomain(fes, GaussRule(3,2)), material) # These elements require to know the geometry before anything else can be # computed using them in a finite element machine. Hence we first need to # associate the geometry with the FEMM. femm = associategeometry!(femm, geom) # Now we can calculate the stiffness matrix and the mass matrix: both evaluated # with the high-order Gauss rule. K = stiffness(femm, geom, u) femm = FEMMDeforLinear(MR, IntegDomain(fes, GaussRule(3,3)), material) M = mass(femm, geom, u) # The damping matrix is a linear combination of the mass matrix and the # stiffness matrix (Rayleigh model). C = a0*M + a1*K # Extract the free-free block of the matrices. M_ff = matrix_blocked(M, nfreedofs(u))[:ff] K_ff = matrix_blocked(K, nfreedofs(u))[:ff] C_ff = matrix_blocked(C, nfreedofs(u))[:ff] # Find the boundary finite elements on top of the plate. The uniform distributed # loading will be applied to these elements. bdryfes = meshboundary(fes) # Those facing up (in the positive Z direction) will be chosen: topbfl = selectelem(fens, bdryfes, facing=true, direction=[0.0 0.0 1.0]) # A base finite element model machine will be created to evaluate the loading. # The force intensity is created as driven by a function, but the function # really only just fills the buffer with the constant loading vector. function pfun(forceout::Vector{T}, XYZ, tangents, feid, qpid) where {T} forceout .= [0.0, 0.0, qmagn] return forceout end fi = ForceIntensity(Float64, 3, pfun); # The loading vector is lumped from the distributed uniform loading by # integrating on the boundary. Hence, the dimension of the integration domain # is 2. el1femm = FEMMBase(IntegDomain(subset(bdryfes,topbfl), GaussRule(2,2))) F = distribloads(el1femm, geom, u, fi, 2); F_f = vector_blocked(F, nfreedofs(u))[:f] ## # ## Transformation into the modal model # We will have to find the natural frequencies and mode shapes. Without much # justification, we picked 60 natural frequencies to include. Usually this # needs to be done carefully so that nothing important is missed. In this case # the number may be an overkill. OmegaShift = (0.01*2*pi)^2; # The frequency with which to shift neigvs = 60 t0 = time() evals, evecs, nconv = eigs(K_ff+OmegaShift*M_ff, M_ff; nev=neigvs, which=:SM) evals .-= OmegaShift @show tep = time() - t0 @show nconv == neigvs # Now the matrices are reduced. In fact, if we are sure of the diagonal # character of all these matrices, we can really only store diagonal # matrices and even the solve of the modal equations of motion becomes trivial. Mr = evecs' * M_ff * evecs Kr = evecs' * K_ff * evecs Cr = evecs' * C_ff * evecs # The loading also needs to be transformed (projected) into the modal vector # space. Fr = evecs' * F_f ## # ## Sweep through the frequencies # Sweep through the frequencies and calculate the complex displacement vector # for each of the frequencies from the complex balance equations of the # structure. # The entire solution will be stored in this array: U1 = zeros(ComplexF64, nfreedofs(u), length(frequencies)) print("Sweeping through $(length(frequencies)) frequencies\n") t0 = time() for k in eachindex(frequencies) f = frequencies[k]; omega = 2*pi*f; # Solve the reduced equations. Ur = (-omega^2*Mr + 1im*omega*Cr + Kr)\Fr; # Reconstruct the solution in the finite element space. U1[:, k] = evecs * Ur; print(".") end print("\nTime = $(time()-t0)\n") # Find the midpoint of the plate bottom surface. For this purpose the number of # elements along the edge of the plate needs to be divisible by two. midpoint = selectnode(fens, box=[L/2 L/2 L/2 L/2 0 0], inflate=tolerance); # Check that we found that node. @assert midpoint != [] # Extract the displacement component in the vertical direction (Z). midpointdof = u.dofnums[midpoint, 3] ## # ## Plot the results using Gnuplot # Plot the amplitude of the FRF. umidAmpl = abs.(U1[midpointdof, :])/phun("MM") @gp "set terminal windows 0 " :- @gp :- vec(frequencies) vec(umidAmpl) "lw 2 lc rgb 'red' with lines title 'Displacement of the corner' " :- @gp :- "set xlabel 'Frequency [Hz]'" :- @gp :- "set ylabel 'Midpoint displacement amplitude [mm]'" # Plot the FRF real and imaginary components. umidReal = real.(U1[midpointdof, :])/phun("MM") umidImag = imag.(U1[midpointdof, :])/phun("MM") @gp "set terminal windows 1 " :- @gp :- vec(frequencies) vec(umidReal) "lw 2 lc rgb 'red' with lines title 'Real' " :- @gp :- vec(frequencies) vec(umidImag) "lw 2 lc rgb 'blue' with lines title 'Imaginary' " :- @gp :- "set xlabel 'Frequency [Hz]'" :- @gp :- "set ylabel 'Midpoint displacement FRF [mm]'" # # Plot the shift of the FRF. umidPhase = atan.(umidImag, umidReal)/pi*180 @gp "set terminal windows 2 " :- @gp :- vec(frequencies) vec(umidPhase) "lw 2 lc rgb 'red' with lines title 'Phase shift' " :- @gp :- "set xlabel 'Frequency [Hz]'" :- @gp :- "set ylabel 'Phase shift [deg]'" true
FinEtoolsDeforLinear
https://github.com/PetrKryslUCSD/FinEtoolsDeforLinear.jl.git
[ "MIT" ]
3.0.4
c0a87e41e018a0cb93b6670b7f0e40e6615e5cf8
code
8630
# # TEST 13H: square plate under harmonic loading. Parallel execution. # Source code: [`TEST13H_par_tut.jl`](TEST13H_par_tut.jl) # ## Description # Harmonic forced vibration problem is solved for a homogeneous square plate, # simply-supported on the circumference. This is the TEST 13H from the Abaqus v # 6.12 Benchmarks manual. The test is recommended by the National Agency for # Finite Element Methods and Standards (U.K.): Test 13 from NAFEMS “Selected # Benchmarks for Forced Vibration,” R0016, March 1993. # The plate is discretized with hexahedral solid elements. The simple support # condition is approximated by distributed rollers on the boundary. Because # only the out of plane displacements are prevented, the structure has three # rigid body modes in the plane of the plate. # Homogeneous square plate, simply-supported on the circumference from the test # 13 from NAFEMS “Selected Benchmarks for Forced Vibration,” R0016, March 1993. # The nonzero benchmark frequencies are (in hertz): 2.377, 5.961, 5.961, 9.483, # 12.133, 12.133, 15.468, 15.468 [Hz]. # The magnitude of the displacement for the fundamental frequency (2.377 Hz) is # 45.42mm according to the reference solution. # ![](test13h_real_imag.png) # The harmonic response loop is processed with multiple threads. The algorithm # is embarrassingly parallel (i. e. no communication is required). Hence the # parallel execution is particularly simple. # ## References # [1] NAFEMS “Selected Benchmarks for Forced Vibration,” R0016, March 1993. # ## Goals # - Show how to generate hexahedral mesh, mirroring and merging together parts. # - Execute transient simulation by the trapezoidal-rule time stepping of [1]. ## # ## Definitions # Bring in required support. using FinEtools using FinEtools.AlgoBaseModule: matrix_blocked, vector_blocked using FinEtoolsDeforLinear using LinearAlgebra using Arpack # The input parameters come from [1]. E = 200*phun("GPa");# Young's modulus nu = 0.3;# Poisson ratio rho = 8000*phun("kg*m^-3");# mass density qmagn = 100.0*phun("Pa") L = 10.0*phun("m"); # side of the square plate t = 0.05*phun("m"); # thickness of the square plate nL = 16; nt = 4; tolerance = t/nt/100; frequencies = vcat(linearspace(0.0,2.377,15), linearspace(2.377,15.0,40)) # Compute the parameters of Rayleigh damping. For the two selected # frequencies we have the relationship between the damping ratio and # the Rayleigh parameters # # $\xi_m=a_0/\omega_m+a_1\omega_m$ # where $m=1,2$. Solving for the Rayleigh parameters $a_0,a_1$ yields: zeta1 = 0.02; zeta2 = 0.02; o1 = 2*pi*2.377; o2 = 2*pi*15.468; a0 = 2*(o1*o2)/(o2^2-o1^2)*(o2*zeta1-o1*zeta2);# a0 a1 = 2*(o1*o2)/(o2^2-o1^2)*(-1/o2*zeta1+1/o1*zeta2);# a1 ## # ## Discrete model # Generate the finite element domain as a block. fens,fes = H8block(L, L, t, nL, nL, nt) # Create the geometry field. geom = NodalField(fens.xyz) # Create the displacement field. Note that it holds complex numbers. u = NodalField(zeros(ComplexF64, size(fens.xyz,1), 3)) # displacement field # In order to apply the essential boundary conditions we need to select the # nodes along the side faces of the plate and support them in the Z direction. nl = selectnode(fens, box=[0.0 0.0 -Inf Inf -Inf Inf], inflate=tolerance) setebc!(u, nl, true, 3) nl = selectnode(fens, box=[L L -Inf Inf -Inf Inf], inflate=tolerance) setebc!(u, nl, true, 3) nl = selectnode(fens, box=[-Inf Inf 0.0 0.0 -Inf Inf], inflate=tolerance) setebc!(u, nl, true, 3) nl = selectnode(fens, box=[-Inf Inf L L -Inf Inf], inflate=tolerance) setebc!(u, nl, true, 3) # Those boundary conditions can now be applied to the displacement field,... applyebc!(u) # ... and the degrees of freedom can be numbered. numberdofs!(u) println("nfreedofs = $(nfreedofs(u))") # The model is three-dimensional. MR = DeforModelRed3D material = MatDeforElastIso(MR, rho, E, nu, 0.0) # Given how relatively thin the plate is we choose an effective element: the # mean-strain hexahedral element which is quite tolerant of the high aspect # ratio. femm = FEMMDeforLinearMSH8(MR, IntegDomain(fes, GaussRule(3,2)), material) # These elements require to know the geometry before anything else can be # computed using them in a finite element machine. Hence we first need to # associate the geometry with the FEMM. femm = associategeometry!(femm, geom) # Now we can calculate the stiffness matrix and the mass matrix: both evaluated # with the high-order Gauss rule. K = stiffness(femm, geom, u) femm = FEMMDeforLinear(MR, IntegDomain(fes, GaussRule(3,3)), material) M = mass(femm, geom, u) # The damping matrix is a linear combination of the mass matrix and the # stiffness matrix (Rayleigh model). C = a0*M + a1*K # Extract the free-free block of the matrices. M_ff = matrix_blocked(M, nfreedofs(u))[:ff] K_ff = matrix_blocked(K, nfreedofs(u))[:ff] C_ff = matrix_blocked(C, nfreedofs(u))[:ff] # Find the boundary finite elements on top of the plate. The uniform distributed # loading will be applied to these elements. bdryfes = meshboundary(fes) # Those facing up (in the positive Z direction) will be chosen: topbfl = selectelem(fens, bdryfes, facing=true, direction=[0.0 0.0 1.0]) # A base finite element model machine will be created to evaluate the loading. # The force intensity is created as driven by a function, but the function # really only just fills the buffer with the constant loading vector. function pfun(forceout::Vector{T}, XYZ, tangents, feid, qpid) where {T} forceout .= [0.0, 0.0, qmagn] return forceout end fi = ForceIntensity(Float64, 3, pfun); # The loading vector is lumped from the distributed uniform loading by # integrating on the boundary. Hence, the dimension of the integration domain # is 2. el1femm = FEMMBase(IntegDomain(subset(bdryfes,topbfl), GaussRule(2,2))) F = distribloads(el1femm, geom, u, fi, 2); F_f = vector_blocked(F, nfreedofs(u))[:f] ## # ## Sweep through the frequencies # Sweep through the frequencies and calculate the complex displacement vector # for each of the frequencies from the complex balance equations of the # structure. # The entire solution will be stored in this array: U1 = zeros(ComplexF64, nfreedofs(u), length(frequencies)) # It is best to prevent the BLAS library from using threads concurrently with # our own use of threads. The threads might easily become oversubscribed, with # attendant slowdown. LinearAlgebra.BLAS.set_num_threads(1) # We utilize all the threads with which Julia was started. We can select the # number of threads to use by running the executable as `julia -t n`, where `n` # is the number of threads. using Base.Threads print("Number of threads: $(nthreads())\n") print("Sweeping through $(length(frequencies)) frequencies\n") t0 = time() Threads.@threads for k in eachindex(frequencies) f = frequencies[k]; omega = 2*pi*f; U1[:, k] = (-omega^2*M_ff + 1im*omega*C_ff + K_ff)\F_f; print(".") end print("\nTime = $(time()-t0)\n") # On Windows the scaling is not great, which is not Julia's fault, but rather # the operating system's failing. Linux usually gives much greater speedups. # Find the midpoint of the plate bottom surface. For this purpose the number of # elements along the edge of the plate needs to be divisible by two. midpoint = selectnode(fens, box=[L/2 L/2 L/2 L/2 0 0], inflate=tolerance); # Check that we found that node. @assert midpoint != [] # Extract the displacement component in the vertical direction (Z). midpointdof = u.dofnums[midpoint, 3] ## # ## Plot the results using Gnuplot # Plot the amplitude of the FRF. umidAmpl = abs.(U1[midpointdof, :])/phun("MM") @gp "set terminal windows 0 " :- @gp :- vec(frequencies) vec(umidAmpl) "lw 2 lc rgb 'red' with lines title 'Displacement of the corner' " :- @gp :- "set xlabel 'Frequency [Hz]'" :- @gp :- "set ylabel 'Midpoint displacement amplitude [mm]'" # Plot the FRF real and imaginary components. umidReal = real.(U1[midpointdof, :])/phun("MM") umidImag = imag.(U1[midpointdof, :])/phun("MM") @gp "set terminal windows 1 " :- @gp :- vec(frequencies) vec(umidReal) "lw 2 lc rgb 'red' with lines title 'Real' " :- @gp :- vec(frequencies) vec(umidImag) "lw 2 lc rgb 'blue' with lines title 'Imaginary' " :- @gp :- "set xlabel 'Frequency [Hz]'" :- @gp :- "set ylabel 'Midpoint displacement FRF [mm]'" # # Plot the shift of the FRF. umidPhase = atan.(umidImag, umidReal)/pi*180 @gp "set terminal windows 2 " :- @gp :- vec(frequencies) vec(umidPhase) "lw 2 lc rgb 'red' with lines title 'Phase shift' " :- @gp :- "set xlabel 'Frequency [Hz]'" :- @gp :- "set ylabel 'Phase shift [deg]'" true
FinEtoolsDeforLinear
https://github.com/PetrKryslUCSD/FinEtoolsDeforLinear.jl.git
[ "MIT" ]
3.0.4
c0a87e41e018a0cb93b6670b7f0e40e6615e5cf8
code
7759
# # TEST 13H: square plate under harmonic loading # Source code: [`TEST13H_tut.jl`](TEST13H_tut.jl) # ## Description # Harmonic forced vibration problem is solved for a homogeneous square plate, # simply-supported on the circumference. This is the TEST 13H from the Abaqus v # 6.12 Benchmarks manual. The test is recommended by the National Agency for # Finite Element Methods and Standards (U.K.): Test 13 from NAFEMS “Selected # Benchmarks for Forced Vibration,” R0016, March 1993. # The plate is discretized with hexahedral solid elements. The simple support # condition is approximated by distributed rollers on the boundary. Because # only the out of plane displacements are prevented, the structure has three # rigid body modes in the plane of the plate. # Homogeneous square plate, simply-supported on the circumference from the test # 13 from NAFEMS “Selected Benchmarks for Forced Vibration,” R0016, March 1993. # The nonzero benchmark frequencies are (in hertz): 2.377, 5.961, 5.961, 9.483, # 12.133, 12.133, 15.468, 15.468 [Hz]. # The magnitude of the displacement for the fundamental frequency (2.377 Hz) is # 45.42mm according to the reference solution. # ![](test13h_real_imag.png) # ## References # [1] NAFEMS “Selected Benchmarks for Forced Vibration,” R0016, March 1993. # ## Goals # - Show how to generate hexahedral mesh, mirroring and merging together parts. # - Execute transient simulation by the trapezoidal-rule time stepping of [1]. ## # ## Definitions # Bring in required support. using FinEtools using FinEtools.AlgoBaseModule: matrix_blocked, vector_blocked using FinEtoolsDeforLinear using LinearAlgebra using Arpack # The input parameters come from [1]. E = 200*phun("GPa");# Young's modulus nu = 0.3;# Poisson ratio rho = 8000*phun("kg*m^-3");# mass density qmagn = 100.0*phun("Pa") L = 10.0*phun("m"); # side of the square plate t = 0.05*phun("m"); # thickness of the square plate nL = 16; nt = 4; tolerance = t/nt/100; frequencies = vcat(linearspace(0.0,2.377,15), linearspace(2.377,15.0,40)) # Compute the parameters of Rayleigh damping. For the two selected # frequencies we have the relationship between the damping ratio and # the Rayleigh parameters # # $\xi_m=a_0/\omega_m+a_1\omega_m$ # where $m=1,2$. Solving for the Rayleigh parameters $a_0,a_1$ yields: zeta1 = 0.02; zeta2 = 0.02; o1 = 2*pi*2.377; o2 = 2*pi*15.468; a0 = 2*(o1*o2)/(o2^2-o1^2)*(o2*zeta1-o1*zeta2);# a0 a1 = 2*(o1*o2)/(o2^2-o1^2)*(-1/o2*zeta1+1/o1*zeta2);# a1 ## # ## Discrete model # Generate the finite element domain as a block. fens,fes = H8block(L, L, t, nL, nL, nt) # Create the geometry field. geom = NodalField(fens.xyz) # Create the displacement field. Note that it holds complex numbers. u = NodalField(zeros(ComplexF64, size(fens.xyz,1), 3)) # displacement field # In order to apply the essential boundary conditions we need to select the # nodes along the side faces of the plate and support them in the Z direction. nl = selectnode(fens, box=[0.0 0.0 -Inf Inf -Inf Inf], inflate=tolerance) setebc!(u, nl, true, 3) nl = selectnode(fens, box=[L L -Inf Inf -Inf Inf], inflate=tolerance) setebc!(u, nl, true, 3) nl = selectnode(fens, box=[-Inf Inf 0.0 0.0 -Inf Inf], inflate=tolerance) setebc!(u, nl, true, 3) nl = selectnode(fens, box=[-Inf Inf L L -Inf Inf], inflate=tolerance) setebc!(u, nl, true, 3) # Those boundary conditions can now be applied to the displacement field,... applyebc!(u) # ... and the degrees of freedom can be numbered. numberdofs!(u) println("nfreedofs = $(nfreedofs(u))") # The model is three-dimensional. MR = DeforModelRed3D material = MatDeforElastIso(MR, rho, E, nu, 0.0) # Given how relatively thin the plate is we choose an effective element: the # mean-strain hexahedral element which is quite tolerant of the high aspect # ratio. femm = FEMMDeforLinearMSH8(MR, IntegDomain(fes, GaussRule(3,2)), material) # These elements require to know the geometry before anything else can be # computed using them in a finite element machine. Hence we first need to # associate the geometry with the FEMM. femm = associategeometry!(femm, geom) # Now we can calculate the stiffness matrix and the mass matrix: both evaluated # with the high-order Gauss rule. K = stiffness(femm, geom, u) femm = FEMMDeforLinear(MR, IntegDomain(fes, GaussRule(3,3)), material) M = mass(femm, geom, u) # The damping matrix is a linear combination of the mass matrix and the # stiffness matrix (Rayleigh model). C = a0*M + a1*K # Extract the free-free block of the matrices. M_ff = matrix_blocked(M, nfreedofs(u))[:ff] K_ff = matrix_blocked(K, nfreedofs(u))[:ff] C_ff = matrix_blocked(C, nfreedofs(u))[:ff] # Find the boundary finite elements on top of the plate. The uniform distributed # loading will be applied to these elements. bdryfes = meshboundary(fes) # Those facing up (in the positive Z direction) will be chosen: topbfl = selectelem(fens, bdryfes, facing=true, direction=[0.0 0.0 1.0]) # A base finite element model machine will be created to evaluate the loading. # The force intensity is created as driven by a function, but the function # really only just fills the buffer with the constant loading vector. function pfun(forceout::Vector{T}, XYZ, tangents, feid, qpid) where {T} forceout .= [0.0, 0.0, qmagn] return forceout end fi = ForceIntensity(Float64, 3, pfun); # The loading vector is lumped from the distributed uniform loading by # integrating on the boundary. Hence, the dimension of the integration domain # is 2. el1femm = FEMMBase(IntegDomain(subset(bdryfes,topbfl), GaussRule(2,2))) F = distribloads(el1femm, geom, u, fi, 2); F_f = vector_blocked(F, nfreedofs(u))[:f] ## # ## Sweep through the frequencies # Sweep through the frequencies and calculate the complex displacement vector # for each of the frequencies from the complex balance equations of the # structure. # The entire solution will be stored in this array: U1 = zeros(ComplexF64, nfreedofs(u), length(frequencies)) print("Sweeping through $(length(frequencies)) frequencies\n") t0 = time() for k in eachindex(frequencies) f = frequencies[k]; omega = 2*pi*f; U1[:, k] = (-omega^2*M_ff + 1im*omega*C_ff + K_ff)\F_f; print(".") end print("\nTime = $(time()-t0)\n") # Find the midpoint of the plate bottom surface. For this purpose the number of # elements along the edge of the plate needs to be divisible by two. midpoint = selectnode(fens, box=[L/2 L/2 L/2 L/2 0 0], inflate=tolerance); # Check that we found that node. @assert midpoint != [] # Extract the displacement component in the vertical direction (Z). midpointdof = u.dofnums[midpoint, 3] ## # ## Plot the results using Gnuplot # Plot the amplitude of the FRF. umidAmpl = abs.(U1[midpointdof, :])/phun("MM") @gp "set terminal windows 0 " :- @gp :- vec(frequencies) vec(umidAmpl) "lw 2 lc rgb 'red' with lines title 'Displacement of the corner' " :- @gp :- "set xlabel 'Frequency [Hz]'" :- @gp :- "set ylabel 'Midpoint displacement amplitude [mm]'" # Plot the FRF real and imaginary components. umidReal = real.(U1[midpointdof, :])/phun("MM") umidImag = imag.(U1[midpointdof, :])/phun("MM") @gp "set terminal windows 1 " :- @gp :- vec(frequencies) vec(umidReal) "lw 2 lc rgb 'red' with lines title 'Real' " :- @gp :- vec(frequencies) vec(umidImag) "lw 2 lc rgb 'blue' with lines title 'Imaginary' " :- @gp :- "set xlabel 'Frequency [Hz]'" :- @gp :- "set ylabel 'Midpoint displacement FRF [mm]'" # # Plot the shift of the FRF. umidPhase = atan.(umidImag, umidReal)/pi*180 @gp "set terminal windows 2 " :- @gp :- vec(frequencies) vec(umidPhase) "lw 2 lc rgb 'red' with lines title 'Phase shift' " :- @gp :- "set xlabel 'Frequency [Hz]'" :- @gp :- "set ylabel 'Phase shift [deg]'" true
FinEtoolsDeforLinear
https://github.com/PetrKryslUCSD/FinEtoolsDeforLinear.jl.git
[ "MIT" ]
3.0.4
c0a87e41e018a0cb93b6670b7f0e40e6615e5cf8
code
6733
# # Beam under on/off loading: transient response # Source code: [`beam_load_on_off_tut.jl`](beam_load_on_off_tut.jl) # ## Description # A cantilever beam is loaded by a trapezoidal-pulse traction load at its free # cross-section. The load is applied within 0.015 seconds and taken off after # 0.37 seconds. The beam oscillates about its equilibrium configuration. # The beam is modeled as a solid. Trapezoidal rule is used to integrate the # equations of motion in time. Rayleigh mass- and stiffness-proportional # damping is incorporated. The dynamic stiffness is factorized for efficiency. # ![](beam_load_on_off_tut.png) # ## Goals # - Show how to create the discrete model, with implicit dynamics and proportional damping. # - Apply distributed loading varying in time. # - Demonstrate trapezoidal-rule time stepping. ## # ## Definitions # Basic imports. using LinearAlgebra using Arpack # This is the finite element toolkit itself. using FinEtools using FinEtools.AlgoBaseModule: matrix_blocked, vector_blocked # The linear stress analysis application is implemented in this package. using FinEtoolsDeforLinear using FinEtoolsDeforLinear.AlgoDeforLinearModule # Input parameters E = 205000*phun("MPa");# Young's modulus nu = 0.3;# Poisson ratio rho = 7850*phun("KG*M^-3");# mass density loss_tangent = 0.005; L = 200*phun("mm"); W = 4*phun("mm"); H = 8*phun("mm"); tolerance = W/500; qmagn = 0.1*phun("MPa"); tend = 0.5*phun("SEC"); ## # ## Create the discrete model MR = DeforModelRed3D fens,fes = H8block(L, W, H, 50, 2, 4) geom = NodalField(fens.xyz) u = NodalField(zeros(size(fens.xyz,1),3)) # displacement field nl = selectnode(fens, box=[L L -Inf Inf -Inf Inf], inflate=tolerance) setebc!(u, nl, true, 1) setebc!(u, nl, true, 2) setebc!(u, nl, true, 3) applyebc!(u) numberdofs!(u) corner = selectnode(fens, nearestto=[0 0 0]) cornerzdof = u.dofnums[corner[1], 3] material = MatDeforElastIso(MR, rho, E, nu, 0.0) femm = FEMMDeforLinearMSH8(MR, IntegDomain(fes, GaussRule(3,2)), material) femm = associategeometry!(femm, geom) K = stiffness(femm, geom, u) femm = FEMMDeforLinear(MR, IntegDomain(fes, GaussRule(3,3)), material) M = mass(femm, geom, u) # Extract the free-free block of the matrices. M_ff = matrix_blocked(M, nfreedofs(u))[:ff] K_ff = matrix_blocked(K, nfreedofs(u))[:ff] # Find the boundary finite elements at the tip cross-section of the beam. The # uniform distributed loading will be applied to these elements. bdryfes = meshboundary(fes) # Those facing in the positive X direction will be chosen: tipbfl = selectelem(fens, bdryfes, facing=true, direction=[-1.0 0.0 0.0]) # A base finite element model machine will be created to evaluate the loading. # The force intensity is created as driven by a function, but the function # really only just fills the buffer with the constant loading vector. function pfun(forceout::Vector{T}, XYZ, tangents, feid, qpid) where {T} forceout .= [0.0, 0.0, qmagn] return forceout end fi = ForceIntensity(Float64, 3, pfun); # The loading vector is lumped from the distributed uniform loading by # integrating on the boundary. Hence, the dimension of the integration domain # is 2. el1femm = FEMMBase(IntegDomain(subset(bdryfes,tipbfl), GaussRule(2,2))) F = distribloads(el1femm, geom, u, fi, 2); F_f, F_d = vector_blocked(F, nfreedofs(u))[(:f, :d)] # The loading function is defined as a time -dependent multiplier of the # constant distribution of the loading on the structure. function tmult(t) if (t <= 0.015) t/0.015 else if (t >= 0.4) 0.0 else if (t <= 0.385) 1.0 else (t - 0.4)/(0.385 - 0.4) end end end end ## # ## Time step determination # We figure out the fundamental mode frequency, which will determine the time # step is a fraction of the period. evals, evecs = eigs(K_ff, M_ff; nev=1, which=:SM); # The fundamental angular frequency is then: omega_f = real(sqrt(evals[1])); # We take the time step to be a fraction of the period of vibration in the # fundamental mode. @show dt = 0.05 * 1/(omega_f/2/pi); ## # ## Damping model # We take the damping to be representative of what's happening at the # fundamental vibration frequency. # For a given loss factor at a certain frequency $\omega_f$, the # stiffness-proportional damping coefficient may be estimated as # 2*loss_tangent/$\omega_f$, and the mass-proportional damping coefficient may be # estimated as 2*loss_tangent*$\omega_f$. Rayleigh_mass = (loss_tangent/2)*omega_f; Rayleigh_stiffness = (loss_tangent/2)/omega_f; # Now we construct the Rayleigh damping matrix as a linear combination of the # stiffness and mass matrices. C_ff = Rayleigh_stiffness * K_ff + Rayleigh_mass * M_ff # The time stepping loop is protected by `let end` to avoid unpleasant surprises # with variables getting clobbered by globals. ts, corneruzs = let dt = dt, F_f = F_f # Initial displacement, velocity, and acceleration. U0 = gathersysvec(u) v = deepcopy(u) V0 = gathersysvec(v) U1 = fill(0.0, length(V0)) V1 = fill(0.0, length(V0)) F0 = deepcopy(F_f) F1 = fill(0.0, length(F0)) R = fill(0.0, length(F0)) # Factorize the dynamic stiffness DSF = cholesky((M_ff + (dt/2)*C_ff + ((dt/2)^2)*K_ff)) # The times and displacements of the corner will be collected into two vectors ts = Float64[] corneruzs = Float64[] # Let us begin the time integration loop: t = 0.0; step = 0; F0 .= tmult(t) .* F_f while t < tend push!(ts, t) push!(corneruzs, U0[cornerzdof]) t = t+dt; step = step + 1; (mod(step,100)==0) && println("Step $(step): $(t)") # Set the time-dependent load F1 .= tmult(t) .* F_f # Compute the out of balance force. R .= (M_ff*V0 - C_ff*(dt/2*V0) - K_ff*((dt/2)^2*V0 + dt*U0) + (dt/2)*(F0+F1)); # Calculate the new velocities. V1 = DSF\R; # Update the velocities. U1 = U0 + (dt/2)*(V0+V1); # Switch the temporary vectors for the next step. U0, U1 = U1, U0; V0, V1 = V1, V0; F0, F1 = F1, F0; if (t == tend) # Are we done yet? break; end if (t+dt > tend) # Adjust the last time step so that we exactly reach tend dt = tend-t; end end ts, corneruzs # return the collected results end ## # ## Plot the results using Gnuplot @gp "set terminal windows 0 " :- @gp :- ts corneruzs./phun("mm") "lw 2 lc rgb 'red' with lines title 'Displacement of the corner' " @gp :- "set xlabel 'Time [s]'" @gp :- "set ylabel 'Displacement [mm]'" # The end. true
FinEtoolsDeforLinear
https://github.com/PetrKryslUCSD/FinEtoolsDeforLinear.jl.git
[ "MIT" ]
3.0.4
c0a87e41e018a0cb93b6670b7f0e40e6615e5cf8
code
4515
# # Tracking transient deformation of a cantilever beam: centered difference # Source code: [`bending_wave_Ray_expl_cd_tut.jl`](bending_wave_Ray_expl_cd_tut.jl) # ## Description # A cantilever beam is given an initial velocity and then at time 0.0 it is # suddenly stopped by fixing one of its ends. This sends a wave down the beam. # The beam is modeled as a solid. Trapezoidal rule is used to integrate the # equations of motion in time. No damping is present. # ## Goals # - Show how to create the discrete model for explicit dynamics. # - Demonstrate centered difference time stepping. ## # ## Definitions # Basic imports. using LinearAlgebra using Arpack # This is the finite element toolkit itself. using FinEtools using FinEtools.AlgoBaseModule: matrix_blocked, vector_blocked # The linear stress analysis application is implemented in this package. using FinEtoolsDeforLinear using FinEtoolsDeforLinear.AlgoDeforLinearModule # Input parameters E = 205000*phun("MPa");# Young's modulus nu = 0.3;# Poisson ratio rho = 7850*phun("KG*M^-3");# mass density loss_tangent = 0.0001; frequency = 1/0.0058; Rayleigh_mass = 2*loss_tangent*(2*pi*frequency); L = 200*phun("mm"); W = 4*phun("mm"); H = 8*phun("mm"); tolerance = W/500; vmag = 0.1*phun("m")/phun("SEC"); tend = 0.013*phun("SEC"); ## # ## Create the discrete model MR = DeforModelRed3D fens,fes = H8block(L,W,H, 50,1,4) geom = NodalField(fens.xyz) u = NodalField(zeros(size(fens.xyz,1),3)) # displacement field nl = selectnode(fens, box=[L L -Inf Inf -Inf Inf], inflate=tolerance) setebc!(u, nl, true, 1) setebc!(u, nl, true, 2) setebc!(u, nl, true, 3) applyebc!(u) numberdofs!(u) corner = selectnode(fens, nearestto=[0 0 0]) cornerzdof = u.dofnums[corner[1], 3] material = MatDeforElastIso(MR, rho, E, nu, 0.0) femm = FEMMDeforLinear(MR, IntegDomain(fes, GaussRule(3,2)), material) femm = associategeometry!(femm, geom) K = stiffness(femm, geom, u) # Assemble the mass matrix as diagonal. The HRZ lumping technique is # applied through the assembler of the sparse matrix. hrzass = SysmatAssemblerSparseHRZLumpingSymm(0.0) femm = FEMMDeforLinear(MR, IntegDomain(fes, GaussRule(3,3)), material) M = mass(femm, hrzass, geom, u) # Extract the free-free block of the matrices. M_ff = matrix_blocked(M, nfreedofs(u))[:ff] K_ff = matrix_blocked(K, nfreedofs(u))[:ff] # Form the damping matrix. C_ff = Rayleigh_mass * M_ff # Figure out the highest frequency in the model, and use a time step that is # considerably larger than the period of that highest frequency. evals, evecs = eigs(K_ff, M_ff; nev=1, which=:LM); @show dt = 0.99 * 2/real(sqrt(evals[1])); # The time stepping loop is protected by `let end` to avoid unpleasant surprises # with variables getting clobbered by globals. ts, corneruzs = let dt = dt # Initial displacement, velocity, and acceleration. U0 = gathersysvec(u) v = deepcopy(u) v.values[:, 3] .= vmag V0 = gathersysvec(v) F1 = fill(0.0, length(V0)) U1 = fill(0.0, length(V0)) V1 = fill(0.0, length(V0)) A0 = fill(0.0, length(V0)) A1 = fill(0.0, length(V0)) # The times and displacements of the corner will be collected into two vectors ts = Float64[] corneruzs = Float64[] # Let us begin the time integration loop: t = 0.0; step = 0; while t < tend push!(ts, t) push!(corneruzs, U0[cornerzdof]) t = t+dt; step = step + 1; (mod(step,1000)==0) && println("Step $(step): $(t)") # Zero out the load fill!(F1, 0.0); # Initial acceleration if step == 1 A0 = M_ff \ (F1) end # Update displacement. @. U1 = U0 + dt*V0 + (dt^2/2)*A0; # Compute updated acceleration. A1 .= M_ff \ (-K_ff*U1 + F1) # Update the velocities. @. V1 = V0 + (dt/2)*(A0 + A1) # Switch the temporary vectors for the next step. U0, U1 = U1, U0; V0, V1 = V1, V0; A0, A1 = A1, A0; if (t == tend) # Are we done yet? break; end if (t+dt > tend) # Adjust the last time step so that we exactly reach tend dt = tend-t; end end ts, corneruzs # return the collected results end ## # ## Plot the results using Gnuplot @gp "set terminal windows 4 " :- @gp :- ts corneruzs./phun("mm") "lw 2 lc rgb 'red' with lines title 'Displacement of the corner' " @gp :- "set xlabel 'Time [s]'" @gp :- "set ylabel 'Displacement [mm]'" # The end. true
FinEtoolsDeforLinear
https://github.com/PetrKryslUCSD/FinEtoolsDeforLinear.jl.git
[ "MIT" ]
3.0.4
c0a87e41e018a0cb93b6670b7f0e40e6615e5cf8
code
5189
# # Tracking transient deformation of a cantilever beam: lumped mass # Source code: [`bending_wave_Ray_lumped_tut.jl`](bending_wave_Ray_lumped_tut.jl) # ## Description # A cantilever beam is given an initial velocity and then at time 0.0 it is # suddenly stopped by fixing one of its ends. This sends a wave down the beam. # The beam is modeled as a solid. Trapezoidal rule is used to integrate the # equations of motion in time. Rayleigh mass-proportional damping is # incorporated. The dynamic stiffness is factorized for efficiency. # ## Goals # - Show how to create the discrete model for implicit dynamics. # - Demonstrate trapezoidal-rule time stepping. ## # ## Definitions # Basic imports. using LinearAlgebra using Arpack # This is the finite element toolkit itself. using FinEtools using FinEtools.AlgoBaseModule: matrix_blocked, vector_blocked # The linear stress analysis application is implemented in this package. using FinEtoolsDeforLinear using FinEtoolsDeforLinear.AlgoDeforLinearModule # Input parameters E = 205000*phun("MPa");# Young's modulus nu = 0.3;# Poisson ratio rho = 7850*phun("KG*M^-3");# mass density loss_tangent = 0.0001; frequency = 1/0.0058; Rayleigh_mass = 2*loss_tangent*(2*pi*frequency); L = 200*phun("mm"); W = 4*phun("mm"); H = 8*phun("mm"); tolerance = W/500; vmag = 0.1*phun("m")/phun("SEC"); tend = 0.013*phun("SEC"); ## # ## Create the discrete model MR = DeforModelRed3D fens,fes = H8block(L,W,H, 50,1,4) geom = NodalField(fens.xyz) u = NodalField(zeros(size(fens.xyz,1),3)) # displacement field nl = selectnode(fens, box=[L L -Inf Inf -Inf Inf], inflate=tolerance) setebc!(u, nl, true, 1) setebc!(u, nl, true, 2) setebc!(u, nl, true, 3) applyebc!(u) numberdofs!(u) corner = selectnode(fens, nearestto=[0 0 0]) cornerzdof = u.dofnums[corner[1], 3] material = MatDeforElastIso(MR, rho, E, nu, 0.0) femm = FEMMDeforLinear(MR, IntegDomain(fes, GaussRule(3,2)), material) femm = associategeometry!(femm, geom) K = stiffness(femm, geom, u) # Assemble the mass matrix as diagonal. The HRZ lumping technique is # applied through the assembler of the sparse matrix. hrzass = SysmatAssemblerSparseHRZLumpingSymm(0.0) femm = FEMMDeforLinear(MR, IntegDomain(fes, GaussRule(3,3)), material) M = mass(femm, hrzass, geom, u) # Extract the free-free block of the matrices. M_ff = matrix_blocked(M, nfreedofs(u))[:ff] K_ff = matrix_blocked(K, nfreedofs(u))[:ff] # Check visually that the mass matrix is in fact diagonal. We use # the `findnz` function to retrieve the nonzeros in the matrix. # Each such entry is then plotted as a point. using Gnuplot using SparseArrays I, J, V = findnz(M_ff) @gp "set terminal windows 1 " :- @gp :- J I "with p" :- @gp :- "set xlabel 'Column'" "set xrange [1:$(size(M_ff, 2))] " :- @gp :- "set ylabel 'Row'" "set yrange [$(size(M_ff, 1)):1] " # Find the relationship of the sum of all the elements of the # mass matrix and the total mass of the structure. @show sum(sum(M_ff)) @show L*W*H*rho # Form the damping matrix. C_ff = Rayleigh_mass * M_ff # Figure out the highest frequency in the model, and use a time step that is # considerably larger than the period of that highest frequency. evals, evecs = eigs(K_ff, M_ff; nev=1, which=:LM); @show dt = 350 * 2/real(sqrt(evals[1])); # The time stepping loop is protected by `let end` to avoid unpleasant surprises # with variables getting clobbered by globals. ts, corneruzs = let dt = dt # Initial displacement, velocity, and acceleration. U0 = gathersysvec(u) v = deepcopy(u) v.values[:, 3] .= vmag V0 = gathersysvec(v) F0 = fill(0.0, length(V0)) U1 = fill(0.0, length(V0)) V1 = fill(0.0, length(V0)) F1 = fill(0.0, length(V0)) R = fill(0.0, length(V0)) # Factorize the dynamic stiffness DSF = cholesky((M_ff + (dt/2)*C_ff + ((dt/2)^2)*K_ff)) # The times and displacements of the corner will be collected into two vectors ts = Float64[] corneruzs = Float64[] # Let us begin the time integration loop: t = 0.0; step = 0; while t < tend push!(ts, t) push!(corneruzs, U0[cornerzdof]) t = t+dt; step = step + 1; (mod(step,25)==0) && println("Step $(step): $(t)") # Zero out the load fill!(F1, 0.0); # Compute the out of balance force. R = (M_ff*V0 - C_ff*(dt/2*V0) - K_ff*((dt/2)^2*V0 + dt*U0) + (dt/2)*(F0+F1)); # Calculate the new velocities. V1 = DSF\R; # Update the velocities. U1 = U0 + (dt/2)*(V0+V1); # Switch the temporary vectors for the next step. U0, U1 = U1, U0; V0, V1 = V1, V0; F0, F1 = F1, F0; if (t == tend) # Are we done yet? break; end if (t+dt > tend) # Adjust the last time step so that we exactly reach tend dt = tend-t; end end ts, corneruzs # return the collected results end ## # ## Plot the results using Gnuplot @gp "set terminal windows 0 " :- @gp :- ts corneruzs./phun("mm") "lw 2 lc rgb 'red' with lines title 'Displacement of the corner' " @gp :- "set xlabel 'Time [s]'" @gp :- "set ylabel 'Displacement [mm]'" # The end. true
FinEtoolsDeforLinear
https://github.com/PetrKryslUCSD/FinEtoolsDeforLinear.jl.git
[ "MIT" ]
3.0.4
c0a87e41e018a0cb93b6670b7f0e40e6615e5cf8
code
4653
# # Tracking transient deformation of a cantilever beam # Source code: [`bending_wave_Ray_tut.jl`](bending_wave_Ray_tut.jl) # ## Description # A cantilever beam is given an initial velocity and then at time 0.0 it is # suddenly stopped by fixing one of its ends. This sends a wave down the beam. # The beam is modeled as a solid. Consistent mass matrix is used. # Trapezoidal rule is used to integrate the # equations of motion in time. Rayleigh mass-proportional damping is # incorporated. The dynamic stiffness is factorized for efficiency. # Deflection at the free end will look like this: # ![](bending_wave_Ray.png) # ## Goals # - Show how to create the discrete model. # - Demonstrate trapezoidal-rule time stepping. ## # ## Definitions # Basic imports. using LinearAlgebra using Arpack # This is the finite element toolkit itself. using FinEtools using FinEtools.AlgoBaseModule: matrix_blocked, vector_blocked # The linear stress analysis application is implemented in this package. using FinEtoolsDeforLinear using FinEtoolsDeforLinear.AlgoDeforLinearModule # Input parameters E = 205000*phun("MPa");# Young's modulus nu = 0.3;# Poisson ratio rho = 7850*phun("KG*M^-3");# mass density loss_tangent = 0.0001; frequency = 1/0.0058; Rayleigh_mass = 2*loss_tangent*(2*pi*frequency); L = 200*phun("mm"); W = 4*phun("mm"); H = 8*phun("mm"); tolerance = W/500; vmag = 0.1*phun("m")/phun("SEC"); tend = 0.013*phun("SEC"); ## # ## Create the discrete model MR = DeforModelRed3D fens,fes = H8block(L,W,H, 50,1,4) geom = NodalField(fens.xyz) u = NodalField(zeros(size(fens.xyz,1),3)) # displacement field nl = selectnode(fens, box=[L L -Inf Inf -Inf Inf], inflate=tolerance) setebc!(u, nl, true, 1) setebc!(u, nl, true, 2) setebc!(u, nl, true, 3) applyebc!(u) numberdofs!(u) corner = selectnode(fens, nearestto=[0 0 0]) cornerzdof = u.dofnums[corner[1], 3] material = MatDeforElastIso(MR, rho, E, nu, 0.0) femm = FEMMDeforLinear(MR, IntegDomain(fes, GaussRule(3,2)), material) femm = associategeometry!(femm, geom) K = stiffness(femm, geom, u) femm = FEMMDeforLinear(MR, IntegDomain(fes, GaussRule(3,3)), material) M = mass(femm, geom, u) # Extract the free-free block of the matrices. M_ff = matrix_blocked(M, nfreedofs(u))[:ff] K_ff = matrix_blocked(K, nfreedofs(u))[:ff] # Find the relationship of the sum of all the elements of the # mass matrix and the total mass of the structure. @show sum(sum(M_ff)) @show L*W*H*rho # Form the damping matrix. C_ff = Rayleigh_mass * M_ff # Figure out the highest frequency in the model, and use a time step that is # considerably larger than the period of that highest frequency. evals, evecs = eigs(K_ff, M_ff; nev=1, which=:LM); @show dt = 350 * 2/real(sqrt(evals[1])); # The time stepping loop is protected by `let end` to avoid unpleasant surprises # with variables getting clobbered by globals. ts, corneruzs = let dt = dt # Initial displacement, velocity, and acceleration. U0 = gathersysvec(u) v = deepcopy(u) v.values[:, 3] .= vmag V0 = gathersysvec(v) F0 = fill(0.0, length(V0)) U1 = fill(0.0, length(V0)) V1 = fill(0.0, length(V0)) F1 = fill(0.0, length(V0)) R = fill(0.0, length(V0)) # Factorize the dynamic stiffness DSF = cholesky((M_ff + (dt/2)*C_ff + ((dt/2)^2)*K_ff)) # The times and displacements of the corner will be collected into two vectors ts = Float64[] corneruzs = Float64[] # Let us begin the time integration loop: t = 0.0; step = 0; while t < tend push!(ts, t) push!(corneruzs, U0[cornerzdof]) t = t+dt; step = step + 1; (mod(step,25)==0) && println("Step $(step): $(t)") # Zero out the load fill!(F1, 0.0); # Compute the out of balance force. R = (M_ff*V0 - C_ff*(dt/2*V0) - K_ff*((dt/2)^2*V0 + dt*U0) + (dt/2)*(F0+F1)); # Calculate the new velocities. V1 = DSF\R; # Update the velocities. U1 = U0 + (dt/2)*(V0+V1); # Switch the temporary vectors for the next step. U0, U1 = U1, U0; V0, V1 = V1, V0; F0, F1 = F1, F0; if (t == tend) # Are we done yet? break; end if (t+dt > tend) # Adjust the last time step so that we exactly reach tend dt = tend-t; end end ts, corneruzs # return the collected results end ## # ## Plot the results using Gnuplot @gp "set terminal windows 0 " :- @gp :- ts corneruzs./phun("mm") "lw 2 lc rgb 'red' with lines title 'Displacement of the corner' " @gp :- "set xlabel 'Time [s]'" @gp :- "set ylabel 'Displacement [mm]'" # The end. true
FinEtoolsDeforLinear
https://github.com/PetrKryslUCSD/FinEtoolsDeforLinear.jl.git
[ "MIT" ]
3.0.4
c0a87e41e018a0cb93b6670b7f0e40e6615e5cf8
code
183
using Literate for t in readdir(".") if occursin(r".*_tut.jl", t) println("\nTutorial $t in $(pwd())\n") Literate.markdown(t, "."; documenter=false); end end
FinEtoolsDeforLinear
https://github.com/PetrKryslUCSD/FinEtoolsDeforLinear.jl.git
[ "MIT" ]
3.0.4
c0a87e41e018a0cb93b6670b7f0e40e6615e5cf8
code
4448
# # Suddenly-stopped bar: Centered difference explicit # Source code: [`sudden_stop_expl_cd_tut.jl`](sudden_stop_expl_cd_tut.jl) # ## Description # A bar is given an initial velocity and then at time 0.0 it is # suddenly stopped by fixing one of its ends. This sends a wave down the bar. # The output of the simulation is the velocity, which tends to reproduce # the rectangular pulses in which the velocity bounces back and forth. # The beam is modeled as a solid. The classical centered difference # rule is used to integrate the # equations of motion in time. No damping is present. # ## Goals # - Show how to create the discrete model for explicit dynamics. # - Demonstrate centered difference explicit time stepping. ## # ## Definitions # Basic imports. using LinearAlgebra using Arpack # This is the finite element toolkit itself. using FinEtools using FinEtools.AlgoBaseModule: matrix_blocked, vector_blocked # The linear stress analysis application is implemented in this package. using FinEtoolsDeforLinear using FinEtoolsDeforLinear.AlgoDeforLinearModule # Input parameters E = 205000*phun("MPa");# Young's modulus nu = 0.3;# Poisson ratio rho = 7850*phun("KG*M^-3");# mass density L = 20*phun("mm"); W = 1*phun("mm"); H = 1*phun("mm"); tolerance = W/500; vmag = 0.1*phun("m")/phun("SEC"); tend = 0.00005*phun("SEC"); ## # ## Create the discrete model MR = DeforModelRed3D fens,fes = H8block(L,W,H, 80,4,4) geom = NodalField(fens.xyz) u = NodalField(zeros(size(fens.xyz,1),3)) # displacement field nl = selectnode(fens, box=[0 0 -Inf Inf -Inf Inf], inflate=tolerance) setebc!(u, nl, true, 1) applyebc!(u) numberdofs!(u) corner = selectnode(fens, nearestto=[L 0 0]) cornerxdof = u.dofnums[corner[1], 1] material = MatDeforElastIso(MR, rho, E, nu, 0.0) femm = FEMMDeforLinear(MR, IntegDomain(fes, GaussRule(3,2)), material) femm = associategeometry!(femm, geom) K = stiffness(femm, geom, u) # Assemble the mass matrix as diagonal. The HRZ lumping technique is # applied through the assembler of the sparse matrix. hrzass = SysmatAssemblerSparseHRZLumpingSymm(0.0) femm = FEMMDeforLinear(MR, IntegDomain(fes, GaussRule(3,3)), material) M = mass(femm, hrzass, geom, u) # Extract the free-free block of the matrices. M_ff = matrix_blocked(M, nfreedofs(u))[:ff] K_ff = matrix_blocked(K, nfreedofs(u))[:ff] # Figure out the highest frequency in the model, and use a time step that is # smaller than the period of the highest frequency. evals, evecs = eigs(K_ff, M_ff; nev=1, which=:LM); @show dt = 0.9 * 2/real(sqrt(evals[1])); # The time stepping loop is protected by `let end` to avoid unpleasant surprises # with variables getting clobbered by globals. ts, cornervxs = let dt = dt # Initial displacement, velocity, and acceleration. U0 = gathersysvec(u) v = deepcopy(u) v.values[:, 1] .= -vmag V0 = gathersysvec(v) F1 = fill(0.0, length(V0)) U1 = fill(0.0, length(V0)) V1 = fill(0.0, length(V0)) A0 = fill(0.0, length(V0)) A1 = fill(0.0, length(V0)) phi = 1.005 # The times and displacements of the corner will be collected into two vectors ts = Float64[] cornervxs = Float64[] # Let us begin the time integration loop: t = 0.0; step = 0; while t < tend push!(ts, t) push!(cornervxs, V0[cornerxdof]) t = t+dt; step = step + 1; (mod(step,1000)==0) && println("Step $(step): $(t)") # Zero out the load fill!(F1, 0.0); # Initial acceleration if step == 1 A0 = M_ff \ (F1) end # Update displacement. @. U1 = U0 + dt*V0 + (dt^2/2)*A0; # Compute updated acceleration. A1 .= M_ff \ (-K_ff*U1 + F1) # Update the velocities. @. V1 = V0 + (dt/2)*(A0 + A1) # Switch the temporary vectors for the next step. U0, U1 = U1, U0; V0, V1 = V1, V0; A0, A1 = A1, A0; if (t == tend) # Are we done yet? break; end if (t+dt > tend) # Adjust the last time step so that we exactly reach tend dt = tend-t; end end ts, cornervxs # return the collected results end ## # ## Plot the results using Gnuplot @gp "set terminal windows 7 " :- @gp :- ts cornervxs./phun("mm") "lw 2 lc rgb 'red' with lines title 'Displacement of the corner' " @gp :- "set xlabel 'Time [s]'" @gp :- "set ylabel 'Velocity [mm/s]'" # The end. true
FinEtoolsDeforLinear
https://github.com/PetrKryslUCSD/FinEtoolsDeforLinear.jl.git
[ "MIT" ]
3.0.4
c0a87e41e018a0cb93b6670b7f0e40e6615e5cf8
code
4449
# # Suddenly-stopped bar: TW explicit # Source code: [`sudden_stop_expl_tw_tut.jl`](sudden_stop_expl_tw_tut.jl) # ## Description # A bar is given an initial velocity and then at time 0.0 it is # suddenly stopped by fixing one of its ends. This sends a wave down the bar. # The output of the simulation is the velocity, which tends to reproduce # the rectangular pulses in which the velocity bounces back and forth. # The beam is modeled as a solid. The Tchamwa-Wielgosz explicit rule # is used to integrate the equations of motion in time. No damping is present. # ## Goals # - Show how to create the discrete model for explicit dynamics. # - Demonstrate Tchamwa-Wielgosz explicit time stepping. ## # ## Definitions tst = time() # Basic imports. using LinearAlgebra using Arpack # This is the finite element toolkit itself. using FinEtools using FinEtools.AlgoBaseModule: matrix_blocked, vector_blocked # The linear stress analysis application is implemented in this package. using FinEtoolsDeforLinear using FinEtoolsDeforLinear.AlgoDeforLinearModule # Input parameters E = 205000*phun("MPa");# Young's modulus nu = 0.3;# Poisson ratio rho = 7850*phun("KG*M^-3");# mass density L = 20*phun("mm"); W = 1*phun("mm"); H = 1*phun("mm"); tolerance = W/500; vmag = 0.1*phun("m")/phun("SEC"); tend = 0.00005*phun("SEC"); ## # ## Create the discrete model MR = DeforModelRed3D fens,fes = H8block(L,W,H, 80,4,4) geom = NodalField(fens.xyz) u = NodalField(zeros(size(fens.xyz,1),3)) # displacement field nl = selectnode(fens, box=[0 0 -Inf Inf -Inf Inf], inflate=tolerance) setebc!(u, nl, true, 1) applyebc!(u) numberdofs!(u) corner = selectnode(fens, nearestto=[L 0 0]) cornerxdof = u.dofnums[corner[1], 1] material = MatDeforElastIso(MR, rho, E, nu, 0.0) femm = FEMMDeforLinear(MR, IntegDomain(fes, GaussRule(3,2)), material) femm = associategeometry!(femm, geom) @time K = stiffness(femm, geom, u) # Assemble the mass matrix as diagonal. The HRZ lumping technique is # applied through the assembler of the sparse matrix. hrzass = SysmatAssemblerSparseHRZLumpingSymm(0.0) femm = FEMMDeforLinear(MR, IntegDomain(fes, GaussRule(3,3)), material) M = mass(femm, hrzass, geom, u) # Extract the free-free block of the matrices. M_ff = matrix_blocked(M, nfreedofs(u))[:ff] K_ff = matrix_blocked(K, nfreedofs(u))[:ff] # Figure out the highest frequency in the model, and use a time step that is # smaller than the period of the highest frequency. evals, evecs = eigs(K_ff, M_ff; nev=1, which=:LM); @show dt = 0.9 * 2/real(sqrt(evals[1])); # The time stepping loop is protected by `let end` to avoid unpleasant surprises # with variables getting clobbered by globals. ts, cornervxs = let dt = dt # Initial displacement, velocity, and acceleration. U0 = gathersysvec(u) v = deepcopy(u) v.values[:, 1] .= -vmag V0 = gathersysvec(v) F1 = fill(0.0, length(V0)) U1 = fill(0.0, length(V0)) V1 = fill(0.0, length(V0)) A0 = fill(0.0, length(V0)) A1 = fill(0.0, length(V0)) phi = 1.05 # The times and displacements of the corner will be collected into two vectors ts = Float64[] cornervxs = Float64[] # Let us begin the time integration loop: t = 0.0; step = 0; while t < tend push!(ts, t) push!(cornervxs, V0[cornerxdof]) t = t+dt; step = step + 1; (mod(step,1000)==0) && println("Step $(step): $(t)") # Zero out the load fill!(F1, 0.0); # Initial acceleration if step == 1 A0 = M_ff \ (F1) end # Update displacement. @. U1 = U0 + dt*V0 + (phi*dt^2)*A0; # Update the velocities. @. V1 = V0 + dt*A0 # Compute updated acceleration. A1 .= M_ff \ (-K_ff*U1 + F1) # Switch the temporary vectors for the next step. U0, U1 = U1, U0; V0, V1 = V1, V0; A0, A1 = A1, A0; if (t == tend) # Are we done yet? break; end if (t+dt > tend) # Adjust the last time step so that we exactly reach tend dt = tend-t; end end ts, cornervxs # return the collected results end ## # ## Plot the results using Gnuplot @gp "set terminal windows 5 " :- @gp :- ts cornervxs./phun("mm") "lw 2 lc rgb 'red' with lines title 'Displacement of the corner' " @gp :- "set xlabel 'Time [s]'" @gp :- "set ylabel 'Velocity [mm/s]'" @show time()-tst # The end. true
FinEtoolsDeforLinear
https://github.com/PetrKryslUCSD/FinEtoolsDeforLinear.jl.git
[ "MIT" ]
3.0.4
c0a87e41e018a0cb93b6670b7f0e40e6615e5cf8
code
5670
# # Twisted beam: Export solid model to Abaqus # Source code: [`twisted_beam-export-to-abaqus_tut.jl`](twisted_beam-export-to-abaqus_tut.jl) # ## Description # In this example we show how to export a model to the finite element software Abaqus. # The model is solved also in the example `twisted_beam_algo.jl`. Here we export the model for execution in Abaqus. # The task begins with defining the input parameters, creating the mesh, identifying the nodes to which essential boundary conditions are to be applied, and extracting from the boundary the surface finite elements to which the traction loading at the end of the beam is to be applied. # This is the finite element toolkit itself. using FinEtools # The linear stress analysis application is implemented in this package. using FinEtoolsDeforLinear # We will also use specifically some functions from these modules. using FinEtoolsDeforLinear.AlgoDeforLinearModule using FinEtools.MeshExportModule # Define some parameters, in consistent units. E = 0.29e8; nu = 0.22; W = 1.1; L = 12.; t = 0.32; nl = 2; nt = 1; nw = 1; ref = 2; p = 1/W/t; # Loading in the Z direction. Reference (publication by Harder): 5.424e-3. loadv = [0;0;p]; dir = 3; uex = 0.005424534868469; # Loading in the Y direction. Reference (Harder): 1.754e-3. And comment the line below to obtain a solution in the other direction. #loadv = [0;p;0]; dir = 2; uex = 0.001753248285256; tolerance = t/1000; fens,fes = H8block(L,W,t, nl*ref,nw*ref,nt*ref) # Reshape the rectangular block into a twisted beam shape. for i = 1:count(fens) let a = fens.xyz[i,1]/L*(pi/2); y = fens.xyz[i,2]-(W/2); z = fens.xyz[i,3]-(t/2); fens.xyz[i,:] = [fens.xyz[i,1],y*cos(a)-z*sin(a),y*sin(a)+z*cos(a)]; end end # Clamped face of the beam: select all the nodes in this cross-section. l1 = selectnode(fens; box = [0 0 -100*W 100*W -100*W 100*W], inflate = tolerance) # Traction on the opposite face boundaryfes = meshboundary(fes); Toplist = selectelem(fens,boundaryfes, box = [L L -100*W 100*W -100*W 100*W], inflate = tolerance); # The tutorial proper begins here. We create the Abaqus exporter and start writing the .inp file. AE = AbaqusExporter("twisted_beam"); HEADING(AE, "Twisted beam example"); # The part definition is trivial: all will be defined rather for the instance of the part. PART(AE, "part1"); END_PART(AE); # The assembly will consist of a single instance (of the empty part defined above). The node set will be defined for the instance itself. ASSEMBLY(AE, "ASSEM1"); INSTANCE(AE, "INSTNC1", "PART1"); NODE(AE, fens.xyz); # We export the finite elements themselves. Note that the elements need to have distinct numbers. We start numbering the hexahedra at 1. The definition of the element creates simultaneously an element set which is used below in the section assignment (and the definition of the load). ELEMENT(AE, "c3d8rh", "AllElements", 1, connasarray(fes)) # The traction is applied to surface elements. Because the elements in the Abaqus model need to have unique numbers, we need to start from an integer which is the number of the solid elements plus one. ELEMENT(AE, "SFM3D4", "TractionElements", 1+count(fes), connasarray(subset(boundaryfes,Toplist))) # The nodes in the clamped cross-section are going to be grouped in the node set `l1`. NSET_NSET(AE, "l1", l1) # We define a coordinate system (orientation of the material coordinate system), in this example it is the global Cartesian coordinate system. The sections are defined for the solid elements of the interior and the surface elements to which the traction is applied, and the assignment to the elements is by element set (`AllElements` and `TractionElements`). Note that for the solid section we also define reference to hourglass control named `Hourglassctl`. ORIENTATION(AE, "GlobalOrientation", vec([1. 0 0]), vec([0 1. 0])); SOLID_SECTION(AE, "elasticity", "GlobalOrientation", "AllElements", "Hourglassctl"); SURFACE_SECTION(AE, "TractionElements") # This concludes the definition of the instance and of the assembly. END_INSTANCE(AE); END_ASSEMBLY(AE); # This is the definition of the isotropic elastic material. MATERIAL(AE, "elasticity") ELASTIC(AE, E, nu) # The element properties for the interior hexahedra are controlled by the section-control. In this case we are selecting enhanced hourglass stabilization (much preferable to the default stiffness stabilization). SECTION_CONTROLS(AE, "Hourglassctl", "HOURGLASS=ENHANCED") # The static perturbation analysis step is defined next. STEP_PERTURBATION_STATIC(AE) # The boundary conditions are applied directly to the node set `l1`. Since the node set is defined for the instance, we need to refer to it by the qualified name `ASSEM1.INSTNC1.l1`. BOUNDARY(AE, "ASSEM1.INSTNC1.l1", 1) BOUNDARY(AE, "ASSEM1.INSTNC1.l1", 2) BOUNDARY(AE, "ASSEM1.INSTNC1.l1", 3) # The traction is applied to the surface quadrilateral elements exported above. DLOAD(AE, "ASSEM1.INSTNC1.TractionElements", vec(loadv)) # Now we have defined the analysis step and the definition of the model can be concluded. END_STEP(AE) close(AE) # As quick check, here is the contents of the exported model file: @show readlines("twisted_beam.inp") # What remains is to load the model into Abaqus and execute it as a job. Alternatively Abaqus can be called on the input file to carry out the analysis at the command line as # ``` # abaqus job=twisted_beam.inp # ``` # The output database `twisted_beam.odb` can then be loaded for postprocessing, for instance from the command line as # ``` # abaqus viewer database=twisted_beam.odb # ``` nothing
FinEtoolsDeforLinear
https://github.com/PetrKryslUCSD/FinEtoolsDeforLinear.jl.git
[ "MIT" ]
3.0.4
c0a87e41e018a0cb93b6670b7f0e40e6615e5cf8
code
3674
# # Vibration of a cube of nearly incompressible material: alternative models # Source code: [`unit_cube_modes_alt_tut.jl`](unit_cube_modes_alt_tut.jl) # ## Description # Compute the free-vibration spectrum of a unit cube of nearly # incompressible isotropic material, E = 1, ν = 0.499, and ρ = 1 (refer to [1]). # Here we show how alternative finite element models compare: # The solution with the serendipity quadratic hexahedron is supplemented with # solutions obtained with advanced finite elements: nodal-integration energy # stabilized hexahedra and tetrahedra, and mean-strain hexahedra and # tetrahedra. # ## References # [1] Puso MA, Solberg J (2006) A stabilized nodally integrated tetrahedral. International Journal for Numerical Methods in Engineering 67: 841-867. # [2] P. Krysl, Mean-strain 8-node hexahedron with optimized energy-sampling # stabilization, Finite Elements in Analysis and Design 108 (2016) 41–53. # ![](unit_cube-mode7.png) # ## Goals # - Show how to set up a simulation loop that will run all the models and collect data. # - Show how to present the computed spectrum curves. ## # ## Definitions # This is the finite element toolkit itself. using FinEtools # The linear stress analysis application is implemented in this package. using FinEtoolsDeforLinear # Convenience import. using FinEtools.MeshExportModule # The eigenvalue problem is solved with the Lanczos algorithm from this package. using Arpack using SymRCM # The material properties and dimensions are defined with physical units. E = 1*phun("PA"); nu = 0.499; rho = 1*phun("KG/M^3"); a = 1*phun("M"); # length of the side of the cube N = 8 neigvs = 20 # how many eigenvalues OmegaShift = (0.01*2*pi)^2; # The frequency with which to shift # The model is fully three-dimensional, and hence the material model and the # FEMM created below need to refer to an appropriate model-reduction scheme. MR = DeforModelRed3D material = MatDeforElastIso(MR, rho, E, nu, 0.0); # models = [ ("H20", H20block, GaussRule(3,2), FEMMDeforLinear, 1), ("ESNICEH8", H8block, NodalTensorProductRule(3), FEMMDeforLinearESNICEH8, 2), ("ESNICET4", T4block, NodalSimplexRule(3), FEMMDeforLinearESNICET4, 2), ("MSH8", H8block, NodalTensorProductRule(3), FEMMDeforLinearMSH8, 2), ("MST10", T10block, TetRule(4), FEMMDeforLinearMST10, 1), ] # Run the simulation loop over all the models. sigdig(n) = round(n * 10000) / 10000 results = let results = [] for m in models fens, fes = m[2](a, a, a, m[5]*N, m[5]*N, m[5]*N); @show count(fens) geom = NodalField(fens.xyz) u = NodalField(zeros(size(fens.xyz,1),3)) numbering = let C = connectionmatrix(FEMMBase(IntegDomain(fes, m[3])), count(fens)) numbering = symrcm(C) end numberdofs!(u, numbering); println("nfreedofs = $(nfreedofs(u))") femm = m[4](MR, IntegDomain(fes, m[3]), material); femm = associategeometry!(femm, geom) K = stiffness(femm, geom, u) M = mass(femm, geom, u); evals, evecs, nconv = eigs(K+OmegaShift*M, M; nev=neigvs, which=:SM) @show nconv == neigvs evals = evals .- OmegaShift; fs = real(sqrt.(complex(evals)))/(2*pi) println("$(m[1]) eigenvalues: $(sigdig.(fs)) [Hz]") push!(results, (m, fs)) end results # return it end ## # ## Present the results graphically using Gnuplot @gp "set terminal windows 0 " :- for r in results @gp :- collect(1:length(r[2])) vec(r[2]) " lw 2 with lp title '$(r[1][1])' " :- end @gp :- "set xlabel 'Mode number [ND]'" :- @gp :- "set ylabel 'Frequency [Hz]'"
FinEtoolsDeforLinear
https://github.com/PetrKryslUCSD/FinEtoolsDeforLinear.jl.git
[ "MIT" ]
3.0.4
c0a87e41e018a0cb93b6670b7f0e40e6615e5cf8
code
5805
# # Vibration of a cube of nearly incompressible material # Source code: [`unit_cube_modes_tut.jl`](unit_cube_modes_tut.jl) # ## Description # Compute the free-vibration spectrum of a unit cube of nearly # incompressible isotropic material, E = 1, ν = 0.499, and ρ = 1 (refer to [1]). # The solution with the `FinEtools` package is compared with a commercial # software solution, and hence we also export the model to Abaqus. # ## References # [1] Puso MA, Solberg J (2006) A stabilized nodally integrated tetrahedral. # International Journal for Numerical Methods in Engineering 67: 841-867. # [2] P. Krysl, Mean-strain 8-node hexahedron with optimized energy-sampling # stabilization, Finite Elements in Analysis and Design 108 (2016) 41–53. # ![](unit_cube-mode7.png) # ## Goals # - Show how to generate simple mesh. # - Show how to set up the discrete model for a free vibration problem. # - Show how to export the model to Abaqus. ## # ## Definitions # This is the finite element toolkit itself. using FinEtools # The linear stress analysis application is implemented in this package. using FinEtoolsDeforLinear # Convenience import. using FinEtools.MeshExportModule # The eigenvalue problem is solved with the Lanczos algorithm from this package. using Arpack # The material properties and dimensions are defined with physical units. E = 1*phun("PA"); nu = 0.499; rho = 1*phun("KG/M^3"); a = 1*phun("M"); # length of the side of the cube # We generate a mesh of 5 x 5 x 5 serendipity 20-node hexahedral elements in a # regular grid. fens, fes = H20block(a, a, a, 5, 5, 5); # The problem is solved in three dimensions and hence we create the displacement # field as three-dimensional with three displacement components per node. The # degrees of freedom are then numbered (note that no essential boundary # conditions are applied, since the cube is free-floating). geom = NodalField(fens.xyz) u = NodalField(zeros(size(fens.xyz,1),3)) # displacement field numberdofs!(u); # The model is fully three-dimensional, and hence the material model and the # FEMM created below need to refer to an appropriate model-reduction scheme. MR = DeforModelRed3D material = MatDeforElastIso(MR, rho, E, nu, 0.0); # Note that we compute the stiffness and the mass matrix using different FEMMs. # The difference is only the quadrature rule chosen: in order to make the mass # matrix non-singular, an accurate Gauss rule needs to be used, whereas for # the stiffness matrix we want to avoid the excessive stiffness and therefore # the reduced Gauss rule is used. femm = FEMMDeforLinear(MR, IntegDomain(fes, GaussRule(3,2)), material); K = stiffness(femm, geom, u) femm = FEMMDeforLinear(MR, IntegDomain(fes, GaussRule(3,3)), material) M = mass(femm, geom, u); # The free vibration problem can now be solved. In order for the eigenvalue # solver to work well, we apply mass-shifting (otherwise the first matrix # given to the solver – stiffness – would be singular). We specify the number # of eigenvalues to solve for, and we guess the frequency with which to shift # as 0.01 Hz. neigvs = 20 # how many eigenvalues OmegaShift = (0.01*2*pi)^2; # The frequency with which to shift # The `eigs` routine can now be invoked to solve for a given number of # frequencies from the smallest-magnitude end of the spectrum. Note that the # mass shifting needs to be undone when the solution is obtained. evals, evecs, nconv = eigs(K+OmegaShift*M, M; nev=neigvs, which=:SM) @show nconv == neigvs evals = evals .- OmegaShift; fs = real(sqrt.(complex(evals)))/(2*pi) sigdig(n) = round(n * 10000) / 10000 println("Eigenvalues: $(sigdig.(fs)) [Hz]") # The first nonzero frequency, frequency 7, should be around .263 Hz. # The computed mode can be visualized in Paraview. Use the "Animation view" to # produce moving pictures for the mode. mode = 7 scattersysvec!(u, evecs[:,mode]) File = "unit_cube_modes.vtk" vtkexportmesh(File, fens, fes; vectors=[("mode$mode", u.values)]) @async run(`"paraview.exe" $File`); # Finally we export the model to Abaqus. Note that we specify the mass # density property (necessary for dynamics). AE = AbaqusExporter("unit_cube_modes_h20"); HEADING(AE, "Vibration modes of unit cube of almost incompressible material."); COMMENT(AE, "The first six frequencies are rigid body modes."); COMMENT(AE, "The first nonzero frequency (7) should be around 0.26 Hz"); PART(AE, "part1"); END_PART(AE); ASSEMBLY(AE, "ASSEM1"); INSTANCE(AE, "INSTNC1", "PART1"); NODE(AE, fens.xyz); COMMENT(AE, "The hybrid form of the serendipity hexahedron is chosen because"); COMMENT(AE, "the material is nearly incompressible."); ELEMENT(AE, "C3D20RH", "AllElements", 1, connasarray(fes)) ORIENTATION(AE, "GlobalOrientation", vec([1. 0 0]), vec([0 1. 0])); SOLID_SECTION(AE, "elasticity", "GlobalOrientation", "AllElements"); END_INSTANCE(AE); END_ASSEMBLY(AE); MATERIAL(AE, "elasticity") ELASTIC(AE, E, nu) DENSITY(AE, rho) STEP_FREQUENCY(AE, neigvs) END_STEP(AE) close(AE) # It remains is to load the model into Abaqus and execute it as a job. # Alternatively Abaqus can be called on the input file to carry out the # analysis at the command line as # ``` # abaqus job=unit_cube_modes_h20.inp # ``` # The output database `unit_cube_modes_h20.odb` can then be loaded for # postprocessing, for instance from the command line as # ``` # abaqus viewer database=unit_cube_modes_h20.odb # ``` # Don't forget to compare the computed frequencies and the mode shapes. For # instance, the first six frequencies should be nearly 0, and the seventh # frequency should be approximately 0.262 Hz. There may be very minor # differences due to the fact that the FinEtools formulation is purely # displacement-based, whereas the Abaqus model is hybrid (displacement plus # pressure).
FinEtoolsDeforLinear
https://github.com/PetrKryslUCSD/FinEtoolsDeforLinear.jl.git
[ "MIT" ]
3.0.4
c0a87e41e018a0cb93b6670b7f0e40e6615e5cf8
docs
3944
[![Project Status: Active – The project has reached a stable, usable state and is being actively developed.](http://www.repostatus.org/badges/latest/active.svg)](http://www.repostatus.org/#active) [![Build status](https://github.com/PetrKryslUCSD/FinEtoolsDeforLinear.jl/workflows/CI/badge.svg)](https://github.com/PetrKryslUCSD/FinEtoolsDeforLinear.jl/actions) [![Code Coverage](https://codecov.io/gh/PetrKryslUCSD/FinEtoolsDeforLinear.jl/branch/master/graph/badge.svg)](https://app.codecov.io/gh/PetrKryslUCSD/FinEtoolsDeforLinear.jl) [![Latest documentation](https://img.shields.io/badge/docs-latest-blue.svg)](https://petrkryslucsd.github.io/FinEtoolsDeforLinear.jl/latest) [![Codebase Graph](https://img.shields.io/badge/Codebase-graph-green.svg)](https://octo-repo-visualization.vercel.app/?repo=PetrKryslUCSD/FinEtoolsDeforLinear.jl) # FinEtoolsDeforLinear: Linear stress analysis application [`FinEtools`](https://github.com/PetrKryslUCSD/FinEtools.jl.git) is a package for basic operations on finite element meshes. `FinEtoolsDeforLinear` is a package using `FinEtools` to solve linear stress analysis problems. Included is statics and dynamics (modal analysis, steady-state vibration). ## News - 05/27/2024: Remove unsupported functions. Adjust to FinEtools 8. - 04/25/2024: Add utilities for split of isotropic elastic moduli. [Past news](#past-news) ## Tutorials There are a number of tutorials explaining the use of this package. Check out the [index](https://github.com/PetrKryslUCSD/FinEtoolsDeforLinear.jl/blob/main/tutorials/index.md). The tutorials themselves can be executed as follows: - Download the package or clone it. ``` git clone https://github.com/PetrKryslUCSD/FinEtoolsDeforLinear.jl.git ``` - Change into the `tutorials` folder: `cd .\FinEtoolsDeforLinear.jl\tutorials`. - Start Julia: `julia`. - Activate the environment: ``` using Pkg; Pkg.activate("."); Pkg.instantiate(); ``` - Execute the desired tutorial. Here `name.jl` is the name of the tutorial file: ``` include("name.jl") ``` ## Examples Many examples of solving for static and dynamic stress response with continuum FE models are available. Begin with changing your working directory to the `examples` folder. Activate and instantiate the examples environment. ``` using Pkg Pkg.activate(".") Pkg.instantiate() ``` There are a number of examples covering statics and dynamics. The examples may be executed as described in the [conceptual guide to `FinEtools`](https://petrkryslucsd.github.io/FinEtools.jl/latest). ## <a name="past-news"></a>Past news - 02/25/2024: Update documentation. - 02/01/2024: Improve test coverage of IM and ESNICE elements. - 01/08/2024: Fix bug in the modal analysis algorithm. - 12/31/2023: Update for Julia 1.10. - 12/22/2023: Merge the tutorials into the package tree. - 10/23/2023: Remove dependency on FinEtools predefined types (except for the data dictionary in the algorithm module). - 06/21/2023: Update for FinEtools 7.0. - 08/15/2022: Updated all examples. - 08/09/2022: Updated all 3D dynamic examples. - 04/03/2022: Examples now have their own project environment. - 02/08/2021: Updated dependencies for Julia 1.6 and FinEtools 5.0. - 08/23/2020: Added a separate tutorial package, [FinEtoolsDeforLinearTutorials.jl](https://petrkryslucsd.github.io/FinEtoolsDeforLinearTutorials.jl)). - 08/17/2020: Added tutorials to the documentation. - 04/02/2020: The examples still need to be updated, some don't work, sorry. - 01/23/2020: Dependencies have been updated to work with Julia 1.3.1. - 10/12/2019: Corrected a design flaw in the matrix utilities module. - 07/30/2019: Support for fourth order tensors added. - 07/27/2019: The interface to stress/strain conversion routines changed to be generic. The intent was to allow for automatic differentiation. - 07/18/2019: Several step-by-step tutorials have been added. - 06/11/2019: Applications are now separated out from the `FinEtools` package.
FinEtoolsDeforLinear
https://github.com/PetrKryslUCSD/FinEtoolsDeforLinear.jl.git
[ "MIT" ]
3.0.4
c0a87e41e018a0cb93b6670b7f0e40e6615e5cf8
docs
464
Issues and ideas: -- Documenter: using FinEtoolsDeforLinear using DocumenterTools Travis.genkeys(user="PetrKryslUCSD", repo="https://github.com/PetrKryslUCSD/FinEtoolsDeforLinear.jl") DocumenterTools.genkeys(user="PetrKryslUCSD", repo="[email protected]:PetrKryslUCSD/FinEtoolsDeforLinear.jl.git") – Get rid of lumpedmass(): It is already implemented with an HRZ assembler. -- Formatting: JuliaFormatter using JuliaFormatter format("./examples", SciMLStyle())
FinEtoolsDeforLinear
https://github.com/PetrKryslUCSD/FinEtoolsDeforLinear.jl.git
[ "MIT" ]
3.0.4
c0a87e41e018a0cb93b6670b7f0e40e6615e5cf8
docs
1052
# FinEtoolsDeforLinear Documentation The [`FinEtools`](https://petrkryslucsd.github.io/FinEtools.jl/latest/index.html) package is used here to solve linear deformation static and dynamic problems. Tutorials are provided in the form of Julia scripts and Markdown files in a dedicated folder: [`index of tutorials`](https://github.com/PetrKryslUCSD/FinEtoolsDeforLinear.jl/blob/main/tutorials/index.md). ```@contents ``` ## Conceptual guide The construction of the toolkit is described: the composition of modules, the basic data structures, the methodology of computing quantities required in the finite element methodology, and more. ```@contents Pages = [ "guide/guide.md", ] Depth = 1 ``` ## Manual The description of the types and the functions, organized by module and/or other logical principle. ```@contents Pages = [ "man/man.md", ] Depth = 2 ``` ## Tutorials The [tutorials](https://github.com/PetrKryslUCSD/FinEtoolsDeforLinear.jl) are provided in the form of Julia scripts and Markdown files in the `tutorials` folder.
FinEtoolsDeforLinear
https://github.com/PetrKryslUCSD/FinEtoolsDeforLinear.jl.git
[ "MIT" ]
3.0.4
c0a87e41e018a0cb93b6670b7f0e40e6615e5cf8
docs
3451
# Guide The [`FinEtools`](https://petrkryslucsd.github.io/FinEtools.jl/latest/index.html) package is used here to solve linear stress analysis (deformation) problems. ## Modules The package `FinEtoolsDeforLinear` has the following structure: - `FinEtoolsDeforLinear` is the top-level module. - Linear deformation: `AlgoDeforLinearModule` (algorithms), `DeforModelRedModule` (model-reduction definitions, 3D, plane strain and stress, and so on), `FEMMDeforLinearBaseModule`, `FEMMDeforLinearModule`, `FEMMDeforLinearMSModule`, `FEMMDeforWinklerModule` (FEM machines to evaluate the matrix and vector quantities), `MatDeforModule`, `MatDeforElastIsoModule`, `MatDeforElastOrthoModule` (elastic material models). ## Linear deformation FEM machines For the base machine for linear deformation, `FEMMDeforLinearBase`, assumes standard isoparametric finite elements. It evaluates the interior integrals: - The stiffness matrix, the mass matrix. - The load vector corresponding to thermal strains. Additionally: - Function to inspect integration points. The FEM machine `FEMMDeforLinear` simply stores the data required by the base `FEMMDeforLinearBase`. The machine `FEMMDeforWinkler` is specialized for the boundary integrals for bodies supported on continuously distributed springs: - Compute the stiffness matrix corresponding to the springs. The mean-strain FEM machine `FEMMDeforLinearMS` implements advanced hexahedral and tetrahedral elements based on multi-field theory and energy-sampling stabilization. It provides functions to compute: - The stiffness matrix, the mass matrix. - The load vector corresponding to thermal strains. Additionally it defines: - Function to inspect integration points. ## Materials for linear deformation analysis The module `MatDeforModule` provides functions to convert between vector and matrix (tensor) representations of stress and strain. Further, functions to rotate stress and strain between different coordinate systems (based upon the model-reduction type, 3-D, 2-D, or 1-D) are provided. Currently there are material types for isotropic and orthotropic linear elastic materials. The user may add additional material types by deriving from `AbstractMatDefor` and equipping them with three methods: (1) compute the tangent moduli, (2) update the material state, (3) compute the thermal strain. For full generality, material types should implement these methods for fully three-dimensional, plane strain and plane stress, 2D axially symmetric, and one-dimensional deformation models. ## Linear deformation algorithms There are algorithms for - Linear static analysis; - Export of the deformed shape for visualization; - Export of the nodal and elementwise stress fields for visualization; - Modal (free-vibration) analysis; - Export of modal shapes for visualization; - Subspace-iteration method implementation. ### Model data Model data is a dictionary, with string keys, and arbitrary values. The documentation string for each method of an algorithm lists the required input. For instance, for the method `linearstatics` of the `AlgoDeforLinearModule`, the `modeldata` dictionary needs to provide key-value pairs for the finite element node set, and the regions, the boundary conditions, and so on. The `modeldata` may be also supplemented with additional key-value pairs inside an algorithm and returned for further processing by other algorithms.
FinEtoolsDeforLinear
https://github.com/PetrKryslUCSD/FinEtoolsDeforLinear.jl.git
[ "MIT" ]
3.0.4
c0a87e41e018a0cb93b6670b7f0e40e6615e5cf8
docs
2442
# Reference Manual ## Simple FE model (volume) ```@autodocs Modules = [FinEtools, FinEtoolsDeforLinear.FEMMDeforLinearBaseModule, FinEtoolsDeforLinear.FEMMDeforLinearModule, ] Private = true Order = [:function, :type] ``` ## Simple FE models (surface) ```@autodocs Modules = [FinEtools, FinEtoolsDeforLinear.FEMMDeforWinklerModule, FinEtoolsDeforLinear.FEMMDeforSurfaceDampingModule, ] Private = true Order = [:function, :type] ``` ## Advanced: Mean-strain FEM ```@autodocs Modules = [FinEtools, FinEtoolsDeforLinear.FEMMDeforLinearMSModule, ] Private = true Order = [:function, :type] ``` ## Advanced: Nodal integration ```@autodocs Modules = [FinEtools, FinEtoolsDeforLinear.FEMMDeforLinearNICEModule, FinEtoolsDeforLinear.FEMMDeforLinearESNICEModule, ] Private = true Order = [:function, :type] ``` ## Advanced: Incompatible modes ```@autodocs Modules = [FinEtools, FinEtoolsDeforLinear.FEMMDeforLinearIMModule] Private = true Order = [:function, :type] ``` ## Algorithms ### Linear deformation ```@autodocs Modules = [FinEtools, FinEtoolsDeforLinear.AlgoDeforLinearModule] Private = true Order = [:function] ``` ## Material models ### Material for deformation, base functionality ```@autodocs Modules = [FinEtools, FinEtoolsDeforLinear.MatDeforModule, ] Private = true Order = [:function, :type] ``` ### Elasticity ```@autodocs Modules = [FinEtools, FinEtoolsDeforLinear.MatDeforLinearElasticModule, ] Private = true Order = [:function, :type] ``` ### Isotropic elasticity ```@autodocs Modules = [FinEtools, FinEtoolsDeforLinear.MatDeforElastIsoModule, ] Private = true Order = [:function, :type] ``` ### Orthotropic elasticity ```@autodocs Modules = [FinEtools, FinEtoolsDeforLinear.MatDeforElastOrthoModule,] Private = true Order = [:function, :type] ``` ## Modules ```@docs FinEtoolsDeforLinear.FEMMDeforLinearESNICEModule FinEtoolsDeforLinear.FEMMDeforLinearBaseModule FinEtoolsDeforLinear.FinEtoolsDeforLinear FinEtoolsDeforLinear.FEMMDeforLinearMSModule FinEtoolsDeforLinear.MatDeforModule FinEtoolsDeforLinear.FEMMDeforLinearModule FinEtoolsDeforLinear.AlgoDeforLinearModule FinEtoolsDeforLinear.FEMMDeforLinearNICEModule FinEtoolsDeforLinear.FEMMDeforSurfaceDampingModule FinEtoolsDeforLinear.MatDeforElastIsoModule FinEtoolsDeforLinear.MatDeforLinearElasticModule FinEtoolsDeforLinear.FEMMDeforWinklerModule FinEtoolsDeforLinear.MatDeforElastOrthoModule FinEtoolsDeforLinear.FEMMDeforLinearIMModule ```
FinEtoolsDeforLinear
https://github.com/PetrKryslUCSD/FinEtoolsDeforLinear.jl.git
[ "MIT" ]
3.0.4
c0a87e41e018a0cb93b6670b7f0e40e6615e5cf8
docs
525
# FinEtools (Finite Element tools) Documentation ## Conceptual guide The construction of the toolkit is described: the composition of modules, the basic data structures, the methodology of computing quantities required in the finite element methodology, and more. ```@contents Pages = [ "guide/guide.md", ] Depth = 1 ``` ## Manual The description of the types and the functions, organized by module and/or other logical principle. ```@contents Pages = [ "man/types.md", "man/functions.md", ] Depth = 2 ```
FinEtoolsDeforLinear
https://github.com/PetrKryslUCSD/FinEtoolsDeforLinear.jl.git
[ "MIT" ]
3.0.4
c0a87e41e018a0cb93b6670b7f0e40e6615e5cf8
docs
7879
# Cook panel under plane stress Source code: [`Cook-plane-stress_tut.jl`](Cook-plane-stress_tut.jl) ## Description In this example we investigate the well-known benchmark of a tapered panel under plane stress conditions known under the name of Cook. The problem has been solved many times with a variety of finite element models and hence the solution is well-known. ## Goals - Show how to generate the mesh by creating a rectangular block and reshaping it. - Execute the simulation with a static-equilibrium algorithm (solver). ````julia # ```` ## Definitions The problem is solved in a script. We begin by `using` the top-level module `FinEtools`. Further, we use the linear-deformation application package. ````julia using FinEtools using FinEtoolsDeforLinear ```` With the algorithm modules, the problem can be set up (the materials, boundary conditions, and mesh are defined) and handed off to an algorithm (in this case linear static solution). Then for postprocessing another set of algorithms can be invoked. ````julia using FinEtoolsDeforLinear.AlgoDeforLinearModule ```` A few input parameters are defined: the material parameters. Note: the units are consistent, but unnamed. ````julia E = 1.0; nu = 1.0/3; ```` The geometry of the tapered panel. ````julia width = 48.0; height = 44.0; thickness = 1.0; free_height = 16.0; ```` Location of tracked deflection is the midpoint of the loaded edge. ````julia Mid_edge = [48.0, 52.0]; ```` The tapered panel is loaded along the free edge with a unit force, which is here converted to loading per unit area. ````julia magn = 1.0/free_height/thickness;# Magnitude of applied load ```` For the above input parameters the converged displacement of the tip of the tapered panel in the direction of the applied shear load is ````julia convutip = 23.97; ```` The mesh is generated as a rectangular block to begin with, and then the coordinates of the nodes are tweaked into the tapered panel shape. In this case we are using quadratic triangles (T6). ````julia n = 10; # number of elements per side fens, fes = T6block(width, height, n, n) ```` Reshape the rectangle into a trapezoidal panel: ````julia for i in 1:count(fens) fens.xyz[i,2] += (fens.xyz[i,1]/width)*(height -fens.xyz[i,2]/height*(height-free_height)); end ```` The boundary conditions are applied to selected finite element nodes. The selection is based on the inclusion in a selection "box". ````julia tolerance = minimum([width, height])/n/1000.;#Geometrical tolerance ```` Clamped edge of the membrane ````julia l1 = selectnode(fens; box=[0.,0.,-Inf, Inf], inflate = tolerance); ```` The list of the selected nodes is then used twice, to fix the degree of freedom in the direction 1 and in the direction 2. The essential-boundary condition data is stored in dictionaries: `ess1` and `ess2 `. These dictionaries are used below to compose the computational model. ````julia ess1 = FDataDict("displacement"=> 0.0, "component"=> 1, "node_list"=>l1); ess2 = FDataDict("displacement"=> 0.0, "component"=> 2, "node_list"=>l1); ```` The traction boundary condition is applied to the finite elements on the boundary of the panel. First we generate the three-node "curve" elements on the entire boundary of the panel. ````julia boundaryfes = meshboundary(fes); ```` Then from these finite elements we choose the ones that are inside the box that captures the edge of the geometry to which the traction should be applied. ````julia Toplist = selectelem(fens, boundaryfes, box= [width, width, -Inf, Inf ], inflate= tolerance); ```` To apply the traction we create a finite element model machine (FEMM). For the evaluation of the traction it is sufficient to create a "base" FEMM. It consists of the geometry data `IntegDomain` (connectivity, integration rule, evaluation of the basis functions and basis function gradients with respect to the parametric coordinates). This object is composed of the list of the finite elements and an appropriate quadrature rule (Gauss rule here). ````julia el1femm = FEMMBase(IntegDomain(subset(boundaryfes, Toplist), GaussRule(1, 3), thickness)); ```` The traction boundary condition is specified with a constant traction vector and the FEMM that will be used to evaluate the load vector. ````julia flux1 = FDataDict("traction_vector"=>[0.0,+magn], "femm"=>el1femm ); ```` We make the dictionary for the region (the interior of the domain). The FEMM for the evaluation of the integrals over the interior of the domain (that is the stiffness matrix) and the material are needed. The geometry data now is equipped with the triangular three-point rule. Note the model-reduction type which is used to dispatch to appropriate specializations of the material routines and the FEMM which needs to execute different code for different reduced-dimension models. Here the model reduction is "plane stress". ````julia MR = DeforModelRed2DStress material = MatDeforElastIso(MR, 0.0, E, nu, 0.0) region1 = FDataDict("femm"=>FEMMDeforLinear(MR, IntegDomain(fes, TriRule(3), thickness), material)); ```` The model data is a dictionary. In the present example it consists of the node set, the array of dictionaries for the regions, and arrays of dictionaries for each essential and natural boundary condition. ````julia modeldata = FDataDict("fens"=>fens, "regions"=>[region1], "essential_bcs"=>[ess1, ess2], "traction_bcs"=>[flux1] ); ```` When the model data is defined, we simply pass it to the algorithm. ````julia modeldata = AlgoDeforLinearModule.linearstatics(modeldata); ```` The model data is augmented in the algorithm by the nodal field representing the geometry and the displacement field computed by solving the system of linear algebraic equations of equilibrium. ````julia u = modeldata["u"]; geom = modeldata["geom"]; ```` The complete information returned from the algorithm is ````julia @show keys(modeldata) ```` Now we can extract the displacement at the mid-edge node and compare to the converged (reference) value. The code below selects the node inside a very small box of the size `tolerance` which presumably contains only a single node, the one at the midpoint of the edge. ````julia nl = selectnode(fens, box=[Mid_edge[1],Mid_edge[1],Mid_edge[2],Mid_edge[2]], inflate=tolerance); theutip = u.values[nl,:] println("displacement =$(theutip[2]) as compared to converged $convutip") ```` For postprocessing we will export a VTK file with the displacement field (vectors) and one scalar field ($\sigma_{xy}$). ````julia modeldata["postprocessing"] = FDataDict("file"=>"cookstress", "quantity"=>:Cauchy, "component"=>:xy); modeldata = AlgoDeforLinearModule.exportstress(modeldata); ```` The attribute `"postprocessing"` holds additional data computed and returned by the algorithm: ````julia @show keys(modeldata["postprocessing"]) ```` The exported data can be digested as follows: `modeldata["postprocessing"] ["exported"]` is an array of exported items. ````julia display(keys(modeldata["postprocessing"]["exported"])) ```` Each entry of the array is a dictionary: ````julia display(keys(modeldata["postprocessing"]["exported"][1])) ```` Provided we have `paraview` in the PATH, we can bring it up to display the exported data. ````julia File = modeldata["postprocessing"]["exported"][1]["file"] @async run(`"paraview.exe" $File`); ```` We can also extract the minimum and maximum value of the shear stress (-0.06, and 0.12). ````julia display(modeldata["postprocessing"]["exported"][1]["quantity"]) display(modeldata["postprocessing"]["exported"][1]["component"]) fld = modeldata["postprocessing"]["exported"][1]["field"] println("$(minimum(fld.values)) $(maximum(fld.values))") true ```` --- *This page was generated using [Literate.jl](https://github.com/fredrikekre/Literate.jl).*
FinEtoolsDeforLinear
https://github.com/PetrKryslUCSD/FinEtoolsDeforLinear.jl.git
[ "MIT" ]
3.0.4
c0a87e41e018a0cb93b6670b7f0e40e6615e5cf8
docs
7648
# TEST FV32: Cantilevered tapered membrane, free vibration Source code: [`FV32_tut.jl`](FV32_tut.jl) ## Description FV32: Cantilevered tapered membrane is a test recommended by the National Agency for Finite Element Methods and Standards (U.K.): Test FV32 from NAFEMS publication TNSB, Rev. 3, “The Standard NAFEMS Benchmarks,” October 1990. Reference solution: 44.623, 130.03, 162.70, 246.05, 379.90, 391.44 Hz for the first six modes. The benchmark is originally for plane stress conditions. We simulate the plane-stress conditions with a three-dimensional mesh that is constrained along one plane of nodes to effect the constrained motion only in the plane of the trapezoidal membrane. ![](FV32-mesh.png) ## References [1] Test FV32 from NAFEMS publication TNSB, Rev. 3, “The Standard NAFEMS Benchmarks,” October 1990. ## Goals - Show how to generate hexahedral mesh in a rectangular block and shape it into a trapezoid. - Set up model data for the solution algorithms. - Use two different finite element model machines to evaluate the stiffness and the mass. - Execute the modal algorithm and export the results with another algorithm. ````julia # ```` ## Definitions Bring in the required support from the basic linear algebra, eigenvalue solvers, and the finite element tools. ````julia using LinearAlgebra using Arpack using FinEtools using FinEtools using FinEtoolsDeforLinear using FinEtoolsDeforLinear: AlgoDeforLinearModule ```` The input data is given by the benchmark. ````julia E = 200*phun("GPA"); nu = 0.3; rho= 8000*phun("KG/M^3"); L = 10*phun("M"); W0 = 5*phun("M"); WL = 1*phun("M"); H = 0.05*phun("M"); ```` We shall generate a three-dimensional mesh. It should have 1 element through the thickness, and 8 and 4 elements in the plane of the membrane. ````julia nL, nW, nH = 8, 4, 1;# How many element edges per side? ```` The reference frequencies are obtained from [1]. ````julia Reffs = [44.623 130.03 162.70 246.05 379.90 391.44] ```` The three-dimensional mesh of 20 node serendipity hexahedral should correspond to the plane-stress quadratic serendipity quadrilateral (CPS8R) used in the Abaqus benchmark. We simulate the plane-stress conditions with a three-dimensional mesh that is constrained along one plane of nodes to effect the constrained motion only in the plane of the trapezoidal membrane. No bending out of plane! First we generate mesh of a rectangular block. ````julia fens,fes = H20block(1.0, 2.0, 1.0, nL, nW, nH) ```` Now distort the rectangular block into the tapered plate. ````julia for i in 1:count(fens) xi, eta, theta = fens.xyz[i,:]; eta = eta - 1.0 fens.xyz[i,:] = [xi*L eta*(1.0 - 0.8*xi)*W0/2 theta*H/2]; end ```` We can visualize the mesh with Paraview (for instance). ````julia File = "FV32-mesh.vtk" vtkexportmesh(File, fens, fes) @async run(`"paraview.exe" $File`) ```` The simulation will be executed with the help of algorithms defined in the package `FinEtoolsDeforLinear`. The algorithms accept a dictionary of model data. The model data dictionary will be built up as follows. First we make the interior region. The model reduction is for a three-dimensional finite element model. ````julia MR = DeforModelRed3D material = MatDeforElastIso(MR, rho, E, nu, 0.0) ```` We shall create two separate finite element model machines. They are distinguished by the quadrature rule. The mass rule, in order to evaluate the mass matrix accurately, needs to be of higher order than the one we prefer to use for the stiffness. ````julia region1 = FDataDict("femm"=>FEMMDeforLinear(MR, IntegDomain(fes, GaussRule(3,2)), material), "femm_mass"=>FEMMDeforLinear(MR, IntegDomain(fes, GaussRule(3,3)), material)) ```` Select nodes that will be clamped. ````julia nl1 = selectnode(fens; plane=[1.0 0.0 0.0 0.0], thickness=H/1.0e4) ebc1 = FDataDict("node_list"=>nl1, "component"=>1, "displacement"=>0.0) ebc2 = FDataDict("node_list"=>nl1, "component"=>2, "displacement"=>0.0) ebc3 = FDataDict("node_list"=>nl1, "component"=>3, "displacement"=>0.0) ```` Export a VTK file to visualize the selected points. Choose the representation "Points", and select color and size approximately 4. These notes should correspond to the clamped base of the membrane. ````julia File = "FV32-nl1.vtk" vtkexportmesh(File, fens, FESetP1(reshape(nl1, length(nl1), 1))) ```` Select all nodes on the plane Z = 0. This will be prevented from moving in the Z direction. ````julia nl4 = selectnode(fens; plane=[0.0 0.0 1.0 0.0], thickness=H/1.0e4) ebc4 = FDataDict("node_list"=>nl4, "component"=>3, "displacement"=>0.0) ```` Export a VTK file to visualize the selected points. Choose the representation "Points", and select color and size approximately 4. These points all should be on the bottom face of the three-dimensional domain. ````julia File = "FV32-nl4.vtk" vtkexportmesh(File, fens, FESetP1(reshape(nl4, length(nl4), 1))) ```` Make model data: the nodes, the regions, the boundary conditions, and the number of eigenvalues are set. Note that the number of eigenvalues needs to be set to 6+N, where 6 is the number of rigid body modes, and N is the number of deformation frequencies we are interested in. ````julia neigvs = 10 # how many eigenvalues modeldata = FDataDict("fens"=> fens, "regions"=> [region1], "essential_bcs"=>[ebc1 ebc2 ebc3 ebc4], "neigvs"=>neigvs) ```` Solve using an algorithm: the modal solver. The solver will supplement the model data with the geometry and displacement fields, and the solution (eigenvalues, eigenvectors), and the data upon return can be extracted from the dictionary. ````julia modeldata = AlgoDeforLinearModule.modal(modeldata) ```` Here we extract the angular velocities corresponding to the natural frequencies. ````julia fs = modeldata["omega"]/(2*pi) println("Eigenvalues: $fs [Hz]") println("Percentage frequency errors: $((vec(fs[1:6]) - vec(Reffs))./vec(Reffs)*100)") ```` The problem was solved for instance with Abaqus, using plane stress eight node elements. The results were: | Element | Frequencies (relative errors) | | ------- | ---------------------------- | | CPS8R | 44.629 (0.02) 130.11 (0.06) 162.70 (0.00) 246.42 (0.15) 381.32 (0.37) 391.51 (0.02) | Compared these numbers with those computed by our three-dimensional model. The mode shapes may be visualized with `paraview`. Here is for instance mode 8: ![](FV32-mode-8.png) The algorithm to export the mode shapes expects some input. We shall specify the filename and the numbers of modes to export. ````julia modeldata["postprocessing"] = FDataDict("file"=>"FV32-modes", "mode"=>1:neigvs) modeldata = AlgoDeforLinearModule.exportmode(modeldata) ```` The algorithm attaches a little bit to the name of the exported file. If `paraview.exe` is installed, the command below should bring up the postprocessing file. ````julia @async run(`"paraview.exe" $(modeldata["postprocessing"]["file"]*"1.vtk")`) ```` To animate the mode shape in `Paraview` do the following: - Apply the filter "Warp by vector". - Turn on the "Animation view". - Add the mode shape data set ("WarpByVector1") by clicking the "+". - Double-click the line with the data set. The "Animation Keyframes" dialog will come up. Double-click "Ramp" interpolation, and change it to "Sinusoid". Set the frequency to 1.0. Change the "Value" from 0 to 100. - In the animation view, set the mode to "Real-time", and the duration to 4.0 seconds. - Click on the "Play" button. If you wish, click on the "Loop" button. ````julia true ```` --- *This page was generated using [Literate.jl](https://github.com/fredrikekre/Literate.jl).*
FinEtoolsDeforLinear
https://github.com/PetrKryslUCSD/FinEtoolsDeforLinear.jl.git
[ "MIT" ]
3.0.4
c0a87e41e018a0cb93b6670b7f0e40e6615e5cf8
docs
9121
# R0031/3 Composite plate test Source code: [`R0031-3-Composite-benchmark_tut.jl`](R0031-3-Composite-benchmark_tut.jl) ## Description This is a test recommended by the National Agency for Finite Element Methods and Standards (U.K.): Test R0031/3 from NAFEMS publication R0031, “Composites Benchmarks,” February 1995. It is a composite (sandwich) plate of square shape, simply supported along all four edges. Uniform transverse loading is applied to the top skin. The modeled part is one quarter of the full plate here. The serendipity quadratic hexahedra are used, with full integration. The solution can be compared with the benchmark results in the Abaqus manual ["Abaqus Benchmarks Guide"](http://130.149.89.49:2080/v6.7/books/bmk/default.htm?startat=ch04s09anf83.html). We begin by `using` the toolkit `FinEtools`. ````julia using FinEtools ```` Further, we use the linear-deformation application package. ````julia using FinEtoolsDeforLinear ```` The problem will be solved with a pre-packaged algorithm. ````julia using FinEtoolsDeforLinear.AlgoDeforLinearModule ```` For some basic statistics. ````julia import Statistics: mean ```` The material parameters are specified for an orthotropic material model. The units are attached using the `phun` function which can take the specification of the units and spits out the numerical multiplier. Here the benchmark specifies the input parameters in the English Imperial units. The skin material: ````julia E1s = 1.0e7*phun("psi") E2s = 0.4e7*phun("psi") E3s = 0.4e7*phun("psi") nu12s = 0.3 nu13s = 0.3 nu23s = 0.3 G12s = 0.1875e7*phun("psi") G13s = 0.1875e7*phun("psi") G23s = 0.1875e7*phun("psi"); ```` The core material: ````julia E1c = 10.0*phun("psi") E2c = 10.0*phun("psi") E3c = 10e4.*phun("psi") nu12c = 0. nu13c = 0. nu23c = 0. G12c = 10.0*phun("psi") G13c = 3.0e4*phun("psi") G23c = 1.2e4*phun("psi"); ```` The magnitude of the distributed uniform transfers loading is ````julia tmag = 100*phun("psi"); ```` Now we generate the mesh. The sandwich plate volume is divided into a regular Cartesian grid in the $X$ and $Y$ direction in the plane of the plate, and in the thickness direction it is divided into three layers, with each layer again subdivided into multiple elements. ````julia L = 10.0*phun("in") # side of the square plate nL = 8 # number of elements along the side of the plate xs = collect(linearspace(0.0, L/2, nL+1)) ys = collect(linearspace(0.0, L/2, nL+1));; ```` The thicknesses are specified from the bottom of the plate: skin, core, and then again skin. ````julia ts = [0.028; 0.75; 0.028]*phun("in") nts = [2; 3; 2]; # number of elements through the thickness for each layer ```` The `H8layeredplatex` meshing function generates the mesh and marks the elements with a label identifying the layer to which they belong. We will use the label to create separate regions, with their own separate materials. ````julia fens,fes = H8layeredplatex(xs, ys, ts, nts) ```` The linear hexahedra are subsequently converted to serendipity (quadratic) elements. ````julia fens,fes = H8toH20(fens,fes); ```` The model reduction here simply says this is a fully three-dimensional model. The two orthotropic materials are created. ````julia MR = DeforModelRed3D skinmaterial = MatDeforElastOrtho(MR, 0.0, E1s, E2s, E3s, nu12s, nu13s, nu23s, G12s, G13s, G23s, 0.0, 0.0, 0.0) corematerial = MatDeforElastOrtho(MR, 0.0, E1c, E2c, E3c, nu12c, nu13c, nu23c, G12c, G13c, G23c, 0.0, 0.0, 0.0); ```` Now we are ready to create three material regions: one for the bottom skin, one for the core, and one for the top skin. The selection of the finite elements assigned to each of the three regions is based on the label. Full Gauss quadrature is used. ````julia rl1 = selectelem(fens, fes, label=1) skinbot = FDataDict("femm"=>FEMMDeforLinear(MR, IntegDomain(subset(fes, rl1), GaussRule(3, 3)), skinmaterial)) rl3 = selectelem(fens, fes, label=3) skintop = FDataDict("femm"=>FEMMDeforLinear(MR, IntegDomain(subset(fes, rl3), GaussRule(3, 3)), skinmaterial)) rl2 = selectelem(fens, fes, label=2) core = FDataDict("femm"=>FEMMDeforLinear(MR, IntegDomain(subset(fes, rl2), GaussRule(3, 3)), corematerial)); ```` Note that since we did not specify the material coordinate system, the default is assumed (which is identical to the global Cartesian coordinate system). ````julia @show skinbot["femm"].mcsys ```` Next we select the nodes to which essential boundary conditions will be applied. A node is selected if it is within the specified box which for the purpose of the test is inflated in all directions by `tolerance`. The nodes on the planes of symmetry need to be selected, and also the nodes along the edges (faces) to be simply supported need to be identified. ````julia tolerance = 0.0001*phun("in") lx0 = selectnode(fens, box=[0.0 0.0 -Inf Inf -Inf Inf], inflate=tolerance) lxL2 = selectnode(fens, box=[L/2 L/2 -Inf Inf -Inf Inf], inflate=tolerance) ly0 = selectnode(fens, box=[-Inf Inf 0.0 0.0 -Inf Inf], inflate=tolerance) lyL2 = selectnode(fens, box=[-Inf Inf L/2 L/2 -Inf Inf], inflate=tolerance); ```` We have four sides of the quarter of the plate, two on each plane of symmetry, and two along the circumference. Hence we create four essential boundary condition definitions, one for each of the sides of the plate. ````julia ex0 = FDataDict( "displacement"=> 0.0, "component"=> 3, "node_list"=>lx0 ) exL2 = FDataDict( "displacement"=> 0.0, "component"=> 1, "node_list"=>lxL2 ) ey0 = FDataDict( "displacement"=> 0.0, "component"=> 3, "node_list"=>ly0 ) eyL2 = FDataDict( "displacement"=> 0.0, "component"=> 2, "node_list"=>lyL2 ); ```` The traction on the top surface of the top skin is applied to the subset of the surface mesh of the entire domain. First we compute the boundary mesh, and then from the boundary mesh we select the surface finite elements that "face" upward (along the positive $Z$ axis). ````julia bfes = meshboundary(fes) ttopl = selectelem(fens, bfes; facing=true, direction = [0.0 0.0 1.0]) Trac = FDataDict("traction_vector"=>[0.0; 0.0; -tmag], "femm"=>FEMMBase(IntegDomain(subset(bfes, ttopl), GaussRule(2, 3)))); ```` The model data is composed of the finite element nodes, an array of the regions, an array of the essential boundary condition definitions, and an array of the traction (natural) boundary condition definitions. ````julia modeldata = FDataDict("fens"=>fens, "regions"=>[skinbot, core, skintop], "essential_bcs"=>[ex0, exL2, ey0, eyL2], "traction_bcs"=> [Trac] ); ```` With the model data assembled, we can now call the algorithm. ````julia modeldata = AlgoDeforLinearModule.linearstatics(modeldata); ```` The computed solution can now be postprocessed. The displacement is reported at the center of the plate, along the line in the direction of the loading. We select all the nodes along this line. ````julia u = modeldata["u"] geom = modeldata["geom"] lcenter = selectnode(fens, box=[L/2 L/2 L/2 L/2 -Inf Inf], inflate=tolerance); ```` The variation of the displacement along this line can be plotted as (the bottom surface of the shell is at $Z=0$): ````julia ix = sortperm(geom.values[lcenter, 3]) ```` Plot the data ````julia using Gnuplot Gnuplot.gpexec("reset session") @gp "set terminal windows 0 " :- @gp :- geom.values[lcenter, 3][ix] u.values[lcenter, 3][ix]./phun("in") " lw 2 with lp title 'cold leg' " :- @gp :- "set xlabel 'Z coordinate [in]'" :- @gp :- "set ylabel 'Vert displ [in]'" ```` A reasonable single number to report for the deflection at the center is the average of the displacements at the nodes at the center of the plate (-0.136348): ````julia cdis = mean(u.values[lcenter, 3])/phun("in"); println("Center node displacements $(cdis) [in]; NAFEMS-R0031-3 reference: –0.123 [in]") ```` The reference displacement at the center of -0.123 [in] reported for the benchmark is evaluated from an analytical formulation that neglects transverse (pinching) deformation. Due to the soft core, significant pinching is observed. The solution to the benchmark obtained in Abaqus with incompatible hexahedral elements (with the same number of elements as in the stacked continuum shell solution) is -0.131 [in], which is close to our own solution. Hence, our own solution is probably more accurate than the reference solution because it includes an effect neglected in the benchmark solution. The deformed shape can be investigated visually in `paraview` (uncomment the line at the bottom if you have `paraview` in your PATH): ````julia File = "NAFEMS-R0031-3-plate.vtk" vtkexportmesh(File, connasarray(fes), geom.values, FinEtools.MeshExportModule.VTK.H20; scalars = [("Layer", fes.label)], vectors = [("displacement", u.values)]) ```` @async run(`"paraview.exe" $File`); Note that the VTK file will contain element labels (which can help us distinguish between the layers) as scalar field, and the displacements as a vector field. --- *This page was generated using [Literate.jl](https://github.com/fredrikekre/Literate.jl).*
FinEtoolsDeforLinear
https://github.com/PetrKryslUCSD/FinEtoolsDeforLinear.jl.git
[ "MIT" ]
3.0.4
c0a87e41e018a0cb93b6670b7f0e40e6615e5cf8
docs
9659
# TEST 13H: square plate under harmonic loading. Modal model Source code: [`TEST13H_mod_tut.jl`](TEST13H_mod_tut.jl) ## Description Harmonic forced vibration problem is solved for a homogeneous square plate, simply-supported on the circumference. This is the TEST 13H from the Abaqus v 6.12 Benchmarks manual. The test is recommended by the National Agency for Finite Element Methods and Standards (U.K.): Test 13 from NAFEMS “Selected Benchmarks for Forced Vibration,” R0016, March 1993. The plate is discretized with hexahedral solid elements. The simple support condition is approximated by distributed rollers on the boundary. Because only the out of plane displacements are prevented, the structure has three rigid body modes in the plane of the plate. Homogeneous square plate, simply-supported on the circumference from the test 13 from NAFEMS “Selected Benchmarks for Forced Vibration,” R0016, March 1993. The nonzero benchmark frequencies are (in hertz): 2.377, 5.961, 5.961, 9.483, 12.133, 12.133, 15.468, 15.468 [Hz]. The magnitude of the displacement for the fundamental frequency (2.377 Hz) is 45.42mm according to the reference solution. ![](test13h_real_imag.png) This is the so-called modal model: the response is expressed as a linear combination of the eigenvectors. The finite element model is transformed into the modal space. The reduced matrices are in fact diagonal for the Rayleigh damping. The model natural frequencies can be evaluated fairly quickly, given the small size of the model, and a lot more frequencies can therefore be processed in the frequency sweep. ## References [1] NAFEMS “Selected Benchmarks for Forced Vibration,” R0016, March 1993. ## Goals - Show how to generate hexahedral mesh, mirroring and merging together parts. - Execute frequency sweep using a modal model. ````julia # ```` ## Definitions Bring in required support. ````julia using FinEtools using FinEtools.AlgoBaseModule: matrix_blocked, vector_blocked using FinEtoolsDeforLinear using LinearAlgebra using Arpack ```` The input parameters come from [1]. ````julia E = 200*phun("GPa");# Young's modulus nu = 0.3;# Poisson ratio rho = 8000*phun("kg*m^-3");# mass density qmagn = 100.0*phun("Pa") L = 10.0*phun("m"); # side of the square plate t = 0.05*phun("m"); # thickness of the square plate nL = 16; nt = 4; tolerance = t/nt/100; frequencies = vcat(linearspace(0.0,2.377,150), linearspace(2.377,15.0,400)) ```` Compute the parameters of Rayleigh damping. For the two selected frequencies we have the relationship between the damping ratio and the Rayleigh parameters $\xi_m=a_0/\omega_m+a_1\omega_m$ where $m=1,2$. Solving for the Rayleigh parameters $a_0,a_1$ yields: ````julia zeta1 = 0.02; zeta2 = 0.02; o1 = 2*pi*2.377; o2 = 2*pi*15.468; a0 = 2*(o1*o2)/(o2^2-o1^2)*(o2*zeta1-o1*zeta2);# a0 a1 = 2*(o1*o2)/(o2^2-o1^2)*(-1/o2*zeta1+1/o1*zeta2);# a1 # ```` ## Discrete model Generate the finite element domain as a block. ````julia fens,fes = H8block(L, L, t, nL, nL, nt) ```` Create the geometry field. ````julia geom = NodalField(fens.xyz) ```` Create the displacement field. Note that it holds complex numbers. ````julia u = NodalField(zeros(ComplexF64, size(fens.xyz,1), 3)) # displacement field ```` In order to apply the essential boundary conditions we need to select the nodes along the side faces of the plate and support them in the Z direction. ````julia nl = selectnode(fens, box=[0.0 0.0 -Inf Inf -Inf Inf], inflate=tolerance) setebc!(u, nl, true, 3) nl = selectnode(fens, box=[L L -Inf Inf -Inf Inf], inflate=tolerance) setebc!(u, nl, true, 3) nl = selectnode(fens, box=[-Inf Inf 0.0 0.0 -Inf Inf], inflate=tolerance) setebc!(u, nl, true, 3) nl = selectnode(fens, box=[-Inf Inf L L -Inf Inf], inflate=tolerance) setebc!(u, nl, true, 3) ```` Those boundary conditions can now be applied to the displacement field,... ````julia applyebc!(u) ```` ... and the degrees of freedom can be numbered. ````julia numberdofs!(u) println("nfreedofs = $(nfreedofs(u))") ```` The model is three-dimensional. ````julia MR = DeforModelRed3D material = MatDeforElastIso(MR, rho, E, nu, 0.0) ```` Given how relatively thin the plate is we choose an effective element: the mean-strain hexahedral element which is quite tolerant of the high aspect ratio. ````julia femm = FEMMDeforLinearMSH8(MR, IntegDomain(fes, GaussRule(3,2)), material) ```` These elements require to know the geometry before anything else can be computed using them in a finite element machine. Hence we first need to associate the geometry with the FEMM. ````julia femm = associategeometry!(femm, geom) ```` Now we can calculate the stiffness matrix and the mass matrix: both evaluated with the high-order Gauss rule. ````julia K = stiffness(femm, geom, u) femm = FEMMDeforLinear(MR, IntegDomain(fes, GaussRule(3,3)), material) M = mass(femm, geom, u) ```` The damping matrix is a linear combination of the mass matrix and the stiffness matrix (Rayleigh model). ````julia C = a0*M + a1*K ```` Extract the free-free block of the matrices. ````julia M_ff = matrix_blocked(M, nfreedofs(u))[:ff] K_ff = matrix_blocked(K, nfreedofs(u))[:ff] C_ff = matrix_blocked(C, nfreedofs(u))[:ff] ```` Find the boundary finite elements on top of the plate. The uniform distributed loading will be applied to these elements. ````julia bdryfes = meshboundary(fes) ```` Those facing up (in the positive Z direction) will be chosen: ````julia topbfl = selectelem(fens, bdryfes, facing=true, direction=[0.0 0.0 1.0]) ```` A base finite element model machine will be created to evaluate the loading. The force intensity is created as driven by a function, but the function really only just fills the buffer with the constant loading vector. ````julia function pfun(forceout::Vector{T}, XYZ, tangents, feid, qpid) where {T} forceout .= [0.0, 0.0, qmagn] return forceout end fi = ForceIntensity(Float64, 3, pfun); ```` The loading vector is lumped from the distributed uniform loading by integrating on the boundary. Hence, the dimension of the integration domain is 2. ````julia el1femm = FEMMBase(IntegDomain(subset(bdryfes,topbfl), GaussRule(2,2))) F = distribloads(el1femm, geom, u, fi, 2); F_f = vector_blocked(F, nfreedofs(u))[:f] # ```` ## Transformation into the modal model We will have to find the natural frequencies and mode shapes. Without much justification, we picked 60 natural frequencies to include. Usually this needs to be done carefully so that nothing important is missed. In this case the number may be an overkill. ````julia OmegaShift = (0.01*2*pi)^2; # The frequency with which to shift neigvs = 60 t0 = time() evals, evecs, nconv = eigs(K_ff+OmegaShift*M_ff, M_ff; nev=neigvs, which=:SM) evals .-= OmegaShift @show tep = time() - t0 @show nconv == neigvs ```` Now the matrices are reduced. In fact, if we are sure of the diagonal character of all these matrices, we can really only store diagonal matrices and even the solve of the modal equations of motion becomes trivial. ````julia Mr = evecs' * M_ff * evecs Kr = evecs' * K_ff * evecs Cr = evecs' * C_ff * evecs ```` The loading also needs to be transformed (projected) into the modal vector space. ````julia Fr = evecs' * F_f # ```` ## Sweep through the frequencies Sweep through the frequencies and calculate the complex displacement vector for each of the frequencies from the complex balance equations of the structure. The entire solution will be stored in this array: ````julia U1 = zeros(ComplexF64, nfreedofs(u), length(frequencies)) print("Sweeping through $(length(frequencies)) frequencies\n") t0 = time() for k in 1:length(frequencies) f = frequencies[k]; omega = 2*pi*f; ```` Solve the reduced equations. ````julia Ur = (-omega^2*Mr + 1im*omega*Cr + Kr)\Fr; ```` Reconstruct the solution in the finite element space. ````julia U1[:, k] = evecs * Ur; print(".") end print("\nTime = $(time()-t0)\n") ```` Find the midpoint of the plate bottom surface. For this purpose the number of elements along the edge of the plate needs to be divisible by two. ````julia midpoint = selectnode(fens, box=[L/2 L/2 L/2 L/2 0 0], inflate=tolerance); ```` Check that we found that node. ````julia @assert midpoint != [] ```` Extract the displacement component in the vertical direction (Z). ````julia midpointdof = u.dofnums[midpoint, 3] # ```` ## Plot the results ````julia using Gnuplot ```` Plot the amplitude of the FRF. ````julia umidAmpl = abs.(U1[midpointdof, :])/phun("MM") @gp "set terminal windows 0 " :- @gp :- vec(frequencies) vec(umidAmpl) "lw 2 lc rgb 'red' with lines title 'Displacement of the corner' " :- @gp :- "set xlabel 'Frequency [Hz]'" :- @gp :- "set ylabel 'Midpoint displacement amplitude [mm]'" ```` Plot the FRF real and imaginary components. ````julia umidReal = real.(U1[midpointdof, :])/phun("MM") umidImag = imag.(U1[midpointdof, :])/phun("MM") @gp "set terminal windows 1 " :- @gp :- vec(frequencies) vec(umidReal) "lw 2 lc rgb 'red' with lines title 'Real' " :- @gp :- vec(frequencies) vec(umidImag) "lw 2 lc rgb 'blue' with lines title 'Imaginary' " :- @gp :- "set xlabel 'Frequency [Hz]'" :- @gp :- "set ylabel 'Midpoint displacement FRF [mm]'" ```` # Plot the shift of the FRF. ````julia umidPhase = atan.(umidImag, umidReal)/pi*180 @gp "set terminal windows 2 " :- @gp :- vec(frequencies) vec(umidPhase) "lw 2 lc rgb 'red' with lines title 'Phase shift' " :- @gp :- "set xlabel 'Frequency [Hz]'" :- @gp :- "set ylabel 'Phase shift [deg]'" true ```` --- *This page was generated using [Literate.jl](https://github.com/fredrikekre/Literate.jl).*
FinEtoolsDeforLinear
https://github.com/PetrKryslUCSD/FinEtoolsDeforLinear.jl.git
[ "MIT" ]
3.0.4
c0a87e41e018a0cb93b6670b7f0e40e6615e5cf8
docs
9022
# TEST 13H: square plate under harmonic loading. Parallel execution. Source code: [`TEST13H_par_tut.jl`](TEST13H_par_tut.jl) ## Description Harmonic forced vibration problem is solved for a homogeneous square plate, simply-supported on the circumference. This is the TEST 13H from the Abaqus v 6.12 Benchmarks manual. The test is recommended by the National Agency for Finite Element Methods and Standards (U.K.): Test 13 from NAFEMS “Selected Benchmarks for Forced Vibration,” R0016, March 1993. The plate is discretized with hexahedral solid elements. The simple support condition is approximated by distributed rollers on the boundary. Because only the out of plane displacements are prevented, the structure has three rigid body modes in the plane of the plate. Homogeneous square plate, simply-supported on the circumference from the test 13 from NAFEMS “Selected Benchmarks for Forced Vibration,” R0016, March 1993. The nonzero benchmark frequencies are (in hertz): 2.377, 5.961, 5.961, 9.483, 12.133, 12.133, 15.468, 15.468 [Hz]. The magnitude of the displacement for the fundamental frequency (2.377 Hz) is 45.42mm according to the reference solution. ![](test13h_real_imag.png) The harmonic response loop is processed with multiple threads. The algorithm is embarrassingly parallel (i. e. no communication is required). Hence the parallel execution is particularly simple. ## References [1] NAFEMS “Selected Benchmarks for Forced Vibration,” R0016, March 1993. ## Goals - Show how to generate hexahedral mesh, mirroring and merging together parts. - Execute transient simulation by the trapezoidal-rule time stepping of [1]. ````julia # ```` ## Definitions Bring in required support. ````julia using FinEtools using FinEtools.AlgoBaseModule: matrix_blocked, vector_blocked using FinEtoolsDeforLinear using LinearAlgebra using Arpack ```` The input parameters come from [1]. ````julia E = 200*phun("GPa");# Young's modulus nu = 0.3;# Poisson ratio rho = 8000*phun("kg*m^-3");# mass density qmagn = 100.0*phun("Pa") L = 10.0*phun("m"); # side of the square plate t = 0.05*phun("m"); # thickness of the square plate nL = 16; nt = 4; tolerance = t/nt/100; frequencies = vcat(linearspace(0.0,2.377,15), linearspace(2.377,15.0,40)) ```` Compute the parameters of Rayleigh damping. For the two selected frequencies we have the relationship between the damping ratio and the Rayleigh parameters $\xi_m=a_0/\omega_m+a_1\omega_m$ where $m=1,2$. Solving for the Rayleigh parameters $a_0,a_1$ yields: ````julia zeta1 = 0.02; zeta2 = 0.02; o1 = 2*pi*2.377; o2 = 2*pi*15.468; a0 = 2*(o1*o2)/(o2^2-o1^2)*(o2*zeta1-o1*zeta2);# a0 a1 = 2*(o1*o2)/(o2^2-o1^2)*(-1/o2*zeta1+1/o1*zeta2);# a1 # ```` ## Discrete model Generate the finite element domain as a block. ````julia fens,fes = H8block(L, L, t, nL, nL, nt) ```` Create the geometry field. ````julia geom = NodalField(fens.xyz) ```` Create the displacement field. Note that it holds complex numbers. ````julia u = NodalField(zeros(ComplexF64, size(fens.xyz,1), 3)) # displacement field ```` In order to apply the essential boundary conditions we need to select the nodes along the side faces of the plate and support them in the Z direction. ````julia nl = selectnode(fens, box=[0.0 0.0 -Inf Inf -Inf Inf], inflate=tolerance) setebc!(u, nl, true, 3) nl = selectnode(fens, box=[L L -Inf Inf -Inf Inf], inflate=tolerance) setebc!(u, nl, true, 3) nl = selectnode(fens, box=[-Inf Inf 0.0 0.0 -Inf Inf], inflate=tolerance) setebc!(u, nl, true, 3) nl = selectnode(fens, box=[-Inf Inf L L -Inf Inf], inflate=tolerance) setebc!(u, nl, true, 3) ```` Those boundary conditions can now be applied to the displacement field,... ````julia applyebc!(u) ```` ... and the degrees of freedom can be numbered. ````julia numberdofs!(u) println("nfreedofs = $(nfreedofs(u))") ```` The model is three-dimensional. ````julia MR = DeforModelRed3D material = MatDeforElastIso(MR, rho, E, nu, 0.0) ```` Given how relatively thin the plate is we choose an effective element: the mean-strain hexahedral element which is quite tolerant of the high aspect ratio. ````julia femm = FEMMDeforLinearMSH8(MR, IntegDomain(fes, GaussRule(3,2)), material) ```` These elements require to know the geometry before anything else can be computed using them in a finite element machine. Hence we first need to associate the geometry with the FEMM. ````julia femm = associategeometry!(femm, geom) ```` Now we can calculate the stiffness matrix and the mass matrix: both evaluated with the high-order Gauss rule. ````julia K = stiffness(femm, geom, u) femm = FEMMDeforLinear(MR, IntegDomain(fes, GaussRule(3,3)), material) M = mass(femm, geom, u) ```` The damping matrix is a linear combination of the mass matrix and the stiffness matrix (Rayleigh model). ````julia C = a0*M + a1*K ```` Extract the free-free block of the matrices. ````julia M_ff = matrix_blocked(M, nfreedofs(u))[:ff] K_ff = matrix_blocked(K, nfreedofs(u))[:ff] C_ff = matrix_blocked(C, nfreedofs(u))[:ff] ```` Find the boundary finite elements on top of the plate. The uniform distributed loading will be applied to these elements. ````julia bdryfes = meshboundary(fes) ```` Those facing up (in the positive Z direction) will be chosen: ````julia topbfl = selectelem(fens, bdryfes, facing=true, direction=[0.0 0.0 1.0]) ```` A base finite element model machine will be created to evaluate the loading. The force intensity is created as driven by a function, but the function really only just fills the buffer with the constant loading vector. ````julia function pfun(forceout::Vector{T}, XYZ, tangents, feid, qpid) where {T} forceout .= [0.0, 0.0, qmagn] return forceout end fi = ForceIntensity(Float64, 3, pfun); ```` The loading vector is lumped from the distributed uniform loading by integrating on the boundary. Hence, the dimension of the integration domain is 2. ````julia el1femm = FEMMBase(IntegDomain(subset(bdryfes,topbfl), GaussRule(2,2))) F = distribloads(el1femm, geom, u, fi, 2); F_f = vector_blocked(F, nfreedofs(u))[:f] # ```` ## Sweep through the frequencies Sweep through the frequencies and calculate the complex displacement vector for each of the frequencies from the complex balance equations of the structure. The entire solution will be stored in this array: ````julia U1 = zeros(ComplexF64, nfreedofs(u), length(frequencies)) ```` It is best to prevent the BLAS library from using threads concurrently with our own use of threads. The threads might easily become oversubscribed, with attendant slowdown. ````julia LinearAlgebra.BLAS.set_num_threads(1) ```` We utilize all the threads with which Julia was started. We can select the number of threads to use by running the executable as `julia -t n`, where `n` is the number of threads. ````julia using Base.Threads print("Number of threads: $(nthreads())\n") print("Sweeping through $(length(frequencies)) frequencies\n") t0 = time() Threads.@threads for k in 1:length(frequencies) f = frequencies[k]; omega = 2*pi*f; U1[:, k] = (-omega^2*M_ff + 1im*omega*C_ff + K_ff)\F_f; print(".") end print("\nTime = $(time()-t0)\n") ```` On Windows the scaling is not great, which is not Julia's fault, but rather the operating system's failing. Linux usually gives much greater speedups. Find the midpoint of the plate bottom surface. For this purpose the number of elements along the edge of the plate needs to be divisible by two. ````julia midpoint = selectnode(fens, box=[L/2 L/2 L/2 L/2 0 0], inflate=tolerance); ```` Check that we found that node. ````julia @assert midpoint != [] ```` Extract the displacement component in the vertical direction (Z). ````julia midpointdof = u.dofnums[midpoint, 3] # ```` ## Plot the results ````julia using Gnuplot ```` Plot the amplitude of the FRF. ````julia umidAmpl = abs.(U1[midpointdof, :])/phun("MM") @gp "set terminal windows 0 " :- @gp :- vec(frequencies) vec(umidAmpl) "lw 2 lc rgb 'red' with lines title 'Displacement of the corner' " :- @gp :- "set xlabel 'Frequency [Hz]'" :- @gp :- "set ylabel 'Midpoint displacement amplitude [mm]'" ```` Plot the FRF real and imaginary components. ````julia umidReal = real.(U1[midpointdof, :])/phun("MM") umidImag = imag.(U1[midpointdof, :])/phun("MM") @gp "set terminal windows 1 " :- @gp :- vec(frequencies) vec(umidReal) "lw 2 lc rgb 'red' with lines title 'Real' " :- @gp :- vec(frequencies) vec(umidImag) "lw 2 lc rgb 'blue' with lines title 'Imaginary' " :- @gp :- "set xlabel 'Frequency [Hz]'" :- @gp :- "set ylabel 'Midpoint displacement FRF [mm]'" ```` # Plot the shift of the FRF. ````julia umidPhase = atan.(umidImag, umidReal)/pi*180 @gp "set terminal windows 2 " :- @gp :- vec(frequencies) vec(umidPhase) "lw 2 lc rgb 'red' with lines title 'Phase shift' " :- @gp :- "set xlabel 'Frequency [Hz]'" :- @gp :- "set ylabel 'Phase shift [deg]'" true ```` --- *This page was generated using [Literate.jl](https://github.com/fredrikekre/Literate.jl).*
FinEtoolsDeforLinear
https://github.com/PetrKryslUCSD/FinEtoolsDeforLinear.jl.git
[ "MIT" ]
3.0.4
c0a87e41e018a0cb93b6670b7f0e40e6615e5cf8
docs
8142
# TEST 13H: square plate under harmonic loading Source code: [`TEST13H_tut.jl`](TEST13H_tut.jl) ## Description Harmonic forced vibration problem is solved for a homogeneous square plate, simply-supported on the circumference. This is the TEST 13H from the Abaqus v 6.12 Benchmarks manual. The test is recommended by the National Agency for Finite Element Methods and Standards (U.K.): Test 13 from NAFEMS “Selected Benchmarks for Forced Vibration,” R0016, March 1993. The plate is discretized with hexahedral solid elements. The simple support condition is approximated by distributed rollers on the boundary. Because only the out of plane displacements are prevented, the structure has three rigid body modes in the plane of the plate. Homogeneous square plate, simply-supported on the circumference from the test 13 from NAFEMS “Selected Benchmarks for Forced Vibration,” R0016, March 1993. The nonzero benchmark frequencies are (in hertz): 2.377, 5.961, 5.961, 9.483, 12.133, 12.133, 15.468, 15.468 [Hz]. The magnitude of the displacement for the fundamental frequency (2.377 Hz) is 45.42mm according to the reference solution. ![](test13h_real_imag.png) ## References [1] NAFEMS “Selected Benchmarks for Forced Vibration,” R0016, March 1993. ## Goals - Show how to generate hexahedral mesh, mirroring and merging together parts. - Execute transient simulation by the trapezoidal-rule time stepping of [1]. ````julia # ```` ## Definitions Bring in required support. ````julia using FinEtools using FinEtools.AlgoBaseModule: matrix_blocked, vector_blocked using FinEtoolsDeforLinear using LinearAlgebra using Arpack ```` The input parameters come from [1]. ````julia E = 200*phun("GPa");# Young's modulus nu = 0.3;# Poisson ratio rho = 8000*phun("kg*m^-3");# mass density qmagn = 100.0*phun("Pa") L = 10.0*phun("m"); # side of the square plate t = 0.05*phun("m"); # thickness of the square plate nL = 16; nt = 4; tolerance = t/nt/100; frequencies = vcat(linearspace(0.0,2.377,15), linearspace(2.377,15.0,40)) ```` Compute the parameters of Rayleigh damping. For the two selected frequencies we have the relationship between the damping ratio and the Rayleigh parameters $\xi_m=a_0/\omega_m+a_1\omega_m$ where $m=1,2$. Solving for the Rayleigh parameters $a_0,a_1$ yields: ````julia zeta1 = 0.02; zeta2 = 0.02; o1 = 2*pi*2.377; o2 = 2*pi*15.468; a0 = 2*(o1*o2)/(o2^2-o1^2)*(o2*zeta1-o1*zeta2);# a0 a1 = 2*(o1*o2)/(o2^2-o1^2)*(-1/o2*zeta1+1/o1*zeta2);# a1 # ```` ## Discrete model Generate the finite element domain as a block. ````julia fens,fes = H8block(L, L, t, nL, nL, nt) ```` Create the geometry field. ````julia geom = NodalField(fens.xyz) ```` Create the displacement field. Note that it holds complex numbers. ````julia u = NodalField(zeros(ComplexF64, size(fens.xyz,1), 3)) # displacement field ```` In order to apply the essential boundary conditions we need to select the nodes along the side faces of the plate and support them in the Z direction. ````julia nl = selectnode(fens, box=[0.0 0.0 -Inf Inf -Inf Inf], inflate=tolerance) setebc!(u, nl, true, 3) nl = selectnode(fens, box=[L L -Inf Inf -Inf Inf], inflate=tolerance) setebc!(u, nl, true, 3) nl = selectnode(fens, box=[-Inf Inf 0.0 0.0 -Inf Inf], inflate=tolerance) setebc!(u, nl, true, 3) nl = selectnode(fens, box=[-Inf Inf L L -Inf Inf], inflate=tolerance) setebc!(u, nl, true, 3) ```` Those boundary conditions can now be applied to the displacement field,... ````julia applyebc!(u) ```` ... and the degrees of freedom can be numbered. ````julia numberdofs!(u) println("nfreedofs = $(nfreedofs(u))") ```` The model is three-dimensional. ````julia MR = DeforModelRed3D material = MatDeforElastIso(MR, rho, E, nu, 0.0) ```` Given how relatively thin the plate is we choose an effective element: the mean-strain hexahedral element which is quite tolerant of the high aspect ratio. ````julia femm = FEMMDeforLinearMSH8(MR, IntegDomain(fes, GaussRule(3,2)), material) ```` These elements require to know the geometry before anything else can be computed using them in a finite element machine. Hence we first need to associate the geometry with the FEMM. ````julia femm = associategeometry!(femm, geom) ```` Now we can calculate the stiffness matrix and the mass matrix: both evaluated with the high-order Gauss rule. ````julia K = stiffness(femm, geom, u) femm = FEMMDeforLinear(MR, IntegDomain(fes, GaussRule(3,3)), material) M = mass(femm, geom, u) ```` The damping matrix is a linear combination of the mass matrix and the stiffness matrix (Rayleigh model). ````julia C = a0*M + a1*K ```` Extract the free-free block of the matrices. ````julia M_ff = matrix_blocked(M, nfreedofs(u))[:ff] K_ff = matrix_blocked(K, nfreedofs(u))[:ff] C_ff = matrix_blocked(C, nfreedofs(u))[:ff] ```` Find the boundary finite elements on top of the plate. The uniform distributed loading will be applied to these elements. ````julia bdryfes = meshboundary(fes) ```` Those facing up (in the positive Z direction) will be chosen: ````julia topbfl = selectelem(fens, bdryfes, facing=true, direction=[0.0 0.0 1.0]) ```` A base finite element model machine will be created to evaluate the loading. The force intensity is created as driven by a function, but the function really only just fills the buffer with the constant loading vector. ````julia function pfun(forceout::Vector{T}, XYZ, tangents, feid, qpid) where {T} forceout .= [0.0, 0.0, qmagn] return forceout end fi = ForceIntensity(Float64, 3, pfun); ```` The loading vector is lumped from the distributed uniform loading by integrating on the boundary. Hence, the dimension of the integration domain is 2. ````julia el1femm = FEMMBase(IntegDomain(subset(bdryfes,topbfl), GaussRule(2,2))) F = distribloads(el1femm, geom, u, fi, 2); F_f = vector_blocked(F, nfreedofs(u))[:f] # ```` ## Sweep through the frequencies Sweep through the frequencies and calculate the complex displacement vector for each of the frequencies from the complex balance equations of the structure. The entire solution will be stored in this array: ````julia U1 = zeros(ComplexF64, nfreedofs(u), length(frequencies)) print("Sweeping through $(length(frequencies)) frequencies\n") t0 = time() for k in 1:length(frequencies) f = frequencies[k]; omega = 2*pi*f; U1[:, k] = (-omega^2*M_ff + 1im*omega*C_ff + K_ff)\F_f; print(".") end print("\nTime = $(time()-t0)\n") ```` Find the midpoint of the plate bottom surface. For this purpose the number of elements along the edge of the plate needs to be divisible by two. ````julia midpoint = selectnode(fens, box=[L/2 L/2 L/2 L/2 0 0], inflate=tolerance); ```` Check that we found that node. ````julia @assert midpoint != [] ```` Extract the displacement component in the vertical direction (Z). ````julia midpointdof = u.dofnums[midpoint, 3] # ```` ## Plot the results ````julia using Gnuplot ```` Plot the amplitude of the FRF. ````julia umidAmpl = abs.(U1[midpointdof, :])/phun("MM") @gp "set terminal windows 0 " :- @gp :- vec(frequencies) vec(umidAmpl) "lw 2 lc rgb 'red' with lines title 'Displacement of the corner' " :- @gp :- "set xlabel 'Frequency [Hz]'" :- @gp :- "set ylabel 'Midpoint displacement amplitude [mm]'" ```` Plot the FRF real and imaginary components. ````julia umidReal = real.(U1[midpointdof, :])/phun("MM") umidImag = imag.(U1[midpointdof, :])/phun("MM") @gp "set terminal windows 1 " :- @gp :- vec(frequencies) vec(umidReal) "lw 2 lc rgb 'red' with lines title 'Real' " :- @gp :- vec(frequencies) vec(umidImag) "lw 2 lc rgb 'blue' with lines title 'Imaginary' " :- @gp :- "set xlabel 'Frequency [Hz]'" :- @gp :- "set ylabel 'Midpoint displacement FRF [mm]'" ```` # Plot the shift of the FRF. ````julia umidPhase = atan.(umidImag, umidReal)/pi*180 @gp "set terminal windows 2 " :- @gp :- vec(frequencies) vec(umidPhase) "lw 2 lc rgb 'red' with lines title 'Phase shift' " :- @gp :- "set xlabel 'Frequency [Hz]'" :- @gp :- "set ylabel 'Phase shift [deg]'" true ```` --- *This page was generated using [Literate.jl](https://github.com/fredrikekre/Literate.jl).*
FinEtoolsDeforLinear
https://github.com/PetrKryslUCSD/FinEtoolsDeforLinear.jl.git
[ "MIT" ]
3.0.4
c0a87e41e018a0cb93b6670b7f0e40e6615e5cf8
docs
7109
# Beam under on/off loading: transient response Source code: [`beam_load_on_off_tut.jl`](beam_load_on_off_tut.jl) ## Description A cantilever beam is loaded by a trapezoidal-pulse traction load at its free cross-section. The load is applied within 0.015 seconds and taken off after 0.37 seconds. The beam oscillates about its equilibrium configuration. The beam is modeled as a solid. Trapezoidal rule is used to integrate the equations of motion in time. Rayleigh mass- and stiffness-proportional damping is incorporated. The dynamic stiffness is factorized for efficiency. ![](beam_load_on_off_tut.png) ## Goals - Show how to create the discrete model, with implicit dynamics and proportional damping. - Apply distributed loading varying in time. - Demonstrate trapezoidal-rule time stepping. ````julia # ```` ## Definitions Basic imports. ````julia using LinearAlgebra using Arpack ```` This is the finite element toolkit itself. ````julia using FinEtools using FinEtools.AlgoBaseModule: matrix_blocked, vector_blocked ```` The linear stress analysis application is implemented in this package. ````julia using FinEtoolsDeforLinear using FinEtoolsDeforLinear.AlgoDeforLinearModule ```` Input parameters ````julia E = 205000*phun("MPa");# Young's modulus nu = 0.3;# Poisson ratio rho = 7850*phun("KG*M^-3");# mass density loss_tangent = 0.005; L = 200*phun("mm"); W = 4*phun("mm"); H = 8*phun("mm"); tolerance = W/500; qmagn = 0.1*phun("MPa"); tend = 0.5*phun("SEC"); # ```` ## Create the discrete model ````julia MR = DeforModelRed3D fens,fes = H8block(L, W, H, 50, 2, 4) geom = NodalField(fens.xyz) u = NodalField(zeros(size(fens.xyz,1),3)) # displacement field nl = selectnode(fens, box=[L L -Inf Inf -Inf Inf], inflate=tolerance) setebc!(u, nl, true, 1) setebc!(u, nl, true, 2) setebc!(u, nl, true, 3) applyebc!(u) numberdofs!(u) corner = selectnode(fens, nearestto=[0 0 0]) cornerzdof = u.dofnums[corner[1], 3] material = MatDeforElastIso(MR, rho, E, nu, 0.0) femm = FEMMDeforLinearMSH8(MR, IntegDomain(fes, GaussRule(3,2)), material) femm = associategeometry!(femm, geom) K = stiffness(femm, geom, u) femm = FEMMDeforLinear(MR, IntegDomain(fes, GaussRule(3,3)), material) M = mass(femm, geom, u) ```` Extract the free-free block of the matrices. ````julia M_ff = matrix_blocked(M, nfreedofs(u))[:ff] K_ff = matrix_blocked(K, nfreedofs(u))[:ff] ```` Find the boundary finite elements at the tip cross-section of the beam. The uniform distributed loading will be applied to these elements. ````julia bdryfes = meshboundary(fes) ```` Those facing in the positive X direction will be chosen: ````julia tipbfl = selectelem(fens, bdryfes, facing=true, direction=[-1.0 0.0 0.0]) ```` A base finite element model machine will be created to evaluate the loading. The force intensity is created as driven by a function, but the function really only just fills the buffer with the constant loading vector. ````julia function pfun(forceout::Vector{T}, XYZ, tangents, feid, qpid) where {T} forceout .= [0.0, 0.0, qmagn] return forceout end fi = ForceIntensity(Float64, 3, pfun); ```` The loading vector is lumped from the distributed uniform loading by integrating on the boundary. Hence, the dimension of the integration domain is 2. ````julia el1femm = FEMMBase(IntegDomain(subset(bdryfes,tipbfl), GaussRule(2,2))) F = distribloads(el1femm, geom, u, fi, 2); F_f, F_d = vector_blocked(F, nfreedofs(u))[(:f, :d)] ```` The loading function is defined as a time -dependent multiplier of the constant distribution of the loading on the structure. ````julia function tmult(t) if (t <= 0.015) t/0.015 else if (t >= 0.4) 0.0 else if (t <= 0.385) 1.0 else (t - 0.4)/(0.385 - 0.4) end end end end # ```` ## Time step determination We figure out the fundamental mode frequency, which will determine the time step is a fraction of the period. ````julia evals, evecs = eigs(K_ff, M_ff; nev=1, which=:SM); ```` The fundamental angular frequency is then: ````julia omega_f = real(sqrt(evals[1])); ```` We take the time step to be a fraction of the period of vibration in the fundamental mode. ````julia @show dt = 0.05 * 1/(omega_f/2/pi); # ```` ## Damping model We take the damping to be representative of what's happening at the fundamental vibration frequency. For a given loss factor at a certain frequency $\omega_f$, the stiffness-proportional damping coefficient may be estimated as 2*loss_tangent/$\omega_f$, and the mass-proportional damping coefficient may be estimated as 2*loss_tangent*$\omega_f$. ````julia Rayleigh_mass = (loss_tangent/2)*omega_f; Rayleigh_stiffness = (loss_tangent/2)/omega_f; ```` Now we construct the Rayleigh damping matrix as a linear combination of the stiffness and mass matrices. ````julia C_ff = Rayleigh_stiffness * K_ff + Rayleigh_mass * M_ff ```` The time stepping loop is protected by `let end` to avoid unpleasant surprises with variables getting clobbered by globals. ````julia ts, corneruzs = let dt = dt, F_f = F_f ```` Initial displacement, velocity, and acceleration. ````julia U0 = gathersysvec(u) v = deepcopy(u) V0 = gathersysvec(v) U1 = fill(0.0, length(V0)) V1 = fill(0.0, length(V0)) F0 = deepcopy(F_f) F1 = fill(0.0, length(F0)) R = fill(0.0, length(F0)) ```` Factorize the dynamic stiffness ````julia DSF = cholesky((M_ff + (dt/2)*C_ff + ((dt/2)^2)*K_ff)) ```` The times and displacements of the corner will be collected into two vectors ````julia ts = Float64[] corneruzs = Float64[] ```` Let us begin the time integration loop: ````julia t = 0.0; step = 0; F0 .= tmult(t) .* F_f while t < tend push!(ts, t) push!(corneruzs, U0[cornerzdof]) t = t+dt; step = step + 1; (mod(step,100)==0) && println("Step $(step): $(t)") ```` Set the time-dependent load ````julia F1 .= tmult(t) .* F_f ```` Compute the out of balance force. ````julia R .= (M_ff*V0 - C_ff*(dt/2*V0) - K_ff*((dt/2)^2*V0 + dt*U0) + (dt/2)*(F0+F1)); ```` Calculate the new velocities. ````julia V1 = DSF\R; ```` Update the velocities. ````julia U1 = U0 + (dt/2)*(V0+V1); ```` Switch the temporary vectors for the next step. ````julia U0, U1 = U1, U0; V0, V1 = V1, V0; F0, F1 = F1, F0; if (t == tend) # Are we done yet? break; end if (t+dt > tend) # Adjust the last time step so that we exactly reach tend dt = tend-t; end end ts, corneruzs # return the collected results end # ```` ## Plot the results ````julia using Gnuplot @gp "set terminal windows 0 " :- @gp :- ts corneruzs./phun("mm") "lw 2 lc rgb 'red' with lines title 'Displacement of the corner' " @gp :- "set xlabel 'Time [s]'" @gp :- "set ylabel 'Displacement [mm]'" ```` The end. ````julia true ```` --- *This page was generated using [Literate.jl](https://github.com/fredrikekre/Literate.jl).*
FinEtoolsDeforLinear
https://github.com/PetrKryslUCSD/FinEtoolsDeforLinear.jl.git
[ "MIT" ]
3.0.4
c0a87e41e018a0cb93b6670b7f0e40e6615e5cf8
docs
4828
# Tracking transient deformation of a cantilever beam: centered difference Source code: [`bending_wave_Ray_expl_cd_tut.jl`](bending_wave_Ray_expl_cd_tut.jl) ## Description A cantilever beam is given an initial velocity and then at time 0.0 it is suddenly stopped by fixing one of its ends. This sends a wave down the beam. The beam is modeled as a solid. Trapezoidal rule is used to integrate the equations of motion in time. No damping is present. ## Goals - Show how to create the discrete model for explicit dynamics. - Demonstrate centered difference time stepping. ````julia # ```` ## Definitions Basic imports. ````julia using LinearAlgebra using Arpack ```` This is the finite element toolkit itself. ````julia using FinEtools using FinEtools.AlgoBaseModule: matrix_blocked, vector_blocked ```` The linear stress analysis application is implemented in this package. ````julia using FinEtoolsDeforLinear using FinEtoolsDeforLinear.AlgoDeforLinearModule ```` Input parameters ````julia E = 205000*phun("MPa");# Young's modulus nu = 0.3;# Poisson ratio rho = 7850*phun("KG*M^-3");# mass density loss_tangent = 0.0001; frequency = 1/0.0058; Rayleigh_mass = 2*loss_tangent*(2*pi*frequency); L = 200*phun("mm"); W = 4*phun("mm"); H = 8*phun("mm"); tolerance = W/500; vmag = 0.1*phun("m")/phun("SEC"); tend = 0.013*phun("SEC"); # ```` ## Create the discrete model ````julia MR = DeforModelRed3D fens,fes = H8block(L,W,H, 50,1,4) geom = NodalField(fens.xyz) u = NodalField(zeros(size(fens.xyz,1),3)) # displacement field nl = selectnode(fens, box=[L L -Inf Inf -Inf Inf], inflate=tolerance) setebc!(u, nl, true, 1) setebc!(u, nl, true, 2) setebc!(u, nl, true, 3) applyebc!(u) numberdofs!(u) corner = selectnode(fens, nearestto=[0 0 0]) cornerzdof = u.dofnums[corner[1], 3] material = MatDeforElastIso(MR, rho, E, nu, 0.0) femm = FEMMDeforLinear(MR, IntegDomain(fes, GaussRule(3,2)), material) femm = associategeometry!(femm, geom) K = stiffness(femm, geom, u) ```` Assemble the mass matrix as diagonal. The HRZ lumping technique is applied through the assembler of the sparse matrix. ````julia hrzass = SysmatAssemblerSparseHRZLumpingSymm(0.0) femm = FEMMDeforLinear(MR, IntegDomain(fes, GaussRule(3,3)), material) M = mass(femm, hrzass, geom, u) ```` Extract the free-free block of the matrices. ````julia M_ff = matrix_blocked(M, nfreedofs(u))[:ff] K_ff = matrix_blocked(K, nfreedofs(u))[:ff] ```` Form the damping matrix. ````julia C_ff = Rayleigh_mass * M_ff ```` Figure out the highest frequency in the model, and use a time step that is considerably larger than the period of that highest frequency. ````julia evals, evecs = eigs(K_ff, M_ff; nev=1, which=:LM); @show dt = 0.99 * 2/real(sqrt(evals[1])); ```` The time stepping loop is protected by `let end` to avoid unpleasant surprises with variables getting clobbered by globals. ````julia ts, corneruzs = let dt = dt ```` Initial displacement, velocity, and acceleration. ````julia U0 = gathersysvec(u) v = deepcopy(u) v.values[:, 3] .= vmag V0 = gathersysvec(v) F1 = fill(0.0, length(V0)) U1 = fill(0.0, length(V0)) V1 = fill(0.0, length(V0)) A0 = fill(0.0, length(V0)) A1 = fill(0.0, length(V0)) ```` The times and displacements of the corner will be collected into two vectors ````julia ts = Float64[] corneruzs = Float64[] ```` Let us begin the time integration loop: ````julia t = 0.0; step = 0; while t < tend push!(ts, t) push!(corneruzs, U0[cornerzdof]) t = t+dt; step = step + 1; (mod(step,1000)==0) && println("Step $(step): $(t)") ```` Zero out the load ````julia fill!(F1, 0.0); ```` Initial acceleration ````julia if step == 1 A0 = M_ff \ (F1) end ```` Update displacement. ````julia @. U1 = U0 + dt*V0 + (dt^2/2)*A0; ```` Compute updated acceleration. ````julia A1 .= M_ff \ (-K_ff*U1 + F1) ```` Update the velocities. ````julia @. V1 = V0 + (dt/2)*(A0 + A1) ```` Switch the temporary vectors for the next step. ````julia U0, U1 = U1, U0; V0, V1 = V1, V0; A0, A1 = A1, A0; if (t == tend) # Are we done yet? break; end if (t+dt > tend) # Adjust the last time step so that we exactly reach tend dt = tend-t; end end ts, corneruzs # return the collected results end # ```` ## Plot the results ````julia using Gnuplot @gp "set terminal windows 4 " :- @gp :- ts corneruzs./phun("mm") "lw 2 lc rgb 'red' with lines title 'Displacement of the corner' " @gp :- "set xlabel 'Time [s]'" @gp :- "set ylabel 'Displacement [mm]'" ```` The end. ````julia true ```` --- *This page was generated using [Literate.jl](https://github.com/fredrikekre/Literate.jl).*
FinEtoolsDeforLinear
https://github.com/PetrKryslUCSD/FinEtoolsDeforLinear.jl.git
[ "MIT" ]
3.0.4
c0a87e41e018a0cb93b6670b7f0e40e6615e5cf8
docs
5527
# Tracking transient deformation of a cantilever beam: lumped mass Source code: [`bending_wave_Ray_lumped_tut.jl`](bending_wave_Ray_lumped_tut.jl) ## Description A cantilever beam is given an initial velocity and then at time 0.0 it is suddenly stopped by fixing one of its ends. This sends a wave down the beam. The beam is modeled as a solid. Trapezoidal rule is used to integrate the equations of motion in time. Rayleigh mass-proportional damping is incorporated. The dynamic stiffness is factorized for efficiency. ## Goals - Show how to create the discrete model for implicit dynamics. - Demonstrate trapezoidal-rule time stepping. ````julia # ```` ## Definitions Basic imports. ````julia using LinearAlgebra using Arpack ```` This is the finite element toolkit itself. ````julia using FinEtools using FinEtools.AlgoBaseModule: matrix_blocked, vector_blocked ```` The linear stress analysis application is implemented in this package. ````julia using FinEtoolsDeforLinear using FinEtoolsDeforLinear.AlgoDeforLinearModule ```` Input parameters ````julia E = 205000*phun("MPa");# Young's modulus nu = 0.3;# Poisson ratio rho = 7850*phun("KG*M^-3");# mass density loss_tangent = 0.0001; frequency = 1/0.0058; Rayleigh_mass = 2*loss_tangent*(2*pi*frequency); L = 200*phun("mm"); W = 4*phun("mm"); H = 8*phun("mm"); tolerance = W/500; vmag = 0.1*phun("m")/phun("SEC"); tend = 0.013*phun("SEC"); # ```` ## Create the discrete model ````julia MR = DeforModelRed3D fens,fes = H8block(L,W,H, 50,1,4) geom = NodalField(fens.xyz) u = NodalField(zeros(size(fens.xyz,1),3)) # displacement field nl = selectnode(fens, box=[L L -Inf Inf -Inf Inf], inflate=tolerance) setebc!(u, nl, true, 1) setebc!(u, nl, true, 2) setebc!(u, nl, true, 3) applyebc!(u) numberdofs!(u) corner = selectnode(fens, nearestto=[0 0 0]) cornerzdof = u.dofnums[corner[1], 3] material = MatDeforElastIso(MR, rho, E, nu, 0.0) femm = FEMMDeforLinear(MR, IntegDomain(fes, GaussRule(3,2)), material) femm = associategeometry!(femm, geom) K = stiffness(femm, geom, u) ```` Assemble the mass matrix as diagonal. The HRZ lumping technique is applied through the assembler of the sparse matrix. ````julia hrzass = SysmatAssemblerSparseHRZLumpingSymm(0.0) femm = FEMMDeforLinear(MR, IntegDomain(fes, GaussRule(3,3)), material) M = mass(femm, hrzass, geom, u) ```` Extract the free-free block of the matrices. ````julia M_ff = matrix_blocked(M, nfreedofs(u))[:ff] K_ff = matrix_blocked(K, nfreedofs(u))[:ff] ```` Check visually that the mass matrix is in fact diagonal. We use the `findnz` function to retrieve the nonzeros in the matrix. Each such entry is then plotted as a point. ````julia using Gnuplot using SparseArrays I, J, V = findnz(M_ff) @gp "set terminal windows 1 " :- @gp :- J I "with p" :- @gp :- "set xlabel 'Column'" "set xrange [1:$(size(M_ff, 2))] " :- @gp :- "set ylabel 'Row'" "set yrange [$(size(M_ff, 1)):1] " ```` Find the relationship of the sum of all the elements of the mass matrix and the total mass of the structure. ````julia @show sum(sum(M_ff)) @show L*W*H*rho ```` Form the damping matrix. ````julia C_ff = Rayleigh_mass * M_ff ```` Figure out the highest frequency in the model, and use a time step that is considerably larger than the period of that highest frequency. ````julia evals, evecs = eigs(K_ff, M_ff; nev=1, which=:LM); @show dt = 350 * 2/real(sqrt(evals[1])); ```` The time stepping loop is protected by `let end` to avoid unpleasant surprises with variables getting clobbered by globals. ````julia ts, corneruzs = let dt = dt ```` Initial displacement, velocity, and acceleration. ````julia U0 = gathersysvec(u) v = deepcopy(u) v.values[:, 3] .= vmag V0 = gathersysvec(v) F0 = fill(0.0, length(V0)) U1 = fill(0.0, length(V0)) V1 = fill(0.0, length(V0)) F1 = fill(0.0, length(V0)) R = fill(0.0, length(V0)) ```` Factorize the dynamic stiffness ````julia DSF = cholesky((M_ff + (dt/2)*C_ff + ((dt/2)^2)*K_ff)) ```` The times and displacements of the corner will be collected into two vectors ````julia ts = Float64[] corneruzs = Float64[] ```` Let us begin the time integration loop: ````julia t = 0.0; step = 0; while t < tend push!(ts, t) push!(corneruzs, U0[cornerzdof]) t = t+dt; step = step + 1; (mod(step,25)==0) && println("Step $(step): $(t)") ```` Zero out the load ````julia fill!(F1, 0.0); ```` Compute the out of balance force. ````julia R = (M_ff*V0 - C_ff*(dt/2*V0) - K_ff*((dt/2)^2*V0 + dt*U0) + (dt/2)*(F0+F1)); ```` Calculate the new velocities. ````julia V1 = DSF\R; ```` Update the velocities. ````julia U1 = U0 + (dt/2)*(V0+V1); ```` Switch the temporary vectors for the next step. ````julia U0, U1 = U1, U0; V0, V1 = V1, V0; F0, F1 = F1, F0; if (t == tend) # Are we done yet? break; end if (t+dt > tend) # Adjust the last time step so that we exactly reach tend dt = tend-t; end end ts, corneruzs # return the collected results end # ```` ## Plot the results ````julia using Gnuplot @gp "set terminal windows 0 " :- @gp :- ts corneruzs./phun("mm") "lw 2 lc rgb 'red' with lines title 'Displacement of the corner' " @gp :- "set xlabel 'Time [s]'" @gp :- "set ylabel 'Displacement [mm]'" ```` The end. ````julia true ```` --- *This page was generated using [Literate.jl](https://github.com/fredrikekre/Literate.jl).*
FinEtoolsDeforLinear
https://github.com/PetrKryslUCSD/FinEtoolsDeforLinear.jl.git
[ "MIT" ]
3.0.4
c0a87e41e018a0cb93b6670b7f0e40e6615e5cf8
docs
4964
# Tracking transient deformation of a cantilever beam Source code: [`bending_wave_Ray_tut.jl`](bending_wave_Ray_tut.jl) ## Description A cantilever beam is given an initial velocity and then at time 0.0 it is suddenly stopped by fixing one of its ends. This sends a wave down the beam. The beam is modeled as a solid. Consistent mass matrix is used. Trapezoidal rule is used to integrate the equations of motion in time. Rayleigh mass-proportional damping is incorporated. The dynamic stiffness is factorized for efficiency. Deflection at the free end will look like this: ![](bending_wave_Ray.png) ## Goals - Show how to create the discrete model. - Demonstrate trapezoidal-rule time stepping. ````julia # ```` ## Definitions Basic imports. ````julia using LinearAlgebra using Arpack ```` This is the finite element toolkit itself. ````julia using FinEtools using FinEtools.AlgoBaseModule: matrix_blocked, vector_blocked ```` The linear stress analysis application is implemented in this package. ````julia using FinEtoolsDeforLinear using FinEtoolsDeforLinear.AlgoDeforLinearModule ```` Input parameters ````julia E = 205000*phun("MPa");# Young's modulus nu = 0.3;# Poisson ratio rho = 7850*phun("KG*M^-3");# mass density loss_tangent = 0.0001; frequency = 1/0.0058; Rayleigh_mass = 2*loss_tangent*(2*pi*frequency); L = 200*phun("mm"); W = 4*phun("mm"); H = 8*phun("mm"); tolerance = W/500; vmag = 0.1*phun("m")/phun("SEC"); tend = 0.013*phun("SEC"); # ```` ## Create the discrete model ````julia MR = DeforModelRed3D fens,fes = H8block(L,W,H, 50,1,4) geom = NodalField(fens.xyz) u = NodalField(zeros(size(fens.xyz,1),3)) # displacement field nl = selectnode(fens, box=[L L -Inf Inf -Inf Inf], inflate=tolerance) setebc!(u, nl, true, 1) setebc!(u, nl, true, 2) setebc!(u, nl, true, 3) applyebc!(u) numberdofs!(u) corner = selectnode(fens, nearestto=[0 0 0]) cornerzdof = u.dofnums[corner[1], 3] material = MatDeforElastIso(MR, rho, E, nu, 0.0) femm = FEMMDeforLinear(MR, IntegDomain(fes, GaussRule(3,2)), material) femm = associategeometry!(femm, geom) K = stiffness(femm, geom, u) femm = FEMMDeforLinear(MR, IntegDomain(fes, GaussRule(3,3)), material) M = mass(femm, geom, u) ```` Extract the free-free block of the matrices. ````julia M_ff = matrix_blocked(M, nfreedofs(u))[:ff] K_ff = matrix_blocked(K, nfreedofs(u))[:ff] ```` Find the relationship of the sum of all the elements of the mass matrix and the total mass of the structure. ````julia @show sum(sum(M_ff)) @show L*W*H*rho ```` Form the damping matrix. ````julia C_ff = Rayleigh_mass * M_ff ```` Figure out the highest frequency in the model, and use a time step that is considerably larger than the period of that highest frequency. ````julia evals, evecs = eigs(K_ff, M_ff; nev=1, which=:LM); @show dt = 350 * 2/real(sqrt(evals[1])); ```` The time stepping loop is protected by `let end` to avoid unpleasant surprises with variables getting clobbered by globals. ````julia ts, corneruzs = let dt = dt ```` Initial displacement, velocity, and acceleration. ````julia U0 = gathersysvec(u) v = deepcopy(u) v.values[:, 3] .= vmag V0 = gathersysvec(v) F0 = fill(0.0, length(V0)) U1 = fill(0.0, length(V0)) V1 = fill(0.0, length(V0)) F1 = fill(0.0, length(V0)) R = fill(0.0, length(V0)) ```` Factorize the dynamic stiffness ````julia DSF = cholesky((M_ff + (dt/2)*C_ff + ((dt/2)^2)*K_ff)) ```` The times and displacements of the corner will be collected into two vectors ````julia ts = Float64[] corneruzs = Float64[] ```` Let us begin the time integration loop: ````julia t = 0.0; step = 0; while t < tend push!(ts, t) push!(corneruzs, U0[cornerzdof]) t = t+dt; step = step + 1; (mod(step,25)==0) && println("Step $(step): $(t)") ```` Zero out the load ````julia fill!(F1, 0.0); ```` Compute the out of balance force. ````julia R = (M_ff*V0 - C_ff*(dt/2*V0) - K_ff*((dt/2)^2*V0 + dt*U0) + (dt/2)*(F0+F1)); ```` Calculate the new velocities. ````julia V1 = DSF\R; ```` Update the velocities. ````julia U1 = U0 + (dt/2)*(V0+V1); ```` Switch the temporary vectors for the next step. ````julia U0, U1 = U1, U0; V0, V1 = V1, V0; F0, F1 = F1, F0; if (t == tend) # Are we done yet? break; end if (t+dt > tend) # Adjust the last time step so that we exactly reach tend dt = tend-t; end end ts, corneruzs # return the collected results end # ```` ## Plot the results ````julia using Gnuplot @gp "set terminal windows 0 " :- @gp :- ts corneruzs./phun("mm") "lw 2 lc rgb 'red' with lines title 'Displacement of the corner' " @gp :- "set xlabel 'Time [s]'" @gp :- "set ylabel 'Displacement [mm]'" ```` The end. ````julia true ```` --- *This page was generated using [Literate.jl](https://github.com/fredrikekre/Literate.jl).*
FinEtoolsDeforLinear
https://github.com/PetrKryslUCSD/FinEtoolsDeforLinear.jl.git
[ "MIT" ]
3.0.4
c0a87e41e018a0cb93b6670b7f0e40e6615e5cf8
docs
1612
# Tutorials for `FinEtoolsDeforLinear` ## Statics - [Cook membrane, plane stress](Cook-plane-stress_tut.md) Well-known benchmark. - [Composite benchmark R0031-3](R0031-3-Composite-benchmark_tut.md) NAFEMS sandwich plate benchmark. - [Twisted beam, export to Abaqus](twisted_beam-export-to-abaqus_tut.md) Another well-known benchmark. ## Dynamics - [Nearly incompressible cube vibration](unit_cube_modes_tut.md) Vibration of squishy cube. - [Nearly incompressible cube vibration, alternative models](unit_cube_modes_alt_tut.md) - [13H benchmark, forced vibration](TEST13H_tut.md) NAFEMS 13H beam forced-vibration benchmark - [13H benchmark, forced vibration, modal model](TEST13H_mod_tut.md) NAFEMS 13H beam forced-vibration benchmark with a modal model. - [13H benchmark, forced vibration, parallel execution](TEST13H_par_tut.md) NAFEMS 13H beam forced-vibration benchmark with a modal model. Parallel. - [FV32 benchmark, free vibration of trapezoidal membrane](FV32_tut.md) NAFEMS plane-stress vibration benchmark. - [Transient deformation of a cantilever beam](bending_wave_Ray_tut.md) - [Transient deformation of a cantilever beam, lumped mass matrix](bending_wave_Ray_lumped_tut.md) - [Transient deformation of a cantilever beam, centered difference](bending_wave_Ray_expl_cd_tut.md) - [Beam under on/off loading: transient response](beam_load_on_off_tut.md) - [Suddenly-stopped bar: CD explicit](sudden_stop_expl_cd_tut.md) Transient simulation with center difference integration. - [Suddenly-stopped bar: TW explicit](sudden_stop_expl_tw_tut.md) Transient simulation with Tchamwa-Wielgosz integration.
FinEtoolsDeforLinear
https://github.com/PetrKryslUCSD/FinEtoolsDeforLinear.jl.git
[ "MIT" ]
3.0.4
c0a87e41e018a0cb93b6670b7f0e40e6615e5cf8
docs
4743
# Suddenly-stopped bar: Centered difference explicit Source code: [`sudden_stop_expl_cd_tut.jl`](sudden_stop_expl_cd_tut.jl) ## Description A bar is given an initial velocity and then at time 0.0 it is suddenly stopped by fixing one of its ends. This sends a wave down the bar. The output of the simulation is the velocity, which tends to reproduce the rectangular pulses in which the velocity bounces back and forth. The beam is modeled as a solid. The classical centered difference rule is used to integrate the equations of motion in time. No damping is present. ## Goals - Show how to create the discrete model for explicit dynamics. - Demonstrate centered difference explicit time stepping. ````julia # ```` ## Definitions Basic imports. ````julia using LinearAlgebra using Arpack ```` This is the finite element toolkit itself. ````julia using FinEtools using FinEtools.AlgoBaseModule: matrix_blocked, vector_blocked ```` The linear stress analysis application is implemented in this package. ````julia using FinEtoolsDeforLinear using FinEtoolsDeforLinear.AlgoDeforLinearModule ```` Input parameters ````julia E = 205000*phun("MPa");# Young's modulus nu = 0.3;# Poisson ratio rho = 7850*phun("KG*M^-3");# mass density L = 20*phun("mm"); W = 1*phun("mm"); H = 1*phun("mm"); tolerance = W/500; vmag = 0.1*phun("m")/phun("SEC"); tend = 0.00005*phun("SEC"); # ```` ## Create the discrete model ````julia MR = DeforModelRed3D fens,fes = H8block(L,W,H, 80,4,4) geom = NodalField(fens.xyz) u = NodalField(zeros(size(fens.xyz,1),3)) # displacement field nl = selectnode(fens, box=[0 0 -Inf Inf -Inf Inf], inflate=tolerance) setebc!(u, nl, true, 1) applyebc!(u) numberdofs!(u) corner = selectnode(fens, nearestto=[L 0 0]) cornerxdof = u.dofnums[corner[1], 1] material = MatDeforElastIso(MR, rho, E, nu, 0.0) femm = FEMMDeforLinear(MR, IntegDomain(fes, GaussRule(3,2)), material) femm = associategeometry!(femm, geom) K = stiffness(femm, geom, u) ```` Assemble the mass matrix as diagonal. The HRZ lumping technique is applied through the assembler of the sparse matrix. ````julia hrzass = SysmatAssemblerSparseHRZLumpingSymm(0.0) femm = FEMMDeforLinear(MR, IntegDomain(fes, GaussRule(3,3)), material) M = mass(femm, hrzass, geom, u) ```` Extract the free-free block of the matrices. ````julia M_ff = matrix_blocked(M, nfreedofs(u))[:ff] K_ff = matrix_blocked(K, nfreedofs(u))[:ff] ```` Figure out the highest frequency in the model, and use a time step that is smaller than the period of the highest frequency. ````julia evals, evecs = eigs(K_ff, M_ff; nev=1, which=:LM); @show dt = 0.9 * 2/real(sqrt(evals[1])); ```` The time stepping loop is protected by `let end` to avoid unpleasant surprises with variables getting clobbered by globals. ````julia ts, cornervxs = let dt = dt ```` Initial displacement, velocity, and acceleration. ````julia U0 = gathersysvec(u) v = deepcopy(u) v.values[:, 1] .= -vmag V0 = gathersysvec(v) F1 = fill(0.0, length(V0)) U1 = fill(0.0, length(V0)) V1 = fill(0.0, length(V0)) A0 = fill(0.0, length(V0)) A1 = fill(0.0, length(V0)) phi = 1.005 ```` The times and displacements of the corner will be collected into two vectors ````julia ts = Float64[] cornervxs = Float64[] ```` Let us begin the time integration loop: ````julia t = 0.0; step = 0; while t < tend push!(ts, t) push!(cornervxs, V0[cornerxdof]) t = t+dt; step = step + 1; (mod(step,1000)==0) && println("Step $(step): $(t)") ```` Zero out the load ````julia fill!(F1, 0.0); ```` Initial acceleration ````julia if step == 1 A0 = M_ff \ (F1) end ```` Update displacement. ````julia @. U1 = U0 + dt*V0 + (dt^2/2)*A0; ```` Compute updated acceleration. ````julia A1 .= M_ff \ (-K_ff*U1 + F1) ```` Update the velocities. ````julia @. V1 = V0 + (dt/2)*(A0 + A1) ```` Switch the temporary vectors for the next step. ````julia U0, U1 = U1, U0; V0, V1 = V1, V0; A0, A1 = A1, A0; if (t == tend) # Are we done yet? break; end if (t+dt > tend) # Adjust the last time step so that we exactly reach tend dt = tend-t; end end ts, cornervxs # return the collected results end # ```` ## Plot the results ````julia using Gnuplot @gp "set terminal windows 7 " :- @gp :- ts cornervxs./phun("mm") "lw 2 lc rgb 'red' with lines title 'Displacement of the corner' " @gp :- "set xlabel 'Time [s]'" @gp :- "set ylabel 'Velocity [mm/s]'" ```` The end. ````julia true ```` --- *This page was generated using [Literate.jl](https://github.com/fredrikekre/Literate.jl).*
FinEtoolsDeforLinear
https://github.com/PetrKryslUCSD/FinEtoolsDeforLinear.jl.git
[ "MIT" ]
3.0.4
c0a87e41e018a0cb93b6670b7f0e40e6615e5cf8
docs
4764
# Suddenly-stopped bar: TW explicit Source code: [`sudden_stop_expl_tw_tut.jl`](sudden_stop_expl_tw_tut.jl) ## Description A bar is given an initial velocity and then at time 0.0 it is suddenly stopped by fixing one of its ends. This sends a wave down the bar. The output of the simulation is the velocity, which tends to reproduce the rectangular pulses in which the velocity bounces back and forth. The beam is modeled as a solid. The Tchamwa-Wielgosz explicit rule is used to integrate the equations of motion in time. No damping is present. ## Goals - Show how to create the discrete model for explicit dynamics. - Demonstrate Tchamwa-Wielgosz explicit time stepping. ````julia # ```` ## Definitions ````julia tst = time() ```` Basic imports. ````julia using LinearAlgebra using Arpack ```` This is the finite element toolkit itself. ````julia using FinEtools using FinEtools.AlgoBaseModule: matrix_blocked, vector_blocked ```` The linear stress analysis application is implemented in this package. ````julia using FinEtoolsDeforLinear using FinEtoolsDeforLinear.AlgoDeforLinearModule ```` Input parameters ````julia E = 205000*phun("MPa");# Young's modulus nu = 0.3;# Poisson ratio rho = 7850*phun("KG*M^-3");# mass density L = 20*phun("mm"); W = 1*phun("mm"); H = 1*phun("mm"); tolerance = W/500; vmag = 0.1*phun("m")/phun("SEC"); tend = 0.00005*phun("SEC"); # ```` ## Create the discrete model ````julia MR = DeforModelRed3D fens,fes = H8block(L,W,H, 80,4,4) geom = NodalField(fens.xyz) u = NodalField(zeros(size(fens.xyz,1),3)) # displacement field nl = selectnode(fens, box=[0 0 -Inf Inf -Inf Inf], inflate=tolerance) setebc!(u, nl, true, 1) applyebc!(u) numberdofs!(u) corner = selectnode(fens, nearestto=[L 0 0]) cornerxdof = u.dofnums[corner[1], 1] material = MatDeforElastIso(MR, rho, E, nu, 0.0) femm = FEMMDeforLinear(MR, IntegDomain(fes, GaussRule(3,2)), material) femm = associategeometry!(femm, geom) @time K = stiffness(femm, geom, u) ```` Assemble the mass matrix as diagonal. The HRZ lumping technique is applied through the assembler of the sparse matrix. ````julia hrzass = SysmatAssemblerSparseHRZLumpingSymm(0.0) femm = FEMMDeforLinear(MR, IntegDomain(fes, GaussRule(3,3)), material) M = mass(femm, hrzass, geom, u) ```` Extract the free-free block of the matrices. ````julia M_ff = matrix_blocked(M, nfreedofs(u))[:ff] K_ff = matrix_blocked(K, nfreedofs(u))[:ff] ```` Figure out the highest frequency in the model, and use a time step that is smaller than the period of the highest frequency. ````julia evals, evecs = eigs(K_ff, M_ff; nev=1, which=:LM); @show dt = 0.9 * 2/real(sqrt(evals[1])); ```` The time stepping loop is protected by `let end` to avoid unpleasant surprises with variables getting clobbered by globals. ````julia ts, cornervxs = let dt = dt ```` Initial displacement, velocity, and acceleration. ````julia U0 = gathersysvec(u) v = deepcopy(u) v.values[:, 1] .= -vmag V0 = gathersysvec(v) F1 = fill(0.0, length(V0)) U1 = fill(0.0, length(V0)) V1 = fill(0.0, length(V0)) A0 = fill(0.0, length(V0)) A1 = fill(0.0, length(V0)) phi = 1.05 ```` The times and displacements of the corner will be collected into two vectors ````julia ts = Float64[] cornervxs = Float64[] ```` Let us begin the time integration loop: ````julia t = 0.0; step = 0; while t < tend push!(ts, t) push!(cornervxs, V0[cornerxdof]) t = t+dt; step = step + 1; (mod(step,1000)==0) && println("Step $(step): $(t)") ```` Zero out the load ````julia fill!(F1, 0.0); ```` Initial acceleration ````julia if step == 1 A0 = M_ff \ (F1) end ```` Update displacement. ````julia @. U1 = U0 + dt*V0 + (phi*dt^2)*A0; ```` Update the velocities. ````julia @. V1 = V0 + dt*A0 ```` Compute updated acceleration. ````julia A1 .= M_ff \ (-K_ff*U1 + F1) ```` Switch the temporary vectors for the next step. ````julia U0, U1 = U1, U0; V0, V1 = V1, V0; A0, A1 = A1, A0; if (t == tend) # Are we done yet? break; end if (t+dt > tend) # Adjust the last time step so that we exactly reach tend dt = tend-t; end end ts, cornervxs # return the collected results end # ```` ## Plot the results ````julia using Gnuplot @gp "set terminal windows 5 " :- @gp :- ts cornervxs./phun("mm") "lw 2 lc rgb 'red' with lines title 'Displacement of the corner' " @gp :- "set xlabel 'Time [s]'" @gp :- "set ylabel 'Velocity [mm/s]'" @show time()-tst ```` The end. ````julia true ```` --- *This page was generated using [Literate.jl](https://github.com/fredrikekre/Literate.jl).*
FinEtoolsDeforLinear
https://github.com/PetrKryslUCSD/FinEtoolsDeforLinear.jl.git
[ "MIT" ]
3.0.4
c0a87e41e018a0cb93b6670b7f0e40e6615e5cf8
docs
6093
# Twisted beam: Export solid model to Abaqus Source code: [`twisted_beam-export-to-abaqus_tut.jl`](twisted_beam-export-to-abaqus_tut.jl) ## Description In this example we show how to export a model to the finite element software Abaqus. The model is solved also in the example `twisted_beam_algo.jl`. Here we export the model for execution in Abaqus. The task begins with defining the input parameters, creating the mesh, identifying the nodes to which essential boundary conditions are to be applied, and extracting from the boundary the surface finite elements to which the traction loading at the end of the beam is to be applied. This is the finite element toolkit itself. ````julia using FinEtools ```` The linear stress analysis application is implemented in this package. ````julia using FinEtoolsDeforLinear ```` We will also use specifically some functions from these modules. ````julia using FinEtoolsDeforLinear.AlgoDeforLinearModule using FinEtools.MeshExportModule ```` Define some parameters, in consistent units. ````julia E = 0.29e8; nu = 0.22; W = 1.1; L = 12.; t = 0.32; nl = 2; nt = 1; nw = 1; ref = 2; p = 1/W/t; ```` Loading in the Z direction. Reference (publication by Harder): 5.424e-3. ````julia loadv = [0;0;p]; dir = 3; uex = 0.005424534868469; ```` Loading in the Y direction. Reference (Harder): 1.754e-3. And comment the line below to obtain a solution in the other direction. ````julia #loadv = [0;p;0]; dir = 2; uex = 0.001753248285256; tolerance = t/1000; fens,fes = H8block(L,W,t, nl*ref,nw*ref,nt*ref) ```` Reshape the rectangular block into a twisted beam shape. ````julia for i = 1:count(fens) let a = fens.xyz[i,1]/L*(pi/2); y = fens.xyz[i,2]-(W/2); z = fens.xyz[i,3]-(t/2); fens.xyz[i,:] = [fens.xyz[i,1],y*cos(a)-z*sin(a),y*sin(a)+z*cos(a)]; end end ```` Clamped face of the beam: select all the nodes in this cross-section. ````julia l1 = selectnode(fens; box = [0 0 -100*W 100*W -100*W 100*W], inflate = tolerance) ```` Traction on the opposite face ````julia boundaryfes = meshboundary(fes); Toplist = selectelem(fens,boundaryfes, box = [L L -100*W 100*W -100*W 100*W], inflate = tolerance); ```` The tutorial proper begins here. We create the Abaqus exporter and start writing the .inp file. ````julia AE = AbaqusExporter("twisted_beam"); HEADING(AE, "Twisted beam example"); ```` The part definition is trivial: all will be defined rather for the instance of the part. ````julia PART(AE, "part1"); END_PART(AE); ```` The assembly will consist of a single instance (of the empty part defined above). The node set will be defined for the instance itself. ````julia ASSEMBLY(AE, "ASSEM1"); INSTANCE(AE, "INSTNC1", "PART1"); NODE(AE, fens.xyz); ```` We export the finite elements themselves. Note that the elements need to have distinct numbers. We start numbering the hexahedra at 1. The definition of the element creates simultaneously an element set which is used below in the section assignment (and the definition of the load). ````julia ELEMENT(AE, "c3d8rh", "AllElements", 1, connasarray(fes)) ```` The traction is applied to surface elements. Because the elements in the Abaqus model need to have unique numbers, we need to start from an integer which is the number of the solid elements plus one. ````julia ELEMENT(AE, "SFM3D4", "TractionElements", 1+count(fes), connasarray(subset(boundaryfes,Toplist))) ```` The nodes in the clamped cross-section are going to be grouped in the node set `l1`. ````julia NSET_NSET(AE, "l1", l1) ```` We define a coordinate system (orientation of the material coordinate system), in this example it is the global Cartesian coordinate system. The sections are defined for the solid elements of the interior and the surface elements to which the traction is applied, and the assignment to the elements is by element set (`AllElements` and `TractionElements`). Note that for the solid section we also define reference to hourglass control named `Hourglassctl`. ````julia ORIENTATION(AE, "GlobalOrientation", vec([1. 0 0]), vec([0 1. 0])); SOLID_SECTION(AE, "elasticity", "GlobalOrientation", "AllElements", "Hourglassctl"); SURFACE_SECTION(AE, "TractionElements") ```` This concludes the definition of the instance and of the assembly. ````julia END_INSTANCE(AE); END_ASSEMBLY(AE); ```` This is the definition of the isotropic elastic material. ````julia MATERIAL(AE, "elasticity") ELASTIC(AE, E, nu) ```` The element properties for the interior hexahedra are controlled by the section-control. In this case we are selecting enhanced hourglass stabilization (much preferable to the default stiffness stabilization). ````julia SECTION_CONTROLS(AE, "Hourglassctl", "HOURGLASS=ENHANCED") ```` The static perturbation analysis step is defined next. ````julia STEP_PERTURBATION_STATIC(AE) ```` The boundary conditions are applied directly to the node set `l1`. Since the node set is defined for the instance, we need to refer to it by the qualified name `ASSEM1.INSTNC1.l1`. ````julia BOUNDARY(AE, "ASSEM1.INSTNC1.l1", 1) BOUNDARY(AE, "ASSEM1.INSTNC1.l1", 2) BOUNDARY(AE, "ASSEM1.INSTNC1.l1", 3) ```` The traction is applied to the surface quadrilateral elements exported above. ````julia DLOAD(AE, "ASSEM1.INSTNC1.TractionElements", vec(loadv)) ```` Now we have defined the analysis step and the definition of the model can be concluded. ````julia END_STEP(AE) close(AE) ```` As quick check, here is the contents of the exported model file: ````julia @show readlines("twisted_beam.inp") ```` What remains is to load the model into Abaqus and execute it as a job. Alternatively Abaqus can be called on the input file to carry out the analysis at the command line as ``` abaqus job=twisted_beam.inp ``` The output database `twisted_beam.odb` can then be loaded for postprocessing, for instance from the command line as ``` abaqus viewer database=twisted_beam.odb ``` ````julia nothing ```` --- *This page was generated using [Literate.jl](https://github.com/fredrikekre/Literate.jl).*
FinEtoolsDeforLinear
https://github.com/PetrKryslUCSD/FinEtoolsDeforLinear.jl.git
[ "MIT" ]
3.0.4
c0a87e41e018a0cb93b6670b7f0e40e6615e5cf8
docs
3863
# Vibration of a cube of nearly incompressible material: alternative models Source code: [`unit_cube_modes_alt_tut.jl`](unit_cube_modes_alt_tut.jl) ## Description Compute the free-vibration spectrum of a unit cube of nearly incompressible isotropic material, E = 1, ν = 0.499, and ρ = 1 (refer to [1]). Here we show how alternative finite element models compare: The solution with the serendipity quadratic hexahedron is supplemented with solutions obtained with advanced finite elements: nodal-integration energy stabilized hexahedra and tetrahedra, and mean-strain hexahedra and tetrahedra. ## References [1] Puso MA, Solberg J (2006) A stabilized nodally integrated tetrahedral. International Journal for Numerical Methods in Engineering 67: 841-867. [2] P. Krysl, Mean-strain 8-node hexahedron with optimized energy-sampling stabilization, Finite Elements in Analysis and Design 108 (2016) 41–53. ![](unit_cube-mode7.png) ## Goals - Show how to set up a simulation loop that will run all the models and collect data. - Show how to present the computed spectrum curves. ````julia # ```` ## Definitions This is the finite element toolkit itself. ````julia using FinEtools ```` The linear stress analysis application is implemented in this package. ````julia using FinEtoolsDeforLinear ```` Convenience import. ````julia using FinEtools.MeshExportModule ```` The eigenvalue problem is solved with the Lanczos algorithm from this package. ````julia using Arpack using SymRCM ```` The material properties and dimensions are defined with physical units. ````julia E = 1*phun("PA"); nu = 0.499; rho = 1*phun("KG/M^3"); a = 1*phun("M"); # length of the side of the cube N = 8 neigvs = 20 # how many eigenvalues OmegaShift = (0.01*2*pi)^2; # The frequency with which to shift ```` The model is fully three-dimensional, and hence the material model and the FEMM created below need to refer to an appropriate model-reduction scheme. ````julia MR = DeforModelRed3D material = MatDeforElastIso(MR, rho, E, nu, 0.0); ```` ````julia models = [ ("H20", H20block, GaussRule(3,2), FEMMDeforLinear, 1), ("ESNICEH8", H8block, NodalTensorProductRule(3), FEMMDeforLinearESNICEH8, 2), ("ESNICET4", T4block, NodalSimplexRule(3), FEMMDeforLinearESNICET4, 2), ("MSH8", H8block, NodalTensorProductRule(3), FEMMDeforLinearMSH8, 2), ("MST10", T10block, TetRule(4), FEMMDeforLinearMST10, 1), ] ```` Run the simulation loop over all the models. ````julia sigdig(n) = round(n * 10000) / 10000 results = let results = [] for m in models fens, fes = m[2](a, a, a, m[5]*N, m[5]*N, m[5]*N); @show count(fens) geom = NodalField(fens.xyz) u = NodalField(zeros(size(fens.xyz,1),3)) numbering = let C = connectionmatrix(FEMMBase(IntegDomain(fes, m[3])), count(fens)) numbering = symrcm(C) end numberdofs!(u, numbering); println("nfreedofs = $(nfreedofs(u))") femm = m[4](MR, IntegDomain(fes, m[3]), material); femm = associategeometry!(femm, geom) K = stiffness(femm, geom, u) M = mass(femm, geom, u); evals, evecs, nconv = eigs(K+OmegaShift*M, M; nev=neigvs, which=:SM) @show nconv == neigvs evals = evals .- OmegaShift; fs = real(sqrt.(complex(evals)))/(2*pi) println("$(m[1]) eigenvalues: $(sigdig.(fs)) [Hz]") push!(results, (m, fs)) end results # return it end # ```` ## Present the results graphically ````julia using Gnuplot @gp "set terminal windows 0 " :- for r in results @gp :- collect(1:length(r[2])) vec(r[2]) " lw 2 with lp title '$(r[1][1])' " :- end @gp :- "set xlabel 'Mode number [ND]'" :- @gp :- "set ylabel 'Frequency [Hz]'" ```` --- *This page was generated using [Literate.jl](https://github.com/fredrikekre/Literate.jl).*
FinEtoolsDeforLinear
https://github.com/PetrKryslUCSD/FinEtoolsDeforLinear.jl.git
[ "MIT" ]
3.0.4
c0a87e41e018a0cb93b6670b7f0e40e6615e5cf8
docs
5992
# Vibration of a cube of nearly incompressible material Source code: [`unit_cube_modes_tut.jl`](unit_cube_modes_tut.jl) ## Description Compute the free-vibration spectrum of a unit cube of nearly incompressible isotropic material, E = 1, ν = 0.499, and ρ = 1 (refer to [1]). The solution with the `FinEtools` package is compared with a commercial software solution, and hence we also export the model to Abaqus. ## References [1] Puso MA, Solberg J (2006) A stabilized nodally integrated tetrahedral. International Journal for Numerical Methods in Engineering 67: 841-867. [2] P. Krysl, Mean-strain 8-node hexahedron with optimized energy-sampling stabilization, Finite Elements in Analysis and Design 108 (2016) 41–53. ![](unit_cube-mode7.png) ## Goals - Show how to generate simple mesh. - Show how to set up the discrete model for a free vibration problem. - Show how to export the model to Abaqus. ````julia # ```` ## Definitions This is the finite element toolkit itself. ````julia using FinEtools ```` The linear stress analysis application is implemented in this package. ````julia using FinEtoolsDeforLinear ```` Convenience import. ````julia using FinEtools.MeshExportModule ```` The eigenvalue problem is solved with the Lanczos algorithm from this package. ````julia using Arpack ```` The material properties and dimensions are defined with physical units. ````julia E = 1*phun("PA"); nu = 0.499; rho = 1*phun("KG/M^3"); a = 1*phun("M"); # length of the side of the cube ```` We generate a mesh of 5 x 5 x 5 serendipity 20-node hexahedral elements in a regular grid. ````julia fens, fes = H20block(a, a, a, 5, 5, 5); ```` The problem is solved in three dimensions and hence we create the displacement field as three-dimensional with three displacement components per node. The degrees of freedom are then numbered (note that no essential boundary conditions are applied, since the cube is free-floating). ````julia geom = NodalField(fens.xyz) u = NodalField(zeros(size(fens.xyz,1),3)) # displacement field numberdofs!(u); ```` The model is fully three-dimensional, and hence the material model and the FEMM created below need to refer to an appropriate model-reduction scheme. ````julia MR = DeforModelRed3D material = MatDeforElastIso(MR, rho, E, nu, 0.0); ```` Note that we compute the stiffness and the mass matrix using different FEMMs. The difference is only the quadrature rule chosen: in order to make the mass matrix non-singular, an accurate Gauss rule needs to be used, whereas for the stiffness matrix we want to avoid the excessive stiffness and therefore the reduced Gauss rule is used. ````julia femm = FEMMDeforLinear(MR, IntegDomain(fes, GaussRule(3,2)), material); K = stiffness(femm, geom, u) femm = FEMMDeforLinear(MR, IntegDomain(fes, GaussRule(3,3)), material) M = mass(femm, geom, u); ```` The free vibration problem can now be solved. In order for the eigenvalue solver to work well, we apply mass-shifting (otherwise the first matrix given to the solver – stiffness – would be singular). We specify the number of eigenvalues to solve for, and we guess the frequency with which to shift as 0.01 Hz. ````julia neigvs = 20 # how many eigenvalues OmegaShift = (0.01*2*pi)^2; # The frequency with which to shift ```` The `eigs` routine can now be invoked to solve for a given number of frequencies from the smallest-magnitude end of the spectrum. Note that the mass shifting needs to be undone when the solution is obtained. ````julia evals, evecs, nconv = eigs(K+OmegaShift*M, M; nev=neigvs, which=:SM) @show nconv == neigvs evals = evals .- OmegaShift; fs = real(sqrt.(complex(evals)))/(2*pi) sigdig(n) = round(n * 10000) / 10000 println("Eigenvalues: $(sigdig.(fs)) [Hz]") ```` The first nonzero frequency, frequency 7, should be around .263 Hz. The computed mode can be visualized in Paraview. Use the "Animation view" to produce moving pictures for the mode. ````julia mode = 7 scattersysvec!(u, evecs[:,mode]) File = "unit_cube_modes.vtk" vtkexportmesh(File, fens, fes; vectors=[("mode$mode", u.values)]) @async run(`"paraview.exe" $File`); ```` Finally we export the model to Abaqus. Note that we specify the mass density property (necessary for dynamics). ````julia AE = AbaqusExporter("unit_cube_modes_h20"); HEADING(AE, "Vibration modes of unit cube of almost incompressible material."); COMMENT(AE, "The first six frequencies are rigid body modes."); COMMENT(AE, "The first nonzero frequency (7) should be around 0.26 Hz"); PART(AE, "part1"); END_PART(AE); ASSEMBLY(AE, "ASSEM1"); INSTANCE(AE, "INSTNC1", "PART1"); NODE(AE, fens.xyz); COMMENT(AE, "The hybrid form of the serendipity hexahedron is chosen because"); COMMENT(AE, "the material is nearly incompressible."); ELEMENT(AE, "C3D20RH", "AllElements", 1, connasarray(fes)) ORIENTATION(AE, "GlobalOrientation", vec([1. 0 0]), vec([0 1. 0])); SOLID_SECTION(AE, "elasticity", "GlobalOrientation", "AllElements"); END_INSTANCE(AE); END_ASSEMBLY(AE); MATERIAL(AE, "elasticity") ELASTIC(AE, E, nu) DENSITY(AE, rho) STEP_FREQUENCY(AE, neigvs) END_STEP(AE) close(AE) ```` It remains is to load the model into Abaqus and execute it as a job. Alternatively Abaqus can be called on the input file to carry out the analysis at the command line as ``` abaqus job=unit_cube_modes_h20.inp ``` The output database `unit_cube_modes_h20.odb` can then be loaded for postprocessing, for instance from the command line as ``` abaqus viewer database=unit_cube_modes_h20.odb ``` Don't forget to compare the computed frequencies and the mode shapes. For instance, the first six frequencies should be nearly 0, and the seventh frequency should be approximately 0.262 Hz. There may be very minor differences due to the fact that the FinEtools formulation is purely displacement-based, whereas the Abaqus model is hybrid (displacement plus pressure). --- *This page was generated using [Literate.jl](https://github.com/fredrikekre/Literate.jl).*
FinEtoolsDeforLinear
https://github.com/PetrKryslUCSD/FinEtoolsDeforLinear.jl.git
[ "MIT" ]
0.1.0
755459c8c724437026ade8eed1032572a5236752
code
4974
using SLEEF using BenchmarkTools using JLD, DataStructures using Printf const RETUNE = false const VERBOSE = true const DETAILS = false const test_types = (Float64, Float32) # Which types do you want to bench? const bench = ("Base", "SLEEF") const suite = BenchmarkGroup() for n in bench suite[n] = BenchmarkGroup([n]) end bench_reduce(f::Function, X) = mapreduce(x -> reinterpret(Unsigned,x), |, f(x) for x in X) using Base.Math.IEEEFloat MRANGE(::Type{Float64}) = 10000000 MRANGE(::Type{Float32}) = 10000 IntF(::Type{Float64}) = Int64 IntF(::Type{Float32}) = Int32 x_trig(::Type{T}) where {T<:IEEEFloat} = begin x_trig = T[] for i = 1:10000 s = reinterpret(T, reinterpret(IntF(T), T(pi)/4 * i) - IntF(T)(20)) e = reinterpret(T, reinterpret(IntF(T), T(pi)/4 * i) + IntF(T)(20)) d = s while d <= e append!(x_trig, d) d = reinterpret(T, reinterpret(IntF(T), d) + IntF(T)(1)) end end x_trig = append!(x_trig, -10:0.0002:10) x_trig = append!(x_trig, -MRANGE(T):200.1:MRANGE(T)) end x_exp(::Type{T}) where {T<:IEEEFloat} = map(T, vcat(-10:0.0002:10, -1000:0.1:1000)) x_exp2(::Type{T}) where {T<:IEEEFloat} = map(T, vcat(-10:0.0002:10, -120:0.023:1000, -1000:0.02:2000)) x_exp10(::Type{T}) where {T<:IEEEFloat} = map(T, vcat(-10:0.0002:10, -35:0.023:1000, -300:0.01:300)) x_expm1(::Type{T}) where {T<:IEEEFloat} = map(T, vcat(-10:0.0002:10, -1000:0.021:1000, -1000:0.023:1000, 10.0.^-(0:0.02:300), -10.0.^-(0:0.02:300), 10.0.^(0:0.021:300), -10.0.^-(0:0.021:300))) x_log(::Type{T}) where {T<:IEEEFloat} = map(T, vcat(0.0001:0.0001:10, 0.001:0.1:10000, 1.1.^(-1000:1000), 2.1.^(-1000:1000))) x_log10(::Type{T}) where {T<:IEEEFloat} = map(T, vcat(0.0001:0.0001:10, 0.0001:0.1:10000)) x_log1p(::Type{T}) where {T<:IEEEFloat} = map(T, vcat(0.0001:0.0001:10, 0.0001:0.1:10000, 10.0.^-(0:0.02:300), -10.0.^-(0:0.02:300))) x_atrig(::Type{T}) where {T<:IEEEFloat} = map(T, vcat(-1:0.00002:1)) x_atan(::Type{T}) where {T<:IEEEFloat} = map(T, vcat(-10:0.0002:10, -10000:0.2:10000, -10000:0.201:10000)) x_cbrt(::Type{T}) where {T<:IEEEFloat} = map(T, vcat(-10000:0.2:10000, 1.1.^(-1000:1000), 2.1.^(-1000:1000))) x_trigh(::Type{T}) where {T<:IEEEFloat} = map(T, vcat(-10:0.0002:10, -1000:0.02:1000)) x_asinhatanh(::Type{T}) where {T<:IEEEFloat} = map(T, vcat(-10:0.0002:10, -1000:0.02:1000)) x_acosh(::Type{T}) where {T<:IEEEFloat} = map(T, vcat(1:0.0002:10, 1:0.02:1000)) x_pow(::Type{T}) where {T<:IEEEFloat} = begin xx1 = map(Tuple{T,T}, [(x,y) for x = -100:0.20:100, y = 0.1:0.20:100])[:] xx2 = map(Tuple{T,T}, [(x,y) for x = -100:0.21:100, y = 0.1:0.22:100])[:] xx3 = map(Tuple{T,T}, [(x,y) for x = 2.1, y = -1000:0.1:1000]) xx = vcat(xx1, xx2, xx2) end import Base.atanh for f in (:atanh,) @eval begin ($f)(x::Float64) = ccall($(string(f)), Float64, (Float64,), x) ($f)(x::Float32) = ccall($(string(f,"f")), Float32, (Float32,), x) end end const micros = OrderedDict( "sin" => x_trig, "cos" => x_trig, "tan" => x_trig, "asin" => x_atrig, "acos" => x_atrig, "atan" => x_atan, "exp" => x_exp, "exp2" => x_exp2, "exp10" => x_exp10, "expm1" => x_expm1, "log" => x_log, "log2" => x_log10, "log10" => x_log10, "log1p" => x_log1p, "sinh" => x_trigh, "cosh" => x_trigh, "tanh" => x_trigh, "asinh" => x_asinhatanh, "acosh" => x_acosh, "atanh" => x_asinhatanh, "cbrt" => x_cbrt ) for n in bench for (f,x) in micros suite[n][f] = BenchmarkGroup([f]) for T in test_types fex = Expr(:., Symbol(n), QuoteNode(Symbol(f))) suite[n][f][string(T)] = @benchmarkable bench_reduce($fex, $(x(T))) end end end tune_params = joinpath(@__DIR__, "params.jld") if !isfile(tune_params) || RETUNE tune!(suite; verbose=VERBOSE, seconds = 2) save(tune_params, "suite", params(suite)) println("Saving tuned parameters.") else println("Loading pretuned parameters.") loadparams!(suite, load(tune_params, "suite"), :evals, :samples) end println("Running micro benchmarks...") results = run(suite; verbose=VERBOSE, seconds = 2) printstyled("Benchmarks: median ratio SLEEF/Base\n", color = :blue) for f in keys(micros) printstyled(string(f) color = :magenta) for T in test_types println() print("time: ", ) tratio = ratio(median(results["SLEEF"][f][string(T)]), median(results["Base"][f][string(T)])).time tcolor = tratio > 3 ? :red : tratio < 1.5 ? :green : :blue printstyled(@sprintf("%.2f",tratio), " ", string(T), color = tcolor) if DETAILS printstyled("details SLEEF/Base\n", color=:blue) println(results["SLEEF"][f][string(T)]) println(results["Base"][f][string(T)]) println() end end println("\n") end
SLEEFInline
https://github.com/AStupidBear/SLEEFInline.jl.git
[ "MIT" ]
0.1.0
755459c8c724437026ade8eed1032572a5236752
code
5487
module SLEEFInline # export sin, cos, tan, asin, acos, atan, sincos, sinh, cosh, tanh, # asinh, acosh, atanh, log, log2, log10, log1p, ilogb, exp, exp2, exp10, expm1, ldexp, cbrt, pow # fast variants (within 3 ulp) # export sin_fast, cos_fast, tan_fast, sincos_fast, asin_fast, acos_fast, atan_fast, atan2_fast, log_fast, cbrt_fast using Base.Math: uinttype, @horner, exponent_bias, exponent_mask, significand_bits, IEEEFloat, exponent_raw_max const SLEEF = SLEEFInline export SLEEF ## constants const MLN2 = 6.931471805599453094172321214581765680755001343602552541206800094933936219696955e-01 # log(2) const MLN2E = 1.442695040888963407359924681001892137426645954152985934135449406931 # log2(e) const M_PI = 3.141592653589793238462643383279502884 # pi const PI_2 = 1.570796326794896619231321691639751442098584699687552910487472296153908203143099 # pi/2 const PI_4 = 7.853981633974483096156608458198757210492923498437764552437361480769541015715495e-01 # pi/4 const M_1_PI = 0.318309886183790671537767526745028724 # 1/pi const M_2_PI = 0.636619772367581343075535053490057448 # 2/pi const M_4_PI = 1.273239544735162686151070106980114896275677165923651589981338752471174381073817 # 4/pi const MSQRT2 = 1.414213562373095048801688724209698078569671875376948073176679737990732478462102 # sqrt(2) const M1SQRT2 = 7.071067811865475244008443621048490392848359376884740365883398689953662392310596e-01 # 1/sqrt(2) const M2P13 = 1.259921049894873164767210607278228350570251464701507980081975112155299676513956 # 2^1/3 const M2P23 = 1.587401051968199474751705639272308260391493327899853009808285761825216505624206 # 2^2/3 const MLOG10_2 = 3.3219280948873623478703194294893901758648313930 const MDLN10E(::Type{Float64}) = Double(0.4342944819032518, 1.098319650216765e-17) # log10(e) const MDLN10E(::Type{Float32}) = Double(0.4342945f0, -1.010305f-8) const MDLN2E(::Type{Float64}) = Double(1.4426950408889634, 2.0355273740931033e-17) # log2(e) const MDLN2E(::Type{Float32}) = Double(1.442695f0, 1.925963f-8) const MDLN2(::Type{Float64}) = Double(0.693147180559945286226764, 2.319046813846299558417771e-17) # log(2) const MDLN2(::Type{Float32}) = Double(0.69314718246459960938f0, -1.904654323148236017f-9) const MDPI(::Type{Float64}) = Double(3.141592653589793, 1.2246467991473532e-16) # pi const MDPI(::Type{Float32}) = Double(3.1415927f0, -8.742278f-8) const MDPI2(::Type{Float64}) = Double(1.5707963267948966, 6.123233995736766e-17) # pi/2 const MDPI2(::Type{Float32}) = Double(1.5707964f0, -4.371139f-8) const MD2P13(::Type{Float64}) = Double(1.2599210498948732, -2.589933375300507e-17) # 2^1/3 const MD2P13(::Type{Float32}) = Double(1.2599211f0, -2.4018702f-8) const MD2P23(::Type{Float64}) = Double(1.5874010519681996, -1.0869008194197823e-16) # 2^2/3 const MD2P23(::Type{Float32}) = Double(1.587401f0, 1.9520385f-8) # Split pi into four parts (each is 26 bits) const PI_A(::Type{Float64}) = 3.1415926218032836914 const PI_B(::Type{Float64}) = 3.1786509424591713469e-08 const PI_C(::Type{Float64}) = 1.2246467864107188502e-16 const PI_D(::Type{Float64}) = 1.2736634327021899816e-24 const PI_A(::Type{Float32}) = 3.140625f0 const PI_B(::Type{Float32}) = 0.0009670257568359375f0 const PI_C(::Type{Float32}) = 6.2771141529083251953f-7 const PI_D(::Type{Float32}) = 1.2154201256553420762f-10 const PI_XD(::Type{Float32}) = 1.2141754268668591976f-10 const PI_XE(::Type{Float32}) = 1.2446743939339977025f-13 # split 2/pi into upper and lower parts const M_2_PI_H = 0.63661977236758138243 const M_2_PI_L = -3.9357353350364971764e-17 # Split log(10) into upper and lower parts const L10U(::Type{Float64}) = 0.30102999566383914498 const L10L(::Type{Float64}) = 1.4205023227266099418e-13 const L10U(::Type{Float32}) = 0.3010253906f0 const L10L(::Type{Float32}) = 4.605038981f-6 # Split log(2) into upper and lower parts const L2U(::Type{Float64}) = 0.69314718055966295651160180568695068359375 const L2L(::Type{Float64}) = 0.28235290563031577122588448175013436025525412068e-12 const L2U(::Type{Float32}) = 0.693145751953125f0 const L2L(::Type{Float32}) = 1.428606765330187045f-06 const TRIG_MAX(::Type{Float64}) = 1e14 const TRIG_MAX(::Type{Float32}) = 1f7 const SQRT_MAX(::Type{Float64}) = 1.3407807929942596355e154 const SQRT_MAX(::Type{Float32}) = 18446743523953729536f0 include("utils.jl") # utility functions include("double.jl") # Dekker style double double functions include("priv.jl") # private math functions include("exp.jl") # exponential functions include("log.jl") # logarithmic functions include("trig.jl") # trigonometric and inverse trigonometric functions include("hyp.jl") # hyperbolic and inverse hyperbolic functions include("misc.jl") # miscallenous math functions including pow and cbrt # fallback definitions for func in (:sin, :cos, :tan, :sincos, :asin, :acos, :atan, :sinh, :cosh, :tanh, :asinh, :acosh, :atanh, :log, :log2, :log10, :log1p, :exp, :exp2, :exp10, :expm1, :cbrt, :sin_fast, :cos_fast, :tan_fast, :sincos_fast, :asin_fast, :acos_fast, :atan_fast, :atan2_fast, :log_fast, :cbrt_fast) @eval begin $func(a::Float16) = Float16.($func(Float32(a))) $func(x::Real) = $func(float(x)) end end for func in (:atan, :hypot) @eval begin $func(y::Real, x::Real) = $func(promote(float(y), float(x))...) $func(a::Float16, b::Float16) = Float16($func(Float32(a), Float32(b))) end end ldexp(x::Float16, q::Int) = Float16(ldexpk(Float32(x), q)) end
SLEEFInline
https://github.com/AStupidBear/SLEEFInline.jl.git
[ "MIT" ]
0.1.0
755459c8c724437026ade8eed1032572a5236752
code
7399
import Base: -, <, copysign, flipsign, convert struct Double{T<:IEEEFloat} <: Number hi::T lo::T end Double(x::T) where {T<:IEEEFloat} = Double(x, zero(T)) (::Type{T})(x::Double{T}) where {T<:IEEEFloat} = x.hi + x.lo @inline trunclo(x::Float64) = reinterpret(Float64, reinterpret(UInt64, x) & 0xffff_ffff_f800_0000) # clear lower 27 bits (leave upper 26 bits) @inline trunclo(x::Float32) = reinterpret(Float32, reinterpret(UInt32, x) & 0xffff_f000) # clear lowest 12 bits (leave upper 12 bits) @inline function splitprec(x::IEEEFloat) hx = trunclo(x) hx, x - hx end @inline function dnormalize(x::Double{T}) where {T} r = x.hi + x.lo Double(r, (x.hi - r) + x.lo) end @inline flipsign(x::Double{T}, y::T) where {T<:IEEEFloat} = Double(flipsign(x.hi, y), flipsign(x.lo, y)) @inline scale(x::Double{T}, s::T) where {T<:IEEEFloat} = Double(s * x.hi, s * x.lo) @inline (-)(x::Double{T}) where {T<:IEEEFloat} = Double(-x.hi, -x.lo) @inline function (<)(x::Double{T}, y::Double{T}) where {T<:IEEEFloat} x.hi < y.hi end @inline function (<)(x::Double{T}, y::Number) where {T<:IEEEFloat} x.hi < y end @inline function (<)(x::Number, y::Double{T}) where {T<:IEEEFloat} x < y.hi end # quick-two-sum x+y @inline function dadd(x::T, y::T) where {T<:IEEEFloat} #WARNING |x| >= |y| s = x + y Double(s, (x - s) + y) end @inline function dadd(x::T, y::Double{T}) where {T<:IEEEFloat} #WARNING |x| >= |y| s = x + y.hi Double(s, (x - s) + y.hi + y.lo) end @inline function dadd(x::Double{T}, y::T) where {T<:IEEEFloat} #WARNING |x| >= |y| s = x.hi + y Double(s, (x.hi - s) + y + x.lo) end @inline function dadd(x::Double{T}, y::Double{T}) where {T<:IEEEFloat} #WARNING |x| >= |y| s = x.hi + y.hi Double(s, (x.hi - s) + y.hi + y.lo + x.lo) end @inline function dsub(x::Double{T}, y::Double{T}) where {T<:IEEEFloat} #WARNING |x| >= |y| s = x.hi - y.hi Double(s, (x.hi - s) - y.hi - y.lo + x.lo) end @inline function dsub(x::Double{T}, y::T) where {T<:IEEEFloat} #WARNING |x| >= |y| s = x.hi - y Double(s, (x.hi - s) - y + x.lo) end @inline function dsub(x::T, y::Double{T}) where {T<:IEEEFloat} #WARNING |x| >= |y| s = x - y.hi Double(s, (x - s) - y.hi - y.lo) end @inline function dsub(x::T, y::T) where {T<:IEEEFloat} #WARNING |x| >= |y| s = x - y Double(s, (x - s) - y) end # two-sum x+y NO BRANCH @inline function dadd2(x::T, y::T) where {T<:IEEEFloat} s = x + y v = s - x Double(s, (x - (s - v)) + (y - v)) end @inline function dadd2(x::T, y::Double{T}) where {T<:IEEEFloat} s = x + y.hi v = s - x Double(s, (x - (s - v)) + (y.hi - v) + y.lo) end @inline dadd2(x::Double{T}, y::T) where {T<:IEEEFloat} = dadd2(y, x) @inline function dadd2(x::Double{T}, y::Double{T}) where {T<:IEEEFloat} s = x.hi + y.hi v = s - x.hi Double(s, (x.hi - (s - v)) + (y.hi - v) + x.lo + y.lo) end @inline function dsub2(x::T, y::T) where {T<:IEEEFloat} s = x - y v = s - x Double(s, (x - (s - v)) + (-y - v)) end @inline function dsub2(x::T, y::Double{T}) where {T<:IEEEFloat} s = x - y.hi v = s - x Double(s, (x - (s - v)) + (-y.hi - v) - y.lo) end @inline function dsub2(x::Double{T}, y::T) where {T<:IEEEFloat} s = x.hi - y v = s - x.hi Double(s, (x.hi - (s - v)) + (-y - v) + x.lo) end @inline function dsub2(x::Double{T}, y::Double{T}) where {T<:IEEEFloat} s = x.hi - y.hi v = s - x.hi Double(s, (x.hi - (s - v)) + (-y.hi - v) + x.lo - y.lo) end if FMA_FAST # two-prod-fma @inline function dmul(x::T, y::T) where {T<:IEEEFloat} z = x * y Double(z, fma(x, y, -z)) end @inline function dmul(x::Double{T}, y::T) where {T<:IEEEFloat} z = x.hi * y Double(z, fma(x.hi, y, -z) + x.lo * y) end @inline dmul(x::T, y::Double{T}) where {T<:IEEEFloat} = dmul(y, x) @inline function dmul(x::Double{T}, y::Double{T}) where {T<:IEEEFloat} z = x.hi * y.hi Double(z, fma(x.hi, y.hi, -z) + x.hi * y.lo + x.lo * y.hi) end # x^2 @inline function dsqu(x::T) where {T<:IEEEFloat} z = x * x Double(z, fma(x, x, -z)) end @inline function dsqu(x::Double{T}) where {T<:IEEEFloat} z = x.hi * x.hi Double(z, fma(x.hi, x.hi, -z) + x.hi * (x.lo + x.lo)) end # sqrt(x) @inline function dsqrt(x::Double{T}) where {T<:IEEEFloat} zhi = _sqrt(x.hi) Double(zhi, (x.lo + fma(-zhi, zhi, x.hi)) / (zhi + zhi)) end # x/y @inline function ddiv(x::Double{T}, y::Double{T}) where {T<:IEEEFloat} invy = 1 / y.hi zhi = x.hi * invy Double(zhi, (fma(-zhi, y.hi, x.hi) + fma(-zhi, y.lo, x.lo)) * invy) end @inline function ddiv(x::T, y::T) where {T<:IEEEFloat} ry = 1 / y r = x * ry Double(r, fma(-r, y, x) * ry) end # 1/x @inline function drec(x::T) where {T<:IEEEFloat} zhi = 1 / x Double(zhi, fma(-zhi, x, one(T)) * zhi) end @inline function drec(x::Double{T}) where {T<:IEEEFloat} zhi = 1 / x.hi Double(zhi, (fma(-zhi, x.hi, one(T)) + -zhi * x.lo) * zhi) end else #two-prod x*y @inline function dmul(x::T, y::T) where {T<:IEEEFloat} hx, lx = splitprec(x) hy, ly = splitprec(y) z = x * y Double(z, ((hx * hy - z) + lx * hy + hx * ly) + lx * ly) end @inline function dmul(x::Double{T}, y::T) where {T<:IEEEFloat} hx, lx = splitprec(x.hi) hy, ly = splitprec(y) z = x.hi * y Double(z, (hx * hy - z) + lx * hy + hx * ly + lx * ly + x.lo * y) end @inline dmul(x::T, y::Double{T}) where {T<:IEEEFloat} = dmul(y, x) @inline function dmul(x::Double{T}, y::Double{T}) where {T<:IEEEFloat} hx, lx = splitprec(x.hi) hy, ly = splitprec(y.hi) z = x.hi * y.hi Double(z, (((hx * hy - z) + lx * hy + hx * ly) + lx * ly) + x.hi * y.lo + x.lo * y.hi) end # x^2 @inline function dsqu(x::T) where {T<:IEEEFloat} hx, lx = splitprec(x) z = x * x Double(z, (hx * hx - z) + lx * (hx + hx) + lx * lx) end @inline function dsqu(x::Double{T}) where {T<:IEEEFloat} hx, lx = splitprec(x.hi) z = x.hi * x.hi Double(z, (hx * hx - z) + lx * (hx + hx) + lx * lx + x.hi * (x.lo + x.lo)) end # sqrt(x) @inline function dsqrt(x::Double{T}) where {T<:IEEEFloat} c = _sqrt(x.hi) u = dsqu(c) Double(c, (x.hi - u.hi - u.lo + x.lo) / (c + c)) end # x/y @inline function ddiv(x::Double{T}, y::Double{T}) where {T<:IEEEFloat} invy = 1 / y.hi c = x.hi * invy u = dmul(c, y.hi) Double(c, ((((x.hi - u.hi) - u.lo) + x.lo) - c * y.lo) * invy) end @inline function ddiv(x::T, y::T) where {T<:IEEEFloat} ry = 1 / y r = x * ry hx, lx = splitprec(r) hy, ly = splitprec(y) Double(r, (((-hx * hy + r * y) - lx * hy - hx * ly) - lx * ly) * ry) end # 1/x @inline function drec(x::T) where {T<:IEEEFloat} c = 1 / x u = dmul(c, x) Double(c, (one(T) - u.hi - u.lo) * c) end @inline function drec(x::Double{T}) where {T<:IEEEFloat} c = 1 / x.hi u = dmul(c, x.hi) Double(c, (one(T) - u.hi - u.lo - c * x.lo) * c) end end
SLEEFInline
https://github.com/AStupidBear/SLEEFInline.jl.git
[ "MIT" ]
0.1.0
755459c8c724437026ade8eed1032572a5236752
code
5049
# exported exponential functions """ ldexp(a, n) Computes `a × 2^n` """ @inline ldexp(x::Union{Float32,Float64}, q::Int) = ldexpk(x, q) const max_exp2(::Type{Float64}) = 1024 const max_exp2(::Type{Float32}) = 128f0 const min_exp2(::Type{Float64}) = -1075 const min_exp2(::Type{Float32}) = -150f0 @inline function exp2_kernel(x::Float64) c11 = 0.4434359082926529454e-9 c10 = 0.7073164598085707425e-8 c9 = 0.1017819260921760451e-6 c8 = 0.1321543872511327615e-5 c7 = 0.1525273353517584730e-4 c6 = 0.1540353045101147808e-3 c5 = 0.1333355814670499073e-2 c4 = 0.9618129107597600536e-2 c3 = 0.5550410866482046596e-1 c2 = 0.2402265069591012214 c1 = 0.6931471805599452862 return @horner x c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 end @inline function exp2_kernel(x::Float32) c6 = 0.1535920892f-3 c5 = 0.1339262701f-2 c4 = 0.9618384764f-2 c3 = 0.5550347269f-1 c2 = 0.2402264476f0 c1 = 0.6931471825f0 return @horner x c1 c2 c3 c4 c5 c6 end """ exp2(x) Compute the base-`2` exponential of `x`, that is `2ˣ`. """ @inline function exp2(d::T) where {T<:Union{Float32,Float64}} q = round(d) qi = unsafe_trunc(Int, q) s = d - q u = exp2_kernel(s) u = T(dnormalize(dadd(T(1.0), dmul(u,s)))) u = ldexp2k(u, qi) d > max_exp2(T) && (u = T(Inf)) d < min_exp2(T) && (u = T(0.0)) return u end const max_exp10(::Type{Float64}) = 3.08254715559916743851e2 # log 2^1023*(2-2^-52) const max_exp10(::Type{Float32}) = 38.531839419103626f0 # log 2^127 *(2-2^-23) const min_exp10(::Type{Float64}) = -3.23607245338779784854769e2 # log10 2^-1075 const min_exp10(::Type{Float32}) = -45.15449934959718f0 # log10 2^-150 @inline function exp10_kernel(x::Float64) c11 = 0.2411463498334267652e-3 c10 = 0.1157488415217187375e-2 c9 = 0.5013975546789733659e-2 c8 = 0.1959762320720533080e-1 c7 = 0.6808936399446784138e-1 c6 = 0.2069958494722676234e0 c5 = 0.5393829292058536229e0 c4 = 0.1171255148908541655e1 c3 = 0.2034678592293432953e1 c2 = 0.2650949055239205876e1 c1 = 0.2302585092994045901e1 return @horner x c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 end @inline function exp10_kernel(x::Float32) c6 = 0.2064004987f0 c5 = 0.5417877436f0 c4 = 0.1171286821f1 c3 = 0.2034656048f1 c2 = 0.2650948763f1 c1 = 0.2302585125f1 return @horner x c1 c2 c3 c4 c5 c6 end """ exp10(x) Compute the base-`10` exponential of `x`, that is `10ˣ`. """ @inline function exp10(d::T) where {T<:Union{Float32,Float64}} q = round(T(MLOG10_2) * d) qi = unsafe_trunc(Int, q) s = muladd(q, -L10U(T), d) s = muladd(q, -L10L(T), s) u = exp10_kernel(s) u = T(dnormalize(dadd(T(1.0), dmul(u,s)))) u = ldexp2k(u, qi) d > max_exp10(T) && (u = T(Inf)) d < min_exp10(T) && (u = T(0.0)) return u end const max_expm1(::Type{Float64}) = 7.09782712893383996732e2 # log 2^1023*(2-2^-52) const max_expm1(::Type{Float32}) = 88.72283905206835f0 # log 2^127 *(2-2^-23) const min_expm1(::Type{Float64}) = -37.42994775023704434602223 const min_expm1(::Type{Float32}) = -17.3286790847778338076068394f0 """ expm1(x) Compute `eˣ- 1` accurately for small values of `x`. """ @inline function expm1(x::T) where {T<:Union{Float32,Float64}} u = T(dadd2(expk2(Double(x)), -T(1.0))) x > max_expm1(T) && (u = T(Inf)) x < min_expm1(T) && (u = -T(1.0)) isnegzero(x) && (u = T(-0.0)) return u end const max_exp(::Type{Float64}) = 709.78271114955742909217217426 # log 2^1023*(2-2^-52) const max_exp(::Type{Float32}) = 88.72283905206835f0 # log 2^127 *(2-2^-23) const min_exp(::Type{Float64}) = -7.451332191019412076235e2 # log 2^-1075 const min_exp(::Type{Float32}) = -103.97208f0 # ≈ log 2^-150 @inline function exp_kernel(x::Float64) c11 = 2.08860621107283687536341e-09 c10 = 2.51112930892876518610661e-08 c9 = 2.75573911234900471893338e-07 c8 = 2.75572362911928827629423e-06 c7 = 2.4801587159235472998791e-05 c6 = 0.000198412698960509205564975 c5 = 0.00138888888889774492207962 c4 = 0.00833333333331652721664984 c3 = 0.0416666666666665047591422 c2 = 0.166666666666666851703837 c1 = 0.50 return @horner x c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 end @inline function exp_kernel(x::Float32) c6 = 0.000198527617612853646278381f0 c5 = 0.00139304355252534151077271f0 c4 = 0.00833336077630519866943359f0 c3 = 0.0416664853692054748535156f0 c2 = 0.166666671633720397949219f0 c1 = 0.5f0 return @horner x c1 c2 c3 c4 c5 c6 end """ exp(x) Compute the base-`e` exponential of `x`, that is `eˣ`. """ @inline function exp(d::T) where {T<:Union{Float32,Float64}} q = round(T(MLN2E) * d) qi = unsafe_trunc(Int, q) s = muladd(q, -L2U(T), d) s = muladd(q, -L2L(T), s) u = exp_kernel(s) u = s * s * u + s + 1 u = ldexp2k(u, qi) d > max_exp(T) && (u = T(Inf)) d < min_exp(T) && (u = T(0)) return u end
SLEEFInline
https://github.com/AStupidBear/SLEEFInline.jl.git
[ "MIT" ]
0.1.0
755459c8c724437026ade8eed1032572a5236752
code
2471
# exported hyperbolic functions over_sch(::Type{Float64}) = 710.0 over_sch(::Type{Float32}) = 89f0 """ sinh(x) Compute hyperbolic sine of `x`. """ @inline function sinh(x::T) where {T<:Union{Float32,Float64}} u = abs(x) d = expk2(Double(u)) d = dsub(d, drec(d)) u = T(d) * T(0.5) u = abs(x) > over_sch(T) ? T(Inf) : u u = isnan(u) ? T(Inf) : u u = flipsign(u, x) u = isnan(x) ? T(NaN) : u return u end """ cosh(x) Compute hyperbolic cosine of `x`. """ @inline function cosh(x::T) where {T<:Union{Float32,Float64}} u = abs(x) d = expk2(Double(u)) d = dadd(d, drec(d)) u = T(d) * T(0.5) u = abs(x) > over_sch(T) ? T(Inf) : u u = isnan(u) ? T(Inf) : u u = isnan(x) ? T(NaN) : u return u end over_th(::Type{Float64}) = 18.714973875 over_th(::Type{Float32}) = 18.714973875f0 """ tanh(x) Compute hyperbolic tangent of `x`. """ @inline function tanh(x::T) where {T<:Union{Float32,Float64}} u = abs(x) d = expk2(Double(u)) e = drec(d) d = ddiv(dsub(d, e), dadd(d, e)) u = T(d) u = abs(x) > over_th(T) ? T(1.0) : u u = isnan(u) ? T(1) : u u = flipsign(u, x) u = isnan(x) ? T(NaN) : u return u end """ asinh(x) Compute the inverse hyperbolic sine of `x`. """ @inline function asinh(x::T) where {T<:Union{Float32,Float64}} y = abs(x) d = y > 1 ? drec(x) : Double(y, T(0.0)) d = dsqrt(dadd2(dsqu(d), T(1.0))) d = y > 1 ? dmul(d, y) : d d = logk2(dnormalize(dadd(d, x))) y = T(d) y = (abs(x) > SQRT_MAX(T) || isnan(y)) ? flipsign(T(Inf), x) : y y = isnan(x) ? T(NaN) : y y = isnegzero(x) ? T(-0.0) : y return y end """ acosh(x) Compute the inverse hyperbolic cosine of `x`. """ @inline function acosh(x::T) where {T<:Union{Float32,Float64}} d = logk2(dadd2(dmul(dsqrt(dadd2(x, T(1.0))), dsqrt(dsub2(x, T(1.0)))), x)) y = T(d) y = (x > SQRT_MAX(T) || isnan(y)) ? T(Inf) : y y = x == T(1.0) ? T(0.0) : y y = x < T(1.0) ? T(NaN) : y y = isnan(x) ? T(NaN) : y return y end """ atanh(x) Compute the inverse hyperbolic tangent of `x`. """ @inline function atanh(x::T) where {T<:Union{Float32,Float64}} u = abs(x) d = logk2(ddiv(dadd2(T(1.0), u), dsub2(T(1.0), u))) u = u > T(1.0) ? T(NaN) : (u == T(1.0) ? T(Inf) : T(d) * T(0.5)) u = isinf(x) || isnan(u) ? T(NaN) : u u = flipsign(u, x) u = isnan(x) ? T(NaN) : u return u end
SLEEFInline
https://github.com/AStupidBear/SLEEFInline.jl.git
[ "MIT" ]
0.1.0
755459c8c724437026ade8eed1032572a5236752
code
4768
# exported logarithmic functions const FP_ILOGB0 = typemin(Int) const FP_ILOGBNAN = typemin(Int) const INT_MAX = typemax(Int) """ ilogb(x) Returns the integral part of the logarithm of `abs(x)`, using base 2 for the logarithm. In other words, this computes the binary exponent of `x` such that x = significand × 2^exponent, where `significand ∈ [1, 2)`. * Exceptional cases (where `Int` is the machine wordsize) * `x = 0` returns `FP_ILOGB0` * `x = ±Inf` returns `INT_MAX` * `x = NaN` returns `FP_ILOGBNAN` """ function ilogb(x::T) where {T<:Union{Float32,Float64}} e = ilogbk(abs(x)) x == 0 && (e = FP_ILOGB0) isnan(x) && (e = FP_ILOGBNAN) isinf(x) && (e = INT_MAX) return e end """ log10(x) Returns the base `10` logarithm of `x`. """ @inline function log10(a::T) where {T<:Union{Float32,Float64}} x = T(dmul(logk(a), MDLN10E(T))) isinf(a) && (x = T(Inf)) (a < 0 || isnan(a)) && (x = T(NaN)) a == 0 && (x = T(-Inf)) return x end """ log2(x) Returns the base `2` logarithm of `x`. """ @inline function log2(a::T) where {T<:Union{Float32,Float64}} u = T(dmul(logk(a), MDLN2E(T))) isinf(a) && (u = T(Inf)) (a < 0 || isnan(a)) && (u = T(NaN)) a == 0 && (u = T(-Inf)) return u end const over_log1p(::Type{Float64}) = 1e307 const over_log1p(::Type{Float32}) = 1f38 """ log1p(x) Accurately compute the natural logarithm of 1+x. """ function log1p(a::T) where {T<:Union{Float32,Float64}} x = T(logk2(dadd2(a, T(1.0)))) a > over_log1p(T) && (x = T(Inf)) a < -1 && (x = T(NaN)) a == -1 && (x = T(-Inf)) isnegzero(a) && (x = T(-0.0)) return x end @inline function log_kernel(x::Float64) c7 = 0.1532076988502701353 c6 = 0.1525629051003428716 c5 = 0.1818605932937785996 c4 = 0.2222214519839380009 c3 = 0.2857142932794299317 c2 = 0.3999999999635251990 c1 = 0.6666666666667333541 return @horner x c1 c2 c3 c4 c5 c6 c7 end @inline function log_kernel(x::Float32) c3 = 0.3027294874f0 c2 = 0.3996108174f0 c1 = 0.6666694880f0 return @horner x c1 c2 c3 end """ log(x) Compute the natural logarithm of `x`. The inverse of the natural logarithm is the natural expoenential function `exp(x)` """ @inline function log(d::T) where {T<:Union{Float32,Float64}} o = d < floatmin(T) o && (d *= T(Int64(1) << 32) * T(Int64(1) << 32)) e = ilogb2k(d * T(1.0/0.75)) m = ldexp3k(d, -e) o && (e -= 64) x = ddiv(dadd2(T(-1.0), m), dadd2(T(1.0), m)) x2 = x.hi*x.hi t = log_kernel(x2) s = dmul(MDLN2(T), T(e)) s = dadd(s, scale(x, T(2.0))) s = dadd(s, x2*x.hi*t) r = T(s) isinf(d) && (r = T(Inf)) (d < 0 || isnan(d)) && (r = T(NaN)) d == 0 && (r = -T(Inf)) return r end # First we split the argument to its mantissa `m` and integer exponent `e` so # that `d = m \times 2^e`, where `m \in [0.5, 1)` then we apply the polynomial # approximant on this reduced argument `m` before putting back the exponent # in. This first part is done with the help of the private function # `ilogbk(x)` and we put the exponent back using # `\log(m \times 2^e) = \log(m) + \log 2^e = \log(m) + e\times MLN2 # The polynomial we evaluate is based on coefficients from # `log_2(x) = 2\sum_{n=0}^\infty \frac{1}{2n+1} \bigl(\frac{x-1}{x+1}^{2n+1}\bigr)` # That being said, since this converges faster when the argument is close to # 1, we multiply `m` by `2` and subtract 1 for the exponent `e` when `m` is # less than `sqrt(2)/2` @inline function log_fast_kernel(x::Float64) c8 = 0.153487338491425068243146 c7 = 0.152519917006351951593857 c6 = 0.181863266251982985677316 c5 = 0.222221366518767365905163 c4 = 0.285714294746548025383248 c3 = 0.399999999950799600689777 c2 = 0.6666666666667778740063 c1 = 2.0 return @horner x c1 c2 c3 c4 c5 c6 c7 c8 end @inline function log_fast_kernel(x::Float32) c5 = 0.2392828464508056640625f0 c4 = 0.28518211841583251953125f0 c3 = 0.400005877017974853515625f0 c2 = 0.666666686534881591796875f0 c1 = 2f0 return @horner x c1 c2 c3 c4 c5 end """ log_fast(x) Compute the natural logarithm of `x`. The inverse of the natural logarithm is the natural expoenential function `exp(x)` """ @inline function log_fast(d::T) where {T<:Union{Float32,Float64}} o = d < floatmin(T) o && (d *= T(Int64(1) << 32) * T(Int64(1) << 32)) e = ilogb2k(d * T(1.0/0.75)) m = ldexp3k(d, -e) o && (e -= 64) x = (m - 1) / (m + 1) x2 = x * x t = log_fast_kernel(x2) x = x * t + T(MLN2) * e isinf(d) && (x = T(Inf)) (d < 0 || isnan(d)) && (x = T(NaN)) d == 0 && (x = -T(Inf)) return x end
SLEEFInline
https://github.com/AStupidBear/SLEEFInline.jl.git
[ "MIT" ]
0.1.0
755459c8c724437026ade8eed1032572a5236752
code
2892
""" pow(x, y) Exponentiation operator, returns `x` raised to the power `y`. """ @inline function pow(x::T, y::T) where {T<:Union{Float32,Float64}} yi = unsafe_trunc(Int, y) yisint = yi == y yisodd = isodd(yi) && yisint result = expk(dmul(logk(abs(x)), y)) result = isnan(result) ? T(Inf) : result result *= (x > 0 ? T(1.0) : (!yisint ? T(NaN) : (yisodd ? -T(1.0) : T(1.0)))) efx = flipsign(abs(x) - 1, y) isinf(y) && (result = efx < 0 ? T(0.0) : (efx == 0 ? T(1.0) : T(Inf))) (isinf(x) || x == 0) && (result = (yisodd ? _sign(x) : T(1.0)) * ((x == 0 ? -y : y) < 0 ? T(0.0) : T(Inf))) (isnan(x) || isnan(y)) && (result = T(NaN)) (y == 0 || x == 1) && (result = T(1.0)) return result end let global cbrt_fast global cbrt c6d = -0.640245898480692909870982 c5d = 2.96155103020039511818595 c4d = -5.73353060922947843636166 c3d = 6.03990368989458747961407 c2d = -3.85841935510444988821632 c1d = 2.2307275302496609725722 c6f = -0.601564466953277587890625f0 c5f = 2.8208892345428466796875f0 c4f = -5.532182216644287109375f0 c3f = 5.898262500762939453125f0 c2f = -3.8095417022705078125f0 c1f = 2.2241256237030029296875f0 global @inline cbrt_kernel(x::Float64) = @horner x c1d c2d c3d c4d c5d c6d global @inline cbrt_kernel(x::Float32) = @horner x c1f c2f c3f c4f c5f c6f """ cbrt_fast(x) Return `x^{1/3}`. """ @inline function cbrt_fast(d::T) where {T<:Union{Float32,Float64}} e = ilogbk(abs(d)) + 1 d = ldexp2k(d, -e) r = (e + 6144) % 3 q = r == 1 ? T(M2P13) : T(1) q = r == 2 ? T(M2P23) : q q = ldexp2k(q, (e + 6144) ÷ 3 - 2048) q = flipsign(q, d) d = abs(d) x = cbrt_kernel(d) y = x * x y = y * y x -= (d * y - x) * T(1 / 3) y = d * x * x y = (y - T(2 / 3) * y * (y * x - 1)) * q end """ cbrt(x) Return `x^{1/3}`. The prefix operator `∛` is equivalent to `cbrt`. """ @inline function cbrt(d::T) where {T<:Union{Float32,Float64}} e = ilogbk(abs(d)) + 1 d = ldexp2k(d, -e) r = (e + 6144) % 3 q2 = r == 1 ? MD2P13(T) : Double(T(1)) q2 = r == 2 ? MD2P23(T) : q2 q2 = flipsign(q2, d) d = abs(d) x = cbrt_kernel(d) y = x * x y = y * y x -= (d * y - x) * T(1 / 3) z = x u = dsqu(x) u = dsqu(u) u = dmul(u, d) u = dsub(u, x) y = T(u) y = -T(2 / 3) * y * z v = dadd(dsqu(z), y) v = dmul(v, d) v = dmul(v, q2) z = ldexp2k(T(v), (e + 6144) ÷ 3 - 2048) isinf(d) && (z = flipsign(T(Inf), q2.hi)) d == 0 && (z = flipsign(T(0), q2.hi)) return z end end """ hypot(x,y) Compute the hypotenuse `\\sqrt{x^2+y^2}` avoiding overflow and underflow. """ @inline function hypot(x::T, y::T) where {T<:IEEEFloat} x = abs(x) y = abs(y) if x < y x, y = y, x end r = (x == 0) ? y : y / x x * sqrt(T(1.0) + r * r) end
SLEEFInline
https://github.com/AStupidBear/SLEEFInline.jl.git
[ "MIT" ]
0.1.0
755459c8c724437026ade8eed1032572a5236752
code
9650
# private math functions """ A helper function for `ldexpk` First note that `r = (q >> n) << n` clears the lowest n bits of q, i.e. returns 2^n where n is the largest integer such that q >= 2^n For numbers q less than 2^m the following code does the same as the above snippet `r = ( (q>>v + q) >> n - q>>v ) << n` For numbers larger than or equal to 2^v this subtracts 2^n from q for q>>n times. The function returns q(input) := q(output) + offset*r In the code for ldexpk we actually use `m = ( (m>>n + m) >> n - m>>m ) << (n-2)`. So that x has to be multplied by u four times `x = x*u*u*u*u` to put the value of the offset exponent amount back in. """ @inline function _split_exponent(q, n, v, offset) m = q >> v m = (((m + q) >> n) - m) << (n - offset) q = q - (m << offset) m, q end @inline split_exponent(::Type{Float64}, q::Int) = _split_exponent(q, UInt(9), UInt(31), UInt(2)) @inline split_exponent(::Type{Float32}, q::Int) = _split_exponent(q, UInt(6), UInt(31), UInt(2)) """ ldexpk(a, n) Computes `a × 2^n`. """ @inline function ldexpk(x::T, q::Int) where {T<:Union{Float32,Float64}} bias = exponent_bias(T) emax = exponent_raw_max(T) m, q = split_exponent(T, q) m += bias m = ifelse(m < 0, 0, m) m = ifelse(m > emax, emax, m) q += bias u = integer2float(T, m) x = x * u * u * u * u u = integer2float(T, q) x * u end @inline function ldexp2k(x::T, e::Int) where {T<:Union{Float32,Float64}} x * pow2i(T, e >> 1) * pow2i(T, e - (e >> 1)) end @inline function ldexp3k(x::T, e::Int) where {T<:Union{Float32,Float64}} reinterpret(T, reinterpret(Unsigned, x) + (Int64(e) << significand_bits(T)) % uinttype(T)) end # threshold values for `ilogbk` const threshold_exponent(::Type{Float64}) = 300 const threshold_exponent(::Type{Float32}) = 64 """ ilogbk(x) -> Int Returns the integral part of the logarithm of `|x|`, using 2 as base for the logarithm; in other words this returns the binary exponent of `x` so that x = significand × 2^exponent where `significand ∈ [1, 2)`. """ @inline function ilogbk(d::T) where {T<:Union{Float32,Float64}} m = d < T(2)^-threshold_exponent(T) d = ifelse(m, d * T(2)^threshold_exponent(T), d) q = float2integer(d) & exponent_raw_max(T) q = ifelse(m, q - (threshold_exponent(T) + exponent_bias(T)), q - exponent_bias(T)) end # similar to ilogbk, but argument has to be a normalized float value @inline function ilogb2k(d::T) where {T<:Union{Float32,Float64}} (float2integer(d) & exponent_raw_max(T)) - exponent_bias(T) end let global atan2k_fast global atan2k c20d = 1.06298484191448746607415e-05 c19d = -0.000125620649967286867384336 c18d = 0.00070557664296393412389774 c17d = -0.00251865614498713360352999 c16d = 0.00646262899036991172313504 c15d = -0.0128281333663399031014274 c14d = 0.0208024799924145797902497 c13d = -0.0289002344784740315686289 c12d = 0.0359785005035104590853656 c11d = -0.041848579703592507506027 c10d = 0.0470843011653283988193763 c9d = -0.0524914210588448421068719 c8d = 0.0587946590969581003860434 c7d = -0.0666620884778795497194182 c6d = 0.0769225330296203768654095 c5d = -0.0909090442773387574781907 c4d = 0.111111108376896236538123 c3d = -0.142857142756268568062339 c2d = 0.199999999997977351284817 c1d = -0.333333333333317605173818 c9f = -0.00176397908944636583328247f0 c8f = 0.0107900900766253471374512f0 c7f = -0.0309564601629972457885742f0 c6f = 0.0577365085482597351074219f0 c5f = -0.0838950723409652709960938f0 c4f = 0.109463557600975036621094f0 c3f = -0.142626821994781494140625f0 c2f = 0.199983194470405578613281f0 c1f = -0.333332866430282592773438f0 global @inline atan2k_fast_kernel(x::Float64) = @horner x c1d c2d c3d c4d c5d c6d c7d c8d c9d c10d c11d c12d c13d c14d c15d c16d c17d c18d c19d c20d global @inline atan2k_fast_kernel(x::Float32) = @horner x c1f c2f c3f c4f c5f c6f c7f c8f c9f @inline function atan2k_fast(y::T, x::T) where {T<:Union{Float32,Float64}} q = 0 if x < 0 x = -x q = -2 end if y > x t = x; x = y y = -t q += 1 end s = y / x t = s * s u = atan2k_fast_kernel(t) t = u * t * s + s q * T(PI_2) + t end global @inline atan2k_kernel(x::Double{Float64}) = @horner x.hi c1d c2d c3d c4d c5d c6d c7d c8d c9d c10d c11d c12d c13d c14d c15d c16d c17d c18d c19d c20d global @inline atan2k_kernel(x::Double{Float32}) = dadd(c1f, x.hi * (@horner x.hi c2f c3f c4f c5f c6f c7f c8f c9f)) @inline function atan2k(y::Double{T}, x::Double{T}) where {T<:Union{Float32,Float64}} q = 0 if x < 0 x = -x q = -2 end if y > x t = x; x = y y = -t q += 1 end s = ddiv(y, x) t = dsqu(s) t = dnormalize(t) u = atan2k_kernel(t) t = dmul(t, u) t = dmul(s, dadd(T(1.0), t)) T <: Float64 && abs(s.hi) < 1e-200 && (t = s) t = dadd(dmul(T(q), MDPI2(T)), t) return t end end const under_expk(::Type{Float64}) = -1000.0 const under_expk(::Type{Float32}) = -104f0 @inline function expk_kernel(x::Float64) c10 = 2.51069683420950419527139e-08 c9 = 2.76286166770270649116855e-07 c8 = 2.75572496725023574143864e-06 c7 = 2.48014973989819794114153e-05 c6 = 0.000198412698809069797676111 c5 = 0.0013888888939977128960529 c4 = 0.00833333333332371417601081 c3 = 0.0416666666665409524128449 c2 = 0.166666666666666740681535 c1 = 0.500000000000000999200722 return @horner x c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 end @inline function expk_kernel(x::Float32) c5 = 0.00136324646882712841033936f0 c4 = 0.00836596917361021041870117f0 c3 = 0.0416710823774337768554688f0 c2 = 0.166665524244308471679688f0 c1 = 0.499999850988388061523438f0 return @horner x c1 c2 c3 c4 c5 end @inline function expk(d::Double{T}) where {T<:Union{Float32,Float64}} q = round(T(d) * T(MLN2E)) qi = unsafe_trunc(Int, q) s = dadd(d, -q * L2U(T)) s = dadd(s, -q * L2L(T)) s = dnormalize(s) u = expk_kernel(T(s)) t = dadd(s, dmul(dsqu(s), u)) t = dadd(T(1.0), t) u = ldexpk(T(t), qi) (d.hi < under_expk(T)) && (u = T(0.0)) return u end @inline function expk2_kernel(x::Double{Float64}) c11 = 0.1602472219709932072e-9 c10 = 0.2092255183563157007e-8 c9 = 0.2505230023782644465e-7 c8 = 0.2755724800902135303e-6 c7 = 0.2755731892386044373e-5 c6 = 0.2480158735605815065e-4 c5 = 0.1984126984148071858e-3 c4 = 0.1388888888886763255e-2 c3 = 0.8333333333333347095e-2 c2 = 0.4166666666666669905e-1 c1 = 0.1666666666666666574e0 u = @horner x.hi c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 return dadd(dmul(x, u), c1) end @inline function expk2_kernel(x::Double{Float32}) c5 = 0.1980960224f-3 c4 = 0.1394256484f-2 c3 = 0.8333456703f-2 c2 = 0.4166637361f-1 c1 = 0.166666659414234244790680580464f0 u = @horner x.hi c2 c3 c4 c5 return dadd(dmul(x, u), c1) end @inline function expk2(d::Double{T}) where {T<:Union{Float32,Float64}} q = round(T(d) * T(MLN2E)) qi = unsafe_trunc(Int, q) s = dadd(d, -q * L2U(T)) s = dadd(s, -q * L2L(T)) t = expk2_kernel(s) t = dadd(dmul(s, t), T(0.5)) t = dadd(s, dmul(dsqu(s), t)) t = dadd(T(1.0), t) t = Double(ldexp2k(t.hi, qi), ldexp2k(t.lo, qi)) (d.hi < under_expk(T)) && (t = Double(T(0.0))) return t end @inline function logk2_kernel(x::Float64) c8 = 0.13860436390467167910856 c7 = 0.131699838841615374240845 c6 = 0.153914168346271945653214 c5 = 0.181816523941564611721589 c4 = 0.22222224632662035403996 c3 = 0.285714285511134091777308 c2 = 0.400000000000914013309483 c1 = 0.666666666666664853302393 return @horner x c1 c2 c3 c4 c5 c6 c7 c8 end @inline function logk2_kernel(x::Float32) c4 = 0.240320354700088500976562f0 c3 = 0.285112679004669189453125f0 c2 = 0.400007992982864379882812f0 c1 = 0.666666686534881591796875f0 return @horner x c1 c2 c3 c4 end @inline function logk2(d::Double{T}) where {T<:Union{Float32,Float64}} e = ilogbk(d.hi * T(1.0/0.75)) m = scale(d, pow2i(T, -e)) x = ddiv(dsub2(m, T(1.0)), dadd2(m, T(1.0))) x2 = dsqu(x) t = logk2_kernel(x2.hi) s = dmul(MDLN2(T), T(e)) s = dadd(s, scale(x, T(2.0))) s = dadd(s, dmul(dmul(x2, x), t)) return s end @inline function logk_kernel(x::Double{Float64}) c10 = 0.116255524079935043668677 c9 = 0.103239680901072952701192 c8 = 0.117754809412463995466069 c7 = 0.13332981086846273921509 c6 = 0.153846227114512262845736 c5 = 0.181818180850050775676507 c4 = 0.222222222230083560345903 c3 = 0.285714285714249172087875 c2 = 0.400000000000000077715612 c1 = Double(0.666666666666666629659233, 3.80554962542412056336616e-17) dadd2(dmul(x, @horner x.hi c2 c3 c4 c5 c6 c7 c8 c9 c10), c1) end @inline function logk_kernel(x::Double{Float32}) c4 = 0.240320354700088500976562f0 c3 = 0.285112679004669189453125f0 c2 = 0.400007992982864379882812f0 c1 = Double(0.66666662693023681640625f0, 3.69183861259614332084311f-9) dadd2(dmul(x, @horner x.hi c2 c3 c4), c1) end @inline function logk(d::T) where {T<:Union{Float32,Float64}} o = d < floatmin(T) o && (d *= T(Int64(1) << 32) * T(Int64(1) << 32)) e = ilogb2k(d * T(1.0/0.75)) m = ldexp3k(d, -e) o && (e -= 64) x = ddiv(dsub2(m, T(1.0)), dadd2(T(1.0), m)) x2 = dsqu(x) t = logk_kernel(x2) s = dmul(MDLN2(T), T(e)) s = dadd(s, scale(x, T(2.0))) s = dadd(s, dmul(dmul(x2, x), t)) return s end
SLEEFInline
https://github.com/AStupidBear/SLEEFInline.jl.git
[ "MIT" ]
0.1.0
755459c8c724437026ade8eed1032572a5236752
code
21915
# exported trigonometric functions """ sin(x) Compute the sine of `x`, where the output is in radians. """ function sin end """ cos(x) Compute the cosine of `x`, where the output is in radians. """ function cos end @inline function sincos_kernel(x::Double{Float64}) c8 = 2.72052416138529567917983e-15 c7 = -7.64292594113954471900203e-13 c6 = 1.60589370117277896211623e-10 c5 = -2.5052106814843123359368e-08 c4 = 2.75573192104428224777379e-06 c3 = -0.000198412698412046454654947 c2 = 0.00833333333333318056201922 c1 = -0.166666666666666657414808 return dadd(c1, x.hi * (@horner x.hi c2 c3 c4 c5 c6 c7 c8)) end @inline function sincos_kernel(x::Double{Float32}) c4 = 2.6083159809786593541503f-06 c3 = -0.0001981069071916863322258f0 c2 = 0.00833307858556509017944336f0 c1 = -0.166666597127914428710938f0 return dadd(c1, x.hi * (@horner x.hi c2 c3 c4)) end @inline function sin(d::T) where {T<:Float64} qh = trunc(d * (T(M_1_PI) / (1 << 24))) ql = round(d * T(M_1_PI) - qh * (1 << 24)) s = dadd2(d, qh * (-PI_A(T) * (1 << 24))) s = dadd2(s, ql * (-PI_A(T) )) s = dadd2(s, qh * (-PI_B(T) * (1 << 24))) s = dadd2(s, ql * (-PI_B(T) )) s = dadd2(s, qh * (-PI_C(T) * (1 << 24))) s = dadd2(s, ql * (-PI_C(T) )) s = dadd2(s, (qh * (1 << 24) + ql) * - PI_D(T)) t = s s = dsqu(s) w = sincos_kernel(s) v = dmul(t, dadd(T(1.0), dmul(w, s))) u = T(v) qli = unsafe_trunc(Int, ql) qli & 1 != 0 && (u = -u) !isinf(d) && (isnegzero(d) || abs(d) > TRIG_MAX(T)) && (u = T(-0.0)) return u end @inline function sin(d::T) where {T<:Float32} q = round(d * T(M_1_PI)) s = dadd2(d, q * -PI_A(T)) s = dadd2(s, q * -PI_B(T)) s = dadd2(s, q * -PI_C(T)) s = dadd2(s, q * -PI_D(T)) t = s s = dsqu(s) w = sincos_kernel(s) v = dmul(t, dadd(T(1.0), dmul(w, s))) u = T(v) qi = unsafe_trunc(Int, q) qi & 1 != 0 && (u = -u) !isinf(d) && (isnegzero(d) || abs(d) > TRIG_MAX(T)) && (u = T(-0.0)) return u end @inline function cos(d::T) where {T<:Float64} d = abs(d) qh = trunc(d * (T(M_1_PI) / (1 << 23)) - T(0.5) * (T(M_1_PI) / (1 << 23))) ql = 2*round(d * T(M_1_PI) - T(0.5) - qh * (1 << 23)) + 1 s = dadd2(d, qh * (-PI_A(T)* T(0.5) * (1 << 24))) s = dadd2(s, ql * (-PI_A(T)* T(0.5) )) s = dadd2(s, qh * (-PI_B(T)* T(0.5) * (1 << 24))) s = dadd2(s, ql * (-PI_B(T)* T(0.5) )) s = dadd2(s, qh * (-PI_C(T)* T(0.5) * (1 << 24))) s = dadd2(s, ql * (-PI_C(T)* T(0.5) )) s = dadd2(s, (qh * (1 << 24) + ql) * (-PI_D(T) * T(0.5))) t = s s = dsqu(s) w = sincos_kernel(s) v = dmul(t, dadd(T(1.0), dmul(w, s))) u = T(v) qli = unsafe_trunc(Int, ql) qli & 2 == 0 && (u = -u) !isinf(d) && (d > TRIG_MAX(T)) && (u = T(0.0)) return u end @inline function cos(d::T) where {T<:Float32} d = abs(d) q = 1 + 2*round(d * T(M_1_PI) - T(0.5)) s = dadd2(d, q * -PI_A(T)* T(0.5)) s = dadd2(s, q * -PI_B(T)* T(0.5)) s = dadd2(s, q * -PI_C(T)* T(0.5)) s = dadd2(s, q * -PI_D(T)* T(0.5)) t = s s = dsqu(s) w = sincos_kernel(s) v = dmul(t, dadd(T(1.0), dmul(w, s))) u = T(v) qi = unsafe_trunc(Int, q) qi & 2 == 0 && (u = -u) !isinf(d) && (d > TRIG_MAX(T)) && (u = T(0.0)) return u end """ sin_fast(x) Compute the sine of `x`, where the output is in radians. """ function sin_fast end """ cos_fast(x) Compute the cosine of `x`, where the output is in radians. """ function cos_fast end # Argument is first reduced to the domain 0 < s < π/4 # We return the correct sign using `q & 1 != 0` i.e. q is odd (this works for # positive and negative q) and if this condition is true we flip the sign since # we are now in the negative branch of sin(x). Recall that q is just the integer # part of d/π and thus we can determine the correct sign using this information. @inline function sincos_fast_kernel(x::Float64) c9 = -7.97255955009037868891952e-18 c8 = 2.81009972710863200091251e-15 c7 = -7.64712219118158833288484e-13 c6 = 1.60590430605664501629054e-10 c5 = -2.50521083763502045810755e-08 c4 = 2.75573192239198747630416e-06 c3 = -0.000198412698412696162806809 c2 = 0.00833333333333332974823815 c1 = -0.166666666666666657414808 return @horner x c1 c2 c3 c4 c5 c6 c7 c8 c9 end @inline function sincos_fast_kernel(x::Float32) c4 = 2.6083159809786593541503f-06 c3 = -0.0001981069071916863322258f0 c2 = 0.00833307858556509017944336f0 c1 = -0.166666597127914428710938f0 return @horner x c1 c2 c3 c4 end @inline function sin_fast(d::T) where {T<:Float64} t = d qh = trunc(d * (T(M_1_PI) / (1 << 24))) ql = round(d * T(M_1_PI) - qh * (1 << 24)) d = muladd(qh , -PI_A(T) * (1 << 24) , d) d = muladd(ql , -PI_A(T) , d) d = muladd(qh , -PI_B(T) * (1 << 24) , d) d = muladd(ql , -PI_B(T) , d) d = muladd(qh , -PI_C(T) * (1 << 24) , d) d = muladd(ql , -PI_C(T) , d) d = muladd(qh * (1 << 24) + ql, -PI_D(T), d) s = d * d qli = unsafe_trunc(Int, ql) qli & 1 != 0 && (d = -d) u = sincos_fast_kernel(s) u = muladd(s, u * d, d) !isinf(t) && (isnegzero(t) || abs(t) > TRIG_MAX(T)) && (u = T(-0.0)) return u end @inline function sin_fast(d::T) where {T<:Float32} t = d q = round(d * T(M_1_PI)) d = muladd(q , -PI_A(T), d) d = muladd(q , -PI_B(T), d) d = muladd(q , -PI_C(T), d) d = muladd(q , -PI_D(T), d) s = d * d qli = unsafe_trunc(Int, q) qli & 1 != 0 && (d = -d) u = sincos_fast_kernel(s) u = muladd(s, u * d, d) !isinf(t) && (isnegzero(t) || abs(t) > TRIG_MAX(T)) && (u = T(-0.0)) return u end @inline function cos_fast(d::T) where {T<:Float64} t = d qh = trunc(d * (T(M_1_PI) / (1 << 23)) - T(0.5) * (T(M_1_PI) / (1 << 23))) ql = 2*round(d * T(M_1_PI) - T(0.5) - qh * (1 << 23)) + 1 d = muladd(qh , -PI_A(T) * T(0.5) * (1 << 24) , d) d = muladd(ql , -PI_A(T) * T(0.5) , d) d = muladd(qh , -PI_B(T) * T(0.5) * (1 << 24) , d) d = muladd(ql , -PI_B(T) * T(0.5) , d) d = muladd(qh , -PI_C(T) * T(0.5) * (1 << 24) , d) d = muladd(ql , -PI_C(T) * T(0.5) , d) d = muladd(qh * (1 << 24) + ql, -PI_D(T) * T(0.5), d) s = d * d qli = unsafe_trunc(Int, ql) qli & 2 == 0 && (d = -d) u = sincos_fast_kernel(s) u = muladd(s, u * d, d) !isinf(t) && (abs(t) > TRIG_MAX(T)) && (u = T(0.0)) return u end @inline function cos_fast(d::T) where {T<:Float32} t = d q = 1 + 2*round(d * T(M_1_PI) - T(0.5)) d = muladd(q, -PI_A(T) * T(0.5), d) d = muladd(q, -PI_B(T) * T(0.5), d) d = muladd(q, -PI_C(T) * T(0.5), d) d = muladd(q, -PI_D(T) * T(0.5), d) s = d * d qi = unsafe_trunc(Int, q) qi & 2 == 0 && (d = -d) u = sincos_fast_kernel(s) u = muladd(s, u * d, d) !isinf(t) && (abs(t) > TRIG_MAX(T)) && (u = T(0.0)) return u end """ sincos(x) Compute the sin and cosine of `x` simultaneously, where the output is in radians, returning a tuple. """ function sincos end """ sincos_fast(x) Compute the sin and cosine of `x` simultaneously, where the output is in radians, returning a tuple. """ function sincos_fast end @inline function sincos_a_kernel(x::Float64) a6 = 1.58938307283228937328511e-10 a5 = -2.50506943502539773349318e-08 a4 = 2.75573131776846360512547e-06 a3 = -0.000198412698278911770864914 a2 = 0.0083333333333191845961746 a1 = -0.166666666666666130709393 return @horner x a1 a2 a3 a4 a5 a6 end @inline function sincos_a_kernel(x::Float32) a3 = -0.000195169282960705459117889f0 a2 = 0.00833215750753879547119141f0 a1 = -0.166666537523269653320312f0 return @horner x a1 a2 a3 end @inline function sincos_b_kernel(x::Float64) b7 = -1.13615350239097429531523e-11 b6 = 2.08757471207040055479366e-09 b5 = -2.75573144028847567498567e-07 b4 = 2.48015872890001867311915e-05 b3 = -0.00138888888888714019282329 b2 = 0.0416666666666665519592062 b1 = -0.50 return @horner x b1 b2 b3 b4 b5 b6 b7 end @inline function sincos_b_kernel(x::Float32) b5 = -2.71811842367242206819355f-07 b4 = 2.47990446951007470488548f-05 b3 = -0.00138888787478208541870117f0 b2 = 0.0416666641831398010253906f0 b1 = -0.5f0 return @horner x b1 b2 b3 b4 b5 end @inline function sincos_fast(d::T) where {T<:Float64} s = d qh = trunc(d * ((2 * T(M_1_PI)) / (1 << 24))) ql = round(d * (2 * T(M_1_PI)) - qh * (1 << 24)) s = muladd(qh, -PI_A(T) * T(0.5) * (1 << 24), s) s = muladd(ql, -PI_A(T) * T(0.5), s) s = muladd(qh, -PI_B(T) * T(0.5) * (1 << 24), s) s = muladd(ql, -PI_B(T) * T(0.5), s) s = muladd(qh, -PI_C(T) * T(0.5) * (1 << 24), s) s = muladd(ql, -PI_C(T) * T(0.5), s) s = muladd(qh * (1 << 24) + ql, -PI_D(T) * 0.5, s) t = s s = s * s u = sincos_a_kernel(s) u = u * s * t rx = t + u isnegzero(d) && (rx = T(-0.0)) u = sincos_b_kernel(s) ry = u * s + T(1.0) qli = unsafe_trunc(Int, ql) qli & 1 != 0 && (s = ry; ry = rx; rx = s) qli & 2 != 0 && (rx = -rx) (qli + 1) & 2 != 0 && (ry = -ry) abs(d) > TRIG_MAX(T) && (rx = ry = T(0.0)) isinf(d) && (rx = ry = T(NaN)) return (rx, ry) end @inline function sincos_fast(d::T) where {T<:Float32} s = d q = round(d * (2 * T(M_1_PI))) s = muladd(q, -PI_A(T) * T(0.5), s) s = muladd(q, -PI_B(T) * T(0.5), s) s = muladd(q, -PI_C(T) * T(0.5), s) s = muladd(q, -PI_D(T) * T(0.5), s) t = s s = s * s u = sincos_a_kernel(s) u = u * s * t rx = t + u isnegzero(d) && (rx = T(-0.0)) u = sincos_b_kernel(s) ry = u * s + T(1.0) qi = unsafe_trunc(Int, q) qi & 1 != 0 && (s = ry; ry = rx; rx = s) qi & 2 != 0 && (rx = -rx) (qi + 1) & 2 != 0 && (ry = -ry) abs(d) > TRIG_MAX(T) && (rx = ry = T(0.0)) isinf(d) && (rx = ry = T(NaN)) return (rx, ry) end @inline function sincos(d::T) where {T<:Float64} qh = trunc(d * ((2 * T(M_1_PI)) / (1 << 24))) ql = round(d * (2 * T(M_1_PI)) - qh * (1 << 24)) s = dadd2(d, qh * (-PI_A(T) * T(0.5) * (1 << 24))) s = dadd2(s, ql * (-PI_A(T) * T(0.5) )) s = dadd2(s, qh * (-PI_B(T) * T(0.5) * (1 << 24))) s = dadd2(s, ql * (-PI_B(T) * T(0.5) )) s = dadd2(s, qh * (-PI_C(T) * T(0.5) * (1 << 24))) s = dadd2(s, ql * (-PI_C(T) * T(0.5) )) s = dadd2(s, (qh * (1 << 24) + ql) * (-PI_D(T) * T(0.5))) t = s s = dsqu(s) sx = T(s) u = sincos_a_kernel(sx) u *= sx * t.hi v = dadd(t, u) rx = T(v) isnegzero(d) && (rx = T(-0.0)) u = sincos_b_kernel(sx) v = dadd(T(1.0), dmul(sx, u)) ry = T(v) qli = unsafe_trunc(Int, ql) qli & 1 != 0 && (u = ry; ry = rx; rx = u) qli & 2 != 0 && (rx = -rx) (qli + 1) & 2 != 0 && (ry = -ry) abs(d) > TRIG_MAX(T) && (rx = ry = T(0.0)) isinf(d) && (rx = ry = T(NaN)) return (rx, ry) end @inline function sincos(d::T) where {T<:Float32} q = round(d * (2 * T(M_1_PI))) s = dadd2(d, q * (-PI_A(T) * T(0.5))) s = dadd2(s, q * (-PI_B(T) * T(0.5))) s = dadd2(s, q * (-PI_C(T) * T(0.5))) s = dadd2(s, q * (-PI_D(T) * T(0.5))) t = s s = dsqu(s) sx = T(s) u = sincos_a_kernel(sx) u *= sx * t.hi v = dadd(t, u) rx = T(v) isnegzero(d) && (rx = T(-0.0)) u = sincos_b_kernel(sx) v = dadd(T(1.0), dmul(sx, u)) ry = T(v) qi = unsafe_trunc(Int, q) qi & 1 != 0 && (u = ry; ry = rx; rx = u) qi & 2 != 0 && (rx = -rx) (qi + 1) & 2 != 0 && (ry = -ry) abs(d) > TRIG_MAX(T) && (rx = ry = T(0.0)) isinf(d) && (rx = ry = T(NaN)) return (rx, ry) end """ tan(x) Compute the tangent of `x`, where the output is in radians. """ function tan end """ tan_fast(x) Compute the tangent of `x`, where the output is in radians. """ function tan_fast end @inline function tan_fast_kernel(x::Float64) c16 = 9.99583485362149960784268e-06 c15 = -4.31184585467324750724175e-05 c14 = 0.000103573238391744000389851 c13 = -0.000137892809714281708733524 c12 = 0.000157624358465342784274554 c11 = -6.07500301486087879295969e-05 c10 = 0.000148898734751616411290179 c9 = 0.000219040550724571513561967 c8 = 0.000595799595197098359744547 c7 = 0.00145461240472358871965441 c6 = 0.0035923150771440177410343 c5 = 0.00886321546662684547901456 c4 = 0.0218694899718446938985394 c3 = 0.0539682539049961967903002 c2 = 0.133333333334818976423364 c1 = 0.333333333333320047664472 return @horner x c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13 c14 c15 c16 end @inline function tan_fast_kernel(x::Float32) c7 = 0.00446636462584137916564941f0 c6 = -8.3920182078145444393158f-05 c5 = 0.0109639242291450500488281f0 c4 = 0.0212360303848981857299805f0 c3 = 0.0540687143802642822265625f0 c2 = 0.133325666189193725585938f0 c1 = 0.33333361148834228515625f0 return @horner x c1 c2 c3 c4 c5 c6 c7 end @inline function tan_fast(d::T) where {T<:Float64} qh = trunc(d * (2 * T(M_1_PI)) / (1 << 24)) ql = round(d * (2 * T(M_1_PI)) - qh * (1 << 24)) x = muladd(qh, -PI_A(T) * T(0.5) * (1 << 24), d) x = muladd(ql, -PI_A(T) * T(0.5), x) x = muladd(qh, -PI_B(T) * T(0.5) * (1 << 24), x) x = muladd(ql, -PI_B(T) * T(0.5), x) x = muladd(qh, -PI_C(T) * T(0.5) * (1 << 24), x) x = muladd(ql, -PI_C(T) * T(0.5), x) x = muladd(qh * (1 << 24) + ql, -PI_D(T) * T(0.5), x) s = x * x qli = unsafe_trunc(Int, ql) qli & 1 != 0 && (x = -x) u = tan_fast_kernel(s) u = muladd(s, u * x, x) qli & 1 != 0 && (u = T(1.0) / u) !isinf(d) && (isnegzero(d) || abs(d) > TRIG_MAX(T)) && (u = T(-0.0)) return u end @inline function tan_fast(d::T) where {T<:Float32} q = round(d * (2 * T(M_1_PI))) x = d x = muladd(q, -PI_A(T) * T(0.5), x) x = muladd(q, -PI_B(T) * T(0.5), x) x = muladd(q, -PI_C(T) * T(0.5), x) x = muladd(q, -PI_D(T) * T(0.5), x) s = x * x qi = unsafe_trunc(Int, q) qi & 1 != 0 && (x = -x) u = tan_fast_kernel(s) u = muladd(s, u * x, x) qi & 1 != 0 && (u = T(1.0) / u) !isinf(d) && (isnegzero(d) || abs(d) > TRIG_MAX(T)) && (u = T(-0.0)) return u end @inline function tan_kernel(x::Double{Float64}) c15 = 1.01419718511083373224408e-05 c14 = -2.59519791585924697698614e-05 c13 = 5.23388081915899855325186e-05 c12 = -3.05033014433946488225616e-05 c11 = 7.14707504084242744267497e-05 c10 = 8.09674518280159187045078e-05 c9 = 0.000244884931879331847054404 c8 = 0.000588505168743587154904506 c7 = 0.00145612788922812427978848 c6 = 0.00359208743836906619142924 c5 = 0.00886323944362401618113356 c4 = 0.0218694882853846389592078 c3 = 0.0539682539781298417636002 c2 = 0.133333333333125941821962 c1 = 0.333333333333334980164153 return dadd(c1, x.hi * (@horner x.hi c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13 c14 c15)) end @inline function tan_kernel(x::Double{Float32}) c7 = 0.00446636462584137916564941f0 c6 = -8.3920182078145444393158f-05 c5 = 0.0109639242291450500488281f0 c4 = 0.0212360303848981857299805f0 c3 = 0.0540687143802642822265625f0 c2 = 0.133325666189193725585938f0 c1 = 0.33333361148834228515625f0 return dadd(c1, x.hi * (@horner x.hi c2 c3 c4 c5 c6 c7)) end @inline function tan(d::T) where {T<:Float64} qh = trunc(d * (T(M_2_PI)) / (1 << 24)) s = dadd2(dmul(Double(T(M_2_PI_H), T(M_2_PI_L)), d), (d < 0 ? T(-0.5) : T(0.5)) - qh * (1 << 24)) ql = trunc(T(s)) s = dadd2(d, qh * (-PI_A(T) * T(0.5) * (1 << 24))) s = dadd2(s, ql * (-PI_A(T) * T(0.5) )) s = dadd2(s, qh * (-PI_B(T) * T(0.5) * (1 << 24))) s = dadd2(s, ql * (-PI_B(T) * T(0.5) )) s = dadd2(s, qh * (-PI_C(T) * T(0.5) * (1 << 24))) s = dadd2(s, ql * (-PI_C(T) * T(0.5) )) s = dadd2(s, (qh * (1 << 24) + ql) * (-PI_D(T) * T(0.5))) qli = unsafe_trunc(Int, ql) qli & 1 != 0 && (s = -s) t = s s = dsqu(s) u = tan_kernel(s) x = dadd(T(1.0), dmul(u, s)) x = dmul(t, x) qli & 1 != 0 && (x = drec(x)) v = T(x) !isinf(d) && (isnegzero(d) || abs(d) > TRIG_MAX(T)) && (v = T(-0.0)) return v end @inline function tan(d::T) where {T<:Float32} q = round(d * (T(M_2_PI))) s = dadd2(d, q * -PI_A(T) * T(0.5)) s = dadd2(s, q * -PI_B(T) * T(0.5)) s = dadd2(s, q * -PI_C(T) * T(0.5)) s = dadd2(s, q * -PI_XD(T) * T(0.5)) s = dadd2(s, q * -PI_XE(T) * T(0.5)) qi = unsafe_trunc(Int, q) qi & 1 != 0 && (s = -s) t = s s = dsqu(s) s = dnormalize(s) u = tan_kernel(s) x = dadd(T(1.0), dmul(u, s)) x = dmul(t, x) qi & 1 != 0 && (x = drec(x)) v = T(x) !isinf(d) && (isnegzero(d) || abs(d) > TRIG_MAX(T)) && (v = T(-0.0)) return v end """ atan(x) Compute the inverse tangent of `x`, where the output is in radians. """ @inline function atan(x::T) where {T<:Union{Float32,Float64}} u = T(atan2k(Double(abs(x)), Double(T(1)))) isinf(x) && (u = T(PI_2)) flipsign(u, x) end @inline function atan_fast_kernel(x::Float64) c19 = -1.88796008463073496563746e-05 c18 = 0.000209850076645816976906797 c17 = -0.00110611831486672482563471 c16 = 0.00370026744188713119232403 c15 = -0.00889896195887655491740809 c14 = 0.016599329773529201970117 c13 = -0.0254517624932312641616861 c12 = 0.0337852580001353069993897 c11 = -0.0407629191276836500001934 c10 = 0.0466667150077840625632675 c9 = -0.0523674852303482457616113 c8 = 0.0587666392926673580854313 c7 = -0.0666573579361080525984562 c6 = 0.0769219538311769618355029 c5 = -0.090908995008245008229153 c4 = 0.111111105648261418443745 c3 = -0.14285714266771329383765 c2 = 0.199999999996591265594148 c1 = -0.333333333333311110369124 return @horner x c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13 c14 c15 c16 c17 c18 c19 end @inline function atan_fast_kernel(x::Float32) c8 = 0.00282363896258175373077393f0 c7 = -0.0159569028764963150024414f0 c6 = 0.0425049886107444763183594f0 c5 = -0.0748900920152664184570312f0 c4 = 0.106347933411598205566406f0 c3 = -0.142027363181114196777344f0 c2 = 0.199926957488059997558594f0 c1 = -0.333331018686294555664062f0 return @horner x c1 c2 c3 c4 c5 c6 c7 c8 end """ atan_fast(x) Compute the inverse tangent of `x`, where the output is in radians. """ @inline function atan_fast(x::T) where {T<:Union{Float32,Float64}} q = 0 if signbit(x) x = -x q = 2 end if x > 1 x = 1 / x q |= 1 end t = x * x u = atan_fast_kernel(t) t = x + x * t * u q & 1 != 0 && (t = T(PI_2) - t) q & 2 != 0 && (t = -t) return t end const under_atan2(::Type{Float64}) = 5.5626846462680083984e-309 const under_atan2(::Type{Float32}) = 2.9387372783541830947f-39 """ atan(x, y) Compute the inverse tangent of `x/y`, using the signs of both `x` and `y` to determine the quadrant of the return value. """ @inline function atan(x::T, y::T) where {T<:Union{Float32,Float64}} abs(y) < under_atan2(T) && (x *= T(Int64(1) << 53); y *= T(Int64(1) << 53)) r = T(atan2k(Double(abs(x)), Double(y))) r = flipsign(r, y) if isinf(y) || y == 0 r = T(PI_2) - (isinf(y) ? _sign(y) * T(PI_2) : T(0.0)) end if isinf(x) r = T(PI_2) - (isinf(y) ? _sign(y) * T(PI_4) : T(0.0)) end if x == 0 r = _sign(y) == -1 ? T(M_PI) : T(0.0) end return isnan(y) || isnan(x) ? T(NaN) : flipsign(r, x) end """ atan2_fast(x, y) Compute the inverse tangent of `x/y`, using the signs of both `x` and `y` to determine the quadrant of the return value. """ @inline function atan_fast(x::T, y::T) where {T<:Union{Float32,Float64}} r = atan2k_fast(abs(x), y) r = flipsign(r, y) if isinf(y) || y == 0 r = T(PI_2) - (isinf(y) ? _sign(y) * T(PI_2) : T(0)) end if isinf(x) r = T(PI_2) - (isinf(y) ? _sign(y) * T(PI_4) : T(0)) end if x == 0 r = _sign(y) == -1 ? T(M_PI) : T(0) end return isnan(y) || isnan(x) ? T(NaN) : flipsign(r, x) end """ asin(x) Compute the inverse sine of `x`, where the output is in radians. """ @inline function asin(x::T) where {T<:Union{Float32,Float64}} d = atan2k(Double(abs(x)), dsqrt(dmul(dadd(T(1), x), dsub(T(1), x)))) u = T(d) abs(x) == 1 && (u = T(PI_2)) flipsign(u, x) end """ asin_fast(x) Compute the inverse sine of `x`, where the output is in radians. """ @inline function asin_fast(x::T) where {T<:Union{Float32,Float64}} flipsign(atan2k_fast(abs(x), _sqrt((1 + x) * (1 - x))), x) end """ acos(x) Compute the inverse cosine of `x`, where the output is in radians. """ @inline function acos(x::T) where {T<:Union{Float32,Float64}} d = atan2k(dsqrt(dmul(dadd(T(1), x), dsub(T(1), x))), Double(abs(x))) d = flipsign(d, x) abs(x) == 1 && (d = Double(T(0))) signbit(x) && (d = dadd(MDPI(T), d)) return T(d) end """ acos_fast(x) Compute the inverse cosine of `x`, where the output is in radians. """ @inline function acos_fast(x::T) where {T<:Union{Float32,Float64}} flipsign(atan2k_fast(_sqrt((1 + x) * (1 - x)), abs(x)), x) + (signbit(x) ? T(M_PI) : T(0)) end
SLEEFInline
https://github.com/AStupidBear/SLEEFInline.jl.git
[ "MIT" ]
0.1.0
755459c8c724437026ade8eed1032572a5236752
code
1449
## utility functions mainly used by the private math functions in priv.jl function is_fma_fast end for T in (Float32, Float64) @eval is_fma_fast(::Type{$T}) = $(muladd(nextfloat(one(T)), nextfloat(one(T)), -nextfloat(one(T), 2)) != zero(T)) end const FMA_FAST = is_fma_fast(Float64) && is_fma_fast(Float32) @inline isnegzero(x::T) where {T<:AbstractFloat} = x === T(-0.0) @inline ispinf(x::T) where {T<:AbstractFloat} = x == T(Inf) @inline isninf(x::T) where {T<:AbstractFloat} = x == T(-Inf) # _sign emits better native code than sign but does not properly handle the Inf/NaN cases @inline _sign(d::T) where {T<:AbstractFloat} = flipsign(one(T), d) @inline integer2float(::Type{Float64}, m::Int) = reinterpret(Float64, (m % Int64) << significand_bits(Float64)) @inline integer2float(::Type{Float32}, m::Int) = reinterpret(Float32, (m % Int32) << significand_bits(Float32)) @inline float2integer(d::Float64) = (reinterpret(Int64, d) >> significand_bits(Float64)) % Int @inline float2integer(d::Float32) = (reinterpret(Int32, d) >> significand_bits(Float32)) % Int @inline pow2i(::Type{T}, q::Int) where {T<:Union{Float32,Float64}} = integer2float(T, q + exponent_bias(T)) # sqrt without the domain checks which we don't need since we handle the checks ourselves if VERSION < v"0.7-" _sqrt(x::T) where {T<:Union{Float32,Float64}} = Base.sqrt_llvm_fast(x) else _sqrt(x::T) where {T<:Union{Float32,Float64}} = Base.sqrt_llvm(x) end
SLEEFInline
https://github.com/AStupidBear/SLEEFInline.jl.git
[ "MIT" ]
0.1.0
755459c8c724437026ade8eed1032572a5236752
code
5317
MRANGE(::Type{Float64}) = 10000000 MRANGE(::Type{Float32}) = 10000 IntF(::Type{Float64}) = Int64 IntF(::Type{Float32}) = Int32 @testset "Accuracy (max error in ulp) for $T" for T in (Float32, Float64) println("Accuracy tests for $T") xx = map(T, vcat(-10:0.0002:10, -1000:0.1:1000)) fun_table = Dict(SLEEF.exp => Base.exp) tol = 1 test_acc(T, fun_table, xx, tol) xx = map(T, vcat(-10:0.0002:10, -1000:0.02:1000)) fun_table = Dict(SLEEF.asinh => Base.asinh, SLEEF.atanh => Base.atanh) tol = 1 test_acc(T, fun_table, xx, tol) xx = map(T, vcat(1:0.0002:10, 1:0.02:1000)) fun_table = Dict(SLEEF.acosh => Base.acosh) tol = 1 test_acc(T, fun_table, xx, tol) xx = T[] for i = 1:10000 s = reinterpret(T, reinterpret(IntF(T), T(pi)/4 * i) - IntF(T)(20)) e = reinterpret(T, reinterpret(IntF(T), T(pi)/4 * i) + IntF(T)(20)) d = s while d <= e append!(xx, d) d = reinterpret(T, reinterpret(IntF(T), d) + IntF(T)(1)) end end xx = append!(xx, -10:0.0002:10) xx = append!(xx, -MRANGE(T):200.1:MRANGE(T)) fun_table = Dict(SLEEF.sin => Base.sin, SLEEF.cos => Base.cos, SLEEF.tan => Base.tan) tol = 1 test_acc(T, fun_table, xx, tol) fun_table = Dict(SLEEF.sin_fast => Base.sin, SLEEF.cos_fast => Base.cos, SLEEF.tan_fast => Base.tan) tol = 4 test_acc(T, fun_table, xx, tol) global sin_sincos_fast(x) = (SLEEF.sincos_fast(x))[1] global cos_sincos_fast(x) = (SLEEF.sincos_fast(x))[2] fun_table = Dict(sin_sincos_fast => Base.sin, cos_sincos_fast => Base.cos) tol = 4 test_acc(T, fun_table, xx, tol) global sin_sincos(x) = (SLEEF.sincos(x))[1] global cos_sincos(x) = (SLEEF.sincos(x))[2] fun_table = Dict(sin_sincos => Base.sin, cos_sincos => Base.cos) tol = 1 test_acc(T, fun_table, xx, tol) xx = map(T, vcat(-1:0.00002:1)) fun_table = Dict(SLEEF.asin_fast => Base.asin, SLEEF.acos_fast => Base.acos) tol = 3 test_acc(T, fun_table, xx, tol) fun_table = Dict(SLEEF.asin => asin, SLEEF.acos => Base.acos) tol = 1 test_acc(T, fun_table, xx, tol) xx = map(T, vcat(-10:0.0002:10, -10000:0.2:10000, -10000:0.201:10000)) fun_table = Dict(SLEEF.atan_fast => Base.atan) tol = 3 test_acc(T, fun_table, xx, tol) fun_table = Dict(SLEEF.atan => Base.atan) tol = 1 test_acc(T, fun_table, xx, tol) xx1 = map(Tuple{T,T}, [zip(-10:0.050:10, -10:0.050:10)...]) xx2 = map(Tuple{T,T}, [zip(-10:0.051:10, -10:0.052:10)...]) xx3 = map(Tuple{T,T}, [zip(-100:0.51:100, -100:0.51:100)...]) xx4 = map(Tuple{T,T}, [zip(-100:0.51:100, -100:0.52:100)...]) xx = vcat(xx1, xx2, xx3, xx4) fun_table = Dict(SLEEF.atan_fast => Base.atan) tol = 2.5 test_acc(T, fun_table, xx, tol) fun_table = Dict(SLEEF.atan => Base.atan) tol = 1 test_acc(T, fun_table, xx, tol) xx = map(T, vcat(0.0001:0.0001:10, 0.001:0.1:10000, 1.1.^(-1000:1000), 2.1.^(-1000:1000))) fun_table = Dict(SLEEF.log_fast => Base.log) tol = 3 test_acc(T, fun_table, xx, tol) fun_table = Dict(SLEEF.log => Base.log) tol = 1 test_acc(T, fun_table, xx, tol) xx = map(T, vcat(0.0001:0.0001:10, 0.0001:0.1:10000)) fun_table = Dict(SLEEF.log10 => Base.log10, SLEEF.log2 => Base.log2) tol = 1 test_acc(T, fun_table, xx, tol) xx = map(T, vcat(0.0001:0.0001:10, 0.0001:0.1:10000, 10.0.^-(0:0.02:300), -10.0.^-(0:0.02:300))) fun_table = Dict(SLEEF.log1p => Base.log1p) tol = 1 test_acc(T, fun_table, xx, tol) xx1 = map(Tuple{T,T}, [(x,y) for x = -100:0.20:100, y = 0.1:0.20:100])[:] xx2 = map(Tuple{T,T}, [(x,y) for x = -100:0.21:100, y = 0.1:0.22:100])[:] xx3 = map(Tuple{T,T}, [(x,y) for x = 2.1, y = -1000:0.1:1000]) xx = vcat(xx1, xx2, xx2) fun_table = Dict(SLEEF.pow => Base.:^) tol = 1 test_acc(T, fun_table, xx, tol) xx = map(T, vcat(-10000:0.2:10000, 1.1.^(-1000:1000), 2.1.^(-1000:1000))) fun_table = Dict(SLEEF.cbrt_fast => Base.cbrt) tol = 2 test_acc(T, fun_table, xx, tol) fun_table = Dict(SLEEF.cbrt => Base.cbrt) tol = 1 test_acc(T, fun_table, xx, tol) xx = map(T, vcat(-10:0.0002:10, -120:0.023:1000, -1000:0.02:2000)) fun_table = Dict(SLEEF.exp2 => Base.exp2) tol = 1 test_acc(T, fun_table, xx, tol) xx = map(T, vcat(-10:0.0002:10, -35:0.023:1000, -300:0.01:300)) fun_table = Dict(SLEEF.exp10 => Base.exp10) tol = 1 test_acc(T, fun_table, xx, tol) xx = map(T, vcat(-10:0.0002:10, -1000:0.021:1000, -1000:0.023:1000, 10.0.^-(0:0.02:300), -10.0.^-(0:0.02:300), 10.0.^(0:0.021:300), -10.0.^-(0:0.021:300))) fun_table = Dict(SLEEF.expm1 => Base.expm1) tol = 2 test_acc(T, fun_table, xx, tol) xx = map(T, vcat(-10:0.0002:10, -1000:0.02:1000)) fun_table = Dict(SLEEF.sinh => Base.sinh, SLEEF.cosh => Base.cosh, SLEEF.tanh => Base.tanh) tol = 1 test_acc(T, fun_table, xx, tol) @testset "xilogb at arbitrary values" begin xd = Dict{T,Int}(T(1e-30) => -100, T(2.31e-11) => -36, T(-1.0) => 0, T(1.0) => 0, T(2.31e11) => 37, T(1e30) => 99) for (i,j) in xd @test SLEEF.ilogb(i) === j end end end
SLEEFInline
https://github.com/AStupidBear/SLEEFInline.jl.git
[ "MIT" ]
0.1.0
755459c8c724437026ade8eed1032572a5236752
code
10161
@testset "exceptional $T" for T in (Float32, Float64) @testset "exceptional $xatan" for xatan in (SLEEF.atan_fast, SLEEF.atan) @test xatan(T(0.0), T(-0.0)) === T(pi) @test xatan(T(-0.0), T(-0.0)) === -T(pi) @test ispzero(xatan(T(0.0), T(0.0))) @test isnzero(xatan(T(-0.0), T(0.0))) @test xatan( T(Inf), -T(Inf)) === T(3*pi/4) @test xatan(-T(Inf), -T(Inf)) === T(-3*pi/4) @test xatan( T(Inf), T(Inf)) === T(pi/4) @test xatan(-T(Inf), T(Inf)) === T(-pi/4) y = T(0.0) xa = T[-100000.5, -100000, -3, -2.5, -2, -1.5, -1.0, -0.5] for x in xa @test xatan(y,x) === T(pi) end y = T(-0.0) xa = T[-100000.5, -100000, -3, -2.5, -2, -1.5, -1.0, -0.5] for x in xa @test xatan(y,x) === T(-pi) end ya = T[-100000.5, -100000, -3, -2.5, -2, -1.5, -1.0, -0.5] xa = T[T(0.0), T(-0.0)] for x in xa, y in ya @test xatan(y,x) === T(-pi/2) end ya = T[100000.5, 100000, 3, 2.5, 2, 1.5, 1.0, 0.5] xa = T[T(0.0), T(-0.0)] for x in xa, y in ya @test xatan(y,x) === T(pi/2) end y = T(Inf) xa = T[-100000.5, -100000, -3, -2.5, -2, -1.5, -1.0, -0.5, -0.0, +0.0, 0.5, 1.5, 2.0, 2.5, 3.0, 100000, 100000.5] for x in xa @test xatan(y,x) === T(pi/2) end y = T(-Inf) xa = T[-100000.5, -100000, -3, -2.5, -2, -1.5, -1.0, -0.5, -0.0, +0.0, 0.5, 1.5, 2.0, 2.5, 3.0, 100000, 100000.5] for x in xa @test xatan(y,x) === T(-pi/2) end ya = T[0.5, 1.5, 2.0, 2.5, 3.0, 100000, 100000.5] x = T(Inf) for y in ya @test ispzero(xatan(y,x)) end ya = T[-0.5, -1.5, -2.0, -2.5, -3.0, -100000, -100000.5] x = T(Inf) for y in ya @test isnzero(xatan(y,x)) end ya = T[-100000.5, -100000, -3, -2.5, -2, -1.5, -1.0, -0.5, -0.0, +0.0, 0.5, 1.5, 2.0, 2.5, 3.0, 100000, 100000.5, NaN] x = T(NaN) for y in ya @test isnan(xatan(y,x)) end y = T(NaN) xa = T[-100000.5, -100000, -3, -2.5, -2, -1.5, -1.0, -0.5, -0.0, +0.0, 0.5, 1.5, 2.0, 2.5, 3.0, 100000, 100000.5, NaN] for x in xa @test isnan(xatan(y,x)) end end # denormal/nonumber atan @testset "exceptional xpow" begin @test SLEEF.pow(T(1), T(NaN)) === T(1) @test SLEEF.pow( T(NaN), T(0)) === T(1) @test SLEEF.pow(-T(1), T(Inf)) === T(1) @test SLEEF.pow(-T(1), T(-Inf)) === T(1) xa = T[-100000.5, -100000, -3, -2.5, -2, -1.5, -1.0, -0.5] ya = T[-100000.5, -2.5, -1.5, -0.5, 0.5, 1.5, 2.5, 100000.5] for x in xa, y in ya @test isnan(SLEEF.pow(x,y)) end x = T(NaN) ya = T[-100000.5, -100000, -3, -2.5, -2, -1.5, -1.0, -0.5, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 100000, 100000.5] for y in ya @test isnan(SLEEF.pow(x,y)) end xa = T[-100000.5, -100000, -3, -2.5, -2, -1.5, -1.0, -0.5, -0.0, +0.0, 0.5, 1.5, 2.0, 2.5, 3.0, 100000, 100000.5] y = T(NaN) for x in xa @test isnan(SLEEF.pow(x,y)) end x = T(0.0) ya = T[1, 3, 5, 7, 100001] for y in ya @test ispzero(SLEEF.pow(x,y)) end x = T(-0.0) ya = T[1, 3, 5, 7, 100001] for y in ya @test isnzero(SLEEF.pow(x,y)) end xa = T[0.0, -0.0] ya = T[0.5, 1.5, 2.0, 2.5, 4.0, 100000, 100000.5] for x in xa, y in ya @test ispzero(SLEEF.pow(x,y)) end xa = T[-0.999, -0.5, -0.0, +0.0, +0.5, +0.999] y = T(-Inf) for x in xa @test SLEEF.pow(x,y) === T(Inf) end xa = T[-100000.5, -100000, -3, -2.5, -2, -1.5, 1.5, 2.0, 2.5, 3.0, 100000, 100000.5] y = T(-Inf) for x in xa @test ispzero(SLEEF.pow(x,y)) end xa = T[-0.999, -0.5, -0.0, +0.0, +0.5, +0.999] y = T(Inf) for x in xa @test ispzero(SLEEF.pow(x,y)) end xa = T[-100000.5, -100000, -3, -2.5, -2, -1.5, 1.5, 2.0, 2.5, 3.0, 100000, 100000.5] y = T(Inf) for x in xa @test SLEEF.pow(x,y) === T(Inf) end x = T(-Inf) ya = T[-100001, -5, -3, -1] for y in ya @test isnzero(SLEEF.pow(x,y)) end x = T(-Inf) ya = T[-100000.5, -100000, -4, -2.5, -2, -1.5, -0.5] for y in ya @test ispzero(SLEEF.pow(x,y)) end x = T(-Inf) ya = T[1, 3, 5, 7, 100001] for y in ya @test SLEEF.pow(x,y) === T(-Inf) end x = T(-Inf) ya = T[0.5, 1.5, 2, 2.5, 3.5, 4, 100000, 100000.5] for y in ya @test SLEEF.pow(x,y) === T(Inf) end x = T(Inf) ya = T[-100000.5, -100000, -3, -2.5, -2, -1.5, -1.0, -0.5] for y in ya @test ispzero(SLEEF.pow(x,y)) end x = T(Inf) ya = T[0.5, 1, 1.5, 2.0, 2.5, 3.0, 100000, 100000.5] for y in ya @test SLEEF.pow(x,y) === T(Inf) end x = T(0.0) ya = T[-100001, -5, -3, -1] for y in ya @test SLEEF.pow(x,y) === T(Inf) end x = T(-0.0) ya = T[-100001, -5, -3, -1] for y in ya @test SLEEF.pow(x,y) === T(-Inf) end xa = T[0.0, -0.0] ya = T[-100000.5, -100000, -4, -2.5, -2, -1.5, -0.5] for x in xa, y in ya @test SLEEF.pow(x,y) === T(Inf) end xa = T[1000, -1000] ya = T[1000, 1000.5, 1001] for x in xa, y in ya @test cmpdenorm(SLEEF.pow(x,y), Base.:^(BigFloat(x),BigFloat(y))) end end # denormal/nonumber pow fun_table = Dict(SLEEF.sin_fast => Base.sin, SLEEF.sin => Base.sin) @testset "exceptional $xtrig" for (xtrig, trig) in fun_table xa = T[NaN, -0.0, 0.0, Inf, -Inf] for x in xa @test cmpdenorm(xtrig(x), trig(BigFloat(x))) end end fun_table = Dict(SLEEF.cos_fast => Base.cos, SLEEF.cos => Base.cos) @testset "exceptional $xtrig" for (xtrig, trig) in fun_table xa = T[NaN, -0.0, 0.0, Inf, -Inf] for x in xa @test cmpdenorm(xtrig(x), trig(BigFloat(x))) end end @testset "exceptional sin in $xsincos"for xsincos in (SLEEF.sincos_fast, SLEEF.sincos) xa = T[NaN, -0.0, 0.0, Inf, -Inf] for x in xa q = xsincos(x)[1] @test cmpdenorm(q, Base.sin(BigFloat(x))) end end @testset "exceptional cos in $xsincos"for xsincos in (SLEEF.sincos_fast, SLEEF.sincos) xa = T[NaN, -0.0, 0.0, Inf, -Inf] for x in xa q = xsincos(x)[2] @test cmpdenorm(q, Base.cos(BigFloat(x))) end end @testset "exceptional $xtan" for xtan in (SLEEF.tan_fast, SLEEF.tan) xa = T[NaN, Inf, -Inf, -0.0, 0.0, pi/2, -pi/2] for x in xa @test cmpdenorm(xtan(x), Base.tan(BigFloat(x))) end end fun_table = Dict(SLEEF.asin => Base.asin, SLEEF.asin_fast => Base.asin, SLEEF.acos => Base.acos, SLEEF.acos_fast => Base.acos) @testset "exceptional $xatrig" for (xatrig, atrig) in fun_table xa = T[NaN, Inf, -Inf, 2, -2, 1, -1, -0.0, 0.0] for x in xa @test cmpdenorm(xatrig(x), atrig(BigFloat(x))) end end @testset "exceptional $xatan" for xatan in (SLEEF.atan, SLEEF.atan_fast) xa = T[NaN, Inf, -Inf, -0.0, 0.0] for x in xa @test cmpdenorm(xatan(x), Base.atan(BigFloat(x))) end end @testset "exceptional exp" begin xa = T[NaN, Inf, -Inf, 10000, -10000] for x in xa @test cmpdenorm(SLEEF.exp(x), Base.exp(BigFloat(x))) end end @testset "exceptional sinh" begin xa = T[NaN, 0.0, -0.0, Inf, -Inf, 10000, -10000] for x in xa @test cmpdenorm(SLEEF.sinh(x), Base.sinh(BigFloat(x))) end end @testset "exceptional cosh" begin xa = T[NaN, 0.0, -0.0, Inf, -Inf, 10000, -10000] for x in xa @test cmpdenorm(SLEEF.cosh(x), Base.cosh(BigFloat(x))) end end @testset "exceptional tanh" begin xa = T[NaN, 0.0, -0.0, Inf, -Inf, 10000, -10000] for x in xa @test cmpdenorm(SLEEF.tanh(x), Base.tanh(BigFloat(x))) end end @testset "exceptional asinh" begin xa = T[NaN, 0.0, -0.0, Inf, -Inf, 10000, -10000] for x in xa @test cmpdenorm(SLEEF.asinh(x), Base.asinh(BigFloat(x))) end end @testset "exceptional acosh" begin xa = T[NaN, 0.0, -0.0, 1.0, Inf, -Inf, 10000, -10000] for x in xa @test cmpdenorm(SLEEF.acosh(x), Base.acosh(BigFloat(x))) end end @testset "exceptional atanh" begin xa = T[NaN, 0.0, -0.0, 1.0, -1.0, Inf, -Inf, 10000, -10000] for x in xa @test cmpdenorm(SLEEF.atanh(x), Base.atanh(BigFloat(x))) end end @testset "exceptional $xcbrt" for xcbrt = (SLEEF.cbrt, SLEEF.cbrt_fast) xa = T[NaN, Inf, -Inf, 0.0, -0.0] for x in xa @test cmpdenorm(SLEEF.cbrt(x), Base.cbrt(BigFloat(x))) end end @testset "exceptional exp2" begin xa = T[NaN, Inf, -Inf] for x in xa @test cmpdenorm(SLEEF.exp2(x), Base.exp2(BigFloat(x))) end end @testset "exceptional exp10" begin xa = T[NaN, Inf, -Inf] for x in xa @test cmpdenorm(SLEEF.exp10(x), Base.exp10(BigFloat(x))) end end @testset "exceptional expm1" begin xa = T[NaN, Inf, -Inf, 0.0, -0.0] for x in xa @test cmpdenorm(SLEEF.expm1(x), Base.expm1(BigFloat(x))) end end @testset "exceptional $xlog" for xlog in (SLEEF.log, SLEEF.log_fast) xa = T[NaN, Inf, -Inf, 0, -1] for x in xa @test cmpdenorm(xlog(x), Base.log(BigFloat(x))) end end @testset "exceptional log10" begin xa = T[NaN, Inf, -Inf, 0, -1] for x in xa @test cmpdenorm(SLEEF.log10(x), Base.log10(BigFloat(x))) end end @testset "exceptional log2" begin xa = T[NaN, Inf, -Inf, 0, -1] for x in xa @test cmpdenorm(SLEEF.log2(x), Base.log2(BigFloat(x))) end end @testset "exceptional log1p" begin xa = T[NaN, Inf, -Inf, 0.0, -0.0, -1.0, -2.0] for x in xa @test cmpdenorm(SLEEF.log1p(x), Base.log1p(BigFloat(x))) end end @testset "exceptional ldexp" begin for i = -10000:10000 a = SLEEF.ldexp(T(1.0), i) b = Base.ldexp(BigFloat(1.0), i) @test (isfinite(b) && a == b || cmpdenorm(a,b)) end end @testset "exceptional ilogb" begin @test SLEEF.ilogb(+T(Inf)) == SLEEF.INT_MAX @test SLEEF.ilogb(-T(Inf)) == SLEEF.INT_MAX @test SLEEF.ilogb(+T(0.0)) == SLEEF.FP_ILOGB0 @test SLEEF.ilogb(-T(0.0)) == SLEEF.FP_ILOGB0 @test SLEEF.ilogb( T(NaN)) == SLEEF.FP_ILOGBNAN end end #exceptional
SLEEFInline
https://github.com/AStupidBear/SLEEFInline.jl.git
[ "MIT" ]
0.1.0
755459c8c724437026ade8eed1032572a5236752
code
4306
using SLEEFInline using Test using Printf using Base.Math: significand_bits isnzero(x::T) where {T <: AbstractFloat} = signbit(x) ispzero(x::T) where {T <: AbstractFloat} = !signbit(x) function cmpdenorm(x::Tx, y::Ty) where {Tx <: AbstractFloat, Ty <: AbstractFloat} sizeof(Tx) < sizeof(Ty) ? y = Tx(y) : x = Ty(x) # cast larger type to smaller type (isnan(x) && isnan(y)) && return true (isnan(x) || isnan(y)) && return false (isinf(x) != isinf(y)) && return false (x == Tx(Inf) && y == Ty(Inf)) && return true (x == Tx(-Inf) && y == Ty(-Inf)) && return true if y == 0 (ispzero(x) && ispzero(y)) && return true (isnzero(x) && isnzero(y)) && return true return false end (!isnan(x) && !isnan(y) && !isinf(x) && !isinf(y)) && return sign(x) == sign(y) return false end # the following compares the ulp between x and y. # First it promotes them to the larger of the two types x,y const infh(::Type{Float64}) = 1e300 const infh(::Type{Float32}) = 1e37 function countulp(T, x::AbstractFloat, y::AbstractFloat) X, Y = promote(x, y) x, y = T(X), T(Y) # Cast to smaller type (isnan(x) && isnan(y)) && return 0 (isnan(x) || isnan(y)) && return 10000 if isinf(x) (sign(x) == sign(y) && abs(y) > infh(T)) && return 0 # relaxed infinity handling return 10001 end (x == Inf && y == Inf) && return 0 (x == -Inf && y == -Inf) && return 0 if y == 0 x == 0 && return 0 return 10002 end if isfinite(x) && isfinite(y) return T(abs(X - Y) / ulp(y)) end return 10003 end const DENORMAL_MIN(::Type{Float64}) = 2.0^-1074 const DENORMAL_MIN(::Type{Float32}) = 2f0^-149 function ulp(x::T) where {T<:AbstractFloat} x = abs(x) x == T(0.0) && return DENORMAL_MIN(T) val, e = frexp(x) return max(ldexp(T(1.0), e - significand_bits(T) - 1), DENORMAL_MIN(T)) end countulp(x::T, y::T) where {T <: AbstractFloat} = countulp(T, x, y) # get rid off annoying warnings from overwritten function macro nowarn(expr) quote _stderr = stderr tmp = tempname() stream = open(tmp, "w") redirect_stderr(stream) result = $(esc(expr)) redirect_stderr(_stderr) close(stream) result end end # overide domain checking that base adheres to using Base.MPFR: ROUNDING_MODE for f in (:sin, :cos, :tan, :asin, :acos, :atan, :asinh, :acosh, :atanh, :log, :log10, :log2, :log1p) @eval begin import Base.$f @nowarn function ($f)(x::BigFloat) z = BigFloat() ccall($(string(:mpfr_, f), :libmpfr), Int32, (Ref{BigFloat}, Ref{BigFloat}, Int32), z, x, ROUNDING_MODE[]) return z end end end strip_module_name(f::Function) = last(split(string(f), '.')) # strip module name from function f # test the accuracy of a function where fun_table is a Dict mapping the function you want # to test to a reference function # xx is an array of values (which may be tuples for multiple arugment functions) # tol is the acceptable tolerance to test against function test_acc(T, fun_table, xx, tol; debug = false, tol_debug = 5) @testset "accuracy $(strip_module_name(xfun))" for (xfun, fun) in fun_table rmax = 0.0 rmean = 0.0 xmax = map(zero, first(xx)) for x in xx q = xfun(x...) c = fun(map(BigFloat, x)...) u = countulp(T, q, c) rmax = max(rmax, u) xmax = rmax == u ? x : xmax rmean += u if debug && u > tol_debug @printf("%s = %.20g\n%s = %.20g\nx = %.20g\nulp = %g\n", strip_module_name(xfun), q, strip_module_name(fun), T(c), x, ulp(T(c))) end end rmean = rmean / length(xx) t = @test trunc(rmax, digits=1) <= tol fmtxloc = isa(xmax, Tuple) ? string('(', join((@sprintf("%.5f", x) for x in xmax), ", "), ')') : @sprintf("%.5f", xmax) println(rpad(strip_module_name(xfun), 18, " "), ": max ", @sprintf("%f", rmax), rpad(" at x = " * fmtxloc, 40, " "), ": mean ", @sprintf("%f", rmean)) end end function runtests() @testset "SLEEF" begin include("exceptional.jl") include("accuracy.jl") end end runtests()
SLEEFInline
https://github.com/AStupidBear/SLEEFInline.jl.git
[ "MIT" ]
0.1.0
755459c8c724437026ade8eed1032572a5236752
docs
2015
<div align="center"> <img src="https://rawgit.com/musm/SLEEF.jl/master/doc/src/assets/logo.svg" alt="SLEEF Logo" width="380"></img> </div> A pure Julia port of the [SLEEF math library](https://github.com/shibatch/SLEEF) **History** - Release [v0.4.0](https://github.com/musm/SLEEF.jl/releases/tag/v0.4.0) based on SLEEF v2.110 - Release [v0.3.0](https://github.com/musm/SLEEF.jl/releases/tag/v0.3.0) based on SLEEF v2.100 - Release [v0.2.0](https://github.com/musm/SLEEF.jl/releases/tag/v0.2.0) based on SLEEF v2.90 - Release [v0.1.0](https://github.com/musm/SLEEF.jl/releases/tag/v0.1.0) based on SLEEF v2.80 <br><br> [![Travis Build Status](https://travis-ci.org/musm/SLEEF.jl.svg?branch=master)](https://travis-ci.org/musm/SLEEF.jl) [![Appveyor Build Status](https://ci.appveyor.com/api/projects/status/j7lpafn4uf1trlfi/branch/master?svg=true)](https://ci.appveyor.com/project/musm/SLEEF-jl/branch/master) [![Coverage Status](https://coveralls.io/repos/github/musm/SLEEF.jl/badge.svg?branch=master)](https://coveralls.io/github/musm/SLEEF.jl?branch=master) [![codecov.io](http://codecov.io/github/musm/SLEEF.jl/coverage.svg?branch=master)](http://codecov.io/github/musm/SLEEF.jl?branch=master) # Usage To use `SLEEF.jl` ```julia pkg> add SLEEF julia> using SLEEF julia> SLEEF.exp(3.0) 20.085536923187668 julia> SLEEF.exp(3f0) 20.085537f0 ``` The available functions include (within 1 ulp) ```julia sin, cos, tan, asin, acos, atan, sincos, sinh, cosh, tanh, asinh, acosh, atanh, log, log2, log10, log1p, ilogb, exp, exp2, exp10, expm1, ldexp, cbrt, pow ``` Faster variants (within 3 ulp) ```julia sin_fast, cos_fast, tan_fast, sincos_fast, asin_fast, acos_fast, atan_fast, atan2_fast, log_fast, cbrt_fast ``` ## Notes The trigonometric functions are tested to return values with specified accuracy when the argument is within the following range: - Double (Float64) precision trigonometric functions : `[-1e+14, 1e+14]` - Single (Float32) precision trigonometric functions : `[-39000, 39000]`
SLEEFInline
https://github.com/AStupidBear/SLEEFInline.jl.git
[ "MIT" ]
0.1.4
10b3eb40cd8603a0484af111385dca990e204437
code
5267
### A Pluto.jl notebook ### # v0.19.22 using Markdown using InteractiveUtils # ╔═╡ cedad242-4983-11eb-2f32-3d405f151b77 begin using DiffusionMap using ManifoldLearning, CairoMakie, Statistics, JLD2, Random, StatsBase, LinearAlgebra, ColorSchemes, PlutoUI, CSV end # ╔═╡ 1996b541-e783-4b3a-9f7a-aca380d1047f TableOfContents() # ╔═╡ f306c9dc-cfd5-4fe0-b4cb-9a9d2da7281c import AlgebraOfGraphics as aog # ╔═╡ bad179ee-cef7-444b-b7cb-15053ac62959 begin aog.set_aog_theme!(fonts=[aog.firasans("Light"), aog.firasans("Light")]) update_theme!( fontsize=20, linewidth=4, markersize=14, titlefont=aog.firasans("Light"), resolution=(500, 380) ) end # ╔═╡ 61f9fccf-65af-45de-b232-f32506fdb75f md"# viz Gaussian kernel" # ╔═╡ 9b487b40-63c1-4a9b-b1f1-ef7703dd4dcc kernel(xᵢ, xⱼ) = gaussian_kernel(xᵢ, xⱼ, 0.5) # ╔═╡ 3c5dd85c-d21c-43f9-a0f6-fe3873a5268e function viz_gaussian_kernel() fig = Figure() ax = Axis(fig[1, 1], xlabel="||xᵢ-xⱼ|| / ℓ²", ylabel="k(xᵢ, xⱼ)") vlines!(0.0, color="lightgray", linewidth=1) hlines!(0.0, color="lightgray", linewidth=1) rs = range(0.0, 4.0, length=100) lines!(rs, exp.(-rs.^2)) fig end # ╔═╡ fc635aaf-54cb-43e9-b338-8c0f9510b251 md"## helpers" # ╔═╡ c64b57a4-ac19-461b-ba0f-4a3bfe583db2 function viz_data(X::Matrix{Float64}, name::String) fig = Figure() ax = Axis(fig[1, 1], xlabel="x₁", ylabel="x₂", aspect=DataAspect()) scatter!(X[1, :], X[2, :], color="black") save("raw_data_$name.pdf", fig) fig end # ╔═╡ 659956e9-aaa6-437f-85c3-c25e01457a28 function viz_graph(X::Matrix{Float64}, kernel::Function, name::String) K = pairwise(kernel, eachcol(X), symmetric=true) fig = Figure() ax = Axis(fig[1, 1], xlabel="x₁", ylabel="x₂", aspect=DataAspect()) for i = 1:size(X)[2] for j = (i+1):size(X)[2] w = K[i, j] lines!([X[1, i], X[1, j]], [X[2, i], X[2, j]], linewidth=0.5, color=(get(reverse(ColorSchemes.grays), w), w) ) end end scatter!(X[1, :], X[2, :], color="black") save("graph_rep_$name.pdf", fig) fig end # ╔═╡ 310ba8ae-7443-44a5-b77d-168336af39bd function color_points(X::Matrix{Float64}, x̂::Vector{Float64}, name::String) cmap = ColorSchemes.terrain fig = Figure() ax = Axis(fig[1, 1], xlabel="x₁", ylabel="x₂", title=name, aspect=DataAspect() ) sp = scatter!(X[1, :], X[2, :], color=x̂, colormap=cmap, strokewidth=1) Colorbar(fig[1, 2], sp, label="latent dim") save("dim_reduction_$name.pdf", fig) fig end # ╔═╡ 8e01ddd4-27c9-4f5c-8d7f-abd4f2be4f82 md"# S-curve ### generate data. " # ╔═╡ c793e6b0-4983-11eb-29ae-3366c7d31e84 begin nb_data = 125 _X, _ = ManifoldLearning.scurve(nb_data, 0.1) x₁ = _X[3, :] x₂ = _X[1, :] X = collect(hcat(x₁, x₂)') end # ╔═╡ 3172a389-10c7-45e0-a556-a8c8f1465418 viz_data(X, "S_curve") # ╔═╡ ecd00826-6e79-47b1-ab60-46ac3e1bfef9 md"### translate data to graph" # ╔═╡ 48aa38c3-9876-4f7c-8e4f-e22dec5104fb viz_gaussian_kernel() # ╔═╡ a064c35e-0e4f-418e-a329-e747daae264e viz_graph(X, kernel, "S_curve") # ╔═╡ 17a20c5b-7da4-4982-9b7a-21ba3c3b8060 md"### diff map (success)" # ╔═╡ 7fbe0950-27de-4969-9962-16080e6908ff x̂ = diffusion_map(X, kernel, 1)[:] # ╔═╡ 4311f687-824c-42d4-b0a0-b08945460e76 color_points(X, x̂, "diff map") # ╔═╡ 1349c4d0-d6af-4154-b139-defdaec008a1 md"### PCA (fails)" # ╔═╡ 1ec637b9-2279-4b54-b5a5-08445f229ab4 x̂_pca = pca(collect(X), 1)[:] # ╔═╡ 2aaea099-6f33-4260-bf40-f82644e24eae color_points(X, x̂_pca, "PCA") # ╔═╡ bc368089-d8f8-43e6-8933-344f71ab66d7 md"# swiss roll" # ╔═╡ 5f986a24-784b-4259-a5d7-4f6a86b5e6fd _X_roll, _ = ManifoldLearning.swiss_roll(125, 0.3) # ╔═╡ d8863ed7-8430-4135-a3a2-3efb8f54d1c0 X_roll = _X_roll[[1, 3], :] # make 2D # ╔═╡ b682a6af-8b0b-41fc-914c-55f871dbdf4f roll_kernel(xᵢ, xⱼ) = gaussian_kernel(xᵢ, xⱼ, 2.0) # ╔═╡ 13ff129b-c936-451d-9908-80e840103450 x̂_roll = diffusion_map(X_roll, roll_kernel, 1)[:] # ╔═╡ 62bf2efc-9614-4fbf-bb42-29e33f7d34a1 viz_graph(X_roll, roll_kernel, "roll") # ╔═╡ 8fb74c20-eebb-40d5-a3aa-da192398bcf3 color_points(X_roll, x̂_roll, "diff map roll") # ╔═╡ Cell order: # ╠═cedad242-4983-11eb-2f32-3d405f151b77 # ╠═1996b541-e783-4b3a-9f7a-aca380d1047f # ╠═f306c9dc-cfd5-4fe0-b4cb-9a9d2da7281c # ╠═bad179ee-cef7-444b-b7cb-15053ac62959 # ╟─61f9fccf-65af-45de-b232-f32506fdb75f # ╠═9b487b40-63c1-4a9b-b1f1-ef7703dd4dcc # ╠═3c5dd85c-d21c-43f9-a0f6-fe3873a5268e # ╟─fc635aaf-54cb-43e9-b338-8c0f9510b251 # ╠═c64b57a4-ac19-461b-ba0f-4a3bfe583db2 # ╠═659956e9-aaa6-437f-85c3-c25e01457a28 # ╠═310ba8ae-7443-44a5-b77d-168336af39bd # ╟─8e01ddd4-27c9-4f5c-8d7f-abd4f2be4f82 # ╠═c793e6b0-4983-11eb-29ae-3366c7d31e84 # ╠═3172a389-10c7-45e0-a556-a8c8f1465418 # ╟─ecd00826-6e79-47b1-ab60-46ac3e1bfef9 # ╠═48aa38c3-9876-4f7c-8e4f-e22dec5104fb # ╠═a064c35e-0e4f-418e-a329-e747daae264e # ╟─17a20c5b-7da4-4982-9b7a-21ba3c3b8060 # ╠═7fbe0950-27de-4969-9962-16080e6908ff # ╠═4311f687-824c-42d4-b0a0-b08945460e76 # ╟─1349c4d0-d6af-4154-b139-defdaec008a1 # ╠═1ec637b9-2279-4b54-b5a5-08445f229ab4 # ╠═2aaea099-6f33-4260-bf40-f82644e24eae # ╟─bc368089-d8f8-43e6-8933-344f71ab66d7 # ╠═5f986a24-784b-4259-a5d7-4f6a86b5e6fd # ╠═d8863ed7-8430-4135-a3a2-3efb8f54d1c0 # ╠═b682a6af-8b0b-41fc-914c-55f871dbdf4f # ╠═13ff129b-c936-451d-9908-80e840103450 # ╠═62bf2efc-9614-4fbf-bb42-29e33f7d34a1 # ╠═8fb74c20-eebb-40d5-a3aa-da192398bcf3
DiffusionMap
https://github.com/SimonEnsemble/DiffusionMap.jl.git
[ "MIT" ]
0.1.4
10b3eb40cd8603a0484af111385dca990e204437
code
3389
module DiffusionMap using LinearAlgebra, StatsBase export normalize_to_stochastic_matrix!, diffusion_map, gaussian_kernel, pca const BANNER = String(read(joinpath(dirname(pathof(DiffusionMap)), "banner.txt"))) banner() = println(BANNER) function gaussian_kernel(xⱼ, xᵢ, ℓ::Real) r² = sum((xᵢ - xⱼ) .^ 2) return exp(-r² / ℓ ^ 2) end """ normalize_to_stochastic_matrix!(P, check_symmetry=true) normalize a kernel matrix `P` so that rows sum to one. checks for symmetry. """ function normalize_to_stochastic_matrix!(P::Matrix{<: Real}; check_symmetry::Bool=true) if check_symmetry && !issymmetric(P) error("kernel matrix not symmetric!") end # make sure rows sum to one # this is equivalent to P = D⁻¹ * P # with > d = vec(sum(P, dims=1)) # > D⁻¹ = diagm(1 ./ d) for i = 1:size(P)[1] P[i, :] ./= sum(P[i, :]) end end """ diffusion_map(P, d; t=1) diffusion_map(X, kernel, d; t=1) compute diffusion map. two call signatures: * the data matrix `X` is passed in. examples are in the columns. * the right-stochastic matrix `P` is passed in. (eg. for a precomputed kernel matrix) # arguments * `d`: dim * `t`: # of steps # example ```julia # define kernel kernel(xᵢ, xⱼ) = gaussian_kernel(xᵢ, xⱼ, 0.5) # data matrix (100 data pts, 2D vectors) X = rand(2, 100) # diffusion map to 1D X̂ = diff_map(X, kernel, 1) ``` """ function diffusion_map(P::Matrix{<: Real}, d::Int; t::Int=1)::Matrix{Float64} if size(P)[1] ≠ size(P)[2] error("P is not square.") end if ! all(sum.(eachrow(P)) .≈ 1.0) error("P is not right-stochastic. call `normalize_to_stochastic_matrix!` first.") end if ! all(P .>= 0.0) error("P contains negative values.") end # eigen-decomposition of the stochastic matrix eigen_decomp = eigen(P) eigenvalues = eigen_decomp.values @assert (maximum(abs.(eigenvalues)) - 1.0) < 0.0001 "largest eigenvalue should be 1.0" # eigenvalues should all be real numbers, but numerical imprecision can promote # the results to "complex" numbers with imaginary components of 0 for (i, ev) in enumerate(eigenvalues) if isa(ev, Complex) @assert isapprox(imag(ev), 0; atol=1e-6) eigenvalues[i] = real(ev) end end # sort eigenvalues, highest to lowest # skip the first eigenvalue idx = sortperm(Float64.(eigenvalues), rev=true)[2:end] # get first d eigenvalues and vectors. scale eigenvectors. λs = eigenvalues[idx][1:d] Vs = eigen_decomp.vectors[:, idx][:, 1:d] * diagm(λs .^ t) return Vs end function diffusion_map(X::Matrix{<: Real}, kernel::Function, d::Int; t::Int=1, verbose::Bool=true) if verbose println("# features: ", size(X)[1]) println("# examples: ", size(X)[2]) end # compute Laplacian matrix P = pairwise(kernel, eachcol(X), symmetric=true) normalize_to_stochastic_matrix!(P) return diffusion_map(P, d; t=t) end function pca(X::Matrix{<: Real}, d::Int; verbose::Bool=true) if verbose println("# features: ", size(X)[1]) println("# examples: ", size(X)[2]) end # center X̂ = deepcopy(X) for f = 1:size(X)[1] X̂[f, :] = X[f, :] .- mean(X[f, :]) end the_svd = svd(X̂) return the_svd.V[:, 1:d] * diagm(the_svd.S[1:d]) end end
DiffusionMap
https://github.com/SimonEnsemble/DiffusionMap.jl.git
[ "MIT" ]
0.1.4
10b3eb40cd8603a0484af111385dca990e204437
code
418
module Test_aqua using DiffusionMap import Aqua.test_all # ambiguity testing finds many "problems" outside the scope of this package ambiguities = false # to skip when checking for stale dependencies and missing compat entries # Aqua is added in a separate CI job, so (ironically) does not work w/ itself stale_deps = (ignore=[:Aqua],) test_all(DiffusionMap; ambiguities=ambiguities, stale_deps=stale_deps) end
DiffusionMap
https://github.com/SimonEnsemble/DiffusionMap.jl.git
[ "MIT" ]
0.1.4
10b3eb40cd8603a0484af111385dca990e204437
code
1857
module Test_DiffusionMap using DiffusionMap, IOCapture, LinearAlgebra, Test DiffusionMap.banner() @testset "normalize_to_stochastic_matrix!" begin # generate random symmetric matrix P = rand(20, 20) P = P + P' # normalize normalize_to_stochastic_matrix!(P) # test rows sum to 1 @test all(sum.(eachrow(P)) .≈ 1) # make an assymmetric matrix P = P + rand(20, 20) # test asymmetry is detected @test_throws ErrorException normalize_to_stochastic_matrix!(P) end @testset "diffusion_map" verbose=true begin # function signature 1: diffusion_map(P, d; t=1) @testset "matrix P" begin # test input validation: non-square matrix P @test_throws ErrorException diffusion_map(rand(20, 10), 2) # test input validation: rows of P don't sum to 1 @test_throws ErrorException diffusion_map(rand(20, 20), 2) # test input validation: negative values in P @test_throws ErrorException diffusion_map(rand(20, 20) - rand(20, 20), 2) # test a trivial case D = zeros(10, 2) D[2, 1] = D[3, 2] = 1 @test diffusion_map(diagm(ones(10)), 2) == D end # function signature 2: diffusion_map(X, kernel, d, t=1) @testset "matrix X and kernel" begin kernel(xᵢ, xⱼ) = gaussian_kernel(xᵢ, xⱼ, 0.5) result = IOCapture.capture() do return sum(diffusion_map(ones(20, 20), kernel, 2)) end @test isapprox(result.value, 0; atol=1e-9) end end @testset "pca" begin # test a trivial case result = IOCapture.capture() do return pca(ones(10, 10), 2) end @test result.value == zeros(10, 2) end @testset "example.jl" begin @info "Running example notebook (may take a minute or so)" IOCapture.capture() do include("../example/example.jl") end @test true end end
DiffusionMap
https://github.com/SimonEnsemble/DiffusionMap.jl.git
[ "MIT" ]
0.1.4
10b3eb40cd8603a0484af111385dca990e204437
docs
537
# diffusion maps ![meme](meme.png) diffusion maps for non-linear dimensionality reduction / manifold learning. ### references Coifman RR, Lafon S. Diffusion maps. _Applied and computational harmonic analysis_. 2006 J. de la Porte, B. M. Herbst, W. Hereman, S. J. van der Wal. An Introduction to Diffusion Maps. _Proceedings of the 19th symposium of the pattern recognition association of South Africa_. 2008 Tianlin Liu. A detailed derivation of the diffusion map. [link](http://tianlinliu.com/blog/2021/05/29/difussion-maps.html)
DiffusionMap
https://github.com/SimonEnsemble/DiffusionMap.jl.git
[ "MIT" ]
0.3.0
02db2030eaba15350b05279e79b86bbd4d3a39bc
code
687
using BenchmarkTools # Benchmark suite modules const SUITE_MODULES = Dict( "gcp" => :BenchmarkGCP, "mttkrp" => :BenchmarkMTTKRP, "mttkrp-large" => :BenchmarkMTTKRPLarge, "khatrirao" => :BenchmarkKhatriRao, "leastsquares" => :BenchmarkLeastSquares, ) # Create top-level suite including only sub-suites # specified by ENV variable "GCP_BENCHMARK_SUITES" const SUITE = BenchmarkGroup() SELECTED_SUITES = split(get(ENV, "GCP_BENCHMARK_SUITES", join(keys(SUITE_MODULES), ' '))) for suite_name in SELECTED_SUITES module_name = SUITE_MODULES[suite_name] include(joinpath(@__DIR__, "suites", "$(suite_name).jl")) SUITE[suite_name] = eval(module_name).SUITE end
GCPDecompositions
https://github.com/dahong67/GCPDecompositions.jl.git
[ "MIT" ]
0.3.0
02db2030eaba15350b05279e79b86bbd4d3a39bc
code
2666
# Script to run benchmarks and export a report # # To run this script from the package root directory: # > julia benchmark/run.jl # # By default it will run all of the benchmark suites. # To select a subset, pass them in as a command line arg: # > julia benchmark/run.jl --suite mttkrp # # To compare against a previous commit, pass the commit git id as a command line arg: # > julia benchmark/run.jl --compare eca7cb4 # # This script produces/overwrites two files: # + `benchmark/results.json` : results from a benchmark run w/o comparison # + `benchmark/results-target.json` : target results from a benchmark run w/ comparison # + `benchmark/results-baseline.json` : baseline results from a benchmark run w/ comparison # + `benchmark/report.md` : report summarizing the results ## Make sure the benchmark environment is activated and load utilities @info("Loading benchmark environment") import Pkg Pkg.activate(@__DIR__) Pkg.instantiate() include("utils.jl") ## Parse command line arguments @info("Parsing arguments") using ArgParse settings = ArgParseSettings() @add_arg_table settings begin "--suite" help = "which suite to run benchmarks for" arg_type = String "--compare" help = "git id for previous commit to compare current version against" arg_type = String end parsed_args = parse_args(settings) ## Run benchmarks @info("Running benchmarks") using GCPDecompositions, PkgBenchmark ### Create ENV for BenchmarkConfig GCP_ENV = isnothing(parsed_args["suite"]) ? Dict{String,Any}() : Dict("GCP_BENCHMARK_SUITES" => parsed_args["suite"]) ### Run benchmark and save if isnothing(parsed_args["compare"]) results = benchmarkpkg(GCPDecompositions, BenchmarkConfig(; env = GCP_ENV)) writeresults(joinpath(@__DIR__, "results.json"), results) else results = judge( GCPDecompositions, BenchmarkConfig(; env = GCP_ENV), BenchmarkConfig(; env = GCP_ENV, id = parsed_args["compare"]), ) writeresults( joinpath(@__DIR__, "results-target.json"), PkgBenchmark.target_result(results), ) writeresults( joinpath(@__DIR__, "results-baseline.json"), PkgBenchmark.baseline_result(results), ) end ## Generate report and save @info("Generating report") ### Build report report = sprint(export_markdown, results) report *= "\n\n" * GCPBenchmarkUtils.export_mttkrp_sweep(results) ### Tidy up report report = GCPBenchmarkUtils.collapsible_details(report) report = replace( report, r"^# Benchmark Report for \S*\n" => "# Benchmark Report for `GCPDecompositions`\n"; count = 1, ) ### Save report write(joinpath(@__DIR__, "report.md"), report)
GCPDecompositions
https://github.com/dahong67/GCPDecompositions.jl.git
[ "MIT" ]
0.3.0
02db2030eaba15350b05279e79b86bbd4d3a39bc
code
8418
# Utility functions for benchmarking module GCPBenchmarkUtils using BenchmarkTools, PkgBenchmark using Dictionaries, SplitApplyCombine, UnicodePlots ## Insert <details> tags to get collapsible sections on GitHub """ collapsible_details(markdown; header_level=2) Modify `markdown` to collapse at header level `header_level`. """ function collapsible_details(markdown; header_level = 2) # Extract all the lines and find the header lines lines = split(markdown, '\n') header_lines = map(findall(contains(r"^(?<tag>#+) "), lines)) do idx line = lines[idx] level = length(match(r"^(?<tag>#+) ", line)[:tag]) return idx => level end # Filter out subheaders (level above `header_level`) header_lines = filter(header_lines) do (_, level) return level <= header_level end # Loop through and insert "<details>" tags tag_opened = false for (idx, level) in header_lines # Close prior opened tag if tag_opened lines[idx] = string("\n</details>\n", '\n', lines[idx]) tag_opened = false end # Insert/open new tag for headers at `header_level` if level == header_level lines[idx] = string(lines[idx], '\n', "\n<details>\n") tag_opened = true end end if tag_opened lines[end] = string(lines[end], '\n', "\n</details>\n") tag_opened = false end # Form full string new_markdown = join(lines, '\n') # Tidy up spacing with "<details>" tags new_markdown = replace( new_markdown, r"<details>\n\n(?<extra>\n+)" => s"\g<extra><details>\n\n", r"(?<extra>\n+)\n\n<\/details>" => s"\n\n</details>\g<extra>", ) return new_markdown end ## MTTKRP sweep """ export_mttkrp_sweep(results::BenchmarkResults) export_mttkrp_sweep(results::BenchmarkJudgement) export_mttkrp_sweep(results::Vector{Pair{String,BenchmarkResults}}) export_mttkrp_sweep(results::Vector{Pair{String,BenchmarkGroup}}) Generate a markdown report for the MTTKRP sweeps from `results`. !!! note Using a separate plot for each curve since it would be great to be able to copy into GitHub comments (e.g., within PRs) but GitHub doesn't currently handle ANSI color codes (https://github.com/github/markup/issues/1538). Tried working around by converting to HTML with ANSIColoredPrinters.jl (https://github.com/JuliaDocs/ANSIColoredPrinters.jl) which is the package that Documenter.jl uses to support ANSI color codes (https://github.com/JuliaDocs/Documenter.jl/pull/1441/files). However, GitHub also doesn't currently support coloring the text (https://github.com/github/markup/issues/1440). """ export_mttkrp_sweep(results::BenchmarkResults) = export_mttkrp_sweep(["" => results]) export_mttkrp_sweep(results::BenchmarkJudgement) = export_mttkrp_sweep([ "Target" => PkgBenchmark.target_result(results), "Baseline" => PkgBenchmark.baseline_result(results), ]) function export_mttkrp_sweep(results_list::Vector{Pair{String,BenchmarkResults}}) # Extract the mttkrp suites results_list = map(results_list) do (name, results) bg = PkgBenchmark.benchmarkgroup(results) return haskey(bg, "mttkrp") ? name => bg["mttkrp"] : nothing end results_list = filter(!isnothing, results_list) isempty(results_list) && return "" # Call the main method return export_mttkrp_sweep(results_list) end function export_mttkrp_sweep(results_list::Vector{Pair{String,BenchmarkGroup}}) isempty(results_list) && return "" # Load the results into dictionaries result_names = first.(results_list) result_dicts = map(last.(results_list)) do results return (sortkeys ∘ dictionary ∘ map)(results) do (key_str, result) key_vals = match( r"^size=\((?<size>[0-9, ]*)\), rank=(?<rank>[0-9]+), mode=(?<mode>[0-9]+)$", key_str, ) key = (; size = Tuple(parse.(Int, split(key_vals[:size], ','))), rank = parse(Int, key_vals[:rank]), mode = parse(Int, key_vals[:mode]), ) return key => result end end all_keys = (sort ∘ unique ∘ mapmany)(keys, result_dicts) # Runtime vs. size (for square tensors) size_group_keys = group( key -> (; ndims = length(key.size), rank = key.rank, mode = key.mode), filter(key -> allequal(key.size), all_keys), ) size_groups = collect(keys(size_group_keys)) size_plots = product(result_dicts, size_groups) do result_dict, size_group sweep_keys = filter(in(keys(result_dict)), size_group_keys[size_group]) isempty(sweep_keys) && return nothing return lineplot( only.(unique.(getindex.(sweep_keys, :size))), getproperty.(median.(getindices(result_dict, sweep_keys)), :time) ./ 1e6; title = pretty_str(size_group), xlabel = "Size", ylabel = "Time (ms)", canvas = DotCanvas, width = 30, height = 10, margin = 0, ) end # Runtime vs. rank rank_group_keys = group(key -> (; size = key.size, mode = key.mode), all_keys) rank_groups = collect(keys(rank_group_keys)) rank_plots = product(result_dicts, rank_groups) do result_dict, rank_group sweep_keys = filter(in(keys(result_dict)), rank_group_keys[rank_group]) isempty(sweep_keys) && return nothing return lineplot( getindex.(sweep_keys, :rank), getproperty.(median.(getindices(result_dict, sweep_keys)), :time) ./ 1e6; title = pretty_str(rank_group), xlabel = "Rank", ylabel = "Time (ms)", canvas = DotCanvas, width = 30, height = 10, margin = 0, ) end # Runtime vs. mode mode_group_keys = group(key -> (; size = key.size, rank = key.rank), all_keys) mode_groups = collect(keys(mode_group_keys)) mode_plots = product(result_dicts, mode_groups) do result_dict, mode_group sweep_keys = filter(in(keys(result_dict)), mode_group_keys[mode_group]) isempty(sweep_keys) && return nothing return boxplot( string.("mode ", getindex.(sweep_keys, :mode)), getproperty.(getindices(result_dict, sweep_keys), :times) ./ 1e6; title = pretty_str(mode_group), xlabel = "Time (ms)", canvas = DotCanvas, width = 30, height = 10, margin = 0, ) end return """ # MTTKRP benchmark plots ## Runtime vs. size (for square tensors) Below are plots showing the runtime in miliseconds of MTTKRP as a function of the size of the square tensor, for varying ranks and modes: $(plot_table(size_plots, pretty_str.(size_groups), result_names)) ## Runtime vs. rank Below are plots showing the runtime in miliseconds of MTTKRP as a function of the size of the rank, for varying sizes and modes: $(plot_table(rank_plots, pretty_str.(rank_groups), result_names)) ## Runtime vs. mode Below are plots showing the runtime in miliseconds of MTTKRP as a function of the mode, for varying sizes and ranks: $(plot_table(mode_plots, pretty_str.(mode_groups), result_names)) """ end # Create pretty string for plot titles, etc. pretty_str(group::NamedTuple) = string(group)[begin+1:end-1] # Create HTML table of plots function plot_table(plots, colnames, rownames) # Create strings for each plot plot_strs = map(plots) do plot return isnothing(plot) ? "NO RESULTS" : """``` $(string(plot; color=false)) ```""" end # Create matrix of cell strings cell_strs = [ "<th></th>" permutedims(string.("<th>", colnames, "</th>")) string.("<th>", rownames, "</th>") string.("<td>\n\n", plot_strs, "\n\n</td>") ] # Create vector of row strings row_strs = string.("<tr>\n", join.(eachrow(cell_strs), '\n'), "\n</tr>") # Return full table (with blank rows "<tr></tr>" to work around GitHub styling) return string( "<table>\n", row_strs[1], '\n', join(row_strs[2:end], "\n<tr></tr>\n"), "\n</table>", ) end end
GCPDecompositions
https://github.com/dahong67/GCPDecompositions.jl.git
[ "MIT" ]
0.3.0
02db2030eaba15350b05279e79b86bbd4d3a39bc
code
1415
module BenchmarkGCP using BenchmarkTools, GCPDecompositions using Random, Distributions const SUITE = BenchmarkGroup() # Benchmark least squares loss for sz in [(15, 20, 25), (30, 40, 50)], r in 1:2 Random.seed!(0) M = CPD(ones(r), rand.(sz, r)) X = [M[I] for I in CartesianIndices(size(M))] SUITE["least-squares-size(X)=$sz, rank(X)=$r"] = @benchmarkable gcp($X, $r; loss = GCPLosses.LeastSquares()) end # Benchmark Poisson loss for sz in [(15, 20, 25), (30, 40, 50)], r in 1:2 Random.seed!(0) M = CPD(fill(10.0, r), rand.(sz, r)) X = [rand(Poisson(M[I])) for I in CartesianIndices(size(M))] SUITE["poisson-size(X)=$sz, rank(X)=$r"] = @benchmarkable gcp($X, $r; loss = GCPLosses.Poisson()) end # Benchmark Gamma loss for sz in [(15, 20, 25), (30, 40, 50)], r in 1:2 Random.seed!(0) M = CPD(ones(r), rand.(sz, r)) k = 1.5 X = [rand(Gamma(k, M[I] / k)) for I in CartesianIndices(size(M))] SUITE["gamma-size(X)=$sz, rank(X)=$r"] = @benchmarkable gcp($X, $r; loss = GCPLosses.Gamma()) end # Benchmark BernoulliOdds Loss for sz in [(15, 20, 25), (30, 40, 50)], r in 1:2 Random.seed!(0) M = CPD(ones(r), rand.(sz, r)) X = [rand(Bernoulli(M[I] / (M[I] + 1))) for I in CartesianIndices(size(M))] SUITE["bernoulliOdds-size(X)=$sz, rank(X)=$r"] = @benchmarkable gcp($X, $r; loss = GCPLosses.BernoulliOdds()) end end
GCPDecompositions
https://github.com/dahong67/GCPDecompositions.jl.git
[ "MIT" ]
0.3.0
02db2030eaba15350b05279e79b86bbd4d3a39bc
code
1517
module BenchmarkKhatriRao using BenchmarkTools, GCPDecompositions using Random const SUITE = BenchmarkGroup() # Collect setups const SETUPS = [] ## N=1 matrix append!( SETUPS, [ (; size = sz, rank = r) for sz in [ntuple(n -> In, 1) for In in 30:30:90], r in [5; 30:30:90] ], ) ## N=2 matrices (balanced) append!( SETUPS, [ (; size = sz, rank = r) for sz in [ntuple(n -> In, 2) for In in 30:30:90], r in [5; 30:30:90] ], ) ## N=3 matrices (balanced) append!( SETUPS, [ (; size = sz, rank = r) for sz in [ntuple(n -> In, 3) for In in 30:30:90], r in [5; 30:30:90] ], ) ## N=3 matrices (imbalanced) append!( SETUPS, [ (; size = sz, rank = r) for sz in [Tuple(circshift([30, 100, 1000], c)) for c in 0:2], r in [5; 30:30:90] ], ) ## N=4 matrices (balanced) append!( SETUPS, [ (; size = sz, rank = r) for sz in [ntuple(n -> In, 4) for In in 30:30:90], r in [5; 30:30:90] ], ) ## N=4 matrices (imbalanced) append!( SETUPS, [ (; size = sz, rank = r) for sz in [Tuple(circshift([20, 40, 80, 500], c)) for c in 0:3], r in [5; 30:30:90] ], ) # Generate random benchmarks for SETUP in SETUPS Random.seed!(0) U = [randn(In, SETUP.rank) for In in SETUP.size] SUITE["size=$(SETUP.size), rank=$(SETUP.rank)"] = @benchmarkable( GCPDecompositions.TensorKernels.khatrirao($U...), seconds = 2, samples = 5, ) end end
GCPDecompositions
https://github.com/dahong67/GCPDecompositions.jl.git
[ "MIT" ]
0.3.0
02db2030eaba15350b05279e79b86bbd4d3a39bc
code
1143
module BenchmarkLeastSquares using BenchmarkTools, GCPDecompositions using Random, Distributions const SUITE = BenchmarkGroup() # More thorough benchmarks for least squares than gcp benchmarks # Order-3 tensors for sz in [(15, 20, 25), (30, 40, 50), (60, 70, 80)], r in [1, 10, 50] Random.seed!(0) M = CPD(ones(r), rand.(sz, r)) X = [M[I] for I in CartesianIndices(size(M))] SUITE["size(X)=$sz, rank(X)=$r"] = @benchmarkable gcp($X, $r; loss = GCPLosses.LeastSquares()) end # Order-4 tensors for sz in [(15, 20, 25, 30), (30, 40, 50, 60)], r in [1, 10, 50] Random.seed!(0) M = CPD(ones(r), rand.(sz, r)) X = [M[I] for I in CartesianIndices(size(M))] SUITE["least-squares-size(X)=$sz, rank(X)=$r"] = @benchmarkable gcp($X, $r; loss = GCPLosses.LeastSquares()) end # Order-5 tensors for sz in [(15, 20, 25, 30, 35), (30, 30, 30, 30, 30)], r in [1, 10, 50] Random.seed!(0) M = CPD(ones(r), rand.(sz, r)) X = [M[I] for I in CartesianIndices(size(M))] SUITE["least-squares-size(X)=$sz, rank(X)=$r"] = @benchmarkable gcp($X, $r; loss = GCPLosses.LeastSquares()) end end
GCPDecompositions
https://github.com/dahong67/GCPDecompositions.jl.git
[ "MIT" ]
0.3.0
02db2030eaba15350b05279e79b86bbd4d3a39bc
code
921
module BenchmarkMTTKRPLarge using BenchmarkTools, GCPDecompositions using Random const SUITE = BenchmarkGroup() # Collect setups const SETUPS = [] ## Balanced order-4 tensors append!( SETUPS, [ (; size = sz, rank = r, mode = n) for sz in [ntuple(n -> In, 4) for In in 20:20:80], r in [10; 20:20:120], n in 1:4 ], ) ## Imbalanced order-4 tensors append!( SETUPS, [ (; size = sz, rank = r, mode = n) for sz in [(20, 40, 80, 500), (500, 80, 40, 20)], r in [10; 100:100:300], n in 1:4 ], ) # Generate random benchmarks for SETUP in SETUPS Random.seed!(0) X = randn(SETUP.size) U = Tuple([randn(In, SETUP.rank) for In in SETUP.size]) SUITE["size=$(SETUP.size), rank=$(SETUP.rank), mode=$(SETUP.mode)"] = @benchmarkable( GCPDecompositions.TensorKernels.mttkrp($X, $U, $(SETUP.mode)), seconds = 2, samples = 5, ) end end
GCPDecompositions
https://github.com/dahong67/GCPDecompositions.jl.git
[ "MIT" ]
0.3.0
02db2030eaba15350b05279e79b86bbd4d3a39bc
code
1113
module BenchmarkMTTKRP using BenchmarkTools, GCPDecompositions using Random const SUITE = BenchmarkGroup() # Collect setups const SETUPS = [] ## Balanced order-3 tensors append!( SETUPS, [ (; size = sz, rank = r, mode = n) for sz in [ntuple(n -> In, 3) for In in 50:50:200], r in [10; 50:50:300], n in 1:3 ], ) # ## Balanced order-4 tensors # append!( # SETUPS, # [ # (; size = sz, rank = r, mode = n) for # sz in [ntuple(n -> In, 4) for In in 30:30:120], r in 30:30:180, n in 1:4 # ], # ) ## Imbalanced tensors append!( SETUPS, [ (; size = sz, rank = r, mode = n) for sz in [(30, 100, 1000), (1000, 100, 30)], r in [10; 100:100:300], n in 1:3 ], ) # Generate random benchmarks for SETUP in SETUPS Random.seed!(0) X = randn(SETUP.size) U = Tuple([randn(In, SETUP.rank) for In in SETUP.size]) SUITE["size=$(SETUP.size), rank=$(SETUP.rank), mode=$(SETUP.mode)"] = @benchmarkable( GCPDecompositions.TensorKernels.mttkrp($X, $U, $(SETUP.mode)), seconds = 2, samples = 5, ) end end
GCPDecompositions
https://github.com/dahong67/GCPDecompositions.jl.git
[ "MIT" ]
0.3.0
02db2030eaba15350b05279e79b86bbd4d3a39bc
code
1484
using Documenter, GCPDecompositions using PlutoStaticHTML using InteractiveUtils # Render demos DEMO_DIR = joinpath(pkgdir(GCPDecompositions), "docs", "src", "demos") DEMO_DICT = build_notebooks( BuildOptions(DEMO_DIR; previous_dir = DEMO_DIR, output_format = documenter_output), OutputOptions(; append_build_context = true), ) DEMO_FILES = keys(DEMO_DICT) # Make docs makedocs(; modules = [GCPDecompositions], sitename = "GCPDecompositions.jl", pages = [ "Home" => "index.md", "Quick start guide" => "quickstart.md", "Manual" => [ "Overview" => "man/main.md", "Loss functions" => "man/losses.md", "Constraints" => "man/constraints.md", "Algorithms" => "man/algorithms.md", ], "Demos" => [ "Overview" => "demos/main.md", [ get( PlutoStaticHTML.Pluto.frontmatter(joinpath(DEMO_DIR, FILE)), "title", FILE, ) => joinpath("demos", "$(splitext(FILE)[1]).md") for FILE in DEMO_FILES ]..., ], "Developer Docs" => ["Tensor Kernels" => "dev/kernels.md", "Private functions" => "dev/private.md"], ], format = Documenter.HTML(; canonical = "https://dahong67.github.io/GCPDecompositions.jl", size_threshold = 2^21 ), ) # Deploy docs deploydocs(; repo = "github.com/dahong67/GCPDecompositions.jl.git")
GCPDecompositions
https://github.com/dahong67/GCPDecompositions.jl.git
[ "MIT" ]
0.3.0
02db2030eaba15350b05279e79b86bbd4d3a39bc
code
335
using GCPDecompositions using LiveServer # Make list of demos to ignore DEMO_DIR = joinpath(pkgdir(GCPDecompositions), "docs", "src", "demos") DEMO_FILES = ["$(splitext(f)[1]).md" for f in readdir(DEMO_DIR) if splitext(f)[2] == ".jl"] # Serve the docs servedocs(; launch_browser = true, skip_files = joinpath.(DEMO_DIR, DEMO_FILES))
GCPDecompositions
https://github.com/dahong67/GCPDecompositions.jl.git
[ "MIT" ]
0.3.0
02db2030eaba15350b05279e79b86bbd4d3a39bc
code
58279
### A Pluto.jl notebook ### # v0.19.42 #> [frontmatter] #> title = "Amino Acids" using Markdown using InteractiveUtils # ╔═╡ c49eb38c-eb28-4bb0-ac21-c93ee8d70f03 using CairoMakie, GCPDecompositions, LinearAlgebra # ╔═╡ ffe10069-dd12-4b32-98fb-d7a7fc2934ad using CacheVariables, MAT, ZipFile # ╔═╡ 7a5e7efa-2a1c-11ef-23d9-7f2f50eb9a05 let # DEFINE METADATA TITLE = "Amino Acids" AUTHORS = [ "David Hong" => "https://dahong.gitlab.io", ] CREATED = "14 June 2024" FILENAME = replace(basename(@__FILE__), r"#==#.*" => "") # CREATE MARKDOWN WITH BADGES function badge_md((label, message); color="blue") label_esc = replace(label, " " => "%20", "_" => "__", "-" => "--") message_esc = replace(message, " " => "%20", "_" => "__", "-" => "--") "![$label](https://img.shields.io/badge/$label_esc-$message_esc-$color)" end badge_md(lblmsg, url; color="gold") = "[$(badge_md(lblmsg; color))]($url)" """ # $TITLE $(badge_md( "Download Notebook" => FILENAME, joinpath("..", FILENAME); color="blue" )) $(join([badge_md("Author" => NAME, URL) for (NAME, URL) in AUTHORS], '\n')) $(badge_md("Created" => CREATED; color="floralwhite")) """ |> Markdown.parse end # ╔═╡ 4fbecc23-0632-4d2b-a6f9-e3bd5c283fc1 md""" This demo considers a well-known dataset of fluorescence measurements for three amino acids. Website: [`https://ucphchemometrics.com/2023/05/04/amino-acids-fluorescence-data/ `](https://ucphchemometrics.com/2023/05/04/amino-acids-fluorescence-data/ ) Analogous tutorial in Tensor Toolbox: [`https://www.tensortoolbox.org/cp_als_doc.html`](https://www.tensortoolbox.org/cp_als_doc.html) Relevant papers: 1. Bro, R, Multi-way Analysis in the Food Industry. Models, Algorithms, and Applications. 1998. Ph.D. Thesis, University of Amsterdam (NL) & Royal Veterinary and Agricultural University (DK). 2. Kiers, H.A.L. (1998) A three-step algorithm for Candecomp/Parafac analysis of large data sets with multicollinearity, Journal of Chemometrics, 12, 155-171. """ # ╔═╡ d679bef8-9908-4314-ad7b-d024b1a88785 md""" ## Load data The following code downloads the data file, extracts the data, and caches it. """ # ╔═╡ 8ae49c7e-f300-4adf-9b52-801da6ef2af2 data = @cache "amino-acids-cache/data.bson" let # Download file url = "https://ucphchemometrics.com/wp-content/uploads/2023/05/claus.zip" zipname = download(url, tempname(@__DIR__)) # Extract MAT file zipfile = ZipFile.Reader(zipname) matname = tempname(@__DIR__) write(matname, only(zipfile.files)) close(zipfile) # Extract data data = matread(matname) # Clean up and output data rm(zipname) rm(matname) data end # ╔═╡ e7cc256d-6138-4426-96e6-c12abc8979f5 X = data["X"] # ╔═╡ 87dbb90a-6d5b-4af1-969f-1d301b5e5aae md""" The data tensor `X` is $(join(size(X), '×')) and consists of measurements across $(size(X, 1)) samples, $(size(X, 2)) emissions, and $(size(X, 3)) excitations. """ # ╔═╡ 322758fd-d469-427e-93ec-87f98d57ec82 md""" The emission and excitation wavelengths are: """ # ╔═╡ b5b8ef77-3bf9-4e79-89f6-dccc84990bbd em_wave = dropdims(data["EmAx"]; dims=1) # ╔═╡ 09983bad-c192-4b3a-b120-cfccc4041ce1 ex_wave = dropdims(data["ExAx"]; dims=1) # ╔═╡ fba839a3-4bbb-4ed6-9faf-6d56e304befb md""" Next, we plot the fluorescence landscape for each sample. """ # ╔═╡ 34ec42fc-0e4d-40ea-a898-da9bd70ee74d with_theme() do fig = Figure(; size=(800,500)) # Loop through samples for i in 1:size(X,1) ax = Axis3(fig[fldmod1(i, 3)...]; title="Sample $i", xlabel="Emission\nWavelength", xticks=250:100:450, ylabel="Excitation\nWavelength", yticks=240:30:300, zlabel="" ) surface!(ax, em_wave, ex_wave, X[i,:,:]) end rowgap!(fig.layout, 40) colgap!(fig.layout, 50) resize_to_layout!(fig) fig end # ╔═╡ e727aaa6-7f0b-4083-9837-7415027c29c7 md""" ## Run CP Decomposition """ # ╔═╡ 667fae24-27e5-4079-a1a3-c22375371dc1 md""" Conventional CP decomposition (i.e., with respect to the least-squares loss) can be computed using `gcp` with its default arguments. """ # ╔═╡ 06a685a5-c33e-4a68-8b2c-c976ea537b8c M = gcp(X, 3) # ╔═╡ 2d5e2926-e087-4b4e-abfb-7faabecf66eb md""" Now, we plot the (normalized) factors. """ # ╔═╡ cd0fc733-b2b9-44fd-b9c9-44f730ff1010 with_theme() do fig = Figure() # Plot factors (normalized by max) for row in 1:ncomps(M) barplot(fig[row,1], 1:size(X,1), normalize(M.U[1][:,row], Inf)) lines(fig[row,2], em_wave, normalize(M.U[2][:,row], Inf)) lines(fig[row,3], ex_wave, normalize(M.U[3][:,row], Inf)) end # Link and hide x axes linkxaxes!(contents(fig[:,1])...) linkxaxes!(contents(fig[:,2])...) linkxaxes!(contents(fig[:,3])...) hidexdecorations!.(contents(fig[1:2,:]); ticks=false, grid=false) # Link and hide y axes linkyaxes!(contents(fig.layout)...) hideydecorations!.(contents(fig.layout); ticks=false, grid=false) # Add labels Label(fig[0,1], "Samples"; tellwidth=false, fontsize=20) Label(fig[0,2], "Emission"; tellwidth=false, fontsize=20) Label(fig[0,3], "Excitation"; tellwidth=false, fontsize=20) fig end # ╔═╡ 00000000-0000-0000-0000-000000000001 PLUTO_PROJECT_TOML_CONTENTS = """ [deps] CacheVariables = "9a355d7c-ffe9-11e8-019f-21dae27d1722" CairoMakie = "13f3f980-e62b-5c42-98c6-ff1f3baf88f0" GCPDecompositions = "f59fb95b-1bc8-443b-b347-5e445a549f37" LinearAlgebra = "37e2e46d-f89d-539d-b4ee-838fcccc9c8e" MAT = "23992714-dd62-5051-b70f-ba57cb901cac" ZipFile = "a5390f91-8eb1-5f08-bee0-b1d1ffed6cea" [compat] CacheVariables = "~0.1.4" CairoMakie = "~0.12.2" GCPDecompositions = "~0.1.2" MAT = "~0.10.7" ZipFile = "~0.10.1" """ # ╔═╡ 00000000-0000-0000-0000-000000000002 PLUTO_MANIFEST_TOML_CONTENTS = """ # This file is machine-generated - editing it directly is not advised julia_version = "1.10.4" manifest_format = "2.0" project_hash = "2275c8cd3a87e8d9303cb2ef1677d874a37fbab9" [[deps.AbstractFFTs]] deps = ["LinearAlgebra"] git-tree-sha1 = "d92ad398961a3ed262d8bf04a1a2b8340f915fef" uuid = "621f4979-c628-5d54-868e-fcf4e3e8185c" version = "1.5.0" weakdeps = ["ChainRulesCore", "Test"] [deps.AbstractFFTs.extensions] AbstractFFTsChainRulesCoreExt = "ChainRulesCore" AbstractFFTsTestExt = "Test" [[deps.AbstractTrees]] git-tree-sha1 = "2d9c9a55f9c93e8887ad391fbae72f8ef55e1177" uuid = "1520ce14-60c1-5f80-bbc7-55ef81b5835c" version = "0.4.5" [[deps.Adapt]] deps = ["LinearAlgebra", "Requires"] git-tree-sha1 = "6a55b747d1812e699320963ffde36f1ebdda4099" uuid = "79e6a3ab-5dfb-504d-930d-738a2a938a0e" version = "4.0.4" weakdeps = ["StaticArrays"] [deps.Adapt.extensions] AdaptStaticArraysExt = "StaticArrays" [[deps.AliasTables]] deps = ["PtrArrays", "Random"] git-tree-sha1 = "9876e1e164b144ca45e9e3198d0b689cadfed9ff" uuid = "66dad0bd-aa9a-41b7-9441-69ab47430ed8" version = "1.1.3" [[deps.Animations]] deps = ["Colors"] git-tree-sha1 = "e81c509d2c8e49592413bfb0bb3b08150056c79d" uuid = "27a7e980-b3e6-11e9-2bcd-0b925532e340" version = "0.4.1" [[deps.ArgTools]] uuid = "0dad84c5-d112-42e6-8d28-ef12dabb789f" version = "1.1.1" [[deps.Artifacts]] uuid = "56f22d72-fd6d-98f1-02f0-08ddc0907c33" [[deps.Automa]] deps = ["PrecompileTools", "TranscodingStreams"] git-tree-sha1 = "588e0d680ad1d7201d4c6a804dcb1cd9cba79fbb" uuid = "67c07d97-cdcb-5c2c-af73-a7f9c32a568b" version = "1.0.3" [[deps.AxisAlgorithms]] deps = ["LinearAlgebra", "Random", "SparseArrays", "WoodburyMatrices"] git-tree-sha1 = "01b8ccb13d68535d73d2b0c23e39bd23155fb712" uuid = "13072b0f-2c55-5437-9ae7-d433b7a33950" version = "1.1.0" [[deps.AxisArrays]] deps = ["Dates", "IntervalSets", "IterTools", "RangeArrays"] git-tree-sha1 = "16351be62963a67ac4083f748fdb3cca58bfd52f" uuid = "39de3d68-74b9-583c-8d2d-e117c070f3a9" version = "0.4.7" [[deps.BSON]] git-tree-sha1 = "4c3e506685c527ac6a54ccc0c8c76fd6f91b42fb" uuid = "fbb218c0-5317-5bc6-957e-2ee96dd4b1f0" version = "0.3.9" [[deps.Base64]] uuid = "2a0f44e3-6c83-55bd-87e4-b1978d98bd5f" [[deps.BufferedStreams]] git-tree-sha1 = "4ae47f9a4b1dc19897d3743ff13685925c5202ec" uuid = "e1450e63-4bb3-523b-b2a4-4ffa8c0fd77d" version = "1.2.1" [[deps.Bzip2_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"] git-tree-sha1 = "9e2a6b69137e6969bab0152632dcb3bc108c8bdd" uuid = "6e34b625-4abd-537c-b88f-471c36dfa7a0" version = "1.0.8+1" [[deps.CEnum]] git-tree-sha1 = "389ad5c84de1ae7cf0e28e381131c98ea87d54fc" uuid = "fa961155-64e5-5f13-b03f-caf6b980ea82" version = "0.5.0" [[deps.CRC32c]] uuid = "8bf52ea8-c179-5cab-976a-9e18b702a9bc" [[deps.CRlibm_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"] git-tree-sha1 = "e329286945d0cfc04456972ea732551869af1cfc" uuid = "4e9b3aee-d8a1-5a3d-ad8b-7d824db253f0" version = "1.0.1+0" [[deps.CacheVariables]] deps = ["BSON", "Logging"] git-tree-sha1 = "0e74f35a57b1ebd6f622e47a18d92255cbd45b91" uuid = "9a355d7c-ffe9-11e8-019f-21dae27d1722" version = "0.1.4" [[deps.Cairo]] deps = ["Cairo_jll", "Colors", "Glib_jll", "Graphics", "Libdl", "Pango_jll"] git-tree-sha1 = "d0b3f8b4ad16cb0a2988c6788646a5e6a17b6b1b" uuid = "159f3aea-2a34-519c-b102-8c37f9878175" version = "1.0.5" [[deps.CairoMakie]] deps = ["CRC32c", "Cairo", "Colors", "FileIO", "FreeType", "GeometryBasics", "LinearAlgebra", "Makie", "PrecompileTools"] git-tree-sha1 = "9e8eaaff3e5951d8c61b7c9261d935eb27e0304b" uuid = "13f3f980-e62b-5c42-98c6-ff1f3baf88f0" version = "0.12.2" [[deps.Cairo_jll]] deps = ["Artifacts", "Bzip2_jll", "CompilerSupportLibraries_jll", "Fontconfig_jll", "FreeType2_jll", "Glib_jll", "JLLWrappers", "LZO_jll", "Libdl", "Pixman_jll", "Xorg_libXext_jll", "Xorg_libXrender_jll", "Zlib_jll", "libpng_jll"] git-tree-sha1 = "a2f1c8c668c8e3cb4cca4e57a8efdb09067bb3fd" uuid = "83423d85-b0ee-5818-9007-b63ccbeb887a" version = "1.18.0+2" [[deps.Calculus]] deps = ["LinearAlgebra"] git-tree-sha1 = "f641eb0a4f00c343bbc32346e1217b86f3ce9dad" uuid = "49dc2e85-a5d0-5ad3-a950-438e2897f1b9" version = "0.5.1" [[deps.ChainRulesCore]] deps = ["Compat", "LinearAlgebra"] git-tree-sha1 = "71acdbf594aab5bbb2cec89b208c41b4c411e49f" uuid = "d360d2e6-b24c-11e9-a2a3-2a2ae2dbcce4" version = "1.24.0" weakdeps = ["SparseArrays"] [deps.ChainRulesCore.extensions] ChainRulesCoreSparseArraysExt = "SparseArrays" [[deps.CodecZlib]] deps = ["TranscodingStreams", "Zlib_jll"] git-tree-sha1 = "59939d8a997469ee05c4b4944560a820f9ba0d73" uuid = "944b1d66-785c-5afd-91f1-9de20f533193" version = "0.7.4" [[deps.ColorBrewer]] deps = ["Colors", "JSON", "Test"] git-tree-sha1 = "61c5334f33d91e570e1d0c3eb5465835242582c4" uuid = "a2cac450-b92f-5266-8821-25eda20663c8" version = "0.4.0" [[deps.ColorSchemes]] deps = ["ColorTypes", "ColorVectorSpace", "Colors", "FixedPointNumbers", "PrecompileTools", "Random"] git-tree-sha1 = "4b270d6465eb21ae89b732182c20dc165f8bf9f2" uuid = "35d6a980-a343-548e-a6ea-1d62b119f2f4" version = "3.25.0" [[deps.ColorTypes]] deps = ["FixedPointNumbers", "Random"] git-tree-sha1 = "b10d0b65641d57b8b4d5e234446582de5047050d" uuid = "3da002f7-5984-5a60-b8a6-cbb66c0b333f" version = "0.11.5" [[deps.ColorVectorSpace]] deps = ["ColorTypes", "FixedPointNumbers", "LinearAlgebra", "Requires", "Statistics", "TensorCore"] git-tree-sha1 = "a1f44953f2382ebb937d60dafbe2deea4bd23249" uuid = "c3611d14-8923-5661-9e6a-0046d554d3a4" version = "0.10.0" weakdeps = ["SpecialFunctions"] [deps.ColorVectorSpace.extensions] SpecialFunctionsExt = "SpecialFunctions" [[deps.Colors]] deps = ["ColorTypes", "FixedPointNumbers", "Reexport"] git-tree-sha1 = "362a287c3aa50601b0bc359053d5c2468f0e7ce0" uuid = "5ae59095-9a9b-59fe-a467-6f913c188581" version = "0.12.11" [[deps.CommonSubexpressions]] deps = ["MacroTools", "Test"] git-tree-sha1 = "7b8a93dba8af7e3b42fecabf646260105ac373f7" uuid = "bbf7d656-a473-5ed7-a52c-81e309532950" version = "0.3.0" [[deps.Compat]] deps = ["TOML", "UUIDs"] git-tree-sha1 = "b1c55339b7c6c350ee89f2c1604299660525b248" uuid = "34da2185-b29b-5c13-b0c7-acf172513d20" version = "4.15.0" weakdeps = ["Dates", "LinearAlgebra"] [deps.Compat.extensions] CompatLinearAlgebraExt = "LinearAlgebra" [[deps.CompilerSupportLibraries_jll]] deps = ["Artifacts", "Libdl"] uuid = "e66e0078-7015-5450-92f7-15fbd957f2ae" version = "1.1.1+0" [[deps.ConstructionBase]] deps = ["LinearAlgebra"] git-tree-sha1 = "260fd2400ed2dab602a7c15cf10c1933c59930a2" uuid = "187b0558-2788-49d3-abe0-74a17ed4e7c9" version = "1.5.5" weakdeps = ["IntervalSets", "StaticArrays"] [deps.ConstructionBase.extensions] ConstructionBaseIntervalSetsExt = "IntervalSets" ConstructionBaseStaticArraysExt = "StaticArrays" [[deps.Contour]] git-tree-sha1 = "439e35b0b36e2e5881738abc8857bd92ad6ff9a8" uuid = "d38c429a-6771-53c6-b99e-75d170b6e991" version = "0.6.3" [[deps.DataAPI]] git-tree-sha1 = "abe83f3a2f1b857aac70ef8b269080af17764bbe" uuid = "9a962f9c-6df0-11e9-0e5d-c546b8b5ee8a" version = "1.16.0" [[deps.DataStructures]] deps = ["Compat", "InteractiveUtils", "OrderedCollections"] git-tree-sha1 = "1d0a14036acb104d9e89698bd408f63ab58cdc82" uuid = "864edb3b-99cc-5e75-8d2d-829cb0a9cfe8" version = "0.18.20" [[deps.DataValueInterfaces]] git-tree-sha1 = "bfc1187b79289637fa0ef6d4436ebdfe6905cbd6" uuid = "e2d170a0-9d28-54be-80f0-106bbe20a464" version = "1.0.0" [[deps.Dates]] deps = ["Printf"] uuid = "ade2ca70-3891-5945-98fb-dc099432e06a" [[deps.DelaunayTriangulation]] deps = ["EnumX", "ExactPredicates", "Random"] git-tree-sha1 = "1755070db557ec2c37df2664c75600298b0c1cfc" uuid = "927a84f5-c5f4-47a5-9785-b46e178433df" version = "1.0.3" [[deps.DiffResults]] deps = ["StaticArraysCore"] git-tree-sha1 = "782dd5f4561f5d267313f23853baaaa4c52ea621" uuid = "163ba53b-c6d8-5494-b064-1a9d43ac40c5" version = "1.1.0" [[deps.DiffRules]] deps = ["IrrationalConstants", "LogExpFunctions", "NaNMath", "Random", "SpecialFunctions"] git-tree-sha1 = "23163d55f885173722d1e4cf0f6110cdbaf7e272" uuid = "b552c78f-8df3-52c6-915a-8e097449b14b" version = "1.15.1" [[deps.Distributed]] deps = ["Random", "Serialization", "Sockets"] uuid = "8ba89e20-285c-5b6f-9357-94700520ee1b" [[deps.Distributions]] deps = ["AliasTables", "FillArrays", "LinearAlgebra", "PDMats", "Printf", "QuadGK", "Random", "SpecialFunctions", "Statistics", "StatsAPI", "StatsBase", "StatsFuns"] git-tree-sha1 = "9c405847cc7ecda2dc921ccf18b47ca150d7317e" uuid = "31c24e10-a181-5473-b8eb-7969acd0382f" version = "0.25.109" [deps.Distributions.extensions] DistributionsChainRulesCoreExt = "ChainRulesCore" DistributionsDensityInterfaceExt = "DensityInterface" DistributionsTestExt = "Test" [deps.Distributions.weakdeps] ChainRulesCore = "d360d2e6-b24c-11e9-a2a3-2a2ae2dbcce4" DensityInterface = "b429d917-457f-4dbc-8f4c-0cc954292b1d" Test = "8dfed614-e22c-5e08-85e1-65c5234f0b40" [[deps.DocStringExtensions]] deps = ["LibGit2"] git-tree-sha1 = "2fb1e02f2b635d0845df5d7c167fec4dd739b00d" uuid = "ffbed154-4ef7-542d-bbb7-c09d3a79fcae" version = "0.9.3" [[deps.Downloads]] deps = ["ArgTools", "FileWatching", "LibCURL", "NetworkOptions"] uuid = "f43a241f-c20a-4ad4-852c-f6b1247861c6" version = "1.6.0" [[deps.DualNumbers]] deps = ["Calculus", "NaNMath", "SpecialFunctions"] git-tree-sha1 = "5837a837389fccf076445fce071c8ddaea35a566" uuid = "fa6b7ba4-c1ee-5f82-b5fc-ecf0adba8f74" version = "0.6.8" [[deps.EarCut_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"] git-tree-sha1 = "e3290f2d49e661fbd94046d7e3726ffcb2d41053" uuid = "5ae413db-bbd1-5e63-b57d-d24a61df00f5" version = "2.2.4+0" [[deps.EnumX]] git-tree-sha1 = "bdb1942cd4c45e3c678fd11569d5cccd80976237" uuid = "4e289a0a-7415-4d19-859d-a7e5c4648b56" version = "1.0.4" [[deps.ExactPredicates]] deps = ["IntervalArithmetic", "Random", "StaticArrays"] git-tree-sha1 = "b3f2ff58735b5f024c392fde763f29b057e4b025" uuid = "429591f6-91af-11e9-00e2-59fbe8cec110" version = "2.2.8" [[deps.Expat_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl"] git-tree-sha1 = "1c6317308b9dc757616f0b5cb379db10494443a7" uuid = "2e619515-83b5-522b-bb60-26c02a35a201" version = "2.6.2+0" [[deps.Extents]] git-tree-sha1 = "2140cd04483da90b2da7f99b2add0750504fc39c" uuid = "411431e0-e8b7-467b-b5e0-f676ba4f2910" version = "0.1.2" [[deps.FFMPEG_jll]] deps = ["Artifacts", "Bzip2_jll", "FreeType2_jll", "FriBidi_jll", "JLLWrappers", "LAME_jll", "Libdl", "Ogg_jll", "OpenSSL_jll", "Opus_jll", "PCRE2_jll", "Zlib_jll", "libaom_jll", "libass_jll", "libfdk_aac_jll", "libvorbis_jll", "x264_jll", "x265_jll"] git-tree-sha1 = "ab3f7e1819dba9434a3a5126510c8fda3a4e7000" uuid = "b22a6f82-2f65-5046-a5b2-351ab43fb4e5" version = "6.1.1+0" [[deps.FFTW]] deps = ["AbstractFFTs", "FFTW_jll", "LinearAlgebra", "MKL_jll", "Preferences", "Reexport"] git-tree-sha1 = "4820348781ae578893311153d69049a93d05f39d" uuid = "7a1cc6ca-52ef-59f5-83cd-3a7055c09341" version = "1.8.0" [[deps.FFTW_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"] git-tree-sha1 = "c6033cc3892d0ef5bb9cd29b7f2f0331ea5184ea" uuid = "f5851436-0d7a-5f13-b9de-f02708fd171a" version = "3.3.10+0" [[deps.FileIO]] deps = ["Pkg", "Requires", "UUIDs"] git-tree-sha1 = "82d8afa92ecf4b52d78d869f038ebfb881267322" uuid = "5789e2e9-d7fb-5bc7-8068-2c6fae9b9549" version = "1.16.3" [[deps.FilePaths]] deps = ["FilePathsBase", "MacroTools", "Reexport", "Requires"] git-tree-sha1 = "919d9412dbf53a2e6fe74af62a73ceed0bce0629" uuid = "8fc22ac5-c921-52a6-82fd-178b2807b824" version = "0.8.3" [[deps.FilePathsBase]] deps = ["Compat", "Dates", "Mmap", "Printf", "Test", "UUIDs"] git-tree-sha1 = "9f00e42f8d99fdde64d40c8ea5d14269a2e2c1aa" uuid = "48062228-2e41-5def-b9a4-89aafe57970f" version = "0.9.21" [[deps.FileWatching]] uuid = "7b1f6079-737a-58dc-b8bc-7a2ca5c1b5ee" [[deps.FillArrays]] deps = ["LinearAlgebra"] git-tree-sha1 = "0653c0a2396a6da5bc4766c43041ef5fd3efbe57" uuid = "1a297f60-69ca-5386-bcde-b61e274b549b" version = "1.11.0" weakdeps = ["PDMats", "SparseArrays", "Statistics"] [deps.FillArrays.extensions] FillArraysPDMatsExt = "PDMats" FillArraysSparseArraysExt = "SparseArrays" FillArraysStatisticsExt = "Statistics" [[deps.FixedPointNumbers]] deps = ["Statistics"] git-tree-sha1 = "05882d6995ae5c12bb5f36dd2ed3f61c98cbb172" uuid = "53c48c17-4a7d-5ca2-90c5-79b7896eea93" version = "0.8.5" [[deps.Fontconfig_jll]] deps = ["Artifacts", "Bzip2_jll", "Expat_jll", "FreeType2_jll", "JLLWrappers", "Libdl", "Libuuid_jll", "Zlib_jll"] git-tree-sha1 = "db16beca600632c95fc8aca29890d83788dd8b23" uuid = "a3f928ae-7b40-5064-980b-68af3947d34b" version = "2.13.96+0" [[deps.Format]] git-tree-sha1 = "9c68794ef81b08086aeb32eeaf33531668d5f5fc" uuid = "1fa38f19-a742-5d3f-a2b9-30dd87b9d5f8" version = "1.3.7" [[deps.ForwardDiff]] deps = ["CommonSubexpressions", "DiffResults", "DiffRules", "LinearAlgebra", "LogExpFunctions", "NaNMath", "Preferences", "Printf", "Random", "SpecialFunctions"] git-tree-sha1 = "cf0fe81336da9fb90944683b8c41984b08793dad" uuid = "f6369f11-7733-5829-9624-2563aa707210" version = "0.10.36" weakdeps = ["StaticArrays"] [deps.ForwardDiff.extensions] ForwardDiffStaticArraysExt = "StaticArrays" [[deps.FreeType]] deps = ["CEnum", "FreeType2_jll"] git-tree-sha1 = "907369da0f8e80728ab49c1c7e09327bf0d6d999" uuid = "b38be410-82b0-50bf-ab77-7b57e271db43" version = "4.1.1" [[deps.FreeType2_jll]] deps = ["Artifacts", "Bzip2_jll", "JLLWrappers", "Libdl", "Zlib_jll"] git-tree-sha1 = "5c1d8ae0efc6c2e7b1fc502cbe25def8f661b7bc" uuid = "d7e528f0-a631-5988-bf34-fe36492bcfd7" version = "2.13.2+0" [[deps.FreeTypeAbstraction]] deps = ["ColorVectorSpace", "Colors", "FreeType", "GeometryBasics"] git-tree-sha1 = "2493cdfd0740015955a8e46de4ef28f49460d8bc" uuid = "663a7486-cb36-511b-a19d-713bb74d65c9" version = "0.10.3" [[deps.FriBidi_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl"] git-tree-sha1 = "1ed150b39aebcc805c26b93a8d0122c940f64ce2" uuid = "559328eb-81f9-559d-9380-de523a88c83c" version = "1.0.14+0" [[deps.GCPDecompositions]] deps = ["ForwardDiff", "LBFGSB", "LinearAlgebra"] git-tree-sha1 = "994de61253546641cdcef8fe8bc9667468662299" uuid = "f59fb95b-1bc8-443b-b347-5e445a549f37" version = "0.1.2" [deps.GCPDecompositions.extensions] LossFunctionsExt = "LossFunctions" [deps.GCPDecompositions.weakdeps] LossFunctions = "30fc2ffe-d236-52d8-8643-a9d8f7c094a7" [[deps.GeoInterface]] deps = ["Extents"] git-tree-sha1 = "801aef8228f7f04972e596b09d4dba481807c913" uuid = "cf35fbd7-0cd7-5166-be24-54bfbe79505f" version = "1.3.4" [[deps.GeometryBasics]] deps = ["EarCut_jll", "Extents", "GeoInterface", "IterTools", "LinearAlgebra", "StaticArrays", "StructArrays", "Tables"] git-tree-sha1 = "b62f2b2d76cee0d61a2ef2b3118cd2a3215d3134" uuid = "5c1252a2-5f33-56bf-86c9-59e7332b4326" version = "0.4.11" [[deps.Gettext_jll]] deps = ["Artifacts", "CompilerSupportLibraries_jll", "JLLWrappers", "Libdl", "Libiconv_jll", "Pkg", "XML2_jll"] git-tree-sha1 = "9b02998aba7bf074d14de89f9d37ca24a1a0b046" uuid = "78b55507-aeef-58d4-861c-77aaff3498b1" version = "0.21.0+0" [[deps.Glib_jll]] deps = ["Artifacts", "Gettext_jll", "JLLWrappers", "Libdl", "Libffi_jll", "Libiconv_jll", "Libmount_jll", "PCRE2_jll", "Zlib_jll"] git-tree-sha1 = "7c82e6a6cd34e9d935e9aa4051b66c6ff3af59ba" uuid = "7746bdde-850d-59dc-9ae8-88ece973131d" version = "2.80.2+0" [[deps.Graphics]] deps = ["Colors", "LinearAlgebra", "NaNMath"] git-tree-sha1 = "d61890399bc535850c4bf08e4e0d3a7ad0f21cbd" uuid = "a2bd30eb-e257-5431-a919-1863eab51364" version = "1.1.2" [[deps.Graphite2_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"] git-tree-sha1 = "344bf40dcab1073aca04aa0df4fb092f920e4011" uuid = "3b182d85-2403-5c21-9c21-1e1f0cc25472" version = "1.3.14+0" [[deps.GridLayoutBase]] deps = ["GeometryBasics", "InteractiveUtils", "Observables"] git-tree-sha1 = "fc713f007cff99ff9e50accba6373624ddd33588" uuid = "3955a311-db13-416c-9275-1d80ed98e5e9" version = "0.11.0" [[deps.Grisu]] git-tree-sha1 = "53bb909d1151e57e2484c3d1b53e19552b887fb2" uuid = "42e2da0e-8278-4e71-bc24-59509adca0fe" version = "1.0.2" [[deps.HDF5]] deps = ["Compat", "HDF5_jll", "Libdl", "MPIPreferences", "Mmap", "Preferences", "Printf", "Random", "Requires", "UUIDs"] git-tree-sha1 = "e856eef26cf5bf2b0f95f8f4fc37553c72c8641c" uuid = "f67ccb44-e63f-5c2f-98bd-6dc0ccc4ba2f" version = "0.17.2" [deps.HDF5.extensions] MPIExt = "MPI" [deps.HDF5.weakdeps] MPI = "da04e1cc-30fd-572f-bb4f-1f8673147195" [[deps.HDF5_jll]] deps = ["Artifacts", "CompilerSupportLibraries_jll", "JLLWrappers", "LazyArtifacts", "LibCURL_jll", "Libdl", "MPICH_jll", "MPIPreferences", "MPItrampoline_jll", "MicrosoftMPI_jll", "OpenMPI_jll", "OpenSSL_jll", "TOML", "Zlib_jll", "libaec_jll"] git-tree-sha1 = "82a471768b513dc39e471540fdadc84ff80ff997" uuid = "0234f1f7-429e-5d53-9886-15a909be8d59" version = "1.14.3+3" [[deps.HarfBuzz_jll]] deps = ["Artifacts", "Cairo_jll", "Fontconfig_jll", "FreeType2_jll", "Glib_jll", "Graphite2_jll", "JLLWrappers", "Libdl", "Libffi_jll", "Pkg"] git-tree-sha1 = "129acf094d168394e80ee1dc4bc06ec835e510a3" uuid = "2e76f6c2-a576-52d4-95c1-20adfe4de566" version = "2.8.1+1" [[deps.Hwloc_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl"] git-tree-sha1 = "ca0f6bf568b4bfc807e7537f081c81e35ceca114" uuid = "e33a78d0-f292-5ffc-b300-72abe9b543c8" version = "2.10.0+0" [[deps.HypergeometricFunctions]] deps = ["DualNumbers", "LinearAlgebra", "OpenLibm_jll", "SpecialFunctions"] git-tree-sha1 = "f218fe3736ddf977e0e772bc9a586b2383da2685" uuid = "34004b35-14d8-5ef3-9330-4cdb6864b03a" version = "0.3.23" [[deps.ImageAxes]] deps = ["AxisArrays", "ImageBase", "ImageCore", "Reexport", "SimpleTraits"] git-tree-sha1 = "2e4520d67b0cef90865b3ef727594d2a58e0e1f8" uuid = "2803e5a7-5153-5ecf-9a86-9b4c37f5f5ac" version = "0.6.11" [[deps.ImageBase]] deps = ["ImageCore", "Reexport"] git-tree-sha1 = "eb49b82c172811fd2c86759fa0553a2221feb909" uuid = "c817782e-172a-44cc-b673-b171935fbb9e" version = "0.1.7" [[deps.ImageCore]] deps = ["ColorVectorSpace", "Colors", "FixedPointNumbers", "MappedArrays", "MosaicViews", "OffsetArrays", "PaddedViews", "PrecompileTools", "Reexport"] git-tree-sha1 = "b2a7eaa169c13f5bcae8131a83bc30eff8f71be0" uuid = "a09fc81d-aa75-5fe9-8630-4744c3626534" version = "0.10.2" [[deps.ImageIO]] deps = ["FileIO", "IndirectArrays", "JpegTurbo", "LazyModules", "Netpbm", "OpenEXR", "PNGFiles", "QOI", "Sixel", "TiffImages", "UUIDs"] git-tree-sha1 = "437abb322a41d527c197fa800455f79d414f0a3c" uuid = "82e4d734-157c-48bb-816b-45c225c6df19" version = "0.6.8" [[deps.ImageMetadata]] deps = ["AxisArrays", "ImageAxes", "ImageBase", "ImageCore"] git-tree-sha1 = "355e2b974f2e3212a75dfb60519de21361ad3cb7" uuid = "bc367c6b-8a6b-528e-b4bd-a4b897500b49" version = "0.9.9" [[deps.Imath_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl"] git-tree-sha1 = "0936ba688c6d201805a83da835b55c61a180db52" uuid = "905a6f67-0a94-5f89-b386-d35d92009cd1" version = "3.1.11+0" [[deps.IndirectArrays]] git-tree-sha1 = "012e604e1c7458645cb8b436f8fba789a51b257f" uuid = "9b13fd28-a010-5f03-acff-a1bbcff69959" version = "1.0.0" [[deps.Inflate]] git-tree-sha1 = "d1b1b796e47d94588b3757fe84fbf65a5ec4a80d" uuid = "d25df0c9-e2be-5dd7-82c8-3ad0b3e990b9" version = "0.1.5" [[deps.IntelOpenMP_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl"] git-tree-sha1 = "be50fe8df3acbffa0274a744f1a99d29c45a57f4" uuid = "1d5cc7b8-4909-519e-a0f8-d0f5ad9712d0" version = "2024.1.0+0" [[deps.InteractiveUtils]] deps = ["Markdown"] uuid = "b77e0a4c-d291-57a0-90e8-8db25a27a240" [[deps.Interpolations]] deps = ["Adapt", "AxisAlgorithms", "ChainRulesCore", "LinearAlgebra", "OffsetArrays", "Random", "Ratios", "Requires", "SharedArrays", "SparseArrays", "StaticArrays", "WoodburyMatrices"] git-tree-sha1 = "88a101217d7cb38a7b481ccd50d21876e1d1b0e0" uuid = "a98d9a8b-a2ab-59e6-89dd-64a1c18fca59" version = "0.15.1" weakdeps = ["Unitful"] [deps.Interpolations.extensions] InterpolationsUnitfulExt = "Unitful" [[deps.IntervalArithmetic]] deps = ["CRlibm_jll", "MacroTools", "RoundingEmulator"] git-tree-sha1 = "433b0bb201cd76cb087b017e49244f10394ebe9c" uuid = "d1acc4aa-44c8-5952-acd4-ba5d80a2a253" version = "0.22.14" [deps.IntervalArithmetic.extensions] IntervalArithmeticDiffRulesExt = "DiffRules" IntervalArithmeticForwardDiffExt = "ForwardDiff" IntervalArithmeticRecipesBaseExt = "RecipesBase" [deps.IntervalArithmetic.weakdeps] DiffRules = "b552c78f-8df3-52c6-915a-8e097449b14b" ForwardDiff = "f6369f11-7733-5829-9624-2563aa707210" RecipesBase = "3cdcf5f2-1ef4-517c-9805-6587b60abb01" [[deps.IntervalSets]] git-tree-sha1 = "dba9ddf07f77f60450fe5d2e2beb9854d9a49bd0" uuid = "8197267c-284f-5f27-9208-e0e47529a953" version = "0.7.10" [deps.IntervalSets.extensions] IntervalSetsRandomExt = "Random" IntervalSetsRecipesBaseExt = "RecipesBase" IntervalSetsStatisticsExt = "Statistics" [deps.IntervalSets.weakdeps] Random = "9a3f8284-a2c9-5f02-9a11-845980a1fd5c" RecipesBase = "3cdcf5f2-1ef4-517c-9805-6587b60abb01" Statistics = "10745b16-79ce-11e8-11f9-7d13ad32a3b2" [[deps.IrrationalConstants]] git-tree-sha1 = "630b497eafcc20001bba38a4651b327dcfc491d2" uuid = "92d709cd-6900-40b7-9082-c6be49f344b6" version = "0.2.2" [[deps.Isoband]] deps = ["isoband_jll"] git-tree-sha1 = "f9b6d97355599074dc867318950adaa6f9946137" uuid = "f1662d9f-8043-43de-a69a-05efc1cc6ff4" version = "0.1.1" [[deps.IterTools]] git-tree-sha1 = "42d5f897009e7ff2cf88db414a389e5ed1bdd023" uuid = "c8e1da08-722c-5040-9ed9-7db0dc04731e" version = "1.10.0" [[deps.IteratorInterfaceExtensions]] git-tree-sha1 = "a3f24677c21f5bbe9d2a714f95dcd58337fb2856" uuid = "82899510-4779-5014-852e-03e436cf321d" version = "1.0.0" [[deps.JLLWrappers]] deps = ["Artifacts", "Preferences"] git-tree-sha1 = "7e5d6779a1e09a36db2a7b6cff50942a0a7d0fca" uuid = "692b3bcd-3c85-4b1f-b108-f13ce0eb3210" version = "1.5.0" [[deps.JSON]] deps = ["Dates", "Mmap", "Parsers", "Unicode"] git-tree-sha1 = "31e996f0a15c7b280ba9f76636b3ff9e2ae58c9a" uuid = "682c06a0-de6a-54ab-a142-c8b1cf79cde6" version = "0.21.4" [[deps.JpegTurbo]] deps = ["CEnum", "FileIO", "ImageCore", "JpegTurbo_jll", "TOML"] git-tree-sha1 = "fa6d0bcff8583bac20f1ffa708c3913ca605c611" uuid = "b835a17e-a41a-41e7-81f0-2f016b05efe0" version = "0.1.5" [[deps.JpegTurbo_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl"] git-tree-sha1 = "c84a835e1a09b289ffcd2271bf2a337bbdda6637" uuid = "aacddb02-875f-59d6-b918-886e6ef4fbf8" version = "3.0.3+0" [[deps.KernelDensity]] deps = ["Distributions", "DocStringExtensions", "FFTW", "Interpolations", "StatsBase"] git-tree-sha1 = "7d703202e65efa1369de1279c162b915e245eed1" uuid = "5ab0869b-81aa-558d-bb23-cbf5423bbe9b" version = "0.6.9" [[deps.LAME_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl"] git-tree-sha1 = "170b660facf5df5de098d866564877e119141cbd" uuid = "c1c5ebd0-6772-5130-a774-d5fcae4a789d" version = "3.100.2+0" [[deps.LBFGSB]] deps = ["L_BFGS_B_jll"] git-tree-sha1 = "e2e6f53ee20605d0ea2be473480b7480bd5091b5" uuid = "5be7bae1-8223-5378-bac3-9e7378a2f6e6" version = "0.4.1" [[deps.LLVMOpenMP_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl"] git-tree-sha1 = "d986ce2d884d49126836ea94ed5bfb0f12679713" uuid = "1d63c593-3942-5779-bab2-d838dc0a180e" version = "15.0.7+0" [[deps.LZO_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl"] git-tree-sha1 = "70c5da094887fd2cae843b8db33920bac4b6f07d" uuid = "dd4b983a-f0e5-5f8d-a1b7-129d4a5fb1ac" version = "2.10.2+0" [[deps.L_BFGS_B_jll]] deps = ["Artifacts", "CompilerSupportLibraries_jll", "JLLWrappers", "Libdl", "Pkg"] git-tree-sha1 = "77feda930ed3f04b2b0fbb5bea89e69d3677c6b0" uuid = "81d17ec3-03a1-5e46-b53e-bddc35a13473" version = "3.0.1+0" [[deps.LaTeXStrings]] git-tree-sha1 = "50901ebc375ed41dbf8058da26f9de442febbbec" uuid = "b964fa9f-0449-5b57-a5c2-d3ea65f4040f" version = "1.3.1" [[deps.LazyArtifacts]] deps = ["Artifacts", "Pkg"] uuid = "4af54fe1-eca0-43a8-85a7-787d91b784e3" [[deps.LazyModules]] git-tree-sha1 = "a560dd966b386ac9ae60bdd3a3d3a326062d3c3e" uuid = "8cdb02fc-e678-4876-92c5-9defec4f444e" version = "0.3.1" [[deps.LibCURL]] deps = ["LibCURL_jll", "MozillaCACerts_jll"] uuid = "b27032c2-a3e7-50c8-80cd-2d36dbcbfd21" version = "0.6.4" [[deps.LibCURL_jll]] deps = ["Artifacts", "LibSSH2_jll", "Libdl", "MbedTLS_jll", "Zlib_jll", "nghttp2_jll"] uuid = "deac9b47-8bc7-5906-a0fe-35ac56dc84c0" version = "8.4.0+0" [[deps.LibGit2]] deps = ["Base64", "LibGit2_jll", "NetworkOptions", "Printf", "SHA"] uuid = "76f85450-5226-5b5a-8eaa-529ad045b433" [[deps.LibGit2_jll]] deps = ["Artifacts", "LibSSH2_jll", "Libdl", "MbedTLS_jll"] uuid = "e37daf67-58a4-590a-8e99-b0245dd2ffc5" version = "1.6.4+0" [[deps.LibSSH2_jll]] deps = ["Artifacts", "Libdl", "MbedTLS_jll"] uuid = "29816b5a-b9ab-546f-933c-edad1886dfa8" version = "1.11.0+1" [[deps.Libdl]] uuid = "8f399da3-3557-5675-b5ff-fb832c97cbdb" [[deps.Libffi_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"] git-tree-sha1 = "0b4a5d71f3e5200a7dff793393e09dfc2d874290" uuid = "e9f186c6-92d2-5b65-8a66-fee21dc1b490" version = "3.2.2+1" [[deps.Libgcrypt_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Libgpg_error_jll"] git-tree-sha1 = "9fd170c4bbfd8b935fdc5f8b7aa33532c991a673" uuid = "d4300ac3-e22c-5743-9152-c294e39db1e4" version = "1.8.11+0" [[deps.Libgpg_error_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl"] git-tree-sha1 = "fbb1f2bef882392312feb1ede3615ddc1e9b99ed" uuid = "7add5ba3-2f88-524e-9cd5-f83b8a55f7b8" version = "1.49.0+0" [[deps.Libiconv_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl"] git-tree-sha1 = "f9557a255370125b405568f9767d6d195822a175" uuid = "94ce4f54-9a6c-5748-9c1c-f9c7231a4531" version = "1.17.0+0" [[deps.Libmount_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl"] git-tree-sha1 = "0c4f9c4f1a50d8f35048fa0532dabbadf702f81e" uuid = "4b2f31a3-9ecc-558c-b454-b3730dcb73e9" version = "2.40.1+0" [[deps.Libuuid_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl"] git-tree-sha1 = "5ee6203157c120d79034c748a2acba45b82b8807" uuid = "38a345b3-de98-5d2b-a5d3-14cd9215e700" version = "2.40.1+0" [[deps.LinearAlgebra]] deps = ["Libdl", "OpenBLAS_jll", "libblastrampoline_jll"] uuid = "37e2e46d-f89d-539d-b4ee-838fcccc9c8e" [[deps.LogExpFunctions]] deps = ["DocStringExtensions", "IrrationalConstants", "LinearAlgebra"] git-tree-sha1 = "a2d09619db4e765091ee5c6ffe8872849de0feea" uuid = "2ab3a3ac-af41-5b50-aa03-7779005ae688" version = "0.3.28" [deps.LogExpFunctions.extensions] LogExpFunctionsChainRulesCoreExt = "ChainRulesCore" LogExpFunctionsChangesOfVariablesExt = "ChangesOfVariables" LogExpFunctionsInverseFunctionsExt = "InverseFunctions" [deps.LogExpFunctions.weakdeps] ChainRulesCore = "d360d2e6-b24c-11e9-a2a3-2a2ae2dbcce4" ChangesOfVariables = "9e997f8a-9a97-42d5-a9f1-ce6bfc15e2c0" InverseFunctions = "3587e190-3f89-42d0-90ee-14403ec27112" [[deps.Logging]] uuid = "56ddb016-857b-54e1-b83d-db4d58db5568" [[deps.MAT]] deps = ["BufferedStreams", "CodecZlib", "HDF5", "SparseArrays"] git-tree-sha1 = "1d2dd9b186742b0f317f2530ddcbf00eebb18e96" uuid = "23992714-dd62-5051-b70f-ba57cb901cac" version = "0.10.7" [[deps.MKL_jll]] deps = ["Artifacts", "IntelOpenMP_jll", "JLLWrappers", "LazyArtifacts", "Libdl", "oneTBB_jll"] git-tree-sha1 = "80b2833b56d466b3858d565adcd16a4a05f2089b" uuid = "856f044c-d86e-5d09-b602-aeab76dc8ba7" version = "2024.1.0+0" [[deps.MPICH_jll]] deps = ["Artifacts", "CompilerSupportLibraries_jll", "Hwloc_jll", "JLLWrappers", "LazyArtifacts", "Libdl", "MPIPreferences", "TOML"] git-tree-sha1 = "4099bb6809ac109bfc17d521dad33763bcf026b7" uuid = "7cb0a576-ebde-5e09-9194-50597f1243b4" version = "4.2.1+1" [[deps.MPIPreferences]] deps = ["Libdl", "Preferences"] git-tree-sha1 = "c105fe467859e7f6e9a852cb15cb4301126fac07" uuid = "3da0fdf6-3ccc-4f1b-acd9-58baa6c99267" version = "0.1.11" [[deps.MPItrampoline_jll]] deps = ["Artifacts", "CompilerSupportLibraries_jll", "JLLWrappers", "LazyArtifacts", "Libdl", "MPIPreferences", "TOML"] git-tree-sha1 = "8c35d5420193841b2f367e658540e8d9e0601ed0" uuid = "f1f71cc9-e9ae-5b93-9b94-4fe0e1ad3748" version = "5.4.0+0" [[deps.MacroTools]] deps = ["Markdown", "Random"] git-tree-sha1 = "2fa9ee3e63fd3a4f7a9a4f4744a52f4856de82df" uuid = "1914dd2f-81c6-5fcd-8719-6d5c9610ff09" version = "0.5.13" [[deps.Makie]] deps = ["Animations", "Base64", "CRC32c", "ColorBrewer", "ColorSchemes", "ColorTypes", "Colors", "Contour", "Dates", "DelaunayTriangulation", "Distributions", "DocStringExtensions", "Downloads", "FFMPEG_jll", "FileIO", "FilePaths", "FixedPointNumbers", "Format", "FreeType", "FreeTypeAbstraction", "GeometryBasics", "GridLayoutBase", "ImageIO", "InteractiveUtils", "IntervalSets", "Isoband", "KernelDensity", "LaTeXStrings", "LinearAlgebra", "MacroTools", "MakieCore", "Markdown", "MathTeXEngine", "Observables", "OffsetArrays", "Packing", "PlotUtils", "PolygonOps", "PrecompileTools", "Printf", "REPL", "Random", "RelocatableFolders", "Scratch", "ShaderAbstractions", "Showoff", "SignedDistanceFields", "SparseArrays", "Statistics", "StatsBase", "StatsFuns", "StructArrays", "TriplotBase", "UnicodeFun", "Unitful"] git-tree-sha1 = "ec3a60c9de787bc6ef119d13e07d4bfacceebb83" uuid = "ee78f7c6-11fb-53f2-987a-cfe4a2b5a57a" version = "0.21.2" [[deps.MakieCore]] deps = ["ColorTypes", "GeometryBasics", "IntervalSets", "Observables"] git-tree-sha1 = "c1c9da1a69f6c635a60581c98da252958c844d70" uuid = "20f20a25-4f0e-4fdf-b5d1-57303727442b" version = "0.8.2" [[deps.MappedArrays]] git-tree-sha1 = "2dab0221fe2b0f2cb6754eaa743cc266339f527e" uuid = "dbb5928d-eab1-5f90-85c2-b9b0edb7c900" version = "0.4.2" [[deps.Markdown]] deps = ["Base64"] uuid = "d6f4376e-aef5-505a-96c1-9c027394607a" [[deps.MathTeXEngine]] deps = ["AbstractTrees", "Automa", "DataStructures", "FreeTypeAbstraction", "GeometryBasics", "LaTeXStrings", "REPL", "RelocatableFolders", "UnicodeFun"] git-tree-sha1 = "1865d0b8a2d91477c8b16b49152a32764c7b1f5f" uuid = "0a4f8689-d25c-4efe-a92b-7142dfc1aa53" version = "0.6.0" [[deps.MbedTLS_jll]] deps = ["Artifacts", "Libdl"] uuid = "c8ffd9c3-330d-5841-b78e-0817d7145fa1" version = "2.28.2+1" [[deps.MicrosoftMPI_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"] git-tree-sha1 = "f12a29c4400ba812841c6ace3f4efbb6dbb3ba01" uuid = "9237b28f-5490-5468-be7b-bb81f5f5e6cf" version = "10.1.4+2" [[deps.Missings]] deps = ["DataAPI"] git-tree-sha1 = "ec4f7fbeab05d7747bdf98eb74d130a2a2ed298d" uuid = "e1d29d7a-bbdc-5cf2-9ac0-f12de2c33e28" version = "1.2.0" [[deps.Mmap]] uuid = "a63ad114-7e13-5084-954f-fe012c677804" [[deps.MosaicViews]] deps = ["MappedArrays", "OffsetArrays", "PaddedViews", "StackViews"] git-tree-sha1 = "7b86a5d4d70a9f5cdf2dacb3cbe6d251d1a61dbe" uuid = "e94cdb99-869f-56ef-bcf0-1ae2bcbe0389" version = "0.3.4" [[deps.MozillaCACerts_jll]] uuid = "14a3606d-f60d-562e-9121-12d972cd8159" version = "2023.1.10" [[deps.NaNMath]] deps = ["OpenLibm_jll"] git-tree-sha1 = "0877504529a3e5c3343c6f8b4c0381e57e4387e4" uuid = "77ba4419-2d1f-58cd-9bb1-8ffee604a2e3" version = "1.0.2" [[deps.Netpbm]] deps = ["FileIO", "ImageCore", "ImageMetadata"] git-tree-sha1 = "d92b107dbb887293622df7697a2223f9f8176fcd" uuid = "f09324ee-3d7c-5217-9330-fc30815ba969" version = "1.1.1" [[deps.NetworkOptions]] uuid = "ca575930-c2e3-43a9-ace4-1e988b2c1908" version = "1.2.0" [[deps.Observables]] git-tree-sha1 = "7438a59546cf62428fc9d1bc94729146d37a7225" uuid = "510215fc-4207-5dde-b226-833fc4488ee2" version = "0.5.5" [[deps.OffsetArrays]] git-tree-sha1 = "e64b4f5ea6b7389f6f046d13d4896a8f9c1ba71e" uuid = "6fe1bfb0-de20-5000-8ca7-80f57d26f881" version = "1.14.0" weakdeps = ["Adapt"] [deps.OffsetArrays.extensions] OffsetArraysAdaptExt = "Adapt" [[deps.Ogg_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"] git-tree-sha1 = "887579a3eb005446d514ab7aeac5d1d027658b8f" uuid = "e7412a2a-1a6e-54c0-be00-318e2571c051" version = "1.3.5+1" [[deps.OpenBLAS_jll]] deps = ["Artifacts", "CompilerSupportLibraries_jll", "Libdl"] uuid = "4536629a-c528-5b80-bd46-f80d51c5b363" version = "0.3.23+4" [[deps.OpenEXR]] deps = ["Colors", "FileIO", "OpenEXR_jll"] git-tree-sha1 = "327f53360fdb54df7ecd01e96ef1983536d1e633" uuid = "52e1d378-f018-4a11-a4be-720524705ac7" version = "0.3.2" [[deps.OpenEXR_jll]] deps = ["Artifacts", "Imath_jll", "JLLWrappers", "Libdl", "Zlib_jll"] git-tree-sha1 = "8292dd5c8a38257111ada2174000a33745b06d4e" uuid = "18a262bb-aa17-5467-a713-aee519bc75cb" version = "3.2.4+0" [[deps.OpenLibm_jll]] deps = ["Artifacts", "Libdl"] uuid = "05823500-19ac-5b8b-9628-191a04bc5112" version = "0.8.1+2" [[deps.OpenMPI_jll]] deps = ["Artifacts", "CompilerSupportLibraries_jll", "JLLWrappers", "LazyArtifacts", "Libdl", "MPIPreferences", "TOML"] git-tree-sha1 = "e25c1778a98e34219a00455d6e4384e017ea9762" uuid = "fe0851c0-eecd-5654-98d4-656369965a5c" version = "4.1.6+0" [[deps.OpenSSL_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl"] git-tree-sha1 = "a028ee3cb5641cccc4c24e90c36b0a4f7707bdf5" uuid = "458c3c95-2e84-50aa-8efc-19380b2a3a95" version = "3.0.14+0" [[deps.OpenSpecFun_jll]] deps = ["Artifacts", "CompilerSupportLibraries_jll", "JLLWrappers", "Libdl", "Pkg"] git-tree-sha1 = "13652491f6856acfd2db29360e1bbcd4565d04f1" uuid = "efe28fd5-8261-553b-a9e1-b2916fc3738e" version = "0.5.5+0" [[deps.Opus_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"] git-tree-sha1 = "51a08fb14ec28da2ec7a927c4337e4332c2a4720" uuid = "91d4177d-7536-5919-b921-800302f37372" version = "1.3.2+0" [[deps.OrderedCollections]] git-tree-sha1 = "dfdf5519f235516220579f949664f1bf44e741c5" uuid = "bac558e1-5e72-5ebc-8fee-abe8a469f55d" version = "1.6.3" [[deps.PCRE2_jll]] deps = ["Artifacts", "Libdl"] uuid = "efcefdf7-47ab-520b-bdef-62a2eaa19f15" version = "10.42.0+1" [[deps.PDMats]] deps = ["LinearAlgebra", "SparseArrays", "SuiteSparse"] git-tree-sha1 = "949347156c25054de2db3b166c52ac4728cbad65" uuid = "90014a1f-27ba-587c-ab20-58faa44d9150" version = "0.11.31" [[deps.PNGFiles]] deps = ["Base64", "CEnum", "ImageCore", "IndirectArrays", "OffsetArrays", "libpng_jll"] git-tree-sha1 = "67186a2bc9a90f9f85ff3cc8277868961fb57cbd" uuid = "f57f5aa1-a3ce-4bc8-8ab9-96f992907883" version = "0.4.3" [[deps.Packing]] deps = ["GeometryBasics"] git-tree-sha1 = "ec3edfe723df33528e085e632414499f26650501" uuid = "19eb6ba3-879d-56ad-ad62-d5c202156566" version = "0.5.0" [[deps.PaddedViews]] deps = ["OffsetArrays"] git-tree-sha1 = "0fac6313486baae819364c52b4f483450a9d793f" uuid = "5432bcbf-9aad-5242-b902-cca2824c8663" version = "0.5.12" [[deps.Pango_jll]] deps = ["Artifacts", "Cairo_jll", "Fontconfig_jll", "FreeType2_jll", "FriBidi_jll", "Glib_jll", "HarfBuzz_jll", "JLLWrappers", "Libdl"] git-tree-sha1 = "cb5a2ab6763464ae0f19c86c56c63d4a2b0f5bda" uuid = "36c8627f-9965-5494-a995-c6b170f724f3" version = "1.52.2+0" [[deps.Parsers]] deps = ["Dates", "PrecompileTools", "UUIDs"] git-tree-sha1 = "8489905bcdbcfac64d1daa51ca07c0d8f0283821" uuid = "69de0a69-1ddd-5017-9359-2bf0b02dc9f0" version = "2.8.1" [[deps.Pixman_jll]] deps = ["Artifacts", "CompilerSupportLibraries_jll", "JLLWrappers", "LLVMOpenMP_jll", "Libdl"] git-tree-sha1 = "35621f10a7531bc8fa58f74610b1bfb70a3cfc6b" uuid = "30392449-352a-5448-841d-b1acce4e97dc" version = "0.43.4+0" [[deps.Pkg]] deps = ["Artifacts", "Dates", "Downloads", "FileWatching", "LibGit2", "Libdl", "Logging", "Markdown", "Printf", "REPL", "Random", "SHA", "Serialization", "TOML", "Tar", "UUIDs", "p7zip_jll"] uuid = "44cfe95a-1eb2-52ea-b672-e2afdf69b78f" version = "1.10.0" [[deps.PkgVersion]] deps = ["Pkg"] git-tree-sha1 = "f9501cc0430a26bc3d156ae1b5b0c1b47af4d6da" uuid = "eebad327-c553-4316-9ea0-9fa01ccd7688" version = "0.3.3" [[deps.PlotUtils]] deps = ["ColorSchemes", "Colors", "Dates", "PrecompileTools", "Printf", "Random", "Reexport", "Statistics"] git-tree-sha1 = "7b1a9df27f072ac4c9c7cbe5efb198489258d1f5" uuid = "995b91a9-d308-5afd-9ec6-746e21dbc043" version = "1.4.1" [[deps.PolygonOps]] git-tree-sha1 = "77b3d3605fc1cd0b42d95eba87dfcd2bf67d5ff6" uuid = "647866c9-e3ac-4575-94e7-e3d426903924" version = "0.1.2" [[deps.PrecompileTools]] deps = ["Preferences"] git-tree-sha1 = "5aa36f7049a63a1528fe8f7c3f2113413ffd4e1f" uuid = "aea7be01-6a6a-4083-8856-8a6e6704d82a" version = "1.2.1" [[deps.Preferences]] deps = ["TOML"] git-tree-sha1 = "9306f6085165d270f7e3db02af26a400d580f5c6" uuid = "21216c6a-2e73-6563-6e65-726566657250" version = "1.4.3" [[deps.Printf]] deps = ["Unicode"] uuid = "de0858da-6303-5e67-8744-51eddeeeb8d7" [[deps.ProgressMeter]] deps = ["Distributed", "Printf"] git-tree-sha1 = "763a8ceb07833dd51bb9e3bbca372de32c0605ad" uuid = "92933f4c-e287-5a05-a399-4b506db050ca" version = "1.10.0" [[deps.PtrArrays]] git-tree-sha1 = "f011fbb92c4d401059b2212c05c0601b70f8b759" uuid = "43287f4e-b6f4-7ad1-bb20-aadabca52c3d" version = "1.2.0" [[deps.QOI]] deps = ["ColorTypes", "FileIO", "FixedPointNumbers"] git-tree-sha1 = "18e8f4d1426e965c7b532ddd260599e1510d26ce" uuid = "4b34888f-f399-49d4-9bb3-47ed5cae4e65" version = "1.0.0" [[deps.QuadGK]] deps = ["DataStructures", "LinearAlgebra"] git-tree-sha1 = "9b23c31e76e333e6fb4c1595ae6afa74966a729e" uuid = "1fd47b50-473d-5c70-9696-f719f8f3bcdc" version = "2.9.4" [[deps.REPL]] deps = ["InteractiveUtils", "Markdown", "Sockets", "Unicode"] uuid = "3fa0cd96-eef1-5676-8a61-b3b8758bbffb" [[deps.Random]] deps = ["SHA"] uuid = "9a3f8284-a2c9-5f02-9a11-845980a1fd5c" [[deps.RangeArrays]] git-tree-sha1 = "b9039e93773ddcfc828f12aadf7115b4b4d225f5" uuid = "b3c3ace0-ae52-54e7-9d0b-2c1406fd6b9d" version = "0.3.2" [[deps.Ratios]] deps = ["Requires"] git-tree-sha1 = "1342a47bf3260ee108163042310d26f2be5ec90b" uuid = "c84ed2f1-dad5-54f0-aa8e-dbefe2724439" version = "0.4.5" weakdeps = ["FixedPointNumbers"] [deps.Ratios.extensions] RatiosFixedPointNumbersExt = "FixedPointNumbers" [[deps.Reexport]] git-tree-sha1 = "45e428421666073eab6f2da5c9d310d99bb12f9b" uuid = "189a3867-3050-52da-a836-e630ba90ab69" version = "1.2.2" [[deps.RelocatableFolders]] deps = ["SHA", "Scratch"] git-tree-sha1 = "ffdaf70d81cf6ff22c2b6e733c900c3321cab864" uuid = "05181044-ff0b-4ac5-8273-598c1e38db00" version = "1.0.1" [[deps.Requires]] deps = ["UUIDs"] git-tree-sha1 = "838a3a4188e2ded87a4f9f184b4b0d78a1e91cb7" uuid = "ae029012-a4dd-5104-9daa-d747884805df" version = "1.3.0" [[deps.Rmath]] deps = ["Random", "Rmath_jll"] git-tree-sha1 = "f65dcb5fa46aee0cf9ed6274ccbd597adc49aa7b" uuid = "79098fc4-a85e-5d69-aa6a-4863f24498fa" version = "0.7.1" [[deps.Rmath_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl"] git-tree-sha1 = "d483cd324ce5cf5d61b77930f0bbd6cb61927d21" uuid = "f50d1b31-88e8-58de-be2c-1cc44531875f" version = "0.4.2+0" [[deps.RoundingEmulator]] git-tree-sha1 = "40b9edad2e5287e05bd413a38f61a8ff55b9557b" uuid = "5eaf0fd0-dfba-4ccb-bf02-d820a40db705" version = "0.2.1" [[deps.SHA]] uuid = "ea8e919c-243c-51af-8825-aaa63cd721ce" version = "0.7.0" [[deps.SIMD]] deps = ["PrecompileTools"] git-tree-sha1 = "2803cab51702db743f3fda07dd1745aadfbf43bd" uuid = "fdea26ae-647d-5447-a871-4b548cad5224" version = "3.5.0" [[deps.Scratch]] deps = ["Dates"] git-tree-sha1 = "3bac05bc7e74a75fd9cba4295cde4045d9fe2386" uuid = "6c6a2e73-6563-6170-7368-637461726353" version = "1.2.1" [[deps.Serialization]] uuid = "9e88b42a-f829-5b0c-bbe9-9e923198166b" [[deps.ShaderAbstractions]] deps = ["ColorTypes", "FixedPointNumbers", "GeometryBasics", "LinearAlgebra", "Observables", "StaticArrays", "StructArrays", "Tables"] git-tree-sha1 = "79123bc60c5507f035e6d1d9e563bb2971954ec8" uuid = "65257c39-d410-5151-9873-9b3e5be5013e" version = "0.4.1" [[deps.SharedArrays]] deps = ["Distributed", "Mmap", "Random", "Serialization"] uuid = "1a1011a3-84de-559e-8e89-a11a2f7dc383" [[deps.Showoff]] deps = ["Dates", "Grisu"] git-tree-sha1 = "91eddf657aca81df9ae6ceb20b959ae5653ad1de" uuid = "992d4aef-0814-514b-bc4d-f2e9a6c4116f" version = "1.0.3" [[deps.SignedDistanceFields]] deps = ["Random", "Statistics", "Test"] git-tree-sha1 = "d263a08ec505853a5ff1c1ebde2070419e3f28e9" uuid = "73760f76-fbc4-59ce-8f25-708e95d2df96" version = "0.4.0" [[deps.SimpleTraits]] deps = ["InteractiveUtils", "MacroTools"] git-tree-sha1 = "5d7e3f4e11935503d3ecaf7186eac40602e7d231" uuid = "699a6c99-e7fa-54fc-8d76-47d257e15c1d" version = "0.9.4" [[deps.Sixel]] deps = ["Dates", "FileIO", "ImageCore", "IndirectArrays", "OffsetArrays", "REPL", "libsixel_jll"] git-tree-sha1 = "2da10356e31327c7096832eb9cd86307a50b1eb6" uuid = "45858cf5-a6b0-47a3-bbea-62219f50df47" version = "0.1.3" [[deps.Sockets]] uuid = "6462fe0b-24de-5631-8697-dd941f90decc" [[deps.SortingAlgorithms]] deps = ["DataStructures"] git-tree-sha1 = "66e0a8e672a0bdfca2c3f5937efb8538b9ddc085" uuid = "a2af1166-a08f-5f64-846c-94a0d3cef48c" version = "1.2.1" [[deps.SparseArrays]] deps = ["Libdl", "LinearAlgebra", "Random", "Serialization", "SuiteSparse_jll"] uuid = "2f01184e-e22b-5df5-ae63-d93ebab69eaf" version = "1.10.0" [[deps.SpecialFunctions]] deps = ["IrrationalConstants", "LogExpFunctions", "OpenLibm_jll", "OpenSpecFun_jll"] git-tree-sha1 = "2f5d4697f21388cbe1ff299430dd169ef97d7e14" uuid = "276daf66-3868-5448-9aa4-cd146d93841b" version = "2.4.0" weakdeps = ["ChainRulesCore"] [deps.SpecialFunctions.extensions] SpecialFunctionsChainRulesCoreExt = "ChainRulesCore" [[deps.StackViews]] deps = ["OffsetArrays"] git-tree-sha1 = "46e589465204cd0c08b4bd97385e4fa79a0c770c" uuid = "cae243ae-269e-4f55-b966-ac2d0dc13c15" version = "0.1.1" [[deps.StaticArrays]] deps = ["LinearAlgebra", "PrecompileTools", "Random", "StaticArraysCore"] git-tree-sha1 = "6e00379a24597be4ae1ee6b2d882e15392040132" uuid = "90137ffa-7385-5640-81b9-e52037218182" version = "1.9.5" weakdeps = ["ChainRulesCore", "Statistics"] [deps.StaticArrays.extensions] StaticArraysChainRulesCoreExt = "ChainRulesCore" StaticArraysStatisticsExt = "Statistics" [[deps.StaticArraysCore]] git-tree-sha1 = "192954ef1208c7019899fbf8049e717f92959682" uuid = "1e83bf80-4336-4d27-bf5d-d5a4f845583c" version = "1.4.3" [[deps.Statistics]] deps = ["LinearAlgebra", "SparseArrays"] uuid = "10745b16-79ce-11e8-11f9-7d13ad32a3b2" version = "1.10.0" [[deps.StatsAPI]] deps = ["LinearAlgebra"] git-tree-sha1 = "1ff449ad350c9c4cbc756624d6f8a8c3ef56d3ed" uuid = "82ae8749-77ed-4fe6-ae5f-f523153014b0" version = "1.7.0" [[deps.StatsBase]] deps = ["DataAPI", "DataStructures", "LinearAlgebra", "LogExpFunctions", "Missings", "Printf", "Random", "SortingAlgorithms", "SparseArrays", "Statistics", "StatsAPI"] git-tree-sha1 = "5cf7606d6cef84b543b483848d4ae08ad9832b21" uuid = "2913bbd2-ae8a-5f71-8c99-4fb6c76f3a91" version = "0.34.3" [[deps.StatsFuns]] deps = ["HypergeometricFunctions", "IrrationalConstants", "LogExpFunctions", "Reexport", "Rmath", "SpecialFunctions"] git-tree-sha1 = "cef0472124fab0695b58ca35a77c6fb942fdab8a" uuid = "4c63d2b9-4356-54db-8cca-17b64c39e42c" version = "1.3.1" [deps.StatsFuns.extensions] StatsFunsChainRulesCoreExt = "ChainRulesCore" StatsFunsInverseFunctionsExt = "InverseFunctions" [deps.StatsFuns.weakdeps] ChainRulesCore = "d360d2e6-b24c-11e9-a2a3-2a2ae2dbcce4" InverseFunctions = "3587e190-3f89-42d0-90ee-14403ec27112" [[deps.StructArrays]] deps = ["ConstructionBase", "DataAPI", "Tables"] git-tree-sha1 = "f4dc295e983502292c4c3f951dbb4e985e35b3be" uuid = "09ab397b-f2b6-538f-b94a-2f83cf4a842a" version = "0.6.18" [deps.StructArrays.extensions] StructArraysAdaptExt = "Adapt" StructArraysGPUArraysCoreExt = "GPUArraysCore" StructArraysSparseArraysExt = "SparseArrays" StructArraysStaticArraysExt = "StaticArrays" [deps.StructArrays.weakdeps] Adapt = "79e6a3ab-5dfb-504d-930d-738a2a938a0e" GPUArraysCore = "46192b85-c4d5-4398-a991-12ede77f4527" SparseArrays = "2f01184e-e22b-5df5-ae63-d93ebab69eaf" StaticArrays = "90137ffa-7385-5640-81b9-e52037218182" [[deps.SuiteSparse]] deps = ["Libdl", "LinearAlgebra", "Serialization", "SparseArrays"] uuid = "4607b0f0-06f3-5cda-b6b1-a6196a1729e9" [[deps.SuiteSparse_jll]] deps = ["Artifacts", "Libdl", "libblastrampoline_jll"] uuid = "bea87d4a-7f5b-5778-9afe-8cc45184846c" version = "7.2.1+1" [[deps.TOML]] deps = ["Dates"] uuid = "fa267f1f-6049-4f14-aa54-33bafae1ed76" version = "1.0.3" [[deps.TableTraits]] deps = ["IteratorInterfaceExtensions"] git-tree-sha1 = "c06b2f539df1c6efa794486abfb6ed2022561a39" uuid = "3783bdb8-4a98-5b6b-af9a-565f29a5fe9c" version = "1.0.1" [[deps.Tables]] deps = ["DataAPI", "DataValueInterfaces", "IteratorInterfaceExtensions", "LinearAlgebra", "OrderedCollections", "TableTraits"] git-tree-sha1 = "cb76cf677714c095e535e3501ac7954732aeea2d" uuid = "bd369af6-aec1-5ad0-b16a-f7cc5008161c" version = "1.11.1" [[deps.Tar]] deps = ["ArgTools", "SHA"] uuid = "a4e569a6-e804-4fa4-b0f3-eef7a1d5b13e" version = "1.10.0" [[deps.TensorCore]] deps = ["LinearAlgebra"] git-tree-sha1 = "1feb45f88d133a655e001435632f019a9a1bcdb6" uuid = "62fd8b95-f654-4bbd-a8a5-9c27f68ccd50" version = "0.1.1" [[deps.Test]] deps = ["InteractiveUtils", "Logging", "Random", "Serialization"] uuid = "8dfed614-e22c-5e08-85e1-65c5234f0b40" [[deps.TiffImages]] deps = ["ColorTypes", "DataStructures", "DocStringExtensions", "FileIO", "FixedPointNumbers", "IndirectArrays", "Inflate", "Mmap", "OffsetArrays", "PkgVersion", "ProgressMeter", "SIMD", "UUIDs"] git-tree-sha1 = "bc7fd5c91041f44636b2c134041f7e5263ce58ae" uuid = "731e570b-9d59-4bfa-96dc-6df516fadf69" version = "0.10.0" [[deps.TranscodingStreams]] git-tree-sha1 = "a947ea21087caba0a798c5e494d0bb78e3a1a3a0" uuid = "3bb67fe8-82b1-5028-8e26-92a6c54297fa" version = "0.10.9" weakdeps = ["Random", "Test"] [deps.TranscodingStreams.extensions] TestExt = ["Test", "Random"] [[deps.TriplotBase]] git-tree-sha1 = "4d4ed7f294cda19382ff7de4c137d24d16adc89b" uuid = "981d1d27-644d-49a2-9326-4793e63143c3" version = "0.1.0" [[deps.UUIDs]] deps = ["Random", "SHA"] uuid = "cf7118a7-6976-5b1a-9a39-7adc72f591a4" [[deps.Unicode]] uuid = "4ec0a83e-493e-50e2-b9ac-8f72acf5a8f5" [[deps.UnicodeFun]] deps = ["REPL"] git-tree-sha1 = "53915e50200959667e78a92a418594b428dffddf" uuid = "1cfade01-22cf-5700-b092-accc4b62d6e1" version = "0.4.1" [[deps.Unitful]] deps = ["Dates", "LinearAlgebra", "Random"] git-tree-sha1 = "dd260903fdabea27d9b6021689b3cd5401a57748" uuid = "1986cc42-f94f-5a68-af5c-568840ba703d" version = "1.20.0" [deps.Unitful.extensions] ConstructionBaseUnitfulExt = "ConstructionBase" InverseFunctionsUnitfulExt = "InverseFunctions" [deps.Unitful.weakdeps] ConstructionBase = "187b0558-2788-49d3-abe0-74a17ed4e7c9" InverseFunctions = "3587e190-3f89-42d0-90ee-14403ec27112" [[deps.WoodburyMatrices]] deps = ["LinearAlgebra", "SparseArrays"] git-tree-sha1 = "c1a7aa6219628fcd757dede0ca95e245c5cd9511" uuid = "efce3f68-66dc-5838-9240-27a6d6f5f9b6" version = "1.0.0" [[deps.XML2_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Libiconv_jll", "Zlib_jll"] git-tree-sha1 = "52ff2af32e591541550bd753c0da8b9bc92bb9d9" uuid = "02c8fc9c-b97f-50b9-bbe4-9be30ff0a78a" version = "2.12.7+0" [[deps.XSLT_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Libgcrypt_jll", "Libgpg_error_jll", "Libiconv_jll", "Pkg", "XML2_jll", "Zlib_jll"] git-tree-sha1 = "91844873c4085240b95e795f692c4cec4d805f8a" uuid = "aed1982a-8fda-507f-9586-7b0439959a61" version = "1.1.34+0" [[deps.Xorg_libX11_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Xorg_libxcb_jll", "Xorg_xtrans_jll"] git-tree-sha1 = "afead5aba5aa507ad5a3bf01f58f82c8d1403495" uuid = "4f6342f7-b3d2-589e-9d20-edeb45f2b2bc" version = "1.8.6+0" [[deps.Xorg_libXau_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl"] git-tree-sha1 = "6035850dcc70518ca32f012e46015b9beeda49d8" uuid = "0c0b7dd1-d40b-584c-a123-a41640f87eec" version = "1.0.11+0" [[deps.Xorg_libXdmcp_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl"] git-tree-sha1 = "34d526d318358a859d7de23da945578e8e8727b7" uuid = "a3789734-cfe1-5b06-b2d0-1dd0d9d62d05" version = "1.1.4+0" [[deps.Xorg_libXext_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Xorg_libX11_jll"] git-tree-sha1 = "d2d1a5c49fae4ba39983f63de6afcbea47194e85" uuid = "1082639a-0dae-5f34-9b06-72781eeb8cb3" version = "1.3.6+0" [[deps.Xorg_libXrender_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Xorg_libX11_jll"] git-tree-sha1 = "47e45cd78224c53109495b3e324df0c37bb61fbe" uuid = "ea2f1a96-1ddc-540d-b46f-429655e07cfa" version = "0.9.11+0" [[deps.Xorg_libpthread_stubs_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl"] git-tree-sha1 = "8fdda4c692503d44d04a0603d9ac0982054635f9" uuid = "14d82f49-176c-5ed1-bb49-ad3f5cbd8c74" version = "0.1.1+0" [[deps.Xorg_libxcb_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "XSLT_jll", "Xorg_libXau_jll", "Xorg_libXdmcp_jll", "Xorg_libpthread_stubs_jll"] git-tree-sha1 = "b4bfde5d5b652e22b9c790ad00af08b6d042b97d" uuid = "c7cfdc94-dc32-55de-ac96-5a1b8d977c5b" version = "1.15.0+0" [[deps.Xorg_xtrans_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl"] git-tree-sha1 = "e92a1a012a10506618f10b7047e478403a046c77" uuid = "c5fb5394-a638-5e4d-96e5-b29de1b5cf10" version = "1.5.0+0" [[deps.ZipFile]] deps = ["Libdl", "Printf", "Zlib_jll"] git-tree-sha1 = "f492b7fe1698e623024e873244f10d89c95c340a" uuid = "a5390f91-8eb1-5f08-bee0-b1d1ffed6cea" version = "0.10.1" [[deps.Zlib_jll]] deps = ["Libdl"] uuid = "83775a58-1f1d-513f-b197-d71354ab007a" version = "1.2.13+1" [[deps.isoband_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"] git-tree-sha1 = "51b5eeb3f98367157a7a12a1fb0aa5328946c03c" uuid = "9a68df92-36a6-505f-a73e-abb412b6bfb4" version = "0.2.3+0" [[deps.libaec_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl"] git-tree-sha1 = "46bf7be2917b59b761247be3f317ddf75e50e997" uuid = "477f73a3-ac25-53e9-8cc3-50b2fa2566f0" version = "1.1.2+0" [[deps.libaom_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl"] git-tree-sha1 = "1827acba325fdcdf1d2647fc8d5301dd9ba43a9d" uuid = "a4ae2306-e953-59d6-aa16-d00cac43593b" version = "3.9.0+0" [[deps.libass_jll]] deps = ["Artifacts", "Bzip2_jll", "FreeType2_jll", "FriBidi_jll", "HarfBuzz_jll", "JLLWrappers", "Libdl", "Pkg", "Zlib_jll"] git-tree-sha1 = "5982a94fcba20f02f42ace44b9894ee2b140fe47" uuid = "0ac62f75-1d6f-5e53-bd7c-93b484bb37c0" version = "0.15.1+0" [[deps.libblastrampoline_jll]] deps = ["Artifacts", "Libdl"] uuid = "8e850b90-86db-534c-a0d3-1478176c7d93" version = "5.8.0+1" [[deps.libfdk_aac_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"] git-tree-sha1 = "daacc84a041563f965be61859a36e17c4e4fcd55" uuid = "f638f0a6-7fb0-5443-88ba-1cc74229b280" version = "2.0.2+0" [[deps.libpng_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Zlib_jll"] git-tree-sha1 = "d7015d2e18a5fd9a4f47de711837e980519781a4" uuid = "b53b4c65-9356-5827-b1ea-8c7a1a84506f" version = "1.6.43+1" [[deps.libsixel_jll]] deps = ["Artifacts", "JLLWrappers", "JpegTurbo_jll", "Libdl", "Pkg", "libpng_jll"] git-tree-sha1 = "d4f63314c8aa1e48cd22aa0c17ed76cd1ae48c3c" uuid = "075b6546-f08a-558a-be8f-8157d0f608a5" version = "1.10.3+0" [[deps.libvorbis_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Ogg_jll", "Pkg"] git-tree-sha1 = "b910cb81ef3fe6e78bf6acee440bda86fd6ae00c" uuid = "f27f6e37-5d2b-51aa-960f-b287f2bc3b7a" version = "1.3.7+1" [[deps.nghttp2_jll]] deps = ["Artifacts", "Libdl"] uuid = "8e850ede-7688-5339-a07c-302acd2aaf8d" version = "1.52.0+1" [[deps.oneTBB_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl"] git-tree-sha1 = "7d0ea0f4895ef2f5cb83645fa689e52cb55cf493" uuid = "1317d2d5-d96f-522e-a858-c73665f53c3e" version = "2021.12.0+0" [[deps.p7zip_jll]] deps = ["Artifacts", "Libdl"] uuid = "3f19e933-33d8-53b3-aaab-bd5110c3b7a0" version = "17.4.0+2" [[deps.x264_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"] git-tree-sha1 = "4fea590b89e6ec504593146bf8b988b2c00922b2" uuid = "1270edf5-f2f9-52d2-97e9-ab00b5d0237a" version = "2021.5.5+0" [[deps.x265_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"] git-tree-sha1 = "ee567a171cce03570d77ad3a43e90218e38937a9" uuid = "dfaa095f-4041-5dcd-9319-2fabd8486b76" version = "3.5.0+0" """ # ╔═╡ Cell order: # ╟─7a5e7efa-2a1c-11ef-23d9-7f2f50eb9a05 # ╟─4fbecc23-0632-4d2b-a6f9-e3bd5c283fc1 # ╠═c49eb38c-eb28-4bb0-ac21-c93ee8d70f03 # ╟─d679bef8-9908-4314-ad7b-d024b1a88785 # ╠═ffe10069-dd12-4b32-98fb-d7a7fc2934ad # ╠═8ae49c7e-f300-4adf-9b52-801da6ef2af2 # ╟─87dbb90a-6d5b-4af1-969f-1d301b5e5aae # ╠═e7cc256d-6138-4426-96e6-c12abc8979f5 # ╟─322758fd-d469-427e-93ec-87f98d57ec82 # ╠═b5b8ef77-3bf9-4e79-89f6-dccc84990bbd # ╠═09983bad-c192-4b3a-b120-cfccc4041ce1 # ╟─fba839a3-4bbb-4ed6-9faf-6d56e304befb # ╠═34ec42fc-0e4d-40ea-a898-da9bd70ee74d # ╟─e727aaa6-7f0b-4083-9837-7415027c29c7 # ╟─667fae24-27e5-4079-a1a3-c22375371dc1 # ╠═06a685a5-c33e-4a68-8b2c-c976ea537b8c # ╟─2d5e2926-e087-4b4e-abfb-7faabecf66eb # ╠═cd0fc733-b2b9-44fd-b9c9-44f730ff1010 # ╟─00000000-0000-0000-0000-000000000001 # ╟─00000000-0000-0000-0000-000000000002
GCPDecompositions
https://github.com/dahong67/GCPDecompositions.jl.git
[ "MIT" ]
0.3.0
02db2030eaba15350b05279e79b86bbd4d3a39bc
code
62661
### A Pluto.jl notebook ### # v0.19.42 #> [frontmatter] #> title = "Monkey BMI" using Markdown using InteractiveUtils # ╔═╡ fdfb1464-908f-437b-aaa4-5a9e32dd2feb using CairoMakie, GCPDecompositions, LinearAlgebra, Statistics # ╔═╡ a1db5ffd-620a-4a70-b859-e90c9d6aa5fb using Downloads: download # ╔═╡ 066b6f99-5135-49d2-a7de-cfb22ed72a3d using CacheVariables, MAT # ╔═╡ f9d70766-96c9-4d06-bc78-a2b1761cb9f6 let # DEFINE METADATA TITLE = "Monkey Brain Machine Interface" AUTHORS = [ "Gianna Baker" => "", "David Hong" => "https://dahong.gitlab.io/", ] CREATED = "28 June 2024" FILENAME = replace(basename(@__FILE__), r"#==#.*" => "") # CREATE MARKDOWN WITH BADGES function badge_md((label, message); color="blue") label_esc = replace(label, " " => "%20", "_" => "__", "-" => "--") message_esc = replace(message, " " => "%20", "_" => "__", "-" => "--") "![$label](https://img.shields.io/badge/$label_esc-$message_esc-$color)" end function badge_md(lblmsg, url; color="gold") badge = badge_md(lblmsg; color) return isempty(url) ? badge : "[$(badge)]($url)" end """ # $TITLE $(badge_md( "Download Notebook" => FILENAME, joinpath("..", FILENAME); color="blue" )) $(join([badge_md("Author" => NAME, URL) for (NAME, URL) in AUTHORS], '\n')) $(badge_md("Created" => CREATED; color="floralwhite")) """ |> Markdown.parse end # ╔═╡ 5c7c55d4-36b5-4703-9018-c334c9465d50 md""" This demo is based on and uses data from the following Tensor Toolbox demo: [`https://gitlab.com/tensors/tensor_data_monkey_bmi`](https://gitlab.com/tensors/tensor_data_monkey_bmi) Please see the license here: [`https://gitlab.com/tensors/tensor_data_monkey_bmi/-/blob/4870db135b362b2de499c63b48533abdd5185228/LICENSE`](https://gitlab.com/tensors/tensor_data_monkey_bmi/-/blob/4870db135b362b2de499c63b48533abdd5185228/LICENSE). Relevant papers: 1. S. Vyas, N. Even-Chen, S. D. Stavisky, S. I. Ryu, P. Nuyujukian, and K. V. Shenoy, Neural Population Dynamics Underlying Motor Learning Transfer, Elsevier BV, Vol. 97, No. 5, pp. 1177-1186.e3, March 2018, [`https://doi.org/10.1016/j.neuron.2018.01.040`](https://doi.org/10.1016/j.neuron.2018.01.040). 2. S. Vyas, D. J. O'Shea, S. I. Ryu, and K. V. Shenoy, Causal Role of Motor Preparation during Error-Driven Learning, Neuron, Elsevier BV, Vol. 106, No. 2, pp. 329-339.e4, April 2020, [`https://doi.org/10.1016/j.neuron.2020.01.019`](https://doi.org/10.1016/j.neuron.2020.01.019). 3. A. H. Williams, T. H. Kim, F. Wang, S. Vyas, S. I. Ryu, K. V. Shenoy, M. Schnitzer, T. G. Kolda, S. Ganguli, Unsupervised Discovery of Demixed, Low-dimensional Neural Dynamics across Multiple Timescales through Tensor Components Analysis, Neuron, 98(6):1099-1115, 2018, [`https://doi.org/10.1016/j.neuron.2018.05.015`](https://doi.org/10.1016/j.neuron.2018.05.015). """ # ╔═╡ 9210e64a-6939-4ed5-b6d1-41685535b2c8 md""" ## Loading the data The following code downloads the data file, extracts the data, and caches it. """ # ╔═╡ 2c945712-cbee-4a34-9a3b-ba602aa5fac0 data = cache(joinpath("monkey-bmi-cache", "data.bson")) do # Download file url = "https://gitlab.com/tensors/tensor_data_monkey_bmi/-/raw/main/data.mat" path = download(url, tempname(@__DIR__)) # Extract data data = matread(path) # Clean up and output data rm(path) data end # ╔═╡ 712c91c0-0e41-4661-99ca-a17e50ce4f80 X = data["X"] # ╔═╡ 224e7904-1004-4d9a-aec9-4dae9e797e3a md""" The data tensor `X` is $(join(size(X), '×')) and consists of measurements across $(size(X, 1)) neurons, $(size(X, 2)) time steps, and $(size(X, 3)) trials. """ # ╔═╡ 7e86d631-195c-4647-a99a-7fb2da4e79ff md""" Each trial has an associated angle (described more below). """ # ╔═╡ 62c3f1b5-5cf7-4b69-8db4-9f380067667b angles = dropdims(data["angle"]; dims=2) # ╔═╡ c2de9482-7a09-4540-83d3-8d434200683a md""" ## Understanding and visualizing the data """ # ╔═╡ 038c9c6a-a369-4504-8783-2a4c56c051ae html""" <figure style="margin:0"> <img src="https://gitlab.com/tensors/tensor_data_monkey_bmi/-/raw/main/graphics/monkey_bmi_graphic.png" alt="Monkey BMI Graphic" style="width: 50%;float:left" /> <img src="https://gitlab.com/tensors/tensor_data_monkey_bmi/-/raw/main/graphics/monkey_bmi_cursors.png" alt="Monkey BMI Cursors" style="width: 50%;float:left" /> <figcaption style="text-align:center"> Image Credit: <a href="https://gitlab.com/tensors/tensor_data_monkey_bmi"> https://gitlab.com/tensors/tensor_data_monkey_bmi </a> </figcaption> </figure> """ # ╔═╡ 52d5d6d5-f331-4d4b-a150-577706b3f87a md""" The data tensor is (pre-processed) neural data from a Brain-Machine Interface (BMI) experiment (illustrated above). In this experiment, a monkey uses the BMI to: 1. move the cursor to one of the four targets, then 2. hold the cursor on the target. The targets are identified by their positions along a circle: 0, 90, 180, and -90 degrees. While the monkey does these two tasks, the BMI records neural spike data for many neurons over time. This is then repeated for many trials. After pre-processing, the result is a $(join(size(X), '×')) data tensor of measurements across $(size(X, 1)) neurons, $(size(X, 2)) time steps, and $(size(X, 3)) trials. The first 100 time steps correspond to the first task (acquire a target) and the second 100 time steps correspond to the second task (hold the target). """ # ╔═╡ 1f95ecf2-f166-4e24-b124-d950cf4942d9 md""" The following figure plots the time series in the data tensor. Each subplot shows the time series from a single neuron (each thin curve is the time series for a single trial, colored by target). The thick curves show the average time series for each target. """ # ╔═╡ 14a0cf26-0003-45fe-b03c-8ad0140d26b2 angle_colors = Dict(0 => :tomato1, 90 => :gold, 180 => :darkorchid3, -90 => :cyan3); # ╔═╡ 92ac6f39-7946-49dd-bc8c-b7f7ee430d66 with_theme() do fig = Figure(; size = (800, 800)) # Plot time series for (idx, data) in enumerate(eachslice(X; dims=1)) ax = Axis(fig[fldmod1(idx < 4 ? idx : idx+2, 5)...]; title="Neuron $idx", xlabel="Time Steps", xticks=0:100:200, ylabel="Activity", yticks=LinearTicks(3) ) # Individual time series series!(ax, permutedims(data); color=[(angle_colors[angle], 0.7) for angle in angles], linewidth=0.2) # Average time series for angle in -90:90:180 lines!(ax, mean(eachcol(data)[angles .== angle]); color=angle_colors[angle], linewidth=1.5) end end # Tweak formatting linkxaxes!(contents(fig.layout)...) hidexdecorations!.(contents(fig[1:end-1, :]); ticks=false, grid=false) hideydecorations!.(contents(fig[:, 2:end]); ticklabels=false, ticks=false, grid=false) rowgap!(fig.layout, 10) colgap!(fig.layout, 10) # Add legend Legend(fig[1, 4:5], [LineElement(; color=angle_colors[angle]) for angle in [0, 90, 180, -90]], ["$(angle)°" for angle in [0, 90, 180, -90]], "Target Path Trajectory"; orientation = :horizontal ) fig end # ╔═╡ 9cc4dfb7-ceb7-4d0f-99f6-dc48825c93e1 md""" Note that the neurons have significantly varying overall levels of activity (e.g., neuron 1 and neuron 43 differ by roughly a factor of four). Likewise, there appears to generally be more activity when acquiring the target (the first 100 time steps) than when holding it (the second 100 time steps). """ # ╔═╡ f1266f66-0baf-45fa-aa20-a6279bff5cd8 md""" ## Run GCP Decomposition Generalized CP decomposition with respect to non-negative least-squares can be computed using `gcp` by setting the `loss` keyword argument. """ # ╔═╡ 2017d76d-1a5e-447d-b569-9edbb5c2cd13 M = gcp(X, 10; loss = GCPLosses.NonnegativeLeastSquares()) # ╔═╡ 401afd52-247f-4159-88c9-91b9ff75e925 md""" Now, we plot the (normalized) factors. """ # ╔═╡ 09b91268-7365-4cae-88ce-21ab78e0ce8c with_theme() do fig = Figure(; size = (700, 700)) # Plot factors (normalized by max) for row in 1:ncomps(M) barplot(fig[row,1], normalize(M.U[1][:,row], Inf); color = :orange) lines(fig[row,2], normalize(M.U[2][:,row], Inf); linewidth = 4) scatter(fig[row,3], normalize(M.U[3][:,row], Inf); color = [angle_colors[angle] for angle in angles]) end # Link and hide x axes linkxaxes!(contents(fig[:,1])...) linkxaxes!(contents(fig[:,2])...) linkxaxes!(contents(fig[:,3])...) hidexdecorations!.(contents(fig[1:end-1,:]); ticks=false, grid=false) # Link and hide y axes linkyaxes!(contents(fig.layout)...) hideydecorations!.(contents(fig.layout); ticks=false, grid=false) # Add legend Legend(fig[:, 4], [MarkerElement(; color=angle_colors[angle], marker=:circle) for angle in [0, 90, 180, -90]], ["$(angle)°" for angle in [0, 90, 180, -90]], ) # Add labels Label(fig[0,1], "Neurons"; tellwidth=false, fontsize=20) Label(fig[0,2], "Time"; tellwidth=false, fontsize=20) Label(fig[0,3], "Trials"; tellwidth=false, fontsize=20) # Tweak layout rowgap!(fig.layout, 10) colgap!(fig.layout, 10) colsize!(fig.layout, 2, Relative(1/4)) fig end # ╔═╡ 00ce15cd-404a-458e-b557-e1b5c55c41c2 md""" Note that the factors in the neuron mode reflect our earlier observation that the neurons are roughly in decreasing order of activity. Moreover, several factors in the trial mode reflect which target was selected even though the tensor decomposition was not given that information. """ # ╔═╡ 00000000-0000-0000-0000-000000000001 PLUTO_PROJECT_TOML_CONTENTS = """ [deps] CacheVariables = "9a355d7c-ffe9-11e8-019f-21dae27d1722" CairoMakie = "13f3f980-e62b-5c42-98c6-ff1f3baf88f0" Downloads = "f43a241f-c20a-4ad4-852c-f6b1247861c6" GCPDecompositions = "f59fb95b-1bc8-443b-b347-5e445a549f37" LinearAlgebra = "37e2e46d-f89d-539d-b4ee-838fcccc9c8e" MAT = "23992714-dd62-5051-b70f-ba57cb901cac" Statistics = "10745b16-79ce-11e8-11f9-7d13ad32a3b2" [compat] CacheVariables = "~0.1.4" CairoMakie = "~0.12.2" GCPDecompositions = "~0.2.0" MAT = "~0.10.7" """ # ╔═╡ 00000000-0000-0000-0000-000000000002 PLUTO_MANIFEST_TOML_CONTENTS = """ # This file is machine-generated - editing it directly is not advised julia_version = "1.10.4" manifest_format = "2.0" project_hash = "7e76945b51e60943527a8dbe1a791b7134dd1807" [[deps.AbstractFFTs]] deps = ["LinearAlgebra"] git-tree-sha1 = "d92ad398961a3ed262d8bf04a1a2b8340f915fef" uuid = "621f4979-c628-5d54-868e-fcf4e3e8185c" version = "1.5.0" weakdeps = ["ChainRulesCore", "Test"] [deps.AbstractFFTs.extensions] AbstractFFTsChainRulesCoreExt = "ChainRulesCore" AbstractFFTsTestExt = "Test" [[deps.AbstractTrees]] git-tree-sha1 = "2d9c9a55f9c93e8887ad391fbae72f8ef55e1177" uuid = "1520ce14-60c1-5f80-bbc7-55ef81b5835c" version = "0.4.5" [[deps.Adapt]] deps = ["LinearAlgebra", "Requires"] git-tree-sha1 = "6a55b747d1812e699320963ffde36f1ebdda4099" uuid = "79e6a3ab-5dfb-504d-930d-738a2a938a0e" version = "4.0.4" weakdeps = ["StaticArrays"] [deps.Adapt.extensions] AdaptStaticArraysExt = "StaticArrays" [[deps.AliasTables]] deps = ["PtrArrays", "Random"] git-tree-sha1 = "9876e1e164b144ca45e9e3198d0b689cadfed9ff" uuid = "66dad0bd-aa9a-41b7-9441-69ab47430ed8" version = "1.1.3" [[deps.Animations]] deps = ["Colors"] git-tree-sha1 = "e81c509d2c8e49592413bfb0bb3b08150056c79d" uuid = "27a7e980-b3e6-11e9-2bcd-0b925532e340" version = "0.4.1" [[deps.ArgTools]] uuid = "0dad84c5-d112-42e6-8d28-ef12dabb789f" version = "1.1.1" [[deps.Artifacts]] uuid = "56f22d72-fd6d-98f1-02f0-08ddc0907c33" [[deps.Automa]] deps = ["PrecompileTools", "TranscodingStreams"] git-tree-sha1 = "588e0d680ad1d7201d4c6a804dcb1cd9cba79fbb" uuid = "67c07d97-cdcb-5c2c-af73-a7f9c32a568b" version = "1.0.3" [[deps.AxisAlgorithms]] deps = ["LinearAlgebra", "Random", "SparseArrays", "WoodburyMatrices"] git-tree-sha1 = "01b8ccb13d68535d73d2b0c23e39bd23155fb712" uuid = "13072b0f-2c55-5437-9ae7-d433b7a33950" version = "1.1.0" [[deps.AxisArrays]] deps = ["Dates", "IntervalSets", "IterTools", "RangeArrays"] git-tree-sha1 = "16351be62963a67ac4083f748fdb3cca58bfd52f" uuid = "39de3d68-74b9-583c-8d2d-e117c070f3a9" version = "0.4.7" [[deps.BSON]] git-tree-sha1 = "4c3e506685c527ac6a54ccc0c8c76fd6f91b42fb" uuid = "fbb218c0-5317-5bc6-957e-2ee96dd4b1f0" version = "0.3.9" [[deps.Base64]] uuid = "2a0f44e3-6c83-55bd-87e4-b1978d98bd5f" [[deps.BufferedStreams]] git-tree-sha1 = "4ae47f9a4b1dc19897d3743ff13685925c5202ec" uuid = "e1450e63-4bb3-523b-b2a4-4ffa8c0fd77d" version = "1.2.1" [[deps.Bzip2_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"] git-tree-sha1 = "9e2a6b69137e6969bab0152632dcb3bc108c8bdd" uuid = "6e34b625-4abd-537c-b88f-471c36dfa7a0" version = "1.0.8+1" [[deps.CEnum]] git-tree-sha1 = "389ad5c84de1ae7cf0e28e381131c98ea87d54fc" uuid = "fa961155-64e5-5f13-b03f-caf6b980ea82" version = "0.5.0" [[deps.CRC32c]] uuid = "8bf52ea8-c179-5cab-976a-9e18b702a9bc" [[deps.CRlibm_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"] git-tree-sha1 = "e329286945d0cfc04456972ea732551869af1cfc" uuid = "4e9b3aee-d8a1-5a3d-ad8b-7d824db253f0" version = "1.0.1+0" [[deps.CacheVariables]] deps = ["BSON", "Logging"] git-tree-sha1 = "0e74f35a57b1ebd6f622e47a18d92255cbd45b91" uuid = "9a355d7c-ffe9-11e8-019f-21dae27d1722" version = "0.1.4" [[deps.Cairo]] deps = ["Cairo_jll", "Colors", "Glib_jll", "Graphics", "Libdl", "Pango_jll"] git-tree-sha1 = "d0b3f8b4ad16cb0a2988c6788646a5e6a17b6b1b" uuid = "159f3aea-2a34-519c-b102-8c37f9878175" version = "1.0.5" [[deps.CairoMakie]] deps = ["CRC32c", "Cairo", "Colors", "FileIO", "FreeType", "GeometryBasics", "LinearAlgebra", "Makie", "PrecompileTools"] git-tree-sha1 = "9e8eaaff3e5951d8c61b7c9261d935eb27e0304b" uuid = "13f3f980-e62b-5c42-98c6-ff1f3baf88f0" version = "0.12.2" [[deps.Cairo_jll]] deps = ["Artifacts", "Bzip2_jll", "CompilerSupportLibraries_jll", "Fontconfig_jll", "FreeType2_jll", "Glib_jll", "JLLWrappers", "LZO_jll", "Libdl", "Pixman_jll", "Xorg_libXext_jll", "Xorg_libXrender_jll", "Zlib_jll", "libpng_jll"] git-tree-sha1 = "a2f1c8c668c8e3cb4cca4e57a8efdb09067bb3fd" uuid = "83423d85-b0ee-5818-9007-b63ccbeb887a" version = "1.18.0+2" [[deps.Calculus]] deps = ["LinearAlgebra"] git-tree-sha1 = "f641eb0a4f00c343bbc32346e1217b86f3ce9dad" uuid = "49dc2e85-a5d0-5ad3-a950-438e2897f1b9" version = "0.5.1" [[deps.ChainRulesCore]] deps = ["Compat", "LinearAlgebra"] git-tree-sha1 = "71acdbf594aab5bbb2cec89b208c41b4c411e49f" uuid = "d360d2e6-b24c-11e9-a2a3-2a2ae2dbcce4" version = "1.24.0" weakdeps = ["SparseArrays"] [deps.ChainRulesCore.extensions] ChainRulesCoreSparseArraysExt = "SparseArrays" [[deps.CodecZlib]] deps = ["TranscodingStreams", "Zlib_jll"] git-tree-sha1 = "59939d8a997469ee05c4b4944560a820f9ba0d73" uuid = "944b1d66-785c-5afd-91f1-9de20f533193" version = "0.7.4" [[deps.ColorBrewer]] deps = ["Colors", "JSON", "Test"] git-tree-sha1 = "61c5334f33d91e570e1d0c3eb5465835242582c4" uuid = "a2cac450-b92f-5266-8821-25eda20663c8" version = "0.4.0" [[deps.ColorSchemes]] deps = ["ColorTypes", "ColorVectorSpace", "Colors", "FixedPointNumbers", "PrecompileTools", "Random"] git-tree-sha1 = "4b270d6465eb21ae89b732182c20dc165f8bf9f2" uuid = "35d6a980-a343-548e-a6ea-1d62b119f2f4" version = "3.25.0" [[deps.ColorTypes]] deps = ["FixedPointNumbers", "Random"] git-tree-sha1 = "b10d0b65641d57b8b4d5e234446582de5047050d" uuid = "3da002f7-5984-5a60-b8a6-cbb66c0b333f" version = "0.11.5" [[deps.ColorVectorSpace]] deps = ["ColorTypes", "FixedPointNumbers", "LinearAlgebra", "Requires", "Statistics", "TensorCore"] git-tree-sha1 = "a1f44953f2382ebb937d60dafbe2deea4bd23249" uuid = "c3611d14-8923-5661-9e6a-0046d554d3a4" version = "0.10.0" weakdeps = ["SpecialFunctions"] [deps.ColorVectorSpace.extensions] SpecialFunctionsExt = "SpecialFunctions" [[deps.Colors]] deps = ["ColorTypes", "FixedPointNumbers", "Reexport"] git-tree-sha1 = "362a287c3aa50601b0bc359053d5c2468f0e7ce0" uuid = "5ae59095-9a9b-59fe-a467-6f913c188581" version = "0.12.11" [[deps.CommonSubexpressions]] deps = ["MacroTools", "Test"] git-tree-sha1 = "7b8a93dba8af7e3b42fecabf646260105ac373f7" uuid = "bbf7d656-a473-5ed7-a52c-81e309532950" version = "0.3.0" [[deps.Compat]] deps = ["TOML", "UUIDs"] git-tree-sha1 = "b1c55339b7c6c350ee89f2c1604299660525b248" uuid = "34da2185-b29b-5c13-b0c7-acf172513d20" version = "4.15.0" weakdeps = ["Dates", "LinearAlgebra"] [deps.Compat.extensions] CompatLinearAlgebraExt = "LinearAlgebra" [[deps.CompilerSupportLibraries_jll]] deps = ["Artifacts", "Libdl"] uuid = "e66e0078-7015-5450-92f7-15fbd957f2ae" version = "1.1.1+0" [[deps.ConstructionBase]] deps = ["LinearAlgebra"] git-tree-sha1 = "260fd2400ed2dab602a7c15cf10c1933c59930a2" uuid = "187b0558-2788-49d3-abe0-74a17ed4e7c9" version = "1.5.5" weakdeps = ["IntervalSets", "StaticArrays"] [deps.ConstructionBase.extensions] ConstructionBaseIntervalSetsExt = "IntervalSets" ConstructionBaseStaticArraysExt = "StaticArrays" [[deps.Contour]] git-tree-sha1 = "439e35b0b36e2e5881738abc8857bd92ad6ff9a8" uuid = "d38c429a-6771-53c6-b99e-75d170b6e991" version = "0.6.3" [[deps.DataAPI]] git-tree-sha1 = "abe83f3a2f1b857aac70ef8b269080af17764bbe" uuid = "9a962f9c-6df0-11e9-0e5d-c546b8b5ee8a" version = "1.16.0" [[deps.DataStructures]] deps = ["Compat", "InteractiveUtils", "OrderedCollections"] git-tree-sha1 = "1d0a14036acb104d9e89698bd408f63ab58cdc82" uuid = "864edb3b-99cc-5e75-8d2d-829cb0a9cfe8" version = "0.18.20" [[deps.DataValueInterfaces]] git-tree-sha1 = "bfc1187b79289637fa0ef6d4436ebdfe6905cbd6" uuid = "e2d170a0-9d28-54be-80f0-106bbe20a464" version = "1.0.0" [[deps.Dates]] deps = ["Printf"] uuid = "ade2ca70-3891-5945-98fb-dc099432e06a" [[deps.DelaunayTriangulation]] deps = ["EnumX", "ExactPredicates", "Random"] git-tree-sha1 = "1755070db557ec2c37df2664c75600298b0c1cfc" uuid = "927a84f5-c5f4-47a5-9785-b46e178433df" version = "1.0.3" [[deps.DiffResults]] deps = ["StaticArraysCore"] git-tree-sha1 = "782dd5f4561f5d267313f23853baaaa4c52ea621" uuid = "163ba53b-c6d8-5494-b064-1a9d43ac40c5" version = "1.1.0" [[deps.DiffRules]] deps = ["IrrationalConstants", "LogExpFunctions", "NaNMath", "Random", "SpecialFunctions"] git-tree-sha1 = "23163d55f885173722d1e4cf0f6110cdbaf7e272" uuid = "b552c78f-8df3-52c6-915a-8e097449b14b" version = "1.15.1" [[deps.Distributed]] deps = ["Random", "Serialization", "Sockets"] uuid = "8ba89e20-285c-5b6f-9357-94700520ee1b" [[deps.Distributions]] deps = ["AliasTables", "FillArrays", "LinearAlgebra", "PDMats", "Printf", "QuadGK", "Random", "SpecialFunctions", "Statistics", "StatsAPI", "StatsBase", "StatsFuns"] git-tree-sha1 = "9c405847cc7ecda2dc921ccf18b47ca150d7317e" uuid = "31c24e10-a181-5473-b8eb-7969acd0382f" version = "0.25.109" [deps.Distributions.extensions] DistributionsChainRulesCoreExt = "ChainRulesCore" DistributionsDensityInterfaceExt = "DensityInterface" DistributionsTestExt = "Test" [deps.Distributions.weakdeps] ChainRulesCore = "d360d2e6-b24c-11e9-a2a3-2a2ae2dbcce4" DensityInterface = "b429d917-457f-4dbc-8f4c-0cc954292b1d" Test = "8dfed614-e22c-5e08-85e1-65c5234f0b40" [[deps.DocStringExtensions]] deps = ["LibGit2"] git-tree-sha1 = "2fb1e02f2b635d0845df5d7c167fec4dd739b00d" uuid = "ffbed154-4ef7-542d-bbb7-c09d3a79fcae" version = "0.9.3" [[deps.Downloads]] deps = ["ArgTools", "FileWatching", "LibCURL", "NetworkOptions"] uuid = "f43a241f-c20a-4ad4-852c-f6b1247861c6" version = "1.6.0" [[deps.DualNumbers]] deps = ["Calculus", "NaNMath", "SpecialFunctions"] git-tree-sha1 = "5837a837389fccf076445fce071c8ddaea35a566" uuid = "fa6b7ba4-c1ee-5f82-b5fc-ecf0adba8f74" version = "0.6.8" [[deps.EarCut_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"] git-tree-sha1 = "e3290f2d49e661fbd94046d7e3726ffcb2d41053" uuid = "5ae413db-bbd1-5e63-b57d-d24a61df00f5" version = "2.2.4+0" [[deps.EnumX]] git-tree-sha1 = "bdb1942cd4c45e3c678fd11569d5cccd80976237" uuid = "4e289a0a-7415-4d19-859d-a7e5c4648b56" version = "1.0.4" [[deps.ExactPredicates]] deps = ["IntervalArithmetic", "Random", "StaticArrays"] git-tree-sha1 = "b3f2ff58735b5f024c392fde763f29b057e4b025" uuid = "429591f6-91af-11e9-00e2-59fbe8cec110" version = "2.2.8" [[deps.Expat_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl"] git-tree-sha1 = "1c6317308b9dc757616f0b5cb379db10494443a7" uuid = "2e619515-83b5-522b-bb60-26c02a35a201" version = "2.6.2+0" [[deps.Extents]] git-tree-sha1 = "2140cd04483da90b2da7f99b2add0750504fc39c" uuid = "411431e0-e8b7-467b-b5e0-f676ba4f2910" version = "0.1.2" [[deps.FFMPEG_jll]] deps = ["Artifacts", "Bzip2_jll", "FreeType2_jll", "FriBidi_jll", "JLLWrappers", "LAME_jll", "Libdl", "Ogg_jll", "OpenSSL_jll", "Opus_jll", "PCRE2_jll", "Zlib_jll", "libaom_jll", "libass_jll", "libfdk_aac_jll", "libvorbis_jll", "x264_jll", "x265_jll"] git-tree-sha1 = "ab3f7e1819dba9434a3a5126510c8fda3a4e7000" uuid = "b22a6f82-2f65-5046-a5b2-351ab43fb4e5" version = "6.1.1+0" [[deps.FFTW]] deps = ["AbstractFFTs", "FFTW_jll", "LinearAlgebra", "MKL_jll", "Preferences", "Reexport"] git-tree-sha1 = "4820348781ae578893311153d69049a93d05f39d" uuid = "7a1cc6ca-52ef-59f5-83cd-3a7055c09341" version = "1.8.0" [[deps.FFTW_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"] git-tree-sha1 = "c6033cc3892d0ef5bb9cd29b7f2f0331ea5184ea" uuid = "f5851436-0d7a-5f13-b9de-f02708fd171a" version = "3.3.10+0" [[deps.FileIO]] deps = ["Pkg", "Requires", "UUIDs"] git-tree-sha1 = "82d8afa92ecf4b52d78d869f038ebfb881267322" uuid = "5789e2e9-d7fb-5bc7-8068-2c6fae9b9549" version = "1.16.3" [[deps.FilePaths]] deps = ["FilePathsBase", "MacroTools", "Reexport", "Requires"] git-tree-sha1 = "919d9412dbf53a2e6fe74af62a73ceed0bce0629" uuid = "8fc22ac5-c921-52a6-82fd-178b2807b824" version = "0.8.3" [[deps.FilePathsBase]] deps = ["Compat", "Dates", "Mmap", "Printf", "Test", "UUIDs"] git-tree-sha1 = "9f00e42f8d99fdde64d40c8ea5d14269a2e2c1aa" uuid = "48062228-2e41-5def-b9a4-89aafe57970f" version = "0.9.21" [[deps.FileWatching]] uuid = "7b1f6079-737a-58dc-b8bc-7a2ca5c1b5ee" [[deps.FillArrays]] deps = ["LinearAlgebra"] git-tree-sha1 = "0653c0a2396a6da5bc4766c43041ef5fd3efbe57" uuid = "1a297f60-69ca-5386-bcde-b61e274b549b" version = "1.11.0" weakdeps = ["PDMats", "SparseArrays", "Statistics"] [deps.FillArrays.extensions] FillArraysPDMatsExt = "PDMats" FillArraysSparseArraysExt = "SparseArrays" FillArraysStatisticsExt = "Statistics" [[deps.FixedPointNumbers]] deps = ["Statistics"] git-tree-sha1 = "05882d6995ae5c12bb5f36dd2ed3f61c98cbb172" uuid = "53c48c17-4a7d-5ca2-90c5-79b7896eea93" version = "0.8.5" [[deps.Fontconfig_jll]] deps = ["Artifacts", "Bzip2_jll", "Expat_jll", "FreeType2_jll", "JLLWrappers", "Libdl", "Libuuid_jll", "Zlib_jll"] git-tree-sha1 = "db16beca600632c95fc8aca29890d83788dd8b23" uuid = "a3f928ae-7b40-5064-980b-68af3947d34b" version = "2.13.96+0" [[deps.Format]] git-tree-sha1 = "9c68794ef81b08086aeb32eeaf33531668d5f5fc" uuid = "1fa38f19-a742-5d3f-a2b9-30dd87b9d5f8" version = "1.3.7" [[deps.ForwardDiff]] deps = ["CommonSubexpressions", "DiffResults", "DiffRules", "LinearAlgebra", "LogExpFunctions", "NaNMath", "Preferences", "Printf", "Random", "SpecialFunctions"] git-tree-sha1 = "cf0fe81336da9fb90944683b8c41984b08793dad" uuid = "f6369f11-7733-5829-9624-2563aa707210" version = "0.10.36" weakdeps = ["StaticArrays"] [deps.ForwardDiff.extensions] ForwardDiffStaticArraysExt = "StaticArrays" [[deps.FreeType]] deps = ["CEnum", "FreeType2_jll"] git-tree-sha1 = "907369da0f8e80728ab49c1c7e09327bf0d6d999" uuid = "b38be410-82b0-50bf-ab77-7b57e271db43" version = "4.1.1" [[deps.FreeType2_jll]] deps = ["Artifacts", "Bzip2_jll", "JLLWrappers", "Libdl", "Zlib_jll"] git-tree-sha1 = "5c1d8ae0efc6c2e7b1fc502cbe25def8f661b7bc" uuid = "d7e528f0-a631-5988-bf34-fe36492bcfd7" version = "2.13.2+0" [[deps.FreeTypeAbstraction]] deps = ["ColorVectorSpace", "Colors", "FreeType", "GeometryBasics"] git-tree-sha1 = "2493cdfd0740015955a8e46de4ef28f49460d8bc" uuid = "663a7486-cb36-511b-a19d-713bb74d65c9" version = "0.10.3" [[deps.FriBidi_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl"] git-tree-sha1 = "1ed150b39aebcc805c26b93a8d0122c940f64ce2" uuid = "559328eb-81f9-559d-9380-de523a88c83c" version = "1.0.14+0" [[deps.GCPDecompositions]] deps = ["Compat", "ForwardDiff", "IntervalSets", "LBFGSB", "LinearAlgebra", "Random"] git-tree-sha1 = "c29269f9bd5f2617e517fa26fc1ea5f314efa486" uuid = "f59fb95b-1bc8-443b-b347-5e445a549f37" version = "0.2.0" [deps.GCPDecompositions.extensions] LossFunctionsExt = "LossFunctions" [deps.GCPDecompositions.weakdeps] LossFunctions = "30fc2ffe-d236-52d8-8643-a9d8f7c094a7" [[deps.GeoInterface]] deps = ["Extents"] git-tree-sha1 = "801aef8228f7f04972e596b09d4dba481807c913" uuid = "cf35fbd7-0cd7-5166-be24-54bfbe79505f" version = "1.3.4" [[deps.GeometryBasics]] deps = ["EarCut_jll", "Extents", "GeoInterface", "IterTools", "LinearAlgebra", "StaticArrays", "StructArrays", "Tables"] git-tree-sha1 = "b62f2b2d76cee0d61a2ef2b3118cd2a3215d3134" uuid = "5c1252a2-5f33-56bf-86c9-59e7332b4326" version = "0.4.11" [[deps.Gettext_jll]] deps = ["Artifacts", "CompilerSupportLibraries_jll", "JLLWrappers", "Libdl", "Libiconv_jll", "Pkg", "XML2_jll"] git-tree-sha1 = "9b02998aba7bf074d14de89f9d37ca24a1a0b046" uuid = "78b55507-aeef-58d4-861c-77aaff3498b1" version = "0.21.0+0" [[deps.Glib_jll]] deps = ["Artifacts", "Gettext_jll", "JLLWrappers", "Libdl", "Libffi_jll", "Libiconv_jll", "Libmount_jll", "PCRE2_jll", "Zlib_jll"] git-tree-sha1 = "7c82e6a6cd34e9d935e9aa4051b66c6ff3af59ba" uuid = "7746bdde-850d-59dc-9ae8-88ece973131d" version = "2.80.2+0" [[deps.Graphics]] deps = ["Colors", "LinearAlgebra", "NaNMath"] git-tree-sha1 = "d61890399bc535850c4bf08e4e0d3a7ad0f21cbd" uuid = "a2bd30eb-e257-5431-a919-1863eab51364" version = "1.1.2" [[deps.Graphite2_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"] git-tree-sha1 = "344bf40dcab1073aca04aa0df4fb092f920e4011" uuid = "3b182d85-2403-5c21-9c21-1e1f0cc25472" version = "1.3.14+0" [[deps.GridLayoutBase]] deps = ["GeometryBasics", "InteractiveUtils", "Observables"] git-tree-sha1 = "fc713f007cff99ff9e50accba6373624ddd33588" uuid = "3955a311-db13-416c-9275-1d80ed98e5e9" version = "0.11.0" [[deps.Grisu]] git-tree-sha1 = "53bb909d1151e57e2484c3d1b53e19552b887fb2" uuid = "42e2da0e-8278-4e71-bc24-59509adca0fe" version = "1.0.2" [[deps.HDF5]] deps = ["Compat", "HDF5_jll", "Libdl", "MPIPreferences", "Mmap", "Preferences", "Printf", "Random", "Requires", "UUIDs"] git-tree-sha1 = "e856eef26cf5bf2b0f95f8f4fc37553c72c8641c" uuid = "f67ccb44-e63f-5c2f-98bd-6dc0ccc4ba2f" version = "0.17.2" [deps.HDF5.extensions] MPIExt = "MPI" [deps.HDF5.weakdeps] MPI = "da04e1cc-30fd-572f-bb4f-1f8673147195" [[deps.HDF5_jll]] deps = ["Artifacts", "CompilerSupportLibraries_jll", "JLLWrappers", "LLVMOpenMP_jll", "LazyArtifacts", "LibCURL_jll", "Libdl", "MPICH_jll", "MPIPreferences", "MPItrampoline_jll", "MicrosoftMPI_jll", "OpenMPI_jll", "OpenSSL_jll", "TOML", "Zlib_jll", "libaec_jll"] git-tree-sha1 = "38c8874692d48d5440d5752d6c74b0c6b0b60739" uuid = "0234f1f7-429e-5d53-9886-15a909be8d59" version = "1.14.2+1" [[deps.HarfBuzz_jll]] deps = ["Artifacts", "Cairo_jll", "Fontconfig_jll", "FreeType2_jll", "Glib_jll", "Graphite2_jll", "JLLWrappers", "Libdl", "Libffi_jll", "Pkg"] git-tree-sha1 = "129acf094d168394e80ee1dc4bc06ec835e510a3" uuid = "2e76f6c2-a576-52d4-95c1-20adfe4de566" version = "2.8.1+1" [[deps.Hwloc_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl"] git-tree-sha1 = "ca0f6bf568b4bfc807e7537f081c81e35ceca114" uuid = "e33a78d0-f292-5ffc-b300-72abe9b543c8" version = "2.10.0+0" [[deps.HypergeometricFunctions]] deps = ["DualNumbers", "LinearAlgebra", "OpenLibm_jll", "SpecialFunctions"] git-tree-sha1 = "f218fe3736ddf977e0e772bc9a586b2383da2685" uuid = "34004b35-14d8-5ef3-9330-4cdb6864b03a" version = "0.3.23" [[deps.ImageAxes]] deps = ["AxisArrays", "ImageBase", "ImageCore", "Reexport", "SimpleTraits"] git-tree-sha1 = "2e4520d67b0cef90865b3ef727594d2a58e0e1f8" uuid = "2803e5a7-5153-5ecf-9a86-9b4c37f5f5ac" version = "0.6.11" [[deps.ImageBase]] deps = ["ImageCore", "Reexport"] git-tree-sha1 = "eb49b82c172811fd2c86759fa0553a2221feb909" uuid = "c817782e-172a-44cc-b673-b171935fbb9e" version = "0.1.7" [[deps.ImageCore]] deps = ["ColorVectorSpace", "Colors", "FixedPointNumbers", "MappedArrays", "MosaicViews", "OffsetArrays", "PaddedViews", "PrecompileTools", "Reexport"] git-tree-sha1 = "b2a7eaa169c13f5bcae8131a83bc30eff8f71be0" uuid = "a09fc81d-aa75-5fe9-8630-4744c3626534" version = "0.10.2" [[deps.ImageIO]] deps = ["FileIO", "IndirectArrays", "JpegTurbo", "LazyModules", "Netpbm", "OpenEXR", "PNGFiles", "QOI", "Sixel", "TiffImages", "UUIDs"] git-tree-sha1 = "437abb322a41d527c197fa800455f79d414f0a3c" uuid = "82e4d734-157c-48bb-816b-45c225c6df19" version = "0.6.8" [[deps.ImageMetadata]] deps = ["AxisArrays", "ImageAxes", "ImageBase", "ImageCore"] git-tree-sha1 = "355e2b974f2e3212a75dfb60519de21361ad3cb7" uuid = "bc367c6b-8a6b-528e-b4bd-a4b897500b49" version = "0.9.9" [[deps.Imath_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl"] git-tree-sha1 = "0936ba688c6d201805a83da835b55c61a180db52" uuid = "905a6f67-0a94-5f89-b386-d35d92009cd1" version = "3.1.11+0" [[deps.IndirectArrays]] git-tree-sha1 = "012e604e1c7458645cb8b436f8fba789a51b257f" uuid = "9b13fd28-a010-5f03-acff-a1bbcff69959" version = "1.0.0" [[deps.Inflate]] git-tree-sha1 = "d1b1b796e47d94588b3757fe84fbf65a5ec4a80d" uuid = "d25df0c9-e2be-5dd7-82c8-3ad0b3e990b9" version = "0.1.5" [[deps.IntelOpenMP_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl"] git-tree-sha1 = "be50fe8df3acbffa0274a744f1a99d29c45a57f4" uuid = "1d5cc7b8-4909-519e-a0f8-d0f5ad9712d0" version = "2024.1.0+0" [[deps.InteractiveUtils]] deps = ["Markdown"] uuid = "b77e0a4c-d291-57a0-90e8-8db25a27a240" [[deps.Interpolations]] deps = ["Adapt", "AxisAlgorithms", "ChainRulesCore", "LinearAlgebra", "OffsetArrays", "Random", "Ratios", "Requires", "SharedArrays", "SparseArrays", "StaticArrays", "WoodburyMatrices"] git-tree-sha1 = "88a101217d7cb38a7b481ccd50d21876e1d1b0e0" uuid = "a98d9a8b-a2ab-59e6-89dd-64a1c18fca59" version = "0.15.1" weakdeps = ["Unitful"] [deps.Interpolations.extensions] InterpolationsUnitfulExt = "Unitful" [[deps.IntervalArithmetic]] deps = ["CRlibm_jll", "MacroTools", "RoundingEmulator"] git-tree-sha1 = "433b0bb201cd76cb087b017e49244f10394ebe9c" uuid = "d1acc4aa-44c8-5952-acd4-ba5d80a2a253" version = "0.22.14" [deps.IntervalArithmetic.extensions] IntervalArithmeticDiffRulesExt = "DiffRules" IntervalArithmeticForwardDiffExt = "ForwardDiff" IntervalArithmeticRecipesBaseExt = "RecipesBase" [deps.IntervalArithmetic.weakdeps] DiffRules = "b552c78f-8df3-52c6-915a-8e097449b14b" ForwardDiff = "f6369f11-7733-5829-9624-2563aa707210" RecipesBase = "3cdcf5f2-1ef4-517c-9805-6587b60abb01" [[deps.IntervalSets]] git-tree-sha1 = "dba9ddf07f77f60450fe5d2e2beb9854d9a49bd0" uuid = "8197267c-284f-5f27-9208-e0e47529a953" version = "0.7.10" [deps.IntervalSets.extensions] IntervalSetsRandomExt = "Random" IntervalSetsRecipesBaseExt = "RecipesBase" IntervalSetsStatisticsExt = "Statistics" [deps.IntervalSets.weakdeps] Random = "9a3f8284-a2c9-5f02-9a11-845980a1fd5c" RecipesBase = "3cdcf5f2-1ef4-517c-9805-6587b60abb01" Statistics = "10745b16-79ce-11e8-11f9-7d13ad32a3b2" [[deps.IrrationalConstants]] git-tree-sha1 = "630b497eafcc20001bba38a4651b327dcfc491d2" uuid = "92d709cd-6900-40b7-9082-c6be49f344b6" version = "0.2.2" [[deps.Isoband]] deps = ["isoband_jll"] git-tree-sha1 = "f9b6d97355599074dc867318950adaa6f9946137" uuid = "f1662d9f-8043-43de-a69a-05efc1cc6ff4" version = "0.1.1" [[deps.IterTools]] git-tree-sha1 = "42d5f897009e7ff2cf88db414a389e5ed1bdd023" uuid = "c8e1da08-722c-5040-9ed9-7db0dc04731e" version = "1.10.0" [[deps.IteratorInterfaceExtensions]] git-tree-sha1 = "a3f24677c21f5bbe9d2a714f95dcd58337fb2856" uuid = "82899510-4779-5014-852e-03e436cf321d" version = "1.0.0" [[deps.JLLWrappers]] deps = ["Artifacts", "Preferences"] git-tree-sha1 = "7e5d6779a1e09a36db2a7b6cff50942a0a7d0fca" uuid = "692b3bcd-3c85-4b1f-b108-f13ce0eb3210" version = "1.5.0" [[deps.JSON]] deps = ["Dates", "Mmap", "Parsers", "Unicode"] git-tree-sha1 = "31e996f0a15c7b280ba9f76636b3ff9e2ae58c9a" uuid = "682c06a0-de6a-54ab-a142-c8b1cf79cde6" version = "0.21.4" [[deps.JpegTurbo]] deps = ["CEnum", "FileIO", "ImageCore", "JpegTurbo_jll", "TOML"] git-tree-sha1 = "fa6d0bcff8583bac20f1ffa708c3913ca605c611" uuid = "b835a17e-a41a-41e7-81f0-2f016b05efe0" version = "0.1.5" [[deps.JpegTurbo_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl"] git-tree-sha1 = "c84a835e1a09b289ffcd2271bf2a337bbdda6637" uuid = "aacddb02-875f-59d6-b918-886e6ef4fbf8" version = "3.0.3+0" [[deps.KernelDensity]] deps = ["Distributions", "DocStringExtensions", "FFTW", "Interpolations", "StatsBase"] git-tree-sha1 = "7d703202e65efa1369de1279c162b915e245eed1" uuid = "5ab0869b-81aa-558d-bb23-cbf5423bbe9b" version = "0.6.9" [[deps.LAME_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl"] git-tree-sha1 = "170b660facf5df5de098d866564877e119141cbd" uuid = "c1c5ebd0-6772-5130-a774-d5fcae4a789d" version = "3.100.2+0" [[deps.LBFGSB]] deps = ["L_BFGS_B_jll"] git-tree-sha1 = "e2e6f53ee20605d0ea2be473480b7480bd5091b5" uuid = "5be7bae1-8223-5378-bac3-9e7378a2f6e6" version = "0.4.1" [[deps.LLVMOpenMP_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl"] git-tree-sha1 = "d986ce2d884d49126836ea94ed5bfb0f12679713" uuid = "1d63c593-3942-5779-bab2-d838dc0a180e" version = "15.0.7+0" [[deps.LZO_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl"] git-tree-sha1 = "70c5da094887fd2cae843b8db33920bac4b6f07d" uuid = "dd4b983a-f0e5-5f8d-a1b7-129d4a5fb1ac" version = "2.10.2+0" [[deps.L_BFGS_B_jll]] deps = ["Artifacts", "CompilerSupportLibraries_jll", "JLLWrappers", "Libdl", "Pkg"] git-tree-sha1 = "77feda930ed3f04b2b0fbb5bea89e69d3677c6b0" uuid = "81d17ec3-03a1-5e46-b53e-bddc35a13473" version = "3.0.1+0" [[deps.LaTeXStrings]] git-tree-sha1 = "50901ebc375ed41dbf8058da26f9de442febbbec" uuid = "b964fa9f-0449-5b57-a5c2-d3ea65f4040f" version = "1.3.1" [[deps.LazyArtifacts]] deps = ["Artifacts", "Pkg"] uuid = "4af54fe1-eca0-43a8-85a7-787d91b784e3" [[deps.LazyModules]] git-tree-sha1 = "a560dd966b386ac9ae60bdd3a3d3a326062d3c3e" uuid = "8cdb02fc-e678-4876-92c5-9defec4f444e" version = "0.3.1" [[deps.LibCURL]] deps = ["LibCURL_jll", "MozillaCACerts_jll"] uuid = "b27032c2-a3e7-50c8-80cd-2d36dbcbfd21" version = "0.6.4" [[deps.LibCURL_jll]] deps = ["Artifacts", "LibSSH2_jll", "Libdl", "MbedTLS_jll", "Zlib_jll", "nghttp2_jll"] uuid = "deac9b47-8bc7-5906-a0fe-35ac56dc84c0" version = "8.4.0+0" [[deps.LibGit2]] deps = ["Base64", "LibGit2_jll", "NetworkOptions", "Printf", "SHA"] uuid = "76f85450-5226-5b5a-8eaa-529ad045b433" [[deps.LibGit2_jll]] deps = ["Artifacts", "LibSSH2_jll", "Libdl", "MbedTLS_jll"] uuid = "e37daf67-58a4-590a-8e99-b0245dd2ffc5" version = "1.6.4+0" [[deps.LibSSH2_jll]] deps = ["Artifacts", "Libdl", "MbedTLS_jll"] uuid = "29816b5a-b9ab-546f-933c-edad1886dfa8" version = "1.11.0+1" [[deps.Libdl]] uuid = "8f399da3-3557-5675-b5ff-fb832c97cbdb" [[deps.Libffi_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"] git-tree-sha1 = "0b4a5d71f3e5200a7dff793393e09dfc2d874290" uuid = "e9f186c6-92d2-5b65-8a66-fee21dc1b490" version = "3.2.2+1" [[deps.Libgcrypt_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Libgpg_error_jll"] git-tree-sha1 = "9fd170c4bbfd8b935fdc5f8b7aa33532c991a673" uuid = "d4300ac3-e22c-5743-9152-c294e39db1e4" version = "1.8.11+0" [[deps.Libgpg_error_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl"] git-tree-sha1 = "fbb1f2bef882392312feb1ede3615ddc1e9b99ed" uuid = "7add5ba3-2f88-524e-9cd5-f83b8a55f7b8" version = "1.49.0+0" [[deps.Libiconv_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl"] git-tree-sha1 = "f9557a255370125b405568f9767d6d195822a175" uuid = "94ce4f54-9a6c-5748-9c1c-f9c7231a4531" version = "1.17.0+0" [[deps.Libmount_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl"] git-tree-sha1 = "0c4f9c4f1a50d8f35048fa0532dabbadf702f81e" uuid = "4b2f31a3-9ecc-558c-b454-b3730dcb73e9" version = "2.40.1+0" [[deps.Libuuid_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl"] git-tree-sha1 = "5ee6203157c120d79034c748a2acba45b82b8807" uuid = "38a345b3-de98-5d2b-a5d3-14cd9215e700" version = "2.40.1+0" [[deps.LinearAlgebra]] deps = ["Libdl", "OpenBLAS_jll", "libblastrampoline_jll"] uuid = "37e2e46d-f89d-539d-b4ee-838fcccc9c8e" [[deps.LogExpFunctions]] deps = ["DocStringExtensions", "IrrationalConstants", "LinearAlgebra"] git-tree-sha1 = "a2d09619db4e765091ee5c6ffe8872849de0feea" uuid = "2ab3a3ac-af41-5b50-aa03-7779005ae688" version = "0.3.28" [deps.LogExpFunctions.extensions] LogExpFunctionsChainRulesCoreExt = "ChainRulesCore" LogExpFunctionsChangesOfVariablesExt = "ChangesOfVariables" LogExpFunctionsInverseFunctionsExt = "InverseFunctions" [deps.LogExpFunctions.weakdeps] ChainRulesCore = "d360d2e6-b24c-11e9-a2a3-2a2ae2dbcce4" ChangesOfVariables = "9e997f8a-9a97-42d5-a9f1-ce6bfc15e2c0" InverseFunctions = "3587e190-3f89-42d0-90ee-14403ec27112" [[deps.Logging]] uuid = "56ddb016-857b-54e1-b83d-db4d58db5568" [[deps.MAT]] deps = ["BufferedStreams", "CodecZlib", "HDF5", "SparseArrays"] git-tree-sha1 = "1d2dd9b186742b0f317f2530ddcbf00eebb18e96" uuid = "23992714-dd62-5051-b70f-ba57cb901cac" version = "0.10.7" [[deps.MKL_jll]] deps = ["Artifacts", "IntelOpenMP_jll", "JLLWrappers", "LazyArtifacts", "Libdl", "oneTBB_jll"] git-tree-sha1 = "80b2833b56d466b3858d565adcd16a4a05f2089b" uuid = "856f044c-d86e-5d09-b602-aeab76dc8ba7" version = "2024.1.0+0" [[deps.MPICH_jll]] deps = ["Artifacts", "CompilerSupportLibraries_jll", "Hwloc_jll", "JLLWrappers", "LazyArtifacts", "Libdl", "MPIPreferences", "TOML"] git-tree-sha1 = "4099bb6809ac109bfc17d521dad33763bcf026b7" uuid = "7cb0a576-ebde-5e09-9194-50597f1243b4" version = "4.2.1+1" [[deps.MPIPreferences]] deps = ["Libdl", "Preferences"] git-tree-sha1 = "c105fe467859e7f6e9a852cb15cb4301126fac07" uuid = "3da0fdf6-3ccc-4f1b-acd9-58baa6c99267" version = "0.1.11" [[deps.MPItrampoline_jll]] deps = ["Artifacts", "CompilerSupportLibraries_jll", "JLLWrappers", "LazyArtifacts", "Libdl", "MPIPreferences", "TOML"] git-tree-sha1 = "8c35d5420193841b2f367e658540e8d9e0601ed0" uuid = "f1f71cc9-e9ae-5b93-9b94-4fe0e1ad3748" version = "5.4.0+0" [[deps.MacroTools]] deps = ["Markdown", "Random"] git-tree-sha1 = "2fa9ee3e63fd3a4f7a9a4f4744a52f4856de82df" uuid = "1914dd2f-81c6-5fcd-8719-6d5c9610ff09" version = "0.5.13" [[deps.Makie]] deps = ["Animations", "Base64", "CRC32c", "ColorBrewer", "ColorSchemes", "ColorTypes", "Colors", "Contour", "Dates", "DelaunayTriangulation", "Distributions", "DocStringExtensions", "Downloads", "FFMPEG_jll", "FileIO", "FilePaths", "FixedPointNumbers", "Format", "FreeType", "FreeTypeAbstraction", "GeometryBasics", "GridLayoutBase", "ImageIO", "InteractiveUtils", "IntervalSets", "Isoband", "KernelDensity", "LaTeXStrings", "LinearAlgebra", "MacroTools", "MakieCore", "Markdown", "MathTeXEngine", "Observables", "OffsetArrays", "Packing", "PlotUtils", "PolygonOps", "PrecompileTools", "Printf", "REPL", "Random", "RelocatableFolders", "Scratch", "ShaderAbstractions", "Showoff", "SignedDistanceFields", "SparseArrays", "Statistics", "StatsBase", "StatsFuns", "StructArrays", "TriplotBase", "UnicodeFun", "Unitful"] git-tree-sha1 = "ec3a60c9de787bc6ef119d13e07d4bfacceebb83" uuid = "ee78f7c6-11fb-53f2-987a-cfe4a2b5a57a" version = "0.21.2" [[deps.MakieCore]] deps = ["ColorTypes", "GeometryBasics", "IntervalSets", "Observables"] git-tree-sha1 = "c1c9da1a69f6c635a60581c98da252958c844d70" uuid = "20f20a25-4f0e-4fdf-b5d1-57303727442b" version = "0.8.2" [[deps.MappedArrays]] git-tree-sha1 = "2dab0221fe2b0f2cb6754eaa743cc266339f527e" uuid = "dbb5928d-eab1-5f90-85c2-b9b0edb7c900" version = "0.4.2" [[deps.Markdown]] deps = ["Base64"] uuid = "d6f4376e-aef5-505a-96c1-9c027394607a" [[deps.MathTeXEngine]] deps = ["AbstractTrees", "Automa", "DataStructures", "FreeTypeAbstraction", "GeometryBasics", "LaTeXStrings", "REPL", "RelocatableFolders", "UnicodeFun"] git-tree-sha1 = "1865d0b8a2d91477c8b16b49152a32764c7b1f5f" uuid = "0a4f8689-d25c-4efe-a92b-7142dfc1aa53" version = "0.6.0" [[deps.MbedTLS_jll]] deps = ["Artifacts", "Libdl"] uuid = "c8ffd9c3-330d-5841-b78e-0817d7145fa1" version = "2.28.2+1" [[deps.MicrosoftMPI_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"] git-tree-sha1 = "f12a29c4400ba812841c6ace3f4efbb6dbb3ba01" uuid = "9237b28f-5490-5468-be7b-bb81f5f5e6cf" version = "10.1.4+2" [[deps.Missings]] deps = ["DataAPI"] git-tree-sha1 = "ec4f7fbeab05d7747bdf98eb74d130a2a2ed298d" uuid = "e1d29d7a-bbdc-5cf2-9ac0-f12de2c33e28" version = "1.2.0" [[deps.Mmap]] uuid = "a63ad114-7e13-5084-954f-fe012c677804" [[deps.MosaicViews]] deps = ["MappedArrays", "OffsetArrays", "PaddedViews", "StackViews"] git-tree-sha1 = "7b86a5d4d70a9f5cdf2dacb3cbe6d251d1a61dbe" uuid = "e94cdb99-869f-56ef-bcf0-1ae2bcbe0389" version = "0.3.4" [[deps.MozillaCACerts_jll]] uuid = "14a3606d-f60d-562e-9121-12d972cd8159" version = "2023.1.10" [[deps.NaNMath]] deps = ["OpenLibm_jll"] git-tree-sha1 = "0877504529a3e5c3343c6f8b4c0381e57e4387e4" uuid = "77ba4419-2d1f-58cd-9bb1-8ffee604a2e3" version = "1.0.2" [[deps.Netpbm]] deps = ["FileIO", "ImageCore", "ImageMetadata"] git-tree-sha1 = "d92b107dbb887293622df7697a2223f9f8176fcd" uuid = "f09324ee-3d7c-5217-9330-fc30815ba969" version = "1.1.1" [[deps.NetworkOptions]] uuid = "ca575930-c2e3-43a9-ace4-1e988b2c1908" version = "1.2.0" [[deps.Observables]] git-tree-sha1 = "7438a59546cf62428fc9d1bc94729146d37a7225" uuid = "510215fc-4207-5dde-b226-833fc4488ee2" version = "0.5.5" [[deps.OffsetArrays]] git-tree-sha1 = "e64b4f5ea6b7389f6f046d13d4896a8f9c1ba71e" uuid = "6fe1bfb0-de20-5000-8ca7-80f57d26f881" version = "1.14.0" weakdeps = ["Adapt"] [deps.OffsetArrays.extensions] OffsetArraysAdaptExt = "Adapt" [[deps.Ogg_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"] git-tree-sha1 = "887579a3eb005446d514ab7aeac5d1d027658b8f" uuid = "e7412a2a-1a6e-54c0-be00-318e2571c051" version = "1.3.5+1" [[deps.OpenBLAS_jll]] deps = ["Artifacts", "CompilerSupportLibraries_jll", "Libdl"] uuid = "4536629a-c528-5b80-bd46-f80d51c5b363" version = "0.3.23+4" [[deps.OpenEXR]] deps = ["Colors", "FileIO", "OpenEXR_jll"] git-tree-sha1 = "327f53360fdb54df7ecd01e96ef1983536d1e633" uuid = "52e1d378-f018-4a11-a4be-720524705ac7" version = "0.3.2" [[deps.OpenEXR_jll]] deps = ["Artifacts", "Imath_jll", "JLLWrappers", "Libdl", "Zlib_jll"] git-tree-sha1 = "8292dd5c8a38257111ada2174000a33745b06d4e" uuid = "18a262bb-aa17-5467-a713-aee519bc75cb" version = "3.2.4+0" [[deps.OpenLibm_jll]] deps = ["Artifacts", "Libdl"] uuid = "05823500-19ac-5b8b-9628-191a04bc5112" version = "0.8.1+2" [[deps.OpenMPI_jll]] deps = ["Artifacts", "CompilerSupportLibraries_jll", "Hwloc_jll", "JLLWrappers", "LazyArtifacts", "Libdl", "MPIPreferences", "TOML", "Zlib_jll"] git-tree-sha1 = "a9de2f1fc98b92f8856c640bf4aec1ac9b2a0d86" uuid = "fe0851c0-eecd-5654-98d4-656369965a5c" version = "5.0.3+0" [[deps.OpenSSL_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl"] git-tree-sha1 = "a028ee3cb5641cccc4c24e90c36b0a4f7707bdf5" uuid = "458c3c95-2e84-50aa-8efc-19380b2a3a95" version = "3.0.14+0" [[deps.OpenSpecFun_jll]] deps = ["Artifacts", "CompilerSupportLibraries_jll", "JLLWrappers", "Libdl", "Pkg"] git-tree-sha1 = "13652491f6856acfd2db29360e1bbcd4565d04f1" uuid = "efe28fd5-8261-553b-a9e1-b2916fc3738e" version = "0.5.5+0" [[deps.Opus_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"] git-tree-sha1 = "51a08fb14ec28da2ec7a927c4337e4332c2a4720" uuid = "91d4177d-7536-5919-b921-800302f37372" version = "1.3.2+0" [[deps.OrderedCollections]] git-tree-sha1 = "dfdf5519f235516220579f949664f1bf44e741c5" uuid = "bac558e1-5e72-5ebc-8fee-abe8a469f55d" version = "1.6.3" [[deps.PCRE2_jll]] deps = ["Artifacts", "Libdl"] uuid = "efcefdf7-47ab-520b-bdef-62a2eaa19f15" version = "10.42.0+1" [[deps.PDMats]] deps = ["LinearAlgebra", "SparseArrays", "SuiteSparse"] git-tree-sha1 = "949347156c25054de2db3b166c52ac4728cbad65" uuid = "90014a1f-27ba-587c-ab20-58faa44d9150" version = "0.11.31" [[deps.PNGFiles]] deps = ["Base64", "CEnum", "ImageCore", "IndirectArrays", "OffsetArrays", "libpng_jll"] git-tree-sha1 = "67186a2bc9a90f9f85ff3cc8277868961fb57cbd" uuid = "f57f5aa1-a3ce-4bc8-8ab9-96f992907883" version = "0.4.3" [[deps.Packing]] deps = ["GeometryBasics"] git-tree-sha1 = "ec3edfe723df33528e085e632414499f26650501" uuid = "19eb6ba3-879d-56ad-ad62-d5c202156566" version = "0.5.0" [[deps.PaddedViews]] deps = ["OffsetArrays"] git-tree-sha1 = "0fac6313486baae819364c52b4f483450a9d793f" uuid = "5432bcbf-9aad-5242-b902-cca2824c8663" version = "0.5.12" [[deps.Pango_jll]] deps = ["Artifacts", "Cairo_jll", "Fontconfig_jll", "FreeType2_jll", "FriBidi_jll", "Glib_jll", "HarfBuzz_jll", "JLLWrappers", "Libdl"] git-tree-sha1 = "cb5a2ab6763464ae0f19c86c56c63d4a2b0f5bda" uuid = "36c8627f-9965-5494-a995-c6b170f724f3" version = "1.52.2+0" [[deps.Parsers]] deps = ["Dates", "PrecompileTools", "UUIDs"] git-tree-sha1 = "8489905bcdbcfac64d1daa51ca07c0d8f0283821" uuid = "69de0a69-1ddd-5017-9359-2bf0b02dc9f0" version = "2.8.1" [[deps.Pixman_jll]] deps = ["Artifacts", "CompilerSupportLibraries_jll", "JLLWrappers", "LLVMOpenMP_jll", "Libdl"] git-tree-sha1 = "35621f10a7531bc8fa58f74610b1bfb70a3cfc6b" uuid = "30392449-352a-5448-841d-b1acce4e97dc" version = "0.43.4+0" [[deps.Pkg]] deps = ["Artifacts", "Dates", "Downloads", "FileWatching", "LibGit2", "Libdl", "Logging", "Markdown", "Printf", "REPL", "Random", "SHA", "Serialization", "TOML", "Tar", "UUIDs", "p7zip_jll"] uuid = "44cfe95a-1eb2-52ea-b672-e2afdf69b78f" version = "1.10.0" [[deps.PkgVersion]] deps = ["Pkg"] git-tree-sha1 = "f9501cc0430a26bc3d156ae1b5b0c1b47af4d6da" uuid = "eebad327-c553-4316-9ea0-9fa01ccd7688" version = "0.3.3" [[deps.PlotUtils]] deps = ["ColorSchemes", "Colors", "Dates", "PrecompileTools", "Printf", "Random", "Reexport", "Statistics"] git-tree-sha1 = "7b1a9df27f072ac4c9c7cbe5efb198489258d1f5" uuid = "995b91a9-d308-5afd-9ec6-746e21dbc043" version = "1.4.1" [[deps.PolygonOps]] git-tree-sha1 = "77b3d3605fc1cd0b42d95eba87dfcd2bf67d5ff6" uuid = "647866c9-e3ac-4575-94e7-e3d426903924" version = "0.1.2" [[deps.PrecompileTools]] deps = ["Preferences"] git-tree-sha1 = "5aa36f7049a63a1528fe8f7c3f2113413ffd4e1f" uuid = "aea7be01-6a6a-4083-8856-8a6e6704d82a" version = "1.2.1" [[deps.Preferences]] deps = ["TOML"] git-tree-sha1 = "9306f6085165d270f7e3db02af26a400d580f5c6" uuid = "21216c6a-2e73-6563-6e65-726566657250" version = "1.4.3" [[deps.Printf]] deps = ["Unicode"] uuid = "de0858da-6303-5e67-8744-51eddeeeb8d7" [[deps.ProgressMeter]] deps = ["Distributed", "Printf"] git-tree-sha1 = "763a8ceb07833dd51bb9e3bbca372de32c0605ad" uuid = "92933f4c-e287-5a05-a399-4b506db050ca" version = "1.10.0" [[deps.PtrArrays]] git-tree-sha1 = "f011fbb92c4d401059b2212c05c0601b70f8b759" uuid = "43287f4e-b6f4-7ad1-bb20-aadabca52c3d" version = "1.2.0" [[deps.QOI]] deps = ["ColorTypes", "FileIO", "FixedPointNumbers"] git-tree-sha1 = "18e8f4d1426e965c7b532ddd260599e1510d26ce" uuid = "4b34888f-f399-49d4-9bb3-47ed5cae4e65" version = "1.0.0" [[deps.QuadGK]] deps = ["DataStructures", "LinearAlgebra"] git-tree-sha1 = "9b23c31e76e333e6fb4c1595ae6afa74966a729e" uuid = "1fd47b50-473d-5c70-9696-f719f8f3bcdc" version = "2.9.4" [[deps.REPL]] deps = ["InteractiveUtils", "Markdown", "Sockets", "Unicode"] uuid = "3fa0cd96-eef1-5676-8a61-b3b8758bbffb" [[deps.Random]] deps = ["SHA"] uuid = "9a3f8284-a2c9-5f02-9a11-845980a1fd5c" [[deps.RangeArrays]] git-tree-sha1 = "b9039e93773ddcfc828f12aadf7115b4b4d225f5" uuid = "b3c3ace0-ae52-54e7-9d0b-2c1406fd6b9d" version = "0.3.2" [[deps.Ratios]] deps = ["Requires"] git-tree-sha1 = "1342a47bf3260ee108163042310d26f2be5ec90b" uuid = "c84ed2f1-dad5-54f0-aa8e-dbefe2724439" version = "0.4.5" weakdeps = ["FixedPointNumbers"] [deps.Ratios.extensions] RatiosFixedPointNumbersExt = "FixedPointNumbers" [[deps.Reexport]] git-tree-sha1 = "45e428421666073eab6f2da5c9d310d99bb12f9b" uuid = "189a3867-3050-52da-a836-e630ba90ab69" version = "1.2.2" [[deps.RelocatableFolders]] deps = ["SHA", "Scratch"] git-tree-sha1 = "ffdaf70d81cf6ff22c2b6e733c900c3321cab864" uuid = "05181044-ff0b-4ac5-8273-598c1e38db00" version = "1.0.1" [[deps.Requires]] deps = ["UUIDs"] git-tree-sha1 = "838a3a4188e2ded87a4f9f184b4b0d78a1e91cb7" uuid = "ae029012-a4dd-5104-9daa-d747884805df" version = "1.3.0" [[deps.Rmath]] deps = ["Random", "Rmath_jll"] git-tree-sha1 = "f65dcb5fa46aee0cf9ed6274ccbd597adc49aa7b" uuid = "79098fc4-a85e-5d69-aa6a-4863f24498fa" version = "0.7.1" [[deps.Rmath_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl"] git-tree-sha1 = "d483cd324ce5cf5d61b77930f0bbd6cb61927d21" uuid = "f50d1b31-88e8-58de-be2c-1cc44531875f" version = "0.4.2+0" [[deps.RoundingEmulator]] git-tree-sha1 = "40b9edad2e5287e05bd413a38f61a8ff55b9557b" uuid = "5eaf0fd0-dfba-4ccb-bf02-d820a40db705" version = "0.2.1" [[deps.SHA]] uuid = "ea8e919c-243c-51af-8825-aaa63cd721ce" version = "0.7.0" [[deps.SIMD]] deps = ["PrecompileTools"] git-tree-sha1 = "2803cab51702db743f3fda07dd1745aadfbf43bd" uuid = "fdea26ae-647d-5447-a871-4b548cad5224" version = "3.5.0" [[deps.Scratch]] deps = ["Dates"] git-tree-sha1 = "3bac05bc7e74a75fd9cba4295cde4045d9fe2386" uuid = "6c6a2e73-6563-6170-7368-637461726353" version = "1.2.1" [[deps.Serialization]] uuid = "9e88b42a-f829-5b0c-bbe9-9e923198166b" [[deps.ShaderAbstractions]] deps = ["ColorTypes", "FixedPointNumbers", "GeometryBasics", "LinearAlgebra", "Observables", "StaticArrays", "StructArrays", "Tables"] git-tree-sha1 = "79123bc60c5507f035e6d1d9e563bb2971954ec8" uuid = "65257c39-d410-5151-9873-9b3e5be5013e" version = "0.4.1" [[deps.SharedArrays]] deps = ["Distributed", "Mmap", "Random", "Serialization"] uuid = "1a1011a3-84de-559e-8e89-a11a2f7dc383" [[deps.Showoff]] deps = ["Dates", "Grisu"] git-tree-sha1 = "91eddf657aca81df9ae6ceb20b959ae5653ad1de" uuid = "992d4aef-0814-514b-bc4d-f2e9a6c4116f" version = "1.0.3" [[deps.SignedDistanceFields]] deps = ["Random", "Statistics", "Test"] git-tree-sha1 = "d263a08ec505853a5ff1c1ebde2070419e3f28e9" uuid = "73760f76-fbc4-59ce-8f25-708e95d2df96" version = "0.4.0" [[deps.SimpleTraits]] deps = ["InteractiveUtils", "MacroTools"] git-tree-sha1 = "5d7e3f4e11935503d3ecaf7186eac40602e7d231" uuid = "699a6c99-e7fa-54fc-8d76-47d257e15c1d" version = "0.9.4" [[deps.Sixel]] deps = ["Dates", "FileIO", "ImageCore", "IndirectArrays", "OffsetArrays", "REPL", "libsixel_jll"] git-tree-sha1 = "2da10356e31327c7096832eb9cd86307a50b1eb6" uuid = "45858cf5-a6b0-47a3-bbea-62219f50df47" version = "0.1.3" [[deps.Sockets]] uuid = "6462fe0b-24de-5631-8697-dd941f90decc" [[deps.SortingAlgorithms]] deps = ["DataStructures"] git-tree-sha1 = "66e0a8e672a0bdfca2c3f5937efb8538b9ddc085" uuid = "a2af1166-a08f-5f64-846c-94a0d3cef48c" version = "1.2.1" [[deps.SparseArrays]] deps = ["Libdl", "LinearAlgebra", "Random", "Serialization", "SuiteSparse_jll"] uuid = "2f01184e-e22b-5df5-ae63-d93ebab69eaf" version = "1.10.0" [[deps.SpecialFunctions]] deps = ["IrrationalConstants", "LogExpFunctions", "OpenLibm_jll", "OpenSpecFun_jll"] git-tree-sha1 = "2f5d4697f21388cbe1ff299430dd169ef97d7e14" uuid = "276daf66-3868-5448-9aa4-cd146d93841b" version = "2.4.0" weakdeps = ["ChainRulesCore"] [deps.SpecialFunctions.extensions] SpecialFunctionsChainRulesCoreExt = "ChainRulesCore" [[deps.StackViews]] deps = ["OffsetArrays"] git-tree-sha1 = "46e589465204cd0c08b4bd97385e4fa79a0c770c" uuid = "cae243ae-269e-4f55-b966-ac2d0dc13c15" version = "0.1.1" [[deps.StaticArrays]] deps = ["LinearAlgebra", "PrecompileTools", "Random", "StaticArraysCore"] git-tree-sha1 = "6e00379a24597be4ae1ee6b2d882e15392040132" uuid = "90137ffa-7385-5640-81b9-e52037218182" version = "1.9.5" weakdeps = ["ChainRulesCore", "Statistics"] [deps.StaticArrays.extensions] StaticArraysChainRulesCoreExt = "ChainRulesCore" StaticArraysStatisticsExt = "Statistics" [[deps.StaticArraysCore]] git-tree-sha1 = "192954ef1208c7019899fbf8049e717f92959682" uuid = "1e83bf80-4336-4d27-bf5d-d5a4f845583c" version = "1.4.3" [[deps.Statistics]] deps = ["LinearAlgebra", "SparseArrays"] uuid = "10745b16-79ce-11e8-11f9-7d13ad32a3b2" version = "1.10.0" [[deps.StatsAPI]] deps = ["LinearAlgebra"] git-tree-sha1 = "1ff449ad350c9c4cbc756624d6f8a8c3ef56d3ed" uuid = "82ae8749-77ed-4fe6-ae5f-f523153014b0" version = "1.7.0" [[deps.StatsBase]] deps = ["DataAPI", "DataStructures", "LinearAlgebra", "LogExpFunctions", "Missings", "Printf", "Random", "SortingAlgorithms", "SparseArrays", "Statistics", "StatsAPI"] git-tree-sha1 = "5cf7606d6cef84b543b483848d4ae08ad9832b21" uuid = "2913bbd2-ae8a-5f71-8c99-4fb6c76f3a91" version = "0.34.3" [[deps.StatsFuns]] deps = ["HypergeometricFunctions", "IrrationalConstants", "LogExpFunctions", "Reexport", "Rmath", "SpecialFunctions"] git-tree-sha1 = "cef0472124fab0695b58ca35a77c6fb942fdab8a" uuid = "4c63d2b9-4356-54db-8cca-17b64c39e42c" version = "1.3.1" [deps.StatsFuns.extensions] StatsFunsChainRulesCoreExt = "ChainRulesCore" StatsFunsInverseFunctionsExt = "InverseFunctions" [deps.StatsFuns.weakdeps] ChainRulesCore = "d360d2e6-b24c-11e9-a2a3-2a2ae2dbcce4" InverseFunctions = "3587e190-3f89-42d0-90ee-14403ec27112" [[deps.StructArrays]] deps = ["ConstructionBase", "DataAPI", "Tables"] git-tree-sha1 = "f4dc295e983502292c4c3f951dbb4e985e35b3be" uuid = "09ab397b-f2b6-538f-b94a-2f83cf4a842a" version = "0.6.18" [deps.StructArrays.extensions] StructArraysAdaptExt = "Adapt" StructArraysGPUArraysCoreExt = "GPUArraysCore" StructArraysSparseArraysExt = "SparseArrays" StructArraysStaticArraysExt = "StaticArrays" [deps.StructArrays.weakdeps] Adapt = "79e6a3ab-5dfb-504d-930d-738a2a938a0e" GPUArraysCore = "46192b85-c4d5-4398-a991-12ede77f4527" SparseArrays = "2f01184e-e22b-5df5-ae63-d93ebab69eaf" StaticArrays = "90137ffa-7385-5640-81b9-e52037218182" [[deps.SuiteSparse]] deps = ["Libdl", "LinearAlgebra", "Serialization", "SparseArrays"] uuid = "4607b0f0-06f3-5cda-b6b1-a6196a1729e9" [[deps.SuiteSparse_jll]] deps = ["Artifacts", "Libdl", "libblastrampoline_jll"] uuid = "bea87d4a-7f5b-5778-9afe-8cc45184846c" version = "7.2.1+1" [[deps.TOML]] deps = ["Dates"] uuid = "fa267f1f-6049-4f14-aa54-33bafae1ed76" version = "1.0.3" [[deps.TableTraits]] deps = ["IteratorInterfaceExtensions"] git-tree-sha1 = "c06b2f539df1c6efa794486abfb6ed2022561a39" uuid = "3783bdb8-4a98-5b6b-af9a-565f29a5fe9c" version = "1.0.1" [[deps.Tables]] deps = ["DataAPI", "DataValueInterfaces", "IteratorInterfaceExtensions", "LinearAlgebra", "OrderedCollections", "TableTraits"] git-tree-sha1 = "cb76cf677714c095e535e3501ac7954732aeea2d" uuid = "bd369af6-aec1-5ad0-b16a-f7cc5008161c" version = "1.11.1" [[deps.Tar]] deps = ["ArgTools", "SHA"] uuid = "a4e569a6-e804-4fa4-b0f3-eef7a1d5b13e" version = "1.10.0" [[deps.TensorCore]] deps = ["LinearAlgebra"] git-tree-sha1 = "1feb45f88d133a655e001435632f019a9a1bcdb6" uuid = "62fd8b95-f654-4bbd-a8a5-9c27f68ccd50" version = "0.1.1" [[deps.Test]] deps = ["InteractiveUtils", "Logging", "Random", "Serialization"] uuid = "8dfed614-e22c-5e08-85e1-65c5234f0b40" [[deps.TiffImages]] deps = ["ColorTypes", "DataStructures", "DocStringExtensions", "FileIO", "FixedPointNumbers", "IndirectArrays", "Inflate", "Mmap", "OffsetArrays", "PkgVersion", "ProgressMeter", "SIMD", "UUIDs"] git-tree-sha1 = "bc7fd5c91041f44636b2c134041f7e5263ce58ae" uuid = "731e570b-9d59-4bfa-96dc-6df516fadf69" version = "0.10.0" [[deps.TranscodingStreams]] git-tree-sha1 = "a947ea21087caba0a798c5e494d0bb78e3a1a3a0" uuid = "3bb67fe8-82b1-5028-8e26-92a6c54297fa" version = "0.10.9" weakdeps = ["Random", "Test"] [deps.TranscodingStreams.extensions] TestExt = ["Test", "Random"] [[deps.TriplotBase]] git-tree-sha1 = "4d4ed7f294cda19382ff7de4c137d24d16adc89b" uuid = "981d1d27-644d-49a2-9326-4793e63143c3" version = "0.1.0" [[deps.UUIDs]] deps = ["Random", "SHA"] uuid = "cf7118a7-6976-5b1a-9a39-7adc72f591a4" [[deps.Unicode]] uuid = "4ec0a83e-493e-50e2-b9ac-8f72acf5a8f5" [[deps.UnicodeFun]] deps = ["REPL"] git-tree-sha1 = "53915e50200959667e78a92a418594b428dffddf" uuid = "1cfade01-22cf-5700-b092-accc4b62d6e1" version = "0.4.1" [[deps.Unitful]] deps = ["Dates", "LinearAlgebra", "Random"] git-tree-sha1 = "dd260903fdabea27d9b6021689b3cd5401a57748" uuid = "1986cc42-f94f-5a68-af5c-568840ba703d" version = "1.20.0" [deps.Unitful.extensions] ConstructionBaseUnitfulExt = "ConstructionBase" InverseFunctionsUnitfulExt = "InverseFunctions" [deps.Unitful.weakdeps] ConstructionBase = "187b0558-2788-49d3-abe0-74a17ed4e7c9" InverseFunctions = "3587e190-3f89-42d0-90ee-14403ec27112" [[deps.WoodburyMatrices]] deps = ["LinearAlgebra", "SparseArrays"] git-tree-sha1 = "c1a7aa6219628fcd757dede0ca95e245c5cd9511" uuid = "efce3f68-66dc-5838-9240-27a6d6f5f9b6" version = "1.0.0" [[deps.XML2_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Libiconv_jll", "Zlib_jll"] git-tree-sha1 = "52ff2af32e591541550bd753c0da8b9bc92bb9d9" uuid = "02c8fc9c-b97f-50b9-bbe4-9be30ff0a78a" version = "2.12.7+0" [[deps.XSLT_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Libgcrypt_jll", "Libgpg_error_jll", "Libiconv_jll", "Pkg", "XML2_jll", "Zlib_jll"] git-tree-sha1 = "91844873c4085240b95e795f692c4cec4d805f8a" uuid = "aed1982a-8fda-507f-9586-7b0439959a61" version = "1.1.34+0" [[deps.Xorg_libX11_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Xorg_libxcb_jll", "Xorg_xtrans_jll"] git-tree-sha1 = "afead5aba5aa507ad5a3bf01f58f82c8d1403495" uuid = "4f6342f7-b3d2-589e-9d20-edeb45f2b2bc" version = "1.8.6+0" [[deps.Xorg_libXau_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl"] git-tree-sha1 = "6035850dcc70518ca32f012e46015b9beeda49d8" uuid = "0c0b7dd1-d40b-584c-a123-a41640f87eec" version = "1.0.11+0" [[deps.Xorg_libXdmcp_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl"] git-tree-sha1 = "34d526d318358a859d7de23da945578e8e8727b7" uuid = "a3789734-cfe1-5b06-b2d0-1dd0d9d62d05" version = "1.1.4+0" [[deps.Xorg_libXext_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Xorg_libX11_jll"] git-tree-sha1 = "d2d1a5c49fae4ba39983f63de6afcbea47194e85" uuid = "1082639a-0dae-5f34-9b06-72781eeb8cb3" version = "1.3.6+0" [[deps.Xorg_libXrender_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Xorg_libX11_jll"] git-tree-sha1 = "47e45cd78224c53109495b3e324df0c37bb61fbe" uuid = "ea2f1a96-1ddc-540d-b46f-429655e07cfa" version = "0.9.11+0" [[deps.Xorg_libpthread_stubs_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl"] git-tree-sha1 = "8fdda4c692503d44d04a0603d9ac0982054635f9" uuid = "14d82f49-176c-5ed1-bb49-ad3f5cbd8c74" version = "0.1.1+0" [[deps.Xorg_libxcb_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "XSLT_jll", "Xorg_libXau_jll", "Xorg_libXdmcp_jll", "Xorg_libpthread_stubs_jll"] git-tree-sha1 = "b4bfde5d5b652e22b9c790ad00af08b6d042b97d" uuid = "c7cfdc94-dc32-55de-ac96-5a1b8d977c5b" version = "1.15.0+0" [[deps.Xorg_xtrans_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl"] git-tree-sha1 = "e92a1a012a10506618f10b7047e478403a046c77" uuid = "c5fb5394-a638-5e4d-96e5-b29de1b5cf10" version = "1.5.0+0" [[deps.Zlib_jll]] deps = ["Libdl"] uuid = "83775a58-1f1d-513f-b197-d71354ab007a" version = "1.2.13+1" [[deps.isoband_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"] git-tree-sha1 = "51b5eeb3f98367157a7a12a1fb0aa5328946c03c" uuid = "9a68df92-36a6-505f-a73e-abb412b6bfb4" version = "0.2.3+0" [[deps.libaec_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl"] git-tree-sha1 = "46bf7be2917b59b761247be3f317ddf75e50e997" uuid = "477f73a3-ac25-53e9-8cc3-50b2fa2566f0" version = "1.1.2+0" [[deps.libaom_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl"] git-tree-sha1 = "1827acba325fdcdf1d2647fc8d5301dd9ba43a9d" uuid = "a4ae2306-e953-59d6-aa16-d00cac43593b" version = "3.9.0+0" [[deps.libass_jll]] deps = ["Artifacts", "Bzip2_jll", "FreeType2_jll", "FriBidi_jll", "HarfBuzz_jll", "JLLWrappers", "Libdl", "Pkg", "Zlib_jll"] git-tree-sha1 = "5982a94fcba20f02f42ace44b9894ee2b140fe47" uuid = "0ac62f75-1d6f-5e53-bd7c-93b484bb37c0" version = "0.15.1+0" [[deps.libblastrampoline_jll]] deps = ["Artifacts", "Libdl"] uuid = "8e850b90-86db-534c-a0d3-1478176c7d93" version = "5.8.0+1" [[deps.libfdk_aac_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"] git-tree-sha1 = "daacc84a041563f965be61859a36e17c4e4fcd55" uuid = "f638f0a6-7fb0-5443-88ba-1cc74229b280" version = "2.0.2+0" [[deps.libpng_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Zlib_jll"] git-tree-sha1 = "d7015d2e18a5fd9a4f47de711837e980519781a4" uuid = "b53b4c65-9356-5827-b1ea-8c7a1a84506f" version = "1.6.43+1" [[deps.libsixel_jll]] deps = ["Artifacts", "JLLWrappers", "JpegTurbo_jll", "Libdl", "Pkg", "libpng_jll"] git-tree-sha1 = "d4f63314c8aa1e48cd22aa0c17ed76cd1ae48c3c" uuid = "075b6546-f08a-558a-be8f-8157d0f608a5" version = "1.10.3+0" [[deps.libvorbis_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Ogg_jll", "Pkg"] git-tree-sha1 = "b910cb81ef3fe6e78bf6acee440bda86fd6ae00c" uuid = "f27f6e37-5d2b-51aa-960f-b287f2bc3b7a" version = "1.3.7+1" [[deps.nghttp2_jll]] deps = ["Artifacts", "Libdl"] uuid = "8e850ede-7688-5339-a07c-302acd2aaf8d" version = "1.52.0+1" [[deps.oneTBB_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl"] git-tree-sha1 = "7d0ea0f4895ef2f5cb83645fa689e52cb55cf493" uuid = "1317d2d5-d96f-522e-a858-c73665f53c3e" version = "2021.12.0+0" [[deps.p7zip_jll]] deps = ["Artifacts", "Libdl"] uuid = "3f19e933-33d8-53b3-aaab-bd5110c3b7a0" version = "17.4.0+2" [[deps.x264_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"] git-tree-sha1 = "4fea590b89e6ec504593146bf8b988b2c00922b2" uuid = "1270edf5-f2f9-52d2-97e9-ab00b5d0237a" version = "2021.5.5+0" [[deps.x265_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"] git-tree-sha1 = "ee567a171cce03570d77ad3a43e90218e38937a9" uuid = "dfaa095f-4041-5dcd-9319-2fabd8486b76" version = "3.5.0+0" """ # ╔═╡ Cell order: # ╟─f9d70766-96c9-4d06-bc78-a2b1761cb9f6 # ╟─5c7c55d4-36b5-4703-9018-c334c9465d50 # ╠═fdfb1464-908f-437b-aaa4-5a9e32dd2feb # ╟─9210e64a-6939-4ed5-b6d1-41685535b2c8 # ╠═a1db5ffd-620a-4a70-b859-e90c9d6aa5fb # ╠═066b6f99-5135-49d2-a7de-cfb22ed72a3d # ╠═2c945712-cbee-4a34-9a3b-ba602aa5fac0 # ╟─224e7904-1004-4d9a-aec9-4dae9e797e3a # ╠═712c91c0-0e41-4661-99ca-a17e50ce4f80 # ╟─7e86d631-195c-4647-a99a-7fb2da4e79ff # ╠═62c3f1b5-5cf7-4b69-8db4-9f380067667b # ╟─c2de9482-7a09-4540-83d3-8d434200683a # ╟─038c9c6a-a369-4504-8783-2a4c56c051ae # ╟─52d5d6d5-f331-4d4b-a150-577706b3f87a # ╟─1f95ecf2-f166-4e24-b124-d950cf4942d9 # ╠═14a0cf26-0003-45fe-b03c-8ad0140d26b2 # ╠═92ac6f39-7946-49dd-bc8c-b7f7ee430d66 # ╟─9cc4dfb7-ceb7-4d0f-99f6-dc48825c93e1 # ╟─f1266f66-0baf-45fa-aa20-a6279bff5cd8 # ╠═2017d76d-1a5e-447d-b569-9edbb5c2cd13 # ╟─401afd52-247f-4159-88c9-91b9ff75e925 # ╠═09b91268-7365-4cae-88ce-21ab78e0ce8c # ╟─00ce15cd-404a-458e-b557-e1b5c55c41c2 # ╟─00000000-0000-0000-0000-000000000001 # ╟─00000000-0000-0000-0000-000000000002
GCPDecompositions
https://github.com/dahong67/GCPDecompositions.jl.git
[ "MIT" ]
0.3.0
02db2030eaba15350b05279e79b86bbd4d3a39bc
code
452
module LossFunctionsExt using GCPDecompositions, LossFunctions using IntervalSets const SupportedLosses = Union{LossFunctions.DistanceLoss,LossFunctions.MarginLoss} GCPLosses.value(loss::SupportedLosses, x, m) = loss(m, x) GCPLosses.deriv(loss::SupportedLosses, x, m) = LossFunctions.deriv(loss, m, x) GCPLosses.domain(::LossFunctions.DistanceLoss) = Interval(-Inf, Inf) GCPLosses.domain(::LossFunctions.MarginLoss) = Interval(-Inf, Inf) end
GCPDecompositions
https://github.com/dahong67/GCPDecompositions.jl.git
[ "MIT" ]
0.3.0
02db2030eaba15350b05279e79b86bbd4d3a39bc
code
3586
""" Generalized CP Decomposition module. Provides approximate CP tensor decomposition with respect to general losses. """ module GCPDecompositions # Imports import Base: ndims, size, show, summary import Base: getindex import LinearAlgebra: norm using IntervalSets: Interval using Random: default_rng # Exports export CPD export ncomps export gcp export GCPLosses, GCPConstraints, GCPAlgorithms include("tensor-kernels.jl") include("cpd.jl") include("gcp-losses.jl") include("gcp-constraints.jl") include("gcp-algorithms.jl") if !isdefined(Base, :get_extension) include("../ext/LossFunctionsExt.jl") end # Main fitting function """ gcp(X::Array, r; loss = GCPLosses.LeastSquares(), constraints = default_constraints(loss), algorithm = default_algorithm(X, r, loss, constraints), init = default_init(X, r, loss, constraints, algorithm)) Compute an approximate rank-`r` CP decomposition of the tensor `X` with respect to the loss function `loss` and return a `CPD` object. Keyword arguments: + `constraints` : a `Tuple` of constraints on the factor matrices `U = (U[1],...,U[N])`. + `algorithm` : algorithm to use Conventional CP corresponds to the default `GCPLosses.LeastSquares()` loss with the default of no constraints (i.e., `constraints = ()`). If the LossFunctions.jl package is also loaded, `loss` can also be a loss function from that package. Check `GCPDecompositions.LossFunctionsExt.SupportedLosses` to see what losses are supported. See also: `CPD`, `GCPLosses`, `GCPConstraints`, `GCPAlgorithms`. """ gcp( X::Array, r; loss = GCPLosses.LeastSquares(), constraints = default_constraints(loss), algorithm = default_algorithm(X, r, loss, constraints), init = default_init(X, r, loss, constraints, algorithm), ) = GCPAlgorithms._gcp(X, r, loss, constraints, algorithm, init) # Defaults """ default_constraints(loss) Return a default tuple of constraints for the loss function `loss`. See also: `gcp`. """ function default_constraints(loss) dom = GCPLosses.domain(loss) if dom == Interval(-Inf, +Inf) return () elseif dom == Interval(0.0, +Inf) return (GCPConstraints.LowerBound(0.0),) else error( "only loss functions with a domain of `-Inf .. Inf` or `0 .. Inf` are (currently) supported", ) end end """ default_algorithm(X, r, loss, constraints) Return a default algorithm for the data tensor `X`, rank `r`, loss function `loss`, and tuple of constraints `constraints`. See also: `gcp`. """ default_algorithm(X::Array{<:Real}, r, loss::GCPLosses.LeastSquares, constraints::Tuple{}) = GCPAlgorithms.FastALS() default_algorithm(X, r, loss, constraints) = GCPAlgorithms.LBFGSB() """ default_init([rng=default_rng()], X, r, loss, constraints, algorithm) Return a default initialization for the data tensor `X`, rank `r`, loss function `loss`, tuple of constraints `constraints`, and algorithm `algorithm`, using the random number generator `rng` if needed. See also: `gcp`. """ default_init(X, r, loss, constraints, algorithm) = default_init(default_rng(), X, r, loss, constraints, algorithm) function default_init(rng, X, r, loss, constraints, algorithm) # Generate CPD with random factors T, N = nonmissingtype(eltype(X)), ndims(X) T = promote_type(T, Float64) M = CPD(ones(T, r), rand.(rng, T, size(X), r)) # Normalize Mnorm = norm(M) Xnorm = sqrt(sum(abs2, skipmissing(X))) for k in Base.OneTo(N) M.U[k] .*= (Xnorm / Mnorm)^(1 / N) end return M end end
GCPDecompositions
https://github.com/dahong67/GCPDecompositions.jl.git
[ "MIT" ]
0.3.0
02db2030eaba15350b05279e79b86bbd4d3a39bc
code
2922
## CP decomposition type """ CPD Tensor decomposition type for the canonical polyadic decompositions (CPD) of a tensor (i.e., a multi-dimensional array) `A`. This is the return type of `gcp(_)`, the corresponding tensor decomposition function. If `M::CPD` is the decomposition object, the weights `λ` and the factor matrices `U = (U[1],...,U[N])` can be obtained via `M.λ` and `M.U`, such that `A = Σ_j λ[j] U[1][:,j] ∘ ⋯ ∘ U[N][:,j]`. """ struct CPD{T,N,Tλ<:AbstractVector{T},TU<:AbstractMatrix{T}} λ::Tλ U::NTuple{N,TU} function CPD{T,N,Tλ,TU}(λ, U) where {T,N,Tλ<:AbstractVector{T},TU<:AbstractMatrix{T}} Base.require_one_based_indexing(λ, U...) for k in Base.OneTo(N) size(U[k], 2) == length(λ) || throw( DimensionMismatch( "U[$k] has dimensions $(size(U[k])) but λ has length $(length(λ))", ), ) end return new{T,N,Tλ,TU}(λ, U) end end CPD(λ::Tλ, U::NTuple{N,TU}) where {T,N,Tλ<:AbstractVector{T},TU<:AbstractMatrix{T}} = CPD{T,N,Tλ,TU}(λ, U) """ ncomps(M::CPD) Return the number of components in `M`. See also: `ndims`, `size`. """ ncomps(M::CPD) = length(M.λ) ndims(::CPD{T,N}) where {T,N} = N size(M::CPD{T,N}, dim::Integer) where {T,N} = dim <= N ? size(M.U[dim], 1) : 1 size(M::CPD{T,N}) where {T,N} = ntuple(d -> size(M, d), N) function show(io::IO, mime::MIME{Symbol("text/plain")}, M::CPD{T,N}) where {T,N} # Compute displaysize for showing fields LINES, COLUMNS = displaysize(io) LINES_FIELD = max(LINES - 2 - N, 0) ÷ (1 + N) io_field = IOContext(io, :displaysize => (LINES_FIELD, COLUMNS)) # Show summary and fields summary(io, M) println(io) println(io, "λ weights:") show(io_field, mime, M.λ) for k in Base.OneTo(N) println(io, "\nU[$k] factor matrix:") show(io_field, mime, M.U[k]) end end function summary(io::IO, M::CPD) dimstring = ndims(M) == 0 ? "0-dimensional" : ndims(M) == 1 ? "$(size(M,1))-element" : join(map(string, size(M)), '×') _ncomps = ncomps(M) return print( io, dimstring, " ", typeof(M), " with ", _ncomps, _ncomps == 1 ? " component" : " components", ) end function getindex(M::CPD{T,N}, I::Vararg{Int,N}) where {T,N} @boundscheck Base.checkbounds_indices(Bool, axes(M), I) || Base.throw_boundserror(M, I) val = zero(eltype(T)) for j in Base.OneTo(ncomps(M)) val += M.λ[j] * prod(M.U[k][I[k], j] for k in Base.OneTo(ndims(M))) end return val end getindex(M::CPD{T,N}, I::CartesianIndex{N}) where {T,N} = getindex(M, Tuple(I)...) norm(M::CPD, p::Real = 2) = p == 2 ? norm2(M) : norm((M[I] for I in CartesianIndices(size(M))), p) function norm2(M::CPD{T,N}) where {T,N} V = reduce(.*, M.U[i]'M.U[i] for i in 1:N) return sqrt(abs(M.λ' * V * M.λ)) end
GCPDecompositions
https://github.com/dahong67/GCPDecompositions.jl.git
[ "MIT" ]
0.3.0
02db2030eaba15350b05279e79b86bbd4d3a39bc
code
980
## Algorithm types """ Algorithms for Generalized CP Decomposition. """ module GCPAlgorithms using ..GCPDecompositions using ..TensorKernels: create_mttkrp_buffer, mttkrp! using ..TensorKernels: khatrirao!, khatrirao using IntervalSets: Interval using LinearAlgebra: lu!, mul!, norm, rdiv! using LBFGSB: lbfgsb """ AbstractAlgorithm Abstract type for GCP algorithms. Concrete types `ConcreteAlgorithm <: AbstractAlgorithm` should implement `_gcp(X, r, loss, constraints, algorithm::ConcreteAlgorithm)` that returns a `CPD`. """ abstract type AbstractAlgorithm end """ _gcp(X, r, loss, constraints, algorithm) Internal function to compute an approximate rank-`r` CP decomposition of the tensor `X` with respect to the loss function `loss` and the constraints `constraints` using the algorithm `algorithm`, returning a `CPD` object. """ function _gcp end include("gcp-algorithms/lbfgsb.jl") include("gcp-algorithms/als.jl") include("gcp-algorithms/fastals.jl") end
GCPDecompositions
https://github.com/dahong67/GCPDecompositions.jl.git
[ "MIT" ]
0.3.0
02db2030eaba15350b05279e79b86bbd4d3a39bc
code
497
## Constraint types """ Constraints for Generalized CP Decomposition. """ module GCPConstraints # Abstract type """ AbstractConstraint Abstract type for GCP constraints on the factor matrices `U = (U[1],...,U[N])`. """ abstract type AbstractConstraint end # Concrete types """ LowerBound(value::Real) Lower-bound constraint on the entries of the factor matrices `U = (U[1],...,U[N])`, i.e., `U[i][j,k] >= value`. """ struct LowerBound{T} <: AbstractConstraint value::T end end
GCPDecompositions
https://github.com/dahong67/GCPDecompositions.jl.git
[ "MIT" ]
0.3.0
02db2030eaba15350b05279e79b86bbd4d3a39bc
code
12974
## Loss function types """ Loss functions for Generalized CP Decomposition. """ module GCPLosses using ..GCPDecompositions using ..TensorKernels: mttkrps! using IntervalSets: Interval using LinearAlgebra: mul!, rmul!, Diagonal import ForwardDiff # Abstract type """ AbstractLoss Abstract type for GCP loss functions ``f(x,m)``, where ``x`` is the data entry and ``m`` is the model entry. Concrete types `ConcreteLoss <: AbstractLoss` should implement: - `value(loss::ConcreteLoss, x, m)` that computes the value of the loss function ``f(x,m)`` - `deriv(loss::ConcreteLoss, x, m)` that computes the value of the partial derivative ``\\partial_m f(x,m)`` with respect to ``m`` - `domain(loss::ConcreteLoss)` that returns an `Interval` from IntervalSets.jl defining the domain for ``m`` """ abstract type AbstractLoss end """ value(loss, x, m) Compute the value of the (entrywise) loss function `loss` for data entry `x` and model entry `m`. """ function value end """ deriv(loss, x, m) Compute the derivative of the (entrywise) loss function `loss` at the model entry `m` for the data entry `x`. """ function deriv end """ domain(loss) Return the domain of the (entrywise) loss function `loss`. """ function domain end # Objective function and gradients """ objective(M::CPD, X::AbstractArray, loss) Compute the GCP objective function for the model tensor `M`, data tensor `X`, and loss function `loss`. """ function objective(M::CPD{T,N}, X::Array{TX,N}, loss) where {T,TX,N} return sum(value(loss, X[I], M[I]) for I in CartesianIndices(X) if !ismissing(X[I])) end """ grad_U!(GU, M::CPD, X::AbstractArray, loss) Compute the GCP gradient with respect to the factor matrices `U = (U[1],...,U[N])` for the model tensor `M`, data tensor `X`, and loss function `loss`, and store the result in `GU = (GU[1],...,GU[N])`. """ function grad_U!( GU::NTuple{N,TGU}, M::CPD{T,N}, X::Array{TX,N}, loss, ) where {T,TX,N,TGU<:AbstractMatrix{T}} Y = [ ismissing(X[I]) ? zero(nonmissingtype(eltype(X))) : deriv(loss, X[I], M[I]) for I in CartesianIndices(X) ] mttkrps!(GU, Y, M.U) for k in 1:N rmul!(GU[k], Diagonal(M.λ)) end return GU end # Statistically motivated losses """ LeastSquares() Loss corresponding to conventional CP decomposition. Corresponds to a statistical assumption of Gaussian data `X` with mean given by the low-rank model tensor `M`. - **Distribution:** ``x_i \\sim \\mathcal{N}(\\mu_i, \\sigma)`` - **Link function:** ``m_i = \\mu_i`` - **Loss function:** ``f(x,m) = (x-m)^2`` - **Domain:** ``m \\in \\mathbb{R}`` """ struct LeastSquares <: AbstractLoss end value(::LeastSquares, x, m) = (x - m)^2 deriv(::LeastSquares, x, m) = 2 * (m - x) domain(::LeastSquares) = Interval(-Inf, +Inf) """ NonnegativeLeastSquares() Loss corresponding to nonnegative CP decomposition. Corresponds to a statistical assumption of Gaussian data `X` with nonnegative mean given by the low-rank model tensor `M`. - **Distribution:** ``x_i \\sim \\mathcal{N}(\\mu_i, \\sigma)`` - **Link function:** ``m_i = \\mu_i`` - **Loss function:** ``f(x,m) = (x-m)^2`` - **Domain:** ``m \\in [0, \\infty)`` """ struct NonnegativeLeastSquares <: AbstractLoss end value(::NonnegativeLeastSquares, x, m) = (x - m)^2 deriv(::NonnegativeLeastSquares, x, m) = 2 * (m - x) domain(::NonnegativeLeastSquares) = Interval(0.0, Inf) """ Poisson(eps::Real = 1e-10) Loss corresponding to a statistical assumption of Poisson data `X` with rate given by the low-rank model tensor `M`. - **Distribution:** ``x_i \\sim \\operatorname{Poisson}(\\lambda_i)`` - **Link function:** ``m_i = \\lambda_i`` - **Loss function:** ``f(x,m) = m - x \\log(m + \\epsilon)`` - **Domain:** ``m \\in [0, \\infty)`` """ struct Poisson{T<:Real} <: AbstractLoss eps::T Poisson{T}(eps::T) where {T<:Real} = eps >= zero(eps) ? new(eps) : throw(DomainError(eps, "Poisson loss requires nonnegative `eps`")) end Poisson(eps::T = 1e-10) where {T<:Real} = Poisson{T}(eps) value(loss::Poisson, x, m) = m - x * log(m + loss.eps) deriv(loss::Poisson, x, m) = one(m) - x / (m + loss.eps) domain(::Poisson) = Interval(0.0, +Inf) """ PoissonLog() Loss corresponding to a statistical assumption of Poisson data `X` with log-rate given by the low-rank model tensor `M`. - **Distribution:** ``x_i \\sim \\operatorname{Poisson}(\\lambda_i)`` - **Link function:** ``m_i = \\log \\lambda_i`` - **Loss function:** ``f(x,m) = e^m - x m`` - **Domain:** ``m \\in \\mathbb{R}`` """ struct PoissonLog <: AbstractLoss end value(::PoissonLog, x, m) = exp(m) - x * m deriv(::PoissonLog, x, m) = exp(m) - x domain(::PoissonLog) = Interval(-Inf, +Inf) """ Gamma(eps::Real = 1e-10) Loss corresponding to a statistical assumption of Gamma-distributed data `X` with scale given by the low-rank model tensor `M`. - **Distribution:** ``x_i \\sim \\operatorname{Gamma}(k, \\sigma_i)`` - **Link function:** ``m_i = k \\sigma_i`` - **Loss function:** ``f(x,m) = \\frac{x}{m + \\epsilon} + \\log(m + \\epsilon)`` - **Domain:** ``m \\in [0, \\infty)`` """ struct Gamma{T<:Real} <: AbstractLoss eps::T Gamma{T}(eps::T) where {T<:Real} = eps >= zero(eps) ? new(eps) : throw(DomainError(eps, "Gamma loss requires nonnegative `eps`")) end Gamma(eps::T = 1e-10) where {T<:Real} = Gamma{T}(eps) value(loss::Gamma, x, m) = x / (m + loss.eps) + log(m + loss.eps) deriv(loss::Gamma, x, m) = -x / (m + loss.eps)^2 + inv(m + loss.eps) domain(::Gamma) = Interval(0.0, +Inf) """ Rayleigh(eps::Real = 1e-10) Loss corresponding to the statistical assumption of Rayleigh data `X` with sacle given by the low-rank model tensor `M` - **Distribution:** ``x_i \\sim \\operatorname{Rayleigh}(\\theta_i)`` - **Link function:** ``m_i = \\sqrt{\\frac{\\pi}{2}\\theta_i}`` - **Loss function:** ``f(x, m) = 2\\log(m + \\epsilon) + \\frac{\\pi}{4}(\\frac{x}{m + \\epsilon})^2`` - **Domain:** ``m \\in [0, \\infty)`` """ struct Rayleigh{T<:Real} <: AbstractLoss eps::T Rayleigh{T}(eps::T) where {T<:Real} = eps >= zero(eps) ? new(eps) : throw(DomainError(eps, "Rayleigh loss requires nonnegative `eps`")) end Rayleigh(eps::T = 1e-10) where {T<:Real} = Rayleigh{T}(eps) value(loss::Rayleigh, x, m) = 2 * log(m + loss.eps) + (pi / 4) * ((x / (m + loss.eps))^2) deriv(loss::Rayleigh, x, m) = 2 / (m + loss.eps) - (pi / 2) * (x^2 / (m + loss.eps)^3) domain(::Rayleigh) = Interval(0.0, +Inf) """ BernoulliOdds(eps::Real = 1e-10) Loss corresponding to the statistical assumption of Bernouli data `X` with odds-sucess rate given by the low-rank model tensor `M` - **Distribution:** ``x_i \\sim \\operatorname{Bernouli}(\\rho_i)`` - **Link function:** ``m_i = \\frac{\\rho_i}{1 - \\rho_i}`` - **Loss function:** ``f(x, m) = \\log(m + 1) - x\\log(m + \\epsilon)`` - **Domain:** ``m \\in [0, \\infty)`` """ struct BernoulliOdds{T<:Real} <: AbstractLoss eps::T BernoulliOdds{T}(eps::T) where {T<:Real} = eps >= zero(eps) ? new(eps) : throw(DomainError(eps, "BernoulliOdds requires nonnegative `eps`")) end BernoulliOdds(eps::T = 1e-10) where {T<:Real} = BernoulliOdds{T}(eps) value(loss::BernoulliOdds, x, m) = log(m + 1) - x * log(m + loss.eps) deriv(loss::BernoulliOdds, x, m) = 1 / (m + 1) - (x / (m + loss.eps)) domain(::BernoulliOdds) = Interval(0.0, +Inf) """ BernoulliLogit(eps::Real = 1e-10) Loss corresponding to the statistical assumption of Bernouli data `X` with log odds-success rate given by the low-rank model tensor `M` - **Distribution:** ``x_i \\sim \\operatorname{Bernouli}(\\rho_i)`` - **Link function:** ``m_i = \\log(\\frac{\\rho_i}{1 - \\rho_i})`` - **Loss function:** ``f(x, m) = \\log(1 + e^m) - xm`` - **Domain:** ``m \\in \\mathbb{R}`` """ struct BernoulliLogit{T<:Real} <: AbstractLoss eps::T BernoulliLogit{T}(eps::T) where {T<:Real} = eps >= zero(eps) ? new(eps) : throw(DomainError(eps, "BernoulliLogitsLoss requires nonnegative `eps`")) end BernoulliLogit(eps::T = 1e-10) where {T<:Real} = BernoulliLogit{T}(eps) value(::BernoulliLogit, x, m) = log(1 + exp(m)) - x * m deriv(::BernoulliLogit, x, m) = exp(m) / (1 + exp(m)) - x domain(::BernoulliLogit) = Interval(-Inf, +Inf) """ NegativeBinomialOdds(r::Integer, eps::Real = 1e-10) Loss corresponding to the statistical assumption of Negative Binomial data `X` with log odds failure rate given by the low-rank model tensor `M` - **Distribution:** ``x_i \\sim \\operatorname{NegativeBinomial}(r, \\rho_i) `` - **Link function:** ``m = \\frac{\\rho}{1 - \\rho}`` - **Loss function:** ``f(x, m) = (r + x) \\log(1 + m) - x\\log(m + \\epsilon) `` - **Domain:** ``m \\in [0, \\infty)`` """ struct NegativeBinomialOdds{S<:Integer,T<:Real} <: AbstractLoss r::S eps::T function NegativeBinomialOdds{S,T}(r::S, eps::T) where {S<:Integer,T<:Real} eps >= zero(eps) || throw(DomainError(eps, "NegativeBinomialOdds requires nonnegative `eps`")) r >= zero(r) || throw(DomainError(r, "NegativeBinomialOdds requires nonnegative `r`")) return new(r, eps) end end NegativeBinomialOdds(r::S, eps::T = 1e-10) where {S<:Integer,T<:Real} = NegativeBinomialOdds{S,T}(r, eps) value(loss::NegativeBinomialOdds, x, m) = (loss.r + x) * log(1 + m) - x * log(m + loss.eps) deriv(loss::NegativeBinomialOdds, x, m) = (loss.r + x) / (1 + m) - x / (m + loss.eps) domain(::NegativeBinomialOdds) = Interval(0.0, +Inf) """ Huber(Δ::Real) Huber Loss for given Δ - **Loss function:** ``f(x, m) = (x - m)^2 if \\abs(x - m)\\leq\\Delta, 2\\Delta\\abs(x - m) - \\Delta^2 otherwise`` - **Domain:** ``m \\in \\mathbb{R}`` """ struct Huber{T<:Real} <: AbstractLoss Δ::T Huber{T}(Δ::T) where {T<:Real} = Δ >= zero(Δ) ? new(Δ) : throw(DomainError(Δ, "Huber requires nonnegative `Δ`")) end Huber(Δ::T) where {T<:Real} = Huber{T}(Δ) value(loss::Huber, x, m) = abs(x - m) <= loss.Δ ? (x - m)^2 : 2 * loss.Δ * abs(x - m) - loss.Δ^2 deriv(loss::Huber, x, m) = abs(x - m) <= loss.Δ ? -2 * (x - m) : -2 * sign(x - m) * loss.Δ * x domain(::Huber) = Interval(-Inf, +Inf) """ BetaDivergence(β::Real, eps::Real) BetaDivergence Loss for given β - **Loss function:** ``f(x, m; β) = \\frac{1}{\\beta}m^{\\beta} - \\frac{1}{\\beta - 1}xm^{\\beta - 1} if \\beta \\in \\mathbb{R} \\{0, 1\\}, m - x\\log(m) if \\beta = 1, \\frac{x}{m} + \\log(m) if \\beta = 0`` - **Domain:** ``m \\in [0, \\infty)`` """ struct BetaDivergence{S<:Real,T<:Real} <: AbstractLoss β::T eps::T BetaDivergence{S,T}(β::S, eps::T) where {S<:Real,T<:Real} = eps >= zero(eps) ? new(β, eps) : throw(DomainError(eps, "BetaDivergence requires nonnegative `eps`")) end BetaDivergence(β::S, eps::T = 1e-10) where {S<:Real,T<:Real} = BetaDivergence{S,T}(β, eps) function value(loss::BetaDivergence, x, m) if loss.β == 0 return x / (m + loss.eps) + log(m + loss.eps) elseif loss.β == 1 return m - x * log(m + loss.eps) else return 1 / loss.β * m^loss.β - 1 / (loss.β - 1) * x * m^(loss.β - 1) end end function deriv(loss::BetaDivergence, x, m) if loss.β == 0 return -x / (m + loss.eps)^2 + 1 / (m + loss.eps) elseif loss.β == 1 return 1 - x / (m + loss.eps) else return m^(loss.β - 1) - x * m^(loss.β - 2) end end domain(::BetaDivergence) = Interval(0.0, +Inf) # User-defined loss """ UserDefined Type for user-defined loss functions ``f(x,m)``, where ``x`` is the data entry and ``m`` is the model entry. Contains three fields: 1. `func::Function` : function that evaluates the loss function ``f(x,m)`` 2. `deriv::Function` : function that evaluates the partial derivative ``\\partial_m f(x,m)`` with respect to ``m`` 3. `domain::Interval` : `Interval` from IntervalSets.jl defining the domain for ``m`` The constructor is `UserDefined(func; deriv, domain)`. If not provided, - `deriv` is automatically computed from `func` using forward-mode automatic differentiation - `domain` gets a default value of `Interval(-Inf, +Inf)` """ struct UserDefined <: AbstractLoss func::Function deriv::Function domain::Interval function UserDefined( func::Function; deriv::Function = (x, m) -> ForwardDiff.derivative(m -> func(x, m), m), domain::Interval = Interval(-Inf, Inf), ) hasmethod(func, Tuple{Real,Real}) || error("`func` must accept two inputs `(x::Real, m::Real)`") hasmethod(deriv, Tuple{Real,Real}) || error("`deriv` must accept two inputs `(x::Real, m::Real)`") return new(func, deriv, domain) end end value(loss::UserDefined, x, m) = loss.func(x, m) deriv(loss::UserDefined, x, m) = loss.deriv(x, m) domain(loss::UserDefined) = loss.domain end
GCPDecompositions
https://github.com/dahong67/GCPDecompositions.jl.git
[ "MIT" ]
0.3.0
02db2030eaba15350b05279e79b86bbd4d3a39bc
code
352
## Tensor Kernels """ Tensor kernels for Generalized CP Decomposition. """ module TensorKernels using Compat: allequal using LinearAlgebra: mul! export create_mttkrp_buffer, mttkrp, mttkrp!, mttkrps, mttkrps!, khatrirao, khatrirao! include("tensor-kernels/khatrirao.jl") include("tensor-kernels/mttkrp.jl") include("tensor-kernels/mttkrps.jl") end
GCPDecompositions
https://github.com/dahong67/GCPDecompositions.jl.git
[ "MIT" ]
0.3.0
02db2030eaba15350b05279e79b86bbd4d3a39bc
code
1001
## Algorithm: LBFGSB """ ALS **A**lternating **L**east **S**quares. Workhorse algorithm for `LeastSquares` loss with no constraints. Algorithm parameters: - `maxiters::Int` : max number of iterations (default: `200`) """ Base.@kwdef struct ALS <: AbstractAlgorithm maxiters::Int = 200 end function _gcp( X::Array{TX,N}, r, loss::GCPLosses.LeastSquares, constraints::Tuple{}, algorithm::GCPAlgorithms.ALS, init, ) where {TX<:Real,N} # Initialization M = deepcopy(init) # Pre-allocate MTTKRP buffers mttkrp_buffers = ntuple(n -> create_mttkrp_buffer(X, M.U, n), N) # Alternating Least Squares (ALS) iterations for _ in 1:algorithm.maxiters for n in 1:N V = reduce(.*, M.U[i]'M.U[i] for i in setdiff(1:N, n)) mttkrp!(M.U[n], X, M.U, n, mttkrp_buffers[n]) rdiv!(M.U[n], lu!(V)) M.λ .= norm.(eachcol(M.U[n])) M.U[n] ./= permutedims(M.λ) end end return M end
GCPDecompositions
https://github.com/dahong67/GCPDecompositions.jl.git
[ "MIT" ]
0.3.0
02db2030eaba15350b05279e79b86bbd4d3a39bc
code
7284
## Algorithm: FastALS """ FastALS **Fast** **A**lternating **L**east **S**quares. Efficient ALS algorithm proposed in: > **Fast Alternating LS Algorithms for High Order > CANDECOMP/PARAFAC Tensor Factorizations**. > Anh-Huy Phan, Petr Tichavský, Andrzej Cichocki. > *IEEE Transactions on Signal Processing*, 2013. > DOI: 10.1109/TSP.2013.2269903 Algorithm parameters: - `maxiters::Int` : max number of iterations (default: `200`) """ Base.@kwdef struct FastALS <: AbstractAlgorithm maxiters::Int = 200 end function _gcp( X::Array{TX,N}, r, loss::GCPLosses.LeastSquares, constraints::Tuple{}, algorithm::GCPAlgorithms.FastALS, init, ) where {TX<:Real,N} # Initialization M = deepcopy(init) # Determine order of modes of MTTKRP to compute Jns = [prod(size(X)[1:n]) for n in 1:N] Kns = [prod(size(X)[n+1:end]) for n in 1:N] Kn_minus_ones = [prod(size(X)[n:end]) for n in 1:N] n_star = findlast(n -> Jns[n] <= Kn_minus_ones[n], 1:N) order = vcat([i for i in n_star:-1:1], [i for i in n_star+1:N]) buffers = create_FastALS_buffers(M.U, order, Jns, Kns) for _ in 1:algorithm.maxiters FastALS_iter!(X, M, order, Jns, Kns, buffers) end return M end """ FastALS_iter!(X, U, λ) Algorithm for computing MTTKRP sequences is from "Fast Alternating LS Algorithms for High Order CANDECOMP/PARAFAC Tensor Factorizations" by Phan et al., specifically section III-C. """ function FastALS_iter!(X, M, order, Jns, Kns, buffers) N = ndims(X) R = size(M.U[1])[2] # Compute MTTKRPs recursively n_star = order[1] for n in order if n == n_star kr_right = khatrirao!(buffers.kr_buffer_descending, M.U[reverse(n_star+1:N)]...) if n_star == 1 mul!(M.U[n], reshape(X, (Jns[n], Kns[n])), kr_right) else mul!(buffers.descending_buffers[1], reshape(X, (Jns[n], Kns[n])), kr_right) _rl_outer_multiplication!( buffers.descending_buffers[1], M.U, buffers.helper_buffers_descending[n_star-n+1], n, ) end elseif n == n_star + 1 kr_left = khatrirao!(buffers.kr_buffer_ascending, M.U[reverse(1:n-1)]...) if n == N mul!(M.U[n], reshape(X, (Jns[n-1], Kns[n-1]))', kr_left) else mul!( buffers.ascending_buffers[1], (reshape(X, (Jns[n-1], Kns[n-1])))', kr_left, ) _lr_outer_multiplication!( buffers.ascending_buffers[1], M.U, buffers.helper_buffers_ascending[n-n_star], n, ) end elseif n < n_star if n == 1 for r in 1:R mul!( view(M.U[n], :, r), reshape( view(buffers.descending_buffers[n_star-n], :, r), (Jns[n], size(X)[n+1]), ), view(M.U[n+1], :, r), ) end else for r in 1:R mul!( view(buffers.descending_buffers[n_star-n+1], :, r), reshape( view(buffers.descending_buffers[n_star-n], :, r), (Jns[n], size(X)[n+1]), ), view(M.U[n+1], :, r), ) end _rl_outer_multiplication!( buffers.descending_buffers[n_star-n+1], M.U, buffers.helper_buffers_descending[n_star-n+1], n, ) end else if n == N for r in 1:R mul!( view(M.U[n], :, r), reshape( view(buffers.ascending_buffers[N-n_star-1], :, r), (size(X)[n-1], Kns[n-1]), )', view(M.U[n-1], :, r), ) end else for r in 1:R mul!( view(buffers.ascending_buffers[n-n_star], :, r), reshape( view(buffers.ascending_buffers[n-n_star-1], :, r), (size(X)[n-1], Kns[n-1]), )', view(M.U[n-1], :, r), ) end _lr_outer_multiplication!( buffers.ascending_buffers[n-n_star], M.U, buffers.helper_buffers_ascending[n-n_star], n, ) end end # Normalization, update weights V = reduce(.*, M.U[i]'M.U[i] for i in setdiff(1:N, n)) rdiv!(M.U[n], lu!(V)) M.λ .= norm.(eachcol(M.U[n])) M.U[n] ./= permutedims(M.λ) end end # Helper function for right-to-left outer multiplications function _rl_outer_multiplication!(Zn, U, kr_buffer, n) khatrirao!(kr_buffer, U[reverse(1:n-1)]...) for r in 1:size(U[n])[2] mul!( view(U[n], :, r), reshape(view(Zn, :, r), (prod(size(U[i])[1] for i in 1:n-1), size(U[n])[1]))', view(kr_buffer, :, r), ) end end # Helper function for left-to-right outer multiplications function _lr_outer_multiplication!(Zn, U, kr_buffer, n) khatrirao!(kr_buffer, U[reverse(n+1:length(U))]...) for r in 1:size(U[n])[2] mul!( view(U[n], :, r), reshape( view(Zn, :, r), (size(U[n])[1], prod(size(U[i])[1] for i in n+1:length(U))), ), view(kr_buffer, :, r), ) end end function create_FastALS_buffers( U::NTuple{N,TM}, order, Jns, Kns, ) where {TM<:AbstractMatrix,N} n_star = order[1] r = size(U[1])[2] dims = [size(U[u])[1] for u in 1:length(U)] # Allocate buffers # Buffer for saved products between modes descending_buffers = n_star < 2 ? nothing : [similar(U[1], (Jns[n], r)) for n in n_star:-1:2] ascending_buffers = N - n_star - 1 < 1 ? nothing : [similar(U[1], (Kns[n], r)) for n in n_star:N] # Buffers for khatri-rao products kr_buffer_descending = similar(U[1], (Kns[n_star], r)) kr_buffer_ascending = similar(U[1], (Jns[n_star], r)) # Buffers for khatri-rao product in helper function helper_buffers_descending = n_star < 2 ? nothing : [similar(U[1], (prod(dims[1:n-1]), r)) for n in n_star:-1:2] helper_buffers_ascending = n_star >= N - 1 ? nothing : [similar(U[1], (prod(dims[n+1:N]), r)) for n in n_star+1:N-1] return (; descending_buffers, ascending_buffers, kr_buffer_descending, kr_buffer_ascending, helper_buffers_descending, helper_buffers_ascending, ) end
GCPDecompositions
https://github.com/dahong67/GCPDecompositions.jl.git
[ "MIT" ]
0.3.0
02db2030eaba15350b05279e79b86bbd4d3a39bc
code
3281
## Algorithm: LBFGSB """ LBFGSB **L**imited-memory **BFGS** with **B**ox constraints. Brief description of algorithm parameters: - `m::Int` : max number of variable metric corrections (default: `10`) - `factr::Float64` : function tolerance in units of machine epsilon (default: `1e7`) - `pgtol::Float64` : (projected) gradient tolerance (default: `1e-5`) - `maxfun::Int` : max number of function evaluations (default: `15000`) - `maxiter::Int` : max number of iterations (default: `15000`) - `iprint::Int` : verbosity (default: `-1`) + `iprint < 0` means no output + `iprint = 0` prints only one line at the last iteration + `0 < iprint < 99` prints `f` and `|proj g|` every `iprint` iterations + `iprint = 99` prints details of every iteration except n-vectors + `iprint = 100` also prints the changes of active set and final `x` + `iprint > 100` prints details of every iteration including `x` and `g` See documentation of [LBFGSB.jl](https://github.com/Gnimuc/LBFGSB.jl) for more details. """ Base.@kwdef struct LBFGSB <: AbstractAlgorithm m::Int = 10 factr::Float64 = 1e7 pgtol::Float64 = 1e-5 maxfun::Int = 15000 maxiter::Int = 15000 iprint::Int = -1 end function _gcp( X::Array{TX,N}, r, loss, constraints::Tuple{Vararg{GCPConstraints.LowerBound}}, algorithm::GCPAlgorithms.LBFGSB, init, ) where {TX,N} # T = promote_type(nonmissingtype(TX), Float64) T = Float64 # LBFGSB.jl seems to only support Float64 # Compute lower bound from constraints lower = maximum(constraint.value for constraint in constraints; init = T(-Inf)) # Error for unsupported loss/constraint combinations dom = GCPLosses.domain(loss) if dom == Interval(-Inf, +Inf) lower in (-Inf, 0.0) || error( "only lower bound constraints of `-Inf` or `0` are (currently) supported for loss functions with a domain of `-Inf .. Inf`", ) elseif dom == Interval(0.0, +Inf) lower == 0.0 || error( "only lower bound constraints of `0` are (currently) supported for loss functions with a domain of `0 .. Inf`", ) else error( "only loss functions with a domain of `-Inf .. Inf` or `0 .. Inf` are (currently) supported", ) end # Initialization M0 = deepcopy(init) u0 = vcat(vec.(M0.U)...) # Setup vectorized objective function and gradient vec_cutoffs = (0, cumsum(r .* size(X))...) vec_ranges = ntuple(k -> vec_cutoffs[k]+1:vec_cutoffs[k+1], Val(N)) function f(u) U = map(range -> reshape(view(u, range), :, r), vec_ranges) return GCPLosses.objective(CPD(ones(T, r), U), X, loss) end function g!(gu, u) U = map(range -> reshape(view(u, range), :, r), vec_ranges) GU = map(range -> reshape(view(gu, range), :, r), vec_ranges) GCPLosses.grad_U!(GU, CPD(ones(T, r), U), X, loss) return gu end # Run LBFGSB lbfgsopts = (; (pn => getproperty(algorithm, pn) for pn in propertynames(algorithm))...) u = lbfgsb(f, g!, u0; lb = fill(lower, length(u0)), lbfgsopts...)[2] U = map(range -> reshape(u[range], :, r), vec_ranges) return CPD(ones(T, r), U) end
GCPDecompositions
https://github.com/dahong67/GCPDecompositions.jl.git
[ "MIT" ]
0.3.0
02db2030eaba15350b05279e79b86bbd4d3a39bc
code
1845
## Tensor Kernel: khatrirao """ khatrirao(A1, A2, ...) Compute the Khatri-Rao product (i.e., the column-wise Kronecker product) of the matrices `A1`, `A2`, etc. """ function khatrirao(A::Vararg{AbstractMatrix}) I, r = _checked_khatrirao_dims(A...) return khatrirao!(similar(A[1], prod(I), r), A...) end """ khatrirao!(K, A1, A2, ...) Compute the Khatri-Rao product (i.e., the column-wise Kronecker product) of the matrices `A1`, `A2`, etc. and store the result in `K`. """ function khatrirao!(K::AbstractMatrix, A::Vararg{AbstractMatrix,N}) where {N} I, r = _checked_khatrirao_dims(A...) # Check output dimensions Base.require_one_based_indexing(K) size(K) == (prod(I), r) || throw( DimensionMismatch( "Output `K` must have size equal to `(prod(size.(A,1)), size(A[1],2))", ), ) # Compute recursively, using a good order for intermediate multiplications if N == 1 # base case: N = 1 K .= A[1] elseif N == 2 # base case: N = 2 reshape(K, I[2], I[1], r) .= reshape(A[2], :, 1, r) .* reshape(A[1], 1, :, r) else # recursion: N > 2 n = argmin(n -> I[n] * I[n+1], 1:N-1) khatrirao!(K, A[1:n-1]..., khatrirao(A[n], A[n+1]), A[n+2:end]...) end return K end """ _checked_khatrirao_dims(A1, A2, ...) Check that `A1`, `A2`, etc. have compatible dimensions for the Khatri-Rao product. If so, return a tuple of the number of rows and the shared number of columns. If not, throw an error. """ function _checked_khatrirao_dims(A::Vararg{AbstractMatrix}) Base.require_one_based_indexing(A...) allequal(size.(A, 2)) || throw( DimensionMismatch( "Matrices in a Khatri-Rao product must have the same number of columns.", ), ) return size.(A, 1), size(A[1], 2) end
GCPDecompositions
https://github.com/dahong67/GCPDecompositions.jl.git
[ "MIT" ]
0.3.0
02db2030eaba15350b05279e79b86bbd4d3a39bc
code
5080
## Tensor Kernel: mttkrp """ mttkrp(X, (U1, U2, ..., UN), n) Compute the Matricized Tensor Times Khatri-Rao Product (MTTKRP) of an N-way tensor X with the matrices U1, U2, ..., UN along mode n. See also: `mttkrp!` """ function mttkrp( X::AbstractArray{T,N}, U::NTuple{N,TM}, n::Integer, ) where {TM<:AbstractMatrix,T,N} _checked_mttkrp_dims(X, U, n) return mttkrp!(similar(U[n]), X, U, n) end """ mttkrp!(G, X, (U1, U2, ..., UN), n, buffer=create_mttkrp_buffer(X, U, n)) Compute the Matricized Tensor Times Khatri-Rao Product (MTTKRP) of an N-way tensor X with the matrices U1, U2, ..., UN along mode n and store the result in G. Optionally, provide a `buffer` for intermediate calculations. Always use `create_mttkrp_buffer` to make the `buffer`; the internal details of `buffer` may change in the future and should not be relied upon. Algorithm is based on Section III-B of the paper: > **Fast Alternating LS Algorithms for High Order > CANDECOMP/PARAFAC Tensor Factorizations**. > Anh-Huy Phan, Petr Tichavský, Andrzej Cichocki. > *IEEE Transactions on Signal Processing*, 2013. > DOI: 10.1109/TSP.2013.2269903 See also: `mttkrp`, `create_mttkrp_buffer` """ function mttkrp!( G::TM, X::AbstractArray{T,N}, U::NTuple{N,TM}, n::Integer, buffer = create_mttkrp_buffer(X, U, n), ) where {TM<:AbstractMatrix,T,N} I, r = _checked_mttkrp_dims(X, U, n) # Check output dimensions Base.require_one_based_indexing(G) size(G) == size(U[n]) || throw(DimensionMismatch("Output `G` must have the same size as `U[n]`")) # Choose appropriate multiplication order: # + n == 1: no splitting required # + n == N: no splitting required # + 1 < n < N: better to multiply "bigger" side out first # + prod(I[1:n]) > prod(I[n:N]): better to multiply left-to-right # + prod(I[1:n]) < prod(I[n:N]): better to multiply right-to-left if n == 1 kr_right = n + 1 == N ? U[N] : khatrirao!(buffer.kr_right, U[reverse(n+1:N)]...) mul!(G, reshape(X, I[1], :), kr_right) elseif n == N kr_left = n == 2 ? U[1] : khatrirao!(buffer.kr_left, U[reverse(1:n-1)]...) mul!(G, transpose(reshape(X, :, I[N])), kr_left) else # Compute left and right Khatri-Rao products kr_left = n == 2 ? U[1] : khatrirao!(buffer.kr_left, U[reverse(1:n-1)]...) kr_right = n + 1 == N ? U[N] : khatrirao!(buffer.kr_right, U[reverse(n+1:N)]...) if prod(I[1:n]) > prod(I[n:N]) # Inner multiplication: left side mul!( reshape(buffer.inner, :, r), transpose(reshape(X, :, prod(I[n:N]))), kr_left, ) # Outer multiplication: right side for j in 1:r mul!( view(G, :, j), reshape(selectdim(buffer.inner, ndims(buffer.inner), j), I[n], :), view(kr_right, :, j), ) end else # Inner multiplication: right side mul!(reshape(buffer.inner, :, r), reshape(X, prod(I[1:n]), :), kr_right) # Outer multiplication: left side for j in 1:r mul!( view(G, :, j), transpose( reshape(selectdim(buffer.inner, ndims(buffer.inner), j), :, I[n]), ), view(kr_left, :, j), ) end end end return G end """ create_mttkrp_buffer(X, U, n) Create buffer to hold intermediate calculations in `mttkrp!`. Always use `create_mttkrp_buffer` to make a `buffer` for `mttkrp!`; the internal details of `buffer` may change in the future and should not be relied upon. See also: `mttkrp!` """ function create_mttkrp_buffer( X::AbstractArray{T,N}, U::NTuple{N,TM}, n::Integer, ) where {TM<:AbstractMatrix,T,N} I, r = _checked_mttkrp_dims(X, U, n) # Allocate buffers return (; kr_left = n in 1:2 ? nothing : similar(U[1], prod(I[1:n-1]), r), kr_right = n in N-1:N ? nothing : similar(U[n+1], prod(I[n+1:N]), r), inner = n in [1, N] ? nothing : prod(I[1:n]) > prod(I[n:N]) ? similar(U[n], I[n:N]..., r) : similar(U[n], I[1:n]..., r), ) end """ _checked_mttkrp_dims(X, (U1, U2, ..., UN), n) Check that `X` and `U` have compatible dimensions for the mode-`n` MTTKRP. If so, return a tuple of the number of rows and the shared number of columns for the Khatri-Rao product. If not, throw an error. """ function _checked_mttkrp_dims( X::AbstractArray{T,N}, U::NTuple{N,TM}, n::Integer, ) where {TM<:AbstractMatrix,T,N} # Check mode n in 1:N || throw(DimensionMismatch("`n` must be in `1:ndims(X)`")) # Check Khatri-Rao product I, r = _checked_khatrirao_dims(U...) # Check tensor Base.require_one_based_indexing(X) (I == size(X)) || throw(DimensionMismatch("`X` and `U` do not have matching dimensions")) return I, r end
GCPDecompositions
https://github.com/dahong67/GCPDecompositions.jl.git
[ "MIT" ]
0.3.0
02db2030eaba15350b05279e79b86bbd4d3a39bc
code
1679
## Tensor Kernel: mttkrps """ mttkrps(X, (U1, U2, ..., UN)) Compute the Matricized Tensor Times Khatri-Rao Product Sequence (MTTKRPS) of an N-way tensor X with the matrices U1, U2, ..., UN. See also: `mttkrps!` """ function mttkrps(X::AbstractArray{T,N}, U::NTuple{N,TM}) where {TM<:AbstractMatrix,T,N} _checked_mttkrps_dims(X, U) return mttkrps!(similar.(U), X, U) end """ mttkrps!(G, X, (U1, U2, ..., UN)) Compute the Matricized Tensor Times Khatri-Rao Product Sequence (MTTKRPS) of an N-way tensor X with the matrices U1, U2, ..., UN and store the result in G. See also: `mttkrps` """ function mttkrps!( G::NTuple{N,TM}, X::AbstractArray{T,N}, U::NTuple{N,TM}, ) where {TM<:AbstractMatrix,T,N} _checked_mttkrps_dims(X, U) # Check output dimensions Base.require_one_based_indexing(G...) size.(G) == size.(U) || throw(DimensionMismatch("Output `G` must have the same size as `U`")) # Compute individual MTTKRP's for n in 1:N mttkrp!(G[n], X, U, n) end return G end """ _checked_mttkrps_dims(X, (U1, U2, ..., UN)) Check that `X` and `U` have compatible dimensions for the mode-`n` MTTKRP. If so, return a tuple of the number of rows and the shared number of columns for the Khatri-Rao product. If not, throw an error. """ function _checked_mttkrps_dims( X::AbstractArray{T,N}, U::NTuple{N,TM}, ) where {TM<:AbstractMatrix,T,N} # Check Khatri-Rao product I, r = _checked_khatrirao_dims(U...) # Check tensor Base.require_one_based_indexing(X) (I == size(X)) || throw(DimensionMismatch("`X` and `U` do not have matching dimensions")) return I, r end
GCPDecompositions
https://github.com/dahong67/GCPDecompositions.jl.git
[ "MIT" ]
0.3.0
02db2030eaba15350b05279e79b86bbd4d3a39bc
code
41
using TestItemRunner @run_package_tests
GCPDecompositions
https://github.com/dahong67/GCPDecompositions.jl.git
[ "MIT" ]
0.3.0
02db2030eaba15350b05279e79b86bbd4d3a39bc
code
5840
## CP decomposition type @testitem "constructors" begin using OffsetArrays @testset "T=$T, K=$K" for T in [Float64, Float16], K in 0:2 λfull = T[1, 100, 10000] U1full, U2full, U3full = T[1 2 3; 4 5 6], T[-1 0 1], T[1 2 3; 4 5 6; 7 8 9] λ = λfull[1:K] U1, U2, U3 = U1full[:, 1:K], U2full[:, 1:K], U3full[:, 1:K] # Check type for various orders @test CPD{T,0,Vector{T},Matrix{T}}(λ, ()) isa CPD{T,0,Vector{T},Matrix{T}} @test CPD(λ, (U1,)) isa CPD{T,1,Vector{T},Matrix{T}} @test CPD(λ, (U1, U2)) isa CPD{T,2,Vector{T},Matrix{T}} @test CPD(λ, (U1, U2, U3)) isa CPD{T,3,Vector{T},Matrix{T}} # Check requirement of one-based indexing O1, O2 = OffsetArray(U1, 0:1, 0:K-1), OffsetArray(U2, 0:0, 0:K-1) @test_throws ArgumentError CPD(λ, (O1, O2)) # Check dimension matching (for number of components) @test_throws DimensionMismatch CPD(λfull, (U1, U2, U3)) @test_throws DimensionMismatch CPD(λ, (U1full, U2, U3)) @test_throws DimensionMismatch CPD(λ, (U1, U2full, U3)) @test_throws DimensionMismatch CPD(λ, (U1, U2, U3full)) end end @testitem "ncomps" begin λ = [1, 100, 10000] U1, U2, U3 = [1 2 3; 4 5 6], [-1 0 1], [1 2 3; 4 5 6; 7 8 9] @test ncomps(CPD(λ, (U1,))) == ncomps(CPD(λ, (U1, U2))) == ncomps(CPD(λ, (U1, U2, U3))) == 3 @test ncomps(CPD(λ[1:2], (U1[:, 1:2],))) == ncomps(CPD(λ[1:2], (U1[:, 1:2], U2[:, 1:2]))) == ncomps(CPD(λ[1:2], (U1[:, 1:2], U2[:, 1:2], U3[:, 1:2]))) == 2 @test ncomps(CPD(λ[1:1], (U1[:, 1:1],))) == ncomps(CPD(λ[1:1], (U1[:, 1:1], U2[:, 1:1]))) == ncomps(CPD(λ[1:1], (U1[:, 1:1], U2[:, 1:1], U3[:, 1:1]))) == 1 @test ncomps(CPD(λ[1:0], (U1[:, 1:0],))) == ncomps(CPD(λ[1:0], (U1[:, 1:0], U2[:, 1:0]))) == ncomps(CPD(λ[1:0], (U1[:, 1:0], U2[:, 1:0], U3[:, 1:0]))) == 0 end @testitem "ndims" begin λ = [1, 100, 10000] U1, U2, U3 = [1 2 3; 4 5 6], [-1 0 1], [1 2 3; 4 5 6; 7 8 9] @test ndims(CPD{Int,0,Vector{Int},Matrix{Int}}(λ, ())) == 0 @test ndims(CPD(λ, (U1,))) == 1 @test ndims(CPD(λ, (U1, U2))) == 2 @test ndims(CPD(λ, (U1, U2, U3))) == 3 end @testitem "size" begin λ = [1, 100, 10000] U1, U2, U3 = [1 2 3; 4 5 6], [-1 0 1], [1 2 3; 4 5 6; 7 8 9] @test size(CPD(λ, (U1,))) == (size(U1, 1),) @test size(CPD(λ, (U1, U2))) == (size(U1, 1), size(U2, 1)) @test size(CPD(λ, (U1, U2, U3))) == (size(U1, 1), size(U2, 1), size(U3, 1)) M = CPD(λ, (U1, U2, U3)) @test size(M, 1) == 2 @test size(M, 2) == 1 @test size(M, 3) == 3 @test size(M, 4) == 1 end @testitem "show / summary" begin M = CPD(rand.(2), rand.((3, 4, 5), 2)) Mstring = sprint((t, s) -> show(t, "text/plain", s), M) λstring = sprint((t, s) -> show(t, "text/plain", s), M.λ) Ustrings = sprint.((t, s) -> show(t, "text/plain", s), M.U) @test Mstring == string( "$(summary(M))\nλ weights:\n$λstring", ["\nU[$k] factor matrix:\n$Ustring" for (k, Ustring) in enumerate(Ustrings)]..., ) end @testitem "getindex" begin @testset "K=$K" for K in 0:2 T = Float64 λfull = T[1, 100, 10000] U1full, U2full, U3full = T[1 2 3; 4 5 6], T[-1 0 1], T[1 2 3; 4 5 6; 7 8 9] λ = λfull[1:K] U1, U2, U3 = U1full[:, 1:K], U2full[:, 1:K], U3full[:, 1:K] M = CPD(λ, (U1, U2, U3)) for i1 in axes(U1, 1), i2 in axes(U2, 1), i3 in axes(U3, 1) Mi = sum(λ .* U1[i1, :] .* U2[i2, :] .* U3[i3, :]) @test Mi == M[i1, i2, i3] @test Mi == M[CartesianIndex((i1, i2, i3))] end @test_throws BoundsError M[size(U1, 1)+1, 1, 1] @test_throws BoundsError M[1, size(U2, 1)+1, 1] @test_throws BoundsError M[1, 1, size(U3, 1)+1] M = CPD(λ, (U1, U2)) for i1 in axes(U1, 1), i2 in axes(U2, 1) Mi = sum(λ .* U1[i1, :] .* U2[i2, :]) @test Mi == M[i1, i2] @test Mi == M[CartesianIndex((i1, i2))] end @test_throws BoundsError M[size(U1, 1)+1, 1] @test_throws BoundsError M[1, size(U2, 1)+1] M = CPD(λ, (U1,)) for i1 in axes(U1, 1) Mi = sum(λ .* U1[i1, :]) @test Mi == M[i1] @test Mi == M[CartesianIndex((i1,))] end @test_throws BoundsError M[size(U1, 1)+1] end end @testitem "norm" begin using LinearAlgebra @testset "K=$K" for K in 0:2 T = Float64 λfull = T[1, 100, 10000] U1full, U2full, U3full = T[1 2 3; 4 5 6], T[-1 0 1], T[1 2 3; 4 5 6; 7 8 9] λ = λfull[1:K] U1, U2, U3 = U1full[:, 1:K], U2full[:, 1:K], U3full[:, 1:K] M = CPD(λ, (U1, U2, U3)) @test norm(M) == norm(M, 2) == sqrt(sum(abs2, M[I] for I in CartesianIndices(size(M)))) @test norm(M, 1) == sum(abs, M[I] for I in CartesianIndices(size(M))) @test norm(M, 3) == (sum(m -> abs(m)^3, M[I] for I in CartesianIndices(size(M))))^(1 / 3) M = CPD(λ, (U1, U2)) @test norm(M) == norm(M, 2) == sqrt(sum(abs2, M[I] for I in CartesianIndices(size(M)))) @test norm(M, 1) == sum(abs, M[I] for I in CartesianIndices(size(M))) @test norm(M, 3) == (sum(m -> abs(m)^3, M[I] for I in CartesianIndices(size(M))))^(1 / 3) M = CPD(λ, (U1,)) @test norm(M) == norm(M, 2) == sqrt(sum(abs2, M[I] for I in CartesianIndices(size(M)))) @test norm(M, 1) == sum(abs, M[I] for I in CartesianIndices(size(M))) @test norm(M, 3) == (sum(m -> abs(m)^3, M[I] for I in CartesianIndices(size(M))))^(1 / 3) end end
GCPDecompositions
https://github.com/dahong67/GCPDecompositions.jl.git
[ "MIT" ]
0.3.0
02db2030eaba15350b05279e79b86bbd4d3a39bc
code
1322
## LossFunctionsExt # DistanceLoss @testitem "LossFunctions: DistanceLoss" begin using Random using LossFunctions @testset "size(X)=$sz, rank(X)=$r" for sz in [(15, 20, 25), (30, 40, 50)], r in 1:2 Random.seed!(0) M = CPD(ones(r), rand.(sz, r)) X = [M[I] for I in CartesianIndices(size(M))] Mh = gcp(X, r; loss = L2DistLoss()) @test maximum(I -> abs(Mh[I] - X[I]), CartesianIndices(X)) <= 1e-5 end end # MarginLoss @testitem "LossFunctions: MarginLoss" begin using Random, IntervalSets using LossFunctions @testset "size(X)=$sz" for sz in [(15, 20, 25), (30, 40, 50)] Random.seed!(0) M = CPD([1], rand.(Ref([-1, 1]), sz, 1)) X = [M[I] for I in CartesianIndices(size(M))] # Compute reference Random.seed!(10) Mr = gcp( X, 1; loss = GCPLosses.UserDefined( (x, m) -> exp(-x * m); deriv = (x, m) -> -x * exp(-x * m), domain = Interval(-Inf, +Inf), ), constraints = (), algorithm = GCPAlgorithms.LBFGSB(), ) # Test Random.seed!(10) Mh = gcp(X, 1; loss = ExpLoss()) @test maximum(I -> abs(Mh[I] - Mr[I]), CartesianIndices(X)) <= 1e-5 end end
GCPDecompositions
https://github.com/dahong67/GCPDecompositions.jl.git
[ "MIT" ]
0.3.0
02db2030eaba15350b05279e79b86bbd4d3a39bc
code
708
## Loss types @testitem "loss constructors" begin # LeastSquares loss @test GCPLosses.LeastSquares() isa GCPLosses.LeastSquares # Poisson loss @test GCPLosses.Poisson() isa GCPLosses.Poisson{Float64} @test GCPLosses.Poisson(1.0f-5) isa GCPLosses.Poisson{Float32} @test_throws DomainError GCPLosses.Poisson(-0.1) end @testitem "value/deriv/domain methods" begin using InteractiveUtils: subtypes using .GCPLosses: value, deriv, domain, AbstractLoss @testset "type=$type" for type in subtypes(AbstractLoss) @test hasmethod(value, Tuple{type,Real,Real}) @test hasmethod(deriv, Tuple{type,Real,Real}) @test hasmethod(domain, Tuple{type}) end end
GCPDecompositions
https://github.com/dahong67/GCPDecompositions.jl.git
[ "MIT" ]
0.3.0
02db2030eaba15350b05279e79b86bbd4d3a39bc
code
15745
## GCP decomposition - full optimization @testitem "unsupported constraints" begin using Random, IntervalSets sz = (15, 20, 25) r = 2 Random.seed!(0) M = CPD(ones(r), rand.(sz, r)) X = [M[I] for I in CartesianIndices(size(M))] # Exercise `default_constraints` @test_throws ErrorException gcp( X, r; loss = GCPLosses.UserDefined((x, m) -> (x - m)^2; domain = Interval(1, Inf)), ) # Exercise `_gcp` @test_throws ErrorException gcp( X, r; loss = GCPLosses.LeastSquares(), constraints = (GCPConstraints.LowerBound(1),), ) @test_throws ErrorException gcp(X, r; loss = GCPLosses.Poisson(), constraints = ()) @test_throws ErrorException gcp( X, r; loss = GCPLosses.UserDefined((x, m) -> (x - m)^2; domain = Interval(1, Inf)), constraints = (GCPConstraints.LowerBound(1),), ) end @testitem "LeastSquares" begin using Random @testset "size(X)=$sz, rank(X)=$r" for sz in [(15, 20, 25), (50, 40, 30)], r in 1:2 Random.seed!(0) M = CPD(ones(r), rand.(sz, r)) X = [M[I] for I in CartesianIndices(size(M))] Mh = gcp(X, r; loss = GCPLosses.LeastSquares()) @test maximum(I -> abs(Mh[I] - X[I]), CartesianIndices(X)) <= 1e-5 Xm = convert(Array{Union{Missing,eltype(X)}}, X) Xm[1, 1, 1] = missing Mm = gcp(Xm, r; loss = GCPLosses.LeastSquares()) @test maximum(I -> abs(Mm[I] - X[I]), CartesianIndices(X)) <= 1e-5 Mh = gcp(X, r) # test default (least-squares) loss @test maximum(I -> abs(Mh[I] - X[I]), CartesianIndices(X)) <= 1e-5 end # 4-way tensor to exercise recursive part of the Khatri-Rao code @testset "size(X)=$sz, rank(X)=$r" for sz in [(50, 40, 30, 2)], r in 1:2 Random.seed!(0) M = CPD(ones(r), rand.(sz, r)) X = [M[I] for I in CartesianIndices(size(M))] Mh = gcp(X, r; loss = GCPLosses.LeastSquares()) @test maximum(I -> abs(Mh[I] - X[I]), CartesianIndices(X)) <= 1e-5 Xm = convert(Array{Union{Missing,eltype(X)}}, X) Xm[1, 1, 1, 1] = missing Mm = gcp(Xm, r; loss = GCPLosses.LeastSquares()) @test maximum(I -> abs(Mm[I] - X[I]), CartesianIndices(X)) <= 1e-5 Mh = gcp(X, r) # test default (least-squares) loss @test maximum(I -> abs(Mh[I] - X[I]), CartesianIndices(X)) <= 1e-5 end # 5 way tensor to exercise else case in FastALS @testset "size(X)=$sz, rank(X)=$r" for sz in [(10, 15, 20, 25, 30), (30, 25, 5, 5, 5)], r in [2] r = 2 Random.seed!(0) M = CPD(ones(r), rand.(sz, r)) X = [M[I] for I in CartesianIndices(size(M))] Mh = gcp(X, r; loss = GCPLosses.LeastSquares()) @test maximum(I -> abs(Mh[I] - X[I]), CartesianIndices(X)) <= 1e-5 Xm = convert(Array{Union{Missing,eltype(X)}}, X) Xm[1, 1, 1, 1, 1] = missing Mm = gcp(Xm, r; loss = GCPLosses.LeastSquares()) @test maximum(I -> abs(Mm[I] - X[I]), CartesianIndices(X)) <= 1e-5 Mh = gcp(X, r) # test default (least-squares) loss @test maximum(I -> abs(Mh[I] - X[I]), CartesianIndices(X)) <= 1e-5 end # Test old ALS method @testset "size(X)=$sz, rank(X)=$r" for sz in [(15, 20, 25)], r in [2] Random.seed!(0) M = CPD(ones(r), rand.(sz, r)) X = [M[I] for I in CartesianIndices(size(M))] Mh = gcp(X, r; loss = GCPLosses.LeastSquares(), algorithm = GCPAlgorithms.ALS()) @test maximum(I -> abs(Mh[I] - X[I]), CartesianIndices(X)) <= 1e-5 end end @testitem "NonnegativeLeastSquares" begin using Random @testset "size(X)=$sz, rank(X)=$r" for sz in [(15, 20, 25), (50, 40, 30)], r in 1:2 Random.seed!(0) M = CPD(ones(r), rand.(sz, r)) X = [M[I] for I in CartesianIndices(size(M))] Mh = gcp(X, r; loss = GCPLosses.NonnegativeLeastSquares()) @test maximum(I -> abs(Mh[I] - X[I]), CartesianIndices(X)) <= 1e-5 Xm = convert(Array{Union{Missing,eltype(X)}}, X) Xm[1, 1, 1] = missing Mm = gcp(Xm, r; loss = GCPLosses.NonnegativeLeastSquares()) @test maximum(I -> abs(Mm[I] - X[I]), CartesianIndices(X)) <= 1e-5 end end @testitem "Poisson" begin using Random, IntervalSets using Distributions @testset "size(X)=$sz, rank(X)=$r" for sz in [(15, 20, 25), (50, 40, 30)], r in 1:2 Random.seed!(0) M = CPD(fill(10.0, r), rand.(sz, r)) X = [rand(Poisson(M[I])) for I in CartesianIndices(size(M))] # Compute reference Random.seed!(0) Mr = gcp( X, r; loss = GCPLosses.UserDefined( (x, m) -> m - x * log(m + 1e-10); deriv = (x, m) -> 1 - x / (m + 1e-10), domain = Interval(0.0, +Inf), ), constraints = (GCPConstraints.LowerBound(0.0),), algorithm = GCPAlgorithms.LBFGSB(), ) # Test Random.seed!(0) Mh = gcp(X, r; loss = GCPLosses.Poisson()) @test maximum(I -> abs(Mh[I] - Mr[I]), CartesianIndices(X)) <= 1e-5 end end @testitem "PoissonLog" begin using Random, IntervalSets using Distributions @testset "size(X)=$sz, rank(X)=$r" for sz in [(15, 20, 25), (50, 40, 30)], r in 1:2 Random.seed!(0) M = CPD(ones(r), randn.(sz, r)) X = [rand(Poisson(exp(M[I]))) for I in CartesianIndices(size(M))] # Compute reference Random.seed!(0) Mr = gcp( X, r; loss = GCPLosses.UserDefined( (x, m) -> exp(m) - x * m; deriv = (x, m) -> exp(m) - x, domain = Interval(-Inf, +Inf), ), constraints = (), algorithm = GCPAlgorithms.LBFGSB(), ) # Test Random.seed!(0) Mh = gcp(X, r; loss = GCPLosses.PoissonLog()) @test maximum(I -> abs(Mh[I] - Mr[I]), CartesianIndices(X)) <= 1e-5 end end @testitem "Gamma" begin using Random, IntervalSets using Distributions @testset "size(X)=$sz, rank(X)=$r" for sz in [(15, 20, 25), (50, 40, 30)], r in 1:2 Random.seed!(0) M = CPD(ones(r), rand.(sz, r)) k = 1.5 X = [rand(Gamma(k, M[I] / k)) for I in CartesianIndices(size(M))] # Compute reference Random.seed!(0) Mr = gcp( X, r; loss = GCPLosses.UserDefined( (x, m) -> log(m + 1e-10) + x / (m + 1e-10); deriv = (x, m) -> -1 * (x / (m + 1e-10)^2) + (1 / (m + 1e-10)), domain = Interval(0.0, +Inf), ), constraints = (GCPConstraints.LowerBound(0.0),), algorithm = GCPAlgorithms.LBFGSB(), ) # Test Random.seed!(0) Mh = gcp(X, r; loss = GCPLosses.Gamma()) @test maximum(I -> abs(Mh[I] - Mr[I]), CartesianIndices(X)) <= 1e-5 end end @testitem "Rayleigh" begin using Random, IntervalSets using Distributions @testset "size(X)=$sz, rank(X)=$r" for sz in [(15, 20, 25), (50, 40, 30)], r in 1:2 Random.seed!(0) M = CPD(ones(r), rand.(sz, r)) X = [rand(Rayleigh(M[I] / (sqrt(pi / 2)))) for I in CartesianIndices(size(M))] # Compute reference Random.seed!(0) Mr = gcp( X, r; loss = GCPLosses.UserDefined( (x, m) -> 2 * log(m + 1e-10) + (pi / 4) * ((x / (m + 1e-10))^2); deriv = (x, m) -> 2 / (m + 1e-10) - (pi / 2) * (x^2 / (m + 1e-10)^3), domain = Interval(0.0, +Inf), ), constraints = (GCPConstraints.LowerBound(0.0),), algorithm = GCPAlgorithms.LBFGSB(), ) # Test Random.seed!(0) Mh = gcp(X, r; loss = GCPLosses.Rayleigh()) @test maximum(I -> abs(Mh[I] - Mr[I]), CartesianIndices(X)) <= 1e-5 end end @testitem "BernoulliOdds" begin using Random, IntervalSets using Distributions @testset "size(X)=$sz, rank(X)=$r" for sz in [(15, 20, 25), (50, 40, 30)], r in 1:2 Random.seed!(0) M = CPD(ones(r), rand.(sz, r)) X = [rand(Bernoulli(M[I] / (M[I] + 1))) for I in CartesianIndices(size(M))] # Compute reference Random.seed!(0) Mr = gcp( X, r; loss = GCPLosses.UserDefined( (x, m) -> log(m + 1) - x * log(m + 1e-10); deriv = (x, m) -> 1 / (m + 1) - (x / (m + 1e-10)), domain = Interval(0.0, +Inf), ), constraints = (GCPConstraints.LowerBound(0.0),), algorithm = GCPAlgorithms.LBFGSB(), ) # Test Random.seed!(0) Mh = gcp(X, r; loss = GCPLosses.BernoulliOdds()) @test maximum(I -> abs(Mh[I] - Mr[I]), CartesianIndices(X)) <= 1e-5 end end @testitem "BernoulliLogitsLoss" begin using Random, IntervalSets using Distributions @testset "size(X)=$sz, rank(X)=$r" for sz in [(15, 20, 25), (50, 40, 30)], r in 1:2 Random.seed!(0) M = CPD(ones(r), rand.(sz, r)) X = [ rand(Bernoulli(exp(M[I]) / (exp(M[I]) + 1))) for I in CartesianIndices(size(M)) ] # Compute reference Random.seed!(0) Mr = gcp( X, r; loss = GCPLosses.UserDefined( (x, m) -> log(1 + exp(m)) - x * m; deriv = (x, m) -> exp(m) / (1 + exp(m)) - x, domain = Interval(-Inf, +Inf), ), constraints = (), algorithm = GCPAlgorithms.LBFGSB(), ) # Test Random.seed!(0) Mh = gcp(X, r; loss = GCPLosses.BernoulliLogit()) @test maximum(I -> abs(Mh[I] - Mr[I]), CartesianIndices(X)) <= 1e-5 end end @testitem "NegativeBinomialOdds" begin using Random, IntervalSets using Distributions @testset "size(X)=$sz, rank(X)=$r" for sz in [(15, 20, 25), (50, 40, 30)], r in 1:2 Random.seed!(0) M = CPD(ones(r), rand.(sz, r)) num_failures = 5 X = [ rand(NegativeBinomial(num_failures, M[I] / (M[I] + 1))) for I in CartesianIndices(size(M)) ] # Compute reference Random.seed!(0) Mr = gcp( X, r; loss = GCPLosses.UserDefined( (x, m) -> (num_failures + x) * log(1 + m) - x * log(m + 1e-10); deriv = (x, m) -> (num_failures + x) / (1 + m) - x / (m + 1e-10), domain = Interval(0.0, +Inf), ), constraints = (GCPConstraints.LowerBound(0.0),), algorithm = GCPAlgorithms.LBFGSB(), ) # Test Random.seed!(0) Mh = gcp(X, r; loss = GCPLosses.NegativeBinomialOdds(num_failures)) @test maximum(I -> abs(Mh[I] - Mr[I]), CartesianIndices(X)) <= 1e-5 end end @testitem "Huber" begin using Random, IntervalSets using Distributions @testset "size(X)=$sz, rank(X)=$r" for sz in [(15, 20, 25), (50, 40, 30)], r in 1:2 Random.seed!(0) M = CPD(ones(r), rand.(sz, r)) X = [M[I] for I in CartesianIndices(size(M))] # Compute reference Δ = 1 Random.seed!(0) Mr = gcp( X, r; loss = GCPLosses.UserDefined( (x, m) -> abs(x - m) <= Δ ? (x - m)^2 : 2 * Δ * abs(x - m) - Δ^2; deriv = (x, m) -> abs(x - m) <= Δ ? -2 * (x - m) : -2 * sign(x - m) * Δ * x, domain = Interval(-Inf, +Inf), ), constraints = (), algorithm = GCPAlgorithms.LBFGSB(), ) # Test Random.seed!(0) Mh = gcp(X, r; loss = GCPLosses.Huber(Δ)) @test maximum(I -> abs(Mh[I] - Mr[I]), CartesianIndices(X)) <= 1e-5 end end @testitem "BetaDivergence" begin using Random, IntervalSets using Distributions @testset "size(X)=$sz, rank(X)=$r, β" for sz in [(15, 20, 25), (50, 40, 30)], r in 1:2, β in [0, 0.5, 1] Random.seed!(0) M = CPD(ones(r), rand.(sz, r)) # May want to consider other distributions depending on value of β X = [rand(Poisson(M[I])) for I in CartesianIndices(size(M))] function beta_value(β, x, m) if β == 0 return x / (m + 1e-10) + log(m + 1e-10) elseif β == 1 return m - x * log(m + 1e-10) else return 1 / β * m^β - 1 / (β - 1) * x * m^(β - 1) end end function beta_deriv(β, x, m) if β == 0 return -x / (m + 1e-10)^2 + 1 / (m + 1e-10) elseif β == 1 return 1 - x / (m + 1e-10) else return m^(β - 1) - x * m^(β - 2) end end # Compute reference Random.seed!(0) Mr = gcp( X, r; loss = GCPLosses.UserDefined( (x, m) -> beta_value(β, x, m); deriv = (x, m) -> beta_deriv(β, x, m), domain = Interval(0.0, +Inf), ), constraints = (GCPConstraints.LowerBound(0.0),), algorithm = GCPAlgorithms.LBFGSB(), ) # Test Random.seed!(0) Mh = gcp(X, r; loss = GCPLosses.BetaDivergence(β)) @test maximum(I -> abs(Mh[I] - Mr[I]), CartesianIndices(X)) <= 1e-5 end end @testitem "UserDefined" begin using Random, Distributions, IntervalSets @testset "Least Squares" begin @testset "size(X)=$sz, rank(X)=$r" for sz in [(15, 20, 25), (50, 40, 30)], r in 1:2 Random.seed!(0) M = CPD(ones(r), randn.(sz, r)) X = [M[I] for I in CartesianIndices(size(M))] # Compute reference Random.seed!(0) Mr = gcp( X, r; loss = GCPLosses.UserDefined( (x, m) -> (x - m)^2; deriv = (x, m) -> 2 * (m - x), domain = Interval(-Inf, +Inf), ), constraints = (), algorithm = GCPAlgorithms.LBFGSB(), ) # Test Random.seed!(0) Mh = gcp(X, r; loss = GCPLosses.UserDefined((x, m) -> (x - m)^2)) @test maximum(I -> abs(Mh[I] - Mr[I]), CartesianIndices(X)) <= 1e-5 end end @testset "Poisson" begin @testset "size(X)=$sz, rank(X)=$r" for sz in [(15, 20, 25), (50, 40, 30)], r in 1:2 Random.seed!(0) M = CPD(fill(10.0, r), rand.(sz, r)) X = [rand(Poisson(M[I])) for I in CartesianIndices(size(M))] # Compute reference Random.seed!(0) Mr = gcp( X, r; loss = GCPLosses.UserDefined( (x, m) -> m - x * log(m + 1e-10); deriv = (x, m) -> 1 - x / (m + 1e-10), domain = Interval(0.0, +Inf), ), constraints = (GCPConstraints.LowerBound(0.0),), algorithm = GCPAlgorithms.LBFGSB(), ) # Test Random.seed!(0) Mh = gcp( X, r; loss = GCPLosses.UserDefined( (x, m) -> m - x * log(m + 1e-10); domain = 0.0 .. Inf, ), ) @test maximum(I -> abs(Mh[I] - Mr[I]), CartesianIndices(X)) <= 1e-5 end end end
GCPDecompositions
https://github.com/dahong67/GCPDecompositions.jl.git
[ "MIT" ]
0.3.0
02db2030eaba15350b05279e79b86bbd4d3a39bc
code
1547
## Tensor Kernels @testitem "mttkrp" begin using Random using GCPDecompositions.TensorKernels @testset "size=$sz, rank=$r" for sz in [(10, 30, 40)], r in [5] Random.seed!(0) X = randn(sz) U = randn.(sz, r) N = length(sz) for n in 1:N Xn = reshape(permutedims(X, [n; setdiff(1:N, n)]), size(X, n), :) Zn = reduce( hcat, [reduce(kron, [U[i][:, j] for i in reverse(setdiff(1:N, n))]) for j in 1:r], ) @test mttkrp(X, U, n) ≈ Xn * Zn end end end @testitem "khatrirao" begin using Random using GCPDecompositions.TensorKernels @testset "size=$sz, rank=$r" for sz in [(10,), (10, 20), (10, 30, 40)], r in [5] Random.seed!(0) U = randn.(sz, r) Zn = reduce(hcat, [reduce(kron, [Ui[:, j] for Ui in U]) for j in 1:r]) @test khatrirao(U...) ≈ Zn end end @testitem "mttkrps" begin using Random using GCPDecompositions.TensorKernels @testset "size=$sz, rank=$r" for sz in [(10, 30), (10, 30, 40)], r in [5] Random.seed!(0) X = randn(sz) U = randn.(sz, r) N = length(sz) G = map(1:N) do n Xn = reshape(permutedims(X, [n; setdiff(1:N, n)]), size(X, n), :) Zn = reduce( hcat, [reduce(kron, [U[i][:, j] for i in reverse(setdiff(1:N, n))]) for j in 1:r], ) return Xn * Zn end @test all(mttkrps(X, U) .≈ G) end end
GCPDecompositions
https://github.com/dahong67/GCPDecompositions.jl.git
[ "MIT" ]
0.3.0
02db2030eaba15350b05279e79b86bbd4d3a39bc
docs
2756
# GCPDecompositions: Generalized CP Decompositions [![Version](https://juliahub.com/docs/GCPDecompositions/version.svg)](https://juliahub.com/ui/Packages/GCPDecompositions/HR3AK) [![Stable](https://img.shields.io/badge/docs-stable-blue.svg)](https://dahong67.github.io/GCPDecompositions.jl/stable/) [![Dev](https://img.shields.io/badge/docs-dev-blue.svg)](https://dahong67.github.io/GCPDecompositions.jl/dev/) [![Project Status: WIP – Initial development is in progress, but there has not yet been a stable, usable release suitable for the public.](https://www.repostatus.org/badges/latest/wip.svg)](https://www.repostatus.org/#wip) [![PkgEval](https://juliahub.com/docs/GCPDecompositions/pkgeval.svg)](https://juliahub.com/ui/Packages/GCPDecompositions/HR3AK) [![Build Status](https://github.com/dahong67/GCPDecompositions.jl/actions/workflows/CI.yml/badge.svg?branch=master)](https://github.com/dahong67/GCPDecompositions.jl/actions/workflows/CI.yml?query=branch%3Amaster) [![Coverage](https://codecov.io/gh/dahong67/GCPDecompositions.jl/branch/master/graph/badge.svg)](https://codecov.io/gh/dahong67/GCPDecompositions.jl) <!-- [![GCPDecompositions Downloads](https://shields.io/endpoint?url=https://pkgs.genieframework.com/api/v1/badge/GCPDecompositions)](https://pkgs.genieframework.com?packages=GCPDecompositions) --> > 👋 *This package provides research code and work is ongoing. > If you are interested in using it in your own research, > **I'd love to hear from you and collaborate!** > Feel free to write: [email protected]* Please cite the following papers for this technique: > David Hong, Tamara G. Kolda, Jed A. Duersch. > "Generalized Canonical Polyadic Tensor Decomposition", > *SIAM Review* 62:133-163, 2020. > https://doi.org/10.1137/18M1203626 > https://arxiv.org/abs/1808.07452 > > Tamara G. Kolda, David Hong. > "Stochastic Gradients for Large-Scale Tensor Decomposition", > *SIAM Journal on Mathematics of Data Science* 2:1066-1095, 2020. > https://doi.org/10.1137/19M1266265 > https://arxiv.org/abs/1906.01687 In BibTeX form: ```bibtex @Article{hkd2020gcp, title = "Generalized Canonical Polyadic Tensor Decomposition", author = "David Hong and Tamara G. Kolda and Jed A. Duersch", journal = "{SIAM} Review", year = "2020", volume = "62", number = "1", pages = "133--163", DOI = "10.1137/18M1203626", } @Article{kh2020sgf, title = "Stochastic Gradients for Large-Scale Tensor Decomposition", author = "Tamara G. Kolda and David Hong", journal = "{SIAM} Journal on Mathematics of Data Science", year = "2020", volume = "2", number = "4", pages = "1066--1095", DOI = "10.1137/19M1266265", } ```
GCPDecompositions
https://github.com/dahong67/GCPDecompositions.jl.git
[ "MIT" ]
0.3.0
02db2030eaba15350b05279e79b86bbd4d3a39bc
docs
1745
# GCPDecompositions: Generalized CP Decompositions Documentation for [GCPDecompositions](https://github.com/dahong67/GCPDecompositions.jl). > 👋 *This package provides research code and work is ongoing. > If you are interested in using it in your own research, > **I'd love to hear from you and collaborate!** > Feel free to write: [[email protected]](mailto:[email protected])* Please cite the following papers for this technique: > David Hong, Tamara G. Kolda, Jed A. Duersch. > "Generalized Canonical Polyadic Tensor Decomposition", > *SIAM Review* 62:133-163, 2020. > [https://doi.org/10.1137/18M1203626](https://doi.org/10.1137/18M1203626) > [https://arxiv.org/abs/1808.07452](https://arxiv.org/abs/1808.07452) > > Tamara G. Kolda, David Hong. > "Stochastic Gradients for Large-Scale Tensor Decomposition", > *SIAM Journal on Mathematics of Data Science* 2:1066-1095, 2020. > [https://doi.org/10.1137/19M1266265](https://doi.org/10.1137/19M1266265) > [https://arxiv.org/abs/1906.01687](https://arxiv.org/abs/1906.01687) In BibTeX form: ```bibtex @Article{hkd2020gcp, title = "Generalized Canonical Polyadic Tensor Decomposition", author = "David Hong and Tamara G. Kolda and Jed A. Duersch", journal = "{SIAM} Review", year = "2020", volume = "62", number = "1", pages = "133--163", DOI = "10.1137/18M1203626", } @Article{kh2020sgf, title = "Stochastic Gradients for Large-Scale Tensor Decomposition", author = "Tamara G. Kolda and David Hong", journal = "{SIAM} Journal on Mathematics of Data Science", year = "2020", volume = "2", number = "4", pages = "1066--1095", DOI = "10.1137/19M1266265", } ```
GCPDecompositions
https://github.com/dahong67/GCPDecompositions.jl.git
[ "MIT" ]
0.3.0
02db2030eaba15350b05279e79b86bbd4d3a39bc
docs
4785
# Quick start guide Let's install GCPDecompositions and run our first **G**eneralized **CP** Tensor **Decomposition**! ## Step 1: Install Julia Go to [https://julialang.org/downloads](https://julialang.org/downloads) and install the current stable release. To check your installation, open up Julia and try a simple calculation like `1+1`: ```@repl 1 + 1 ``` More info: [https://docs.julialang.org/en/v1/manual/getting-started/](https://docs.julialang.org/en/v1/manual/getting-started/) ## Step 2: Install GCPDecompositions GCPDecompositions can be installed using Julia's excellent builtin package manager. ```julia-repl julia> import Pkg; Pkg.add("GCPDecompositions") ``` This downloads, installs, and precompiles GCPDecompositions (and all its dependencies). Don't worry if it takes a few minutes to complete. !!! tip "Tip: Interactive package management with the Pkg REPL mode" Here we used the [functional API](https://pkgdocs.julialang.org/v1/api/) for the builtin package manager. Pkg also has a very nice interactive interface (called the Pkg REPL) that is built right into the Julia REPL! Learn more here: [https://pkgdocs.julialang.org/v1/getting-started/](https://pkgdocs.julialang.org/v1/getting-started/) !!! tip "Tip: Pkg environments" The package manager has excellent support for creating separate installation environments. We strongly recommend using environments to create isolated and reproducible setups. Learn more here: [https://pkgdocs.julialang.org/v1/environments/](https://pkgdocs.julialang.org/v1/environments/) ## Step 3: Run GCPDecompositions Let's create a simple three-way (a.k.a. order-three) data tensor that has a rank-one signal plus noise! ```@repl quickstart dims = (10, 20, 30) X = ones(dims) + randn(dims); # semicolon suppresses the output ``` Mathematically, this data tensor can be written as follows: ```math X = \underbrace{ \mathbf{1}_{10} \circ \mathbf{1}_{20} \circ \mathbf{1}_{30} }_{\text{rank-one signal}} + N \in \mathbb{R}^{10 \times 20 \times 30} , ``` where ``\mathbf{1}_{n} \in \mathbb{R}^n`` denotes a vector of ``n`` ones, ``\circ`` denotes the outer product, and ``N_{ijk} \overset{iid}{\sim} \mathcal{N}(0,1)``. Now, to get a rank ``r=1`` GCP decomposition simply load the package and run `gcp`. ```@repl quickstart using GCPDecompositions r = 1 # desired rank M = gcp(X, r) ``` This returns a `CPD` (short for **CP** **D**ecomposition) with weights ``\lambda`` and factor matrices ``U_1``, ``U_2``, and ``U_3``. Mathematically, this is the following decomposition (read [Overview](@ref) to learn more): ```math M = \sum_{i=1}^{r} \lambda[i] \cdot U_1[:,i] \circ U_2[:,i] \circ U_3[:,i] \in \mathbb{R}^{10 \times 20 \times 30} . ``` We can extract each of these as follows: ```@repl quickstart M.λ # to write `λ`, type `\lambda` then hit tab M.U[1] M.U[2] M.U[3] ``` Let's check how close the factor matrices ``U_1``, ``U_2``, and ``U_3`` (which were estimated from the noisy data) are to the true signal components ``\mathbf{1}_{10}``, ``\mathbf{1}_{20}``, and ``\mathbf{1}_{30}``. We use the angle between the vectors since the scale of each factor matrix isn't meaningful on its own (read [Overview](@ref) to learn more): ```@repl quickstart using LinearAlgebra: normalize vecangle(u, v) = acos(normalize(u)'*normalize(v)) # angle between vectors in radians vecangle(M.U[1][:,1], ones(10)) vecangle(M.U[2][:,1], ones(20)) vecangle(M.U[3][:,1], ones(30)) ``` The decomposition does a pretty good job of extracting the signal from the noise! The power of **Generalized** CP Decomposition is that we can fit CP decompositions to data using different losses (i.e., different notions of fit). By default, `gcp` uses the (conventional) least-squares loss, but we can easily try another! For example, to try non-negative least-squares simply run ```@repl quickstart M_nonneg = gcp(X, 1; loss = GCPLosses.NonnegativeLeastSquares()) ``` !!! tip "Congratulations!" Congratulations! You have successfully installed GCPDecompositions and run some Generalized CP decompositions! ## Next steps Ready to learn more? - If you are new to tensor decompositions (or to GCP decompositions in particular), check out the [Overview](@ref) page in the manual. Also check out some of the demos! - To learn about all the different loss functions you can use or about how to add your own, check out the [Loss functions](@ref) page in the manual. - To learn about different constraints you can add, check out the [Constraints](@ref) page in the manual. - To learn about different algorithms you can choose, check out the [Algorithms](@ref) page in the manual. Want to understand the internals and possibly contribute? Check out the developer docs.
GCPDecompositions
https://github.com/dahong67/GCPDecompositions.jl.git
[ "MIT" ]
0.3.0
02db2030eaba15350b05279e79b86bbd4d3a39bc
docs
127
# Overview of demos !!! warning "Work-in-progress" This page of the docs is still a work-in-progress. Check back later!
GCPDecompositions
https://github.com/dahong67/GCPDecompositions.jl.git
[ "MIT" ]
0.3.0
02db2030eaba15350b05279e79b86bbd4d3a39bc
docs
467
# Tensor Kernels !!! warning "Work-in-progress" This page of the docs is still a work-in-progress. Check back later! ```@docs GCPDecompositions.TensorKernels GCPDecompositions.TensorKernels.khatrirao GCPDecompositions.TensorKernels.khatrirao! GCPDecompositions.TensorKernels.mttkrp GCPDecompositions.TensorKernels.mttkrp! GCPDecompositions.TensorKernels.create_mttkrp_buffer GCPDecompositions.TensorKernels.mttkrps GCPDecompositions.TensorKernels.mttkrps! ```
GCPDecompositions
https://github.com/dahong67/GCPDecompositions.jl.git
[ "MIT" ]
0.3.0
02db2030eaba15350b05279e79b86bbd4d3a39bc
docs
322
# Private functions !!! warning "Work-in-progress" This page of the docs is still a work-in-progress. Check back later! ```@docs GCPAlgorithms._gcp GCPDecompositions.TensorKernels._checked_khatrirao_dims GCPDecompositions.TensorKernels._checked_mttkrp_dims GCPDecompositions.TensorKernels._checked_mttkrps_dims ```
GCPDecompositions
https://github.com/dahong67/GCPDecompositions.jl.git
[ "MIT" ]
0.3.0
02db2030eaba15350b05279e79b86bbd4d3a39bc
docs
331
# Algorithms !!! warning "Work-in-progress" This page of the docs is still a work-in-progress. Check back later! ```@docs GCPAlgorithms GCPAlgorithms.AbstractAlgorithm ``` ```@autodocs Modules = [GCPAlgorithms] Filter = t -> t in subtypes(GCPAlgorithms.AbstractAlgorithm) || (t isa Function && t != GCPAlgorithms._gcp) ```
GCPDecompositions
https://github.com/dahong67/GCPDecompositions.jl.git
[ "MIT" ]
0.3.0
02db2030eaba15350b05279e79b86bbd4d3a39bc
docs
291
# Constraints !!! warning "Work-in-progress" This page of the docs is still a work-in-progress. Check back later! ```@docs GCPConstraints GCPConstraints.AbstractConstraint ``` ```@autodocs Modules = [GCPConstraints] Filter = t -> t in subtypes(GCPConstraints.AbstractConstraint) ```
GCPDecompositions
https://github.com/dahong67/GCPDecompositions.jl.git
[ "MIT" ]
0.3.0
02db2030eaba15350b05279e79b86bbd4d3a39bc
docs
363
# Loss functions !!! warning "Work-in-progress" This page of the docs is still a work-in-progress. Check back later! ```@docs GCPLosses GCPLosses.AbstractLoss ``` ```@autodocs Modules = [GCPLosses] Filter = t -> t in subtypes(GCPLosses.AbstractLoss) ``` ```@docs GCPLosses.value GCPLosses.deriv GCPLosses.domain GCPLosses.objective GCPLosses.grad_U! ```
GCPDecompositions
https://github.com/dahong67/GCPDecompositions.jl.git
[ "MIT" ]
0.3.0
02db2030eaba15350b05279e79b86bbd4d3a39bc
docs
269
# Overview !!! warning "Work-in-progress" This page of the docs is still a work-in-progress. Check back later! ```@docs GCPDecompositions gcp CPD ncomps GCPDecompositions.default_constraints GCPDecompositions.default_algorithm GCPDecompositions.default_init ```
GCPDecompositions
https://github.com/dahong67/GCPDecompositions.jl.git
[ "MIT" ]
0.2.1
6512022b637fc17c297bb3050ba2e6cdd50b6fa0
code
350
using Documenter, BGEN makedocs( format = Documenter.HTML(), sitename = "BGEN.jl", authors = "Seyoon Ko", clean = true, debug = true, pages = [ "index.md" ] ) deploydocs( repo = "github.com/OpenMendel/BGEN.jl.git", target = "build", deps = nothing, make = nothing, devbranch = "main" )
BGEN
https://github.com/OpenMendel/BGEN.jl.git
[ "MIT" ]
0.2.1
6512022b637fc17c297bb3050ba2e6cdd50b6fa0
code
1468
module BGEN import Base: length, getindex, setindex, firstindex, lastindex, eltype, size, iterate, close, Iterators.filter import Tables: columntable import Statistics: mean import SpecialFunctions: gamma_inc import TranscodingStreams: initialize, finalize, buffermem, process, Buffer, Error import GeneticVariantBase: GeneticData, Variant, VariantIterator, iterator import GeneticVariantBase: chrom, pos, rsid, alleles, alt_allele, ref_allele import GeneticVariantBase: maf, hwepval, infoscore, alt_dosages! export Bgen, Samples, Variant, Genotypes, Index export io, fsize, samples, n_samples, n_variants, compression export varid, rsid, chrom, pos, n_alleles, alleles, minor_allele, major_allele export phased, min_ploidy, max_ploidy, ploidy, bit_depth, missings export parse_variants, iterator, probabilities!, minor_allele_dosage! export first_allele_dosage!, clear!, hardcall, hardcall! export select_region, variant_by_rsid, variant_by_pos, variant_by_index export rsids, chroms, positions export hwe, maf, info_score, counts! export BgenVariantIteratorFromStart, BgenVariantIteratorFromOffsets using CodecZlib, CodecZstd, SQLite, SIMD include("structs.jl") include("iterator.jl") include("header.jl") include("minor_certain.jl") include("sample.jl") include("variant.jl") include("bgen_ftns.jl") include("genotypes.jl") include("index.jl") include("utils.jl") include("filter.jl") datadir(parts...) = joinpath(@__DIR__, "..", "data", parts...) end
BGEN
https://github.com/OpenMendel/BGEN.jl.git
[ "MIT" ]
0.2.1
6512022b637fc17c297bb3050ba2e6cdd50b6fa0
code
5191
""" Bgen(path; sample_path=nothing, delay_parsing=false) Read in the Bgen file information: header, list of samples. Variants and genotypes are read separately. - `path`: path to the ".bgen" file. - `sample_path`: path to ".sample" file, if applicable. - `idx_path`: path to ".bgi" file, defaults to `path * ".bgi`. """ function Bgen(path::AbstractString; sample_path = nothing, idx_path = isfile(path * ".bgi") ? path * ".bgi" : nothing, ref_first = true ) io = open(path) fsize = filesize(path) # read header header = Header(io) # read samples if sample_path !== nothing samples = get_samples(sample_path, header.n_samples) # disregard sample names in the header if .sample file is provided if header.has_sample_ids header_sample_length = read(io, UInt32) read(io, header_sample_length) end elseif header.has_sample_ids samples = get_samples(io, header.n_samples) else samples = get_samples(header.n_samples) end offset = header.offset + 4 # location of the first variant_ids if idx_path !== nothing if isfile(idx_path) idx = Index(idx_path) else @error "$idx_path is not a file" end else idx = nothing end Bgen(io, fsize, header, samples, idx, ref_first) end @inline io(b::Bgen) = b.io Base.close(b::Bgen) = close(b.io) @inline fsize(b::Bgen)::Int = b.fsize @inline samples(b::Bgen) = b.samples @inline n_samples(b::Bgen)::Int = b.header.n_samples @inline n_variants(b::Bgen)::Int = b.header.n_variants const compression_modes = ["None", "Zlib", "Zstd"] @inline function compression(b::Bgen) compression_modes[b.header.compression + 1] end """ iterator(b::Bgen; offsets=nothing, from_bgen_start=nothing) Retrieve a variant iterator for `b`. - If `offsets` is provided, or `.bgen.bgi` is provided and `from_bgen_start` is `false`, it returns a `VariantIteratorFromOffsets`, iterating over the list of offsets. - Otherwise, it returns a `VariantIteratorFromStart`, iterating from the start of bgen file to the end of it sequentially. """ function iterator(b::Bgen; offsets=nothing, from_bgen_start=false) if offsets === nothing if b.idx === nothing || from_bgen_start return BgenVariantIteratorFromStart(b) else return BgenVariantIteratorFromOffsets(b, BGEN.offsets(b.idx)) end else return BgenVariantIteratorFromOffsets(b, offsets) end end """ offset_first_variant(x) returns the offset of the first variant """ @inline function offset_first_variant(x::Bgen) return x.header.offset + 4 end """ parse_variants(b::Bgen; offsets=offsets) Parse variants of the file. """ function parse_variants(b::Bgen; offsets=nothing, from_bgen_start=false) collect(iterator(b; offsets=offsets, from_bgen_start=from_bgen_start)) end function parse_variants(v::BgenVariantIterator) collect(v) end """ rsids(vi) rsids(b; offsets=nothing, from_bgen_start=false) Get rsid list of all variants. Arguments: - `vi`: a collection of `Variant`s - `bgen`: `Bgen` object - `offsets`: offset of each variant to be returned """ function rsids(b::Bgen; offsets=nothing, from_bgen_start=false) if b.idx !== nothing && offsets === nothing return rsids(b.idx) else vi = iterator(b; offsets=offsets, from_bgen_start=from_bgen_start) rsids(vi) end end function rsids(vi::BgenVariantIterator) collect(v.rsid for v in vi) end """ chroms(vi) chroms(bgen; offsets=nothing) Get chromosome list of all variants. Arguments: - `vi`: a collection of `Variant`s - `bgen`: `Bgen` object - `offsets`: offset of each variant to be returned """ function chroms(b::Bgen; vi=nothing, offsets=nothing, from_bgen_start=false) if b.idx !== nothing && offsets === nothing return chroms(b.idx) else vi = iterator(b; offsets=offsets, from_bgen_start=from_bgen_start) chroms(vi) end end function chroms(vi::BgenVariantIterator) collect(v.chrom for v in vi) end function chrom(b::Bgen, v::BgenVariant) chrom(v) end """ positions(vi) positions(bgen; offsets=nothing) Get base pair positions of all variants. Arguments: - `vi`: a collection of `Variant`s - `bgen`: `Bgen` object - `offsets`: offset of each variant to be returned """ function positions(b::Bgen; offsets=nothing, from_bgen_start=false)::Vector{Int} if b.idx !== nothing && offsets === nothing return positions(b.idx) else vi = iterator(b; offsets=offsets, from_bgen_start=from_bgen_start) positions(vi) end end function positions(vi::BgenVariantIterator) collect(v.pos for v in vi) end function pos(b::Bgen, v::BgenVariant) pos(v) end function rsid(b::Bgen, v::BgenVariant) rsid(v) end function alleles(b::Bgen, v::BgenVariant) alleles(v) end function alt_allele(b::Bgen, v::BgenVariant) allele_list = alleles(v) b.ref_first ? allele_list[2] : allele_list[1] end function ref_allele(b::Bgen, v::BgenVariant) allele_list = alleles(v) b.ref_first ? allele_list[1] : allele_list[2] end
BGEN
https://github.com/OpenMendel/BGEN.jl.git
[ "MIT" ]
0.2.1
6512022b637fc17c297bb3050ba2e6cdd50b6fa0
code
6669
""" filter(dest::AbstractString, b::Bgen, variant_mask::BitVector, sample_mask::BitVector; dest_sample=dest[1:end-5] * ".sample", sample_path=nothing, sample_names=b.samples, offsets=nothing, from_bgen_start=false) Filters the input Bgen instance `b` based on `variant_mask` and `sample_mask`. The result is saved in the new bgen file `dest`. Sample information is stored in `dest_sample`. `sample_path` is the path of the `.sample` file for the input BGEN file, and `sample_names` stores the sample names in the BGEN file. `offsets` and `from_bgen_start` are arguments for the `iterator` function of `b`. Only supports layout 2 and probibility bit depths should always be a multiple of 8. The output is always compressed in ZSTD. The sample names are stored in a separate .sample file, but not in the output .bgen file. """ function filter(dest::AbstractString, b::Bgen, variant_mask::BitVector, sample_mask::BitVector=trues(length(b.samples)); dest_sample = dest[1:end-5] * ".sample", sample_path=nothing, sample_names=b.samples, offsets=nothing, from_bgen_start=false, use_zlib=false) @assert endswith(dest, ".bgen") "must use .bgen file" @assert b.header.layout == 2 "only layout 2 is supported." @assert length(variant_mask) == b.header.n_variants @assert length(sample_mask) == b.header.n_samples filter_samples(dest_sample, sample_mask; sample_path=sample_path, sample_names=sample_names) open(dest, "w") do io write(io, UInt32(20)) # offset, defaults to 20. write(io, UInt32(20)) # length of header in bytes, defaults to 20. write(io, UInt32(sum(variant_mask))) # number of variants write(io, UInt32(sum(sample_mask))) # number of samples write(io, Vector{UInt8}("bgen")) # magic number if !use_zlib flag = 0x0000000a # zstd, layout 2, do not store sample info else flag = 0x00000009 # zlib, layout 2, do not store sample info end write(io, flag) v_it = iterator(b; offsets=offsets, from_bgen_start=from_bgen_start) for (i, v) in enumerate(v_it) if variant_mask[i] write_variant(io, b, v, sample_mask; use_zlib=use_zlib) end end end end function write_variant(io::IOStream, b::Bgen, v::BgenVariant, sample_mask::BitVector; use_zlib=false) write(io, UInt16(length(v.varid))) # length of varid write(io, v.varid) # varid write(io, UInt16(length(v.rsid))) # length of rsid write(io, v.rsid) # rsid write(io, UInt16(length(v.chrom))) # length of chrom write(io, v.chrom) # chrom write(io, v.pos) # position write(io, v.n_alleles) # n of alleles for a_idx in 1:v.n_alleles write(io, UInt32(length(v.alleles[a_idx]))) write(io, v.alleles[a_idx]) end decompressed = decompress(b.io, v, b.header) if !all(sample_mask) # parse decompressed genotype, skip if all samples are chosen n_samples_new = sum(sample_mask) p = parse_preamble(decompressed, b.header, v) @assert p.bit_depth % 8 == 0 # probabilities should be byte aligned decompressed_new = Vector{UInt8}(undef, get_decompressed_length(p, decompressed, sample_mask)) decompressed_new[1:4] = reinterpret(UInt8, UInt32[n_samples_new]) # update number of samples decompressed_new[5:6] .= decompressed[5:6] # number of alleles ploidy_old = @view decompressed[9 : 8 + p.n_samples] decompressed_new[9 : 8 + n_samples_new] = ploidy_old[sample_mask] # extract ploidies ploidy_new = @view(decompressed_new[9 : 8 + n_samples_new]) .& 0x3f decompressed_new[7] = minimum(ploidy_new) # min ploidy decompressed_new[8] = maximum(ploidy_new) # max ploidy # phased flag decompressed_new[8 + n_samples_new + 1] = decompressed[8 + p.n_samples + 1] # bit depth decompressed_new[8 + n_samples_new + 2] = decompressed[8 + p.n_samples + 2] offset = 10 + p.n_samples offset_new = 10 + n_samples_new base_bytes = p.bit_depth ÷ 8 # write each genotype for (i, m) in enumerate(sample_mask) current_block_length = if p.phased == 1 base_bytes * (ploidy_old[i] & 0x3f) * (p.n_alleles - 1) else z = ploidy_old[i] & 0x3f k = p.n_alleles base_bytes * (binomial(z + k - 1, k - 1) - 1) end if m decompressed_new[offset_new + 1 : offset_new + current_block_length] .= decompressed[offset + 1 : offset + current_block_length] offset_new += current_block_length end offset += current_block_length end decompressed = decompressed_new @assert length(decompressed_new) == offset_new end if !use_zlib compressed = transcode(ZstdCompressor(), decompressed) else compressed = transcode(ZlibCompressor(), decompressed) end write(io, UInt32(length(compressed) + 4)) write(io, UInt32(length(decompressed))) write(io, compressed) end function get_decompressed_length(p::Preamble, d::Vector{UInt8}, sample_mask::BitVector) cum_count = 10 n_samples_new = sum(sample_mask) cum_count += n_samples_new base_bytes = p.bit_depth ÷ 8 ploidy = d[9: 8 + p.n_samples] if p.phased == 1 cum_count += base_bytes * sum(ploidy[sample_mask] .& 0x3f) * (p.n_alleles - 1) else for (i, m) in enumerate(sample_mask) if m z = ploidy[i] & 0x3f k = p.n_alleles cum_count += base_bytes * (binomial(z + k - 1, k - 1) - 1) end end end cum_count end function filter_samples(dest::AbstractString, sample_mask::BitVector; sample_path=nothing, sample_names=nothing) io = open(dest, "w") if sample_path !== nothing sample_io = open(sample_path) println(io, readline(sample_io)) println(io, readline(sample_io)) for (i, sm) in enumerate(sample_mask) l = readline(sample_io) if sm println(io, l) end end close(sample_io) else @assert sample_names !== nothing "either `sample_path` or `sample_names` must be provided" println(io, "ID_1") println(io, "0") for (i, sm) in enumerate(sample_mask) if sm println(io, sample_names[i]) end end end close(io) end
BGEN
https://github.com/OpenMendel/BGEN.jl.git
[ "MIT" ]
0.2.1
6512022b637fc17c297bb3050ba2e6cdd50b6fa0
code
24829
const lookup = [i / 255 for i in 0:510] @inline function unsafe_load_UInt64(v::Vector{UInt8}, i::Integer) p = convert(Ptr{UInt64}, pointer(v, i)) unsafe_load(p) end """ Genotypes{T}(p::Preamble, d::Vector{UInt8}) where T <: AbstractFloat Create `Genotypes` struct from the preamble and decompressed data string. """ function Genotypes{T}(p::Preamble, d::Vector{UInt8}) where T <: AbstractFloat Genotypes{T}(p, d, nothing, 0, nothing, false, false) end const zlib = ZlibDecompressor() @inline function zstd_uncompress!(input::Vector{UInt8}, output::Vector{UInt8}) r = ccall((:ZSTD_decompress, CodecZstd.libzstd), Csize_t, (Ptr{Cchar}, Csize_t, Ptr{Cchar}, Csize_t), pointer(output), length(output), pointer(input), length(input)) @assert r == length(output) "zstd decompression returned data of wrong length" end @inline function check_decompressed_length(io, v, h) seek(io, v.geno_offset) decompressed_field = 0 if h.compression != 0 if h.layout == 1 decompressed_length = 6 * h.n_samples elseif h.layout == 2 decompressed_field = 4 decompressed_length = read(io, UInt32) end end return decompressed_length, decompressed_field end """ decompress(io, v, h; decompressed=nothing) Decompress the compressed byte string for genotypes. """ function decompress(io::IOStream, v::BgenVariant, h::Header; decompressed::Union{Nothing, AbstractVector{UInt8}}=nothing ) compression = h.compression seek(io, v.geno_offset) decompressed_length, decompressed_field = check_decompressed_length(io, v, h) if decompressed !== nothing @assert length(decompressed) == decompressed_length "decompressed length mismatch" else decompressed = Vector{UInt8}(undef, decompressed_length) end compressed_length = v.next_var_offset - v.geno_offset - decompressed_field buffer_compressed = read(io, compressed_length) if compression == 0 decompressed .= buffer_compressed else if compression == 1 codec = zlib elseif compression == 2 codec = nothing else @error "invalid compression" end if compression == 1 input = Buffer(buffer_compressed) output = Buffer(decompressed) error = Error() initialize(codec) _, _, e = process(codec, buffermem(input), buffermem(output), error) if e === :error throw(error[]) end finalize(codec) elseif compression == 2 zstd_uncompress!(buffer_compressed, decompressed) end end return decompressed end """ parse_ploidy(ploidy, d, idx, n_samples) Parse ploidy part of the preamble. """ function parse_ploidy(ploidy::Union{UInt8,AbstractVector{UInt8}}, d::AbstractVector{UInt8}, n_samples::Integer) missings = Int[] mask = 0x3f # 63 in UInt8 mask_8 = 0x8080808080808080 # UInt64, mask for missingness idx1 = 9 if typeof(ploidy) == UInt8 # if constant ploidy, just scan for missingness # check eight samples at a time if n_samples >= 8 @inbounds for i in 0:8:(n_samples - (n_samples % 8) - 1) if mask_8 & unsafe_load_UInt64(d, idx1 + i) != 0 for j in (i+1):(i+8) if d[idx1 + j - 1] & 0x80 != 0 push!(missings, j) end end end end end # remainder not in multiple of 8 @inbounds for j in (n_samples - (n_samples % 8) + 1):n_samples if d[idx1 + j - 1] & 0x80 != 0 push!(missings, j) end end else @inbounds for j in 1:n_samples ploidy[j] = mask & d[idx1 + j - 1] if d[idx1 + j - 1] & 0x80 != 0 push!(missings, j) end end end return missings end @inline function get_max_probs(max_ploidy, n_alleles, phased) phased == 1 ? n_alleles : binomial(max_ploidy + n_alleles - 1, n_alleles - 1) end """ parse_preamble(d, idx, h, v) Parse preamble of genotypes. """ function parse_preamble(d::AbstractVector{UInt8}, h::Header, v::BgenVariant) startidx = 1 if h.layout == 1 n_samples = h.n_samples n_alleles = 2 phased = false min_ploidy = 0x02 max_ploidy = 0x02 bit_depth = 16 elseif h.layout == 2 n_samples = reinterpret(UInt32, @view(d[startidx:startidx+3]))[1] startidx += 4 @assert n_samples == h.n_samples "invalid number of samples" n_alleles = reinterpret(UInt16, @view(d[startidx:startidx+1]))[1] startidx += 2 @assert n_alleles == v.n_alleles "invalid number of alleles" min_ploidy = d[startidx] startidx += 1 max_ploidy = d[startidx] startidx += 1 else @error "invalid layout" end constant_ploidy = (min_ploidy == max_ploidy) if constant_ploidy ploidy = max_ploidy else ploidy = Vector{UInt8}(undef, n_samples) fill!(ploidy, 0) end missings = [] if h.layout == 2 # this function also parses missingness. missings = parse_ploidy(ploidy, d, n_samples) startidx += n_samples phased = d[startidx] startidx += 1 bit_depth = d[startidx] startidx += 1 end max_probs = get_max_probs(max_ploidy, n_alleles, phased) Preamble(n_samples, n_alleles, phased, min_ploidy, max_ploidy, ploidy, bit_depth, max_probs, missings) end """ parse_layout1!(data, p, d, startidx) Parse probabilities from layout 1. """ function parse_layout1!(data::AbstractArray{<:AbstractFloat}, p::Preamble, d::AbstractArray{UInt8}, startidx::Integer ) @assert length(data) == p.n_samples * p.max_probs factor = 1.0 / 32768 idx = startidx @fastmath @inbounds for i in 1:p.max_probs:(p.n_samples * p.max_probs) j = idx data[i] = reinterpret(UInt16, @view(d[j : j + 1]))[1] * factor data[i + 1] = reinterpret(UInt16, @view(d[j + 2 : j + 3]))[1] * factor data[i + 2] = reinterpret(UInt16, @view(d[j + 4 : j + 5]))[1] * factor idx += 6 # triple zero denotes missing for layout1 if data[i] == 0.0 && data[i+1] == 0.0 && data[i+2] == 0.0 data[i:i+2] .= NaN push!(p.missings, (i-1) ÷ p.max_probs + 1) end end return data end """ parse_layout2!(data, p, d, startidx) Parse probabilities from layout 2. """ function parse_layout2!(data::AbstractArray{<:AbstractFloat}, p::Preamble, d::AbstractArray{UInt8}, startidx::Integer ) constant_ploidy = p.max_ploidy == p.min_ploidy if p.phased == 0 nrows = p.n_samples else if constant_ploidy nrows = p.n_samples * p.max_ploidy else nrows = sum(p.ploidy) end end @assert length(data) == p.max_probs * nrows max_less_1 = p.max_probs - 1 prob = 0.0 factor = 1.0 / (2 ^ p.bit_depth - 1) # mask for depth not multiple of 8 probs_mask = 0xFFFFFFFFFFFFFFFF >> (64 - p.bit_depth) bit_idx = 0 if constant_ploidy && p.max_probs == 3 && p.bit_depth == 8 # fast path for unphased, ploidy==2, 8 bits per prob. idx1 = startidx @inbounds for offset in 1:3:(3 * nrows) idx2 = 2 * ((offset-1) ÷ 3) first = d[idx1 + idx2] second = d[idx1 + idx2 + 1] data[offset] = lookup[first + 1] data[offset + 1] = lookup[second + 1] data[offset + 2] = lookup[256 - first - second] end else idx1 = startidx @inbounds for offset in 1:p.max_probs:(nrows * p.max_probs) # number of probabilities to be read per row if constant_ploidy n_probs = max_less_1 elseif p.phased == 1 n_probs = p.n_alleles - 1 elseif p.ploidy[offset ÷ p.max_probs + 1] == 2 && p.n_alleles == 2 n_probs = 2 else n_probs = binomial(p.ploidy[offset ÷ p.max_probs + 1] + p.n_alleles - 1, p.n_alleles - 1) - 1 end remainder = 1.0 @inbounds for i in 1:n_probs j = idx1 + bit_idx ÷ 8 @inbounds prob = (unsafe_load_UInt64(d, j) >> (bit_idx % 8) & probs_mask) * factor bit_idx += p.bit_depth remainder -= prob data[offset + i - 1] = prob end data[offset + n_probs] = remainder if n_probs + 1 < p.max_probs data[(offset + n_probs + 1):(offset + p.max_probs - 1)] .= NaN end end end for m in p.missings offset = p.max_probs * (m - 1) + 1 data[offset:(offset + p.max_probs - 1)] .= NaN end return data end """ first_dosage_fast!(data, p, d, idx, layout) Dosage retrieval for 8-bit biallele case, no floating-point operations! """ const one_255th = 1.0f0 / 255.0f0 const mask_odd = reinterpret(Vec{16, UInt16}, Vec{32, UInt8}( tuple(repeat([0xff, 0x00], 16)...))) const mask_even = reinterpret(Vec{16, UInt16}, Vec{32, UInt8}( tuple(repeat([0x00, 0xff], 16)...))) function first_dosage_fast!(data::Vector{T}, p::Preamble, d::Vector{UInt8}, startidx::Integer, layout::UInt8 ) where {T <:AbstractFloat} @assert length(data) == p.n_samples @assert layout == 2 @assert p.bit_depth == 8 && p.max_probs == 3 && p.max_ploidy == p.min_ploidy idx1 = startidx if p.n_samples >= 16 @inbounds for n in 1:16:(p.n_samples - p.n_samples % 16) idx_base = idx1 + ((n-1) >> 1) << 2 r = reinterpret(Vec{16, UInt16}, vload(Vec{32, UInt8}, d, idx_base)) second = (r & mask_even) >> 8 first = (r & mask_odd) << 1 dosage_level = first + second dosage_level_float = one_255th * convert( Vec{16, T}, dosage_level) vstore(dosage_level_float, data, n) end end rem = p.n_samples % 16 if rem != 0 @inbounds for n in ((p.n_samples - rem) + 1) : p.n_samples idx_base = idx1 + ((n - 1) << 1) data[n] = lookup[d[idx_base] * 2 + d[idx_base + 1] + 1] end end return data end """ first_dosage_slow!(data, p, d, idx, layout) Dosage computation for general case. """ function first_dosage_slow!(data::Vector{<:AbstractFloat}, p::Preamble, d::Vector{UInt8}, startidx::Integer, layout::UInt8 ) @assert length(data) == p.n_samples ploidy = p.max_ploidy half_ploidy = ploidy / 2 maxval = 2 ^ p.bit_depth - 1 factor = layout == 2 ? 1.0 / maxval : 1.0 / 32768 probs_mask = 0xFFFFFFFFFFFFFFFF >> (64 - p.bit_depth) bit_idx = 0 for n = 1:p.n_samples if p.max_ploidy != p.min_ploidy ploidy = ploidy[n] half_ploidy = ploidy ÷ 2 end j = startidx + bit_idx ÷ 8 hom = (unsafe_load_UInt64(d, j) >> (bit_idx % 8)) & probs_mask bit_idx += p.bit_depth j = startidx + bit_idx ÷ 8 het = (unsafe_load_UInt64(d, j) >> (bit_idx % 8)) & probs_mask bit_idx += p.bit_depth data[n] = ((hom * ploidy) + (het * half_ploidy)) * factor if layout == 1 # layout 1 also stores hom_alt probability, and it indicates missing by # triple zero. j = startidx + bit_idx ÷ 8 hom_alt = (unsafe_load_UInt64(d, j) >> (bit_idx % 8)) & probs_mask bit_idx += p.bit_depth if hom == 0 && het == 0 && hom_alt == 0 push!(p.missings, n) end end end return data end """ first_dosage_phased!(data, p, d, idx, layout) Dosage computation for phased genotypes. """ function first_dosage_phased!(data::Vector{<:AbstractFloat}, p::Preamble, d::Vector{UInt8}, startidx::Integer, layout::UInt8 ) @assert length(data) == p.n_samples @assert layout == 2 "Phased genotypes not supported for Layout 1" ploidy = p.max_ploidy half_ploidy = ploidy / 2 maxval = 2 ^ p.bit_depth - 1 factor = 1.0 / maxval probs_mask = 0xFFFFFFFFFFFFFFFF >> (64 - p.bit_depth) bit_idx = 0 for n = 1:p.n_samples if p.max_ploidy != p.min_ploidy ploidy = ploidy[n] half_ploidy = ploidy ÷ 2 end first_level = 0 for _ in 1:ploidy j = startidx + bit_idx ÷ 8 first_level += (unsafe_load_UInt64(d, j) >> (bit_idx % 8)) & probs_mask bit_idx += p.bit_depth end data[n] = first_level * factor end return data end """ second_dosage!(data, p) Switch first allele dosage `data` to second allele dosage. """ function second_dosage!(data::Vector{<:AbstractFloat}, p::Preamble) if p.n_samples >= 8 @inbounds for n in 1:8:(p.n_samples - p.n_samples % 8) data[n] = 2.0 - data[n] data[n + 1] = 2.0 - data[n + 1] data[n + 2] = 2.0 - data[n + 2] data[n + 3] = 2.0 - data[n + 3] data[n + 4] = 2.0 - data[n + 4] data[n + 5] = 2.0 - data[n + 5] data[n + 6] = 2.0 - data[n + 6] data[n + 7] = 2.0 - data[n + 7] end end @inbounds for n in (p.n_samples - p.n_samples % 8 + 1):p.n_samples data[n] = 2.0 - data[n] end end """ find_minor_allele(data, p) Find minor allele index, returns 1 (first) or 2 (second) """ function find_minor_allele(data::Vector{<:AbstractFloat}, p::Preamble) batchsize = 100 increment = max(p.n_samples ÷ batchsize, 1) total = 0.0 freq = 0.0 cnt = 0 for idx2 in 1:increment for n in idx2:increment:p.n_samples cnt += 1 total += data[n] end freq = total / (cnt * 2) @assert 0 <= freq <= 1 if minor_certain(freq, batchsize * idx2, 5.0) break end end if freq <= 0.5 return 1 else return 2 end end @inline function get_data_size(p::Preamble, layout::Integer) if layout == 1 return p.n_samples * p.max_probs else constant_ploidy = p.max_ploidy == p.min_ploidy if p.phased == 0 nrows = p.n_samples else if constant_ploidy nrows = p.n_samples * p.max_ploidy else nrows = sum(p.ploidy) end end return p.max_probs * nrows end end function _get_prob_matrix(d::Vector{T}, p::Preamble) where {T <: AbstractFloat} reshaped = reshape(d, p.max_probs, :) if p.phased == 1 current = 1 ragged = Matrix{T}(undef, p.max_ploidy * p.max_probs, p.n_samples) fill!(ragged, NaN) if p.max_ploidy == p.min_ploidy for i in 1:p.n_samples for j in 1:p.max_ploidy first = (j-1) * p.max_probs + 1 last = j * p.max_probs ragged[first:last, i] = reshaped[:, current] current += 1 end end else for (i, v) in enumerate(p.ploidy) for j in 1:v first = (j-1) * p.max_probs + 1 last = j * p.max_probs ragged[first:last, i] = reshaped[:, current] current += 1 end end end return ragged else return reshaped end end """ probabilities!(b::Bgen, v::BgenVariant; T=Float32, clear_decompressed=false) Given a `Bgen` struct and a `BgenVariant`, compute probabilities. The result is stored inside `v.genotypes.probs`, which can be cleared using `clear!(v)`. - T: type for the resutls - `clear_decompressed`: clears decompressed byte string after execution if set `true` """ function probabilities!(b::Bgen, v::BgenVariant; T=Float32, clear_decompressed=false, data=nothing, decompressed=nothing, is_decompressed=false) io, h = b.io, b.header if (decompressed !== nothing && !is_decompressed) || (decompressed === nothing && (v.genotypes === nothing || v.genotypes.decompressed === nothing)) decompressed = decompress(io, v, h; decompressed=decompressed) else decompressed = v.genotypes.decompressed end if v.genotypes === nothing p = parse_preamble(decompressed, h, v) v.genotypes = Genotypes{T}(p, decompressed) else p = v.genotypes.preamble end startidx = 1 if h.layout == 2 startidx += 10 + h.n_samples end genotypes = v.genotypes data_size = get_data_size(p, h.layout) # skip parsing if already parsed if genotypes.probs !== nothing && length(genotypes.probs) >= data_size _get_prob_matrix(genotypes.probs, p) end if data !== nothing @assert length(data) == data_size genotypes.probs = data else genotypes.probs = Vector{T}(undef, data_size) end if h.layout == 1 parse_layout1!(genotypes.probs, p, decompressed, startidx) elseif h.layout == 2 parse_layout2!(genotypes.probs, p, decompressed, startidx) end if clear_decompressed clear_decompressed!(genotypes) end return _get_prob_matrix(genotypes.probs, p) end function first_allele_dosage!(b::Bgen, v::BgenVariant; T=Float32, mean_impute=false, clear_decompressed=false, data=nothing, decompressed=nothing, is_decompressed=false) io, h = b.io, b.header # just return it if already computed if v.genotypes !== nothing && v.genotypes.dose !== nothing genotypes = v.genotypes p = genotypes.preamble if genotypes.dose_mean_imputed && !mean_impute genotypes.dose[p.missings] .= NaN elseif !genotypes.dose_mean_imputed && mean_impute genotypes.dose[p.missings] .= mean(filter(!isnan, genotypes.dose)) end if genotypes.minor_allele_dosage && genotypes.minor_idx != 1 second_dosage!(genotypes.dose, p) end genotypes.minor_allele_dosage = (genotypes.minor_idx == 1) return v.genotypes.dose end if (decompressed !== nothing && !is_decompressed) || (decompressed === nothing && (v.genotypes === nothing || v.genotypes.decompressed === nothing)) decompressed = decompress(io, v, h; decompressed=decompressed) else decompressed = v.genotypes.decompressed end startidx = 1 if v.genotypes === nothing p = parse_preamble(decompressed, h, v) v.genotypes = Genotypes{T}(p, decompressed) else p = v.genotypes.preamble end if h.layout == 2 startidx += 10 + h.n_samples end @assert p.n_alleles == 2 "allele dosages are available for biallelic variants" #@assert p.phased == 0 genotypes = v.genotypes if data !== nothing @assert length(data) == h.n_samples else genotypes.dose = Vector{T}(undef, h.n_samples) data = genotypes.dose end if p.phased == 0 if p.max_ploidy == p.min_ploidy && p.max_probs == 3 && p.bit_depth == 8 && b.header.layout == 2 first_dosage_fast!(data, p, decompressed, startidx, h.layout) else first_dosage_slow!(data, p, decompressed, startidx, h.layout) end else # phased first_dosage_phased!(data, p, decompressed, startidx, h.layout) end genotypes.minor_idx = find_minor_allele(data, p) data[p.missings] .= NaN if mean_impute data[p.missings] .= mean(filter(!isnan, data)) end if clear_decompressed clear_decompressed!(genotypes) end genotypes.minor_allele_dosage = (genotypes.minor_idx == 1) return data end function ref_allele_dosage!(b::Bgen, v::BgenVariant; T=Float32, mean_impute=false, clear_decompressed=false, data=nothing, decompressed=nothing, is_decompressed=false) data = first_allele_dosage!(b, v; T=T, mean_impute=mean_impute, clear_decompressed=clear_decompressed, data=data, decompressed=decompressed, is_decompressed=is_decompressed) if !b.ref_first second_dosage!(data, v.genotypes.preamble) end data end function alt_allele_dosage!(b::Bgen, v::BgenVariant; T=Float32, mean_impute=false, clear_decompressed=false, data=nothing, decompressed=nothing, is_decompressed=false) data = first_allele_dosage!(b, v; T=T, mean_impute=mean_impute, clear_decompressed=clear_decompressed, data=data, decompressed=decompressed, is_decompressed=is_decompressed) if b.ref_first second_dosage!(data, v.genotypes.preamble) end data end function alt_dosages!(arr::AbstractArray{T}, b::Bgen, v::BgenVariant; mean_impute=false, clear_decompressed=false, decompressed=nothing, is_decompressed=false) where T <: Real alt_allele_dosage!(b, v; T=T, mean_impute=mean_impute, clear_decompressed=clear_decompressed, data=arr, decompressed=decompressed, is_decompressed=is_decompressed) end """ minor_allele_dosage!(b::Bgen, v::BgenVariant; T=Float32, mean_impute=false, clear_decompressed=false) Given a `Bgen` struct and a `BgenVariant`, compute minor allele dosage. The result is stored inside `v.genotypes.dose`, which can be cleared using `clear!(v)`. - `T`: type for the results - `mean_impute`: impute missing values with the mean of nonmissing values - `clear_decompressed`: clears decompressed byte string after execution if set `true` """ function minor_allele_dosage!(b::Bgen, v::BgenVariant; T=Float32, mean_impute=false, clear_decompressed=false, data=nothing, decompressed=nothing, is_decompressed=false) # just return it if already computed io, h = b.io, b.header if v.genotypes !== nothing && v.genotypes.dose !== nothing genotypes = v.genotypes p = genotypes.preamble if genotypes.dose_mean_imputed && !mean_impute genotypes.dose[p.missings] .= NaN elseif !genotypes.dose_mean_imputed && mean_impute genotypes.dose[p.missings] .= mean(filter(!isnan, genotypes.dose)) end if !genotypes.minor_allele_dosage && genotypes.minor_idx != 1 second_dosage!(genotypes.dose, p) end return v.genotypes.dose end first_allele_dosage!(b, v; T=T, mean_impute=mean_impute, clear_decompressed=clear_decompressed, data=data, decompressed=decompressed, is_decompressed=is_decompressed) genotypes = v.genotypes if data === nothing data = genotypes.dose end if genotypes.minor_idx != 1 second_dosage!(data, genotypes.preamble) end genotypes.minor_allele_dosage = true return data end """ clear!(g::Genotypes) clear!(v::BgenVariant) Clears cached decompressed byte representation, probabilities, and dose. If `BgenVariant` is given, it removes the corresponding `.genotypes` altogether. """ function clear!(g::Genotypes) g.decompressed = nothing g.probs = nothing g.dose = nothing return end """ clear_decompressed!(g::Genotypes) Clears cached decompressed byte representation. """ function clear_decompressed!(g::Genotypes) g.decompressed = nothing return end """ hardcall!(c::AbstractArray{I}, d::AbstractArray{T}; threshold=0.1) where {I, T} Hard genotype calls for dosages. `d` is the dosage vector, and `c` is filled with the hard called genotypes with values 0, 1, 2, or 9 (for missing). `threshold` determines maximum distance between the hardcall and the dosage. `threshold` must be in [0, 0.5). """ function hardcall!(c::AbstractArray{I}, d::AbstractArray{T}; threshold=0.1) where {I <: Integer, T <: AbstractFloat} @assert 0 <= threshold < 0.5 for i in eachindex(d) c[i] = d[i] < threshold ? 0 : ( 1 - threshold < d[i] < 1 + threshold ? 1 : ( d[i] > 2 - threshold ? 2 : 9 )) end c end """ hardcall(d::AbstractArray{T}; threshold=0.1) where {I, T} Hard genotype calls for dosages. `d` is the dosage vector, the return UInt8 vector is filled with the hard called genotypes with values 0, 1, 2, or 9 (for missing). `threshold` determines maximum distance between the hardcall and the dosage. `threshold` must be in [0, 0.5). """ function hardcall(d::AbstractArray{T}; threshold=0.1) where T <: AbstractFloat c = Vector{UInt8}(undef, length(d)) hardcall!(c, d; threshold=threshold) end
BGEN
https://github.com/OpenMendel/BGEN.jl.git