licenses
sequencelengths 1
3
| version
stringclasses 677
values | tree_hash
stringlengths 40
40
| path
stringclasses 1
value | type
stringclasses 2
values | size
stringlengths 2
8
| text
stringlengths 25
67.1M
| package_name
stringlengths 2
41
| repo
stringlengths 33
86
|
---|---|---|---|---|---|---|---|---|
[
"MIT"
] | 1.8.0 | 96381d50f1ce85f2663584c8e886a6ca97e60554 | code | 4114 |
@test isone(@inferred(StaticArrayInterface.known_first(typeof(static(1):2:10))))
@test isone(@inferred(StaticArrayInterface.known_last(typeof(static(-1):static(2):static(1)))))
# CartesianIndices
CI = CartesianIndices((static(1):static(2), static(1):static(2)))
@test @inferred(StaticArrayInterface.known_last(typeof(CI))) == CartesianIndex(2, 2)
@testset "length" begin
@test @inferred(StaticArrayInterface.known_length(typeof(Static.OptionallyStaticStepRange(static(1), 2, 10)))) === nothing
@test @inferred(StaticArrayInterface.known_length(typeof(Static.SOneTo{-10}()))) === 0
@test @inferred(StaticArrayInterface.known_length(typeof(Static.OptionallyStaticStepRange(static(1), static(1), static(10))))) === 10
@test @inferred(StaticArrayInterface.known_length(typeof(Static.OptionallyStaticStepRange(static(2), static(1), static(10))))) === 9
@test @inferred(StaticArrayInterface.known_length(typeof(Static.OptionallyStaticStepRange(static(2), static(2), static(10))))) === 5
@test @inferred(StaticArrayInterface.known_length(Int)) === 1
end
@testset "indices" begin
A23 = ones(2,3);
SA23 = MArray(A23);
A32 = ones(3,2);
SA32 = MArray(A32);
@test @inferred(StaticArrayInterface.indices(A23, (static(1),static(2)))) === (Base.Slice(StaticInt(1):2), Base.Slice(StaticInt(1):3))
@test @inferred(StaticArrayInterface.indices((A23, A32))) == 1:6
@test @inferred(StaticArrayInterface.indices((SA23, A32))) == 1:6
@test @inferred(StaticArrayInterface.indices((A23, SA32))) == 1:6
@test @inferred(StaticArrayInterface.indices((SA23, SA32))) == 1:6
@test @inferred(StaticArrayInterface.indices(A23)) == 1:6
@test @inferred(StaticArrayInterface.indices(SA23)) == 1:6
@test @inferred(StaticArrayInterface.indices(A23, 1)) == 1:2
@test @inferred(StaticArrayInterface.indices(SA23, StaticInt(1))) === Base.Slice(StaticInt(1):StaticInt(2))
@test @inferred(StaticArrayInterface.indices((A23, A32), (1, 2))) == 1:2
@test @inferred(StaticArrayInterface.indices((SA23, A32), (StaticInt(1), 2))) === Base.Slice(StaticInt(1):StaticInt(2))
@test @inferred(StaticArrayInterface.indices((A23, SA32), (1, StaticInt(2)))) === Base.Slice(StaticInt(1):StaticInt(2))
@test @inferred(StaticArrayInterface.indices((SA23, SA32), (StaticInt(1), StaticInt(2)))) === Base.Slice(StaticInt(1):StaticInt(2))
@test @inferred(StaticArrayInterface.indices((A23, A23), 1)) == 1:2
@test @inferred(StaticArrayInterface.indices((SA23, SA23), StaticInt(1))) === Base.Slice(StaticInt(1):StaticInt(2))
@test @inferred(StaticArrayInterface.indices((SA23, A23), StaticInt(1))) === Base.Slice(StaticInt(1):StaticInt(2))
@test @inferred(StaticArrayInterface.indices((A23, SA23), StaticInt(1))) === Base.Slice(StaticInt(1):StaticInt(2))
@test @inferred(StaticArrayInterface.indices((SA23, SA23), StaticInt(1))) === Base.Slice(StaticInt(1):StaticInt(2))
@test_throws ErrorException StaticArrayInterface.indices((A23, ones(3, 3)), 1)
@test_throws ErrorException StaticArrayInterface.indices((A23, ones(3, 3)), (1, 2))
@test_throws ErrorException StaticArrayInterface.indices((SA23, ones(3, 3)), StaticInt(1))
@test_throws ErrorException StaticArrayInterface.indices((SA23, ones(3, 3)), (StaticInt(1), 2))
@test_throws ErrorException StaticArrayInterface.indices((SA23, SA23), (StaticInt(1), StaticInt(2)))
@test size(similar(ones(2, 4), StaticArrayInterface.indices(ones(2, 4), 1), StaticArrayInterface.indices(ones(2, 4), 2))) == (2, 4)
@test axes(StaticArrayInterface.indices(ones(2,2))) === (StaticInt(1):4,)
@test axes(Base.Slice(StaticInt(2):4)) === (Base.IdentityUnitRange(StaticInt(2):4),)
@test Base.axes1(StaticArrayInterface.indices(ones(2,2))) === StaticInt(1):4
@test Base.axes1(Base.Slice(StaticInt(2):4)) === Base.IdentityUnitRange(StaticInt(2):4)
x = vec(A23); y = vec(A32);
@test StaticArrayInterface.indices((x',y'),StaticInt(1)) === Base.Slice(StaticInt(1):StaticInt(1))
@test StaticArrayInterface.indices((x,y), StaticInt(2)) === Base.Slice(StaticInt(1):StaticInt(1))
end
| StaticArrayInterface | https://github.com/JuliaArrays/StaticArrayInterface.jl.git |
|
[
"MIT"
] | 1.8.0 | 96381d50f1ce85f2663584c8e886a6ca97e60554 | code | 625 | using SafeTestsets, Pkg
const GROUP = get(ENV, "GROUP", "All")
@time begin
if GROUP == "All" || GROUP == "Core"
include("setup.jl")
include("known_values.jl")
include("array_index.jl")
include("axes.jl")
include("broadcast.jl")
include("dimensions.jl")
include("indexing.jl")
include("ranges.jl")
include("size.jl")
include("stridelayout.jl")
include("misc.jl")
@time @safetestset "StaticArrays" begin include("staticarrays.jl") end
@time @safetestset "OffsetArrays" begin include("offsetarrays.jl") end
end
end | StaticArrayInterface | https://github.com/JuliaArrays/StaticArrayInterface.jl.git |
|
[
"MIT"
] | 1.8.0 | 96381d50f1ce85f2663584c8e886a6ca97e60554 | code | 2386 | using StaticArrayInterface, Static, LinearAlgebra, Test
struct MArray{T,N,R} <: DenseArray{T,N}
parent::Array{T,N}
indices::LinearIndices{N,R}
end
MArray(A::Array) = MArray(A, LinearIndices(map(s -> static(1):static(s), size(A))))
Base.parent(x::MArray) = x.parent
Base.IndexStyle(::Type{<:MArray}) = IndexLinear()
StaticArrayInterface.static_axes(x::MArray) = StaticArrayInterface.static_axes(x.indices)
Base.axes(x::MArray) = StaticArrayInterface.static_axes(x)
StaticArrayInterface.axes_types(T::Type{<:MArray}) = T.parameters[3]
StaticArrayInterface.static_axes(x::MArray) = StaticArrayInterface.static_axes(x.indices)
StaticArrayInterface.defines_strides(::Type{<:MArray}) = true
Base.strides(x::MArray) = strides(parent(x))
function Base.getindex(x::MArray, inds...)
@boundscheck checkbounds(x, inds...)
@inbounds parent(x)[inds...]
end
Base.size(x::MArray) = map(Int, StaticArrayInterface.static_size(x))
struct NamedDimsWrapper{D,T,N,P<:AbstractArray{T,N}} <: StaticArrayInterface.AbstractArray2{T,N}
dimnames::D
parent::P
NamedDimsWrapper(d::D, p::P) where {D,P} = new{D,eltype(P),ndims(p),P}(d, p)
end
StaticArrayInterface.is_forwarding_wrapper(::Type{<:NamedDimsWrapper}) = true
Base.parent(x::NamedDimsWrapper) = getfield(x, :parent)
StaticArrayInterface.parent_type(::Type{T}) where {P,T<:NamedDimsWrapper{<:Any,<:Any,<:Any,P}} = P
StaticArrayInterface.dimnames(x::NamedDimsWrapper) = getfield(x, :dimnames)
function StaticArrayInterface.known_dimnames(::Type{T}) where {L,T<:NamedDimsWrapper{L}}
Static.known(L)
end
Base.parent(x::NamedDimsWrapper) = x.parent
# Dummy array type with undetermined contiguity properties
struct DummyZeros{T,N} <: AbstractArray{T,N}
dims :: Dims{N}
DummyZeros{T}(dims...) where {T} = new{T,length(dims)}(dims)
end
DummyZeros(dims...) = DummyZeros{Float64}(dims...)
Base.size(x::DummyZeros) = x.dims
Base.getindex(::DummyZeros{T}, inds...) where {T} = zero(T)
struct Wrapper{T,N,P<:AbstractArray{T,N}} <: StaticArrayInterface.AbstractArray2{T,N}
parent::P
end
StaticArrayInterface.parent_type(::Type{<:Wrapper{T,N,P}}) where {T,N,P} = P
Base.parent(x::Wrapper) = x.parent
StaticArrayInterface.is_forwarding_wrapper(::Type{<:Wrapper}) = true
struct DenseWrapper{T,N,P<:AbstractArray{T,N}} <: DenseArray{T,N} end
StaticArrayInterface.parent_type(::Type{DenseWrapper{T,N,P}}) where {T,N,P} = P
| StaticArrayInterface | https://github.com/JuliaArrays/StaticArrayInterface.jl.git |
|
[
"MIT"
] | 1.8.0 | 96381d50f1ce85f2663584c8e886a6ca97e60554 | code | 7043 |
@test @inferred(StaticArrayInterface.static_size(sv5)) === (StaticInt(5),)
@test @inferred(StaticArrayInterface.static_size(v5)) === (5,)
@test @inferred(StaticArrayInterface.static_size(A)) === (3, 4, 5)
@test @inferred(StaticArrayInterface.static_size(Ap)) === (2, 5)
@test @inferred(StaticArrayInterface.static_size(A)) === size(A)
@test @inferred(StaticArrayInterface.static_size(Ap)) === size(Ap)
@test @inferred(StaticArrayInterface.static_size(R)) === (StaticInt(2),)
@test @inferred(StaticArrayInterface.static_size(Rnr)) === (StaticInt(4),)
@test @inferred(StaticArrayInterface.known_length(Rnr)) === 4
@test @inferred(StaticArrayInterface.static_size(A2)) === (4, 3, 5)
@test @inferred(StaticArrayInterface.static_size(A2r)) === (2, 3, 5)
@test @inferred(StaticArrayInterface.static_size(view(rand(4), reshape(1:4, 2, 2)))) == (2, 2)
@test @inferred(StaticArrayInterface.static_size(irev)) === (StaticInt(2), StaticInt(3), StaticInt(4))
@test @inferred(StaticArrayInterface.static_size(iprod)) === (StaticInt(2), StaticInt(3), StaticInt(4))
@test @inferred(StaticArrayInterface.static_size(iflat)) === (static(72),)
@test @inferred(StaticArrayInterface.static_size(igen)) === (StaticInt(2), StaticInt(3), StaticInt(4))
@test @inferred(StaticArrayInterface.static_size(iacc)) === (StaticInt(2), StaticInt(3), StaticInt(4))
@test @inferred(StaticArrayInterface.static_size(ienum)) === (StaticInt(2), StaticInt(3), StaticInt(4))
@test @inferred(StaticArrayInterface.static_size(ipairs)) === (StaticInt(2), StaticInt(3), StaticInt(4))
@test @inferred(StaticArrayInterface.static_size(izip)) === (StaticInt(2), StaticInt(3), StaticInt(4))
@test @inferred(StaticArrayInterface.static_size(zip(S, A_trailingdim))) === (StaticInt(2), StaticInt(3), StaticInt(4), static(1))
@test @inferred(StaticArrayInterface.static_size(zip(A_trailingdim, S))) === (StaticInt(2), StaticInt(3), StaticInt(4), static(1))
@test @inferred(StaticArrayInterface.static_size(S)) === (StaticInt(2), StaticInt(3), StaticInt(4))
@test @inferred(StaticArrayInterface.static_size(Sp)) === (2, 2, StaticInt(3))
@test @inferred(StaticArrayInterface.static_size(Sp2)) === (2, StaticInt(3), StaticInt(2))
@test @inferred(StaticArrayInterface.static_size(S)) == size(S)
@test @inferred(StaticArrayInterface.static_size(Sp)) == size(Sp)
@test @inferred(StaticArrayInterface.static_size(parent(Sp2))) === (static(4), static(3), static(2))
@test @inferred(StaticArrayInterface.static_size(Sp2)) == size(Sp2)
@test @inferred(StaticArrayInterface.static_size(Sp2, StaticInt(1))) === 2
@test @inferred(StaticArrayInterface.static_size(Sp2, StaticInt(2))) === StaticInt(3)
@test @inferred(StaticArrayInterface.static_size(Sp2, StaticInt(3))) === StaticInt(2)
@test @inferred(StaticArrayInterface.static_size(Wrapper(Sp2), StaticInt(3))) === StaticInt(2)
@test @inferred(StaticArrayInterface.static_size(Diagonal([1, 2]))) == size(Diagonal([1, 2]))
@test @inferred(StaticArrayInterface.static_size(Mp)) === (StaticInt(3), StaticInt(4))
@test @inferred(StaticArrayInterface.static_size(Mp2)) === (StaticInt(2), 2)
@test @inferred(StaticArrayInterface.static_size(Mp)) == size(Mp)
@test @inferred(StaticArrayInterface.static_size(Mp2)) == size(Mp2)
@test @inferred(StaticArrayInterface.known_size(1)) === ()
@test @inferred(StaticArrayInterface.known_size(view(rand(4), reshape(1:4, 2, 2)))) == (nothing, nothing)
@test @inferred(StaticArrayInterface.known_size(A)) === (nothing, nothing, nothing)
@test @inferred(StaticArrayInterface.known_size(Ap)) === (nothing, nothing)
@test @inferred(StaticArrayInterface.known_size(Wrapper(Ap))) === (nothing, nothing)
@test @inferred(StaticArrayInterface.known_size(R)) === (2,)
@test @inferred(StaticArrayInterface.known_size(Wrapper(R))) === (2,)
@test @inferred(StaticArrayInterface.known_size(Rnr)) === (4,)
@test @inferred(StaticArrayInterface.known_size(Rnr, static(1))) === 4
@test @inferred(StaticArrayInterface.known_size(Ar)) === (nothing, nothing, nothing,)
@test @inferred(StaticArrayInterface.known_size(Ar, static(1))) === nothing
@test @inferred(StaticArrayInterface.known_size(Ar, static(4))) === 1
@test @inferred(StaticArrayInterface.known_size(A2)) === (nothing, nothing, nothing)
@test @inferred(StaticArrayInterface.known_size(A2r)) === (nothing, nothing, nothing)
@test @inferred(StaticArrayInterface.known_size(irev)) === (2, 3, 4)
@test @inferred(StaticArrayInterface.known_size(igen)) === (2, 3, 4)
@test @inferred(StaticArrayInterface.known_size(iprod)) === (2, 3, 4)
@test @inferred(StaticArrayInterface.known_size(iflat)) === (72,)
@test @inferred(StaticArrayInterface.known_size(iacc)) === (2, 3, 4)
@test @inferred(StaticArrayInterface.known_size(ienum)) === (2, 3, 4)
@test @inferred(StaticArrayInterface.known_size(izip)) === (2, 3, 4)
@test @inferred(StaticArrayInterface.known_size(ipairs)) === (2, 3, 4)
@test @inferred(StaticArrayInterface.known_size(zip(S, A_trailingdim))) === (2, 3, 4, 1)
@test @inferred(StaticArrayInterface.known_size(zip(A_trailingdim, S))) === (2, 3, 4, 1)
@test @inferred(StaticArrayInterface.known_length(Iterators.flatten(((x, y) for x in 0:1 for y in 'a':'c')))) === nothing
@test @inferred(StaticArrayInterface.known_size(S)) === (2, 3, 4)
@test @inferred(StaticArrayInterface.known_size(Wrapper(S))) === (2, 3, 4)
@test @inferred(StaticArrayInterface.known_size(Sp)) === (nothing, nothing, 3)
@test @inferred(StaticArrayInterface.known_size(Wrapper(Sp))) === (nothing, nothing, 3)
@test @inferred(StaticArrayInterface.known_size(Sp2)) === (nothing, 3, 2)
@test @inferred(StaticArrayInterface.known_size(Sp2, StaticInt(1))) === nothing
@test @inferred(StaticArrayInterface.known_size(Sp2, StaticInt(2))) === 3
@test @inferred(StaticArrayInterface.known_size(Sp2, StaticInt(3))) === 2
@test @inferred(StaticArrayInterface.known_size(Mp)) === (3, 4)
@test @inferred(StaticArrayInterface.known_size(Mp2)) === (2, nothing)
@testset "known_length" begin
@test StaticArrayInterface.known_length(1:2) === nothing
@test StaticArrayInterface.known_length((1,)) == 1
@test StaticArrayInterface.known_length((a=1, b=2)) == 2
@test StaticArrayInterface.known_length([]) === nothing
@test StaticArrayInterface.known_length(CartesianIndex((1, 2, 3))) === 3
@test @inferred(StaticArrayInterface.known_length(NDIndex((1, 2, 3)))) === 3
itr = StaticInt(1):StaticInt(10)
@inferred(StaticArrayInterface.known_length((i for i in itr))) == 10
end
@testset "is_lazy_conjugate" begin
a = rand(ComplexF64, 2)
@test @inferred(StaticArrayInterface.is_lazy_conjugate(a)) == false
b = a'
@test @inferred(StaticArrayInterface.is_lazy_conjugate(b)) == true
c = transpose(b)
@test @inferred(StaticArrayInterface.is_lazy_conjugate(c)) == true
d = c'
@test @inferred(StaticArrayInterface.is_lazy_conjugate(d)) == false
e = permutedims(d)
@test @inferred(StaticArrayInterface.is_lazy_conjugate(e)) == false
@test @inferred(StaticArrayInterface.is_lazy_conjugate([1, 2, 3]')) == false # We don't care about conj on `<:Real`
end
| StaticArrayInterface | https://github.com/JuliaArrays/StaticArrayInterface.jl.git |
|
[
"MIT"
] | 1.8.0 | 96381d50f1ce85f2663584c8e886a6ca97e60554 | code | 1927 | using StaticArrayInterface
using LinearAlgebra
using StaticArrays
using Static
using Test
x = @SVector [1,2,3]
@test @inferred(StaticArrayInterface.device(typeof(x))) === StaticArrayInterface.CPUTuple()
x = @MVector [1,2,3]
@test @inferred(StaticArrayInterface.device(typeof(x))) === StaticArrayInterface.CPUPointer()
@test isone(StaticArrayInterface.known_first(typeof(StaticArrays.SOneTo(7))))
@test StaticArrayInterface.known_last(typeof(StaticArrays.SOneTo(7))) == 7
@test StaticArrayInterface.known_length(typeof(StaticArrays.SOneTo(7))) == 7
@test StaticArrayInterface.parent_type(SizedVector{1, Int, Vector{Int}}) <: Vector{Int}
@test StaticArrayInterface.known_length(@inferred(StaticArrayInterface.indices(SOneTo(7)))) == 7
x = view(SArray{Tuple{3,3,3}}(ones(3,3,3)), :, SOneTo(2), 2)
@test @inferred(StaticArrayInterface.known_length(x)) == 6
@test @inferred(StaticArrayInterface.known_length(x')) == 6
v = @SVector rand(8);
A = @MMatrix rand(7, 6);
T = SizedArray{Tuple{5,4,3}}(zeros(5,4,3));
@test @inferred(StaticArrayInterface.static_length(v)) === StaticInt(8)
@test @inferred(StaticArrayInterface.static_length(A)) === StaticInt(42)
@test @inferred(StaticArrayInterface.static_length(T)) === StaticInt(60)
Am = @MMatrix rand(2,10);
@test @inferred(StaticArrayInterface.static_strides(view(Am,1,:))) === (StaticInt(2),)
@test @inferred(StaticArrayInterface.contiguous_axis(@SArray(zeros(2,2,2)))) === Static.StaticInt(1)
@test @inferred(StaticArrayInterface.contiguous_axis_indicator(@SArray(zeros(2,2,2)))) == (true,false,false)
@test @inferred(StaticArrayInterface.contiguous_batch_size(@SArray(zeros(2,2,2)))) === Static.StaticInt(0)
@test @inferred(StaticArrayInterface.stride_rank(@SArray(zeros(2,2,2)))) == (1, 2, 3)
@test @inferred(StaticArrayInterface.is_column_major(@SArray(zeros(2,2,2)))) === True()
@test @inferred(StaticArrayInterface.dense_dims(@SArray(zeros(2,2,2)))) == (true,true,true)
| StaticArrayInterface | https://github.com/JuliaArrays/StaticArrayInterface.jl.git |
|
[
"MIT"
] | 1.8.0 | 96381d50f1ce85f2663584c8e886a6ca97e60554 | code | 28885 | @testset "offsets" begin
@test @inferred(StaticArrayInterface.known_offsets(A)) === (1, 1, 1)
@test @inferred(StaticArrayInterface.known_offsets(Ap)) === (1, 1)
@test @inferred(StaticArrayInterface.known_offsets(Ar)) === (1, 1, 1)
@test @inferred(StaticArrayInterface.known_offsets(Ar, static(1))) === 1
@test @inferred(StaticArrayInterface.known_offsets(Ar, static(4))) === 1
@test @inferred(StaticArrayInterface.known_offsets(A2)) === (1, 1, 1)
@test @inferred(StaticArrayInterface.known_offsets(A2r)) === (1, 1, 1)
@test @inferred(StaticArrayInterface.offsets(A)) === (StaticInt(1), StaticInt(1), StaticInt(1))
@test @inferred(StaticArrayInterface.offsets(Ap)) === (StaticInt(1), StaticInt(1))
@test @inferred(StaticArrayInterface.offsets(Ar)) === (StaticInt(1), StaticInt(1), StaticInt(1))
@test @inferred(StaticArrayInterface.offsets(A2)) === (StaticInt(1), StaticInt(1), StaticInt(1))
@test @inferred(StaticArrayInterface.offsets(A2r)) === (StaticInt(1), StaticInt(1), StaticInt(1))
@test @inferred(StaticArrayInterface.offsets(S)) === (StaticInt(1), StaticInt(1), StaticInt(1))
@test @inferred(StaticArrayInterface.offsets(Sp)) === (StaticInt(1), StaticInt(1), StaticInt(1))
@test @inferred(StaticArrayInterface.offsets(Sp2)) === (StaticInt(1), StaticInt(1), StaticInt(1))
@test @inferred(StaticArrayInterface.known_offsets(S)) === (1, 1, 1)
@test @inferred(StaticArrayInterface.known_offsets(Sp)) === (1, 1, 1)
@test @inferred(StaticArrayInterface.known_offsets(Sp2)) === (1, 1, 1)
@test @inferred(StaticArrayInterface.known_offsets(R)) === (1,)
@test @inferred(StaticArrayInterface.known_offsets(Rnr)) === (1,)
@test @inferred(StaticArrayInterface.known_offsets(1:10)) === (1,)
end
@testset "strides" begin
@test @inferred(StaticArrayInterface.static_strides(A)) === (StaticInt(1), 3, 12)
@test @inferred(StaticArrayInterface.static_strides(Ap)) === (StaticInt(1), 12)
@test @inferred(StaticArrayInterface.static_strides(A)) == strides(A)
@test @inferred(StaticArrayInterface.static_strides(Ap)) == strides(Ap)
@test @inferred(StaticArrayInterface.static_strides(Ar)) === (StaticInt{1}(), 6, 24)
@test @inferred(StaticArrayInterface.static_strides(A2)) === (StaticInt(1), 4, 12)
@test @inferred(StaticArrayInterface.static_strides(A2r)) === (StaticInt(1), 2, 6)
@test @inferred(StaticArrayInterface.static_strides(S)) === (StaticInt(1), StaticInt(2), StaticInt(6))
@test @inferred(StaticArrayInterface.static_strides(Sp)) === (StaticInt(6), StaticInt(1), StaticInt(2))
@test @inferred(StaticArrayInterface.static_strides(Sp2)) === (StaticInt(6), StaticInt(2), StaticInt(1))
@test @inferred(StaticArrayInterface.static_strides(view(Sp2, :, 1, 1)')) === (StaticInt(6), StaticInt(6))
@test @inferred(StaticArrayInterface.static_stride(Sp2, StaticInt(1))) === StaticInt(6)
@test @inferred(StaticArrayInterface.static_stride(Sp2, StaticInt(2))) === StaticInt(2)
@test @inferred(StaticArrayInterface.static_stride(Sp2, StaticInt(3))) === StaticInt(1)
@test @inferred(StaticArrayInterface.static_strides(Mp)) === (StaticInt(2), StaticInt(6))
@test @inferred(StaticArrayInterface.static_strides(Mp2)) === (StaticInt(1), StaticInt(6))
@test @inferred(StaticArrayInterface.static_strides(Mp)) == strides(Mp)
@test @inferred(StaticArrayInterface.static_strides(Mp2)) == strides(Mp2)
@test_throws MethodError StaticArrayInterface.static_strides(DummyZeros(3,4))
@test @inferred(StaticArrayInterface.known_strides(A)) === (1, nothing, nothing)
@test @inferred(StaticArrayInterface.known_strides(Ap)) === (1, nothing)
@test @inferred(StaticArrayInterface.known_strides(Ar)) === (1, nothing, nothing)
@test @inferred(StaticArrayInterface.known_strides(reshape(view(zeros(100), 1:60), (3,4,5)))) === (1, nothing, nothing)
@test @inferred(StaticArrayInterface.known_strides(A2)) === (1, nothing, nothing)
@test @inferred(StaticArrayInterface.known_strides(A2r)) === (1, nothing, nothing)
@test @inferred(StaticArrayInterface.known_strides(S)) === (1, 2, 6)
@test @inferred(StaticArrayInterface.known_strides(Sp)) === (6, 1, 2)
@test @inferred(StaticArrayInterface.known_strides(Sp2)) === (6, 2, 1)
@test @inferred(StaticArrayInterface.known_strides(Sp2, StaticInt(1))) === 6
@test @inferred(StaticArrayInterface.known_strides(Sp2, StaticInt(2))) === 2
@test @inferred(StaticArrayInterface.known_strides(Sp2, StaticInt(3))) === 1
@test @inferred(StaticArrayInterface.known_strides(Sp2, StaticInt(4))) === StaticArrayInterface.known_length(Sp2)
@test @inferred(StaticArrayInterface.known_strides(view(Sp2, :, 1, 1)')) === (6, 6)
end
@testset "Static-Dynamic Size, Strides, and Offsets" begin
colors = [(R = rand(), G = rand(), B = rand()) for i β 1:100];
colormat = reinterpret(reshape, Float64, colors)
@test @inferred(StaticArrayInterface.static_strides(colormat)) === (StaticInt(1), StaticInt(3))
@test @inferred(StaticArrayInterface.dense_dims(colormat)) === (True(),True())
@test @inferred(StaticArrayInterface.dense_dims(view(colormat,:,4))) === (True(),)
@test @inferred(StaticArrayInterface.dense_dims(view(colormat,:,4:7))) === (True(),True())
@test @inferred(StaticArrayInterface.dense_dims(view(colormat,2:3,:))) === (True(),False())
Rr = reinterpret(reshape, Int32, R)
@test @inferred(StaticArrayInterface.static_axes(Rr)) === (static(1):static(2), static(1):static(2))
@test @inferred(StaticArrayInterface.known_size(Rr)) === (2, 2)
Sr = Wrapper(reinterpret(reshape, Complex{Int64}, S))
@test @inferred(StaticArrayInterface.static_axes(Sr)) == (static(1):static(3), static(1):static(4))
@test @inferred(StaticArrayInterface.known_size(Sr)) === (3, 4)
@test @inferred(StaticArrayInterface.static_strides(Sr)) === (static(1), static(3))
Sr2 = reinterpret(reshape, Complex{Int64}, S);
@test @inferred(StaticArrayInterface.dense_dims(Sr2)) === (True(),True())
@test @inferred(StaticArrayInterface.dense_dims(view(Sr2,:,2))) === (True(),)
@test @inferred(StaticArrayInterface.dense_dims(view(Sr2,:,2:3))) === (True(),True())
@test @inferred(StaticArrayInterface.dense_dims(view(Sr2,2:3,:))) === (True(),False())
Ar2c = reinterpret(reshape, Complex{Float64}, view(rand(2, 5, 7), :, 2:4, 3:5));
@test @inferred(StaticArrayInterface.static_strides(Ar2c)) === (StaticInt(1), 5)
Ar2cβ² = reinterpret(reshape, Complex{Float64}, view(rand(4, 5, 7), Base.oneto(2), 2:4, 3:5));
@test @inferred(StaticArrayInterface.static_strides(Ar2cβ²)) === (2, 10)
Ar2cβ³ = reinterpret(reshape, Complex{Float64}, view(rand(3, 5, 7), Base.oneto(2), 2:4, 3:5));
@test_throws ArgumentError StaticArrayInterface.static_strides(Ar2cβ³)
Ar2c_static = reinterpret(reshape, Complex{Float64}, view(MArray(rand(2, 5, 7)), :, 2:4, 3:5));
@test @inferred(StaticArrayInterface.static_strides(Ar2c_static)) === (StaticInt(1), StaticInt(5))
Ac2r = reinterpret(reshape, Float64, view(rand(ComplexF64, 5, 7), 2:4, 3:6));
@test @inferred(StaticArrayInterface.static_strides(Ac2r)) === (StaticInt(1), StaticInt(2), 10)
Ac2r_static = reinterpret(reshape, Float64, view(MArray(rand(ComplexF64, 5, 7)), 2:4, 3:6));
@test @inferred(StaticArrayInterface.static_strides(Ac2r_static)) === (StaticInt(1), StaticInt(2), StaticInt(10))
Ac2t = reinterpret(reshape, Tuple{Float64,Float64}, view(rand(ComplexF64, 5, 7), 2:4, 3:6));
@test @inferred(StaticArrayInterface.static_strides(Ac2t)) === (StaticInt(1), 5)
Ac2t_static = reinterpret(reshape, Tuple{Float64,Float64}, view(MArray(rand(ComplexF64, 5, 7)), 2:4, 3:6));
@test @inferred(StaticArrayInterface.static_strides(Ac2t_static)) === (StaticInt(1), StaticInt(5))
a = rand(Float32, 100, 2);
b = reinterpret(Float64, view(a,:,1));
@test @inferred(StaticArrayInterface.contiguous_axis(a)) === StaticInt(1)
@test @inferred(StaticArrayInterface.stride_rank(b)) === (StaticInt(1),)
end
@testset "Memory Layout" begin
x = zeros(100);
@test StaticArrayInterface.static_axes(Base.Broadcast.Broadcasted(+, (x, x'))) === (Base.OneTo(100), Base.OneTo(100))
# R = reshape(view(x, 1:100), (10,10));
# A = zeros(3,4,5);
A = Wrapper(reshape(view(x, 1:60), (3,4,5)));
B = A .== 0;
D1 = view(A, 1:2:3, :, :); # first dimension is discontiguous
D2 = view(A, :, 2:2:4, :); # first dimension is contiguous
@test @inferred(StaticArrayInterface.defines_strides(x))
@test @inferred(StaticArrayInterface.defines_strides(A))
@test @inferred(StaticArrayInterface.defines_strides(D1))
@test !@inferred(StaticArrayInterface.defines_strides(view(A, :, [1,2],1)))
@test @inferred(StaticArrayInterface.defines_strides(DenseWrapper{Int,2,Matrix{Int}}))
@test @inferred(StaticArrayInterface.device(A)) === StaticArrayInterface.CPUPointer()
@test @inferred(StaticArrayInterface.device(B)) === StaticArrayInterface.CPUIndex()
@test @inferred(StaticArrayInterface.device(-1:19)) === StaticArrayInterface.CPUIndex()
@test @inferred(StaticArrayInterface.device((1,2,3))) === StaticArrayInterface.CPUTuple()
@test @inferred(StaticArrayInterface.device(PermutedDimsArray(A,(3,1,2)))) === StaticArrayInterface.CPUPointer()
@test @inferred(StaticArrayInterface.device(view(A, 1, :, 2:4))) === StaticArrayInterface.CPUPointer()
@test @inferred(StaticArrayInterface.device(view(A, 1, :, 2:4)')) === StaticArrayInterface.CPUPointer()
@test isnothing(StaticArrayInterface.device("Hello, world!"))
@test @inferred(StaticArrayInterface.device(DenseWrapper{Int,2,Matrix{Int}})) === StaticArrayInterface.CPUPointer()
#=
@btime StaticArrayInterface.contiguous_axis($(reshape(view(zeros(100), 1:60), (3,4,5))))
0.047 ns (0 allocations: 0 bytes)
=#
@test @inferred(StaticArrayInterface.contiguous_axis(A)) === Static.StaticInt(1)
@test @inferred(StaticArrayInterface.contiguous_axis(B)) === Static.StaticInt(1)
@test @inferred(StaticArrayInterface.contiguous_axis(-1:19)) === Static.StaticInt(1)
@test @inferred(StaticArrayInterface.contiguous_axis(D1)) === Static.StaticInt(-1)
@test @inferred(StaticArrayInterface.contiguous_axis(D2)) === Static.StaticInt(1)
@test @inferred(StaticArrayInterface.contiguous_axis(PermutedDimsArray(A,(3,1,2)))) === Static.StaticInt(2)
@test @inferred(StaticArrayInterface.contiguous_axis(@view(PermutedDimsArray(A,(3,1,2))[2,1:2,:]))) === Static.StaticInt(1)
@test @inferred(StaticArrayInterface.contiguous_axis(transpose(@view(PermutedDimsArray(A,(3,1,2))[2,1:2,:])))) === Static.StaticInt(2)
@test @inferred(StaticArrayInterface.contiguous_axis(@view(PermutedDimsArray(A,(3,1,2))[2:3,1:2,:]))) === Static.StaticInt(2)
@test @inferred(StaticArrayInterface.contiguous_axis(@view(PermutedDimsArray(A,(3,1,2))[2:3,2,:]))) === Static.StaticInt(-1)
@test @inferred(StaticArrayInterface.contiguous_axis(PermutedDimsArray(@view(A[2,:,:]),(2,1)))) === Static.StaticInt(-1)
@test @inferred(StaticArrayInterface.contiguous_axis(@view(PermutedDimsArray(A,(3,1,2))[2:3,2,:])')) === Static.StaticInt(-1)
@test @inferred(StaticArrayInterface.contiguous_axis(@view(PermutedDimsArray(A,(3,1,2))[:,1:2,1])')) === Static.StaticInt(1)
@test @inferred(StaticArrayInterface.contiguous_axis((3,4))) === StaticInt(1)
@test @inferred(StaticArrayInterface.contiguous_axis(rand(4)')) === StaticInt(2)
@test @inferred(StaticArrayInterface.contiguous_axis(view(@view(PermutedDimsArray(A,(3,1,2))[2:3,2,:])', :, 1)')) === StaticInt(-1)
@test @inferred(StaticArrayInterface.contiguous_axis(reshape(DummyZeros(3,4), (4, 3)))) === nothing
@test @inferred(StaticArrayInterface.contiguous_axis(DummyZeros(3,4))) === nothing
@test @inferred(StaticArrayInterface.contiguous_axis(PermutedDimsArray(DummyZeros(3,4), (2, 1)))) === nothing
@test @inferred(StaticArrayInterface.contiguous_axis(view(DummyZeros(3,4), 1, :))) === nothing
@test @inferred(StaticArrayInterface.contiguous_axis(view(DummyZeros(3,4), 1, :)')) === nothing
@test @inferred(StaticArrayInterface.contiguous_axis_indicator(A)) == (true,false,false)
@test @inferred(StaticArrayInterface.contiguous_axis_indicator(B)) == (true,false,false)
@test @inferred(StaticArrayInterface.contiguous_axis_indicator(-1:10)) == (true,)
@test @inferred(StaticArrayInterface.contiguous_axis_indicator(PermutedDimsArray(A,(3,1,2)))) == (false,true,false)
@test @inferred(StaticArrayInterface.contiguous_axis_indicator(@view(PermutedDimsArray(A,(3,1,2))[2,1:2,:]))) == (true,false)
@test @inferred(StaticArrayInterface.contiguous_axis_indicator(@view(PermutedDimsArray(A,(3,1,2))[2,1:2,:])')) == (false,true)
@test @inferred(StaticArrayInterface.contiguous_axis_indicator(@view(PermutedDimsArray(A,(3,1,2))[2:3,1:2,:]))) == (false,true,false)
@test @inferred(StaticArrayInterface.contiguous_axis_indicator(@view(PermutedDimsArray(A,(3,1,2))[2:3,2,:]))) == (false,false)
@test @inferred(StaticArrayInterface.contiguous_axis_indicator(@view(PermutedDimsArray(A,(3,1,2))[2:3,2,:])')) == (false,false)
@test @inferred(StaticArrayInterface.contiguous_axis_indicator(@view(PermutedDimsArray(A,(3,1,2))[:,1:2,1])')) == (true,false)
@test @inferred(StaticArrayInterface.contiguous_axis_indicator(@view(PermutedDimsArray(A,(3,1,2))[:,1:2,[1,3,4]]))) == (false,true,false)
@test @inferred(StaticArrayInterface.contiguous_axis_indicator(DummyZeros(3,4))) === nothing
@test @inferred(StaticArrayInterface.contiguous_batch_size(A)) === Static.StaticInt(0)
@test @inferred(StaticArrayInterface.contiguous_batch_size(B)) === Static.StaticInt(0)
@test @inferred(StaticArrayInterface.contiguous_batch_size(-1:18)) === Static.StaticInt(0)
@test @inferred(StaticArrayInterface.contiguous_batch_size(PermutedDimsArray(A,(3,1,2)))) === Static.StaticInt(0)
@test @inferred(StaticArrayInterface.contiguous_batch_size(@view(PermutedDimsArray(A,(3,1,2))[2,1:2,:]))) === Static.StaticInt(0)
@test @inferred(StaticArrayInterface.contiguous_batch_size(@view(PermutedDimsArray(A,(3,1,2))[2,1:2,:])')) === Static.StaticInt(0)
@test @inferred(StaticArrayInterface.contiguous_batch_size(@view(PermutedDimsArray(A,(3,1,2))[2:3,1:2,:]))) === Static.StaticInt(0)
@test @inferred(StaticArrayInterface.contiguous_batch_size(@view(PermutedDimsArray(A,(3,1,2))[2:3,2,:]))) === Static.StaticInt(-1)
@test @inferred(StaticArrayInterface.contiguous_batch_size(@view(PermutedDimsArray(A,(3,1,2))[2:3,2,:])')) === Static.StaticInt(-1)
@test @inferred(StaticArrayInterface.contiguous_batch_size(@view(PermutedDimsArray(A,(3,1,2))[:,1:2,1])')) === Static.StaticInt(0)
let u_base = randn(10, 10)
u_view = view(u_base, 3, :)
u_reshaped_view = reshape(u_view, 1, size(u_base, 2))
@test @inferred(StaticArrayInterface.contiguous_batch_size(u_view)) === Static.StaticInt(-1)
@test @inferred(StaticArrayInterface.contiguous_batch_size(u_reshaped_view)) === Static.StaticInt(-1)
end
@test @inferred(StaticArrayInterface.stride_rank(A)) == (1,2,3)
@test @inferred(StaticArrayInterface.stride_rank(B)) == (1,2,3)
@test @inferred(StaticArrayInterface.stride_rank(-4:4)) == (1,)
@test @inferred(StaticArrayInterface.stride_rank(view(A,:,:,1))) === (static(1), static(2))
@test @inferred(StaticArrayInterface.stride_rank(view(A,:,:,1))) === ((Static.StaticInt(1),Static.StaticInt(2)))
@test @inferred(StaticArrayInterface.stride_rank(PermutedDimsArray(A,(3,1,2)))) == (3, 1, 2)
@test @inferred(StaticArrayInterface.stride_rank(@view(PermutedDimsArray(A,(3,1,2))[2,1:2,:]))) == (1, 2)
@test @inferred(StaticArrayInterface.stride_rank(@view(PermutedDimsArray(A,(3,1,2))[2,1:2,:])')) == (2, 1)
@test @inferred(StaticArrayInterface.stride_rank(@view(PermutedDimsArray(A,(3,1,2))[2:3,1:2,:]))) == (3, 1, 2)
@test @inferred(StaticArrayInterface.stride_rank(@view(PermutedDimsArray(A,(3,1,2))[2:3,2,:]))) == (3, 2)
@test @inferred(StaticArrayInterface.stride_rank(@view(PermutedDimsArray(A,(3,1,2))[2:3,2,:])')) == (2, 3)
@test @inferred(StaticArrayInterface.stride_rank(@view(PermutedDimsArray(A,(3,1,2))[:,1:2,1])')) == (1, 3)
@test @inferred(StaticArrayInterface.stride_rank(@view(PermutedDimsArray(A,(3,1,2))[:,2,1])')) == (2, 1)
@test @inferred(StaticArrayInterface.stride_rank(@view(PermutedDimsArray(A,(3,1,2))[:,1:2,[1,3,4]]))) == (3, 1, 2)
@test @inferred(StaticArrayInterface.stride_rank(DummyZeros(3,4)')) === nothing
@test @inferred(StaticArrayInterface.stride_rank(PermutedDimsArray(DummyZeros(3,4), (2, 1)))) === nothing
@test @inferred(StaticArrayInterface.stride_rank(view(DummyZeros(3,4), 1, :))) === nothing
uA = reinterpret(reshape, UInt64, A)
@test @inferred(StaticArrayInterface.stride_rank(uA)) === StaticArrayInterface.stride_rank(A)
rA = reinterpret(reshape, NTuple{3,Float64}, A)
@test @inferred(StaticArrayInterface.stride_rank(rA)) === (static(1), static(2))
cA = copy(rA)
rcA = reinterpret(reshape, Float64, cA)
@test @inferred(StaticArrayInterface.stride_rank(rcA)) === StaticArrayInterface.stride_rank(A)
#=
@btime StaticArrayInterface.is_column_major($(PermutedDimsArray(A,(3,1,2))))
0.047 ns (0 allocations: 0 bytes)
@btime StaticArrayInterface.is_column_major($(StaticArrayInterface.is_column_major(@view(PermutedDimsArray(A,(3,1,2))[2,1:2,:]))))
0.047 ns (0 allocations: 0 bytes)
@btime StaticArrayInterface.is_column_major($(StaticArrayInterface.is_column_major(@view(PermutedDimsArray(A,(3,1,2))[2,1:2,:])')))
0.047 ns (0 allocations: 0 bytes)
PermutedDimsArray(A,(3,1,2))[2:3,1:2,:])
@view(PermutedDimsArray(reshape(view(zeros(100), 1:60), (3,4,5)), (3,1,2)), 2:3, 1:2, :)
=#
@test @inferred(StaticArrayInterface.is_column_major(A)) === True()
@test @inferred(StaticArrayInterface.is_column_major(B)) === True()
@test @inferred(StaticArrayInterface.is_column_major(-4:7)) === False()
@test @inferred(StaticArrayInterface.is_column_major(PermutedDimsArray(A,(3,1,2)))) === False()
@test @inferred(StaticArrayInterface.is_column_major(@view(PermutedDimsArray(A,(3,1,2))[2,1:2,:]))) === True()
@test @inferred(StaticArrayInterface.is_column_major(@view(PermutedDimsArray(A,(3,1,2))[2,1:2,:])')) === False()
@test @inferred(StaticArrayInterface.is_column_major(@view(PermutedDimsArray(A,(3,1,2))[2:3,1:2,:]))) === False()
@test @inferred(StaticArrayInterface.is_column_major(@view(PermutedDimsArray(A,(3,1,2))[2:3,2,:]))) === False()
@test @inferred(StaticArrayInterface.is_column_major(@view(PermutedDimsArray(A,(3,1,2))[2:3,2,:])')) === True()
@test @inferred(StaticArrayInterface.is_column_major(@view(PermutedDimsArray(A,(3,1,2))[:,1:2,1])')) === True()
@test @inferred(StaticArrayInterface.is_column_major(@view(PermutedDimsArray(A,(3,1,2))[:,2,1])')) === False()
@test @inferred(StaticArrayInterface.is_column_major(2.3)) === False()
@test @inferred(StaticArrayInterface.dense_dims(A)) == (true,true,true)
@test @inferred(StaticArrayInterface.dense_dims(B)) == (true,true,true)
@test @inferred(StaticArrayInterface.dense_dims(-3:9)) == (true,)
@test @inferred(StaticArrayInterface.dense_dims(PermutedDimsArray(A,(3,1,2)))) == (true,true,true)
@test @inferred(StaticArrayInterface.dense_dims(@view(PermutedDimsArray(A,(3,1,2))[2,1:2,:]))) == (true,false)
@test @inferred(StaticArrayInterface.dense_dims(@view(PermutedDimsArray(A,(3,1,2))[2,1:2,:])')) == (false,true)
@test @inferred(StaticArrayInterface.dense_dims(@view(PermutedDimsArray(A,(3,1,2))[2:3,1:2,:]))) == (false,true,false)
@test @inferred(StaticArrayInterface.dense_dims(@view(PermutedDimsArray(A,(3,1,2))[2:3,:,1:2]))) == (false,true,true)
@test @inferred(StaticArrayInterface.dense_dims(@view(PermutedDimsArray(A,(3,1,2))[2:3,2,:]))) == (false,false)
@test @inferred(StaticArrayInterface.dense_dims(@view(PermutedDimsArray(A,(3,1,2))[2:3,2,:])')) == (false,false)
@test @inferred(StaticArrayInterface.dense_dims(@view(PermutedDimsArray(A,(3,1,2))[:,1:2,1])')) == (true,false)
@test @inferred(StaticArrayInterface.dense_dims(@view(PermutedDimsArray(A,(3,1,2))[2:3,:,[1,2]]))) == (false,true,false)
@test @inferred(StaticArrayInterface.dense_dims(@view(PermutedDimsArray(A,(3,1,2))[2:3,[1,2,3],:]))) == (false,false,false)
@test @inferred(StaticArrayInterface.dense_dims(reshape(view(randn(10, 10, 10), 3, :, :), 1, 100))) == (false, false)
# TODO Currently Wrapper can't function the same as Array because Array can change
# the dimensions on reshape. We should be rewrapping the result in `Wrapper` but we
# first need to develop a standard method for reconstructing arrays
@test @inferred(StaticArrayInterface.dense_dims(vec(parent(A)))) == (true,)
@test @inferred(StaticArrayInterface.dense_dims(vec(parent(A))')) == (true,true)
@test @inferred(StaticArrayInterface.dense_dims(DummyZeros(3,4))) === nothing
@test @inferred(StaticArrayInterface.dense_dims(DummyZeros(3,4)')) === nothing
@test @inferred(StaticArrayInterface.dense_dims(PermutedDimsArray(DummyZeros(3,4), (2, 1)))) === nothing
@test @inferred(StaticArrayInterface.dense_dims(view(DummyZeros(3,4), :, 1))) === nothing
@test @inferred(StaticArrayInterface.dense_dims(view(DummyZeros(3,4), :, 1)')) === nothing
@test @inferred(StaticArrayInterface.is_dense(A)) === @inferred(StaticArrayInterface.is_dense(A)) === @inferred(StaticArrayInterface.is_dense(PermutedDimsArray(A,(3,1,2)))) === @inferred(StaticArrayInterface.is_dense(Array{Float64,0}(undef))) === True()
@test @inferred(StaticArrayInterface.is_dense(@view(PermutedDimsArray(A,(3,1,2))[2:3,1:2,:]))) === @inferred(StaticArrayInterface.is_dense(@view(PermutedDimsArray(A,(3,1,2))[2:3,:,[1,2]]))) === @inferred(StaticArrayInterface.is_dense(@view(PermutedDimsArray(A,(3,1,2))[2:3,[1,2,3],:]))) === False()
C = Array{Int8}(undef, 2,2,2,2);
doubleperm = PermutedDimsArray(PermutedDimsArray(C,(4,2,3,1)), (4,2,1,3));
@test collect(strides(C))[collect(StaticArrayInterface.stride_rank(doubleperm))] == collect(strides(doubleperm))
C1 = reinterpret(reshape, Float64, PermutedDimsArray(Array{Complex{Float64}}(undef, 3,4,5), (2,1,3)));
C2 = reinterpret(reshape, Complex{Float64}, PermutedDimsArray(view(A,1:2,:,:), (1,3,2)));
C3 = reinterpret(reshape, Complex{Float64}, PermutedDimsArray(Wrapper(reshape(view(x, 1:24), (2,3,4))), (1,3,2)));
@test @inferred(StaticArrayInterface.defines_strides(C1))
@test @inferred(StaticArrayInterface.defines_strides(C2))
@test @inferred(StaticArrayInterface.defines_strides(C3))
@test @inferred(StaticArrayInterface.device(C1)) === StaticArrayInterface.CPUPointer()
@test @inferred(StaticArrayInterface.device(C2)) === StaticArrayInterface.CPUPointer()
@test @inferred(StaticArrayInterface.device(C3)) === StaticArrayInterface.CPUPointer()
@test @inferred(StaticArrayInterface.contiguous_batch_size(C1)) === Static.StaticInt(0)
@test @inferred(StaticArrayInterface.contiguous_batch_size(C2)) === Static.StaticInt(0)
@test @inferred(StaticArrayInterface.contiguous_batch_size(C3)) === Static.StaticInt(0)
@test @inferred(StaticArrayInterface.stride_rank(C1)) == (1,3,2,4)
@test @inferred(StaticArrayInterface.stride_rank(C2)) == (2,1)
@test @inferred(StaticArrayInterface.stride_rank(C3)) == (2,1)
@test @inferred(StaticArrayInterface.contiguous_axis(C1)) === StaticInt(1)
@test @inferred(StaticArrayInterface.contiguous_axis(C2)) === StaticInt(0)
@test @inferred(StaticArrayInterface.contiguous_axis(C3)) === StaticInt(2)
@test @inferred(StaticArrayInterface.contiguous_axis_indicator(C1)) == (true,false,false,false)
@test @inferred(StaticArrayInterface.contiguous_axis_indicator(C2)) == (false,false)
@test @inferred(StaticArrayInterface.contiguous_axis_indicator(C3)) == (false,true)
@test @inferred(StaticArrayInterface.is_column_major(C1)) === False()
@test @inferred(StaticArrayInterface.is_column_major(C2)) === False()
@test @inferred(StaticArrayInterface.is_column_major(C3)) === False()
@test @inferred(StaticArrayInterface.dense_dims(C1)) == (true,true,true,true)
@test @inferred(StaticArrayInterface.dense_dims(C2)) == (false,false)
@test @inferred(StaticArrayInterface.dense_dims(C3)) == (true,true)
end
@testset "Reinterpreted reshaped views" begin
u_base = randn(1, 4, 4, 5);
u_reinterpreted = reinterpret(Int8, view(u_base, 1:1, 1:4, 1:4, 1:5))
u_vectors = reshape(reinterpret(NTuple{1, eltype(u_base)}, u_base),
Base.tail(size(u_base))...)
u_view = view(u_vectors, 2, :, 3)
u_view_reinterpreted = reinterpret(eltype(u_base), u_view)
u_view_reshaped = reshape(u_view_reinterpreted, 1, length(u_view))
# See https://github.com/JuliaArrays/StaticArrayInterface.jl/issues/163
@test @inferred(StaticArrayInterface.static_strides(u_base)) === (StaticInt(1), 1, 4, 16)
@test @inferred(StaticArrayInterface.static_strides(u_reinterpreted)) === (StaticInt(1), 8, 32, 128)
@test @inferred(StaticArrayInterface.static_strides(u_vectors)) === (StaticInt(1), 4, 16)
@test @inferred(StaticArrayInterface.static_strides(u_view)) === (4,)
@test @inferred(StaticArrayInterface.static_strides(u_view_reinterpreted)) === (4,)
@test @inferred(StaticArrayInterface.static_strides(u_view_reshaped)) === (4, 4)
@test @inferred(StaticArrayInterface.static_axes(u_vectors)) isa StaticArrayInterface.axes_types(u_vectors)
end
@testset "Reshaped strides" begin
a = randn(10, 10)
@test @inferred(StaticArrayInterface.static_strides(reshape(view(a, :, 1:2:9), 2, 5, 5))) === (1, 2, 20)
@test @inferred(StaticArrayInterface.static_strides(vec(view(a, 1, 1)))) === (static(1),)
@test_throws ArgumentError StaticArrayInterface.static_strides(reshape(view(a, :, 1:2:9), 5, 5, 2))
a = MArray(randn(10, 10))
@test @inferred(StaticArrayInterface.static_strides(reshape(view(a, 1:9, 1:10), 3, 3, 2, 5))) === (1, 3, 10, 20)
@test @inferred(StaticArrayInterface.static_strides(reshape(view(a, static(1):static(9), 1:10), 3, 3, 2, 5))) === (static(1), 3, 10, 20)
@test @inferred(StaticArrayInterface.static_strides(reshape(view(a, :, 1:2:9), 2, 5, 5))) === (static(1), 2, 20)
a = randn(2, 5, 3)
@test @inferred(StaticArrayInterface.static_strides(vec(view(a, :, 1:5, 1:3)))) === (1,)
@test @inferred(StaticArrayInterface.static_strides(reshape(view(a, :, 1:5, 1:3), 5, 2, 3))) === (1,5,10)
@test @inferred(StaticArrayInterface.static_strides(vec(view(a, static(1):static(2), 1:5, 1:3)))) === (static(1),)
@test @inferred(StaticArrayInterface.static_strides(reshape(view(a, static(1):static(2), 1:5, 1:3), 5, 2, 3))) === (static(1),5,10)
a = MArray(randn(3, 5, 3))
@test @inferred(StaticArrayInterface.static_strides(vec(view(a, :, 1:5, 1:3)))) === (static(1),)
@test @inferred(StaticArrayInterface.static_strides(reshape(view(a, static(1):static(3), static(1):static(4), 1:3), 2, 2, 3, 3))) === (static(1), 2, 4, 15)
@test @inferred(StaticArrayInterface.static_strides(reshape(view(a, static(1):static(2), static(1):static(4), 1:3), 2, 2, 2, 3))) === (static(1), 3, 6, 15)
@test @inferred(StaticArrayInterface.static_strides(reshape(view(a, static(1):static(2), static(1):static(1), 1:3), 2, 1, 3))) === (static(1), 2, 15)
end
@testset "Reshaped views" begin
u_base = randn(10, 10)
u_view = view(u_base, 3, :)
u_reshaped_view1 = reshape(u_view, 1, :)
u_reshaped_view2 = reshape(u_view, 2, :)
@test @inferred(StaticArrayInterface.defines_strides(u_base))
@test @inferred(StaticArrayInterface.defines_strides(u_view))
@test @inferred(StaticArrayInterface.defines_strides(u_reshaped_view1))
@test @inferred(StaticArrayInterface.defines_strides(u_reshaped_view2))
# See https://github.com/JuliaArrays/StaticArrayInterface.jl/issues/160
@test @inferred(StaticArrayInterface.static_strides(u_base)) == (StaticInt(1), 10)
@test @inferred(StaticArrayInterface.static_strides(u_view)) == (10,)
@test @inferred(StaticArrayInterface.static_strides(u_reshaped_view1)) == (10, 10)
@test @inferred(StaticArrayInterface.static_strides(u_reshaped_view2)) == (10, 20)
# See https://github.com/JuliaArrays/StaticArrayInterface.jl/issues/157
@test @inferred(StaticArrayInterface.dense_dims(u_base)) == (True(), True())
@test @inferred(StaticArrayInterface.dense_dims(u_view)) == (False(),)
@test @inferred(StaticArrayInterface.dense_dims(u_reshaped_view1)) == (False(), False())
@test @inferred(StaticArrayInterface.dense_dims(u_reshaped_view2)) == (False(), False())
end
| StaticArrayInterface | https://github.com/JuliaArrays/StaticArrayInterface.jl.git |
|
[
"MIT"
] | 1.8.0 | 96381d50f1ce85f2663584c8e886a6ca97e60554 | docs | 1971 | # StaticArrayInterface.jl
[](https://docs.sciml.ai/StaticArrayInterface/stable/)
[](https://github.com/JuliaArrays/StaticArrayInterface.jl/actions?query=workflow%3ACI)
[](https://buildkite.com/julialang/StaticArrayInterface-dot-jl)
[](https://codecov.io/gh/JuliaArrays/StaticArrayInterface.jl)
The AbstractArray interface in Base Julia does not always enforce static guarantees.
For example, if the size of an array is known at compile time, many of the indexing
schemes are not specialized to make use of that size to build fully optimized code.
In most cases a user should rely on the compiler to deduce the static properties
and perform the optimization. However, some brave souls believe they can beat the
compiler, and this library is for them.
Functions like `known_length` return values using [Static.jl](https://github.com/SciML/Static.jl)
which encode all of the information at the type level, which in turn forces the
computation to occur at compile time.
## Is This Library About StaticArrays?
No, not necessarily. StaticArrays.jl is one library about array types which have static compile
time information. However, there are many other array types with static compile time information.
The purpose of this library is to be able to write code generic to all of those libraries
which also keep this property of enforcing the computation is at compile time by using
the type space.
## Warning: Compile Times
Because this library enforces things be done at compile time by encoding everything
into types, using it will increase your compile times. You have been warned, now
proceed (with caution).
| StaticArrayInterface | https://github.com/JuliaArrays/StaticArrayInterface.jl.git |
|
[
"MIT"
] | 1.8.0 | 96381d50f1ce85f2663584c8e886a6ca97e60554 | docs | 1722 | # API
### Traits
```@docs
StaticArrayInterface.contiguous_axis
StaticArrayInterface.contiguous_axis_indicator
StaticArrayInterface.contiguous_batch_size
StaticArrayInterface.dimnames
StaticArrayInterface.has_dimnames
StaticArrayInterface.has_parent
StaticArrayInterface.is_column_major
StaticArrayInterface.is_lazy_conjugate
StaticArrayInterface.is_splat_index
StaticArrayInterface.known_dimnames
StaticArrayInterface.known_first
StaticArrayInterface.known_last
StaticArrayInterface.known_length
StaticArrayInterface.known_offset1
StaticArrayInterface.known_offsets
StaticArrayInterface.known_size
StaticArrayInterface.known_step
StaticArrayInterface.known_strides
```
### Functions
```@docs
StaticArrayInterface.static_axes
StaticArrayInterface.axes_types
StaticArrayInterface.broadcast_axis
StaticArrayInterface.deleteat
StaticArrayInterface.dense_dims
StaticArrayInterface.from_parent_dims
StaticArrayInterface.getindex
StaticArrayInterface.indices
StaticArrayInterface.insert
StaticArrayInterface.static_length
StaticArrayInterface.lazy_axes
StaticArrayInterface.offset1
StaticArrayInterface.offsets
StaticArrayInterface.setindex!
StaticArrayInterface.static_size
StaticArrayInterface.static_strides
StaticArrayInterface.to_axes
StaticArrayInterface.to_axis
StaticArrayInterface.to_dims
StaticArrayInterface.to_index
StaticArrayInterface.static_to_indices
StaticArrayInterface.to_parent_dims
StaticArrayInterface.unsafe_reconstruct
```
### Types
```@docs
StaticArrayInterface.BroadcastAxis
StaticArrayInterface.LazyAxis
StaticArrayInterface.OptionallyStaticStepRange
StaticArrayInterface.OptionallyStaticUnitRange
StaticArrayInterface.SOneTo
StaticArrayInterface.SUnitRange
StaticArrayInterface.StrideIndex
```
| StaticArrayInterface | https://github.com/JuliaArrays/StaticArrayInterface.jl.git |
|
[
"MIT"
] | 1.8.0 | 96381d50f1ce85f2663584c8e886a6ca97e60554 | docs | 12971 | ```@meta
CurrentModule = StaticArrayInterface
```
# StaticArrayInterface
Designs for new Base array interface primitives, used widely through scientific machine learning (SciML) and other organizations
## StaticArrayInterfaceCore
StaticArrayInterfaceCore is a smaller set of the StaticArrayInterface setup which defines the subset which has no compile time impact.
This for example includes simple functions like `StaticArrayInterfaceCore.zeromatrix` which have simple few dispatch definitions
and no dependency on other libraries such as Static.jl. Notably, Static.jl currently has issues with invalidations
(https://github.com/SciML/Static.jl/issues/52), and thus anything with static outputs are in the domain of StaticArrayInterface.jl
proprer.
## Extenion Packages
StaticArrayInterface.jl uses extension packages in order to add support for popular libraries to its interface functions. These packages are:
- StaticArrays.jl
- OffsetArrays.jl
## Inheriting Array Traits
Creating an array type with unique behavior in Julia is often accomplished by creating a lazy wrapper around previously defined array types
(e.g. [composition by inheritance](https://en.wikipedia.org/wiki/Composition_over_inheritance)).
This allows the new array type to inherit functionality by redirecting methods to the parent array (e.g., `Base.size(x::Wrapper) = size(parent(x))`).
Generic design limits the need to define an excessive number of methods like this.
However, methods used to describe a type's traits often need to be explicitly defined for each trait method.
If the the underlying data and access to it are unchanged by it's wrapper the
[`StaticArrayInterface.is_forwarding_wrapper`](@ref) trait can signal to other trait methods to access its parent data structure.
Supporting this for a new type only requires defines these methods:
```julia
StaticArrayInterface.is_forwarding_wrapper(::Type{<:NewType}) = true
StaticArrayInterface.parent_type(::Type{<:NewType}) = NewTypeParent
Base.parent(x::NewType) = x.parent
```
For those authoring new trait methods, this may change the default definition from `has_trait(::Type{T}) where {T} = false`, to:
```julia
function has_trait(::Type{T}) where {T}
if is_forwarding_wrapper(T)
return false
else
return has_trait(parent_type(T))
end
end
```
Most traits in `StaticArrayInterface` are a variant on this pattern.
If the trait in question may be altered by a wrapper array, this pattern should be altered or may be inappropriate.
## Static Traits
The size along one or more dimensions of an array may be known at compile time.
`StaticArrayInterface.known_size` is useful for extracting this information from array types and `StaticArrayInterface.static_size` is useful for extracting this information from an instance of an array.
For example:
```julia
julia> a = ones(3)';
julia> StaticArrayInterface.static_size(a)
(static(1), 3)
julia> StaticArrayInterface.known_size(typeof(a))
(1, nothing)
```
This is useful for dispatching on known information about the size of an array:
```julia
fxn(x) = _fxn(StaticArrayInterface.static_size(x), x)
_fxn(sz::Tuple{StaticInt{S1},StaticInt{S2}}, x) where {S1,S2} = ...
_fxn(sz::Tuple{StaticInt{3},StaticInt{3}}, x) = ...
_fxn(sz::Tuple{Int,StaticInt{S2}}, x) where {S2} = ...
_fxn(sz::Tuple{StaticInt{S1},Int}, x) where {S1} = ...
_fxn(sz::Tuple{Int,Int}, x) = ...
```
Methods should avoid forcing conversion to static sizes when dynamic sizes could potentially be returned.
Fore example, `fxn(x) = _fxn(Static.static(StaticArrayInterface.static_size(x)), x)` would result in dynamic dispatch if `x` is an instance of `Matrix`.
Additionally, `StaticArrayInterface.static_size` should only be used outside of generated functions to avoid possible world age issues.
Generally, `StaticArrayInterface.static_size` uses the return of `known_size` to form a static value for those dimensions with known length and only queries dimensions corresponding to `nothing`.
For example, the previous example had a known size of `(1, nothing)`.
Therefore, `StaticArrayInterface.static_size` would have compile time information about the first dimension returned as `static(1)` and would only look up the size of the second dimension at run time.
This means the above example `StaticArrayInterface.static_size(a)` would lower to code similar to this at compile time: `Static.StaticInt(1), Base.arraysize(x, 1)`.
Generic support for `StaticArrayInterface.known_size` relies on calling `known_length` for each type returned from `axes_types`.
Therefore, the recommended approach for supporting static sizing in newly defined array types is defining a new `axes_types` method.
Static information related to subtypes of `AbstractRange` include `known_length`, `known_first`, `known_step`, and `known_last`.
## Dimensions
Methods such as `size(x, dim)` need to map `dim` to the dimensions of `x`.
Typically, `dim` is an `Int` with an invariant mapping to the dimensions of `x`.
Some methods accept `:` or a tuple of dimensions as an argument.
`StaticArrayInterface` also considers `StaticInt` a viable dimension argument.
[`StaticArrayInterface.to_dims`](@ref) helps ensure that `dim` is converted to a viable dimension mapping in a manner that helps with type stability.
For example, all `Integers` passed to `to_dims` are converted to `Int` (unless `dim` is a `StaticInt`).
This is also useful for arrays that uniquely label dimensions, in which case `to_dims` serves as a safe point of hooking into existing methods with dimension arguments.
`StaticArrayInterface` also defines native `Symbol` to `Int` and `StaticSymbol` to `StaticInt` mapping for arrays defining [`StaticArrayInterface.dimnames`](@ref).
Methods requiring dimension specific arguments should use some variation of the following pattern.
```julia
f(x, dim) = f(x, StaticArrayInterface.to_dims(x, dim))
f(x, dim::Int) = ...
f(x, dim::StaticInt) = ...
```
If `x`'s first dimension is named `:dim_1` then calling `f(x, :dim_1)` would result in `f(x, 1)`.
If users knew they always wanted to call `f(x, 2)` then they could define `h(x) = f(x, static(2))`, ensuring `f` passes along that information while compiling.
New types defining dimension names can do something similar to:
```julia
using Static
using StaticArrayInterface
struct StaticDimnames{dnames} end # where dnames::Tuple{Vararg{Symbol}}
StaticArrayInterface.known_dimnames(::Type{StaticDimnames{dnames}}) where {dnames} = dnames
StaticArrayInterface.dimnames(::StaticDimnames{dnames}) where {dnames} = static(dnames)
struct DynamicDimnames{N}
dimnames::NTuple{N,Symbol}
end
StaticArrayInterface.known_dimnames(::Type{DynamicDimnames{N}}) where {N} = ntuple(_-> nothing, Val(N))
StaticArrayInterface.dimnames(x::DynamicDimnames) = getfield(x, :dimnames)
```
Notice that `DynamicDimnames` returns `nothing` instead of a symbol for each dimension.
This indicates dimension names are present for `DynamicDimnames` but that information is nothing at compile time.
Dimension names should be appropriately propagated between nested arrays using `StaticArrayInterface.to_parent_dims`.
This allows types such as `SubArray` and `PermutedDimsArray` to work with named dimensions.
Similarly, other methods that return information corresponding to dimensions (e.g., `ArrayInterfce.size`, `StaticArrayInterface.static_axes`) use `to_parent_dims` to appropriately propagate parent information.
## Axes
Where Julia's currently documented [array interface]( https://docs.julialang.org/en/v1/manual/interfaces/#man-interface-array) requires defining `Base.size`,
StaticArrayInterface instead requires defining [`StaticArrayInterface.static_axes`](@ref) and [`StaticArrayInterface.axes_types`](@ref).
`StaticArrayInterface.axes_types(::Type{T})` facilitates propagation of a number of traits known at compile time (e.g., `known_size`, `known_offsets`)
and `StaticArrayInterface.static_axes(::AbstractArray)` replaces `Base.OneTo` with `StaticArrayInterface.OptionallyStaticUnitRange` in situations where static
information would otherwise be lost.
`StaticArrayInterface.static_axes(::AbstractArray, dim)` utilizes `to_dims`, [as described elsewhere](#dimensions).
### Simple Wrappers
Let's say we have a new array type doesn't affect axes then this is as simple as:
```julia
Base.axes(x::SimpleWrapper) = StaticArrayInterface.static_axes(parent(x))
Base.axes(x::SimpleWrapper, dim) = StaticArrayInterface.static_axes(parent(x), dim)
StaticArrayInterface.axes_types(::Type{T}) where {T<:SimpleWrapper} = axes_types(parent_type(T))
```
To reiterate, `StaticArrayInterface.static_axes` improves on `Base.axes` for few Base array types but is otherwise identical.
Therefore, the first method simply ensures you don't have to define multiple parametric methods for your new type to preserve
statically sized nested axes (e.g., `SimpleWrapper{T,N,<:Transpose{T,<:AbstractVector}}`).
This is otherwise identical to standard inheritance by composition.
### When to Discard Axis Information
Occasionally the parent array's axis information can't be preserved.
For example, we can't map axis information from the parent array of `Base.ReshapedArray`.
In this case we can simply build axes from the new size information.
```julia
StaticArrayInterface.axes_types(T::Type{<:ReshapedArray}) = NTuple{ndims(T),OneTo{Int}}
StaticArrayInterface.static_axes(A::ReshapedArray) = map(OneTo, size(A))
```
### New Axis Types
`OffsetArray` changes the first index for each axis.
It produces axes of type `IdOffsetRange`, which contains the value of the relative offset and the parent axis.
```julia
using StaticArrayInterface: axes_types, parent_type, to_dims
# Note that generating a `Tuple` type piecewise like may be type unstable and should be
# tested using `Test.@inferred`. It's often necessary to use generated function
# (`@generated`) or methods defined in Static.jl.
@generated function StaticArrayInterface.axes_types(::Type{A}) where {A<:OffsetArray}
out = Expr(:curly, :Tuple)
P = parent_type(A)
for dim in 1:ndims(A)
# offset relative to parent array
O = relative_known_offsets(A, dim)
if O === nothing # offset is not known at compile time and is an `Int`
push!(out.args, :(IdOffsetRange{Int, axes_types($P, $(static(dim)))}))
else # offset is known, therefore it is a `StaticInt`
push!(out.args, :(IdOffsetRange{StaticInt{$O}, axes_types($P, $(static(dim))}))
end
end
end
function Base.axes(A::OffsetArray)
map(IdOffsetRange, StaticArrayInterface.static_axes(parent(A)), relative_offsets(A))
end
function Base.axes(A::OffsetArray, dim)
d = to_dims(A, dim)
IdOffsetRange(StaticArrayInterface.static_axes(parent(A), d), relative_offsets(A, d))
end
```
Defining these two methods ensures that other array types that wrap `OffsetArray` and appropriately define these methods
propagate offsets independent of any dependency on `OffsetArray`.
It is entirely optional to define `StaticArrayInterface.static_size` for `OffsetArray` because the size can be
derived from the axes.
However, in this particularly case we should also define
`StaticArrayInterface.static_size(A::OffsetArray) = StaticArrayInterface.static_size(parent(A))` because the relative offsets
attached to `OffsetArray` do not change the size but may hide static sizes if using a relative offset that is defined with an `Int`.
## Processing Indices (`static_to_indices`)
For most users, the only reason you should use `StaticArrayInterface.static_to_indices` over `Base.to_indices` is that it's
faster and perhaps some of the more detailed benefits described in the [`to_indices`](@ref) doc string.
For those interested in how this is accomplished, the following steps (beginning with the `to_indices(A::AbstractArray, I::Tuple)`)
are used to accomplish this:
1. The number of dimensions that each indexing argument in `I` corresponds to is determined using using the [`ndims_index`](@ref) and [`is_splat_index`](@ref) traits.
2. A non-allocating reference to each axis of `A` is created (`lazy_axes(A) -> axs`). These are aligned to each the index arguments using information from the first step. For example, if an index argument maps to a single dimension then it is paired with `axs[dim]`. In the case of multiple dimensions it is paired with `CartesianIndices(axs[dim_1], ... axs[dim_n])`. These pairs are further processed using `to_index(axis, I[n])`.
3. Tuples returned from `to_index` are flattened out so that there are no nested tuples returned from `to_indices`.
Entry points:
* `static_to_indices(::ArrayType, indices)` : dispatch on unique array type `ArrayType`
* `to_index(axis, ::IndexType)` : dispatch on a unique indexing type, `IndexType`. `StaticArrayInterface.ndims_index(::Type{IndexType})` should also be defined in this case.
* `to_index(S::IndexStyle, axis, index)` : The index style `S` that corresponds to `axis`. This is
| StaticArrayInterface | https://github.com/JuliaArrays/StaticArrayInterface.jl.git |
|
[
"MIT"
] | 1.0.10 | d37e67cd855d38efbc41b807f45d758eaaa82923 | code | 3000 | using JDQMCFramework
using Documenter
using Literate
using LinearAlgebra
# generates script and notebook versions of tutorials based on literate example
function build_examples(example_sources, destdir)
assetsdir = joinpath(fill("..", length(splitpath(destdir)))..., "assets")
destpath = joinpath(@__DIR__, "src", destdir)
isdir(destpath) && rm(destpath; recursive=true)
# Transform each Literate source file to Markdown for subsequent processing by
# Documenter.
for source in example_sources
# Extract "example" from "path/example.jl"
name = splitext(basename(source))[1]
# Preprocess each example by adding a notebook download link at the top. The
# relative path is hardcoded according to the layout of `gh-pages` branch,
# which is set up by `Documenter.deploydocs`.
function preprocess(str)
"""
# Download this example as [Jupyter notebook]($assetsdir/notebooks/$name.ipynb) or [Julia script]($assetsdir/scripts/$name.jl).
""" * str
end
# Write to `src/$destpath/$name.md`
Literate.markdown(source, destpath; preprocess, credit=false)
end
# Create Jupyter notebooks and Julia script for each Literate example. These
# will be stored in the `assets/` directory of the hosted docs.
for source in example_sources
# Build notebooks
Literate.notebook(source, notebooks_path; execute=false, credit=false)
# Build julia scripts
Literate.script(source, scripts_path; credit=false)
end
# Return paths `$destpath/$name.md` for each new Markdown file (relative to
# `src/`)
return map(example_sources) do source
name = splitext(basename(source))[1]
joinpath(destdir, "$name.md")
end
end
# Remove existing Documenter `build` directory
build_path = joinpath(@__DIR__, "build")
isdir(build_path) && rm(build_path; recursive=true)
# Create `build/assets` directories
notebooks_path = joinpath(build_path, "assets", "notebooks")
scripts_path = joinpath(build_path, "assets", "scripts")
mkpath.([notebooks_path, scripts_path])
example_sources = filter(endswith(".jl"), readdir(pkgdir(JDQMCFramework, "examples"), join=true))
example_mds = build_examples(example_sources, "examples")
makedocs(;
clean = false, # Don't wipe files in `build/assets/`
modules=[JDQMCFramework],
authors="Benjamin Cohen-Stead <[email protected]>",
repo="https://github.com/SmoQySuite/JDQMCFramework.jl/blob/{commit}{path}#{line}",
sitename="JDQMCFramework.jl",
format=Documenter.HTML(;
prettyurls=get(ENV, "CI", "false") == "true",
canonical="https://SmoQySuite.github.io/JDQMCFramework.jl",
edit_link="master",
assets=String[],
),
pages=[
"Home" => "index.md",
"API" => "api.md",
"Examples" => example_mds,
]
)
deploydocs(;
repo="github.com/SmoQySuite/JDQMCFramework.jl.git",
devbranch="master",
)
| JDQMCFramework | https://github.com/SmoQySuite/JDQMCFramework.jl.git |
|
[
"MIT"
] | 1.0.10 | d37e67cd855d38efbc41b807f45d758eaaa82923 | code | 48616 | # # Tutorial 1: Square Lattice Hubbard Model DQMC Simulation
#
# This tutorial implements a determinant quantum Monte Carlo (DQMC) simulation from "scratch"
# using the [`JDQMCFramework.jl`](https://github.com/SmoQySuite/JDQMCFramework.jl.git) package, along with several others.
# The purpose of this tutorial is to empower researchers to write their own lightweight DQMC codes
# in order to address specific research needs that fall outside the scope of existing high-level
# DQMC packages like [`SmoQyDQMC.jl`](https://github.com/SmoQySuite/SmoQyDQMC.jl.git), and to enable
# rapid prototyping of algorithmic improvements to existing DQMC methods.
#
# This tutorial is relatively long as a lot goes into writing a full DQMC code.
# However, in spite of the length, each step is relatively straightforward.
# This is made possible by leveraging the functionality exported by
# [`JDQMCFramework.jl`](https://github.com/SmoQySuite/JDQMCFramework.jl.git) and other packages.
# For instance, the [`JDQMCFramework.jl`](https://github.com/SmoQySuite/JDQMCFramework.jl.git) package takes care of all the
# numerical stabilization nonsense that is one of the most challenging parts of writing a DQMC code.
# Also, implementing various correlation measurements in a DQMC simulation is typically very time consuming and challening,
# as it requires working through arduous Wick's contractions, and then implementing each term.
# Once again, this hurdle is largely avoided by leveraging the functionality exported by the
# [`JDQMCMeasurements.jl`](https://github.com/SmoQySuite/JDQMCMeasurements.jl.git) package,
# which implements a variety of standard correlation function measurements for arbitary lattice geometries.
#
# The repulsive Hubbard model Hamiltonian on a square lattice considered in this tutorial is given by
# ```math
# \hat{H} = -t \sum_{\sigma,\langle i,j\rangle} (\hat{c}^{\dagger}_{\sigma,i} \hat{c}^{\phantom \dagger}_{\sigma,j} + {\rm h.c.})
# + U \sum_i (\hat{n}_{\uparrow,i}-\tfrac{1}{2})(\hat{n}_{\downarrow,i}-\tfrac{1}{2}) - \mu \sum_{\sigma,i} \hat{n}_{\sigma,i},
# ```
# where ``\hat{c}^\dagger_{\sigma,i} (\hat{c}^{\phantom \dagger}_{\sigma,i})`` creates (annihilates) a spin ``\sigma``
# electron on site ``i`` in the lattice, and ``\hat{n}_{\sigma,i} = \hat{c}^\dagger_{\sigma,i} \hat{c}^{\phantom \dagger}_{\sigma,i}``
# is the spin-``\sigma`` electron number operator for site ``i``. In the above Hamiltonian, ``t`` is the nearest neighbor hopping integral,
# ``\mu`` is the chemical potential, and ``U > 0`` controls the strength of the on-site Hubbard repulsion.
# Lastly, if ``\mu = 0.0,`` then the Hamiltonian is particle-hole symmetric, ensuring the system is half-filled ``(\langle n_\sigma \rangle = \tfrac{1}{2})``
# and that there is no sign problem. In the case of ``\mu \ne 0`` there will be a sign problem.
#
# The script version of this tutorial, which can be downloaded using the link found at the top of this page,
# can be run with the command
# ```
# julia square_hubbard.jl
# ```
# in a terminal. This tutorial can also be downloaded as a notebook at the top of this page.
#
# We begin by importing the relevant packages we will need to use in this example.
# Note that to run this tutorial you will need to install all the required Julia packages.
# However, this is straightforward as all the packages used in this tutorial are registered
# with the Julia [General](https://github.com/JuliaRegistries/General.git)
# package registry. This means they can all be easily installed with the Julia package manager
# using the `add` command in the same way that the [`JDQMCFramework.jl`](https://github.com/SmoQySuite/JDQMCFramework.jl.git)
# package is installed.
## Import relevant standard template libraries.
using Random
using LinearAlgebra
## Provides framework for implementing DQMC code.
import JDQMCFramework as jdqmcf
## Exports methods for measuring various correlation functions in a DQMC simulation.
import JDQMCMeasurements as jdqmcm
## Exports types and methods for representing lattice geometries.
import LatticeUtilities as lu
## Exports the checkerboard approximation for representing an exponentiated hopping matrix.
import Checkerboard as cb
## Package for performing Fast Fourier Transforms (FFTs).
using FFTW
# The next incantations are included for annoying technical reasons.
# Without going into too much detail, the default multithreading behavior used by BLAS/LAPACK in Julia is somewhat sub-optimal.
# As a result, it is typically a good idea to include these commands in Julia DQMC codes, as they ensure
# that BLAS/LAPACK (and FFTW) run in a single-threaded fashion. For more information on this issue,
# I refer readers to [this discussion](https://carstenbauer.github.io/ThreadPinning.jl/stable/explanations/blas/),
# which is found in the documentation for the [`ThreadPinning.jl`](https://github.com/carstenbauer/ThreadPinning.jl.git) package.
## Set number of threads used by BLAS/LAPACK to one.
BLAS.set_num_threads(1)
## Set number of threads used by FFTW to one.
FFTW.set_num_threads(1)
# Now we define the relevant Hamiltonian parameter values that we want to simulate.
# In this example we will stick to a relatively small system size ``(4 \times 4)`` and
# inverse temperature ``(\beta = 4)`` to ensure that this tutorial
# can be run quickly on a personal computer.
# Also, in this tutorial I will include many print statements so that when
# the tutorial is run users can keep track of what is going on. That said, for a DQMC code
# that will be used in actual research you will want to replace the print statements with code
# that writes relevant information and measurement results to file.
## Nearest-neighbor hopping amplitude.
t = 1.0
println("Nearest-neighbor hopping amplitude, t = ", t)
## Hubbard interaction.
U = 6.0
println("Hubbard interaction, U = ", U)
## Chemical potential.
ΞΌ = 2.0
println("Chemical potential, mu = ", ΞΌ)
## Inverse temperature.
Ξ² = 4.0
println("Inverse temperature, beta = ", Ξ²)
## Lattice size.
L = 4
println("Linear lattice size, L = ", L)
#jl println()
# Next we define the relevant DQMC simulation parameters.
## Discretization in imaginary time.
ΞΟ = 0.05
println("Disretization in imaginary time, dtau = ", ΞΟ)
## Length of imaginary time axis.
LΟ = round(Int, Ξ²/ΞΟ)
println("Length of imaginary time axis, Ltau = ", LΟ)
## Whether or not to use a symmetric or asymmetric definition for the propagator matrices.
symmetric = false
println("Whether symmetric or asymmetric propagator matrices are used, symmetric = ", symmetric)
## Whether or not to use the checkerboard approximation to represent the
## exponentiated electron kinetic energy matrix exp(-ΞΟβ
K).
checkerboard = false
println("Whether the checkerboard approximation is used, checkerboard = ", checkerboard)
## Period with which numerical stabilization is performed i.e.
## how many imaginary time slices separate more expensive recomputations
## of the Green's function matrix using numerically stable routines.
n_stab = 10
println("Numerical stabilization period, n_stab = ", n_stab)
## The number of burnin sweeps through the lattice performing local updates that
## are performed to thermalize the system.
N_burnin = 2_500
println("Number of burnin sweeps, N_burnin = ", N_burnin)
## The number of measurements made once the system is thermalized.
N_measurements = 10_000
println("Number of measurements, N_measurements = ", N_measurements)
## Number of local update sweeps separating sequential measurements.
N_sweeps = 1
println("Number of local update sweeps seperating measurements, n_sweeps = ", N_sweeps)
## Number of bins used to performing a binning analysis when calculating final error bars
## for measured observables.
N_bins = 50
println("Number of measurement bins, N_bins = ", N_bins)
## Number of measurements averaged over per measurement bin.
N_binsize = N_measurements Γ· N_bins
println("Number of measurements per bin, N_binsize = ", N_binsize)
#jl println()
# Now we initialize the random number generator (RNG) that will be used in the rest of the simulation.
## Initialize random number generator.
seed = abs(rand(Int))
rng = Xoshiro(seed)
println("Random seed used to initialize RNG, seed = ", seed)
#jl println()
# Next, we define our square lattice geometry using the [`LatticeUtilities.jl`](https://github.com/SmoQySuite/LatticeUtilities.jl.git) package.
## Define the square lattice unit cell.
unit_cell = lu.UnitCell(
lattice_vecs = [[1.0, 0.0],
[0.0, 1.0]],
basis_vecs = [[0.0, 0.0]]
)
## Define the size of the periodic square lattice.
lattice = lu.Lattice(
L = [L, L],
periodic = [true, true]
)
## Define nearest-neighbor bond in +x direction
bond_px = lu.Bond(
orbitals = (1,1),
displacement = [1,0]
)
## Define nearest-neighbor bond in +y direction
bond_py = lu.Bond(
orbitals = (1,1),
displacement = [0,1]
)
## Build the neighbor table corresponding to all nearest-neighbor bonds.
neighbor_table = lu.build_neighbor_table([bond_px, bond_py], unit_cell, lattice)
println("The neighbor table, neighbor_table =")
show(stdout, "text/plain", neighbor_table)
println("\n")
## The total number of sites/orbitals in the lattice.
N = lu.nsites(unit_cell, lattice) # For square lattice this is simply N = L^2
#md println("Total number of sites in lattice, N = ", N)
#nb println("Total number of sites in lattice, N = ", N)
## Total number of bonds in lattice.
N_bonds = size(neighbor_table, 2)
#md println("Total number of bonds in lattice, N_bonds = ", N_bonds)
#nb println("Total number of bonds in lattice, N_bonds = ", N_bonds)
# Now we define a few other bonds that are needed to measure
# the local s-wave, extended s-wave and d-wave pair susceptibilities.
## Define a "trivial" bond that maps a site back onto itself.
bond_trivial = lu.Bond(
orbitals = (1,1),
displacement = [0,0]
)
## Define bond in -x direction.
bond_nx = lu.Bond(
orbitals = (1,1),
displacement = [-1,0]
)
## Define bond in -y direction.
bond_ny = lu.Bond(
orbitals = (1,1),
displacement = [0,-1]
)
# Now let us calculated the exponentiated electron kinetic energy matrix ``e^{-\Delta\tau^\prime K}``,
# where
# ```math
# \hat{K} = -t \sum_{\sigma,\langle i,j\rangle} (\hat{c}^{\dagger}_{\sigma,i} \hat{c}^{\phantom \dagger}_{\sigma,j} + {\rm h.c.})
# = \sum_\sigma \hat{\mathbf{c}}^\dagger_\sigma K \hat{\mathbf{c}}^{\phantom\dagger}_\sigma
# ```
# and ``\hat{\mathbf{c}}^{\dagger}_{\sigma,i} = \left[ \hat{c}^{\dagger}_{\sigma,1} \ , \ \dots \ , \ \hat{c}^{\dagger}_{\sigma,N} \right]``
# is a row vector of electron creation operators.
# Note that if `symmetric = true`, i.e. the symmetric definition for the propagator matrices
# ```math
# B_{\sigma,l} = e^{-\Delta\tau^\prime K} \cdot e^{-\Delta\tau V_{\sigma,l}} \cdot e^{-\Delta\tau^\prime K}
# ```
# is being used, then ``\Delta\tau^\prime = \tfrac{1}{2} \Delta\tau``.
# If the asymmetric definition
# ```math
# B_{\sigma,l} = e^{-\Delta\tau V_{\sigma,l}} \cdot e^{-\Delta\tau^\prime K}
# ```
# is used (`symmetric = false`), then ``\Delta\tau^\prime = \Delta\tau.``
#
# Note the branching logic below associated with whether or not the
# matrix ``e^{-\Delta\tau^\prime K}`` is calculated exactly, or represented by the sparse checkerboard approximation
# using the package [`Checkerboard.jl`](https://github.com/SmoQySuite/Checkerboard.jl.git).
## Define ΞΟβ²=ΞΟ/2 if symmetric = true, otherwise ΞΟβ²=ΞΟ
ΞΟβ² = symmetric ? ΞΟ/2 : ΞΟ
## If the matrix exp(ΞΟβ²β
K) is represented by the checkerboard approximation.
if checkerboard
## Construct the checkerboard approximation to the matrix exp(-ΞΟβ²β
K).
expnΞΟβ²K = cb.CheckerboardMatrix(neighbor_table, fill(t, N_bonds), ΞΟβ²)
## If the matrix exp(ΞΟβ²β
K) is NOT represented by the checkerboard approximation.
else
## Construct the electron kinetic energy matrix.
K = zeros(typeof(t), N, N)
for bond in 1:N_bonds
i, j = neighbor_table[1, bond], neighbor_table[2, bond]
K[i,j] = -t
K[j,i] = -t
end
## Calculate the exponentiated kinetic energy matrix, exp(-ΞΟβ
K).
## Note that behind the scenes Julia is diagonalizing the matrix K in order to exponentiate it.
expnΞΟβ²K = exp(-ΞΟβ²*K)
## Calculate the inverse of the exponentiated kinetic energy matrix, exp(+ΞΟβ
K).
exppΞΟβ²K = exp(+ΞΟβ²*K)
#md end;
#nb end;
#jl end
# In this example we are going to introduce an Ising Hubbard-Stratonovich (HS) field to decouple
# the Hubbard interaction. The Ising HS transformation
# ```math
# e^{-\Delta\tau U (\hat{n}_{\uparrow,i,l}-\tfrac{1}{2})(\hat{n}_{\downarrow,i,l}-\tfrac{1}{2})} =
# \frac{1}{2} e^{-\tfrac{1}{4} \Delta\tau U} \sum_{s_{i,l} = \pm 1} e^{\alpha s_{i,l}(\hat{n}_{\uparrow,i,l}-\hat{n}_{\downarrow,i,l})}
# ```
# is introduced for all imaginary time slices ``l \in [1, L_\tau]`` and sites ``i \in [1, N]`` in the lattice, where
# ```math
# \alpha = \cosh^{-1}\left( e^{\tfrac{1}{2}\Delta\tau U} \right)
# ```
# is a constant. We start the simulation from a random ``s_{i,l}`` Ising HS field configuration.
## Define constant associated Ising Hubbard-Stratonovich (HS) transformation.
Ξ± = acosh(exp(ΞΟ*U/2))
## Initialize a random Ising HS configuration.
s = rand(rng, -1:2:1, N, LΟ)
#md println("Random initial Ising HS configuration, s =")
#md show(stdout, "text/plain", s)
#nb println("Random initial Ising HS configuration, s =")
#nb show(stdout, "text/plain", s)
# Next we initialize a propagator matrix ``B_{\sigma,l}`` for each imaginary time slice ``l \in [1,L_\tau]``.
# We first initialize a pair of vectors `Bup` and `Bdn` that will contain the ``L_\tau`` propagators associated with each time slice.
# The branching logic below enforces the correct propagator matrix definition is used based on the boolean flags
# `symmetric` and `checkerboard` defined above.
## Matrix element type for exponentiated electron kinetic energy matrix exp{-ΞΟβ²β
K}
T_expnΞΟK = eltype(t)
## Matrix element type for diagonal exponentiated electron potential energy matrix exp{-ΞΟβ
V[Ο,l]}
T_expnΞΟV = typeof(Ξ±)
## Initialize empty vector to contain propagator matrices for each imaginary time slice.
if checkerboard && symmetric
## Propagator defined as B[Ο,l] = exp{-ΞΟβ
K/2}β
exp{-ΞΟβ
V[Ο,l]}β
exp{-ΞΟβ
K/2},
## where the dense matrix exp{-ΞΟβ
K/2} is approximated by the sparse checkerboard matrix.
Bup = jdqmcf.SymChkbrdPropagator{T_expnΞΟK, T_expnΞΟV}[]
Bdn = jdqmcf.SymChkbrdPropagator{T_expnΞΟK, T_expnΞΟV}[]
elseif checkerboard && !symmetric
## Propagator defined as B[Ο,l] = exp{-ΞΟβ
V[Ο,l]}β
exp{-ΞΟβ
K},
## where the dense matrix exp{-ΞΟβ
K} is approximated by the sparse checkerboard matrix.
Bup = jdqmcf.AbstractChkbrdPropagator{T_expnΞΟK, T_expnΞΟV}[]
Bdn = jdqmcf.AbstractChkbrdPropagator{T_expnΞΟK, T_expnΞΟV}[]
elseif !checkerboard && symmetric
## Propagator defined as B[Ο,l] = exp{-ΞΟβ
K/2}β
exp{-ΞΟβ
V[Ο,l]}β
exp{-ΞΟβ
K/2},
## where the dense matrix exp{-ΞΟβ
K/2} is exactly calculated.
Bup = jdqmcf.SymExactPropagator{T_expnΞΟK, T_expnΞΟV}[]
Bdn = jdqmcf.SymExactPropagator{T_expnΞΟK, T_expnΞΟV}[]
elseif !checkerboard && !symmetric
## Propagator defined as B[Ο,l] = exp{-ΞΟβ
V[Ο,l]}β
exp{-ΞΟβ
K},
## where the dense matrix exp{-ΞΟβ
K} is exactly calculated.
Bup = jdqmcf.AsymExactPropagator{T_expnΞΟK, T_expnΞΟV}[]
Bdn = jdqmcf.AsymExactPropagator{T_expnΞΟK, T_expnΞΟV}[]
#md end;
#nb end;
#jl end
# Having an initialized the vector `Bup` and `Bdn` that will contain the propagator matrices, we now construct the
# propagator matrices for each time-slice based on the initial HS field configuration `s`.
## Iterate over time-slices.
for l in 1:LΟ
## Get the HS fields associated with the current time-slice l.
s_l = @view s[:,l]
## Calculate the spin-up diagonal exponentiated potential energy
## matrix exp{-ΞΟβ
V[β,l]} = exp{-ΞΟβ
(-Ξ±/ΞΟβ
s[i,l]-ΞΌ)} = exp{+Ξ±β
s[i,l] + ΞΟβ
ΞΌ}.
expnΞΟVup = zeros(T_expnΞΟV, N)
@. expnΞΟVup = exp(+Ξ± * s_l + ΞΟ*ΞΌ)
## Calculate the spin-down diagonal exponentiated potential energy
## matrix exp{-ΞΟβ
V[β,l]} = exp{-ΞΟβ
(+Ξ±/ΞΟβ
s[i,l]-ΞΌ)} = exp{-Ξ±β
s[i,l] + ΞΟβ
ΞΌ}.
expnΞΟVdn = zeros(T_expnΞΟV, N)
@. expnΞΟVdn = exp(-Ξ± * s_l + ΞΟ*ΞΌ)
## Initialize spin-up and spin-down propagator matrix for the current time-slice l.
if checkerboard && symmetric
push!(Bup, jdqmcf.SymChkbrdPropagator(expnΞΟVup, expnΞΟβ²K))
push!(Bdn, jdqmcf.SymChkbrdPropagator(expnΞΟVdn, expnΞΟβ²K))
elseif checkerboard && !symmetric
push!(Bup, jdqmcf.AsymChkbrdPropagator(expnΞΟVup, expnΞΟβ²K))
push!(Bdn, jdqmcf.AsymChkbrdPropagator(expnΞΟVdn, expnΞΟβ²K))
elseif !checkerboard && symmetric
push!(Bup, jdqmcf.SymExactPropagator(expnΞΟVup, expnΞΟβ²K, exppΞΟβ²K))
push!(Bdn, jdqmcf.SymExactPropagator(expnΞΟVdn, expnΞΟβ²K, exppΞΟβ²K))
elseif !checkerboard && !symmetric
push!(Bup, jdqmcf.AsymExactPropagator(expnΞΟVup, expnΞΟβ²K, exppΞΟβ²K))
push!(Bdn, jdqmcf.AsymExactPropagator(expnΞΟVdn, expnΞΟβ²K, exppΞΟβ²K))
end
end
# Now we instantiate two instances for the [`FermionGreensCalculator`](@ref) type, one for each spin
# species, spin up and spin down. This object enables the efficient and numerically stable calculation
# of the Green's functions behind-the-scenes, so that we do not need to concern ourselves with
# implementing numerical stablization routines ourselves.
## Initialize a FermionGreensCalculator for both spin up and down electrons.
fermion_greens_calc_up = jdqmcf.FermionGreensCalculator(Bup, Ξ², ΞΟ, n_stab)
#md fermion_greens_calc_dn = jdqmcf.FermionGreensCalculator(Bdn, Ξ², ΞΟ, n_stab);
#nb fermion_greens_calc_dn = jdqmcf.FermionGreensCalculator(Bdn, Ξ², ΞΟ, n_stab);
#jl fermion_greens_calc_dn = jdqmcf.FermionGreensCalculator(Bdn, Ξ², ΞΟ, n_stab)
# Next we calculate the equal-time Green's function matrices
# ```math
# G_\sigma(0,0) = [1 + B_\sigma(\beta,0)]^{-1} = [1 + B_{\sigma,L_\tau} \dots B_{\sigma,1}]^{-1}
# ```
# for both electron spin species, ``\sigma = (\uparrow, \downarrow).``
## Calculate spin-up equal-time Green's function matrix.
Gup = zeros(typeof(t), N, N)
logdetGup, sgndetGup = jdqmcf.calculate_equaltime_greens!(Gup, fermion_greens_calc_up)
## Calculate spin-down equal-time Green's function matrix.
Gdn = zeros(typeof(t), N, N)
#md logdetGdn, sgndetGdn = jdqmcf.calculate_equaltime_greens!(Gdn, fermion_greens_calc_dn);
#nb logdetGdn, sgndetGdn = jdqmcf.calculate_equaltime_greens!(Gdn, fermion_greens_calc_dn);
#jl logdetGdn, sgndetGdn = jdqmcf.calculate_equaltime_greens!(Gdn, fermion_greens_calc_dn)
# In order to perform the DQMC simulation all we need are the equal-time Green's function matrices
# ``G_\sigma(0,0)`` calculated above. However, in order to make time-displaced correlation function
# measurements we also need to initialize six more matrices, which correspond to ``G_\sigma(\tau,\tau),``
# ``G_\sigma(\tau,0)`` and ``G_\sigma(0,\tau).``
## Allcoate time-displaced Green's functions.
Gup_Ο0 = zero(Gup) # Gup(Ο,0)
Gup_0Ο = zero(Gup) # Gup(0,Ο)
Gup_ΟΟ = zero(Gup) # Gup(Ο,Ο)
Gdn_Ο0 = zero(Gdn) # Gdn(Ο,0)
Gdn_0Ο = zero(Gdn) # Gdn(0,Ο)
#md Gdn_ΟΟ = zero(Gdn); # Gdn(Ο,Ο)
#nb Gdn_ΟΟ = zero(Gdn); # Gdn(Ο,Ο)
#jl Gdn_ΟΟ = zero(Gdn) # Gdn(Ο,Ο)
# Now we will allocate arrays to contain the various measurements we will make during the simulation,
# including various correlation functions. Note that the definition for each measurement will be
# supplied later in the tutorial when we begin processing the data to calculate the final statistics
# for each measured observable.
## Vector to contain binned average sign measurement.
avg_sign = zeros(eltype(Gup), N_bins)
## Vector to contain binned density measurement.
density = zeros(eltype(Gup), N_bins)
## Vector to contain binned double occupancy measurement.
double_occ = zeros(eltype(Gup), N_bins)
## Array to contain binned position-space time-displaced Green's function measurements.
C_greens = zeros(Complex{Float64}, N_bins, L, L, LΟ+1)
## Array to contain binned position-space time-displaced Spin-Z correlation function measurements.
C_spinz = zeros(Complex{Float64}, N_bins, L, L, LΟ+1)
## Array to contain binned position-space time-displaced density correlation function measurements.
C_density = zeros(Complex{Float64}, N_bins, L, L, LΟ+1)
## Array to contain binned position-space local s-wave pair correlation function.
C_loc_swave = zeros(Complex{Float64}, N_bins, L, L, LΟ+1)
## Array to contain binned position-space extended s-wave pair correlation function.
C_ext_swave = zeros(Complex{Float64}, N_bins, L, L, LΟ+1)
## Array to contain binned position-space d-wave pair correlation function.
C_dwave = zeros(Complex{Float64}, N_bins, L, L, LΟ+1)
## Array to contain binned momentum-space d-wave pair susceptibility.
#md P_d_q = zeros(Complex{Float64}, N_bins, L, L);
#nb P_d_q = zeros(Complex{Float64}, N_bins, L, L);
#jl P_d_q = zeros(Complex{Float64}, N_bins, L, L)
# Below we implement a function that sweeps through all time-slices and sites in the lattice,
# attempting an update to each Ising HS field ``s_{i,l}``.
## Function to perform local updates to all Ising HS fields.
function local_update!(
Gup::Matrix{T}, logdetGup, sgndetGup, Bup, fermion_greens_calc_up,
Gdn::Matrix{T}, logdetGdn, sgndetGdn, Bdn, fermion_greens_calc_dn,
s, ΞΌ, Ξ±, ΞΟ, Ξ΄G, rng
) where {T<:Number}
## Length of imaginary time axis.
LΟ = length(Bup)
## Number of sites in lattice.
N = size(Gup,1)
## Allocate temporary arrays that will be used to avoid dynamic memory allocation.
A = zeros(T, N, N)
u = zeros(T, N)
v = zeros(T, N)
## Allocate vector of integers to contain random permutation specifying the order in which
## sites are iterated over at each imaginary time slice when performing local updates.
perm = collect(1:size(Gup,1))
## Variable to keep track of the acceptance rate.
acceptance_rate = 0.0
## Iterate over imaginary time slices.
for l in fermion_greens_calc_up
## Propagate equal-time Green's function matrix to current imaginary time
## G(ΟΒ±ΞΟ,ΟΒ±ΞΟ) ==> G(Ο,Ο) depending on whether iterating over imaginary
## time in the forward or reverse direction
jdqmcf.propagate_equaltime_greens!(Gup, fermion_greens_calc_up, Bup)
jdqmcf.propagate_equaltime_greens!(Gdn, fermion_greens_calc_dn, Bdn)
## If using symmetric propagator definition (symmetric = true), then apply
## the transformation G ==> GΜ = exp{+ΞΟβ
K/2}β
Gβ
exp{-ΞΟβ
K/2}.
## If asymmetric propagator definition is used (symmetric = false),
## then this does nothing.
jdqmcf.partially_wrap_greens_forward!(Gup, Bup[l], A)
jdqmcf.partially_wrap_greens_forward!(Gdn, Bdn[l], A)
## Get the HS fields associated with the current imaginary time-slice.
s_l = @view s[:,l]
## Perform local updates HS fields associated with the current imaginary time slice.
(logdetGup, sgndetGup, logdetGdn, sgndetGdn, acceptance_rate_l) = _local_update!(
Gup, logdetGup, sgndetGup, Bup[l], Gdn, logdetGdn, sgndetGdn, Bdn[l],
s_l, ΞΌ, Ξ±, ΞΟ, rng, perm, u, v
)
## Record the acceptance rate
acceptance_rate += acceptance_rate_l / LΟ
## If using symmetric propagator definition (symmetric = true), then apply
## the transformation GΜ ==> G = exp{-ΞΟβ
K/2}β
GΜβ
exp{+ΞΟβ
K/2}.
## If asymmetric propagator definition is used (symmetric = false),
## then this does nothing.
jdqmcf.partially_wrap_greens_reverse!(Gup, Bup[l], A)
jdqmcf.partially_wrap_greens_reverse!(Gdn, Bdn[l], A)
## Periodically re-calculate the Green's function matrix for numerical stability.
logdetGup, sgndetGup, δGup, δθup = jdqmcf.stabilize_equaltime_greens!(
Gup, logdetGup, sgndetGup, fermion_greens_calc_up, Bup, update_BΜ = true
)
logdetGdn, sgndetGdn, δGdn, δθdn = jdqmcf.stabilize_equaltime_greens!(
Gdn, logdetGdn, sgndetGdn, fermion_greens_calc_dn, Bdn, update_BΜ = true
)
## Record largest numerical error corrected by numerical stabilization.
Ξ΄G = max(Ξ΄G, Ξ΄Gup, Ξ΄Gdn)
## Keep up and down spin Green's functions synchronized as iterating over imaginary time.
iterate(fermion_greens_calc_dn, fermion_greens_calc_up.forward)
end
return logdetGup, sgndetGup, logdetGdn, sgndetGdn, Ξ΄G, acceptance_rate
end
## Iterate over all sites for single imaginary time-slice, attempting a local
## update to each corresponding Ising HS field.
function _local_update!(
Gup, logdetGup, sgndetGup, Bup, Gdn, logdetGdn, sgndetGdn, Bdn,
s, ΞΌ, Ξ±, ΞΟ, rng, perm, u, v
)
## Randomize the order in which the sites are iterated over.
shuffle!(rng, perm)
## Counter for number of accepted updates.
accepted = 0
## Iterate over sites in lattice.
for i in perm
## Calculate the new value of the diagonal potential energy matrix element
## assuming the sign of the Ising HS field is changed.
Vupβ² = -Ξ±/ΞΟ * (-s[i]) - ΞΌ
Vdnβ² = +Ξ±/ΞΟ * (-s[i]) - ΞΌ
## Calculate the determinant ratio associated with the proposed update.
Rup, Ξup = jdqmcf.local_update_det_ratio(Gup, Bup, Vupβ², i, ΞΟ)
Rdn, Ξdn = jdqmcf.local_update_det_ratio(Gdn, Bdn, Vdnβ², i, ΞΟ)
## Calculate the acceptance probability based on the Metropolis accept/reject criteria.
P = min(1.0, abs(Rup * Rdn))
## Randomly Accept or reject the proposed update with the specified probability.
if rand(rng) < P
## Increment the accepted update counter.
accepted += 1
## Flip the appropriate Ising HS field.
s[i] = -s[i]
## Update the Green's function matrices.
logdetGup, sgndetGup = jdqmcf.local_update_greens!(
Gup, logdetGup, sgndetGup, Bup, Rup, Ξup, i, u, v
)
logdetGdn, sgndetGdn = jdqmcf.local_update_greens!(
Gdn, logdetGdn, sgndetGdn, Bdn, Rdn, Ξdn, i, u, v
)
end
end
## Calculate the acceptance rate.
acceptance_rate = accepted / N
return logdetGup, sgndetGup, logdetGdn, sgndetGdn, acceptance_rate
#md end;
#nb end;
#jl end
# Next we implement a function to make measurements during the simulation, including time-displaced measurements.
# Note that if we want to calculate the expectation value for some observable ``\langle \mathcal{O} \rangle``,
# then during the simulation we actually measure ``\langle \mathcal{S O} \rangle_{\mathcal{W}}``, where
# ``\langle \bullet \rangle_{\mathcal{W}}`` denotes an average with respect to states sampled according
# to the DQMC weights
# ```math
# \mathcal{W} = | \det G_\uparrow^{-1} \det G_\downarrow^{-1} |,
# ```
# such that
# ```math
# \mathcal{S} = \text{sign}(\det G_\uparrow^{-1} \det G_\downarrow^{-1})
# ```
# is the sign associated with each state. The reweighting method is then used at the end of a simulation
# to recover the correct expectation value according to
# ```math
# \langle \mathcal{O} \rangle = \frac{ \langle \mathcal{SO} \rangle_{\mathcal{W}} }{ \langle \mathcal{S} \rangle_{\mathcal{W}} },
# ```
# where ``\langle \mathcal{S} \rangle_{\mathcal{W}}`` is the average sign measured over the course of the simulation.
## Make measurements.
function make_measurements!(
Gup, logdetGup, sgndetGup, Gup_ΟΟ, Gup_Ο0, Gup_0Ο, Bup, fermion_greens_calc_up,
Gdn, logdetGdn, sgndetGdn, Gdn_ΟΟ, Gdn_Ο0, Gdn_0Ο, Bdn, fermion_greens_calc_dn,
unit_cell, lattice, bond_trivial, bond_px, bond_nx, bond_py, bond_ny,
bin, avg_sign, density, double_occ, C_greens, C_spinz, C_density,
C_loc_swave, C_ext_swave, C_dwave
)
## Initialize time-displaced Green's function matrices for both spin species:
## G(Ο=0,Ο=0) = G(0,0)
## G(Ο=0,0) = G(0,0)
## G(0,Ο=0) = -(I-G(0,0))
jdqmcf.initialize_unequaltime_greens!(Gup_Ο0, Gup_0Ο, Gup_ΟΟ, Gup)
jdqmcf.initialize_unequaltime_greens!(Gdn_Ο0, Gdn_0Ο, Gdn_ΟΟ, Gdn)
## Calculate the current sign.
sgn = sign(sgndetGup * sgndetGdn)
## Measure the average sign.
avg_sign[bin] += sgn
## Measure the density.
nup = jdqmcm.measure_n(Gup)
ndn = jdqmcm.measure_n(Gdn)
density[bin] += sgn * (nup + ndn)
## Measure the double occupancy.
double_occ[bin] += sgn * jdqmcm.measure_double_occ(Gup, Gdn)
## Measure equal-time correlation functions.
make_correlation_measurements!(
Gup, Gup_ΟΟ, Gup_Ο0, Gup_0Ο, Gdn, Gdn_ΟΟ, Gdn_Ο0, Gdn_0Ο,
unit_cell, lattice, bond_trivial, bond_px, bond_nx, bond_py, bond_ny,
bin, 0, sgn, C_greens, C_spinz, C_density, C_loc_swave, C_ext_swave, C_dwave
)
## Iterate over imaginary time slices.
for l in fermion_greens_calc_up
## Propagate equal-time Green's function matrix to current imaginary time
## G(ΟΒ±ΞΟ,ΟΒ±ΞΟ) ==> G(Ο,Ο) depending on whether iterating over imaginary
## time in the forward or reverse direction
jdqmcf.propagate_unequaltime_greens!(Gup_Ο0, Gup_0Ο, Gup_ΟΟ, fermion_greens_calc_up, Bup)
jdqmcf.propagate_unequaltime_greens!(Gdn_Ο0, Gdn_0Ο, Gdn_ΟΟ, fermion_greens_calc_dn, Bdn)
## Measure time-displaced correlation function measurements for Ο = lβ
ΞΟ.
make_correlation_measurements!(
Gup, Gup_ΟΟ, Gup_Ο0, Gup_0Ο, Gdn, Gdn_ΟΟ, Gdn_Ο0, Gdn_0Ο,
unit_cell, lattice, bond_trivial, bond_px, bond_nx, bond_py, bond_ny,
bin, l, sgn, C_greens, C_spinz, C_density, C_loc_swave, C_ext_swave, C_dwave,
)
## Periodically re-calculate the Green's function matrix for numerical stability.
logdetGup, sgndetGup, δGup, δθup = jdqmcf.stabilize_unequaltime_greens!(
Gup_Ο0, Gup_0Ο, Gup_ΟΟ, logdetGup, sgndetGup, fermion_greens_calc_up, Bup, update_BΜ=false
)
logdetGdn, sgndetGdn, δGdn, δθdn = jdqmcf.stabilize_unequaltime_greens!(
Gdn_Ο0, Gdn_0Ο, Gdn_ΟΟ, logdetGdn, sgndetGdn, fermion_greens_calc_dn, Bdn, update_BΜ=false
)
## Keep up and down spin Green's functions synchronized as iterating over imaginary time.
iterate(fermion_greens_calc_dn, fermion_greens_calc_up.forward)
end
return nothing
end
## Make time-displaced measurements.
function make_correlation_measurements!(
Gup, Gup_ΟΟ, Gup_Ο0, Gup_0Ο, Gdn, Gdn_ΟΟ, Gdn_Ο0, Gdn_0Ο,
unit_cell, lattice, bond_trivial, bond_px, bond_nx, bond_py, bond_ny,
bin, l, sgn, C_greens, C_spinz, C_density, C_loc_swave, C_ext_swave, C_dwave,
tmp = zeros(eltype(C_greens), lattice.L...)
)
## Get a view into the arrays accumulating the correlation measurements
## for the current imaginary time-slice and bin.
C_greens_bin_l = @view C_greens[bin,:,:,l+1]
C_spinz_bin_l = @view C_spinz[bin,:,:,l+1]
C_density_bin_l = @view C_density[bin,:,:,l+1]
C_loc_swave_bin_l = @view C_loc_swave[bin,:,:,l+1]
C_ext_swave_bin_l = @view C_ext_swave[bin,:,:,l+1]
C_dwave_bin_l = @view C_dwave[bin,:,:,l+1]
## Measure Green's function for both spin-up and spin-down.
jdqmcm.greens!(C_greens_bin_l, 1, 1, unit_cell, lattice, Gup_Ο0, sgn)
jdqmcm.greens!(C_greens_bin_l, 1, 1, unit_cell, lattice, Gdn_Ο0, sgn)
## Measure spin-z spin-spin correlation.
jdqmcm.spin_z_correlation!(
C_spinz_bin_l, 1, 1, unit_cell, lattice,
Gup_Ο0, Gup_0Ο, Gup_ΟΟ, Gup, Gdn_Ο0, Gdn_0Ο, Gdn_ΟΟ, Gdn, sgn
)
## Measure density-density correlation.
jdqmcm.density_correlation!(
C_density_bin_l, 1, 1, unit_cell, lattice,
Gup_Ο0, Gup_0Ο, Gup_ΟΟ, Gup, Gdn_Ο0, Gdn_0Ο, Gdn_ΟΟ, Gdn, sgn
)
## Measure local s-wave correlation measurement.
jdqmcm.pair_correlation!(
C_loc_swave_bin_l, bond_trivial, bond_trivial, unit_cell, lattice, Gup_Ο0, Gdn_Ο0, sgn
)
## Group the nearest-neighbor bonds together.
bonds = (bond_px, bond_nx, bond_py, bond_ny)
## d-wave correlation phases.
dwave_phases = (+1, +1, -1, -1)
## Iterate over all pairs of nearest-neigbbor bonds.
for i in eachindex(bonds)
for j in eachindex(bonds)
## Measure pair correlation associated with bond pair.
fill!(tmp, 0)
jdqmcm.pair_correlation!(
tmp, bonds[i], bonds[j], unit_cell, lattice, Gup_Ο0, Gdn_Ο0, sgn
)
## Add contribution to extended s-wave and d-wave pair correlation.
@. C_ext_swave_bin_l += tmp / 4
@. C_dwave_bin_l += dwave_phases[i] * dwave_phases[j] * tmp / 4
end
end
return nothing
#md end;
#nb end;
#jl end
# Now we will write a top-level function to run the simulation, including both the thermalization
# and measurement portions of the simulation.
## High-level function to run the DQMC simulation.
function run_simulation!(
s, ΞΌ, Ξ±, ΞΟ, rng, N_burnin, N_bins, N_binsize, N_sweeps,
Gup, logdetGup, sgndetGup, Gup_ΟΟ, Gup_Ο0, Gup_0Ο, Bup, fermion_greens_calc_up,
Gdn, logdetGdn, sgndetGdn, Gdn_ΟΟ, Gdn_Ο0, Gdn_0Ο, Bdn, fermion_greens_calc_dn,
unit_cell, lattice, bond_trivial, bond_px, bond_nx, bond_py, bond_ny,
avg_sign, density, double_occ, C_greens, C_spinz, C_density,
C_loc_swave, C_ext_swave, C_dwave
)
## Initialize variable to keep track of largest corrected numerical error.
Ξ΄G = 0.0
## The acceptance rate on local updates.
acceptance_rate = 0.0
#jl println("Beginning Thermalization Updates")
## Perform burnin updates to thermalize system.
for n in 1:N_burnin
## Attempt local update to every Ising HS field.
(logdetGup, sgndetGup, logdetGdn, sgndetGdn, Ξ΄Gβ², ac) = local_update!(
Gup, logdetGup, sgndetGup, Bup, fermion_greens_calc_up,
Gdn, logdetGdn, sgndetGdn, Bdn, fermion_greens_calc_dn,
s, ΞΌ, Ξ±, ΞΟ, Ξ΄G, rng
)
## Record max numerical error.
Ξ΄G = max(Ξ΄G, Ξ΄Gβ²)
## Update acceptance rate.
acceptance_rate += ac
end
#jl println()
#jl println("Beginning Measurements.")
## Iterate over measurement bins.
for bin in 1:N_bins
## Iterate over updates and measurements in bin.
for n in 1:N_binsize
## Iterate over number of local update sweeps per measurement.
for sweep in 1:N_sweeps
## Attempt local update to every Ising HS field.
(logdetGup, sgndetGup, logdetGdn, sgndetGdn, Ξ΄Gβ², ac) = local_update!(
Gup, logdetGup, sgndetGup, Bup, fermion_greens_calc_up,
Gdn, logdetGdn, sgndetGdn, Bdn, fermion_greens_calc_dn,
s, ΞΌ, Ξ±, ΞΟ, Ξ΄G, rng
)
## Record max numerical error.
Ξ΄G = max(Ξ΄G, Ξ΄Gβ²)
## Update acceptance rate.
acceptance_rate += ac
end
## Make measurements.
make_measurements!(
Gup, logdetGup, sgndetGup, Gup_ΟΟ, Gup_Ο0, Gup_0Ο, Bup, fermion_greens_calc_up,
Gdn, logdetGdn, sgndetGdn, Gdn_ΟΟ, Gdn_Ο0, Gdn_0Ο, Bdn, fermion_greens_calc_dn,
unit_cell, lattice, bond_trivial, bond_px, bond_nx, bond_py, bond_ny,
bin, avg_sign, density, double_occ, C_greens, C_spinz, C_density,
C_loc_swave, C_ext_swave, C_dwave
)
end
## Normalize accumulated measurements by the bin size.
avg_sign[bin] /= N_binsize
density[bin] /= N_binsize
double_occ[bin] /= N_binsize
C_greens[bin,:,:,:] /= (2 * N_binsize)
C_spinz[bin,:,:,:] /= N_binsize
C_density[bin,:,:,:] /= N_binsize
C_loc_swave[bin,:,:,:] /= N_binsize
C_ext_swave[bin,:,:,:] /= N_binsize
C_dwave[bin,:,:,:] /= N_binsize
end
## Calculate the final acceptance rate for local updates.
acceptance_rate /= (N_burnin + N_bins * N_binsize * N_sweeps)
#jl println()
#jl println("Simuilation Complete.")
#jl println()
return acceptance_rate, Ξ΄G
#md end;
#nb end;
#jl end
# Now let us run our DQMC simulation.
## Run the DQMC simulation.
acceptance_rate, Ξ΄G = run_simulation!(
s, ΞΌ, Ξ±, ΞΟ, rng, N_burnin, N_bins, N_binsize, N_sweeps,
Gup, logdetGup, sgndetGup, Gup_ΟΟ, Gup_Ο0, Gup_0Ο, Bup, fermion_greens_calc_up,
Gdn, logdetGdn, sgndetGdn, Gdn_ΟΟ, Gdn_Ο0, Gdn_0Ο, Bdn, fermion_greens_calc_dn,
unit_cell, lattice, bond_trivial, bond_px, bond_nx, bond_py, bond_ny,
avg_sign, density, double_occ, C_greens, C_spinz, C_density,
C_loc_swave, C_ext_swave, C_dwave
)
println("Acceptance Rate = ", acceptance_rate)
println("Largest Numerical Error = ", Ξ΄G)
# Having completed the DQMC simulation, the next step is the analyze the results,
# calculating the mean and error for various measuremed observables.
# We will first calculate the relevant global measurements, including the
# average density ``\langle n \rangle = \langle n_\uparrow + n_\downarrow \rangle``
# and double occupancy ``\langle n_\uparrow n_\downarrow \rangle.``
# Note that the binning method is used to calculate the error bar for the correlated data.
# The Jackknife algorithm is also used to propagate error and correct for bias when evaluating
# ```math
# \langle \mathcal{O} \rangle = \frac{ \langle \mathcal{S O} \rangle_\mathcal{W} }{ \langle \mathcal{S} \rangle_\mathcal{W} }
# ```
# to account for the sign problem.
## Calculate the average sign for the simulation.
sign_avg, sign_std = jdqmcm.jackknife(identity, avg_sign)
println("Avg Sign, S = ", sign_avg, " +/- ", sign_std)
## Calculate the average density.
density_avg, density_std = jdqmcm.jackknife(/, density, avg_sign)
println("Density, n = ", density_avg, " +/- ", density_std)
## Calculate the average double occupancy.
double_occ_avg, double_occ_std = jdqmcm.jackknife(/, double_occ, avg_sign)
println("Double occupancy, nup_ndn = ", double_occ_avg, " +/- ", double_occ_std)
# Now we move onto processing the measured correlation function data.
# We define two functions to assist with this process.
# The first function integrates the binned time-displaced correlation function data
# over the imaginary time axis in order to generate binned susceptibility data.
# Note that the integration over the imaginary time axis is performed using Simpson's
# rule, which is accurate to order ``\mathcal{O}(\Delta\tau^4)``.
## Given the binned time-displaced correlation function/structure factor data,
## calculate and return the corresponding binned susceptibility data.
function susceptibility(S::AbstractArray{T}, ΞΟ) where {T<:Number}
## Allocate array to contain susceptibility.
Ο = zeros(T, size(S)[1:3])
## Iterate over bins.
for bin in axes(S,1)
## Calculate the susceptibility for the current bin by integrating the correlation
## data over the imaginary time axis using Simpson's rule.
S_bin = @view S[bin,:,:,:]
Ο_bin = @view Ο[bin,:,:]
jdqmcm.susceptibility!(Ο_bin, S_bin, ΞΟ, 3)
end
return Ο
end
# We also define a function to calculate the average and error of a correlation function
# measurement based on the input binned correlation function data.
## Calculate average correlation function values based on binned data.
function correlation_stats(
S::AbstractArray{Complex{T}},
avg_sign::Vector{T}
) where {T<:AbstractFloat}
## Allocate arrays to contain the mean and standard deviation of
## measured correlation function.
S_avg = zeros(Complex{T}, size(S)[2:end])
S_std = zeros(T, size(S)[2:end])
## Number of bins.
N_bins = length(avg_sign)
## Preallocate arrays to make the jackknife error analysis faster.
jackknife_samples = (zeros(Complex{T}, N_bins), zeros(T, N_bins))
jackknife_g = zeros(Complex{T}, N_bins)
## Iterate over correlation functions.
for n in CartesianIndices(S_avg)
## Use the jackknife method to calculage average and error.
vals = @view S[:,n]
S_avg[n], S_std[n] = jdqmcm.jackknife(
/, vals, avg_sign,
jackknife_samples = jackknife_samples,
jackknife_g = jackknife_g
)
end
return S_avg, S_std
end
# First, let us compute the average and error for the time-displaced electron
# Green's function
# ```math
# G_\sigma(\mathbf{r},\tau) = \langle \hat{c}^{\phantom \dagger}_{\sigma,\mathbf{i}+\mathbf{r}}(\tau) \hat{c}^\dagger_{\sigma,\mathbf{i}}(0) \rangle
# ```
# in position space, and
# ```math
# G_\sigma(\mathbf{k},\tau) = \langle \hat{c}^{\phantom \dagger}_{\sigma,\mathbf{k}}(\tau) \hat{c}^\dagger_{\sigma,\mathbf{k}}(0) \rangle
# ```
# in momentum space, where ``\tau \in [0, \Delta\tau, \dots, \beta-\Delta\tau, \beta].``
## Fourier transform Green's function from position to momentum space.
S_greens = copy(C_greens)
jdqmcm.fourier_transform!(S_greens, 1, 1, (1,4), unit_cell, lattice)
## Calculate average Green's function in position space.
C_greens_avg, C_greens_std = correlation_stats(C_greens, avg_sign)
## Calculate average Green's function in momentum space.
S_greens_avg, S_greens_std = correlation_stats(S_greens, avg_sign)
## Verify that the position space G(r=0,Ο=0) measurement agrees with the
## average density measurement.
agreement = (2*(1-C_greens_avg[1,1,1]) β density_avg)
#md println("(2*[1-G(r=0,tau=0)] == <n>) = ", agreement)
#nb println("(2*[1-G(r=0,tau=0)] == <n>) = ", agreement)
# Now we will calculate the spin susceptibility
# ```math
# \chi_z(\mathbf{q}) = \int_0^\beta S_z(\mathbf{q},\tau) \ d\tau
# ```
# where the time-displaced spin structure
# ```math
# S_z(\mathbf{q},\tau) = \sum_\mathbf{r} e^{-{\rm i} \mathbf{q}\cdot\mathbf{r}} \ C_z(\mathbf{r},\tau)
# ```
# is given by the fourier transform of the spin-``z`` correlation function
# ```math
# C_z(\mathbf{r},\tau) = \frac{1}{N} \sum_\mathbf{i} \langle \hat{S}_{z,\mathbf{i}+\mathbf{r}}(\tau) \hat{S}_{z,\mathbf{i}}(0) \rangle
# ```
# in position space. Then we report the spin-suscpetibility ``\chi_{\rm afm} = \chi_z(\pi,\pi)`` corresponding to
# antiferromagnetism.
## Fourier transform the binned Cz(r,Ο) position space spin-z correlation function
## data to get the binned Sz(q,Ο) spin-z structure factor data.
S_spinz = copy(C_spinz)
jdqmcm.fourier_transform!(S_spinz, 1, 1, (1,4), unit_cell, lattice)
## Integrate the binned Sz(q,Ο) spin-z structure factor data over the imaginary
## time axis to get the binned Οz(q) spin susceptibility.
Ο_spinz = susceptibility(S_spinz, ΞΟ)
## Calculate the average spin correlation functions in position space.
C_spinz_avg, C_spinz_std = correlation_stats(C_spinz, avg_sign)
## Calculate the average spin structure factor in momentum space.
S_spinz_avg, S_spinz_std = correlation_stats(S_spinz, avg_sign)
## Calculate the average spin susceptibility for all scattering momentum q.
Ο_spinz_avg, Ο_spinz_std = correlation_stats(Ο_spinz, avg_sign)
## Report the spin susceptibility Οafm = Οz(Ο,Ο) corresponding to antiferromagnetism.
Οafm_avg = real(Ο_spinz_avg[LΓ·2+1, LΓ·2+1])
Οafm_std = Ο_spinz_std[LΓ·2+1, LΓ·2+1]
println("Antiferromagentic Spin Susceptibility, chi_afm = ", Οafm_avg, " +/- ", Οafm_std)
# Given the measured time-displaced density correlation function
# ```math
# C_{\rho}(\mathbf{r},\tau) = \sum_{\mathbf{i}}
# \langle \hat{n}_{\mathbf{i}+\mathbf{r}}(\tau) \hat{n}_{\mathbf{i}}(0) \rangle,
# ```
# where ``\hat{n}_{\mathbf{i}} = (\hat{n}_{\mathbf{i}, \uparrow} + \hat{n}_{\mathbf{i}, \downarrow}),``
# we can compute the time-displaced charge structure factor
# ```math
# S_{\rho}(\mathbf{q},\tau) = \sum_\mathbf{r} e^{-{\rm i}\mathbf{q}\cdot\mathbf{r}} \ C_{\rho}(\mathbf{r},\tau)
# ```
# and corresponding charge susceptibility
# ```math
# \chi_{\rho}(\mathbf{q}) \int_0^\beta S_{\rho}(\mathbf{q},\tau) \ d\tau.
# ```
## Fourier transform the binned CΟ(r,Ο) position space density correlation
## data to get the time-dispaced charge structure factor SΟ(q,Ο) in
## momentum space.
S_density = copy(C_density)
jdqmcm.fourier_transform!(S_density, 1, 1, (1,4), unit_cell, lattice)
## Integrate the binned SΟ(q,Ο) density structure factor data over the imaginary
## time axis to get the binned ΟΟ(q) density susceptibility.
Ο_density = susceptibility(S_density, ΞΟ)
## Calculate the average charge correlation functions in position space.
C_density_avg, C_density_std = correlation_stats(C_density, avg_sign)
## Calculate the average charge structure factor in momentum space.
S_density_avg, S_density_std = correlation_stats(S_density, avg_sign)
## Calculate the average charge susceptibility for all scattering momentum q.
#md Ο_density_avg, Ο_density_std = correlation_stats(Ο_spinz, avg_sign);
#nb Ο_density_avg, Ο_density_std = correlation_stats(Ο_spinz, avg_sign);
#jl Ο_density_avg, Ο_density_std = correlation_stats(Ο_spinz, avg_sign)
# Now we calculate the local s-wave pair susceptibility
# ```math
# P_{s} = \frac{1}{N} \int_0^\beta \langle \hat{\Delta}_{s}(\tau) \hat{\Delta}_{s}(0) \rangle \ d\tau,
# ```
# where ``\hat{\Delta}_{s} = \sum_\mathbf{i} \hat{c}_{\downarrow,\mathbf{i}} \hat{c}_{\uparrow,\mathbf{i}}.``
## Fourier transform binned position space local s-wave correlation function data to get
## the binned momentum space local s-wave structure factor data.
S_loc_swave = copy(C_loc_swave)
jdqmcm.fourier_transform!(S_loc_swave, 1, 1, (1,4), unit_cell, lattice)
## Integrate the binned local s-wave structure factor data to get the
## binned local s-wave pair susceptibility data.
P_loc_swave = susceptibility(S_loc_swave, ΞΟ)
## Calculate the average local s-wave pair susceptibility for all scattering momentum q.
P_loc_swave_avg, P_loc_swave_std = correlation_stats(P_loc_swave, avg_sign)
## Report the local s-wave pair suspcetibility.
Ps_avg = real(P_loc_swave_avg[1,1])
Ps_std = P_loc_swave_std[1,1]
println("Local s-wave pair susceptibility, P_s = ", Ps_avg, " +/- ", Ps_std)
# Next, we calculate the local s-wave pair susceptibility
# ```math
# P_{\textrm{ext-}s} = \frac{1}{N} \int_0^\beta \langle \hat{\Delta}_{\textrm{ext-}s}(\tau) \hat{\Delta}_{\textrm{ext-}s}(0) \rangle \ d\tau,
# ```
# where
# ```math
# \hat{\Delta}_{\textrm{ext-}s} = \frac{1}{2} \sum_\mathbf{i}
# (\hat{c}_{\downarrow,\mathbf{i}+\mathbf{x}}
# +\hat{c}_{\downarrow,\mathbf{i}-\mathbf{x}}
# +\hat{c}_{\downarrow,\mathbf{i}+\mathbf{y}}
# +\hat{c}_{\downarrow,\mathbf{i}-\mathbf{y}})
# \hat{c}_{\uparrow,\mathbf{i}}.
# ```
## Fourier transform binned position space extended s-wave correlation function data to get
## the binned momentum space extended s-wave structure factor data.
S_ext_swave = copy(C_ext_swave)
jdqmcm.fourier_transform!(S_ext_swave, 1, 1, (1,4), unit_cell, lattice)
## Integrate the binned extended s-wave structure factor data to get the
## binned extended s-wave pair susceptibility data.
P_ext_swave = susceptibility(S_ext_swave, ΞΟ)
## Calculate the average extended s-wave pair susceptibility for all scattering momentum q.
P_ext_swave_avg, P_ext_swave_std = correlation_stats(P_ext_swave, avg_sign)
## Report the local s-wave pair suspcetibility.
Pexts_avg = real(P_ext_swave_avg[1,1])
Pexts_std = P_ext_swave_std[1,1]
println("Extended s-wave pair susceptibility, P_ext-s = ", Pexts_avg, " +/- ", Pexts_std)
# Lastly, we calculate the d-wave pair susceptibility
# ```math
# P_{d} = \frac{1}{N} \int_0^\beta \langle \hat{\Delta}_{d}(\tau) \hat{\Delta}_{d}(0) \rangle \ d\tau,
# ```
# where
# ```math
# \hat{\Delta}_{d} = \frac{1}{2} \sum_\mathbf{i}
# (\hat{c}_{\downarrow,\mathbf{i}+\mathbf{x}}
# +\hat{c}_{\downarrow,\mathbf{i}-\mathbf{x}}
# -\hat{c}_{\downarrow,\mathbf{i}+\mathbf{y}}
# -\hat{c}_{\downarrow,\mathbf{i}-\mathbf{y}})
# \hat{c}_{\uparrow,\mathbf{i}}.
# ```
## Fourier transform binned position space d-wave correlation function data to get
## the binned momentum space d-wave structure factor data.
S_dwave = copy(C_dwave)
jdqmcm.fourier_transform!(S_dwave, 1, 1, (1,4), unit_cell, lattice)
## Integrate the binned d-wave structure factor data to get the
## binned d-wave pair susceptibility data.
P_dwave = susceptibility(S_dwave, ΞΟ)
## Calculate the average d-wave pair susceptibility for all scattering momentum q.
P_dwave_avg, P_dwave_std = correlation_stats(P_dwave, avg_sign)
## Report the d-wave pair susceptibility.
Pd_avg = real(P_dwave_avg[1,1])
Pd_std = P_dwave_std[1,1]
println("Extended s-wave pair susceptibility, P_d = ", Pd_avg, " +/- ", Pd_std)
| JDQMCFramework | https://github.com/SmoQySuite/JDQMCFramework.jl.git |
|
[
"MIT"
] | 1.0.10 | d37e67cd855d38efbc41b807f45d758eaaa82923 | code | 15266 | @doc raw"""
FermionGreensCalculator{T<:Continuous, E<:AbstractFloat}
A type to facilitate calculating the single-particle fermion Green's function matrix.
# Fields
- `forward::Bool`: If `true` then iterate over imaginary time slices from ``l=1`` to ``l=L_\tau``, if `false` then iterate over imaginary time slices from ``l=L_\tau`` to ``l=1``.
- `l::Int`: The current imaginary time slice ``\tau = l \cdot \Delta\tau``.
- `n_stab::Int`: Frequency with which numerical stabilization is performed, i.e. every ``n_s`` imaginary time slices the equal-time Green's function is recomputed from scratch.
- `N_stab::Int`: Number of numerical stabilization intervals, ``N_s = \left\lceil L_\tau / n_s \right\rceil.``
- `N::Int`: Orbitals in system.
- `Ξ²::E`: The inverse temperature ``\beta=1/T,`` where ``T`` is temperature.
- `ΞΟ::E`: Discretization in imaginary time.
- `LΟ::Int`: Length of imaginary time axis, ``L_\tau = \beta / \Delta\tau.``
- `B_bar::Vector{Matrix{T}}`: A multidimensional array where the matrix `B_bar[:,:,n]` represents ``\bar{B}_n.``
- `F::Vector{LDR{T,E}}`: A vector of ``N_s`` LDR factorizations to represent the matrices ``B(0,\tau)`` and ``B(\tau,\beta)``.
- `Gβ²::Matrix{T}`: Matrix used for calculating the error corrected by numerical stabilization of the equal time Green's function.
- `ldr_ws::LDRWorkspace{T}`: Workspace for performing LDR factorization while avoiding dynamic memory allocations.
"""
mutable struct FermionGreensCalculator{T<:Continuous, E<:AbstractFloat}
forward::Bool
l::Int
n_stab::Int
N_stab::Int
const N::Int
const Ξ²::E
const ΞΟ::E
const LΟ::Int
const B_bar::Vector{Matrix{T}}
const F::Vector{LDR{T,E}}
const Gβ²::Matrix{T}
const ldr_ws::LDRWorkspace{T}
end
@doc raw"""
FermionGreensCalculator(
B::AbstractVector{P},
Ξ²::E, ΞΟ::E, n_stab::Int
) where {T<:Number, E<:AbstractFloat, P<:AbstractPropagator{T}}
Initialize and return [`FermionGreensCalculator`](@ref) struct based on the vector of propagators `B` passed to the function.
"""
function FermionGreensCalculator(
B::AbstractVector{P},
Ξ²::E, ΞΟ::E, n_stab::Int
) where {T<:Number, E<:AbstractFloat, P<:AbstractPropagator{T}}
# get length of imaginary time axis
LΟ = eval_length_imaginary_axis(Ξ², ΞΟ)
# get the number of orbitals
N = size(B[1],1)
# check that there is a propagator for each time slice
@assert length(B) == LΟ
# make sure that the discretization in imaginary time is valid
@assert (LΟ*ΞΟ) β Ξ²
# calculate the number of numerical stabalization intervals
N_stab = ceil(Int, LΟ/n_stab)
# allocate array to represent partical products of B matrices,
# setting each equal to the identity matrix
B_bar = Matrix{T}[]
for n in 1:N_stab
push!(B_bar, Matrix{T}(I, N, N))
end
# calculate scratch matrix
Gβ² = Matrix{T}(I, N, N)
# construct vector of LDR factorization to represent B(Ο,0) and B(Ξ²,Ο) matrices
ldr_ws = ldr_workspace(Gβ²)
F = ldrs(Gβ², N_stab)
# current imaginary time slice
l = LΟ
# whether to iterate over imaginary time Ο=ΞΟβ
l in forward (l=1 ==> l=LΟ) or reverse order (l=LΟ ==> l=1)
forward = false
# allocate FermionGreensCalculator struct
fgc = FermionGreensCalculator(forward, l, n_stab, N_stab, N, Ξ², ΞΟ, LΟ, B_bar, F, Gβ², ldr_ws)
# initialize FermionGreensCalculator struct
for l in fgc
update_factorizations!(fgc, B)
end
return fgc
end
@doc raw"""
FermionGreensCalculator(fgc::FermionGreensCalculator{T,E}) where {T,E}
Return a new [`FermionGreensCalculator`](@ref) that is a copy of `fgc`.
"""
function FermionGreensCalculator(fgc::FermionGreensCalculator{T,E}) where {T,E}
(; forward, l, N, Ξ², ΞΟ, LΟ, n_stab, N_stab, B_bar, F, Gβ², ldr_ws) = fgc
B_bar_new = [copy(B_bar[i]) for i in eachindex(B_bar)]
F_new = [ldr(F[i]) for i in eachindex(F)]
Gβ²_new = copy(Gβ²)
copyto!(Gβ²_new,I)
ldr_ws_new = ldr_workspace(Gβ²_new)
return FermionGreensCalculator(forward, l, n_stab, N_stab, N, Ξ², ΞΟ, LΟ, B_bar_new, F_new, Gβ²_new, ldr_ws_new)
end
########################
## OVERLOADED METHODS ##
########################
@doc raw"""
eltype(fgc::FermionGreensCalculator{T,E}) where {T,E}
Return matrix element type `T` associated with an instance of [`FermionGreensCalculator`](@ref).
"""
function eltype(fgc::FermionGreensCalculator{T,E}) where {T,E}
return T
end
@doc raw"""
resize!(
fgc::FermionGreensCalculator{T,E},
G::Matrix{T}, logdetG::E, sgndetG::T,
B::Vector{P}, n_stab::Int
) where {T<:Number, E<:AbstractFloat, P<:AbstractPropagator{T}}
resize!(
fgc::FermionGreensCalculator{T,E}, n_stab::Int
) where {T,E}
Update `fgc` to reflect a new stabilizaiton frequency `n_stab`.
If `G`, `logdetG`, `sgndetG` and `B` are also passed then the equal-time Green's function `G` is re-calculated
and the corresponding updated values for `(logdetG, sgndetG)` are returned.
"""
function resize!(
fgc::FermionGreensCalculator{T,E},
G::Matrix{T}, logdetG::E, sgndetG::T,
B::Vector{P}, n_stab::Int
) where {T<:Number, E<:AbstractFloat, P<:AbstractPropagator{T}}
# check if stablization frequency is being updated
if fgc.n_stab != n_stab
# resize fgc
resize!(fgc, n_stab)
# calculate the equal-time Green's function
logdetG, sgndetG = calculate_equaltime_greens!(G, fgc, B)
end
return (logdetG, sgndetG)
end
function resize!(
fgc::FermionGreensCalculator{T,E}, n_stab::Int
) where {T,E}
(; N, LΟ) = fgc
B_bar = fgc.B_bar::Vector{Matrix{T}}
F = fgc.F::Vector{LDR{T,E}}
# check if stablization frequency is being updated
if fgc.n_stab != n_stab
# calculate the new number of stabilization intervals
N_stab = ceil(Int, LΟ/n_stab)
# calculate the change in stablization intervals
ΞN_stab = N_stab - fgc.N_stab
# update stabilization interval and frequency
fgc.n_stab = n_stab
fgc.N_stab = N_stab
# if number of stabilization intervals increased
if ΞN_stab > 0
# grow B_bar and F vectors
for n in 1:ΞN_stab
B_bar_new = Matrix{T}(I, N, N)
F_new = ldr(B_bar_new)
push!(B_bar, B_bar_new)
push!(F, F_new)
end
# if number of stablization intervals decreased
else
# shrink B_bar and F vectors
for n in 1:abs(ΞN_stab)
B_bar_deleted = pop!(B_bar)
F_deleted = pop!(F)
end
end
end
return nothing
end
@doc raw"""
copyto!(
fgc_out::FermionGreensCalculator{T,E},
fgc_in::FermionGreensCalculator{T,E}
) where {T,E}
Copy the contents of `fgc_in` to `fgc_out`. If `fgc_out.n_stab != fgc_in.n_stab` is true, then
`fgc_out` will be resized using [`resize!`](@ref) to match `fgc_in`.
"""
function copyto!(
fgc_out::FermionGreensCalculator{T,E},
fgc_in::FermionGreensCalculator{T,E}
) where {T,E}
# resize fgc_out to match fgc_in if necessary
if fgc_out.n_stab != fgc_in.n_stab
resize!(fgc_out, fgc_in.n_stab)
end
# copy contents of fgc_in to fgc_out
fgc_out.forward = fgc_in.forward
fgc_out.l = fgc_in.l
for i in eachindex(fgc_in.B_bar)
copyto!(fgc_out.B_bar[i]::Matrix{T}, fgc_in.B_bar[i]::Matrix{T})
copyto!(fgc_out.F[i]::LDR{T,E}, fgc_in.F[i]::LDR{T,E})
end
copyto!(fgc_out.ldr_ws, fgc_in.ldr_ws)
return nothing
end
@doc raw"""
iterate(iter::FermionGreensCalculator)
iterate(iter::FermionGreensCalculator, state)
Iterate over imaginary time slices, alternating between iterating in the forward direction from ``l=1`` to ``l=L_\tau``
and in the reverse direction from ``l=L_\tau`` to ``l=1``. The `iter.forward` boolean field in the
[`FermionGreensCalculator`](@ref) type determines whether the imaginary time slices are iterated over in forward
or reverse order. The `iter.forward` field is updated as needed automatically and *should not* be adjusted manually.
"""
function iterate(iter::FermionGreensCalculator)::Tuple{Int,Bool}
state = iter.forward
# set initial time slice l
if state # iterating from l=1 ==> l=LΟ
item = 1
else # iterating from l=LΟ ==> l=1
item = iter.LΟ
end
return (item, state)
end
function iterate(iter::FermionGreensCalculator, state::Bool)::Union{Tuple{Int,Bool},Nothing}
if state # iterating from l=1 ==> l=LΟ
iter.l += 1
# terminiation criteria
if iter.l == iter.LΟ+1
iter.l = iter.LΟ
iter.forward = false
return nothing
else
return (iter.l, iter.forward)
end
else # iterating from l=LΟ ==> l=1
iter.l -= 1
# termination criteria
if iter.l == 0
iter.l = 1
iter.forward = true
return nothing
else
return (iter.l, iter.forward)
end
end
return next
end
######################################
## DEVELOPER METHODS (NOT EXPORTED) ##
######################################
@doc raw"""
update_factorizations!(
fgc::FermionGreensCalculator{T,E},
B::AbstractVector{P}
) where {T, E, P<:AbstractPropagator{T}}
If current imaginary time slice `fgc.l` corresponds to the boundary of a stabilization interval,
calculate a LDR factorization to represent ``B(0, \tau)`` or ``B(\tau-\Delta\tau, \beta)``
if iterating over imaginary time in the forward (`fgc.forward = true`)
or reverse (`fgc.forward = false`) directions respectively.
This method should be called *after* all changes to the current time slice propagator matrix
``B_l`` have been made
This method will also recompute ``\bar{B}_n`` as needed.
"""
function update_factorizations!(
fgc::FermionGreensCalculator{T,E},
B::AbstractVector{P}
) where {T, E, P<:AbstractPropagator{T}}
# update B_bar matrix when necessary
update_BΜ!(fgc, B)
# update the factorization
update_factorizations!(fgc)
return nothing
end
@doc raw"""
update_factorizations!(
fgc::FermionGreensCalculator{T,E}
) where {T, E}
If current imaginary time slice `fgc.l` corresponds to the boundary of a stabilization interval,
calculate a LDR factorization to represent ``B(\tau, 0)`` or ``B(\beta, \tau-\Delta\tau)``
if iterating over imaginary time in the forward (`fgc.forward = true`)
or reverse (`fgc.forward = false`) directions respectively.
This method should be called *after* all changes to the current time slice propagator matrix
``B_l`` have been made, and any required updates to a ``\bar{B}_n`` matrix have
been performed using the [`JDQMCFramework.update_BΜ!`](@ref) routine.
"""
function update_factorizations!(
fgc::FermionGreensCalculator{T,E}
) where {T, E}
(; l, LΟ, n_stab, N_stab, forward) = fgc
F = fgc.F::Vector{LDR{T,E}}
ldr_ws = fgc.ldr_ws::LDRWorkspace{T,E}
B_bar = fgc.B_bar::Vector{Matrix{T}}
# get stabalizaiton interval
n, lβ² = stabilization_interval(fgc)
# if iterating from l=1 => l=LΟ
if forward
# if at boundary of first stabilization interval (l=n_stab)
if lβ²==n_stab && n==1
# calculate LDR factorization of B(Ο=nββ
ΞΟ,0) = BΜ[1]
BΜβ = B_bar[1]
B_Ο0 = F[1]::LDR{T,E}
ldr!(B_Ο0, BΜβ, ldr_ws)
# if at the end of a stabilization interval
elseif lβ²==n_stab || l==LΟ && N_stab > 1
# calculate LDR factorization of B(Ο=nβ
nββ
ΞΟ,0) = BΜ[n]β
B(Ο=(n-1)β
nββ
ΞΟ,0)
BΜβ = B_bar[n]
B_Ο0_new = F[n]::LDR{T,E}
B_Ο0_prev = F[n-1]::LDR{T,E}
mul!(B_Ο0_new, BΜβ, B_Ο0_prev, ldr_ws)
end
# if iterating from l=LΟ => l=1
else
# if at boundary of last stabilization interval (l=LΟ-n_stab+1)
if lβ²==1 && n==N_stab
# calculate LDR factorization of B(Ξ²,Ο=Ξ²-(n_stab+1)β
ΞΟ) = BΜ[N_stab]
BΜ_Nβ = B_bar[n]
B_Ξ²Ο = F[n]::LDR{T,E}
ldr!(B_Ξ²Ο, BΜ_Nβ, ldr_ws)
# if at boundary of stabilization interval
elseif lβ²==1 && N_stab > 1
# calculate LDR factorization of B(Ξ²,Ο=Ξ²-nβ
nββ
ΞΟ-ΞΟ) = B(Ξ²,Ο=Ξ²-nβ
nββ
ΞΟ)β
BΜ[n]
BΜβ = B_bar[n]
B_Ξ²Ο_new = F[n]::LDR{T,E}
B_Ξ²Ο_prev = F[n+1]::LDR{T,E}
mul!(B_Ξ²Ο_new, B_Ξ²Ο_prev, BΜβ, ldr_ws)
end
end
return nothing
end
@doc raw"""
update_BΜ!(
fgc::FermionGreensCalculator{T,E},
B::AbstractVector{P}
) where {T,E,P<:AbstractPropagator{T}}
Recalculate ``\bar{B}_n`` if the current timeslice `fgc.l` corresponds to the boundary of a stabilization interval,
accounting for whether imaginary time is being iterated over in the forward (`fgc.forward = true`) or
reverse (`fgc.forward = false`) direction.
"""
function update_BΜ!(
fgc::FermionGreensCalculator{T,E},
B::AbstractVector{P}
) where {T,E,P<:AbstractPropagator{T}}
(; forward, n_stab, l, LΟ) = fgc
# get stabilization interval info
n, lβ² = stabilization_interval(fgc)
# if iterating over imaginary time in the forward direction l=1 ==> l=LΟ
if forward
# if at boundary of stabilization interval
if lβ² == n_stab || l==LΟ
# update B_bar[n]
calculate_BΜ!(fgc, B, n)
end
# if iterating over imaginary time in the reviews direction l=LΟ ==> l=1
else
# if at boundary of stabilization interval
if lβ² == 1
# update B_bar[n]
calculate_BΜ!(fgc, B, n)
end
end
return nothing
end
@doc raw"""
calculate_BΜ!(
fgc::FermionGreensCalculator{T,E},
B::AbstractVector{P}, n::Int
) where {T,E,P<:AbstractPropagator{T}}
Given `B`, a vector of all the propagator matrices ``B_l``, calculate the matrix product
```math
\bar{B}_{\sigma,n}=\prod_{l=(n-1)\cdot n_{s}+1}^{\min(n\cdot n_{s},L_{\tau})}B_{\sigma,l},
```
with the result getting written to `fgc.B_bar[n]`.
"""
function calculate_BΜ!(
fgc::FermionGreensCalculator{T,E},
B::AbstractVector{P}, n::Int
) where {T,E,P<:AbstractPropagator{T}}
(; B_bar, n_stab, LΟ, N_stab, ldr_ws) = fgc
@assert 1 <= n <= N_stab
BΜβ = B_bar[n]
copyto!(BΜβ, I) # BΜβ := I
# iterate over imaginary time slices associated with stabilization interval
for l in min(n*n_stab,LΟ):-1:(n-1)*n_stab+1
B_l = B[l]::P
rmul!(BΜβ, B_l, M = ldr_ws.M) # BΜβ := BΜββ
B[l]
end
return nothing
end
@doc raw"""
stabilization_interval(
fgc::FermionGreensCalculator
)::Tuple{Int,Int}
Given the current imaginary time slice `fgc.l`, return the corresponding
stabilization interval `n = ceil(Int, fgc.l/fgc.n_stab)`, and the relative location
within that stabilization interval `lβ² = mod1(fgc.l, fgc.n_stab)`, such that `lβ²β[1,n_stab]`.
"""
function stabilization_interval(
fgc::FermionGreensCalculator
)::Tuple{Int,Int}
# calculate stabilization interval
n = ceil(Int, fgc.l/fgc.n_stab)
# location in stabilization interval lβ²β[1,n_stab]
lβ² = mod1(fgc.l, fgc.n_stab)
return n, lβ²
end | JDQMCFramework | https://github.com/SmoQySuite/JDQMCFramework.jl.git |
|
[
"MIT"
] | 1.0.10 | d37e67cd855d38efbc41b807f45d758eaaa82923 | code | 2169 | module JDQMCFramework
using LinearAlgebra
using FastLapackInterface
using Checkerboard
using StableLinearAlgebra
# importing function to be overloaded
import Base: size, copyto!, iterate, eltype, resize!
import LinearAlgebra: mul!, lmul!, rmul!, ldiv!, rdiv!, ishermitian
# import functions for multiplying/dividing by diagonal matrix represented by a vector
import StableLinearAlgebra: mul_D!, div_D!, lmul_D!, rmul_D!, ldiv_D!, rdiv_D!
@doc raw"""
Continuous = Union{AbstractFloat,Complex{<:AbstractFloat}}
An abstract type to represent continuous real and complex numbers.
"""
Continuous = Union{AbstractFloat,Complex{<:AbstractFloat}}
# various utility function
include("utility_functions.jl")
export eval_length_imaginary_axis # calculate length of imaginary time axis LΟ given Ξ² and ΞΟ
export exp! # exponentiate matrix while avoiding dynamic memory allocations
export build_hopping_matrix! # construct the hopping matrix given a neighbor table and vector or hopping amplitudes
# define types to represent propagator matrices, allowing for both symmetric and asymmetric propagators,
# and also the use of either the exact exponentiated hopping matrix or the checkerboard approximation
include("Propagators.jl")
export AbstractPropagator
export AbstractExactPropagator, AbstractChkbrdPropagator
export SymExactPropagator, AsymExactPropagator
export SymChkbrdPropagator, AsymChkbrdPropagator
export SymPropagators
# defines FermionGreensCalculator type to simplify the process of calculating
# single-particle fermion green's funciton matrices
include("FermionGreensCalculator.jl")
export FermionGreensCalculator
export resize!
# implements core routines that are useful in writing a DQMC code
include("dqmc_routines.jl")
export propagate_equaltime_greens!, stabilize_equaltime_greens!, calculate_equaltime_greens!
export initialize_unequaltime_greens!, propagate_unequaltime_greens!, stabilize_unequaltime_greens!
export local_update_det_ratio, local_update_greens!
# Implement method for partially wrapping the Greens function matrix.
include("partially_wrap_greens.jl")
export partially_wrap_greens_forward!, partially_wrap_greens_reverse!
end | JDQMCFramework | https://github.com/SmoQySuite/JDQMCFramework.jl.git |
|
[
"MIT"
] | 1.0.10 | d37e67cd855d38efbc41b807f45d758eaaa82923 | code | 20214 | @doc raw"""
abstract type AbstractPropagator{T<:Continuous, E<:Continuous} end
Abstract type to represent imaginary time propagator matrices ``B``. All specific propagators
types inherit from this abstract type. In the above `T` is data type of the matrix elements
of the exponentiated kintetic energy matrix ``e^{-\Delta\tau K_l}`` appearing in ``B_l``, and `E` is data type of the
matrix elements appearing in the diagonal exponentiated potential energy matrix ``e^{-\Delta\tau V_l}``.
"""
abstract type AbstractPropagator{T<:Continuous, E<:Continuous} end
@doc raw"""
abstract type AbstractExactPropagator{T,E} <: AbstractPropagator{T,E} end
Abstract type to represent imaginary time propagator matrices ``B`` defined with an exactly
exponentiated hopping matrix ``K``.
"""
abstract type AbstractExactPropagator{T,E} <: AbstractPropagator{T,E} end
@doc raw"""
abstract type AbstractChkbrdPropagator{T,E} <: AbstractPropagator{T,E} end
Abstract type to represent imaginary time propagator matrices ``B`` defined with the exponentiated
hopping matrix ``K`` represented by the checkerboard approximation.
"""
abstract type AbstractChkbrdPropagator{T,E} <: AbstractPropagator{T,E} end
@doc raw"""
SymExactPropagator{T, E} <: AbstractExactPropagator{T,E}
Represents imaginary time propagator matrix as using the symmetric form
```math
B_l = e^{-\Delta\tau K_l/2} e^{-\Delta\tau V_l} e^{-\Delta\tau K_l/2},
```
where ``K_l`` is the strictly off-diagonal hopping matrix and ``V_l``
is the diagonal total on-site energy matrix.
# Fields
- `expmΞΟV::Vector{E}`: A vector representing the diagonal exponeniated on-site energy matrix ``e^{-\Delta\tau V_l}.``
- `expmΞΟKo2::Matrix{T}`: The exponentiated hopping matrix ``e^{-\Delta\tau K_l/2}.``
- `exppΞΟKo2::Matrix{T}`: Inverse of the exponentiated hopping matrix ``e^{+\Delta\tau K_l/2}.``
"""
struct SymExactPropagator{T,E} <: AbstractExactPropagator{T,E}
"A vector representing the diagonal exponeniated on-site energy matrix `exp(-ΞΟβ
Vβ)`."
expmΞΟV::Vector{E}
"The exponentiated hopping matrix `exp(-ΞΟβ
Kβ/2)`."
expmΞΟKo2::Matrix{T}
"Inverse of the exponentiated hopping matrix `exp(+ΞΟβ
Kβ/2)`."
exppΞΟKo2::Matrix{T}
end
@doc raw"""
AsymExactPropagator{T, E} <: AbstractExactPropagator{T,E}
Represents imaginary time propagator matrix as using the symmetric form
```math
B_l = e^{-\Delta\tau V_l} e^{-\Delta\tau K_l},
```
where ``K_l`` is the strictly off-diagonal hopping matrix and ``V_l``
is the diagonal total on-site energy matrix.
# Fields
- `expmΞΟV::Vector{E}`: A vector representing the diagonal exponeniated on-site energy matrix ``e^{-\Delta\tau V_l}.``
- `expmΞΟK::Matrix{T}`: The exponentiated hopping matrix ``e^{-\Delta\tau K_l}.``
- `exppΞΟK::Matrix{T}`: Inverse of the exponentiated hopping matrix ``e^{+\Delta\tau K_l}.``
"""
struct AsymExactPropagator{T,E} <: AbstractExactPropagator{T,E}
"A vector representing the diagonal exponeniated on-site energy matrix `exp(-ΞΟβ
Vβ)`."
expmΞΟV::Vector{E}
"The exponentiated hopping matrix `exp(-ΞΟβ
Kβ)`"
expmΞΟK::Matrix{T}
"Inverse of the exponentiated hopping matrix `exp(-ΞΟβ
Kβ)`"
exppΞΟK::Matrix{T}
end
@doc raw"""
SymChkbrdPropagator{T, E} <: AbstractChkbrdPropagator{T,E}
Represents imaginary time propagator matrix as using the symmetric form
```math
B_l = e^{-\Delta\tau K_l/2} e^{-\Delta\tau V_l} [e^{-\Delta\tau K_l/2}]^\dagger,
```
where ``K_l`` is the strictly off-diagonal hopping matrix and ``V_l``
is the diagonal total on-site energy matrix. The exponentiated hopping
matrix ``e^{-\Delta\tau K/2}`` is represented by the checkerboard approximation.
# Fields
- `expmΞΟV::Vector{E}`: A vector representing the diagonal exponeniated on-site energy matrix ``e^{-\Delta\tau V_l}.``
- `expmΞΟKo2::CheckerboardMatrix{T}`: The exponentiated hopping matrix ``e^{-\Delta\tau K_l/2}`` represented by the checkerboard approximation.
"""
struct SymChkbrdPropagator{T, E} <: AbstractChkbrdPropagator{T,E}
"A vector representing the diagonal exponeniated on-site energy matrix `exp(-ΞΟβ
Vβ)`."
expmΞΟV::Vector{E}
"The exponentiated hopping matrix `exp(-ΞΟβ
Kβ/2)` represented by the checkerboard approximation."
expmΞΟKo2::CheckerboardMatrix{T}
end
@doc raw"""
AsymChkbrdPropagator{T, E} <: AbstractChkbrdPropagator{T,E}
Represents imaginary time propagator matrix as using the symmetric form
```math
B_l = e^{-\Delta\tau V_l} e^{-\Delta\tau K_l},
```
where ``K_l`` is the strictly off-diagonal hopping matrix and ``V_l``
is the diagonal total on-site energy matrix. The exponentiated hopping
matrix ``e^{-\Delta\tau K}`` is represented by the checkerboard approximation.
# Fields
- `expmΞΟV::Vector{E}`: The vector representing the diagonal exponeniated on-site energy matrix ``e^{-\Delta\tau V_l}.``
- `expmΞΟK::CheckerboardMatrix{T}`: The exponentiated hopping matrix ``e^{-\Delta\tau K_l}`` represented by the checkerboard approximation.
"""
struct AsymChkbrdPropagator{T,E} <: AbstractChkbrdPropagator{T,E}
"The vector representing the diagonal exponeniated on-site energy matrix `exp(-ΞΟβ
Vβ)`."
expmΞΟV::Vector{E}
"The exponentiated hopping matrix `exp(-ΞΟβ
Kβ/2)` represented by the checkerboard approximation."
expmΞΟK::CheckerboardMatrix{T}
end
@doc raw"""
SymPropagators
A union of the all the symmetric propagators types to help test whether a propagator type is symmetric.
Assuming `typeof{B} <: AbstractPropagator` returns `true`, if `typeof(B) <: SymPropagators` returns
`true`, then `B` represents a symmetric propagator, otherwise it represents an asymmetric propagator.
"""
SymPropagators = Union{SymExactPropagator, SymChkbrdPropagator}
@doc raw"""
size(B::AbstractPropagator)
size(B::AbstractPropagator, dim)
Return the size of a propagator.
"""
size(B::AbstractPropagator) = (length(B.expmΞΟV), length(B.expmΞΟV))
size(B::AbstractPropagator, dim::Int) = length(B.expmΞΟV)
@doc raw"""
ishermitian(B::AbstractPropagator)
Return whether a propagator is hermitian or not.
"""
ishermitian(B::AbstractPropagator) = return _ishermitian(B)
_ishermitian(B::SymExactPropagator) = return true
_ishermitian(B::SymChkbrdPropagator) = return true
_ishermitian(B::AsymExactPropagator) = return false
_ishermitian(B::AsymChkbrdPropagator) = return false
@doc raw"""
copyto!(Bβ²::SymExactPropagator{T,E}, B::SymExactPropagator{T,E}) where {T,E}
copyto!(Bβ²::AsymExactPropagator{T,E}, B::AsymExactPropagator{T,E}) where {T,E}
copyto!(Bβ²::SymChkbrdPropagator{T,E}, B::SymChkbrdPropagator{T,E}) where {T,E}
copyto!(Bβ²::AsymChkbrdPropagator{T,E}, B::AsymChkbrdPropagator{T,E}) where {T,E}
Copy the propagator `B` to `Bβ²`.
"""
function copyto!(Bβ²::SymExactPropagator{T,E}, B::SymExactPropagator{T,E}) where {T,E}
copyto!(Bβ².expmΞΟV, B.expmΞΟV)
copyto!(Bβ².expmΞΟKo2, B.expmΞΟKo2)
copyto!(Bβ².exppΞΟKo2, B.exppΞΟKo2)
return nothing
end
function copyto!(Bβ²::AsymExactPropagator{T,E}, B::AsymExactPropagator{T,E}) where {T,E}
copyto!(Bβ².expmΞΟV, B.expmΞΟV)
copyto!(Bβ².expmΞΟK, B.expmΞΟK)
copyto!(Bβ².exppΞΟK, B.exppΞΟK)
return nothing
end
function copyto!(Bβ²::SymChkbrdPropagator{T,E}, B::SymChkbrdPropagator{T,E}) where {T,E}
copyto!(Bβ².expmΞΟV, B.expmΞΟV)
copyto!(Bβ².expmΞΟKo2, B.expmΞΟKo2)
return nothing
end
function copyto!(Bβ²::AsymChkbrdPropagator{T,E}, B::AsymChkbrdPropagator{T,E}) where {T,E}
copyto!(Bβ².expmΞΟV, B.expmΞΟV)
copyto!(Bβ².expmΞΟK, B.expmΞΟK)
return nothing
end
@doc raw"""
eltype(B::AbstractPropagator{T,E}) where {T,E}
Return the matrix element type of the propagator `T`.
"""
function eltype(B::AbstractPropagator{T,E}) where {T,E}
return T
end
@doc raw"""
mul!(A::AbstractMatrix{T}, B::SymExactPropagator{T}, C::AbstractMatrix{T};
M::AbstractMatrix{T}=similar(A)) where {T}
mul!(A::AbstractMatrix{T}, B::AsymExactPropagator{T}, C::AbstractMatrix{T};
M::AbstractMatrix{T}=similar(A)) where {T}
mul!(A::AbstractMatrix{T}, B::AbstractChkbrdPropagator{T}, C::AbstractMatrix{T};
M=nothing) where {T}
Calculate the product ``A := B \cdot C``, where ``B`` is a propagator matrix represented
by an instance of a type inheriting from [`AbstractPropagator`](@ref).
If `B` is asymmetric and `B.adjointed = true`, then ``A = B^\dagger \cdot C`` is evaluated instead.
"""
function mul!(A::AbstractMatrix{T}, B::SymExactPropagator{T}, C::AbstractMatrix{T};
M::AbstractMatrix{T}=similar(A)) where {T}
mul!(M, B.expmΞΟKo2, C) # exp(-ΞΟβ
K/2)β
C
lmul_D!(B.expmΞΟV, M) # exp(-ΞΟβ
V)β
exp(-ΞΟβ
K/2)β
C
mul!(A, B.expmΞΟKo2, M) # A = Bβ
C = exp(-ΞΟβ
K/2)β
exp(-ΞΟβ
V)β
exp(-ΞΟβ
K/2)β
C
return nothing
end
function mul!(A::AbstractMatrix{T}, B::AsymExactPropagator{T}, C::AbstractMatrix{T};
M::AbstractMatrix{T}=similar(A)) where {T}
mul!(A, B.expmΞΟK, C) # exp(-ΞΟβ
K)β
C
lmul_D!(B.expmΞΟV, A) # A = Bβ
C = exp(-ΞΟβ
V)β
[exp(-ΞΟβ
K)β
C]
return nothing
end
function mul!(A::AbstractMatrix{T}, B::AbstractChkbrdPropagator{T}, C::AbstractMatrix{T};
M=nothing) where {T}
copyto!(A, C)
lmul!(B, A)
return nothing
end
@doc raw"""
mul!(A::AbstractMatrix{T}, C::AbstractMatrix{T}, B::SymExactPropagator{T};
M::AbstractMatrix{T} = similar(A)) where {T}
mul!(A::AbstractMatrix{T}, C::AbstractMatrix{T}, B::AsymExactPropagator{T};
M::AbstractMatrix{T} = similar(A)) where {T}
mul!(A::AbstractMatrix{T}, C::AbstractMatrix{T}, B::AbstractChkbrdPropagator{T};
M=nothing) where {T}
Calculate the matrix product ``A := C \cdot B``, where ``B`` is a propagator matrix
represented by an instance of a type inheriting from [`AbstractPropagator`](@ref).
If `B` is asymmetric and `B.adjointed = true`, then ``A = C \cdot B^\dagger`` is evaluated instead.
"""
function mul!(A::AbstractMatrix{T}, C::AbstractMatrix{T}, B::SymExactPropagator{T};
M::AbstractMatrix{T} = similar(A)) where {T}
mul!(M, C, B.expmΞΟKo2) # Cβ
exp(-ΞΟβ
K/2)
rmul_D!(M, B.expmΞΟV) # Cβ
exp(-ΞΟβ
K/2)β
exp(-ΞΟβ
V)
mul!(A, M, B.expmΞΟKo2) # A := Bβ
C = Cβ
exp(-ΞΟβ
K/2)β
exp(-ΞΟβ
V)β
exp(-ΞΟβ
K/2)
return nothing
end
function mul!(A::AbstractMatrix{T}, C::AbstractMatrix{T}, B::AsymExactPropagator{T};
M::AbstractMatrix{T} = similar(A)) where {T}
mul_D!(M, C, B.expmΞΟV) # Cβ
exp(-ΞΟβ
V)
mul!(A, M, B.expmΞΟK) # A := Cβ
B = [Cβ
exp(-ΞΟβ
V)]β
exp(-ΞΟβ
K)
return nothing
end
function mul!(A::AbstractMatrix{T}, C::AbstractMatrix{T}, B::AbstractChkbrdPropagator{T};
M = nothing) where {T}
copyto!(A, C)
rmul!(A, B)
return nothing
end
@doc raw"""
lmul!(B::SymExactPropagator{T}, A::AbstractMatrix{T};
M::AbstractMatrix{T} = similar(A)) where {T}
lmul!(B::AsymExactPropagator{T}, A::AbstractMatrix{T};
M::AbstractMatrix{T} = similar(A)) where {T}
lmul!(B::AsymExactPropagator{T}, A::AbstractMatrix{T};
M::AbstractMatrix{T} = similar(A)) where {T}
lmul!(B::AsymChkbrdPropagator{T}, A::AbstractMatrix{T};
M = nothing) where {T}
Calculate the matrix product ``A := B \cdot A``, where ``B`` is a propagator matrix
represented by an instance of a type inheriting from [`AbstractPropagator`](@ref).
If `B` is asymmetric and `B.adjointed = true`, when ``A := B^\dagger \cdot A`` is evaluated instead.
"""
function lmul!(B::SymExactPropagator{T}, A::AbstractMatrix{T};
M::AbstractMatrix{T} = similar(A)) where {T}
mul!(M, B.expmΞΟKo2, A) # exp(-ΞΟβ
K/2)β
A
lmul_D!(B.expmΞΟV, M) # exp(-ΞΟβ
V)β
exp(-ΞΟβ
K/2)β
A
mul!(A, B.expmΞΟKo2, M) # A := Bβ
A = exp(-ΞΟβ
K/2)β
exp(-ΞΟβ
V)β
exp(-ΞΟβ
K/2)β
A
return nothing
end
function lmul!(B::AsymExactPropagator{T}, A::AbstractMatrix{T};
M::AbstractMatrix{T} = similar(A)) where {T}
mul!(M, B.expmΞΟK, A) # exp(-ΞΟβ
K)β
A
mul_D!(A, B.expmΞΟV, M) # A := Bβ
A = exp(-ΞΟβ
V)β
[exp(-ΞΟβ
K)β
A]
return nothing
end
function lmul!(B::SymChkbrdPropagator{T}, A::AbstractMatrix{T};
M = nothing) where {T}
expmΞΟKo2α΅ = adjoint(B.expmΞΟKo2)
lmul!(expmΞΟKo2α΅, A) # exp(-ΞΟβ
K/2)α΅β
A
lmul_D!(B.expmΞΟV, A) # exp(-ΞΟβ
V)β
exp(-ΞΟβ
K/2)α΅β
A
lmul!(B.expmΞΟKo2, A) # A := Bβ
A = exp(-ΞΟβ
K/2)β
exp(-ΞΟβ
V)β
exp(-ΞΟβ
K/2)α΅β
A
return nothing
end
function lmul!(B::AsymChkbrdPropagator{T}, A::AbstractMatrix{T};
M = nothing) where {T}
lmul!(B.expmΞΟK, A) # exp(-ΞΟβ
K)β
A
lmul_D!(B.expmΞΟV, A) # A := Bβ
A = exp(-ΞΟβ
V)β
[exp(-ΞΟβ
K)β
A]
return nothing
end
@doc raw"""
rmul!(A::AbstractMatrix{T}, B::SymExactPropagator{T};
M::AbstractMatrix{T} = similar(A)) where {T}
rmul!(A::AbstractMatrix{T}, B::AsymExactPropagator{T};
M::AbstractMatrix{T} = similar(A)) where {T}
rmul!(A::AbstractMatrix{T}, B::SymChkbrdPropagator{T};
M = nothing) where {T}
rmul!(A::AbstractMatrix{T}, B::AsymChkbrdPropagator{T};
M = nothing) where {T}
Calculate the matrix product ``A := A \cdot B``, where ``B`` is a propagator matrix
represented by an instance of a type inheriting from [`AbstractPropagator`](@ref).
If `B` is asymmetric and `B.adjointed = true`, then ``A := A \cdot B^\dagger`` is evaluated instead.
"""
function rmul!(A::AbstractMatrix{T}, B::SymExactPropagator{T};
M::AbstractMatrix{T} = similar(A)) where {T}
mul!(M, A, B.expmΞΟKo2) # Aβ
exp(-ΞΟβ
K/2)
rmul_D!(M, B.expmΞΟV) # Aβ
exp(-ΞΟβ
K/2)β
exp(-ΞΟβ
V)
mul!(A, M, B.expmΞΟKo2) # A := Aβ
B = Aβ
exp(-ΞΟβ
K/2)β
exp(-ΞΟβ
V)β
exp(-ΞΟβ
K/2)
return nothing
end
function rmul!(A::AbstractMatrix{T}, B::AsymExactPropagator{T};
M::AbstractMatrix{T} = similar(A)) where {T}
mul_D!(M, A, B.expmΞΟV) # Aβ
exp(-ΞΟβ
V)
mul!(A, M, B.expmΞΟK) # A := Aβ
B = [Aβ
exp(-ΞΟβ
V)]β
exp(-ΞΟβ
K)
return nothing
end
function rmul!(A::AbstractMatrix{T}, B::SymChkbrdPropagator{T};
M = nothing) where {T}
expmΞΟKo2α΅ = adjoint(B.expmΞΟKo2)
rmul!(A, B.expmΞΟKo2) # Aβ
exp(-ΞΟβ
K/2)
rmul_D!(A, B.expmΞΟV) # Aβ
exp(-ΞΟβ
K/2)β
exp(-ΞΟβ
V)
rmul!(A, expmΞΟKo2α΅) # A := Aβ
B = Aβ
exp(-ΞΟβ
K/2)α΅β
exp(-ΞΟβ
V)β
exp(-ΞΟβ
K/2)α΅
return nothing
end
function rmul!(A::AbstractMatrix{T}, B::AsymChkbrdPropagator{T};
M = nothing) where {T}
rmul_D!(A, B.expmΞΟV) # Aβ
exp(-ΞΟβ
V)
rmul!(A, B.expmΞΟK) # A := Aβ
B = [Aβ
exp(-ΞΟβ
V)]β
exp(-ΞΟβ
K)
return nothing
end
@doc raw"""
ldiv!(A::AbstractMatrix{T}, B::AbstractExactPropagator{T}, C::AbstractMatrix{T};
M::AbstractMatrix{T} = similar(A)) where {T}
ldiv!(A::AbstractMatrix{T}, B::AbstractChkbrdPropagator{T}, C::AbstractMatrix{T};
M = nothing) where {T}
Calculate the matrix product ``A := B^{-1} \cdot C``, where ``B`` is a propagator matrix
represented by an instance of a type inheriting from [`AbstractPropagator`](@ref).
If `B` is asymmetric and `B.adjointed = true`, then ``A = [B^\dagger]^{-1} \cdot C`` is evaluated instead.
"""
function ldiv!(A::AbstractMatrix{T}, B::AbstractExactPropagator{T}, C::AbstractMatrix{T};
M::AbstractMatrix{T} = similar(A)) where {T}
copyto!(A, C)
ldiv!(B, A, M=M)
return nothing
end
function ldiv!(A::AbstractMatrix{T}, B::AbstractChkbrdPropagator{T}, C::AbstractMatrix{T};
M = nothing) where {T}
copyto!(A, C)
ldiv!(B, A)
return nothing
end
@doc raw"""
ldiv!(B::SymExactPropagator{T}, A::AbstractMatrix{T};
M::AbstractMatrix{T} = similar(A)) where {T}
ldiv!(B::AsymExactPropagator{T}, A::AbstractMatrix{T};
M::AbstractMatrix{T} = similar(A)) where {T}
ldiv!(B::SymChkbrdPropagator{T}, A::AbstractMatrix{T};
M = nothing) where {T}
ldiv!(B::AsymChkbrdPropagator{T}, A::AbstractMatrix{T};
M = nothing) where {T}
Calculate the matrix product ``A := B^{-1} \cdot A``, where ``B`` is a propagator matrix
represented by an instance of a type inheriting from [`AbstractPropagator`](@ref).
If `B` is asymmetric and `B.adjointed = true`, then ``A := [B^\dagger]^{-1} \cdot A`` is evaluated instead.
"""
function ldiv!(B::SymExactPropagator{T}, A::AbstractMatrix{T};
M::AbstractMatrix{T} = similar(A)) where {T}
mul!(M, B.exppΞΟKo2, A) # exp(+ΞΟβ
K/2)β
A
ldiv_D!(B.expmΞΟV, M) # exp(+ΞΟβ
V)β
exp(+ΞΟβ
K/2)β
A
mul!(A, B.exppΞΟKo2, M) # A := Bβ»ΒΉβ
A = exp(+ΞΟβ
K/2)β
exp(+ΞΟβ
V)β
exp(+ΞΟβ
K/2)β
A
return nothing
end
function ldiv!(B::AsymExactPropagator{T}, A::AbstractMatrix{T};
M::AbstractMatrix{T} = similar(A)) where {T}
div_D!(M, B.expmΞΟV, A) # exp(+ΞΟβ
V)β
A
mul!(A, B.exppΞΟK, M) # A := Bβ»ΒΉβ
A = exp(+ΞΟβ
K)β
[exp(+ΞΟβ
V)β
A]
return nothing
end
function ldiv!(B::SymChkbrdPropagator{T}, A::AbstractMatrix{T};
M = nothing) where {T}
expmΞΟKo2α΅ = transpose(B.expmΞΟKo2)
ldiv!(B.expmΞΟKo2, A) # exp(+ΞΟβ
K/2)β
A
ldiv_D!(B.expmΞΟV, A) # exp(+ΞΟβ
V)β
exp(+ΞΟβ
K/2)β
A
ldiv!(expmΞΟKo2α΅, A) # A := Bβ»ΒΉβ
A = [exp(+ΞΟβ
K/2)]α΅β
exp(+ΞΟβ
V)β
exp(+ΞΟβ
K/2)β
A
return nothing
end
function ldiv!(B::AsymChkbrdPropagator{T}, A::AbstractMatrix{T};
M = nothing) where {T}
ldiv_D!(B.expmΞΟV, A) # exp(+ΞΟβ
V)β
A
ldiv!(B.expmΞΟK, A) # A := Bβ»ΒΉβ
A = exp(+ΞΟβ
K)β
[exp(+ΞΟβ
V)β
A]
return nothing
end
@doc raw"""
rldiv!(A::AbstractMatrix{T}, C::AbstractMatrix{T}, B::AbstractExactPropagator{T};
M::AbstractMatrix{T} = similar(A)) where {T}
rdiv!(A::AbstractMatrix{T}, C::AbstractMatrix{T}, B::AbstractChkbrdPropagator{T};
M = nothing) where {T}
Calculate the matrix product ``A := C \cdot B^{-1}``, where ``B`` is a propagator matrix
represented by an instance of a type inheriting from [`AbstractPropagator`](@ref).
If `B` is asymmetric and `B` is asymmetric and `B.adjointed = true`, then ``A = C \cdot [B^\dagger]^{-1}`` is evaluated instead.
"""
function rdiv!(A::AbstractMatrix{T}, C::AbstractMatrix{T}, B::AbstractExactPropagator{T};
M::AbstractMatrix{T} = similar(A)) where {T}
copyto!(A, C)
rdiv!(A, B, M=M)
return nothing
end
function rdiv!(A::AbstractMatrix{T}, C::AbstractMatrix{T}, B::AbstractChkbrdPropagator{T};
M = nothing) where {T}
copyto!(A, C)
rdiv!(A, B)
return nothing
end
@doc raw"""
rdiv!(A::AbstractMatrix{T}, B::SymExactPropagator{T};
M::AbstractMatrix{T} = similar(A)) where {T}
rdiv!(A::AbstractMatrix{T}, B::AsymExactPropagator{T};
M::AbstractMatrix{T} = similar(A)) where {T}
rdiv!(A::AbstractMatrix{T}, B::SymChkbrdPropagator{T};
M = nothing) where {T}
rdiv!(A::AbstractMatrix{T}, B::AsymChkbrdPropagator{T};
M = nothing) where {T}
Calculate the matrix product ``A := A \cdot B^{-1}``, where ``B`` is a propagator matrix
represented by an instance of a type inheriting from [`AbstractPropagator`](@ref).
If `B` is asymmetric and `B.adjointed = true`, then ``A := A \cdot [B^\dagger]^{-1}`` is evaluated instead.
"""
function rdiv!(A::AbstractMatrix{T}, B::SymExactPropagator{T};
M::AbstractMatrix{T} = similar(A)) where {T}
mul!(M, A, B.exppΞΟKo2) # Aβ
exp(+ΞΟβ
K/2)
rdiv_D!(M, B.expmΞΟV) # Aβ
exp(+ΞΟβ
K/2)β
exp(+ΞΟβ
V)
mul!(A, M, B.exppΞΟKo2) # A := Aβ
Bβ»ΒΉ = Aβ
exp(+ΞΟβ
K/2)β
exp(+ΞΟβ
V)β
exp(+ΞΟβ
K/2)
return nothing
end
function rdiv!(A::AbstractMatrix{T}, B::AsymExactPropagator{T};
M::AbstractMatrix{T} = similar(A)) where {T}
mul!(M, A, B.exppΞΟK) # Aβ
exp(+ΞΟβ
K)
div_D!(A, M, B.expmΞΟV) # A := Aβ
Bβ»ΒΉ = [Aβ
exp(+ΞΟβ
K)]β
exp(+ΞΟβ
V)
return nothing
end
function rdiv!(A::AbstractMatrix{T}, B::SymChkbrdPropagator{T};
M = nothing) where {T}
expmΞΟKo2α΅ = adjoint(B.expmΞΟKo2)
rdiv!(A, expmΞΟKo2α΅) # Aβ
[exp(+ΞΟβ
K/2)]α΅
rdiv_D!(A, B.expmΞΟV) # Aβ
[exp(+ΞΟβ
K/2)]α΅β
exp(+ΞΟβ
V)
rdiv!(A, B.expmΞΟKo2) # A := Aβ
Bβ»ΒΉ = Aβ
[exp(+ΞΟβ
K/2)]α΅β
exp(+ΞΟβ
V)β
exp(+ΞΟβ
K/2)
return nothing
end
function rdiv!(A::AbstractMatrix{T}, B::AsymChkbrdPropagator{T};
M = nothing) where {T}
rdiv!(A, B.expmΞΟK) # Aβ
exp(+ΞΟK)
rdiv_D!(A, B.expmΞΟV) # A := Aβ
Bβ»ΒΉ = [Aβ
exp(+ΞΟK)]β
exp(+ΞΟβ
V)
return nothing
end | JDQMCFramework | https://github.com/SmoQySuite/JDQMCFramework.jl.git |
|
[
"MIT"
] | 1.0.10 | d37e67cd855d38efbc41b807f45d758eaaa82923 | code | 25701 | @doc raw"""
calculate_equaltime_greens!(
G::AbstractMatrix{T},
fgc::FermionGreensCalculator{T,E}
)::Tuple{E,T} where {T,E}
Calculate the equal-time Greens function ``G(0,0) = G(\beta,\beta) = [I + B(\beta,0)]^{-1}`` using a numerically stable procedure.
This method also returns ``\log(\vert \det G \vert)`` and ``\textrm{sign}(\det G).``
Note that this routine requires `fgc.l == 1` or `fgc.l == fgc.LΟ`.
"""
function calculate_equaltime_greens!(
G::AbstractMatrix{T},
fgc::FermionGreensCalculator{T,E}
)::Tuple{E,T} where {T,E}
(; forward, l, LΟ, N_stab, ldr_ws) = fgc
@assert l == 1 || l == LΟ
# get B(0,Ξ²)
if forward
B_Ξ²0 = fgc.F[1]::LDR{T,E}
else
B_Ξ²0 = fgc.F[N_stab]::LDR{T,E}
end
# calculate G(0,0) = [I + B(Ξ²,0)]β»ΒΉ
logdetG, sgndetG = inv_IpA!(G, B_Ξ²0, ldr_ws)
return logdetG, sgndetG
end
@doc raw"""
calculate_equaltime_greens!(
G::AbstractMatrix{T},
fgc::FermionGreensCalculator{T,E},
B::AbstractVector{P}
)::Tuple{E,T} where {T, E, P<:AbstractPropagator{T}}
Calculate the equal-time Greens function ``G(0,0) = G(\beta,\beta) = [I + B(\beta,0)]^{-1}`` using a numerically stable procedure.
Also re-calculate the ``\bar{B}_n`` matrices and the LDR matrix factorizations representing
either ``B(\tau,0)`` or ``B(\beta,\tau)`` stored in `fgc.F`. This routine is useful for implementing global updates where every
propagator matrix ``B_l`` has been modified, and the equal-time Green's function needs to be re-calculated from scratch.
This method also returns ``\log(\vert \det G \vert)`` and ``\textrm{sign}(\det G).``
Note that this routine requires `fgc.l == 1` or `fgc.l == fgc.LΟ`.
"""
function calculate_equaltime_greens!(
G::AbstractMatrix{T},
fgc::FermionGreensCalculator{T,E},
B::AbstractVector{P}
)::Tuple{E,T} where {T, E, P<:AbstractPropagator{T}}
# iterate over imaginary time
for l in fgc
# re-calculate B_bar matrices and matrix factorizations B(Ο,0) or B(Ξ²,Ο) as needed
update_factorizations!(fgc, B)
end
# calculate equal-time Greens funciton matrix G(0,0) = G(Ξ²,Ξ²)
logdetG, sgndetG = calculate_equaltime_greens!(G, fgc)
return logdetG, sgndetG
end
@doc raw"""
propagate_equaltime_greens!(
G::AbstractMatrix{T},
fgc::FermionGreensCalculator{T,E},
B::AbstractVector{P}
) where {T, E, P<:AbstractPropagator{T}}
Propagate the equal-time Green's function matrix `G` from the previous imaginary time slice to the current
imaginary time slice `fgc.l`. If iterating over imaginary time in the forward direction (`fgc.forward = true`)
the relationship
```math
G(\tau+\Delta\tau,\tau+\Delta\tau) = B_{l+1} \cdot G(\tau,\tau) \cdot B_{l+1}^{-1}
```
is used, and if iterating over imaginary time in the reverse direction (`fgc.forward = false`)
the relationship
```math
G(\tau-\Delta\tau,\tau-\Delta\tau)= B_{l}^{-1} \cdot G(\tau,\tau) \cdot B_{l}
```
is used instead, where the ``B_l`` propagator is given by `B[l]`.
"""
function propagate_equaltime_greens!(
G::AbstractMatrix{T},
fgc::FermionGreensCalculator{T,E},
B::AbstractVector{P}
) where {T, E, P<:AbstractPropagator{T}}
(; n_stab, l, LΟ, forward) = fgc
ldr_ws = fgc.ldr_ws::LDRWorkspace{T,E}
M = ldr_ws.M::Matrix{T}
# get stabilization interval info
n, lβ² = stabilization_interval(fgc)
# if iterating from l=1 => l=LΟ
if forward
# G(l,l) = B[l]β
G(l-1,l-1)β
Bβ»ΒΉ[l]
B_l = B[l]::P
lmul!(B_l, G, M = M)
rdiv!(G, B_l, M = M)
# if iterating from l=LΟ => l=1.
# Note: if `fgc.l` corresponds to the "end" of a stabilization interval (lβ²=n_stab or l=LΟ), then
# when the equal-time Green's function was previously re-computed at `fgc.l+1` in the stabilize_equatime_greens!()
# routine, it already calculated G(l,l), so we don't need to propagate to G(l,l) here.
elseif !(lβ² == n_stab || l==LΟ)
# G(l,l) = Bβ»ΒΉ[l+1]β
G(l+1,l+1)β
B[l+1]
B_lp1 = B[l+1]::P
ldiv!(B_lp1, G, M = M)
rmul!(G, B_lp1, M = M)
end
return nothing
end
@doc raw"""
stabilize_equaltime_greens!(
G::AbstractMatrix{T},
logdetG::E, sgndetG::T,
fgc::FermionGreensCalculator{T,E},
B::AbstractVector{P};
# KEYWORD ARGUMENTS
update_BΜ::Bool=true
)::Tuple{E,T,E,E} where {T, E, P<:AbstractPropagator{T}}
Stabilize the equal-time Green's function as iterating through imaginary time ``\tau = \Delta\tau \cdot l.``
For a given imaginary time slice `fgc.l`, this routine should be called *after* all changes to the ``B_l``
propagator have been made.
When iterating through imaginary time in the forwards direction (`fgc.forward = true`), this function
re-computes
```math
G(\tau,\tau) = [I + B(\tau,0)B(\beta,\tau)]^{-1}
```
when at imaginary time slice `fgc.l` every `fgc.n_stab` imaginary time slice.
When iterating through imaginary time in the reverse direction (`fgc.forward = false`), this function
instead re-computes
```math
G(\tau-\Delta\tau,\tau-\Delta\tau) = [I + B(\tau-\Delta\tau,0)B(\beta,\tau-\Delta\tau)]^{-1}
```
for `fgc.l`.
This method returns four values.
The first two values returned are ``\log(\vert \det G(\tau,\tau) \vert)`` and ``\textrm{sign}(\det G(\tau,\tau))``.
The latter two are the maximum error in a Green's function corrected by numerical stabilization ``\vert \delta G \vert``,
and the error in the phase of the determinant corrected by numerical stabilization ``\delta\theta,``
relative to naive propagation of the Green's function matrix in imaginary time occuring instead.
If no stabilization was performed, than ``\vert \delta G \vert = 0`` and ``\delta \theta = 0.``
This method also computes the LDR matrix factorizations
representing ``B(\tau, 0)`` or ``B(\beta, \tau-\Delta\tau)`` when iterating through imaginary
time ``\tau = \Delta\tau \cdot l`` in the forward and reverse directions respectively.
If `update_BΜ = true`, then the ``\bar{B}_n`` matrices are re-calculated as needed, but if
`update_BΜ = false,` then they are left unchanged.
"""
function stabilize_equaltime_greens!(
G::AbstractMatrix{T},
logdetG::E, sgndetG::T,
fgc::FermionGreensCalculator{T,E},
B::AbstractVector{P};
# KEYWORD ARGUMENTS
update_BΜ::Bool=true
)::Tuple{E,T,E,E} where {T, E, P<:AbstractPropagator{T}}
(; l, LΟ, forward, n_stab, N_stab, Gβ²) = fgc
F = fgc.F::Vector{LDR{T,E}}
ldr_ws = fgc.ldr_ws::LDRWorkspace{T,E}
# get stabilization interval info
n, lβ² = stabilization_interval(fgc)
# initialize error corrected by stabilization in green's function
# and error in phase of determinant
Ξ΄G = zero(E)
δθ = zero(E)
# boolean specifying whether or not stabilization was performed
stabilized = false
# record initial sign of determinant
sgndetGβ² = sgndetG
# update B(Ο,0) if iterating forward or B(Ξ²,Ο-ΞΟ) if iterating backwards
if update_BΜ
# also re-calculate B_bar matrices
update_factorizations!(fgc, B)
else
# do not update B_bar matrices
update_factorizations!(fgc)
end
# if iterating from l=1 => l=LΟ
if forward
# if at last time slice calculate G(Ξ²,Ξ²)
if l == LΟ
# record initial Gβ²(Ξ²,Ξ²) = G(Ξ²,Ξ²) before stabilization
copyto!(Gβ², G)
# G(Ξ²,Ξ²) = [I + B(Ξ²,0)]β»ΒΉ
B_Ξ²0 = F[N_stab]::LDR{T,E}
logdetG, sgndetG = inv_IpA!(G, B_Ξ²0, ldr_ws)
# record that stabilization was performed
stabilized = true
# if at boundary of stablization interval calculate G(Ο,Ο)
elseif lβ² == n_stab && N_stab > 1
# record initial Gβ²(Ο,Ο) = G(Ο,Ο) before stabilization
copyto!(Gβ², G)
# calculate G(Ο,Ο) = [I + B(Ο,0)β
B(Ξ²,Ο)]β»ΒΉ
B_Ξ²Ο = F[n+1]::LDR{T,E}
B_Ο0 = F[n]::LDR{T,E}
logdetG, sgndetG = inv_IpUV!(G, B_Ο0, B_Ξ²Ο, ldr_ws)
# record that stabilization was performed
stabilized = true
end
# if iterating from l=LΟ => l=1
else
# if at first time slice calculate G(0,0) = G(Ξ²,Ξ²)
if l == 1
# perform naive propagation Gβ²(Ο-ΞΟ,Ο-ΞΟ) = Bβ»ΒΉ[l]β
G(Ο,Ο)β
B[l]
B_l = B[l]::P
mul!(Gβ², G, B_l, M = ldr_ws.M) # G(Ο,Ο)β
B[l]
ldiv!(B_l, Gβ², M = ldr_ws.M) # Bβ»ΒΉ[l]β
G(Ο,Ο)β
B[l]
# G(0,0) = [I + B(Ξ²,0)]β»ΒΉ
B_Ξ²0 = F[1]::LDR{T,E}
logdetG, sgndetG = inv_IpA!(G, B_Ξ²0, ldr_ws)
# record that stabilization was performed
stabilized = true
# if at boundary of stabilization interval calculate G(Ο-ΞΟ,Ο-ΞΟ)
elseif lβ² == 1 && N_stab > 1
# perform naive propagation Gβ²(Ο-ΞΟ,Ο-ΞΟ) = Bβ»ΒΉ[l]β
G(Ο,Ο)β
B[l]
B_l = B[l]::P
mul!(Gβ², G, B_l, M = ldr_ws.M) # G(Ο,Ο)β
B[l]
ldiv!(B_l, Gβ², M = ldr_ws.M) # Bβ»ΒΉ[l]β
G(Ο,Ο)β
B[l]
# calucate G(Ο-ΞΟ,Ο-ΞΟ) = [I + B(Ο-ΞΟ,0)β
B(Ξ²,Ο-ΞΟ)]β»ΒΉ
B_Ξ²_ΟmΞΟ = F[n]::LDR{T,E}
B_ΟmΞΟ_0 = F[n-1]::LDR{T,E}
logdetG, sgndetG = inv_IpUV!(G, B_ΟmΞΟ_0, B_Ξ²_ΟmΞΟ, ldr_ws)
# record that stabilization was performed
stabilized = true
end
end
# calculate error corrected by stabilization
if stabilized
ΞG = Gβ²
@. ΞG = abs(Gβ²-G)
Ξ΄G = maximum(real, ΞG)
δθ = angle(sgndetGβ²/sgndetG)
end
return (logdetG, sgndetG, δG, δθ)
end
@doc raw"""
initialize_unequaltime_greens!(
GΟ0::AbstractMatrix{T},
G0Ο::AbstractMatrix{T},
GΟΟ::AbstractMatrix{T},
G00::AbstractMatrix{T}
) where {T<:Number}
Initialize the Green's function matrices ``G(\tau,0),`` ``G(0,\tau),`` and ``G(\tau,\tau)`` for ``\tau = 0``
based on the matrix ``G(0,0).``
"""
function initialize_unequaltime_greens!(
GΟ0::AbstractMatrix{T},
G0Ο::AbstractMatrix{T},
GΟΟ::AbstractMatrix{T},
G00::AbstractMatrix{T}
) where {T<:Number}
# G(Ο=0,Ο=0) = G(0,0)
copyto!(GΟΟ, G00)
# G(Ο=0,0) = G(0,0)
copyto!(GΟ0, G00)
# G(0,Ο=0) = -(I-G(0,0))
copyto!(G0Ο, I)
@. G0Ο = -(G0Ο - G00)
return nothing
end
@doc raw"""
propagate_unequaltime_greens!(
GΟ0::AbstractMatrix{T},
G0Ο::AbstractMatrix{T},
GΟΟ::AbstractMatrix{T},
fgc::FermionGreensCalculator{T,E},
B::AbstractVector{P}
) where {T, E, P<:AbstractPropagator{T}}
Propagate the Green's function matrices ``G(\tau,0)``, ``G(0,\tau)`` and ``G(\tau,\tau)``
from the previous imaginary time slice to the current
imaginary time slice `fgc.l`. If iterating over imaginary time in the forward direction (`fgc.forward = true`)
the relationships
```math
\begin{align}
G(\tau,0) = & B_{l} \cdot G(\tau-\Delta\tau, 0) \\
G(0,\tau) = & G(0, \tau-\Delta\tau) \cdot B^{-1}_{l} \\
G(\tau,\tau) = & B_{l} \cdot G(\tau-\Delta\tau, \tau-\Delta\tau) \cdot B_{l}^{-1}
\end{align}
```
are used, and if iterating over imaginary time in the reverse direction (`fgc.forward = false`)
the relationships
```math
\begin{align}
G(\tau,0) = & B_{l+1}^{-1} \cdot G(\tau+\Delta\tau, 0) \\
G(0,\tau) = & G(0, \tau + \Delta\tau) \cdot B_{l+1} \\
G(\tau,\tau) = & B_{l+1}^{-1} \cdot G(\tau+\Delta\tau, \tau+\Delta\tau) \cdot B_{l+1}
\end{align}
```
are used instead, where the ``B_l`` propagator is given by `B[l]`.
"""
function propagate_unequaltime_greens!(
GΟ0::AbstractMatrix{T},
G0Ο::AbstractMatrix{T},
GΟΟ::AbstractMatrix{T},
fgc::FermionGreensCalculator{T,E},
B::AbstractVector{P}
) where {T, E, P<:AbstractPropagator{T}}
(; n_stab, l, LΟ, forward) = fgc
ldr_ws = fgc.ldr_ws::LDRWorkspace{T,E}
M = ldr_ws.M::Matrix{T}
# get stabilization interval info
n, lβ² = stabilization_interval(fgc)
# if iterating from l=1 => l=LΟ
if forward
# G(l,l) = B[l]β
G(l-1,l-1)β
Bβ»ΒΉ[l]
B_l = B[l]::P
lmul!(B_l, GΟΟ, M = M)
rdiv!(GΟΟ, B_l, M = M)
# G(l,0) = B[l]β
G(l-1,0)
lmul!(B_l, GΟ0, M = M)
# G(0,l) = G(0,l-1)β
Bβ»ΒΉ[l]
rdiv!(G0Ο, B_l, M = M)
# if beginning iteration from l=LΟ => l=1, initialize uneqaul-time green's function matrices
elseif l == LΟ
# G(Ο=Ξ²,0) = (I - G(0,0))
copyto!(GΟ0, I)
@. GΟ0 = (GΟ0 - GΟΟ)
# G(0,Ο=Ξ²) = -G(0,0)
@. G0Ο = -GΟΟ
# if iterating from l=LΟ => l=1.
# Note: if `fgc.l` corresponds to the "end" of a stabilization interval (lβ²=n_stab), then
# when the equal-time Green's function was previously re-computed at `fgc.l+1` in the stabilize_equatime_greens!()
# routine, it already calculated G(l,l), so we don't need to propagate to G(l,l) here.
elseif !(lβ² == n_stab)
# G(l,l) = Bβ»ΒΉ[l+1]β
G(l+1,l+1)β
B[l+1]
B_lp1 = B[l+1]::P
ldiv!(B_lp1, GΟΟ, M = M)
rmul!(GΟΟ, B_lp1, M = M)
# G(l, 0) = Bβ»ΒΉ[l+1]β
G(l+1,0)
ldiv!(B_lp1, GΟ0, M = M)
# G(0, l) = G(0,l+1)β
B[l+1]
rmul!(G0Ο, B_lp1, M = M)
end
return nothing
end
@doc raw"""
stabilize_unequaltime_greens!(
GΟ0::AbstractMatrix{T},
G0Ο::AbstractMatrix{T},
GΟΟ::AbstractMatrix{T},
logdetG::E, sgndetG::T,
fgc::FermionGreensCalculator{T,E},
B::AbstractVector{P};
# KEYWORD ARGUMENTS
update_BΜ::Bool=true
)::Tuple{E,T,E,E} where {T, E, P<:AbstractPropagator{T}}
Stabilize the Green's function matrice ``G(\tau,0)``, ``G(0,\tau)`` and ``G(\tau,\tau)``
as iterating through imaginary time ``\tau = \Delta\tau \cdot l.``
For a given imaginary time slice `fgc.l`, this routine should be called *after* all changes to the ``B_l``
propagator have been made.
When iterating through imaginary time in the forwards direction (`fgc.forward = true`), this function
re-computes
```math
\begin{align}
G(\tau,0) = & [B^{-1}(\tau,0) + B(\beta,\tau)]^{-1} \\
G(0, \tau) = & [B^{-1}(\beta,\tau) + B(\tau,0)]^{-1} \\
G(\tau,\tau) = & [I + B(\tau,0)B(\beta,\tau)]^{-1}
\end{align}
```
when at imaginary time slice `fgc.l` every `fgc.n_stab` imaginary time slice.
When iterating through imaginary time in the reverse direction (`fgc.forward = false`), this function
instead re-computes
```math
\begin{align*}
G(\tau-\Delta\tau,0) = & [B^{-1}(\tau-\Delta\tau,0) + B(\beta,\tau-\Delta\tau)]^{-1} \\
G(0,\tau-\Delta\tau) = & [B^{-1}(\beta,\tau-\Delta\tau) + B(\tau-\Delta\tau,0)]^{-1} \\
G(\tau-\Delta\tau,\tau-\Delta\tau) = & [I + B(\tau-\Delta\tau,0)B(\beta,\tau-\Delta\tau)]^{-1}
\begin{align*}
```
for `fgc.l`.
This method returns four values.
The first two values returned are ``\log(\vert \det G(\tau,\tau) \vert)`` and ``\textrm{sign}(\det G(\tau,\tau))``.
The latter two are the maximum error in a Green's function corrected by numerical stabilization ``\vert \delta G \vert``,
and the error in the phase of the determinant corrected by numerical stabilization ``\delta\theta,``
relative to naive propagation of the Green's function matrix in imaginary time occuring instead.
If no stabilization was performed, than ``\vert \delta G \vert = 0`` and ``\delta \theta = 0.``
This method also computes the LDR matrix factorizations
representing ``B(\tau, 0)`` or ``B(\beta, \tau-\Delta\tau)`` when iterating through imaginary
time ``\tau = \Delta\tau \cdot l`` in the forward and reverse directions respectively.
If `update_BΜ = true`, then the ``\bar{B}_n`` matrices are re-calculated as needed, but if
`update_BΜ = false,` then they are left unchanged.
"""
function stabilize_unequaltime_greens!(
GΟ0::AbstractMatrix{T},
G0Ο::AbstractMatrix{T},
GΟΟ::AbstractMatrix{T},
logdetG::E, sgndetG::T,
fgc::FermionGreensCalculator{T,E},
B::AbstractVector{P};
# KEYWORD ARGUMENTS
update_BΜ::Bool=true
)::Tuple{E,T,E,E} where {T, E, P<:AbstractPropagator{T}}
(; l, LΟ, forward, n_stab, N_stab, Gβ²) = fgc
F = fgc.F::Vector{LDR{T,E}}
ldr_ws = fgc.ldr_ws::LDRWorkspace{T,E}
# get stabilization interval info
n, lβ² = stabilization_interval(fgc)
# initialize error corrected by stabilization in green's function
# and error in phase of determinant
Ξ΄G = zero(E)
δθ = zero(E)
# boolean specifying whether or not stabilization was performed
stabilized = false
# record initial sign of determinant
sgndetGβ² = sgndetG
# update B(Ο,0) if iterating forward or B(Ξ²,Ο-ΞΟ) if iterating backwards
if update_BΜ
# also re-calculate B_bar matrices
update_factorizations!(fgc, B)
else
# do not update B_bar matrices
update_factorizations!(fgc)
end
# if iterating from l=1 => l=LΟ
if forward
# if at last time slice calculate G(Ξ²,Ξ²)
if l == LΟ
# record initial Gβ²(Ξ²,Ξ²) = G(Ξ²,Ξ²) before stabilization
copyto!(Gβ², GΟΟ)
# G(0,0) = G(Ξ²,Ξ²) = [I + B(Ξ²,0)]β»ΒΉ
B_Ξ²0 = F[N_stab]::LDR{T,E}
logdetG, sgndetG = inv_IpA!(GΟΟ, B_Ξ²0, ldr_ws)
# G(Ξ², 0) = I - G(0,0)
copyto!(GΟ0, I)
@. GΟ0 = GΟ0 - GΟΟ
# G(0, Ξ²) = -G(0,0)
@. G0Ο = -GΟΟ
# record that stabilization was performed
stabilized = true
# if at boundary of stablization interval calculate G(Ο,Ο)
elseif lβ² == n_stab && N_stab > 1
# record initial Gβ²(Ο,Ο) = G(Ο,Ο) before stabilization
copyto!(Gβ², GΟΟ)
# calculate G(Ο,Ο) = [I + B(Ο,0)β
B(Ξ²,Ο)]β»ΒΉ
B_Ξ²Ο = F[n+1]::LDR{T,E}
B_Ο0 = F[n]::LDR{T,E}
logdetG, sgndetG = inv_IpUV!(GΟΟ, B_Ο0, B_Ξ²Ο, ldr_ws)
# calculate G(Ο,0) = [Bβ»ΒΉ(Ο,0) + B(Ξ²,Ο)]β»ΒΉ
inv_invUpV!(GΟ0, B_Ο0, B_Ξ²Ο, ldr_ws)
# calculate G(0,Ο) = -[Bβ»ΒΉ(Ξ²,Ο) + B(Ο,0)]β»ΒΉ
inv_invUpV!(G0Ο, B_Ξ²Ο, B_Ο0, ldr_ws)
@. G0Ο = -G0Ο
# record that stabilization was performed
stabilized = true
end
# if iterating from l=LΟ => l=1
else
# if at first time slice calculate G(0,0) = G(Ξ²,Ξ²)
if l == 1
# perform naive propagation Gβ²(Ο-ΞΟ,Ο-ΞΟ) = Bβ»ΒΉ[l]β
G(Ο,Ο)β
B[l]
B_l = B[l]::P
mul!(Gβ², GΟΟ, B_l, M = ldr_ws.M) # G(Ο,Ο)β
B[l]
ldiv!(B_l, Gβ², M = ldr_ws.M) # Bβ»ΒΉ[l]β
G(Ο,Ο)β
B[l]
# G(0,0) = [I + B(Ξ²,0)]β»ΒΉ
B_Ξ²0 = F[1]::LDR{T,E}
logdetG, sgndetG = inv_IpA!(GΟΟ, B_Ξ²0, ldr_ws)
# G(Ξ², 0) = I - G(0,0)
copyto!(GΟ0, I)
@. GΟ0 = GΟ0 - GΟΟ
# G(0, Ξ²) = -G(0,0)
@. G0Ο = -GΟΟ
# record that stabilization was performed
stabilized = true
# if at boundary of stabilization interval calculate G(Ο-ΞΟ,Ο-ΞΟ)
elseif lβ² == 1 && N_stab > 1
# perform naive propagation Gβ²(Ο-ΞΟ,Ο-ΞΟ) = Bβ»ΒΉ[l]β
G(Ο,Ο)β
B[l]
B_l = B[l]::P
mul!(Gβ², GΟΟ, B_l, M = ldr_ws.M) # G(Ο,Ο)β
B[l]
ldiv!(B_l, Gβ², M = ldr_ws.M) # Bβ»ΒΉ[l]β
G(Ο,Ο)β
B[l]
# calucate G(Ο-ΞΟ,Ο-ΞΟ) = [I + B(Ο-ΞΟ,0)β
B(Ξ²,Ο-ΞΟ)]β»ΒΉ
B_Ξ²_ΟmΞΟ = F[n]::LDR{T,E}
B_ΟmΞΟ_0 = F[n-1]::LDR{T,E}
logdetG, sgndetG = inv_IpUV!(GΟΟ, B_ΟmΞΟ_0, B_Ξ²_ΟmΞΟ, ldr_ws)
# calculate G(Ο-ΞΟ,0) = [Bβ»ΒΉ(Ο-ΞΟ,0) + B(Ξ²,Ο-ΞΟ)]β»ΒΉ
inv_invUpV!(GΟ0, B_ΟmΞΟ_0, B_Ξ²_ΟmΞΟ, ldr_ws)
# calculate G(0,Ο-ΞΟ) = -[Bβ»ΒΉ(Ξ²,Ο-ΞΟ) + B(Ο-ΞΟ,0)]β»ΒΉ
inv_invUpV!(G0Ο, B_Ξ²_ΟmΞΟ, B_ΟmΞΟ_0, ldr_ws)
@. G0Ο = -G0Ο
# record that stabilization was performed
stabilized = true
end
end
# calculate error corrected by stabilization
if stabilized
ΞG = Gβ²
@. ΞG = abs(Gβ²-GΟΟ)
Ξ΄G = maximum(real, ΞG)
δθ = angle(sgndetGβ²/sgndetG)
end
return (logdetG, sgndetG, δG, δθ)
end
@doc raw"""
local_update_det_ratio(
G::AbstractMatrix{T},
B::AbstractPropagator{T},
Vβ²::T, i::Int, ΞΟ::E
)::Tuple{T,T} where {T,E}
Calculate the determinant ratio ``R_{l,i}`` associated with a local update to the equal-time
Green's function ``G(\tau,\tau).`` Also returns ``\Delta_{l,i},`` which is defined below.
# Arguments
- `G::AbstractMatrix{T}`: Equal-time Green's function matrix ``G(\tau,\tau).``
- `B::AbstractPropagator{T,E}`: Represents the propagator matrix ``B_l,`` where ``\tau = \Delta\tau \cdot l.``
- `Vβ²::T`: The new value for the ``V^{\prime}_{l,i,i}`` matrix element in the diagonal on-site energy matrix ``V_l.``
- `i::Int`: Diagonal matrix element index in ``V_l`` being updated.
- `ΞΟ::E`: Discretization in imaginary time ``\Delta\tau.``
# Algorithm
The propagator matrix ``B_l`` above is given by
```math
B_l = \Lambda_l \cdot \Gamma_l(\Delta\tau),
```
where, assuming the we are working in the orbital basis, ``\Gamma_l(\Delta\tau) = e^{-\Delta\tau K_l}``
represents the exponentiated hopping matrix ``K_l``, and ``\Lambda_l = e^{-\Delta\tau V_l}`` represents
the exponentiated diagonal on-site energy matrix ``V_l.``
Given a proposed update to the ``(i,i)`` matrix element of the diagonal on-site energy matrix ``V_l``,
(``V_{l,i,i} \rightarrow V^\prime_{l,i,i}),`` the corresponding determinant ratio associated
with this proposed udpate is given by
```math
R_{l,i} = \frac{\det G(\tau,\tau)}{\det G^\prime(\tau,\tau)} = 1+\Delta_{i,i}(\tau,i)\left(1-G_{i,i}(\tau,\tau)\right),
```
where
```math
\Delta_{l,i} = \frac{\Lambda^\prime_{l,i,i}}{\Lambda_{l,i,i}} - 1 = e^{-\Delta\tau (V^\prime_{l,i,i} - V_{l,i,i})} - 1.
```
This routine returns the scalar quantities ``R_{l,i}`` and ``\Delta_{l,i}.``
Note that if the propagator matrix is instead represented using the symmetric form
```math
B_l = \Gamma_l(\Delta\tau/2) \cdot \Lambda_l \cdot \Gamma^\dagger_l(\Delta\tau/2),
```
then the matrix `G` needs to instead represent the transformed equal-time Green's function matrix
```math
\tilde{G}(\tau,\tau) = \Gamma_l^{-1}(\Delta\tau/2) \cdot G(\tau,\tau) \cdot \Gamma_l(\Delta\tau/2).
```
"""
function local_update_det_ratio(
G::AbstractMatrix{T},
B::AbstractPropagator{T},
Vβ²::T, i::Int, ΞΟ::E
)::Tuple{T,T} where {T,E}
Ξ = B.expmΞΟV::Vector{E}
Ξ = exp(-ΞΟ*Vβ²)/Ξ[i] - 1
R = 1 + Ξ*(1 - G[i,i])
return (R, Ξ)
end
@doc raw"""
local_update_greens!(
G::AbstractMatrix{T}, logdetG::E, sgndetG::T,
B::AbstractPropagator{T},
R::T, Ξ::T, i::Int,
u::AbstractVector{T}, v::AbstractVector{T}
)::Tuple{E,T} where {T, E<:AbstractFloat}
Update the equal-time Green's function matrix `G` resulting from a local update in-place.
# Arguments
- `G::AbstractMatrix{T}`: Equal-time Green's function matrix ``G(\tau,\tau)`` that will be updated in-place.
- `logdetG::E`: The log of the absolute value of the initial Green's function matrix, ``\log( \vert \det G(\tau,\tau) \vert ).``
- `sgndetG::T`: The sign/phase of the determinant of the initial Green's function matrix, ``\textrm{sign}( \det G(\tau,\tau) ).``
- `B::AbstractPropagator{T,E}`: Propagator that needs to be updated to reflect accepted local update.
- `R::T`: The determinant ratio ``R_{l,i} = \frac{\det G(\tau,\tau)}{\det G^\prime(\tau,\tau)}.``
- `Ξ::T`: Change in the exponentiated on-site energy matrix, ``\Delta_{l,i} = e^{-\Delta\tau (V^\prime_{l,(i,i)} - V_{l,(i,i)})} - 1.``
- `i::Int`: Matrix element of diagonal on-site energy matrix ``V_l`` that is being updated.
- `u::AbstractVector{T}`: Vector of length `size(G,1)` that is used to avoid dynamic memory allocations.
- `v::AbstractVector{T}`: Vector of length `size(G,2)` that is used to avoid dynamic memory allocations.
# Algorithm
The equal-time Green's function matrix is updated using the relationship
```math
G_{j,k}^{\prime}\left(\tau,\tau\right)=G_{j,k}\left(\tau,\tau\right)-\frac{1}{R_{l,i}}G_{j,i}\left(\tau,\tau\right)\Delta_{l,i}\left(\delta_{i,k}-G_{i,k}\left(\tau,\tau\right)\right).
```
The ``B_l`` progpagator `B` is also udpated.
Additionally, this method returns ``\log( \vert \det G^\prime(\tau,\tau) \vert )`` and ``\textrm{sign}( \det G^\prime(\tau,\tau) ).``
An important note is that if the propagator matrices are represented in a symmetric form, then `Gβ²` and `G` need to correspond
to the transformed eqaul-time Green's function matrices ``\tilde{G}^\prime(\tau,\tau)`` and ``\tilde{G}(\tau,\tau).``
Refer to the [`local_update_det_ratio`](@ref) docstring for more information.
"""
function local_update_greens!(
G::AbstractMatrix{T}, logdetG::E, sgndetG::T,
B::AbstractPropagator{T},
R::T, Ξ::T, i::Int,
u::AbstractVector{T}, v::AbstractVector{T}
)::Tuple{E,T} where {T, E<:AbstractFloat}
expmΞΟV = B.expmΞΟV::Vector{E}
# u = G[:,i] <== column vector
G0i = @view G[:,i]
copyto!(u, G0i)
# v = G[i,:] - I[i,:] <== row vector
Gi0 = @view G[i,:]
copyto!(v, Gi0) # v = G[i,:]
v[i] = v[i] - 1 # v = G[i,:] - I[i,:]
# Gβ² = G + (Ξ/R)β
[uβ¨v] = G + (Ξ/R)β
G[:,i]β¨(G[i,:] - I[i,:])
# where β¨ denotes an outer product
BLAS.ger!(Ξ/R, u, v, G)
# R = det(Mβ²)/det(M) = det(G)/det(Gβ²)
# ==> log(|R|) = log(|det(Mβ²)|) - log(|det(M)|) = log(|det(G)|) - log(|det(Gβ²)|)
# ==> log(|det(Gβ²)|) = log(|det(G)|) - log(|R|)
logdetGβ² = logdetG - log(abs(R))
sgndetGβ² = sign(R) * sgndetG
# update the diagonal exponentiated on-site energy matrix appearing in propagator
# (1 + Ξ[i,l]) Γ exp(-ΞΟβ
V[i,l]) = (1 + [exp(-ΞΟβ
Vβ²[i,l])/exp(-ΞΟβ
V[i,l])-1]) Γ exp(-ΞΟβ
V[i,l])
# = exp(-ΞΟβ
Vβ²[i,l])/exp(-ΞΟβ
V[i,l]) Γ exp(-ΞΟβ
V[i,l])
# = exp(-ΞΟβ
Vβ²[i,l])
expmΞΟV[i] = (1+Ξ) * expmΞΟV[i]
return (logdetGβ², sgndetGβ²)
end | JDQMCFramework | https://github.com/SmoQySuite/JDQMCFramework.jl.git |
|
[
"MIT"
] | 1.0.10 | d37e67cd855d38efbc41b807f45d758eaaa82923 | code | 4222 | @doc raw"""
partially_wrap_greens_forward!(
G::Matrix{T},
B::P,
M::Matrix{T} = similar(G)
) where {T, E, P<:AbstractPropagator{T,E}}
If the propagator `B` is represented in the symmetric form
```math
B_l = \Gamma_l(\Delta\tau/2) \cdot \Lambda_l(\Delta\tau) \cdot \Gamma_l^\dagger(\Delta\tau/2)
```
with ``\tau = l \cdot \Delta\tau,`` where ``\Gamma(\Delta\tau/2) = e^{-\Delta\tau K_l/2}`` and ``\Lambda(\Delta\tau) = e^{-\Delta\tau V_l}``,
then apply the transformation
```math
\tilde{G}(\tau,\tau) = \Gamma^{-1}_l(\Delta\tau/2) \cdot G(\tau,\tau) \cdot \Gamma_l(\Delta\tau/2)
```
to the equal-time Green's function matrix `G` in-place.
"""
function partially_wrap_greens_forward!(
G::Matrix{T},
B::P,
M::Matrix{T} = similar(G)
) where {T, E, P<:AbstractPropagator{T,E}}
# only apply transformation if symmetric/hermitian definition for propagator is being used
_partially_wrap_greens_forward!(G, B, M)
return nothing
end
# perform the GΜ(Ο,Ο) = Ξβ»ΒΉ[l]β
G(Ο,Ο)β
Ξ[l] transformation in the case the Ξ[l]=exp(-ΞΟβ
K[l]/2) is the exactly exponentiated hopping matrix
function _partially_wrap_greens_forward!(G::Matrix{T}, B::SymExactPropagator{T,E}, M::Matrix{T}) where {T,E}
(; expmΞΟKo2, exppΞΟKo2) = B
mul!(M, G, expmΞΟKo2) # G(Ο,Ο)β
Ξ[l]
mul!(G, exppΞΟKo2, M) # GΜ(Ο,Ο) = Ξβ»ΒΉ[l]β
G(Ο,Ο)β
Ξ[l]
return nothing
end
# perform the GΜ(Ο,Ο) = Ξβ»ΒΉ[l]β
G(Ο,Ο)β
Ξ[l] transformation in the case the Ξ[l] is the checkerboard approximation of exp(-ΞΟβ
K[l]/2)
function _partially_wrap_greens_forward!(G::Matrix{T}, B::SymChkbrdPropagator{T,E}, ignore...) where {T,E}
(; expmΞΟKo2) = B
rmul!(G, expmΞΟKo2) # G(Ο,Ο)β
Ξ[l]
ldiv!(expmΞΟKo2, G) # GΜ(Ο,Ο) = Ξβ»ΒΉ[l]β
G(Ο,Ο)β
Ξ[l]
return nothing
end
# do nothing for asymmetric propagator
function _partially_wrap_greens_forward!(G::Matrix{T}, B::AsymExactPropagator{T,E}, ignore...) where {T,E}
return nothing
end
# do nothing for asymmetric propagator
function _partially_wrap_greens_forward!(G::Matrix{T}, B::AsymChkbrdPropagator{T,E}, ignore...) where {T,E}
return nothing
end
@doc raw"""
partially_wrap_greens_reverse!(
G::Matrix{T},
B::P,
M::Matrix{T} = similar(G)
) where {T, E, P<:AbstractPropagator{T,E}}
If the propagator `B` is represented in the symmetric form
```math
B_l = \Gamma_l(\Delta\tau/2) \cdot \Lambda_l(\Delta\tau) \cdot \Gamma_l^\dagger(\Delta\tau/2)
```
with ``\tau = l \cdot \Delta\tau,`` where ``\Gamma(\Delta\tau/2) = e^{-\Delta\tau K_l/2}`` and ``\Lambda(\Delta\tau) = e^{-\Delta\tau V_l}``,
then apply the transformation
```math
G(\tau,\tau) = \Gamma_l(\Delta\tau/2) \cdot \tilde{G}(\tau,\tau) \cdot \Gamma_l^{-1}(\Delta\tau/2)
```
to the equal-time Green's function matrix `G` in-place.
"""
function partially_wrap_greens_reverse!(
G::Matrix{T},
B::P,
M::Matrix{T} = similar(G)
) where {T, E, P<:AbstractPropagator{T,E}}
# only apply transformation if symmetric/hermitian definition for propagator is being used
_partially_wrap_greens_reverse!(G, B, M)
return nothing
end
# perform the G(Ο,Ο) = Ξ[l]β
GΜ(Ο,Ο)β
Ξβ»ΒΉ[l] transformation in the case the Ξ[l]=exp(-ΞΟβ
K[l]/2) is the exactly exponentiated hopping matrix
function _partially_wrap_greens_reverse!(G::Matrix{T}, B::SymExactPropagator{T,E}, M::Matrix{T}) where {T,E}
(; expmΞΟKo2, exppΞΟKo2) = B
mul!(M, G, exppΞΟKo2) # GΜ(Ο,Ο)β
Ξβ»ΒΉ[l]
mul!(G, expmΞΟKo2, M) # G(Ο,Ο) = Ξ[l]β
GΜ(Ο,Ο)β
Ξβ»ΒΉ[l]
return nothing
end
# perform the G(Ο,Ο) = Ξ[l]β
GΜ(Ο,Ο)β
Ξβ»ΒΉ[l] transformation in the case the Ξ[l] is the checkerboard approximation of exp(-ΞΟβ
K[l]/2)
function _partially_wrap_greens_reverse!(G::Matrix{T}, B::SymChkbrdPropagator{T,E}, ignore...) where {T,E}
(; expmΞΟKo2) = B
rdiv!(G, expmΞΟKo2) # GΜ(Ο,Ο)β
Ξβ»ΒΉ[l]
lmul!(expmΞΟKo2, G) # G(Ο,Ο) = Ξ[l]β
GΜ(Ο,Ο)β
Ξβ»ΒΉ[l]
return nothing
end
# do nothing for asymmetric propagator
function _partially_wrap_greens_reverse!(G::Matrix{T}, B::AsymExactPropagator{T,E}, ignore...) where {T,E}
return nothing
end
# do nothing for asymmetric propagator
function _partially_wrap_greens_reverse!(G::Matrix{T}, B::AsymChkbrdPropagator{T,E}, ignore...) where {T,E}
return nothing
end | JDQMCFramework | https://github.com/SmoQySuite/JDQMCFramework.jl.git |
|
[
"MIT"
] | 1.0.10 | d37e67cd855d38efbc41b807f45d758eaaa82923 | code | 4042 | @doc raw"""
eval_length_imaginary_axis(
Ξ²::T,
ΞΟ::T
)::Int where {T<:AbstractFloat}
Given an inverse temperature `Ξ²` and discretization in imaginary time `ΞΟ`,
return the length of the imaginary time axis `LΟ`.
"""
function eval_length_imaginary_axis(
Ξ²::T,
ΞΟ::T
)::Int where {T<:AbstractFloat}
LΟ = round(Int, Ξ²/ΞΟ)
@assert (LΟ*ΞΟ)βΞ²
return LΟ
end
@doc raw"""
exp!(
expΞ±H::AbstractMatrix{T},
H::AbstractMatrix{T},
Ξ±::E;
# KEYWORD ARGUMENTS
workspace::HermitianEigenWs{T,Matrix{T},R} = HermitianEigenWs(H),
tol::R = 1e-6
) where {T<:Number, E<:Number, R<:AbstractFloat}
Given a Hermitian matrix `H`, calculate the matrix exponentials ``e^{\alpha H}.``
Note that `H` is left modified by this method. The `workspace` field is of
type [`HermitianEigenWs`](https://dynarejulia.github.io/FastLapackInterface.jl/dev/workspaces/#FastLapackInterface.HermitianEigenWs),
which is exported from the [`FastLapackInterface.jl`](https://github.com/DynareJulia/FastLapackInterface.jl) package,
is used to avoid dynamic memory allocations.
"""
function exp!(
expΞ±H::AbstractMatrix{T},
H::AbstractMatrix{T},
Ξ±::E;
# KEYWORD ARGUMENTS
workspace::HermitianEigenWs{T,Matrix{T},R} = HermitianEigenWs(H),
tol::R = 1e-6
) where {T<:Number, E<:Number, R<:AbstractFloat}
# diagonalize the matrix such that H = Uβ
Ο΅β
Uα΅
LAPACK.syevr!(workspace, 'V', 'A', 'U', H, 0.0, 0.0, 0, 0, tol)
U = workspace.Z
Ο΅ = workspace.w
Uα΅ = adjoint(U)
# calculate the matrix product exp(Ξ±β
H) = Uβ
exp(Ξ±β
Ο΅)β
Uα΅
@. Ο΅ = exp(Ξ±*Ο΅)
mul_D!(H, Ο΅, Uα΅)
mul!(expΞ±H, U, H)
return nothing
end
@doc raw"""
exp!(
exppΞ±H::AbstractMatrix{T},
expmΞ±H::AbstractMatrix{T},
H::AbstractMatrix{T}, Ξ±::E;
# KEYWORD ARGUMENTS
workspace::HermitianEigenWs{T,Matrix{T},R} = HermitianEigenWs(H),
tol::R = 1e-6
) where {T<:Number, E<:Number, R<:AbstractFloat}
Given a Hermitian matrix `H`, calculate the matrix exponentials ``e^{+\alpha H}``
and ``e^{-\alpha H}``, which are written to `exppΞ±H` and `expmΞ±H` respectively.
Note that `H` is left modified by this method. The `workspace` field is of
type [`HermitianEigenWs`](https://dynarejulia.github.io/FastLapackInterface.jl/dev/workspaces/#FastLapackInterface.HermitianEigenWs),
which is exported from the [`FastLapackInterface.jl`](https://github.com/DynareJulia/FastLapackInterface.jl) package,
is used to avoid dynamic memory allocations.
"""
function exp!(
exppΞ±H::AbstractMatrix{T},
expmΞ±H::AbstractMatrix{T},
H::AbstractMatrix{T}, Ξ±::E;
# KEYWORD ARGUMENTS
workspace::HermitianEigenWs{T,Matrix{T},R} = HermitianEigenWs(H),
tol::R = 1e-6
) where {T<:Number, E<:Number, R<:AbstractFloat}
# diagonalize the matrix such that H = Uβ
Ο΅β
Uα΅
LAPACK.syevr!(workspace, 'V', 'A', 'U', H, 0.0, 0.0, 0, 0, tol)
U = workspace.Z
Ο΅ = workspace.w
Uα΅ = adjoint(U)
# calculate the matrix product exp(Ξ±β
H) = Uβ
exp(Ξ±β
Ο΅)β
Uα΅
@. Ο΅ = exp(Ξ±*Ο΅)
mul_D!(H, Ο΅, Uα΅)
mul!(exppΞ±H, U, H)
# calculate the matrix product exp(-Ξ±β
H) = Uβ
exp(-Ξ±β
Ο΅)β
Uα΅
div_D!(H, Ο΅, Uα΅)
mul!(expmΞ±H, U, H)
return nothing
end
@doc raw"""
build_hopping_matrix!(
K::AbstractMatrix{T},
neighbor_table::Matrix{Int},
t::AbstractVector{T}
) where {T<:Continuous}
Construct a hopping matrix `K` using `neighbor_table` along with the corresponding hopping amplitudes `t`.
Each column of `neighbor_table` stores a pair of neighboring orbitals in the lattice, such that `size(neighbor_table,1) = 2`.
"""
function build_hopping_matrix!(
K::AbstractMatrix{T},
neighbor_table::Matrix{Int},
t::AbstractVector{T}
) where {T<:Continuous}
fill!(K, 0)
@fastmath @inbounds for n in axes(neighbor_table,2)
i = neighbor_table[1,n]
j = neighbor_table[2,n]
K[j,i] = -t[n]
K[i,j] = conj(-t[n])
end
return nothing
end | JDQMCFramework | https://github.com/SmoQySuite/JDQMCFramework.jl.git |
|
[
"MIT"
] | 1.0.10 | d37e67cd855d38efbc41b807f45d758eaaa82923 | code | 10254 | using JDQMCFramework
using Test
using LinearAlgebra
using LatticeUtilities
# fermi function
function fermi(Ο΅, Ξ²)
return (1-tanh(Ξ²/2*Ο΅))/2
end
# calculate exact analytic value for the retarded imaginary Green's function
function retarded_greens(Ο,Ξ²,Ο΅,U)
gΟ = similar(Ο΅)
@. gΟ = inv(exp(Ο*Ο΅) + exp((Ο-Ξ²)*Ο΅))
GΟ = U * Diagonal(gΟ) * adjoint(U)
logdetGΟ, sgndetGΟ = logabsdet(Diagonal(gΟ))
return GΟ, logdetGΟ, sgndetGΟ
end
# calculate exact analytic value for the advanced imaginary Green's function
function advanced_greens(Ο,Ξ²,Ο΅,U)
gΟ = similar(Ο΅)
@. gΟ = -inv(exp(-Ο*Ο΅) + exp(-(Ο-Ξ²)*Ο΅))
GΟ = U * Diagonal(gΟ) * adjoint(U)
logdetGΟ, sgndetGΟ = logabsdet(Diagonal(gΟ))
return GΟ, logdetGΟ, sgndetGΟ
end
@testset "JDQMCFramework.jl" begin
# model parameters
t = 1.0 # hopping amplitude
ΞΌ = 0.0 # chemical potential
L = 4 # lattice size
Ξ² = 3.7 # inverse temperature
ΞΟ = 0.1 # discretization in imaginary time
n_stab = 10 # frequency of numerical stabilization
# calculate length of imagninary time axis
LΟ = eval_length_imaginary_axis(Ξ²,ΞΟ)
# construct neighbor table for square lattice
unit_cell = UnitCell(lattice_vecs = [[1.,0.],[0.,1.]], basis_vecs = [[0.,0.]])
lattice = Lattice(L = [L,L], periodic = [true,true])
bond_x = Bond(orbitals = (1,1), displacement = [1,0])
bond_y = Bond(orbitals = (1,1), displacement = [0,1])
neighbor_table = build_neighbor_table([bond_x, bond_y], unit_cell, lattice)
# calculate number of sites in lattice
N = nsites(unit_cell, lattice)
# calculate number of bonds in lattice
Nbonds = size(neighbor_table, 2)
# build hopping matrix
K = zeros(typeof(t), N, N)
build_hopping_matrix!(K, neighbor_table, fill(t, Nbonds))
# build diagonal on-site energy matrix
V = fill(-ΞΌ, N)
# construct Hamiltonian matrix
H = K + Diagonal(V)
Ο΅, U = eigen(H)
# calculate exact unequal time Green's function
G_ret = zeros(typeof(t), N, N, LΟ+1)
G_adv = zeros(typeof(t), N, N, LΟ+1)
for l in 0:LΟ
G_ret[:,:,l+1] = retarded_greens(ΞΟ*l, Ξ², Ο΅, U)[1]
G_adv[:,:,l+1] = advanced_greens(ΞΟ*l, Ξ², Ο΅, U)[1]
end
# calculate equal-time Green's function matrix
G, logdetG, sgndetG = retarded_greens(0, Ξ², Ο΅, U)
# define vector of propagators
expmΞΟV = exp.(-ΞΟ*V)
expmΞΟK = exp(-ΞΟ*K)
exppΞΟK = exp(+ΞΟ*K)
Bup = AsymExactPropagator{eltype(expmΞΟK),eltype(expmΞΟV)}[]; # spin up propagators
Bdn = AsymExactPropagator{eltype(expmΞΟK),eltype(expmΞΟV)}[]; # spin down propagators
for l in 1:LΟ
B_l = AsymExactPropagator(expmΞΟV, expmΞΟK, exppΞΟK)
push!(Bup, B_l)
push!(Bdn, B_l)
end
@test eltype(Bup[1]) == eltype(expmΞΟK)
# initiate FermionGreensCalculator struct
fgc_up = FermionGreensCalculator(Bup, Ξ², ΞΟ, n_stab+1)
fgc_dn = FermionGreensCalculator(Bdn, Ξ², ΞΟ, n_stab+1)
# calculate equal-time Green's function
Gup = zeros(typeof(t), N, N)
Gdn = zeros(typeof(t), N, N)
logdetGup, sgndetGup = calculate_equaltime_greens!(Gup, fgc_up)
logdetGdn, sgndetGdn = calculate_equaltime_greens!(Gdn, fgc_dn)
# test that spin up equal-time Green's function is correct
@test G β Gup
@test logdetG β logdetGup
@test sgndetG β sgndetGup
# test that spin down equal-time Green's function is correct
@test G β Gdn
@test logdetG β logdetGdn
@test sgndetG β sgndetGdn
# initialize copy FermionGreensCalculator
fgc = FermionGreensCalculator(fgc_up)
@test typeof(fgc) <: FermionGreensCalculator
# copy FermionGreensCalculator
copyto!(fgc, fgc_dn)
@test typeof(fgc) <: FermionGreensCalculator
# resize FermionGreensCalculator struct
logdetGup, sgndetGup = resize!(fgc_up, Gup, logdetGup, sgndetGup, Bup, n_stab)
logdetGdn, sgnderGdn = resize!(fgc_dn, Gdn, logdetGdn, sgndetGdn, Bdn, n_stab)
@test fgc_up.n_stab == n_stab
@test fgc_dn.n_stab == n_stab
@test logdetG β logdetGup
@test sgndetG β sgndetGup
@test logdetG β logdetGdn
@test sgndetG β sgndetGdn
# copy FermionGreensCalculator with resizing
copyto!(fgc, fgc_up)
@test fgc.n_stab == n_stab
# Iterate over imaginary time Ο=ΞΟβ
l.
@testset for l in fgc_up
# Propagate Green's function matrix to current imaginary time G(l,l).
propagate_equaltime_greens!(Gup, fgc_up, Bup)
propagate_equaltime_greens!(Gdn, fgc_dn, Bdn)
# LOCAL UPDATES OR EVALUATION OF DERIVATIVE OF FERMIONIC ACTION WOULD GO HERE
# test that spin up equal-time Green's function is correct
@test G β Gup
@test logdetG β logdetGup
@test sgndetG β sgndetGup
# test that spin down equal-time Green's function is correct
@test G β Gdn
@test logdetG β logdetGdn
@test sgndetG β sgndetGdn
# Periodically re-calculate the Green's function matrix for numerical stability.
# If not performing updates, but just evaluating the derivative of the action, then
# set update_BΜ=false to avoid wasting cpu time re-computing B_barβ matrices.
logdetGup, sgndetGup, Ξ΄Gup, δθup = stabilize_equaltime_greens!(Gup, logdetGup, sgndetGup, fgc_up, Bup, update_BΜ=true)
logdetGdn, sgndetGdn, Ξ΄Gdn, δθdn = stabilize_equaltime_greens!(Gdn, logdetGdn, sgndetGdn, fgc_dn, Bdn, update_BΜ=true)
# Keep up and down spin Green's functions synchronized as iterating over imaginary time.
iterate(fgc_dn, fgc_up.forward)
end
# Iterate over imaginary time Ο=ΞΟβ
l.
@testset for l in fgc_up
# Propagate Green's function matrix to current imaginary time G(l,l).
propagate_equaltime_greens!(Gup, fgc_up, Bup)
propagate_equaltime_greens!(Gdn, fgc_dn, Bdn)
# LOCAL UPDATES OR EVALUATION OF DERIVATIVE OF FERMIONIC ACTION WOULD GO HERE
# test that spin up equal-time Green's function is correct
@test G β Gup
@test logdetG β logdetGup
@test sgndetG β sgndetGup
# test that spin down equal-time Green's function is correct
@test G β Gdn
@test logdetG β logdetGdn
@test sgndetG β sgndetGdn
# Periodically re-calculate the Green's function matrix for numerical stability.
# If not performing updates, but just evaluating the derivative of the action, then
# set update_BΜ=false to avoid wasting cpu time re-computing B_barβ matrices.
logdetGup, sgndetGup, Ξ΄Gup, δθup = stabilize_equaltime_greens!(Gup, logdetGup, sgndetGup, fgc_up, Bup, update_BΜ=false)
logdetGdn, sgndetGdn, Ξ΄Gdn, δθdn = stabilize_equaltime_greens!(Gdn, logdetGdn, sgndetGdn, fgc_dn, Bdn, update_BΜ=false)
# Keep up and down spin Green's functions synchronized as iterating over imaginary time.
iterate(fgc_dn, fgc_up.forward)
end
# initialize unequal-time Green's functions
Gup_Ο0 = similar(Gdn)
Gup_0Ο = similar(Gdn)
Gup_ΟΟ = similar(Gdn)
Gdn_Ο0 = similar(Gdn)
Gdn_0Ο = similar(Gdn)
Gdn_ΟΟ = similar(Gdn)
initialize_unequaltime_greens!(Gup_Ο0, Gup_0Ο, Gup_ΟΟ, Gup)
initialize_unequaltime_greens!(Gdn_Ο0, Gdn_0Ο, Gdn_ΟΟ, Gdn)
# Iterate over imaginary time Ο=ΞΟβ
l.
@testset for l in fgc_up
# Propagate Green's function matrix to current imaginary time G(l,l).
propagate_unequaltime_greens!(Gup_Ο0, Gup_0Ο, Gup_ΟΟ, fgc_up, Bup)
propagate_unequaltime_greens!(Gdn_Ο0, Gdn_0Ο, Gdn_ΟΟ, fgc_dn, Bdn)
# LOCAL UPDATES OR EVALUATION OF DERIVATIVE OF FERMIONIC ACTION WOULD GO HERE
# test that spin up unequal-time Green's function is correct
G_Ο0 = @view G_ret[:,:,l+1]
G_0Ο = @view G_adv[:,:,l+1]
@test G β Gup_ΟΟ
@test G_Ο0 β Gup_Ο0
@test G_0Ο β Gup_0Ο
@test G β Gdn_ΟΟ
@test G_Ο0 β Gdn_Ο0
@test G_0Ο β Gdn_0Ο
# Periodically re-calculate the Green's function matrix for numerical stability.
# If not performing updates, but just evaluating the derivative of the action, then
# set update_BΜ=false to avoid wasting cpu time re-computing B_barβ matrices.
logdetGup, sgndetGup, Ξ΄Gup, δθup = stabilize_unequaltime_greens!(Gup_Ο0, Gup_0Ο, Gup_ΟΟ, logdetGup, sgndetGup, fgc_up, Bup, update_BΜ=false)
logdetGdn, sgndetGdn, Ξ΄Gdn, δθdn = stabilize_unequaltime_greens!(Gdn_Ο0, Gdn_0Ο, Gdn_ΟΟ, logdetGdn, sgndetGdn, fgc_dn, Bdn, update_BΜ=false)
# Keep up and down spin Green's functions synchronized as iterating over imaginary time.
iterate(fgc_dn, fgc_up.forward)
end
# initialize unequal-time Green's functions
initialize_unequaltime_greens!(Gup_Ο0, Gup_0Ο, Gup_ΟΟ, Gup)
initialize_unequaltime_greens!(Gdn_Ο0, Gdn_0Ο, Gdn_ΟΟ, Gdn)
# Iterate over imaginary time Ο=ΞΟβ
l.
@testset for l in fgc_up
# Propagate Green's function matrix to current imaginary time G(l,l).
propagate_unequaltime_greens!(Gup_Ο0, Gup_0Ο, Gup_ΟΟ, fgc_up, Bup)
propagate_unequaltime_greens!(Gdn_Ο0, Gdn_0Ο, Gdn_ΟΟ, fgc_dn, Bdn)
# LOCAL UPDATES OR EVALUATION OF DERIVATIVE OF FERMIONIC ACTION WOULD GO HERE
# test that spin up unequal-time Green's function is correct
G_Ο0 = @view G_ret[:,:,l+1]
G_0Ο = @view G_adv[:,:,l+1]
@test G β Gup_ΟΟ
@test G_Ο0 β Gup_Ο0
@test G_0Ο β Gup_0Ο
@test G β Gdn_ΟΟ
@test G_Ο0 β Gdn_Ο0
@test G_0Ο β Gdn_0Ο
# Periodically re-calculate the Green's function matrix for numerical stability.
# If not performing updates, but just evaluating the derivative of the action, then
# set update_BΜ=false to avoid wasting cpu time re-computing B_barβ matrices.
logdetGup, sgndetGup, Ξ΄Gup, δθup = stabilize_unequaltime_greens!(Gup_Ο0, Gup_0Ο, Gup_ΟΟ, logdetGup, sgndetGup, fgc_up, Bup, update_BΜ=true)
logdetGdn, sgndetGdn, Ξ΄Gdn, δθdn = stabilize_unequaltime_greens!(Gdn_Ο0, Gdn_0Ο, Gdn_ΟΟ, logdetGdn, sgndetGdn, fgc_dn, Bdn, update_BΜ=true)
# Keep up and down spin Green's functions synchronized as iterating over imaginary time.
iterate(fgc_dn, fgc_up.forward)
end
end
| JDQMCFramework | https://github.com/SmoQySuite/JDQMCFramework.jl.git |
|
[
"MIT"
] | 1.0.10 | d37e67cd855d38efbc41b807f45d758eaaa82923 | docs | 2178 | # JDQMCFramework.jl
[](https://SmoQySuite.github.io/JDQMCFramework.jl/stable/)
[](https://SmoQySuite.github.io/JDQMCFramework.jl/dev/)
[](https://github.com/SmoQySuite/JDQMCFramework.jl/actions/workflows/CI.yml?query=branch%3Amaster)
[](https://codecov.io/gh/SmoQySuite/JDQMCFramework.jl)
This package exports a suite of types and routines that significantly simplify the process of writing a determinant quantum
Monte Carlo (DQMC) code.
## Funding
The development of this code was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences,
under Award Number DE-SC0022311.
## Installation
To install [`JDQMCFramework.jl`](https://github.com/SmoQySuite/JDQMCFramework.jl.git),
simply open the Julia REPL and run the commands
```julia
julia> ]
pkg> add JDQMCFramework
```
or equivalently via `Pkg` do
```julia
julia> using Pkg; Pkg.add("JDQMCFramework")
```
## Documentation
- [STABLE](https://SmoQySuite.github.io/JDQMCFramework.jl/stable/): Documentation for the latest version of the code published to the Julia [`General`](https://github.com/JuliaRegistries/General.git) registry.
- [DEV](https://SmoQySuite.github.io/JDQMCFramework.jl/dev/): Documentation for the latest commit to the `master` branch.
## Citation
If you found this library to be useful in the course of academic work, please consider citing us:
```bibtex
@misc{SmoQyDQMC,
title={SmoQyDQMC.jl: A flexible implementation of determinant quantum Monte Carlo for Hubbard and electron-phonon interactions},
author={Benjamin Cohen-Stead and Sohan Malkaruge Costa and James Neuhaus and Andy Tanjaroon Ly and Yutan Zhang and Richard Scalettar and Kipton Barros and Steven Johnston},
year={2023},
eprint={2311.09395},
archivePrefix={arXiv},
primaryClass={cond-mat.str-el},
url={https://arxiv.org/abs/2311.09395}
}
``` | JDQMCFramework | https://github.com/SmoQySuite/JDQMCFramework.jl.git |
|
[
"MIT"
] | 1.0.10 | d37e67cd855d38efbc41b807f45d758eaaa82923 | docs | 2516 | # API
## Propagator Types
- [`AbstractPropagator`](@ref)
- [`AbstractExactPropagator`](@ref)
- [`AbstractChkbrdPropagator`](@ref)
- [`SymExactPropagator`](@ref)
- [`AsymExactPropagator`](@ref)
- [`SymChkbrdPropagator`](@ref)
- [`AsymChkbrdPropagator`](@ref)
- [`SymPropagators`](@ref)
```@docs
AbstractPropagator
AbstractExactPropagator
AbstractChkbrdPropagator
SymExactPropagator
AsymExactPropagator
SymChkbrdPropagator
AsymChkbrdPropagator
SymPropagators
```
## FermionGreensCalculator Type
- [`FermionGreensCalculator`](@ref)
```@docs
FermionGreensCalculator
FermionGreensCalculator(::AbstractVector{P}, ::E, ::E, ::Int) where {T<:Number, E<:AbstractFloat, P<:AbstractPropagator{T}}
FermionGreensCalculator(::FermionGreensCalculator{T,E}) where {T,E}
```
## DQMC Building Block Routines
- [`calculate_equaltime_greens!`](@ref)
- [`propagate_equaltime_greens!`](@ref)
- [`stabilize_equaltime_greens!`](@ref)
- [`initialize_unequaltime_greens!`](@ref)
- [`propagate_unequaltime_greens!`](@ref)
- [`stabilize_unequaltime_greens!`](@ref)
- [`local_update_det_ratio`](@ref)
- [`local_update_greens!`](@ref)
- [`partially_wrap_greens_forward!`](@ref)
- [`partially_wrap_greens_reverse!`](@ref)
```@docs
calculate_equaltime_greens!
propagate_equaltime_greens!
stabilize_equaltime_greens!
initialize_unequaltime_greens!
propagate_unequaltime_greens!
stabilize_unequaltime_greens!
local_update_det_ratio
local_update_greens!
partially_wrap_greens_forward!
partially_wrap_greens_reverse!
```
## Overloaded Functions
- [`iterate`](@ref)
- [`eltype`](@ref)
- [`resize!`](@ref)
- [`size`](@ref)
- [`copyto!`](@ref)
- [`ishermitian`](@ref)
- [`mul!`](@ref)
- [`lmul!`](@ref)
- [`rmul!`](@ref)
- [`ldiv!`](@ref)
- [`rdiv!`](@ref)
```@docs
Base.iterate
Base.eltype
Base.resize!
Base.size
Base.copyto!
LinearAlgebra.ishermitian
LinearAlgebra.mul!
LinearAlgebra.lmul!
LinearAlgebra.rmul!
LinearAlgebra.ldiv!
LinearAlgebra.rdiv!
```
## Utility Functions
- [`eval_length_imaginary_axis`](@ref)
- [`exp!`](@ref)
- [`build_hopping_matrix!`](@ref)
```@docs
eval_length_imaginary_axis
exp!
build_hopping_matrix!
```
## Developer API
- [`JDQMCFramework.Continuous`](@ref)
- [`JDQMCFramework.update_factorizations!`](@ref)
- [`JDQMCFramework.update_BΜ!`](@ref)
- [`JDQMCFramework.calculate_BΜ!`](@ref)
- [`JDQMCFramework.stabilization_interval`](@ref)
```@docs
JDQMCFramework.Continuous
JDQMCFramework.update_factorizations!
JDQMCFramework.update_BΜ!
JDQMCFramework.calculate_BΜ!
JDQMCFramework.stabilization_interval
``` | JDQMCFramework | https://github.com/SmoQySuite/JDQMCFramework.jl.git |
|
[
"MIT"
] | 1.0.10 | d37e67cd855d38efbc41b807f45d758eaaa82923 | docs | 14640 | ```@meta
CurrentModule = JDQMCFramework
```
# JDQMCFramework.jl
Documentation for [JDQMCFramework](https://github.com/cohensbw/JDQMCFramework.jl).
This is a utility package that exports a suite of types and routines to simplify the
process of writing a DQMC code.
Matrix stabilization routines are supplied by the
[`StableLinearAlgebra.jl`](https://github.com/cohensbw/StableLinearAlgebra.jl.git)
package.
The checkerboard decomposition functionality supported here is provided by the
[`Checkerboard.jl`](https://github.com/cohensbw/Checkerboard.jl.git) package.
## Funding
The development of this code was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences,
under Award Number DE-SC0022311.
## Installation
To install [`JDQMCFramework.jl`](https://github.com/SmoQySuite/JDQMCFramework.jl.git),
simply open the Julia REPL and run the commands
```julia
julia> ]
pkg> add JDQMCFramework
```
or equivalently via `Pkg` do
```julia
julia> using Pkg; Pkg.add("JDQMCFramework")
```
## Citation
If you found this library to be useful in the course of academic work, please consider citing us:
```bibtex
@misc{SmoQyDQMC,
title={SmoQyDQMC.jl: A flexible implementation of determinant quantum Monte Carlo for Hubbard and electron-phonon interactions},
author={Benjamin Cohen-Stead and Sohan Malkaruge Costa and James Neuhaus and Andy Tanjaroon Ly and Yutan Zhang and Richard Scalettar and Kipton Barros and Steven Johnston},
year={2023},
eprint={2311.09395},
archivePrefix={arXiv},
primaryClass={cond-mat.str-el},
url={https://arxiv.org/abs/2311.09395}
}
```
## Formalism and Definitions
This section describes the formalism and definitions adopted by the
JDQMCFramework package. The following discussion assumes an existing
familiarity with the determinant quantum Monte Carlo (DQMC) algorithm,
a method for simulating systems of itinerant fermions on a lattice
at finite temperature in the grand canonical ensemble. The DQMC formalism
starts by representing the partition funciton as a path integral
```math
\begin{align*}
Z= & \textrm{Tr}\,e^{-\beta\hat{H}}=\textrm{Tr}\left[\prod_{l=1}^{L_{\tau}}e^{-\Delta\tau\hat{H}}\right]
\end{align*}
```
in imaginary time ``\tau=l\cdot\Delta\tau``, at inverse temperature
``\beta=L_{\tau}\cdot\Delta\tau``. Next, the Suzuki-Trotter approximation
is applied, and Hubbard-Stratonivich transformations are used as needed
to render the Hamiltonian quadratic in fermion creation and annihilation
operators. Lastly, the fermionic degrees of freedom are integrated
out.
The resulting approximate expression for the partition function allows
for the definition of Monte Carlo weights of the form
```math
W(\mathbf{x})=e^{-S_{B}}\prod_{\sigma}\det M_{\sigma},
```
where ``\mathbf{x}`` signifies all the relevant degrees of freedom
that need to be sampled. While not written explicitly, the bosonic
action ``S_{B}`` and each fermion determinant matrix ``M_{\sigma}``
depend on ``\mathbf{x}``. In the absence of a mean field pairing term
or some similarly exotic interaction, the index ``\sigma`` typically
corresponds to the fermion spin species. In the case of electrons
this means ``\sigma=\{\uparrow,\downarrow\}``.
Each fermion determinant matrix is of the form
```math
\begin{align*}
M_{\sigma}(\tau)= & I+B_{\sigma}(\tau,0)B_{\sigma}(\beta,\tau)\\
= & I+B_{\sigma,l}B_{\sigma,l-1}\dots B_{\sigma,1}B_{\sigma,L_{\tau}}\dots B_{\sigma,l+2}B_{\sigma,l+1}
\end{align*}
```
where
```math
B_{\sigma}(\tau,\tau')=B_{\sigma,l}B_{\sigma,l-1}\dots B_{\sigma,l'+1}
```
such that ``\det M_{\sigma}(\tau)=\det M_{\sigma}(\tau')`` for any
pair ``(l,l')\in[1,L_{\tau}]``.
Each propagator matrix ``B_{\sigma,l}=B_{\sigma}(\tau,\tau-\Delta\tau)`` may be represented in either the symmetric form
```math
B_{\sigma,l}=e^{-\tfrac{\Delta\tau}{2}K_{l}} e^{-\Delta\tau V_{l}} e^{-\tfrac{\Delta\tau}{2}K_{l}}
```
or the asymmetric form
```math
B_{\sigma,l} = e^{-\Delta\tau V_{l}} e^{-\Delta\tau K_{l}},
```
where ``V_{l}`` is a diagonal matrix corresponding to the on-site energy
for each site in the lattice, and ``K_{l}`` is the strictly off-diagonal
hopping matrix.
The single-particle fermion Green's function is given by
```math
G_{\sigma,i,j}(\tau,\tau')=\langle\hat{\mathcal{T}}\hat{c}_{\sigma,i}(\tau)\hat{c}_{\sigma,j}^{\dagger}(\tau')\rangle=\begin{cases}
\langle\hat{c}_{\sigma,i}(\tau)\hat{c}_{\sigma,j}^{\dagger}(\tau')\rangle & \tau\ge\tau'\\
-\langle\hat{c}_{\sigma,j}^{\dagger}(\tau')\hat{c}_{\sigma,i}(\tau)\rangle & \tau<\tau',
\end{cases}
```
where ``\hat{c}_{\sigma,i}^{\dagger}\,(\hat{c}_{\sigma,i})`` is the
fermion creation (annihilation) operator for a fermion with spin ``\sigma``
on site ``i`` on the lattice, and ``\hat{\mathcal{T}}`` is the time-ordering
operator. The equal-time Green's function is related to the fermion
determinant matrix by
```math
G_{\sigma,i,j}(\tau,\tau)=M_{\sigma,i,j}^{-1}(\tau),
```
where again ``\tau=l\cdot\Delta\tau``. The equal-time Green's function
matrix can be advanced to the next imaginary time slice using the
relationship
```math
G_{\sigma}(\tau+\Delta\tau,\tau+\Delta\tau)=B_{\sigma,l+1}G_{\sigma}(\tau,\tau)B_{\sigma,l+1}^{-1}
```
and
```math
G_{\sigma}(\tau-\Delta\tau,\tau-\Delta\tau)=B_{\sigma,l}^{-1}G_{\sigma}(\tau,\tau)B_{\sigma,l}.
```
The unequal-time Green's function is accessible using the relations
```math
\begin{align*}
G_{\sigma}(\tau,0) = & B_{\sigma}(\tau,0)G_{\sigma}(0,0)\\
= & [B_{\sigma}^{-1}(\tau,0) + B_{\sigma}(\beta,\tau)]^{-1},
\end{align*}
```
and
```math
\begin{align*}
G_{\sigma}(0,\tau) = & -[I-G_{\sigma}(0,0)] B_{\sigma}^{-1}(\tau,0) \\
= & -[B_{\sigma}^{-1}(\beta,\tau) + B_{\sigma}(\tau,0)]^{-1},
\end{align*}
```
where the second relationship may be shown by applying the Woodbury matrix identity.
These relationships also imply
```math
G_{\sigma}(\tau,0) = B_{\sigma}^{-1}(\tau',\tau)G_{\sigma}(\tau',0)
```
and
```math
G_{\sigma}(0,\tau) = G_{\sigma}(0,\tau') B_{\sigma}(\tau',\tau),
```
for ``\tau\in[0,\beta-\Delta\tau]`` and ``\tau<\tau'<\beta``.
By applying the anti-periodic boundary conditions of the single-particle Green's
function in imaginary time it immediately follows that
```math
G_{\sigma}(\beta,0) = I-G_{\sigma}(0,0)
```
and
```math
G_\sigma(0,\beta) = -G_{\sigma}(0,0),
```
where
```math
G_{\sigma}(0,0)=[I+B_{\sigma}(\beta,0)]^{-1}=[I+B_{\sigma,L_{\tau}}\dots B_{\sigma,1}]^{-1},
```
subject to the boundary condition ``G_{\sigma}(0,0)=G_{\sigma}(\beta,\beta)``.
The DQMC method also requires periodic re-calculation of the fermion
Green's function matrix as ``G_{\sigma}(\tau,\tau)`` is propagated
to later or ealier imaginary times to maintain numerical stability.
Therefore, we introduce a parameter ``n_{s},`` which describes the
frequency with which numerical stabilization needs to occur. The number
of "stabilization intervals" in imaginary time is then given by
``N_{s}=\left\lceil L_{\tau}/n_{s}\right \rceil``, and we introduce
the notation
```math
\bar{B}_{\sigma,n}=\prod_{l=(n-1)\cdot n_{s}+1}^{\min(n\cdot n_{s},N_{s})}B_{\sigma,l},
```
where ``n\in[1,N_{s}]``, to represent the product of propagator matrices
over a single stabilization interval. Using this definition we may
express ``G_{\sigma}(0,0)`` as
```math
G_{\sigma}(0,0) = (I + B_{\sigma,L_\tau} B_{\sigma,L_\tau-1} \dots B_{\sigma, 2} B_{\sigma,1})^{-1}
= (I + \bar{B}_{\sigma,N_s} \bar{B}_{\sigma,N_s-1} \dots \bar{B}_{\sigma, 2} \bar{B}_{\sigma,1})^{-1}.
```
## Basic Usage
In this section we introduce some of the basics of using this package by setting up the framework
for a DQMC simulations in the case of a simple non-interacting square lattice tight binding model,
assuming two electron spin species, spin up and spin down.
While this is a "tivial" example, it is instructive.
```@example square
using LinearAlgebra
using LatticeUtilities
using JDQMCFramework
```
First let us define the relevant model parameters.
```@example square
# hopping amplitude
t = 1.0
# chemical potential
ΞΌ = 0.0
# lattice size
L = 4
# inverse temperature
Ξ² = 3.7
# discretization in imaginary time
ΞΟ = 0.1
# frequency of numerical stabilization
n_stab = 10
nothing; # hide
```
Next we calculate the length of the imaginary time axis ``L_\tau`` using the
[`eval_length_imaginary_axis`](@ref) method.
```@example square
LΟ = eval_length_imaginary_axis(Ξ², ΞΟ)
```
Using functionality imported from the [`LatticeUtilities.jl`](https://github.com/cohensbw/LatticeUtilities.jl.git)
package, we construct the neighbor table for a square lattice.
```@example square
# define unit cell
unit_cell = UnitCell(lattice_vecs = [[1.,0.],[0.,1.]], basis_vecs = [[0.,0.]])
# define size of lattice
lattice = Lattice(L = [L,L], periodic = [true,true])
# define bonds/hoppings in x and y directions
bond_x = Bond(orbitals = (1,1), displacement = [1,0])
bond_y = Bond(orbitals = (1,1), displacement = [0,1])
# construct neighbor table
neighbor_table = build_neighbor_table([bond_x, bond_y], unit_cell, lattice)
# calculate number of sites in lattice
N = nsites(unit_cell, lattice)
# calculate number of bonds in lattice
Nbonds = size(neighbor_table, 2)
(N, Nbonds)
```
Next we construct the strictly off-diagonal hopping matrix ``K,`` and a vector to represent
the diagonal on-site energy matrix ``V.``
```julia
# build hopping matrix
K = zeros(typeof(t), N, N)
build_hopping_matrix!(K, neighbor_table, fill(t, Nbonds))
# build vector representing diagonal on-site energy matrix
V = fill(-ΞΌ, N)
```
Now we define a the propagator ``B_{\sigma,l}`` for each spin species ``\sigma`` and
imaginary time slice ``\tau = \Delta\tau \cdot l.``
Of course, in the non-interacting limit considered here all the propagators matrices are identical.
This will no longer be the case if interactions are introduced, in which case each ``B_{\sigma,l}``
matrix will in general be unique.
```julia
expmΞΟV = exp.(-ΞΟ*V)
expmΞΟK = exp(-ΞΟ*K)
exppΞΟK = exp(+ΞΟ*K)
# null vector spin up propagators to fill
Bup = AsymExactPropagator{eltype(expmΞΟK),eltype(expmΞΟV)}[]
# null vecotr of spin down propagators to fill
Bdn = AsymExactPropagator{eltype(expmΞΟK),eltype(expmΞΟV)}[]
# construct propagator for each spin species and append to appropriate vector
for l in 1:LΟ
B_l = AsymExactPropagator(expmΞΟV, expmΞΟK, exppΞΟK)
push!(Bup, B_l)
push!(Bdn, B_l)
end
```
In the above we chose to represent the propagator matrices using the [`AsymExactPropagator`](@ref)
type, which assumes the ``B_l = e^{-\Delta\tau K_l} e^{-\Delta\tau V_l}`` definition,
where the ``K_l`` hopping matrix is exactly exponentiated.
This package includes the other possible definitions [`AsymChkbrdPropagator`](@ref),
[`SymExactPropagator`](@ref) and [`SymChkbrdPropagator`](@ref).
Next we instantiate two instances of the [`FermionGreensCalculator`](@ref) type, one for each of the two
electron spin species, spin up and spin down.
```julia
fgc_up = FermionGreensCalculator(Bup, Ξ², ΞΟ, n_stab)
fgc_dn = FermionGreensCalculator(Bdn, Ξ², ΞΟ, n_stab)
```
Now we initialize the spin up and spin down equal time Green's function matrices ``G_\uparrow(0,0)``
and ``G_\downarrow(0,0).``
```julia
Gup = zeros(N,N)
logdetGup, sgndetGup = calculate_equaltime_greens!(Gup, fgc_up)
Gdn = zeros(N,N)
logdetGdn, sgndetGdn = calculate_equaltime_greens!(Gdn, fgc_dn)
```
Now we will demonstrate how to synchronously iterate over the imaginary time slices
for both the spin up and spin down sectors.
```julia
# Iterate over imaginary time Ο=ΞΟβ
l.
for l in fgc_up
# Propagate equal-time Green's function matrix to current imaginary time G(ΟΒ±ΞΟ,ΟΒ±ΞΟ) ==> G(Ο,Ο)
# depending on whether iterating over imaginary time in the forward or reverse direction
propagate_equaltime_greens!(Gup, fgc_up, Bup)
propagate_equaltime_greens!(Gdn, fgc_dn, Bdn)
# LOCAL UPDATES OR EVALUATION OF DERIVATIVE OF FERMIONIC ACTION FOR THE CURRENT
# IMAGINARY TIME SLICE WOULD GO HERE
# Periodically re-calculate the Green's function matrix for numerical stability.
# Comment: if not performing updates, but just evaluating the derivative of the action, then
# set update_BΜ=false to avoid wasting cpu time re-computing B_barβ matrices.
logdetGup, sgndetGup, Ξ΄Gup, δθup = stabilize_equaltime_greens!(Gup, logdetGup, sgndetGup, fgc_up, Bup, update_BΜ=true)
logdetGdn, sgndetGdn, Ξ΄Gdn, δθdn = stabilize_equaltime_greens!(Gdn, logdetGdn, sgndetGdn, fgc_dn, Bdn, update_BΜ=true)
# Keep up and down spin Green's functions synchronized as iterating over imaginary time.
iterate(fgc_dn, fgc_up.forward)
end
```
Note that if we iterate over imaginary time again, it will iterate in the opposite direction.
This is expected behavior. Each time you iterate over imaginary time the direction of iteration reverses.
While not immediately obvious, this allows for a reduction in the number of required matrix factorizations.
This package also exports two routines, [`local_update_det_ratio`](@ref) and [`local_update_greens!`](@ref),
that are useful for implementing local updates in a DQMC simulation.
Lastly, we will will calculate the unequal-time Green's functions ``G_{\sigma}(\tau,0)`` and
``G_{\sigma}(0,\tau)``, and the equal-time Green's function ``G_{\sigma}(\tau,\tau)`` for all imaginary time slices.
This functionality is important
```julia
# initialize unequal-time Green's functions
Gup_Ο0 = similar(Gdn) # Gβ(Ο,0)
Gup_0Ο = similar(Gdn) # Gβ(0,Ο)
Gup_ΟΟ = similar(Gdn) # Gβ(Ο,Ο)
Gdn_Ο0 = similar(Gdn) # Gβ(Ο,0)
Gdn_0Ο = similar(Gdn) # Gβ(0,Ο)
Gdn_ΟΟ = similar(Gdn) # Gβ(Ο,Ο)
initialize_unequaltime_greens!(Gup_Ο0, Gup_0Ο, Gup_ΟΟ, Gup)
initialize_unequaltime_greens!(Gdn_Ο0, Gdn_0Ο, Gdn_ΟΟ, Gdn)
# EQUAL-TIME CORRELATION MEASUREMENTS WOULD GO HERE
# Iterate over imaginary time Ο=ΞΟβ
l.
for l in fgc_up
# Propagate Green's function matrices to current imaginary time slice
propagate_unequaltime_greens!(Gup_Ο0, Gup_0Ο, Gup_ΟΟ, fgc_up, Bup)
propagate_unequaltime_greens!(Gdn_Ο0, Gdn_0Ο, Gdn_ΟΟ, fgc_dn, Bdn)
# UNEQUAL-TIME CORRELATION FUNCTION MEASUREMENTS WOULD GO HERE
# Periodically re-calculate the Green's function matrix for numerical stability.
logdetGup, sgndetGup, Ξ΄Gup, δθup = stabilize_unequaltime_greens!(Gup_Ο0, Gup_0Ο, Gup_ΟΟ, logdetGup, sgndetGup, fgc_up, Bup, update_BΜ=false)
logdetGdn, sgndetGdn, Ξ΄Gdn, δθdn = stabilize_unequaltime_greens!(Gdn_Ο0, Gdn_0Ο, Gdn_ΟΟ, logdetGdn, sgndetGdn, fgc_dn, Bdn, update_BΜ=false)
# Keep up and down spin Green's functions synchronized as iterating over imaginary time.
iterate(fgc_dn, fgc_up.forward)
end
``` | JDQMCFramework | https://github.com/SmoQySuite/JDQMCFramework.jl.git |
|
[
"MIT"
] | 1.0.10 | d37e67cd855d38efbc41b807f45d758eaaa82923 | docs | 47887 | ```@meta
EditURL = "../../../examples/square_hubbard.jl"
```
Download this example as [Jupyter notebook](../assets/notebooks/square_hubbard.ipynb) or [Julia script](../assets/scripts/square_hubbard.jl).
# Tutorial 1: Square Lattice Hubbard Model DQMC Simulation
This tutorial implements a determinant quantum Monte Carlo (DQMC) simulation from "scratch"
using the [`JDQMCFramework.jl`](https://github.com/SmoQySuite/JDQMCFramework.jl.git) package, along with several others.
The purpose of this tutorial is to empower researchers to write their own lightweight DQMC codes
in order to address specific research needs that fall outside the scope of existing high-level
DQMC packages like [`SmoQyDQMC.jl`](https://github.com/SmoQySuite/SmoQyDQMC.jl.git), and to enable
rapid prototyping of algorithmic improvements to existing DQMC methods.
This tutorial is relatively long as a lot goes into writing a full DQMC code.
However, in spite of the length, each step is relatively straightforward.
This is made possible by leveraging the functionality exported by
[`JDQMCFramework.jl`](https://github.com/SmoQySuite/JDQMCFramework.jl.git) and other packages.
For instance, the [`JDQMCFramework.jl`](https://github.com/SmoQySuite/JDQMCFramework.jl.git) package takes care of all the
numerical stabilization nonsense that is one of the most challenging parts of writing a DQMC code.
Also, implementing various correlation measurements in a DQMC simulation is typically very time consuming and challening,
as it requires working through arduous Wick's contractions, and then implementing each term.
Once again, this hurdle is largely avoided by leveraging the functionality exported by the
[`JDQMCMeasurements.jl`](https://github.com/SmoQySuite/JDQMCMeasurements.jl.git) package,
which implements a variety of standard correlation function measurements for arbitary lattice geometries.
The repulsive Hubbard model Hamiltonian on a square lattice considered in this tutorial is given by
```math
\hat{H} = -t \sum_{\sigma,\langle i,j\rangle} (\hat{c}^{\dagger}_{\sigma,i} \hat{c}^{\phantom \dagger}_{\sigma,j} + {\rm h.c.})
+ U \sum_i (\hat{n}_{\uparrow,i}-\tfrac{1}{2})(\hat{n}_{\downarrow,i}-\tfrac{1}{2}) - \mu \sum_{\sigma,i} \hat{n}_{\sigma,i},
```
where ``\hat{c}^\dagger_{\sigma,i} (\hat{c}^{\phantom \dagger}_{\sigma,i})`` creates (annihilates) a spin ``\sigma``
electron on site ``i`` in the lattice, and ``\hat{n}_{\sigma,i} = \hat{c}^\dagger_{\sigma,i} \hat{c}^{\phantom \dagger}_{\sigma,i}``
is the spin-``\sigma`` electron number operator for site ``i``. In the above Hamiltonian, ``t`` is the nearest neighbor hopping integral,
``\mu`` is the chemical potential, and ``U > 0`` controls the strength of the on-site Hubbard repulsion.
Lastly, if ``\mu = 0.0,`` then the Hamiltonian is particle-hole symmetric, ensuring the system is half-filled ``(\langle n_\sigma \rangle = \tfrac{1}{2})``
and that there is no sign problem. In the case of ``\mu \ne 0`` there will be a sign problem.
The script version of this tutorial, which can be downloaded using the link found at the top of this page,
can be run with the command
```
julia square_hubbard.jl
```
in a terminal. This tutorial can also be downloaded as a notebook at the top of this page.
We begin by importing the relevant packages we will need to use in this example.
Note that to run this tutorial you will need to install all the required Julia packages.
However, this is straightforward as all the packages used in this tutorial are registered
with the Julia [General](https://github.com/JuliaRegistries/General.git)
package registry. This means they can all be easily installed with the Julia package manager
using the `add` command in the same way that the [`JDQMCFramework.jl`](https://github.com/SmoQySuite/JDQMCFramework.jl.git)
package is installed.
````@example square_hubbard
# Import relevant standard template libraries.
using Random
using LinearAlgebra
# Provides framework for implementing DQMC code.
import JDQMCFramework as jdqmcf
# Exports methods for measuring various correlation functions in a DQMC simulation.
import JDQMCMeasurements as jdqmcm
# Exports types and methods for representing lattice geometries.
import LatticeUtilities as lu
# Exports the checkerboard approximation for representing an exponentiated hopping matrix.
import Checkerboard as cb
# Package for performing Fast Fourier Transforms (FFTs).
using FFTW
````
The next incantations are included for annoying technical reasons.
Without going into too much detail, the default multithreading behavior used by BLAS/LAPACK in Julia is somewhat sub-optimal.
As a result, it is typically a good idea to include these commands in Julia DQMC codes, as they ensure
that BLAS/LAPACK (and FFTW) run in a single-threaded fashion. For more information on this issue,
I refer readers to [this discussion](https://carstenbauer.github.io/ThreadPinning.jl/stable/explanations/blas/),
which is found in the documentation for the [`ThreadPinning.jl`](https://github.com/carstenbauer/ThreadPinning.jl.git) package.
````@example square_hubbard
# Set number of threads used by BLAS/LAPACK to one.
BLAS.set_num_threads(1)
# Set number of threads used by FFTW to one.
FFTW.set_num_threads(1)
````
Now we define the relevant Hamiltonian parameter values that we want to simulate.
In this example we will stick to a relatively small system size ``(4 \times 4)`` and
inverse temperature ``(\beta = 4)`` to ensure that this tutorial
can be run quickly on a personal computer.
Also, in this tutorial I will include many print statements so that when
the tutorial is run users can keep track of what is going on. That said, for a DQMC code
that will be used in actual research you will want to replace the print statements with code
that writes relevant information and measurement results to file.
````@example square_hubbard
# Nearest-neighbor hopping amplitude.
t = 1.0
println("Nearest-neighbor hopping amplitude, t = ", t)
# Hubbard interaction.
U = 6.0
println("Hubbard interaction, U = ", U)
# Chemical potential.
ΞΌ = 2.0
println("Chemical potential, mu = ", ΞΌ)
# Inverse temperature.
Ξ² = 4.0
println("Inverse temperature, beta = ", Ξ²)
# Lattice size.
L = 4
println("Linear lattice size, L = ", L)
````
Next we define the relevant DQMC simulation parameters.
````@example square_hubbard
# Discretization in imaginary time.
ΞΟ = 0.05
println("Disretization in imaginary time, dtau = ", ΞΟ)
# Length of imaginary time axis.
LΟ = round(Int, Ξ²/ΞΟ)
println("Length of imaginary time axis, Ltau = ", LΟ)
# Whether or not to use a symmetric or asymmetric definition for the propagator matrices.
symmetric = false
println("Whether symmetric or asymmetric propagator matrices are used, symmetric = ", symmetric)
# Whether or not to use the checkerboard approximation to represent the
# exponentiated electron kinetic energy matrix exp(-ΞΟβ
K).
checkerboard = false
println("Whether the checkerboard approximation is used, checkerboard = ", checkerboard)
# Period with which numerical stabilization is performed i.e.
# how many imaginary time slices separate more expensive recomputations
# of the Green's function matrix using numerically stable routines.
n_stab = 10
println("Numerical stabilization period, n_stab = ", n_stab)
# The number of burnin sweeps through the lattice performing local updates that
# are performed to thermalize the system.
N_burnin = 2_500
println("Number of burnin sweeps, N_burnin = ", N_burnin)
# The number of measurements made once the system is thermalized.
N_measurements = 10_000
println("Number of measurements, N_measurements = ", N_measurements)
# Number of local update sweeps separating sequential measurements.
N_sweeps = 1
println("Number of local update sweeps seperating measurements, n_sweeps = ", N_sweeps)
# Number of bins used to performing a binning analysis when calculating final error bars
# for measured observables.
N_bins = 50
println("Number of measurement bins, N_bins = ", N_bins)
# Number of measurements averaged over per measurement bin.
N_binsize = N_measurements Γ· N_bins
println("Number of measurements per bin, N_binsize = ", N_binsize)
````
Now we initialize the random number generator (RNG) that will be used in the rest of the simulation.
````@example square_hubbard
# Initialize random number generator.
seed = abs(rand(Int))
rng = Xoshiro(seed)
println("Random seed used to initialize RNG, seed = ", seed)
````
Next, we define our square lattice geometry using the [`LatticeUtilities.jl`](https://github.com/SmoQySuite/LatticeUtilities.jl.git) package.
````@example square_hubbard
# Define the square lattice unit cell.
unit_cell = lu.UnitCell(
lattice_vecs = [[1.0, 0.0],
[0.0, 1.0]],
basis_vecs = [[0.0, 0.0]]
)
# Define the size of the periodic square lattice.
lattice = lu.Lattice(
L = [L, L],
periodic = [true, true]
)
# Define nearest-neighbor bond in +x direction
bond_px = lu.Bond(
orbitals = (1,1),
displacement = [1,0]
)
# Define nearest-neighbor bond in +y direction
bond_py = lu.Bond(
orbitals = (1,1),
displacement = [0,1]
)
# Build the neighbor table corresponding to all nearest-neighbor bonds.
neighbor_table = lu.build_neighbor_table([bond_px, bond_py], unit_cell, lattice)
println("The neighbor table, neighbor_table =")
show(stdout, "text/plain", neighbor_table)
println("\n")
# The total number of sites/orbitals in the lattice.
N = lu.nsites(unit_cell, lattice) # For square lattice this is simply N = L^2
println("Total number of sites in lattice, N = ", N)
# Total number of bonds in lattice.
N_bonds = size(neighbor_table, 2)
println("Total number of bonds in lattice, N_bonds = ", N_bonds)
````
Now we define a few other bonds that are needed to measure
the local s-wave, extended s-wave and d-wave pair susceptibilities.
````@example square_hubbard
# Define a "trivial" bond that maps a site back onto itself.
bond_trivial = lu.Bond(
orbitals = (1,1),
displacement = [0,0]
)
# Define bond in -x direction.
bond_nx = lu.Bond(
orbitals = (1,1),
displacement = [-1,0]
)
# Define bond in -y direction.
bond_ny = lu.Bond(
orbitals = (1,1),
displacement = [0,-1]
)
````
Now let us calculated the exponentiated electron kinetic energy matrix ``e^{-\Delta\tau^\prime K}``,
where
```math
\hat{K} = -t \sum_{\sigma,\langle i,j\rangle} (\hat{c}^{\dagger}_{\sigma,i} \hat{c}^{\phantom \dagger}_{\sigma,j} + {\rm h.c.})
= \sum_\sigma \hat{\mathbf{c}}^\dagger_\sigma K \hat{\mathbf{c}}^{\phantom\dagger}_\sigma
```
and ``\hat{\mathbf{c}}^{\dagger}_{\sigma,i} = \left[ \hat{c}^{\dagger}_{\sigma,1} \ , \ \dots \ , \ \hat{c}^{\dagger}_{\sigma,N} \right]``
is a row vector of electron creation operators.
Note that if `symmetric = true`, i.e. the symmetric definition for the propagator matrices
```math
B_{\sigma,l} = e^{-\Delta\tau^\prime K} \cdot e^{-\Delta\tau V_{\sigma,l}} \cdot e^{-\Delta\tau^\prime K}
```
is being used, then ``\Delta\tau^\prime = \tfrac{1}{2} \Delta\tau``.
If the asymmetric definition
```math
B_{\sigma,l} = e^{-\Delta\tau V_{\sigma,l}} \cdot e^{-\Delta\tau^\prime K}
```
is used (`symmetric = false`), then ``\Delta\tau^\prime = \Delta\tau.``
Note the branching logic below associated with whether or not the
matrix ``e^{-\Delta\tau^\prime K}`` is calculated exactly, or represented by the sparse checkerboard approximation
using the package [`Checkerboard.jl`](https://github.com/SmoQySuite/Checkerboard.jl.git).
````@example square_hubbard
# Define ΞΟβ²=ΞΟ/2 if symmetric = true, otherwise ΞΟβ²=ΞΟ
ΞΟβ² = symmetric ? ΞΟ/2 : ΞΟ
# If the matrix exp(ΞΟβ²β
K) is represented by the checkerboard approximation.
if checkerboard
# Construct the checkerboard approximation to the matrix exp(-ΞΟβ²β
K).
expnΞΟβ²K = cb.CheckerboardMatrix(neighbor_table, fill(t, N_bonds), ΞΟβ²)
# If the matrix exp(ΞΟβ²β
K) is NOT represented by the checkerboard approximation.
else
# Construct the electron kinetic energy matrix.
K = zeros(typeof(t), N, N)
for bond in 1:N_bonds
i, j = neighbor_table[1, bond], neighbor_table[2, bond]
K[i,j] = -t
K[j,i] = -t
end
# Calculate the exponentiated kinetic energy matrix, exp(-ΞΟβ
K).
# Note that behind the scenes Julia is diagonalizing the matrix K in order to exponentiate it.
expnΞΟβ²K = exp(-ΞΟβ²*K)
# Calculate the inverse of the exponentiated kinetic energy matrix, exp(+ΞΟβ
K).
exppΞΟβ²K = exp(+ΞΟβ²*K)
end;
nothing #hide
````
In this example we are going to introduce an Ising Hubbard-Stratonovich (HS) field to decouple
the Hubbard interaction. The Ising HS transformation
```math
e^{-\Delta\tau U (\hat{n}_{\uparrow,i,l}-\tfrac{1}{2})(\hat{n}_{\downarrow,i,l}-\tfrac{1}{2})} =
\frac{1}{2} e^{-\tfrac{1}{4} \Delta\tau U} \sum_{s_{i,l} = \pm 1} e^{\alpha s_{i,l}(\hat{n}_{\uparrow,i,l}-\hat{n}_{\downarrow,i,l})}
```
is introduced for all imaginary time slices ``l \in [1, L_\tau]`` and sites ``i \in [1, N]`` in the lattice, where
```math
\alpha = \cosh^{-1}\left( e^{\tfrac{1}{2}\Delta\tau U} \right)
```
is a constant. We start the simulation from a random ``s_{i,l}`` Ising HS field configuration.
````@example square_hubbard
# Define constant associated Ising Hubbard-Stratonovich (HS) transformation.
Ξ± = acosh(exp(ΞΟ*U/2))
# Initialize a random Ising HS configuration.
s = rand(rng, -1:2:1, N, LΟ)
println("Random initial Ising HS configuration, s =")
show(stdout, "text/plain", s)
````
Next we initialize a propagator matrix ``B_{\sigma,l}`` for each imaginary time slice ``l \in [1,L_\tau]``.
We first initialize a pair of vectors `Bup` and `Bdn` that will contain the ``L_\tau`` propagators associated with each time slice.
The branching logic below enforces the correct propagator matrix definition is used based on the boolean flags
`symmetric` and `checkerboard` defined above.
````@example square_hubbard
# Matrix element type for exponentiated electron kinetic energy matrix exp{-ΞΟβ²β
K}
T_expnΞΟK = eltype(t)
# Matrix element type for diagonal exponentiated electron potential energy matrix exp{-ΞΟβ
V[Ο,l]}
T_expnΞΟV = typeof(Ξ±)
# Initialize empty vector to contain propagator matrices for each imaginary time slice.
if checkerboard && symmetric
# Propagator defined as B[Ο,l] = exp{-ΞΟβ
K/2}β
exp{-ΞΟβ
V[Ο,l]}β
exp{-ΞΟβ
K/2},
# where the dense matrix exp{-ΞΟβ
K/2} is approximated by the sparse checkerboard matrix.
Bup = jdqmcf.SymChkbrdPropagator{T_expnΞΟK, T_expnΞΟV}[]
Bdn = jdqmcf.SymChkbrdPropagator{T_expnΞΟK, T_expnΞΟV}[]
elseif checkerboard && !symmetric
# Propagator defined as B[Ο,l] = exp{-ΞΟβ
V[Ο,l]}β
exp{-ΞΟβ
K},
# where the dense matrix exp{-ΞΟβ
K} is approximated by the sparse checkerboard matrix.
Bup = jdqmcf.AbstractChkbrdPropagator{T_expnΞΟK, T_expnΞΟV}[]
Bdn = jdqmcf.AbstractChkbrdPropagator{T_expnΞΟK, T_expnΞΟV}[]
elseif !checkerboard && symmetric
# Propagator defined as B[Ο,l] = exp{-ΞΟβ
K/2}β
exp{-ΞΟβ
V[Ο,l]}β
exp{-ΞΟβ
K/2},
# where the dense matrix exp{-ΞΟβ
K/2} is exactly calculated.
Bup = jdqmcf.SymExactPropagator{T_expnΞΟK, T_expnΞΟV}[]
Bdn = jdqmcf.SymExactPropagator{T_expnΞΟK, T_expnΞΟV}[]
elseif !checkerboard && !symmetric
# Propagator defined as B[Ο,l] = exp{-ΞΟβ
V[Ο,l]}β
exp{-ΞΟβ
K},
# where the dense matrix exp{-ΞΟβ
K} is exactly calculated.
Bup = jdqmcf.AsymExactPropagator{T_expnΞΟK, T_expnΞΟV}[]
Bdn = jdqmcf.AsymExactPropagator{T_expnΞΟK, T_expnΞΟV}[]
end;
nothing #hide
````
Having an initialized the vector `Bup` and `Bdn` that will contain the propagator matrices, we now construct the
propagator matrices for each time-slice based on the initial HS field configuration `s`.
````@example square_hubbard
# Iterate over time-slices.
for l in 1:LΟ
# Get the HS fields associated with the current time-slice l.
s_l = @view s[:,l]
# Calculate the spin-up diagonal exponentiated potential energy
# matrix exp{-ΞΟβ
V[β,l]} = exp{-ΞΟβ
(-Ξ±/ΞΟβ
s[i,l]-ΞΌ)} = exp{+Ξ±β
s[i,l] + ΞΟβ
ΞΌ}.
expnΞΟVup = zeros(T_expnΞΟV, N)
@. expnΞΟVup = exp(+Ξ± * s_l + ΞΟ*ΞΌ)
# Calculate the spin-down diagonal exponentiated potential energy
# matrix exp{-ΞΟβ
V[β,l]} = exp{-ΞΟβ
(+Ξ±/ΞΟβ
s[i,l]-ΞΌ)} = exp{-Ξ±β
s[i,l] + ΞΟβ
ΞΌ}.
expnΞΟVdn = zeros(T_expnΞΟV, N)
@. expnΞΟVdn = exp(-Ξ± * s_l + ΞΟ*ΞΌ)
# Initialize spin-up and spin-down propagator matrix for the current time-slice l.
if checkerboard && symmetric
push!(Bup, jdqmcf.SymChkbrdPropagator(expnΞΟVup, expnΞΟβ²K))
push!(Bdn, jdqmcf.SymChkbrdPropagator(expnΞΟVdn, expnΞΟβ²K))
elseif checkerboard && !symmetric
push!(Bup, jdqmcf.AsymChkbrdPropagator(expnΞΟVup, expnΞΟβ²K))
push!(Bdn, jdqmcf.AsymChkbrdPropagator(expnΞΟVdn, expnΞΟβ²K))
elseif !checkerboard && symmetric
push!(Bup, jdqmcf.SymExactPropagator(expnΞΟVup, expnΞΟβ²K, exppΞΟβ²K))
push!(Bdn, jdqmcf.SymExactPropagator(expnΞΟVdn, expnΞΟβ²K, exppΞΟβ²K))
elseif !checkerboard && !symmetric
push!(Bup, jdqmcf.AsymExactPropagator(expnΞΟVup, expnΞΟβ²K, exppΞΟβ²K))
push!(Bdn, jdqmcf.AsymExactPropagator(expnΞΟVdn, expnΞΟβ²K, exppΞΟβ²K))
end
end
````
Now we instantiate two instances for the [`FermionGreensCalculator`](@ref) type, one for each spin
species, spin up and spin down. This object enables the efficient and numerically stable calculation
of the Green's functions behind-the-scenes, so that we do not need to concern ourselves with
implementing numerical stablization routines ourselves.
````@example square_hubbard
# Initialize a FermionGreensCalculator for both spin up and down electrons.
fermion_greens_calc_up = jdqmcf.FermionGreensCalculator(Bup, Ξ², ΞΟ, n_stab)
fermion_greens_calc_dn = jdqmcf.FermionGreensCalculator(Bdn, Ξ², ΞΟ, n_stab);
nothing #hide
````
Next we calculate the equal-time Green's function matrices
```math
G_\sigma(0,0) = [1 + B_\sigma(\beta,0)]^{-1} = [1 + B_{\sigma,L_\tau} \dots B_{\sigma,1}]^{-1}
```
for both electron spin species, ``\sigma = (\uparrow, \downarrow).``
````@example square_hubbard
# Calculate spin-up equal-time Green's function matrix.
Gup = zeros(typeof(t), N, N)
logdetGup, sgndetGup = jdqmcf.calculate_equaltime_greens!(Gup, fermion_greens_calc_up)
# Calculate spin-down equal-time Green's function matrix.
Gdn = zeros(typeof(t), N, N)
logdetGdn, sgndetGdn = jdqmcf.calculate_equaltime_greens!(Gdn, fermion_greens_calc_dn);
nothing #hide
````
In order to perform the DQMC simulation all we need are the equal-time Green's function matrices
``G_\sigma(0,0)`` calculated above. However, in order to make time-displaced correlation function
measurements we also need to initialize six more matrices, which correspond to ``G_\sigma(\tau,\tau),``
``G_\sigma(\tau,0)`` and ``G_\sigma(0,\tau).``
````@example square_hubbard
# Allcoate time-displaced Green's functions.
Gup_Ο0 = zero(Gup) # Gup(Ο,0)
Gup_0Ο = zero(Gup) # Gup(0,Ο)
Gup_ΟΟ = zero(Gup) # Gup(Ο,Ο)
Gdn_Ο0 = zero(Gdn) # Gdn(Ο,0)
Gdn_0Ο = zero(Gdn) # Gdn(0,Ο)
Gdn_ΟΟ = zero(Gdn); # Gdn(Ο,Ο)
nothing #hide
````
Now we will allocate arrays to contain the various measurements we will make during the simulation,
including various correlation functions. Note that the definition for each measurement will be
supplied later in the tutorial when we begin processing the data to calculate the final statistics
for each measured observable.
````@example square_hubbard
# Vector to contain binned average sign measurement.
avg_sign = zeros(eltype(Gup), N_bins)
# Vector to contain binned density measurement.
density = zeros(eltype(Gup), N_bins)
# Vector to contain binned double occupancy measurement.
double_occ = zeros(eltype(Gup), N_bins)
# Array to contain binned position-space time-displaced Green's function measurements.
C_greens = zeros(Complex{Float64}, N_bins, L, L, LΟ+1)
# Array to contain binned position-space time-displaced Spin-Z correlation function measurements.
C_spinz = zeros(Complex{Float64}, N_bins, L, L, LΟ+1)
# Array to contain binned position-space time-displaced density correlation function measurements.
C_density = zeros(Complex{Float64}, N_bins, L, L, LΟ+1)
# Array to contain binned position-space local s-wave pair correlation function.
C_loc_swave = zeros(Complex{Float64}, N_bins, L, L, LΟ+1)
# Array to contain binned position-space extended s-wave pair correlation function.
C_ext_swave = zeros(Complex{Float64}, N_bins, L, L, LΟ+1)
# Array to contain binned position-space d-wave pair correlation function.
C_dwave = zeros(Complex{Float64}, N_bins, L, L, LΟ+1)
# Array to contain binned momentum-space d-wave pair susceptibility.
P_d_q = zeros(Complex{Float64}, N_bins, L, L);
nothing #hide
````
Below we implement a function that sweeps through all time-slices and sites in the lattice,
attempting an update to each Ising HS field ``s_{i,l}``.
````@example square_hubbard
# Function to perform local updates to all Ising HS fields.
function local_update!(
Gup::Matrix{T}, logdetGup, sgndetGup, Bup, fermion_greens_calc_up,
Gdn::Matrix{T}, logdetGdn, sgndetGdn, Bdn, fermion_greens_calc_dn,
s, ΞΌ, Ξ±, ΞΟ, Ξ΄G, rng
) where {T<:Number}
# Length of imaginary time axis.
LΟ = length(Bup)
# Number of sites in lattice.
N = size(Gup,1)
# Allocate temporary arrays that will be used to avoid dynamic memory allocation.
A = zeros(T, N, N)
u = zeros(T, N)
v = zeros(T, N)
# Allocate vector of integers to contain random permutation specifying the order in which
# sites are iterated over at each imaginary time slice when performing local updates.
perm = collect(1:size(Gup,1))
# Variable to keep track of the acceptance rate.
acceptance_rate = 0.0
# Iterate over imaginary time slices.
for l in fermion_greens_calc_up
# Propagate equal-time Green's function matrix to current imaginary time
# G(ΟΒ±ΞΟ,ΟΒ±ΞΟ) ==> G(Ο,Ο) depending on whether iterating over imaginary
# time in the forward or reverse direction
jdqmcf.propagate_equaltime_greens!(Gup, fermion_greens_calc_up, Bup)
jdqmcf.propagate_equaltime_greens!(Gdn, fermion_greens_calc_dn, Bdn)
# If using symmetric propagator definition (symmetric = true), then apply
# the transformation G ==> GΜ = exp{+ΞΟβ
K/2}β
Gβ
exp{-ΞΟβ
K/2}.
# If asymmetric propagator definition is used (symmetric = false),
# then this does nothing.
jdqmcf.partially_wrap_greens_forward!(Gup, Bup[l], A)
jdqmcf.partially_wrap_greens_forward!(Gdn, Bdn[l], A)
# Get the HS fields associated with the current imaginary time-slice.
s_l = @view s[:,l]
# Perform local updates HS fields associated with the current imaginary time slice.
(logdetGup, sgndetGup, logdetGdn, sgndetGdn, acceptance_rate_l) = _local_update!(
Gup, logdetGup, sgndetGup, Bup[l], Gdn, logdetGdn, sgndetGdn, Bdn[l],
s_l, ΞΌ, Ξ±, ΞΟ, rng, perm, u, v
)
# Record the acceptance rate
acceptance_rate += acceptance_rate_l / LΟ
# If using symmetric propagator definition (symmetric = true), then apply
# the transformation GΜ ==> G = exp{-ΞΟβ
K/2}β
GΜβ
exp{+ΞΟβ
K/2}.
# If asymmetric propagator definition is used (symmetric = false),
# then this does nothing.
jdqmcf.partially_wrap_greens_reverse!(Gup, Bup[l], A)
jdqmcf.partially_wrap_greens_reverse!(Gdn, Bdn[l], A)
# Periodically re-calculate the Green's function matrix for numerical stability.
logdetGup, sgndetGup, δGup, δθup = jdqmcf.stabilize_equaltime_greens!(
Gup, logdetGup, sgndetGup, fermion_greens_calc_up, Bup, update_BΜ = true
)
logdetGdn, sgndetGdn, δGdn, δθdn = jdqmcf.stabilize_equaltime_greens!(
Gdn, logdetGdn, sgndetGdn, fermion_greens_calc_dn, Bdn, update_BΜ = true
)
# Record largest numerical error corrected by numerical stabilization.
Ξ΄G = max(Ξ΄G, Ξ΄Gup, Ξ΄Gdn)
# Keep up and down spin Green's functions synchronized as iterating over imaginary time.
iterate(fermion_greens_calc_dn, fermion_greens_calc_up.forward)
end
return logdetGup, sgndetGup, logdetGdn, sgndetGdn, Ξ΄G, acceptance_rate
end
# Iterate over all sites for single imaginary time-slice, attempting a local
# update to each corresponding Ising HS field.
function _local_update!(
Gup, logdetGup, sgndetGup, Bup, Gdn, logdetGdn, sgndetGdn, Bdn,
s, ΞΌ, Ξ±, ΞΟ, rng, perm, u, v
)
# Randomize the order in which the sites are iterated over.
shuffle!(rng, perm)
# Counter for number of accepted updates.
accepted = 0
# Iterate over sites in lattice.
for i in perm
# Calculate the new value of the diagonal potential energy matrix element
# assuming the sign of the Ising HS field is changed.
Vupβ² = -Ξ±/ΞΟ * (-s[i]) - ΞΌ
Vdnβ² = +Ξ±/ΞΟ * (-s[i]) - ΞΌ
# Calculate the determinant ratio associated with the proposed update.
Rup, Ξup = jdqmcf.local_update_det_ratio(Gup, Bup, Vupβ², i, ΞΟ)
Rdn, Ξdn = jdqmcf.local_update_det_ratio(Gdn, Bdn, Vdnβ², i, ΞΟ)
# Calculate the acceptance probability based on the Metropolis accept/reject criteria.
P = min(1.0, abs(Rup * Rdn))
# Randomly Accept or reject the proposed update with the specified probability.
if rand(rng) < P
# Increment the accepted update counter.
accepted += 1
# Flip the appropriate Ising HS field.
s[i] = -s[i]
# Update the Green's function matrices.
logdetGup, sgndetGup = jdqmcf.local_update_greens!(
Gup, logdetGup, sgndetGup, Bup, Rup, Ξup, i, u, v
)
logdetGdn, sgndetGdn = jdqmcf.local_update_greens!(
Gdn, logdetGdn, sgndetGdn, Bdn, Rdn, Ξdn, i, u, v
)
end
end
# Calculate the acceptance rate.
acceptance_rate = accepted / N
return logdetGup, sgndetGup, logdetGdn, sgndetGdn, acceptance_rate
end;
nothing #hide
````
Next we implement a function to make measurements during the simulation, including time-displaced measurements.
Note that if we want to calculate the expectation value for some observable ``\langle \mathcal{O} \rangle``,
then during the simulation we actually measure ``\langle \mathcal{S O} \rangle_{\mathcal{W}}``, where
``\langle \bullet \rangle_{\mathcal{W}}`` denotes an average with respect to states sampled according
to the DQMC weights
```math
\mathcal{W} = | \det G_\uparrow^{-1} \det G_\downarrow^{-1} |,
```
such that
```math
\mathcal{S} = \text{sign}(\det G_\uparrow^{-1} \det G_\downarrow^{-1})
```
is the sign associated with each state. The reweighting method is then used at the end of a simulation
to recover the correct expectation value according to
```math
\langle \mathcal{O} \rangle = \frac{ \langle \mathcal{SO} \rangle_{\mathcal{W}} }{ \langle \mathcal{S} \rangle_{\mathcal{W}} },
```
where ``\langle \mathcal{S} \rangle_{\mathcal{W}}`` is the average sign measured over the course of the simulation.
````@example square_hubbard
# Make measurements.
function make_measurements!(
Gup, logdetGup, sgndetGup, Gup_ΟΟ, Gup_Ο0, Gup_0Ο, Bup, fermion_greens_calc_up,
Gdn, logdetGdn, sgndetGdn, Gdn_ΟΟ, Gdn_Ο0, Gdn_0Ο, Bdn, fermion_greens_calc_dn,
unit_cell, lattice, bond_trivial, bond_px, bond_nx, bond_py, bond_ny,
bin, avg_sign, density, double_occ, C_greens, C_spinz, C_density,
C_loc_swave, C_ext_swave, C_dwave
)
# Initialize time-displaced Green's function matrices for both spin species:
# G(Ο=0,Ο=0) = G(0,0)
# G(Ο=0,0) = G(0,0)
# G(0,Ο=0) = -(I-G(0,0))
jdqmcf.initialize_unequaltime_greens!(Gup_Ο0, Gup_0Ο, Gup_ΟΟ, Gup)
jdqmcf.initialize_unequaltime_greens!(Gdn_Ο0, Gdn_0Ο, Gdn_ΟΟ, Gdn)
# Calculate the current sign.
sgn = sign(sgndetGup * sgndetGdn)
# Measure the average sign.
avg_sign[bin] += sgn
# Measure the density.
nup = jdqmcm.measure_n(Gup)
ndn = jdqmcm.measure_n(Gdn)
density[bin] += sgn * (nup + ndn)
# Measure the double occupancy.
double_occ[bin] += sgn * jdqmcm.measure_double_occ(Gup, Gdn)
# Measure equal-time correlation functions.
make_correlation_measurements!(
Gup, Gup_ΟΟ, Gup_Ο0, Gup_0Ο, Gdn, Gdn_ΟΟ, Gdn_Ο0, Gdn_0Ο,
unit_cell, lattice, bond_trivial, bond_px, bond_nx, bond_py, bond_ny,
bin, 0, sgn, C_greens, C_spinz, C_density, C_loc_swave, C_ext_swave, C_dwave
)
# Iterate over imaginary time slices.
for l in fermion_greens_calc_up
# Propagate equal-time Green's function matrix to current imaginary time
# G(ΟΒ±ΞΟ,ΟΒ±ΞΟ) ==> G(Ο,Ο) depending on whether iterating over imaginary
# time in the forward or reverse direction
jdqmcf.propagate_unequaltime_greens!(Gup_Ο0, Gup_0Ο, Gup_ΟΟ, fermion_greens_calc_up, Bup)
jdqmcf.propagate_unequaltime_greens!(Gdn_Ο0, Gdn_0Ο, Gdn_ΟΟ, fermion_greens_calc_dn, Bdn)
# Measure time-displaced correlation function measurements for Ο = lβ
ΞΟ.
make_correlation_measurements!(
Gup, Gup_ΟΟ, Gup_Ο0, Gup_0Ο, Gdn, Gdn_ΟΟ, Gdn_Ο0, Gdn_0Ο,
unit_cell, lattice, bond_trivial, bond_px, bond_nx, bond_py, bond_ny,
bin, l, sgn, C_greens, C_spinz, C_density, C_loc_swave, C_ext_swave, C_dwave,
)
# Periodically re-calculate the Green's function matrix for numerical stability.
logdetGup, sgndetGup, δGup, δθup = jdqmcf.stabilize_unequaltime_greens!(
Gup_Ο0, Gup_0Ο, Gup_ΟΟ, logdetGup, sgndetGup, fermion_greens_calc_up, Bup, update_BΜ=false
)
logdetGdn, sgndetGdn, δGdn, δθdn = jdqmcf.stabilize_unequaltime_greens!(
Gdn_Ο0, Gdn_0Ο, Gdn_ΟΟ, logdetGdn, sgndetGdn, fermion_greens_calc_dn, Bdn, update_BΜ=false
)
# Keep up and down spin Green's functions synchronized as iterating over imaginary time.
iterate(fermion_greens_calc_dn, fermion_greens_calc_up.forward)
end
return nothing
end
# Make time-displaced measurements.
function make_correlation_measurements!(
Gup, Gup_ΟΟ, Gup_Ο0, Gup_0Ο, Gdn, Gdn_ΟΟ, Gdn_Ο0, Gdn_0Ο,
unit_cell, lattice, bond_trivial, bond_px, bond_nx, bond_py, bond_ny,
bin, l, sgn, C_greens, C_spinz, C_density, C_loc_swave, C_ext_swave, C_dwave,
tmp = zeros(eltype(C_greens), lattice.L...)
)
# Get a view into the arrays accumulating the correlation measurements
# for the current imaginary time-slice and bin.
C_greens_bin_l = @view C_greens[bin,:,:,l+1]
C_spinz_bin_l = @view C_spinz[bin,:,:,l+1]
C_density_bin_l = @view C_density[bin,:,:,l+1]
C_loc_swave_bin_l = @view C_loc_swave[bin,:,:,l+1]
C_ext_swave_bin_l = @view C_ext_swave[bin,:,:,l+1]
C_dwave_bin_l = @view C_dwave[bin,:,:,l+1]
# Measure Green's function for both spin-up and spin-down.
jdqmcm.greens!(C_greens_bin_l, 1, 1, unit_cell, lattice, Gup_Ο0, sgn)
jdqmcm.greens!(C_greens_bin_l, 1, 1, unit_cell, lattice, Gdn_Ο0, sgn)
# Measure spin-z spin-spin correlation.
jdqmcm.spin_z_correlation!(
C_spinz_bin_l, 1, 1, unit_cell, lattice,
Gup_Ο0, Gup_0Ο, Gup_ΟΟ, Gup, Gdn_Ο0, Gdn_0Ο, Gdn_ΟΟ, Gdn, sgn
)
# Measure density-density correlation.
jdqmcm.density_correlation!(
C_density_bin_l, 1, 1, unit_cell, lattice,
Gup_Ο0, Gup_0Ο, Gup_ΟΟ, Gup, Gdn_Ο0, Gdn_0Ο, Gdn_ΟΟ, Gdn, sgn
)
# Measure local s-wave correlation measurement.
jdqmcm.pair_correlation!(
C_loc_swave_bin_l, bond_trivial, bond_trivial, unit_cell, lattice, Gup_Ο0, Gdn_Ο0, sgn
)
# Group the nearest-neighbor bonds together.
bonds = (bond_px, bond_nx, bond_py, bond_ny)
# d-wave correlation phases.
dwave_phases = (+1, +1, -1, -1)
# Iterate over all pairs of nearest-neigbbor bonds.
for i in eachindex(bonds)
for j in eachindex(bonds)
# Measure pair correlation associated with bond pair.
fill!(tmp, 0)
jdqmcm.pair_correlation!(
tmp, bonds[i], bonds[j], unit_cell, lattice, Gup_Ο0, Gdn_Ο0, sgn
)
# Add contribution to extended s-wave and d-wave pair correlation.
@. C_ext_swave_bin_l += tmp / 4
@. C_dwave_bin_l += dwave_phases[i] * dwave_phases[j] * tmp / 4
end
end
return nothing
end;
nothing #hide
````
Now we will write a top-level function to run the simulation, including both the thermalization
and measurement portions of the simulation.
````@example square_hubbard
# High-level function to run the DQMC simulation.
function run_simulation!(
s, ΞΌ, Ξ±, ΞΟ, rng, N_burnin, N_bins, N_binsize, N_sweeps,
Gup, logdetGup, sgndetGup, Gup_ΟΟ, Gup_Ο0, Gup_0Ο, Bup, fermion_greens_calc_up,
Gdn, logdetGdn, sgndetGdn, Gdn_ΟΟ, Gdn_Ο0, Gdn_0Ο, Bdn, fermion_greens_calc_dn,
unit_cell, lattice, bond_trivial, bond_px, bond_nx, bond_py, bond_ny,
avg_sign, density, double_occ, C_greens, C_spinz, C_density,
C_loc_swave, C_ext_swave, C_dwave
)
# Initialize variable to keep track of largest corrected numerical error.
Ξ΄G = 0.0
# The acceptance rate on local updates.
acceptance_rate = 0.0
# Perform burnin updates to thermalize system.
for n in 1:N_burnin
# Attempt local update to every Ising HS field.
(logdetGup, sgndetGup, logdetGdn, sgndetGdn, Ξ΄Gβ², ac) = local_update!(
Gup, logdetGup, sgndetGup, Bup, fermion_greens_calc_up,
Gdn, logdetGdn, sgndetGdn, Bdn, fermion_greens_calc_dn,
s, ΞΌ, Ξ±, ΞΟ, Ξ΄G, rng
)
# Record max numerical error.
Ξ΄G = max(Ξ΄G, Ξ΄Gβ²)
# Update acceptance rate.
acceptance_rate += ac
end
# Iterate over measurement bins.
for bin in 1:N_bins
# Iterate over updates and measurements in bin.
for n in 1:N_binsize
# Iterate over number of local update sweeps per measurement.
for sweep in 1:N_sweeps
# Attempt local update to every Ising HS field.
(logdetGup, sgndetGup, logdetGdn, sgndetGdn, Ξ΄Gβ², ac) = local_update!(
Gup, logdetGup, sgndetGup, Bup, fermion_greens_calc_up,
Gdn, logdetGdn, sgndetGdn, Bdn, fermion_greens_calc_dn,
s, ΞΌ, Ξ±, ΞΟ, Ξ΄G, rng
)
# Record max numerical error.
Ξ΄G = max(Ξ΄G, Ξ΄Gβ²)
# Update acceptance rate.
acceptance_rate += ac
end
# Make measurements.
make_measurements!(
Gup, logdetGup, sgndetGup, Gup_ΟΟ, Gup_Ο0, Gup_0Ο, Bup, fermion_greens_calc_up,
Gdn, logdetGdn, sgndetGdn, Gdn_ΟΟ, Gdn_Ο0, Gdn_0Ο, Bdn, fermion_greens_calc_dn,
unit_cell, lattice, bond_trivial, bond_px, bond_nx, bond_py, bond_ny,
bin, avg_sign, density, double_occ, C_greens, C_spinz, C_density,
C_loc_swave, C_ext_swave, C_dwave
)
end
# Normalize accumulated measurements by the bin size.
avg_sign[bin] /= N_binsize
density[bin] /= N_binsize
double_occ[bin] /= N_binsize
C_greens[bin,:,:,:] /= (2 * N_binsize)
C_spinz[bin,:,:,:] /= N_binsize
C_density[bin,:,:,:] /= N_binsize
C_loc_swave[bin,:,:,:] /= N_binsize
C_ext_swave[bin,:,:,:] /= N_binsize
C_dwave[bin,:,:,:] /= N_binsize
end
# Calculate the final acceptance rate for local updates.
acceptance_rate /= (N_burnin + N_bins * N_binsize * N_sweeps)
return acceptance_rate, Ξ΄G
end;
nothing #hide
````
Now let us run our DQMC simulation.
````@example square_hubbard
# Run the DQMC simulation.
acceptance_rate, Ξ΄G = run_simulation!(
s, ΞΌ, Ξ±, ΞΟ, rng, N_burnin, N_bins, N_binsize, N_sweeps,
Gup, logdetGup, sgndetGup, Gup_ΟΟ, Gup_Ο0, Gup_0Ο, Bup, fermion_greens_calc_up,
Gdn, logdetGdn, sgndetGdn, Gdn_ΟΟ, Gdn_Ο0, Gdn_0Ο, Bdn, fermion_greens_calc_dn,
unit_cell, lattice, bond_trivial, bond_px, bond_nx, bond_py, bond_ny,
avg_sign, density, double_occ, C_greens, C_spinz, C_density,
C_loc_swave, C_ext_swave, C_dwave
)
println("Acceptance Rate = ", acceptance_rate)
println("Largest Numerical Error = ", Ξ΄G)
````
Having completed the DQMC simulation, the next step is the analyze the results,
calculating the mean and error for various measuremed observables.
We will first calculate the relevant global measurements, including the
average density ``\langle n \rangle = \langle n_\uparrow + n_\downarrow \rangle``
and double occupancy ``\langle n_\uparrow n_\downarrow \rangle.``
Note that the binning method is used to calculate the error bar for the correlated data.
The Jackknife algorithm is also used to propagate error and correct for bias when evaluating
```math
\langle \mathcal{O} \rangle = \frac{ \langle \mathcal{S O} \rangle_\mathcal{W} }{ \langle \mathcal{S} \rangle_\mathcal{W} }
```
to account for the sign problem.
````@example square_hubbard
# Calculate the average sign for the simulation.
sign_avg, sign_std = jdqmcm.jackknife(identity, avg_sign)
println("Avg Sign, S = ", sign_avg, " +/- ", sign_std)
# Calculate the average density.
density_avg, density_std = jdqmcm.jackknife(/, density, avg_sign)
println("Density, n = ", density_avg, " +/- ", density_std)
# Calculate the average double occupancy.
double_occ_avg, double_occ_std = jdqmcm.jackknife(/, double_occ, avg_sign)
println("Double occupancy, nup_ndn = ", double_occ_avg, " +/- ", double_occ_std)
````
Now we move onto processing the measured correlation function data.
We define two functions to assist with this process.
The first function integrates the binned time-displaced correlation function data
over the imaginary time axis in order to generate binned susceptibility data.
Note that the integration over the imaginary time axis is performed using Simpson's
rule, which is accurate to order ``\mathcal{O}(\Delta\tau^4)``.
````@example square_hubbard
# Given the binned time-displaced correlation function/structure factor data,
# calculate and return the corresponding binned susceptibility data.
function susceptibility(S::AbstractArray{T}, ΞΟ) where {T<:Number}
# Allocate array to contain susceptibility.
Ο = zeros(T, size(S)[1:3])
# Iterate over bins.
for bin in axes(S,1)
# Calculate the susceptibility for the current bin by integrating the correlation
# data over the imaginary time axis using Simpson's rule.
S_bin = @view S[bin,:,:,:]
Ο_bin = @view Ο[bin,:,:]
jdqmcm.susceptibility!(Ο_bin, S_bin, ΞΟ, 3)
end
return Ο
end
````
We also define a function to calculate the average and error of a correlation function
measurement based on the input binned correlation function data.
````@example square_hubbard
# Calculate average correlation function values based on binned data.
function correlation_stats(
S::AbstractArray{Complex{T}},
avg_sign::Vector{T}
) where {T<:AbstractFloat}
# Allocate arrays to contain the mean and standard deviation of
# measured correlation function.
S_avg = zeros(Complex{T}, size(S)[2:end])
S_std = zeros(T, size(S)[2:end])
# Number of bins.
N_bins = length(avg_sign)
# Preallocate arrays to make the jackknife error analysis faster.
jackknife_samples = (zeros(Complex{T}, N_bins), zeros(T, N_bins))
jackknife_g = zeros(Complex{T}, N_bins)
# Iterate over correlation functions.
for n in CartesianIndices(S_avg)
# Use the jackknife method to calculage average and error.
vals = @view S[:,n]
S_avg[n], S_std[n] = jdqmcm.jackknife(
/, vals, avg_sign,
jackknife_samples = jackknife_samples,
jackknife_g = jackknife_g
)
end
return S_avg, S_std
end
````
First, let us compute the average and error for the time-displaced electron
Green's function
```math
G_\sigma(\mathbf{r},\tau) = \langle \hat{c}^{\phantom \dagger}_{\sigma,\mathbf{i}+\mathbf{r}}(\tau) \hat{c}^\dagger_{\sigma,\mathbf{i}}(0) \rangle
```
in position space, and
```math
G_\sigma(\mathbf{k},\tau) = \langle \hat{c}^{\phantom \dagger}_{\sigma,\mathbf{k}}(\tau) \hat{c}^\dagger_{\sigma,\mathbf{k}}(0) \rangle
```
in momentum space, where ``\tau \in [0, \Delta\tau, \dots, \beta-\Delta\tau, \beta].``
````@example square_hubbard
# Fourier transform Green's function from position to momentum space.
S_greens = copy(C_greens)
jdqmcm.fourier_transform!(S_greens, 1, 1, (1,4), unit_cell, lattice)
# Calculate average Green's function in position space.
C_greens_avg, C_greens_std = correlation_stats(C_greens, avg_sign)
# Calculate average Green's function in momentum space.
S_greens_avg, S_greens_std = correlation_stats(S_greens, avg_sign)
# Verify that the position space G(r=0,Ο=0) measurement agrees with the
# average density measurement.
agreement = (2*(1-C_greens_avg[1,1,1]) β density_avg)
println("(2*[1-G(r=0,tau=0)] == <n>) = ", agreement)
````
Now we will calculate the spin susceptibility
```math
\chi_z(\mathbf{q}) = \int_0^\beta S_z(\mathbf{q},\tau) \ d\tau
```
where the time-displaced spin structure
```math
S_z(\mathbf{q},\tau) = \sum_\mathbf{r} e^{-{\rm i} \mathbf{q}\cdot\mathbf{r}} \ C_z(\mathbf{r},\tau)
```
is given by the fourier transform of the spin-``z`` correlation function
```math
C_z(\mathbf{r},\tau) = \frac{1}{N} \sum_\mathbf{i} \langle \hat{S}_{z,\mathbf{i}+\mathbf{r}}(\tau) \hat{S}_{z,\mathbf{i}}(0) \rangle
```
in position space. Then we report the spin-suscpetibility ``\chi_{\rm afm} = \chi_z(\pi,\pi)`` corresponding to
antiferromagnetism.
````@example square_hubbard
# Fourier transform the binned Cz(r,Ο) position space spin-z correlation function
# data to get the binned Sz(q,Ο) spin-z structure factor data.
S_spinz = copy(C_spinz)
jdqmcm.fourier_transform!(S_spinz, 1, 1, (1,4), unit_cell, lattice)
# Integrate the binned Sz(q,Ο) spin-z structure factor data over the imaginary
# time axis to get the binned Οz(q) spin susceptibility.
Ο_spinz = susceptibility(S_spinz, ΞΟ)
# Calculate the average spin correlation functions in position space.
C_spinz_avg, C_spinz_std = correlation_stats(C_spinz, avg_sign)
# Calculate the average spin structure factor in momentum space.
S_spinz_avg, S_spinz_std = correlation_stats(S_spinz, avg_sign)
# Calculate the average spin susceptibility for all scattering momentum q.
Ο_spinz_avg, Ο_spinz_std = correlation_stats(Ο_spinz, avg_sign)
# Report the spin susceptibility Οafm = Οz(Ο,Ο) corresponding to antiferromagnetism.
Οafm_avg = real(Ο_spinz_avg[LΓ·2+1, LΓ·2+1])
Οafm_std = Ο_spinz_std[LΓ·2+1, LΓ·2+1]
println("Antiferromagentic Spin Susceptibility, chi_afm = ", Οafm_avg, " +/- ", Οafm_std)
````
Given the measured time-displaced density correlation function
```math
C_{\rho}(\mathbf{r},\tau) = \sum_{\mathbf{i}}
\langle \hat{n}_{\mathbf{i}+\mathbf{r}}(\tau) \hat{n}_{\mathbf{i}}(0) \rangle,
```
where ``\hat{n}_{\mathbf{i}} = (\hat{n}_{\mathbf{i}, \uparrow} + \hat{n}_{\mathbf{i}, \downarrow}),``
we can compute the time-displaced charge structure factor
```math
S_{\rho}(\mathbf{q},\tau) = \sum_\mathbf{r} e^{-{\rm i}\mathbf{q}\cdot\mathbf{r}} \ C_{\rho}(\mathbf{r},\tau)
```
and corresponding charge susceptibility
```math
\chi_{\rho}(\mathbf{q}) \int_0^\beta S_{\rho}(\mathbf{q},\tau) \ d\tau.
```
````@example square_hubbard
# Fourier transform the binned CΟ(r,Ο) position space density correlation
# data to get the time-dispaced charge structure factor SΟ(q,Ο) in
# momentum space.
S_density = copy(C_density)
jdqmcm.fourier_transform!(S_density, 1, 1, (1,4), unit_cell, lattice)
# Integrate the binned SΟ(q,Ο) density structure factor data over the imaginary
# time axis to get the binned ΟΟ(q) density susceptibility.
Ο_density = susceptibility(S_density, ΞΟ)
# Calculate the average charge correlation functions in position space.
C_density_avg, C_density_std = correlation_stats(C_density, avg_sign)
# Calculate the average charge structure factor in momentum space.
S_density_avg, S_density_std = correlation_stats(S_density, avg_sign)
# Calculate the average charge susceptibility for all scattering momentum q.
Ο_density_avg, Ο_density_std = correlation_stats(Ο_spinz, avg_sign);
nothing #hide
````
Now we calculate the local s-wave pair susceptibility
```math
P_{s} = \frac{1}{N} \int_0^\beta \langle \hat{\Delta}_{s}(\tau) \hat{\Delta}_{s}(0) \rangle \ d\tau,
```
where ``\hat{\Delta}_{s} = \sum_\mathbf{i} \hat{c}_{\downarrow,\mathbf{i}} \hat{c}_{\uparrow,\mathbf{i}}.``
````@example square_hubbard
# Fourier transform binned position space local s-wave correlation function data to get
# the binned momentum space local s-wave structure factor data.
S_loc_swave = copy(C_loc_swave)
jdqmcm.fourier_transform!(S_loc_swave, 1, 1, (1,4), unit_cell, lattice)
# Integrate the binned local s-wave structure factor data to get the
# binned local s-wave pair susceptibility data.
P_loc_swave = susceptibility(S_loc_swave, ΞΟ)
# Calculate the average local s-wave pair susceptibility for all scattering momentum q.
P_loc_swave_avg, P_loc_swave_std = correlation_stats(P_loc_swave, avg_sign)
# Report the local s-wave pair suspcetibility.
Ps_avg = real(P_loc_swave_avg[1,1])
Ps_std = P_loc_swave_std[1,1]
println("Local s-wave pair susceptibility, P_s = ", Ps_avg, " +/- ", Ps_std)
````
Next, we calculate the local s-wave pair susceptibility
```math
P_{\textrm{ext-}s} = \frac{1}{N} \int_0^\beta \langle \hat{\Delta}_{\textrm{ext-}s}(\tau) \hat{\Delta}_{\textrm{ext-}s}(0) \rangle \ d\tau,
```
where
```math
\hat{\Delta}_{\textrm{ext-}s} = \frac{1}{2} \sum_\mathbf{i}
(\hat{c}_{\downarrow,\mathbf{i}+\mathbf{x}}
+\hat{c}_{\downarrow,\mathbf{i}-\mathbf{x}}
+\hat{c}_{\downarrow,\mathbf{i}+\mathbf{y}}
+\hat{c}_{\downarrow,\mathbf{i}-\mathbf{y}})
\hat{c}_{\uparrow,\mathbf{i}}.
```
````@example square_hubbard
# Fourier transform binned position space extended s-wave correlation function data to get
# the binned momentum space extended s-wave structure factor data.
S_ext_swave = copy(C_ext_swave)
jdqmcm.fourier_transform!(S_ext_swave, 1, 1, (1,4), unit_cell, lattice)
# Integrate the binned extended s-wave structure factor data to get the
# binned extended s-wave pair susceptibility data.
P_ext_swave = susceptibility(S_ext_swave, ΞΟ)
# Calculate the average extended s-wave pair susceptibility for all scattering momentum q.
P_ext_swave_avg, P_ext_swave_std = correlation_stats(P_ext_swave, avg_sign)
# Report the local s-wave pair suspcetibility.
Pexts_avg = real(P_ext_swave_avg[1,1])
Pexts_std = P_ext_swave_std[1,1]
println("Extended s-wave pair susceptibility, P_ext-s = ", Pexts_avg, " +/- ", Pexts_std)
````
Lastly, we calculate the d-wave pair susceptibility
```math
P_{d} = \frac{1}{N} \int_0^\beta \langle \hat{\Delta}_{d}(\tau) \hat{\Delta}_{d}(0) \rangle \ d\tau,
```
where
```math
\hat{\Delta}_{d} = \frac{1}{2} \sum_\mathbf{i}
(\hat{c}_{\downarrow,\mathbf{i}+\mathbf{x}}
+\hat{c}_{\downarrow,\mathbf{i}-\mathbf{x}}
-\hat{c}_{\downarrow,\mathbf{i}+\mathbf{y}}
-\hat{c}_{\downarrow,\mathbf{i}-\mathbf{y}})
\hat{c}_{\uparrow,\mathbf{i}}.
```
````@example square_hubbard
# Fourier transform binned position space d-wave correlation function data to get
# the binned momentum space d-wave structure factor data.
S_dwave = copy(C_dwave)
jdqmcm.fourier_transform!(S_dwave, 1, 1, (1,4), unit_cell, lattice)
# Integrate the binned d-wave structure factor data to get the
# binned d-wave pair susceptibility data.
P_dwave = susceptibility(S_dwave, ΞΟ)
# Calculate the average d-wave pair susceptibility for all scattering momentum q.
P_dwave_avg, P_dwave_std = correlation_stats(P_dwave, avg_sign)
# Report the d-wave pair susceptibility.
Pd_avg = real(P_dwave_avg[1,1])
Pd_std = P_dwave_std[1,1]
println("Extended s-wave pair susceptibility, P_d = ", Pd_avg, " +/- ", Pd_std)
````
| JDQMCFramework | https://github.com/SmoQySuite/JDQMCFramework.jl.git |
|
[
"MIT"
] | 0.1.0 | d1b075ae5b66bb819d88d00fcde2354423d84392 | code | 102 | using ResourceManagers
@with open_file("/tmp/file.txt", "w"):f begin
write(f, "Hello, world!")
end
| ResourceManagers | https://github.com/complyue/ResourceManagers.jl.git |
|
[
"MIT"
] | 0.1.0 | d1b075ae5b66bb819d88d00fcde2354423d84392 | code | 4145 | module ResourceManagers
export @with, ResourceManager, __enter__, __exit__
export OpenFile
"""
abstract type ResourceManager end
An abstract type representing a resource that can be managed.
"""
abstract type ResourceManager end
"""
__enter__(r::ResourceManager)
Enter a context for resource management.
Override this function to define what happens when the resource is acquired.
"""
function __enter__(r::ResourceManager)
@warn "No __enter__ method defined for $(typeof(r))"
return r
end
"""
__exit__(r::ResourceManager, exc::Union{Nothing,E}) where {E<:Exception}
Exit a context for resource management.
Override this function to define what happens when the resource is released.
"""
function __exit__(r::ResourceManager, exc::Union{Nothing,E}) where {E<:Exception}
@warn "No __exit__ method defined for $(typeof(r))"
end
"""
@with pairs block
A macro for simplified resource management.
# Examples
```julia
@with open_file("file.txt", "w") : f begin
write(f, "Hello, world!")
end
```
"""
macro with(pairs, block)
resource_pairs = []
if pairs.head == :block # Multiple resources
sizehint!(resource_pairs, length(pairs.args))
for pair in filter(x -> isa(x, Expr), pairs.args)
if pair.head == :call && pair.args[1] == :(:)
push!(resource_pairs, (pair.args[2], pair.args[3]))
elseif pair.head == :symbol || pair.head == :call || pair.head == :macrocall
push!(resource_pairs, (pair, nothing))
else
throw(ArgumentError("Invalid syntax. Expected assignments (resource : variable)"))
end
end
else # Single resource
if pairs.head == :call && pairs.args[1] == :(:)
push!(resource_pairs, (pairs.args[2], pairs.args[3]))
elseif pairs.head == :symbol || pairs.head == :call || pairs.head == :macrocall
push!(resource_pairs, (pairs, nothing))
else
throw(ArgumentError("Invalid syntax. Expected assignments (resource : variable)"))
end
end
final_block = generate_with_block(resource_pairs, block)
esc(final_block)
end
"""
generate_with_block(resource_pairs, block)
Generates a code block for resource management.
This function is internal and used by the `@with` macro.
"""
function generate_with_block(resource_pairs, block)
if isempty(resource_pairs)
return block
end
(resource, as_var) = resource_pairs[1]
resource_var = gensym() # Generate a unique symbol for the resource
inner_block = generate_with_block((@view resource_pairs[2:end]), block)
if as_var === nothing
return quote
local exc = nothing
local $resource_var = $resource
local entered_resource = __enter__($resource_var)
try
$inner_block
catch e
exc = e
finally
__exit__($resource_var, exc)
if exc !== nothing
throw(exc)
end
end
end
else
return quote
local exc = nothing
local $resource_var = $resource
local $as_var = __enter__($resource_var)
try
$inner_block
catch e
exc = e
finally
__exit__($resource_var, exc)
if exc !== nothing
throw(exc)
end
end
end
end
end
"""
struct OpenFile <: ResourceManager
A type representing a managed file, conforming to the `ResourceManager` interface.
"""
struct OpenFile <: ResourceManager
filename::AbstractString
mode::AbstractString
lock::Bool
file::Ref{IO}
"""
OpenFile(filename::AbstractString, [mode::AbstractString]; lock = true)
Wrap a (to be opened) file in an `OpenFile` object for resource management.
"""
OpenFile(
filename::AbstractString, mode::AbstractString="r"; lock=true
) = new(
filename, mode, lock, Ref{IO}()
)
end
"""
__enter__(m::OpenFile)
Do open a file, as acquired resource.
"""
function __enter__(m::OpenFile)
m.file[] = open(m.filename, m.mode; lock=m.lock)
return m.file[]
end
"""
__exit__(m::OpenFile, exc::Union{Nothing,Exception})
Release a file resource by closing it.
"""
function __exit__(m::OpenFile, exc::Union{Nothing,Exception})
close(m.file[])
end
end # module ResourceManagers
| ResourceManagers | https://github.com/complyue/ResourceManagers.jl.git |
|
[
"MIT"
] | 0.1.0 | d1b075ae5b66bb819d88d00fcde2354423d84392 | code | 2512 | using Test
using ResourceManagers
# Define mock resource types for testing
struct DummyResource1
name::String
end
struct DummyResource2
name::String
end
# Define the __enter__ and __exit__ methods for these resources
function __enter__(resource::DummyResource1)
println("Entering resource: ", resource.name)
return "Resource 1"
end
function __exit__(resource::DummyResource1, exc::Union{Nothing,Exception})
println("Exiting resource: ", resource.name)
end
function __enter__(resource::DummyResource2)
println("Entering resource: ", resource.name)
return "Resource 2"
end
function __exit__(resource::DummyResource2, exc::Union{Nothing,Exception})
println("Exiting resource: ", resource.name)
end
# Tests
# Single resource, no naming
@testset "Single resource without naming" begin
output = @with DummyResource1("Test1") begin
println("Inside block")
end
@test output === nothing
end
# Single resource with naming
@testset "Single resource with naming" begin
output = @with DummyResource1("Test1"):r1 begin
@test r1 == "Resource 1"
end
end
# Multiple resources without naming
@testset "Multiple resources without naming" begin
output = @with begin
DummyResource1("Test1")
DummyResource2("Test2")
end begin
println("Inside block")
end
@test output === nothing
end
# Multiple resources with naming
@testset "Multiple resources with naming" begin
output = @with begin
DummyResource1("Test1"):r1
DummyResource2("Test2"):r2
end begin
@test r1 == "Resource 1"
@test r2 == "Resource 2"
end
end
# Mixed resources with and without naming
@testset "Mixed named and unnamed resources" begin
output = @with begin
DummyResource1("Test1"):r1
DummyResource2("Test2")
end begin
@test r1 == "Resource 1"
end
end
@testset "Resource acquisition/release order" begin
resource_order = []
struct DummyResource <: ResourceManager
name::String
end
function __enter__(r::DummyResource)
push!(resource_order, "Acquired: $(r.name)")
return r
end
function __exit__(r::DummyResource, exc::Union{Nothing,Exception})
push!(resource_order, "Released: $(r.name)")
end
r1 = DummyResource("Resource 1")
r2 = DummyResource("Resource 2")
@with begin
r1:r1_handle
r2:r2_handle
end begin
# Perform operations with resources if needed
end
@test resource_order == [
"Acquired: Resource 1",
"Acquired: Resource 2",
"Released: Resource 2",
"Released: Resource 1",
]
end
| ResourceManagers | https://github.com/complyue/ResourceManagers.jl.git |
|
[
"MIT"
] | 0.1.0 | d1b075ae5b66bb819d88d00fcde2354423d84392 | docs | 3543 | # ResourceManagers.jl
Resource management in Julia, inspired by Python's `with` statement for resource acquisition and release.
## Authors
- Compl Yue ([@complyue](https://github.com/complyue)), the designer.
- ChatGPT by OpenAI, contributed to the coding and documentation.
## Table of Contents
- [Authors](#authors)
- [Table of Contents](#table-of-contents)
- [Background](#background)
- [Unique Features Compared to Julia's `do` Syntax](#unique-features-compared-to-julias-do-syntax)
- [Installation](#installation)
- [Usage](#usage)
- [More Examples](#more-examples)
- [Implementing Your Own `ResourceManager`](#implementing-your-own-resourcemanager)
- [Tests](#tests)
- [License](#license)
## Background
The `@with` macro in this package is influenced by Python's `with` statement, which simplifies the management of resources such as file handlers, network connections, and other custom resources. While Julia has native resource management through the `do` syntax, the `@with` macro offers unique features:
### Unique Features Compared to Julia's `do` Syntax
1. **Multiple Resources**: One of the key features is the ability to manage multiple resources in a single block, which can be cumbersome with the native `do` syntax.
```julia
# Using @with for multiple resources
@with begin
OpenFile("file1.txt", "w") : f1
OpenFile("file2.txt", "w") : f2
end begin
write(f1, "Writing to file 1")
write(f2, "Writing to file 2")
end
```
2. **Optional Naming**: The `@with` macro provides flexibility with optional naming of resources, enabling you to either use or omit names for the resources you are managing.
```julia
# Without naming
@with OpenFile("file.txt") begin
# Do something
end
```
By introducing these features, the `@with` macro aims to make code more readable, maintainable, and less error-prone.
## Installation
To install ResourceManagers.jl, run the following command in your Julia REPL:
```julia
] add ResourceManagers
```
## Usage
Here is a quick example using `OpenFile` from this package:
```julia
using ResourceManagers
@with OpenFile("file.txt", "w") : f begin
write(f, "Hello, world!")
end
```
This ensures that `file.txt` is closed automatically after the block of code is executed.
### More Examples
For managing multiple resources:
```julia
@with begin
OpenFile("file1.txt", "w") : f1
OpenFile("file2.txt", "w") : f2
end begin
write(f1, "Writing to file 1")
write(f2, "Writing to file 2")
end
```
### Implementing Your Own `ResourceManager`
Implementing your own `ResourceManager` is straightforward:
1. Define your custom type.
2. Add methods for `__enter__` and `__exit__` that describe how to acquire and release the resource.
This is exactly how the `OpenFile` is implemented by this package:
```julia
struct OpenFile <: ResourceManager
filename::AbstractString
mode::AbstractString
lock::Bool
file::Ref{IO}
OpenFile(
filename::AbstractString, mode::AbstractString="r"; lock=true
) = new(
filename, mode, lock, Ref{IO}()
)
end
function __enter__(m::OpenFile)
m.file[] = open(m.filename, m.mode; lock=m.lock)
return m.file[]
end
function __exit__(m::OpenFile, exc::Union{Nothing,Exception})
close(m.file[])
end
```
## Tests
To run tests for ResourceManagers.jl, execute the following command in your Julia REPL:
```julia
] test ResourceManagers
```
## License
This project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details.
| ResourceManagers | https://github.com/complyue/ResourceManagers.jl.git |
|
[
"MIT"
] | 0.1.3 | 1fade0beee898fb8872ac858b78c7f4b669fbd61 | code | 2152 | # Random variable defined by its distribution and an ID
# Same id indicates same random variable
# Different ids are treated as stochastic independent variables
"""
RandomVariable::DataType
Supertype for random variables. Subtypes are [`RV`](@ref) and `[RVtransformed]`(@ref).
"""
abstract type RandomVariable end
"""
RV(distr::UnivariateDistribution, id::Int64)
RV(distr::UnivariateDistribution)
Characterization of a univariate random variable. It is specified by a distibution
`distr` and an `id`. If only a distribution is provided, a global variable
`RandomVariableCurrId` is created that keeps track of the already assigned ids.
For each creation of a new random variable, a new id is assigned and the
global variable increased by one.
"""
struct RV <: RandomVariable
distr::UnivariateDistribution
id::Int64
end
# Function to create random variable
# A global variable is used to keep track of which ids have alread been
# assigned. If the global variable is not yet defined, the function does so.
# Otherwise, the current id is increased by one
function RV(distr::T1)::RV where {T1 <: UnivariateDistribution}
try RandomVariableCurrId
catch y
if isa(y, UndefVarError)
global RandomVariableCurrId = 1
end
end
id = RandomVariableCurrId
global RandomVariableCurrId += 1
return RV(distr, id)
end
function copy(x::RV)
return RV(x.distr, x.id)
end
# Transformed random variable
"""
RVtransformed(distr::UnivariateDistribution, id::Int64, fInv::Function)
Characterization of a transformed univariate random variable. It is specified by
a distibution `distr`, an `id` and a function `fInv`. Let `X` be a random variable
and `Y = f(X)` a transformed random variable. For a union of intervals `B` associated
with `Y`, the function `fInv` should return the corresponding intervals `A` associated
with `X`, i.e. A = `fInv(B)` such that P(X β A) = P(Y β B) for an arbitrary `B`.
"""
struct RVtransformed <: RandomVariable
distr::UnivariateDistribution
id::Int64
f::Function
fInv::Function
end
| RandomVariables | https://github.com/ManuelStapper/RandomVariables.jl.git |
|
[
"MIT"
] | 0.1.3 | 1fade0beee898fb8872ac858b78c7f4b669fbd61 | code | 1242 | module RandomVariables
using Distributions, QuadGK
import Base.\, Base.diff, Base.intersect, Base.length, Base.iterate
import Base.copy, Base.ndims, Base.reduce, Base.issubset, Base.union, Base.xor
import Base.<, Base.>, Base.<=, Base.>=, Base.==, Base.!=, Base.in
import Base.!, Base.|, Base.&, Base.β»
import Base.+, Base.-, Base.*, Base./, Base.inv, Base.exp, Base.log, Base.sqrt
import Base.abs, Base.^, Base.adjoint
import Distributions.mean, Distributions.var, Distributions.skewness
import Distributions.kurtosis, Distributions.std
include("interval.jl")
include("subset.jl")
include("union.jl")
include("intersect.jl")
include("complement.jl")
include("diffs.jl")
include("RandomVariable.jl")
include("events.jl")
include("setAlgebra2.jl")
include("probability.jl")
include("operators.jl")
include("transformation.jl")
include("moments.jl")
export not, diff, \, xor, event, eventConditional, intersect, Interval
export emptyset, β
, cc, oo, co, oc, length, iterate, copy, Box
export box, rect, ndims, <, <= , >, >=, ==, !=, in, !, &, |, β¨, β»
export P, RandomVariable, RV, RVtransformed, unionDisjoint, reduce
export union, issubset, +, -, *, /, inv, exp, log, sqrt, abs, adjoint, ^
export mean, var, E, skewness, kurtosis, std
end
| RandomVariables | https://github.com/ManuelStapper/RandomVariables.jl.git |
|
[
"MIT"
] | 0.1.3 | 1fade0beee898fb8872ac858b78c7f4b669fbd61 | code | 1315 | # Set complement
"""
not(x::Interval)
The complement of an interval with respect to the real numbers. The output is
always a vector of intervals.
"""
function not(x::cc)::Vector{Interval}
return union(oo(-Inf, x.l), oo(x.u, Inf))
end
function not(x::oo)::Vector{Interval}
return union(oc(-Inf, x.l), co(x.u, Inf))
end
function not(x::co)::Vector{Interval}
return union(oo(-Inf, x.l), co(x.u, Inf))
end
function not(x::oc)::Vector{Interval}
return union(oc(-Inf, x.l), oo(x.u, Inf))
end
function not(x::emptyset)::Vector{Interval}
return [oo(-Inf, Inf)]
end
# Vector of sets is treated as union of intervals
"""
not(x::Vector{Interval})
The complement of a vector of intervals with respect to the real numbers.
The input vector is treated as union such that `not([co(1, 2), cc(3, 4)])` returns
the intervals (-β, 1), [2, 3) and (4, β).
"""
function not(x::Vector{T})::Vector{Interval} where {T <: Interval}
if length(x) == 1
return not(x[1])
end
nots = vcat(not.(x)...)
outMat = Matrix{Interval}(fill(emptyset(), (length(nots), length(nots))))
for i = 1:length(nots)-1
for j = i+1:length(nots)
outMat[i, j] = intersect(nots[i], nots[j])
end
end
return union(vec(outMat))
end
| RandomVariables | https://github.com/ManuelStapper/RandomVariables.jl.git |
|
[
"MIT"
] | 0.1.3 | 1fade0beee898fb8872ac858b78c7f4b669fbd61 | code | 1201 | """
diff(x::Interval, y::Interval)
diff(x::Box, y::Box, merge::Bool)
diff(x::Vector{Box}, y::Vector{Box}, merge::Bool)
diff(x::Vector{Box}, y::Box, merge::Bool)
diff(x::Box, y::Vector{Box}, merge::Bool)
x \\ y
Difference operator for two intervals or two (vectors of) boxes.
Returns the subset of `x` that is not in `y`.
If `merge` is true, the resulting boxes are checked if they can be merged.
"""
function diff(x::T1, y::T2)::Vector{Interval} where {T1, T2 <: Interval}
union([x] .β© not(y))
end
(\)(x::T1, y::T2) where {T1, T2 <: Interval} = begin
diff(x, y)
end
"""
xor(x::Interval, y::Interval)
xor(x::Box, y::Box)
xor(x::Vector{Box}, y::Vector{Box}, merge::Bool)
xor(x::Vector{Box}, y::Box, merge::Bool)
xor(x::Box, y::Vector{Box}, merge::Bool)
x β» y
Symmetric difference operator for two intervals or (vectors of) boxes.
Returns a vector of intervals or boxes that are in `x` but not in `y` or
in `y` but not in `x`.
If `merge` is true, the resulting boxes are checked if they can be merged.
"""
function xor(x::T1, y::T2)::Vector{Interval} where {T1, T2 <: Interval}
union([(x\y); (y\x)])
end
| RandomVariables | https://github.com/ManuelStapper/RandomVariables.jl.git |
|
[
"MIT"
] | 0.1.3 | 1fade0beee898fb8872ac858b78c7f4b669fbd61 | code | 4529 | # X: Vector of independent random variables
# intevals: Vector of events such that each element in "intervals" contains as
# many intervals as there are RVs in "X". The length of "intervals" might
# be different from the length of "X"
"""
event(X::Vector{RandomVariable}, boxes::Vector{Box})
An event characterized by a vector of distinct random variables `X` and a vector
of boxes. The dimension of each box must match the number of elements in `X`.
The boxes must be disjoint.
See also: [`Box`](@ref), [`box`](@ref), [`RandomVariable`](@ref), [`RV`](@ref),
[`RVtransformed`](@ref)
"""
struct event
X::Vector{RandomVariable}
boxes::Vector{Box}
function event(X::Vector{T1}, boxes::Vector{T2}) where {T1 <: RandomVariable, T2 <: Box}
for i = 1:length(boxes)
if boxes[i].ndims != length(X)
error("Invalid dimensions")
end
end
return new(X, boxes)
end
end
# This function should not exist
# function event(X::T1, boxes::T2){T1 <: RandomVariable, T2 <: Box}
# return event([X], [boxes])
# end
function event(X::T1, intervals::Vector{T2}) where {T1 <: RandomVariable, T2 <: Interval}
boxes = Vector{Box}(undef, length(intervals))
for i = 1:length(intervals)
boxes[i] = box([intervals[i]])
end
return event([X], boxes)
end
function event(X::RandomVariable, interval::Interval)
return event([X], [box(interval)])
end
# eventConditional is a combination of two events, one for which the probability
# if of interest ("of") and one event that is conditioned on ("given")
# The inner constructor function checks for the IDs of random variables involved
# If two events are put in that contain different vectors of random variables,
# the two events are extended to contain the same random variables
# Missing intervals are imputed as sure event (-Inf, Inf)
"""
eventConditional(of::event, given::event)
A conditional event if interested in the probability of `of` given `given`.
The two events must not necessarily contain the same set of random variables.
The constructor function checks for overlaps and extends the two events to
have matching random variables.
See also: [`event`](@ref)
"""
struct eventConditional
of::event
given::event
function eventConditional(of::event, given::event)
if of.X == given.X
return new(of, given)
else
id1 = (xx -> xx.id).(of.X)
id2 = (xx -> xx.id).(given.X)
if of.X[sortperm(id1)] == given.X[sortperm(id2)]
X = of.X[sortperm(id2)]
boxes1 = copy(of.boxes)
for i = 1:length(boxes1)
boxes1[i] = box(boxes1[i].lims[sortperm(id1)])
end
boxes2 = copy(given.boxes)
for i = 1:length(boxes2)
boxes2[i] = box(boxes2[i].lims[sortperm(id2)])
end
return new(event(X, boxes1), event(X, boxes2))
end
end
# Expand the events
# fill in sure events
id = sort(unique([id1; id2]))
nRV = length(id)
boxesOf = Vector{Box}(undef, length(of.boxes))
Xout = Vector{RandomVariable}(undef, nRV)
boxesGiven = Vector{Box}(undef, length(given.boxes))
for i = 1:nRV
if id[i] in id1
Xout[i] = of.X[findall(id1 .== id[i])[1]]
else
Xout[i] = given.X[findall(id2 .== id[i])[1]]
end
end
for i = 1:length(boxesOf)
temp = box(Vector{Interval}(undef, nRV))
for j = 1:length(id)
if id[j] in id1
temp.lims[j] = of.boxes[i].lims[findall(id1 .== id[j])[1]]
else
temp.lims[j] = oo(-Inf, Inf)
end
end
boxesOf[i] = copy(temp)
end
for i = 1:length(boxesGiven)
temp = box(Vector{Interval}(undef, nRV))
for j = 1:length(id)
if id[j] in id2
temp.lims[j] = given.boxes[i].lims[findall(id2 .== id[j])[1]]
else
temp.lims[j] = oo(-Inf, Inf)
end
end
boxesGiven[i] = copy(temp)
end
return new(event(Xout, boxesOf), event(Xout, boxesGiven))
end
end
| RandomVariables | https://github.com/ManuelStapper/RandomVariables.jl.git |
|
[
"MIT"
] | 0.1.3 | 1fade0beee898fb8872ac858b78c7f4b669fbd61 | code | 6083 | # Intersection of intervals
# For two intervals x and y, returns a sinlge interval as output
"""
intersect(x::Interval, y::Interval)
x β© y
Intersection of two objects of type [`Interval`](@ref). The output is a single
interval.
"""
function intersect(x::cc, y::cc)::Interval
if (x.u < y.l) | (y.u < x.l)
return β
end
if (y.l <= x.l <= y.u) & (y.l <= x.u <= y.u)
return x
end
if (x.l <= y.l <= x.u) & (x.l <= y.u <= x.u)
return y
end
if x.l < y.l
return cc(y.l, x.u)
else
return cc(x.l, y.u)
end
end
function intersect(x::oo, y::oo)::Interval
if (x.u <= y.l) | (y.u <= x.l)
return β
end
if (y.l <= x.l <= y.u) & (y.l <= x.u <= y.u)
return x
end
if (x.l <= y.l <= x.u) & (x.l <= y.u <= x.u)
return y
end
if x.l < y.l
return oo(y.l, x.u)
else
return oo(x.l, y.u)
end
end
function intersect(x::co, y::co)::Interval
if (x.u <= y.l) | (y.u <= x.l)
return β
end
if (y.l <= x.l <= y.u) & (y.l <= x.u <= y.u)
return x
end
if (x.l <= y.l <= x.u) & (x.l <= y.u <= x.u)
return y
end
if x.l <= y.l
return co(y.l, x.u)
else
return co(x.l, y.u)
end
end
function intersect(x::oc, y::oc)::Interval
if (x.u <= y.l) | (y.u <= x.l)
return β
end
if (y.l <= x.l <= y.u) & (y.l <= x.u <= y.u)
return x
end
if (x.l <= y.l <= x.u) & (x.l <= y.u <= x.u)
return y
end
if x.l <= y.l
return oc(y.l, x.u)
else
return oc(x.l, y.u)
end
end
function intersect(x::cc, y::oo)::Interval
if (x.u <= y.l) | (y.u <= x.l)
return β
end
if (y.l < x.l <= y.u) & (y.l <= x.u < y.u)
return x
end
if (x.l <= y.l <= x.u) & (x.l <= y.u <= x.u)
return y
end
if x.l <= y.l
return oc(y.l, x.u)
else
return co(x.l, y.u)
end
end
function intersect(x::oo, y::cc)::Interval
return intersect(y, x)
end
function intersect(x::cc, y::co)::Interval
if (x.u < y.l) | (y.u <= x.l)
return β
end
if (y.l <= x.l <= y.u) & (y.l <= x.u < y.u)
return x
end
if (x.l <= y.l <= x.u) & (x.l <= y.u <= x.u)
return y
end
if x.l <= y.l
return cc(y.l, x.u)
else
return co(x.l, y.u)
end
end
function intersect(x::co, y::cc)::Interval
return intersect(y, x)
end
function intersect(x::cc, y::oc)::Interval
if (x.u <= y.l) | (y.u < x.l)
return β
end
if (y.l < x.l <= y.u) & (y.l <= x.u <= y.u)
return x
end
if (x.l <= y.l <= x.u) & (x.l <= y.u <= x.u)
return y
end
if x.l <= y.l
return oc(y.l, x.u)
else
return cc(x.l, y.u)
end
end
function intersect(x::oc, y::cc)::Interval
return intersect(y, x)
end
function intersect(x::oo, y::co)::Interval
if (x.u <= y.l) | (y.u <= x.l)
return β
end
if (y.l < x.l <= y.u) & (y.l <= x.u <= y.u)
return x
end
if (x.l <= y.l <= x.u) & (x.l <= y.u <= x.u)
return y
end
if x.l <= y.l
return co(y.l, x.u)
else
return oo(x.l, y.u)
end
end
function intersect(x::co, y::oo)::Interval
return intersect(y, x)
end
function intersect(x::oo, y::oc)::Interval
if (x.u <= y.l) | (y.u <= x.l)
return β
end
if (y.l <= x.l <= y.u) & (y.l <= x.u < y.u)
return x
end
if (x.l <= y.l <= x.u) & (x.l <= y.u <= x.u)
return y
end
if x.l <= y.l
return oo(y.l, x.u)
else
return oc(x.l, y.u)
end
end
function intersect(x::oc, y::oo)::Interval
return intersect(y, x)
end
function intersect(x::co, y::oc)::Interval
if (x.u <= y.l) | (y.u < x.l)
return β
end
if (y.l < x.l <= y.u) & (y.l <= x.u <= y.u)
return x
end
if (x.l <= y.l <= x.u) & (x.l <= y.u < x.u)
return y
end
if x.l <= y.l
return oo(y.l, x.u)
else
return cc(x.l, y.u)
end
end
function intersect(x::oc, y::co)::Interval
return intersect(y, x)
end
# Special treatment for empty sets
function intersect(x::T, y::emptyset)::Interval where {T <: Interval}
return emptyset()
end
function intersect(x::emptyset, y::T)::Interval where {T <: Interval}
return emptyset()
end
function intersect(x::emptyset, y::emptyset)::Interval
return emptyset()
end
# Intersection of a vector of intervals
"""
intersect(x::Vector{Interval})
β©(x)
Intersection of a vector of type [`Interval`](@ref). The intervals are intersected
successively.
See also: [`intersect(x::Interval, y::Interval)`](@ref)
"""
function intersect(x::Vector{T})::Interval where {T <: Interval}
out = copy(x[1])
for i = 2:length(x)
out = intersect(out, x[i])
end
return out
end
# Intersection of two boxes, x and y
"""
intersect(x::Box, y::Box)
x β© y
Intersection of two boxes. The dimensions of `x` and `y` must match. A single box
is returned.
See also: [`Box`](@ref)
"""
function intersect(x::T1, y::T2)::Box where {T1, T2 <: Box}
if x.ndims != y.ndims
error("Invalid dimensions")
end
# Number of random variables
nRV = x.ndims
ints = Vector{Interval}(undef, nRV)
for i = 1:nRV
ints[i] = intersect(x.lims[i], y.lims[i])
if ints[i] == emptyset()
return box(fill(emptyset(), nRV))
end
end
return box(ints)
end
function intersect(x::rect, y::rect)::rect
out = Vector{Interval}(undef, 2)
for i = 1:2
out[i] = intersect(x.lims[i], y.lims[i])
if out[i] == emptyset()
return rect([emptyset(), emptyset()])
end
end
return rect(out)
end
| RandomVariables | https://github.com/ManuelStapper/RandomVariables.jl.git |
|
[
"MIT"
] | 0.1.3 | 1fade0beee898fb8872ac858b78c7f4b669fbd61 | code | 5703 | # Define intervals
"""
Interval::DataType
Abstract type for univaritate, real-valued intervals. Subtypes are intervals with
lower bound `l` and upper bound `u`, i.e. the closed interval [`cc`](@ref): `[l, u]`, the
open interval [`oo`](@ref): `(l, u)` and the two semi-closed intervals [`oc`](@ref): `(l, u]` and
[`co`](@ref): `[l, u)` and the empty set [`β
`](@ref)
"""
abstract type Interval end
# The empty set
"""
emptyset() <: Interval
β
<: Interval
The empty set, where `β
` is a shortcut for emptyset()
"""
struct emptyset <: Interval
end
# Shortcut
const β
= emptyset()
# In case the lower bound is larger than the upper bound, return empty set
# closed interval [l, u]
"""
cc(l, u) <: Interval
Closed interval of the form `[l, u]`, with lower bound `l` and upper bound `u`.
Convention: If lower bound `l` exceeds upper bound `u`, return `[u, l]`.
"""
struct cc <: Interval
l::Float64
u::Float64
function cc(l::T1, u::T2) where {T1, T2 <: Real}
if l > u
return cc(u, l)
end
if !isfinite(l) & !isfinite(u) & (sign(u) == sign(l))
return emptyset()
end
if isfinite(l)
if isfinite(u)
return new(l, u)
else
return co(l, u)
end
else
if isfinite(u)
return oc(-Inf, u)
else
return oo(-Inf, Inf)
end
end
return new(float(l), float(u))
end
end
# Open interval (l, u)
"""
oo(l, u) <: Interval
Open interval of the form `(l, u)`, with lower bound `l` and upper bound `u`.
Convention: If lower bound `l` exceeds upper bound `u`, return `(u, l)`.
"""
struct oo <: Interval
l::Float64
u::Float64
function oo(l::T1, u::T2) where {T1, T2 <: Real}
if l == u
return emptyset()
end
if l > u
return oo(u, l)
end
if !isfinite(l) & !isfinite(u) & (sign(u) == sign(l))
return emptyset()
end
return new(float(l), float(u))
end
end
# Semi-closed interval [l, u)
"""
co(l, u) <: Interval
Semi-closed interval of the form `[l, u)`, with lower bound `l` and upper bound `u`.
Convention: If lower bound `l` exceeds upper bound `u`, return `(u, l]`.
"""
struct co <: Interval
l::Float64
u::Float64
function co(l::T1, u::T2) where {T1, T2 <: Real}
if l > u
return oc(u, l)
elseif l == u
return cc(l, u)
end
if !isfinite(l) & !isfinite(u) & (sign(u) == sign(l))
return emptyset()
end
if isfinite(l)
return new(float(l), float(u))
else
return oo(l, u)
end
end
end
# Semi-closed interval (l, u]
"""
oc(l, u) <: Interval
Semi-closed interval of the form `(l, u]`, with lower bound `l` and upper bound `u`.
Convention: If lower bound `l` exceeds upper bound `u`, return `[u, l)`.
"""
struct oc <: Interval
l::Float64
u::Float64
function oc(l::T1, u::T2) where {T1, T2 <: Real}
if l > u
return co(u, l)
elseif l == u
return cc(l, u)
end
if !isfinite(l) & !isfinite(u) & (sign(u) == sign(l))
return emptyset()
end
if isfinite(u)
return new(float(l), float(u))
else
return oo(l, u)
end
end
end
# For vector-wise evaluations
function length(x::T) where {T <: Interval}
return 1
end
function iterate(x::T) where {T <: Interval}
(1.00, nothing)
end
function iterate(x::T, nothing) where {T <: Interval}
end
function copy(x::T) where {T <: Interval}
if x == emptyset()
return emptyset()
else
return typeof(x)(x.l, x.u)
end
end
"""
Box::DataType
Abstract supertype for [`box`}(@ref) and [`rect`](@ref).
"""
abstract type Box end
"""
box(lims::Vector{Interval}, ndims::Int64) <: Box
box(lims::Vector{Interval}) <: Box
A box, subset of the `ndims`-dimensional real numbers. `lims` is a vector of
length `ndims` that contains the boundries in the dimensions, each being an
[`Interval`](@ref). To initialize it, only the boundries can be provided.
"""
struct box <: Box
lims::Vector{Interval}
function box(lims::Vector{T}, ndims = 0) where {T <: Interval}
return new(lims, ifelse(ndims == 0, length(lims), ndims))
end
ndims::Int64
end
function box(x::Interval)
box([x], 1)
end
"""
rect(lims::Vector{Interval}, ndims::Int64) <: Box
rect(lims::Vector{Interval}) <: Box
A two dimensional rectange. `lims` is a vector of
length two that contains the boundries in the dimensions, each being an
[`Interval`](@ref). To initialize it, only the boundries can be provided.
"""
struct rect <: Box
lims::Vector{Interval}
ndims::Int64
function rect(lims::Vector{T}, ndims::Int64 = 2) where {T <: Interval}
if length(lims) != 2
error("Invalid dimensions")
end
return new(lims, ndims)
end
end
function length(x::T) where {T <: Box}
return 1
end
function iterate(x::T) where {T <: Box}
(1.00, nothing)
end
function iterate(x::T, nothing) where {T <: Box}
end
"""
ndims(x <: Box)::Int64
Function to obtains the number of dimensions of a [`Box`](@ref).
"""
function ndims(x::T)::Int64 where {T <: Box}
return x.ndims
end
function copy(x::T) where {T <: Box}
return typeof(x)(x.lims, x.ndims)
end
| RandomVariables | https://github.com/ManuelStapper/RandomVariables.jl.git |
|
[
"MIT"
] | 0.1.3 | 1fade0beee898fb8872ac858b78c7f4b669fbd61 | code | 1055 | function mean(x::RV)
return Distributions.mean(x.distr)
end
function E(x::RV)
Distributions.mean(x.distr)
end
function var(x::RV)
return Distributions.var(x.distr)
end
function std(x::RV)
return Distributions.std(x.distr)
end
function skewness(x::RV)
return Distributions.skewness(x.distr)
end
function kurtosis(x::RV)
return Distributions.kurtosis(x.distr)
end
# There seems to be a problem with Distributions.expectation for discrete RVs?!
# function myexp(f, d::DiscreteDistribution)
# sup = collect(quantile(d, 1e-10):quantile(d, 1 - 1e-10))
# return sum(pdf.(d, sup).*f.(sup))
# end
function myexp(f::Function, d::DiscreteDistribution)
sup = collect(quantile(d, 1e-10):quantile(d, 1 - 1e-10))
return sum(pdf.(d, sup).*f.(sup))
end
function myexp(f::Function, d::ContinuousDistribution)
quadgk(x -> f(x)*pdf(d, x), minimum(d), maximum(d))[1]
end
function mean(x::RVtransformed)
myexp(x.f, x.distr)
end
function E(x::RVtransformed)
mean(x)
end
| RandomVariables | https://github.com/ManuelStapper/RandomVariables.jl.git |
|
[
"MIT"
] | 0.1.3 | 1fade0beee898fb8872ac858b78c7f4b669fbd61 | code | 9771 | # Operators that create events
"""
<(X::RV, y::Real)
<(y::Real, X::RV)
<(X::RVtransformed, y::Real)
<(y::Real, X::RVtransformed)
X < y
y < X
Operator, that takes a random variable (transformed or not) and a real number
and creates an event. Instead of putting a random variable in, a distribution
can be provided and a new random variable is created.
"""
(<)(X::RV, y::T) where {T <: Real} = begin
event(X, oo(-Inf, y))
end
"""
<=(X::RV, y::Real)
<=(y::Real, X::RV)
<=(X::RVtransformed, y::Real)
<=(y::Real, X::RVtransformed)
X <= y
y <= X
Operator, that takes a random variable (transformed or not) and a real number
and creates an event. Instead of putting a random variable in, a distribution
can be provided and a new random variable is created. Also works with the
operator β€.
"""
(<=)(X::RV, y::T) where {T <: Real} = begin
event(X, oc(-Inf, y))
end
"""
>(X::RV, y::Real)
>(y::Real, X::RV)
>(X::RVtransformed, y::Real)
>(y::Real, X::RVtransformed)
X > y
y > X
Operator, that takes a random variable (transformed or not) and a real number
and creates an event. Instead of putting a random variable in, a distribution
can be provided and a new random variable is created.
"""
(>)(X::RV, y::T) where {T <: Real} = begin
event(X, oo(y, Inf))
end
"""
>=(X::RV, y::Real)
>=(y::Real, X::RV)
>=(X::RVtransformed, y::Real)
>=(y::Real, X::RVtransformed)
X >= y
y >= X
Operator, that takes a random variable (transformed or not) and a real number
and creates an event. Instead of putting a random variable in, a distribution
can be provided and a new random variable is created. Also works with the
operator β₯.
"""
(>=)(X::RV, y::T) where {T <: Real} = begin
event(X, co(y, Inf))
end
"""
==(X::RV, y::Real)
==(y::Real, X::RV)
==(X::RVtransformed, y::Real)
==(y::Real, X::RVtransformed)
X == y
y == X
Operator, that takes a random variable (transformed or not) and a real number
and creates an event. Instead of putting a random variable in, a distribution
can be provided and a new random variable is created.
"""
(==)(X::RV, y::T) where {T <: Real} = begin
event(X, cc(y, y))
end
"""
!=(X::RV, y::Real)
!=(y::Real, X::RV)
!=(X::RVtransformed, y::Real)
!=(y::Real, X::RVtransformed)
X != y
y != X
Operator, that takes a random variable (transformed or not) and a real number
and creates an event. Instead of putting a random variable in, a distribution
can be provided and a new random variable is created.
"""
(!=)(X::RV, y::T) where {T <: Real} = begin
event(X, not(cc(y, y)))
end
"""
in(X::RV, y)
in(X::RVtransformed, y)
X β y
X β y
Operator, that takes a random variable (transformed or not) and a vector or sequence
and creates an event. Instead of putting a random variable in, a distribution
can be provided and a new random variable is created.
The counterevent X β y is also defined.
"""
(in)(X::RV, y::Vector{T}) where {T <: Real} = begin
event(X, (z -> cc(z, z)).(y))
end
(in)(X::RV, y::UnitRange) = begin
event(X, (z -> cc(z, z)).(collect(y)))
end
(in)(X::RV, y::StepRange) = begin
event(X, (z -> cc(z, z)).(collect(y)))
end
(in)(X::RV, y::StepRangeLen) = begin
event(X, (z -> cc(z, z)).(collect(y)))
end
(in)(X::RV, y::Interval) = begin
event([X], [y])
end
# Random variable on the right hand side
(<)(y::T, X::RV) where {T <: Real} = begin
X > y
end
(<=)(y::T, X::RV) where {T <: Real} = begin
X >= y
end
(>)(y::T, X::RV) where {T <: Real} = begin
X < y
end
(>=)(y::T, X::RV) where {T <: Real} = begin
X <= y
end
(==)(y::T, X::RV) where {T <: Real} = begin
X == y
end
(!=)(y::T, X::RV) where {T <: Real} = begin
X != y
end
# If a random variable is not defined, but only a distribution given
# create a new random variable
# Random variable on the left hand side
# (<)(X::T1, y::T2) where {T1 <: UnivariateDistribution, T2 <: Real} = begin
# event(RV(X), oo(-Inf, y))
# end
#
# (<=)(X::T1, y::T2) where {T1 <: UnivariateDistribution, T2 <: Real} = begin
# event(RV(X), oc(-Inf, y))
# end
#
# (>)(X::T1, y::T2) where {T1 <: UnivariateDistribution, T2 <: Real} = begin
# event(RV(X), oo(y, Inf))
# end
#
# (>=)(X::T1, y::T2) where {T1 <: UnivariateDistribution, T2 <: Real} = begin
# event(RV(X), co(y, Inf))
# end
#
# (==)(X::T1, y::T2) where {T1 <: UnivariateDistribution, T2 <: Real} = begin
# event(RV(X), cc(y, y))
# end
#
# (!=)(X::T1, y::T2) where {T1 <: UnivariateDistribution, T2 <: Real} = begin
# event(RV(X), not(cc(y, y)))
# end
#
# (in)(X::T1, y::Vector{T2}) where {T1 <: UnivariateDistribution, T2 <: Real} = begin
# event(RV(X), (z -> cc(z, z)).(y))
# end
#
# (in)(X::T, y::UnitRange) where {T <: UnivariateDistribution} = begin
# event(RV(X), (z -> cc(z, z)).(collect(y)))
# end
#
# (in)(X::T, y::StepRange) where {T <: UnivariateDistribution} = begin
# event(RV(X), (z -> cc(z, z)).(collect(y)))
# end
#
# (in)(X::T, y::StepRangeLen) where {T <: UnivariateDistribution} = begin
# event(RV(X), (z -> cc(z, z)).(collect(y)))
# end
#
# (in)(X::T, y::Interval) where {T <: UnivariateDistribution} = begin
# event(RV(X), [y])
# end
# Random variable on the right hand side
# (<)(y::T2, X::T1) where {T1 <: UnivariateDistribution, T2 <: Real} = begin
# X > y
# end
#
# (<=)(y::T2, X::T1) where {T1 <: UnivariateDistribution, T2 <: Real} = begin
# X >= y
# end
#
# (>)(y::T2, X::T1) where {T1 <: UnivariateDistribution, T2 <: Real} = begin
# X < y
# end
#
# (>=)(y::T2, X::T1) where {T1 <: UnivariateDistribution, T2 <: Real} = begin
# X <= y
# end
#
# (==)(y::T2, X::T1) where {T1 <: UnivariateDistribution, T2 <: Real} = begin
# X == y
# end
#
# (!=)(y::T2, X::T1) where {T1 <: UnivariateDistribution, T2 <: Real} = begin
# X != y
# end
# Operators involving one event
"""
!(A::event)
!(A::eventConditional)
Takes an event as input and return the counterevent.
"""
function !(A::event)
not(A)
end
function !(A::eventConditional)
not(A.of) | A.given
end
# Operators involving two events
"""
&(A::event, B::event)
&(A::eventConditional, B::eventConditional)
&(A::event, B::eventConditional)
&(A::eventConditional, B::event)
A & B
Combination of two events. Returns the event that `A` and `B` occur.
In case of conditional events, say A1|A2 and B1|B2, the resulting event ist
A1 β© B1 | A2 β© B2.
"""
(&)(A::event, B::event) = begin
A β© B
end
(&)(A::eventConditional, B::eventConditional) = begin
(A.of βͺ B.of) | (A.given β© B.given)
end
(&)(A::event, B::eventConditional) = begin
(A βͺ B.of) | B.given
end
(&)(A::eventConditional, B::event) = begin
(A.of βͺ B) | A.given
end
"""
|(A::event, B::event)
|(A::eventConditional, B::event)
A | B
Combination of two events. Returns the event that `A` given that `B` occurs.
Caution, this operator is not the "or" operator.
If A is a conditional event, B is added as condition.
See also: [`β¨`](@ref)
"""
(|)(A::event, B::event) = begin
eventConditional(A, B)
end
(|)(A::eventConditional, B::event) = begin
eventConditional(A.of, A.given β© B)
end
"""
β¨(A::event, B::event)
β¨(A::eventConditional, B::eventConditional)
β¨(A::event, B::eventConditional)
β¨(A::eventConditional, B::event)
A β¨ B
Combination of two events. Returns the event that `A` or `B` occurs.
In case of conditional events, say A1|A2 and B1|B2, the resulting event ist
A1 βͺ B1 | A2 β© B2.
"""
(β¨)(A::event, B::event) = begin
union(A, B)
end
(β¨)(A::eventConditional, B::eventConditional) = begin
union(A.of, B.of) | intersect(A.given, B.given)
end
(β¨)(A::event, B::eventConditional) = begin
union(A, B.of) | B.given
end
(β¨)(A::eventConditional, B::event) = begin
union(A.of, B) | A.given
end
"""
diff(A::event, B::event)
diff(A::eventConditional, B::eventConditional)
diff(A::event, B::eventConditional)
diff(A::eventConditional, B::event)
A \\ B
Combination of two events. Returns the event that `A` occurs and `B` does not.
Combination of two events. Returns the event that `A` or `B` occurs.
In case of conditional events, say A1|A2 and B1|B2, the resulting event ist
A1 \\ B1 | A2 β© B2.
"""
(\)(A::event, B::event) = begin
intersect(A, not(B))
end
(\)(A::eventConditional, B::eventConditional) = begin
intersect(A.of, not(B.of)) | intersect(A.given, B.given)
end
(\)(A::event, B::eventConditional) = begin
intersect(A, not(B.of)) | B.given
end
(\)(A::eventConditional, B::event) = begin
intersect(A.of, not(B)) | A.given
end
"""
xor(A::event, B::event)
β»(A::event, B::event)
β»(A::eventConditional, B::eventConditional)
β»(A::event, B::eventConditional)
β»(A::eventConditional, B::event)
A β» B
Combination of two events. Returns the event that `A` occurs and `B` does not or
`B` occurs and `A` does not.
In case of conditional events, say A1|A2 and B1|B2, the resulting event ist
A1 β» B1 | A2 β© B2.
"""
function xor(A::event, B::event)
A1, B1 = unifyEvents(A, B)
return event(A1.X, xor(A1.boxes, B1.boxes))
end
function xor(A::eventConditional, B::eventConditional)
xor(A.of, B.of) | intersect(A.given, B.given)
end
function xor(A::event, B::eventConditional)
xor(A, B.of) | B.given
end
function xor(A::eventConditional, B::event)
xor(A.of, B) | A.given
end
| RandomVariables | https://github.com/ManuelStapper/RandomVariables.jl.git |
|
[
"MIT"
] | 0.1.3 | 1fade0beee898fb8872ac858b78c7f4b669fbd61 | code | 2072 | # Probabilities of single events
# Caution for discrete distributions
function P(X::T1, y::cc) where {T1 <: DiscreteDistribution}
cdf(X, y.u) - cdf(X, y.l) + pdf(X, y.l)
end
function P(X::T1, y::oo) where {T1 <: DiscreteDistribution}
if y.u >= maximum(X)
if !isfinite(y.u)
Fu = 1
else
Fu = cdf(X, y.u) - pdf(X, y.u)
end
else
Fu = cdf(X, y.u) - pdf(X, y.u)
end
if y.l <= minimum(X)
Fl = 0
else
Fl = cdf(X, y.l)
end
return Fu - Fl
end
function P(X::T1, y::co) where {T1 <: DiscreteDistribution}
if y.u >= maximum(X)
if !isfinite(y.u)
Fu = 1
else
Fu = cdf(X, y.u) - pdf(X, y.u)
end
else
Fu = cdf(X, y.u) - pdf(X, y.u)
end
if y.l < minimum(X)
Fl = 0
else
Fl = cdf(X, y.l) - pdf(X, y.l)
end
return Fu - Fl
end
function P(X::T1, y::oc) where {T1 <: DiscreteDistribution}
if y.u >= maximum(X)
Fu = 1
else
Fu = cdf(X, y.u)
end
if y.l <= minimum(X)
Fl = 0
else
Fl = cdf(X, y.l)
end
return Fu - Fl
end
function P(X::T1, y::emptyset) where {T1<:DiscreteDistribution}
0.0
end
function P(X::T1, y::emptyset) where {T1<:ContinuousDistribution}
0.0
end
function P(X::T1, y::T2) where {T1 <: ContinuousDistribution, T2 <: Interval}
cdf(X, y.u) - cdf(X, y.l)
end
function P(X::RV, y::T) where {T <: Interval}
P(X.distr, y)
end
"""
P(A::event)
P(A::eventConditional)
Computes the probability of event `A`. If A is a conditional event, i.e.
A = B|C, it is computed as P(B β© C)/P(C).
"""
function P(A::event)
out = 0.0
for i = 1:length(A.boxes)
temp = 1.0
for j = 1:length(A.boxes[i].lims)
temp *= P(A.X[j], A.boxes[i].lims[j])
end
out += temp
end
return out
end
function P(A::eventConditional)
P(A.of β© A.given)/P(A.given)
end
| RandomVariables | https://github.com/ManuelStapper/RandomVariables.jl.git |
|
[
"MIT"
] | 0.1.3 | 1fade0beee898fb8872ac858b78c7f4b669fbd61 | code | 19546 | # Goal: Function to create union of two interval sets (boxes) such that
# the output is a vector of disjoint boxes
# Some prep functions needed
# Given an interval, give out disjoint intervals whose union gives the real line
# and one of the intervals is the input interval
"""
unionDisjoint(x::Interval)
A function that splits the real numbers into disjoint intervals such that the
interval `x` is one on them.
"""
function unionDisjoint(x::T1)::Vector{Interval} where {T1 <: Interval}
# special cases
if x == emptyset()
return [oo(-Inf, Inf)]
end
if !isfinite(x.l) & !isfinite(x.u)
return [oo(-Inf, Inf)]
end
if !isfinite(x.l)
if typeof(x) in [oc, cc]
return [x, oo(x.u, Inf)]
else
return [x, co(x.u, Inf)]
end
end
if !isfinite(x.u)
if typeof(x) in [co, cc]
return [oo(-Inf, x.l), x]
else
return [oc(-Inf, x.l), x]
end
end
if typeof(x) == cc
return [oo(-Inf, x.l), x, oo(x.u, Inf)]
elseif typeof(x) == oo
return [oc(-Inf, x.l), x, co(x.u, Inf)]
elseif typeof(x) == co
return [oo(-Inf, x.l), x, co(x.u, Inf)]
else
return [oc(-Inf, x.l), x, oo(x.u, Inf)]
end
end
# Same function as above, but for two intervals
# Gives out disjoint intervals whose union forms the real line and both
# input intervals are element of the output vector
"""
unionDisjoint(x::Vector{Interval})
A function that splits the real numbers into disjoint intervals such that each
interval in `x` has a representation as union of a subset of them.
"""
function unionDisjoint(x::T1, y::T2)::Vector{Interval} where {T1, T2 <: Interval}
out = unique([x β© y; xor(x, y); not(x βͺ y)])
keep = out .!= [emptyset()]
return out[keep]
end
function unionDisjoint(x::Vector{T1})::Vector{Interval} where {T1 <: Interval}
if length(x) == 1
return unionDisjoint(x[1])
end
out = unique([x[1] β© x[2]; xor(x[1], x[2]); not(x[1] βͺ x[2])])
# Adding intervals successively
for i = 3:length(x)
keep = fill(true, length(out))
add = Vector{Interval}([])
for j = 1:length(out)
inter = out[j] β© x[i]
if inter != emptyset()
add = [add; inter; out[j]\x[i]]
# push!(add, inter, out[j] \ x[i])
keep[j] = false
end
end
out = [out[keep]; add]
end
keep = out .!= [emptyset()]
return out[keep]
end
"""
increase(current::Vector{Int64}, n::Vector{Int64})
Helper function to iterate over indices. `current` gives a vector of current indices
and `n` is a vector of the same length with the maximum indices.
Helps when looping over an arbitrary number of indices with potentially different
maximum indices.
"""
function increase(current::Vector{Int64}, n::Vector{Int64})::Vector{Int64}
if current == n
error("Reached end")
end
if all(current .>= n)
error("Invalid current index")
end
# Increase last index and then check for index restrictions
current[end] += 1
while any(current .> n)
ind = findall(current .> n)
current[ind[end] - 1] += 1
if ind[end] <= length(current)
current[ind[end]:end] .= 1
end
end
return current
end
# Helper function
function mergeBox(x::T1, y::T2)::Vector{Box} where {T1, T2 <: Box}
if x.ndims != y.ndims
error("Invalid dimensions")
end
if x β y
return [y]
end
if y β x
return [x]
end
# Create flag to indicate if two single intervals
# do not overlap --> 0
# are the same --> 1
# overlap --> 2
flag = zeros(x.ndims)
for i = 1:x.ndims
if x.lims[i] == y.lims[i]
flag[i] = 1
elseif length(union(x.lims[i], y.lims[i])) == 1
flag[i] = 2
end
end
# Two boxes can only be merged if they have the same single intervals
# in all dimensions except for one, where they must be "mergable"
if (sum(flag .!= 1) == 1) & (sum(flag .== 2) == 1)
out = copy(x.lims)
ind = findall(flag .== 2)[1]
out[ind] = union(x.lims[ind], y.lims[ind])[1]
return [box(out, x.ndims)]
end
return [x, y]
end
# another helper function, needed?
function mergeOne(x::Vector{T1}) where {T1 <: Box}
if length(x) == 1
return x
end
for i = 1:length(x) - 1
for j = i+1:length(x)
temp = mergeBox(x[i], x[j])
if length(temp) == 1
return [x[setdiff(1:length(x), [i, j])]; temp[1]]
end
end
end
return x
end
# Function to remove empty sets and intervals that contain other intervals
# Only important for the unionDisjoint
# If merge = true, then the resulting boxes are checked whether they can be
# unioned to one box
"""
reduce(x::Vector{Box}, merge::Bool)
A function that takes a vector of [`Box`][@ref]s and removes
- Empty boxes (where at least one boundry is the empty set)
- Doubles
- Boxes that contain an other box
If `merge` is true, the reduced vector of boxes is checked for pairs of boxes
that can be merged to one.
See also: [`union(x::Box, y::Box)`](@ref)
"""
function reduce(x::Vector{T1}, merge::Bool = false)::Vector{Box} where {T1 <: Box}
out = copy(x)
# Step 1: Remove empty sets
keep = fill(true, length(out))
for i = 1:length(out)
if any(out[i].lims .== [emptyset()])
keep[i] = false
end
end
out = out[keep]
# Step 2: Remove doubles
out = unique(out)
# Step3: Remove boxes that contain other boxes
keep = fill(true, length(out))
for i = 1:length(out)-1
for j = i+1:length(out)
if out[i] β out[j]
keep[j] = false
end
if out[j] β out[i]
keep[i] = false
end
end
end
out = out[keep]
if !merge
return out
end
while true
if length(out) == 1
return out
end
oneChanged = false
for i = 1:length(out) - 1
for j = i+1:length(out)
if !oneChanged
temp = mergeBox(out[i], out[j])
if length(temp) == 1
out = [out[setdiff(1:length(out), [i, j])]; temp]
oneChanged = true
end
end
end
end
if !oneChanged
return out
end
end
end
# Function for the same partitioning as above for two boxes
"""
union(x::Box, y::Box, merge::Bool)::Vector{Box}
Function to union two boxes of arbitrary dimensions. It returns a vector of
disjoint boxes such that their union is the union of `x`and `y`.
If `merge` is true, the disjoint boxes are checked if they can be merged.
"""
function union(x::T1, y::T2, merge::Bool = true)::Vector{Box} where {T1, T2 <: Box}
if x.ndims != y.ndims
error("Invalid dimensions")
end
# Number of random variables
nRV = x.ndims
# For each dimension, divide the real line into disjoint intervals
# with the two intervals being element of the partitioning
allInts = Vector{Vector{Interval}}(undef, nRV)
for i = 1:nRV
allInts[i] = unionDisjoint(x.lims[i], y.lims[i])
end
nInts = length.(allInts)
out = Vector{Box}(undef, prod(nInts))
# Take one interval of each dimensions partition and build a box from them
ind = ones(Int64, nRV)
ind[end] = 0
for counter = 1:prod(nInts)
ind = increase(ind, nInts)
temp = Vector{Interval}(undef, nRV)
for j = 1:nRV
temp[j] = allInts[j][ind[j]]
end
out[counter] = box(temp)
end
# Then check which boxes are inside either x or y
keep = fill(true, length(out))
for i = 1:length(out)
if any(out[i].lims .== [emptyset()])
keep[i] = false
elseif issubset(out[i], x) | issubset(out[i], y)
keep[i] = true
else
keep[i] = false
end
end
return reduce(out[keep], merge)
end
# Idea:
# Provide a list of boxes, if there is an overlap, use unionDisjoint
# to create non-overlapping boxes and directly return it
# Repeat steps until there is no overlap anymore
# Helper function
# needed?
function resolveOverlap(x::Vector{T1})::Vector{Box} where {T1 <: Box}
n = length(x)
if length(unique((z -> z.ndims).(x))) != 1
error("Invalid dimensions")
end
if n == 1
return x
end
add = Vector{Box}(undef, 0)
remove = fill(false, n)
for i = 1:n-1
for j = i+1:n
if !remove[i] & !remove[j]
temp = intersect(x[i], x[j])
if !any(temp.lims .== [emptyset()])
remove[i] = true
remove[j] = true
add = [add; union(x[i], x[j], false)]
end
end
end
end
[x[setdiff(1:n, findall(remove))]; add]
end
"""
union(x::Vector{Box}, y::Vector{Box}, merge::Bool)::Vector{Box}
union(x::Vector{Box}, y::Box, merge::Bool)::Vector{Box}
union(x::Box, y::Vector{Box}, merge::Bool)::Vector{Box}
For two collections of disjoint boxes `x` and `y`, gives a vector of
disjoint boxes, such that their union equals the union of `x`and `y`.
If `merge` is `true`, the elements of the resulting vector are checked if they
can be merged.
"""
# function union(x::Vector{T1}, y::Vector{T2}, merge::Bool = true)::Vector{Box} where {T1, T2 <: Box}
# out = [x; y]
# while true
# nOld = length(out)
# out = resolveOverlap(out)
# if length(out) == nOld
# break
# end
# end
# return reduce(out, merge)
# end
# New version
function union(x::Vector{T1}, merge::Bool = true)::Vector{Box} where {T1 <: Box}
if length(unique((z -> z.ndims).(x))) != 1
error("Invalid dimensions")
end
# Number of random variables
nRV = x[1].ndims
nBox = length(x)
if nBox == 1
return x
end
# For each dimension, divide the real line into disjoint intervals
# with the two intervals being element of the partitioning
allInts = Vector{Vector{Interval}}(undef, nRV)
for i = 1:nRV
intTemp = (j -> x[j].lims[i]).(1:length(x))
allInts[i] = unionDisjoint(intTemp)
end
nInts = length.(allInts)
out = Vector{Box}(undef, prod(nInts))
# Take one interval of each dimensions partition and build a box from them
ind = ones(Int64, nRV)
ind[end] = 0
for counter = 1:prod(nInts)
ind = increase(ind, nInts)
temp = Vector{Interval}(undef, nRV)
for j = 1:nRV
temp[j] = allInts[j][ind[j]]
end
out[counter] = box(temp)
end
# Then check which boxes are inside one of the boxes in x
keep = fill(false, length(out))
for i = 1:length(out)
if !any(out[i].lims .== [emptyset()])
for j = 1:nBox
if issubset(out[i], x[j])
keep[i] = true
end
end
end
end
return reduce(out[keep], merge)
end
function union(x::Vector{T1}, y::Vector{T2}, merge::Bool = true)::Vector{Box} where {T1, T2 <: Box}
return union([x; y], merge)
end
function union(x::Vector{T1}, y::T2, merge::Bool = true)::Vector{Box} where {T1, T2 <: Box}
return union([x; y], merge)
end
function union(x::T1, y::Vector{T2}, merge::Bool = true)::Vector{Box} where {T1, T2 <: Box}
return union([x; y], merge)
end
"""
intersect(x::Vector{Box}, y::Vector{Box})::Vector{Box}
intersect(x::Vector{Box}, y::Box)::Vector{Box}
intersect(x::Box, y::Vector{Box})::Vector{Box}
For two collections of disjoint boxes `x` and `y`, gives a vector of
disjoint boxes, such that their union equals the union of `x`and `y`.
If `merge` is `true`, the elements of the resulting vector are checked if they
can be merged.
"""
function intersect(x::Vector{T1}, y::Vector{T2})::Vector{Box} where {T1, T2 <: Box}
if length(unique([(z -> z.ndims).(x); (z -> z.ndims).(y)])) != 1
error("Invalid dimensions")
end
# Number of random variables
nRV = x[1].ndims
ints = Vector{Box}(undef, length(x)*length(y))
counter = 1
for i = 1:length(x), j = 1:length(y)
ints[counter] = intersect(x[i], y[j])
counter += 1
end
return reduce(ints, false)
end
function intersect(x::T1, y::Vector{T2})::Vector{Box} where {T1, T2 <: Box}
return intersect([x], y)
end
function intersect(x::Vector{T1}, y::T2)::Vector{Box} where {T1, T2 <: Box}
return intersect(x, [y])
end
function diff(x::T1, y::T2, merge::Bool = true)::Vector{Box} where {T1, T2 <: Box}
temp = union(x, y, false)
keep = fill(false, length(temp))
for i = 1:length(temp)
if !(temp[i] β y) & (temp[i] β x)
keep[i] = true
end
end
if any(keep)
return reduce(temp[keep], merge)
else
return [box(fill(emptyset(), x.ndims))]
end
end
function diff(x::Vector{T1}, y::Vector{T2}, merge::Bool = true)::Vector{Box} where {T1, T2 <: Box}
temp = union(x, y, false)
keep = fill(false, length(temp))
for i = 1:length(temp)
if !(temp[i] β y) & (temp[i] β x)
keep[i] = true
end
end
if any(keep)
return reduce(temp[keep], merge)
else
return [box(fill(emptyset(), x[1].ndims))]
end
end
function diff(x::T1, y::Vector{T2}, merge::Bool = true)::Vector{Box} where {T1, T2 <: Box}
return diff([x], y, merge)
end
function diff(x::Vector{T1}, y::T2, merge::Bool = true)::Vector{Box} where {T1, T2 <: Box}
return diff(x, [y], merge)
end
(\)(x::T1, y::T2) where {T1, T2 <: Box} = begin
diff(x, y)
end
(\)(x::Vector{T1}, y::T2) where {T1, T2 <: Box} = begin
diff(x, y)
end
(\)(x::T1, y::Vector{T2}) where {T1, T2 <: Box} = begin
diff(x, y)
end
(\)(x::Vector{T1}, y::Vector{T2}) where {T1, T2 <: Box} = begin
diff(x, y)
end
function xor(x::T1, y::T2, merge::Bool = true)::Vector{Box} where {T1, T2 <: Box}
out = union(x, y, false)
keep = fill(false, length(out))
for i = 1:length(out)
if (out[i] β y) & !(out[i] β x)
keep[i] = true
end
if (out[i] β x) & !(out[i] β y)
keep[i] = true
end
end
if any(keep)
return reduce(out[keep], merge)
else
return [box(fill(emptyset(), x.ndims))]
end
end
function xor(x::Vector{T1}, y::Vector{T2}, merge::Bool = true)::Vector{Box} where {T1, T2 <: Box}
out = union(x, y, false)
keep = fill(false, length(out))
for i = 1:length(out)
if (out[i] β y) & !(out[i] β x)
keep[i] = true
end
if (out[i] β x) & !(out[i] β y)
keep[i] = true
end
end
if any(keep)
return reduce(out[keep], merge)
else
return [box(fill(emptyset(), x.ndims))]
end
end
function xor(x::Vector{T1}, y::T2, merge::Bool = true)::Vector{Box} where {T1, T2 <: Box}
return xor(x, [y], merge)
end
function xor(x::T1, y::Vector{T2}, merge::Bool = true)::Vector{Box} where {T1, T2 <: Box}
return xor([x], y, merge)
end
"""
not(x::Box, merge::Bool)::Vector{Box}
not(x::Vector{Box}, merge::Bool)::Vector{Box}
Computes the complement of a box or the complement of a union of boxes.
If `merge` is `true`, the elements of the resulting vector are checked if they
can be merged.
"""
function not(x::T1, merge::Bool = true)::Vector{Box} where {T1 <: Box}
n = x.ndims
y = box(fill(oo(-Inf, Inf), n))
out = union(x, y, false)
keep = fill(true, length(out))
for i = 1:length(out)
if out[i] β x
keep[i] = false
end
end
if any(keep)
return reduce(out[keep], merge)
else
return return [box(fill(emptyset(), n))]
end
end
function not(x::Vector{T1}, merge::Bool = true)::Vector{Box} where {T1 <: Box}
if length(unique((z -> z.ndims).(x))) != 1
error("Invalid dimensions")
end
n = x[1].ndims
y = box(fill(oo(-Inf, Inf), n))
out = union(x, y, false)
keep = fill(true, length(out))
for i = 1:length(out)
for j = 1:length(x)
if out[i] β x[j]
keep[i] = false
end
end
end
if any(keep)
return reduce(out[keep], merge)
else
return return [box(fill(emptyset(), n))]
end
end
# Now above functions can be applied to events
# Step 1: Extend the vectors of random variables to be equal
# (Use ordering for boxes, fill in with sure event (-Inf, Inf))
# Step 2: Apply above function to the boxes
function unifyEvents(A::event, B::event)::Tuple{event, event}
X1 = copy(A.X)
X2 = copy(B.X)
boxes1 = copy(A.boxes)
boxes2 = copy(B.boxes)
id1 = (xx-> xx.id).(A.X)
id2 = (xx-> xx.id).(B.X)
# Step 1: Extend the events to have matching RVs
for i = 1:length(id2)
if !(id2[i] in id1)
id1 = [id1; id2[i]]
X1 = [X1; X2[i]]
for j = 1:length(boxes1)
boxes1[j] = box([boxes1[j].lims; oo(-Inf, Inf)], boxes1[j].ndims + 1)
end
end
end
for i = 1:length(id1)
if !(id1[i] in id2)
id2 = [id2; id1[i]]
X2 = [X2; X1[i]]
for j = 1:length(boxes2)
boxes2[j] = box([boxes2[j].lims; oo(-Inf, Inf)], boxes2[j].ndims + 1)
end
end
end
# Step 2: Sort the events by RV id
o = sortperm(id1)
id1 = id1[o]
X1 = X1[o]
for i = 1:length(boxes1)
boxes1[i] = box(boxes1[i].lims[o])
end
o = sortperm(id2)
id2 = id2[o]
X2 = X2[o]
for i = 1:length(boxes2)
boxes2[i] = box(boxes2[i].lims[o])
end
return event(X1, boxes1), event(X2, boxes2)
end
# Union of two events, potentially involving different random variables
"""
union(A::event, B::event, merge::Bool)::event
A βͺ B
Union of two events `A` and `B`. Returns the event that `A` occurs or `B` or both.
If `merge` is true, the vector of boxes in the resulting event are unioned if possible.
"""
function union(A::event, B::event, merge::Bool = true)::event
A1, B1 = unifyEvents(A, B)
return event(A1.X, union(A1.boxes, B1.boxes, merge))
end
# Same for intersections
"""
intersect(A::event, B::event)::event
A β© B
Intersection of two events `A` and `B`. Returns the event that events `A` and `B` occur.
"""
function intersect(A::event, B::event)::event
A1, B1 = unifyEvents(A, B)
return event(A1.X, intersect(A1.boxes, B1.boxes))
end
"""
not(A::event)::event
The complementary event of an event `A`.
"""
function not(A::event)::event
return event(A.X, not(A.boxes))
end
| RandomVariables | https://github.com/ManuelStapper/RandomVariables.jl.git |
|
[
"MIT"
] | 0.1.3 | 1fade0beee898fb8872ac858b78c7f4b669fbd61 | code | 3101 | # Input: two intervals x and y
# Output: true if x β y and false otherwise
# For two intervals of the same type
"""
issubset(x, y)::Bool
x β y
y β x
Function to check if `x` is a subset of `y`. The inputs can either both be of
type [`Interval`](@ref) or of type [`Box`](@ref). It can also be used as
operators `β` and `β`.
"""
function issubset(x::T, y::T)::Bool where {T <: Interval}
if (y.l <= x.l <= y.u) & (y.l <= x.u <= y.u)
return true
end
return false
end
# Special treatment for empty sets
function issubset(x::T1, y::emptyset)::Bool where {T1 <: Interval}
return false
end
function issubset(x::emptyset, y::T1)::Bool where {T1 <: Interval}
return true
end
function issubset(x::emptyset, y::emptyset)::Bool
return true
end
# For two different types of intervals
function issubset(x::cc, y::oo)::Bool
if (y.l < x.l < y.u) & (y.l < x.u < y.u)
return true
end
return false
end
function issubset(x::cc, y::co)::Bool
if (y.l <= x.l <= y.u) & (y.l <= x.u < y.u)
return true
end
return false
end
function issubset(x::cc, y::oc)::Bool
if (y.l < x.l <= y.u) & (y.l <= x.u <= y.u)
return true
end
return false
end
function issubset(x::oo, y::cc)::Bool
if (y.l <= x.l <= y.u) & (y.l <= x.u <= y.u)
return true
end
return false
end
function issubset(x::oo, y::co)::Bool
if (y.l <= x.l <= y.u) & (y.l <= x.u <= y.u)
return true
end
return false
end
function issubset(x::oo, y::oc)::Bool
if (y.l <= x.l <= y.u) & (y.l <= x.u <= y.u)
return true
end
return false
end
function issubset(x::co, y::cc)::Bool
if (y.l <= x.l <= y.u) & (y.l <= x.u <= y.u)
return true
end
return false
end
function issubset(x::co, y::oo)::Bool
if (y.l < x.l <= y.u) & (y.l <= x.u <= y.u)
return true
end
return false
end
function issubset(x::co, y::oc)::Bool
if (y.l < x.l <= y.u) & (y.l <= x.u <= y.u)
return true
end
return false
end
function issubset(x::oc, y::cc)::Bool
if (y.l <= x.l <= y.u) & (y.l <= x.u <= y.u)
return true
end
return false
end
function issubset(x::oc, y::oo)::Bool
if (y.l <= x.l <= y.u) & (y.l <= x.u < y.u)
return true
end
return false
end
function issubset(x::oc, y::co)::Bool
if (y.l <= x.l <= y.u) & (y.l <= x.u < y.u)
return true
end
return false
end
# For boxes
function issubset(x::T1, y::T2)::Bool where {T1, T2 <: Box}
if x.ndims != y.ndims
return false
end
for i = 1:x.ndims
if !(x.lims[i] β y.lims[i])
return false
end
end
return true
end
function issubset(x::T1, y::Vector{T2})::Bool where {T1, T2 <: Box}
if !all(x.ndims .== (z -> z.ndims).(y))
return false
end
for i = 1:length(y)
if (x β y[i])
return true
end
end
return false
end
| RandomVariables | https://github.com/ManuelStapper/RandomVariables.jl.git |
|
[
"MIT"
] | 0.1.3 | 1fade0beee898fb8872ac858b78c7f4b669fbd61 | code | 18170 | """
+(X::RandomVariable, y::Real)
+(y::Real, X::RandomVariable)
X + y
y + X
Transformation of the random variable `X`. Returns a tranformed random variable
Z = X + y. Instead of a random variable, a distribution can be provided and a
new random variable is created.
"""
(+)(X::T1, y::T2) where {T1 <: RandomVariable, T2 <: Real} = begin
f = function(z::T3) where {T3 <: Real};
z + y
end
fInv = function(z::Vector{T3}) where {T3 <: Interval};
out = Vector{Interval}(undef, length(z))
for i = 1:length(z)
if z[i] != emptyset()
out[i] = typeof(z[i])(z[i].l - y, z[i].u - y)
else
out[i] = emptyset()
end
end
return union(out)
end
if typeof(X) == RV
return RVtransformed(X.distr, X.id, f, fInv)
else
return RVtransformed(X.distr, X.id, f β X.f, X.fInv β fInv)
end
end
(+)(y::T2, X::T1) where {T1 <: RandomVariable, T2 <: Real} = begin
X + y
end
"""
*(X::RandomVariable, y::Real)
*(y::Real, X::RandomVariable)
X * y
y * X
Transformation of the random variable `X`. Returns a tranformed random variable
Z = X * y. Instead of a random variable, a distribution can be provided and a
new random variable is created.
"""
(*)(X::T1, y::T2) where {T1 <: RandomVariable, T2 <: Real} = begin
f = function(z::T3) where {T3 <: Real};
z * y
end
if y != 0
fInv = function(z::Vector{T3}) where {T3 <: Interval}
out = Vector{Interval}(undef, length(z))
for i = 1:length(z)
if z[i] != emptyset()
out[i] = typeof(z[i])(z[i].l/y, z[i].u/y)
else
out[i] = emptyset()
end
end
return union(out)
end
else
fInv = function(z::Vector{T3}) where {T3 <: Interval}
for i = 1:length(z)
if z[i] != emptyset()
if z[i].l <= 0 <= z[i].u
return [oo(-Inf, Inf)]
end
end
end
return [emptyset()]
end
end
if typeof(X) == RV
return RVtransformed(X.distr, X.id, f, fInv)
else
return RVtransformed(X.distr, X.id, f β X.f, X.fInv β fInv)
end
end
(*)(y::T2, X::T1) where {T1 <: RandomVariable, T2 <: Real} = begin
X*y
end
"""
-(X::RandomVariable, y::Real)
-(y::Real, X::RandomVariable)
X - y
y - X
Transformation of the random variable `X`. Returns a tranformed random variable
Z = X - y or Z = y - X. Instead of a random variable, a distribution can be provided and a
new random variable is created.
"""
(-)(X::T1, y::T2) where {T1 <: RandomVariable, T2 <: Real} = begin
X + (-y)
end
(-)(y::T2, X::T1) where {T1 <: RandomVariable, T2 <: Real} = begin
y + X*(-1)
end
(-)(X::T1) where {T1 <: RandomVariable} = begin
X*(-1)
end
"""
inv(X::RandomVariable)
Transformation of the random variable `X`. Returns a tranformed random variable
Z = X^{-1}. Instead of a random variable, a distribution can be provided and a
new random variable is created.
"""
function inv(X::T) where {T <: RandomVariable}
f = function(z::T3) where {T3 <: Real};
1/z
end
if typeof(X) == RV
if typeof(X.distr) <: DiscreteDistribution
if pdf(X.distr, 0) > 0
error("Invalid distribution, division by zero")
end
end
else
if sum(P.(X.distr, X.fInv([cc(0, 0)]))) != 0
error("Invalid distribution, division by zero")
end
end
fInv = function(z::Vector{T2}) where {T2 <: Interval}
out = Matrix{Interval}(fill(emptyset(), length(z), 2))
for i = 1:length(z)
if (z[i] != emptyset()) & (z[i] != cc(0, 0))
if (z[i].l) <= 0 & (z[i].u >= 0)
if typeof(z[i]) in [cc, co]
out[i, 1] = oc(-Inf, 1/z[i].l)
else
out[i, 1] = oo(-Inf, 1/z[i].l)
end
if typeof(z[i]) in [cc, oc]
out[i, 2] = co(1/z[i].u, Inf)
else
out[i, 2] = oo(1/z[i].u, Inf)
end
else
out[i, 1] = typeof(z[i])(1/z[i].l, 1/z[i].u)
end
end
end
return union(vec(out))
end
if typeof(X) == RV
return RVtransformed(X.distr, X.id, f, fInv)
else
return RVtransformed(X.distr, X.id, f β X.f, X.fInv β fInv)
end
end
"""
/(X::RandomVariable, y::Real)
/(y::Real, X::RandomVariable)
X / y
y / X
Transformation of the random variable `X`. Returns a tranformed random variable
Z = X / y or Z = y / X. Also works with the left division y\\X and X\\y.
Instead of a random variable, a distribution can be provided and a
new random variable is created.
"""
(/)(X::T1, y::T2) where {T1 <: RandomVariable, T2 <: Real} = begin
if y == 0
error("Division by zero")
end
X * (1/y)
end
(/)(y::T2, X::T1) where {T1 <: RandomVariable, T2 <: Real} = begin
inv(X)*y
end
# To include the left division operator
function adjoint(x::RandomVariable)
return x
end
"""
exp(X::RandomVariable)
Transformation of the random variable `X`. Returns a tranformed random variable
Z = exp(X). Instead of a random variable, a distribution can be provided and a
new random variable is created.
"""
function exp(X::T) where {T <: RandomVariable}
f = function(z::T3) where {T3 <: Real};
exp(z)
end
fInv = function(z::Vector{T2}) where {T2 <: Interval}
out = Vector{Interval}(undef, length(z))
for i = 1:length(z)
if z[i] != emptyset()
if z[i].l > 0
out[i] = typeof(z[i])(log(z[i].l), log(z[i].u))
else
if z[i].u > 0
out[i] = ifelse(typeof(z[i]) in [cc, oc], oc, oo)(-Inf, log(z[i].u))
else
out[i] = emptyset()
end
end
else
out[i] = emptyset()
end
end
return union(out)
end
if typeof(X) == RV
return RVtransformed(X.distr, X.id, f, fInv)
else
return RVtransformed(X.distr, X.id, f β X.f, X.fInv β fInv)
end
end
"""
log(X::RandomVariable)
Transformation of the random variable `X`. Returns a tranformed random variable
Z = log(X). Instead of a random variable, a distribution can be provided and a
new random variable is created.
"""
function log(X::T) where {T <: RandomVariable}
f = function(z::T3) where {T3 <: Real};
log(z)
end
if typeof(X) == RV
if minimum(X.distr) < 0
error("Invalid distribution")
end
else
if sum(P.(X.distr, X.fInv([oo(-Inf, 0)]))) > 0
error("Invalid distribution")
end
end
fInv = function(z::Vector{T2}) where {T2 <: Interval}
out = Vector{Interval}(undef, length(z))
for i = 1:length(z)
if z[i] != emptyset()
out[i] = typeof(z[i])(exp(z[i].l), exp(z[i].u))
else
out[i] = emptyset()
end
end
return union(out)
end
if typeof(X) == RV
return RVtransformed(X.distr, X.id, f, fInv)
else
return RVtransformed(X.distr, X.id, f β X.f, X.fInv β fInv)
end
end
"""
sqrt(X::RandomVariable)
Transformation of the random variable `X`. Returns a tranformed random variable
Z = sqrt(X). Also works as βX. Instead of a random variable, a distribution can
be provided and a new random variable is created.
"""
function sqrt(X::T) where {T <: RandomVariable}
f = function(z::T3) where {T3 <: Real};
sqrt(z)
end
if typeof(X) == RV
if minimum(X.distr) < 0
error("Invalid distribution")
end
else
if sum(P.(X.distr, X.fInv([oo(-Inf, 0)]))) > 0
error("Invalid distribution")
end
end
fInv = function(z::Vector{T2}) where {T2 <: Interval}
out = Vector{Interval}(undef, length(z))
for i = 1:length(z)
if z[i] != emptyset()
if z[i].l > 0
out[i] = typeof(z[i])(z[i].l^2, z[i].u^2)
else
if z[i].u > 0
out[i] = ifelse(typeof(z[i]) in [cc, oc], cc, co)(0, z[i].u^2)
else
out[i] = emptyset()
end
end
else
out[i] = emptyset()
end
end
return union(out)
end
if typeof(X) == RV
return RVtransformed(X.distr, X.id, f, fInv)
else
return RVtransformed(X.distr, X.id, f β X.f, X.fInv β fInv)
end
end
"""
abs(X::RandomVariable)
Transformation of the random variable `X`. Returns a tranformed random variable
Z = |X|. Instead of a random variable, a distribution can be provided and a
new random variable is created.
"""
function abs(X::T) where {T <: RandomVariable}
f = function(z::T3) where {T3 <: Real};
abs(z)
end
fInv = function(z::Vector{T2}) where {T2 <: Interval}
out = Matrix{Interval}(fill(emptyset(), length(z), 2))
for i = 1:length(z)
if z[i] != emptyset()
if z[i].u >= 0
if z[i].l >= 0
out[i, 1] = z[i]
out[i, 2] = typeof(z[i])(-z[i].l, -z[i].u)
else
if typeof(z[i]) in [cc, oc]
out[i, 1] = cc(-z[i].u, z[i].u)
else
out[i, 1] = oo(-z[i].u, z[i].u)
end
end
end
end
end
return union(vec(out))
end
if typeof(X) == RV
return RVtransformed(X.distr, X.id, f, fInv)
else
return RVtransformed(X.distr, X.id, f β X.f, X.fInv β fInv)
end
end
# Internal
function powI(X::T, y::Integer) where {T <: RandomVariable}
f = function(z::T3) where {T3 <: Real};
z^y
end
if iseven(y)
fInv = function(z::Vector{T2}) where {T2 <: Interval}
out = Matrix{Interval}(fill(emptyset(), length(z), 2))
for i = 1:length(z)
if z[i] != emptyset()
if z[i].u >= 0
if z[i].l >= 0
out[i, 1] = typeof(z[i])(z[i].l^(1/y), z[i].u^(1/y))
out[i, 2] = typeof(z[i])(-(z[i].l^(1/y)), -(z[i].u^(1/y)))
else
if typeof(z[i]) in [cc, oc]
out[i, 1] = cc(-(z[i].u^(1/y)), z[i].u^(1/y))
else
out[i, 1] = oo(-(z[i].u^(1/y)), z[i].u^(1/y))
end
end
end
end
end
return union(vec(out))
end
else
fInv = function(z::Vector{T2}) where {T2 <: Interval}
out = Vector{Interval}(undef, length(z))
for i = 1:length(z)
if z[i] != emptyset()
out[i] = typeof(z[i])(sign(z[i].l)*abs(z[i].l)^(1/y), sign(z[i].u)*abs(z[i].u)^(1/y))
else
out[i] = emptyset()
end
end
return union(out)
end
end
if typeof(X) == RV
return RVtransformed(X.distr, X.id, f, fInv)
else
return RVtransformed(X.distr, X.id, f β X.f, X.fInv β fInv)
end
end
function powF(X::T, y::Float64) where {T <: RandomVariable}
f = function(z::T3) where {T3 <: Real};
z^y
end
if typeof(X) == RV
if minimum(X.distr) < 0
error("Invalid distribution")
end
else
if sum(P.(X.distr, X.fInv([oo(-Inf, 0)]))) > 0
error("Invalid distribution")
end
end
fInv = function(z::Vector{T2}) where {T2 <: Interval}
out = Vector{Interval}(undef, length(z))
for i = 1:length(z)
if z[i] != emptyset()
if z[i].l > 0
out[i] = typeof(z[i])(z[i].l^(1/y), z[i].u^(1/y))
else
if z[i].u > 0
out[i] = ifelse(typeof(z[i]) in [cc, oc], cc, co)(0, z[i].u^(1/y))
else
out[i] = emptyset()
end
end
else
out[i] = emptyset()
end
end
return union(out)
end
if typeof(X) == RV
return RVtransformed(X.distr, X.id, f, fInv)
else
return RVtransformed(X.distr, X.id, f β X.f, X.fInv β fInv)
end
end
"""
^(X::RandomVariable, y::Real)
X^y
Transformation of the random variable `X`. Returns a tranformed random variable
Z = X^y. Instead of a random variable, a distribution can be provided and a
new random variable is created.
"""
(^)(X::T1, y::T2) where {T1 <: RandomVariable, T2 <: Real} = begin
if y == floor(y)
if y == 0
error("Zero not allowed as exponent")
end
if y < 0
return powI(inv(X), Int64(y))
else
return powI(X, Int64(y))
end
else
if y < 0
return powF(inv(X), Float64(y))
else
return powF(X, Float64(y))
end
end
end
# Now operators to create events
# Operators that create events
# Random variable on the left hand side
(<)(X::RVtransformed, y::T) where {T <: Real} = begin
event(RV(X.distr, X.id), X.fInv([oo(-Inf, y)]))
end
(<=)(X::RVtransformed, y::T) where {T <: Real} = begin
event(RV(X.distr, X.id), X.fInv([oc(-Inf, y)]))
end
(>)(X::RVtransformed, y::T) where {T <: Real} = begin
event(RV(X.distr, X.id), X.fInv([oo(y, Inf)]))
end
(>=)(X::RVtransformed, y::T) where {T <: Real} = begin
event(RV(X.distr, X.id), X.fInv([co(y, Inf)]))
end
(==)(X::RVtransformed, y::T) where {T <: Real} = begin
event(RV(X.distr, X.id), X.fInv([cc(y, y)]))
end
(!=)(X::RVtransformed, y::T) where {T <: Real} = begin
event(RV(X.distr, X.id), X.fInv(not(cc(y, y))))
end
(in)(X::RVtransformed, y::Vector{T}) where {T <: Real} = begin
event(RV(X.distr, X.id), X.fInv((z -> cc(z, z)).(y)))
end
(in)(X::RVtransformed, y::UnitRange) = begin
event(RV(X.distr, X.id), X.fInv((z -> cc(z, z)).(collect(y))))
end
(in)(X::RVtransformed, y::StepRange) = begin
event(RV(X.distr, X.id), X.fInv((z -> cc(z, z)).(collect(y))))
end
(in)(X::RVtransformed, y::StepRangeLen) = begin
event(RV(X.distr, X.id), X.fInv((z -> cc(z, z)).(collect(y))))
end
(in)(X::RVtransformed, y::Interval) = begin
event(RV(X.distr, X.id), X.fInv([y]))
end
# Random variable on the right hand side
(<)(y::T, X::RVtransformed) where {T <: Real} = begin
X > y
end
(<=)(y::T, X::RVtransformed) where {T <: Real} = begin
X >= y
end
(>)(y::T, X::RVtransformed) where {T <: Real} = begin
X < y
end
(>=)(y::T, X::RVtransformed) where {T <: Real} = begin
X <= y
end
(==)(y::T, X::RVtransformed) where {T <: Real} = begin
X == y
end
(!=)(y::T, X::RVtransformed) where {T <: Real} = begin
X != y
end
# And agin the lazy way where random variables are created on the fly
# (+)(X::T1, y::T2) where {T1 <: UnivariateDistribution, T2 <: Real} = begin
# RV(X) + y
# end
# (+)(y::T2, X::T1) where {T1 <: UnivariateDistribution, T2 <: Real} = begin
# RV(X) + y
# end
#
# (-)(X::T1, y::T2) where {T1 <: UnivariateDistribution, T2 <: Real} = begin
# RV(X) - y
# end
# (-)(y::T2, X::T1) where {T1 <: UnivariateDistribution, T2 <: Real} = begin
# RV(X) - y
# end
# (-)(X::T1) where {T1 <: UnivariateDistribution} = begin
# RV(X)*(-1)
# end
# (-)(X::T1) where {T1 <: RandomVariable} = begin
# X*(-1)
# end
#
# (*)(X::T1, y::T2) where {T1 <: UnivariateDistribution, T2 <: Real} = begin
# RV(X) * y
# end
# (*)(y::T2, X::T1) where {T1 <: UnivariateDistribution, T2 <: Real} = begin
# RV(X) + y
# end
#
# (/)(X::T1, y::T2) where {T1 <: UnivariateDistribution, T2 <: Real} = begin
# if y == 0
# error("Division by zero")
# end
# RV(X)/y
# end
#
# (/)(y::T2, X::T1) where {T1 <: UnivariateDistribution, T2 <: Real} = begin
# y/RV(X)
# end
#
# function inv(X::T) where {T <: UnivariateDistribution}
# inv(RV(X))
# end
#
# function exp(X::T) where {T <: UnivariateDistribution}
# exp(RV(X))
# end
#
# function log(X::T) where {T <: UnivariateDistribution}
# log(RV(X))
# end
#
# function sqrt(X::T) where {T <: UnivariateDistribution}
# sqrt(RV(X))
# end
#
# function abs(X::T) where {T <: UnivariateDistribution}
# abs(RV(X))
# end
#
# (^)(X::T1, y::T2) where {T1 <: UnivariateDistribution, T2 <: Real} = begin
# RV(X)^y
# end
| RandomVariables | https://github.com/ManuelStapper/RandomVariables.jl.git |
|
[
"MIT"
] | 0.1.3 | 1fade0beee898fb8872ac858b78c7f4b669fbd61 | code | 6652 | # Union of intervals
# Input: Two intervals x and y
# Output: always vector of intervals
# If x and y do not overlap, it returns a vector of two
# If x and y overlap, it returns a vetor of length one
"""
union(x::Interval, y::Interval)
x βͺ y
Union of two objects of type [`Interval`](@ref). The output is always a vector
of intervals. If `x` and `y` overlap, the output has one element and two elements
if not.
"""
function union(x::cc, y::cc)::Vector{Interval}
if (x.u < y.l) | (x.l > y.u)
return [x, y]
end
if (x.l <= y.l <= x.u) & (x.l <= y.u <= x.u)
return [x]
end
if (y.l <= x.l <= y.u) & (y.l <= x.u <= y.u)
return [y]
end
return [cc(minimum([x.l, y.l]), maximum([x.u, y.u]))]
end
function union(x::oo, y::oo)::Vector{Interval}
if (x.u <= y.l) | (x.l >= y.u)
return [x, y]
end
if (x.l <= y.l <= x.u) & (x.l <= y.u <= x.u)
return [x]
end
if (y.l <= x.l <= y.u) & (y.l <= x.u <= y.u)
return [y]
end
return [oo(minimum([x.l, y.l]), maximum([x.u, y.u]))]
end
function union(x::oc, y::oc)::Vector{Interval}
if (x.u < y.l) | (x.l > y.u)
return [x, y]
end
if (x.l <= y.l <= x.u) & (x.l <= y.u <= x.u)
return [x]
end
if (y.l <= x.l <= y.u) & (y.l <= x.u <= y.u)
return [y]
end
return [oc(minimum([x.l, y.l]), maximum([x.u, y.u]))]
end
function union(x::co, y::co)::Vector{Interval}
if (x.u < y.l) | (x.l > y.u)
return [x, y]
end
if (x.l <= y.l <= x.u) & (x.l <= y.u <= x.u)
return [x]
end
if (y.l <= x.l <= y.u) & (y.l <= x.u <= y.u)
return [y]
end
return [co(minimum([x.l, y.l]), maximum([x.u, y.u]))]
end
function union(x::cc, y::oo)::Vector{Interval}
if (x.u < y.l) | (x.l > y.u)
return [x, y]
end
if (x.l <= y.l <= x.u) & (x.l <= y.u <= x.u)
return [x]
end
if (y.l < x.l < y.u) & (y.l < x.u < y.u)
return [y]
end
if x.l <= y.l
return [co(x.l, y.u)]
else
return [oc(y.l, x.u)]
end
end
function union(x::oo, y::cc)::Vector{Interval}
return union(y, x)
end
function union(x::cc, y::co)::Vector{Interval}
if (x.u < y.l) | (x.l > y.u)
return [x, y]
end
if (x.l <= y.l <= x.u) & (x.l <= y.u <= x.u)
return [x]
end
if (y.l <= x.l <= y.u) & (y.l <= x.u < y.u)
return [y]
end
if x.l < y.l
return [co(x.l, y.u)]
else
return [cc(y.l, x.u)]
end
end
function union(x::co, y::cc)::Vector{Interval}
return union(y, x)
end
function union(x::cc, y::oc)::Vector{Interval}
if (x.u < y.l) | (x.l > y.u)
return [x, y]
end
if (x.l <= y.l <= x.u) & (x.l <= y.u <= x.u)
return [x]
end
if (y.l < x.l <= y.u) & (y.l <= x.u <= y.u)
return [y]
end
if x.l <= y.l
return [cc(x.l, y.u)]
else
return [oc(y.l, x.u)]
end
end
function union(x::oc, y::cc)::Vector{Interval}
return union(y, x)
end
function union(x::oo, y::co)::Vector{Interval}
if (x.u < y.l) | (x.l >= y.u)
return [x, y]
end
if (x.l < y.l <= x.u) & (x.l <= y.u <= x.u)
return [x]
end
if (y.l <= x.l < y.u) & (y.l <= x.u <= y.u)
return [y]
end
if x.l < y.l
return [oo(x.l, y.u)]
else
return [co(y.l, x.u)]
end
end
function union(x::co, y::oo)::Vector{Interval}
return union(y, x)
end
function union(x::oo, y::oc)::Vector{Interval}
if (x.u <= y.l) | (x.l > y.u)
return [x, y]
end
if (x.l <= y.l <= x.u) & (x.l <= y.u < x.u)
return [x]
end
if (y.l <= x.l <= y.u) & (y.l <= x.u <= y.u)
return [y]
end
if x.l < y.l
return [oc(x.l, y.u)]
else
return [oo(y.l, x.u)]
end
end
function union(x::oc, y::oo)::Vector{Interval}
return union(y, x)
end
function union(x::co, y::oc)::Vector{Interval}
if (x.u <= y.l) | (x.l > y.u)
return [x, y]
end
if (x.l <= y.l <= x.u) & (x.l <= y.u < x.u)
return [x]
end
if (y.l < x.l <= y.u) & (y.l <= x.u <= y.u)
return [y]
end
if x.l <= y.l
return [cc(x.l, y.u)]
else
return [oo(y.l, x.u)]
end
end
function union(x::oc, y::co)::Vector{Interval}
return union(y, x)
end
function union(x::T1, y::emptyset)::Vector{Interval} where {T1 <: Interval}
return [x]
end
function union(x::emptyset, y::T1)::Vector{Interval} where {T1 <: Interval}
return [y]
end
function union(x::emptyset, y::emptyset)::Vector{Interval}
return [emptyset()]
end
# Vector wise operation
# For a collection if intervals, find the union
"""
union(x::Vector{Interval})
βͺ(x)
Union of a vector of type [`Interval`](@ref). The intervals are unioned pairwise
until there is no overlap in the single intervals.
See also: [`union(x::Interval, y::Interval)`](@ref)
"""
function union(x::Vector{T})::Vector{Interval} where {T <: Interval}
out = Vector{Interval}(x)
n = length(out)
if n == 1
return out
end
# Go through all combinations and find overlaps
# In an overlap is found, replace one interval by the union and remove
# the other
isempty = fill(false, n)
for i = 1:n
if out[i] == emptyset()
isempty[i] = true
end
end
while true
changedOne = false
for i = 1:n-1
for j = i+1:n
if !isempty[i] & !isempty[j]
setTemp = union(out[i], out[j])
if length(setTemp) == 1
if setTemp[1] == out[i]
out[j] = emptyset()
isempty[j] = true
elseif setTemp[1] == out[j]
out[i] = emptyset()
isempty[i] = true
else
out[i] = setTemp[1]
out[j] = emptyset()
isempty[j] = true
end
changedOne = true
end
end
end
end
if !changedOne
if any(.!isempty)
return out[.!isempty]
else
return [emptyset()]
end
end
end
end
| RandomVariables | https://github.com/ManuelStapper/RandomVariables.jl.git |
|
[
"MIT"
] | 0.1.3 | 1fade0beee898fb8872ac858b78c7f4b669fbd61 | code | 4315 | using RandomVariables
using Test
using Distributions
@testset "RandomVariables.jl" begin
X1 = RV(Poisson(4.2))
X2 = RV(Normal())
X3 = RV(Normal(1, 2))
A = (X1 in 1:5) & (X2 < 3) & (X2 > 0)
B = (X1 != 2) & (log(abs(X3) + 1) < 2)
P(A)
P(B)
P(A|B)
P(A & B)
P(A β¨ B)
A \ B
P(A β» B)
P(!(A))
not(cc(1, 2))
not(oo(1, 2))
not(co(1, 2))
not(oc(1, 2))
not(emptyset())
not(not(cc(1, 2)))
d = RV(Poisson(1))
d in 1:10
d in 1:1:10
d in 1:0.5:10
d in [1, 2]
1 < d
1 <= d
1 > d
1 >= d
1 == d
1 != d
(X1 < 10) \ (X1 <= 3)
1 + X1
2*X1
X1 - 1
-X1
inv(inv(X1 + 1))
2/(X1 + 1)
(X1 + 1)\2
exp(X1)
X4 = sqrt(X1^1.4)
1 < X4
1 <= X4
1 > X4
1 >= X4
1 == X4
1 != X4
X4 in 1:10
X4 in 1:1:10
X4 in 1:0.5:10
X4 in [1, 2]
inv(RV(Exponential(2)))
exp(d)
sqrt(RV(Exponential(2)))
abs(d)
d^3
[cc(1, 2), cc(3, 4)] .β© cc(2, 3)
copy(cc(1, 2))
C = rect([cc(1, 2), cc(1, 2)])
D = rect([oo(1, 2), oo(1, 2)])
union(C, D)
E(X1)
mean(X1)
var(X1)
skewness(X1)
kurtosis(X1)
X1 >= 1
X1 == 1
X1 in [1, 2]
X1 in 1:2:10
X1 in 1:2.0:10
1 < X1
1 <= X1
1 > X1
1 >= X1
1 == X1
1 != X1
A1 = X1 > 4
A2 = X1 > 3
A3 = X1 >= 3.5
B1 = X2 >= 10
B2 = X2 >= 9
A = A1 | A2
B = B1 | B2
!((X1 > 4) | (X1 > 3))
A & B
A1 & B
A & B1
A | A3
A β¨ B
A1 β¨ B
A β¨ B1
A \ B
A1 \ B
A \ B1
A1 β» B1
A β» B
A β» B1
A1 β» B
for t1 = [cc, co, oc, oo], t2 = [cc, co, oc, oo]
for i1 = 1:4, i2 = 1:4, i3 = 1:4, i4 = 1:4
t1(i1, i2) β© t2(i3, i4)
t1(i1, i2) βͺ t2(i3, i4)
t1(i1, i2) \ t2(i3, i4)
t1(i1, i2) β» t2(i3, i4)
end
end
intersect([cc(1, 5), cc(3, 4)])
intersect(rect([cc(1, 5), cc(1, 5)]), rect([cc(2, 7), cc(2, 7)]))
unionDisjoint(β
)
unionDisjoint(oo(-Inf, Inf))
unionDisjoint(oc(-Inf, 3))
unionDisjoint(oo(2, Inf))
unionDisjoint(cc(1, 2))
unionDisjoint(co(1, 2))
unionDisjoint(oc(1, 2))
unionDisjoint(oo(1, 2))
C1 = box([cc(1, 2), cc(1, 2)])
C2 = box([cc(1, 2), cc(2, 3)])
C3 = box([cc(1, 2), cc(2.5, 4)])
RandomVariables.mergeOne([C1, C2])
RandomVariables.mergeOne([C1, C3])
diff(C1, C3)
C1 \ C1
xor(C1, C3)
not(C1)
X = RV(Poisson(5))
Y = RV(Normal())
E(log(X+1))
E(Y^2)
X*0
1 - X
X/2
exp(X+1)
log(RV(Exponential(1)))
P(X^2 > 1)
log(X)^2
abs(X)^1.2
exp(X) β cc(1, 2)
cc(1, Inf)
cc(-Inf, 1)
cc(-Inf, Inf)
oo(Inf, Inf)
co(Inf, Inf)
co(-Inf, 1)
oc(Inf, Inf)
oc(1, Inf)
copy(emptyset())
b = box([cc(1, 2), cc(1, 2)])
b2 = box([cc(1, 2), cc(1, 2), cc(1, 2)])
length(b)
iterate(b)
iterate(b, nothing)
ndims(b)
cc(1, 2) β emptyset()
emptyset() β cc(1, 2)
emptyset() β emptyset()
cc(1, 2) β co(1, 2)
cc(1, 2) β co(1, 3)
oo(1, 2) β co(0, 3)
co(1, 2) β cc(1, 2)
co(0, 3) β cc(1, 2)
co(1, 2) β oc(0, 3)
oc(1, 2) β cc(0, 3)
oc(1, 2) β co(0, 3)
b β b2
b β [b2]
P(Poisson(1), co(1, 2))
P(Poisson(1), co(-1, 2))
P(Binomial(5, 0.4), co(1, 7))
P(Binomial(5, 0.4), co(1, Inf))
P(Poisson(1), oc(0, Inf))
std(RV(Poisson(1)))
copy(RV(Poisson(1)))
X = RV(Poisson(1))
Y = RV(Poisson(1))
A = (X > 2) & (Y > 1)
B = (Y > 0) & (X > 1)
B = event(B.X[[2, 1]], B.boxes)
A | B
RandomVariables.unionDisjoint(oo(-Inf, 1))
RandomVariables.unionDisjoint(co(1, Inf))
RandomVariables.unionDisjoint([co(1, Inf)])
RandomVariables.mergeBox(b, b)
RandomVariables.mergeBox(box(cc(1, 3)), box(cc(1, 2)))
RandomVariables.mergeOne([box(cc(1, 2))])
RandomVariables.resolveOverlap([box(cc(1, 2))])
RandomVariables.resolveOverlap([box(cc(1, 2)), box(cc(1, 2))])
b1 = box(cc(1, 2))
b2 = box(cc(3, 4))
b3 = box(cc(5, 6))
union(b1, [b2, b3])
intersect(b1, [b2, b3])
intersect([b2, b3], b1)
b1 \ [b2, b3]
[b2, b3] \ b1
[b2, b3] \ [b1]
xor(b1, [b2, b3])
xor([b2, b3], b1)
end
| RandomVariables | https://github.com/ManuelStapper/RandomVariables.jl.git |
|
[
"MIT"
] | 0.1.3 | 1fade0beee898fb8872ac858b78c7f4b669fbd61 | docs | 3906 | # RandomVariables
[](https://ci.appveyor.com/project/ManuelStapper/randomvariables-jl)
[](https://codecov.io/gh/ManuelStapper/RandomVariables.jl)
[](https://zenodo.org/badge/latestdoi/508331635)
A Julia package for random variables and probabilities as an add-on to the
Distributions.jl package. Scope of the package:
* Defining a random variable ``X = RV(Normal(0, 1)); Y = RV(Poisson(4))``
* Transformation of random variables: ``Z = log(Y + 1)``
* Convenient probability computation: ``P(X < 2)``
* Combination of events: ``A = (X < 2) & (Y β₯ 2); B = (X β€ 5) & (Y > 0)``
* Defining conditional events: ``P(A|B)``
#### Installation
Distributions.jl package must be installed and loaded to use RandomVariables.jl
```
julia> import Pkg
julia> Pkg.add("Distributions")
julia> Pkg.add("RandomVariables")
julia> using RandomVariables, Distributions
```
### Random variables
To define a random variable, the function ``RV()`` takes any univariate distribution
from the Distributions.jl package and equips it with an ID.
```
X = RV(Normal())
Y = RV(Poisson(4))
```
#### Transformation of random variables
Random variables can be transformed. Say you transform a random variable X by
a function h(x), i.e. Z = f(X). The object ``RVtransformed`` stores the distribution
of the original random variable X, its ID, the function h and the inverse of the transformation
function. Implemented transformations for a real valued ``y`` are: ``X + y``,
``X - y``, ``X * y``, ``X / y``, ``inv(X)``, ``abs(X)``, ``exp(X)``, ``log(X)``,
``sqrt(X)`` and ``X^y``.
### Events
To compute probabilities, events can be defined as a combination of independent
random variables and bounding intervals. For example ``X > 1`` creates an event
with random variable X and the interval (1, β). The bounding intervals can be
closed [a, b], open (a, b) or semi-closed [a, b) or (a, b]. Two events can be
combined with operators
* ``&`` : both events occur
* ``β¨`` : Either one event occurs or both
* ``\`` : Left event occurs but not the right event
* ``β»`` : One event occurs but not the other
* ``!`` : The complementary event
Examples for events:
```
A = X > 1
B = X β€ 3
C = X β€ 0
```
* A & B : (1, 3]
* A β¨ C : (-β, 0] βͺ (1, β)
* A \ B : (3, β)
* A β» B : (-β, 1] βͺ (3, β)
* !(A) : (-β, 1]
Events can include multiple independent random variables. For n variables, the
bounding intervals will then be n dimensional rectangles (boxes). For example
``(X < 1) & (X β₯ 0) & (Y β€ 1) & (Y > 0)`` creates an event with random variables
X and Y with bounding rectangle [0, 1) Γ (0, 1].
#### Conditional Events
With two events, conditional events can be defined. A|B gives the event that
event A occurs given that B occurs. The random variables in A do not necessarily
need to match the random variables in B.
Example:
```
A = (X > 1) & (log(Y + 1) β€ 1)
B = (X < 5)
P(A|B)
```
### Moments
Mean, variance, skewness and kurtosis functions from the Distributions.jl package
can also be applied to random variables. Further, a short notation for the mean
``E(X)`` is added. The mean of a transformed random variable is computed by numerical integration / summation.
Example
```
P((X - E(X))^2 < 3)
E(log(Y + 1))
```
### Outlook
#### Short term
* A more detailed documentation
* Conditional moments, i.e. ``E(X | X > 1)``
* Shift to Intervals.jl (?)
* Minimum and maximum, i.e. ``Z = minimum(X, Y)``
* Transfer more functionalities of Distributions.jl to random variables?
* Plotting functions?
#### Long term
* More arithmetic on random variables: ``X + Y``, ...
* Inclusion of dependent random variables in general
### References
[Distributions.jl package](https://doi.org/10.5281/zenodo.2647458)
| RandomVariables | https://github.com/ManuelStapper/RandomVariables.jl.git |
|
[
"MIT"
] | 0.14.0 | 68e9ab3053e0b38e8e574f2809dd280c9dafa338 | code | 1971 | using MLStyle
using MacroTools
function doBenchMarking(expr, f)
expr = MacroTools.striplines(expr)
println("Benchmarking $expr")
write(f, string(expr) * "\n")
write(f, "```\n\n")
write(f, "```bash\n")
show(f, "text/plain", eval(quote
$expr
end))
write(f, "\n```\n\n")
end
function bench(file::String)
file_name = split(file, ".")[1]
println("Benching $file_name.jl\n")
file_name_output = joinpath("bench", file_name * ".md")
open(file_name_output, write = true, append = false) do f
write(f, "# Benchmarks for $file_name.jl\n\n")
write(f, "```julia\n")
end
has_displayed = false
function mapexpr(expr)
#println("Nouvelle expr : ", expr)
#Base.remove_linenums!(expr)
#println("Suppression line number : ", expr)
expr = MacroTools.striplines(expr)
#println("MacroTools line number : ", expr, "\n")
println("Expr : ", expr)
#dump(expr)
open(file_name_output, write = true, append = true) do f
if has_displayed
write(f, "```julia\n")
has_displayed = false
end
if hasproperty(expr, :head) &&
expr.head == :macrocall &&
expr.args[1] == Symbol("@benchmark")
has_displayed = true
doBenchMarking(expr, f)
expr = :()
else
MLStyle.@match expr begin
:(display($benchname)) => begin
has_displayed = true
doBenchMarking(quote
$benchname
end, f)
expr = :()
end
_ => begin
write(f, string(expr) * "\n")
end
end
end
end
return expr
end
include(mapexpr, file)
end
| CTBase | https://github.com/control-toolbox/CTBase.jl.git |
|
[
"MIT"
] | 0.14.0 | 68e9ab3053e0b38e8e574f2809dd280c9dafa338 | code | 15829 | using BenchmarkTools
using CTBase
using MLStyle
using StaticArrays
rg(i::Integer, j::Integer) = i == j ? i : i:j
ocp = Model();
time!(ocp, 0, 1);
state!(ocp, 2);
control!(ocp, 2);
constraint!(ocp, :initial, Index(2), 10, :ci)
constraint!(ocp, :final, Index(1), 1, :cf)
constraint!(ocp, :control, [0, 0], [1, 1], :cu)
constraint!(ocp, :state, [0, 1], [1, 2], :cs)
constraint!(ocp, :boundary, (x0, xf) -> x0[2] + xf[2], 0, 1, :cb)
constraint!(ocp, :control, u -> u, [0, 0], [1, 1], :cuu)
constraint!(ocp, :state, x -> x, [0, 1], [1, 2], :css)
constraint!(ocp, :mixed, (x, u) -> x[1] + u[1], 1, 1, :cm)
# --------------------------------------------------------------------
# --------------------------------------------------------------------
function nlp_constraints_original(ocp::OptimalControlModel)
# we check if the dimensions and times have been set
CTBase.__check_all_set(ocp)
#
constraints = ocp.constraints
ΞΎf = Vector{ControlConstraint}()
ΞΎl = Vector{ctNumber}()
ΞΎu = Vector{ctNumber}()
Ξ·f = Vector{StateConstraint}()
Ξ·l = Vector{ctNumber}()
Ξ·u = Vector{ctNumber}()
Οf = Vector{MixedConstraint}()
Οl = Vector{ctNumber}()
Οu = Vector{ctNumber}()
Οf = Vector{BoundaryConstraint}()
Οl = Vector{ctNumber}()
Οu = Vector{ctNumber}()
ΞΈf = Vector{VariableConstraint}()
ΞΈl = Vector{ctNumber}()
ΞΈu = Vector{ctNumber}()
uind = Vector{Int}()
ul = Vector{ctNumber}()
uu = Vector{ctNumber}()
xind = Vector{Int}()
xl = Vector{ctNumber}()
xu = Vector{ctNumber}()
vind = Vector{Int}()
vl = Vector{ctNumber}()
vu = Vector{ctNumber}()
for (_, c) β constraints
MLStyle.@match c begin
(:initial, f::BoundaryConstraint, lb, ub) => begin
push!(Οf, f)
append!(Οl, lb)
append!(Οu, ub)
end
(:final, f::BoundaryConstraint, lb, ub) => begin
push!(Οf, f)
append!(Οl, lb)
append!(Οu, ub)
end
(:boundary, f::BoundaryConstraint, lb, ub) => begin
push!(Οf, f)
append!(Οl, lb)
append!(Οu, ub)
end
(:control, f::ControlConstraint, lb, ub) => begin
push!(ΞΎf, f)
append!(ΞΎl, lb)
append!(ΞΎu, ub)
end
(:control, rg, lb, ub) => begin
append!(uind, rg)
append!(ul, lb)
append!(uu, ub)
end
(:state, f::StateConstraint, lb, ub) => begin
push!(Ξ·f, f)
append!(Ξ·l, lb)
append!(Ξ·u, ub)
end
(:state, rg, lb, ub) => begin
append!(xind, rg)
append!(xl, lb)
append!(xu, ub)
end
(:mixed, f::MixedConstraint, lb, ub) => begin
push!(Οf, f)
append!(Οl, lb)
append!(Οu, ub)
end
(:variable, f::VariableConstraint, lb, ub) => begin
push!(ΞΈf, f)
append!(ΞΈl, lb)
append!(ΞΈu, ub)
end
(:variable, rg, lb, ub) => begin
append!(vind, rg)
append!(vl, lb)
append!(vu, ub)
end
_ => error("Internal error")
end
end
function ΞΎ(t, u, v)
val = Vector{ctNumber}()
for i β 1:length(ΞΎf)
append!(val, ΞΎf[i](t, u, v))
end
return val
end
function Ξ·(t, x, v)
val = Vector{ctNumber}()
for i β 1:length(Ξ·f)
append!(val, Ξ·f[i](t, x, v))
end
return val
end
function Ο(t, x, u, v)
val = Vector{ctNumber}()
for i β 1:length(Οf)
append!(val, Οf[i](t, x, u, v))
end
return val
end
function Ο(x0, xf, v)
val = Vector{ctNumber}()
for i β 1:length(Οf)
append!(val, Οf[i](x0, xf, v))
end
return val
end
function ΞΈ(v)
val = Vector{ctNumber}()
for i β 1:length(ΞΈf)
append!(val, ΞΈf[i](v))
end
return val
end
return (ΞΎl, ΞΎ, ΞΎu),
(Ξ·l, Ξ·, Ξ·u),
(Οl, Ο, Οu),
(Οl, Ο, Οu),
(ΞΈl, ΞΈ, ΞΈu),
(ul, uind, uu),
(xl, xind, xu),
(vl, vind, vu)
end
function test_alloc_bad(ocp, N)
println(" getters and setters")
begin
function get_state(XU, i, n, m)
return XU[rg((i - 1) * (n + m) + 1, (i - 1) * (n + m) + n)]
end
function get_control(XU, i, n, m)
return XU[rg((i - 1) * (n + m) + n + 1, (i - 1) * (n + m) + n + m)]
end
function set_control_constraint!(C, i, ΞΎ, nΞΎ, nc)
C[((i - 1) * nc + 1):((i - 1) * nc + nΞΎ)] = ΞΎ
end
function set_state_constraint!(C, i, Ξ·, nΞ·, nΞΎ, nc)
C[((i - 1) * nc + nΞΎ + 1):((i - 1) * nc + nΞΎ + nΞ·)] = Ξ·
end
function set_mixed_constraint!(C, i, Ο, nΟ, nΞΎ, nΞ·, nc)
C[((i - 1) * nc + nΞΎ + nΞ· + 1):((i - 1) * nc + nΞΎ + nΞ· + nΟ)] = Ο
end
end
println(" call nlp_constraints_original")
(ΞΎl, ΞΎ, ΞΎu),
(Ξ·l, Ξ·, Ξ·u),
(Οl, Ο, Οu),
(Οl, Ο, Οu),
(ΞΈl, ΞΈ, ΞΈu),
(ul, uind, uu),
(xl, xind, xu),
(vl, vind, vu) = nlp_constraints_original(ocp)
println(" declare variables")
begin
v = Real[]
n = state_dimension(ocp)
m = control_dimension(ocp)
times = LinRange(0, 1, N)
XU = ones(N * (n + m))
nΞΎ = length(ΞΎl)
nΞ· = length(Ξ·l)
nΟ = length(Οl)
nc = nΞΎ + nΞ· + nΟ
C = zeros(N * nc)
end
println(" start for loop")
begin
for i β 1:N
t = times[i]
x = get_state(XU, i, n, m)
u = get_control(XU, i, n, m)
set_control_constraint!(C, i, ΞΎ(t, u, v), nΞΎ, nc)
set_state_constraint!(C, i, Ξ·(t, x, v), nΞ·, nΞΎ, nc)
set_mixed_constraint!(C, i, Ο(t, x, u, v), nΟ, nΞΎ, nΞ·, nc)
end
end
println(" end for loop")
nothing
end
# --------------------------------------------------------------------
# --------------------------------------------------------------------
function nlp_constraints_optimized(ocp::OptimalControlModel)
# we check if the dimensions and times have been set
CTBase.__check_all_set(ocp)
#
constraints = ocp.constraints
ΞΎf = Vector{ControlConstraint}()
ΞΎl = Vector{ctNumber}()
ΞΎu = Vector{ctNumber}()
ΞΎn = Vector{Int}()
Ξ·f = Vector{StateConstraint}()
Ξ·l = Vector{ctNumber}()
Ξ·u = Vector{ctNumber}()
Ξ·n = Vector{Int}()
Οf = Vector{MixedConstraint}()
Οl = Vector{ctNumber}()
Οu = Vector{ctNumber}()
Οn = Vector{Int}()
Οf = Vector{BoundaryConstraint}()
Οl = Vector{ctNumber}()
Οu = Vector{ctNumber}()
Οn = Vector{Int}()
ΞΈf = Vector{VariableConstraint}()
ΞΈl = Vector{ctNumber}()
ΞΈu = Vector{ctNumber}()
ΞΈn = Vector{Int}()
uind = Vector{Int}()
ul = Vector{ctNumber}()
uu = Vector{ctNumber}()
xind = Vector{Int}()
xl = Vector{ctNumber}()
xu = Vector{ctNumber}()
vind = Vector{Int}()
vl = Vector{ctNumber}()
vu = Vector{ctNumber}()
for (_, c) β constraints
MLStyle.@match c begin
(:initial, f::BoundaryConstraint, lb, ub) => begin
append!(Οn, length(lb))
push!(Οf, f)
append!(Οl, lb)
append!(Οu, ub)
end
(:final, f::BoundaryConstraint, lb, ub) => begin
append!(Οn, length(lb))
push!(Οf, f)
append!(Οl, lb)
append!(Οu, ub)
end
(:boundary, f::BoundaryConstraint, lb, ub) => begin
append!(Οn, length(lb))
push!(Οf, f)
append!(Οl, lb)
append!(Οu, ub)
end
(:control, f::ControlConstraint, lb, ub) => begin
append!(ΞΎn, length(lb))
push!(ΞΎf, f)
append!(ΞΎl, lb)
append!(ΞΎu, ub)
end
(:control, rg, lb, ub) => begin
append!(uind, rg)
append!(ul, lb)
append!(uu, ub)
end
(:state, f::StateConstraint, lb, ub) => begin
append!(Ξ·n, length(lb))
push!(Ξ·f, f)
append!(Ξ·l, lb)
append!(Ξ·u, ub)
end
(:state, rg, lb, ub) => begin
append!(xind, rg)
append!(xl, lb)
append!(xu, ub)
end
(:mixed, f::MixedConstraint, lb, ub) => begin
append!(Οn, length(lb))
push!(Οf, f)
append!(Οl, lb)
append!(Οu, ub)
end
(:variable, f::VariableConstraint, lb, ub) => begin
append!(ΞΈn, length(lb))
push!(ΞΈf, f)
append!(ΞΈl, lb)
append!(ΞΈu, ub)
end
(:variable, rg, lb, ub) => begin
append!(vind, rg)
append!(vl, lb)
append!(vu, ub)
end
_ => error("Internal error")
end
end
ΞΎfn = length(ΞΎf)
Ξ·fn = length(Ξ·f)
Οfn = length(Οf)
Οfn = length(Οf)
ΞΈfn = length(ΞΈf)
function ΞΎ!(val, t, u, v, N = ΞΎfn)
offset = 0
for i β 1:N
#val[rg(1+offset,ΞΎn[i]+offset)] =
z = ΞΎf[i](t, u, v)[:]
val[rg(1 + offset, ΞΎn[i] + offset)] = z
offset += ΞΎn[i]
end
#for i β eachindex(val)
# val[i] = u[1]+t
#end
nothing
end
function Ξ·!(val, t, x, v, N = Ξ·fn)
offset = 0
for i β 1:N
val[rg(1 + offset, Ξ·n[i] + offset)] = Ξ·f[i](t, x, v)
offset += Ξ·n[i]
end
#for i β eachindex(val)
# val[i] = x[1]+t
#end
nothing
end
function Ο!(val, t, x, u, v, N = Οfn)
offset = 0
for i β 1:N
val[rg(1 + offset, Οn[i] + offset)] = Οf[i](t, x, u, v)
offset += Οn[i]
end
#for i β eachindex(val)
# val[i] = x[1]+t+u[1]
#end
nothing
end
function Ο!(val, x0, xf, v, N = Οfn)
offset = 0
for i β 1:N
val[rg(1 + offset, Οn[i] + offset)] = Οf[i](x0, xf, v)
offset += Οn[i]
end
#for i β eachindex(val)
# val[i] = x0[1]+xf[1]
#end
nothing
end
function ΞΈ!(val, v, N = ΞΈfn)
offset = 0
for i β 1:N
val[rg(1 + offset, ΞΈn[i] + offset)] = ΞΈf[i](v)
offset += ΞΈn[i]
end
#for i β eachindex(val)
# val[i] = 0
#end
nothing
end
return (ΞΎl, ΞΎ!, ΞΎu),
(Ξ·l, Ξ·!, Ξ·u),
(Οl, Ο!, Οu),
(Οl, Ο!, Οu),
(ΞΈl, ΞΈ!, ΞΈu),
(uind, ul, uu),
(xind, xl, xu),
(vind, vl, vu)
end
function test_alloc_good(ocp, N)
begin
println(" getters and setters")
begin
function get_state(XU, i, n, m)
if n == 1
return XU[(i - 1) * (n + m) + 1]
else
return @view XU[((i - 1) * (n + m) + 1):((i - 1) * (n + m) + n)]
end
end
function get_control(XU, i, n, m)
if m == 1
return XU[(i - 1) * (n + m) + n + 1]
else
return @view XU[((i - 1) * (n + m) + n + 1):((i - 1) * (n + m) + n + m)]
end
end
function set_control_constraint!(C, i, valΞΎ, nΞΎ, nc)
C[((i - 1) * nc + 1):((i - 1) * nc + nΞΎ)] = valΞΎ
end
function set_state_constraint!(C, i, valΞ·, nΞ·, nΞΎ, nc)
C[((i - 1) * nc + nΞΎ + 1):((i - 1) * nc + nΞΎ + nΞ·)] = valΞ·
end
function set_mixed_constraint!(C, i, valΟ, nΟ, nΞΎ, nΞ·, nc)
C[((i - 1) * nc + nΞΎ + nΞ· + 1):((i - 1) * nc + nΞΎ + nΞ· + nΟ)] = valΟ
end
end
println(" call nlp_constraints_optimized")
begin
(ΞΎl, ΞΎ!, ΞΎu),
(Ξ·l, Ξ·!, Ξ·u),
(Οl, Ο!, Οu),
(Οl, Ο!, Οu),
(ΞΈl, ΞΈ!, ΞΈu),
(ul, uind, uu),
(xl, xind, xu),
(vl, vind, vu) = nlp_constraints_optimized(ocp)
end
println(" declare variables")
begin
v = Real[]
n = state_dimension(ocp)
m = control_dimension(ocp)
times = LinRange(0, 1, N)
XU = zeros(N * (n + m))
nΞΎ = length(ΞΎl)
nΞ· = length(Ξ·l)
nΟ = length(Οl)
nc = nΞΎ + nΞ· + nΟ
C = zeros(N * nc)
valΞΎ = SizedVector{nΞΎ}(zeros(nΞΎ))
valΞ· = SizedVector{nΞ·}(zeros(nΞ·))
valΟ = SizedVector{nΟ}(zeros(nΟ))
x = SizedVector{n}(zeros(n))
u = SizedVector{m}(zeros(m))
end
t = 0
println(" start for loop")
for i β 1:N
#=
if i==-1 #|| i==2
println(" i = ", i)
print("time")
@time t = times[i]
print("x")
@time x[:] = @view XU[(i-1)*(n+m)+1:(i-1)*(n+m)+n]
print("u")
@time u[:] = @view XU[(i-1)*(n+m)+n+1:(i-1)*(n+m)+n+m]
print("ΞΎ!")
@time ΞΎ!(valΞΎ, t, u, v)
print("Ξ·!")
@time Ξ·!(valΞ·, t, x, v)
print("Ο!")
@time Ο!(valΟ, t, x, u, v)
print("set_control_constraint!")
@time set_control_constraint!(C, i, valΞΎ, nΞΎ, nc)
print("set_state_constraint!")
@time set_state_constraint!(C, i, valΞ·, nΞ·, nΞΎ, nc)
print("set_mixed_constraint!")
@time set_mixed_constraint!(C, i, valΟ, nΟ, nΞΎ, nΞ·, nc)
else
nothing
=#
t = times[i]
x[:] = XU[((i - 1) * (n + m) + 1):((i - 1) * (n + m) + n)]
u[:] = @view XU[((i - 1) * (n + m) + n + 1):((i - 1) * (n + m) + n + m)]
ΞΎ!(valΞΎ, t, u, v)
Ξ·!(valΞ·, t, x, v)
Ο!(valΟ, t, x, u, v)
#set_control_constraint!(C, i, valΞΎ, nΞΎ, nc)
C[((i - 1) * nc + 1):((i - 1) * nc + nΞΎ)] = valΞΎ
#set_state_constraint!(C, i, valΞ·, nΞ·, nΞΎ, nc)
C[((i - 1) * nc + nΞΎ + 1):((i - 1) * nc + nΞΎ + nΞ·)] = valΞ·
#set_mixed_constraint!(C, i, valΟ, nΟ, nΞΎ, nΞ·, nc)
C[((i - 1) * nc + nΞΎ + nΞ· + 1):((i - 1) * nc + nΞΎ + nΞ· + nΟ)] = valΟ
#end
end
println(" end for loop")
nothing
end
end
N = 10000
test_alloc_good(ocp, N);
test_alloc_bad(ocp, N);
println("----------------------------------------")
println("good code")
@time test_alloc_good(ocp, N)
println()
println("bad code")
@time test_alloc_bad(ocp, N)
#=
# --------------------------------------------------------------------
# --------------------------------------------------------------------
println("Allocations and times for good and bad code")
println()
N = 200
println("good code")
t_good = @benchmark test_alloc_good(ocp, N)
display(t_good)
println()
println("bad code")
t_bad = @benchmark test_alloc_bad(ocp, N)
display(t_bad)
println()
# print the ratio of the times
println("ratio of times: ", mean(t_bad.times)/mean(t_good.times))
println("ratio of allocations: ", mean(t_bad.memory)/mean(t_good.memory))
nothing
=#
| CTBase | https://github.com/control-toolbox/CTBase.jl.git |
|
[
"MIT"
] | 0.14.0 | 68e9ab3053e0b38e8e574f2809dd280c9dafa338 | code | 1033 | using BenchmarkTools
function tt()
function bench_scalar(y)
x = 0
for i = 1:y
x += 1.0
end
x
end
function bench_scalar_2()
x = 0
for i = 1:z
x += 1.0
end
x
end
function bench_scalar_3(z)
x = 0
for i = 1:z
x += w
end
x
end
w = 1.0
z = 1000
display(@benchmark bench_scalar(z))
display(@benchmark bench_scalar_2())
display(@benchmark bench_scalar_3(z))
function bench_scalar_4()
x = 0
for i = 1:zz
x += 1.0
end
x
end
function bench_scalar_5(z)
x = 0
for i = 1:z
x += ww
end
x
end
ww = 1.0
zz = 1000
display(@benchmark bench_scalar_4())
display(@benchmark bench_scalar_5(zz))
function bench_scalar_6(z = z)
x = 0
for i = 1:z
x += 1.0
end
x
end
@benchmark bench_scalar_6()
end
| CTBase | https://github.com/control-toolbox/CTBase.jl.git |
|
[
"MIT"
] | 0.14.0 | 68e9ab3053e0b38e8e574f2809dd280c9dafa338 | code | 1501 | using BenchmarkTools
# fun with dimension usage handled at each call
struct Fun_dim_usage_each_call
f::Function
end
function (F::Fun_dim_usage_each_call)(
t::Real,
x::Vector{<:Real},
u::Vector{<:Real},
args...;
kwargs...,
)
x_ = length(x) == 1 ? (x[1],) : (x,)
u_ = length(u) == 1 ? (u[1],) : (u,)
y = F.f(t, x_..., u_..., args...; kwargs...)
return y isa Real ? [y] : y
end
#
t = 1
x = [10]
u = [100]
# bench fun with dimension usage handled at each call
# x, u scalar
F = Fun_dim_usage_each_call((t, x, u) -> x + u)
@benchmark F(t, x, u)
# x scalar, u vector
F = Fun_dim_usage_each_call((t, x, u) -> x + u[1])
@benchmark F(t, x, u)
# fun with dimension usage handled by parameterization
struct Fun_dim_usage_parametrization{dim_x, dim_u}
f::Function
end
function (F::Fun_dim_usage_parametrization{1, 1})(
t::Real,
x::Vector{<:Real},
u::Vector{<:Real},
args...;
kwargs...,
)
return [F.f(t, x[1], u[1], args...; kwargs...)]
end
# bench fun with dimension usage handled by parameterization
# x, u scalar
F = Fun_dim_usage_parametrization{1, 1}((t, x, u) -> x + u)
@benchmark F(t, x, u)
# x scalar, u vector
F = Fun_dim_usage_parametrization{1, 1}((t, x, u) -> x + u[1])
@benchmark F(t, x, u)
# direct call to the function
Ο(t, x, u) = x[1] + u[1]
@benchmark Ο(t, x, u)
Ο(t, x, u) = x + u
@benchmark Ο(t, x[1], u[1])
ΞΈ(t, x, u) = x + u
@benchmark ΞΈ(t, x, u)[1]
ΞΎ(t, x, u) = x + u
a = x[1]
b = u[1]
@benchmark ΞΎ(t, a, b)
| CTBase | https://github.com/control-toolbox/CTBase.jl.git |
|
[
"MIT"
] | 0.14.0 | 68e9ab3053e0b38e8e574f2809dd280c9dafa338 | code | 85 | #
include("Bench.jl")
#
#bench("bench_usage.jl")
bench("bench_nlp_constraints.jl")
| CTBase | https://github.com/control-toolbox/CTBase.jl.git |
|
[
"MIT"
] | 0.14.0 | 68e9ab3053e0b38e8e574f2809dd280c9dafa338 | code | 649 | using Documenter
using CTBase
using DocumenterMermaid
makedocs(;
warnonly = [:cross_references, :autodocs_block],
sitename = "CTBase.jl",
format = Documenter.HTML(
prettyurls = false,
size_threshold_ignore = ["api.md", "dev.md"],
assets = [
asset("https://control-toolbox.org/assets/css/documentation.css"),
asset("https://control-toolbox.org/assets/js/documentation.js"),
],
),
pages = ["Introduction" => "index.md", "API" => "api.md", "Developers" => "dev.md"],
checkdocs = :none,
)
deploydocs(repo = "github.com/control-toolbox/CTBase.jl.git", devbranch = "main")
| CTBase | https://github.com/control-toolbox/CTBase.jl.git |
|
[
"MIT"
] | 0.14.0 | 68e9ab3053e0b38e8e574f2809dd280c9dafa338 | code | 281 | module CTBasePlots
#
using DocStringExtensions
using MLStyle # pattern matching
#
using CTBase
using Plots
using LinearAlgebra
import Plots: plot, plot!
# --------------------------------------------------------------------------------------------------
include("plot.jl")
end
| CTBase | https://github.com/control-toolbox/CTBase.jl.git |
|
[
"MIT"
] | 0.14.0 | 68e9ab3053e0b38e8e574f2809dd280c9dafa338 | code | 18822 | """
$(TYPEDEF)
Abstract node for plot.
"""
abstract type AbstractPlotTreeElement end
"""
$(TYPEDEF)
A leaf of a plot tree.
"""
struct PlotLeaf <: AbstractPlotTreeElement
value::Tuple{Symbol, Integer}
PlotLeaf(value::Tuple{Symbol, Integer}) = new(value)
end
"""
$(TYPEDEF)
A node of a plot tree.
"""
struct PlotNode <: AbstractPlotTreeElement
layout::Union{Symbol, Matrix{Any}}
children::Vector{<:AbstractPlotTreeElement}
PlotNode(layout::Union{Symbol, Matrix{Any}}, children::Vector{<:AbstractPlotTreeElement}) =
new(layout, children)
end
# --------------------------------------------------------------------------------------------------
# internal plots
"""
$(TYPEDSIGNATURES)
Update the plot `p` with the i-th component of a vectorial function of time `f(t) β Rα΅` where
`f` is given by the symbol `s`.
- The argument `s` can be `:state`, `:control` or `:costate`.
- `time` can be `:default` or `:normalized`.
"""
function __plot_time!(
p::Union{Plots.Plot, Plots.Subplot},
sol::OptimalControlSolution,
s::Symbol,
i::Integer,
time::Symbol;
t_label,
label::String,
kwargs...,
)
# t_label depends if time is normalized or not
t_label = @match time begin
:default => t_label
:normalized => "normalized " * t_label
_ =>
error("Internal error, no such choice for time: $time. Use :default or :normalized")
end
# reset ylims: ylims=:auto
Plots.plot!(
p,
sol,
:time,
(s, i),
time;
ylims = :auto,
xlabel = t_label,
label = label,
kwargs...,
) # use simple plot
# change ylims if the gap between min and max is less than a tol
tol = 1e-3
ymin = Inf
ymax = -Inf
for s β p.series_list
y = s[:y]
ymin = min(minimum(y), ymin)
ymax = max(maximum(y), ymax)
end
if (ymin != Inf) && (ymax != -Inf) && (abs(ymax - ymin) β€ abs(ymin) * tol)
ymiddle = (ymin + ymax) / 2.0
if (abs(ymiddle) < 1e-12)
ylims!(p, (-0.1, 0.1))
else
ymiddle > 0 ? ylims!(p, (0.9 * ymiddle, 1.1 * ymiddle)) :
ylims!(p, (1.1 * ymiddle, 0.9 * ymiddle))
end
end
return p
end
"""
$(TYPEDSIGNATURES)
Plot the i-th component of a vectorial function of time `f(t) β Rα΅` where `f` is given by the symbol `s`.
- The argument `s` can be `:state`, `:control` or `:costate`.
- `time` can be `:default` or `:normalized`.
"""
function __plot_time(
sol::OptimalControlSolution,
s::Symbol,
i::Integer,
time::Symbol;
t_label,
label::String,
kwargs...,
)
return __plot_time!(Plots.plot(), sol, s, i, time; t_label = t_label, label = label, kwargs...)
end
"""
$(TYPEDSIGNATURES)
Update the plot `p` with a vectorial function of time `f(t) β Rα΅` where `f` is given by the symbol `s`.
- The argument `s` can be `:state`, `:control` or `:costate`.
- `time` can be `:default` or `:normalized`.
"""
function __plot_time!(
p::Union{Plots.Plot, Plots.Subplot},
sol::OptimalControlSolution,
d::Dimension,
s::Symbol,
time::Symbol;
t_label,
labels::Vector{String},
title::String,
kwargs...,
)
#
Plots.plot!(p; xlabel = "time", title = title, kwargs...)
#
for i in range(1, d)
__plot_time!(p, sol, s, i, time; t_label = t_label, label = labels[i], kwargs...)
end
return p
end
"""
$(TYPEDSIGNATURES)
Plot a vectorial function of time `f(t) β Rα΅` where `f` is given by the symbol `s`.
The argument `s` can be `:state`, `:control` or `:costate`.
"""
function __plot_time(
sol::OptimalControlSolution,
d::Dimension,
s::Symbol,
time::Symbol;
t_label,
labels::Vector{String},
title::String,
kwargs...,
)
return __plot_time!(
Plots.plot(),
sol,
d,
s,
time;
t_label = t_label,
labels = labels,
title = title,
kwargs...,
)
end
"""
$(TYPEDSIGNATURES)
Generate a{r*h} where `r` is a real number and `h` is the height of the plot.
"""
function __width(r::Real)::Expr
i = Expr(:call, :*, r, :h)
a = Expr(:curly, :a, i)
return a
end
"""
$(TYPEDSIGNATURES)
Plot a leaf.
"""
function __plot_tree(leaf::PlotLeaf, depth::Integer; kwargs...)
return Plots.plot()
end
"""
$(TYPEDSIGNATURES)
Plot a node.
"""
function __plot_tree(node::PlotNode, depth::Integer = 0; kwargs...)
#
subplots = ()
#
for c β node.children
pc = __plot_tree(c, depth + 1)
subplots = (subplots..., pc)
end
#
kwargs_plot = depth == 0 ? kwargs : ()
ps = @match node.layout begin
:row => plot(subplots...; layout = (1, size(subplots, 1)), kwargs_plot...)
:column => plot(subplots...; layout = (size(subplots, 1), 1), kwargs_plot...)
_ => plot(subplots...; layout = node.layout, kwargs_plot...)
end
return ps
end
"""
$(TYPEDSIGNATURES)
Initial plot.
"""
function __initial_plot(
sol::OptimalControlSolution;
layout::Symbol = :split,
control::Symbol = :components,
kwargs...,
)
# parameters
n = state_dimension(sol)
m = control_dimension(sol)
if layout == :group
@match control begin
:components => begin
px = Plots.plot() # state
pp = Plots.plot() # costate
pu = Plots.plot() # control
return Plots.plot(px, pp, pu, layout = (1, 3); kwargs...)
end
:norm => begin
px = Plots.plot() # state
pp = Plots.plot() # costate
pn = Plots.plot() # control norm
return Plots.plot(px, pp, pn, layout = (1, 3); kwargs...)
end
:all => begin
px = Plots.plot() # state
pp = Plots.plot() # costate
pu = Plots.plot() # control
pn = Plots.plot() # control norm
return Plots.plot(px, pp, pu, pn, layout = (2, 2); kwargs...)
end
_ => throw(
IncorrectArgument("No such choice for control. Use :components, :norm or :all"),
)
end
elseif layout == :split
# create tree plot
state_plots = Vector{PlotLeaf}()
costate_plots = Vector{PlotLeaf}()
control_plots = Vector{PlotLeaf}()
for i β 1:n
push!(state_plots, PlotLeaf((:state, i)))
push!(costate_plots, PlotLeaf((:costate, i)))
end
l = m
@match control begin
:components => begin
for i β 1:m
push!(control_plots, PlotLeaf((:control, i)))
end
end
:norm => begin
push!(control_plots, PlotLeaf((:control_norm, -1)))
l = 1
end
:all => begin
for i β 1:m
push!(control_plots, PlotLeaf((:control, i)))
end
push!(control_plots, PlotLeaf((:control_norm, -1)))
l = m + 1
end
_ => throw(
IncorrectArgument("No such choice for control. Use :components, :norm or :all"),
)
end
#
node_x = PlotNode(:column, state_plots)
node_p = PlotNode(:column, costate_plots)
node_u = PlotNode(:column, control_plots)
node_xp = PlotNode(:row, [node_x, node_p])
#
r = round(n / (n + l), digits = 2)
a = __width(r)
@eval lay = @layout [
$a
b
]
root = PlotNode(lay, [node_xp, node_u])
# plot
return __plot_tree(root; kwargs...)
else
throw(IncorrectArgument("No such choice for layout. Use :group or :split"))
end
end
function __keep_series_attributes(; kwargs...)
series_attributes = Plots.attributes(:Series)
out = []
for kw β kwargs
kw[1] β series_attributes && push!(out, kw)
end
return out
end
"""
$(TYPEDSIGNATURES)
Plot the optimal control solution `sol` using the layout `layout`.
**Notes.**
- The argument `layout` can be `:group` or `:split` (default).
- `control` can be `:components`, `:norm` or `:all`.
- `time` can be `:default` or `:normalized`.
- The keyword arguments `state_style`, `control_style` and `costate_style` are passed to the `plot` function of the `Plots` package. The `state_style` is passed to the plot of the state, the `control_style` is passed to the plot of the control and the `costate_style` is passed to the plot of the costate.
"""
function Plots.plot!(
p::Plots.Plot,
sol::OptimalControlSolution;
layout::Symbol = :split,
control::Symbol = :components,
time::Symbol = :default,
solution_label::String = "",
state_style = (),
control_style = (),
costate_style = (),
kwargs...,
)
if solution_label != ""
solution_label = " " * solution_label
end
#
n = state_dimension(sol)
m = control_dimension(sol)
x_labels = state_components_names(sol)
u_labels = control_components_names(sol)
u_label = control_name(sol)
t_label = time_name(sol)
# split series attributes
series_attr = __keep_series_attributes(; kwargs...)
if layout == :group
__plot_time!(
p[1],
sol,
n,
:state,
time;
t_label = t_label,
labels = x_labels .* solution_label,
title = "state",
lims = :auto,
series_attr...,
state_style...,
)
__plot_time!(
p[2],
sol,
n,
:costate,
time;
t_label = t_label,
labels = "p" .* x_labels .* solution_label,
title = "costate",
lims = :auto,
series_attr...,
costate_style...,
)
@match control begin
:components => begin
__plot_time!(
p[3],
sol,
m,
:control,
time;
t_label = t_label,
labels = u_labels .* solution_label,
title = "control",
lims = :auto,
series_attr...,
control_style...,
)
end
:norm => begin
__plot_time!(
p[3],
sol,
:control_norm,
-1,
time;
t_label = t_label,
label = "β" * u_label * "β" .* solution_label,
title = "control norm",
lims = :auto,
series_attr...,
control_style...,
)
end
:all => begin
__plot_time!(
p[3],
sol,
m,
:control,
time;
t_label = t_label,
labels = u_labels .* solution_label,
title = "control",
lims = :auto,
series_attr...,
control_style...,
)
__plot_time!(
p[4],
sol,
:control_norm,
-1,
time;
t_label = t_label,
label = "β" * u_label * "β" .* solution_label,
title = "control norm",
lims = :auto,
series_attr...,
control_style...,
)
end
_ => throw(
IncorrectArgument("No such choice for control. Use :components, :norm or :all"),
)
end
elseif layout == :split
for i β 1:n
__plot_time!(
p[i],
sol,
:state,
i,
time;
t_label = t_label,
label = x_labels[i] * solution_label,
series_attr...,
state_style...,
)
__plot_time!(
p[i + n],
sol,
:costate,
i,
time;
t_label = t_label,
label = "p" * x_labels[i] * solution_label,
series_attr...,
costate_style...,
)
end
@match control begin
:components => begin
for i β 1:m
__plot_time!(
p[i + 2 * n],
sol,
:control,
i,
time;
t_label = t_label,
label = u_labels[i] * solution_label,
series_attr...,
control_style...,
)
end
end
:norm => begin
__plot_time!(
p[2 * n + 1],
sol,
:control_norm,
-1,
time;
t_label = t_label,
label = "β" * u_label * "β" * solution_label,
series_attr...,
control_style...,
)
end
:all => begin
for i β 1:m
__plot_time!(
p[i + 2 * n],
sol,
:control,
i,
time;
t_label = t_label,
label = u_labels[i] * solution_label,
series_attr...,
control_style...,
)
end
__plot_time!(
p[2 * n + m + 1],
sol,
:control_norm,
-1,
time;
t_label = t_label,
label = "β" * u_label * "β" * solution_label,
series_attr...,
control_style...,
)
end
_ => throw(
IncorrectArgument("No such choice for control. Use :components, :norm or :all"),
)
end
else
throw(IncorrectArgument("No such choice for layout. Use :group or :split"))
end
return p
end
function __size_plot(sol::OptimalControlSolution, control::Symbol)
n = state_dimension(sol)
#m = control_dimension(sol)
m = @match control begin
:components => control_dimension(sol)
:norm => 1
:all => control_dimension(sol) + 1
_ => throw(IncorrectArgument("No such choice for control. Use :components, :norm or :all"))
end
return (600, 140 * (n + m))
end
"""
$(TYPEDSIGNATURES)
Plot the optimal control solution `sol` using the layout `layout`.
**Notes.**
- The argument `layout` can be `:group` or `:split` (default).
- The keyword arguments `state_style`, `control_style` and `costate_style` are passed to the `plot` function of the `Plots` package. The `state_style` is passed to the plot of the state, the `control_style` is passed to the plot of the control and the `costate_style` is passed to the plot of the costate.
"""
function Plots.plot(
sol::OptimalControlSolution;
layout::Symbol = :split,
control::Symbol = :components,
time::Symbol = :default,
size = __size_plot(sol, control),
solution_label::String = "",
state_style = (),
control_style = (),
costate_style = (),
kwargs...,
)
#
p = __initial_plot(sol; layout = layout, control = control, size = size, kwargs...)
#
return Plots.plot!(
p,
sol;
layout = layout,
control = control,
time = time,
solution_label = solution_label,
state_style = state_style,
control_style = control_style,
costate_style = costate_style,
kwargs...,
)
end
"""
$(TYPEDSIGNATURES)
Return `x` and `y` for the plot of the optimal control solution `sol`
corresponding respectively to the argument `xx` and the argument `yy`.
**Notes.**
- The argument `xx` can be `:time`, `:state`, `:control` or `:costate`.
- If `xx` is `:time`, then, a label is added to the plot.
- The argument `yy` can be `:state`, `:control` or `:costate`.
"""
@recipe function f(
sol::OptimalControlSolution,
xx::Union{Symbol, Tuple{Symbol, Integer}},
yy::Union{Symbol, Tuple{Symbol, Integer}},
time::Symbol = :default,
)
#
x = __get_data_plot(sol, xx, time = time)
y = __get_data_plot(sol, yy, time = time)
#
label = recipe_label(sol, xx, yy)
return x, y
end
function recipe_label(
sol::OptimalControlSolution,
xx::Union{Symbol, Tuple{Symbol, Integer}},
yy::Union{Symbol, Tuple{Symbol, Integer}},
)
#
label = false
#
if xx isa Symbol && xx == :time
s, i = @match yy begin
::Symbol => (yy, 1)
_ => yy
end
label = @match s begin
:state => state_components_names(sol)[i]
:control => control_components_names(sol)[i]
:costate => "p" * state_components_names(sol)[i]
:control_norm => "β" * control_name(sol) * "β"
_ => error("Internal error, no such choice for label")
end
end
#
return label
end
"""
$(TYPEDSIGNATURES)
Get the data for plotting.
"""
function __get_data_plot(
sol::OptimalControlSolution,
xx::Union{Symbol, Tuple{Symbol, Integer}};
time::Symbol = :default,
)
T = time_grid(sol)
X = state(sol).(T)
U = control(sol).(T)
P = costate(sol).(T)
vv, ii = @match xx begin
::Symbol => (xx, 1)
_ => xx
end
m = size(T, 1)
return @match vv begin
:time => begin
@match time begin
:default => T
:normalized => (T .- T[1]) ./ (T[end] - T[1])
:normalised => (T .- T[1]) ./ (T[end] - T[1])
_ => error(
"Internal error, no such choice for time: $time. Use :default, :normalized or :normalised",
)
end
end
:state => [X[i][ii] for i = 1:m]
:control => [U[i][ii] for i = 1:m]
:costate => [P[i][ii] for i = 1:m]
:control_norm => [norm(U[i]) for i = 1:m]
_ => error("Internal error, no such choice for xx")
end
end
| CTBase | https://github.com/control-toolbox/CTBase.jl.git |
|
[
"MIT"
] | 0.14.0 | 68e9ab3053e0b38e8e574f2809dd280c9dafa338 | code | 8609 | """
[`CTBase`](@ref) module.
Lists all the imported modules and packages:
$(IMPORTS)
List of all the exported names:
$(EXPORTS)
"""
module CTBase
import Base
using DocStringExtensions
using DifferentiationInterface:
AutoForwardDiff,
derivative,
gradient,
jacobian,
prepare_derivative,
prepare_gradient,
prepare_jacobian
import ForwardDiff
using Interpolations: linear_interpolation, Line, Interpolations # For default interpolation
using MLStyle # Pattern matching
using Parameters # @with_kw: to have default values in struct
using Printf # To print an OptimalControlModel
using DataStructures # OrderedDict for aliases
using Unicode # Unicode primitives
using PrettyTables # To print a table
using ReplMaker
using MacroTools: @capture, postwalk, striplines
using LinearAlgebra
# To suppress ambiguities
using SparseArrays, StaticArrays
# --------------------------------------------------------------------------------------------------
# Aliases for types
# const AbstractVector{T} = AbstractArray{T,1}.
"""
Type alias for a real number.
```@example
julia> const ctNumber = Real
```
"""
const ctNumber = Real
"""
Type alias for a vector of real numbers.
```@example
julia> const ctVector = Union{ctNumber, AbstractVector{<:ctNumber}}
```
See also: [`ctNumber`](@ref), [`State`](@ref), [`Costate`](@ref), [`Control`](@ref), [`Variable`](@ref).
"""
const ctVector = Union{ctNumber, AbstractVector{<:ctNumber}} # [] must be defined as Vector{Real}()
"""
Type alias for a time.
```@example
julia> const Time = ctNumber
```
See also: [`ctNumber`](@ref), [`Times`](@ref), [`TimesDisc`](@ref).
"""
const Time = ctNumber
"""
Type alias for a vector of times.
```@example
julia> const Times = AbstractVector{<:Time}
```
See also: [`Time`](@ref), [`TimesDisc`](@ref).
"""
const Times = AbstractVector{<:Time}
"""
Type alias for a grid of times. This is used to define a discretization of time interval given to solvers.
```@example
julia> const TimesDisc = Union{Times, StepRangeLen}
```
See also: [`Time`](@ref), [`Times`](@ref).
"""
const TimesDisc = Union{Times, StepRangeLen}
"""
Type alias for a state in RβΏ.
```@example
julia> const State = ctVector
```
See also: [`ctVector`](@ref), [`Costate`](@ref), [`Control`](@ref), [`Variable`](@ref).
"""
const State = ctVector
"""
Type alias for a costate in RβΏ.
```@example
julia> const Costate = ctVector
```
See also: [`ctVector`](@ref), [`State`](@ref), [`Control`](@ref), [`Variable`](@ref).
"""
const Costate = ctVector # todo: add adjoint to write p*f(x, u) instead of p'*f(x,u)
"""
Type alias for a control in Rα΅.
```@example
julia> const Control = ctVector
```
See also: [`ctVector`](@ref), [`State`](@ref), [`Costate`](@ref), [`Variable`](@ref).
"""
const Control = ctVector
"""
Type alias for a variable in Rα΅.
```@example
julia> const Variable = ctVector
```
See also: [`ctVector`](@ref), [`State`](@ref), [`Costate`](@ref), [`Control`](@ref).
"""
const Variable = ctVector
"""
Type alias for a vector of states.
```@example
julia> const States = AbstractVector{<:State}
```
See also: [`State`](@ref), [`Costates`](@ref), [`Controls`](@ref).
"""
const States = AbstractVector{<:State}
"""
Type alias for a vector of costates.
```@example
julia> const Costates = AbstractVector{<:Costate}
```
See also: [`Costate`](@ref), [`States`](@ref), [`Controls`](@ref).
"""
const Costates = AbstractVector{<:Costate}
"""
Type alias for a vector of controls.
```@example
julia> const Controls = AbstractVector{<:Control}
```
See also: [`Control`](@ref), [`States`](@ref), [`Costates`](@ref).
"""
const Controls = AbstractVector{<:Control}
"""
Type alias for a dimension. This is used to define the dimension of the state space,
the costate space, the control space, etc.
```@example
julia> const Dimension = Integer
```
"""
const Dimension = Integer
#
"""
Type alias for a tangent vector to the state space.
```@example
julia> const DState = ctVector
```
See also: [`ctVector`](@ref), [`DCostate`](@ref).
"""
const DState = ctVector
"""
Type alias for a tangent vector to the costate space.
```@example
julia> const DCostate = ctVector
```
See also: [`ctVector`](@ref), [`DState`](@ref).
"""
const DCostate = ctVector
#
include("exception.jl")
include("description.jl")
include("default.jl")
include("types.jl")
include("functions.jl")
include("utils.jl")
# Optimal Control Model
include("optimal_control_model-type.jl")
include("optimal_control_model-getters.jl")
include("optimal_control_model-setters.jl")
# Optimal Control Solution
include("optimal_control_solution-type.jl")
include("optimal_control_solution-getters.jl")
include("optimal_control_solution-setters.jl")
#
include("differential_geometry.jl")
include("ctparser_utils.jl")
include("onepass.jl")
include("repl.jl")
include("init.jl")
include("print.jl")
# Numeric types
export ctNumber, ctVector, Time, Times, TimesDisc
export States, Costates, Controls, State, Costate, Control, Variable, Dimension, Index
export DState, DCostate
export TimeDependence, Autonomous, NonAutonomous
export VariableDependence, NonFixed, Fixed
# Description
export Description, add, getFullDescription, remove
# Exceptions
export CTException, ParsingError, AmbiguousDescription, IncorrectMethod
export IncorrectArgument, IncorrectOutput, NotImplemented, UnauthorizedCall
export ExtensionError
# AD
export set_AD_backend
# Functions
export Hamiltonian, HamiltonianVectorField, VectorField
export Mayer, Lagrange, Dynamics, ControlLaw, FeedbackControl, Multiplier
export Mayer!, Lagrange!, Dynamics!
export BoundaryConstraint, StateConstraint, ControlConstraint, MixedConstraint, VariableConstraint
export BoundaryConstraint!, StateConstraint!, ControlConstraint!, MixedConstraint!, VariableConstraint!
# Model
export OptimalControlModel
export Model
export __OCPModel # todo: to be updated, redirection to Model to avoid confusion with other Model functions from other packages. Due to @def macro
export variable!,
time!, constraint!, dynamics!, objective!, state!, control!, remove_constraint!, model_expression!
export is_autonomous, is_fixed
export is_time_independent, is_time_dependent
export is_min, is_max
export is_variable_dependent, is_variable_independent
export is_in_place
export nlp_constraints!, constraints, constraints_labels, constraint
export has_free_final_time, has_free_initial_time, has_lagrange_cost, has_mayer_cost
export dim_control_constraints, dim_state_constraints, dim_mixed_constraints, dim_path_constraints
export dim_boundary_constraints, dim_variable_constraints, dim_control_range
export dim_state_range, dim_variable_range
export model_expression, initial_time, initial_time_name, final_time, final_time_name, time_name
export control_dimension, control_components_names, control_name
export state_dimension, state_components_names, state_name
export variable_dimension, variable_components_names, variable_name
export lagrange, mayer, criterion, dynamics
export __constraint, __lagrange, __mayer, __dynamics # todo: remove after in place tests
# Solution
export OptimalControlSolution
export time_grid, control, state, variable, costate, objective
export state_discretized, control_discretized, costate_discretized
export iterations, stopping, message, success, infos
export boundary_constraints, mult_boundary_constraints
export variable_constraints,
mult_variable_constraints, mult_variable_box_lower, mult_variable_box_upper
export control_constraints, mult_control_constraints
export state_constraints, mult_state_constraints
export mixed_constraints, mult_mixed_constraints
export mult_state_box_lower, mult_state_box_upper
export mult_control_box_lower, mult_control_box_upper
export time_grid!, costate!, iterations!, stopping!, message!, success!, infos!
export boundary_constraints!, mult_boundary_constraints!
export variable_constraints!,
mult_variable_constraints!, mult_variable_box_lower!, mult_variable_box_upper!
export control_constraints!,
mult_control_constraints!, mult_control_box_lower!, mult_control_box_upper!
export state_constraints!, mult_state_constraints!, mult_state_box_lower!, mult_state_box_upper!
export mixed_constraints!, mult_mixed_constraints!
# Initialization
export OptimalControlInit
# Utils
export ctgradient, ctjacobian, ctinterpolate, ctindices, ctupperscripts
# Differential geometry
export Lie, @Lie, Poisson, HamiltonianLift, AbstractHamiltonian, Lift, β
, ββ
# ctparser_utils
export replace_call, constraint_type
# onepass
export @def
# repl
export ct_repl, ct_repl_update_model
isdefined(Base, :active_repl) && ct_repl()
end | CTBase | https://github.com/control-toolbox/CTBase.jl.git |
|
[
"MIT"
] | 0.14.0 | 68e9ab3053e0b38e8e574f2809dd280c9dafa338 | code | 10690 | # ctparser_utils
"""
$(TYPEDSIGNATURES)
Expr iterator: apply `_Expr` to nodes and `f` to leaves of the AST.
# Example
```@example
julia> id(e) = expr_it(e, Expr, x -> x)
```
"""
expr_it(e, _Expr, f) =
if e isa Expr
args = e.args
n = length(args)
newargs = [expr_it(e.args[i], _Expr, f) for i β 1:n]
return _Expr(e.head, newargs...)
else
return f(e)
end
"""
$(TYPEDSIGNATURES)
Substitute expression `e1` by expression `e2` in expression `e`.
# Examples
```@example
julia> e = :( β«( r(t)^2 + 2uβ(t)) β min )
:(β«(r(t) ^ 2 + 2 * uβ(t)) β min)
julia> subs(e, :r, :( x[1] ))
:(β«((x[1])(t) ^ 2 + 2 * uβ(t)) β min)
julia> e = :( β«( uβ(t)^2 + 2uβ(t)) β min )
:(β«(uβ(t) ^ 2 + 2 * uβ(t)) β min)
julia> for i β 1:2
e = subs(e, Symbol(:u, Char(8320+i)), :( u[\$i] ))
end; e
:(β«((u[1])(t) ^ 2 + 2 * (u[2])(t)) β min)
julia> t = :t; t0 = 0; tf = :tf; x = :x; u = :u;
julia> e = :( x[1](0) * 2x(tf) - x[2](tf) * 2x(0) )
:((x[1])(0) * (2 * x(tf)) - (x[2])(tf) * (2 * x(0)))
julia> x0 = Symbol(x, 0); subs(e, :( \$x[1](\$(t0)) ), :( \$x0[1] ))
:(x0[1] * (2 * x(tf)) - (x[2])(tf) * (2 * x(0)))
```
"""
subs(e, e1::Union{Symbol, Real}, e2) = expr_it(e, Expr, x -> x == e1 ? e2 : x) # optimised for some litterals (including symbols)
subs(e, e1, e2) = begin
foo(e1, e2) = (h, args...) -> begin
f = Expr(h, args...)
f == e1 ? e2 : f
end
expr_it(e, foo(e1, e2), f -> f == e1 ? e2 : f)
end
"""
$(TYPEDSIGNATURES)
Replace calls in e of the form `(...x...)(t)` by `(...y...)`.
# Example
```@example
julia> t = :t; t0 = 0; tf = :tf; x = :x; u = :u;
julia> e = :( x[1](0) * 2x(tf) - x[2](tf) * 2x(0) )
:((x[1])(0) * (2 * x(tf)) - (x[2])(tf) * (2 * x(0)))
julia> x0 = Symbol(x, 0); e = replace_call(e, x, t0, x0)
:(x0[1] * (2 * x(tf)) - (x[2])(tf) * (2x0))
julia> xf = Symbol(x, "f"); replace_call(ans, x, tf, xf)
:(x0[1] * (2xf) - xf[2] * (2x0))
julia> e = :( A*x(t) + B*u(t) ); replace_call(replace_call(e, x, t, x), u, t, u)
:(A * x + B * u)
julia> e = :( F0(x(t)) + u(t)*F1(x(t)) ); replace_call(replace_call(e, x, t, x), u, t, u)
:(F0(x) + u * F1(x))
julia> e = :( 0.5u(t)^2 ); replace_call(e, u, t, u)
:(0.5 * u ^ 2)
```
"""
replace_call(e, x::Symbol, t, y) = replace_call(e, [x], t, [y])
"""
$(TYPEDSIGNATURES)
Replace calls in e of the form `(...x1...x2...)(t)` by `(...y1...y2...)` for all symbols `x1`, `x2`... in the vector `x`.
# Example
```@example
julia> t = :t; t0 = 0; tf = :tf; x = :x; u = :u;
julia> e = :( (x^2 + u[1])(t) ); replace_call(e, [ x, u ], t , [ :xx, :uu ])
:(xx ^ 2 + uu[1])
julia> e = :( ((x^2)(t) + u[1])(t) ); replace_call(e, [ x, u ], t , [ :xx, :uu ])
:(xx ^ 2 + uu[1])
julia> e = :( ((x^2)(t0) + u[1])(t) ); replace_call(e, [ x, u ], t , [ :xx, :uu ])
:((xx ^ 2)(t0) + uu[1])
```
"""
replace_call(e, x::Vector{Symbol}, t, y) = begin
@assert length(x) == length(y)
foo(x, t, y) =
(h, args...) -> begin
ee = Expr(h, args...)
@match ee begin
:($eee($tt)) && if tt == t
end => let ch = false
for i β 1:length(x)
if has(eee, x[i])
eee = subs(eee, x[i], y[i])
ch = true # todo: unnecessary (as subs can be idempotent)?
end
end
ch ? eee : ee
end
_ => ee
end
end
expr_it(e, foo(x, t, y), x -> x)
end
"""
$(TYPEDSIGNATURES)
Return true if e contains e1.
# Example
```@example
julia> e = :( β«( x[1](t)^2 + 2*u(t) ) β min )
:(β«((x[1])(t) ^ 2 + 2 * u(t)) β min)
julia> has(e, 2)
true
julia> has(e, :x)
true
julia> has(e, :min)
true
julia> has(e, :( x[1](t)^2 ))
true
julia> !has(e, :( x[1](t)^3 ))
true
julia> !has(e, 3)
true
julia> !has(e, :max)
true
julia> has(:x, :x)
true
julia> !has(:x, 2)
true
julia> !has(:x, :y)
true
```
"""
has(e, e1) = begin
foo(e1) = (h, args...) -> begin
ee = Expr(h, args...)
if :yes β args
:yes
else
ee == e1 ? :yes : ee
end
end
expr_it(e, foo(e1), x -> x == e1 ? :yes : x) == :yes
end
"""
$(TYPEDSIGNATURES)
Return true if e contains a `(...x...)(t)` call.
# Example
```@example
julia> e = :( β«( x[1](t)^2 + 2*u(t) ) β min )
:(β«((x[1])(t) ^ 2 + 2 * u(t)) β min)
julia> has(e, :x, :t)
true
julia> has(e, :u, :t)
true
```
"""
has(e, x, t) = begin
foo(x, t) = (h, args...) -> begin
ee = Expr(h, args...)
if :yes β args
:yes
else
@match ee begin
:($eee($tt)) => (tt == t && has(eee, x)) ? :yes : ee
_ => ee
end
end
end
expr_it(e, foo(x, t), x -> x) == :yes
end
"""
$(TYPEDSIGNATURES)
Return the type constraint among
`:initial`, `:final`, `:boundary`, `:control_range`, `:control_fun`,
`:state_range`, `:state_fun`, `:mixed`, `:variable_range`, `:variable_fun` (`:other` otherwise),
together with the appropriate value (range, updated expression...) Expressions like `u(t0)` where `u`
is the control and `t0` the initial time return `:other`.
# Example
```@example
julia> t = :t; t0 = 0; tf = :tf; x = :x; u = :u; v = :v
julia> constraint_type(:( yΜ(t) ), t, t0, tf, x, u, v)
:other
julia> constraint_type(:( xΜ(s) ), t, t0, tf, x, u, v)
:other
julia> constraint_type(:( x(0)' ), t, t0, tf, x, u, v)
:boundary
julia> constraint_type(:( x(t)' ), t, t0, tf, x, u, v)
:state_fun
julia> constraint_type(:( x(0) ), t, t0, tf, x, u, v)
(:initial, nothing)
julia> constraint_type(:( x[1:2:5](0) ), t, t0, tf, x, u, v)
(:initial, 1:2:5)
julia> constraint_type(:( x[1:2](0) ), t, t0, tf, x, u, v)
(:initial, 1:2)
julia> constraint_type(:( x[1](0) ), t, t0, tf, x, u, v)
(:initial, 1)
julia> constraint_type(:( 2x[1](0)^2 ), t, t0, tf, x, u, v)
:boundary
julia> constraint_type(:( x(tf) ), t, t0, tf, x, u, v)
(:final, nothing)
j
julia> constraint_type(:( x[1:2:5](tf) ), t, t0, tf, x, u, v)
(:final, 1:2:5)
julia> constraint_type(:( x[1:2](tf) ), t, t0, tf, x, u, v)
(:final, 1:2)
julia> constraint_type(:( x[1](tf) ), t, t0, tf, x, u, v)
(:final, 1)
julia> constraint_type(:( 2x[1](tf)^2 ), t, t0, tf, x, u, v)
:boundary
julia> constraint_type(:( x[1](tf) - x[2](0) ), t, t0, tf, x, u, v)
:boundary
julia> constraint_type(:( u[1:2:5](t) ), t, t0, tf, x, u, v)
(:control_range, 1:2:5)
julia> constraint_type(:( u[1:2](t) ), t, t0, tf, x, u, v)
(:control_range, 1:2)
julia> constraint_type(:( u[1](t) ), t, t0, tf, x, u, v)
(:control_range, 1)
julia> constraint_type(:( u(t) ), t, t0, tf, x, u, v)
(:control_range, nothing)
julia> constraint_type(:( 2u[1](t)^2 ), t, t0, tf, x, u, v)
:control_fun
julia> constraint_type(:( x[1:2:5](t) ), t, t0, tf, x, u, v)
(:state_range, 1:2:5)
julia> constraint_type(:( x[1:2](t) ), t, t0, tf, x, u, v)
(:state_range, 1:2)
julia> constraint_type(:( x[1](t) ), t, t0, tf, x, u, v)
(:state_range, 1)
julia> constraint_type(:( x(t) ), t, t0, tf, x, u, v)
(:state_range, nothing)
julia> constraint_type(:( 2x[1](t)^2 ), t, t0, tf, x, u, v)
:state_fun
julia> constraint_type(:( 2u[1](t)^2 * x(t) ), t, t0, tf, x, u, v)
:mixed
julia> constraint_type(:( 2u[1](0)^2 * x(t) ), t, t0, tf, x, u, v)
:other
julia> constraint_type(:( 2u[1](0)^2 * x(t) ), t, t0, tf, x, u, v)
:other
julia> constraint_type(:( 2u[1](t)^2 * x(t) + v ), t, t0, tf, x, u, v)
:mixed
julia> constraint_type(:( v[1:2:10] ), t, t0, tf, x, u, v)
(:variable_range, 1:2:9)
julia> constraint_type(:( v[1:10] ), t, t0, tf, x, u, v)
(:variable_range, 1:10)
julia> constraint_type(:( v[2] ), t, t0, tf, x, u, v)
(:variable_range, 2)
julia> constraint_type(:( v ), t, t0, tf, x, u, v)
(:variable_range, nothing)
julia> constraint_type(:( v^2 + 1 ), t, t0, tf, x, u, v)
:variable_fun
julia> constraint_type(:( v[2]^2 + 1 ), t, t0, tf, x, u, v)
:variable_fun
```
"""
constraint_type(e, t, t0, tf, x, u, v) = begin
@match [
has(e, x, t0),
has(e, x, tf),
has(e, u, t),
has(e, x, t),
has(e, u, t0),
has(e, u, tf),
has(e, v),
] begin
[true, false, false, false, false, false, _] => @match e begin
:($y[($i):($p):($j)]($s)) && if (y == x && s == t0)
end => (:initial, i:p:j)
:($y[($i):($j)]($s)) && if (y == x && s == t0)
end => (:initial, i:j)
:($y[$i]($s)) && if (y == x && s == t0)
end => (:initial, i)
:($y($s)) && if (y == x && s == t0)
end => (:initial, nothing)
_ => :boundary
end
[false, true, false, false, false, false, _] => @match e begin
:($y[($i):($p):($j)]($s)) && if (y == x && s == tf)
end => (:final, i:p:j)
:($y[($i):($j)]($s)) && if (y == x && s == tf)
end => (:final, i:j)
:($y[$i]($s)) && if (y == x && s == tf)
end => (:final, i)
:($y($s)) && if (y == x && s == tf)
end => (:final, nothing)
_ => :boundary
end
[true, true, false, false, false, false, _] => :boundary
[false, false, true, false, false, false, _] => @match e begin
:($c[($i):($p):($j)]($s)) && if (c == u && s == t)
end => (:control_range, i:p:j)
:($c[($i):($j)]($s)) && if (c == u && s == t)
end => (:control_range, i:j)
:($c[$i]($s)) && if (c == u && s == t)
end => (:control_range, i)
:($c($s)) && if (c == u && s == t)
end => (:control_range, nothing)
_ => :control_fun
end
[false, false, false, true, false, false, _] => @match e begin
:($y[($i):($p):($j)]($s)) && if (y == x && s == t)
end => (:state_range, i:p:j)
:($y[($i):($j)]($s)) && if (y == x && s == t)
end => (:state_range, i:j)
:($y[$i]($s)) && if (y == x && s == t)
end => (:state_range, i)
:($y($s)) && if (y == x && s == t)
end => (:state_range, nothing)
_ => :state_fun
end
[false, false, true, true, false, false, _] => :mixed
[false, false, false, false, false, false, true] => @match e begin
:($w[($i):($p):($j)]) && if (w == v)
end => (:variable_range, i:p:j)
:($w[($i):($j)]) && if (w == v)
end => (:variable_range, i:j)
:($w[$i]) && if (w == v)
end => (:variable_range, i)
_ && if (e == v)
end => (:variable_range, nothing)
_ => :variable_fun
end
_ => :other
end
end
| CTBase | https://github.com/control-toolbox/CTBase.jl.git |
|
[
"MIT"
] | 0.14.0 | 68e9ab3053e0b38e8e574f2809dd280c9dafa338 | code | 4945 | #
const __default_AD_backend = Ref(AutoForwardDiff())
function set_AD_backend(AD)
global __default_AD_backend[] = AD
nothing
end
"""
$(TYPEDSIGNATURES)
Used to set the default value of Automatic Differentiation backend.
The default value is `AutoForwardDiff()`, that is the `ForwardDiff` package is used by default.
"""
__get_AD_backend() = __default_AD_backend[] # default AD backend
"""
$(TYPEDSIGNATURES)
Used to set the default value of the time dependence of the functions.
The default value is `Autonomous`, which means that the functions are considered time independent.
The other possible time dependence is `NonAutonomous`, which means that the functions are considered time dependent.
"""
__fun_time_dependence() = Autonomous
"""
$(TYPEDSIGNATURES)
Used to set the default value of the variable dependence of the functions.
The default value is `Fixed`, which means that the functions are considered variable independent.
The other possible variable dependence is `NonFixed`, which means that the functions are considered variable dependent.
"""
__fun_variable_dependence() = Fixed
"""
$(TYPEDSIGNATURES)
Used to set the default value of the time dependence of the Optimal Control Problem.
The default value is `Autonomous`, which means that the Optimal Control Problem is considered time independent.
The other possible time dependence is `NonAutonomous`, which means that all the functions used to define the
Optimal Control Problem are considered time dependent.
"""
__ocp_time_dependence() = Autonomous
"""
$(TYPEDSIGNATURES)
Used to set the default value of the variable dependence of the Optimal Control Problem.
The default value is `Fixed`, which means that the Optimal Control Problem is considered variable independent.
The other possible variable dependence is `NonFixed`, which means that all the functions used to define the
Optimal Control Problem are considered variable dependent.
"""
__ocp_variable_dependence() = Fixed
"""
$(TYPEDSIGNATURES)
Used to set the default value of the names of the variables.
The default value is `"v"`.
"""
__variable_name() = "v"
"""
$(TYPEDSIGNATURES)
Used to set the default value of the names of the variables.
The default value is `["v"]` for a one dimensional variable, and `["vβ", "vβ", ...]` for a multi dimensional variable.
"""
__variable_components_names(q::Dimension, name::String) =
q > 1 ? [name * ctindices(i) for i β range(1, q)] : [name]
"""
$(TYPEDSIGNATURES)
Used to set the default value of the name of the state.
The default value is `"x"`.
"""
__state_name() = "x"
"""
$(TYPEDSIGNATURES)
Used to set the default value of the names of the states.
The default value is `["x"]` for a one dimensional state, and `["xβ", "xβ", ...]` for a multi dimensional state.
"""
__state_components_names(n::Dimension, name::String) =
n > 1 ? [name * ctindices(i) for i β range(1, n)] : [name]
"""
$(TYPEDSIGNATURES)
Used to set the default value of the names of the control.
The default value is `"u"`.
"""
__control_name() = "u"
"""
$(TYPEDSIGNATURES)
Used to set the default value of the names of the controls.
The default value is `["u"]` for a one dimensional control, and `["uβ", "uβ", ...]` for a multi dimensional control.
"""
__control_components_names(m::Dimension, name::String) =
m > 1 ? [name * ctindices(i) for i β range(1, m)] : [name]
"""
$(TYPEDSIGNATURES)
Used to set the default value of the name of the time.
The default value is `t`.
"""
__time_name() = "t"
"""
$(TYPEDSIGNATURES)
Used to set the default value of the type of criterion. Either :min or :max.
The default value is `:min`.
The other possible criterion type is `:max`.
"""
__criterion_type() = :min
"""
$(TYPEDSIGNATURES)
Used to set the default value of the label of a constraint.
A unique value is given to each constraint using the `gensym` function and prefixing by `:unamed`.
"""
__constraint_label() = gensym(:unamed)
"""
$(TYPEDSIGNATURES)
Used to set the default value of the stockage of elements in a matrix.
The default value is `1`.
"""
__matrix_dimension_stock() = 1
"""
$(TYPEDSIGNATURES)
Used to set the default value of the display argument.
The default value is `true`, which means that the output is printed during resolution.
"""
__display() = true
"""
$(TYPEDSIGNATURES)
Used to set the default value of the callbacks argument.
The default value is `()`, which means that no additional callback is given.
"""
__callbacks() = ()
"""
$(TYPEDSIGNATURES)
Used to set the default interpolation function used for initialisation.
The default value is `Interpolations.linear_interpolation`, which means that the initial guess is linearly interpolated.
"""
function __init_interpolation()
return (T, U) ->
Interpolations.linear_interpolation(T, U, extrapolation_bc = Interpolations.Line())
end
"""
$(TYPEDSIGNATURES)
Used to set the default initial guess.
The default value is `nothing`.
"""
__ocp_init() = nothing
| CTBase | https://github.com/control-toolbox/CTBase.jl.git |
|
[
"MIT"
] | 0.14.0 | 68e9ab3053e0b38e8e574f2809dd280c9dafa338 | code | 3237 | """
DescVarArg is a Vararg of symbols. `DescVarArg` is a type alias for a Vararg of symbols.
```@example
julia> const DescVarArg = Vararg{Symbol}
```
See also: [`Description`](@ref).
"""
const DescVarArg = Vararg{Symbol}
"""
A description is a tuple of symbols. `Description` is a type alias for a tuple of symbols.
```@example
julia> const Description = Tuple{DescVarArg}
```
See also: [`DescVarArg`](@ref).
# Example
[`Base.show`](@ref) is overloaded for descriptions, that is tuple of descriptions are printed as follows:
```@example
julia> display( ( (:a, :b), (:b, :c) ) )
(:a, :b)
(:b, :c)
```
"""
const Description = Tuple{DescVarArg}
"""
$(TYPEDSIGNATURES)
Print a tuple of descriptions.
# Example
```@example
julia> display( ( (:a, :b), (:b, :c) ) )
(:a, :b)
(:b, :c)
```
"""
function Base.show(io::IO, ::MIME"text/plain", descriptions::Tuple{Vararg{Description}})
N = size(descriptions, 1)
for i in range(1, N)
description = descriptions[i]
i < N ? print(io, "$description\n") : print(io, "$description")
end
end
"""
$(TYPEDSIGNATURES)
Return a tuple containing only the description `y`.
# Example
```@example
julia> descriptions = ()
julia> descriptions = add(descriptions, (:a,))
(:a,)
julia> print(descriptions)
((:a,),)
julia> descriptions[1]
(:a,)
```
"""
add(x::Tuple{}, y::Description)::Tuple{Vararg{Description}} = (y,)
"""
$(TYPEDSIGNATURES)
Concatenate the description `y` to the tuple of descriptions `x` if `x` does not contain `y`
and return the new tuple of descriptions. Throw an error if the description `y` is already contained in `x`.
# Example
```@example
julia> descriptions = ()
julia> descriptions = add(descriptions, (:a,))
(:a,)
julia> descriptions = add(descriptions, (:b,))
(:a,)
(:b,)
julia> descriptions = add(descriptions, (:b,))
ERROR: IncorrectArgument: the description (:b,) is already in ((:a,), (:b,))
```
"""
function add(x::Tuple{Vararg{Description}}, y::Description)::Tuple{Vararg{Description}}
y β x ? throw(IncorrectArgument("the description $y is already in $x")) : return (x..., y)
end
"""
$(TYPEDSIGNATURES)
Return a complete description from an incomplete description `desc` and
a list of complete descriptions `desc_list`. If several complete descriptions are possible,
then the first one is returned.
# Example
```@example
julia> desc_list = ((:a, :b), (:b, :c), (:a, :c))
(:a, :b)
(:b, :c)
(:a, :c)
julia> getFullDescription((:a,), desc_list)
(:a, :b)
```
"""
function getFullDescription(desc::Description, desc_list::Tuple{Vararg{Description}})::Description
n = size(desc_list, 1)
table = zeros(Int8, n, 2)
for i in range(1, n)
table[i, 1] = size(desc β© desc_list[i], 1)
table[i, 2] = desc β desc_list[i] ? 1 : 0
end
if maximum(table[:, 2]) == 0
throw(AmbiguousDescription(desc))
end
# argmax : Return the index or key of the maximal element in a collection.
return desc_list[argmax(table[:, 1])]
end
"""
$(TYPEDSIGNATURES)
Return the difference between the description `x` and the description `y`.
# Example
```@example
julia> remove((:a, :b), (:a,))
(:b,)
```
"""
function remove(x::Description, y::Description)::Description
return Tuple(setdiff(x, y))
end
| CTBase | https://github.com/control-toolbox/CTBase.jl.git |
|
[
"MIT"
] | 0.14.0 | 68e9ab3053e0b38e8e574f2809dd280c9dafa338 | code | 22324 | """
$(TYPEDSIGNATURES)
Return the HamiltonianLift of a VectorField.
# Example
```@example
julia> HL = Lift(VectorField(x -> [x[1]^2,x[2]^2], autonomous=true, variable=false))
julia> HL([1, 0], [0, 1])
0
julia> HL = Lift(VectorField((t, x, v) -> [t+x[1]^2,x[2]^2+v], autonomous=false, variable=true))
julia> HL(1, [1, 0], [0, 1], 1)
1
julia> H = Lift(x -> 2x)
julia> H(1, 1)
2
julia> H = Lift((t, x, v) -> 2x + t - v, autonomous=false, variable=true)
julia> H(1, 1, 1, 1)
2
julia> H = Lift((t, x, v) -> 2x + t - v, NonAutonomous, NonFixed)
julia> H(1, 1, 1, 1)
2
```
"""
function Lift(X::VectorField)::HamiltonianLift
return HamiltonianLift(X)
end
"""
$(TYPEDSIGNATURES)
Return the Lift of a function.
Dependencies are specified with boolean : autonomous and variable.
# Example
```@example
julia> H = Lift(x -> 2x)
julia> H(1, 1)
2
julia> H = Lift((t, x, v) -> 2x + t - v, autonomous=false, variable=true)
julia> H(1, 1, 1, 1)
2
```
"""
function Lift(X::Function; autonomous::Bool = true, variable::Bool = false)::Function
return @match (autonomous, variable) begin
(true, false) => (x, p) -> p' * X(x)
(true, true) => (x, p, v) -> p' * X(x, v)
(false, false) => (t, x, p) -> p' * X(t, x)
_ => (t, x, p, v) -> p' * X(t, x, v)
end
end
"""
$(TYPEDSIGNATURES)
Return the Lift of a function.
Dependencies are specified with DataType : Autonomous, NonAutonomous and Fixed, NonFixed.
# Example
```@example
julia> H = Lift(x -> 2x)
julia> H(1, 1)
2
julia> H = Lift((t, x, v) -> 2x + t - v, NonAutonomous, NonFixed)
julia> H(1, 1, 1, 1)
2
```
"""
function Lift(X::Function, dependences::DataType...)::Function
__check_dependencies(dependences)
autonomous = NonAutonomous β dependences ? false : true
variable = NonFixed β dependences ? true : false
return Lift(X; autonomous = autonomous, variable = variable)
end
# ---------------------------------------------------------------------------
# Lie derivative of a scalar function along a vector field or a function: L_X(f) = Xβ
f
# (postulate)
# (Xβ
f)(x) = f'(x)β
X(x)
# (Xβ
f)(t, x) = ββf(t, x)β
X(t, x)
# (gβ
f)(x) = f'(x)β
G(x) with G the vector of g
"""
$(TYPEDSIGNATURES)
Lie derivative of a scalar function along a vector field : L_X(f) = Xβ
f, in autonomous case
# Example
```@example
julia> Ο = x -> [x[2], -x[1]]
julia> X = VectorField(Ο)
julia> f = x -> x[1]^2 + x[2]^2
julia> (Xβ
f)([1, 2])
0
```
"""
function β
(X::VectorField{Autonomous, <:VariableDependence}, f::Function)::Function
return (x, args...) -> ctgradient(y -> f(y, args...), x)' * X(x, args...)
end
"""
$(TYPEDSIGNATURES)
Lie derivative of a scalar function along a vector field : L_X(f) = Xβ
f, in nonautonomous case
# Example
```@example
julia> Ο = (t, x, v) -> [t + x[2] + v[1], -x[1] + v[2]]
julia> X = VectorField(Ο, NonAutonomous, NonFixed)
julia> f = (t, x, v) -> t + x[1]^2 + x[2]^2
julia> (Xβ
f)(1, [1, 2], [2, 1])
10
```
"""
function β
(X::VectorField{NonAutonomous, <:VariableDependence}, f::Function)::Function
return (t, x, args...) -> ctgradient(y -> f(t, y, args...), x)' * X(t, x, args...)
end
"""
$(TYPEDSIGNATURES)
Lie derivative of a scalar function along a function.
In this case both functions will be considered autonomous and non-variable.
# Example
```@example
julia> Ο = x -> [x[2], -x[1]]
julia> f = x -> x[1]^2 + x[2]^2
julia> (Οβ
f)([1, 2])
0
julia> Ο = (t, x, v) -> [t + x[2] + v[1], -x[1] + v[2]]
julia> f = (t, x, v) -> t + x[1]^2 + x[2]^2
julia> (Οβ
f)(1, [1, 2], [2, 1])
MethodError
```
"""
function β
(X::Function, f::Function)::Function
return β
(VectorField(X, Autonomous, Fixed), f)
end
"""
$(TYPEDSIGNATURES)
Lie derivative of a scalar function along a vector field.
# Example
```@example
julia> Ο = x -> [x[2], -x[1]]
julia> X = VectorField(Ο)
julia> f = x -> x[1]^2 + x[2]^2
julia> Lie(X,f)([1, 2])
0
julia> Ο = (t, x, v) -> [t + x[2] + v[1], -x[1] + v[2]]
julia> X = VectorField(Ο, NonAutonomous, NonFixed)
julia> f = (t, x, v) -> t + x[1]^2 + x[2]^2
julia> Lie(X, f)(1, [1, 2], [2, 1])
10
```
"""
Lie(X::VectorField, f::Function)::Function = X β
f
"""
$(TYPEDSIGNATURES)
Lie derivative of a scalar function along a function.
Dependencies are specified with boolean : autonomous and variable.
# Example
```@example
julia> Ο = x -> [x[2], -x[1]]
julia> f = x -> x[1]^2 + x[2]^2
julia> Lie(Ο,f)([1, 2])
0
julia> Ο = (t, x, v) -> [t + x[2] + v[1], -x[1] + v[2]]
julia> f = (t, x, v) -> t + x[1]^2 + x[2]^2
julia> Lie(Ο, f, autonomous=false, variable=true)(1, [1, 2], [2, 1])
10
```
"""
function Lie(X::Function, f::Function; autonomous::Bool = true, variable::Bool = false)::Function
time_dependence = autonomous ? Autonomous : NonAutonomous
variable_dependence = variable ? NonFixed : Fixed
return Lie(VectorField(X, time_dependence, variable_dependence), f)
end
"""
$(TYPEDSIGNATURES)
Lie derivative of a scalar function along a vector field or a function.
Dependencies are specified with DataType : Autonomous, NonAutonomous and Fixed, NonFixed.
# Example
```@example
julia> Ο = x -> [x[2], -x[1]]
julia> f = x -> x[1]^2 + x[2]^2
julia> Lie(Ο,f)([1, 2])
0
julia> Ο = (t, x, v) -> [t + x[2] + v[1], -x[1] + v[2]]
julia> f = (t, x, v) -> t + x[1]^2 + x[2]^2
julia> Lie(Ο, f, NonAutonomous, NonFixed)(1, [1, 2], [2, 1])
10
```
"""
function Lie(X::Function, f::Function, dependences::DataType...)::Function
__check_dependencies(dependences)
time_dependence = NonAutonomous β dependences ? NonAutonomous : Autonomous
variable_dependence = NonFixed β dependences ? NonFixed : Fixed
return Lie(VectorField(X, time_dependence, variable_dependence), f)
end
# ---------------------------------------------------------------------------
# partial derivative wrt time
"""
$(TYPEDSIGNATURES)
Partial derivative wrt time of a function.
# Example
```@example
julia> ββ((t,x) -> t*x)(0,8)
8
```
"""
ββ(f) = (t, args...) -> ctgradient(y -> f(y, args...), t)
# ---------------------------------------------------------------------------
# "Directional derivative" of a vector field: internal and only used to compute
# efficiently the Lie bracket of two vector fields
"""
$(TYPEDSIGNATURES)
"Directional derivative" of a vector field: internal and only used to compute
efficiently the Lie bracket of two vector fields, autonomous case
# Example
```@example
julia> X = VectorField(x -> [x[2], -x[1]])
julia> Y = VectorField(x -> [x[1], x[2]])
julia> CTBase.:(β
)(X, Y)([1, 2])
[2, -1]
```
"""
function β
(
X::VectorField{Autonomous, V},
Y::VectorField{Autonomous, V},
)::VectorField{Autonomous, V} where {V <: VariableDependence}
return VectorField(
(x, args...) ->
x isa ctNumber ? ctgradient(y -> Y(y, args...), x) * X(x, args...) :
ctjacobian(y -> Y(y, args...), x) * X(x, args...),
Autonomous,
V,
)
end
"""
$(TYPEDSIGNATURES)
"Directional derivative" of a vector field: internal and only used to compute
efficiently the Lie bracket of two vector fields, nonautonomous case
# Example
```@example
julia> X = VectorField((t, x, v) -> [t + v[1] + v[2] + x[2], -x[1]], NonFixed, NonAutonomous)
julia> Y = VectorField((t, x, v) -> [v[1] + v[2] + x[1], x[2]], NonFixed, NonAutonomous)
julia> CTBase.:(β
)(X, Y)(1, [1, 2], [2, 3])
[8, -1]
```
"""
function β
(
X::VectorField{NonAutonomous, V},
Y::VectorField{NonAutonomous, V},
)::VectorField{NonAutonomous, V} where {V <: VariableDependence}
return VectorField(
(t, x, args...) ->
x isa ctNumber ? ctgradient(y -> Y(t, y, args...), x) * X(t, x, args...) :
ctjacobian(y -> Y(t, y, args...), x) * X(t, x, args...),
NonAutonomous,
V,
)
end
# ---------------------------------------------------------------------------
# Lie bracket of two vector fields: [X, Y] = Lie(X, Y)
# [X, Y]β
f = (XβY - YβX)β
f = (Xβ
Y - Yβ
X)β
f
"""
$(TYPEDSIGNATURES)
Lie bracket of two vector fields: [X, Y] = Lie(X, Y), autonomous case
# Example
```@example
julia> f = x -> [x[2], 2x[1]]
julia> g = x -> [3x[2], -x[1]]
julia> X = VectorField(f)
julia> Y = VectorField(g)
julia> Lie(X, Y)([1, 2])
[7, -14]
```
"""
function Lie(
X::VectorField{Autonomous, V},
Y::VectorField{Autonomous, V},
)::VectorField{Autonomous, V} where {V <: VariableDependence}
return VectorField((x, args...) -> (X β
Y)(x, args...) - (Y β
X)(x, args...), Autonomous, V)
end
"""
$(TYPEDSIGNATURES)
Lie bracket of two vector fields: [X, Y] = Lie(X, Y), nonautonomous case
# Example
```@example
julia> f = (t, x, v) -> [t + x[2] + v, -2x[1] - v]
julia> g = (t, x, v) -> [t + 3x[2] + v, -x[1] - v]
julia> X = VectorField(f, NonAutonomous, NonFixed)
julia> Y = VectorField(g, NonAutonomous, NonFixed)
julia> Lie(X, Y)(1, [1, 2], 1)
[-7,12]
```
"""
function Lie(
X::VectorField{NonAutonomous, V},
Y::VectorField{NonAutonomous, V},
)::VectorField{NonAutonomous, V} where {V <: VariableDependence}
return VectorField(
(t, x, args...) -> (X β
Y)(t, x, args...) - (Y β
X)(t, x, args...),
NonAutonomous,
V,
)
end
# ---------------------------------------------------------------------------
# Poisson bracket of two Hamiltonian functions: {f, g} = Poisson(f, g)
# f(z) = pβ
X(x), g(z) = pβ
Y(x), z = (x, p) => {f,g}(z) = pβ
[X,Y](x)
# {f, g}(z) = g'(z)β
F(z), where F is the Hamiltonian vector field of f
# actually, z = (x, p)
"""
$(TYPEDSIGNATURES)
Poisson bracket of two Hamiltonian functions (subtype of AbstractHamiltonian) : {f, g} = Poisson(f, g), autonomous case
# Example
```@example
julia> f = (x, p) -> x[2]^2 + 2x[1]^2 + p[1]^2
julia> g = (x, p) -> 3x[2]^2 + -x[1]^2 + p[2]^2 + p[1]
julia> F = Hamiltonian(f)
julia> G = Hamiltonian(g)
julia> Poisson(f, g)([1, 2], [2, 1])
-20
julia> Poisson(f, G)([1, 2], [2, 1])
-20
julia> Poisson(F, g)([1, 2], [2, 1])
-20
```
"""
function Poisson(
f::AbstractHamiltonian{Autonomous, V},
g::AbstractHamiltonian{Autonomous, V},
)::Hamiltonian{Autonomous, V} where {V <: VariableDependence}
function fg(x, p, args...)
n = size(x, 1)
ff, gg = @match n begin
1 => (z -> f(z[1], z[2], args...), z -> g(z[1], z[2], args...))
_ => (
z -> f(z[1:n], z[(n + 1):(2n)], args...),
z -> g(z[1:n], z[(n + 1):(2n)], args...),
)
end
df = ctgradient(ff, [x; p])
dg = ctgradient(gg, [x; p])
return df[(n + 1):(2n)]' * dg[1:n] - df[1:n]' * dg[(n + 1):(2n)]
end
return Hamiltonian(fg, Autonomous, V)
end
# f(t, z) = pβ
X(x), g(t, z) = pβ
Y(x), z = (x, p) => {f, g}(t, z) = pβ
[X,Y](t, x)
# {f, g}(t, z) = ββg(t, z)β
F(t, z)
# actually, z = (x, p)
"""
$(TYPEDSIGNATURES)
Poisson bracket of two Hamiltonian functions (subtype of AbstractHamiltonian) : {f, g} = Poisson(f, g), non autonomous case
# Example
```@example
julia> f = (t, x, p, v) -> t*v[1]*x[2]^2 + 2x[1]^2 + p[1]^2 + v[2]
julia> g = (t, x, p, v) -> 3x[2]^2 + -x[1]^2 + p[2]^2 + p[1] + t - v[2]
julia> F = Hamiltonian(f, autonomous=false, variable=true)
julia> G = Hamiltonian(g, autonomous=false, variable=true)
julia> Poisson(F, G)(2, [1, 2], [2, 1], [4, 4])
-76
julia> Poisson(f, g, NonAutonomous, NonFixed)(2, [1, 2], [2, 1], [4, 4])
-76
```
"""
function Poisson(
f::AbstractHamiltonian{NonAutonomous, V},
g::AbstractHamiltonian{NonAutonomous, V},
)::Hamiltonian{NonAutonomous, V} where {V <: VariableDependence}
function fg(t, x, p, args...)
n = size(x, 1)
ff, gg = @match n begin
1 => (z -> f(t, z[1], z[2], args...), z -> g(t, z[1], z[2], args...))
_ => (
z -> f(t, z[1:n], z[(n + 1):(2n)], args...),
z -> g(t, z[1:n], z[(n + 1):(2n)], args...),
)
end
df = ctgradient(ff, [x; p])
dg = ctgradient(gg, [x; p])
return df[(n + 1):(2n)]' * dg[1:n] - df[1:n]' * dg[(n + 1):(2n)]
end
return Hamiltonian(fg, NonAutonomous, V)
end
"""
$(TYPEDSIGNATURES)
Poisson bracket of two HamiltonianLift functions : {f, g} = Poisson(f, g)
# Example
```@example
julia> f = x -> [x[1]^2+x[2]^2, 2x[1]^2]
julia> g = x -> [3x[2]^2, x[2]-x[1]^2]
julia> F = Lift(f)
julia> G = Lift(g)
julia> Poisson(F, G)([1, 2], [2, 1])
-64
julia> f = (t, x, v) -> [t*v[1]*x[2]^2, 2x[1]^2 + + v[2]]
julia> g = (t, x, v) -> [3x[2]^2 + -x[1]^2, t - v[2]]
julia> F = Lift(f, NonAutonomous, NonFixed)
julia> G = Lift(g, NonAutonomous, NonFixed)
julia> Poisson(F, G)(2, [1, 2], [2, 1], [4, 4])
100
```
"""
function Poisson(
f::HamiltonianLift{T, V},
g::HamiltonianLift{T, V},
)::HamiltonianLift{T, V} where {T <: TimeDependence, V <: VariableDependence}
return HamiltonianLift(Lie(f.X, g.X))
end
"""
$(TYPEDSIGNATURES)
Poisson bracket of two functions : {f, g} = Poisson(f, g)
Dependencies are specified with boolean : autonomous and variable.
# Example
```@example
julia> f = (x, p) -> x[2]^2 + 2x[1]^2 + p[1]^2
julia> g = (x, p) -> 3x[2]^2 + -x[1]^2 + p[2]^2 + p[1]
julia> Poisson(f, g)([1, 2], [2, 1])
-20
julia> f = (t, x, p, v) -> t*v[1]*x[2]^2 + 2x[1]^2 + p[1]^2 + v[2]
julia> g = (t, x, p, v) -> 3x[2]^2 + -x[1]^2 + p[2]^2 + p[1] + t - v[2]
julia> Poisson(f, g, autonomous=false, variable=true)(2, [1, 2], [2, 1], [4, 4])
-76
```
"""
function Poisson(
f::Function,
g::Function;
autonomous::Bool = true,
variable::Bool = false,
)::Hamiltonian
time_dependence = autonomous ? Autonomous : NonAutonomous
variable_dependence = variable ? NonFixed : Fixed
return Poisson(
Hamiltonian(f, time_dependence, variable_dependence),
Hamiltonian(g, time_dependence, variable_dependence),
)
end
"""
$(TYPEDSIGNATURES)
Poisson bracket of two functions : {f, g} = Poisson(f, g)
Dependencies are specified with DataType : Autonomous, NonAutonomous and Fixed, NonFixed.
# Example
```@example
julia> f = (x, p) -> x[2]^2 + 2x[1]^2 + p[1]^2
julia> g = (x, p) -> 3x[2]^2 + -x[1]^2 + p[2]^2 + p[1]
julia> Poisson(f, g)([1, 2], [2, 1])
-20
julia> f = (t, x, p, v) -> t*v[1]*x[2]^2 + 2x[1]^2 + p[1]^2 + v[2]
julia> g = (t, x, p, v) -> 3x[2]^2 + -x[1]^2 + p[2]^2 + p[1] + t - v[2]
julia> Poisson(f, g, NonAutonomous, NonFixed)(2, [1, 2], [2, 1], [4, 4])
-76
```
"""
function Poisson(f::Function, g::Function, dependences::DataType...)::Hamiltonian
__check_dependencies(dependences)
time_dependence = NonAutonomous β dependences ? NonAutonomous : Autonomous
variable_dependence = NonFixed β dependences ? NonFixed : Fixed
return Poisson(
Hamiltonian(f, time_dependence, variable_dependence),
Hamiltonian(g, time_dependence, variable_dependence),
)
end
"""
$(TYPEDSIGNATURES)
Poisson bracket of a function and an Hamiltonian function (subtype of AbstractHamiltonian) : {f, g} = Poisson(f, g)
# Example
```@example
julia> f = (x, p) -> x[2]^2 + 2x[1]^2 + p[1]^2
julia> g = (x, p) -> 3x[2]^2 + -x[1]^2 + p[2]^2 + p[1]
julia> G = Hamiltonian(g)
julia> Poisson(f, G)([1, 2], [2, 1])
-20
julia> f = (t, x, p, v) -> t*v[1]*x[2]^2 + 2x[1]^2 + p[1]^2 + v[2]
julia> g = (t, x, p, v) -> 3x[2]^2 + -x[1]^2 + p[2]^2 + p[1] + t - v[2]
julia> G = Hamiltonian(g, autonomous=false, variable=true)
julia> Poisson(f, G)(2, [1, 2], [2, 1], [4, 4])
-76
```
"""
function Poisson(
f::Function,
g::AbstractHamiltonian{T, V},
)::Hamiltonian where {T <: TimeDependence, V <: VariableDependence}
return Poisson(Hamiltonian(f, T, V), g)
end
"""
$(TYPEDSIGNATURES)
Poisson bracket of an Hamiltonian function (subtype of AbstractHamiltonian) and a function : {f, g} = Poisson(f, g), autonomous case
# Example
```@example
julia> f = (x, p) -> x[2]^2 + 2x[1]^2 + p[1]^2
julia> g = (x, p) -> 3x[2]^2 + -x[1]^2 + p[2]^2 + p[1]
julia> F = Hamiltonian(f)
julia> Poisson(F, g)([1, 2], [2, 1])
-20
julia> f = (t, x, p, v) -> t*v[1]*x[2]^2 + 2x[1]^2 + p[1]^2 + v[2]
julia> g = (t, x, p, v) -> 3x[2]^2 + -x[1]^2 + p[2]^2 + p[1] + t - v[2]
julia> F = Hamiltonian(f, autonomous=false, variable=true)
julia> Poisson(F, g)(2, [1, 2], [2, 1], [4, 4])
-76
```
"""
function Poisson(
f::AbstractHamiltonian{T, V},
g::Function,
)::Hamiltonian where {T <: TimeDependence, V <: VariableDependence}
return Poisson(f, Hamiltonian(g, T, V))
end
# ---------------------------------------------------------------------------
# Macros
# @Lie [X, Y], for Lie brackets
# @Lie {X, Y}, for Poisson brackets
"""
$(TYPEDSIGNATURES)
Macros for Lie and Poisson brackets
# Example
```@example
julia> F0 = VectorField(x -> [x[1], x[2], (1-x[3])])
julia> F1 = VectorField(x -> [0, -x[3], x[2]])
julia> @Lie [F0, F1]([1, 2, 3])
[0, 5, 4]
#
julia> F0 = VectorField((t, x) -> [t+x[1], x[2], (1-x[3])], autonomous=false)
julia> F1 = VectorField((t, x) -> [t, -x[3], x[2]], autonomous=false)
julia> @Lie [F0, F1](1, [1, 2, 3])
#
julia> F0 = VectorField((x, v) -> [x[1]+v, x[2], (1-x[3])], variable=true)
julia> F1 = VectorField((x, v) -> [0, -x[3]-v, x[2]], variable=true)
julia> @Lie [F0, F1]([1, 2, 3], 2)
#
julia> F0 = VectorField((t, x, v) -> [t+x[1]+v, x[2], (1-x[3])], autonomous=false, variable=true)
julia> F1 = VectorField((t, x, v) -> [t, -x[3]-v, x[2]], autonomous=false, variable=true)
julia> @Lie [F0, F1](1, [1, 2, 3], 2)
#
julia> H0 = Hamiltonian((x, p) -> 0.5*(2x[1]^2+x[2]^2+p[1]^2))
julia> H1 = Hamiltonian((x, p) -> 0.5*(3x[1]^2+x[2]^2+p[2]^2))
julia> @Lie {H0, H1}([1, 2, 3], [1, 0, 7])
3.0
#
julia> H0 = Hamiltonian((t, x, p) -> 0.5*(x[1]^2+x[2]^2+p[1]^2), autonomous=false)
julia> H1 = Hamiltonian((t, x, p) -> 0.5*(x[1]^2+x[2]^2+p[2]^2), autonomous=false)
julia> @Lie {H0, H1}(1, [1, 2, 3], [1, 0, 7])
#
julia> H0 = Hamiltonian((x, p, v) -> 0.5*(x[1]^2+x[2]^2+p[1]^2+v), variable=true)
julia> H1 = Hamiltonian((x, p, v) -> 0.5*(x[1]^2+x[2]^2+p[2]^2+v), variable=true)
julia> @Lie {H0, H1}([1, 2, 3], [1, 0, 7], 2)
#
julia> H0 = Hamiltonian((t, x, p, v) -> 0.5*(x[1]^2+x[2]^2+p[1]^2+v), autonomous=false, variable=true)
julia> H1 = Hamiltonian((t, x, p, v) -> 0.5*(x[1]^2+x[2]^2+p[2]^2+v), autonomous=false, variable=true)
julia> @Lie {H0, H1}(1, [1, 2, 3], [1, 0, 7], 2)
#
```
"""
macro Lie(expr::Expr)
fun(x) = @match (@capture(x, [a_, b_]), @capture(x, {c_, d_})) begin
(true, false) => :(Lie($a, $b))
(false, true) => :(Poisson($c, $d))
(false, false) => x
_ => error("internal error")
end
return esc(postwalk(fun, expr))
end
"""
$(TYPEDSIGNATURES)
Macros for Poisson brackets
# Example
```@example
julia> H0 = (x, p) -> 0.5*(x[1]^2+x[2]^2+p[1]^2)
julia> H1 = (x, p) -> 0.5*(x[1]^2+x[2]^2+p[2]^2)
julia> @Lie {H0, H1}([1, 2, 3], [1, 0, 7]) autonomous=true variable=false
#
julia> H0 = (t, x, p) -> 0.5*(x[1]^2+x[2]^2+p[1]^2)
julia> H1 = (t, x, p) -> 0.5*(x[1]^2+x[2]^2+p[2]^2)
julia> @Lie {H0, H1}(1, [1, 2, 3], [1, 0, 7]) autonomous=false variable=false
#
julia> H0 = (x, p, v) -> 0.5*(x[1]^2+x[2]^2+p[1]^2+v)
julia> H1 = (x, p, v) -> 0.5*(x[1]^2+x[2]^2+p[2]^2+v)
julia> @Lie {H0, H1}([1, 2, 3], [1, 0, 7], 2) autonomous=true variable=true
#
julia> H0 = (t, x, p, v) -> 0.5*(x[1]^2+x[2]^2+p[1]^2+v)
julia> H1 = (t, x, p, v) -> 0.5*(x[1]^2+x[2]^2+p[2]^2+v)
julia> @Lie {H0, H1}(1, [1, 2, 3], [1, 0, 7], 2) autonomous=false variable=true
```
"""
macro Lie(expr::Expr, arg1, arg2)
local autonomous = true
local variable = false
@match arg1 begin
:(Autonomous) => begin
autonomous = true
end
:(NonAutonomous) => begin
autonomous = false
end
:(autonomous = $a) => begin
autonomous = a
end
:(NonFixed) => begin
variable = true
end
:(Fixed) => begin
variable = false
end
:(variable = $a) => begin
variable = a
end
_ => throw(IncorrectArgument("Invalid argument: " * string(arg1)))
end
@match arg2 begin
:(Autonomous) => begin
autonomous = true
end
:(NonAutonomous) => begin
autonomous = false
end
:(autonomous = $a) => begin
autonomous = a
end
:(NonFixed) => begin
variable = true
end
:(Fixed) => begin
variable = false
end
:(variable = $a) => begin
variable = a
end
_ => throw(IncorrectArgument("Invalid argument: " * string(arg2)))
end
fun(x) = @match (@capture(x, [a_, b_]), @capture(x, {c_, d_})) begin
#(true, false) => :( Lie($a, $b; autonomous=$autonomous, variable=$variable))
(false, true) => quote
($c isa Function && $d isa Function) ?
Poisson($c, $d; autonomous = $autonomous, variable = $variable) :
Poisson($c, $d)
end
(false, false) => x
_ => error("internal error")
end
return esc(postwalk(fun, expr))
end
"""
$(TYPEDSIGNATURES)
Macros for Lie and Poisson brackets
# Example
```@example
julia> H0 = (t, x, p) -> 0.5*(x[1]^2+x[2]^2+p[1]^2)
julia> H1 = (t, x, p) -> 0.5*(x[1]^2+x[2]^2+p[2]^2)
julia> @Lie {H0, H1}(1, [1, 2, 3], [1, 0, 7]) autonomous=false
#
julia> H0 = (x, p, v) -> 0.5*(x[1]^2+x[2]^2+p[1]^2+v)
julia> H1 = (x, p, v) -> 0.5*(x[1]^2+x[2]^2+p[2]^2+v)
julia> @Lie {H0, H1}([1, 2, 3], [1, 0, 7], 2) variable=true
#
```
"""
macro Lie(expr::Expr, arg)
local autonomous = true
local variable = false
@match arg begin
:(Autonomous) => begin
autonomous = true
end
:(NonAutonomous) => begin
autonomous = false
end
:(autonomous = $a) => begin
autonomous = a
end
:(NonFixed) => begin
variable = true
end
:(Fixed) => begin
variable = false
end
:(variable = $a) => begin
variable = a
end
_ => throw(IncorrectArgument("Invalid argument: " * string(arg)))
end
fun(x) = @match (@capture(x, [a_, b_]), @capture(x, {c_, d_})) begin
#(true, false) => :( Lie($a, $b; autonomous=$autonomous, variable=$variable))
(false, true) => quote
($c isa Function && $d isa Function) ?
Poisson($c, $d; autonomous = $autonomous, variable = $variable) :
Poisson($c, $d)
end
(false, false) => x
_ => error("internal error")
end
return esc(postwalk(fun, expr))
end
| CTBase | https://github.com/control-toolbox/CTBase.jl.git |
|
[
"MIT"
] | 0.14.0 | 68e9ab3053e0b38e8e574f2809dd280c9dafa338 | code | 3180 | """
$(TYPEDEF)
Abstract type for exceptions.
"""
abstract type CTException <: Exception end
"""
$(TYPEDEF)
Exception thrown when the description is ambiguous / incorrect.
**Fields**
$(TYPEDFIELDS)
"""
struct AmbiguousDescription <: CTException
var::Tuple{Vararg{Symbol}}
end
"""
$(TYPEDSIGNATURES)
Print the exception.
"""
Base.showerror(io::IO, e::AmbiguousDescription) =
print(io, "AmbiguousDescription: the description ", e.var, " is ambiguous / incorrect")
"""
$(TYPEDEF)
Exception thrown when an argument is inconsistent.
**Fields**
$(TYPEDFIELDS)
"""
struct IncorrectArgument <: CTException
var::String
end
"""
$(TYPEDSIGNATURES)
Print the exception.
"""
Base.showerror(io::IO, e::IncorrectArgument) = print(io, "IncorrectArgument: ", e.var)
"""
$(TYPEDEF)
Exception thrown when a method is incorrect.
**Fields**
$(TYPEDFIELDS)
"""
struct IncorrectMethod <: CTException
var::Symbol
end
"""
$(TYPEDSIGNATURES)
Print the exception.
"""
Base.showerror(io::IO, e::IncorrectMethod) =
print(io, "IncorrectMethod: ", e.var, " is not an existing method")
"""
$(TYPEDEF)
Exception thrown when the output is incorrect.
**Fields**
$(TYPEDFIELDS)
"""
struct IncorrectOutput <: CTException
var::String
end
"""
$(TYPEDSIGNATURES)
Print the exception.
"""
Base.showerror(io::IO, e::IncorrectOutput) = print(io, "IncorrectOutput: ", e.var)
"""
$(TYPEDEF)
Exception thrown when a method is not implemented.
**Fields**
$(TYPEDFIELDS)
"""
struct NotImplemented <: CTException
var::String
end
"""
$(TYPEDSIGNATURES)
Print the exception.
"""
Base.showerror(io::IO, e::NotImplemented) = print(io, "NotImplemented: ", e.var)
"""
$(TYPEDEF)
Exception thrown when a call to a function is not authorized.
**Fields**
$(TYPEDFIELDS)
"""
struct UnauthorizedCall <: CTException
var::String
end
"""
$(TYPEDSIGNATURES)
Print the exception.
"""
Base.showerror(io::IO, e::UnauthorizedCall) = print(io, "UnauthorizedCall: ", e.var)
"""
$(TYPEDEF)
Exception thrown for syntax error during abstract parsing.
**Fields**
$(TYPEDFIELDS)
"""
struct ParsingError <: CTException
var::String
end
"""
$(TYPEDSIGNATURES)
Print the exception.
"""
Base.showerror(io::IO, e::ParsingError) = print(io, "ParsingError: ", e.var)
"""
$(TYPEDEF)
Exception thrown when an extension is not loaded but the user tries to call a function of it.
**Fields**
$(TYPEDFIELDS)
"""
mutable struct ExtensionError <: CTException
weakdeps::Tuple{Vararg{Symbol}}
function ExtensionError(weakdeps::Symbol...)
isempty(weakdeps) && throw(
UnauthorizedCall("Please provide at least one weak dependence for the extension."),
)
e = new()
e.weakdeps = weakdeps
return e
end
end
"""
$(TYPEDSIGNATURES)
Print the exception.
"""
function Base.showerror(io::IO, e::ExtensionError)
print(io, "ExtensionError. Please make: ")
printstyled(io, "julia>", color = :green, bold = true)
printstyled(io, " using ", color = :magenta)
N = size(e.weakdeps, 1)
for i β range(1, N)
wd = e.weakdeps[i]
i < N ? print(io, string(wd), ", ") : print(io, string(wd))
end
nothing
end
| CTBase | https://github.com/control-toolbox/CTBase.jl.git |
|
[
"MIT"
] | 0.14.0 | 68e9ab3053e0b38e8e574f2809dd280c9dafa338 | code | 57620 | # --------------------------------------------------------------------------------------------------
"""
$(TYPEDSIGNATURES)
Return a ```BoundaryConstraint``` of a function.
Dependencies are specified with a boolean, variable, false by default.
```@example
julia> B = BoundaryConstraint((x0, xf) -> [xf[2]-x0[1], 2xf[1]+x0[2]^2])
julia> B = BoundaryConstraint((x0, xf, v) -> [v[3]+xf[2]-x0[1], v[1]-v[2]+2xf[1]+x0[2]^2], variable=true)
```
"""
function BoundaryConstraint(f::Function; variable::Bool = false)
variable_dependence = variable ? NonFixed : Fixed
return BoundaryConstraint{variable_dependence}(f)
end
function BoundaryConstraint!(f!::Function; variable::Bool = false)
variable_dependence = variable ? NonFixed : Fixed
return BoundaryConstraint!{variable_dependence}(f!)
end
"""
$(TYPEDSIGNATURES)
Return a ```BoundaryConstraint``` of a function.
Dependencies are specified with a DataType, NonFixed/Fixed, Fixed by default.
```@example
julia> B = BoundaryConstraint((x0, xf) -> [xf[2]-x0[1], 2xf[1]+x0[2]^2])
julia> B = BoundaryConstraint((x0, xf, v) -> [v[3]+xf[2]-x0[1], v[1]-v[2]+2xf[1]+x0[2]^2], NonFixed)
```
"""
function BoundaryConstraint(f::Function, dependencies::DataType...)
__check_dependencies(dependencies)
variable_dependence = NonFixed β dependencies ? NonFixed : Fixed
return BoundaryConstraint{variable_dependence}(f)
end
function BoundaryConstraint!(f!::Function, dependencies::DataType...)
__check_dependencies(dependencies)
variable_dependence = NonFixed β dependencies ? NonFixed : Fixed
return BoundaryConstraint!{variable_dependence}(f!)
end
"""
$(TYPEDSIGNATURES)
Return the evaluation of the BoundaryConstraint.
```@example
julia> B = BoundaryConstraint((x0, xf) -> [xf[2]-x0[1], 2xf[1]+x0[2]^2])
julia> B([0, 0], [1, 1])
[1, 2]
julia> B = BoundaryConstraint((x0, xf) -> [xf[2]-x0[1], 2xf[1]+x0[2]^2])
julia> B([0, 0], [1, 1],Real[])
[1, 2]
julia> B = BoundaryConstraint((x0, xf, v) -> [v[3]+xf[2]-x0[1], v[1]-v[2]+2xf[1]+x0[2]^2], variable=true)
julia> B([0, 0], [1, 1], [1, 2, 3])
[4, 1]
```
"""
function (F::BoundaryConstraint{Fixed})(x0::State, xf::State)::ctVector
return F.f(x0, xf)
end
function (F::BoundaryConstraint{Fixed})(x0::State, xf::State, v::Variable)::ctVector
return F.f(x0, xf)
end
function (F::BoundaryConstraint{NonFixed})(x0::State, xf::State, v::Variable)::ctVector
return F.f(x0, xf, v)
end
function (F::BoundaryConstraint!{Fixed})(r::ctVector, x0::State, xf::State)::Nothing
return F.f!(r, x0, xf)
end
function (F::BoundaryConstraint!{Fixed})(r::ctVector, x0::State, xf::State, v::Variable)::Nothing
return F.f!(r, x0, xf)
end
function (F::BoundaryConstraint!{NonFixed})(r::ctVector, x0::State, xf::State, v::Variable)::Nothing
return F.f!(r, x0, xf, v)
end
# --------------------------------------------------------------------------------------------------
"""
$(TYPEDSIGNATURES)
Return a ```Mayer``` cost of a function.
Dependencies are specified with a boolean, variable, false by default.
```@example
julia> G = Mayer((x0, xf) -> xf[2]-x0[1])
julia> G = Mayer((x0, xf, v) -> v[3]+xf[2]-x0[1], variable=true)
```
"""
function Mayer(f::Function; variable::Bool = false)
variable_dependence = variable ? NonFixed : Fixed
return Mayer{variable_dependence}(f)
end
function Mayer!(f!::Function; variable::Bool = false)
variable_dependence = variable ? NonFixed : Fixed
return Mayer!{variable_dependence}(f!)
end
"""
$(TYPEDSIGNATURES)
Return a ```Mayer``` cost of a function.
Dependencies are specified with a DataType, NonFixed/Fixed, Fixed by default.
```@example
julia> G = Mayer((x0, xf) -> xf[2]-x0[1])
julia> G = Mayer((x0, xf, v) -> v[3]+xf[2]-x0[1], NonFixed)
```
"""
function Mayer(f::Function, dependencies::DataType...)
__check_dependencies(dependencies)
variable_dependence = NonFixed β dependencies ? NonFixed : Fixed
return Mayer{variable_dependence}(f)
end
function Mayer!(f!::Function, dependencies::DataType...)
__check_dependencies(dependencies)
variable_dependence = NonFixed β dependencies ? NonFixed : Fixed
return Mayer!{variable_dependence}(f!)
end
"""
$(TYPEDSIGNATURES)
Return the evaluation of the Mayer cost.
```@example
julia> G = Mayer((x0, xf) -> xf[2]-x0[1])
julia> G([0, 0], [1, 1])
1
julia> G = Mayer((x0, xf) -> xf[2]-x0[1])
julia> G([0, 0], [1, 1], Real[])
1
julia> G = Mayer((x0, xf, v) -> v[3]+xf[2]-x0[1], variable=true)
julia> G([0, 0], [1, 1], [1, 2, 3])
4
```
"""
function (F::Mayer{Fixed})(x0::State, xf::State)::ctNumber
return F.f(x0, xf)
end
function (F::Mayer{Fixed})(x0::State, xf::State, v::Variable)::ctNumber
return F.f(x0, xf)
end
function (F::Mayer{NonFixed})(x0::State, xf::State, v::Variable)::ctNumber
return F.f(x0, xf, v)
end
function (F::Mayer!{Fixed})(r::ctVector, x0::State, xf::State)::Nothing
return F.f!(r, x0, xf)
end
function (F::Mayer!{Fixed})(r::ctVector, x0::State, xf::State, v::Variable)::Nothing
return F.f!(r, x0, xf)
end
function (F::Mayer!{NonFixed})(r::ctVector, x0::State, xf::State, v::Variable)::Nothing
return F.f!(r, x0, xf, v)
end
# --------------------------------------------------------------------------------------------------
# Hamiltonian
"""
$(TYPEDSIGNATURES)
Return an ```Hamiltonian``` of a function.
Dependencies are specified with a boolean, variable, false by default, autonomous, true by default.
```@example
julia> H = Hamiltonian((x, p) -> x[1]^2+2p[2])
julia> H = Hamiltonian((t, x, p, v) -> [t+x[1]^2+2p[2]+v[3]], autonomous=false, variable=true)
```
"""
function Hamiltonian(f::Function; autonomous::Bool = true, variable::Bool = false)
time_dependence = autonomous ? Autonomous : NonAutonomous
variable_dependence = variable ? NonFixed : Fixed
return Hamiltonian{time_dependence, variable_dependence}(f)
end
"""
$(TYPEDSIGNATURES)
Return an ```Hamiltonian``` of a function.
Dependencies are specified with DataType, Autonomous, NonAutonomous and Fixed, NonFixed.
```@example
julia> H = Hamiltonian((x, p) -> x[1]^2+2p[2])
julia> H = Hamiltonian((t, x, p, v) -> [t+x[1]^2+2p[2]+v[3]], NonAutonomous, NonFixed)
```
"""
function Hamiltonian(f::Function, dependencies::DataType...)
__check_dependencies(dependencies)
time_dependence = NonAutonomous β dependencies ? NonAutonomous : Autonomous
variable_dependence = NonFixed β dependencies ? NonFixed : Fixed
return Hamiltonian{time_dependence, variable_dependence}(f)
end
"""
$(TYPEDSIGNATURES)
Return the value of the Hamiltonian.
```@example
julia> Hamiltonian((x, p) -> x + p, Int64)
IncorrectArgument
julia> Hamiltonian((x, p) -> x + p, Int64)
IncorrectArgument
julia> H = Hamiltonian((x, p) -> [x[1]^2+2p[2]]) # autonomous=true, variable=false
julia> H([1, 0], [0, 1])
MethodError # H must return a scalar
julia> H = Hamiltonian((x, p) -> x[1]^2+2p[2])
julia> H([1, 0], [0, 1])
3
julia> t = 1
julia> v = Real[]
julia> H(t, [1, 0], [0, 1])
MethodError
julia> H([1, 0], [0, 1], v)
MethodError
julia> H(t, [1, 0], [0, 1], v)
3
julia> H = Hamiltonian((x, p, v) -> x[1]^2+2p[2]+v[3], variable=true)
julia> H([1, 0], [0, 1], [1, 2, 3])
6
julia> H(t, [1, 0], [0, 1], [1, 2, 3])
6
julia> H = Hamiltonian((t, x, p) -> t+x[1]^2+2p[2], autonomous=false)
julia> H(1, [1, 0], [0, 1])
4
julia> H(1, [1, 0], [0, 1], v)
4
julia> H = Hamiltonian((t, x, p, v) -> t+x[1]^2+2p[2]+v[3], autonomous=false, variable=true)
julia> H(1, [1, 0], [0, 1], [1, 2, 3])
7
```
"""
function (F::Hamiltonian{Autonomous, Fixed})(x::State, p::Costate)::ctNumber
return F.f(x, p)
end
function (F::Hamiltonian{Autonomous, Fixed})(t::Time, x::State, p::Costate, v::Variable)::ctNumber
return F.f(x, p)
end
function (F::Hamiltonian{Autonomous, NonFixed})(x::State, p::Costate, v::Variable)::ctNumber
return F.f(x, p, v)
end
function (F::Hamiltonian{Autonomous, NonFixed})(
t::Time,
x::State,
p::Costate,
v::Variable,
)::ctNumber
return F.f(x, p, v)
end
function (F::Hamiltonian{NonAutonomous, Fixed})(t::Time, x::State, p::Costate)::ctNumber
return F.f(t, x, p)
end
function (F::Hamiltonian{NonAutonomous, Fixed})(
t::Time,
x::State,
p::Costate,
v::Variable,
)::ctNumber
return F.f(t, x, p)
end
function (F::Hamiltonian{NonAutonomous, NonFixed})(
t::Time,
x::State,
p::Costate,
v::Variable,
)::ctNumber
return F.f(t, x, p, v)
end
# ---------------------------------------------------------------------------
# HamiltonianLift
"""
$(TYPEDSIGNATURES)
Return an ```HamiltonianLift``` of a function.
Dependencies are specified with a boolean, variable, false by default, autonomous, true by default.
```@example
julia> HL = HamiltonianLift(x -> [x[1]^2,x[2]^2], autonomous=true, variable=false)
julia> HL = HamiltonianLift((x, v) -> [x[1]^2,x[2]^2+v], autonomous=true, variable=true)
julia> HL = HamiltonianLift((t, x) -> [t+x[1]^2,x[2]^2], autonomous=false, variable=false)
julia> HL = HamiltonianLift((t, x, v) -> [t+x[1]^2,x[2]^2+v], autonomous=false, variable=true)
```
"""
function HamiltonianLift(f::Function; autonomous::Bool = true, variable::Bool = false)
time_dependence = autonomous ? Autonomous : NonAutonomous
variable_dependence = variable ? NonFixed : Fixed
return HamiltonianLift(VectorField(f, time_dependence, variable_dependence))
end
"""
$(TYPEDSIGNATURES)
Return an ```HamiltonianLift``` of a function.
Dependencies are specified with DataType, Autonomous, NonAutonomous and Fixed, NonFixed.
```@example
julia> HamiltonianLift(HamiltonianLift(VectorField(x -> [x[1]^2, 2x[2]], Int64))
IncorrectArgument
julia> HL = HamiltonianLift(x -> [x[1]^2,x[2]^2], Autonomous, Fixed)
julia> HL = HamiltonianLift((x, v) -> [x[1]^2,x[2]^2+v], Autonomous, NonFixed)
julia> HL = HamiltonianLift((t, x) -> [t+x[1]^2,x[2]^2], NonAutonomous, Fixed)
julia> HL = HamiltonianLift((t, x, v) -> [t+x[1]^2,x[2]^2+v], NonAutonomous, NonFixed)
```
"""
function HamiltonianLift(f::Function, dependences::DataType...)
__check_dependencies(dependences)
time_dependence = NonAutonomous β dependences ? NonAutonomous : Autonomous
variable_dependence = NonFixed β dependences ? NonFixed : Fixed
return HamiltonianLift(VectorField(f, time_dependence, variable_dependence))
end
"""
$(TYPEDSIGNATURES)
Return the value of the HamiltonianLift.
## Examples
```@example
julia> HamiltonianLift(HamiltonianLift(VectorField(x -> [x[1]^2, 2x[2]], Int64))
IncorrectArgument
julia> H = HamiltonianLift(VectorField(x -> [x[1]^2, 2x[2]]))
julia> H([1, 2], [1, 1])
5
julia> t = 1
julia> v = Real[]
julia> H(t, [1, 0], [0, 1])
MethodError
julia> H([1, 0], [0, 1], v)
MethodError
julia> H(t, [1, 0], [0, 1], v)
5
julia> H = HamiltonianLift(VectorField((x, v) -> [x[1]^2, 2x[2]+v[3]], variable=true))
julia> H([1, 0], [0, 1], [1, 2, 3])
3
julia> H(t, [1, 0], [0, 1], [1, 2, 3])
3
julia> H = HamiltonianLift(VectorField((t, x) -> [t+x[1]^2, 2x[2]], autonomous=false))
julia> H(1, [1, 2], [1, 1])
6
julia> H(1, [1, 0], [0, 1], v)
6
julia> H = HamiltonianLift(VectorField((t, x, v) -> [t+x[1]^2, 2x[2]+v[3]], autonomous=false, variable=true))
julia> H(1, [1, 0], [0, 1], [1, 2, 3])
3
```
"""
function (H::HamiltonianLift{Autonomous, Fixed})(x::State, p::Costate)::ctNumber
return p' * H.X(x)
end
function (H::HamiltonianLift{Autonomous, Fixed})(
t::Time,
x::State,
p::Costate,
v::Variable,
)::ctNumber
return p' * H.X(x)
end
function (H::HamiltonianLift{Autonomous, NonFixed})(x::State, p::Costate, v::Variable)::ctNumber
return p' * H.X(x, v)
end
function (H::HamiltonianLift{Autonomous, NonFixed})(
t::Time,
x::State,
p::Costate,
v::Variable,
)::ctNumber
return p' * H.X(x, v)
end
function (H::HamiltonianLift{NonAutonomous, Fixed})(t::Time, x::State, p::Costate)::ctNumber
return p' * H.X(t, x)
end
function (H::HamiltonianLift{NonAutonomous, Fixed})(
t::Time,
x::State,
p::Costate,
v::Variable,
)::ctNumber
return p' * H.X(t, x)
end
function (H::HamiltonianLift{NonAutonomous, NonFixed})(
t::Time,
x::State,
p::Costate,
v::Variable,
)::ctNumber
return p' * H.X(t, x, v)
end
# --------------------------------------------------------------------------------------------------
"""
$(TYPEDSIGNATURES)
Return an ```HamiltonianVectorField``` of a function.
Dependencies are specified with a boolean, variable, false by default, autonomous, true by default.
```@example
julia> Hv = HamiltonianVectorField((x, p) -> [x[1]^2+2p[2], x[2]-3p[2]^2]) # autonomous=true, variable=false
julia> Hv = HamiltonianVectorField((x, p, v) -> [x[1]^2+2p[2]+v[3], x[2]-3p[2]^2+v[4]], variable=true)
julia> Hv = HamiltonianVectorField((t, x, p) -> [t+x[1]^2+2p[2], x[2]-3p[2]^2], autonomous=false)
julia> Hv = HamiltonianVectorField((t, x, p, v) -> [t+x[1]^2+2p[2]+v[3], x[2]-3p[2]^2+v[4]], autonomous=false, variable=true)
```
"""
function HamiltonianVectorField(f::Function; autonomous::Bool = true, variable::Bool = false)
time_dependence = autonomous ? Autonomous : NonAutonomous
variable_dependence = variable ? NonFixed : Fixed
return HamiltonianVectorField{time_dependence, variable_dependence}(f)
end
"""
$(TYPEDSIGNATURES)
Return an ```HamiltonianVectorField``` of a function.
Dependencies are specified with DataType, Autonomous, NonAutonomous and Fixed, NonFixed.
```@example
julia> HamiltonianVectorField((x, p) -> [x[1]^2+2p[2], x[2]-3p[2]^2], Int64)
IncorrectArgument
julia> HamiltonianVectorField((x, p) -> [x[1]^2+2p[2], x[2]-3p[2]^2], Int64)
IncorrectArgument
julia> Hv = HamiltonianVectorField((x, p) -> [x[1]^2+2p[2], x[2]-3p[2]^2]) # autonomous=true, variable=false
julia> Hv = HamiltonianVectorField((x, p, v) -> [x[1]^2+2p[2]+v[3], x[2]-3p[2]^2+v[4]], NonFixed)
julia> Hv = HamiltonianVectorField((t, x, p) -> [t+x[1]^2+2p[2], x[2]-3p[2]^2], NonAutonomous)
julia> Hv = HamiltonianVectorField((t, x, p, v) -> [t+x[1]^2+2p[2]+v[3], x[2]-3p[2]^2+v[4]], NonAutonomous, NonFixed)
```
"""
function HamiltonianVectorField(f::Function, dependencies::DataType...)
__check_dependencies(dependencies)
time_dependence = NonAutonomous β dependencies ? NonAutonomous : Autonomous
variable_dependence = NonFixed β dependencies ? NonFixed : Fixed
return HamiltonianVectorField{time_dependence, variable_dependence}(f)
end
"""
$(TYPEDSIGNATURES)
Return the value of the HamiltonianVectorField.
## Examples
```@example
julia> HamiltonianVectorField((x, p) -> [x[1]^2+2p[2], x[2]-3p[2]^2], Int64)
IncorrectArgument
julia> HamiltonianVectorField((x, p) -> [x[1]^2+2p[2], x[2]-3p[2]^2], Int64)
IncorrectArgument
julia> Hv = HamiltonianVectorField((x, p) -> [x[1]^2+2p[2], x[2]-3p[2]^2]) # autonomous=true, variable=false
julia> Hv([1, 0], [0, 1])
[3, -3]
julia> t = 1
julia> v = Real[]
julia> Hv(t, [1, 0], [0, 1])
MethodError
julia> Hv([1, 0], [0, 1], v)
MethodError
julia> Hv(t, [1, 0], [0, 1], v)
[3, -3]
julia> Hv = HamiltonianVectorField((x, p, v) -> [x[1]^2+2p[2]+v[3], x[2]-3p[2]^2+v[4]], variable=true)
julia> Hv([1, 0], [0, 1], [1, 2, 3, 4])
[6, -3]
julia> Hv(t, [1, 0], [0, 1], [1, 2, 3, 4])
[6, -3]
julia> Hv = HamiltonianVectorField((t, x, p) -> [t+x[1]^2+2p[2], x[2]-3p[2]^2], autonomous=false)
julia> Hv(1, [1, 0], [0, 1])
[4, -3]
julia> Hv(1, [1, 0], [0, 1], v)
[4, -3]
julia> Hv = HamiltonianVectorField((t, x, p, v) -> [t+x[1]^2+2p[2]+v[3], x[2]-3p[2]^2+v[4]], autonomous=false, variable=true)
julia> Hv(1, [1, 0], [0, 1], [1, 2, 3, 4])
[7, -3]
```
"""
function (F::HamiltonianVectorField{Autonomous, Fixed})(
x::State,
p::Costate,
)::Tuple{DState, DCostate}
return F.f(x, p)
end
function (F::HamiltonianVectorField{Autonomous, Fixed})(
t::Time,
x::State,
p::Costate,
v::Variable,
)::Tuple{DState, DCostate}
return F.f(x, p)
end
function (F::HamiltonianVectorField{Autonomous, NonFixed})(
x::State,
p::Costate,
v::Variable,
)::Tuple{DState, DCostate}
return F.f(x, p, v)
end
function (F::HamiltonianVectorField{Autonomous, NonFixed})(
t::Time,
x::State,
p::Costate,
v::Variable,
)::Tuple{DState, DCostate}
return F.f(x, p, v)
end
function (F::HamiltonianVectorField{NonAutonomous, Fixed})(
t::Time,
x::State,
p::Costate,
)::Tuple{DState, DCostate}
return F.f(t, x, p)
end
function (F::HamiltonianVectorField{NonAutonomous, Fixed})(
t::Time,
x::State,
p::Costate,
v::Variable,
)::Tuple{DState, DCostate}
return F.f(t, x, p)
end
function (F::HamiltonianVectorField{NonAutonomous, NonFixed})(
t::Time,
x::State,
p::Costate,
v::Variable,
)::Tuple{DState, DCostate}
return F.f(t, x, p, v)
end
# --------------------------------------------------------------------------------------------------
"""
$(TYPEDSIGNATURES)
Return a ```VectorField``` of a function.
Dependencies are specified with a boolean, variable, false by default, autonomous, true by default.
```@example
julia> V = VectorField(x -> [x[1]^2, 2x[2]]) # autonomous=true, variable=false
julia> V = VectorField((x, v) -> [x[1]^2, 2x[2]+v[3]], variable=true)
julia> V = VectorField((t, x) -> [t+x[1]^2, 2x[2]], autonomous=false)
julia> V = VectorField((t, x, v) -> [t+x[1]^2, 2x[2]+v[3]], autonomous=false, variable=true)
```
"""
function VectorField(f::Function; autonomous::Bool = true, variable::Bool = false)
time_dependence = autonomous ? Autonomous : NonAutonomous
variable_dependence = variable ? NonFixed : Fixed
return VectorField{time_dependence, variable_dependence}(f)
end
"""
$(TYPEDSIGNATURES)
Return a ```VectorField``` of a function.
Dependencies are specified with DataType, Autonomous, NonAutonomous and Fixed, NonFixed.
```@example
julia> VectorField(x -> [x[1]^2, 2x[2]], Int64)
IncorrectArgument
julia> VectorField(x -> [x[1]^2, 2x[2]], Int64)
IncorrectArgument
julia> V = VectorField(x -> [x[1]^2, 2x[2]]) # autonomous=true, variable=false
julia> V = VectorField((x, v) -> [x[1]^2, 2x[2]+v[3]], NonFixed)
julia> V = VectorField((t, x) -> [t+x[1]^2, 2x[2]], NonAutonomous)
julia> V = VectorField((t, x, v) -> [t+x[1]^2, 2x[2]+v[3]], NonAutonomous, NonFixed)
```
"""
function VectorField(f::Function, dependencies::DataType...)
__check_dependencies(dependencies)
time_dependence = NonAutonomous β dependencies ? NonAutonomous : Autonomous
variable_dependence = NonFixed β dependencies ? NonFixed : Fixed
return VectorField{time_dependence, variable_dependence}(f)
end
"""
$(TYPEDSIGNATURES)
Return the value of the VectorField.
## Examples
```@example
julia> VectorField(x -> [x[1]^2, 2x[2]], Int64)
IncorrectArgument
julia> VectorField(x -> [x[1]^2, 2x[2]], Int64)
IncorrectArgument
julia> V = VectorField(x -> [x[1]^2, 2x[2]]) # autonomous=true, variable=false
julia> V([1, -1])
[1, -2]
julia> t = 1
julia> v = Real[]
julia> V(t, [1, -1])
MethodError
julia> V([1, -1], v)
MethodError
julia> V(t, [1, -1], v)
[1, -2]
julia> V = VectorField((x, v) -> [x[1]^2, 2x[2]+v[3]], variable=true)
julia> V([1, -1], [1, 2, 3])
[1, 1]
julia> V(t, [1, -1], [1, 2, 3])
[1, 1]
julia> V = VectorField((t, x) -> [t+x[1]^2, 2x[2]], autonomous=false)
julia> V(1, [1, -1])
[2, -2]
julia> V(1, [1, -1], v)
[2, -2]
julia> V = VectorField((t, x, v) -> [t+x[1]^2, 2x[2]+v[3]], autonomous=false, variable=true)
julia> V(1, [1, -1], [1, 2, 3])
[2, 1]
```
"""
function (F::VectorField{Autonomous, Fixed})(x::State)::ctVector
return F.f(x)
end
function (F::VectorField{Autonomous, Fixed})(t::Time, x::State, v::Variable)::ctVector
return F.f(x)
end
function (F::VectorField{Autonomous, NonFixed})(x::State, v::Variable)::ctVector
return F.f(x, v)
end
function (F::VectorField{Autonomous, NonFixed})(t::Time, x::State, v::Variable)::ctVector
return F.f(x, v)
end
function (F::VectorField{NonAutonomous, Fixed})(t::Time, x::State)::ctVector
return F.f(t, x)
end
function (F::VectorField{NonAutonomous, Fixed})(t::Time, x::State, v::Variable)::ctVector
return F.f(t, x)
end
function (F::VectorField{NonAutonomous, NonFixed})(t::Time, x::State, v::Variable)::ctVector
return F.f(t, x, v)
end
# --------------------------------------------------------------------------------------------------
"""
$(TYPEDSIGNATURES)
Return a ```Lagrange``` cost of a function.
Dependencies are specified with a boolean, variable, false by default, autonomous, true by default.
```@example
julia> L = Lagrange((x, u) -> [2x[2]-u[1]^2], autonomous=true, variable=false)
julia> L = Lagrange((x, u) -> 2x[2]-u[1]^2, autonomous=true, variable=false)
julia> L = Lagrange((x, u, v) -> 2x[2]-u[1]^2+v[3], autonomous=true, variable=true)
julia> L = Lagrange((t, x, u) -> t+2x[2]-u[1]^2, autonomous=false, variable=false)
julia> L = Lagrange((t, x, u, v) -> t+2x[2]-u[1]^2+v[3], autonomous=false, variable=true)
```
"""
function Lagrange(f::Function; autonomous::Bool = true, variable::Bool = false)
time_dependence = autonomous ? Autonomous : NonAutonomous
variable_dependence = variable ? NonFixed : Fixed
return Lagrange{time_dependence, variable_dependence}(f)
end
function Lagrange!(f!::Function; autonomous::Bool = true, variable::Bool = false)
time_dependence = autonomous ? Autonomous : NonAutonomous
variable_dependence = variable ? NonFixed : Fixed
return Lagrange!{time_dependence, variable_dependence}(f!)
end
"""
$(TYPEDSIGNATURES)
Return a ```Lagrange``` cost of a function.
Dependencies are specified with DataType, Autonomous, NonAutonomous and Fixed, NonFixed.
```@example
julia> Lagrange((x, u) -> 2x[2]-u[1]^2, Int64)
IncorrectArgument
julia> Lagrange((x, u) -> 2x[2]-u[1]^2, Int64)
IncorrectArgument
julia> L = Lagrange((x, u) -> [2x[2]-u[1]^2], autonomous=true, variable=false)
julia> L = Lagrange((x, u) -> 2x[2]-u[1]^2, autonomous=true, variable=false)
julia> L = Lagrange((x, u, v) -> 2x[2]-u[1]^2+v[3], autonomous=true, variable=true)
julia> L = Lagrange((t, x, u) -> t+2x[2]-u[1]^2, autonomous=false, variable=false)
julia> L = Lagrange((t, x, u, v) -> t+2x[2]-u[1]^2+v[3], autonomous=false, variable=true)
```
"""
function Lagrange(f::Function, dependencies::DataType...)
__check_dependencies(dependencies)
time_dependence = NonAutonomous β dependencies ? NonAutonomous : Autonomous
variable_dependence = NonFixed β dependencies ? NonFixed : Fixed
return Lagrange{time_dependence, variable_dependence}(f)
end
function Lagrange!(f!::Function, dependencies::DataType...)
__check_dependencies(dependencies)
time_dependence = NonAutonomous β dependencies ? NonAutonomous : Autonomous
variable_dependence = NonFixed β dependencies ? NonFixed : Fixed
return Lagrange!{time_dependence, variable_dependence}(f!)
end
"""
$(TYPEDSIGNATURES)
Return the value of the Lagrange function.
## Examples
```@example
julia> Lagrange((x, u) -> 2x[2]-u[1]^2, Int64)
IncorrectArgument
julia> Lagrange((x, u) -> 2x[2]-u[1]^2, Int64)
IncorrectArgument
julia> L = Lagrange((x, u) -> [2x[2]-u[1]^2], autonomous=true, variable=false)
julia> L([1, 0], [1])
MethodError
julia> L = Lagrange((x, u) -> 2x[2]-u[1]^2, autonomous=true, variable=false)
julia> L([1, 0], [1])
-1
julia> t = 1
julia> v = Real[]
julia> L(t, [1, 0], [1])
MethodError
julia> L([1, 0], [1], v)
MethodError
julia> L(t, [1, 0], [1], v)
-1
julia> L = Lagrange((x, u, v) -> 2x[2]-u[1]^2+v[3], autonomous=true, variable=true)
julia> L([1, 0], [1], [1, 2, 3])
2
julia> L(t, [1, 0], [1], [1, 2, 3])
2
julia> L = Lagrange((t, x, u) -> t+2x[2]-u[1]^2, autonomous=false, variable=false)
julia> L(1, [1, 0], [1])
0
julia> L(1, [1, 0], [1], v)
0
julia> L = Lagrange((t, x, u, v) -> t+2x[2]-u[1]^2+v[3], autonomous=false, variable=true)
julia> L(1, [1, 0], [1], [1, 2, 3])
3
```
"""
function (F::Lagrange{Autonomous, Fixed})(x::State, u::Control)::ctNumber
return F.f(x, u)
end
function (F::Lagrange{Autonomous, Fixed})(t::Time, x::State, u::Control, v::Variable)::ctNumber
return F.f(x, u)
end
function (F::Lagrange{Autonomous, NonFixed})(x::State, u::Control, v::Variable)::ctNumber
return F.f(x, u, v)
end
function (F::Lagrange{Autonomous, NonFixed})(t::Time, x::State, u::Control, v::Variable)::ctNumber
return F.f(x, u, v)
end
function (F::Lagrange{NonAutonomous, Fixed})(t::Time, x::State, u::Control)::ctNumber
return F.f(t, x, u)
end
function (F::Lagrange{NonAutonomous, Fixed})(t::Time, x::State, u::Control, v::Variable)::ctNumber
return F.f(t, x, u)
end
function (F::Lagrange{NonAutonomous, NonFixed})(
t::Time,
x::State,
u::Control,
v::Variable,
)::ctNumber
return F.f(t, x, u, v)
end
function (F::Lagrange!{Autonomous, Fixed})(r::ctVector, x::State, u::Control)::Nothing
return F.f!(r, x, u)
end
function (F::Lagrange!{Autonomous, Fixed})(r::ctVector, t::Time, x::State, u::Control, v::Variable)::Nothing
return F.f!(r, x, u)
end
function (F::Lagrange!{Autonomous, NonFixed})(r::ctVector, x::State, u::Control, v::Variable)::Nothing
return F.f!(r, x, u, v)
end
function (F::Lagrange!{Autonomous, NonFixed})(r::ctVector, t::Time, x::State, u::Control, v::Variable)::Nothing
return F.f!(r, x, u, v)
end
function (F::Lagrange!{NonAutonomous, Fixed})(r::ctVector, t::Time, x::State, u::Control)::Nothing
return F.f!(r, t, x, u)
end
function (F::Lagrange!{NonAutonomous, Fixed})(r::ctVector, t::Time, x::State, u::Control, v::Variable)::Nothing
return F.f!(r, t, x, u)
end
function (F::Lagrange!{NonAutonomous, NonFixed})(
r::ctVector,
t::Time,
x::State,
u::Control,
v::Variable,
)::Nothing
return F.f!(r, t, x, u, v)
end
# --------------------------------------------------------------------------------------------------
"""
$(TYPEDSIGNATURES)
Return the ```Dynamics``` of a function.
Dependencies are specified with a boolean, variable, false by default, autonomous, true by default.
```@example
julia> D = Dynamics((x, u) -> [2x[2]-u^2, x[1]], autonomous=true, variable=false)
julia> D = Dynamics((x, u, v) -> [2x[2]-u^2+v[3], x[1]], autonomous=true, variable=true)
julia> D = Dynamics((t, x, u) -> [t+2x[2]-u^2, x[1]], autonomous=false, variable=false)
julia> D = Dynamics((t, x, u, v) -> [t+2x[2]-u^2+v[3], x[1]], autonomous=false, variable=true)
```
"""
function Dynamics(f::Function; autonomous::Bool = true, variable::Bool = false)
time_dependence = autonomous ? Autonomous : NonAutonomous
variable_dependence = variable ? NonFixed : Fixed
return Dynamics{time_dependence, variable_dependence}(f)
end
function Dynamics!(f!::Function; autonomous::Bool = true, variable::Bool = false)
time_dependence = autonomous ? Autonomous : NonAutonomous
variable_dependence = variable ? NonFixed : Fixed
return Dynamics!{time_dependence, variable_dependence}(f!)
end
"""
$(TYPEDSIGNATURES)
Return the ```Dynamics``` of a function.
Dependencies are specified with DataType, Autonomous, NonAutonomous and Fixed, NonFixed.
```@example
julia> Dynamics((x, u) -> [2x[2]-u^2, x[1]], Int64)
IncorrectArgument
julia> Dynamics((x, u) -> [2x[2]-u^2, x[1]], Int64)
IncorrectArgument
julia> D = Dynamics((x, u) -> [2x[2]-u^2, x[1]], Autonomous, Fixed)
julia> D = Dynamics((x, u, v) -> [2x[2]-u^2+v[3], x[1]], Autonomous, NonFixed)
julia> D = Dynamics((t, x, u) -> [t+2x[2]-u^2, x[1]], NonAutonomous, Fixed)
julia> D = Dynamics((t, x, u, v) -> [t+2x[2]-u^2+v[3], x[1]], NonAutonomous, NonFixed)
```
"""
function Dynamics(f::Function, dependencies::DataType...)
__check_dependencies(dependencies)
time_dependence = NonAutonomous β dependencies ? NonAutonomous : Autonomous
variable_dependence = NonFixed β dependencies ? NonFixed : Fixed
return Dynamics{time_dependence, variable_dependence}(f)
end
function Dynamics!(f!::Function, dependencies::DataType...)
__check_dependencies(dependencies)
time_dependence = NonAutonomous β dependencies ? NonAutonomous : Autonomous
variable_dependence = NonFixed β dependencies ? NonFixed : Fixed
return Dynamics!{time_dependence, variable_dependence}(f!)
end
"""
$(TYPEDSIGNATURES)
Return the value of the Dynamics function.
```@example
julia> D = Dynamics((x, u) -> [2x[2]-u^2, x[1]], autonomous=true, variable=false)
julia> D([1, 0], 1)
[-1, 1]
julia> t = 1
julia> v = Real[]
julia> D(t, [1, 0], 1, v)
[-1, 1]
julia> D = Dynamics((x, u, v) -> [2x[2]-u^2+v[3], x[1]], autonomous=true, variable=true)
julia> D([1, 0], 1, [1, 2, 3])
[2, 1]
julia> D(t, [1, 0], 1, [1, 2, 3])
[2, 1]
julia> D = Dynamics((t, x, u) -> [t+2x[2]-u^2, x[1]], autonomous=false, variable=false)
julia> D(1, [1, 0], 1)
[0, 1]
julia> D(1, [1, 0], 1, v)
[0, 1]
julia> D = Dynamics((t, x, u, v) -> [t+2x[2]-u^2+v[3], x[1]], autonomous=false, variable=true)
julia> D(1, [1, 0], 1, [1, 2, 3])
[3, 1]
```
"""
function (F::Dynamics{Autonomous, Fixed})(x::State, u::Control)::ctVector
return F.f(x, u)
end
function (F::Dynamics{Autonomous, Fixed})(t::Time, x::State, u::Control, v::Variable)::ctVector
return F.f(x, u)
end
function (F::Dynamics{Autonomous, NonFixed})(x::State, u::Control, v::Variable)::ctVector
return F.f(x, u, v)
end
function (F::Dynamics{Autonomous, NonFixed})(t::Time, x::State, u::Control, v::Variable)::ctVector
return F.f(x, u, v)
end
function (F::Dynamics{NonAutonomous, Fixed})(t::Time, x::State, u::Control)::ctVector
return F.f(t, x, u)
end
function (F::Dynamics{NonAutonomous, Fixed})(t::Time, x::State, u::Control, v::Variable)::ctVector
return F.f(t, x, u)
end
function (F::Dynamics{NonAutonomous, NonFixed})(
t::Time,
x::State,
u::Control,
v::Variable,
)::ctVector
return F.f(t, x, u, v)
end
function (F::Dynamics!{Autonomous, Fixed})(r::ctVector, x::State, u::Control)::Nothing
return F.f!(r, x, u)
end
function (F::Dynamics!{Autonomous, Fixed})(r::ctVector, t::Time, x::State, u::Control, v::Variable)::Nothing
return F.f!(r, x, u)
end
function (F::Dynamics!{Autonomous, NonFixed})(r::ctVector, x::State, u::Control, v::Variable)::Nothing
return F.f!(r, x, u, v)
end
function (F::Dynamics!{Autonomous, NonFixed})(r::ctVector, t::Time, x::State, u::Control, v::Variable)::Nothing
return F.f!(r, x, u, v)
end
function (F::Dynamics!{NonAutonomous, Fixed})(r::ctVector, t::Time, x::State, u::Control)::Nothing
return F.f!(r, t, x, u)
end
function (F::Dynamics!{NonAutonomous, Fixed})(r::ctVector, t::Time, x::State, u::Control, v::Variable)::Nothing
return F.f!(r, t, x, u)
end
function (F::Dynamics!{NonAutonomous, NonFixed})(
r::ctVector,
t::Time,
x::State,
u::Control,
v::Variable,
)::Nothing
return F.f!(r, t, x, u, v)
end
# --------------------------------------------------------------------------------------------------
"""
$(TYPEDSIGNATURES)
Return the ```StateConstraint``` of a function.
Dependencies are specified with a boolean, variable, false by default, autonomous, true by default.
```@example
julia> S = StateConstraint(x -> [x[1]^2, 2x[2]], autonomous=true, variable=false)
julia> S = StateConstraint((x, v) -> [x[1]^2, 2x[2]+v[3]], autonomous=true, variable=true)
julia> S = StateConstraint((t, x) -> [t+x[1]^2, 2x[2]], autonomous=false, variable=false)
julia> S = StateConstraint((t, x, v) -> [t+x[1]^2, 2x[2]+v[3]], autonomous=false, variable=true)
```
"""
function StateConstraint(f::Function; autonomous::Bool = true, variable::Bool = false)
time_dependence = autonomous ? Autonomous : NonAutonomous
variable_dependence = variable ? NonFixed : Fixed
return StateConstraint{time_dependence, variable_dependence}(f)
end
function StateConstraint!(f!::Function; autonomous::Bool = true, variable::Bool = false)
time_dependence = autonomous ? Autonomous : NonAutonomous
variable_dependence = variable ? NonFixed : Fixed
return StateConstraint!{time_dependence, variable_dependence}(f!)
end
"""
$(TYPEDSIGNATURES)
Return the ```StateConstraint``` of a function.
Dependencies are specified with DataType, Autonomous, NonAutonomous and Fixed, NonFixed.
```@example
julia> StateConstraint(x -> [x[1]^2, 2x[2]], Int64)
IncorrectArgument
julia> StateConstraint(x -> [x[1]^2, 2x[2]], Int64)
IncorrectArgument
julia> S = StateConstraint(x -> [x[1]^2, 2x[2]], Autonomous, Fixed)
julia> S = StateConstraint((x, v) -> [x[1]^2, 2x[2]+v[3]], Autonomous, NonFixed)
julia> S = StateConstraint((t, x) -> [t+x[1]^2, 2x[2]], NonAutonomous, Fixed)
julia> S = StateConstraint((t, x, v) -> [t+x[1]^2, 2x[2]+v[3]], NonAutonomous, NonFixed)
```
"""
function StateConstraint(f::Function, dependencies::DataType...)
__check_dependencies(dependencies)
time_dependence = NonAutonomous β dependencies ? NonAutonomous : Autonomous
variable_dependence = NonFixed β dependencies ? NonFixed : Fixed
return StateConstraint{time_dependence, variable_dependence}(f)
end
function StateConstraint!(f!::Function, dependencies::DataType...)
__check_dependencies(dependencies)
time_dependence = NonAutonomous β dependencies ? NonAutonomous : Autonomous
variable_dependence = NonFixed β dependencies ? NonFixed : Fixed
return StateConstraint!{time_dependence, variable_dependence}(f!)
end
"""
$(TYPEDSIGNATURES)
Return the value of the StateConstraint function.
```@example
julia> StateConstraint(x -> [x[1]^2, 2x[2]], Int64)
IncorrectArgument
julia> StateConstraint(x -> [x[1]^2, 2x[2]], Int64)
IncorrectArgument
julia> S = StateConstraint(x -> [x[1]^2, 2x[2]], autonomous=true, variable=false)
julia> S([1, -1])
[1, -2]
julia> t = 1
julia> v = Real[]
julia> S(t, [1, -1], v)
[1, -2]
julia> S = StateConstraint((x, v) -> [x[1]^2, 2x[2]+v[3]], autonomous=true, variable=true)
julia> S([1, -1], [1, 2, 3])
[1, 1]
julia> S(t, [1, -1], [1, 2, 3])
[1, 1]
julia> S = StateConstraint((t, x) -> [t+x[1]^2, 2x[2]], autonomous=false, variable=false)
julia> S(1, [1, -1])
[2, -2]
julia> S(1, [1, -1], v)
[2, -2]
julia> S = StateConstraint((t, x, v) -> [t+x[1]^2, 2x[2]+v[3]], autonomous=false, variable=true)
julia> S(1, [1, -1], [1, 2, 3])
[2, 1]
```
"""
function (F::StateConstraint{Autonomous, Fixed})(x::State)::ctVector
return F.f(x)
end
function (F::StateConstraint{Autonomous, Fixed})(t::Time, x::State, v::Variable)::ctVector
return F.f(x)
end
function (F::StateConstraint{Autonomous, NonFixed})(x::State, v::Variable)::ctVector
return F.f(x, v)
end
function (F::StateConstraint{Autonomous, NonFixed})(t::Time, x::State, v::Variable)::ctVector
return F.f(x, v)
end
function (F::StateConstraint{NonAutonomous, Fixed})(t::Time, x::State)::ctVector
return F.f(t, x)
end
function (F::StateConstraint{NonAutonomous, Fixed})(t::Time, x::State, v::Variable)::ctVector
return F.f(t, x)
end
function (F::StateConstraint{NonAutonomous, NonFixed})(t::Time, x::State, v::Variable)::ctVector
return F.f(t, x, v)
end
function (F::StateConstraint!{Autonomous, Fixed})(r::ctVector, x::State)::Nothing
return F.f!(r, x)
end
function (F::StateConstraint!{Autonomous, Fixed})(r::ctVector, t::Time, x::State, v::Variable)::Nothing
return F.f!(r, x)
end
function (F::StateConstraint!{Autonomous, NonFixed})(r::ctVector, x::State, v::Variable)::Nothing
return F.f!(r, x, v)
end
function (F::StateConstraint!{Autonomous, NonFixed})(r::ctVector, t::Time, x::State, v::Variable)::Nothing
return F.f!(r, x, v)
end
function (F::StateConstraint!{NonAutonomous, Fixed})(r::ctVector, t::Time, x::State)::Nothing
return F.f!(r, t, x)
end
function (F::StateConstraint!{NonAutonomous, Fixed})(r::ctVector, t::Time, x::State, v::Variable)::Nothing
return F.f!(r, t, x)
end
function (F::StateConstraint!{NonAutonomous, NonFixed})(r::ctVector, t::Time, x::State, v::Variable)::Nothing
return F.f!(r, t, x, v)
end
# --------------------------------------------------------------------------------------------------
"""
$(TYPEDSIGNATURES)
Return the ```ControlConstraint``` of a function.
Dependencies are specified with a boolean, variable, false by default, autonomous, true by default.
```@example
julia> C = ControlConstraint(u -> [u[1]^2, 2u[2]], autonomous=true, variable=false)
julia> C = ControlConstraint((u, v) -> [u[1]^2, 2u[2]+v[3]], autonomous=true, variable=true)
julia> C = ControlConstraint((t, u) -> [t+u[1]^2, 2u[2]], autonomous=false, variable=false)
julia> C = ControlConstraint((t, u, v) -> [t+u[1]^2, 2u[2]+v[3]], autonomous=false, variable=true)
```
"""
function ControlConstraint(f::Function; autonomous::Bool = true, variable::Bool = false)
time_dependence = autonomous ? Autonomous : NonAutonomous
variable_dependence = variable ? NonFixed : Fixed
return ControlConstraint{time_dependence, variable_dependence}(f)
end
function ControlConstraint!(f!::Function; autonomous::Bool = true, variable::Bool = false)
time_dependence = autonomous ? Autonomous : NonAutonomous
variable_dependence = variable ? NonFixed : Fixed
return ControlConstraint!{time_dependence, variable_dependence}(f!)
end
"""
$(TYPEDSIGNATURES)
Return the ```StateConstraint``` of a function.
Dependencies are specified with DataType, Autonomous, NonAutonomous and Fixed, NonFixed.
```@example
julia> IncorrectArgument ControlConstraint(u -> [u[1]^2, 2u[2]], Int64)
julia> IncorrectArgument ControlConstraint(u -> [u[1]^2, 2u[2]], Int64)
julia> C = ControlConstraint(u -> [u[1]^2, 2u[2]], Autonomous, Fixed)
julia> C = ControlConstraint((u, v) -> [u[1]^2, 2u[2]+v[3]], Autonomous, NonFixed)
julia> C = ControlConstraint((t, u) -> [t+u[1]^2, 2u[2]], NonAutonomous, Fixed)
julia> C = ControlConstraint((t, u, v) -> [t+u[1]^2, 2u[2]+v[3]], NonAutonomous, NonFixed)
```
"""
function ControlConstraint(f::Function, dependencies::DataType...)
__check_dependencies(dependencies)
time_dependence = NonAutonomous β dependencies ? NonAutonomous : Autonomous
variable_dependence = NonFixed β dependencies ? NonFixed : Fixed
return ControlConstraint{time_dependence, variable_dependence}(f)
end
function ControlConstraint!(f!::Function, dependencies::DataType...) # todo: useless? only use version above?
__check_dependencies(dependencies)
time_dependence = NonAutonomous β dependencies ? NonAutonomous : Autonomous
variable_dependence = NonFixed β dependencies ? NonFixed : Fixed
return ControlConstraint!{time_dependence, variable_dependence}(f!)
end
"""
$(TYPEDSIGNATURES)
Return the value of the ControlConstraint function.
```@example
julia> IncorrectArgument ControlConstraint(u -> [u[1]^2, 2u[2]], Int64)
julia> IncorrectArgument ControlConstraint(u -> [u[1]^2, 2u[2]], Int64)
julia> C = ControlConstraint(u -> [u[1]^2, 2u[2]], autonomous=true, variable=false)
julia> C([1, -1])
[1, -2]
julia> t = 1
julia> v = Real[]
julia> C(t, [1, -1], v)
[1, -2]
julia> C = ControlConstraint((u, v) -> [u[1]^2, 2u[2]+v[3]], autonomous=true, variable=true)
julia> C([1, -1], [1, 2, 3])
[1, 1]
julia> C(t, [1, -1], [1, 2, 3])
[1, 1]
julia> C = ControlConstraint((t, u) -> [t+u[1]^2, 2u[2]], autonomous=false, variable=false)
julia> C(1, [1, -1])
[2, -2]
julia> C(1, [1, -1], v)
[2, -2]
julia> C = ControlConstraint((t, u, v) -> [t+u[1]^2, 2u[2]+v[3]], autonomous=false, variable=true)
julia> C(1, [1, -1], [1, 2, 3])
[2, 1]
```
"""
function (F::ControlConstraint{Autonomous, Fixed})(u::Control)::ctVector
return F.f(u)
end
function (F::ControlConstraint{Autonomous, Fixed})(t::Time, u::Control, v::Variable)::ctVector
return F.f(u)
end
function (F::ControlConstraint{Autonomous, NonFixed})(u::Control, v::Variable)::ctVector
return F.f(u, v)
end
function (F::ControlConstraint{Autonomous, NonFixed})(t::Time, u::Control, v::Variable)::ctVector
return F.f(u, v)
end
function (F::ControlConstraint{NonAutonomous, Fixed})(t::Time, u::Control)::ctVector
return F.f(t, u)
end
function (F::ControlConstraint{NonAutonomous, Fixed})(t::Time, u::Control, v::Variable)::ctVector
return F.f(t, u)
end
function (F::ControlConstraint{NonAutonomous, NonFixed})(t::Time, u::Control, v::Variable)::ctVector
return F.f(t, u, v)
end
function (F::ControlConstraint!{Autonomous, Fixed})(r::ctVector, u::Control)::Nothing
return F.f!(r, u)
end
function (F::ControlConstraint!{Autonomous, Fixed})(r::ctVector, t::Time, u::Control, v::Variable)::Nothing
return F.f!(r, u)
end
function (F::ControlConstraint!{Autonomous, NonFixed})(r::ctVector, u::Control, v::Variable)::Nothing
return F.f!(r, u, v)
end
function (F::ControlConstraint!{Autonomous, NonFixed})(r::ctVector, t::Time, u::Control, v::Variable)::Nothing
return F.f!(r, u, v)
end
function (F::ControlConstraint!{NonAutonomous, Fixed})(r::ctVector, t::Time, u::Control)::Nothing
return F.f!(r, t, u)
end
function (F::ControlConstraint!{NonAutonomous, Fixed})(r::ctVector, t::Time, u::Control, v::Variable)::Nothing
return F.f!(r, t, u)
end
function (F::ControlConstraint!{NonAutonomous, NonFixed})(r::ctVector, t::Time, u::Control, v::Variable)::Nothing
return F.f!(r, t, u, v)
end
# --------------------------------------------------------------------------------------------------
"""
$(TYPEDSIGNATURES)
Return the ```MixedConstraint``` of a function.
Dependencies are specified with a boolean, variable, false by default, autonomous, true by default.
```@example
julia> M = MixedConstraint((x, u) -> [2x[2]-u^2, x[1]], autonomous=true, variable=false)
julia> M = MixedConstraint((x, u, v) -> [2x[2]-u^2+v[3], x[1]], autonomous=true, variable=true)
julia> M = MixedConstraint((t, x, u) -> [t+2x[2]-u^2, x[1]], autonomous=false, variable=false)
julia> M = MixedConstraint((t, x, u, v) -> [t+2x[2]-u^2+v[3], x[1]], autonomous=false, variable=true)
```
"""
function MixedConstraint(f::Function; autonomous::Bool = true, variable::Bool = false)
time_dependence = autonomous ? Autonomous : NonAutonomous
variable_dependence = variable ? NonFixed : Fixed
return MixedConstraint{time_dependence, variable_dependence}(f)
end
function MixedConstraint!(f!::Function; autonomous::Bool = true, variable::Bool = false)
time_dependence = autonomous ? Autonomous : NonAutonomous
variable_dependence = variable ? NonFixed : Fixed
return MixedConstraint!{time_dependence, variable_dependence}(f!)
end
"""
$(TYPEDSIGNATURES)
Return the ```MixedConstraint``` of a function.
Dependencies are specified with DataType, Autonomous, NonAutonomous and Fixed, NonFixed.
```@example
julia> MixedConstraint((x, u) -> [2x[2]-u^2, x[1]], Int64)
IncorrectArgument
julia> MixedConstraint((x, u) -> [2x[2]-u^2, x[1]], Int64)
IncorrectArgument
julia> M = MixedConstraint((x, u) -> [2x[2]-u^2, x[1]], Autonomous, Fixed)
julia> M = MixedConstraint((x, u, v) -> [2x[2]-u^2+v[3], x[1]], Autonomous, NonFixed)
julia> M = MixedConstraint((t, x, u) -> [t+2x[2]-u^2, x[1]], NonAutonomous, Fixed)
julia> M = MixedConstraint((t, x, u, v) -> [t+2x[2]-u^2+v[3], x[1]], NonAutonomous, NonFixed)
```
"""
function MixedConstraint(f::Function, dependencies::DataType...)
__check_dependencies(dependencies)
time_dependence = NonAutonomous β dependencies ? NonAutonomous : Autonomous
variable_dependence = NonFixed β dependencies ? NonFixed : Fixed
return MixedConstraint{time_dependence, variable_dependence}(f)
end
function MixedConstraint!(f!::Function, dependencies::DataType...)
__check_dependencies(dependencies)
time_dependence = NonAutonomous β dependencies ? NonAutonomous : Autonomous
variable_dependence = NonFixed β dependencies ? NonFixed : Fixed
return MixedConstraint!{time_dependence, variable_dependence}(f!)
end
"""
$(TYPEDSIGNATURES)
Return the value of the MixedConstraint function.
```@example
julia> MixedConstraint((x, u) -> [2x[2]-u^2, x[1]], Int64)
IncorrectArgument
julia> MixedConstraint((x, u) -> [2x[2]-u^2, x[1]], Int64)
IncorrectArgument
julia> M = MixedConstraint((x, u) -> [2x[2]-u^2, x[1]], autonomous=true, variable=false)
julia> M([1, 0], 1)
[-1, 1]
julia> t = 1
julia> v = Real[]
julia> MethodError M(t, [1, 0], 1)
julia> MethodError M([1, 0], 1, v)
julia> M(t, [1, 0], 1, v)
[-1, 1]
julia> M = MixedConstraint((x, u, v) -> [2x[2]-u^2+v[3], x[1]], autonomous=true, variable=true)
julia> M([1, 0], 1, [1, 2, 3])
[2, 1]
julia> M(t, [1, 0], 1, [1, 2, 3])
[2, 1]
julia> M = MixedConstraint((t, x, u) -> [t+2x[2]-u^2, x[1]], autonomous=false, variable=false)
julia> M(1, [1, 0], 1)
[0, 1]
julia> M(1, [1, 0], 1, v)
[0, 1]
julia> M = MixedConstraint((t, x, u, v) -> [t+2x[2]-u^2+v[3], x[1]], autonomous=false, variable=true)
julia> M(1, [1, 0], 1, [1, 2, 3])
[3, 1]
```
"""
function (F::MixedConstraint{Autonomous, Fixed})(x::State, u::Control)::ctVector
return F.f(x, u)
end
function (F::MixedConstraint{Autonomous, Fixed})(
t::Time,
x::State,
u::Control,
v::Variable,
)::ctVector
return F.f(x, u)
end
function (F::MixedConstraint{Autonomous, NonFixed})(x::State, u::Control, v::Variable)::ctVector
return F.f(x, u, v)
end
function (F::MixedConstraint{Autonomous, NonFixed})(
t::Time,
x::State,
u::Control,
v::Variable,
)::ctVector
return F.f(x, u, v)
end
function (F::MixedConstraint{NonAutonomous, Fixed})(t::Time, x::State, u::Control)::ctVector
return F.f(t, x, u)
end
function (F::MixedConstraint{NonAutonomous, Fixed})(
t::Time,
x::State,
u::Control,
v::Variable,
)::ctVector
return F.f(t, x, u)
end
function (F::MixedConstraint{NonAutonomous, NonFixed})(
t::Time,
x::State,
u::Control,
v::Variable,
)::ctVector
return F.f(t, x, u, v)
end
function (F::MixedConstraint!{Autonomous, Fixed})(r::ctVector, x::State, u::Control)::Nothing
return F.f!(r, x, u)
end
function (F::MixedConstraint!{Autonomous, Fixed})(
r::ctVector,
t::Time,
x::State,
u::Control,
v::Variable,
)::Nothing
return F.f!(r, x, u)
end
function (F::MixedConstraint!{Autonomous, NonFixed})(r::ctVector, x::State, u::Control, v::Variable)::Nothing
return F.f!(r, x, u, v)
end
function (F::MixedConstraint!{Autonomous, NonFixed})(
r::ctVector,
t::Time,
x::State,
u::Control,
v::Variable,
)::Nothing
return F.f!(r, x, u, v)
end
function (F::MixedConstraint!{NonAutonomous, Fixed})(r::ctVector, t::Time, x::State, u::Control)::Nothing
return F.f!(r, t, x, u)
end
function (F::MixedConstraint!{NonAutonomous, Fixed})(
r::ctVector,
t::Time,
x::State,
u::Control,
v::Variable,
)::Nothing
return F.f!(r, t, x, u)
end
function (F::MixedConstraint!{NonAutonomous, NonFixed})(
r::ctVector,
t::Time,
x::State,
u::Control,
v::Variable,
)::Nothing
return F.f!(r, t, x, u, v)
end
# --------------------------------------------------------------------------------------------------
"""
$(TYPEDSIGNATURES)
Return the value of the VariableConstraint function.
```@example
julia> V = VariableConstraint(v -> [v[1]^2, 2v[2]])
julia> V([1, -1])
[1, -2]
```
"""
function (F::VariableConstraint)(v::Variable)::ctVector
return F.f(v)
end
function (F::VariableConstraint!)(r::ctVector, v::Variable)::Nothing
return F.f!(r, v)
end
# --------------------------------------------------------------------------------------------------
"""
$(TYPEDSIGNATURES)
Return the ```FeedbackControl``` of a function.
Dependencies are specified with a boolean, variable, false by default, autonomous, true by default.
```@example
julia> u = FeedbackControl(x -> x[1]^2+2x[2], autonomous=true, variable=false)
julia> u = FeedbackControl((x, v) -> x[1]^2+2x[2]+v[3], autonomous=true, variable=true)
julia> u = FeedbackControl((t, x) -> t+x[1]^2+2x[2], autonomous=false, variable=false)
julia> u = FeedbackControl((t, x, v) -> t+x[1]^2+2x[2]+v[3], autonomous=false, variable=true)
```
"""
function FeedbackControl(f::Function; autonomous::Bool = true, variable::Bool = false)
time_dependence = autonomous ? Autonomous : NonAutonomous
variable_dependence = variable ? NonFixed : Fixed
return FeedbackControl{time_dependence, variable_dependence}(f)
end
"""
$(TYPEDSIGNATURES)
Return the ```FeedbackControl``` of a function.
Dependencies are specified with DataType, Autonomous, NonAutonomous and Fixed, NonFixed.
```@example
julia> FeedbackControl(x -> x[1]^2+2x[2], Int64)
IncorrectArgument
julia> FeedbackControl(x -> x[1]^2+2x[2], Int64)
IncorrectArgument
julia> u = FeedbackControl(x -> x[1]^2+2x[2], Autonomous, Fixed)
julia> u = FeedbackControl((x, v) -> x[1]^2+2x[2]+v[3], Autonomous, NonFixed)
julia> u = FeedbackControl((t, x) -> t+x[1]^2+2x[2], NonAutonomous, Fixed)
julia> u = FeedbackControl((t, x, v) -> t+x[1]^2+2x[2]+v[3], NonAutonomous, NonFixed)
```
"""
function FeedbackControl(f::Function, dependencies::DataType...)
__check_dependencies(dependencies)
time_dependence = NonAutonomous β dependencies ? NonAutonomous : Autonomous
variable_dependence = NonFixed β dependencies ? NonFixed : Fixed
return FeedbackControl{time_dependence, variable_dependence}(f)
end
"""
$(TYPEDSIGNATURES)
Return the value of the FeedbackControl function.
```@example
julia> FeedbackControl(x -> x[1]^2+2x[2], Int64)
IncorrectArgument
julia> FeedbackControl(x -> x[1]^2+2x[2], Int64)
IncorrectArgument
julia> u = FeedbackControl(x -> x[1]^2+2x[2], autonomous=true, variable=false)
julia> u([1, 0])
1
julia> t = 1
julia> v = Real[]
julia> u(t, [1, 0])
MethodError
julia> u([1, 0], v)
MethodError
julia> u(t, [1, 0], v)
1
julia> u = FeedbackControl((x, v) -> x[1]^2+2x[2]+v[3], autonomous=true, variable=true)
julia> u([1, 0], [1, 2, 3])
4
julia> u(t, [1, 0], [1, 2, 3])
4
julia> u = FeedbackControl((t, x) -> t+x[1]^2+2x[2], autonomous=false, variable=false)
julia> u(1, [1, 0])
2
julia> u(1, [1, 0], v)
2
julia> u = FeedbackControl((t, x, v) -> t+x[1]^2+2x[2]+v[3], autonomous=false, variable=true)
julia> u(1, [1, 0], [1, 2, 3])
5
```
"""
function (F::FeedbackControl{Autonomous, Fixed})(x::State)::ctVector
return F.f(x)
end
function (F::FeedbackControl{Autonomous, Fixed})(t::Time, x::State, v::Variable)::ctVector
return F.f(x)
end
function (F::FeedbackControl{Autonomous, NonFixed})(x::State, v::Variable)::ctVector
return F.f(x, v)
end
function (F::FeedbackControl{Autonomous, NonFixed})(t::Time, x::State, v::Variable)::ctVector
return F.f(x, v)
end
function (F::FeedbackControl{NonAutonomous, Fixed})(t::Time, x::State)::ctVector
return F.f(t, x)
end
function (F::FeedbackControl{NonAutonomous, Fixed})(t::Time, x::State, v::Variable)::ctVector
return F.f(t, x)
end
function (F::FeedbackControl{NonAutonomous, NonFixed})(t::Time, x::State, v::Variable)::ctVector
return F.f(t, x, v)
end
# --------------------------------------------------------------------------------------------------
"""
$(TYPEDSIGNATURES)
Return the ```ControlLaw``` of a function.
Dependencies are specified with a boolean, variable, false by default, autonomous, true by default.
```@example
julia> u = ControlLaw((x, p) -> x[1]^2+2p[2], autonomous=true, variable=false)
julia> u = ControlLaw((x, p, v) -> x[1]^2+2p[2]+v[3], autonomous=true, variable=true)
julia> u = ControlLaw((t, x, p) -> t+x[1]^2+2p[2], autonomous=false, variable=false)
julia> u = ControlLaw((t, x, p, v) -> t+x[1]^2+2p[2]+v[3], autonomous=false, variable=true)
```
"""
function ControlLaw(f::Function; autonomous::Bool = true, variable::Bool = false)
time_dependence = autonomous ? Autonomous : NonAutonomous
variable_dependence = variable ? NonFixed : Fixed
return ControlLaw{time_dependence, variable_dependence}(f)
end
"""
$(TYPEDSIGNATURES)
Return the ```ControlLaw``` of a function.
Dependencies are specified with DataType, Autonomous, NonAutonomous and Fixed, NonFixed.
```@example
julia> ControlLaw((x, p) -> x[1]^2+2p[2], Int64)
IncorrectArgument
julia> ControlLaw((x, p) -> x[1]^2+2p[2], Int64)
IncorrectArgument
julia> u = ControlLaw((x, p) -> x[1]^2+2p[2], Autonomous, Fixed)
julia> u = ControlLaw((x, p, v) -> x[1]^2+2p[2]+v[3], Autonomous, NonFixed)
julia> u = ControlLaw((t, x, p) -> t+x[1]^2+2p[2], NonAutonomous, Fixed)
julia> u = ControlLaw((t, x, p, v) -> t+x[1]^2+2p[2]+v[3], NonAutonomous, NonFixed)
```
"""
function ControlLaw(f::Function, dependencies::DataType...)
__check_dependencies(dependencies)
time_dependence = NonAutonomous β dependencies ? NonAutonomous : Autonomous
variable_dependence = NonFixed β dependencies ? NonFixed : Fixed
return ControlLaw{time_dependence, variable_dependence}(f)
end
"""
$(TYPEDSIGNATURES)
Return the value of the ControlLaw function.
```@example
julia> ControlLaw((x, p) -> x[1]^2+2p[2], Int64)
IncorrectArgument
julia> ControlLaw((x, p) -> x[1]^2+2p[2], Int64)
IncorrectArgument
julia> u = ControlLaw((x, p) -> x[1]^2+2p[2], autonomous=true, variable=false)
julia> u([1, 0], [0, 1])
3
julia> t = 1
julia> v = Real[]
julia> u(t, [1, 0], [0, 1])
MethodError
julia> u([1, 0], [0, 1], v)
MethodError
julia> u(t, [1, 0], [0, 1], v)
3
julia> u = ControlLaw((x, p, v) -> x[1]^2+2p[2]+v[3], autonomous=true, variable=true)
julia> u([1, 0], [0, 1], [1, 2, 3])
6
julia> u(t, [1, 0], [0, 1], [1, 2, 3])
6
julia> u = ControlLaw((t, x, p) -> t+x[1]^2+2p[2], autonomous=false, variable=false)
julia> u(1, [1, 0], [0, 1])
4
julia> u(1, [1, 0], [0, 1], v)
4
julia> u = ControlLaw((t, x, p, v) -> t+x[1]^2+2p[2]+v[3], autonomous=false, variable=true)
julia> u(1, [1, 0], [0, 1], [1, 2, 3])
7
```
"""
function (F::ControlLaw{Autonomous, Fixed})(x::State, p::Costate)::ctVector
return F.f(x, p)
end
function (F::ControlLaw{Autonomous, Fixed})(t::Time, x::State, p::Costate, v::Variable)::ctVector
return F.f(x, p)
end
function (F::ControlLaw{Autonomous, NonFixed})(x::State, p::Costate, v::Variable)::ctVector
return F.f(x, p, v)
end
function (F::ControlLaw{Autonomous, NonFixed})(t::Time, x::State, p::Costate, v::Variable)::ctVector
return F.f(x, p, v)
end
function (F::ControlLaw{NonAutonomous, Fixed})(t::Time, x::State, p::Costate)::ctVector
return F.f(t, x, p)
end
function (F::ControlLaw{NonAutonomous, Fixed})(t::Time, x::State, p::Costate, v::Variable)::ctVector
return F.f(t, x, p)
end
function (F::ControlLaw{NonAutonomous, NonFixed})(
t::Time,
x::State,
p::Costate,
v::Variable,
)::ctVector
return F.f(t, x, p, v)
end
# --------------------------------------------------------------------------------------------------
"""
$(TYPEDSIGNATURES)
Return the ```Multiplier``` of a function.
Dependencies are specified with a boolean, variable, false by default, autonomous, true by default.
```@example
julia> ΞΌ = Multiplier((x, p) -> x[1]^2+2p[2], autonomous=true, variable=false)
julia> ΞΌ = Multiplier((x, p, v) -> x[1]^2+2p[2]+v[3], autonomous=true, variable=true)
julia> ΞΌ = Multiplier((t, x, p) -> t+x[1]^2+2p[2], autonomous=false, variable=false)
julia> ΞΌ = Multiplier((t, x, p, v) -> t+x[1]^2+2p[2]+v[3], autonomous=false, variable=true)
```
"""
function Multiplier(f::Function; autonomous::Bool = true, variable::Bool = false)
time_dependence = autonomous ? Autonomous : NonAutonomous
variable_dependence = variable ? NonFixed : Fixed
return Multiplier{time_dependence, variable_dependence}(f)
end
"""
$(TYPEDSIGNATURES)
Return the ```Multiplier``` of a function.
Dependencies are specified with DataType, Autonomous, NonAutonomous and Fixed, NonFixed.
```@example
julia> Multiplier((x, p) -> x[1]^2+2p[2], Int64)
IncorrectArgument
julia> Multiplier((x, p) -> x[1]^2+2p[2], Int64)
IncorrectArgument
julia> ΞΌ = Multiplier((x, p) -> x[1]^2+2p[2], Autonomous, Fixed)
julia> ΞΌ = Multiplier((x, p, v) -> x[1]^2+2p[2]+v[3], Autonomous, NonFixed)
julia> ΞΌ = Multiplier((t, x, p) -> t+x[1]^2+2p[2], NonAutonomous, Fixed)
julia> ΞΌ = Multiplier((t, x, p, v) -> t+x[1]^2+2p[2]+v[3], NonAutonomous, NonFixed)
```
"""
function Multiplier(f::Function, dependencies::DataType...)
__check_dependencies(dependencies)
time_dependence = NonAutonomous β dependencies ? NonAutonomous : Autonomous
variable_dependence = NonFixed β dependencies ? NonFixed : Fixed
return Multiplier{time_dependence, variable_dependence}(f)
end
"""
$(TYPEDSIGNATURES)
Return the value of the Multiplier function.
```@example
julia> Multiplier((x, p) -> x[1]^2+2p[2], Int64)
IncorrectArgument
julia> Multiplier((x, p) -> x[1]^2+2p[2], Int64)
IncorrectArgument
julia> ΞΌ = Multiplier((x, p) -> x[1]^2+2p[2], autonomous=true, variable=false)
julia> ΞΌ([1, 0], [0, 1])
3
julia> t = 1
julia> v = Real[]
julia> ΞΌ(t, [1, 0], [0, 1])
MethodError
julia> ΞΌ([1, 0], [0, 1], v)
MethodError
julia> ΞΌ(t, [1, 0], [0, 1], v)
3
julia> ΞΌ = Multiplier((x, p, v) -> x[1]^2+2p[2]+v[3], autonomous=true, variable=true)
julia> ΞΌ([1, 0], [0, 1], [1, 2, 3])
6
julia> ΞΌ(t, [1, 0], [0, 1], [1, 2, 3])
6
julia> ΞΌ = Multiplier((t, x, p) -> t+x[1]^2+2p[2], autonomous=false, variable=false)
julia> ΞΌ(1, [1, 0], [0, 1])
4
julia> ΞΌ(1, [1, 0], [0, 1], v)
4
julia> ΞΌ = Multiplier((t, x, p, v) -> t+x[1]^2+2p[2]+v[3], autonomous=false, variable=true)
julia> ΞΌ(1, [1, 0], [0, 1], [1, 2, 3])
7
```
"""
function (F::Multiplier{Autonomous, Fixed})(x::State, p::Costate)::ctVector
return F.f(x, p)
end
function (F::Multiplier{Autonomous, Fixed})(t::Time, x::State, p::Costate, v::Variable)::ctVector
return F.f(x, p)
end
function (F::Multiplier{Autonomous, NonFixed})(x::State, p::Costate, v::Variable)::ctVector
return F.f(x, p, v)
end
function (F::Multiplier{Autonomous, NonFixed})(t::Time, x::State, p::Costate, v::Variable)::ctVector
return F.f(x, p, v)
end
function (F::Multiplier{NonAutonomous, Fixed})(t::Time, x::State, p::Costate)::ctVector
return F.f(t, x, p)
end
function (F::Multiplier{NonAutonomous, Fixed})(t::Time, x::State, p::Costate, v::Variable)::ctVector
return F.f(t, x, p)
end
function (F::Multiplier{NonAutonomous, NonFixed})(
t::Time,
x::State,
p::Costate,
v::Variable,
)::ctVector
return F.f(t, x, p, v)
end
| CTBase | https://github.com/control-toolbox/CTBase.jl.git |
|
[
"MIT"
] | 0.14.0 | 68e9ab3053e0b38e8e574f2809dd280c9dafa338 | code | 6460 | """
$(TYPEDSIGNATURES)
Check if actual dimension is equal to target dimension, error otherwise
"""
function checkDim(actual_dim, target_dim)
if !isnothing(target_dim) && actual_dim != target_dim
error("Init dimension mismatch: got ", actual_dim, " instead of ", target_dim)
end
end
"""
$(TYPEDSIGNATURES)
Return true if argument is a vector of vectors
"""
function isaVectVect(data)
return (data isa Vector) && (data[1] isa ctVector)
end
"""
$(TYPEDSIGNATURES)
Convert matrix to vector of vectors (could be expanded)
"""
function formatData(data)
if data isa Matrix
return matrix2vec(data, 1)
else
return data
end
end
"""
$(TYPEDSIGNATURES)
Convert matrix time-grid to vector
"""
function formatTimeGrid(time)
if isnothing(time)
return nothing
elseif time isa ctVector
return time
else
return vec(time)
end
end
"""
$(TYPEDSIGNATURES)
Build functional initialization: default case
"""
function buildFunctionalInit(data::Nothing, time, dim)
# fallback to method-dependent default initialization
return t -> nothing
end
"""
$(TYPEDSIGNATURES)
Build functional initialization: function case
"""
function buildFunctionalInit(data::Function, time, dim)
# functional initialization
checkDim(length(data(0)), dim)
return t -> data(t)
end
"""
$(TYPEDSIGNATURES)
Build functional initialization: constant / 1D interpolation
"""
function buildFunctionalInit(data::ctVector, time, dim)
if !isnothing(time) && (length(data) == length(time))
# interpolation vs time, dim 1 case
itp = ctinterpolate(time, data)
return t -> itp(t)
else
# constant initialization
checkDim(length(data), dim)
return t -> data
end
end
"""
$(TYPEDSIGNATURES)
Build functional initialization: general interpolation case
"""
function buildFunctionalInit(data, time, dim)
if isaVectVect(data)
# interpolation vs time, general case
itp = ctinterpolate(time, data)
checkDim(length(itp(0)), dim)
return t -> itp(t)
else
error("Unrecognized initialization argument: ", typeof(data))
end
end
"""
$(TYPEDSIGNATURES)
Build vector initialization: default / vector case
"""
function buildVectorInit(data, dim)
if isnothing(data)
return data
else
checkDim(length(data), dim)
return data
end
end
"""
$(TYPEDSIGNATURES)
Initial guess for OCP, contains
- functions of time for the state and control variables
- vector for optimization variables
Initialization data for each field can be left to default or:
- vector for optimization variables
- constant / vector / function for state and control
- existing solution ('warm start') for all fields
# Constructors:
- `OptimalControlInit()`: default initialization
- `OptimalControlInit(state, control, variable, time)`: constant vector, function handles and / or matrices / vectors interpolated along given time grid
- `OptimalControlInit(sol)`: from existing solution
# Examples
```julia-repl
julia> init = OptimalControlInit()
julia> init = OptimalControlInit(state=[0.1, 0.2], control=0.3)
julia> init = OptimalControlInit(state=[0.1, 0.2], control=0.3, variable=0.5)
julia> init = OptimalControlInit(state=[0.1, 0.2], controlt=t->sin(t), variable=0.5)
julia> init = OptimalControlInit(state=[[0, 0], [1, 2], [5, -1]], time=[0, .3, 1.], controlt=t->sin(t))
julia> init = OptimalControlInit(sol)
```
"""
mutable struct OptimalControlInit
state_init::Function
control_init::Function
variable_init::Union{Nothing, ctVector}
#costate_init::Function
#multipliers_init::Union{Nothing, ctVector}
"""
$(TYPEDSIGNATURES)
OptimalControlInit base constructor with separate explicit arguments
"""
function OptimalControlInit(;
state = nothing,
control = nothing,
variable = nothing,
time = nothing,
state_dim = nothing,
control_dim = nothing,
variable_dim = nothing,
)
init = new()
# some matrix / vector conversions
time = formatTimeGrid(time)
state = formatData(state)
control = formatData(control)
# set initialization for x, u, v
init.state_init = buildFunctionalInit(state, time, state_dim)
init.control_init = buildFunctionalInit(control, time, control_dim)
init.variable_init = buildVectorInit(variable, variable_dim)
return init
end
"""
$(TYPEDSIGNATURES)
OptimalControlInit constructor with arguments grouped as named tuple or dict
"""
function OptimalControlInit(
init_data;
state_dim = nothing,
control_dim = nothing,
variable_dim = nothing,
)
# trivial case: default init
x_init = nothing
u_init = nothing
v_init = nothing
t_init = nothing
# parse arguments
if !isnothing(init_data)
for key in keys(init_data)
if key == :state
x_init = init_data[:state]
elseif key == :control
u_init = init_data[:control]
elseif key == :variable
v_init = init_data[:variable]
elseif key == :time
t_init = init_data[:time]
else
error(
"Unknown key in initialization data (allowed: state, control, variable, time, state_dim, control_dim, variable_dim): ",
key,
)
end
end
end
# call base constructor
return OptimalControlInit(
state = x_init,
control = u_init,
variable = v_init,
time = t_init,
state_dim = state_dim,
control_dim = control_dim,
variable_dim = variable_dim,
)
end
"""
$(TYPEDSIGNATURES)
OptimalControlInit constructor with solution as argument (warm start)
"""
function OptimalControlInit(sol::OptimalControlSolution; unused_kwargs...)
return OptimalControlInit(
state = state(sol),
control = control(sol),
variable = variable(sol),
state_dim = state_dimension(sol),
control_dim = control_dimension(sol),
variable_dim = variable_dimension(sol),
)
end
end
| CTBase | https://github.com/control-toolbox/CTBase.jl.git |
|
[
"MIT"
] | 0.14.0 | 68e9ab3053e0b38e8e574f2809dd280c9dafa338 | code | 24331 | # onepass
# todo:
# - cannot call solve if problem not fully defined (dynamics not defined...)
# - doc: explain projections wrt to t0, tf, t; (...x1...x2...)(t) -> ...gensym1...gensym2... (most internal first)
# - test non autonomous cases
# - robustify repl
# - additional checks: when generating functions (constraints, dynamics, costs), there should not be any x or u left
# (but the user might indeed do so); meaning that has(ee, x/u/t) must be false (postcondition)
# - tests exceptions (parsing and semantics/runtime)
# - add assert for pre/post conditions and invariants
# - add tests on ParsingError + run time errors (wrapped in try ... catch's - use string to be precise)
# - currently "t β [ 0+0, 1 ], time" is allowed, and compels to declare "x(0+0) == ..."
"""
$(TYPEDEF)
**Fields**
"""
@with_kw mutable struct ParsingInfo
v::Union{Symbol, Nothing} = nothing
t::Union{Symbol, Nothing} = nothing
t0::Union{Real, Symbol, Expr, Nothing} = nothing
tf::Union{Real, Symbol, Expr, Nothing} = nothing
x::Union{Symbol, Nothing} = nothing
u::Union{Symbol, Nothing} = nothing
aliases::OrderedDict{Symbol, Union{Real, Symbol, Expr}} = __init_aliases()
lnum::Integer = 0
line::String = ""
t_dep::Bool = false
end
__init_aliases(; max_dim = 20) = begin
al = OrderedDict{Symbol, Union{Real, Symbol, Expr}}()
for i β 1:max_dim
al[Symbol(:R, ctupperscripts(i))] = :(R^$i)
end
al[:<=] = :β€
al[:>=] = :β₯
al[:derivative] = :β
al[:integral] = :β«
al[:(=>)] = :β
al[:in] = :β
al
end
__throw(ex, n, line) = quote
local info
info = string("\nLine ", $n, ": ", $line)
throw(ParsingError(info * "\n" * $ex))
end
__wrap(e, n, line) = quote
local ex
try
$e
catch ex
println("Line ", $n, ": ", $line)
throw(ex)
end
end
__t_dep(p) = p.t_dep
__v_dep(p) = !isnothing(p.v)
"""
$(TYPEDSIGNATURES)
Parse the expression `e` and update the `ParsingInfo` structure `p`.
# Example
```@example
parse!(p, :ocp, :(v β R, variable))
```
"""
parse!(p, ocp, e; log = false) = begin
#
p.lnum = p.lnum + 1
p.line = string(e)
for a β keys(p.aliases)
e = subs(e, a, p.aliases[a])
end
#
@match e begin
# aliases
:($a = $e1) => @match e1 begin
:(($names) β R^$q, variable) => p_variable!(p, ocp, a, q; components_names = names, log)
:([$names] β R^$q, variable) =>
p_variable!(p, ocp, a, q; components_names = names, log)
:(($names) β R^$n, state) => p_state!(p, ocp, a, n; components_names = names, log)
:([$names] β R^$n, state) => p_state!(p, ocp, a, n; components_names = names, log)
:(($names) β R^$m, control) =>
p_control!(p, ocp, a, m; components_names = names, log)
:([$names] β R^$m, control) =>
p_control!(p, ocp, a, m; components_names = names, log)
_ => p_alias!(p, ocp, a, e1; log) # alias
end
# variable
:($v β R^$q, variable) => p_variable!(p, ocp, v, q; log)
:($v β R, variable) => p_variable!(p, ocp, v, 1; log)
# time
:($t β [$t0, $tf], time) => p_time!(p, ocp, t, t0, tf; log)
# state
:($x β R^$n, state) => p_state!(p, ocp, x, n; log)
:($x β R, state) => p_state!(p, ocp, x, 1; log)
# control
:($u β R^$m, control) => p_control!(p, ocp, u, m; log)
:($u β R, control) => p_control!(p, ocp, u, 1; log)
# dynamics
:(β($x)($t) == $e1) => p_dynamics!(p, ocp, x, t, e1; log)
:(β($x)($t) == $e1, $label) => p_dynamics!(p, ocp, x, t, e1, label; log)
# constraints
:($e1 == $e2) => p_constraint!(p, ocp, e2, e1, e2; log)
:($e1 == $e2, $label) => p_constraint!(p, ocp, e2, e1, e2, label; log)
:($e1 β€ $e2 β€ $e3) => p_constraint!(p, ocp, e1, e2, e3; log)
:($e1 β€ $e2 β€ $e3, $label) => p_constraint!(p, ocp, e1, e2, e3, label; log)
:($e2 β€ $e3) => p_constraint!(p, ocp, nothing, e2, e3; log)
:($e2 β€ $e3, $label) => p_constraint!(p, ocp, nothing, e2, e3, label; log)
:($e3 β₯ $e2 β₯ $e1) => p_constraint!(p, ocp, e1, e2, e3; log)
:($e3 β₯ $e2 β₯ $e1, $label) => p_constraint!(p, ocp, e1, e2, e3, label; log)
:($e2 β₯ $e1) => p_constraint!(p, ocp, e1, e2, nothing; log)
:($e2 β₯ $e1, $label) => p_constraint!(p, ocp, e1, e2, nothing, label; log)
# lagrange cost
:(β«($e1) β min) => p_lagrange!(p, ocp, e1, :min; log)
:(-β«($e1) β min) => p_lagrange!(p, ocp, :(-$e1), :min; log)
:($e1 * β«($e2) β min) =>
has(e1, p.t) ?
(return __throw("time $(p.t) must not appear in $e1", p.lnum, p.line)) :
p_lagrange!(p, ocp, :($e1 * $e2), :min; log)
:(β«($e1) β max) => p_lagrange!(p, ocp, e1, :max; log)
:(-β«($e1) β max) => p_lagrange!(p, ocp, :(-$e1), :max; log)
:($e1 * β«($e2) β max) =>
has(e1, p.t) ?
(return __throw("time $(p.t) must not appear in $e1", p.lnum, p.line)) :
p_lagrange!(p, ocp, :($e1 * $e2), :max; log)
# bolza cost
:($e1 + β«($e2) β min) => p_bolza!(p, ocp, e1, e2, :min; log)
:($e1 + $e2 * β«($e3) β min) =>
has(e2, p.t) ?
(return __throw("time $(p.t) must not appear in $e2", p.lnum, p.line)) :
p_bolza!(p, ocp, e1, :($e2 * $e3), :min; log)
:($e1 - β«($e2) β min) => p_bolza!(p, ocp, e1, :(-$e2), :min; log)
:($e1 - $e2 * β«($e3) β min) =>
has(e2, p.t) ?
(return __throw("time $(p.t) must not appear in $e2", p.lnum, p.line)) :
p_bolza!(p, ocp, e1, :(-$e2 * $e3), :min; log)
:($e1 + β«($e2) β max) => p_bolza!(p, ocp, e1, e2, :max; log)
:($e1 + $e2 * β«($e3) β max) =>
has(e2, p.t) ?
(return __throw("time $(p.t) must not appear in $e2", p.lnum, p.line)) :
p_bolza!(p, ocp, e1, :($e2 * $e3), :max; log)
:($e1 - β«($e2) β max) => p_bolza!(p, ocp, e1, :(-$e2), :max; log)
:($e1 - $e2 * β«($e3) β max) =>
has(e2, p.t) ?
(return __throw("time $(p.t) must not appear in $e2", p.lnum, p.line)) :
p_bolza!(p, ocp, e1, :(-$e2 * $e3), :max; log)
:(β«($e2) + $e1 β min) => p_bolza!(p, ocp, e1, e2, :min; log)
:($e2 * β«($e3) + $e1 β min) =>
has(e2, p.t) ?
(return __throw("time $(p.t) must not appear in $e2", p.lnum, p.line)) :
p_bolza!(p, ocp, e1, :($e2 * $e3), :min; log)
:(β«($e2) - $e1 β min) => p_bolza!(p, ocp, :(-$e1), e2, :min; log)
:($e2 * β«($e3) - $e1 β min) =>
has(e2, p.t) ?
(return __throw("time $(p.t) must not appear in $e2", p.lnum, p.line)) :
p_bolza!(p, ocp, :(-$e1), :($e2 * $e3), :min; log)
:(β«($e2) + $e1 β max) => p_bolza!(p, ocp, e1, e2, :max; log)
:($e2 * β«($e3) + $e1 β max) =>
has(e2, p.t) ?
(return __throw("time $(p.t) must not appear in $e2", p.lnum, p.line)) :
p_bolza!(p, ocp, e1, :($e2 * $e3), :max; log)
:(β«($e2) - $e1 β max) => p_bolza!(p, ocp, :(-$e1), e2, :max; log)
:($e2 * β«($e3) - $e1 β max) =>
has(e2, p.t) ?
(return __throw("time $(p.t) must not appear in $e2", p.lnum, p.line)) :
p_bolza!(p, ocp, :(-$e1), :($e2 * $e3), :max; log)
# mayer cost
:($e1 β min) => p_mayer!(p, ocp, e1, :min; log)
:($e1 β max) => p_mayer!(p, ocp, e1, :max; log)
#
_ => begin
if e isa LineNumberNode
p.lnum = p.lnum - 1
e
elseif e isa Expr && e.head == :block
p.lnum = p.lnum - 1
Expr(:block, map(e -> parse!(p, ocp, e; log), e.args)...)
# !!! assumes that map is done sequentially for side effects on p
else
return __throw("unknown syntax", p.lnum, p.line)
end
end
end
end
p_variable!(p, ocp, v, q; components_names = nothing, log = false) = begin
log && println("variable: $v, dim: $q")
v isa Symbol || return __throw("forbidden variable name: $v", p.lnum, p.line)
p.v = v
vv = QuoteNode(v)
qq = q isa Integer ? q : 9
for i β 1:qq
p.aliases[Symbol(v, ctindices(i))] = :($v[$i])
end # make: vβ, vβ... if the variable is named v
for i β 1:qq
p.aliases[Symbol(v, i)] = :($v[$i])
end # make: v1, v2... if the variable is named v
for i β 1:9
p.aliases[Symbol(v, ctupperscripts(i))] = :($v^$i)
end # make: vΒΉ, vΒ²... if the variable is named v
if (isnothing(components_names))
code = :( variable!($ocp, $q, $vv) )
else
qq == length(components_names.args) ||
return __throw("the number of variable components must be $qq", p.lnum, p.line)
for i β 1:qq
p.aliases[components_names.args[i]] = :($v[$i])
end # aliases from names given by the user
ss = QuoteNode(string.(components_names.args))
code = :( variable!($ocp, $q, $vv, $ss) )
end
return __wrap(code, p.lnum, p.line)
end
p_alias!(p, ocp, a, e; log = false) = begin
log && println("alias: $a = $e")
a isa Symbol || return __throw("forbidden alias name: $a", p.lnum, p.line)
aa = QuoteNode(a)
ee = QuoteNode(e)
for i β 1:9
p.aliases[Symbol(a, ctupperscripts(i))] = :($a^$i)
end
p.aliases[a] = e
code = :( LineNumberNode(0, "alias: " * string($aa) * " = " * string($ee)) )
return __wrap(code, p.lnum, p.line)
end
p_time!(p, ocp, t, t0, tf; log = false) = begin
log && println("time: $t, initial time: $t0, final time: $tf")
t isa Symbol || return __throw("forbidden time name: $t", p.lnum, p.line)
p.t = t
p.t0 = t0
p.tf = tf
tt = QuoteNode(t)
code = @match (has(t0, p.v), has(tf, p.v)) begin
(false, false) => :(time!($ocp; t0 = $t0, tf = $tf, name = $tt))
(true, false) => @match t0 begin
:($v1[$i]) && if (v1 == p.v)
end => :(time!($ocp; ind0 = $i, tf = $tf, name = $tt))
:($v1) && if (v1 == p.v)
end => quote
($ocp.variable_dimension β 1) && throw(
IncorrectArgument("variable must be of dimension one for a time"),
)
time!($ocp; ind0 = 1, tf = $tf, name = $tt)
end
_ => return __throw("bad time declaration", p.lnum, p.line)
end
(false, true) => @match tf begin
:($v1[$i]) && if (v1 == p.v)
end => :(time!($ocp; t0 = $t0, indf = $i, name = $tt))
:($v1) && if (v1 == p.v)
end => quote
($ocp.variable_dimension β 1) && throw(
IncorrectArgument("variable must be of dimension one for a time"),
)
time!($ocp; t0 = $t0, indf = 1, name = $tt)
end
_ => return __throw("bad time declaration", p.lnum, p.line)
end
_ => @match (t0, tf) begin
(:($v1[$i]), :($v2[$j])) && if (v1 == v2 == p.v)
end => :(time!($ocp; ind0 = $i, indf = $j, name = $tt))
_ => return __throw("bad time declaration", p.lnum, p.line)
end
end
return __wrap(code, p.lnum, p.line)
end
p_state!(p, ocp, x, n; components_names = nothing, log = false) = begin
log && println("state: $x, dim: $n")
x isa Symbol || return __throw("forbidden state name: $x", p.lnum, p.line)
p.x = x
xx = QuoteNode(x)
nn = n isa Integer ? n : 9
for i β 1:nn
p.aliases[Symbol(x, ctindices(i))] = :($x[$i])
end # Make xβ, xβ... if the state is named x
for i β 1:nn
p.aliases[Symbol(x, i)] = :($x[$i])
end # Make x1, x2... if the state is named x
for i β 1:9
p.aliases[Symbol(x, ctupperscripts(i))] = :($x^$i)
end # Make xΒΉ, xΒ²... if the state is named x
p.aliases[Symbol(Unicode.normalize(string(x, "Μ")))] = :(β($x))
if (isnothing(components_names))
code = :( state!($ocp, $n, $xx) )
else
nn == length(components_names.args) ||
return __throw("the number of state components must be $nn", p.lnum, p.line)
for i β 1:nn
p.aliases[components_names.args[i]] = :($x[$i])
# todo: add aliases for state components (scalar) derivatives
end # Aliases from names given by the user
ss = QuoteNode(string.(components_names.args))
code = :( state!($ocp, $n, $xx, $ss) )
end
return __wrap(code, p.lnum, p.line)
end
p_control!(p, ocp, u, m; components_names = nothing, log = false) = begin
log && println("control: $u, dim: $m")
u isa Symbol || return __throw("forbidden control name: $u", p.lnum, p.line)
p.u = u
uu = QuoteNode(u)
mm = m isa Integer ? m : 9
for i β 1:mm
p.aliases[Symbol(u, ctindices(i))] = :($u[$i])
end # make: uβ, uβ... if the control is named u
for i β 1:mm
p.aliases[Symbol(u, i)] = :($u[$i])
end # make: u1, u2... if the control is named u
for i β 1:9
p.aliases[Symbol(u, ctupperscripts(i))] = :($u^$i)
end # make: uΒΉ, uΒ²... if the control is named u
if (isnothing(components_names))
code = :( control!($ocp, $m, $uu) )
else
mm == length(components_names.args) ||
return __throw("the number of control components must be $mm", p.lnum, p.line)
for i β 1:mm
p.aliases[components_names.args[i]] = :($u[$i])
end # aliases from names given by the user
ss = QuoteNode(string.(components_names.args))
code = :( control!($ocp, $m, $uu, $ss) )
end
return __wrap(code, p.lnum, p.line)
end
p_constraint!(p, ocp, e1, e2, e3, label = gensym(); log = false) = begin
c_type = constraint_type(e2, p.t, p.t0, p.tf, p.x, p.u, p.v)
log && println("constraint ($c_type): $e1 β€ $e2 β€ $e3, ($label)")
label isa Integer && (label = Symbol(:eq, label))
label isa Symbol || return __throw("forbidden label: $label", p.lnum, p.line)
llabel = QuoteNode(label)
code = @match c_type begin
(:initial, rg) =>
:(constraint!($ocp, :initial; rg = $rg, lb = $e1, ub = $e3, label = $llabel))
(:final, rg) =>
:(constraint!($ocp, :final; rg = $rg, lb = $e1, ub = $e3, label = $llabel))
:boundary => begin
gs = gensym()
x0 = gensym()
xf = gensym()
r = gensym()
ee2 = replace_call(e2, p.x, p.t0, x0)
ee2 = replace_call(ee2, p.x, p.tf, xf)
args = [r, x0, xf]
__v_dep(p) && push!(args, p.v)
quote
function $gs($(args...))
@views $r[:] .= $ee2
return nothing
end
constraint!($ocp, :boundary; f = $gs, lb = $e1, ub = $e3, label = $llabel)
end
end
(:control_range, rg) =>
:(constraint!($ocp, :control; rg = $rg, lb = $e1, ub = $e3, label = $llabel))
:control_fun => begin
gs = gensym()
ut = gensym()
r = gensym()
ee2 = replace_call(e2, p.u, p.t, ut)
p.t_dep = p.t_dep || has(ee2, p.t)
args = [r]
__t_dep(p) && push!(args, p.t)
push!(args, ut)
__v_dep(p) && push!(args, p.v)
quote
function $gs($(args...))
@views $r[:] .= $ee2
return nothing
end
constraint!($ocp, :control; f = $gs, lb = $e1, ub = $e3, label = $llabel)
end
end
(:state_range, rg) =>
:(constraint!($ocp, :state; rg = $rg, lb = $e1, ub = $e3, label = $llabel))
:state_fun => begin
gs = gensym()
xt = gensym()
r = gensym()
ee2 = replace_call(e2, p.x, p.t, xt)
p.t_dep = p.t_dep || has(ee2, p.t)
args = [r]
__t_dep(p) && push!(args, p.t)
push!(args, xt)
__v_dep(p) && push!(args, p.v)
quote
function $gs($(args...))
@views $r[:] .= $ee2
return nothing
end
constraint!($ocp, :state; f = $gs, lb = $e1, ub = $e3, label = $llabel)
end
end
(:variable_range, rg) =>
:(constraint!($ocp, :variable; rg = $rg, lb = $e1, ub = $e3, label = $llabel))
:variable_fun => begin
gs = gensym()
r = gensym()
args = [r, p.v]
quote
function $gs($(args...))
@views $r[:] .= $e2
return nothing
end
constraint!($ocp, :variable; f = $gs, lb = $e1, ub = $e3, label = $llabel)
end
end
:mixed => begin
gs = gensym()
xt = gensym()
ut = gensym()
r = gensym()
ee2 = replace_call(e2, [p.x, p.u], p.t, [xt, ut])
p.t_dep = p.t_dep || has(ee2, p.t)
args = [r]
__t_dep(p) && push!(args, p.t)
push!(args, xt, ut)
__v_dep(p) && push!(args, p.v)
quote
function $gs($(args...))
@views $r[:] .= $ee2
return nothing
end
constraint!($ocp, :mixed; f = $gs, lb = $e1, ub = $e3, label = $llabel)
end
end
_ => return __throw("bad constraint declaration", p.lnum, p.line)
end
return __wrap(code, p.lnum, p.line)
end
p_dynamics!(p, ocp, x, t, e, label = nothing; log = false) = begin
xΜ = Symbol(x, "Μ")
log && println("dynamics: $xΜ($t) == $e")
isnothing(label) || return __throw("dynamics cannot be labelled", p.lnum, p.line)
isnothing(p.x) && return __throw("state not yet declared", p.lnum, p.line)
isnothing(p.u) && return __throw("control not yet declared", p.lnum, p.line)
isnothing(p.t) && return __throw("time not yet declared", p.lnum, p.line)
x β p.x && return __throw("wrong state for dynamics", p.lnum, p.line)
t β p.t && return __throw("wrong time for dynamics", p.lnum, p.line)
xt = gensym()
ut = gensym()
e = replace_call(e, [p.x, p.u], p.t, [xt, ut])
p.t_dep = p.t_dep || has(e, t)
gs = gensym()
r = gensym()
args = [r]; __t_dep(p) && push!(args, p.t); push!(args, xt, ut); __v_dep(p) && push!(args, p.v)
code = quote
function $gs($(args...))
@views $r[:] .= $e
return nothing
end
dynamics!($ocp, $gs)
end
return __wrap(code, p.lnum, p.line)
end
p_lagrange!(p, ocp, e, type; log = false) = begin
log && println("objective (Lagrange): β«($e) β $type")
isnothing(p.x) && return __throw("state not yet declared", p.lnum, p.line)
isnothing(p.u) && return __throw("control not yet declared", p.lnum, p.line)
isnothing(p.t) && return __throw("time not yet declared", p.lnum, p.line)
xt = gensym()
ut = gensym()
e = replace_call(e, [p.x, p.u], p.t, [xt, ut])
p.t_dep = p.t_dep || has(e, p.t)
ttype = QuoteNode(type)
gs = gensym()
r = gensym()
args = [r]; __t_dep(p) && push!(args, p.t); push!(args, xt, ut); __v_dep(p) && push!(args, p.v)
code = quote
function $gs($(args...))
@views $r[:] .= $e
return nothing
end
objective!($ocp, :lagrange, $gs, $ttype)
end
return __wrap(code, p.lnum, p.line)
end
p_mayer!(p, ocp, e, type; log = false) = begin
log && println("objective (Mayer): $e β $type")
isnothing(p.x) && return __throw("state not yet declared", p.lnum, p.line)
isnothing(p.t0) && return __throw("time not yet declared", p.lnum, p.line)
isnothing(p.tf) && return __throw("time not yet declared", p.lnum, p.line)
has(e, :β«) && return __throw(
"bad objective declaration resulting in a Mayer term with trailing β«",
p.lnum,
p.line,
)
gs = gensym()
x0 = gensym()
xf = gensym()
r = gensym()
e = replace_call(e, p.x, p.t0, x0)
e = replace_call(e, p.x, p.tf, xf)
ttype = QuoteNode(type)
args = [r, x0, xf]; __v_dep(p) && push!(args, p.v)
code = quote
function $gs($(args...))
@views $r[:] .= $e
return nothing
end
objective!($ocp, :mayer, $gs, $ttype)
end
return __wrap(code, p.lnum, p.line)
end
p_bolza!(p, ocp, e1, e2, type; log = false) = begin
log && println("objective (Bolza): $e1 + β«($e2) β $type")
isnothing(p.x) && return __throw("state not yet declared", p.lnum, p.line)
isnothing(p.t0) && return __throw("time not yet declared", p.lnum, p.line)
isnothing(p.tf) && return __throw("time not yet declared", p.lnum, p.line)
isnothing(p.u) && return __throw("control not yet declared", p.lnum, p.line)
isnothing(p.t) && return __throw("time not yet declared", p.lnum, p.line)
gs1 = gensym()
x0 = gensym()
xf = gensym()
r1 = gensym()
e1 = replace_call(e1, p.x, p.t0, x0)
e1 = replace_call(e1, p.x, p.tf, xf)
args1 = [r1, x0, xf]
__v_dep(p) && push!(args1, p.v)
gs2 = gensym()
xt = gensym()
ut = gensym()
r2 = gensym()
e2 = replace_call(e2, [p.x, p.u], p.t, [xt, ut])
p.t_dep = p.t_dep || has(e2, p.t)
args2 = [r2]
__t_dep(p) && push!(args2, p.t)
push!(args2, xt, ut)
__v_dep(p) && push!(args2, p.v)
ttype = QuoteNode(type)
code = quote
function $gs1($(args1...))
$r1[:] .= $e1
return nothing
end
function $gs2($(args2...))
$r2[:] .= $e2
return nothing
end
objective!($ocp, :bolza, $gs1, $gs2, $ttype)
end
return __wrap(code, p.lnum, p.line)
end
"""
$(TYPEDSIGNATURES)
Redirection to [`Model`](@ref) to avoid confusion with other functions Model from other packages
if imported. This function is used by [`@def`](@ref).
"""
function __OCPModel(args...; kwargs...)
return CTBase.Model(args...; kwargs...)
end
"""
$(TYPEDSIGNATURES)
Define an optimal control problem. One pass parsing of the definition. Can be used writing either
`ocp = @def begin ... end` or `@def ocp begin ... end`. In the second case, setting `log` to `true`
will display the parsing steps.
# Example
```@example
ocp = @def begin
tf β R, variable
t β [ 0, tf ], time
x β RΒ², state
u β R, control
tf β₯ 0
-1 β€ u(t) β€ 1
q = xβ
v = xβ
q(0) == 1
v(0) == 2
q(tf) == 0
v(tf) == 0
0 β€ q(t) β€ 5, (1)
-2 β€ v(t) β€ 3, (2)
xΜ(t) == [ v(t), u(t) ]
tf β min
end
@def ocp begin
tf β R, variable
t β [ 0, tf ], time
x β RΒ², state
u β R, control
tf β₯ 0
-1 β€ u(t) β€ 1
q = xβ
v = xβ
q(0) == 1
v(0) == 2
q(tf) == 0
v(tf) == 0
0 β€ q(t) β€ 5, (1)
-2 β€ v(t) β€ 3, (2)
xΜ(t) == [ v(t), u(t) ]
tf β min
end true # final boolean to show parsing log
```
"""
macro def(e)
ocp = gensym()
code = quote
@def $ocp $e
$ocp
end
esc(code)
end
macro def(ocp, e, log = false)
try
p0 = ParsingInfo()
parse!(p0, ocp, e; log = false) # initial pass to get the dependencies (time and variable)
p = ParsingInfo()
p.t_dep = p0.t_dep
p.v = p0.v
code = parse!(p, ocp, e; log = log)
in_place = true # todo: remove?
init = @match (__t_dep(p), __v_dep(p)) begin
(false, false) => :($ocp = __OCPModel(; in_place = $in_place))
(true, false) => :($ocp = __OCPModel(autonomous = false; in_place = $in_place))
(false, true) => :($ocp = __OCPModel(variable = true; in_place = $in_place))
_ => :($ocp = __OCPModel(autonomous = false, variable = true; in_place = $in_place))
end
ee = QuoteNode(e)
code = Expr(:block, init, code, :($ocp.model_expression = $ee; $ocp))
esc(code)
catch ex
:(throw($ex)) # can be caught by user
end
end | CTBase | https://github.com/control-toolbox/CTBase.jl.git |
|
[
"MIT"
] | 0.14.0 | 68e9ab3053e0b38e8e574f2809dd280c9dafa338 | code | 20657 | # ----------------------------------------------------------------------
#
# Model getters.
#
"""
$(TYPEDSIGNATURES)
Return a 6-tuple of tuples:
- `(ΞΎl, ΞΎ, ΞΎu)` are control constraints
- `(Ξ·l, Ξ·, Ξ·u)` are state constraints
- `(Οl, Ο, Οu)` are mixed constraints
- `(Οl, Ο, Οu)` are boundary constraints
- `(ΞΈl, ΞΈ, ΞΈu)` are variable constraints
- `(ul, uind, uu)` are control linear constraints of a subset of indices
- `(xl, xind, xu)` are state linear constraints of a subset of indices
- `(vl, vind, vu)` are variable linear constraints of a subset of indices
and update information about constraints dimensions of `ocp`. Functions `ΞΎ`, `Ξ·`, `Ο`, `Ο`, `ΞΈ` are used to evaluate the constraints at given time and state, control, or variable values. These functions are in place when the problem is
defined as in place, that is when `is_in_place(ocp)`.
!!! note
- The dimensions of the state and control must be set before calling `nlp_constraints!`.
- For a `Fixed` problem, dimensions associated with constraints on the variable are set to zero.
# Example
```@example
julia> (ΞΎl, ΞΎ, ΞΎu), (Ξ·l, Ξ·, Ξ·u), (Οl, Ο, Οu), (Οl, Ο, Οu), (ΞΈl, ΞΈ, ΞΈu),
(ul, uind, uu), (xl, xind, xu), (vl, vind, vu) = nlp_constraints!(ocp)
```
"""
function nlp_constraints!(ocp::OptimalControlModel)
# we check if the dimensions and times have been set
__check_all_set(ocp)
ControlConstraint_ = is_in_place(ocp) ? ControlConstraint! : ControlConstraint
StateConstraint_ = is_in_place(ocp) ? StateConstraint! : StateConstraint
MixedConstraint_ = is_in_place(ocp) ? MixedConstraint! : MixedConstraint
BoundaryConstraint_ = is_in_place(ocp) ? BoundaryConstraint! : BoundaryConstraint
VariableConstraint_ = is_in_place(ocp) ? VariableConstraint! : VariableConstraint
ΞΎf = Vector{ControlConstraint_}()
ΞΎs = Vector{Int64}()
ΞΎl = Vector{ctNumber}()
ΞΎu = Vector{ctNumber}()
Ξ·f = Vector{StateConstraint_}()
Ξ·s = Vector{Int64}()
Ξ·l = Vector{ctNumber}()
Ξ·u = Vector{ctNumber}()
Οf = Vector{MixedConstraint_}()
Οs = Vector{Int64}()
Οl = Vector{ctNumber}()
Οu = Vector{ctNumber}()
Οf = Vector{BoundaryConstraint_}()
Οs = Vector{Int64}()
Οl = Vector{ctNumber}()
Οu = Vector{ctNumber}()
ΞΈf = Vector{VariableConstraint_}()
ΞΈs = Vector{Int64}()
ΞΈl = Vector{ctNumber}()
ΞΈu = Vector{ctNumber}()
uind = Vector{Int}()
ul = Vector{ctNumber}()
uu = Vector{ctNumber}()
xind = Vector{Int}()
xl = Vector{ctNumber}()
xu = Vector{ctNumber}()
vind = Vector{Int}()
vl = Vector{ctNumber}()
vu = Vector{ctNumber}()
for (_, c) β constraints(ocp)
@match c begin
(type, f::BoundaryConstraint_, lb, ub) && if type β [:initial, :final, :boundary] end => begin
push!(Οf, f)
push!(Οs, length(lb))
append!(Οl, lb)
append!(Οu, ub)
end
(:control, f::ControlConstraint_, lb, ub) => begin
push!(ΞΎf, f)
push!(ΞΎs, length(lb))
append!(ΞΎl, lb)
append!(ΞΎu, ub)
end
(:control, rg, lb, ub) => begin
append!(uind, rg)
append!(ul, lb)
append!(uu, ub)
end
(:state, f::StateConstraint_, lb, ub) => begin
push!(Ξ·f, f)
push!(Ξ·s, length(lb))
append!(Ξ·l, lb)
append!(Ξ·u, ub)
end
(:state, rg, lb, ub) => begin
append!(xind, rg)
append!(xl, lb)
append!(xu, ub)
end
(:mixed, f::MixedConstraint_, lb, ub) => begin
push!(Οf, f)
push!(Οs, length(lb))
append!(Οl, lb)
append!(Οu, ub)
end
(:variable, f::VariableConstraint_, lb, ub) => begin
push!(ΞΈf, f)
push!(ΞΈs, length(lb))
append!(ΞΈl, lb)
append!(ΞΈu, ub)
end
(:variable, rg, lb, ub) => begin
append!(vind, rg)
append!(vl, lb)
append!(vu, ub)
end
_ => error("Internal error")
end
end
@assert length(ΞΎl) == length(ΞΎu)
@assert length(ΞΎf) == length(ΞΎs)
@assert length(Ξ·l) == length(Ξ·u)
@assert length(Ξ·f) == length(Ξ·s)
@assert length(Οl) == length(Οu)
@assert length(Οf) == length(Οs)
@assert length(Οl) == length(Οu)
@assert length(Οf) == length(Οs)
@assert length(ΞΈl) == length(ΞΈu)
@assert length(ΞΈf) == length(ΞΈs)
@assert length(ul) == length(uu)
@assert length(xl) == length(xu)
@assert length(vl) == length(vu)
function ΞΎ(t, u, v) # nonlinear control constraints
dim = length(ΞΎl)
val = zeros(ctNumber, dim)
j = 1
for i β 1:length(ΞΎf)
li = ΞΎs[i]
vali = ΞΎf[i](t, u, v)
val[j:(j + li - 1)] .= vali # .= also allows scalar value for vali
j = j + li
end
return val
end
function ΞΎ!(val, t, u, v) # nonlinear control constraints (in place)
j = 1
for i β 1:length(ΞΎf)
li = ΞΎs[i]
ΞΎf[i](@view(val[j:(j + li - 1)]), t, u, v)
j = j + li
end
return nothing
end
function Ξ·(t, x, v) # nonlinear state constraints
dim = length(Ξ·l)
val = zeros(ctNumber, dim)
j = 1
for i β 1:length(Ξ·f)
li = Ξ·s[i]
vali = Ξ·f[i](t, x, v)
val[j:(j + li - 1)] .= vali # .= also allows scalar value for vali
j = j + li
end
return val
end
function Ξ·!(val, t, x, v) # nonlinear state constraints (in place)
j = 1
for i β 1:length(Ξ·f)
li = Ξ·s[i]
Ξ·f[i](@view(val[j:(j + li - 1)]), t, x, v)
j = j + li
end
return nothing
end
function Ο(t, x, u, v) # nonlinear mixed constraints
dim = length(Οl)
val = zeros(ctNumber, dim)
j = 1
for i β 1:length(Οf)
li = Οs[i]
vali = Οf[i](t, x, u, v)
val[j:(j + li - 1)] .= vali # .= also allows scalar value for vali
j = j + li
end
return val
end
function Ο!(val, t, x, u, v) # nonlinear mixed constraints (in place)
j = 1
for i β 1:length(Οf)
li = Οs[i]
Οf[i](@view(val[j:(j + li - 1)]), t, x, u, v)
j = j + li
end
return nothing
end
function Ο(x0, xf, v) # nonlinear boundary constraints
dim = length(Οl)
val = zeros(ctNumber, dim)
j = 1
for i β 1:length(Οf)
li = Οs[i]
vali = Οf[i](x0, xf, v)
val[j:(j + li - 1)] .= vali # .= also allows scalar value for vali
j = j + li
end
return val
end
function Ο!(val, x0, xf, v) # nonlinear boundary constraints
j = 1
for i β 1:length(Οf)
li = Οs[i]
Οf[i](@view(val[j:(j + li - 1)]), x0, xf, v)
j = j + li
end
return nothing
end
function ΞΈ(v) # nonlinear variable constraints
dim = length(ΞΈl)
val = zeros(ctNumber, dim)
j = 1
for i β 1:length(ΞΈf)
li = ΞΈs[i]
vali = ΞΈf[i](v)
val[j:(j + li - 1)] .= vali # .= also allows scalar value for vali
j = j + li
end
return val
end
function ΞΈ!(val, v) # nonlinear variable constraints
j = 1
for i β 1:length(ΞΈf)
li = ΞΈs[i]
ΞΈf[i](@view(val[j:(j + li - 1)]), v)
j = j + li
end
return nothing
end
ocp.dim_control_constraints = length(ΞΎl)
ocp.dim_state_constraints = length(Ξ·l)
ocp.dim_mixed_constraints = length(Οl)
ocp.dim_boundary_constraints = length(Οl)
ocp.dim_variable_constraints = length(ΞΈl)
ocp.dim_control_range = length(ul)
ocp.dim_state_range = length(xl)
ocp.dim_variable_range = length(vl)
ΞΎ_ = is_in_place(ocp) ? ΞΎ! : ΞΎ
Ξ·_ = is_in_place(ocp) ? Ξ·! : Ξ·
Ο_ = is_in_place(ocp) ? Ο! : Ο
Ο_ = is_in_place(ocp) ? Ο! : Ο
ΞΈ_ = is_in_place(ocp) ? ΞΈ! : ΞΈ
return (ΞΎl, ΞΎ_, ΞΎu),
(Ξ·l, Ξ·_, Ξ·u),
(Οl, Ο_, Οu),
(Οl, Ο_, Οu),
(ΞΈl, ΞΈ_, ΞΈu),
(ul, uind, uu),
(xl, xind, xu),
(vl, vind, vu)
end
"""
$(TYPEDSIGNATURES)
Return the constraints of the ocp or nothing.
"""
function constraints(ocp::OptimalControlModel)
return ocp.constraints
end
"""
$(TYPEDSIGNATURES)
Return the labels of the constraints as a `Base.keys`.
"""
function constraints_labels(ocp::OptimalControlModel)
return keys(ocp.constraints)
end
"""
$(TYPEDSIGNATURES)
Retrieve a labeled constraint. The result is a function associated with the constraint
computation (not taking into account provided value / bounds).
# Example
```@example
julia> constraint!(ocp, :initial, 0, :c0)
julia> c = constraint(ocp, :c0)
julia> c(1)
1
```
"""
function constraint(
ocp::OptimalControlModel{T, V},
label::Symbol,
) where {T <: TimeDependence, V <: VariableDependence}
con = ocp.constraints[label]
BoundaryConstraint_ = is_in_place(ocp) ? BoundaryConstraint! : BoundaryConstraint
ControlConstraint_ = is_in_place(ocp) ? ControlConstraint! : ControlConstraint
StateConstraint_ = is_in_place(ocp) ? StateConstraint! : StateConstraint
MixedConstraint_ = is_in_place(ocp) ? MixedConstraint! : MixedConstraint
VariableConstraint_ = is_in_place(ocp) ? VariableConstraint! : VariableConstraint
@match con begin
(:initial, f::BoundaryConstraint_, _, _) => return f
(:final, f::BoundaryConstraint_, _, _) => return f
(:boundary, f::BoundaryConstraint_, _, _) => return f
(:control, f::ControlConstraint_, _, _) => return f
(:control, rg, _, _) => begin
C = @match ocp begin
::OptimalControlModel{Autonomous, Fixed} => is_in_place(ocp) ?
ControlConstraint!((r, u) -> (@views r[:] .= u[rg]; nothing), T, V) : # todo: CC!{T, V}(fun) syntax?
ControlConstraint(u -> u[rg], T, V)
::OptimalControlModel{Autonomous, NonFixed} => is_in_place(ocp) ?
ControlConstraint!((r, u, v) -> (@views r[:] .= u[rg]; nothing), T, V) :
ControlConstraint((u, v) -> u[rg], T, V)
::OptimalControlModel{NonAutonomous, Fixed} => is_in_place(ocp) ?
ControlConstraint!((r, t, u) -> (@views r[:] .= u[rg]; nothing), T, V) :
ControlConstraint((t, u) -> u[rg], T, V)
::OptimalControlModel{NonAutonomous, NonFixed} => is_in_place(ocp) ?
ControlConstraint!((r, t, u, v) -> (@views r[:] .= u[rg]; nothing), T, V) :
ControlConstraint((t, u, v) -> u[rg], T, V)
_ => nothing
end
return C
end
(:state, f::StateConstraint_, _, _) => return f
(:state, rg, _, _) => begin
S = @match ocp begin
::OptimalControlModel{Autonomous, Fixed} => is_in_place(ocp) ?
StateConstraint!((r, x) -> (@views r[:] .= x[rg]; nothing), T, V) :
StateConstraint(x -> x[rg], T, V)
::OptimalControlModel{Autonomous, NonFixed} => is_in_place(ocp) ?
StateConstraint!((r, x, v) -> (@views r[:] .= x[rg]; nothing), T, V) :
StateConstraint((x, v) -> x[rg], T, V)
::OptimalControlModel{NonAutonomous, Fixed} => is_in_place(ocp) ?
StateConstraint!((r, t, x) -> (@views r[:] .= x[rg]; nothing), T, V) :
StateConstraint((t, x) -> x[rg], T, V)
::OptimalControlModel{NonAutonomous, NonFixed} => is_in_place(ocp) ?
StateConstraint!((r, t, x, v) -> (@views r[:] .= x[rg]; nothing), T, V) :
StateConstraint((t, x, v) -> x[rg], T, V)
_ => nothing
end
return S
end
(:mixed, f::MixedConstraint_, _, _) => return f
(:variable, f::VariableConstraint_, _, _) => return f
(:variable, rg, _, _) => return ( is_in_place(ocp) ?
VariableConstraint!((r, v) -> (@views r[:] .= v[rg]; nothing)) :
VariableConstraint(v -> v[rg]) )
_ => error("Internal error")
end
end
"""
$(TYPEDSIGNATURES)
Return the dimension of nonlinear state constraints (`nothing` if not knonw).
Information is updated after `nlp_constraints!` is called.
"""
dim_state_constraints(ocp::OptimalControlModel) = ocp.dim_state_constraints
"""
$(TYPEDSIGNATURES)
Return the dimension of nonlinear control constraints (`nothing` if not knonw).
Information is updated after `nlp_constraints!` is called.
"""
dim_control_constraints(ocp::OptimalControlModel) = ocp.dim_control_constraints
"""
$(TYPEDSIGNATURES)
Return the dimension of nonlinear mixed constraints (`nothing` if not knonw).
Information is updated after `nlp_constraints!` is called.
"""
dim_mixed_constraints(ocp::OptimalControlModel) = ocp.dim_mixed_constraints
"""
$(TYPEDSIGNATURES)
Return the dimension of nonlinear path (state + control + mixed) constraints (`nothing` if one of them is not knonw).
Information is updated after `nlp_constraints!` is called.
"""
function dim_path_constraints(ocp::OptimalControlModel)
isnothing(ocp.dim_control_constraints) && return nothing
isnothing(ocp.dim_state_constraints) && return nothing
isnothing(ocp.dim_mixed_constraints) && return nothing
return ocp.dim_state_constraints + ocp.dim_control_constraints + ocp.dim_mixed_constraints
end
"""
$(TYPEDSIGNATURES)
Return the dimension of the boundary constraints (`nothing` if not knonw).
Information is updated after `nlp_constraints!` is called.
"""
dim_boundary_constraints(ocp::OptimalControlModel) = ocp.dim_boundary_constraints
"""
$(TYPEDSIGNATURES)
Return the dimension of nonlinear variable constraints (`nothing` if not knonw).
Information is updated after `nlp_constraints!` is called.
"""
dim_variable_constraints(ocp::OptimalControlModel) = ocp.dim_variable_constraints
"""
$(TYPEDSIGNATURES)
Return the dimension of range constraints on state (`nothing` if not knonw).
Information is updated after `nlp_constraints!` is called.
"""
dim_state_range(ocp::OptimalControlModel) = ocp.dim_state_range
"""
$(TYPEDSIGNATURES)
Return the dimension of range constraints on control (`nothing` if not knonw).
Information is updated after `nlp_constraints!` is called.
"""
dim_control_range(ocp::OptimalControlModel) = ocp.dim_control_range
"""
$(TYPEDSIGNATURES)
Return the dimension of range constraints on variable (`nothing` if not knonw).
Information is updated after `nlp_constraints!` is called.
"""
dim_variable_range(ocp::OptimalControlModel) = ocp.dim_variable_range
"""
$(TYPEDSIGNATURES)
Return the model expression of the optimal control problem or `nothing`.
"""
model_expression(ocp::OptimalControlModel) = ocp.model_expression
"""
$(TYPEDSIGNATURES)
Return the initial time of the optimal control problem or `nothing`.
"""
initial_time(ocp::OptimalControlModel) = ocp.initial_time
"""
$(TYPEDSIGNATURES)
Return the name of the initial time of the optimal control problem or `nothing`.
"""
initial_time_name(ocp::OptimalControlModel) = ocp.initial_time_name
"""
$(TYPEDSIGNATURES)
Return the final time of the optimal control problem or `nothing`.
"""
final_time(ocp::OptimalControlModel) = ocp.final_time
"""
$(TYPEDSIGNATURES)
Return the name of the final time of the optimal control problem or `nothing`.
"""
final_time_name(ocp::OptimalControlModel) = ocp.final_time_name
"""
$(TYPEDSIGNATURES)
Return the name of the time component of the optimal control problem or `nothing`.
"""
time_name(ocp::OptimalControlModel) = ocp.time_name
"""
$(TYPEDSIGNATURES)
Return the dimention of the control of the optimal control problem or `nothing`.
"""
control_dimension(ocp::OptimalControlModel) = ocp.control_dimension
"""
$(TYPEDSIGNATURES)
Return the names of the components of the control of the optimal control problem or `nothing`.
"""
control_components_names(ocp::OptimalControlModel) = ocp.control_components_names
"""
$(TYPEDSIGNATURES)
Return the name of the control of the optimal control problem or `nothing`.
"""
control_name(ocp::OptimalControlModel) = ocp.control_name
"""
$(TYPEDSIGNATURES)
Return the dimension of the state of the optimal control problem or `nothing`.
"""
state_dimension(ocp::OptimalControlModel) = ocp.state_dimension
"""
$(TYPEDSIGNATURES)
Return the names of the components of the state of the optimal control problem or `nothing`.
"""
state_components_names(ocp::OptimalControlModel) = ocp.state_components_names
"""
$(TYPEDSIGNATURES)
Return the name of the state of the optimal control problem or `nothing`.
"""
state_name(ocp::OptimalControlModel) = ocp.state_name
"""
$(TYPEDSIGNATURES)
Return the dimension of the variable of the optimal control problem or `nothing`.
"""
variable_dimension(ocp::OptimalControlModel) = ocp.variable_dimension
"""
$(TYPEDSIGNATURES)
Return the names of the components of the variable of the optimal control problem or `nothing`.
"""
variable_components_names(ocp::OptimalControlModel) = ocp.variable_components_names
"""
$(TYPEDSIGNATURES)
Return the name of the variable of the optimal control problem or `nothing`.
"""
variable_name(ocp::OptimalControlModel) = ocp.variable_name
"""
$(TYPEDSIGNATURES)
Return the Lagrange part of the cost of the optimal control problem or `nothing`.
"""
lagrange(ocp::OptimalControlModel) = ocp.lagrange
"""
$(TYPEDSIGNATURES)
Return the Mayer part of the cost of the optimal control problem or `nothing`.
"""
mayer(ocp::OptimalControlModel) = ocp.mayer
"""
$(TYPEDSIGNATURES)
Return the criterion (`:min` or `:max`) of the optimal control problem or `nothing`.
"""
criterion(ocp::OptimalControlModel) = ocp.criterion
"""
$(TYPEDSIGNATURES)
Return the dynamics of the optimal control problem or `nothing`.
"""
dynamics(ocp::OptimalControlModel) = ocp.dynamics
"""
$(TYPEDSIGNATURES)
Return `true` if the model is autonomous.
"""
is_autonomous(ocp::OptimalControlModel{Autonomous, <:VariableDependence}) = true
is_autonomous(ocp::OptimalControlModel{NonAutonomous, <:VariableDependence}) = false
"""
$(TYPEDSIGNATURES)
Return `true` if the model has been defined as time dependent.
"""
is_time_dependent(ocp::OptimalControlModel) = !is_autonomous(ocp)
"""
$(TYPEDSIGNATURES)
Return `true` if the model has been defined as time independent.
"""
is_time_independent(ocp::OptimalControlModel) = !is_time_dependent(ocp)
"""
$(TYPEDSIGNATURES)
Return `true` if the criterion type of `ocp` is `:min`.
"""
is_min(ocp::OptimalControlModel) = criterion(ocp) == :min
"""
$(TYPEDSIGNATURES)
Return `true` if the criterion type of `ocp` is `:max`.
"""
is_max(ocp::OptimalControlModel) = !is_min(ocp)
"""
$(TYPEDSIGNATURES)
Return `true` if the model is fixed (= has no variable).
"""
is_fixed(ocp::OptimalControlModel{<:TimeDependence, Fixed}) = true
is_fixed(ocp::OptimalControlModel{<:TimeDependence, NonFixed}) = false
"""
$(TYPEDSIGNATURES)
Return `true` if the model has been defined as variable dependent.
"""
is_variable_dependent(ocp::OptimalControlModel) = !is_fixed(ocp)
"""
$(TYPEDSIGNATURES)
Return `true` if the model has been defined as variable independent.
"""
is_variable_independent(ocp::OptimalControlModel) = !is_variable_dependent(ocp)
"""
$(TYPEDSIGNATURES)
Return `true` if functions defining the ocp are in-place. Return nothing if this information has not yet been set.
"""
is_in_place(ocp::OptimalControlModel) = ocp.in_place
"""
$(TYPEDSIGNATURES)
Return `true` if the model has been defined with free initial time.
"""
has_free_initial_time(ocp::OptimalControlModel) = (typeof(initial_time(ocp)) == Index)
"""
$(TYPEDSIGNATURES)
Return `true` if the model has been defined with free final time.
"""
has_free_final_time(ocp::OptimalControlModel) = (typeof(final_time(ocp)) == Index)
"""
$(TYPEDSIGNATURES)
Return `true` if the model has been defined with lagrange cost.
"""
has_lagrange_cost(ocp::OptimalControlModel) = !isnothing(lagrange(ocp))
"""
$(TYPEDSIGNATURES)
Return `true` if the model has been defined with mayer cost.
"""
has_mayer_cost(ocp::OptimalControlModel) = !isnothing(mayer(ocp))
| CTBase | https://github.com/control-toolbox/CTBase.jl.git |
|
[
"MIT"
] | 0.14.0 | 68e9ab3053e0b38e8e574f2809dd280c9dafa338 | code | 29444 | # ----------------------------------------------------------------------
#
# Interaction with the Model that affect it. Setters / Constructors.
#
"""
$(TYPEDSIGNATURES)
Set the model expression of the optimal control problem or `nothing`.
"""
model_expression!(ocp::OptimalControlModel, model_expression::Expr) =
(ocp.model_expression = model_expression; nothing)
"""
$(TYPEDSIGNATURES)
Return a new `OptimalControlModel` instance, that is a model of an optimal control problem.
The model is defined by the following optional keyword argument:
- `autonomous`: either `true` or `false`. Default is `true`.
- `variable`: either `true` or `false`. Default is `false`.
# Examples
```@example
julia> ocp = Model()
julia> ocp = Model(autonomous=false)
julia> ocp = Model(autonomous=false, variable=true)
```
!!! note
- If the time dependence of the model is defined as nonautonomous, then, the dynamics function, the lagrange cost and the path constraints must be defined as functions of time and state, and possibly control. If the model is defined as autonomous, then, the dynamics function, the lagrange cost and the path constraints must be defined as functions of state, and possibly control.
"""
function Model(; autonomous::Bool = true, variable::Bool = false, in_place::Bool = false)
time_dependence = autonomous ? Autonomous : NonAutonomous
variable_dependence = variable ? NonFixed : Fixed
ocp = OptimalControlModel{time_dependence, variable_dependence}()
ocp.in_place = in_place
return ocp
end
"""
$(TYPEDSIGNATURES)
Return a new `OptimalControlModel` instance, that is a model of an optimal control problem.
The model is defined by the following argument:
- `dependencies`: either `Autonomous` or `NonAutonomous`. Default is `Autonomous`. And either `NonFixed` or `Fixed`. Default is `Fixed`.
# Examples
```@example
julia> ocp = Model()
julia> ocp = Model(NonAutonomous)
julia> ocp = Model(Autonomous, NonFixed)
```
!!! note
- If the time dependence of the model is defined as nonautonomous, then, the dynamics function, the lagrange cost and the path constraints must be defined as functions of time and state, and possibly control. If the model is defined as autonomous, then, the dynamics function, the lagrange cost and the path constraints must be defined as functions of state, and possibly control.
"""
function Model(
dependencies::DataType...; in_place::Bool = false,
)::OptimalControlModel{<:TimeDependence, <:VariableDependence}
# some checkings:
__check_dependencies(dependencies)
time_dependence = NonAutonomous β dependencies ? NonAutonomous : Autonomous
variable_dependence = NonFixed β dependencies ? NonFixed : Fixed
return OptimalControlModel{time_dependence, variable_dependence}(; in_place = in_place)
end
"""
$(TYPEDSIGNATURES)
Define the variable dimension and possibly the names of each component.
!!! note
You can use variable! once to set the variable dimension when the model is `NonFixed`.
# Examples
```@example
julia> variable!(ocp, 1, "v")
julia> variable!(ocp, 2, "v", [ "vβ", "vβ" ])
```
"""
function variable!(
ocp::OptimalControlModel,
q::Dimension,
name::String = __variable_name(),
components_names::Vector{String} = __variable_components_names(q, name),
)
# checkings
is_fixed(ocp) &&
throw(UnauthorizedCall("the ocp has no variable, you cannot use variable! function."))
__is_variable_set(ocp) && throw(UnauthorizedCall("the variable has already been set."))
(q > 1) &&
(size(components_names, 1) β q) &&
throw(
IncorrectArgument(
"the number of variable names must be equal to the variable dimension",
),
)
ocp.variable_dimension = q
ocp.variable_components_names = components_names
ocp.variable_name = name
return nothing
end
function variable!(
ocp::OptimalControlModel,
q::Dimension,
name::Symbol,
components_names::Vector{Symbol},
)
variable!(ocp, q, string(name), string.(components_names))
end
function variable!(
ocp::OptimalControlModel,
q::Dimension,
name::Symbol,
components_names::Vector{String},
)
variable!(ocp, q, string(name), components_names)
end
function variable!(ocp::OptimalControlModel, q::Dimension, name::Symbol)
variable!(ocp, q, string(name))
end
"""
$(TYPEDSIGNATURES)
Define the state dimension and possibly the names of each component.
!!! note
You must use state! only once to set the state dimension.
# Examples
```@example
julia> state!(ocp, 1)
julia> state_dimension(ocp)
1
julia> state_components_names(ocp)
["x"]
julia> state!(ocp, 1, "y")
julia> state_dimension(ocp)
1
julia> state_components_names(ocp)
["y"]
julia> state!(ocp, 2)
julia> state_dimension(ocp)
2
julia> state_components_names(ocp)
["xβ", "xβ"]
julia> state!(ocp, 2, :y)
julia> state_dimension(ocp)
2
julia> state_components_names(ocp)
["yβ", "yβ"]
julia> state!(ocp, 2, "y")
julia> state_dimension(ocp)
2
julia> state_components_names(ocp)
["yβ", "yβ"]
```
"""
function state!(
ocp::OptimalControlModel,
n::Dimension,
name::String = __state_name(),
components_names::Vector{String} = __state_components_names(n, name),
)
# checkings
__is_state_set(ocp) && throw(UnauthorizedCall("the state has already been set."))
(n > 1) &&
(size(components_names, 1) β n) &&
throw(IncorrectArgument("the number of state names must be equal to the state dimension"))
ocp.state_dimension = n
ocp.state_components_names = components_names
ocp.state_name = name
return nothing
end
function state!(
ocp::OptimalControlModel,
n::Dimension,
name::Symbol,
components_names::Vector{Symbol},
)
state!(ocp, n, string(name), string.(components_names))
end
function state!(
ocp::OptimalControlModel,
n::Dimension,
name::Symbol,
components_names::Vector{String},
)
state!(ocp, n, string(name), components_names)
end
function state!(ocp::OptimalControlModel, n::Dimension, name::Symbol)
state!(ocp, n, string(name))
end
"""
$(TYPEDSIGNATURES)
Define the control dimension and possibly the names of each coordinate.
!!! note
You must use control! only once to set the control dimension.
# Examples
```@example
julia> control!(ocp, 1)
julia> control_dimension(ocp)
1
julia> control_components_names(ocp)
["u"]
julia> control!(ocp, 1, "v")
julia> control_dimension(ocp)
1
julia> control_components_names(ocp)
["v"]
julia> control!(ocp, 2)
julia> control_dimension(ocp)
2
julia> control_components_names(ocp)
["uβ", "uβ"]
julia> control!(ocp, 2, :v)
julia> control_dimension(ocp)
2
julia> control_components_names(ocp)
["vβ", "vβ"]
julia> control!(ocp, 2, "v")
julia> control_dimension(ocp)
2
julia> control_components_names(ocp)
["vβ", "vβ"]
```
"""
function control!(
ocp::OptimalControlModel,
m::Dimension,
name::String = __control_name(),
components_names::Vector{String} = __control_components_names(m, name),
)
# checkings
__is_control_set(ocp) && throw(UnauthorizedCall("the control has already been set."))
(m > 1) &&
(size(components_names, 1) β m) &&
throw(
IncorrectArgument("the number of control names must be equal to the control dimension"),
)
ocp.control_dimension = m
ocp.control_components_names = components_names
ocp.control_name = name
return nothing
end
function control!(
ocp::OptimalControlModel,
m::Dimension,
name::Symbol,
components_names::Vector{Symbol},
)
control!(ocp, m, string(name), string.(components_names))
end
function control!(
ocp::OptimalControlModel,
m::Dimension,
name::Symbol,
components_names::Vector{String},
)
control!(ocp, m, string(name), components_names)
end
function control!(ocp::OptimalControlModel, m::Dimension, name::Symbol)
control!(ocp, m, string(name))
end
"""
$(TYPEDSIGNATURES)
Set the initial and final times. We denote by t0 the initial time and tf the final time.
The optimal control problem is denoted ocp.
When a time is free, then one must provide the corresponding index of the ocp variable.
!!! note
You must use time! only once to set either the initial or the final time, or both.
# Examples
```@example
julia> time!(ocp, t0=0, tf=1 ) # Fixed t0 and fixed tf
julia> time!(ocp, t0=0, indf=2) # Fixed t0 and free tf
julia> time!(ocp, ind0=2, tf=1 ) # Free t0 and fixed tf
julia> time!(ocp, ind0=2, indf=3) # Free t0 and free tf
```
When you plot a solution of an optimal control problem, the name of the time variable appears.
By default, the name is "t".
Consider you want to set the name of the time variable to "s".
```@example
julia> time!(ocp, t0=0, tf=1, name="s") # name is a String
# or
julia> time!(ocp, t0=0, tf=1, name=:s ) # name is a Symbol
```
"""
function time!(
ocp::OptimalControlModel{<:TimeDependence, VT};
t0::Union{Time, Nothing} = nothing,
tf::Union{Time, Nothing} = nothing,
ind0::Union{Integer, Nothing} = nothing,
indf::Union{Integer, Nothing} = nothing,
name::Union{String, Symbol} = __time_name(),
) where {VT}
# check if the problem has been set to Variable or NonVariable
(VT == NonFixed) && (!isnothing(ind0) || !isnothing(indf)) && __check_variable_set(ocp)
# check if indices are in 1:q
q = variable_dimension(ocp)
!isnothing(ind0) &&
!(1 β€ ind0 β€ q) &&
throw(IncorrectArgument("the index of t0 variable must be contained in 1:$q"))
!isnothing(indf) &&
!(1 β€ indf β€ q) &&
throw(IncorrectArgument("the index of tf variable must be contained in 1:$q"))
# check if the function has been already called
__is_time_set(ocp) && throw(UnauthorizedCall("the time has already been set."))
# check consistency
!isnothing(t0) &&
!isnothing(ind0) &&
throw(
IncorrectArgument(
"Providing t0 and ind0 has no sense. The initial time cannot be fixed and free.",
),
)
isnothing(t0) &&
isnothing(ind0) &&
throw(
IncorrectArgument(
"Please either provide the value of the initial time t0 (if fixed) or its index in the variable of ocp (if free).",
),
)
!isnothing(tf) &&
!isnothing(indf) &&
throw(
IncorrectArgument(
"Providing tf and indf has no sense. The final time cannot be fixed and free.",
),
)
isnothing(tf) &&
isnothing(indf) &&
throw(
IncorrectArgument(
"Please either provide the value of the final time tf (if fixed) or its index in the variable of ocp (if free).",
),
)
VT == Fixed &&
!isnothing(ind0) &&
throw(
IncorrectArgument(
"You cannot have the initial time free (ind0 is provided) and the ocp non variable.",
),
)
VT == Fixed &&
!isnothing(indf) &&
throw(
IncorrectArgument(
"You cannot have the final time free (indf is provided) and the ocp non variable.",
),
)
#
name = name isa String ? name : string(name)
# core
@match (t0, ind0, tf, indf) begin
(::Time, ::Nothing, ::Time, ::Nothing) => begin # (t0, tf)
ocp.initial_time = t0
ocp.final_time = tf
ocp.time_name = name
ocp.initial_time_name = t0 isa Integer ? string(t0) : string(round(t0, digits = 2))
ocp.final_time_name = tf isa Integer ? string(tf) : string(round(tf, digits = 2))
end
(::Nothing, ::Integer, ::Time, ::Nothing) => begin # (ind0, tf)
ocp.initial_time = Index(ind0)
ocp.final_time = tf
ocp.time_name = name
ocp.initial_time_name = variable_components_names(ocp)[ind0]
ocp.final_time_name = tf isa Integer ? string(tf) : string(round(tf, digits = 2))
end
(::Time, ::Nothing, ::Nothing, ::Integer) => begin # (t0, indf)
ocp.initial_time = t0
ocp.final_time = Index(indf)
ocp.time_name = name
ocp.initial_time_name = t0 isa Integer ? string(t0) : string(round(t0, digits = 2))
ocp.final_time_name = variable_components_names(ocp)[indf]
end
(::Nothing, ::Integer, ::Nothing, ::Integer) => begin # (ind0, indf)
ocp.initial_time = Index(ind0)
ocp.final_time = Index(indf)
ocp.time_name = name
ocp.initial_time_name = variable_components_names(ocp)[ind0]
ocp.final_time_name = variable_components_names(ocp)[indf]
end
_ => throw(IncorrectArgument("Provided arguments are inconsistent."))
end
return nothing
end
"""
$(TYPEDSIGNATURES)
Add a constraint to an optimal control problem, denoted `ocp`.
!!! note
- The state, control and variable dimensions must be set before. Use state!, control! and variable!.
- The initial and final times must be set before. Use time!.
- When an element is of dimension 1, consider it as a scalar.
You can add an `:initial`, `:final`, `:control`, `:state` or `:variable` box constraint (whole range).
# Range constraint on the state, control or variable
You can add an `:initial`, `:final`, `:control`, `:state` or `:variable` box constraint on a range of it, that is only on some components. If not range is specified, then the constraint is on the whole range.
We denote by `x`, `u` and `v` respectively the state, control and variable.
We denote by `n`, `m` and `q` respectively the dimension of the state, control and variable. The range of the constraint must be contained in 1:n if the constraint is on the state, or 1:m if the constraint is on the control, or 1:q if the constraint is on the variable.
## Examples
```@example
julia> constraint!(ocp, :initial; rg=1:2:5, lb=[ 0, 0, 0 ], ub=[ 1, 2, 1 ])
julia> constraint!(ocp, :initial; rg=2:3, lb=[ 0, 0 ], ub=[ 1, 2 ])
julia> constraint!(ocp, :final; rg=1, lb=0, ub=2)
julia> constraint!(ocp, :control; rg=1, lb=0, ub=2)
julia> constraint!(ocp, :state; rg=2:3, lb=[ 0, 0 ], ub=[ 1, 2 ])
julia> constraint!(ocp, :variable; rg=1:2, lb=[ 0, 0 ], ub=[ 1, 2 ])
julia> constraint!(ocp, :initial; lb=[ 0, 0, 0 ]) # [ 0, 0, 0 ] β€ x(t0), dim(x) = 3
julia> constraint!(ocp, :initial; lb=[ 0, 0, 0 ], ub=[ 1, 2, 1 ]) # [ 0, 0, 0 ] β€ x(t0) β€ [ 1, 2, 1 ], dim(x) = 3
julia> constraint!(ocp, :final; lb=-1, ub=1) # -1 β€ x(tf) β€ 1, dim(x) = 1
julia> constraint!(ocp, :control; lb=0, ub=2) # 0 β€ u(t) β€ 2, t β [t0, tf], dim(u) = 1
julia> constraint!(ocp, :state; lb=[ 0, 0 ], ub=[ 1, 2 ]) # [ 0, 0 ] β€ x(t) β€ [ 1, 2 ], t β [t0, tf], dim(x) = 2
julia> constraint!(ocp, :variable; lb=[ 0, 0 ], ub=[ 1, 2 ]) # [ 0, 0 ] β€ v β€ [ 1, 2 ], dim(v) = 2
```
# Functional constraint
You can add a `:boundary`, `:control`, `:state`, `:mixed` or `:variable` box functional constraint.
## Examples
```@example
# variable independent ocp
julia> constraint!(ocp, :boundary; f = (x0, xf) -> x0[3]+xf[2], lb=0, ub=1)
# variable dependent ocp
julia> constraint!(ocp, :boundary; f = (x0, xf, v) -> x0[3]+xf[2]*v[1], lb=0, ub=1)
# time independent and variable independent ocp
julia> constraint!(ocp, :control; f = u -> 2u, lb=0, ub=1)
julia> constraint!(ocp, :state; f = x -> x-1, lb=[ 0, 0, 0 ], ub=[ 1, 2, 1 ])
julia> constraint!(ocp, :mixed; f = (x, u) -> x[1]-u, lb=0, ub=1)
# time dependent and variable independent ocp
julia> constraint!(ocp, :control; f = (t, u) -> 2u, lb=0, ub=1)
julia> constraint!(ocp, :state; f = (t, x) -> t * x, lb=[ 0, 0, 0 ], ub=[ 1, 2, 1 ])
julia> constraint!(ocp, :mixed; f = (t, x, u) -> x[1]-u, lb=0, ub=1)
# time independent and variable dependent ocp
julia> constraint!(ocp, :control; f = (u, v) -> 2u * v[1], lb=0, ub=1)
julia> constraint!(ocp, :state; f = (x, v) -> x * v[1], lb=[ 0, 0, 0 ], ub=[ 1, 2, 1 ])
julia> constraint!(ocp, :mixed; f = (x, u, v) -> x[1]-v[2]*u, lb=0, ub=1)
# time dependent and variable dependent ocp
julia> constraint!(ocp, :control; f = (t, u, v) -> 2u+v[2], lb=0, ub=1)
julia> constraint!(ocp, :state; f = (t, x, v) -> x-t*v[1], lb=[ 0, 0, 0 ], ub=[ 1, 2, 1 ])
julia> constraint!(ocp, :mixed; f = (t, x, u, v) -> x[1]*v[2]-u, lb=0, ub=1)
```
"""
function constraint!(
ocp::OptimalControlModel{T, V},
type::Symbol;
rg::Union{OrdinalRange{<:Integer}, Index, Integer, Nothing} = nothing,
f::Union{Function, Nothing} = nothing,
lb::Union{ctVector, Nothing} = nothing,
ub::Union{ctVector, Nothing} = nothing,
val::Union{ctVector, Nothing} = nothing,
label::Symbol = __constraint_label(),
) where {T <: TimeDependence, V <: VariableDependence}
__check_all_set(ocp)
type == :variable &&
is_fixed(ocp) &&
throw(
UnauthorizedCall(
"the ocp has no variable" *
", you cannot use constraint! function with type=:variable.",
),
)
label β constraints_labels(ocp) &&
throw(UnauthorizedCall("the constraint named " * String(label) * " already exists."))
isnothing(val) &&
isnothing(lb) &&
isnothing(ub) &&
throw(
UnauthorizedCall(
"Calling the constraint! function without any bounds is not authorized.",
),
)
# value for equality constraint
# if val is not nothing then lb and ub should be nothing
!isnothing(val) &&
(!isnothing(lb) || !isnothing(ub)) &&
throw(UnauthorizedCall("If val is provided then lb and ub must not be given."))
if !isnothing(val)
lb = val
ub = val
end
# bounds
isnothing(lb) && (lb = -Inf * (size(ub, 1) == 1 ? 1 : ones(eltype(ub), size(ub, 1))))
isnothing(ub) && (ub = Inf * (size(lb, 1) == 1 ? 1 : ones(eltype(lb), size(lb, 1))))
# dimensions
n = state_dimension(ocp)
m = control_dimension(ocp)
q = variable_dimension(ocp)
# range
(typeof(rg) <: Int) && (rg = Index(rg)) # todo: scalar range
# core
BoundaryConstraint_ = is_in_place(ocp) ? BoundaryConstraint! : BoundaryConstraint
ControlConstraint_ = is_in_place(ocp) ? ControlConstraint! : ControlConstraint
StateConstraint_ = is_in_place(ocp) ? StateConstraint! : StateConstraint
MixedConstraint_ = is_in_place(ocp) ? MixedConstraint! : MixedConstraint
VariableConstraint_ = is_in_place(ocp) ? VariableConstraint! : VariableConstraint
@match (rg, f, lb, ub) begin
(::Nothing, ::Nothing, ::ctVector, ::ctVector) => begin
if type β [:initial, :final, :state]
rg = n == 1 ? Index(1) : 1:n # todo: scalar range
txt = "the lower bound `lb`, the upper bound `ub` and the value `val` must be of dimension $n"
elseif type == :control
rg = m == 1 ? Index(1) : 1:m
txt = "the lower bound `lb`, the upper bound `ub` and the value `val` must be of dimension $m"
elseif type == :variable
rg = q == 1 ? Index(1) : 1:q
txt = "the lower bound `lb`, the upper bound `ub` and the value `val` must be of dimension $q"
else
throw(
IncorrectArgument(
"the following type of constraint is not valid: " *
String(type) *
". Please choose in [ :initial, :final, :control, :state, :variable ] or check the arguments of the constraint! method.",
),
)
end
(length(rg) != length(lb)) && throw(IncorrectArgument(txt))
(length(rg) != length(ub)) && throw(IncorrectArgument(txt))
constraint!(ocp, type; rg = rg, lb = lb, ub = ub, label = label)
end
(::RangeConstraint, ::Nothing, ::ctVector, ::ctVector) => begin
txt = "the range `rg`, the lower bound `lb`, the upper bound `ub` and the value `val` must have the same dimension"
(length(rg) != length(lb)) && throw(IncorrectArgument(txt))
(length(rg) != length(ub)) && throw(IncorrectArgument(txt))
# check if the range is valid
if type == :initial
!all(1 .β€ rg .β€ n) && throw(
IncorrectArgument(
"the range of the initial state constraint must be contained in 1:$n",
),
)
elseif type == :final
!all(1 .β€ rg .β€ n) && throw(
IncorrectArgument(
"the range of the final state constraint must be contained in 1:$n",
),
)
elseif type == :control
!all(1 .β€ rg .β€ m) && throw(
IncorrectArgument(
"the range of the control constraint must be contained in 1:$m",
),
)
elseif type == :state
!all(1 .β€ rg .β€ n) && throw(
IncorrectArgument(
"the range of the state constraint must be contained in 1:$n",
),
)
elseif type == :variable
!all(1 .β€ rg .β€ q) && throw(
IncorrectArgument(
"the range of the variable constraint must be contained in 1:$q",
),
)
end
# set the constraint
fun_rg = @match type begin
:initial =>
if is_in_place(ocp)
V == Fixed ? BoundaryConstraint!((r, x0, xf) -> (@views r[:] .= x0[rg]; nothing), V) :
BoundaryConstraint!((r, x0, xf, v) -> (@views r[:] .= x0[rg]; nothing), V)
else
V == Fixed ? BoundaryConstraint((x0, xf) -> x0[rg], V) :
BoundaryConstraint((x0, xf, v) -> x0[rg], V)
end
:final =>
if is_in_place(ocp)
V == Fixed ? BoundaryConstraint!((r, x0, xf) -> (@views r[:] .= xf[rg]; nothing), V) :
BoundaryConstraint!((r, x0, xf, v) -> (@views r[:] .= xf[rg]; nothing), V)
else
V == Fixed ? BoundaryConstraint((x0, xf) -> xf[rg], V) :
BoundaryConstraint((x0, xf, v) -> xf[rg], V)
end
:control || :state || :variable => rg
_ => throw(
IncorrectArgument(
"the following type of constraint is not valid: " *
String(type) *
". Please choose in [ :initial, :final, :control, :state, :variable ] or check the arguments of the constraint! method.",
),
)
end
ocp.constraints[label] = (type, fun_rg, lb, ub)
end
(::Nothing, ::Function, ::ctVector, ::ctVector) => begin
# set the constraint
if type == :boundary
ocp.constraints[label] = (type, BoundaryConstraint_(f, V), lb, ub)
elseif type == :control
ocp.constraints[label] = (type, ControlConstraint_(f, T, V), lb, ub)
elseif type == :state
ocp.constraints[label] = (type, StateConstraint_(f, T, V), lb, ub)
elseif type == :mixed
ocp.constraints[label] = (type, MixedConstraint_(f, T, V), lb, ub)
elseif type == :variable
ocp.constraints[label] = (type, VariableConstraint_(f), lb, ub)
else
throw(
IncorrectArgument(
"the following type of constraint is not valid: " *
String(type) *
". Please choose in [ :boundary, :control, :state, :mixed ] or check the arguments of the constraint! method.",
),
)
end
end
_ => throw(IncorrectArgument("Provided arguments are inconsistent."))
end
return nothing
end
"""
$(TYPEDSIGNATURES)
Set the dynamics.
!!! note
You can use dynamics! only once to define the dynamics.
- The state, control and variable dimensions must be set before. Use state!, control! and variable!.
- The times must be set before. Use time!.
- When an element is of dimension 1, consider it as a scalar.
# Example
```@example
julia> dynamics!(ocp, f)
```
"""
function dynamics!(
ocp::OptimalControlModel{T, V},
f::Function,
) where {T <: TimeDependence, V <: VariableDependence}
# we check if the dimensions and times have been set
__check_all_set(ocp)
__is_dynamics_set(ocp) && throw(UnauthorizedCall("the dynamics has already been set."))
Dynamics_ = is_in_place(ocp) ? Dynamics! : Dynamics
ocp.dynamics = Dynamics_(f, T, V)
return nothing
end
"""
$(TYPEDSIGNATURES)
Set the criterion to the function `f`. Type can be `:mayer` or `:lagrange`. Criterion is `:min` or `:max`.
!!! note
You can use objective! only once to define the objective.
- The state, control and variable dimensions must be set before. Use state!, control! and variable!.
- The times must be set before. Use time!.
- When an element is of dimension 1, consider it as a scalar.
# Examples
```@example
julia> objective!(ocp, :mayer, (x0, xf) -> x0[1] + xf[2])
julia> objective!(ocp, :lagrange, (x, u) -> x[1]^2 + u^2) # the control is of dimension 1
```
!!! warning
If you set twice the objective, only the last one will be taken into account.
"""
function objective!(
ocp::OptimalControlModel{T, V},
type::Symbol,
f::Function,
criterion::Symbol = __criterion_type(),
) where {T <: TimeDependence, V <: VariableDependence}
# we check if the dimensions and times have been set
__check_all_set(ocp)
__is_objective_set(ocp) && throw(UnauthorizedCall("the objective has already been set."))
# check the validity of the criterion
!__is_criterion_valid(criterion) && throw(
IncorrectArgument(
"the following criterion is not valid: " *
String(criterion) *
". Please choose in [ :min, :max ].",
),
)
ocp.criterion = criterion
# set the objective
Mayer_ = is_in_place(ocp) ? Mayer! : Mayer
Lagrange_ = is_in_place(ocp) ? Lagrange! : Lagrange
if type == :mayer
ocp.mayer = Mayer_(f, V)
elseif type == :lagrange
ocp.lagrange = Lagrange_(f, T, V)
else
throw(
IncorrectArgument(
"the following objective is not valid: " *
String(objective) *
". Please choose in [ :mayer, :lagrange ].",
),
)
end
return nothing
end
"""
$(TYPEDSIGNATURES)
Set the criterion to the function `g` and `fβ°`. Type can be `:bolza`. Criterion is `:min` or `:max`.
!!! note
You can use objective! only once to define the objective.
- The state, control and variable dimensions must be set before. Use state!, control! and variable!.
- The times must be set before. Use time!.
- When an element is of dimension 1, consider it as a scalar.
# Example
```@example
julia> objective!(ocp, :bolza, (x0, xf) -> x0[1] + xf[2], (x, u) -> x[1]^2 + u^2) # the control is of dimension 1
```
"""
function objective!(
ocp::OptimalControlModel{T, V},
type::Symbol,
g::Function,
fβ°::Function,
criterion::Symbol = __criterion_type(),
) where {T <: TimeDependence, V <: VariableDependence}
# we check if the dimensions and times have been set
__check_all_set(ocp)
__is_objective_set(ocp) && throw(UnauthorizedCall("the objective has already been set."))
# check the validity of the criterion
!__is_criterion_valid(criterion) && throw(
IncorrectArgument(
"the following criterion is not valid: " *
String(criterion) *
". Please choose in [ :min, :max ].",
),
)
ocp.criterion = criterion
# set the objective
Mayer_ = is_in_place(ocp) ? Mayer! : Mayer
Lagrange_ = is_in_place(ocp) ? Lagrange! : Lagrange
if type == :bolza
ocp.mayer = Mayer_(g, V)
ocp.lagrange = Lagrange_(fβ°, T, V)
else
throw(
IncorrectArgument(
"the following objective is not valid: " *
String(objective) *
". Please choose :bolza.",
),
)
end
return nothing
end
"""
$(TYPEDSIGNATURES)
Remove a labeled constraint.
# Example
```@example
julia> remove_constraint!(ocp, :con)
```
"""
function remove_constraint!(ocp::OptimalControlModel, label::Symbol)
if !haskey(ocp.constraints, label)
throw(
IncorrectArgument(
"the following constraint does not exist: " *
String(label) *
". Please check the list of constraints: ocp.constraints.",
),
)
end
delete!(ocp.constraints, label)
return nothing
end
| CTBase | https://github.com/control-toolbox/CTBase.jl.git |
|
[
"MIT"
] | 0.14.0 | 68e9ab3053e0b38e8e574f2809dd280c9dafa338 | code | 8690 | # ----------------------------------------------------------------------
#
# Definition of an optimal control model
#
"""
$(TYPEDEF)
**Fields**
$(TYPEDFIELDS)
"""
@with_kw mutable struct OptimalControlModel{
time_dependence <: TimeDependence,
variable_dependence <: VariableDependence,
} <: AbstractOptimalControlModel
model_expression::Union{Nothing, Expr} = nothing
initial_time::Union{Time, Index, Nothing} = nothing
initial_time_name::Union{String, Nothing} = nothing
final_time::Union{Time, Index, Nothing} = nothing
final_time_name::Union{String, Nothing} = nothing
time_name::Union{String, Nothing} = nothing
control_dimension::Union{Dimension, Nothing} = nothing
control_components_names::Union{Vector{String}, Nothing} = nothing
control_name::Union{String, Nothing} = nothing
state_dimension::Union{Dimension, Nothing} = nothing
state_components_names::Union{Vector{String}, Nothing} = nothing
state_name::Union{String, Nothing} = nothing
variable_dimension::Union{Dimension, Nothing} = nothing
variable_components_names::Union{Vector{String}, Nothing} = nothing
variable_name::Union{String, Nothing} = nothing
lagrange::Union{Lagrange, Lagrange!, Nothing} = nothing
mayer::Union{Mayer, Mayer!, Nothing} = nothing
criterion::Union{Symbol, Nothing} = nothing
dynamics::Union{Dynamics, Dynamics!, Nothing} = nothing
constraints::Dict{Symbol, Tuple{Vararg{Any}}} = Dict{Symbol, Tuple{Vararg{Any}}}()
dim_control_constraints::Union{Dimension, Nothing} = nothing
dim_state_constraints::Union{Dimension, Nothing} = nothing
dim_mixed_constraints::Union{Dimension, Nothing} = nothing
dim_boundary_constraints::Union{Dimension, Nothing} = nothing
dim_variable_constraints::Union{Dimension, Nothing} = nothing
dim_control_range::Union{Dimension, Nothing} = nothing
dim_state_range::Union{Dimension, Nothing} = nothing
dim_variable_range::Union{Dimension, Nothing} = nothing
in_place::Union{Bool, Nothing} = nothing
end
# ----------------------------------------------------------------------
#
# checkings: internal functions
#
"""
$(TYPEDSIGNATURES)
"""
function __is_variable_not_set(ocp::OptimalControlModel)
conditions = [
isnothing(ocp.variable_dimension),
isnothing(ocp.variable_name),
isnothing(ocp.variable_components_names),
]
@assert all(conditions) || !any(conditions) # either all or none
return isnothing(ocp.variable_dimension)
end
"""
$(TYPEDSIGNATURES)
"""
__is_variable_set(ocp::OptimalControlModel) = !__is_variable_not_set(ocp)
"""
$(TYPEDSIGNATURES)
"""
function __is_time_not_set(ocp::OptimalControlModel)
conditions = [
isnothing(ocp.initial_time),
isnothing(ocp.initial_time_name),
isnothing(ocp.final_time),
isnothing(ocp.final_time_name),
isnothing(ocp.time_name),
]
@assert all(conditions) || !any(conditions) # either all or none
return isnothing(ocp.initial_time)
end
"""
$(TYPEDSIGNATURES)
"""
__is_time_set(ocp::OptimalControlModel) = !__is_time_not_set(ocp)
"""
$(TYPEDSIGNATURES)
"""
function __is_state_not_set(ocp::OptimalControlModel)
conditions = [
isnothing(ocp.state_dimension),
isnothing(ocp.state_name),
isnothing(ocp.state_components_names),
]
@assert all(conditions) || !any(conditions) # either all or none
return isnothing(ocp.state_dimension)
end
"""
$(TYPEDSIGNATURES)
"""
__is_state_set(ocp::OptimalControlModel) = !__is_state_not_set(ocp)
"""
$(TYPEDSIGNATURES)
"""
function __is_control_not_set(ocp::OptimalControlModel)
conditions = [
isnothing(ocp.control_dimension),
isnothing(ocp.control_name),
isnothing(ocp.control_components_names),
]
@assert all(conditions) || !any(conditions) # either all or none
return isnothing(ocp.control_dimension)
end
"""
$(TYPEDSIGNATURES)
"""
__is_control_set(ocp::OptimalControlModel) = !__is_control_not_set(ocp)
"""
$(TYPEDSIGNATURES)
"""
__is_dynamics_not_set(ocp::OptimalControlModel) = isnothing(ocp.dynamics)
"""
$(TYPEDSIGNATURES)
"""
__is_dynamics_set(ocp::OptimalControlModel) = !__is_dynamics_not_set(ocp)
"""
$(TYPEDSIGNATURES)
"""
function __is_objective_not_set(ocp::OptimalControlModel)
conditions = [isnothing(ocp.lagrange) && isnothing(ocp.mayer), isnothing(ocp.criterion)]
@assert all(conditions) || !any(conditions) # either all or none
return isnothing(ocp.criterion)
end
"""
$(TYPEDSIGNATURES)
"""
__is_objective_set(ocp::OptimalControlModel) = !__is_objective_not_set(ocp)
"""
$(TYPEDSIGNATURES)
"""
__is_empty(ocp::OptimalControlModel) = begin
isnothing(ocp.initial_time) &&
isnothing(ocp.initial_time_name) &&
isnothing(ocp.final_time) &&
isnothing(ocp.final_time_name) &&
isnothing(ocp.time_name) &&
isnothing(ocp.lagrange) &&
isnothing(ocp.mayer) &&
isnothing(ocp.criterion) &&
isnothing(ocp.dynamics) &&
isnothing(ocp.state_dimension) &&
isnothing(ocp.state_name) &&
isnothing(ocp.state_components_names) &&
isnothing(ocp.control_dimension) &&
isnothing(ocp.control_name) &&
isnothing(ocp.control_components_names) &&
isnothing(ocp.variable_dimension) &&
isnothing(ocp.variable_name) &&
isnothing(ocp.variable_components_names) &&
isempty(ocp.constraints)
end
"""
$(TYPEDSIGNATURES)
"""
__is_initial_time_free(ocp) = ocp.initial_time isa Index
"""
$(TYPEDSIGNATURES)
"""
__is_final_time_free(ocp) = ocp.final_time isa Index
"""
$(TYPEDSIGNATURES)
"""
__is_incomplete(ocp) = begin
__is_time_not_set(ocp) ||
__is_state_not_set(ocp) ||
__is_control_not_set(ocp) ||
__is_dynamics_not_set(ocp) ||
__is_objective_not_set(ocp) ||
(__is_variable_not_set(ocp) && is_variable_dependent(ocp))
end
"""
$(TYPEDSIGNATURES)
"""
__is_complete(ocp) = !__is_incomplete(ocp)
"""
$(TYPEDSIGNATURES)
"""
__is_criterion_valid(criterion::Symbol) = criterion β [:min, :max]
# ----------------------------------------------------------------------
#
# checkings: internal functions, return exceptions
#
"""
$(TYPEDSIGNATURES)
Throw ```IncorrectArgument``` exception if dependencies arguments are incorrect.
"""
function __check_dependencies(dependencies::Tuple{Vararg{DataType}})
size(filter(p -> p <: VariableDependence, dependencies), 1) > 1 && throw(
IncorrectArgument(
"the number of arguments about variable dependence must be equal at most to 1",
),
)
size(filter(p -> p <: TimeDependence, dependencies), 1) > 1 && throw(
IncorrectArgument(
"the number of arguments about time dependence must be equal at most to 1",
),
)
size(dependencies, 1) > 2 && throw(
IncorrectArgument("the number of arguments about dependencies must be equal at most to 2"),
)
size(filter(p -> !(p <: Union{TimeDependence, VariableDependence}), dependencies), 1) > 0 &&
throw(
IncorrectArgument(
"wrong type arguments, possible arguments are: NonAutonomous, Autonomous, Fixed, NonFixed",
),
)
end
"""
$(TYPEDSIGNATURES)
Throw ```UnauthorizedCall``` exception if the state of an ocp is not set.
"""
function __check_state_set(ocp::OptimalControlModel)
__is_state_not_set(ocp) && throw(UnauthorizedCall("the state dimension has to be set before."))
end
"""
$(TYPEDSIGNATURES)
Throw ```UnauthorizedCall``` exception if the control of an ocp is not set.
"""
function __check_control_set(ocp::OptimalControlModel)
__is_control_not_set(ocp) &&
throw(UnauthorizedCall("the control dimension has to be set before."))
end
"""
$(TYPEDSIGNATURES)
Throw ```UnauthorizedCall``` exception if the time of an ocp is not set.
"""
function __check_is_time_set(ocp::OptimalControlModel)
__is_time_not_set(ocp) && throw(UnauthorizedCall("the time dimension has to be set before."))
end
"""
$(TYPEDSIGNATURES)
Throw ```UnauthorizedCall``` exception if the variable of an ocp is not set.
"""
function __check_variable_set(ocp::OptimalControlModel{<:TimeDependence, NonFixed})
__is_variable_not_set(ocp) &&
throw(UnauthorizedCall("the variable dimension has to be set before."))
end
"""
$(TYPEDSIGNATURES)
Do nothing, no variable for fixed ocp.
"""
function __check_variable_set(ocp::OptimalControlModel{<:TimeDependence, Fixed})
return nothing
end
"""
$(TYPEDSIGNATURES)
Check if the parameters of an ocp are set.
"""
function __check_all_set(ocp::OptimalControlModel)
__check_state_set(ocp)
__check_control_set(ocp)
__check_is_time_set(ocp)
__check_variable_set(ocp)
end
| CTBase | https://github.com/control-toolbox/CTBase.jl.git |
|
[
"MIT"
] | 0.14.0 | 68e9ab3053e0b38e8e574f2809dd280c9dafa338 | code | 8495 | """
$(TYPEDSIGNATURES)
Return the time grid of the optimal control solution or `nothing`.
"""
time_grid(sol::OptimalControlSolution) = sol.time_grid
"""
$(TYPEDSIGNATURES)
Return the name of the initial time of the optimal control solution or `nothing`.
"""
initial_time_name(sol::OptimalControlSolution) = sol.initial_time_name
"""
$(TYPEDSIGNATURES)
Return the name of final time of the optimal control solution or `nothing`.
"""
final_time_name(sol::OptimalControlSolution) = sol.final_time_name
"""
$(TYPEDSIGNATURES)
Return the name of the time component of the optimal control solution or `nothing`.
"""
time_name(sol::OptimalControlSolution) = sol.time_name
"""
$(TYPEDSIGNATURES)
Return the dimension of the control of the optimal control solution or `nothing`.
"""
control_dimension(sol::OptimalControlSolution) = sol.control_dimension
"""
$(TYPEDSIGNATURES)
Return the names of the components of the control of the optimal control solution or `nothing`.
"""
control_components_names(sol::OptimalControlSolution) = sol.control_components_names
"""
$(TYPEDSIGNATURES)
Return the name of the control of the optimal control solution or `nothing`.
"""
control_name(sol::OptimalControlSolution) = sol.control_name
"""
$(TYPEDSIGNATURES)
Return the control (function of time) of the optimal control solution or `nothing`.
```@example
julia> t0 = time_grid(sol)[1]
julia> u = control(sol)
julia> u0 = u(t0) # control at initial time
```
"""
control(sol::OptimalControlSolution) = sol.control
"""
$(TYPEDSIGNATURES)
Return the control values at times `time_grid(sol)` of the optimal control solution or `nothing`.
```@example
julia> u = control_discretized(sol)
julia> u0 = u[1] # control at initial time
```
"""
control_discretized(sol::OptimalControlSolution) = control(sol).(sol.time_grid)
"""
$(TYPEDSIGNATURES)
Return the dimension of the state of the optimal control solution or `nothing`.
"""
state_dimension(sol::OptimalControlSolution) = sol.state_dimension
"""
$(TYPEDSIGNATURES)
Return the names of the components of the state of the optimal control solution or `nothing`.
"""
state_components_names(sol::OptimalControlSolution) = sol.state_components_names
"""
$(TYPEDSIGNATURES)
Return the name of the state of the optimal control solution or `nothing`.
"""
state_name(sol::OptimalControlSolution) = sol.state_name
"""
$(TYPEDSIGNATURES)
Return the state (function of time) of the optimal control solution or `nothing`.
```@example
julia> t0 = time_grid(sol)[1]
julia> x = state(sol)
julia> x0 = x(t0)
```
"""
state(sol::OptimalControlSolution) = sol.state
"""
$(TYPEDSIGNATURES)
Return the state values at times `time_grid(sol)` of the optimal control solution or `nothing`.
```@example
julia> x = state_discretized(sol)
julia> x0 = x[1] # state at initial time
```
"""
state_discretized(sol::OptimalControlSolution) = state(sol).(sol.time_grid)
"""
$(TYPEDSIGNATURES)
Return the dimension of the variable of the optimal control solution or `nothing`.
"""
variable_dimension(sol::OptimalControlSolution) = sol.variable_dimension
"""
$(TYPEDSIGNATURES)
Return the names of the components of the variable of the optimal control solution or `nothing`.
"""
variable_components_names(sol::OptimalControlSolution) = sol.variable_components_names
"""
$(TYPEDSIGNATURES)
Return the name of the variable of the optimal control solution or `nothing`.
"""
variable_name(sol::OptimalControlSolution) = sol.variable_name
"""
$(TYPEDSIGNATURES)
Return the variable of the optimal control solution or `nothing`.
```@example
julia> v = variable(sol)
```
"""
variable(sol::OptimalControlSolution) = sol.variable
"""
$(TYPEDSIGNATURES)
Return the costate of the optimal control solution or `nothing`.
```@example
julia> t0 = time_grid(sol)[1]
julia> p = costate(sol)
julia> p0 = p(t0)
```
"""
costate(sol::OptimalControlSolution) = sol.costate
"""
$(TYPEDSIGNATURES)
Return the costate values at times `time_grid(sol)` of the optimal control solution or `nothing`.
```@example
julia> p = costate_discretized(sol)
julia> p0 = p[1] # costate at initial time
```
"""
costate_discretized(sol::OptimalControlSolution) = costate(sol).(sol.time_grid)
"""
$(TYPEDSIGNATURES)
Return the objective value of the optimal control solution or `nothing`.
"""
objective(sol::OptimalControlSolution) = sol.objective
"""
$(TYPEDSIGNATURES)
Return the number of iterations (if solved by an iterative method) of the optimal control solution or `nothing`.
"""
iterations(sol::OptimalControlSolution) = sol.iterations
"""
$(TYPEDSIGNATURES)
Return the stopping criterion (a Symbol) of the optimal control solution or `nothing`.
"""
stopping(sol::OptimalControlSolution) = sol.stopping
"""
$(TYPEDSIGNATURES)
Return the message associated to the stopping criterion of the optimal control solution or `nothing`.
"""
message(sol::OptimalControlSolution) = sol.message
"""
$(TYPEDSIGNATURES)
Return the true if the solver has finished successfully of false if not, or `nothing`.
"""
success(sol::OptimalControlSolution) = sol.success
"""
$(TYPEDSIGNATURES)
Return a dictionary of additional infos depending on the solver or `nothing`.
"""
infos(sol::OptimalControlSolution) = sol.infos
# constraints and multipliers
"""
$(TYPEDSIGNATURES)
Return the boundary constraints of the optimal control solution or `nothing`.
"""
boundary_constraints(sol::OptimalControlSolution) = sol.boundary_constraints
"""
$(TYPEDSIGNATURES)
Return the multipliers to the boundary constraints of the optimal control solution or `nothing`.
"""
mult_boundary_constraints(sol::OptimalControlSolution) = sol.mult_boundary_constraints
"""
$(TYPEDSIGNATURES)
Return the variable constraints of the optimal control solution or `nothing`.
"""
variable_constraints(sol::OptimalControlSolution) = sol.variable_constraints
"""
$(TYPEDSIGNATURES)
Return the multipliers to the variable constraints of the optimal control solution or `nothing`.
"""
mult_variable_constraints(sol::OptimalControlSolution) = sol.mult_variable_constraints
"""
$(TYPEDSIGNATURES)
Return the multipliers to the variable lower bounds of the optimal control solution or `nothing`.
"""
mult_variable_box_lower(sol::OptimalControlSolution) = sol.mult_variable_box_lower
"""
$(TYPEDSIGNATURES)
Return the multipliers to the variable upper bounds of the optimal control solution or `nothing`.
"""
mult_variable_box_upper(sol::OptimalControlSolution) = sol.mult_variable_box_upper
"""
$(TYPEDSIGNATURES)
Return the control constraints of the optimal control solution or `nothing`.
"""
control_constraints(sol::OptimalControlSolution) = sol.control_constraints
"""
$(TYPEDSIGNATURES)
Return the multipliers to the control constraints of the optimal control solution or `nothing`.
"""
mult_control_constraints(sol::OptimalControlSolution) = sol.mult_control_constraints
"""
$(TYPEDSIGNATURES)
Return the state constraints of the optimal control solution or `nothing`.
"""
state_constraints(sol::OptimalControlSolution) = sol.state_constraints
"""
$(TYPEDSIGNATURES)
Return the multipliers to the state constraints of the optimal control solution or `nothing`.
"""
mult_state_constraints(sol::OptimalControlSolution) = sol.mult_state_constraints
"""
$(TYPEDSIGNATURES)
Return the mixed state-control constraints of the optimal control solution or `nothing`.
"""
mixed_constraints(sol::OptimalControlSolution) = sol.mixed_constraints
"""
$(TYPEDSIGNATURES)
Return the multipliers to the mixed state-control constraints of the optimal control solution or `nothing`.
"""
mult_mixed_constraints(sol::OptimalControlSolution) = sol.mult_mixed_constraints
"""
$(TYPEDSIGNATURES)
Return the multipliers to the state lower bounds of the optimal control solution or `nothing`.
"""
mult_state_box_lower(sol::OptimalControlSolution) = sol.mult_state_box_lower
"""
$(TYPEDSIGNATURES)
Return the multipliers to the state upper bounds of the optimal control solution or `nothing`.
"""
mult_state_box_upper(sol::OptimalControlSolution) = sol.mult_state_box_upper
"""
$(TYPEDSIGNATURES)
Return the multipliers to the control lower bounds of the optimal control solution or `nothing`.
"""
mult_control_box_lower(sol::OptimalControlSolution) = sol.mult_control_box_lower
"""
$(TYPEDSIGNATURES)
Return the multipliers to the control upper bounds of the optimal control solution or `nothing`.
"""
mult_control_box_upper(sol::OptimalControlSolution) = sol.mult_control_box_upper
| CTBase | https://github.com/control-toolbox/CTBase.jl.git |
|
[
"MIT"
] | 0.14.0 | 68e9ab3053e0b38e8e574f2809dd280c9dafa338 | code | 14677 | # ----------------------------------------------------------------------
#
# Interaction with an optimal control solution that affect it. Setters / Constructors.
#
"""
$(TYPEDSIGNATURES)
Constructor from an optimal control problem. Internal.
"""
function __OptimalControlSolution(
ocp::OptimalControlModel;
state::Union{Nothing, Function} = nothing,
control::Union{Nothing, Function} = nothing,
objective::Union{Nothing, ctNumber} = nothing,
costate::Union{Nothing, Function} = nothing,
time_grid::Union{Nothing, TimesDisc} = nothing,
variable::Union{Nothing, Variable} = nothing,
iterations::Union{Nothing, Integer} = nothing,
stopping::Union{Nothing, Symbol} = nothing,
message::Union{Nothing, String} = nothing,
success::Union{Nothing, Bool} = nothing,
infos::Dict{Symbol, Any} = Dict{Symbol, Any}(),
boundary_constraints::Union{Nothing, ctVector} = nothing,
mult_boundary_constraints::Union{Nothing, ctVector} = nothing,
variable_constraints::Union{Nothing, ctVector} = nothing,
mult_variable_constraints::Union{Nothing, ctVector} = nothing,
mult_variable_box_lower::Union{Nothing, ctVector} = nothing,
mult_variable_box_upper::Union{Nothing, ctVector} = nothing,
control_constraints::Union{Nothing, Function} = nothing,
mult_control_constraints::Union{Nothing, Function} = nothing,
state_constraints::Union{Nothing, Function} = nothing,
mult_state_constraints::Union{Nothing, Function} = nothing,
mixed_constraints::Union{Nothing, Function} = nothing,
mult_mixed_constraints::Union{Nothing, Function} = nothing,
mult_state_box_lower::Union{Nothing, Function} = nothing,
mult_state_box_upper::Union{Nothing, Function} = nothing,
mult_control_box_lower::Union{Nothing, Function} = nothing,
mult_control_box_upper::Union{Nothing, Function} = nothing,
)::OptimalControlSolution
#
sol = OptimalControlSolution()
# data from ocp
sol.initial_time_name = initial_time_name(ocp)
sol.final_time_name = final_time_name(ocp)
sol.time_name = time_name(ocp)
sol.control_dimension = control_dimension(ocp)
sol.control_components_names = control_components_names(ocp)
sol.control_name = control_name(ocp)
sol.state_dimension = state_dimension(ocp)
sol.state_components_names = state_components_names(ocp)
sol.state_name = state_name(ocp)
sol.variable_dimension = variable_dimension(ocp)
sol.variable_components_names = variable_components_names(ocp)
sol.variable_name = variable_name(ocp)
# data from args
sol.state = state
sol.control = control
sol.objective = objective
sol.costate = costate
sol.time_grid = time_grid
sol.variable = variable
sol.iterations = iterations
sol.stopping = stopping
sol.message = message
sol.success = success
sol.infos = infos
sol.boundary_constraints = boundary_constraints
sol.mult_boundary_constraints = mult_boundary_constraints
sol.variable_constraints = variable_constraints
sol.mult_variable_constraints = mult_variable_constraints
sol.mult_variable_box_lower = mult_variable_box_lower
sol.mult_variable_box_upper = mult_variable_box_upper
sol.control_constraints = control_constraints
sol.mult_control_constraints = mult_control_constraints
sol.state_constraints = state_constraints
sol.mult_state_constraints = mult_state_constraints
sol.mixed_constraints = mixed_constraints
sol.mult_mixed_constraints = mult_mixed_constraints
sol.mult_state_box_lower = mult_state_box_lower
sol.mult_state_box_upper = mult_state_box_upper
sol.mult_control_box_lower = mult_control_box_lower
sol.mult_control_box_upper = mult_control_box_upper
return sol
end
"""
$(TYPEDSIGNATURES)
Constructor from an optimal control problem for a Fixed ocp.
"""
function OptimalControlSolution(
ocp::OptimalControlModel{<:TimeDependence, Fixed};
state::Function,
control::Function,
objective::ctNumber,
variable::Union{Nothing, Variable} = nothing,
costate::Union{Nothing, Function} = nothing,
time_grid::Union{Nothing, TimesDisc} = nothing,
iterations::Union{Nothing, Integer} = nothing,
stopping::Union{Nothing, Symbol} = nothing,
message::Union{Nothing, String} = nothing,
success::Union{Nothing, Bool} = nothing,
infos::Dict{Symbol, Any} = Dict{Symbol, Any}(),
boundary_constraints::Union{Nothing, ctVector} = nothing,
mult_boundary_constraints::Union{Nothing, ctVector} = nothing,
variable_constraints::Union{Nothing, ctVector} = nothing,
mult_variable_constraints::Union{Nothing, ctVector} = nothing,
mult_variable_box_lower::Union{Nothing, ctVector} = nothing,
mult_variable_box_upper::Union{Nothing, ctVector} = nothing,
control_constraints::Union{Nothing, Function} = nothing,
mult_control_constraints::Union{Nothing, Function} = nothing,
state_constraints::Union{Nothing, Function} = nothing,
mult_state_constraints::Union{Nothing, Function} = nothing,
mixed_constraints::Union{Nothing, Function} = nothing,
mult_mixed_constraints::Union{Nothing, Function} = nothing,
mult_state_box_lower::Union{Nothing, Function} = nothing,
mult_state_box_upper::Union{Nothing, Function} = nothing,
mult_control_box_lower::Union{Nothing, Function} = nothing,
mult_control_box_upper::Union{Nothing, Function} = nothing,
)::OptimalControlSolution
return __OptimalControlSolution(
ocp;
state = state,
control = control,
objective = objective,
costate = costate,
time_grid = time_grid,
variable = variable,
iterations = iterations,
stopping = stopping,
message = message,
success = success,
infos = infos,
boundary_constraints = boundary_constraints,
mult_boundary_constraints = mult_boundary_constraints,
variable_constraints = variable_constraints,
mult_variable_constraints = mult_variable_constraints,
mult_variable_box_lower = mult_variable_box_lower,
mult_variable_box_upper = mult_variable_box_upper,
control_constraints = control_constraints,
mult_control_constraints = mult_control_constraints,
state_constraints = state_constraints,
mult_state_constraints = mult_state_constraints,
mixed_constraints = mixed_constraints,
mult_mixed_constraints = mult_mixed_constraints,
mult_state_box_lower = mult_state_box_lower,
mult_state_box_upper = mult_state_box_upper,
mult_control_box_lower = mult_control_box_lower,
mult_control_box_upper = mult_control_box_upper,
)
end
"""
$(TYPEDSIGNATURES)
Constructor from an optimal control problem for a NonFixed ocp.
"""
function OptimalControlSolution(
ocp::OptimalControlModel{<:TimeDependence, NonFixed};
state::Function,
control::Function,
objective::ctNumber,
variable::Variable,
costate::Union{Nothing, Function} = nothing,
time_grid::Union{Nothing, TimesDisc} = nothing,
iterations::Union{Nothing, Integer} = nothing,
stopping::Union{Nothing, Symbol} = nothing,
message::Union{Nothing, String} = nothing,
success::Union{Nothing, Bool} = nothing,
infos::Dict{Symbol, Any} = Dict{Symbol, Any}(),
boundary_constraints::Union{Nothing, ctVector} = nothing,
mult_boundary_constraints::Union{Nothing, ctVector} = nothing,
variable_constraints::Union{Nothing, ctVector} = nothing,
mult_variable_constraints::Union{Nothing, ctVector} = nothing,
mult_variable_box_lower::Union{Nothing, ctVector} = nothing,
mult_variable_box_upper::Union{Nothing, ctVector} = nothing,
control_constraints::Union{Nothing, Function} = nothing,
mult_control_constraints::Union{Nothing, Function} = nothing,
state_constraints::Union{Nothing, Function} = nothing,
mult_state_constraints::Union{Nothing, Function} = nothing,
mixed_constraints::Union{Nothing, Function} = nothing,
mult_mixed_constraints::Union{Nothing, Function} = nothing,
mult_state_box_lower::Union{Nothing, Function} = nothing,
mult_state_box_upper::Union{Nothing, Function} = nothing,
mult_control_box_lower::Union{Nothing, Function} = nothing,
mult_control_box_upper::Union{Nothing, Function} = nothing,
)::OptimalControlSolution
return __OptimalControlSolution(
ocp;
state = state,
control = control,
objective = objective,
costate = costate,
time_grid = time_grid,
variable = variable,
iterations = iterations,
stopping = stopping,
message = message,
success = success,
infos = infos,
boundary_constraints = boundary_constraints,
mult_boundary_constraints = mult_boundary_constraints,
variable_constraints = variable_constraints,
mult_variable_constraints = mult_variable_constraints,
mult_variable_box_lower = mult_variable_box_lower,
mult_variable_box_upper = mult_variable_box_upper,
control_constraints = control_constraints,
mult_control_constraints = mult_control_constraints,
state_constraints = state_constraints,
mult_state_constraints = mult_state_constraints,
mixed_constraints = mixed_constraints,
mult_mixed_constraints = mult_mixed_constraints,
mult_state_box_lower = mult_state_box_lower,
mult_state_box_upper = mult_state_box_upper,
mult_control_box_lower = mult_control_box_lower,
mult_control_box_upper = mult_control_box_upper,
)
end
# setters
#state!(sol::OptimalControlSolution, state::Function) = (sol.state = state; nothing)
#control!(sol::OptimalControlSolution, control::Function) = (sol.control = control; nothing)
#objective!(sol::OptimalControlSolution, objective::ctNumber) = (sol.objective = objective; nothing)
#variable!(sol::OptimalControlSolution, variable::Variable) = (sol.variable = variable; nothing)
"""
$(TYPEDSIGNATURES)
Set the time grid.
"""
time_grid!(sol::OptimalControlSolution, time_grid::TimesDisc) = (sol.time_grid = time_grid; nothing)
"""
$(TYPEDSIGNATURES)
Set the costate.
"""
costate!(sol::OptimalControlSolution, costate::Function) = (sol.costate = costate; nothing)
"""
$(TYPEDSIGNATURES)
Set the number of iterations.
"""
iterations!(sol::OptimalControlSolution, iterations::Int) = (sol.iterations = iterations; nothing)
"""
$(TYPEDSIGNATURES)
Set the stopping criterion.
"""
stopping!(sol::OptimalControlSolution, stopping::Symbol) = (sol.stopping = stopping; nothing)
"""
$(TYPEDSIGNATURES)
Set the message of stopping.
"""
message!(sol::OptimalControlSolution, message::String) = (sol.message = message; nothing)
"""
$(TYPEDSIGNATURES)
Set the success.
"""
success!(sol::OptimalControlSolution, success::Bool) = (sol.success = success; nothing)
"""
$(TYPEDSIGNATURES)
Set the additional infos.
"""
infos!(sol::OptimalControlSolution, infos::Dict{Symbol, Any}) = (sol.infos = infos; nothing)
"""
$(TYPEDSIGNATURES)
Set the boundary constraints.
"""
boundary_constraints!(sol::OptimalControlSolution, boundary_constraints::ctVector) =
(sol.boundary_constraints = boundary_constraints; nothing)
"""
$(TYPEDSIGNATURES)
Set the multipliers to the boundary constraints.
"""
mult_boundary_constraints!(sol::OptimalControlSolution, mult_boundary_constraints::ctVector) =
(sol.mult_boundary_constraints = mult_boundary_constraints; nothing)
"""
$(TYPEDSIGNATURES)
Set the variable constraints.
"""
variable_constraints!(sol::OptimalControlSolution, variable_constraints::ctVector) =
(sol.variable_constraints = variable_constraints; nothing)
"""
$(TYPEDSIGNATURES)
Set the multipliers to the variable constraints.
"""
mult_variable_constraints!(sol::OptimalControlSolution, mult_variable_constraints::ctVector) =
(sol.mult_variable_constraints = mult_variable_constraints; nothing)
"""
$(TYPEDSIGNATURES)
Set the multipliers to the variable lower bounds.
"""
mult_variable_box_lower!(sol::OptimalControlSolution, mult_variable_box_lower::ctVector) =
(sol.mult_variable_box_lower = mult_variable_box_lower; nothing)
"""
$(TYPEDSIGNATURES)
Set the multipliers to the variable upper bounds.
"""
mult_variable_box_upper!(sol::OptimalControlSolution, mult_variable_box_upper::ctVector) =
(sol.mult_variable_box_upper = mult_variable_box_upper; nothing)
"""
$(TYPEDSIGNATURES)
Set the control constraints.
"""
control_constraints!(sol::OptimalControlSolution, control_constraints::Function) =
(sol.control_constraints = control_constraints; nothing)
"""
$(TYPEDSIGNATURES)
Set the multipliers to the control constraints.
"""
mult_control_constraints!(sol::OptimalControlSolution, mult_control_constraints::Function) =
(sol.mult_control_constraints = mult_control_constraints; nothing)
"""
$(TYPEDSIGNATURES)
Set the state constraints.
"""
state_constraints!(sol::OptimalControlSolution, state_constraints::Function) =
(sol.state_constraints = state_constraints; nothing)
"""
$(TYPEDSIGNATURES)
Set the multipliers to the state constraints.
"""
mult_state_constraints!(sol::OptimalControlSolution, mult_state_constraints::Function) =
(sol.mult_state_constraints = mult_state_constraints; nothing)
"""
$(TYPEDSIGNATURES)
Set the mixed state/control constraints.
"""
mixed_constraints!(sol::OptimalControlSolution, mixed_constraints::Function) =
(sol.mixed_constraints = mixed_constraints; nothing)
"""
$(TYPEDSIGNATURES)
Set the multipliers to the mixed state/control constraints.
"""
mult_mixed_constraints!(sol::OptimalControlSolution, mult_mixed_constraints::Function) =
(sol.mult_mixed_constraints = mult_mixed_constraints; nothing)
"""
$(TYPEDSIGNATURES)
Set the multipliers to the state lower bounds.
"""
mult_state_box_lower!(sol::OptimalControlSolution, mult_state_box_lower::Function) =
(sol.mult_state_box_lower = mult_state_box_lower; nothing)
"""
$(TYPEDSIGNATURES)
Set the multipliers to the state upper bounds.
"""
mult_state_box_upper!(sol::OptimalControlSolution, mult_state_box_upper::Function) =
(sol.mult_state_box_upper = mult_state_box_upper; nothing)
"""
$(TYPEDSIGNATURES)
Set the multipliers to the control lower bounds.
"""
mult_control_box_lower!(sol::OptimalControlSolution, mult_control_box_lower::Function) =
(sol.mult_control_box_lower = mult_control_box_lower; nothing)
"""
$(TYPEDSIGNATURES)
Set the multipliers to the control upper bounds.
"""
mult_control_box_upper!(sol::OptimalControlSolution, mult_control_box_upper::Function) =
(sol.mult_control_box_upper = mult_control_box_upper; nothing)
| CTBase | https://github.com/control-toolbox/CTBase.jl.git |
|
[
"MIT"
] | 0.14.0 | 68e9ab3053e0b38e8e574f2809dd280c9dafa338 | code | 3237 | # --------------------------------------------------------------------------------------------------
# Definition of an Optimal Control Solution
#
"""
$(TYPEDEF)
Abstract type for optimal control solutions.
"""
abstract type AbstractOptimalControlSolution end
"""
$(TYPEDEF)
Type of an optimal control solution.
# Fields
$(TYPEDFIELDS)
"""
@with_kw mutable struct OptimalControlSolution <: AbstractOptimalControlSolution
# time_grid = [t0, t1, ...]
time_grid::Union{Nothing, TimesDisc} = nothing
# name of t, t0 and tf
time_name::Union{Nothing, String} = nothing
initial_time_name::Union{Nothing, String} = nothing
final_time_name::Union{Nothing, String} = nothing
# control: dimension, name of u = (uβ, uβ, ...) and u(t)
control_dimension::Union{Nothing, Dimension} = nothing
control_components_names::Union{Nothing, Vector{String}} = nothing
control_name::Union{Nothing, String} = nothing
control::Union{Nothing, Function} = nothing
# state: dimension, name of x = (xβ, xβ, ...) and x(t)
state_dimension::Union{Nothing, Dimension} = nothing
state_components_names::Union{Nothing, Vector{String}} = nothing
state_name::Union{Nothing, String} = nothing
state::Union{Nothing, Function} = nothing
# variable: dimension, name of v = (vβ, vβ, ...) and value of v
variable_dimension::Union{Nothing, Dimension} = nothing
variable_components_names::Union{Nothing, Vector{String}} = nothing
variable_name::Union{Nothing, String} = nothing
variable::Union{Nothing, Variable} = nothing
# costate: p(t)
costate::Union{Nothing, Function} = nothing
# objective value
objective::Union{Nothing, ctNumber} = nothing
# solver infos
iterations::Union{Nothing, Int} = nothing # number of iterations
stopping::Union{Nothing, Symbol} = nothing # the stopping criterion
message::Union{Nothing, String} = nothing # the message corresponding to the stopping criterion
success::Union{Nothing, Bool} = nothing # whether or not the method has finished successfully: CN1, stagnation vs iterations max
# dictionary to save additional infos
infos::Dict{Symbol, Any} = Dict{Symbol, Any}()
# constraints and multipliers
boundary_constraints::Union{Nothing, ctVector} = nothing
mult_boundary_constraints::Union{Nothing, ctVector} = nothing
variable_constraints::Union{Nothing, ctVector} = nothing
mult_variable_constraints::Union{Nothing, ctVector} = nothing
mult_variable_box_lower::Union{Nothing, ctVector} = nothing
mult_variable_box_upper::Union{Nothing, ctVector} = nothing
control_constraints::Union{Nothing, Function} = nothing
mult_control_constraints::Union{Nothing, Function} = nothing
state_constraints::Union{Nothing, Function} = nothing
mult_state_constraints::Union{Nothing, Function} = nothing
mixed_constraints::Union{Nothing, Function} = nothing
mult_mixed_constraints::Union{Nothing, Function} = nothing
mult_state_box_lower::Union{Nothing, Function} = nothing
mult_state_box_upper::Union{Nothing, Function} = nothing
mult_control_box_lower::Union{Nothing, Function} = nothing
mult_control_box_upper::Union{Nothing, Function} = nothing
end
| CTBase | https://github.com/control-toolbox/CTBase.jl.git |
|
[
"MIT"
] | 0.14.0 | 68e9ab3053e0b38e8e574f2809dd280c9dafa338 | code | 9697 | # --------------------------------------------------------------------------------------------------
# model
#
# Display: text/html ?
# Base.show, Base.print
# pretty print : https://docs.julialang.org/en/v1/manual/types/#man-custom-pretty-printing
__print(e::Expr, io::IO, l::Int) = begin
@match e begin
:(($a, $b)) => println(io, " "^l, a, ", ", b)
_ => println(io, " "^l, e)
end
end
"""
$(TYPEDSIGNATURES)
Print the optimal control problem.
"""
function Base.show(
io::IO,
::MIME"text/plain",
ocp::OptimalControlModel{<:TimeDependence, <:VariableDependence},
)
# check if the problem is empty
__is_empty(ocp) && return
#
some_printing = false
# print the code of the model if model_expression(ocp) is not nothing
if !isnothing(model_expression(ocp))
# some checks
@assert hasproperty(model_expression(ocp), :head)
#
#println(io)
if __is_complete(ocp)
printstyled(io, "The ", bold = true)
is_time_dependent(ocp) ? printstyled(io, "(non autonomous) ", bold = true) :
printstyled(io, "(autonomous) ", bold = true)
printstyled(io, "optimal control problem is given by:\n", bold = true)
else
printstyled(
io,
"The optimal control problem is not complete but made of:\n",
bold = true,
)
end
println(io)
# print the code
tab = 4
code = striplines(model_expression(ocp))
@match code.head begin
:block => [__print(code.args[i], io, tab) for i β eachindex(code.args)]
_ => __print(code, io, tab)
end
some_printing = true
end
if __is_complete(ocp) # print the model if is is complete
# dimensions
x_dim = state_dimension(ocp)
u_dim = control_dimension(ocp)
v_dim = is_variable_dependent(ocp) ? variable_dimension(ocp) : -1
# names
t_name = time_name(ocp)
t0_name = initial_time_name(ocp)
tf_name = final_time_name(ocp)
x_name = state_name(ocp)
u_name = control_name(ocp)
v_name = is_variable_dependent(ocp) ? variable_name(ocp) : ""
xi_names = state_components_names(ocp)
ui_names = control_components_names(ocp)
vi_names = is_variable_dependent(ocp) ? variable_components_names(ocp) : []
# dependencies
t_ = is_time_dependent(ocp) ? t_name * ", " : ""
_v = is_variable_dependent(ocp) ? ", " * v_name : ""
# other names
bounds_args_names = x_name * "(" * t0_name * "), " * x_name * "(" * tf_name * ")" * _v
mixed_args_names = t_ * x_name * "(" * t_name * "), " * u_name * "(" * t_name * ")" * _v
state_args_names = t_ * x_name * "(" * t_name * ")" * _v
control_args_names = t_ * u_name * "(" * t_name * ")" * _v
#
some_printing && println(io)
printstyled(io, "The ", bold = true)
is_time_dependent(ocp) ? printstyled(io, "(non autonomous) ", bold = true) :
printstyled(io, "(autonomous) ", bold = true)
printstyled(io, "optimal control problem is of the form:\n", bold = true)
println(io)
# J
printstyled(io, " minimize ", color = :blue)
print(io, "J(" * x_name * ", " * u_name * _v * ") = ")
# Mayer
!isnothing(mayer(ocp)) && print(io, "g(" * bounds_args_names * ")")
(!isnothing(mayer(ocp)) && !isnothing(lagrange(ocp))) && print(io, " + ")
# Lagrange
if !isnothing(lagrange(ocp))
println(
io,
'\u222B',
" fβ°(" *
mixed_args_names *
") d" *
t_name *
", over [" *
t0_name *
", " *
tf_name *
"]",
)
else
println(io, "")
end
# constraints
println(io, "")
printstyled(io, " subject to\n", color = :blue)
println(io, "")
# dynamics
println(
io,
" " * x_name,
'\u0307',
"(" *
t_name *
") = f(" *
mixed_args_names *
"), " *
t_name *
" in [" *
t0_name *
", " *
tf_name *
"] a.e.,",
)
println(io, "")
# other constraints: control, state, mixed, boundary, bounds on u, bounds on x
(ΞΎl, ΞΎ, ΞΎu), (Ξ·l, Ξ·, Ξ·u), (Οl, Ο, Οu), (Οl, Ο, Οu), (ulb, uind, uub), (xlb, xind, xub) =
nlp_constraints!(ocp)
has_constraints = false
if !isempty(ΞΎl) || !isempty(ulb)
has_constraints = true
println(io, " ΞΎl β€ ΞΎ(" * control_args_names * ") β€ ΞΎu, ")
end
if !isempty(Ξ·l) || !isempty(xlb)
has_constraints = true
println(io, " Ξ·l β€ Ξ·(" * state_args_names * ") β€ Ξ·u, ")
end
if !isempty(Οl)
has_constraints = true
println(io, " Οl β€ Ο(" * mixed_args_names * ") β€ Οu, ")
end
if !isempty(Οl)
has_constraints = true
println(io, " Οl β€ Ο(" * bounds_args_names * ") β€ Οu, ")
end
has_constraints ? println(io, "") : nothing
# spaces
x_space = "R" * (x_dim == 1 ? "" : ctupperscripts(x_dim))
u_space = "R" * (u_dim == 1 ? "" : ctupperscripts(u_dim))
# state name and space
if x_dim == 1
x_name_space = x_name * "(" * t_name * ")"
else
x_name_space = x_name * "(" * t_name * ")"
if xi_names != [x_name * ctindices(i) for i β range(1, x_dim)]
x_name_space *= " = ("
for i β 1:x_dim
x_name_space *= xi_names[i] * "(" * t_name * ")"
i < x_dim && (x_name_space *= ", ")
end
x_name_space *= ")"
end
end
x_name_space *= " β " * x_space
# control name and space
if u_dim == 1
u_name_space = u_name * "(" * t_name * ")"
else
u_name_space = u_name * "(" * t_name * ")"
if ui_names != [u_name * ctindices(i) for i β range(1, u_dim)]
u_name_space *= " = ("
for i β 1:u_dim
u_name_space *= ui_names[i] * "(" * t_name * ")"
i < u_dim && (u_name_space *= ", ")
end
u_name_space *= ")"
end
end
u_name_space *= " β " * u_space
if is_variable_dependent(ocp)
# space
v_space = "R" * (v_dim == 1 ? "" : ctupperscripts(v_dim))
# variable name and space
if v_dim == 1
v_name_space = v_name
else
v_name_space = v_name
if vi_names != [v_name * ctindices(i) for i β range(1, v_dim)]
v_name_space *= " = ("
for i β 1:v_dim
v_name_space *= vi_names[i]
i < v_dim && (v_name_space *= ", ")
end
v_name_space *= ")"
end
end
v_name_space *= " β " * v_space
# print
print(io, " where ", x_name_space, ", ", u_name_space, " and ", v_name_space, ".\n")
else
# print
print(io, " where ", x_name_space, " and ", u_name_space, ".\n")
end
some_printing = true
end
#
some_printing && println(io)
printstyled(io, "Declarations ", bold = true)
printstyled(io, "(* required):\n", bold = false)
#println(io)
# print table of settings
header = ["times*", "state*", "control*"]
#is_variable_dependent(ocp) && push!(header, "variable")
push!(header, "variable")
push!(header, "dynamics*", "objective*", "constraints")
data = hcat(
__is_time_not_set(ocp) ? "X" : "V",
__is_state_not_set(ocp) ? "X" : "V",
__is_control_not_set(ocp) ? "X" : "V",
)
#is_variable_dependent(ocp) &&
begin
(data = hcat(data, __is_variable_not_set(ocp) ? "X" : "V"))
end
data = hcat(
data,
__is_dynamics_not_set(ocp) ? "X" : "V",
__is_objective_not_set(ocp) ? "X" : "V",
isempty(constraints(ocp)) ? "X" : "V",
)
println("")
h1 = Highlighter((data, i, j) -> data[i, j] == "X", bold = true, foreground = :red)
h2 = Highlighter((data, i, j) -> data[i, j] == "V", bold = true, foreground = :green)
pretty_table(
io,
data;
tf = tf_unicode_rounded,
header = header,
header_crayon = crayon"yellow",
crop = :none,
highlighters = (h1, h2),
alignment = :c,
compact_printing = true,
)
nothing
end
function Base.show_default(io::IO, ocp::OptimalControlModel)
print(io, typeof(ocp))
#show(io, MIME("text/plain"), ocp)
end
# --------------------------------------------------------------------------------------------------
# solution
#
# we get an error when a solution is printed so I add this function
# which has to be put in the package CTBase and has to be completed
"""
$(TYPEDSIGNATURES)
Prints the solution.
"""
function Base.show(io::IO, ::MIME"text/plain", sol::OptimalControlSolution)
print(io, typeof(sol))
end
function Base.show_default(io::IO, sol::OptimalControlSolution)
print(io, typeof(sol))
#show(io, MIME("text/plain"), sol)
end
| CTBase | https://github.com/control-toolbox/CTBase.jl.git |
|
[
"MIT"
] | 0.14.0 | 68e9ab3053e0b38e8e574f2809dd280c9dafa338 | code | 14900 | const ModelRepl = Vector{Expr}
@with_kw mutable struct CTRepl
model::ModelRepl = ModelRepl()
ocp_name::Symbol = gensym(:ocp)
sol_name::Symbol = gensym(:sol)
debug::Bool = false
end
@with_kw mutable struct HistoryRepl
index::Int = 0
ct_repl_datas_data::Vector{CTRepl} = Vector{CTRepl}()
end
#
ct_repl_is_set::Bool = false
ct_repl_data::CTRepl = CTRepl()
ct_repl_history::HistoryRepl = HistoryRepl(0, Vector{ModelRepl}())
"""
$(TYPEDSIGNATURES)
Update the model adding the expression e. It must be public since in the ct repl, this function
is quoted each time an expression is parsed and is valid.
"""
function ct_repl_update_model(e::Expr)
ct_repl_data.debug && (println("debug> expression to add: ", e))
# update model
__update!(ct_repl_data.model, e)
ct_repl_data.debug && (println("debug> expression valid, model updated."))
# add ct_repl_data to ct_repl_history
__add!(ct_repl_history, ct_repl_data)
#
return nothing
end
"""
$(TYPEDSIGNATURES)
Create a ct REPL.
"""
function ct_repl(; debug = false, verbose = false)
global ct_repl_is_set
global ct_repl_data
global ct_repl_history
if !ct_repl_is_set
#
ct_repl_is_set = true
#
ct_repl_data.debug = debug
# # advice to start by setting the name of the ocp and the solution
# println("\nType > to enter into ct repl.\n")
# println("For a start, you can set the names of the optimal control problem and its solution.")
# println("In ct repl, type:\n")
# println(" ct> NAME=(ocp, sol)")
# add initial ct_repl_data to ct_repl_history
__add!(ct_repl_history, ct_repl_data)
# text invalid
txt_invalid =
"\nInvalid expression.\n\nType HELP to see the list of commands or enter a " *
"valid expression to update the model."
function parse_to_expr(s::AbstractString)
# remove spaces from s at the beginning and at the end
s = strip(s)
# check if it is a comment
startswith(s, "#") && return nothing
# parse string
e = Meta.parse(s)
#
ct_repl_data.debug && println("\ndebug> parsing string: ", s)
ct_repl_data.debug && println("debug> expression parsed: ", e)
ct_repl_data.debug && println("debug> expression type: ", typeof(e))
ct_repl_data.debug && println("debug> dump of expression: ", dump(e))
# test if e is a command
@match e begin
:($c = $a) => begin
command = __transform_to_command(c)
ct_repl_data.debug &&
println("debug> command: ", command, " and argument: ", a)
command β keys(COMMANDS_ACTIONS) &&
(return COMMANDS_ACTIONS[command](ct_repl_data, a, ct_repl_history))
end
:($c) => begin
command = __transform_to_command(c)
ct_repl_data.debug && println("debug> command: ", command)
command β keys(COMMANDS_ACTIONS) &&
(return COMMANDS_ACTIONS[command](ct_repl_data, ct_repl_history))
end
_ => nothing
end
# check if s finishes with a ";". If yes then remove it and return nothing at the end
return_nothing = endswith(s, ";") ? true : false
return_nothing && (s = s[1:(end - 1)])
e = Meta.parse(s)
#
return_nothing && ct_repl_data.debug && println("\ndebug> new parsing string: ", s)
return_nothing && ct_repl_data.debug && println("debug> new expression parsed: ", e)
if e isa Expr
#
ocp_q_for_test = __quote_anonym_ocp(ct_repl_data, e) # test if code is valid: if not, an exception is thrown
ocp_q = __quote_ocp(ct_repl_data, e)
# to update the model if needed
ee = QuoteNode(e)
#
ct_repl_data.debug && (println("debug> try to add expression: ", e))
q = quote
try
$ocp_q_for_test # test if the expression is valid
catch ex
$(ct_repl_data.debug) && (println("debug> exception thrown: ", ex))
println($txt_invalid)
return
end
# test is ok
$(ct_repl_data.debug) && (println("debug> eval ocp quote ok "))
$(ct_repl_data.debug) && (println("debug> expr to add ", $ee))
# ----------------------------------------------------------------
# keep coherence between model and ocp variable
$ocp_q # define the ocp
ct_repl_update_model($ee) # add the expression in the model
# ----------------------------------------------------------------
$return_nothing ? nothing : begin
println("\n", string($ct_repl_data.ocp_name))
$(ct_repl_data.ocp_name)
end
end
return q
else
println(txt_invalid)
return nothing
end
end # parse_to_expr
# makerepl command
initrepl(
parse_to_expr,
prompt_text = "ct> ",
prompt_color = :magenta,
start_key = '>',
mode_name = "ct_mode",
valid_input_checker = complete_julia,
startup_text = false,
)
return nothing
else
if verbose
println("ct repl is already set.")
end
end
end
# ----------------------------------------------------------------
# utils functions
# ----------------------------------------------------------------
function NAME_ACTION_FUNCTION(ct_repl_data::CTRepl, ct_repl_history::HistoryRepl)
println("")
println("Optimal control problem name: ", ct_repl_data.ocp_name)
println("Solution name: ", ct_repl_data.sol_name)
end
function NAME_ACTION_FUNCTION(
ct_repl_data::CTRepl,
name::Union{Symbol, Expr},
ct_repl_history::HistoryRepl,
)
ocp_name = ct_repl_data.ocp_name
sol_name = ct_repl_data.sol_name
if isa(name, Symbol)
name = (name, Symbol(string(name, "_sol")))
elseif isa(name, Expr)
name = (name.args[1], name.args[2])
else
println(
"\nname error\n\nType HELP to see the list of commands or enter a valid expression to update the model.",
)
return nothing
end
ct_repl_data.ocp_name = name[1]
ct_repl_data.sol_name = name[2]
ct_repl_data.debug && println("debug> ocp name: ", ct_repl_data.ocp_name)
ct_repl_data.debug && println("debug> sol name: ", ct_repl_data.sol_name)
__add!(ct_repl_history, ct_repl_data) # update ct_repl_history
qo1 =
ct_repl_data.ocp_name β ocp_name ? :($(ct_repl_data.ocp_name) = "no optimal control") : :()
qs1 = ct_repl_data.sol_name β sol_name ? :($(ct_repl_data.sol_name) = "no solution") : :()
qo2 = ct_repl_data.ocp_name β ocp_name ? :($(ct_repl_data.ocp_name) = $(ocp_name)) : :()
qs2 = ct_repl_data.sol_name β sol_name ? :($(ct_repl_data.sol_name) = $(sol_name)) : :()
name_q = (
quote
$(qo1)
$(qs1)
try
$(qo2)
$(qs2)
nothing
catch e
nothing
end
end
)
ct_repl_data.debug && println("debug> new name quote: ", name_q)
return name_q
end
# dict of actions associated to ct repl commands
COMMANDS_ACTIONS = Dict{Symbol, Function}(
:SHOW =>
(ct_repl_data::CTRepl, ct_repl_history::HistoryRepl) -> begin
q = quote
println("\n", string($ct_repl_data.ocp_name))
$(ct_repl_data.ocp_name)
end
return q
end,
:SOLVE =>
(ct_repl_data::CTRepl, ct_repl_history::HistoryRepl) -> begin
return __quote_solve(ct_repl_data)
end,
:PLOT =>
(ct_repl_data::CTRepl, ct_repl_history::HistoryRepl) -> begin
return __quote_plot(ct_repl_data)
end,
:DEBUG =>
(ct_repl_data::CTRepl, ct_repl_history::HistoryRepl) -> begin
ct_repl_data.debug = !ct_repl_data.debug
println("\n debug mode: " * (ct_repl_data.debug ? "on" : "off"))
__add!(ct_repl_history, ct_repl_data) # update ct_repl_history
return nothing
end,
:NAME => NAME_ACTION_FUNCTION,
:UNDO =>
(ct_repl_data::CTRepl, ct_repl_history::HistoryRepl) -> begin
ct_repl_data_ = __undo!(ct_repl_history)
__copy!(ct_repl_data, ct_repl_data_)
ocp_q = __quote_ocp(ct_repl_data)
q = quote
$ocp_q
nothing
end
return q
end,
:REDO =>
(ct_repl_data::CTRepl, ct_repl_history::HistoryRepl) -> begin
ct_repl_data_ = __redo!(ct_repl_history)
__copy!(ct_repl_data, ct_repl_data_)
ocp_q = __quote_ocp(ct_repl_data)
q = quote
$ocp_q
nothing
end
return q
end,
:HELP =>
(ct_repl_data::CTRepl, ct_repl_history::HistoryRepl) -> begin
l = 8 # 22
n = 6
println("\nSpecial commands to interact with the ct repl:\n")
dict = sort(collect(COMMANDS_HELPS), by = x -> x[1])
for (k, v) β dict
m = length(string(k))
s = " "
s *= string(k) * " "^(n - m)
r = length(s)
s *= " "^(l - r)
printstyled(s, color = :magenta)
printstyled(": ", v, "\n")
end
return nothing
end,
:REPL =>
(ct_repl_data::CTRepl, ct_repl_history::HistoryRepl) -> begin
return :($ct_repl_data)
end,
:CLEAR =>
(ct_repl_data::CTRepl, ct_repl_history::HistoryRepl) -> begin
ct_repl_data.model = ModelRepl()
__add!(ct_repl_history, ct_repl_data) # update ct_repl_history
ocp_q = __quote_ocp(ct_repl_data)
q = quote
$ocp_q
nothing
end
return q
end,
)
# dict of help messages associated to ct repl commands
COMMANDS_HELPS = Dict{Symbol, String}(
:SOLVE => "solve the optimal control problem",
:PLOT => "plot the solution",
#:DEBUG => "toggle debug mode",
:NAME =>
"print the name of the optimal control problem and the solution. To set them: \n\n" *
" ct> NAME=ocp\n" *
" ct> NAME=(ocp, sol)\n",
:UNDO => "undo last command",
:REDO => "redo last command",
:HELP => "help",
#:REPL => "return the current ct REPL",
:SHOW => "show the optimal control problem",
:CLEAR => "clear the optimal control problem",
)
# non existing command
__non_existing_command() = :non_existing_command
# transform to a command
__transform_to_command(c::Symbol)::Symbol = c
__transform_to_command(e::Expr)::Symbol = __non_existing_command()
# get code from model
function __code(model::ModelRepl)::Expr
return Expr(:block, model...)
end
# get code from model and an extra expression
function __code(model::ModelRepl, e::Expr)
model_ = deepcopy(model) # copy model
__update!(model_, e) # update model_
return __code(model_) # get code
end
function __update!(model::ModelRepl, e::Expr)
push!(model, e)
end
# make @def ocp quote
function __quote_ocp(ct_repl_data::CTRepl)
code = __code(ct_repl_data.model)
ocp_q = quote
@def $(ct_repl_data.ocp_name) $(code)
end
ct_repl_data.debug && println("debug> code: ", code)
ct_repl_data.debug && println("debug> quote code: ", ocp_q)
return ocp_q
end
function __quote_ocp(ct_repl_data::CTRepl, e::Expr)
code = __code(ct_repl_data.model, e)
ocp_q = quote
@def $(ct_repl_data.ocp_name) $(code)
end
ct_repl_data.debug && println("debug> code: ", code)
ct_repl_data.debug && println("debug> quote code: ", ocp_q)
return ocp_q
end
# get ocp quote
function __quote_anonym_ocp(ct_repl_data::CTRepl, e::Expr)
code = __code(ct_repl_data.model, e)
ocp = gensym()
ocp_q = quote
@def $ocp $code
end
ct_repl_data.debug && println("debug> code: ", code)
ct_repl_data.debug && println("debug> quote code: ", ocp_q)
return ocp_q
end
# quote solve: todo: update when using real solver
function __quote_solve(ct_repl_data::CTRepl)
solve_q = (
quote
$(ct_repl_data.sol_name) = solve($(ct_repl_data.ocp_name))
end
)
ct_repl_data.debug && println("debug> quote solve: ", solve_q)
return solve_q
end
# quote plot: todo: update when handle correctly solution
function __quote_plot(ct_repl_data::CTRepl)
plot_q = quote
if @isdefined($(ct_repl_data.sol_name))
plot($(ct_repl_data.sol_name), size = (600, 500))
else
println("\nNo solution available.")
end
end
ct_repl_data.debug && println("debug> quote plot: ", plot_q)
return plot_q
end
# add model to ct_repl_history
function __add!(ct_repl_history::HistoryRepl, ct_repl_data::CTRepl)
push!(ct_repl_history.ct_repl_datas_data, deepcopy(ct_repl_data))
ct_repl_history.index += 1
end
# go to previous model in ct_repl_history
function __undo!(ct_repl_history::HistoryRepl)
ct_repl_history.index > 1 && (ct_repl_history.index -= 1)
return ct_repl_history.ct_repl_datas_data[ct_repl_history.index]
end
# go to next model in ct_repl_history
function __redo!(ct_repl_history::HistoryRepl)
ct_repl_history.index < length(ct_repl_history.ct_repl_datas_data) &&
(ct_repl_history.index += 1)
return ct_repl_history.ct_repl_datas_data[ct_repl_history.index]
end
# copy a ct_repl_data
function __copy!(ct_repl_data::CTRepl, ct_repl_data_to_copy::CTRepl)
ct_repl_data.model = deepcopy(ct_repl_data_to_copy.model)
ct_repl_data.ocp_name = ct_repl_data_to_copy.ocp_name
ct_repl_data.sol_name = ct_repl_data_to_copy.sol_name
ct_repl_data.debug = ct_repl_data_to_copy.debug
end
function Base.show(io::IO, ::MIME"text/plain", ct_repl_data::CTRepl)
print(io, "\n")
println(io, "ct> ")
println(io, "model: ", ct_repl_data.model)
println(io, "ocp_name: ", ct_repl_data.ocp_name)
println(io, "sol_name: ", ct_repl_data.sol_name)
println(io, "debug: ", ct_repl_data.debug)
end
| CTBase | https://github.com/control-toolbox/CTBase.jl.git |
|
[
"MIT"
] | 0.14.0 | 68e9ab3053e0b38e8e574f2809dd280c9dafa338 | code | 36584 | # --------------------------------------------------------------------------------------------------
# functions
#
"""
$(TYPEDEF)
Abstract type for functions.
"""
abstract type AbstractCTFunction <: Function end
"""
$(TYPEDEF)
**Fields**
$(TYPEDFIELDS)
The default value for `variable_dependence` is `Fixed`.
## Constructor
The constructor ```BoundaryConstraint``` returns a ```BoundaryConstraint``` of a function.
The function must take 2 or 3 arguments `(x0, xf)` or `(x0, xf, v)`, if the function is variable, it must be specified.
Dependencies are specified with a boolean, `variable`, `false` by default or with a `DataType`, `NonFixed/Fixed`, `Fixed` by default.
## *Examples*
```@example
julia> B = BoundaryConstraint((x0, xf) -> [xf[2]-x0[1], 2xf[1]+x0[2]^2])
julia> B = BoundaryConstraint((x0, xf, v) -> [v[3]+xf[2]-x0[1], v[1]-v[2]+2xf[1]+x0[2]^2], variable=true)
julia> B = BoundaryConstraint((x0, xf, v) -> [v[3]+xf[2]-x0[1], v[1]-v[2]+2xf[1]+x0[2]^2], NonFixed)
```
!!! warning
When the state is of dimension 1, consider `x0` and `xf` as a scalar. When the constraint is dimension 1, return a scalar.
## Call
The call returns the evaluation of the `BoundaryConstraint` for given values.
If a variable is given for a non variable dependent boundary constraint, it will be ignored.
## *Examples*
```@example
julia> B = BoundaryConstraint((x0, xf) -> [xf[2]-x0[1], 2xf[1]+x0[2]^2])
julia> B([0, 0], [1, 1])
[1, 2]
julia> B = BoundaryConstraint((x0, xf) -> [xf[2]-x0[1], 2xf[1]+x0[2]^2])
julia> B([0, 0], [1, 1],Real[])
[1, 2]
julia> B = BoundaryConstraint((x0, xf, v) -> [v[3]+xf[2]-x0[1], v[1]-v[2]+2xf[1]+x0[2]^2], variable=true)
julia> B([0, 0], [1, 1], [1, 2, 3])
[4, 1]
```
"""
struct BoundaryConstraint{variable_dependence}
f::Function
end
struct BoundaryConstraint!{variable_dependence}
f!::Function
end
"""
$(TYPEDEF)
**Fields**
$(TYPEDFIELDS)
The default value for `variable_dependence` is `Fixed`.
## Constructor
The constructor ```Mayer``` returns a ```Mayer``` cost of a function.
The function must take 2 or 3 arguments `(x0, xf)` or `(x0, xf, v)`, if the function is variable, it must be specified.
Dependencies are specified with a boolean, `variable`, `false` by default or with a `DataType`, `NonFixed/Fixed`, `Fixed` by default.
## *Examples*
```@example
julia> G = Mayer((x0, xf) -> xf[2]-x0[1])
julia> G = Mayer((x0, xf, v) -> v[3]+xf[2]-x0[1], variable=true)
julia> G = Mayer((x0, xf, v) -> v[3]+xf[2]-x0[1], NonFixed)
```
!!! warning
When the state is of dimension 1, consider `x0` and `xf` as a scalar.
## Call
The call returns the evaluation of the `Mayer` cost for given values.
If a variable is given for a non variable dependent Mayer cost, it will be ignored.
## *Examples*
```@example
julia> G = Mayer((x0, xf) -> xf[2]-x0[1])
julia> G([0, 0], [1, 1])
1
julia> G = Mayer((x0, xf) -> xf[2]-x0[1])
julia> G([0, 0], [1, 1],Real[])
1
julia> G = Mayer((x0, xf, v) -> v[3]+xf[2]-x0[1], variable=true)
julia> G([0, 0], [1, 1], [1, 2, 3])
4
```
"""
struct Mayer{variable_dependence}
f::Function
end
struct Mayer!{variable_dependence}
f!::Function
end
"""
$(TYPEDEF)
Abstract type for hamiltonians.
"""
abstract type AbstractHamiltonian{time_dependence, variable_dependence} end
"""
$(TYPEDEF)
Abstract type for vector fields.
"""
abstract type AbstractVectorField{time_dependence, variable_dependence} end
"""
$(TYPEDEF)
**Fields**
$(TYPEDFIELDS)
The default values for `time_dependence` and `variable_dependence` are `Autonomous` and `Fixed` respectively.
## Constructor
The constructor ```Hamiltonian``` returns a ```Hamiltonian``` of a function.
The function must take 2 to 4 arguments, `(x, p)` to `(t, x, p, v)`, if the function is variable or non autonomous, it must be specified.
Dependencies are specified either with :
- booleans, `autonomous` and `variable`, respectively `true` and `false` by default
- `DataType`, `Autonomous`/`NonAutonomous` and `NonFixed`/`Fixed`, respectively `Autonomous` and `Fixed` by default.
## *Examples*
```@example
julia> Hamiltonian((x, p) -> x + p, Int64)
IncorrectArgument
julia> Hamiltonian((x, p) -> x + p, Int64)
IncorrectArgument
julia> H = Hamiltonian((x, p) -> x[1]^2+2p[2])
julia> H = Hamiltonian((t, x, p, v) -> [t+x[1]^2+2p[2]+v[3]], autonomous=false, variable=true)
julia> H = Hamiltonian((t, x, p, v) -> [t+x[1]^2+2p[2]+v[3]], NonAutonomous, NonFixed)
```
!!! warning
When the state and costate are of dimension 1, consider `x` and `p` as scalars.
## Call
The call returns the evaluation of the `Hamiltonian` for given values.
## *Examples*
```@example
julia> H = Hamiltonian((x, p) -> [x[1]^2+2p[2]]) # autonomous=true, variable=false
julia> H([1, 0], [0, 1])
MethodError # H must return a scalar
julia> H = Hamiltonian((x, p) -> x[1]^2+2p[2])
julia> H([1, 0], [0, 1])
3
julia> t = 1
julia> v = Real[]
julia> H(t, [1, 0], [0, 1])
MethodError
julia> H([1, 0], [0, 1], v)
MethodError
julia> H(t, [1, 0], [0, 1], v)
3
julia> H = Hamiltonian((x, p, v) -> x[1]^2+2p[2]+v[3], variable=true)
julia> H([1, 0], [0, 1], [1, 2, 3])
6
julia> H(t, [1, 0], [0, 1], [1, 2, 3])
6
julia> H = Hamiltonian((t, x, p) -> t+x[1]^2+2p[2], autonomous=false)
julia> H(1, [1, 0], [0, 1])
4
julia> H(1, [1, 0], [0, 1], v)
4
julia> H = Hamiltonian((t, x, p, v) -> t+x[1]^2+2p[2]+v[3], autonomous=false, variable=true)
julia> H(1, [1, 0], [0, 1], [1, 2, 3])
7
```
"""
struct Hamiltonian{time_dependence, variable_dependence} <:
AbstractHamiltonian{time_dependence, variable_dependence}
f::Function
end
"""
$(TYPEDEF)
**Fields**
$(TYPEDFIELDS)
The default values for `time_dependence` and `variable_dependence` are `Autonomous` and `Fixed` respectively.
## Constructor
The constructor ```VectorField``` returns a ```VectorField``` of a function.
The function must take 1 to 3 arguments, `x` to `(t, x, v)`, if the function is variable or non autonomous, it must be specified.
Dependencies are specified either with :
- booleans, `autonomous` and `variable`, respectively `true` and `false` by default
- `DataType`, `Autonomous`/`NonAutonomous` and `NonFixed`/`Fixed`, respectively `Autonomous` and `Fixed` by default.
## *Examples*
```@example
julia> VectorField(x -> [x[1]^2, 2x[2]], Int64)
IncorrectArgument
julia> VectorField(x -> [x[1]^2, 2x[2]], Int64)
IncorrectArgument
julia> V = VectorField(x -> [x[1]^2, 2x[2]]) # autonomous=true, variable=false
julia> V = VectorField((x, v) -> [x[1]^2, 2x[2]+v[3]], variable=true)
julia> V = VectorField((t, x) -> [t+x[1]^2, 2x[2]], autonomous=false)
julia> V = VectorField((t, x, v) -> [t+x[1]^2, 2x[2]+v[3]], autonomous=false, variable=true)
julia> V = VectorField((x, v) -> [x[1]^2, 2x[2]+v[3]], NonFixed)
julia> V = VectorField((t, x) -> [t+x[1]^2, 2x[2]], NonAutonomous)
julia> V = VectorField((t, x, v) -> [t+x[1]^2, 2x[2]+v[3]], NonAutonomous, NonFixed)
```
!!! warning
When the state is of dimension 1, consider `x` as a scalar.
## Call
The call returns the evaluation of the `VectorField` for given values.
## *Examples*
```@example
julia> V = VectorField(x -> [x[1]^2, 2x[2]]) # autonomous=true, variable=false
julia> V([1, -1])
[1, -2]
julia> t = 1
julia> v = Real[]
julia> V(t, [1, -1])
MethodError
julia> V([1, -1], v)
MethodError
julia> V(t, [1, -1], v)
[1, -2]
julia> V = VectorField((x, v) -> [x[1]^2, 2x[2]+v[3]], variable=true)
julia> V([1, -1], [1, 2, 3])
[1, 1]
julia> V(t, [1, -1], [1, 2, 3])
[1, 1]
julia> V = VectorField((t, x) -> [t+x[1]^2, 2x[2]], autonomous=false)
julia> V(1, [1, -1])
[2, -2]
julia> V(1, [1, -1], v)
[2, -2]
julia> V = VectorField((t, x, v) -> [t+x[1]^2, 2x[2]+v[3]], autonomous=false, variable=true)
julia> V(1, [1, -1], [1, 2, 3])
[2, 1]
```
"""
struct VectorField{time_dependence, variable_dependence} <:
AbstractVectorField{time_dependence, variable_dependence}
f::Function
end
"""
$(TYPEDEF)
**Fields**
$(TYPEDFIELDS)
The default values for `time_dependence` and `variable_dependence` are `Autonomous` and `Fixed` respectively.
## Constructor
The constructor ```HamiltonianVectorField``` returns a ```HamiltonianVectorField``` of a function.
The function must take 2 to 4 arguments, `(x, p)` to `(t, x, p, v)`, if the function is variable or non autonomous, it must be specified.
Dependencies are specified either with :
- booleans, `autonomous` and `variable`, respectively `true` and `false` by default
- `DataType`, `Autonomous`/`NonAutonomous` and `NonFixed`/`Fixed`, respectively `Autonomous` and `Fixed` by default.
## *Examples*
```@example
julia> HamiltonianVectorField((x, p) -> [x[1]^2+2p[2], x[2]-3p[2]^2], Int64)
IncorrectArgument
julia> HamiltonianVectorField((x, p) -> [x[1]^2+2p[2], x[2]-3p[2]^2], Int64)
IncorrectArgument
julia> Hv = HamiltonianVectorField((x, p) -> [x[1]^2+2p[2], x[2]-3p[2]^2]) # autonomous=true, variable=false
julia> Hv = HamiltonianVectorField((x, p, v) -> [x[1]^2+2p[2]+v[3], x[2]-3p[2]^2+v[4]], variable=true)
julia> Hv = HamiltonianVectorField((t, x, p) -> [t+x[1]^2+2p[2], x[2]-3p[2]^2], autonomous=false)
julia> Hv = HamiltonianVectorField((t, x, p, v) -> [t+x[1]^2+2p[2]+v[3], x[2]-3p[2]^2+v[4]], autonomous=false, variable=true)
julia> Hv = HamiltonianVectorField((x, p, v) -> [x[1]^2+2p[2]+v[3], x[2]-3p[2]^2+v[4]], NonFixed)
julia> Hv = HamiltonianVectorField((t, x, p) -> [t+x[1]^2+2p[2], x[2]-3p[2]^2], NonAutonomous)
julia> Hv = HamiltonianVectorField((t, x, p, v) -> [t+x[1]^2+2p[2]+v[3], x[2]-3p[2]^2+v[4]], NonAutonomous, NonFixed)
```
!!! warning
When the state and costate are of dimension 1, consider `x` and `p` as scalars.
## Call
The call returns the evaluation of the `HamiltonianVectorField` for given values.
## *Examples*
```@example
julia> Hv = HamiltonianVectorField((x, p) -> [x[1]^2+2p[2], x[2]-3p[2]^2]) # autonomous=true, variable=false
julia> Hv([1, 0], [0, 1])
[3, -3]
julia> t = 1
julia> v = Real[]
julia> Hv(t, [1, 0], [0, 1])
MethodError
julia> Hv([1, 0], [0, 1], v)
MethodError
julia> Hv(t, [1, 0], [0, 1], v)
[3, -3]
julia> Hv = HamiltonianVectorField((x, p, v) -> [x[1]^2+2p[2]+v[3], x[2]-3p[2]^2+v[4]], variable=true)
julia> Hv([1, 0], [0, 1], [1, 2, 3, 4])
[6, -3]
julia> Hv(t, [1, 0], [0, 1], [1, 2, 3, 4])
[6, -3]
julia> Hv = HamiltonianVectorField((t, x, p) -> [t+x[1]^2+2p[2], x[2]-3p[2]^2], autonomous=false)
julia> Hv(1, [1, 0], [0, 1])
[4, -3]
julia> Hv(1, [1, 0], [0, 1], v)
[4, -3]
julia> Hv = HamiltonianVectorField((t, x, p, v) -> [t+x[1]^2+2p[2]+v[3], x[2]-3p[2]^2+v[4]], autonomous=false, variable=true)
julia> Hv(1, [1, 0], [0, 1], [1, 2, 3, 4])
[7, -3]
```
"""
struct HamiltonianVectorField{time_dependence, variable_dependence} <:
AbstractVectorField{time_dependence, variable_dependence}
f::Function
end
"""
$(TYPEDEF)
**Lifts**
$(TYPEDFIELDS)
The values for `time_dependence` and `variable_dependence` are deternimed by the values of those for the VectorField.
## Constructor
The constructor ```HamiltonianLift``` returns a ```HamiltonianLift``` of a `VectorField`.
## *Examples*
```@example
julia> H = HamiltonianLift(VectorField(x -> [x[1]^2, 2x[2]]))
julia> H = HamiltonianLift(VectorField((x, v) -> [x[1]^2, 2x[2]+v[3]], variable=true))
julia> H = HamiltonianLift(VectorField((t, x) -> [t+x[1]^2, 2x[2]], autonomous=false))
julia> H = HamiltonianLift(VectorField((t, x, v) -> [t+x[1]^2, 2x[2]+v[3]], autonomous=false, variable=true))
julia> H = HamiltonianLift(VectorField(x -> [x[1]^2, 2x[2]]))
julia> H = HamiltonianLift(VectorField((x, v) -> [x[1]^2, 2x[2]+v[3]], NonFixed))
julia> H = HamiltonianLift(VectorField((t, x) -> [t+x[1]^2, 2x[2]], NonAutonomous))
julia> H = HamiltonianLift(VectorField((t, x, v) -> [t+x[1]^2, 2x[2]+v[3]], NonAutonomous, NonFixed))
```
!!! warning
When the state and costate are of dimension 1, consider `x` and `p` as scalars.
## Call
The call returns the evaluation of the `HamiltonianLift` for given values.
## *Examples*
```@example
julia> H = HamiltonianLift(VectorField(x -> [x[1]^2, 2x[2]]))
julia> H([1, 2], [1, 1])
5
julia> t = 1
julia> v = Real[]
julia> H(t, [1, 0], [0, 1])
MethodError
julia> H([1, 0], [0, 1], v)
MethodError
julia> H(t, [1, 0], [0, 1], v)
5
julia> H = HamiltonianLift(VectorField((x, v) -> [x[1]^2, 2x[2]+v[3]], variable=true))
julia> H([1, 0], [0, 1], [1, 2, 3])
3
julia> H(t, [1, 0], [0, 1], [1, 2, 3])
3
julia> H = HamiltonianLift(VectorField((t, x) -> [t+x[1]^2, 2x[2]], autonomous=false))
julia> H(1, [1, 2], [1, 1])
6
julia> H(1, [1, 0], [0, 1], v)
6
julia> H = HamiltonianLift(VectorField((t, x, v) -> [t+x[1]^2, 2x[2]+v[3]], autonomous=false, variable=true))
julia> H(1, [1, 0], [0, 1], [1, 2, 3])
3
```
Alternatively, it is possible to construct the `HamiltonianLift` from a `Function` being the `VectorField`.
```@example
julia> HL1 = HamiltonianLift((x, v) -> [x[1]^2,x[2]^2+v], autonomous=true, variable=true)
julia> HL2 = HamiltonianLift(VectorField((x, v) -> [x[1]^2,x[2]^2+v], autonomous=true, variable=true))
julia> HL1([1, 0], [0, 1], 1) == HL2([1, 0], [0, 1], 1)
true
```
"""
struct HamiltonianLift{time_dependence, variable_dependence} <:
AbstractHamiltonian{time_dependence, variable_dependence}
X::VectorField
function HamiltonianLift(
X::VectorField{time_dependence, variable_dependence},
) where {time_dependence, variable_dependence}
new{time_dependence, variable_dependence}(X)
end
end
"""
$(TYPEDEF)
**Fields**
$(TYPEDFIELDS)
The default value for `time_dependence` and `variable_dependence` are `Autonomous` and `Fixed` respectively.
## Constructor
The constructor ```Lagrange``` returns a ```Lagrange``` cost of a function.
The function must take 2 to 4 arguments, `(x, u)` to `(t, x, u, v)`, if the function is variable or non autonomous, it must be specified.
Dependencies are specified either with :
- booleans, `autonomous` and `variable`, respectively `true` and `false` by default
- `DataType`, `Autonomous`/`NonAutonomous` and `NonFixed`/`Fixed`, respectively `Autonomous` and `Fixed` by default.
## *Examples*
```@example
julia> Lagrange((x, u) -> 2x[2]-u[1]^2, Int64)
IncorrectArgument
julia> Lagrange((x, u) -> 2x[2]-u[1]^2, Int64)
IncorrectArgument
julia> L = Lagrange((x, u) -> [2x[2]-u[1]^2], autonomous=true, variable=false)
julia> L = Lagrange((x, u) -> 2x[2]-u[1]^2, autonomous=true, variable=false)
julia> L = Lagrange((x, u, v) -> 2x[2]-u[1]^2+v[3], autonomous=true, variable=true)
julia> L = Lagrange((t, x, u) -> t+2x[2]-u[1]^2, autonomous=false, variable=false)
julia> L = Lagrange((t, x, u, v) -> t+2x[2]-u[1]^2+v[3], autonomous=false, variable=true)
julia> L = Lagrange((x, u) -> [2x[2]-u[1]^2], Autonomous, Fixed)
julia> L = Lagrange((x, u) -> 2x[2]-u[1]^2, Autonomous, Fixed)
julia> L = Lagrange((x, u, v) -> 2x[2]-u[1]^2+v[3], Autonomous, NonFixed)
julia> L = Lagrange((t, x, u) -> t+2x[2]-u[1]^2, autonomous=false, Fixed)
julia> L = Lagrange((t, x, u, v) -> t+2x[2]-u[1]^2+v[3], autonomous=false, NonFixed)
```
!!! warning
When the state is of dimension 1, consider `x` as a scalar. Same for the control.
## Call
The call returns the evaluation of the `Lagrange` cost for given values.
## *Examples*
```@example
julia> L = Lagrange((x, u) -> [2x[2]-u[1]^2], autonomous=true, variable=false)
julia> L([1, 0], [1])
MethodError
julia> L = Lagrange((x, u) -> 2x[2]-u[1]^2, autonomous=true, variable=false)
julia> L([1, 0], [1])
-1
julia> t = 1
julia> v = Real[]
julia> L(t, [1, 0], [1])
MethodError
julia> L([1, 0], [1], v)
MethodError
julia> L(t, [1, 0], [1], v)
-1
julia> L = Lagrange((x, u, v) -> 2x[2]-u[1]^2+v[3], autonomous=true, variable=true)
julia> L([1, 0], [1], [1, 2, 3])
2
julia> L(t, [1, 0], [1], [1, 2, 3])
2
julia> L = Lagrange((t, x, u) -> t+2x[2]-u[1]^2, autonomous=false, variable=false)
julia> L(1, [1, 0], [1])
0
julia> L(1, [1, 0], [1], v)
0
julia> L = Lagrange((t, x, u, v) -> t+2x[2]-u[1]^2+v[3], autonomous=false, variable=true)
julia> L(1, [1, 0], [1], [1, 2, 3])
3
```
"""
struct Lagrange{time_dependence, variable_dependence}
f::Function
end
struct Lagrange!{time_dependence, variable_dependence}
f!::Function
end
"""
$(TYPEDEF)
**Fields**
$(TYPEDFIELDS)
The default value for `time_dependence` and `variable_dependence` are `Autonomous` and `Fixed` respectively.
## Constructor
The constructor ```Dynamics``` returns a ```Dynamics``` of a function.
The function must take 2 to 4 arguments, `(x, u)` to `(t, x, u, v)`, if the function is variable or non autonomous, it must be specified.
Dependencies are specified either with :
- booleans, `autonomous` and `variable`, respectively `true` and `false` by default
- `DataType`, `Autonomous`/`NonAutonomous` and `NonFixed`/`Fixed`, respectively `Autonomous` and `Fixed` by default.
## *Examples*
```@example
julia> Dynamics((x, u) -> [2x[2]-u^2, x[1]], Int64)
IncorrectArgument
julia> Dynamics((x, u) -> [2x[2]-u^2, x[1]], Int64)
IncorrectArgument
julia> D = Dynamics((x, u) -> [2x[2]-u^2, x[1]], Autonomous, Fixed)
julia> D = Dynamics((x, u, v) -> [2x[2]-u^2+v[3], x[1]], Autonomous, NonFixed)
julia> D = Dynamics((t, x, u) -> [t+2x[2]-u^2, x[1]], NonAutonomous, Fixed)
julia> D = Dynamics((t, x, u, v) -> [t+2x[2]-u^2+v[3], x[1]], NonAutonomous, NonFixed)
julia> D = Dynamics((x, u) -> [2x[2]-u^2, x[1]], autonomous=true, variable=false)
julia> D = Dynamics((x, u, v) -> [2x[2]-u^2+v[3], x[1]], autonomous=true, variable=true)
julia> D = Dynamics((t, x, u) -> [t+2x[2]-u^2, x[1]], autonomous=false, variable=false)
julia> D = Dynamics((t, x, u, v) -> [t+2x[2]-u^2+v[3], x[1]], autonomous=false, variable=true)
```
!!! warning
When the state is of dimension 1, consider `x` as a scalar. Same for the control.
## Call
The call returns the evaluation of the `Dynamics` for given values.
## *Examples*
```@example
julia> D = Dynamics((x, u) -> [2x[2]-u^2, x[1]], autonomous=true, variable=false)
julia> D([1, 0], 1)
[-1, 1]
julia> t = 1
julia> v = Real[]
julia> D(t, [1, 0], 1, v)
[-1, 1]
julia> D = Dynamics((x, u, v) -> [2x[2]-u^2+v[3], x[1]], autonomous=true, variable=true)
julia> D([1, 0], 1, [1, 2, 3])
[2, 1]
julia> D(t, [1, 0], 1, [1, 2, 3])
[2, 1]
julia> D = Dynamics((t, x, u) -> [t+2x[2]-u^2, x[1]], autonomous=false, variable=false)
julia> D(1, [1, 0], 1)
[0, 1]
julia> D(1, [1, 0], 1, v)
[0, 1]
julia> D = Dynamics((t, x, u, v) -> [t+2x[2]-u^2+v[3], x[1]], autonomous=false, variable=true)
julia> D(1, [1, 0], 1, [1, 2, 3])
[3, 1]
```
"""
struct Dynamics{time_dependence, variable_dependence}
f::Function
end
struct Dynamics!{time_dependence, variable_dependence}
f!::Function
end
"""
$(TYPEDEF)
**Fields**
$(TYPEDFIELDS)
Similar to `VectorField` in the usage, but the dimension of the output of the function `f` is arbitrary.
The default values for `time_dependence` and `variable_dependence` are `Autonomous` and `Fixed` respectively.
## Constructor
The constructor ```StateConstraint``` returns a ```StateConstraint``` of a function.
The function must take 1 to 3 arguments, `x` to `(t, x, v)`, if the function is variable or non autonomous, it must be specified.
Dependencies are specified either with :
- booleans, `autonomous` and `variable`, respectively `true` and `false` by default
- `DataType`, `Autonomous`/`NonAutonomous` and `NonFixed`/`Fixed`, respectively `Autonomous` and `Fixed` by default.
## *Examples*
```@example
julia> StateConstraint(x -> [x[1]^2, 2x[2]], Int64)
IncorrectArgument
julia> StateConstraint(x -> [x[1]^2, 2x[2]], Int64)
IncorrectArgument
julia> S = StateConstraint(x -> [x[1]^2, 2x[2]], Autonomous, Fixed)
julia> S = StateConstraint((x, v) -> [x[1]^2, 2x[2]+v[3]], Autonomous, NonFixed)
julia> S = StateConstraint((t, x) -> [t+x[1]^2, 2x[2]], NonAutonomous, Fixed)
julia> S = StateConstraint((t, x, v) -> [t+x[1]^2, 2x[2]+v[3]], NonAutonomous, NonFixed)
julia> S = StateConstraint(x -> [x[1]^2, 2x[2]], autonomous=true, variable=false)
julia> S = StateConstraint((x, v) -> [x[1]^2, 2x[2]+v[3]], autonomous=true, variable=true)
julia> S = StateConstraint((t, x) -> [t+x[1]^2, 2x[2]], autonomous=false, variable=false)
julia> S = StateConstraint((t, x, v) -> [t+x[1]^2, 2x[2]+v[3]], autonomous=false, variable=true)
```
!!! warning
When the state is of dimension 1, consider `x` as a scalar.
## Call
The call returns the evaluation of the `StateConstraint` for given values.
## *Examples*
```@example
julia> StateConstraint(x -> [x[1]^2, 2x[2]], Int64)
IncorrectArgument
julia> StateConstraint(x -> [x[1]^2, 2x[2]], Int64)
IncorrectArgument
julia> S = StateConstraint(x -> [x[1]^2, 2x[2]], autonomous=true, variable=false)
julia> S([1, -1])
[1, -2]
julia> t = 1
julia> v = Real[]
julia> S(t, [1, -1], v)
[1, -2]
julia> S = StateConstraint((x, v) -> [x[1]^2, 2x[2]+v[3]], autonomous=true, variable=true)
julia> S([1, -1], [1, 2, 3])
[1, 1]
julia> S(t, [1, -1], [1, 2, 3])
[1, 1]
julia> S = StateConstraint((t, x) -> [t+x[1]^2, 2x[2]], autonomous=false, variable=false)
julia> S(1, [1, -1])
[2, -2]
julia> S(1, [1, -1], v)
[2, -2]
julia> S = StateConstraint((t, x, v) -> [t+x[1]^2, 2x[2]+v[3]], autonomous=false, variable=true)
julia> S(1, [1, -1], [1, 2, 3])
[2, 1]
```
"""
struct StateConstraint{time_dependence, variable_dependence}
f::Function
end
struct StateConstraint!{time_dependence, variable_dependence}
f!::Function
end
"""
$(TYPEDEF)
**Fields**
$(TYPEDFIELDS)
Similar to `VectorField` in the usage, but the dimension of the output of the function `f` is arbitrary.
The default values for `time_dependence` and `variable_dependence` are `Autonomous` and `Fixed` respectively.
## Constructor
The constructor ```ControlConstraint``` returns a ```ControlConstraint``` of a function.
The function must take 1 to 3 arguments, `u` to `(t, u, v)`, if the function is variable or non autonomous, it must be specified.
Dependencies are specified either with :
- booleans, `autonomous` and `variable`, respectively `true` and `false` by default
- `DataType`, `Autonomous`/`NonAutonomous` and `NonFixed`/`Fixed`, respectively `Autonomous` and `Fixed` by default.
## *Examples*
```@example
julia> IncorrectArgument ControlConstraint(u -> [u[1]^2, 2u[2]], Int64)
julia> IncorrectArgument ControlConstraint(u -> [u[1]^2, 2u[2]], Int64)
julia> C = ControlConstraint(u -> [u[1]^2, 2u[2]], Autonomous, Fixed)
julia> C = ControlConstraint((u, v) -> [u[1]^2, 2u[2]+v[3]], Autonomous, NonFixed)
julia> C = ControlConstraint((t, u) -> [t+u[1]^2, 2u[2]], NonAutonomous, Fixed)
julia> C = ControlConstraint((t, u, v) -> [t+u[1]^2, 2u[2]+v[3]], NonAutonomous, NonFixed)
julia> C = ControlConstraint(u -> [u[1]^2, 2u[2]], autonomous=true, variable=false)
julia> C = ControlConstraint((u, v) -> [u[1]^2, 2u[2]+v[3]], autonomous=true, variable=true)
julia> C = ControlConstraint((t, u) -> [t+u[1]^2, 2u[2]], autonomous=false, variable=false)
julia> C = ControlConstraint((t, u, v) -> [t+u[1]^2, 2u[2]+v[3]], autonomous=false, variable=true)
```
!!! warning
When the control is of dimension 1, consider `u` as a scalar.
## Call
The call returns the evaluation of the `ControlConstraint` for given values.
## *Examples*
```@example
julia> C = ControlConstraint(u -> [u[1]^2, 2u[2]], autonomous=true, variable=false)
julia> C([1, -1])
[1, -2]
julia> t = 1
julia> v = Real[]
julia> C(t, [1, -1], v)
[1, -2]
julia> C = ControlConstraint((u, v) -> [u[1]^2, 2u[2]+v[3]], autonomous=true, variable=true)
julia> C([1, -1], [1, 2, 3])
[1, 1]
julia> C(t, [1, -1], [1, 2, 3])
[1, 1]
julia> C = ControlConstraint((t, u) -> [t+u[1]^2, 2u[2]], autonomous=false, variable=false)
julia> C(1, [1, -1])
[2, -2]
julia> C(1, [1, -1], v)
[2, -2]
julia> C = ControlConstraint((t, u, v) -> [t+u[1]^2, 2u[2]+v[3]], autonomous=false, variable=true)
julia> C(1, [1, -1], [1, 2, 3])
[2, 1]
```
"""
struct ControlConstraint{time_dependence, variable_dependence}
f::Function
end
struct ControlConstraint!{time_dependence, variable_dependence}
f!::Function
end
"""
$(TYPEDEF)
**Fields**
$(TYPEDFIELDS)
Similar to `Lagrange` in the usage, but the dimension of the output of the function `f` is arbitrary.
The default value for `time_dependence` and `variable_dependence` are `Autonomous` and `Fixed` respectively.
## Constructor
The constructor ```MixedConstraint``` returns a ```MixedConstraint``` of a function.
The function must take 2 to 4 arguments, `(x, u)` to `(t, x, u, v)`, if the function is variable or non autonomous, it must be specified.
Dependencies are specified either with :
- booleans, `autonomous` and `variable`, respectively `true` and `false` by default
- `DataType`, `Autonomous`/`NonAutonomous` and `NonFixed`/`Fixed`, respectively `Autonomous` and `Fixed` by default.
## *Examples*
```@example
julia> MixedConstraint((x, u) -> [2x[2]-u^2, x[1]], Int64)
IncorrectArgument
julia> MixedConstraint((x, u) -> [2x[2]-u^2, x[1]], Int64)
IncorrectArgument
julia> M = MixedConstraint((x, u) -> [2x[2]-u^2, x[1]], Autonomous, Fixed)
julia> M = MixedConstraint((x, u, v) -> [2x[2]-u^2+v[3], x[1]], Autonomous, NonFixed)
julia> M = MixedConstraint((t, x, u) -> [t+2x[2]-u^2, x[1]], NonAutonomous, Fixed)
julia> M = MixedConstraint((t, x, u, v) -> [t+2x[2]-u^2+v[3], x[1]], NonAutonomous, NonFixed)
julia> M = MixedConstraint((x, u) -> [2x[2]-u^2, x[1]], autonomous=true, variable=false)
julia> M = MixedConstraint((x, u, v) -> [2x[2]-u^2+v[3], x[1]], autonomous=true, variable=true)
julia> M = MixedConstraint((t, x, u) -> [t+2x[2]-u^2, x[1]], autonomous=false, variable=false)
julia> M = MixedConstraint((t, x, u, v) -> [t+2x[2]-u^2+v[3], x[1]], autonomous=false, variable=true)
```
!!! warning
When the state is of dimension 1, consider `x` as a scalar. Same for the control.
## Call
The call returns the evaluation of the `MixedConstraint` for given values.
## *Examples*
```@example
julia> MixedConstraint((x, u) -> [2x[2]-u^2, x[1]], Int64)
IncorrectArgument
julia> MixedConstraint((x, u) -> [2x[2]-u^2, x[1]], Int64)
IncorrectArgument
julia> M = MixedConstraint((x, u) -> [2x[2]-u^2, x[1]], autonomous=true, variable=false)
julia> M([1, 0], 1)
[-1, 1]
julia> t = 1
julia> v = Real[]
julia> MethodError M(t, [1, 0], 1)
julia> MethodError M([1, 0], 1, v)
julia> M(t, [1, 0], 1, v)
[-1, 1]
julia> M = MixedConstraint((x, u, v) -> [2x[2]-u^2+v[3], x[1]], autonomous=true, variable=true)
julia> M([1, 0], 1, [1, 2, 3])
[2, 1]
julia> M(t, [1, 0], 1, [1, 2, 3])
[2, 1]
julia> M = MixedConstraint((t, x, u) -> [t+2x[2]-u^2, x[1]], autonomous=false, variable=false)
julia> M(1, [1, 0], 1)
[0, 1]
julia> M(1, [1, 0], 1, v)
[0, 1]
julia> M = MixedConstraint((t, x, u, v) -> [t+2x[2]-u^2+v[3], x[1]], autonomous=false, variable=true)
julia> M(1, [1, 0], 1, [1, 2, 3])
[3, 1]
```
"""
struct MixedConstraint{time_dependence, variable_dependence}
f::Function
end
struct MixedConstraint!{time_dependence, variable_dependence}
f!::Function
end
"""
$(TYPEDEF)
**Fields**
$(TYPEDFIELDS)
The default values for `time_dependence` and `variable_dependence` are `Autonomous` and `Fixed` respectively.
## Constructor
The constructor ```VariableConstraint``` returns a ```VariableConstraint``` of a function.
The function must take 1 argument, `v`.
## *Examples*
```@example
julia> V = VariableConstraint(v -> [v[1]^2, 2v[2]])
```
!!! warning
When the variable is of dimension 1, consider `v` as a scalar.
## Call
The call returns the evaluation of the `VariableConstraint` for given values.
## *Examples*
```@example
julia> V = VariableConstraint(v -> [v[1]^2, 2v[2]])
julia> V([1, -1])
[1, -2]
```
"""
struct VariableConstraint
f::Function
end
struct VariableConstraint!
f!::Function
end
"""
$(TYPEDEF)
**Fields**
$(TYPEDFIELDS)
Similar to `VectorField` in the usage, but the dimension of the output of the function `f` is arbitrary.
The default values for `time_dependence` and `variable_dependence` are `Autonomous` and `Fixed` respectively.
## Constructor
The constructor ```FeedbackControl``` returns a ```FeedbackControl``` of a function.
The function must take 1 to 3 arguments, `x` to `(t, x, v)`, if the function is variable or non autonomous, it must be specified.
Dependencies are specified either with :
- booleans, `autonomous` and `variable`, respectively `true` and `false` by default
- `DataType`, `Autonomous`/`NonAutonomous` and `NonFixed`/`Fixed`, respectively `Autonomous` and `Fixed` by default.
## *Examples*
```@example
julia> FeedbackControl(x -> x[1]^2+2x[2], Int64)
IncorrectArgument
julia> FeedbackControl(x -> x[1]^2+2x[2], Int64)
IncorrectArgument
julia> u = FeedbackControl(x -> x[1]^2+2x[2], Autonomous, Fixed)
julia> u = FeedbackControl((x, v) -> x[1]^2+2x[2]+v[3], Autonomous, NonFixed)
julia> u = FeedbackControl((t, x) -> t+x[1]^2+2x[2], NonAutonomous, Fixed)
julia> u = FeedbackControl((t, x, v) -> t+x[1]^2+2x[2]+v[3], NonAutonomous, NonFixed)
julia> u = FeedbackControl(x -> x[1]^2+2x[2], autonomous=true, variable=false)
julia> u = FeedbackControl((x, v) -> x[1]^2+2x[2]+v[3], autonomous=true, variable=true)
julia> u = FeedbackControl((t, x) -> t+x[1]^2+2x[2], autonomous=false, variable=false)
julia> u = FeedbackControl((t, x, v) -> t+x[1]^2+2x[2]+v[3], autonomous=false, variable=true)
```
!!! warning
When the state is of dimension 1, consider `x` as a scalar.
## Call
The call returns the evaluation of the `FeedbackControl` for given values.
## *Examples*
```@example
julia> u = FeedbackControl(x -> x[1]^2+2x[2], autonomous=true, variable=false)
julia> u([1, 0])
1
julia> t = 1
julia> v = Real[]
julia> u(t, [1, 0])
MethodError
julia> u([1, 0], v)
MethodError
julia> u(t, [1, 0], v)
1
julia> u = FeedbackControl((x, v) -> x[1]^2+2x[2]+v[3], autonomous=true, variable=true)
julia> u([1, 0], [1, 2, 3])
4
julia> u(t, [1, 0], [1, 2, 3])
4
julia> u = FeedbackControl((t, x) -> t+x[1]^2+2x[2], autonomous=false, variable=false)
julia> u(1, [1, 0])
2
julia> u(1, [1, 0], v)
2
julia> u = FeedbackControl((t, x, v) -> t+x[1]^2+2x[2]+v[3], autonomous=false, variable=true)
julia> u(1, [1, 0], [1, 2, 3])
5
```
"""
struct FeedbackControl{time_dependence, variable_dependence}
f::Function
end
"""
$(TYPEDEF)
**Fields**
$(TYPEDFIELDS)
Similar to `Hamiltonian` in the usage, but the dimension of the output of the function `f` is arbitrary.
The default values for `time_dependence` and `variable_dependence` are `Autonomous` and `Fixed` respectively.
## Constructor
The constructor ```ControlLaw``` returns a ```ControlLaw``` of a function.
The function must take 2 to 4 arguments, `(x, p)` to `(t, x, p, v)`, if the function is variable or non autonomous, it must be specified.
Dependencies are specified either with :
- booleans, `autonomous` and `variable`, respectively `true` and `false` by default
- `DataType`, `Autonomous`/`NonAutonomous` and `NonFixed`/`Fixed`, respectively `Autonomous` and `Fixed` by default.
## *Examples*
```@example
julia> ControlLaw((x, p) -> x[1]^2+2p[2], Int64)
IncorrectArgument
julia> ControlLaw((x, p) -> x[1]^2+2p[2], Int64)
IncorrectArgument
julia> u = ControlLaw((x, p) -> x[1]^2+2p[2], Autonomous, Fixed)
julia> u = ControlLaw((x, p, v) -> x[1]^2+2p[2]+v[3], Autonomous, NonFixed)
julia> u = ControlLaw((t, x, p) -> t+x[1]^2+2p[2], NonAutonomous, Fixed)
julia> u = ControlLaw((t, x, p, v) -> t+x[1]^2+2p[2]+v[3], NonAutonomous, NonFixed)
julia> u = ControlLaw((x, p) -> x[1]^2+2p[2], autonomous=true, variable=false)
julia> u = ControlLaw((x, p, v) -> x[1]^2+2p[2]+v[3], autonomous=true, variable=true)
julia> u = ControlLaw((t, x, p) -> t+x[1]^2+2p[2], autonomous=false, variable=false)
julia> u = ControlLaw((t, x, p, v) -> t+x[1]^2+2p[2]+v[3], autonomous=false, variable=true)
```
!!! warning
When the state and costate are of dimension 1, consider `x` and `p` as scalars.
## Call
The call returns the evaluation of the `ControlLaw` for given values.
## *Examples*
```@example
julia> u = ControlLaw((x, p) -> x[1]^2+2p[2], autonomous=true, variable=false)
julia> u([1, 0], [0, 1])
3
julia> t = 1
julia> v = Real[]
julia> u(t, [1, 0], [0, 1])
MethodError
julia> u([1, 0], [0, 1], v)
MethodError
julia> u(t, [1, 0], [0, 1], v)
3
julia> u = ControlLaw((x, p, v) -> x[1]^2+2p[2]+v[3], autonomous=true, variable=true)
julia> u([1, 0], [0, 1], [1, 2, 3])
6
julia> u(t, [1, 0], [0, 1], [1, 2, 3])
6
julia> u = ControlLaw((t, x, p) -> t+x[1]^2+2p[2], autonomous=false, variable=false)
julia> u(1, [1, 0], [0, 1])
4
julia> u(1, [1, 0], [0, 1], v)
4
julia> u = ControlLaw((t, x, p, v) -> t+x[1]^2+2p[2]+v[3], autonomous=false, variable=true)
julia> u(1, [1, 0], [0, 1], [1, 2, 3])
7
```
"""
struct ControlLaw{time_dependence, variable_dependence}
f::Function
end
"""
$(TYPEDEF)
**Fields**
$(TYPEDFIELDS)
Similar to `ControlLaw` in the usage.
The default values for `time_dependence` and `variable_dependence` are `Autonomous` and `Fixed` respectively.
## Constructor
The constructor ```Multiplier``` returns a ```Multiplier``` of a function.
The function must take 2 to 4 arguments, `(x, p)` to `(t, x, p, v)`, if the function is variable or non autonomous, it must be specified.
Dependencies are specified either with :
- booleans, `autonomous` and `variable`, respectively `true` and `false` by default
- `DataType`, `Autonomous`/`NonAutonomous` and `NonFixed`/`Fixed`, respectively `Autonomous` and `Fixed` by default.
## *Examples*
```@example
julia> Multiplier((x, p) -> x[1]^2+2p[2], Int64)
IncorrectArgument
julia> Multiplier((x, p) -> x[1]^2+2p[2], Int64)
IncorrectArgument
julia> ΞΌ = Multiplier((x, p) -> x[1]^2+2p[2], Autonomous, Fixed)
julia> ΞΌ = Multiplier((x, p, v) -> x[1]^2+2p[2]+v[3], Autonomous, NonFixed)
julia> ΞΌ = Multiplier((t, x, p) -> t+x[1]^2+2p[2], NonAutonomous, Fixed)
julia> ΞΌ = Multiplier((t, x, p, v) -> t+x[1]^2+2p[2]+v[3], NonAutonomous, NonFixed)
julia> ΞΌ = Multiplier((x, p) -> x[1]^2+2p[2], autonomous=true, variable=false)
julia> ΞΌ = Multiplier((x, p, v) -> x[1]^2+2p[2]+v[3], autonomous=true, variable=true)
julia> ΞΌ = Multiplier((t, x, p) -> t+x[1]^2+2p[2], autonomous=false, variable=false)
julia> ΞΌ = Multiplier((t, x, p, v) -> t+x[1]^2+2p[2]+v[3], autonomous=false, variable=true)
```
!!! warning
When the state and costate are of dimension 1, consider `x` and `p` as scalars.
## Call
The call returns the evaluation of the `Multiplier` for given values.
## *Examples*
```@example
julia> ΞΌ = Multiplier((x, p) -> x[1]^2+2p[2], autonomous=true, variable=false)
julia> ΞΌ([1, 0], [0, 1])
3
julia> t = 1
julia> v = Real[]
julia> ΞΌ(t, [1, 0], [0, 1])
MethodError
julia> ΞΌ([1, 0], [0, 1], v)
MethodError
julia> ΞΌ(t, [1, 0], [0, 1], v)
3
julia> ΞΌ = Multiplier((x, p, v) -> x[1]^2+2p[2]+v[3], autonomous=true, variable=true)
julia> ΞΌ([1, 0], [0, 1], [1, 2, 3])
6
julia> ΞΌ(t, [1, 0], [0, 1], [1, 2, 3])
6
julia> ΞΌ = Multiplier((t, x, p) -> t+x[1]^2+2p[2], autonomous=false, variable=false)
julia> ΞΌ(1, [1, 0], [0, 1])
4
julia> ΞΌ(1, [1, 0], [0, 1], v)
4
julia> ΞΌ = Multiplier((t, x, p, v) -> t+x[1]^2+2p[2]+v[3], autonomous=false, variable=true)
julia> ΞΌ(1, [1, 0], [0, 1], [1, 2, 3])
7
```
"""
struct Multiplier{time_dependence, variable_dependence}
f::Function
end
# --------------------------------------------------------------------------------------------------
# model
#
"""
$(TYPEDEF)
**Fields**
$(TYPEDFIELDS)
"""
mutable struct Index
val::Int
Index(v::Int) = v β₯ 1 ? new(v) : error("index must be at least 1")
end
Base.:(==)(i::Index, j::Index) = i.val == j.val # needed, as this is not the default behaviour for composite types
Base.to_index(i::Index) = i.val
Base.isless(i::Index, j::Index) = i.val β€ j.val
Base.isless(i::Index, j::Real) = i.val β€ j
Base.isless(i::Real, j::Index) = i β€ j.val
Base.length(i::Index) = 1
Base.iterate(i::Index, state = 0) = state == 0 ? (i, 1) : nothing
Base.IteratorSize(::Type{Index}) = Base.HasLength()
Base.append!(v::Vector, i::Index) = Base.append!(v, i.val)
Base.getindex(x::AbstractArray, i::Index) = Base.getindex(x, i.val)
Base.getindex(x::Real, i::Index) = x[i.val]
# to suppress ambiguities
Base.getindex(x::SparseArrays.ReadOnly, i::CTBase.Index) = Base.getindex(x, i.val)
Base.getindex(x::StaticArrays.TrivialView, i::CTBase.Index) = Base.getindex(x, i.val)
"""
Type alias for an index or range.
"""
const RangeConstraint = Union{Index, OrdinalRange{<:Int}}
"""
$(TYPEDEF)
"""
abstract type AbstractOptimalControlModel end
"""
$(TYPEDEF)
"""
abstract type TimeDependence end
"""
$(TYPEDEF)
"""
abstract type Autonomous <: TimeDependence end
"""
$(TYPEDEF)
"""
abstract type NonAutonomous <: TimeDependence end
"""
$(TYPEDEF)
"""
abstract type VariableDependence end
"""
$(TYPEDEF)
"""
abstract type NonFixed <: VariableDependence end
"""
$(TYPEDEF)
"""
abstract type Fixed <: VariableDependence end
| CTBase | https://github.com/control-toolbox/CTBase.jl.git |
|
[
"MIT"
] | 0.14.0 | 68e9ab3053e0b38e8e574f2809dd280c9dafa338 | code | 5541 | """
$(TYPEDSIGNATURES)
Return `i` β [0, 9] as a subscript.
"""
function ctindice(i::Integer)::Char
if i < 0 || i > 9
throw(IncorrectArgument("the indice must be between 0 and 9"))
end
return '\u2080' + i
end
"""
$(TYPEDSIGNATURES)
Return `i` > 0 as a subscript.
"""
function ctindices(i::Integer)::String
if i < 0
throw(IncorrectArgument("the indice must be positive"))
end
s = ""
for d β digits(i)
s = ctindice(d) * s
end
return s
end
"""
$(TYPEDSIGNATURES)
Return `i` β [0, 9] as an upperscript.
"""
function ctupperscript(i::Integer)::Char
if i < 0 || i > 9
throw(IncorrectArgument("the upperscript must be between 0 and 9"))
end
if i == 0
return '\u2070'
end
if i == 1
return '\u00B9'
end
if i == 2
return '\u00B2'
end
if i == 3
return '\u00B3'
end
if i β₯ 4
return '\u2074' + i - 4
end
end
"""
$(TYPEDSIGNATURES)
Return `i` > 0 as an upperscript.
"""
function ctupperscripts(i::Integer)::String
if i < 0
throw(IncorrectArgument("the upperscript must be positive"))
end
s = ""
for d β digits(i)
s = ctupperscript(d) * s
end
return s
end
"""
$(TYPEDSIGNATURES)
Return the gradient of `f` at `x`.
"""
function ctgradient(f::Function, x::ctNumber; backend = __get_AD_backend())
extras = prepare_derivative(f, backend, x)
return derivative(f, backend, x, extras)
end
function __ctgradient(f::Function, x::ctNumber)
return ForwardDiff.derivative(x -> f(x), x)
end
"""
$(TYPEDSIGNATURES)
Return the gradient of `f` at `x`.
"""
function ctgradient(f::Function, x; backend = __get_AD_backend())
extras = prepare_gradient(f, backend, x)
return gradient(f, backend, x, extras)
end
function __ctgradient(f::Function, x)
return ForwardDiff.gradient(f, x)
end
"""
$(TYPEDSIGNATURES)
Return the gradient of `X` at `x`.
"""
ctgradient(X::VectorField, x) = ctgradient(X.f, x)
__ctgradient(X::VectorField, x) = __ctgradient(X.f, x)
"""
$(TYPEDSIGNATURES)
Return the Jacobian of `f` at `x`.
"""
function ctjacobian(f::Function, x::ctNumber; backend = __get_AD_backend())
f_number_to_number = only β f β only
extras = prepare_derivative(f_number_to_number, backend, x)
der = derivative(f_number_to_number, backend, x, extras)
return [der;;]
end
function __ctjacobian(f::Function, x::ctNumber)
return ForwardDiff.jacobian(x -> f(x[1]), [x])
end
"""
$(TYPEDSIGNATURES)
Return the Jacobian of `f` at `x`.
"""
function ctjacobian(f::Function, x; backend = __get_AD_backend())
extras = prepare_jacobian(f, backend, x)
return jacobian(f, backend, x, extras)
end
__ctjacobian(f::Function, x) = ForwardDiff.jacobian(f, x)
"""
$(TYPEDSIGNATURES)
Return the Jacobian of `X` at `x`.
"""
ctjacobian(X::VectorField, x) = ctjacobian(X.f, x)
__ctjacobian(X::VectorField, x) = __ctjacobian(X.f, x)
"""
$(TYPEDSIGNATURES)
Return the interpolation of `f` at `x`.
"""
function ctinterpolate(x, f) # default for interpolation of the initialization
return Interpolations.linear_interpolation(x, f, extrapolation_bc = Interpolations.Line())
end
"""
$(TYPEDSIGNATURES)
Transforms `x` to a Vector{<:ctNumber}.
"""
function vec2vec(x::Vector{<:Vector{<:ctNumber}})::Vector{<:ctNumber}
y = x[1]
for i in range(2, length(x))
y = vcat(y, x[i])
end
return y
end
"""
$(TYPEDSIGNATURES)
Transforms `x` to a Vector{<:Vector{<:ctNumber}}.
"""
function vec2vec(x::Vector{<:ctNumber}, n::Integer)::Vector{<:Vector{<:ctNumber}}
y = [x[1:n]]
for i = (n + 1):n:(length(x) - n + 1)
y = vcat(y, [x[i:(i + n - 1)]])
end
return y
end
"""
$(TYPEDSIGNATURES)
Equivalent to `vec2vec(x)`
"""
expand(x::Vector{<:Vector{<:ctNumber}}) = vec2vec(x)
"""
$(TYPEDSIGNATURES)
Return `x`.
"""
expand(x::Vector{<:ctNumber}) = x
"""
$(TYPEDSIGNATURES)
Return `expand(matrix2vec(x, 1))`
"""
expand(x::Matrix{<:ctNumber}) = expand(matrix2vec(x, 1))
"""
$(TYPEDSIGNATURES)
Transforms `x` to a Vector{<:Vector{<:ctNumber}}.
**Note.** `dim` β {1, 2} is the dimension along which the matrix is transformed.
"""
function matrix2vec(
x::Matrix{<:ctNumber},
dim::Integer = __matrix_dimension_stock(),
)::Vector{<:Vector{<:ctNumber}}
m, n = size(x)
y = nothing
if dim == 1
y = [x[1, :]]
for i = 2:m
y = vcat(y, [x[i, :]])
end
else
y = [x[:, 1]]
for j = 2:n
y = vcat(y, [x[:, j]])
end
end
return y
end
"""
$(TYPEDSIGNATURES)
Tranform in place function to out of place. Pass the result size and type (default = `Float64`).
Return a scalar when the result has size one. If `f!` is `nothing`, return `nothing`.
"""
function to_out_of_place(f!, n; T = Float64)
function f(args...; kwargs...)
r = zeros(T, n)
f!(r, args...; kwargs...)
return n == 1 ? r[1] : r
end
return isnothing(f!) ? nothing : f
end
# Adapt getters to test in place
function __constraint(ocp, label)
if is_in_place(ocp)
n = length(constraints(ocp)[label][3]) # Size of lb
return to_out_of_place(constraint(ocp, label), n)
else
return constraint(ocp, label)
end
end
__dynamics(ocp) = is_in_place(ocp) ? to_out_of_place(dynamics(ocp), state_dimension(ocp)) : dynamics(ocp)
__lagrange(ocp) = is_in_place(ocp) ? to_out_of_place(lagrange(ocp), 1) : lagrange(ocp)
__mayer(ocp) = is_in_place(ocp) ? to_out_of_place(mayer(ocp), 1) : mayer(ocp) | CTBase | https://github.com/control-toolbox/CTBase.jl.git |
|
[
"MIT"
] | 0.14.0 | 68e9ab3053e0b38e8e574f2809dd280c9dafa338 | code | 881 | #
using Aqua
#
using CTBase
using DifferentiationInterface: AutoForwardDiff
using Plots
using Test
# functions and types that are not exported
const vec2vec = CTBase.vec2vec
const subs = CTBase.subs
const has = CTBase.has
const replace_call = CTBase.replace_call
const constraint_type = CTBase.constraint_type
#
@testset verbose = true showtiming = true "Base" begin
for name β (
:aqua,
:ctparser_utils,
:default,
:description,
:differential_geometry,
:exception,
:function,
:goddard,
:model,
:plot,
:print,
:solution,
:utils,
:onepass,
)
@testset "$(name)" begin
test_name = Symbol(:test_, name)
println("testing: ", string(name))
include("$(test_name).jl")
@eval $test_name()
end
end
end
| CTBase | https://github.com/control-toolbox/CTBase.jl.git |
|
[
"MIT"
] | 0.14.0 | 68e9ab3053e0b38e8e574f2809dd280c9dafa338 | code | 387 | function test_aqua()
@testset "Aqua.jl" begin
Aqua.test_all(
CTBase;
ambiguities = false,
#stale_deps=(ignore=[:SomePackage],),
deps_compat = (ignore = [:LinearAlgebra, :Unicode],),
piracies = true,
)
# do not warn about ambiguities in dependencies
Aqua.test_ambiguities(CTBase)
end
end
| CTBase | https://github.com/control-toolbox/CTBase.jl.git |
|
[
"MIT"
] | 0.14.0 | 68e9ab3053e0b38e8e574f2809dd280c9dafa338 | code | 4777 | # test utils
function test_ctparser_utils()
e = :(β«(r(t)^2 + 2uβ(t)) β min)
@test subs(e, :r, :(x[1])) == :(β«((x[1])(t)^2 + 2 * uβ(t)) β min)
e = :(β«(uβ(t)^2 + 2uβ(t)) β min)
for i β 1:2
e = subs(e, Symbol(:u, Char(8320 + i)), :(u[$i]))
end
@test e == :(β«((u[1])(t)^2 + 2 * (u[2])(t)) β min)
t = :t
t0 = 0
tf = :tf
x = :x
u = :u
e = :(x[1](0) * 2x(tf) - x[2](tf) * 2x(0))
x0 = Symbol(x, 0)
@test subs(e, :($x[1]($(t0))), :($x0[1])) == :(x0[1] * (2 * x(tf)) - (x[2])(tf) * (2 * x(0)))
e = :(x[1](0) * 2x(tf) - x[2](tf) * 2x(0))
x0 = Symbol(x, "#0")
xf = Symbol(x, "#f")
e = replace_call(e, x, t0, x0)
@test replace_call(e, x, tf, xf) == :(var"x#0"[1] * (2var"x#f") - var"x#f"[2] * (2var"x#0"))
e = :(A * x(t) + B * u(t))
@test replace_call(replace_call(e, x, t, x), u, t, u) == :(A * x + B * u)
e = :(F0(x(t)) + u(t) * F1(x(t)))
@test replace_call(replace_call(e, x, t, x), u, t, u) == :(F0(x) + u * F1(x))
e = :(0.5u(t)^2)
@test replace_call(e, u, t, u) == :(0.5 * u^2)
t = :t
t0 = 0
tf = :tf
x = :x
u = :u
e = :((x^2 + u[1])(t))
@test replace_call(e, [x, u], t, [:xx, :uu]) == :(xx^2 + uu[1])
e = :(((x^2)(t) + u[1])(t))
@test replace_call(e, [x, u], t, [:xx, :uu]) == :(xx^2 + uu[1])
e = :(((x^2)(t0) + u[1])(t))
@test replace_call(e, [x, u], t, [:xx, :uu]) == :((xx^2)(t0) + uu[1])
e = :(β«(x[1](t)^2 + 2 * u(t)) β min)
@test has(e, :x, :t)
@test has(e, :u, :t)
@test !has(e, :v, :t)
@test has(e, 2)
@test has(e, :x)
@test has(e, :min)
@test has(e, :(x[1](t)^2))
@test !has(e, :(x[1](t)^3))
@test !has(e, 3)
@test !has(e, :max)
@test has(:x, :x)
@test !has(:x, 2)
@test !has(:x, :y)
t = :t
t0 = 0
tf = :tf
x = :x
u = :u
v = :v
@test constraint_type(:(yΜ(t)), t, t0, tf, x, u, v) == :other
@test constraint_type(:(xΜ(s)), t, t0, tf, x, u, v) == :other
@test constraint_type(:(x(0)'), t, t0, tf, x, u, v) == :boundary
@test constraint_type(:(x'(0)), t, t0, tf, x, u, v) == :boundary
@test constraint_type(:(x(t)'), t, t0, tf, x, u, v) == :state_fun
@test constraint_type(:(x(0)), t, t0, tf, x, u, v) == (:initial, nothing)
@test constraint_type(:(x[1:2:5](0)), t, t0, tf, x, u, v) == (:initial, 1:2:5)
@test constraint_type(:(x[1:2](0)), t, t0, tf, x, u, v) == (:initial, 1:2)
@test constraint_type(:(x[1](0)), t, t0, tf, x, u, v) == (:initial, 1)
@test constraint_type(:(x[1:2](0)), t, t0, tf, x, u, v) == (:initial, 1:2)
@test constraint_type(:(2x[1](0)^2), t, t0, tf, x, u, v) == :boundary
@test constraint_type(:(x(tf)), t, t0, tf, x, u, v) == (:final, nothing)
@test constraint_type(:(x[1:2:5](tf)), t, t0, tf, x, u, v) == (:final, 1:2:5)
@test constraint_type(:(x[1:2](tf)), t, t0, tf, x, u, v) == (:final, 1:2)
@test constraint_type(:(x[1](tf)), t, t0, tf, x, u, v) == (:final, 1)
@test constraint_type(:(x[1:2](tf)), t, t0, tf, x, u, v) == (:final, 1:2)
@test constraint_type(:(x[1](tf) - x[2](0)), t, t0, tf, x, u, v) == :boundary
@test constraint_type(:(2x[1](tf)^2), t, t0, tf, x, u, v) == :boundary
@test constraint_type(:(u[1:2:5](t)), t, t0, tf, x, u, v) == (:control_range, 1:2:5)
@test constraint_type(:(u[1:2](t)), t, t0, tf, x, u, v) == (:control_range, 1:2)
@test constraint_type(:(u[1](t)), t, t0, tf, x, u, v) == (:control_range, 1)
@test constraint_type(:(u(t)), t, t0, tf, x, u, v) == (:control_range, nothing)
@test constraint_type(:(2u[1](t)^2), t, t0, tf, x, u, v) == :control_fun
@test constraint_type(:(x[1:2:5](t)), t, t0, tf, x, u, v) == (:state_range, 1:2:5)
@test constraint_type(:(x[1:2](t)), t, t0, tf, x, u, v) == (:state_range, 1:2)
@test constraint_type(:(x[1](t)), t, t0, tf, x, u, v) == (:state_range, 1)
@test constraint_type(:(x(t)), t, t0, tf, x, u, v) == (:state_range, nothing)
@test constraint_type(:(2x[1](t)^2), t, t0, tf, x, u, v) == :state_fun
@test constraint_type(:(2u[1](t)^2 * x(t)), t, t0, tf, x, u, v) == :mixed
@test constraint_type(:(2u[1](0)^2 * x(t)), t, t0, tf, x, u, v) == :other
@test constraint_type(:(2u[1](t)^2 * x(t) + v), t, t0, tf, x, u, v) == :mixed
@test constraint_type(:(v[1:2:10]), t, t0, tf, x, u, v) == (:variable_range, 1:2:9)
@test constraint_type(:(v[1:10]), t, t0, tf, x, u, v) == (:variable_range, 1:10)
@test constraint_type(:(v[2]), t, t0, tf, x, u, v) == (:variable_range, 2)
@test constraint_type(:(v), t, t0, tf, x, u, v) == (:variable_range, nothing)
@test constraint_type(:(v^2 + 1), t, t0, tf, x, u, v) == :variable_fun
@test constraint_type(:(v[2]^2 + 1), t, t0, tf, x, u, v) == :variable_fun
end
| CTBase | https://github.com/control-toolbox/CTBase.jl.git |
|
[
"MIT"
] | 0.14.0 | 68e9ab3053e0b38e8e574f2809dd280c9dafa338 | code | 2511 | function test_default()
@testset "Audo diff" begin
set_AD_backend(AutoForwardDiff())
@test CTBase.__get_AD_backend() == AutoForwardDiff()
end
@testset "Default value of the time dependence of the functions" begin
@test CTBase.__fun_time_dependence() == Autonomous
end
@testset "Default value of the time dependence of the Optimal Control Problem" begin
@test CTBase.__ocp_time_dependence() == Autonomous
end
@testset "Default value of the variable dependence of the functions" begin
@test CTBase.__fun_variable_dependence() == Fixed
end
@testset "Default value of the variable dependence of the Optimal Control Problem" begin
@test CTBase.__ocp_variable_dependence() == Fixed
end
@testset "Default value of the state names of the Optimal Control Problem" begin
@test CTBase.__state_name() == "x"
@test CTBase.__state_components_names(2, CTBase.__state_name()) == ["xβ", "xβ"]
end
@testset "Default value of the control names of the Optimal Control Problem" begin
@test CTBase.__control_name() == "u"
@test CTBase.__control_components_names(2, CTBase.__control_name()) == ["uβ", "uβ"]
end
@testset "Default value of the variable names of the Optimal Control Problem" begin
@test CTBase.__variable_name() == "v"
@test CTBase.__variable_components_names(2, CTBase.__variable_name()) == ["vβ", "vβ"]
end
@testset "Default value of the time name of the Optimal Control Problem" begin
@test CTBase.__time_name() == "t"
end
@testset "Default value of the criterion type of the Optimal Control Problem" begin
@test CTBase.__criterion_type() == :min
end
@testset "Default value of the constraint label" begin
@test CTBase.__constraint_label() isa Symbol
end
@testset "Default value of the stockage of elements in a matrix" begin
@test CTBase.__matrix_dimension_stock() == 1
end
@testset "Default value of the display during resolution" begin
@test CTBase.__display() isa Bool
end
@testset "Default value of the additional callback function" begin
@test isempty(CTBase.__callbacks())
end
@testset "Default value of the interpolation function for initialisation" begin
@test CTBase.__init_interpolation() isa Function
end
@testset "Default value of the initial guess" begin
@test isnothing(CTBase.__ocp_init())
end
end
| CTBase | https://github.com/control-toolbox/CTBase.jl.git |
|
[
"MIT"
] | 0.14.0 | 68e9ab3053e0b38e8e574f2809dd280c9dafa338 | code | 2478 | function test_description()
#
descriptions = ()
descriptions = add(descriptions, (:a,))
descriptions = add(descriptions, (:b,))
@test descriptions[1] == (:a,)
@test descriptions[2] == (:b,)
# get the complete description of the chosen method
algorithmes = ()
algorithmes = add(algorithmes, (:descent, :bfgs, :bissection))
algorithmes = add(algorithmes, (:descent, :bfgs, :backtracking))
algorithmes = add(algorithmes, (:descent, :bfgs, :fixedstep))
algorithmes = add(algorithmes, (:descent, :gradient, :bissection))
algorithmes = add(algorithmes, (:descent, :gradient, :backtracking))
algorithmes = add(algorithmes, (:descent, :gradient, :fixedstep))
@test getFullDescription((:descent,), algorithmes) == (:descent, :bfgs, :bissection)
@test getFullDescription((:bfgs,), algorithmes) == (:descent, :bfgs, :bissection)
@test getFullDescription((:bissection,), algorithmes) == (:descent, :bfgs, :bissection)
@test getFullDescription((:backtracking,), algorithmes) == (:descent, :bfgs, :backtracking)
@test getFullDescription((:fixedstep,), algorithmes) == (:descent, :bfgs, :fixedstep)
@test getFullDescription((:fixedstep, :gradient), algorithmes) ==
(:descent, :gradient, :fixedstep)
# incorrect description
@test_throws AmbiguousDescription getFullDescription((:ttt,), algorithmes)
@test_throws AmbiguousDescription getFullDescription((:descent, :ttt), algorithmes)
# diff
x = (:a, :b, :c)
y = (:b,)
@test remove(x, y) == (:a, :c)
@test typeof(remove(x, y)) <: Description
# inclusion and different sizes
algorithmes = ()
algorithmes = add(algorithmes, (:a, :b, :c))
algorithmes = add(algorithmes, (:a, :b, :c, :d))
@test getFullDescription((:a, :b), algorithmes) == (:a, :b, :c)
@test getFullDescription((:a, :b, :c, :d), algorithmes) == (:a, :b, :c, :d)
# inclusion and different sizes - switch ordering
# priority to the first with max shared elements
algorithmes = ()
algorithmes = add(algorithmes, (:a, :b, :c, :d))
algorithmes = add(algorithmes, (:a, :b, :c))
@test getFullDescription((:a, :b), algorithmes) == (:a, :b, :c, :d)
@test getFullDescription((:a, :b, :c, :d), algorithmes) == (:a, :b, :c, :d)
# add a description already in the list
algorithmes = ()
algorithmes = add(algorithmes, (:a, :b, :c))
@test_throws IncorrectArgument add(algorithmes, (:a, :b, :c))
end
| CTBase | https://github.com/control-toolbox/CTBase.jl.git |
|
[
"MIT"
] | 0.14.0 | 68e9ab3053e0b38e8e574f2809dd280c9dafa338 | code | 32648 | function test_differential_geometry()
β
= Vector{Real}()
dummy_function() = nothing
@testset "Lifts" begin
@testset "HamiltonianLift from VectorField" begin
HL = HamiltonianLift(
VectorField(x -> [x[1]^2, x[2]^2], autonomous = true, variable = false),
)
@test HL([1, 0], [0, 1]) == 0
@test HL(1, [1, 0], [0, 1], 1) == 0
HL = HamiltonianLift(
VectorField((x, v) -> [x[1]^2, x[2]^2 + v], autonomous = true, variable = true),
)
@test HL([1, 0], [0, 1], 1) == 1
@test HL(1, [1, 0], [0, 1], 1) == 1
HL = HamiltonianLift(
VectorField((t, x) -> [t + x[1]^2, x[2]^2], autonomous = false, variable = false),
)
@test HL(1, [1, 0], [0, 1]) == 0
@test HL(1, [1, 0], [0, 1], 1) == 0
HL = HamiltonianLift(
VectorField(
(t, x, v) -> [t + x[1]^2, x[2]^2 + v],
autonomous = false,
variable = true,
),
)
@test HL(1, [1, 0], [0, 1], 1) == 1
end
@testset "HamiltonianLift from Function" begin
HL = HamiltonianLift(x -> [x[1]^2, x[2]^2], autonomous = true, variable = false)
@test HL([1, 0], [0, 1]) == 0
@test HL(1, [1, 0], [0, 1], 1) == 0
HL = HamiltonianLift((x, v) -> [x[1]^2, x[2]^2 + v], autonomous = true, variable = true)
@test HL([1, 0], [0, 1], 1) == 1
@test HL(1, [1, 0], [0, 1], 1) == 1
HL = HamiltonianLift(
(t, x) -> [t + x[1]^2, x[2]^2],
autonomous = false,
variable = false,
)
@test HL(1, [1, 0], [0, 1]) == 0
@test HL(1, [1, 0], [0, 1], 1) == 0
HL = HamiltonianLift(
(t, x, v) -> [t + x[1]^2, x[2]^2 + v],
autonomous = false,
variable = true,
)
@test HL(1, [1, 0], [0, 1], 1) == 1
HL = HamiltonianLift(x -> [x[1]^2, x[2]^2], Autonomous, Fixed)
@test HL([1, 0], [0, 1]) == 0
@test HL(1, [1, 0], [0, 1], 1) == 0
HL = HamiltonianLift((x, v) -> [x[1]^2, x[2]^2 + v], Autonomous, NonFixed)
@test HL([1, 0], [0, 1], 1) == 1
@test HL(1, [1, 0], [0, 1], 1) == 1
HL = HamiltonianLift((t, x) -> [t + x[1]^2, x[2]^2], NonAutonomous, Fixed)
@test HL(1, [1, 0], [0, 1]) == 0
@test HL(1, [1, 0], [0, 1], 1) == 0
HL = HamiltonianLift((t, x, v) -> [t + x[1]^2, x[2]^2 + v], NonAutonomous, NonFixed)
@test HL(1, [1, 0], [0, 1], 1) == 1
end
@testset "from VectorFields" begin
# autonomous case
X = VectorField(x -> 2x)
H = Lift(X)
Test.@test H(1, 1) == 2
Test.@test H([1, 2], [3, 4]) == 22
Test.@test_throws MethodError H([1, 2], 1)
Test.@test_throws MethodError H(1, [1, 2])
# nonautonomous case
X = VectorField((t, x) -> 2x, NonAutonomous)
H = Lift(X)
Test.@test H(1, 1, 1) == 2
Test.@test H(1, [1, 2], [3, 4]) == 22
# autonomous nonfixed case
X = VectorField((x, v) -> 2x, NonFixed)
H = Lift(X)
Test.@test H(1, 1, 1) == 2
Test.@test H([1, 2], [3, 4], 1) == 22
Test.@test_throws MethodError H([1, 2], 1)
Test.@test_throws MethodError H(1, [1, 2])
# nonautonomous nonfixed case
X = VectorField((t, x, v) -> 2x, NonAutonomous, NonFixed)
H = Lift(X)
Test.@test H(1, 1, 1, 1) == 2
Test.@test H(1, [1, 2], [3, 4], 1) == 22
end
@testset "from Function" begin
# autonomous case
X::Function = x -> 2x
H = Lift(X)
Test.@test H(1, 1) == 2
Test.@test H([1, 2], [3, 4]) == 22
# nonautonomous case
Xt::Function = (t, x) -> 2x
H = Lift(Xt, autonomous = false)
Test.@test H(1, 1, 1) == 2
Test.@test H(1, [1, 2], [3, 4]) == 22
# autonomous nonfixed case
Xv::Function = (x, v) -> 2x
H = Lift(Xv, variable = true)
Test.@test H(1, 1, 1) == 2
Test.@test H([1, 2], [3, 4], 1) == 22
# nonautonomous nonfixed case
Xtv::Function = (t, x, v) -> 2x
H = Lift(Xtv, autonomous = false, variable = true)
Test.@test H(1, 1, 1, 1) == 2
Test.@test H(1, [1, 2], [3, 4], 1) == 22
# overload
F::Function = x -> 2x
H_F(x, p) = Lift(F)(x, p)
H_F(y) = H_F(y, y)
Test.@test H_F(1) == 2
# exceptions
Test.@test_throws IncorrectArgument Lift(X, Int64)
end
end # tests for Lift
@testset "Directional derivative of a scalar function" begin
# autonomous, dim 2
Ο = x -> [x[2], -x[1]]
X = VectorField(Ο)
f = x -> x[1]^2 + x[2]^2
Test.@test (X β
f)([1, 2]) == 0
Test.@test (X β
f)([1, 2]) == Lie(X, f)([1, 2])
Test.@test Lie(Ο, f)([1, 2]) == 0
# autonomous, dim 1
Ο = x -> 2x
X = VectorField(Ο)
f = x -> x^2
Test.@test (X β
f)(1) == 4
Test.@test (Ο β
f)(1) == 4
Test.@test Lie(Ο, f)(1) == 4
# nonautonomous, dim 2
Ο = (t, x) -> [t + x[2], -x[1]]
X = VectorField(Ο, NonAutonomous)
f = (t, x) -> t + x[1]^2 + x[2]^2
Test.@test (X β
f)(1, [1, 2]) == 2
Test.@test Lie(Ο, f, NonAutonomous)(1, [1, 2]) == 2
# nonautonomous, dim 1
Ο = (t, x) -> 2x + t
X = VectorField(Ο, NonAutonomous)
f = (t, x) -> t + x^2
Test.@test (X β
f)(1, 1) == 6
Test.@test Lie(Ο, f, NonAutonomous)(1, 1) == 6
# autonomous, nonfixed, dim 2
Ο = (x, v) -> [x[2] + v[1], -x[1] + v[2]]
X = VectorField(Ο, NonFixed)
f = (x, v) -> x[1]^2 + x[2]^2
Test.@test (X β
f)([1, 2], [2, 1]) == 8
Test.@test Lie(Ο, f, NonFixed)([1, 2], [2, 1]) == 8
# autonomous, nonfixed, dim 1
Ο = (x, v) -> 2x + v
X = VectorField(Ο, NonFixed)
f = (x, v) -> x^2
Test.@test (X β
f)(1, 1) == 6
Test.@test Lie(Ο, f, NonFixed)(1, 1) == 6
# nonautonomous, nonfixed, dim 2
Ο = (t, x, v) -> [t + x[2] + v[1], -x[1] + v[2]]
X = VectorField(Ο, NonAutonomous, NonFixed)
f = (t, x, v) -> t + x[1]^2 + x[2]^2
Test.@test (X β
f)(1, [1, 2], [2, 1]) == 10
Test.@test Lie(Ο, f, NonAutonomous, NonFixed)(1, [1, 2], [2, 1]) == 10
# nonautonomous, nonfixed, dim 1
Ο = (t, x, v) -> 2x + t + v
X = VectorField(Ο, NonAutonomous, NonFixed)
f = (t, x, v) -> t + x^2
Test.@test (X β
f)(1, 1, 1) == 8
Test.@test Lie(Ο, f, NonAutonomous, NonFixed)(1, 1, 1) == 8
end
@testset "Directional derivative of a vector field" begin
# autonomous, dim 2
X = VectorField(x -> [x[2], -x[1]])
Y = VectorField(x -> [x[1], x[2]])
Test.@test CTBase.:(β
)(X, Y)([1, 2]) == [2, -1]
# autonomous, dim 1
X = VectorField(x -> 2x)
Y = VectorField(x -> 3x)
Test.@test CTBase.:(β
)(X, Y)(1) == 6
# nonautonomous, dim 2
X = VectorField((t, x) -> [t + x[2], -x[1]], NonAutonomous)
Y = VectorField((t, x) -> [t + x[1], x[2]], NonAutonomous)
Test.@test CTBase.:(β
)(X, Y)(1, [1, 2]) == [3, -1]
# nonautonomous, dim 1
X = VectorField((t, x) -> 2x + t, NonAutonomous)
Y = VectorField((t, x) -> 3x + t, NonAutonomous)
Test.@test CTBase.:(β
)(X, Y)(1, 1) == 9
# autonomous, nonfixed, dim 1
X = VectorField((x, v) -> 2x + v, NonFixed)
Y = VectorField((x, v) -> 3x + v, NonFixed)
Test.@test CTBase.:(β
)(X, Y)(1, 1) == 9
# nonautonomous, nonfixed, dim 1
X = VectorField((t, x, v) -> t + 2x + v, NonAutonomous, NonFixed)
Y = VectorField((t, x, v) -> t + 3x + v, NonAutonomous, NonFixed)
Test.@test CTBase.:(β
)(X, Y)(1, 1, 1) == 12
# autonomous, nonfixed, dim 2
X = VectorField((x, v) -> [v[1] + v[2] + x[2], -x[1]], NonFixed)
Y = VectorField((x, v) -> [v[1] + v[2] + x[1], x[2]], NonFixed)
Test.@test CTBase.:(β
)(X, Y)([1, 2], [2, 3]) == [7, -1]
# nonautonomous, nonfixed, dim 2
X = VectorField((t, x, v) -> [t + v[1] + v[2] + x[2], -x[1]], NonFixed, NonAutonomous)
Y = VectorField((t, x, v) -> [v[1] + v[2] + x[1], x[2]], NonFixed, NonAutonomous)
Test.@test CTBase.:(β
)(X, Y)(1, [1, 2], [2, 3]) == [8, -1]
end
@testset "Lie bracket - length 2" begin
@testset "autonomous case" begin
f = x -> [x[2], 2x[1]]
g = x -> [3x[2], -x[1]]
X = VectorField(f)
Y = VectorField(g)
Test.@test Lie(X, Y)([1, 2]) == [7, -14]
end
@testset "nonautonomous case" begin
f = (t, x) -> [t + x[2], -2x[1]]
g = (t, x) -> [t + 3x[2], -x[1]]
X = VectorField(f, NonAutonomous)
Y = VectorField(g, NonAutonomous)
Test.@test Lie(X, Y)(1, [1, 2]) == [-5, 11]
end
@testset "autonomous nonfixed case" begin
f = (x, v) -> [x[2] + v, 2x[1]]
g = (x, v) -> [3x[2], v - x[1]]
X = VectorField(f, NonFixed)
Y = VectorField(g, variable = true)
Test.@test Lie(X, Y)([1, 2], 1) == [6, -15]
end
@testset "nonautonomous nonfixed case" begin
f = (t, x, v) -> [t + x[2] + v, -2x[1] - v]
g = (t, x, v) -> [t + 3x[2] + v, -x[1] - v]
X = VectorField(f, NonAutonomous, NonFixed)
Y = VectorField(g, NonAutonomous, NonFixed)
Test.@test Lie(X, Y)(1, [1, 2], 1) == [-7, 12]
end
@testset "mri example" begin
Ξ = 2
Ξ³ = 1
Ξ΄ = Ξ³ - Ξ
F0 = VectorField(x -> [-Ξ * x[1], -Ξ * x[2], Ξ³ * (1 - x[3])])
F1 = VectorField(x -> [0, -x[3], x[2]])
F2 = VectorField(x -> [x[3], 0, -x[1]])
F01 = Lie(F0, F1)
F02 = Lie(F0, F2)
F12 = Lie(F1, F2)
x = [1, 2, 3]
Test.@test F01(x) β -[0, Ξ³ - Ξ΄ * x[3], -Ξ΄ * x[2]] atol = 1e-6
Test.@test F02(x) β -[-Ξ³ + Ξ΄ * x[3], 0, Ξ΄ * x[1]] atol = 1e-6
Test.@test F12(x) β -[-x[2], x[1], 0] atol = 1e-6
end
@testset "intrinsic definition" begin
X = VectorField(x -> [x[2]^2, -2x[1] * x[2]])
Y = VectorField(x -> [x[1] * (1 + x[2]), 3x[2]^3])
f = x -> x[1]^4 + 2x[2]^3
x = [1, 2]
# check real intrinsic order 2 definition of Lie bracket
Test.@test ((@Lie [X, Y]) β
f)(x) == ((X β
(Y β
f))(x) - (Y β
(X β
f))(x))
end
end
@testset "Poisson bracket" begin
@testset "autonomous case" begin
f = (x, p) -> x[2]^2 + 2x[1]^2 + p[1]^2
g = (x, p) -> 3x[2]^2 + -x[1]^2 + p[2]^2 + p[1]
h = (x, p) -> x[2]^2 + -2x[1]^2 + p[1]^2 - 2p[2]^2
fβg = (x, p) -> f(x, p) + g(x, p)
fg = (x, p) -> f(x, p) * g(x, p)
#
F = Hamiltonian(f)
G = Hamiltonian(g)
H = Hamiltonian(h)
FβG = Hamiltonian(fβg)
FG = Hamiltonian(fg)
#
Test.@test Poisson(f, g)([1, 2], [2, 1]) == -20
Test.@test Poisson(f, G)([1, 2], [2, 1]) == -20
Test.@test Poisson(F, g)([1, 2], [2, 1]) == -20
#
Test.@test Poisson(F, Hamiltonian((x, p) -> 42))([1, 2], [2, 1]) == 0
Test.@test Poisson(F, G)([1, 2], [2, 1]) == -20
Test.@test Poisson(F, G)([1, 2], [2, 1]) == -Poisson(G, F)([1, 2], [2, 1]) # anticommutativity
Test.@test Poisson(FβG, H)([1, 2], [2, 1]) ==
Poisson(F, H)([1, 2], [2, 1]) + Poisson(G, H)([1, 2], [2, 1]) # bilinearity 1
Test.@test Poisson(H, FβG)([1, 2], [2, 1]) ==
Poisson(H, F)([1, 2], [2, 1]) + Poisson(H, G)([1, 2], [2, 1]) # bilinearity 2
Test.@test Poisson(FG, H)([1, 2], [2, 1]) ==
Poisson(F, H)([1, 2], [2, 1]) * G([1, 2], [2, 1]) +
F([1, 2], [2, 1]) * Poisson(G, H)([1, 2], [2, 1]) # Liebniz's rule
Test.@test Poisson(F, Poisson(G, H))([1, 2], [2, 1]) +
Poisson(G, Poisson(H, F))([1, 2], [2, 1]) +
Poisson(H, Poisson(F, G))([1, 2], [2, 1]) == 0 # Jacobi identity
end
@testset "nonautonomous case" begin
f = (t, x, p) -> t * x[2]^2 + 2x[1]^2 + p[1]^2 + t
g = (t, x, p) -> 3x[2]^2 + -x[1]^2 + p[2]^2 + p[1] - t
h = (t, x, p) -> x[2]^2 + -2x[1]^2 + p[1]^2 - 2p[2]^2 + t
fβg = (t, x, p) -> f(t, x, p) + g(t, x, p)
fg = (t, x, p) -> f(t, x, p) * g(t, x, p)
F = Hamiltonian(f, autonomous = false)
G = Hamiltonian(g, autonomous = false)
H = Hamiltonian(h, autonomous = false)
FβG = Hamiltonian(fβg, autonomous = false)
FG = Hamiltonian(fg, autonomous = false)
#
Test.@test Poisson(f, g, autonomous = false)(2, [1, 2], [2, 1]) == -28
Test.@test Poisson(f, G)(2, [1, 2], [2, 1]) == -28
Test.@test Poisson(F, g)(2, [1, 2], [2, 1]) == -28
#
Test.@test Poisson(F, Hamiltonian((t, x, p) -> 42, autonomous = false))(
2,
[1, 2],
[2, 1],
) == 0
Test.@test Poisson(F, G)(2, [1, 2], [2, 1]) == -28
Test.@test Poisson(F, G)(2, [1, 2], [2, 1]) == -Poisson(G, F)(2, [1, 2], [2, 1]) # anticommutativity
Test.@test Poisson(FβG, H)(2, [1, 2], [2, 1]) ==
Poisson(F, H)(2, [1, 2], [2, 1]) + Poisson(G, H)(2, [1, 2], [2, 1]) # bilinearity 1
Test.@test Poisson(H, FβG)(2, [1, 2], [2, 1]) ==
Poisson(H, F)(2, [1, 2], [2, 1]) + Poisson(H, G)(2, [1, 2], [2, 1]) # bilinearity 2
Test.@test Poisson(FG, H)(2, [1, 2], [2, 1]) ==
Poisson(F, H)(2, [1, 2], [2, 1]) * G(2, [1, 2], [2, 1]) +
F(2, [1, 2], [2, 1]) * Poisson(G, H)(2, [1, 2], [2, 1]) # Liebniz's rule
Test.@test Poisson(F, Poisson(G, H))(2, [1, 2], [2, 1]) +
Poisson(G, Poisson(H, F))(2, [1, 2], [2, 1]) +
Poisson(H, Poisson(F, G))(2, [1, 2], [2, 1]) == 0 # Jacobi identity
end
@testset "autonomous nonfixed case" begin
f = (x, p, v) -> v[1] * x[2]^2 + 2x[1]^2 + p[1]^2 + v[2]
g = (x, p, v) -> 3x[2]^2 + -x[1]^2 + p[2]^2 + p[1] - v[2]
h = (x, p, v) -> x[2]^2 + -2x[1]^2 + p[1]^2 - 2p[2]^2 + v[2]
fβg = (x, p, v) -> f(x, p, v) + g(x, p, v)
fg = (x, p, v) -> f(x, p, v) * g(x, p, v)
F = Hamiltonian(f, variable = true)
G = Hamiltonian(g, variable = true)
H = Hamiltonian(h, variable = true)
FβG = Hamiltonian(fβg, variable = true)
FG = Hamiltonian(fg, variable = true)
Test.@test Poisson(F, Hamiltonian((x, p, v) -> 42, variable = true))(
[1, 2],
[2, 1],
[4, 4],
) == 0
Test.@test Poisson(F, G)([1, 2], [2, 1], [4, 4]) == -44
Test.@test Poisson(F, G)([1, 2], [2, 1], [4, 4]) ==
-Poisson(G, F)([1, 2], [2, 1], [4, 4]) # anticommutativity
Test.@test Poisson(FβG, H)([1, 2], [2, 1], [4, 4]) ==
Poisson(F, H)([1, 2], [2, 1], [4, 4]) + Poisson(G, H)([1, 2], [2, 1], [4, 4]) # bilinearity 1
Test.@test Poisson(H, FβG)([1, 2], [2, 1], [4, 4]) ==
Poisson(H, F)([1, 2], [2, 1], [4, 4]) + Poisson(H, G)([1, 2], [2, 1], [4, 4]) # bilinearity 2
Test.@test Poisson(FG, H)([1, 2], [2, 1], [4, 4]) ==
Poisson(F, H)([1, 2], [2, 1], [4, 4]) * G([1, 2], [2, 1], [4, 4]) +
F([1, 2], [2, 1], [4, 4]) * Poisson(G, H)([1, 2], [2, 1], [4, 4]) # Liebniz's rule
Test.@test Poisson(F, Poisson(G, H))([1, 2], [2, 1], [4, 4]) +
Poisson(G, Poisson(H, F))([1, 2], [2, 1], [4, 4]) +
Poisson(H, Poisson(F, G))([1, 2], [2, 1], [4, 4]) == 0 # Jacobi identity
end
@testset "nonautonomous nonfixed case" begin
f = (t, x, p, v) -> t * v[1] * x[2]^2 + 2x[1]^2 + p[1]^2 + v[2]
g = (t, x, p, v) -> 3x[2]^2 + -x[1]^2 + p[2]^2 + p[1] + t - v[2]
h = (t, x, p, v) -> x[2]^2 + -2x[1]^2 + p[1]^2 - 2p[2]^2 + t + v[2]
fβg = (t, x, p, v) -> f(t, x, p, v) + g(t, x, p, v)
fg = (t, x, p, v) -> f(t, x, p, v) * g(t, x, p, v)
F = Hamiltonian(f, autonomous = false, variable = true)
G = Hamiltonian(g, autonomous = false, variable = true)
H = Hamiltonian(h, autonomous = false, variable = true)
FβG = Hamiltonian(fβg, autonomous = false, variable = true)
FG = Hamiltonian(fg, autonomous = false, variable = true)
Test.@test Poisson(
F,
Hamiltonian((t, x, p, v) -> 42, autonomous = false, variable = true),
)(
2,
[1, 2],
[2, 1],
[4, 4],
) == 0
Test.@test Poisson(F, G)(2, [1, 2], [2, 1], [4, 4]) == -76
Test.@test Poisson(F, G)(2, [1, 2], [2, 1], [4, 4]) ==
-Poisson(G, F)(2, [1, 2], [2, 1], [4, 4]) # anticommutativity
Test.@test Poisson(FβG, H)(2, [1, 2], [2, 1], [4, 4]) ==
Poisson(F, H)(2, [1, 2], [2, 1], [4, 4]) +
Poisson(G, H)(2, [1, 2], [2, 1], [4, 4]) # bilinearity 1
Test.@test Poisson(H, FβG)(2, [1, 2], [2, 1], [4, 4]) ==
Poisson(H, F)(2, [1, 2], [2, 1], [4, 4]) +
Poisson(H, G)(2, [1, 2], [2, 1], [4, 4]) # bilinearity 2
Test.@test Poisson(FG, H)(2, [1, 2], [2, 1], [4, 4]) ==
Poisson(F, H)(2, [1, 2], [2, 1], [4, 4]) * G(2, [1, 2], [2, 1], [4, 4]) +
F(2, [1, 2], [2, 1], [4, 4]) * Poisson(G, H)(2, [1, 2], [2, 1], [4, 4]) # Liebniz's rule
Test.@test Poisson(F, Poisson(G, H))(2, [1, 2], [2, 1], [4, 4]) +
Poisson(G, Poisson(H, F))(2, [1, 2], [2, 1], [4, 4]) +
Poisson(H, Poisson(F, G))(2, [1, 2], [2, 1], [4, 4]) == 0 # Jacobi identity
end
end
@testset "poisson bracket of Lifts" begin
@testset "autonomous case" begin
f = x -> [x[1] + x[2]^2, x[1], 0]
g = x -> [0, x[2], x[1]^2 + 4 * x[2]]
F = Lift(f)
G = Lift(g)
F_ = (x, p) -> p' * f(x)
G_ = (x, p) -> p' * g(x)
Test.@test Poisson(F, G)([1, 2, 3], [4, 0, 4]) β Poisson(F_, G_)([1, 2, 3], [4, 0, 4]) atol =
1e-6
Test.@test Poisson(F, G_)([1, 2, 3], [4, 0, 4]) β Poisson(F_, G)([1, 2, 3], [4, 0, 4]) atol =
1e-6
end
@testset "nonautonomous case" begin
f = (t, x) -> [t * x[1] + x[2]^2, x[1], 0]
g = (t, x) -> [0, x[2], t * x[1]^2 + 4 * x[2]]
F = Lift(f, NonAutonomous)
G = Lift(g, NonAutonomous)
F_ = (t, x, p) -> p' * f(t, x)
G_ = (t, x, p) -> p' * g(t, x)
Test.@test Poisson(F, G, NonAutonomous)(2, [1, 2, 3], [4, 0, 4]) β
Poisson(F_, G_, NonAutonomous)(2, [1, 2, 3], [4, 0, 4]) atol = 1e-6
Test.@test Poisson(F, G_, NonAutonomous)(2, [1, 2, 3], [4, 0, 4]) β
Poisson(F_, G, NonAutonomous)(2, [1, 2, 3], [4, 0, 4]) atol = 1e-6
end
@testset "autonomous nonfixed case" begin
f = (x, v) -> [x[1] + v * x[2]^2, x[1], 0]
g = (x, v) -> [0, x[2], x[1]^2 + v * 4 * x[2]]
F = Lift(f, NonFixed)
G = Lift(g, NonFixed)
F_ = (x, p, v) -> p' * f(x, v)
G_ = (x, p, v) -> p' * g(x, v)
Test.@test Poisson(F, G, NonFixed)([1, 2, 3], [4, 0, 4], 1) β
Poisson(F_, G_, NonFixed)([1, 2, 3], [4, 0, 4], 1) atol = 1e-6
Test.@test Poisson(F, G_, NonFixed)([1, 2, 3], [4, 0, 4], 1) β
Poisson(F_, G, NonFixed)([1, 2, 3], [4, 0, 4], 1) atol = 1e-6
end
@testset "nonautonomous nonfixed case" begin
f = (t, x, v) -> [t * x[1] + v * x[2]^2, x[1], 0]
g = (t, x, v) -> [0, x[2], t * x[1]^2 + v * 4 * x[2]]
F = Lift(f, NonAutonomous, NonFixed)
G = Lift(g, NonAutonomous, NonFixed)
F_ = (t, x, p, v) -> p' * f(t, x, v)
G_ = (t, x, p, v) -> p' * g(t, x, v)
Test.@test Poisson(F, G, NonAutonomous, NonFixed)(2, [1, 2, 3], [4, 0, 4], 1) β
Poisson(F_, G_, NonAutonomous, NonFixed)(2, [1, 2, 3], [4, 0, 4], 1) atol =
1e-6
Test.@test Poisson(F, G_, NonAutonomous, NonFixed)(2, [1, 2, 3], [4, 0, 4], 1) β
Poisson(F_, G, NonAutonomous, NonFixed)(2, [1, 2, 3], [4, 0, 4], 1) atol =
1e-6
end
end
# macros
@testset "lie macro" begin
# parameters
t = 1
x = [1, 2, 3]
Ξ = 2
Ξ³ = 1
Ξ΄ = Ξ³ - Ξ
v = 1
# autonomous
F0 = VectorField(x -> [-Ξ * x[1], -Ξ * x[2], Ξ³ * (1 - x[3])])
F1 = VectorField(x -> [0, -x[3], x[2]])
F2 = VectorField(x -> [x[3], 0, -x[1]])
F01_ = Lie(F0, F1)
F011_ = Lie(F01_, F1)
F01__ = @Lie [F0, F1]
F011__ = @Lie [[F0, F1], F1]
Test.@test F01_(x) β F01__(x) atol = 1e-6
Test.@test F011_(x) β F011__(x) atol = 1e-6
#
get_F0 = () -> F0
F011___ = @Lie [[get_F0(), F1], F1]
Test.@test F011_(x) β F011___(x) atol = 1e-6
# nonautonomous
F0 = VectorField((t, x) -> [-Ξ * x[1], -Ξ * x[2], Ξ³ * (1 - x[3])], NonAutonomous)
F1 = VectorField((t, x) -> [0, -x[3], x[2]], NonAutonomous)
F2 = VectorField((t, x) -> [x[3], 0, -x[1]], NonAutonomous)
F01_ = Lie(F0, F1)
F011_ = Lie(F01_, F1)
F01__ = @Lie [F0, F1]
F011__ = @Lie [[F0, F1], F1]
Test.@test F01_(t, x) β F01__(t, x) atol = 1e-6
Test.@test F011_(t, x) β F011__(t, x) atol = 1e-6
#
get_F0 = () -> F0
F011___ = @Lie [[get_F0(), F1], F1]
Test.@test F011_(t, x) β F011___(t, x) atol = 1e-6
# autonomous nonfixed
F0 = VectorField((x, v) -> [-Ξ * x[1], -Ξ * x[2], Ξ³ * (1 - x[3])], NonFixed)
F1 = VectorField((x, v) -> [0, -x[3], x[2]], NonFixed)
F2 = VectorField((x, v) -> [x[3], 0, -x[1]], NonFixed)
F01_ = Lie(F0, F1)
F011_ = Lie(F01_, F1)
F01__ = @Lie [F0, F1]
F011__ = @Lie [[F0, F1], F1]
Test.@test F01_(x, v) β F01__(x, v) atol = 1e-6
Test.@test F011_(x, v) β F011__(x, v) atol = 1e-6
#
get_F0 = () -> F0
F011___ = @Lie [[get_F0(), F1], F1]
Test.@test F011_(x, v) β F011___(x, v) atol = 1e-6
# nonautonomous nonfixed
F0 = VectorField(
(t, x, v) -> [-Ξ * x[1], -Ξ * x[2], Ξ³ * (1 - x[3])],
NonAutonomous,
NonFixed,
)
F1 = VectorField((t, x, v) -> [0, -x[3], x[2]], NonAutonomous, NonFixed)
F2 = VectorField((t, x, v) -> [x[3], 0, -x[1]], NonAutonomous, NonFixed)
F01_ = Lie(F0, F1)
F011_ = Lie(F01_, F1)
F01__ = @Lie [F0, F1]
F011__ = @Lie [[F0, F1], F1]
Test.@test F01_(t, x, v) β F01__(t, x, v) atol = 1e-6
Test.@test F011_(t, x, v) β F011__(t, x, v) atol = 1e-6
#
get_F0 = () -> F0
F011___ = @Lie [[get_F0(), F1], F1]
Test.@test F011_(t, x, v) β F011___(t, x, v) atol = 1e-6
end
@testset "poisson macro" begin
# parameters
t = 1
x = [1, 2, 3]
p = [1, 0, 7]
Ξ = 2
Ξ³ = 1
Ξ΄ = Ξ³ - Ξ
v = 2
# autonomous
H0 = Hamiltonian((x, p) -> 0.5 * (x[1]^2 + x[2]^2 + p[1]^2))
H1 = Hamiltonian((x, p) -> 0.5 * (x[1]^2 + x[2]^2 + p[2]^2))
P01 = Poisson(H0, H1)
P011 = Poisson(P01, H1)
P01_ = @Lie {H0, H1}
P011_ = @Lie {{H0, H1}, H1}
Test.@test P01(x, p) β P01_(x, p) atol = 1e-6
Test.@test P011(x, p) β P011_(x, p) atol = 1e-6
get_H0 = () -> H0
P011__ = @Lie {{get_H0(), H1}, H1}
Test.@test P011_(x, p) β P011__(x, p) atol = 1e-6
# nonautonomous
H0 = Hamiltonian((t, x, p) -> 0.5 * (x[1]^2 + x[2]^2 + p[1]^2), autonomous = false)
H1 = Hamiltonian((t, x, p) -> 0.5 * (x[1]^2 + x[2]^2 + p[2]^2), NonAutonomous)
P01 = Poisson(H0, H1)
P011 = Poisson(P01, H1)
P01_ = @Lie {H0, H1}
P011_ = @Lie {{H0, H1}, H1}
Test.@test P01(t, x, p) β P01_(t, x, p) atol = 1e-6
Test.@test P011(t, x, p) β P011_(t, x, p) atol = 1e-6
get_H0 = () -> H0
P011__ = @Lie {{get_H0(), H1}, H1}
Test.@test P011_(t, x, p) β P011__(t, x, p) atol = 1e-6
# autonomous nonfixed
H0 = Hamiltonian((x, p, v) -> 0.5 * (x[1]^2 + x[2]^2 + p[1]^2 + v), variable = true)
H1 = Hamiltonian((x, p, v) -> 0.5 * (x[1]^2 + x[2]^2 + p[2]^2 + v), variable = true)
P01 = Poisson(H0, H1)
P011 = Poisson(P01, H1)
P01_ = @Lie {H0, H1}
P011_ = @Lie {{H0, H1}, H1}
Test.@test P01(x, p, v) β P01_(x, p, v) atol = 1e-6
Test.@test P011(x, p, v) β P011_(x, p, v) atol = 1e-6
get_H0 = () -> H0
P011__ = @Lie {{get_H0(), H1}, H1}
Test.@test P011_(x, p, v) β P011__(x, p, v) atol = 1e-6
# nonautonomous nonfixed
H0 = Hamiltonian(
(t, x, p, v) -> 0.5 * (x[1]^2 + x[2]^2 + p[1]^2 + v),
autonomous = false,
variable = true,
)
H1 = Hamiltonian(
(t, x, p, v) -> 0.5 * (x[1]^2 + x[2]^2 + p[2]^2 + v),
NonAutonomous,
NonFixed,
)
P01 = Poisson(H0, H1)
P011 = Poisson(P01, H1)
P01_ = @Lie {H0, H1}
P011_ = @Lie {{H0, H1}, H1}
Test.@test P01(t, x, p, v) β P01_(t, x, p, v) atol = 1e-6
Test.@test P011(t, x, p, v) β P011_(t, x, p, v) atol = 1e-6
get_H0 = () -> H0
P011__ = @Lie {{get_H0(), H1}, H1}
Test.@test P011_(t, x, p, v) β P011__(t, x, p, v) atol = 1e-6
end
@testset "poisson macro with functions" begin
# parameters
t = 1
x = [1, 2, 3]
p = [1, 0, 7]
Ξ = 2
Ξ³ = 1
Ξ΄ = Ξ³ - Ξ
v = 2
# autonomous
H0 = (x, p) -> 0.5 * (x[1]^2 + x[2]^2 + p[1]^2)
H1 = (x, p) -> 0.5 * (x[1]^2 + x[2]^2 + p[2]^2)
P01 = Poisson(H0, H1)
P011 = Poisson(P01, H1)
P01_ = @Lie {H0, H1}
P011_ = @Lie {{H0, H1}, H1}
Test.@test P01(x, p) β P01_(x, p) atol = 1e-6
Test.@test P011(x, p) β P011_(x, p) atol = 1e-6
get_H0 = () -> H0
P011__ = @Lie {{get_H0(), H1}, H1}
Test.@test P011_(x, p) β P011__(x, p) atol = 1e-6
# nonautonomous
H0 = (t, x, p) -> 0.5 * (x[1]^2 + x[2]^2 + p[1]^2)
H1 = (t, x, p) -> 0.5 * (x[1]^2 + x[2]^2 + p[2]^2)
P01 = Poisson(H0, H1; autonomous = false)
P011 = Poisson(P01, H1)
P01_val = @Lie {H0, H1}(t, x, p) autonomous = false
P01_ = @Lie {H0, H1} autonomous = false
P011_ = @Lie {{H0, H1}, H1} autonomous = false
Test.@test P01(t, x, p) β P01_(t, x, p) atol = 1e-6
Test.@test P01_val β P01_(t, x, p) atol = 1e-6
Test.@test P011(t, x, p) β P011_(t, x, p) atol = 1e-6
get_H0 = () -> H0
P011__ = @Lie {{get_H0(), H1}, H1} NonAutonomous
Test.@test P011_(t, x, p) β P011__(t, x, p) atol = 1e-6
# autonomous nonfixed
H0 = (x, p, v) -> 0.5 * (x[1]^2 + x[2]^2 + p[1]^2 + v)
H1 = (x, p, v) -> 0.5 * (x[1]^2 + x[2]^2 + p[2]^2 + v)
P01 = Poisson(H0, H1; variable = true)
P011 = Poisson(P01, H1)
P01_ = @Lie {H0, H1} variable = true
P011_ = @Lie {{H0, H1}, H1} variable = true
Test.@test P01(x, p, v) β P01_(x, p, v) atol = 1e-6
Test.@test P011(x, p, v) β P011_(x, p, v) atol = 1e-6
get_H0 = () -> H0
P011__ = @Lie {{get_H0(), H1}, H1} NonFixed
Test.@test P011_(x, p, v) β P011__(x, p, v) atol = 1e-6
# nonautonomous nonfixed
H0 = (t, x, p, v) -> 0.5 * (x[1]^2 + x[2]^2 + p[1]^2 + v)
H1 = (t, x, p, v) -> 0.5 * (x[1]^2 + x[2]^2 + p[2]^2 + v)
P01 = Poisson(H0, H1; autonomous = false, variable = true)
P011 = Poisson(P01, H1)
P01_ = @Lie {H0, H1} autonomous = false variable = true
P011_ = @Lie {{H0, H1}, H1} NonAutonomous NonFixed
Test.@test P01(t, x, p, v) β P01_(t, x, p, v) atol = 1e-6
Test.@test P011(t, x, p, v) β P011_(t, x, p, v) atol = 1e-6
get_H0 = () -> H0
P011__ = @Lie {{get_H0(), H1}, H1} NonAutonomous NonFixed
Test.@test P011_(t, x, p, v) β P011__(t, x, p, v) atol = 1e-6
end
@testset "lie and poisson macros operation (sum,diff,...)" begin
# parameters
t = 1
x = [1, 2, 3]
p = [1, 0, 7]
Ξ = 2
Ξ³ = 1
Ξ΄ = Ξ³ - Ξ
v = 1
# lie
# autonomous
F0 = VectorField(x -> [-Ξ * x[1], -Ξ * x[2], Ξ³ * (1 - x[3])])
F1 = VectorField(x -> [0, -x[3], x[2]])
F2 = VectorField(x -> [x[3], 0, -x[1]])
Test.@test @Lie [F0, F1](x) + 4 * [F1, F2](x) == [8, -8, -2]
Test.@test @Lie [F0, F1](x) - [F1, F2](x) == [-2, -3, -2]
Test.@test @Lie [F0, F1](x) .* [F1, F2](x) == [0, 4, 0]
Test.@test @Lie [1, 1, 1] + ([[F0, F1], F1](x) + [F1, F2](x) + [1, 1, 1]) == [4, 5, -5]
# nonautonomous nonfixed
F0 = VectorField(
(t, x, v) -> [-Ξ * x[1], -Ξ * x[2], Ξ³ * (1 - x[3])],
NonAutonomous,
NonFixed,
)
F1 = VectorField((t, x, v) -> [0, -x[3], x[2]], NonAutonomous, NonFixed)
F2 = VectorField((t, x, v) -> [x[3], 0, -x[1]], NonAutonomous, NonFixed)
Test.@test @Lie [F0, F1](t, x, v) + 4 * [F1, F2](t, x, v) == [8, -8, -2]
Test.@test @Lie [F0, F1](t, x, v) - [F1, F2](t, x, v) == [-2, -3, -2]
Test.@test @Lie [F0, F1](t, x, v) .* [F1, F2](t, x, v) == [0, 4, 0]
Test.@test @Lie [1, 1, 1] + ([[F0, F1], F1](t, x, v) + [F1, F2](t, x, v) + [1, 1, 1]) ==
[4, 5, -5]
# poisson
# autonomous
H0 = Hamiltonian((x, p) -> 0.5 * (2x[1]^2 + x[2]^2 + p[1]^2))
H1 = Hamiltonian((x, p) -> 0.5 * (3x[1]^2 + x[2]^2 + p[2]^2))
H2 = Hamiltonian((x, p) -> 0.5 * (4x[1]^2 + x[2]^2 + p[1]^3 + p[2]^2))
Test.@test @Lie {H0, H1}(x, p) + 4 * {H1, H2}(x, p) == -15
Test.@test @Lie {H0, H1}(x, p) - {H1, H2}(x, p) == 7.5
Test.@test @Lie {H0, H1}(x, p) * {H1, H2}(x, p) == -13.5
Test.@test @Lie 4 + ({{H0, H1}, H1}(x, p) + -2 * {H1, H2}(x, p) + 21) == 39
# nonautonomous nonfixed
H0 = Hamiltonian(
(t, x, p, v) -> 0.5 * (2x[1]^2 + x[2]^2 + p[1]^2),
autonomous = false,
variable = true,
)
H1 = Hamiltonian(
(t, x, p, v) -> 0.5 * (3x[1]^2 + x[2]^2 + p[2]^2),
autonomous = false,
variable = true,
)
H2 = Hamiltonian(
(t, x, p, v) -> 0.5 * (4x[1]^2 + x[2]^2 + p[1]^3 + p[2]^2),
autonomous = false,
variable = true,
)
Test.@test @Lie {H0, H1}(t, x, p, v) + 4 * {H1, H2}(t, x, p, v) == -15
Test.@test @Lie {H0, H1}(t, x, p, v) - {H1, H2}(t, x, p, v) == 7.5
Test.@test @Lie {H0, H1}(t, x, p, v) * {H1, H2}(t, x, p, v) == -13.5
Test.@test @Lie 4 + ({{H0, H1}, H1}(t, x, p, v) + -2 * {H1, H2}(t, x, p, v) + 21) == 39
end
end # test_differential_geometry
| CTBase | https://github.com/control-toolbox/CTBase.jl.git |
|
[
"MIT"
] | 0.14.0 | 68e9ab3053e0b38e8e574f2809dd280c9dafa338 | code | 767 | function test_exception()
e = AmbiguousDescription((:e,))
@test_throws ErrorException error(e)
@test typeof(sprint(showerror, e)) == String
e = IncorrectArgument("e")
@test_throws ErrorException error(e)
@test typeof(sprint(showerror, e)) == String
e = IncorrectMethod(:e)
@test_throws ErrorException error(e)
@test typeof(sprint(showerror, e)) == String
e = IncorrectOutput("blabla")
@test_throws ErrorException error(e)
@test typeof(sprint(showerror, e)) == String
e = NotImplemented("blabla")
@test_throws ErrorException error(e)
@test typeof(sprint(showerror, e)) == String
e = ExtensionError(:tata)
@test_throws ErrorException error(e)
@test typeof(sprint(showerror, e)) == String
end
| CTBase | https://github.com/control-toolbox/CTBase.jl.git |
|
[
"MIT"
] | 0.14.0 | 68e9ab3053e0b38e8e574f2809dd280c9dafa338 | code | 22145 | function test_function()
β
= Vector{Real}()
dummy_function() = nothing
@testset "BoundaryConstraint" begin
@test BoundaryConstraint(dummy_function, Fixed) ==
BoundaryConstraint(dummy_function, variable = false)
@test BoundaryConstraint(dummy_function, NonFixed) ==
BoundaryConstraint(dummy_function, variable = true)
@test_throws IncorrectArgument BoundaryConstraint(
(x0, xf) -> [xf[2] - x0[1], 2xf[1] + x0[2]^2],
Int64,
)
B = BoundaryConstraint((x0, xf) -> [xf[2] - x0[1], 2xf[1] + x0[2]^2], variable = false)
@test B([0, 0], [1, 1]) == [1, 2]
@test B([0, 0], [1, 1], β
) == [1, 2]
B = BoundaryConstraint(
(x0, xf, v) -> [v[3] + xf[2] - x0[1], v[1] - v[2] + 2xf[1] + x0[2]^2],
variable = true,
)
@test B([0, 0], [1, 1], [1, 2, 3]) == [4, 1]
end
@testset "Mayer" begin
@test Mayer(dummy_function, Fixed) == Mayer(dummy_function, variable = false)
@test Mayer(dummy_function, NonFixed) == Mayer(dummy_function, variable = true)
@test_throws IncorrectArgument Mayer((x0, xf) -> [xf[2] - x0[1], 2xf[1] + x0[2]^2], Int64)
G = Mayer((x0, xf) -> [xf[2] - x0[1]], variable = false)
@test_throws MethodError G([0, 0], [1, 1])
G = Mayer((x0, xf) -> xf[2] - x0[1], variable = false)
@test G([0, 0], [1, 1]) == 1
@test G([0, 0], [1, 1], β
) == 1
G = Mayer((x0, xf, v) -> v[3] + xf[2] - x0[1], variable = true)
@test G([0, 0], [1, 1], [1, 2, 3]) == 4
end
@testset "Hamiltonian" begin
@test Hamiltonian(dummy_function, Autonomous, Fixed) ==
Hamiltonian(dummy_function, autonomous = true, variable = false)
@test Hamiltonian(dummy_function, NonAutonomous, Fixed) ==
Hamiltonian(dummy_function, autonomous = false, variable = false)
@test Hamiltonian(dummy_function, Autonomous, NonFixed) ==
Hamiltonian(dummy_function, autonomous = true, variable = true)
@test Hamiltonian(dummy_function, NonAutonomous, NonFixed) ==
Hamiltonian(dummy_function, autonomous = false, variable = true)
@test_throws IncorrectArgument Hamiltonian((x, p) -> x + p, Int64)
@test_throws IncorrectArgument Hamiltonian((x, p) -> x + p, Int64)
H = Hamiltonian((x, p) -> [x[1]^2 + 2p[2]], autonomous = true, variable = false)
@test_throws MethodError H([1, 0], [0, 1])
H = Hamiltonian((x, p) -> x[1]^2 + 2p[2], autonomous = true, variable = false)
@test H([1, 0], [0, 1]) == 3
t = 1
v = Real[]
@test_throws MethodError H(t, [1, 0], [0, 1])
@test_throws MethodError H([1, 0], [0, 1], v)
@test H(t, [1, 0], [0, 1], v) == 3
H = Hamiltonian((x, p, v) -> x[1]^2 + 2p[2] + v[3], autonomous = true, variable = true)
@test H([1, 0], [0, 1], [1, 2, 3]) == 6
@test H(t, [1, 0], [0, 1], [1, 2, 3]) == 6
H = Hamiltonian((t, x, p) -> t + x[1]^2 + 2p[2], autonomous = false, variable = false)
@test H(1, [1, 0], [0, 1]) == 4
@test H(1, [1, 0], [0, 1], v) == 4
H = Hamiltonian(
(t, x, p, v) -> t + x[1]^2 + 2p[2] + v[3],
autonomous = false,
variable = true,
)
@test H(1, [1, 0], [0, 1], [1, 2, 3]) == 7
end
@testset "HamiltonianVectorField" begin
@test HamiltonianVectorField(dummy_function, Autonomous, Fixed) ==
HamiltonianVectorField(dummy_function, autonomous = true, variable = false)
@test HamiltonianVectorField(dummy_function, NonAutonomous, Fixed) ==
HamiltonianVectorField(dummy_function, autonomous = false, variable = false)
@test HamiltonianVectorField(dummy_function, Autonomous, NonFixed) ==
HamiltonianVectorField(dummy_function, autonomous = true, variable = true)
@test HamiltonianVectorField(dummy_function, NonAutonomous, NonFixed) ==
HamiltonianVectorField(dummy_function, autonomous = false, variable = true)
@test_throws IncorrectArgument HamiltonianVectorField(
(x, p) -> ([x[1]^2 + 2p[2]], [x[2] - 3p[2]^2]),
Int64,
)
@test_throws IncorrectArgument HamiltonianVectorField(
(x, p) -> ([x[1]^2 + 2p[2]], [x[2] - 3p[2]^2]),
Int64,
)
Hv = HamiltonianVectorField(
(x, p) -> ([x[1]^2 + 2p[2]], [x[2] - 3p[2]^2]),
autonomous = true,
variable = false,
)
@test Hv([1, 0], [0, 1]) == ([3], [-3])
t = 1
v = Real[]
@test_throws MethodError Hv(t, [1, 0], [0, 1])
@test_throws MethodError Hv([1, 0], [0, 1], v)
@test Hv(t, [1, 0], [0, 1], v) == ([3], [-3])
Hv = HamiltonianVectorField(
(x, p, v) -> ([x[1]^2 + 2p[2] + v[3]], [x[2] - 3p[2]^2]),
autonomous = true,
variable = true,
)
@test Hv([1, 0], [0, 1], [1, 2, 3]) == ([6], [-3])
@test Hv(t, [1, 0], [0, 1], [1, 2, 3]) == ([6], [-3])
Hv = HamiltonianVectorField(
(t, x, p) -> ([t + x[1]^2 + 2p[2]], [x[2] - 3p[2]^2]),
autonomous = false,
variable = false,
)
@test Hv(1, [1, 0], [0, 1]) == ([4], [-3])
@test Hv(1, [1, 0], [0, 1], v) == ([4], [-3])
Hv = HamiltonianVectorField(
(t, x, p, v) -> ([t + x[1]^2 + 2p[2] + v[3]], [x[2] - 3p[2]^2]),
autonomous = false,
variable = true,
)
@test Hv(1, [1, 0], [0, 1], [1, 2, 3]) == ([7], [-3])
end
@testset "VectorField" begin
@test VectorField(dummy_function, Autonomous, Fixed) ==
VectorField(dummy_function, autonomous = true, variable = false)
@test VectorField(dummy_function, NonAutonomous, Fixed) ==
VectorField(dummy_function, autonomous = false, variable = false)
@test VectorField(dummy_function, Autonomous, NonFixed) ==
VectorField(dummy_function, autonomous = true, variable = true)
@test VectorField(dummy_function, NonAutonomous, NonFixed) ==
VectorField(dummy_function, autonomous = false, variable = true)
@test_throws IncorrectArgument VectorField(x -> [x[1]^2, 2x[2]], Int64)
@test_throws IncorrectArgument VectorField(x -> [x[1]^2, 2x[2]], Int64)
V = VectorField(x -> [x[1]^2, 2x[2]], autonomous = true, variable = false)
@test V([1, -1]) == [1, -2]
t = 1
v = Real[]
@test_throws MethodError V(t, [1, -1])
@test_throws MethodError V([1, -1], v)
@test V(t, [1, -1], v) == [1, -2]
V = VectorField((x, v) -> [x[1]^2, 2x[2] + v[3]], autonomous = true, variable = true)
@test V([1, -1], [1, 2, 3]) == [1, 1]
@test V(t, [1, -1], [1, 2, 3]) == [1, 1]
V = VectorField((t, x) -> [t + x[1]^2, 2x[2]], autonomous = false, variable = false)
@test V(1, [1, -1]) == [2, -2]
@test V(1, [1, -1], v) == [2, -2]
V = VectorField(
(t, x, v) -> [t + x[1]^2, 2x[2] + v[3]],
autonomous = false,
variable = true,
)
@test V(1, [1, -1], [1, 2, 3]) == [2, 1]
end
@testset "Lagrange" begin
@test Lagrange(dummy_function, Autonomous, Fixed) ==
Lagrange(dummy_function, autonomous = true, variable = false)
@test Lagrange(dummy_function, NonAutonomous, Fixed) ==
Lagrange(dummy_function, autonomous = false, variable = false)
@test Lagrange(dummy_function, Autonomous, NonFixed) ==
Lagrange(dummy_function, autonomous = true, variable = true)
@test Lagrange(dummy_function, NonAutonomous, NonFixed) ==
Lagrange(dummy_function, autonomous = false, variable = true)
@test_throws IncorrectArgument Lagrange((x, u) -> 2x[2] - u[1]^2, Int64)
@test_throws IncorrectArgument Lagrange((x, u) -> 2x[2] - u[1]^2, Int64)
L = Lagrange((x, u) -> [2x[2] - u[1]^2], autonomous = true, variable = false)
@test_throws MethodError L([1, 0], [1])
L = Lagrange((x, u) -> 2x[2] - u[1]^2, autonomous = true, variable = false)
@test L([1, 0], [1]) == -1
t = 1
v = Real[]
@test_throws MethodError L(t, [1, 0], [1])
@test_throws MethodError L([1, 0], [1], v)
@test L(t, [1, 0], [1], v) == -1
L = Lagrange((x, u, v) -> 2x[2] - u[1]^2 + v[3], autonomous = true, variable = true)
@test L([1, 0], [1], [1, 2, 3]) == 2
@test L(t, [1, 0], [1], [1, 2, 3]) == 2
L = Lagrange((t, x, u) -> t + 2x[2] - u[1]^2, autonomous = false, variable = false)
@test L(1, [1, 0], [1]) == 0
@test L(1, [1, 0], [1], v) == 0
L = Lagrange((t, x, u, v) -> t + 2x[2] - u[1]^2 + v[3], autonomous = false, variable = true)
@test L(1, [1, 0], [1], [1, 2, 3]) == 3
end
@testset "Dynamics" begin
@test Dynamics(dummy_function, Autonomous, Fixed) ==
Dynamics(dummy_function, autonomous = true, variable = false)
@test Dynamics(dummy_function, NonAutonomous, Fixed) ==
Dynamics(dummy_function, autonomous = false, variable = false)
@test Dynamics(dummy_function, Autonomous, NonFixed) ==
Dynamics(dummy_function, autonomous = true, variable = true)
@test Dynamics(dummy_function, NonAutonomous, NonFixed) ==
Dynamics(dummy_function, autonomous = false, variable = true)
# Similar to Lagrange, but the function Dynamics is assumed to return a vector of the same dimension as the state x.
# dim x = 2, dim u = 1
# when a dim is 1, consider the element as a scalar
@test_throws IncorrectArgument Dynamics((x, u) -> [2x[2] - u^2, x[1]], Int64)
@test_throws IncorrectArgument Dynamics((x, u) -> [2x[2] - u^2, x[1]], Int64)
D = Dynamics((x, u) -> [2x[2] - u^2, x[1]], autonomous = true, variable = false)
@test D([1, 0], 1) == [-1, 1]
t = 1
v = Real[]
@test_throws MethodError D(t, [1, 0], 1)
@test_throws MethodError D([1, 0], 1, v)
@test D(t, [1, 0], 1, v) == [-1, 1]
D = Dynamics((x, u, v) -> [2x[2] - u^2 + v[3], x[1]], autonomous = true, variable = true)
@test D([1, 0], 1, [1, 2, 3]) == [2, 1]
@test D(t, [1, 0], 1, [1, 2, 3]) == [2, 1]
D = Dynamics((t, x, u) -> [t + 2x[2] - u^2, x[1]], autonomous = false, variable = false)
@test D(1, [1, 0], 1) == [0, 1]
@test D(1, [1, 0], 1, v) == [0, 1]
D = Dynamics(
(t, x, u, v) -> [t + 2x[2] - u^2 + v[3], x[1]],
autonomous = false,
variable = true,
)
@test D(1, [1, 0], 1, [1, 2, 3]) == [3, 1]
end
@testset "StateConstraint" begin
@test StateConstraint(dummy_function, Autonomous, Fixed) ==
StateConstraint(dummy_function, autonomous = true, variable = false)
@test StateConstraint(dummy_function, NonAutonomous, Fixed) ==
StateConstraint(dummy_function, autonomous = false, variable = false)
@test StateConstraint(dummy_function, Autonomous, NonFixed) ==
StateConstraint(dummy_function, autonomous = true, variable = true)
@test StateConstraint(dummy_function, NonAutonomous, NonFixed) ==
StateConstraint(dummy_function, autonomous = false, variable = true)
# Similar to `VectorField` in the usage, but the dimension of the output of the function StateConstraint is arbitrary.
# dim x = 2
@test_throws IncorrectArgument StateConstraint(x -> [x[1]^2, 2x[2]], Int64)
@test_throws IncorrectArgument StateConstraint(x -> [x[1]^2, 2x[2]], Int64)
S = StateConstraint(x -> [x[1]^2, 2x[2]], autonomous = true, variable = false)
@test S([1, -1]) == [1, -2]
t = 1
v = Real[]
@test_throws MethodError S(t, [1, -1])
@test_throws MethodError S([1, -1], v)
@test S(t, [1, -1], v) == [1, -2]
S = StateConstraint((x, v) -> [x[1]^2, 2x[2] + v[3]], autonomous = true, variable = true)
@test S([1, -1], [1, 2, 3]) == [1, 1]
@test S(t, [1, -1], [1, 2, 3]) == [1, 1]
S = StateConstraint((t, x) -> [t + x[1]^2, 2x[2]], autonomous = false, variable = false)
@test S(1, [1, -1]) == [2, -2]
@test S(1, [1, -1], v) == [2, -2]
S = StateConstraint(
(t, x, v) -> [t + x[1]^2, 2x[2] + v[3]],
autonomous = false,
variable = true,
)
@test S(1, [1, -1], [1, 2, 3]) == [2, 1]
end
@testset "ControlConstraint" begin
@test ControlConstraint(dummy_function, Autonomous, Fixed) ==
ControlConstraint(dummy_function, autonomous = true, variable = false)
@test ControlConstraint(dummy_function, NonAutonomous, Fixed) ==
ControlConstraint(dummy_function, autonomous = false, variable = false)
@test ControlConstraint(dummy_function, Autonomous, NonFixed) ==
ControlConstraint(dummy_function, autonomous = true, variable = true)
@test ControlConstraint(dummy_function, NonAutonomous, NonFixed) ==
ControlConstraint(dummy_function, autonomous = false, variable = true)
# Similar to `VectorField` in the usage, but the dimension of the output of the function ControlConstraint is arbitrary.
# dim u = 2
@test_throws IncorrectArgument ControlConstraint(u -> [u[1]^2, 2u[2]], Int64)
@test_throws IncorrectArgument ControlConstraint(u -> [u[1]^2, 2u[2]], Int64)
C = ControlConstraint(u -> [u[1]^2, 2u[2]], autonomous = true, variable = false)
@test C([1, -1]) == [1, -2]
t = 1
v = Real[]
@test_throws MethodError C(t, [1, -1])
@test_throws MethodError C([1, -1], v)
@test C(t, [1, -1], v) == [1, -2]
C = ControlConstraint((u, v) -> [u[1]^2, 2u[2] + v[3]], autonomous = true, variable = true)
@test C([1, -1], [1, 2, 3]) == [1, 1]
@test C(t, [1, -1], [1, 2, 3]) == [1, 1]
C = ControlConstraint((t, u) -> [t + u[1]^2, 2u[2]], autonomous = false, variable = false)
@test C(1, [1, -1]) == [2, -2]
@test C(1, [1, -1], v) == [2, -2]
C = ControlConstraint(
(t, u, v) -> [t + u[1]^2, 2u[2] + v[3]],
autonomous = false,
variable = true,
)
@test C(1, [1, -1], [1, 2, 3]) == [2, 1]
end
@testset "MixedConstraint" begin
@test MixedConstraint(dummy_function, Autonomous, Fixed) ==
MixedConstraint(dummy_function, autonomous = true, variable = false)
@test MixedConstraint(dummy_function, NonAutonomous, Fixed) ==
MixedConstraint(dummy_function, autonomous = false, variable = false)
@test MixedConstraint(dummy_function, Autonomous, NonFixed) ==
MixedConstraint(dummy_function, autonomous = true, variable = true)
@test MixedConstraint(dummy_function, NonAutonomous, NonFixed) ==
MixedConstraint(dummy_function, autonomous = false, variable = true)
# Similar to `Lagrange` in the usage, but the dimension of the output of the function MixedConstraint is arbitrary.
# dim x = 2, dim u = 1, dim output = 2
@test_throws IncorrectArgument MixedConstraint((x, u) -> [2x[2] - u^2, x[1]], Int64)
@test_throws IncorrectArgument MixedConstraint((x, u) -> [2x[2] - u^2, x[1]], Int64)
M = MixedConstraint((x, u) -> [2x[2] - u^2, x[1]], autonomous = true, variable = false)
@test M([1, 0], 1) == [-1, 1]
t = 1
v = Real[]
@test_throws MethodError M(t, [1, 0], 1)
@test_throws MethodError M([1, 0], 1, v)
@test M(t, [1, 0], 1, v) == [-1, 1]
M = MixedConstraint(
(x, u, v) -> [2x[2] - u^2 + v[3], x[1]],
autonomous = true,
variable = true,
)
@test M([1, 0], 1, [1, 2, 3]) == [2, 1]
@test M(t, [1, 0], 1, [1, 2, 3]) == [2, 1]
M = MixedConstraint(
(t, x, u) -> [t + 2x[2] - u^2, x[1]],
autonomous = false,
variable = false,
)
@test M(1, [1, 0], 1) == [0, 1]
@test M(1, [1, 0], 1, v) == [0, 1]
M = MixedConstraint(
(t, x, u, v) -> [t + 2x[2] - u^2 + v[3], x[1]],
autonomous = false,
variable = true,
)
@test M(1, [1, 0], 1, [1, 2, 3]) == [3, 1]
end
@testset "VariableConstraint" begin
V = VariableConstraint(v -> [v[1]^2, 2v[2]])
@test V([1, -1]) == [1, -2]
end
@testset "FeedbackControl" begin
@test FeedbackControl(dummy_function, Autonomous, Fixed) ==
FeedbackControl(dummy_function, autonomous = true, variable = false)
@test FeedbackControl(dummy_function, NonAutonomous, Fixed) ==
FeedbackControl(dummy_function, autonomous = false, variable = false)
@test FeedbackControl(dummy_function, Autonomous, NonFixed) ==
FeedbackControl(dummy_function, autonomous = true, variable = true)
@test FeedbackControl(dummy_function, NonAutonomous, NonFixed) ==
FeedbackControl(dummy_function, autonomous = false, variable = true)
# Similar to `VectorField` in the usage, but the dimension of the output of the function `f` is arbitrary.
# dim x = 2, dim output = 1
@test_throws IncorrectArgument FeedbackControl(x -> x[1]^2 + 2x[2], Int64)
@test_throws IncorrectArgument FeedbackControl(x -> x[1]^2 + 2x[2], Int64)
u = FeedbackControl(x -> x[1]^2 + 2x[2], autonomous = true, variable = false)
@test u([1, 0]) == 1
t = 1
v = Real[]
@test_throws MethodError u(t, [1, 0])
@test_throws MethodError u([1, 0], v)
@test u(t, [1, 0], v) == 1
u = FeedbackControl((x, v) -> x[1]^2 + 2x[2] + v[3], autonomous = true, variable = true)
@test u([1, 0], [1, 2, 3]) == 4
@test u(t, [1, 0], [1, 2, 3]) == 4
u = FeedbackControl((t, x) -> t + x[1]^2 + 2x[2], autonomous = false, variable = false)
@test u(1, [1, 0]) == 2
@test u(1, [1, 0], v) == 2
u = FeedbackControl(
(t, x, v) -> t + x[1]^2 + 2x[2] + v[3],
autonomous = false,
variable = true,
)
@test u(1, [1, 0], [1, 2, 3]) == 5
end
@testset "ControlLaw" begin
@test ControlLaw(dummy_function, Autonomous, Fixed) ==
ControlLaw(dummy_function, autonomous = true, variable = false)
@test ControlLaw(dummy_function, NonAutonomous, Fixed) ==
ControlLaw(dummy_function, autonomous = false, variable = false)
@test ControlLaw(dummy_function, Autonomous, NonFixed) ==
ControlLaw(dummy_function, autonomous = true, variable = true)
@test ControlLaw(dummy_function, NonAutonomous, NonFixed) ==
ControlLaw(dummy_function, autonomous = false, variable = true)
# Similar to `Hamiltonian` in the usage, but the dimension of the output of the function `ControlLaw` is arbitrary.
# dim x = 2, dim p =2, dim output = 1
@test_throws IncorrectArgument ControlLaw((x, p) -> x[1]^2 + 2p[2], Int64)
@test_throws IncorrectArgument ControlLaw((x, p) -> x[1]^2 + 2p[2], Int64)
u = ControlLaw((x, p) -> x[1]^2 + 2p[2], autonomous = true, variable = false)
@test u([1, 0], [0, 1]) == 3
t = 1
v = Real[]
@test_throws MethodError u(t, [1, 0], [0, 1])
@test_throws MethodError u([1, 0], [0, 1], v)
@test u(t, [1, 0], [0, 1], v) == 3
u = ControlLaw((x, p, v) -> x[1]^2 + 2p[2] + v[3], autonomous = true, variable = true)
@test u([1, 0], [0, 1], [1, 2, 3]) == 6
@test u(t, [1, 0], [0, 1], [1, 2, 3]) == 6
u = ControlLaw((t, x, p) -> t + x[1]^2 + 2p[2], autonomous = false, variable = false)
@test u(1, [1, 0], [0, 1]) == 4
@test u(1, [1, 0], [0, 1], v) == 4
u = ControlLaw(
(t, x, p, v) -> t + x[1]^2 + 2p[2] + v[3],
autonomous = false,
variable = true,
)
@test u(1, [1, 0], [0, 1], [1, 2, 3]) == 7
end
@testset "Multiplier" begin
@test Multiplier(dummy_function, Autonomous, Fixed) ==
Multiplier(dummy_function, autonomous = true, variable = false)
@test Multiplier(dummy_function, NonAutonomous, Fixed) ==
Multiplier(dummy_function, autonomous = false, variable = false)
@test Multiplier(dummy_function, Autonomous, NonFixed) ==
Multiplier(dummy_function, autonomous = true, variable = true)
@test Multiplier(dummy_function, NonAutonomous, NonFixed) ==
Multiplier(dummy_function, autonomous = false, variable = true)
# Similar to `ControlLaw` in the usage.
# dim x = 2, dim p =2, dim output = 1
@test_throws IncorrectArgument Multiplier((x, p) -> x[1]^2 + 2p[2], Int64)
@test_throws IncorrectArgument Multiplier((x, p) -> x[1]^2 + 2p[2], Int64)
ΞΌ = Multiplier((x, p) -> x[1]^2 + 2p[2], autonomous = true, variable = false)
@test ΞΌ([1, 0], [0, 1]) == 3
t = 1
v = Real[]
@test_throws MethodError ΞΌ(t, [1, 0], [0, 1])
@test_throws MethodError ΞΌ([1, 0], [0, 1], v)
@test ΞΌ(t, [1, 0], [0, 1], v) == 3
ΞΌ = Multiplier((x, p, v) -> x[1]^2 + 2p[2] + v[3], autonomous = true, variable = true)
@test ΞΌ([1, 0], [0, 1], [1, 2, 3]) == 6
@test ΞΌ(t, [1, 0], [0, 1], [1, 2, 3]) == 6
ΞΌ = Multiplier((t, x, p) -> t + x[1]^2 + 2p[2], autonomous = false, variable = false)
@test ΞΌ(1, [1, 0], [0, 1]) == 4
@test ΞΌ(1, [1, 0], [0, 1], v) == 4
ΞΌ = Multiplier(
(t, x, p, v) -> t + x[1]^2 + 2p[2] + v[3],
autonomous = false,
variable = true,
)
@test ΞΌ(1, [1, 0], [0, 1], [1, 2, 3]) == 7
end
end
| CTBase | https://github.com/control-toolbox/CTBase.jl.git |
|
[
"MIT"
] | 0.14.0 | 68e9ab3053e0b38e8e574f2809dd280c9dafa338 | code | 998 | test_goddard() = begin
# Parameters
Cd = 310
Tmax = 3.5
Ξ² = 500
b = 2
t0 = 0
r0 = 1
v0 = 0
vmax = 0.1
m0 = 1
mf = 0.6
x0 = [r0, v0, m0]
# Abstract model
@def ocp begin
tf β R, variable
t β [t0, tf], time
x β RΒ³, state
u β R, control
r = xβ
v = xβ
m = xβ
x(t0) == [r0, v0, m0]
0 β€ u(t) β€ 1
r(t) β₯ 0, (1)
0 β€ v(t) β€ vmax, (2)
mf β€ m(t) β€ m0, (3)
D = Cd * vΒ² * exp(-Ξ² * (r - 1))
xΜ(t) == [v(t), -D(t) / m(t) - 1 / rΒ²(t), 0] + u(t) * [0, Tmax / m(t), -b * Tmax]
r(tf) β max
end
F0(x) = begin
r, v, m = x
D = Cd * v^2 * exp(-Ξ² * (r - 1))
F = [v, -D / m - 1 / r^2, 0]
return F
end
F1(x) = begin
r, v, m = x
F = [0, Tmax / m, -b * Tmax]
return F
end
x = x0
u = 2
tf = 1
@test __dynamics(ocp)(x, u, tf) == F0(x) + u * F1(x)
end
| CTBase | https://github.com/control-toolbox/CTBase.jl.git |
|
[
"MIT"
] | 0.14.0 | 68e9ab3053e0b38e8e574f2809dd280c9dafa338 | code | 82474 | function test_model() # 30 55 185
β
= Vector{Real}()
@testset "is_in_place" begin
ocp = Model()
@test !is_in_place(ocp)
ocp = Model(; in_place = false)
@test !is_in_place(ocp)
ocp = Model(; in_place = true)
@test is_in_place(ocp)
ocp = Model(; autonomous = true, variable = true)
@test !is_in_place(ocp)
ocp = Model(; autonomous = true, variable = true, in_place = false)
@test !is_in_place(ocp)
ocp = Model(; autonomous = true, variable = true, in_place = true)
@test is_in_place(ocp)
ocp = Model(; autonomous = false, variable = true)
@test !is_in_place(ocp)
ocp = Model(; autonomous = false, variable = true, in_place = false)
@test !is_in_place(ocp)
ocp = Model(; autonomous = false, variable = true, in_place = true)
@test is_in_place(ocp)
ocp = Model(; autonomous = true, variable = false)
@test !is_in_place(ocp)
ocp = Model(; autonomous = true, variable = false, in_place = false)
@test !is_in_place(ocp)
ocp = Model(; autonomous = true, variable = false, in_place = true)
@test is_in_place(ocp)
ocp = Model(; autonomous = false, variable = false)
@test !is_in_place(ocp)
ocp = Model(; autonomous = false, variable = false, in_place = false)
@test !is_in_place(ocp)
ocp = Model(; autonomous = false, variable = false, in_place = true)
@test is_in_place(ocp)
end
@testset "variable!" begin
ocp = Model(variable = false)
@test_throws UnauthorizedCall variable!(ocp, 1)
@test_throws UnauthorizedCall constraint!(
ocp,
:variable,
rg = 2:3,
lb = [0, 3],
ub = [0, 3],
)
@test_throws UnauthorizedCall constraint!(ocp, :variable, lb = 0, ub = 1) # the variable here is of dimension 1
@test_throws UnauthorizedCall constraint!(
ocp,
:variable,
rg = 1:2,
lb = [0, 0],
ub = [1, 2],
)
@test_throws UnauthorizedCall constraint!(ocp, :variable, lb = [3, 0, 1], ub = [3, 0, 1])
ocp = Model(variable = true)
variable!(ocp, 1)
@test variable_dimension(ocp) == 1
ocp = Model(variable = true)
variable!(ocp, 1, "vv")
@test is_variable_dependent(ocp)
@test variable_dimension(ocp) == 1
@test variable_components_names(ocp) == ["vv"]
ocp = Model(variable = true)
variable!(ocp, 1, :vv)
@test variable_dimension(ocp) == 1
@test variable_components_names(ocp) == ["vv"]
ocp = Model(variable = true)
variable!(ocp, 2)
@test variable_dimension(ocp) == 2
ocp = Model(variable = true)
variable!(ocp, 2, "vv")
@test variable_dimension(ocp) == 2
@test variable_components_names(ocp) == ["vvβ", "vvβ"]
ocp = Model(variable = true)
variable!(ocp, 2, "uu", ["vvβ", "vvβ"])
@test variable_dimension(ocp) == 2
@test variable_components_names(ocp) == ["vvβ", "vvβ"]
ocp = Model(variable = true)
@test_throws MethodError variable!(ocp, 2, ["vv1", "vv2"])
ocp = Model(variable = true)
variable!(ocp, 2, :vv)
@test variable_dimension(ocp) == 2
@test variable_components_names(ocp) == ["vvβ", "vvβ"]
end
@testset "time, state and control set or not" begin
for i β 1:7
ocp = Model()
i == 2 && begin
time!(ocp; t0 = 0, tf = 1)
end
i == 3 && begin
state!(ocp, 2)
end
i == 4 && begin
control!(ocp, 1)
end
i == 5 && begin
time!(ocp; t0 = 0, tf = 1)
state!(ocp, 2)
end
i == 6 && begin
time!(ocp; t0 = 0, tf = 1)
control!(ocp, 1)
end
i == 7 && begin
state!(ocp, 2)
control!(ocp, 1)
end
# constraint! 1
@test_throws UnauthorizedCall constraint!(
ocp,
:initial,
rg = 1:2:5,
lb = [0, 0, 0],
ub = [0, 0, 0],
)
@test_throws UnauthorizedCall constraint!(
ocp,
:initial,
rg = 2:3,
lb = [0, 0],
ub = [0, 0],
)
@test_throws UnauthorizedCall constraint!(ocp, :final, rg = 2, lb = 0, ub = 0)
# constraint! 2
@test_throws UnauthorizedCall constraint!(ocp, :initial, lb = [0, 0], ub = [0, 0])
@test_throws UnauthorizedCall constraint!(ocp, :final, lb = 2, ub = 2) # if the state is of dimension 1
# constraint! 3
@test_throws UnauthorizedCall constraint!(
ocp,
:initial,
rg = 2:3,
lb = [0, 0],
ub = [1, 2],
)
@test_throws UnauthorizedCall constraint!(ocp, :final, rg = 1, lb = 0, ub = 2)
@test_throws UnauthorizedCall constraint!(ocp, :control, rg = 1, lb = 0, ub = 2)
@test_throws UnauthorizedCall constraint!(
ocp,
:state,
rg = 2:3,
lb = [0, 0],
ub = [1, 2],
)
@test_throws UnauthorizedCall constraint!(
ocp,
:initial,
rg = 1:2:5,
lb = [0, 0, 0],
ub = [1, 2, 1],
)
# constraint! 4
@test_throws UnauthorizedCall constraint!(ocp, :initial, lb = [0, 0, 0], ub = [1, 2, 1])
@test_throws UnauthorizedCall constraint!(ocp, :final, lb = [0, 0, 0], ub = [1, 2, 1])
@test_throws UnauthorizedCall constraint!(ocp, :control, lb = [0, 0], ub = [2, 3])
@test_throws UnauthorizedCall constraint!(ocp, :state, lb = [0, 0, 0], ub = [1, 2, 1])
# constraint! 5
# variable independent ocp
@test_throws UnauthorizedCall constraint!(
ocp,
:boundary,
f = (x0, xf) -> x0[3] + xf[2],
lb = 0,
ub = 1,
)
# variable dependent ocp
@test_throws UnauthorizedCall constraint!(
ocp,
:boundary,
f = (x0, xf, v) -> x0[3] + xf[2] * v[1],
lb = 0,
ub = 1,
)
# time independent and variable independent ocp
@test_throws UnauthorizedCall constraint!(ocp, :control, f = u -> 2u, lb = 0, ub = 1)
@test_throws UnauthorizedCall constraint!(
ocp,
:state,
f = x -> x - 1,
lb = [0, 0, 0],
ub = [1, 2, 1],
)
@test_throws UnauthorizedCall constraint!(
ocp,
:mixed,
f = (x, u) -> x[1] - u,
lb = 0,
ub = 1,
)
# time dependent and variable independent ocp
@test_throws UnauthorizedCall constraint!(
ocp,
:control,
f = (t, u) -> 2u,
lb = 0,
ub = 1,
)
@test_throws UnauthorizedCall constraint!(
ocp,
:state,
f = (t, x) -> x - t,
lb = [0, 0, 0],
ub = [1, 2, 1],
)
@test_throws UnauthorizedCall constraint!(
ocp,
:mixed,
f = (t, x, u) -> x[1] - u,
lb = 0,
ub = 1,
)
# time independent and variable dependent ocp
@test_throws UnauthorizedCall constraint!(
ocp,
:control,
f = (u, v) -> 2u * v[1],
lb = 0,
ub = 1,
)
@test_throws UnauthorizedCall constraint!(
ocp,
:state,
f = (x, v) -> x - v[1],
lb = [0, 0, 0],
ub = [1, 2, 1],
)
@test_throws UnauthorizedCall constraint!(
ocp,
:mixed,
f = (x, u, v) -> x[1] - v[2] * u,
lb = 0,
ub = 1,
)
# time dependent and variable dependent ocp
@test_throws UnauthorizedCall constraint!(
ocp,
:control,
f = (t, u, v) -> 2u + v[2],
lb = 0,
ub = 1,
)
@test_throws UnauthorizedCall constraint!(
ocp,
:state,
f = (t, x, v) -> x - t * v[1],
lb = [0, 0, 0],
ub = [1, 2, 1],
)
@test_throws UnauthorizedCall constraint!(
ocp,
:mixed,
f = (t, x, u, v) -> x[1] * v[2] - u,
lb = 0,
ub = 1,
)
# constraint! 6
# variable independent ocp
@test_throws UnauthorizedCall constraint!(
ocp,
:boundary,
f = (x0, xf) -> x0[3] + xf[2],
lb = 0,
ub = 0,
)
# variable dependent ocp
@test_throws UnauthorizedCall constraint!(
ocp,
:boundary,
f = (x0, xf, v) -> x0[3] + xf[2] * v[1],
lb = 0,
ub = 0,
)
# time independent and variable independent ocp
@test_throws UnauthorizedCall constraint!(ocp, :control, f = u -> 2u, lb = 1, ub = 1)
@test_throws UnauthorizedCall constraint!(
ocp,
:state,
f = x -> x - 1,
lb = [0, 0, 0],
ub = [0, 0, 0],
)
@test_throws UnauthorizedCall constraint!(
ocp,
:mixed,
f = (x, u) -> x[1] - u,
lb = 0,
ub = 0,
)
# time dependent and variable independent ocp
@test_throws UnauthorizedCall constraint!(
ocp,
:control,
f = (t, u) -> 2u,
lb = 1,
ub = 1,
)
@test_throws UnauthorizedCall constraint!(
ocp,
:state,
f = (t, x) -> x - t,
lb = [0, 0, 0],
ub = [0, 0, 0],
)
@test_throws UnauthorizedCall constraint!(
ocp,
:mixed,
f = (t, x, u) -> x[1] - u,
lb = 0,
ub = 0,
)
# time independent and variable dependent ocp
@test_throws UnauthorizedCall constraint!(
ocp,
:control,
f = (u, v) -> 2u * v[1],
lb = 1,
ub = 1,
)
@test_throws UnauthorizedCall constraint!(
ocp,
:state,
f = (x, v) -> x - v[2],
lb = [0, 0, 0],
ub = [0, 0, 0],
)
@test_throws UnauthorizedCall constraint!(
ocp,
:mixed,
f = (x, u) -> x[1] - u + v[1],
lb = 0,
ub = 0,
)
# time dependent and variable dependent ocp
@test_throws UnauthorizedCall constraint!(
ocp,
:control,
f = (t, u, v) -> 2u - t * v[2],
lb = 1,
ub = 1,
)
@test_throws UnauthorizedCall constraint!(
ocp,
:state,
f = (t, x, v) -> x - t + v[1],
lb = [0, 0, 0],
ub = [0, 0, 0],
)
@test_throws UnauthorizedCall constraint!(
ocp,
:mixed,
f = (t, x, u, v) -> x[1] - u * v[1],
lb = 0,
ub = 0,
)
end
end
@testset "initial and / or final time already set" begin
ocp = Model(variable = true)
@test !CTBase.__is_time_set(ocp)
variable!(ocp, 1)
time!(ocp; t0 = 0, indf = 1)
@test CTBase.__is_time_set(ocp)
ocp = Model(variable = true)
variable!(ocp, 1)
time!(ocp; ind0 = 1, tf = 1)
@test CTBase.__is_time_set(ocp)
ocp = Model()
time!(ocp; t0 = 0, tf = 1)
@test CTBase.__is_time_set(ocp)
ocp = Model()
@test_throws MethodError time!(ocp; t0 = 0, indf = 1)
@test_throws MethodError time!(ocp; ind0 = 1, tf = 1)
ocp = Model(variable = true)
@test_throws UnauthorizedCall time!(ocp; t0 = 0, indf = 1)
@test_throws UnauthorizedCall time!(ocp; ind0 = 1, tf = 1)
ocp = Model(variable = true)
variable!(ocp, 1)
time!(ocp; t0 = 0, indf = 1)
@test_throws UnauthorizedCall time!(ocp; t0 = 0, indf = 1)
@test_throws UnauthorizedCall time!(ocp; ind0 = 1, tf = 1)
@test_throws UnauthorizedCall time!(ocp; t0 = 0, tf = 1)
ocp = Model(variable = true)
variable!(ocp, 1)
time!(ocp; ind0 = 1, tf = 1)
@test_throws UnauthorizedCall time!(ocp; t0 = 0, indf = 1)
@test_throws UnauthorizedCall time!(ocp; ind0 = 1, tf = 1)
@test_throws UnauthorizedCall time!(ocp; t0 = 0, tf = 1)
ocp = Model(variable = true)
@test_throws UnauthorizedCall time!(ocp; t0 = 0, indf = 1)
@test_throws UnauthorizedCall time!(ocp; ind0 = 1, tf = 1)
ocp = Model(variable = true)
time!(ocp; t0 = 0, tf = 1)
@test_throws UnauthorizedCall time!(ocp; t0 = 0, indf = 1)
@test_throws UnauthorizedCall time!(ocp; ind0 = 1, tf = 1)
end
@testset "Index" begin
@test Index(1) == Index(1)
@test Index(1) β€ Index(2)
@test Index(1) < Index(2)
v = [10, 20]
@test v[Index(1)] == v[1]
@test_throws MethodError v[Index(1):Index(2)]
x = 1
@test x[Index(1)] == x
end
@testset "time and variable dependence" begin
ocp = Model()
@test is_autonomous(ocp)
@test is_fixed(ocp)
@test is_time_independent(ocp)
@test !is_time_dependent(ocp)
@test is_variable_independent(ocp)
@test !is_variable_dependent(ocp)
ocp = Model(autonomous = false)
@test !is_autonomous(ocp)
@test is_fixed(ocp)
@test is_time_dependent(ocp)
@test !is_time_independent(ocp)
@test is_variable_independent(ocp)
@test !is_variable_dependent(ocp)
ocp = Model(variable = true)
@test is_autonomous(ocp)
@test !is_fixed(ocp)
@test is_time_independent(ocp)
@test !is_time_dependent(ocp)
@test is_variable_dependent(ocp)
@test !is_variable_independent(ocp)
ocp = Model(autonomous = false, variable = true)
@test !is_autonomous(ocp)
@test !is_fixed(ocp)
@test is_time_dependent(ocp)
@test !is_time_independent(ocp)
@test is_variable_dependent(ocp)
@test !is_variable_independent(ocp)
end
@testset "time and variable dependence bis" begin
ocp = Model()
@test is_autonomous(ocp)
@test is_fixed(ocp)
@test is_time_independent(ocp)
@test !is_time_dependent(ocp)
@test is_variable_independent(ocp)
@test !is_variable_dependent(ocp)
ocp = Model(NonAutonomous)
@test !is_autonomous(ocp)
@test is_fixed(ocp)
@test is_time_dependent(ocp)
@test !is_time_independent(ocp)
@test is_variable_independent(ocp)
@test !is_variable_dependent(ocp)
ocp = Model(NonFixed)
@test is_autonomous(ocp)
@test !is_fixed(ocp)
@test is_time_independent(ocp)
@test !is_time_dependent(ocp)
@test is_variable_dependent(ocp)
@test !is_variable_independent(ocp)
ocp = Model(NonAutonomous, NonFixed)
@test !is_autonomous(ocp)
@test !is_fixed(ocp)
@test is_time_dependent(ocp)
@test !is_time_independent(ocp)
@test is_variable_dependent(ocp)
@test !is_variable_independent(ocp)
ocp = Model(NonFixed, NonAutonomous)
@test !is_autonomous(ocp)
@test !is_fixed(ocp)
@test is_time_dependent(ocp)
@test !is_time_independent(ocp)
@test is_variable_dependent(ocp)
@test !is_variable_independent(ocp)
@test_throws IncorrectArgument Model(NonFixed, NonAutonomous, Autonomous)
@test_throws IncorrectArgument Model(NonFixed, NonAutonomous, Autonomous)
@test_throws IncorrectArgument Model(NonAutonomous, Autonomous)
@test_throws IncorrectArgument Model(NonFixed, Int64)
@test_throws IncorrectArgument Model(NonFixed, Int64)
end
@testset "time and variable dependence Bool" begin
ocp = Model()
@test is_autonomous(ocp)
@test is_fixed(ocp)
@test is_time_independent(ocp)
@test !is_time_dependent(ocp)
@test is_variable_independent(ocp)
@test !is_variable_dependent(ocp)
ocp = Model(NonAutonomous)
@test !is_autonomous(ocp)
@test is_fixed(ocp)
@test is_time_dependent(ocp)
@test !is_time_independent(ocp)
@test is_variable_independent(ocp)
@test !is_variable_dependent(ocp)
ocp = Model(NonFixed)
@test is_autonomous(ocp)
@test !is_fixed(ocp)
@test is_time_independent(ocp)
@test !is_time_dependent(ocp)
@test is_variable_dependent(ocp)
@test !is_variable_independent(ocp)
ocp = Model(NonAutonomous, NonFixed)
@test !is_autonomous(ocp)
@test !is_fixed(ocp)
@test is_time_dependent(ocp)
@test !is_time_independent(ocp)
@test is_variable_dependent(ocp)
@test !is_variable_independent(ocp)
ocp = Model(NonFixed, NonAutonomous)
@test !is_autonomous(ocp)
@test !is_fixed(ocp)
@test is_time_dependent(ocp)
@test !is_time_independent(ocp)
@test is_variable_dependent(ocp)
@test !is_variable_independent(ocp)
@test_throws IncorrectArgument Model(NonFixed, NonAutonomous, Autonomous)
@test_throws IncorrectArgument Model(NonFixed, NonAutonomous, Autonomous)
@test_throws IncorrectArgument Model(NonAutonomous, Autonomous)
@test_throws IncorrectArgument Model(NonFixed, Int64)
@test_throws IncorrectArgument Model(NonFixed, Int64)
end
@testset "state!" begin
ocp = Model()
state!(ocp, 1)
@test state_dimension(ocp) == 1
@test state_components_names(ocp) == ["x"]
ocp = Model()
state!(ocp, 1, "y")
@test state_dimension(ocp) == 1
@test state_components_names(ocp) == ["y"]
ocp = Model()
state!(ocp, 2)
@test state_dimension(ocp) == 2
@test state_components_names(ocp) == ["xβ", "xβ"]
ocp = Model()
@test_throws MethodError state!(ocp, 2, ["yβ", "yβ"])
ocp = Model()
state!(ocp, 2, :y)
@test state_dimension(ocp) == 2
@test state_components_names(ocp) == ["yβ", "yβ"]
ocp = Model()
state!(ocp, 2, "y")
@test state_dimension(ocp) == 2
@test state_components_names(ocp) == ["yβ", "yβ"]
ocp = Model()
state!(ocp, 2, "y", ["zβ", "zβ"])
@test state_dimension(ocp) == 2
@test state_components_names(ocp) == ["zβ", "zβ"]
end
@testset "control!" begin
ocp = Model()
control!(ocp, 1)
@test control_dimension(ocp) == 1
@test control_components_names(ocp) == ["u"]
ocp = Model()
control!(ocp, 1, "v")
@test control_dimension(ocp) == 1
@test control_components_names(ocp) == ["v"]
ocp = Model()
control!(ocp, 2)
@test control_dimension(ocp) == 2
@test control_components_names(ocp) == ["uβ", "uβ"]
ocp = Model()
@test_throws MethodError control!(ocp, 2, ["vβ", "vβ"])
ocp = Model()
control!(ocp, 2, :v)
@test control_dimension(ocp) == 2
@test control_components_names(ocp) == ["vβ", "vβ"]
ocp = Model()
control!(ocp, 2, "v")
@test control_dimension(ocp) == 2
@test control_components_names(ocp) == ["vβ", "vβ"]
ocp = Model()
control!(ocp, 2, "u", ["vβ", "vβ"])
@test control_dimension(ocp) == 2
@test control_components_names(ocp) == ["vβ", "vβ"]
end
@testset "time!" begin
# initial and final times
ocp = Model()
time!(ocp; t0 = 0, tf = 1)
@test !CTBase.__is_initial_time_free(ocp)
@test !CTBase.__is_final_time_free(ocp)
@test initial_time(ocp) == 0
@test final_time(ocp) == 1
@test time_name(ocp) == "t"
ocp = Model()
time!(ocp; t0 = 0, tf = 1, name = "s")
@test initial_time(ocp) == 0
@test final_time(ocp) == 1
@test time_name(ocp) == "s"
ocp = Model()
time!(ocp; t0 = 0, tf = 1, name = :s)
@test initial_time(ocp) == 0
@test final_time(ocp) == 1
@test time_name(ocp) == "s"
# initial time
ocp = Model(variable = true)
variable!(ocp, 1)
time!(ocp; t0 = 0, indf = 1)
@test !CTBase.__is_initial_time_free(ocp)
@test CTBase.__is_final_time_free(ocp)
@test initial_time(ocp) == 0
@test final_time(ocp) == Index(1)
@test time_name(ocp) == "t"
ocp = Model(variable = true)
variable!(ocp, 1)
time!(ocp; t0 = 0, indf = 1, name = "s")
@test initial_time(ocp) == 0
@test final_time(ocp) == Index(1)
@test time_name(ocp) == "s"
ocp = Model(variable = true)
variable!(ocp, 1)
time!(ocp; t0 = 0, indf = 1, name = :s)
@test initial_time(ocp) == 0
@test final_time(ocp) == Index(1)
@test time_name(ocp) == "s"
# final time
ocp = Model(variable = true)
variable!(ocp, 1)
time!(ocp; ind0 = 1, tf = 1)
@test CTBase.__is_initial_time_free(ocp)
@test !CTBase.__is_final_time_free(ocp)
@test initial_time(ocp) == Index(1)
@test final_time(ocp) == 1
@test time_name(ocp) == "t"
ocp = Model(variable = true)
variable!(ocp, 1)
time!(ocp; ind0 = 1, tf = 1, name = "s")
@test initial_time(ocp) == Index(1)
@test final_time(ocp) == 1
@test time_name(ocp) == "s"
ocp = Model(variable = true)
variable!(ocp, 1)
time!(ocp; ind0 = 1, tf = 1, name = :s)
@test initial_time(ocp) == Index(1)
@test final_time(ocp) == 1
@test time_name(ocp) == "s"
end
@testset "is_min vs is_max" begin
ocp = Model()
time!(ocp; t0 = 0, tf = 1)
state!(ocp, 2)
control!(ocp, 1)
objective!(ocp, :mayer, (x0, xf) -> x0[1] + xf[2])
@test is_min(ocp)
@test !is_max(ocp)
ocp = Model()
time!(ocp; t0 = 0, tf = 1)
state!(ocp, 2)
control!(ocp, 1)
objective!(ocp, :mayer, (x0, xf) -> x0[1] + xf[2], :max)
@test is_max(ocp)
@test !is_min(ocp)
ocp = Model()
time!(ocp; t0 = 0, tf = 1)
state!(ocp, 2)
control!(ocp, 1)
objective!(ocp, :lagrange, (x, u) -> 0.5u^2)
@test is_min(ocp)
@test !is_max(ocp)
ocp = Model()
time!(ocp; t0 = 0, tf = 1)
state!(ocp, 2)
control!(ocp, 1)
objective!(ocp, :lagrange, (x, u) -> 0.5u^2, :max)
@test is_max(ocp)
@test !is_min(ocp)
ocp = Model()
time!(ocp; t0 = 0, tf = 1)
state!(ocp, 2)
control!(ocp, 1)
objective!(ocp, :bolza, (x0, xf) -> x0[1] + xf[2], (x, u) -> x[1]^2 + u^2) # the control is of dimension 1
@test is_min(ocp)
@test !is_max(ocp)
ocp = Model()
time!(ocp; t0 = 0, tf = 1)
state!(ocp, 2)
control!(ocp, 1)
objective!(ocp, :bolza, (x0, xf) -> x0[1] + xf[2], (x, u) -> x[1]^2 + u^2, :max) # the control is of dimension 1
@test is_max(ocp)
@test !is_min(ocp)
end
@testset "constraint! 1" begin
ocp = Model()
time!(ocp; t0 = 0, tf = 1)
state!(ocp, 1)
control!(ocp, 1)
@test_throws IncorrectArgument constraint!(
ocp,
:initial,
lb = [0, 1],
ub = [0, 1],
label = :c0,
)
constraint!(ocp, :initial, lb = 0, ub = 0, label = :c0)
constraint!(ocp, :final, lb = 1, ub = 1, label = :cf)
@test constraint(ocp, :c0)(12, β
) == 12
@test constraint(ocp, :cf)(β
, 12) == 12
ocp = Model()
time!(ocp; t0 = 0, tf = 1)
state!(ocp, 2)
control!(ocp, 1)
constraint!(ocp, :initial, lb = [0, 1], ub = [0, 1], label = :c0)
constraint!(ocp, :final, lb = [1, 2], ub = [1, 2], label = :cf)
@test constraint(ocp, :c0)([12, 13], β
) == [12, 13]
@test constraint(ocp, :cf)(β
, [12, 13]) == [12, 13]
# constraint already exists
ocp = Model()
time!(ocp; t0 = 0, tf = 1)
state!(ocp, 1)
control!(ocp, 1)
constraint!(ocp, :initial, lb = 0, ub = 0, label = :c)
@test_throws UnauthorizedCall constraint!(ocp, :final, lb = 0, ub = 0, label = :c)
end
@testset "constraint! 2" begin
ocp = Model()
time!(ocp; t0 = 0, tf = 1)
state!(ocp, 1)
control!(ocp, 1)
x = 12
x0 = 0
xf = 1
constraint!(ocp, :initial, rg = 1, lb = x0, ub = x0, label = :c0)
constraint!(ocp, :final, rg = 1, lb = xf, ub = xf, label = :cf)
@test constraint(ocp, :c0)(x, β
) == x
@test constraint(ocp, :cf)(β
, x) == x
constraint!(ocp, :initial, rg = 1, lb = x0, ub = x0, label = :c00)
constraint!(ocp, :final, rg = 1, lb = xf, ub = xf, label = :cff)
@test constraint(ocp, :c00)(x, β
) == x
@test constraint(ocp, :cff)(β
, x) == x
ocp = Model()
time!(ocp; t0 = 0, tf = 1)
state!(ocp, 2)
control!(ocp, 1)
x = [12, 13]
x0 = [0, 1]
xf = [1, 2]
@test_throws IncorrectArgument constraint!(
ocp,
:initial,
rg = 2,
lb = x0,
ub = x0,
label = :c0,
)
@test_throws IncorrectArgument constraint!(
ocp,
:final,
rg = 2,
lb = xf,
ub = xf,
label = :cf,
)
ocp = Model()
time!(ocp; t0 = 0, tf = 1)
state!(ocp, 2)
control!(ocp, 1)
x = [12, 13]
x0 = [0, 1]
xf = [1, 2]
constraint!(ocp, :initial, rg = 1:2, lb = x0, ub = x0, label = :c0)
constraint!(ocp, :final, rg = 1:2, lb = xf, ub = xf, label = :cf)
@test constraint(ocp, :c0)(x, β
) == x[1:2]
@test constraint(ocp, :cf)(β
, x) == x[1:2]
# constraint already exists
ocp = Model()
time!(ocp; t0 = 0, tf = 1)
state!(ocp, 2)
control!(ocp, 1)
constraint!(ocp, :initial, rg = 1, lb = 0, ub = 0, label = :c)
@test_throws UnauthorizedCall constraint!(ocp, :final, rg = 1, lb = 0, ub = 0, label = :c)
end
@testset "constraint! 3" begin
ocp = Model()
time!(ocp; t0 = 0, tf = 1)
state!(ocp, 1)
control!(ocp, 1)
constraint!(ocp, :initial, lb = 0, ub = 1, label = :c0)
constraint!(ocp, :final, lb = 1, ub = 2, label = :cf)
constraint!(ocp, :control, lb = 0, ub = 1, label = :cu)
constraint!(ocp, :state, lb = 0, ub = 1, label = :cs)
@test constraint(ocp, :c0)(12, β
) == 12
@test constraint(ocp, :cf)(β
, 12) == 12
@test constraint(ocp, :cu)(12) == 12
@test constraint(ocp, :cs)(12) == 12
ocp = Model()
time!(ocp; t0 = 0, tf = 1)
state!(ocp, 2)
control!(ocp, 2)
constraint!(ocp, :initial, lb = [0, 1], ub = [1, 2], label = :c0)
constraint!(ocp, :final, lb = [1, 2], ub = [2, 3], label = :cf)
constraint!(ocp, :control, lb = [0, 1], ub = [1, 2], label = :cu)
constraint!(ocp, :state, lb = [0, 1], ub = [1, 2], label = :cs)
@test constraint(ocp, :c0)([12, 13], β
) == [12, 13]
@test constraint(ocp, :cf)(β
, [12, 13]) == [12, 13]
@test constraint(ocp, :cu)([12, 13]) == [12, 13]
@test constraint(ocp, :cs)([12, 13]) == [12, 13]
# constraint already exists
ocp = Model()
time!(ocp; t0 = 0, tf = 1)
state!(ocp, 1)
control!(ocp, 1)
constraint!(ocp, :initial, lb = 0, ub = 1, label = :c)
@test_throws UnauthorizedCall constraint!(ocp, :final, lb = 0, ub = 1, label = :c)
end
@testset "constraint! 4" begin
ocp = Model()
time!(ocp; t0 = 0, tf = 1)
state!(ocp, 1)
control!(ocp, 1)
constraint!(ocp, :initial, rg = 1, lb = 0, ub = 1, label = :c0)
constraint!(ocp, :final, rg = 1, lb = 1, ub = 2, label = :cf)
constraint!(ocp, :control, rg = 1, lb = 0, ub = 1, label = :cu)
constraint!(ocp, :state, rg = 1, lb = 0, ub = 1, label = :cs)
@test constraint(ocp, :c0)(12, β
) == 12
@test constraint(ocp, :cf)(β
, 12) == 12
@test constraint(ocp, :cu)(12) == 12
@test constraint(ocp, :cs)(12) == 12
ocp = Model()
time!(ocp; t0 = 0, tf = 1)
state!(ocp, 2)
control!(ocp, 2)
@test_throws IncorrectArgument constraint!(
ocp,
:initial,
rg = 2,
lb = [0, 1],
ub = [1, 2],
label = :c0,
)
@test_throws IncorrectArgument constraint!(
ocp,
:final,
rg = 2,
lb = [1, 2],
ub = [2, 3],
label = :cf,
)
@test_throws IncorrectArgument constraint!(
ocp,
:control,
rg = 2,
lb = [0, 1],
ub = [1, 2],
label = :cu,
)
@test_throws IncorrectArgument constraint!(
ocp,
:state,
rg = 2,
lb = [0, 1],
ub = [1, 2],
label = :cs,
)
ocp = Model()
time!(ocp; t0 = 0, tf = 1)
state!(ocp, 2)
control!(ocp, 2)
constraint!(ocp, :initial, rg = 1:2, lb = [0, 1], ub = [1, 2], label = :c0)
constraint!(ocp, :final, rg = 1:2, lb = [1, 2], ub = [2, 3], label = :cf)
constraint!(ocp, :control, rg = 1:2, lb = [0, 1], ub = [1, 2], label = :cu)
constraint!(ocp, :state, rg = 1:2, lb = [0, 1], ub = [1, 2], label = :cs)
@test constraint(ocp, :c0)([12, 13], β
) == [12, 13]
@test constraint(ocp, :cf)(β
, [12, 13]) == [12, 13]
@test constraint(ocp, :cu)([12, 13]) == [12, 13]
@test constraint(ocp, :cs)([12, 13]) == [12, 13]
# constraint already exists
ocp = Model()
time!(ocp; t0 = 0, tf = 1)
state!(ocp, 2)
control!(ocp, 1)
constraint!(ocp, :initial, rg = 1, lb = 0, ub = 1, label = :c)
@test_throws UnauthorizedCall constraint!(ocp, :final, rg = 1, lb = 0, ub = 1, label = :c)
end
@testset "constraint! 5" begin
ocp = Model()
time!(ocp; t0 = 0, tf = 1)
state!(ocp, 1)
control!(ocp, 1)
constraint!(ocp, :boundary, f = (x0, xf) -> x0 + xf, lb = 0, ub = 0, label = :cb)
constraint!(ocp, :control, f = u -> u, lb = 0, ub = 0, label = :cu)
constraint!(ocp, :state, f = x -> x, lb = 0, ub = 0, label = :cs)
constraint!(ocp, :mixed, f = (x, u) -> x + u, lb = 1, ub = 1, label = :cm)
@test constraint(ocp, :cb)(12, 13) == 12 + 13
@test constraint(ocp, :cu)(12) == 12
@test constraint(ocp, :cs)(12) == 12
@test constraint(ocp, :cm)(12, 13) == 12 + 13
ocp = Model()
time!(ocp; t0 = 0, tf = 1)
state!(ocp, 2)
control!(ocp, 2)
constraint!(ocp, :boundary, f = (x0, xf) -> x0[1] + xf[1], lb = 0, ub = 0, label = :cb)
constraint!(ocp, :control, f = u -> u[1], lb = 0, ub = 0, label = :cu)
constraint!(ocp, :state, f = x -> x[1], lb = 0, ub = 0, label = :cs)
constraint!(ocp, :mixed, f = (x, u) -> x[1] + u[1], lb = 1, ub = 1, label = :cm)
@test constraint(ocp, :cb)([13, 14], [16, 17]) == 13 + 16
@test constraint(ocp, :cu)([12, 13]) == 12
@test constraint(ocp, :cs)([12, 13]) == 12
@test constraint(ocp, :cm)([12, 13], [14, 15]) == 12 + 14
ocp = Model()
time!(ocp; t0 = 0, tf = 1)
state!(ocp, 3)
control!(ocp, 3)
constraint!(
ocp,
:boundary,
f = (x0, xf) -> [x0[1] + xf[1], x0[2] + xf[2]],
lb = [0, 0],
ub = [0, 0],
label = :cb,
)
constraint!(ocp, :control, f = u -> u[1:2], lb = [0, 0], ub = [0, 0], label = :cu)
constraint!(ocp, :state, f = x -> x[1:2], lb = [0, 0], ub = [0, 0], label = :cs)
constraint!(
ocp,
:mixed,
f = (x, u) -> [x[1] + u[1], x[2] + u[2]],
lb = [0, 0],
ub = [0, 0],
label = :cm,
)
@test constraint(ocp, :cb)([13, 14, 15], [17, 18, 19]) == [13 + 17, 14 + 18]
@test constraint(ocp, :cu)([12, 13, 14]) == [12, 13]
@test constraint(ocp, :cs)([12, 13, 14]) == [12, 13]
@test constraint(ocp, :cm)([12, 13, 14], [15, 16, 17]) == [12 + 15, 13 + 16]
# constraint already exists
ocp = Model()
time!(ocp; t0 = 0, tf = 1)
state!(ocp, 2)
control!(ocp, 1)
constraint!(ocp, :control, f = u -> u, lb = 0, ub = 1, label = :c)
@test_throws UnauthorizedCall constraint!(
ocp,
:control,
f = u -> u,
lb = 0,
ub = 1,
label = :c,
)
end
@testset "constraint! 6" begin
ocp = Model()
time!(ocp; t0 = 0, tf = 1)
state!(ocp, 1)
control!(ocp, 1)
constraint!(ocp, :boundary, f = (x0, xf) -> x0 + xf, lb = 0, ub = 1, label = :cb)
constraint!(ocp, :control, f = u -> u, lb = 0, ub = 1, label = :cu)
constraint!(ocp, :state, f = x -> x, lb = 0, ub = 1, label = :cs)
constraint!(ocp, :mixed, f = (x, u) -> x + u, lb = 1, ub = 1, label = :cm)
@test constraint(ocp, :cb)(12, 13) == 12 + 13
@test constraint(ocp, :cu)(12) == 12
@test constraint(ocp, :cs)(12) == 12
@test constraint(ocp, :cm)(12, 13) == 12 + 13
ocp = Model()
time!(ocp; t0 = 0, tf = 1)
state!(ocp, 2)
control!(ocp, 2)
constraint!(ocp, :boundary, f = (x0, xf) -> x0[1] + xf[1], lb = 0, ub = 1, label = :cb)
constraint!(ocp, :control, f = u -> u[1], lb = 0, ub = 1, label = :cu)
constraint!(ocp, :state, f = x -> x[1], lb = 0, ub = 1, label = :cs)
constraint!(ocp, :mixed, f = (x, u) -> x[1] + u[1], lb = 1, ub = 1, label = :cm)
@test constraint(ocp, :cb)([13, 14], [16, 17]) == 13 + 16
@test constraint(ocp, :cu)([12, 13]) == 12
@test constraint(ocp, :cs)([12, 13]) == 12
@test constraint(ocp, :cm)([12, 13], [14, 15]) == 12 + 14
ocp = Model()
time!(ocp; t0 = 0, tf = 1)
state!(ocp, 2)
control!(ocp, 1)
constraint!(
ocp,
:boundary,
f = (x0, xf) -> [x0[1] + xf[1], x0[2] + xf[2]],
lb = [0, 0],
ub = [1, 1],
label = :cb,
)
constraint!(ocp, :control, f = u -> u[1:2], lb = [0, 0], ub = [1, 1], label = :cu)
constraint!(ocp, :state, f = x -> x[1:2], lb = [0, 0], ub = [1, 1], label = :cs)
constraint!(
ocp,
:mixed,
f = (x, u) -> [x[1] + u[1], x[2] + u[2]],
lb = [0, 0],
ub = [1, 1],
label = :cm,
)
@test constraint(ocp, :cb)([13, 14, 15], [17, 18, 19]) == [13 + 17, 14 + 18]
@test constraint(ocp, :cu)([12, 13, 14]) == [12, 13]
@test constraint(ocp, :cs)([12, 13, 14]) == [12, 13]
@test constraint(ocp, :cm)([12, 13, 14], [15, 16, 17]) == [12 + 15, 13 + 16]
end
@testset "constraint! 7" begin
x = 1
u = 2
v = [3, 4, 5, 6]
x0 = 7
xf = 8
ocp = Model(variable = true)
time!(ocp; t0 = 0, tf = 1)
variable!(ocp, 4)
state!(ocp, 1)
control!(ocp, 1)
constraint!(ocp, :variable, lb = [0, 0, 0, 0], ub = [1, 1, 1, 1], label = :eq1)
constraint!(ocp, :variable, rg = 1, lb = 0, ub = 1, label = :eq2)
constraint!(ocp, :variable, rg = 1:2, lb = [0, 0], ub = [1, 2], label = :eq3)
constraint!(ocp, :variable, rg = 1:2:4, lb = [0, 0], ub = [-1, 1], label = :eq4)
constraint!(
ocp,
:variable,
f = v -> v .^ 2,
lb = [0, 0, 0, 0],
ub = [1, 0, 1, 0],
label = :eq5,
)
@test constraint(ocp, :eq1)(v) == v
@test constraint(ocp, :eq2)(v) == v[1]
@test constraint(ocp, :eq3)(v) == v[1:2]
@test constraint(ocp, :eq4)(v) == v[1:2:4]
@test constraint(ocp, :eq5)(v) == v .^ 2
end
@testset "constraint! 8" begin
x = 1
u = 2
v = [3, 4, 5, 6]
x0 = 7
xf = 8
ocp = Model(variable = true)
time!(ocp; t0 = 0, tf = 1)
variable!(ocp, 4)
state!(ocp, 1)
control!(ocp, 1)
constraint!(ocp, :boundary, f = (x0, xf, v) -> x0 + xf + v[1], lb = 0, ub = 1, label = :cb)
constraint!(ocp, :control, f = (u, v) -> u + v[1], lb = 0, ub = 1, label = :cu)
constraint!(ocp, :state, f = (x, v) -> x + v[1], lb = 0, ub = 1, label = :cs)
constraint!(ocp, :mixed, f = (x, u, v) -> x + u + v[1], lb = 1, ub = 1, label = :cm)
constraint!(ocp, :variable, lb = [0, 0, 0, 0], ub = [0, 0, 0, 0], label = :eq1)
constraint!(ocp, :variable, rg = 1, lb = 0, ub = 0, label = :eq2)
constraint!(ocp, :variable, rg = 1:2, lb = [0, 0], ub = [0, 0], label = :eq3)
constraint!(ocp, :variable, rg = 1:2:4, lb = [0, 0], ub = [0, 0], label = :eq4)
constraint!(
ocp,
:variable,
f = v -> v .^ 2,
lb = [0, 0, 0, 0],
ub = [0, 0, 0, 0],
label = :eq5,
)
@test constraint(ocp, :cb)(x0, xf, v) == x0 + xf + v[1]
@test constraint(ocp, :cu)(u, v) == u + v[1]
@test constraint(ocp, :cs)(x, v) == x + v[1]
@test constraint(ocp, :cm)(x, u, v) == x + u + v[1]
@test constraint(ocp, :eq1)(v) == v
@test constraint(ocp, :eq2)(v) == v[1]
@test constraint(ocp, :eq3)(v) == v[1:2]
@test constraint(ocp, :eq4)(v) == v[1:2:4]
@test constraint(ocp, :eq5)(v) == v .^ 2
end
@testset "constraint! 9" begin
ocp = Model()
time!(ocp; t0 = 0, tf = 1)
state!(ocp, 1)
control!(ocp, 1)
dynamics!(ocp, (x, u) -> x + u)
@test dynamics(ocp)(1, 2) == 3
ocp = Model()
time!(ocp; t0 = 0, tf = 1)
state!(ocp, 2)
control!(ocp, 2)
dynamics!(ocp, (x, u) -> x[1] + u[1])
@test dynamics(ocp)([1, 2], [3, 4]) == 4
ocp = Model()
time!(ocp; t0 = 0, tf = 1)
state!(ocp, 2)
control!(ocp, 2)
dynamics!(ocp, (x, u) -> [x[1] + u[1], x[2] + u[2]])
@test dynamics(ocp)([1, 2], [3, 4]) == [4, 6]
ocp = Model()
time!(ocp; t0 = 0, tf = 1)
state!(ocp, 2)
control!(ocp, 1)
dynamics!(ocp, (x, u) -> [x[1] + u, x[2] + u])
@test dynamics(ocp)([1, 2], 3) == [4, 5]
end
@testset "constraint! 10" begin
ocp = Model(autonomous = false)
time!(ocp; t0 = 0, tf = 1)
state!(ocp, 1)
control!(ocp, 1)
constraint!(ocp, :initial, lb = 0, ub = 1, label = :c0)
constraint!(ocp, :final, lb = 1, ub = 2, label = :cf)
@test constraint(ocp, :c0)(12, β
) == 12
@test constraint(ocp, :cf)(β
, 12) == 12
end
@testset "constraint! 11" begin
dummy(u) = u^2 + u
ocp = Model(variable = true)
time!(ocp; t0 = 0, tf = 1)
state!(ocp, 1)
control!(ocp, 1)
variable!(ocp, 3)
constraint!(ocp, :state, lb = 0, ub = 1, label = :c0)
constraint!(ocp, :control, f = dummy, lb = 1, ub = 1, label = :c1)
constraint!(ocp, :variable, rg = 1:2:3, lb = [-Inf, -Inf], ub = [0, 0], label = :c2)
ocp_bis = Model(variable = true)
time!(ocp_bis; t0 = 0, tf = 1)
state!(ocp_bis, 1)
control!(ocp_bis, 1)
variable!(ocp_bis, 3)
constraint!(ocp_bis, :state, lb = 0, ub = 1, label = :c0)
constraint!(ocp_bis, :control, f = dummy, ub = 1, lb = 1, label = :c1)
constraint!(ocp_bis, :variable, rg = 1:2:3, ub = [0, 0], label = :c2)
@test constraints(ocp) == constraints(ocp_bis)
ocp_ter = Model(variable = true)
time!(ocp_ter; t0 = 0, tf = 1)
state!(ocp_ter, 3)
control!(ocp_ter, 1)
variable!(ocp_ter, 1)
constraint!(ocp_ter, :variable, lb = 1, ub = 1, label = :c0)
constraint!(ocp_ter, :control, f = dummy, lb = 1, ub = Inf, label = :c1)
constraint!(ocp_ter, :state, rg = 1:2:3, lb = [0, 0], ub = [0, 0], label = :c2)
ocp_quad = Model(variable = true)
time!(ocp_quad; t0 = 0, tf = 1)
state!(ocp_quad, 3)
control!(ocp_quad, 1)
variable!(ocp_quad, 1)
constraint!(ocp_quad, :variable, lb = 1, ub = 1, label = :c0)
constraint!(ocp_quad, :control, f = dummy, lb = 1, label = :c1)
constraint!(ocp_quad, :state, rg = 1:2:3, lb = [0, 0], ub = [0, 0], label = :c2)
@test constraints(ocp_ter) == constraints(ocp_quad)
ocp_error = ocp_error = Model(variable = true)
time!(ocp_error; t0 = 0, tf = 1)
state!(ocp_error, 3)
control!(ocp_error, 1)
variable!(ocp_error, 1)
@test_throws UnauthorizedCall constraint!(ocp_error, :variable)
@test_throws UnauthorizedCall constraint!(ocp_error, :control, f = dummy, label = :c1)
@test_throws UnauthorizedCall constraint!(ocp_error, :state, rg = 1:2:3, label = :c2)
@test_throws IncorrectArgument constraint!(
ocp_error,
:state,
rg = 1:2:3,
f = dummy,
lb = [0, 0],
ub = [0, 0],
label = :c3,
)
@test_throws IncorrectArgument constraint!(
ocp_error,
:state,
f = dummy,
rg = 1:2:3,
lb = [0, 0],
ub = [0, 0],
label = :c4,
)
@test_throws IncorrectArgument constraint!(
ocp_error,
:foo,
lb = [0, 0],
ub = [0, 0],
label = :c5,
)
end
@testset "remove_constraint! and constraints_labels" begin
ocp = Model()
time!(ocp; t0 = 0, tf = 1)
state!(ocp, 1)
control!(ocp, 1)
constraint!(ocp, :boundary, f = (x0, xf) -> x0 + xf, lb = 0, ub = 1, label = :cb)
constraint!(ocp, :control, f = u -> u, lb = 0, ub = 1, label = :cu)
k = constraints_labels(ocp)
@test :cb β k
@test :cu β k
remove_constraint!(ocp, :cb)
k = constraints_labels(ocp)
@test :cb β k
@test_throws IncorrectArgument remove_constraint!(ocp, :dummy_con)
end
@testset "nlp_constraints! without variable" begin
ocp = Model()
time!(ocp; t0 = 0, tf = 1)
state!(ocp, 2)
control!(ocp, 1)
constraint!(ocp, :initial, rg = 2, lb = 10, ub = 10, label = :ci)
constraint!(ocp, :final, rg = 1, lb = 1, ub = 1, label = :cf)
constraint!(ocp, :control, lb = 0, ub = 1, label = :cu)
constraint!(ocp, :state, lb = [0, 1], ub = [1, 2], label = :cs)
constraint!(ocp, :boundary, f = (x0, xf) -> x0[2] + xf[2], lb = 0, ub = 1, label = :cb)
constraint!(ocp, :control, f = u -> u, lb = 0, ub = 1, label = :cuu)
constraint!(ocp, :state, f = x -> x, lb = [0, 1], ub = [1, 2], label = :css)
constraint!(ocp, :mixed, f = (x, u) -> x[1] + u, lb = 1, ub = 1, label = :cm)
# dimensions (not set yet)
@test dim_control_constraints(ocp) === nothing
@test dim_state_constraints(ocp) === nothing
@test dim_mixed_constraints(ocp) === nothing
@test dim_path_constraints(ocp) === nothing
@test dim_boundary_constraints(ocp) === nothing
@test dim_variable_constraints(ocp) === nothing
@test dim_control_range(ocp) === nothing
@test dim_state_range(ocp) === nothing
@test dim_variable_range(ocp) === nothing
(ΞΎl, ΞΎ, ΞΎu),
(Ξ·l, Ξ·, Ξ·u),
(Οl, Ο, Οu),
(Οl, Ο, Οu),
(ΞΈl, ΞΈ, ΞΈu),
(ul, uind, uu),
(xl, xind, xu),
(vl, vind, vu) = nlp_constraints!(ocp)
v = Real[]
# control
@test sort(ΞΎl) == sort([0])
@test sort(ΞΎu) == sort([1])
@test sort(ΞΎ(-1, 1, v)) == sort([1])
# state
@test sort(Ξ·l) == sort([0, 1])
@test sort(Ξ·u) == sort([1, 2])
@test sort(Ξ·(-1, [1, 1], v)) == sort([1, 1])
# mixed
@test sort(Οl) == sort([1])
@test sort(Οu) == sort([1])
@test sort(Ο(-1, [1, 1], 2, v)) == sort([3])
# boundary
@test sort(Οl) == sort([10, 1, 0])
@test sort(Οu) == sort([10, 1, 1])
@test sort(Ο([1, 3], [4, 100], v)) == sort([3, 4, 103])
# box constraint
@test sort(ul) == sort([0])
@test sort(uind) == sort([1])
@test sort(uu) == sort([1])
@test sort(xl) == sort([0, 1])
@test sort(xind) == sort([1, 2])
@test sort(xu) == sort([1, 2])
# variable
@test sort(vl) == sort([])
@test sort(vind) == sort([])
@test sort(vu) == sort([])
@test sort(ΞΈl) == sort([])
@test sort(ΞΈu) == sort([])
@test sort(ΞΈ(v)) == sort([])
# dimensions (set)
@test dim_control_constraints(ocp) == 1
@test dim_state_constraints(ocp) == 2
@test dim_mixed_constraints(ocp) == 1
@test dim_path_constraints(ocp) == 4
@test dim_boundary_constraints(ocp) == 3
@test dim_variable_constraints(ocp) == 0
@test dim_control_range(ocp) == 1
@test dim_state_range(ocp) == 2
@test dim_variable_range(ocp) == 0
end
@testset "nlp_constraints! with variable" begin
ocp = Model(variable = true)
time!(ocp; t0 = 0, tf = 1)
variable!(ocp, 4)
state!(ocp, 2)
control!(ocp, 1)
constraint!(ocp, :initial, rg = 2, lb = 10, ub = 10, label = :ci)
constraint!(ocp, :final, rg = 1, lb = 1, ub = 1, label = :cf)
constraint!(ocp, :control, lb = 0, ub = 1, label = :cu)
constraint!(ocp, :state, lb = [0, 1], ub = [1, 2], label = :cs)
constraint!(
ocp,
:boundary,
f = (x0, xf, v) -> x0[2] + xf[2] + v[1],
lb = 0,
ub = 1,
label = :cb,
)
constraint!(ocp, :control, f = (u, v) -> u + v[2], lb = 0, ub = 1, label = :cuu)
constraint!(ocp, :state, f = (x, v) -> x + v[1:2], lb = [0, 1], ub = [1, 2], label = :css)
constraint!(ocp, :mixed, f = (x, u, v) -> x[1] + u + v[2], lb = 1, ub = 1, label = :cm)
constraint!(ocp, :variable, lb = [0, 0, 0, 0], ub = [5, 5, 5, 5], label = :cv1)
constraint!(ocp, :variable, rg = 1:2, lb = [1, 2], ub = [3, 4], label = :cv2)
constraint!(ocp, :variable, rg = 3, lb = 2, ub = 3, label = :cv3)
constraint!(ocp, :variable, f = v -> v[3]^2, lb = 0, ub = 1, label = :cv4)
# dimensions (not set yet)
@test dim_control_constraints(ocp) === nothing
@test dim_state_constraints(ocp) === nothing
@test dim_mixed_constraints(ocp) === nothing
@test dim_path_constraints(ocp) === nothing
@test dim_boundary_constraints(ocp) === nothing
@test dim_variable_constraints(ocp) === nothing
@test dim_control_range(ocp) === nothing
@test dim_state_range(ocp) === nothing
@test dim_variable_range(ocp) === nothing
(ΞΎl, ΞΎ, ΞΎu),
(Ξ·l, Ξ·, Ξ·u),
(Οl, Ο, Οu),
(Οl, Ο, Οu),
(ΞΈl, ΞΈ, ΞΈu),
(ul, uind, uu),
(xl, xind, xu),
(vl, vind, vu) = nlp_constraints!(ocp)
v = [1, 2, 3, 4]
# control
@test sort(ΞΎl) == sort([0])
@test sort(ΞΎu) == sort([1])
@test sort(ΞΎ(-1, 1, v)) == sort([1 + v[2]])
# state
@test sort(Ξ·l) == sort([0, 1])
@test sort(Ξ·u) == sort([1, 2])
@test sort(Ξ·(-1, [1, 1], v)) == sort([1, 1] + v[1:2])
# mixed
@test sort(Οl) == sort([1])
@test sort(Οu) == sort([1])
@test sort(Ο(-1, [1, 1], 2, v)) == sort([3 + v[2]])
# boundary
@test sort(Οl) == sort([10, 1, 0])
@test sort(Οu) == sort([10, 1, 1])
@test sort(Ο([1, 3], [4, 100], v)) == sort([3, 4, 103 + v[1]])
# variable
@test sort(ΞΈl) == sort([0])
@test sort(ΞΈu) == sort([1])
@test sort(ΞΈ(v)) == sort([v[3]^2])
# box constraint
@test sort(ul) == sort([0])
@test sort(uind) == sort([1])
@test sort(uu) == sort([1])
@test sort(xl) == sort([0, 1])
@test sort(xind) == sort([1, 2])
@test sort(xu) == sort([1, 2])
@test sort(vl) == sort([0, 0, 0, 0, 1, 2, 2])
@test sort(vind) == sort([1, 2, 3, 4, 1, 2, 3])
@test sort(vu) == sort([5, 5, 5, 5, 3, 4, 3])
# dimensions
@test dim_control_constraints(ocp) == 1
@test dim_state_constraints(ocp) == 2
@test dim_mixed_constraints(ocp) == 1
@test dim_path_constraints(ocp) == 4
@test dim_boundary_constraints(ocp) == 3
@test dim_variable_constraints(ocp) == 1
@test dim_control_range(ocp) == 1
@test dim_state_range(ocp) == 2
@test dim_variable_range(ocp) == 7
end
@testset "nlp_constraints! without variable (in place)" begin
ocp = Model(; in_place = true)
time!(ocp; t0 = 0, tf = 1)
state!(ocp, 2)
control!(ocp, 1)
constraint!(ocp, :initial, rg = 2, lb = 10, ub = 10, label = :ci)
constraint!(ocp, :final, rg = 1, lb = 1, ub = 1, label = :cf)
constraint!(ocp, :control, lb = 0, ub = 1, label = :cu)
constraint!(ocp, :state, lb = [0, 1], ub = [1, 2], label = :cs)
constraint!(ocp, :boundary, f = (r, x0, xf) -> (r[:] .= x0[2] + xf[2]; nothing), lb = 0, ub = 1, label = :cb)
constraint!(ocp, :control, f = (r, u) -> (r[:] .= u; nothing), lb = 0, ub = 1, label = :cuu)
constraint!(ocp, :state, f = (r, x) -> (r[:] .= x; nothing), lb = [0, 1], ub = [1, 2], label = :css)
constraint!(ocp, :mixed, f = (r, x, u) -> (r[:] .= x[1] + u; nothing), lb = 1, ub = 1, label = :cm)
# dimensions (not set yet)
@test dim_control_constraints(ocp) === nothing
@test dim_state_constraints(ocp) === nothing
@test dim_mixed_constraints(ocp) === nothing
@test dim_path_constraints(ocp) === nothing
@test dim_boundary_constraints(ocp) === nothing
@test dim_variable_constraints(ocp) === nothing
@test dim_control_range(ocp) === nothing
@test dim_state_range(ocp) === nothing
@test dim_variable_range(ocp) === nothing
(ΞΎl, ΞΎ!, ΞΎu),
(Ξ·l, Ξ·!, Ξ·u),
(Οl, Ο!, Οu),
(Οl, Ο!, Οu),
(ΞΈl, ΞΈ!, ΞΈu),
(ul, uind, uu),
(xl, xind, xu),
(vl, vind, vu) = nlp_constraints!(ocp)
v = Real[]
# control
@test sort(ΞΎl) == sort([0])
@test sort(ΞΎu) == sort([1])
r = [0.]
ΞΎ!(r, -1, 1, v)
@test sort(r) == sort([1])
# state
@test sort(Ξ·l) == sort([0, 1])
@test sort(Ξ·u) == sort([1, 2])
r = [0., 0.]
Ξ·!(r, -1, [1, 1], v)
@test sort(r) == sort([1, 1])
# mixed
@test sort(Οl) == sort([1])
@test sort(Οu) == sort([1])
r = [0.]
Ο!(r, -1, [1, 1], 2, v)
@test sort(r) == sort([3])
# boundary
@test sort(Οl) == sort([10, 1, 0])
@test sort(Οu) == sort([10, 1, 1])
r = [0., 0., 0.]
Ο!(r, [1, 3], [4, 100], v)
@test sort(r) == sort([3, 4, 103])
# box constraint
@test sort(ul) == sort([0])
@test sort(uind) == sort([1])
@test sort(uu) == sort([1])
@test sort(xl) == sort([0, 1])
@test sort(xind) == sort([1, 2])
@test sort(xu) == sort([1, 2])
# variable
@test sort(vl) == sort([])
@test sort(vind) == sort([])
@test sort(vu) == sort([])
@test sort(ΞΈl) == sort([])
@test sort(ΞΈu) == sort([])
r = Real[]
ΞΈ!(r, v)
@test sort(r) == sort([])
# dimensions (set)
@test dim_control_constraints(ocp) == 1
@test dim_state_constraints(ocp) == 2
@test dim_mixed_constraints(ocp) == 1
@test dim_path_constraints(ocp) == 4
@test dim_boundary_constraints(ocp) == 3
@test dim_variable_constraints(ocp) == 0
@test dim_control_range(ocp) == 1
@test dim_state_range(ocp) == 2
@test dim_variable_range(ocp) == 0
end
@testset "nlp_constraints! with variable (in place)" begin
ocp = Model(; variable = true, in_place = true)
time!(ocp; t0 = 0, tf = 1)
variable!(ocp, 4)
state!(ocp, 2)
control!(ocp, 1)
constraint!(ocp, :initial, rg = 2, lb = 10, ub = 10, label = :ci)
constraint!(ocp, :final, rg = 1, lb = 1, ub = 1, label = :cf)
constraint!(ocp, :control, lb = 0, ub = 1, label = :cu)
constraint!(ocp, :state, lb = [0, 1], ub = [1, 2], label = :cs)
constraint!(
ocp,
:boundary,
f = (r, x0, xf, v) -> (r[:] .= x0[2] + xf[2] + v[1]; nothing),
lb = 0,
ub = 1,
label = :cb,
)
constraint!(ocp, :control, f = (r, u, v) -> (r[:] .= u + v[2]; nothing), lb = 0, ub = 1, label = :cuu)
constraint!(ocp, :state, f = (r, x, v) -> (r[:] .= x + v[1:2]; nothing), lb = [0, 1], ub = [1, 2], label = :css)
constraint!(ocp, :mixed, f = (r, x, u, v) -> (r[:] .= x[1] + u + v[2]; nothing), lb = 1, ub = 1, label = :cm)
constraint!(ocp, :variable, lb = [0, 0, 0, 0], ub = [5, 5, 5, 5], label = :cv1)
constraint!(ocp, :variable, rg = 1:2, lb = [1, 2], ub = [3, 4], label = :cv2)
constraint!(ocp, :variable, rg = 3, lb = 2, ub = 3, label = :cv3)
constraint!(ocp, :variable, f = (r, v) -> (r[:] .= v[3]^2; nothing), lb = 0, ub = 1, label = :cv4)
# dimensions (not set yet)
@test dim_control_constraints(ocp) === nothing
@test dim_state_constraints(ocp) === nothing
@test dim_mixed_constraints(ocp) === nothing
@test dim_path_constraints(ocp) === nothing
@test dim_boundary_constraints(ocp) === nothing
@test dim_variable_constraints(ocp) === nothing
@test dim_control_range(ocp) === nothing
@test dim_state_range(ocp) === nothing
@test dim_variable_range(ocp) === nothing
(ΞΎl, ΞΎ!, ΞΎu),
(Ξ·l, Ξ·!, Ξ·u),
(Οl, Ο!, Οu),
(Οl, Ο!, Οu),
(ΞΈl, ΞΈ!, ΞΈu),
(ul, uind, uu),
(xl, xind, xu),
(vl, vind, vu) = nlp_constraints!(ocp)
v = [1, 2, 3, 4]
# control
@test sort(ΞΎl) == sort([0])
@test sort(ΞΎu) == sort([1])
r = [0.]
ΞΎ!(r, -1, 1, v)
@test sort(r) == sort([1 + v[2]])
# state
@test sort(Ξ·l) == sort([0, 1])
@test sort(Ξ·u) == sort([1, 2])
r = [0., 0.]
Ξ·!(r, -1, [1, 1], v)
@test sort(r) == sort([1, 1] + v[1:2])
# mixed
@test sort(Οl) == sort([1])
@test sort(Οu) == sort([1])
r = [0.]
Ο!(r, -1, [1, 1], 2, v)
@test sort(r) == sort([3 + v[2]])
# boundary
@test sort(Οl) == sort([10, 1, 0])
@test sort(Οu) == sort([10, 1, 1])
r = [0., 0., 0.]
Ο!(r, [1, 3], [4, 100], v)
@test sort(r) == sort([3, 4, 103 + v[1]])
# variable
@test sort(ΞΈl) == sort([0])
@test sort(ΞΈu) == sort([1])
r = [0.]
ΞΈ!(r, v)
@test sort(r) == sort([v[3]^2])
# box constraint
@test sort(ul) == sort([0])
@test sort(uind) == sort([1])
@test sort(uu) == sort([1])
@test sort(xl) == sort([0, 1])
@test sort(xind) == sort([1, 2])
@test sort(xu) == sort([1, 2])
@test sort(vl) == sort([0, 0, 0, 0, 1, 2, 2])
@test sort(vind) == sort([1, 2, 3, 4, 1, 2, 3])
@test sort(vu) == sort([5, 5, 5, 5, 3, 4, 3])
# dimensions
@test dim_control_constraints(ocp) == 1
@test dim_state_constraints(ocp) == 2
@test dim_mixed_constraints(ocp) == 1
@test dim_path_constraints(ocp) == 4
@test dim_boundary_constraints(ocp) == 3
@test dim_variable_constraints(ocp) == 1
@test dim_control_range(ocp) == 1
@test dim_state_range(ocp) == 2
@test dim_variable_range(ocp) == 7
end
@testset "val vs lb and ub, errors" begin
ocp = Model(variable = true)
time!(ocp; t0 = 0, tf = 1)
variable!(ocp, 4)
state!(ocp, 2)
control!(ocp, 1)
# error val with ub
@test_throws UnauthorizedCall constraint!(
ocp,
:initial;
rg = Index(2),
val = 10,
ub = 10,
label = :ci,
)
@test_throws UnauthorizedCall constraint!(
ocp,
:final;
rg = Index(1),
val = 1,
ub = 1,
label = :cf,
)
@test_throws UnauthorizedCall constraint!(ocp, :control; val = 0, ub = 0, label = :cu)
@test_throws UnauthorizedCall constraint!(
ocp,
:state;
val = [0, 1],
ub = [0, 1],
label = :cs,
)
@test_throws UnauthorizedCall constraint!(
ocp,
:boundary;
f = (x0, xf, v) -> x0[2] + xf[2] + v[1],
val = 2,
ub = 2,
label = :cb,
)
@test_throws UnauthorizedCall constraint!(
ocp,
:control;
f = (u, v) -> u + v[2],
val = 20,
ub = 20,
label = :cuu,
)
@test_throws UnauthorizedCall constraint!(
ocp,
:state;
f = (x, v) -> x + v[1:2],
val = [100, 101],
ub = [100, 101],
label = :css,
)
@test_throws UnauthorizedCall constraint!(
ocp,
:mixed;
f = (x, u, v) -> x[1] + u + v[2],
val = -1,
ub = -1,
label = :cm,
)
@test_throws UnauthorizedCall constraint!(
ocp,
:variable;
val = [5, 5, 5, 5],
ub = [5, 5, 5, 5],
label = :cv1,
)
@test_throws UnauthorizedCall constraint!(
ocp,
:variable;
rg = 1:2,
val = [10, 20],
ub = [10, 20],
label = :cv2,
)
@test_throws UnauthorizedCall constraint!(
ocp,
:variable;
rg = Index(3),
val = 1000,
ub = 1000,
label = :cv3,
)
@test_throws UnauthorizedCall constraint!(
ocp,
:variable;
f = v -> v[3]^2,
val = -10,
ub = -10,
label = :cv4,
)
ocp = Model(variable = true)
time!(ocp; t0 = 0, tf = 1)
variable!(ocp, 4)
state!(ocp, 2)
control!(ocp, 1)
# error val with lb
@test_throws UnauthorizedCall constraint!(
ocp,
:initial;
rg = Index(2),
val = 10,
lb = 10,
label = :ci,
)
@test_throws UnauthorizedCall constraint!(
ocp,
:final;
rg = Index(1),
val = 1,
lb = 1,
label = :cf,
)
@test_throws UnauthorizedCall constraint!(ocp, :control; val = 0, lb = 0, label = :cu)
@test_throws UnauthorizedCall constraint!(
ocp,
:state;
val = [0, 1],
lb = [0, 1],
label = :cs,
)
@test_throws UnauthorizedCall constraint!(
ocp,
:boundary;
f = (x0, xf, v) -> x0[2] + xf[2] + v[1],
val = 2,
lb = 2,
label = :cb,
)
@test_throws UnauthorizedCall constraint!(
ocp,
:control;
f = (u, v) -> u + v[2],
val = 20,
lb = 20,
label = :cuu,
)
@test_throws UnauthorizedCall constraint!(
ocp,
:state;
f = (x, v) -> x + v[1:2],
val = [100, 101],
lb = [100, 101],
label = :css,
)
@test_throws UnauthorizedCall constraint!(
ocp,
:mixed;
f = (x, u, v) -> x[1] + u + v[2],
val = -1,
lb = -1,
label = :cm,
)
@test_throws UnauthorizedCall constraint!(
ocp,
:variable;
val = [5, 5, 5, 5],
lb = [5, 5, 5, 5],
label = :cv1,
)
@test_throws UnauthorizedCall constraint!(
ocp,
:variable;
rg = 1:2,
val = [10, 20],
lb = [10, 20],
label = :cv2,
)
@test_throws UnauthorizedCall constraint!(
ocp,
:variable;
rg = Index(3),
val = 1000,
lb = 1000,
label = :cv3,
)
@test_throws UnauthorizedCall constraint!(
ocp,
:variable;
f = v -> v[3]^2,
val = -10,
lb = -10,
label = :cv4,
)
end
@testset "val vs lb and ub, 1/2" begin
ocp = Model(variable = true)
time!(ocp; t0 = 0, tf = 1)
variable!(ocp, 4)
state!(ocp, 2)
control!(ocp, 1)
constraint!(ocp, :initial; rg = Index(2), lb = 10, ub = 10, label = :ci)
constraint!(ocp, :final; rg = Index(1), lb = 1, ub = 1, label = :cf)
constraint!(ocp, :control; lb = 0, ub = 0, label = :cu)
constraint!(ocp, :state; lb = [0, 1], ub = [0, 1], label = :cs)
constraint!(
ocp,
:boundary;
f = (x0, xf, v) -> x0[2] + xf[2] + v[1],
lb = 2,
ub = 2,
label = :cb,
)
constraint!(ocp, :control; f = (u, v) -> u + v[2], lb = 20, ub = 20, label = :cuu)
constraint!(
ocp,
:state;
f = (x, v) -> x + v[1:2],
lb = [100, 101],
ub = [100, 101],
label = :css,
)
constraint!(ocp, :mixed; f = (x, u, v) -> x[1] + u + v[2], lb = -1, ub = -1, label = :cm)
constraint!(ocp, :variable; lb = [5, 5, 5, 5], ub = [5, 5, 5, 5], label = :cv1)
constraint!(ocp, :variable; rg = 1:2, lb = [10, 20], ub = [10, 20], label = :cv2)
constraint!(ocp, :variable; rg = Index(3), lb = 1000, ub = 1000, label = :cv3)
constraint!(ocp, :variable; f = v -> v[3]^2, lb = -10, ub = -10, label = :cv4)
# dimensions (not set yet)
@test dim_control_constraints(ocp) === nothing
@test dim_state_constraints(ocp) === nothing
@test dim_mixed_constraints(ocp) === nothing
@test dim_path_constraints(ocp) === nothing
@test dim_boundary_constraints(ocp) === nothing
@test dim_variable_constraints(ocp) === nothing
@test dim_control_range(ocp) === nothing
@test dim_state_range(ocp) === nothing
@test dim_variable_range(ocp) === nothing
(ΞΎl, ΞΎ, ΞΎu),
(Ξ·l, Ξ·, Ξ·u),
(Οl, Ο, Οu),
(Οl, Ο, Οu),
(ΞΈl, ΞΈ, ΞΈu),
(ul, uind, uu),
(xl, xind, xu),
(vl, vind, vu) = nlp_constraints!(ocp)
v = [1, 2, 3, 4]
# control
@test sort(ΞΎl) == sort([20])
@test sort(ΞΎu) == sort([20])
@test sort(ΞΎ(-1, 1, v)) == sort([1 + v[2]])
# state
@test sort(Ξ·l) == sort([100, 101])
@test sort(Ξ·u) == sort([100, 101])
@test sort(Ξ·(-1, [1, 1], v)) == sort([1, 1] + v[1:2])
# mixed
@test sort(Οl) == sort([-1])
@test sort(Οu) == sort([-1])
@test sort(Ο(-1, [1, 1], 2, v)) == sort([3 + v[2]])
# boundary
@test sort(Οl) == sort([10, 1, 2])
@test sort(Οu) == sort([10, 1, 2])
@test sort(Ο([1, 3], [4, 100], v)) == sort([3, 4, 103 + v[1]])
# variable
@test sort(ΞΈl) == sort([-10])
@test sort(ΞΈu) == sort([-10])
@test sort(ΞΈ(v)) == sort([v[3]^2])
# box constraint
@test sort(ul) == sort([0])
@test sort(uind) == sort([1])
@test sort(uu) == sort([0])
@test sort(xl) == sort([0, 1])
@test sort(xind) == sort([1, 2])
@test sort(xu) == sort([0, 1])
@test sort(vl) == sort([5, 5, 5, 5, 10, 20, 1000])
@test sort(vind) == sort([1, 2, 3, 4, 1, 2, 3])
@test sort(vu) == sort([5, 5, 5, 5, 10, 20, 1000])
# dimensions
@test dim_control_constraints(ocp) == 1
@test dim_state_constraints(ocp) == 2
@test dim_mixed_constraints(ocp) == 1
@test dim_path_constraints(ocp) == 4
@test dim_boundary_constraints(ocp) == 3
@test dim_variable_constraints(ocp) == 1
@test dim_control_range(ocp) == 1
@test dim_state_range(ocp) == 2
@test dim_variable_range(ocp) == 7
end
@testset "val vs lb and ub, 2/2" begin
ocp = Model(variable = true)
time!(ocp; t0 = 0, tf = 1)
variable!(ocp, 4)
state!(ocp, 2)
control!(ocp, 1)
constraint!(ocp, :initial; rg = Index(2), val = 10, label = :ci)
constraint!(ocp, :final; rg = Index(1), val = 1, label = :cf)
constraint!(ocp, :control; val = 0, label = :cu)
constraint!(ocp, :state; val = [0, 1], label = :cs)
constraint!(ocp, :boundary; f = (x0, xf, v) -> x0[2] + xf[2] + v[1], val = 2, label = :cb)
constraint!(ocp, :control; f = (u, v) -> u + v[2], val = 20, label = :cuu)
constraint!(ocp, :state; f = (x, v) -> x + v[1:2], val = [100, 101], label = :css)
constraint!(ocp, :mixed; f = (x, u, v) -> x[1] + u + v[2], val = -1, label = :cm)
constraint!(ocp, :variable; val = [5, 5, 5, 5], label = :cv1)
constraint!(ocp, :variable; rg = 1:2, val = [10, 20], label = :cv2)
constraint!(ocp, :variable; rg = Index(3), val = 1000, label = :cv3)
constraint!(ocp, :variable; f = v -> v[3]^2, val = -10, label = :cv4)
# dimensions (not set yet)
@test dim_control_constraints(ocp) === nothing
@test dim_state_constraints(ocp) === nothing
@test dim_mixed_constraints(ocp) === nothing
@test dim_path_constraints(ocp) === nothing
@test dim_boundary_constraints(ocp) === nothing
@test dim_variable_constraints(ocp) === nothing
@test dim_control_range(ocp) === nothing
@test dim_state_range(ocp) === nothing
@test dim_variable_range(ocp) === nothing
(ΞΎl, ΞΎ, ΞΎu),
(Ξ·l, Ξ·, Ξ·u),
(Οl, Ο, Οu),
(Οl, Ο, Οu),
(ΞΈl, ΞΈ, ΞΈu),
(ul, uind, uu),
(xl, xind, xu),
(vl, vind, vu) = nlp_constraints!(ocp)
v = [1, 2, 3, 4]
# control
@test sort(ΞΎl) == sort([20])
@test sort(ΞΎu) == sort([20])
@test sort(ΞΎ(-1, 1, v)) == sort([1 + v[2]])
# state
@test sort(Ξ·l) == sort([100, 101])
@test sort(Ξ·u) == sort([100, 101])
@test sort(Ξ·(-1, [1, 1], v)) == sort([1, 1] + v[1:2])
# mixed
@test sort(Οl) == sort([-1])
@test sort(Οu) == sort([-1])
@test sort(Ο(-1, [1, 1], 2, v)) == sort([3 + v[2]])
# boundary
@test sort(Οl) == sort([10, 1, 2])
@test sort(Οu) == sort([10, 1, 2])
@test sort(Ο([1, 3], [4, 100], v)) == sort([3, 4, 103 + v[1]])
# variable
@test sort(ΞΈl) == sort([-10])
@test sort(ΞΈu) == sort([-10])
@test sort(ΞΈ(v)) == sort([v[3]^2])
# box constraint
@test sort(ul) == sort([0])
@test sort(uind) == sort([1])
@test sort(uu) == sort([0])
@test sort(xl) == sort([0, 1])
@test sort(xind) == sort([1, 2])
@test sort(xu) == sort([0, 1])
@test sort(vl) == sort([5, 5, 5, 5, 10, 20, 1000])
@test sort(vind) == sort([1, 2, 3, 4, 1, 2, 3])
@test sort(vu) == sort([5, 5, 5, 5, 10, 20, 1000])
# dimensions
@test dim_control_constraints(ocp) == 1
@test dim_state_constraints(ocp) == 2
@test dim_mixed_constraints(ocp) == 1
@test dim_path_constraints(ocp) == 4
@test dim_boundary_constraints(ocp) == 3
@test dim_variable_constraints(ocp) == 1
@test dim_control_range(ocp) == 1
@test dim_state_range(ocp) == 2
@test dim_variable_range(ocp) == 7
end
@testset "val vs lb and ub, 1/2 (in place)" begin
ocp = Model(variable = true, in_place = true)
time!(ocp; t0 = 0, tf = 1)
variable!(ocp, 4)
state!(ocp, 2)
control!(ocp, 1)
constraint!(ocp, :initial; rg = Index(2), lb = 10, ub = 10, label = :ci)
constraint!(ocp, :final; rg = Index(1), lb = 1, ub = 1, label = :cf)
constraint!(ocp, :control; lb = 0, ub = 0, label = :cu)
constraint!(ocp, :state; lb = [0, 1], ub = [0, 1], label = :cs)
constraint!(
ocp,
:boundary;
f = (r, x0, xf, v) -> (r[:] .= x0[2] + xf[2] + v[1]; nothing),
lb = 2,
ub = 2,
label = :cb,
)
constraint!(ocp, :control; f = (r, u, v) -> (r[:] .= u + v[2]; nothing), lb = 20, ub = 20, label = :cuu)
constraint!(
ocp,
:state;
f = (r, x, v) -> (r[:] .= x + v[1:2]; nothing),
lb = [100, 101],
ub = [100, 101],
label = :css,
)
constraint!(ocp, :mixed; f = (r, x, u, v) -> (r[:] .= x[1] + u + v[2]; nothing), lb = -1, ub = -1, label = :cm)
constraint!(ocp, :variable; lb = [5, 5, 5, 5], ub = [5, 5, 5, 5], label = :cv1)
constraint!(ocp, :variable; rg = 1:2, lb = [10, 20], ub = [10, 20], label = :cv2)
constraint!(ocp, :variable; rg = Index(3), lb = 1000, ub = 1000, label = :cv3)
constraint!(ocp, :variable; f = (r, v) -> (r[:] .= v[3]^2; nothing), lb = -10, ub = -10, label = :cv4)
# dimensions (not set yet)
@test dim_control_constraints(ocp) === nothing
@test dim_state_constraints(ocp) === nothing
@test dim_mixed_constraints(ocp) === nothing
@test dim_path_constraints(ocp) === nothing
@test dim_boundary_constraints(ocp) === nothing
@test dim_variable_constraints(ocp) === nothing
@test dim_control_range(ocp) === nothing
@test dim_state_range(ocp) === nothing
@test dim_variable_range(ocp) === nothing
(ΞΎl, ΞΎ!, ΞΎu),
(Ξ·l, Ξ·!, Ξ·u),
(Οl, Ο!, Οu),
(Οl, Ο!, Οu),
(ΞΈl, ΞΈ!, ΞΈu),
(ul, uind, uu),
(xl, xind, xu),
(vl, vind, vu) = nlp_constraints!(ocp)
v = [1, 2, 3, 4]
# control
@test sort(ΞΎl) == sort([20])
@test sort(ΞΎu) == sort([20])
r = [0.]
ΞΎ!(r, -1, 1, v)
@test sort(r) == sort([1 + v[2]])
# state
@test sort(Ξ·l) == sort([100, 101])
@test sort(Ξ·u) == sort([100, 101])
r = [0., 0.]
Ξ·!(r, -1, [1, 1], v)
@test sort(r) == sort([1, 1] + v[1:2])
# mixed
@test sort(Οl) == sort([-1])
@test sort(Οu) == sort([-1])
r = [0.]
Ο!(r, -1, [1, 1], 2, v)
@test sort(r) == sort([3 + v[2]])
# boundary
@test sort(Οl) == sort([10, 1, 2])
@test sort(Οu) == sort([10, 1, 2])
r = [0., 0., 0.]
Ο!(r, [1, 3], [4, 100], v)
@test sort(r) == sort([3, 4, 103 + v[1]])
# variable
@test sort(ΞΈl) == sort([-10])
@test sort(ΞΈu) == sort([-10])
r = [0.]
ΞΈ!(r, v)
@test sort(r) == sort([v[3]^2])
# box constraint
@test sort(ul) == sort([0])
@test sort(uind) == sort([1])
@test sort(uu) == sort([0])
@test sort(xl) == sort([0, 1])
@test sort(xind) == sort([1, 2])
@test sort(xu) == sort([0, 1])
@test sort(vl) == sort([5, 5, 5, 5, 10, 20, 1000])
@test sort(vind) == sort([1, 2, 3, 4, 1, 2, 3])
@test sort(vu) == sort([5, 5, 5, 5, 10, 20, 1000])
# dimensions
@test dim_control_constraints(ocp) == 1
@test dim_state_constraints(ocp) == 2
@test dim_mixed_constraints(ocp) == 1
@test dim_path_constraints(ocp) == 4
@test dim_boundary_constraints(ocp) == 3
@test dim_variable_constraints(ocp) == 1
@test dim_control_range(ocp) == 1
@test dim_state_range(ocp) == 2
@test dim_variable_range(ocp) == 7
end
@testset "val vs lb and ub, 2/2 (in place)" begin
ocp = Model(variable = true, in_place = true)
time!(ocp; t0 = 0, tf = 1)
variable!(ocp, 4)
state!(ocp, 2)
control!(ocp, 1)
constraint!(ocp, :initial; rg = Index(2), val = 10, label = :ci)
constraint!(ocp, :final; rg = Index(1), val = 1, label = :cf)
constraint!(ocp, :control; val = 0, label = :cu)
constraint!(ocp, :state; val = [0, 1], label = :cs)
constraint!(ocp, :boundary; f = (r, x0, xf, v) -> (r[:] .= x0[2] + xf[2] + v[1]; nothing), val = 2, label = :cb)
constraint!(ocp, :control; f = (r, u, v) -> (r[:] .= u + v[2]; nothing), val = 20, label = :cuu)
constraint!(ocp, :state; f = (r, x, v) -> (r[:] .= x + v[1:2]; nothing), val = [100, 101], label = :css)
constraint!(ocp, :mixed; f = (r, x, u, v) -> (r[:] .= x[1] + u + v[2]; nothing), val = -1, label = :cm)
constraint!(ocp, :variable; val = [5, 5, 5, 5], label = :cv1)
constraint!(ocp, :variable; rg = 1:2, val = [10, 20], label = :cv2)
constraint!(ocp, :variable; rg = Index(3), val = 1000, label = :cv3)
constraint!(ocp, :variable; f = (r, v) -> (r[:] .= v[3]^2; nothing), val = -10, label = :cv4)
# dimensions (not set yet)
@test dim_control_constraints(ocp) === nothing
@test dim_state_constraints(ocp) === nothing
@test dim_mixed_constraints(ocp) === nothing
@test dim_path_constraints(ocp) === nothing
@test dim_boundary_constraints(ocp) === nothing
@test dim_variable_constraints(ocp) === nothing
@test dim_control_range(ocp) === nothing
@test dim_state_range(ocp) === nothing
@test dim_variable_range(ocp) === nothing
(ΞΎl, ΞΎ!, ΞΎu),
(Ξ·l, Ξ·!, Ξ·u),
(Οl, Ο!, Οu),
(Οl, Ο!, Οu),
(ΞΈl, ΞΈ!, ΞΈu),
(ul, uind, uu),
(xl, xind, xu),
(vl, vind, vu) = nlp_constraints!(ocp)
v = [1, 2, 3, 4]
# control
@test sort(ΞΎl) == sort([20])
@test sort(ΞΎu) == sort([20])
r = [0.]
ΞΎ!(r, -1, 1, v)
@test sort(r) == sort([1 + v[2]])
# state
@test sort(Ξ·l) == sort([100, 101])
@test sort(Ξ·u) == sort([100, 101])
r = [0., 0.]
Ξ·!(r, -1, [1, 1], v)
@test sort(r) == sort([1, 1] + v[1:2])
# mixed
@test sort(Οl) == sort([-1])
@test sort(Οu) == sort([-1])
r = [0.]
Ο!(r, -1, [1, 1], 2, v)
@test sort(r) == sort([3 + v[2]])
# boundary
@test sort(Οl) == sort([10, 1, 2])
@test sort(Οu) == sort([10, 1, 2])
r = [0., 0., 0.]
Ο!(r, [1, 3], [4, 100], v)
@test sort(r) == sort([3, 4, 103 + v[1]])
# variable
@test sort(ΞΈl) == sort([-10])
@test sort(ΞΈu) == sort([-10])
r = [0.]
ΞΈ!(r, v)
@test sort(r) == sort([v[3]^2])
# box constraint
@test sort(ul) == sort([0])
@test sort(uind) == sort([1])
@test sort(uu) == sort([0])
@test sort(xl) == sort([0, 1])
@test sort(xind) == sort([1, 2])
@test sort(xu) == sort([0, 1])
@test sort(vl) == sort([5, 5, 5, 5, 10, 20, 1000])
@test sort(vind) == sort([1, 2, 3, 4, 1, 2, 3])
@test sort(vu) == sort([5, 5, 5, 5, 10, 20, 1000])
# dimensions
@test dim_control_constraints(ocp) == 1
@test dim_state_constraints(ocp) == 2
@test dim_mixed_constraints(ocp) == 1
@test dim_path_constraints(ocp) == 4
@test dim_boundary_constraints(ocp) == 3
@test dim_variable_constraints(ocp) == 1
@test dim_control_range(ocp) == 1
@test dim_state_range(ocp) == 2
@test dim_variable_range(ocp) == 7
end
@testset "objective!" begin
ocp = Model()
@test_throws UnauthorizedCall objective!(ocp, :lagrange, (x, u) -> 0.5u^2)
@test_throws UnauthorizedCall objective!(ocp, :mayer, (t0, x0, tf, xf) -> 0.5x0^2)
@test_throws UnauthorizedCall objective!(
ocp,
:bolza,
(t0, x0, tf, xf) -> 0.5x0^2,
(x, u) -> 0.5u^2,
)
ocp = Model()
time!(ocp; t0 = 0, tf = 1)
state!(ocp, 1)
control!(ocp, 1)
objective!(ocp, :lagrange, (x, u) -> 0.5u^2)
@test lagrange(ocp)(1, 2) == 2
ocp = Model()
time!(ocp; t0 = 0, tf = 1)
state!(ocp, 2)
control!(ocp, 2)
objective!(ocp, :lagrange, (x, u) -> 0.5u[1]^2)
@test lagrange(ocp)([1, 2], [3, 4]) == 4.5
ocp = Model()
time!(ocp; t0 = 0, tf = 1)
state!(ocp, 1)
control!(ocp, 1)
objective!(ocp, :mayer, (x0, xf) -> 0.5x0^2)
@test mayer(ocp)(2, 3) == 2
ocp = Model()
time!(ocp; t0 = 0, tf = 1)
state!(ocp, 2)
control!(ocp, 2)
objective!(ocp, :mayer, (x0, xf) -> 0.5x0[1]^2)
@test mayer(ocp)([2, 3], [5, 6]) == 2
ocp = Model()
time!(ocp; t0 = 0, tf = 1)
state!(ocp, 1)
control!(ocp, 1)
objective!(ocp, :bolza, (x0, xf) -> 0.5x0^2, (x, u) -> 0.5u^2)
@test mayer(ocp)(2, 3) == 2
@test lagrange(ocp)(1, 2) == 2
ocp = Model()
time!(ocp; t0 = 0, tf = 1)
state!(ocp, 2)
control!(ocp, 2)
objective!(ocp, :bolza, (x0, xf) -> 0.5x0[1]^2, (x, u) -> 0.5u[1]^2)
@test mayer(ocp)([2, 3], [5, 6]) == 2
@test lagrange(ocp)([1, 2], [3, 4]) == 4.5
ocp = Model()
time!(ocp; t0 = 0, tf = 1)
state!(ocp, 2)
control!(ocp, 2)
objective!(ocp, :lagrange, (x, u) -> 0.5u[1]^2)
@test lagrange(ocp)([1, 2], [3, 4]) == 4.5
@test isnothing(mayer(ocp))
ocp = Model()
time!(ocp; t0 = 0, tf = 1)
state!(ocp, 2)
control!(ocp, 2)
objective!(ocp, :mayer, (x0, xf) -> 0.5x0[1]^2)
@test mayer(ocp)([2, 3], [5, 6]) == 2
@test isnothing(lagrange(ocp))
end
@testset "redeclarations" begin
ocp = Model(variable = true)
variable!(ocp, 1)
@test_throws UnauthorizedCall variable!(ocp, 1)
ocp = Model()
time!(ocp; t0 = 0, tf = 1)
@test_throws UnauthorizedCall time!(ocp; t0 = 0, tf = 1)
ocp = Model()
state!(ocp, 1)
@test_throws UnauthorizedCall state!(ocp, 1)
ocp = Model()
control!(ocp, 1)
@test_throws UnauthorizedCall control!(ocp, 1)
ocp = Model()
time!(ocp; t0 = 0, tf = 1)
state!(ocp, 1)
control!(ocp, 1)
dynamics!(ocp, (x, u) -> x + u)
@test_throws UnauthorizedCall dynamics!(ocp, (x, u) -> x + u)
ocp = Model()
time!(ocp; t0 = 0, tf = 1)
state!(ocp, 1)
control!(ocp, 1)
objective!(ocp, :mayer, (x0, xf) -> x0 + xf)
@test_throws UnauthorizedCall objective!(ocp, :mayer, (x0, xf) -> x0 + xf)
ocp = Model()
time!(ocp; t0 = 0, tf = 1)
state!(ocp, 1)
control!(ocp, 1)
objective!(ocp, :lagrange, (x, u) -> x + u)
@test_throws UnauthorizedCall objective!(ocp, :lagrange, (x, u) -> x + u)
ocp = Model()
time!(ocp; t0 = 0, tf = 1)
state!(ocp, 1)
control!(ocp, 1)
objective!(ocp, :bolza, (x0, xf) -> x0 + xf, (x, u) -> x + u)
@test_throws UnauthorizedCall objective!(ocp, :bolza, (x0, xf) -> x0 + xf, (x, u) -> x + u)
end
end
| CTBase | https://github.com/control-toolbox/CTBase.jl.git |
|
[
"MIT"
] | 0.14.0 | 68e9ab3053e0b38e8e574f2809dd280c9dafa338 | code | 73919 | # test onepass
function test_onepass()
# ---------------------------------------------------------------
# ---------------------------------------------------------------
@testset "@def o syntax" begin
println("@def o syntax testset...")
oo = @def begin
Ξ» β R^2, variable
tf = Ξ»β
t β [0, tf], time
end
@test initial_time(oo) == 0
@test final_time(oo) == Index(2)
a = 1
f(b) = begin # closure of a, local c, and @def in function
c = 3
ocp = @def begin
t β [a, b], time
x β R, state
u β R, control
αΊ(t) == x(t) + u(t) + b + c + d
end
return ocp
end
b = 2
o = f(b)
d = 4
x = 10
u = 20
@test __dynamics(o)(x, u) == x + u + b + 3 + d
end
@testset "log" begin
println("log testset...")
@def o begin
Ξ» β R^2, variable
tf = Ξ»β
t β [0, tf], time
end true
@test initial_time(o) == 0
@test final_time(o) == Index(2)
end
# ---------------------------------------------------------------
# ---------------------------------------------------------------
@testset "aliases" begin
println("aliases testset...")
@def o begin
x = (y, z) in RΒ², state
u = (uu1, uu2, uu3) in RΒ³, control
v = (vv1, vv2) in RΒ², variable
end
@test state_components_names(o) == ["y", "z"]
@test control_components_names(o) == ["uu1", "uu2", "uu3"]
@test variable_components_names(o) == ["vv1", "vv2"]
@def o begin
x = (y, z) β RΒ², state
u = (uu1, uu2, uu3) β RΒ³, control
v = (vv1, vv2) β RΒ², variable
end
@test state_components_names(o) == ["y", "z"]
@test control_components_names(o) == ["uu1", "uu2", "uu3"]
@test variable_components_names(o) == ["vv1", "vv2"]
@def o begin
x = [y, z] β RΒ², state
u = [uu1, uu2, uu3] β RΒ³, control
v = [vv1, vv2] β RΒ², variable
end
@test state_components_names(o) == ["y", "z"]
@test control_components_names(o) == ["uu1", "uu2", "uu3"]
@test variable_components_names(o) == ["vv1", "vv2"]
@test_throws ParsingError @def o begin # a name must be provided
(y, z) β RΒ², state
end
@test_throws ParsingError @def o begin # a name must be provided
(uu1, uu2, uu3) β RΒ³, control
end
@test_throws ParsingError @def o begin # a name must be provided
(vv1, vv2) β RΒ², variable
end
@test_throws ParsingError @def o begin # a name must be provided
[y, z] β RΒ², state
end
@test_throws ParsingError @def o begin # a name must be provided
[uu1, uu2, uu3] β RΒ³, control
end
@test_throws ParsingError @def o begin # a name must be provided
[vv1, vv2] β RΒ², variable
end
@def o begin
t β [0, 1], time
x = (r, v) β RΒ², state
u β R, control
w = r + 2v
r(0) == 0, (1)
v(0) == 1, (β‘)
xΜ(t) == [v(t), w(t)^2]
β«(u(t)^2 + xβ(t)) β min
end
x = [1, 2]
x0 = 2 * x
xf = 3 * x
u = 3
@test __constraint(o, :eq1)(x0, xf) == x0[1]
@test __constraint(o, Symbol("β‘"))(x0, xf) == x0[2]
@test __dynamics(o)(x, u) == [x[2], (x[1] + 2x[2])^2]
@test __lagrange(o)(x, u) == u^2 + x[1]
@def o begin
t β [0, 1], time
x = [r, v] β RΒ², state
u β R, control
w = r + 2v
r(0) == 0, (1)
v(0) == 1, (β‘)
xΜ(t) == [v(t), w(t)^2]
β«(u(t)^2 + xβ(t)) β min
end
x = [1, 2]
x0 = 2 * x
xf = 3 * x
u = 3
@test __constraint(o, :eq1)(x0, xf) == x0[1]
@test __constraint(o, Symbol("β‘"))(x0, xf) == x0[2]
@test __dynamics(o)(x, u) == [x[2], (x[1] + 2x[2])^2]
@test __lagrange(o)(x, u) == u^2 + x[1]
@def o begin
t β [0, 1], time
x = [r, v] β RΒ², state
c = [u, b] β RΒ², control
w = r + 2v
b(t) == 0
r(0) == 0, (1)
v(0) == 1, (β‘)
xΜ(t) == [v(t), w(t)^2]
β«(u(t)^2 + b(t)^2 + xβ(t)) β min
end
x = [1, 2]
x0 = 2 * x
xf = 3 * x
u = 3
c = [u, 0]
@test __constraint(o, :eq1)(x0, xf) == x0[1]
@test __constraint(o, Symbol("β‘"))(x0, xf) == x0[2]
@test __dynamics(o)(x, c) == [x[2], (x[1] + 2x[2])^2]
@test __lagrange(o)(x, c) == u^2 + x[1]
@def o begin
t β [0, 1], time
x β R^3, state
u = (uβ, v) β R^2, control
xΜ(t) == [x[1](t) + 2v(t), 2x[3](t), x[1](t) + v(t)]
end
@test state_dimension(o) == 3
@test control_dimension(o) == 2
x = [1, 2, 3]
u = [-1, 2]
@test __dynamics(o)(x, u) == [x[1] + 2u[2], 2x[3], x[1] + u[2]]
t0 = 0.0
tf = 0.1
@def ocp begin
t β [t0, tf], time
x β R^3, state
u β R^3, control
r = x[1]
v = xβ
a = xβ
end
@test ocp isa OptimalControlModel
@test time_name(ocp) == "t"
@test initial_time(ocp) == t0
@test final_time(ocp) == tf
@test control_name(ocp) == "u"
@test control_dimension(ocp) == 3
@test state_name(ocp) == "x"
@test state_dimension(ocp) == 3
end
# ---------------------------------------------------------------
# ---------------------------------------------------------------
@testset "variable" begin
println("variable testset...")
@def o begin
Ξ» β R^2, variable
tf = Ξ»β
t β [0, tf], time
end
@test initial_time(o) == 0
@test final_time(o) == Index(2)
@def o begin
Ξ» = (Ξ»β, tf) β R^2, variable
t β [0, tf], time
end
@test initial_time(o) == 0
@test final_time(o) == Index(2)
@def o begin
t0 β R, variable
t β [t0, 1], time
end
@test initial_time(o) == Index(1)
@test final_time(o) == 1
@def o begin
tf β R, variable
t β [0, tf], time
end
@test initial_time(o) == 0
@test final_time(o) == Index(1)
@def o begin
v β RΒ², variable
s β [v[1], v[2]], time
end
@test initial_time(o) == Index(1)
@test final_time(o) == Index(2)
@def o begin
v β RΒ², variable
s0 = vβ
sf = vβ
s β [s0, sf], time
end
@test initial_time(o) == Index(1)
@test final_time(o) == Index(2)
@test_throws IncorrectArgument @def o begin
t0 β RΒ², variable
t β [t0, 1], time
end
@test_throws IncorrectArgument @def o begin
tf β RΒ², variable
t β [0, tf], time
end
@test_throws ParsingError @def o begin
v, variable
t β [0, tf[v]], time
end
@test_throws ParsingError @def o begin
v, variable
t β [t0[v], 1], time
end
@test_throws ParsingError @def o begin
v, variable
t β [t0[v], tf[v + 1]], time
end
t0 = 0.0
tf = 0.1
@def ocp begin
t β [t0, tf], time
a β R, variable
end
@test ocp isa OptimalControlModel
@test variable_dimension(ocp) == 1
@test variable_name(ocp) == "a"
t0 = 0.0
tf = 0.1
@def ocp begin
t β [t0, tf], time
a β RΒ³, variable
end
@test ocp isa OptimalControlModel
@test variable_dimension(ocp) == 3
@test variable_name(ocp) == "a"
end
# ---------------------------------------------------------------
# ---------------------------------------------------------------
@testset "time" begin
println("time testset...")
t0 = 0
@def o t β [t0, t0 + 4], time
@test initial_time(o) == t0
@test final_time(o) == t0 + 4
@test_throws ParsingError @def o t β 1
@def ocp t β [0.0, 1.0], time
@test ocp isa OptimalControlModel
@test time_name(ocp) == "t"
@test initial_time(ocp) == 0.0
@test final_time(ocp) == 1.0
t0 = 3.0
@def ocp begin
tf β R, variable
t β [t0, tf], time
end
@test ocp isa OptimalControlModel
@test time_name(ocp) == "t"
@test initial_time(ocp) == t0
@test final_time(ocp) == Index(1)
tf = 3.14
@def ocp begin
t0 β R, variable
t β [t0, tf], time
end
@test ocp isa OptimalControlModel
@test time_name(ocp) == "t"
@test initial_time(ocp) == Index(1)
@test final_time(ocp) == tf
end
# ---------------------------------------------------------------
# ---------------------------------------------------------------
@testset "state / control" begin
println("state / control testset...")
@def o begin
x β R, state
u β R, control
end
@test state_dimension(o) == 1
@test control_dimension(o) == 1
# state
t0 = 1.0
tf = 1.1
@def ocp begin
t β [t0, tf], time
u β R, state
end
@test ocp isa OptimalControlModel
@test time_name(ocp) == "t"
@test initial_time(ocp) == t0
@test final_time(ocp) == tf
@test state_dimension(ocp) == 1
@test state_name(ocp) == "u"
t0 = 2.0
tf = 2.1
@def ocp begin
t β [t0, tf], time
v β R^4, state
end
@test ocp isa OptimalControlModel
@test time_name(ocp) == "t"
@test initial_time(ocp) == t0
@test final_time(ocp) == tf
@test state_dimension(ocp) == 4
@test state_name(ocp) == "v"
t0 = 3.0
tf = 3.1
@def ocp begin
t β [t0, tf], time
w β R^3, state
end
@test ocp isa OptimalControlModel
@test time_name(ocp) == "t"
@test initial_time(ocp) == t0
@test final_time(ocp) == tf
@test state_dimension(ocp) == 3
@test state_name(ocp) == "w"
t0 = 4.0
tf = 4.1
@def ocp begin
t β [t0, tf], time
a β R, state
end
@test ocp isa OptimalControlModel
@test time_name(ocp) == "t"
@test initial_time(ocp) == t0
@test final_time(ocp) == tf
@test state_dimension(ocp) == 1
@test state_name(ocp) == "a"
t0 = 5.0
tf = 5.1
@def ocp begin
t β [t0, tf], time
b β RΒΉ, state
end
@test ocp isa OptimalControlModel
@test time_name(ocp) == "t"
@test initial_time(ocp) == t0
@test final_time(ocp) == tf
@test state_dimension(ocp) == 1
@test state_name(ocp) == "b"
t0 = 6.0
tf = 6.1
@def ocp begin
t β [t0, tf], time
u β RβΉ, state
end
@test ocp isa OptimalControlModel
@test time_name(ocp) == "t"
@test initial_time(ocp) == t0
@test final_time(ocp) == tf
@test state_dimension(ocp) == 9
@test state_name(ocp) == "u"
n = 3
t0 = 7.0
tf = 7.1
@def ocp begin
t β [t0, tf], time
u β R^n, state
end
@test ocp isa OptimalControlModel
@test time_name(ocp) == "t"
@test initial_time(ocp) == t0
@test final_time(ocp) == tf
@test state_dimension(ocp) == n
@test state_name(ocp) == "u"
# control
t0 = 1.0
tf = 1.1
@def ocp begin
t β [t0, tf], time
u β R, control
end
@test ocp isa OptimalControlModel
@test time_name(ocp) == "t"
@test initial_time(ocp) == t0
@test final_time(ocp) == tf
@test control_dimension(ocp) == 1
@test control_name(ocp) == "u"
t0 = 2.0
tf = 2.1
@def ocp begin
t β [t0, tf], time
v β R^4, control
end
@test ocp isa OptimalControlModel
@test time_name(ocp) == "t"
@test initial_time(ocp) == t0
@test final_time(ocp) == tf
@test control_dimension(ocp) == 4
@test control_name(ocp) == "v"
t0 = 3.0
tf = 3.1
@def ocp begin
t β [t0, tf], time
w β R^3, control
end
@test ocp isa OptimalControlModel
@test time_name(ocp) == "t"
@test initial_time(ocp) == t0
@test final_time(ocp) == tf
@test control_dimension(ocp) == 3
@test control_name(ocp) == "w"
t0 = 4.0
tf = 4.1
@def ocp begin
t β [t0, tf], time
a β R, control
end
@test ocp isa OptimalControlModel
@test time_name(ocp) == "t"
@test initial_time(ocp) == t0
@test final_time(ocp) == tf
@test control_dimension(ocp) == 1
@test control_name(ocp) == "a"
t0 = 5.0
tf = 5.1
@def ocp begin
t β [t0, tf], time
b β RΒΉ, control
end
@test ocp isa OptimalControlModel
@test time_name(ocp) == "t"
@test initial_time(ocp) == t0
@test final_time(ocp) == tf
@test control_dimension(ocp) == 1
@test control_name(ocp) == "b"
t0 = 6.0
tf = 6.1
@def ocp begin
t β [t0, tf], time
u β RβΉ, control
end
@test ocp isa OptimalControlModel
@test time_name(ocp) == "t"
@test initial_time(ocp) == t0
@test final_time(ocp) == tf
@test control_dimension(ocp) == 9
@test control_name(ocp) == "u"
n = 3
t0 = 7.0
tf = 7.1
@def ocp begin
t β [t0, tf], time
u β R^n, control
end
@test ocp isa OptimalControlModel
@test time_name(ocp) == "t"
@test initial_time(ocp) == t0
@test final_time(ocp) == tf
@test control_dimension(ocp) == n
@test control_name(ocp) == "u"
end
# ---------------------------------------------------------------
# ---------------------------------------------------------------
@testset "dynamics" begin
println("dynamics testset...")
@def o begin
t β [0, 1], time
x β R^3, state
u β R^2, control
xΜ(t) == [x[1](t) + 2u[2](t), 2x[3](t), x[1](t) + u[2](t)]
end
@test state_dimension(o) == 3
@test control_dimension(o) == 2
x = [1, 2, 3]
u = [-1, 2]
@test __dynamics(o)(x, u) == [x[1] + 2u[2], 2x[3], x[1] + u[2]]
@def o begin
z β RΒ², variable
s β [0, zβ], time
y β Rβ΄, state
w β R, control
r = yβ
v = yβ
aa = yβ
yΜ(s) == [aa(s), rΒ²(s) + w(s) + zβ, 0, 0]
end
z = [5, 6]
y = [1, 2, 3, 4]
w = 9
@test __dynamics(o)(y, w, z) == [y[1], y[3]^2 + w + z[1], 0, 0]
@def o begin
z β RΒ², variable
__s β [0, zβ], time
y β Rβ΄, state
w β R, control
r = yβ
v = yβ
aa = yβ(__s)
yΜ(__s) == [aa(__s), rΒ²(__s) + w(__s) + zβ, 0, 0]
end
z = [5, 6]
y = [1, 2, 3, 4]
w = 9
@test_throws MethodError __dynamics(o)(y, w, z)
@def o begin
z β RΒ², variable
s β [0, zβ], time
y β Rβ΄, state
w β R, control
r = yβ
v = yβ
aa = yβ(s) + vΒ³ + zβ
yΜ(s) == [aa(s) + w(s)^2, rΒ²(s), 0, 0]
end
z = [5, 6]
y = [1, 2, 3, 4]
y0 = y
yf = 3y0
ww = 19
@test __dynamics(o)(y, ww, z) == [y[1] + ww^2 + y[4]^3 + z[2], y[3]^2, 0, 0]
@def o begin
z β RΒ², variable
__t β [0, zβ], time
y β Rβ΄, state
w β R, control
r = yβ
v = yβ
aa = yβ(0) + vΒ³ + zβ
yΜ(__t) == [aa(__t) + (w^2)(__t), rΒ²(__t), 0, 0]
aa(0) + yβ(zβ) β min
end
z = [5, 6]
y = [1, 2, 3, 4]
y0 = y
yf = 3y0
w = 11
@test_throws MethodError __dynamics(o)(y, w, z)
@test __mayer(o)(y0, yf, z) == y0[1] + y0[4]^3 + z[2] + yf[2]
end
# ---------------------------------------------------------------
# ---------------------------------------------------------------
@testset "constraints" begin
println("constraints testset...")
@def o begin
tf β R, variable
t β [0, tf], time
x β RΒ², state
u β R, control
r = xβ
v = xβ
w = rΒΉ + 2vΒ³
r(0) + w(tf) - tfΒ² == 0, (1)
end
tf = 2
x0 = [1, 2]
xf = [3, 4]
@test __constraint(o, :eq1)(x0, xf, tf) == x0[1] + (xf[1] + 2xf[2]^3) - tf^2
n = 11
m = 6
@def o begin
t β [0, 1], time
x β R^n, state
u β R^m, control
r = xβ
v = xβ
0 β€ r(t) β€ 1, (1)
zeros(n) β€ x(t) β€ ones(n), (2)
[0, 0] β€ x[1:2](t) β€ [1, 1], (3)
[0, 0] β€ x[1:2:4](t) β€ [1, 1], (4)
0 β€ v(t)^2 β€ 1, (5)
zeros(m) β€ u(t) β€ ones(m), (6)
[0, 0] β€ u[1:2](t) β€ [1, 1], (7)
[0, 0] β€ u[1:2:4](t) β€ [1, 1], (8)
0 β€ uβ(t)^2 β€ 1, (9)
uβ(t) * x[1:2](t) == [1, 1], (10)
[0, 0] β€ uβ(t) * x[1:2](t) .^ 3 β€ [1, 1], (11)
end
x = Vector{Float64}(1:n)
u = 2 * Vector{Float64}(1:m)
@test __constraint(o, :eq1)(x) == x[1]
@test __constraint(o, :eq2)(x) == x
@test __constraint(o, :eq3)(x) == x[1:2]
@test __constraint(o, :eq4)(x) == x[1:2:4]
@test __constraint(o, :eq5)(x) == x[2]^2
@test __constraint(o, :eq6)(u) == u
@test __constraint(o, :eq7)(u) == u[1:2]
@test __constraint(o, :eq8)(u) == u[1:2:4]
@test __constraint(o, :eq9)(u) == u[2]^2
@test __constraint(o, :eq10)(x, u) == u[1] * x[1:2]
@test __constraint(o, :eq11)(x, u) == u[1] * x[1:2] .^ 3
n = 11
m = 6
@def o begin
z β R^2, variable
t β [0, 1], time
x β R^n, state
u β R^m, control
r = xβ
v = xβ
0 β€ r(t) β€ 1, (1)
zeros(n) β€ x(t) β€ ones(n), (2)
[0, 0] β€ x[1:2](t) - [zβ, 1] β€ [1, 1], (3)
[0, 0] β€ x[1:2:4](t) β€ [1, 1], (4)
0 β€ v(t)^2 β€ 1, (5)
zeros(m) β€ u(t) β€ ones(m), (6)
[0, 0] β€ u[1:2](t) β€ [1, 1], (7)
[0, 0] β€ u[1:2:4](t) β€ [1, 1], (8)
0 β€ uβ(t)^2 β€ 1, (9)
uβ(t) * x[1:2](t) + z + f() == [1, 1], (10)
[0, 0] β€ uβ(t) * x[1:2](t) .^ 3 + z β€ [1, 1], (11)
end
f() = [1, 1]
z = 3 * Vector{Float64}(1:2)
x = Vector{Float64}(1:n)
u = 2 * Vector{Float64}(1:m)
@test __constraint(o, :eq1)(x, z) == x[1]
@test __constraint(o, :eq2)(x, z) == x
@test __constraint(o, :eq3)(x, z) == x[1:2] - [z[1], 1]
@test __constraint(o, :eq4)(x, z) == x[1:2:4]
@test __constraint(o, :eq5)(x, z) == x[2]^2
@test __constraint(o, :eq6)(u, z) == u
@test __constraint(o, :eq7)(u, z) == u[1:2]
@test __constraint(o, :eq8)(u, z) == u[1:2:4]
@test __constraint(o, :eq9)(u, z) == u[2]^2
@test __constraint(o, :eq10)(x, u, z) == u[1] * x[1:2] + z + f()
@test __constraint(o, :eq11)(x, u, z) == u[1] * x[1:2] .^ 3 + z
@def o begin
t β [0, 1], time
x β RΒ², state
u β R, control
begin
r = xβ
v = xβ
w = r + 2v
r(0) == 0, (1)
end
v(0) == 1, (β‘)
xΜ(t) == [v(t), w(t)^2]
β«(u(t)^2 + xβ(t)) β min
end
x = [1, 2]
x0 = 2 * x
xf = 3 * x
u = 3
@test __constraint(o, :eq1)(x0, xf) == x0[1]
@test __constraint(o, Symbol("β‘"))(x0, xf) == x0[2]
@test __dynamics(o)(x, u) == [x[2], (x[1] + 2x[2])^2]
@test __lagrange(o)(x, u) == u^2 + x[1]
@def o begin
t β [0, 1], time
x β RΒ², state
u β R, control
r = xβ
v = xβ
w = r + 2v
r(0) == 0, (1)
v(0) == 1, (β‘)
xΜ(t) == [v(t), w(t)^2]
β«(u(t)^2 + xβ(t)) β min
end
x = [1, 2]
x0 = 2 * x
xf = 3 * x
u = 3
@test __constraint(o, :eq1)(x0, xf) == x0[1]
@test __constraint(o, Symbol("β‘"))(x0, xf) == x0[2]
@test __dynamics(o)(x, u) == [x[2], (x[1] + 2x[2])^2]
@test __lagrange(o)(x, u) == u^2 + x[1]
@def o begin
z β RΒ², variable
t β [0, 1], time
x β RΒ², state
u β R, control
r = xβ
v = xβ
w = r + 2v
r(0) == 0, (1)
v(0) == 1, (β‘)
xΜ(t) == [v(t), w(t)^2 + zβ]
β«(u(t)^2 + zβ * xβ(t)) β min
end
x = [1, 2]
x0 = 2 * [1, 2]
xf = 3 * [1, 2]
u = 3
z = [4, 5]
@test __constraint(o, :eq1)(x0, xf, z) == x0[1]
@test __constraint(o, Symbol("β‘"))(x0, xf, z) == x0[2]
@test __dynamics(o)(x, u, z) == [x[2], (x[1] + 2x[2])^2 + z[1]]
@test __lagrange(o)(x, u, z) == u^2 + z[2] * x[1]
@def o begin
t β [0, 1], time
x β RΒ², state
u β R, control
r = xβ
v = xβ
r(0)^2 + v(1) == 0, (1)
v(0) == 1, (β‘)
xΜ(t) == [v(t), r(t)^2]
β«(u(t)^2 + xβ(t)) β min
end
x0 = [2, 3]
xf = [4, 5]
x = [1, 2]
u = 3
@test __constraint(o, :eq1)(x0, xf) == x0[1]^2 + xf[2]
@test __constraint(o, Symbol("β‘"))(x0, xf) == x0[2]
@test __dynamics(o)(x, u) == [x[2], x[1]^2]
@test __lagrange(o)(x, u) == u^2 + x[1]
@def o begin
z β R, variable
t β [0, 1], time
x β RΒ², state
u β R, control
r = xβ
v = xβ
r(0) - z == 0, (1)
v(0) == 1, (β‘)
xΜ(t) == [v(t), r(t)^2 + z]
β«(u(t)^2 + z * xβ(t)) β min
end
x0 = [2, 3]
xf = [4, 5]
x = [1, 2]
u = 3
z = 4
@test __constraint(o, :eq1)(x0, xf, z) == x0[1] - z
@test __constraint(o, Symbol("β‘"))(x0, xf, z) == x0[2]
@test __dynamics(o)(x, u, z) == [x[2], x[1]^2 + z]
@test __lagrange(o)(x, u, z) == u^2 + z * x[1]
@def o begin
z β R, variable
t β [0, 1], time
x β RΒ², state
u β R, control
r = xβ
v = xβ
0 β€ r(0) - z β€ 1, (1)
0 β€ v(1)^2 β€ 1, (2)
[0, 0] β€ x(0) β€ [1, 1], (β‘)
xΜ(t) == [v(t), r(t)^2 + z]
β«(u(t)^2 + z * xβ(t)) β min
end
x0 = [2, 3]
xf = [4, 5]
x = [1, 2]
u = 3
z = 4
@test __constraint(o, :eq1)(x0, xf, z) == x0[1] - z
@test __constraint(o, :eq2)(x0, xf, z) == xf[2]^2
@test __constraint(o, Symbol("β‘"))(x0, xf, z) == x0
@test __dynamics(o)(x, u, z) == [x[2], x[1]^2 + z]
@test __lagrange(o)(x, u, z) == u^2 + z * x[1]
@def o begin
z β R, variable
t β [0, 1], time
x β RΒ², state
u β R, control
r = xβ
v = xβ
1 β₯ r(0) - z β₯ 0, (1)
1 β₯ v(1)^2 β₯ 0, (2)
[1, 1] β₯ x(0) β₯ [0, 0], (3)
xΜ(t) == [v(t), r(t)^2 + z]
β«(u(t)^2 + z * xβ(t)) β min
end
x0 = [2, 3]
xf = [4, 5]
x = [1, 2]
u = 3
z = 4
@test __constraint(o, :eq1)(x0, xf, z) == x0[1] - z
@test __constraint(o, :eq2)(x0, xf, z) == xf[2]^2
@test __constraint(o, :eq3)(x0, xf, z) == x0
@test __dynamics(o)(x, u, z) == [x[2], x[1]^2 + z]
@test __lagrange(o)(x, u, z) == u^2 + z * x[1]
@test constraints(o)[:eq1][3] == 0
@test constraints(o)[:eq1][4] == 1
@test constraints(o)[:eq2][3] == 0
@test constraints(o)[:eq2][4] == 1
@test constraints(o)[:eq3][3] == [0, 0]
@test constraints(o)[:eq3][4] == [1, 1]
@def o begin
v β RΒ², variable
t β [0, 1], time
x β R, state
u β R, control
x(0) - vβ == 0, (1)
x(1) - vβ == 0, (2)
0 β€ x(0) - vβ β€ 1, (3)
0 β€ x(1) - vβ β€ 1, (4)
x(0) + x(1) - vβ == 0, (5)
0 β€ x(0) + x(1) - vβ β€ 1, (6)
x(t) - vβ == 0, (7)
u(t) - vβ == 0, (8)
z = vβ + 2vβ
0 β€ x(t) - z β€ 1, (9)
0 β€ u(t) - z β€ 1, (10)
0 β€ x(t) + u(t) - z β€ 1, (11)
xΜ(t) == z * x(t) + 2u(t)
vβ == 1, (12)
0 β€ vβ β€ 1, (13)
z == 1, (14)
0 β€ z β€ 1, (15)
z * x(1) β min
end
x = 1
x0 = 2
xf = 3
u = 4
v = [5, 6]
z = v[1] + 2v[2]
@test __constraint(o, :eq1)(x0, xf, v) == x0 - v[1]
@test __constraint(o, :eq2)(x0, xf, v) == xf - v[1]
@test __constraint(o, :eq3)(x0, xf, v) == x0 - v[1]
@test __constraint(o, :eq4)(x0, xf, v) == xf - v[1]
@test __constraint(o, :eq5)(x0, xf, v) == x0 + xf - v[2]
@test __constraint(o, :eq6)(x0, xf, v) == x0 + xf - v[2]
@test __constraint(o, :eq7)(x, v) == x - v[1]
@test __constraint(o, :eq9)(x, v) == x - z
@test __constraint(o, :eq10)(u, v) == u - z
@test __constraint(o, :eq11)(x, u, v) == x + u - z
@test __constraint(o, :eq12)(v) == v[1]
@test __constraint(o, :eq13)(v) == v[1]
@test __constraint(o, :eq14)(v) == v[1] + 2v[2]
@test __constraint(o, :eq15)(v) == v[1] + 2v[2]
@def o begin
v β R, variable
t β [0, 1], time
x β R, state
u β RΒ², control
x(0) β€ 0
x(0) β€ 0, (1)
x(1) β€ 0
x(1) β€ 0, (2)
xΒ³(0) β€ 0
xΒ³(0) β€ 0, (3)
xΒ³(1) β€ 0
xΒ³(1) β€ 0, (4)
x(t) β€ 0
x(t) β€ 0, (5)
x(t) β€ 0
x(t) β€ 0, (6)
uβ(t) β€ 0
uβ(t) β€ 0, (7)
uβ(t) β€ 0
uβ(t) β€ 0, (8)
xΒ³(t) β€ 0
xΒ³(t) β€ 0, (9)
xΒ³(t) β€ 0
xΒ³(t) β€ 0, (10)
(uβ^3)(t) β€ 0
(uβ^3)(t) β€ 0, (11)
(uβ^3)(t) β€ 0
(uβ^3)(t) β€ 0, (12)
x(t) + (uβ^3)(t) β€ 0
x(t) + (uβ^3)(t) β€ 0, (13)
x(t) + (uβ^3)(t) β€ 0
x(t) + (uβ^3)(t) β€ 0, (14)
v β€ 0
v β€ 0, (15)
end
@test constraints(o)[:eq1][3] == -Inf
@test constraints(o)[:eq2][3] == -Inf
@test constraints(o)[:eq3][3] == -Inf
@test constraints(o)[:eq4][3] == -Inf
@test constraints(o)[:eq5][3] == -Inf
@test constraints(o)[:eq6][3] == -Inf
@test constraints(o)[:eq7][3] == -Inf
@test constraints(o)[:eq8][3] == -Inf
@test constraints(o)[:eq9][3] == -Inf
@test constraints(o)[:eq10][3] == -Inf
@test constraints(o)[:eq11][3] == -Inf
@test constraints(o)[:eq12][3] == -Inf
@test constraints(o)[:eq13][3] == -Inf
@test constraints(o)[:eq14][3] == -Inf
@test constraints(o)[:eq15][3] == -Inf
@test constraints(o)[:eq1][4] == 0
@test constraints(o)[:eq2][4] == 0
@test constraints(o)[:eq3][4] == 0
@test constraints(o)[:eq4][4] == 0
@test constraints(o)[:eq5][4] == 0
@test constraints(o)[:eq6][4] == 0
@test constraints(o)[:eq7][4] == 0
@test constraints(o)[:eq8][4] == 0
@test constraints(o)[:eq9][4] == 0
@test constraints(o)[:eq10][4] == 0
@test constraints(o)[:eq11][4] == 0
@test constraints(o)[:eq12][4] == 0
@test constraints(o)[:eq13][4] == 0
@test constraints(o)[:eq14][4] == 0
@test constraints(o)[:eq15][4] == 0
@def o begin
v β R, variable
t β [0, 1], time
x β R, state
u β RΒ², control
x(0) β₯ 0
x(0) β₯ 0, (1)
x(1) β₯ 0
x(1) β₯ 0, (2)
xΒ³(0) β₯ 0
xΒ³(0) β₯ 0, (3)
xΒ³(1) β₯ 0
xΒ³(1) β₯ 0, (4)
x(t) β₯ 0
x(t) β₯ 0, (5)
x(t) β₯ 0
x(t) β₯ 0, (6)
uβ(t) β₯ 0
uβ(t) β₯ 0, (7)
uβ(t) β₯ 0
uβ(t) β₯ 0, (8)
xΒ³(t) β₯ 0
xΒ³(t) β₯ 0, (9)
xΒ³(t) β₯ 0
xΒ³(t) β₯ 0, (10)
(uβ^3)(t) β₯ 0
(uβ^3)(t) β₯ 0, (11)
(uβ^3)(t) β₯ 0
(uβ^3)(t) β₯ 0, (12)
x(t) + (uβ^3)(t) β₯ 0
x(t) + (uβ^3)(t) β₯ 0, (13)
x(t) + (uβ^3)(t) β₯ 0
x(t) + (uβ^3)(t) β₯ 0, (14)
v β₯ 0
v β₯ 0, (15)
end
@test constraints(o)[:eq1][3] == 0
@test constraints(o)[:eq2][3] == 0
@test constraints(o)[:eq3][3] == 0
@test constraints(o)[:eq4][3] == 0
@test constraints(o)[:eq5][3] == 0
@test constraints(o)[:eq6][3] == 0
@test constraints(o)[:eq7][3] == 0
@test constraints(o)[:eq8][3] == 0
@test constraints(o)[:eq9][3] == 0
@test constraints(o)[:eq10][3] == 0
@test constraints(o)[:eq11][3] == 0
@test constraints(o)[:eq12][3] == 0
@test constraints(o)[:eq13][3] == 0
@test constraints(o)[:eq14][3] == 0
@test constraints(o)[:eq15][3] == 0
@test constraints(o)[:eq1][4] == Inf
@test constraints(o)[:eq2][4] == Inf
@test constraints(o)[:eq3][4] == Inf
@test constraints(o)[:eq4][4] == Inf
@test constraints(o)[:eq5][4] == Inf
@test constraints(o)[:eq6][4] == Inf
@test constraints(o)[:eq7][4] == Inf
@test constraints(o)[:eq8][4] == Inf
@test constraints(o)[:eq9][4] == Inf
@test constraints(o)[:eq10][4] == Inf
@test constraints(o)[:eq11][4] == Inf
@test constraints(o)[:eq12][4] == Inf
@test constraints(o)[:eq13][4] == Inf
@test constraints(o)[:eq14][4] == Inf
@test constraints(o)[:eq15][4] == Inf
@def o begin
v β R^2, variable
t β [0, 1], time
x β RΒ², state
u β RΒ², control
x(0) β€ [0, 0]
x(0) β€ [0, 0], (1)
x(1) β€ [0, 0]
x(1) β€ [0, 0], (2)
[xβ(0)^3, 0] β€ [0, 0]
[xβ(0)^3, 0] β€ [0, 0], (3)
x(t) β€ [0, 0]
x(t) β€ [0, 0], (4)
u(t) β€ [0, 0]
u(t) β€ [0, 0], (5)
[xβ(t)^3, 0] β€ [0, 0]
[xβ(t)^3, 0] β€ [0, 0], (6)
[uβ(t)^3, 0] β€ [0, 0]
[uβ(t)^3, 0] β€ [0, 0], (7)
[uβ(t)^3, xβ(t)] β€ [0, 0]
[uβ(t)^3, xβ(t)] β€ [0, 0], (8)
v β€ [0, 0]
v β€ [0, 0], (9)
[vβ^2, 0] β€ [0, 0]
[vβ^2, 0] β€ [0, 0], (10)
end
@test constraints(o)[:eq1][3] == -[Inf, Inf]
@test constraints(o)[:eq2][3] == -[Inf, Inf]
@test constraints(o)[:eq3][3] == -[Inf, Inf]
@test constraints(o)[:eq4][3] == -[Inf, Inf]
@test constraints(o)[:eq5][3] == -[Inf, Inf]
@test constraints(o)[:eq6][3] == -[Inf, Inf]
@test constraints(o)[:eq7][3] == -[Inf, Inf]
@test constraints(o)[:eq8][3] == -[Inf, Inf]
@test constraints(o)[:eq9][3] == -[Inf, Inf]
@test constraints(o)[:eq10][3] == -[Inf, Inf]
@test constraints(o)[:eq1][4] == [0, 0]
@test constraints(o)[:eq2][4] == [0, 0]
@test constraints(o)[:eq3][4] == [0, 0]
@test constraints(o)[:eq4][4] == [0, 0]
@test constraints(o)[:eq5][4] == [0, 0]
@test constraints(o)[:eq6][4] == [0, 0]
@test constraints(o)[:eq7][4] == [0, 0]
@test constraints(o)[:eq8][4] == [0, 0]
@test constraints(o)[:eq9][4] == [0, 0]
@test constraints(o)[:eq10][4] == [0, 0]
@def o begin
v β R^2, variable
t β [0, 1], time
x β RΒ², state
u β RΒ², control
x(0) β₯ [0, 0]
x(0) β₯ [0, 0], (1)
x(1) β₯ [0, 0]
x(1) β₯ [0, 0], (2)
[xβ(0)^3, 0] β₯ [0, 0]
[xβ(0)^3, 0] β₯ [0, 0], (3)
x(t) β₯ [0, 0]
x(t) β₯ [0, 0], (4)
u(t) β₯ [0, 0]
u(t) β₯ [0, 0], (5)
[xβ(t)^3, 0] β₯ [0, 0]
[xβ(t)^3, 0] β₯ [0, 0], (6)
[uβ(t)^3, 0] β₯ [0, 0]
[uβ(t)^3, 0] β₯ [0, 0], (7)
[uβ(t)^3, xβ(t)] β₯ [0, 0]
[uβ(t)^3, xβ(t)] β₯ [0, 0], (8)
v β₯ [0, 0]
v β₯ [0, 0], (9)
[vβ^2, 0] β₯ [0, 0]
[vβ^2, 0] β₯ [0, 0], (10)
end
@test constraints(o)[:eq1][4] == [Inf, Inf]
@test constraints(o)[:eq2][4] == [Inf, Inf]
@test constraints(o)[:eq3][4] == [Inf, Inf]
@test constraints(o)[:eq4][4] == [Inf, Inf]
@test constraints(o)[:eq5][4] == [Inf, Inf]
@test constraints(o)[:eq6][4] == [Inf, Inf]
@test constraints(o)[:eq7][4] == [Inf, Inf]
@test constraints(o)[:eq8][4] == [Inf, Inf]
@test constraints(o)[:eq9][4] == [Inf, Inf]
@test constraints(o)[:eq10][4] == [Inf, Inf]
@test constraints(o)[:eq1][3] == [0, 0]
@test constraints(o)[:eq2][3] == [0, 0]
@test constraints(o)[:eq3][3] == [0, 0]
@test constraints(o)[:eq4][3] == [0, 0]
@test constraints(o)[:eq5][3] == [0, 0]
@test constraints(o)[:eq6][3] == [0, 0]
@test constraints(o)[:eq7][3] == [0, 0]
@test constraints(o)[:eq8][3] == [0, 0]
@test constraints(o)[:eq9][3] == [0, 0]
@test constraints(o)[:eq10][3] == [0, 0]
t0 = 9.0
tf = 9.1
r0 = 1.0
r1 = 2.0
v0 = 2.0
vmax = sqrt(2)
m0 = 3.0
mf = 1.1
@def ocp begin
t β [t0, tf], time
x β R^3, state
u β R^2, control
m = xβ
x(t0) == [r0, v0, m0], (1)
0 β€ u[1](t) β€ 1, (deux)
r0 β€ x(t)[1] β€ r1, (trois)
0 β€ xβ(t) β€ vmax, (quatre)
mf β€ m(t) β€ m0, (5)
end
@test ocp isa OptimalControlModel
@test time_name(ocp) == "t"
@test initial_time(ocp) == t0
@test final_time(ocp) == tf
@test control_name(ocp) == "u"
@test control_dimension(ocp) == 2
@test state_name(ocp) == "x"
@test state_dimension(ocp) == 3
@def ocp begin
t β [t0, tf], time
x β R^3, state
u β R^2, control
m = xβ
x(t0) == [r0, v0, m0]
0 β€ u(t)[2] β€ 1
r0 β€ x(t)[1] β€ r1
0 β€ xβ(t) β€ vmax
mf β€ m(t) β€ m0
end
@test ocp isa OptimalControlModel
@test time_name(ocp) == "t"
@test initial_time(ocp) == t0
@test final_time(ocp) == tf
@test control_name(ocp) == "u"
@test control_dimension(ocp) == 2
@test state_name(ocp) == "x"
@test state_dimension(ocp) == 3
# dyslexic definition: t -> u -> x -> t
u0 = 9.0
uf = 9.1
z0 = 1.0
z1 = 2.0
k0 = 2.0
kmax = sqrt(2)
b0 = 3.0
bf = 1.1
@def ocp begin
u β [u0, uf], time
t β R^3, state
x β R^2, control
b = tβ
t(u0) == [z0, k0, b0]
0 β€ x[2](u) β€ 1
z0 β€ t(u)[1] β€ z1
0 β€ tβ(u) β€ kmax
bf β€ b(u) β€ b0
end
@test ocp isa OptimalControlModel
@test time_name(ocp) == "u"
@test initial_time(ocp) == u0
@test final_time(ocp) == uf
@test control_name(ocp) == "x"
@test control_dimension(ocp) == 2
@test state_name(ocp) == "t"
@test state_dimension(ocp) == 3
#
# test all constraints on @def macro
#
# ref: https://github.com/control-toolbox/CTBase.jl/issues/9
#
#function test_ctparser_constraints()
# all used variables must be definedbefore each test
x0 = [1, 2, 11.11]
x02 = 11.111
x0_b = 11.1111
x0_u = 11.11111
y0 = [1, 2.22]
y0_b = [1, 2.222]
y0_u = [2, 2.2222]
# === initial
t0 = 0.0
tf = 1.0
n = 3
@def ocp1 begin
t β [t0, tf], time
x β R^n, state
u β R^n, control
x(t0) == x0
x[2](t0) == x02
x[2:3](t0) == y0
x0_b β€ xβ(t0) β€ x0_u
y0_b β€ x[2:3](t0) β€ y0_u
end
@test ocp1 isa OptimalControlModel
@test state_dimension(ocp1) == n
@test control_dimension(ocp1) == n
@test initial_time(ocp1) == t0
@test final_time(ocp1) == tf
t0 = 0.1
tf = 1.1
x0 = ones(4)
n = 4
@def ocp2 begin
t β [t0, tf], time
x β R^n, state
u β R^n, control
x(t0) == x0, initial_1
x[2](t0) == 1, initial_2
x[2:3](t0) == [1, 2], initial_3
x0 β€ x(t0) β€ x0 .+ 1, initial_4
[1, 2] β€ x[2:3](t0) β€ [3, 4], initial_5
end
@test ocp2 isa OptimalControlModel
@test state_dimension(ocp2) == n
@test control_dimension(ocp2) == n
@test initial_time(ocp2) == t0
@test final_time(ocp2) == tf
# all used variables must be defined before each test
xf = 11.11 * ones(4)
xf2 = 11.111
xf_b = 11.1111 * ones(4)
xf_u = 11.11111 * ones(4)
yf = 2.22 * ones(2)
yf_b = 2.222 * ones(2)
yf_u = 2.2222 * ones(2)
# === final
t0 = 0.2
tf = 1.2
n = 4
@def ocp3 begin
t β [t0, tf], time
x β R^n, state
u β R^n, control
x(tf) == xf
xf_b β€ x(tf) β€ xf_u
x[2](tf) == xf2
x[2:3](tf) == yf
yf_b β€ x[2:3](tf) β€ yf_u
end
@test ocp3 isa OptimalControlModel
@test state_dimension(ocp3) == n
@test control_dimension(ocp3) == n
@test initial_time(ocp3) == t0
@test final_time(ocp3) == tf
t0 = 0.3
tf = 1.3
n = 6
xf = 11.11 * ones(n)
xf2 = 11.111
xf_b = 11.1111 * ones(n)
xf_u = 11.11111 * ones(n)
yf = 2.22 * ones(2)
yf_b = 2.222 * ones(2)
yf_u = 2.2222 * ones(2)
@def ocp4 begin
t β [t0, tf], time
x β R^n, state
u β R^n, control
x(tf) == xf, final_1
xf_b β€ x(tf) β€ xf_u, final_2
x[2](tf) == xf2, final_3
x[2:3](tf) == yf, final_4
yf_b β€ x[2:3](tf) β€ yf_u, final_5
end
@test ocp4 isa OptimalControlModel
@test state_dimension(ocp4) == n
@test control_dimension(ocp4) == n
@test initial_time(ocp4) == t0
@test final_time(ocp4) == tf
# === boundary
t0 = 0.4
tf = 1.4
n = 2
@def ocp5 begin
t β [t0, tf], time
x β R^n, state
u β R^n, control
x(tf) - tf * x(t0) == [0, 1]
[0, 1] β€ x(tf) - tf * x(t0) β€ [1, 3]
x[2](t0)^2 == 1
1 β€ x[2](t0)^2 β€ 2
x[2](tf)^2 == 1
1 β€ x[2](tf)^2 β€ 2
end
@test ocp5 isa OptimalControlModel
@test state_dimension(ocp5) == n
@test control_dimension(ocp5) == n
@test initial_time(ocp5) == t0
@test final_time(ocp5) == tf
t0 = 0.5
tf = 1.5
n = 2
@def ocp6 begin
t β [t0, tf], time
x β R^n, state
u β R^n, control
x(tf) - tf * x(t0) == [0, 1], boundary_1
[0, 1] β€ x(tf) - tf * x(t0) β€ [1, 3], boundary_2
x[2](t0)^2 == 1, boundary_3
1 β€ x[2](t0)^2 β€ 2, boundary_4
x[2](tf)^2 == 1, boundary_5
1 β€ x[2](tf)^2 β€ 2, boundary_6
end
@test ocp6 isa OptimalControlModel
@test state_dimension(ocp6) == n
@test control_dimension(ocp6) == n
@test initial_time(ocp6) == t0
@test final_time(ocp6) == tf
# define more variables
u_b = 1.0
u_u = 2.0
u2_b = 3.0
u2_u = 4.0
v_b = 5.0
v_u = 6.0
t0 = 0.6
tf = 1.6
n = 2
@def ocp7 begin
t β [t0, tf], time
x β R^n, state
u β R^n, control
u_b β€ u[1](t) β€ u_u
u2_b β€ u[1](t) β€ u2_u
v_b β€ u[2](t) β€ v_u
#u[2:3](t) == v_u
u[1](t)^2 + u[2](t)^2 == 1
1 β€ u[1](t)^2 + u[2](t)^2 β€ 2
end
@test ocp7 isa OptimalControlModel
@test state_dimension(ocp7) == n
@test control_dimension(ocp7) == n
@test initial_time(ocp7) == t0
@test final_time(ocp7) == tf
t0 = 0.7
tf = 1.7
n = 2
u_b = 1.0
u_u = 2.0
u2_b = 3.0
u2_u = 4.0
v_b = 5.0
v_u = 6.0
@def ocp8 begin
t β [t0, tf], time
x β R^n, state
u β R^n, control
u_b β€ u[2](t) β€ u_u, control_1
u2_b β€ u[1](t) β€ u2_u, control_3
[1, v_b] β€ u[1:2](t) β€ [2, v_u], control_5
u[1](t)^2 + u[2](t)^2 == 1, control_7
1 β€ u[1](t)^2 + u[2](t)^2 β€ 2, control_8
end
@test ocp8 isa OptimalControlModel
@test state_dimension(ocp8) == n
@test control_dimension(ocp8) == n
@test initial_time(ocp8) == t0
@test final_time(ocp8) == tf
# more vars
x_b = 10.0
x_u = 11.0
x2_b = 13.0
x2_u = 14.0
x_u = 15.0
y_u = 16.0
# === state
t0 = 0.8
tf = 1.8
n = 10
@def ocp9 begin
t β [t0, tf], time
x β R^n, state
u β R^n, control
x_b β€ x[3](t) β€ x_u
#x(t) == x_u
x2_b β€ x[2](t) β€ x2_u
#x[2](t) == x2_u
#x[2:3](t) == y_u
x_u β€ x[10](t) β€ y_u
x[1:2](t) + x[3:4](t) == [-1, 1]
[-1, 1] β€ x[1:2](t) + x[3:4](t) β€ [0, 2]
end
@test ocp9 isa OptimalControlModel
@test state_dimension(ocp9) == n
@test control_dimension(ocp9) == n
@test initial_time(ocp9) == t0
@test final_time(ocp9) == tf
t0 = 0.9
tf = 1.9
n = 11
@def ocp10 begin
t β [t0, tf], time
x β R^n, state
u β R^n, control
x_b β€ x[3](t) β€ x_u, state_1
#x(t) == x_u , state_2
x2_b β€ x[2](t) β€ x2_u, state_3
#x[2](t) == x2_u , state_4
#x[2:3](t) == y_u , state_5
x_u β€ x[3](t) β€ y_u, state_6
x[1:2](t) + x[3:4](t) == [-1, 1], state_7
[-1, 1] β€ x[1:2](t) + x[3:4](t) β€ [0, 2], state_8
end
@test ocp10 isa OptimalControlModel
@test state_dimension(ocp10) == n
@test control_dimension(ocp10) == n
@test initial_time(ocp10) == t0
@test final_time(ocp10) == tf
# === mixed
t0 = 0.111
tf = 1.111
n = 12
@def ocp11 begin
t β [t0, tf], time
x β R^n, state
u β R^n, control
u[2](t) * x[1:2](t) == [-1, 1]
[-1, 1] β€ u[2](t) * x[1:2](t) β€ [0, 2]
end
@test ocp11 isa OptimalControlModel
@test state_dimension(ocp11) == n
@test control_dimension(ocp11) == n
@test initial_time(ocp11) == t0
@test final_time(ocp11) == tf
@def ocp12 begin
t β [t0, tf], time
x β R^n, state
u β R^n, control
u[2](t) * x[1:2](t) == [-1, 1], mixed_1
[-1, 1] β€ u[2](t) * x[1:2](t) β€ [0, 2], mixed_2
end
@test ocp12 isa OptimalControlModel
@test state_dimension(ocp12) == n
@test control_dimension(ocp12) == n
@test initial_time(ocp12) == t0
@test final_time(ocp12) == tf
# === dynamics
t0 = 0.112
tf = 1.112
@def ocp13 begin
t β [t0, tf], time
x β R, state
u β R, control
xΜ(t) == 2x(t) + u(t)^2
end
@test ocp13 isa OptimalControlModel
@test state_dimension(ocp13) == 1
@test control_dimension(ocp13) == 1
@test initial_time(ocp13) == t0
@test final_time(ocp13) == tf
# some syntax (even parseable) are not allowed
# this is the actual exhaustive list
# note: equality constraints on ranges for state and control
# are now allowed to ensure a uniform treatment of equalities
# as particular inequalities
@test_throws ParsingError @def o begin
t β [t0, tf], time
x β R, state
u β R, control
xΜ(t) == f(x(t), u(t)), named_dynamics_not_allowed # but allowed if unnamed !
end
end
# ---------------------------------------------------------------
# ---------------------------------------------------------------
@testset "Lagrange cost" begin
println("lagrange testset...")
# --------------------------------
# min
t0 = 0
tf = 1
@def o begin
t β [t0, tf], time
x β R^2, state
u β R, control
x(t0) == [-1, 0], (1)
x(tf) == [0, 0]
xΜ(t) == A * x(t) + B * u(t)
β«(0.5u(t)^2) β min
end
x = [1, 2]
x0 = 2 * x
xf = 3 * x
u = -1
A = [
0 1
0 0
]
B = [
0
1
]
@test __constraint(o, :eq1)(x0, xf) == x0
@test __dynamics(o)(x, u) == A * x + B * u
@test __lagrange(o)(x, u) == 0.5u^2
@test criterion(o) == :min
t0 = 0
tf = 1
@def o begin
t β [t0, tf], time
x β R^2, state
u β R, control
x(t0) == [-1, 0], (1)
x(tf) == [0, 0]
xΜ(t) == A * x(t) + B * u(t)
-β«(0.5u(t)^2) β min
end
x = [1, 2]
x0 = 2 * x
xf = 3 * x
u = -1
A = [
0 1
0 0
]
B = [
0
1
]
@test __constraint(o, :eq1)(x0, xf) == x0
@test __dynamics(o)(x, u) == A * x + B * u
@test __lagrange(o)(x, u) == -0.5u^2
@test criterion(o) == :min
t0 = 0
tf = 1
@def o begin
t β [t0, tf], time
x β R^2, state
u β R, control
x(t0) == [-1, 0], (1)
x(tf) == [0, 0]
xΜ(t) == A * x(t) + B * u(t)
0.5 * β«(u(t)^2) β min
end
x = [1, 2]
x0 = 2 * x
xf = 3 * x
u = -1
A = [
0 1
0 0
]
B = [
0
1
]
@test __constraint(o, :eq1)(x0, xf) == x0
@test __dynamics(o)(x, u) == A * x + B * u
@test __lagrange(o)(x, u) == 0.5u^2
@test criterion(o) == :min
t0 = 0
tf = 1
@def o begin
t β [t0, tf], time
x β R^2, state
u β R, control
x(t0) == [-1, 0], (1)
x(tf) == [0, 0]
xΜ(t) == A * x(t) + B * u(t)
0.5β«(u(t)^2) β min
end
x = [1, 2]
x0 = 2 * x
xf = 3 * x
u = -1
A = [
0 1
0 0
]
B = [
0
1
]
@test __constraint(o, :eq1)(x0, xf) == x0
@test __dynamics(o)(x, u) == A * x + B * u
@test __lagrange(o)(x, u) == 0.5u^2
@test criterion(o) == :min
t0 = 0
tf = 1
@def o begin
t β [t0, tf], time
x β R^2, state
u β R, control
x(t0) == [-1, 0], (1)
x(tf) == [0, 0]
xΜ(t) == A * x(t) + B * u(t)
-0.5 * β«(u(t)^2) β min
end
x = [1, 2]
x0 = 2 * x
xf = 3 * x
u = -1
A = [
0 1
0 0
]
B = [
0
1
]
@test __constraint(o, :eq1)(x0, xf) == x0
@test __dynamics(o)(x, u) == A * x + B * u
@test __lagrange(o)(x, u) == -0.5u^2
@test criterion(o) == :min
t0 = 0
tf = 1
@def o begin
t β [t0, tf], time
x β R^2, state
u β R, control
x(t0) == [-1, 0], (1)
x(tf) == [0, 0]
xΜ(t) == A * x(t) + B * u(t)
(-0.5 + tf) * β«(u(t)^2) β min
end
x = [1, 2]
x0 = 2 * x
xf = 3 * x
u = -1
A = [
0 1
0 0
]
B = [
0
1
]
@test __constraint(o, :eq1)(x0, xf) == x0
@test __dynamics(o)(x, u) == A * x + B * u
@test __lagrange(o)(x, u) == (-0.5 + tf) * u^2
@test criterion(o) == :min
t0 = 0
tf = 1
@test_throws ParsingError @def o begin # a call to the time (t, here) must not appear before the integral
t β [t0, tf], time
x β R^2, state
u β R, control
x(t0) == [-1, 0], (1)
x(tf) == [0, 0]
xΜ(t) == A * x(t) + B * u(t)
(-0.5 + t) * β«(u(t)^2) β min
end
t0 = 0
tf = 1
@test_throws ParsingError @def o begin # a call to the time (t, here) must not appear before the integral
t β [t0, tf], time
x β R^2, state
u β R, control
x(t0) == [-1, 0], (1)
x(tf) == [0, 0]
xΜ(t) == A * x(t) + B * u(t)
(-0.5 + x(t)) * β«(u(t)^2) β min
end
# -----------------------------------
# max
t0 = 0
tf = 1
@def o begin
t β [t0, tf], time
x β R^2, state
u β R, control
x(t0) == [-1, 0], (1)
x(tf) == [0, 0]
xΜ(t) == A * x(t) + B * u(t)
β«(0.5u(t)^2) β max
end
x = [1, 2]
x0 = 2 * x
xf = 3 * x
u = -1
A = [
0 1
0 0
]
B = [
0
1
]
@test __constraint(o, :eq1)(x0, xf) == x0
@test __dynamics(o)(x, u) == A * x + B * u
@test __lagrange(o)(x, u) == 0.5u^2
@test criterion(o) == :max
t0 = 0
tf = 1
@def o begin
t β [t0, tf], time
x β R^2, state
u β R, control
x(t0) == [-1, 0], (1)
x(tf) == [0, 0]
xΜ(t) == A * x(t) + B * u(t)
-β«(0.5u(t)^2) β max
end
x = [1, 2]
x0 = 2 * x
xf = 3 * x
u = -1
A = [
0 1
0 0
]
B = [
0
1
]
@test __constraint(o, :eq1)(x0, xf) == x0
@test __dynamics(o)(x, u) == A * x + B * u
@test __lagrange(o)(x, u) == -0.5u^2
@test criterion(o) == :max
t0 = 0
tf = 1
@def o begin
t β [t0, tf], time
x β R^2, state
u β R, control
x(t0) == [-1, 0], (1)
x(tf) == [0, 0]
xΜ(t) == A * x(t) + B * u(t)
0.5 * β«(u(t)^2) β max
end
x = [1, 2]
x0 = 2 * x
xf = 3 * x
u = -1
A = [
0 1
0 0
]
B = [
0
1
]
@test __constraint(o, :eq1)(x0, xf) == x0
@test __dynamics(o)(x, u) == A * x + B * u
@test __lagrange(o)(x, u) == 0.5u^2
@test criterion(o) == :max
t0 = 0
tf = 1
@def o begin
t β [t0, tf], time
x β R^2, state
u β R, control
x(t0) == [-1, 0], (1)
x(tf) == [0, 0]
xΜ(t) == A * x(t) + B * u(t)
0.5β«(u(t)^2) β max
end
x = [1, 2]
x0 = 2 * x
xf = 3 * x
u = -1
A = [
0 1
0 0
]
B = [
0
1
]
@test __constraint(o, :eq1)(x0, xf) == x0
@test __dynamics(o)(x, u) == A * x + B * u
@test __lagrange(o)(x, u) == 0.5u^2
@test criterion(o) == :max
t0 = 0
tf = 1
@def o begin
t β [t0, tf], time
x β R^2, state
u β R, control
x(t0) == [-1, 0], (1)
x(tf) == [0, 0]
xΜ(t) == A * x(t) + B * u(t)
-0.5 * β«(u(t)^2) β max
end
x = [1, 2]
x0 = 2 * x
xf = 3 * x
u = -1
A = [
0 1
0 0
]
B = [
0
1
]
@test __constraint(o, :eq1)(x0, xf) == x0
@test __dynamics(o)(x, u) == A * x + B * u
@test __lagrange(o)(x, u) == -0.5u^2
@test criterion(o) == :max
# -----------------------------------
t0 = 0.0
tf = 0.1
@def ocp begin
t β [t0, tf], time
x β R^3, state
u β R^3, control
β«(0.5u(t)^2) β min
end
@test ocp isa OptimalControlModel
t0 = 0.0
tf = 0.1
@def ocp begin
t β [t0, tf], time
x β R^3, state
u β R^3, control
β«(0.5u(t)^2) β max
end
@test ocp isa OptimalControlModel
end
t0 = 0
tf = 1
@test_throws ParsingError @def o begin # a call to the time (t, here) must not appear before the integral
t β [t0, tf], time
x β R^2, state
u β R, control
x(t0) == [-1, 0], (1)
x(tf) == [0, 0]
xΜ(t) == A * x(t) + B * u(t)
(-0.5 + t) * β«(u(t)^2) β max
end
t0 = 0
tf = 1
@test_throws ParsingError @def o begin # a call to the time (t, here) must not appear before the integral
t β [t0, tf], time
x β R^2, state
u β R, control
x(t0) == [-1, 0], (1)
x(tf) == [0, 0]
xΜ(t) == A * x(t) + B * u(t)
(-0.5 + x(t)) * β«(u(t)^2) β max
end
# ---------------------------------------------------------------
# ---------------------------------------------------------------
@testset "Bolza cost" begin
println("Bolza testset...")
# -------------------------------
# min
# Mayer Β± Lagrange
@def o begin
t β [0, 1], time
x β R, state
u β R, control
(x(0) + 3x(1)) + β«(x(t) + u(t)) β min
end
x = 1
u = 2
x0 = 3
xf = 4
@test __mayer(o)(x0, xf) == x0 + 3xf
@test __lagrange(o)(x, u) == x + u
@test criterion(o) == :min
@def o begin
t β [0, 1], time
x β R, state
u β R, control
(x(0) + 2x(1)) + β«(x(t) + u(t)) β min
end
x = 1
u = 2
x0 = 3
xf = 4
@test __mayer(o)(x0, xf) == x0 + 2xf
@test __lagrange(o)(x, u) == x + u
@test criterion(o) == :min
@def o begin
t β [0, 1], time
x β R, state
u β R, control
(x(0) + 2x(1)) + 2 * β«(x(t) + u(t)) β min
end
x = 1
u = 2
x0 = 3
xf = 4
@test __mayer(o)(x0, xf) == x0 + 2xf
@test __lagrange(o)(x, u) == 2(x + u)
@test criterion(o) == :min
@def o begin
t β [0, 1], time
x β R, state
u β R, control
(x(0) + 2x(1)) - β«(x(t) + u(t)) β min
end
x = 1
u = 2
x0 = 3
xf = 4
@test __mayer(o)(x0, xf) == x0 + 2xf
@test __lagrange(o)(x, u) == -(x + u)
@test criterion(o) == :min
@def o begin
t β [0, 1], time
x β R, state
u β R, control
(x(0) + 2x(1)) - 2 * β«(x(t) + u(t)) β min
end
x = 1
u = 2
x0 = 3
xf = 4
@test __mayer(o)(x0, xf) == x0 + 2xf
@test __lagrange(o)(x, u) == -2(x + u)
@test criterion(o) == :min
@test_throws ParsingError @def o begin
t β [0, 1], time
x β R, state
u β R, control
(x(0) + 2x(1)) + t * β«(x(t) + u(t)) β min
end
@test_throws ParsingError @def o begin
t β [0, 1], time
x β R, state
u β R, control
(x(0) + 2x(1)) - t * β«(x(t) + u(t)) β min
end
# -------------------------------
# max
# Mayer Β± Lagrange
@def o begin
t β [0, 1], time
x β R, state
u β R, control
(x(0) + 5x(1)) + β«(x(t) + u(t)) β max
end
x = 1
u = 2
x0 = 3
xf = 4
@test __mayer(o)(x0, xf) == x0 + 5xf
@test __lagrange(o)(x, u) == x + u
@test criterion(o) == :max
@def o begin
t β [0, 1], time
x β R, state
u β R, control
(x(0) + 2x(1)) + 2 * β«(x(t) + u(t)) β max
end
x = 1
u = 2
x0 = 3
xf = 4
@test __mayer(o)(x0, xf) == x0 + 2xf
@test __lagrange(o)(x, u) == 2(x + u)
@test criterion(o) == :max
@def o begin
t β [0, 1], time
x β R, state
u β R, control
(x(0) + 2x(1)) - β«(x(t) + u(t)) β max
end
x = 1
u = 2
x0 = 3
xf = 4
@test __mayer(o)(x0, xf) == x0 + 2xf
@test __lagrange(o)(x, u) == -(x + u)
@test criterion(o) == :max
@def o begin
t β [0, 1], time
x β R, state
u β R, control
(x(0) + 2x(1)) - 2 * β«(x(t) + u(t)) β max
end
x = 1
u = 2
x0 = 3
xf = 4
@test __mayer(o)(x0, xf) == x0 + 2xf
@test __lagrange(o)(x, u) == -2(x + u)
@test criterion(o) == :max
@test_throws ParsingError @def o begin
t β [0, 1], time
x β R, state
u β R, control
(x(0) + 2x(1)) + t * β«(x(t) + u(t)) β max
end
@test_throws ParsingError @def o begin
t β [0, 1], time
x β R, state
u β R, control
(x(0) + 2x(1)) - t * β«(x(t) + u(t)) β max
end
# -------------------------------
# min
# Lagrange Β± Mayer
@def o begin
t β [0, 1], time
x β R, state
u β R, control
β«(x(t) + u(t)) + (x(0) + 2x(1)) β min
end
x = 1
u = 2
x0 = 3
xf = 4
@test __mayer(o)(x0, xf) == x0 + 2xf
@test __lagrange(o)(x, u) == x + u
@test criterion(o) == :min
@def o begin
t β [0, 1], time
x β R, state
u β R, control
2 * β«(x(t) + u(t)) + (x(0) + 2x(1)) β min
end
x = 1
u = 2
x0 = 3
xf = 4
@test __mayer(o)(x0, xf) == x0 + 2xf
@test __lagrange(o)(x, u) == 2(x + u)
@test criterion(o) == :min
@def o begin
t β [0, 1], time
x β R, state
u β R, control
β«(x(t) + u(t)) - (x(0) + 2x(1)) β min
end
x = 1
u = 2
x0 = 3
xf = 4
@test __mayer(o)(x0, xf) == -(x0 + 2xf)
@test __lagrange(o)(x, u) == x + u
@test criterion(o) == :min
@def o begin
t β [0, 1], time
x β R, state
u β R, control
2 * β«(x(t) + u(t)) - (x(0) + 2x(1)) β min
end
x = 1
u = 2
x0 = 3
xf = 4
@test __mayer(o)(x0, xf) == -(x0 + 2xf)
@test __lagrange(o)(x, u) == 2(x + u)
@test criterion(o) == :min
@test_throws ParsingError @def o begin
t β [0, 1], time
x β R, state
u β R, control
t * β«(x(t) + u(t)) + 1 β min
end
@test_throws ParsingError @def o begin
t β [0, 1], time
x β R, state
u β R, control
t * β«(x(t) + u(t)) - 1 β min
end
# -------------------------------
# max
# Lagrange Β± Mayer
@def o begin
t β [0, 1], time
x β R, state
u β R, control
β«(x(t) + u(t)) + (x(0) + 2x(1)) β max
end
x = 1
u = 2
x0 = 3
xf = 4
@test __mayer(o)(x0, xf) == x0 + 2xf
@test __lagrange(o)(x, u) == x + u
@test criterion(o) == :max
@def o begin
t β [0, 1], time
x β R, state
u β R, control
2 * β«(x(t) + u(t)) + (x(0) + 2x(1)) β max
end
x = 1
u = 2
x0 = 3
xf = 4
@test __mayer(o)(x0, xf) == x0 + 2xf
@test __lagrange(o)(x, u) == 2(x + u)
@test criterion(o) == :max
@def o begin
t β [0, 1], time
x β R, state
u β R, control
β«(x(t) + u(t)) - (x(0) + 2x(1)) β max
end
x = 1
u = 2
x0 = 3
xf = 4
@test __mayer(o)(x0, xf) == -(x0 + 2xf)
@test __lagrange(o)(x, u) == x + u
@test criterion(o) == :max
@def o begin
t β [0, 1], time
x β R, state
u β R, control
2 * β«(x(t) + u(t)) - (x(0) + 2x(1)) β max
end
x = 1
u = 2
x0 = 3
xf = 4
@test __mayer(o)(x0, xf) == -(x0 + 2xf)
@test __lagrange(o)(x, u) == 2(x + u)
@test criterion(o) == :max
@test_throws ParsingError @def o begin
t β [0, 1], time
x β R, state
u β R, control
t * β«(x(t) + u(t)) + 1 β max
end
@test_throws ParsingError @def o begin
t β [0, 1], time
x β R, state
u β R, control
t * β«(x(t) + u(t)) - 1 β max
end
end
# ---------------------------------------------------------------
# ---------------------------------------------------------------
@testset "Mayer cost" begin
println("Mayer testset...")
@def o begin
s β [0, 1], time
y β R^4, state
w β R, control
r = yβ
v = yβ
r(0) + v(1) β min
end
y0 = [1, 2, 3, 4]
yf = 2 * [1, 2, 3, 4]
@test is_min(o)
@test __mayer(o)(y0, yf) == y0[3] + yf[4]
@def o begin
s β [0, 1], time
y β R^4, state
w β R, control
r = yβ
v = yβ
r(0) + v(1) β max
end
y0 = [1, 2, 3, 4]
yf = 2 * [1, 2, 3, 4]
@test is_max(o)
@test __mayer(o)(y0, yf) == y0[3] + yf[4]
@def o begin
z β R^2, variable
s β [0, zβ], time
y β R^4, state
w β R, control
r = yβ
v = yβ
r(0) + v(zβ) + zβ β min
end
z = [5, 6]
y0 = [1, 2, 3, 4]
yf = 2 * [1, 2, 3, 4]
@test is_min(o)
@test __mayer(o)(y0, yf, z) == y0[3] + yf[4] + z[2]
@def o begin
z β RΒ², variable
s β [0, zβ], time
y β Rβ΄, state
w β R, control
r = yβ
v = yβ
aa = yβ + wΒ² + vΒ³ + zβ
yΜ(s) == [aa(s), rΒ²(s), 0, 0]
r(0) + v(zβ) + zβ β min
end
z = [5, 6]
y = [1, 2, 3, 4]
y0 = y
yf = 3y0
w = 7
@test __dynamics(o)(y, w, z) == [y[1] + w^2 + y[4]^3 + z[2], y[3]^2, 0, 0]
@test __mayer(o)(y0, yf, z) == y0[3] + yf[4] + z[2]
@def o begin
z β RΒ², variable
s β [0, zβ], time
y β Rβ΄, state
w β R, control
r = yβ
v = yβ
aa = yβ(s) + vΒ³ + zβ
yΜ(s) == [aa(s) + (w^2)(s), rΒ²(s), 0, 0]
r(0) + v(zβ) + zβ β min
end
z = [5, 6]
y = [1, 2, 3, 4]
y0 = y
yf = 3y0
w = 7
@test __dynamics(o)(y, w, z) == [y[1] + w^2 + y[4]^3 + z[2], y[3]^2, 0, 0]
@test __mayer(o)(y0, yf, z) == y0[3] + yf[4] + z[2]
@def o begin
z β RΒ², variable
s β [0, zβ], time
y β Rβ΄, state
w β R, control
r = yβ
v = yβ
aa = yβ + vΒ³ + zβ
aa(0) + yβ(zβ) β min
end
z = [5, 6]
y0 = y
yf = 3y0
@test __mayer(o)(y0, yf, z) == y0[1] + y0[4]^3 + z[2] + yf[2]
@def o begin
z β RΒ², variable
__t β [0, zβ], time
y β Rβ΄, state
w β R, control
r = yβ
v = yβ
aa = yβ(__t) + vΒ³ + zβ
yΜ(__t) == [aa(__t) + (w^2)(__t), rΒ²(__t), 0, 0]
aa(0) + yβ(zβ) β min
end
z = [5, 6]
y = [1, 2, 3, 4]
y0 = y
yf = 3y0
w = 11
@test __dynamics(o)(y, w, z) == [y[1] + w^2 + y[4]^3 + z[2], y[3]^2, 0, 0]
@test_throws UndefVarError __mayer(o)(y0, yf, z)
end
# ---------------------------------------------------------------
# ---------------------------------------------------------------
@testset "closure" begin
println("closure testset...")
a = 1
f(b) = begin # closure of a, local c, and @def in function
c = 3
@def ocp begin
t β [a, b], time
x β R, state
u β R, control
xΜ(t) == x(t) + u(t) + b + c + d
end
return ocp
end
b = 2
o = f(b)
d = 4
x = 10
u = 20
@test __dynamics(o)(x, u) == x + u + b + 3 + d
end
# ---------------------------------------------------------------
# ---------------------------------------------------------------
@testset "error detection" begin
# error detections (this can be tricky -> need more work)
# this one is detected by the generated code (and not the parser)
t0 = 9.0
tf = 9.1
@test_throws CTException @def o begin
t β [t0, tf], time
t β [t0, tf], time
end
# illegal constraint name (1bis), detected by the parser
t0 = 9.0
tf = 9.1
r0 = 1.0
v0 = 2.0
m0 = 3.0
@test_throws ParsingError @def o begin
t β [t0, tf], time
x β R^2, state
u β R^2, control
0 β€ u(t) β€ 1, (1bis)
end
# t0 is unknown in the x(t0) constraint, detected by the parser
r0 = 1.0
v0 = 2.0
m0 = 3.0
@test_throws ParsingError @def o begin
t β [0, 1], time
x β R^2, state
u β R^2, control
x(t0) == [r0, v0, m0], (1)
0 β€ u(t) β€ 1, (1bis)
end
# bad syntax for Bolza cost interpreted as a Mayer term with trailing β«
@test_throws ParsingError @def o begin
t β [t0, tf], time
x β R^2, state
u β R, control
x(t0) == [-1, 0], (1)
x(tf) == [0, 0]
αΊ(t) == A * x(t) + B * u(t)
1 + 2 + β«(u(t)^2) β min # should be ( 1 + 2 ) + β«(...)
end
@test_throws ParsingError @def o begin
t β [t0, tf], time
x β R^2, state
u β R, control
x(t0) == [-1, 0], (1)
x(tf) == [0, 0]
αΊ(t) == A * x(t) + B * u(t)
β«(u(t)^2) + 1 + 2 β min # should be β«(...) + ( 1 + 2 )
end
@test_throws ParsingError @def o begin
t β [t0, tf], time
x β R^2, state
u β R, control
x(t0) == [-1, 0], (1)
x(tf) == [0, 0]
αΊ(t) == A * x(t) + B * u(t)
β«(u(t)^2) / 2 β min # forbidden
end
end
# ---------------------------------------------------------------
# ---------------------------------------------------------------
@testset "non unicode keywords" begin
println("non unicode keywords testset...")
# --------------------------------
# min
t0 = 0
tf = 1
@def o begin
t in [t0, tf], time
x in R^2, state
u in R, control
x(t0) == [-1, 0], (1)
x(tf) == [0, 0]
derivative(x)(t) == A * x(t) + B * u(t)
integral(0.5u(t)^2) => min
end
x = [1, 2]
x0 = 2 * x
xf = 3 * x
u = -1
A = [
0 1
0 0
]
B = [
0
1
]
@test __constraint(o, :eq1)(x0, xf) == x0
@test __dynamics(o)(x, u) == A * x + B * u
@test __lagrange(o)(x, u) == 0.5u^2
@test criterion(o) == :min
@def o begin
z in R, variable
t in [0, 1], time
x in R^2, state
u in R, control
r = x[1]
v = x[2]
0 <= r(0) - z <= 1, (1)
0 <= v(1)^2 <= 1, (2)
[0, 0] <= x(0) <= [1, 1], (β‘)
z >= 0, (3)
derivative(x)(t) == [v(t), r(t)^2 + z]
integral(u(t)^2 + z * x[1](t)) => min
end
x0 = [2, 3]
xf = [4, 5]
x = [1, 2]
u = 3
z = 4
@test __constraint(o, :eq1)(x0, xf, z) == x0[1] - z
@test __constraint(o, :eq2)(x0, xf, z) == xf[2]^2
@test __constraint(o, Symbol("β‘"))(x0, xf, z) == x0
@test __constraint(o, :eq3)(z) == z
@test __dynamics(o)(x, u, z) == [x[2], x[1]^2 + z]
@test __lagrange(o)(x, u, z) == u^2 + z * x[1]
@def o begin
z in R, variable
t in [0, 1], time
x in R^2, state
u in R, control
r = x[1]
v = x[2]
0 <= r(0) - z <= 1, (1)
0 <= v(1)^2 <= 1, (2)
[0, 0] <= x(0) <= [1, 1], (β‘)
z >= 0, (3)
derivative(x)(t) == [v(t), r(t)^2 + z]
integral(u(t)^2 + z * x[1](t)) => min
end
x0 = [2, 3]
xf = [4, 5]
x = [1, 2]
u = 3
z = 4
@test __constraint(o, :eq1)(x0, xf, z) == x0[1] - z
@test __constraint(o, :eq2)(x0, xf, z) == xf[2]^2
@test __constraint(o, Symbol("β‘"))(x0, xf, z) == x0
@test __constraint(o, :eq3)(z) == z
@test __dynamics(o)(x, u, z) == [x[2], x[1]^2 + z]
@test __lagrange(o)(x, u, z) == u^2 + z * x[1]
@def o begin
z in R^2, variable
t in [0, 1], time
x in R^2, state
u in R^2, control
r = x1
v = x2
0 <= r(0) - z1 <= 1, (1)
0 <= v(1)^2 <= 1, (2)
[0, 0] <= x(0) <= [1, 1], (β‘)
z1 >= 0, (3)
z2 == 1
u2(t) == 0
derivative(x)(t) == [v(t), r(t)^2 + z1]
integral(u1(t)^2 + z1 * x1(t)) => min
end
x0 = [2, 3]
xf = [4, 5]
x = [1, 2]
u = [3, 0]
z = [4, 1]
@test __constraint(o, :eq1)(x0, xf, z) == x0[1] - z[1]
@test __constraint(o, :eq2)(x0, xf, z) == xf[2]^2
@test __constraint(o, Symbol("β‘"))(x0, xf, z) == x0
@test __constraint(o, :eq3)(z) == z[1]
@test __dynamics(o)(x, u, z) == [x[2], x[1]^2 + z[1]]
@test __lagrange(o)(x, u, z) == u[1]^2 + z[1] * x[1]
end
end
| CTBase | https://github.com/control-toolbox/CTBase.jl.git |
|
[
"MIT"
] | 0.14.0 | 68e9ab3053e0b38e8e574f2809dd280c9dafa338 | code | 1323 | function test_plot()
# create a solution
n = 2
m = 1
t0 = 0.0
tf = 1.0
x0 = [-1.0, 0.0]
xf = [0.0, 0.0]
a = x0[1]
b = x0[2]
C = [
-(tf - t0)^3/6.0 (tf - t0)^2/2.0
-(tf - t0)^2/2.0 (tf-t0)
]
D = [-a - b * (tf - t0), -b] + xf
p0 = C \ D
Ξ± = p0[1]
Ξ² = p0[2]
x(t) = [
a + b * (t - t0) + Ξ² * (t - t0)^2 / 2.0 - Ξ± * (t - t0)^3 / 6.0,
b + Ξ² * (t - t0) - Ξ± * (t - t0)^2 / 2.0,
]
p(t) = [Ξ±, -Ξ± * (t - t0) + Ξ²]
u(t) = [p(t)[2]]
objective = 0.5 * (Ξ±^2 * (tf - t0)^3 / 3 + Ξ²^2 * (tf - t0) - Ξ± * Ξ² * (tf - t0)^2)
#
N = 201
times = range(t0, tf, N)
#
sol = OptimalControlSolution()
sol.state_dimension = n
sol.control_dimension = m
sol.time_grid = times
sol.time_name = "t"
sol.state = x
sol.state_name = "x"
sol.state_components_names = ["x" * ctindices(i) for i β range(1, n)]
sol.costate = p
sol.control = u
sol.control_name = "u"
sol.control_components_names = ["u"]
sol.objective = objective
sol.iterations = 0
sol.stopping = :dummy
sol.message = "ceci est un test"
sol.success = true
#
@test plot(sol, layout = :split) isa Plots.Plot
@test plot(sol, layout = :group) isa Plots.Plot
@test display(sol) isa Nothing
end | CTBase | https://github.com/control-toolbox/CTBase.jl.git |
|
[
"MIT"
] | 0.14.0 | 68e9ab3053e0b38e8e574f2809dd280c9dafa338 | code | 628 | using Plots
function keep_series_attributes(; kwargs...)
series_attributes = Plots.attributes(:Series)
out = []
for kw β kwargs
kw[1] β series_attributes && push!(out, kw)
end
return out
end
function print_kwargs(; kwargs...)
for kw β kwargs
println(kw)
end
end
attributes = (size = (900, 600), linewidth = 2, flip = true, colorbar = :best, bins = :auto)
println("\nBefore keeping series attributes\n")
print_kwargs(; attributes...)
series_attributes = keep_series_attributes(; attributes...)
println("\nAfter keeping series attributes\n")
print_kwargs(; series_attributes...)
| CTBase | https://github.com/control-toolbox/CTBase.jl.git |
|
[
"MIT"
] | 0.14.0 | 68e9ab3053e0b38e8e574f2809dd280c9dafa338 | code | 2625 | function test_print()
#
@test display(Model()) isa Nothing
@def ocp begin
t β [0, 1], time
x β RΒ², state
u β R, control
x(0) == [-1, 0]
x(1) == [0, 0]
xΜ(t) == [xβ(t), u(t)]
β«(0.5u(t)^2) β min
end
@test display(ocp) isa Nothing
#
ocp = Model(autonomous = false)
state!(ocp, 2, "state", ["r", "v"]) # dimension of the state with the names of the components
control!(ocp, 1) # dimension of the control
time!(ocp; t0 = 0, tf = 1, name = "s") # initial and final time, with the name of the variable time
constraint!(ocp, :initial, lb = [-1, 0], ub = [-1, 0])
constraint!(ocp, :final, lb = [0, 0], ub = [0, 0])
A = [
0 1
0 0
]
B = [
0
1
]
dynamics!(ocp, (t, x, u) -> A * x + B * u)
constraint!(ocp, :state, f = (t, x) -> x[2], lb = 0, ub = 1)
constraint!(ocp, :control, f = (t, u) -> u, lb = -1, ub = 1)
constraint!(ocp, :mixed, f = (t, x, u) -> x[1] + u, lb = 2, ub = 3)
constraint!(ocp, :state, rg = 1, lb = -10, ub = 10)
constraint!(ocp, :control, lb = -2, ub = 2)
objective!(ocp, :bolza, (t0, x0, tf, xf) -> tf, (t, x, u) -> 0.5u^2)
@test display(ocp) isa Nothing
#
ocp = Model(autonomous = false)
state!(ocp, 1, "y") # dimension of the state with the names of the components
control!(ocp, 1, "v") # dimension of the control
time!(ocp; t0 = 0, tf = 1, name = "s") # initial and final time, with the name of the variable time
constraint!(ocp, :initial, lb = -1, ub = -1)
constraint!(ocp, :final, lb = 0, ub = 0)
dynamics!(ocp, (t, x, u) -> x + u)
constraint!(ocp, :state, f = (t, x) -> x, lb = 0, ub = 1)
constraint!(ocp, :control, f = (t, u) -> u, lb = -1, ub = 1)
constraint!(ocp, :mixed, f = (t, x, u) -> x + u, lb = 2, ub = 3)
constraint!(ocp, :state, lb = -10, ub = 10)
constraint!(ocp, :control, lb = -2, ub = 2)
objective!(ocp, :mayer, (t0, x0, tf, xf) -> tf)
@test display(ocp) isa Nothing
#
ocp = Model(autonomous = false, variable = true)
variable!(ocp, 1)
state!(ocp, 1, "y") # dimension of the state with the names of the components
control!(ocp, 2) # dimension of the control
time!(ocp; t0 = 0, indf = 1, name = "s") # initial and final time, with the name of the variable time
constraint!(ocp, :initial, lb = -1, ub = -1)
constraint!(ocp, :final, lb = 0, ub = 0)
dynamics!(ocp, (t, x, u) -> x + u)
objective!(ocp, :mayer, (t0, x0, tf, xf) -> tf)
@test display(ocp) isa Nothing
end
| CTBase | https://github.com/control-toolbox/CTBase.jl.git |
|
[
"MIT"
] | 0.14.0 | 68e9ab3053e0b38e8e574f2809dd280c9dafa338 | code | 1302 | function test_solution()
# Fixed ocp
@def ocp begin
t β [0, 1], time
x β RΒ², state
u β R, control
x(0) == [-1, 0]
x(1) == [0, 0]
xΜ(t) == [xβ(t), u(t)]
β«(0.5u(t)^2) β min
end
times = range(0, 1, 10)
x = t -> t
u = t -> 2t
p = t -> t
obj = 1
sol = OptimalControlSolution(
ocp;
state = x,
control = u,
costate = p,
objective = obj,
time_grid = times,
)
@test objective(sol) == obj
@test typeof(sol) == OptimalControlSolution
# getters
@test all(state_discretized(sol) .== x.(times))
@test all(control_discretized(sol) .== u.(times))
@test all(costate_discretized(sol) .== p.(times))
# NonFixed ocp
@def ocp begin
v β R, variable
t β [0, 1], time
x β RΒ², state
u β R, control
x(0) == [-1, 0]
x(1) == [0, 0]
xΜ(t) == [xβ(t), u(t)]
β«(0.5u(t)^2) β min
end
x = t -> t
u = t -> 2t
obj = 1
v = 1
sol = OptimalControlSolution(ocp; state = x, control = u, objective = obj, variable = v)
@test variable(sol) == v
@test typeof(sol) == OptimalControlSolution
@test_throws UndefKeywordError OptimalControlSolution(ocp; x, u, obj)
end
| CTBase | https://github.com/control-toolbox/CTBase.jl.git |
|
[
"MIT"
] | 0.14.0 | 68e9ab3053e0b38e8e574f2809dd280c9dafa338 | code | 3486 | function test_utils()
@testset "AD" begin
x0 = 1.0
f = x -> cos(x)
@test CTBase.ctgradient(f, x0) β -sin(x0) atol = 1e-10
@test CTBase.__ctgradient(f, x0) β -sin(x0) atol = 1e-10
@test CTBase.ctgradient(VectorField(f), x0) β -sin(x0) atol = 1e-10
@test CTBase.__ctgradient(VectorField(f), x0) β -sin(x0) atol = 1e-10
f = x -> [cos(x)]
@test CTBase.ctjacobian(f, x0) β [-sin(x0);;] atol = 1e-10
@test CTBase.__ctjacobian(f, x0) β [-sin(x0);;] atol = 1e-10
@test CTBase.ctjacobian(VectorField(f), x0) β [-sin(x0);;] atol = 1e-10
@test CTBase.__ctjacobian(VectorField(f), x0) β [-sin(x0);;] atol = 1e-10
g = x -> cos(x[1]) + sin(x[2])
@test CTBase.ctgradient(g, [x0, x0]) β [-sin(x0), cos(x0)] atol = 1e-10
@test CTBase.__ctgradient(g, [x0, x0]) β [-sin(x0), cos(x0)] atol = 1e-10
g = x -> [cos(x[1]) + sin(x[2])]
@test CTBase.ctjacobian(g, [x0, x0]) β [-sin(x0) cos(x0)] atol = 1e-10
@test CTBase.__ctjacobian(g, [x0, x0]) β [-sin(x0) cos(x0)] atol = 1e-10
end
@testset "Other" begin
v = [1.0; 2.0; 3.0; 4.0; 5.0; 6.0]
n = 2
u = vec2vec(v, n)
w = vec2vec(u)
@test v == w
A = [
0 1
2 3
]
V = CTBase.matrix2vec(A)
@test V[1] == [0, 1]
@test V[2] == [2, 3]
W = CTBase.matrix2vec(A, 2)
@test W[1] == [0, 2]
@test W[2] == [1, 3]
@test_throws IncorrectArgument CTBase.ctindice(-1)
@test_throws IncorrectArgument CTBase.ctindice(10)
@test CTBase.ctindice(0) == 'β'
@test CTBase.ctindice(1) == 'β'
@test CTBase.ctindice(2) == 'β'
@test CTBase.ctindice(3) == 'β'
@test CTBase.ctindice(4) == 'β'
@test CTBase.ctindice(5) == 'β
'
@test CTBase.ctindice(6) == 'β'
@test CTBase.ctindice(7) == 'β'
@test CTBase.ctindice(8) == 'β'
@test CTBase.ctindice(9) == 'β'
@test_throws IncorrectArgument CTBase.ctindices(-1)
@test CTBase.ctindices(019) == "ββ"
@test CTBase.ctindices(314) == "βββ"
@test_throws IncorrectArgument CTBase.ctupperscript(-1)
@test_throws IncorrectArgument CTBase.ctupperscript(10)
@test CTBase.ctupperscript(0) == 'β°'
@test CTBase.ctupperscript(1) == 'ΒΉ'
@test CTBase.ctupperscript(2) == 'Β²'
@test CTBase.ctupperscript(3) == 'Β³'
@test CTBase.ctupperscript(4) == 'β΄'
@test CTBase.ctupperscript(5) == 'β΅'
@test CTBase.ctupperscript(6) == 'βΆ'
@test CTBase.ctupperscript(7) == 'β·'
@test CTBase.ctupperscript(8) == 'βΈ'
@test CTBase.ctupperscript(9) == 'βΉ'
@test_throws IncorrectArgument CTBase.ctupperscripts(-1)
@test CTBase.ctupperscripts(019) == "ΒΉβΉ"
@test CTBase.ctupperscripts(109) == "ΒΉβ°βΉ"
end
@testset "to_out_of_place" begin
function f1!(r, x)
r[1] = x
r[2] = x + 1
return nothing
end
@test CTBase.to_out_of_place(f1!, 2)(1.0) == [1.0, 2.0]
function f2!(r, x, y)
r[:] .= x + y
return nothing
end
@test CTBase.to_out_of_place(f2!, 1; T = Int32)(1, 2) == 3
function f3!(r, x; y = 1)
r[:] .= x + y
return nothing
end
@test CTBase.to_out_of_place(f3!, 1; T = Int32)(1; y = 2) == 3
@test isnothing( CTBase.to_out_of_place(nothing, 1) )
end
end | CTBase | https://github.com/control-toolbox/CTBase.jl.git |
|
[
"MIT"
] | 0.14.0 | 68e9ab3053e0b38e8e574f2809dd280c9dafa338 | code | 605 | #!/usr/bin/env julia
#
# basic problem using macros
#
# find local CTBase
basename = '/' * joinpath(split(Base.source_path(), '/')[1:(end - 3)])
println(basename)
using Pkg;
Pkg.activate(basename);
using CTBase
tf = 1.0
@def verbose_threshold = 80 debug = true begin
t0, variable
t β [t0, tf], time
x β RβΉ, state
a = xβ
b = xβ
c = xβ
d = xβ
e = xβ
f = xβ
g = xβ
h = xβ
i = xβ
0 β€ a(t) β€ 1
0 β€ b(t) β€ 1
0 β€ c(t) β€ 1
0 β€ d(t) β€ 1
0 β€ e(t) β€ 1
0 β€ f(t) β€ 1
0 β€ g(t) β€ 1
0 β€ h(t) β€ 1
0 β€ i(t) β€ 1
v(tf) -> min
end
| CTBase | https://github.com/control-toolbox/CTBase.jl.git |
|
[
"MIT"
] | 0.14.0 | 68e9ab3053e0b38e8e574f2809dd280c9dafa338 | code | 4393 | #!/usr/bin/env julia
#
# test all constraints
#
# ref: https://github.com/control-toolbox/CTBase.jl/issues/9
#
# find local CTBase
basename = '/' * joinpath(split(Base.source_path(), '/')[1:(end - 3)])
using Pkg;
Pkg.activate(basename);
using CTBase
# all used variables must be definedbefore each test
t0 = 0.0
tf = 1.0
x0 = 11.11
x02 = 11.111
x0_b = 11.1111
x0_u = 11.11111
y0 = 2.22
y0_b = 2.222
y0_u = 2.2222
# === initial
@def begin
t β [t0, tf], time
x β R^3, state
u β R^3, control
x(t0) == x0
x[2](t0) == x02
x[2:3](t0) == y0
x0_b β€ x(t0) β€ x0_u
y0_b β€ x[2:3](t0) β€ y0_u
end
@def begin
t β [t0, tf], time
x β R^3, state
u β R^3, control
x(t0) == x0 => initial_1
x[2](t0) == x02 => initial_2
x[2:3](t0) == y0 => initial_3
x0_b β€ x(t0) β€ x0_u => initial_4
y0_b β€ x[2:3](t0) β€ y0_u => initial_5
end
# all used variables must be definedbefore each test
xf = 11.11
xf2 = 11.111
xf_b = 11.1111
xf_u = 11.11111
yf = 2.22
yf_b = 2.222
yf_u = 2.2222
# === final
@def begin
t β [t0, tf], time
x β R^3, state
u β R^3, control
x(tf) == xf
xf_b β€ x(tf) β€ xf_u
x[2](tf) == xf2
x[2:3](tf) == yf
yf_b β€ x[2:3](tf) β€ yf_u
end
@def begin
t β [t0, tf], time
x β R^3, state
u β R^3, control
x(tf) == xf => final_1
xf_b β€ x(tf) β€ xf_u => final_2
x[2](tf) == xf2 => final_3
x[2:3](tf) == yf => final_4
yf_b β€ x[2:3](tf) β€ yf_u => final_5
end
# === boundary
@def begin
t β [t0, tf], time
x β R^3, state
u β R^3, control
x(tf) - tf * x(t0) == [0, 1]
[0, 1] β€ x(tf) - tf * x(t0) β€ [1, 3]
x[2](t0)^2 == 1
1 β€ x[2](t0)^2 β€ 2
x[2](tf)^2 == 1
1 β€ x[2](tf)^2 β€ 2
end
@def begin
t β [t0, tf], time
x β R^3, state
u β R^3, control
x(tf) - tf * x(t0) == [0, 1] => boundary_1
[0, 1] β€ x(tf) - tf * x(t0) β€ [1, 3] => boundary_2
x[2](t0)^2 == 1 => boundary_3
1 β€ x[2](t0)^2 β€ 2 => boundary_4
x[2](tf)^2 == 1 => boundary_5
1 β€ x[2](tf)^2 β€ 2 => boundary_6
end
# define more variables
u_b = 1.0
u_u = 2.0
u2_b = 3.0
u2_u = 4.0
v_b = 5.0
v_u = 6.0
@def begin
t β [t0, tf], time
x β R^3, state
u β R^3, control
u_b β€ u(t) β€ u_u
#u(t) == u_u
u2_b β€ u[2](t) β€ u2_u
#u[2](t) == u2_u
v_b β€ u[2:3](t) β€ v_u
#u[2:3](t) == v_u
u[1](t)^2 + u[2](t)^2 == 1
1 β€ u[1](t)^2 + u[2](t)^2 β€ 2
end
@def begin
t β [t0, tf], time
x β R^3, state
u β R^3, control
u_b β€ u(t) β€ u_u => control_1
#u(t) == u_u => control_2
u2_b β€ u[2](t) β€ u2_u => control_3
#u[2](t) == u2_u => control_4
v_b β€ u[2:3](t) β€ v_u => control_5
#u[2:3](t) == v_u => control_6
u[1](t)^2 + u[2](t)^2 == 1 => control_7
1 β€ u[1](t)^2 + u[2](t)^2 β€ 2 => control_8
end
# more vars
x_b = 10.0
x_u = 11.0
x2_b = 13.0
x2_u = 14.0
x_u = 15.0
y_u = 16.0
# === state
@def begin
t β [t0, tf], time
x β R^3, state
u β R^3, control
x_b β€ x(t) β€ x_u
#x(t) == x_u
x2_b β€ x[2](t) β€ x2_u
#x[2](t) == x2_u
#x[2:3](t) == y_u
x_u β€ x[2:3](t) β€ y_u
x[1:2](t) + x[3:4](t) == [-1, 1]
[-1, 1] β€ x[1:2](t) + x[3:4](t) β€ [0, 2]
end
@def begin
t β [t0, tf], time
x β R^3, state
u β R^3, control
x_b β€ x(t) β€ x_u => state_1
#x(t) == x_u => state_2
x2_b β€ x[2](t) β€ x2_u => state_3
#x[2](t) == x2_u => state_4
#x[2:3](t) == y_u => state_5
x_u β€ x[2:3](t) β€ y_u => state_6
x[1:2](t) + x[3:4](t) == [-1, 1] => state_7
[-1, 1] β€ x[1:2](t) + x[3:4](t) β€ [0, 2] => state_8
end
# === mixed
@def begin
t β [t0, tf], time
x β R^3, state
u β R^3, control
u[2](t) * x[1:2](t) == [-1, 1]
[-1, 1] β€ u[2](t) * x[1:2](t) β€ [0, 2]
end
@def begin
t β [t0, tf], time
x β R^3, state
u β R^3, control
u[2](t) * x[1:2](t) == [-1, 1] => mixed_1
[-1, 1] β€ u[2](t) * x[1:2](t) β€ [0, 2] => mixed_2
end
# === dynamics
@def begin
t β [t0, tf], time
x β R^3, state
u β R^3, control
x'(t) == 2x(t) + u(t)^2
x'(t) == f(x(t), u(t))
end
@def begin
t β [t0, tf], time
x β R^3, state
u β R^3, control
# x'(t) == 2x(t) + u(t)^2 => dynamics_1
# x'(t) == f(x(t), u(t)) => dynamics_2
end
| CTBase | https://github.com/control-toolbox/CTBase.jl.git |
|
[
"MIT"
] | 0.14.0 | 68e9ab3053e0b38e8e574f2809dd280c9dafa338 | code | 661 | #!/usr/bin/env julia
#
# basic problem using macros
#
# find local CTBase
basename = '/' * joinpath(split(Base.source_path(), '/')[1:(end - 3)])
println(basename)
using Pkg;
Pkg.activate(basename);
using CTBase
t0 = 0.0
tf = 1.0
x0 = [-1, 0]
xf = [0, 0]
A = [
0 1
0 0
]
B = [
0
1
]
n = 2
ocp = @def verbose_threshold = 50 debug = true begin
t β [t0, tf], time
x β R^n, state
u β R, control
x(t0) == x0 => (1)
x(tf) == xf, (deux)
x'(t) == A * x(t) + B * u(t)
β«(0.5u(t)^2) β min
end
# print problem definition
println("== Basic problem:")
display(ocp)
println("== Generated code:")
print_generated_code(ocp)
| CTBase | https://github.com/control-toolbox/CTBase.jl.git |
|
[
"MIT"
] | 0.14.0 | 68e9ab3053e0b38e8e574f2809dd280c9dafa338 | code | 996 | #!/usr/bin/env julia
#
# Goddard
#
# find local CTBase
basename = '/' * joinpath(split(Base.source_path(), '/')[1:(end - 3)])
println(basename)
using Pkg;
Pkg.activate(basename);
using CTBase
Cd = 310
Tmax = 3.5
Ξ² = 500
b = 2
N = 100
t0 = 0
r0 = 1
v0 = 0
vmax = 0.1
m0 = 1
mf = 0.6
# Problem definition
ocp = @def verbose_threshold = 100 begin
tf, variable
t β [t0, tf], time
x β R^3, state
u β R, control
r = xβ
v = xβ
m = xβ
x(t0) == [r0, v0, m0]
0 β€ u(t) β€ 1
0 β€ r(t) β€ 1, (1)
0 β€ v(t) β€ vmax, (2bis)
mf β€ m(t) β€ m0, (trois)
x'(t) == F0(x(t)) + u(t) * F1(x(t))
r(tf) -> max
end
function F0(x)
r, v, m = x
D = Cd * v^2 * exp(-Ξ² * (r - 1))
F = [v, -D / m - 1 / r^2, 0]
return F
end
function F1(x)
r, v, m = x
F = [0, Tmax / m, -b * Tmax]
return F
end
# print problem definition
println("== Goddard problem:")
display(ocp)
#
println("== Generated code:")
print_generated_code(ocp)
#code_debug_info()
| CTBase | https://github.com/control-toolbox/CTBase.jl.git |
|
[
"MIT"
] | 0.14.0 | 68e9ab3053e0b38e8e574f2809dd280c9dafa338 | code | 676 | using OptimalControl: solve
using CTBase
tf = 2.0
@def ocp begin
t β [0, tf], time
x β RΒ², state
u β R, control
x(0) == [-1, 0]
x(tf) == [0, 0]
xΜ(t) == [xβ(t), u(t)]
β«(0.5u(t)^2) β min
end
sol = solve(ocp, display = false)
@def ocp begin
t β [0, tf], time
x β RΒ², state
u β R, control
x(0) == [-0.5, -0.5]
x(tf) == [0, 0]
xΜ(t) == [xβ(t), u(t)]
β«(0.5u(t)^2) β min
end
sol2 = solve(ocp, display = false)
# first plot
plt = plot(sol, size = (700, 450), time = :default)
# second plot
style = (linestyle = :dash,)
plot!(plt, sol2, time = :default, state_style = style, costate_style = style, control_style = style)
| CTBase | https://github.com/control-toolbox/CTBase.jl.git |
|
[
"MIT"
] | 0.14.0 | 68e9ab3053e0b38e8e574f2809dd280c9dafa338 | docs | 5229 | # Contributor Covenant Code of Conduct
## Our Pledge
We as members, contributors, and leaders pledge to make participation in our
community a harassment-free experience for everyone, regardless of age, body
size, visible or invisible disability, ethnicity, sex characteristics, gender
identity and expression, level of experience, education, socio-economic status,
nationality, personal appearance, race, religion, or sexual identity
and orientation.
We pledge to act and interact in ways that contribute to an open, welcoming,
diverse, inclusive, and healthy community.
## Our Standards
Examples of behavior that contributes to a positive environment for our
community include:
* Demonstrating empathy and kindness toward other people
* Being respectful of differing opinions, viewpoints, and experiences
* Giving and gracefully accepting constructive feedback
* Accepting responsibility and apologizing to those affected by our mistakes,
and learning from the experience
* Focusing on what is best not just for us as individuals, but for the
overall community
Examples of unacceptable behavior include:
* The use of sexualized language or imagery, and sexual attention or
advances of any kind
* Trolling, insulting or derogatory comments, and personal or political attacks
* Public or private harassment
* Publishing others' private information, such as a physical or email
address, without their explicit permission
* Other conduct which could reasonably be considered inappropriate in a
professional setting
## Enforcement Responsibilities
Community leaders are responsible for clarifying and enforcing our standards of
acceptable behavior and will take appropriate and fair corrective action in
response to any behavior that they deem inappropriate, threatening, offensive,
or harmful.
Community leaders have the right and responsibility to remove, edit, or reject
comments, commits, code, wiki edits, issues, and other contributions that are
not aligned to this Code of Conduct, and will communicate reasons for moderation
decisions when appropriate.
## Scope
This Code of Conduct applies within all community spaces, and also applies when
an individual is officially representing the community in public spaces.
Examples of representing our community include using an official e-mail address,
posting via an official social media account, or acting as an appointed
representative at an online or offline event.
## Enforcement
Instances of abusive, harassing, or otherwise unacceptable behavior may be
reported to the community leaders responsible for enforcement at
[email protected].
All complaints will be reviewed and investigated promptly and fairly.
All community leaders are obligated to respect the privacy and security of the
reporter of any incident.
## Enforcement Guidelines
Community leaders will follow these Community Impact Guidelines in determining
the consequences for any action they deem in violation of this Code of Conduct:
### 1. Correction
**Community Impact**: Use of inappropriate language or other behavior deemed
unprofessional or unwelcome in the community.
**Consequence**: A private, written warning from community leaders, providing
clarity around the nature of the violation and an explanation of why the
behavior was inappropriate. A public apology may be requested.
### 2. Warning
**Community Impact**: A violation through a single incident or series
of actions.
**Consequence**: A warning with consequences for continued behavior. No
interaction with the people involved, including unsolicited interaction with
those enforcing the Code of Conduct, for a specified period of time. This
includes avoiding interactions in community spaces as well as external channels
like social media. Violating these terms may lead to a temporary or
permanent ban.
### 3. Temporary Ban
**Community Impact**: A serious violation of community standards, including
sustained inappropriate behavior.
**Consequence**: A temporary ban from any sort of interaction or public
communication with the community for a specified period of time. No public or
private interaction with the people involved, including unsolicited interaction
with those enforcing the Code of Conduct, is allowed during this period.
Violating these terms may lead to a permanent ban.
### 4. Permanent Ban
**Community Impact**: Demonstrating a pattern of violation of community
standards, including sustained inappropriate behavior, harassment of an
individual, or aggression toward or disparagement of classes of individuals.
**Consequence**: A permanent ban from any sort of public interaction within
the community.
## Attribution
This Code of Conduct is adapted from the [Contributor Covenant][homepage],
version 2.0, available at
https://www.contributor-covenant.org/version/2/0/code_of_conduct.html.
Community Impact Guidelines were inspired by [Mozilla's code of conduct
enforcement ladder](https://github.com/mozilla/diversity).
[homepage]: https://www.contributor-covenant.org
For answers to common questions about this code of conduct, see the FAQ at
https://www.contributor-covenant.org/faq. Translations are available at
https://www.contributor-covenant.org/translations.
| CTBase | https://github.com/control-toolbox/CTBase.jl.git |
|
[
"MIT"
] | 0.14.0 | 68e9ab3053e0b38e8e574f2809dd280c9dafa338 | docs | 1139 | # Contributing
[issue-url]: https://github.com/control-toolbox/CTBase.jl/issues
[first-good-issue-url]: https://github.com/control-toolbox/CTBase.jl/contribute
If you think you found a bug or if you have a feature request / suggestion, feel free to open an [issue][issue-url].
Before opening a pull request, please start an issue or a discussion on the topic.
Contributions are welcomed, check out [how to contribute to a Github project](https://docs.github.com/en/get-started/exploring-projects-on-github/contributing-to-a-project).
If it is your first contribution, you can also check [this first contribution tutorial](https://github.com/firstcontributions/first-contributions).
You can find first good issues (if any π) [here][first-good-issue-url]. You may find other packages to contribute to at the [control-toolbox organization](https://github.com/control-toolbox).
If you want to ask a question, feel free to start a discussion [here](https://github.com/orgs/control-toolbox/discussions). This forum is for general discussion about this repository and the [control-toolbox organization](https://github.com/control-toolbox).
| CTBase | https://github.com/control-toolbox/CTBase.jl.git |
|
[
"MIT"
] | 0.14.0 | 68e9ab3053e0b38e8e574f2809dd280c9dafa338 | docs | 4129 | # CTBase.jl
[ci-img]: https://github.com/control-toolbox/CTBase.jl/actions/workflows/CI.yml/badge.svg?branch=main
[ci-url]: https://github.com/control-toolbox/CTBase.jl/actions/workflows/CI.yml?query=branch%3Amain
[co-img]: https://codecov.io/gh/control-toolbox/CTBase.jl/branch/main/graph/badge.svg?token=YM5YQQUSO3
[co-url]: https://codecov.io/gh/control-toolbox/CTBase.jl
[doc-dev-img]: https://img.shields.io/badge/docs-dev-8A2BE2.svg
[doc-dev-url]: https://control-toolbox.org/CTBase.jl/dev/
[doc-stable-img]: https://img.shields.io/badge/docs-stable-blue.svg
[doc-stable-url]: https://control-toolbox.org/CTBase.jl/stable/
[release-img]: https://juliahub.com/docs/General/CTBase/stable/version.svg
[release-url]: https://github.com/control-toolbox/CTBase.jl/releases
[pkg-eval-img]: https://juliahub.com/docs/General/CTBase/stable/pkgeval.svg
[pkg-eval-url]: https://juliahub.com/ui/Packages/General/CTBase
[deps-img]: https://juliahub.com/docs/General/CTBase/stable/deps.svg
[deps-url]: https://juliahub.com/ui/Packages/General/CTBase?t=2
[licence-img]: https://img.shields.io/badge/License-MIT-yellow.svg
[licence-url]: https://github.com/control-toolbox/CTBase.jl/blob/master/LICENSE
[aqua-img]: https://raw.githubusercontent.com/JuliaTesting/Aqua.jl/master/badge.svg
[aqua-url]: https://github.com/JuliaTesting/Aqua.jl
The CTBase.jl package is part of the [control-toolbox ecosystem](https://github.com/control-toolbox).
The control-toolbox ecosystem gathers Julia packages for mathematical control and applications. The root package is [OptimalControl.jl](https://github.com/control-toolbox/OptimalControl.jl) which aims to provide tools to modelise and solve optimal control problems with ordinary differential equations by direct and indirect methods.
[](http://control-toolbox.org/OptimalControl.jl)
| **Name** | **Badge** |
:-------------------|:------------------|
| Documentation | [![Documentation][doc-stable-img]][doc-stable-url] [![Documentation][doc-dev-img]][doc-dev-url] |
| Code Status | [![Build Status][ci-img]][ci-url] [![Covering Status][co-img]][co-url] [![pkgeval][pkg-eval-img]][pkg-eval-url] [![Aqua.jl][aqua-img]][aqua-url] |
| Dependencies | [![deps][deps-img]][deps-url] |
| Licence | [![License: MIT][licence-img]][licence-url] |
| Release | [![Release][release-img]][release-url] |
## Installation
To install CTBase.jl please
<a href="https://docs.julialang.org/en/v1/manual/getting-started/">open Julia's interactive session (known as REPL)</a>
and press <kbd>]</kbd> key in the REPL to use the package mode, then add the package:
```julia
julia> ]
pkg> add CTBase
```
## Contributing
[issue-url]: https://github.com/control-toolbox/CTBase.jl/issues
[first-good-issue-url]: https://github.com/control-toolbox/CTBase.jl/contribute
If you think you found a bug or if you have a feature request / suggestion, feel free to open an [issue][issue-url].
Before opening a pull request, please start an issue or a discussion on the topic.
Contributions are welcomed, check out [how to contribute to a Github project](https://docs.github.com/en/get-started/exploring-projects-on-github/contributing-to-a-project).
If it is your first contribution, you can also check [this first contribution tutorial](https://github.com/firstcontributions/first-contributions).
You can find first good issues (if any π) [here][first-good-issue-url]. You may find other packages to contribute to at the [control-toolbox organization](https://github.com/control-toolbox).
If you want to ask a question, feel free to start a discussion [here](https://github.com/orgs/control-toolbox/discussions). This forum is for general discussion about this repository and the [control-toolbox organization](https://github.com/control-toolbox).
>[!NOTE]
> If you want to add an application or a package to the control-toolbox ecosystem, please follow this [set up tutorial](https://github.com/control-toolbox/CTApp.jl/discussions/9).
| CTBase | https://github.com/control-toolbox/CTBase.jl.git |
|
[
"MIT"
] | 0.14.0 | 68e9ab3053e0b38e8e574f2809dd280c9dafa338 | docs | 122 | ---
name: Blank issue
about: Blank template for general issue
title: "[General] title"
labels: ''
assignees: ocots
---
| CTBase | https://github.com/control-toolbox/CTBase.jl.git |
|
[
"MIT"
] | 0.14.0 | 68e9ab3053e0b38e8e574f2809dd280c9dafa338 | docs | 617 | ---
name: Bug report
about: Create a bug report to help us improve
title: "[Bug] title"
labels: bug
assignees: ocots
---
**Describe the bug**
A clear and concise description of what the bug is.
**To Reproduce**
Give if possible the code to reproduce the error:
```julia
julia> f(x)=1
f (generic function with 1 method)
julia> f()
ERROR: MethodError: no method matching f()
```
**Expected behavior**
A clear and concise description of what you expected to happen.
**Screenshots**
If applicable, add screenshots to help explain your problem.
**Additional context**
Add any other context about the problem here.
| CTBase | https://github.com/control-toolbox/CTBase.jl.git |
|
[
"MIT"
] | 0.14.0 | 68e9ab3053e0b38e8e574f2809dd280c9dafa338 | docs | 128 | ---
name: 'Developers '
about: Suggest internal modifications
title: "[Dev] title"
labels: internal dev
assignees: ocots
---
| CTBase | https://github.com/control-toolbox/CTBase.jl.git |
|
[
"MIT"
] | 0.14.0 | 68e9ab3053e0b38e8e574f2809dd280c9dafa338 | docs | 198 | ---
name: Documentation suggestion
about: Suggest improvements or additions to the documentation
title: "[Doc] title"
labels: documentation
assignees: ocots
---
**Please detail your suggestion.**
| CTBase | https://github.com/control-toolbox/CTBase.jl.git |
|
[
"MIT"
] | 0.14.0 | 68e9ab3053e0b38e8e574f2809dd280c9dafa338 | docs | 622 | ---
name: Feature request
about: Suggest an idea for this project
title: "[Feature] title"
labels: enhancement
assignees: ocots
---
**Is your feature request related to a problem? Please describe.**
A clear and concise description of what the problem is. Ex. I'm always frustrated when [...]
**Describe the solution you'd like**
A clear and concise description of what you want to happen.
**Describe alternatives you've considered**
A clear and concise description of any alternative solutions or features you've considered.
**Additional context**
Add any other context or screenshots about the feature request here.
| CTBase | https://github.com/control-toolbox/CTBase.jl.git |
|
[
"MIT"
] | 0.14.0 | 68e9ab3053e0b38e8e574f2809dd280c9dafa338 | docs | 14127 | # Benchmarks for bench_nlp_constraints.jl
```julia
using BenchmarkTools
using CTBase
using MLStyle
using StaticArrays
rg(i::Integer, j::Integer) = begin
if i == j
i
else
i:j
end
end
$(Expr(:toplevel, :(ocp = Model()), :(time!(ocp, 0, 1)), :(state!(ocp, 2)), :(control!(ocp, 2))))
constraint!(ocp, :initial, Index(2), 10, :ci)
constraint!(ocp, :final, Index(1), 1, :cf)
constraint!(ocp, :control, [0, 0], [1, 1], :cu)
constraint!(ocp, :state, [0, 1], [1, 2], :cs)
constraint!(ocp, :boundary, ((x0, xf)->begin
x0[2] + xf[2]
end), 0, 1, :cb)
constraint!(ocp, :control, (u->begin
u
end), [0, 0], [1, 1], :cuu)
constraint!(ocp, :state, (x->begin
x
end), [0, 1], [1, 2], :css)
constraint!(ocp, :mixed, ((x, u)->begin
x[1] + u[1]
end), 1, 1, :cm)
function nlp_constraints_original(ocp::OptimalControlModel)
CTBase.__check_all_set(ocp)
constraints = ocp.constraints
ΞΎf = Vector{ControlConstraint}()
ΞΎl = Vector{ctNumber}()
ΞΎu = Vector{ctNumber}()
Ξ·f = Vector{StateConstraint}()
Ξ·l = Vector{ctNumber}()
Ξ·u = Vector{ctNumber}()
Οf = Vector{MixedConstraint}()
Οl = Vector{ctNumber}()
Οu = Vector{ctNumber}()
Οf = Vector{BoundaryConstraint}()
Οl = Vector{ctNumber}()
Οu = Vector{ctNumber}()
ΞΈf = Vector{VariableConstraint}()
ΞΈl = Vector{ctNumber}()
ΞΈu = Vector{ctNumber}()
uind = Vector{Int}()
ul = Vector{ctNumber}()
uu = Vector{ctNumber}()
xind = Vector{Int}()
xl = Vector{ctNumber}()
xu = Vector{ctNumber}()
vind = Vector{Int}()
vl = Vector{ctNumber}()
vu = Vector{ctNumber}()
for (_, c) = constraints
MLStyle.@match c begin
(:initial, f::BoundaryConstraint, lb, ub) => begin
push!(Οf, f)
append!(Οl, lb)
append!(Οu, ub)
end
(:final, f::BoundaryConstraint, lb, ub) => begin
push!(Οf, f)
append!(Οl, lb)
append!(Οu, ub)
end
(:boundary, f::BoundaryConstraint, lb, ub) => begin
push!(Οf, f)
append!(Οl, lb)
append!(Οu, ub)
end
(:control, f::ControlConstraint, lb, ub) => begin
push!(ΞΎf, f)
append!(ΞΎl, lb)
append!(ΞΎu, ub)
end
(:control, rg, lb, ub) => begin
append!(uind, rg)
append!(ul, lb)
append!(uu, ub)
end
(:state, f::StateConstraint, lb, ub) => begin
push!(Ξ·f, f)
append!(Ξ·l, lb)
append!(Ξ·u, ub)
end
(:state, rg, lb, ub) => begin
append!(xind, rg)
append!(xl, lb)
append!(xu, ub)
end
(:mixed, f::MixedConstraint, lb, ub) => begin
push!(Οf, f)
append!(Οl, lb)
append!(Οu, ub)
end
(:variable, f::VariableConstraint, lb, ub) => begin
push!(ΞΈf, f)
append!(ΞΈl, lb)
append!(ΞΈu, ub)
end
(:variable, rg, lb, ub) => begin
append!(vind, rg)
append!(vl, lb)
append!(vu, ub)
end
_ => error("Internal error")
end
end
function ΞΎ(t, u, v)
val = Vector{ctNumber}()
for i = 1:length(ΞΎf)
append!(val, (ΞΎf[i])(t, u, v))
end
return val
end
function Ξ·(t, x, v)
val = Vector{ctNumber}()
for i = 1:length(Ξ·f)
append!(val, (Ξ·f[i])(t, x, v))
end
return val
end
function Ο(t, x, u, v)
val = Vector{ctNumber}()
for i = 1:length(Οf)
append!(val, (Οf[i])(t, x, u, v))
end
return val
end
function Ο(x0, xf, v)
val = Vector{ctNumber}()
for i = 1:length(Οf)
append!(val, (Οf[i])(x0, xf, v))
end
return val
end
function ΞΈ(v)
val = Vector{ctNumber}()
for i = 1:length(ΞΈf)
append!(val, (ΞΈf[i])(v))
end
return val
end
return ((ΞΎl, ΞΎ, ΞΎu), (Ξ·l, Ξ·, Ξ·u), (Οl, Ο, Οu), (Οl, Ο, Οu), (ΞΈl, ΞΈ, ΞΈu), (ul, uind, uu), (xl, xind, xu), (vl, vind, vu))
end
function test_alloc_bad(ocp, N)
println(" getters and setters")
begin
function get_state(XU, i, n, m)
return XU[rg((i - 1) * (n + m) + 1, (i - 1) * (n + m) + n)]
end
function get_control(XU, i, n, m)
return XU[rg((i - 1) * (n + m) + n + 1, (i - 1) * (n + m) + n + m)]
end
function set_control_constraint!(C, i, ΞΎ, nΞΎ, nc)
C[(i - 1) * nc + 1:(i - 1) * nc + nΞΎ] = ΞΎ
end
function set_state_constraint!(C, i, Ξ·, nΞ·, nΞΎ, nc)
C[(i - 1) * nc + nΞΎ + 1:(i - 1) * nc + nΞΎ + nΞ·] = Ξ·
end
function set_mixed_constraint!(C, i, Ο, nΟ, nΞΎ, nΞ·, nc)
C[(i - 1) * nc + nΞΎ + nΞ· + 1:(i - 1) * nc + nΞΎ + nΞ· + nΟ] = Ο
end
end
println(" call nlp_constraints_original")
((ΞΎl, ΞΎ, ΞΎu), (Ξ·l, Ξ·, Ξ·u), (Οl, Ο, Οu), (Οl, Ο, Οu), (ΞΈl, ΞΈ, ΞΈu), (ul, uind, uu), (xl, xind, xu), (vl, vind, vu)) = nlp_constraints_original(ocp)
println(" declare variables")
begin
v = Real[]
n = state_dimension(ocp)
m = control_dimension(ocp)
times = LinRange(0, 1, N)
XU = ones(N * (n + m))
nΞΎ = length(ΞΎl)
nΞ· = length(Ξ·l)
nΟ = length(Οl)
nc = nΞΎ + nΞ· + nΟ
C = zeros(N * nc)
end
println(" start for loop")
begin
for i = 1:N
t = times[i]
x = get_state(XU, i, n, m)
u = get_control(XU, i, n, m)
set_control_constraint!(C, i, ΞΎ(t, u, v), nΞΎ, nc)
set_state_constraint!(C, i, Ξ·(t, x, v), nΞ·, nΞΎ, nc)
set_mixed_constraint!(C, i, Ο(t, x, u, v), nΟ, nΞΎ, nΞ·, nc)
end
end
println(" end for loop")
nothing
end
function nlp_constraints_optimized(ocp::OptimalControlModel)
CTBase.__check_all_set(ocp)
constraints = ocp.constraints
ΞΎf = Vector{ControlConstraint}()
ΞΎl = Vector{ctNumber}()
ΞΎu = Vector{ctNumber}()
ΞΎn = Vector{Int}()
Ξ·f = Vector{StateConstraint}()
Ξ·l = Vector{ctNumber}()
Ξ·u = Vector{ctNumber}()
Ξ·n = Vector{Int}()
Οf = Vector{MixedConstraint}()
Οl = Vector{ctNumber}()
Οu = Vector{ctNumber}()
Οn = Vector{Int}()
Οf = Vector{BoundaryConstraint}()
Οl = Vector{ctNumber}()
Οu = Vector{ctNumber}()
Οn = Vector{Int}()
ΞΈf = Vector{VariableConstraint}()
ΞΈl = Vector{ctNumber}()
ΞΈu = Vector{ctNumber}()
ΞΈn = Vector{Int}()
uind = Vector{Int}()
ul = Vector{ctNumber}()
uu = Vector{ctNumber}()
xind = Vector{Int}()
xl = Vector{ctNumber}()
xu = Vector{ctNumber}()
vind = Vector{Int}()
vl = Vector{ctNumber}()
vu = Vector{ctNumber}()
for (_, c) = constraints
MLStyle.@match c begin
(:initial, f::BoundaryConstraint, lb, ub) => begin
append!(Οn, length(lb))
push!(Οf, f)
append!(Οl, lb)
append!(Οu, ub)
end
(:final, f::BoundaryConstraint, lb, ub) => begin
append!(Οn, length(lb))
push!(Οf, f)
append!(Οl, lb)
append!(Οu, ub)
end
(:boundary, f::BoundaryConstraint, lb, ub) => begin
append!(Οn, length(lb))
push!(Οf, f)
append!(Οl, lb)
append!(Οu, ub)
end
(:control, f::ControlConstraint, lb, ub) => begin
append!(ΞΎn, length(lb))
push!(ΞΎf, f)
append!(ΞΎl, lb)
append!(ΞΎu, ub)
end
(:control, rg, lb, ub) => begin
append!(uind, rg)
append!(ul, lb)
append!(uu, ub)
end
(:state, f::StateConstraint, lb, ub) => begin
append!(Ξ·n, length(lb))
push!(Ξ·f, f)
append!(Ξ·l, lb)
append!(Ξ·u, ub)
end
(:state, rg, lb, ub) => begin
append!(xind, rg)
append!(xl, lb)
append!(xu, ub)
end
(:mixed, f::MixedConstraint, lb, ub) => begin
append!(Οn, length(lb))
push!(Οf, f)
append!(Οl, lb)
append!(Οu, ub)
end
(:variable, f::VariableConstraint, lb, ub) => begin
append!(ΞΈn, length(lb))
push!(ΞΈf, f)
append!(ΞΈl, lb)
append!(ΞΈu, ub)
end
(:variable, rg, lb, ub) => begin
append!(vind, rg)
append!(vl, lb)
append!(vu, ub)
end
_ => error("Internal error")
end
end
ΞΎfn = length(ΞΎf)
Ξ·fn = length(Ξ·f)
Οfn = length(Οf)
Οfn = length(Οf)
ΞΈfn = length(ΞΈf)
function ΞΎ!(val, t, u, v, N = ΞΎfn)
offset = 0
for i = 1:N
z = ((ΞΎf[i])(t, u, v))[:]
val[rg(1 + offset, ΞΎn[i] + offset)] = z
offset += ΞΎn[i]
end
nothing
end
function Ξ·!(val, t, x, v, N = Ξ·fn)
offset = 0
for i = 1:N
val[rg(1 + offset, Ξ·n[i] + offset)] = (Ξ·f[i])(t, x, v)
offset += Ξ·n[i]
end
nothing
end
function Ο!(val, t, x, u, v, N = Οfn)
offset = 0
for i = 1:N
val[rg(1 + offset, Οn[i] + offset)] = (Οf[i])(t, x, u, v)
offset += Οn[i]
end
nothing
end
function Ο!(val, x0, xf, v, N = Οfn)
offset = 0
for i = 1:N
val[rg(1 + offset, Οn[i] + offset)] = (Οf[i])(x0, xf, v)
offset += Οn[i]
end
nothing
end
function ΞΈ!(val, v, N = ΞΈfn)
offset = 0
for i = 1:N
val[rg(1 + offset, ΞΈn[i] + offset)] = (ΞΈf[i])(v)
offset += ΞΈn[i]
end
nothing
end
return ((ΞΎl, ΞΎ!, ΞΎu), (Ξ·l, Ξ·!, Ξ·u), (Οl, Ο!, Οu), (Οl, Ο!, Οu), (ΞΈl, ΞΈ!, ΞΈu), (uind, ul, uu), (xind, xl, xu), (vind, vl, vu))
end
function test_alloc_good(ocp, N)
begin
println(" getters and setters")
begin
function get_state(XU, i, n, m)
if n == 1
return XU[(i - 1) * (n + m) + 1]
else
return @view(XU[(i - 1) * (n + m) + 1:(i - 1) * (n + m) + n])
end
end
function get_control(XU, i, n, m)
if m == 1
return XU[(i - 1) * (n + m) + n + 1]
else
return @view(XU[(i - 1) * (n + m) + n + 1:(i - 1) * (n + m) + n + m])
end
end
function set_control_constraint!(C, i, valΞΎ, nΞΎ, nc)
C[(i - 1) * nc + 1:(i - 1) * nc + nΞΎ] = valΞΎ
end
function set_state_constraint!(C, i, valΞ·, nΞ·, nΞΎ, nc)
C[(i - 1) * nc + nΞΎ + 1:(i - 1) * nc + nΞΎ + nΞ·] = valΞ·
end
function set_mixed_constraint!(C, i, valΟ, nΟ, nΞΎ, nΞ·, nc)
C[(i - 1) * nc + nΞΎ + nΞ· + 1:(i - 1) * nc + nΞΎ + nΞ· + nΟ] = valΟ
end
end
println(" call nlp_constraints_optimized")
begin
((ΞΎl, ΞΎ!, ΞΎu), (Ξ·l, Ξ·!, Ξ·u), (Οl, Ο!, Οu), (Οl, Ο!, Οu), (ΞΈl, ΞΈ!, ΞΈu), (ul, uind, uu), (xl, xind, xu), (vl, vind, vu)) = nlp_constraints_optimized(ocp)
end
println(" declare variables")
begin
v = Real[]
n = state_dimension(ocp)
m = control_dimension(ocp)
times = LinRange(0, 1, N)
XU = zeros(N * (n + m))
nΞΎ = length(ΞΎl)
nΞ· = length(Ξ·l)
nΟ = length(Οl)
nc = nΞΎ + nΞ· + nΟ
C = zeros(N * nc)
valΞΎ = SizedVector{nΞΎ}(zeros(nΞΎ))
valΞ· = SizedVector{nΞ·}(zeros(nΞ·))
valΟ = SizedVector{nΟ}(zeros(nΟ))
x = SizedVector{n}(zeros(n))
u = SizedVector{m}(zeros(m))
end
t = 0
println(" start for loop")
for i = 1:N
t = times[i]
x[:] = XU[(i - 1) * (n + m) + 1:(i - 1) * (n + m) + n]
u[:] = @view(XU[(i - 1) * (n + m) + n + 1:(i - 1) * (n + m) + n + m])
ΞΎ!(valΞΎ, t, u, v)
Ξ·!(valΞ·, t, x, v)
Ο!(valΟ, t, x, u, v)
C[(i - 1) * nc + 1:(i - 1) * nc + nΞΎ] = valΞΎ
C[(i - 1) * nc + nΞΎ + 1:(i - 1) * nc + nΞΎ + nΞ·] = valΞ·
C[(i - 1) * nc + nΞΎ + nΞ· + 1:(i - 1) * nc + nΞΎ + nΞ· + nΟ] = valΟ
end
println(" end for loop")
nothing
end
end
N = 10000
$(Expr(:toplevel, :(test_alloc_good(ocp, N))))
$(Expr(:toplevel, :(test_alloc_bad(ocp, N))))
println("----------------------------------------")
println("good code")
@time test_alloc_good(ocp, N)
println()
println("bad code")
@time test_alloc_bad(ocp, N)
| CTBase | https://github.com/control-toolbox/CTBase.jl.git |
|
[
"MIT"
] | 0.14.0 | 68e9ab3053e0b38e8e574f2809dd280c9dafa338 | docs | 5992 | # Benchmarks for bench_usage.jl
```julia
using BenchmarkTools
struct Fun_dim_usage_each_call
f::Function
end
function (F::Fun_dim_usage_each_call)(t::Real, x::Vector{<:Real}, u::Vector{<:Real}, args...; kwargs...)
x_ = if length(x) == 1
(x[1],)
else
(x,)
end
u_ = if length(u) == 1
(u[1],)
else
(u,)
end
y = F.f(t, x_..., u_..., args...; kwargs...)
return if y isa Real
[y]
else
y
end
end
t = 1
x = [10]
u = [100]
F = Fun_dim_usage_each_call(((t, x, u)->begin
x + u
end))
@benchmark F(t, x, u)
```
```bash
BenchmarkTools.Trial: 10000 samples with 492 evaluations.
Range (min β¦ max): 221.518 ns β¦ 11.205 ΞΌs β GC (min β¦ max): 0.00% β¦ 0.00%
Time (median): 235.602 ns β GC (median): 0.00%
Time (mean Β± Ο): 287.003 ns Β± 268.401 ns β GC (mean Β± Ο): 2.30% Β± 3.26%
βββ
ββ
βββββ ββ β
βββββββββββββββββββββββββββββββββββββββββββββ
βββ
ββ
ββ
β
βββ
βββββ β
222 ns Histogram: log(frequency) by time 780 ns <
Memory estimate: 112 bytes, allocs estimate: 4.
```
```julia
F = Fun_dim_usage_each_call(((t, x, u)->begin
x + u[1]
end))
@benchmark F(t, x, u)
```
```bash
BenchmarkTools.Trial: 10000 samples with 487 evaluations.
Range (min β¦ max): 219.608 ns β¦ 13.100 ΞΌs β GC (min β¦ max): 0.00% β¦ 96.18%
Time (median): 243.357 ns β GC (median): 0.00%
Time (mean Β± Ο): 282.687 ns Β± 268.154 ns β GC (mean Β± Ο): 2.82% Β± 3.28%
βββ
βββββββββββββ ββ β
βββββββββββββββββββββββββββββββββββββββββββββββββ
ββ
β
β
ββ
ββ
βββ
β
β
220 ns Histogram: log(frequency) by time 664 ns <
Memory estimate: 112 bytes, allocs estimate: 4.
```
```julia
struct Fun_dim_usage_parametrization{dim_x, dim_u}
f::Function
end
function (F::Fun_dim_usage_parametrization{1, 1})(t::Real, x::Vector{<:Real}, u::Vector{<:Real}, args...; kwargs...)
return [F.f(t, x[1], u[1], args...; kwargs...)]
end
F = Fun_dim_usage_parametrization{1, 1}(((t, x, u)->begin
x + u
end))
@benchmark F(t, x, u)
```
```bash
BenchmarkTools.Trial: 10000 samples with 943 evaluations.
Range (min β¦ max): 100.929 ns β¦ 7.845 ΞΌs β GC (min β¦ max): 0.00% β¦ 0.00%
Time (median): 113.607 ns β GC (median): 0.00%
Time (mean Β± Ο): 154.201 ns Β± 217.625 ns β GC (mean Β± Ο): 2.17% Β± 3.39%
ββββ
ββββββββββββββββββ β
ββββββββββββββββββββββββββββββββββββββ
β
ββ
βββ
β
β
β
β
ββββββββ
β
β
βββ β
101 ns Histogram: log(frequency) by time 590 ns <
Memory estimate: 64 bytes, allocs estimate: 1.
```
```julia
F = Fun_dim_usage_parametrization{1, 1}(((t, x, u)->begin
x + u[1]
end))
@benchmark F(t, x, u)
```
```bash
BenchmarkTools.Trial: 10000 samples with 932 evaluations.
Range (min β¦ max): 108.153 ns β¦ 9.895 ΞΌs β GC (min β¦ max): 0.00% β¦ 97.64%
Time (median): 121.779 ns β GC (median): 0.00%
Time (mean Β± Ο): 163.448 ns Β± 209.973 ns β GC (mean Β± Ο): 2.82% Β± 3.41%
ββββββββββββββββββββ β
βββββββββββββββββββββββββββββββββββ
ββββ
ββ
βββ
β
ββ
β
ββ
β
β
βββββββββ β
108 ns Histogram: log(frequency) by time 637 ns <
Memory estimate: 64 bytes, allocs estimate: 1.
```
```julia
Ο(t, x, u) = begin
x[1] + u[1]
end
@benchmark Ο(t, x, u)
```
```bash
BenchmarkTools.Trial: 10000 samples with 996 evaluations.
Range (min β¦ max): 23.104 ns β¦ 331.326 ns β GC (min β¦ max): 0.00% β¦ 0.00%
Time (median): 23.441 ns β GC (median): 0.00%
Time (mean Β± Ο): 25.784 ns Β± 8.268 ns β GC (mean Β± Ο): 0.00% Β± 0.00%
β β β β
βββββββββββ
β
β
ββ
ββββββββββ
βββ
βββββββββββββββ
βββββ
β
ββββ
β
β
ββ
βββ β
23.1 ns Histogram: log(frequency) by time 52.7 ns <
Memory estimate: 0 bytes, allocs estimate: 0.
```
```julia
Ο(t, x, u) = begin
x + u
end
@benchmark Ο(t, x[1], u[1])
```
```bash
BenchmarkTools.Trial: 10000 samples with 983 evaluations.
Range (min β¦ max): 56.845 ns β¦ 624.227 ns β GC (min β¦ max): 0.00% β¦ 0.00%
Time (median): 57.128 ns β GC (median): 0.00%
Time (mean Β± Ο): 65.067 ns Β± 20.266 ns β GC (mean Β± Ο): 0.00% Β± 0.00%
ββ βββ β β
ββββββββββββββββββββββββββββββββββββββββββββββββββ
βββ
β
β
β
β
β
ββ β
56.8 ns Histogram: log(frequency) by time 130 ns <
Memory estimate: 0 bytes, allocs estimate: 0.
```
```julia
ΞΈ(t, x, u) = begin
x + u
end
@benchmark (ΞΈ(t, x, u))[1]
```
```bash
BenchmarkTools.Trial: 10000 samples with 965 evaluations.
Range (min β¦ max): 83.120 ns β¦ 5.867 ΞΌs β GC (min β¦ max): 0.00% β¦ 97.83%
Time (median): 94.203 ns β GC (median): 0.00%
Time (mean Β± Ο): 123.157 ns Β± 151.340 ns β GC (mean Β± Ο): 3.19% Β± 3.29%
ββββ
ββββββββββ βββββββββββββ β
βββββββββββββββββββββββββββββββββββββββββββ
ββ
β
ββ
β
β
βββ
βββ
β
β
βββ
β
83.1 ns Histogram: log(frequency) by time 408 ns <
Memory estimate: 64 bytes, allocs estimate: 1.
```
```julia
ΞΎ(t, x, u) = begin
x + u
end
a = x[1]
b = u[1]
@benchmark ΞΎ(t, a, b)
```
```bash
BenchmarkTools.Trial: 10000 samples with 996 evaluations.
Range (min β¦ max): 22.802 ns β¦ 3.982 ΞΌs β GC (min β¦ max): 0.00% β¦ 0.00%
Time (median): 25.470 ns β GC (median): 0.00%
Time (mean Β± Ο): 36.790 ns Β± 90.791 ns β GC (mean Β± Ο): 0.00% Β± 0.00%
ββββββββββββ β
βββββββββββββββββββββββββββ
β
β
β
β
β
ββ
ββ
β
βββββ
ββββ
βββββββββββββ β
22.8 ns Histogram: log(frequency) by time 182 ns <
Memory estimate: 0 bytes, allocs estimate: 0.
```
| CTBase | https://github.com/control-toolbox/CTBase.jl.git |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.