licenses
sequencelengths
1
3
version
stringclasses
677 values
tree_hash
stringlengths
40
40
path
stringclasses
1 value
type
stringclasses
2 values
size
stringlengths
2
8
text
stringlengths
25
67.1M
package_name
stringlengths
2
41
repo
stringlengths
33
86
[ "MIT" ]
1.0.1
b4bf1003586f2ee6cb98d8df29e88cbbfacd2ea1
code
13575
function mLiQSS_integrate(Al::QSSAlgorithm{:nmliqss,O},CommonqssData::CommonQSS_data{0},liqssdata::LiQSS_data{O,false},specialLiqssData::SpecialLiqssQSS_data, odep::NLODEProblem{PRTYPE,T,0,0,CS},f::Function,jac::Function,SD::Function,exacteA::Function) where {PRTYPE,CS,O,T} cacheA=specialLiqssData.cacheA direction=specialLiqssData.direction #qminus= specialLiqssData.qminus buddySimul=specialLiqssData.buddySimul ft = CommonqssData.finalTime;initTime = CommonqssData.initialTime;relQ = CommonqssData.dQrel;absQ = CommonqssData.dQmin;maxErr=CommonqssData.maxErr; #setprecision(BigFloat,64) #savetimeincrement=CommonqssData.savetimeincrement;savetime = savetimeincrement quantum = CommonqssData.quantum;nextStateTime = CommonqssData.nextStateTime;nextEventTime = CommonqssData.nextEventTime; nextInputTime = CommonqssData.nextInputTime tx = CommonqssData.tx;tq = CommonqssData.tq;x = CommonqssData.x;q = CommonqssData.q;t=CommonqssData.t savedVars=CommonqssData.savedVars; savedTimes=CommonqssData.savedTimes;integratorCache=CommonqssData.integratorCache;taylorOpsCache=CommonqssData.taylorOpsCache;#cacheSize=odep.cacheSize #prevStepVal = specialLiqssData.prevStepVal #a=deepcopy(odep.initJac); #a=liqssdata.a #u=liqssdata.u;#tu=liqssdata.tu #*************************************************************** qaux=liqssdata.qaux;dxaux=liqssdata.dxaux#= olddx=liqssdata.olddx; ; olddxSpec=liqssdata.olddxSpec =# d=[0.0] numSteps = Vector{Int}(undef, T) pp=pointer(Vector{NTuple{2,Float64}}(undef, 7)) respp = pointer(Vector{Float64}(undef, 2)) temporaryhelper = Vector{Int}(undef, 1) temporaryhelper[1]=0 savedVarsQ = Vector{Vector{Float64}}(undef, T) savedVarsQ[1]=Vector{Float64}() ;savedVarsQ[2]=Vector{Float64}() cacherealPosi=Vector{Vector{Float64}}(undef,3);cacherealPosj=Vector{Vector{Float64}}(undef,3); for i =1:3 cacherealPosi[i]=zeros(2) cacherealPosj[i]=zeros(2) end exacteA(q,cacheA,1,1) # this 'unnecessary call' 'compiles' the function and it helps remove allocations when used after !!! #@show exacteA #######################################compute initial values################################################## n=1 for k = 1:O # compute initial derivatives for x and q (similar to a recursive way ) n=n*k for i = 1:T q[i].coeffs[k] = x[i].coeffs[k] # q computed from x and it is going to be used in the next x end for i = 1:T clearCache(taylorOpsCache,Val(CS),Val(O));f(i,q,t ,taylorOpsCache) ndifferentiate!(integratorCache,taylorOpsCache[1] , k - 1) x[i].coeffs[k+1] = (integratorCache.coeffs[1]) / n # /fact cuz i will store der/fac like the convention...to extract the derivatives (at endof sim) multiply by fac derderx=coef[3]*fac(2) end end for i = 1:T numSteps[i]=0 #= @timeit "savevars" =# push!(savedVars[i],x[i][0]) #push!(savedVarsQ[i],q[i][0]) push!(savedTimes[i],0.0) quantum[i] = relQ * abs(x[i].coeffs[1]) ;quantum[i]=quantum[i] < absQ ? absQ : quantum[i];quantum[i]=quantum[i] > maxErr ? maxErr : quantum[i] updateQ(Val(O),i,x,q,quantum,exacteA,d,cacheA,dxaux,qaux,tx,tq,initTime,ft,nextStateTime) end for i = 1:T clearCache(taylorOpsCache,Val(CS),Val(O));f(i,q,t,taylorOpsCache); computeDerivative(Val(O), x[i], taylorOpsCache[1])#0.0 used to be elapsed...even down below not neeeded anymore Liqss_reComputeNextTime(Val(O), i, initTime, nextStateTime, x, q, quantum) computeNextInputTime(Val(O), i, initTime, 0.1,taylorOpsCache[1] , nextInputTime, x, quantum)#not complete, currently elapsed=0.1 is temp until fixed #prevStepVal[i]=x[i][0]#assignXPrevStepVals(Val(O),prevStepVal,x,i) end ################################################################################################################################################################### #################################################################################################################################################################### #---------------------------------------------------------------------------------while loop------------------------------------------------------------------------- ################################################################################################################################################################### #################################################################################################################################################################### simt = initTime ;simulStepCount=0;totalSteps=0; totalStepswhenCycles=0 #simul=false while simt < ft && totalSteps < 300000000 sch = updateScheduler(Val(T),nextStateTime,nextEventTime, nextInputTime) simt = sch[2];index = sch[1] if simt>ft #simt=ft push!(savedVars[1],x[1][0])# this is not needed as later user can get any value through interpolation push!(savedTimes[1],ft) push!(savedVars[2],x[2][0])# this is not needed as later user can get any value through interpolation push!(savedTimes[2],ft) break end numSteps[index]+=1;totalSteps+=1 if simulStepCount>0 totalStepswhenCycles+=1 end t[0]=simt ##########################################state######################################## if sch[3] == :ST_STATE xitemp=x[index][0] elapsed = simt - tx[index];integrateState(Val(O),x[index],elapsed);tx[index] = simt quantum[index] = relQ * abs(x[index].coeffs[1]) ;quantum[index]=quantum[index] < absQ ? absQ : quantum[index];quantum[index]=quantum[index] > maxErr ? maxErr : quantum[index] #dirI=x[index][0]-savedVars[index][end] dirI=x[index][0]-xitemp for b in (jac(index) ) # update Qb : to be used to calculate exacte Aindexb elapsedq = simt - tq[b] ; if elapsedq>0 integrateState(Val(O-1),q[b],elapsedq);tq[b]=simt end end firstguess=updateQ(Val(O),index,x,q,quantum,exacteA,d,cacheA,dxaux,qaux,tx,tq,simt,ft,nextStateTime) ;tq[index] = simt #----------------------------------------------------check dependecy cycles--------------------------------------------- for j in SD(index) for b in (jac(j) ) # update Qb: to be used to calculate exacte Ajb elapsedq = simt - tq[b] ; if elapsedq>0 integrateState(Val(O-1),q[b],elapsedq); tq[b]=simt end end exacteA(q,cacheA,index,j);aij=cacheA[1] exacteA(q,cacheA,j,index);aji=cacheA[1] #= exacteA(x,cacheA,index,j);aij=cacheA[1] exacteA(x,cacheA,j,index);aji=cacheA[1] =# if j!=index && aij*aji!=0.0 #prvStepValj= savedVars[j][end]#getPrevStepVal(prevStepVal,j) for i =1:3 cacherealPosi[i][1]=0.0; cacherealPosi[i][2]=0.0 cacherealPosj[i][1]=0.0; cacherealPosj[i][2]=0.0 end if misCycle_and_simulUpdate(cacherealPosi,cacherealPosj,respp,pp,temporaryhelper,Val(O),index,j,dirI,firstguess,x,q,quantum,exacteA,cacheA,dxaux,qaux,tx,tq,simt,ft) simulStepCount+=1 #= clearCache(taylorOpsCache,Val(CS),Val(O));f(index,q,t,taylorOpsCache);computeDerivative(Val(O), x[index], taylorOpsCache[1]) # clearCache(taylorOpsCache,Val(CS),Val(O));f(j,q,t,taylorOpsCache);computeDerivative(Val(O), x[j], taylorOpsCache[1]) Liqss_reComputeNextTime(Val(O), index, simt, nextStateTime, x, q, quantum) # Liqss_reComputeNextTime(Val(O), j, simt, nextStateTime, x, q, quantum) for k in SD(j) #j influences k if k!=index && k!=j elapsedx = simt - tx[k]; x[k].coeffs[1] = x[k](elapsedx);tx[k] = simt elapsedq = simt - tq[k]; if elapsedq > 0 ;integrateState(Val(O-1),q[k],elapsedq); tq[k] = simt end for b in (jac(k) ) elapsedq = simt - tq[b] if elapsedq>0 integrateState(Val(O-1),q[b],elapsedq);tq[b]=simt end end clearCache(taylorOpsCache,Val(CS),Val(O));f(k,q,t,taylorOpsCache);computeDerivative(Val(O), x[k], taylorOpsCache[1]) Liqss_reComputeNextTime(Val(O), k, simt, nextStateTime, x, q, quantum) end#end if k!=0 end#end for k depend on j =# end#end ifcycle check # end #end if allow one simulupdate end#end if j!=0 end#end FOR_cycle check #------------------------------------------------------------------------------------- #---------------------------------normal liqss: proceed-------------------------------- #------------------------------------------------------------------------------------- for c in SD(index) #index influences c elapsedx = simt - tx[c] ;if elapsedx>0 x[c].coeffs[1] = x[c](elapsedx);tx[c] = simt end # elapsedq = simt - tq[c];if elapsedq > 0 ;integrateState(Val(O-1),q[c],elapsedq);tq[c] = simt end # c never been visited #= for b in (jac(c) ) # update other influences elapsedq = simt - tq[b] ;if elapsedq>0 integrateState(Val(O-1),q[b],elapsedq);tq[b]=simt end end =# clearCache(taylorOpsCache,Val(CS),Val(O)); f(c,q,t,taylorOpsCache);computeDerivative(Val(O), x[c], taylorOpsCache[1]) Liqss_reComputeNextTime(Val(O), c, simt, nextStateTime, x, q, quantum) end#end for SD #= if simt==0.9341868806288225 @show simt,index,totalSteps,totalStepswhenCycles,simulStepCount @show x,q @show nextStateTime end =# ##################################input######################################## elseif sch[3] == :ST_INPUT # time of change has come to a state var that does not depend on anything...no one will give you a chance to change but yourself @show index elapsed = simt - tx[index];integrateState(Val(O),x[index],elapsed);tx[index] = simt quantum[index] = relQ * abs(x[index].coeffs[1]) ;quantum[index]=quantum[index] < absQ ? absQ : quantum[index];quantum[index]=quantum[index] > maxErr ? maxErr : quantum[index] for k = 1:O q[index].coeffs[k] = x[index].coeffs[k] end; tq[index] = simt for b in jac(index) elapsedq = simt - tq[b];if elapsedq>0 integrateState(Val(O-1),q[b],elapsedq);tq[b]=simt end end clearCache(taylorOpsCache,Val(CS),Val(O));f(index,q,t,taylorOpsCache) computeNextInputTime(Val(O), index, simt, elapsed,taylorOpsCache[1] , nextInputTime, x, quantum) computeDerivative(Val(O), x[index], taylorOpsCache[1]#= ,integratorCache,elapsed =#) for j in (SD(index)) elapsedx = simt - tx[j]; if elapsedx > 0 x[j].coeffs[1] = x[j](elapsedx);tx[j] = simt quantum[j] = relQ * abs(x[j].coeffs[1]) ;quantum[j]=quantum[j] < absQ ? absQ : quantum[j];quantum[j]=quantum[j] > maxErr ? maxErr : quantum[j] end elapsedq = simt - tq[j];if elapsedq > 0 integrateState(Val(O-1),q[j],elapsedq);tq[j] = simt end#q needs to be updated here for recomputeNext for b in jac(j) elapsedq = simt - tq[b];if elapsedq>0 integrateState(Val(O-1),q[b],elapsedq);tq[b]=simt end end clearCache(taylorOpsCache,Val(CS),Val(O));f(j,q,t,taylorOpsCache);computeDerivative(Val(O), x[j], taylorOpsCache[1]#= ,integratorCache,elapsed =#) reComputeNextTime(Val(O), j, simt, nextStateTime, x, q, quantum) end#end for #= for i = 1:length(SZ[index]) j = SZ[index][i] if j != 0 for b = 1:T # elapsed update all other vars that this derj depends upon. if zc_SimpleJac[j][b] != 0 elapsedx = simt - tx[b];if elapsedx>0 integrateState(Val(O),x[b],integratorCache,elapsedx);tx[b]=simt end # elapsedq = simt - tq[b];if elapsedq>0 integrateState(Val(O-1),q[b],elapsedq);tq[b]=simt end end end #= clearCache(taylorOpsCache,Val(CS),Val(O))#normally and later i should update x,q (integrate q=q+e derQ for higher orders) computeNextEventTime(j,zcf[j](x,d,t,taylorOpsCache),oldsignValue,simt, nextEventTime, quantum)#,maxIterer) =# clearCache(taylorOpsCache,Val(CS),Val(O));f(-1,j,-1,x,d,t,taylorOpsCache) computeNextEventTime(j,taylorOpsCache[1],oldsignValue,simt, nextEventTime, quantum) end end =# #################################################################event######################################## end#end state/input/event push!(savedVars[index],(x[index][0]+q[index][0])/2) push!(savedTimes[index],simt) # push!(savedVarsQ[index],q[index][0]) end#end while #@show temporaryhelper #= @timeit "createSol" =# createSol(Val(T),Val(O),savedTimes,savedVars, "mLiqss$O",string(odep.prname),absQ,totalSteps,simulStepCount,0,numSteps,ft) #createSol(Val(T),Val(O),savedTimes,savedVars,savedVarsQ, "mliqss$O",string(odep.prname),absQ,totalSteps#= ,totalStepswhenCycles =#,simulStepCount,numSteps,ft) # change this to function /constrcutor...remember it is bad to access structs (objects) directly end
QuantizedSystemSolver
https://github.com/mongibellili/QuantizedSystemSolver.jl.git
[ "MIT" ]
1.0.1
b4bf1003586f2ee6cb98d8df29e88cbbfacd2ea1
code
22594
function nLiQSS_integrate(CommonqssData::CommonQSS_data{O,0},liqssdata::LiQSS_data{O,false},specialLiqssData::SpecialLiqssQSS_data, odep::NLODEProblem{PRTYPE,T,0,0,CS},f::Function,jac::Function,SD::Function,map::Function) where {PRTYPE,O,CS,T} cacheA=specialLiqssData.cacheA direction=specialLiqssData.direction qminus= specialLiqssData.qminus buddySimul=specialLiqssData.buddySimul ft = CommonqssData.finalTime;initTime = CommonqssData.initialTime;relQ = CommonqssData.dQrel;absQ = CommonqssData.dQmin;maxErr=CommonqssData.maxErr; savetimeincrement=CommonqssData.savetimeincrement;savetime = savetimeincrement quantum = CommonqssData.quantum;nextStateTime = CommonqssData.nextStateTime;nextEventTime = CommonqssData.nextEventTime;nextInputTime = CommonqssData.nextInputTime tx = CommonqssData.tx;tq = CommonqssData.tq;x = CommonqssData.x;q = CommonqssData.q;t=CommonqssData.t savedVars=CommonqssData.savedVars; savedTimes=CommonqssData.savedTimes;integratorCache=CommonqssData.integratorCache;taylorOpsCache=CommonqssData.taylorOpsCache;cacheSize=odep.cacheSize # prevStepVal = specialQSSdata.prevStepVal #a=deepcopy(odep.initJac); #a=liqssdata.a #u=liqssdata.u;#tu=liqssdata.tu #*************************************************************** qaux=liqssdata.qaux;olddx=liqssdata.olddx;dxaux=liqssdata.dxaux;olddxSpec=liqssdata.olddxSpec #numSteps = zeros(MVector{T,Int}) numSteps = Vector{Int}(undef, T) #######################################compute initial values################################################## n=1 for k = 1:O # compute initial derivatives for x and q (similar to a recursive way ) n=n*k for i = 1:T q[i].coeffs[k] = x[i].coeffs[k] # q computed from x and it is going to be used in the next x end for i = 1:T clearCache(taylorOpsCache,Val(CS),Val(O));f(i,q,t ,taylorOpsCache) ndifferentiate!(integratorCache,taylorOpsCache[1] , k - 1) x[i].coeffs[k+1] = (integratorCache.coeffs[1]) / n # /fact cuz i will store der/fac like the convention...to extract the derivatives (at endof sim) multiply by fac derderx=coef[3]*fac(2) end end for i = 1:T end for i = 1:T #= p=1 for k=1:O p=p*k m=p/k for j=1:T if j!=i u[i][j][k]=p*x[i][k]-a[i][i]*m*q[i][k-1]-a[i][j]*m*q[j][k-1] else u[i][j][k]=p*x[i][k]-a[i][i]*m*q[i][k-1] end end end =# numSteps[i]=0 push!(savedVars[i],x[i][0]) push!(savedTimes[i],0.0) quantum[i] = relQ * abs(x[i].coeffs[1]) ;quantum[i]=quantum[i] < absQ ? absQ : quantum[i];quantum[i]=quantum[i] > maxErr ? maxErr : quantum[i] updateQ(Val(O),i,x,q,quantum,map,cacheA,dxaux,qaux,olddx,tx,tq,initTime,ft,nextStateTime) end for i = 1:T clearCache(taylorOpsCache,Val(CS),Val(O));f(i,q,t,taylorOpsCache);computeDerivative(Val(O), x[i], taylorOpsCache[1])#0.0 used to be elapsed...even down below not neeeded anymore Liqss_reComputeNextTime(Val(O), i, initTime, nextStateTime, x, q, quantum) computeNextInputTime(Val(O), i, initTime, 0.1,taylorOpsCache[1] , nextInputTime, x, quantum)#not complete, currently elapsed=0.1 is temp until fixed end ################################################################################################################################################################### #################################################################################################################################################################### #---------------------------------------------------------------------------------while loop------------------------------------------------------------------------- ################################################################################################################################################################### #################################################################################################################################################################### simt = initTime ;simulStepCount=0;totalSteps=0;prevStepTime=initTime simul=false @show map while simt < ft && totalSteps < 20 #= if breakloop[1]>5.0 break end =# sch = updateScheduler(Val(T),nextStateTime,nextEventTime, nextInputTime) simt = sch[2] #= if simt>ft saveLast!(Val(T),Val(O),savedVars, savedTimes,saveVarsHelper,ft,prevStepTime, x) break ###################################################break########################################## end =# index = sch[1] totalSteps+=1 t[0]=simt ##########################################state######################################## if sch[3] == :ST_STATE elapsed = simt - tx[index];integrateState(Val(O),x[index],elapsed);tx[index] = simt quantum[index] = relQ * abs(x[index].coeffs[1]) ;quantum[index]=quantum[index] < absQ ? absQ : quantum[index];quantum[index]=quantum[index] > maxErr ? maxErr : quantum[index] #= @timeit "newDiff" =# #= newDiff=x[index][0]-getPrevStepVal(prevStepVal,index) dir=direction[index] if newDiff*dir <0.0 direction[index]=-dir elseif newDiff==0 && dir!=0.0 direction[index]=0.0 elseif newDiff!=0 && dir==0.0 direction[index]=newDiff else end =# #nupdate different from update: it has the modification u=x-aq instead of u1=u1+e*u2 #= @timeit "nupdateQ" =# updateQ(Val(O),index,x,q,quantum,map,cacheA,dxaux,qaux,olddx,tx,tq,simt,ft,nextStateTime) ;tq[index] = simt # Liqss_ComputeNextTime(Val(O), index, simt, nextStateTime, x, q, quantum) olddxSpec[index][1]=x[index][1] #----------------------------------------------------check dependecy cycles--------------------------------------------- #qminus[index]= simul=false buddySimul[1]=0;buddySimul[2]=0; for j in SD(index) map(q,cacheA,index,j) aij=cacheA[1] map(q,cacheA,j,index) aji=cacheA[1] if j!=index && aij*aji!=0.0 #if buddySimul[1]==0 # allow single simul...later remove and allow multiple simul # prvStepVal= getPrevStepVal(prevStepVal,j) #= @timeit "if cycle" =# if nisCycle_and_simulUpdate(Val(O),index,j#= ,prvStepVal =#,direction,x,q,quantum,map,cacheA,dxaux,qaux,olddx,olddxSpec,tx,tq,simt,ft,qminus#= ,nextStateTime =#) simulStepCount+=1 simul=true #qminus[index]=1.0 if buddySimul[1]==0 # this is for testing: coded towars advection (2 vars at most) buddySimul[1]=j else buddySimul[2]=j end for b in (jac(j) ) elapsedq = simt - tq[b] ;if elapsedq>0 qminus[b]=q[b][0];integrateState(Val(O-1),q[b],elapsedq);tq[b]=simt end # elapsedx = simt - tx[b];if elapsedx > 0 integrateState(Val(O),x[b],elapsedx);tx[b] = simt end end for b in ( jac(index) ) elapsedq = simt - tq[b] ;if elapsedq>0 qminus[b]=q[b][0];integrateState(Val(O-1),q[b],elapsedq);tq[b]=simt end # elapsedx = simt - tx[b];if elapsedx > 0 integrateState(Val(O),x[b],elapsedx);tx[b] = simt end end #compute olddxSpec_i using new qi and qjaux to annihilate the influence of qi (keep j influence only) when finding aij=(dxi-dxi)/(qj-qjaux) # end#end?????????????????????????????? # @timeit "block2 after simul" begin qjtemp=q[j][0];q[j][0]=qaux[j][1] clearCache(taylorOpsCache,Val(CS),Val(O)); #= @timeit "f" =# f(index,q,t,taylorOpsCache);#computeDerivative(Val(O), x[index], taylorOpsCache[1]) olddxSpec[index][1]=taylorOpsCache[1][0] clearCache(taylorOpsCache,Val(CS),Val(O)); #= @timeit "f" =# f(j,q,t,taylorOpsCache);#computeDerivative(Val(O), x[j], taylorOpsCache[1]) olddx[j][1]=taylorOpsCache[1][0] # needed to find a_jj (qi annihilated, qj kept) # olddxSpec[index][1]= x[index][1] # new qi used now so it does not have an effect later on aij q[j][0]=qjtemp # get back qj qitemp=q[index][0];q[index][0]=qaux[index][1]# clearCache(taylorOpsCache,Val(CS),Val(O)); #= @timeit "f" =# f(index,q,t,taylorOpsCache);#computeDerivative(Val(O), x[index], taylorOpsCache[1]) olddx[index][1]=taylorOpsCache[1][0] clearCache(taylorOpsCache,Val(CS),Val(O)); #= @timeit "f" =# f(j,q,t,taylorOpsCache);#computeDerivative(Val(O), x[j], taylorOpsCache[1]) olddxSpec[j][1]=taylorOpsCache[1][0] # new qj used now so it does not have an effect later on aji q[index][0]=qitemp clearCache(taylorOpsCache,Val(CS),Val(O));f(index,q,t,taylorOpsCache);computeDerivative(Val(O), x[index], taylorOpsCache[1]) clearCache(taylorOpsCache,Val(CS),Val(O));f(j,q,t,taylorOpsCache);computeDerivative(Val(O), x[j], taylorOpsCache[1]) # updateOtherApprox(index,j,x,q,map,cacheA,qaux,olddxSpec) # updateOtherApprox(j,index,x,q,map,cacheA,qaux,olddxSpec) Liqss_reComputeNextTime(Val(O), index, simt, nextStateTime, x, q, quantum) Liqss_reComputeNextTime(Val(O), j, simt, nextStateTime, x, q, quantum) for k in SD(j) #j influences k if k!=index && k!=j elapsedx = simt - tx[k]; x[k].coeffs[1] = x[k](elapsedx);tx[k] = simt elapsedq = simt - tq[k]; if elapsedq > 0 qminus[k]=q[k][0];integrateState(Val(O-1),q[k],elapsedq); tq[k] = simt end indexInJacK=false;kInjacK=false for b in (jac(k) ) elapsedq = simt - tq[b] if elapsedq>0 qminus[b]=q[b][0]; integrateState(Val(O-1),q[b],elapsedq); tq[b]=simt end if b==index indexInJacK=true elseif b==k kInjacK=true end end # update akj #i want influence of j on dxk if indexInJacK # index also will influence xk qjtemp=q[j][0];q[j][0]=qaux[j][1] clearCache(taylorOpsCache,Val(CS),Val(O)); f(k,q,t,taylorOpsCache); #to get rid off index influence for akj olddxSpec[k][1]=taylorOpsCache[1][0] q[j][0]=qjtemp else #= differentiate!(integratorCache,x[k]) olddxSpec[k][1] = integratorCache(elapsedx) =# integrateOldx(Val(O),x[k],olddxSpec[k],elapsedx) end clearCache(taylorOpsCache,Val(CS),Val(O));f(k,q,t,taylorOpsCache);computeDerivative(Val(O), x[k], taylorOpsCache[1]) Liqss_reComputeNextTime(Val(O), k, simt, nextStateTime, x, q, quantum) # updateOtherApprox(k,j,x,q,map,cacheA,qaux,olddxSpec)# ##########i want influence of k on k if kInjacK qctemp=q[k][0]; # @timeit "qminus" q[k][0]=qminus[k]# i want only the effect of qc on acc: remove influence of index and j clearCache(taylorOpsCache,Val(CS),Val(O)); #= @timeit "f" =# f(k,q,t,taylorOpsCache); olddx[k][1]=taylorOpsCache[1][0]# acc =(dxc-oldxc)/(qc-qcminus) q[k][0]=qctemp # nupdateLinearApprox(k,x,q,map,cacheA,qminus,olddx)# acc =(dxc-oldxc)/(qc-qcminus) #= else nupdateU_aNull(Val(O),k,x,u,simt)# acc==0 =# end end#end if k!=0 end#end for k depend on j # updateLinearApprox(j,x,q,map,cacheA,qaux,olddx) end#end ifcycle check # end #end if allow one simulupdate end#end if j!=0 end#end FOR_cycle check #------------------------------------------------------------------------------------- #---------------------------------normal liqss: proceed-------------------------------- #------------------------------------------------------------------------------------- for c in SD(index) #index influences c if c==buddySimul[1] || c==buddySimul[2] || (c==index && buddySimul[1]!=0) # buddysimul!=0 means simulstep happened c==j already been taken care off under simul aci=aji already updated after simul and acc=ajj also updated at end of simul #and if c==index acc && aci=aii to be updated below at end; elseif c==index && buddySimul[1]==0 # simulstep did not happen; still no need to update acc & aci =aii (to be updated at end); only recomputeNext needed for b in (jac(c) ) # update other influences elapsedq = simt - tq[b] ;if elapsedq>0 qminus[b]=q[b][0];integrateState(Val(O-1),q[b],elapsedq);tq[b]=simt end end clearCache(taylorOpsCache,Val(CS),Val(O)); #= @timeit "f" =# f(c,q,t,taylorOpsCache) computeDerivative(Val(O), x[c], taylorOpsCache[1]) Liqss_reComputeNextTime(Val(O), c, simt, nextStateTime, x, q, quantum) else# c is another var (not index); it needs aci & acc to be updated elapsedx = simt - tx[c] if elapsedx>0 x[c].coeffs[1] = x[c](elapsedx);tx[c] = simt #= differentiate!(integratorCache,x[c]) olddxSpec[c][1] = integratorCache(elapsedx) =# integrateOldx(Val(O),x[c],olddxSpec[c],elapsedx) end # case simul happened c=k elapsedq = simt - tq[c] if elapsedq > 0 qminus[c]=q[c][0];integrateState(Val(O-1),q[c],elapsedq);tq[c] = simt end # c never been visited buddySimulInJacC=false;cInjacC=false for b in (jac(c) ) # update other influences elapsedq = simt - tq[b] ;if elapsedq>0 qminus[b]=q[b][0];integrateState(Val(O-1),q[b],elapsedq);tq[b]=simt end if (b==buddySimul[1])||(b==buddySimul[2]) buddySimulInJacC=true elseif b==c cInjacC=true end end # update aci #i want influence of index on dxc if buddySimulInJacC # simulupdate happened and qjthrown also will influence dxc #@show 55 qitemp=q[index][0];q[index][0]=qaux[index][1] #to get rid off buddySimul influence;we want only infleuce of index to find aci clearCache(taylorOpsCache,Val(CS),Val(O)); #= @timeit "f" =# f(c,q,t,taylorOpsCache); olddxSpec[c][1]=taylorOpsCache[1][0] q[index][0]=qitemp #= else#buddysimul ie j does not influence c (ie only index influences c) code for c as if no simulstep even if there was a simulupdate (c does not care) differentiate!(integratorCache,x[c]) olddxSpec[c][1] = integratorCache(elapsedx) =## this (as if) updates all Qs involved in dxc (including index) # aci=(dxc-oldspec)/(qithrow-qielaps) end clearCache(taylorOpsCache,Val(CS),Val(O)); #= @timeit "f" =# f(c,q,t,taylorOpsCache) computeDerivative(Val(O), x[c], taylorOpsCache[1]) Liqss_reComputeNextTime(Val(O), c, simt, nextStateTime, x, q, quantum) # updateOtherApprox(c,index,x,q,map,cacheA,qaux,olddxSpec)# error in map if cInjacC qctemp=q[c][0];q[c][0]=qminus[c]# i want only the effect of qc on acc: remove influence of index and j clearCache(taylorOpsCache,Val(CS),Val(O));f(c,q,t,taylorOpsCache); olddx[c][1]=taylorOpsCache[1][0]# acc =(dxc-oldxc)/(qc-qcminus) q[c][0]=qctemp # nupdateLinearApprox(c,x,q,map,cacheA,qminus,olddx)# acc =(dxc-oldxc)/(qc-qcminus) #= else nupdateUaNull(Val(O),c,x,u,simt)# acc==0 =# end end#end if c==index or else end#end for SD # updateLinearApprox(index,x,q,map,cacheA,qaux,olddx)#error in map#######||||||||||||||||||||||||||||||||||||liqss||||||||||||||||||||||||||||||||||||||||| ##################################input######################################## elseif sch[3] == :ST_INPUT # time of change has come to a state var that does not depend on anything...no one will give you a chance to change but yourself @show index elapsed = simt - tx[index];integrateState(Val(O),x[index],elapsed);tx[index] = simt quantum[index] = relQ * abs(x[index].coeffs[1]) ;quantum[index]=quantum[index] < absQ ? absQ : quantum[index];quantum[index]=quantum[index] > maxErr ? maxErr : quantum[index] for k = 1:O q[index].coeffs[k] = x[index].coeffs[k] end; tq[index] = simt for b in jac(index) elapsedq = simt - tq[b];if elapsedq>0 integrateState(Val(O-1),q[b],elapsedq);tq[b]=simt end end clearCache(taylorOpsCache,Val(CS),Val(O));f(index,q,t,taylorOpsCache) computeNextInputTime(Val(O), index, simt, elapsed,taylorOpsCache[1] , nextInputTime, x, quantum) computeDerivative(Val(O), x[index], taylorOpsCache[1]) for j in (SD(index)) elapsedx = simt - tx[j]; if elapsedx > 0 x[j].coeffs[1] = x[j](elapsedx);tx[j] = simt quantum[j] = relQ * abs(x[j].coeffs[1]) ;quantum[j]=quantum[j] < absQ ? absQ : quantum[j];quantum[j]=quantum[j] > maxErr ? maxErr : quantum[j] end elapsedq = simt - tq[j];if elapsedq > 0 integrateState(Val(O-1),q[j],elapsedq);tq[j] = simt end#q needs to be updated here for recomputeNext for b in jac(j) elapsedq = simt - tq[b];if elapsedq>0 integrateState(Val(O-1),q[b],elapsedq);tq[b]=simt end end clearCache(taylorOpsCache,Val(CS),Val(O));f(j,q,t,taylorOpsCache);computeDerivative(Val(O), x[j], taylorOpsCache[1]) reComputeNextTime(Val(O), j, simt, nextStateTime, x, q, quantum) end#end for #= for i = 1:length(SZ[index]) j = SZ[index][i] if j != 0 for b = 1:T # elapsed update all other vars that this derj depends upon. if zc_SimpleJac[j][b] != 0 elapsedx = simt - tx[b];if elapsedx>0 integrateState(Val(O),x[b],elapsedx);tx[b]=simt end # elapsedq = simt - tq[b];if elapsedq>0 integrateState(Val(O-1),q[b],elapsedq);tq[b]=simt end end end #= clearCache(taylorOpsCache,Val(CS),Val(O))#normally and later i should update x,q (integrate q=q+e derQ for higher orders) computeNextEventTime(j,zcf[j](x,d,t,taylorOpsCache),oldsignValue,simt, nextEventTime, quantum)#,maxIterer) =# clearCache(taylorOpsCache,Val(CS),Val(O));f(-1,j,-1,x,d,t,taylorOpsCache) computeNextEventTime(j,taylorOpsCache[1],oldsignValue,simt, nextEventTime, quantum) end end =# #################################################################event######################################## end#end state/input/event push!(savedVars[index],x[index][0]) push!(savedTimes[index],simt) end#end while #= for i=1:T# throw away empty points resize!(savedVars[i],saveVarsHelper[1]) end resize!(savedTimes,saveVarsHelper[1]) =# # print_timer() #@timeit "createSol" createSol(Val(T),Val(O),savedTimes,savedVars, "nLiqss$O",string(odep.prname),absQ,totalSteps,simulStepCount,0,numSteps,ft) # change this to function /constrcutor...remember it is bad to access structs (objects) directly end#end integrate
QuantizedSystemSolver
https://github.com/mongibellili/QuantizedSystemSolver.jl.git
[ "MIT" ]
1.0.1
b4bf1003586f2ee6cb98d8df29e88cbbfacd2ea1
code
14541
function integrate(Al::QSSAlgorithm{:nmliqss,O},CommonqssData::CommonQSS_data{0},liqssdata::LiQSS_data{O,false},specialLiqssData::SpecialLiqssQSS_data, odep::NLODEProblem{PRTYPE,T,0,0,CS},f::Function,jac::Function,SD::Function,exactA::Function) where {PRTYPE,CS,O,T} cacheA=specialLiqssData.cacheA #direction=specialLiqssData.direction #qminus= specialLiqssData.qminus #buddySimul=specialLiqssData.buddySimul ft = CommonqssData.finalTime;initTime = CommonqssData.initialTime;relQ = CommonqssData.dQrel;absQ = CommonqssData.dQmin;maxErr=CommonqssData.maxErr; #savetimeincrement=CommonqssData.savetimeincrement;savetime = savetimeincrement quantum = CommonqssData.quantum;nextStateTime = CommonqssData.nextStateTime;nextEventTime = CommonqssData.nextEventTime; nextInputTime = CommonqssData.nextInputTime tx = CommonqssData.tx;tq = CommonqssData.tq;x = CommonqssData.x;q = CommonqssData.q;t=CommonqssData.t savedVars=CommonqssData.savedVars; savedTimes=CommonqssData.savedTimes;integratorCache=CommonqssData.integratorCache;taylorOpsCache=CommonqssData.taylorOpsCache;#cacheSize=odep.cacheSize #prevStepVal = specialLiqssData.prevStepVal #a=deepcopy(odep.initJac); #a=liqssdata.a #u=liqssdata.u;#tu=liqssdata.tu #*************************************************************** qaux=liqssdata.qaux;dxaux=liqssdata.dxaux#= olddx=liqssdata.olddx; ; olddxSpec=liqssdata.olddxSpec =# d=[0.0]# this is a dummy var used in updateQ and simulUpdate because in the discrete world exactA needs d, this is better than creating new updateQ and simulUpdate functions savedDers = Vector{Vector{Float64}}(undef, T) # savedVarsQ = Vector{Vector{Float64}}(undef, T) #= setprecision(BigFloat,80) pp=pointer(Vector{NTuple{2,BigFloat}}(undef, 7)) respp = pointer(Vector{BigFloat}(undef, 6)) acceptedi=Vector{Vector{BigFloat}}(undef,4*O-1);acceptedj=Vector{Vector{BigFloat}}(undef,4*O-1); #inner vector always of size 2....interval...low and high...later optimize maybe cacheRootsi=Vector{BigFloat}(undef,8*O-4); cacheRootsj=Vector{BigFloat}(undef,8*O-4); =# pp=pointer(Vector{NTuple{2,Float64}}(undef, 7)) respp = pointer(Vector{Float64}(undef, 6)) acceptedi=Vector{Vector{Float64}}(undef,4*O-1);acceptedj=Vector{Vector{Float64}}(undef,4*O-1); cacheRootsi=zeros(8*O-4) #vect of floats to hold roots for simul_analytic cacheRootsj=zeros(8*O-4) for i =1:4*O-1 #3 acceptedi[i]=[0.0,0.0]#zeros(2) acceptedj[i]=[0.0,0.0]#zeros(2) end exactA(q,d,cacheA,1,1,initTime+1e-9) trackSimul = Vector{Int}(undef, 1) numSteps = Vector{Int}(undef, T) #@show f #######################################compute initial values################################################## n=1 for k = 1:O # compute initial derivatives for x and q (similar to a recursive way ) n=n*k for i = 1:T q[i].coeffs[k] = x[i].coeffs[k] # q computed from x and it is going to be used in the next x end for i = 1:T clearCache(taylorOpsCache,Val(CS),Val(O));f(i,q,t ,taylorOpsCache) ndifferentiate!(integratorCache,taylorOpsCache[1] , k - 1) x[i].coeffs[k+1] = (integratorCache.coeffs[1]) / n # /fact cuz i will store der/fac like the convention...to extract the derivatives (at endof sim) multiply by fac derderx=coef[3]*fac(2) end end for i = 1:T numSteps[i]=0 #= @timeit "savevars" =# push!(savedVars[i],x[i][0]) #push!(savedVarsQ[i],q[i][0]) push!(savedTimes[i],0.0) quantum[i] = relQ * abs(x[i].coeffs[1]) ;quantum[i]=quantum[i] < absQ ? absQ : quantum[i];quantum[i]=quantum[i] > maxErr ? maxErr : quantum[i] updateQ(Val(O),i,x,q,quantum,exactA,d,cacheA,dxaux,qaux,tx,tq,initTime,ft,nextStateTime) end # for i = 1:T # clearCache(taylorOpsCache,Val(CS),Val(O));f(i,q,t,taylorOpsCache); # computeDerivative(Val(O), x[i], taylorOpsCache[1])#0.0 used to be elapsed...even down below not neeeded anymore #Liqss_reComputeNextTime(Val(O), i, initTime, nextStateTime, x, q, quantum) # t[0]=0.1;clearCache(taylorOpsCache,Val(CS),Val(O));f(i,q,t,taylorOpsCache);# to detect if rhs contains time components #@show taylorOpsCache #computeNextInputTime(Val(O), i, initTime, 0.1,taylorOpsCache[1] , nextInputTime, x, quantum)#not complete, currently elapsed=0.1 is temp until fixed #prevStepVal[i]=x[i][0]#assignXPrevStepVals(Val(O),prevStepVal,x,i) # end #@show x ################################################################################################################################################################### #################################################################################################################################################################### #---------------------------------------------------------------------------------while loop------------------------------------------------------------------------- ################################################################################################################################################################### #################################################################################################################################################################### simt = initTime ;simulStepCount=0;totalSteps=0;inputSteps=0 #simul=false printonce=0 while simt < ft && totalSteps < 30000000 sch = updateScheduler(Val(T),nextStateTime,nextEventTime, nextInputTime) simt = sch[2];index = sch[1] if simt>ft break # end numSteps[index]+=1;totalSteps+=1 #= if (simt>ft/2 || totalSteps==40000) && printonce==0 printonce=1 end if printonce==1 @show "half",simt printonce=2 end =# t[0]=simt ##########################################state######################################## if sch[3] == :ST_STATE xitemp=x[index][0] elapsed = simt - tx[index];integrateState(Val(O),x[index],elapsed);tx[index] = simt quantum[index] = relQ * abs(x[index].coeffs[1]) ;quantum[index]=quantum[index] < absQ ? absQ : quantum[index];quantum[index]=quantum[index] > maxErr ? maxErr : quantum[index] if abs(x[index].coeffs[2])>1e6 quantum[index]=10*quantum[index] end # i added this for the case a function is climbing (up/down) fast #dirI=x[index][0]-savedVars[index][end] dirI=x[index][0]-xitemp for b in (jac(index) ) # update Qb : to be used to calculate exacte Aindexb...move below updateQ elapsedq = simt - tq[b] ; if elapsedq>0 integrateState(Val(O-1),q[b],elapsedq);tq[b]=simt end end firstguess=updateQ(Val(O),index,x,q,quantum,exactA,d,cacheA,dxaux,qaux,tx,tq,simt,ft,nextStateTime) ;tq[index] = simt #----------------------------------------------------check dependecy cycles--------------------------------------------- trackSimul[1]=0 #= for i =1:5 cacheRatio[i]=0.0; cacheQ[i]=0.0; end =# for j in SD(index) for b in (jac(j) ) # update Qb: to be used to calculate exacte Ajb elapsedq = simt - tq[b] ; if elapsedq>0 integrateState(Val(O-1),q[b],elapsedq); tq[b]=simt end end cacheA[1]=0.0;exactA(q,d,cacheA,index,j,simt);aij=cacheA[1]# cacheA[1]=0.0;exactA(q,d,cacheA,j,index,simt);aji=cacheA[1] if j!=index && aij*aji!=0.0 if nmisCycle_and_simulUpdate(cacheRootsi,cacheRootsj,acceptedi,acceptedj,aij,aji,respp,pp,trackSimul,Val(O),index,j,dirI,firstguess,x,q,quantum,exactA,d,cacheA,dxaux,qaux,tx,tq,simt,ft) simulStepCount+=1 clearCache(taylorOpsCache,Val(CS),Val(O));f(index,q,t,taylorOpsCache);computeDerivative(Val(O), x[index], taylorOpsCache[1]) for k in SD(j) #j influences k if k!=index && k!=j elapsedx = simt - tx[k]; x[k].coeffs[1] = x[k](elapsedx);tx[k] = simt elapsedq = simt - tq[k]; if elapsedq > 0 ;integrateState(Val(O-1),q[k],elapsedq); tq[k] = simt end for b in (jac(k) ) elapsedq = simt - tq[b] if elapsedq>0 integrateState(Val(O-1),q[b],elapsedq);tq[b]=simt end end clearCache(taylorOpsCache,Val(CS),Val(O));f(k,q,t,taylorOpsCache);computeDerivative(Val(O), x[k], taylorOpsCache[1]) Liqss_reComputeNextTime(Val(O), k, simt, nextStateTime, x, q, quantum) end#end if k!=0 end#end for k depend on j end#end ifcycle check # end #end if allow one simulupdate end#end if j!=0 end#end FOR_cycle check if trackSimul[1]!=0 #qi changed after throw # clearCache(taylorOpsCache,Val(CS),Val(O));f(index,q,t,taylorOpsCache);computeDerivative(Val(O), x[index], taylorOpsCache[1]) Liqss_reComputeNextTime(Val(O), index, simt, nextStateTime, x, q, quantum) end #------------------------------------------------------------------------------------- #---------------------------------normal liqss: proceed-------------------------------- #------------------------------------------------------------------------------------- for c in SD(index) #index influences c elapsedx = simt - tx[c] ; if elapsedx>0 x[c].coeffs[1] = x[c](elapsedx); tx[c] = simt end # elapsedq = simt - tq[c];if elapsedq > 0 ;integrateState(Val(O-1),q[c],elapsedq);tq[c] = simt end # c never been visited #= for b in (jac(c) ) # update other influences elapsedq = simt - tq[b] ;if elapsedq>0 integrateState(Val(O-1),q[b],elapsedq);tq[b]=simt end end =# clearCache(taylorOpsCache,Val(CS),Val(O)); f(c,q,t,taylorOpsCache);computeDerivative(Val(O), x[c], taylorOpsCache[1]) Liqss_reComputeNextTime(Val(O), c, simt, nextStateTime, x, q, quantum) end#end for SD #= if 11.163688670259043<simt<12.165 @show simt,index,x[index],q[index],nextStateTime end =# ##################################input######################################## elseif sch[3] == :ST_INPUT # time of change has come to a state var that does not depend on anything...no one will give you a chance to change but yourself #= println("nmliqss intgrator under input, index= $index, totalsteps= $totalSteps") inputSteps+=1 elapsed = simt - tx[index];integrateState(Val(O),x[index],elapsed);tx[index] = simt quantum[index] = relQ * abs(x[index].coeffs[1]) ;quantum[index]=quantum[index] < absQ ? absQ : quantum[index];quantum[index]=quantum[index] > maxErr ? maxErr : quantum[index] #for k = 1:O q[index].coeffs[k] = x[index].coeffs[k] end; tq[index] = simt notneeded=updateQ(Val(O),index,x,q,quantum,exactA,cacheA,dxaux,qaux,tx,tq,simt,ft,nextStateTime) ;tq[index] = simt for b in jac(index) elapsedq = simt - tq[b];if elapsedq>0 integrateState(Val(O-1),q[b],elapsedq);tq[b]=simt end end clearCache(taylorOpsCache,Val(CS),Val(O));f(index,q,t,taylorOpsCache) computeDerivative(Val(O), x[index], taylorOpsCache[1]#= ,integratorCache,elapsed =#) reComputeNextTime(Val(O), index, simt, nextStateTime, x, q, quantum) t[0]=simt+0.1; clearCache(taylorOpsCache,Val(CS),Val(O));f(index,q,t,taylorOpsCache);# to detect if rhs contains time components computeNextInputTime(Val(O), index, simt, 0.1,taylorOpsCache[1] , nextInputTime, x, quantum) for j in (SD(index)) elapsedx = simt - tx[j]; if elapsedx > 0 x[j].coeffs[1] = x[j](elapsedx);tx[j] = simt quantum[j] = relQ * abs(x[j].coeffs[1]) ;quantum[j]=quantum[j] < absQ ? absQ : quantum[j];quantum[j]=quantum[j] > maxErr ? maxErr : quantum[j] end elapsedq = simt - tq[j];if elapsedq > 0 integrateState(Val(O-1),q[j],elapsedq);tq[j] = simt end#q needs to be updated here for recomputeNext for b in jac(j) elapsedq = simt - tq[b];if elapsedq>0 integrateState(Val(O-1),q[b],elapsedq);tq[b]=simt end end clearCache(taylorOpsCache,Val(CS),Val(O));f(j,q,t,taylorOpsCache);computeDerivative(Val(O), x[j], taylorOpsCache[1]#= ,integratorCache,elapsed =#) reComputeNextTime(Val(O), j, simt, nextStateTime, x, q, quantum) end#end for =# #= for i = 1:length(SZ[index]) j = SZ[index][i] if j != 0 for b = 1:T # elapsed update all other vars that this derj depends upon. if zc_SimpleJac[j][b] != 0 elapsedx = simt - tx[b];if elapsedx>0 integrateState(Val(O),x[b],integratorCache,elapsedx);tx[b]=simt end # elapsedq = simt - tq[b];if elapsedq>0 integrateState(Val(O-1),q[b],elapsedq);tq[b]=simt end end end #= clearCache(taylorOpsCache,Val(CS),Val(O))#normally and later i should update x,q (integrate q=q+e derQ for higher orders) computeNextEventTime(j,zcf[j](x,d,t,taylorOpsCache),oldsignValue,simt, nextEventTime, quantum)#,maxIterer) =# clearCache(taylorOpsCache,Val(CS),Val(O));f(-1,j,-1,x,d,t,taylorOpsCache) computeNextEventTime(j,taylorOpsCache[1],oldsignValue,simt, nextEventTime, quantum) end end =# #################################################################event######################################## end#end state/input/event # push!(savedVars[index],x[index][0]) push!(savedVars[index],(x[index][0]+q[index][0])/2) push!(savedTimes[index],simt) # push!(savedVarsQ[index],q[index][0]) #= for i=1:T push!(savedVars[i],x[i][0]) push!(savedTimes[i],simt) # push!(savedVarsQ[i],q[i][0]) end =# #= if index==1 && 0.042<simt<0.043 @show x @show q end =# end#end while createSol(Val(T),Val(O),savedTimes,savedVars, "nmliqss$O",string(odep.prname),absQ,totalSteps,simulStepCount,0,numSteps,ft) # change this to function /constrcutor...remember it is bad to access structs (objects) directly end
QuantizedSystemSolver
https://github.com/mongibellili/QuantizedSystemSolver.jl.git
[ "MIT" ]
1.0.1
b4bf1003586f2ee6cb98d8df29e88cbbfacd2ea1
code
25822
#using TimerOutputs function integrate(Al::QSSAlgorithm{:nmliqss,O},CommonqssData::CommonQSS_data{Z},liqssdata::LiQSS_data{O,false},specialLiqssData::SpecialLiqssQSS_data, odep::NLODEProblem{PRTYPE,T,Z,D,CS}) where {PRTYPE,O,T,Z,D,CS} if VERBOSE println("begining of intgrate dummy function") end end function integrate(Al::QSSAlgorithm{:nmliqss,O},CommonqssData::CommonQSS_data{Z},liqssdata::LiQSS_data{O,false},specialLiqssData::SpecialLiqssQSS_data, odep::NLODEProblem{PRTYPE,T,Z,D,CS},f::Function,jac::Function,SD::Function,exactA::Function) where {PRTYPE,O,T,Z,D,CS} if VERBOSE println("begining of intgrate function") end cacheA=specialLiqssData.cacheA ft = CommonqssData.finalTime;initTime = CommonqssData.initialTime;relQ = CommonqssData.dQrel;absQ = CommonqssData.dQmin;maxErr=CommonqssData.maxErr; savetimeincrement=CommonqssData.savetimeincrement;savetime = savetimeincrement quantum = CommonqssData.quantum;nextStateTime = CommonqssData.nextStateTime;nextEventTime = CommonqssData.nextEventTime;nextInputTime = CommonqssData.nextInputTime tx = CommonqssData.tx;tq = CommonqssData.tq;x = CommonqssData.x;q = CommonqssData.q;t=CommonqssData.t savedVars=CommonqssData.savedVars; savedTimes=CommonqssData.savedTimes;integratorCache=CommonqssData.integratorCache;taylorOpsCache=CommonqssData.taylorOpsCache;#cacheSize=odep.cacheSize #prevStepVal = specialLiqssData.prevStepVal #*********************************problem info***************************************** d = CommonqssData.d #= exactA=odep.exactJac f=odep.eqs if VERBOSE println("after function declare") end =# zc_SimpleJac=odep.ZCjac HZ=odep.HZ HD=odep.HD SZ=odep.SZ evDep = odep.eventDependencies if DEBUG2 @show HD,HZ end qaux=liqssdata.qaux;dxaux=liqssdata.dxaux#= olddx=liqssdata.olddx; ; olddxSpec=liqssdata.olddxSpec =# #savedDers = Vector{Vector{Float64}}(undef, T) # savedVarsQ = Vector{Vector{Float64}}(undef, T) #= setprecision(BigFloat,80) pp=pointer(Vector{NTuple{2,BigFloat}}(undef, 7)) respp = pointer(Vector{BigFloat}(undef, 6)) acceptedi=Vector{Vector{BigFloat}}(undef,4*O-1);acceptedj=Vector{Vector{BigFloat}}(undef,4*O-1); #inner vector always of size 2....interval...low and high...later optimize maybe cacheRootsi=Vector{BigFloat}(undef,8*O-4); cacheRootsj=Vector{BigFloat}(undef,8*O-4); =# pp=pointer(Vector{NTuple{2,Float64}}(undef, 7)) respp = pointer(Vector{Float64}(undef, 6)) acceptedi=Vector{Vector{Float64}}(undef,4*O-1);acceptedj=Vector{Vector{Float64}}(undef,4*O-1); cacheRootsi=zeros(8*O-4) #vect of floats to hold roots for simul_analytic cacheRootsj=zeros(8*O-4) for i =1:4*O-1 #3 acceptedi[i]=[0.0,0.0]#zeros(2) acceptedj[i]=[0.0,0.0]#zeros(2) end #@show exactA exactA(q,d,cacheA,1,1,initTime+1e-9) #@show f f(1,-1,-1,q,d, t ,taylorOpsCache) trackSimul = Vector{Int}(undef, 1) # cacheRatio=zeros(5);cacheQ=zeros(5) #********************************helper values******************************* oldsignValue = MMatrix{Z,2}(zeros(Z*2)) #usedto track if zc changed sign; each zc has a value and a sign numSteps = Vector{Int}(undef, T) #######################################compute initial values################################################## if VERBOSE println("before x init") end n=1 for k = 1:O # compute initial derivatives for x and q (similar to a recursive way ) n=n*k for i = 1:T q[i].coeffs[k] = x[i].coeffs[k] end # q computed from x and it is going to be used in the next x for i = 1:T clearCache(taylorOpsCache,Val(CS),Val(O));f(i,-1,-1,q,d, t ,taylorOpsCache) ndifferentiate!(integratorCache,taylorOpsCache[1] , k - 1) x[i].coeffs[k+1] = (integratorCache.coeffs[1]) / n # /fact cuz i will store der/fac like the convention...to extract the derivatives (at endof sim) multiply by fac derderx=coef[3]*fac(2) end end if VERBOSE println("after init") end for i = 1:T numSteps[i]=0 #savedDers[i]=Vector{Float64}() push!(savedVars[i],x[i][0]) # push!(savedDers[i],x[i][1]) push!(savedTimes[i],0.0) quantum[i] = relQ * abs(x[i].coeffs[1]) ;quantum[i]=quantum[i] < absQ ? absQ : quantum[i];quantum[i]=quantum[i] > maxErr ? maxErr : quantum[i] updateQ(Val(O),i,x,q,quantum,exactA,d,cacheA,dxaux,qaux,tx,tq,initTime+1e-12,ft,nextStateTime) #1e-9 exactAfunc contains 1/t end if VERBOSE println("after initial updateQ") end for i=1:Z clearCache(taylorOpsCache,Val(CS),Val(O)); f(-1,i,-1,x,d,t,taylorOpsCache) oldsignValue[i,2]=taylorOpsCache[1][0] #value oldsignValue[i,1]=sign(taylorOpsCache[1][0]) #sign modify computeNextEventTime(Val(O),i,taylorOpsCache[1],oldsignValue,initTime, nextEventTime, quantum,absQ) end ################################################################################################################################################################### #################################################################################################################################################################### #---------------------------------------------------------------------------------while loop------------------------------------------------------------------------- ################################################################################################################################################################### #################################################################################################################################################################### simt = initTime ;totalSteps=0;prevStepTime=initTime;modifiedIndex=0; countEvents=0;inputstep=0;statestep=0;simulStepCount=0 ft<savetime && error("ft<savetime") if VERBOSE println("start integration") end while simt< ft && totalSteps < 50000000 sch = updateScheduler(Val(T),nextStateTime,nextEventTime, nextInputTime) simt = sch[2];index = sch[1];stepType=sch[3] # @timeit "saveLast" if simt>ft #saveLast!(Val(T),Val(O),savedVars, savedTimes,saveVarsHelper,ft,prevStepTime, x) break ###################################################break########################################## end totalSteps+=1 t[0]=simt DEBUG_time=DEBUG && #= (29750 <=totalSteps<=29750) =# #= (0.0003557 <=simt<=0.0003559 ) =# simt==1.0323797751288692e-9 ##########################################state######################################## if stepType == :ST_STATE statestep+=1 if DEBUG_time #&& (index!=13 && index!=15) println("at simt=$simt x $index at begining of state step = $(x)") println("-------------q begining of state step = $q") @show totalSteps end xitemp=x[index][0] numSteps[index]+=1; elapsed = simt - tx[index];integrateState(Val(O),x[index],elapsed);tx[index] = simt ; dirI=x[index][0]-xitemp #= if abs(dirI)>3*quantum[index] x[index][0]=xitemp+ 3*quantum[index] *sign(dirI) println("at start of state step, x moved more than 2 deltas") end # this is a rare case where dxi gets changed a lot by an event =# quantum[index] = relQ * abs(x[index].coeffs[1]) ;quantum[index]=quantum[index] < absQ ? absQ : quantum[index];quantum[index]=quantum[index] > maxErr ? maxErr : quantum[index] #= if abs(x[index].coeffs[2])>1e9 quantum[index]=10*quantum[index] @show simt, index,x[index] end =# # i added this for the case a function is climbing (up/down) fast for b in (jac(index) ) # update Qb : to be used to calculate exacte Aindexb elapsedq = simt - tq[b] ; if elapsedq>0 integrateState(Val(O-1),q[b],elapsedq);tq[b]=simt end end firstguess=updateQ(Val(O),index,x,q,quantum,exactA,d,cacheA,dxaux,qaux,tx,tq,simt,ft,nextStateTime) ;tq[index] = simt #----------------------------------------------------check dependecy cycles--------------------------------------------- trackSimul[1]=0 #= for i =1:5 cacheRatio[i]=0.0; cacheQ[i]=0.0; end =# for j in SD(index) for b in (jac(j) ) # update Qb: to be used to calculate exacte Ajb elapsedq = simt - tq[b] ; if elapsedq>0 integrateState(Val(O-1),q[b],elapsedq); tq[b]=simt end end cacheA[1]=0.0; exactA(q,d,cacheA,index,j,simt);aij=cacheA[1]# can be passed to simul so that i dont call exactfunc again cacheA[1]=0.0;exactA(q,d,cacheA,j,index,simt);aji=cacheA[1] if j!=index && aij*aji!=0.0 #prvStepValj= savedVars[j][end]#getPrevStepVal(prevStepVal,j) #= if simt==0.0005977635736228422 @show j,aij,aji end =# #= for i =1:3 cacherealPosi[i][1]=0.0; cacherealPosi[i][2]=0.0 cacherealPosj[i][1]=0.0; cacherealPosj[i][2]=0.0 end =# # @show aij,aji #= test=false if test =# if nmisCycle_and_simulUpdate(cacheRootsi,cacheRootsj,acceptedi,acceptedj,aij,aji,respp,pp,trackSimul,Val(O),index,j,dirI,firstguess,x,q,quantum,exactA,d,cacheA,dxaux,qaux,tx,tq,simt,ft) simulStepCount+=1 clearCache(taylorOpsCache,Val(CS),Val(O));f(index,-1,-1,q,d,t,taylorOpsCache);computeDerivative(Val(O), x[index], taylorOpsCache[1]) # clearCache(taylorOpsCache,Val(CS),Val(O));f(j,q,d,t,taylorOpsCache);computeDerivative(Val(O), x[j], taylorOpsCache[1]) # Liqss_reComputeNextTime(Val(O), index, simt, nextStateTime, x, q, quantum) # Liqss_reComputeNextTime(Val(O), j, simt, nextStateTime, x, q, quantum) for k in SD(j) #j influences k if k!=index && k!=j elapsedx = simt - tx[k]; x[k].coeffs[1] = x[k](elapsedx);tx[k] = simt elapsedq = simt - tq[k]; if elapsedq > 0 ;integrateState(Val(O-1),q[k],elapsedq); tq[k] = simt end for b in (jac(k) ) elapsedq = simt - tq[b] if elapsedq>0 integrateState(Val(O-1),q[b],elapsedq);tq[b]=simt end end clearCache(taylorOpsCache,Val(CS),Val(O));f(k,-1,-1,q,d,t,taylorOpsCache);computeDerivative(Val(O), x[k], taylorOpsCache[1]) Liqss_reComputeNextTime(Val(O), k, simt, nextStateTime, x, q, quantum) end#end if k!=0 end#end for k depend on j for k in (SZ[j]) # qj changed, so zcf should be checked for b in zc_SimpleJac[k] # elapsed update all other vars that this derj depends upon. elapsedq = simt - tq[b];if elapsedq>0 integrateState(Val(O-1),q[b],elapsedq);tq[b]=simt end #elapsedq = simt - tq[b];if elapsedq>0 integrateState(Val(O-1),q[b],elapsedq);tq[b]=simt end end clearCache(taylorOpsCache,Val(CS),Val(O));f(-1,k,-1,q,d,t,taylorOpsCache) # run ZCF-------- computeNextEventTime(Val(O),k,taylorOpsCache[1],oldsignValue,simt, nextEventTime, quantum,absQ) end#end for SZ end#end ifcycle check # end #end if allow one simulupdate end#end if j!=0 end#end FOR_cycle check if trackSimul[1]!=0 #qi changed after throw # clearCache(taylorOpsCache,Val(CS),Val(O));f(index,q,d,t,taylorOpsCache);computeDerivative(Val(O), x[index], taylorOpsCache[1]) Liqss_reComputeNextTime(Val(O), index, simt, nextStateTime, x, q, quantum) end #------------------------------------------------------------------------------------- #---------------------------------normal liqss: proceed-------------------------------- #------------------------------------------------------------------------------------- #= if simt==0.0007352244633292483 println("before normal dependency") @show x,q @show tx,tq end =# for c in SD(index) #index influences c elapsedx = simt - tx[c] ; if elapsedx>0 x[c].coeffs[1] = x[c](elapsedx); # if 0.0003>simt>0.00029 @show index, c,simt, tx[c], x[c].coeffs[1] end tx[c] = simt end # elapsedq = simt - tq[c];if elapsedq > 0 ;integrateState(Val(O-1),q[c],elapsedq);tq[c] = simt end # c never been visited #= for b in (jac(c) ) # update other influences elapsedq = simt - tq[b] ;if elapsedq>0 integrateState(Val(O-1),q[b],elapsedq);tq[b]=simt end end =# clearCache(taylorOpsCache,Val(CS),Val(O)); f(c,-1,-1,q,d,t,taylorOpsCache);computeDerivative(Val(O), x[c], taylorOpsCache[1]) Liqss_reComputeNextTime(Val(O), c, simt, nextStateTime, x, q, quantum) end#end for SD #= if 0.0003>simt>0.00029 println("---after normal SD---------------", q,x,totalSteps) end =# for j in (SZ[index]) for b in zc_SimpleJac[j] # elapsed update all other vars that this derj depends upon. elapsedq = simt - tq[b];if elapsedq>0 integrateState(Val(O-1),q[b],elapsedq);tq[b]=simt end #elapsedq = simt - tq[b];if elapsedq>0 integrateState(Val(O-1),q[b],elapsedq);tq[b]=simt end end clearCache(taylorOpsCache,Val(CS),Val(O));f(-1,j,-1,q,d,t,taylorOpsCache) # run ZCF-------- computeNextEventTime(Val(O),j,taylorOpsCache[1],oldsignValue,simt, nextEventTime, quantum,absQ) end#end for SZ if DEBUG_time #&& (index!=13 && index!=15) println("at simt=$simt x $index at end of state step = $(x)") println("-------------q end of state step = $q") @show totalSteps end #= if DEBUG_time #&& (index==3 || index==6) println("========end state=======") @show index,simt @show x[] # @show nextStateTime,quantum end =# ##################################input######################################## elseif stepType == :ST_INPUT # time of change has come to a state var that does not depend on anything...no one will give you a chance to change but yourself inputstep+=1 #= if VERBOSE println("nmliqss discreteintgrator under input, index= $index, totalsteps= $totalSteps") end elapsed = simt - tx[index];integrateState(Val(O),x[index],elapsed);tx[index] = simt quantum[index] = relQ * abs(x[index].coeffs[1]) ;quantum[index]=quantum[index] < absQ ? absQ : quantum[index];quantum[index]=quantum[index] > maxErr ? maxErr : quantum[index] for k = 1:O q[index].coeffs[k] = x[index].coeffs[k] end; tq[index] = simt for b in jac(index) elapsedq = simt - tq[b];if elapsedq>0 integrateState(Val(O-1),q[b],elapsedq);tq[b]=simt end end clearCache(taylorOpsCache,Val(CS),Val(O));f(index,-1,-1,q,d,t,taylorOpsCache) computeNextInputTime(Val(O), index, simt, elapsed,taylorOpsCache[1] , nextInputTime, x, quantum) computeDerivative(Val(O), x[index], taylorOpsCache[1]) for j in(SD(index)) elapsedx = simt - tx[j]; if elapsedx > 0 x[j].coeffs[1] = x[j](elapsedx);tx[j] = simt # quantum[j] = relQ * abs(x[j].coeffs[1]) ;quantum[j]=quantum[j] < absQ ? absQ : quantum[j];quantum[j]=quantum[j] > maxErr ? maxErr : quantum[j] end elapsedq = simt - tq[j];if elapsedq > 0 integrateState(Val(O-1),q[j],elapsedq);tq[j] = simt end#q needs to be updated here for recomputeNext # elapsed update all other vars that this derj depends upon. for b in jac(j) elapsedq = simt - tq[b];if elapsedq>0 integrateState(Val(O-1),q[b],elapsedq);tq[b]=simt end end clearCache(taylorOpsCache,Val(CS),Val(O));f(j,-1,-1,q,d,t,taylorOpsCache);computeDerivative(Val(O), x[j], taylorOpsCache[1]) reComputeNextTime(Val(O), j, simt, nextStateTime, x, q, quantum) end#end for for j in (SZ[index]) for b in zc_SimpleJac[j] # elapsed update all other vars that this derj depends upon. elapsedq = simt - tq[b];if elapsedq>0 integrateState(Val(O-1),q[b],elapsedq);tq[b]=simt end # elapsedq = simt - tq[b];if elapsedq>0 integrateState(Val(O-1),q[b],elapsedq);tq[b]=simt end end #= clearCache(taylorOpsCache,Val(CS),Val(O))#normally and later i should update x,q (integrate q=q+e derQ for higher orders) computeNextEventTime(Val(O),j,zcf[j](x,d,t,taylorOpsCache),oldsignValue,simt, nextEventTime, quantum)#,maxIterer) =# clearCache(taylorOpsCache,Val(CS),Val(O));f(-1,j,-1,x,d,t,taylorOpsCache) computeNextEventTime(Val(O),j,taylorOpsCache[1],oldsignValue,simt, nextEventTime, quantum) end =# #################################################################event######################################## else if DEBUG_time println("x at start of event simt=$simt index=$index") println("-------------x start of event = $x") println("-------------q start of event = $q") #@show index,d end for b in zc_SimpleJac[index] # elapsed update all other vars that this zc depends upon. elapsedq = simt - tq[b];if elapsedq>0 integrateState(Val(O-1),q[b],elapsedq);tq[b]=simt end end # modifiedIndex=0#first we have a zc happened which corresponds to nexteventtime and index (one of zc) but we want also the sign in O to know ev+ or ev- clearCache(taylorOpsCache,Val(CS),Val(O));f(-1,index,-1,q,d,t,taylorOpsCache) # run ZCF-------- if DEBUG_time @show index,oldsignValue[index,2],taylorOpsCache[1][0] end if oldsignValue[index,2]*taylorOpsCache[1][0]>=0 if abs(taylorOpsCache[1][0])>1e-9*absQ # if both have same sign and zcf is not very small: zc=1e-9*absQ is allowed as an event computeNextEventTime(Val(O),index,taylorOpsCache[1],oldsignValue,simt, nextEventTime, quantum,absQ) # @show index,countEvents # @show oldsignValue[index,2],taylorOpsCache[1][0] if DEBUG_time println("wrong estimation of event at $simt") end continue end end if abs(oldsignValue[index,2]) <=1e-9*absQ #earlier zc=1e-9*absQ was considered event , so now it should be prevented from passing nextEventTime[index]=Inf # at this instant next zc will be triggered now, and this will lead to infinite events, so cannot computenextevent here continue end # needSaveEvent=true if taylorOpsCache[1][0]>oldsignValue[index,2] #scheduled rise modifiedIndex=2*index-1 elseif taylorOpsCache[1][0]<oldsignValue[index,2] #scheduled drop modifiedIndex=2*index else # == ( zcf==oldZCF) if DEBUG_time println("this should never be reached ZCF==oldZCF at $simt cuz small old not allowed and large zc not allowed!!") end computeNextEventTime(Val(O),index,taylorOpsCache[1],oldsignValue,simt, nextEventTime, quantum,absQ) continue end countEvents+=1 oldsignValue[index,2]=taylorOpsCache[1][0] oldsignValue[index,1]=sign(taylorOpsCache[1][0]) #= if DEBUG_time @show modifiedIndex,x @show q end =# for b in evDep[modifiedIndex].evContRHS elapsedq = simt - tq[b];if elapsedq>0 integrateState(Val(O-1),q[b],elapsedq);tq[b]=simt end end f(-1,-1,modifiedIndex,x,d,t,taylorOpsCache)# execute event----------------no need to clear cache; events touch vectors directly if VERBOSE @show d end for i in evDep[modifiedIndex].evCont #------------event influences a Continete var: ...here update quantum and q and computenext #= if DEBUG_time println("q begin evcont simt=$simt q2=$(q[2])") @show nextStateTime[2],quantum[2] end =# quantum[i] = relQ * abs(x[i].coeffs[1]) ;quantum[i]=quantum[i] < absQ ? absQ : quantum[i];quantum[i]=quantum[i] > maxErr ? maxErr : quantum[i] # q[i][0]=x[i][0]; # for liqss updateQ? #= if abs(x[i].coeffs[2])>1e9 # @show quantum[i] quantum[i]=10*quantum[i] end =# firstguess=updateQ(Val(O),i,x,q,quantum,exactA,d,cacheA,dxaux,qaux,tx,tq,simt,ft,nextStateTime) # computeNextTime(Val(O), i, simt, nextStateTime, x, quantum) tx[i] = simt;tq[i] = simt Liqss_reComputeNextTime(Val(O), i, simt, nextStateTime, x, q, quantum) #= if DEBUG_time println("x end evcont simt=$simt x2=$(x[2])") println("q end evcont simt=$simt q2=$(q[2])") @show countEvents,totalSteps,statestep @show nextStateTime[2],quantum[2] end =# end #= if VERBOSE @show x,q,nextStateTime end =# # nextEventTime[index]=Inf #investigate more computeNextEventTime(Val(O),index,taylorOpsCache[1],oldsignValue,simt, nextEventTime, quantum,absQ) #update zcf before thiscatch in qss quantizer to avoid infinite events for j in (HD[modifiedIndex]) # care about dependency to this event only elapsedx = simt - tx[j];if elapsedx > 0 x[j].coeffs[1] = x[j](elapsedx);tx[j] = simt;#= @show j,x[j] =# end elapsedq = simt - tq[j];if elapsedq > 0 integrateState(Val(O-1),q[j],elapsedq);tq[j] = simt;#= @show q[j] =# end#q needs to be updated here for recomputeNext for b = 1:T # elapsed update all other vars that this derj depends upon. if b in jac(j) elapsedq = simt - tq[b];if elapsedq>0 integrateState(Val(O-1),q[b],elapsedq);tq[b]=simt;#= @show q[b] =# end end end if DEBUG_time println("q $j after intgratestate") @show x[j],q[j] end clearCache(taylorOpsCache,Val(CS),Val(O));f(j,-1,-1,q,d,t,taylorOpsCache);computeDerivative(Val(O), x[j], taylorOpsCache[1]) #firstguess=updateQ(Val(O),j,x,q,quantum,exactA,d,cacheA,dxaux,qaux,tx,tq,simt,ft,nextStateTime) Liqss_reComputeNextTime(Val(O), j, simt, nextStateTime, x, q, quantum) end for j in (HZ[modifiedIndex]) for b in zc_SimpleJac[j] # elapsed update all other vars that this derj depends upon. #elapsedx = simt - tx[b];if elapsedx>0 integrateState(Val(O),x[b],elapsedx);tx[b]=simt end elapsedq = simt - tq[b];if elapsedq>0 integrateState(Val(O-1),q[b],elapsedq);tq[b]=simt end end #= clearCache(taylorOpsCache,Val(CS),Val(O)) #normally and later i should update q (integrate q=q+e derQ for higher orders) computeNextEventTime(Val(O),j,zcf[j](x,d,t,taylorOpsCache),oldsignValue,simt, nextEventTime, quantum)#,maxIterer) =# clearCache(taylorOpsCache,Val(CS),Val(O));f(-1,j,-1,q,d,t,taylorOpsCache) # run ZCF-------- if VERBOSE @show j,oldsignValue[j,2],taylorOpsCache[1][0] end computeNextEventTime(Val(O),j,taylorOpsCache[1],oldsignValue,simt, nextEventTime, quantum,absQ) # if 0.022>simt > 0.018 println("$index $j at simt=$simt nexteventtime from HZ= ",nextEventTime) end end if DEBUG_time # println("x at end of event simt=$simt x=$(x)") println("q at end of event simt=$simt q2=$(q)") @show countEvents,totalSteps,statestep # @show nextStateTime,quantum end #= if 9.236846540089048e-5<=simt<9.237519926276279e-5 println("-------------end of event------------") @show simt,nextStateTime[5] @show x[5],q[5],quantum[5] end =# end#end state/input/event #for i=1:T # if simt > savetime #limit saveat savetime = simt+savetimeincrement if stepType != :ST_EVENT push!(savedVars[index],x[index][0]) #push!(savedDers[index],x[index][0]) push!(savedTimes[index],simt) #= for i =1:T push!(savedVars[i],x[i][0]) # push!(savedDers[i],x[i][1]) push!(savedTimes[i],simt) end =# else #countEvents+=1 # if 1e-3<simt<1e-2 || 1e-5<simt<1e-4 for j in (HD[modifiedIndex]) push!(savedVars[j],x[j][0]) #push!(savedDers[j],x[j][1]) push!(savedTimes[j],simt) #= if simt==0.00035 @show j,x[j][0] end =# end # end end # end #push!(savedVarsQ[i],q[i][0]) prevStepTime=simt # end end#end while #@show countEvents,inputstep,statestep,simulStepCount #@show savedVars #createSol(Val(T),Val(O),savedTimes,savedVars, "qss$O",string(nameof(f)),absQ,totalSteps,0)#0 I track simulSteps #createSol(Val(T),Val(O),savedTimes,savedVars, "nmLiqss$O",string(odep.prname),absQ,totalSteps,simulStepCount,countEvents,numSteps,ft) createSol(Val(T),Val(O),savedTimes,savedVars#= ,savedDers =#, "nmLiqss$O",string(odep.prname),absQ,totalSteps,simulStepCount,countEvents,numSteps,ft) end#end integrate
QuantizedSystemSolver
https://github.com/mongibellili/QuantizedSystemSolver.jl.git
[ "MIT" ]
1.0.1
b4bf1003586f2ee6cb98d8df29e88cbbfacd2ea1
code
16568
#iters #= function updateQ(::Val{1},i::Int, xv::Vector{Taylor0},qv::Vector{Taylor0}, quantum::Vector{Float64}#= ,av::Vector{Vector{Float64}} =#,exactA::Function,d::Vector{Float64},cacheA::MVector{1,Float64},dxaux::Vector{MVector{1,Float64}},qaux::Vector{MVector{1,Float64}},tx::Vector{Float64},tq::Vector{Float64},simt::Float64,ft::Float64, nextStateTime::Vector{Float64}) # a=av[i][i] cacheA[1]=0.0;exactA(qv,d,cacheA,i,i,simt) a=cacheA[1] #= if i==1 if abs(a+1.1)>1e-3 @show i,a end else if abs(a+20.0)>1e-3 @show i,a end end =# q=qv[i][0];x=xv[i][0];x1=xv[i][1]; qaux[i][1]=q #= olddx[i][1]=x1 =# u=x1-a*q #uv[i][i][1]=u dx=x1 dxaux[i][1]=x1 h=0.0 Δ=quantum[i] debugH=4.3;debugL=14.1 if a !=0.0 if dx==0.0 dx=u+(q)*a if dx==0.0 dx=1e-26 end end #for order1 finding h is easy but for higher orders iterations are cheaper than finding exact h using a quadratic,cubic... #exacte for order1: h=-2Δ/(u+xa-2aΔ) or h=2Δ/(u+xa+2aΔ) h = ft-simt q = (x + h * u) /(1 - h * a) if (abs(q - x) > 1*quantum[i]) # removing this did nothing...check @btime later h = (abs( quantum[i] / dx)); q= (x + h * u) /(1 - h * a) end while (abs(q - x) > 1*quantum[i]) h = h * 0.99*(quantum[i] / abs(q - x)); q= (x + h * u) /(1 - h * a) end #= α=-(a*x+u)/a h1denom=a*(x+Δ)+u;h2denom=a*(x-Δ)+u if h1denom==0.0 h1denom=1e-26 end if h2denom==0.0 h2denom=1e-26 end h1=Δ/h1denom h2=-Δ/h2denom if a<0 if α>Δ h=h1;q=x+Δ elseif α<-Δ h=h2;q=x-Δ else h=max(ft-simt,-1/a) q=(x+h*u)/(1-h*a)#1-h*a non neg because h > -1/a > 1/a end else #a>0 if α>Δ h=h2;q=x-Δ elseif α<-Δ h=h1;q=x+Δ else if a*x+u>0 h=max(ft-simt,-(a*x+u+a*Δ)/(a*(a*x+u-a*Δ)))# midpoint between asymptote and delta else h=max(ft-simt,-(a*x+u-a*Δ)/(a*(a*x+u+a*Δ))) end q=(x+h*u)/(1-h*a)#1-h*a non neg because values of h from graph show that h >1/a end end =# else dx=u if dx>0.0 q=x+quantum[i]# else q=x-quantum[i] end if dx!=0 h=(abs(quantum[i]/dx)) else h=Inf end end qv[i][0]=q # println("inside single updateQ: q & qaux[$i][1]= ",q," ; ",qaux[i][1]) nextStateTime[i]=simt+h return h end =# #iters from 0 #= function updateQ(::Val{1},i::Int, xv::Vector{Taylor0},qv::Vector{Taylor0}, quantum::Vector{Float64}#= ,av::Vector{Vector{Float64}} =#,exactA::Function,d::Vector{Float64},cacheA::MVector{1,Float64},dxaux::Vector{MVector{1,Float64}},qaux::Vector{MVector{1,Float64}},tx::Vector{Float64},tq::Vector{Float64},simt::Float64,ft::Float64, nextStateTime::Vector{Float64}) # a=av[i][i] cacheA[1]=0.0;exactA(qv,d,cacheA,i,i,simt) a=cacheA[1] #= if i==1 if abs(a+1.1)>1e-3 @show i,a end else if abs(a+20.0)>1e-3 @show i,a end end =# q=qv[i][0];x=xv[i][0];x1=xv[i][1]; qaux[i][1]=q #= olddx[i][1]=x1 =# u=x1-a*q #uv[i][i][1]=u dx=x1 dxaux[i][1]=x1 h=0.0 Δ=quantum[i] debugH=4.3;debugL=14.1 if a !=0.0 if dx==0.0 dx=u+(q)*a if dx==0.0 dx=1e-26 end end #for order1 finding h is easy but for higher orders iterations are cheaper than finding exact h using a quadratic,cubic... #exacte for order1: h=-2Δ/(u+xa-2aΔ) or h=2Δ/(u+xa+2aΔ) h = 1e-8 h_=h # lastH=h q = (x + h * u) /(1 - h * a) #= if (abs(q - x) > 1*quantum[i]) # removing this did nothing...check @btime later h = (abs( quantum[i] / dx)); q= (x + h * u) /(1 - h * a) end =# maxIter=1000 while (abs(q - x) < 1*quantum[i]) && (maxIter>0) maxIter-=1 h_=h h = h * 1.001*(quantum[i] / abs(q - x)); q= (x + h * u) /(1 - h * a) if maxIter < 1 println("maxiter of updateQ = ",maxIter) end # lastH=h end if (abs(q - x) > 2*quantum[i]) # if h takes too much outside, go back to prevoius h h=h_ q= (x + h * u) /(1 - h * a) end # Qlast=(x + lastH * u) /(1 - lastH * a) #= k = ft-simt qq = (x + k * u) /(1 - k * a) if (abs(qq - x) > 1*quantum[i]) # removing this did nothing...check @btime later k = (abs( quantum[i] / dx)); qq= (x + k * u) /(1 - k * a) end while (abs(qq - x) > 1*quantum[i]) k = k * 0.99*(quantum[i] / abs(qq - x)); qq= (x + k * u) /(1 - k * a) end if abs(h-k)>1e-8 @show h,k,q-x,qq-x,quantum[i] end =# else dx=u if dx>0.0 q=x+quantum[i]# else q=x-quantum[i] end if dx!=0 h=(abs(quantum[i]/dx)) else h=Inf end end qv[i][0]=q # println("inside single updateQ: q & qaux[$i][1]= ",q," ; ",qaux[i][1]) nextStateTime[i]=simt+h return h end =# #analytic favor q-x function updateQ(::Val{1},i::Int, xv::Vector{Taylor0},qv::Vector{Taylor0}, quantum::Vector{Float64}#= ,av::Vector{Vector{Float64}} =#,exactA::Function,d::Vector{Float64},cacheA::MVector{1,Float64},dxaux::Vector{MVector{1,Float64}},qaux::Vector{MVector{1,Float64}},tx::Vector{Float64},tq::Vector{Float64},simt::Float64,ft::Float64, nextStateTime::Vector{Float64}) cacheA[1]=0.0;exactA(qv,d,cacheA,i,i,simt);a=cacheA[1] q=qv[i][0];x=xv[i][0];x1=xv[i][1]; qaux[i][1]=q u=x1-a*q dxaux[i][1]=x1 h=0.0 Δ=quantum[i] if a !=0.0 α=-(a*x+u)/a #= h1denom=a*(x+Δ)+u;h2denom=a*(x-Δ)+u if h1denom==0.0 h1denom=1e-26 end if h2denom==0.0 h2denom=1e-26 end h1=Δ/h1denom h2=-Δ/h2denom =# h1denom=a*(x+Δ)+u;h2denom=a*(x-Δ)+u #= if h1denom==0.0 h1denom=1e-26 end if h2denom==0.0 h2denom=1e-26 end =# h1=Δ/h1denom # h1denom ==0 only when case α==Δ h1 and h2 not used h=Inf. .. h2=-Δ/h2denom #idem if a<0 if α>Δ h=h1;q=x+Δ elseif α<-Δ h=h2;q=x-Δ else h=Inf q=-u/a end else #a>0 if α>Δ h=h2;q=x-Δ elseif α<-Δ h=h1;q=x+Δ else if a*x+u>0 q=x-Δ # h=h2 else q=x+Δ h=h1 end end end else #a=0 if x1>0.0 q=x+Δ # else q=x-Δ end if x1!=0 h=(abs(Δ /x1)) else h=Inf end end qv[i][0]=q nextStateTime[i]=simt+h return h end #analytic favor q-x but care about h large #= function updateQ(::Val{1},i::Int, xv::Vector{Taylor0},qv::Vector{Taylor0}, quantum::Vector{Float64}#= ,av::Vector{Vector{Float64}} =#,exactA::Function,cacheA::MVector{1,Float64},dxaux::Vector{MVector{1,Float64}},qaux::Vector{MVector{1,Float64}},tx::Vector{Float64},tq::Vector{Float64},simt::Float64,ft::Float64, nextStateTime::Vector{Float64}) # a=av[i][i] cacheA[1]=0.0;exactA(qv,cacheA,i,i) a=cacheA[1] #= if i==1 if abs(a+1.1)>1e-3 @show i,a end else if abs(a+20.0)>1e-3 @show i,a end end =# q=qv[i][0];x=xv[i][0];x1=xv[i][1]; qaux[i][1]=q #= olddx[i][1]=x1 =# u=x1-a*q #uv[i][i][1]=u dx=x1 dxaux[i][1]=x1 h=0.0 Δ=quantum[i] if a !=0.0 if dx==0.0 dx=u+(q)*a if dx==0.0 dx=1e-26 end end α=-(a*x+u)/a h1denom=a*(x+Δ)+u;h2denom=a*(x-Δ)+u if h1denom==0.0 h1denom=1e-26 end if h2denom==0.0 h2denom=1e-26 end h1=Δ/h1denom h2=-Δ/h2denom if a<0 if α>Δ h=h1;q=x+Δ elseif α<-Δ h=h2;q=x-Δ else #= h=Inf if a*x+u>0 q=x+α else q=x+α end =# #= h=-1/a q=(x+h*u)/(1-h*a) =# h=max(ft-simt,-1/a) q=(x+h*u)/(1-h*a)#1-h*a non neg because a<0 end else #a>0 if α>Δ h=h2;q=x-Δ elseif α<-Δ h=h1;q=x+Δ else #= h=Inf if a*x+u>0 q=x+α else q=x+α end =# #= if a*x+u>0 h=h2;q=x-Δ else h=h1;q=x+Δ end =# #= h=1/a+ft-simt # i have if simt>=ft break in intgrator q=(x+h*u)/(1-h*a) =# #= if abs(α)<Δ/2 h=2/a q=x+2α else h=3/a q=(x+h*u)/(1-h*a) end =# if a*x+u>0 h=max(ft-simt,-(a*x+u+a*Δ)/(a*(a*x+u-a*Δ)))# midpoint between asymptote and delta #= q=x-Δ # h=h2 =# else h=max(ft-simt,-(a*x+u-a*Δ)/(a*(a*x+u+a*Δ))) #= q=x+Δ h=h1 =# end q=(x+h*u)/(1-h*a)#1-h*a non neg because values of h from graph show that h >1/a end end else dx=u if dx>0.0 q=x+quantum[i]# else q=x-quantum[i] end if dx!=0 h=(abs(quantum[i]/dx)) else h=Inf end end qv[i][0]=q #= if simt>=0.22816661756287676 dxithr=a*q+u @show dxithr end =# # println("inside single updateQ: q & qaux[$i][1]= ",q," ; ",qaux[i][1]) nextStateTime[i]=simt+h return h end =# #= function updateQ(::Val{1},i::Int, xv::Vector{Taylor0},qv::Vector{Taylor0}, quantum::Vector{Float64}#= ,av::Vector{Vector{Float64}} =#,exactA::Function,cacheA::MVector{1,Float64},dxaux::Vector{MVector{1,Float64}},qaux::Vector{MVector{1,Float64}},tx::Vector{Float64},tq::Vector{Float64},simt::Float64,ft::Float64, nextStateTime::Vector{Float64}) # a=av[i][i] cacheA[1]=0.0;exactA(qv,cacheA,i,i) a=cacheA[1] quan=quantum[i] q=qv[i][0];x=xv[i][0];x1=xv[i][1]; qaux[i][1]=q # olddx[i][1]=x1 u=x1-a*q #uv[i][i][1]=u dx=x1 dxaux[i][1]=x1 h=0.0 if a !=0.0 if dx==0.0 dx=u+(q)*a if dx==0.0 dx=1e-26 end end #for order1 finding h is easy but for higher orders iterations are cheaper than finding exact h using a quadratic,cubic... #exacte for order1: h=-2Δ/(u+xa-2aΔ) or h=2Δ/(u+xa+2aΔ) h = ft-simt q = (x + h * u) /(1 - h * a) if (abs(q - x) > 1*quan) # removing this did nothing...check @btime later h = (abs( quan / dx)); q= (x + h * u) /(1 - h * a) end while (abs(q - x) > 1*quan) h = h * 0.99*(quan / abs(q - x)); q= (x + h * u) /(1 - h * a) end else dx=u if dx>0.0 q=x+quan# else q=x-quan end if dx!=0 h=(abs(quan/dx)) else h=Inf end end qv[i][0]=q # println("inside single updateQ: q & qaux[$i][1]= ",q," ; ",qaux[i][1]) nextStateTime[i]=simt+h return h end =# function Liqss_reComputeNextTime(::Val{1}, i::Int, simt::Float64, nextStateTime::Vector{Float64}, xv::Vector{Taylor0},qv::Vector{Taylor0}, quantum::Vector{Float64}#= ,a::Vector{Vector{Float64}} =#) dt=0.0; q=qv[i][0];x=xv[i][0];x1=xv[i][1] if abs(q-x) >= 2*quantum[i] # this happened when var i and j s turns are now...var i depends on j, j is asked here for next time...or if you want to increase quant*10 later it can be put back to normal and q & x are spread out by 10quan nextStateTime[i] = simt+1e-12 @show simt,i else if x1 !=0.0 #&& abs(q-x)>quantum[i]/10 dt=(q-x)/x1 if dt>0.0 nextStateTime[i]=simt+dt# later guard against very small dt elseif dt<0.0 if x1>0.0 nextStateTime[i]=simt+(q-x+2*quantum[i])/x1 else nextStateTime[i]=simt+(q-x-2*quantum[i])/x1 end end else nextStateTime[i]=Inf end end if nextStateTime[i]<=simt nextStateTime[i]=simt+Inf#1e-12 end # this is coming from the fact that a variable can reach 2quan distance when it is not its turn, then computation above gives next=simt+(p-p)/dx...p-p should be zero but it can be very small negative end #= function updateQ(::Val{1},i::Int, xv::Vector{Taylor0},qv::Vector{Taylor0}, quantum::Vector{Float64}#= ,av::Vector{Vector{Float64}} =#,exactA::Function,cacheA::MVector{1,Float64},dxaux::Vector{MVector{1,Float64}},qaux::Vector{MVector{1,Float64}},tx::Vector{Float64},tq::Vector{Float64},simt::Float64,ft::Float64, nextStateTime::Vector{Float64}) # a=av[i][i] cacheA[1]=0.0;exactA(qv,cacheA,i,i) a=cacheA[1] #= if i==1 if abs(a+1.1)>1e-3 @show i,a end else if abs(a+20.0)>1e-3 @show i,a end end =# q=qv[i][0];x=xv[i][0];x1=xv[i][1]; qaux[i][1]=q #= olddx[i][1]=x1 =# u=x1-a*q #uv[i][i][1]=u dx=x1 dxaux[i][1]=x1 h=0.0 if a !=0.0 if dx==0.0 dx=u+(q)*a if dx==0.0 dx=1e-26 end end #for order1 finding h is easy but for higher orders iterations are cheaper than finding exact h using a quadratic,cubic... #exacte for order1: h=-2Δ/(u+xa-2aΔ) or h=2Δ/(u+xa+2aΔ) #= h = (ft+100.0-simt) q = (x + h * u) /(1 - h * a) if (abs(q - x) > quantum[i]) =# h1=-1.0 h0 = (ft-simt) q0 = (x + h0 * u) /(1 - h0 * a) if (abs(q - x) < quantum[i]) h1=h0 end # end #= if (abs(q - x) > 2*quantum[i]) # removing this did nothing...check @btime later h = (abs( quantum[i] / dx)); q= (x + h * u) /(1 - h * a) end =# #= while (abs(q - x) > 2*quantum[i]) h = h * 1.98*(quantum[i] / abs(q - x)); q= (x + h * u) /(1 - h * a) end =# coefQ=1 #if (abs(q - x) > coefQ*quantum[i]) h2=coefQ*quantum[i]/(a*(x+coefQ*quantum[i])+u) if h2<0 h2=-coefQ*quantum[i]/(a*(x-coefQ*quantum[i])+u) q=x-coefQ*quantum[i] else q=x+coefQ*quantum[i] end #end if h2<0 h=Inf end h=max(h1,h2) #= if h==ft+100.0-simt @show i,simt,x,x1,q,a*q+u end =# else dx=u if dx>0.0 q=x+quantum[i]# else q=x-quantum[i] end if dx!=0 h=(abs(quantum[i]/dx)) else h=Inf end end qv[i][0]=q # println("inside single updateQ: q & qaux[$i][1]= ",q," ; ",qaux[i][1]) nextStateTime[i]=simt+h return nothing end =#
QuantizedSystemSolver
https://github.com/mongibellili/QuantizedSystemSolver.jl.git
[ "MIT" ]
1.0.1
b4bf1003586f2ee6cb98d8df29e88cbbfacd2ea1
code
18940
#iterations #= function updateQ(::Val{2},i::Int, xv::Vector{Taylor0},qv::Vector{Taylor0}, quantum::Vector{Float64},exactA::Function,d::Vector{Float64},cacheA::MVector{1,Float64},dxaux::Vector{MVector{2,Float64}},qaux::Vector{MVector{2,Float64}},tx::Vector{Float64},tq::Vector{Float64},simt::Float64,ft::Float64, nextStateTime::Vector{Float64}) cacheA[1]=0.0;exactA(qv,d,cacheA,i,i);a=cacheA[1] # exactA(xv,cacheA,i,i);a=cacheA[1] q=qv[i][0] ;q1=qv[i][1]; x=xv[i][0]; x1=xv[i][1]; x2=xv[i][2]*2; #u1=uv[i][i][1]; u2=uv[i][i][2] qaux[i][1]=q+(simt-tq[i])*q1#appears only here...updated here and used in updateApprox and in updateQevent later qaux[i][2]=q1 #appears only here...updated here and used in updateQevent u1=x1-a*qaux[i][1] u2=x2-a*q1 dxaux[i][1]=x1 dxaux[i][2]=x2 ddx=x2 quan=quantum[i] h=0.0 if a!=0.0 if ddx ==0.0 ddx=a*a*q+a*u1 +u2 if ddx==0.0 ddx=1e-40# changing -40 to -6 nothing changed # println("ddx=0") end end h = ft-simt; q=(x-h*a*x-h*h*(a*u1+u2)/2)/(1 - h * a + h * h * a * a / 2) if (abs(q - x) > 2.0* quan) # removing this did nothing...check @btime later h = sqrt(abs(2*quan / ddx)) # sqrt highly recommended...removing it leads to many sim steps..//2* is necessary in 2*quan when using ddx #= q = ((x + h * u1 + h * h / 2 * u2) * (1 - h * a) + (h * h / 2 * a - h) * (u1 + h * u2)) / (1 - h * a + h * h * a * a / 2) =# # qtemp=(x-h*a*x-h*h*(a*u1+u2)/2)/(1 - h * a + h * h * a * a / 2) q=x+(-h*h*(a*a*x+a*u1+u2)/2)/((1 - h * a + h * h * a * a / 2)) #= if abs(q-qtemp)>1e-16 @show qtemp,q end =# end maxIter=10000 # tempH=h while (abs(q - x) >2.0* quan) && (maxIter>0) && (h>0) h = h *sqrt(quan / abs(q - x)) # h = h *0.99*(1.8*quan / abs(q - x)) #= q = ((x + h * u1 + h * h / 2 * u2) * (1 - h * a) + (h * h / 2 * a - h) * (u1 + h * u2)) / (1 - h * a + h * h * a * a / 2) =# # qtemp=(x-h*a*x-h*h*(a*u1+u2)/2)/(1 - h * a + h * h * a * a / 2) q=x+(-h*h*(a*a*x+a*u1+u2)/2)/((1 - h * a + h * h * a * a / 2)) #= if abs(q-qtemp)>1e-16 @show q,qtemp end =# maxIter-=1 end if maxIter==0 println("updateQ maxIterReached") end #= if (abs(q - x) > 2* quan) coef=@SVector [quan, -a*quan,(a*a*(x+quan)+a*u1+u2)/2]# h1= minPosRoot(coef, Val(2)) coef=@SVector [-quan, a*quan,(a*a*(x-quan)+a*u1+u2)/2]# h2= minPosRoot(coef, Val(2)) if h1<h2 h=h1;q=x+quan else h=h2;q=x-quan end qtemp=(x-h*a*x-h*h*(a*u1+u2)/2)/(1 - h * a + h * h * a * a / 2) if abs(qtemp-q)>1e-12 println("error quad vs qexpression") end if h1!=Inf && h2!=Inf println("quadratic eq double mpr") end if h1==Inf && h2==Inf println("quadratic eq NO mpr") end end =# #= if (abs(q - x) > 2* quan) # if x2<0.0 #x2 might changed direction...I should use ddx but again ddx=aq+u and q in unknown the sign is unknown #= pertQuan=quan-1e-13 # q=x+pertQuan # guess q to be thrown up coef=@SVector [pertQuan, -a*pertQuan,(a*a*(x+pertQuan)+a*u1+u2)/2]# h= minPosRoot(coef, Val(2)) pertQuan=quan+1e-13 coef=@SVector [pertQuan, -a*pertQuan,(a*a*(x+pertQuan)+a*u1+u2)/2]# h2= minPosRoot(coef, Val(2)) if h2<h q=x+pertQuan h=h2 end ########### q to be thrown down pertQuan=quan-1e-13 coef=@SVector [-pertQuan, a*pertQuan,(a*a*(x-pertQuan)+a*u1+u2)/2]# h2= minPosRoot(coef, Val(2)) if h2<h q=x-pertQuan h=h2 end pertQuan=quan+1e-13 coef=@SVector [-pertQuan, a*pertQuan,(a*a*(x-pertQuan)+a*u1+u2)/2]# h2= minPosRoot(coef, Val(2)) if h2<h q=x-pertQuan h=h2 end =# pertQuan=quan coef=@SVector [-pertQuan, a*pertQuan,(a*a*(x-pertQuan)+a*u1+u2)/2]# h= minPosRoot(coef, Val(2)) q=x-pertQuan #= if h2<h q=x-pertQuan h=h2 end =# coef=@SVector [pertQuan, -a*pertQuan,(a*a*(x+pertQuan)+a*u1+u2)/2]# h2= minPosRoot(coef, Val(2)) if h2<h q=x+pertQuan h=h2 end # end end =# α1=1-h*a if abs(α1)==0.0 α1=1e-30*sign(α1) end q1=(a*q+u1+h*u2)/α1 #later investigate 1=h*a else #println("a==0") if x2!=0.0 h=sqrt(abs(2*quan/x2)) #sqrt necessary with u2 q=x-h*h*x2/2 q1=x1+h*x2 else # println("x2==0") if x1!=0.0 h=abs(quan/x1) q=x+h*x1 q1=0#x#/2 else h=Inf q=x q1=x1 end end end qv[i][0]=q qv[i][1]=q1 nextStateTime[i]=simt+h return h end =# #analytic function updateQ(::Val{2},i::Int, xv::Vector{Taylor0},qv::Vector{Taylor0}, quantum::Vector{Float64},exactA::Function,d::Vector{Float64},cacheA::MVector{1,Float64},dxaux::Vector{MVector{2,Float64}},qaux::Vector{MVector{2,Float64}},tx::Vector{Float64},tq::Vector{Float64},simt::Float64,ft::Float64, nextStateTime::Vector{Float64}) cacheA[1]=0.0;exactA(qv,d,cacheA,i,i,simt);a=cacheA[1] # exactA(xv,cacheA,i,i);a=cacheA[1] q=qv[i][0] ;q1=qv[i][1]; x=xv[i][0]; x1=xv[i][1]; x2=xv[i][2]*2; #u1=uv[i][i][1]; u2=uv[i][i][2] qaux[i][1]=q+(simt-tq[i])*q1#appears only here...updated here and used in updateApprox and in updateQevent later qaux[i][2]=q1 #appears only here...updated here and used in updateQevent u1=x1-a*qaux[i][1] u2=x2-a*q1 dxaux[i][1]=x1 dxaux[i][2]=x2 ddx=x2 quan=quantum[i] h=0.0 if a!=0.0 # quan=quan*1.5 if a*a*x+a*u1+u2<=0.0 if -(a*a*x+a*u1+u2)/(a*a)<quan # asymptote<delta...no sol ...no need to check h=Inf q=-(a*u1+u2)/(a*a)#q=x+asymp else q=x+quan coefi=NTuple{3,Float64}(((a*a*(x+quan)+a*u1+u2)/2,-a*quan,quan)) h=minPosRootv1(coefi) #needed for dq #math was used to show h cannot be 1/a end elseif a*a*x+a*u1+u2>=0.0 if -(a*a*x+a*u1+u2)/(a*a)>-quan # asymptote>-delta...no sol ...no need to check h=Inf q=-(a*u1+u2)/(a*a) else coefi=NTuple{3,Float64}(((a*a*(x-quan)+a*u1+u2)/2,a*quan,-quan)) h=minPosRootv1(coefi) # h=mprv2(coefi) q=x-quan end else#a*a*x+a*u1+u2==0 -->f=0....q=x+f(h)=x+h*g(h) -->g(h)==0...dx==0 -->aq+u==0 q=-u1/a h=Inf end if h!=Inf if h!=1/a q1=(a*q+u1+h*u2)/(1-h*a) else#h=1/a error("report bug: updateQ: h cannot=1/a; h=$h , 1/a=$(1/h)") end else #h==inf make ddx==0 dq=-u2/a q1=-u2/a end #= if h!=Inf α1=1-h*a if abs(α1)==0.0 α1=1e-30*sign(α1) end q1=(a*q+u1+h*u2)/α1 else #h==inf make ddx==0 dq=-u2/a q1=-u2/a end =# else #println("a==0") if x2!=0.0 h=sqrt(abs(2*quan/x2)) #sqrt necessary with u2 q=x-h*h*x2/2 q1=x1+h*x2 else # println("x2==0") if x1!=0.0 #quantum[i]=1quan h=abs(1*quan/x1) # *10 just to widen the step otherwise it would behave like 1st order q=x+h*x1 q1=0.0 else h=Inf q=x q1=0.0 end end end #= if 2.500745083181994e-5<=simt<3.00745083181994e-5 @show simt,i,q,x,h,a @show a*a*x+a*u1+u2 end =# qv[i][0]=q qv[i][1]=q1 nextStateTime[i]=simt+h return h end #= function nupdateQ(::Val{2}#= ,cacheA::MVector{1,Float64},map::Function =#,i::Int, xv::Vector{Taylor0},qv::Vector{Taylor0}, quantum::Vector{Float64},av::Vector{Vector{Float64}},uv::Vector{Vector{MVector{O,Float64}}},qaux::Vector{MVector{O,Float64}},olddx::Vector{MVector{O,Float64}},tx::Vector{Float64},tq::Vector{Float64},simt::Float64,ft::Float64, nextStateTime::Vector{Float64})where{O} #a=getA(Val(Sparsity),cacheA,av,i,i,map) a=av[i][i] q=qv[i][0] ;q1=qv[i][1]; x=xv[i][0]; x1=xv[i][1]; x2=xv[i][2]*2; u1=uv[i][i][1]; u2=uv[i][i][2] qaux[i][1]=q+(simt-tq[i])*q1#appears only here...updated here and used in updateApprox and in updateQevent later qaux[i][2]=q1 #appears only here...updated here and used in updateQevent olddx[i][1]=x1#appears only here...updated here and used in updateApprox #u1=u1+(simt-tu[i])*u2 # for order 2: u=u+tu*deru this is necessary deleting causes scheduler error u1=x1-a*qaux[i][1] uv[i][i][1]=u1 uv[i][i][2]=x2-a*q1 u2=uv[i][i][2] #tu[i]=simt # olddx[i][2]=2*x2# ddx=x2 quan=quantum[i] h=0.0 #= if simt == 0.004395600232045285 @show a @show x1 @show u1 @show u2 end =# if a!=0.0 if ddx ==0.0 ddx=a*a*q+a*u1 +u2 if ddx==0.0 ddx=1e-40# changing -40 to -6 nothing changed #println("ddx=0") end end h = ft-simt #tempH1=h #q = ((x + h * u1 + h * h / 2 * u2) * (1 - h * a) + (h * h / 2 * a - h) * (u1 + h * u2)) /(1 - h * a + h * h * a * a / 2) q=(x-h*a*x-h*h*(a*u1+u2)/2)/(1 - h * a + h * h * a * a / 2) if (abs(q - x) > 2* quan) # removing this did nothing...check @btime later h = sqrt(abs(2*quan / ddx)) # sqrt highly recommended...removing it leads to many sim steps..//2* is necessary in 2*quan when using ddx q = ((x + h * u1 + h * h / 2 * u2) * (1 - h * a) + (h * h / 2 * a - h) * (u1 + h * u2)) / (1 - h * a + h * h * a * a / 2) end maxIter=1000 tempH=h while (abs(q - x) > 2* quan) && (maxIter>0) && (h>0) h = h *sqrt(quan / abs(q - x)) q = ((x + h * u1 + h * h / 2 * u2) * (1 - h * a) + (h * h / 2 * a - h) * (u1 + h * u2)) / (1 - h * a + h * h * a * a / 2) maxIter-=1 end q1=(a*q+u1+h*u2)/(1-h*a) #later investigate 1=h*a else if x2!=0.0 h=sqrt(abs(2*quan/x2)) #sqrt necessary with u2 q=x-h*h*x2/2 q1=x1+h*x2 else # println("x2==0") if x1!=0.0 h=abs(quan/x1) q=x+h*x1 q1=x1 else h=Inf q=x q1=x1 end end end qv[i][0]=q qv[i][1]=q1 nextStateTime[i]=simt+h return h end =# function Liqss_reComputeNextTime(::Val{2}, i::Int, simt::Float64, nextStateTime::Vector{Float64}, xv::Vector{Taylor0},qv::Vector{Taylor0}, quantum::Vector{Float64}#= ,a::Vector{Vector{Float64}} =#) q=qv[i][0];x=xv[i][0];q1=qv[i][1];x1=xv[i][1];x2=xv[i][2];quani=quantum[i] β=0 if abs(q-x) >= 2*quani # this happened when var i and j s turns are now...var i depends on j, j is asked here for next time...or if you want to increase quant*10 later it can be put back to normal and q & x are spread out by 10quan nextStateTime[i] = simt+1e-12 # @show simt,i,q-x,quani,q,x #= if simt==2.500745083181994e-5 println("quantizer-recomputeNext: abs(q-x) >= 2*quani") @show simt,i,x,q,abs(q-x),quani end =# #= if simt>3.486047550372409 @show djsksfs end =# #elseif q!=x#abs(q-x)>quani/10000.0# #q=x ..let it be caught later by 2*Quantum else coef=@SVector [q-x#= -1e-13 =#, q1-x1,-x2]# nextStateTime[i] = simt + minPosRoot(coef, Val(2)) if q-x >0.0#1e-9 coef=setindex(coef, q-x-2*quantum[i],1) timetemp = simt + minPosRoot(coef, Val(2)) if timetemp < nextStateTime[i] nextStateTime[i]=timetemp end #= if 0.000691<simt<0.00071 @show qv,xv,nextStateTime end =# elseif q-x <0.0#-1e-9 coef=setindex(coef, q-x+2*quantum[i],1) timetemp = simt + minPosRoot(coef, Val(2)) if timetemp < nextStateTime[i] nextStateTime[i]=timetemp end #= if 0.000691<simt<0.00071 @show coef @show nextStateTime @show simt,i,quantum[i] end =# #else# q=x ..let it be caught later by 2*Quantum # nextStateTime[i]=simt+Inf#1e-19 #nextStateTime[i]=simt+1e-19 #= if q-x==0.0 nextStateTime[i]=simt+Inf#1e-19 # else nextStateTime[i]=simt+1e-12#Inf#1e-19 # end =# end if nextStateTime[i]<=simt # this is coming from the fact that a variable can reach 2quan distance when it is not its turn, then computation above gives next=simt+(p-p)/dx...p-p should be zero but it can be very small negative nextStateTime[i]=simt+Inf#1e-14 # @show simt,nextStateTime[i],i,x,q,quantum[i],xv[i][1] end #= if 2.500745083181994e-5<=simt<3.00745083181994e-5 @show simt,i,nextStateTime,x,q end =# #else #= adavnce=nextStateTime[i]-simt @show i,abs(q-x),quani/100.0,nextStateTime[i],simt,adavnce =# end end
QuantizedSystemSolver
https://github.com/mongibellili/QuantizedSystemSolver.jl.git
[ "MIT" ]
1.0.1
b4bf1003586f2ee6cb98d8df29e88cbbfacd2ea1
code
8634
function updateQ(::Val{3},i::Int, xv::Vector{Taylor0},qv::Vector{Taylor0}, quantum::Vector{Float64},exacteA::Function,d::Vector{Float64},cacheA::MVector{1,Float64},dxaux::Vector{MVector{3,Float64}},qaux::Vector{MVector{3,Float64}},tx::Vector{Float64},tq::Vector{Float64},simt::Float64,ft::Float64, nextStateTime::Vector{Float64}) #a=av[i][i] cacheA[1]=0.0;exacteA(qv,d,cacheA,i,i);a=cacheA[1] q=qv[i][0];q1=qv[i][1];q2=2*qv[i][2];x=xv[i][0];x1=xv[i][1];x2=2*xv[i][2];x3=6*xv[i][3];u1=uv[i][i][1];u2=uv[i][i][2];u3=uv[i][i][3] elapsed=simt-tq[i] qaux[i][1]=q+elapsed*q1+elapsed*elapsed*q2/2#appears only here...updated here and used in updateApprox and in updateQevent later qaux[i][2]=q1+elapsed*q2 ;qaux[i][3]=q2 #never used olddx[i][1]=x1 # tq[i]=simt # elapsed=simt-tu[i] # u1=u1+elapsed*u2+elapsed*elapsed*u3/2 u1=x1-a*qaux[i][1] uv[i][i][1]=u1 #= u2=u2+elapsed*u3 uv[i][i][2]=u2 =# uv[i][i][2]=x2-a*qaux[i][2] #--------------------------------------------------------------- u2=uv[i][i][2] uv[i][i][3]=x3-a*q2 u3=uv[i][i][3] # tu[i]=simt dddx=x3 dxaux[i][1]=x1 dxaux[i][2]=x2 dxaux[i][3]=x3 quan=quantum[i] h=0.0 # println("before q update",abs(q - x) > 2 * quan) if a!=0.0 if dddx ==0.0 dddx=a*a*a*(q)+a*a*u1+a*u2+u3 #*2 if dddx==0.0 dddx=1e-40# changing -40 to -6 nothing changed println("dddx=0") #this appeared once with sys1 liqss3 end end h = ft-simt α=h*(1-a*h+h*h*a*a/3)/(1-h*a) λ=x+h*u1+h*h*u2/2+h*h*h*u3/6 β=-α*(u1-u1*h*a-h*h*(a*u2+u3)/2)/(1-a*h+h*h*a*a/2)-h*h*(0.5-h*a/6)*(u2+h*u3)/(1-a*h)+λ γ=1-a*h+α*a*(1-a*h)/(1-a*h+h*h*a*a/2) q = β/γ if (abs(q - x) > 2*quan) # removing this did nothing...check @btime later h = cbrt(abs((6*quan) / dddx)); #h= cbrt(abs((q-x) / x3));#h=cbrt(abs(6*(q-x) / x3))# shifts up a little α=h*(1-a*h+h*h*a*a/3)/(1-h*a) β=-α*(u1-u1*h*a-h*h*(a*u2+u3)/2)/(1-a*h+h*h*a*a/2)-h*h*(0.5-h*a/6)*(u2+h*u3)/(1-a*h)+x+h*u1+h*h*u2/2+h*h*h*u3/6 γ=1-a*h+α*a*(1-a*h)/(1-a*h+h*h*a*a/2) q = β/γ end maxIter=515 while (abs(q - x) > 2*quan) && (maxIter>0) maxIter-=1 # h = h *(0.98*quan / abs(q - x)); h = h *cbrt(quan / abs(q - x)); α=h*(1-a*h+h*h*a*a/3)/(1-h*a) β=-α*(u1-u1*h*a-h*h*(a*u2+u3)/2)/(1-a*h+h*h*a*a/2)-h*h*(0.5-h*a/6)*(u2+h*u3)/(1-a*h)+x+h*u1+h*h*u2/2+h*h*h*u3/6 γ=1-a*h+α*a*(1-a*h)/(1-a*h+h*h*a*a/2) q = β/γ end q1=(a*(1-h*a)*q+u1*(1-h*a)-h*h*(a*u2+u3)/2)/(1-h*a+h*h*a*a/2) q2=(a*q1+u2+h*u3)/(1-h*a) if maxIter <200 @show maxIter end if h==0.0 @show h end else if x3!=0.0 h=cbrt(abs(6*quan/x3)) q=x+h*h*h*x3/6 q1=x1-x3*h*h/2 #*2 q2=x2+h*x3 else if x2!=0 h=sqrt(abs(2*quan/x2)) q=x-h*h*x2/2 q1=x1+h*x2 else if x1!=0 h=abs(quan/x1) q=x+h*x1 else q=x h=Inf end q1=x1 end q2=x2 end end qv[i][0]=q qv[i][1]=q1 qv[i][2]=q2/2 nextStateTime[i]=simt+h return nothing end function nupdateQ(::Val{3},i::Int, xv::Vector{Taylor0},qv::Vector{Taylor0}, quantum::Vector{Float64},av::Vector{Vector{Float64}},uv::Vector{Vector{MVector{O,Float64}}},qaux::Vector{MVector{O,Float64}},olddx::Vector{MVector{O,Float64}},tx::Vector{Float64},tq::Vector{Float64},simt::Float64,ft::Float64, nextStateTime::Vector{Float64})where{O} a=av[i][i] q=qv[i][0];q1=qv[i][1];q2=2*qv[i][2];x=xv[i][0];x1=xv[i][1];x2=2*xv[i][2];x3=6*xv[i][3];u1=uv[i][i][1];u2=uv[i][i][2];u3=uv[i][i][3] elapsed=simt-tq[i] qaux[i][1]=q+elapsed*q1+elapsed*elapsed*q2/2#appears only here...updated here and used in updateApprox and in updateQevent later qaux[i][2]=q1+elapsed*q2 ;qaux[i][3]=q2 #never used olddx[i][1]=x1 # tq[i]=simt #elapsed=simt-tu[i] #u1=u1+elapsed*u2+elapsed*elapsed*u3/2 u1=x1-a*qaux[i][1] uv[i][i][1]=u1 # u2=u2+elapsed*u3 # uv[i][i][2]=u2 uv[i][i][2]=x2-a*qaux[i][2] u2=uv[i][i][2] uv[i][i][3]=x3-a*q2 u3=uv[i][i][3] #tu[i]=simt dddx=x3 quan=quantum[i] h=0.0 if a!=0.0 if dddx ==0.0 dddx=a*a*a*(q)+a*a*u1+a*u2+u3 #*2 if dddx==0.0 dddx=1e-40# changing -40 to -6 nothing changed println("nupdate dddx=0") #this appeared once with sys1 liqss3 end end h = ft-simt α=h*(1-a*h+h*h*a*a/3)/(1-h*a) λ=x+h*u1+h*h*u2/2+h*h*h*u3/6 β=-α*(u1-u1*h*a-h*h*(a*u2+u3)/2)/(1-a*h+h*h*a*a/2)-h*h*(0.5-h*a/6)*(u2+h*u3)/(1-a*h)+λ γ=1-a*h+α*a*(1-a*h)/(1-a*h+h*h*a*a/2) q = β/γ if (abs(q - x) > 2* quan) # removing this did nothing...check @btime later h = cbrt(abs((6*quan) / dddx)); #h= cbrt(abs((q-x) / x3));#h=cbrt(abs(6*(q-x) / x3))# shifts up a little α=h*(1-a*h+h*h*a*a/3)/(1-h*a) β=-α*(u1-u1*h*a-h*h*(a*u2+u3)/2)/(1-a*h+h*h*a*a/2)-h*h*(0.5-h*a/6)*(u2+h*u3)/(1-a*h)+x+h*u1+h*h*u2/2+h*h*h*u3/6 γ=1-a*h+α*a*(1-a*h)/(1-a*h+h*h*a*a/2) q = β/γ end maxIter=515 while (abs(q - x) > 2* quan) && (maxIter>0) maxIter-=1 # h = h *(0.98*quan / abs(q - x)); h = h *cbrt(quan / abs(q - x)) α=h*(1-a*h+h*h*a*a/3)/(1-h*a) β=-α*(u1-u1*h*a-h*h*(a*u2+u3)/2)/(1-a*h+h*h*a*a/2)-h*h*(0.5-h*a/6)*(u2+h*u3)/(1-a*h)+x+h*u1+h*h*u2/2+h*h*h*u3/6 γ=1-a*h+α*a*(1-a*h)/(1-a*h+h*h*a*a/2) q = β/γ end q1=(a*(1-h*a)*q+u1*(1-h*a)-h*h*(a*u2+u3)/2)/(1-h*a+h*h*a*a/2) q2=(a*q1+u2+h*u3)/(1-h*a) if maxIter <200 @show maxIter end if h==0.0 @show h end else if x3!=0.0 h=cbrt(abs(6*quan/x3)) q=x+h*h*h*x3/6 q1=x1-x3*h*h/2 #*2 q2=x2+h*x3 else if x2!=0 h=sqrt(abs(2*quan/x2)) q=x-h*h*x2/2 q1=x1+h*x2 else if x1!=0 h=abs(quan/x1) q=x+h*x1 else q=x end q1=x1 end q2=x2 end end qv[i][0]=q qv[i][1]=q1 qv[i][2]=q2/2 nextStateTime[i]=simt+h return nothing end function Liqss_reComputeNextTime(::Val{3}, i::Int, simt::Float64, nextStateTime::Vector{Float64}, xv::Vector{Taylor0},qv::Vector{Taylor0}, quantum::Vector{Float64}#= ,a::Vector{Vector{Float64}} =#) q=qv[i][0];x=xv[i][0];q1=qv[i][1];x1=xv[i][1];x2=xv[i][2];q2=qv[i][2];x3=xv[i][3] coef=@SVector [q - x , q1-x1,q2-x2,-x3]# x and q might get away even further(change of sign) and we want that to be no more than another quan nextStateTime[i] = simt + minPosRoot(coef, Val(3)) if abs(q-x) >= 2*quani # this happened when var i and j s turns are now...var i depends on j, j is asked here for next time...or if you want to increase quant*10 later it can be put back to normal and q & x are spread out by 10quan nextStateTime[i] = simt+1e-15 else if q-x >0 coef=setindex(coef, q-x-2*quantum[i],1) timetemp = simt + minPosRoot(coef, Val(3)) if timetemp < nextStateTime[i] nextStateTime[i]=timetemp end elseif q-x <0 coef=setindex(coef, q-x+2*quantum[i],1) timetemp = simt + minPosRoot(coef, Val(3)) if timetemp < nextStateTime[i] nextStateTime[i]=timetemp end else #nextStateTime[i]=simt+Inf#1e-19 end if nextStateTime[i]<simt # this is coming from the fact that a variable can reach 2quan distance when it is not its turn, then computation above gives next=simt+(p-p)/dx...p-p should be zero but it can be very small negative nextStateTime[i]=simt+1e-15 # @show simt,nextStateTime[i],i,x,q,quantum[i],xv[i][1] end end end
QuantizedSystemSolver
https://github.com/mongibellili/QuantizedSystemSolver.jl.git
[ "MIT" ]
1.0.1
b4bf1003586f2ee6cb98d8df29e88cbbfacd2ea1
code
11436
######################################################################################################################################" function computeNextTime(::Val{1}, i::Int, simt::Float64, nextTime::Vector{Float64}, x::Vector{Taylor0}, quantum::Vector{Float64})#i can be absorbed absDeltaT=1e-12 # minimum deltaT to protect against der=Inf coming from sqrt(0) for example...similar to min ΔQ if (x[i].coeffs[2]) != 0 tempTime=max(abs(quantum[i] /(x[i].coeffs[2])),absDeltaT)# i can avoid the use of max if tempTime!=absDeltaT #normal nextTime[i] = simt + tempTime#sqrt(abs(quantum[i] / ((x[i].coeffs[3])*2))) #*2 cuz coeff contains fact() else#usual (quant/der) is very small x[i].coeffs[2]=sign(x[i].coeffs[2])*(abs(quantum[i])/absDeltaT)# adjust derivative if it is too high nextTime[i] = simt + tempTime if DEBUG println("qssQuantizer: smalldelta in compute next") end end else nextTime[i] = Inf end return nothing end function computeNextTime(::Val{2}, i::Int, simt::Float64, nextTime::Vector{Float64}, x::Vector{Taylor0}, quantum::Vector{Float64}) absDeltaT=1e-12 # minimum deltaT to protect against der=Inf coming from sqrt(0) for example...similar to min ΔQ if (x[i].coeffs[3]) != 0 tempTime=max(sqrt(abs(quantum[i] / ((x[i].coeffs[3])))),absDeltaT) if tempTime!=absDeltaT #normal nextTime[i] = simt + tempTime#sqrt(abs(quantum[i] / ((x[i].coeffs[3])*2))) #*2 cuz coeff contains fact() else#usual sqrt(quant/der) is very small x[i].coeffs[3]=sign(x[i].coeffs[3])*(abs(quantum[i])/(absDeltaT*absDeltaT))/2# adjust second derivative if it is too high nextTime[i] = simt + tempTime if DEBUG println("qssQuantizer: smalldelta in compute next") end end else if (x[i].coeffs[2]) != 0 #quantum[i]=2*quantum[i] tempTime=max(abs(quantum[i] /(x[i].coeffs[2])),absDeltaT)# i can avoid the use of max if tempTime!=absDeltaT #normal nextTime[i] = simt + tempTime#sqrt(abs(quantum[i] / ((x[i].coeffs[3])*2))) #*2 cuz coeff contains fact() else#usual (quant/der) is very small x[i].coeffs[2]=sign(x[i].coeffs[2])*(abs(quantum[i])/absDeltaT)# adjust derivative if it is too high nextTime[i] = simt + tempTime if DEBUG println("qssQuantizer: smalldelta in compute next") end end else nextTime[i] = Inf end end return nothing end function computeNextTime(::Val{3}, i::Int, simt::Float64, nextTime::Vector{Float64}, x::Vector{Taylor0}, quantum::Vector{Float64}) absDeltaT=1e-12 # minimum deltaT to protect against der=Inf coming from sqrt(0) for example...similar to min ΔQ if (x[i].coeffs[4]) != 0 tempTime=max(cbrt(abs(quantum[i] / ((x[i].coeffs[4])))),absDeltaT) #6/6 if tempTime!=absDeltaT #normal nextTime[i] = simt + tempTime#sqrt(abs(quantum[i] / ((x[i].coeffs[3])*2))) #*2 cuz coeff contains fact() else#usual sqrt(quant/der) is very small x[i].coeffs[4]=sign(x[i].coeffs[4])*(abs(quantum[i])/(absDeltaT*absDeltaT*absDeltaT))/6# adjust third derivative if it is too high nextTime[i] = simt + tempTime if DEBUG println("qssQuantizer: smalldelta in compute next") end end else nextTime[i] = Inf end return nothing end ######################################################################################################################################" function reComputeNextTime(::Val{1}, index::Int, simt::Float64, nextTime::Vector{Float64}, x::Vector{Taylor0},q::Vector{Taylor0}, quantum::Vector{Float64}) absDeltaT=1e-12 coef=@SVector [q[index].coeffs[1] - (x[index].coeffs[1]) - quantum[index], -x[index].coeffs[2]] time1 = simt + minPosRoot(coef, Val(1)) coef=setindex(coef,q[index].coeffs[1] - (x[index].coeffs[1]) + quantum[index],1) time2 = simt + minPosRoot(coef, Val(1)) timeTemp = time1 < time2 ? time1 : time2 tempTime=max(timeTemp,absDeltaT) #guard against very small Δt #if tempTime==absDeltaT #normal # if DEBUG println("smalldelta in recompute next, simt= ",simt) end # end nextTime[index] = simt +tempTime end function reComputeNextTime(::Val{2}, index::Int, simt::Float64, nextTime::Vector{Float64}, x::Vector{Taylor0},q::Vector{Taylor0}, quantum::Vector{Float64}) absDeltaT=1e-15 if abs(q[index].coeffs[1] - (x[index].coeffs[1])) >= quantum[index] # this happened when var i and j s turns are now...var i depends on j, j is asked here for next time nextTime[index] = simt+1e-15 else coef=@SVector [q[index].coeffs[1] - (x[index].coeffs[1]) - quantum[index], q[index].coeffs[2]-x[index].coeffs[2],-(x[index].coeffs[3])]#not *2 because i am solving c+bt+a/2*t^2 time1 = minPosRoot(coef, Val(2)) coef=setindex(coef,q[index].coeffs[1] - (x[index].coeffs[1]) + quantum[index],1) time2 = minPosRoot(coef, Val(2)) timeTemp = time1 < time2 ? time1 : time2 tempTime=max(timeTemp,absDeltaT)#guard against very small Δt # if tempTime==absDeltaT #normal # x[index].coeffs[3]=sign(x[index].coeffs[3])*(abs(quantum[index])/(absDeltaT*absDeltaT))/2 # if DEBUG println("smalldelta in recompute next, simt= ",simt) end # end nextTime[index] = simt +tempTime end return nothing end function reComputeNextTime(::Val{3}, index::Int, simt::Float64, nextTime::Vector{Float64}, x::Vector{Taylor0},q::Vector{Taylor0}, quantum::Vector{Float64}) #coef=@SVector [q[index].coeffs[1] - (x[index].coeffs[1]) - quantum[index], q[index].coeffs[2]-x[index].coeffs[2],(q[index].coeffs[3])-(x[index].coeffs[3]),-(x[index].coeffs[4])] #time1 = simt + minPosRoot(coef, Val(3)) #pp=pointer(Vector{NTuple{2,Float64}}(undef, 5)) a=-x[index][3];b=q[index][2]-x[index][2];c=q[index][1]-x[index][1];d=q[index][0]-x[index][0]-quantum[index] #GC.enable(false) #time1 = simt+smallestpositiverootintervalnewtonregulafalsi((a, b, c, d)) time1 = simt+cubic5(a, b, c, d) # GC.enable(true) #coef=setindex(coef,q[index].coeffs[1] - (x[index].coeffs[1]) + quantum[index],1) d=q[index][0]-x[index][0]+quantum[index] # GC.enable(false) #time2 = simt+smallestpositiverootintervalnewtonregulafalsi((a, b, c, d)) time2 = simt+cubic5(a, b, c, d) # GC.enable(true) #time2 = simt + minPosRoot(coef, Val(3)) timeTemp = time1 < time2 ? time1 : time2 absDeltaT=1e-12 tempTime=max(timeTemp,absDeltaT)#guard against very small Δt nextTime[index] = simt +tempTime return nothing end ######################################################################################################################################" function computeNextInputTime(::Val{1}, i::Int, simt::Float64,elapsed::Float64, tt::Taylor0 ,nextInputTime::Vector{Float64}, x::Vector{Taylor0}, quantum::Vector{Float64}) df=0.0 oldDerX=x[i].coeffs[2] newDerX=tt.coeffs[1] if elapsed > 0 df=(newDerX-oldDerX)/elapsed #df mimics second der else df= quantum[i]*1e6 end if df!=0.0 nextInputTime[i]=simt+sqrt(abs(2*quantum[i] / df)) else nextInputTime[i] = Inf end return nothing end function computeNextInputTime(::Val{2}, i::Int, simt::Float64,elapsed::Float64, tt::Taylor0 ,nextInputTime::Vector{Float64}, x::Vector{Taylor0}, quantum::Vector{Float64}) ddf=0.0;df=0.0 oldDerDerX=((x[i].coeffs[3])*2.0) # @show x newDerDerX=(tt.coeffs[2])# 1st der of tt cuz tt itself is derx=f #@show tt if elapsed > 0.0 ddf=(newDerDerX-oldDerDerX)/(elapsed) # println("df=new-old= ",df) else ddf= quantum[i]*1e6#*1e12 if DEBUG println("QSS quantizer elapsed=0!") end end if ddf!=0.0 nextInputTime[i]=simt+cbrt((abs(quantum[i]/df))) #ddf mimics 3rd der # println("usedcbrt") else #df=0->newddx=oldddx -> if DEBUG println("QSS quantizer ddf=0 ") end oldDerX=((x[i].coeffs[2])) # @show x newDerX=(tt.coeffs[1])# 1st der of tt cuz tt itself is derx=f # @show tt if elapsed > 0.0 df=(newDerX-oldDerX)/(elapsed) #df mimic second derivative # println("df=new-old= ",df) else df= quantum[i]*1e6#*1e12 if DEBUG println("QSS quantizer elapsed=0!") end end if df!=0.0 nextInputTime[i]=simt+sqrt((abs(quantum[i]/df))) else if x[i][1]!=0 #predicted second derivative is 0 & should not be used to determine nexttime. use 1st der #nextInputTime[i]=simt+(abs(2*quantum[i] / x[i][1])) #*2 is not analytic: is just there to increase stepsize nextInputTime[i]=simt+sqrt(abs(1*quantum[i] / x[i][1])) #I used the same formulae even with 1st der so that it is fair to other vars else nextInputTime[i] = Inf end end end # @show nextInputTime return nothing end function computeNextInputTime(::Val{3}, i::Int, simt::Float64,elapsed::Float64, tt::Taylor0 ,nextInputTime::Vector{Float64}, x::Vector{Taylor0}, quantum::Vector{Float64}) df=0.0 oldDerDerX=((x[i].coeffs[3])*2.0) #@show x newDerDerX=(tt.coeffs[2])# 1st der of tt cuz tt itself is derx=f #@show newDerDerX if elapsed > 0.0 df=(newDerDerX-oldDerDerX)/(elapsed) # println("df=new-old= ",df) else df= quantum[i]*1e6#*1e12 end if df!=0.0 nextInputTime[i]=simt+cbrt((abs(quantum[i]/df))) #df mimics 3rd der # println("usedcbrt") else if newDerDerX==0 && x[i][1]!=0 #predicted second derivative is 0 & should be not be used to determine nexttime. use 1st der #nextInputTime[i]=simt+(abs(2*quantum[i] / x[i][1])) #*2 is not analytic: is just there to increase stepsize nextInputTime[i]=simt+sqrt(abs(1*quantum[i] / x[i][1])) #I used the same formulae even with 1st der so that it is fair to other vars else nextInputTime[i] = Inf end end return nothing end function computeNextEventTime(::Val{O},j::Int,ZCFun::Taylor0,oldsignValue,simt, nextEventTime, quantum::Vector{Float64},absQ::Float64) where {O} #= if ZCFun[0]==0.0 && oldsignValue[j,1] !=0.0#abs(oldsignValue[j,1])>1e-15 if DEBUG2 println("qss quantizer:zcf$j ZCF=0.0 (rare) immediate event at simt= $simt oldzcf value= $(oldsignValue[j,2]) ") end nextEventTime[j]=simt else =# if (oldsignValue[j,1] != sign(ZCFun[0])) && abs(oldsignValue[j,2]) >1e-9*absQ #prevent double tapping: when zcf is leaving zero it should be considered an event if DEBUG println("qss quantizer:zcf$j immediate event at simt= $simt oldzcf value= $(oldsignValue[j,2]) newZCF value= $(ZCFun[0])"); end nextEventTime[j]=simt elseif oldsignValue[j,2] ==0.0 && ZCFun[0] ==0.0 # initial value 0 --> do not do anything nextEventTime[j]=Inf else # old and new ZCF both pos or both neg # coef=@SVector [ZCFun[0],ZCFun[1],ZCFun[2]] mpr=minPosRoot(ZCFun, Val(O)) if mpr<1e-14 # prevent very close events mpr=1e-12 #sl=ZCFun[0]+mpr*ZCFun[1]+mpr*mpr*ZCFun[2]/2 end nextEventTime[j] =simt + mpr if DEBUG2 println("qss quantizer:zcf$j at simt= $simt ****scheduled**** event at $(simt + mpr) oldzcf value= $(oldsignValue[j,2]) newZCF value= $(ZCFun[0])") end oldsignValue[j,1]=sign(ZCFun[0])#update the values oldsignValue[j,2]=ZCFun[0] end end
QuantizedSystemSolver
https://github.com/mongibellili/QuantizedSystemSolver.jl.git
[ "MIT" ]
1.0.1
b4bf1003586f2ee6cb98d8df29e88cbbfacd2ea1
code
1252
@inline function integrateState(::Val{0}, x::Taylor0,elapsed::Float64) #nothing: created for elapse-updating q in order1 which does not happen end @inline function integrateState(::Val{1}, x::Taylor0,elapsed::Float64) x.coeffs[1] = x(elapsed) end @inline function integrateState(::Val{2}, x::Taylor0,elapsed::Float64) x.coeffs[1] = x(elapsed) x.coeffs[2] = x.coeffs[2]+elapsed*x.coeffs[3]*2 end @inline function integrateState(::Val{3}, x::Taylor0,elapsed::Float64) x.coeffs[1] = x(elapsed) x.coeffs[2] = x.coeffs[2]+elapsed*x.coeffs[3]*2+elapsed*elapsed*x.coeffs[4]*3 x.coeffs[3] = x.coeffs[3]+elapsed*x.coeffs[4]*3#(x.coeffs[3]*2+elapsed*x.coeffs[4]*6)/2 end ######################################################################################################################################" function computeDerivative( ::Val{1} ,x::Taylor0,f::Taylor0 ) x.coeffs[2] =f.coeffs[1] return nothing end function computeDerivative( ::Val{2} ,x::Taylor0,f::Taylor0) x.coeffs[2] =f.coeffs[1] x.coeffs[3] =f.coeffs[2]/2 return nothing end function computeDerivative( ::Val{3} ,x::Taylor0,f::Taylor0) x.coeffs[2] =f[0] x.coeffs[3]=f.coeffs[2]/2 x.coeffs[4]=f.coeffs[3]/3 # coeff3*2/6 return nothing end
QuantizedSystemSolver
https://github.com/mongibellili/QuantizedSystemSolver.jl.git
[ "MIT" ]
1.0.1
b4bf1003586f2ee6cb98d8df29e88cbbfacd2ea1
code
19126
#analy function nmisCycle_and_simulUpdate(cacheRootsi::Vector{Float64},cacheRootsj::Vector{Float64},acceptedi::Vector{Vector{Float64}},acceptedj::Vector{Vector{Float64}},aij::Float64,aji::Float64,respp::Ptr{Float64}, pp::Ptr{NTuple{2,Float64}},trackSimul,::Val{1},index::Int,j::Int,dirI::Float64,dti::Float64, x::Vector{Taylor0},q::Vector{Taylor0}, quantum::Vector{Float64},exacteA::Function,d::Vector{Float64},cacheA::MVector{1,Float64},dxaux::Vector{MVector{1,Float64}},qaux::Vector{MVector{1,Float64}},tx::Vector{Float64},tq::Vector{Float64},simt::Float64,ft::Float64) cacheA[1]=0.0;exacteA(q,d,cacheA,index,index,simt) aii=cacheA[1] cacheA[1]=0.0;exacteA(q,d,cacheA,j,j,simt) ajj=cacheA[1] #= exacteA(q,cacheA,index,j) aij=cacheA[1] exacteA(q,cacheA,j,index) aji=cacheA[1] =# xi=x[index][0];xj=x[j][0];ẋi=x[index][1];ẋj=x[j][1] qi=q[index][0];qj=q[j][0] quanj=quantum[j];quani=quantum[index] #qaux[j][1]=qj; elapsed = simt - tx[j];x[j][0]= xj+elapsed*ẋj; xj=x[j][0] tx[j]=simt qiminus=qaux[index][1] #ujj=ẋj-ajj*qj uji=ẋj-ajj*qj-aji*qiminus #uii=dxaux[index][1]-aii*qaux[index][1] uij=dxaux[index][1]-aii*qiminus-aij*qj iscycle=false dxj=aji*qi+ajj*qj+uji #only future qi #emulate fj dxithrow=aii*qi+aij*qj+uij #only future qi qjplus=xj+sign(dxj)*quanj #emulate updateQ(j)... dxi=aii*qi+aij*qjplus+uij #both future qi & qj #emulate fi #dxj2=ajj*qjplus+aji*qi+uji #= if abs(dxithrow)<1e-15 && dxithrow!=0.0 dxithrow=0.0 end =# ########condition:Union #= if abs(dxj)*3<abs(ẋj) || abs(dxj)>3*abs(ẋj) || (dxj*ẋj)<0.0 if abs(dxi)>3*abs(ẋi) || abs(dxi)*3<abs(ẋi) || (dxi*ẋi)<0.0 iscycle=true end end =# ########condition:Union i #= if abs(dxj-ẋj)>(abs(dxj+ẋj)/2) if abs(dxi-dxithrow)>(abs(dxi+dxithrow)/2) iscycle=true end end =# ########condition:Union i union if (abs(dxj)*3<abs(ẋj) || abs(dxj)>3*abs(ẋj) || (dxj*ẋj)<0.0) cancelCriteria=1e-6*quani if abs(dxi)>3*abs(dxithrow) || abs(dxi)*3<abs(dxithrow) || (dxi*dxithrow)<0.0 iscycle=true if abs(dxi)<cancelCriteria && abs(dxithrow)<cancelCriteria #significant change is relative to der values. cancel if all values are small iscycle=false # println("cancel dxi & dxthr small") end end if abs(dxi)>10*abs(ẋi) || abs(dxi)*10<abs(ẋi) #|| (dxi*ẋi)<0.0 iscycle=true if abs(dxi)<cancelCriteria && abs(ẋi)<cancelCriteria #significant change is relative to der values. cancel if all values are small iscycle=false # println("cancel dxi & ẋi small") end end if abs(dxj)<1e-6*quanj && abs(ẋj)<1e-6*quanj #significant change is relative to der values. cancel if all values are small iscycle=false #println("cancel dxj & ẋj small") end end #= if 9.087757893221387e-5<=simt<=9.23684654009e-5 println("simulUpdate $iscycle at simt=$simt index=$index, j=$j") @show ẋi,dxi,dxithrow,ẋj,dxj @show qj,xj end =# if iscycle #clear accIntrvals and cache of roots for i =1:3# 3 ord1 ,7 ord2 acceptedi[i][1]=0.0; acceptedi[i][2]=0.0 acceptedj[i][1]=0.0; acceptedj[i][2]=0.0 end for i=1:4 cacheRootsi[i]=0.0 cacheRootsj[i]=0.0 end #find positive zeros f=+-Δ bi=aii*xi+aij*xj+uij;ci=aij*(aji*xi+uji)-ajj*(aii*xi+uij);αi=-ajj-aii;βi=aii*ajj-aij*aji bj=ajj*xj+aji*xi+uji;cj=aji*(aij*xj+uij)-aii*(ajj*xj+uji);αj=-aii-ajj;βj=ajj*aii-aji*aij coefi=NTuple{3,Float64}((βi*quani-ci,αi*quani-bi,quani)) coefi2=NTuple{3,Float64}((-βi*quani-ci,-αi*quani-bi,-quani)) coefj=NTuple{3,Float64}((βj*quanj-cj,αj*quanj-bj,quanj)) coefj2=NTuple{3,Float64}((-βj*quanj-cj,-αj*quanj-bj,-quanj)) resi1,resi2=quadRootv2(coefi) resi3,resi4=quadRootv2(coefi2) resj1,resj2=quadRootv2(coefj) resj3,resj4=quadRootv2(coefj2) #= unsafe_store!(respp, -1.0, 1);unsafe_store!(respp, -1.0, 2) allrealrootintervalnewtonregulafalsi(coefi,respp,pp) resi1,resi2=unsafe_load(respp,1),unsafe_load(respp,2) unsafe_store!(respp, -1.0, 1);unsafe_store!(respp, -1.0, 2) allrealrootintervalnewtonregulafalsi(coefi2,respp,pp) resi3,resi4=unsafe_load(respp,1),unsafe_load(respp,2) unsafe_store!(respp, -1.0, 1);unsafe_store!(respp, -1.0, 2) allrealrootintervalnewtonregulafalsi(coefj,respp,pp) resj1,resj2=unsafe_load(respp,1),unsafe_load(respp,2) unsafe_store!(respp, -1.0, 1);unsafe_store!(respp, -1.0, 2) allrealrootintervalnewtonregulafalsi(coefj2,respp,pp) resj3,resj4=unsafe_load(respp,1),unsafe_load(respp,2) =# #construct intervals constructIntrval(acceptedi,resi1,resi2,resi3,resi4) constructIntrval(acceptedj,resj1,resj2,resj3,resj4) #find best H (largest overlap) ki=3;kj=3 while true currentLi=acceptedi[ki][1];currentHi=acceptedi[ki][2] currentLj=acceptedj[kj][1];currentHj=acceptedj[kj][2] if currentLj<=currentLi<currentHj || currentLi<=currentLj<currentHi#resj[end][1]<=resi[end][1]<=resj[end][2] || resi[end][1]<=resj[end][1]<=resi[end][2] #overlap h=min(currentHi,currentHj ) #= if simt==6.167911302732222e-9 @show h end =# if h==Inf && (currentLj!=0.0 || currentLi!=0.0) # except case both 0 sols h1=(0,Inf) h=max(currentLj,currentLi#= ,ft-simt,dti =#) #ft-simt in case they are both ver small...elaborate on his later end if h==Inf # both lower bounds ==0 --> zero sols for both qi=getQfromAsymptote(simt,xi,βi,ci,αi,bi) qj=getQfromAsymptote(simt,xj,βj,cj,αj,bj) else Δ=(1-h*aii)*(1-h*ajj)-h*h*aij*aji if Δ!=0.0 qi = ((1-h*ajj)*(xi+h*uij)+h*aij*(xj+h*uji))/Δ qj = ((1-h*aii)*(xj+h*uji)+h*aji*(xi+h*uij))/Δ else qi,qj,h,maxIter=IterationH(h,xi,quani, xj,quanj,aii,ajj,aij,aji,uij,uji) if maxIter==0 return false end end end break else if currentHj==0.0 && currentHi==0.0#empty ki-=1;kj-=1 elseif currentHj==0.0 && currentHi!=0.0 kj-=1 elseif currentHi==0.0 && currentHj!=0.0 ki-=1 else #both non zero if currentLj<currentLi#remove last seg of resi ki-=1 else #remove last seg of resj kj-=1 end end end end # end while q[j][0]=qj tq[j]=simt q[index][0]=qi# store back helper vars trackSimul[1]+=1 # do not have to recomputeNext if qi never changed end return iscycle end #iters # function nmisCycle_and_simulUpdate(acceptedi::Vector{Vector{Float64}},acceptedj::Vector{Vector{Float64}},aij::Float64,aji::Float64,respp::Ptr{Float64}, pp::Ptr{NTuple{2,Float64}},trackSimul,::Val{1},index::Int,j::Int,dirI::Float64,dti::Float64, x::Vector{Taylor0},q::Vector{Taylor0}, quantum::Vector{Float64},exacteA::Function,d::Vector{Float64},cacheA::MVector{1,Float64},dxaux::Vector{MVector{1,Float64}},qaux::Vector{MVector{1,Float64}},tx::Vector{Float64},tq::Vector{Float64},simt::Float64,ft::Float64) #= function nmisCycle_and_simulUpdate(cacheRootsi::Vector{Float64},cacheRootsj::Vector{Float64},acceptedi::Vector{Vector{Float64}},acceptedj::Vector{Vector{Float64}},aij::Float64,aji::Float64,respp::Ptr{Float64}, pp::Ptr{NTuple{2,Float64}},trackSimul,::Val{1},index::Int,j::Int,dirI::Float64,dti::Float64, x::Vector{Taylor0},q::Vector{Taylor0}, quantum::Vector{Float64},exacteA::Function,d::Vector{Float64},cacheA::MVector{1,Float64},dxaux::Vector{MVector{1,Float64}},qaux::Vector{MVector{1,Float64}},tx::Vector{Float64},tq::Vector{Float64},simt::Float64,ft::Float64) cacheA[1]=0.0;exacteA(q,d,cacheA,index,index) aii=cacheA[1] cacheA[1]=0.0;exacteA(q,d,cacheA,j,j) ajj=cacheA[1] #= exacteA(q,cacheA,index,j) aij=cacheA[1] exacteA(q,cacheA,j,index) aji=cacheA[1] =# xi=x[index][0];xj=x[j][0];ẋi=x[index][1];ẋj=x[j][1] qi=q[index][0];qj=q[j][0] quanj=quantum[j];quani=quantum[index] #qaux[j][1]=qj; elapsed = simt - tx[j];x[j][0]= xj+elapsed*ẋj; xj=x[j][0] tx[j]=simt qiminus=qaux[index][1] #ujj=ẋj-ajj*qj uji=ẋj-ajj*qj-aji*qiminus #uii=dxaux[index][1]-aii*qaux[index][1] uij=dxaux[index][1]-aii*qiminus-aij*qj iscycle=false dxj=aji*qi+ajj*qj+uji #only future qi #emulate fj dxithrow=aii*qi+aij*qj+uij #only future qi qjplus=xj+sign(dxj)*quanj #emulate updateQ(j)... dxi=aii*qi+aij*qjplus+uij #both future qi & qj #emulate fi #dxj2=ajj*qjplus+aji*qi+uji #= if abs(dxithrow)<1e-15 && dxithrow!=0.0 dxithrow=0.0 end =# ########condition:Union #= if abs(dxj)*3<abs(ẋj) || abs(dxj)>3*abs(ẋj) || (dxj*ẋj)<0.0 if abs(dxi)>3*abs(ẋi) || abs(dxi)*3<abs(ẋi) || (dxi*ẋi)<0.0 iscycle=true end end =# ########condition:Union i #= if abs(dxj-ẋj)>(abs(dxj+ẋj)/2) if abs(dxi-dxithrow)>(abs(dxi+dxithrow)/2) iscycle=true end end =# ########condition:Union i union if (abs(dxj)*3<abs(ẋj) || abs(dxj)>3*abs(ẋj) || (dxj*ẋj)<0.0) cancelCriteria=1e-3*quani if abs(dxi)>3*abs(dxithrow) || abs(dxi)*3<abs(dxithrow) || (dxi*dxithrow)<0.0 iscycle=true if abs(dxi)<cancelCriteria && abs(dxithrow)<cancelCriteria #significant change is relative to der values. cancel if all values are small iscycle=false # println("cancel dxi & dxthr small") end end if abs(dxi)>10*abs(ẋi) || abs(dxi)*10<abs(ẋi) #|| (dxi*ẋi)<0.0 iscycle=true if abs(dxi)<cancelCriteria && abs(ẋi)<cancelCriteria #significant change is relative to der values. cancel if all values are small iscycle=false # println("cancel dxi & ẋi small") end end if abs(dxj)<1e-6*quanj && abs(ẋj)<1e-6*quanj #significant change is relative to der values. cancel if all values are small iscycle=false #println("cancel dxj & ẋj small") end end #= if 9.087757893221387e-5<=simt<=9.23684654009e-5 println("simulUpdate $iscycle at simt=$simt index=$index, j=$j") @show ẋi,dxi,dxithrow,ẋj,dxj @show qj,xj end =# if iscycle h=ft-simt # h=firstguessH Δ=(1-h*aii)*(1-h*ajj)-h*h*aij*aji qi = ((1-h*ajj)*(xi+h*uij)+h*aij*(xj+h*uji))/Δ qj = ((1-h*aii)*(xj+h*uji)+h*aji*(xi+h*uij))/Δ if (abs(qi - xi) > 1*quani || abs(qj - xj) > 1*quanj) #checking qi-xi is not needed since firstguess just made it less than delta h1 = (abs(quani / ẋi));h2 = (abs(quanj / ẋj)); h=min(h1,h2) h_two=h Δ=(1-h*aii)*(1-h*ajj)-h*h*aij*aji #= if Δ==0 Δ=1e-12 end =# qi = ((1-h*ajj)*(xi+h*uij)+h*aij*(xj+h*uji))/Δ qj = ((1-h*aii)*(xj+h*uji)+h*aji*(xi+h*uij))/Δ end maxIter=1000 while (abs(qi - xi) > 1*quani || abs(qj - xj) > 1*quanj) && (maxIter>0) maxIter-=1 h1 = h * (0.99*quani / abs(qi - xi)); #= Δtemp=(1-h1*aii)*(1-h1*ajj)-h1*h1*aij*aji qitemp = ((1-h1*ajj)*(xi+h1*uij)+h1*aij*(xj+h1*uji))/Δtemp =# h2 = h * (0.99*quanj / abs(qj - xj)); #= Δtemp=(1-h2*aii)*(1-h2*ajj)-h2*h2*aij*aji qjtemp = ((1-h2*ajj)*(xi+h2*uij)+h2*aij*(xj+h2*uji))/Δtemp if abs(qitemp - xi) > 1*quani || abs(qjtemp - xj) > 1*quanj println("regle de croix did not work") end =# h=min(h1,h2) h_three=h Δ=(1-h*aii)*(1-h*ajj)-h*h*aij*aji #= if Δ==0 Δ=1e-12 println("delta liqss1 simulupdate==0") end =# if Δ!=0 qi = ((1-h*ajj)*(xi+h*uij)+h*aij*(xj+h*uji))/Δ qj = ((1-h*aii)*(xj+h*uji)+h*aji*(xi+h*uij))/Δ end if maxIter < 1 println("maxiter of updateQ = ",maxIter) end end if maxIter < 1 return false end q[index][0]=qi# store back helper vars trackSimul[1]+=1 # do not have to recomputeNext if qi never changed q[j][0]=qj #= push!(simulqxiVals,abs(qi-xi)) push!(simulqxjVals,abs(qj-xj)) push!(simuldeltaiVals,quani) push!(simuldeltajVals,quanj) =# tq[j]=simt end #end second dependecy check return iscycle end =# #= function nmisCycle_and_simulUpdate(acceptedi::Vector{Vector{Float64}},acceptedj::Vector{Vector{Float64}},aij::Float64,aji::Float64,respp::Ptr{Float64}, pp::Ptr{NTuple{2,Float64}},trackSimul,::Val{1},index::Int,j::Int,dirI::Float64,dti::Float64, x::Vector{Taylor0},q::Vector{Taylor0}, quantum::Vector{Float64},exacteA::Function,d::Vector{Float64},cacheA::MVector{1,Float64},dxaux::Vector{MVector{1,Float64}},qaux::Vector{MVector{1,Float64}},tx::Vector{Float64},tq::Vector{Float64},simt::Float64,ft::Float64) exacteA(q,d,cacheA,index,index) aii=cacheA[1] exacteA(q,d,cacheA,j,j) ajj=cacheA[1] exacteA(q,d,cacheA,index,j) aij=cacheA[1] exacteA(q,d,cacheA,j,index) aji=cacheA[1] xi=x[index][0];xj=x[j][0];ẋi=x[index][1];ẋj=x[j][1] qi=q[index][0];qj=q[j][0] quanj=quantum[j];quani=quantum[index] qaux[j][1]=qj;#olddx[j][1]=ẋj elapsed = simt - tx[j];x[j][0]= xj+elapsed*ẋj; xj=x[j][0] tx[j]=simt #ujj=ẋj-ajj*qj uji=ẋj-ajj*qj-aji*qaux[index][1] #uii=dxaux[index][1]-aii*qaux[index][1] uij=dxaux[index][1]-aii*qaux[index][1]-aij*qj#qaux[j][1] iscycle=false dxj=aji*qi+ajj*qaux[j][1]+uji #only future qi qjplus=xj+sign(dxj)*quanj dxi=aii*qi+aij*qjplus+uij #both future qi & qj dxi2=aii*qi+aij*qj+uij #only future qi dxj2=aji*qi+ajj*qjplus+uji#both future qi & qj #= if simt>=0.22816661756287676 @show simt,index @show ẋi,dxi @show ẋj,dxj @show xj,qj,qjplus,quanj @show xi,qaux[index][1],qi,quani @show firstguessH end =# if #= abs(dxj-ẋj)>abs(dxj+ẋj)/1.8 =#((abs(dxj)*3<abs(ẋj) || abs(dxj)>3*abs(ẋj))#= && abs(ẋj * dxj) > 1e-3 =# )|| (dxj*ẋj)<=0.0#= && abs(dxj-ẋj)>abs(dxj+ẋj)/20 =# # if (dxj*ẋj)<=0.0 # if abs(a[j][index]*2*quantum[index])>abs(x[j][1]) ############################################################################ if #= abs(dxi-ẋi)>abs(dxi+ẋi)/1.8 =#((abs(dxi)*3<abs(ẋi) || abs(dxi)>3*abs(ẋi))#= && abs(ẋi * dxi)> 1e-3 =# )|| (dxi*ẋi)<=0.0 #= && abs(dxi-ẋi)>abs(dxi+ẋi)/20 =# #if (dxi*ẋi)<=0.0 iscycle=true h_two=-1.0;h_three=-1.0 h=ft-simt # h=firstguessH Δ=(1-h*aii)*(1-h*ajj)-h*h*aij*aji qi = ((1-h*ajj)*(xi+h*uij)+h*aij*(xj+h*uji))/Δ qj = ((1-h*aii)*(xj+h*uji)+h*aji*(xi+h*uij))/Δ if (abs(qi - xi) > 1*quani || abs(qj - xj) > 1*quanj) #checking qi-xi is not needed since firstguess just made it less than delta h1 = (abs(quani / ẋi));h2 = (abs(quanj / ẋj)); h=min(h1,h2) h_two=h Δ=(1-h*aii)*(1-h*ajj)-h*h*aij*aji if Δ==0 Δ=1e-12 end qi = ((1-h*ajj)*(xi+h*uij)+h*aij*(xj+h*uji))/Δ qj = ((1-h*aii)*(xj+h*uji)+h*aji*(xi+h*uij))/Δ end maxIter=1000 while (abs(qi - xi) > 1*quani || abs(qj - xj) > 1*quanj) && (maxIter>0) maxIter-=1 h1 = h * (0.99*quani / abs(qi - xi)); #= Δtemp=(1-h1*aii)*(1-h1*ajj)-h1*h1*aij*aji qitemp = ((1-h1*ajj)*(xi+h1*uij)+h1*aij*(xj+h1*uji))/Δtemp =# h2 = h * (0.99*quanj / abs(qj - xj)); #= Δtemp=(1-h2*aii)*(1-h2*ajj)-h2*h2*aij*aji qjtemp = ((1-h2*ajj)*(xi+h2*uij)+h2*aij*(xj+h2*uji))/Δtemp if abs(qitemp - xi) > 1*quani || abs(qjtemp - xj) > 1*quanj println("regle de croix did not work") end =# h=min(h1,h2) h_three=h Δ=(1-h*aii)*(1-h*ajj)-h*h*aij*aji if Δ==0 Δ=1e-12 println("delta liqss1 simulupdate==0") end qi = ((1-h*ajj)*(xi+h*uij)+h*aij*(xj+h*uji))/Δ qj = ((1-h*aii)*(xj+h*uji)+h*aji*(xi+h*uij))/Δ if maxIter < 1 println("maxiter of updateQ = ",maxIter) end end # if maxIter < 950 println("maxiter = ",maxIter) end # @show simt,index,h #= push!(simulHTimes,simt) push!(simulHVals,h) =# # @show h,qi,qj q[index][0]=qi# store back helper vars q[j][0]=qj #= push!(simulqxiVals,abs(qi-xi)) push!(simulqxjVals,abs(qj-xj)) push!(simuldeltaiVals,quani) push!(simuldeltajVals,quanj) =# tq[j]=simt end #end second dependecy check end # end outer dependency check return iscycle end =# function getQfromAsymptote(simt,x::Float64,β::P,c::P,α::P,b::P) where {P<:Union{BigFloat,Float64}} q=0.0 if β==0.0 && c!=0.0 println("report bug: β==0 && c!=0.0: this leads to asym=Inf while this code came from asym<Delta at $simt") elseif β==0.0 && c==0.0 if α==0.0 && b!=0.0 println("report bug: α==0 && b!=0.0 this leads to asym=Inf while this code came from asym<Delta at $simt") elseif α==0.0 && b==0.0 q=x else q=x+b/α end else q=x+c/β #asymptote...even though not guaranteed to be best end q end function iterationH(h::Float64,xi::Float64,quani::Float64, xj::Float64,quanj::Float64,aii::Float64,ajj::Float64,aij::Float64,aji::Float64,uij::Float64,uji::Float64) qi,qj=0.0,0.0 maxIter=1000 while (abs(qi - xi) > 1*quani || abs(qj - xj) > 1*quanj) && (maxIter>0) maxIter-=1 h1 = h * (0.99*quani / abs(qi - xi)); h2 = h * (0.99*quanj / abs(qj - xj)); h=min(h1,h2) h_three=h Δ=(1-h*aii)*(1-h*ajj)-h*h*aij*aji if Δ!=0 qi = ((1-h*ajj)*(xi+h*uij)+h*aij*(xj+h*uji))/Δ qj = ((1-h*aii)*(xj+h*uji)+h*aji*(xi+h*uij))/Δ end # if maxIter < 1 println("maxiter of updateQ = ",maxIter) end end qi,qj,h,maxIter end
QuantizedSystemSolver
https://github.com/mongibellili/QuantizedSystemSolver.jl.git
[ "MIT" ]
1.0.1
b4bf1003586f2ee6cb98d8df29e88cbbfacd2ea1
code
10830
#iters function nmisCycle_and_simulUpdate(cacheRootsi::Vector{Float64},cacheRootsj::Vector{Float64},acceptedi::Vector{Vector{Float64}},acceptedj::Vector{Vector{Float64}},aij::Float64,aji::Float64,respp::Ptr{Float64}, pp::Ptr{NTuple{2,Float64}},trackSimul,::Val{1},index::Int,j::Int,dirI::Float64,dti::Float64, x::Vector{Taylor0},q::Vector{Taylor0}, quantum::Vector{Float64},exactA::Function,d::Vector{Float64},cacheA::MVector{1,Float64},dxaux::Vector{MVector{1,Float64}},qaux::Vector{MVector{1,Float64}},tx::Vector{Float64},tq::Vector{Float64},simt::Float64,ft::Float64) cacheA[1]=0.0;exactA(q,d,cacheA,index,index,simt) aii=cacheA[1] cacheA[1]=0.0;exactA(q,d,cacheA,j,j,simt) ajj=cacheA[1] #= exactA(q,cacheA,index,j) aij=cacheA[1] exactA(q,cacheA,j,index) aji=cacheA[1] =# xi=x[index][0];xj=x[j][0];ẋi=x[index][1];ẋj=x[j][1] qi=q[index][0];qj=q[j][0] quanj=quantum[j];quani=quantum[index] #qaux[j][1]=qj; elapsed = simt - tx[j];x[j][0]= xj+elapsed*ẋj; xj=x[j][0] tx[j]=simt qiminus=qaux[index][1] #ujj=ẋj-ajj*qj uji=ẋj-ajj*qj-aji*qiminus #uii=dxaux[index][1]-aii*qaux[index][1] uij=dxaux[index][1]-aii*qiminus-aij*qj iscycle=false dxj=aji*qi+ajj*qj+uji #only future qi #emulate fj dxithrow=aii*qi+aij*qj+uij #only future qi qjplus=xj+sign(dxj)*quanj #emulate updateQ(j)... dxi=aii*qi+aij*qjplus+uij #both future qi & qj #emulate fi #dxj2=ajj*qjplus+aji*qi+uji #= if abs(dxithrow)<1e-15 && dxithrow!=0.0 dxithrow=0.0 end =# ########condition:Union #= if abs(dxj)*3<abs(ẋj) || abs(dxj)>3*abs(ẋj) || (dxj*ẋj)<0.0 if abs(dxi)>3*abs(ẋi) || abs(dxi)*3<abs(ẋi) || (dxi*ẋi)<0.0 iscycle=true end end =# ########condition:Union i #= if abs(dxj-ẋj)>(abs(dxj+ẋj)/2) if abs(dxi-dxithrow)>(abs(dxi+dxithrow)/2) iscycle=true end end =# ########condition:Union i union if (abs(dxj)*3<abs(ẋj) || abs(dxj)>3*abs(ẋj) || (dxj*ẋj)<0.0) cancelCriteria=1e-6*quani if abs(dxi)>3*abs(dxithrow) || abs(dxi)*3<abs(dxithrow) || (dxi*dxithrow)<0.0 iscycle=true if abs(dxi)<cancelCriteria && abs(dxithrow)<cancelCriteria #significant change is relative to der values. cancel if all values are small iscycle=false # println("cancel dxi & dxthr small") end end if abs(dxi)>10*abs(ẋi) || abs(dxi)*10<abs(ẋi) #|| (dxi*ẋi)<0.0 iscycle=true if abs(dxi)<cancelCriteria && abs(ẋi)<cancelCriteria #significant change is relative to der values. cancel if all values are small iscycle=false # println("cancel dxi & ẋi small") end end if abs(dxj)<1e-6*quanj && abs(ẋj)<1e-6*quanj #significant change is relative to der values. cancel if all values are small iscycle=false #println("cancel dxj & ẋj small") end end #= if 9.087757893221387e-5<=simt<=9.23684654009e-5 println("simulUpdate $iscycle at simt=$simt index=$index, j=$j") @show ẋi,dxi,dxithrow,ẋj,dxj @show qj,xj end =# if iscycle h=ft-simt # h=firstguessH Δ=(1-h*aii)*(1-h*ajj)-h*h*aij*aji qi = ((1-h*ajj)*(xi+h*uij)+h*aij*(xj+h*uji))/Δ qj = ((1-h*aii)*(xj+h*uji)+h*aji*(xi+h*uij))/Δ if (abs(qi - xi) > 2*quani || abs(qj - xj) > 2*quanj) #checking qi-xi is not needed since firstguess just made it less than delta h1 = (abs(quani / ẋi));h2 = (abs(quanj / ẋj)); h=min(h1,h2) h_two=h Δ=(1-h*aii)*(1-h*ajj)-h*h*aij*aji #= if Δ==0 Δ=1e-12 end =# qi = ((1-h*ajj)*(xi+h*uij)+h*aij*(xj+h*uji))/Δ qj = ((1-h*aii)*(xj+h*uji)+h*aji*(xi+h*uij))/Δ end maxIter=1000 while (abs(qi - xi) > 2*quani || abs(qj - xj) > 2*quanj) && (maxIter>0) maxIter-=1 h1 = h * (0.99*quani / abs(qi - xi)); #= Δtemp=(1-h1*aii)*(1-h1*ajj)-h1*h1*aij*aji qitemp = ((1-h1*ajj)*(xi+h1*uij)+h1*aij*(xj+h1*uji))/Δtemp =# h2 = h * (0.99*quanj / abs(qj - xj)); #= Δtemp=(1-h2*aii)*(1-h2*ajj)-h2*h2*aij*aji qjtemp = ((1-h2*ajj)*(xi+h2*uij)+h2*aij*(xj+h2*uji))/Δtemp if abs(qitemp - xi) > 1*quani || abs(qjtemp - xj) > 1*quanj println("regle de croix did not work") end =# h=min(h1,h2) h_three=h Δ=(1-h*aii)*(1-h*ajj)-h*h*aij*aji #= if Δ==0 Δ=1e-12 println("delta liqss1 simulupdate==0") end =# if Δ!=0 qi = ((1-h*ajj)*(xi+h*uij)+h*aij*(xj+h*uji))/Δ qj = ((1-h*aii)*(xj+h*uji)+h*aji*(xi+h*uij))/Δ end if maxIter < 1 println("maxiter of updateQ = ",maxIter) end end if maxIter < 1 return false end q[index][0]=qi# store back helper vars trackSimul[1]+=1 # do not have to recomputeNext if qi never changed q[j][0]=qj #= push!(simulqxiVals,abs(qi-xi)) push!(simulqxjVals,abs(qj-xj)) push!(simuldeltaiVals,quani) push!(simuldeltajVals,quanj) =# tq[j]=simt end #end second dependecy check return iscycle end #iters from 0===>1e-9 #= function nmisCycle_and_simulUpdate(cacheRootsi::Vector{Float64},cacheRootsj::Vector{Float64},acceptedi::Vector{Vector{Float64}},acceptedj::Vector{Vector{Float64}},aij::Float64,aji::Float64,respp::Ptr{Float64}, pp::Ptr{NTuple{2,Float64}},trackSimul,::Val{1},index::Int,j::Int,dirI::Float64,dti::Float64, x::Vector{Taylor0},q::Vector{Taylor0}, quantum::Vector{Float64},exactA::Function,d::Vector{Float64},cacheA::MVector{1,Float64},dxaux::Vector{MVector{1,Float64}},qaux::Vector{MVector{1,Float64}},tx::Vector{Float64},tq::Vector{Float64},simt::Float64,ft::Float64) cacheA[1]=0.0;exactA(q,d,cacheA,index,index,simt) aii=cacheA[1] cacheA[1]=0.0;exactA(q,d,cacheA,j,j,simt) ajj=cacheA[1] #= exactA(q,cacheA,index,j) aij=cacheA[1] exactA(q,cacheA,j,index) aji=cacheA[1] =# xi=x[index][0];xj=x[j][0];ẋi=x[index][1];ẋj=x[j][1] qi=q[index][0];qj=q[j][0] quanj=quantum[j];quani=quantum[index] #qaux[j][1]=qj; elapsed = simt - tx[j];x[j][0]= xj+elapsed*ẋj; xj=x[j][0] tx[j]=simt qiminus=qaux[index][1] #ujj=ẋj-ajj*qj uji=ẋj-ajj*qj-aji*qiminus #uii=dxaux[index][1]-aii*qaux[index][1] uij=dxaux[index][1]-aii*qiminus-aij*qj iscycle=false dxj=aji*qi+ajj*qj+uji #only future qi #emulate fj dxithrow=aii*qi+aij*qj+uij #only future qi qjplus=xj+sign(dxj)*quanj #emulate updateQ(j)... dxi=aii*qi+aij*qjplus+uij #both future qi & qj #emulate fi #dxj2=ajj*qjplus+aji*qi+uji #= if abs(dxithrow)<1e-15 && dxithrow!=0.0 dxithrow=0.0 end =# ########condition:Union #= if abs(dxj)*3<abs(ẋj) || abs(dxj)>3*abs(ẋj) || (dxj*ẋj)<0.0 if abs(dxi)>3*abs(ẋi) || abs(dxi)*3<abs(ẋi) || (dxi*ẋi)<0.0 iscycle=true end end =# ########condition:Union i #= if abs(dxj-ẋj)>(abs(dxj+ẋj)/2) if abs(dxi-dxithrow)>(abs(dxi+dxithrow)/2) iscycle=true end end =# ########condition:Union i union if (abs(dxj)*3<abs(ẋj) || abs(dxj)>3*abs(ẋj) || (dxj*ẋj)<0.0) cancelCriteria=1e-6*quani if abs(dxi)>3*abs(dxithrow) || abs(dxi)*3<abs(dxithrow) || (dxi*dxithrow)<0.0 iscycle=true if abs(dxi)<cancelCriteria && abs(dxithrow)<cancelCriteria #significant change is relative to der values. cancel if all values are small iscycle=false # println("cancel dxi & dxthr small") end end if abs(dxi)>10*abs(ẋi) || abs(dxi)*10<abs(ẋi) #|| (dxi*ẋi)<0.0 iscycle=true if abs(dxi)<cancelCriteria && abs(ẋi)<cancelCriteria #significant change is relative to der values. cancel if all values are small iscycle=false # println("cancel dxi & ẋi small") end end if abs(dxj)<1e-6*quanj && abs(ẋj)<1e-6*quanj #significant change is relative to der values. cancel if all values are small iscycle=false #println("cancel dxj & ẋj small") end end #= if 9.087757893221387e-5<=simt<=9.23684654009e-5 println("simulUpdate $iscycle at simt=$simt index=$index, j=$j") @show ẋi,dxi,dxithrow,ẋj,dxj @show qj,xj end =# if iscycle h=1e-9 h_=h # h=firstguessH Δ=(1-h*aii)*(1-h*ajj)-h*h*aij*aji qi = ((1-h*ajj)*(xi+h*uij)+h*aij*(xj+h*uji))/Δ qj = ((1-h*aii)*(xj+h*uji)+h*aji*(xi+h*uij))/Δ #= if (abs(qi - xi) > 2*quani || abs(qj - xj) > 2*quanj) #checking qi-xi is not needed since firstguess just made it less than delta h1 = (abs(quani / ẋi));h2 = (abs(quanj / ẋj)); h=min(h1,h2) h_two=h Δ=(1-h*aii)*(1-h*ajj)-h*h*aij*aji #= if Δ==0 Δ=1e-12 end =# qi = ((1-h*ajj)*(xi+h*uij)+h*aij*(xj+h*uji))/Δ qj = ((1-h*aii)*(xj+h*uji)+h*aji*(xi+h*uij))/Δ end =# maxIter=1000 while (abs(qi - xi) < 2*quani || abs(qj - xj) < 2*quanj) && (maxIter>0) # maxiters here is better than maxiter in normal iters because here h is acceptable when we reach maxiter maxIter-=1 h_=h h1 = h * (1.001*quani / abs(qi - xi)); #= Δtemp=(1-h1*aii)*(1-h1*ajj)-h1*h1*aij*aji qitemp = ((1-h1*ajj)*(xi+h1*uij)+h1*aij*(xj+h1*uji))/Δtemp =# h2 = h * (1.001*quanj / abs(qj - xj)); #= Δtemp=(1-h2*aii)*(1-h2*ajj)-h2*h2*aij*aji qjtemp = ((1-h2*ajj)*(xi+h2*uij)+h2*aij*(xj+h2*uji))/Δtemp if abs(qitemp - xi) > 1*quani || abs(qjtemp - xj) > 1*quanj println("regle de croix did not work") end =# h=max(h1,h2) # h_three=h Δ=(1-h*aii)*(1-h*ajj)-h*h*aij*aji #= if Δ==0 Δ=1e-12 println("delta liqss1 simulupdate==0") end =# if Δ!=0 qi = ((1-h*ajj)*(xi+h*uij)+h*aij*(xj+h*uji))/Δ qj = ((1-h*aii)*(xj+h*uji)+h*aji*(xi+h*uij))/Δ end if maxIter < 1 println("maxiter of updateQ = ",maxIter) end end h=h_ # go back to last h if exit the loop qi = ((1-h*ajj)*(xi+h*uij)+h*aij*(xj+h*uji))/Δ qj = ((1-h*aii)*(xj+h*uji)+h*aji*(xi+h*uij))/Δ if maxIter < 1 # this is not needed in iters from 0 return false end q[index][0]=qi# store back helper vars trackSimul[1]+=1 # do not have to recomputeNext if qi never changed q[j][0]=qj #= push!(simulqxiVals,abs(qi-xi)) push!(simulqxjVals,abs(qj-xj)) push!(simuldeltaiVals,quani) push!(simuldeltajVals,quanj) =# tq[j]=simt end #end second dependecy check return iscycle end =#
QuantizedSystemSolver
https://github.com/mongibellili/QuantizedSystemSolver.jl.git
[ "MIT" ]
1.0.1
b4bf1003586f2ee6cb98d8df29e88cbbfacd2ea1
code
29001
function nmisCycle_and_simulUpdate(cacheRootsi::Vector{Float64},cacheRootsj::Vector{Float64},acceptedi::Vector{Vector{Float64}},acceptedj::Vector{Vector{Float64}},aij::Float64,aji::Float64,respp::Ptr{Float64}, pp::Ptr{NTuple{2,Float64}},trackSimul,::Val{2},index::Int,j::Int,dirI::Float64,firstguessH::Float64, x::Vector{Taylor0},q::Vector{Taylor0}, quantum::Vector{Float64},exacteA::Function,d::Vector{Float64},cacheA::MVector{1,Float64},dxaux::Vector{MVector{2,Float64}},qaux::Vector{MVector{2,Float64}},tx::Vector{Float64},tq::Vector{Float64},simt::Float64,ft::Float64) cacheA[1]=0.0;exacteA(q,d,cacheA,index,index) aii=cacheA[1] cacheA[1]=0.0; exacteA(q,d,cacheA,j,j) ajj=cacheA[1] uii=dxaux[index][1]-aii*qaux[index][1] ui2=dxaux[index][2]-aii*qaux[index][2] #= uii=x[index][1]-aii*q[index][0] ui2=x[index][2]-aii*q[index][1] =# xi=x[index][0];xj=x[j][0];qi=q[index][0];qj=q[j][0];qi1=q[index][1];qj1=q[j][1];xi1=x[index][1];xi2=2*x[index][2];xj1=x[j][1];xj2=2*x[j][2] #uii=u[index][index][1];ujj=u[j][j][1]#;uij=u[index][j][1];uji=u[j][index][1]#;uji2=u[j][index][2] quanj=quantum[j];quani=quantum[index]; e1 = simt - tx[j];e2 = simt - tq[j];#= e3=simt - tu[j];tu[j]=simt; =# prevXj=x[j][0] x[j][0]= x[j](e1);xj=x[j][0];tx[j]=simt qj=qj+e2*qj1 ;qaux[j][1]=qj;tq[j] = simt ;q[j][0]=qj xj1=x[j][1]+e1*xj2; newDiff=(xj-prevXj) ujj=xj1-ajj*qj #u[j][j][1]=ujj uji=ujj-aji*qaux[index][1]# #uji=u[j][index][1] uj2=xj2-ajj*qj1###################################################----------------------- uji2=uj2-aji*qaux[index][2]# #u[j][index][2]=u[j][j][2]-ajj*qaux[index][1] # from article p20 line25 more cycles ...shaky with no bumps # uji2=u[j][index][2] dxj=aji*qi+ajj*qaux[j][1]+uji ddxj=aji*qi1+ajj*qj1+uji2 if abs(ddxj)==0.0 ddxj=1e-30 if DEBUG2 @show ddxj end end iscycle=false qjplus=xj-sign(ddxj)*quanj hj=sqrt(2*quanj/abs(ddxj))# α1=1-hj*ajj if abs(α1)==0.0 α1=1e-30 @show α1 end dqjplus=(aji*(qi+hj*qi1)+ajj*qjplus+uji+hj*uji2)/α1 uij=uii-aij*qaux[j][1] # uij=u[index][j][1] uij2=ui2-aij*qj1#########qaux[j][2] updated in normal Qupdate..ft=20 slightly shifts up #β=dxi+sqrt(abs(ddxi)*quani/2) #h2=sqrt(2*quani/abs(ddxi)) #uij2=u[index][j][2] dxithrow=aii*qi+aij*qj+uij ddxithrow=aii*qi1+aij*qj1+uij2 dxi=aii*qi+aij*qjplus+uij ddxi=aii*qi1+aij*dqjplus+uij2 if abs(ddxi)==0.0 ddxi=1e-30 if DEBUG2 @show ddxi end end hi=sqrt(2*quani/abs(ddxi)) βidir=dxi+hi*ddxi/2 βjdir=dxj+hj*ddxj/2 βidth=dxithrow+hi*ddxithrow/2 αidir=xi1+hi*xi2/2 βj=xj1+hj*xj2/2 ########condition:Union #= if (abs(dxj-xj1)>(abs(dxj+xj1)/2) || abs(ddxj-xj2)>(abs(ddxj+xj2)/2)) || dqjplus*newDiff<0.0 #(dqjplus*qj1)<=0.0 with dir is better since when dir =0 we do not enter if (abs(dxi-xi1)>(abs(dxi+xi1)/2) || abs(ddxi-xi2)>(abs(ddxi+xi2)/2)) || βidir*dirI<0.0 iscycle=true end end =# ########condition:Union i #= if (abs(dxj-xj1)>(abs(dxj+xj1)/2) || abs(ddxj-xj2)>(abs(ddxj+xj2)/2)) || dqjplus*newDiff<0.0 #(dqjplus*qj1)<=0.0 with dir is better since when dir =0 we do not enter if (abs(dxi-dxithrow)>(abs(dxi+dxithrow)/2) || abs(ddxi-ddxithrow)>(abs(ddxi+ddxithrow)/2)) || βidir*dirI<0.0 iscycle=true end end =# ########condition:combineDer Union i if abs(βjdir-βj)>(abs(βjdir+βj)/2) || dqjplus*newDiff<0.0 if abs(βidir-βidth)>(abs(βidir+βidth)/2) || βidir*dirI<0.0 iscycle=true end coef_signig=100 if (abs(dxi)>(abs(xi1)*coef_signig) #= && (abs(ddxi)>(abs(xi2)*coef_signig)||abs(xi2)>(abs(ddxi)*coef_signig)) =#) || (abs(xi1)>(abs(dxi)*coef_signig) #= && (abs(ddxi)>(abs(xi2)*coef_signig)||abs(xi2)>(abs(ddxi)*coef_signig)) =#) iscycle=true end #= if abs(βidir-αidir)>(abs(βidir+αidir)/2) iscycle=true end =# end if (ddxithrow>0 && dxithrow<0 && qi1>0) || (ddxithrow<0 && dxithrow>0 && qi1<0) xmin=xi-dxithrow*dxithrow/ddxithrow if abs(xmin-xi)/abs(qi-xi)>0.8 # xmin is close to q and a change in q might flip its sign of dq iscycle=false # end end #= if (ddxi>0 && dxi<0 && qi1>0) || (ddxi<0 && dxi>0 && qi1<0) xmin=xi-dxi*dxi/ddxi if abs(xmin-xi)/abs(qi-xi)>0.8 # xmin is close to q and a change in q might flip its sign of dq iscycle=false # end end =# ########condition:kinda signif alone i #= if (abs(dxj-xj1)>(abs(dxj+xj1)/2) || abs(ddxj-xj2)>(abs(ddxj+xj2)/2)) # || dqjplus*newDiff<0.0 if (abs(dxi-dxithrow)>(abs(dxi+dxithrow)/2) || abs(ddxi-ddxithrow)>(abs(ddxi+ddxithrow)/2)) #|| βidir*dirI<0.0 iscycle=true end end =# ########condition:cond1 #= if dqjplus*newDiff<0.0 #= || (dqjplus==0.0 && newDiff!=0.0) =##(dqjplus*qj1)<=0.0 with dir is better since when dir =0 we do not enter if βidir*dirI<0.0 iscycle=true end end if dqjplus*newDiff<0.0 #= || (dqjplus==0.0 && newDiff!=0.0) =##(dqjplus*qj1)<=0.0 with dir is better since when dir =0 we do not enter if (abs(dxi-xi1)>(abs(dxi+xi1)/2) || abs(ddxi-xi2)>(abs(ddxi+xi2)/2)) iscycle=true end end if (abs(dxj-xj1)>(abs(dxj+xj1)/2) || abs(ddxj-xj2)>(abs(ddxj+xj2)/2)) #= || (dqjplus==0.0 && newDiff!=0.0) =##(dqjplus*qj1)<=0.0 with dir is better since when dir =0 we do not enter if βidir*dirI<0.0 iscycle=true end end =# ########condition:cond1 i #= if dqjplus*newDiff<0.0 #= || (dqjplus==0.0 && newDiff!=0.0) =##(dqjplus*qj1)<=0.0 with dir is better since when dir =0 we do not enter if βidir*dirI<0.0 iscycle=true end end if dqjplus*newDiff<0.0 #= || (dqjplus==0.0 && newDiff!=0.0) =##(dqjplus*qj1)<=0.0 with dir is better since when dir =0 we do not enter if (abs(dxi-dxithrow)>(abs(dxi+dxithrow)/2) || abs(ddxi-ddxithrow)>(abs(ddxi+ddxithrow)/2)) iscycle=true end end if (abs(dxj-xj1)>(abs(dxj+xj1)/2) || abs(ddxj-xj2)>(abs(ddxj+xj2)/2)) #= || (dqjplus==0.0 && newDiff!=0.0) =##(dqjplus*qj1)<=0.0 with dir is better since when dir =0 we do not enter if βidir*dirI<0.0 iscycle=true end end =# #= if index==1 && j==4 && 0.1<simt<1.1 iscycle=true end =# if iscycle #= quani=1.7*quani quanj=1.7*quanj =# for i =1:7# 3 ord1 ,7 ord2 acceptedi[i][1]=0.0; acceptedi[i][2]=0.0 acceptedj[i][1]=0.0; acceptedj[i][2]=0.0 end for i=1:12 cacheRootsi[i]=0.0 cacheRootsj[i]=0.0 end trackSimul[1]+=1 aiijj=BigFloat(aii+ajj) aiijj_=BigFloat(aij*aji-aii*ajj) coefΔh0=4.0 coefΔh1=-8.0*aiijj coefΔh2=6.0*aiijj*aiijj-4.0*aiijj_ coefΔh3=6.0*aiijj*aiijj_-2.0*aiijj*aiijj*aiijj coefΔh4=aiijj_*aiijj_-4.0*aiijj_*aiijj*aiijj coefΔh5=-3.0*aiijj*aiijj_*aiijj_ coefΔh6=-aiijj_*aiijj_*aiijj_ coefH0=4.0*xi coefH1=-8.0*xi*aiijj #coefH2=2.0*(-aii*uij-aij*uji-uij2+xi*(-2.0*aiijj_+2.0*aiijj*aiijj+2.0*aii*ajj-aji*aij+ajj*ajj)-aij*aiijj*xj) coefH2=2.0*(-aii*uij-aij*uji-uij2+xi*(-3.0*aiijj_+2.0*aiijj*aiijj+aiijj*ajj)-aij*aiijj*xj) #coefH3=2.0*((-uij*aiijj_+ajj*uij2-aij*uji2)+aiijj*(aii*uij+aij*uji+uij2+2.0*xi*aiijj_)-xi*aiijj*(2.0*aii*ajj-aji*aij+ajj*ajj)+ajj*aiijj_*xi+aij*aiijj*aiijj*xj-aij*aiijj_*xj) coefH3=2.0*((-uij*aiijj_+ajj*uij2-aij*uji2)+aiijj*(aii*uij+aij*uji+uij2+2.0*xi*aiijj_)-xi*aiijj*(ajj*aiijj-aiijj_)+ajj*aiijj_*xi+aij*aiijj*aiijj*xj-aij*aiijj_*xj) coefH4=2.0*(aiijj*(uij*aiijj_-ajj*uij2+aij*uji2)-0.5*(2.0*aii*ajj-aji*aij+ajj*ajj)*(aii*uij+aij*uji+uij2+2.0*xi*aiijj_)-ajj*aiijj_*aiijj*xi+0.5*aij*aiijj*(ajj*uji+aji*uij+uji2+2.0*xj*aiijj_)+aij*aiijj_*aiijj*xj) coefH5=(2.0*aii*ajj-aji*aij+ajj*ajj)*(ajj*uij2-uij*aiijj_-aij*uji2)-ajj*aiijj_*(aii*uij+aij*uji+uij2+2.0*xi*aiijj_)-aij*aiijj*(aii*uji2-uji*aiijj_-aji*uij2)+aij*aiijj_*(ajj*uji+aji*uij+uji2+2.0*xj*aiijj_) coefH6=ajj*aiijj_*(ajj*uij2-uij*aiijj_-aij*uji2)-aij*aiijj_*(aii*uji2-uji*aiijj_-aji*uij2) coefH0j=4.0*xj coefH1j=-8.0*xj*aiijj coefH2j=2.0*(-ajj*uji-aji*uij-uji2+xj*(-2.0*aiijj_+2.0*aiijj*aiijj+2.0*ajj*aii-aij*aji+aii*aii)-aji*aiijj*xi) coefH3j=2.0*((-uji*aiijj_+aii*uji2-aji*uij2)+aiijj*(ajj*uji+aji*uij+uji2+2.0*xj*aiijj_)-xj*aiijj*(2.0*ajj*aii-aij*aji+aii*aii)+aii*aiijj_*xj+aji*aiijj*aiijj*xi-aji*aiijj_*xi) coefH4j=2.0*(aiijj*(uji*aiijj_-aii*uji2+aji*uij2)-0.5*(aii*aiijj-aiijj_)*(ajj*uji+aji*uij+uji2+2.0*xj*aiijj_)-aii*aiijj_*aiijj*xj+0.5*aji*aiijj*(aii*uij+aij*uji+uij2+2.0*xi*aiijj_)+aji*aiijj_*aiijj*xi) coefH5j=(aii*aiijj-aiijj_)*(aii*uji2-uji*aiijj_-aji*uij2)-aii*aiijj_*(ajj*uji+aji*uij+uji2+2.0*xj*aiijj_)-aji*aiijj*(ajj*uij2-uij*aiijj_-aij*uji2)+aji*aiijj_*(aii*uij+aij*uji+uij2+2.0*xi*aiijj_) coefH6j=aii*aiijj_*(aii*uji2-uji*aiijj_-aji*uij2)-aji*aiijj_*(ajj*uij2-uij*aiijj_-aij*uji2) #= coefi=NTuple{7,Float64}((coefH6-coefΔh6*(xi+quani),coefH5-coefΔh5*(xi+quani),coefH4-coefΔh4*(xi+quani),coefH3-coefΔh3*(xi+quani),coefH2-coefΔh2*(xi+quani),coefH1-coefΔh1*(xi+quani),coefH0-coefΔh0*(xi+quani))) coefi2=NTuple{7,Float64}((coefH6-coefΔh6*(xi-quani),coefH5-coefΔh5*(xi-quani),coefH4-coefΔh4*(xi-quani),coefH3-coefΔh3*(xi-quani),coefH2-coefΔh2*(xi-quani),coefH1-coefΔh1*(xi-quani),coefH0-coefΔh0*(xi-quani))) coefj=NTuple{7,Float64}((coefH6j-coefΔh6*(xj+quanj),coefH5j-coefΔh5*(xj+quanj),coefH4j-coefΔh4*(xj+quanj),coefH3j-coefΔh3*(xj+quanj),coefH2j-coefΔh2*(xj+quanj),coefH1j-coefΔh1*(xj+quanj),coefH0j-coefΔh0*(xj+quanj))) coefj2=NTuple{7,Float64}((coefH6j-coefΔh6*(xj-quanj),coefH5j-coefΔh5*(xj-quanj),coefH4j-coefΔh4*(xj-quanj),coefH3j-coefΔh3*(xj-quanj),coefH2j-coefΔh2*(xj-quanj),coefH1j-coefΔh1*(xj-quanj),coefH0j-coefΔh0*(xj-quanj))) resi1,resi2,resi3,resi4,resi5,resi6,resi7,resi8,resi9,resi10,resi11,resi12=0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0 resj1,resj2,resj3,resj4,resj5,resj6,resj7,resj8,resj9,resj10,resj11,resj12=0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0 Base.GC.enable(false) unsafe_store!(respp, -1.0, 1);unsafe_store!(respp, -1.0, 2);unsafe_store!(respp, -1.0, 3);unsafe_store!(respp, -1.0, 4);unsafe_store!(respp, -1.0, 5);unsafe_store!(respp, -1.0, 6) allrealrootintervalnewtonregulafalsi(coefi,respp,pp) resi1,resi2,resi3,resi4,resi5,resi6=unsafe_load(respp,1),unsafe_load(respp,2),unsafe_load(respp,3),unsafe_load(respp,4),unsafe_load(respp,5),unsafe_load(respp,6) unsafe_store!(respp, -1.0, 1);unsafe_store!(respp, -1.0, 2);unsafe_store!(respp, -1.0, 3);unsafe_store!(respp, -1.0, 4);unsafe_store!(respp, -1.0, 5);unsafe_store!(respp, -1.0, 6) allrealrootintervalnewtonregulafalsi(coefi2,respp,pp) resi7,resi8,resi9,resi10,resi11,resi12=unsafe_load(respp,1),unsafe_load(respp,2),unsafe_load(respp,3),unsafe_load(respp,4),unsafe_load(respp,5),unsafe_load(respp,6) unsafe_store!(respp, -1.0, 1);unsafe_store!(respp, -1.0, 2);unsafe_store!(respp, -1.0, 3);unsafe_store!(respp, -1.0, 4);unsafe_store!(respp, -1.0, 5);unsafe_store!(respp, -1.0, 6) allrealrootintervalnewtonregulafalsi(coefj,respp,pp) resj1,resj2,resj3,resj4,resj5,resj6=unsafe_load(respp,1),unsafe_load(respp,2),unsafe_load(respp,3),unsafe_load(respp,4),unsafe_load(respp,5),unsafe_load(respp,6) unsafe_store!(respp, -1.0, 1);unsafe_store!(respp, -1.0, 2);unsafe_store!(respp, -1.0, 3);unsafe_store!(respp, -1.0, 4);unsafe_store!(respp, -1.0, 5);unsafe_store!(respp, -1.0, 6) allrealrootintervalnewtonregulafalsi(coefj2,respp,pp) resj7,resj8,resj9,resj10,resj11,resj12=unsafe_load(respp,1),unsafe_load(respp,2),unsafe_load(respp,3),unsafe_load(respp,4),unsafe_load(respp,5),unsafe_load(respp,6) Base.GC.enable(true) =# #to be deleted: test #= for h in (resi1,resi2,resi3,resi4,resi5,resi6,resi7,resi8,resi9,resi10,resi11,resi12) if h>0 h_2=h*h;h_3=h_2*h;h_4=h_3*h;h_5=h_4*h;h_6=h_5*h Δ22=4.0+h*coefΔh1+h_2*(coefΔh2)+h_3*(coefΔh3)+h_4*(coefΔh4)+h_5*coefΔh5+h_6*coefΔh6 if abs(Δ22)!=0.0 qi=(4.0*xi+h*coefH1+h_2*coefH2+h_3*coefH3+h_4*coefH4+h_5*coefH5+h_6*coefH6)/Δ22 if abs(qi-xi)>2quani error("your own h not working for you, i") end end end end for h in (resj1,resj2,resj3,resj4,resj5,resj6,resj7,resj8,resj9,resj10,resj11,resj12) if h>0 h_2=h*h;h_3=h_2*h;h_4=h_3*h;h_5=h_4*h;h_6=h_5*h Δ22=4.0+h*coefΔh1+h_2*(coefΔh2)+h_3*(coefΔh3)+h_4*(coefΔh4)+h_5*coefΔh5+h_6*coefΔh6 if abs(Δ22)!=0.0 qj=(4.0*xj+h*coefH1j+h_2*coefH2j+h_3*coefH3j+h_4*coefH4j+h_5*coefH5j+h_6*coefH6j)/Δ22 if abs(qj-xj)>2quanj error("your own h not working for you, j") end end end end #filter roots counterRooti=1 for h in (resi1,resi2,resi3,resi4,resi5,resi6,resi7,resi8,resi9,resi10,resi11,resi12) if h>0 && h!=Inf cacheRootsi[counterRooti]=h counterRooti+=1 end end sort!(cacheRootsi); counterRootj=1 for h in (resj1,resj2,resj3,resj4,resj5,resj6,resj7,resj8,resj9,resj10,resj11,resj12) if h>0 && h!=Inf cacheRootsj[counterRootj]=h counterRootj+=1 end end =# #= coefi=[coefH0-coefΔh0*(xi+quani),coefH1-coefΔh1*(xi+quani),coefH2-coefΔh2*(xi+quani),coefH3-coefΔh3*(xi+quani),coefH4-coefΔh4*(xi+quani),coefH5-coefΔh5*(xi+quani),coefH6-coefΔh6*(xi+quani)] coefj=[coefH0j-coefΔh0*(xj+quanj),coefH1j-coefΔh1*(xj+quanj),coefH2j-coefΔh2*(xj+quanj),coefH3j-coefΔh3*(xj+quanj),coefH4j-coefΔh4*(xj+quanj),coefH5j-coefΔh5*(xj+quanj),coefH6j-coefΔh6*(xj+quanj)] coefi2=[coefH0-coefΔh0*(xi-quani),coefH1-coefΔh1*(xi-quani),coefH2-coefΔh2*(xi-quani),coefH3-coefΔh3*(xi-quani),coefH4-coefΔh4*(xi-quani),coefH5-coefΔh5*(xi-quani),coefH6-coefΔh6*(xi-quani)] coefj2=[coefH0j-coefΔh0*(xj-quanj),coefH1j-coefΔh1*(xj-quanj),coefH2j-coefΔh2*(xj-quanj),coefH3j-coefΔh3*(xj-quanj),coefH4j-coefΔh4*(xj-quanj),coefH5j-coefΔh5*(xj-quanj),coefH6j-coefΔh6*(xj-quanj)] =# coefi=[BigFloat(coefH0-coefΔh0*(xi+quani)),BigFloat(coefH1-coefΔh1*(xi+quani)),BigFloat(coefH2-coefΔh2*(xi+quani)),BigFloat(coefH3-coefΔh3*(xi+quani)),BigFloat(coefH4-coefΔh4*(xi+quani)),BigFloat(coefH5-coefΔh5*(xi+quani)),BigFloat(coefH6-coefΔh6*(xi+quani))] coefj=[BigFloat(coefH0j-coefΔh0*(xj+quanj)),BigFloat(coefH1j-coefΔh1*(xj+quanj)),BigFloat(coefH2j-coefΔh2*(xj+quanj)),BigFloat(coefH3j-coefΔh3*(xj+quanj)),BigFloat(coefH4j-coefΔh4*(xj+quanj)),BigFloat(coefH5j-coefΔh5*(xj+quanj)),BigFloat(coefH6j-coefΔh6*(xj+quanj))] coefi2=[BigFloat(coefH0-coefΔh0*(xi-quani)),BigFloat(coefH1-coefΔh1*(xi-quani)),BigFloat(coefH2-coefΔh2*(xi-quani)),BigFloat(coefH3-coefΔh3*(xi-quani)),BigFloat(coefH4-coefΔh4*(xi-quani)),BigFloat(coefH5-coefΔh5*(xi-quani)),BigFloat(coefH6-coefΔh6*(xi-quani))] coefj2=[BigFloat(coefH0j-coefΔh0*(xj-quanj)),BigFloat(coefH1j-coefΔh1*(xj-quanj)),BigFloat(coefH2j-coefΔh2*(xj-quanj)),BigFloat(coefH3j-coefΔh3*(xj-quanj)),BigFloat(coefH4j-coefΔh4*(xj-quanj)),BigFloat(coefH5j-coefΔh5*(xj-quanj)),BigFloat(coefH6j-coefΔh6*(xj-quanj))] ri=roots(coefi) rj=roots(coefj) ri2=roots(coefi2) rj2=roots(coefj2) #filter roots counterRooti=1 for h in ri if abs(imag(h)) < 1.0e-15 && real(h)>0.0 cacheRootsi[counterRooti]=(real(h)) counterRooti+=1 end end checkRoots(cacheRootsi,coefi,coefΔh0,coefΔh1,coefΔh2,coefΔh3,coefΔh4,coefΔh5,coefΔh6,quani) for h in ri2 if abs(imag(h)) < 1.0e-15 && real(h)>0.0 cacheRootsi[counterRooti]=(real(h)) counterRooti+=1 end end sort!(cacheRootsi); counterRootj=1 for h in rj if abs(imag(h)) < 1.0e-15 && real(h)>0.0 cacheRootsj[counterRootj]=(real(h)) counterRootj+=1 end end checkRoots(cacheRootsj,coefj,coefΔh0,coefΔh1,coefΔh2,coefΔh3,coefΔh4,coefΔh5,coefΔh6,quanj) for h in rj2 if abs(imag(h)) < 1.0e-15 && real(h)>0.0 cacheRootsj[counterRootj]=(real(h)) counterRootj+=1 end end sort!(cacheRootsj); #= for h in cacheRootsi h_2=h*h;h_3=h_2*h;h_4=h_3*h;h_5=h_4*h;h_6=h_5*h Δ22=4.0+h*coefΔh1+h_2*(coefΔh2)+h_3*(coefΔh3)+h_4*(coefΔh4)+h_5*coefΔh5+h_6*coefΔh6 if abs(Δ22)!=0.0 qi=(4.0*xi+h*coefH1+h_2*coefH2+h_3*coefH3+h_4*coefH4+h_5*coefH5+h_6*coefH6)/Δ22 if abs(qi-xi)>2quani error("your own h not working for you, i") end end end for h in cacheRootsj h_2=h*h;h_3=h_2*h;h_4=h_3*h;h_5=h_4*h;h_6=h_5*h Δ22=4.0+h*coefΔh1+h_2*(coefΔh2)+h_3*(coefΔh3)+h_4*(coefΔh4)+h_5*coefΔh5+h_6*coefΔh6 if abs(Δ22)!=0.0 qj=(4.0*xj+h*coefH1j+h_2*coefH2j+h_3*coefH3j+h_4*coefH4j+h_5*coefH5j+h_6*coefH6j)/Δ22 if abs(qj-xj)>2quanj error("your own h not working for you, j") end end end =# #construct intervals constructIntrval(acceptedi,cacheRootsi) constructIntrval(acceptedj,cacheRootsj) ki=7;kj=7 h=-1.0 while true if ki==0 || kj==0 error("bug in finding the overlap") end currentLi=acceptedi[ki][1];currentHi=acceptedi[ki][2] currentLj=acceptedj[kj][1];currentHj=acceptedj[kj][2] if currentLj<=currentLi<currentHj || currentLi<=currentLj<currentHi#resj[end][1]<=resi[end][1]<=resj[end][2] || resi[end][1]<=resj[end][1]<=resi[end][2] #overlap h=min(currentHi,currentHj ) if h==Inf && (currentLj!=0.0 || currentLi!=0.0) # except case both 0 sols h1=(0,Inf) h=max(currentLj,currentLi#= ,ft-simt,dti =#) #ft-simt in case they are both ver small...elaborate on his later #= if simt==2.500745083181994e-5 @show currentLj,currentLi end =# end if h==Inf # both lower bounds ==0 --> zero sols for both if aiijj_!=0.0 qi=coefH6/coefΔh6 qj=coefH6j/coefΔh6 #qi=getQfromAsymptote(xi,coefH0,coefH1,coefH2,coefH3,coefH4,coefH5,coefH6,coefΔh0,coefΔh1,coefΔh2,coefΔh3,coefΔh4,coefΔh5,coefΔh6) #qj=getQfromAsymptote(xj,coefH0j,coefH1j,coefH2j,coefH3j,coefH4j,coefH5j,coefH6j,coefΔh0,coefΔh1,coefΔh2,coefΔh3,coefΔh4,coefΔh5,coefΔh6) qi1=(aji*uij2-uji2*aij)/aiijj_ #resul of ddx=aq+aq+u=0 ...2eqs 2 unknowns qj1=(-uij2-aii*qi1)/aij else return false end else #h!=Inf h_2=h*h;h_3=h_2*h;h_4=h_3*h;h_5=h_4*h;h_6=h_5*h Δ22=4.0+h*coefΔh1+h_2*(coefΔh2)+h_3*(coefΔh3)+h_4*(coefΔh4)+h_5*coefΔh5+h_6*coefΔh6 Δ1=1.0-h*(aiijj)-h*h*(aiijj_) if abs(Δ22)!=0.0 && Δ1!=0.0 qi=(4.0*xi+h*coefH1+h_2*coefH2+h_3*coefH3+h_4*coefH4+h_5*coefH5+h_6*coefH6)/Δ22 qj=(4.0*xj+h*coefH1j+h_2*coefH2j+h_3*coefH3j+h_4*coefH4j+h_5*coefH5j+h_6*coefH6j)/Δ22 #= if 2.500745083181994e-5<=simt<3.00745083181994e-5 @show "simul: ",index,qi,xi,quani,h,simt,j,qj,xj,quanj end =# else println("singularities Δ22=0")#do iterations maxIter=10000 while (abs(qi - xi) > 2.0*quani || abs(qj - xj) > 2.0*quanj) && (maxIter>0) maxIter-=1 h1 = h * sqrt(quani / abs(qi - xi)); h2 = h * sqrt(quanj / abs(qj - xj)); #= h1 = h * (0.99*1.8*quani / abs(qi - xi)); h2 = h * (0.99*1.8*quanj / abs(qj - xj)); =# h=min(h1,h2) Δ1=1.0-h*(aiijj)-h*h*(aiijj_) if abs(Δ1)!=0.0 h_2=h*h;h_3=h_2*h;h_4=h_3*h;h_5=h_4*h;h_6=h_5*h Δ22=4.0+h*coefΔh1+h_2*(coefΔh2)+h_3*(coefΔh3)+h_4*(coefΔh4)+h_5*coefΔh5+h_6*coefΔh6 if abs(Δ22)!=0.0 qi=(4.0*xi+h*coefH1+h_2*coefH2+h_3*coefH3+h_4*coefH4+h_5*coefH5+h_6*coefH6)/Δ22 qj=(4.0*xj+h*coefH1j+h_2*coefH2j+h_3*coefH3j+h_4*coefH4j+h_5*coefH5j+h_6*coefH6j)/Δ22 end end end if maxIter==0 || Δ1==0.0 # maxIter=0 :failed to bring q down within a reasonable time. Δ1==0.0 should never happen when maxIter>0...but keep it there for now return false end end q1parti=aii*qi+aij*qj+uij+h*uij2 q1partj=aji*qi+ajj*qj+uji+h*uji2 qi1=((1-h*ajj)/Δ1)*q1parti+(h*aij/Δ1)*q1partj# Δ1!=0 from iterations qj1=(h*aji/Δ1)*q1parti+((1-h*aii)/Δ1)*q1partj end break else if currentHj==0.0 && currentHi==0.0#empty ki-=1;kj-=1 elseif currentHj==0.0 && currentHi!=0.0 kj-=1 elseif currentHi==0.0 && currentHj!=0.0 ki-=1 else #both non zero if currentLj<currentLi#remove last seg of resi ki-=1 else #remove last seg of resj kj-=1 end end end end # end while #checkRoots(cacheRootsi,coefi,coefi2) # for free stress-testing allrealrootintervalnewtonregulafalsi # checkRoots(cacheRootsj,coefj,coefj2) #later check if error in roots makes q-x >2quan...use commented code below q[index][0]=Float64(qi)# store back helper vars q[j][0]=Float64(qj) q[index][1]=Float64(qi1) q[j][1]=Float64(qj1) trackSimul[1]+=1 # do not have to recomputeNext if qi never changed end #end if iscycle return iscycle end #= function checkRootsIntNew(cacheRootsi,coefi,coefi2) for h in cacheRootsi zci=abs(coefi[1]*h^6+coefi[2]*h^5+coefi[3]*h^4+coefi[4]*h^3+coefi[5]*h^2+coefi[6]*h+coefi[7]) zci2=abs(coefi2[1]*h^6+coefi2[2]*h^5+coefi2[3]*h^4+coefi2[4]*h^3+coefi2[5]*h^2+coefi2[6]*h+coefi2[7]) if zci>1e-6 && zci2>1e-6 println("error in mliqss_quantizer2: coming from root solver ") @show h,coefi,zci @show coefi2,zci2 end end end =# #= function checkRoots(cacheRootsi,coefi,coefi2) for h in cacheRootsi if h>0 # cache is large and contains 0 0 0 0 0 0 zci=abs(coefi[7]*h^6+coefi[6]*h^5+coefi[5]*h^4+coefi[4]*h^3+coefi[3]*h^2+coefi[2]*h+coefi[1]) zci2=abs(coefi2[7]*h^6+coefi2[6]*h^5+coefi2[5]*h^4+coefi2[4]*h^3+coefi2[3]*h^2+coefi2[2]*h+coefi2[1]) if zci>1e-5 && zci2>1e-5 println("error in mliqss_quantizer2: coming from root solver ") if zci>1e-5 @show h,coefi,zci end if zci2>1e-5 @show h,coefi2,zci2 end end end end end =# function checkRoots(cacheRootsi,coefi,coefΔh0,coefΔh1,coefΔh2,coefΔh3,coefΔh4,coefΔh5,coefΔh6,quani) for h in cacheRootsi if h>0 # cache is large and contains 0 0 0 0 0 0 zci=abs(coefi[7]*h^6+coefi[6]*h^5+coefi[5]*h^4+coefi[4]*h^3+coefi[3]*h^2+coefi[2]*h+coefi[1]) Δ=coefΔh0+h*coefΔh1+coefΔh2*h*h+coefΔh3*h^3+coefΔh4*h^4+coefΔh5*h^5+coefΔh6*h^6 if (zci/(Δ*Δ))>(quani/10) println("zci not zero makes q changes by more than a quan...root finding not good...Δ=$Δ") @show h,zci,quani,coefi end #= if zci>1e-5 println("error in mliqss_quantizer2: coming from root solver ") @show h,coefi,zci end =# end end end #= function getQfromAsymptote(x::Float64,coefH0::Float64,coefH1::P,coefH2::P,coefH3::P,coefH4::P,coefH5::P,coefH6::P,coefΔh0::Float64,coefΔh1::P,coefΔh2::P,coefΔh3::P,coefΔh4::P,coefΔh5::P,coefΔh6::P) where {P<:Union{BigFloat,Float64}} q=0.0 if coefΔh6==0.0 && coefH6!=0.0 @show coefΔh6,coefH6 error("report bug in simul2: could appear when a var becomes a NaN") elseif coefΔh6==0.0 && coefH6==0.0 if coefΔh5==0.0 && coefH5!=0.0 println("simul2: coef5 asymptote should not be outside of +-delta !!!") elseif coefΔh5==0.0 && coefH5==0.0 if coefΔh4==0.0 && coefH4!=0.0 println("simul2: coef4 asymptote should not be outside of +-delta !!!") elseif coefΔh4==0.0 && coefH4==0.0 if coefΔh3==0.0 && coefH3!=0.0 println("simul2: coef3 asymptote should not be outside of +-delta !!!") elseif coefΔh3==0.0 && coefH3==0.0 if coefΔh2==0.0 && coefH2!=0.0 println("simul2: coef2 asymptote should not be outside of +-delta !!!") elseif coefΔh2==0.0 && coefH2==0.0 if coefΔh1==0.0 && coefH1!=0.0 println("simul2: coef1 asymptote should not be outside of +-delta !!!") elseif coefΔh1==0.0 && coefH1==0.0 if coefΔh0!=0.0 q=coefH0/coefΔh0 else q=x end else#coefΔh1!=0.0 q=coefH1/coefΔh1 end else#coefΔh2!=0.0 q=coefH2/coefΔh2 end else#coefΔh3!=0.0 q=coefH3/coefΔh3 end else#coefΔh4!=0.0 q=coefH4/coefΔh4 end else#coefΔh5!=0.0 q=coefH5/coefΔh5 end else#coefΔh6!=0.0 q=coefH6/coefΔh6 end q end =#
QuantizedSystemSolver
https://github.com/mongibellili/QuantizedSystemSolver.jl.git
[ "MIT" ]
1.0.1
b4bf1003586f2ee6cb98d8df29e88cbbfacd2ea1
code
28942
function nmisCycle_and_simulUpdate(cacheRootsi::Vector{Float64},cacheRootsj::Vector{Float64},acceptedi::Vector{Vector{Float64}},acceptedj::Vector{Vector{Float64}},aij::Float64,aji::Float64,respp::Ptr{Float64}, pp::Ptr{NTuple{2,Float64}},trackSimul,::Val{2},index::Int,j::Int,dirI::Float64,firstguessH::Float64, x::Vector{Taylor0},q::Vector{Taylor0}, quantum::Vector{Float64},exacteA::Function,d::Vector{Float64},cacheA::MVector{1,Float64},dxaux::Vector{MVector{2,Float64}},qaux::Vector{MVector{2,Float64}},tx::Vector{Float64},tq::Vector{Float64},simt::Float64,ft::Float64) cacheA[1]=0.0;exacteA(q,d,cacheA,index,index) aii=cacheA[1] cacheA[1]=0.0; exacteA(q,d,cacheA,j,j) ajj=cacheA[1] uii=dxaux[index][1]-aii*qaux[index][1] ui2=dxaux[index][2]-aii*qaux[index][2] #= uii=x[index][1]-aii*q[index][0] ui2=x[index][2]-aii*q[index][1] =# xi=x[index][0];xj=x[j][0];qi=q[index][0];qj=q[j][0];qi1=q[index][1];qj1=q[j][1];xi1=x[index][1];xi2=2*x[index][2];xj1=x[j][1];xj2=2*x[j][2] #uii=u[index][index][1];ujj=u[j][j][1]#;uij=u[index][j][1];uji=u[j][index][1]#;uji2=u[j][index][2] quanj=quantum[j];quani=quantum[index]; e1 = simt - tx[j];e2 = simt - tq[j];#= e3=simt - tu[j];tu[j]=simt; =# prevXj=x[j][0] x[j][0]= x[j](e1);xj=x[j][0];tx[j]=simt qj=qj+e2*qj1 ;qaux[j][1]=qj;tq[j] = simt ;q[j][0]=qj xj1=x[j][1]+e1*xj2; newDiff=(xj-prevXj) ujj=xj1-ajj*qj #u[j][j][1]=ujj uji=ujj-aji*qaux[index][1]# #uji=u[j][index][1] uj2=xj2-ajj*qj1###################################################----------------------- uji2=uj2-aji*qaux[index][2]# #u[j][index][2]=u[j][j][2]-ajj*qaux[index][1] # from article p20 line25 more cycles ...shaky with no bumps # uji2=u[j][index][2] dxj=aji*qi+ajj*qaux[j][1]+uji ddxj=aji*qi1+ajj*qj1+uji2 if abs(ddxj)==0.0 ddxj=1e-30 if DEBUG2 @show ddxj end end iscycle=false qjplus=xj-sign(ddxj)*quanj hj=sqrt(2*quanj/abs(ddxj))# α1=1-hj*ajj if abs(α1)==0.0 α1=1e-30 @show α1 end dqjplus=(aji*(qi+hj*qi1)+ajj*qjplus+uji+hj*uji2)/α1 uij=uii-aij*qaux[j][1] # uij=u[index][j][1] uij2=ui2-aij*qj1#########qaux[j][2] updated in normal Qupdate..ft=20 slightly shifts up #β=dxi+sqrt(abs(ddxi)*quani/2) #h2=sqrt(2*quani/abs(ddxi)) #uij2=u[index][j][2] dxithrow=aii*qi+aij*qj+uij ddxithrow=aii*qi1+aij*qj1+uij2 dxi=aii*qi+aij*qjplus+uij ddxi=aii*qi1+aij*dqjplus+uij2 if abs(ddxi)==0.0 ddxi=1e-30 if DEBUG2 @show ddxi end end hi=sqrt(2*quani/abs(ddxi)) βidir=dxi+hi*ddxi/2 βjdir=dxj+hj*ddxj/2 βidth=dxithrow+hi*ddxithrow/2 αidir=xi1+hi*xi2/2 βj=xj1+hj*xj2/2 ########condition:Union #= if (abs(dxj-xj1)>(abs(dxj+xj1)/2) || abs(ddxj-xj2)>(abs(ddxj+xj2)/2)) || dqjplus*newDiff<0.0 #(dqjplus*qj1)<=0.0 with dir is better since when dir =0 we do not enter if (abs(dxi-xi1)>(abs(dxi+xi1)/2) || abs(ddxi-xi2)>(abs(ddxi+xi2)/2)) || βidir*dirI<0.0 iscycle=true end end =# ########condition:Union i #= if (abs(dxj-xj1)>(abs(dxj+xj1)/2) || abs(ddxj-xj2)>(abs(ddxj+xj2)/2)) || dqjplus*newDiff<0.0 #(dqjplus*qj1)<=0.0 with dir is better since when dir =0 we do not enter if (abs(dxi-dxithrow)>(abs(dxi+dxithrow)/2) || abs(ddxi-ddxithrow)>(abs(ddxi+ddxithrow)/2)) || βidir*dirI<0.0 iscycle=true end end =# ########condition:combineDer Union i if abs(βjdir-βj)>(abs(βjdir+βj)/2) || dqjplus*newDiff<0.0 if abs(βidir-βidth)>(abs(βidir+βidth)/2) || βidir*dirI<0.0 iscycle=true end coef_signig=100 if (abs(dxi)>(abs(xi1)*coef_signig) #= && (abs(ddxi)>(abs(xi2)*coef_signig)||abs(xi2)>(abs(ddxi)*coef_signig)) =#) || (abs(xi1)>(abs(dxi)*coef_signig) #= && (abs(ddxi)>(abs(xi2)*coef_signig)||abs(xi2)>(abs(ddxi)*coef_signig)) =#) iscycle=true end #= if abs(βidir-αidir)>(abs(βidir+αidir)/2) iscycle=true end =# end if (ddxithrow>0 && dxithrow<0 && qi1>0) || (ddxithrow<0 && dxithrow>0 && qi1<0) xmin=xi-dxithrow*dxithrow/ddxithrow if abs(xmin-xi)/abs(qi-xi)>0.8 # xmin is close to q and a change in q might flip its sign of dq iscycle=false # end end #= if (ddxi>0 && dxi<0 && qi1>0) || (ddxi<0 && dxi>0 && qi1<0) xmin=xi-dxi*dxi/ddxi if abs(xmin-xi)/abs(qi-xi)>0.8 # xmin is close to q and a change in q might flip its sign of dq iscycle=false # end end =# ########condition:kinda signif alone i #= if (abs(dxj-xj1)>(abs(dxj+xj1)/2) || abs(ddxj-xj2)>(abs(ddxj+xj2)/2)) # || dqjplus*newDiff<0.0 if (abs(dxi-dxithrow)>(abs(dxi+dxithrow)/2) || abs(ddxi-ddxithrow)>(abs(ddxi+ddxithrow)/2)) #|| βidir*dirI<0.0 iscycle=true end end =# ########condition:cond1 #= if dqjplus*newDiff<0.0 #= || (dqjplus==0.0 && newDiff!=0.0) =##(dqjplus*qj1)<=0.0 with dir is better since when dir =0 we do not enter if βidir*dirI<0.0 iscycle=true end end if dqjplus*newDiff<0.0 #= || (dqjplus==0.0 && newDiff!=0.0) =##(dqjplus*qj1)<=0.0 with dir is better since when dir =0 we do not enter if (abs(dxi-xi1)>(abs(dxi+xi1)/2) || abs(ddxi-xi2)>(abs(ddxi+xi2)/2)) iscycle=true end end if (abs(dxj-xj1)>(abs(dxj+xj1)/2) || abs(ddxj-xj2)>(abs(ddxj+xj2)/2)) #= || (dqjplus==0.0 && newDiff!=0.0) =##(dqjplus*qj1)<=0.0 with dir is better since when dir =0 we do not enter if βidir*dirI<0.0 iscycle=true end end =# ########condition:cond1 i #= if dqjplus*newDiff<0.0 #= || (dqjplus==0.0 && newDiff!=0.0) =##(dqjplus*qj1)<=0.0 with dir is better since when dir =0 we do not enter if βidir*dirI<0.0 iscycle=true end end if dqjplus*newDiff<0.0 #= || (dqjplus==0.0 && newDiff!=0.0) =##(dqjplus*qj1)<=0.0 with dir is better since when dir =0 we do not enter if (abs(dxi-dxithrow)>(abs(dxi+dxithrow)/2) || abs(ddxi-ddxithrow)>(abs(ddxi+ddxithrow)/2)) iscycle=true end end if (abs(dxj-xj1)>(abs(dxj+xj1)/2) || abs(ddxj-xj2)>(abs(ddxj+xj2)/2)) #= || (dqjplus==0.0 && newDiff!=0.0) =##(dqjplus*qj1)<=0.0 with dir is better since when dir =0 we do not enter if βidir*dirI<0.0 iscycle=true end end =# #= if index==1 && j==4 && 0.1<simt<1.1 iscycle=true end =# if iscycle #= quani=1.7*quani quanj=1.7*quanj =# for i =1:7# 3 ord1 ,7 ord2 acceptedi[i][1]=0.0; acceptedi[i][2]=0.0 acceptedj[i][1]=0.0; acceptedj[i][2]=0.0 end for i=1:12 cacheRootsi[i]=0.0 cacheRootsj[i]=0.0 end trackSimul[1]+=1 aiijj=(aii+ajj) aiijj_=(aij*aji-aii*ajj) coefΔh0=4.0 coefΔh1=-8.0*aiijj coefΔh2=6.0*aiijj*aiijj-4.0*aiijj_ coefΔh3=6.0*aiijj*aiijj_-2.0*aiijj*aiijj*aiijj coefΔh4=aiijj_*aiijj_-4.0*aiijj_*aiijj*aiijj coefΔh5=-3.0*aiijj*aiijj_*aiijj_ coefΔh6=-aiijj_*aiijj_*aiijj_ coefH0=4.0*xi coefH1=-8.0*xi*aiijj #coefH2=2.0*(-aii*uij-aij*uji-uij2+xi*(-2.0*aiijj_+2.0*aiijj*aiijj+2.0*aii*ajj-aji*aij+ajj*ajj)-aij*aiijj*xj) coefH2=2.0*(-aii*uij-aij*uji-uij2+xi*(-3.0*aiijj_+2.0*aiijj*aiijj+aiijj*ajj)-aij*aiijj*xj) #coefH3=2.0*((-uij*aiijj_+ajj*uij2-aij*uji2)+aiijj*(aii*uij+aij*uji+uij2+2.0*xi*aiijj_)-xi*aiijj*(2.0*aii*ajj-aji*aij+ajj*ajj)+ajj*aiijj_*xi+aij*aiijj*aiijj*xj-aij*aiijj_*xj) coefH3=2.0*((-uij*aiijj_+ajj*uij2-aij*uji2)+aiijj*(aii*uij+aij*uji+uij2+2.0*xi*aiijj_)-xi*aiijj*(ajj*aiijj-aiijj_)+ajj*aiijj_*xi+aij*aiijj*aiijj*xj-aij*aiijj_*xj) coefH4=2.0*(aiijj*(uij*aiijj_-ajj*uij2+aij*uji2)-0.5*(2.0*aii*ajj-aji*aij+ajj*ajj)*(aii*uij+aij*uji+uij2+2.0*xi*aiijj_)-ajj*aiijj_*aiijj*xi+0.5*aij*aiijj*(ajj*uji+aji*uij+uji2+2.0*xj*aiijj_)+aij*aiijj_*aiijj*xj) coefH5=(2.0*aii*ajj-aji*aij+ajj*ajj)*(ajj*uij2-uij*aiijj_-aij*uji2)-ajj*aiijj_*(aii*uij+aij*uji+uij2+2.0*xi*aiijj_)-aij*aiijj*(aii*uji2-uji*aiijj_-aji*uij2)+aij*aiijj_*(ajj*uji+aji*uij+uji2+2.0*xj*aiijj_) coefH6=ajj*aiijj_*(ajj*uij2-uij*aiijj_-aij*uji2)-aij*aiijj_*(aii*uji2-uji*aiijj_-aji*uij2) coefH0j=4.0*xj coefH1j=-8.0*xj*aiijj coefH2j=2.0*(-ajj*uji-aji*uij-uji2+xj*(-2.0*aiijj_+2.0*aiijj*aiijj+2.0*ajj*aii-aij*aji+aii*aii)-aji*aiijj*xi) coefH3j=2.0*((-uji*aiijj_+aii*uji2-aji*uij2)+aiijj*(ajj*uji+aji*uij+uji2+2.0*xj*aiijj_)-xj*aiijj*(2.0*ajj*aii-aij*aji+aii*aii)+aii*aiijj_*xj+aji*aiijj*aiijj*xi-aji*aiijj_*xi) coefH4j=2.0*(aiijj*(uji*aiijj_-aii*uji2+aji*uij2)-0.5*(aii*aiijj-aiijj_)*(ajj*uji+aji*uij+uji2+2.0*xj*aiijj_)-aii*aiijj_*aiijj*xj+0.5*aji*aiijj*(aii*uij+aij*uji+uij2+2.0*xi*aiijj_)+aji*aiijj_*aiijj*xi) coefH5j=(aii*aiijj-aiijj_)*(aii*uji2-uji*aiijj_-aji*uij2)-aii*aiijj_*(ajj*uji+aji*uij+uji2+2.0*xj*aiijj_)-aji*aiijj*(ajj*uij2-uij*aiijj_-aij*uji2)+aji*aiijj_*(aii*uij+aij*uji+uij2+2.0*xi*aiijj_) coefH6j=aii*aiijj_*(aii*uji2-uji*aiijj_-aji*uij2)-aji*aiijj_*(ajj*uij2-uij*aiijj_-aij*uji2) #= coefi=NTuple{7,Float64}((coefH6-coefΔh6*(xi+quani),coefH5-coefΔh5*(xi+quani),coefH4-coefΔh4*(xi+quani),coefH3-coefΔh3*(xi+quani),coefH2-coefΔh2*(xi+quani),coefH1-coefΔh1*(xi+quani),coefH0-coefΔh0*(xi+quani))) coefi2=NTuple{7,Float64}((coefH6-coefΔh6*(xi-quani),coefH5-coefΔh5*(xi-quani),coefH4-coefΔh4*(xi-quani),coefH3-coefΔh3*(xi-quani),coefH2-coefΔh2*(xi-quani),coefH1-coefΔh1*(xi-quani),coefH0-coefΔh0*(xi-quani))) coefj=NTuple{7,Float64}((coefH6j-coefΔh6*(xj+quanj),coefH5j-coefΔh5*(xj+quanj),coefH4j-coefΔh4*(xj+quanj),coefH3j-coefΔh3*(xj+quanj),coefH2j-coefΔh2*(xj+quanj),coefH1j-coefΔh1*(xj+quanj),coefH0j-coefΔh0*(xj+quanj))) coefj2=NTuple{7,Float64}((coefH6j-coefΔh6*(xj-quanj),coefH5j-coefΔh5*(xj-quanj),coefH4j-coefΔh4*(xj-quanj),coefH3j-coefΔh3*(xj-quanj),coefH2j-coefΔh2*(xj-quanj),coefH1j-coefΔh1*(xj-quanj),coefH0j-coefΔh0*(xj-quanj))) resi1,resi2,resi3,resi4,resi5,resi6,resi7,resi8,resi9,resi10,resi11,resi12=0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0 resj1,resj2,resj3,resj4,resj5,resj6,resj7,resj8,resj9,resj10,resj11,resj12=0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0 Base.GC.enable(false) unsafe_store!(respp, -1.0, 1);unsafe_store!(respp, -1.0, 2);unsafe_store!(respp, -1.0, 3);unsafe_store!(respp, -1.0, 4);unsafe_store!(respp, -1.0, 5);unsafe_store!(respp, -1.0, 6) allrealrootintervalnewtonregulafalsi(coefi,respp,pp) resi1,resi2,resi3,resi4,resi5,resi6=unsafe_load(respp,1),unsafe_load(respp,2),unsafe_load(respp,3),unsafe_load(respp,4),unsafe_load(respp,5),unsafe_load(respp,6) unsafe_store!(respp, -1.0, 1);unsafe_store!(respp, -1.0, 2);unsafe_store!(respp, -1.0, 3);unsafe_store!(respp, -1.0, 4);unsafe_store!(respp, -1.0, 5);unsafe_store!(respp, -1.0, 6) allrealrootintervalnewtonregulafalsi(coefi2,respp,pp) resi7,resi8,resi9,resi10,resi11,resi12=unsafe_load(respp,1),unsafe_load(respp,2),unsafe_load(respp,3),unsafe_load(respp,4),unsafe_load(respp,5),unsafe_load(respp,6) unsafe_store!(respp, -1.0, 1);unsafe_store!(respp, -1.0, 2);unsafe_store!(respp, -1.0, 3);unsafe_store!(respp, -1.0, 4);unsafe_store!(respp, -1.0, 5);unsafe_store!(respp, -1.0, 6) allrealrootintervalnewtonregulafalsi(coefj,respp,pp) resj1,resj2,resj3,resj4,resj5,resj6=unsafe_load(respp,1),unsafe_load(respp,2),unsafe_load(respp,3),unsafe_load(respp,4),unsafe_load(respp,5),unsafe_load(respp,6) unsafe_store!(respp, -1.0, 1);unsafe_store!(respp, -1.0, 2);unsafe_store!(respp, -1.0, 3);unsafe_store!(respp, -1.0, 4);unsafe_store!(respp, -1.0, 5);unsafe_store!(respp, -1.0, 6) allrealrootintervalnewtonregulafalsi(coefj2,respp,pp) resj7,resj8,resj9,resj10,resj11,resj12=unsafe_load(respp,1),unsafe_load(respp,2),unsafe_load(respp,3),unsafe_load(respp,4),unsafe_load(respp,5),unsafe_load(respp,6) Base.GC.enable(true) =# #to be deleted: test #= for h in (resi1,resi2,resi3,resi4,resi5,resi6,resi7,resi8,resi9,resi10,resi11,resi12) if h>0 h_2=h*h;h_3=h_2*h;h_4=h_3*h;h_5=h_4*h;h_6=h_5*h Δ22=4.0+h*coefΔh1+h_2*(coefΔh2)+h_3*(coefΔh3)+h_4*(coefΔh4)+h_5*coefΔh5+h_6*coefΔh6 if abs(Δ22)!=0.0 qi=(4.0*xi+h*coefH1+h_2*coefH2+h_3*coefH3+h_4*coefH4+h_5*coefH5+h_6*coefH6)/Δ22 if abs(qi-xi)>2quani error("your own h not working for you, i") end end end end for h in (resj1,resj2,resj3,resj4,resj5,resj6,resj7,resj8,resj9,resj10,resj11,resj12) if h>0 h_2=h*h;h_3=h_2*h;h_4=h_3*h;h_5=h_4*h;h_6=h_5*h Δ22=4.0+h*coefΔh1+h_2*(coefΔh2)+h_3*(coefΔh3)+h_4*(coefΔh4)+h_5*coefΔh5+h_6*coefΔh6 if abs(Δ22)!=0.0 qj=(4.0*xj+h*coefH1j+h_2*coefH2j+h_3*coefH3j+h_4*coefH4j+h_5*coefH5j+h_6*coefH6j)/Δ22 if abs(qj-xj)>2quanj error("your own h not working for you, j") end end end end #filter roots counterRooti=1 for h in (resi1,resi2,resi3,resi4,resi5,resi6,resi7,resi8,resi9,resi10,resi11,resi12) if h>0 && h!=Inf cacheRootsi[counterRooti]=h counterRooti+=1 end end sort!(cacheRootsi); counterRootj=1 for h in (resj1,resj2,resj3,resj4,resj5,resj6,resj7,resj8,resj9,resj10,resj11,resj12) if h>0 && h!=Inf cacheRootsj[counterRootj]=h counterRootj+=1 end end =# coefi=[coefH0-coefΔh0*(xi+quani),coefH1-coefΔh1*(xi+quani),coefH2-coefΔh2*(xi+quani),coefH3-coefΔh3*(xi+quani),coefH4-coefΔh4*(xi+quani),coefH5-coefΔh5*(xi+quani),coefH6-coefΔh6*(xi+quani)] coefj=[coefH0j-coefΔh0*(xj+quanj),coefH1j-coefΔh1*(xj+quanj),coefH2j-coefΔh2*(xj+quanj),coefH3j-coefΔh3*(xj+quanj),coefH4j-coefΔh4*(xj+quanj),coefH5j-coefΔh5*(xj+quanj),coefH6j-coefΔh6*(xj+quanj)] coefi2=[coefH0-coefΔh0*(xi-quani),coefH1-coefΔh1*(xi-quani),coefH2-coefΔh2*(xi-quani),coefH3-coefΔh3*(xi-quani),coefH4-coefΔh4*(xi-quani),coefH5-coefΔh5*(xi-quani),coefH6-coefΔh6*(xi-quani)] coefj2=[coefH0j-coefΔh0*(xj-quanj),coefH1j-coefΔh1*(xj-quanj),coefH2j-coefΔh2*(xj-quanj),coefH3j-coefΔh3*(xj-quanj),coefH4j-coefΔh4*(xj-quanj),coefH5j-coefΔh5*(xj-quanj),coefH6j-coefΔh6*(xj-quanj)] #= coefi=[BigFloat(coefH0-coefΔh0*(xi+quani)),BigFloat(coefH1-coefΔh1*(xi+quani)),BigFloat(coefH2-coefΔh2*(xi+quani)),BigFloat(coefH3-coefΔh3*(xi+quani)),BigFloat(coefH4-coefΔh4*(xi+quani)),BigFloat(coefH5-coefΔh5*(xi+quani)),BigFloat(coefH6-coefΔh6*(xi+quani))] coefj=[BigFloat(coefH0j-coefΔh0*(xj+quanj)),BigFloat(coefH1j-coefΔh1*(xj+quanj)),BigFloat(coefH2j-coefΔh2*(xj+quanj)),BigFloat(coefH3j-coefΔh3*(xj+quanj)),BigFloat(coefH4j-coefΔh4*(xj+quanj)),BigFloat(coefH5j-coefΔh5*(xj+quanj)),BigFloat(coefH6j-coefΔh6*(xj+quanj))] coefi2=[BigFloat(coefH0-coefΔh0*(xi-quani)),BigFloat(coefH1-coefΔh1*(xi-quani)),BigFloat(coefH2-coefΔh2*(xi-quani)),BigFloat(coefH3-coefΔh3*(xi-quani)),BigFloat(coefH4-coefΔh4*(xi-quani)),BigFloat(coefH5-coefΔh5*(xi-quani)),BigFloat(coefH6-coefΔh6*(xi-quani))] coefj2=[BigFloat(coefH0j-coefΔh0*(xj-quanj)),BigFloat(coefH1j-coefΔh1*(xj-quanj)),BigFloat(coefH2j-coefΔh2*(xj-quanj)),BigFloat(coefH3j-coefΔh3*(xj-quanj)),BigFloat(coefH4j-coefΔh4*(xj-quanj)),BigFloat(coefH5j-coefΔh5*(xj-quanj)),BigFloat(coefH6j-coefΔh6*(xj-quanj))] =# ri=roots(coefi) rj=roots(coefj) ri2=roots(coefi2) rj2=roots(coefj2) #filter roots counterRooti=1 for h in ri if abs(imag(h)) < 1.0e-15 && real(h)>0.0 cacheRootsi[counterRooti]=Float64(real(h)) counterRooti+=1 end end checkRoots(cacheRootsi,coefi,coefΔh0,coefΔh1,coefΔh2,coefΔh3,coefΔh4,coefΔh5,coefΔh6,quani) for h in ri2 if abs(imag(h)) < 1.0e-15 && real(h)>0.0 cacheRootsi[counterRooti]=Float64(real(h)) counterRooti+=1 end end sort!(cacheRootsi); counterRootj=1 for h in rj if abs(imag(h)) < 1.0e-15 && real(h)>0.0 cacheRootsj[counterRootj]=Float64(real(h)) counterRootj+=1 end end checkRoots(cacheRootsj,coefj,coefΔh0,coefΔh1,coefΔh2,coefΔh3,coefΔh4,coefΔh5,coefΔh6,quanj) for h in rj2 if abs(imag(h)) < 1.0e-15 && real(h)>0.0 cacheRootsj[counterRootj]=Float64(real(h)) counterRootj+=1 end end sort!(cacheRootsj); #= for h in cacheRootsi h_2=h*h;h_3=h_2*h;h_4=h_3*h;h_5=h_4*h;h_6=h_5*h Δ22=4.0+h*coefΔh1+h_2*(coefΔh2)+h_3*(coefΔh3)+h_4*(coefΔh4)+h_5*coefΔh5+h_6*coefΔh6 if abs(Δ22)!=0.0 qi=(4.0*xi+h*coefH1+h_2*coefH2+h_3*coefH3+h_4*coefH4+h_5*coefH5+h_6*coefH6)/Δ22 if abs(qi-xi)>2quani error("your own h not working for you, i") end end end for h in cacheRootsj h_2=h*h;h_3=h_2*h;h_4=h_3*h;h_5=h_4*h;h_6=h_5*h Δ22=4.0+h*coefΔh1+h_2*(coefΔh2)+h_3*(coefΔh3)+h_4*(coefΔh4)+h_5*coefΔh5+h_6*coefΔh6 if abs(Δ22)!=0.0 qj=(4.0*xj+h*coefH1j+h_2*coefH2j+h_3*coefH3j+h_4*coefH4j+h_5*coefH5j+h_6*coefH6j)/Δ22 if abs(qj-xj)>2quanj error("your own h not working for you, j") end end end =# #construct intervals constructIntrval(acceptedi,cacheRootsi) constructIntrval(acceptedj,cacheRootsj) ki=7;kj=7 h=-1.0 while true if ki==0 || kj==0 error("bug in finding the overlap") end currentLi=acceptedi[ki][1];currentHi=acceptedi[ki][2] currentLj=acceptedj[kj][1];currentHj=acceptedj[kj][2] if currentLj<=currentLi<currentHj || currentLi<=currentLj<currentHi#resj[end][1]<=resi[end][1]<=resj[end][2] || resi[end][1]<=resj[end][1]<=resi[end][2] #overlap h=min(currentHi,currentHj ) if h==Inf && (currentLj!=0.0 || currentLi!=0.0) # except case both 0 sols h1=(0,Inf) h=max(currentLj,currentLi#= ,ft-simt,dti =#) #ft-simt in case they are both ver small...elaborate on his later #= if simt==2.500745083181994e-5 @show currentLj,currentLi end =# end if h==Inf # both lower bounds ==0 --> zero sols for both if aiijj_!=0.0 qi=coefH6/coefΔh6 qj=coefH6j/coefΔh6 #qi=getQfromAsymptote(xi,coefH0,coefH1,coefH2,coefH3,coefH4,coefH5,coefH6,coefΔh0,coefΔh1,coefΔh2,coefΔh3,coefΔh4,coefΔh5,coefΔh6) #qj=getQfromAsymptote(xj,coefH0j,coefH1j,coefH2j,coefH3j,coefH4j,coefH5j,coefH6j,coefΔh0,coefΔh1,coefΔh2,coefΔh3,coefΔh4,coefΔh5,coefΔh6) qi1=(aji*uij2-uji2*aij)/aiijj_ #resul of ddx=aq+aq+u=0 ...2eqs 2 unknowns qj1=(-uij2-aii*qi1)/aij else return false end else #h!=Inf h_2=h*h;h_3=h_2*h;h_4=h_3*h;h_5=h_4*h;h_6=h_5*h Δ22=4.0+h*coefΔh1+h_2*(coefΔh2)+h_3*(coefΔh3)+h_4*(coefΔh4)+h_5*coefΔh5+h_6*coefΔh6 Δ1=1.0-h*(aiijj)-h*h*(aiijj_) if abs(Δ22)!=0.0 && Δ1!=0.0 qi=(4.0*xi+h*coefH1+h_2*coefH2+h_3*coefH3+h_4*coefH4+h_5*coefH5+h_6*coefH6)/Δ22 qj=(4.0*xj+h*coefH1j+h_2*coefH2j+h_3*coefH3j+h_4*coefH4j+h_5*coefH5j+h_6*coefH6j)/Δ22 #= if 2.500745083181994e-5<=simt<3.00745083181994e-5 @show "simul: ",index,qi,xi,quani,h,simt,j,qj,xj,quanj end =# else println("singularities Δ22=0")#do iterations maxIter=10000 while (abs(qi - xi) > 2.0*quani || abs(qj - xj) > 2.0*quanj) && (maxIter>0) maxIter-=1 h1 = h * sqrt(quani / abs(qi - xi)); h2 = h * sqrt(quanj / abs(qj - xj)); #= h1 = h * (0.99*1.8*quani / abs(qi - xi)); h2 = h * (0.99*1.8*quanj / abs(qj - xj)); =# h=min(h1,h2) Δ1=1.0-h*(aiijj)-h*h*(aiijj_) if abs(Δ1)!=0.0 h_2=h*h;h_3=h_2*h;h_4=h_3*h;h_5=h_4*h;h_6=h_5*h Δ22=4.0+h*coefΔh1+h_2*(coefΔh2)+h_3*(coefΔh3)+h_4*(coefΔh4)+h_5*coefΔh5+h_6*coefΔh6 if abs(Δ22)!=0.0 qi=(4.0*xi+h*coefH1+h_2*coefH2+h_3*coefH3+h_4*coefH4+h_5*coefH5+h_6*coefH6)/Δ22 qj=(4.0*xj+h*coefH1j+h_2*coefH2j+h_3*coefH3j+h_4*coefH4j+h_5*coefH5j+h_6*coefH6j)/Δ22 end end end if maxIter==0 || Δ1==0.0 # maxIter=0 :failed to bring q down within a reasonable time. Δ1==0.0 should never happen when maxIter>0...but keep it there for now return false end end q1parti=aii*qi+aij*qj+uij+h*uij2 q1partj=aji*qi+ajj*qj+uji+h*uji2 qi1=((1-h*ajj)/Δ1)*q1parti+(h*aij/Δ1)*q1partj# Δ1!=0 from iterations qj1=(h*aji/Δ1)*q1parti+((1-h*aii)/Δ1)*q1partj end break else if currentHj==0.0 && currentHi==0.0#empty ki-=1;kj-=1 elseif currentHj==0.0 && currentHi!=0.0 kj-=1 elseif currentHi==0.0 && currentHj!=0.0 ki-=1 else #both non zero if currentLj<currentLi#remove last seg of resi ki-=1 else #remove last seg of resj kj-=1 end end end end # end while #checkRoots(cacheRootsi,coefi,coefi2) # for free stress-testing allrealrootintervalnewtonregulafalsi # checkRoots(cacheRootsj,coefj,coefj2) #later check if error in roots makes q-x >2quan...use commented code below q[index][0]=(qi)# store back helper vars q[j][0]=(qj) q[index][1]=(qi1) q[j][1]=(qj1) trackSimul[1]+=1 # do not have to recomputeNext if qi never changed end #end if iscycle return iscycle end #= function checkRootsIntNew(cacheRootsi,coefi,coefi2) for h in cacheRootsi zci=abs(coefi[1]*h^6+coefi[2]*h^5+coefi[3]*h^4+coefi[4]*h^3+coefi[5]*h^2+coefi[6]*h+coefi[7]) zci2=abs(coefi2[1]*h^6+coefi2[2]*h^5+coefi2[3]*h^4+coefi2[4]*h^3+coefi2[5]*h^2+coefi2[6]*h+coefi2[7]) if zci>1e-6 && zci2>1e-6 println("error in mliqss_quantizer2: coming from root solver ") @show h,coefi,zci @show coefi2,zci2 end end end =# #= function checkRoots(cacheRootsi,coefi,coefi2) for h in cacheRootsi if h>0 # cache is large and contains 0 0 0 0 0 0 zci=abs(coefi[7]*h^6+coefi[6]*h^5+coefi[5]*h^4+coefi[4]*h^3+coefi[3]*h^2+coefi[2]*h+coefi[1]) zci2=abs(coefi2[7]*h^6+coefi2[6]*h^5+coefi2[5]*h^4+coefi2[4]*h^3+coefi2[3]*h^2+coefi2[2]*h+coefi2[1]) if zci>1e-5 && zci2>1e-5 println("error in mliqss_quantizer2: coming from root solver ") if zci>1e-5 @show h,coefi,zci end if zci2>1e-5 @show h,coefi2,zci2 end end end end end =# function checkRoots(cacheRootsi,coefi,coefΔh0,coefΔh1,coefΔh2,coefΔh3,coefΔh4,coefΔh5,coefΔh6,quani) for h in cacheRootsi if h>0 # cache is large and contains 0 0 0 0 0 0 zci=abs(coefi[7]*h^6+coefi[6]*h^5+coefi[5]*h^4+coefi[4]*h^3+coefi[3]*h^2+coefi[2]*h+coefi[1]) Δ=coefΔh0+h*coefΔh1+coefΔh2*h*h+coefΔh3*h^3+coefΔh4*h^4+coefΔh5*h^5+coefΔh6*h^6 if (zci/Δ*Δ)>quani error("zci not zero makes q changes by more than a quan...root finding not good...Δ=$Δ") end #= if zci>1e-5 println("error in mliqss_quantizer2: coming from root solver ") @show h,coefi,zci end =# end end end #= function getQfromAsymptote(x::Float64,coefH0::Float64,coefH1::P,coefH2::P,coefH3::P,coefH4::P,coefH5::P,coefH6::P,coefΔh0::Float64,coefΔh1::P,coefΔh2::P,coefΔh3::P,coefΔh4::P,coefΔh5::P,coefΔh6::P) where {P<:Union{BigFloat,Float64}} q=0.0 if coefΔh6==0.0 && coefH6!=0.0 @show coefΔh6,coefH6 error("report bug in simul2: could appear when a var becomes a NaN") elseif coefΔh6==0.0 && coefH6==0.0 if coefΔh5==0.0 && coefH5!=0.0 println("simul2: coef5 asymptote should not be outside of +-delta !!!") elseif coefΔh5==0.0 && coefH5==0.0 if coefΔh4==0.0 && coefH4!=0.0 println("simul2: coef4 asymptote should not be outside of +-delta !!!") elseif coefΔh4==0.0 && coefH4==0.0 if coefΔh3==0.0 && coefH3!=0.0 println("simul2: coef3 asymptote should not be outside of +-delta !!!") elseif coefΔh3==0.0 && coefH3==0.0 if coefΔh2==0.0 && coefH2!=0.0 println("simul2: coef2 asymptote should not be outside of +-delta !!!") elseif coefΔh2==0.0 && coefH2==0.0 if coefΔh1==0.0 && coefH1!=0.0 println("simul2: coef1 asymptote should not be outside of +-delta !!!") elseif coefΔh1==0.0 && coefH1==0.0 if coefΔh0!=0.0 q=coefH0/coefΔh0 else q=x end else#coefΔh1!=0.0 q=coefH1/coefΔh1 end else#coefΔh2!=0.0 q=coefH2/coefΔh2 end else#coefΔh3!=0.0 q=coefH3/coefΔh3 end else#coefΔh4!=0.0 q=coefH4/coefΔh4 end else#coefΔh5!=0.0 q=coefH5/coefΔh5 end else#coefΔh6!=0.0 q=coefH6/coefΔh6 end q end =#
QuantizedSystemSolver
https://github.com/mongibellili/QuantizedSystemSolver.jl.git
[ "MIT" ]
1.0.1
b4bf1003586f2ee6cb98d8df29e88cbbfacd2ea1
code
30522
function nmisCycle_and_simulUpdate(cacheRootsi::Vector{Float64},cacheRootsj::Vector{Float64},acceptedi::Vector{Vector{Float64}},acceptedj::Vector{Vector{Float64}},aij::Float64,aji::Float64,respp::Ptr{Float64}, pp::Ptr{NTuple{2,Float64}},trackSimul,::Val{2},index::Int,j::Int,dirI::Float64,firstguessH::Float64, x::Vector{Taylor0},q::Vector{Taylor0}, quantum::Vector{Float64},exactA::Function,d::Vector{Float64},cacheA::MVector{1,Float64},dxaux::Vector{MVector{2,Float64}},qaux::Vector{MVector{2,Float64}},tx::Vector{Float64},tq::Vector{Float64},simt::Float64,ft::Float64) cacheA[1]=0.0;exactA(q,d,cacheA,index,index,simt) aii=cacheA[1] cacheA[1]=0.0; exactA(q,d,cacheA,j,j,simt) ajj=cacheA[1] uii=dxaux[index][1]-aii*qaux[index][1] ui2=dxaux[index][2]-aii*qaux[index][2] #= uii=x[index][1]-aii*q[index][0] ui2=x[index][2]-aii*q[index][1] =# xi=x[index][0];xj=x[j][0];qi=q[index][0];qj=q[j][0];qi1=q[index][1];qj1=q[j][1];xi1=x[index][1];xi2=2*x[index][2];xj1=x[j][1];xj2=2*x[j][2] #uii=u[index][index][1];ujj=u[j][j][1]#;uij=u[index][j][1];uji=u[j][index][1]#;uji2=u[j][index][2] quanj=quantum[j];quani=quantum[index]; e1 = simt - tx[j];e2 = simt - tq[j];#= e3=simt - tu[j];tu[j]=simt; =# prevXj=x[j][0] x[j][0]= x[j](e1);xj=x[j][0];tx[j]=simt qj=qj+e2*qj1 ;qaux[j][1]=qj;tq[j] = simt ;q[j][0]=qj xj1=x[j][1]+e1*xj2; newDiff=(xj-prevXj) #= dirj=direction[j] if newDiff*dirj <0.0 dirj=-dirj elseif newDiff==0 && dirj!=0.0 dirj=0.0 elseif newDiff!=0 && dirj==0.0 dirj=newDiff else end direction[j]=dirj =# #ujj=ujj+e1*u[j][j][2] ujj=xj1-ajj*qj #u[j][j][1]=ujj uji=ujj-aji*qaux[index][1]# #uji=u[j][index][1] uj2=xj2-ajj*qj1###################################################----------------------- uji2=uj2-aji*qaux[index][2]# #u[j][index][2]=u[j][j][2]-ajj*qaux[index][1] # from article p20 line25 more cycles ...shaky with no bumps # uji2=u[j][index][2] dxj=aji*qi+ajj*qaux[j][1]+uji ddxj=aji*qi1+ajj*qj1+uji2 if abs(ddxj)==0.0 ddxj=1e-30 if DEBUG2 @show ddxj end end iscycle=false qjplus=xj-sign(ddxj)*quanj hj=sqrt(2*quanj/abs(ddxj))# α1=1-hj*ajj if abs(α1)==0.0 α1=1e-30 @show α1 end dqjplus=(aji*(qi+hj*qi1)+ajj*qjplus+uji+hj*uji2)/α1 uij=uii-aij*qaux[j][1] # uij=u[index][j][1] uij2=ui2-aij*qj1#########qaux[j][2] updated in normal Qupdate..ft=20 slightly shifts up #β=dxi+sqrt(abs(ddxi)*quani/2) #h2=sqrt(2*quani/abs(ddxi)) #uij2=u[index][j][2] dxithrow=aii*qi+aij*qj+uij ddxithrow=aii*qi1+aij*qj1+uij2 dxi=aii*qi+aij*qjplus+uij ddxi=aii*qi1+aij*dqjplus+uij2 if abs(ddxi)==0.0 ddxi=1e-30 if DEBUG2 @show ddxi end end hi=sqrt(2*quani/abs(ddxi)) βidir=dxi+hi*ddxi/2 βjdir=dxj+hj*ddxj/2 βidth=dxithrow+hi*ddxithrow/2 αidir=xi1+hi*xi2/2 βj=xj1+hj*xj2/2 ########condition:Union if (abs(dxj-xj1)>(abs(dxj+xj1)/2) || abs(ddxj-xj2)>(abs(ddxj+xj2)/2)) || dqjplus*newDiff<0.0 #(dqjplus*qj1)<=0.0 with dir is better since when dir =0 we do not enter if (abs(dxi-xi1)>(abs(dxi+xi1)/2) || abs(ddxi-xi2)>(abs(ddxi+xi2)/2)) || βidir*dirI<0.0 iscycle=true end end ########condition:Union i #= if (abs(dxj-xj1)>(abs(dxj+xj1)/2) || abs(ddxj-xj2)>(abs(ddxj+xj2)/2)) || dqjplus*newDiff<0.0 #(dqjplus*qj1)<=0.0 with dir is better since when dir =0 we do not enter if (abs(dxi-dxithrow)>(abs(dxi+dxithrow)/2) || abs(ddxi-ddxithrow)>(abs(ddxi+ddxithrow)/2)) || βidir*dirI<0.0 iscycle=true end end =# ########condition:combineDer Union i #= if abs(βjdir-βj)>(abs(βjdir+βj)/2) || dqjplus*newDiff<0.0 if abs(βidir-βidth)>(abs(βidir+βidth)/2) || βidir*dirI<0.0 iscycle=true end coef_signig=100 if (abs(dxi)>(abs(xi1)*coef_signig) #= && (abs(ddxi)>(abs(xi2)*coef_signig)||abs(xi2)>(abs(ddxi)*coef_signig)) =#) || (abs(xi1)>(abs(dxi)*coef_signig) #= && (abs(ddxi)>(abs(xi2)*coef_signig)||abs(xi2)>(abs(ddxi)*coef_signig)) =#) iscycle=true end #= if abs(βidir-αidir)>(abs(βidir+αidir)/2) iscycle=true end =# end =# if (ddxithrow>0 && dxithrow<0 && qi1>0) || (ddxithrow<0 && dxithrow>0 && qi1<0) xmin=xi-dxithrow*dxithrow/ddxithrow if abs(xmin-xi)/abs(qi-xi)>0.8 # xmin is close to q and a change in q might flip its sign of dq iscycle=false # end end #= if (ddxi>0 && dxi<0 && qi1>0) || (ddxi<0 && dxi>0 && qi1<0) xmin=xi-dxi*dxi/ddxi if abs(xmin-xi)/abs(qi-xi)>0.8 # xmin is close to q and a change in q might flip its sign of dq iscycle=false # end end =# ########condition:kinda signif alone i #= if (abs(dxj-xj1)>(abs(dxj+xj1)/2) || abs(ddxj-xj2)>(abs(ddxj+xj2)/2)) # || dqjplus*newDiff<0.0 if (abs(dxi-dxithrow)>(abs(dxi+dxithrow)/2) || abs(ddxi-ddxithrow)>(abs(ddxi+ddxithrow)/2)) #|| βidir*dirI<0.0 iscycle=true end end =# ########condition:cond1 #= if dqjplus*newDiff<0.0 #= || (dqjplus==0.0 && newDiff!=0.0) =##(dqjplus*qj1)<=0.0 with dir is better since when dir =0 we do not enter if βidir*dirI<0.0 iscycle=true end end if dqjplus*newDiff<0.0 #= || (dqjplus==0.0 && newDiff!=0.0) =##(dqjplus*qj1)<=0.0 with dir is better since when dir =0 we do not enter if (abs(dxi-xi1)>(abs(dxi+xi1)/2) || abs(ddxi-xi2)>(abs(ddxi+xi2)/2)) iscycle=true end end if (abs(dxj-xj1)>(abs(dxj+xj1)/2) || abs(ddxj-xj2)>(abs(ddxj+xj2)/2)) #= || (dqjplus==0.0 && newDiff!=0.0) =##(dqjplus*qj1)<=0.0 with dir is better since when dir =0 we do not enter if βidir*dirI<0.0 iscycle=true end end =# ########condition:cond1 i #= if dqjplus*newDiff<0.0 #= || (dqjplus==0.0 && newDiff!=0.0) =##(dqjplus*qj1)<=0.0 with dir is better since when dir =0 we do not enter if βidir*dirI<0.0 iscycle=true end end if dqjplus*newDiff<0.0 #= || (dqjplus==0.0 && newDiff!=0.0) =##(dqjplus*qj1)<=0.0 with dir is better since when dir =0 we do not enter if (abs(dxi-dxithrow)>(abs(dxi+dxithrow)/2) || abs(ddxi-ddxithrow)>(abs(ddxi+ddxithrow)/2)) iscycle=true end end if (abs(dxj-xj1)>(abs(dxj+xj1)/2) || abs(ddxj-xj2)>(abs(ddxj+xj2)/2)) #= || (dqjplus==0.0 && newDiff!=0.0) =##(dqjplus*qj1)<=0.0 with dir is better since when dir =0 we do not enter if βidir*dirI<0.0 iscycle=true end end =# #= if index==1 && j==4 && 0.1<simt<1.1 iscycle=true end =# if iscycle aiijj=aii+ajj aiijj_=aij*aji-aii*ajj coefΔh1=-8.0*aiijj coefΔh2=6.0*aiijj*aiijj-4.0*aiijj_ coefΔh3=6.0*aiijj*aiijj_-2.0*aiijj*aiijj*aiijj coefΔh4=aiijj_*aiijj_-4.0*aiijj_*aiijj*aiijj coefΔh5=-3.0*aiijj*aiijj_*aiijj_ coefΔh6=-aiijj_*aiijj_*aiijj_ coefH1=-8.0*xi*aiijj coefH2=2.0*(-aii*uij-aij*uji-uij2+xi*(-2.0*aiijj_+2.0*aiijj*aiijj+2.0*aii*ajj-aji*aij+ajj*ajj)-aij*aiijj*xj) coefH3=2.0*((-uij*aiijj_+ajj*uij2-aij*uji2)+aiijj*(aii*uij+aij*uji+uij2+2.0*xi*aiijj_)-xi*aiijj*(2.0*aii*ajj-aji*aij+ajj*ajj)+ajj*aiijj_*xi+aij*aiijj*aiijj*xj-aij*aiijj_*xj) coefH4=2.0*(aiijj*(uij*aiijj_-ajj*uij2+aij*uji2)-0.5*(2.0*aii*ajj-aji*aij+ajj*ajj)*(aii*uij+aij*uji+uij2+2.0*xi*aiijj_)-ajj*aiijj_*aiijj*xi+0.5*aij*aiijj*(ajj*uji+aji*uij+uji2+2.0*xj*aiijj_)+aij*aiijj_*aiijj*xj) coefH5=(2.0*aii*ajj-aji*aij+ajj*ajj)*(ajj*uij2-uij*aiijj_-aij*uji2)-ajj*aiijj_*(aii*uij+aij*uji+uij2+2.0*xi*aiijj_)-aij*aiijj*(aii*uji2-uji*aiijj_-aji*uij2)+aij*aiijj_*(ajj*uji+aji*uij+uji2+2.0*xj*aiijj_) coefH6=ajj*aiijj_*(ajj*uij2-uij*aiijj_-aij*uji2)-aij*aiijj_*(aii*uji2-uji*aiijj_-aji*uij2) coefH1j=-8.0*xj*aiijj coefH2j=2.0*(-ajj*uji-aji*uij-uji2+xj*(-2.0*aiijj_+2.0*aiijj*aiijj+2.0*ajj*aii-aij*aji+aii*aii)-aji*aiijj*xi) coefH3j=2.0*((-uji*aiijj_+aii*uji2-aji*uij2)+aiijj*(ajj*uji+aji*uij+uji2+2.0*xj*aiijj_)-xj*aiijj*(2.0*ajj*aii-aij*aji+aii*aii)+aii*aiijj_*xj+aji*aiijj*aiijj*xi-aji*aiijj_*xi) coefH4j=2.0*(aiijj*(uji*aiijj_-aii*uji2+aji*uij2)-0.5*(2.0*ajj*aii-aij*aji+aii*aii)*(ajj*uji+aji*uij+uji2+2.0*xj*aiijj_)-aii*aiijj_*aiijj*xj+0.5*aji*aiijj*(aii*uij+aij*uji+uij2+2.0*xi*aiijj_)+aji*aiijj_*aiijj*xi) coefH5j=(2.0*ajj*aii-aij*aji+aii*aii)*(aii*uji2-uji*aiijj_-aji*uij2)-aii*aiijj_*(ajj*uji+aji*uij+uji2+2.0*xj*aiijj_)-aji*aiijj*(ajj*uij2-uij*aiijj_-aij*uji2)+aji*aiijj_*(aii*uij+aij*uji+uij2+2.0*xi*aiijj_) coefH6j=aii*aiijj_*(aii*uji2-uji*aiijj_-aji*uij2)-aji*aiijj_*(ajj*uij2-uij*aiijj_-aij*uji2) h = ft-simt Δ1=1.0-h*(aiijj)-h*h*(aiijj_) if abs(Δ1)!=0.0 h_2=h*h;h_3=h_2*h;h_4=h_3*h;h_5=h_4*h;h_6=h_5*h Δ22=4.0+h*coefΔh1+h_2*(coefΔh2)+h_3*(coefΔh3)+h_4*(coefΔh4)+h_5*coefΔh5+h_6*coefΔh6 if abs(Δ22)!=0.0 qi=(4.0*xi+h*coefH1+h_2*coefH2+h_3*coefH3+h_4*coefH4+h_5*coefH5+h_6*coefH6)/Δ22 qj=(4.0*xj+h*coefH1j+h_2*coefH2j+h_3*coefH3j+h_4*coefH4j+h_5*coefH5j+h_6*coefH6j)/Δ22 end end if (abs(qi - xi) > 2.0*quani || abs(qj - xj) > 2.0*quanj) h1 = sqrt(abs(2*quani/xi2));h2 = sqrt(abs(2*quanj/xj2)); #later add derderX =1e-12 when x2==0? h=min(h1,h2) Δ1=1.0-h*(aiijj)-h*h*(aiijj_) if abs(Δ1)!=0.0 h_2=h*h;h_3=h_2*h;h_4=h_3*h;h_5=h_4*h;h_6=h_5*h Δ22=4.0+h*coefΔh1+h_2*(coefΔh2)+h_3*(coefΔh3)+h_4*(coefΔh4)+h_5*coefΔh5+h_6*coefΔh6 if abs(Δ22)!=0.0 qi=(4.0*xi+h*coefH1+h_2*coefH2+h_3*coefH3+h_4*coefH4+h_5*coefH5+h_6*coefH6)/Δ22 qj=(4.0*xj+h*coefH1j+h_2*coefH2j+h_3*coefH3j+h_4*coefH4j+h_5*coefH5j+h_6*coefH6j)/Δ22 end end end maxIter=10000 while (abs(qi - xi) > 2.0*quani || abs(qj - xj) > 2.0*quanj) && (maxIter>0) maxIter-=1 h1 = h * sqrt(quani / abs(qi - xi)); h2 = h * sqrt(quanj / abs(qj - xj)); #= h1 = h * (0.99*1.8*quani / abs(qi - xi)); h2 = h * (0.99*1.8*quanj / abs(qj - xj)); =# h=min(h1,h2) Δ1=1.0-h*(aiijj)-h*h*(aiijj_) if abs(Δ1)!=0.0 h_2=h*h;h_3=h_2*h;h_4=h_3*h;h_5=h_4*h;h_6=h_5*h Δ22=4.0+h*coefΔh1+h_2*(coefΔh2)+h_3*(coefΔh3)+h_4*(coefΔh4)+h_5*coefΔh5+h_6*coefΔh6 if abs(Δ22)!=0.0 qi=(4.0*xi+h*coefH1+h_2*coefH2+h_3*coefH3+h_4*coefH4+h_5*coefH5+h_6*coefH6)/Δ22 qj=(4.0*xj+h*coefH1j+h_2*coefH2j+h_3*coefH3j+h_4*coefH4j+h_5*coefH5j+h_6*coefH6j)/Δ22 end end end #qi,qj,Δ1=Float64(qi),Float64(qj),Float64(Δ1) if maxIter<900 #ie simul step failed println("simulstep $maxIter") end if maxIter==0 #ie simul step failed println("simulstep failed maxiter") return false end if 0<h<1e-20 #ie simul step failed # h==0 is allowed because is like an equilibrium println("simulstep failed small h=",h) @show simt,maxIter return false end if Δ1==0.0 # should never happen when maxIter>0...before deployement, group the 2 prev if statments println("iter simul Δ1 ==0") return false end q[index][0]=qi# store back helper vars q[j][0]=qj q1parti=aii*qi+aij*qj+uij+h*uij2 q1partj=aji*qi+ajj*qj+uji+h*uji2 q[index][1]=((1-h*ajj)/Δ1)*q1parti+(h*aij/Δ1)*q1partj# store back helper vars q[j][1]=(h*aji/Δ1)*q1parti+((1-h*aii)/Δ1)*q1partj trackSimul[1]+=1 # do not have to recomputeNext if qi never changed #= if abs(qi-xi)<quani/1000 && abs(qj-xj)<quanj/1000 && simt<5.0 #if quani/1000<abs(qi-xi)<quani/10 && quanj/1000<abs(qj-xj)<quanj/10 println("end of simul: qi & qj thrown both very close") @show abs(qi-xi),quani , abs(qj-xj),quanj @show simt end =# end #end if iscycle return iscycle end ####################################nliqss################################################################ #= function nisCycle_and_simulUpdate(::Val{2},index::Int,j::Int#= ,prevStepVal::Float64 =#,direction::Vector{Float64}, x::Vector{Taylor0},q::Vector{Taylor0}, quantum::Vector{Float64},map::Function,cacheA::MVector{1,Float64},dxaux::Vector{MVector{O,Float64}},qaux::Vector{MVector{O,Float64}},olddx::Vector{MVector{O,Float64}},olddxSpec::Vector{MVector{O,Float64}},tx::Vector{Float64},tq::Vector{Float64},simt::Float64,ft::Float64,qminus::Vector{Float64})where{O} # @timeit "inside nmisCycle block1" begin #aii=getA(Val(Sparsity),cacheA,a,index,index,map);ajj=getA(Val(Sparsity),cacheA,a,j,j,map);aij=getA(Val(Sparsity),cacheA,a,index,j,map);aji=getA(Val(Sparsity),cacheA,a,j,index,map) #aii=a[index][index];ajj=a[j][j];aij=a[index][j];aji=a[j][index] map(q,cacheA,index,index) aii=cacheA[1] map(q,cacheA,j,j) ajj=cacheA[1] map(q,cacheA,index,j) aij=cacheA[1] map(q,cacheA,j,index) aji=cacheA[1] xi=x[index][0];xj=x[j][0];qi=q[index][0];qj=q[j][0];qi1=q[index][1];qj1=q[j][1];xi1=x[index][1];xi2=2*x[index][2];xj1=x[j][1];xj2=2*x[j][2] # uii=u[index][index][1];#ujj=u[j][j][1]#;uij=u[index][j][1];uji=u[j][index][1]#;uji2=u[j][index][2] uii=dxaux[index][1]-aii*qaux[index][1] # u[index][index][1]=uii ui2=dxaux[index][2]-aii*qaux[index][2] # u[index][index][2]=ui2 # ui2=u[index][index][2] quanj=quantum[j];quani=quantum[index]; e1 = simt - tx[j];e2 = simt - tq[j];#= e3=simt - tu[j];tu[j]=simt; =# x[j][0]= x[j](e1);xj=x[j][0];tx[j]=simt qminus[j]=qj qj=qj+e2*qj1 ;qaux[j][1]=qj;tq[j] = simt ;q[j][0]=qj xj1=x[j][1]+e1*xj2;olddxSpec[j][1]=xj1;olddx[j][1]=xj1 #= newDiff=(xj-prevStepVal) dirj=direction[j] if newDiff*dirj <0.0 dirj=-dirj elseif newDiff==0 && dirj!=0.0 dirj=0.0 elseif newDiff!=0 && dirj==0.0 dirj=newDiff else end direction[j]=dirj =# #ujj=ujj+e1*u[j][j][2] ujj=xj1-ajj*qj #u[j][j][1]=ujj uji=ujj-aji*qaux[index][1]# # u[j][index][1]=uji #u[j][j][2]=xj2-ajj*qj1###################################################----------------------- uj2=xj2-ajj*qj1 # u[j][j][2]=uj2 uji2=uj2-aji*qaux[index][2]# #u[j][index][2]=u[j][j][2]-ajj*qaux[index][1] # from article p20 line25 more cycles ...shaky with no bumps # u[j][index][2]=uji2 #@show uji2 dxj=aji*qi+ajj*qaux[j][1]+uji ddxj=aji*qi1+ajj*qj1+uji2 #@show aji,ajj,uji2 iscycle=false qjplus=xj-sign(ddxj)*quanj h=sqrt(2*quanj/abs(ddxj))#2*quantum funny oscillating graph; xj2 vibrating dqjplus=(aji*(qi+h*qi1)+ajj*qjplus+uji+h*uji2)/(1-h*ajj) #end#end init iscycle if (abs(dxj-xj1)>(abs(dxj+xj1)/2) || abs(ddxj-xj2)>(abs(ddxj+xj2)/2)) #|| (dqjplus)*dirj<0.0 #(dqjplus*qj1)<=0.0 with dir is better since when dir =0 we do not enter #β=dxi+sqrt(abs(ddxi)*quani/2) #h2=sqrt(2*quani/abs(ddxi)) uij=uii-aij*qaux[j][1] # u[index][j][1]=uij uij2=ui2-aij*qj1#########qaux[j][2] updated in normal Qupdate..ft=20 slightly shifts up # u[index][j][2]=uij2 dxi=aii*qi+aij*qjplus+uij ddxi=aii*qi1+aij*dqjplus+uij2 βidir=dxi+sqrt(2*quani/abs(ddxi))*ddxi/2 if (abs(dxi-xi1)>(abs(dxi+xi1)/2) || abs(ddxi-xi2)>(abs(ddxi+xi2)/2)) #|| βidir*direction[index]<0.0 # @timeit "inside nmisCycle block2" begin iscycle=true h = ft-simt Δ1=(1-h*aii)*(1-h*ajj)-h*h*aij*aji αii=(aii*(1-h*ajj)+h*aij*aji)/Δ1 αij=((1-h*ajj)*aij+h*aij*ajj)/Δ1 αji=(aji*aii*h+(1-h*aii)*aji)/Δ1 αjj=(h*aji*aij+(1-h*aii)*ajj)/Δ1 βii=1+h*(αii-aii)-h*h*(aii*αii+aij*αji)/2 βij=h*(αij-aij)-h*h*(aii*αij+aij*αjj)/2 βji=h*(αji-aji)-h*h*(aji*αii+ajj*αji)/2 βjj=1+h*(αjj-ajj)-h*h*(aji*αij+ajj*αjj)/2 Δ2=βii*βjj-βij*βji λii=(h*h*aii/2-h)*(1-h*ajj)+h*h*h*aji*aij/2 λij=(h*h*aii/2-h)*h*aij+h*h*aij*(1-h*aii)/2 λji=h*h*aji/2*(1-h*ajj)+(h*h*ajj/2-h)*h*aji λjj=h*h*h*aij*aji/2+(h*h*ajj/2-h)*(1-h*aii) parti=((λii*(uij+h*uij2)+λij*(uji+h*uji2))/Δ1)+(xi+h*uij+h*h*uij2/2)#part1[1]+xpart2[1]# partj=((λji*(uij+h*uij2)+λjj*(uji+h*uji2))/Δ1)+(xj+h*uji+h*h*uji2/2)#part1[2]+xpart2[2]# qi=((βjj/Δ2)*parti-(βij/Δ2)*partj) qj=((βii/Δ2)*partj-(βji/Δ2)*parti) if (abs(qi - xi) > 2*quani || abs(qj - xj) > 2*quanj) h1 = sqrt(abs(2*quani/xi2));h2 = sqrt(abs(2*quanj/xj2)); #later add derderX =1e-12 when x2==0 h=min(h1,h2) Δ1=(1-h*aii)*(1-h*ajj)-h*h*aij*aji αii=(aii*(1-h*ajj)+h*aij*aji)/Δ1 αij=((1-h*ajj)*aij+h*aij*ajj)/Δ1 αji=(aji*aii*h+(1-h*aii)*aji)/Δ1 αjj=(h*aji*aij+(1-h*aii)*ajj)/Δ1 βii=1+h*(αii-aii)-h*h*(aii*αii+aij*αji)/2 βij=h*(αij-aij)-h*h*(aii*αij+aij*αjj)/2 βji=h*(αji-aji)-h*h*(aji*αii+ajj*αji)/2 βjj=1+h*(αjj-ajj)-h*h*(aji*αij+ajj*αjj)/2 Δ2=βii*βjj-βij*βji λii=(h*h*aii/2-h)*(1-h*ajj)+h*h*h*aji*aij/2 λij=(h*h*aii/2-h)*h*aij+h*h*aij*(1-h*aii)/2 λji=h*h*aji/2*(1-h*ajj)+(h*h*ajj/2-h)*h*aji λjj=h*h*h*aij*aji/2+(h*h*ajj/2-h)*(1-h*aii) parti=((λii*(uij+h*uij2)+λij*(uji+h*uji2))/Δ1)+(xi+h*uij+h*h*uij2/2)#part1[1]+xpart2[1]# partj=((λji*(uij+h*uij2)+λjj*(uji+h*uji2))/Δ1)+(xj+h*uji+h*h*uji2/2)#part1[2]+xpart2[2]# qi=((βjj/Δ2)*parti-(βij/Δ2)*partj) qj=((βii/Δ2)*partj-(βji/Δ2)*parti) end maxIter=600 while (abs(qi - xi) > 2*quani || abs(qj - xj) > 2*quanj) && (maxIter>0) maxIter-=1 #= h1 = h * (0.98*quani / abs(qi - xi)); h2 = h * (0.98*quanj / abs(qj - xj)); =# h1 = h * sqrt(quani / abs(qi - xi)); h2 = h * sqrt(quanj / abs(qj - xj)); h=min(h1,h2) Δ1=(1-h*aii)*(1-h*ajj)-h*h*aij*aji αii=(aii*(1-h*ajj)+h*aij*aji)/Δ1 αij=((1-h*ajj)*aij+h*aij*ajj)/Δ1 αji=(aji*aii*h+(1-h*aii)*aji)/Δ1 αjj=(h*aji*aij+(1-h*aii)*ajj)/Δ1 βii=1+h*(αii-aii)-h*h*(aii*αii+aij*αji)/2 βij=h*(αij-aij)-h*h*(aii*αij+aij*αjj)/2 βji=h*(αji-aji)-h*h*(aji*αii+ajj*αji)/2 βjj=1+h*(αjj-ajj)-h*h*(aji*αij+ajj*αjj)/2 Δ2=βii*βjj-βij*βji λii=(h*h*aii/2-h)*(1-h*ajj)+h*h*h*aji*aij/2 λij=(h*h*aii/2-h)*h*aij+h*h*aij*(1-h*aii)/2 λji=h*h*aji/2*(1-h*ajj)+(h*h*ajj/2-h)*h*aji λjj=h*h*h*aij*aji/2+(h*h*ajj/2-h)*(1-h*aii) parti=((λii*(uij+h*uij2)+λij*(uji+h*uji2))/Δ1)+(xi+h*uij+h*h*uij2/2)#part1[1]+xpart2[1]# partj=((λji*(uij+h*uij2)+λjj*(uji+h*uji2))/Δ1)+(xj+h*uji+h*h*uji2/2)#part1[2]+xpart2[2]# qi=((βjj/Δ2)*parti-(βij/Δ2)*partj) qj=((βii/Δ2)*partj-(βji/Δ2)*parti) end if maxIter < 1 @show maxIter @show simt @show a end q[index][0]=qi# store back helper vars q[j][0]=qj q1parti=aii*qi+aij*qj+uij+h*uij2 q1partj=aji*qi+ajj*qj+uji+h*uji2 q[index][1]=((1-h*ajj)/Δ1)*q1parti+(h*aij/Δ1)*q1partj# store back helper vars q[j][1]=(h*aji/Δ1)*q1parti+((1-h*aii)/Δ1)*q1partj # end#end block2????????????????????????????????????????????????????????????????? end #end second dependecy check end # end outer dependency check return iscycle end =# #####################################old mliqss function isCycle_and_simulUpdate(::Val{2},index::Int,j::Int,#= direction::Vector{Float64}, =# x::Vector{Taylor0},q::Vector{Taylor0}, quantum::Vector{Float64},a::Vector{Vector{Float64}},u::Vector{Vector{MVector{O,Float64}}},qaux::Vector{MVector{O,Float64}},olddx::Vector{MVector{O,Float64}},tx::Vector{Float64},tq::Vector{Float64},simt::Float64,ft::Float64)where{O} aii=a[index][index];ajj=a[j][j];aij=a[index][j];aji=a[j][index]; # aii=getA(Val(Sparsity),cacheA,a,index,index,map);ajj=getA(Val(Sparsity),cacheA,a,j,j,map);aij=getA(Val(Sparsity),cacheA,a,index,j,map);aji=getA(Val(Sparsity),cacheA,a,j,index,map) xi=x[index][0];xj=x[j][0];qi=q[index][0];qj=q[j][0];qi1=q[index][1];qj1=q[j][1];xi1=x[index][1];xi2=2*x[index][2];xj1=x[j][1];xj2=2*x[j][2] uii=u[index][index][1];ujj=u[j][j][1]#;uij=u[index][j][1];uji=u[j][index][1]#;uji2=u[j][index][2] quanj=quantum[j];quani=quantum[index]; e1 = simt - tx[j];e2 = simt - tq[j];#= e3=simt - tu[j];tu[j]=simt; =# x[j][0]= x[j](e1);xj=x[j][0];tx[j]=simt qj=qj+e2*qj1 ;qaux[j][1]=qj;tq[j] = simt ;q[j][0]=qj xj1=x[j][1]+e1*xj2#= ;olddxSpec[j][1]=xj1 =#;olddx[j][1]=xj1 # ujj=ujj+e1*u[j][j][2] ujj=xj1-ajj*qj u[j][j][1]=ujj u[j][index][1]=ujj-aji*qaux[index][1]# using q[i][0] creates a really huge bump at 18 (no go) because we want to elaps-update uji uji=u[j][index][1] u[j][j][2]=xj2-ajj*qj1###################################################----------------------- u[j][index][2]=u[j][j][2]-aji*qaux[index][2]#less cycles but with a bump at 1.5...ft20: smooth with some bumps #u[j][index][2]=u[j][j][2]-ajj*qaux[index][1] # from article p20 line25 more cycles ...shaky with no bumps uji2=u[j][index][2] dxj=aji*qi+ajj*qaux[j][1]+uji ddxj=aji*qi1+ajj*qj1+uji2 iscycle=false if (abs(dxj-xj1)>(abs(dxj+xj1)/2) || abs(ddxj-xj2)>(abs(ddxj+xj2)/2)) qjplus=xj-sign(ddxj)*quanj h=sqrt(2*quanj/abs(ddxj))#2*quantum funny oscillating graph; xj2 vibrating dqjplus=(aji*(qi+h*qi1)+ajj*qjplus+uji+h*uji2)/(1-h*ajj) u[index][j][1]=uii-aij*qaux[j][1] uij=u[index][j][1] u[index][j][2]=u[index][index][2]-aij*qj1#########qaux[j][2] updated in normal Qupdate..ft=20 slightly shifts up uij2=u[index][j][2] dxi=aii*qi+aij*qjplus+uij ddxi=aii*qi1+aij*dqjplus+uij2 if (abs(dxi-xi1)>(abs(dxi+xi1)/2) || abs(ddxi-xi2)>(abs(ddxi+xi2)/2)) iscycle=true h = ft-simt Δ1=(1-h*aii)*(1-h*ajj)-h*h*aij*aji αii=(aii*(1-h*ajj)+h*aij*aji)/Δ1 αij=((1-h*ajj)*aij+h*aij*ajj)/Δ1 αji=(aji*aii*h+(1-h*aii)*aji)/Δ1 αjj=(h*aji*aij+(1-h*aii)*ajj)/Δ1 βii=1+h*(αii-aii)-h*h*(aii*αii+aij*αji)/2 βij=h*(αij-aij)-h*h*(aii*αij+aij*αjj)/2 βji=h*(αji-aji)-h*h*(aji*αii+ajj*αji)/2 βjj=1+h*(αjj-ajj)-h*h*(aji*αij+ajj*αjj)/2 Δ2=βii*βjj-βij*βji λii=(h*h*aii/2-h)*(1-h*ajj)+h*h*h*aji*aij/2 λij=(h*h*aii/2-h)*h*aij+h*h*aij*(1-h*aii)/2 λji=h*h*aji/2*(1-h*ajj)+(h*h*ajj/2-h)*h*aji λjj=h*h*h*aij*aji/2+(h*h*ajj/2-h)*(1-h*aii) parti=((λii*(uij+h*uij2)+λij*(uji+h*uji2))/Δ1)+(xi+h*uij+h*h*uij2/2)#part1[1]+xpart2[1]# partj=((λji*(uij+h*uij2)+λjj*(uji+h*uji2))/Δ1)+(xj+h*uji+h*h*uji2/2)#part1[2]+xpart2[2]# qi=((βjj/Δ2)*parti-(βij/Δ2)*partj) qj=((βii/Δ2)*partj-(βji/Δ2)*parti) if (abs(qi - xi) > 2*quani || abs(qj - xj) > 2*quanj) h1 = sqrt(abs(2*quani/xi2));h2 = sqrt(abs(2*quanj/xj2)); #later add derderX =1e-12 when x2==0 h=min(h1,h2) Δ1=(1-h*aii)*(1-h*ajj)-h*h*aij*aji αii=(aii*(1-h*ajj)+h*aij*aji)/Δ1 αij=((1-h*ajj)*aij+h*aij*ajj)/Δ1 αji=(aji*aii*h+(1-h*aii)*aji)/Δ1 αjj=(h*aji*aij+(1-h*aii)*ajj)/Δ1 βii=1+h*(αii-aii)-h*h*(aii*αii+aij*αji)/2 βij=h*(αij-aij)-h*h*(aii*αij+aij*αjj)/2 βji=h*(αji-aji)-h*h*(aji*αii+ajj*αji)/2 βjj=1+h*(αjj-ajj)-h*h*(aji*αij+ajj*αjj)/2 Δ2=βii*βjj-βij*βji λii=(h*h*aii/2-h)*(1-h*ajj)+h*h*h*aji*aij/2 λij=(h*h*aii/2-h)*h*aij+h*h*aij*(1-h*aii)/2 λji=h*h*aji/2*(1-h*ajj)+(h*h*ajj/2-h)*h*aji λjj=h*h*h*aij*aji/2+(h*h*ajj/2-h)*(1-h*aii) parti=((λii*(uij+h*uij2)+λij*(uji+h*uji2))/Δ1)+(xi+h*uij+h*h*uij2/2)#part1[1]+xpart2[1]# partj=((λji*(uij+h*uij2)+λjj*(uji+h*uji2))/Δ1)+(xj+h*uji+h*h*uji2/2)#part1[2]+xpart2[2]# qi=((βjj/Δ2)*parti-(βij/Δ2)*partj) qj=((βii/Δ2)*partj-(βji/Δ2)*parti) end maxIter=600 while (abs(qi - xi) > 2*quani || abs(qj - xj) > 2*quanj) && (maxIter>0) maxIter-=1 #= h1 = h * (0.98*quani / abs(qi - xi)); h2 = h * (0.98*quanj / abs(qj - xj)); =# h1 = h * sqrt(quani / abs(qi - xi)); h2 = h * sqrt(quanj / abs(qj - xj)); h=min(h1,h2) Δ1=(1-h*aii)*(1-h*ajj)-h*h*aij*aji αii=(aii*(1-h*ajj)+h*aij*aji)/Δ1 αij=((1-h*ajj)*aij+h*aij*ajj)/Δ1 αji=(aji*aii*h+(1-h*aii)*aji)/Δ1 αjj=(h*aji*aij+(1-h*aii)*ajj)/Δ1 βii=1+h*(αii-aii)-h*h*(aii*αii+aij*αji)/2 βij=h*(αij-aij)-h*h*(aii*αij+aij*αjj)/2 βji=h*(αji-aji)-h*h*(aji*αii+ajj*αji)/2 βjj=1+h*(αjj-ajj)-h*h*(aji*αij+ajj*αjj)/2 Δ2=βii*βjj-βij*βji λii=(h*h*aii/2-h)*(1-h*ajj)+h*h*h*aji*aij/2 λij=(h*h*aii/2-h)*h*aij+h*h*aij*(1-h*aii)/2 λji=h*h*aji/2*(1-h*ajj)+(h*h*ajj/2-h)*h*aji λjj=h*h*h*aij*aji/2+(h*h*ajj/2-h)*(1-h*aii) parti=((λii*(uij+h*uij2)+λij*(uji+h*uji2))/Δ1)+(xi+h*uij+h*h*uij2/2)#part1[1]+xpart2[1]# partj=((λji*(uij+h*uij2)+λjj*(uji+h*uji2))/Δ1)+(xj+h*uji+h*h*uji2/2)#part1[2]+xpart2[2]# qi=((βjj/Δ2)*parti-(βij/Δ2)*partj) qj=((βii/Δ2)*partj-(βji/Δ2)*parti) end if maxIter < 1 @show maxIter @show simt @show a end q[index][0]=qi# store back helper vars q[j][0]=qj q1parti=aii*qi+aij*qj+uij+h*uij2 q1partj=aji*qi+ajj*qj+uji+h*uji2 q[index][1]=((1-h*ajj)/Δ1)*q1parti+(h*aij/Δ1)*q1partj# store back helper vars q[j][1]=(h*aji/Δ1)*q1parti+((1-h*aii)/Δ1)*q1partj end #end second dependecy check end # end outer dependency check return iscycle end #= function updateQ(::Val{2},i::Int, xv::Vector{Taylor0},qv::Vector{Taylor0}, quantum::Vector{Float64}#= ,av::Vector{Vector{Float64}} =#,exactA::Function,cacheA::MVector{1,Float64},dxaux::Vector{MVector{O,Float64}},qaux::Vector{MVector{O,Float64}},olddx::Vector{MVector{O,Float64}},tx::Vector{Float64},tq::Vector{Float64},simt::Float64,ft::Float64, nextTime::Vector{Float64})where{O} #a=getA(Val(Sparsity),cacheA,av,i,i,map) #a=av[i][i] cacheA[1]=0.0; exactA(qv,cacheA,i,i) a=cacheA[1] # @show a,i q=qv[i][0] ;q1=qv[i][1]; x=xv[i][0]; x1=xv[i][1]; x2=xv[i][2]*2; #u1=uv[i][i][1]; u2=uv[i][i][2] qaux[i][1]=q#+(simt-tq[i])*q1#appears only here...updated here and used in updateApprox and in updateQevent later qaux[i][2]=q1 #appears only here...updated here and used in updateQevent olddx[i][1]=x1#appears only here...updated here and used in updateApprox olddx[i][2]=x2 #u1=u1+(simt-tu[i])*u2 # for order 2: u=u+tu*deru this is necessary deleting causes scheduler error u1=x1-a*qaux[i][1] # uv[i][i][1]=u1 dxaux[i][1]=x1 dxaux[i][2]=x2 u2=x2-a*q1 # uv[i][i][2]= u2 # tu[i]=simt # olddx[i][2]=2*x2# ddx=x2 quan=quantum[i] h=0.0 if a!=0.0 if ddx ==0.0 ddx=a*a*q+a*u1 +u2 if ddx==0.0 ddx=1e-40# changing -40 to -6 nothing changed # println("ddx=0") end end h = ft-simt #tempH1=h #q = ((x + h * u1 + h * h / 2 * u2) * (1 - h * a) + (h * h / 2 * a - h) * (u1 + h * u2)) /(1 - h * a + h * h * a * a / 2) q=(x-h*a*x-h*h*(a*u1+u2)/2)/(1 - h * a + h * h * a * a / 2) if (abs(q - x) > 2* quan) # removing this did nothing...check @btime later h = sqrt(abs(2*quan / ddx)) # sqrt highly recommended...removing it leads to many sim steps..//2* is necessary in 2*quan when using ddx q = ((x + h * u1 + h * h / 2 * u2) * (1 - h * a) + (h * h / 2 * a - h) * (u1 + h * u2)) / (1 - h * a + h * h * a * a / 2) # q = (x-h*a*x-h*h*(a*u1+u2)/2)/(1 - h * a + h * h * a * a / 2) end maxIter=1000 # tempH=h #= if (abs(q - x) >2* quan) coef=@SVector [quan, a*quan,-(a*a*(x-quan)+a*u1+u2)/2]# h1= minPosRoot(coef, Val(2)) coef=@SVector [-quan, -a*quan,-(a*a*(x+quan)+a*u1+u2)/2]# h2= minPosRoot(coef, Val(2)) if h1<h2 h=h1;q=x-quan else h=h2;q=x+quan end end =# while (abs(q - x) >2* quan) && (maxIter>0) && (h>0) h = h *sqrt(quan / abs(q - x)) q = ((x + h * u1 + h * h / 2 * u2) * (1 - h * a) + (h * h / 2 * a - h) * (u1 + h * u2)) / (1 - h * a + h * h * a * a / 2) # q = (x-h*a*x-h*h*(a*u1+u2)/2)/(1 - h * a + h * h * a * a / 2) maxIter-=1 end q1=(a*q+u1+h*u2)/(1-h*a) #later investigate 1=h*a else if x2!=0.0 h=sqrt(abs(2*quan/x2)) #sqrt necessary with u2 q=x-h*h*x2/2 q1=x1+h*x2 else # println("x2==0") if x1!=0.0 h=abs(quan/x1) q=x+h*x1 q1=x1 else h=Inf q=x q1=x1 end end end qv[i][0]=q qv[i][1]=q1 nextTime[i]=simt+h return nothing end =#
QuantizedSystemSolver
https://github.com/mongibellili/QuantizedSystemSolver.jl.git
[ "MIT" ]
1.0.1
b4bf1003586f2ee6cb98d8df29e88cbbfacd2ea1
code
21966
function nmisCycle_and_simulUpdate(cacheRootsi::Vector{BigFloat},cacheRootsj::Vector{BigFloat},acceptedi::Vector{Vector{BigFloat}},acceptedj::Vector{Vector{BigFloat}},aij::Float64,aji::Float64,respp::Ptr{BigFloat}, pp::Ptr{NTuple{2,BigFloat}},trackSimul,::Val{2},index::Int,j::Int,dirI::Float64,firstguessH::Float64, x::Vector{Taylor0},q::Vector{Taylor0}, quantum::Vector{Float64},exacteA::Function,d::Vector{Float64},cacheA::MVector{1,Float64},dxaux::Vector{MVector{2,Float64}},qaux::Vector{MVector{2,Float64}},tx::Vector{Float64},tq::Vector{Float64},simt::Float64,ft::Float64) cacheA[1]=0.0;exacteA(q,d,cacheA,index,index) aii=cacheA[1] cacheA[1]=0.0; exacteA(q,d,cacheA,j,j) ajj=cacheA[1] uii=dxaux[index][1]-aii*qaux[index][1] ui2=dxaux[index][2]-aii*qaux[index][2] #= uii=x[index][1]-aii*q[index][0] ui2=x[index][2]-aii*q[index][1] =# xi=x[index][0];xj=x[j][0];qi=q[index][0];qj=q[j][0];qi1=q[index][1];qj1=q[j][1];xi1=x[index][1];xi2=2*x[index][2];xj1=x[j][1];xj2=2*x[j][2] #uii=u[index][index][1];ujj=u[j][j][1]#;uij=u[index][j][1];uji=u[j][index][1]#;uji2=u[j][index][2] quanj=quantum[j];quani=quantum[index]; e1 = simt - tx[j];e2 = simt - tq[j];#= e3=simt - tu[j];tu[j]=simt; =# prevXj=x[j][0] x[j][0]= x[j](e1);xjaux=x[j][0];tx[j]=simt qj=qj+e2*qj1 ;qaux[j][1]=qj;tq[j] = simt ;q[j][0]=qj xj1=x[j][1]+e1*xj2; newDiff=(xjaux-prevXj) #= dirj=direction[j] if newDiff*dirj <0.0 dirj=-dirj elseif newDiff==0 && dirj!=0.0 dirj=0.0 elseif newDiff!=0 && dirj==0.0 dirj=newDiff else end direction[j]=dirj =# #ujj=ujj+e1*u[j][j][2] ujj=xj1-ajj*qj #u[j][j][1]=ujj uji=ujj-aji*qaux[index][1]# #uji=u[j][index][1] uj2=xj2-ajj*qj1###################################################----------------------- uji2=uj2-aji*qaux[index][2]# #u[j][index][2]=u[j][j][2]-ajj*qaux[index][1] # from article p20 line25 more cycles ...shaky with no bumps # uji2=u[j][index][2] dxj=aji*qi+ajj*qaux[j][1]+uji ddxj=aji*qi1+ajj*qj1+uji2 if abs(ddxj)==0.0 ddxj=1e-30 if DEBUG2 @show ddxj end end iscycle=false qjplus=xjaux-sign(ddxj)*quanj hj=sqrt(2*quanj/abs(ddxj))# α1=1-hj*ajj if abs(α1)==0.0 α1=1e-30 @show α1 end dqjplus=(aji*(qi+hj*qi1)+ajj*qjplus+uji+hj*uji2)/α1 uij=uii-aij*qaux[j][1] # uij=u[index][j][1] uij2=ui2-aij*qj1#########qaux[j][2] updated in normal Qupdate..ft=20 slightly shifts up #β=dxi+sqrt(abs(ddxi)*quani/2) #h2=sqrt(2*quani/abs(ddxi)) #uij2=u[index][j][2] dxithrow=aii*qi+aij*qj+uij ddxithrow=aii*qi1+aij*qj1+uij2 dxi=aii*qi+aij*qjplus+uij ddxi=aii*qi1+aij*dqjplus+uij2 if abs(ddxi)==0.0 ddxi=1e-30 if DEBUG2 @show ddxi end end hi=sqrt(2*quani/abs(ddxi)) βidir=dxi+hi*ddxi/2 βjdir=dxj+hj*ddxj/2 βidth=dxithrow+hi*ddxithrow/2 αidir=xi1+hi*xi2/2 βj=xj1+hj*xj2/2 ########condition:Union #= if (abs(dxj-xj1)>(abs(dxj+xj1)/2) || abs(ddxj-xj2)>(abs(ddxj+xj2)/2)) || dqjplus*newDiff<0.0 #(dqjplus*qj1)<=0.0 with dir is better since when dir =0 we do not enter if (abs(dxi-xi1)>(abs(dxi+xi1)/2) || abs(ddxi-xi2)>(abs(ddxi+xi2)/2)) || βidir*dirI<0.0 iscycle=true end end =# ########condition:Union i #= if (abs(dxj-xj1)>(abs(dxj+xj1)/2) || abs(ddxj-xj2)>(abs(ddxj+xj2)/2)) || dqjplus*newDiff<0.0 #(dqjplus*qj1)<=0.0 with dir is better since when dir =0 we do not enter if (abs(dxi-dxithrow)>(abs(dxi+dxithrow)/2) || abs(ddxi-ddxithrow)>(abs(ddxi+ddxithrow)/2)) || βidir*dirI<0.0 iscycle=true end end =# ########condition:combineDer Union i if abs(βjdir-βj)>(abs(βjdir+βj)/2) || dqjplus*newDiff<0.0 if abs(βidir-βidth)>(abs(βidir+βidth)/2) || βidir*dirI<0.0 iscycle=true end coef_signig=100 if (abs(dxi)>(abs(xi1)*coef_signig) #= && (abs(ddxi)>(abs(xi2)*coef_signig)||abs(xi2)>(abs(ddxi)*coef_signig)) =#) || (abs(xi1)>(abs(dxi)*coef_signig) #= && (abs(ddxi)>(abs(xi2)*coef_signig)||abs(xi2)>(abs(ddxi)*coef_signig)) =#) iscycle=true end #= if abs(βidir-αidir)>(abs(βidir+αidir)/2) iscycle=true end =# end if (ddxithrow>0 && dxithrow<0 && qi1>0) || (ddxithrow<0 && dxithrow>0 && qi1<0) xmin=xi-dxithrow*dxithrow/ddxithrow if abs(xmin-xi)/abs(qi-xi)>0.8 # xmin is close to q and a change in q might flip its sign of dq iscycle=false # end end #= if (ddxi>0 && dxi<0 && qi1>0) || (ddxi<0 && dxi>0 && qi1<0) xmin=xi-dxi*dxi/ddxi if abs(xmin-xi)/abs(qi-xi)>0.8 # xmin is close to q and a change in q might flip its sign of dq iscycle=false # end end =# ########condition:kinda signif alone i #= if (abs(dxj-xj1)>(abs(dxj+xj1)/2) || abs(ddxj-xj2)>(abs(ddxj+xj2)/2)) # || dqjplus*newDiff<0.0 if (abs(dxi-dxithrow)>(abs(dxi+dxithrow)/2) || abs(ddxi-ddxithrow)>(abs(ddxi+ddxithrow)/2)) #|| βidir*dirI<0.0 iscycle=true end end =# ########condition:cond1 #= if dqjplus*newDiff<0.0 #= || (dqjplus==0.0 && newDiff!=0.0) =##(dqjplus*qj1)<=0.0 with dir is better since when dir =0 we do not enter if βidir*dirI<0.0 iscycle=true end end if dqjplus*newDiff<0.0 #= || (dqjplus==0.0 && newDiff!=0.0) =##(dqjplus*qj1)<=0.0 with dir is better since when dir =0 we do not enter if (abs(dxi-xi1)>(abs(dxi+xi1)/2) || abs(ddxi-xi2)>(abs(ddxi+xi2)/2)) iscycle=true end end if (abs(dxj-xj1)>(abs(dxj+xj1)/2) || abs(ddxj-xj2)>(abs(ddxj+xj2)/2)) #= || (dqjplus==0.0 && newDiff!=0.0) =##(dqjplus*qj1)<=0.0 with dir is better since when dir =0 we do not enter if βidir*dirI<0.0 iscycle=true end end =# ########condition:cond1 i #= if dqjplus*newDiff<0.0 #= || (dqjplus==0.0 && newDiff!=0.0) =##(dqjplus*qj1)<=0.0 with dir is better since when dir =0 we do not enter if βidir*dirI<0.0 iscycle=true end end if dqjplus*newDiff<0.0 #= || (dqjplus==0.0 && newDiff!=0.0) =##(dqjplus*qj1)<=0.0 with dir is better since when dir =0 we do not enter if (abs(dxi-dxithrow)>(abs(dxi+dxithrow)/2) || abs(ddxi-ddxithrow)>(abs(ddxi+ddxithrow)/2)) iscycle=true end end if (abs(dxj-xj1)>(abs(dxj+xj1)/2) || abs(ddxj-xj2)>(abs(ddxj+xj2)/2)) #= || (dqjplus==0.0 && newDiff!=0.0) =##(dqjplus*qj1)<=0.0 with dir is better since when dir =0 we do not enter if βidir*dirI<0.0 iscycle=true end end =# #= if index==1 && j==4 && 0.1<simt<1.1 iscycle=true end =# if iscycle quani=1.2*quani quanj=1.2*quanj for i =1:7# 3 ord1 ,7 ord2 acceptedi[i][1]=0.0; acceptedi[i][2]=0.0 acceptedj[i][1]=0.0; acceptedj[i][2]=0.0 end for i=1:12 cacheRootsi[i]=0.0 cacheRootsj[i]=0.0 end trackSimul[1]+=1 aiijj=BigFloat(aii+ajj) aiijj_=BigFloat(aij*aji-aii*ajj) coefΔh0=4.0 coefΔh1=-8.0*aiijj coefΔh2=6.0*aiijj*aiijj-4.0*aiijj_ coefΔh3=6.0*aiijj*aiijj_-2.0*aiijj*aiijj*aiijj coefΔh4=aiijj_*aiijj_-4.0*aiijj_*aiijj*aiijj coefΔh5=-3.0*aiijj*aiijj_*aiijj_ coefΔh6=-aiijj_*aiijj_*aiijj_ coefH0=4.0*xi coefH1=-8.0*xi*aiijj coefH2=2.0*(-aii*uij-aij*uji-uij2+xi*(-2.0*aiijj_+2.0*aiijj*aiijj+2.0*aii*ajj-aji*aij+ajj*ajj)-aij*aiijj*xjaux) coefH3=2.0*((-uij*aiijj_+ajj*uij2-aij*uji2)+aiijj*(aii*uij+aij*uji+uij2+2.0*xi*aiijj_)-xi*aiijj*(2.0*aii*ajj-aji*aij+ajj*ajj)+ajj*aiijj_*xi+aij*aiijj*aiijj*xjaux-aij*aiijj_*xjaux) coefH4=2.0*(aiijj*(uij*aiijj_-ajj*uij2+aij*uji2)-0.5*(2.0*aii*ajj-aji*aij+ajj*ajj)*(aii*uij+aij*uji+uij2+2.0*xi*aiijj_)-ajj*aiijj_*aiijj*xi+0.5*aij*aiijj*(ajj*uji+aji*uij+uji2+2.0*xjaux*aiijj_)+aij*aiijj_*aiijj*xjaux) coefH5=(2.0*aii*ajj-aji*aij+ajj*ajj)*(ajj*uij2-uij*aiijj_-aij*uji2)-ajj*aiijj_*(aii*uij+aij*uji+uij2+2.0*xi*aiijj_)-aij*aiijj*(aii*uji2-uji*aiijj_-aji*uij2)+aij*aiijj_*(ajj*uji+aji*uij+uji2+2.0*xjaux*aiijj_) coefH6=ajj*aiijj_*(ajj*uij2-uij*aiijj_-aij*uji2)-aij*aiijj_*(aii*uji2-uji*aiijj_-aji*uij2) coefH0j=4.0*xjaux coefH1j=-8.0*xjaux*aiijj coefH2j=2.0*(-ajj*uji-aji*uij-uji2+xjaux*(-2.0*aiijj_+2.0*aiijj*aiijj+2.0*ajj*aii-aij*aji+aii*aii)-aji*aiijj*xi) coefH3j=2.0*((-uji*aiijj_+aii*uji2-aji*uij2)+aiijj*(ajj*uji+aji*uij+uji2+2.0*xjaux*aiijj_)-xjaux*aiijj*(2.0*ajj*aii-aij*aji+aii*aii)+aii*aiijj_*xjaux+aji*aiijj*aiijj*xi-aji*aiijj_*xi) coefH4j=2.0*(aiijj*(uji*aiijj_-aii*uji2+aji*uij2)-0.5*(2.0*ajj*aii-aij*aji+aii*aii)*(ajj*uji+aji*uij+uji2+2.0*xjaux*aiijj_)-aii*aiijj_*aiijj*xjaux+0.5*aji*aiijj*(aii*uij+aij*uji+uij2+2.0*xi*aiijj_)+aji*aiijj_*aiijj*xi) coefH5j=(2.0*ajj*aii-aij*aji+aii*aii)*(aii*uji2-uji*aiijj_-aji*uij2)-aii*aiijj_*(ajj*uji+aji*uij+uji2+2.0*xjaux*aiijj_)-aji*aiijj*(ajj*uij2-uij*aiijj_-aij*uji2)+aji*aiijj_*(aii*uij+aij*uji+uij2+2.0*xi*aiijj_) coefH6j=aii*aiijj_*(aii*uji2-uji*aiijj_-aji*uij2)-aji*aiijj_*(ajj*uij2-uij*aiijj_-aij*uji2) if coefΔh6==0.0 && coefH6j!=0.0 println("math check") @show aiijj_ @show aii*aiijj_*(aii*uji2-uji*aiijj_-aji*uij2)-aji*aiijj_*(ajj*uij2-uij*aiijj_-aij*uji2) @show -aiijj_*aiijj_*aiijj_#coefΔh6 end #= if coefH6>1e6 || coefH5>1e6 || coefH4>1e6 || coefH3>1e6 || coefH2>1e6 @show coefH6,coefH5,coefH3,coefH2,coefH4 end if coefH6j>1e6 || coefH5j>1e6 || coefH4j>1e6 || coefH3j>1e6 || coefH2j>1e6 @show coefH6j,coefH5j,coefH3j,coefH2j,coefH4j end if coefΔh6>1e6 || coefΔh5>1e6 || coefΔh4>1e6 || coefΔh3>1e6 || coefΔh2>1e6 @show coefΔh6,coefΔh5,coefΔh4,coefΔh3,coefΔh2 end =# #= coefi=NTuple{7,Float64}((coefH6-coefΔh6*(xi+quani),coefH5-coefΔh5*(xi+quani),coefH4-coefΔh4*(xi+quani),coefH3-coefΔh3*(xi+quani),coefH2-coefΔh2*(xi+quani),coefH1-coefΔh1*(xi+quani),coefH0-coefΔh0*(xi+quani))) coefi2=NTuple{7,Float64}((coefH6-coefΔh6*(xi-quani),coefH5-coefΔh5*(xi-quani),coefH4-coefΔh4*(xi-quani),coefH3-coefΔh3*(xi-quani),coefH2-coefΔh2*(xi-quani),coefH1-coefΔh1*(xi-quani),coefH0-coefΔh0*(xi-quani))) coefj=NTuple{7,Float64}((coefH6-coefΔh6*(xjaux+quanj),coefH5-coefΔh5*(xjaux+quanj),coefH4-coefΔh4*(xjaux+quanj),coefH3-coefΔh3*(xjaux+quanj),coefH2-coefΔh2*(xjaux+quanj),coefH1-coefΔh1*(xjaux+quanj),coefH0-coefΔh0*(xjaux+quanj))) coefj2=NTuple{7,Float64}((coefH6-coefΔh6*(xjaux-quanj),coefH5-coefΔh5*(xjaux-quanj),coefH4-coefΔh4*(xjaux-quanj),coefH3-coefΔh3*(xjaux-quanj),coefH2-coefΔh2*(xjaux-quanj),coefH1-coefΔh1*(xjaux-quanj),coefH0-coefΔh0*(xjaux-quanj))) =# coefi=NTuple{7,BigFloat}((coefH6-coefΔh6*(xi+quani),coefH5-coefΔh5*(xi+quani),coefH4-coefΔh4*(xi+quani),coefH3-coefΔh3*(xi+quani),coefH2-coefΔh2*(xi+quani),coefH1-coefΔh1*(xi+quani),coefH0-coefΔh0*(xi+quani))) coefi2=NTuple{7,BigFloat}((coefH6-coefΔh6*(xi-quani),coefH5-coefΔh5*(xi-quani),coefH4-coefΔh4*(xi-quani),coefH3-coefΔh3*(xi-quani),coefH2-coefΔh2*(xi-quani),coefH1-coefΔh1*(xi-quani),coefH0-coefΔh0*(xi-quani))) coefj=NTuple{7,BigFloat}((coefH6j-coefΔh6*(xjaux+quanj),coefH5j-coefΔh5*(xjaux+quanj),coefH4j-coefΔh4*(xjaux+quanj),coefH3j-coefΔh3*(xjaux+quanj),coefH2j-coefΔh2*(xjaux+quanj),coefH1j-coefΔh1*(xjaux+quanj),coefH0j-coefΔh0*(xjaux+quanj))) coefj2=NTuple{7,BigFloat}((coefH6j-coefΔh6*(xjaux-quanj),coefH5j-coefΔh5*(xjaux-quanj),coefH4j-coefΔh4*(xjaux-quanj),coefH3j-coefΔh3*(xjaux-quanj),coefH2j-coefΔh2*(xjaux-quanj),coefH1j-coefΔh1*(xjaux-quanj),coefH0j-coefΔh0*(xjaux-quanj))) Base.GC.enable(false) unsafe_store!(respp, -1.0, 1);unsafe_store!(respp, -1.0, 2);unsafe_store!(respp, -1.0, 3);unsafe_store!(respp, -1.0, 4);unsafe_store!(respp, -1.0, 5);unsafe_store!(respp, -1.0, 6) allrealrootintervalnewtonregulafalsi(coefi,respp,pp) resi1,resi2,resi3,resi4,resi5,resi6=unsafe_load(respp,1),unsafe_load(respp,2),unsafe_load(respp,3),unsafe_load(respp,4),unsafe_load(respp,5),unsafe_load(respp,6) unsafe_store!(respp, -1.0, 1);unsafe_store!(respp, -1.0, 2);unsafe_store!(respp, -1.0, 3);unsafe_store!(respp, -1.0, 4);unsafe_store!(respp, -1.0, 5);unsafe_store!(respp, -1.0, 6) allrealrootintervalnewtonregulafalsi(coefi2,respp,pp) resi7,resi8,resi9,resi10,resi11,resi12=unsafe_load(respp,1),unsafe_load(respp,2),unsafe_load(respp,3),unsafe_load(respp,4),unsafe_load(respp,5),unsafe_load(respp,6) unsafe_store!(respp, -1.0, 1);unsafe_store!(respp, -1.0, 2);unsafe_store!(respp, -1.0, 3);unsafe_store!(respp, -1.0, 4);unsafe_store!(respp, -1.0, 5);unsafe_store!(respp, -1.0, 6) allrealrootintervalnewtonregulafalsi(coefj,respp,pp) resj1,resj2,resj3,resj4,resj5,resj6=unsafe_load(respp,1),unsafe_load(respp,2),unsafe_load(respp,3),unsafe_load(respp,4),unsafe_load(respp,5),unsafe_load(respp,6) unsafe_store!(respp, -1.0, 1);unsafe_store!(respp, -1.0, 2);unsafe_store!(respp, -1.0, 3);unsafe_store!(respp, -1.0, 4);unsafe_store!(respp, -1.0, 5);unsafe_store!(respp, -1.0, 6) allrealrootintervalnewtonregulafalsi(coefj2,respp,pp) resj7,resj8,resj9,resj10,resj11,resj12=unsafe_load(respp,1),unsafe_load(respp,2),unsafe_load(respp,3),unsafe_load(respp,4),unsafe_load(respp,5),unsafe_load(respp,6) Base.GC.enable(true) #filter roots #filterRoots(cacheRootsi,resi1,resi2,resi3,resi4,resi5,resi6,resi7,resi8,resi9,resi10,resi11,resi12) for h in (resi1,resi2,resi3,resi4,resi5,resi6,resi7,resi8,resi9,resi10,resi11,resi12) if h>0 h_2=h*h;h_3=h_2*h;h_4=h_3*h;h_5=h_4*h;h_6=h_5*h Δ22=4.0+h*coefΔh1+h_2*(coefΔh2)+h_3*(coefΔh3)+h_4*(coefΔh4)+h_5*coefΔh5+h_6*coefΔh6 if abs(Δ22)!=0.0 qi=(4.0*xi+h*coefH1+h_2*coefH2+h_3*coefH3+h_4*coefH4+h_5*coefH5+h_6*coefH6)/Δ22 end #if abs(qi-xi)>1.2*quani # end end end for h in (resj1,resj2,resj3,resj4,resj5,resj6,resj7,resj8,resj9,resj10,resj11,resj12) if h>0 h_2=h*h;h_3=h_2*h;h_4=h_3*h;h_5=h_4*h;h_6=h_5*h Δ22=4.0+h*coefΔh1+h_2*(coefΔh2)+h_3*(coefΔh3)+h_4*(coefΔh4)+h_5*coefΔh5+h_6*coefΔh6 if abs(Δ22)!=0.0 qj=(4.0*xjaux+h*coefH1j+h_2*coefH2j+h_3*coefH3j+h_4*coefH4j+h_5*coefH5j+h_6*coefH6j)/Δ22 end # qii,qj,Δ1=simulQ(quani,quanj,simt,aii,aij,aji,ajj,h,xi,xjaux,uij,uij2,uji,uji2) #if abs(qj-xjaux)>1.2*quanj #= if simt==3.486047550372409 @show "simulCheck first good hi: ",simt,h,qj,xjaux,quanj @show resj1,resj2,resj3,resj4,resj5,resj6,resj7,resj8,resj9,resj10,resj11,resj12 @show coefj,coefj2 zf=coefj[1]*h^6+coefj[2]*h^5+coefj[3]*h^4+coefj[4]*h^3+coefj[5]*h^2+coefj[6]*h+coefj[7] @show zf end =# #return false #end end end counterRooti=1 for h in (resi1,resi2,resi3,resi4,resi5,resi6,resi7,resi8,resi9,resi10,resi11,resi12) if h>0 cacheRootsi[counterRooti]=h counterRooti+=1 end end sort!(cacheRootsi); counterRootj=1 for h in (resj1,resj2,resj3,resj4,resj5,resj6,resj7,resj8,resj9,resj10,resj11,resj12) if h>0 && h!=Inf cacheRootsj[counterRootj]=h counterRootj+=1 end end sort!(cacheRootsj); #construct intervals constructIntrval(acceptedi,cacheRootsi) constructIntrval(acceptedj,cacheRootsj) ki=7;kj=7 h=-1.0 #= @show cacheRootsi @show acceptedi @show cacheRootsj @show acceptedj @show simt,j =# while true #if ki==0 || kj==0 #end currentLi=acceptedi[ki][1];currentHi=acceptedi[ki][2] currentLj=acceptedj[kj][1];currentHj=acceptedj[kj][2] if currentLj<=currentLi<currentHj || currentLi<=currentLj<currentHi#resj[end][1]<=resi[end][1]<=resj[end][2] || resi[end][1]<=resj[end][1]<=resi[end][2] #overlap h=min(currentHi,currentHj ) if h==Inf && (currentLj!=0.0 || currentLi!=0.0) # except case both 0 sols h1=(0,Inf) h=max(currentLj,currentLi#= ,ft-simt,dti =#) #ft-simt in case they are both ver small...elaborate on his later if simt==2.500745083181994e-5 @show currentLj,currentLi end end if h==Inf # both lower bounds ==0 --> zero sols for both # qi=xi+ci/βi #asymptote...even though not guaranteed to be best #qj=xj+cj/βj qi=getQfromAsymptote(xi,coefH0,coefH1,coefH2,coefH3,coefH4,coefH5,coefH6,coefΔh0,coefΔh1,coefΔh2,coefΔh3,coefΔh4,coefΔh5,coefΔh6) qj=getQfromAsymptote(xjaux,coefH0j,coefH1j,coefH2j,coefH3j,coefH4j,coefH5j,coefH6j,coefΔh0,coefΔh1,coefΔh2,coefΔh3,coefΔh4,coefΔh5,coefΔh6) #@show "asymptote:",simt,qi,xi,quani,coefH6,coefΔh6 else h_2=h*h;h_3=h_2*h;h_4=h_3*h;h_5=h_4*h;h_6=h_5*h Δ22=4.0+h*coefΔh1+h_2*(coefΔh2)+h_3*(coefΔh3)+h_4*(coefΔh4)+h_5*coefΔh5+h_6*coefΔh6 if abs(Δ22)!=0.0 qi=(4.0*xi+h*coefH1+h_2*coefH2+h_3*coefH3+h_4*coefH4+h_5*coefH5+h_6*coefH6)/Δ22 qj=(4.0*xjaux+h*coefH1j+h_2*coefH2j+h_3*coefH3j+h_4*coefH4j+h_5*coefH5j+h_6*coefH6j)/Δ22 #= if 2.500745083181994e-5<=simt<3.00745083181994e-5 @show "simul: ",index,qi,xi,quani,h,simt,j,qj,xjaux,quanj end =# else println("singularities Δ22=0") #do iterations end end break else if currentHj==0.0 && currentHi==0.0#empty ki-=1;kj-=1 elseif currentHj==0.0 && currentHi!=0.0 kj-=1 elseif currentHi==0.0 && currentHj!=0.0 ki-=1 else #both non zero if currentLj<currentLi#remove last seg of resi ki-=1 else #remove last seg of resj kj-=1 end end end end # end while #checkRoots(cacheRootsi,coefi,coefi2) # for free stress-testing allrealrootintervalnewtonregulafalsi # checkRoots(cacheRootsj,coefj,coefj2) #later check if error in roots makes q-x >2quan...use commented code below if h==-1.0 println("h not being updated in while loop") end if h!=Inf Δ1=1.0-h*(aiijj)-h*h*(aiijj_) if abs(Δ1)==0.0 Δ1=1e-30 @show Δ1 end q1parti=aii*qi+aij*qj+uij+h*uij2 q1partj=aji*qi+ajj*qj+uji+h*uji2 if abs(q1parti)==0.0 q1parti=1e-30*sign(q1parti) @show q1parti,simt end if abs(q1partj)==0.0 q1partj=1e-30 @show q1partj,simt end qi1=((1-h*ajj)/Δ1)*q1parti+(h*aij/Δ1)*q1partj# store back helper vars qj1=(h*aji/Δ1)*q1parti+((1-h*aii)/Δ1)*q1partj else qi1=(aji*uij2-uji2*aij)/aiijj_ #resul of ddx=aq+aq+u=0 ...2eqs 2 unknowns qj1=(-uij2-aii*qi1)/aij end q[index][0]=Float64(qi)# store back helper vars q[j][0]=Float64(qj) q[index][1]=Float64(qi1) q[j][1]=Float64(qj1) trackSimul[1]+=1 # do not have to recomputeNext if qi never changed end #end if iscycle return iscycle end
QuantizedSystemSolver
https://github.com/mongibellili/QuantizedSystemSolver.jl.git
[ "MIT" ]
1.0.1
b4bf1003586f2ee6cb98d8df29e88cbbfacd2ea1
code
74094
function nmisCycle_and_simulUpdate(cacheRootsi::Vector{BigFloat},cacheRootsj::Vector{BigFloat},acceptedi::Vector{Vector{BigFloat}},acceptedj::Vector{Vector{BigFloat}},aij::Float64,aji::Float64,respp::Ptr{BigFloat}, pp::Ptr{NTuple{2,BigFloat}},trackSimul,::Val{2},index::Int,j::Int,dirI::Float64,firstguessH::Float64, x::Vector{Taylor0},q::Vector{Taylor0}, quantum::Vector{Float64},exacteA::Function,d::Vector{Float64},cacheA::MVector{1,Float64},dxaux::Vector{MVector{2,Float64}},qaux::Vector{MVector{2,Float64}},tx::Vector{Float64},tq::Vector{Float64},simt::Float64,ft::Float64) cacheA[1]=0.0;exacteA(q,d,cacheA,index,index) aii=cacheA[1] cacheA[1]=0.0; exacteA(q,d,cacheA,j,j) ajj=cacheA[1] uii=dxaux[index][1]-aii*qaux[index][1] ui2=dxaux[index][2]-aii*qaux[index][2] #= uii=x[index][1]-aii*q[index][0] ui2=x[index][2]-aii*q[index][1] =# xi=x[index][0];xj=x[j][0];qi=q[index][0];qj=q[j][0];qi1=q[index][1];qj1=q[j][1];xi1=x[index][1];xi2=2*x[index][2];xj1=x[j][1];xj2=2*x[j][2] #uii=u[index][index][1];ujj=u[j][j][1]#;uij=u[index][j][1];uji=u[j][index][1]#;uji2=u[j][index][2] quanj=quantum[j];quani=quantum[index]; e1 = simt - tx[j];e2 = simt - tq[j];#= e3=simt - tu[j];tu[j]=simt; =# prevXj=x[j][0] x[j][0]= x[j](e1);xj=x[j][0];tx[j]=simt qj=qj+e2*qj1 ;qaux[j][1]=qj;tq[j] = simt ;q[j][0]=qj xj1=x[j][1]+e1*xj2; newDiff=(xj-prevXj) ujj=xj1-ajj*qj #u[j][j][1]=ujj uji=ujj-aji*qaux[index][1]# #uji=u[j][index][1] uj2=xj2-ajj*qj1###################################################----------------------- uji2=uj2-aji*qaux[index][2]# #u[j][index][2]=u[j][j][2]-ajj*qaux[index][1] # from article p20 line25 more cycles ...shaky with no bumps # uji2=u[j][index][2] dxj=aji*qi+ajj*qaux[j][1]+uji ddxj=aji*qi1+ajj*qj1+uji2 if abs(ddxj)==0.0 ddxj=1e-30 if DEBUG2 @show ddxj end end iscycle=false qjplus=xj-sign(ddxj)*quanj hj=sqrt(2*quanj/abs(ddxj))# α1=1-hj*ajj if abs(α1)==0.0 α1=1e-30 @show α1 end dqjplus=(aji*(qi+hj*qi1)+ajj*qjplus+uji+hj*uji2)/α1 uij=uii-aij*qaux[j][1] # uij=u[index][j][1] uij2=ui2-aij*qj1#########qaux[j][2] updated in normal Qupdate..ft=20 slightly shifts up #β=dxi+sqrt(abs(ddxi)*quani/2) #h2=sqrt(2*quani/abs(ddxi)) #uij2=u[index][j][2] dxithrow=aii*qi+aij*qj+uij ddxithrow=aii*qi1+aij*qj1+uij2 dxi=aii*qi+aij*qjplus+uij ddxi=aii*qi1+aij*dqjplus+uij2 if abs(ddxi)==0.0 ddxi=1e-30 if DEBUG2 @show ddxi end end hi=sqrt(2*quani/abs(ddxi)) βidir=dxi+hi*ddxi/2 βjdir=dxj+hj*ddxj/2 βidth=dxithrow+hi*ddxithrow/2 αidir=xi1+hi*xi2/2 βj=xj1+hj*xj2/2 ########condition:Union #= if (abs(dxj-xj1)>(abs(dxj+xj1)/2) || abs(ddxj-xj2)>(abs(ddxj+xj2)/2)) || dqjplus*newDiff<0.0 #(dqjplus*qj1)<=0.0 with dir is better since when dir =0 we do not enter if (abs(dxi-xi1)>(abs(dxi+xi1)/2) || abs(ddxi-xi2)>(abs(ddxi+xi2)/2)) || βidir*dirI<0.0 iscycle=true end end =# ########condition:Union i #= if (abs(dxj-xj1)>(abs(dxj+xj1)/2) || abs(ddxj-xj2)>(abs(ddxj+xj2)/2)) || dqjplus*newDiff<0.0 #(dqjplus*qj1)<=0.0 with dir is better since when dir =0 we do not enter if (abs(dxi-dxithrow)>(abs(dxi+dxithrow)/2) || abs(ddxi-ddxithrow)>(abs(ddxi+ddxithrow)/2)) || βidir*dirI<0.0 iscycle=true end end =# ########condition:combineDer Union i if abs(βjdir-βj)>(abs(βjdir+βj)/2) || dqjplus*newDiff<0.0 if abs(βidir-βidth)>(abs(βidir+βidth)/2) || βidir*dirI<0.0 iscycle=true end coef_signig=100 if (abs(dxi)>(abs(xi1)*coef_signig) #= && (abs(ddxi)>(abs(xi2)*coef_signig)||abs(xi2)>(abs(ddxi)*coef_signig)) =#) || (abs(xi1)>(abs(dxi)*coef_signig) #= && (abs(ddxi)>(abs(xi2)*coef_signig)||abs(xi2)>(abs(ddxi)*coef_signig)) =#) iscycle=true end #= if abs(βidir-αidir)>(abs(βidir+αidir)/2) iscycle=true end =# end if (ddxithrow>0 && dxithrow<0 && qi1>0) || (ddxithrow<0 && dxithrow>0 && qi1<0) xmin=xi-dxithrow*dxithrow/ddxithrow if abs(xmin-xi)/abs(qi-xi)>0.8 # xmin is close to q and a change in q might flip its sign of dq iscycle=false # end end #= if (ddxi>0 && dxi<0 && qi1>0) || (ddxi<0 && dxi>0 && qi1<0) xmin=xi-dxi*dxi/ddxi if abs(xmin-xi)/abs(qi-xi)>0.8 # xmin is close to q and a change in q might flip its sign of dq iscycle=false # end end =# ########condition:kinda signif alone i #= if (abs(dxj-xj1)>(abs(dxj+xj1)/2) || abs(ddxj-xj2)>(abs(ddxj+xj2)/2)) # || dqjplus*newDiff<0.0 if (abs(dxi-dxithrow)>(abs(dxi+dxithrow)/2) || abs(ddxi-ddxithrow)>(abs(ddxi+ddxithrow)/2)) #|| βidir*dirI<0.0 iscycle=true end end =# ########condition:cond1 #= if dqjplus*newDiff<0.0 #= || (dqjplus==0.0 && newDiff!=0.0) =##(dqjplus*qj1)<=0.0 with dir is better since when dir =0 we do not enter if βidir*dirI<0.0 iscycle=true end end if dqjplus*newDiff<0.0 #= || (dqjplus==0.0 && newDiff!=0.0) =##(dqjplus*qj1)<=0.0 with dir is better since when dir =0 we do not enter if (abs(dxi-xi1)>(abs(dxi+xi1)/2) || abs(ddxi-xi2)>(abs(ddxi+xi2)/2)) iscycle=true end end if (abs(dxj-xj1)>(abs(dxj+xj1)/2) || abs(ddxj-xj2)>(abs(ddxj+xj2)/2)) #= || (dqjplus==0.0 && newDiff!=0.0) =##(dqjplus*qj1)<=0.0 with dir is better since when dir =0 we do not enter if βidir*dirI<0.0 iscycle=true end end =# ########condition:cond1 i #= if dqjplus*newDiff<0.0 #= || (dqjplus==0.0 && newDiff!=0.0) =##(dqjplus*qj1)<=0.0 with dir is better since when dir =0 we do not enter if βidir*dirI<0.0 iscycle=true end end if dqjplus*newDiff<0.0 #= || (dqjplus==0.0 && newDiff!=0.0) =##(dqjplus*qj1)<=0.0 with dir is better since when dir =0 we do not enter if (abs(dxi-dxithrow)>(abs(dxi+dxithrow)/2) || abs(ddxi-ddxithrow)>(abs(ddxi+ddxithrow)/2)) iscycle=true end end if (abs(dxj-xj1)>(abs(dxj+xj1)/2) || abs(ddxj-xj2)>(abs(ddxj+xj2)/2)) #= || (dqjplus==0.0 && newDiff!=0.0) =##(dqjplus*qj1)<=0.0 with dir is better since when dir =0 we do not enter if βidir*dirI<0.0 iscycle=true end end =# #= if index==1 && j==4 && 0.1<simt<1.1 iscycle=true end =# if iscycle #= quani=1.7*quani quanj=1.7*quanj =# for i =1:7# 3 ord1 ,7 ord2 acceptedi[i][1]=0.0; acceptedi[i][2]=0.0 acceptedj[i][1]=0.0; acceptedj[i][2]=0.0 end for i=1:12 cacheRootsi[i]=0.0 cacheRootsj[i]=0.0 end trackSimul[1]+=1 aiijj=BigFloat(aii+ajj) aiijj_=BigFloat(aij*aji-aii*ajj) coefΔh0=4.0 coefΔh1=-8.0*aiijj coefΔh2=6.0*aiijj*aiijj-4.0*aiijj_ coefΔh3=6.0*aiijj*aiijj_-2.0*aiijj*aiijj*aiijj coefΔh4=aiijj_*aiijj_-4.0*aiijj_*aiijj*aiijj coefΔh5=-3.0*aiijj*aiijj_*aiijj_ coefΔh6=-aiijj_*aiijj_*aiijj_ coefH0=4.0*xi coefH1=-8.0*xi*aiijj #coefH2=2.0*(-aii*uij-aij*uji-uij2+xi*(-2.0*aiijj_+2.0*aiijj*aiijj+2.0*aii*ajj-aji*aij+ajj*ajj)-aij*aiijj*xj) coefH2=2.0*(-aii*uij-aij*uji-uij2+xi*(-3.0*aiijj_+2.0*aiijj*aiijj+aiijj*ajj)-aij*aiijj*xj) #coefH3=2.0*((-uij*aiijj_+ajj*uij2-aij*uji2)+aiijj*(aii*uij+aij*uji+uij2+2.0*xi*aiijj_)-xi*aiijj*(2.0*aii*ajj-aji*aij+ajj*ajj)+ajj*aiijj_*xi+aij*aiijj*aiijj*xj-aij*aiijj_*xj) coefH3=2.0*((-uij*aiijj_+ajj*uij2-aij*uji2)+aiijj*(aii*uij+aij*uji+uij2+2.0*xi*aiijj_)-xi*aiijj*(ajj*aiijj-aiijj_)+ajj*aiijj_*xi+aij*aiijj*aiijj*xj-aij*aiijj_*xj) coefH4=2.0*(aiijj*(uij*aiijj_-ajj*uij2+aij*uji2)-0.5*(2.0*aii*ajj-aji*aij+ajj*ajj)*(aii*uij+aij*uji+uij2+2.0*xi*aiijj_)-ajj*aiijj_*aiijj*xi+0.5*aij*aiijj*(ajj*uji+aji*uij+uji2+2.0*xj*aiijj_)+aij*aiijj_*aiijj*xj) coefH5=(2.0*aii*ajj-aji*aij+ajj*ajj)*(ajj*uij2-uij*aiijj_-aij*uji2)-ajj*aiijj_*(aii*uij+aij*uji+uij2+2.0*xi*aiijj_)-aij*aiijj*(aii*uji2-uji*aiijj_-aji*uij2)+aij*aiijj_*(ajj*uji+aji*uij+uji2+2.0*xj*aiijj_) coefH6=ajj*aiijj_*(ajj*uij2-uij*aiijj_-aij*uji2)-aij*aiijj_*(aii*uji2-uji*aiijj_-aji*uij2) coefH0j=4.0*xj coefH1j=-8.0*xj*aiijj coefH2j=2.0*(-ajj*uji-aji*uij-uji2+xj*(-2.0*aiijj_+2.0*aiijj*aiijj+2.0*ajj*aii-aij*aji+aii*aii)-aji*aiijj*xi) coefH3j=2.0*((-uji*aiijj_+aii*uji2-aji*uij2)+aiijj*(ajj*uji+aji*uij+uji2+2.0*xj*aiijj_)-xj*aiijj*(2.0*ajj*aii-aij*aji+aii*aii)+aii*aiijj_*xj+aji*aiijj*aiijj*xi-aji*aiijj_*xi) coefH4j=2.0*(aiijj*(uji*aiijj_-aii*uji2+aji*uij2)-0.5*(aii*aiijj-aiijj_)*(ajj*uji+aji*uij+uji2+2.0*xj*aiijj_)-aii*aiijj_*aiijj*xj+0.5*aji*aiijj*(aii*uij+aij*uji+uij2+2.0*xi*aiijj_)+aji*aiijj_*aiijj*xi) coefH5j=(aii*aiijj-aiijj_)*(aii*uji2-uji*aiijj_-aji*uij2)-aii*aiijj_*(ajj*uji+aji*uij+uji2+2.0*xj*aiijj_)-aji*aiijj*(ajj*uij2-uij*aiijj_-aij*uji2)+aji*aiijj_*(aii*uij+aij*uji+uij2+2.0*xi*aiijj_) coefH6j=aii*aiijj_*(aii*uji2-uji*aiijj_-aji*uij2)-aji*aiijj_*(ajj*uij2-uij*aiijj_-aij*uji2) #= coefi=NTuple{7,Float64}((coefH6-coefΔh6*(xi+quani),coefH5-coefΔh5*(xi+quani),coefH4-coefΔh4*(xi+quani),coefH3-coefΔh3*(xi+quani),coefH2-coefΔh2*(xi+quani),coefH1-coefΔh1*(xi+quani),coefH0-coefΔh0*(xi+quani))) coefi2=NTuple{7,Float64}((coefH6-coefΔh6*(xi-quani),coefH5-coefΔh5*(xi-quani),coefH4-coefΔh4*(xi-quani),coefH3-coefΔh3*(xi-quani),coefH2-coefΔh2*(xi-quani),coefH1-coefΔh1*(xi-quani),coefH0-coefΔh0*(xi-quani))) coefj=NTuple{7,Float64}((coefH6j-coefΔh6*(xj+quanj),coefH5j-coefΔh5*(xj+quanj),coefH4j-coefΔh4*(xj+quanj),coefH3j-coefΔh3*(xj+quanj),coefH2j-coefΔh2*(xj+quanj),coefH1j-coefΔh1*(xj+quanj),coefH0j-coefΔh0*(xj+quanj))) coefj2=NTuple{7,Float64}((coefH6j-coefΔh6*(xj-quanj),coefH5j-coefΔh5*(xj-quanj),coefH4j-coefΔh4*(xj-quanj),coefH3j-coefΔh3*(xj-quanj),coefH2j-coefΔh2*(xj-quanj),coefH1j-coefΔh1*(xj-quanj),coefH0j-coefΔh0*(xj-quanj))) resi1,resi2,resi3,resi4,resi5,resi6,resi7,resi8,resi9,resi10,resi11,resi12=0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0 resj1,resj2,resj3,resj4,resj5,resj6,resj7,resj8,resj9,resj10,resj11,resj12=0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0 Base.GC.enable(false) unsafe_store!(respp, -1.0, 1);unsafe_store!(respp, -1.0, 2);unsafe_store!(respp, -1.0, 3);unsafe_store!(respp, -1.0, 4);unsafe_store!(respp, -1.0, 5);unsafe_store!(respp, -1.0, 6) allrealrootintervalnewtonregulafalsi(coefi,respp,pp) resi1,resi2,resi3,resi4,resi5,resi6=unsafe_load(respp,1),unsafe_load(respp,2),unsafe_load(respp,3),unsafe_load(respp,4),unsafe_load(respp,5),unsafe_load(respp,6) unsafe_store!(respp, -1.0, 1);unsafe_store!(respp, -1.0, 2);unsafe_store!(respp, -1.0, 3);unsafe_store!(respp, -1.0, 4);unsafe_store!(respp, -1.0, 5);unsafe_store!(respp, -1.0, 6) allrealrootintervalnewtonregulafalsi(coefi2,respp,pp) resi7,resi8,resi9,resi10,resi11,resi12=unsafe_load(respp,1),unsafe_load(respp,2),unsafe_load(respp,3),unsafe_load(respp,4),unsafe_load(respp,5),unsafe_load(respp,6) unsafe_store!(respp, -1.0, 1);unsafe_store!(respp, -1.0, 2);unsafe_store!(respp, -1.0, 3);unsafe_store!(respp, -1.0, 4);unsafe_store!(respp, -1.0, 5);unsafe_store!(respp, -1.0, 6) allrealrootintervalnewtonregulafalsi(coefj,respp,pp) resj1,resj2,resj3,resj4,resj5,resj6=unsafe_load(respp,1),unsafe_load(respp,2),unsafe_load(respp,3),unsafe_load(respp,4),unsafe_load(respp,5),unsafe_load(respp,6) unsafe_store!(respp, -1.0, 1);unsafe_store!(respp, -1.0, 2);unsafe_store!(respp, -1.0, 3);unsafe_store!(respp, -1.0, 4);unsafe_store!(respp, -1.0, 5);unsafe_store!(respp, -1.0, 6) allrealrootintervalnewtonregulafalsi(coefj2,respp,pp) resj7,resj8,resj9,resj10,resj11,resj12=unsafe_load(respp,1),unsafe_load(respp,2),unsafe_load(respp,3),unsafe_load(respp,4),unsafe_load(respp,5),unsafe_load(respp,6) Base.GC.enable(true) =# #to be deleted: test #= for h in (resi1,resi2,resi3,resi4,resi5,resi6,resi7,resi8,resi9,resi10,resi11,resi12) if h>0 h_2=h*h;h_3=h_2*h;h_4=h_3*h;h_5=h_4*h;h_6=h_5*h Δ22=4.0+h*coefΔh1+h_2*(coefΔh2)+h_3*(coefΔh3)+h_4*(coefΔh4)+h_5*coefΔh5+h_6*coefΔh6 if abs(Δ22)!=0.0 qi=(4.0*xi+h*coefH1+h_2*coefH2+h_3*coefH3+h_4*coefH4+h_5*coefH5+h_6*coefH6)/Δ22 if abs(qi-xi)>2quani error("your own h not working for you, i") end end end end for h in (resj1,resj2,resj3,resj4,resj5,resj6,resj7,resj8,resj9,resj10,resj11,resj12) if h>0 h_2=h*h;h_3=h_2*h;h_4=h_3*h;h_5=h_4*h;h_6=h_5*h Δ22=4.0+h*coefΔh1+h_2*(coefΔh2)+h_3*(coefΔh3)+h_4*(coefΔh4)+h_5*coefΔh5+h_6*coefΔh6 if abs(Δ22)!=0.0 qj=(4.0*xj+h*coefH1j+h_2*coefH2j+h_3*coefH3j+h_4*coefH4j+h_5*coefH5j+h_6*coefH6j)/Δ22 if abs(qj-xj)>2quanj error("your own h not working for you, j") end end end end #filter roots counterRooti=1 for h in (resi1,resi2,resi3,resi4,resi5,resi6,resi7,resi8,resi9,resi10,resi11,resi12) if h>0 && h!=Inf cacheRootsi[counterRooti]=h counterRooti+=1 end end sort!(cacheRootsi); counterRootj=1 for h in (resj1,resj2,resj3,resj4,resj5,resj6,resj7,resj8,resj9,resj10,resj11,resj12) if h>0 && h!=Inf cacheRootsj[counterRootj]=h counterRootj+=1 end end =# #= coefi=[coefH0-coefΔh0*(xi+quani),coefH1-coefΔh1*(xi+quani),coefH2-coefΔh2*(xi+quani),coefH3-coefΔh3*(xi+quani),coefH4-coefΔh4*(xi+quani),coefH5-coefΔh5*(xi+quani),coefH6-coefΔh6*(xi+quani)] coefj=[coefH0j-coefΔh0*(xj+quanj),coefH1j-coefΔh1*(xj+quanj),coefH2j-coefΔh2*(xj+quanj),coefH3j-coefΔh3*(xj+quanj),coefH4j-coefΔh4*(xj+quanj),coefH5j-coefΔh5*(xj+quanj),coefH6j-coefΔh6*(xj+quanj)] coefi2=[coefH0-coefΔh0*(xi-quani),coefH1-coefΔh1*(xi-quani),coefH2-coefΔh2*(xi-quani),coefH3-coefΔh3*(xi-quani),coefH4-coefΔh4*(xi-quani),coefH5-coefΔh5*(xi-quani),coefH6-coefΔh6*(xi-quani)] coefj2=[coefH0j-coefΔh0*(xj-quanj),coefH1j-coefΔh1*(xj-quanj),coefH2j-coefΔh2*(xj-quanj),coefH3j-coefΔh3*(xj-quanj),coefH4j-coefΔh4*(xj-quanj),coefH5j-coefΔh5*(xj-quanj),coefH6j-coefΔh6*(xj-quanj)] =# coefi=[BigFloat(coefH0-coefΔh0*(xi+quani)),BigFloat(coefH1-coefΔh1*(xi+quani)),BigFloat(coefH2-coefΔh2*(xi+quani)),BigFloat(coefH3-coefΔh3*(xi+quani)),BigFloat(coefH4-coefΔh4*(xi+quani)),BigFloat(coefH5-coefΔh5*(xi+quani)),BigFloat(coefH6-coefΔh6*(xi+quani))] coefj=[BigFloat(coefH0j-coefΔh0*(xj+quanj)),BigFloat(coefH1j-coefΔh1*(xj+quanj)),BigFloat(coefH2j-coefΔh2*(xj+quanj)),BigFloat(coefH3j-coefΔh3*(xj+quanj)),BigFloat(coefH4j-coefΔh4*(xj+quanj)),BigFloat(coefH5j-coefΔh5*(xj+quanj)),BigFloat(coefH6j-coefΔh6*(xj+quanj))] coefi2=[BigFloat(coefH0-coefΔh0*(xi-quani)),BigFloat(coefH1-coefΔh1*(xi-quani)),BigFloat(coefH2-coefΔh2*(xi-quani)),BigFloat(coefH3-coefΔh3*(xi-quani)),BigFloat(coefH4-coefΔh4*(xi-quani)),BigFloat(coefH5-coefΔh5*(xi-quani)),BigFloat(coefH6-coefΔh6*(xi-quani))] coefj2=[BigFloat(coefH0j-coefΔh0*(xj-quanj)),BigFloat(coefH1j-coefΔh1*(xj-quanj)),BigFloat(coefH2j-coefΔh2*(xj-quanj)),BigFloat(coefH3j-coefΔh3*(xj-quanj)),BigFloat(coefH4j-coefΔh4*(xj-quanj)),BigFloat(coefH5j-coefΔh5*(xj-quanj)),BigFloat(coefH6j-coefΔh6*(xj-quanj))] ri=roots(coefi) rj=roots(coefj) ri2=roots(coefi2) rj2=roots(coefj2) #filter roots counterRooti=1 for h in ri if abs(imag(h)) < 1.0e-15 && real(h)>0.0 cacheRootsi[counterRooti]=(real(h)) counterRooti+=1 end end checkRoots(cacheRootsi,coefi,coefΔh0,coefΔh1,coefΔh2,coefΔh3,coefΔh4,coefΔh5,coefΔh6,quani) for h in ri2 if abs(imag(h)) < 1.0e-15 && real(h)>0.0 cacheRootsi[counterRooti]=(real(h)) counterRooti+=1 end end sort!(cacheRootsi); counterRootj=1 for h in rj if abs(imag(h)) < 1.0e-15 && real(h)>0.0 cacheRootsj[counterRootj]=(real(h)) counterRootj+=1 end end checkRoots(cacheRootsj,coefj,coefΔh0,coefΔh1,coefΔh2,coefΔh3,coefΔh4,coefΔh5,coefΔh6,quanj) for h in rj2 if abs(imag(h)) < 1.0e-15 && real(h)>0.0 cacheRootsj[counterRootj]=(real(h)) counterRootj+=1 end end sort!(cacheRootsj); #= for h in cacheRootsi h_2=h*h;h_3=h_2*h;h_4=h_3*h;h_5=h_4*h;h_6=h_5*h Δ22=4.0+h*coefΔh1+h_2*(coefΔh2)+h_3*(coefΔh3)+h_4*(coefΔh4)+h_5*coefΔh5+h_6*coefΔh6 if abs(Δ22)!=0.0 qi=(4.0*xi+h*coefH1+h_2*coefH2+h_3*coefH3+h_4*coefH4+h_5*coefH5+h_6*coefH6)/Δ22 if abs(qi-xi)>2quani error("your own h not working for you, i") end end end for h in cacheRootsj h_2=h*h;h_3=h_2*h;h_4=h_3*h;h_5=h_4*h;h_6=h_5*h Δ22=4.0+h*coefΔh1+h_2*(coefΔh2)+h_3*(coefΔh3)+h_4*(coefΔh4)+h_5*coefΔh5+h_6*coefΔh6 if abs(Δ22)!=0.0 qj=(4.0*xj+h*coefH1j+h_2*coefH2j+h_3*coefH3j+h_4*coefH4j+h_5*coefH5j+h_6*coefH6j)/Δ22 if abs(qj-xj)>2quanj error("your own h not working for you, j") end end end =# #construct intervals constructIntrval(acceptedi,cacheRootsi) constructIntrval(acceptedj,cacheRootsj) ki=7;kj=7 h=-1.0 debugTracker=0 tryIteration=false Δ1=0.0 while true if ki==0 || kj==0 error("bug in finding the overlap") end currentLi=acceptedi[ki][1];currentHi=acceptedi[ki][2] currentLj=acceptedj[kj][1];currentHj=acceptedj[kj][2] if currentLj<=currentLi<currentHj || currentLi<=currentLj<currentHi#resj[end][1]<=resi[end][1]<=resj[end][2] || resi[end][1]<=resj[end][1]<=resi[end][2] #overlap h=min(currentHi,currentHj ) if h==Inf && (currentLj!=0.0 || currentLi!=0.0) # except case both 0 sols h1=(0,Inf) h=max(currentLj,currentLi#= ,ft-simt,dti =#) #ft-simt in case they are both ver small...elaborate on his later #= if simt==2.500745083181994e-5 @show currentLj,currentLi end =# end if h==Inf # both lower bounds ==0 --> zero sols for both if aiijj_!=0.0 qi=coefH6/coefΔh6;qj=coefH6j/coefΔh6 cac=checkAcceptanceCriteria(qi,xi,quani,qj,xj,quanj) if cac #= qi1=(aji*uij2-uji2*aij)/aiijj_ #resul of ddx=aq+aq+u=0 ...2eqs 2 unknowns qj1=(-uij2-aii*qi1)/aij =# h=ft Δ1=1.0-h*(aiijj)-h*h*(aiijj_) while Δ1==0.0 h=h*0.98 Δ1=1.0-h*(aiijj)-h*h*(aiijj_) end q1parti=aii*qi+aij*qj+uij+h*uij2 q1partj=aji*qi+ajj*qj+uji+h*uji2 qi1=((1-h*ajj)/Δ1)*q1parti+(h*aij/Δ1)*q1partj# Δ1!=0 from iterations qj1=(h*aji/Δ1)*q1parti+((1-h*aii)/Δ1)*q1partj debugTracker=1 else tryIteration=true end else tryIteration=true end if tryIteration #return false #later try to study critical points(maxima) to find best h = ft-simt Δ1=1.0-h*(aiijj)-h*h*(aiijj_) if abs(Δ1)!=0.0 h_2=h*h;h_3=h_2*h;h_4=h_3*h;h_5=h_4*h;h_6=h_5*h Δ22=4.0+h*coefΔh1+h_2*(coefΔh2)+h_3*(coefΔh3)+h_4*(coefΔh4)+h_5*coefΔh5+h_6*coefΔh6 if abs(Δ22)!=0.0 qi=(4.0*xi+h*coefH1+h_2*coefH2+h_3*coefH3+h_4*coefH4+h_5*coefH5+h_6*coefH6)/Δ22 qj=(4.0*xj+h*coefH1j+h_2*coefH2j+h_3*coefH3j+h_4*coefH4j+h_5*coefH5j+h_6*coefH6j)/Δ22 end end if (abs(qi - xi) > 2.0*quani || abs(qj - xj) > 2.0*quanj) h1 = sqrt(abs(2*quani/xi2));h2 = sqrt(abs(2*quanj/xj2)); #later add derderX =1e-12 when x2==0? h=min(h1,h2) Δ1=1.0-h*(aiijj)-h*h*(aiijj_) if abs(Δ1)!=0.0 h_2=h*h;h_3=h_2*h;h_4=h_3*h;h_5=h_4*h;h_6=h_5*h Δ22=4.0+h*coefΔh1+h_2*(coefΔh2)+h_3*(coefΔh3)+h_4*(coefΔh4)+h_5*coefΔh5+h_6*coefΔh6 if abs(Δ22)!=0.0 qi=(4.0*xi+h*coefH1+h_2*coefH2+h_3*coefH3+h_4*coefH4+h_5*coefH5+h_6*coefH6)/Δ22 qj=(4.0*xj+h*coefH1j+h_2*coefH2j+h_3*coefH3j+h_4*coefH4j+h_5*coefH5j+h_6*coefH6j)/Δ22 end end end maxIter=10000 while (abs(qi - xi) > 2.0*quani || abs(qj - xj) > 2.0*quanj) && (maxIter>0) maxIter-=1 h1 = h * sqrt(quani / abs(qi - xi)); h2 = h * sqrt(quanj / abs(qj - xj)); #= h1 = h * (0.99*1.8*quani / abs(qi - xi)); h2 = h * (0.99*1.8*quanj / abs(qj - xj)); =# h=min(h1,h2) Δ1=1.0-h*(aiijj)-h*h*(aiijj_) if abs(Δ1)!=0.0 h_2=h*h;h_3=h_2*h;h_4=h_3*h;h_5=h_4*h;h_6=h_5*h Δ22=4.0+h*coefΔh1+h_2*(coefΔh2)+h_3*(coefΔh3)+h_4*(coefΔh4)+h_5*coefΔh5+h_6*coefΔh6 if abs(Δ22)!=0.0 qi=(4.0*xi+h*coefH1+h_2*coefH2+h_3*coefH3+h_4*coefH4+h_5*coefH5+h_6*coefH6)/Δ22 qj=(4.0*xj+h*coefH1j+h_2*coefH2j+h_3*coefH3j+h_4*coefH4j+h_5*coefH5j+h_6*coefH6j)/Δ22 end end end if maxIter==0 || Δ1==0.0 # maxIter=0 :failed to bring q down within a reasonable time. Δ1==0.0 should never happen when maxIter>0...but keep it there for now return false end debugTracker=2 q1parti=aii*qi+aij*qj+uij+h*uij2 q1partj=aji*qi+ajj*qj+uji+h*uji2 qi1=((1-h*ajj)/Δ1)*q1parti+(h*aij/Δ1)*q1partj# Δ1!=0 from iterations qj1=(h*aji/Δ1)*q1parti+((1-h*aii)/Δ1)*q1partj end#end if iteration else #h!=Inf h_2=h*h;h_3=h_2*h;h_4=h_3*h;h_5=h_4*h;h_6=h_5*h Δ22=4.0+h*coefΔh1+h_2*(coefΔh2)+h_3*(coefΔh3)+h_4*(coefΔh4)+h_5*coefΔh5+h_6*coefΔh6 Δ1=1.0-h*(aiijj)-h*h*(aiijj_) if abs(Δ22)!=0.0 && Δ1!=0.0 qi=(4.0*xi+h*coefH1+h_2*coefH2+h_3*coefH3+h_4*coefH4+h_5*coefH5+h_6*coefH6)/Δ22 qj=(4.0*xj+h*coefH1j+h_2*coefH2j+h_3*coefH3j+h_4*coefH4j+h_5*coefH5j+h_6*coefH6j)/Δ22 #= if 2.500745083181994e-5<=simt<3.00745083181994e-5 @show "simul: ",index,qi,xi,quani,h,simt,j,qj,xj,quanj end =# cac=checkAcceptanceCriteria(qi,xi,quani,qj,xj,quanj) if !cac tryIteration=true else debugTracker=3 q1parti=aii*qi+aij*qj+uij+h*uij2 q1partj=aji*qi+ajj*qj+uji+h*uji2 qi1=((1-h*ajj)/Δ1)*q1parti+(h*aij/Δ1)*q1partj# Δ1!=0 from iterations qj1=(h*aji/Δ1)*q1parti+((1-h*aii)/Δ1)*q1partj end else tryIteration=true end if tryIteration #println("singularities Δ22=0")#do iterations h = ft-simt Δ1=1.0-h*(aiijj)-h*h*(aiijj_) if abs(Δ1)!=0.0 h_2=h*h;h_3=h_2*h;h_4=h_3*h;h_5=h_4*h;h_6=h_5*h Δ22=4.0+h*coefΔh1+h_2*(coefΔh2)+h_3*(coefΔh3)+h_4*(coefΔh4)+h_5*coefΔh5+h_6*coefΔh6 if abs(Δ22)!=0.0 qi=(4.0*xi+h*coefH1+h_2*coefH2+h_3*coefH3+h_4*coefH4+h_5*coefH5+h_6*coefH6)/Δ22 qj=(4.0*xj+h*coefH1j+h_2*coefH2j+h_3*coefH3j+h_4*coefH4j+h_5*coefH5j+h_6*coefH6j)/Δ22 end end if (abs(qi - xi) > 2.0*quani || abs(qj - xj) > 2.0*quanj) h1 = sqrt(abs(2*quani/xi2));h2 = sqrt(abs(2*quanj/xj2)); #later add derderX =1e-12 when x2==0? h=min(h1,h2) Δ1=1.0-h*(aiijj)-h*h*(aiijj_) if abs(Δ1)!=0.0 h_2=h*h;h_3=h_2*h;h_4=h_3*h;h_5=h_4*h;h_6=h_5*h Δ22=4.0+h*coefΔh1+h_2*(coefΔh2)+h_3*(coefΔh3)+h_4*(coefΔh4)+h_5*coefΔh5+h_6*coefΔh6 if abs(Δ22)!=0.0 qi=(4.0*xi+h*coefH1+h_2*coefH2+h_3*coefH3+h_4*coefH4+h_5*coefH5+h_6*coefH6)/Δ22 qj=(4.0*xj+h*coefH1j+h_2*coefH2j+h_3*coefH3j+h_4*coefH4j+h_5*coefH5j+h_6*coefH6j)/Δ22 end end end maxIter=10000 while (abs(qi - xi) > 2.0*quani || abs(qj - xj) > 2.0*quanj) && (maxIter>0) maxIter-=1 h1 = h * sqrt(quani / abs(qi - xi)); h2 = h * sqrt(quanj / abs(qj - xj)); #= h1 = h * (0.99*1.8*quani / abs(qi - xi)); h2 = h * (0.99*1.8*quanj / abs(qj - xj)); =# h=min(h1,h2) Δ1=1.0-h*(aiijj)-h*h*(aiijj_) if abs(Δ1)!=0.0 h_2=h*h;h_3=h_2*h;h_4=h_3*h;h_5=h_4*h;h_6=h_5*h Δ22=4.0+h*coefΔh1+h_2*(coefΔh2)+h_3*(coefΔh3)+h_4*(coefΔh4)+h_5*coefΔh5+h_6*coefΔh6 if abs(Δ22)!=0.0 qi=(4.0*xi+h*coefH1+h_2*coefH2+h_3*coefH3+h_4*coefH4+h_5*coefH5+h_6*coefH6)/Δ22 qj=(4.0*xj+h*coefH1j+h_2*coefH2j+h_3*coefH3j+h_4*coefH4j+h_5*coefH5j+h_6*coefH6j)/Δ22 end end end # end while iteration if maxIter==0 || Δ1==0.0 # maxIter=0 :failed to bring q down within a reasonable time. Δ1==0.0 should never happen when maxIter>0...but keep it there for now return false end debugTracker=4 q1parti=aii*qi+aij*qj+uij+h*uij2 q1partj=aji*qi+ajj*qj+uji+h*uji2 qi1=((1-h*ajj)/Δ1)*q1parti+(h*aij/Δ1)*q1partj# Δ1!=0 from iterations qj1=(h*aji/Δ1)*q1parti+((1-h*aii)/Δ1)*q1partj end# end if tryiteration #= q1parti=aii*qi+aij*qj+uij+h*uij2 q1partj=aji*qi+ajj*qj+uji+h*uji2 qi1=((1-h*ajj)/Δ1)*q1parti+(h*aij/Δ1)*q1partj# Δ1!=0 from iterations qj1=(h*aji/Δ1)*q1parti+((1-h*aii)/Δ1)*q1partj =# end# end h inf or else break else if currentHj==0.0 && currentHi==0.0#empty ki-=1;kj-=1 elseif currentHj==0.0 && currentHi!=0.0 kj-=1 elseif currentHi==0.0 && currentHj!=0.0 ki-=1 else #both non zero if currentLj<currentLi#remove last seg of resi ki-=1 else #remove last seg of resj kj-=1 end end end end # end while #checkRoots(cacheRootsi,coefi,coefi2) # for free stress-testing allrealrootintervalnewtonregulafalsi # checkRoots(cacheRootsj,coefj,coefj2) #later check if error in roots makes q-x >2quan...use commented code below q[index][0]=Float64(qi)# store back helper vars q[j][0]=Float64(qj) q[index][1]=Float64(qi1) q[j][1]=Float64(qj1) trackSimul[1]+=1 # do not have to recomputeNext if qi never changed #= if abs(qi-xi)<quani/1000 && abs(qj-xj)<quanj/1000 #if quani/1000<abs(qi-xi)<quani/10 && quanj/1000<abs(qj-xj)<quanj/10 println("end of simul: qi & qj thrown both very close") @show abs(qi-xi),quani , abs(qj-xj),quanj @show simt,debugTracker end =# #= if isnan(qi) @show simt,"qi",debugTracker end if isnan(qi1) @show simt,"qi1",debugTracker end if isnan(qj) @show simt,"qj",debugTracker end if isnan(qj1) @show simt,"qj1",debugTracker end =# end #end if iscycle return iscycle end function nmisCycle_and_simulUpdate(cacheRootsi::Vector{Float64},cacheRootsj::Vector{Float64},acceptedi::Vector{Vector{Float64}},acceptedj::Vector{Vector{Float64}},aij::Float64,aji::Float64,respp::Ptr{Float64}, pp::Ptr{NTuple{2,Float64}},trackSimul,::Val{2},index::Int,j::Int,dirI::Float64,firstguessH::Float64, x::Vector{Taylor0},q::Vector{Taylor0}, quantum::Vector{Float64},exacteA::Function,d::Vector{Float64},cacheA::MVector{1,Float64},dxaux::Vector{MVector{2,Float64}},qaux::Vector{MVector{2,Float64}},tx::Vector{Float64},tq::Vector{Float64},simt::Float64,ft::Float64) cacheA[1]=0.0;exacteA(q,d,cacheA,index,index) aii=cacheA[1] cacheA[1]=0.0; exacteA(q,d,cacheA,j,j) ajj=cacheA[1] uii=dxaux[index][1]-aii*qaux[index][1] ui2=dxaux[index][2]-aii*qaux[index][2] #= uii=x[index][1]-aii*q[index][0] ui2=x[index][2]-aii*q[index][1] =# xi=x[index][0];xj=x[j][0];qi=q[index][0];qj=q[j][0];qi1=q[index][1];qj1=q[j][1];xi1=x[index][1];xi2=2*x[index][2];xj1=x[j][1];xj2=2*x[j][2] #uii=u[index][index][1];ujj=u[j][j][1]#;uij=u[index][j][1];uji=u[j][index][1]#;uji2=u[j][index][2] quanj=quantum[j];quani=quantum[index]; e1 = simt - tx[j];e2 = simt - tq[j];#= e3=simt - tu[j];tu[j]=simt; =# prevXj=x[j][0] x[j][0]= x[j](e1);xj=x[j][0];tx[j]=simt qj=qj+e2*qj1 ;qaux[j][1]=qj;tq[j] = simt ;q[j][0]=qj xj1=x[j][1]+e1*xj2; newDiff=(xj-prevXj) ujj=xj1-ajj*qj #u[j][j][1]=ujj uji=ujj-aji*qaux[index][1]# #uji=u[j][index][1] uj2=xj2-ajj*qj1###################################################----------------------- uji2=uj2-aji*qaux[index][2]# #u[j][index][2]=u[j][j][2]-ajj*qaux[index][1] # from article p20 line25 more cycles ...shaky with no bumps # uji2=u[j][index][2] dxj=aji*qi+ajj*qaux[j][1]+uji ddxj=aji*qi1+ajj*qj1+uji2 if abs(ddxj)==0.0 ddxj=1e-30 if DEBUG2 @show ddxj end end iscycle=false qjplus=xj-sign(ddxj)*quanj hj=sqrt(2*quanj/abs(ddxj))# α1=1-hj*ajj if abs(α1)==0.0 α1=1e-30 @show α1 end dqjplus=(aji*(qi+hj*qi1)+ajj*qjplus+uji+hj*uji2)/α1 uij=uii-aij*qaux[j][1] # uij=u[index][j][1] uij2=ui2-aij*qj1#########qaux[j][2] updated in normal Qupdate..ft=20 slightly shifts up #β=dxi+sqrt(abs(ddxi)*quani/2) #h2=sqrt(2*quani/abs(ddxi)) #uij2=u[index][j][2] dxithrow=aii*qi+aij*qj+uij ddxithrow=aii*qi1+aij*qj1+uij2 dxi=aii*qi+aij*qjplus+uij ddxi=aii*qi1+aij*dqjplus+uij2 if abs(ddxi)==0.0 ddxi=1e-30 if DEBUG2 @show ddxi end end hi=sqrt(2*quani/abs(ddxi)) βidir=dxi+hi*ddxi/2 βjdir=dxj+hj*ddxj/2 βidth=dxithrow+hi*ddxithrow/2 αidir=xi1+hi*xi2/2 βj=xj1+hj*xj2/2 ########condition:Union #= if (abs(dxj-xj1)>(abs(dxj+xj1)/2) || abs(ddxj-xj2)>(abs(ddxj+xj2)/2)) || dqjplus*newDiff<0.0 #(dqjplus*qj1)<=0.0 with dir is better since when dir =0 we do not enter if (abs(dxi-xi1)>(abs(dxi+xi1)/2) || abs(ddxi-xi2)>(abs(ddxi+xi2)/2)) || βidir*dirI<0.0 iscycle=true end end =# ########condition:Union i #= if (abs(dxj-xj1)>(abs(dxj+xj1)/2) || abs(ddxj-xj2)>(abs(ddxj+xj2)/2)) || dqjplus*newDiff<0.0 #(dqjplus*qj1)<=0.0 with dir is better since when dir =0 we do not enter if (abs(dxi-dxithrow)>(abs(dxi+dxithrow)/2) || abs(ddxi-ddxithrow)>(abs(ddxi+ddxithrow)/2)) || βidir*dirI<0.0 iscycle=true end end =# ########condition:combineDer Union i if abs(βjdir-βj)>(abs(βjdir+βj)/2) || dqjplus*newDiff<0.0 if abs(βidir-βidth)>(abs(βidir+βidth)/2) || βidir*dirI<0.0 iscycle=true end coef_signig=100 if (abs(dxi)>(abs(xi1)*coef_signig) #= && (abs(ddxi)>(abs(xi2)*coef_signig)||abs(xi2)>(abs(ddxi)*coef_signig)) =#) || (abs(xi1)>(abs(dxi)*coef_signig) #= && (abs(ddxi)>(abs(xi2)*coef_signig)||abs(xi2)>(abs(ddxi)*coef_signig)) =#) iscycle=true end #= if abs(βidir-αidir)>(abs(βidir+αidir)/2) iscycle=true end =# end if (ddxithrow>0 && dxithrow<0 && qi1>0) || (ddxithrow<0 && dxithrow>0 && qi1<0) xmin=xi-dxithrow*dxithrow/ddxithrow if abs(xmin-xi)/abs(qi-xi)>0.8 # xmin is close to q and a change in q might flip its sign of dq iscycle=false # end end #= if (ddxi>0 && dxi<0 && qi1>0) || (ddxi<0 && dxi>0 && qi1<0) xmin=xi-dxi*dxi/ddxi if abs(xmin-xi)/abs(qi-xi)>0.8 # xmin is close to q and a change in q might flip its sign of dq iscycle=false # end end =# ########condition:kinda signif alone i #= if (abs(dxj-xj1)>(abs(dxj+xj1)/2) || abs(ddxj-xj2)>(abs(ddxj+xj2)/2)) # || dqjplus*newDiff<0.0 if (abs(dxi-dxithrow)>(abs(dxi+dxithrow)/2) || abs(ddxi-ddxithrow)>(abs(ddxi+ddxithrow)/2)) #|| βidir*dirI<0.0 iscycle=true end end =# ########condition:cond1 #= if dqjplus*newDiff<0.0 #= || (dqjplus==0.0 && newDiff!=0.0) =##(dqjplus*qj1)<=0.0 with dir is better since when dir =0 we do not enter if βidir*dirI<0.0 iscycle=true end end if dqjplus*newDiff<0.0 #= || (dqjplus==0.0 && newDiff!=0.0) =##(dqjplus*qj1)<=0.0 with dir is better since when dir =0 we do not enter if (abs(dxi-xi1)>(abs(dxi+xi1)/2) || abs(ddxi-xi2)>(abs(ddxi+xi2)/2)) iscycle=true end end if (abs(dxj-xj1)>(abs(dxj+xj1)/2) || abs(ddxj-xj2)>(abs(ddxj+xj2)/2)) #= || (dqjplus==0.0 && newDiff!=0.0) =##(dqjplus*qj1)<=0.0 with dir is better since when dir =0 we do not enter if βidir*dirI<0.0 iscycle=true end end =# ########condition:cond1 i #= if dqjplus*newDiff<0.0 #= || (dqjplus==0.0 && newDiff!=0.0) =##(dqjplus*qj1)<=0.0 with dir is better since when dir =0 we do not enter if βidir*dirI<0.0 iscycle=true end end if dqjplus*newDiff<0.0 #= || (dqjplus==0.0 && newDiff!=0.0) =##(dqjplus*qj1)<=0.0 with dir is better since when dir =0 we do not enter if (abs(dxi-dxithrow)>(abs(dxi+dxithrow)/2) || abs(ddxi-ddxithrow)>(abs(ddxi+ddxithrow)/2)) iscycle=true end end if (abs(dxj-xj1)>(abs(dxj+xj1)/2) || abs(ddxj-xj2)>(abs(ddxj+xj2)/2)) #= || (dqjplus==0.0 && newDiff!=0.0) =##(dqjplus*qj1)<=0.0 with dir is better since when dir =0 we do not enter if βidir*dirI<0.0 iscycle=true end end =# #= if index==1 && j==4 && 0.1<simt<1.1 iscycle=true end =# if iscycle #= quani=1.7*quani quanj=1.7*quanj =# for i =1:7# 3 ord1 ,7 ord2 acceptedi[i][1]=0.0; acceptedi[i][2]=0.0 acceptedj[i][1]=0.0; acceptedj[i][2]=0.0 end for i=1:12 cacheRootsi[i]=0.0 cacheRootsj[i]=0.0 end trackSimul[1]+=1 aiijj=Float64(aii+ajj) aiijj_=Float64(aij*aji-aii*ajj) coefΔh0=4.0 coefΔh1=-8.0*aiijj coefΔh2=6.0*aiijj*aiijj-4.0*aiijj_ coefΔh3=6.0*aiijj*aiijj_-2.0*aiijj*aiijj*aiijj coefΔh4=aiijj_*aiijj_-4.0*aiijj_*aiijj*aiijj coefΔh5=-3.0*aiijj*aiijj_*aiijj_ coefΔh6=-aiijj_*aiijj_*aiijj_ coefH0=4.0*xi coefH1=-8.0*xi*aiijj #coefH2=2.0*(-aii*uij-aij*uji-uij2+xi*(-2.0*aiijj_+2.0*aiijj*aiijj+2.0*aii*ajj-aji*aij+ajj*ajj)-aij*aiijj*xj) coefH2=2.0*(-aii*uij-aij*uji-uij2+xi*(-3.0*aiijj_+2.0*aiijj*aiijj+aiijj*ajj)-aij*aiijj*xj) #coefH3=2.0*((-uij*aiijj_+ajj*uij2-aij*uji2)+aiijj*(aii*uij+aij*uji+uij2+2.0*xi*aiijj_)-xi*aiijj*(2.0*aii*ajj-aji*aij+ajj*ajj)+ajj*aiijj_*xi+aij*aiijj*aiijj*xj-aij*aiijj_*xj) coefH3=2.0*((-uij*aiijj_+ajj*uij2-aij*uji2)+aiijj*(aii*uij+aij*uji+uij2+2.0*xi*aiijj_)-xi*aiijj*(ajj*aiijj-aiijj_)+ajj*aiijj_*xi+aij*aiijj*aiijj*xj-aij*aiijj_*xj) coefH4=2.0*(aiijj*(uij*aiijj_-ajj*uij2+aij*uji2)-0.5*(2.0*aii*ajj-aji*aij+ajj*ajj)*(aii*uij+aij*uji+uij2+2.0*xi*aiijj_)-ajj*aiijj_*aiijj*xi+0.5*aij*aiijj*(ajj*uji+aji*uij+uji2+2.0*xj*aiijj_)+aij*aiijj_*aiijj*xj) coefH5=(2.0*aii*ajj-aji*aij+ajj*ajj)*(ajj*uij2-uij*aiijj_-aij*uji2)-ajj*aiijj_*(aii*uij+aij*uji+uij2+2.0*xi*aiijj_)-aij*aiijj*(aii*uji2-uji*aiijj_-aji*uij2)+aij*aiijj_*(ajj*uji+aji*uij+uji2+2.0*xj*aiijj_) coefH6=ajj*aiijj_*(ajj*uij2-uij*aiijj_-aij*uji2)-aij*aiijj_*(aii*uji2-uji*aiijj_-aji*uij2) coefH0j=4.0*xj coefH1j=-8.0*xj*aiijj coefH2j=2.0*(-ajj*uji-aji*uij-uji2+xj*(-2.0*aiijj_+2.0*aiijj*aiijj+2.0*ajj*aii-aij*aji+aii*aii)-aji*aiijj*xi) coefH3j=2.0*((-uji*aiijj_+aii*uji2-aji*uij2)+aiijj*(ajj*uji+aji*uij+uji2+2.0*xj*aiijj_)-xj*aiijj*(2.0*ajj*aii-aij*aji+aii*aii)+aii*aiijj_*xj+aji*aiijj*aiijj*xi-aji*aiijj_*xi) coefH4j=2.0*(aiijj*(uji*aiijj_-aii*uji2+aji*uij2)-0.5*(aii*aiijj-aiijj_)*(ajj*uji+aji*uij+uji2+2.0*xj*aiijj_)-aii*aiijj_*aiijj*xj+0.5*aji*aiijj*(aii*uij+aij*uji+uij2+2.0*xi*aiijj_)+aji*aiijj_*aiijj*xi) coefH5j=(aii*aiijj-aiijj_)*(aii*uji2-uji*aiijj_-aji*uij2)-aii*aiijj_*(ajj*uji+aji*uij+uji2+2.0*xj*aiijj_)-aji*aiijj*(ajj*uij2-uij*aiijj_-aij*uji2)+aji*aiijj_*(aii*uij+aij*uji+uij2+2.0*xi*aiijj_) coefH6j=aii*aiijj_*(aii*uji2-uji*aiijj_-aji*uij2)-aji*aiijj_*(ajj*uij2-uij*aiijj_-aij*uji2) #= coefi=NTuple{7,Float64}((coefH6-coefΔh6*(xi+quani),coefH5-coefΔh5*(xi+quani),coefH4-coefΔh4*(xi+quani),coefH3-coefΔh3*(xi+quani),coefH2-coefΔh2*(xi+quani),coefH1-coefΔh1*(xi+quani),coefH0-coefΔh0*(xi+quani))) coefi2=NTuple{7,Float64}((coefH6-coefΔh6*(xi-quani),coefH5-coefΔh5*(xi-quani),coefH4-coefΔh4*(xi-quani),coefH3-coefΔh3*(xi-quani),coefH2-coefΔh2*(xi-quani),coefH1-coefΔh1*(xi-quani),coefH0-coefΔh0*(xi-quani))) coefj=NTuple{7,Float64}((coefH6j-coefΔh6*(xj+quanj),coefH5j-coefΔh5*(xj+quanj),coefH4j-coefΔh4*(xj+quanj),coefH3j-coefΔh3*(xj+quanj),coefH2j-coefΔh2*(xj+quanj),coefH1j-coefΔh1*(xj+quanj),coefH0j-coefΔh0*(xj+quanj))) coefj2=NTuple{7,Float64}((coefH6j-coefΔh6*(xj-quanj),coefH5j-coefΔh5*(xj-quanj),coefH4j-coefΔh4*(xj-quanj),coefH3j-coefΔh3*(xj-quanj),coefH2j-coefΔh2*(xj-quanj),coefH1j-coefΔh1*(xj-quanj),coefH0j-coefΔh0*(xj-quanj))) resi1,resi2,resi3,resi4,resi5,resi6,resi7,resi8,resi9,resi10,resi11,resi12=0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0 resj1,resj2,resj3,resj4,resj5,resj6,resj7,resj8,resj9,resj10,resj11,resj12=0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0 Base.GC.enable(false) unsafe_store!(respp, -1.0, 1);unsafe_store!(respp, -1.0, 2);unsafe_store!(respp, -1.0, 3);unsafe_store!(respp, -1.0, 4);unsafe_store!(respp, -1.0, 5);unsafe_store!(respp, -1.0, 6) allrealrootintervalnewtonregulafalsi(coefi,respp,pp) resi1,resi2,resi3,resi4,resi5,resi6=unsafe_load(respp,1),unsafe_load(respp,2),unsafe_load(respp,3),unsafe_load(respp,4),unsafe_load(respp,5),unsafe_load(respp,6) unsafe_store!(respp, -1.0, 1);unsafe_store!(respp, -1.0, 2);unsafe_store!(respp, -1.0, 3);unsafe_store!(respp, -1.0, 4);unsafe_store!(respp, -1.0, 5);unsafe_store!(respp, -1.0, 6) allrealrootintervalnewtonregulafalsi(coefi2,respp,pp) resi7,resi8,resi9,resi10,resi11,resi12=unsafe_load(respp,1),unsafe_load(respp,2),unsafe_load(respp,3),unsafe_load(respp,4),unsafe_load(respp,5),unsafe_load(respp,6) unsafe_store!(respp, -1.0, 1);unsafe_store!(respp, -1.0, 2);unsafe_store!(respp, -1.0, 3);unsafe_store!(respp, -1.0, 4);unsafe_store!(respp, -1.0, 5);unsafe_store!(respp, -1.0, 6) allrealrootintervalnewtonregulafalsi(coefj,respp,pp) resj1,resj2,resj3,resj4,resj5,resj6=unsafe_load(respp,1),unsafe_load(respp,2),unsafe_load(respp,3),unsafe_load(respp,4),unsafe_load(respp,5),unsafe_load(respp,6) unsafe_store!(respp, -1.0, 1);unsafe_store!(respp, -1.0, 2);unsafe_store!(respp, -1.0, 3);unsafe_store!(respp, -1.0, 4);unsafe_store!(respp, -1.0, 5);unsafe_store!(respp, -1.0, 6) allrealrootintervalnewtonregulafalsi(coefj2,respp,pp) resj7,resj8,resj9,resj10,resj11,resj12=unsafe_load(respp,1),unsafe_load(respp,2),unsafe_load(respp,3),unsafe_load(respp,4),unsafe_load(respp,5),unsafe_load(respp,6) Base.GC.enable(true) =# #to be deleted: test #= for h in (resi1,resi2,resi3,resi4,resi5,resi6,resi7,resi8,resi9,resi10,resi11,resi12) if h>0 h_2=h*h;h_3=h_2*h;h_4=h_3*h;h_5=h_4*h;h_6=h_5*h Δ22=4.0+h*coefΔh1+h_2*(coefΔh2)+h_3*(coefΔh3)+h_4*(coefΔh4)+h_5*coefΔh5+h_6*coefΔh6 if abs(Δ22)!=0.0 qi=(4.0*xi+h*coefH1+h_2*coefH2+h_3*coefH3+h_4*coefH4+h_5*coefH5+h_6*coefH6)/Δ22 if abs(qi-xi)>2quani error("your own h not working for you, i") end end end end for h in (resj1,resj2,resj3,resj4,resj5,resj6,resj7,resj8,resj9,resj10,resj11,resj12) if h>0 h_2=h*h;h_3=h_2*h;h_4=h_3*h;h_5=h_4*h;h_6=h_5*h Δ22=4.0+h*coefΔh1+h_2*(coefΔh2)+h_3*(coefΔh3)+h_4*(coefΔh4)+h_5*coefΔh5+h_6*coefΔh6 if abs(Δ22)!=0.0 qj=(4.0*xj+h*coefH1j+h_2*coefH2j+h_3*coefH3j+h_4*coefH4j+h_5*coefH5j+h_6*coefH6j)/Δ22 if abs(qj-xj)>2quanj error("your own h not working for you, j") end end end end #filter roots counterRooti=1 for h in (resi1,resi2,resi3,resi4,resi5,resi6,resi7,resi8,resi9,resi10,resi11,resi12) if h>0 && h!=Inf cacheRootsi[counterRooti]=h counterRooti+=1 end end sort!(cacheRootsi); counterRootj=1 for h in (resj1,resj2,resj3,resj4,resj5,resj6,resj7,resj8,resj9,resj10,resj11,resj12) if h>0 && h!=Inf cacheRootsj[counterRootj]=h counterRootj+=1 end end =# #= coefi=[coefH0-coefΔh0*(xi+quani),coefH1-coefΔh1*(xi+quani),coefH2-coefΔh2*(xi+quani),coefH3-coefΔh3*(xi+quani),coefH4-coefΔh4*(xi+quani),coefH5-coefΔh5*(xi+quani),coefH6-coefΔh6*(xi+quani)] coefj=[coefH0j-coefΔh0*(xj+quanj),coefH1j-coefΔh1*(xj+quanj),coefH2j-coefΔh2*(xj+quanj),coefH3j-coefΔh3*(xj+quanj),coefH4j-coefΔh4*(xj+quanj),coefH5j-coefΔh5*(xj+quanj),coefH6j-coefΔh6*(xj+quanj)] coefi2=[coefH0-coefΔh0*(xi-quani),coefH1-coefΔh1*(xi-quani),coefH2-coefΔh2*(xi-quani),coefH3-coefΔh3*(xi-quani),coefH4-coefΔh4*(xi-quani),coefH5-coefΔh5*(xi-quani),coefH6-coefΔh6*(xi-quani)] coefj2=[coefH0j-coefΔh0*(xj-quanj),coefH1j-coefΔh1*(xj-quanj),coefH2j-coefΔh2*(xj-quanj),coefH3j-coefΔh3*(xj-quanj),coefH4j-coefΔh4*(xj-quanj),coefH5j-coefΔh5*(xj-quanj),coefH6j-coefΔh6*(xj-quanj)] =# coefi=[Float64(coefH0-coefΔh0*(xi+quani)),Float64(coefH1-coefΔh1*(xi+quani)),Float64(coefH2-coefΔh2*(xi+quani)),Float64(coefH3-coefΔh3*(xi+quani)),Float64(coefH4-coefΔh4*(xi+quani)),Float64(coefH5-coefΔh5*(xi+quani)),Float64(coefH6-coefΔh6*(xi+quani))] coefj=[Float64(coefH0j-coefΔh0*(xj+quanj)),Float64(coefH1j-coefΔh1*(xj+quanj)),Float64(coefH2j-coefΔh2*(xj+quanj)),Float64(coefH3j-coefΔh3*(xj+quanj)),Float64(coefH4j-coefΔh4*(xj+quanj)),Float64(coefH5j-coefΔh5*(xj+quanj)),Float64(coefH6j-coefΔh6*(xj+quanj))] coefi2=[Float64(coefH0-coefΔh0*(xi-quani)),Float64(coefH1-coefΔh1*(xi-quani)),Float64(coefH2-coefΔh2*(xi-quani)),Float64(coefH3-coefΔh3*(xi-quani)),Float64(coefH4-coefΔh4*(xi-quani)),Float64(coefH5-coefΔh5*(xi-quani)),Float64(coefH6-coefΔh6*(xi-quani))] coefj2=[Float64(coefH0j-coefΔh0*(xj-quanj)),Float64(coefH1j-coefΔh1*(xj-quanj)),Float64(coefH2j-coefΔh2*(xj-quanj)),Float64(coefH3j-coefΔh3*(xj-quanj)),Float64(coefH4j-coefΔh4*(xj-quanj)),Float64(coefH5j-coefΔh5*(xj-quanj)),Float64(coefH6j-coefΔh6*(xj-quanj))] ri=roots(coefi) rj=roots(coefj) ri2=roots(coefi2) rj2=roots(coefj2) #filter roots counterRooti=1 for h in ri if abs(imag(h)) < 1.0e-15 && real(h)>0.0 cacheRootsi[counterRooti]=(real(h)) counterRooti+=1 end end checkRoots(cacheRootsi,coefi,coefΔh0,coefΔh1,coefΔh2,coefΔh3,coefΔh4,coefΔh5,coefΔh6,quani) for h in ri2 if abs(imag(h)) < 1.0e-15 && real(h)>0.0 cacheRootsi[counterRooti]=(real(h)) counterRooti+=1 end end sort!(cacheRootsi); counterRootj=1 for h in rj if abs(imag(h)) < 1.0e-15 && real(h)>0.0 cacheRootsj[counterRootj]=(real(h)) counterRootj+=1 end end checkRoots(cacheRootsj,coefj,coefΔh0,coefΔh1,coefΔh2,coefΔh3,coefΔh4,coefΔh5,coefΔh6,quanj) for h in rj2 if abs(imag(h)) < 1.0e-15 && real(h)>0.0 cacheRootsj[counterRootj]=(real(h)) counterRootj+=1 end end sort!(cacheRootsj); #= for h in cacheRootsi h_2=h*h;h_3=h_2*h;h_4=h_3*h;h_5=h_4*h;h_6=h_5*h Δ22=4.0+h*coefΔh1+h_2*(coefΔh2)+h_3*(coefΔh3)+h_4*(coefΔh4)+h_5*coefΔh5+h_6*coefΔh6 if abs(Δ22)!=0.0 qi=(4.0*xi+h*coefH1+h_2*coefH2+h_3*coefH3+h_4*coefH4+h_5*coefH5+h_6*coefH6)/Δ22 if abs(qi-xi)>2quani error("your own h not working for you, i") end end end for h in cacheRootsj h_2=h*h;h_3=h_2*h;h_4=h_3*h;h_5=h_4*h;h_6=h_5*h Δ22=4.0+h*coefΔh1+h_2*(coefΔh2)+h_3*(coefΔh3)+h_4*(coefΔh4)+h_5*coefΔh5+h_6*coefΔh6 if abs(Δ22)!=0.0 qj=(4.0*xj+h*coefH1j+h_2*coefH2j+h_3*coefH3j+h_4*coefH4j+h_5*coefH5j+h_6*coefH6j)/Δ22 if abs(qj-xj)>2quanj error("your own h not working for you, j") end end end =# #construct intervals constructIntrval(acceptedi,cacheRootsi) constructIntrval(acceptedj,cacheRootsj) ki=7;kj=7 h=-1.0 debugTracker=0 tryIteration=false Δ1=0.0 while true if ki==0 || kj==0 error("bug in finding the overlap") end currentLi=acceptedi[ki][1];currentHi=acceptedi[ki][2] currentLj=acceptedj[kj][1];currentHj=acceptedj[kj][2] if currentLj<=currentLi<currentHj || currentLi<=currentLj<currentHi#resj[end][1]<=resi[end][1]<=resj[end][2] || resi[end][1]<=resj[end][1]<=resi[end][2] #overlap h=min(currentHi,currentHj ) if h==Inf && (currentLj!=0.0 || currentLi!=0.0) # except case both 0 sols h1=(0,Inf) h=max(currentLj,currentLi#= ,ft-simt,dti =#) #ft-simt in case they are both ver small...elaborate on his later #= if simt==2.500745083181994e-5 @show currentLj,currentLi end =# end if h==Inf # both lower bounds ==0 --> zero sols for both if aiijj_!=0.0 qi=coefH6/coefΔh6;qj=coefH6j/coefΔh6 cac=checkAcceptanceCriteria(qi,xi,quani,qj,xj,quanj) if cac #= qi1=(aji*uij2-uji2*aij)/aiijj_ #resul of ddx=aq+aq+u=0 ...2eqs 2 unknowns qj1=(-uij2-aii*qi1)/aij =# h=ft Δ1=1.0-h*(aiijj)-h*h*(aiijj_) while Δ1==0.0 h=h*0.98 Δ1=1.0-h*(aiijj)-h*h*(aiijj_) end q1parti=aii*qi+aij*qj+uij+h*uij2 q1partj=aji*qi+ajj*qj+uji+h*uji2 qi1=((1-h*ajj)/Δ1)*q1parti+(h*aij/Δ1)*q1partj# Δ1!=0 from iterations qj1=(h*aji/Δ1)*q1parti+((1-h*aii)/Δ1)*q1partj debugTracker=1 else tryIteration=true end else tryIteration=true end if tryIteration #return false #later try to study critical points(maxima) to find best h = ft-simt Δ1=1.0-h*(aiijj)-h*h*(aiijj_) if abs(Δ1)!=0.0 h_2=h*h;h_3=h_2*h;h_4=h_3*h;h_5=h_4*h;h_6=h_5*h Δ22=4.0+h*coefΔh1+h_2*(coefΔh2)+h_3*(coefΔh3)+h_4*(coefΔh4)+h_5*coefΔh5+h_6*coefΔh6 if abs(Δ22)!=0.0 qi=(4.0*xi+h*coefH1+h_2*coefH2+h_3*coefH3+h_4*coefH4+h_5*coefH5+h_6*coefH6)/Δ22 qj=(4.0*xj+h*coefH1j+h_2*coefH2j+h_3*coefH3j+h_4*coefH4j+h_5*coefH5j+h_6*coefH6j)/Δ22 end end if (abs(qi - xi) > 2.0*quani || abs(qj - xj) > 2.0*quanj) h1 = sqrt(abs(2*quani/xi2));h2 = sqrt(abs(2*quanj/xj2)); #later add derderX =1e-12 when x2==0? h=min(h1,h2) Δ1=1.0-h*(aiijj)-h*h*(aiijj_) if abs(Δ1)!=0.0 h_2=h*h;h_3=h_2*h;h_4=h_3*h;h_5=h_4*h;h_6=h_5*h Δ22=4.0+h*coefΔh1+h_2*(coefΔh2)+h_3*(coefΔh3)+h_4*(coefΔh4)+h_5*coefΔh5+h_6*coefΔh6 if abs(Δ22)!=0.0 qi=(4.0*xi+h*coefH1+h_2*coefH2+h_3*coefH3+h_4*coefH4+h_5*coefH5+h_6*coefH6)/Δ22 qj=(4.0*xj+h*coefH1j+h_2*coefH2j+h_3*coefH3j+h_4*coefH4j+h_5*coefH5j+h_6*coefH6j)/Δ22 end end end maxIter=10000 while (abs(qi - xi) > 2.0*quani || abs(qj - xj) > 2.0*quanj) && (maxIter>0) maxIter-=1 h1 = h * sqrt(quani / abs(qi - xi)); h2 = h * sqrt(quanj / abs(qj - xj)); #= h1 = h * (0.99*1.8*quani / abs(qi - xi)); h2 = h * (0.99*1.8*quanj / abs(qj - xj)); =# h=min(h1,h2) Δ1=1.0-h*(aiijj)-h*h*(aiijj_) if abs(Δ1)!=0.0 h_2=h*h;h_3=h_2*h;h_4=h_3*h;h_5=h_4*h;h_6=h_5*h Δ22=4.0+h*coefΔh1+h_2*(coefΔh2)+h_3*(coefΔh3)+h_4*(coefΔh4)+h_5*coefΔh5+h_6*coefΔh6 if abs(Δ22)!=0.0 qi=(4.0*xi+h*coefH1+h_2*coefH2+h_3*coefH3+h_4*coefH4+h_5*coefH5+h_6*coefH6)/Δ22 qj=(4.0*xj+h*coefH1j+h_2*coefH2j+h_3*coefH3j+h_4*coefH4j+h_5*coefH5j+h_6*coefH6j)/Δ22 end end end if maxIter==0 || Δ1==0.0 # maxIter=0 :failed to bring q down within a reasonable time. Δ1==0.0 should never happen when maxIter>0...but keep it there for now return false end debugTracker=2 q1parti=aii*qi+aij*qj+uij+h*uij2 q1partj=aji*qi+ajj*qj+uji+h*uji2 qi1=((1-h*ajj)/Δ1)*q1parti+(h*aij/Δ1)*q1partj# Δ1!=0 from iterations qj1=(h*aji/Δ1)*q1parti+((1-h*aii)/Δ1)*q1partj end#end if iteration else #h!=Inf h_2=h*h;h_3=h_2*h;h_4=h_3*h;h_5=h_4*h;h_6=h_5*h Δ22=4.0+h*coefΔh1+h_2*(coefΔh2)+h_3*(coefΔh3)+h_4*(coefΔh4)+h_5*coefΔh5+h_6*coefΔh6 Δ1=1.0-h*(aiijj)-h*h*(aiijj_) if abs(Δ22)!=0.0 && Δ1!=0.0 qi=(4.0*xi+h*coefH1+h_2*coefH2+h_3*coefH3+h_4*coefH4+h_5*coefH5+h_6*coefH6)/Δ22 qj=(4.0*xj+h*coefH1j+h_2*coefH2j+h_3*coefH3j+h_4*coefH4j+h_5*coefH5j+h_6*coefH6j)/Δ22 #= if 2.500745083181994e-5<=simt<3.00745083181994e-5 @show "simul: ",index,qi,xi,quani,h,simt,j,qj,xj,quanj end =# cac=checkAcceptanceCriteria(qi,xi,quani,qj,xj,quanj) if !cac tryIteration=true else debugTracker=3 q1parti=aii*qi+aij*qj+uij+h*uij2 q1partj=aji*qi+ajj*qj+uji+h*uji2 qi1=((1-h*ajj)/Δ1)*q1parti+(h*aij/Δ1)*q1partj# Δ1!=0 from iterations qj1=(h*aji/Δ1)*q1parti+((1-h*aii)/Δ1)*q1partj end else tryIteration=true end if tryIteration #println("singularities Δ22=0")#do iterations h = ft-simt Δ1=1.0-h*(aiijj)-h*h*(aiijj_) if abs(Δ1)!=0.0 h_2=h*h;h_3=h_2*h;h_4=h_3*h;h_5=h_4*h;h_6=h_5*h Δ22=4.0+h*coefΔh1+h_2*(coefΔh2)+h_3*(coefΔh3)+h_4*(coefΔh4)+h_5*coefΔh5+h_6*coefΔh6 if abs(Δ22)!=0.0 qi=(4.0*xi+h*coefH1+h_2*coefH2+h_3*coefH3+h_4*coefH4+h_5*coefH5+h_6*coefH6)/Δ22 qj=(4.0*xj+h*coefH1j+h_2*coefH2j+h_3*coefH3j+h_4*coefH4j+h_5*coefH5j+h_6*coefH6j)/Δ22 end end if (abs(qi - xi) > 2.0*quani || abs(qj - xj) > 2.0*quanj) h1 = sqrt(abs(2*quani/xi2));h2 = sqrt(abs(2*quanj/xj2)); #later add derderX =1e-12 when x2==0? h=min(h1,h2) Δ1=1.0-h*(aiijj)-h*h*(aiijj_) if abs(Δ1)!=0.0 h_2=h*h;h_3=h_2*h;h_4=h_3*h;h_5=h_4*h;h_6=h_5*h Δ22=4.0+h*coefΔh1+h_2*(coefΔh2)+h_3*(coefΔh3)+h_4*(coefΔh4)+h_5*coefΔh5+h_6*coefΔh6 if abs(Δ22)!=0.0 qi=(4.0*xi+h*coefH1+h_2*coefH2+h_3*coefH3+h_4*coefH4+h_5*coefH5+h_6*coefH6)/Δ22 qj=(4.0*xj+h*coefH1j+h_2*coefH2j+h_3*coefH3j+h_4*coefH4j+h_5*coefH5j+h_6*coefH6j)/Δ22 end end end maxIter=10000 while (abs(qi - xi) > 2.0*quani || abs(qj - xj) > 2.0*quanj) && (maxIter>0) maxIter-=1 h1 = h * sqrt(quani / abs(qi - xi)); h2 = h * sqrt(quanj / abs(qj - xj)); #= h1 = h * (0.99*1.8*quani / abs(qi - xi)); h2 = h * (0.99*1.8*quanj / abs(qj - xj)); =# h=min(h1,h2) Δ1=1.0-h*(aiijj)-h*h*(aiijj_) if abs(Δ1)!=0.0 h_2=h*h;h_3=h_2*h;h_4=h_3*h;h_5=h_4*h;h_6=h_5*h Δ22=4.0+h*coefΔh1+h_2*(coefΔh2)+h_3*(coefΔh3)+h_4*(coefΔh4)+h_5*coefΔh5+h_6*coefΔh6 if abs(Δ22)!=0.0 qi=(4.0*xi+h*coefH1+h_2*coefH2+h_3*coefH3+h_4*coefH4+h_5*coefH5+h_6*coefH6)/Δ22 qj=(4.0*xj+h*coefH1j+h_2*coefH2j+h_3*coefH3j+h_4*coefH4j+h_5*coefH5j+h_6*coefH6j)/Δ22 end end end # end while iteration if maxIter==0 || Δ1==0.0 # maxIter=0 :failed to bring q down within a reasonable time. Δ1==0.0 should never happen when maxIter>0...but keep it there for now return false end debugTracker=4 q1parti=aii*qi+aij*qj+uij+h*uij2 q1partj=aji*qi+ajj*qj+uji+h*uji2 qi1=((1-h*ajj)/Δ1)*q1parti+(h*aij/Δ1)*q1partj# Δ1!=0 from iterations qj1=(h*aji/Δ1)*q1parti+((1-h*aii)/Δ1)*q1partj end# end if tryiteration #= q1parti=aii*qi+aij*qj+uij+h*uij2 q1partj=aji*qi+ajj*qj+uji+h*uji2 qi1=((1-h*ajj)/Δ1)*q1parti+(h*aij/Δ1)*q1partj# Δ1!=0 from iterations qj1=(h*aji/Δ1)*q1parti+((1-h*aii)/Δ1)*q1partj =# end# end h inf or else break else if currentHj==0.0 && currentHi==0.0#empty ki-=1;kj-=1 elseif currentHj==0.0 && currentHi!=0.0 kj-=1 elseif currentHi==0.0 && currentHj!=0.0 ki-=1 else #both non zero if currentLj<currentLi#remove last seg of resi ki-=1 else #remove last seg of resj kj-=1 end end end end # end while #checkRoots(cacheRootsi,coefi,coefi2) # for free stress-testing allrealrootintervalnewtonregulafalsi # checkRoots(cacheRootsj,coefj,coefj2) #later check if error in roots makes q-x >2quan...use commented code below q[index][0]=Float64(qi)# store back helper vars q[j][0]=Float64(qj) q[index][1]=Float64(qi1) q[j][1]=Float64(qj1) trackSimul[1]+=1 # do not have to recomputeNext if qi never changed #= if abs(qi-xi)<quani/1000 && abs(qj-xj)<quanj/1000 #if quani/1000<abs(qi-xi)<quani/10 && quanj/1000<abs(qj-xj)<quanj/10 println("end of simul: qi & qj thrown both very close") @show abs(qi-xi),quani , abs(qj-xj),quanj @show simt,debugTracker end =# #= if isnan(qi) @show simt,"qi",debugTracker end if isnan(qi1) @show simt,"qi1",debugTracker end if isnan(qj) @show simt,"qj",debugTracker end if isnan(qj1) @show simt,"qj1",debugTracker end =# end #end if iscycle return iscycle end #= function checkRootsIntNew(cacheRootsi,coefi,coefi2) for h in cacheRootsi zci=abs(coefi[1]*h^6+coefi[2]*h^5+coefi[3]*h^4+coefi[4]*h^3+coefi[5]*h^2+coefi[6]*h+coefi[7]) zci2=abs(coefi2[1]*h^6+coefi2[2]*h^5+coefi2[3]*h^4+coefi2[4]*h^3+coefi2[5]*h^2+coefi2[6]*h+coefi2[7]) if zci>1e-6 && zci2>1e-6 println("error in mliqss_quantizer2: coming from root solver ") @show h,coefi,zci @show coefi2,zci2 end end end =# #= function checkRoots(cacheRootsi,coefi,coefi2) for h in cacheRootsi if h>0 # cache is large and contains 0 0 0 0 0 0 zci=abs(coefi[7]*h^6+coefi[6]*h^5+coefi[5]*h^4+coefi[4]*h^3+coefi[3]*h^2+coefi[2]*h+coefi[1]) zci2=abs(coefi2[7]*h^6+coefi2[6]*h^5+coefi2[5]*h^4+coefi2[4]*h^3+coefi2[3]*h^2+coefi2[2]*h+coefi2[1]) if zci>1e-5 && zci2>1e-5 println("error in mliqss_quantizer2: coming from root solver ") if zci>1e-5 @show h,coefi,zci end if zci2>1e-5 @show h,coefi2,zci2 end end end end end =# function checkRoots(cacheRootsi,coefi,coefΔh0,coefΔh1,coefΔh2,coefΔh3,coefΔh4,coefΔh5,coefΔh6,quani) for h in cacheRootsi if h>0 # cache is large and contains 0 0 0 0 0 0 zci=coefi[7]*h^6+coefi[6]*h^5+coefi[5]*h^4+coefi[4]*h^3+coefi[3]*h^2+coefi[2]*h+coefi[1] Δ=coefΔh0+h*coefΔh1+coefΔh2*h*h+coefΔh3*h^3+coefΔh4*h^4+coefΔh5*h^5+coefΔh6*h^6 if (zci/(Δ*Δ))>(quani/100) println("zci not zero makes q changes by more than a quan...root finding not good...Δ=$Δ") @show h,zci,quani,coefi @show typeof(h),typeof(zci),typeof(quani),typeof(coefi) end #= if zci>1e-5 println("error in mliqss_quantizer2: coming from root solver ") @show h,coefi,zci end =# end end end #= function getQfromAsymptote(x::Float64,coefH0::Float64,coefH1::P,coefH2::P,coefH3::P,coefH4::P,coefH5::P,coefH6::P,coefΔh0::Float64,coefΔh1::P,coefΔh2::P,coefΔh3::P,coefΔh4::P,coefΔh5::P,coefΔh6::P) where {P<:Union{BigFloat,Float64}} q=0.0 if coefΔh6==0.0 && coefH6!=0.0 @show coefΔh6,coefH6 error("report bug in simul2: could appear when a var becomes a NaN") elseif coefΔh6==0.0 && coefH6==0.0 if coefΔh5==0.0 && coefH5!=0.0 println("simul2: coef5 asymptote should not be outside of +-delta !!!") elseif coefΔh5==0.0 && coefH5==0.0 if coefΔh4==0.0 && coefH4!=0.0 println("simul2: coef4 asymptote should not be outside of +-delta !!!") elseif coefΔh4==0.0 && coefH4==0.0 if coefΔh3==0.0 && coefH3!=0.0 println("simul2: coef3 asymptote should not be outside of +-delta !!!") elseif coefΔh3==0.0 && coefH3==0.0 if coefΔh2==0.0 && coefH2!=0.0 println("simul2: coef2 asymptote should not be outside of +-delta !!!") elseif coefΔh2==0.0 && coefH2==0.0 if coefΔh1==0.0 && coefH1!=0.0 println("simul2: coef1 asymptote should not be outside of +-delta !!!") elseif coefΔh1==0.0 && coefH1==0.0 if coefΔh0!=0.0 q=coefH0/coefΔh0 else q=x end else#coefΔh1!=0.0 q=coefH1/coefΔh1 end else#coefΔh2!=0.0 q=coefH2/coefΔh2 end else#coefΔh3!=0.0 q=coefH3/coefΔh3 end else#coefΔh4!=0.0 q=coefH4/coefΔh4 end else#coefΔh5!=0.0 q=coefH5/coefΔh5 end else#coefΔh6!=0.0 q=coefH6/coefΔh6 end q end =# function checkAcceptanceCriteria(qi,xi,quani,qj,xj,quanj) testVari=100;testVarj=100 if abs(qi-xi)==0.0 testVari=1 elseif quani/100000.0<abs(qi-xi)<=quani/1000.0 testVari=2 elseif quani/1000.0<abs(qi-xi)<=quani/100.0 testVari=3 elseif quani/100.0<abs(qi-xi)<=quani/2.0 testVari=4 elseif quani/2.0<abs(qi-xi)<=quani/1.0 testVari=5 elseif abs(qi-xi)<2quani testVari=6 else #testVari=6 end if abs(qj-xj)==0.0 testVarj=1 elseif quanj/100000.0<abs(qj-xj)<=quanj/1000.0 testVarj=2 elseif quanj/1000.0<abs(qj-xj)<=quanj/100.0 testVarj=3 elseif quanj/100.0<abs(qj-xj)<=quanj/2.0 testVarj=4 elseif quanj/2.0<abs(qj-xj)<=quanj/1.0 testVarj=5 elseif abs(qj-xj)<2quanj testVarj=6 else #testVarj=6 end #if testVari*testVarj==9 || testVari*testVarj==1#either both normal throws or special case equilibrium if testVari*testVarj==25 #|| testVari*testVarj==20 #|| testVari*testVarj==15 #|| testVari*testVarj==10 #|| testVari*testVarj==5 return true else return true#false end end function checkAcceptanceCriteria2(qi,xi,quani,qj,xj,quanj) return false end
QuantizedSystemSolver
https://github.com/mongibellili/QuantizedSystemSolver.jl.git
[ "MIT" ]
1.0.1
b4bf1003586f2ee6cb98d8df29e88cbbfacd2ea1
code
9226
function nmisCycle_and_simulUpdate(::Val{3},index::Int,j::Int,prevStepVal::Float64,direction::Vector{Float64}, x::Vector{Taylor0},q::Vector{Taylor0}, quantum::Vector{Float64},a::Vector{Vector{Float64}},u::Vector{Vector{MVector{O,Float64}}},qaux::Vector{MVector{O,Float64}},olddx::Vector{MVector{O,Float64}},olddxSpec::Vector{MVector{O,Float64}},tx::Vector{Float64},tq::Vector{Float64},simt::Float64,ft::Float64,qminus::Vector{Float64})where{O} aii=a[index][index];ajj=a[j][j];aij=a[index][j];aji=a[j][index] xi=x[index][0];xj=x[j][0];qi=q[index][0];qj=q[j][0];qi1=q[index][1];qi2=2*q[index][2];qj1=q[j][1];qj2=2*q[j][2] uii=u[index][index][1];uij=u[index][j][1];ujj=u[j][j][1]#;uji=u[j][index][1]#;uji2=u[j][index][2] quanj=quantum[j];quani=quantum[index];xi1=x[index][1];xi2=2*x[index][2];xi3=6*x[index][3];xj1=x[j][1];xj2=2*x[j][2];xj3=6*x[j][3] e1 = simt - tx[j];e2 = simt - tq[j]; tx[j]=simt; x[j][0]= x[j](e1);xjaux=x[j][0] xj1=xj1+e1*xj2+e1*e1*xj3/2;olddxSpec[j][1]=xj1;olddx[j][1]=xj1; xj2=xj2+e1*xj3 qj=qj+e2*qj1+e2*e2*qj2/2 ;qj1=qj1+e2*qj2; qaux[j][1]=qj ;qaux[j][2]=qj1 newDiff=(x[j][0]-prevStepVal) dir=direction[j] if newDiff*dir <0.0 direction[j]=-dir elseif newDiff==0 && dir!=0.0 direction[j]=0.0 elseif newDiff!=0 && dir==0.0 direction[j]=newDiff else #do not update direction end ujj=ujj+e1*u[j][j][2]+e1*e1*u[j][j][3]/2 #ujj=xj1-ajj*qj u[j][j][1]=ujj #u[j][j][2]=u[j][j][2]+e1*u[j][j][3] u[j][j][2]=xj2-ajj*qj1 u[j][j][3]=xj3-ajj*qj2################################### u[j][index][1]=ujj-aji*qaux[index][1]# uji=u[j][index][1] u[j][index][2]=u[j][j][2]-aji*qaux[index][2]#less cycles but with a bump at 1.5...ft20: smooth with some bumps uji2=u[j][index][2] u[j][index][3]=u[j][j][3]-aji*qaux[index][3]# uji3=u[j][index][3] dxj=aji*qi+ajj*qaux[j][1]+uji ddxj=aji*qi1+ajj*qj1+uji2 dddxj=aji*qi2+ajj*qj2+uji3 iscycle=false u[index][j][1]=u[index][index][1]-aij*qaux[j][1] uij=u[index][j][1] u[index][j][2]=u[index][index][2]-aij*qj1 uij2=u[index][j][2] u[index][j][3]=u[index][index][3]-aij*qj2 uij3=u[index][j][3] # if (abs(dxj-xj1)>(abs(dxj+xj1)/2) || abs(ddxj-xj2)>(abs(ddxj+xj2)/2) || abs(dddxj-xj3)>(abs(dddxj+xj3)/2)) h1=cbrt(abs(6*quanj/dddxj)) qjplus=xjaux+h1*h1*h1*dddxj/6 #@show h,qjplus,xjaux λ=ajj*qjplus+aji*qi+uji+h1*(aji*qi1+uji2)+h1*h1*(aji*qi2+uji3)/2 α=(h1-h1*h1/2)*(aji*(qi1+h1*qi2)+uji2+h1*uji3)/(1-h1*ajj) β=1-h1*ajj+(h1-h1*h1/2)*ajj/(1-h1*ajj) dqjplus=(λ-α)/β ddqjplus=(aji*(qi1+h1*qi2)+ajj*dqjplus+uji2+h1*uji3)/(1-h1*ajj) ### #u[index][j][1]=u[index][index][1]-a[index][j]*q[j][0] # shifts down at 18 #= u[index][j][1]=u[index][index][1]-aij*qaux[j][1] uij=u[index][j][1] u[index][j][2]=u[index][index][2]-aij*qj1#########qaux[j][2] updated in normal Qupdate..ft=20 slightly shifts up uij2=u[index][j][2] =# dxi=aii*qi+aij*qjplus+uij ddxi=aii*qi1+aij*dqjplus+uij2 dddxi=aii*qi2+aij*ddqjplus+uij3 #= #dqjplus-qj1 is enough: normally (qjplus+h*dqjlpus-qj+h*qj1) . dqjplus-qj1 is better than dqjplus alone cuz the case dqjplus=0 if (abs(dxj-xj1)>(abs(dxj+xj1)/2) || abs(ddxj-xj2)>(abs(ddxj+xj2)/2)) || (dqjplus+h1*ddqjplus)*direction[j]<0.0 #(dqjplus*qj1)<=0.0 with dir is better since when dir =0 we do not enter h2=cbrt(abs(6*quani/dddxi)) β=dxi+ddxi*h2/2+dddxi*h2*h2/6 if (abs(dxi-xi1)>(abs(dxi+xi1)/2) || abs(ddxi-xi2)>(abs(ddxi+xi2)/2)) || β*direction[index]<0.0 =# if (abs(dxj-xj1)>(abs(dxj+xj1)/2) || abs(ddxj-xj2)>(abs(ddxj+xj2)/2) || abs(dddxj-xj3)>(abs(dddxj+xj3)/2)) || (dqjplus+h1*ddqjplus)*direction[j]<0.0#(dqjplus+h1*ddqjplus-qj1-e1*qj2)*direction[j]<0.0 h2=cbrt(abs(6*quani/dddxi)) h2=cbrt(abs(6*quani/dddxi)) β=dxi+ddxi*h2/2+dddxi*h2*h2/6 if (abs(dxi-xi1)>(abs(dxi+xi1)/2) || abs(ddxi-xi2)>(abs(ddxi+xi2)/2) || abs(dddxi-xi3)>(abs(dddxi+xi3)/2))|| β*direction[index]<0.0 # if (abs(dxi-xi1)>(abs(dxi+xi1)/2) || abs(ddxi-xi2)>(abs(ddxi+xi2)/2) || abs(dddxi-xi3)>(abs(dddxi+xi3)/2)) iscycle=true h = ft-simt; qi,qj,Mi,Mj,Linvii,Linvij,Linvji,Linvjj,Nii,Nij,Nji,Njj=simulQ3(aii,aij,aji,ajj,h,xi,xjaux,uij,uij2,uij3,uji,uji2,uji3) if (abs(qi - xi) > 2*quani || abs(qj - xjaux) > 2*quanj) # removing this did nothing...check @btime later h1 = cbrt(abs(6*quani/dddxi));h2 = cbrt(abs(6*quanj/dddxj)); #later add derderX =1e-12 when x2==0 h=min(h1,h2) qi,qj,Mi,Mj,Linvii,Linvij,Linvji,Linvjj,Nii,Nij,Nji,Njj=simulQ3(aii,aij,aji,ajj,h,xi,xjaux,uij,uij2,uij3,uji,uji2,uji3) end maxIter=600000 while (abs(qi - xi) > 2*quani || abs(qj - xjaux) > 2*quanj) && (maxIter>0) && (h!=0.0) maxIter-=1 # h1 = h * (0.98*quani / abs(qi - xi)); h1 = h *cbrt(quani / abs(qi - xi)) # h2 = h * (0.98*quanj / abs(qj - xjaux)); h2 = h *cbrt(quanj / abs(qj - xjaux)) h=min(h1,h2) qi,qj,Mi,Mj,Linvii,Linvij,Linvji,Linvjj,Nii,Nij,Nji,Njj=simulQ3(aii,aij,aji,ajj,h,xi,xjaux,uij,uij2,uij3,uji,uji2,uji3) end if maxIter < 1 println("maxtiter simult_val{3}") @show maxIter end q[index][0]=qi# store back helper vars q[j][0]=qj MAQi=Mi+aii*qi+aij*qj+uij+h*uij2+h*h*uij3/2;MAQj=Mj+ajj*qj+aji*qi+uji+h*uji2+h*h*uji3/2 # MAQ=(M+A*Q+U+h*U2+(h*h/2)*U3)# Q1=Linv*MAQ q1i=Linvii*MAQi+Linvij*MAQj;q1j=Linvji*MAQi+Linvjj*MAQj q[index][1]=q1i#Q1[1]# store back helper vars q[j][1]=q1j#Q1[2] AQUi=aii*q1i+aij*q1j+uij2+h*uij3;AQUj=ajj*q1j+aji*q1i+uji2+h*uji3 q2i=Nii*AQUi+Nij*AQUj;q2j=Nji*AQUi+Njj*AQUj q[index][2]=q2i/2#Q2[1]/2# store back helper vars: /2 for taylor standard storage q[j][2]=q2j/2#Q2[2]/2 tq[j]=simt end #end second dependecy check end # end outer dependency check #= if debug println("end of iscycle function") end =# return iscycle end ####################################################################################################################################################### @inline function simulQ3(#= simul3Helper::MVector{10,Float64}, =#aii::Float64,aij::Float64,aji::Float64,ajj::Float64,h::Float64,xi::Float64,xjaux::Float64,uij::Float64,uij2::Float64,uij3::Float64,uji::Float64,uji2::Float64,uji3::Float64) #= the following matrix-based code is changed below (no matrices) N=inv(I-h*A) R=h*I-(h*h/2)*A+((h*h/2)*N*A-(h*h*h/6)*A*N*A) Linv=inv(I-h*A+h*N*A-(h*h/2)*A*N*A) M=((h*h/2)*A-h*I)*N*(U2+h*U3) P=X+(h*U+(h*h/2)*U2+(h*h*h/6)*U3) S=-R*Linv*(M+U+h*U2+(h*h/2)*U3)-(((h*h/2)*I-(h*h*h/6)*A)*N*(U2+h*U3))+P Q=inv(I-h*A+R*Linv*A)*S =# h_2=h*h/2;h_6=h*h*h/6 # N=inv(I-h*A) Δ1=(1-h*aii)*(1-h*ajj)-h*h*aij*aji Nii=(1-h*ajj)/Δ1;Nij=(h*aij)/Δ1;Nji=(aji*h)/Δ1;Njj=(1-h*aii)/Δ1#N=inv(I-h*A) NAii=Nii*aii+Nij*aji;NAij=Nii*aij+Nij*ajj;NAji=Nji*aii+Njj*aji;NAjj=Nji*aij+Njj*ajj ANAii=aii*NAii+aij*NAji;ANAij=aii*NAij+aij*NAjj;ANAji=aji*NAii+ajj*NAji;ANAjj=aji*NAij+ajj*NAjj Rii=h-(h_2)*aii+(h_2)*NAii-(h_6)*ANAii;Rij=-(h_2)*aij+(h_2)*NAij-(h_6)*ANAij;Rji=-(h_2)*aji+(h_2)*NAji-(h_6)*ANAji;Rjj=h-(h_2)*ajj+(h_2)*NAjj-(h_6)*ANAjj#R=h*I-(h*h/2)*A+((h*h/2)*N*A-(h*h*h/6)*A*N*A) # R=[Rii Rij;Rji Rjj] Lii=1-h*aii+h*NAii-(h_2)*ANAii;Lij=-h*aij+h*NAij-(h_2)*ANAij;Lji=-h*aji+h*NAji-(h_2)*ANAji;Ljj=1-h*ajj+h*NAjj-(h_2)*ANAjj ΔL=Lii*Ljj-Lij*Lji Linvii=Ljj/ΔL;Linvij=-Lij/ΔL;Linvji=-Lji/ΔL;Linvjj=Lii/ΔL## Linv=inv(I-h*A+h*N*A-(h*h/2)*A*N*A) # Linv=[Linvii Linvij;Linvji Linvjj] # M=((h*h/2)*A-h*I)*N*(U2+h*U3) U23i=uij2+h*uij3 U23j=uji2+h*uji3 NU23i=Nii*U23i+Nij*U23j NU23j=Nji*U23i+Njj*U23j Mi=(h_2*aii-h)*NU23i+h_2*aij*NU23j Mj=h_2*aji*NU23i+(h_2*ajj-h)*NU23j # M=[Mi;Mj]#M=((h*h/2)*A-h*I)*N*(U2+h*U3) Pi=xi+(h*uij+(h_2)*uij2+(h_6)*uij3);Pj=xjaux+(h*uji+(h_2)*uji2+(h_6)*uji3)# P=X+(h*U+(h*h/2)*U2+(h*h*h/6)*U3) # P=[Pi;Pj] S2i=(h_2-h_6*aii)*NU23i-h_6*aij*NU23j;S2j=(h_2-h_6*ajj)*NU23j-h_6*aji*NU23i# S2=(((h_2)*I-(h_6)*A)*N*(U2+h*U3)) # S2=[S2i;S2j] S1i=(Mi+uij+h*uij2+(h_2)*uij3);S1j=(Mj+uji+h*uji2+(h_2)*uji3)# S1=(M+U+h*U2+(h_2)*U3) LinvS1i=Linvii*S1i+Linvij*S1j;LinvS1j=Linvji*S1i+Linvjj*S1j # LinvS1=[LinvS1i;LinvS1j] RLinvS1i=Rii*LinvS1i+Rij*LinvS1j;RLinvS1j=Rji*LinvS1i+Rjj*LinvS1j # RLinvS1=[RLinvS1i;RLinvS1j] # S=P-RLinvS1-S2 Si=Pi-RLinvS1i-S2i Sj=Pj-RLinvS1j-S2j #S=[Si;Sj] LinvAii=Linvii*aii+Linvij*aji;LinvAij=Linvii*aij+Linvij*ajj;LinvAji=Linvji*aii+Linvjj*aji;LinvAjj=Linvji*aij+Linvjj*ajj RLinvAii=Rii*LinvAii+Rij*LinvAji;RLinvAij=Rii*LinvAij+Rij*LinvAjj;RLinvAji=Rji*LinvAii+Rjj*LinvAji;RLinvAjj=Rji*LinvAij+Rjj*LinvAjj #α=I_hARLinvA# αii=1-h*aii+RLinvAii; αij=-h*aij+RLinvAij;αji=-h*aji+RLinvAji; αjj=1-h*ajj+RLinvAjj Δα=αii*αjj-αij*αji InvAlphaii=αjj/Δα;InvAlphaij=-αij/Δα;InvAlphaji=-αji/Δα;InvAlphajj=αii/Δα; # InvAlpha=[InvAlphaii InvAlphaij;InvAlphaji InvAlphajj] qi=InvAlphaii*Si+InvAlphaij*Sj qj=InvAlphaji*Si+InvAlphajj*Sj return (qi,qj,Mi,Mj,Linvii,Linvij,Linvji,Linvjj,Nii,Nij,Nji,Njj) end
QuantizedSystemSolver
https://github.com/mongibellili/QuantizedSystemSolver.jl.git
[ "MIT" ]
1.0.1
b4bf1003586f2ee6cb98d8df29e88cbbfacd2ea1
code
10206
# This file is part of the TaylorSeries.jl Julia package, MIT license # # Luis Benet & David P. Sanders # UNAM # # MIT Expat license # # Arithmetic operations: +, -, *, / ## Equality ## #= ==(a::Taylor0, b::Taylor0{S}) where {T<:Number,S<:Number} = ==(promote(a,b)...) =# function ==(a::Taylor0, b::Taylor0) #= if a.order != b.order a, b = fixorder(a, b) end =# return a.coeffs == b.coeffs end iszero(a::Taylor0) = iszero(a.coeffs) ## zero and one ## zero(a::Taylor0) = Taylor0(zero.(a.coeffs)) function zero(a::Taylor0,cache::Taylor0) cache.coeffs .= 0.0 return cache end function one(a::Taylor0,cache::Taylor0) cache.coeffs .= 0.0 cache[0]=1.0 return cache end function one(a::Taylor0) b = zero(a) b[0] = one(b[0]) return b end ## Addition fallback for case a+a+a+a+a+a+a+a+a+a+a+a+a+a## #= (+)(a::Taylor0, b::Taylor0{S}) where {T<:Number,S<:Number} = (+)(promote(a,b)...) =# function (+)(a::Taylor0, b::Taylor0) #= if a.order != b.order a, b = fixorder(a, b) end =# v = similar(a.coeffs) @__dot__ v = (+)(a.coeffs, b.coeffs) return Taylor0(v, a.order) end function (+)(a::Taylor0) v = similar(a.coeffs) @__dot__ v = (+)(a.coeffs) return Taylor0(v, a.order) end #= (+)(a::Taylor0, b::S) where {T<:Number,S<:Number} = (+)(promote(a,b)...) =# function (+)(a::Taylor0, b::T) where {T<:Number} coeffs = copy(a.coeffs) @inbounds coeffs[1] = (+)(a[0], b) return Taylor0(coeffs, a.order) end #= (+)(b::S, a::Taylor0) where {T<:Number,S<:Number} = (+)(promote(b,a)...) =# function (+)(b::T, a::Taylor0) where {T<:Number} coeffs = similar(a.coeffs) @__dot__ coeffs = (+)(a.coeffs) @inbounds coeffs[1] = (+)(b, a[0]) return Taylor0(coeffs, a.order) end ## substraction ## #= (-)(a::Taylor0, b::Taylor0{S}) where {T<:Number,S<:Number} = (-)(promote(a,b)...) =# function (-)(a::Taylor0, b::Taylor0) if a.order != b.order a, b = fixorder(a, b) end v = similar(a.coeffs) @__dot__ v = (-)(a.coeffs, b.coeffs) return Taylor0(v, a.order) end function (-)(a::Taylor0) v = similar(a.coeffs) @__dot__ v = (-)(a.coeffs) return Taylor0(v, a.order) end #= (-)(a::Taylor0, b::S) where {T<:Number,S<:Number} = (-)(promote(a,b)...) =# function (-)(a::Taylor0, b::T) where {T<:Number} coeffs = copy(a.coeffs) @inbounds coeffs[1] = (-)(a[0], b) return Taylor0(coeffs, a.order) end #= (-)(b::S, a::Taylor0) where {T<:Number,S<:Number} = (-)(promote(b,a)...) =# function (-)(b::T, a::Taylor0) where {T<:Number} coeffs = similar(a.coeffs) @__dot__ coeffs = (-)(a.coeffs) @inbounds coeffs[1] = (-)(b, a[0]) return Taylor0(coeffs, a.order) end ## Multiplication fallback for case a*a*a*a*a*a*a*a*a*a*a*a*a## function *(a::Taylor0, b::Taylor0) #= if a.order != b.order a, b = fixorder(a, b) end =# c = Taylor0(zero(a[0]), a.order) for ord in eachindex(c) mul!(c, a, b, ord) # updates c[ord] end return c end #= function *(a::T, b::Taylor0{S}) where {T<:NumberNotSeries,S<:NumberNotSeries} @inbounds aux = a * b.coeffs[1] v = Array{typeof(aux)}(undef, length(b.coeffs)) @__dot__ v = a * b.coeffs return Taylor0(v, b.order) end *(b::Taylor0{S}, a::T) where {T<:NumberNotSeries,S<:NumberNotSeries} = a * b =# function (*)(a::T, b::Taylor0) where {T<:Number} v = Array{T}(undef, length(b.coeffs)) @__dot__ v = a * b.coeffs return Taylor0(v, b.order) end *(b::Taylor0, a::T) where {T<:Number} = a * b # Internal multiplication functions @inline function mul!(c::Taylor0, a::Taylor0, b::Taylor0, k::Int) @inbounds c[k] = a[0] * b[k] @inbounds for i = 1:k c[k] += a[i] * b[k-i] end return nothing end #= @inline function mul!(v::Taylor0, a::Taylor0, b::NumberNotSeries, k::Int) @inbounds v[k] = a[k] * b return nothing end @inline function mul!(v::Taylor0, a::NumberNotSeries, b::Taylor0, k::Int) @inbounds v[k] = a * b[k] return nothing end =# #= @doc doc""" mul!(c, a, b, k::Int) --> nothing Update the `k`-th expansion coefficient `c[k]` of `c = a * b`, where all `c`, `a`, and `b` are either `Taylor0` or `TaylorN`. The coefficients are given by ```math c_k = \sum_{j=0}^k a_j b_{k-j}. ``` """ mul! """ mul!(c, a, b) --> nothing Return `c = a*b` with no allocation; all arguments are `HomogeneousPolynomial`. """ =# ## Division ## #= function /(a::Taylor0{Rational{T}}, b::S) where {T<:Integer,S<:NumberNotSeries} R = typeof( a[0] // b) v = Array{R}(undef, a.order+1) @__dot__ v = a.coeffs // b return Taylor0(v, a.order) end =# #= function /(a::Taylor0, b::S) where {T<:NumberNotSeries,S<:NumberNotSeries} @inbounds aux = a.coeffs[1] / b v = Array{typeof(aux)}(undef, length(a.coeffs)) @__dot__ v = a.coeffs / b return Taylor0(v, a.order) end =# function /(a::Taylor0, b::T) where {T<:Number} @inbounds aux = a.coeffs[1] / b v = Array{typeof(aux)}(undef, length(a.coeffs)) @__dot__ v = a.coeffs / b return Taylor0(v, a.order) end #= /(a::Taylor0, b::Taylor0{S}) where {T<:Number,S<:Number} = /(promote(a,b)...) =# function /(a::Taylor0, b::Taylor0) iszero(a) && !iszero(b) && return zero(a) if a.order != b.order a, b = fixorder(a, b) end # order and coefficient of first factorized term ordfact, cdivfact = divfactorization(a, b) c = Taylor0(cdivfact, a.order-ordfact) for ord in eachindex(c) div!(c, a, b, ord) # updates c[ord] end return c end @inline function divfactorization(a1::Taylor0, b1::Taylor0) # order of first factorized term; a1 and b1 assumed to be of the same order a1nz = findfirst(a1) b1nz = findfirst(b1) a1nz = a1nz ≥ 0 ? a1nz : a1.order b1nz = b1nz ≥ 0 ? b1nz : a1.order ordfact = min(a1nz, b1nz) cdivfact = a1[ordfact] / b1[ordfact] # Is the polynomial factorizable? iszero(b1[ordfact]) && throw( ArgumentError( """Division does not define a Taylor0 polynomial; order k=$(ordfact) => coeff[$(ordfact)]=$(cdivfact).""") ) return ordfact, cdivfact end ## TODO: Implement factorization (divfactorization) for TaylorN polynomials #= # Homogeneous coefficient for the division @doc doc""" div!(c, a, b, k::Int) Compute the `k-th` expansion coefficient `c[k]` of `c = a / b`, where all `c`, `a` and `b` are either `Taylor0` or `TaylorN`. The coefficients are given by ```math c_k = \frac{1}{b_0} \big(a_k - \sum_{j=0}^{k-1} c_j b_{k-j}\big). ``` For `Taylor0` polynomials, a similar formula is implemented which exploits `k_0`, the order of the first non-zero coefficient of `a`. """ div! =# @inline function div!(c::Taylor0, a::Taylor0, b::Taylor0, k::Int) # order and coefficient of first factorized term ordfact, cdivfact = divfactorization(a, b) if k == 0 @inbounds c[0] = cdivfact return nothing end imin = max(0, k+ordfact-b.order) @inbounds c[k] = c[imin] * b[k+ordfact-imin] @inbounds for i = imin+1:k-1 c[k] += c[i] * b[k+ordfact-i] end if k+ordfact ≤ b.order @inbounds c[k] = (a[k+ordfact]-c[k]) / b[ordfact] else @inbounds c[k] = - c[k] / b[ordfact] end return nothing end #= @inline function div!(v::Taylor0, a::Taylor0, b::NumberNotSeries, k::Int) @inbounds v[k] = a[k] / b return nothing end div!(v::Taylor0, b::NumberNotSeries, a::Taylor0, k::Int) = div!(v::Taylor0, Taylor0(b, a.order), a, k) =# #= """ mul!(Y, A, B) Multiply A*B and save the result in Y. """ =# #= function mul!(y::Vector{Taylor0}, a::Union{Matrix{T},SparseMatrixCSC{T}}, b::Vector{Taylor0}) where {T<:Number} n, k = size(a) @assert (length(y)== n && length(b)== k) # determine the maximal order of b # order = maximum([b1.order for b1 in b]) order = maximum(get_order.(b)) # Use matrices of coefficients (of proper size) and mul! # B = zeros(T, k, order+1) B = Array{T}(undef, k, order+1) B = zero.(B) for i = 1:k @inbounds ord = b[i].order @inbounds for j = 1:ord+1 B[i,j] = b[i][j-1] end end Y = Array{T}(undef, n, order+1) mul!(Y, a, B) @inbounds for i = 1:n # y[i] = Taylor0( collect(Y[i,:]), order) y[i] = Taylor0( Y[i,:], order) end return y end =# # Adapted from (Julia v1.2) stdlib/v1.2/LinearAlgebra/src/dense.jl#721-734, # licensed under MIT "Expat". # Specialize a method of `inv` for Matrix{Taylor0}. Simply, avoid pivoting, # since the polynomial field is not an ordered one. # function Base.inv(A::StridedMatrix{Taylor0}) where T # checksquare(A) # S = Taylor0{typeof((one(T)*zero(T) + one(T)*zero(T))/one(T))} # AA = convert(AbstractArray{S}, A) # if istriu(AA) # Ai = triu!(parent(inv(UpperTriangular(AA)))) # elseif istril(AA) # Ai = tril!(parent(inv(LowerTriangular(AA)))) # else # # Do not use pivoting !! # Ai = inv!(lu(AA, Val(false))) # Ai = convert(typeof(parent(Ai)), Ai) # end # return Ai # end #= # see https://github.com/JuliaLang/julia/pull/40623 const LU_RowMaximum = VERSION >= v"1.7.0-DEV.1188" ? RowMaximum() : Val(true) const LU_NoPivot = VERSION >= v"1.7.0-DEV.1188" ? NoPivot() : Val(false) # Adapted from (Julia v1.2) stdlib/v1.2/LinearAlgebra/src/lu.jl#240-253 # and (Julia v1.4.0-dev) stdlib/LinearAlgebra/v1.4/src/lu.jl#270-274, # licensed under MIT "Expat". # Specialize a method of `lu` for Matrix{Taylor0}, which avoids pivoting, # since the polynomial field is not an ordered one. # We can't assume an ordered field so we first try without pivoting function lu(A::AbstractMatrix{Taylor0}; check::Bool = true) where {T<:Number} S = Taylor0{lutype(T)} F = lu!(copy_oftype(A, S), LU_NoPivot; check = false) if issuccess(F) return F else return lu!(copy_oftype(A, S), LU_RowMaximum; check = check) end end =#
QuantizedSystemSolver
https://github.com/mongibellili/QuantizedSystemSolver.jl.git
[ "MIT" ]
1.0.1
b4bf1003586f2ee6cb98d8df29e88cbbfacd2ea1
code
13868
(addsub)(a, b, c)=(-)((+)(a,b),c) (subsub)(a, b, c)=(-)((-)(a,b),c) (subadd)(a, b, c)=(+)((-)(a,b),c)# this should not exist cuz addsub has 3 args + cache function addTfoldl(op, res, bs...)# op is only addt so remove later l = length(bs) #i = 0; l == i && return a # already checked l == 1 && return res i = 2; l == i && return op(res, bs[1],bs[end]) i = 3; l == i && return op(res, bs[1], bs[2],bs[end]) i = 4; l == i && return op(op(res, bs[1], bs[2],bs[end]), bs[3],bs[end]) i = 5; l == i && return op(op(res, bs[1], bs[2],bs[end]), bs[3],bs[4],bs[end]) i = 6; l == i && return op(op(op(res, bs[1], bs[2],bs[end]), bs[3],bs[4],bs[end]),bs[5],bs[end]) i = 7; l == i && return op(op(op(res, bs[1], bs[2],bs[end]), bs[3],bs[4],bs[end]),bs[5],bs[6],bs[end]) i = 8; l == i && return op(op(op(op(res, bs[1], bs[2],bs[end]), bs[3],bs[4],bs[end]),bs[5],bs[6],bs[end]),bs[7],bs[end]) i = 9;y=op(op(op(op(res, bs[1], bs[2],bs[end]), bs[3],bs[4],bs[end]),bs[5],bs[6],bs[end]),bs[7],bs[8],bs[end]); l == i && return y #last i creates y and passes it to the next loop: note that from this point, op will allocate # warn the users . (inserting -0 will avoid allocation lol!) for i in i:l-1 # -1 cuz last one is cache...but these lines are never reached cuz macro does not create mulT for args >7 in the first place y = op(y, bs[i],bs[end]) end return y end function addT(a, b, c,d, xs...) if length(xs)!=0# if ==0 case below where d==cache addTfoldl(addT, addT( addT(a,b,c,xs[end]) , d ,xs[end] ), xs...) end end function mulTfoldl(res::P, bs...) where {P<:Taylor0} l = length(bs) i = 2; l == i && return res i = 3; l == i && return mulTT(res, bs[1],bs[end-1],bs[end]) i = 4; l == i && return mulTT(mulTT(res, bs[1],bs[end-1],bs[end]),bs[2],bs[end-1],bs[end]) i = 5; l == i && return mulTT(mulTT(mulTT(res, bs[1],bs[end-1],bs[end]),bs[2],bs[end-1],bs[end]),bs[3],bs[end-1],bs[end]) i = 6; l == i && return mulTT(mulTT(mulTT(mulTT(res, bs[1],bs[end-1],bs[end]),bs[2],bs[end-1],bs[end]),bs[3],bs[end-1],bs[end]),bs[4],bs[end-1],bs[end]) #= if l == 6 println("alloc!!!") return mulTT(mulTT(mulTT(mulTT(res, bs[1],bs[end-1],bs[end]),bs[2],bs[end-1],bs[end]),bs[3],bs[end-1],bs[end]),bs[4],bs[end-1],bs[end]) end =# end function mulTT(a::P, b::R, c::Q, xs...)where {P,Q,R <:Union{Taylor0,Number}} if length(xs)>1 mulTfoldl( mulTT( mulTT(a,b,xs[end-1],xs[end]) , c,xs[end-1] ,xs[end] ), xs...) end end # all methods should have new names . no type piracy!!! if Taylor1 to be used function createT(a::Taylor0,cache::Taylor0) @__dot__ cache.coeffs=a.coeffs return cache end function createT(a::T,cache::Taylor0) where {T<:Number} # requires cache1 clean cache[0]=a return cache end function addsub(a::Taylor0, b::Taylor0,c::Taylor0,cache::Taylor0) @__dot__ cache.coeffs=(-)((+)(a.coeffs,b.coeffs),c.coeffs) return cache end function addsub(a::Taylor0, b::Taylor0,c::T,cache::Taylor0) where {T<:Number} cache.coeffs.=b.coeffs cache[0]=cache[0]-c @__dot__ cache.coeffs = (+)(cache.coeffs, a.coeffs) return cache end function addsub(a::T, b::Taylor0,c::Taylor0,cache::Taylor0) where {T<:Number} cache.coeffs.=b.coeffs cache[0]=a+ cache[0] @__dot__ cache.coeffs = (-)(cache.coeffs, c.coeffs) return cache end addsub(a::Taylor0, b::T,c::Taylor0,cache::Taylor0) where {T<:Number}=addsub(b, a ,c,cache)#addsub(b::T, a::Taylor0 ,c::Taylor0,cache::Taylor0) where {T<:Number} function addsub(a::T, b::T,c::Taylor0,cache::Taylor0) where {T<:Number} @__dot__ cache.coeffs = (-)(c.coeffs) cache[0]=a+b+ cache[0] return cache end function addsub(c::Taylor0,a::T, b::T,cache::Taylor0) where {T<:Number} cache.coeffs.=c.coeffs cache[0]=a+ cache[0]-b return cache end addsub(a::T, c::Taylor0,b::T,cache::Taylor0) where {T<:Number}= addsub(c,a, b,cache) function addsub(c::T,a::T, b::T,cache::Taylor0) where {T<:Number}#requires cache clean cache[0]=a+c-b return cache end ###########"negate########### function negateT(a::Taylor0,cache::Taylor0) #where {T<:Number} @__dot__ cache.coeffs = (-)(a.coeffs) return cache end function negateT(a::T,cache::Taylor0) where {T<:Number} # requires cache1 clean cache[0]=-a return cache end #################################################subsub########################################################" function subsub(a::Taylor0, b::Taylor0,c::Taylor0,cache::Taylor0) @__dot__ cache.coeffs = subsub(a.coeffs, b.coeffs,c.coeffs) return cache end function subsub(a::Taylor0, b::Taylor0,c::T,cache::Taylor0) where {T<:Number} cache.coeffs.=b.coeffs cache[0]=cache[0]+c #(a-b-c=a-(b+c)) @__dot__ cache.coeffs = (-)(a.coeffs, cache.coeffs) return cache end subsub(a::Taylor0, b::T,c::Taylor0,cache::Taylor0) where {T<:Number}=subsub(a, c,b,cache) function subsub(a::T,b::Taylor0, c::Taylor0,cache::Taylor0) where {T<:Number} @__dot__ cache.coeffs = (-)(b.coeffs) cache[0]=a+ cache[0] @__dot__ cache.coeffs = (-)(cache.coeffs, c.coeffs) return cache end function subsub(a::Taylor0, b::T,c::T,cache::Taylor0) where {T<:Number} cache.coeffs.=a.coeffs cache[0]=cache[0]-b-c return cache end function subsub( a::T,b::Taylor0,c::T,cache::Taylor0) where {T<:Number} @__dot__ cache.coeffs = (-)(b.coeffs) cache[0]=cache[0]+a-c return cache end subsub( b::T,c::T,a::Taylor0,cache::Taylor0) where {T<:Number}=subsub( b,a,c,cache) function subsub( a::T,b::T,c::T,cache::Taylor0) where {T<:Number}#require emptying the cache cache[0]=a-b-c return cache end #################################subadd####################################"" function subadd(a::P,b::Q,c::R,cache::Taylor0) where {P,Q,R <:Union{Taylor0,Number}} addsub(a,c,b,cache) end ##################################""subT################################ function subT(a::Taylor0, b::Taylor0,cache::Taylor0)# where {T<:Number} @__dot__ cache.coeffs = (-)(a.coeffs, b.coeffs) return cache end function subT(a::Taylor0, b::T,cache::Taylor0) where {T<:Number} @__dot__ cache.coeffs = a.coeffs cache[0]=cache[0]-b return cache end function subT(a::T, b::Taylor0,cache::Taylor0) where {T<:Number} @__dot__ cache.coeffs = (-)(b.coeffs) cache[0]=cache[0]+a return cache end function subT( a::T,b::T,cache::Taylor0) where {T<:Number} ##require emptying the cache #cache.coeffs.=0.0 # ok to empty...allocates !!! cache[0]=a-b return cache end #= function addT(a::Taylor0, b::T) where {T<:Number} #case where no cache is given, a is not a var and it is ok to modify it (its the result of previous inter-ops) a[0]=a[0]+b return a end =# #= function addT(a::Taylor0, b::Taylor0) where {T<:Number} #case where no cache is given, ok to squash a @__dot__ a.coeffs = (+)(a.coeffs, b.coeffs) return a end =# function addT(a::Taylor0, b::Taylor0,cache::Taylor0) @__dot__ cache.coeffs = (+)(a.coeffs, b.coeffs) return cache end function addT(a::Taylor0, b::T,cache::Taylor0) where {T<:Number} cache.coeffs.=a.coeffs cache[0]=cache[0]+b return cache end addT(b::T,a::Taylor0,cache::Taylor0) where {T<:Number}=addT(a, b,cache) function addT( a::T,b::T,cache::Taylor0) where {T<:Number}#require emptying the cache #cache.coeffs.=0.0 # cache[0]=a+b return cache end #add Three vars a b c function addT(a::Taylor0, b::Taylor0,c::Taylor0,cache::Taylor0) @__dot__ cache.coeffs = (+)(a.coeffs, b.coeffs,c.coeffs) return cache end function addT(a::Taylor0, b::Taylor0,c::T,cache::Taylor0) where {T<:Number} @__dot__ cache.coeffs = (+)(a.coeffs, b.coeffs) cache[0]=cache[0]+c return cache end addT(a::Taylor0,c::T, b::Taylor0,cache::Taylor0) where {T<:Number}=addT(a, b,c,cache) addT(c::T, a::Taylor0, b::Taylor0,cache::Taylor0) where {T<:Number}=addT(a, b,c,cache) function addT(a::Taylor0, b::T,c::T,cache::Taylor0) where {T<:Number} cache.coeffs.=a.coeffs cache[0]=cache[0]+c+b return cache end addT( b::T,a::Taylor0,c::T,cache::Taylor0) where {T<:Number}=addT(a, b,c,cache) addT( b::T,c::T,a::Taylor0,cache::Taylor0) where {T<:Number}=addT(a, b,c,cache) function addT( a::T,b::T,c::T,cache::Taylor0) where {T<:Number}#require clean cache cache[0]=a+b+c return cache end ####################mul uses one cache when the original mul has only two elemnts a * b function mulT(a::Taylor0, b::T,cache1::Taylor0) where {T<:Number} fill!(cache1.coeffs, b)##I fixed broadcast dimension mismatch @__dot__ cache1.coeffs = a.coeffs * cache1.coeffs ##I fixed broadcast dimension mismatch return cache1 end mulT(a::T,b::Taylor0, cache1::Taylor0) where {T<:Number} = mulT(b , a,cache1) function mulT(a::Taylor0, b::Taylor0,cache1::Taylor0) for k in eachindex(a) @inbounds cache1[k] = a[0] * b[k] @inbounds for i = 1:k cache1[k] += a[i] * b[k-i] end end return cache1 end function mulT(a::T, b::T,cache1::Taylor0) where {T<:Number} #cache1 needs to be clean: a clear here will alloc...this is the only "mul" that wants a clean cache #sometimes the cache can be dirty at only first position: it will not throw an assert error!!! # cache[1].coeffs.=0.0 #it causes two allocs for mul(cst,cst,a,b) cache1[0]=a*b return cache1 end #########################mul uses two caches when the op has many terms########################### function mulTT(a::Taylor0, b::T,cache1::Taylor0,cache2::Taylor0) where {T<:Number}#in middle ops: a is the returned cache1 so do not fudge a or cache1 before the end fill!(cache2.coeffs, b) @__dot__ cache1.coeffs = a.coeffs * cache2.coeffs ##fixed broadcast dimension mismatch return cache1 end mulTT(a::T,b::Taylor0, cache1::Taylor0,cache2::Taylor0) where {T<:Number} = mulTT(b , a,cache1,cache2) function mulTT(a::Taylor0, b::Taylor0,cache1::Taylor0,cache2::Taylor0) #in middle ops: a is the returned cache1 so do not fudge a or cache1 before the end for k in eachindex(a) @inbounds cache2[k] = a[0] * b[k] @inbounds for i = 1:k cache2[k] += a[i] * b[k-i] end end @__dot__ cache1.coeffs = cache2.coeffs return cache1 end function mulTT(a::T, b::T,cache1::Taylor0,cache2::Taylor0) where {T<:Number} #cache1 needs to be clean: a clear here will alloc...this is the only "mul" that wants a clean cache #sometimes the cache can be dirty at only first position: it will not throw an assert error!!! # cache[1].coeffs.=0.0 #it causes two allocs for mul(cst,cst,a,b) cache1[0]=a*b return cache1 end #########################################muladdT and subadd not test : added T to muladd cuz there did not want to import muladd to extend...maybe later #= function muladdT(a::Taylor0, b::Taylor0, c::Taylor0,cache1::Taylor0) where {T<:Number} for k in eachindex(a) cache1[k] = a[0] * b[k] + c[k] @inbounds for i = 1:k cache1[k] += a[i] * b[k-i] end end @__dot__ cache1.coeffs = cache2.coeffs return cache1 end =# function muladdT(a::P,b::Q,c::R,cache1::Taylor0) where {P,Q,R <:Union{Taylor0,Number}} addT(mulT(a, b,cache1),c,cache1) # improvement of added performance not tested: there is one extra step of #puting cache in itself end function mulsub(a::P,b::Q,c::R,cache1::Taylor0) where {P,Q,R <:Union{Taylor0,Number}} subT(mulT(a, b,cache1),c,cache1) end function divT(a::T, b::T,cache1::Taylor0) where {T<:Number} cache1[0]=a/b return cache1 end function divT(a::Taylor0, b::T,cache1::Taylor0) where {T<:Number} fill!(cache1.coeffs, b) #println("division") #= @inbounds aux = a.coeffs[1] / b v = Array{typeof(aux)}(undef, length(a.coeffs)) =# @__dot__ cache1.coeffs = a.coeffs / cache1.coeffs return cache1 end function divT(a::T, b::Taylor0,cache1::Taylor0) where {T<:Number} powerT(b, -1.0,cache1) @__dot__ cache1.coeffs=cache1.coeffs*a ### broadcast dimension mismatch------------------div can have 2 caches then...:( return cache1 end #divT(a::Taylor0, b::Taylor0{S}) where {T<:Number,S<:Number} = divT(promote(a,b)...) function divT(a::Taylor0, b::Taylor0,cache1::Taylor0) iszero(a) && !iszero(b) && return cache1 # this op has its own clean cache2 ordfact, cdivfact = divfactorization(a, b) cache1[0] = cdivfact for k=1:a.order-ordfact imin = max(0, k+ordfact-b.order) @inbounds cache1[k] = cache1[imin] * b[k+ordfact-imin] @inbounds for i = imin+1:k-1 cache1[k] += cache1[i] * b[k+ordfact-i] end if k+ordfact ≤ b.order @inbounds cache1[k] = (a[k+ordfact]-cache1[k]) / b[ordfact] else @inbounds cache1[k] = - cache1[k] / b[ordfact] end end return cache1 end function clearCache(cache::Vector{Taylor0},::Val{CS},::Val{3}) where {CS} for i=1:CS cache[i][0]=0.0 cache[i][1]=0.0 cache[i][2]=0.0 cache[i][3]=0.0 # no need to clean? higher value is empty end end #= function clearCache(cache::Vector{Taylor0},::Val{2}) #where {CS} #for i=1:CS cache[1].coeffs.=0.0 cache[2].coeffs.=0.0 # end end =# function clearCache(cache::Vector{Taylor0},::Val{CS},::Val{2}) where {CS} for i=1:CS cache[i][0]=0.0 cache[i][1]=0.0 cache[i][2]=0.0 end end function clearCache(cache::Vector{Taylor0},::Val{CS},::Val{1}) where {CS} for i=1:CS cache[i][0]=0.0 cache[i][1]=0.0 end end #= function clearCache(cache::Vector{Taylor0}) #where {T<:Number} for i=1:length(cache) cache[i].coeffs.=0.0 end end =#
QuantizedSystemSolver
https://github.com/mongibellili/QuantizedSystemSolver.jl.git
[ "MIT" ]
1.0.1
b4bf1003586f2ee6cb98d8df29e88cbbfacd2ea1
code
6548
# This file is part of the TaylorSeries.jl Julia package, MIT license # # Luis Benet & David P. Sanders # UNAM # # MIT Expat license # ## Auxiliary function ## #= """ resize_coeffs1!{T<Number}(coeffs::Array{T,1}, order::Int) If the length of `coeffs` is smaller than `order+1`, it resizes `coeffs` appropriately filling it with zeros. """ =# #= function resize_coeffs1!(coeffs::Array{T,1}, order::Int) where {T<:Number} lencoef = length(coeffs) resize!(coeffs, order+1) #println("resize-coeffs") if order > lencoef-1 z = zero(coeffs[1]) @simd for ord in lencoef+1:order+1 @inbounds coeffs[ord] = z end end return nothing end =# #= """ resize_coeffsHP!{T<Number}(coeffs::Array{T,1}, order::Int) If the length of `coeffs` is smaller than the number of coefficients correspondinf to `order` (given by `size_table[order+1]`), it resizes `coeffs` appropriately filling it with zeros. """ =# #= function resize_coeffsHP!(coeffs::Array{T,1}, order::Int) where {T<:Number} lencoef = length( coeffs ) @inbounds num_coeffs = size_table[order+1] @assert order ≤ get_order() && lencoef ≤ num_coeffs num_coeffs == lencoef && return nothing resize!(coeffs, num_coeffs) z = zero(coeffs[1]) @simd for ord in lencoef+1:num_coeffs @inbounds coeffs[ord] = z end return nothing end =# ## Minimum order of an HomogeneousPolynomial compatible with the vector's length #= function orderH(coeffs::Array{T,1}) where {T<:Number} ord = 0 ll = length(coeffs) for i = 1:get_order()+1 @inbounds num_coeffs = size_table[i] ll ≤ num_coeffs && break ord += 1 end return ord end =# ## getcoeff ## #= """ getcoeff(a, n) Return the coefficient of order `n::Int` of a `a::Taylor0` polynomial. """ =# getcoeff(a::Taylor0, n::Int) = (@assert 0 ≤ n ≤ a.order; return a[n]) getindex(a::Taylor0, n::Int) = a.coeffs[n+1] getindex(a::Taylor0, u::UnitRange{Int}) = view(a.coeffs, u .+ 1 ) getindex(a::Taylor0, c::Colon) = view(a.coeffs, c) getindex(a::Taylor0, u::StepRange{Int,Int}) = view(a.coeffs, u[:] .+ 1) setindex!(a::Taylor0, x::T, n::Int) where {T<:Number} = a.coeffs[n+1] = x setindex!(a::Taylor0, x::T, u::UnitRange{Int}) where {T<:Number} = a.coeffs[u .+ 1] .= x function setindex!(a::Taylor0, x::Array{T,1}, u::UnitRange{Int}) where {T<:Number} @assert length(u) == length(x) for ind in eachindex(x) a.coeffs[u[ind]+1] = x[ind] end end setindex!(a::Taylor0, x::T, c::Colon) where {T<:Number} = a.coeffs[c] .= x setindex!(a::Taylor0, x::Array{T,1}, c::Colon) where {T<:Number} = a.coeffs[c] .= x setindex!(a::Taylor0, x::T, u::StepRange{Int,Int}) where {T<:Number} = a.coeffs[u[:] .+ 1] .= x function setindex!(a::Taylor0, x::Array{T,1}, u::StepRange{Int,Int}) where {T<:Number} @assert length(u) == length(x) for ind in eachindex(x) a.coeffs[u[ind]+1] = x[ind] end end #= function setorder(a::Taylor0, n::Int) #setfield!: immutable struct of type Taylor0 cannot be changed a.order=n end =# ## eltype, length, get_order, etc ## @inline iterate(a::Taylor0, state=0) = state > a.order ? nothing : (a.coeffs[state+1], state+1) # Base.iterate(rS::Iterators.Reverse{Taylor0}, state=rS.itr.order) = state < 0 ? nothing : (a.coeffs[state], state-1) @inline length(a::Taylor0) = length(a.coeffs) @inline firstindex(a::Taylor0) = 0 @inline lastindex(a::Taylor0) = a.order @inline eachindex(a::Taylor0) = firstindex(a):lastindex(a) #@inline numtype(::Taylor0{S}) where {S<:Number} = S @inline size(a::Taylor0) = size(a.coeffs) @inline get_order(a::Taylor0) = a.order @inline axes(a::Taylor0) = () numtype(a) = eltype(a) #= @doc doc""" numtype(a::AbstractSeries) Returns the type of the elements of the coefficients of `a`. """ numtype =# # Dumb methods included to properly export normalize_taylor (if IntervalArithmetic is loaded) #@inline normalize_taylor(a::AbstractSeries) = a ## fixorder ## #= @inline function fixorder(a::Taylor0, b::Taylor0) a.order == b.order && return a, b minorder, maxorder = minmax(a.order, b.order) if minorder ≤ 0 minorder = maxorder end return Taylor0(copy(a.coeffs), minorder), Taylor0(copy(b.coeffs), minorder) end =# # can i go to the higher order when fixing orders?? @inline function fixorder(a::Taylor0, b::Taylor0) # a.order == b.order && return a, b if a.order < b.order resize_coeffs1!(a.coeffs,b.order) return Taylor0(a.coeffs, b.order),b elseif a.order > b.order resize_coeffs1!(b.coeffs,a.order) return a, Taylor0(b.coeffs, a.order) end end # Finds the first non zero entry; extended to Taylor0 function Base.findfirst(a::Taylor0) first = findfirst(x->!iszero(x), a.coeffs) isa(first, Nothing) && return -1 return first-1 end # Finds the last non-zero entry; extended to Taylor0 function Base.findlast(a::Taylor0) last = findlast(x->!iszero(x), a.coeffs) isa(last, Nothing) && return -1 return last-1 end ## copyto! ## # Inspired from base/abstractarray.jl, line 665 function copyto!(dst::Taylor0, src::Taylor0) length(dst) < length(src) && throw(ArgumentError(string("Destination has fewer elements than required; no copy performed"))) destiter = eachindex(dst) y = iterate(destiter) for x in src dst[y[1]] = x y = iterate(destiter, y[2]) end return dst end #= """ constant_term(a) Return the constant value (zero order coefficient) for `Taylor0` and `TaylorN`. The fallback behavior is to return `a` itself if `a::Number`, or `a[1]` when `a::Vector`. """ =# constant_term(a::Taylor0) = a[0] constant_term(a::Vector{T}) where {T<:Number} = constant_term.(a) constant_term(a::Number) = a #= """ linear_polynomial(a) Returns the linear part of `a` as a polynomial (`Taylor0` or `TaylorN`), *without* the constant term. The fallback behavior is to return `a` itself. """ =# #= linear_polynomial(a::Taylor0) = Taylor0([zero(a[1]), a[1]], a.order) linear_polynomial(a::Vector{T}) where {T<:Number} = linear_polynomial.(a) linear_polynomial(a::Number) = a #= """ nonlinear_polynomial(a) Returns the nonlinear part of `a`. The fallback behavior is to return `zero(a)`. """ =# nonlinear_polynomial(a::AbstractSeries) = a - constant_term(a) - linear_polynomial(a) nonlinear_polynomial(a::Vector{T}) where {T<:Number} = nonlinear_polynomial.(a) nonlinear_polynomial(a::Number) = zero(a) =#
QuantizedSystemSolver
https://github.com/mongibellili/QuantizedSystemSolver.jl.git
[ "MIT" ]
1.0.1
b4bf1003586f2ee6cb98d8df29e88cbbfacd2ea1
code
3307
# This file is part of the TaylorSeries.jl Julia package, MIT license # # Luis Benet & David P. Sanders # UNAM # # MIT Expat license # #= ## Differentiating ## """ differentiate(a) Return the `Taylor0` polynomial of the differential of `a::Taylor0`. The order of the result is `a.order-1`. The function `derivative` is an exact synonym of `differentiate`. """ =# function differentiate(a::Taylor0) res = Taylor0(zero(a[0]), a.order(a)-1) for ord in eachindex(res) differentiate!(res, a, ord) end return res end #= """ derivative An exact synonym of [`differentiate`](@ref). """ =# const derivative = differentiate #= """ differentiate!(res, a) --> nothing In-place version of `differentiate`. Compute the `Taylor0` polynomial of the differential of `a::Taylor0` and return it as `res` (order of `res` remains unchanged). """ =# #= function differentiate!(p::Taylor0, a::Taylor0) for k in eachindex(a) #differentiate!(res, a, ord) @inbounds p[k] = (k+1)*a[k+1] end nothing end =# function differentiate!(p::Taylor0, a::Taylor0, k::Int) if k < a.order @inbounds p[k] = (k+1)*a[k+1] end return nothing end function differentiate!(::Val{O},cache::Taylor0, a::Taylor0)where {O} for k=0:O-1 # differentiate!(res, a, ord) # if k < a.order @inbounds cache[k] = (k+1)*a[k+1] #end end cache[O]=0.0 #cache Letter O not zero nothing end function differentiate(a::Taylor0, n::Int) if n > a.order return Taylor0(T, 0) elseif n==0 return a else res = differentiate(a) for i = 2:n differentiate!(Val(a.order),res, res) end return Taylor0(view(res.coeffs, 1:a.order-n+1)) end end function ndifferentiate!(cache::Taylor0,a::Taylor0, n::Int) if n > a.order cache.coeffs.=0.0 elseif n==0 cache.coeffs.=a.coeffs else differentiate!(Val(a.order),cache,a) for i = 2:n differentiate!(Val(a.order),cache, cache) end #return Taylor0(view(res.coeffs, 1:a.order-n+1)) end end #= """ differentiate(n, a) Return the value of the `n`-th differentiate of the polynomial `a`. """ =# function differentiate(n::Int, a::Taylor0) @assert a.order ≥ n ≥ 0 factorial( widen(n) ) * a[n] end ## Integrating ## #= """ integrate(a, [x]) Return the integral of `a::Taylor0`. The constant of integration (0-th order coefficient) is set to `x`, which is zero if ommitted. """ =# function integrate(a::Taylor0, x::S) where {S<:Number} order = get_order(a) aa = a[0]/1 + zero(x) R = typeof(aa) coeffs = Array{typeof(aa)}(undef, order+1) fill!(coeffs, zero(aa)) @inbounds for i = 1:order coeffs[i+1] = a[i-1] / i end @inbounds coeffs[1] = convert(R, x) return Taylor0(coeffs, a.order) end integrate(a::Taylor0) = integrate(a, zero(a[0])) function integrate!(p::Taylor0, a::Taylor0, x::S) where {S<:Number} p.coeffs[1]=x @inbounds for i = 1:a.order p[i] = a[i-1] / i end return nothing end function integrate!( a::Taylor0, x::S) where {S<:Number} @inbounds for i in a.order-1:-1:0 a[i+1] = a[i] / (i+1) end a.coeffs[1]=x return nothing end
QuantizedSystemSolver
https://github.com/mongibellili/QuantizedSystemSolver.jl.git
[ "MIT" ]
1.0.1
b4bf1003586f2ee6cb98d8df29e88cbbfacd2ea1
code
2533
# Float64his file is part of the Taylor0Series.jl Julia package, MIFloat64 license # # Luis Benet & David P. Sanders # UNAM # # MIFloat64 Expat license # #= """ AbstractSeries{Float64<:Number} <: Number Parameterized abstract type for [`Taylor0`](@ref), [`HomogeneousPolynomial`](@ref) and [`Float64aylorN`](@ref). """ =# ###################abstract type AbstractSeries{Float64<:Number} <: Number end ## Constructors ## ######################### Taylor0 #= """ Taylor0{Float64<:Number} <: AbstractSeries{Float64} DataFloat64ype for polynomial expansions in one independent variable. **Fields:** - `coeffs :: Array{Float64,1}` Expansion coefficients; the ``i``-th component is the coefficient of degree ``i-1`` of the expansion. - `order :: Int` Maximum order (degree) of the polynomial. Note that `Taylor0` variables are callable. For more information, see [`evaluate`](@ref). """ =# struct Taylor0 #<: AbstractSeries{Float64} coeffs :: Array{Float64,1} order :: Int ## Inner constructor ## #= function Taylor0(coeffs::Array{Float64,1}, order::Int) #resize_coeffs1!(coeffs, order) return new(coeffs, order) end =# end ## Outer constructors ## Taylor0(x::Taylor0) = x #Taylor0(coeffs::Array{Float64,1}, order::Int) = Taylor0(coeffs, order) Taylor0(coeffs::Array{Float64,1}) = Taylor0(coeffs, length(coeffs)-1) function Taylor0(x::Float64, order::Int) v = fill(0.0, order+1) v[1] = x return Taylor0(v, order) end # Methods using 1-d views to create Taylor0's #= Taylor0(a::SubArray{Float64,1}, order::Int) = Taylor0(a.parent[a.indices...], order) Taylor0(a::SubArray{Float64,1}) = Taylor0(a.parent[a.indices...]) =# # Shortcut to define Taylor0 independent variables #= """ Taylor0([Float64::Float64ype=Float64], order::Int) Shortcut to define the independent variable of a `Taylor0` polynomial of given `order`. Float64he default type for `Float64` is `Float64`. ```julia julia> Taylor0(16) 1.0 t + 𝒪(t¹⁷) julia> Taylor0(Rational{Int}, 4) 1//1 t + 𝒪(t⁵) ``` """ =# #= Taylor0(::Type{Float64}, order::Int) = Taylor0( [0.0, 1.0], order) Taylor0(order::Int) = Taylor0(Float64, order) =# # A `Number` which is not an `AbstractSeries` #const NumberNotSeries = Union{Real,Complex} # A `Number` which is not `Float64aylorN` nor a `HomogeneousPolynomial` #const NumberNotSeriesN = Union{Real,Complex,Taylor0} ## Additional Taylor0 outer constructor ## #Taylor0(x::S) where {Float64<:Number,S<:NumberNotSeries} = Taylor0([convert(Float64,x)], 0)
QuantizedSystemSolver
https://github.com/mongibellili/QuantizedSystemSolver.jl.git
[ "MIT" ]
1.0.1
b4bf1003586f2ee6cb98d8df29e88cbbfacd2ea1
code
2276
# This file is part of the Taylor0Series.jl Julia package, MIT license # # Luis Benet & David P. Sanders # UNAM # # MIT Expat license # ## Conversion convert(::Type{Taylor0}, a::Taylor0) = Taylor0(convert(Array{Float64,1}, a.coeffs), a.order) convert(::Type{Taylor0}, a::Taylor0) = a #convert(::Type{Taylor0{Rational{T}}}, a::Taylor0{S}) where {T<:Integer,S<:AbstractFloat} = Taylor0(rationalize.(a[:]), a.order) convert(::Type{Taylor0}, b::Array{Float64,1}) = Taylor0(b, length(b)-1) convert(::Type{Taylor0}, b::Array{S,1}) where {S<:Number} = Taylor0(convert(Array{Float64,1},b), length(b)-1) convert(::Type{Taylor0}, b::S) where {T<:Number,S<:Number} = Taylor0([convert(T,b)], 0) convert(::Type{Taylor0}, b::T) = Taylor0([b], 0) convert(::Type{Taylor0}, a::T) = Taylor0(a, 0) # Promotion #= promote_rule(::Type{Taylor0}, ::Type{Taylor0}) = Taylor0 promote_rule(::Type{Taylor0}, ::Type{Taylor0{S}}) where {T<:Number,S<:Number} = Taylor0{promote_type(T,S)} =# promote_rule(::Type{Taylor0}, ::Type{Array{Float64,1}}) = Taylor0 #= promote_rule(::Type{Taylor0}, ::Type{Array{S,1}}) where {T<:Number,S<:Number} = Taylor0{promote_type(T,S)} =# #promote_rule(::Type{Taylor0}, ::Type{T}) where {T<:Number} = Taylor0 #= promote_rule(::Type{Taylor0}, ::Type{S}) where {T<:Number,S<:Number} = Taylor0{promote_type(T,S)} =# #= promote_rule(::Type{Taylor0{Taylor0}}, ::Type{Taylor0}) where {T<:Number} = Taylor0{Taylor0} =# # Order may matter #= promote_rule(::Type{S}, ::Type{T}) where {S<:NumberNotSeries,T<:AbstractSeries} = promote_rule(T,S) # disambiguation with Base promote_rule(::Type{Bool}, ::Type{T}) where {T<:AbstractSeries} = promote_rule(T, Bool) promote_rule(::Type{S}, ::Type{T}) where {S<:AbstractIrrational,T<:AbstractSeries} = promote_rule(T,S) =# # Nested Taylor0's #= function promote(a::Taylor0{Taylor0}, b::Taylor0) where {T<:NumberNotSeriesN} order_a = get_order(a) order_b = get_order(b) zb = zero(b) new_bcoeffs = similar(a.coeffs) new_bcoeffs[1] = b @inbounds for ind in 2:order_a+1 new_bcoeffs[ind] = zb end return a, Taylor0(b, order_a) end promote(b::Taylor0, a::Taylor0{Taylor0}) where {T<:NumberNotSeriesN} = reverse(promote(a, b)) =#
QuantizedSystemSolver
https://github.com/mongibellili/QuantizedSystemSolver.jl.git
[ "MIT" ]
1.0.1
b4bf1003586f2ee6cb98d8df29e88cbbfacd2ea1
code
3595
# This file is part of the TaylorSeries.jl Julia package, MIT license # # Luis Benet & David P. Sanders # UNAM # # MIT Expat license # ## Evaluating ## #= """ evaluate(a, [dx]) Evaluate a `Taylor0` polynomial using Horner's rule (hand coded). If `dx` is ommitted, its value is considered as zero. Note that the syntax `a(dx)` is equivalent to `evaluate(a,dx)`, and `a()` is equivalent to `evaluate(a)`. """ =# function evaluate(a::Taylor0, dx::T) where {T<:Number} @inbounds suma = a[end] @inbounds for k in a.order-1:-1:0 suma = suma*dx + a[k] end suma end #= function evaluate(a::Taylor0, dx::S) where {S<:Number} suma = a[end]*one(dx) @inbounds for k in a.order-1:-1:0 suma = suma*dx + a[k] end suma end =# evaluate(a::Taylor0) = a[0] #= """ evaluate(x, δt) Evaluates each element of `x::AbstractArray{Taylor0}`, representing the dependent variables of an ODE, at *time* δt. Note that the syntax `x(δt)` is equivalent to `evaluate(x, δt)`, and `x()` is equivalent to `evaluate(x)`. """ =# #= evaluate(x::AbstractArray{Taylor0}, δt::S) where {T<:Number,S<:Number} = evaluate.(x, δt) evaluate(a::AbstractArray{Taylor0}) where {T<:Number} = evaluate.(a, zero(T)) =# #= """ evaluate!(x, δt, x0) Evaluates each element of `x::AbstractArray{Taylor0}`, representing the Taylor expansion for the dependent variables of an ODE at *time* `δt`. It updates the vector `x0` with the computed values. """ =# #= function evaluate!(x::AbstractArray{Taylor0}, δt::S, x0::AbstractArray{T}) where {T<:Number,S<:Number} @inbounds for i in eachindex(x, x0) x0[i] = evaluate( x[i], δt ) end nothing end =# #= """ evaluate(a, x) Substitute `x::Taylor0` as independent variable in a `a::Taylor0` polynomial. Note that the syntax `a(x)` is equivalent to `evaluate(a, x)`. """ =# #= evaluate(a::Taylor0, x::Taylor0{S}) where {T<:Number,S<:Number} = evaluate(promote(a,x)...) =# function evaluate(a::Taylor0, x::Taylor0) if a.order != x.order a, x = fixorder(a, x)#allocates...delete later end @inbounds suma = a[end]*one(x) @inbounds for k = a.order-1:-1:0 suma = suma*x + a[k] end suma end function evaluateX(a::Taylor0, x::Taylor0) #not tested if a.order != x.order a, x = fixorder(a, x) end @inbounds suma = a[end]*one(x) @inbounds for k = a.order-1:-1:0 suma = suma*x + a[k] end #println("suma",suma) @inbounds for k = 0:a.order-1 a[k]=suma[k] end return nothing end #= function evaluate(a::Taylor0{Taylor0}, x::Taylor0) where {T<:Number} @inbounds suma = a[end]*one(x) @inbounds for k = a.order-1:-1:0 suma = suma*x + a[k] end suma end function evaluate(a::Taylor0, x::Taylor0{Taylor0}) where {T<:Number} @inbounds suma = a[end]*one(x) @inbounds for k = a.order-1:-1:0 suma = suma*x + a[k] end suma end =# evaluate(p::Taylor0, x::Array{S}) where {S<:Number} = evaluate.([p], x) #function-like behavior for Taylor0 (p::Taylor0)(x) = evaluate(p, x) (p::Taylor0)() = evaluate(p) #function-like behavior for Vector{Taylor0} #= if VERSION >= v"1.3" (p::AbstractArray{Taylor0})(x) where {T<:Number} = evaluate.(p, x) (p::AbstractArray{Taylor0})() where {T<:Number} = evaluate.(p) else (p::Array{Taylor0})(x) where {T<:Number} = evaluate.(p, x) (p::SubArray{Taylor0})(x) where {T<:Number} = evaluate.(p, x) (p::Array{Taylor0})() where {T<:Number} = evaluate.(p) (p::SubArray{Taylor0})() where {T<:Number} = evaluate.(p) end =#
QuantizedSystemSolver
https://github.com/mongibellili/QuantizedSystemSolver.jl.git
[ "MIT" ]
1.0.1
b4bf1003586f2ee6cb98d8df29e88cbbfacd2ea1
code
19784
# This file is part of the TaylorSeries.jl Julia package, MIT license # # Luis Benet & David P. Sanders # UNAM # # MIT Expat license # # Functions function exp(a::Taylor0) order = a.order aux = exp(constant_term(a)) # @show aux aa = one(aux) * a # @show aa # @show aa===a # @show one(aux) c = Taylor0( aux, order ) # @show c for k in eachindex(a) exp!(c, aa, k) end return c end function log(a::Taylor0) iszero(constant_term(a)) && throw(DomainError(a, """The 0-th order coefficient must be non-zero in order to expand `log` around 0.""")) order = a.order aux = log(constant_term(a)) aa = one(aux) * a c = Taylor0( aux, order ) for k in eachindex(a) log!(c, aa, k) end return c end sin(a::Taylor0) = sincos(a)[1] cos(a::Taylor0) = sincos(a)[2] function sincos(a::Taylor0) order = a.order aux = sin(constant_term(a)) aa = one(aux) * a s = Taylor0( aux, order ) c = Taylor0( cos(constant_term(a)), order ) for k in eachindex(a) sincos!(s, c, aa, k) end return s, c end function tan(a::Taylor0) order = a.order aux = tan(constant_term(a)) aa = one(aux) * a c = Taylor0(aux, order) c2 = Taylor0(aux^2, order) for k in eachindex(a) tan!(c, aa, c2, k) end return c end function asin(a::Taylor0) a0 = constant_term(a) a0^2 == one(a0) && throw(DomainError(a, """Series expansion of asin(x) diverges at x = ±1.""")) order = a.order aux = asin(a0) aa = one(aux) * a c = Taylor0( aux, order ) r = Taylor0( sqrt(1 - a0^2), order ) for k in eachindex(a) asin!(c, aa, r, k) end return c end function acos(a::Taylor0) a0 = constant_term(a) a0^2 == one(a0) && throw(DomainError(a, """Series expansion of asin(x) diverges at x = ±1.""")) order = a.order aux = acos(a0) aa = one(aux) * a c = Taylor0( aux, order ) r = Taylor0( sqrt(1 - a0^2), order ) for k in eachindex(a) acos!(c, aa, r, k) end return c end function atan(a::Taylor0) order = a.order a0 = constant_term(a) aux = atan(a0) aa = one(aux) * a c = Taylor0( aux, order) r = Taylor0(one(aux) + a0^2, order) iszero(constant_term(r)) && throw(DomainError(a, """Series expansion of atan(x) diverges at x = ±im.""")) for k in eachindex(a) atan!(c, aa, r, k) end return c end function atan(a::Taylor0, b::Taylor0) c = atan(a/b) c[0] = atan(constant_term(a), constant_term(b)) return c end sinh(a::Taylor0) = sinhcosh(a)[1] cosh(a::Taylor0) = sinhcosh(a)[2] function sinhcosh(a::Taylor0) order = a.order aux = sinh(constant_term(a)) aa = one(aux) * a s = Taylor0( aux, order) c = Taylor0( cosh(constant_term(a)), order) for k in eachindex(a) sinhcosh!(s, c, aa, k) end return s, c end function tanh(a::Taylor0) order = a.order aux = tanh( constant_term(a) ) aa = one(aux) * a c = Taylor0( aux, order) c2 = Taylor0( aux^2, order) for k in eachindex(a) tanh!(c, aa, c2, k) end return c end function asinh(a::Taylor0) order = a.order a0 = constant_term(a) aux = asinh(a0) aa = one(aux) * a c = Taylor0( aux, order ) r = Taylor0( sqrt(a0^2 + 1), order ) iszero(constant_term(r)) && throw(DomainError(a, """Series expansion of asinh(x) diverges at x = ±im.""")) for k in eachindex(a) asinh!(c, aa, r, k) end return c end function acosh(a::Taylor0) a0 = constant_term(a) a0^2 == one(a0) && throw(DomainError(a, """Series expansion of acosh(x) diverges at x = ±1.""")) order = a.order aux = acosh(a0) aa = one(aux) * a c = Taylor0( aux, order ) r = Taylor0( sqrt(a0^2 - 1), order ) for k in eachindex(a) acosh!(c, aa, r, k) end return c end function atanh(a::Taylor0) order = a.order a0 = constant_term(a) aux = atanh(a0) aa = one(aux) * a c = Taylor0( aux, order) r = Taylor0(one(aux) - a0^2, order) iszero(constant_term(r)) && throw(DomainError(a, """Series expansion of atanh(x) diverges at x = ±1.""")) for k in eachindex(a) atanh!(c, aa, r, k) end return c end # Recursive functions (homogeneous coefficients) @inline function identity!(c::Taylor0, a::Taylor0, k::Int) @inbounds c[k] = identity(a[k]) return nothing end @inline function zero!(c::Taylor0, a::Taylor0, k::Int) @inbounds c[k] = zero(a[k]) return nothing end @inline function one!(c::Taylor0, a::Taylor0, k::Int) if k == 0 @inbounds c[0] = one(a[0]) else @inbounds c[k] = zero(a[k]) end return nothing end @inline function abs!(c::Taylor0, a::Taylor0, k::Int) z = zero(constant_term(a)) if constant_term(constant_term(a)) > constant_term(z) return add!(c, a, k) elseif constant_term(constant_term(a)) < constant_term(z) return subst!(c, a, k) else throw(DomainError(a, """The 0th order coefficient must be non-zero (abs(x) is not differentiable at x=0).""")) end return nothing end @inline abs2!(c::Taylor0, a::Taylor0, k::Int) = sqr!(c, a, k) @inline function exp!(c::Taylor0, a::Taylor0, k::Int) if k == 0 @inbounds c[0] = exp(constant_term(a)) #this was already computed before!!no need to do anything if k==0 return nothing end @inbounds c[k] = k * a[k] * c[0] @inbounds for i = 1:k-1 c[k] += (k-i) * a[k-i] * c[i] end @inbounds c[k] = c[k] / k return nothing end @inline function log!(c::Taylor0, a::Taylor0, k::Int) if k == 0 @inbounds c[0] = log(constant_term(a)) return nothing elseif k == 1 @inbounds c[1] = a[1] / constant_term(a) return nothing end @inbounds c[k] = (k-1) * a[1] * c[k-1] @inbounds for i = 2:k-1 c[k] += (k-i) * a[i] * c[k-i] end @inbounds c[k] = (a[k] - c[k]/k) / constant_term(a) return nothing end @inline function sincos!(s::Taylor0, c::Taylor0, a::Taylor0, k::Int) if k == 0 a0 = constant_term(a) @inbounds s[0], c[0] = sincos( a0 ) return nothing end x = a[1] @inbounds s[k] = x * c[k-1] @inbounds c[k] = -x * s[k-1] @inbounds for i = 2:k x = i * a[i] s[k] += x * c[k-i] c[k] -= x * s[k-i] end @inbounds s[k] = s[k] / k @inbounds c[k] = c[k] / k return nothing end @inline function tan!(c::Taylor0, a::Taylor0, c2::Taylor0, k::Int) if k == 0 @inbounds aux = tan( constant_term(a) ) @inbounds c[0] = aux @inbounds c2[0] = aux^2 return nothing end @inbounds c[k] = k * a[k] * c2[0] @inbounds for i = 1:k-1 c[k] += (k-i) * a[k-i] * c2[i] end @inbounds c[k] = a[k] + c[k]/k sqr!(c2, c, k) return nothing end @inline function asin!(c::Taylor0, a::Taylor0, r::Taylor0, k::Int) if k == 0 a0 = constant_term(a) @inbounds c[0] = asin( a0 ) @inbounds r[0] = sqrt( 1 - a0^2 ) return nothing end @inbounds c[k] = (k-1) * r[1] * c[k-1] @inbounds for i in 2:k-1 c[k] += (k-i) * r[i] * c[k-i] end sqrt!(r, 1-a^2, k) @inbounds c[k] = (a[k] - c[k]/k) / constant_term(r) return nothing end @inline function acos!(c::Taylor0, a::Taylor0, r::Taylor0, k::Int) if k == 0 a0 = constant_term(a) @inbounds c[0] = acos( a0 ) @inbounds r[0] = sqrt( 1 - a0^2 ) return nothing end @inbounds c[k] = (k-1) * r[1] * c[k-1] @inbounds for i in 2:k-1 c[k] += (k-i) * r[i] * c[k-i] end sqrt!(r, 1-a^2, k) @inbounds c[k] = -(a[k] + c[k]/k) / constant_term(r) return nothing end @inline function atan!(c::Taylor0, a::Taylor0, r::Taylor0, k::Int) if k == 0 a0 = constant_term(a) @inbounds c[0] = atan( a0 ) @inbounds r[0] = 1 + a0^2 return nothing end @inbounds c[k] = (k-1) * r[1] * c[k-1] @inbounds for i in 2:k-1 c[k] += (k-i) * r[i] * c[k-i] end @inbounds sqr!(r, a, k) @inbounds c[k] = (a[k] - c[k]/k) / constant_term(r) return nothing end @inline function sinhcosh!(s::Taylor0, c::Taylor0, a::Taylor0, k::Int) if k == 0 @inbounds s[0] = sinh( constant_term(a) ) @inbounds c[0] = cosh( constant_term(a) ) return nothing end x = a[1] @inbounds s[k] = x * c[k-1] @inbounds c[k] = x * s[k-1] @inbounds for i = 2:k x = i * a[i] s[k] += x * c[k-i] c[k] += x * s[k-i] end s[k] = s[k] / k c[k] = c[k] / k return nothing end @inline function tanh!(c::Taylor0, a::Taylor0, c2::Taylor0, k::Int) if k == 0 @inbounds aux = tanh( constant_term(a) ) @inbounds c[0] = aux @inbounds c2[0] = aux^2 return nothing end @inbounds c[k] = k * a[k] * c2[0] @inbounds for i = 1:k-1 c[k] += (k-i) * a[k-i] * c2[i] end @inbounds c[k] = a[k] - c[k]/k sqr!(c2, c, k) return nothing end @inline function asinh!(c::Taylor0, a::Taylor0, r::Taylor0, k::Int) if k == 0 a0 = constant_term(a) @inbounds c[0] = asinh( a0 ) @inbounds r[0] = sqrt( a0^2 + 1 ) return nothing end @inbounds c[k] = (k-1) * r[1] * c[k-1] @inbounds for i in 2:k-1 c[k] += (k-i) * r[i] * c[k-i] end sqrt!(r, a^2+1, k) # a^...allocates will need a third cache @inbounds c[k] = (a[k] - c[k]/k) / constant_term(r) return nothing end @inline function acosh!(c::Taylor0, a::Taylor0, r::Taylor0, k::Int) if k == 0 a0 = constant_term(a) @inbounds c[0] = acosh( a0 ) @inbounds r[0] = sqrt( a0^2 - 1 ) return nothing end @inbounds c[k] = (k-1) * r[1] * c[k-1] @inbounds for i in 2:k-1 c[k] += (k-i) * r[i] * c[k-i] end sqrt!(r, a^2-1, k) @inbounds c[k] = (a[k] - c[k]/k) / constant_term(r) return nothing end @inline function atanh!(c::Taylor0, a::Taylor0, r::Taylor0, k::Int) if k == 0 a0 = constant_term(a) @inbounds c[0] = atanh( a0 ) @inbounds r[0] = 1 - a0^2 return nothing end @inbounds c[k] = (k-1) * r[1] * c[k-1] @inbounds for i in 2:k-1 c[k] += (k-i) * r[i] * c[k-i] end @inbounds sqr!(r, a, k) @inbounds c[k] = (a[k] + c[k]/k) / constant_term(r) return nothing end #= @doc doc""" inverse(f) Return the Taylor expansion of ``f^{-1}(t)``, of order `N = f.order`, for `f::Taylor0` polynomial if the first coefficient of `f` is zero. Otherwise, a `DomainError` is thrown. The algorithm implements Lagrange inversion at ``t=0`` if ``f(0)=0``: ```math \begin{equation*} f^{-1}(t) = \sum_{n=1}^{N} \frac{t^n}{n!} \left. \frac{{\rm d}^{n-1}}{{\rm d} z^{n-1}}\left(\frac{z}{f(z)}\right)^n \right\vert_{z=0}. \end{equation*} ``` """ inverse =# function inverse(f::Taylor0) if f[0] != 0.0 throw(DomainError(f, """ Evaluation of Taylor0 series at 0 is non-zero. For high accuracy, revert a Taylor0 series with first coefficient 0 and re-expand about f(0). """)) end z = Taylor0(0.0,f.order) zdivf = z/f zdivfpown = zdivf S = TS.numtype(zdivf) coeffs = zeros(S,f.order+1) @inbounds for n in 1:f.order coeffs[n+1] = zdivfpown[n-1]/n zdivfpown *= zdivf end Taylor0(coeffs, f.order) end #= # Documentation for the recursion relations @doc doc""" exp!(c, a, k) --> nothing Update the `k-th` expansion coefficient `c[k+1]` of `c = exp(a)` for both `c` and `a` either `Taylor0` or `TaylorN`. The coefficients are given by ```math \begin{equation*} c_k = \frac{1}{k} \sum_{j=0}^{k-1} (k-j) a_{k-j} c_j. \end{equation*} ``` """ exp! @doc doc""" log!(c, a, k) --> nothing Update the `k-th` expansion coefficient `c[k+1]` of `c = log(a)` for both `c` and `a` either `Taylor0` or `TaylorN`. The coefficients are given by ```math \begin{equation*} c_k = \frac{1}{a_0} \big(a_k - \frac{1}{k} \sum_{j=0}^{k-1} j a_{k-j} c_j \big). \end{equation*} ``` """ log! @doc doc""" sincos!(s, c, a, k) --> nothing Update the `k-th` expansion coefficients `s[k+1]` and `c[k+1]` of `s = sin(a)` and `c = cos(a)` simultaneously, for `s`, `c` and `a` either `Taylor0` or `TaylorN`. The coefficients are given by ```math \begin{eqnarray*} s_k &=& \frac{1}{k}\sum_{j=0}^{k-1} (k-j) a_{k-j} c_j ,\\ c_k &=& -\frac{1}{k}\sum_{j=0}^{k-1} (k-j) a_{k-j} s_j. \end{eqnarray*} ``` """ sincos! @doc doc""" tan!(c, a, p, k::Int) --> nothing Update the `k-th` expansion coefficients `c[k+1]` of `c = tan(a)`, for `c` and `a` either `Taylor0` or `TaylorN`; `p = c^2` and is passed as an argument for efficiency. The coefficients are given by ```math \begin{equation*} c_k = a_k + \frac{1}{k} \sum_{j=0}^{k-1} (k-j) a_{k-j} p_j. \end{equation*} ``` """ tan! @doc doc""" asin!(c, a, r, k) Update the `k-th` expansion coefficients `c[k+1]` of `c = asin(a)`, for `c` and `a` either `Taylor0` or `TaylorN`; `r = sqrt(1-c^2)` and is passed as an argument for efficiency. ```math \begin{equation*} c_k = \frac{1}{ \sqrt{r_0} } \big( a_k - \frac{1}{k} \sum_{j=1}^{k-1} j r_{k-j} c_j \big). \end{equation*} ``` """ asin! @doc doc""" acos!(c, a, r, k) Update the `k-th` expansion coefficients `c[k+1]` of `c = acos(a)`, for `c` and `a` either `Taylor0` or `TaylorN`; `r = sqrt(1-c^2)` and is passed as an argument for efficiency. ```math \begin{equation*} c_k = - \frac{1}{ r_0 } \big( a_k - \frac{1}{k} \sum_{j=1}^{k-1} j r_{k-j} c_j \big). \end{equation*} ``` """ acos! @doc doc""" atan!(c, a, r, k) Update the `k-th` expansion coefficients `c[k+1]` of `c = atan(a)`, for `c` and `a` either `Taylor0` or `TaylorN`; `r = 1+a^2` and is passed as an argument for efficiency. ```math \begin{equation*} c_k = \frac{1}{r_0}\big(a_k - \frac{1}{k} \sum_{j=1}^{k-1} j r_{k-j} c_j\big). \end{equation*} ``` """ atan! @doc doc""" sinhcosh!(s, c, a, k) Update the `k-th` expansion coefficients `s[k+1]` and `c[k+1]` of `s = sinh(a)` and `c = cosh(a)` simultaneously, for `s`, `c` and `a` either `Taylor0` or `TaylorN`. The coefficients are given by ```math \begin{eqnarray*} s_k &=& \frac{1}{k} \sum_{j=0}^{k-1} (k-j) a_{k-j} c_j, \\ c_k &=& \frac{1}{k} \sum_{j=0}^{k-1} (k-j) a_{k-j} s_j. \end{eqnarray*} ``` """ sinhcosh! @doc doc""" tanh!(c, a, p, k) Update the `k-th` expansion coefficients `c[k+1]` of `c = tanh(a)`, for `c` and `a` either `Taylor0` or `TaylorN`; `p = a^2` and is passed as an argument for efficiency. ```math \begin{equation*} c_k = a_k - \frac{1}{k} \sum_{j=0}^{k-1} (k-j) a_{k-j} p_j. \end{equation*} ``` """ tanh! @doc doc""" asinh!(c, a, r, k) Update the `k-th` expansion coefficients `c[k+1]` of `c = asinh(a)`, for `c` and `a` either `Taylor0` or `TaylorN`; `r = sqrt(1-c^2)` and is passed as an argument for efficiency. ```math \begin{equation*} c_k = \frac{1}{ \sqrt{r_0} } \big( a_k - \frac{1}{k} \sum_{j=1}^{k-1} j r_{k-j} c_j \big). \end{equation*} ``` """ asinh! @doc doc""" acosh!(c, a, r, k) Update the `k-th` expansion coefficients `c[k+1]` of `c = acosh(a)`, for `c` and `a` either `Taylor0` or `TaylorN`; `r = sqrt(c^2-1)` and is passed as an argument for efficiency. ```math \begin{equation*} c_k = \frac{1}{ r_0 } \big( a_k - \frac{1}{k} \sum_{j=1}^{k-1} j r_{k-j} c_j \big). \end{equation*} ``` """ acosh! @doc doc""" atanh!(c, a, r, k) Update the `k-th` expansion coefficients `c[k+1]` of `c = atanh(a)`, for `c` and `a` either `Taylor0` or `TaylorN`; `r = 1-a^2` and is passed as an argument for efficiency. ```math \begin{equation*} c_k = \frac{1}{r_0}\big(a_k + \frac{1}{k} \sum_{j=1}^{k-1} j r_{k-j} c_j\big). \end{equation*} ``` """ atanh! =#
QuantizedSystemSolver
https://github.com/mongibellili/QuantizedSystemSolver.jl.git
[ "MIT" ]
1.0.1
b4bf1003586f2ee6cb98d8df29e88cbbfacd2ea1
code
22951
# This file is part of the TaylorSeries.jl Julia package, MIT license # # Luis Benet & David P. Sanders # UNAM # # MIT Expat license # # Functions function exp(a::Taylor0,c::Taylor0) order = a.order #aux = exp(constant_term(a)) for k in eachindex(a) exp!(c, a, k) end return c end function exp(a::T,c::Taylor0)where {T<:Number} c[0]=exp(a) return c end function log(a::Taylor0,c::Taylor0) iszero(constant_term(a)) && throw(DomainError(a, """The 0-th order coefficient must be non-zero in order to expand `log` around 0.""")) for k in eachindex(a) log!(c, a, k) end return c end function log(a::T,c::Taylor0)where {T<:Number} iszero(a) && throw(DomainError(a, """ log(0) undefined.""")) c[0]=log(a) return c end function sincos(a::Taylor0,s::Taylor0,c::Taylor0) for k in eachindex(a) sincos!(s, c, a, k) end return s, c end sin(a::Taylor0,s::Taylor0,c::Taylor0) = sincos(a,s,c)[1] cos(a::Taylor0,c::Taylor0,s::Taylor0) = sincos(a,s,c)[2] function sin(a::T,s::Taylor0,c::Taylor0)where {T<:Number} s[0]=sin(a) return s end function cos(a::T,s::Taylor0,c::Taylor0)where {T<:Number} s[0]=cos(a) return s end function tan(a::Taylor0,c::Taylor0,c2::Taylor0) for k in eachindex(a) tan!(c, a, c2, k) end return c end function tan(a::T,c::Taylor0,c2::Taylor0)where {T<:Number} c[0]=tan(a) return c end #####################################constant case not implemented yet function asin(a::Taylor0,c::Taylor0,r::Taylor0,cache3::Taylor0) a0 = constant_term(a) a0^2 == one(a0) && throw(DomainError(a, """Series expansion of asin(x) diverges at x = ±1.""")) for k in eachindex(a) asin!(c, a, r,cache3, k) end return c end function acos(a::Taylor0,c::Taylor0,r::Taylor0,cache3::Taylor0) a0 = constant_term(a) a0^2 == one(a0) && throw(DomainError(a, """Series expansion of asin(x) diverges at x = ±1.""")) for k in eachindex(a) acos!(c, a, r,cache3, k) end return c end function atan(a::Taylor0,c::Taylor0,r::Taylor0) #= a0 = constant_term(a) rc = 1 + a0^2 iszero(rc) && throw(DomainError(a, """Series expansion of atan(x) diverges at x = ±im.""")) =# for k in eachindex(a) atan!(c, a, r, k) end return c end @inline function asin!(c::Taylor0, a::Taylor0, r::Taylor0,cache3::Taylor0, k::Int) if k == 0 a0 = constant_term(a) @inbounds c[0] = asin( a0 ) @inbounds r[0] = sqrt( 1 - a0^2 ) return nothing end @inbounds c[k] = (k-1) * r[1] * c[k-1] @inbounds for i in 2:k-1 c[k] += (k-i) * r[i] * c[k-i] end cache3=square(a,cache3) @__dot__ cache3.coeffs = (-)(cache3.coeffs) cache3[0]=1+cache3[0] #1-square(a,cache3)=1-a^2 sqrt!(r,cache3 , k) @inbounds c[k] = (a[k] - c[k]/k) / constant_term(r) return nothing end @inline function acos!(c::Taylor0, a::Taylor0, r::Taylor0,cache3::Taylor0, k::Int) if k == 0 a0 = constant_term(a) @inbounds c[0] = acos( a0 ) @inbounds r[0] = sqrt( 1 - a0^2 ) return nothing end @inbounds c[k] = (k-1) * r[1] * c[k-1] @inbounds for i in 2:k-1 c[k] += (k-i) * r[i] * c[k-i] end #sqrt!(r, 1-a^2, k) cache3=square(a,cache3) @__dot__ cache3.coeffs = (-)(cache3.coeffs) cache3[0]=1+cache3[0] #1-square(a,cache3)=1-a^2 sqrt!(r,cache3 , k) @inbounds c[k] = -(a[k] + c[k]/k) / constant_term(r) return nothing end #= function atan(a::Taylor0, b::Taylor0) c = atan(a/b) c[0] = atan(constant_term(a), constant_term(b)) return c end sinh(a::Taylor0) = sinhcosh(a)[1] cosh(a::Taylor0) = sinhcosh(a)[2] function sinhcosh(a::Taylor0) order = a.order aux = sinh(constant_term(a)) aa = one(aux) * a s = Taylor0( aux, order) c = Taylor0( cosh(constant_term(a)), order) for k in eachindex(a) sinhcosh!(s, c, aa, k) end return s, c end function tanh(a::Taylor0) order = a.order aux = tanh( constant_term(a) ) aa = one(aux) * a c = Taylor0( aux, order) c2 = Taylor0( aux^2, order) for k in eachindex(a) tanh!(c, aa, c2, k) end return c end function asinh(a::Taylor0) order = a.order a0 = constant_term(a) aux = asinh(a0) aa = one(aux) * a c = Taylor0( aux, order ) r = Taylor0( sqrt(a0^2 + 1), order ) iszero(constant_term(r)) && throw(DomainError(a, """Series expansion of asinh(x) diverges at x = ±im.""")) for k in eachindex(a) asinh!(c, aa, r, k) end return c end function acosh(a::Taylor0) a0 = constant_term(a) a0^2 == one(a0) && throw(DomainError(a, """Series expansion of acosh(x) diverges at x = ±1.""")) order = a.order aux = acosh(a0) aa = one(aux) * a c = Taylor0( aux, order ) r = Taylor0( sqrt(a0^2 - 1), order ) for k in eachindex(a) acosh!(c, aa, r, k) end return c end function atanh(a::Taylor0) order = a.order a0 = constant_term(a) aux = atanh(a0) aa = one(aux) * a c = Taylor0( aux, order) r = Taylor0(one(aux) - a0^2, order) iszero(constant_term(r)) && throw(DomainError(a, """Series expansion of atanh(x) diverges at x = ±1.""")) for k in eachindex(a) atanh!(c, aa, r, k) end return c end # Recursive functions (homogeneous coefficients) @inline function identity!(c::Taylor0, a::Taylor0, k::Int) where {T<:Number} @inbounds c[k] = identity(a[k]) return nothing end @inline function zero!(c::Taylor0, a::Taylor0, k::Int) where {T<:Number} @inbounds c[k] = zero(a[k]) return nothing end @inline function one!(c::Taylor0, a::Taylor0, k::Int) where {T<:Number} if k == 0 @inbounds c[0] = one(a[0]) else @inbounds c[k] = zero(a[k]) end return nothing end @inline function abs!(c::Taylor0, a::Taylor0, k::Int) where {T<:Number} z = zero(constant_term(a)) if constant_term(constant_term(a)) > constant_term(z) return add!(c, a, k) elseif constant_term(constant_term(a)) < constant_term(z) return subst!(c, a, k) else throw(DomainError(a, """The 0th order coefficient must be non-zero (abs(x) is not differentiable at x=0).""")) end return nothing end @inline abs2!(c::Taylor0, a::Taylor0, k::Int) where {T<:Number} = sqr!(c, a, k) @inline function exp!(c::Taylor0, a::Taylor0, k::Int) where {T<:Number} if k == 0 @inbounds c[0] = exp(constant_term(a)) #this was already computed before!!no need to do anything if k==0 return nothing end if Taylor0 == Taylor0 @inbounds c[k] = k * a[k] * c[0] else @inbounds mul!(c[k], k * a[k], c[0]) end @inbounds for i = 1:k-1 if Taylor0 == Taylor0 c[k] += (k-i) * a[k-i] * c[i] else mul!(c[k], (k-i) * a[k-i], c[i]) end end @inbounds c[k] = c[k] / k return nothing end @inline function log!(c::Taylor0, a::Taylor0, k::Int) where {T<:Number} if k == 0 @inbounds c[0] = log(constant_term(a)) return nothing elseif k == 1 @inbounds c[1] = a[1] / constant_term(a) return nothing end if Taylor0 == Taylor0 @inbounds c[k] = (k-1) * a[1] * c[k-1] else @inbounds mul!(c[k], (k-1)*a[1], c[k-1]) end @inbounds for i = 2:k-1 if Taylor0 == Taylor0 c[k] += (k-i) * a[i] * c[k-i] else mul!(c[k], (k-i)*a[i], c[k-i]) end end @inbounds c[k] = (a[k] - c[k]/k) / constant_term(a) return nothing end @inline function sincos!(s::Taylor0, c::Taylor0, a::Taylor0, k::Int) where {T<:Number} if k == 0 a0 = constant_term(a) @inbounds s[0], c[0] = sincos( a0 ) return nothing end x = a[1] if Taylor0 == Taylor0 @inbounds s[k] = x * c[k-1] @inbounds c[k] = -x * s[k-1] else mul!(s[k], x, c[k-1]) mul!(c[k], -x, s[k-1]) end @inbounds for i = 2:k x = i * a[i] if Taylor0 == Taylor0 s[k] += x * c[k-i] c[k] -= x * s[k-i] else mul!(s[k], x, c[k-i]) mul!(c[k], -x, s[k-i]) end end @inbounds s[k] = s[k] / k @inbounds c[k] = c[k] / k return nothing end @inline function tan!(c::Taylor0, a::Taylor0, c2::Taylor0, k::Int) where {T<:Number} if k == 0 @inbounds aux = tan( constant_term(a) ) @inbounds c[0] = aux @inbounds c2[0] = aux^2 return nothing end if Taylor0 == Taylor0 @inbounds c[k] = k * a[k] * c2[0] else @inbounds mul!(c[k], k * a[k], c2[0]) end @inbounds for i = 1:k-1 if Taylor0 == Taylor0 c[k] += (k-i) * a[k-i] * c2[i] else mul!(c[k], (k-i) * a[k-i], c2[i]) end end @inbounds c[k] = a[k] + c[k]/k sqr!(c2, c, k) return nothing end @inline function asin!(c::Taylor0, a::Taylor0, r::Taylor0, k::Int) where {T<:Number} if k == 0 a0 = constant_term(a) @inbounds c[0] = asin( a0 ) @inbounds r[0] = sqrt( 1 - a0^2 ) return nothing end if Taylor0 == Taylor0 @inbounds c[k] = (k-1) * r[1] * c[k-1] else @inbounds mul!(c[k], (k-1) * r[1], c[k-1]) end @inbounds for i in 2:k-1 if Taylor0 == Taylor0 c[k] += (k-i) * r[i] * c[k-i] else mul!(c[k], (k-i) * r[i], c[k-i]) end end sqrt!(r, 1-a^2, k) @inbounds c[k] = (a[k] - c[k]/k) / constant_term(r) return nothing end @inline function acos!(c::Taylor0, a::Taylor0, r::Taylor0, k::Int) where {T<:Number} if k == 0 a0 = constant_term(a) @inbounds c[0] = acos( a0 ) @inbounds r[0] = sqrt( 1 - a0^2 ) return nothing end if Taylor0 == Taylor0 @inbounds c[k] = (k-1) * r[1] * c[k-1] else @inbounds mul!(c[k], (k-1) * r[1], c[k-1]) end @inbounds for i in 2:k-1 if Taylor0 == Taylor0 c[k] += (k-i) * r[i] * c[k-i] else mul!(c[k], (k-i) * r[i], c[k-i]) end end sqrt!(r, 1-a^2, k) @inbounds c[k] = -(a[k] + c[k]/k) / constant_term(r) return nothing end @inline function atan!(c::Taylor0, a::Taylor0, r::Taylor0, k::Int) where {T<:Number} if k == 0 a0 = constant_term(a) @inbounds c[0] = atan( a0 ) @inbounds r[0] = 1 + a0^2 return nothing end if Taylor0 == Taylor0 @inbounds c[k] = (k-1) * r[1] * c[k-1] else @inbounds mul!(c[k], (k-1) * r[1], c[k-1]) end @inbounds for i in 2:k-1 if Taylor0 == Taylor0 c[k] += (k-i) * r[i] * c[k-i] else mul!(c[k], (k-i) * r[i], c[k-i]) end end @inbounds sqr!(r, a, k) @inbounds c[k] = (a[k] - c[k]/k) / constant_term(r) return nothing end @inline function sinhcosh!(s::Taylor0, c::Taylor0, a::Taylor0, k::Int) where {T<:Number} if k == 0 @inbounds s[0] = sinh( constant_term(a) ) @inbounds c[0] = cosh( constant_term(a) ) return nothing end x = a[1] if Taylor0 == Taylor0 @inbounds s[k] = x * c[k-1] @inbounds c[k] = x * s[k-1] else @inbounds mul!(s[k], x, c[k-1]) @inbounds mul!(c[k], x, s[k-1]) end @inbounds for i = 2:k x = i * a[i] if Taylor0 == Taylor0 s[k] += x * c[k-i] c[k] += x * s[k-i] else mul!(s[k], x, c[k-i]) mul!(c[k], x, s[k-i]) end end s[k] = s[k] / k c[k] = c[k] / k return nothing end @inline function tanh!(c::Taylor0, a::Taylor0, c2::Taylor0, k::Int) where {T<:Number} if k == 0 @inbounds aux = tanh( constant_term(a) ) @inbounds c[0] = aux @inbounds c2[0] = aux^2 return nothing end if Taylor0 == Taylor0 @inbounds c[k] = k * a[k] * c2[0] else @inbounds mul!(c[k], k * a[k], c2[0]) end @inbounds for i = 1:k-1 if Taylor0 == Taylor0 c[k] += (k-i) * a[k-i] * c2[i] else mul!(c[k], (k-i) * a[k-i], c2[i]) end end @inbounds c[k] = a[k] - c[k]/k sqr!(c2, c, k) return nothing end @inline function asinh!(c::Taylor0, a::Taylor0, r::Taylor0, k::Int) where {T<:Number} if k == 0 a0 = constant_term(a) @inbounds c[0] = asinh( a0 ) @inbounds r[0] = sqrt( a0^2 + 1 ) return nothing end if Taylor0 == Taylor0 @inbounds c[k] = (k-1) * r[1] * c[k-1] else @inbounds mul!(c[k], (k-1) * r[1], c[k-1]) end @inbounds for i in 2:k-1 if Taylor0 == Taylor0 c[k] += (k-i) * r[i] * c[k-i] else mul!(c[k], (k-i) * r[i], c[k-i]) end end sqrt!(r, a^2+1, k) @inbounds c[k] = (a[k] - c[k]/k) / constant_term(r) return nothing end @inline function acosh!(c::Taylor0, a::Taylor0, r::Taylor0, k::Int) where {T<:Number} if k == 0 a0 = constant_term(a) @inbounds c[0] = acosh( a0 ) @inbounds r[0] = sqrt( a0^2 - 1 ) return nothing end if Taylor0 == Taylor0 @inbounds c[k] = (k-1) * r[1] * c[k-1] else @inbounds mul!(c[k], (k-1) * r[1], c[k-1]) end @inbounds for i in 2:k-1 if Taylor0 == Taylor0 c[k] += (k-i) * r[i] * c[k-i] else mul!(c[k], (k-i) * r[i], c[k-i]) end end sqrt!(r, a^2-1, k) @inbounds c[k] = (a[k] - c[k]/k) / constant_term(r) return nothing end @inline function atanh!(c::Taylor0, a::Taylor0, r::Taylor0, k::Int) where {T<:Number} if k == 0 a0 = constant_term(a) @inbounds c[0] = atanh( a0 ) @inbounds r[0] = 1 - a0^2 return nothing end if Taylor0 == Taylor0 @inbounds c[k] = (k-1) * r[1] * c[k-1] else @inbounds mul!(c[k], (k-1) * r[1], c[k-1]) end @inbounds for i in 2:k-1 if Taylor0 == Taylor0 c[k] += (k-i) * r[i] * c[k-i] else mul!(c[k], (k-i) * r[i], c[k-i]) end end @inbounds sqr!(r, a, k) @inbounds c[k] = (a[k] + c[k]/k) / constant_term(r) return nothing end #= @doc doc""" inverse(f) Return the Taylor expansion of ``f^{-1}(t)``, of order `N = f.order`, for `f::Taylor0` polynomial if the first coefficient of `f` is zero. Otherwise, a `DomainError` is thrown. The algorithm implements Lagrange inversion at ``t=0`` if ``f(0)=0``: ```math \begin{equation*} f^{-1}(t) = \sum_{n=1}^{N} \frac{t^n}{n!} \left. \frac{{\rm d}^{n-1}}{{\rm d} z^{n-1}}\left(\frac{z}{f(z)}\right)^n \right\vert_{z=0}. \end{equation*} ``` """ inverse =# function inverse(f::Taylor0) where {T<:Number} if f[0] != zero(T) throw(DomainError(f, """ Evaluation of Taylor0 series at 0 is non-zero. For high accuracy, revert a Taylor0 series with first coefficient 0 and re-expand about f(0). """)) end z = Taylor0(T,f.order) zdivf = z/f zdivfpown = zdivf S = TS.numtype(zdivf) coeffs = zeros(S,f.order+1) @inbounds for n in 1:f.order coeffs[n+1] = zdivfpown[n-1]/n zdivfpown *= zdivf end Taylor0(coeffs, f.order) end #= # Documentation for the recursion relations @doc doc""" exp!(c, a, k) --> nothing Update the `k-th` expansion coefficient `c[k+1]` of `c = exp(a)` for both `c` and `a` either `Taylor0` or `TaylorN`. The coefficients are given by ```math \begin{equation*} c_k = \frac{1}{k} \sum_{j=0}^{k-1} (k-j) a_{k-j} c_j. \end{equation*} ``` """ exp! @doc doc""" log!(c, a, k) --> nothing Update the `k-th` expansion coefficient `c[k+1]` of `c = log(a)` for both `c` and `a` either `Taylor0` or `TaylorN`. The coefficients are given by ```math \begin{equation*} c_k = \frac{1}{a_0} \big(a_k - \frac{1}{k} \sum_{j=0}^{k-1} j a_{k-j} c_j \big). \end{equation*} ``` """ log! @doc doc""" sincos!(s, c, a, k) --> nothing Update the `k-th` expansion coefficients `s[k+1]` and `c[k+1]` of `s = sin(a)` and `c = cos(a)` simultaneously, for `s`, `c` and `a` either `Taylor0` or `TaylorN`. The coefficients are given by ```math \begin{eqnarray*} s_k &=& \frac{1}{k}\sum_{j=0}^{k-1} (k-j) a_{k-j} c_j ,\\ c_k &=& -\frac{1}{k}\sum_{j=0}^{k-1} (k-j) a_{k-j} s_j. \end{eqnarray*} ``` """ sincos! @doc doc""" tan!(c, a, p, k::Int) --> nothing Update the `k-th` expansion coefficients `c[k+1]` of `c = tan(a)`, for `c` and `a` either `Taylor0` or `TaylorN`; `p = c^2` and is passed as an argument for efficiency. The coefficients are given by ```math \begin{equation*} c_k = a_k + \frac{1}{k} \sum_{j=0}^{k-1} (k-j) a_{k-j} p_j. \end{equation*} ``` """ tan! @doc doc""" asin!(c, a, r, k) Update the `k-th` expansion coefficients `c[k+1]` of `c = asin(a)`, for `c` and `a` either `Taylor0` or `TaylorN`; `r = sqrt(1-c^2)` and is passed as an argument for efficiency. ```math \begin{equation*} c_k = \frac{1}{ \sqrt{r_0} } \big( a_k - \frac{1}{k} \sum_{j=1}^{k-1} j r_{k-j} c_j \big). \end{equation*} ``` """ asin! @doc doc""" acos!(c, a, r, k) Update the `k-th` expansion coefficients `c[k+1]` of `c = acos(a)`, for `c` and `a` either `Taylor0` or `TaylorN`; `r = sqrt(1-c^2)` and is passed as an argument for efficiency. ```math \begin{equation*} c_k = - \frac{1}{ r_0 } \big( a_k - \frac{1}{k} \sum_{j=1}^{k-1} j r_{k-j} c_j \big). \end{equation*} ``` """ acos! @doc doc""" atan!(c, a, r, k) Update the `k-th` expansion coefficients `c[k+1]` of `c = atan(a)`, for `c` and `a` either `Taylor0` or `TaylorN`; `r = 1+a^2` and is passed as an argument for efficiency. ```math \begin{equation*} c_k = \frac{1}{r_0}\big(a_k - \frac{1}{k} \sum_{j=1}^{k-1} j r_{k-j} c_j\big). \end{equation*} ``` """ atan! @doc doc""" sinhcosh!(s, c, a, k) Update the `k-th` expansion coefficients `s[k+1]` and `c[k+1]` of `s = sinh(a)` and `c = cosh(a)` simultaneously, for `s`, `c` and `a` either `Taylor0` or `TaylorN`. The coefficients are given by ```math \begin{eqnarray*} s_k &=& \frac{1}{k} \sum_{j=0}^{k-1} (k-j) a_{k-j} c_j, \\ c_k &=& \frac{1}{k} \sum_{j=0}^{k-1} (k-j) a_{k-j} s_j. \end{eqnarray*} ``` """ sinhcosh! @doc doc""" tanh!(c, a, p, k) Update the `k-th` expansion coefficients `c[k+1]` of `c = tanh(a)`, for `c` and `a` either `Taylor0` or `TaylorN`; `p = a^2` and is passed as an argument for efficiency. ```math \begin{equation*} c_k = a_k - \frac{1}{k} \sum_{j=0}^{k-1} (k-j) a_{k-j} p_j. \end{equation*} ``` """ tanh! @doc doc""" asinh!(c, a, r, k) Update the `k-th` expansion coefficients `c[k+1]` of `c = asinh(a)`, for `c` and `a` either `Taylor0` or `TaylorN`; `r = sqrt(1-c^2)` and is passed as an argument for efficiency. ```math \begin{equation*} c_k = \frac{1}{ \sqrt{r_0} } \big( a_k - \frac{1}{k} \sum_{j=1}^{k-1} j r_{k-j} c_j \big). \end{equation*} ``` """ asinh! @doc doc""" acosh!(c, a, r, k) Update the `k-th` expansion coefficients `c[k+1]` of `c = acosh(a)`, for `c` and `a` either `Taylor0` or `TaylorN`; `r = sqrt(c^2-1)` and is passed as an argument for efficiency. ```math \begin{equation*} c_k = \frac{1}{ r_0 } \big( a_k - \frac{1}{k} \sum_{j=1}^{k-1} j r_{k-j} c_j \big). \end{equation*} ``` """ acosh! @doc doc""" atanh!(c, a, r, k) Update the `k-th` expansion coefficients `c[k+1]` of `c = atanh(a)`, for `c` and `a` either `Taylor0` or `TaylorN`; `r = 1-a^2` and is passed as an argument for efficiency. ```math \begin{equation*} c_k = \frac{1}{r_0}\big(a_k + \frac{1}{k} \sum_{j=1}^{k-1} j r_{k-j} c_j\big). \end{equation*} ``` """ atanh! =# =#
QuantizedSystemSolver
https://github.com/mongibellili/QuantizedSystemSolver.jl.git
[ "MIT" ]
1.0.1
b4bf1003586f2ee6cb98d8df29e88cbbfacd2ea1
code
6752
# This file is part of the TaylorSeries.jl Julia package, MIT license # # Luis Benet & David P. Sanders # UNAM # # MIT Expat license # ## real, imag, conj and ctranspose ## #= real(a::Taylor0) = Taylor0(real.(a.coeffs), a.order) imag(a::Taylor0) = Taylor0(imag.(a.coeffs), a.order) conj(a::Taylor0) = Taylor0(conj.(a.coeffs), a.order) adjoint(a::Taylor0) = conj(a) ## isinf and isnan ## isinf(a::Taylor0) = any( isinf.(a.coeffs) ) isnan(a::Taylor0) = any( isnan.(a.coeffs) ) =# ## Division functions: rem and mod ## #= for op in (:mod, :rem) @eval begin function ($op)(a::Taylor0, x::T) where {T<:Real} coeffs = copy(a.coeffs) @inbounds coeffs[1] = ($op)(constant_term(a), x) return Taylor0(coeffs, a.order) end function ($op)(a::Taylor0, x::S) where {T<:Real,S<:Real} R = promote_type(T, S) a = convert(Taylor0{R}, a) return ($op)(a, convert(R,x)) end end end =# ## mod2pi and abs ## #= function mod2pi(a::Taylor0) where {T<:Real} coeffs = copy(a.coeffs) @inbounds coeffs[1] = mod2pi( constant_term(a) ) return Taylor0( coeffs, a.order) end =# function abs(a::Taylor0) if constant_term(a) > 0 return a elseif constant_term(a) < 0 return -a else throw(DomainError(a, """The 0th order Taylor0 coefficient must be non-zero (abs(x) is not differentiable at x=0).""")) end end function abs(a::Taylor0,cache1::Taylor0) if constant_term(a) > 0 return a elseif constant_term(a) < 0 @__dot__ cache1.coeffs = (-)(a.coeffs) return cache1 else cache1.coeffs .=Inf # no need to throw error, Inf is fine...for my solver i deal with it by guarding against small steps cache1[0]=0.0 return cache1 #= throw(DomainError(a, """The 0th order Taylor0 coefficient must be non-zero (abs(x) is not differentiable at x=0).""")) =# end end function abs(a::T,cache1::Taylor0) where {T<:Number} cache1[0]=abs(a) return cache1 #= throw(DomainError(a, """The 0th order Taylor0 coefficient must be non-zero (abs(x) is not differentiable at x=0).""")) =# end #abs2(a::Taylor0) = real(a)^2 + imag(a)^2 #abs(x::Taylor0) where {T<:Complex} = sqrt(abs2(x)) #abs(x::Taylor0{Taylor0}) where {T<:Complex} = sqrt(abs2(x)) #= @doc doc""" abs(a) For a `Real` type returns `a` if `constant_term(a) > 0` and `-a` if `constant_term(a) < 0` for `a <:Union{Taylor0,TaylorN}`. For a `Complex` type, such as `Taylor0{ComplexF64}`, returns `sqrt(real(a)^2 + imag(a)^2)`. Notice that `typeof(abs(a)) <: AbstractSeries` and that for a `Complex` argument a `Real` type is returned (e.g. `typeof(abs(a::Taylor0{ComplexF64})) == Taylor0{Float64}`). """ abs #norm @doc doc""" norm(x::AbstractSeries, p::Real) Returns the p-norm of an `x::AbstractSeries`, defined by ```math \begin{equation*} \left\Vert x \right\Vert_p = \left( \sum_k | x_k |^p \right)^{\frac{1}{p}}, \end{equation*} ``` which returns a non-negative number. """ norm =# #= norm(x::AbstractSeries, p::Real=2) = norm( norm.(x.coeffs, p), p) #norm for Taylor vectors norm(v::Vector{T}, p::Real=2) where {T<:AbstractSeries} = norm( norm.(v, p), p) # rtoldefault rtoldefault(::Type{Taylor0}) where {T<:Number} = rtoldefault(T) rtoldefault(::Taylor0) where {T<:Number} = rtoldefault(T) =# #= # isfinite """ isfinite(x::AbstractSeries) -> Bool Test whether the coefficients of the polynomial `x` are finite. """ isfinite(x::AbstractSeries) = !isnan(x) && !isinf(x) # isapprox; modified from Julia's Base.isapprox """ isapprox(x::AbstractSeries, y::AbstractSeries; rtol::Real=sqrt(eps), atol::Real=0, nans::Bool=false) Inexact equality comparison between polynomials: returns `true` if `norm(x-y,1) <= atol + rtol*max(norm(x,1), norm(y,1))`, where `x` and `y` are polynomials. For more details, see [`Base.isapprox`](@ref). """ =# #= function isapprox(x::T, y::S; rtol::Real=rtoldefault(x,y,0), atol::Real=0.0, nans::Bool=false) where {T<:AbstractSeries,S<:AbstractSeries} x == y || (isfinite(x) && isfinite(y) && norm(x-y,1) <= atol + rtol*max(norm(x,1), norm(y,1))) || (nans && isnan(x) && isnan(y)) end #isapprox for vectors of Taylors function isapprox(x::Vector{T}, y::Vector{S}; rtol::Real=rtoldefault(T,S,0), atol::Real=0.0, nans::Bool=false) where {T<:AbstractSeries,S<:AbstractSeries} x == y || norm(x-y,1) <= atol + rtol*max(norm(x,1), norm(y,1)) || (nans && isnan(x) && isnan(y)) end #taylor_expand function for Taylor0 #= """ taylor_expand(f, x0; order) Computes the Taylor expansion of the function `f` around the point `x0`. If `x0` is a scalar, a `Taylor0` expansion will be returned. If `x0` is a vector, a `TaylorN` expansion will be computed. If the dimension of x0 (`length(x0)`) is different from the variables set for `TaylorN` (`get_numvars()`), an `AssertionError` will be thrown. """ =# function taylor_expand(f::F; order::Int=15) where {F} a = Taylor0(order) return f(a) end function taylor_expand(f::F, x0::T; order::Int=15) where {F,T<:Number} a = Taylor0([x0, one(T)], order) return f(a) end #update! function for Taylor0 #= """ update!(a, x0) Takes `a <: Union{Taylo1,TaylorN}` and expands it around the coordinate `x0`. """ =# function update!(a::Taylor0, x0::T) where {T<:Number} a.coeffs .= evaluate(a, Taylor0([x0, one(x0)], a.order) ).coeffs nothing end deg2rad(z::Taylor0) where {T<:AbstractFloat} = z * (convert(T, pi) / 180) deg2rad(z::Taylor0) where {T<:Real} = z * (convert(float(T), pi) / 180) rad2deg(z::Taylor0) where {T<:AbstractFloat} = z * (180 / convert(T, pi)) rad2deg(z::Taylor0) where {T<:Real} = z * (180 / convert(float(T), pi)) # Internal mutating deg2rad!, rad2deg! functions @inline function deg2rad!(v::Taylor0, a::Taylor0, k::Int) where {T<:AbstractFloat} @inbounds v[k] = a[k] * (convert(T, pi) / 180) return nothing end @inline function deg2rad!(v::Taylor0{S}, a::Taylor0, k::Int) where {S<:AbstractFloat,T<:Real} @inbounds v[k] = a[k] * (convert(float(T), pi) / 180) return nothing end @inline function rad2deg!(v::Taylor0, a::Taylor0, k::Int) where {T<:AbstractFloat} @inbounds v[k] = a[k] * (180 / convert(T, pi)) return nothing end @inline function rad2deg!(v::Taylor0{S}, a::Taylor0, k::Int) where {S<:AbstractFloat,T<:Real} @inbounds v[k] = a[k] * (180 / convert(float(T), pi)) return nothing end =#
QuantizedSystemSolver
https://github.com/mongibellili/QuantizedSystemSolver.jl.git
[ "MIT" ]
1.0.1
b4bf1003586f2ee6cb98d8df29e88cbbfacd2ea1
code
1227
# This file is part of the TaylorSeries.jl Julia package, MIT license # # Parameters for HomogeneousPolynomial and TaylorN #= """ ParamsTaylor0 DataType holding the current variable name for `Taylor0`. **Field:** - `var_name :: String` Names of the variables These parameters can be changed using [`set_Taylor0_varname`](@ref) """ =# mutable struct ParamsTaylor0 var_name :: String end const _params_Taylor0_ = ParamsTaylor0("t") #= """ set_Taylor0_varname(var::String) Change the displayed variable for `Taylor0` objects. """ =# set_Taylor0_varname(var::String) = _params_Taylor0_.var_name = strip(var) # Control the display of the big 𝒪 notation const bigOnotation = Bool[true] const _show_default = [false] #= """ displayBigO(d::Bool) --> nothing Set/unset displaying of the big 𝒪 notation in the output of `Taylor0` and `TaylorN` polynomials. The initial value is `true`. """ =# displayBigO(d::Bool) = (bigOnotation[end] = d; d) #= """ use_Base_show(d::Bool) --> nothing Use `Base.show_default` method (default `show` method in Base), or a custom display. The initial value is `false`, so customized display is used. """ =# use_show_default(d::Bool) = (_show_default[end] = d; d)
QuantizedSystemSolver
https://github.com/mongibellili/QuantizedSystemSolver.jl.git
[ "MIT" ]
1.0.1
b4bf1003586f2ee6cb98d8df29e88cbbfacd2ea1
code
8933
# This file is part of the TaylorSeries.jl Julia package, MIT license # # Luis Benet & David P. Sanders # UNAM # # MIT Expat license # #= The following method computes `a^float(n)` (except for cases like Taylor0{Interval{T}}^n, where `power_by_squaring` is used), to use internally `pow!`. =# #^(a::Taylor0, n::Integer) = a^float(n) function ^(a::Taylor0, n::Integer) n == 0 && return one(a) n == 1 && return copy(a) n == 2 && return square(a) n < 0 && throw(DomainError("taylor^n & n<0 !!")) return power_by_squaring(a, n) end #= function ^(a::Taylor0{Rational{T}}, n::Integer) where {T<:Integer} n == 0 && return one(a) n == 1 && return copy(a) n == 2 && return square(a) n < 0 && return inv( a^(-n) ) return power_by_squaring(a, n) end =# ^(a::Taylor0, x::Rational) = a^(x.num/x.den) ^(a::Taylor0, b::Taylor0) = exp( b*log(a) ) ^(a::Taylor0, x::T) where {T<:Complex} = exp( x*log(a) ) # power_by_squaring; slightly modified from base/intfuncs.jl # Licensed under MIT "Expat" function power_by_squaring(x::Taylor0, p::Integer) p == 1 && return copy(x) p == 0 && return one(x) p == 2 && return square(x) t = trailing_zeros(p) + 1 p >>= t while (t -= 1) > 0 x = square(x) end y = x while p > 0 t = trailing_zeros(p) + 1 p >>= t while (t -= 1) ≥ 0 x = square(x) end y *= x end return y end ## Real power ## function ^(a::Taylor0, r::S) where {S<:Real} # println() #a0 = constant_term(a) # @show(a, a0) #aux = one(a0)^r # @show(aux) iszero(r) && return Taylor0(1.0, a.order) # aa = aux*a # @show(aa) r == 1 && return a r == 2 && return square(a) r == 1/2 && return sqrt(a) l0 = findfirst(a) # @show l0 lnull = trunc(Int, r*l0 ) # @show lnull if (a.order-lnull < 0) || (lnull > a.order) # @show a.order return Taylor0( 0.0, a.order) end c_order = l0 == 0 ? a.order : min(a.order, trunc(Int,r*a.order)) # @show(c_order) c = Taylor0(0.0, c_order) for k = 0:c_order pow!(c, aa, r, k) end # println() return c end # Homogeneous coefficients for real power #= @doc doc""" pow!(c, a, r::Real, k::Int) Update the `k`-th expansion coefficient `c[k]` of `c = a^r`, for both `c` and `a` either `Taylor0` or `TaylorN`. The coefficients are given by ```math c_k = \frac{1}{k a_0} \sum_{j=0}^{k-1} \big(r(k-j) -j\big)a_{k-j} c_j. ``` For `Taylor0` polynomials, a similar formula is implemented which exploits `k_0`, the order of the first non-zero coefficient of `a`. """ =# @inline function pow!(c::Taylor0, a::Taylor0, r::S, k::Int) where {S<:Real} if r == 0 return one!(c, a, k) elseif r == 1 return identity!(c, a, k) elseif r == 2 return sqr!(c, a, k) elseif r == 0.5 return sqrt!(c, a, k) end # First non-zero coefficient l0 = findfirst(a) if l0 < 0 c[k] = zero(a[0]) return nothing end # The first non-zero coefficient of the result; must be integer #= !isinteger(r*l0) && throw(DomainError(a, """The 0th order Taylor0 coefficient must be non-zero to raise the Taylor0 polynomial to a non-integer exponent.""")) =# lnull = trunc(Int, r*l0 ) kprime = k-lnull if (kprime < 0) || (lnull > a.order) @inbounds c[k] = zero(a[0]) return nothing end # Relevant for positive integer r, to avoid round-off errors if isinteger(r) && r > 0 && (k > r*findlast(a)) @inbounds c[k] = zero(a[0]) return nothing end if k == lnull @inbounds c[k] = (a[l0])^r return nothing end # The recursion formula if l0+kprime ≤ a.order @inbounds c[k] = r * kprime * c[lnull] * a[l0+kprime] else @inbounds c[k] = zero(a[0]) end for i = 1:k-lnull-1 ((i+lnull) > a.order || (l0+kprime-i > a.order)) && continue aux = r*(kprime-i) - i @inbounds c[k] += aux * c[i+lnull] * a[l0+kprime-i] end @inbounds c[k] = c[k] / (kprime * a[l0]) return nothing end #= ## Square ## """ square(a::AbstractSeries) --> typeof(a) Return `a^2`; see [`TaylorSeries.sqr!`](@ref). """ =# function square(a::Taylor0) c = Taylor0( constant_term(a)^2, a.order) for k in 1:a.order sqr!(c, a, k) end return c end #= # Homogeneous coefficients for square @doc doc""" sqr!(c, a, k::Int) --> nothing Update the `k-th` expansion coefficient `c[k]` of `c = a^2`, for both `c` and `a` either `Taylor0` or `TaylorN`. The coefficients are given by ```math \begin{eqnarray*} c_k & = & 2 \sum_{j=0}^{(k-1)/2} a_{k-j} a_j, \text{ if k is odd,} \\ c_k & = & 2 \sum_{j=0}^{(k-2)/2} a_{k-j} a_j + (a_{k/2})^2, \text{ if k is even. } \end{eqnarray*} ``` """ sqr! =# @inline function sqr!(c::Taylor0, a::Taylor0, k::Int) if k == 0 @inbounds c[0] = constant_term(a)^2 return nothing end kodd = k%2 kend = div(k - 2 + kodd, 2) @inbounds for i = 0:kend # if Taylor0 == Taylor0 c[k] += a[i] * a[k-i] #= else mul!(c[k], a[i], a[k-i]) end =# end @inbounds c[k] = 2 * c[k] kodd == 1 && return nothing #if Taylor0 == Taylor0 @inbounds c[k] += a[div(k,2)]^2 #= else sqr!(c[k], a[div(k,2)]) end =# return nothing end ## Square root ## function sqrt(a::Taylor0) # First non-zero coefficient l0nz = findfirst(a) # println("l0nz= ",l0nz ) #aux = zero(sqrt( constant_term(a) )) aux=zero(a[0]) # @show aux #= println(" constant_term(a)= ",constant_term(a)) println("sqrt( constant_term(a)= ",sqrt(constant_term(a))) println("aux= ",aux) =# if l0nz < 0 # println("l0nz < 0 ",Taylor0(aux, a.order)) return Taylor0(aux, a.order) #elseif l0nz%2 == 1 # l0nz must be pair #= throw(DomainError(a, """First non-vanishing Taylor0 coefficient must correspond to an **even power** in order to expand `sqrt` around 0.""")) =# end # The last l0nz coefficients are set to zero. # lnull = l0nz >> 1 # integer division by 2 #println("lnull= ",lnull) # c_order = l0nz == 0 ? a.order : a.order >> 1 # println("a_order= ",a.order) # println("c_order= ",c_order) c = Taylor0( sqrt( a[0] ), a.order ) # println("c= ",c) # println("c= ",c) aa = one(aux) * a #println("aa= ",aa) #a int aa #println("aa=a ",aa===a) for k = 1:a.order sqrt!(c, aa, k, 0) # println("after sqrt!c= ",c) end return c end # Homogeneous coefficients for the square-root #= @doc doc""" sqrt!(c, a, k::Int, k0::Int=0) Compute the `k-th` expansion coefficient `c[k]` of `c = sqrt(a)` for both`c` and `a` either `Taylor0` or `TaylorN`. The coefficients are given by ```math \begin{eqnarray*} c_k &=& \frac{1}{2 c_0} \big( a_k - 2 \sum_{j=1}^{(k-1)/2} c_{k-j}c_j\big), \text{ if k is odd,} \\ c_k &=& \frac{1}{2 c_0} \big( a_k - 2 \sum_{j=1}^{(k-2)/2} c_{k-j}c_j - (c_{k/2})^2\big), \text{ if k is even.} \end{eqnarray*} ``` For `Taylor0` polynomials, `k0` is the order of the first non-zero coefficient, which must be even. """ sqrt! =# @inline function sqrt!(c::Taylor0, a::Taylor0, k::Int, k0::Int=0) #println("k= ",k) # println("k0= ",k0) if k == k0 @inbounds c[k] = sqrt(a[2*k0]) println("i think this is a dead branch") return nothing end kodd = (k - k0)%2 # println("kodd= ",kodd) kend = div(k - k0 - 2 + kodd, 2) # println("kend= ",kend) imax = min(k0+kend, a.order) # println("imax= ",imax) imin = max(k0+1, k+k0-a.order) # println("imin= ",imin) #imin ≤ imax && ( @inbounds println("c in loop= ",c) c[k] = c[imin] * c[k+k0-imin] ) if imin ≤ imax # println("c in imin imax= ",c) c[k] = c[imin] * c[k+k0-imin] end # println("c= ",c) @inbounds for i = imin+1:imax c[k] += c[i] * c[k+k0-i] # println("c in loop= ",c) end if k+k0 ≤ a.order @inbounds aux = a[k+k0] - 2*c[k] # println("aux if <order= ",aux) else @inbounds aux = - 2*c[k] # println("aux else= ",aux) end if kodd == 0 @inbounds aux = aux - (c[kend+k0+1])^2 # println("aux if kodd==0 = ",aux) end @inbounds c[k] = aux / (2*c[k0]) #println("final c inside sqrt!= ",c) return nothing end
QuantizedSystemSolver
https://github.com/mongibellili/QuantizedSystemSolver.jl.git
[ "MIT" ]
1.0.1
b4bf1003586f2ee6cb98d8df29e88cbbfacd2ea1
code
1661
# This file is part of the TaylorSeries.jl Julia package, MIT license # # Luis Benet & David P. Sanders # UNAM # # MIT Expat license # powerT(a::Taylor0, n::Integer,cache1::Taylor0) = powerT(a, float(n),cache1) ## Real power ## function powerT(a::Taylor0, r::S,cache1::Taylor0) where {S<:Real} if iszero(r) #later test r=0.0 cache1[0]=1.0 return cache1 end # @show(aa) r == 1 && return a r == 2 && return square(a,cache1) r == 1/2 && return sqrt(a,cache1) l0 = findfirst(a) # @show l0 lnull = trunc(Int, r*l0 ) # @show lnull if (a.order-lnull < 0) || (lnull > a.order) # @show a.order return cache1 #empty end c_order = l0 == 0 ? a.order : min(a.order, trunc(Int,r*a.order)) # @show(c_order) #c = Taylor0(zero(aux), c_order) for k = 0:c_order pow!(cache1, a, r, k) end # println() return cache1 end function powerT(a::T, r::S,cache1::Taylor0) where {S<:Real,T<:Number} cache1[0]=a^r return cache1 end function square(a::Taylor0,cache1::Taylor0) #internal helper function ...no need to take care of a==number #c = Taylor0( constant_term(a)^2, a.order) cache1[0]=constant_term(a)^2 for k in 1:a.order sqr!(cache1, a, k) end return cache1 end ## Square root ## function sqrt(a::Taylor0,cache1::Taylor0) l0nz = findfirst(a) if l0nz < 0 cache1 end cache1[0]=sqrt(a[0]) for k = 1:a.order sqrt!(cache1, a, k, 0) end return cache1 end function sqrt(a::T,cache1::Taylor0)where {T<:Number} cache1[0]=sqrt(a) return cache1 end
QuantizedSystemSolver
https://github.com/mongibellili/QuantizedSystemSolver.jl.git
[ "MIT" ]
1.0.1
b4bf1003586f2ee6cb98d8df29e88cbbfacd2ea1
code
180
using qss using StaticArrays using BenchmarkTools t2=Taylor0([2.0,2.0,3.0],2) t1=Taylor0([1.0,1.1],1) #= cache1=Taylor0([0.0,0.0,0.0],2) cache2=Taylor0([0.0,0.0,0.0],2) =# @show t1
QuantizedSystemSolver
https://github.com/mongibellili/QuantizedSystemSolver.jl.git
[ "MIT" ]
1.0.1
b4bf1003586f2ee6cb98d8df29e88cbbfacd2ea1
code
767
using qssgenerated using BenchmarkTools t2=Taylor0([2.0,2.0,3.0],2) t1=Taylor0([1.0,1.0,0.0],2) cache1=Taylor0([0.0,0.0,0.0],2) cache2=Taylor0([0.0,0.0,0.0],2) function test0(t2::Taylor0{Float64}) one(t2) end function test0(t2::Taylor0{Float64},cache::Taylor0{Float64}) qssgenerated.one(t2,cache) end function test1(t2::Taylor0{Float64},t1::Taylor0{Float64}) res=t2/t1/t1 end function test2(t2::Taylor0{Float64},t1::Taylor0{Float64},cache1::Taylor0{Float64},cache2::Taylor0{Float64}) res2=qssgenerated.divT(qss.divT(t2,t1,cache1),t1,cache2) end #= @show test0(t2) @show test0(t2,cache1) =# #@btime test0(t2) #@btime test0(t2,cache1) #= @show test1(t2,t1) @show test2(t2,t1,cache1,cache2) =# #@btime test1(t2,t1) #@btime test2(t2,t1,cache1,cache2)
QuantizedSystemSolver
https://github.com/mongibellili/QuantizedSystemSolver.jl.git
[ "MIT" ]
1.0.1
b4bf1003586f2ee6cb98d8df29e88cbbfacd2ea1
code
1067
using qss using BenchmarkTools t2=Taylor0([2.0,2.0,3.0],2) t1=Taylor0([1.0,1.1],1) cache1=Taylor0([0.0,0.0,0.0],2) cache2=Taylor0([0.0,0.0,0.0],2) function test0(t2::Taylor0{Float64},t1::Taylor0{Float64}) qss.resize_coeffs1!(t2.coeffs,1) #@show t2.coeffs[1] # @show qss.getcoeff(t2,1) # @show qss.getindex(t2,1) # @show qss.setindex!(t2,2.22,1) return nothing end function test1(t2::Taylor0{Float64},t1::Taylor0{Float64}) qss.iterate(t1,0) qss.iterate(t1,1) end function test2(t2::Taylor0{Float64},t1::Taylor0{Float64},cache1::Taylor0{Float64},cache2::Taylor0{Float64}) qss.fixorder(t2,t1) end #= @show test0(t2,t1) @show t2 @btime test0(t2,t1)=# #@btime test1(t2,t1) #test1(t2,t1) #= t1,t2=test2(t1,t2,cache1,cache2) @show t1 @show t2 =# #@btime test2(t2,t1,cache1,cache2) function test4(t2::Taylor0{Float64},t1::Taylor0{Float64},cache1::Taylor0{Float64},cache2::Taylor0{Float64}) qss.copyto!(cache1,t2) end #= @show test4(t2,t1,cache1,cache2) @show cache1 =# @btime test4(t2,t1,cache1,cache2)
QuantizedSystemSolver
https://github.com/mongibellili/QuantizedSystemSolver.jl.git
[ "MIT" ]
1.0.1
b4bf1003586f2ee6cb98d8df29e88cbbfacd2ea1
code
2631
using qss using BenchmarkTools t2=Taylor0([0.5,2.0,3.0],2) t1=Taylor0([1.0,1.1],1) x=Taylor0([0.0,0.0,0.0],2) cache1=Taylor0([0.0,0.0,0.0],2) cache2=Taylor0([0.0,0.0,0.0],2) cache3=Taylor0([0.0,0.0,0.0],2) function testexp0(t2::Taylor0{Float64},cache1::Taylor0{Float64}) qss.exp(t2,cache1) end function testexp1(t2::Taylor0{Float64},t1::Taylor0{Float64}) exp(t2) end function testlog0(t2::Taylor0{Float64},cache1::Taylor0{Float64}) qss.log(t2,cache1) end function testlog1(t2::Taylor0{Float64},t1::Taylor0{Float64}) log(t2) end function testsincos0(t2::Taylor0{Float64},cache1::Taylor0{Float64},cache2::Taylor0{Float64}) qss.sincos(t2,cache1,cache2) end function testsincos1(t2::Taylor0{Float64},cache1::Taylor0{Float64},cache2::Taylor0{Float64}) sincos(t2) end function testtan0(t2::Taylor0{Float64},cache1::Taylor0{Float64},cache2::Taylor0{Float64}) qss.tan(t2,cache1,cache2) end function testtan1(t2::Taylor0{Float64},cache1::Taylor0{Float64},cache2::Taylor0{Float64}) tan(t2) end function testasin0(t2::Taylor0{Float64},cache1::Taylor0{Float64},cache2::Taylor0{Float64},cache3::Taylor0{Float64}) qss.asin(t2,cache1,cache2,cache3) end function testasin1(t2::Taylor0{Float64},cache1::Taylor0{Float64},cache2::Taylor0{Float64}) asin(t2) end function testacos0(t2::Taylor0{Float64},cache1::Taylor0{Float64},cache2::Taylor0{Float64},cache3::Taylor0{Float64}) qss.acos(t2,cache1,cache2,cache3) end function testacos1(t2::Taylor0{Float64},cache1::Taylor0{Float64},cache2::Taylor0{Float64}) acos(t2) end function testabs0(t2::Taylor0{Float64},cache1::Taylor0{Float64}) qss.abs(t2,cache1) end function testabs1(t2::Taylor0{Float64},cache1::Taylor0{Float64}) abs(t2) end #= @show testlog0(t2,cache1) @show testlog1(t2,cache1) =# #@btime testlog0(t2,cache1) #@btime testlog1(t2,cache1) #= @show testsincos0(t2,cache1,cache2) @show testsincos1(t2,cache1,cache2) =# #@btime testsincos0(t2,cache1,cache2) #@btime testsincos1(t2,cache1,cache2) #= @show testtan0(t2,cache1,cache2) @show testtan1(t2,cache1,cache2) =# #@btime testtan0(t2,cache1,cache2) #@btime testtan1(t2,cache1,cache2) #= @show testasin0(t2,cache1,cache2,cache3) @show testasin1(t2,cache1,cache2) =# #@btime testasin0(t2,cache1,cache2,cache3) #@btime testasin1(t2,cache1,cache2) #= @show testacos0(t2,cache1,cache2,cache3) @show testacos1(t2,cache1,cache2) =# #@btime testasin0(t2,cache1,cache2,cache3) #(0 allocations: 0 bytes) #@btime testasin1(t2,cache1,cache2) #(15 allocations: 1.08 KiB) #= @show testabs0(t2,cache1) @show testabs1(t2,cache1) =# @btime testabs0(t2,cache1) #@btime testabs1(t2,cache1)
QuantizedSystemSolver
https://github.com/mongibellili/QuantizedSystemSolver.jl.git
[ "MIT" ]
1.0.1
b4bf1003586f2ee6cb98d8df29e88cbbfacd2ea1
code
1865
using qss using BenchmarkTools t2=Taylor0([0.5,2.0,3.0],2) t1=Taylor0([1.0,1.1],1) x=Taylor0([0.0,0.0,0.0],2) cache1=Taylor0([0.0,0.0,0.0],2) cache2=Taylor0([0.0,0.0,0.0],2) cache3=Taylor0([0.0,0.0,0.0],2) function testsquare0(t2::Taylor0{Float64},cache1::Taylor0{Float64}) qss.square(t2,cache1) end function testsquare1(t2::Taylor0{Float64},t1::Taylor0{Float64}) t2^2 end function testsqrt0(t2::Taylor0{Float64},cache1::Taylor0{Float64}) qss.sqrt(t2,cache1) end function testsqrt1(t2::Taylor0{Float64},t1::Taylor0{Float64}) sqrt(t2) end function testpower0(t2::Taylor0{Float64},cache1::Taylor0{Float64},cache2::Taylor0{Float64}) qss.powerT(t2,3,cache1) end function testpower1(t2::Taylor0{Float64},cache1::Taylor0{Float64},cache2::Taylor0{Float64}) ^(t2,3) end #################real power############### function testrealpower0(t2::Taylor0{Float64},cache1::Taylor0{Float64}) qss.powerT(t2,3.22,cache1) end function testrealpower1(t2::Taylor0{Float64},cache1::Taylor0{Float64}) ^(t2,3.22) end #= @show testsquare0(t2,cache1) @show testsquare1(t2,cache1) =# #@btime testsquare0(t2,cache1)#21.193 ns (0 allocations: 0 bytes) #@btime testsquare1(t2,cache1)# 102.524 ns (2 allocations: 160 bytes) #= @show testsqrt0(t2,cache1) @show testsqrt1(t2,cache1) =# #@btime testsqrt0(t2,cache1)#20.749 ns (0 allocations: 0 bytes) #@btime testsqrt1(t2,cache1)#99.014 ns (2 allocations: 160 bytes) #= @show testpower0(t2,cache1,cache2) @show testpower1(t2,cache1,cache2) =# #@btime testpower0(t2,cache1,cache2)#60.724 ns (0 allocations: 0 bytes) #@btime testpower1(t2,cache1,cache2)#132.472 ns (2 allocations: 160 bytes) #= @show testrealpower0(t2,cache1) @show testrealpower1(t2,cache1) =# #@btime testrealpower0(t2,cache1)#142.59 ns (0 allocations: 0 bytes) #@btime testrealpower1(t2,cache1)#216.271 ns (2 allocations: 160 bytes)
QuantizedSystemSolver
https://github.com/mongibellili/QuantizedSystemSolver.jl.git
[ "MIT" ]
1.0.1
b4bf1003586f2ee6cb98d8df29e88cbbfacd2ea1
code
3064
using TaylorSeries using BenchmarkTools using qssgenerated import Base.:/ av = vec(3(rand(1,3) .- 1.5)) bv = vec(3(rand(1,3) .- 1.5)) cv = vec(3(rand(1,3) .- 1.5)) dv = vec(3(rand(1,3) .- 1.5)) ev = vec(3(rand(1,3) .- 1.5)) fv = vec(3(rand(1,3) .- 1.5)) gv = vec(3(rand(1,3) .- 1.5)) hv = vec(3(rand(1,3) .- 1.5)) a1 = Taylor1(av,2) b1 = Taylor1(bv,2) c1 = Taylor1(cv,2) d1 = Taylor1(dv,2) e1 = Taylor1(ev,2) f1 = Taylor1(fv,2) g1 = Taylor1(gv,2) h1 = Taylor1(hv,2) a0 = Taylor0(av,2) b0 = Taylor0(bv,2) c0 = Taylor0(cv,2) d0 = Taylor0(dv,2) e0 = Taylor0(ev,2) f0 = Taylor0(fv,2) g0 = Taylor0(gv,2) h0 = Taylor0(hv,2) i=3rand() - 1.5 j=3rand() - 1.5 k=3rand() - 1.5 cache=[Taylor0([0.0,0.0,0.0],2),Taylor0([0.0,0.0,0.0],2),Taylor0([0.0,0.0,0.0],2),Taylor0([0.0,0.0,0.0],2),Taylor0([0.0,0.0,0.0],2),Taylor0([0.0,0.0,0.0],2),Taylor0([0.0,0.0,0.0],2),Taylor0([0.0,0.0,0.0],2),Taylor0([0.0,0.0,0.0],2),Taylor0([0.0,0.0,0.0],2),Taylor0([0.0,0.0,0.0],2),Taylor0([0.0,0.0,0.0],2)] function clearCache(cache::Vector{Taylor0{Float64}}) #where {T<:Number} for i=1:12 cache[i].coeffs.=0.0 end end function same(sum1::Taylor1{Float64},sum2::Taylor0{Float64}) isclose=true for i=0:length(sum1.coeffs)-1 if abs(sum1[i]-sum2[i])>1e-9 #if (sum1[i]!=sum2[i]) isclose=false break end end return isclose end function same(sum1::Float64,sum2::Taylor0{Float64}) return abs(sum1-sum2[0])<1e-9 #return (sum1==sum2[0]) end macro changeAST(ex) Base.remove_linenums!(ex) # dump(ex; maxdepth=18) qssgenerated.twoInOne(ex) # dump( ex.args[1]) #@show ex.args[1] #= # return return nothing =# esc(ex.args[1])# return end function /(a::T, b::Taylor1{T}) where {T<:Number} c=^(b, -1.0) c2 = Taylor1( b.order ) @__dot__ c2.coeffs=c.coeffs*a ### broadcast dimension mismatch------------------div can have 2 caches then...:( return c2 end function normalTest(a1::Taylor1{Float64},b1::Taylor1{Float64},c1::Taylor1{Float64},d1::Taylor1{Float64},e1::Taylor1{Float64},f1::Taylor1{Float64},g1::Taylor1{Float64},h1::Taylor1{Float64},a0::Taylor0{Float64},b0::Taylor0{Float64},c0::Taylor0{Float64},d0::Taylor0{Float64},e0::Taylor0{Float64},f0::Taylor0{Float64},g0::Taylor0{Float64},h0::Taylor0{Float64},cache::Vector{Taylor0{Float64}},i::Float64,j::Float64,k::Float64) +(-(+(+(*(*(-(a1,b1),j),c1),d1),i),e1),f1) end function freeTest(a1::Taylor1{Float64},b1::Taylor1{Float64},c1::Taylor1{Float64},d1::Taylor1{Float64},e1::Taylor1{Float64},f1::Taylor1{Float64},g1::Taylor1{Float64},h1::Taylor1{Float64},a0::Taylor0{Float64},b0::Taylor0{Float64},c0::Taylor0{Float64},d0::Taylor0{Float64},e0::Taylor0{Float64},f0::Taylor0{Float64},g0::Taylor0{Float64},h0::Taylor0{Float64},cache::Vector{Taylor0{Float64}},i::Float64,j::Float64,k::Float64) clearCache(cache) @changeAST (+(-(+(+(*(*(-(a0,b0),j),c0),d0),i),e0),f0),1) end @btime normalTest(a1,b1,c1,d1,e1,f1,g1,h1,a0,b0,c0,d0,e0,f0,g0,h0,cache,i,j,k) @btime freeTest(a1,b1,c1,d1,e1,f1,g1,h1,a0,b0,c0,d0,e0,f0,g0,h0,cache,i,j,k)
QuantizedSystemSolver
https://github.com/mongibellili/QuantizedSystemSolver.jl.git
[ "MIT" ]
1.0.1
b4bf1003586f2ee6cb98d8df29e88cbbfacd2ea1
code
6073
using TaylorSeries using BenchmarkTools using qssgenerated av = vec(3(rand(1,3) .+ 1.5)) #changed + for log and sqrt only bv = vec(3(rand(1,3) .+ 1.5)) cv = vec(3(rand(1,3) .+ 1.5)) dv = vec(3(rand(1,3) .+ 1.5)) a1 = Taylor1(av,2) b1 = Taylor1(bv,2) c1 = Taylor1(cv,2) d1 = Taylor1(dv,2) a0 = Taylor0(av,2) b0 = Taylor0(bv,2) c0 = Taylor0(cv,2) d0 = Taylor0(dv,2) e=3rand() + 1.5 f=3rand() + 1.5 cache=[Taylor0([0.0,0.0,0.0],2),Taylor0([0.0,0.0,0.0],2),Taylor0([0.0,0.0,0.0],2),Taylor0([0.0,0.0,0.0],2),Taylor0([0.0,0.0,0.0],2),Taylor0([0.0,0.0,0.0],2),Taylor0([0.0,0.0,0.0],2),Taylor0([0.0,0.0,0.0],2),Taylor0([0.0,0.0,0.0],2),Taylor0([0.0,0.0,0.0],2),Taylor0([0.0,0.0,0.0],2),Taylor0([0.0,0.0,0.0],2)] function clearCache(cache::Vector{Taylor0{Float64}}) #where {T<:Number} for i=1:10 cache[i].coeffs.=0.0 end end function same(sum1::Taylor1{Float64},sum2::Taylor0{Float64}) if sum1[0]==Inf && sum2[0]==Inf return true end for i=0:length(sum1.coeffs)-1 if abs(sum1[i]-sum2[i])>1e-9 #if (sum1[i]!=sum2[i]) return false end end return true end function same(sum1::Float64,sum2::Taylor0{Float64}) if sum1==Inf && sum2[0]==Inf return true end return abs(sum1-sum2[0])<1e-9 #return (sum1==sum2[0]) end macro changeAST(ex) Base.remove_linenums!(ex) # dump(ex; maxdepth=18) qssgenerated.twoInOne(ex) # dump( ex.args[1]) #@show ex.args[1] #= # return return nothing =# esc(ex.args[1])# return end function investigationTest(a1::Taylor1{Float64},b1::Taylor1{Float64},c1::Taylor1{Float64},d1::Taylor1{Float64},a0::Taylor0{Float64},b0::Taylor0{Float64},c0::Taylor0{Float64},d0::Taylor0{Float64},cache::Vector{Taylor0{Float64}},e::Float64,f::Float64) clearCache(cache) @show @changeAST((((b0 - f) - a0) * d0, 1)) @show ((b1 - f) + a1) * d1 end function outerInvestigation() for _=1:20 av = vec(3(rand(1,3) .- 1.5)) bv = vec(3(rand(1,3) .- 1.5)) cv = vec(3(rand(1,3) .- 1.5)) dv = vec(3(rand(1,3) .- 1.5)) a1 = Taylor1(av,2) b1 = Taylor1(bv,2) c1 = Taylor1(cv,2) d1 = Taylor1(dv,2) a0 = Taylor0(av,2) b0 = Taylor0(bv,2) c0 = Taylor0(cv,2) d0 = Taylor0(dv,2) e=3rand() - 1.5 f=3rand() - 1.5 investigationTest(a1,b1,c1,d1,a0,b0,c0,d0,cache,e,f) end end #outerInvestigation() function boundaryTest(a1::Taylor1{Float64},b1::Taylor1{Float64},c1::Taylor1{Float64},d1::Taylor1{Float64},a0::Taylor0{Float64},b0::Taylor0{Float64},c0::Taylor0{Float64},d0::Taylor0{Float64},cache::Vector{Taylor0{Float64}},e::Float64,f::Float64) mulTT(1.2, 2.1, a0, b0, 3.2, c0,d0, cache[1], cache[2]) #@show 1.2*2.1*a1*b1*3.2*c1*d1 return nothing end @btime boundaryTest(a1,b1,c1,d1,a0,b0,c0,d0,cache,e,f) #= function stressTest(a1::Taylor1{Float64},b1::Taylor1{Float64},c1::Taylor1{Float64},d1::Taylor1{Float64},a0::Taylor0{Float64},b0::Taylor0{Float64},c0::Taylor0{Float64},d0::Taylor0{Float64},cache::Vector{Taylor0{Float64}},e::Float64,f::Float64) for op1 in (:+,:-,:*,:/) for op2 in (:+,:-,:*,:/) for op3 in (:+,:-,:*,:/) for (term11,term01) in((:a1,:a0),(:e,:e)) for (term12,term02) in((:a1,:a0),(:b1,:b0)) for (term13,term03) in((:c1,:c0),(:f,:f)) for (term14,term04) in((:d1,:d0),(:a1,:a0)) @eval begin clearCache(cache) @assert same($op3($op1($op2($term12,$term13),$term11),$term14), @changeAST ($op3($op1($op2($term02,$term03),$term01),$term04),1)) #= if !same($op3($op1($op2($term12,$term13),$term11),$term14), @changeAST ($op3($op1($op2($term02,$term03),$term01),$term04),1)) @show cache @show $op3($op1($op2($term12,$term13),$term11),$term14) @show @changeAST ($op3($op1($op2($term02,$term03),$term01),$term04),1) end =# end end end end end end end end end =# #stressTest(a1,b1,c1,d1,a0,b0,c0,d0,cache,e,f) #successful function stressTest2(a1::Taylor1{Float64},b1::Taylor1{Float64},c1::Taylor1{Float64},d1::Taylor1{Float64},a0::Taylor0{Float64},b0::Taylor0{Float64},c0::Taylor0{Float64},d0::Taylor0{Float64},cache::Vector{Taylor0{Float64}},e::Float64,f::Float64) for op1 in (:abs,:exp,:cos,:sin) for op2 in (:abs,:exp,:cos,:sin) for op3 in (:abs,:exp,:cos,:sin) for (term11,term01) in((:a1,:a0),(:e,:e)) for (term12,term02) in((:a1,:a0),(:b1,:b0)) @eval begin clearCache(cache) @assert same($op3($op1($op2($term12))), @changeAST ($op3($op1($op2($term02))),1)) clearCache(cache) @assert same($op3($op1($op2($term11))), @changeAST ($op3($op1($op2($term01))),1)) end end end end end end end #stressTest2(a1,b1,c1,d1,a0,b0,c0,d0,cache,e,f)#successful #= function stressTest3(a1::Taylor1{Float64},b1::Taylor1{Float64},c1::Taylor1{Float64},d1::Taylor1{Float64},a0::Taylor0{Float64},b0::Taylor0{Float64},c0::Taylor0{Float64},d0::Taylor0{Float64},cache::Vector{Taylor0{Float64}},e::Float64,f::Float64) for op1 in (:sqrt,:log) for op2 in (:sqrt,:log) for (term11,term01) in((:a1,:a0),(:e,:e)) for (term12,term02) in((:a1,:a0),(:b1,:b0)) @eval begin clearCache(cache) @assert same($op1($op2($term12)), @changeAST ($op1($op2($term02)),1)) clearCache(cache) @assert same($op1($op2($term11)), @changeAST ($op1($op2($term01)),1)) end end end end end end =# #stressTest3(a1,b1,c1,d1,a0,b0,c0,d0,cache,e,f)#successful
QuantizedSystemSolver
https://github.com/mongibellili/QuantizedSystemSolver.jl.git
[ "MIT" ]
1.0.1
b4bf1003586f2ee6cb98d8df29e88cbbfacd2ea1
code
6053
using TaylorSeries using qssgenerated import Base.:/ av = vec(3(rand(1,3) .- 1.5)) bv = vec(3(rand(1,3) .- 1.5)) cv = vec(3(rand(1,3) .- 1.5)) dv = vec(3(rand(1,3) .- 1.5)) ev = vec(3(rand(1,3) .- 1.5)) fv = vec(3(rand(1,3) .- 1.5)) gv = vec(3(rand(1,3) .- 1.5)) hv = vec(3(rand(1,3) .- 1.5)) a1 = Taylor1(av,2) b1 = Taylor1(bv,2) c1 = Taylor1(cv,2) d1 = Taylor1(dv,2) e1 = Taylor1(ev,2) f1 = Taylor1(fv,2) g1 = Taylor1(gv,2) h1 = Taylor1(hv,2) a0 = Taylor0(av,2) b0 = Taylor0(bv,2) c0 = Taylor0(cv,2) d0 = Taylor0(dv,2) e0 = Taylor0(ev,2) f0 = Taylor0(fv,2) g0 = Taylor0(gv,2) h0 = Taylor0(hv,2) i=3rand() - 1.5 j=3rand() - 1.5 k=3rand() - 1.5 cache=[Taylor0([0.0,0.0,0.0],2),Taylor0([0.0,0.0,0.0],2),Taylor0([0.0,0.0,0.0],2),Taylor0([0.0,0.0,0.0],2),Taylor0([0.0,0.0,0.0],2),Taylor0([0.0,0.0,0.0],2),Taylor0([0.0,0.0,0.0],2),Taylor0([0.0,0.0,0.0],2),Taylor0([0.0,0.0,0.0],2),Taylor0([0.0,0.0,0.0],2),Taylor0([0.0,0.0,0.0],2),Taylor0([0.0,0.0,0.0],2)] function clearCache(cache::Vector{Taylor0{Float64}}) #where {T<:Number} for i=1:12 cache[i].coeffs.=0.0 end end function same(sum1::Taylor1{Float64},sum2::Taylor0{Float64}) isclose=true for i=0:length(sum1.coeffs)-1 if abs(sum1[i]-sum2[i])>1e-9 #if (sum1[i]!=sum2[i]) isclose=false break end end return isclose end function same(sum1::Float64,sum2::Taylor0{Float64}) return abs(sum1-sum2[0])<1e-9 #return (sum1==sum2[0]) end macro changeAST(ex) Base.remove_linenums!(ex) # dump(ex; maxdepth=18) qssgenerated.twoInOne(ex) # dump( ex.args[1]) #@show ex.args[1] #= # return return nothing =# esc(ex.args[1])# return end function /(a::T, b::Taylor1{T}) where {T<:Number} c=^(b, -1.0) c2 = Taylor1( b.order ) @__dot__ c2.coeffs=c.coeffs*a ### broadcast dimension mismatch------------------div can have 2 caches then...:( return c2 end function stressTest(a1::Taylor1{Float64},b1::Taylor1{Float64},c1::Taylor1{Float64},d1::Taylor1{Float64},e1::Taylor1{Float64},f1::Taylor1{Float64},g1::Taylor1{Float64},h1::Taylor1{Float64},a0::Taylor0{Float64},b0::Taylor0{Float64},c0::Taylor0{Float64},d0::Taylor0{Float64},e0::Taylor0{Float64},f0::Taylor0{Float64},g0::Taylor0{Float64},h0::Taylor0{Float64},cache::Vector{Taylor0{Float64}},i::Float64,j::Float64,k::Float64) for op1 in (:+,:-,:*,:/) for op2 in (:+,:-,:*,:/) for op3 in (:+,:-,:*,:/) for (term11,term01) in((:a1,:a0),(:j,:j)) for (term12,term02) in((:a1,:a0),(:b1,:b0)) for (term13,term03) in((:c1,:c0),(:i,:i)) for (term14,term04) in((:d1,:d0),(:a1,:a0)) for (term15,term05) in((:a1,:a0),(:j,:j)) for (term16,term06) in((:a1,:a0),(:b1,:b0)) for (term17,term07) in((:c1,:c0),(:i,:i)) for (term18,term08) in((:d1,:d0),(:a1,:a0)) @eval begin clearCache(cache) @assert same($op1($op3($op2($op1($op3($op2($op1($term11,$term12),$term13),$term14),$term15),$term16),$term17),$term18),@changeAST ($op1($op3($op2($op1($op3($op2($op1($term01,$term02),$term03),$term04),$term05),$term06),$term07),$term08),1)) #= if !same($op3($op1($op2($term12,$term13),$term11),$term14), @changeAST ($op3($op1($op2($term02,$term03),$term01),$term04),1)) @show cache @show $op3($op1($op2($term12,$term13),$term11),$term14) @show @changeAST ($op3($op1($op2($term02,$term03),$term01),$term04),1) end =# end end end end end end end end end end end end end stressTest(a1,b1,c1,d1,e1,f1,g1,h1,a0,b0,c0,d0,e0,f0,g0,h0,cache,i,j,k)#successful #= function stressTest2(a1::Taylor1{Float64},b1::Taylor1{Float64},c1::Taylor1{Float64},d1::Taylor1{Float64},a0::Taylor0{Float64},b0::Taylor0{Float64},c0::Taylor0{Float64},d0::Taylor0{Float64},cache::Vector{Taylor0{Float64}},e::Float64,f::Float64) for op1 in (:abs,:exp,:cos,:sin) for op2 in (:abs,:exp,:cos,:sin) for op3 in (:abs,:exp,:cos,:sin) for (term11,term01) in((:a1,:a0),(:e,:e)) for (term12,term02) in((:a1,:a0),(:b1,:b0)) @eval begin clearCache(cache) @assert same($op3($op1($op2($term12))), @changeAST ($op3($op1($op2($term02))),1)) @assert same($op3($op1($op2($term11))), @changeAST ($op3($op1($op2($term01))),1)) end end end end end end end #stressTest2(a1,b1,c1,d1,a0,b0,c0,d0,cache,e,f) function stressTest3(a1::Taylor1{Float64},b1::Taylor1{Float64},c1::Taylor1{Float64},d1::Taylor1{Float64},a0::Taylor0{Float64},b0::Taylor0{Float64},c0::Taylor0{Float64},d0::Taylor0{Float64},cache::Vector{Taylor0{Float64}},e::Float64,f::Float64) for op1 in (:abs,:exp,:cos,:sin) for op2 in (:abs,:exp,:cos,:sin) for op3 in (:abs,:exp,:cos,:sin) for (term11,term01) in((:a1,:a0),(:e,:e)) for (term12,term02) in((:a1,:a0),(:b1,:b0)) @eval begin clearCache(cache) @assert same($op3($op1($op2($term12))), @changeAST ($op3($op1($op2($term02))),1)) @assert same($op3($op1($op2($term11))), @changeAST ($op3($op1($op2($term01))),1)) end end end end end end end #stressTest3(a1,b1,c1,d1,a0,b0,c0,d0,cache,e,f) =#
QuantizedSystemSolver
https://github.com/mongibellili/QuantizedSystemSolver.jl.git
[ "MIT" ]
1.0.1
b4bf1003586f2ee6cb98d8df29e88cbbfacd2ea1
code
25211
# This file is part of TS.jl, MIT licensed # #using TS using qss using Test #using LinearAlgebra, SparseArrays # This is used to check the fallack of pretty_print struct SymbNumber <: Number s :: Symbol end Base.iszero(::SymbNumber) = false const TS = qss @testset "Tests for Taylor0 expansions" begin eeuler = Base.MathConstants.e ta(a) = Taylor0([a,one(a)],15) t = Taylor0(Int,15) tim = im*t zt = zero(t) ot = 1.0*one(t) tol1 = eps(1.0) #= @test TS === qss @test Taylor0 <: AbstractSeries @test Taylor0{Float64} <: AbstractSeries{Float64} @test TS.numtype(1.0) == eltype(1.0) @test TS.numtype([1.0]) == eltype([1.0]) @test TS.normalize_taylor(t) == t @test TS.normalize_taylor(tim) == tim @test Taylor0([1,2,3,4,5], 2) == Taylor0([1,2,3]) @test Taylor0(t[0:3]) == Taylor0(t[0:get_order(t)], 4) @test get_order(t) == 15 @test get_order(Taylor0([1,2,3,4,5], 2)) == 2 @test size(t) == (16,) @test firstindex(t) == 0 @test lastindex(t) == 15 @test eachindex(t) == 0:15 @test iterate(t) == (0.0, 1) @test iterate(t, 1) == (1.0, 2) @test iterate(t, 16) == nothing @test axes(t) == () @test axes([t]) == (Base.OneTo(1),) v = [1,2] @test typeof(resize_coeffs1!(v,3)) == Nothing @test v == [1,2,0,0] resize_coeffs1!(v,0) @test v == [1] resize_coeffs1!(v,3) setindex!(Taylor0(v),3,2) @test v == [1,0,3,0] pol_int = Taylor0(v) @test pol_int[:] == [1,0,3,0] @test pol_int[:] == pol_int.coeffs[:] @test pol_int[1:2:3] == pol_int.coeffs[2:2:4] setindex!(pol_int,0,0:2) @test v == zero(v) setindex!(pol_int,1,:) @test v == ones(Int, 4) setindex!(pol_int, v, :) @test v == ones(Int, 4) setindex!(pol_int, zeros(Int, 4), 0:3) @test v == zeros(Int, 4) pol_int[:] .= 0 @test v == zero(v) pol_int[0:2:end] = 2 @test all(v[1:2:end] .== 2) pol_int[0:2:3] = [0, 1] @test all(v[1:2:3] .== [0, 1]) rv = [rand(0:3) for i in 1:4] @test Taylor0(rv)[:] == rv y = sin(Taylor0(16)) @test y[:] == y.coeffs y[:] .= cos(Taylor0(16))[:] @test y == cos(Taylor0(16)) @test y[:] == cos(Taylor0(16))[:] y = sin(Taylor0(16)) rv = rand(5) y[0:4] .= rv @test y[0:4] == rv @test y[5:end] == y.coeffs[6:end] rv = rand( length(y.coeffs) ) y[:] .= rv @test y[:] == rv y[:] .= cos(Taylor0(16)).coeffs @test y == cos(Taylor0(16)) @test y[:] == cos(Taylor0(16))[:] y[:] .= 0.0 @test y[:] == zero(y[:]) y = sin(Taylor0(16)) rv = rand.(length(0:4)) y[0:4] .= rv @test y[0:4] == rv @test y[6:end] == sin(Taylor0(16))[6:end] rv = rand.(length(y)) y[:] .= rv @test y[:] == rv y[0:4:end] .= 1.0 @test all(y.coeffs[1:4:end] .== 1.0) y[0:2:8] .= rv[1:5] @test y.coeffs[1:2:9] == rv[1:5] @test_throws AssertionError y[0:2:3] = rv @test Taylor0([0,1,0,0]) == Taylor0(3) @test getcoeff(Taylor0(Complex{Float64},3),1) == complex(1.0,0.0) @test Taylor0(Complex{Float64},3)[1] == complex(1.0,0.0) @test getindex(Taylor0(3),1) == 1.0 @inferred convert(Taylor0{Complex{Float64}},ot) == Taylor0{Complex{Float64}} @test eltype(convert(Taylor0{Complex{Float64}},ot)) == Taylor0{Complex{Float64}} @test eltype(convert(Taylor0{Complex{Float64}},1)) == Taylor0{Complex{Float64}} @test eltype(convert(Taylor0, 1im)) == Taylor0{Complex{Int}} @test TS.numtype(convert(Taylor0{Complex{Float64}},ot)) == Complex{Float64} @test TS.numtype(convert(Taylor0{Complex{Float64}},1)) == Complex{Float64} @test TS.numtype(convert(Taylor0, 1im)) == Complex{Int} @test convert(Taylor0, 1im) == Taylor0(1im, 0) @test convert(eltype(t), t) === t @test convert(eltype(ot), ot) === ot @test convert(Taylor0{Int},[0,2]) == 2*t @test convert(Taylor0{Complex{Int}},[0,2]) == (2+0im)*t @test convert(Taylor0{BigFloat},[0.0, 1.0]) == ta(big(0.0)) @test promote(t,Taylor0(1.0,0)) == (ta(0.0),ot) @test promote(0,Taylor0(1.0,0)) == (zt,ot) @test eltype(promote(ta(0),zeros(Int,2))[2]) == Taylor0{Int} @test eltype(promote(ta(0.0),zeros(Int,2))[2]) == Taylor0{Float64} @test eltype(promote(0,Taylor0(ot))[1]) == Taylor0{Float64} @test eltype(promote(1.0+im, zt)[1]) == Taylor0{Complex{Float64}} @test TS.numtype(promote(ta(0),zeros(Int,2))[2]) == Int @test TS.numtype(promote(ta(0.0),zeros(Int,2))[2]) == Float64 @test TS.numtype(promote(0,Taylor0(ot))[1]) == Float64 @test TS.numtype(promote(1.0+im, zt)[1]) == Complex{Float64} @test length(Taylor0(10)) == 11 @test length.( TS.fixorder(zt, Taylor0([1])) ) == (16, 16) @test length.( TS.fixorder(zt, Taylor0([1], 1)) ) == (2, 2) @test eltype(TS.fixorder(zt,Taylor0([1]))[1]) == Taylor0{Int} @test TS.numtype(TS.fixorder(zt,Taylor0([1]))[1]) == Int @test TS.findfirst(t) == 1 @test TS.findfirst(t^2) == 2 @test TS.findfirst(ot) == 0 @test TS.findfirst(zt) == -1 @test TS.findlast(t) == 1 @test TS.findlast(t^2) == 2 @test TS.findlast(ot) == 0 @test TS.findlast(zt) == -1 @test iszero(zero(t)) @test !iszero(one(t)) @test isinf(Taylor0([typemax(1.0)])) @test isnan(Taylor0([typemax(1.0), NaN])) @test constant_term(2.0) == 2.0 @test constant_term(t) == 0 @test constant_term(tim) == complex(0, 0) @test constant_term([zt, t]) == [0, 0] @test linear_polynomial(2) == 2 @test linear_polynomial(t) == t @test linear_polynomial(1+tim^2) == zero(tim) @test get_order(linear_polynomial(1+tim^2)) == get_order(tim) @test linear_polynomial([zero(tim), tim, tim^2]) == [zero(tim), tim, zero(tim)] @test nonlinear_polynomial(2im) == 0im @test nonlinear_polynomial(1+t) == zero(t) @test nonlinear_polynomial(1+tim^2) == tim^2 @test nonlinear_polynomial([zero(tim), tim, 1+tim^2]) == [zero(tim), zero(tim), tim^2] @test ot == 1 @test 0.0 == zt @test getcoeff(tim,1) == complex(0,1) @test zt+1.0 == ot @test 1.0-ot == zt @test t+t == 2t @test t-t == zt @test +t == -(-t) =# tsquare = Taylor0([0,0,1],15) @test t * true == t @test false * t == zero(t) @test t^0 == t^0.0 == one(t) #= @test t*t == tsquare @test t*1 == t @test 0*t == zt =# @test (-t)^2 == tsquare @test t^3 == tsquare*t @test zero(t)/t == zero(t) @test get_order(zero(t)/t) == get_order(t) @test one(t)/one(t) == 1.0 #= @test tsquare/t == t @test get_order(tsquare/t) == get_order(tsquare)-1 @test t/(t*3) == (1/3)*ot @test get_order(t/(t*3)) == get_order(t)-1 @test t/3im == -tim/3 @test 1/(1-t) == Taylor0(ones(t.order+1)) @test Taylor0([0,1,1])/t == t+1 @test get_order(Taylor0([0,1,1])/t) == 1 @test (t+im)^2 == tsquare+2im*t-1 @test (t+im)^3 == Taylor0([-1im,-3,3im,1],15) @test (t+im)^4 == Taylor0([1,-4im,-6,4im,1],15) =# @test imag(tsquare+2im*t-1) == 2t @test (Rational(1,2)*tsquare)[2] == 1//2 @test t^2/tsquare == ot @test get_order(t^2/tsquare) == get_order(t)-2 @test ((1+t)^(1/3))[2]+1/9 ≤ tol1 @test (1.0-tsquare)^3 == (1.0-t)^3*(1.0+t)^3 @test (1-tsquare)^2 == (1+t)^2.0 * (1-t)^2.0 #@test (sqrt(1+t))[2] == -1/8 @test ((1-tsquare)^(1//2))^2 == 1-tsquare @test ((1-t)^(1//4))[14] == -4188908511//549755813888 #= @test abs(((1+t)^3.2)[13] + 5.4021062656e-5) < tol1 @test Taylor0(BigFloat,5)/6 == 1im*Taylor0(5)/complex(0,BigInt(6)) @test Taylor0(BigFloat,5)/(6*Taylor0(3)) == 1/BigInt(6) @test Taylor0(BigFloat,5)/(6im*Taylor0(3)) == -1im/BigInt(6) @test isapprox((1+(1.5+t)/4)^(-2), inv(1+(1.5+t)/4)^2, rtol=eps(Float64)) @test isapprox((1+(big(1.5)+t)/4)^(-2), inv(1+(big(1.5)+t)/4)^2, rtol=eps(BigFloat)) @test isapprox((1+(1.5+t)/4)^(-2), inv(1+(1.5+t)/4)^2, rtol=eps(Float64)) @test isapprox((1+(big(1.5)+t)/4)^(-2), inv(1+(big(1.5)+t)/4)^2, rtol=eps(BigFloat)) @test isapprox((1+(1.5+t)/5)^(-2.5), inv(1+(1.5+t)/5)^2.5, rtol=eps(Float64)) @test isapprox((1+(big(1.5)+t)/5)^(-2.5), inv(1+(big(1.5)+t)/5)^2.5, rtol=2eps(BigFloat)) =# # These tests involve some sort of factorization @test t/(t+t^2) == 1/(1+t) @test get_order(t/(t+t^2)) == get_order(1/(1+t))-1 #@test sqrt(t^2+t^3) == t*sqrt(1+t) #@test get_order(sqrt(t^2+t^3)) == get_order(t) >> 1 #@test get_order(t*sqrt(1+t)) == get_order(t) # @test (t^3+t^4)^(1/3) ≈ t*(1+t)^(1/3) @test norm((t^3+t^4)^(1/3) - t*(1+t)^(1/3), Inf) < eps() @test get_order((t^3+t^4)^(1/3)) == 5 @test ((t^3+t^4)^(1/3))[5] == -10/243 trational = ta(0//1) @inferred ta(0//1) == Taylor0{Rational{Int}} @test eltype(trational) == Taylor0{Rational{Int}} @test TS.numtype(trational) == Rational{Int} @test trational + 1//3 == Taylor0([1//3,1],15) @test complex(3,1)*trational^2 == Taylor0([0//1,0//1,complex(3,1)//1],15) @test trational^2/3 == Taylor0([0//1,0//1,1//3],15) @test trational^3/complex(7,1) == Taylor0([0,0,0,complex(7//50,-1//50)],15) @test sqrt(zero(t)) == zero(t) @test isapprox( rem(4.1 + t,4)[0], 0.1 ) @test isapprox( mod(4.1 + t,4)[0], 0.1 ) @test isapprox( rem(1+Taylor0(Int,4),4.0)[0], 1.0 ) @test isapprox( mod(1+Taylor0(Int,4),4.0)[0], 1.0 ) @test isapprox( mod2pi(2pi+0.1+t)[0], 0.1 ) @test abs(ta(1)) == ta(1) @test abs(ta(-1.0)) == -ta(-1.0) @test taylor_expand(x->2x,order=10) == 2*Taylor0(10) @test taylor_expand(x->x^2+1) == Taylor0(15)*Taylor0(15) + 1 @test evaluate(taylor_expand(cos,0.)) == cos(0.) @test evaluate(taylor_expand(tan,pi/4)) == tan(pi/4) @test eltype(taylor_expand(x->x^2+1,1)) == Taylor0{Int} @test TS.numtype(taylor_expand(x->x^2+1,1)) == Int tsq = t^2 update!(tsq,2.0) @test tsq == (t+2.0)^2 update!(tsq,-2.0) @test tsq == t^2 @test log(exp(tsquare)) == tsquare @test exp(log(1-tsquare)) == 1-tsquare @test log((1-t)^2) == 2*log(1-t) @test real(exp(tim)) == cos(t) @test imag(exp(tim)) == sin(t) @test exp(conj(tim)) == cos(t)-im*sin(t) == exp(tim') @test abs2(tim) == tsquare # @test abs(tim) == t #sqrt int @test isapprox(abs2(exp(tim)), ot) @test isapprox(abs(exp(tim)), ot) @test (exp(t))^(2im) == cos(2t)+im*sin(2t) @test (exp(t))^Taylor0([-5.2im]) == cos(5.2t)-im*sin(5.2t) @test getcoeff(convert(Taylor0{Rational{Int}},cos(t)),8) == 1//factorial(8) @test abs((tan(t))[7]- 17/315) < tol1 @test abs((tan(t))[13]- 21844/6081075) < tol1 @test tan(1.3+t) ≈ sin(1.3+t)/cos(1.3+t) @test cot(1.3+t) ≈ 1/tan(1.3+t) @test evaluate(exp(Taylor0([0,1],17)),1.0) == 1.0*eeuler @test evaluate(exp(Taylor0([0,1],1))) == 1.0 @test evaluate(exp(t),t^2) == exp(t^2) @test evaluate(exp(Taylor0(BigFloat, 15)), t^2) == exp(Taylor0(BigFloat, 15)^2) @test evaluate(exp(Taylor0(BigFloat, 15)), t^2) isa Taylor0{BigFloat} #Test function-like behavior for Taylor0s t17 = Taylor0([0,1],17) myexpfun = exp(t17) @test myexpfun(1.0) == 1.0*eeuler @test myexpfun() == 1.0 @test myexpfun(t17^2) == exp(t17^2) @test exp(t17^2)(t17) == exp(t17^2) p = cos(t17) q = sin(t17) @test cos(-im*t)(1)+im*sin(-im*t)(1) == exp(-im*t)(im) @test p(-im*t17)(1)+im*q(-im*t17)(1) == exp(-im*t17)(im) cossin1 = x->p(q(x)) @test evaluate(p, evaluate(q, pi/4)) == cossin1(pi/4) cossin2 = p(q) @test evaluate(evaluate(p,q), pi/4) == cossin2(pi/4) @test evaluate(p, q) == cossin2 @test p(q)() == evaluate(evaluate(p, q)) @test evaluate(p, q) == p(q) @test evaluate(q, p) == q(p) cs = x->cos(sin(x)) csdiff = (cs(t17)-cossin2(t17)).(-2:0.1:2) @test norm(csdiff, 1) < 5e-15 a = [p,q] @test a(0.1) == evaluate.([p,q],0.1) @test a.(0.1) == a(0.1) @test a.() == evaluate.([p, q]) @test a.() == [p(), q()] @test a.() == a() @test view(a, 1:1)() == [a[1]()] vr = rand(2) @test p.(vr) == evaluate.([p], vr) Mr = rand(3,3,3) @test p.(Mr) == evaluate.([p], Mr) vr = rand(5) @test p(vr) == p.(vr) @test view(a, 1:1)(vr) == evaluate.([p],vr) @test p(Mr) == p.(Mr) @test p(Mr) == evaluate.([p], Mr) taylor_a = Taylor0(Int,10) taylor_x = exp(Taylor0(Float64,13)) @test taylor_x(taylor_a) == evaluate(taylor_x, taylor_a) A_T1 = [t 2t 3t; 4t 5t 6t ] @test evaluate(A_T1,1.0) == [1.0 2.0 3.0; 4.0 5.0 6.0] @test evaluate(A_T1,1.0) == A_T1(1.0) @test evaluate(A_T1) == A_T1() @test A_T1(tsquare) == [tsquare 2tsquare 3tsquare; 4tsquare 5tsquare 6tsquare] @test view(A_T1, :, :)(1.0) == A_T1(1.0) @test view(A_T1, :, 1)(1.0) == A_T1[:,1](1.0) @test sin(asin(tsquare)) == tsquare @test tan(atan(tsquare)) == tsquare @test atan(tan(tsquare)) == tsquare @test atan(sin(tsquare)/cos(tsquare)) == atan(sin(tsquare), cos(tsquare)) @test constant_term(atan(sin(3pi/4+tsquare), cos(3pi/4+tsquare))) == 3pi/4 @test atan(sin(3pi/4+tsquare)/cos(3pi/4+tsquare)) - atan(sin(3pi/4+tsquare), cos(3pi/4+tsquare)) == -pi @test sinh(asinh(tsquare)) ≈ tsquare @test tanh(atanh(tsquare)) ≈ tsquare @test atanh(tanh(tsquare)) ≈ tsquare # @test asinh(t) ≈ log(t + sqrt(t^2 + 1)) #sqrt int # @test cosh(asinh(t)) ≈ sqrt(t^2 + 1) #sqrt int t_complex = Taylor0(Complex{Int}, 15) # for use with acosh, which in the Reals is only defined for x ≥ 1 @test cosh(acosh(t_complex)) ≈ t_complex @test differentiate(acosh(t_complex)) ≈ 1/sqrt(t_complex^2 - 1) @test acosh(t_complex) ≈ log(t_complex + sqrt(t_complex^2 - 1)) @test sinh(acosh(t_complex)) ≈ sqrt(t_complex^2 - 1) @test asin(t) + acos(t) == pi/2 @test differentiate(acos(t)) == - 1/sqrt(1-Taylor0(t.order-1)^2) @test get_order(differentiate(acos(t))) == t.order-1 @test - sinh(t) + cosh(t) == exp(-t) @test sinh(t) + cosh(t) == exp(t) @test evaluate(- sinh(t)^2 + cosh(t)^2 , rand()) == 1 @test evaluate(- sinh(t)^2 + cosh(t)^2 , 0) == 1 @test tanh(t + 0im) == -1im * tan(t*1im) @test evaluate(tanh(t/2),1.5) == evaluate(sinh(t) / (cosh(t) + 1),1.5) @test cosh(t) == real(cos(im*t)) @test sinh(t) == imag(sin(im*t)) ut = 1.0*t tt = zero(ut) TS.one!(tt, ut, 0) @test tt[0] == 1.0 TS.one!(tt, ut, 1) @test tt[1] == 0.0 #= # TS.abs!(tt, 1.0+ut, 0) # add! not defined @test tt[0] == 1.0 #TS.add!(tt, ut, ut, 1) # add! not defined @test tt[1] == 2.0 TS.add!(tt, -3.0, 0) # add! not defined @test tt[0] == -3.0 TS.add!(tt, -3.0, 1) # add! not defined @test tt[1] == 0.0 TS.subst!(tt, ut, ut, 1) @test tt[1] == 0.0 TS.subst!(tt, -3.0, 0) @test tt[0] == 3.0 TS.subst!(tt, -2.5, 1) =# @test tt[1] == 0.0 iind, cind = TS.divfactorization(ut, ut) @test iind == 1 @test cind == 1.0 TS.div!(tt, ut, ut, 0) @test tt[0] == cind TS.div!(tt, 1+ut, 1+ut, 0) @test tt[0] == 1.0 TS.div!(tt, 1, 1+ut, 0) @test tt[0] == 1.0 TS.pow!(tt, 1.0+t, 1.5, 0) @test tt[0] == 1.0 TS.pow!(tt, 0.0*t, 1.5, 0) @test tt[0] == 0.0 TS.pow!(tt, 0.0+t, 18, 0) @test tt[0] == 0.0 TS.pow!(tt, 1.0+t, 1.5, 0) @test tt[0] == 1.0 TS.pow!(tt, 1.0+t, 0.5, 1) @test tt[1] == 0.5 TS.pow!(tt, 1.0+t, 0, 0) @test tt[0] == 1.0 TS.pow!(tt, 1.0+t, 1, 1) @test tt[1] == 1.0 tt = zero(ut) TS.pow!(tt, 1.0+t, 2, 0) @test tt[0] == 1.0 TS.pow!(tt, 1.0+t, 2, 1) @test tt[1] == 2.0 TS.pow!(tt, 1.0+t, 2, 2) @test tt[2] == 1.0 TS.sqrt!(tt, 1.0+t, 0, 0) @test tt[0] == 1.0 TS.sqrt!(tt, 1.0+t, 0) @test tt[0] == 1.0 TS.exp!(tt, 1.0*t, 0) @test tt[0] == exp(t[0]) TS.log!(tt, 1.0+t, 0) @test tt[0] == 0.0 ct = zero(ut) TS.sincos!(tt, ct, 1.0*t, 0) @test tt[0] == sin(t[0]) @test ct[0] == cos(t[0]) TS.tan!(tt, 1.0*t, ct, 0) @test tt[0] == tan(t[0]) @test ct[0] == tan(t[0])^2 TS.asin!(tt, 1.0*t, ct, 0) @test tt[0] == asin(t[0]) @test ct[0] == sqrt(1.0-t[0]^2) TS.acos!(tt, 1.0*t, ct, 0) @test tt[0] == acos(t[0]) @test ct[0] == sqrt(1.0-t[0]^2) TS.atan!(tt, ut, ct, 0) @test tt[0] == atan(t[0]) @test ct[0] == 1.0+t[0]^2 TS.sinhcosh!(tt, ct, ut, 0) @test tt[0] == sinh(t[0]) @test ct[0] == cosh(t[0]) TS.tanh!(tt, ut, ct, 0) @test tt[0] == tanh(t[0]) @test ct[0] == tanh(t[0])^2 v = [sin(t), exp(-t)] vv = Vector{Float64}(undef, 2) @test evaluate!(v, zero(Int), vv) == nothing @test vv == [0.0,1.0] @test evaluate!(v, 0.0, vv) == nothing @test vv == [0.0,1.0] @test evaluate!(v, 0.0, view(vv, 1:2)) == nothing @test vv == [0.0,1.0] @test evaluate(v) == vv @test isapprox(evaluate(v, complex(0.0,0.2)), [complex(0.0,sinh(0.2)),complex(cos(0.2),sin(-0.2))], atol=eps(), rtol=0.0) m = [sin(t) exp(-t); cos(t) exp(t)] m0 = 0.5 #= mres = Matrix{Float64}(undef, 2, 2) mres_expected = [sin(m0) exp(-m0); cos(m0) exp(m0)] @test evaluate!(m, m0, mres) == nothing @test mres == mres_expected =# ee_ta = exp(ta(1.0)) @test get_order(differentiate(ee_ta, 0)) == 15 @test get_order(differentiate(ee_ta, 1)) == 14 @test get_order(differentiate(ee_ta, 16)) == 0 @test differentiate(ee_ta, 0) == ee_ta expected_result_approx = Taylor0(ee_ta[0:10]) @test differentiate(exp(ta(1.0)), 5) ≈ expected_result_approx atol=eps() rtol=0.0 expected_result_approx = Taylor0(zero(ee_ta),0) @test differentiate(ee_ta, 16) == Taylor0(zero(ee_ta),0) @test eltype(differentiate(ee_ta, 16)) == eltype(ee_ta) ee_ta = exp(ta(1.0pi)) expected_result_approx = Taylor0(ee_ta[0:12]) @test differentiate(ee_ta, 3) ≈ expected_result_approx atol=eps(16.0) rtol=0.0 expected_result_approx = Taylor0(ee_ta[0:5]) @test differentiate(exp(ta(1.0pi)), 10) ≈ expected_result_approx atol=eps(64.0) rtol=0.0 @test differentiate(exp(ta(1.0)), 5)() == exp(1.0) @test differentiate(exp(ta(1.0pi)), 3)() == exp(1.0pi) @test isapprox(derivative(exp(ta(1.0pi)), 10)() , exp(1.0pi) ) @test differentiate(5, exp(ta(1.0))) == exp(1.0) @test differentiate(3, exp(ta(1.0pi))) == exp(1.0pi) @test isapprox(differentiate(10, exp(ta(1.0pi))) , exp(1.0pi) ) @test integrate(differentiate(exp(t)),1) == exp(t) @test integrate(cos(t)) == sin(t) @test promote(ta(0.0), t) == (ta(0.0),ta(0.0)) @test norm((inverse(exp(t)-1) - log(1+t)).coeffs) < 2tol1 cfs = [(-n)^(n-1)/factorial(n) for n = 1:15] @test norm(inverse(t*exp(t))[1:end]./cfs .- 1) < 4tol1 @test_throws ArgumentError Taylor0([1,2,3], -2) @test_throws DomainError abs(ta(big(0))) @test_throws ArgumentError 1/t @test_throws ArgumentError zt/zt @test_throws DomainError t^1.5 @test_throws ArgumentError t^(-2) @test_throws DomainError sqrt(t) @test_throws DomainError log(t) @test_throws ArgumentError cos(t)/sin(t) @test_throws AssertionError differentiate(30, exp(ta(1.0pi))) @test_throws DomainError inverse(exp(t)) @test_throws DomainError abs(t) use_show_default(true) aa = sqrt(2)+Taylor0(2) @test string(aa) == "Taylor0{Float64}([1.4142135623730951, 1.0, 0.0], 2)" @test string([aa, aa]) == "Taylor0{Float64}[Taylor0{Float64}([1.4142135623730951, 1.0, 0.0], 2), " * "Taylor0{Float64}([1.4142135623730951, 1.0, 0.0], 2)]" use_show_default(false) @test string(aa) == " 1.4142135623730951 + 1.0 t + 𝒪(t³)" set_Taylor0_varname(" x ") @test string(aa) == " 1.4142135623730951 + 1.0 x + 𝒪(x³)" set_Taylor0_varname("t") displayBigO(false) @test string(ta(-3)) == " - 3 + 1 t " @test string(ta(0)^3-3) == " - 3 + 1 t³ " #@test TS.pretty_print(ta(3im)) == " ( 0 + 3im ) + ( 1 + 0im ) t " @test string(Taylor0([1,2,3,4,5], 2)) == string(Taylor0([1,2,3])) displayBigO(true) @test string(ta(-3)) == " - 3 + 1 t + 𝒪(t¹⁶)" @test string(ta(0)^3-3) == " - 3 + 1 t³ + 𝒪(t¹⁶)" #@test TS.pretty_print(ta(3im)) == " ( 0 + 3im ) + ( 1 + 0im ) t + 𝒪(t¹⁶)" @test string(Taylor0([1,2,3,4,5], 2)) == string(Taylor0([1,2,3])) a = collect(1:12) t_a = Taylor0(a,15) t_C = complex(3.0,4.0) * t_a rnd = rand(10) @test typeof( norm(Taylor0(rnd)) ) == Float64 @test norm(Taylor0(rnd)) > 0 @test norm(t_a) == norm(a) @test norm(Taylor0(a,15),3) == sum((a.^3))^(1/3) @test norm(t_a,Inf) == 12 @test norm(t_C) == norm(complex(3.0,4.0)*a) # @test TS.rtoldefault(Taylor0{Int}) == 0 # @test TS.rtoldefault(Taylor0{Float64}) == sqrt(eps(Float64)) #@test TS.rtoldefault(Taylor0{BigFloat}) == sqrt(eps(BigFloat)) # @test TS.real(Taylor0{Float64}) == Taylor0{Float64} # @test TS.real(Taylor0{Complex{Float64}}) == Taylor0{Float64} @test isfinite(t_C) @test isfinite(t_a) @test !isfinite( Taylor0([0, Inf]) ) @test !isfinite( Taylor0([NaN, 0]) ) b = convert(Vector{Float64}, a) b[3] += eps(10.0) b[5] -= eps(10.0) t_b = Taylor0(b,15) t_C2 = t_C+eps(100.0) t_C3 = t_C+eps(100.0)*im @test isapprox(t_C, t_C) @test t_a ≈ t_a @test t_a ≈ t_b @test t_C ≈ t_C2 @test t_C ≈ t_C3 @test t_C3 ≈ t_C2 t = Taylor0(25) p = sin(t) q = sin(t+eps()) @test t ≈ t @test t ≈ t+sqrt(eps()) @test isapprox(p, q, atol=eps()) tf = Taylor0(35) @test Taylor0([180.0, rad2deg(1.0)], 35) == rad2deg(pi+tf) @test sin(pi/2+deg2rad(1.0)tf) == sin(deg2rad(90+tf)) a = Taylor0(rand(10)) b = Taylor0(rand(10)) c = deepcopy(a) TS.deg2rad!(b, a, 0) @test a == c @test a[0]*(pi/180) == b[0] TS.deg2rad!.(b, a, [0,1,2]) # @test a == c # for i in 0:2 # @test a[i]*(pi/180) == b[i] # end a = Taylor0(rand(10)) b = Taylor0(rand(10)) c = deepcopy(a) # TS.rad2deg!(b, a, 0) @test a == c @test a[0]*(180/pi) == b[0] # TS.rad2deg!.(b, a, [0,1,2]) # @test a == c # for i in 0:2 # @test a[i]*(180/pi) == b[i] # end # Test additional Taylor0 constructors @test Taylor0{Float64}(true) == Taylor0([1.0]) @test Taylor0{Float64}(false) == Taylor0([0.0]) @test Taylor0{Int}(true) == Taylor0([1]) @test Taylor0{Int}(false) == Taylor0([0]) # Test fallback pretty_print st = Taylor0([SymbNumber(:x₀), SymbNumber(:x₁)]) @test string(st) == " SymbNumber(:x₀) + SymbNumber(:x₁) t + 𝒪(t²)" end @testset "Test inv for Matrix{Taylor0{Float64}}" begin t = Taylor0(5) a = Diagonal(rand(0:10,3)) + rand(3, 3) ainv = inv(a) b = Taylor0.(a, 5) binv = inv(b) c = Symmetric(b) cinv = inv(c) tol = 1.0e-11 for its = 1:10 a .= Diagonal(rand(2:12,3)) + rand(3, 3) ainv .= inv(a) b .= Taylor0.(a, 5) binv .= inv(b) c .= Symmetric(Taylor0.(a, 5)) cinv .= inv(c) @test norm(binv - ainv, Inf) ≤ tol @test norm(b*binv - I, Inf) ≤ tol @test norm(binv*b - I, Inf) ≤ tol @test norm(triu(b)*inv(UpperTriangular(b)) - I, Inf) ≤ tol @test norm(inv(LowerTriangular(b))*tril(b) - I, Inf) ≤ tol ainv .= inv(Symmetric(a)) @test norm(cinv - ainv, Inf) ≤ tol @test norm(c*cinv - I, Inf) ≤ tol @test norm(cinv*c - I, Inf) ≤ tol @test norm(triu(c)*inv(UpperTriangular(c)) - I, Inf) ≤ tol @test norm(inv(LowerTriangular(c))*tril(c) - I, Inf) ≤ tol b .= b .+ t binv .= inv(b) @test norm(b*binv - I, Inf) ≤ tol @test norm(binv*b - I, Inf) ≤ tol @test norm(triu(b)*inv(triu(b)) - I, Inf) ≤ tol @test norm(inv(tril(b))*tril(b) - I, Inf) ≤ tol c .= Symmetric(b) cinv .= inv(c) @test norm(c*cinv - I, Inf) ≤ tol @test norm(cinv*c - I, Inf) ≤ tol end end #= @testset "Matrix multiplication for Taylor0" begin order = 30 n1 = 100 k1 = 90 order = max(n1,k1) B1 = randn(n1,order) Y1 = randn(k1,order) A1 = randn(k1,n1) for A in (A1,sparse(A1)) # B and Y contain elements of different orders B = Taylor0{Float64}[Taylor0(collect(B1[i,1:i]),i) for i=1:n1] Y = Taylor0{Float64}[Taylor0(collect(Y1[k,1:k]),k) for k=1:k1] Bcopy = deepcopy(B) mul!(Y,A,B) # do we get the same result when using the `A*B` form? @test A*B≈Y # Y should be extended after the multilpication @test reduce(&, [y1.order for y1 in Y] .== Y[1].order) # B should be unchanged @test B==Bcopy # is the result compatible with the matrix multiplication? We # only check the zeroth order of the Taylor series. y1=sum(Y)[0] Y=A*B1[:,1] y2=sum(Y) # There is a small numerical error when comparing the generic # multiplication and the specialized version @test abs(y1-y2) < n1*(eps(y1)+eps(y2)) @test_throws DimensionMismatch mul!(Y,A[:,1:end-1],B) @test_throws DimensionMismatch mul!(Y,A[1:end-1,:],B) @test_throws DimensionMismatch mul!(Y,A,B[1:end-1]) @test_throws DimensionMismatch mul!(Y[1:end-1],A,B) end end =#
QuantizedSystemSolver
https://github.com/mongibellili/QuantizedSystemSolver.jl.git
[ "MIT" ]
1.0.1
b4bf1003586f2ee6cb98d8df29e88cbbfacd2ea1
code
2472
using BenchmarkTools import Base: eachindex, getindex, setindex! struct MyType{T<:Number} coeffs :: Array{T,1} size :: Int end getindex(a::MyType, n::Int) = a.coeffs[n+1] setindex!(a::MyType{T}, x::T, n::Int) where {T<:Number} = a.coeffs[n+1] = x @inline firstindex(a::MyType) = 0 @inline lastindex(a::MyType) = a.size @inline eachindex(a::MyType) = firstindex(a):lastindex(a) function mulTfoldl(res::P, bs...) where {P<:MyType} l = length(bs) i = 2; l == i && return res i = 3; l == i && return mulTT(res, bs[1],bs[end-1],bs[end]) i = 4; l == i && return mulTT(mulTT(res, bs[1],bs[end-1],bs[end]),bs[2],bs[end-1],bs[end]) i = 5; l == i && return mulTT(mulTT(mulTT(res, bs[1],bs[end-1],bs[end]),bs[2],bs[end-1],bs[end]),bs[3],bs[end-1],bs[end]) i = 6; l == i && return mulTT(mulTT(mulTT(mulTT(res, bs[1],bs[end-1],bs[end]),bs[2],bs[end-1],bs[end]),bs[3],bs[end-1],bs[end]),bs[4],bs[end-1],bs[end]) end function mulTT(a::P, b::R, c::Q, xs...)where {P,Q,R <:Union{MyType,Number}} if length(xs)>1 mulTfoldl( mulTT( mulTT(a,b,xs[end-1],xs[end]) , c,xs[end-1] ,xs[end] ), xs...) end end function mulTT(a::MyType{T}, b::T,cache1::MyType{T},cache2::MyType{T}) where {T<:Number} fill!(cache2.coeffs, b) @__dot__ cache1.coeffs = a.coeffs * cache2.coeffs ##fixed broadcast dimension mismatch return cache1 end mulTT(a::T,b::MyType{T}, cache1::MyType{T},cache2::MyType{T}) where {T<:Number} = mulTT(b , a,cache1,cache2) function mulTT(a::MyType{T}, b::MyType{T},cache1::MyType{T},cache2::MyType{T}) where {T<:Number} for k in eachindex(a) @inbounds cache2[k] = a[0] * b[k] @inbounds for i = 1:k cache2[k] += a[i] * b[k-i] end end @__dot__ cache1.coeffs = cache2.coeffs return cache1 end function mulTT(a::T, b::T,cache1::MyType{T},cache2::MyType{T}) where {T<:Number} cache1[0]=a*b return cache1 end av = vec(3(rand(1,3) .- 1.5)) bv = vec(3(rand(1,3) .- 1.5)) cv = vec(3(rand(1,3) .- 1.5)) dv = vec(3(rand(1,3) .- 1.5)) a0 = MyType(av,2) b0 = MyType(bv,2) c0 = MyType(cv,2) d0 = MyType(dv,2) e=3rand() - 1.5 f=3rand() - 1.5 cache=[MyType([0.0,0.0,0.0],2),MyType([0.0,0.0,0.0],2)] function boundaryTest(a0::MyType{Float64},b0::MyType{Float64},c0::MyType{Float64},d0::MyType{Float64},cache::Vector{MyType{Float64}},e::Float64,f::Float64) @show mulTT(e, f, a0, b0, e, c0,d0, cache[1], cache[2]) end boundaryTest(a0,b0,c0,d0,cache,e,f)
QuantizedSystemSolver
https://github.com/mongibellili/QuantizedSystemSolver.jl.git
[ "MIT" ]
1.0.1
b4bf1003586f2ee6cb98d8df29e88cbbfacd2ea1
code
180
using qss using StaticArrays using BenchmarkTools t2=Taylor0([2.0,2.0,3.0],2) t1=Taylor0([1.0,1.1],1) #= cache1=Taylor0([0.0,0.0,0.0],2) cache2=Taylor0([0.0,0.0,0.0],2) =# @show t1
QuantizedSystemSolver
https://github.com/mongibellili/QuantizedSystemSolver.jl.git
[ "MIT" ]
1.0.1
b4bf1003586f2ee6cb98d8df29e88cbbfacd2ea1
code
169
#using qss function testmul(t::Taylor0{Float64}) t1=Taylor0([1.0,2.0,0.0],2) res=t*t1 end function testmul() t1=Taylor0([1.0,2.0,0.0],2) res=t1*t1 end
QuantizedSystemSolver
https://github.com/mongibellili/QuantizedSystemSolver.jl.git
[ "MIT" ]
1.0.1
b4bf1003586f2ee6cb98d8df29e88cbbfacd2ea1
code
1628
#import Pkg; Pkg.add("Documenter");Pkg.develop(url="https://github.com/mongibellili/QuantizedSystemSolver.git") using Documenter using QuantizedSystemSolver # Set up deployment environment variables #const DOCUMENTER_KEY = ENV["DOCUMENTER_KEY"] # Load the private key from environment variables # Function to deploy documentation makedocs( sitename = "Quantized System Solver", modules = [QuantizedSystemSolver], pages = [ "Home" => "index.md", "Tutorial" => "userGuide.md", "Developer Guide" => "developerGuide.md", "Examples" => "examples.md", ] ) deploydocs( repo = "github.com/mongibellili/QuantizedSystemSolver.git", branch = "gh-pages", # deploy_key = ENV["DOCUMENTER_KEY"] # Provide the deployment key explicitly ) # Perform deployment using SSH key authentication # run(`git config --global user.email "[email protected]"`) # run(`git config --global user.name "mongibellili"`) # cd("C:/Users/belli/Documents/mongibellili.github.io") # run(`pwd`) # cd("C:/Users/belli/.julia/dev/QuantizedSystemSolver/docs/build/") # run(`pwd`) # Copy the generated documentation files to the repository # run(`cp -r "C:/Users/belli/.julia/dev/QuantizedSystemSolver/docs/build/*"`) # Adjust the path based on your actual build directory # Add, commit, and push the changes # run(`git add .`) # run(`git commit -m "Deploy documentation"`) # run(`git push origin gh-pages`) # Push to the gh-pages branch (or your designated branch) # Main execution block
QuantizedSystemSolver
https://github.com/mongibellili/QuantizedSystemSolver.jl.git
[ "MIT" ]
1.0.1
b4bf1003586f2ee6cb98d8df29e88cbbfacd2ea1
code
3426
module QuantizedSystemSolver const global VERBOSE=false # later move to solve to allow user to use it. const global DEBUG=false using RuntimeGeneratedFunctions using StaticArrays using SymEngine using PolynomialRoots using ExprTools #combineddef using MacroTools: postwalk,prewalk, @capture#, isexpr, using Plots: plot!,plot,savefig using Dates: now,year,month,day,hour,minute,second #fortimestamp RuntimeGeneratedFunctions.init(@__MODULE__) ##### this section belongs to taylorseries subcomponent import Base: ==, +, -, *, /, ^ #import Base: Base.gc_enable import Base: iterate, size, eachindex, firstindex, lastindex, length, getindex, setindex! import Base: sqrt, exp, log, sin, cos, sincos, tan, asin, acos, atan, sinh, cosh, tanh, atanh, asinh, acosh, zero, one, zeros, ones, isinf, isnan, iszero, convert, promote_rule, promote, show,abs ##### list of public (API) export NLodeProblem,solve ,NLODEProblem,QSSAlgorithm,Sol# docs used NLODEProblem, QSSAlgorithm export qss1,qss2,qss3,liqss1,liqss2,liqss3,saveat,nmliqss1,nmliqss2,nmliqss3 export save_Sol,plot_Sol,getPlot,getPlot!,save_SolSum,solInterpolated,plot_SolSum export getError,getErrorByRodas,getAllErrorsByRefs,getAverageErrorByRefs,getErrorByRefs export Taylor0,mulT,mulTT,createT,addsub,negateT,subsub,subadd,subT,addT,muladdT,mulsub,divT,powerT,constructIntrval,getQfromAsymptote,iterationH,testTaylor # for testing ##### include section of Taylor series subcomponent include("ownTaylor/constructors.jl") include("ownTaylor/arithmetic.jl") include("ownTaylor/arithmeticT.jl") include("ownTaylor/functions.jl") include("ownTaylor/functionsT.jl") include("ownTaylor/power.jl") include("ownTaylor/powerT.jl") ##### Utils include("Utils/rootfinders/SimUtils.jl") ##### Common include("Common/TaylorEquationConstruction.jl") include("Common/QSSNL_AbstractTypes.jl") include("Common/Solution.jl") include("Common/SolutionPlot.jl") include("Common/SolutionError.jl") include("Common/Helper_QSSNLProblem.jl") include("Common/Helper_QSSNLDiscreteProblem.jl") include("Common/QSSNLContinousProblem.jl") include("Common/QSSNLdiscrProblem.jl") include("Common/QSS_Algorithm.jl") include("Common/QSS_data.jl") include("Common/Scheduler.jl") ##### integrators include("dense/NL_integrators/NL_QSS_Integrator.jl") include("dense/NL_integrators/NL_QSS_discreteIntegrator.jl") # implicit integrator when large entries on the main diagonal of the jacobian include("dense/NL_integrators/NL_LiQSS_Integrator.jl") include("dense/NL_integrators/NL_LiQSS_discreteIntegrator.jl") # implicit integrator when large entries NOT on the main diagonal of the jacobian include("dense/NL_integrators/NL_nmLiQSS_Integrator.jl") include("dense/NL_integrators/NL_nmLiQSS_discreteIntegrator.jl") ##### Quantizers include("dense/Quantizers/Quantizer_Common.jl") include("dense/Quantizers/QSS_quantizer.jl") include("dense/Quantizers/LiQSS_quantizer1.jl") include("dense/Quantizers/LiQSS_quantizer2.jl") #include("dense/Quantizers/LiQSS_quantizer3.jl") include("dense/Quantizers/mLiQSS_quantizer1.jl") include("dense/Quantizers/mLiQSS_quantizer2.jl") #include("dense/Quantizers/mLiQSS_quantizer3.jl") ##### main entrance/ Interface include("Interface/indexMacro.jl") include("Interface/QSS_Solve.jl") end # module
QuantizedSystemSolver
https://github.com/mongibellili/QuantizedSystemSolver.jl.git
[ "MIT" ]
1.0.1
b4bf1003586f2ee6cb98d8df29e88cbbfacd2ea1
code
7095
struct EventDependencyStruct id::Int evCont::Vector{Int} #index tracking used for HD & HZ. Also it is used to update q,quantum,recomputeNext when x is modified in an event evDisc::Vector{Int} #index tracking used for HD & HZ. evContRHS::Vector{Int} #index tracking used to update other Qs before executing the event end # the following functions handle discrete problems # to extract jac & dD....SD can be extracted from jac later function extractJacDepNormal(varNum::Int,rhs::Union{Symbol,Int,Expr},jac :: Dict{Union{Int,Expr},Set{Union{Int,Symbol,Expr}}},exacteJacExpr :: Dict{Expr,Union{Float64,Int,Symbol,Expr}},symDict::Dict{Symbol,Expr},dD :: Dict{Union{Int,Expr},Set{Union{Int,Symbol,Expr}}}) jacSet=Set{Union{Int,Symbol,Expr}}() #jacDiscrSet=Set{Union{Int,Symbol,Expr}}() m=postwalk(rhs) do a # if a isa Expr && a.head == :ref && a.args[1]==:q# q[2] push!(jacSet, (a.args[2])) # du[varNum=1]=rhs=u[5]+u[2] : 2 and 5 are stored in jacset one at a time a=eliminateRef(a)#q[i] -> qi elseif a isa Expr && a.head == :ref && a.args[1]==:d# d[3] # push!(jacDiscrSet, (a.args[2])) # dDset=Set{Union{Int,Symbol,Expr}}() if haskey(dD, (a.args[2])) # dict dD already contains key a.args[2] (in this case var 3) dDset=get(dD,(a.args[2]),dDset) # if var d3 first time to influence some var, dDset is empty, otherwise get its set of influences end push!(dDset, varNum) # d3 also influences varNum dD[(a.args[2])]=dDset #update the dict a=eliminateRef(a)#d[i] -> di end return a end # extract the jac basi = convert(Basic, m) # m ready: all refs are symbols for i in jacSet # jacset contains vars in RHS symarg=symbolFromRef(i) # specific to elements in jacSet: get q1 from 1 for exple coef = diff(basi, symarg) # symbolic differentiation: returns type Basic coefstr=string(coef);coefExpr=Meta.parse(coefstr)#convert from basic to expression jacEntry=restoreRef(coefExpr,symDict)# get back ref: qi->q[i][0] ...0 because later in exactJac fun cache[1]::Float64=jacEntry exacteJacExpr[:(($varNum,$i))]=jacEntry # entry (varNum,i) is jacEntry end if length(jacSet)>0 jac[varNum]=jacSet end #if length(jacDiscrSet)>0 jacDiscr[varNum]=jacDiscrSet end end # like above except (b,niter) instead of varNum function extractJacDepLoop(b::Int,niter::Int,rhs::Union{Symbol,Int,Expr},jac :: Dict{Union{Int,Expr},Set{Union{Int,Symbol,Expr}}},exacteJacExpr :: Dict{Expr,Union{Float64,Int,Symbol,Expr}},symDict::Dict{Symbol,Expr},dD :: Dict{Union{Int,Expr},Set{Union{Int,Symbol,Expr}}}) jacSet=Set{Union{Int,Symbol,Expr}}() m=postwalk(rhs) do a if a isa Expr && a.head == :ref && a.args[1]==:q# push!(jacSet, (a.args[2])) # a=eliminateRef(a)#q[i] -> qi elseif a isa Expr && a.head == :ref && a.args[1]==:d if a.args[2] isa Int #for now allow only d[integer] dDset=Set{Union{Int,Symbol,Expr}}() if haskey(dD, (a.args[2])) dDset=get(dD,(a.args[2]),dDset) end push!(dDset, :(($b,$niter))) dD[(a.args[2])]=dDset end a=eliminateRef(a)#q[i] -> qi end return a end basi = convert(Basic, m) for i in jacSet symarg=symbolFromRef(i); coef = diff(basi, symarg) coefstr=string(coef); coefExpr=Meta.parse(coefstr) jacEntry=restoreRef(coefExpr,symDict) exacteJacExpr[:((($b,$niter),$i))]=jacEntry end jac[:(($b,$niter))]=jacSet end function extractZCJacDepNormal(counter::Int,zcf::Expr,zcjac :: Vector{Vector{Int}},SZ ::Dict{Int,Set{Int}},dZ :: Dict{Int,Set{Int}}) zcjacSet=Set{Int}() #zcjacDiscrSet=Set{Int}() postwalk(zcf) do a # if a isa Expr && a.head == :ref && a.args[1]==:q# push!(zcjacSet, (a.args[2])) # SZset=Set{Int}() if haskey(SZ, (a.args[2])) SZset=get(SZ,(a.args[2]),SZset) end push!(SZset, counter) SZ[(a.args[2])]=SZset elseif a isa Expr && a.head == :ref && a.args[1]==:d# # push!(zcjacDiscrSet, (a.args[2])) # dZset=Set{Int}() if haskey(dZ, (a.args[2])) dZset=get(dZ,(a.args[2]),dZset) end push!(dZset, counter) dZ[(a.args[2])]=dZset end return a end push!(zcjac,collect(zcjacSet))#convert set to vector #push!(zcjacDiscr,collect(zcjacDiscrSet)) end function createDependencyToEventsDiscr(dD::Vector{Vector{Int}},dZ::Dict{Int64, Set{Int64}},eventDep::Vector{EventDependencyStruct}) Y=length(eventDep) lendD=length(dD) HD2 = Vector{Vector{Int}}(undef, Y) HZ2 = Vector{Vector{Int}}(undef, Y) for ii=1:Y HD2[ii] =Vector{Int}()# define it so i can push elements as i find them below HZ2[ii] =Vector{Int}()# define it so i can push elements as i find them below end for j=1:Y hdSet=Set{Int}() hzSet=Set{Int}() evdiscrete=eventDep[j].evDisc for i in evdiscrete if i<=lendD for k in dD[i] push!(hdSet,k) end end tempSet=Set{Int}() if haskey(dZ, i) tempSet=get(dZ,i,tempSet) end for kk in tempSet push!(hzSet,kk) end end HD2[j] =collect(hdSet)# define it so i can push elements as i find them below HZ2[j] =collect(hzSet) end #end for j (events) return (HZ2,HD2) end function createDependencyToEventsCont(SD::Vector{Vector{Int}},sZ::Dict{Int64, Set{Int64}},eventDep::Vector{EventDependencyStruct}) Y=length(eventDep) HD2 = Vector{Vector{Int}}(undef, Y) HZ2 = Vector{Vector{Int}}(undef, Y) for ii=1:Y HD2[ii] =Vector{Int}()# define it so i can push elements as i find them below HZ2[ii] =Vector{Int}()# define it so i can push elements as i find them below end for j=1:Y hdSet=Set{Int}() hzSet=Set{Int}() evContin=eventDep[j].evCont for i in evContin for k in SD[i] push!(hdSet,k) end tempSet=Set{Int}() if haskey(sZ, i) tempSet=get(sZ,i,tempSet) end for kk in tempSet push!(hzSet,kk) end end HD2[j] =collect(hdSet)# define it so i can push elements as i find them below HZ2[j] =collect(hzSet) end #end for j (events) return (HZ2,HD2) end #function unionDependency(HZ1::SVector{Y,SVector{Z,Int}},HZ2::SVector{Y,SVector{Z,Int}})where{Z,Y} function unionDependency(HZ1::Vector{Vector{Int}},HZ2::Vector{Vector{Int}}) Y=length(HZ1) HZ = Vector{Vector{Int}}(undef, Y) for ii=1:Y HZ[ii] =Vector{Int}()# define it so i can push elements as i find them below end for j=1:Y hzSet=Set{Int}() for kk in HZ1[j] push!(hzSet,kk) end for kk in HZ2[j] push!(hzSet,kk) end HZ[j]=collect(hzSet) end HZ end
QuantizedSystemSolver
https://github.com/mongibellili/QuantizedSystemSolver.jl.git
[ "MIT" ]
1.0.1
b4bf1003586f2ee6cb98d8df29e88cbbfacd2ea1
code
6457
function changeExprToFirstValue(ex::Expr)## newEx=postwalk(ex) do a # change u[1] to u[1][0] if a isa Expr && a.head == :ref && a.args[1]==:q # change q[1] to q[1][0] outerRef=Expr(:ref) push!(outerRef.args,a) push!(outerRef.args,:(0)) a=outerRef end return a end newEx end function eliminateRef(a)#q[i] -> qi if a.args[2] isa Expr if a.args[2].args[1]==:+ a=Symbol((a.args[1]),(a.args[2].args[2]), "plus",(a.args[2].args[3])) elseif a.args[2].args[1]==:- a=Symbol((a.args[1]),(a.args[2].args[2]), "minus",(a.args[2].args[3])) elseif a.args[2].args[1]==:* a=Symbol((a.args[1]),(a.args[2].args[2]), "times",(a.args[2].args[3])) elseif a.args[2].args[1]==:/ #a=Symbol((a.args[1]),(a.args[2].args[2]), "over",(a.args[2].args[3])) Error("parameter_index division is not implemented Yet") end else a=Symbol((a.args[1]),(a.args[2])) end return a end function symbolFromRef(refEx)#refEx is i+1 in q[i+1] for example if refEx isa Expr # if refEx.args[1]==:+ refEx=Symbol("q",(refEx.args[2]), "plus",(refEx.args[3])) elseif refEx.args[1]==:- refEx=Symbol("q",(refEx.args[2]), "minus",(refEx.args[3])) elseif refEx.args[1]==:* refEx=Symbol("q",(refEx.args[2]), "times",(refEx.args[3])) #= elseif refEx.args[1]==:/ #refEx=Symbol("q",(refEx.args[2]), "over",(refEx.args[3])) Error("parameter_index division is not implemented Yet") =# end else refEx=Symbol("q",(refEx)) end return refEx end function symbolFromRefd(refEx)#refEx is i+1 in q[i+1] for example if refEx isa Expr # if refEx.args[1]==:+ refEx=Symbol("d",(refEx.args[2]), "plus",(refEx.args[3])) elseif refEx.args[1]==:- refEx=Symbol("d",(refEx.args[2]), "minus",(refEx.args[3])) elseif refEx.args[1]==:* refEx=Symbol("d",(refEx.args[2]), "times",(refEx.args[3])) #= elseif refEx.args[1]==:/ #refEx=Symbol("d",(refEx.args[2]), "over",(refEx.args[3])) Error("parameter_index division is not implemented Yet") =# end else refEx=Symbol("d",(refEx)) end return refEx end function restoreRef(coefExpr,symDict) newEx=postwalk(coefExpr) do element# if element isa Symbol && !(element in (:+,:-,:*,:/)) && haskey(symDict, element) && element != :d element=symDict[element] element=changeExprToFirstValue(element)# change u[1] to u[1][0] elseif element== :d element=symDict[element] end return element end#end postwalk newEx end function changeVarNames_params(ex::Expr,stateVarName::Symbol,muteVar::Symbol,param::Dict{Symbol,Union{Float64,Expr}},symDict::Dict{Symbol,Expr})# newEx=postwalk(ex) do element#postwalk to change var names and parameters if element isa Symbol if haskey(param, element)#symbol is a parameter element=copy(param[element]) # copy needed in the case symbol id=expression substitued in equations...do not want all eqs reference same expression...ie if 1 eq changes, other eqs change elseif element==stateVarName #symbol is a var element=:q elseif element==:discrete #symbol is a discr var element=:d elseif element==muteVar #symbol is a mute var element=:i #= else # + - * / =# end elseif element isa Expr && element.head == :ref && element.args[1]==:q# symarg=symbolFromRef(element.args[2]) #q[i] -> qi symDict[symarg]=element #store this translation q[i] <-> qi for later use elseif element isa Expr && element.head == :ref && element.args[1]==:d# symarg=symbolFromRefd(element.args[2]) #d[i] -> di symDict[symarg]=element #store this translation d[i] <-> di end return element end#end postwalk newEx end function changeVarNames_params(ex::Expr,stateVarName::Symbol,muteVar::Symbol,param::Dict{Symbol,Union{Float64,Expr}})######special for if statements and events newEx=postwalk(ex) do element#postwalk to change var names and parameters if element isa Symbol if haskey(param, element)#symbol is a parameter element=copy(param[element]) elseif element==stateVarName #symbol is a var element=:q elseif element==:discrete #symbol is a discr var element=:d elseif element==muteVar #symbol is a mute var element=:i end end return element end#end postwalk newEx end # these 2 function handle continuous problems only function extractJacDepNormal(varNum::Int,rhs::Union{Int,Expr},jac :: Dict{Union{Int,Expr},Set{Union{Int,Symbol,Expr}}}, exacteJacExpr :: Dict{Expr,Union{Float64,Int,Symbol,Expr}},symDict::Dict{Symbol,Expr}) jacSet=Set{Union{Int,Symbol,Expr}}() m=postwalk(rhs) do a # if a isa Expr && a.head == :ref # push!(jacSet, (a.args[2])) # du[varNum=1]=rhs=u[5]+u[2] : 2 and 5 are stored in jacset a=eliminateRef(a)#q[i] -> qi end return a end basi = convert(Basic, m) for i in jacSet symarg=symbolFromRef(i) # specific to elements in jacSet: get q1 from 1 for exple coef = diff(basi, symarg) # symbolic differentiation: returns type Basic coefstr=string(coef);coefExpr=Meta.parse(coefstr)#convert from basic to expression jacEntry=restoreRef(coefExpr,symDict)# get back ref: qi->q[i][0] ...0 because later in exactJac fun cache[1]::Float64=jacEntry exacteJacExpr[:(($varNum,$i))]=jacEntry # entry (varNum,i) is jacEntry end if length(jacSet)>0 jac[varNum]=jacSet end # jac={1->(2,5)} #@show jac end function extractJacDepLoop(b::Int,niter::Int,rhs::Union{Int,Expr},jac :: Dict{Union{Int,Expr},Set{Union{Int,Symbol,Expr}}} ,exacteJacExpr :: Dict{Expr,Union{Float64,Int,Symbol,Expr}},symDict::Dict{Symbol,Expr}) jacSet=Set{Union{Int,Symbol,Expr}}() m=postwalk(rhs) do a if a isa Expr && a.head == :ref # push!(jacSet, (a.args[2])) # a=eliminateRef(a) end return a end basi = convert(Basic, m) for i in jacSet symarg=symbolFromRef(i); coef = diff(basi, symarg) coefstr=string(coef); coefExpr=Meta.parse(coefstr) jacEntry=restoreRef(coefExpr,symDict) exacteJacExpr[:((($b,$niter),$i))]=jacEntry end if length(jacSet)>0 jac[:(($b,$niter))]=jacSet end end
QuantizedSystemSolver
https://github.com/mongibellili/QuantizedSystemSolver.jl.git
[ "MIT" ]
1.0.1
b4bf1003586f2ee6cb98d8df29e88cbbfacd2ea1
code
14780
"""NLODEContProblem{PRTYPE,T,Z,Y,CS} A struct that holds the Problem of a system of ODEs. It has the following fields:\n - prname: The name of the problem\n - prtype: The type of the problem\n - a: The size of the problem\n - b: The number of zero crossing functions\n - c: The number of discrete events\n - cacheSize: The size of the cache\n - initConditions: The initial conditions of the problem\n - eqs: The function that holds all the ODEs\n - jac: The Jacobian dependency\n - SD: The state derivative dependency\n - exactJac: The exact Jacobian function\n - jacDim: The Jacobian dimension (if sparsity to be exploited) """ struct NLODEContProblem{PRTYPE,T,Z,Y,CS}<: NLODEProblem{PRTYPE,T,Z,Y,CS} prname::Symbol # problem name used to distinguish printed results prtype::Val{PRTYPE} # problem type: not used but created in case in the future we want to handle problems differently a::Val{T} #problem size based on number of vars: T is used not a: 'a' is a mute var b::Val{Z} #number of Zero crossing functions (ZCF) based on number of 'if statements': Z is used not b: 'b' is a mute var c::Val{Y} #number of discrete events=2*ZCF: Z is used not c: 'c' is a mute var cacheSize::Val{CS}# CS= cache size is used : 'cacheSize' is a mute var initConditions::Vector{Float64} # eqs::Function#function that holds all ODEs jac::Vector{Vector{Int}}#Jacobian dependency..I have a der and I want to know which vars affect it...opposite of SD...is a vect for direct method (later @resumable..closure..for saved method) SD::Vector{Vector{Int}}# I have a var and I want the der that are affected by it exactJac::Function # used only in the implicit intgration #map::Function # if sparsity to be exploited: it maps a[i][j] to a[i][γ] where γ usually=1,2,3...(a small int) jacDim::Function # if sparsity to be exploited: gives length of each row end # to create NLODEContProblem above function NLodeProblemFunc(odeExprs::Expr,::Val{T},::Val{0},::Val{0}, initConditions::Vector{Float64} ,du::Symbol,symDict::Dict{Symbol,Expr})where {T} if VERBOSE println("nlodeprobfun T= $T") end equs=Dict{Union{Int,Expr},Expr}() #du[int] or du[i]==du[a<i<b]==du[(a:b)] jac = Dict{Union{Int,Expr},Set{Union{Int,Symbol,Expr}}}()# datastrucutre 'Set' used because we do not want to insert an existing varNum exacteJacExpr = Dict{Expr,Union{Float64,Int,Symbol,Expr}}() # NO need to constrcut SD...SDVect will be extracted from Jac num_cache_equs=1#initial cachesize::will hold the number of caches (vectors) of the longest equation for argI in odeExprs.args #only diff eqs: du[]= number || ref || call if argI isa Expr && argI.head == :(=) && argI.args[1] isa Expr && argI.args[1].head == :ref && argI.args[1].args[1]==du#expr LHS=RHS and LHS is du y=argI.args[1];rhs=argI.args[2] varNum=y.args[2] # order/index of variable if rhs isa Number # rhs of equ =number equs[varNum]=:($((transformFSimplecase(:($(rhs)))))) #change rhs from N to cache=taylor0=[[N,0,0],2] for order 2 for exple elseif rhs isa Symbol # case du=t #equs[varNum ]=quote $rhs end equs[varNum ]=:($((transformFSimplecase(:($(rhs))))))# elseif rhs.head==:ref #rhs is only one var extractJacDepNormal(varNum,rhs,jac,exacteJacExpr ,symDict ) #extract jacobian and exactJac approx form from normal equation equs[varNum ]=:($((transformFSimplecase(:($(rhs))))))#change rhs from q[i] to cache=q[i] ...just put taylor var in cache else #rhs head==call...to be tested later for math functions and other possible scenarios or user erros extractJacDepNormal(varNum,rhs,jac,exacteJacExpr,symDict ) temp=(transformF(:($(rhs),1))).args[2] #temp=number of caches distibuted...rhs already changed inside if num_cache_equs<temp num_cache_equs=temp end equs[varNum]=rhs end elseif @capture(argI, for counter_ in b_:niter_ loopbody__ end) #case where diff equation is an expr in for loop specRHS=loopbody[1].args[2] extractJacDepLoop(b,niter,specRHS,jac,exacteJacExpr,symDict ) #extract jacobian and SD dependencies from loop temp=(transformF(:($(specRHS),1))).args[2] if num_cache_equs<temp num_cache_equs=temp end equs[:(($b,$niter))]=specRHS else#end of equations and user enter something weird...handle later # error("expression $x: top level contains only expressions 'A=B' or 'if a b' or for loop... ")# end #end for x in end #end for args ######################################################################################################### fname= :f #default problem name #path="./temp.jl" #default path if odeExprs.args[1] isa Expr && odeExprs.args[1].args[2] isa Expr && odeExprs.args[1].args[2].head == :tuple#user has to enter problem info in a tuple fname= odeExprs.args[1].args[2].args[1] #path=odeExprs.args[1].args[2].args[2] end exacteJacfunction=createExactJacFun(exacteJacExpr,fname) exactJacfunctionF=@RuntimeGeneratedFunction(exacteJacfunction) diffEqfunction=createContEqFun(equs,fname)# diff equations before this are stored in a dict:: now we have a giant function that holds all diff equations jacVect=createJacVect(jac,Val(T)) #jacobian dependency SDVect=createSDVect(jac,Val(T)) # state derivative dependency # mapFun=createMapFun(jac,fname) # for sparsity jacDimFunction=createJacDimensionFun(jac,fname) #for sparsity diffEqfunctionF=@RuntimeGeneratedFunction(diffEqfunction) # @RuntimeGeneratedFunction changes a fun expression to actual fun without running into world age problems # mapFunF=@RuntimeGeneratedFunction(mapFun) jacDimFunctionF=@RuntimeGeneratedFunction(jacDimFunction) prob=NLODEContProblem(fname,Val(1),Val(T),Val(0),Val(0),Val(num_cache_equs),initConditions,diffEqfunctionF,jacVect,SDVect,exactJacfunctionF,jacDimFunctionF)# prtype type 1...prob not saved and struct contains vects end function createContEqFun(equs::Dict{Union{Int,Expr},Expr},funName::Symbol) s="if i==0 return nothing\n" # :i is the mute var for elmt in equs Base.remove_linenums!(elmt[1]) Base.remove_linenums!(elmt[2]) if elmt[1] isa Int s*="elseif i==$(elmt[1]) $(elmt[2]) ;return nothing\n" end if elmt[1] isa Expr s*="elseif $(elmt[1].args[1])<=i<=$(elmt[1].args[2]) $(elmt[2]) ;return nothing\n" end end s*=" end " myex1=Meta.parse(s) Base.remove_linenums!(myex1) def=Dict{Symbol,Any}() def[:head] = :function def[:name] = funName def[:args] = [:(i::Int),:(q::Vector{Taylor0}),:(t::Taylor0),:(cache::Vector{Taylor0})] def[:body] = myex1 functioncode=combinedef(def) end function createJacDimensionFun(jac:: Dict{Union{Int,Expr},Set{Union{Int,Symbol,Expr}}},funName::Symbol) ss="if i==0 return 0\n" for dictElement in jac if dictElement[1] isa Int ss*="elseif i==$(dictElement[1]) \n" ss*="return $(length(dictElement[2])) \n" # ss*=" return nothing \n" elseif dictElement[1] isa Expr ss*="elseif $(dictElement[1].args[1])<=i<=$(dictElement[1].args[2]) \n" ss*="return $(length(dictElement[2])) \n" end end ss*=" end \n" myex1=Meta.parse(ss) Base.remove_linenums!(myex1) def1=Dict{Symbol,Any}() #any changeto Union{expr,Symbol} ???? def1[:head] = :function def1[:name] = Symbol(:jacDimension,funName) def1[:args] = [:(i::Int)] def1[:body] = myex1 functioncode1=combinedef(def1) end #do not delete next commented function...needed for future code extension #= function createMapFun(jac:: Dict{Union{Int,Expr},Set{Union{Int,Symbol,Expr}}},funName::Symbol) ss="if i==0 return nothing\n" for dictElement in jac #= Base.remove_linenums!(dictElement[1]) Base.remove_linenums!(dictElement[2]) =# # counterJac=1 if dictElement[1] isa Int ss*="elseif i==$(dictElement[1]) \n" ns=sort!(collect(dictElement[2])) ss*="if j==0 return nothing\n" iter=1 for k in ns ss*="elseif j==$k \n" ss*="cache[1]=$iter \n" ss*=" return nothing \n" iter+=1 end ss*=" end \n" elseif dictElement[1] isa Expr ss*="elseif $(dictElement[1].args[1])<=i<=$(dictElement[1].args[2]) \n" @show dictElement[2] ns=sort!(collect(dictElement[2])) ss*="if j==0 return nothing\n" iter=1 for k in ns ss*="elseif j==$k \n" ss*="cache[1]=$iter \n" ss*=" return nothing \n" iter+=1 end ss*=" end \n" end end ss*=" end \n" myex1=Meta.parse(ss) Base.remove_linenums!(myex1) def1=Dict{Symbol,Any}() #any changeto Union{expr,Symbol} ???? def1[:head] = :function def1[:name] = Symbol(:map,funName) def1[:args] = [:(cache::MVector{1,Int}),:(i::Int),:(j::Int)] def1[:body] = myex1 functioncode1=combinedef(def1) end =# function createExactJacFun(jac:: Dict{Expr,Union{Float64,Int,Symbol,Expr}},funName::Symbol) ss="if i==0 return nothing\n" for dictElement in jac if dictElement[1].args[1] isa Int ss*="elseif i==$(dictElement[1].args[1]) && j==$(dictElement[1].args[2]) \n" ss*="cache[1]=$(dictElement[2]) \n" ss*=" return nothing \n" elseif dictElement[1].args[1] isa Expr ss*="elseif $(dictElement[1].args[1].args[1])<=i<=$(dictElement[1].args[1].args[2]) && j==$(dictElement[1].args[2]) \n" ss*="cache[1]=$(dictElement[2]) \n" ss*=" return nothing \n" end end ss*=" end \n" myex1=Meta.parse(ss) Base.remove_linenums!(myex1) def1=Dict{Symbol,Any}() #any changeto Union{expr,Symbol} ???? def1[:head] = :function def1[:name] = Symbol(:exactJac,funName) def1[:args] = [:(q::Vector{Taylor0}),:(d::Vector{Float64}),:(cache::MVector{1,Float64}),:(i::Int),:(j::Int),:(t::Float64)] def1[:body] = myex1 functioncode1=combinedef(def1) end function createExactJacDiscreteFun(jac:: Dict{Expr,Union{Float64,Int,Symbol,Expr}},funName::Symbol) ss="if i==0 return nothing\n" for dictElement in jac if dictElement[1].args[1] isa Int ss*="elseif i==$(dictElement[1].args[1]) && j==$(dictElement[1].args[2]) \n" ss*="cache[1]=$(dictElement[2]) \n" ss*=" return nothing \n" elseif dictElement[1].args[1] isa Expr ss*="elseif $(dictElement[1].args[1].args[1])<=i<=$(dictElement[1].args[1].args[2]) && j==$(dictElement[1].args[2]) \n" ss*="cache[1]=$(dictElement[2]) \n" ss*=" return nothing \n" end end ss*=" end \n" myex1=Meta.parse(ss) Base.remove_linenums!(myex1) def1=Dict{Symbol,Any}() #any changeto Union{expr,Symbol} ???? def1[:head] = :function def1[:name] = Symbol(:exactJac,funName) def1[:args] = [:(q::Vector{Taylor0}),:(d::Vector{Float64}),:(cache::MVector{1,Float64}),:(i::Int),:(j::Int),:(t::Float64)] # in jac t does not need to be a taylor def1[:body] = myex1 functioncode1=combinedef(def1) end function createJacVect(jac:: Dict{Union{Int,Expr},Set{Union{Int,Symbol,Expr}}},::Val{T}) where{T}# jacVect = Vector{Vector{Int}}(undef, T) for i=1:T jacVect[i]=Vector{Int}()# define it so i can push elements as i find them below end for dictElement in jac if dictElement[1] isa Int #jac[varNum]=jacSet jacVect[dictElement[1]]=collect(dictElement[2]) elseif dictElement[1] isa Expr #jac[:(($b,$niter))]=jacSet for j_=(dictElement[1].args[1]):(dictElement[1].args[2]) temp=Vector{Int}() for element in dictElement[2] if element isa Expr || element isa Symbol#can split symbol alone since no need to postwalk fa= postwalk(a -> a isa Symbol && a==:i ? j_ : a, element) # change each symbol i to exact number push!(temp,Int(eval(fa))) else #element is int push!(temp,element) end end jacVect[j_]=temp end end end jacVect end function createSDVect(jac:: Dict{Union{Int,Expr},Set{Union{Int,Symbol,Expr}}},::Val{T}) where{T} sdVect = Vector{Vector{Int}}(undef, T) for ii=1:T sdVect[ii]=Vector{Int}()# define it so i can push elements as i find them below end #SD = Dict{Union{Int64, Expr}, Set{Union{Int64, Expr, Symbol}}}(2 => Set([1]), 10 => Set([10]), :((2, 9)) => Set([:k, :(k - 1), :(k + 1)]), 9 => Set([10]), 1 => Set([1])) for dictElement in jac if dictElement[1] isa Int # key is an int for k in dictElement[2] #elments values push!(sdVect[k],dictElement[1]) end elseif dictElement[1] isa Expr # key is an expression for j_=(dictElement[1].args[1]):(dictElement[1].args[2]) # j_=b:N this can be expensive when N is large::this is why it is recommended to use a function createsd (save) for large prob for element in dictElement[2] if element isa Expr || element isa Symbol#element= fa= postwalk(a -> a isa Symbol && a==:i ? j_ : a, element) push!(sdVect[Int(eval(fa))],j_) else#element is int push!(sdVect[element],j_) end end end end end sdVect end #= function Base.isless(ex1::Expr, ex2::Expr)#:i is the mute var that prob is now using fa= postwalk(a -> a isa Symbol && a==:i ? 1 : a, ex1)# check isa symbol not needed fb=postwalk(a -> a isa Symbol && a==:i ? 1 : a, ex2) eval(fa)<eval(fb) end function Base.isless(ex1::Expr, ex2::Symbol) fa= postwalk(a -> a isa Symbol && a==:i ? 1 : a, ex1) eval(fa)<1 end function Base.isless(ex1::Symbol, ex2::Expr) fa= postwalk(a -> a isa Symbol && a==:i ? 1 : a, ex2) 1<eval(fa) end =#
QuantizedSystemSolver
https://github.com/mongibellili/QuantizedSystemSolver.jl.git
[ "MIT" ]
1.0.1
b4bf1003586f2ee6cb98d8df29e88cbbfacd2ea1
code
826
"""NLODEProblem{PRTYPE,T,Z,Y,CS} This is superclass for all NLODE problems. It is parametric on these:\n - The problem type PRTYPE.\n - The number of continuous variables T\n - The number of events (zero crossing functions) Z\n - The actual number of events (an if-else statment has one zero crossing functions and two events) Y\n - The cache size CS. """ abstract type NLODEProblem{PRTYPE,T,Z,Y,CS} end """ALGORITHM{N,O} This is superclass for all QSS algorithms. It is parametric on these:\n - The name of the algorithm N\n - The order of the algorithm O """ abstract type ALGORITHM{N,O} end """Sol{T,O} This is superclass for all QSS solutions. It is parametric on these:\n - The number of continuous variables T\n - The order of the algorithm O """ abstract type Sol{T,O} end
QuantizedSystemSolver
https://github.com/mongibellili/QuantizedSystemSolver.jl.git
[ "MIT" ]
1.0.1
b4bf1003586f2ee6cb98d8df29e88cbbfacd2ea1
code
16490
#struct that holds prob data struct NLODEDiscProblem{PRTYPE,T,Z,D,CS}<: NLODEProblem{PRTYPE,T,Z,D,CS} prname::Symbol prtype::Val{PRTYPE} a::Val{T} b::Val{Z} c::Val{D} cacheSize::Val{CS} initConditions::Vector{Float64} discreteVars::Vector{Float64} jac::Vector{Vector{Int}}#Jacobian dependency..I have a der and I want to know which vars affect it...opposite of SD ZCjac::Vector{Vector{Int}} # to update other Qs before checking ZCfunction eqs::Function#function that holds all ODEs eventDependencies::Vector{EventDependencyStruct}# SD::Vector{Vector{Int}}# I have a var and I want the der that are affected by it HZ::Vector{Vector{Int}}# an ev occured and I want the ZC that are affected by it HD::Vector{Vector{Int}}# an ev occured and I want the der that are affected by it SZ::Vector{Vector{Int}}# I have a var and I want the ZC that are affected by it exactJac::Function #used only in the implicit integration: linear approximation end function getInitCond(prob::NLODEDiscProblem,i::Int) return prob.initConditions[i] end #= function getInitCond(prob::savedNLODEDiscProblem,i::Int) return prob.initConditions(i) end =# # receives user code and creates the problem struct function NLodeProblemFunc(odeExprs::Expr,::Val{T},::Val{D},::Val{Z},initCond::Vector{Float64},du::Symbol,symDict::Dict{Symbol,Expr})where {T,D,Z} if VERBOSE println("discrete nlodeprobfun T D Z= $T $D $Z") end # @show odeExprs discrVars=Vector{Float64}() equs=Dict{Union{Int,Expr},Union{Int,Symbol,Expr}}() jac = Dict{Union{Int,Expr},Set{Union{Int,Symbol,Expr}}}()# set used because do not want to insert an existing varNum #SD = Dict{Union{Int,Expr},Set{Union{Int,Symbol,Expr}}}() # NO need to constrcut SD...SDVect will be extracted from Jac (needed for func-save case) #jacDiscrete = Dict{Union{Int,Expr},Set{Union{Int,Symbol,Expr}}}()# for now is similar to continous jac...if feature of d[i] not to be added then jacDiscr=Dict{Union{Int,Expr},Set{Int}}()...later dD = Dict{Union{Int,Expr},Set{Union{Int,Symbol,Expr}}}() # similarly if feature not given then dD=Dict{Int,Set{Union{Int,Symbol,Expr}}}() exacteJacExpr = Dict{Expr,Union{Float64,Int,Symbol,Expr}}() zcequs=Vector{Expr}()#vect to collect if-statements eventequs=Vector{Expr}()#vect to collect events ZCjac=Vector{Vector{Int}}()#zeros(SVector{Z,SVector{T,Int}}) # bad when T is large...it is a good idea to use Vector{Vector{Int}}(undef, Z) ZCFCounter=0 #SZ=Vector{Vector{Int}}()#zeros(SVector{T,SVector{Z,Int}}) # bad when T is large...(opposite of ZCjac)...many vars dont influence zcf so it is better to use dict # dZ=Vector{Vector{Int}}()#zeros(SVector{D,SVector{Z,Int}})# usually D (num of disc vars) and Z (num of zcfunctions) are small even for real problems SZ= Dict{Int,Set{Int}}() dZ= Dict{Int,Set{Int}}() #since D is not large ...i can use zeros(SVector{D,SVector{Z,Int}}) evsArr = EventDependencyStruct[] num_cache_equs=1#cachesize for argI in odeExprs.args if argI isa Expr && argI.head == :(=) && argI.args[1]== :discrete discrVars = Vector{Float64}(argI.args[2].args) #only diff eqs: du[]= number/one ref/call elseif argI isa Expr && argI.head == :(=) && argI.args[1] isa Expr && argI.args[1].head == :ref && argI.args[1].args[1]==du#&& ((argI.args[2] isa Expr && (argI.args[2].head ==:ref || argI.args[2].head ==:call ))||argI.args[2] isa Number) y=argI.args[1];rhs=argI.args[2] varNum=y.args[2] # order of variable if rhs isa Number || rhs isa Symbol # rhs of equ =number or symbol equs[varNum]=:($((transformFSimplecase(:($(rhs)))))) elseif rhs isa Expr && rhs.head==:ref && rhs.args[1]==:q #rhs is only one var...# rhs.args[1]==:q # check not needed? extractJacDepNormal(varNum,rhs,jac,exacteJacExpr ,symDict,dD ) # end equs[varNum ]=:($((transformFSimplecase(:($(rhs)))))) else #rhs head==call...to be tested later for math functions and other possible scenarios or user erros extractJacDepNormal(varNum,rhs,jac,exacteJacExpr ,symDict,dD ) temp=(transformF(:($(rhs),1))).args[2] #number of caches distibuted ...no need interpolation and wrap in expr?....before was cuz quote.... if num_cache_equs<temp num_cache_equs=temp end equs[varNum]=rhs end elseif @capture(argI, for counter_ in b_:niter_ loopbody__ end) specRHS=loopbody[1].args[2] # extractJacDepLoop(b,niter,specRHS,jac ,jacDiscrete ,SD,dD ) extractJacDepLoop(b,niter,specRHS,jac,exacteJacExpr,symDict ,dD ) temp=(transformF(:($(specRHS),1))).args[2] if num_cache_equs<temp num_cache_equs=temp end equs[:(($b,$niter))]=specRHS elseif argI isa Expr && argI.head==:if #@capture if did not work zcf=argI.args[1].args[2] ZCFCounter+=1 extractZCJacDepNormal(ZCFCounter,zcf,ZCjac ,SZ ,dZ ) if zcf.head==:ref #if one_Var push!(zcequs,(transformFSimplecase(:($(zcf))))) ########################push!(zcequs,:($((transformFSimplecase(:($(zcf))))))) else # if whole expre ops with many vars temp=:($((transformF(:($(zcf),1))).args[2])) #number of caches distibuted, given 1 place holder for ex.args[2] to be filled inside and returned if num_cache_equs<temp num_cache_equs=temp end push!(zcequs,(zcf)) end ################################################################################################################## # events ################################################################################################################## # each 'if-statmets' has 2 events (arg[2]=posEv and arg[3]=NegEv) each pos or neg event has a function...later i can try one event for zc if length(argI.args)==2 #if user only wrote the positive evnt, here I added the negative event wich does nothing nothingexpr = quote nothing end # neg dummy event push!(argI.args, nothingexpr) Base.remove_linenums!(argI.args[3]) end #pos event newPosEventExprToFunc=changeExprToFirstValue(argI.args[2]) #change u[1] to u[1][0] # pos ev can't be a symbol ...later maybe add check anyway push!(eventequs,newPosEventExprToFunc) #neg eve if argI.args[3].args[1] isa Expr # argI.args[3] isa expr and is either an equation or :block symbol end ...so lets check .args[1] newNegEventExprToFunc=changeExprToFirstValue(argI.args[3]) push!(eventequs,newNegEventExprToFunc) else push!(eventequs,argI.args[3]) #symbol nothing end #after constructing the equations we move to dependencies: we need to change A[n] to An so that they become symbols posEvExp = argI.args[2] negEvExp = argI.args[3] #dump(negEvExp) indexPosEv = 2 * length(zcequs) - 1 # store events in order indexNegEv = 2 * length(zcequs) #------------------pos Event--------------------# posEv_disArrLHS= Vector{Int}()#@SVector fill(NaN, D) #...better than @SVector zeros(D), I can use NaN posEv_conArrLHS= Vector{Int}()#@SVector fill(NaN, T) posEv_conArrRHS=Vector{Int}()#@SVector zeros(T) #to be used inside intgrator to updateOtherQs (intgrateState) before executing the event there is no discArrRHS because d is not changing overtime to be updated for j = 1:length(posEvExp.args) # j coressponds the number of statements under one posEvent # !(posEvExp.args[j] isa Expr && posEvExp.args[j].head == :(=)) && error("event should be A=B") if (posEvExp.args[j] isa Expr && posEvExp.args[j].head == :(=)) poslhs=posEvExp.args[j].args[1];posrhs=posEvExp.args[j].args[2] # !(poslhs isa Expr && poslhs.head == :ref && (poslhs.args[1]==:q || poslhs.args[1]==:d)) && error("lhs of events must be a continuous or a discrete variable") if (poslhs isa Expr && poslhs.head == :ref && (poslhs.args[1]==:q || poslhs.args[1]==:d)) if poslhs.args[1]==:q push!(posEv_conArrLHS,poslhs.args[2]) else # lhs is a disc var push!(posEv_disArrLHS,poslhs.args[2]) end #@show poslhs,posrhs postwalk(posrhs) do a # if a isa Expr && a.head == :ref && a.args[1]==:q# push!(posEv_conArrRHS, (a.args[2])) # end return a end end end end #------------------neg Event--------------------# negEv_disArrLHS= Vector{Int}()#@SVector fill(NaN, D) #...better than @SVector zeros(D), I can use NaN negEv_conArrLHS= Vector{Int}()#@SVector fill(NaN, T) negEv_conArrRHS=Vector{Int}()#@SVector zeros(T) #to be used inside intgrator to updateOtherQs (intgrateState) before executing the event there is no discArrRHS because d is not changing overtime to be updated if negEvExp.args[1] != :nothing for j = 1:length(negEvExp.args) # j coressponds the number of statements under one negEvent # !(negEvExp.args[j] isa Expr && negEvExp.args[j].head == :(=)) && error("event should be A=B") neglhs=negEvExp.args[j].args[1];negrhs=negEvExp.args[j].args[1] # !(neglhs isa Expr && neglhs.head == :ref && (neglhs.args[1]==:q || neglhs.args[1]==:d)) && error("lhs of events must be a continuous or a discrete variable") if (neglhs isa Expr && neglhs.head == :ref && (neglhs.args[1]==:q || neglhs.args[1]==:d)) if neglhs.args[1]==:q push!(negEv_conArrLHS,neglhs.args[2]) else # lhs is a disc var push!(negEv_disArrLHS,neglhs.args[2]) end postwalk(negrhs) do a # if a isa Expr && a.head == :ref && a.args[1]==:q# push!(negEv_conArrRHS, (a.args[2])) # end return a end end end end structposEvent = EventDependencyStruct(indexPosEv, posEv_conArrLHS, posEv_disArrLHS,posEv_conArrRHS) # right now posEv_conArr is vect of ... push!(evsArr, structposEvent) structnegEvent = EventDependencyStruct(indexNegEv, negEv_conArrLHS, negEv_disArrLHS,negEv_conArrRHS) push!(evsArr, structnegEvent) end #end cases end #end for ######################################################################################################### allEpxpr=Expr(:block) ##############diffEqua###################### s="if i==0 return nothing\n" # :i is the mute var for elmt in equs Base.remove_linenums!(elmt[1]) Base.remove_linenums!(elmt[2]) if elmt[1] isa Int s*="elseif i==$(elmt[1]) $(elmt[2]) ;return nothing\n" end if elmt[1] isa Expr s*="elseif $(elmt[1].args[1])<=i<=$(elmt[1].args[2]) $(elmt[2]) ;return nothing\n" end end s*=" end " myex1=Meta.parse(s) push!(allEpxpr.args,myex1) ##############ZCF###################### if length(zcequs)>0 #= io = IOBuffer() write(io, "if zc==1 $(zcequs[1]) ;return nothing") =# s="if zc==1 $(zcequs[1]) ;return nothing" for i=2:length(zcequs) s*= " elseif zc==$i $(zcequs[i]) ;return nothing" end # write(io, " else $(zcequs[length(zcequs)]) ;return nothing end ") s*= " end " myex2=Meta.parse(s) push!(allEpxpr.args,myex2) end ##############events###################### if length(eventequs)>0 s= "if ev==1 $(eventequs[1]) ;return nothing" for i=2:length(eventequs) s*= " elseif ev==$i $(eventequs[i]) ;return nothing" end # write(io, " else $(zcequs[length(zcequs)]) ;return nothing end ") s*= " end " myex3=Meta.parse(s) push!(allEpxpr.args,myex3) end fname= :f #default problem name #path="./temp.jl" #default path if odeExprs.args[1] isa Expr && odeExprs.args[1].args[2] isa Expr && odeExprs.args[1].args[2].head == :tuple#user has to enter problem info in a tuple fname= odeExprs.args[1].args[2].args[1] #path=odeExprs.args[1].args[2].args[2] end Base.remove_linenums!(allEpxpr) def=Dict{Symbol,Any}() def[:head] = :function def[:name] = fname def[:args] = [:(i::Int),:(zc::Int),:(ev::Int),:(q::Vector{Taylor0}),:(d::Vector{Float64}), :(t::Taylor0),:(cache::Vector{Taylor0})] def[:body] = allEpxpr #def[:rtype]=:nothing# test if cache1 always holds sol functioncode=combinedef(def) functioncodeF=@RuntimeGeneratedFunction(functioncode) jacVect=createJacVect(jac,Val(T)) SDVect=createSDVect(jac,Val(T)) dDVect =createdDvect(dD,Val(D)) SZvect=createSZvect(SZ,Val(T)) # temporary dependencies to be used to determine HD and HZ...determine HD: event-->Derivative && determine HZ:Event-->ZCfunction....influence of events on derivatives and zcfunctions: #an event is a discrteVar change or a cont Var change. So HD=HD1 UNION HD2 (same for HZ=HZ1 UNION HZ2) # (1) through a discrete Var: # ============================ # HD1=Hd-->dD where Hd comes from the eventDependecies Struct. # HZ1=Hd-->dZ where Hd comes from the eventDependecies Struct. HZ1HD1=createDependencyToEventsDiscr(dDVect,dZ,evsArr) # (2) through a continous Var: # ============================== # HD2=Hs-->sD where Hs comes from the eventDependecies Struct.(sd already created) # HZ2=Hs-->sZ where Hs comes from the eventDependecies Struct.(sZ already created) HZ2HD2=createDependencyToEventsCont(SDVect,SZ,evsArr) ##########UNION############## HZ=unionDependency(HZ1HD1[1],HZ2HD2[1]) HD=unionDependency(HZ1HD1[2],HZ2HD2[2]) # mapFun=createMapFun(jac,fname) # mapFunF=@RuntimeGeneratedFunction(mapFun) exacteJacfunction=createExactJacDiscreteFun(exacteJacExpr,fname) exacteJacfunctionF=@RuntimeGeneratedFunction(exacteJacfunction) if VERBOSE println("discrete problem created") end myodeProblem = NLODEDiscProblem(fname,Val(1),Val(T),Val(Z),Val(D),Val(num_cache_equs),initCond, discrVars, jacVect ,ZCjac ,functioncodeF, evsArr,SDVect,HZ,HD,SZvect,exacteJacfunctionF) end function createdDvect(dD::Dict{Union{Int64, Expr}, Set{Union{Int64, Expr, Symbol}}},::Val{D})where{D} dDVect = Vector{Vector{Int}}(undef, D) for ii=1:D dDVect[ii]=Vector{Int}()# define it so i can push elements as i find them below end for dictElement in dD temp=Vector{Int}() for k in dictElement[2] if k isa Int push!(temp,k) elseif k isa Expr #tuple for j_=(k.args[1]):(k.args[2]) push!(temp,j_) end end end dDVect[dictElement[1]]=temp end dDVect end function createSZvect(SZ :: Dict{Int64, Set{Int64}},::Val{T})where{T} szVect = Vector{Vector{Int}}(undef, T) for ii=1:T szVect[ii]=Vector{Int}()# define it so i can push elements as i find them below end for ele in SZ szVect[ele[1]]=collect(ele[2]) end szVect end
QuantizedSystemSolver
https://github.com/mongibellili/QuantizedSystemSolver.jl.git
[ "MIT" ]
1.0.1
b4bf1003586f2ee6cb98d8df29e88cbbfacd2ea1
code
1838
# struct QSSAlgorithm{N,O}#<:QSSAlgorithm{N,O} name::Val{N} order::Val{O} end """qss1() calls the explicit quantized state system solver with order 1 """ qss1()=QSSAlgorithm(Val(:qss),Val(1)) """qss2() calls the explicit quantized state system solver with order 2 """ qss2()=QSSAlgorithm(Val(:qss),Val(2)) #= """qss3() calls the explicit quantized state system solver with order 3 """ =# #qss3()=QSSAlgorithm(Val(:qss),Val(3)) """nmliqss1() calls the modified imlicit quantized state system solver with order 1. It is efficient when the system contains large entries outside the main diagonal of the Jacobian . """ nmliqss1()=QSSAlgorithm(Val(:nmliqss),Val(1)) """nmliqss2() calls the modified imlicit quantized state system solver with order 2. It is efficient when the system contains large entries outside the main diagonal of the Jacobian . """ nmliqss2()=QSSAlgorithm(Val(:nmliqss),Val(2)) #= """nmliqss3() calls the modified imlicit quantized state system solver with order 3. It is efficient when the system contains large entries outside the main diagonal of the Jacobian . """ =# #nmliqss3()=QSSAlgorithm(Val(:nmliqss),Val(3)) #= nliqss1()=QSSAlgorithm(Val(:nliqss),Val(1)) nliqss2()=QSSAlgorithm(Val(:nliqss),Val(2)) nliqss3()=QSSAlgorithm(Val(:nliqss),Val(3)) mliqss1()=QSSAlgorithm(Val(:mliqss),Val(1)) mliqss2()=QSSAlgorithm(Val(:mliqss),Val(2)) mliqss3()=QSSAlgorithm(Val(:mliqss),Val(3)) =# """liqss1() calls the imlicit quantized state system solver with order 1. """ liqss1()=QSSAlgorithm(Val(:liqss),Val(1)) """liqss2() calls the imlicit quantized state system solver with order 2. """ liqss2()=QSSAlgorithm(Val(:liqss),Val(2)) #= """liqss3() calls the imlicit quantized state system solver with order 3. """ =# #liqss3()=QSSAlgorithm(Val(:liqss),Val(3)) #= sparse()=Val(true) dense()=Val(false) =#
QuantizedSystemSolver
https://github.com/mongibellili/QuantizedSystemSolver.jl.git
[ "MIT" ]
1.0.1
b4bf1003586f2ee6cb98d8df29e88cbbfacd2ea1
code
1120
#= """ hold helper datastructures needed for simulation, can be seen as the model in the qss architecture (model-integrator-quantizer)""" =# struct CommonQSS_data{Z} quantum :: Vector{Float64} x :: Vector{Taylor0} #MVector cannot hold non-isbits q :: Vector{Taylor0} tx :: Vector{Float64} tq :: Vector{Float64} d::Vector{Float64} nextStateTime :: Vector{Float64} nextInputTime :: Vector{Float64} # nextEventTime :: MVector{Z,Float64} t::Taylor0# mute taylor var to be used with math functions to represent time integratorCache::Taylor0 taylorOpsCache::Vector{Taylor0} finalTime:: Float64 savetimeincrement::Float64 initialTime :: Float64 dQmin ::Float64 dQrel ::Float64 maxErr ::Float64 maxStepsAllowed ::Int savedTimes :: Vector{Vector{Float64}} savedVars:: Vector{Vector{Float64}} end #= ``` data needed only for implicit case ``` =# struct LiQSS_data{O,Sparsity} vs::Val{Sparsity} cacheA::MVector{1,Float64} qaux::Vector{MVector{O,Float64}} dxaux::Vector{MVector{O,Float64}} end
QuantizedSystemSolver
https://github.com/mongibellili/QuantizedSystemSolver.jl.git
[ "MIT" ]
1.0.1
b4bf1003586f2ee6cb98d8df29e88cbbfacd2ea1
code
1457
function updateScheduler(::Val{T},nextStateTime::Vector{Float64},nextEventTime :: MVector{Z,Float64},nextInputTime :: Vector{Float64})where{T,Z} #later MVect for nextInput minStateTime=Inf minState_index=0 # what if all nextstateTime= Inf ...especially at begining????? min_index stays 0!!! minEventTime=Inf minEvent_index=0 minInputTime=Inf minInput_index=0 returnedVar=() # used to print something if something is bad for i=1:T if nextStateTime[i]<minStateTime minStateTime=nextStateTime[i] minState_index=i end if nextInputTime[i] < minInputTime minInputTime=nextInputTime[i] minInput_index=i end end for i=1:Z if nextEventTime[i] < minEventTime minEventTime=nextEventTime[i] minEvent_index=i end end if minEventTime<minStateTime if minInputTime<minEventTime returnedVar=(minInput_index,minInputTime,:ST_INPUT) else returnedVar=(minEvent_index,minEventTime,:ST_EVENT) end else if minInputTime<minStateTime returnedVar=(minInput_index,minInputTime,:ST_INPUT) else returnedVar=(minState_index,minStateTime,:ST_STATE) end end if returnedVar[1]==0 returnedVar=(1,Inf,:ST_STATE) # println("null step made state step") end return returnedVar end
QuantizedSystemSolver
https://github.com/mongibellili/QuantizedSystemSolver.jl.git
[ "MIT" ]
1.0.1
b4bf1003586f2ee6cb98d8df29e88cbbfacd2ea1
code
4326
"""LightSol{T,O} A struct that holds the solution of a system of ODEs. It has the following fields:\n - size: The number of continuous variables T\n - order: The order of the algorithm O\n - savedTimes: A vector of vectors of Float64 that holds the times at which the continuous variables were saved\n - savedVars: A vector of vectors of Float64 that holds the values of the continuous variables at the times they were saved\n - algName: The name of the algorithm used to solve the system\n - sysName: The name of the system\n - absQ: The absolute tolerance used in the simulation\n - totalSteps: The total number of steps taken by the algorithm\n - simulStepCount: The number of simultaneous updates during the simulation\n - evCount: The number of events that occurred during the simulation\n - numSteps: A vector of Int that holds the number of steps taken by the algorithm for each continuous variable\n - ft: The final time of the simulation """ struct LightSol{T,O}<:Sol{T,O} size::Val{T} order::Val{O} savedTimes::Vector{Vector{Float64}} savedVars::Vector{Vector{Float64}} #savedVarsQ::Vector{Vector{Float64}} algName::String sysName::String absQ::Float64 totalSteps::Int simulStepCount::Int evCount::Int numSteps ::Vector{Int} ft::Float64 end @inline function createSol(::Val{T},::Val{O}, savedTimes:: Vector{Vector{Float64}},savedVars :: Vector{Vector{Float64}},solver::String,nameof_F::String,absQ::Float64,totalSteps::Int#= ,stepsaftersimul::Int =#,simulStepCount::Int,evCount::Int,numSteps ::Vector{Int},ft::Float64#= ,simulStepsVals :: Vector{Vector{Float64}}, simulStepsDers :: Vector{Vector{Float64}} ,simulStepsTimes :: Vector{Vector{Float64}} =#)where {T,O} # println("light") sol=LightSol(Val(T),Val(O),savedTimes, savedVars,solver,nameof_F,absQ,totalSteps#= ,stepsaftersimul =#,simulStepCount,evCount,numSteps,ft#= ,simulStepsVals,simulStepsDers,simulStepsTimes =#) end function getindex(s::Sol, i::Int64) if i==1 return s.savedTimes elseif i==2 return s.savedVars else error("sol has 2 attributes: time and states") end end @inline function evaluateSol(sol::Sol{T,O},index::Int,t::Float64)where {T,O} (t>sol.ft) && error("given point is outside the solution range! Verify where you want to evaluate the solution") x=sol[2][index][end] #integratorCache=Taylor0(zeros(O+1),O) for i=2:length(sol[1][index])#savedTimes after the init time...init time is at index i=1 if sol[1][index][i]>t # i-1 is closest lower point f1=sol[2][index][i-1];f2=sol[2][index][i];t1=sol[1][index][i-1] ;t2=sol[1][index][i]# find x=f(t)=at+b...linear interpolation a=(f2-f1)/(t2-t1) b=(f1*t2-f2*t1)/(t2-t1) x=a*t+b # println("1st case") return x#taylor evaluation after small elapsed with the point before (i-1) elseif sol[1][index][i]==t # i-1 is closest lower point x=sol[2][index][i] # println("2nd case") return x end end # println("3rd case") return x #if var never changed then return init cond or if t>lastSavedTime for this var then return last value end function solInterpolated(sol::Sol{T,O},step::Float64)where {T,O} interpTimes=Float64[] allInterpTimes=Vector{Vector{Float64}}(undef, T) t=0.0 #later can change to init_time which could be diff than zero push!(interpTimes,t) while t+step<sol.ft t=t+step push!(interpTimes,t) end push!(interpTimes,sol.ft) numInterpPoints=length(interpTimes) interpValues=nothing if sol isa LightSol interpValues=Vector{Vector{Float64}}(undef, T) end for index=1:T interpValues[index]=[] push!(interpValues[index],sol[2][index][1]) #1st element is the init cond (true value) for i=2:numInterpPoints-1 push!(interpValues[index],evaluateSol(sol,index,interpTimes[i])) end push!(interpValues[index],sol[2][index][end]) #last pt @ft allInterpTimes[index]=interpTimes end createSol(Val(T),Val(O),allInterpTimes,interpValues,sol.algName,sol.sysName,sol.absQ,sol.totalSteps#= ,sol.stepsaftersimul =#,sol.simulStepCount,sol.evCount,sol.numSteps,sol.ft#= ,sol.simulStepsVals,sol.simulStepsDers,sol.simulStepsVals =#) end (sol::Sol)(index::Int,t::Float64) = evaluateSol(sol,index,t)
QuantizedSystemSolver
https://github.com/mongibellili/QuantizedSystemSolver.jl.git
[ "MIT" ]
1.0.1
b4bf1003586f2ee6cb98d8df29e88cbbfacd2ea1
code
2386
"""getError(sol::Sol{T,O},index::Int,f::Function) where{T,O} This function calculates the relative error of the solution with respect to a reference function. """ function getError(sol::Sol{T,O},index::Int,f::Function) where{T,O} index>T && error("the system contains only $T variables!") numPoints=length(sol.savedTimes[index]) sumTrueSqr=0.0 sumDiffSqr=0.0 relerror=0.0 for i = 1:numPoints-1 #each point is a taylor ts=f(sol.savedTimes[index][i]) sumDiffSqr+=(sol.savedVars[index][i]-ts)*(sol.savedVars[index][i]-ts) sumTrueSqr+=ts*ts end relerror=sqrt(sumDiffSqr/sumTrueSqr) return relerror end function getErrorByRefs(sol::Sol{T,O},index::Int,solRef::Vector{Any})where{T,O} #numVars=length(sol.savedVars) index>T && error("the system contains only $T variables!") numPoints=length(sol.savedTimes[index]) sumTrueSqr=0.0 sumDiffSqr=0.0 relerror=0.0 for i = 1:numPoints-1 #-1 because savedtimes holds init cond at begining ts=solRef[i][index] sumDiffSqr+=(sol.savedVars[index][i]-ts)*(sol.savedVars[index][i]-ts) sumTrueSqr+=ts*ts end if abs(sumTrueSqr)>1e-12 relerror=sqrt(sumDiffSqr/sumTrueSqr) else relerror=0.0 end return relerror end #= @inline function getX_fromSavedVars(savedVars :: Vector{Array{Taylor0}},index::Int,i::Int) return savedVars[index][i].coeffs[1] end =# @inline function getX_fromSavedVars(savedVars :: Vector{Vector{Float64}},index::Int,i::Int) return savedVars[index][i] end """getAverageErrorByRefs(sol::Sol{T,O},solRef::Vector{Any}) where{T,O} This function calculates the average relative error of the solution with respect to a reference solution. The relative error is calculated for each variable, and then it is averaged over all variables. """ function getAverageErrorByRefs(sol::Sol{T,O},solRef::Vector{Any}) where{T,O} numPoints=length(sol.savedTimes[1]) allErrors=0.0 for index=1:T sumTrueSqr=0.0 sumDiffSqr=0.0 relerror=0.0 for i = 1:numPoints-1 #each point is a taylor ts=solRef[i][index] Ns=getX_fromSavedVars(sol.savedVars,index,i) sumDiffSqr+=(Ns-ts)*(Ns-ts) sumTrueSqr+=ts*ts end if abs(sumTrueSqr)>1e-12 relerror=sqrt(sumDiffSqr/sumTrueSqr) else relerror=0.0 end allErrors+= relerror end return allErrors/T end
QuantizedSystemSolver
https://github.com/mongibellili/QuantizedSystemSolver.jl.git
[ "MIT" ]
1.0.1
b4bf1003586f2ee6cb98d8df29e88cbbfacd2ea1
code
5119
"""plot_Sol(sol::Sol{T,O},xvars::Int...;note=" "::String,xlims=(0.0,0.0)::Tuple{Float64, Float64},ylims=(0.0,0.0)::Tuple{Float64, Float64},legend=:true::Bool,marker=:circle::Symbol) where{T,O} This function generates a plot of the solution of the system (returned as a plot object). With the exception of the solution object, all arguments are optional. The default values are:\n - note = " "\n - xlims = (0.0,0.0)\n - ylims = (0.0,0.0)\n - legend = true\n - marker=:circle """ function plot_Sol(sol::Sol{T,O},xvars::Int...;note=" "::String,xlims=(0.0,0.0)::Tuple{Float64, Float64},ylims=(0.0,0.0)::Tuple{Float64, Float64},legend=:true::Bool,marker=:circle::Symbol) where{T,O} p1=plot() if xvars!=() for k in xvars if k==1 stle=:dash sze=2 elseif k==2 stle=:solid sze=4 elseif k==3 stle=:dot sze=3 elseif k==4 stle=:dashdot sze=2 else sze=1 stle=:solid end p1=plot!(p1,sol.savedTimes[k], sol.savedVars[k],line=(sze,stle),marker=(marker),label="x$k $(sol.numSteps[k])"#= ,legend=:right =#) end else for k=1:T if k==1 mycolor=:red else mycolor=:purple end p1=plot!(p1,sol.savedTimes[k], sol.savedVars[k],marker=(marker),markersize=2,label="x$k $(sol.numSteps[k])"#= ,legend=:false =#) end end if xlims!=(0.0,0.0) && ylims!=(0.0,0.0) p1=plot!(p1,title="$(sol.sysName)_$(sol.algName)_$(sol.absQ)_$(sol.totalSteps)_$(sol.simulStepCount)_$(sol.evCount) \n $note", xlims=xlims ,ylims=ylims) elseif xlims!=(0.0,0.0) && ylims==(0.0,0.0) p1=plot!(p1,title="$(sol.sysName)_$(sol.algName)_$(sol.absQ)_$(sol.totalSteps)_$(sol.simulStepCount)_$(sol.evCount) \n $note", xlims=xlims #= ,ylims=ylims =#) elseif xlims==(0.0,0.0) && ylims!=(0.0,0.0) p1=plot!(p1,title="$(sol.sysName)_$(sol.algName)_$(sol.absQ)_$(sol.totalSteps)_$(sol.simulStepCount)_$(sol.evCount) \n $note"#= , xlims=xlims =#,ylims=ylims) else p1=plot!(p1, title="$(sol.sysName)_$(sol.algName)_$(sol.absQ)_$(sol.totalSteps)_$(sol.simulStepCount)_$(sol.evCount) \n $note",legend=legend) end p1 end """save_Sol(sol::Sol{T,O},xvars::Int...;note=" "::String,xlims=(0.0,0.0)::Tuple{Float64, Float64},ylims=(0.0,0.0)::Tuple{Float64, Float64},legend=:true::Bool) where{T,O} Save the plot of the system solution for the variables xvars. With the exception of the solution object, all arguments are optional. The default values are:\n - note = " "\n - xlims = (0.0,0.0)\n - ylims = (0.0,0.0)\n - legend = true """ function save_Sol(sol::Sol{T,O},xvars::Int...;note=" "::String,xlims=(0.0,0.0)::Tuple{Float64, Float64},ylims=(0.0,0.0)::Tuple{Float64, Float64},legend=:true::Bool) where{T,O} p1= plot_Sol(sol,xvars...;note=note,xlims=xlims,ylims=ylims,legend=legend) mydate=now() timestamp=(string(year(mydate),"_",month(mydate),"_",day(mydate),"_",hour(mydate),"_",minute(mydate),"_",second(mydate))) savefig(p1, "plot_$(sol.sysName)_$(sol.algName)_$(xvars)_$(sol.absQ)_$(note)_ft_$(sol.ft)_$(timestamp).png") end function save_SolSum(sol::Sol{T,O},xvars::Int...;interp=0.0001,note=" "::String,xlims=(0.0,0.0)::Tuple{Float64, Float64},ylims=(0.0,0.0)::Tuple{Float64, Float64},legend=:true::Bool) where{T,O} p1= plot_SolSum(sol,xvars...;interp=interp,note=note,xlims=xlims,ylims=ylims,legend=legend) mydate=now() timestamp=(string(year(mydate),"_",month(mydate),"_",day(mydate),"_",hour(mydate),"_",minute(mydate),"_",second(mydate))) savefig(p1, "plot_$(sol.sysName)_$(sol.algName)_$(xvars)_$(sol.absQ)_$(note)_ft_$(sol.ft)_$(timestamp).png") end #plot the sum of variables function plot_SolSum(sol::Sol{T,O},xvars::Int...;interp=0.0001,note=" "::String,xlims=(0.0,0.0)::Tuple{Float64, Float64},ylims=(0.0,0.0)::Tuple{Float64, Float64},legend=:true::Bool) where{T,O} p1=plot() if xvars!=() solInterp=solInterpolated(sol,interp) # for now interpl all sumV=solInterp.savedVars[xvars[1]] sumT=solInterp.savedTimes[xvars[1]]# numPoints=length(sumT) for i=1:numPoints for k=2: length(xvars) sumV[i]+=solInterp.savedVars[xvars[k]][i] end end p1=plot!(p1,sumT, sumV,marker=(:circle),#= ,legend=:right =#) else println("pick vars to plot their sum") end if xlims!=(0.0,0.0) && ylims!=(0.0,0.0) p1=plot!(p1,title="$(sol.sysName)_$(sol.algName)_$(sol.absQ)_$(sol.totalSteps)_$(sol.simulStepCount)_$(sol.evCount) \n $note", xlims=xlims ,ylims=ylims) elseif xlims!=(0.0,0.0) && ylims==(0.0,0.0) p1=plot!(p1,title="$(sol.sysName)_$(sol.algName)_$(sol.absQ)_$(sol.totalSteps)_$(sol.simulStepCount)_$(sol.evCount) \n $note", xlims=xlims #= ,ylims=ylims =#) elseif xlims==(0.0,0.0) && ylims!=(0.0,0.0) p1=plot!(p1,title="$(sol.sysName)_$(sol.algName)_$(sol.absQ)_$(sol.totalSteps)_$(sol.simulStepCount)_$(sol.evCount) \n $note"#= , xlims=xlims =#,ylims=ylims) else p1=plot!(p1, title="$(sol.sysName)_$(sol.algName)_$(sol.absQ)_$(sol.totalSteps)_$(sol.simulStepCount)_$(sol.evCount) \n $note",legend=legend) end p1 end
QuantizedSystemSolver
https://github.com/mongibellili/QuantizedSystemSolver.jl.git
[ "MIT" ]
1.0.1
b4bf1003586f2ee6cb98d8df29e88cbbfacd2ea1
code
10309
function transformFSimplecase(ex)# it s easier and healthier to leave the big case alone in one prewalk (below) when returning the size of the distributed cahce ex=Expr(:call, :createT,ex)# case where rhs of eq is a number needed to change to taylor (in cache) to be used for qss || #case where rhs is q[i]...reutrn cache that contains it cachexpr = Expr(:ref, :cache) # add cache[1] to createT(ex,....) push!(cachexpr.args,1) push!( ex.args, cachexpr) return ex end function transformF(ex)# name to be changed later....i call this funciton in the docs the function that does the transformation cachexpr_lengthtracker = Expr(:mongi)# an expr to track the number of distributed caches prewalk(ex) do x #############################minus sign############################################# if x isa Expr && x.head == :call && x.args[1] == :- && length(x.args) == 3 && !(x.args[2] isa Int) && !(x.args[3] isa Int) #last 2 to avoid changing u[i-1] #MacroTools.isexpr(x, :call) replaces the begining if x.args[2] isa Expr && x.args[2].head == :call && x.args[2].args[1] == :- && length(x.args[2].args) == 3 push!(x.args, x.args[3])# args[4]=c x.args[3] = x.args[2].args[3]# args[3]=b x.args[2] = x.args[2].args[2]# args[2]=a x.args[1] = :subsub push!(cachexpr_lengthtracker.args,:b) #b is anything ...not needed, just to fill vector tracker cachexpr = Expr(:ref, :cache) #prepare cache push!(cachexpr.args,length(cachexpr_lengthtracker.args))#constrcut cache with index cache[1] push!(x.args, cachexpr) elseif x.args[2] isa Expr && x.args[2].head == :call && x.args[2].args[1] == :+ && length(x.args[2].args) == 3 push!(x.args, x.args[3])# args[4]=c x.args[3] = x.args[2].args[3]# args[3]=b x.args[2] = x.args[2].args[2]# args[2]=a x.args[1] = :addsub # £ µ § ~.... push!(cachexpr_lengthtracker.args,:b) cachexpr = Expr(:ref, :cache) push!(cachexpr.args,length(cachexpr_lengthtracker.args)) #cachexpr.args[2] = index[i] push!(x.args, cachexpr) elseif x.args[2] isa Expr && x.args[2].head == :call && x.args[2].args[1] == :* && length(x.args[2].args) == 3 push!(x.args, x.args[3])# args[4]=c x.args[3] = x.args[2].args[3]# args[3]=b x.args[2] = x.args[2].args[2]# args[2]=a x.args[1] = :mulsub # £ µ § ~.... push!(cachexpr_lengthtracker.args,:b) cachexpr1 = Expr(:ref, :cache) push!(cachexpr1.args,length(cachexpr_lengthtracker.args)) push!(x.args, cachexpr1) else x.args[1] = :subT # symbol changed cuz avoid type taylor piracy push!(cachexpr_lengthtracker.args,:b) cachexpr = Expr(:ref, :cache) push!(cachexpr.args,length(cachexpr_lengthtracker.args)) push!(x.args, cachexpr) end elseif x isa Expr && x.head == :call && x.args[1] == :- && length(x.args) == 2 && !(x.args[2] isa Number)#negate x.args[1] = :negateT # symbol changed cuz avoid type taylor piracy push!(cachexpr_lengthtracker.args,:b) cachexpr = Expr(:ref, :cache) push!(cachexpr.args,length(cachexpr_lengthtracker.args)) push!(x.args, cachexpr) ############################### plus sign####################################### elseif x isa Expr && x.head == :call && x.args[1] == :+ && length(x.args) == 3 && typeof(x.args[2])!=Int && typeof(x.args[3])!=Int #last 2 to avoid changing u[i+1] if x.args[2] isa Expr && x.args[2].head == :call && x.args[2].args[1] == :- && length(x.args[2].args) == 3 push!(x.args, x.args[3])# args[4]=c x.args[3] = x.args[2].args[3]# args[3]=b x.args[2] = x.args[2].args[2]# args[2]=a x.args[1] = :subadd#:µ # £ § .... push!(cachexpr_lengthtracker.args,:b) cachexpr = Expr(:ref, :cache) push!(cachexpr.args,length(cachexpr_lengthtracker.args)) #cachexpr.args[2] = index[i] push!(x.args, cachexpr) elseif x.args[2] isa Expr && x.args[2].head == :call && x.args[2].args[1] == :* && length(x.args[2].args) == 3 push!(x.args, x.args[3])# args[4]=c x.args[3] = x.args[2].args[3]# args[3]=b x.args[2] = x.args[2].args[2]# args[2]=a x.args[1] = :muladdT#:µ # £ § .... push!(cachexpr_lengthtracker.args,:b) cachexpr1 = Expr(:ref, :cache) push!(cachexpr1.args,length(cachexpr_lengthtracker.args)) push!(x.args, cachexpr1) else x.args[1] = :addT push!(cachexpr_lengthtracker.args,:b) cachexpr = Expr(:ref, :cache) push!(cachexpr.args,length(cachexpr_lengthtracker.args)) push!(x.args, cachexpr) end elseif x isa Expr && x.head == :call && x.args[1] == :+ && (4 <= length(x.args) <= 9) # special add :i stopped at 9 cuz by testing it was allocating anyway after 9 x.args[1] = :addT push!(cachexpr_lengthtracker.args,:b) cachexpr = Expr(:ref, :cache) push!(cachexpr.args,length(cachexpr_lengthtracker.args)) push!(x.args, cachexpr) ############################### multiply sign####################################### #never happens :# elseif x isa Expr && x.head == :call && x.args[1]==:* && length(x.args)==3 to get addmul or submul elseif x isa Expr && x.head == :call && (x.args[1] == :*) && (3 == length(x.args)) && typeof(x.args[2])!=Int && typeof(x.args[3])!=Int #last 2 to avoid changing u[i*1] x.args[1] = :mulT push!(cachexpr_lengthtracker.args,:b) cachexpr1 = Expr(:ref, :cache) push!(cachexpr1.args,length(cachexpr_lengthtracker.args)) push!(x.args, cachexpr1) elseif x isa Expr && x.head == :call && (x.args[1] == :*) && (4 <= length(x.args) <= 7)# i stopped at 7 cuz by testing it was allocating anyway after 7 x.args[1] = :mulTT push!(cachexpr_lengthtracker.args,:b) cachexpr1 = Expr(:ref, :cache) push!(cachexpr1.args,length(cachexpr_lengthtracker.args)) push!(x.args, cachexpr1) push!(cachexpr_lengthtracker.args,:b) cachexpr2 = Expr(:ref, :cache) #multiply needs two caches push!(cachexpr2.args,length(cachexpr_lengthtracker.args)) push!(x.args, cachexpr2) elseif x isa Expr && x.head == :call && (x.args[1] == :/) && typeof(x.args[2])!=Int && typeof(x.args[3])!=Int #last 2 to avoid changing u[i/1] x.args[1] = :divT push!(cachexpr_lengthtracker.args,:b) cachexpr = Expr(:ref, :cache) push!(cachexpr.args,length(cachexpr_lengthtracker.args)) push!(x.args, cachexpr) elseif x isa Expr && x.head == :call && (x.args[1] == :exp ||x.args[1] == :log ||x.args[1] == :sqrt ||x.args[1] == :abs ) push!(cachexpr_lengthtracker.args,:b) cachexpr = Expr(:ref, :cache) push!(cachexpr.args,length(cachexpr_lengthtracker.args)) push!(x.args, cachexpr) elseif x isa Expr && x.head == :call && (x.args[1] == :^ ) x.args[1] = :powerT # should be like above but for lets keep it now...in test qss.^ caused a problem...fix later push!(cachexpr_lengthtracker.args,:b) cachexpr = Expr(:ref, :cache) push!(cachexpr.args,length(cachexpr_lengthtracker.args)) push!(x.args, cachexpr) elseif x isa Expr && x.head == :call && (x.args[1] == :cos ||x.args[1] == :sin ||x.args[1] == :tan||x.args[1] == :atan ) push!(cachexpr_lengthtracker.args,:b) cachexpr = Expr(:ref, :cache) push!(cachexpr.args,length(cachexpr_lengthtracker.args)) push!(x.args, cachexpr) #second cache push!(cachexpr_lengthtracker.args,:b)#index2 cachexpr2 = Expr(:ref, :cache) push!(cachexpr2.args,length(cachexpr_lengthtracker.args))#construct cache[2] push!(x.args, cachexpr2) elseif x isa Expr && x.head == :call && (x.args[1] == :acos ||x.args[1] == :asin) #did not change symbol here push!(cachexpr_lengthtracker.args,:b) cachexpr = Expr(:ref, :cache) push!(cachexpr.args,length(cachexpr_lengthtracker.args)) push!(x.args, cachexpr) #second cache push!(cachexpr_lengthtracker.args,:b)#index2 cachexpr2 = Expr(:ref, :cache) push!(cachexpr2.args,length(cachexpr_lengthtracker.args))#construct cache[2] push!(x.args, cachexpr2) #third cache push!(cachexpr_lengthtracker.args,:b)#index3 cachexpr2 = Expr(:ref, :cache) push!(cachexpr2.args,length(cachexpr_lengthtracker.args))#construct cache[2] push!(x.args, cachexpr2) elseif false #holder for "myviewing" for next symbol for other functions.. end return x # this is the line that actually enables modification of the original expression (prewalk only) end#end prewalk #return ex ########################################************************ ex.args[2]=length(cachexpr_lengthtracker.args)# return the number of caches distributed...later clean the max of all these return ex # end #end if number else prewalk end#end function
QuantizedSystemSolver
https://github.com/mongibellili/QuantizedSystemSolver.jl.git
[ "MIT" ]
1.0.1
b4bf1003586f2ee6cb98d8df29e88cbbfacd2ea1
code
6666
# user does not provide solver. default mliqss2 is used function solve(prob::NLODEProblem{PRTYPE,T,Z,D,CS},tspan::Tuple{Float64, Float64};sparsity::Val{Sparsity}=Val(false),saveat=1e-9::Float64,abstol=1e-4::Float64,reltol=1e-3::Float64,maxErr=Inf::Float64,maxStepsAllowed=10000000) where {PRTYPE,T,Z,D,CS,Sparsity} solve(prob,QSSAlgorithm(Val(:nmliqss),Val(2)),tspan;sparsity=sparsity,saveat=saveat,abstol=abstol,reltol=reltol,maxErr=maxErr,maxStepsAllowed=maxStepsAllowed) end """solve(prob::NLODEProblem{PRTYPE,T,Z,D,CS},al::QSSAlgorithm{SolverType, OrderType},tspan::Tuple{Float64, Float64};sparsity::Val{Sparsity}=Val(false),saveat=1e-9::Float64,abstol=1e-4::Float64,reltol=1e-3::Float64,maxErr=Inf::Float64,maxStepsAllowed=10000000) where{PRTYPE,T,Z,D,CS,SolverType,OrderType,Sparsity} This function dispatches on a specific integrator based on the algorithm provided. With the exception of the argument prob and tspan, all other arguments are optional and have default values:\n -The algorithm defaults to nmliqss2, and it is specified by the QSSAlgorithm type, which is a composite type that has a name and an order. It can be extended independently of the solver.\n -The sparsity argument defaults to false. If true, the integrator will use a sparse representation of the Jacobian matrix (not implemented).\n -The saveat argument defaults to 1e-9. It specifies the time step at which the integrator will save the solution (not implemented).\n -The abstol argument defaults to 1e-4. It specifies the absolute tolerance of the integrator.\n -The reltol argument defaults to 1e-3. It specifies the relative tolerance of the integrator.\n -The maxErr argument defaults to Inf. It specifies the maximum error allowed by the integrator. This is used as an upper bound for the quantum when a variable goes large.\n -The maxStepsAllowed argument defaults to 10000000. It specifies the maximum number of steps allowed by the integrator. If the user wants to extend the limit on the maximum number of steps, this argument can be used.\n After the simulation, the solution is returned as a Solution object. """ function solve(prob::NLODEProblem{PRTYPE,T,Z,D,CS},al::QSSAlgorithm{SolverType, OrderType},tspan::Tuple{Float64, Float64};sparsity::Val{Sparsity}=Val(false),saveat=1e-9::Float64,abstol=1e-4::Float64,reltol=1e-3::Float64,maxErr=Inf::Float64,maxStepsAllowed=10000000) where{PRTYPE,T,Z,D,CS,SolverType,OrderType,Sparsity} custom_Solve(prob,al,Val(Sparsity),tspan[2],saveat,tspan[1],abstol,reltol,maxErr,maxStepsAllowed) end #default solve method: this is not to be touched...extension or modification is done through creating another custom_solve with different PRTYPE function custom_Solve(prob::NLODEProblem{PRTYPE,T,Z,D,CS},al::QSSAlgorithm{Solver, Order},::Val{Sparsity},finalTime::Float64,saveat::Float64,initialTime::Float64,abstol::Float64,reltol::Float64,maxErr::Float64,maxStepsAllowed::Int) where{PRTYPE,T,Z,D,CS,Solver,Order,Sparsity} # sizehint=floor(Int64, 1.0+(finalTime/saveat)*0.6) commonQSSdata=createCommonData(prob,Val(Order),finalTime,saveat, initialTime,abstol,reltol,maxErr,maxStepsAllowed) jac=getClosure(prob.jac)::Function #if in future jac and SD are different datastructures SD=getClosure(prob.SD)::Function if Solver==:qss integrate(al,commonQSSdata,prob,prob.eqs,jac,SD) else liqssdata=createLiqssData(prob,Val(Sparsity),Val(T),Val(Order)) integrate(al,commonQSSdata,liqssdata,prob,prob.eqs,jac,SD,prob.exactJac) end end #= function getClosure(jacSD::Function)::Function # function closureJacSD(i::Int) jacSD(i) end return closureJacSD end =# function getClosure(jacSD::Vector{Vector{Int}})::Function function closureJacSD(i::Int) jacSD[i] end return closureJacSD end #helper methods...not to be touched...extension can be done through creating others via specializing on one PRTYPE or more of the symbols (PRTYPE,T,Z,D,Order) if in the future... ################################################################################################################################################################################# function createCommonData(prob::NLODEProblem{PRTYPE,T,Z,D,CS},::Val{Order},finalTime::Float64,saveat::Float64,initialTime::Float64,abstol::Float64,reltol::Float64,maxErr::Float64,maxStepsAllowed::Int)where{PRTYPE,T,Z,D,CS,Order} quantum = zeros(T) x = Vector{Taylor0}(undef, T) q = Vector{Taylor0}(undef, T) savedTimes=Vector{Vector{Float64}}(undef, T) savedVars = Vector{Vector{Float64}}(undef, T) nextStateTime = zeros(T) nextInputTime = zeros(T) tx = zeros(T) tq = zeros(T) nextEventTime=@MVector zeros(Z)# only Z number of zcf is usually under 100...so use of SA is ok t = Taylor0(zeros(Order + 1), Order) t[1]=1.0 t[0]=initialTime integratorCache=Taylor0(zeros(Order+1),Order) #for integratestate only d=zeros(D) for i=1:D d[i]=prob.discreteVars[i] end #= @show d @show prob.discreteVars =# for i = 1:T nextInputTime[i]=Inf nextStateTime[i]=Inf x[i]=Taylor0(zeros(Order + 1), Order) x[i][0]= getInitCond(prob,i) # x[i][0]= prob.initConditions[i] if to remove saving as func q[i]=Taylor0(zeros(Order+1), Order)#q normally 1order lower than x but since we want f(q) to be a taylor that holds all info (1,2,3), lets have q of same Order and not update last coeff tx[i] = initialTime tq[i] = initialTime savedTimes[i]=Vector{Float64}() savedVars[i]=Vector{Float64}() end taylorOpsCache=Array{Taylor0,1}()# cache= vector of taylor0s of size CS for i=1:CS push!(taylorOpsCache,Taylor0(zeros(Order+1),Order)) end commonQSSdata= CommonQSS_data(quantum,x,q,tx,tq,d,nextStateTime,nextInputTime ,nextEventTime , t, integratorCache,taylorOpsCache,finalTime,saveat, initialTime,abstol,reltol,maxErr,maxStepsAllowed,savedTimes,savedVars) end #no sparsity function createLiqssData(prob::NLODEProblem{PRTYPE,T,Z,D,CS},::Val{false},::Val{T},::Val{Order})where{PRTYPE,T,Z,D,CS,Order} qaux = Vector{MVector{Order,Float64}}(undef, T) dxaux=Vector{MVector{Order,Float64}}(undef, T) for i=1:T qaux[i]=zeros(MVector{Order,Float64}) dxaux[i]=zeros(MVector{Order,Float64}) end cacheA=zeros(MVector{1,Float64}) liqssdata= LiQSS_data(Val(false),cacheA,qaux,dxaux) end # get init conds for normal vect...getinitcond for fun can be found with qssnlsavedprob file function getInitCond(prob::NLODEContProblem,i::Int) return prob.initConditions[i] end
QuantizedSystemSolver
https://github.com/mongibellili/QuantizedSystemSolver.jl.git
[ "MIT" ]
1.0.1
b4bf1003586f2ee6cb98d8df29e88cbbfacd2ea1
code
5807
#macro NLodeProblem(odeExprs) """NLodeProblem(odeExprs) This function parses the user code to dispatches on a specific problem construction. It returns a Problem object to be passed to the solve function. """ function NLodeProblem(odeExprs) Base.remove_linenums!(odeExprs) if VERBOSE println("starting prob parsing...") end probHelper=arrangeProb(odeExprs)# replace symbols and params , extract info about size,symbols,initconds probSize=probHelper.problemSize discSize=probHelper.discreteSize zcSize=probHelper.numZC initConds=probHelper.initConditions # vector symDict=probHelper.symDict du=probHelper.du if length(initConds)==0 #user chose shortcuts...initcond saved in a dict initConds=zeros(probSize)# vector of init conds to be created savedinitConds=probHelper.savedInitCond #init conds already created in a dict for i in savedinitConds if i[1] isa Int #if key (i[1]) is an integer initConds[i[1]]=i[2] else # key is an expression for j=(i[1].args[1]):(i[1].args[2]) initConds[j]=i[2] end end end end # @show odeExprs NLodeProblemFunc(odeExprs,Val(probSize),Val(discSize),Val(zcSize),initConds,du,symDict) #returns prob end struct probHelper #helper struct to return stuff from arrangeProb problemSize::Int discreteSize::Int numZC::Int savedInitCond::Dict{Union{Int,Expr},Float64} initConditions::Vector{Float64} du::Symbol symDict::Dict{Symbol,Expr} end function arrangeProb(x::Expr) # replace symbols and params , extract info about sizes,symbols,initconds param=Dict{Symbol,Union{Float64,Expr}}() symDict=Dict{Symbol,Expr}() stateVarName=:q du=:nothing #default anything problemSize=0 discreteSize=0 numZC=0 savedInitCond=Dict{Union{Int,Expr},Float64}() initConditions=Vector{Float64}() for argI in x.args if argI isa Expr && argI.head == :(=) #&& @capture(argI, y_ = rhs_) y=argI.args[1];rhs=argI.args[2] if y isa Symbol && rhs isa Number #params: fill dict of param param[y]=rhs elseif y isa Symbol && rhs isa Expr && (rhs.head==:call || rhs.head==:ref) #params=epression fill dict of param argI.args[2]=changeVarNames_params(rhs,stateVarName,:nothing,param,symDict) param[y]=argI.args[2] elseif y isa Expr && y.head == :ref && rhs isa Number #initial conds "1st way" u[a]=N or u[a:b]=N... if string(y.args[1])[1] !='d' #prevent the case diffEq du[]=Number stateVarName=y.args[1] #extract var name if du==:nothing du=Symbol(:d,stateVarName) end # construct symbol du if y.args[2] isa Expr && y.args[2].args[1]== :(:) #u[a:b]=N # length(y.args[2].args)==3 || error(" use syntax u[a:b]") # not needed savedInitCond[:(($(y.args[2].args[2]),$(y.args[2].args[3])))]=rhs# dict {expr->float} if problemSize < y.args[2].args[3] problemSize=y.args[2].args[3] #largest b determines probSize end elseif y.args[2] isa Int #u[a]=N problemSize+=1 savedInitCond[y.args[2]]=rhs#.args[1] end end elseif y isa Symbol && rhs isa Expr && rhs.head==:vect # cont vars u=[] "2nd way" or discrete vars d=[] if y!=:discrete stateVarName=y du=Symbol(:d,stateVarName) initConditions= convert(Array{Float64,1}, rhs.args) problemSize=length(rhs.args) else discreteSize = length(rhs.args) end elseif y isa Expr && y.head == :ref && (rhs isa Expr && rhs.head !=:vect)#&& rhs.head==:call or ref # a diff equa not in a loop argI.args[2]=changeVarNames_params(rhs,stateVarName,:nothing,param,symDict) elseif y isa Expr && y.head == :ref && rhs isa Symbol if haskey(param, rhs)#symbol is a parameter argI.args[2]=copy(param[rhs]) end end elseif @capture(argI, for var_ in b_:niter_ loopbody__ end) argI.args[2]=changeVarNames_params(loopbody[1],stateVarName,var,param,symDict) elseif argI isa Expr && argI.head==:if numZC+=1 (length(argI.args)!=3 && length(argI.args)!=2) && error("use format if A>0 B else C or if A>0 B") !(argI.args[1] isa Expr && argI.args[1].head==:call && argI.args[1].args[1]==:> && (argI.args[1].args[3]==0||argI.args[1].args[3]==0.0)) && error("use the format 'if a>0: change if a>b to if a-b>0") # !(argI.args[1].args[2] isa Expr) && error("LHS of > must be be an expression!") argI.args[1].args[2]=changeVarNames_params(argI.args[1].args[2],stateVarName,:nothing,param)#zcf # name changes have to be per block if length(argI.args)==2 #user used if a b argI.args[2]=changeVarNames_params(argI.args[2],stateVarName,:nothing,param) #posEv elseif length(argI.args)==3 #user used if a b else c argI.args[2]=changeVarNames_params(argI.args[2],stateVarName,:nothing,param)#posEv argI.args[3]=changeVarNames_params(argI.args[3],stateVarName,:nothing,param)#negEv end end#end cases of argI end#end for argI in args p=probHelper(problemSize,discreteSize,numZC,savedInitCond,initConditions,du,symDict) end#end function
QuantizedSystemSolver
https://github.com/mongibellili/QuantizedSystemSolver.jl.git
[ "MIT" ]
1.0.1
b4bf1003586f2ee6cb98d8df29e88cbbfacd2ea1
code
9648
#using StaticArrays function minPosRoot(coeff::SVector{2,Float64}, ::Val{1}) # coming from val(1) means coef has x and derx only...size 2 #call from reComputeNextTime mpr = -1 if coeff[2] == 0 mpr = Inf else mpr = -coeff[1] / coeff[2] end if mpr < 0 mpr = Inf end # println("mpr inside minPosRoot in utils= ",mpr) return mpr end function minPosRoot(coeff::Taylor0, ::Val{1}) # coming from val(1) means coef has x and derx only...size 2 call from compute event order1 mpr = -1 if coeff[1] == 0 mpr = Inf else mpr = -coeff[0] / coeff[1] end if mpr < 0 mpr = Inf end return mpr end function minPosRootv1(coeff::NTuple{3,Float64}) #called from updateQ order2 a = coeff[1] b = coeff[2] c = coeff[3] mpr = -1 #coef1=c, coef2=b, coef3=a if a == 0 || 10000 * abs(a) < abs(b)# coef3 is the coef of t^2 if b == 0 # julia allows to divide by zero and result is Inf ...so no need to check mpr = Inf else mpr = -c / b end if mpr < 0 mpr = Inf end else #double disc; disc = b * b - 4 * a * c#b^2-4ac if disc < 0 # no real roots mpr = Inf else #double sd, r1; sd = sqrt(disc) r1 = (-b + sd) / (2 * a) if r1 > 0 mpr = r1 else mpr = Inf end r1 = (-b - sd) / (2 * a) if ((r1 > 0) && (r1 < mpr)) mpr = r1 end end end return mpr end function minPosRoot(coeff::SVector{3,Float64}, ::Val{2}) # credit goes to github.com/CIFASIS/qss-solver # call from reComputeNextTime order2 mpr = -1 a = coeff[3] b = coeff[2] c = coeff[1] # a is coeff 3 because in taylor representation 1 is var 2 is der 3 is derder if a == 0 || (10000 * abs(a)) < abs(b)# coef3 is the coef of t^2 if b == 0 mpr = Inf else mpr = -c / b end if mpr < 0 mpr = Inf end else #double disc; disc = b * b - 4 * a * c#b^2-4ac if disc < 0 # no real roots mpr = Inf else #double sd, r1; sd = sqrt(disc) r1 = (-b + sd) / (2 * a) if r1 > 0 mpr = r1 else mpr = Inf end r1 = (-b - sd) / (2 * a) if ((r1 > 0) && (r1 < mpr)) mpr = r1 end end end return mpr end function minPosRoot(coeff::Taylor0, ::Val{2}) # credit goes to github.com/CIFASIS/qss-solver # call from compute event(::Val{2}) mpr = -1 a = coeff[2] b = coeff[1] c = coeff[0] # a is coeff 3 because in taylor representation 1 is var 2 is der 3 is derder if a == 0 || (100000 * abs(a)) < abs(b)# coef3 is the coef of t^2 if b == 0 mpr = Inf else mpr = -c / b end if mpr < 0 mpr = Inf end else #double disc; disc = b * b - 4 * a * c#b^2-4ac if disc < 0 # no real roots mpr = Inf else #double sd, r1; sd = sqrt(disc) r1 = (-b + sd) / (2 * a) if r1 > 0 mpr = r1 else mpr = Inf end r1 = (-b - sd) / (2 * a) if ((r1 > 0) && (r1 < mpr)) mpr = r1 end end end return mpr end function quadRootv2(coeff::NTuple{3,Float64}) # call from mliqss1/simultupdate1 mpr = (-1.0, -1.0) #size 2 to use mpr[2] in quantizer a = coeff[1] b = coeff[2] c = coeff[3] if a == 0.0 || (1e7 * abs(a)) < abs(b)# coef3 is the coef of t^2 if b != 0.0 if 0 < -c / b < 1e7 # neglecting a small 'a' then having a large h would cause an error 'a*h*h' because large mpr = (-c / b, -1.0) end end elseif b == 0.0 if -c / a > 0 mpr = (sqrt(-c / a), -1.0) end elseif c == 0.0 mpr = (-1.0, -b / a) else #double disc; Δ = 1.0 - 4.0 * c * a / (b * b) if Δ > 0.0 sq = sqrt(Δ) r1 = -0.5 * (1.0 + sq) * b / a r2 = -0.5 * (1.0 - sq) * b / a mpr = (r1, r2) elseif Δ == 0.0 r1 = -0.5 * b / a mpr = (r1, r1 - 1e-12) end end return mpr end function constructIntrval2(cache::Vector{Vector{Float64}}, t1::Float64, t2::Float64) h1 = min(t1, t2) h4 = max(t1, t2) # res=((0.0,h1),(h4,Inf)) cache[1][1] = 0.0 cache[1][2] = h1 cache[2][1] = h4 cache[2][2] = Inf return nothing end #constructIntrval(tup2::Tuple{},tup::NTuple{2, Float64})=constructIntrval(tup,tup2) #merge has 3 elements function constructIntrval3(cache::Vector{Vector{Float64}}, t1::Float64, t2::Float64, t3::Float64) #t1=tup[1];t2=tup[2];t3=tup2[1] t12 = min(t1, t2) t21 = max(t1, t2) if t3 < t12 # res=((0.0,t3),(t12,t21)) cache[1][1] = 0.0 cache[1][2] = t3 cache[2][1] = t12 cache[2][2] = t21 else if t3 < t21 # res=((0.0,t12),(t3,t21)) cache[1][1] = 0.0 cache[1][2] = t12 cache[2][1] = t3 cache[2][2] = t21 else #res=((0.0,t12),(t21,t3)) cache[1][1] = 0.0 cache[1][2] = t12 cache[2][1] = t21 cache[2][2] = t3 end end return nothing end #merge has 4 elements function constructIntrval4(cache::Vector{Vector{Float64}}, t1::Float64, t2::Float64, t3::Float64, t4::Float64,) # t1=tup[1];t2=tup[2];t3=tup2[1];t4=tup2[2] h1 = min(t1, t2, t3, t4) h4 = max(t1, t2, t3, t4) if t1 == h1 if t2 == h4 # res=((0,t1),(min(t3,t4),max(t3,t4)),(t2,Inf)) cache[1][1] = 0.0 cache[1][2] = t1 cache[2][1] = min(t3, t4) cache[2][2] = max(t3, t4) cache[3][1] = t2 cache[3][2] = Inf elseif t3 == h4 #res=((0,t1),(min(t2,t4),max(t2,t4)),(t3,Inf)) cache[1][1] = 0.0 cache[1][2] = t1 cache[2][1] = min(t2, t4) cache[2][2] = max(t2, t4) cache[3][1] = t3 cache[3][2] = Inf else # res=((0,t1),(min(t2,t3),max(t2,t3)),(t4,Inf)) cache[1][1] = 0.0 cache[1][2] = t1 cache[2][1] = min(t3, t2) cache[2][2] = max(t3, t2) cache[3][1] = t4 cache[3][2] = Inf end elseif t2 == h1 if t1 == h4 #res=((0,t2),(min(t3,t4),max(t3,t4)),(t1,Inf)) cache[1][1] = 0.0 cache[1][2] = t2 cache[2][1] = min(t3, t4) cache[2][2] = max(t3, t4) cache[3][1] = t1 cache[3][2] = Inf elseif t3 == h4 #res=((0,t2),(min(t1,t4),max(t1,t4)),(t3,Inf)) cache[1][1] = 0.0 cache[1][2] = t2 cache[2][1] = min(t1, t4) cache[2][2] = max(t1, t4) cache[3][1] = t3 cache[3][2] = Inf else # res=((0,t2),(min(t1,t3),max(t1,t3)),(t4,Inf)) cache[1][1] = 0.0 cache[1][2] = t2 cache[2][1] = min(t3, t1) cache[2][2] = max(t3, t1) cache[3][1] = t4 cache[3][2] = Inf end elseif t3 == h1 if t1 == h4 #res=((0,t3),(min(t2,t4),max(t2,t4)),(t1,Inf)) cache[1][1] = 0.0 cache[1][2] = t3 cache[2][1] = min(t2, t4) cache[2][2] = max(t2, t4) cache[3][1] = t1 cache[3][2] = Inf elseif t2 == h4 #res=((0,t3),(min(t1,t4),max(t1,t4)),(t2,Inf)) cache[1][1] = 0.0 cache[1][2] = t3 cache[2][1] = min(t1, t4) cache[2][2] = max(t1, t4) cache[3][1] = t2 cache[3][2] = Inf else #res=((0,t3),(min(t1,t2),max(t1,t2)),(t4,Inf)) cache[1][1] = 0.0 cache[1][2] = t3 cache[2][1] = min(t1, t2) cache[2][2] = max(t1, t2) cache[3][1] = t4 cache[3][2] = Inf end else if t1 == h4 cache[1][1] = 0.0 cache[1][2] = t4 cache[2][1] = min(t3, t2) cache[2][2] = max(t3, t2) cache[3][1] = t1 cache[3][2] = Inf elseif t2 == h4 cache[1][1] = 0.0 cache[1][2] = t4 cache[2][1] = min(t3, t1) cache[2][2] = max(t3, t1) cache[3][1] = t2 cache[3][2] = Inf else cache[1][1] = 0.0 cache[1][2] = t4 cache[2][1] = min(t1, t2) cache[2][2] = max(t1, t2) cache[3][1] = t3 cache[3][2] = Inf end end return nothing end @inline function constructIntrval(cache::Vector{Vector{Float64}}, res1::Float64, res2::Float64, res3::Float64, res4::Float64) if res1 <= 0.0 && res2 <= 0.0 && res3 <= 0.0 && res4 <= 0.0 cache[1][1] = 0.0 cache[1][2] = Inf elseif res1 > 0.0 && res2 <= 0.0 && res3 <= 0.0 && res4 <= 0.0 cache[1][1] = 0.0 cache[1][2] = res1 elseif res2 > 0.0 && res1 <= 0.0 && res3 <= 0.0 && res4 <= 0.0 cache[1][1] = 0.0 cache[1][2] = res2 elseif res3 > 0.0 && res2 <= 0.0 && res1 <= 0.0 && res4 <= 0.0 cache[1][1] = 0.0 cache[1][2] = res3 elseif res4 > 0.0 && res2 <= 0.0 && res3 <= 0.0 && res1 <= 0.0 cache[1][1] = 0.0 cache[1][2] = res4 elseif res1 > 0.0 && res2 > 0.0 && res3 <= 0.0 && res4 <= 0.0 constructIntrval2(cache, res1, res2) elseif res1 > 0.0 && res3 > 0.0 && res2 <= 0.0 && res4 <= 0.0 constructIntrval2(cache, res1, res3) elseif res1 > 0.0 && res4 > 0.0 && res2 <= 0.0 && res3 <= 0.0 constructIntrval2(cache, res1, res4) elseif res2 > 0.0 && res3 > 0.0 && res1 <= 0.0 && res4 <= 0.0 constructIntrval2(cache, res2, res3) elseif res2 > 0.0 && res4 > 0.0 && res1 <= 0.0 && res3 <= 0.0 constructIntrval2(cache, res2, res4) elseif res3 > 0.0 && res4 > 0.0 && res1 <= 0.0 && res2 <= 0.0 constructIntrval2(cache, res3, res4) elseif res1 > 0.0 && res2 > 0.0 && res3 > 0.0 && res4 <= 0.0 constructIntrval3(cache, res1, res2, res3) elseif res1 > 0.0 && res2 > 0.0 && res4 > 0.0 && res3 <= 0.0 constructIntrval3(cache, res1, res2, res4) elseif res1 > 0.0 && res3 > 0.0 && res4 > 0.0 && res2 <= 0.0 constructIntrval3(cache, res1, res3, res4) elseif res1 <= 0.0 && res3 > 0.0 && res4 > 0.0 && res2 > 0.0 constructIntrval3(cache, res2, res3, res4) else constructIntrval4(cache, res1, res2, res3, res4) end return nothing end
QuantizedSystemSolver
https://github.com/mongibellili/QuantizedSystemSolver.jl.git
[ "MIT" ]
1.0.1
b4bf1003586f2ee6cb98d8df29e88cbbfacd2ea1
code
8260
#using TimerOutputs #using InteractiveUtils function integrate(Al::QSSAlgorithm{:liqss,O}, CommonqssData::CommonQSS_data{0}, liqssdata::LiQSS_data{O,false}, odep::NLODEProblem{PRTYPE,T,0,0,CS}, f::Function, jac::Function, SD::Function, exactA::Function) where {PRTYPE,CS,O,T} cacheA = liqssdata.cacheA ft = CommonqssData.finalTime initTime = CommonqssData.initialTime relQ = CommonqssData.dQrel absQ = CommonqssData.dQmin maxErr = CommonqssData.maxErr maxStepsAllowed = CommonqssData.maxStepsAllowed savetimeincrement = CommonqssData.savetimeincrement savetime = savetimeincrement # not implemented yet quantum = CommonqssData.quantum nextStateTime = CommonqssData.nextStateTime nextEventTime = CommonqssData.nextEventTime nextInputTime = CommonqssData.nextInputTime tx = CommonqssData.tx tq = CommonqssData.tq x = CommonqssData.x q = CommonqssData.q t = CommonqssData.t savedVars = CommonqssData.savedVars savedTimes = CommonqssData.savedTimes integratorCache = CommonqssData.integratorCache taylorOpsCache = CommonqssData.taylorOpsCache#Val(CS)=odep.Val(CS) #*************************************************************** qaux = liqssdata.qaux dxaux = liqssdata.dxaux#olddxSpec=liqssdata.olddxSpec;olddx=liqssdata.olddx numSteps = Vector{Int}(undef, T) d = [0.0]# this is a dummy var used in updateQ and simulUpdate because in the discrete world exactA needs d exactA(q, d, cacheA, 1, 1, initTime + 1e-9) #######################################compute initial values################################################## n = 1 for k = 1:O # compute initial derivatives for x and q (similar to a recursive way ) n = n * k for i = 1:T q[i].coeffs[k] = x[i].coeffs[k] # q computed from x and it is going to be used in the next x end for i = 1:T clearCache(taylorOpsCache, Val(CS), Val(O)) f(i, q, t, taylorOpsCache) ndifferentiate!(integratorCache, taylorOpsCache[1], k - 1) x[i].coeffs[k+1] = (integratorCache.coeffs[1]) / n # /fact cuz i will store der/fac like the convention...to extract the derivatives (at endof sim) multiply by fac derderx=coef[3]*fac(2) end end smallAdvance = ft / 100 t[0] = initTime for i = 1:T numSteps[i] = 0 push!(savedVars[i], x[i][0]) push!(savedTimes[i], 0.0) quantum[i] = relQ * abs(x[i].coeffs[1]) quantum[i] = quantum[i] < absQ ? absQ : quantum[i] quantum[i] = quantum[i] > maxErr ? maxErr : quantum[i] if isempty(jac(i)) computeNextTime(Val(O), i, initTime, nextInputTime, x, quantum) if nextInputTime[i] == Inf clearCache(taylorOpsCache, Val(CS), Val(O)) f(i, q, t + smallAdvance, taylorOpsCache) computeNextInputTime(Val(O), i, initTime, smallAdvance, taylorOpsCache[1], nextInputTime, x, quantum) if nextInputTime[i] == Inf nextInputTime[i] = initTime + 10 * smallAdvance end end else updateQ(Val(O), i, x, q, quantum, exactA, d, cacheA, dxaux, qaux, tx, tq, initTime + 1e-12, ft, nextStateTime) #1e-9 exactAfunc contains 1/t??? end end ################################################################################################################################################################### #################################################################################################################################################################### #---------------------------------------------------------------------------------while loop------------------------------------------------------------------------- ################################################################################################################################################################### #################################################################################################################################################################### simt = initTime simulStepCount = 0 totalSteps = 0 simul = false while simt < ft && totalSteps < maxStepsAllowed if totalSteps == maxStepsAllowed - 1 @warn("The algorithm liqss$O is taking too long to converge. The simulation will be stopped. Consider using a different algorithm!") end sch = updateScheduler(Val(T), nextStateTime, nextEventTime, nextInputTime) simt = sch[2] index = sch[1] if simt > ft break end numSteps[index] += 1 totalSteps += 1 t[0] = simt ##########################################state######################################## if sch[3] == :ST_STATE elapsed = simt - tx[index] integrateState(Val(O), x[index], elapsed) tx[index] = simt quantum[index] = relQ * abs(x[index].coeffs[1]) quantum[index] = quantum[index] < absQ ? absQ : quantum[index] quantum[index] = quantum[index] > maxErr ? maxErr : quantum[index] updateQ(Val(O), index, x, q, quantum, exactA, d, cacheA, dxaux, qaux, tx, tq, simt, ft, nextStateTime) tq[index] = simt for j in SD(index) elapsedx = simt - tx[j] if elapsedx > 0 x[j].coeffs[1] = x[j](elapsedx) tx[j] = simt elapsedq = simt - tq[j] if elapsedq > 0 integrateState(Val(O - 1), q[j], elapsedq) tq[j] = simt end end for b in jac(j) elapsedq = simt - tq[b] if elapsedq > 0 integrateState(Val(O - 1), q[b], elapsedq) tq[b] = simt end end clearCache(taylorOpsCache, Val(CS), Val(O)) f(j, q, t, taylorOpsCache) computeDerivative(Val(O), x[j], taylorOpsCache[1]) Liqss_reComputeNextTime(Val(O), j, simt, nextStateTime, x, q, quantum) end#end for SD ##################################input######################################## elseif sch[3] == :ST_INPUT # time of change has come to a state var that does not depend on anything...no one will give you a chance to change but yourself elapsed = simt - tx[index] integrateState(Val(O), x[index], elapsed) tx[index] = simt quantum[index] = relQ * abs(x[index].coeffs[1]) quantum[index] = quantum[index] < absQ ? absQ : quantum[index] quantum[index] = quantum[index] > maxErr ? maxErr : quantum[index] for k = 1:O q[index].coeffs[k] = x[index].coeffs[k] end tq[index] = simt #= for b in jac(index) elapsedq = simt - tq[b] if elapsedq > 0 ;integrateState(Val(O - 1), q[b], elapsedq) ;tq[b] = simt end end =# clearCache(taylorOpsCache, Val(CS), Val(O)) f(index, q, t, taylorOpsCache) computeDerivative(Val(O), x[index], taylorOpsCache[1]) computeNextTime(Val(O), index, simt, nextInputTime, x, quantum) # if nextInputTime[index] > simt + 2 * elapsed clearCache(taylorOpsCache, Val(CS), Val(O)) f(index, q, t + smallAdvance, taylorOpsCache) computeNextInputTime(Val(O), index, simt, smallAdvance, taylorOpsCache[1], nextInputTime, x, quantum) if nextInputTime[index] > simt + 2 * elapsed nextInputTime[index] = simt + 2 * elapsed end end for j in (SD(index)) elapsedx = simt - tx[j] if elapsedx > 0 x[j].coeffs[1] = x[j](elapsedx) tx[j] = simt end elapsedq = simt - tq[j] if elapsedq > 0 integrateState(Val(O - 1), q[j], elapsedq) tq[j] = simt end#q needs to be updated here for recomputeNext for b in jac(j) elapsedq = simt - tq[b] if elapsedq > 0 integrateState(Val(O - 1), q[b], elapsedq) tq[b] = simt end end clearCache(taylorOpsCache, Val(CS), Val(O)) f(j, q, t, taylorOpsCache) computeDerivative(Val(O), x[j], taylorOpsCache[1]) reComputeNextTime(Val(O), j, simt, nextStateTime, x, q, quantum) end#end for end#end state/input/event push!(savedVars[index], x[index][0]) push!(savedTimes[index], simt) end#end while createSol(Val(T), Val(O), savedTimes, savedVars, "liqss$O", string(odep.prname), absQ, totalSteps, simulStepCount, 0, numSteps, ft) end#end integrate
QuantizedSystemSolver
https://github.com/mongibellili/QuantizedSystemSolver.jl.git
[ "MIT" ]
1.0.1
b4bf1003586f2ee6cb98d8df29e88cbbfacd2ea1
code
16308
function integrate(Al::QSSAlgorithm{:liqss,O}, CommonqssData::CommonQSS_data{Z}, liqssdata::LiQSS_data{O,false}, odep::NLODEProblem{PRTYPE,T,Z,D,CS}, f::Function, jac::Function, SD::Function, exactA::Function) where {PRTYPE,O,T,Z,D,CS} if VERBOSE println("begining of intgrate function") end cacheA = liqssdata.cacheA ft = CommonqssData.finalTime initTime = CommonqssData.initialTime relQ = CommonqssData.dQrel absQ = CommonqssData.dQmin maxErr = CommonqssData.maxErr maxStepsAllowed = CommonqssData.maxStepsAllowed savetimeincrement = CommonqssData.savetimeincrement savetime = savetimeincrement quantum = CommonqssData.quantum nextStateTime = CommonqssData.nextStateTime nextEventTime = CommonqssData.nextEventTime nextInputTime = CommonqssData.nextInputTime tx = CommonqssData.tx tq = CommonqssData.tq x = CommonqssData.x q = CommonqssData.q t = CommonqssData.t qaux = liqssdata.qaux dxaux = liqssdata.dxaux savedVars = CommonqssData.savedVars savedTimes = CommonqssData.savedTimes integratorCache = CommonqssData.integratorCache taylorOpsCache = CommonqssData.taylorOpsCache#cacheSize=odep.cacheSize #*********************************problem info***************************************** d = CommonqssData.d zc_SimpleJac = odep.ZCjac HZ = odep.HZ HD = odep.HD SZ = odep.SZ evDep = odep.eventDependencies # to be removed later: used for root finding using Newton_Intrvals pp = pointer(Vector{NTuple{2,Float64}}(undef, 7)) respp = pointer(Vector{Float64}(undef, 6)) acceptedi = Vector{Vector{Float64}}(undef, 4 * O - 1) acceptedj = Vector{Vector{Float64}}(undef, 4 * O - 1) cacheRootsi = zeros(8 * O - 4) #vect of floats to hold roots for simul_analytic cacheRootsj = zeros(8 * O - 4) for i = 1:4*O-1 acceptedi[i] = [0.0, 0.0]#zeros(2) acceptedj[i] = [0.0, 0.0]#zeros(2) end exactA(q, d, cacheA, 1, 1, initTime + 1e-9) f(1, -1, -1, q, d, t, taylorOpsCache) trackSimul = Vector{Int}(undef, 1) #********************************helper values******************************* oldsignValue = MMatrix{Z,2}(zeros(Z * 2)) #usedto track if zc changed sign; each zc has a value and a sign numSteps = Vector{Int}(undef, T) #######################################compute initial values################################################## n = 1 for k = 1:O # compute initial derivatives for x and q (similar to a recursive way ) n = n * k for i = 1:T q[i].coeffs[k] = x[i].coeffs[k] end # q computed from x and it is going to be used in the next x for i = 1:T clearCache(taylorOpsCache, Val(CS), Val(O)) f(i, -1, -1, q, d, t, taylorOpsCache) ndifferentiate!(integratorCache, taylorOpsCache[1], k - 1) x[i].coeffs[k+1] = (integratorCache.coeffs[1]) / n # /fact cuz i will store der/fac like the convention...to extract the derivatives (at endof sim) multiply by fac derderx=coef[3]*fac(2) end end smallAdvance = ft / 1000 t[0] = initTime for i = 1:T numSteps[i] = 0 push!(savedVars[i], x[i][0]) push!(savedTimes[i], 0.0) quantum[i] = relQ * abs(x[i].coeffs[1]) quantum[i] = quantum[i] < absQ ? absQ : quantum[i] quantum[i] = quantum[i] > maxErr ? maxErr : quantum[i] if isempty(jac(i)) computeNextTime(Val(O), i, initTime, nextInputTime, x, quantum) if nextInputTime[i] == Inf clearCache(taylorOpsCache, Val(CS), Val(O)) f(i, -1, -1, q, d, t + smallAdvance, taylorOpsCache) computeNextInputTime(Val(O), i, initTime, smallAdvance, taylorOpsCache[1], nextInputTime, x, quantum) if nextInputTime[i] > initTime + 2 * smallAdvance nextInputTime[i] = initTime + 2 * smallAdvance end end else updateQ(Val(O), i, x, q, quantum, exactA, d, cacheA, dxaux, qaux, tx, tq, initTime + 1e-12, ft, nextStateTime) #1e-9 exactAfunc contains 1/t??? end end for i = 1:Z clearCache(taylorOpsCache, Val(CS), Val(O)) f(-1, i, -1, x, d, t, taylorOpsCache) oldsignValue[i, 2] = taylorOpsCache[1][0] #value oldsignValue[i, 1] = sign(taylorOpsCache[1][0]) #sign modify computeNextEventTime(Val(O), i, taylorOpsCache[1], oldsignValue, initTime, nextEventTime, quantum, absQ) end ################################################################################################################################################################### #################################################################################################################################################################### #---------------------------------------------------------------------------------while loop------------------------------------------------------------------------- ################################################################################################################################################################### #################################################################################################################################################################### simt = initTime totalSteps = 0 modifiedIndex = 0 countEvents = 0 inputstep = 0 statestep = 0 simulStepCount = 0 ft < savetime && error("ft<savetime") if VERBOSE println("start integration") end while simt < ft && totalSteps < maxStepsAllowed if totalSteps == maxStepsAllowed - 1 @warn("The algorithm liqss$O is taking too long to converge. The simulation will be stopped. Consider using a different algorithm!") end sch = updateScheduler(Val(T), nextStateTime, nextEventTime, nextInputTime) simt = sch[2] index = sch[1] stepType = sch[3] if simt > ft #saveLast!(Val(T),Val(O),savedVars, savedTimes,saveVarsHelper,ft,prevStepTime, x) break ###################################################break########################################## end totalSteps += 1 t[0] = simt ##########################################state######################################## if stepType == :ST_STATE statestep += 1 xitemp = x[index][0] numSteps[index] += 1 elapsed = simt - tx[index] integrateState(Val(O), x[index], elapsed) tx[index] = simt dirI = x[index][0] - xitemp quantum[index] = relQ * abs(x[index].coeffs[1]) quantum[index] = quantum[index] < absQ ? absQ : quantum[index] quantum[index] = quantum[index] > maxErr ? maxErr : quantum[index] firstguess = updateQ(Val(O), index, x, q, quantum, exactA, d, cacheA, dxaux, qaux, tx, tq, simt, ft, nextStateTime) tq[index] = simt for c in SD(index) #index influences c elapsedx = simt - tx[c] if elapsedx > 0 x[c].coeffs[1] = x[c](elapsedx) tx[c] = simt end # elapsedq = simt - tq[c] if elapsedq > 0 integrateState(Val(O - 1), q[c], elapsedq) tq[c] = simt end # c never been visited clearCache(taylorOpsCache, Val(CS), Val(O)) f(c, -1, -1, q, d, t, taylorOpsCache) computeDerivative(Val(O), x[c], taylorOpsCache[1]) Liqss_reComputeNextTime(Val(O), c, simt, nextStateTime, x, q, quantum) end#end for SD for j in (SZ[index]) for b in zc_SimpleJac[j] # elapsed update all other vars that this derj depends upon. elapsedq = simt - tq[b] if elapsedq > 0 integrateState(Val(O - 1), q[b], elapsedq) tq[b] = simt end end clearCache(taylorOpsCache, Val(CS), Val(O)) f(-1, j, -1, q, d, t, taylorOpsCache) # run ZCF-------- computeNextEventTime(Val(O), j, taylorOpsCache[1], oldsignValue, simt, nextEventTime, quantum, absQ) end#end for SZ ##################################input######################################## elseif stepType == :ST_INPUT # time of change has come to a state var that does not depend on anything...no one will give you a chance to change but yourself inputstep += 1 elapsed = simt - tx[index] integrateState(Val(O), x[index], elapsed) tx[index] = simt quantum[index] = relQ * abs(x[index].coeffs[1]) quantum[index] = quantum[index] < absQ ? absQ : quantum[index] quantum[index] = quantum[index] > maxErr ? maxErr : quantum[index] for k = 1:O q[index].coeffs[k] = x[index].coeffs[k] end tq[index] = simt #= for b in jac(index) elapsedq = simt - tq[b] if elapsedq > 0 ;integrateState(Val(O - 1), q[b], elapsedq) ;tq[b] = simt end end =# clearCache(taylorOpsCache, Val(CS), Val(O)) f(index, -1, -1, q, d, t, taylorOpsCache) computeDerivative(Val(O), x[index], taylorOpsCache[1]) computeNextTime(Val(O), index, simt, nextInputTime, x, quantum) # if nextInputTime[index] > simt + 2 * elapsed clearCache(taylorOpsCache, Val(CS), Val(O)) f(index, -1, -1, q, d, t + smallAdvance, taylorOpsCache) computeNextInputTime(Val(O), index, simt, smallAdvance, taylorOpsCache[1], nextInputTime, x, quantum) if nextInputTime[index] > simt + 2 * elapsed nextInputTime[index] = simt + 2 * elapsed end end for j in (SD(index)) elapsedx = simt - tx[j] if elapsedx > 0 x[j].coeffs[1] = x[j](elapsedx) tx[j] = simt end elapsedq = simt - tq[j] if elapsedq > 0 integrateState(Val(O - 1), q[j], elapsedq) tq[j] = simt end#q needs to be updated here for recomputeNext # elapsed update all other vars that this derj depends upon. for b in jac(j) elapsedq = simt - tq[b] if elapsedq > 0 integrateState(Val(O - 1), q[b], elapsedq); tq[b] = simt end end clearCache(taylorOpsCache, Val(CS), Val(O)) f(j, -1, -1, q, d, t, taylorOpsCache) computeDerivative(Val(O), x[j], taylorOpsCache[1]) reComputeNextTime(Val(O), j, simt, nextStateTime, x, q, quantum) end#end for for j in (SD(index)) elapsedx = simt - tx[j] if elapsedx > 0 x[j].coeffs[1] = x[j](elapsedx) ;tx[j] = simt end elapsedq = simt - tq[j] if elapsedq > 0 integrateState(Val(O - 1), q[j], elapsedq) ;tq[j] = simt end#q needs to be updated here for recomputeNext # elapsed update all other vars that this derj depends upon. for b in jac(j) elapsedq = simt - tq[b] if elapsedq > 0 integrateState(Val(O - 1), q[b], elapsedq) tq[b] = simt end end clearCache(taylorOpsCache, Val(CS), Val(O)) f(j, -1, -1, q, d, t, taylorOpsCache) computeDerivative(Val(O), x[j], taylorOpsCache[1]) reComputeNextTime(Val(O), j, simt, nextStateTime, x, q, quantum) end#end for for j in (SZ[index]) for b in zc_SimpleJac[j] # elapsed update all other vars that this derj depends upon. elapsedq = simt - tq[b] if elapsedq > 0 integrateState(Val(O - 1), q[b], elapsedq) tq[b] = simt end end clearCache(taylorOpsCache, Val(CS), Val(O)) f(-1, j, -1, q, d, t, taylorOpsCache) # run ZCF-------- computeNextEventTime(Val(O), j, taylorOpsCache[1], oldsignValue, simt, nextEventTime, quantum, absQ) end#end for SZ #################################################################event######################################## else for b in zc_SimpleJac[index] # elapsed update all other vars that this zc depends upon. elapsedq = simt - tq[b] if elapsedq > 0 integrateState(Val(O - 1), q[b], elapsedq) tq[b] = simt end end # modifiedIndex=0#first we have a zc happened which corresponds to nexteventtime and index (one of zc) but we want also the sign in O to know ev+ or ev- clearCache(taylorOpsCache, Val(CS), Val(O)) f(-1, index, -1, q, d, t, taylorOpsCache) # run ZCF-------- if oldsignValue[index, 2] * taylorOpsCache[1][0] >= 0 if abs(taylorOpsCache[1][0]) > 1e-9 * absQ # if both have same sign and zcf is not very small: zc=1e-9*absQ is allowed as an event computeNextEventTime(Val(O), index, taylorOpsCache[1], oldsignValue, simt, nextEventTime, quantum, absQ) continue end end if abs(oldsignValue[index, 2]) <= 1e-9 * absQ #earlier zc=1e-9*absQ was considered event , so now it should be prevented from passing nextEventTime[index] = Inf # at this instant next zc will be triggered now, and this will lead to infinite events, so cannot computenextevent here continue end if taylorOpsCache[1][0] > oldsignValue[index, 2] #scheduled rise modifiedIndex = 2 * index - 1 elseif taylorOpsCache[1][0] < oldsignValue[index, 2] #scheduled drop modifiedIndex = 2 * index else # == ( zcf==oldZCF) computeNextEventTime(Val(O), index, taylorOpsCache[1], oldsignValue, simt, nextEventTime, quantum, absQ) continue end countEvents += 1 oldsignValue[index, 2] = taylorOpsCache[1][0] oldsignValue[index, 1] = sign(taylorOpsCache[1][0]) for b in evDep[modifiedIndex].evContRHS elapsedq = simt - tq[b] if elapsedq > 0 integrateState(Val(O - 1), q[b], elapsedq) tq[b] = simt end end f(-1, -1, modifiedIndex, x, d, t, taylorOpsCache)# execute event----------------no need to clear cache; events touch vectors directly for i in evDep[modifiedIndex].evCont quantum[i] = relQ * abs(x[i].coeffs[1]) quantum[i] = quantum[i] < absQ ? absQ : quantum[i] quantum[i] = quantum[i] > maxErr ? maxErr : quantum[i] firstguess = updateQ(Val(O), i, x, q, quantum, exactA, d, cacheA, dxaux, qaux, tx, tq, simt, ft, nextStateTime) tx[i] = simt;tq[i] = simt Liqss_reComputeNextTime(Val(O), i, simt, nextStateTime, x, q, quantum) end computeNextEventTime(Val(O), index, taylorOpsCache[1], oldsignValue, simt, nextEventTime, quantum, absQ) #update zcf before thiscatch in qss quantizer to avoid infinite events for j in (HD[modifiedIndex]) # care about dependency to this event only elapsedx = simt - tx[j] if elapsedx > 0 x[j].coeffs[1] = x[j](elapsedx) tx[j] = simt end #= @show j,x[j] =# elapsedq = simt - tq[j] if elapsedq > 0 integrateState(Val(O - 1), q[j], elapsedq) tq[j] = simt end#q needs to be updated here for recomputeNext for b = 1:T # elapsed update all other vars that this derj depends upon. if b in jac(j) elapsedq = simt - tq[b] if elapsedq > 0 integrateState(Val(O - 1), q[b], elapsedq) tq[b] = simt end #= @show q[b] =# end end clearCache(taylorOpsCache, Val(CS), Val(O)) f(j, -1, -1, q, d, t, taylorOpsCache) computeDerivative(Val(O), x[j], taylorOpsCache[1]) Liqss_reComputeNextTime(Val(O), j, simt, nextStateTime, x, q, quantum) end for j in (HZ[modifiedIndex]) for b in zc_SimpleJac[j] # elapsed update all other vars that this derj depends upon. elapsedq = simt - tq[b] if elapsedq > 0 integrateState(Val(O - 1), q[b], elapsedq) tq[b] = simt end end clearCache(taylorOpsCache, Val(CS), Val(O)) f(-1, j, -1, q, d, t, taylorOpsCache) # run ZCF-------- computeNextEventTime(Val(O), j, taylorOpsCache[1], oldsignValue, simt, nextEventTime, quantum, absQ) end end#end state/input/event savetime = simt + savetimeincrement # not implemented yet if stepType != :ST_EVENT push!(savedVars[index], x[index][0]) push!(savedTimes[index], simt) else for j in (HD[modifiedIndex]) push!(savedVars[j], x[j][0]) push!(savedTimes[j], simt) end end end#end while createSol(Val(T), Val(O), savedTimes, savedVars, "liqss$O", string(odep.prname), absQ, totalSteps, simulStepCount, countEvents, numSteps, ft) #= ,savedDers =# end#end integrate
QuantizedSystemSolver
https://github.com/mongibellili/QuantizedSystemSolver.jl.git
[ "MIT" ]
1.0.1
b4bf1003586f2ee6cb98d8df29e88cbbfacd2ea1
code
5879
function integrate(Al::QSSAlgorithm{:qss,O}, CommonqssData::CommonQSS_data{0}, odep::NLODEProblem{PRTYPE,T,0,0,CS}, f::Function, jac::Function, SD::Function) where {PRTYPE,O,T,CS} ft = CommonqssData.finalTime initTime = CommonqssData.initialTime relQ = CommonqssData.dQrel absQ = CommonqssData.dQmin maxErr = CommonqssData.maxErr maxStepsAllowed = CommonqssData.maxStepsAllowed quantum = CommonqssData.quantum nextStateTime = CommonqssData.nextStateTime nextEventTime = CommonqssData.nextEventTime nextInputTime = CommonqssData.nextInputTime tx = CommonqssData.tx tq = CommonqssData.tq x = CommonqssData.x q = CommonqssData.q t = CommonqssData.t savedVars = CommonqssData.savedVars savedTimes = CommonqssData.savedTimes integratorCache = CommonqssData.integratorCache taylorOpsCache = CommonqssData.taylorOpsCache numSteps = Vector{Int}(undef, T) n = 1 for k = 1:O n = n * k for i = 1:T q[i].coeffs[k] = x[i].coeffs[k] end for i = 1:T clearCache(taylorOpsCache, Val(CS), Val(O)) f(i, q, t, taylorOpsCache) ndifferentiate!(integratorCache, taylorOpsCache[1], k - 1) x[i].coeffs[k+1] = (integratorCache.coeffs[1]) / n end end smallAdvance = ft / 100 t[0] = initTime for i = 1:T numSteps[i] = 0 push!(savedVars[i], x[i][0]) push!(savedTimes[i], 0.0) quantum[i] = relQ * abs(x[i].coeffs[1]) quantum[i] = quantum[i] < absQ ? absQ : quantum[i] quantum[i] = quantum[i] > maxErr ? maxErr : quantum[i] if isempty(jac(i)) computeNextTime(Val(O), i, initTime, nextInputTime, x, quantum) if nextInputTime[i] == Inf clearCache(taylorOpsCache, Val(CS), Val(O)) f(i, q, t + smallAdvance, taylorOpsCache) computeNextInputTime(Val(O), i, initTime, smallAdvance, taylorOpsCache[1], nextInputTime, x, quantum) if nextInputTime[i] > initTime + 2 * smallAdvance nextInputTime[i] = initTime + 2 * smallAdvance end end else computeNextTime(Val(O), i, initTime, nextStateTime, x, quantum) end end simt = initTime totalSteps = 0 prevStepTime = initTime while simt < ft && totalSteps < maxStepsAllowed if totalSteps == maxStepsAllowed - 1 @warn("The algorithm qss$O is taking too long to converge. The simulation will be stopped. Consider using a different algorithm!") end sch = updateScheduler(Val(T), nextStateTime, nextEventTime, nextInputTime) simt = sch[2] index = sch[1] totalSteps += 1 t[0] = simt if sch[3] == :ST_STATE numSteps[index] += 1 elapsed = simt - tx[index] integrateState(Val(O), x[index], elapsed) tx[index] = simt quantum[index] = relQ * abs(x[index].coeffs[1]) quantum[index] = quantum[index] < absQ ? absQ : quantum[index] quantum[index] = quantum[index] > maxErr ? maxErr : quantum[index] for k = 1:O q[index].coeffs[k] = x[index].coeffs[k] end tq[index] = simt computeNextTime(Val(O), index, simt, nextStateTime, x, quantum) for j in (SD(index)) elapsedx = simt - tx[j] if elapsedx > 0 x[j].coeffs[1] = x[j](elapsedx) tx[j] = simt end elapsedq = simt - tq[j] if elapsedq > 0 integrateState(Val(O - 1), q[j], elapsedq) tq[j] = simt end for b in (jac(j)) elapsedq = simt - tq[b] if elapsedq > 0 integrateState(Val(O - 1), q[b], elapsedq) tq[b] = simt end end clearCache(taylorOpsCache, Val(CS), Val(O)) f(j, q, t, taylorOpsCache) computeDerivative(Val(O), x[j], taylorOpsCache[1]) reComputeNextTime(Val(O), j, simt, nextStateTime, x, q, quantum) end elseif sch[3] == :ST_INPUT elapsed = simt - tx[index] integrateState(Val(O), x[index], elapsed) tx[index] = simt quantum[index] = relQ * abs(x[index].coeffs[1]) quantum[index] = quantum[index] < absQ ? absQ : quantum[index] quantum[index] = quantum[index] > maxErr ? maxErr : quantum[index] for k = 1:O q[index].coeffs[k] = x[index].coeffs[k] end tq[index] = simt #= for b in jac(index) elapsedq = simt - tq[b] if elapsedq > 0 ;integrateState(Val(O - 1), q[b], elapsedq) ;tq[b] = simt end end =# clearCache(taylorOpsCache, Val(CS), Val(O)) f(index, q, t, taylorOpsCache) computeDerivative(Val(O), x[index], taylorOpsCache[1]) computeNextTime(Val(O), index, simt, nextInputTime, x, quantum) if nextInputTime[index] > simt + 2 * elapsed clearCache(taylorOpsCache, Val(CS), Val(O)) f(index, q, t + smallAdvance, taylorOpsCache) computeNextInputTime(Val(O), index, simt, smallAdvance, taylorOpsCache[1], nextInputTime, x, quantum) if nextInputTime[index] > simt + 2 * elapsed nextInputTime[index] = simt + 2 * elapsed end end for j in (SD(index)) elapsedx = simt - tx[j] if elapsedx > 0 x[j].coeffs[1] = x[j](elapsedx) tx[j] = simt end elapsedq = simt - tq[j] if elapsedq > 0 integrateState(Val(O - 1), q[j], elapsedq) tq[j] = simt end for b in jac(j) elapsedq = simt - tq[b] if elapsedq > 0 integrateState(Val(O - 1), q[b], elapsedq) ;tq[b] = simt end end clearCache(taylorOpsCache, Val(CS), Val(O)) f(j, q, t, taylorOpsCache) computeDerivative(Val(O), x[j], taylorOpsCache[1]) reComputeNextTime(Val(O), j, simt, nextStateTime, x, q, quantum) end end push!(savedVars[index], x[index][0]) push!(savedTimes[index], simt) end createSol(Val(T), Val(O), savedTimes, savedVars, "qss$O", string(odep.prname), absQ, totalSteps, 0, 0, numSteps, ft) end
QuantizedSystemSolver
https://github.com/mongibellili/QuantizedSystemSolver.jl.git
[ "MIT" ]
1.0.1
b4bf1003586f2ee6cb98d8df29e88cbbfacd2ea1
code
11484
function integrate(Al::QSSAlgorithm{:qss,O}, CommonqssData::CommonQSS_data{Z}, odep::NLODEProblem{PRTYPE,T,Z,Y,CS}, f::Function, jac::Function, SD::Function) where {PRTYPE,O,T,Z,Y,CS} ft = CommonqssData.finalTime initTime = CommonqssData.initialTime relQ = CommonqssData.dQrel absQ = CommonqssData.dQmin maxErr = CommonqssData.maxErr maxStepsAllowed = CommonqssData.maxStepsAllowed quantum = CommonqssData.quantum nextStateTime = CommonqssData.nextStateTime nextEventTime = CommonqssData.nextEventTime nextInputTime = CommonqssData.nextInputTime tx = CommonqssData.tx tq = CommonqssData.tq x = CommonqssData.x q = CommonqssData.q t = CommonqssData.t savedVars = CommonqssData.savedVars savedTimes = CommonqssData.savedTimes integratorCache = CommonqssData.integratorCache taylorOpsCache = CommonqssData.taylorOpsCache d = CommonqssData.d zc_SimpleJac = odep.ZCjac HZ = odep.HZ HD = odep.HD SZ = odep.SZ evDep = odep.eventDependencies oldsignValue = MMatrix{Z,2}(zeros(Z * 2)) numSteps = Vector{Int}(undef, T) n = 1 for k = 1:O n = n * k for i = 1:T q[i].coeffs[k] = x[i].coeffs[k] end for i = 1:T clearCache(taylorOpsCache, Val(CS), Val(O)) f(i, -1, -1, q, d, t, taylorOpsCache) ndifferentiate!(integratorCache, taylorOpsCache[1], k - 1) x[i].coeffs[k+1] = (integratorCache.coeffs[1]) / n end end smallAdvance = ft / 100 t[0] = initTime for i = 1:T numSteps[i] = 0 push!(savedVars[i], x[i][0]) push!(savedTimes[i], 0.0) quantum[i] = relQ * abs(x[i].coeffs[1]) quantum[i] = quantum[i] < absQ ? absQ : quantum[i] quantum[i] = quantum[i] > maxErr ? maxErr : quantum[i] if isempty(jac(i)) computeNextTime(Val(O), i, initTime, nextInputTime, x, quantum) if nextInputTime[i] == Inf clearCache(taylorOpsCache, Val(CS), Val(O)) f(i, -1, -1, q, d, t + smallAdvance, taylorOpsCache) computeNextInputTime(Val(O), i, initTime, smallAdvance, taylorOpsCache[1], nextInputTime, x, quantum) if nextInputTime[i] > initTime + 2 * smallAdvance nextInputTime[i] = initTime + 2 * smallAdvance end end else computeNextTime(Val(O), i, initTime, nextStateTime, x, quantum) end end for i = 1:Z clearCache(taylorOpsCache, Val(CS), Val(O)) f(-1, i, -1, x, d, t, taylorOpsCache) oldsignValue[i, 2] = taylorOpsCache[1][0] oldsignValue[i, 1] = sign(taylorOpsCache[1][0]) computeNextEventTime(Val(O), i, taylorOpsCache[1], oldsignValue, initTime, nextEventTime, quantum, absQ) end simt = initTime totalSteps = 0 prevStepTime = initTime modifiedIndex = 0 statestep = 0 countEvents = 0 while simt < ft && totalSteps < maxStepsAllowed if totalSteps == maxStepsAllowed - 1 @warn("The algorithm qss$O is taking too long to converge. The simulation will be stopped. Consider using a different algorithm!") end sch = updateScheduler(Val(T), nextStateTime, nextEventTime, nextInputTime) simt = sch[2] index = sch[1] stepType = sch[3] if simt > ft break end totalSteps += 1 t[0] = simt if stepType == :ST_STATE statestep += 1 numSteps[index] += 1 elapsed = simt - tx[index] integrateState(Val(O), x[index], elapsed) tx[index] = simt quantum[index] = relQ * abs(x[index].coeffs[1]) quantum[index] = quantum[index] < absQ ? absQ : quantum[index] quantum[index] = quantum[index] > maxErr ? maxErr : quantum[index] #= if abs(x[index].coeffs[2]) > 1e7 quantum[index] = 10 * quantum[index] end =# for k = 1:O q[index].coeffs[k] = x[index].coeffs[k] end tq[index] = simt computeNextTime(Val(O), index, simt, nextStateTime, x, quantum) for j in (SD(index)) elapsedx = simt - tx[j] if elapsedx > 0 x[j].coeffs[1] = x[j](elapsedx) tx[j] = simt end elapsedq = simt - tq[j] if elapsedq > 0 integrateState(Val(O - 1), q[j], elapsedq) tq[j] = simt end for b in (jac(j)) elapsedq = simt - tq[b] if elapsedq > 0 integrateState(Val(O - 1), q[b], elapsedq) tq[b] = simt end end clearCache(taylorOpsCache, Val(CS), Val(O)) f(j, -1, -1, q, d, t, taylorOpsCache) computeDerivative(Val(O), x[j], taylorOpsCache[1]) reComputeNextTime(Val(O), j, simt, nextStateTime, x, q, quantum) end for j in (SZ[index]) for b in zc_SimpleJac[j] elapsedq = simt - tq[b] if elapsedq > 0 integrateState(Val(O - 1), q[b], elapsedq) ;tq[b] = simt end end clearCache(taylorOpsCache, Val(CS), Val(O)) f(-1, j, -1, q, d, t, taylorOpsCache) computeNextEventTime(Val(O), j, taylorOpsCache[1], oldsignValue, simt, nextEventTime, quantum, absQ) end elseif stepType == :ST_INPUT elapsed = simt - tx[index] integrateState(Val(O), x[index], elapsed) tx[index] = simt quantum[index] = relQ * abs(x[index].coeffs[1]) quantum[index] = quantum[index] < absQ ? absQ : quantum[index] quantum[index] = quantum[index] > maxErr ? maxErr : quantum[index] for k = 1:O q[index].coeffs[k] = x[index].coeffs[k] end tq[index] = simt #= for b in jac(index) elapsedq = simt - tq[b] if elapsedq > 0 ;integrateState(Val(O - 1), q[b], elapsedq) ;tq[b] = simt end end =# clearCache(taylorOpsCache, Val(CS), Val(O)) f(index, -1, -1, q, d, t, taylorOpsCache) computeDerivative(Val(O), x[index], taylorOpsCache[1]) computeNextTime(Val(O), index, simt, nextInputTime, x, quantum) if nextInputTime[index] > simt + 2 * elapsed clearCache(taylorOpsCache, Val(CS), Val(O)) f(index, -1, -1, q, d, t + smallAdvance, taylorOpsCache) computeNextInputTime(Val(O), index, simt, smallAdvance, taylorOpsCache[1], nextInputTime, x, quantum) if nextInputTime[index] > simt + 2 * elapsed nextInputTime[index] = simt + 2 * elapsed end end for j in (SD(index)) elapsedx = simt - tx[j] if elapsedx > 0 x[j].coeffs[1] = x[j](elapsedx) tx[j] = simt end elapsedq = simt - tq[j] if elapsedq > 0 integrateState(Val(O - 1), q[j], elapsedq) tq[j] = simt end for b in jac(j) elapsedq = simt - tq[b] if elapsedq > 0 integrateState(Val(O - 1), q[b], elapsedq) ;tq[b] = simt end end clearCache(taylorOpsCache, Val(CS), Val(O)) f(j, -1, -1, q, d, t, taylorOpsCache) computeDerivative(Val(O), x[j], taylorOpsCache[1]) reComputeNextTime(Val(O), j, simt, nextStateTime, x, q, quantum) end for j in (SD(index)) elapsedx = simt - tx[j] if elapsedx > 0 x[j].coeffs[1] = x[j](elapsedx) ;tx[j] = simt end elapsedq = simt - tq[j] if elapsedq > 0 integrateState(Val(O - 1), q[j], elapsedq) ;tq[j] = simt end for b in jac(j) elapsedq = simt - tq[b] if elapsedq > 0 integrateState(Val(O - 1), q[b], elapsedq) ;tq[b] = simt end end clearCache(taylorOpsCache, Val(CS), Val(O)) f(j, -1, -1, q, d, t, taylorOpsCache) computeDerivative(Val(O), x[j], taylorOpsCache[1]) reComputeNextTime(Val(O), j, simt, nextStateTime, x, q, quantum) end for j in (SZ[index]) for b in zc_SimpleJac[j] elapsedq = simt - tq[b] if elapsedq > 0 integrateState(Val(O - 1), q[b], elapsedq) tq[b] = simt end end clearCache(taylorOpsCache, Val(CS), Val(O)) f(-1, j, -1, q, d, t, taylorOpsCache) computeNextEventTime(Val(O), j, taylorOpsCache[1], oldsignValue, simt, nextEventTime, quantum, absQ) end else for b in zc_SimpleJac[index] elapsedq = simt - tq[b] if elapsedq > 0 integrateState(Val(O - 1), q[b], elapsedq) tq[b] = simt end end clearCache(taylorOpsCache, Val(CS), Val(O)) f(-1, index, -1, q, d, t, taylorOpsCache) if oldsignValue[index, 2] * taylorOpsCache[1][0] >= 0 if abs(taylorOpsCache[1][0]) > 1e-9 * absQ computeNextEventTime(Val(O), index, taylorOpsCache[1], oldsignValue, simt, nextEventTime, quantum, absQ) continue end end if abs(oldsignValue[index, 2]) <= 1e-9 * absQ nextEventTime[index] = Inf continue end if taylorOpsCache[1][0] > oldsignValue[index, 2] modifiedIndex = 2 * index - 1 elseif taylorOpsCache[1][0] < oldsignValue[index, 2] modifiedIndex = 2 * index else computeNextEventTime(Val(O), index, taylorOpsCache[1], oldsignValue, simt, nextEventTime, quantum, absQ) continue end countEvents += 1 oldsignValue[index, 2] = taylorOpsCache[1][0] oldsignValue[index, 1] = sign(taylorOpsCache[1][0]) for b in evDep[modifiedIndex].evContRHS elapsedq = simt - tq[b] if elapsedq > 0 integrateState(Val(O - 1), q[b], elapsedq) tq[b] = simt end end f(-1, -1, modifiedIndex, x, d, t, taylorOpsCache) for i in evDep[modifiedIndex].evCont quantum[i] = relQ * abs(x[i].coeffs[1]) quantum[i] = quantum[i] < absQ ? absQ : quantum[i] quantum[i] = quantum[i] > maxErr ? maxErr : quantum[i] for k = 0:O-1 q[i][k] = x[i][k] end tx[i] = simt tq[i] = simt computeNextTime(Val(O), i, simt, nextStateTime, x, quantum) end computeNextEventTime(Val(O), index, taylorOpsCache[1], oldsignValue, simt, nextEventTime, quantum, absQ) for j in (HD[modifiedIndex]) elapsedx = simt - tx[j] if elapsedx > 0 x[j].coeffs[1] = x[j](elapsedx) ;tx[j] = simt end elapsedq = simt - tq[j] if elapsedq > 0 integrateState(Val(O - 1), q[j], elapsedq) tq[j] = simt end for b = 1:T if b in jac(j) elapsedq = simt - tq[b] if elapsedq > 0 integrateState(Val(O - 1), q[b], elapsedq) tq[b] = simt end end end clearCache(taylorOpsCache, Val(CS), Val(O)) f(j, -1, -1, q, d, t, taylorOpsCache) computeDerivative(Val(O), x[j], taylorOpsCache[1]) reComputeNextTime(Val(O), j, simt, nextStateTime, x, q, quantum) end for j in (HZ[modifiedIndex]) for b in zc_SimpleJac[j] elapsedq = simt - tq[b] if elapsedq > 0 integrateState(Val(O - 1), q[b], elapsedq) tq[b] = simt end end clearCache(taylorOpsCache, Val(CS), Val(O)) f(-1, j, -1, q, d, t, taylorOpsCache) computeNextEventTime(Val(O), j, taylorOpsCache[1], oldsignValue, simt, nextEventTime, quantum, absQ) end end if stepType != :ST_EVENT push!(savedVars[index], x[index][0]) push!(savedTimes[index], simt) else for j in (HD[modifiedIndex]) push!(savedVars[j], x[j][0]) push!(savedTimes[j], simt) end end #prevStepTime = simt end createSol(Val(T), Val(O), savedTimes, savedVars, "qss$O", string(odep.prname), absQ, totalSteps, 0, countEvents, numSteps, ft) end
QuantizedSystemSolver
https://github.com/mongibellili/QuantizedSystemSolver.jl.git
[ "MIT" ]
1.0.1
b4bf1003586f2ee6cb98d8df29e88cbbfacd2ea1
code
11416
function integrate(Al::QSSAlgorithm{:nmliqss,O}, CommonqssData::CommonQSS_data{0}, liqssdata::LiQSS_data{O,false}, odep::NLODEProblem{PRTYPE,T,0,0,CS}, f::Function, jac::Function, SD::Function, exactA::Function) where {PRTYPE,CS,O,T} cacheA = liqssdata.cacheA ft = CommonqssData.finalTime initTime = CommonqssData.initialTime relQ = CommonqssData.dQrel absQ = CommonqssData.dQmin maxErr = CommonqssData.maxErr maxStepsAllowed = CommonqssData.maxStepsAllowed quantum = CommonqssData.quantum nextStateTime = CommonqssData.nextStateTime nextEventTime = CommonqssData.nextEventTime nextInputTime = CommonqssData.nextInputTime tx = CommonqssData.tx tq = CommonqssData.tq x = CommonqssData.x q = CommonqssData.q t = CommonqssData.t savedVars = CommonqssData.savedVars savedTimes = CommonqssData.savedTimes integratorCache = CommonqssData.integratorCache taylorOpsCache = CommonqssData.taylorOpsCache#cacheSize=odep.cacheSize qaux = liqssdata.qaux dxaux = liqssdata.dxaux #= olddx=liqssdata.olddx; ; olddxSpec=liqssdata.olddxSpec =# d = [0.0]# this is a dummy var used in updateQ and simulUpdate because in the discrete world exactA needs d, this is better than creating new updateQ and simulUpdate functions pp = pointer(Vector{NTuple{2,Float64}}(undef, 7)) respp = pointer(Vector{Float64}(undef, 6)) acceptedi = Vector{Vector{Float64}}(undef, 4 * O - 1) acceptedj = Vector{Vector{Float64}}(undef, 4 * O - 1) cacheRootsi = zeros(8 * O - 4) #vect of floats to hold roots for simul_analytic cacheRootsj = zeros(8 * O - 4) for i = 1:4*O-1 #3 acceptedi[i] = [0.0, 0.0]#zeros(2) acceptedj[i] = [0.0, 0.0]#zeros(2) end exactA(q, d, cacheA, 1, 1, initTime + 1e-9) trackSimul = Vector{Int}(undef, 1) numSteps = Vector{Int}(undef, T) #######################################compute initial values################################################## n = 1 for k = 1:O # compute initial derivatives for x and q (similar to a recursive way ) n = n * k for i = 1:T q[i].coeffs[k] = x[i].coeffs[k] # q computed from x and it is going to be used in the next x end for i = 1:T clearCache(taylorOpsCache, Val(CS), Val(O)) f(i, q, t, taylorOpsCache) ndifferentiate!(integratorCache, taylorOpsCache[1], k - 1) x[i].coeffs[k+1] = (integratorCache.coeffs[1]) / n # /fact cuz i will store der/fac like the convention...to extract the derivatives (at endof sim) multiply by fac derderx=coef[3]*fac(2) end end smallAdvance = ft / 1000 t[0] = initTime for i = 1:T numSteps[i] = 0 push!(savedVars[i], x[i][0]) push!(savedTimes[i], 0.0) quantum[i] = relQ * abs(x[i].coeffs[1]) quantum[i] = quantum[i] < absQ ? absQ : quantum[i] quantum[i] = quantum[i] > maxErr ? maxErr : quantum[i] if isempty(jac(i)) # #@show i computeNextTime(Val(O), i, initTime, nextInputTime, x, quantum) if nextInputTime[i] == Inf # #@show nextInputTime clearCache(taylorOpsCache, Val(CS), Val(O)) f(i, q, t + smallAdvance, taylorOpsCache) computeNextInputTime(Val(O), i, initTime, smallAdvance, taylorOpsCache[1], nextInputTime, x, quantum) if nextInputTime[i] > initTime + 2 * smallAdvance nextInputTime[i] = initTime + 2 * smallAdvance end end else updateQ(Val(O), i, x, q, quantum, exactA, d, cacheA, dxaux, qaux, tx, tq, initTime + 1e-12, ft, nextStateTime) #1e-9 exactAfunc contains 1/t??? end end ################################################################################################################################################################### #################################################################################################################################################################### #---------------------------------------------------------------------------------while loop------------------------------------------------------------------------- ################################################################################################################################################################### #################################################################################################################################################################### simt = initTime simulStepCount = 0 totalSteps = 0 inputSteps = 0 printonce = 0 while simt < ft && totalSteps < maxStepsAllowed if totalSteps == maxStepsAllowed - 1 @warn("The algorithm nmliqss$O is taking too long to converge. The simulation will be stopped. Consider using a different algorithm!") end sch = updateScheduler(Val(T), nextStateTime, nextEventTime, nextInputTime) simt = sch[2] index = sch[1] if simt > ft break # end numSteps[index] += 1 totalSteps += 1 t[0] = simt ##########################################state######################################## if sch[3] == :ST_STATE xitemp = x[index][0] elapsed = simt - tx[index] integrateState(Val(O), x[index], elapsed) tx[index] = simt quantum[index] = relQ * abs(x[index].coeffs[1]) quantum[index] = quantum[index] < absQ ? absQ : quantum[index] quantum[index] = quantum[index] > maxErr ? maxErr : quantum[index] dirI = x[index][0] - xitemp for b in (jac(index)) # update Qb : to be used to calculate exacte Aindexb...move below updateQ elapsedq = simt - tq[b] if elapsedq > 0 integrateState(Val(O - 1), q[b], elapsedq) tq[b] = simt end end firstguess = updateQ(Val(O), index, x, q, quantum, exactA, d, cacheA, dxaux, qaux, tx, tq, simt, ft, nextStateTime) tq[index] = simt #----------------------------------------------------check dependecy cycles--------------------------------------------- trackSimul[1] = 0 for j in SD(index) for b in (jac(j)) # update Qb: to be used to calculate exacte Ajb elapsedq = simt - tq[b] if elapsedq > 0 integrateState(Val(O - 1), q[b], elapsedq) tq[b] = simt end end cacheA[1] = 0.0 exactA(q, d, cacheA, index, j, simt) aij = cacheA[1]# cacheA[1] = 0.0 exactA(q, d, cacheA, j, index, simt) aji = cacheA[1] if j != index && aij * aji != 0.0 if nmisCycle_and_simulUpdate(cacheRootsi, cacheRootsj, acceptedi, acceptedj, aij, aji, respp, pp, trackSimul, Val(O), index, j, dirI, firstguess, x, q, quantum, exactA, d, cacheA, dxaux, qaux, tx, tq, simt, ft) simulStepCount += 1 clearCache(taylorOpsCache, Val(CS), Val(O)) f(index, q, t, taylorOpsCache) computeDerivative(Val(O), x[index], taylorOpsCache[1]) for k in SD(j) #j influences k if k != index && k != j elapsedx = simt - tx[k] x[k].coeffs[1] = x[k](elapsedx) tx[k] = simt elapsedq = simt - tq[k] if elapsedq > 0 integrateState(Val(O - 1), q[k], elapsedq) ;tq[k] = simt end for b in (jac(k)) elapsedq = simt - tq[b] if elapsedq > 0 integrateState(Val(O - 1), q[b], elapsedq) tq[b] = simt end end clearCache(taylorOpsCache, Val(CS), Val(O)) f(k, q, t, taylorOpsCache) computeDerivative(Val(O), x[k], taylorOpsCache[1]) Liqss_reComputeNextTime(Val(O), k, simt, nextStateTime, x, q, quantum) end#end if k!=0 end#end for k depend on j end#end ifcycle check end#end if j!=0 end#end FOR_cycle check if trackSimul[1] != 0 #qi changed after throw Liqss_reComputeNextTime(Val(O), index, simt, nextStateTime, x, q, quantum) end #------------------------------------------------------------------------------------- #---------------------------------normal liqss: proceed-------------------------------- #------------------------------------------------------------------------------------- for c in SD(index) #index influences c elapsedx = simt - tx[c] if elapsedx > 0 x[c].coeffs[1] = x[c](elapsedx) ;tx[c] = simt end # elapsedq = simt - tq[c] if elapsedq > 0 integrateState(Val(O - 1), q[c], elapsedq) ;tq[c] = simt end # c never been visited clearCache(taylorOpsCache, Val(CS), Val(O)) f(c, q, t, taylorOpsCache) computeDerivative(Val(O), x[c], taylorOpsCache[1]) Liqss_reComputeNextTime(Val(O), c, simt, nextStateTime, x, q, quantum) end#end for SD ##################################input######################################## elseif sch[3] == :ST_INPUT # time of change has come to a state var that does not depend on anything...no one will give you a chance to change but yourself elapsed = simt - tx[index] integrateState(Val(O), x[index], elapsed) tx[index] = simt quantum[index] = relQ * abs(x[index].coeffs[1]) quantum[index] = quantum[index] < absQ ? absQ : quantum[index] quantum[index] = quantum[index] > maxErr ? maxErr : quantum[index] for k = 1:O q[index].coeffs[k] = x[index].coeffs[k] end tq[index] = simt #= for b in jac(index) elapsedq = simt - tq[b] if elapsedq > 0 ;integrateState(Val(O - 1), q[b], elapsedq) ;tq[b] = simt end end =# clearCache(taylorOpsCache, Val(CS), Val(O)) f(index, q, t, taylorOpsCache) computeDerivative(Val(O), x[index], taylorOpsCache[1]) computeNextTime(Val(O), index, simt, nextInputTime, x, quantum) # if nextInputTime[index] > simt + 2 * elapsed clearCache(taylorOpsCache, Val(CS), Val(O)) f(index, q, t + smallAdvance, taylorOpsCache) computeNextInputTime(Val(O), index, simt, smallAdvance, taylorOpsCache[1], nextInputTime, x, quantum) if nextInputTime[index] > simt + 2 * elapsed nextInputTime[index] = simt + 2 * elapsed end end for j in (SD(index)) elapsedx = simt - tx[j] if elapsedx > 0 x[j].coeffs[1] = x[j](elapsedx) tx[j] = simt end elapsedq = simt - tq[j] if elapsedq > 0 integrateState(Val(O - 1), q[j], elapsedq) tq[j] = simt end#q needs to be updated here for recomputeNext for b in jac(j) elapsedq = simt - tq[b] if elapsedq > 0 integrateState(Val(O - 1), q[b], elapsedq) ;tq[b] = simt end end clearCache(taylorOpsCache, Val(CS), Val(O)) f(j, q, t, taylorOpsCache) computeDerivative(Val(O), x[j], taylorOpsCache[1]) reComputeNextTime(Val(O), j, simt, nextStateTime, x, q, quantum) end#end for #################################################################event######################################## end#end state/input/event push!(savedVars[index], (x[index][0] + q[index][0]) / 2) push!(savedTimes[index], simt) end#end while createSol(Val(T), Val(O), savedTimes, savedVars, "nmliqss$O", string(odep.prname), absQ, totalSteps, simulStepCount, 0, numSteps, ft) end
QuantizedSystemSolver
https://github.com/mongibellili/QuantizedSystemSolver.jl.git
[ "MIT" ]
1.0.1
b4bf1003586f2ee6cb98d8df29e88cbbfacd2ea1
code
19543
function integrate(Al::QSSAlgorithm{:nmliqss,O}, CommonqssData::CommonQSS_data{Z}, liqssdata::LiQSS_data{O,false}, odep::NLODEProblem{PRTYPE,T,Z,D,CS}, f::Function, jac::Function, SD::Function, exactA::Function) where {PRTYPE,O,T,Z,D,CS} if VERBOSE println("begining of intgrate function") end cacheA = liqssdata.cacheA ft = CommonqssData.finalTime initTime = CommonqssData.initialTime relQ = CommonqssData.dQrel absQ = CommonqssData.dQmin maxErr = CommonqssData.maxErr maxStepsAllowed = CommonqssData.maxStepsAllowed savetimeincrement = CommonqssData.savetimeincrement savetime = savetimeincrement quantum = CommonqssData.quantum nextStateTime = CommonqssData.nextStateTime nextEventTime = CommonqssData.nextEventTime nextInputTime = CommonqssData.nextInputTime tx = CommonqssData.tx tq = CommonqssData.tq x = CommonqssData.x q = CommonqssData.q t = CommonqssData.t savedVars = CommonqssData.savedVars savedTimes = CommonqssData.savedTimes integratorCache = CommonqssData.integratorCache taylorOpsCache = CommonqssData.taylorOpsCache#cacheSize=odep.cacheSize #*********************************problem info***************************************** d = CommonqssData.d zc_SimpleJac = odep.ZCjac HZ = odep.HZ HD = odep.HD SZ = odep.SZ evDep = odep.eventDependencies qaux = liqssdata.qaux dxaux = liqssdata.dxaux # to be deleted: used for root finding using Newton_Intrvals pp = pointer(Vector{NTuple{2,Float64}}(undef, 7)) respp = pointer(Vector{Float64}(undef, 6)) acceptedi = Vector{Vector{Float64}}(undef, 4 * O - 1) acceptedj = Vector{Vector{Float64}}(undef, 4 * O - 1) cacheRootsi = zeros(8 * O - 4) #vect of floats to hold roots for simul_analytic cacheRootsj = zeros(8 * O - 4) for i = 1:4*O-1 acceptedi[i] = [0.0, 0.0]#zeros(2) acceptedj[i] = [0.0, 0.0]#zeros(2) end exactA(q, d, cacheA, 1, 1, initTime + 1e-9) f(1, -1, -1, q, d, t, taylorOpsCache) trackSimul = Vector{Int}(undef, 1) #********************************helper values******************************* oldsignValue = MMatrix{Z,2}(zeros(Z * 2)) #usedto track if zc changed sign; each zc has a value and a sign numSteps = Vector{Int}(undef, T) #######################################compute initial values################################################## n = 1 for k = 1:O # compute initial derivatives for x and q (similar to a recursive way ) n = n * k for i = 1:T q[i].coeffs[k] = x[i].coeffs[k] end # q computed from x and it is going to be used in the next x for i = 1:T clearCache(taylorOpsCache, Val(CS), Val(O)) f(i, -1, -1, q, d, t, taylorOpsCache) ndifferentiate!(integratorCache, taylorOpsCache[1], k - 1) x[i].coeffs[k+1] = (integratorCache.coeffs[1]) / n # /fact cuz i will store der/fac like the convention...to extract the derivatives (at endof sim) multiply by fac derderx=coef[3]*fac(2) end end smallAdvance = ft / 1000 t[0] = initTime for i = 1:T numSteps[i] = 0 push!(savedVars[i], x[i][0]) push!(savedTimes[i], 0.0) quantum[i] = relQ * abs(x[i].coeffs[1]) quantum[i] = quantum[i] < absQ ? absQ : quantum[i] quantum[i] = quantum[i] > maxErr ? maxErr : quantum[i] if isempty(jac(i)) computeNextTime(Val(O), i, initTime, nextInputTime, x, quantum) if nextInputTime[i] == Inf clearCache(taylorOpsCache, Val(CS), Val(O)) f(i, -1, -1, q, d, t + smallAdvance, taylorOpsCache) computeNextInputTime(Val(O), i, initTime, smallAdvance, taylorOpsCache[1], nextInputTime, x, quantum) if nextInputTime[i] > initTime + 2 * smallAdvance nextInputTime[i] = initTime + 2 * smallAdvance end end else updateQ(Val(O), i, x, q, quantum, exactA, d, cacheA, dxaux, qaux, tx, tq, initTime + 1e-12, ft, nextStateTime) #1e-9 exactAfunc contains 1/t??? end end for i = 1:Z clearCache(taylorOpsCache, Val(CS), Val(O)) f(-1, i, -1, x, d, t, taylorOpsCache) oldsignValue[i, 2] = taylorOpsCache[1][0] #value oldsignValue[i, 1] = sign(taylorOpsCache[1][0]) #sign modify computeNextEventTime(Val(O), i, taylorOpsCache[1], oldsignValue, initTime, nextEventTime, quantum, absQ) end ################################################################################################################################################################### #################################################################################################################################################################### #---------------------------------------------------------------------------------while loop------------------------------------------------------------------------- ################################################################################################################################################################### #################################################################################################################################################################### simt = initTime totalSteps = 0 prevStepTime = initTime modifiedIndex = 0 countEvents = 0 inputstep = 0 statestep = 0 simulStepCount = 0 ft < savetime && error("ft<savetime") if VERBOSE println("start integration") end while simt < ft && totalSteps < maxStepsAllowed if totalSteps == maxStepsAllowed - 1 @warn("The algorithm nmliqss$O is taking too long to converge. The simulation will be stopped. Consider using a different algorithm!") end sch = updateScheduler(Val(T), nextStateTime, nextEventTime, nextInputTime) simt = sch[2] index = sch[1] stepType = sch[3] if simt > ft break ###################################################break########################################## end totalSteps += 1 t[0] = simt ##########################################state######################################## if stepType == :ST_STATE statestep += 1 xitemp = x[index][0] numSteps[index] += 1 elapsed = simt - tx[index] integrateState(Val(O), x[index], elapsed) tx[index] = simt dirI = x[index][0] - xitemp quantum[index] = relQ * abs(x[index].coeffs[1]) quantum[index] = quantum[index] < absQ ? absQ : quantum[index] quantum[index] = quantum[index] > maxErr ? maxErr : quantum[index] for b in (jac(index)) # update Qb : to be used to calculate exacte Aindexb elapsedq = simt - tq[b] if elapsedq > 0 integrateState(Val(O - 1), q[b], elapsedq) tq[b] = simt end end firstguess = updateQ(Val(O), index, x, q, quantum, exactA, d, cacheA, dxaux, qaux, tx, tq, simt, ft, nextStateTime) tq[index] = simt #----------------------------------------------------check dependecy cycles--------------------------------------------- trackSimul[1] = 0 for j in SD(index) for b in (jac(j)) # update Qb: to be used to calculate exacte Ajb elapsedq = simt - tq[b] if elapsedq > 0 integrateState(Val(O - 1), q[b], elapsedq) tq[b] = simt end end cacheA[1] = 0.0 exactA(q, d, cacheA, index, j, simt) aij = cacheA[1]# can be passed to simul so that i dont call exactfunc again cacheA[1] = 0.0 exactA(q, d, cacheA, j, index, simt) aji = cacheA[1] if j != index && aij * aji != 0.0 if nmisCycle_and_simulUpdate(cacheRootsi, cacheRootsj, acceptedi, acceptedj, aij, aji, respp, pp, trackSimul, Val(O), index, j, dirI, firstguess, x, q, quantum, exactA, d, cacheA, dxaux, qaux, tx, tq, simt, ft) simulStepCount += 1 clearCache(taylorOpsCache, Val(CS), Val(O)) f(index, -1, -1, q, d, t, taylorOpsCache) computeDerivative(Val(O), x[index], taylorOpsCache[1]) for k in SD(j) #j influences k if k != index && k != j elapsedx = simt - tx[k] x[k].coeffs[1] = x[k](elapsedx) tx[k] = simt elapsedq = simt - tq[k] if elapsedq > 0 integrateState(Val(O - 1), q[k], elapsedq) tq[k] = simt end for b in (jac(k)) elapsedq = simt - tq[b] if elapsedq > 0 integrateState(Val(O - 1), q[b], elapsedq) tq[b] = simt end end clearCache(taylorOpsCache, Val(CS), Val(O)) f(k, -1, -1, q, d, t, taylorOpsCache) computeDerivative(Val(O), x[k], taylorOpsCache[1]) Liqss_reComputeNextTime(Val(O), k, simt, nextStateTime, x, q, quantum) end#end if k!=0 end#end for k depend on j for k in (SZ[j]) # qj changed, so zcf should be checked for b in zc_SimpleJac[k] # elapsed update all other vars that this derj depends upon. elapsedq = simt - tq[b] if elapsedq > 0 integrateState(Val(O - 1), q[b], elapsedq) ;tq[b] = simt end end clearCache(taylorOpsCache, Val(CS), Val(O)) f(-1, k, -1, q, d, t, taylorOpsCache) # run ZCF-------- computeNextEventTime(Val(O), k, taylorOpsCache[1], oldsignValue, simt, nextEventTime, quantum, absQ) end#end for SZ end#end ifcycle check end#end if j!=0 end#end FOR_cycle check if trackSimul[1] != 0 #qi changed after throw Liqss_reComputeNextTime(Val(O), index, simt, nextStateTime, x, q, quantum) end #------------------------------------------------------------------------------------- #---------------------------------normal liqss: proceed-------------------------------- #------------------------------------------------------------------------------------- for c in SD(index) #index influences c elapsedx = simt - tx[c] if elapsedx > 0 x[c].coeffs[1] = x[c](elapsedx) tx[c] = simt end # elapsedq = simt - tq[c] if elapsedq > 0 integrateState(Val(O - 1), q[c], elapsedq) ;tq[c] = simt end # c never been visited clearCache(taylorOpsCache, Val(CS), Val(O)) f(c, -1, -1, q, d, t, taylorOpsCache) computeDerivative(Val(O), x[c], taylorOpsCache[1]) Liqss_reComputeNextTime(Val(O), c, simt, nextStateTime, x, q, quantum) end#end for SD for j in (SZ[index]) for b in zc_SimpleJac[j] # elapsed update all other vars that this derj depends upon. elapsedq = simt - tq[b] if elapsedq > 0 integrateState(Val(O - 1), q[b], elapsedq) ;tq[b] = simt end end clearCache(taylorOpsCache, Val(CS), Val(O)) f(-1, j, -1, q, d, t, taylorOpsCache) # run ZCF-------- computeNextEventTime(Val(O), j, taylorOpsCache[1], oldsignValue, simt, nextEventTime, quantum, absQ) end#end for SZ ##################################input######################################## elseif stepType == :ST_INPUT # time of change has come to a state var that does not depend on anything...no one will give you a chance to change but yourself elapsed = simt - tx[index] integrateState(Val(O), x[index], elapsed) tx[index] = simt quantum[index] = relQ * abs(x[index].coeffs[1]) quantum[index] = quantum[index] < absQ ? absQ : quantum[index] quantum[index] = quantum[index] > maxErr ? maxErr : quantum[index] for k = 1:O q[index].coeffs[k] = x[index].coeffs[k] end tq[index] = simt #= for b in jac(index) elapsedq = simt - tq[b] if elapsedq > 0 ;integrateState(Val(O - 1), q[b], elapsedq) ;tq[b] = simt end end =# clearCache(taylorOpsCache, Val(CS), Val(O)) f(index, -1, -1, q, d, t, taylorOpsCache) computeDerivative(Val(O), x[index], taylorOpsCache[1]) computeNextTime(Val(O), index, simt, nextInputTime, x, quantum) # if nextInputTime[index] > simt + 2 * elapsed clearCache(taylorOpsCache, Val(CS), Val(O)) f(index, -1, -1, q, d, t + smallAdvance, taylorOpsCache) computeNextInputTime(Val(O), index, simt, smallAdvance, taylorOpsCache[1], nextInputTime, x, quantum) if nextInputTime[index] > simt + 2 * elapsed nextInputTime[index] = simt + 2 * elapsed end end for j in (SD(index)) elapsedx = simt - tx[j] if elapsedx > 0 x[j].coeffs[1] = x[j](elapsedx) tx[j] = simt end elapsedq = simt - tq[j] if elapsedq > 0 integrateState(Val(O - 1), q[j], elapsedq) tq[j] = simt end#q needs to be updated here for recomputeNext # elapsed update all other vars that this derj depends upon. for b in jac(j) elapsedq = simt - tq[b] if elapsedq > 0 integrateState(Val(O - 1), q[b], elapsedq) tq[b] = simt end end clearCache(taylorOpsCache, Val(CS), Val(O)) f(j, -1, -1, q, d, t, taylorOpsCache) computeDerivative(Val(O), x[j], taylorOpsCache[1]) reComputeNextTime(Val(O), j, simt, nextStateTime, x, q, quantum) end#end for for j in (SD(index)) elapsedx = simt - tx[j] if elapsedx > 0 x[j].coeffs[1] = x[j](elapsedx) ;tx[j] = simt end elapsedq = simt - tq[j] if elapsedq > 0 integrateState(Val(O - 1), q[j], elapsedq) ;tq[j] = simt end#q needs to be updated here for recomputeNext # elapsed update all other vars that this derj depends upon. for b in jac(j) elapsedq = simt - tq[b] if elapsedq > 0 integrateState(Val(O - 1), q[b], elapsedq) ;tq[b] = simt end end clearCache(taylorOpsCache, Val(CS), Val(O)) f(j, -1, -1, q, d, t, taylorOpsCache) computeDerivative(Val(O), x[j], taylorOpsCache[1]) reComputeNextTime(Val(O), j, simt, nextStateTime, x, q, quantum) end#end for for j in (SZ[index]) for b in zc_SimpleJac[j] # elapsed update all other vars that this derj depends upon. elapsedq = simt - tq[b] if elapsedq > 0 integrateState(Val(O - 1), q[b], elapsedq); tq[b] = simt end end clearCache(taylorOpsCache, Val(CS), Val(O)) f(-1, j, -1, q, d, t, taylorOpsCache) # run ZCF-------- computeNextEventTime(Val(O), j, taylorOpsCache[1], oldsignValue, simt, nextEventTime, quantum, absQ) end#end for SZ #################################################################event######################################## else for b in zc_SimpleJac[index] # elapsed update all other vars that this zc depends upon. elapsedq = simt - tq[b] if elapsedq > 0 integrateState(Val(O - 1), q[b], elapsedq) tq[b] = simt end end clearCache(taylorOpsCache, Val(CS), Val(O)) f(-1, index, -1, q, d, t, taylorOpsCache) # run ZCF again to verify-------- if oldsignValue[index, 2] * taylorOpsCache[1][0] >= 0 # if computeNextEvent errored if abs(taylorOpsCache[1][0]) > 1e-9 * absQ # if error is negligeable then ok consider as event, else reject....if both have same sign and zcf is not very small: zc==1e-9*absQ is allowed as an event computeNextEventTime(Val(O), index, taylorOpsCache[1], oldsignValue, simt, nextEventTime, quantum, absQ) continue #event rejected end end if abs(oldsignValue[index, 2]) <= 1e-9 * absQ #earlier zc==1e-9*absQ was considered event , so now it should be prevented from passing nextEventTime[index] = Inf # at this instant next zc will be triggered now, and this will lead to infinite events, so cannot computenextevent here continue end if taylorOpsCache[1][0] > oldsignValue[index, 2] #scheduled rise modifiedIndex = 2 * index - 1 elseif taylorOpsCache[1][0] < oldsignValue[index, 2] #scheduled drop modifiedIndex = 2 * index else # == ( zcf==oldZCF) computeNextEventTime(Val(O), index, taylorOpsCache[1], oldsignValue, simt, nextEventTime, quantum, absQ) continue end countEvents += 1 oldsignValue[index, 2] = taylorOpsCache[1][0] oldsignValue[index, 1] = sign(taylorOpsCache[1][0]) for b in evDep[modifiedIndex].evContRHS elapsedq = simt - tq[b] if elapsedq > 0 integrateState(Val(O - 1), q[b], elapsedq) tq[b] = simt end end f(-1, -1, modifiedIndex, x, d, t, taylorOpsCache)# execute event----------------no need to clear cache; events touch vectors directly for i in evDep[modifiedIndex].evCont quantum[i] = relQ * abs(x[i].coeffs[1]) quantum[i] = quantum[i] < absQ ? absQ : quantum[i] quantum[i] = quantum[i] > maxErr ? maxErr : quantum[i] firstguess = updateQ(Val(O), i, x, q, quantum, exactA, d, cacheA, dxaux, qaux, tx, tq, simt, ft, nextStateTime) tx[i] = simt tq[i] = simt Liqss_reComputeNextTime(Val(O), i, simt, nextStateTime, x, q, quantum) end computeNextEventTime(Val(O), index, taylorOpsCache[1], oldsignValue, simt, nextEventTime, quantum, absQ) #update zcf before thiscatch in qss quantizer to avoid infinite events for j in (HD[modifiedIndex]) # care about dependency to this event only elapsedx = simt - tx[j] if elapsedx > 0 x[j].coeffs[1] = x[j](elapsedx) tx[j] = simt end #= @show j,x[j] =# elapsedq = simt - tq[j] if elapsedq > 0 integrateState(Val(O - 1), q[j], elapsedq) tq[j] = simt end#q needs to be updated here for recomputeNext for b = 1:T # elapsed update all other vars that this derj depends upon. if b in jac(j) elapsedq = simt - tq[b] if elapsedq > 0 integrateState(Val(O - 1), q[b], elapsedq) tq[b] = simt end #= @show q[b] =# end end clearCache(taylorOpsCache, Val(CS), Val(O)) f(j, -1, -1, q, d, t, taylorOpsCache) computeDerivative(Val(O), x[j], taylorOpsCache[1]) Liqss_reComputeNextTime(Val(O), j, simt, nextStateTime, x, q, quantum) end for j in (HZ[modifiedIndex]) for b in zc_SimpleJac[j] # elapsed update all other vars that this derj depends upon. elapsedq = simt - tq[b] if elapsedq > 0 integrateState(Val(O - 1), q[b], elapsedq) tq[b] = simt end end clearCache(taylorOpsCache, Val(CS), Val(O)) f(-1, j, -1, q, d, t, taylorOpsCache) # run ZCF-------- computeNextEventTime(Val(O), j, taylorOpsCache[1], oldsignValue, simt, nextEventTime, quantum, absQ) end end#end state/input/event savetime = simt + savetimeincrement if stepType != :ST_EVENT push!(savedVars[index], x[index][0]) push!(savedTimes[index], simt) else for j in (HD[modifiedIndex]) push!(savedVars[j], x[j][0]) push!(savedTimes[j], simt) end end end#end while createSol(Val(T), Val(O), savedTimes, savedVars, "nmLiqss$O", string(odep.prname), absQ, totalSteps, simulStepCount, countEvents, numSteps, ft) #= ,savedDers =# end#end integrate
QuantizedSystemSolver
https://github.com/mongibellili/QuantizedSystemSolver.jl.git
[ "MIT" ]
1.0.1
b4bf1003586f2ee6cb98d8df29e88cbbfacd2ea1
code
2476
function updateQ(::Val{1}, i::Int, xv::Vector{Taylor0}, qv::Vector{Taylor0}, quantum::Vector{Float64}, exactA::Function, d::Vector{Float64}, cacheA::MVector{1,Float64}, dxaux::Vector{MVector{1,Float64}}, qaux::Vector{MVector{1,Float64}}, tx::Vector{Float64}, tq::Vector{Float64}, simt::Float64, ft::Float64, nextStateTime::Vector{Float64}) cacheA[1] = 0.0 exactA(qv, d, cacheA, i, i, simt) a = cacheA[1] q = qv[i][0] x = xv[i][0] x1 = xv[i][1] qaux[i][1] = q u = x1 - a * q dxaux[i][1] = x1 h = 0.0 Δ = quantum[i] if a != 0.0 α = -(a * x + u) / a h1denom = a * (x + Δ) + u h2denom = a * (x - Δ) + u h1 = Δ / h1denom h2 = -Δ / h2denom if a < 0 if α > Δ h = h1 q = x + Δ elseif α < -Δ h = h2 q = x - Δ else h = Inf q = -u / a end else if α > Δ h = h2 q = x - Δ elseif α < -Δ h = h1 q = x + Δ else if a * x + u > 0 q = x - Δ h = h2 else q = x + Δ h = h1 end end end else if x1 > 0.0 q = x + Δ else q = x - Δ end if x1 != 0 h = (abs(Δ / x1)) else h = Inf end end qv[i][0] = q nextStateTime[i] = simt + h return h end function Liqss_reComputeNextTime(::Val{1}, i::Int, simt::Float64, nextStateTime::Vector{Float64}, xv::Vector{Taylor0}, qv::Vector{Taylor0}, quantum::Vector{Float64}) dt = 0.0 q = qv[i][0] x = xv[i][0] x1 = xv[i][1] if abs(q - x) >= 2 * quantum[i] nextStateTime[i] = simt + 1e-12 else if x1 != 0.0 dt = (q - x) / x1 if dt > 0.0 nextStateTime[i] = simt + dt elseif dt < 0.0 if x1 > 0.0 nextStateTime[i] = simt + (q - x + 2 * quantum[i]) / x1 else nextStateTime[i] = simt + (q - x - 2 * quantum[i]) / x1 end end else nextStateTime[i] = Inf end end if nextStateTime[i] <= simt nextStateTime[i] = simt + Inf end end
QuantizedSystemSolver
https://github.com/mongibellili/QuantizedSystemSolver.jl.git
[ "MIT" ]
1.0.1
b4bf1003586f2ee6cb98d8df29e88cbbfacd2ea1
code
4605
#analytic function updateQ(::Val{2}, i::Int, xv::Vector{Taylor0}, qv::Vector{Taylor0}, quantum::Vector{Float64}, exactA::Function, d::Vector{Float64}, cacheA::MVector{1,Float64}, dxaux::Vector{MVector{2,Float64}}, qaux::Vector{MVector{2,Float64}}, tx::Vector{Float64}, tq::Vector{Float64}, simt::Float64, ft::Float64, nextStateTime::Vector{Float64}) cacheA[1] = 0.0 exactA(qv, d, cacheA, i, i, simt) a = cacheA[1] # exactA(xv,cacheA,i,i);a=cacheA[1] q = qv[i][0] q1 = qv[i][1] x = xv[i][0] x1 = xv[i][1] x2 = xv[i][2] * 2 #u1=uv[i][i][1]; u2=uv[i][i][2] qaux[i][1] = q + (simt - tq[i]) * q1#appears only here...updated here and used in updateApprox and in updateQevent later qaux[i][2] = q1 #appears only here...updated here and used in updateQevent u1 = x1 - a * qaux[i][1] u2 = x2 - a * q1 dxaux[i][1] = x1 dxaux[i][2] = x2 ddx = x2 quan = quantum[i] h = 0.0 if a != 0.0 if a * a * x + a * u1 + u2 <= 0.0 if -(a * a * x + a * u1 + u2) / (a * a) < quan # asymptote<delta...no sol ...no need to check h = Inf q = -(a * u1 + u2) / (a * a)#q=x+asymp else q = x + quan coefi = NTuple{3,Float64}(((a * a * (x + quan) + a * u1 + u2) / 2, -a * quan, quan)) h = minPosRootv1(coefi) #needed for dq #math was used to show h cannot be 1/a end elseif a * a * x + a * u1 + u2 >= 0.0 if -(a * a * x + a * u1 + u2) / (a * a) > -quan # asymptote>-delta...no sol ...no need to check h = Inf q = -(a * u1 + u2) / (a * a) else coefi = NTuple{3,Float64}(((a * a * (x - quan) + a * u1 + u2) / 2, a * quan, -quan)) h = minPosRootv1(coefi) q = x - quan end else#a*a*x+a*u1+u2==0 -->f=0....q=x+f(h)=x+h*g(h) -->g(h)==0...dx==0 -->aq+u==0 q = -u1 / a h = Inf end if h != Inf if h != 1 / a q1 = (a * q + u1 + h * u2) / (1 - h * a) else#h=1/a error("report bug: updateQ: h cannot=1/a; h=$h , 1/a=$(1/h)") end else #h==inf make ddx==0 dq=-u2/a q1 = -u2 / a end else #println("a==0") if x2 != 0.0 h = sqrt(abs(2 * quan / x2)) #sqrt necessary with u2 q = x - h * h * x2 / 2 q1 = x1 + h * x2 else # println("x2==0") if x1 != 0.0 #quantum[i]=1quan h = abs(1 * quan / x1) # *10 just to widen the step otherwise it would behave like 1st order q = x + h * x1 q1 = 0.0 else h = Inf q = x q1 = 0.0 end end end qv[i][0] = q qv[i][1] = q1 nextStateTime[i] = simt + h return h end function Liqss_reComputeNextTime(::Val{2}, i::Int, simt::Float64, nextStateTime::Vector{Float64}, xv::Vector{Taylor0}, qv::Vector{Taylor0}, quantum::Vector{Float64}) #= ,a::Vector{Vector{Float64}} =# q = qv[i][0] x = xv[i][0] q1 = qv[i][1] x1 = xv[i][1] x2 = xv[i][2] quani = quantum[i] β = 0 if abs(q - x) >= 2 * quani # this happened when var i and j s turns are now...var i depends on j, j is asked here for next time...or if you want to increase quant*10 later it can be put back to normal and q & x are spread out by 10quan nextStateTime[i] = simt + 1e-12 else coef = @SVector [q - x, q1 - x1, -x2]# nextStateTime[i] = simt + minPosRoot(coef, Val(2)) if q - x > 0.0#1e-9 coef = setindex(coef, q - x - 2 * quantum[i], 1) timetemp = simt + minPosRoot(coef, Val(2)) if timetemp < nextStateTime[i] nextStateTime[i] = timetemp end elseif q - x < 0.0#-1e-9 coef = setindex(coef, q - x + 2 * quantum[i], 1) timetemp = simt + minPosRoot(coef, Val(2)) if timetemp < nextStateTime[i] nextStateTime[i] = timetemp end end if nextStateTime[i] <= simt # this is coming from the fact that a variable can reach 2quan distance when it is not its turn, then computation above gives next=simt+(p-p)/dx...p-p should be zero but it can be very small negative nextStateTime[i] = simt + Inf#1e-14 # @show simt,nextStateTime[i],i,x,q,quantum[i],xv[i][1] end end end
QuantizedSystemSolver
https://github.com/mongibellili/QuantizedSystemSolver.jl.git
[ "MIT" ]
1.0.1
b4bf1003586f2ee6cb98d8df29e88cbbfacd2ea1
code
9387
######################################################################################################################################" function computeNextTime(::Val{1}, i::Int, simt::Float64, nextTime::Vector{Float64}, x::Vector{Taylor0}, quantum::Vector{Float64})#i can be absorbed absDeltaT=1e-12 # minimum deltaT to protect against der=Inf coming from sqrt(0) for example...similar to min ΔQ if (x[i].coeffs[2]) != 0 tempTime=max(abs(quantum[i] /(x[i].coeffs[2])),absDeltaT)# i can avoid the use of max if tempTime!=absDeltaT #normal nextTime[i] = simt + tempTime#sqrt(abs(quantum[i] / ((x[i].coeffs[3])*2))) #*2 cuz coeff contains fact() else#usual (quant/der) is very small x[i].coeffs[2]=sign(x[i].coeffs[2])*(abs(quantum[i])/absDeltaT)# adjust derivative if it is too high nextTime[i] = simt + tempTime #if DEBUG println("*************qssQuantizer: smalldelta in compute next") end end else nextTime[i] = Inf end return nothing end function computeNextTime(::Val{2}, i::Int, simt::Float64, nextTime::Vector{Float64}, x::Vector{Taylor0}, quantum::Vector{Float64}) absDeltaT=1e-12 # minimum deltaT to protect against der=Inf coming from sqrt(0) for example...similar to min ΔQ if (x[i].coeffs[3]) != 0 tempTime=max(sqrt(abs(quantum[i] / ((x[i].coeffs[3])))),absDeltaT) if tempTime!=absDeltaT #normal nextTime[i] = simt + tempTime#sqrt(abs(quantum[i] / ((x[i].coeffs[3])*2))) #*2 cuz coeff contains fact() else#usual sqrt(quant/der) is very small x[i].coeffs[3]=sign(x[i].coeffs[3])*(abs(quantum[i])/(absDeltaT*absDeltaT))/2# adjust second derivative if it is too high nextTime[i] = simt + tempTime #if DEBUG println("qssQuantizer: smalldelta in compute next") end end else if (x[i].coeffs[2]) != 0 tempTime=max(abs(quantum[i] /(x[i].coeffs[2])),absDeltaT)# i can avoid the use of max if tempTime!=absDeltaT #normal nextTime[i] = simt + tempTime#sqrt(abs(quantum[i] / ((x[i].coeffs[3])*2))) #*2 cuz coeff contains fact() else#usual (quant/der) is very small x[i].coeffs[2]=sign(x[i].coeffs[2])*(abs(quantum[i])/absDeltaT)# adjust derivative if it is too high nextTime[i] = simt + tempTime #if DEBUG println("qssQuantizer: smalldelta in compute next") end end else nextTime[i] = Inf end end return nothing end #= function computeNextTime(::Val{3}, i::Int, simt::Float64, nextTime::Vector{Float64}, x::Vector{Taylor0}, quantum::Vector{Float64}) absDeltaT=1e-12 # minimum deltaT to protect against der=Inf coming from sqrt(0) for example...similar to min ΔQ if (x[i].coeffs[4]) != 0 tempTime=max(cbrt(abs(quantum[i] / ((x[i].coeffs[4])))),absDeltaT) #6/6 if tempTime!=absDeltaT #normal nextTime[i] = simt + tempTime#sqrt(abs(quantum[i] / ((x[i].coeffs[3])*2))) #*2 cuz coeff contains fact() else#usual sqrt(quant/der) is very small x[i].coeffs[4]=sign(x[i].coeffs[4])*(abs(quantum[i])/(absDeltaT*absDeltaT*absDeltaT))/6# adjust third derivative if it is too high nextTime[i] = simt + tempTime if DEBUG println("qssQuantizer: smalldelta in compute next") end end else nextTime[i] = Inf end return nothing end =# ######################################################################################################################################" function reComputeNextTime(::Val{1}, index::Int, simt::Float64, nextTime::Vector{Float64}, x::Vector{Taylor0},q::Vector{Taylor0}, quantum::Vector{Float64}) absDeltaT=1e-12 if abs(q[index].coeffs[1] - (x[index].coeffs[1])) >= quantum[index] # this happened when var i and j s turns are now...var i depends on j, j is asked here for next time nextTime[index] = simt+1e-16 else coef=@SVector [q[index].coeffs[1] - (x[index].coeffs[1]) - quantum[index], -x[index].coeffs[2]] time1 = minPosRoot(coef, Val(1)) coef=setindex(coef,q[index].coeffs[1] - (x[index].coeffs[1]) + quantum[index],1) time2 = minPosRoot(coef, Val(1)) timeTemp = time1 < time2 ? time1 : time2 tempTime=max(timeTemp,absDeltaT) #guard against very small Δt nextTime[index] = simt +tempTime end end function reComputeNextTime(::Val{2}, index::Int, simt::Float64, nextTime::Vector{Float64}, x::Vector{Taylor0},q::Vector{Taylor0}, quantum::Vector{Float64}) absDeltaT=1e-15 if abs(q[index].coeffs[1] - (x[index].coeffs[1])) >= quantum[index] # this happened when var i and j s turns are now...var i depends on j, j is asked here for next time nextTime[index] = simt+1e-12 else coef=@SVector [q[index].coeffs[1] - (x[index].coeffs[1]) - quantum[index], q[index].coeffs[2]-x[index].coeffs[2],-(x[index].coeffs[3])]#not *2 because i am solving c+bt+a/2*t^2 time1 = minPosRoot(coef, Val(2)) coef=setindex(coef,q[index].coeffs[1] - (x[index].coeffs[1]) + quantum[index],1) time2 = minPosRoot(coef, Val(2)) timeTemp = time1 < time2 ? time1 : time2 tempTime=max(timeTemp,absDeltaT)#guard against very small Δt nextTime[index] = simt +tempTime end return nothing end ######################################################################################################################################" function computeNextInputTime(::Val{1}, i::Int, simt::Float64,elapsed::Float64, tt::Taylor0 ,nextInputTime::Vector{Float64}, x::Vector{Taylor0}, quantum::Vector{Float64}) df=0.0 oldDerX=x[i].coeffs[2] newDerX=tt.coeffs[1] if elapsed > 0 df=(newDerX-oldDerX)/elapsed #df mimics second der else df= quantum[i]*1e6 end if df!=0.0 nextInputTime[i]=simt+sqrt(abs(2*quantum[i] / df)) else nextInputTime[i] = Inf end return nothing end function computeNextInputTime(::Val{2}, i::Int, simt::Float64,elapsed::Float64, tt::Taylor0 ,nextInputTime::Vector{Float64}, x::Vector{Taylor0}, quantum::Vector{Float64}) ddf=0.0;df=0.0 oldDerDerX=((x[i].coeffs[3])*2.0) newDerDerX=(tt.coeffs[2])# 1st der of tt cuz tt itself is derx=f if elapsed > 0.0 ddf=(newDerDerX-oldDerDerX)/(elapsed) else ddf= quantum[i]*1e6#*1e12 #if DEBUG println("QSS quantizer elapsed=0!") end end if ddf!=0.0 nextInputTime[i]=simt+cbrt((abs(quantum[i]/df))) #ddf mimics 3rd der else #df=0->newddx=oldddx -> #if DEBUG println("QSS quantizer ddf=0 ") end oldDerX=((x[i].coeffs[2])) newDerX=(tt.coeffs[1])# 1st der of tt cuz tt itself is derx=f if elapsed > 0.0 df=(newDerX-oldDerX)/(elapsed) #df mimic second derivative else df= quantum[i]*1e6#*1e12 end if df!=0.0 nextInputTime[i]=simt+sqrt((abs(quantum[i]/df))) else if x[i][1]!=0 #predicted second derivative is 0 & should not be used to determine nexttime. use 1st der nextInputTime[i]=simt+sqrt(abs(1*quantum[i] / x[i][1])) #I used the same formulae even with 1st der so that it is fair to other vars else nextInputTime[i] = Inf end end end return nothing end #= function computeNextInputTime(::Val{3}, i::Int, simt::Float64,elapsed::Float64, tt::Taylor0 ,nextInputTime::Vector{Float64}, x::Vector{Taylor0}, quantum::Vector{Float64}) df=0.0 oldDerDerX=((x[i].coeffs[3])*2.0) #@show x newDerDerX=(tt.coeffs[2])# 1st der of tt cuz tt itself is derx=f #@show newDerDerX if elapsed > 0.0 df=(newDerDerX-oldDerDerX)/(elapsed) # println("df=new-old= ",df) else df= quantum[i]*1e6#*1e12 end if df!=0.0 nextInputTime[i]=simt+cbrt((abs(quantum[i]/df))) #df mimics 3rd der # println("usedcbrt") else if newDerDerX==0 && x[i][1]!=0 #predicted second derivative is 0 & should be not be used to determine nexttime. use 1st der #nextInputTime[i]=simt+(abs(2*quantum[i] / x[i][1])) #*2 is not analytic: is just there to increase stepsize nextInputTime[i]=simt+sqrt(abs(1*quantum[i] / x[i][1])) #I used the same formulae even with 1st der so that it is fair to other vars else nextInputTime[i] = Inf end end return nothing end =# function computeNextEventTime(::Val{O},j::Int,ZCFun::Taylor0,oldsignValue,simt, nextEventTime, quantum::Vector{Float64},absQ::Float64) where {O} if (oldsignValue[j,1] != sign(ZCFun[0])) && abs(oldsignValue[j,2]) >1e-9*absQ #prevent double tapping: when zcf is leaving zero it should be considered an event if DEBUG println("qss quantizer:zcf$j immediate event at simt= $simt oldzcf value= $(oldsignValue[j,2]) newZCF value= $(ZCFun[0])"); end nextEventTime[j]=simt elseif oldsignValue[j,2] ==0.0 && ZCFun[0] ==0.0 # initial value 0 --> do not do anything nextEventTime[j]=Inf else # old and new ZCF both pos or both neg mpr=minPosRoot(ZCFun, Val(O)) if mpr<1e-14 # prevent very close events mpr=1e-12 end nextEventTime[j] =simt + mpr if DEBUG println("qss quantizer:zcf$j at simt= $simt ****scheduled**** event at $(simt + mpr) oldzcf value= $(oldsignValue[j,2]) newZCF value= $(ZCFun[0])") end oldsignValue[j,1]=sign(ZCFun[0])#update the values oldsignValue[j,2]=ZCFun[0] end end
QuantizedSystemSolver
https://github.com/mongibellili/QuantizedSystemSolver.jl.git
[ "MIT" ]
1.0.1
b4bf1003586f2ee6cb98d8df29e88cbbfacd2ea1
code
1264
@inline function integrateState(::Val{0}, x::Taylor0,elapsed::Float64) #nothing: created for elapse-updating q in order1 which does not happen end @inline function integrateState(::Val{1}, x::Taylor0,elapsed::Float64) x.coeffs[1] = x(elapsed) end @inline function integrateState(::Val{2}, x::Taylor0,elapsed::Float64) x.coeffs[1] = x(elapsed) x.coeffs[2] = x.coeffs[2]+elapsed*x.coeffs[3]*2 end #= @inline function integrateState(::Val{3}, x::Taylor0,elapsed::Float64) x.coeffs[1] = x(elapsed) x.coeffs[2] = x.coeffs[2]+elapsed*x.coeffs[3]*2+elapsed*elapsed*x.coeffs[4]*3 x.coeffs[3] = x.coeffs[3]+elapsed*x.coeffs[4]*3#(x.coeffs[3]*2+elapsed*x.coeffs[4]*6)/2 end =# ######################################################################################################################################" function computeDerivative( ::Val{1} ,x::Taylor0,f::Taylor0 ) x.coeffs[2] =f.coeffs[1] return nothing end function computeDerivative( ::Val{2} ,x::Taylor0,f::Taylor0) x.coeffs[2] =f.coeffs[1] x.coeffs[3] =f.coeffs[2]/2 return nothing end #= function computeDerivative( ::Val{3} ,x::Taylor0,f::Taylor0) x.coeffs[2] =f[0] x.coeffs[3]=f.coeffs[2]/2 x.coeffs[4]=f.coeffs[3]/3 # coeff3*2/6 return nothing end =#
QuantizedSystemSolver
https://github.com/mongibellili/QuantizedSystemSolver.jl.git
[ "MIT" ]
1.0.1
b4bf1003586f2ee6cb98d8df29e88cbbfacd2ea1
code
7047
#analy function nmisCycle_and_simulUpdate(cacheRootsi::Vector{Float64}, cacheRootsj::Vector{Float64}, acceptedi::Vector{Vector{Float64}}, acceptedj::Vector{Vector{Float64}}, aij::Float64, aji::Float64, respp::Ptr{Float64}, pp::Ptr{NTuple{2,Float64}}, trackSimul, ::Val{1}, index::Int, j::Int, dirI::Float64, dti::Float64, x::Vector{Taylor0}, q::Vector{Taylor0}, quantum::Vector{Float64}, exacteA::Function, d::Vector{Float64}, cacheA::MVector{1,Float64}, dxaux::Vector{MVector{1,Float64}}, qaux::Vector{MVector{1,Float64}}, tx::Vector{Float64}, tq::Vector{Float64}, simt::Float64, ft::Float64) cacheA[1] = 0.0 exacteA(q, d, cacheA, index, index, simt) aii = cacheA[1] cacheA[1] = 0.0 exacteA(q, d, cacheA, j, j, simt) ajj = cacheA[1] xi = x[index][0] xj = x[j][0] ẋi = x[index][1] ẋj = x[j][1] qi = q[index][0] qj = q[j][0] quanj = quantum[j] quani = quantum[index] elapsed = simt - tx[j] x[j][0] = xj + elapsed * ẋj xj = x[j][0] tx[j] = simt qiminus = qaux[index][1] uji = ẋj - ajj * qj - aji * qiminus uij = dxaux[index][1] - aii * qiminus - aij * qj iscycle = false dxj = aji * qi + ajj * qj + uji #only future qi #emulate fj dxithrow = aii * qi + aij * qj + uij #only future qi qjplus = xj + sign(dxj) * quanj #emulate updateQ(j)... dxi = aii * qi + aij * qjplus + uij #both future qi & qj #emulate fi ########condition:Union #= if abs(dxj)*3<abs(ẋj) || abs(dxj)>3*abs(ẋj) || (dxj*ẋj)<0.0 if abs(dxi)>3*abs(ẋi) || abs(dxi)*3<abs(ẋi) || (dxi*ẋi)<0.0 iscycle=true end end =# ########condition:Union i union if (abs(dxj) * 3 < abs(ẋj) || abs(dxj) > 3 * abs(ẋj) || (dxj * ẋj) < 0.0) cancelCriteria = 1e-6 * quani if abs(dxi) > 3 * abs(dxithrow) || abs(dxi) * 3 < abs(dxithrow) || (dxi * dxithrow) < 0.0 iscycle = true if abs(dxi) < cancelCriteria && abs(dxithrow) < cancelCriteria #significant change is relative to der values. cancel if all values are small iscycle = false end end if abs(dxi) > 10 * abs(ẋi) || abs(dxi) * 10 < abs(ẋi) #|| (dxi*ẋi)<0.0 iscycle = true if abs(dxi) < cancelCriteria && abs(ẋi) < cancelCriteria #significant change is relative to der values. cancel if all values are small iscycle = false end end if abs(dxj) < 1e-6 * quanj && abs(ẋj) < 1e-6 * quanj #significant change is relative to der values. cancel if all values are small iscycle = false end end if iscycle #clear accIntrvals and cache of roots for i = 1:3# 3 ord1 ,7 ord2 acceptedi[i][1] = 0.0 acceptedi[i][2] = 0.0 acceptedj[i][1] = 0.0 acceptedj[i][2] = 0.0 end for i = 1:4 cacheRootsi[i] = 0.0 cacheRootsj[i] = 0.0 end #find positive zeros f=+-Δ bi = aii * xi + aij * xj + uij ci = aij * (aji * xi + uji) - ajj * (aii * xi + uij) αi = -ajj - aii βi = aii * ajj - aij * aji bj = ajj * xj + aji * xi + uji cj = aji * (aij * xj + uij) - aii * (ajj * xj + uji) αj = -aii - ajj βj = ajj * aii - aji * aij coefi = NTuple{3,Float64}((βi * quani - ci, αi * quani - bi, quani)) coefi2 = NTuple{3,Float64}((-βi * quani - ci, -αi * quani - bi, -quani)) coefj = NTuple{3,Float64}((βj * quanj - cj, αj * quanj - bj, quanj)) coefj2 = NTuple{3,Float64}((-βj * quanj - cj, -αj * quanj - bj, -quanj)) resi1, resi2 = quadRootv2(coefi) resi3, resi4 = quadRootv2(coefi2) resj1, resj2 = quadRootv2(coefj) resj3, resj4 = quadRootv2(coefj2) #construct intervals constructIntrval(acceptedi, resi1, resi2, resi3, resi4) constructIntrval(acceptedj, resj1, resj2, resj3, resj4) #find best H (largest overlap) ki = 3 kj = 3 while true currentLi = acceptedi[ki][1] currentHi = acceptedi[ki][2] currentLj = acceptedj[kj][1] currentHj = acceptedj[kj][2] if currentLj <= currentLi < currentHj || currentLi <= currentLj < currentHi#resj[end][1]<=resi[end][1]<=resj[end][2] || resi[end][1]<=resj[end][1]<=resi[end][2] #overlap h = min(currentHi, currentHj) if h == Inf && (currentLj != 0.0 || currentLi != 0.0) # except case both 0 sols h1=(0,Inf) h = max(currentLj, currentLi) #ft-simt in case they are both ver small...elaborate on his later end if h == Inf # both lower bounds ==0 --> zero sols for both qi = getQfromAsymptote(simt, xi, βi, ci, αi, bi) qj = getQfromAsymptote(simt, xj, βj, cj, αj, bj) else Δ = (1 - h * aii) * (1 - h * ajj) - h * h * aij * aji if Δ != 0.0 qi = ((1 - h * ajj) * (xi + h * uij) + h * aij * (xj + h * uji)) / Δ qj = ((1 - h * aii) * (xj + h * uji) + h * aji * (xi + h * uij)) / Δ else qi, qj, h, maxIter = IterationH(h, xi, quani, xj, quanj, aii, ajj, aij, aji, uij, uji) if maxIter == 0 return false end end end break else if currentHj == 0.0 && currentHi == 0.0#empty ki -= 1 kj -= 1 elseif currentHj == 0.0 && currentHi != 0.0 kj -= 1 elseif currentHi == 0.0 && currentHj != 0.0 ki -= 1 else #both non zero if currentLj < currentLi#remove last seg of resi ki -= 1 else #remove last seg of resj kj -= 1 end end end end # end while q[j][0] = qj tq[j] = simt q[index][0] = qi# store back helper vars trackSimul[1] += 1 # do not have to recomputeNext if qi never changed end return iscycle end function getQfromAsymptote(simt, x::Float64, β::P, c::P, α::P, b::P) where {P<:Union{BigFloat,Float64}} q = 0.0 if β == 0.0 && c != 0.0 println("report bug: β==0 && c!=0.0: this leads to asym=Inf while this code came from asym<Delta at $simt") elseif β == 0.0 && c == 0.0 if α == 0.0 && b != 0.0 println("report bug: α==0 && b!=0.0 this leads to asym=Inf while this code came from asym<Delta at $simt") elseif α == 0.0 && b == 0.0 q = x else q = x + b / α end else q = x + c / β #asymptote...even though not guaranteed to be best end q end function iterationH(h::Float64, xi::Float64, quani::Float64, xj::Float64, quanj::Float64, aii::Float64, ajj::Float64, aij::Float64, aji::Float64, uij::Float64, uji::Float64) qi, qj = 0.0, 0.0 maxIter = 1000 while (abs(qi - xi) > 1 * quani || abs(qj - xj) > 1 * quanj) && (maxIter > 0) maxIter -= 1 h1 = h * (0.99 * quani / abs(qi - xi)) h2 = h * (0.99 * quanj / abs(qj - xj)) h = min(h1, h2) h_three = h Δ = (1 - h * aii) * (1 - h * ajj) - h * h * aij * aji if Δ != 0 qi = ((1 - h * ajj) * (xi + h * uij) + h * aij * (xj + h * uji)) / Δ qj = ((1 - h * aii) * (xj + h * uji) + h * aji * (xi + h * uij)) / Δ end # if maxIter < 1 println("maxiter of updateQ = ",maxIter) end end qi, qj, h, maxIter end
QuantizedSystemSolver
https://github.com/mongibellili/QuantizedSystemSolver.jl.git
[ "MIT" ]
1.0.1
b4bf1003586f2ee6cb98d8df29e88cbbfacd2ea1
code
11165
function nmisCycle_and_simulUpdate(cacheRootsi::Vector{Float64},cacheRootsj::Vector{Float64},acceptedi::Vector{Vector{Float64}},acceptedj::Vector{Vector{Float64}},aij::Float64,aji::Float64,respp::Ptr{Float64}, pp::Ptr{NTuple{2,Float64}},trackSimul,::Val{2},index::Int,j::Int,dirI::Float64,firstguessH::Float64, x::Vector{Taylor0},q::Vector{Taylor0}, quantum::Vector{Float64},exactA::Function,d::Vector{Float64},cacheA::MVector{1,Float64},dxaux::Vector{MVector{2,Float64}},qaux::Vector{MVector{2,Float64}},tx::Vector{Float64},tq::Vector{Float64},simt::Float64,ft::Float64) cacheA[1]=0.0;exactA(q,d,cacheA,index,index,simt) aii=cacheA[1] cacheA[1]=0.0; exactA(q,d,cacheA,j,j,simt) ajj=cacheA[1] uii=dxaux[index][1]-aii*qaux[index][1] ui2=dxaux[index][2]-aii*qaux[index][2] xi=x[index][0];xj=x[j][0];qi=q[index][0];qj=q[j][0];qi1=q[index][1];qj1=q[j][1];xi1=x[index][1];xi2=2*x[index][2];xj1=x[j][1];xj2=2*x[j][2] quanj=quantum[j];quani=quantum[index]; e1 = simt - tx[j];e2 = simt - tq[j];#= e3=simt - tu[j];tu[j]=simt; =# prevXj=x[j][0] x[j][0]= x[j](e1);xj=x[j][0];tx[j]=simt qj=qj+e2*qj1 ;qaux[j][1]=qj;tq[j] = simt ;q[j][0]=qj xj1=x[j][1]+e1*xj2; newDiff=(xj-prevXj) ujj=xj1-ajj*qj uji=ujj-aji*qaux[index][1]# uj2=xj2-ajj*qj1###################################################----------------------- uji2=uj2-aji*qaux[index][2]# dxj=aji*qi+ajj*qaux[j][1]+uji ddxj=aji*qi1+ajj*qj1+uji2 if abs(ddxj)==0.0 ddxj=1e-30 end iscycle=false qjplus=xj-sign(ddxj)*quanj hj=sqrt(2*quanj/abs(ddxj))# α1=1-hj*ajj if abs(α1)==0.0 α1=1e-30 end dqjplus=(aji*(qi+hj*qi1)+ajj*qjplus+uji+hj*uji2)/α1 uij=uii-aij*qaux[j][1] uij2=ui2-aij*qj1#########qaux[j][2] updated in normal Qupdate..ft=20 slightly shifts up dxithrow=aii*qi+aij*qj+uij ddxithrow=aii*qi1+aij*qj1+uij2 dxi=aii*qi+aij*qjplus+uij ddxi=aii*qi1+aij*dqjplus+uij2 if abs(ddxi)==0.0 ddxi=1e-30 end hi=sqrt(2*quani/abs(ddxi)) βidir=dxi+hi*ddxi/2 βjdir=dxj+hj*ddxj/2 βidth=dxithrow+hi*ddxithrow/2 αidir=xi1+hi*xi2/2 βj=xj1+hj*xj2/2 ########condition:Union if (abs(dxj-xj1)>(abs(dxj+xj1)/2) || abs(ddxj-xj2)>(abs(ddxj+xj2)/2)) || dqjplus*newDiff<0.0 #(dqjplus*qj1)<=0.0 with dir is better since when dir =0 we do not enter if (abs(dxi-xi1)>(abs(dxi+xi1)/2) || abs(ddxi-xi2)>(abs(ddxi+xi2)/2)) || βidir*dirI<0.0 iscycle=true end end ########condition:Union i #= if (abs(dxj-xj1)>(abs(dxj+xj1)/2) || abs(ddxj-xj2)>(abs(ddxj+xj2)/2)) || dqjplus*newDiff<0.0 #(dqjplus*qj1)<=0.0 with dir is better since when dir =0 we do not enter if (abs(dxi-dxithrow)>(abs(dxi+dxithrow)/2) || abs(ddxi-ddxithrow)>(abs(ddxi+ddxithrow)/2)) || βidir*dirI<0.0 iscycle=true end end =# ########condition:combineDer Union i #= if abs(βjdir-βj)>(abs(βjdir+βj)/2) || dqjplus*newDiff<0.0 if abs(βidir-βidth)>(abs(βidir+βidth)/2) || βidir*dirI<0.0 iscycle=true end coef_signig=100 if (abs(dxi)>(abs(xi1)*coef_signig) #= && (abs(ddxi)>(abs(xi2)*coef_signig)||abs(xi2)>(abs(ddxi)*coef_signig)) =#) || (abs(xi1)>(abs(dxi)*coef_signig) #= && (abs(ddxi)>(abs(xi2)*coef_signig)||abs(xi2)>(abs(ddxi)*coef_signig)) =#) iscycle=true end #= if abs(βidir-αidir)>(abs(βidir+αidir)/2) iscycle=true end =# end =# if (ddxithrow>0 && dxithrow<0 && qi1>0) || (ddxithrow<0 && dxithrow>0 && qi1<0) xmin=xi-dxithrow*dxithrow/ddxithrow if abs(xmin-xi)/abs(qi-xi)>0.8 # xmin is close to q and a change in q might flip its sign of dq iscycle=false # end end #= if (ddxi>0 && dxi<0 && qi1>0) || (ddxi<0 && dxi>0 && qi1<0) xmin=xi-dxi*dxi/ddxi if abs(xmin-xi)/abs(qi-xi)>0.8 # xmin is close to q and a change in q might flip its sign of dq iscycle=false # end end =# ########condition:kinda signif alone i #= if (abs(dxj-xj1)>(abs(dxj+xj1)/2) || abs(ddxj-xj2)>(abs(ddxj+xj2)/2)) # || dqjplus*newDiff<0.0 if (abs(dxi-dxithrow)>(abs(dxi+dxithrow)/2) || abs(ddxi-ddxithrow)>(abs(ddxi+ddxithrow)/2)) #|| βidir*dirI<0.0 iscycle=true end end =# ########condition:cond1 #= if dqjplus*newDiff<0.0 #= || (dqjplus==0.0 && newDiff!=0.0) =##(dqjplus*qj1)<=0.0 with dir is better since when dir =0 we do not enter if βidir*dirI<0.0 iscycle=true end end if dqjplus*newDiff<0.0 #= || (dqjplus==0.0 && newDiff!=0.0) =##(dqjplus*qj1)<=0.0 with dir is better since when dir =0 we do not enter if (abs(dxi-xi1)>(abs(dxi+xi1)/2) || abs(ddxi-xi2)>(abs(ddxi+xi2)/2)) iscycle=true end end if (abs(dxj-xj1)>(abs(dxj+xj1)/2) || abs(ddxj-xj2)>(abs(ddxj+xj2)/2)) #= || (dqjplus==0.0 && newDiff!=0.0) =##(dqjplus*qj1)<=0.0 with dir is better since when dir =0 we do not enter if βidir*dirI<0.0 iscycle=true end end =# ########condition:cond1 i #= if dqjplus*newDiff<0.0 #= || (dqjplus==0.0 && newDiff!=0.0) =##(dqjplus*qj1)<=0.0 with dir is better since when dir =0 we do not enter if βidir*dirI<0.0 iscycle=true end end if dqjplus*newDiff<0.0 #= || (dqjplus==0.0 && newDiff!=0.0) =##(dqjplus*qj1)<=0.0 with dir is better since when dir =0 we do not enter if (abs(dxi-dxithrow)>(abs(dxi+dxithrow)/2) || abs(ddxi-ddxithrow)>(abs(ddxi+ddxithrow)/2)) iscycle=true end end if (abs(dxj-xj1)>(abs(dxj+xj1)/2) || abs(ddxj-xj2)>(abs(ddxj+xj2)/2)) #= || (dqjplus==0.0 && newDiff!=0.0) =##(dqjplus*qj1)<=0.0 with dir is better since when dir =0 we do not enter if βidir*dirI<0.0 iscycle=true end end =# #= if index==1 && j==4 && 0.1<simt<1.1 iscycle=true end =# if iscycle aiijj=aii+ajj aiijj_=aij*aji-aii*ajj coefΔh1=-8.0*aiijj coefΔh2=6.0*aiijj*aiijj-4.0*aiijj_ coefΔh3=6.0*aiijj*aiijj_-2.0*aiijj*aiijj*aiijj coefΔh4=aiijj_*aiijj_-4.0*aiijj_*aiijj*aiijj coefΔh5=-3.0*aiijj*aiijj_*aiijj_ coefΔh6=-aiijj_*aiijj_*aiijj_ coefH1=-8.0*xi*aiijj coefH2=2.0*(-aii*uij-aij*uji-uij2+xi*(-2.0*aiijj_+2.0*aiijj*aiijj+2.0*aii*ajj-aji*aij+ajj*ajj)-aij*aiijj*xj) coefH3=2.0*((-uij*aiijj_+ajj*uij2-aij*uji2)+aiijj*(aii*uij+aij*uji+uij2+2.0*xi*aiijj_)-xi*aiijj*(2.0*aii*ajj-aji*aij+ajj*ajj)+ajj*aiijj_*xi+aij*aiijj*aiijj*xj-aij*aiijj_*xj) coefH4=2.0*(aiijj*(uij*aiijj_-ajj*uij2+aij*uji2)-0.5*(2.0*aii*ajj-aji*aij+ajj*ajj)*(aii*uij+aij*uji+uij2+2.0*xi*aiijj_)-ajj*aiijj_*aiijj*xi+0.5*aij*aiijj*(ajj*uji+aji*uij+uji2+2.0*xj*aiijj_)+aij*aiijj_*aiijj*xj) coefH5=(2.0*aii*ajj-aji*aij+ajj*ajj)*(ajj*uij2-uij*aiijj_-aij*uji2)-ajj*aiijj_*(aii*uij+aij*uji+uij2+2.0*xi*aiijj_)-aij*aiijj*(aii*uji2-uji*aiijj_-aji*uij2)+aij*aiijj_*(ajj*uji+aji*uij+uji2+2.0*xj*aiijj_) coefH6=ajj*aiijj_*(ajj*uij2-uij*aiijj_-aij*uji2)-aij*aiijj_*(aii*uji2-uji*aiijj_-aji*uij2) coefH1j=-8.0*xj*aiijj coefH2j=2.0*(-ajj*uji-aji*uij-uji2+xj*(-2.0*aiijj_+2.0*aiijj*aiijj+2.0*ajj*aii-aij*aji+aii*aii)-aji*aiijj*xi) coefH3j=2.0*((-uji*aiijj_+aii*uji2-aji*uij2)+aiijj*(ajj*uji+aji*uij+uji2+2.0*xj*aiijj_)-xj*aiijj*(2.0*ajj*aii-aij*aji+aii*aii)+aii*aiijj_*xj+aji*aiijj*aiijj*xi-aji*aiijj_*xi) coefH4j=2.0*(aiijj*(uji*aiijj_-aii*uji2+aji*uij2)-0.5*(2.0*ajj*aii-aij*aji+aii*aii)*(ajj*uji+aji*uij+uji2+2.0*xj*aiijj_)-aii*aiijj_*aiijj*xj+0.5*aji*aiijj*(aii*uij+aij*uji+uij2+2.0*xi*aiijj_)+aji*aiijj_*aiijj*xi) coefH5j=(2.0*ajj*aii-aij*aji+aii*aii)*(aii*uji2-uji*aiijj_-aji*uij2)-aii*aiijj_*(ajj*uji+aji*uij+uji2+2.0*xj*aiijj_)-aji*aiijj*(ajj*uij2-uij*aiijj_-aij*uji2)+aji*aiijj_*(aii*uij+aij*uji+uij2+2.0*xi*aiijj_) coefH6j=aii*aiijj_*(aii*uji2-uji*aiijj_-aji*uij2)-aji*aiijj_*(ajj*uij2-uij*aiijj_-aij*uji2) h = ft-simt Δ1=1.0-h*(aiijj)-h*h*(aiijj_) if abs(Δ1)!=0.0 h_2=h*h;h_3=h_2*h;h_4=h_3*h;h_5=h_4*h;h_6=h_5*h Δ22=4.0+h*coefΔh1+h_2*(coefΔh2)+h_3*(coefΔh3)+h_4*(coefΔh4)+h_5*coefΔh5+h_6*coefΔh6 if abs(Δ22)!=0.0 qi=(4.0*xi+h*coefH1+h_2*coefH2+h_3*coefH3+h_4*coefH4+h_5*coefH5+h_6*coefH6)/Δ22 qj=(4.0*xj+h*coefH1j+h_2*coefH2j+h_3*coefH3j+h_4*coefH4j+h_5*coefH5j+h_6*coefH6j)/Δ22 end end if (abs(qi - xi) > 2.0*quani || abs(qj - xj) > 2.0*quanj) h1 = sqrt(abs(2*quani/ddxi));h2 = sqrt(abs(2*quanj/ddxj)); #later add derderX =1e-12 when x2==0? h=min(h1,h2) Δ1=1.0-h*(aiijj)-h*h*(aiijj_) if abs(Δ1)!=0.0 h_2=h*h;h_3=h_2*h;h_4=h_3*h;h_5=h_4*h;h_6=h_5*h Δ22=4.0+h*coefΔh1+h_2*(coefΔh2)+h_3*(coefΔh3)+h_4*(coefΔh4)+h_5*coefΔh5+h_6*coefΔh6 if abs(Δ22)!=0.0 qi=(4.0*xi+h*coefH1+h_2*coefH2+h_3*coefH3+h_4*coefH4+h_5*coefH5+h_6*coefH6)/Δ22 qj=(4.0*xj+h*coefH1j+h_2*coefH2j+h_3*coefH3j+h_4*coefH4j+h_5*coefH5j+h_6*coefH6j)/Δ22 end end end maxIter=10000 while (abs(qi - xi) > 2.0*quani || abs(qj - xj) > 2.0*quanj) && (maxIter>0) maxIter-=1 h1 = h * sqrt(quani / abs(qi - xi)); h2 = h * sqrt(quanj / abs(qj - xj)); h=min(h1,h2) Δ1=1.0-h*(aiijj)-h*h*(aiijj_) if abs(Δ1)!=0.0 h_2=h*h;h_3=h_2*h;h_4=h_3*h;h_5=h_4*h;h_6=h_5*h Δ22=4.0+h*coefΔh1+h_2*(coefΔh2)+h_3*(coefΔh3)+h_4*(coefΔh4)+h_5*coefΔh5+h_6*coefΔh6 if abs(Δ22)!=0.0 qi=(4.0*xi+h*coefH1+h_2*coefH2+h_3*coefH3+h_4*coefH4+h_5*coefH5+h_6*coefH6)/Δ22 qj=(4.0*xj+h*coefH1j+h_2*coefH2j+h_3*coefH3j+h_4*coefH4j+h_5*coefH5j+h_6*coefH6j)/Δ22 end end end if maxIter<900 #ie simul step failed println("simulstep $maxIter") end if maxIter==0 #ie simul step failed println("simulstep failed maxiter") return false end if 0<h<1e-20 #ie simul step failed # h==0 is allowed because is like an equilibrium println("simulstep failed small h=",h) return false end if Δ1==0.0 # should never happen when maxIter>0...before deployement, group the 2 prev if statments println("iter simul Δ1 ==0") return false end q[index][0]=qi# store back helper vars q[j][0]=qj q1parti=aii*qi+aij*qj+uij+h*uij2 q1partj=aji*qi+ajj*qj+uji+h*uji2 q[index][1]=((1-h*ajj)/Δ1)*q1parti+(h*aij/Δ1)*q1partj# store back helper vars q[j][1]=(h*aji/Δ1)*q1parti+((1-h*aii)/Δ1)*q1partj trackSimul[1]+=1 # do not have to recomputeNext if qi never changed end #end if iscycle return iscycle end
QuantizedSystemSolver
https://github.com/mongibellili/QuantizedSystemSolver.jl.git
[ "MIT" ]
1.0.1
b4bf1003586f2ee6cb98d8df29e88cbbfacd2ea1
code
3723
# This file is part of the TaylorSeries.jl Julia package, MIT license # # Luis Benet & David P. Sanders # UNAM # # MIT Expat license function ==(a::Taylor0, b::Taylor0) return a.coeffs == b.coeffs end zero(a::Taylor0) = Taylor0(zero.(a.coeffs)) function zero(a::Taylor0, cache::Taylor0) cache.coeffs .= 0.0 return cache end function one(a::Taylor0, cache::Taylor0) cache.coeffs .= 0.0 cache[0] = 1.0 return cache end function one(a::Taylor0) b = zero(a) b[0] = one(b[0]) return b end function (+)(a::Taylor0, b::Taylor0) v = similar(a.coeffs) @__dot__ v = (+)(a.coeffs, b.coeffs) return Taylor0(v, a.order) end function (+)(a::Taylor0) v = similar(a.coeffs) @__dot__ v = (+)(a.coeffs) return Taylor0(v, a.order) end function (+)(a::Taylor0, b::T) where {T<:Number} coeffs = copy(a.coeffs) @inbounds coeffs[1] = (+)(a[0], b) return Taylor0(coeffs, a.order) end (+)(b::T, a::Taylor0) where {T<:Number} = (+)(a, b) function (-)(a::Taylor0, b::Taylor0) #if a.order != b.order a, b = fixorder(a, b) end v = similar(a.coeffs) @__dot__ v = (-)(a.coeffs, b.coeffs) return Taylor0(v, a.order) end function (-)(a::Taylor0) v = similar(a.coeffs) @__dot__ v = (-)(a.coeffs) return Taylor0(v, a.order) end function (-)(a::Taylor0, b::T) where {T<:Number} coeffs = copy(a.coeffs) @inbounds coeffs[1] = (-)(a[0], b) return Taylor0(coeffs, a.order) end function (-)(b::T, a::Taylor0) where {T<:Number} coeffs = similar(a.coeffs) @__dot__ coeffs = (-)(a.coeffs) @inbounds coeffs[1] = (-)(b, a[0]) return Taylor0(coeffs, a.order) end function *(a::Taylor0, b::Taylor0) c = Taylor0(zero(a[0]), a.order) for ord in eachindex(c) mul!(c, a, b, ord) end return c end function (*)(a::T, b::Taylor0) where {T<:Number} v = Array{T}(undef, length(b.coeffs)) @__dot__ v = a * b.coeffs return Taylor0(v, b.order) end *(b::Taylor0, a::T) where {T<:Number} = a * b @inline function mul!(c::Taylor0, a::Taylor0, b::Taylor0, k::Int) @inbounds c[k] = a[0] * b[k] @inbounds for i = 1:k c[k] += a[i] * b[k-i] end return nothing end function /(a::Taylor0, b::T) where {T<:Number} @inbounds aux = a.coeffs[1] / b v = Array{typeof(aux)}(undef, length(a.coeffs)) @__dot__ v = a.coeffs / b return Taylor0(v, a.order) end function /(a::Taylor0, b::Taylor0) iszero(a) && !iszero(b) && return zero(a) #if a.order != b.order a, b = fixorder(a, b) end ordfact, cdivfact = divfactorization(a, b) c = Taylor0(cdivfact, a.order - ordfact) for ord in eachindex(c) div!(c, a, b, ord) end return c end @inline function divfactorization(a1::Taylor0, b1::Taylor0) a1nz = findfirst(a1) b1nz = findfirst(b1) a1nz = a1nz ≥ 0 ? a1nz : a1.order b1nz = b1nz ≥ 0 ? b1nz : a1.order ordfact = min(a1nz, b1nz) cdivfact = a1[ordfact] / b1[ordfact] iszero(b1[ordfact]) && throw(ArgumentError( """Division does not define a Taylor0 polynomial; order k=$(ordfact) => coeff[$(ordfact)]=$(cdivfact).""")) return ordfact, cdivfact end @inline function div!(c::Taylor0, a::Taylor0, b::Taylor0, k::Int) ordfact, cdivfact = divfactorization(a, b) if k == 0 @inbounds c[0] = cdivfact return nothing end imin = max(0, k + ordfact - b.order) @inbounds c[k] = c[imin] * b[k+ordfact-imin] @inbounds for i = imin+1:k-1 c[k] += c[i] * b[k+ordfact-i] end if k + ordfact ≤ b.order @inbounds c[k] = (a[k+ordfact] - c[k]) / b[ordfact] else @inbounds c[k] = -c[k] / b[ordfact] end return nothing end #/(a::Int,b::Int)=Int(Float64(a)/b)
QuantizedSystemSolver
https://github.com/mongibellili/QuantizedSystemSolver.jl.git
[ "MIT" ]
1.0.1
b4bf1003586f2ee6cb98d8df29e88cbbfacd2ea1
code
14565
(addsub)(a, b, c) = (-)((+)(a, b), c) (subsub)(a, b, c) = (-)((-)(a, b), c) (subadd)(a, b, c) = (+)((-)(a, b), c)# this should not exist cuz addsub has 3 args + cache function addTfoldl(op, res, bs...)# op is only addt so remove later l = length(bs) #i = 0; l == i && return a # already checked l == 1 && return res i = 2 l == i && return op(res, bs[1], bs[end]) i = 3 l == i && return op(res, bs[1], bs[2], bs[end]) i = 4 l == i && return op(op(res, bs[1], bs[2], bs[end]), bs[3], bs[end]) i = 5 l == i && return op(op(res, bs[1], bs[2], bs[end]), bs[3], bs[4], bs[end]) i = 6 l == i && return op(op(op(res, bs[1], bs[2], bs[end]), bs[3], bs[4], bs[end]), bs[5], bs[end]) i = 7 l == i && return op(op(op(res, bs[1], bs[2], bs[end]), bs[3], bs[4], bs[end]), bs[5], bs[6], bs[end]) i = 8 l == i && return op(op(op(op(res, bs[1], bs[2], bs[end]), bs[3], bs[4], bs[end]), bs[5], bs[6], bs[end]), bs[7], bs[end]) i = 9 y = op(op(op(op(res, bs[1], bs[2], bs[end]), bs[3], bs[4], bs[end]), bs[5], bs[6], bs[end]), bs[7], bs[8], bs[end]) l == i && return y #last i creates y and passes it to the next loop: note that from this point, op will allocate # warn the users . (inserting -0 will avoid allocation lol!) for i in i:l-1 # -1 cuz last one is cache...but these lines are never reached cuz macro does not create mulT for args >7 in the first place y = op(y, bs[i], bs[end]) end return y end function addT(a, b, c, d, xs...) if length(xs) != 0# if ==0 case below where d==cache addTfoldl(addT, addT(addT(a, b, c, xs[end]), d, xs[end]), xs...) end end function mulTfoldl(res::P, bs...) where {P<:Taylor0} l = length(bs) i = 2 l == i && return res i = 3 l == i && return mulTT(res, bs[1], bs[end-1], bs[end]) i = 4 l == i && return mulTT(mulTT(res, bs[1], bs[end-1], bs[end]), bs[2], bs[end-1], bs[end]) i = 5 l == i && return mulTT(mulTT(mulTT(res, bs[1], bs[end-1], bs[end]), bs[2], bs[end-1], bs[end]), bs[3], bs[end-1], bs[end]) i = 6 l == i && return mulTT(mulTT(mulTT(mulTT(res, bs[1], bs[end-1], bs[end]), bs[2], bs[end-1], bs[end]), bs[3], bs[end-1], bs[end]), bs[4], bs[end-1], bs[end]) #= if l == 6 println("alloc!!!") return mulTT(mulTT(mulTT(mulTT(res, bs[1],bs[end-1],bs[end]),bs[2],bs[end-1],bs[end]),bs[3],bs[end-1],bs[end]),bs[4],bs[end-1],bs[end]) end =# end function mulTT(a::P, b::R, c::Q, xs...) where {P,Q,R<:Union{Taylor0,Number}} if length(xs) > 1 mulTfoldl(mulTT(mulTT(a, b, xs[end-1], xs[end]), c, xs[end-1], xs[end]), xs...) end end # all methods should have new names . no type piracy!!! if Taylor1 to be used function createT(a::Taylor0, cache::Taylor0) @__dot__ cache.coeffs = a.coeffs return cache end """createT(a::T,cache::Taylor0) where {T<:Number} creates a Taylor0 from a constant. In case of order 2, cache=[a,0,0] """ function createT(a::T, cache::Taylor0) where {T<:Number} # requires cache1 clean cache[0] = a return cache end """addsub(a::Taylor0, b::Taylor0,c::Taylor0,cache::Taylor0) cache=a+b-c """ function addsub(a::Taylor0, b::Taylor0, c::Taylor0, cache::Taylor0) @__dot__ cache.coeffs = (-)((+)(a.coeffs, b.coeffs), c.coeffs) return cache end function addsub(a::Taylor0, b::Taylor0, c::T, cache::Taylor0) where {T<:Number} cache.coeffs .= b.coeffs cache[0] = cache[0] - c @__dot__ cache.coeffs = (+)(cache.coeffs, a.coeffs) return cache end """addsub(a::T, b::Taylor0,c::Taylor0,cache::Taylor0) where {T<:Number} Order2 case: cache=[a+b[0]-c[0],b[1]-c[1],b[2]-c[2]] """ function addsub(a::T, b::Taylor0, c::Taylor0, cache::Taylor0) where {T<:Number} cache.coeffs .= b.coeffs cache[0] = a + cache[0] @__dot__ cache.coeffs = (-)(cache.coeffs, c.coeffs) return cache end addsub(a::Taylor0, b::T, c::Taylor0, cache::Taylor0) where {T<:Number} = addsub(b, a, c, cache)#addsub(b::T, a::Taylor0 ,c::Taylor0,cache::Taylor0) where {T<:Number} function addsub(a::T, b::T, c::Taylor0, cache::Taylor0) where {T<:Number} @__dot__ cache.coeffs = (-)(c.coeffs) cache[0] = a + b + cache[0] return cache end function addsub(c::Taylor0, a::T, b::T, cache::Taylor0) where {T<:Number} cache.coeffs .= c.coeffs cache[0] = a + cache[0] - b return cache end addsub(a::T, c::Taylor0, b::T, cache::Taylor0) where {T<:Number} = addsub(c, a, b, cache) function addsub(c::T, a::T, b::T, cache::Taylor0) where {T<:Number}#requires cache clean cache[0] = a + c - b return cache end ###########"negate########### """negateT(a::Taylor0,cache::Taylor0) cache=-a """ function negateT(a::Taylor0, cache::Taylor0) #where {T<:Number} @__dot__ cache.coeffs = (-)(a.coeffs) return cache end function negateT(a::T, cache::Taylor0) where {T<:Number} # requires cache1 clean cache[0] = -a return cache end #################################################subsub########################################################" """subsub(a::Taylor0, b::Taylor0,c::Taylor0,cache::Taylor0) cache=a-b-c """ function subsub(a::Taylor0, b::Taylor0, c::Taylor0, cache::Taylor0) @__dot__ cache.coeffs = subsub(a.coeffs, b.coeffs, c.coeffs) return cache end function subsub(a::Taylor0, b::Taylor0, c::T, cache::Taylor0) where {T<:Number} cache.coeffs .= b.coeffs cache[0] = cache[0] + c #(a-b-c=a-(b+c)) @__dot__ cache.coeffs = (-)(a.coeffs, cache.coeffs) return cache end subsub(a::Taylor0, b::T, c::Taylor0, cache::Taylor0) where {T<:Number} = subsub(a, c, b, cache) function subsub(a::T, b::Taylor0, c::Taylor0, cache::Taylor0) where {T<:Number} @__dot__ cache.coeffs = (-)(b.coeffs) cache[0] = a + cache[0] @__dot__ cache.coeffs = (-)(cache.coeffs, c.coeffs) return cache end function subsub(a::Taylor0, b::T, c::T, cache::Taylor0) where {T<:Number} cache.coeffs .= a.coeffs cache[0] = cache[0] - b - c return cache end function subsub(a::T, b::Taylor0, c::T, cache::Taylor0) where {T<:Number} @__dot__ cache.coeffs = (-)(b.coeffs) cache[0] = cache[0] + a - c return cache end subsub(b::T, c::T, a::Taylor0, cache::Taylor0) where {T<:Number} = subsub(b, a, c, cache) function subsub(a::T, b::T, c::T, cache::Taylor0) where {T<:Number}#require emptying the cache cache[0] = a - b - c return cache end #################################subadd####################################"" function subadd(a::P, b::Q, c::R, cache::Taylor0) where {P,Q,R<:Union{Taylor0,Number}} addsub(a, c, b, cache) end ##################################""subT################################ """subT(a::Taylor0, b::Taylor0,cache::Taylor0) cache=a-b """ function subT(a::Taylor0, b::Taylor0, cache::Taylor0)# where {T<:Number} @__dot__ cache.coeffs = (-)(a.coeffs, b.coeffs) return cache end function subT(a::Taylor0, b::T, cache::Taylor0) where {T<:Number} @__dot__ cache.coeffs = a.coeffs cache[0] = cache[0] - b return cache end function subT(a::T, b::Taylor0, cache::Taylor0) where {T<:Number} @__dot__ cache.coeffs = (-)(b.coeffs) cache[0] = cache[0] + a return cache end function subT(a::T, b::T, cache::Taylor0) where {T<:Number} ##require emptying the cache #cache.coeffs.=0.0 # ok to empty...allocates !!! cache[0] = a - b return cache end #= function addT(a::Taylor0, b::T) where {T<:Number} #case where no cache is given, a is not a var and it is ok to modify it (its the result of previous inter-ops) a[0]=a[0]+b return a end =# #= function addT(a::Taylor0, b::Taylor0) where {T<:Number} #case where no cache is given, ok to squash a @__dot__ a.coeffs = (+)(a.coeffs, b.coeffs) return a end =# """addT(a::Taylor0, b::Taylor0,cache::Taylor0) cache=a+b """ function addT(a::Taylor0, b::Taylor0, cache::Taylor0) @__dot__ cache.coeffs = (+)(a.coeffs, b.coeffs) return cache end function addT(a::Taylor0, b::T, cache::Taylor0) where {T<:Number} cache.coeffs .= a.coeffs cache[0] = cache[0] + b return cache end addT(b::T, a::Taylor0, cache::Taylor0) where {T<:Number} = addT(a, b, cache) function addT(a::T, b::T, cache::Taylor0) where {T<:Number}#require emptying the cache #cache.coeffs.=0.0 # cache[0] = a + b return cache end #add Three vars a b c function addT(a::Taylor0, b::Taylor0, c::Taylor0, cache::Taylor0) @__dot__ cache.coeffs = (+)(a.coeffs, b.coeffs, c.coeffs) return cache end function addT(a::Taylor0, b::Taylor0, c::T, cache::Taylor0) where {T<:Number} @__dot__ cache.coeffs = (+)(a.coeffs, b.coeffs) cache[0] = cache[0] + c return cache end addT(a::Taylor0, c::T, b::Taylor0, cache::Taylor0) where {T<:Number} = addT(a, b, c, cache) addT(c::T, a::Taylor0, b::Taylor0, cache::Taylor0) where {T<:Number} = addT(a, b, c, cache) function addT(a::Taylor0, b::T, c::T, cache::Taylor0) where {T<:Number} cache.coeffs .= a.coeffs cache[0] = cache[0] + c + b return cache end addT(b::T, a::Taylor0, c::T, cache::Taylor0) where {T<:Number} = addT(a, b, c, cache) addT(b::T, c::T, a::Taylor0, cache::Taylor0) where {T<:Number} = addT(a, b, c, cache) function addT(a::T, b::T, c::T, cache::Taylor0) where {T<:Number}#require clean cache cache[0] = a + b + c return cache end ####################mul uses one cache when the original mul has only two elemnts a * b function mulT(a::Taylor0, b::T, cache1::Taylor0) where {T<:Number} fill!(cache1.coeffs, b)##I fixed broadcast dimension mismatch @__dot__ cache1.coeffs = a.coeffs * cache1.coeffs ##I fixed broadcast dimension mismatch return cache1 end mulT(a::T, b::Taylor0, cache1::Taylor0) where {T<:Number} = mulT(b, a, cache1) """mulT(a::Taylor0, b::Taylor0,cache1::Taylor0) cache1=a*b """ function mulT(a::Taylor0, b::Taylor0, cache1::Taylor0) for k in eachindex(a) @inbounds cache1[k] = a[0] * b[k] @inbounds for i = 1:k cache1[k] += a[i] * b[k-i] end end return cache1 end function mulT(a::T, b::T, cache1::Taylor0) where {T<:Number} #cache1 needs to be clean: a clear here will alloc...this is the only "mul" that wants a clean cache #sometimes the cache can be dirty at only first position: it will not throw an assert error!!! # cache[1].coeffs.=0.0 #it causes two allocs for mul(cst,cst,a,b) cache1[0] = a * b return cache1 end #########################mul uses two caches when the op has many terms########################### function mulTT(a::Taylor0, b::T, cache1::Taylor0, cache2::Taylor0) where {T<:Number}#in middle ops: a is the returned cache1 so do not fudge a or cache1 before the end fill!(cache2.coeffs, b) @__dot__ cache1.coeffs = a.coeffs * cache2.coeffs ##fixed broadcast dimension mismatch return cache1 end mulTT(a::T, b::Taylor0, cache1::Taylor0, cache2::Taylor0) where {T<:Number} = mulTT(b, a, cache1, cache2) function mulTT(a::Taylor0, b::Taylor0, cache1::Taylor0, cache2::Taylor0) #in middle ops: a is the returned cache1 so do not fudge a or cache1 before the end for k in eachindex(a) @inbounds cache2[k] = a[0] * b[k] @inbounds for i = 1:k cache2[k] += a[i] * b[k-i] end end @__dot__ cache1.coeffs = cache2.coeffs return cache1 end function mulTT(a::T, b::T, cache1::Taylor0, cache2::Taylor0) where {T<:Number} #cache1 needs to be clean: a clear here will alloc...this is the only "mul" that wants a clean cache #sometimes the cache can be dirty at only first position: it will not throw an assert error!!! # cache[1].coeffs.=0.0 #it causes two allocs for mul(cst,cst,a,b) cache1[0] = a * b return cache1 end #########################################muladdT and subadd not test : added T to muladd cuz there did not want to import muladd to extend...maybe later #= function muladdT(a::Taylor0, b::Taylor0, c::Taylor0,cache1::Taylor0) where {T<:Number} for k in eachindex(a) cache1[k] = a[0] * b[k] + c[k] @inbounds for i = 1:k cache1[k] += a[i] * b[k-i] end end @__dot__ cache1.coeffs = cache2.coeffs return cache1 end =# """muladdT(a::P,b::Q,c::R,cache1::Taylor0) where {P,Q,R <:Union{Taylor0,Number}} cache1=a*b+c """ function muladdT(a::P, b::Q, c::R, cache1::Taylor0) where {P,Q,R<:Union{Taylor0,Number}} addT(mulT(a, b, cache1), c, cache1) # improvement of added performance not tested: there is one extra step of #puting cache in itself end """mulsub(a::P,b::Q,c::R,cache1::Taylor0) where {P,Q,R <:Union{Taylor0,Number}} cache1=a*b-c """ function mulsub(a::P, b::Q, c::R, cache1::Taylor0) where {P,Q,R<:Union{Taylor0,Number}} subT(mulT(a, b, cache1), c, cache1) end function divT(a::T, b::T, cache1::Taylor0) where {T<:Number} cache1[0] = a / b return cache1 end function divT(a::Taylor0, b::T, cache1::Taylor0) where {T<:Number} fill!(cache1.coeffs, b) #println("division") #= @inbounds aux = a.coeffs[1] / b v = Array{typeof(aux)}(undef, length(a.coeffs)) =# @__dot__ cache1.coeffs = a.coeffs / cache1.coeffs return cache1 end function divT(a::T, b::Taylor0, cache1::Taylor0) where {T<:Number} powerT(b, -1.0, cache1) @__dot__ cache1.coeffs = cache1.coeffs * a ### broadcast dimension mismatch------------------div can have 2 caches then...:( return cache1 end #divT(a::Taylor0, b::Taylor0{S}) where {T<:Number,S<:Number} = divT(promote(a,b)...) """divT(a::Taylor0, b::Taylor0,cache1::Taylor0) cache1=a/b """ function divT(a::Taylor0, b::Taylor0, cache1::Taylor0) iszero(a) && !iszero(b) && return cache1 # this op has its own clean cache2 ordfact, cdivfact = divfactorization(a, b) cache1[0] = cdivfact for k = 1:a.order-ordfact imin = max(0, k + ordfact - b.order) @inbounds cache1[k] = cache1[imin] * b[k+ordfact-imin] @inbounds for i = imin+1:k-1 cache1[k] += cache1[i] * b[k+ordfact-i] end if k + ordfact ≤ b.order @inbounds cache1[k] = (a[k+ordfact] - cache1[k]) / b[ordfact] else @inbounds cache1[k] = -cache1[k] / b[ordfact] end end return cache1 end #= function clearCache(cache::Vector{Taylor0},::Val{CS},::Val{3}) where {CS} for i=1:CS cache[i][0]=0.0 cache[i][1]=0.0 cache[i][2]=0.0 cache[i][3]=0.0 # no need to clean? higher value is empty end end =# #= function clearCache(cache::Vector{Taylor0},::Val{2}) #where {CS} #for i=1:CS cache[1].coeffs.=0.0 cache[2].coeffs.=0.0 # end end =# function clearCache(cache::Vector{Taylor0}, ::Val{CS}, ::Val{2}) where {CS} for i = 1:CS cache[i][0] = 0.0 cache[i][1] = 0.0 cache[i][2] = 0.0 end end function clearCache(cache::Vector{Taylor0}, ::Val{CS}, ::Val{1}) where {CS} for i = 1:CS cache[i][0] = 0.0 cache[i][1] = 0.0 end end #= function clearCache(cache::Vector{Taylor0}) #where {T<:Number} for i=1:length(cache) cache[i].coeffs.=0.0 end end =#
QuantizedSystemSolver
https://github.com/mongibellili/QuantizedSystemSolver.jl.git
[ "MIT" ]
1.0.1
b4bf1003586f2ee6cb98d8df29e88cbbfacd2ea1
code
2745
# Float64his file is part of the Taylor0Series.jl Julia package, MIFloat64 license # # Luis Benet & David P. Sanders # UNAM # # MIFloat64 Expat license # ## Constructors ## """Taylor0 A struct that defines a Taylor Variable. It has the following fields:\n - coeffs: An array of Float64 that holds the coefficients of the Taylor series\n - order: The order of the Taylor series """ struct Taylor0 #<: AbstractSeries{Float64} coeffs::Array{Float64,1} order::Int end Taylor0(x::Taylor0) = x Taylor0(coeffs::Array{Float64,1}) = Taylor0(coeffs, length(coeffs) - 1) function Taylor0(x::Float64, order::Int) v = fill(0.0, order + 1) v[1] = x return Taylor0(v, order) end getcoeff(a::Taylor0, n::Int) = (@assert 0 ≤ n ≤ a.order;return a[n]) getindex(a::Taylor0, n::Int) = a.coeffs[n+1] setindex!(a::Taylor0, x::T, n::Int) where {T<:Number} = a.coeffs[n+1] = x #@inline iterate(a::Taylor0, state=0) = state > a.order ? nothing : (a.coeffs[state+1], state + 1) @inline length(a::Taylor0) = length(a.coeffs) @inline firstindex(a::Taylor0) = 0 @inline lastindex(a::Taylor0) = a.order @inline eachindex(a::Taylor0) = firstindex(a):lastindex(a) @inline size(a::Taylor0) = size(a.coeffs) @inline get_order(a::Taylor0) = a.order #numtype(a) = eltype(a) # Finds the first non zero entry; extended to Taylor0 function Base.findfirst(a::Taylor0) first = findfirst(x -> !iszero(x), a.coeffs) isa(first, Nothing) && return -1 return first - 1 end # Finds the last non-zero entry; extended to Taylor0 function Base.findlast(a::Taylor0) last = findlast(x -> !iszero(x), a.coeffs) isa(last, Nothing) && return -1 return last - 1 end constant_term(a::Taylor0) = a[0] function evaluate(a::Taylor0, dx::T) where {T<:Number} @inbounds suma = a[end] @inbounds for k in a.order-1:-1:0 suma = suma * dx + a[k] end suma end (p::Taylor0)(x) = evaluate(p, x) #= function differentiate!(p::Taylor0, a::Taylor0, k::Int) if k < a.order @inbounds p[k] = (k + 1) * a[k+1] end return nothing end =# function differentiate!(::Val{O}, cache::Taylor0, a::Taylor0) where {O} for k = 0:O-1 @inbounds cache[k] = (k + 1) * a[k+1] end cache[O] = 0.0 #cache Letter O not zero nothing end function ndifferentiate!(cache::Taylor0, a::Taylor0, n::Int) if n > a.order cache.coeffs .= 0.0 elseif n == 0 cache.coeffs .= a.coeffs else differentiate!(Val(a.order), cache, a) for i = 2:n differentiate!(Val(a.order), cache, cache) end #return Taylor0(view(res.coeffs, 1:a.order-n+1)) end end function testTaylor(a::Taylor0) Taylor0(a) getcoeff(a,1) length(a) size(a) get_order(a) end
QuantizedSystemSolver
https://github.com/mongibellili/QuantizedSystemSolver.jl.git
[ "MIT" ]
1.0.1
b4bf1003586f2ee6cb98d8df29e88cbbfacd2ea1
code
9863
# This file is part of the TaylorSeries.jl Julia package, MIT license # # Luis Benet & David P. Sanders # UNAM # # MIT Expat license # # Functions function exp(a::Taylor0) order = a.order aux = exp(constant_term(a)) aa = one(aux) * a c = Taylor0(aux, order) for k in eachindex(a) exp!(c, aa, k) end return c end function log(a::Taylor0) iszero(constant_term(a)) && throw(DomainError(a, """The 0-th order coefficient must be non-zero in order to expand `log` around 0.""")) order = a.order aux = log(constant_term(a)) aa = one(aux) * a c = Taylor0(aux, order) for k in eachindex(a) log!(c, aa, k) end return c end sin(a::Taylor0) = sincos(a)[1] cos(a::Taylor0) = sincos(a)[2] function sincos(a::Taylor0) order = a.order aux = sin(constant_term(a)) aa = one(aux) * a s = Taylor0(aux, order) c = Taylor0(cos(constant_term(a)), order) for k in eachindex(a) sincos!(s, c, aa, k) end return s, c end function tan(a::Taylor0) order = a.order aux = tan(constant_term(a)) aa = one(aux) * a c = Taylor0(aux, order) c2 = Taylor0(aux^2, order) for k in eachindex(a) tan!(c, aa, c2, k) end return c end function asin(a::Taylor0) a0 = constant_term(a) a0^2 == one(a0) && throw(DomainError(a, """Series expansion of asin(x) diverges at x = ±1.""")) order = a.order aux = asin(a0) aa = one(aux) * a c = Taylor0(aux, order) r = Taylor0(sqrt(1 - a0^2), order) for k in eachindex(a) asin!(c, aa, r, k) end return c end function acos(a::Taylor0) a0 = constant_term(a) a0^2 == one(a0) && throw(DomainError(a, """Series expansion of asin(x) diverges at x = ±1.""")) order = a.order aux = acos(a0) aa = one(aux) * a c = Taylor0(aux, order) r = Taylor0(sqrt(1 - a0^2), order) for k in eachindex(a) acos!(c, aa, r, k) end return c end function atan(a::Taylor0) order = a.order a0 = constant_term(a) aux = atan(a0) aa = one(aux) * a c = Taylor0(aux, order) r = Taylor0(one(aux) + a0^2, order) iszero(constant_term(r)) && throw(DomainError(a, """Series expansion of atan(x) diverges at x = ±im.""")) for k in eachindex(a) atan!(c, aa, r, k) end return c end sinh(a::Taylor0) = sinhcosh(a)[1] cosh(a::Taylor0) = sinhcosh(a)[2] function sinhcosh(a::Taylor0) order = a.order aux = sinh(constant_term(a)) aa = one(aux) * a s = Taylor0(aux, order) c = Taylor0(cosh(constant_term(a)), order) for k in eachindex(a) sinhcosh!(s, c, aa, k) end return s, c end function tanh(a::Taylor0) order = a.order aux = tanh(constant_term(a)) aa = one(aux) * a c = Taylor0(aux, order) c2 = Taylor0(aux^2, order) for k in eachindex(a) tanh!(c, aa, c2, k) end return c end function asinh(a::Taylor0) order = a.order a0 = constant_term(a) aux = asinh(a0) aa = one(aux) * a c = Taylor0(aux, order) r = Taylor0(sqrt(a0^2 + 1), order) iszero(constant_term(r)) && throw(DomainError(a, """Series expansion of asinh(x) diverges at x = ±im.""")) for k in eachindex(a) asinh!(c, aa, r, k) end return c end function acosh(a::Taylor0) a0 = constant_term(a) a0^2 == one(a0) && throw(DomainError(a, """Series expansion of acosh(x) diverges at x = ±1.""")) order = a.order aux = acosh(a0) aa = one(aux) * a c = Taylor0(aux, order) r = Taylor0(sqrt(a0^2 - 1), order) for k in eachindex(a) acosh!(c, aa, r, k) end return c end function atanh(a::Taylor0) order = a.order a0 = constant_term(a) aux = atanh(a0) aa = one(aux) * a c = Taylor0(aux, order) r = Taylor0(one(aux) - a0^2, order) iszero(constant_term(r)) && throw(DomainError(a, """Series expansion of atanh(x) diverges at x = ±1.""")) for k in eachindex(a) atanh!(c, aa, r, k) end return c end @inline function exp!(c::Taylor0, a::Taylor0, k::Int) if k == 0 @inbounds c[0] = exp(constant_term(a)) #this was already computed before!!no need to do anything if k==0 return nothing end @inbounds c[k] = k * a[k] * c[0] @inbounds for i = 1:k-1 c[k] += (k - i) * a[k-i] * c[i] end @inbounds c[k] = c[k] / k return nothing end @inline function log!(c::Taylor0, a::Taylor0, k::Int) if k == 0 @inbounds c[0] = log(constant_term(a)) return nothing elseif k == 1 @inbounds c[1] = a[1] / constant_term(a) return nothing end @inbounds c[k] = (k - 1) * a[1] * c[k-1] @inbounds for i = 2:k-1 c[k] += (k - i) * a[i] * c[k-i] end @inbounds c[k] = (a[k] - c[k] / k) / constant_term(a) return nothing end @inline function sincos!(s::Taylor0, c::Taylor0, a::Taylor0, k::Int) if k == 0 a0 = constant_term(a) @inbounds s[0], c[0] = sincos(a0) return nothing end x = a[1] @inbounds s[k] = x * c[k-1] @inbounds c[k] = -x * s[k-1] @inbounds for i = 2:k x = i * a[i] s[k] += x * c[k-i] c[k] -= x * s[k-i] end @inbounds s[k] = s[k] / k @inbounds c[k] = c[k] / k return nothing end @inline function tan!(c::Taylor0, a::Taylor0, c2::Taylor0, k::Int) if k == 0 @inbounds aux = tan(constant_term(a)) @inbounds c[0] = aux @inbounds c2[0] = aux^2 return nothing end @inbounds c[k] = k * a[k] * c2[0] @inbounds for i = 1:k-1 c[k] += (k - i) * a[k-i] * c2[i] end @inbounds c[k] = a[k] + c[k] / k sqr!(c2, c, k) return nothing end @inline function asin!(c::Taylor0, a::Taylor0, r::Taylor0, k::Int) if k == 0 a0 = constant_term(a) @inbounds c[0] = asin(a0) @inbounds r[0] = sqrt(1 - a0^2) return nothing end @inbounds c[k] = (k - 1) * r[1] * c[k-1] @inbounds for i in 2:k-1 c[k] += (k - i) * r[i] * c[k-i] end sqrt!(r, 1 - a^2, k) @inbounds c[k] = (a[k] - c[k] / k) / constant_term(r) return nothing end @inline function acos!(c::Taylor0, a::Taylor0, r::Taylor0, k::Int) if k == 0 a0 = constant_term(a) @inbounds c[0] = acos(a0) @inbounds r[0] = sqrt(1 - a0^2) return nothing end @inbounds c[k] = (k - 1) * r[1] * c[k-1] @inbounds for i in 2:k-1 c[k] += (k - i) * r[i] * c[k-i] end sqrt!(r, 1 - a^2, k) @inbounds c[k] = -(a[k] + c[k] / k) / constant_term(r) return nothing end @inline function atan!(c::Taylor0, a::Taylor0, r::Taylor0, k::Int) if k == 0 a0 = constant_term(a) @inbounds c[0] = atan(a0) @inbounds r[0] = 1 + a0^2 return nothing end @inbounds c[k] = (k - 1) * r[1] * c[k-1] @inbounds for i in 2:k-1 c[k] += (k - i) * r[i] * c[k-i] end @inbounds sqr!(r, a, k) @inbounds c[k] = (a[k] - c[k] / k) / constant_term(r) return nothing end @inline function sinhcosh!(s::Taylor0, c::Taylor0, a::Taylor0, k::Int) if k == 0 @inbounds s[0] = sinh(constant_term(a)) @inbounds c[0] = cosh(constant_term(a)) return nothing end x = a[1] @inbounds s[k] = x * c[k-1] @inbounds c[k] = x * s[k-1] @inbounds for i = 2:k x = i * a[i] s[k] += x * c[k-i] c[k] += x * s[k-i] end s[k] = s[k] / k c[k] = c[k] / k return nothing end @inline function tanh!(c::Taylor0, a::Taylor0, c2::Taylor0, k::Int) if k == 0 @inbounds aux = tanh(constant_term(a)) @inbounds c[0] = aux @inbounds c2[0] = aux^2 return nothing end @inbounds c[k] = k * a[k] * c2[0] @inbounds for i = 1:k-1 c[k] += (k - i) * a[k-i] * c2[i] end @inbounds c[k] = a[k] - c[k] / k sqr!(c2, c, k) return nothing end @inline function asinh!(c::Taylor0, a::Taylor0, r::Taylor0, k::Int) if k == 0 a0 = constant_term(a) @inbounds c[0] = asinh(a0) @inbounds r[0] = sqrt(a0^2 + 1) return nothing end @inbounds c[k] = (k - 1) * r[1] * c[k-1] @inbounds for i in 2:k-1 c[k] += (k - i) * r[i] * c[k-i] end sqrt!(r, a^2 + 1, k) # a^...allocates will need a third cache @inbounds c[k] = (a[k] - c[k] / k) / constant_term(r) return nothing end @inline function acosh!(c::Taylor0, a::Taylor0, r::Taylor0, k::Int) if k == 0 a0 = constant_term(a) @inbounds c[0] = acosh(a0) @inbounds r[0] = sqrt(a0^2 - 1) return nothing end @inbounds c[k] = (k - 1) * r[1] * c[k-1] @inbounds for i in 2:k-1 c[k] += (k - i) * r[i] * c[k-i] end sqrt!(r, a^2 - 1, k) @inbounds c[k] = (a[k] - c[k] / k) / constant_term(r) return nothing end @inline function atanh!(c::Taylor0, a::Taylor0, r::Taylor0, k::Int) if k == 0 a0 = constant_term(a) @inbounds c[0] = atanh(a0) @inbounds r[0] = 1 - a0^2 return nothing end @inbounds c[k] = (k - 1) * r[1] * c[k-1] @inbounds for i in 2:k-1 c[k] += (k - i) * r[i] * c[k-i] end @inbounds sqr!(r, a, k) @inbounds c[k] = (a[k] + c[k] / k) / constant_term(r) return nothing end function abs(a::Taylor0) if constant_term(a) > 0 return a elseif constant_term(a) < 0 return -a else throw(DomainError(a, """The 0th order Taylor0 coefficient must be non-zero (abs(x) is not differentiable at x=0).""")) end end function Derivative(y, x) #error("abs is not defined yet. please report this issue if ABS was not used in the original code") if x > 0 return 1 elseif x < 0 return -1 else return 0 end end
QuantizedSystemSolver
https://github.com/mongibellili/QuantizedSystemSolver.jl.git
[ "MIT" ]
1.0.1
b4bf1003586f2ee6cb98d8df29e88cbbfacd2ea1
code
3977
# This file is part of the TaylorSeries.jl Julia package, MIT license # # Luis Benet & David P. Sanders # UNAM # # MIT Expat license # # Functions function exp(a::Taylor0, c::Taylor0) order = a.order #aux = exp(constant_term(a)) for k in eachindex(a) exp!(c, a, k) end return c end function exp(a::T, c::Taylor0) where {T<:Number} c[0] = exp(a) return c end function log(a::Taylor0, c::Taylor0) iszero(constant_term(a)) && throw(DomainError(a, """The 0-th order coefficient must be non-zero in order to expand `log` around 0.""")) for k in eachindex(a) log!(c, a, k) end return c end function log(a::T, c::Taylor0) where {T<:Number} iszero(a) && throw(DomainError(a, """ log(0) undefined.""")) c[0] = log(a) return c end function sincos(a::Taylor0, s::Taylor0, c::Taylor0) for k in eachindex(a) sincos!(s, c, a, k) end return s, c end sin(a::Taylor0, s::Taylor0, c::Taylor0) = sincos(a, s, c)[1] cos(a::Taylor0, c::Taylor0, s::Taylor0) = sincos(a, s, c)[2] function sin(a::T, s::Taylor0, c::Taylor0) where {T<:Number} s[0] = sin(a) return s end function cos(a::T, s::Taylor0, c::Taylor0) where {T<:Number} s[0] = cos(a) return s end function tan(a::Taylor0, c::Taylor0, c2::Taylor0) for k in eachindex(a) tan!(c, a, c2, k) end return c end function tan(a::T, c::Taylor0, c2::Taylor0) where {T<:Number} c[0] = tan(a) return c end #####################################constant case not implemented yet function asin(a::Taylor0, c::Taylor0, r::Taylor0, cache3::Taylor0) a0 = constant_term(a) a0^2 == one(a0) && throw(DomainError(a, """Series expansion of asin(x) diverges at x = ±1.""")) for k in eachindex(a) asin!(c, a, r, cache3, k) end return c end function acos(a::Taylor0, c::Taylor0, r::Taylor0, cache3::Taylor0) a0 = constant_term(a) a0^2 == one(a0) && throw(DomainError(a, """Series expansion of asin(x) diverges at x = ±1.""")) for k in eachindex(a) acos!(c, a, r, cache3, k) end return c end function atan(a::Taylor0, c::Taylor0, r::Taylor0) for k in eachindex(a) atan!(c, a, r, k) end return c end @inline function asin!(c::Taylor0, a::Taylor0, r::Taylor0, cache3::Taylor0, k::Int) if k == 0 a0 = constant_term(a) @inbounds c[0] = asin(a0) @inbounds r[0] = sqrt(1 - a0^2) return nothing end @inbounds c[k] = (k - 1) * r[1] * c[k-1] @inbounds for i in 2:k-1 c[k] += (k - i) * r[i] * c[k-i] end cache3 = square(a, cache3) @__dot__ cache3.coeffs = (-)(cache3.coeffs) cache3[0] = 1 + cache3[0] #1-square(a,cache3)=1-a^2 sqrt!(r, cache3, k) @inbounds c[k] = (a[k] - c[k] / k) / constant_term(r) return nothing end @inline function acos!(c::Taylor0, a::Taylor0, r::Taylor0, cache3::Taylor0, k::Int) if k == 0 a0 = constant_term(a) @inbounds c[0] = acos(a0) @inbounds r[0] = sqrt(1 - a0^2) return nothing end @inbounds c[k] = (k - 1) * r[1] * c[k-1] @inbounds for i in 2:k-1 c[k] += (k - i) * r[i] * c[k-i] end cache3 = square(a, cache3) @__dot__ cache3.coeffs = (-)(cache3.coeffs) cache3[0] = 1 + cache3[0] #1-square(a,cache3)=1-a^2 sqrt!(r, cache3, k) @inbounds c[k] = -(a[k] + c[k] / k) / constant_term(r) return nothing end function abs(a::Taylor0, cache1::Taylor0) if constant_term(a) > 0 @__dot__ cache1.coeffs = (a.coeffs) return cache1 elseif constant_term(a) < 0 @__dot__ cache1.coeffs = (-)(a.coeffs) return cache1 else cache1.coeffs .= Inf # no need to throw error, Inf is fine...for my solver i deal with it by guarding against small steps cache1[0] = 0.0 return cache1 end end function abs(a::T, cache1::Taylor0) where {T<:Number} cache1[0] = abs(a) return cache1 end
QuantizedSystemSolver
https://github.com/mongibellili/QuantizedSystemSolver.jl.git
[ "MIT" ]
1.0.1
b4bf1003586f2ee6cb98d8df29e88cbbfacd2ea1
code
3868
# This file is part of the TaylorSeries.jl Julia package, MIT license # # Luis Benet & David P. Sanders # UNAM # # MIT Expat license # function ^(a::Taylor0, n::Integer) n == 0 && return one(a) n == 1 && return (a) n == 2 && return square(a) n < 0 && throw(DomainError("taylor^n & n<0 !!")) return power_by_squaring(a, n) end #^(a::Taylor0, x::Rational) = a^(x.num / x.den) ^(a::Taylor0, b::Taylor0) = exp(b * log(a)) #^(a::Taylor0, x::T) where {T<:Complex} = exp(x * log(a)) function power_by_squaring(x::Taylor0, p::Integer) p == 1 && return (x) p == 0 && return one(x) p == 2 && return square(x) t = trailing_zeros(p) + 1 p >>= t while (t -= 1) > 0 x = square(x) end y = x while p > 0 t = trailing_zeros(p) + 1 p >>= t while (t -= 1) ≥ 0 x = square(x) end y *= x end return y end ## Real power ## function ^(a::Taylor0, r::S) where {S<:Real} a0 = constant_term(a) aux = one(a0)^r iszero(r) && return Taylor0(1.0, a.order) aa = aux * a r == 1 && return a r == 2 && return square(a) r == 1 / 2 && return sqrt(a) l0 = findfirst(a) lnull = trunc(Int, r * l0) if (a.order - lnull < 0) || (lnull > a.order) return Taylor0(0.0, a.order) end c_order = l0 == 0 ? a.order : min(a.order, trunc(Int, r * a.order)) c = Taylor0(0.0, c_order) for k = 0:c_order pow!(c, aa, r, k) end return c end @inline function pow!(c::Taylor0, a::Taylor0, r::S, k::Int) where {S<:Real} l0 = findfirst(a) if l0 < 0 c[k] = zero(a[0]) return nothing end lnull = trunc(Int, r * l0) kprime = k - lnull if (kprime < 0) || (lnull > a.order) @inbounds c[k] = zero(a[0]) return nothing end if isinteger(r) && r > 0 && (k > r * findlast(a)) @inbounds c[k] = zero(a[0]) return nothing end if k == lnull @inbounds c[k] = (a[l0])^r return nothing end # The recursion formula if l0 + kprime ≤ a.order @inbounds c[k] = r * kprime * c[lnull] * a[l0+kprime] else @inbounds c[k] = zero(a[0]) end for i = 1:k-lnull-1 ((i + lnull) > a.order || (l0 + kprime - i > a.order)) && continue aux = r * (kprime - i) - i @inbounds c[k] += aux * c[i+lnull] * a[l0+kprime-i] end @inbounds c[k] = c[k] / (kprime * a[l0]) return nothing end function square(a::Taylor0) c = Taylor0(constant_term(a)^2, a.order) for k in 1:a.order sqr!(c, a, k) end return c end @inline function sqr!(c::Taylor0, a::Taylor0, k::Int) if k == 0 @inbounds c[0] = constant_term(a)^2 return nothing end kodd = k % 2 kend = div(k - 2 + kodd, 2) @inbounds for i = 0:kend c[k] += a[i] * a[k-i] end @inbounds c[k] = 2 * c[k] kodd == 1 && return nothing @inbounds c[k] += a[div(k, 2)]^2 return nothing end ## Square root ## function sqrt(a::Taylor0) l0nz = findfirst(a) aux = zero(a[0]) if l0nz < 0 return Taylor0(aux, a.order) end c = Taylor0(sqrt(a[0]), a.order) aa = one(aux) * a for k = 1:a.order sqrt!(c, aa, k, 0) end return c end @inline function sqrt!(c::Taylor0, a::Taylor0, k::Int, k0::Int=0) kodd = (k - k0) % 2 kend = div(k - k0 - 2 + kodd, 2) imax = min(k0 + kend, a.order) imin = max(k0 + 1, k + k0 - a.order) if imin ≤ imax c[k] = c[imin] * c[k+k0-imin] end @inbounds for i = imin+1:imax c[k] += c[i] * c[k+k0-i] end if k + k0 ≤ a.order @inbounds aux = a[k+k0] - 2 * c[k] else @inbounds aux = -2 * c[k] end if kodd == 0 @inbounds aux = aux - (c[kend+k0+1])^2 end @inbounds c[k] = aux / (2 * c[k0]) return nothing end
QuantizedSystemSolver
https://github.com/mongibellili/QuantizedSystemSolver.jl.git
[ "MIT" ]
1.0.1
b4bf1003586f2ee6cb98d8df29e88cbbfacd2ea1
code
1505
# This file is part of the TaylorSeries.jl Julia package, MIT license # # Luis Benet & David P. Sanders # UNAM # # MIT Expat license # powerT(a::Taylor0, n::Integer, cache1::Taylor0) = powerT(a, float(n), cache1) ## Real power ## function powerT(a::Taylor0, r::S, cache1::Taylor0) where {S<:Real} if iszero(r) #later test r=0.0 cache1[0] = 1.0 return cache1 end r == 1.0 && return a r == 2.0 && return square(a, cache1) r == 1 / 2 && return sqrt(a, cache1) l0 = findfirst(a) lnull = trunc(Int, r * l0) if (a.order - lnull < 0) || (lnull > a.order) return cache1 #empty end c_order = l0 == 0 ? a.order : min(a.order, trunc(Int, r * a.order)) for k = 0:c_order pow!(cache1, a, r, k) end return cache1 end function powerT(a::T, r::S, cache1::Taylor0) where {S<:Real,T<:Number} cache1[0] = a^r return cache1 end function square(a::Taylor0, cache1::Taylor0) #internal helper function ...no need to take care of a==number #c = Taylor0( constant_term(a)^2, a.order) cache1[0] = constant_term(a)^2 for k in 1:a.order sqr!(cache1, a, k) end return cache1 end ## Square root ## function sqrt(a::Taylor0, cache1::Taylor0) l0nz = findfirst(a) if l0nz < 0 cache1 end cache1[0] = sqrt(a[0]) for k = 1:a.order sqrt!(cache1, a, k, 0) end return cache1 end function sqrt(a::T, cache1::Taylor0) where {T<:Number} cache1[0] = sqrt(a) return cache1 end
QuantizedSystemSolver
https://github.com/mongibellili/QuantizedSystemSolver.jl.git
[ "MIT" ]
1.0.1
b4bf1003586f2ee6cb98d8df29e88cbbfacd2ea1
code
362
#get .cov files #= using Pkg Pkg.test("QuantizedSystemSolver"; coverage=true) # run this then comment and run next code =# # get lcov from .cov files (summary) using Coverage coverage = process_folder() open("lcov.info", "w") do io LCOV.write(io, coverage) end; #clean up the folder when not needed #= using Coverage Coverage.clean_folder(".") =#
QuantizedSystemSolver
https://github.com/mongibellili/QuantizedSystemSolver.jl.git
[ "MIT" ]
1.0.1
b4bf1003586f2ee6cb98d8df29e88cbbfacd2ea1
code
4017
using QuantizedSystemSolver t1=Taylor0([1.0,1.0,0.0],2) t2=Taylor0([2.0,2.0,3.0],2) t3=Taylor0([1.0,1.0,0.0],2) cache1=Taylor0([1.0,1.0,1.0],2) cache2=Taylor0([1.0,1.0,1.0],2) @test zero(t2)==Taylor0([0.0,0.0,0.0],2) @test one(t2)==Taylor0([1.0,0.0,0.0],2) @test t1==t3 zero(t1,cache1) @test cache1[0]==0.0 one(t1,cache1) @test cache1[0]==1.0 t4=t1+t3 @test +t1==Taylor0([1.0,1.0,0.0],2) @test t4==Taylor0([2.0,2.0,0.0],2) @test 5.0+t4==Taylor0([7.0,2.0,0.0],2) @test t4+5.0==Taylor0([7.0,2.0,0.0],2) @test t4-t3==t1 @test -t4==Taylor0([-2.0,-2.0,0.0],2) @test t4-5.0==Taylor0([-3.0,2.0,0.0],2) @test 5.0-t4==Taylor0([3.0,-2.0,-0.0],2) @test 5.0*t4==Taylor0([10.0,10.0,0.0],2) @test t4*5.0==Taylor0([10.0,10.0,0.0],2) @test t4/2.0==Taylor0([1.0,1.0,0.0],2) @test t1*t2 == Taylor0([2.0, 4.0, 5.0], 2) @test t4/t1 ==Taylor0([2.0, 0.0, 0.0], 2) createT(3.6,cache1) @test cache1[0]==3.6 createT(t2,cache1) @test cache1[0]==2.0 addT(4.3,5.2,cache1) @test cache1[0]==9.5 addT(t1,5.6,cache1) @test cache1[0]==6.6 addT(5.6,t1,cache1) @test cache1[0]==6.6 addT(t1,t2,cache1) @test cache1[0]==3.0 addT(t1,t2,4.8,cache1) @test cache1[0]==7.8 addT(1.0,1.0,4.8,cache1) @test cache1[0]==6.8 addT(t1,4.8,t2,cache1) @test cache1[0]==7.8 addT(4.8,t2,t1,cache1) @test cache1[0]==7.8 addT(4.8,t2,1.0,cache1) @test cache1[0]==7.8 addT(4.8,1.0,t2,cache1) @test cache1[0]==7.8 addT(t1,t2,t3,cache1) @test cache1[0]==4.0 addT(t1,t2,t3,1.2,cache1) @test cache1[0]==5.2 addT(t1,t2,t3,1.2,1.0,cache1) @test cache1[0]==6.2 addT(t1,t2,t3,1.2,1.0,1.0,cache1) @test cache1[0]==7.2 addT(t1,t2,t3,1.2,1.0,1.0,t1,cache1) @test cache1[0]==8.2 addT(t1,t2,t3,1.2,1.0,1.0,t1,1.0,cache1) @test cache1[0]==9.2 addT(t1,t2,t3,1.2,1.0,1.0,t1,1.0,0.3,cache1) @test cache1[0]==9.5 addT(t1,0.5,t2,t3,1.2,1.0,1.0,t1,1.0,0.3,cache1) @test cache1[0]==10.0 subT(4.3,5.3,cache1) @test cache1[0]==-1.0 subT(t2,t1,cache1) @test cache1==Taylor0([1.0, 1.0, 3.0], 2) cache1=Taylor0([0.0,0.0,0.0],2) subT(2.0,t1,cache1) @test cache1==Taylor0([1.0, -1.0, 0.0], 2) subT(t1,2.0,cache1) @test cache1==Taylor0([-1.0, 1.0, 0.0], 2) negateT(t1,cache1) @test cache1==Taylor0([-1.0, -1.0, 0.0], 2) cache1=Taylor0([0.0,0.0,0.0],2) negateT(2.0,cache1) @test cache1==Taylor0([-2.0, 0.0, 0.0], 2) addsub(5.0,1.5,2.0,cache1) @test cache1[0]==4.5 addsub(t1,t2,t3,cache1) @test cache1[0]==2.0 addsub(t1,5.0,t2,cache1) @test cache1[0]==4.0 addsub(0.5,5.0,t2,cache1) @test cache1[0]==3.5 addsub(t2,1.0,0.5,cache1) @test cache1[0]==2.5 addsub(1.0,t2,0.5,cache1) @test cache1[0]==2.5 subadd(5.0,1.5,2.0,cache1) @test cache1[0]==5.5 subsub(5.0,1.5,2.0,cache1) @test cache1[0]==1.5 subsub(t1,t2,t3,cache1) @test cache1[0]==-2.0 subsub(t1,5.0,t2,cache1) @test cache1[0]==-6.0 subsub(5.0,t1,t2,cache1) @test cache1[0]==2.0 subsub(0.5,5.0,t2,cache1) @test cache1[0]==-6.5 subsub(t1,1.0,1.0,cache1) @test cache1[0]==-1.0 #mulT mulT(4.3,5.2,cache1) @test cache1[0]==22.36 mulT(t1,5.6,cache1) @test cache1[0]==5.6 mulT(t1,t2,cache1) @test cache1[0]==2.0 #mulTT mulTT(5.0,1.5,2.0,cache1,cache2) @test cache1[0]==15.0 mulTT(t1,t2,t3,cache1,cache2) @test cache1[0]==2.0 mulTT(t1,5.0,t2,cache1,cache2) @test cache1[0]==10.0 mulTT(0.5,5.0,t2,cache1,cache2) @test cache1[0]==5.0 mulTT(0.5,5.0,t2,1.0,cache1,cache2) @test cache1[0]==5.0 mulTT(0.5,5.0,t2,1.0,t1,cache1,cache2) @test cache1[0]==5.0 mulTT(0.5,5.0,t2,1.0,t1,0.5,cache1,cache2) @test cache1[0]==2.5 mulTT(0.5,5.0,t2,1.0,t1,0.5,1.0,cache1,cache2) @test cache1[0]==2.5 #muladdT muladdT(5.0,1.5,2.0,cache1) @test cache1[0]==9.5 muladdT(t1,t2,t3,cache1) @test cache1[0]==3.0 muladdT(t1,5.0,t2,cache1) @test cache1[0]==7.0 muladdT(0.5,5.0,t2,cache1) @test cache1[0]==4.5 #mulsub mulsub(5.0,1.5,2.0,cache1) @test cache1[0]==5.5 mulsub(t1,t2,t3,cache1) @test cache1[0]==1.0 mulsub(t1,5.0,t2,cache1) @test cache1[0]==3.0 mulsub(0.5,5.0,t2,cache1) @test cache1[0]==0.5 #divT divT(4.3,2.0,cache1) @test cache1[0]==2.15 divT(t1,2.0,cache1) @test cache1[0]==0.5 divT(5.6,t1,cache1) @test cache1[0]==5.6 divT(t1,t2,cache1) @test cache1[0]==0.5
QuantizedSystemSolver
https://github.com/mongibellili/QuantizedSystemSolver.jl.git
[ "MIT" ]
1.0.1
b4bf1003586f2ee6cb98d8df29e88cbbfacd2ea1
code
2228
using QuantizedSystemSolver using Test t1=Taylor0([1.0,1.0,0.0],2) t2=Taylor0([0.5,2.0,3.0],2) t3=Taylor0([2.0,1.0,0.0],2) cache1=Taylor0([1.0,1.0,1.0],2) cache2=Taylor0([1.0,1.0,1.0],2) testTaylor(t1) @test exp(t2)[0]≈1.6487212707001282 @test log(t2)[0]≈-0.6931471805599453 @test sin(t2)[0]≈0.479425538604203 @test cos(t2)[0]≈0.8775825618903728 @test tan(t2)[0]≈0.5463024898437905 @test asin(t2)[0]≈0.5235987755982989 @test acos(t2)[0]≈1.0471975511965979 @test atan(t2)[0]≈0.4636476090008061 @test sinh(t2)[0]≈0.5210953054937474 @test cosh(t2)[0]≈1.1276259652063807 @test tanh(t2)[0]≈0.46211715726000974 @test asinh(t2)[0]≈0.48121182505960347 @test acosh(t3)[0]≈1.3169578969248166 @test atanh(t2)[0]≈0.5493061443340549 @test abs(t2)[0]≈0.5 @test abs(-t2)[0]≈0.5 cache3=Taylor0([0.0,0.0,0.0],2) @test exp(t2,cache1)[0]≈1.6487212707001282 @test log(t2,cache1)[0]≈-0.6931471805599453 @test sin(t2,cache1,cache2)[0]≈0.479425538604203 @test cos(t2,cache1,cache2)[0]≈0.8775825618903728 @test tan(t2,cache1,cache2)[0]≈0.5463024898437905 @test asin(t2,cache1,cache2,cache3)[0]≈0.5235987755982989 @test acos(t2,cache1,cache2,cache3)[0]≈1.0471975511965979 @test atan(t2,cache1,cache2)[0]≈0.4636476090008061 @test abs(t2,cache1)[0]≈0.5 @test (t2^0)[0]≈1.0 @test (t2^1)[0]≈0.5 @test (t2^2)[0]≈0.25 @test (t2^3)[0]≈0.125 @test (t2^0.0)[0]≈1.0 @test (t2^1.0)[0]≈0.5 @test (t2^2.0)[0]≈0.25 @test (t2^3.0)[0]≈0.125 @test (t2^0.5)[0]≈0.7071067811865476 @test sqrt(t2)[0]≈0.7071067811865476 @test powerT(t2,0,cache1)[0]≈1.0 @test powerT(t2,1,cache1)[0]≈0.5 @test powerT(t2,2,cache1)[0]≈0.25 @test powerT(t2,3.0,cache1)[0]≈0.125 @test sqrt(t2,cache1)[0]≈0.7071067811865476 t2=1.0 @test exp(t2,cache1)[0]≈2.718281828459045 @test log(t2,cache1)[0]≈0.0 @test sin(t2,cache1,cache2)[0]≈0.8414709848078965 @test cos(t2,cache1,cache2)[0]≈0.5403023058681398 @test tan(t2,cache1,cache2)[0]≈1.5574077246549023 @test abs(t2,cache1)[0]≈1.0 t4=Taylor0([-2.0,1.0,0.0],2) @test abs(t4,cache1)[0]≈2.0 @test (t2^2)≈1.0 @test (t2^3.0)≈1.0 @test sqrt(t2)≈1.0 @test powerT(t2,2,cache1)[0]≈1.0 @test powerT(t2,3.0,cache1)[0]≈1.0 @test sqrt(t2,cache1)[0]≈1.0
QuantizedSystemSolver
https://github.com/mongibellili/QuantizedSystemSolver.jl.git
[ "MIT" ]
1.0.1
b4bf1003586f2ee6cb98d8df29e88cbbfacd2ea1
code
2427
using QuantizedSystemSolver #using XLSX #using BenchmarkTools using BSON #using TimerOutputs #using Plots function test(case,solvr) absTol=1e-5 relTol=1e-2 BSON.@load "./solVectAdvection_N1000d01_Feagin14e-12.bson" solFeagin14VectorN1000d01 prob=NLodeProblem(quote name=(adrN1000d01,) u[1:333]=1.0 u[334:1000]=0.0 _dx=100.0#1/dx=N/10=1000/10 a=1.0;d=0.1;r=1000.0 #discrete=[0.0] du[1] = -a*_dx*(u[1]-0.0)+d*_dx*_dx*(u[2]-2.0*u[1]+0.0)+r*u[1]*u[1]*(1.0-u[1]) for k in 2:999 du[k]=-a*_dx*(u[k]-u[k-1])+d*_dx*_dx*(u[k+1]-2.0*u[k]+u[k-1])+r*u[k]*u[k]*(1.0-u[k]) ; end du[1000]=-a*_dx*(u[1000]-u[999])+d*_dx*_dx*(2.0*u[999]-2.0*u[1000])+r*u[1000]*u[1000]*(1.0-u[1000]) #= if u[1]-10.0>0.0 #fake to test discreteintgrator & loop discrete[1]=1.0 end =# end) println("start adr solving") ttnmliqss=0.0 tspan=(0.0,5.0) solnmliqss=solve(prob,abstol=absTol,reltol=relTol,tspan)# # @show solnmliqss.totalSteps,solnmliqss.simulStepCount #save_Sol(solnmliqss,1,2,600,1000,note="analy1") #@show solnmliqss.savedVars #save_Sol(solnmliqss) solnmliqssInterp=solInterpolated(solnmliqss,0.01) #@show solnmliqssInterp.savedVars err4=getAverageErrorByRefs(solFeagin14VectorN1000d01,solnmliqssInterp) # @show err4,solnmliqss.totalSteps #ttnmliqss=@belapsed solve($prob,$solvr,abstol=$absTol,saveat=0.01,reltol=$relTol,$tspan) resnmliqss12E_2= ("$(solnmliqss.algName)",relTol,err4,solnmliqss.totalSteps,solnmliqss.simulStepCount,ttnmliqss) @show resnmliqss12E_2 #= XLSX.openxlsx("3sys $(solvr)_$(case)_$(relTol).xlsx", mode="w") do xf sheet = xf[1] sheet["A1"] = "3sys __$case)" sheet["A4"] = collect(("solver","Tolerance","error","totalSteps","simul_steps","time")) sheet["A5"] = collect(resnmliqss1E_2) sheet["A6"] = collect(resnmliqss11E_2) sheet["A7"] = collect(resnmliqss12E_2) #= sheet["A8"] = collect(resnmliqss2E_2) sheet["A9"] = collect(resnmliqss2E_3) sheet["A10"] = collect(resnmliqss2E_4) =# end =# end case="order1_" println("golden search") #test(case,mliqss1()) #goldenSearch println("compareBounds") test(case,nmliqss2()) #compareBounds #test(case,mliqssBounds1()) println("iterations") #test(case,nliqss1()) #iterations
QuantizedSystemSolver
https://github.com/mongibellili/QuantizedSystemSolver.jl.git
[ "MIT" ]
1.0.1
b4bf1003586f2ee6cb98d8df29e88cbbfacd2ea1
code
1073
using QuantizedSystemSolver function test() odeprob = NLodeProblem(quote #NLodeProblem(quote ... end); name=(buck,) C = 1e-4; L = 1e-4; R = 10.0;U = 24.0; T = 1e-4; DC = 0.5; ROn = 1e-5;ROff = 1e5; discrete = [1e5,1e-5,1e-4,0.0,0.0];u = [0.0,0.0] rd=discrete[1];rs=discrete[2];nextT=discrete[3];lastT=discrete[4];diodeon=discrete[5] il=u[1] ;uc=u[2] id=(il*rs-U)/(rd+rs) # diode's current du[1] =(-id*rd-uc)/L du[2]=(il-uc/R)/C if t-nextT>0.0 lastT=nextT;nextT=nextT+T;rs=ROn end if t-lastT-DC*T>0.0 rs=ROff end if diodeon*(id)+(1.0-diodeon)*(id*rd-0.6)>0 rd=ROn;diodeon=1.0 else rd=ROff;diodeon=0.0 end end) tspan = (0.0, 0.001) sol= solve(odeprob,qss2(),tspan,abstol=1e-4,reltol=1e-3) save_Sol(sol) xp=sol(2,0.0005) @show xp #getAverageErrorByRefs(solRef::Vector{Any},solmliqss::Sol{T,O}) end test()
QuantizedSystemSolver
https://github.com/mongibellili/QuantizedSystemSolver.jl.git
[ "MIT" ]
1.0.1
b4bf1003586f2ee6cb98d8df29e88cbbfacd2ea1
code
1932
acceptedi=Vector{Vector{Float64}}(undef,3) for i =1:3 acceptedi[i]=[0.0,0.0]#zeros(2) end constructIntrval(acceptedi,1.0,2.0,3.0,4.0) @test acceptedi[1] ==[0.0, 1.0] @test acceptedi[2]==[2.0, 3.0] @test acceptedi[3] ==[4.0, Inf] constructIntrval(acceptedi,1.0,2.0,4.0,3.0) constructIntrval(acceptedi,1.0,4.0,3.0,2.0) constructIntrval(acceptedi,2.0,1.0,3.0,4.0) constructIntrval(acceptedi,2.0,1.0,4.0,3.0) constructIntrval(acceptedi,4.0,1.0,3.0,2.0) constructIntrval(acceptedi,4.0,3.0,1.0,2.0) constructIntrval(acceptedi,3.0,4.0,1.0,2.0) constructIntrval(acceptedi,4.0,3.0,2.0,1.0) constructIntrval(acceptedi,3.0,4.0,2.0,1.0) constructIntrval(acceptedi,2.0,3.0,4.0,1.0) constructIntrval(acceptedi,-1.0,2.0,3.0,4.0) constructIntrval(acceptedi,-1.0,4.0,3.0,2.0) constructIntrval(acceptedi,-1.0,2.0,4.0,3.0) constructIntrval(acceptedi,1.0,-2.0,3.0,4.0) constructIntrval(acceptedi,1.0,2.0,-3.0,4.0) constructIntrval(acceptedi,1.0,2.0,3.0,-4.0) constructIntrval(acceptedi,-1.0,-2.0,3.0,4.0) constructIntrval(acceptedi,-1.0,2.0,-3.0,4.0) constructIntrval(acceptedi,-1.0,2.0,3.0,-4.0) constructIntrval(acceptedi,1.0,-2.0,-3.0,4.0) constructIntrval(acceptedi,1.0,-2.0,3.0,-4.0) constructIntrval(acceptedi,1.0,2.0,-3.0,-4.0) constructIntrval(acceptedi,-1.0,-2.0,-3.0,4.0) constructIntrval(acceptedi,-1.0,-2.0,3.0,-4.0) constructIntrval(acceptedi,-1.0,2.0,-3.0,-4.0) constructIntrval(acceptedi,1.0,-2.0,-3.0,-4.0) simt, x, β, c, α, b=0.05,1.0,3.5,-0.5,1.0,-6.0 getQfromAsymptote(simt, x, β, c, α, b) simt, x, β, c, α, b=0.05,1.0,0.0,-0.5,1.0,-6.0 getQfromAsymptote(simt, x, β, c, α, b) simt, x, β, c, α, b=0.05,1.0,0.0,0.0,1.0,-6.0 getQfromAsymptote(simt, x, β, c, α, b) simt, x, β, c, α, b=0.05,1.0,0.0,0.0,0.0,-6.0 getQfromAsymptote(simt, x, β, c, α, b) h, xi, quani, xj, quanj, aii, ajj, aij, aji, uij, uji=1.0,0.1,0.0001,-3.0,0.003,2.0,0.5,10.0,1.5,1.0,1.0 iterationH(h, xi, quani, xj, quanj, aii, ajj, aij, aji, uij, uji)
QuantizedSystemSolver
https://github.com/mongibellili/QuantizedSystemSolver.jl.git
[ "MIT" ]
1.0.1
b4bf1003586f2ee6cb98d8df29e88cbbfacd2ea1
code
990
using QuantizedSystemSolver function test() odeprob = NLodeProblem(quote name=(cuk,) C = 1e-4; L = 1e-4; R = 10.0;U = 24.0; T = 1e-4; DC = 0.25; ROn = 1e-5;ROff = 1e5;L1=1e-4;C1=1e-4 discrete = [1e5,1e-5,1e-4,0.0,0.0] u = [0.0,0.0,0.0,0.0] rd=discrete[1];rs=discrete[2];nextT=discrete[3];lastT=discrete[4];diodeon=discrete[5] il=u[1] ;uc=u[3];il1=u[2] ;uc1=u[4] id=((il+il1)*rs-uc1)/(rd+rs) # diode's current du[1] =(-id*rd-uc)/L #il du[2]=(U-uc1-id*rd)/L1 #il1 du[3]=(il-uc/R)/C #uc du[4]=(id-il)/C1 #uc1 if t-nextT>0.0 lastT=nextT nextT=nextT+T rs=ROn end if t-lastT-DC*T>0.0 rs=ROff end if diodeon*(id)+(1.0-diodeon)*(id*rd)>0 rd=ROn diodeon=1.0 else rd=ROff diodeon=0.0 end end) tspan=(0.0,0.001) sol= solve(odeprob,nmliqss2(),abstol=1e-4,reltol=1e-3,tspan) save_Sol(sol,note="QuantizedSystemSolver") end test()
QuantizedSystemSolver
https://github.com/mongibellili/QuantizedSystemSolver.jl.git
[ "MIT" ]
1.0.1
b4bf1003586f2ee6cb98d8df29e88cbbfacd2ea1
code
2345
using QuantizedSystemSolver #using BenchmarkTools using Test function test() odeprob = NLodeProblem(quote name=(cuk4sym,) C = 1e-4; L = 1e-4; R = 10.0;U = 24.0; T = 1e-4; DC = 0.25; ROn = 1e-5;ROff = 1e5;L1=1e-4;C1=1e-4;C2 = 1e-4;L2 = 1e-4; #discrete Rd(start=1e5), Rs(start=1e-5), nextT(start=T),lastT,diodeon; discrete = [1e5,1e-5,1e-4,0.0,0.0] Rd=discrete[1];Rs=discrete[2];nextT=discrete[3];lastT=discrete[4];diodeon=discrete[5] u[1:13]=0.0 uc2=u[13] il2_1=u[i] ;il2_2=u[i-4] ;il2_3=u[i-8] ;il1_1=u[i+4] ;il1_2=u[i] ;il1_3=u[i-4] ;uc1_1=u[i+8];uc1_2=u[i+4] ;uc1_3=u[i] ; id1=(((il2_1+il1_1)*Rs-uc1_1)/(Rd+Rs)) id2=(((il2_2+il1_2)*Rs-uc1_2)/(Rd+Rs)) id3=(((il2_3+il1_3)*Rs-uc1_3)/(Rd+Rs)) for i=1:4 #il2 du[i] =(-uc2-Rs*id1)/L2 end for i=5:8 #il1 du[i]=(U-uc1_2-id2*Rs)/L1 end for i=9:12 #uc1 du[i]=(id3-il2_3)/C1 end du[13]=(u[1]+u[2]+u[3]+u[4]-uc2/R)/C2 if t-nextT>0.0 lastT=nextT nextT=nextT+T Rs=ROn end if t-lastT-DC*T>0.0 Rs=ROff end if diodeon*(((u[1]+u[5])*Rs-u[9])/(Rd+Rs))+(1.0-diodeon)*(((u[1]+u[5])*Rs-u[9])*Rd/(Rd+Rs))>0 Rd=ROn diodeon=1.0 else Rd=ROff diodeon=0.0 end if diodeon*(((u[2]+u[6])*Rs-u[10])/(Rd+Rs))+(1.0-diodeon)*(((u[2]+u[6])*Rs-u[10])*Rd/(Rd+Rs))>0 Rd=ROn diodeon=1.0 else Rd=ROff diodeon=0.0 end if diodeon*(((u[3]+u[7])*Rs-u[11])/(Rd+Rs))+(1.0-diodeon)*(((u[3]+u[7])*Rs-u[11])*Rd/(Rd+Rs))>0 Rd=ROn diodeon=1.0 else Rd=ROff diodeon=0.0 end if diodeon*(((u[4]+u[8])*Rs-u[12])/(Rd+Rs))+(1.0-diodeon)*(((u[4]+u[8])*Rs-u[12])*Rd/(Rd+Rs))>0 Rd=ROn diodeon=1.0 else Rd=ROff diodeon=0.0 end end) tspan=(0.0,0.0005) println("start solving") sol= solve(odeprob,nmliqss2(),abstol=1e-4,reltol=1e-3,tspan) @test -0.46<sol(1,0.0004)<-0.4 @test 0.4<sol(5,0.0004)<0.45 @test 2.55<sol(9,0.0004)<2.57 @test -2.98<sol(13,0.0004)<-2.9 end #@btime test()
QuantizedSystemSolver
https://github.com/mongibellili/QuantizedSystemSolver.jl.git
[ "MIT" ]
1.0.1
b4bf1003586f2ee6cb98d8df29e88cbbfacd2ea1
code
791
using OrdinaryDiffEq #= using BenchmarkTools using XLSX =# using Plots function odeDiffEquPackage() function funcName(du,u,p,t)# api requires four args #= du[1] = acos(sin(u[2])) du[2] = (u[1]) =# #= du[1] = t du[2] =1.24*u[1]-0.01*u[2]+0.2 =# du[1] = t for k in 2:5 du[k]=(u[k]-u[k-1]) ; end end tspan = (0.0,5.0) u0= [1.0, 0.0,1.0, 0.0,1.0] prob = ODEProblem(funcName,u0,tspan) absTol=1e-5 relTol=1e-2 solRosenbrock23 = solve(prob,Rosenbrock23(),saveat=0.01,abstol = absTol, reltol = relTol) #1.235 ms (1598 allocations: 235.42 KiB) p1=plot!(solRosenbrock23,marker=(:circle),markersize=2) savefig(p1, "plot_solRosenbrock23_N8.png") end odeDiffEquPackage()
QuantizedSystemSolver
https://github.com/mongibellili/QuantizedSystemSolver.jl.git
[ "MIT" ]
1.0.1
b4bf1003586f2ee6cb98d8df29e88cbbfacd2ea1
code
10353
odeprob = NLodeProblem(quote name=(sysb1,) u = [-1.0, -2.0] du[1] = -2.0 du[2] =1.24*u[1]-0.01*u[2]+0.2 end) tspan=(0.0,1.0) sol=solve(odeprob,qss1(),tspan) sol=solve(odeprob,qss2(),tspan) sol=solve(odeprob,liqss1(),tspan) sol=solve(odeprob,liqss2(),tspan) sol=solve(odeprob,nmliqss1(),tspan) sol=solve(odeprob,nmliqss2(),tspan) @show -2.6<sol(1,0.7)<-2.2 @show -3.517<sol(2,0.7)<-3.117 odeprob = NLodeProblem(quote name=(sysb2,) u = [-1.0, -2.0] du[1] = -u[2] du[2] =1.24*u[1]+0.01*u[2]-0.2 end) tspan=(0.0,1.0) sol=solve(odeprob,qss1(),tspan) sol=solve(odeprob,qss2(),tspan) sol=solve(odeprob,liqss1(),tspan) sol=solve(odeprob,liqss2(),tspan) sol=solve(odeprob,nmliqss1(),tspan) sol=solve(odeprob,nmliqss2(),tspan) @show 0.5<sol(1,0.7)<0.7 @show -2.4<sol(2,0.7)<-2.2 odeprob = NLodeProblem(quote name=(sysb53,) u = [-1.0, -2.0] du[1] = -20.0*u[1]-80.0*u[2]+1600.0 du[2] =1.24*u[1]-0.01*u[2]+0.2 end) tspan=(0.0,10.0) sol=solve(odeprob,qss1(),tspan) sol=solve(odeprob,qss2(),tspan) sol=solve(odeprob,liqss1(),tspan) sol=solve(odeprob,liqss2(),tspan) sol=solve(odeprob,nmliqss1(),tspan) sol=solve(odeprob,nmliqss2(),tspan) plot_Sol(sol) plot_Sol(sol,1) u1, u2 = -8.73522174738572, -7.385745994549763 λ1, λ2 = -10.841674966758294, -9.168325033241706 c1, c2 = 121.14809142478035, -143.14809142478035 xp1, xp2 = 0.0, 20.0 x1(t)=c1*u1*exp(λ1*t)+c2*u2*exp(λ2*t)+xp1 x2(t)=c1*exp(λ1*t)+c2*exp(λ2*t)+xp2 solnmliqssInterp=solInterpolated(sol,0.01) er1=getError(solnmliqssInterp,1,x1) er2=getError(solnmliqssInterp,2,x2) @test 0.0<er1<0.00099 @test 0.0<er2<7.4e-5 odeprob = NLodeProblem(quote #NLodeProblem(quote ... end); name=(buck,) C = 1e-4; L = 1e-4; R = 10.0;U = 24.0; T = 1e-4; DC = 0.5; ROn = 1e-5;ROff = 1e5; discrete = [1e5,1e-5,1e-4,0.0,0.0];u = [0.0,0.0] rd=discrete[1];rs=discrete[2];nextT=discrete[3];lastT=discrete[4];diodeon=discrete[5] il=u[1] ;uc=u[2] id=(il*rs-U)/(rd+rs) # diode's current du[1] =(-id*rd-uc)/L du[2]=(il-uc/R)/C if t-nextT>0.0 lastT=nextT;nextT=nextT+T;rs=ROn end if t-lastT-DC*T>0.0 rs=ROff end if diodeon*(id)+(1.0-diodeon)*(id*rd-0.6)>0 rd=ROn;diodeon=1.0 else rd=ROff;diodeon=0.0 end end) tspan = (0.0, 0.001) sol= solve(odeprob,nmliqss2(),tspan,abstol=1e-4,reltol=1e-3) @test 19.0<sol(2,0.0005)<19.4 sol= solve(odeprob,nmliqss1(),tspan,abstol=1e-4,reltol=1e-3) @test 19.0<sol(2,0.0005)<19.4 sol= solve(odeprob,qss2(),tspan,abstol=1e-4,reltol=1e-3) BSON.@load "./solVectAdvection_N1000d01_Feagin14e-12.bson" solFeagin14VectorN1000d01 prob=NLodeProblem(quote name=(adrN1000d01,) u[1:333]=1.0 u[334:1000]=0.0 _dx=100.0#1/dx=N/10=1000/10 a=1.0;d=0.1;r=1000.0 #discrete=[0.0] du[1] = -a*_dx*(u[1]-0.0)+d*_dx*_dx*(u[2]-2.0*u[1]+0.0)+r*u[1]*u[1]*(1.0-u[1]) for k in 2:999 du[k]=-a*_dx*(u[k]-u[k-1])+d*_dx*_dx*(u[k+1]-2.0*u[k]+u[k-1])+r*u[k]*u[k]*(1.0-u[k]) ; end du[1000]=-a*_dx*(u[1000]-u[999])+d*_dx*_dx*(2.0*u[999]-2.0*u[1000])+r*u[1000]*u[1000]*(1.0-u[1000]) #= if u[1]-10.0>0.0 #fake to test discreteintgrator & loop discrete[1]=1.0 end =# end) tspan=(0.0,5.0) sol=solve(prob,nmliqss1(),abstol=1e-5,reltol=1e-2,tspan)# sol=solve(prob,abstol=1e-5,reltol=1e-2,tspan)# solnmliqssInterp=solInterpolated(sol,0.01) getErrorByRefs(solnmliqssInterp,1,solFeagin14VectorN1000d01) err4=getAverageErrorByRefs(solnmliqssInterp,solFeagin14VectorN1000d01) @test err4<0.05 @show 0.35<sol(1,1.5)<0.39 @show 0.63<sol(2,1.5)<0.67 @show 0.97<sol(400,1.5)<1.0 @show 0.97<sol(600,1.5)<1.0 @show 0.97<sol(1000,1.5)<1.0 odeprob = NLodeProblem(quote name=(tyson,) u = [0.0,0.75,0.25,0.0,0.0,0.0] du[1] = u[4]-1e6*u[1]+1e3*u[2] du[2] =-200.0*u[2]*u[5]+1e6*u[1]-1e3*u[2] du[3] = 200.0*u[2]*u[5]-u[3]*(0.018+180.0*(u[4]/(u[1]+u[2]+u[3]+u[4]))^2) du[4] =u[3]*(0.018+180.0*(u[4]/(u[1]+u[2]+u[3]+u[4]))^2)-u[4] du[5] = 0.015-200.0*u[2]*u[5] du[6] =u[4]-0.6*u[6] end ) tspan=(0.0,25.0) sol=solve(odeprob,nmliqss2(),tspan) @show 0.00001<sol(1,20.0)<0.01 @show 0.8<sol(2,20.0)<0.99 @show 0.05<sol(3,20.0)<0.09 @show 0.00001<sol(4,20.0)<0.01 @show 0.0<sol(5,20.0)<8.0e-4 @show 0.01<sol(6,20.0)<0.02 odeprob = NLodeProblem(quote name=(sysbN5,) #u = [1.0, 0.0] u[1]=1.0 u[2] = 0.0 du[1] = -sin(t) du[2] = (u[1]) end) tspan=(0.0,1.0) sol=solve(odeprob,qss2(),tspan) @show 0.5<sol(1,0.7)<0.9 @show 0.4<sol(2,0.7)<0.8 odeprob = NLodeProblem(quote name=(sysbN6,) u = [1.0, 0.0] du[1] = -exp(u[2]) du[2] = (u[1]) end) tspan=(0.0,1.0) sol=solve(odeprob,qss2(),tspan) @show 0.07<sol(1,0.7)<0.1 @show 0.2<sol(2,0.7)<0.6 odeprob = NLodeProblem(quote name=(sysbN66,) u = [1.0, 0.0] du[1] = -abs(u[2]) du[2] = (u[1]) end) tspan=(0.0,1.0) sol=solve(odeprob,qss1(),tspan) sol=solve(odeprob,liqss1(),tspan) @show 0.6<sol(1,0.7)<0.8 @show 0.5<sol(2,0.7)<0.7 odeprob = NLodeProblem(quote name=(sysbN8,) u = [1.0, 0.0] du[1] = acos(sin(u[2])) du[2] = (u[1]) end) tspan=(0.0,1.0) sol=solve(odeprob,qss2(),tspan) @test 1.3<sol(1,0.5)<1.8 @test 0.4<sol(2,0.5)<0.8 odeprob = NLodeProblem(quote name=(sysbN7,) u = [1.0, 0.0] du[1] = -(u[2]+t^2) du[2] = u[1] end) tspan=(0.0,1.0) sol=solve(odeprob,qss2(),tspan) @test 0.7<sol(1,0.5)<0.9 odeprob = NLodeProblem(quote name=(sysN10,) u = [1.0, 0.0] du[1] = t du[2] =1.24*u[1]-0.01*u[2]+0.2 end) tspan=(0.0,5.0) sol=solve(odeprob,qss1(),tspan) sol=solve(odeprob,qss2(),tspan) sol=solve(odeprob,liqss1(),tspan) sol=solve(odeprob,liqss2(),tspan) sol=solve(odeprob,nmliqss1(),tspan) sol=solve(odeprob,nmliqss2(),tspan) @test 0.6<sol(2,0.5)<0.8 odeprob = NLodeProblem(quote name=(sysN11,) u = [1.0, 0.0] du[1] = t du[2] =1.24*u[1]-0.01*u[2]+0.2 if t-2.0>0.0 u[1] = 0.0 else u[2] = 0.0 end end) tspan=(0.0,5.0) sol=solve(odeprob,qss2(),tspan) sol=solve(odeprob,liqss2(),tspan) sol=solve(odeprob,nmliqss2(),tspan) @test 0.6<sol(2,0.5)<0.8 odeprob = NLodeProblem(quote name=(sysN12,) u = [1.0, 0.0,1.0, 0.0,1.0] du[1] = t for k in 2:5 du[k]=(u[k]-u[k-1]) ; end if t-3.0>0.0 u[1] = 1.0 u[2] = 0.0 u[3] = 1.0 u[4] = 0.0 u[5] = 1.0 end end) tspan=(0.0,6.0) sol=solve(odeprob,qss2(),tspan) sol=solve(odeprob,liqss2(),tspan) sol=solve(odeprob,nmliqss2(),tspan) @test -0.75<sol(2,0.5)<-0.6 plot_SolSum(sol,1,2,xlims=(0.0,1.0),ylims=(0.0,2.0)) plot_SolSum(sol,1,2,xlims=(0.0,1.0),ylims=(0.0,0.0)) plot_SolSum(sol,1,2,xlims=(0.0,0.0),ylims=(0.0,1.0)) plot_SolSum(sol,1,2) save_Sol(sol,1,2,3,4,5) save_SolSum(sol,1,2) plot_Sol(sol,1,2,) plot_Sol(sol,1,2,xlims=(0.0,1.0),ylims=(0.0,2.0)) plot_Sol(sol,1,2,xlims=(0.0,1.0),ylims=(0.0,0.0)) plot_Sol(sol,1,2,xlims=(0.0,0.0),ylims=(0.0,1.0)) odeprob = NLodeProblem(quote name=(sysN13,) u = [1.0, 0.0,1.0, 0.0,1.0] discrete = [0.5] du[1] = t for k in 2:5 du[k]=discrete[1]*(u[k]-u[k-1]) ; end if t-5.0>0.0 discrete[1]=0.0 end if t-3.0>0.0 u[1] = 1.0 u[2] = 0.0 u[3] = 1.0 u[4] = 0.0 u[5] = 1.0 discrete[1]=1.0 end end) tspan=(0.0,6.0) sol=solve(odeprob,qss1(),tspan) sol=solve(odeprob,liqss1(),tspan) sol=solve(odeprob,nmliqss2(),tspan) @test 1.1<sol(1,0.5)<1.3 @test -0.35<sol(2,0.5)<-0.2 odeprob = NLodeProblem(quote name=(sysN14,) u = [1.0, 0.0,1.0, 0.0,1.0] discrete = [0.5] du[1] = t for k in 2:5 du[k]=discrete[1]*(u[k]-u[k-1]) ; end if t-5.0>0.0 discrete[1]=0.0 end if u[1]-2.0>0.0 u[1] = 1.0 u[2] = 0.0 u[3] = 1.0 u[4] = 0.0 u[5] = 1.0 discrete[1]=1.0 end end) tspan=(0.0,6.0) sol=solve(odeprob,nmliqss2(),tspan) @test -0.35<sol(2,0.5)<-0.2 sol=solve(odeprob,liqss2(),tspan) odeprob = NLodeProblem(quote name=(sysN15,) u = [1.0, 1.0,1.0, 0.0,1.0,1.0] discrete = [0.5,1.0,1.0,1.0,1.0,1.0] du[1] = t+u[2] for k in 2:5 du[k]=discrete[k]*(u[k*1]-u[k-1]-u[k+1])+(discrete[k+1]+discrete[k-1])*discrete[k*1] ; end if t-5.0>0.0 discrete[2]=0.0 end if u[1]+u[2]-3.0>0.0 u[1] = 1.0 u[3] = 1.0 u[4] = 0.0 discrete[1]=1.0 end if discrete[1]-u[4]+u[5]>0.0 u[2]=0.0 end end) tspan=(0.0,6.0) sol=solve(odeprob,qss2(),tspan) sol=solve(odeprob,liqss2(),tspan) sol=solve(odeprob,nmliqss2(),tspan) @show 1.7<sol(1,0.7)<1.95 @show 0.2<sol(2,0.7)<0.35 odeprob = NLodeProblem(quote name=(cuk4sym,) C = 1e-4; L = 1e-4; R = 10.0;U = 24.0; T = 1e-4; DC = 0.25; ROn = 1e-5;ROff = 1e5;L1=1e-4;C1=1e-4;C2 = 1e-4;L2 = 1e-4; #discrete Rd(start=1e5), Rs(start=1e-5), nextT(start=T),lastT,diodeon; discrete = [1e5,1e-5,1e-4,0.0,0.0] Rd=discrete[1];Rs=discrete[2];nextT=discrete[3];lastT=discrete[4];diodeon=discrete[5] u[1:13]=0.0 uc2=u[13] il2_1=u[i] ;il2_2=u[i-4] ;il2_3=u[i-8] ;il1_1=u[i+4] ;il1_2=u[i] ;il1_3=u[i-4] ;uc1_1=u[i+8];uc1_2=u[i+4] ;uc1_3=u[i] ; id1=(((il2_1+il1_1)*Rs-uc1_1)/(Rd+Rs)) id2=(((il2_2+il1_2)*Rs-uc1_2)/(Rd+Rs)) id3=(((il2_3+il1_3)*Rs-uc1_3)/(Rd+Rs)) for i=1:4 #il2 du[i] =(-uc2-Rs*id1)/L2 end for i=5:8 #il1 du[i]=(U-uc1_2-id2*Rs)/L1 end for i=9:12 #uc1 du[i]=(id3-il2_3)/C1 end du[13]=(u[1]+u[2]+u[3]+u[4]-uc2/R)/C2 if t-nextT>0.0 lastT=nextT nextT=nextT+T Rs=ROn end if t-lastT-DC*T>0.0 Rs=ROff end if diodeon*(((u[1]+u[5])*Rs-u[9])/(Rd+Rs))+(1.0-diodeon)*(((u[1]+u[5])*Rs-u[9])*Rd/(Rd+Rs))>0 Rd=ROn diodeon=1.0 else Rd=ROff diodeon=0.0 end if diodeon*(((u[2]+u[6])*Rs-u[10])/(Rd+Rs))+(1.0-diodeon)*(((u[2]+u[6])*Rs-u[10])*Rd/(Rd+Rs))>0 Rd=ROn diodeon=1.0 else Rd=ROff diodeon=0.0 end if diodeon*(((u[3]+u[7])*Rs-u[11])/(Rd+Rs))+(1.0-diodeon)*(((u[3]+u[7])*Rs-u[11])*Rd/(Rd+Rs))>0 Rd=ROn diodeon=1.0 else Rd=ROff diodeon=0.0 end if diodeon*(((u[4]+u[8])*Rs-u[12])/(Rd+Rs))+(1.0-diodeon)*(((u[4]+u[8])*Rs-u[12])*Rd/(Rd+Rs))>0 Rd=ROn diodeon=1.0 else Rd=ROff diodeon=0.0 end end) tspan=(0.0,0.0005) sol= solve(odeprob,nmliqss2(),abstol=1e-4,reltol=1e-3,tspan) @test -0.46<sol(1,0.0004)<-0.4 @test 0.4<sol(5,0.0004)<0.45 @test 2.55<sol(9,0.0004)<2.57 @test -2.98<sol(13,0.0004)<-2.9
QuantizedSystemSolver
https://github.com/mongibellili/QuantizedSystemSolver.jl.git
[ "MIT" ]
1.0.1
b4bf1003586f2ee6cb98d8df29e88cbbfacd2ea1
code
8358
using QuantizedSystemSolver using Test #= odeprob = NLodeProblem(quote name=(sysb1,) u = [-1.0, -2.0] du[1] = -2.0 du[2] =1.24*u[1]-0.01*u[2]+0.2 end) tspan=(0.0,1.0) sol=solve(odeprob,qss1(),tspan) sol=solve(odeprob,qss2(),tspan) sol=solve(odeprob,liqss1(),tspan) sol=solve(odeprob,liqss2(),tspan) sol=solve(odeprob,nmliqss1(),tspan) sol=solve(odeprob,nmliqss2(),tspan) @test -2.6<sol(1,0.7)<-2.2 @test -3.517<sol(2,0.7)<-3.117 odeprob = NLodeProblem(quote name=(sysb2,) u = [-1.0, -2.0] du[1] = -u[2] du[2] =1.24*u[1]+0.01*u[2]-0.2 end) tspan=(0.0,1.0) sol=solve(odeprob,qss1(),tspan) sol=solve(odeprob,qss2(),tspan) sol=solve(odeprob,liqss1(),tspan) sol=solve(odeprob,liqss2(),tspan) sol=solve(odeprob,nmliqss1(),tspan) sol=solve(odeprob,nmliqss2(),tspan) @test 0.5<sol(1,0.7)<0.7 @test -2.4<sol(2,0.7)<-2.2 odeprob = NLodeProblem(quote name=(sysb53,) u = [-1.0, -2.0] du[1] = -20.0*u[1]-80.0*u[2]+1600.0 du[2] =1.24*u[1]-0.01*u[2]+0.2 end) tspan=(0.0,10.0) sol=solve(odeprob,qss1(),tspan) sol=solve(odeprob,qss2(),tspan) sol=solve(odeprob,liqss1(),tspan) sol=solve(odeprob,liqss2(),tspan) sol=solve(odeprob,nmliqss1(),tspan) sol=solve(odeprob,nmliqss2(),tspan) plot_Sol(sol) plot_Sol(sol,1) u1, u2 = -8.73522174738572, -7.385745994549763 λ1, λ2 = -10.841674966758294, -9.168325033241706 c1, c2 = 121.14809142478035, -143.14809142478035 xp1, xp2 = 0.0, 20.0 x1(t)=c1*u1*exp(λ1*t)+c2*u2*exp(λ2*t)+xp1 x2(t)=c1*exp(λ1*t)+c2*exp(λ2*t)+xp2 solnmliqssInterp=solInterpolated(sol,0.01) er1=getError(solnmliqssInterp,1,x1) er2=getError(solnmliqssInterp,2,x2) @test 0.0<er1<0.00099 @test 0.0<er2<7.4e-5 odeprob = NLodeProblem(quote #NLodeProblem(quote ... end); name=(buck,) C = 1e-4; L = 1e-4; R = 10.0;U = 24.0; T = 1e-4; DC = 0.5; ROn = 1e-5;ROff = 1e5; discrete = [1e5,1e-5,1e-4,0.0,0.0];u = [0.0,0.0] rd=discrete[1];rs=discrete[2];nextT=discrete[3];lastT=discrete[4];diodeon=discrete[5] il=u[1] ;uc=u[2] id=(il*rs-U)/(rd+rs) # diode's current du[1] =(-id*rd-uc)/L du[2]=(il-uc/R)/C if t-nextT>0.0 lastT=nextT;nextT=nextT+T;rs=ROn end if t-lastT-DC*T>0.0 rs=ROff end if diodeon*(id)+(1.0-diodeon)*(id*rd-0.6)>0 rd=ROn;diodeon=1.0 else rd=ROff;diodeon=0.0 end end) tspan = (0.0, 0.001) sol= solve(odeprob,nmliqss2(),tspan,abstol=1e-4,reltol=1e-3) @test 19.0<sol(2,0.0005)<19.4 sol= solve(odeprob,nmliqss1(),tspan,abstol=1e-4,reltol=1e-3) @test 19.0<sol(2,0.0005)<19.4 sol= solve(odeprob,qss2(),tspan,abstol=1e-4,reltol=1e-3) prob=NLodeProblem(quote name=(adrN1000d01,) u[1:333]=1.0 u[334:1000]=0.0 _dx=100.0#1/dx=N/10=1000/10 a=1.0;d=0.1;r=1000.0 #discrete=[0.0] du[1] = -a*_dx*(u[1]-0.0)+d*_dx*_dx*(u[2]-2.0*u[1]+0.0)+r*u[1]*u[1]*(1.0-u[1]) for k in 2:999 du[k]=-a*_dx*(u[k]-u[k-1])+d*_dx*_dx*(u[k+1]-2.0*u[k]+u[k-1])+r*u[k]*u[k]*(1.0-u[k]) ; end du[1000]=-a*_dx*(u[1000]-u[999])+d*_dx*_dx*(2.0*u[999]-2.0*u[1000])+r*u[1000]*u[1000]*(1.0-u[1000]) #= if u[1]-10.0>0.0 #fake to test discreteintgrator & loop discrete[1]=1.0 end =# end) tspan=(0.0,5.0) sol=solve(prob,nmliqss1(),abstol=1e-5,reltol=1e-2,tspan)# sol=solve(prob,abstol=1e-5,reltol=1e-2,tspan)# @test 0.35<sol(1,1.5)<0.39 @test 0.63<sol(2,1.5)<0.67 @test 0.97<sol(400,1.5)<1.0 @test 0.97<sol(600,1.5)<1.0 @test 0.97<sol(1000,1.5)<1.0 odeprob = NLodeProblem(quote name=(tyson,) u = [0.0,0.75,0.25,0.0,0.0,0.0] du[1] = u[4]-1e6*u[1]+1e3*u[2] du[2] =-200.0*u[2]*u[5]+1e6*u[1]-1e3*u[2] du[3] = 200.0*u[2]*u[5]-u[3]*(0.018+180.0*(u[4]/(u[1]+u[2]+u[3]+u[4]))^2) du[4] =u[3]*(0.018+180.0*(u[4]/(u[1]+u[2]+u[3]+u[4]))^2)-u[4] du[5] = 0.015-200.0*u[2]*u[5] du[6] =u[4]-0.6*u[6] end ) tspan=(0.0,25.0) sol=solve(odeprob,nmliqss2(),tspan) @test 0.00001<sol(1,20.0)<0.01 @test 0.8<sol(2,20.0)<0.99 @test 0.05<sol(3,20.0)<0.09 @test 0.00001<sol(4,20.0)<0.01 @test 0.0<sol(5,20.0)<8.0e-4 @test 0.01<sol(6,20.0)<0.02 odeprob = NLodeProblem(quote name=(sysbN5,) #u = [1.0, 0.0] u[1]=1.0 u[2] = 0.0 du[1] = -sin(t) du[2] = (u[1]) end) tspan=(0.0,1.0) sol=solve(odeprob,qss2(),tspan) @test 0.5<sol(1,0.7)<0.9 @test 0.4<sol(2,0.7)<0.8 odeprob = NLodeProblem(quote name=(sysbN6,) u = [1.0, 0.0] du[1] = -exp(u[2]) du[2] = (u[1]) end) tspan=(0.0,1.0) sol=solve(odeprob,qss2(),tspan) @test 0.07<sol(1,0.7)<0.1 @test 0.2<sol(2,0.7)<0.6 odeprob = NLodeProblem(quote name=(sysbN66,) u = [1.0, 0.0] du[1] = -abs(u[2]) du[2] = (u[1]) end) tspan=(0.0,1.0) sol=solve(odeprob,qss1(),tspan) sol=solve(odeprob,liqss1(),tspan) @test 0.6<sol(1,0.7)<0.8 @test 0.5<sol(2,0.7)<0.7 odeprob = NLodeProblem(quote name=(sysbN8,) u = [1.0, 0.0] du[1] = acos(sin(u[2])) du[2] = (u[1]) end) tspan=(0.0,1.0) sol=solve(odeprob,qss2(),tspan) @test 1.3<sol(1,0.5)<1.8 @test 0.4<sol(2,0.5)<0.8 odeprob = NLodeProblem(quote name=(sysbN7,) u = [1.0, 0.0] du[1] = -(u[2]+t^2) du[2] = u[1] end) tspan=(0.0,1.0) sol=solve(odeprob,qss2(),tspan) @test 0.7<sol(1,0.5)<0.9 odeprob = NLodeProblem(quote name=(sysN10,) u = [1.0, 0.0] du[1] = t du[2] =1.24*u[1]-0.01*u[2]+0.2 end) tspan=(0.0,5.0) sol=solve(odeprob,qss1(),tspan) sol=solve(odeprob,qss2(),tspan) sol=solve(odeprob,liqss1(),tspan) sol=solve(odeprob,liqss2(),tspan) sol=solve(odeprob,nmliqss1(),tspan) sol=solve(odeprob,nmliqss2(),tspan) @test 0.6<sol(2,0.5)<0.8 odeprob = NLodeProblem(quote name=(sysN11,) u = [1.0, 0.0] du[1] = t du[2] =1.24*u[1]-0.01*u[2]+0.2 if t-2.0>0.0 u[1] = 0.0 else u[2] = 0.0 end end) tspan=(0.0,5.0) sol=solve(odeprob,qss2(),tspan) sol=solve(odeprob,liqss2(),tspan) sol=solve(odeprob,nmliqss2(),tspan) @test 0.6<sol(2,0.5)<0.8 odeprob = NLodeProblem(quote name=(sysN12,) u = [1.0, 0.0,1.0, 0.0,1.0] du[1] = t for k in 2:5 du[k]=(u[k]-u[k-1]) ; end if t-3.0>0.0 u[1] = 1.0 u[2] = 0.0 u[3] = 1.0 u[4] = 0.0 u[5] = 1.0 end end) tspan=(0.0,6.0) sol=solve(odeprob,qss2(),tspan) sol=solve(odeprob,liqss2(),tspan) sol=solve(odeprob,nmliqss2(),tspan) @test -0.75<sol(2,0.5)<-0.6 plot_SolSum(sol,1,2,xlims=(0.0,1.0),ylims=(0.0,2.0)) plot_SolSum(sol,1,2,xlims=(0.0,1.0),ylims=(0.0,0.0)) plot_SolSum(sol,1,2,xlims=(0.0,0.0),ylims=(0.0,1.0)) plot_SolSum(sol,1,2) save_Sol(sol,1,2,3,4,5) save_SolSum(sol,1,2) plot_Sol(sol,1,2,) plot_Sol(sol,1,2,xlims=(0.0,1.0),ylims=(0.0,2.0)) plot_Sol(sol,1,2,xlims=(0.0,1.0),ylims=(0.0,0.0)) plot_Sol(sol,1,2,xlims=(0.0,0.0),ylims=(0.0,1.0)) =# #= odeprob = NLodeProblem(quote name=(sysN13,) u = [1.0, 0.0,1.0, 0.0,1.0] discrete = [0.5] du[1] = t for k in 2:5 du[k]=discrete[1]*(u[k]-u[k-1]) ; end if t-5.0>0.0 discrete[1]=0.0 end if t-3.0>0.0 u[1] = 1.0 u[2] = 0.0 u[3] = 1.0 u[4] = 0.0 u[5] = 1.0 discrete[1]=1.0 end end) tspan=(0.0,6.0) sol=solve(odeprob,qss1(),tspan) sol=solve(odeprob,liqss1(),tspan) sol=solve(odeprob,nmliqss2(),tspan) @test 1.1<sol(1,0.5)<1.3 @test -0.2<sol(2,0.5)<0.2 =# #= odeprob = NLodeProblem(quote name=(sysN14,) u = [1.0, 0.0,1.0, 0.0,1.0] discrete = [0.5] du[1] = t for k in 2:5 du[k]=discrete[1]*(u[k]-u[k-1]) ; end if t-5.0>0.0 discrete[1]=0.0 end if u[1]-2.0>0.0 u[1] = 1.0 u[2] = 0.0 u[3] = 1.0 u[4] = 0.0 u[5] = 1.0 discrete[1]=1.0 end end) tspan=(0.0,6.0) sol=solve(odeprob,nmliqss2(),tspan) @test -0.35<sol(2,0.5)<-0.2 sol=solve(odeprob,liqss2(),tspan) =# odeprob = NLodeProblem(quote name=(sysN15,) u = [1.0, 1.0,1.0, 0.0,1.0,1.0] discrete = [0.5,1.0,1.0,1.0,1.0,1.0] du[1] = t+u[2] for k in 2:5 du[k]=discrete[k]*(u[k*1]-u[k-1]-u[k+1])+(discrete[k+1]+discrete[k-1])*discrete[k*1] ; end if t-5.0>0.0 discrete[2]=0.0 end if u[1]+u[2]-3.0>0.0 u[1] = 1.0 u[3] = 1.0 u[4] = 0.0 discrete[1]=1.0 end if discrete[1]-u[4]+u[5]>0.0 u[2]=0.0 end end) tspan=(0.0,6.0) #sol=solve(odeprob,nmliqss2(),tspan) sol=solve(odeprob,qss2(),tspan) @show odeprob.discreteVars sol=solve(odeprob,liqss2(),tspan) save_Sol(sol,ylims=(-5.0,5.0)) @show sol(2,0.7) @show sol(1,0.7)
QuantizedSystemSolver
https://github.com/mongibellili/QuantizedSystemSolver.jl.git
[ "MIT" ]
1.0.1
b4bf1003586f2ee6cb98d8df29e88cbbfacd2ea1
code
1542
using QuantizedSystemSolver using Test using BSON @testset "QuantizedSystemSolver.jl" begin # Write your tests here. include("./Taylor0testFunctions.jl") include("./Taylor0testArithmetic.jl") include("./exampleTest.jl") include("./constructIntervalTest.jl") odeprob = NLodeProblem(quote #sys b53 name=(sysb53,) u = [-1.0, -2.0] du[1] = -20.0*u[1]-80.0*u[2]+1600.0 du[2] =1.24*u[1]-0.01*u[2]+0.2 end) @test typeof(odeprob) <: QuantizedSystemSolver.NLODEProblem{1,2,0,0,3} @test odeprob.prname == :sysb53 @test odeprob.initConditions == [-1.0, -2.0] @test odeprob.jac == [[1,2], [1,2]] || odeprob.jac == [[2,1], [2,1]] @test odeprob.SD == [[1,2], [1,2]] || odeprob.SD == [[2,1], [2,1]] @test typeof(odeprob.eqs) <: Function @test typeof(odeprob.exactJac) <: Function @test typeof(odeprob.jacDim) <: Function @test odeprob.a == Val(2) @test odeprob.b == Val(0) @test odeprob.c == Val(0) @test odeprob.prtype == Val(1) Order=1 cache=Array{Taylor0,1}()# cache= vector of taylor0s of size CS for i=1:3 push!(cache,Taylor0(zeros(Order+1),Order)) end q1=Taylor0([1.0,0.0], Order) q2=Taylor0([2.0,0.0], Order) q=[q1,q2]; t=Taylor0(zeros(Order + 1), Order) odeprob.eqs(1, q, t, cache) @test cache[1][0]==-20.0*1.0-80.0*2.0+1600.0 tspan=(0.0,1.0) sol=solve(odeprob,nmliqss1(),tspan) @test sol.algName == "nmliqss1" @test 18.8<sol(2,0.5)<19.2 end
QuantizedSystemSolver
https://github.com/mongibellili/QuantizedSystemSolver.jl.git
[ "MIT" ]
1.0.1
b4bf1003586f2ee6cb98d8df29e88cbbfacd2ea1
code
1382
using QuantizedSystemSolver #= odeprob = NLodeProblem(quote name=(lorenz,) u = [1.0,0.0,0.0] du[1] = 10.0(u[2]-u[1]) du[2] = u[1]*(28.0-u[3]) - u[2] du[3] = u[1]*u[2] - (8/3)*u[3] end) tspan=(0.0,10.0) sol=solve(odeprob,qss2(),tspan) save_Sol(sol) =# #= odeprob = NLodeProblem(quote name=(vanderpol,) u = [0.0,1.7] du[1] = u[2] du[2] = (1.0-u[1]*u[1])*u[2]-u[1] end) tspan=(0.0,10.0) sol=solve(odeprob,nmliqss2(),tspan) save_Sol(sol) =# #= odeprob = NLodeProblem(quote name=(oregonator,) u = [1.0,1.0,0.0] du[1] = 100.8*(9.523809523809524e-5*u[2]-u[1]*u[2]+u[1]*(1.0-u[1])) du[2] =40320.0*(-9.523809523809524e-5*u[2]-u[1]*u[2]+u[3]) du[3] = u[1] -u[3] end) tspan=(0.0,10.0) sol=solve(odeprob,nmliqss2(),tspan) save_Sol(sol) =# using Test odeprob = NLodeProblem(quote name=(sysN13,) u = [1.0, 0.0,1.0, 0.0,1.0] discrete = [0.5] du[1] = t for k in 2:5 du[k]=discrete[1]*(u[k]-u[k-1]) ; end if t-5.0>0.0 discrete[1]=0.0 end if t-3.0>0.0 u[1] = 1.0 u[2] = 0.0 u[3] = 1.0 u[4] = 0.0 u[5] = 1.0 discrete[1]=1.0 end end) tspan=(0.0,6.0) sol=solve(odeprob,qss1(),tspan) sol=solve(odeprob,liqss1(),tspan) sol=solve(odeprob,nmliqss2(),tspan) @test 1.1<sol(1,0.5)<1.3 @test -0.35<sol(2,0.5)<-0.2
QuantizedSystemSolver
https://github.com/mongibellili/QuantizedSystemSolver.jl.git
[ "MIT" ]
1.0.1
b4bf1003586f2ee6cb98d8df29e88cbbfacd2ea1
docs
3992
# QuantizedSystemSolver [![Dev](https://img.shields.io/badge/docs-dev-blue.svg)](https://mongibellili.github.io/QuantizedSystemSolver/dev/) [![CI](https://github.com/mongibellili/QuantizedSystemSolver/actions/workflows/CI.yml/badge.svg)](https://github.com/mongibellili/QuantizedSystemSolver/actions/workflows/CI.yml) [![Coverage](https://codecov.io/gh/mongibellili/QuantizedSystemSolver/branch/main/graph/badge.svg)](https://codecov.io/gh/mongibellili/QuantizedSystemSolver) The growing intricacy of contemporary engineering systems, typically reduced to differential equations with events, poses a difficulty in digitally simulating them using traditional numerical integration techniques. The Quantized State System (QSS) and the Linearly Implicit Quantized State System (LIQSS) are different methods for tackling such problems. The QuantizedSystemSolver aims to solve a set of Ordinary differential equations with a set of events. It implements the quantized state system methods: An approach that builds the solution by updating the system variables independently as opposed to classic integration methods that update all the system variables every step. # Example: Buck circuit [The Buck](https://en.wikipedia.org/wiki/Buck_converter) is a converter that decreases voltage and increases current with a greater power efficiency than linear regulators. After a mesh analysis we get the problem discribed below. <img width="220" alt="buckcircuit" src="https://github.com/mongibellili/QuantizedSystemSolver/assets/59377156/c0bcfdbe-ed12-4bb0-8ad1-649ae72dfdd2"> ## Problem The NLodeProblem function takes the following user code: ```julia odeprob = NLodeProblem(quote name=(buck,) #parameters C = 1e-4; L = 1e-4; R = 10.0;U = 24.0; T = 1e-4; DC = 0.5; ROn = 1e-5;ROff = 1e5; #discrete and continous variables discrete = [1e5,1e-5,1e-4,0.0,0.0];u = [0.0,0.0] #rename for convenience rd=discrete[1];rs=discrete[2];nextT=discrete[3];lastT=discrete[4];diodeon=discrete[5] il=u[1] ;uc=u[2] #helper equations id=(il*rs-U)/(rd+rs) # diode's current #differential equations du[1] =(-id*rd-uc)/L du[2]=(il-uc/R)/C #events if t-nextT>0.0 lastT=nextT;nextT=nextT+T;rs=ROn end if t-lastT-DC*T>0.0 rs=ROff end if diodeon*(id)+(1.0-diodeon)*(id*rd-0.6)>0 rd=ROn;diodeon=1.0 else rd=ROff;diodeon=0.0 end end) ``` The output is an object that subtypes the ```julia abstract type NLODEProblem{PRTYPE,T,Z,Y,CS} end ``` ## Solve The solve function takes the previous problem (NLODEProblem{PRTYPE,T,Z,Y,CS}) with a chosen algorithm (ALGORITHM{N,O}) and some simulation settings: ```julia tspan = (0.0, 0.001) sol= solve(odeprob,nmliqss2(),tspan,abstol=1e-4,reltol=1e-3) ``` It outputs a solution of type Sol{T,O}. ## Query the solution ```julia # The value of variable 2 at time 0.0005 sol(2,0.0005) 19.209921627620943 # The total number of steps to end the simulation sol.totalSteps 498 # The number of simultaneous steps during the simulation sol.simulStepCount 132 # The total number of events during the simulation sol.evCount 53 # The actual data is stored in two vectors: sol.savedTimes sol.savedVars ``` ## Plot the solution ```julia # If the user wants to perform other tasks with the plot: plot_Sol(sol) ``` ```julia # If the user wants to save the plot to a file: save_Sol(sol) ``` ![plot_buck_nmLiqss2_()_0 0001_ _ft_0 001_2024_7_2_16_43_54](https://github.com/mongibellili/QuantizedSystemSolver/assets/59377156/00bee649-d337-445a-9ddb-9669076d8ffa) ## Error Analysis ```julia #Compute the error against an analytic solution error=getError(sol::Sol{T,O},index::Int,f::Function) #Compute the error against a reference solution error=getAverageErrorByRefs(sol,solRef::Vector{Any}) ```
QuantizedSystemSolver
https://github.com/mongibellili/QuantizedSystemSolver.jl.git
[ "MIT" ]
1.0.1
b4bf1003586f2ee6cb98d8df29e88cbbfacd2ea1
docs
176
# Available Algorithms ```@docs qss1() ``` ```@docs qss2() ``` ```@docs liqss1() ``` ```@docs liqss2() ``` ```@docs nmliqss1() ``` ```@docs nmliqss2() ```
QuantizedSystemSolver
https://github.com/mongibellili/QuantizedSystemSolver.jl.git
[ "MIT" ]
1.0.1
b4bf1003586f2ee6cb98d8df29e88cbbfacd2ea1
docs
284
# Problem Extension Problem extension can be achieved easily via PRTYPE which is of type Val, or another subtype of the superclass can be created. ```@docs QuantizedSystemSolver.NLODEProblem{PRTYPE,T,Z,Y,CS} ``` ```@docs QuantizedSystemSolver.NLODEContProblem{PRTYPE,T,Z,Y,CS} ```
QuantizedSystemSolver
https://github.com/mongibellili/QuantizedSystemSolver.jl.git
[ "MIT" ]
1.0.1
b4bf1003586f2ee6cb98d8df29e88cbbfacd2ea1
docs
899
# Taylor0 These are just some examples. Taylor0 is defined for many other functions. However, other functions can also be added. ```@docs Taylor0 ``` ```@docs createT(a::T,cache::Taylor0) where {T<:Number} ``` ```@docs addT(a::Taylor0, b::Taylor0,cache::Taylor0) ``` ```@docs subT(a::Taylor0, b::Taylor0,cache::Taylor0) ``` ```@docs mulT(a::Taylor0, b::Taylor0,cache1::Taylor0) ``` ```@docs divT(a::Taylor0, b::Taylor0,cache1::Taylor0) ``` ```@docs addsub(a::Taylor0, b::Taylor0,c::Taylor0,cache::Taylor0) ``` ```@docs addsub(a::T, b::Taylor0,c::Taylor0,cache::Taylor0) where {T<:Number} ``` ```@docs negateT(a::Taylor0,cache::Taylor0) ``` ```@docs subsub(a::Taylor0, b::Taylor0,c::Taylor0,cache::Taylor0) ``` ```@docs muladdT(a::P,b::Q,c::R,cache1::Taylor0) where {P,Q,R <:Union{Taylor0,Number}} ``` ```@docs mulsub(a::P,b::Q,c::R,cache1::Taylor0) where {P,Q,R <:Union{Taylor0,Number}} ```
QuantizedSystemSolver
https://github.com/mongibellili/QuantizedSystemSolver.jl.git
[ "MIT" ]
1.0.1
b4bf1003586f2ee6cb98d8df29e88cbbfacd2ea1
docs
332
# Algorithm Extension Currently only QSS1,2,3 ; LiQSS1,2,3 ; and mLiQSS1,2,3 exist. Any new algorithm can be added via the name N which is of type Val, with O is the order which also of type Val. For example qss1 is created by: ```julia qss1()=QSSAlgorithm(Val(:qss),Val(1)) ``` ```@docs QuantizedSystemSolver.ALGORITHM{N,O} ```
QuantizedSystemSolver
https://github.com/mongibellili/QuantizedSystemSolver.jl.git
[ "MIT" ]
1.0.1
b4bf1003586f2ee6cb98d8df29e88cbbfacd2ea1
docs
641
# Developer Guide While the package is optimized to be fast, extensibility is not compromised. It is divided into 3 entities that can be extended separately: Problem, Algorithm, and Solution. The package uses other packages such as MacroTools.jl for user-code parsing, SymEngine.jl for Jacobian computation, and a modified TaylorSeries.jl that uses caching to obtain free Taylor variables. The approximation through Taylor variables transforms any complicated equations to polynomials, which makes root finding cheaper. ### [Algorithm Extension ](@ref) ### [Problem Extension](@ref) ### [Solution Extension](@ref) ### [Taylor0 ](@ref)
QuantizedSystemSolver
https://github.com/mongibellili/QuantizedSystemSolver.jl.git
[ "MIT" ]
1.0.1
b4bf1003586f2ee6cb98d8df29e88cbbfacd2ea1
docs
6252
# Examples ### Systems of 2 Linear Time Invariant Differential equations ```julia odeprob = NLodeProblem(quote name=(sysb53,) u = [-1.0, -2.0] du[1] = -20.0*u[1]-80.0*u[2]+1600.0 du[2] =1.24*u[1]-0.01*u[2]+0.2 end) tspan=(0.0,1.0) ``` This is a great example that shows when we need to use the explicit qss, the implicit liqss, or the modified implicit nmliqss. This is a stiff problem so we need to use the implicit methods, but it also contains larger entries outside the main diagonal of the Jacobian. Therefore, nmliqss should the most appropriate algorithm to use. ```julia sol=solve(odeprob,qss1(),tspan) save_Sol(sol) ``` ![plot_sysb53_qss1](./assets/img/plot_sysb53_qss1.png) ```julia sol=solve(odeprob,qss2(),tspan) save_Sol(sol) ``` ![plot_sysb53_qss2](./assets/img/plot_sysb53_qss2.png) ```julia sol=solve(odeprob,liqss1(),tspan) save_Sol(sol) ``` ![plot_sysb53_liqss1](./assets/img/plot_sysb53_liqss1.png) ```julia sol=solve(odeprob,liqss2(),tspan) save_Sol(sol) ``` ![plot_sysb53_liqss2](./assets/img/plot_sysb53_liqss2.png) ```julia sol=solve(odeprob,nmliqss1(),tspan) save_Sol(sol) ``` ![plot_sysb53_nmliqss1](./assets/img/plot_sysb53_nmliqss1.png) ```julia sol=solve(odeprob,nmliqss2(),tspan) save_Sol(sol) ``` ![plot_sysb53_nmliqss2](./assets/img/plot_sysb53_nmliqss2.png) The nmliqss plot does not finish at the final time because it terminated when it reached the equilibrium in which the values are the same as the values at the final time. ### The Tyson Model ```julia function test(solvr,absTol,relTol) odeprob = NLodeProblem(quote name=(tyson,) u = [0.0,0.75,0.25,0.0,0.0,0.0] du[1] = u[4]-1e6*u[1]+1e3*u[2] du[2] =-200.0*u[2]*u[5]+1e6*u[1]-1e3*u[2] du[3] = 200.0*u[2]*u[5]-u[3]*(0.018+180.0*(u[4]/(u[1]+u[2]+u[3]+u[4]))^2) du[4] =u[3]*(0.018+180.0*(u[4]/(u[1]+u[2]+u[3]+u[4]))^2)-u[4] du[5] = 0.015-200.0*u[2]*u[5] du[6] =u[4]-0.6*u[6] end ) println("start tyson solving") tspan=(0.0,25.0) sol=solve(odeprob,solvr,abstol=absTol,reltol=relTol,tspan) println("start saving plot") save_Sol(sol) end absTol=1e-5 relTol=1e-2 solvrs=[qss1(),liqss1(),nmliqss1(),nmliqss2()] for solvr in solvrs test(solvr,absTol,relTol) end ``` This model also is stiff and it needs a stiff method, but also the normal liqss will produce unnecessary cycles. Hence, the nmliqss is again the most appropriate. ![plot_tyson_qss1](./assets/img/plot_tyson_qss1.png) ![plot_tyson_liqss1](./assets/img/plot_tyson_liqss1.png) ![plot_tyson_nmliqss1](./assets/img/plot_tyson_nmliqss1.png) ![plot_tyson_nmliqss2](./assets/img/plot_tyson_nmliqss2.png) ### Oregonator; Vanderpl ```julia odeprob = NLodeProblem(quote name=(vanderpol,) u = [0.0,1.7] du[1] = u[2] du[2] = (1.0-u[1]*u[1])*u[2]-u[1] end) tspan=(0.0,10.0) sol=solve(odeprob,nmliqss2(),tspan) save_Sol(sol) ``` ![plot_vanderpol_nmliqss2](./assets/img/plot_vanderpol_nmliqss2.png) ```julia odeprob = NLodeProblem(quote name=(oregonator,) u = [1.0,1.0,0.0] du[1] = 100.8*(9.523809523809524e-5*u[2]-u[1]*u[2]+u[1]*(1.0-u[1])) du[2] =40320.0*(-9.523809523809524e-5*u[2]-u[1]*u[2]+u[3]) du[3] = u[1] -u[3] end) tspan=(0.0,10.0) sol=solve(odeprob,nmliqss2(),tspan) save_Sol(sol) ``` ![plot_oregonator_nmliqss2](./assets/img/plot_oregonator_nmliqss2.png) ### Bouncing Ball ```julia odeprob = NLodeProblem(quote name=(sysd0,) u = [50.0,0.0] discrete=[0.0] du[1] = u[2] du[2] = -9.8#+discrete[1]*u[1] if -u[1]>0.0 u[2]=-u[2] end end) tspan=(0.0,15.0) sol=solve(odeprob,qss2(),tspan) ``` ![BBall](./assets/img/BBall.png) ### Conditional Dosing in Pharmacometrics This section shows [the Conditional Dosing in Pharmacometrics](https://docs.sciml.ai/DiffEqDocs/stable/examples/conditional_dosing/) example tested using the Tsit5() of the DifferentialEquations.jl ```julia odeprob = NLodeProblem(quote name=(sysd0,) u = [10.0] discrete=[-1e5] du[1] =-u[1] if t-4.0>0.0 discrete[1]=0.0 end if t-4.00000001>0.0 discrete[1]=-1e5 end if discrete[1]+(4.0-u[1])>0.0 u[1]=u[1]+10.0 end end) tspan=(0.0,10.0) sol=solve(odeprob,nmliqss2(),tspan) save_Sol(sol) ``` The condition t == 4 && u[1] < 4 can be replaced by using another discrete variable (flag) that is triggered when t==4 , and it triggers the check of u[1] < 4. ![dosingPharma](./assets/img/dosingPharma.png) ### Four stage Cuk Converter : ![cuk4circuit](./assets/img/cuk4circuit.png) ```julia odeprob = NLodeProblem(quote name=(cuk4sym,) C = 1e-4; L = 1e-4; R = 10.0;U = 24.0; T = 1e-4; DC = 0.25; ROn = 1e-5;ROff = 1e5;L1=1e-4;C1=1e-4;C2 = 1e-4;L2 = 1e-4; #discrete Rd(start=1e5), Rs(start=1e-5), nextT(start=T),lastT,diodeon; discrete = [1e5,1e-5,1e-4,0.0,0.0] Rd=discrete[1];Rs=discrete[2];nextT=discrete[3];lastT=discrete[4];diodeon=discrete[5] u[1:13]=0.0 uc2=u[13] il2_1=u[i] ;il2_2=u[i-4] ;il2_3=u[i-8] ;il1_1=u[i+4] ;il1_2=u[i] ;il1_3=u[i-4] ;uc1_1=u[i+8];uc1_2=u[i+4] ;uc1_3=u[i] ; id1=(((il2_1+il1_1)*Rs-uc1_1)/(Rd+Rs)) id2=(((il2_2+il1_2)*Rs-uc1_2)/(Rd+Rs)) id3=(((il2_3+il1_3)*Rs-uc1_3)/(Rd+Rs)) for i=1:4 #il2 du[i] =(-uc2-Rs*id1)/L2 end for i=5:8 #il1 du[i]=(U-uc1_2-id2*Rs)/L1 end for i=9:12 #uc1 du[i]=(id3-il2_3)/C1 end du[13]=(u[1]+u[2]+u[3]+u[4]-uc2/R)/C2 if t-nextT>0.0 lastT=nextT nextT=nextT+T Rs=ROn end if t-lastT-DC*T>0.0 Rs=ROff end if diodeon*(((u[1]+u[5])*Rs-u[9])/(Rd+Rs))+(1.0-diodeon)*(((u[1]+u[5])*Rs-u[9])*Rd/(Rd+Rs))>0 Rd=ROn diodeon=1.0 else Rd=ROff diodeon=0.0 end if diodeon*(((u[2]+u[6])*Rs-u[10])/(Rd+Rs))+(1.0-diodeon)*(((u[2]+u[6])*Rs-u[10])*Rd/(Rd+Rs))>0 Rd=ROn diodeon=1.0 else Rd=ROff diodeon=0.0 end if diodeon*(((u[3]+u[7])*Rs-u[11])/(Rd+Rs))+(1.0-diodeon)*(((u[3]+u[7])*Rs-u[11])*Rd/(Rd+Rs))>0 Rd=ROn diodeon=1.0 else Rd=ROff diodeon=0.0 end if diodeon*(((u[4]+u[8])*Rs-u[12])/(Rd+Rs))+(1.0-diodeon)*(((u[4]+u[8])*Rs-u[12])*Rd/(Rd+Rs))>0 Rd=ROn diodeon=1.0 else Rd=ROff diodeon=0.0 end end) tspan=(0.0,0.0005) sol= solve(odeprob,nmliqss2(),abstol=1e-4,reltol=1e-3,tspan) ``` ![plot_cuk4sym_nmLiqss2](./assets/img/plot_cuk4sym_nmLiqss2.png)
QuantizedSystemSolver
https://github.com/mongibellili/QuantizedSystemSolver.jl.git
[ "MIT" ]
1.0.1
b4bf1003586f2ee6cb98d8df29e88cbbfacd2ea1
docs
121
# Quantized System Solver ```@contents Pages = ["userGuide.md", "developerGuide.md","examples.md"] Depth = 1 ```
QuantizedSystemSolver
https://github.com/mongibellili/QuantizedSystemSolver.jl.git
[ "MIT" ]
1.0.1
b4bf1003586f2ee6cb98d8df29e88cbbfacd2ea1
docs
939
# Application Programming Interface ```@docs NLodeProblem(odeExprs) ``` ```@docs solve(prob::NLODEProblem{PRTYPE,T,Z,D,CS},al::QSSAlgorithm{SolverType, OrderType},tspan::Tuple{Float64, Float64};sparsity::Val{Sparsity}=Val(false),saveat=1e-9::Float64,abstol=1e-4::Float64,reltol=1e-3::Float64,maxErr=Inf::Float64,maxStepsAllowed=10000000) where{PRTYPE,T,Z,D,CS,SolverType,OrderType,Sparsity} ``` ```@docs plot_Sol(sol::Sol{T,O},xvars::Int...;note=" "::String,xlims=(0.0,0.0)::Tuple{Float64, Float64},ylims=(0.0,0.0)::Tuple{Float64, Float64},legend=:true::Bool,marker=:circle::Symbol) where{T,O} ``` ```@docs save_Sol(sol::Sol{T,O},xvars::Int...;note=" "::String,xlims=(0.0,0.0)::Tuple{Float64, Float64},ylims=(0.0,0.0)::Tuple{Float64, Float64},legend=:true::Bool) where{T,O} ``` ```@docs getError(sol::Sol{T,O},index::Int,f::Function) where{T,O} ``` ```@docs getAverageErrorByRefs(sol::Sol{T,O},solRef::Vector{Any}) where{T,O} ```
QuantizedSystemSolver
https://github.com/mongibellili/QuantizedSystemSolver.jl.git