licenses
sequencelengths
1
3
version
stringclasses
677 values
tree_hash
stringlengths
40
40
path
stringclasses
1 value
type
stringclasses
2 values
size
stringlengths
2
8
text
stringlengths
25
67.1M
package_name
stringlengths
2
41
repo
stringlengths
33
86
[ "Apache-2.0" ]
0.2.18
df1e12fb86d1f081833a74249335aa02657be774
code
1281
# Test external function calls / semantic attachments @testset "external functions" begin path = joinpath(dirname(pathof(PDDL)), "..", "test", "functions") # Load domain and define external functions domain = load_domain(joinpath(path, "domain.pddl")) throw_range(v, θ) = v^2*sin(2*θ*π/180) / 9.81 domain.funcdefs[:range] = throw_range throw_height(v, θ, x) = tan(θ*π/180)*x - 9.81*x^2 / (2*v^2 * cos(θ*π/180)^2) domain.funcdefs[:height] = throw_height # Load problem problem = load_problem(joinpath(path, "problem.pddl")) state = initstate(domain, problem) # Check that evaluation with external functions works correctly @test domain[state => pddl"(range 20 45)"] == throw_range(20, 45) @test domain[state => pddl"(height 20 45 10)"] == throw_height(20, 45, 10) # Execute plan state = initstate(domain, problem) state = execute(domain, state, pddl"(pick ball1)", check=true) state = execute(domain, state, pddl"(throw ball1 85)", check=true) state = execute(domain, state, pddl"(pick ball2)", check=true) state = execute(domain, state, pddl"(throw ball2 75)", check=true) # Check if goal is satisfied @test domain[state => pddl"(< (loc ball1) 10)"] @test domain[state => pddl"(> (loc ball2) 15)"] @test satisfy(domain, state, problem.goal) == true end # external functions
PDDL
https://github.com/JuliaPlanners/PDDL.jl.git
[ "Apache-2.0" ]
0.2.18
df1e12fb86d1f081833a74249335aa02657be774
code
3882
@testset "numeric fluents" begin # Test numeric fluent functionality path = joinpath(dirname(pathof(PDDL)), "..", "test", "numeric") domain = load_domain(joinpath(path, "domain.pddl")) @test domain.name == Symbol("zeno-travel") @test convert(Term, domain.functions[:distance]) == pddl"(distance ?c1 ?c2)" @test domain.functions[:fuel].argtypes == (:aircraft,) problem = load_problem(joinpath(path, "problem.pddl")) @test problem.metric == pddl"(minimize (+ (* 4 (total-time)) (* 5 (total-fuel-used))))" Base.show(IOBuffer(), "text/plain", problem) # Test for static functions static_fluents = infer_static_fluents(domain) @test :capacity in static_fluents @test length(static_fluents) == 5 state = initstate(domain, problem) implementations = [ "concrete interpreter" => domain, "ground interpreter" => ground(domain, state), "abstracted interpreter" => abstracted(domain), "cached interpreter" => CachedDomain(domain), "concrete compiler" => first(compiled(domain, state)), "abstract compiler" => first(compiled(abstracted(domain), state)), "cached compiler" => CachedDomain(first(compiled(domain, state))), ] @testset "numeric fluents ($name)" for (name, domain) in implementations # Execute plan to goal state = initstate(domain, problem) # Person 1 boards plane 1 state = execute(domain, state, pddl"(board person1 plane1 city0)", check=true) @test domain[state => pddl"(onboard plane1)"] ≃ 1 # Plane 1 flies from city 0 to city 2 state = execute(domain, state, pddl"(fly plane1 city0 city2)", check=true) @test domain[state => pddl"(total-fuel-used)"] ≃ 3100 # Person 1 debarks at city 2 state = execute(domain, state, pddl"(debark person1 plane1 city2)", check=true) @test domain[state => pddl"(at person1 city2)"] ≃ true # Plane 1 refuels at city 2 state = execute(domain, state, pddl"(refuel plane1 city2)", check=true) @test domain[state => pddl"(fuel plane1)"] ≃ 10232 # Person 2 boards plane 1 at city2 state = execute(domain, state, pddl"(board person2 plane1 city2)", check=true) @test domain[state => pddl"(in person2 plane1)"] ≃ true # Plane 1 flies from city 2 to city 0 state = execute(domain, state, pddl"(fly plane1 city2 city0)", check=true) @test domain[state => pddl"(total-fuel-used)"] ≃ 6200 # Person 2 debarks at city 0 state = execute(domain, state, pddl"(debark person2 plane1 city0)", check=true) @test domain[state => pddl"(at person2 city0)"] ≃ true # Plane 1 refuels at city 0 state = execute(domain, state, pddl"(refuel plane1 city0)", check=true) @test domain[state => pddl"(fuel plane1)"] ≃ 10232 # Plane 1 zooms from city 0 to city 1 state = execute(domain, state, pddl"(zoom plane1 city0 city1)", check=true) @test domain[state => pddl"(total-fuel-used)"] ≃ 16370 # The whole plan took 9 steps @test domain[state => pddl"(total-time)"] ≃ 9 # Check if goal is satisfied @test satisfy(domain, state, problem.goal) == true # Test execution of entire plan state = initstate(domain, problem) plan = @pddl( "(board person1 plane1 city0)", "(fly plane1 city0 city2)", "(debark person1 plane1 city2)", "(refuel plane1 city2)", "(board person2 plane1 city2)", "(fly plane1 city2 city0)", "(debark person2 plane1 city0)", "(refuel plane1 city0)", "(zoom plane1 city0 city1)" ) sim = EndStateSimulator() state = sim(domain, state, plan) @test satisfy(domain, state, problem.goal) == true # Ensure that Base.show does not error buffer = IOBuffer() action = first(PDDL.get_actions(domain)) Base.show(buffer, "text/plain", domain) Base.show(buffer, "text/plain", state) Base.show(buffer, "text/plain", action) close(buffer) end end # numeric fluents
PDDL
https://github.com/JuliaPlanners/PDDL.jl.git
[ "Apache-2.0" ]
0.2.18
df1e12fb86d1f081833a74249335aa02657be774
code
10533
# Test parsing functionality @testset "parser" begin @testset "formula parsing" begin @test parse_pddl("(ball)") === Const(:ball) @test parse_pddl("(bouncy-ball)") === Const(Symbol("bouncy-ball")) @test parse_pddl("(bouncy_ball)") === Const(Symbol("bouncy_ball")) @test parse_pddl("(1)") === Const(1) @test parse_pddl("(1.0)") === Const(1.0) @test parse_pddl("(1.0f)") === Const(1.0f0) @test parse_pddl("(1f)") === Const(1.0f0) @test parse_pddl("(?x)") === Var(:X) @test parse_pddl("(?var-name)") === Var(Symbol("Var-name")) @test parse_pddl("(?var_name)") === Var(Symbol("Var_name")) @test parse_pddl("(on a b)") == Compound(:on, [Const(:a), Const(:b)]) @test parse_pddl("(on ?x ?y)") == Compound(:on, [Var(:X), Var(:Y)]) @test parse_pddl("(on-block a b)") == Compound(Symbol("on-block"), [Const(:a), Const(:b)]) @test parse_pddl("(+ cost 1)") == Compound(:+, [Const(:cost), Const(1)]) @test parse_pddl("(= cost 0)") == Compound(:(==), [Const(:cost), Const(0)]) @test parse_pddl("(= cost 0.0)") == Compound(:(==), [Const(:cost), Const(0.0)]) @test parse_pddl("(>= cost 0)") == Compound(:(>=), [Const(:cost), Const(0)]) @test parse_pddl("(!= cost 0)") == Compound(:(!=), [Const(:cost), Const(0)]) @test parse_pddl("(ball)") === @pddl("(ball)") === pddl"(ball)" @test parse_pddl("(bouncy-ball)") === @pddl("(bouncy-ball)") === pddl"(bouncy-ball)" @test parse_pddl("(bouncy_ball)") === @pddl("(bouncy_ball)") === pddl"(bouncy_ball)" @test parse_pddl("(1)") === @pddl("(1)") === pddl"(1)" @test parse_pddl("(1.0)") === @pddl("(1.0)") === pddl"(1.0)" @test parse_pddl("(1.0f)") === @pddl("(1.0f)") === pddl"(1.0f)" @test parse_pddl("(1f)") === @pddl("(1f)") === pddl"(1f)" @test parse_pddl("(?x)") === @pddl("(?x)") === pddl"(?x)" @test parse_pddl("(?var-name)") === @pddl("(?var-name)") === pddl"(?var-name)" @test parse_pddl("(?var_name)") === @pddl("(?var_name)") === pddl"(?var_name)" @test parse_pddl("(on a b)") == @pddl("(on a b)") == pddl"(on a b)" @test parse_pddl("(on ?x ?y)") == @pddl("(on ?x ?y)") == pddl"(on ?x ?y)" @test parse_pddl("(on-block a b)") == @pddl("(on-block a b)") == pddl"(on-block a b)" @test parse_pddl("(+ cost 1)") == @pddl("(+ cost 1)") == pddl"(+ cost 1)" @test parse_pddl("(= cost 0)") == @pddl("(= cost 0)") == pddl"(= cost 0)" @test parse_pddl("(= cost 0.0)") == @pddl("(= cost 0.0)") == pddl"(= cost 0.0)" @test parse_pddl("(>= cost 0)") == @pddl("(>= cost 0)") == pddl"(>= cost 0)" @test parse_pddl("(!= cost 0)") == @pddl("(!= cost 0)") == pddl"(!= cost 0)" @test parse_pddl("(and (on a b) (on b c))") == Compound(:and, [pddl"(on a b)", pddl"(on b c)"]) @test parse_pddl("(or (on a b) (on b c))") == Compound(:or, [pddl"(on a b)", pddl"(on b c)"]) @test parse_pddl("(not (on a b))") == Compound(:not, [pddl"(on a b)"]) @test parse_pddl("(imply (on a b) (on b c))") == Compound(:imply, [pddl"(on a b)", pddl"(on b c)"]) @test parse_pddl("(forall (?x) (on ?x b))") == Compound(:forall, [pddl"(object ?x)", pddl"(on ?x b)"]) @test parse_pddl("(forall (?x - block) (on ?x b))") == Compound(:forall, [pddl"(block ?x)", pddl"(on ?x b)"]) @test parse_pddl("(forall (?x ?y - block) (on ?x ?y))") == Compound(:forall, [pddl"(and (block ?x) (block ?y))", pddl"(on ?x ?y)"]) @test parse_pddl("(forall (?x - t1 ?y - t2) (on ?x ?y))") == Compound(:forall, [pddl"(and (t1 ?x) (t2 ?y))", pddl"(on ?x ?y)"]) @test parse_pddl("(exists (?x) (on ?x b))") == Compound(:exists, [pddl"(object ?x)", pddl"(on ?x b)"]) @test parse_pddl("(exists (?x - block) (on ?x b))") == Compound(:exists, [pddl"(block ?x)", pddl"(on ?x b)"]) @test parse_pddl("(exists (?x ?y - block) (on ?x ?y))") == Compound(:exists, [pddl"(and (block ?x) (block ?y))", pddl"(on ?x ?y)"]) @test parse_pddl("(exists (?x - t1 ?y - t2) (on ?x ?y))") == Compound(:exists, [pddl"(and (t1 ?x) (t2 ?y))", pddl"(on ?x ?y)"]) @test parse_pddl("(when (and (on a b) (on b c)) (on a c))") == Compound(:when, [pddl"(and (on a b) (on b c))", pddl"(on a c)"]) @test parse_pddl("(> (+ a b) (* c d))") == Compound(:>, [Compound(:+, [Const(:a), Const(:b)]), Compound(:*, [Const(:c), Const(:d)])]) end @testset "interpolation" begin obj1, obj2 = Const(:a), Const(:b) sym1, sym2 = :a , :b @test pddl"(on $obj1 $obj2)" == Compound(:on, Term[obj1, obj2]) @test pddl"(on $sym1 $sym2)" == Compound(:on, Term[obj1, obj2]) @test_throws ErrorException parse_pddl("(on \$obj1 \$obj2)") cval = Const(1) val = 1 @test pddl"(= cost $cval)" == Compound(:(==), Term[Const(:cost), cval]) @test pddl"(= cost $val)" == Compound(:(==), Term[Const(:cost), cval]) fname = :on fconst = Const(fname) @test pddl"($fname $obj1 $obj2)" == Compound(:on, Term[obj1, obj2]) @test_throws MethodError pddl"($fconst $obj1 $obj2)" var1, var2 = Var(:X), Var(:Y) ty1, ty2 = :block, :cube @test pddl"(forall ($var1 $var2 - block) (on $var1 $var2))" == pddl"(forall (?x ?y - block) (on ?x ?y))" @test pddl"(forall ($var1 $var2 - $ty1) (on $var1 $var2))" == pddl"(forall (?x ?y - block) (on ?x ?y))" @test pddl"(forall ($var1 - $ty1 $var2 - $ty2) (on $var1 $var2))" == pddl"(forall (?x - block ?y - cube) (on ?x ?y))" @test pddl"(exists ($var1 $var2 - block) (on $var1 $var2))" == pddl"(exists (?x ?y - block) (on ?x ?y))" @test pddl"(exists ($var1 $var2 - $ty1) (on $var1 $var2))" == pddl"(exists (?x ?y - block) (on ?x ?y))" @test pddl"(exists ($var1 - $ty1 $var2 - $ty2) (on $var1 $var2))" == pddl"(exists (?x - block ?y - cube) (on ?x ?y))" term1, term2 = pddl"(on a b)", pddl"(on b c)" @test pddl"(and $term1 $term2)" == pddl"(and (on a b) (on b c))" @test pddl"(or $term1 $term2)" == pddl"(or (on a b) (on b c))" @test pddl"(not $term1)" == pddl"(not (on a b))" @test pddl"(imply $term1 $term2)" == pddl"(imply (on a b) (on b c))" @test pddl"(on ${obj1.name} ${obj2.name})" == Compound(:on, Term[obj1, obj2]) @test pddl"(on ${Const(:a)} ${Const(:b)})" == Compound(:on, Term[obj1, obj2]) @test pddl"""(on ${pddl"a"} ${pddl"b"})""" == Compound(:on, Term[obj1, obj2]) @test pddl"(= cost ${1 + 2})" == Compound(:(==), Term[Const(:cost), Const(3)]) @test pddl"(= cost ${zero(Int)})" == Compound(:(==), Term[Const(:cost), Const(0)]) @test_throws ErrorException parse_pddl(""" (:derived (above \$var1 \$var2) (or (on \$var1 \$var2) (exists (?z) (and (on \$var1 ?z) (above ?z \$var2))))) """) end @testset "action parsing" begin action = pddl"""(:action wait :effect ())""" @test PDDL.get_name(action) == :wait @test collect(PDDL.get_argvars(action)) == Var[] @test collect(PDDL.get_argtypes(action)) == Symbol[] @test PDDL.get_precond(action) == Const(true) @test PDDL.get_effect(action) == Const(true) action = pddl""" (:action move :parameters (?a ?b) :precondition (and (room ?a) (room ?b) (in-room ?a)) :effect (and (not (in-room ?a)) (in-room ?b)) )""" @test PDDL.get_name(action) == :move @test collect(PDDL.get_argvars(action)) == [Var(:A), Var(:B)] @test collect(PDDL.get_argtypes(action)) == [:object, :object] @test PDDL.get_precond(action) == pddl"(and (room ?a) (room ?b) (in-room ?a))" @test PDDL.get_effect(action) == pddl"(and (not (in-room ?a)) (in-room ?b))" action = pddl""" (:action unstack :parameters (?x - block ?y - block) :precondition (and (on ?x ?y) (clear ?x)) :effect (and (holding ?x) (clear ?y) (not (on ?x ?y)) (not (clear ?x))) )""" @test PDDL.get_name(action) == :unstack @test collect(PDDL.get_argvars(action)) == [Var(:X), Var(:Y)] @test collect(PDDL.get_argtypes(action)) == [:block, :block] @test PDDL.get_precond(action) == pddl"(and (on ?x ?y) (clear ?x))" @test PDDL.get_effect(action) == pddl"(and (holding ?x) (clear ?y) (not (on ?x ?y)) (not (clear ?x)))" end @testset "axiom parsing" begin axiom = pddl""" (:axiom (above ?x ?y) (or (on ?x ?y) (exists (?z) (and (on ?x ?z) (above ?z ?y))))) """ @test axiom.head == pddl"(above ?x ?y)" @test axiom.body == [pddl"(or (on ?x ?y) (exists (?z) (and (on ?x ?z) (above ?z ?y))))"] axiom = pddl""" (:derived (above ?x ?y) (or (on ?x ?y) (exists (?z) (and (on ?x ?z) (above ?z ?y))))) """ @test axiom.head == pddl"(above ?x ?y)" @test axiom.body == [pddl"(or (on ?x ?y) (exists (?z) (and (on ?x ?z) (above ?z ?y))))"] end @testset "domain parsing" begin domain = load_domain(joinpath(@__DIR__, "domain.pddl")) @test PDDL.get_name(domain) == :shapes requirements = PDDL.get_requirements(domain) @test requirements[:adl] == true @test requirements[:typing] == true @test requirements[:fluents] == true @test requirements[Symbol("derived-predicates")] == true typetree = PDDL.get_typetree(domain) @test typetree[:object] == [:shape, :color] @test typetree[:shape] == [:triangle, :rectangle] @test typetree[:rectangle] == [:square] @test typetree[:square] == [] @test typetree[:color] == [] constants = PDDL.get_constants(domain) @test constants == [pddl"(red)", pddl"(green)", pddl"(blue)"] constypes = PDDL.get_constypes(domain) @test constypes[pddl"(red)"] == :color @test constypes[pddl"(green)"] == :color @test constypes[pddl"(blue)"] == :color predicates = PDDL.get_predicates(domain) @test predicates[Symbol("color-of")] == PDDL.Signature(Symbol("color-of"), :boolean, [Var(:S), Var(:C)], [:shape, :color]) @test predicates[:colored] == PDDL.Signature(:colored, :boolean, [Var(:S)], [:shape]) functions = PDDL.get_functions(domain) @test functions[:size] == PDDL.Signature(:size, :numeric, [Var(:S)], [:shape]) axioms = PDDL.get_axioms(domain) @test axioms[:colored].head == pddl"(colored ?s)" @test axioms[:colored].body == [pddl"(exists (?c - color) (color-of ?s ?c))"] actions = PDDL.get_actions(domain) @test :recolor in keys(actions) @test Symbol("grow-all") in keys(actions) @test Symbol("shrink-all") in keys(actions) end @testset "problem parsing" begin problem = load_problem(joinpath(@__DIR__, "problem.pddl")) @test PDDL.get_name(problem) == Symbol("shapes-problem") @test PDDL.get_domain_name(problem) == :shapes @test PDDL.get_objects(problem) == [pddl"(square1)", pddl"(triangle1)"] @test PDDL.get_objtypes(problem) == Dict{Const,Symbol}( pddl"(square1)" => :square, pddl"(triangle1)" => :triangle ) @test PDDL.get_init_terms(problem) == @pddl( "(color-of square1 red)", "(color-of triangle1 red)", "(= (size square1) 1)", "(= (size triangle1) 2)" ) @test PDDL.get_goal(problem) == pddl"(and (= (size square1) 3) (= (size triangle1) 1))" @test PDDL.get_metric(problem) == pddl"(minimize (size triangle1))" end end # parsing
PDDL
https://github.com/JuliaPlanners/PDDL.jl.git
[ "Apache-2.0" ]
0.2.18
df1e12fb86d1f081833a74249335aa02657be774
code
2752
@testset "set fluents" begin # Load domain and problem path = joinpath(dirname(pathof(PDDL)), "..", "test", "sets") domain = load_domain(joinpath(path, "domain.pddl")) problem = load_problem(joinpath(path, "problem.pddl")) Base.show(IOBuffer(), "text/plain", problem) # Make sure function declarations have the right output type @test PDDL.get_function(domain, :heard).type == :set @test PDDL.get_function(domain, :known).type == :set # State initialization should error if set functions are not registered yet @test_throws Exception state = initstate(domain, problem) # Register set theory PDDL.Sets.@register() state = initstate(domain, problem) implementations = [ "concrete interpreter" => domain, "ground interpreter" => ground(domain, state), "cached interpreter" => CachedDomain(domain), "concrete compiler" => first(compiled(domain, state)), "cached compiler" => CachedDomain(first(compiled(domain, state))), ] @testset "set fluents ($name)" for (name, domain) in implementations # Initialize state, test set membership and goal state = initstate(domain, problem) @test domain[state => pddl"(member (heard hanau) rumpelstiltskin)"] == 1 @test domain[state => pddl"(member (heard steinau) cinderella)"] == 1 @test domain[state => pddl"(subset (known jacob) story-set)"] == true @test domain[state => pddl"(subset (known wilhelm) (heard steinau))"] == false @test satisfy(domain, state, problem.goal) == false # Jacob tells stories at Steinau, Wilhem at Hanau state = execute(domain, state, pddl"(entertain jacob steinau)", check=true) state = execute(domain, state, pddl"(entertain wilhelm hanau)", check=true) @test domain[state => pddl"(cardinality (heard steinau))"] == 3 @test domain[state => pddl"(cardinality (heard hanau))"] == 3 # Both tell stories at Marburg state = execute(domain, state, pddl"(entertain jacob marburg)", check=true) state = execute(domain, state, pddl"(entertain wilhelm marburg)", check=true) @test domain[state => pddl"(cardinality (heard marburg))"] == 4 # Check that goal is achieved @test satisfy(domain, state, problem.goal) == true # Ensure that Base.show does not error buffer = IOBuffer() action = first(PDDL.get_actions(domain)) Base.show(buffer, "text/plain", domain) Base.show(buffer, "text/plain", state) Base.show(buffer, "text/plain", action) close(buffer) end # Test writing of set-valued fluents original_state = initstate(domain, problem) problem_str = write_problem(GenericProblem(original_state)) reparsed_state = initstate(domain, parse_problem(problem_str)) @test reparsed_state == original_state # Deregister set theory PDDL.Sets.deregister!() end # set fluents
PDDL
https://github.com/JuliaPlanners/PDDL.jl.git
[ "Apache-2.0" ]
0.2.18
df1e12fb86d1f081833a74249335aa02657be774
code
3275
# Test basic STRIPS functionality in a gripper domain @testset "strips" begin path = joinpath(dirname(pathof(PDDL)), "..", "test", "strips") domain = load_domain(joinpath(path, "domain.pddl")) @test domain.name == :gripper @test convert(Term, domain.predicates[:room]) == pddl"(room ?r)" problem = load_problem(joinpath(path, "problem.pddl")) @test problem.name == Symbol("gripper-problem") @test problem.objects == @pddl("rooma", "roomb", "ball1", "ball2", "left", "right") Base.show(IOBuffer(), "text/plain", problem) state = initstate(domain, problem) implementations = [ "concrete interpreter" => domain, "ground interpreter" => ground(domain, state), "abstracted interpreter" => abstracted(domain), "cached interpreter" => CachedDomain(domain), "concrete compiler" => first(compiled(domain, state)), "abstract compiler" => first(compiled(abstracted(domain), state)), "cached compiler" => CachedDomain(first(compiled(domain, state))), ] @testset "strips ($name)" for (name, domain) in implementations # Test forward execution of plans state = initstate(domain, problem) state = execute(domain, state, pddl"(pick ball1 rooma left)", check=true) @test domain[state => pddl"(carry ball1 left)"] ≃ true state = execute(domain, state, pddl"(move rooma roomb)", check=true) @test domain[state => pddl"(robbyat roomb)"] ≃ true state = execute(domain, state, pddl"(drop ball1 roomb left)", check=true) @test domain[state => pddl"(at ball1 roomb)"] ≃ true @test satisfy(domain, state, problem.goal) ≃ true # Test consistency between calls @test available(domain, state) == available(domain, state) # Test that available returns a vector of compound terms if domain isa CachedDomain @test available(domain, state) isa Vector{Compound} end # Test action availability state = initstate(domain, problem) @test Set{Term}(available(domain, state)) == Set{Term}(@pddl( "(pick ball1 rooma right)", "(pick ball1 rooma left)", "(pick ball2 rooma right)", "(pick ball2 rooma left)", "(move rooma roomb)", "(move rooma rooma)" )) # Ensure that Base.show does not error buffer = IOBuffer() action = first(PDDL.get_actions(domain)) Base.show(buffer, "text/plain", domain) Base.show(buffer, "text/plain", state) Base.show(buffer, "text/plain", action) close(buffer) end # Test backward regression of plans state = goalstate(domain, problem) state = regress(domain, state, pddl"(drop ball1 roomb left)") @test domain[state => pddl"(carry ball1 left)"] == true state = regress(domain, state, pddl"(move rooma roomb)") @test domain[state => pddl"(robbyat rooma)"] == true state = regress(domain, state, pddl"(pick ball1 rooma left)") @test domain[state => pddl"(at ball1 rooma)"] == true @test issubset(state, initstate(domain, problem)) # Test action relevance state = goalstate(domain, problem) @test Set{Term}(relevant(domain, state)) == Set{Term}(@pddl( "(drop ball1 roomb left)", "(drop ball1 roomb right)", "(drop ball1 roomb ball1)", "(drop ball1 roomb ball2)", "(drop ball1 roomb rooma)", "(drop ball1 roomb roomb)" )) @test relevant(domain, state) == relevant(CachedDomain(domain), state) end # strips
PDDL
https://github.com/JuliaPlanners/PDDL.jl.git
[ "Apache-2.0" ]
0.2.18
df1e12fb86d1f081833a74249335aa02657be774
code
3306
# Test typing in a typed gripper domain @testset "typing" begin path = joinpath(dirname(pathof(PDDL)), "..", "test", "typing") domain = load_domain(joinpath(path, "domain.pddl")) @test domain.name == Symbol("gripper-typed") @test convert(Term, domain.predicates[:free]) == pddl"(free ?g)" @test domain.predicates[:carry].argtypes == (:ball, :gripper) @test :gripper in PDDL.get_types(domain) problem = load_problem(joinpath(path, "problem.pddl")) @test problem.name == Symbol("gripper-problem") @test problem.objects == @pddl("rooma", "roomb", "ball1", "ball2", "left", "right") @test problem.objtypes[Const(:ball1)] == :ball Base.show(IOBuffer(), "text/plain", problem) state = initstate(domain, problem) implementations = [ "concrete interpreter" => domain, "ground interpreter" => ground(domain, state), "abstracted interpreter" => abstracted(domain), "cached interpreter" => CachedDomain(domain), "concrete compiler" => first(compiled(domain, state)), "abstract compiler" => first(compiled(abstracted(domain), state)), "cached compiler" => CachedDomain(first(compiled(domain, state))), ] @testset "typing ($name)" for (name, domain) in implementations # Test forward execution of plans state = initstate(domain, problem) state = execute(domain, state, pddl"(pick ball1 rooma left)", check=true) @test domain[state => pddl"(carry ball1 left)"] ≃ true state = execute(domain, state, pddl"(move rooma roomb)", check=true) @test domain[state => pddl"(robbyat roomb)"] ≃ true state = execute(domain, state, pddl"(drop ball1 roomb left)", check=true) @test domain[state => pddl"(at ball1 roomb)"] ≃ true @test satisfy(domain, state, problem.goal) ≃ true # Test consistency between calls @test available(domain, state) == available(domain, state) # Test that available returns a vector of compound terms if domain isa CachedDomain @test available(domain, state) isa Vector{Compound} end # Test action availability state = initstate(domain, problem) @test Set{Term}(available(domain, state)) == Set{Term}(@pddl( "(pick ball1 rooma right)", "(pick ball1 rooma left)", "(pick ball2 rooma right)", "(pick ball2 rooma left)", "(move rooma roomb)", "(move rooma rooma)" )) # Ensure that Base.show does not error buffer = IOBuffer() action = first(PDDL.get_actions(domain)) Base.show(buffer, "text/plain", domain) Base.show(buffer, "text/plain", state) Base.show(buffer, "text/plain", action) close(buffer) end # Test backward regression of plans state = goalstate(domain, problem) state = regress(domain, state, pddl"(drop ball1 roomb left)") @test domain[state => pddl"(carry ball1 left)"] == true state = regress(domain, state, pddl"(move rooma roomb)") @test domain[state => pddl"(robbyat rooma)"] == true state = regress(domain, state, pddl"(pick ball1 rooma left)") @test domain[state => pddl"(at ball1 rooma)"] == true @test issubset(state, initstate(domain, problem)) # Test action relevance state = goalstate(domain, problem) @test Set{Term}(relevant(domain, state)) == Set{Term}(@pddl( "(drop ball1 roomb left)", "(drop ball1 roomb right)" )) @test relevant(domain, state) == relevant(CachedDomain(domain), state) end # typing
PDDL
https://github.com/JuliaPlanners/PDDL.jl.git
[ "Apache-2.0" ]
0.2.18
df1e12fb86d1f081833a74249335aa02657be774
docs
5721
# PDDL.jl [![Documentation (Stable)](https://img.shields.io/badge/docs-stable-blue.svg)](https://juliaplanners.github.io/PDDL.jl/stable) [![Documentation (Latest)](https://img.shields.io/badge/docs-latest-blue.svg)](https://juliaplanners.github.io/PDDL.jl/dev) ![GitHub Workflow Status](https://img.shields.io/github/actions/workflow/status/JuliaPlanners/PDDL.jl/CI.yml?branch=master) ![GitHub release (latest SemVer)](https://img.shields.io/github/v/release/JuliaPlanners/PDDL.jl) ![GitHub](https://img.shields.io/github/license/JuliaPlanners/PDDL.jl?color=lightgrey) A Julia parser, interpreter, and compiler interface for the Planning Domain Definition Language (PDDL). Planners not included, but see [`SymbolicPlanners.jl`](https://github.com/JuliaPlanners/SymbolicPlanners.jl). If you use this software, please cite: > T. Zhi-Xuan, [“PDDL.jl: An Extensible Interpreter and Compiler Interface for Fast and Flexible AI Planning”](https://dspace.mit.edu/handle/1721.1/143179), MS Thesis, Massachusetts Institute of Technology, 2022. ## Installation Press `]` at the Julia REPL to enter the package manager, then run: ``` add PDDL ``` For the latest development version, run: ``` add https://github.com/JuliaPlanners/PDDL.jl.git ``` ## Features - Parsing and writing of PDDL domain and problem files - A high-level symbolic planning API - Execution of PDDL actions and plans - Abstract interpretation of PDDL semantics - Domain grounding and/or compilation for increased performance - Support for the following PDDL requirements: - `:strips` - the most restricted functionality - `:typing` - (hierarchically) typed objects - `:equality` - comparing equality `=` of objects - `:quantified-preconditions` - `forall` and `exists` - `:disjunctive-preconditions` - `or` predicates - `:conditional-effects` - `when` and `forall` effects - `:adl` - shorthand for the above 6 requirements - `:constants` - domain constants - `:fluents` - numeric fluents - `:derived-predicates` - a.k.a. domain axioms `PDDL.jl` does not include any planning algorithms. Rather, it aims to provide an interface so that planners for PDDL domains can easily be written in Julia, as in [`SymbolicPlanners.jl`](https://github.com/JuliaPlanners/SymbolicPlanners.jl). ## Example `PDDL.jl` can be used to parse domains and planning problems written in PDDL. For example, the following file describes a world of square tiles which are either white or black, arranged in a grid. To change the color of the tiles one can flip either a row of tiles or a column of tiles. ```clojure ;; Grid flipping domain with conditional effects and universal quantifiers (define (domain flip) (:requirements :adl :typing) (:types row column) (:predicates (white ?r - row ?c - column)) (:action flip_row :parameters (?r - row) :effect (forall (?c - column) (and (when (white ?r ?c) (not (white ?r ?c))) (when (not (white ?r ?c)) (white ?r ?c)))) ) (:action flip_column :parameters (?c - column) :effect (forall (?r - row) (and (when (white ?r ?c) (not (white ?r ?c))) (when (not (white ?r ?c)) (white ?r ?c)))) ) ) ``` A corresponding problem in this domain might be to make all the tiles white, when the initial state is an alternating pattern of black and white tiles in a 3x3 grid: ```clojure ;; Grid flipping problem (define (problem flip-problem) (:domain flip) (:objects r1 r2 r3 - row c1 c2 c3 - column) (:init (white r1 c2) (white r2 c1) (white r2 c3) (white r3 c2)) (:goal (forall (?r - row ?c - column) (white ?r ?c))) ) ``` With `PDDL.jl`, we can parse each of these files into Julia constructs: ```julia domain = load_domain("flip-domain.pddl") problem = load_problem("flip-problem.pddl") ``` Actions defined by the domain can be executed to solve the problem: ```julia state = initstate(domain, problem) state = execute(domain, state, pddl"(flip_column c1)") state = execute(domain, state, pddl"(flip_column c3)") state = execute(domain, state, pddl"(flip_row r2)") ``` We can then check that the problem is successfully solved in the final state: ```julia @assert satisfy(domain, state, problem.goal) == true ``` More examples can be found in the [`test`](test) directory. Documentation can be found [here](https://juliaplanners.github.io/PDDL.jl/stable). ## Interface PDDL.jl exposes a high-level interface for interacting with planning domains and problems, which can be used to implement planning algorithms and other downstream applications. Full documentation of interface methods can be found [here](https://juliaplanners.github.io/PDDL.jl/stable/ref/interface/#Interface-Functions). A summary is provided below: - `satisfy` checks whether a logical formula is satisfied (or satisfiable) in a PDDL state. - `satisfiers` returns all satisfying substitutions to free variables in a logical formula. - `evaluate` returns the value of a functional or logical expression within the context of a state. - `initstate` constructs an initial state from a PDDL domain and problem. - `goalstate` constructs a (partial) goal state from a PDDL domain and problem - `transition` returns the successor to a state after applying an action or set of actions. - `execute` applies an action to a state, returning the resulting state. - `regress` computes the pre-image of an action with respect to a state. - `available` checks whether an action can be executed in a state. - If no action is specified, it returns the list of available actions. - `relevant` checks whether an action can lead to a state. - If no action is specified, it returns the list of relevant actions.
PDDL
https://github.com/JuliaPlanners/PDDL.jl.git
[ "Apache-2.0" ]
0.2.18
df1e12fb86d1f081833a74249335aa02657be774
docs
1422
# PDDL.jl A extensible and performant interface for symbolic planning domains specified in the Planning Domain Definition Language (PDDL), with support for PDDL parsing, interpretation, and compilation. ## Features - Parsing and writing of PDDL domain and problem files - A high-level symbolic planning API for use by algorithms and applications - Execution of PDDL actions and plans - Abstract interpretation of PDDL semantics - Domain grounding and compilation for increased performance - Semantic extensibility through modular theories PDDL.jl does not include any planning algorithms. Rather, it provides an interface so that planners for PDDL domains can easily be written, as in [SymbolicPlanners.jl](https://github.com/JuliaPlanners/SymbolicPlanners.jl). ## Tutorials Learn how to install and use PDDL.jl by following these tutorials: ```@contents Pages = [ "tutorials/getting_started.md", "tutorials/writing_planners.md", "tutorials/speeding_up.md" ] Depth = 1 ``` ## Architecture and Interface Learn about the architecture of PDDL.jl, its high-level interface for symbolic planning, and the built-in implementations of this interface: ```@contents Pages = [ "ref/overview.md", "ref/datatypes.md", "ref/interface.md", "ref/parser_writer.md", "ref/interpreter.md", "ref/compiler.md", "ref/absint.md", "ref/extensions.md", "ref/utilities.md" ] Depth = 1 ```
PDDL
https://github.com/JuliaPlanners/PDDL.jl.git
[ "Apache-2.0" ]
0.2.18
df1e12fb86d1f081833a74249335aa02657be774
docs
1635
# Abstract Interpretation PDDL.jl supports [abstract interpretation](https://en.wikipedia.org/wiki/Abstract_interpretation) of PDDL domains. This functionality is exposed by the [`abstracted`](@ref) and [`abstractstate`](@ref) functions: ```@docs abstracted abstractstate ``` The behavior of the abstract interpreter can be customized by specifying the Julia type used to represent abstract values for a particular fluent or PDDL type: ```@docs PDDL.AbstractInterpreter ``` Abstract semantics can also be compiled by calling [`compiled`](@ref) on an abstracted domain and state: ```julia domain, state = abstracted(domain, state) domain, state = compiled(domain, state) ``` ## Abstract Values and Types Abstract interpretation requires each concrete value to be mapped to an abstract value of a particular type, which represents an (over-approximation) of the set of the possible values reachable after a series of actions have been executed. By default, Boolean values (i.e. predicates) are mapped to the [`BooleanAbs`](@ref) abstraction, while scalar numbers (corresponding to PDDL types like `integer`, `number` and `numeric`) are mapped to the [`IntervalAbs`](@ref) abstraction. Other types of values may use the [`SetAbs`](@ref) abstraction. ```@docs PDDL.BooleanAbs PDDL.IntervalAbs PDDL.SetAbs ``` When introducing a new global datatype using the PDDL.jl extension interfaces, a default abstraction can be associated with the type by defining a new method for [`PDDL.default_abstype`](@ref): ```@docs PDDL.default_abstype ``` The [`PDDL.@register`](@ref) macro can also be used to register new default abstractions.
PDDL
https://github.com/JuliaPlanners/PDDL.jl.git
[ "Apache-2.0" ]
0.2.18
df1e12fb86d1f081833a74249335aa02657be774
docs
277
# Compiler PDDL.jl supports compilation of the semantics of PDDL domains through code-generation for PDDL actions and custom datatypes for PDDL states. See [Speeding Up PDDL.jl](../tutorials/speeding_up.md) for a more detailed explanation. ```@docs compiled compilestate ```
PDDL
https://github.com/JuliaPlanners/PDDL.jl.git
[ "Apache-2.0" ]
0.2.18
df1e12fb86d1f081833a74249335aa02657be774
docs
9186
# Concepts and Data Types Symbolic planning is a general term for approaches to automated planning that describe the environment and its dynamics in terms of high-level symbols. PDDL is one way of representing such symbolic knowledge, but there are many related formalisms which the shared concepts of fluents, states, actions, domains, and problems. Here we provide general definitions of these concepts, and also describe the system of data types in PDDL.jl that mirror these concepts. A graphical overview is shown below. ```@raw html <div style="text-align:center"> <img src="../../assets/concepts-datatypes.svg" alt="A graphical overview of concepts in symbolic planning and their corresponding datatypes." width="80%"/> </div> ``` ## Fluents and Terms Fluents define (relational) state variables which may (or may not) change over time. A **fluent** of arity $$n$$ is a predicate (Boolean-valued) or function (non-Boolean) with $$n$$ object arguments, which describes some property or relation over those objects. A **ground fluent** is a fluent defined over particular set of objects (i.e. none of its arguments are free variables). Arguments may optionally be type-restricted. !!! note "Example" The fluent `(on ?x ?y)` is named `on`, has arity 2, and describes whether some object denoted by the variable `?x` is stacked on top of `?y`. The ground fluent `(on a b)` denotes that object `a` is stacked on top of object `b` when true. The `Term` data type is used to represent fluents, but also object constants, variables, logical formulae, effect formulae, and ground actions. Every `Term` has a `name` property, as well as an `args` property, representing the (potentially empty) list of sub-terms it has as arguments. `Term`s are inherited from the [Julog.jl](https://github.com/ztangent/Julog.jl) package for Prolog-style reasoning about first-order logic. ```@docs Term ``` There are three subtypes of `Term`s: - `Const` terms, which are used to represent object constants, and have no arguments. - `Var` terms are used to represent variables in the context of first-order expressions. - `Compound` terms are terms with arguments. They can be used to represent fluents, action preconditions or effects, logical expressions, or [ground actions](../tutorials/getting_started.md#Instantiating-Actions). To construct a `Term` using PDDL syntax, the [`@pddl`](@ref) macro or `pddl"..."` [string macro](https://docs.julialang.org/en/v1/manual/metaprogramming/#meta-non-standard-string-literals) can be used: ```julia-repl julia> pddl"(on a b)" |> dump Compound name: Symbol on args: Array{Term}((2,)) 1: Const name: Symbol a 2: Const name: Symbol b ``` ### Fluent Signatures In the context of a planning [`Domain`](@ref), (lifted) fluents often have specific type signatures. For example, fluent arguments may be restricted to objects of particular types, and their values may be `:boolean` or `:numeric`. This type information is stored in the [`PDDL.Signature`](@ref) data type: ```@docs PDDL.Signature PDDL.arity ``` ## States In symbolic planning, states are symbolic descriptions of the environment and its objects at a particular point in time. Formally, given a finite set of fluents $$\mathcal{F}$$, a **state** $$s$$ is composed of a set of (optionally typed) objects $$\mathcal{O}$$, and valuations of ground fluents $$\mathcal{F}(\mathcal{O})$$ defined over all objects in $$\mathcal{O}$$ of the appropriate types. Each ground fluent thus refers to a state variable. For a ground fluent $$f \in \mathcal{F}(\mathcal{O})$$, we will use the notation $$s[f] = v$$ to denote that $$f$$ has value $$v$$ in state $$s$$. !!! note "Example" Given the fluents `(on ?x ?y)` and `(on-table ?x)` that describe a state $s$ with objects `a` and `b`, there are six ground fluents whose values are defined in the state: `(on a a)`, `(on a b)`, `(on b a)`, `(on b b)`, `(on-table a)` and `(on-table b)`. The expression $$s[$$`(on a b)`$$] =$$ `true` means that object `a` is on top of `b` in state $$s$$. In PDDL.jl, states are represented by the [`State`](@ref) abstract type: ```@docs State ``` The following accessor methods are defined for a `State`: ```@docs PDDL.get_objects(::State) PDDL.get_objtypes(::State) PDDL.get_objtype(::State, ::Any) PDDL.get_facts(::State) PDDL.get_fluent(::State, ::Term) PDDL.set_fluent!(::State, ::Any, ::Term) PDDL.get_fluents(::State) ``` ## Actions As described in the [Getting Started](../tutorials/getting_started.md#Instantiating-Actions), symbolic planning formalisms distinguish between **action schemas** (also known as **operators**), which specify the general semantics of an action, and **ground actions**, which represent instantiations of an action schema for specific objects. An action schema comprises: - A *name* that identifies the action. - A list of (optionally typed) *parameters* or *arguments* that an action operates over. - A *precondition* formula, defined over the parameters, that has to hold true for the action to be executable. - An *effect* formula, defined over the parameters, specifying how the action modifies the state once it is executed. !!! note "Example" An example action schema definition in PDDL is shown below: ```lisp (:action stack :parameters (?x ?y - block) :precondition (and (holding ?x) (clear ?y) (not (= ?x ?y))) :effect (and (not (holding ?x)) (not (clear ?y)) (clear ?x) (handempty) (on ?x ?y))) ``` This schema defines the semantics of an action named `stack` and has two parameters of type `block`. Its precondition states that block `?x` has to be held, block `?y` has to be clear (no other block is on top of it), and that`?x` is not the same as `?y`. Its effect states that in the next state, `?x` will no longer be held, and that it will be instead be placed on top of block `?y`. In PDDL.jl, action schemas are represented by the [`Action`](@ref) abstract type: ```@docs Action ``` The following accessor methods are defined for an `Action`: ```@docs PDDL.get_argvars(::Action) PDDL.get_argtypes(::Action) PDDL.get_precond(::Action) PDDL.get_effect(::Action) ``` In contrast to action schemas, ground actions are represented with the [`Term`](@ref) data type. This is because the `name` property of a [`Term`](@ref) is sufficient to identify an action schema in the context of a planning domain, and the `args` property can be used to represent action parameters. There also exists a special no-op action schema, denoted [`PDDL.NoOp()`](@ref) in Julia code. The corresponding ground action can be expressed as [`PDDL.no_op`](@ref) or `pddl"(--)"`. ```@docs PDDL.NoOp PDDL.no_op ``` ### State Differences For some use cases, such as [action grounding](utilities.md#Grounding) or [interpreted execution](interpreter.md), it can be helpful to more explicitly represent the effects of an action as a difference between [`State`](@ref)s. PDDL.jl uses the [`PDDL.Diff`](@ref) abstract data type to represent such differences, including [`PDDL.GenericDiff`](@ref)s and [`PDDL.ConditionalDiff`](@ref)s. ```@docs PDDL.Diff PDDL.GenericDiff PDDL.ConditionalDiff ``` Multiple [`PDDL.Diff`](@ref)s can be combined using the [`PDDL.combine!`](@ref) and [`PDDL.combine`](@ref) functions: ```@docs PDDL.combine! PDDL.combine ``` ## Domains A **planning domain** is a (first-order) symbolic model of the environment, specifying the predicates and functions that can be used to describe the environment, and the actions that can be taken in the environment, including their preconditions and effects. Some domains may also specify the types of objects that exist, or include domain axioms that specify which predicates can be derived from others. In PDDL.jl, domains are represented by the [`Domain`](@ref) abstract type: ```@docs Domain ``` The following accessor methods are defined for a `Domain`: ```@docs PDDL.get_name(::Domain) PDDL.get_typetree(::Domain) PDDL.get_types(::Domain) PDDL.get_subtypes(::Domain, ::Symbol) PDDL.get_predicates(::Domain) PDDL.get_predicate(::Domain, ::Symbol) PDDL.get_functions(::Domain) PDDL.get_function(::Domain, ::Symbol) PDDL.get_fluents(::Domain) PDDL.get_fluent(::Domain, ::Symbol) PDDL.get_axioms(::Domain) PDDL.get_axiom(::Domain, ::Symbol) PDDL.get_actions(::Domain) PDDL.get_action(::Domain, ::Symbol) ``` ## Problems A **planning problem** for a particular domain specifies both the initial state of the environment, and the task specification to be achieved. Typically, the task specification is a goal to be achieved, specified as a logical formula to be satisfied. However, planning problems can also include other specifications, such as a cost metric to minimize, and temporal constraints on the plan or state trajectory. In PDDL.jl, problems are represented by the [`Problem`](@ref) abstract type: ```@docs Problem ``` The following accessor methods are defined for a `Problem`: ```@docs PDDL.get_name(::Problem) PDDL.get_domain_name(::Problem) PDDL.get_objects(::Problem) PDDL.get_objtypes(::Problem) PDDL.get_init_terms(::Problem) PDDL.get_goal(::Problem) PDDL.get_metric(::Problem) PDDL.get_constraints(::Problem) ```
PDDL
https://github.com/JuliaPlanners/PDDL.jl.git
[ "Apache-2.0" ]
0.2.18
df1e12fb86d1f081833a74249335aa02657be774
docs
7581
# Extension Interfaces PDDL.jl provides a set of extension interfaces for adding new global predicates, functions, and types. Extensions can be added on a per-predicate or per-function basis, or by registering *theories* that provide a class of related functionality. ## Built-in Types, Predicates and Functions PDDL.jl stores mappings from (global) names to their implementations by making use of [value-based dispatch](https://github.com/ztangent/ValSplit.jl). These mappings are stored by defining methods for the following functions: ```@docs PDDL.datatype_def PDDL.predicate_def PDDL.function_def PDDL.modifier_def ``` These mappings can also be accessed in dictionary form with the following utility functions: ```@docs PDDL.global_datatypes() PDDL.global_predicates() PDDL.global_functions() PDDL.global_modifiers() ``` ### Datatypes By default, PDDL.jl supports fluents with Boolean and numeric values. These correspond to the PDDL datatypes named `boolean`, `integer`, `number` and `numeric`, and are implemented in Julia with the `Bool`, `Int` and `Float64` types: ```julia PDDL.datatype_def(::Val{:boolean}) = (type=Bool, default=false) PDDL.datatype_def(::Val{:integer}) = (type=Int, default=0) PDDL.datatype_def(::Val{:number}) = (type=Float64, default=1.0) PDDL.datatype_def(::Val{:numeric}) = (type=Float64, default=1.0) ``` When declaring a function in a PDDL domain, it is possible to denote its (output) type as one of the aforementioned types. For example, the `distance` between two cities might be declared to have a `number` type: ```pddl (distance ?c1 - city ?c2 - city) - number ``` ### Predicates and Functions PDDL.jl also supports built-in predicates and functions for comparisons and arithmetic operations. Since these functions can be used in any PDDL domain, they are called *global* functions. Global predicates and functions are implemented by mapping them to Julia functions: ```julia # Built-in predicates PDDL.predicate_def(::Val{:(==)}) = PDDL.equiv PDDL.predicate_def(::Val{:<=}) = <= PDDL.predicate_def(::Val{:>=}) = >= PDDL.predicate_def(::Val{:<}) = < PDDL.predicate_def(::Val{:>}) = > # Built-in functions PDDL.function_def(::Val{:+}) = + PDDL.function_def(::Val{:-}) = - PDDL.function_def(::Val{:*}) = * PDDL.function_def(::Val{:/}) = / ``` ### Modifiers Finally, PDDL.jl supports modifier expressions such as `(increase fluent val)`, which modifies the current value of `fluent` by `val`, setting the new value of `fluent` to the modified `value`. Like global functions, modifiers are implemented by mapping their names to corresponding Julia functions: ```julia PDDL.modifier_def(::Val{:increase}) = :+ PDDL.modifier_def(::Val{:decrease}) = :- PDDL.modifier_def(::Val{Symbol("scale-up")}) = :* PDDL.modifier_def(::Val{Symbol("scale-down")}) = :/ ``` ## Adding Types, Predicates and Functions To add a new global datatype, predicate, function, or modifier to PDDL, it is enough to define a new method of [`PDDL.datatype_def`](@ref), [`PDDL.predicate_def`](@ref), [`PDDL.function_def`](@ref), or [`PDDL.modifier_def`](@ref) respectively. Alternatively, one can use the [`@register`](@ref) macro to register new implementations at compile-time: ```@docs PDDL.@register ``` In scripting contexts, run-time registration and de-registration can be achieved using [`PDDL.register!`](@ref) and [`PDDL.deregister!`](@ref): ```@docs PDDL.register! PDDL.deregister! ``` ## Defining and Registering Theories Similar to [Satisfiability Modulo Theories (SMT) solvers](https://en.wikipedia.org/wiki/Satisfiability_modulo_theories), PDDL.jl provides support for [*planning* modulo theories](https://dl.acm.org/doi/10.5555/3038546.3038555). By registering a new theory, developers can extend the semantics of PDDL to handle new mathematical objects such as sets, arrays, and tuples. A new theory can be implemented by writing a (sub)module annotated with the [`@pddltheory`](@ref) macro: ```@docs @pddltheory ``` For example, a theory for how to handle sets of PDDL objects can be written as follows (adapting the example by [Gregory et al (2012)](https://dl.acm.org/doi/10.5555/3038546.3038555)): ```julia @pddltheory module Sets using PDDL using PDDL: SetAbs construct_set(xs::Symbol...) = Set{Symbol}(xs) empty_set() = Set{Symbol}() cardinality(s::Set) = length(s) member(s::Set, x) = in(x, s) subset(x::Set, y::Set) = issubset(x, y) union(x::Set, y::Set) = Base.union(x, y) intersect(x::Set, y::Set) = Base.intersect(x, y) difference(x::Set, y::Set) = setdiff(x, y) add_element(s::Set, x) = push!(copy(s), x) rem_element(s::Set, x) = pop!(copy(s), x) set_to_term(s::Set) = isempty(s) ? Const(Symbol("(empty-set)")) : Compound(Symbol("construct-set"), PDDL.val_to_term.(collect(s))) const DATATYPES = Dict( "set" => (type=Set{Symbol}, default=Set{Symbol}()) ) const ABSTRACTIONS = Dict( "set" => SetAbs{Set{Symbol}} ) const CONVERTERS = Dict( "set" => set_to_term ) const PREDICATES = Dict( "member" => member, "subset" => subset ) const FUNCTIONS = Dict( "construct-set" => construct_set, "empty-set" => empty_set, "cardinality" => cardinality, "union" => union, "intersect" => intersect, "difference" => difference, "add-element" => add_element, "rem-element" => rem_element ) end ``` This theory introduces a new PDDL type called `set`, implemented as the Julia datatype `Set{Symbol}`. Sets can be modified with functions such as `union` or `add-element`, and can also serve as arguments to predicates like `subset`. The default abstraction for a set is specified to be a [`SetAbs`](@ref), which means that the abstract interpreter will use a set of sets to represent the abstract value of a set-valued variable. After defining a new theory, we can *register* it by calling the `@register` macro for that module, and make use of the new functionality in PDDL domains and problems: ```julia Sets.@register() domain = pddl""" (define (domain storytellers) (:requirements :typing :fluents) (:types storyteller audience story) (:functions (known ?t - storyteller) - set (heard ?a - audience) - set (story-set) - set ) (:action entertain :parameters (?t - storyteller ?a - audience) :precondition (true) :effect ((assign (heard ?a) (union (heard ?a) (known ?t)))) ) ) """ problem = pddl""" (define (problem storytellers-problem) (:domain storytellers) (:objects jacob wilhelm - storyteller hanau steinau - audience snowwhite rumpelstiltskin - story ) (:init (= (story-set) (construct-set snowwhite rumpelstiltskin)) (= (known jacob) (construct-set snowwhite)) (= (known wilhelm) (construct-set rumpelstiltskin)) (= (heard hanau) (empty-set)) (= (heard steinau) (empty-set)) ) (:goal (and ; both audiences must hear all stories (= (heard hanau) (story-set)) (= (heard steinau) (story-set)) )) ) """ state = initstate(domain, problem) ``` As is the case for registering new predicates and functions, the `@register` macro is preferred whenever packages that depend on PDDL.jl need to be precompiled. However, it is also possible register and deregister theories at runtime with `register!` and `deregister!`: ```julia Sets.register!() Sets.deregister!() ``` ## Predefined Theories Alongside the `Sets` example shown above, a theory for handling `Arrays` is predefined as part of PDDL.jl: ```@docs PDDL.Sets PDDL.Arrays ``` These theories are not registered by default, and should be registered with the `@register` macro before use.
PDDL
https://github.com/JuliaPlanners/PDDL.jl.git
[ "Apache-2.0" ]
0.2.18
df1e12fb86d1f081833a74249335aa02657be774
docs
7475
# Interface Functions PDDL.jl defines a set of interface functions that serve as basic operations in a wide variety of symbolic planning algorithms and applications. These functions are intended to be low-level enough such that planning algorithms can be expressed primarily in terms of the operations they represent, but high-level enough so as to abstract away from implementational details. A schematic overview of most of these interface functions is shown below. ```@raw html <div style="text-align:center"> <img src="../../assets/function-interface.svg" alt="A schematic diagram showing how the PDDL.jl interface functions relate to each other." width="90%"/> </div> ``` ## Evaluating Formulae and Expressions The key distinguishing feature of symbolic planning is the ability to describe and determine whether certain facts about the world hold true (e.g. is the robot holding a block?), or evaluate numeric properties (e.g. the distance between two cities), with queries expressed in terms of first-order logic. As such, PDDL.jl provides the following functions which satisfy or evaluate first-order expressions in the context of a [`State`](@ref): ### Formula Satisfaction Given a term representing a well-formed logical formula, or a collection of `terms` (treated as conjunctions of such formulae), the [`satisfy`](@ref) function returns whether they are satisfiable within a domain and state: ```@docs satisfy ``` When a term has free variables, [`satisfy`](@ref) returns true as long as one satisfying assignment exists. A related function, [`satisfiers`](@ref), returns a list of all satisfying assignments to such variables (a.k.a. substitutions), including the empty list when a variable-free formula is satisfied. If no satisfying assignments exist, `nothing` is returned: ```@docs satisfiers ``` ### Term Evaluation Given a term representing a ground expression (i.e. one with no free variables), the [`evaluate`](@ref) function returns the value of that expression in the context of a domain and state: ```@docs evaluate ``` For example, if `term` refers to a fluent, the value of the fluent is returned. Compound numeric expressions (e.g., the sum of two fluents) can also be evaluated. ## State Initialization and Transition A PDDL domain specifies the transition dynamics of a first order symbolic model of the world, while a PDDL problem specifies the initial state and object set over which these dynamics are grounded. PDDL.jl thus provides functions for constructing an initial state for a domain and problem, and for simulating the transition dynamics: ### State Initialization Given a domain and problem, the [`initstate`](@ref) function returns the initial state, the type of which is concrete subtype of [`State`](@ref): ```@docs initstate ``` The type of the returned state may vary depending on the type of the domain or problem provided. For example, providing a compiled domain as an argument leads [`initstate`](@ref) to return a compiled state representation. ### State Transition Given a domain, state and action, the [`transition`](@ref) function returns a successor state, including the effects of events and processes (as supported by [PDDL+](http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.15.5965&rep=rep1&type=pdf)) and random sampling (in the case of [probabilistic PDDL](http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.94.2335&rep=rep1&type=pdf)). To support future multi-agent extensions of PDDL.jl, [`transition`](@ref) may also accept a set of `actions` to be executed in parallel: ```@docs transition transition! ``` ## Forward Action Semantics A widely-used strategy in symbolic planning is forward state space search, guided by a planning heuristic. These algorithms are built upon two basic operations to search forward in state space: querying the actions that are available in any given state, and executing an action to generate a successor state. These operations can be performed using the following functions: ### Action Availability Given a domain, state, action schema and action arguments, the [`available`](@ref) function returns whether the corresponding action is available in the specified state -- i.e. its precondition is fulfilled. An action may alternatively be provided as a [`Term`](@ref) (e.g. `pddl"(stack a b)"`): ```@docs available(::Domain, ::State, ::Action, ::Any) ``` When [`available`](@ref) is called without specifying an action, it returns an iterator over all actions available in the specified state, effectively encapsulating the logic for node expansion in a search algorithm: ```@docs available(::Domain, ::State) ``` ### Action Execution Given a domain, state, action schema and action arguments, the [`execute`](@ref) function returns the result of applying the specified action to the state. An action may also be provided as a [`Term`](@ref): ```@docs execute execute! ``` ## Inverse Semantics Regression-based planners (e.g. [the classical STRIPS algorithm](https://en.wikipedia.org/wiki/Stanford_Research_Institute_Problem_Solver)) make use of the fact that is possible to plan by working *backwards* from a goal, repeatedly selecting actions that are relevant to achieving a goal state or specification. This motivates the following interface methods for (i) constructing *abstract* states from goal specifications and (ii) exposing the *inverse* semantics of actions: ### Goal State Construction In symbolic planning, a logical goal formula ``g`` effectively specifies the set of all concrete goal states where ``g`` holds true. We can represent this set of concrete states as an *abstract* state ``\bar s``. In the special case where the goal ``g`` contains no disjunctions or functions, ``\bar s`` can also be understood as a *partial* state that specifies the values of all predicates in ``g``, and leaves all other predicates unspecified. To support regression search in this abstract space, PDDL.jl provides the [`goalstate`](@ref) method for constructing an abstract state from the goal specification of a problem: ```@docs goalstate ``` As with [`initstate`](@ref), the data type of the returned state ``\bar s`` may depend on the type of domain or problem provided. ### Action Relevance Given a domain, state, action schema and action arguments, the [`relevant`](@ref) function returns whether the action is relevant to achieving the specified state -- i.e., it achieves at least one predicate or numeric constraint in the state, and destroys none through deletion or modification. In the case where the action's effect reduces to a list of predicates to be added and a list to be deleted, this simplifies to checking that at least one added predicate is true in the state, and that none are deleted. An action may also be provided as a [`Term`](@ref): ```@docs relevant(::Domain, ::State, ::Action, ::Any) ``` When `relevant` is called without specifying an action, it returns an iterator over all actions relevant to the specified state, encapsulating the logic for node expansion in a regression search algorithm: ```@docs relevant(::Domain, ::State) ``` ### Action Regression Given a domain, state, action schema and action arguments, the [`regress`](@ref) function executes the action in reverse, returning a (potentially abstract) state that represents the pre-image of the action with respect to the input state. An action may also be provided as a [`Term`](@ref): ```@docs regress regress! ```
PDDL
https://github.com/JuliaPlanners/PDDL.jl.git
[ "Apache-2.0" ]
0.2.18
df1e12fb86d1f081833a74249335aa02657be774
docs
28
# Interpreter Coming soon!
PDDL
https://github.com/JuliaPlanners/PDDL.jl.git
[ "Apache-2.0" ]
0.2.18
df1e12fb86d1f081833a74249335aa02657be774
docs
4835
# Architecture Overview PDDL.jl differs from standard automated planning systems in that it is designed not only for speed and efficiency, but also extensibility and interoperability. This is due to the fact that the design target of PDDL.jl is an *interface*, not just a particular algorithm or application. The diagram below provides an overview of the architecture of PDDL.jl and the ecosystem it enables (**left**), in comparison with the architecture of standard planning systems (**right**). ```@raw html <div style="text-align:center"> <img src="../../assets/pddl-jl-architecture.svg" alt="A diagram of the architecture and ecosystem of PDDL.jl" width="60%"/> <img src="../../assets/standard-architecture.svg" alt="A diagram of the architecture of a standard planning system" width="30%"/> </div> ``` ## Standard Planning Architectures Standard architectures are designed primarily for fast and efficient planning, accepting PDDL domain and problem files as inputs (**right**, *pink*), rapidly translating and compiling them (*orange*) to more efficient representations (*yellow*), running planning algorithms and heuristics (*blue*) over those representations, then producing symbolic plans and metadata as outputs (*green*). This architecture enables performance optimization over the entire pipeline, but limits interaction with external applications to just two channels: (i) receiving domains and problems as inputs; and (ii) providing plans as outputs. ## PDDL.jl Architecture and Ecosystem In contrast, the core of PDDL.jl is its interface (**left**, *green*): a set of [**abstract data types**](datatypes.md) and [**interface functions**](interface.md) that expose the high-level functionality required to implement planning algorithms and applications. Centering PDDL.jl around its interface means that: - multiple **implementations** of the interface can coexist (*yellow*), providing either speed, generality or specialized functionality depending on engineering needs - multiple **applications** (*light blue*) can use the interface to achieve tighter integration between symbolic planning and other AI components - multiple **extensions** of PDDL are enabled by implementing and extending the interface through additional libraries (*dark blue*). (Note that the extension libraries shown in the diagram are still under development.) By factoring out these components of traditional planning systems into separate software artifacts, PDDL.jl enables an ecosystem where implementations can evolve independently from applications (e.g. through future compiler improvements), applications can interoperate through a common interface (e.g. [Bayesian agent models](https://arxiv.org/abs/2006.07532) which incorporate planning algorithms), and extensions can be flexibly composed (e.g. multi-agent stochastic domains). ## Built-in Implementations Given this interface-centered design, PDDL.jl itself does not include any applications or extensions, which are intended to be provided by separate libraries (e.g. [SymbolicPlanners.jl](https://github.com/JuliaPlanners/SymbolicPlanners.jl)). However, PDDL.jl does include several built-in implementations of its interface: a standard interpreter, a compiler, and an abstract interpreter. Each of these implementations plays a different role in the context of a planning application and its development: - The [**standard interpreter**](interpreter.md) is designed to be easily extended, and also comes with the ease of debugging and inspection usually associated with interpreters. As such, it is ideal for checking correctness when specifying a new PDDL domain, or when implementing a planning algorithm or extension library. - The [**compiler**](compiler.md) enables efficient planning through just-in-time compilation of specialized state representations and action semantics. While compilation is less easy to extend or debug, it provides orders of magnitude speed-ups over interpretation, allowing PDDL.jl applications to scale to much larger problems. - The [**abstract interpreter**](absint.md) primary intended use is to compute planning heuristics that rely upon domain relaxation or abstraction. However, abstract interpreters have many other uses which future applications could take advantage of. ## Other Components In addition to implementations of its interface, PDDL.jl also provides a PDDL [**parser**](parser_writer.md#General-Parsing), [**writer**](parser_writer.md#General-Writing), and a set of [**utilities**](utilities.md) to help analyze and work with PDDL domains. [**Extension interfaces**](extensions.md) also make it easier to support new functionality in PDDL.jl. Collectively, these components allow researchers, developers, and engineers to use symbolic planning in a wide variety of application contexts.
PDDL
https://github.com/JuliaPlanners/PDDL.jl.git
[ "Apache-2.0" ]
0.2.18
df1e12fb86d1f081833a74249335aa02657be774
docs
3684
# Parser and Writer PDDL.jl supports both parsing and writing of PDDL files and strings. In addition, the parser is designed to be extensible, allowing variants or extensions of PDDL to be easily supported. ## General Parsing The `PDDL.Parser` submodule contains all functionality related to parsing PDDL strings and loading of PDDL files. To parse a string in PDDL, use the macro [`@pddl`](@ref) or the function [`parse_pddl`](@ref). Both of these return a list of parsed results if multiple strings are provided. ```@docs @pddl parse_pddl ``` Below we use [`@pddl`](@ref) to parse a sequence of predicates, and use [`parse_pddl`](@ref) to parse a PDDL axiom (a.k.a. derived predicate): ```julia-repl julia> @pddl("(on a b)", "(on b c)") 2-element Vector{Compound}: on(a, b) on(b, c) julia> parse_pddl("(:derived (handempty) (forall (?x) (not (holding ?x))))") handempty <<= forall(object(X), not(holding(X))) ``` In addition, there exists a string macro `pddl"..."`, which is useful for parsing single string literals: ```julia-repl julia> pddl"(on a b)" on(a, b) ``` ```@docs @pddl_str ``` ## Interpolation The string macro `pddl"...` (as well as the [`@pddl`](@ref) macro) supports the interpolation of Julia variables using the `$` operator when parsing PDDL formulae. This makes it easier to construct predicates or expressions with a fixed structure but variable contents: ```julia obj = Const(:a) sym = :b pddl"(on $obj $sym)" # Parses to the same value as pddl"(on a b)" fname = :on pddl"($fname a b)" # Also parses to pddl"(on a b)" var = pddl"(?x)" type = :block pddl"(forall ($var - $type) (on-table $var))" # Parses to pddl"(forall (?x - block) (on-table ?x))" ``` It is also possible to interpolate entire Julia expressions by surrounding the expression in curly braces (note that the expression itself must not contain any curly braces): ```julia pddl"(= cost ${1 + 2})" # Parses to pddl"(= cost 3)" pddl"(= cost ${zero(Int)})" # Parses to pddl"(= cost 0)" ``` Interpolation is **not** supported when parsing larger PDDL constructs, such as actions, domains, and problems. ## Parsing Domains and Problems To parse domains and problems specified as PDDL strings, use [`parse_domain`](@ref) and [`parse_problem`](@ref). ```@docs parse_domain parse_problem ``` To load domains or problems from a file, use [`load_domain`](@ref) and [`load_problem`](@ref). ```@docs load_domain load_problem ``` ## Extending the Parser The parser can be extended to handle new PDDL constructs using the following macros: ```@docs PDDL.Parser.@add_top_level PDDL.Parser.@add_header_field PDDL.Parser.@add_body_field ``` ## General Writing The `PDDL.Writer` submodule contains all functionality related to writing PDDL strings and saving of PDDL files. To write a string in PDDL syntax, use the function [`write_pddl`](@ref). ```@docs write_pddl ``` Below we use [`write_pddl`](@ref) to write out an [`Action`](@ref) from the [Blocksworld domain](https://github.com/JuliaPlanners/PlanningDomains.jl/blob/main/repositories/julia-planners/blocksworld/domain.pddl). ```julia-repl julia> write_pddl(PDDL.get_action(domain, :stack)) |> print (:action stack :parameters (?x ?y - block) :precondition (and (holding ?x) (clear ?y) (not (= ?x ?y))) :effect (and (not (holding ?x)) (not (clear ?y)) (clear ?x) (handempty) (on ?x ?y))) ``` ## Writing Domains and Problems To write domains and problem as PDDL strings, use [`write_domain`](@ref) and [`write_problem`](@ref). ```@docs write_domain write_problem ``` To save domains or problems as text files to a path, use [`save_domain`](@ref) and [`save_problem`](@ref). ```@docs save_domain save_problem ```
PDDL
https://github.com/JuliaPlanners/PDDL.jl.git
[ "Apache-2.0" ]
0.2.18
df1e12fb86d1f081833a74249335aa02657be774
docs
3685
# Utilities PDDL.jl provides a variety of utilities for working with and manipulating planning domains, including plan simulation, domain grounding, domain caching, and tools for domain and formula analysis. ## Simulation It is often useful to simulate the results of applying a series of actions to an initial state. PDDL.jl supports this with the [`Simulator`](@ref) data type, and the associated [`PDDL.simulate`](@ref) method. ```@docs Simulator PDDL.simulate ``` The following types of [`Simulator`](@ref) are provided, depending on what results are desired: ```@docs StateRecorder EndStateSimulator ``` ## Grounding Many planning algorithms and search heuristics benefit from grounding of actions and axioms with respect to the fixed set of objects in the initial state. PDDL.jl provides the [`GroundAction`](@ref) data type to represent grounded actions, as well as the [`groundactions`](@ref) and [`groundaxioms`](@ref) functions to convert lifted [`Action`](@ref)s and axiom `Clause`s into lists of grounded actions: ```@docs GroundAction groundactions groundaxioms ``` PDDL.jl also provides the [`ground`](@ref) function, which can be used to ground specific actions: ```@docs ground(::Domain, ::State, ::Action, ::Any) ground(::Domain, ::State, ::GenericAction) ``` The [`ground`](@ref) function can also be used to ground an entire domain with respect to an initial state, returning a [`GroundDomain`](@ref) that can be used in place of the original domain: ```@docs ground(::Domain, ::State) GroundDomain ``` ## Caching Some applications of the PDDL.jl interface may result in repeated calls to costly interface functions with the same set of input arguments (e.g. repeatedly determining the set of [`available`](@ref) actions in value iteration). In such cases, it is useful to be able to memoize the outputs of these functions. PDDL.jl supports this via [`CachedDomain`](@ref)s: ```@docs CachedDomain CachedDomain(::Domain, ::Any) ``` ## Analysis Static analysis of domains, actions, and formulae is often used in a variety of downstream tasks such as grounding, compilation, and relevance pruning. PDDL.jl provides a suite of analysis tools that can be helpful for these purposes. ### Domain Analysis Certain analyses are performed on planning domains as whole (e.g. inferring the set of static fluents). The following domain-level analyses are provided by PDDL.jl: ```@docs infer_static_fluents infer_affected_fluents infer_relevant_fluents infer_axiom_hierarchy ``` An associated set of (un-exported) utility functions are provided: ```@docs PDDL.is_static PDDL.is_affected PDDL.simplify_statics PDDL.substitute_axioms ``` ### Formula Analysis PDDL.jl also provides a list of utilities for analyzing formula properties (some of which may be specific to the domain they are defined in). Note that these utilities are not exported. The following utilities determine top-level properties of a [`Term`](@ref). ```@docs PDDL.is_pred PDDL.is_derived PDDL.is_global_pred PDDL.is_func PDDL.is_global_func PDDL.is_attached_func PDDL.is_external_func PDDL.is_fluent PDDL.is_literal PDDL.is_logical_op PDDL.is_negation PDDL.is_quantifier PDDL.is_type PDDL.has_subtypes ``` The following utilities determine properties of a [`Term`](@ref) or any of its nested subterms. ```@docs PDDL.has_name PDDL.has_pred PDDL.has_derived PDDL.has_global_pred PDDL.has_func PDDL.has_global_func PDDL.has_attached_func PDDL.has_fluent PDDL.has_logical_op PDDL.has_negation PDDL.has_quantifier PDDL.has_type ``` The [`PDDL.constituents`](@ref) function can be used to decompose a formula into a list of its constituent fluent terms: ```@docs PDDL.constituents ```
PDDL
https://github.com/JuliaPlanners/PDDL.jl.git
[ "Apache-2.0" ]
0.2.18
df1e12fb86d1f081833a74249335aa02657be774
docs
17895
# Getting Started ```@meta Description = "A tutorial on getting started with PDDL.jl." ``` Welcome to using PDDL.jl! This tutorial covers how to install PDDL.jl, how to load your first domain and problem, how to manipulate and inspect states and actions, and how to write and execute a plan that achieves a goal. ## Installation First, download and run Julia, [available here](https://julialang.org/downloads/) (version 1.3 or later required). Optionally, [create your own project](https://pkgdocs.julialang.org/v1/environments/) and activate its environment. Next, press `]` in the Julia REPL to enter the package manager, then install the registered version of PDDL.jl by running: ``` add PDDL ``` To install the latest development version, you may instead run: ``` add https://github.com/JuliaPlanners/PDDL.jl.git ``` PDDL.jl can now be used in the Julia REPL, or at the top of a script: ```julia using PDDL ``` ## Loading Domains and Problems PDDL stands for the [Planning Domain Definition Language](https://en.wikipedia.org/wiki/Planning_Domain_Definition_Language), a formal language for specifying the semantics of planning domains and problems. PDDL domain and problem definitions are typically saved as text files with the `.pddl` extension. ### Loading Domains A **PDDL domain** defines the high-level "physics" or transition dynamics of a planning task. A classic example is [Blocksworld](https://en.wikipedia.org/wiki/Blocks_world), a domain where blocks may be stacked on top of each other, or placed on a table: ```lisp (define (domain blocksworld) (:requirements :strips :typing :equality) (:types block) (:predicates (on ?x ?y - block) (ontable ?x - block) (clear ?x - block) (handempty) (holding ?x - block)) (:action pick-up :parameters (?x - block) :precondition (and (clear ?x) (ontable ?x) (handempty)) :effect (and (not (ontable ?x)) (not (clear ?x)) (not (handempty)) (holding ?x))) (:action put-down :parameters (?x - block) :precondition (holding ?x) :effect (and (not (holding ?x)) (clear ?x) (handempty) (ontable ?x))) (:action stack :parameters (?x ?y - block) :precondition (and (holding ?x) (clear ?y) (not (= ?x ?y))) :effect (and (not (holding ?x)) (not (clear ?y)) (clear ?x) (handempty) (on ?x ?y))) (:action unstack :parameters (?x ?y - block) :precondition (and (on ?x ?y) (clear ?x) (handempty) (not (= ?x ?y))) :effect (and (holding ?x) (clear ?y) (not (clear ?x)) (not (handempty)) (not (on ?x ?y)))) ) ``` Suppose this domain definition is saved in a file named `blocksworld.pddl` in the current directory. After loading PDDL.jl with `using PDDL`, we can load the Blocksworld domain by calling [`load_domain`](@ref): ```julia domain = load_domain("blocksworld.pddl") ``` We can then inspect the name of domain, and the list of action names: ```julia-repl julia> PDDL.get_name(domain) :blocksworld julia> PDDL.get_actions(domain) |> keys .|> string 4-element Vector{String}: "pick-up" "unstack" "put-down" "stack" ``` ### Loading Problems PDDL domains only define the general semantics of the planning task that apply across any set of objects or goals. To fully define a planning task, we also need to load a **PDDL problem**, which defines an initial state, and a goal to be achieved: ```lisp (define (problem blocksworld-problem) (:domain blocksworld) (:objects a b c - block) (:init (handempty) (ontable a) (ontable b) (ontable c) (clear a) (clear b) (clear c)) (:goal (and (clear c) (ontable b) (on c a) (on a b))) ) ``` In this problem, there are 3 blocks, `a`, `b`, and `c`, which are all initially placed on the table (`ontable`), with no other blocks placed on them (`clear`). The goal is to stack the blocks such that `c` is on `a` is on `b`. Suppose the problem definition is saved in `blocksworld-problem.pddl`. We can load it by calling [`load_problem`](@ref): ```julia problem = load_problem("blocksworld-problem.pddl") ``` We can then inspect the list of objects, and the goal to be reached: ```julia-repl julia> PDDL.get_objects(problem) |> println Const[a, b, c] julia> PDDL.get_goal(problem) |> write_pddl "(and (clear c) (ontable b) (on c a) (on a b))" ``` ### Loading From A Repository A wide variety of standard PDDL domains and problems can be found online, such as [this repository](https://github.com/potassco/pddl-instances) of instances from the International Planning Competition (IPC). To ease the (down)loading of these domains and problems, the PDDL.jl ecosystem includes [PlanningDomains.jl](https://github.com/JuliaPlanners/PlanningDomains.jl), which contains both a built-in repository of domains and problems, and an interface for accessing domains and problems from other online repositories. PlanningDomains.jl can be installed from the Pkg REPL as per usual: ``` add PlanningDomains ``` Once installed, we can use PlanningDomains.jl to directly load Blocksworld domains and problems: ```julia using PlanningDomains domain = load_domain(:blocksworld) problem = load_problem(:blocksworld, "problem-2") ``` We can also specify external repositories to download from, such as the previously mentioned repository of [IPC domains and problems](https://github.com/potassco/pddl-instances): ```julia domain = load_domain(IPCInstancesRepo, "ipc-2000", "blocks-strips-typed") problem = load_problem(IPCInstancesRepo, "ipc-2000", "blocks-strips-typed", "problem-2") ``` ## Constructing and Inspecting States Now that we've loaded a domain and problem, we can construct the initial state (specified by the problem file) using the [`initstate`](@ref) function: ```julia state = initstate(domain, problem) ``` ### Inspecting Facts and Relations Conceptually, a **state** consists of a set of objects, and a set of true facts and relations about those objects. We can list the set of facts using [`PDDL.get_facts`](@ref): ```julia-repl julia> PDDL.get_facts(state) Set{Term} with 7 elements: clear(a) ontable(b) clear(b) handempty ontable(a) ontable(c) clear(c) ``` !!! note "PDDL vs. Prolog-style syntax" Facts are printed in Prolog-style syntax by default: `ontable(a)` in Prolog is the same as `(ontable a)` in PDDL. This is because PDDL.jl uses [Julog.jl](https://github.com/ztangent/Julog.jl) to represent terms and expressions in first-order logic. In addition to listing facts, we can query the truth value of specific terms using the [`satisfy`](@ref) function: ```julia-repl julia> satisfy(domain, state, pddl"(ontable a)") true julia> satisfy(domain, state, pddl"(on a b)") false ``` Here, we used the `pddl"..."` string macro to construct a first-order [`Term`](@ref). This allows us to write `pddl"(on a b)"` as syntactic sugar for the expression `Compound(:on, Term[Const(:a), Const(:b)])`. (It is also [possible to *interpolate* values](../ref/parser_writer.md#Interpolation) when using the `pddl"..."` macro.) Besides querying whether particular terms are true or false, we can also ask PDDL.jl to return all satisfying assignments to a logical formula with free variables using the [`satisfiers`](@ref) function: ```julia-repl julia> satisfiers(domain, state, pddl"(and (ontable ?x) (clear ?x))") 3-element Vector{Any}: {X => b} {X => a} {X => c} ``` Our query `pddl"(and (ontable ?x) (clear ?x))"` expresses that some object `?x` is on the table, and is clear (i.e. has no other blocks on top of it), where `?x` is PDDL syntax for a variable in a [first-order formula](https://en.wikipedia.org/wiki/First-order_logic#Formulas). Since blocks `a`, `b` and `c` all satisfy the query, [`satisfiers`](@ref) returns a list of corresponding variable substitutions. Note that the PDDL variable `?x` gets rendered in Prolog-style syntax as a capital `X`, by the convention in Prolog that capital letters refer to variables. ### Inspecting Non-Boolean Fluents PDDL is not limited to domains where object properties and relations must have Boolean values. For example, the [Zeno Travel domain](https://github.com/potassco/pddl-instances/blob/master/ipc-2002/domains/zenotravel-numeric-automatic/domain.pddl) includes numeric properties and relations, such as the distance between two cities, or the amount of fuel in a plane. We can construct and inspect a state in this domain as well: ```julia zt_domain = load_domain(:zeno_travel) zt_problem = load_problem(:zeno_travel, "problem-1") zt_state = initstate(zt_domain, zt_problem) ``` To inspect all properties and relations (Boolean or otherwise) in this state, we can iterate over the list of pairs returned by [`PDDL.get_fluents`](@ref): ```julia-repl julia> PDDL.get_fluents(zt_state) |> collect 13-element Vector{Pair}: at(plane1, city0) => true at(person1, city0) => true onboard(plane1) => 0 slow-burn(plane1) => 4 ⋮ fuel(plane1) => 3956 fast-burn(plane1) => 15 zoom-limit(plane1) => 8 capacity(plane1) => 10232 ``` These properties and relations are called [**fluents**](https://en.wikipedia.org/wiki/Fluent_(artificial_intelligence)), a term historically used in AI research to describe facts about the world that may change over time. Fluents are sometimes also called "state variables", but we avoid that terminology to prevent confusion with variables in the context of first-order terms and formulae. In keeping with the terminology of [first-order logic](https://en.wikipedia.org/wiki/First-order_logic), Boolean fluents such as `(at ?plane ?city)` are also called **predicates**, and non-Boolean fluents such as `(fuel ?plane)` are called **functions** (because they map objects to values). !!! note "Omitted Predicates" For conciseness, some implementations of the PDDL.jl interface will omit predicates that are false from the list returned by [`PDDL.get_fluents`](@ref), as is the case above. In addition to listing fluents, we can evaluate specific fluents using the [`evaluate`](@ref) function. Below, we query the amount of fuel in `plane1`: ```julia-repl julia> evaluate(zt_domain, zt_state, pddl"(fuel plane1)") 3956 ``` We can also evaluate compound expressions of multiple fluents. For example, we might be curious to know the amount of additional fuel that `plane1` can hold. As syntactic sugar for `evaluate(domain, state, term)`, we can also use the syntax `domain[state => term]`: ```julia-repl julia> evaluate(zt_domain, zt_state, pddl"(- (capacity plane1) (fuel plane1))") 6276 julia> zt_domain[zt_state => pddl"(- (capacity plane1) (fuel plane1))"] 6276 ``` For *non-compound* expressions stored directly in the state, we can use [`PDDL.get_fluent`](@ref) to look up the value of a `term` in `state`, or `state[term]` for short: ```julia-repl julia> state[pddl"(on a b)"] # Blocksworld query false julia> zt_state[pddl"(fuel plane1)"] # Zeno Travel query 3956 ``` ### Inspecting Objects and Object Types Since PDDL states consist of sets of (optionally typed) objects, PDDL.jl provides the [`PDDL.get_objects`](@ref) function to list all objects in a state, as well as all objects of particular type: ```julia-repl julia> PDDL.get_objects(state) |> println # Blocksworld objects Const[c, a, b] julia> PDDL.get_objects(zt_state, :aircraft) |> println # Zeno Travel aircraft Const[plane1] julia> PDDL.get_objects(zt_domain, zt_state, :movable) |> println # Zeno Travel movables Const[person1, plane1] ``` Note that in the third call to [`PDDL.get_objects`](@ref), we also provided the domain as the first argument. This is because the domain stores information about the type hierarchy, and the `movable` type in the Zeno Travel domain is abstract: There are no objects in the state which have the type `movable`. There only objects of its subtypes, `person` and `aircraft`. We can inspect the type hierarchy of a domain using [`PDDL.get_typetree`](@ref): ```julia-repl julia> PDDL.get_typetree(zt_domain) Dict{Symbol, Vector{Symbol}} with 5 entries: :object => [:movable, :city] :movable => [:aircraft, :person] :aircraft => [] :person => [] :city => [] ``` Finally, we can inspect the type of a specific object using [`PDDL.get_objtype`](@ref): ```julia-repl julia> PDDL.get_objtype(zt_state, pddl"(person1)") :person ``` ## Executing Actions and Plans PDDL domains not only define the predicates and functions which describe a state, but also a set of actions which can modify a state. Having learned how to inspect the contents of a state, we can now modify them using actions. ### Instantiating Actions In PDDL and symbolic planning more broadly, we distinguish between **action schemas** (also known as **operators**), which specify the general semantics of an action, and **ground actions**, which represent instantiations of actions for specific objects. We can inspect the definition of an action schema in a domain using [`PDDL.get_action`](@ref), such as the definition of `stack` below: ```julia-repl julia> PDDL.get_action(domain, :stack) |> write_pddl |> print (:action stack :parameters (?x ?y - block) :precondition (and (holding ?x) (clear ?y) (not (= ?x ?y))) :effect (and (not (holding ?x)) (not (clear ?y)) (clear ?x) (handempty) (on ?x ?y))) ``` The `stack` schema has two **parameters** (or arguments) of type `block`. This means that ground instances of the `stack` schema have to be applied to two `block` objects. The schema also specifies a **precondition** formula, which has to hold true in order for the action to be executable (a.k.a. available) in the current state. Finally, the schema contains an **effect** formula, which specifies facts that will either be added or deleted in the next state. In domains with non-Boolean fluents, effects may also assign or modify the values of fluents. To refer to a specific application of this action schema to blocks `a` and `b` (i.e., a ground action), we can simply write `pddl"(stack a b)"`, which constructs a `Term` with `stack` as its name, and with `a` and `b` as arguments: ```julia-repl julia> pddl"(stack a b)" |> dump Compound name: Symbol stack args: Array{Term}((2,)) 1: Const name: Symbol a 2: Const name: Symbol b ``` If unspecified, whether we are referring to action schemas or ground actions shall be clear from context. ### Listing Available Actions For our initial state in the Blocksworld domain, we can iterate over the list of available ground actions (i.e. those with satisfied preconditions) using the [`available`](@ref) function: ```julia-repl julia> available(domain, state) |> collect 3-element Vector{Compound}: pick-up(a) pick-up(b) pick-up(c) ``` Note that [`available`](@ref) returns an iterator over such actions, so we have to `collect` this iterator in order to get a `Vector` result. As before, action `Term`s are printed in Prolog-style syntax. ### Executing Actions Since we now know which actions are available, we can [`execute`](@ref) one of them to get another state: ```julia-repl julia> next_state = execute(domain, state, pddl"(pick-up a)"); julia> satisfy(domain, next_state, pddl"(holding a)") true ``` We see that after executing the `pddl"(pick-up a)"` action, block `a` is now being held. In contrast, if we try to execute a non-available action, PDDL.jl will throw an error: ```julia-repl julia> next_state = execute(domain, state, pddl"(stack a b)"); ERROR: Precondition (and (holding ?x) (clear ?y) (not (= ?x ?y))) does not hold. ⋮ ``` Instead of using [`execute`](@ref), we can also use the [`transition`](@ref) function. For domains written in standard PDDL, these functions have the same behavior, but there are extensions of PDDL which include events and processes that are handled by [`transition`](@ref) only. Note that both [`execute`](@ref) and [`transition`](@ref) do not mutate the original state passed in as an argument. For mutating versions, see [`execute!`](@ref) and [`transition!`](@ref). ### Executing and Simulating Plans Now that we know how to execute an action, we can execute a series of actions (i.e. a plan) to achieve our goal in the Blocksworld domain. We can do this by repeatedly calling [`transition`](@ref): ```julia state = initstate(domain, problem) state = transition(domain, state, pddl"(pick-up a)") state = transition(domain, state, pddl"(stack a b)") state = transition(domain, state, pddl"(pick-up c)"); state = transition(domain, state, pddl"(stack c a)"); ``` And then check that our goal is indeed satisfied: ```julia-repl julia> goal = PDDL.get_goal(problem) # Our goal is stack `c` on `a` on `b` and(clear(c), ontable(b), on(c, a), on(a, b)) julia> satisfy(domain, state, goal) true ``` Rather than repeatedly call [`transition`](@ref), we can use the [`PDDL.simulate`](@ref) function to directly simulate the end result of a sequence of actions: ```julia state = initstate(domain, problem) plan = @pddl("(pick-up a)", "(stack a b)", "(pick-up c)", "(stack c a)") end_state = PDDL.simulate(EndStateSimulator(), domain, state, plan) ``` As before, the goal is satisfied in the final state: ```julia-repl julia> satisfy(domain, end_state, goal) true ``` The first argument to [`PDDL.simulate`](@ref) is a concrete instance of a [`Simulator`](@ref), which controls what information is collected as the simulation progresses. By default, the first argument is a [`StateRecorder`](@ref), which leads [`PDDL.simulate`](@ref) to return the trajectory of all states encountered, including the first: ```julia-repl julia> traj = PDDL.simulate(domain, state, plan); julia> eltype(traj) GenericState julia> length(traj) 5 ``` You've now learned how to load PDDL domains and problems, construct and inspect states, and execute (sequences of) actions -- congratulations! In the [next tutorial](writing_planners.md), you can learn how to write your very own planning algorithms using the functions introduced here.
PDDL
https://github.com/JuliaPlanners/PDDL.jl.git
[ "Apache-2.0" ]
0.2.18
df1e12fb86d1f081833a74249335aa02657be774
docs
8899
# Speeding Up PDDL.jl ```@meta Description = "How to compile PDDL domains to speed up PDDL.jl." ``` By default, PDDL.jl uses the [built-in PDDL interpreter](../ref/interpreter.md) to execute actions, determine the set of available actions, and perform other basic planning operations. However, because the interpreter is not optimized for speed, planning algorithms that use the interpreter are considerably slower than state-of-the-art planners. ```@raw html <figure style="text-align:center"> <img src="../../assets/performance-comparison.svg" alt="Blocksworld solution runtimes vs. problem size for PDDL.jl, Pyperplan, and FastDownward, each using A* search with the additive heuristic." width="80%"/> <figcaption>Blocksworld solution times for PDDL.jl vs. baselines, each using A* search with the additive heuristic.</figcaption> </figure> ``` Fortunately, PDDL.jl also provides [a PDDL compiler](../ref/compiler.md) that is optimized for speed and low memory consumption. As can be seen in the (log-scale) graph above, using the compiler to solve Blocksworld problems is 10 times faster than the interpreter, within an order of magnitude of the state-of-the-art [FastDownward](https://www.fast-downward.org/) planner, and 20 times faster than [Pyperplan](https://github.com/aibasel/pyperplan), a Python-based planning system. In this tutorial, we show how to use the PDDL compiler to speed up planning algorithms, and explain how these speed-ups are achieved. ## Using the Compiler To use the PDDL compiler, just call the [`compiled`](@ref) function on a PDDL domain and problem. This returns a compiled domain and initial state: ```julia using PDDL, PlanningDomains # Load a generic representation of PDDL domain and problem domain = load_domain(:blocksworld) problem = load_problem(:blocksworld, "problem-10") # Compile the domain and problem to get a compiled domain and state c_domain, c_state = compiled(domain, problem) ``` Alternatively, [`compiled`](@ref) can be called on a non-compiled domain and (initial) state: ```julia # Construct initial state from domain and problem state = initstate(domain, problem) # Compile the domain and state to get a compiled domain and state c_domain, c_state = compiled(domain, state) ``` The compiled outputs `c_domain` and `c_state` can then be used with the [PDDL.jl interface](../ref/interpreter.md), or with [an existing planner from SymbolicPlanners.jl](writing_planners.md#Existing-Planners): ```julia using SymbolicPlanners # Call A* search on compiled domain and initial state goal = PDDL.get_goal(problem) planner = AStarPlanner(HAdd()) sol = planner(c_domain, c_state, goal) # Execute resulting plan on the compiled initial state plan = collect(sol) for act in plan c_state = transition(c_domain, c_state, act) end # Check that the goal is achieved in the final state @assert satisfy(c_domain, c_state, goal) ``` Factoring out the initial cost of [Julia's just-ahead-of-time compilation](https://discourse.julialang.org/t/so-does-julia-compile-or-interpret/56073/2?u=xuan), planning over the compiled domain and state should lead to runtimes that are 10 times faster or more, compared to the PDDL.jl interpreter. ## State Compilation One way in which the PDDL.jl compiler reduces runtime is by generating *compiled state representations* that compactly represent the set of facts and fluent values in a state. These representations take advantage of the fixed number of objects in standard PDDL problems, allowing for the generation of finite-object state representations with a known size in advance. To illustrate the benefits of state compilation, consider the initial state of a Blocksworld problem with 3 blocks, as shown in the [Getting Started](getting_started.md#Loading-Domains-and-Problems) tutorial. The generic state representation used by the PDDL.jl interpreter stores all Boolean fluents in a `Set` data structure, and non-Boolean fluents in a `Dict`. This consumes a fair amount of memory, and suffers from hashing overhead when looking up the value of a fluent: ``` GenericState types -> Set{Compound} with 3 elements pddl"(block a)", pddl"(block b)", pddl"(block c)" facts -> Set{Term} with 7 elements pddl"(handempty)", pddl"(clear a)", pddl"(clear b)", pddl"(clear c)" pddl"(ontable a)", pddl"(ontable b)", pddl"(ontable c)" values -> Dict{Term,Any} with 0 entries Size: 1720 bytes Median Access Time: 394 ns ``` In constrast, the compiled state representation is shown below. Predicate values are stored in memory-efficient bit-arrays, with dimensionality corresponding to the arity of each predicate (1 dimension for `(holding ?x)`, 2 dimensions for `(on ?x ?y)`). Furthermore, each bit array is a field with a fixed name in the compiled data structure. Together, this leads to much lower memory consumption and access times: ``` CompiledBlocksworldState handempty -> true clear -> 3-element BitVector 1 1 1 holding -> 3-element BitVector 0 0 0 ontable -> 3-element BitVector 1 1 1 on -> 3x3 BitMatrix 0 0 0 0 0 0 0 0 0 Size: 336 bytes Median Access Time: 58.5 ns ``` Generating a compiled state representation requires knowing the number of objects in the problem, their types, and their names. This is why the [`compiled`](@ref) function requires either the problem or initial state as an input. ## Action Compilation PDDL.jl also supports *compiled action semantics*, generating specialized implementations of the [`execute`](@ref) and [`available`](@ref) interface functions for each action schema in the domain. This makes use of Julia's support for multiple dispatch: By generating concrete subtypes of the [`Action`](@ref) datatype for each action schema, specialized methods can be defined for each subtype. As an example, consider the compiled implementation of [`execute`](@ref) for the `(stack ?x ?y)` action in the Blocksworld domain. Instead of interpreting the effect formula associated with the action each time it is executed, the compiled version of [`execute`](@ref) directly modifies the appropriate entries of the compiled state representation for the Blocksworld domain (shown below with comments): ```julia function execute(domain, state, action::CompiledStackAction, args) state = copy(state) # Get object indices for arguments x_idx = objectindex(state, :block, args[1].name) y_idx = objectindex(state, :block, args[2].name) # Assign new values to affected fluents state.handempty = true state.clear[x_idx] = true state.clear[y_idx] = false state.holding[x_idx] = false state.on[x_idx, y_idx] = true return state end ``` All of the above code is compiled from PDDL to Julia, which in turn gets compiled to high performance machine code by Julia's own compiler. By directly modifying the state representation, the compiled implementation can achieve median runtimes up to 60 times faster than the interpreted version of [`execute`](@ref). ## Compiler Limitations While domain compilation leads to significant performant benefits, the compiler also has several limitations in the current version of PDDL.jl: - **Top-level only**: Because [`compiled`](@ref) defines new types and methods, it should only be called at the top-level in order to avoid world-age errors. - **Precompilation not supported**: Since [`compiled`](@ref) evaluates code in the `PDDL` module, it will lead to precompilation errors when used in another module or package. Modules which call [`compiled`](@ref) should hence disable precompilation, or include make calls to [`compiled`](@ref) only in the [`__init__()` function](https://docs.julialang.org/en/v1/manual/modules/#Module-initialization-and-precompilation). - **Regression not supported**: The compiler does not currently implement the interface functions for reverse action semantics, meaning that it cannot be used for regression search. - **Compilation overhead**: The cost of compiling generated Julia code on its first run can be significant relative to total runtime for small problems. This means that compilation may not be ideal for one-off use for states with small numbers of objects. - **No generalization across problems in the same domain**: The compiled code and state representations generated by the compiler currently assume a fixed set of objects. To use the compiler with problems in the same domain, but defined over a different set of of objects the [`compiled`](@ref) function has to be invoked again. Due to these limitations, it may sometimes be preferable to use the PDDL.jl interpreter instead of the compiler, especially when generality is more important than speed. However, most of these limitations are planned to be removed in future versions of PDDL.jl.
PDDL
https://github.com/JuliaPlanners/PDDL.jl.git
[ "Apache-2.0" ]
0.2.18
df1e12fb86d1f081833a74249335aa02657be774
docs
7410
# Writing Planners ```@meta Description = "How to write symbolic planners using PDDL.jl." ``` Using the [PDDL.jl interface](..\ref\interface.md), it is straightforward to implement planning algorithms which solve problems in PDDL domains. Since all domain and implementation specific details are encapsulated by the interface, the same algorithm can operate across multiple domains, and even multiple representations of the same domain (e.g. [interpreted](../ref/interpreter.md) vs. [compiled](../ref/compiler.md)). In this tutorial, we present two simple planners as examples: forward breadth-first search, and backward breadth-first search. ## Forward Search Our first example is **forward breadth-first search**, shown below. The algorithm accepts a [`Domain`](@ref) and [`Problem`](@ref), then constructs the initial state with the [`initstate`](@ref) function. It also extracts the goal formula using [`PDDL.get_goal`](@ref). The algorithm then searches the state space, iteratively expanding the successors of each state and available action in a [breadth-first order](https://en.wikipedia.org/wiki/Breadth-first_search): ```julia function forward_bfs(domain::Domain, problem::Problem) # Initialize state and extract goal state = initstate(domain, problem) goal = PDDL.get_goal(problem) # Initialize search queue plan = [] queue = [(state, plan)] while length(queue) > 0 # Pop state and plan state, plan = popfirst!(queue) # Check if goal is satisfied if satisfy(domain, state, goal) # Return plan if goal is satisfied return plan end # Iterate over available actions and add successors to queue for action in available(domain, state) next_state = transition(domain, state, action) next_plan = [plan; action] push!(queue, (next_state, next_plan)) end end # Return nothing upon failure return nothing end ``` As can be seen, search proceeds by popping a state and corresponding plan off the search queue at each iteration, then checking if the state satisfies the goal using [`satisfy`](@ref). If the goal is satisfied, the plan is returned. If not, the state is expanded by iterating over each [`available`](@ref) action, and constructing the successor state for that action using the [`transition`](@ref) function. The successor state and its corresponding plan are added to queue. Search continues until either the queue is exhausted, or the goal is satisfied. !!! note "Implementation Efficiency" While easy to understand, the implementation of breadth-first search presented here is memory inefficient because it stores the plan to each state as part of the search queue. Efficient implementations of planners using breadth-first search should be based off [Djikstra's algorithm](https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm) instead. ## Regression Search PDDL.jl also supports planning via **backward search**, also known as [**regression search**](https://artint.info/2e/html/ArtInt2e.Ch6.S3.html). Backward search operates by treating the goal condition as a *partial* or *abstract* state which only specifies that some predicates must be true. It then searches the space by considering all actions that could possibly achieve the current abstract state (called **relevant** actions), and inverting the semantics of each action (called **regression**). This results in a successor abstract state that represents the pre-image of the action: the set of all states that could have reached the current abstract state through that action. A breadth-first version of backward search is shown below. ```julia function backward_bfs(domain::Domain, problem::Problem) # Construct initial state and goal state init_state = initstate(domain, problem) state = goalstate(domain, problem) # Initialize search queue plan = [] queue = [(state, plan)] while length(queue) > 0 # Pop state and plan state, plan = popfirst!(queue) # Return plan if initial state implies the current abstract state if all(evaluate(domain, init_state, fluent) == val for (fluent, val) in PDDL.get_fluents(state)) return plan end # Iterate over relevant actions and add pre-image to queue for action in relevant(domain, state) next_state = regress(domain, state, action) next_plan = [action; plan] push!(queue, (next_state, next_plan)) end end # Return nothing upon failure return nothing end ``` This algorithm is very similar to [`forward_bfs`](#forward-search): It first constructs an initial state (using [`initstate`](@ref)) and abstract goal state (using [`goalstate`](@ref)) from the domain and problem. It then searches in a breadth-first order from the abstract goal state, iterating over actions that are [`relevant`](@ref) to achieving the current abstract state, then computing the preimage induced by each action using [`regress`](@ref) and adding the resulting state to the queue. The search terminates when the initial state is found to be in the preimage of some action, i.e., all fluents that are true in the preimage are also true in the initial state. !!! note "Support for Regression Search" PDDL.jl currently only provides correct implementations of regression search operations ([`relevant`](@ref) and [`regress`](@ref)) for STRIPS-style domains. This means that regression search is not currently supported for domains with non-Boolean fluents, negative preconditions, disjunctive preconditions, quantified preconditions, or conditional effects. ## Existing Planners While PDDL.jl makes it relatively easy to implement planning algorithms from scratch, the performance and (re)usability of these algorithms require more careful design. As such, the PDDL.jl ecosystem also includes the [**SymbolicPlanners.jl**](https://github.com/JuliaPlanners/SymbolicPlanners.jl) library, which provides a wide array of planning algorithms and heuristics that have [comparable performance](https://github.com/JuliaPlanners/SymbolicPlanners.jl#performance) to other commonly-used planning systems. Below, we show how to use SymbolicPlanners.jl to solve a Blocksworld problem via [A* search](https://en.wikipedia.org/wiki/A*_search_algorithm) with the [additive heuristic](https://doi.org/10.1016/S0004-3702%2801%2900108-4): ```julia using PDDL, PlanningDomains, SymbolicPlanners # Load Blocksworld domain and problem domain = load_domain(:blocksworld) problem = load_problem(:blocksworld, "problem-4") state = initstate(domain, problem) goal = PDDL.get_goal(problem) # Construct A* planner with h_add heuristic planner = AStarPlanner(HAdd()) # Solve the problem using the planner sol = planner(domain, state, goal) ``` We can check that the resulting solution achieves the goal as desired: ```julia-repl julia> goal and(on(d, c), on(c, b), on(b, a), on(a, e)) julia> collect(sol) 10-element Vector{Any}: unstack(b, a) put-down(b) unstack(a, d) stack(a, e) pick-up(b) stack(b, a) pick-up(c) stack(c, b) pick-up(d) stack(d, c) julia> satisfy(domain, sol.trajectory[end], goal) true ``` For more information about the planners and heuristics provided by SymbolicPlanners.jl, consult the [README](https://github.com/JuliaPlanners/SymbolicPlanners.jl).
PDDL
https://github.com/JuliaPlanners/PDDL.jl.git
[ "MIT" ]
0.1.0
90fbe88ebb4d0f5a1dc07c463eccfa5d13754efa
code
154
module SmoothLivePlot using Observables, WebIO include("plotFunctions.jl") export modifyPlotObject! include("plotMacros.jl") export @makeLivePlot end
SmoothLivePlot
https://github.com/williamjsdavis/SmoothLivePlot.jl.git
[ "MIT" ]
0.1.0
90fbe88ebb4d0f5a1dc07c463eccfa5d13754efa
code
1011
# Plotting functions function smoothLivePlotGeneral(plotFunction, plotArgs) data_obs = Observable{Any}(plotArgs) plt_obs = Observable{Any}(plotFunction(plotArgs...)) map!(mapArg -> plotFunction(mapArg...), plt_obs, data_obs) # Create figure ui = dom"div"(plt_obs); display(ui) sleep(0.4) return data_obs end function modifyPlotObject!(mutablePlotArray; args...) # Modify plot objects by passing "argX = newValue" pairs Nargs = length(mutablePlotArray[]) NargsSupplied = length(args) # Test arguments if .!all("arg" .== map(x -> string(x)[1:3], args.itr)) error("""Mutable arguments must begin with \"arg\"""") end argStringNums = map(x -> parse(Int, string(x)[4:end]), args.itr) if .!all(argStringNums .<= Nargs) error("Indices must be less than or equal to length of mutable array") end mutablePlotArray[] = map(x -> x in argStringNums ? args.data[findfirst(x .== argStringNums)] : mutablePlotArray[][x], 1:Nargs) end
SmoothLivePlot
https://github.com/williamjsdavis/SmoothLivePlot.jl.git
[ "MIT" ]
0.1.0
90fbe88ebb4d0f5a1dc07c463eccfa5d13754efa
code
382
# Plotting macros macro makeLivePlot(plotExpression) # Turn plotting function into smooth version plotFunction = plotExpression.args[1] plotArgs = plotExpression.args[2:end] arrayArgs = map(x -> :($(esc(x))), plotArgs) splatArgs = :([$(arrayArgs...)]) outExpression = :(smoothLivePlotGeneral($(esc(plotFunction)), $splatArgs)) return outExpression end
SmoothLivePlot
https://github.com/williamjsdavis/SmoothLivePlot.jl.git
[ "MIT" ]
0.1.0
90fbe88ebb4d0f5a1dc07c463eccfa5d13754efa
code
1067
# Testing plot examples using Plots using SmoothLivePlot using Test include("testPlotFunctions.jl") gr(show = true) # Test macro macro no_error(ex) quote try $(esc(ex)) true catch false end end end function main() @testset "All plots" begin @testset "Modify Y" begin @test @no_error testModifyY() end @testset "Modify X" begin @test @no_error testModifyX() end @testset "Modify X+Y" begin @test @no_error testModifyXY() end @testset "Modify Z" begin @test @no_error testModifyZ() end @testset "Modify X+Text" begin @test @no_error testModifyXText() end @testset "Modify X+Colour" begin @test @no_error testModifyXColour() end @testset "Add to X+Y" begin @test @no_error testAddXY() end @testset "Add to X+Y+Z" begin @test @no_error testAddXYZ() end end end main()
SmoothLivePlot
https://github.com/williamjsdavis/SmoothLivePlot.jl.git
[ "MIT" ]
0.1.0
90fbe88ebb4d0f5a1dc07c463eccfa5d13754efa
code
5207
## Test plot functions function testModifyY() p0, xArray, tArray = getInitialDist() pMax = maximum(p0) p = copy(p0) D = 1E-5 dx = 1/(xArray.len-1); dt = 0.5*dx*dx/D; s = D*dt/(dx*dx); function stepTime(p, s, nx) p[2:end-1] = s.*p[3:nx]-(2*s-1).*p[2:nx-1]+s.*p[1:nx-2]; end YplotObject = @makeLivePlot myPlot(xArray, p0) for tt in tArray stepTime(p, s, xArray.len) modifyPlotObject!(YplotObject, arg2 = p) end end function testModifyX() p0, xArray, tArray = getInitialDist() pMax = maximum(p0) XplotObject = @makeLivePlot myPlot(xArray, p0) for tt in tArray modifyPlotObject!(XplotObject, arg1 = XplotObject[][1]*0.99) end end function testModifyXY() p0, xArray, tArray = getInitialDist() pMax = maximum(p0) XYplotObject = @makeLivePlot myPlot(xArray, p0) for tt in tArray modifyPlotObject!(XYplotObject, arg2 = XYplotObject[][2]*0.99, arg1 = XYplotObject[][1]*1.01) end end function testModifyZ() x = 1:0.05:20 y = 1:0.05:10 f(x, y, t) = begin (3x + y^2) * abs(sin(x) + (1-t)*cos(y)) end X = repeat(reshape(x, 1, :), length(y), 1) Y = repeat(y, 1, length(x)) Z = map((x, y) -> f(x, y, 0.0), X, Y) ZplotObject = @makeLivePlot myPlotZ(x, y, Z) ttt = 0.0:0.1:1.0 for tt in ttt Z = map((x, y) -> f(x, y, tt), X, Y) modifyPlotObject!(ZplotObject, arg3 = Z) end end function testModifyXText() p0, xArray, tArray = getInitialDist() pMax = maximum(p0) p = copy(p0) titleText = "Title, step: " XtextPlotObject = @makeLivePlot myPlotTitle(xArray, p0, titleText) for tt in 1:50 modifyPlotObject!(XtextPlotObject, arg3 = string(titleText, tt), arg1 = XtextPlotObject[][1]*0.99) end end function testModifyXColour() p0, xArray, tArray = getInitialDist() pMax = maximum(p0) p = copy(p0) scatterColour = range(0, 1, length=50) XColourPlotObject = @makeLivePlot myPlotColour(xArray, p0, scatterColour[1]) for tt in 1:50 modifyPlotObject!(XColourPlotObject, arg3 = scatterColour[tt], arg1 = XColourPlotObject[][1]*0.99) end end function testAddXY() p0, xArray, tArray = getInitialDist() pMax = maximum(p0) p = copy(p0) addXYPlotObject = @makeLivePlot myPlot(xArray, p0) for tt in 1:length(xArray) modifyPlotObject!(addXYPlotObject, arg1 = xArray[1:tt], arg2 = p0[1:tt]) end end function testAddXYZ() attractor = Lorenz() plt = plot3d( 1, xlim = (-30, 30), ylim = (-30, 30), zlim = (0, 60), title = "Lorenz Attractor", label = "", marker = 2, ) addXYZPlotObject = @makeLivePlot myPlotXYZ(plt) for tt in 1:500 step!(attractor) push!(plt, attractor.x, attractor.y, attractor.z) modifyPlotObject!(addXYZPlotObject, arg1 = plt) end end function getInitialDist() tStart = 0.0 tEnd = 2.0 ntSteps = 100 xStart = -5.0 xEnd = 5.0 nxSteps = 20 tArray = range(tStart, tEnd, length = ntSteps) xArray = range(xStart, xEnd, length = nxSteps) x0 = 0.0 sig = 2.0 f(x) = exp(-((x - x0)/sig)^2) p = f.(xArray) return p, xArray, tArray end Base.@kwdef mutable struct Lorenz dt::Float32 = 0.02 σ::Float32 = 10 ρ::Float32 = 28 β::Float32 = 8/3 x::Float32 = 1 y::Float32 = 1 z::Float32 = 1 end function step!(l::Lorenz) dx = l.σ * (l.y - l.x); l.x += l.dt * dx dy = l.x * (l.ρ - l.z) - l.y; l.y += l.dt * dy dz = l.x * l.y - l.β * l.z; l.z += l.dt * dz end function myPlot(xx, yy) sleep(0.0001) plot( xx, yy, label = "", color = :red, xlim = (-5, 5), ylim = (0, 1), title = "Title", xlabel = "X label", ylabel = "Y label" ) scatter!(xx, yy, label = "") end function myPlotTitle(xx, yy, titleText) sleep(0.0001) plot( xx, yy, label = "", color = :red, xlim = (-5, 5), ylim = (0, 1), title = titleText, xlabel = "X label", ylabel = "Y label" ) scatter!(xx, yy, label = "") end function myPlotColour(xx, yy, cc) sleep(0.0001) plot( xx, yy, label = "", color = :red, xlim = (-5, 5), ylim = (0, 1), title = "Title text", xlabel = "X label", ylabel = "Y label" ) scatter!(xx, yy, markersize = 20, color = RGBA(cc, 0.5, 0, 0), label = "") end function myPlotZ(xx, yy, ZZ) sleep(0.0001) p1 = contour( xx, yy, ZZ, fill = true, clims=(0,300), title = "Title text", xlabel = "X label", ylabel = "Y label" ); end function myPlotXYZ(pltObj) sleep(0.0001) xx = getindex(pltObj.series_list[1].plotattributes, :x) yy = getindex(pltObj.series_list[1].plotattributes, :y) zz = getindex(pltObj.series_list[1].plotattributes, :z) plot3d( xx, yy, zz, xlim = (-30, 30), ylim = (-30, 30), zlim = (0, 60), title = "Lorenz Attractor", label = "", marker = 2, ) end
SmoothLivePlot
https://github.com/williamjsdavis/SmoothLivePlot.jl.git
[ "MIT" ]
0.1.0
90fbe88ebb4d0f5a1dc07c463eccfa5d13754efa
docs
2943
# SmoothLivePlot.jl `SmoothLivePlot.jl` is a Julia package for creating live-style plots during calculations. # Motivation Updating the Juno plot plane during calculations creates new plots on top of the old ones. This produces a flickering effect e.g.: - [Can you update a plot in Julia?](https://discourse.julialang.org/t/current-state-of-live-plots-in-atom-juno/30379) - [Current State of Live Plots in Atom/Juno?](https://discourse.julialang.org/t/current-state-of-live-plots-in-atom-juno/30379) - [Suppress Plot Window when output to animation](https://discourse.julialang.org/t/suppress-plot-window-when-output-to-animation/30724) To smoothly update of plots, I generalised a [solution found by user ckneale](https://discourse.julialang.org/t/current-state-of-live-plots-in-atom-juno/30379/7). It uses [Observables.jl](https://github.com/JuliaGizmos/Observables.jl) and [WebIO.jl](https://github.com/JuliaGizmos/WebIO.jl) so that the plot can listen to changes in its elements. Currently, I have tested the following capabilities: - Modifying values in X and/or Y array(s) in scatter and plot - Modifying colours in scatter and plot - Modifying text elements (e.g. titles, xlabels, etc...) - Modifying matricies in contour plots - Adding new elements to X,Y arrays in 2d line and scatter plots - Adding new elements to X,Y,Z in 3d line and scatter plots Note: this package is designed to work with the __plot plane in Juno__. If you force it to plot in a gui it will look really weird. # Using the package 1. Import the module using `using SmoothLivePlot`. 2. Create a live plot with macro `outPlotObject = @makeLivePlot myPlotFunction(argument1, argument2, ...)`. - Function `myPlotFunction(argument1, argument2, ...)` is a user defined plotting function. - Output `outPlotObject` is a mutable output array of plot features. Its elements are the input aruments of `myPlotFunction()`. 3. Modify plot elements with function `modifyPlotObject!(outPlotObject, arg2 = newArg2, arg1 = newArg1, ...)`. - The first argment of `modifyPlotObject!()` must be the mutable output array. - The following argments are optional and named. The name/value pair must be `arg<x> = newArg1`, where `<x>` in the name is an integer that indicates the position of the argument in the original plotting function `myPlotFunction()`. - E.g. to modify `argument2` to `newArgument2`, use `modifyPlotObject!(outPlotObject, arg2 = newArgument2)`. - The modified arguments do not have to be in any specific order, and are updated at the same time. ### Short example Here's a video showing an output live-plot from some magnetohydrodynamic calculations: ![exampleSmoothPlot](https://user-images.githubusercontent.com/38541020/78403408-27771c00-75b1-11ea-9bef-063e8612720d.gif) # TODOs - [ ] Add capability to add additional elements to plots. - [ ] Benchmark performance. # Changelog - Version 0.1.0 - Introduced original version.
SmoothLivePlot
https://github.com/williamjsdavis/SmoothLivePlot.jl.git
[ "MIT" ]
0.1.0
1c8aa4364d29b8b2e130314849db06203450b756
code
13761
module AtomicLocks using Base.Threads @inline function active_wait(i) ii = 0 for _ in 1:rand(1:min(i,10)) ii+=1 end end ########################################################################################################################################################## ## AtomicLock ########################################################################################################################################################## """ struct AtomicLock An atomic lock implementation based on atomic boolean flags. The `AtomicLock` struct provides a simple mechanism for controlling access to a shared resource using atomic operations. It is similar to `SpinLock`, but introduces a waiting period between acquisition attempts. # Fields - `locked::Atomic{Bool}`: A boolean flag indicating whether the lock is currently held. Uses atomic operations to prevent race conditions. - `wait::Int64`: The wait time (in arbitrary units) between consecutive attempts to acquire the lock. A higher value of `wait` reduces CPU load by spacing out lock acquisition attempts. # Constructor AtomicLock(wait=100) Constructor for `AtomicLock`. Initializes the lock in the unlocked state and sets the `wait` parameter, which controls the interval between attempts to acquire the lock in the `lock` function. # Arguments - `wait`: Optional parameter specifying the delay between acquisition attempts. Defaults to 100 if not provided. This value allows for some flexibility in avoiding aggressive spinning in tight loops when attempting to acquire the lock. # Example ```julia lock = AtomicLock(200) # Creates a lock with a custom wait time """ struct AtomicLock locked::Atomic{Bool} wait::Int64 function AtomicLock(wait=100) new(Atomic{Bool}(false), wait) end end @inline function Base.lock(bl::AtomicLock) ii = UInt64(0) while atomic_cas!(bl.locked, false, true) active_wait(bl.wait) if mod(ii,100)==0 yield() end end println("lock on thread $(Threads.threadid())") end @inline Base.unlock(bl::AtomicLock) = atomic_xchg!(bl.locked,false) @inline Base.trylock(bl::AtomicLock) = !atomic_cas!(bl.locked, false, true) @inline Base.islocked(bl::AtomicLock) = bl.locked[] export AtomicLock ########################################################################################################################################################## ## AtomicFIFOLock ########################################################################################################################################################## """ AtomicFIFOLock An atomic lock that operates on a first-in, first-out (FIFO) basis. This ensures that requests to acquire the lock are handled in the order they are made, providing fairness in lock acquisition. AtomicFIFOLock(wait=100) Constructs an `AtomicFIFOLock`, which behaves similarly to a `SpinLock` or `AtomicLock`, but enforces a first-in, first-out (FIFO) order for acquiring the lock. This ensures that the lock is granted in the order in which it was requested, preventing the possibility of starvation that can occur with traditional spinlocks. # Arguments - `wait`: Optional parameter that specifies the delay between attempts to acquire the lock. Defaults to 100 if not provided. # Example ```julia fifo_lock = AtomicFIFOLock(200) # Creates a FIFO lock with a custom wait time """ struct AtomicFIFOLock head::Atomic{Int64} tail::Atomic{Int64} lock::AtomicLock wait::Int64 function AtomicFIFOLock(wait=100) new(Atomic{Int64}(0), Atomic{Int64}(0),AtomicLock(),wait) end end @inline function Base.lock(bfl::AtomicFIFOLock) lock(bfl.lock) my_tail = atomic_add!(bfl.tail, 1) unlock(bfl.lock) i = 1 while (my_tail != bfl.head[]) active_wait(bfl.wait*i) i += 1 if mod(i,100)==0 yield() end end end @inline Base.unlock(bfl::AtomicFIFOLock) = atomic_add!(bfl.head,1) @inline function Base.trylock(bfl::AtomicFIFOLock) if bfl.tail[] == bfl.head[] && trylock(bfl.lock) tail = atomic_add!(bfl.tail, 1) l = true if (bfl.head[] != tail) atomic_sub!(bfl.tail, 1) l = false end unlock(bfl.lock) return l else return false end end @inline Base.islocked(bfl::AtomicFIFOLock) = (bfl.head[]<bfl.tail[]) export AtomicFIFOLock ########################################################################################################################################################## ## ReadWriteLock ########################################################################################################################################################## """ ReadWriteLock(; kwargs...) Constructs a `ReadWriteLock`, which allows multiple threads to read in parallel, but only one thread to write at a time. This lock is designed for managing data that requires very short but frequent access times. It is particularly useful in scenarios where reading operations happen frequently and can occur simultaneously, but writing operations need to be exclusive. # Keyword Arguments - `kwargs...`: Currently unused, but allows for future customization of the lock’s behavior. # Example ```julia rw_lock = ReadWriteLock() # Creates a new read-write lock ``` ReadWriteLock A lock that allows one write operation at a time, while multiple read operations can be performed concurrently. This is useful for data management situations with extremely short but frequent access times. #Fields head::Threads.Atomic{Int64}: Tracks the current position in the lock queue for managing the order of operations. tail::Threads.Atomic{Int64}: Tracks the tail of the queue, representing the most recent operation in the queue. reads_count::Threads.Atomic{Int64}: Keeps track of the number of concurrent read operations. Only one write operation can proceed if no reads are active. # This lock supports both read and write operations: readlock(): Acquires a read lock, allowing multiple readers to access the data concurrently. writelock(): Acquires a write lock, granting exclusive access to the data for writing. readunlock(): Releases a previously acquired read lock. writeunlock(): Releases a previously acquired write lock. """ struct ReadWriteLock head::Threads.Atomic{Int64} tail::Threads.Atomic{Int64} reads_count::Threads.Atomic{Int64} ReadWriteLock(;kwargs...) = new(Threads.Atomic{Int64}(0),Threads.Atomic{Int64}(0),Threads.Atomic{Int64}(0)) end @inline readlock(::Nothing) = nothing @inline readunlock(::Nothing) = nothing @inline writelock(::Nothing) = nothing @inline writeunlock(::Nothing) = nothing @inline ReadWriteLock(::T) where T = nothing @inline function readlock(rwl::ReadWriteLock,args...) this_tail = atomic_add!(rwl.tail,1) ii = 0 while atomic_add!(rwl.head,0)!=this_tail active_wait(100) ii += 1 mod(ii,100)==0 && yield() end atomic_add!(rwl.reads_count,1) atomic_add!(rwl.head,1) end @inline function writelock(rwl::ReadWriteLock,args...) this_tail = atomic_add!(rwl.tail,1) ii = 0 while atomic_add!(rwl.head,0)!=this_tail || atomic_add!(rwl.reads_count,0)>0 active_wait(100) ii += 1 mod(ii,100)==0 && yield() end end @inline readunlock(rwl::ReadWriteLock) = atomic_sub!(rwl.reads_count,1) @inline writeunlock(rwl::ReadWriteLock) = atomic_add!(rwl.head,1) @inline Base.lock(rwl::ReadWriteLock) = writelock(rwl) @inline Base.unlock(rwl::ReadWriteLock) = writeunlock(rwl) export ReadWriteLock export readlock export readunlock export writelock export writeunlock ########################################################################################################################################################## ## SyncLock ########################################################################################################################################################## """An atomic synchronizer. Used to stall tasks until all tasks have reached a particular point in their algorithm.""" struct SyncLock locks::Threads.Atomic{Int64} event::Event SyncLock() = new(Threads.Atomic{Int64}(0),Event()) end """Adds `i` counts to the SyncLock. Hence synclock(lock) will stall until synclock(lock) has been called `i` times.""" @inline add_sync!(lock::SyncLock,i) = atomic_add!(lock.locks,i) @inline Base.lock(lock::SyncLock) = synclock(lock) """ locks the SyncLock `lock` until all tasks have been completed """ @inline synclock(lock::SyncLock) = begin a = atomic_sub!(lock.locks,1) if a<=1 notify(lock.event) else wait(lock.event) end return a end export SyncLock export synclock export add_sync! ########################################################################################################################################################## ## ReadWriteLockDebug ########################################################################################################################################################## const RWLCounter = Threads.Atomic{Int64}(1) struct RWLTrace thread::Int64 OP::Int64 all::Int64 point_id::Int64 end Base.show(io::IO, trace::RWLTrace) = print(io, "(", trace.thread, ",", trace.OP, ",", trace.all,",", trace.point_id, ")") struct RWLDebugError <: Exception index::Int64 head::Int64 tail::Int64 reads_count::Int64 trace::Vector{RWLTrace} end Base.showerror(io::IO, err::RWLDebugError) = print(io, "$(err.index): $(err.head), $(err.tail), $(err.reads_count), traces: $(err.trace)") struct ReadWriteLockDebug head::Threads.Atomic{Int64} tail::Threads.Atomic{Int64} reads_count::Threads.Atomic{Int64} all::Threads.Atomic{Int64} index::Int64 trace::Vector{RWLTrace} lock::SpinLock timelag::Int64 ltrace::Int64 function ReadWriteLockDebug(;traces::Int64=100,timelag::Int64=1000000000,print::Bool=false,location="") rwl = new(Threads.Atomic{Int64}(0),Threads.Atomic{Int64}(0),Threads.Atomic{Int64}(0),Threads.Atomic{Int64}(0),atomic_add!(AtomicLocks.RWLCounter,1),Vector{RWLTrace}(undef,traces),SpinLock(),timelag,traces)#,cr,cw,ReentrantLock()) if print println("Initialize ReadWriteLock $(rwl.index) at location: $location") end return rwl end end export ReadWriteLockDebug @inline ReadWriteLockDebug(::T) where T = nothing @inline function readlock(rwl::ReadWriteLockDebug,id=0) lock(rwl.lock) ti = time_ns() this_tail = atomic_add!(rwl.tail,1) a = atomic_add!(rwl.all,1) rwl.trace[mod(a,rwl.ltrace)+1] = RWLTrace(Threads.threadid(),1,a,id) unlock(rwl.lock) ii = 0 while atomic_add!(rwl.head,0)<this_tail active_wait(100) ii += 1 mod(ii,100)==0 && yield() if time_ns()-ti>rwl.timelag #lock(rwl.lock) a = atomic_add!(rwl.all,1) rwl.trace[mod(a,rwl.ltrace)+1] = RWLTrace(Threads.threadid(),-1,a,id) ltrace = length(rwl.trace) last_index = mod(a,rwl.ltrace)+1 tr = Vector{RWLTrace}(undef,min(ltrace,a+1)) if length(tr)==ltrace tr[1:(ltrace-last_index)] .= rwl.trace[(last_index+1):ltrace] tr[(ltrace-last_index+1):ltrace] .= rwl.trace[1:last_index] else tr .= rwl.trace[1:(a+1)] end #unlock(rwl.lock) throw(RWLDebugError(rwl.index, atomic_add!(rwl.head, 0), this_tail, atomic_add!(rwl.reads_count, 0), tr)) end end println(time_ns()-ti) atomic_add!(rwl.reads_count,1) atomic_add!(rwl.head,1) end @inline function writelock(rwl::ReadWriteLockDebug,id=0) lock(rwl.lock) ti = time_ns() this_tail = atomic_add!(rwl.tail,1) #print("$this_tail, $(rwl.head[]), $(rwl.reads_count[])") a = atomic_add!(rwl.all,1) rwl.trace[mod(a,rwl.ltrace)+1] = RWLTrace(Threads.threadid(),3,a,id) unlock(rwl.lock) ii = 0 while atomic_add!(rwl.head,0)<this_tail || atomic_add!(rwl.reads_count,0)>0 active_wait(100) ii += 1 mod(ii,100)==0 && yield() if time_ns()-ti>rwl.timelag #lock(rwl.lock) a = atomic_add!(rwl.all,1) rwl.trace[mod(a,rwl.ltrace)+1] = RWLTrace(Threads.threadid(),-3,a,id) ltrace = length(rwl.trace) last_index = mod(a,rwl.ltrace)+1 tr = Vector{RWLTrace}(undef,min(ltrace,a+1)) if length(tr)==ltrace tr[1:(ltrace-last_index)] .= rwl.trace[(last_index+1):ltrace] tr[(ltrace-last_index+1):ltrace] .= rwl.trace[1:last_index] else tr .= rwl.trace[1:(a+1)] end #unlock(rwl.lock) throw(RWLDebugError(rwl.index, atomic_add!(rwl.head, 0), this_tail, atomic_add!(rwl.reads_count, 0), tr)) end end println(time_ns()-ti) end @inline function readunlock(rwl::ReadWriteLockDebug,id=0) lock(rwl.lock) atomic_sub!(rwl.reads_count,1) a = atomic_add!(rwl.all,1) rwl.trace[mod(a,rwl.ltrace)+1] = RWLTrace(Threads.threadid(),2,a,id) unlock(rwl.lock) end @inline function writeunlock(rwl::ReadWriteLockDebug,id=0) lock(rwl.lock) atomic_add!(rwl.head,1) a = atomic_add!(rwl.all,1) rwl.trace[mod(a,rwl.ltrace)+1] = RWLTrace(Threads.threadid(),4,a,id) unlock(rwl.lock) end @inline Base.lock(rwl::ReadWriteLockDebug,id=0) = writelock(rwl,id) @inline Base.unlock(rwl::ReadWriteLockDebug,id=0) = writeunlock(rwl,id) end
AtomicLocks
https://github.com/martinheida/AtomicLocks.jl.git
[ "MIT" ]
0.1.0
1c8aa4364d29b8b2e130314849db06203450b756
code
3546
using AtomicLocks using Test using Base.Threads @testset "AtomicLocks.jl" begin function test_thread(_lock) for i in 1:10 lock(_lock) print("1 ") r = rand(1:100)/1000 print("$r -> ") sleep(r) print("2 ") unlock(_lock) print("3 ") end end function test_lock(lock) Threads.@threads for i in 1:Threads.nthreads() test_thread(lock) end return true end println("Test 1:") @test test_lock(AtomicLock()) println("Test 1:") @test test_lock(AtomicFIFOLock()) function sync_thread(slock,lock) test_thread(lock) Base.lock(slock) test_thread(lock) end function synctest() slock = SyncLock() lock = AtomicFIFOLock() add_sync!(slock,Threads.nthreads()) Threads.@threads for i in 1:Threads.nthreads() sync_thread(slock,lock) end return true end println("Test sync:") @test synctest() function reader_task(rwl::ReadWriteLock, thread_id::Int) println("Thread $thread_id: attempting to acquire read lock.") readlock(rwl) println("Thread $thread_id: acquired read lock.") # Simulate read operation (e.g., with sleep) sleep(0.1) println("Thread $thread_id: releasing read lock.") readunlock(rwl) end function writer_task(rwl::ReadWriteLock, thread_id::Int) println("Thread $thread_id: attempting to acquire write lock.") writelock(rwl) println("Thread $thread_id: acquired write lock.") # Simulate write operation (e.g., with sleep) sleep(0.1) println("Thread $thread_id: releasing write lock.") writeunlock(rwl) end function test_read_write_lock() rwl = ReadWriteLock() println(typeof(rwl)) # Start threads for read and write operations nthreads = Threads.nthreads() println("Using $nthreads threads") # Create threads that either read or write @threads for i in 1:nthreads if mod(i, 2) == 0 reader_task(rwl, i) else writer_task(rwl, i) end end return true end @test test_read_write_lock() function test_read(_lock,ii) for i in 1:10 readlock(_lock) r = rand(1:55)/1000 sleep(r) readunlock(_lock) end end function test_write(_lock,ii) for i in 1:10 writelock(_lock) r = rand(1:55)/1000 sleep(r) writeunlock(_lock) end end function test_read_write_lock_debug() rwl = ReadWriteLockDebug(;traces = 10, timelag=50000000,print=true) println(typeof(rwl)) # Start threads for read and write operations nthreads = Threads.nthreads() println("Using $nthreads threads") fail = 0 # Create threads that either read or write @threads for i in 1:nthreads try if mod(i, 2) == 0 test_read(rwl, i) else test_write(rwl, i) end catch e fail += 1 println(e) end end println("Fails: $fail") println(rwl.trace[1:rwl.tail[]]) return true end @test test_read_write_lock_debug() end
AtomicLocks
https://github.com/martinheida/AtomicLocks.jl.git
[ "MIT" ]
0.1.0
1c8aa4364d29b8b2e130314849db06203450b756
docs
5150
# AtomicLocks.jl `AtomicLocks.jl` is a Julia package that provides a set of thread-safe, atomic-based locks, including traditional read-write locks, FIFO locks, synchronization locks and advanced debug tools for identifying lock contention issues in multithreaded environments. The package is designed for data management scenarios where short but frequent access to data is required and the percentage of data access times is still low compared to the overall computation time. ## Features - **`AtomicLock`**: A simple atomic lock that provides mutual exclusion with a customizable wait time between attempts to acquire the lock. - **`AtomicFIFOLock`**: A first-in-first-out (FIFO) atomic lock that ensures fairness by granting the lock to tasks in the order they request it. - **`ReadWriteLock`**: A read-write lock that allows concurrent reads but exclusive writes. - **`ReadWriteLockDebug`**: An enhanced version of `ReadWriteLock` with built-in debugging features to detect lock contention and long wait times. In particular, this is made for detecting errors in the usage of ReadWriteLock. Look at `runtests.jl` and play with the time parameters there for getting an insight into the exception management. - **`SyncLock`**: An atomic synchronizer used to coordinate tasks, making them wait until all have reached a specific synchronization point. --- ## Installation To install the package, use the Julia package manager: ```julia ] add AtomicLocks ``` ## Usage ### 1. AtomicLock AtomicLock is a simple atomic lock that functions similarly to a SpinLock. The parameter wait controls the time between attempts to acquire the lock. ```julia using AtomicLocks # Create an AtomicLock with optional argument 200 that performs approximately 200 simple calculations between two tries to acquire the lock lock = AtomicLock(200) # Acquire the lock lock(lock) # Release the lock unlock(lock) ``` ### 2. AtomicFIFOLock AtomicFIFOLock works similarly to AtomicLock but follows a first-in, first-out (FIFO) order for lock acquisition. ```julia using AtomicLocks # Create a FIFO lock with optional argument 200 that performs approximately 200 simple calculations between two tries to acquire the lock fifo_lock = AtomicFIFOLock(200) # Acquire the lock lock(fifo_lock) # Release the lock unlock(fifo_lock) ``` ### 3. ReadWriteLock ReadWriteLock allows multiple threads to read concurrently, but only one thread can write at any time. Read and write exclude each other. This is particularly useful for managing data with frequent reads and occasional writes, when data access takes only a very small percentage of the code. The ReadWriteLock will avoid freuent yielding or context switching unless the ressources get stalled in one of the threads. This makes it possible to have many frequent readlocks or writelocks without creating much overhead to the computation. you can provide the same arguments to ReadWriteLock functions as to ReadWriteLockDebug functions, they will simply be ignored in this context. ```julia using AtomicLocks # Create a ReadWriteLock rw_lock = ReadWriteLock() # Acquire a read lock readlock(rw_lock) # Release a read lock readunlock(rw_lock) # Acquire a write lock writelock(rw_lock) # Release a write lock writeunlock(rw_lock) ``` ### 4. ReadWriteLockDebug ReadWriteLockDebug extends ReadWriteLock with debugging features. If a readlock or writelock waits for longer than `timelag` (default: 1 second), an error is raised. It also collects the last few lock operations for debugging purposes. ```julia using AtomicLocks # Create a debug read-write lock with traces enabled and 500ms lock-waiting-time before throwing an exception. rw_lock_debug = ReadWriteLockDebug(traces=200, timelag=500000000, print=true, location="ModuleA") # Acquire a read lock with trace ID readlock(rw_lock_debug, 42) # this action will acquire the internal id 42 # Release the read lock readunlock(rw_lock_debug, 43) # this action will acquire the internal id 42 # If a lock waits for too long, an RWLDebugError will be raised, with trace information: try writelock(rw_lock_debug, 100) catch e::RWLDebugError println("Lock wait exceeded timelag: ", e) finally writeunlock(rw_lock_debug, 101) end ``` ### 5. SyncLock SyncLock is an atomic synchronizer that ensures tasks wait until all other tasks have reached a specific point in their execution. I developed this lock because I had to implement a synchronized break deep inside my HighVoronoi.jl code and handing all responsibility back to the top would have been counter productive in terms of factorization of code. ```julia using AtomicLocks # Create a SyncLock sync_lock = SyncLock() function do_stuff(sl) do_some_stuff() # Stall until 3 tasks reach this point synclock(sl) # wait for all threads having completed the first task do_some_more_stuff() end # Warning: The following can only work if there are really at least 3 threads available in Threads.nthreads() and there are three threads available in your OS!! # Set the lock to wait for 3 tasks add_sync!(sync_lock, 3) Threads@threads for i in 1:3 do_stuff(sync_lock) end ```
AtomicLocks
https://github.com/martinheida/AtomicLocks.jl.git
[ "MIT" ]
1.6.2
252cd6243b0780158a2f7e259aefea9e16f965aa
code
1215
# In Julia register CI, do nothing if get(ENV, "JULIA_REGISTRYCI_AUTOMERGE", "false") == "true" exit(0) end ## using libcxxwrap_julia_jll using Scratch using Pkg.TOML using UUIDs ## include("generate_wrapper.jl") const libpoplar_dir = joinpath(get_scratch!(UUID(TOML.parsefile(joinpath(dirname(@__DIR__), "Project.toml"))["uuid"]), "libpoplar"), "v$(Base.thispatch(VERSION))") function build_bindings(; path::String=joinpath(libpoplar_dir, "libpoplar_julia.so"), generate_bindings::Bool=true, compile::Bool=true) if generate_bindings generate_wrapper() end if compile cxxwrap_include_dir = joinpath(libcxxwrap_julia_jll.artifact_dir, "include") julia_include_dir = joinpath(dirname(Sys.BINDIR), "include", "julia") mkpath(dirname(path)) dir = joinpath(@__DIR__, "wrapper") run(``` $(cxx) -O0 -std=c++17 -fPIC -shared -I$(julia_include_dir) -I$(cxxwrap_include_dir) -I$(dir) -o $(path) $(joinpath(dir, "template.cpp")) -lpopops -lpoplar ```) end return nothing end build_bindings()
IPUToolkit
https://github.com/JuliaIPU/IPUToolkit.jl.git
[ "MIT" ]
1.6.2
252cd6243b0780158a2f7e259aefea9e16f965aa
code
24912
## using Clang using Clang.LibClang using JSON ## const allowed_namespaces = ("poplar", "popops") # TODO: I really shouldn't be using strings everywhere for these const supported_nodes = ("EnumDecl", "ClassDecl", "StructDecl", "CXXMethod", "FunctionTemplate", "FunctionDecl", "CXXConstructor", "EnumConstantDecl") const cxx = get(ENV, "CXX", "g++") abstract type BindgenContext end mutable struct DefaultBindgenContext <: BindgenContext searched_headers::Vector{String} blacklisted_headers::Vector{String} handled_symbols::Set{String} seen_symbols::Set{String} outputDecls::String outputMembers::String outputSupertypes::String end DefaultBindgenContext() = DefaultBindgenContext([], [], Set([]), Set([]), "", "", "") function get_system_includes()::Vector{String} io = IOBuffer() readchomp(pipeline(`$(cxx) -x c++ -E -Wp,-v - -fsyntax-only`; stdin=IOBuffer(""), stderr=io)) m = match(r"#include <\.\.\.> search starts here:(.*)End of search list\."s, String(take!(io)))[1] return abspath.(strip.(split(m[2:end - 1], "\n"))) end # Find the header file in one of the include paths function resolve_header(header::String, include_paths::Vector{String})::String for include in include_paths path = joinpath(include, header) if isfile(path) return path end end error("Couldn't find $(header) in $(join(repr.(include_paths), ", "))") end # Find header files in the include paths resolve_headers(headers::Vector{String}, include_paths::Vector{String})::Vector{String} = resolve_header.(headers, Ref(include_paths)) function get_full_name(cursor, funcargs::Bool=true, buf="") parent = Clang.getCursorLexicalParent(cursor) parent_kind = spelling(kind(parent)) cursor_name = name(cursor) if !funcargs cursor_name = split(cursor_name, "(")[1] end if parent_kind != "TranslationUnit" && parent_kind != "InvalidFile" buf = get_full_name(parent, funcargs, buf) end if buf == "" return cursor_name else return buf * "::" * cursor_name end end function get_namespace(cursor::CLCursor) tmpcursor = cursor while spelling(kind(tmpcursor)) != "Namespace" && Clang.getCursorLexicalParent(tmpcursor) != tmpcursor tmpcursor = Clang.getCursorLexicalParent(tmpcursor) end if get_full_name(tmpcursor) == "" tmpcursor = Clang.clang_getCursorDefinition(cursor) while spelling(kind(tmpcursor)) != "Namespace" && Clang.getCursorLexicalParent(tmpcursor) != tmpcursor tmpcursor = Clang.getCursorLexicalParent(tmpcursor) end return get_full_name(tmpcursor) end return get_full_name(tmpcursor) end function get_class_name(cursor::CLCursor) tmpcursor = cursor while spelling(kind(tmpcursor)) != "StructDecl" && spelling(kind(tmpcursor)) != "ClassDecl" && Clang.getCursorLexicalParent(tmpcursor) != tmpcursor tmpcursor = Clang.getCursorLexicalParent(tmpcursor) end return get_full_name(tmpcursor) end function get_inline_varname(cursor::CLCursor) vname = get_class_name(cursor) if !startswith(vname, get_namespace(cursor)) vname = get_namespace(cursor) * vname end vname = replace(vname, "poplar::" => "") vname = uppercasefirst(vname) replace(vname, "::" => "") end function get_julia_name(cursor::CLCursor) method_name = split(name(cursor), "(")[1] vname = get_inline_varname(cursor) * titlecase(method_name, strict=false) vname = replace(vname, "poplar::" => "") replace(vname, "::" => "") end function object_decl_handler(ctx::BindgenContext, classdecl::CLCursor)::Tuple{Union{Nothing, String}, Union{Nothing, String}} full_name = get_full_name(classdecl) length(children(classdecl)) == 0 && return nothing, "skip_empty_classdecl" wrapper_var_name = get_inline_varname(classdecl) # `VertexPerfEstimate` is a simple struct, we need to map it to a manually # defined struct on the Julia side. if wrapper_var_name == "VertexPerfEstimate" return """mod.map_type<poplar::VertexPerfEstimate>("VertexPerfEstimate");""", nothing end # handle simple inheritance if length(children(classdecl)) > 1 && kind(children(classdecl)[1]) == Clang.CXCursor_CXXBaseSpecifier if startswith(get_full_name(children(classdecl)[1]), "class ") base_class = split(get_full_name(children(classdecl)[1]), "class ")[2] ctx.outputSupertypes *= "template<> struct SuperType<$full_name> { typedef $base_class type; };\n" return "auto JL$wrapper_var_name = mod.add_type<$full_name>(\"$wrapper_var_name\", jlcxx::julia_base_type<$base_class>());", nothing end end return "auto JL$wrapper_var_name = mod.add_type<$full_name>(\"$wrapper_var_name\");", nothing end function optionals(args::Vector) num = 0 for arg in args for token in tokenize(arg) if token.text == "=" num += 1 end end end return num end optionals(method::CLCursor) = optionals(get_function_args(method)) function should_wrap(item::AbstractString) return startswith(item, "ArrayRef") && !contains(item, "poplar") && !contains(item, "std::string") && !contains(item, "program::") end function arg_list(method::CLCursor, types=true::Bool, cutoff=Inf, varnames=true::Bool) Clang.getNumArguments(Clang.getCursorType(method)) == 0 && return "" cutoff == 0 && return "" arglist = get_full_name(method) arglist = split(arglist, "(")[2] arglist = split(arglist, ")")[1] # TODO: this is **really** not a good way to do this argssplit = [] cur = "" count = 0 for chr in arglist if chr == '<' count += 1 end if chr == '>' count -= 1 end if count == 0 && chr == ',' push!(argssplit, cur) cur = "" continue end cur *= chr end if cur != "" push!(argssplit, cur) end total = "" varname = 'a' i = 1 for item in argssplit i > cutoff && break item = lstrip(item) item = replace(item, "const poplar::DebugContext &" => "std::string") item = replace(item, "poplar::DebugContext" => "std::string") item = replace(item, "poplar::StringRef" => "std::string") if types pre = "" if should_wrap(item) pre = "jlcxx::" end if varnames total *= "$pre$item $varname, " else total *= "$pre$item, " end else if should_wrap(item) total *= "jlcxxToPoplar($varname), " else total *= "$varname, " end end varname += 1 i += 1 end return total[1:end - 2] end function constructor_handler(ctx::BindgenContext, method::CLCursor)::Tuple{Union{Nothing, String}, Union{Nothing, String}} Clang.clang_getCXXAccessSpecifier(method) != Clang.CX_CXXPublic && return nothing, "insufficient_access" m_header = spelling(method) m_name = name(method) name_small = split(m_name, "(")[1] m_kind = kind(method) base_var = get_inline_varname(method) get_class_name(method) == "" && return nothing, "constructor_missing_class" # workaround: ostreams really don't like being copied arglist = arg_list(method) contains(arglist, "ostream") && return nothing, "ostream_blacklist" contains(arglist, "istream") && return nothing, "istream_blacklist" contains(arglist, "&&") && return nothing, "rvalue_unsupported" contains(m_name, "unique_ptr") && return nothing, "unique_ptr_blacklist" arglist == "" && return nothing, "default_constructor" # default constructor gets autogenerated tokenize(method)[end].text == "delete" && return nothing, "deleted_method" out = "{ using namespace $(get_namespace(method));\n" args = get_function_args(method) num_args = length(args) num_required = num_args - optionals(args) if num_required == 0 num_required = 1 end for cutoff in num_required:num_args out *= "JL$base_var.constructor<$(arg_list(method, true, cutoff, false))>();\n" end out *= "}" return out, nothing end function method_handler(ctx::BindgenContext, method::CLCursor)::Tuple{Union{Nothing, String}, Union{Nothing, String}} Clang.clang_getCXXAccessSpecifier(method) != Clang.CX_CXXPublic && return nothing, "insufficient_access" m_header = spelling(method) m_name = name(method) name_small = split(m_name, "(")[1] m_kind = kind(method) base_var = get_inline_varname(method) julia_name = get_julia_name(method) func_name = get_full_name(method, false) get_class_name(method) == "" && return nothing, "constructor_missing_class" contains(func_name, "::operator") && return nothing, "operator_unsupported" arglist = arg_list(method) contains(arglist, "&&") && return nothing, "rvalue_unsupported" # workaround: ostreams really don't like being copied contains(arglist, "ostream") && return nothing, "ostream_blacklist" contains(arglist, "istream") && return nothing, "istream_blacklist" # Workaround: getImpl (on various poplar types) returns an incomplete class which messes with cxxwrap (m_name == "getImpl()" || m_name == "getPImpl()") && return nothing, "getimpl_blacklist" contains(m_name, "connectStreamToCallback") && return nothing, "calls_deleted_function" contains(m_name, "registerCycleEstimator") && return nothing, "calls_deleted_function" contains(m_name, "connectHostFunction") && return nothing, "calls_deleted_function" out = "{ using namespace $(get_namespace(method));\n" args = get_function_args(method) num_args = length(args) num_required = num_args - optionals(args) if num_required == 0 out = out * """JL$(base_var).method("$(julia_name)", []($(get_class_name(method))& cl) {return cl.$(name_small)();});\n""" num_required += 1 end for cutoff in num_required:num_args # Do not add methods which contains arguments with `TypeTraits::isSimpleType` if !contains(arg_list(method, true, cutoff), "TypeTraits::isSimpleType") out = out * """JL$(base_var).method("$(julia_name)", []($(get_class_name(method))& cl, $(arg_list(method, true, cutoff))) {return cl.$(name_small)($(arg_list(method, false, cutoff)));});\n""" end end out = out * "}" if spelling(kind(method)) == "FunctionTemplate" if contains(out, "ArrayRef<T>") # Expand all references to ArrayRef<T> to containers of common types full = "" # Not all methods support the same types in `ArrayRef<T>`, so we need to do some # specialisation. _types = if julia_name in ("EngineReadTensor", "EngineWriteTensor", "EngineConnectStream", "EngineCopyFromRemoteBuffer") ("unsigned int", "int", "long", "float") else ("unsigned int", "int", "long", "float", "double") end arrayref_types = string.("ArrayRef<", _types, ">") for type in arrayref_types full *= replace(out, "ArrayRef<T>" => type) end return full, nothing elseif contains(out, r"GraphConnect\b") # Manually expand template in poplar::Graph::connect. Ideally this # would be more automatic. full = "" for type in ("unsigned int", "int", "long", "float", "double") # Note: we have to prevent automatic argument conversion: # <https://github.com/JuliaInterop/CxxWrap.jl/blob/aec9d9975aec28e9046ad81e7038bbc5319963ea/README.md#automatic-argument-conversion>. full *= replace(out, r"\bT\b" => "jlcxx::StrictlyTypedNumber<" * type * ">", "a, b" => "a, b.value", ) end return full, nothing end return nothing, "unsupported_template" end return out, nothing end function func_handler(ctx::BindgenContext, func::CLCursor)::Tuple{Union{Nothing, String}, Union{Nothing, String}} f_name = name(func) name_small = split(f_name, "(")[1] f_kind = kind(func) julia_name = get_julia_name(func) func_name = get_full_name(func, false) # workaround: ostreams really don't like being copied contains(arg_list(func), "ostream") && return nothing, "ostream_blacklist" contains(arg_list(func), "istream") && return nothing, "istream_blacklist" contains(arg_list(func), "&&") && return nothing, "rvalue_unsupported" contains(func_name, "::operator") && return nothing, "operator_unsupported" out = "{ using namespace $(get_namespace(func));\n" return out * "mod.method(\"$julia_name\", []($(arg_list(func))) {return $func_name($(arg_list(func, false)));} ); }", nothing end function enum_decl_handler(ctx::BindgenContext, decl::CLCursor)::Tuple{Union{Nothing, String}, Union{Nothing, String}} !(Clang.clang_getCXXAccessSpecifier(decl) ∈ [Clang.CX_CXXPublic, Clang.CX_CXXInvalidAccessSpecifier]) && return nothing, "insufficient_access" full_name = get_full_name(decl) julia_name = get_julia_name(decl) return "mod.add_bits<$full_name>(\"$julia_name\", jlcxx::julia_type(\"CppEnum\"));", nothing end function enum_const_handler(ctx::BindgenContext, decl::CLCursor)::Tuple{Union{Nothing, String}, Union{Nothing, String}} !(Clang.clang_getCXXAccessSpecifier(decl) ∈ [Clang.CX_CXXPublic, Clang.CX_CXXInvalidAccessSpecifier]) && return nothing, "insufficient_access" full_name = get_full_name(decl) julia_name = get_julia_name(decl) parent_name = get_julia_name(Clang.getCursorLexicalParent(decl)) return "mod.set_const(\"$parent_name$julia_name\", $full_name);", nothing end function gen_json(ctx::BindgenContext, decl, id, handled=false, not_handled_reason="") if not_handled_reason === nothing not_handled_reason = "" end decl_kind = kind(decl) spelling(decl_kind) ∈ ["EnumDecl", "ClassDecl", "StructDecl", "CXXMethod", "FunctionTemplate", "FunctionDecl", "CXXConstructor", "EnumConstantDecl"] || return fname = spelling(decl) tokenstr = "" for token in tokenize(decl) tokenstr *= token.text * " " end tokenstr = tokenstr[1:end-1] #if length(tokenstr) > 150 # tokenstr = tokenstr[1:150] #end d = Dict("Implemented" => handled, "Text" => tokenstr, "Namespace" => get_namespace(decl), "Token type" => spelling(decl_kind), "Name" => get_full_name(decl), "Filename" => fname, "FailureReason" => not_handled_reason) open("out.json", "a") do file write(file, JSON.json(d) * "\n") end end function iterate_children(ctx::BindgenContext, childvec::Vector{CLCursor}) for (i, child) in enumerate(childvec) valid = true reason = nothing child_header = spelling(child) child_name = name(child) child_kind = kind(child) startswith(child_name, "__") && (valid = false; reason = "skip_compiler_definitions") # skip compiler definitions child_header ∈ ctx.blacklisted_headers && (valid = false; reason = "header_blacklisted") !any(x -> startswith(get_namespace(child), x), allowed_namespaces) && (valid = false; reason = "not_allowed_namespace") child_id = get_full_name(child) * "__" * spelling(child_kind) child_id = replace(child_id, "poplar::StringRef" => "std::string") # prevents duplicate codegen(+error), TODO: check if still necessary child_id == "poplar::FieldData::SizeT::size()__CXXMethod" && (valid = false; reason = "filedata_size_blacklist") # Popops expressions are causing all kinds of problems contains(child_id, "expr::") && (valid = false; reason = "expr_blacklisted") contains(child_id, "popops::expr") && (valid = false; reason = "expr_blacklisted") # TODO: Find and document reason contains(child_id, "equivalent_device_type") && (valid = false; reason = "equivalent_device_type_blacklist") # workaround (returning vector of Device causes issues) contains(child_id, "getDevices") && (valid = false; reason = "getdevices_blacklist") # Skip everything related to poplar::core (like Target.getTargetOptions) contains(child_id, "core::") && (valid = false; reason = "core_blacklisted") contains(child_id, "getTargetOptions") && (valid = false; reason = "core_blacklisted") # These cause error # error: static assertion failed: Mirrored types (marked with IsMirroredType) can't be added using add_type, map them directly to a struct instead and use map_type or explicitly disable mirroring for this type, e.g. define template<> struct IsMirroredType<Foo> : std::false_type { }; contains(child_id, "poplar::VertexPerfEstimate::VertexPerfEstimate") && (valid = false; reason = "mirrored_type") contains(child_id, "poplar::ErrorLocationHash__StructDecl") && (valid = false; reason = "mirrored_type") # This conversion `ArrayRef<std::string>` to `ArrayRef<poplar::StringRef>` isn't handled correctly contains(child_id, "poplar::Graph::trace(ArrayRef<std::string>") && (valid = false; reason = "arrayrefstring_blacklisted") # `DebugContext` constructors which cause ambiguous overload calls contains(child_id, r"^poplar::DebugContext::DebugContext.*__CXXConstructor$") && (valid = false; reason = "debugcontext_blacklisted") # This causes the error # no matching function for call to ‘poplar::program::Sequence::add_many(std::__cxx11::basic_string<char>&)’ contains(child_id, r"poplar::program::Sequence::Sequence.*__CXXConstructor$") && (valid = false; reason = "programsequence_blacklisted") # Avoid duplicate definition during precompilation of the CxxWrap module contains(child_id, "poplar::layout::to_string(const poplar::layout::VectorList)__FunctionDecl") && (valid = false; reason = "duplicate_definition") # Avoid duplicate definition during precompilation of the CxxWrap module. # Ref: <https://github.com/JuliaIPU/IPUToolkit.jl/issues/12>. contains(child_id, "poplar::toString") && (valid = false; reason = "duplicate_definition") # error: invalid use of incomplete type ‘class pva::Report’ contains(child_id, "poplar::Engine::getReport") && (valid = false; reason = "incomplete_type") # error: invalid application of ‘sizeof’ to incomplete type ‘poplar::core::VertexIntrospector’ contains(child_id, "poplar::VertexIntrospector") && (valid = false; reason = "incomplete_type") # error: invalid use of incomplete type ‘class poplar::Preallocations’ contains(child_id, "poplar::Preallocations") && (valid = false; reason = "incomplete_type") # error: no matching function for call to ‘poplar::GlobalExchangeConstraint::GlobalExchangeConstraint()’ contains(child_id, "poplar::Target::getGlobalExchangeConstraints()__CXXMethod") && (valid = false; reason = "getGlobalExchangeConstraints_blacklisted") # These methods are handled incorrectly by this script and generate lines with # invalid syntax. They don't seem to be super important, so let's just skip them # for the time being. contains(child_id, "poplar::Module::forEachLoadableSegment") && (valid = false; reason = "forEachLoadableSegment_blacklisted") contains(child_id, "poplar::Module::forEachSegment") && (valid = false; reason = "forEachSegment_blacklisted") # error: no match for call to ‘(poplar::Engine::copyToRemoteBuffer<unsigned int>::<lambda(unsigned int*)>) (gccs::ArrayRef<const unsigned int>::const_iterator)’ contains(child_id, "poplar::Engine::copyToRemoteBuffer(ArrayRef<T>, std::string, uint64_t, unsigned int)__FunctionTemplate") && (valid = false; reason = "copyToRemoteBuffer_blacklisted") # IPUAttributes appears only in one method of Device.getAttribute, but it isn't # documented and it looks troublesome to support in a backward-compatible way, let's # just skip it. contains(child_id, "IPUAttributes") && (valid = false; reason = "IPUAttributes_blacklisted") # Sadly we aren't going to support quarter precision floating-point numbers anytime soon, so let's just skip this. contains(child_id, "QuarterMetadata") && (valid = false; reason = "QuarterMetadata_blacklisted") handled = false if !(child_id ∈ ctx.handled_symbols) if valid code, reason = nothing, nothing res = if spelling(child_kind) == "EnumDecl" enum_decl_handler(ctx, child) elseif spelling(child_kind) == "ClassDecl" object_decl_handler(ctx, child) elseif spelling(child_kind) == "StructDecl" object_decl_handler(ctx, child) end if res !== nothing code, reason = res if code !== nothing handled = true ctx.outputDecls *= "// " * child_id * "\n" * code * "\n" push!(ctx.handled_symbols, child_id) end end res = if spelling(child_kind) == "CXXMethod" method_handler(ctx, child) elseif spelling(child_kind) == "FunctionTemplate" method_handler(ctx, child) elseif spelling(child_kind) == "FunctionDecl" func_handler(ctx, child) elseif spelling(child_kind) == "CXXConstructor" constructor_handler(ctx, child) elseif spelling(child_kind) == "EnumConstantDecl" enum_const_handler(ctx, child) end if res !== nothing code, reason = res if code !== nothing handled = true ctx.outputMembers *= "// " * child_id * "\n" * code * "\n" push!(ctx.handled_symbols, child_id) end end end if spelling(child_kind) ∈ supported_nodes gen_json(ctx, child, child_id, handled, reason) end push!(ctx.seen_symbols, child_id) end iterate_children(ctx, children(child)) end end function gen_bindings(headers::Vector{String}, blacklist::Vector{String}) rm("out.json"; force=true) touch("out.json") # Automatically print out the includes of the header files we want to parse io = IOBuffer() for header in headers println(io, "#include <$(header)>") end includes = get_system_includes() ctx = DefaultBindgenContext() ctx.searched_headers = resolve_headers(headers, includes) ctx.blacklisted_headers = resolve_headers(blacklist, includes) # bootstrap a Clang ASTUnit for parsing the headers flags = CXTranslationUnit_DetailedPreprocessingRecord | CXTranslationUnit_SkipFunctionBodies idx = Clang.Index() tus = [] symbol_names = String[] # add compiler flags clang_args = ["-I"*inc for inc in includes] for h in ctx.searched_headers tu = Clang.TranslationUnit(idx, h, clang_args, flags) push!(tus, tu) end for trans_unit in tus root_cursor = Clang.getTranslationUnitCursor(trans_unit) println(root_cursor) clang_children = children(root_cursor) iterate_children(ctx, clang_children) end return String(take!(io)), ctx.outputDecls * ctx.outputMembers, ctx.outputSupertypes end function generate_wrapper() gen_headers, gen_inline, gen_inherit = gen_bindings( [ "poplar/VectorLayout.hpp", "poplar/DeviceManager.hpp", "poplar/Engine.hpp", "poplar/Graph.hpp", "poplar/CSRFunctions.hpp", "poplar/IPUModel.hpp", "popops/ElementWise.hpp", "popops/codelets.hpp", ], String[]) #gen_inline = replace(gen_inline, "\n" => "\nprintf(\"Line is %d\\n\", __LINE__);\n") # Workaround for CxxWrap not liking any types name "Type" gen_inline = replace(gen_inline, "\"Type\"" => "\"Type_\"") dir = joinpath(@__DIR__, "wrapper") write(joinpath(dir, "gen_headers.hpp"), gen_headers) write(joinpath(dir, "gen_inline.cpp"), gen_inline) write(joinpath(dir, "gen_inherit.cpp"), gen_inherit) return nothing end
IPUToolkit
https://github.com/JuliaIPU/IPUToolkit.jl.git
[ "MIT" ]
1.6.2
252cd6243b0780158a2f7e259aefea9e16f965aa
code
499
using Documenter, IPUToolkit, IPUToolkit.Poplar, IPUToolkit.IPUCompiler makedocs( modules = [Poplar, IPUCompiler], sitename = "IPUToolkit.jl", pages = [ "IPUToolkit" => "index.md", "Poplar SDK" => "poplar.md", "Writing codelets" => "compiler.md", ], format = Documenter.HTML(; edit_link="main"), ) deploydocs( repo = "github.com/JuliaIPU/IPUToolkit.jl.git", target = "build", deps = nothing, make = nothing, devbranch = "main", )
IPUToolkit
https://github.com/JuliaIPU/IPUToolkit.jl.git
[ "MIT" ]
1.6.2
252cd6243b0780158a2f7e259aefea9e16f965aa
code
1907
using IPUToolkit.IPUCompiler, IPUToolkit.Poplar using Enzyme IPUCompiler.KEEP_LLVM_FILES[] = true ENV["POPLAR_RUNTIME_OPTIONS"] = """{"target.hostSyncTimeout":"60"}""" device = Poplar.get_ipu_device() target = Poplar.DeviceGetTarget(device) graph = Poplar.Graph(target) num_tiles = Int(Poplar.TargetGetNumTiles(target)) initial_points = collect(Float32.(range(-4; stop=4, length=10 * num_tiles))) minima = similar(initial_points) ∂(f, x) = first(first(autodiff_deferred(Reverse, f, Active(x)))) rosenbrock(x, y=4) = (1 - x) ^ 2 + 100 * (y - x ^ 2) ^ 2 rosenbrock′(x) = ∂(rosenbrock, x) function adam(∂f, x₀::T) where {T} x = x₀ # Some constants α = T(0.001) # learning rate β₁ = T(0.9) β₂ = T(0.999) ϵ = T(1e-8) # Momenta m = zero(T) v = zero(T) # Stopping criteria ε = 10 * eps(T) δ = one(T) max_t = Int32(1_000_000) t = one(max_t) while abs(δ) > ε && t ≤ max_t g = ∂f(x) m = β₁ * m + (1 - β₂) * g v = β₂ * v + (1 - β₂) * g ^ 2 m̂ = m / (1 - β₁ ^ t) v̂ = v / (1 - β₂ ^ t) δ = α * m̂ / (√(v̂) + ϵ) x -= δ t += one(t) end return x end @codelet graph function RosenAdam(in::VertexVector{Float32, In}, out::VertexVector{Float32, Out}) for idx in eachindex(out) out[idx] = adam(rosenbrock′, in[idx]) end end initial_points_ipu = Poplar.GraphAddConstant(graph, initial_points) minima_ipu = similar(graph, minima, "minima"); prog = Poplar.ProgramSequence() add_vertex(graph, prog, 0:(num_tiles - 1), RosenAdam, initial_points_ipu, minima_ipu) Poplar.GraphCreateHostRead(graph, "minima-read", minima_ipu) flags = Poplar.OptionFlags() Poplar.OptionFlagsSet(flags, "debug.instrument", "true") engine = Poplar.Engine(graph, prog, flags) Poplar.EngineLoadAndRun(engine, device) Poplar.EngineReadTensor(engine, "minima-read", minima) Poplar.detach_devices()
IPUToolkit
https://github.com/JuliaIPU/IPUToolkit.jl.git
[ "MIT" ]
1.6.2
252cd6243b0780158a2f7e259aefea9e16f965aa
code
2625
using IPUToolkit.IPUCompiler using IPUToolkit.Poplar using DiffEqGPU using StaticArrays using OrdinaryDiffEq ENV["POPLAR_RUNTIME_OPTIONS"] = """{"target.hostSyncTimeout":"60"}""" IPUCompiler.PROGRESS_SPINNER[] = false device = Poplar.get_ipu_device() target = Poplar.DeviceGetTarget(device) graph = Poplar.Graph(target) prog = Poplar.ProgramSequence() num_tiles = Int(Poplar.TargetGetNumTiles(target)) tiles = 0:(num_tiles - 1) # Define differential equation function lorenz(u, p, t) σ = p[1] ρ = p[2] β = p[3] du1 = σ * (u[2] - u[1]) du2 = u[1] * (ρ - u[3]) - u[2] du3 = u[1] * u[2] - β * u[3] return SVector{3}(du1, du2, du3) end # Create a range of different input parameters p = let σ = repeat(range(0f0; step=0.2f0, length=64); inner=23) ρ = repeat(range(10f0; step=1f0, length=23); outer=64) β = repeat([8f0 / 3f0], num_tiles) zip(σ, ρ, β) |> Iterators.flatten |> collect end # Output arrays n = 10000 u1 = Vector{Float32}(undef, n * num_tiles) u2 = Vector{Float32}(undef, n * num_tiles) u3 = Vector{Float32}(undef, n * num_tiles) # Define kernel @codelet graph function solve_lorenz(u1::VertexVector{Float32, Out}, u2::VertexVector{Float32, Out}, u3::VertexVector{Float32, Out}, p::VertexVector{Float32, In}) u0 = @SVector [1f0; 0f0; 0f0] svp = @inbounds SVector{3, Float32}(p) integ = DiffEqGPU.init(GPUTsit5(), lorenz, false, u0, 0f0, 0.005f0, svp, nothing, CallbackSet(nothing), true, false) for idx in eachindex(u1, u2) DiffEqGPU.step!(integ, integ.t + integ.dt, integ.u) u1[idx] = integ.u[1] u2[idx] = integ.u[2] u3[idx] = integ.u[3] end return nothing end # Input and output tensors on the IPU p_ipu = Poplar.GraphAddConstant(graph, p) u1_ipu = similar(graph, u1, "u1") u2_ipu = similar(graph, u2, "u2") u3_ipu = similar(graph, u3, "u3") # Run the codelet defined above on all tiles, with tensors evenly spread across all cores. add_vertex(graph, prog, tiles, solve_lorenz, u1_ipu, u2_ipu, u3_ipu, p_ipu) # Prepare tensors read Poplar.GraphCreateHostRead(graph, "u1-read", u1_ipu) Poplar.GraphCreateHostRead(graph, "u2-read", u2_ipu) Poplar.GraphCreateHostRead(graph, "u3-read", u3_ipu) # Run the program engine = Poplar.Engine(graph, prog) Poplar.EngineLoadAndRun(engine, device) # Read the output tensors back to the CPU Poplar.EngineReadTensor(engine, "u1-read", u1) Poplar.EngineReadTensor(engine, "u2-read", u2) Poplar.EngineReadTensor(engine, "u3-read", u3) Poplar.detach_devices()
IPUToolkit
https://github.com/JuliaIPU/IPUToolkit.jl.git
[ "MIT" ]
1.6.2
252cd6243b0780158a2f7e259aefea9e16f965aa
code
2444
using IPUToolkit.IPUCompiler, IPUToolkit.Poplar # Define the arrays that will be used during the program. `input` is a host array that will # be automatically copied to an IPU array, the other `PoplarVector`s are placeholders for # IPU arrays that will be populated during the execution of the program. input = Float32[5, 2, 10, 102, -10, 2, 256, 15, 32, 100] outvec1 = PoplarVector{Float32}(undef, 10) outvec2 = PoplarVector{Float32}(undef, 10) outvec3 = PoplarVector{Float32}(undef, 10) # Get the device. device = Poplar.get_ipu_device() # Inside `@ipuprogram` you can do only the following things: # # * define functions, which will be used as codelets in the IPU program # * call these functions, which will automatically build the graph of the calls for you # * print tensors on the IPU with the "special" function `print_tensor` # * copy IPU tensors to the host @ipuprogram device begin # Define the functions/codelets. All arguments must be `VertexVector`s. function TimesTwo(inconst::VertexVector{Float32, In}, outvec::VertexVector{Float32, Out}) outvec .= 2 .* inconst end function Sort(invec::VertexVector{Float32, In}, outvec::VertexVector{Float32, Out}) outvec .= invec sort!(outvec) end function Sin(invec::VertexVector{Float32, In}, outvec::VertexVector{Float32, Out}) for idx in eachindex(outvec) @inbounds outvec[idx] = sin(invec[idx]) end end # Run the functions. Arguments must be the arrays defined above, either host arrays # (which will be copied to the IPU automatically) or `PoplarVector`s. TimesTwo(input, outvec1) Sort(outvec1, outvec2) Sin(outvec2, outvec3) # `print_tensor` is a special function which prints tensors to the host # using `Poplar.ProgramPrintTensor` under the hood. Syntax is # print_tensor(<LABEL>, <tensor variable>) print_tensor("Input", input) print_tensor("TimesTwo", outvec1) print_tensor("Sorted", outvec2) print_tensor("Sin", outvec3) # Copy IPU tensors to the host. The right-hand side must be one of the tensors defined # above, the left-hand side is the name of a host array which will be created # automatically for you, so you will be able to reference them after the `@ipuprogram`. jl_outvec1 = outvec1 jl_outvec2 = outvec2 jl_outvec3 = outvec3 end # Detach the device when we're done. Poplar.detach_devices()
IPUToolkit
https://github.com/JuliaIPU/IPUToolkit.jl.git
[ "MIT" ]
1.6.2
252cd6243b0780158a2f7e259aefea9e16f965aa
code
3694
using IPUToolkit.IPUCompiler, IPUToolkit.Poplar using Enzyme IPUCompiler.KEEP_LLVM_FILES[] = true ENV["POPLAR_RUNTIME_OPTIONS"] = """{"target.hostSyncTimeout":"30"}""" device = Poplar.get_ipu_device() target = Poplar.DeviceGetTarget(device) graph = Poplar.Graph(target) num_tiles = Int(Poplar.TargetGetNumTiles(target)) ∂!(f, x, f′) = autodiff_deferred(Reverse, f, Duplicated(x, f′)) neg_log_density(q::AbstractVector{T}) where {T} = (q[1]^2 - q[2])^2 + (q[1]- one(T))^2 / T(100) # Note: both input and output must have exactly same type (including *all* parameters). function grad_neg_log_density!(f′::V, x::V) where {T,V<:AbstractVector{T}} # The derivative is added to duplicated arguments, so we need to zero f′ # before going on. f′ .= zero(T) ∂!(neg_log_density, x, f′) return f′ end function leapfrog!(q::AbstractVector{T}, p::AbstractVector{T}, f′::AbstractVector{T}, dt::T) where {T} grad_neg_log_density!(f′, q) p .-= (dt ./ 2) .* f′ q .+= dt .* p grad_neg_log_density!(f′, q) p .-= (dt / 2) .* f′ end function sample_transition!(q_proposed::AbstractVector{T}, p::AbstractVector{T}, f′::AbstractVector{T}, q::AbstractVector{T}, dt::T, n_step) where {T} randn2!(p) h_init = sum(abs2, p) / 2 + neg_log_density(q) q_proposed .= q for step in UInt32(1):n_step leapfrog!(q_proposed, p, f′, dt) end h_diff = h_init - (sum(abs2, p) / 2 + neg_log_density(q_proposed)) accept_prob = isnan(h_diff) ? zero(T) : exp(min(0, h_diff)) if rand(T) >= accept_prob q_proposed .= q end return accept_prob end function sample_chain!(q_chain::AbstractVector{T}, buffer_q::AbstractVector{T}, p::AbstractVector{T}, f′::AbstractVector{T}, orig_q::AbstractVector{T}, n_sample, n_step, dt::T) where {T} sum_accept_prob = zero(T) buffer_q .= orig_q for sample in UInt32(1):n_sample accept_prob = sample_transition!(buffer_q, p, f′, orig_q, dt, n_step) for idx in eachindex(buffer_q) @inbounds q_chain[length(buffer_q) * (sample - 1) + idx] = buffer_q[idx] end sum_accept_prob += accept_prob end return sum_accept_prob / n_sample end n_sample = UInt32(10) n_step = UInt32(10) dt = Float32(0.1) @eval @codelet graph function HamiltonianMonteCarlo( q_chain::VertexVector{Float32, InOut}, buffer_q::VertexVector{Float32, InOut}, p::VertexVector{Float32, InOut}, gradient::VertexVector{Float32, InOut}, orig_q::VertexVector{Float32, InOut}, ) sample_chain!(q_chain, buffer_q, p, gradient, orig_q, $(n_sample), $(n_step), $(dt)) end orig_q = randn(Float32, 2 * num_tiles) orig_q_ipu = Poplar.GraphAddVariable(graph, Poplar.FLOAT(), UInt64[length(orig_q)], "orig_q") copyto!(graph, orig_q_ipu, orig_q) buffer_q_ipu = similar(graph, orig_q, "buffer_q") p_ipu = similar(graph, orig_q, "p") gradient_ipu = similar(graph, orig_q, "gradient") q_chain_ipu = Poplar.GraphAddVariable(graph, Poplar.FLOAT(), UInt64[length(orig_q) * n_sample], "q_chain") q_chain = Matrix{Float32}(undef, length(orig_q), n_sample) prog = Poplar.ProgramSequence() add_vertex(graph, prog, 0:(num_tiles - 1), HamiltonianMonteCarlo, q_chain_ipu, buffer_q_ipu, p_ipu, gradient_ipu, orig_q_ipu) Poplar.GraphCreateHostRead(graph, "q-chain-read", q_chain_ipu) flags = Poplar.OptionFlags() Poplar.OptionFlagsSet(flags, "debug.instrument", "false") engine = Poplar.Engine(graph, prog, flags) Poplar.EngineLoadAndRun(engine, device) Poplar.EngineReadTensor(engine, "q-chain-read", q_chain) Poplar.detach_devices() #= using Plots sample = 10 scatter(q_chain[1:2:end, sample], q_chain[2:2:end, sample]; xlims=(-3, 3), ylims=(-3, 6)) =#
IPUToolkit
https://github.com/JuliaIPU/IPUToolkit.jl.git
[ "MIT" ]
1.6.2
252cd6243b0780158a2f7e259aefea9e16f965aa
code
2061
using IPUToolkit.IPUCompiler using IPUToolkit.Poplar device = Poplar.get_ipu_device() target = Poplar.DeviceGetTarget(device) graph = Poplar.Graph(target) tile_clock_frequency = Poplar.TargetGetTileClockFrequency(target) # Multiply input vector `in` by 2, and store result in vector `out`. @codelet graph function TimesTwo(in::VertexVector{Float16, In}, out::VertexVector{Float16, Out}) out .= in .* 2 end # Copy elements of `in` into `out` and sort it in-place. Get cycles counter before and # after sorting, show the time to sort the vector by divinding the cycles count by the tile # clock frequency, which has been interpolated inside the kernel with `@eval` (the # alternative would be to pass it as an extra scalar input argument). @eval @codelet graph function Sort(in::VertexVector{Float16, In}, out::VertexVector{Float16, Out}) copyto!(out, in) # We can use the intrinsic `get_scount_l` to get the cycle counter right # before and after some operations, so that we can benchmark it. cycles_start = get_scount_l() sort!(out) cycles_end = get_scount_l() # Divide the difference between the two cycle counts by the tile frequency # clock to get the time. sort_time = (cycles_end - cycles_start) / $(tile_clock_frequency) @ipushow sort_time end inconst = Poplar.GraphAddConstant(graph, Float16[5, 2, 10, 102, -10, 2, 256, 15, 32, 100]) outvec1 = similar(graph, inconst, "outvec1"); outvec2 = similar(graph, inconst, "outvec2"); prog = Poplar.ProgramSequence() add_vertex(graph, prog, TimesTwo, inconst, outvec1) add_vertex(graph, prog, Sort, outvec1, outvec2) Poplar.ProgramSequenceAdd(prog, Poplar.ProgramPrintTensor("Input", inconst)) Poplar.ProgramSequenceAdd(prog, Poplar.ProgramPrintTensor("Output Times2", outvec1)) Poplar.ProgramSequenceAdd(prog, Poplar.ProgramPrintTensor("Output Sorted", outvec2)) flags = Poplar.OptionFlags() Poplar.OptionFlagsSet(flags, "debug.instrument", "true") engine = Poplar.Engine(graph, prog, flags) Poplar.EngineLoadAndRun(engine, device) Poplar.detach_devices()
IPUToolkit
https://github.com/JuliaIPU/IPUToolkit.jl.git
[ "MIT" ]
1.6.2
252cd6243b0780158a2f7e259aefea9e16f965aa
code
3848
using IPUToolkit.IPUCompiler, IPUToolkit.Poplar ENV["POPLAR_RUNTIME_OPTIONS"] = """{"target.hostSyncTimeout":"20"}""" IPUCompiler.KEEP_LLVM_FILES[] = true device = Poplar.get_ipu_device() target = Poplar.DeviceGetTarget(device) graph = Poplar.Graph(target) function print_usage(unroll, n) println(stderr, """ Usage: julia $(@__FILE__) [loop unroll factor] [n] Default values are unroll factor: $(unroll) n: $(n) Examples: julia $(@__FILE__) 2 julia $(@__FILE__) 4 729444 """) end num_tiles = Int(Poplar.TargetGetNumTiles(target)) n::UInt32, unroll::UInt32 = let # Default values of n and the loop unrolling factor n = typemax(UInt32) ÷ num_tiles unroll = UInt32(1) # Parse command line arguments, if any if length(ARGS) ≤ 2 if length(ARGS) ≥ 1 unroll = parse(UInt32, ARGS[1]) end if length(ARGS) == 2 n = parse(UInt32, ARGS[2]) end else print_usage(unroll, n) exit(1) end # Make sure n is an integer multiple of the loop unrolling factor before returning iszero(rem(n, unroll)) || error("n ($(n)) is not an integer multiple of unroll factor ($(unroll))") n, unroll end num_steps::UInt32 = num_tiles * n slice::Float32 = 1 / num_steps tile_clock_frequency = Poplar.TargetGetTileClockFrequency(target) ids = collect(UInt32.(0:(num_tiles - 1))) sums = similar(ids, Float32) cycles = similar(ids) # Why are we using `@eval`? Because inside a codelet we cannot access non-constant globals, # so we can either make them constant, or interpolate them via `@eval` and let people play # with the values without having to restart the session. I think the latter is more # user-friendly :) And a top-level `@eval` is not _too_ bad. @eval function pi_kernel(i::T) where {T<:Integer} sum = 0f0 for j in (i * $(n)):$(unroll):((i + one(T)) * $(n) - one(T)) # Do manual loop unrolling, sometimes this can be better than what the # compiler can do. Base.Cartesian.@nexprs $(Int64(unroll)) idx -> begin x = (j + Float32(idx - 1) - 5f-1) * $(slice) sum += 4f0 / (1f0 + x ^ 2) end end return sum end @codelet graph function Pi(in::VertexVector{UInt32, In}, out::VertexVector{Float32, Out}, cycles::VertexVector{UInt32, Out}) # Each tile deals with one-element vectors only. In `out` we store the result of the # kernel, in `cycles` we store the cycles count on this tile. cycles[begin] = @ipuelapsed(out[begin] = pi_kernel(in[begin])) end ids_ipu = Poplar.GraphAddConstant(graph, ids) sums_ipu = similar(graph, sums, "sums"); cycles_ipu = similar(graph, cycles, "cycles"); prog = Poplar.ProgramSequence() add_vertex(graph, prog, 0:(num_tiles - 1), Pi, ids_ipu, sums_ipu, cycles_ipu) Poplar.GraphCreateHostRead(graph, "sums-read", sums_ipu) Poplar.GraphCreateHostRead(graph, "cycles-read", cycles_ipu) flags = Poplar.OptionFlags() Poplar.OptionFlagsSet(flags, "debug.instrument", "true") engine = Poplar.Engine(graph, prog, flags) Poplar.EngineLoadAndRun(engine, device) Poplar.EngineReadTensor(engine, "sums-read", sums) Poplar.EngineReadTensor(engine, "cycles-read", cycles) Poplar.detach_devices() pi = sum(sums) * slice time = round(maximum(cycles) / tile_clock_frequency; sigdigits=4) print(""" Calculating PI using: $(num_steps) slices $(num_tiles) IPU tiles loop unroll factor $(Int(unroll)) Obtained value of PI: $(pi) Time taken: $(time) seconds ($(maximum(cycles)) cycles at $(round(tile_clock_frequency / 1e9; sigdigits=3)) GHz) """)
IPUToolkit
https://github.com/JuliaIPU/IPUToolkit.jl.git
[ "MIT" ]
1.6.2
252cd6243b0780158a2f7e259aefea9e16f965aa
code
2026
using IPUToolkit.Poplar # device = Poplar.get_ipu_model() device = Poplar.get_ipu_device() target = Poplar.DeviceGetTarget(device) graph = Poplar.Graph(target) h3 = zeros(Float32, 4, 4) @graph begin c1 = Poplar.GraphAddConstant(Float32[1.0, 1.5, 2.0, 2.5]) v1 = similar(c1, "v1") v2 = similar(c1, "v2") v3 = similar(h3, "v3") v4 = Poplar.GraphAddVariable(Poplar.INT(), UInt64[10], "v4") Poplar.GraphSetTileMapping(v1, 0) Poplar.GraphSetTileMapping(v3, 0) Poplar.GraphSetTileMapping(v4, 0) Poplar.GraphSetTileMapping(c1, 0) end for i in UInt64(0):UInt64(3) Poplar.GraphSetTileMapping(graph, v2[i], i) end prog = Poplar.ProgramSequence() Poplar.ProgramSequenceAdd(prog, Poplar.ProgramCopy(c1, v1)) Poplar.ProgramSequenceAdd(prog, Poplar.ProgramPrintTensor("v1-debug", v1)) Poplar.ProgramSequenceAdd(prog, Poplar.ProgramCopy(v1, v2)) Poplar.ProgramSequenceAdd(prog, Poplar.ProgramPrintTensor("v2-debug", v2)) Poplar.GraphCreateHostWrite(graph, "v3-write", v3) Poplar.GraphCreateHostRead(graph, "v3-read", v3) v1slice = Poplar.TensorSlice(v1, 0, 3) v3slice = Poplar.TensorSlice(v3, UInt64[1, 1], UInt64[2, 4]) Poplar.ProgramSequenceAdd(prog, Poplar.ProgramCopy(v1slice, v3slice)) inStream = Poplar.GraphAddHostToDeviceFIFO(graph, "v4-input-stream", Poplar.INT(), 10) Poplar.ProgramSequenceAdd(prog, Poplar.ProgramCopy(inStream, v4)) Poplar.ProgramSequenceAdd(prog, Poplar.ProgramPrintTensor("v4-0", v4)) Poplar.ProgramSequenceAdd(prog, Poplar.ProgramCopy(inStream, v4)) Poplar.ProgramSequenceAdd(prog, Poplar.ProgramPrintTensor("v4-1", v4)) flags = Poplar.OptionFlags() Poplar.OptionFlagsSet(flags, "debug.instrument", "true") engine = Poplar.Engine(graph, prog, flags) Poplar.EngineLoad(engine, device) Poplar.EngineWriteTensor(engine, "v3-write", h3) inData = Int32.(0:29) Poplar.EngineConnectStream(engine, "v4-input-stream", inData) Poplar.EngineRun(engine, 0) Poplar.EngineReadTensor(engine, "v3-read", h3) print("h3 data: ") display(h3') Poplar.detach_devices()
IPUToolkit
https://github.com/JuliaIPU/IPUToolkit.jl.git
[ "MIT" ]
1.6.2
252cd6243b0780158a2f7e259aefea9e16f965aa
code
1419
using IPUToolkit.Poplar # device = Poplar.get_ipu_model() device = Poplar.get_ipu_device() target = Poplar.DeviceGetTarget(device) graph = Poplar.Graph(target) Poplar.PopopsAddCodelets(graph) v1 = Poplar.GraphAddVariable(graph, Poplar.FLOAT(), UInt64[2, 2], "v1") v2 = similar(graph, v1, "v2") for i in 0:1 for j in 0:1 Poplar.GraphSetTileMapping(graph, v1[i][j], i*2 + j) Poplar.GraphSetTileMapping(graph, v2[i][j], j*2 + i) end end prog = Poplar.ProgramSequence() c1 = Poplar.GraphAddConstant(graph, Float32[1.0, 1.5, 2.0, 2.5]) c2 = Poplar.GraphAddConstant(graph, Float32[4.0, 3.0, 2.0, 1.0]) Poplar.GraphSetTileMapping(graph, c1, 0) Poplar.GraphSetTileMapping(graph, c2, 0) Poplar.ProgramSequenceAdd(prog, Poplar.ProgramCopy(c1, Poplar.TensorFlatten(v1))) Poplar.ProgramSequenceAdd(prog, Poplar.ProgramCopy(c2, Poplar.TensorFlatten(v2))) flags = Poplar.OptionFlags() v3 = Poplar.PopopsAdd(graph, v1, v2, prog, "Add", flags) Poplar.ProgramSequenceAdd(prog, Poplar.ProgramPrintTensor("v3", v3)) v4 = Poplar.PopopsAdd(graph, v3, v2, prog, "Add", flags) Poplar.ProgramSequenceAdd(prog, Poplar.ProgramPrintTensor("v4", v4)) v5 = Poplar.PopopsAdd(graph, v1, Poplar.TensorTranspose(v2), prog, "Add", flags) Poplar.ProgramSequenceAdd(prog, Poplar.ProgramPrintTensor("v5", v5)) engine = Poplar.Engine(graph, prog, flags) Poplar.EngineLoadAndRun(engine, device) Poplar.detach_devices()
IPUToolkit
https://github.com/JuliaIPU/IPUToolkit.jl.git
[ "MIT" ]
1.6.2
252cd6243b0780158a2f7e259aefea9e16f965aa
code
170
module IPUToolkit if get(ENV, "JULIA_REGISTRYCI_AUTOMERGE", "false") != "true" include("poplar.jl") include("compiler/compiler.jl") end end # module IPUToolkit
IPUToolkit
https://github.com/JuliaIPU/IPUToolkit.jl.git
[ "MIT" ]
1.6.2
252cd6243b0780158a2f7e259aefea9e16f965aa
code
14201
module Poplar using CxxWrap using Scratch const libpoplar_dir = joinpath(@get_scratch!("libpoplar"), "v$(Base.thispatch(VERSION))") get_libpoplar_path() = joinpath(libpoplar_dir, "libpoplar_julia.so") export @graph function _graph(g, expr::Expr) out = copy(expr) insert!(out.args, 2, g) return out end """ @graph [graph] expr This is a convenient macro to automatically inject `graph` as first argument of all function calls in the expression passed as last argument to the macro. The `graph` argument should be the graph object you want to pass as first argument to the function calls. If it is a local variable called exactly `graph`, this argument can be omitted and this name will be used automatically. !!! note This macro is not very sophisticated and will fail with complex expressions involving, for example, control flows like `if` or `for`. See the examples below. ## Examples ```julia julia> @macroexpand @graph begin c1 = Poplar.GraphAddConstant(Float32[1.0, 1.5, 2.0, 2.5]) v1 = similar(c1, "v1") copyto!(v1, Float32[4.0, 3.0, 2.0, 1.0]) Poplar.GraphSetTileMapping(c1, 0) Poplar.GraphSetTileMapping(v1, 0) end quote c1 = Poplar.GraphAddConstant(graph, Float32[1.0, 1.5, 2.0, 2.5]) v1 = similar(graph, c1, "v1") copyto!(graph, v1, Float32[4.0, 3.0, 2.0, 1.0]) Poplar.GraphSetTileMapping(graph, c1, 0) Poplar.GraphSetTileMapping(graph, v1, 0) end ``` """ macro graph(g, x::Expr) x.head === :block || error("The last argument to the `@graph` macro must be a begin-end block") out = Expr(:block) for expr in x.args if expr isa LineNumberNode continue elseif expr.head === :call push!(out.args, _graph(g, expr)) elseif expr.head === :(=) && expr.args[2].head === :call tmp = copy(expr) tmp.args[2] = _graph(g, expr.args[2]) push!(out.args, tmp) end end return esc(out) end macro graph(x::Expr) esc( :( $(@__MODULE__).@graph graph $(x) ) ) end # Note: this is really only needed for Poplar SDK ≥ v2.0.0, but at this point we don't know # the version number yet. It doesn't really hurt defining this struct unconditionally. struct VertexPerfEstimate cycles::UInt64 flops::UInt64 VertexPerfEstimate(cycles::Integer=0, flops::Integer=0) = new(UInt64(cycles), UInt64(flops)) end @wrapmodule(get_libpoplar_path) const SDK_VERSION = VersionNumber(match(r"[\d.]+", String(Poplar.getVersionString())).match) function __init__() libpoplar = get_libpoplar_path() if !isfile(libpoplar) error(""" `$(basename(libpoplar))` expected to exist at path `$(libpoplar)`, but could not be found. Run `using Pkg; Pkg.build()` to trigger recompilation of `$(basename(libpoplar))`. """) end @initcxx() end # More user-friendly methods. let # Methods which take 1 pointer as last argument. NOTE: `readTensor` changed API in # v2.1.0, from taking one pointer to two, like `writeTensor`. one_ptr = SDK_VERSION < v"2.1.0" ? (:EngineReadTensor,) : () # Methods which take 2 pointers as last arguments two_ptr = SDK_VERSION < v"2.1.0" ? (:EngineWriteTensor, :EngineConnectStream,) : (:EngineWriteTensor, :EngineConnectStream, :EngineReadTensor) for fun in one_ptr @eval begin $(fun)(arg1, arg2, ptr::Ptr{<:Number}) = $(fun)(arg1, arg2, Ptr{Cvoid}(ptr)) $(fun)(arg1, arg2, array::AbstractArray{<:Number}) = $(fun)(arg1, arg2, Ptr{Cvoid}(pointer(array))) end end for fun in two_ptr @eval begin $(fun)(arg1, arg2, ptr1::Ptr{<:Number}, ptr2::Ptr{<:Number}) = $(fun)(arg1, arg2, Ptr{Cvoid}(ptr1), Ptr{Cvoid}(ptr2)) $(fun)(arg1, arg2, array::AbstractArray{<:Number}) = # NOTE: we need to get the pointer to the _end_ of the array, hence `lastindex+1`. $(fun)(arg1, arg2, Ptr{Cvoid}(pointer(array, firstindex(array))), Ptr{Cvoid}(pointer(array, lastindex(array)+1))) end end end _get_type(::Type{Bool}) = BOOL() _get_type(::Type{Cchar}) = CHAR() _get_type(::Type{Cuchar}) = UNSIGNED_CHAR() # _get_type(::Type{Cchar}) = SIGNED_CHAR() _get_type(::Type{Cushort}) = UNSIGNED_SHORT() _get_type(::Type{Cshort}) = SHORT() _get_type(::Type{Cuint}) = UNSIGNED_INT() _get_type(::Type{Cint}) = INT() _get_type(::Type{Culong}) = UNSIGNED_LONG() _get_type(::Type{Clong}) = LONG() # _get_type(::Type{Culonglong}) = UNSIGNED_LONGLONG() # _get_type(::Type{Clonglong}) = LONGLONG() _get_type(::Type{Float16}) = HALF() _get_type(::Type{Cfloat}) = FLOAT() _get_type(t::Symbol) = _get_type(getfield(@__MODULE__, t)) _get_type(t::TensorAllocated) = Poplar.TensorElementType(t) _get_type(t::Array) = _get_type(eltype(t)) _size(t::Union{TensorAllocated,Array}) = collect(UInt64.(size(t))) GraphAddConstant(graph::Graph, tensor::Array{T}) where {T} = Poplar.GraphAddConstant(graph, _get_type(T), collect(UInt64.(size(tensor))), tensor) # For `Float16` we need to use the function `graph.addConstantHalf` which takes # a vector of `uint16_t` in input. GraphAddConstant(graph::Poplar.Graph, tensor::Array{Float16}) = GraphAddConstantHalf(graph, Poplar._get_type(Float16), collect(UInt64.(size(tensor))), collect(reinterpret(UInt16, tensor))) Base.getindex(t::TensorAllocated, r::AbstractUnitRange{<:Integer}) = TensorSlice(t, first(r), last(r) + step(r)) Base.size(t::TensorAllocated) = Int.((Poplar.TensorShape(t)...,)) Base.length(t::TensorAllocated) = prod(size(t)) Base.eachindex(t::TensorAllocated) = 0:(length(t) - 1) function Base.eachindex(t1::TensorAllocated, t2::TensorAllocated) t1_len = length(t1) t2_len = length(t2) if t1_len != t2_len throw(DimensionMismatch("all input tensors to eachindex must have the same lengths, got $(t1) and $(t2)")) end return 0:(t1_len - 1) end """ similar( graph::Poplar.Graph, tensor::Union{Poplar.TensorAllocated,Array}, [type::DataType], [debug::String] ) -> Poplar.TensorAllocated Adds to `graph` a variable tensor with the same shape as `tensor`, which can be either an IPU tensor or a plain CPU host `Array`, using [`Graph::addVariable`](https://docs.graphcore.ai/projects/poplar-api/en/latest/poplar/graph/Graph.html#_CPPv4N6poplar5Graph11addVariableERK4Type8ArrayRefINSt6size_tEERK12DebugContext) under the hood. If a `type` (this is a Julia type, like `Float32` or `Int32`) argument is not passed, the same element type as `tensor` will be automatically used. An optional `debug` context can also be passed, as a `String`. This function returns a pointer to the tensor added to the graph. """ Base.similar(graph::Graph, t::Union{TensorAllocated,Array}) = Poplar.GraphAddVariable(graph, _get_type(t), _size(t)) Base.similar(graph::Graph, t::Union{TensorAllocated,Array}, debug::String) = Poplar.GraphAddVariable(graph, _get_type(t), _size(t), debug) Base.similar(graph::Graph, t::Union{TensorAllocated,Array}, type::DataType) = Poplar.GraphAddVariable(graph, _get_type(type), _size(t)) Base.similar(graph::Graph, t::Union{TensorAllocated,Array}, type::DataType, debug::String) = Poplar.GraphAddVariable(graph, _get_type(type), _size(t), debug) """ copyto!( graph::Poplar.Graph, dest::Poplar.TensorAllocated, src::Array ) -> Poplar.TensorAllocated In the given `graph` copies the elements of the CPU host array `src` to the IPU tensor `dest`, using [`Graph::setInitialValue`](https://docs.graphcore.ai/projects/poplar-api/en/latest/poplar/graph/Graph.html#_CPPv4I0EN6poplar5Graph15setInitialValueEvRK6Tensor1TPNSt9enable_ifIFN10TypeTraits12isSimpleTypeI1TEEvEE4typeE) under the hood. The elements of `src` must have a type corresponding to the type of `dest` (e.g. `Float16` for a `half` IPU tensor, or `Float32` for a `float` IPU tensor). This function returns `dest`. """ function Base.copyto!(graph::Poplar.GraphAllocated, dest::Poplar.TensorAllocated, src::Array{T}) where {T} dest_type = _get_type(dest) # I think we can't use the `==` operator defined for `Type` in the SDK, so # we have to compare hashes. Not too bad, but annoying. if Poplar.TypeHash(dest_type) != Poplar.TypeHash(_get_type(T)) dest_type_string = Poplar.StringRefCloneAsString(Poplar.TypeToString(dest_type)) throw(ArgumentError("The destination tensor has type $(dest_type_string), but the source has type $(T)")) end if T == Float16 Poplar.GraphSetInitialValueHalf(graph, dest, collect(reinterpret(UInt16, src))) else Poplar.GraphSetInitialValue(graph, dest, src) end return dest end const ATTACHED_DEVICES = Poplar.DeviceAllocated[] const ATTACHED_DEVICES_LOCK = ReentrantLock() # Be sure to quit all julia sessions which hold devices!!! """ Poplar.get_ipu_devices(n::Int, hint::Union{AbstractVector{<:Integer},Integer}=0) -> Vector{Poplar.DeviceAllocated} Try to attach to `n` IPU devices, returns a vector of the pointers to the devices successfully attached to. You can release them with `Poplar.DeviceDetach` (note that this function takes a single pointer as input, so you have to use broadcasting `Poplar.DeviceDetach.(devices)` to release a vector of pointers). The second optional argument `hint` suggests to which device IDs to try and attach. It can have different types: * if of type `Integer`, try to attach to `n` devices, starting from the one with index `hint`. The default is `hint=0`; * if of type `AbstractVector`, try to attach to `n` devices from that list of IDs. See [`Poplar.get_ipu_device`](@ref) for requesting exactly one IPU device, and [`Poplar.get_ipu_model`](@ref) for requesting an IPU Model. To release all devices previously attached with `Poplar.get_ipu_devices`, [`Poplar.get_ipu_device`](@ref), or [`Poplar.get_ipu_model`](@ref) use [`Poplar.detach_devices`](@ref). """ function get_ipu_devices(n::Int, hint::Union{AbstractVector{<:Integer},Integer}=0) lock(ATTACHED_DEVICES_LOCK) do device_manager = Poplar.DeviceManager() try_ids = if hint isa AbstractVector hint else max_dev_id = Int(Poplar.DeviceManagerGetNumDevices(device_manager)) hint:(max_dev_id - 1) end attached_devices = Poplar.DeviceAllocated[] for id in try_ids if length(attached_devices) >= n break end device = Poplar.DeviceManagerGetDevice(device_manager, id) @info "Trying to attach to device $(id)..." res = Poplar.DeviceAttach(device) if res @info "Successfully attached to device $(id)" push!(attached_devices, device) end end actual_n = length(attached_devices) if actual_n < n @warn "Requested $(n) devices, but could attach only to $(actual_n)" end if !(actual_n == n == 1) # Do not print the summary of the attached devices if we requested one and got one. @info "Attached to devices with IDs $(Int.(Poplar.DeviceGetId.(attached_devices)))" end append!(ATTACHED_DEVICES, attached_devices) attached_devices end end """ Poplar.get_ipu_device(hint::Union{AbstractVector{<:Integer},Integer}=0) -> Poplar.DeviceAllocated Similar to [`Poplar.get_ipu_devices`](@ref), but request exactly one IPU device. If it can attach to a device, return that pointer only (not in a vector, like `get_ipu_devices`), otherwise return `nothing`. See [`Poplar.get_ipu_model`](@ref) for requesting an IPU Model. You can release the device with `Poplar.DeviceDetach(device)`. To release all devices previously attached with `Poplar.get_ipu_device`, [`Poplar.get_ipu_devices`](@ref), or [`Poplar.get_ipu_model`](@ref) use [`Poplar.detach_devices`](@ref). The optional argument `hint` suggests to which device IDs to try and attach. It can have different types: * if of type `Integer`, try to attach to one device, starting from the one with index `hint`. The default is `hint=0`; * if of type `AbstractVector`, try to attach to a device from that list of IDs. """ function get_ipu_device(hint::Union{AbstractVector{<:Integer},Integer}=0) device = get_ipu_devices(1, hint) if isone(length(device)) return only(device) end return nothing end """ Poplar.get_ipu_model(ipu_version::String="ipu2") -> Poplar.DeviceAllocated Attach to an [IPU Model](https://docs.graphcore.ai/projects/poplar-user-guide/en/latest/poplar_programs.html#programming-with-poplar), and return the attached device. This uses [`IPUModel::createDevice`](https://docs.graphcore.ai/projects/poplar-api/en/3.4.0/poplar/profiling/IPUModel.html#_CPPv4NK6poplar8IPUModel12createDeviceE11OptionFlagsbj) under the hood. The optional positional argument `ipu_version::String`, `ipu2` by default, represents the version of the IPU to emulate. Valid values for `ipu_version` are `ipu1` and `ipu2` (for Mk1 and Mk2 IPU architectures respectively). See [`Poplar.get_ipu_device`](@ref) and [`Poplar.get_ipu_devices`](@ref) for requesting one or mode hardware IPUs. You can release the device with `Poplar.DeviceDetach(device)`. To release all devices previously attached with `Poplar.get_ipu_model`, [`Poplar.get_ipu_device`](@ref) or [`Poplar.get_ipu_devices`](@ref) use [`Poplar.detach_devices`](@ref). """ function get_ipu_model(ipu_version::String="ipu2") lock(ATTACHED_DEVICES_LOCK) do model = Poplar.IPUModel(ipu_version) device = Poplar.IPUModelCreateDevice(model) push!(ATTACHED_DEVICES, device) device end end """ Poplar.detach_devices() -> Nothing Detach all devices previously attached in the current Julia session with [`Poplar.get_ipu_devices`](@ref), [`Poplar.get_ipu_device`](@ref), or [`Poplar.get_ipu_model`](@ref). """ function detach_devices() lock(ATTACHED_DEVICES_LOCK) do for device in ATTACHED_DEVICES Poplar.DeviceDetach(device) end empty!(ATTACHED_DEVICES) end return nothing end end # module Poplar
IPUToolkit
https://github.com/JuliaIPU/IPUToolkit.jl.git
[ "MIT" ]
1.6.2
252cd6243b0780158a2f7e259aefea9e16f965aa
code
15771
using ProgressMeter using LLVM export @codelet """ $(@__MODULE__).PROGRESS_SPINNER::$(typeof(PROGRESS_SPINNER)) Option to control whether to display a spinner to show progress during compilation of IPU codelets. This is forcibly disabled if [`DEBUG_COMPILATION_ERRORS`](@ref) is `true`. ## Example ```julia $(@__MODULE__).PROGRESS_SPINNER[] = true # enable spinner, default $(@__MODULE__).PROGRESS_SPINNER[] = false # disable spinner ``` """ const PROGRESS_SPINNER = Ref(true) # Build calls like # VertexVector{T, S}(ccall("extern get_vec_ptr_CodeletName", llvmcall, Ptr{T}, (Int32,), i), ccall("extern get_vec_size_CodeletName", llvmcall, UInt32, (Int32,), i)) # to be passed as argument to the codelet function function _build_call(arg::Expr, func_ptr::String, func_size::String, i::Int32) # Some gymnastic to get the type of the argument type = if arg.args[2].args[1] isa Symbol # arg == :(x::VertexVector{Float32, In}) arg.args[2].args[1] elseif arg.args[2].args[1] isa Expr # arg == :(x::IPUCompiler.VertexVector{Float32, In}) or :(x::IPUToolkit.IPUCompiler.VertexVector{Float32, In}) arg.args[2].args[1].args[2].value else error("Cannot handle argument $(arg)") end # TODO: I'd really like to avoid those `getfield`s. if type === :VertexVector return :( $(arg.args[2])( # VertexVector{T,S} $(Expr(:call, :ccall, func_ptr, :llvmcall, Ptr{getfield(@__MODULE__, arg.args[2].args[2])}, :((Int32,)), i)), # base::Ptr{T} $(Expr(:call, :ccall, func_size, :llvmcall, UInt32, :((Int32,)), i)) # length::UInt32 ) ) elseif type === :VertexScalar return :( $(arg.args[2])( # VertexScalar{T,S} $(Expr(:call, :ccall, func_ptr, :llvmcall, Ptr{getfield(@__MODULE__, arg.args[2].args[2])}, :((Int32,)), i)), # ptr::Ptr{T} ) ) else error("Cannot handle argument of type $(type)") end end function _codelet(graph, usr_kern::Expr) if usr_kern.head ∉ (:function, :(=)) || usr_kern.args[1].head !== :call throw(ArgumentError("@codelet takes a named function definition in input")) end name = usr_kern.args[1].args[1] # Name of function args = usr_kern.args[1].args[2:end] # Arguments, with their type annotations: v::VertexVector{T,S} codelet_fun = gensym(name) func_ptr = "extern get_vec_ptr_" * String(name) func_size = "extern get_vec_size_" * String(name) kernargs = [esc(_build_call(arg, func_ptr, func_size, Int32(i - 1))) for (i, arg) in enumerate(args)] kern_call = Expr(:call, :($(esc(name))), kernargs...) return quote $(esc(usr_kern)) function $(codelet_fun)() $(kern_call) return $(esc(nothing)) end _build_codelet($(esc(graph)), $(codelet_fun), $(esc(name)), $(String(name))) end end """ @codelet graph <function definition> Define a codelet and add it to the `graph`. The `@codelet` macro takes two argument: * the graph to which to add the codelet with the [`Poplar.GraphAddCodelets`](https://docs.graphcore.ai/projects/poplar-api/en/3.2.0/poplar/graph/Graph.html#_CPPv4N6poplar5Graph11addCodeletsE9StringRef15CodeletFileType9StringRef9StringRef) function; * the function definition of the codelet that you want to compile for the IPU device. All the arguments of the function must be either [`VertexVector`](@ref)s, which represent the [`Vector`](https://docs.graphcore.ai/projects/poplar-user-guide/en/3.2.0/vertex_vectors.html) vertex type in the Poplar SDK, or [`VertexScalar`](@ref)s, which represent scalar arguments. The function passed as second argument to `@codelet` should have a single method. `@codelet` defines the function passed as argument, generates its LLVM Intermediate Representation (IR) using `GPUCompiler.jl` and then compiles it down to native code using the Poplar compiler `popc`, which must be in [`PATH`](https://en.wikipedia.org/wiki/PATH_(variable)). By default the LLVM IR of the function is written to a temporary file, but you can choose to keep it in the current directory by customising [`IPUCompiler.KEEP_LLVM_FILES`](@ref). You can control flags passed to the `popc` compiler like debug and optimisation levels or target types by customising [`IPUCompiler.POPC_FLAGS`](@ref). During compilation of codelets a spinner is displayed to show the progress, as this step can take a few seconds for each codelet to be generated. This can be disabled by setting [`IPUCompiler.PROGRESS_SPINNER`](@ref). All the options mentioned in this section have to be set before the `@codelet` invocation where you want them to have effect. The codelet is automatically added to the graph but you will have to separately use it in a vertex, by using either the [`add_vertex`](@ref) function, or Poplar's [`Poplar.GraphAddVertex`](https://docs.graphcore.ai/projects/poplar-api/en/3.2.0/poplar/graph/Graph.html#_CPPv4N6poplar5Graph9addVertexE10ComputeSet9StringRef). ## Example ```julia using IPUToolkit.IPUCompiler, IPUToolkit.Poplar device = Poplar.get_ipu_device() target = Poplar.DeviceGetTarget(device) graph = Poplar.Graph(target) @codelet graph function test(in::VertexVector{Int32,In}, out::VertexVector{Float32,Out}) for idx in eachindex(out) out[idx] = sin(in[idx]) end end ``` This snippet of code defines a codelet called `test`, which takes in input the vector `in`, whose elements are `Int32`s, and modifies the vector `out`, of type `Float32`, by computing the sine of the elements of `in`. """ macro codelet(graph, usr_kern::Expr) return _codelet(graph, usr_kern) end # We have experienced some miscompilations of LLVM IR when using optimisation levels `-O1` # or higher with old `popc`, especially v1.3-2.0. So, we default to `-O0` with older # versions, and `-O3` for newer versions. """ $(@__MODULE__).POPC_FLAGS::$(typeof(POPC_FLAGS)) Options to pass to the `popc` compiler to compile the code. ## Example ```julia $(@__MODULE__).POPC_FLAGS = `-O3 -g0 -target ipu2` $(@__MODULE__).POPC_FLAGS = `-O2 -g` ``` """ const POPC_FLAGS = Ref(Poplar.SDK_VERSION ≥ v"2.2.0" ? `-g -O3` : `-g -O0`) """ $(@__MODULE__).KEEP_LLVM_FILES::$(typeof(KEEP_LLVM_FILES)) Option to control whether to keep in the current directory the files with the LLVM Intermediate Representation (IR) generated for the codelets. ## Example ```julia $(@__MODULE__).KEEP_LLVM_FILES[] = false # Generated LLVM IR files are automatically deleted after compilation, default $(@__MODULE__).KEEP_LLVM_FILES[] = true # Generated LLVM IR files are kept in the current directory ``` """ const KEEP_LLVM_FILES = Ref(false) """ $(@__MODULE__).TARGET_COLOSSUS::$(typeof(TARGET_COLOSSUS)) Option to control whether to target the Colossus backend when generating the LLVM Intermediate Representation (IR) of the codelets. If set to `false`, the default, codelets will generate code for the host machine, which may be inefficient, while still being valid. !!! note You can target the Colossus backend only if your Julia links to a version of libllvm compiled from [Graphcore's fork of LLVM](https://github.com/graphcore/llvm-project-fork). !!! warning This option is experimental, Julia code generation using Graphcore's LLVM has not been tested extensively and is known to cause miscompilations, unexpected errors may happen. ## Example ```julia $(@__MODULE__).TARGET_COLOSSUS[] = false # Generate LLVM IR for the host, the default $(@__MODULE__).TARGET_COLOSSUS[] = true # Generate LLVM IR for the Colossus backend ``` """ const TARGET_COLOSSUS = Ref(false) """ $(@__MODULE__).DEBUG_COMPILATION_ERRORS::$(typeof(DEBUG_COMPILATION_ERRORS)) Option to control whether a failure to compile LLVM IR in [`@codelet`](@ref) should drop you into an interactive debug session with [`Cthulhu.jl`](https://github.com/JuliaDebug/Cthulhu.jl). This forcibly disables the progress spinner enabled by [`PROGRESS_SPINNER`](@ref), as it would not play nicely with the interactive debug session. !!! note [`Cthulhu.jl`](https://github.com/JuliaDebug/Cthulhu.jl) must be installed in the environment you are currently using and you have to run `using Cthulhu` before the `@codelet` definition. `IPUToolkit.jl` does not install `Cthulhu.jl` automatically to limit the number of dependencies. ## Example ```julia $(@__MODULE__).DEBUG_COMPILATION_ERRORS[] = false # Do not automatically open interactive debug shell when a compilation error arises, the default $(@__MODULE__).DEBUG_COMPILATION_ERRORS[] = true # Automatically open interactive debug shell when a compilation error arises ``` """ const DEBUG_COMPILATION_ERRORS = Ref(false) function _get_target() if TARGET_COLOSSUS[] if :Colossus in LLVM.backends() return Colossus() end error("Cannot target the Colossus backend, this is not supported by the version of LLVM that Julia links to.") end return NativeCompilerTarget() end _print_s(::Type{In}) = "Input" _print_s(::Type{Out}) = "Output" _print_s(::Type{InOut}) = "InOut" _print_t(::Type{Int32}) = "int" _print_t(::Type{UInt32}) = "unsigned int" _print_t(::Type{Float16}) = "half" _print_t(::Type{Float32}) = "float" _print_arg(io::IO, ::Type{VertexVector{T, S}}, name::String) where {T,S} = println(io, "poplar::", _print_s(S), "<poplar::Vector<", _print_t(T), ">> ", name, ";") _print_arg(io::IO, ::Type{VertexScalar{T, S}}, name::String) where {T,S} = println(io, "poplar::", _print_s(S), "<", _print_t(T), "> ", name, ";") # This is an internal function, but it can be used to compile a codelet starting from LLVM # IR in string form (e.g. if you generated it outside of the current process). NOTE: # `origKernel` *must* match the name and the signature of the kernel you put in the LLVM IR. # By default we create the codelet file in temporary directory, so that we don't pollute the # file system with codelet files everywhere, but you can change that with the `output_path` # keyword argument. function ___build_codelet(llvm_ir::String, origKernel::Function, name::String=string(origKernel); output_path::String=joinpath(mktempdir(), name * ".gp")) method = methods(origKernel)[end] args = method.sig.parameters[2:end] argnames = string.(Base.method_argnames(method)[2:end]) kernel_name = match(Regex("(_Z[\\d_]+$(name)[\\d_]+)"), llvm_ir)[1] mktempdir() do dir open(joinpath(dir, "gen_codelet.cpp"), "w") do io for i in 1:length(args) _print_arg(io, args[i], argnames[i]) end end input_file = joinpath(KEEP_LLVM_FILES[] ? "" : dir, "$(name).ll") write(input_file, llvm_ir) # Do not allow references to literal pointers, which are likely to be invalid on the IPU if contains(llvm_ir, r"inttoptr +\(i64 +\d+") error("LLVM IR generated for codelet $(name) contains a reference to a literal pointer") end # Unless `POPC_FLAGS[]` already sets `-target`, if we have calls to Colossus # intrinsics we can't target the IPU model on CPU (the `cpu` target), so in that # case we compile only for `ipu1,ipu2`. target = if !any(contains("-target"), POPC_FLAGS[].exec) && contains(llvm_ir, "@llvm.colossus.") `-target ipu1,ipu2` else `` end run(``` popc $(POPC_FLAGS[]) $(target) -X -Wno-override-module -X -Qunused-arguments -DGET_VEC_PTR_NAME=get_vec_ptr_$(name) -DGET_VEC_SIZE_NAME=get_vec_size_$(name) -DCLASS_NAME=$(name) -DFIRST_NAME=$(argnames[1]) -DKERNEL_NAME=$(kernel_name) -I$(dir) $(input_file) $(joinpath(@__DIR__, "codelet_gen.cpp")) -o $(output_path) ```) end return nothing end # Similar to the function above, but it also adds the codelet to the graph. function ___build_codelet(graph::Poplar.GraphAllocated, llvm_ir::String, origKernel::Function, name::String=string(origKernel); output_path::String=joinpath(mktempdir(), name * ".gp")) ___build_codelet(llvm_ir, origKernel, name; output_path) Poplar.GraphAddCodelets(graph, output_path) return nothing end function __build_codelet(graph::Poplar.GraphAllocated, kernel, origKernel::Function, name::String=string(origKernel)) target = _get_target() source = methodinstance(typeof(kernel), Tuple{}) params = IPUCompilerParams(name) config = CompilerConfig(target, params) job = CompilerJob(source, config) llvm_ir = JuliaContext() do ctx try string(GPUCompiler.compile(:llvm, job)[1]) catch err if err isa InvalidIRError && DEBUG_COMPILATION_ERRORS[] code_typed(err; interactive = true) else rethrow() end end end # For some reasons the Colossus intrinsics names get dots converted into underscores: # <https://github.com/JuliaGPU/GPUCompiler.jl/issues/464>. Let's convert them back to # dots before writing the file to disk. llvm_ir = replace(llvm_ir, # Ref for IPU builtins: # <https://docs.graphcore.ai/projects/poplar-api/en/latest/ipu_intrinsics/ipu_builtins.html>. "_llvm_colossus_get_scount_l" => "llvm.colossus.get.scount.l", "_llvm_colossus_get_tile_id" => "llvm.colossus.get.tile.id", # Random number generation "_llvm_colossus_urand_f16" => "llvm.colossus.urand.f16", "_llvm_colossus_urand_f32" => "llvm.colossus.urand.f32", "_llvm_colossus_urand32" => "llvm.colossus.urand32", "_llvm_colossus_urand64" => "llvm.colossus.urand64", "_llvm_colossus_f16v2grand" => "llvm.colossus.f16v2grand", "_llvm_colossus_f32v2grand" => "llvm.colossus.f32v2grand", # Float operation "_llvm_colossus_tanh_f32" => "llvm.colossus.tanh.f32", # Float comparisons "_llvm_colossus_f32cmpeq" => "llvm.colossus.f32cmpeq", "_llvm_colossus_f32cmpge" => "llvm.colossus.f32cmpge", "_llvm_colossus_f32cmpgt" => "llvm.colossus.f32cmpgt", "_llvm_colossus_f32cmple" => "llvm.colossus.f32cmple", "_llvm_colossus_f32cmplt" => "llvm.colossus.f32cmplt", "_llvm_colossus_f32cmpne" => "llvm.colossus.f32cmpne", # Float classification (see IEEE 754-2008, § 5.7.2 General operations) "_llvm_colossus_f32class" => "llvm.colossus.f32class", ) ___build_codelet(graph, llvm_ir, origKernel, name) end function _build_codelet(graph::Poplar.GraphAllocated, kernel, origKernel::Function, name::String=string(origKernel)) # Progress spinner is disabled if interactive debugging is enabled. if PROGRESS_SPINNER[] && !DEBUG_COMPILATION_ERRORS[] prog = ProgressUnknown("Compiling codelet $(name):"; spinner=true) task = Threads.@spawn __build_codelet(graph, kernel, origKernel, name) while !istaskdone(task) ProgressMeter.next!(prog; spinner="⠋⠙⠹⠸⠼⠴⠦⠧⠇⠏") sleep(0.1) end ProgressMeter.finish!(prog) fetch(task) else __build_codelet(graph, kernel, origKernel, name) end end
IPUToolkit
https://github.com/JuliaIPU/IPUToolkit.jl.git
[ "MIT" ]
1.6.2
252cd6243b0780158a2f7e259aefea9e16f965aa
code
8925
# based on GPUCompiler example https://github.com/JuliaGPU/GPUCompiler.jl/blob/master/examples/kernel.jl module IPUCompiler export @codelet, @ipuprogram, VertexVector, VertexScalar, In, Out, InOut, get_scount_l, get_tile_id, randn2!, add_vertex include("output.jl") using GPUCompiler using ..Poplar # list of overrides (only for Julia 1.6) const overrides = Expr[] # Colossus backend struct Colossus <: AbstractCompilerTarget end GPUCompiler.llvm_triple(::Colossus) = "colossus-graphcore-unknown-elf" GPUCompiler.runtime_slug(j::CompilerJob{Colossus}) = j.config.params.kernel_name struct IPUCompilerParams <: AbstractCompilerParams kernel_name::String end # local method table for device functions @static if isdefined(Base.Experimental, Symbol("@overlay")) Base.Experimental.@MethodTable(method_table) else const method_table = nothing end # the method table to use GPUCompiler.method_table(::CompilerJob{<:Any,IPUCompilerParams}) = method_table macro device_override(ex) ex = macroexpand(__module__, ex) if Meta.isexpr(ex, :call) ex = eval(ex) error() end return esc(:( Base.Experimental.@overlay($method_table, $ex) )) end macro device_function(ex) ex = macroexpand(__module__, ex) def = splitdef(ex) # generate a function that errors def[:body] = quote error("This function is not intended for use on the CPU") end esc(quote $(combinedef(def)) @device_override $ex end) end # Functions needed by the runtime """ get_scount_l() Call the [`__builtin_ipu_get_scount_l()`](https://docs.graphcore.ai/projects/poplar-api/en/latest/ipu_intrinsics/ipu_builtins.html#_CPPv426__builtin_ipu_get_scount_lv) builtin: > Get the value of the control/status register (CSR) `SCOUNT_L`, which is the lower 32 bits of the tile cycle counter value. """ function get_scount_l end """ get_tile_id() Call the [`__builtin_ipu_get_tile_id()`](https://docs.graphcore.ai/projects/poplar-api/en/latest/ipu_intrinsics/ipu_builtins.html#_CPPv425__builtin_ipu_get_tile_idv) builtin: > Get the tile ID of the current tile. """ function get_tile_id end """ randn2!(v::VertexVector) -> v Fill the vector `v` with normally-distributed (mean 0, standard deviation 1) random numbers. The vector *must* have even length. This function takes advantage of [IPU builtins for random number generation](https://docs.graphcore.ai/projects/poplar-api/en/latest/ipu_intrinsics/ipu_builtins.html#random-number-generation), which return pairs of numbers at a time. """ function randn2! end include("vertices.jl") include("runtime.jl") GPUCompiler.runtime_module(::CompilerJob{<:Any,IPUCompilerParams}) = IPURuntime # `GPUCompiler.isintrinsic` specifies functions which are to be considered intrinsics for # the current job, and so don't have to be validated by the compilation pipeline. We set # `getVec$(kernel_name)` to be considered intrinsic, as this is implemented in the # accompanying C++ codelet, so outside of the LLVM IR generated by GPUCompiler. GPUCompiler.isintrinsic(@nospecialize(job::CompilerJob{<:Any,IPUCompilerParams}), fn::String) = contains(fn, Regex("^get_vec_(ptr|size)_" * job.config.params.kernel_name * "\$")) || fn ∈ ("printf", "puts", "tanf") || startswith(fn, "_llvm_colossus_") include("codelet.jl") include("tensors.jl") include("program.jl") include("timing.jl") function add_vertex(graph::Poplar.GraphAllocated, compute_set::Poplar.ComputeSetAllocated, tiles::Union{Integer,AbstractVector{<:Integer}}, codelet::Function, args::Union{Number,Poplar.TensorAllocated}...) meths = methods(codelet) num_tiles = length(tiles) # Get the names of the arguments of the codelet. arg_names = string.(Base.method_argnames(meths[begin])[2:end]) # Arguments validation if length(meths) != 1 throw(ArgumentError("Function $(codelet) does not have exactly one method. Use a different function which has a method only.")) end if length(arg_names) != length(args) throw(ArgumentError("Function $(codelet) takes $(length(arg_names)) arguments but you passed $(length(args)) arguments for this vertex.")) end for (arg_n, arg) in enumerate(args) if length(arg) < num_tiles throw(ArgumentError("The argument #$(arg_n) to $(codelet) has $(length(arg)) elements, which is less than the number of tiles ($(num_tiles))")) end end for (idx, tile) in enumerate(tiles) # Create a vertex on each tile vertex = Poplar.GraphAddVertex(graph, compute_set, string(codelet)) # Evenly spread the arrays over all tiles. for (arg_n, arg) in enumerate(args) arg_slice = if num_tiles > 1 && arg isa Poplar.TensorAllocated stride = cld(length(arg), num_tiles) slice = (stride * (idx - 1)):min(length(arg) - 1, (stride * idx - 1)) arg[slice] else arg end if arg isa Poplar.TensorAllocated Poplar.GraphSetTileMapping(graph, arg_slice, tile) end Poplar.GraphConnect(graph, vertex[arg_names[arg_n]], arg_slice) end # Add the vertex on the tile Poplar.GraphSetTileMapping(graph, vertex, tile) # TODO: allow setting the perf estimate of the vertex. if Poplar.SDK_VERSION < v"2.0" Poplar.GraphSetCycleEstimate(graph, vertex, 1) else Poplar.GraphSetPerfEstimate(graph, vertex, 1) end end return nothing end function add_vertex(graph::Poplar.GraphAllocated, program::Poplar.ProgramSequenceAllocated, tiles::Union{Integer,AbstractVector{<:Integer}}, codelet::Function, args::Union{Number,Poplar.TensorAllocated}...) compute_set = Poplar.GraphAddComputeSet(graph, string(codelet)) add_vertex(graph, compute_set, tiles, codelet, args...) Poplar.ProgramSequenceAdd(program, Poplar.ProgramExecute(compute_set)) return nothing end add_vertex(graph::Poplar.GraphAllocated, compute_set::Poplar.ComputeSetAllocated, codelet::Function, args::Union{Number,Poplar.TensorAllocated}...) = add_vertex(graph, compute_set, 0, codelet, args...) add_vertex(graph::Poplar.GraphAllocated, program::Poplar.ProgramSequenceAllocated, codelet::Function, args::Union{Number,Poplar.TensorAllocated}...) = add_vertex(graph, program, 0, codelet, args...) """ add_vertex(graph::Poplar.GraphAllocated, compute_set_or_program::Union{Poplar.ComputeSetAllocated, Poplar.ProgramSequenceAllocated}, [tiles::Union{Integer,AbstractVector{<:Integer}},] codelet::Function, args::Union{Number,Poplar.TensorAllocated}...) -> Nothing Add the codelet function `codelet` created with [`@codelet`](@ref) to `graph`, using the tensors `args` as arguments. The function `codelet` must have exactly one method, no more, no less. The second argument can be either the program or the compute set to which to add the new vertex/vertices. If a program is passed, a new compute set will be automatically created. `add_vertex` also evenly maps all tensors and vertices across all `tiles`, which can be either a single tile ID or an `AbstractVector` of IDs and defaults to single tile 0 if this argument is omitted. Note that all argument tensors `args` must be longer than or equal to the number of `tiles`. If you want to have better control over tile mapping, use `Poplar.GraphAddVertex` instead. """ add_vertex # Mapping of the LLVM version used by each version of the Poplar SDK. To find it, use `popc # --version`. const POPLAR_SDK_LLVM_MAPPING = Dict( v"1.3.0" => v"11.0.0", v"1.4.0" => v"11.0.0", v"2.0.0" => v"11.0.0", v"2.1.0" => v"13.0.0", v"2.2.0" => v"13.0.0", v"2.3.0" => v"14.0.0", v"2.4.0" => v"14.0.0", v"2.5.0" => v"14.0.0", v"2.6.0" => v"15.0.0", v"3.0.0" => v"15.0.0", v"3.1.0" => v"15.0.0", v"3.2.0" => v"15.0.0", v"3.3.0" => v"16.0.0", ) function __init__() @static if get(POPLAR_SDK_LLVM_MAPPING, Base.thisminor(Poplar.SDK_VERSION), v"0") != Base.thismajor(Base.libllvm_version) sdk_llvm_version = get(POPLAR_SDK_LLVM_MAPPING, Base.thisminor(Poplar.SDK_VERSION), "UNKNOWN") if sdk_llvm_version == "UNKNOWN" && !isnothing(Sys.which("popc")) sdk_llvm_version = match(r"clang version ([\d.]+)", readchomp(`popc --version`))[1] end @warn """ You are using Poplar SDK v$(Poplar.SDK_VERSION) which is coupled to LLVM v$(sdk_llvm_version), but your Julia uses LLVM v$(Base.libllvm_version). IPUCompiler code generation may not work correctly. """ end end end # module IPUCompiler
IPUToolkit
https://github.com/JuliaIPU/IPUToolkit.jl.git
[ "MIT" ]
1.6.2
252cd6243b0780158a2f7e259aefea9e16f965aa
code
9758
# Formatted Output. Adapted from # <https://github.com/JuliaGPU/CUDA.jl/blob/8ffdf3723ed6224ee7e2c7188ef6ab8d5a498905/src/device/intrinsics/output.jl>. using LLVM using LLVM.Interop using Core: LLVMPtr export @ipuprintf """ $(@__MODULE__).DISABLE_PRINT::$(typeof(DISABLE_PRINT)) Global constant which controls whether printing through the various `@ipuprint*` macros should be disabled or not. You may want to completely disable printing for production runs, to avoid the cost of printing on the device, but keep it enabled during development. Examples: ```julia $(@__MODULE__).DISABLE_PRINT[] = false # Do not disable printing, this is the default. $(@__MODULE__).DISABLE_PRINT[] = true # Disable printing, the `@ipuprint*` macros are no-op. ``` """ const DISABLE_PRINT = Ref(false) @generated function promote_c_argument(arg) # > When a function with a variable-length argument list is called, the variable # > arguments are passed using C's old ``default argument promotions.'' These say that # > types char and short int are automatically promoted to int, and type float is # > automatically promoted to double. Therefore, varargs functions will never receive # > arguments of type char, short int, or float. if arg == Cchar || arg == Cshort || arg == Cuchar || arg == Cushort return :(Cint(arg)) elseif arg == Cfloat return :(Cdouble(arg)) else return :(arg) end end """ @ipuprintf("%Fmt", args...) Print a formatted string in device context on the host standard output. Note that this is not a fully C-compliant `printf` implementation. Also beware that it is an untyped, and unforgiving `printf` implementation. Type widths need to match, eg. printing a 64-bit Julia integer requires the `%ld` formatting string. More user-friendly versions of this macro are [`@ipuprint`](@ref), [`@ipuprintln`](@ref). See also [`@ipushow`](@ref), which is built on top of `@ipuprintf` functionalities. Printing can be completely disabled by setting [`IPUCompiler.DISABLE_PRINT`](@ref): ```julia $(@__MODULE__).DISABLE_PRINT[] = true ``` """ macro ipuprintf(fmt::String, args...) if DISABLE_PRINT[] return :() end fmt_val = Val(Symbol(fmt)) return :(_ipuprintf($fmt_val, $(map(arg -> :(promote_c_argument($arg)), esc.(args))...))) end # Single argument calls can use `puts`, which has a simpler signature. @generated function _ipuprintf(::Val{fmt}) where {fmt} @dispose ctx=Context() begin T_void = LLVM.VoidType() T_int32 = LLVM.Int32Type() T_pint8 = LLVM.PointerType(LLVM.Int8Type()) # create functions llvm_f, llvm_ft = create_function(T_int32, LLVMType[]) mod = LLVM.parent(llvm_f) # generate IR @dispose builder=IRBuilder() begin entry = BasicBlock(llvm_f, "entry") position!(builder, entry) str = globalstring_ptr!(builder, String(fmt)) # invoke puts and return puts_typ = LLVM.FunctionType(T_int32, [T_pint8]) puts = LLVM.Function(mod, "puts", puts_typ) chars = call!(builder, puts_typ, puts, [str]) ret!(builder, chars) end call_function(llvm_f, Int32, Tuple{}) end end @generated function _ipuprintf(::Val{fmt}, argspec1, argspec...) where {fmt} @dispose ctx=Context() begin arg_exprs = vcat(:( argspec1 ), [:( argspec[$i] ) for i in 1:length(argspec)]) arg_types = [argspec1, argspec...] T_void = LLVM.VoidType() T_int32 = LLVM.Int32Type() T_pint8 = LLVM.PointerType(LLVM.Int8Type()) # create functions param_types = LLVMType[convert(LLVMType, typ) for typ in arg_types] llvm_f, llvm_ft = create_function(T_int32, param_types) mod = LLVM.parent(llvm_f) # generate IR @dispose builder=IRBuilder() begin entry = BasicBlock(llvm_f, "entry") position!(builder, entry) str = globalstring_ptr!(builder, String(fmt)) # invoke printf and return printf_typ = LLVM.FunctionType(T_int32, [T_pint8]; vararg=true) printf = LLVM.Function(mod, "printf", printf_typ) chars = call!(builder, printf_typ, printf, [str, parameters(llvm_f)...]) ret!(builder, chars) end call_function(llvm_f, Int32, Tuple{arg_types...}, arg_exprs...) end end ## print-like functionality export @ipuprint, @ipuprintln # simple conversions, defining an expression and the resulting argument type. nothing fancy, # `@ipuprint` pretty directly maps to `@ipuprintf`; we should just support `write(::IO)`. const ipuprint_conversions = Dict( Float32 => (x->:(Float64($x)), Float64), Float16 => (x->:(Float64($x)), Float64), Ptr{<:Any} => (x->:(convert(Ptr{Cvoid}, $x)), Ptr{Cvoid}), LLVMPtr{<:Any} => (x->:(reinterpret(Ptr{Cvoid}, $x)), Ptr{Cvoid}), Bool => (x->:(Int32($x)), Int32), ) # format specifiers const ipuprint_specifiers = Dict( # integers Int16 => "%hd", Int32 => "%d", Int64 => Sys.iswindows() ? "%lld" : "%ld", UInt16 => "%hu", UInt32 => "%u", UInt64 => Sys.iswindows() ? "%llu" : "%lu", # floating-point Float64 => "%f", # other Cchar => "%c", # `Ptr{Cvoid}` should be `%p` but that doesn't seem to be supported. We # print as an integer until we find a better way. Ptr{Cvoid} => "%d", Cstring => "%s", ) @inline @generated function _ipuprint(parts...) fmt = "" args = Expr[] for i in 1:length(parts) part = :(parts[$i]) T = parts[i] # put literals directly in the format string if T <: Val fmt *= string(T.parameters[1]) continue end # try to convert arguments if they are not supported directly if !haskey(ipuprint_specifiers, T) for Tmatch in keys(ipuprint_conversions) if T <: Tmatch conv, T = ipuprint_conversions[Tmatch] part = conv(part) break end end end # render the argument if haskey(ipuprint_specifiers, T) fmt *= ipuprint_specifiers[T] push!(args, part) elseif T <: Tuple fmt *= "(" for (j, U) in enumerate(T.parameters) if haskey(ipuprint_specifiers, U) fmt *= ipuprint_specifiers[U] push!(args, :($part[$j])) if j < length(T.parameters) fmt *= ", " elseif length(T.parameters) == 1 fmt *= "," end else @error("@ipuprint does not support values of type $U") end end fmt *= ")" elseif T <: String @error("@ipuprint does not support non-literal strings") else @error("@ipuprint does not support values of type $T") end end quote $(@__MODULE__).@ipuprintf($fmt, $(args...)) end end """ @ipuprint(xs...) @ipuprintln(xs...) Print a textual representation of values `xs` to standard output from the IPU. The functionality builds on [`@ipuprintf`](@ref), and is intended as a more use friendly alternative of that API. However, that also means there's only limited support for argument types, handling 16/32/64 signed and unsigned integers, 32 and 64-bit floating point numbers, `Cchar`s and pointers. For more complex output, use [`@ipuprintf`](@ref) directly. Limited string interpolation is also possible: ```julia @ipuprint("Hello, World ", 42, "\\n") @ipuprint "Hello, World \$(42)\\n" ``` Printing can be completely disabled by setting [`IPUCompiler.DISABLE_PRINT`](@ref): ```julia $(@__MODULE__).DISABLE_PRINT[] = true ``` """ macro ipuprint(parts...) if DISABLE_PRINT[] return :() end args = Union{Val,Expr,Symbol}[] parts = [parts...] while true isempty(parts) && break part = popfirst!(parts) # handle string interpolation if isa(part, Expr) && part.head == :string parts = vcat(part.args, parts) continue end # expose literals to the generator by using Val types if isbits(part) # literal numbers, etc push!(args, Val(part)) elseif isa(part, QuoteNode) # literal symbols push!(args, Val(part.value)) elseif isa(part, String) # literal strings need to be interned push!(args, Val(Symbol(part))) else # actual values that will be passed to printf push!(args, part) end end quote _ipuprint($(map(esc, args)...)) end end @doc (@doc @ipuprint) -> macro ipuprintln(parts...) esc(quote $(@__MODULE__).@ipuprint($(parts...), "\n") end) end export @ipushow """ @ipushow(ex) IPU analogue of `Base.@show`. It comes with the same type restrictions as [`@ipuprintf`](@ref). ```julia @ipushow x ``` Printing can be completely disabled by setting [`IPUCompiler.DISABLE_PRINT`](@ref): ```julia $(@__MODULE__).DISABLE_PRINT[] = true ``` """ macro ipushow(exs...) if DISABLE_PRINT[] return :() end blk = Expr(:block) for ex in exs push!(blk.args, :(@ipuprintln($(sprint(Base.show_unquoted,ex)*" = "), begin local value = $(esc(ex)) end))) end isempty(exs) || push!(blk.args, :value) blk end
IPUToolkit
https://github.com/JuliaIPU/IPUToolkit.jl.git
[ "MIT" ]
1.6.2
252cd6243b0780158a2f7e259aefea9e16f965aa
code
5019
function _get_name_args(expr::Expr) name = expr.args[1].args[1] args = [(arg.args[1], arg.args[2].args[2], arg.args[2].args[3]) for arg in expr.args[1].args[2:end]] return name, args end function _add_vertex!(initialised_tensors::Dict{Symbol, Symbol}, graph, prog, name_args::Dict, expr::Expr) name = expr.args[1] f_args = name_args[name] compute_set = string(name, "_compute_set") compute_set_sym = gensym(compute_set) vertex = gensym(Symbol(name, "_vertex")) out = quote end add_vertex = :( $(esc(@__MODULE__().add_vertex))($(esc(graph)), $(esc(prog)), $(esc(name))) ) if length(expr.args) > 1 for (idx, arg) in enumerate(expr.args[2:end]) arg_info = f_args[idx] vec = gensym(arg_info[1]) if arg ∉ keys(initialised_tensors) append!(out.args, (quote if $(esc(arg)) isa PoplarArray $(esc(vec)) = $(esc(Poplar.GraphAddVariable))($(esc(graph)), $(esc(Poplar._get_type(arg_info[2]))), collect(UInt64.(size($(esc(arg))))), $(string(arg))) elseif $(esc(arg)) isa Array $(esc(vec)) = $(esc(Poplar.GraphAddConstant))($(esc(graph)), $(esc(Poplar._get_type(arg_info[2]))), collect(UInt64.(size($(esc(arg))))), $(esc(arg))) else error("`$(string(arg))` is a `$(typeof(esc(arg)))`, it must be either an `Array` or a `PoplarArray`") end end).args) initialised_tensors[arg] = vec end push!(add_vertex.args, esc(initialised_tensors[arg])) end end push!(out.args, add_vertex) return out end function _print_tensor(prog::Symbol, initialised_tensors::Dict{Symbol, Symbol}, expr::Expr) (length(expr.args) == 3 && expr.args[2] isa String && expr.args[3] isa Symbol) || error(""" The `print_tensor` function must have as first argument a `String` and second argument the tensor name: print_tensor("Description", tensor_name) """) return quote $(esc(Poplar.ProgramSequenceAdd))($(esc(prog)), $(esc(Poplar.ProgramPrintTensor))($(expr.args[2]), $(esc(initialised_tensors[expr.args[3]])))) end end function _read_tensor(engine::Symbol, graph::Symbol, initialised_tensors::Dict{Symbol,Symbol}, expr::Expr) (length(expr.args) == 2 && expr.args[1] isa Symbol && expr.args[2] isa Symbol) || error(""" Assignment can only be done between two variable names: jl_var = ipu_tensor where `jl_var` is a newly created Julia variable on the host, and `ipu_tensor` is the name of a tensor on the IPU. """) jl_var = expr.args[1] ipu_tensor = expr.args[2] read_name = string(ipu_tensor, "_read") return (:($(esc(Poplar.GraphCreateHostRead))($(esc(graph)), $(read_name), $(esc(initialised_tensors[ipu_tensor])))), quote $(esc(jl_var)) = $(esc(_similar))($(esc(ipu_tensor))) $(esc(Poplar.EngineReadTensor))($(esc(engine)), $(read_name), $(esc(jl_var))) end) end macro ipuprogram(device, program::Expr) program.head === :block || error("The second argument to the `@ipuprogram` macro must be a begin-end block") graph = gensym("graph") prog = gensym("prog") engine = gensym("engine") out = quote $(esc(graph)) = $(esc(Poplar.Graph))($(esc(Poplar.DeviceGetTarget))($(esc(device)))) $(esc(prog)) = $(esc(Poplar.ProgramSequence))() end postamble = quote end name_args = Dict{Symbol,Any}() initialised_tensors = Dict{Symbol,Symbol}() for expr in program.args expr isa LineNumberNode && continue if expr.head ∈ (:function, :(=)) && (expr.args[1] isa Expr && expr.args[1].head === :call) append!(out.args, _codelet(graph, expr).args) na = _get_name_args(expr) name_args[na[1]] = na[2] elseif expr.head === :call if expr.args[1] === :print_tensor append!(out.args, _print_tensor(prog, initialised_tensors, expr).args) else append!(out.args, _add_vertex!(initialised_tensors, graph, prog, name_args, expr).args) end elseif expr.head == :(=) o, p = _read_tensor(engine, graph, initialised_tensors, expr) push!(out.args, o) append!(postamble.args, p.args) end end flags = gensym("flags") append!(out.args, (quote $(esc(flags)) = Poplar.OptionFlags() $(esc(Poplar.OptionFlagsSet))($(esc(flags)), "debug.instrument", "true") $(esc(engine)) = $(esc(Poplar.Engine))($(esc(graph)), $(esc(prog)), $(esc(flags))) $(esc(Poplar.EngineLoadAndRun))($(esc(engine)), $(esc(device))) end).args) append!(out.args, postamble.args) return out end
IPUToolkit
https://github.com/JuliaIPU/IPUToolkit.jl.git
[ "MIT" ]
1.6.2
252cd6243b0780158a2f7e259aefea9e16f965aa
code
10390
module IPURuntime import ..IPUCompiler: @device_override, @ipuprintf, @ipuprintln, get_scount_l, get_tile_id, randn2!, VertexVector, Out, InOut using GPUCompiler: reset_runtime import LinearAlgebra # reset the runtime cache from global scope, so that any change triggers recompilation reset_runtime() # dummy methods signal_exception() = nothing # Todo: box/unbox for allowing proper type conversion # https://github.com/JuliaGPU/CUDAnative.jl/blob/a15d2db96274948d8090457a001e62e14be0d883/src/device/runtime.jl malloc(sz) = C_NULL function report_oom(sz) @ipuprintf("ERROR: Out of memory (trying to allocate %i bytes)\n", sz) return nothing end function report_exception(ex) @ipuprintf("ERROR: a %s was thrown during kernel execution.", ex) return nothing end function report_exception_name(ex) @ipuprintf(""" ERROR: a %s was thrown during kernel execution. Stacktrace: """, ex) return nothing end function report_exception_frame(idx, func, file, line) @ipuprintf(" [%i] %s at %s:%i\n", idx, func, file, line) return nothing end # IPU builtins: https://docs.graphcore.ai/projects/poplar-api/en/latest/ipu_intrinsics/ipu_builtins.html # Note: ideally we'd always call the LLVM intrisics `llvm.colossus....` as is, but that # works only when targeting a Colossus-aware LLVM, so for the general case we call fake # external `_llvm_colossus_...` intrinsics and then rename them before writing to file. Not # great, but it does the job. get_scount_l() = ccall("extern _llvm_colossus_get_scount_l", llvmcall, Cuint, ()) get_tile_id() = ccall("extern _llvm_colossus_get_tile_id", llvmcall, Cuint, ()) # Random functions, based on IPU intrinsics @device_override Base.rand(T::Type{Float16}) = ccall("extern _llvm_colossus_urand_f16", llvmcall, Float16, ()) + T(0.5) @device_override Base.rand(T::Type{Float32}) = ccall("extern _llvm_colossus_urand_f32", llvmcall, Float32, ()) + T(0.5) @device_override Base.rand(T::Type{UInt32}) = ccall("extern _llvm_colossus_urand32", llvmcall, UInt32, ()) + T(0.5) @device_override Base.rand(T::Type{UInt64}) = ccall("extern _llvm_colossus_urand64", llvmcall, UInt64, ()) + T(0.5) # Note: `llvm.colossus.f{16,32}v2grand` return 2-tuples of numbers, but Julia's `Base.randn` # returns a single number at a time, sadly we have to discard one of the numbers to keep the # same semantic. @device_override Base.randn(T::Type{Float16}) = @inbounds ccall("extern _llvm_colossus_f16v2grand", llvmcall, NTuple{2, VecElement{Float16}}, ())[1].value @device_override Base.randn(T::Type{Float32}) = @inbounds ccall("extern _llvm_colossus_f32v2grand", llvmcall, NTuple{2, VecElement{Float32}}, ())[1].value function randn2!(v::VertexVector{T}) where {T} for idx in UInt32(1):UInt32(2):UInt32(length(v)) rnd = if T == Float32 ccall("extern _llvm_colossus_f32v2grand", llvmcall, NTuple{2, VecElement{Float32}}, ()) elseif T == Float16 ccall("extern _llvm_colossus_f16v2grand", llvmcall, NTuple{2, VecElement{Float16}}, ()) end @inbounds v[idx] = rnd[1].value @inbounds v[idx+1] = rnd[2].value end end ## Math functions. # There are different reasons why we prefer LLVM intrinsics on the IPU: implementations in # Julia's Base either require promotion to double (very slow) or require non-existing # symbols (maybe because they aren't implemented for `double`s on the IPU). @device_override Base.sin(x::Float32) = ccall("llvm.sin.f32", llvmcall, Float32, (Float32,), x) @device_override Base.cos(x::Float32) = ccall("llvm.cos.f32", llvmcall, Float32, (Float32,), x) @device_override Base.sincos(x::Float32) = (sin(x), cos(x)) @device_override Base.tan(x::Float32) = ccall("extern tanf", llvmcall, Float32, (Float32,), x) @device_override Base.exp(x::Float32) = ccall("llvm.exp.f32", llvmcall, Float32, (Float32,), x) @device_override Base.exp2(x::Float32) = ccall("llvm.exp2.f32", llvmcall, Float32, (Float32,), x) @device_override Base.log(x::Float32) = ccall("llvm.log.f32", llvmcall, Float32, (Float32,), x) @device_override Base.log10(x::Float32) = ccall("llvm.log10.f32", llvmcall, Float32, (Float32,), x) @device_override Base.log2(x::Float32) = ccall("llvm.log2.f32", llvmcall, Float32, (Float32,), x) @device_override Base.:^(b::Float32, p::Int32) = ccall("llvm.powi.f32.i32", llvmcall, Float32, (Float32, Int32), b, p) @device_override Base.:^(b::Float32, p::Float32) = ccall("llvm.pow.f32", llvmcall, Float32, (Float32, Float32), b, p) @device_override Base.sqrt(x::Float32) = ccall("llvm.sqrt.f32", llvmcall, Float32, (Float32,), x) # Same, for Float16 @device_override Base.sin(x::Float16) = ccall("llvm.sin.f16", llvmcall, Float16, (Float16,), x) @device_override Base.cos(x::Float16) = ccall("llvm.cos.f16", llvmcall, Float16, (Float16,), x) @device_override Base.sincos(x::Float16) = (sin(x), cos(x)) @device_override Base.tan(x::Float16) = Float16(tan(Float32(x))) @device_override Base.exp(x::Float16) = ccall("llvm.exp.f16", llvmcall, Float16, (Float16,), x) @device_override Base.exp2(x::Float16) = ccall("llvm.exp2.f16", llvmcall, Float16, (Float16,), x) @device_override Base.log(x::Float16) = ccall("llvm.log.f16", llvmcall, Float16, (Float16,), x) @device_override Base.log10(x::Float16) = ccall("llvm.log10.f16", llvmcall, Float16, (Float16,), x) @device_override Base.log2(x::Float16) = ccall("llvm.log2.f16", llvmcall, Float16, (Float16,), x) @device_override Base.:^(b::Float16, p::Int16) = ccall("llvm.powi.f16.i16", llvmcall, Float16, (Float16, Int16), b, p) @device_override Base.:^(b::Float16, p::Float16) = ccall("llvm.pow.f16", llvmcall, Float16, (Float16, Float16), b, p) @device_override Base.sqrt(x::Float16) = ccall("llvm.sqrt.f16", llvmcall, Float16, (Float16,), x) # `literal_pow` doesn't support Float16: <https://github.com/JuliaLang/julia/issues/53745>. @device_override Base.literal_pow(::typeof(^), x::Float16, ::Val{0}) = one(x) @device_override Base.literal_pow(::typeof(^), x::Float16, ::Val{1}) = x @device_override Base.literal_pow(::typeof(^), x::Float16, ::Val{2}) = x*x @device_override Base.literal_pow(::typeof(^), x::Float16, ::Val{3}) = x*x*x @device_override Base.literal_pow(::typeof(^), x::Float16, ::Val{-1}) = inv(x) @device_override Base.literal_pow(::typeof(^), x::Float16, ::Val{-2}) = (i=inv(x); i*i) @device_override Base.min(a::Float32, b::Float32) = ccall("llvm.minnum.f32", llvmcall, Float32, (Float32, Float32), a, b) @device_override Base.max(a::Float32, b::Float32) = ccall("llvm.maxnum.f32", llvmcall, Float32, (Float32, Float32), a, b) @device_override Base.tanh(x::Float32) = ccall("extern _llvm_colossus_tanh_f32", llvmcall, Float32, (Float32,), x) # For some reasons I didn't have the time to investigate the `==` and `!=` methods below cause # crashes. But also, quick benchmarks didn't show significant performance improvements compared # to the default behaviour in Julia (also for the other comparison operators), so that they # don't seem to be too much worth the effort, we keep the code below just for reference. # @device_override Base.:(==)(a::Float32, b::Float32) = Bool(ccall("extern _llvm_colossus_f32cmpeq", llvmcall, Float32, (Float32, Float32), a, b)) # @device_override Base.:(!=)(a::Float32, b::Float32) = Bool(ccall("extern _llvm_colossus_f32cmpne", llvmcall, Float32, (Float32, Float32), a, b)) ## quirks, adapted from ## https://github.com/JuliaGPU/CUDA.jl/blob/5c51766d0a9e7819ea79f314e37ed6a8a5d24369/src/device/quirks.jl macro print_and_throw(args...) esc(quote @ipuprintln "ERROR: " $(args...) "." throw(nothing) end) end # math.jl @device_override @noinline Base.Math.throw_complex_domainerror(f::Symbol, x) = @print_and_throw "This operation requires a complex input to return a complex result" @device_override @noinline Base.Math.throw_exp_domainerror(x) = @print_and_throw "Exponentiation yielding a complex result requires a complex argument" # intfuncs.jl @device_override @noinline Base.throw_domerr_powbysq(::Any, p) = @print_and_throw "Cannot raise an integer to a negative power" @device_override @noinline Base.throw_domerr_powbysq(::Integer, p) = @print_and_throw "Cannot raise an integer to a negative power" @device_override @noinline Base.throw_domerr_powbysq(::AbstractMatrix, p) = @print_and_throw "Cannot raise an integer to a negative power" @device_override @noinline Base.__throw_gcd_overflow(a, b) = @print_and_throw "gcd overflow" # boot.jl @device_override @noinline Core.throw_inexacterror(f::Symbol, ::Type{T}, val) where {T} = @print_and_throw "Inexact conversion" # abstractarray.jl @device_override @noinline Base.throw_boundserror(A, I) = @print_and_throw "Out-of-bounds array access" @device_override @noinline Base.throw_eachindex_mismatch_indices(I, A, B...) = @print_and_throw "Not all inputs to eachindex have the same axes" # trig.jl @device_override @noinline Base.Math.sincos_domain_error(x) = @print_and_throw "sincos(x) is only defined for finite x, x = " x @device_override @noinline Base.Math.acos_domain_error(x) = @print_and_throw "acos(x) not defined for |x| > 1, x = " x @device_override @noinline Base.Math.asin_domain_error(x) = @print_and_throw "asin(x) not defined for |x| > 1, x = " x # range.jl @eval begin @device_override function Base.StepRangeLen{T,R,S,L}(ref::R, step::S, len::Integer, offset::Integer=1) where {T,R,S,L} if T <: Integer && !isinteger(ref + step) @print_and_throw("StepRangeLen{<:Integer} cannot have non-integer step") end len = convert(L, len) len >= zero(len) || @print_and_throw("StepRangeLen length cannot be negative") offset = convert(L, offset) L1 = oneunit(typeof(len)) L1 <= offset <= max(L1, len) || @print_and_throw("StepRangeLen: offset must be in [1,...]") $( Expr(:new, :(StepRangeLen{T,R,S,L}), :ref, :step, :len, :offset) ) end end # LinearAlgebra @device_override function Base.setindex!(D::LinearAlgebra.Diagonal, v, i::Int, j::Int) @boundscheck checkbounds(D, i, j) if i == j @inbounds D.diag[i] = v elseif !iszero(v) @print_and_throw("cannot set off-diagonal entry to a nonzero value") end return v end end # module IPURuntime
IPUToolkit
https://github.com/JuliaIPU/IPUToolkit.jl.git
[ "MIT" ]
1.6.2
252cd6243b0780158a2f7e259aefea9e16f965aa
code
852
# `PoplarArray` is a placeholder type to represent variables to be added to a # graph. NOTE: these are distincts from `VertexVector`s which represent the # input/output arguments of codelets (vertices). export PoplarArray, PoplarVector, PoplarMatrix struct PoplarArray{T,N} <: AbstractArray{T,N} size::NTuple{N,Int} end const PoplarVector{T} = PoplarArray{T,1} const PoplarMatrix{T} = PoplarArray{T,2} PoplarArray{T,N}(::UndefInitializer, size::Vararg{Int,N}) where {T,N} = PoplarArray{T,N}(size) Base.size(t::PoplarArray) = t.size Base.size(t::PoplarArray, d::Int) = size(t)[d] # Simple methods, don't access the elements Base.show(io::IO, x::PoplarArray) = Base.show_default(io, x) Base.show(io::IO, ::MIME"text/plain", x::PoplarArray) = Base.show_default(io, x) _similar(t::PoplarArray{T,N}) where {T,N} = Array{T,N}(undef, size(t))
IPUToolkit
https://github.com/JuliaIPU/IPUToolkit.jl.git
[ "MIT" ]
1.6.2
252cd6243b0780158a2f7e259aefea9e16f965aa
code
3947
# Timing inside a codelet is complicated, because in a codelet you can use # `__builtin_ipu_get_scount_l` to get the current cycle count, but the clock speed is only # available from the `target` object (`target.getTileClockFrequency()`). What you can do is # to get the counters before and after the region you want to benchmark and then divide by # the clock frequency, interpolated in the codelet code with `@eval`: # # device = Poplar.get_ipu_device() # target = Poplar.DeviceGetTarget(device) # graph = Poplar.Graph(target) # tile_clock_frequency = Poplar.TargetGetTileClockFrequency(target) # @eval IPUCompiler.@codelet graph function Foo(...) # cycles_start = get_scount_l() # # Do something here... # cycles_end = get_scount_l() # time = (cycles_end - cycles_start) / $(tile_clock_frequency) # @ipushow time # end # # Here we only provide some macros for easily getting the cycle counts, not the times # directly. For reference, typical clock counts are either 1.330 GHz on a classic machine # or 1.850 GHz on a Bow machine. # # *NOTE*: cycle counters are `UInt32`, so timing expressions longer than `typemax(UInt32) / # tile_clock_frequency` (~2 or 3 seconds depending on the model) is unreliable. export @ipucycles, @ipushowcycles, @ipuelapsed macro ipucycles(msg, ex) # `@ipuprintln` is already disabled by `DISABLE_PRINT`, but we want to remove also the # `get_scount_l` instructions since we aren't going to print anything anyway. if DISABLE_PRINT[] return :() end return quote !isnothing($(esc(msg))) && $(@__MODULE__).@ipuprint $(msg) ":" local cycles_start = get_scount_l() local value = $(esc(ex)) local cycles_end = get_scount_l() local Δ = cycles_end - cycles_start $(@__MODULE__).@ipuprintln Δ " cycles" value end end macro ipucycles(ex) return quote $(@__MODULE__).@ipucycles nothing $(esc(ex)) end end """ @ipucycles ex @ipucycles "description" ex Print from inside a codelet the number of cycles spent to compute the expression `ex`. The corresponding time can be obtained by dividing the number of cycles by the clock frequency of the the tile, which you can get with `Poplar.TargetGetTileClockFrequency(target)` outside of the codelet. The optional argument `description`, a literal `String`, can be used to print also a label to identify the timed expression. A label is added automatically by [`@ipushowcycles`](@ref). See also [`@ipuelapsed`](@ref). This macro can be made no-op completely by setting ```julia $(@__MODULE__).DISABLE_PRINT[] = true ``` """ var"@ipucycles" """ @ipushowcycles ex Print from inside a codelet the expression `ex` and the number of cycles spent to compute it. This is useful when benchmarking multiple expression, to identify their contributions more easily. The corresponding time can be obtained by dividing the number of cycles by the clock frequency of the the tile, which you can get with `Poplar.TargetGetTileClockFrequency(target)` outside of the codelet. See also [`@ipucycles`](@ref), [`@ipuelapsed`](@ref). This macro can be made no-op completely by setting ```julia $(@__MODULE__).DISABLE_PRINT[] = true ``` """ macro ipushowcycles(ex) return quote $(@__MODULE__).@ipucycles $(sprint(Base.show_unquoted, ex)) $(esc(ex)) end end """ @ipuelapsed ex Return number of cycles spent to compute the expression `ex`. The corresponding time can be obtained by dividing the number of cycles by the clock frequency of the the tile, which you can get with `Poplar.TargetGetTileClockFrequency(target)` outside of the codelet. See also [`@ipucycles`](@ref), [`@ipushowcycles`](@ref). """ macro ipuelapsed(ex) return quote local cycles_start = get_scount_l() $(esc(ex)) local cycles_end = get_scount_l() cycles_end - cycles_start end end
IPUToolkit
https://github.com/JuliaIPU/IPUToolkit.jl.git
[ "MIT" ]
1.6.2
252cd6243b0780158a2f7e259aefea9e16f965aa
code
4089
# NOTE: `VertexVector`s are distincts from `PoplarArrays` because they represent # the variables you can add to a graph. # Scope of the vectors in codelets. These singletons are used only for dispatch. struct In end struct Out end struct InOut end """ VertexVector{T, S} <: AbstractVector{T} This datatype formally represents vectors to be used in codelets (vertices) in IPU programs. They are the counterpart of the [vertex vector types](https://docs.graphcore.ai/projects/poplar-user-guide/en/3.2.0/vertex_vectors.html) in the Poplar SDK. The parameters of `VertexVector{T,S}` are * `T`: the type of the elements of the vector, e.g. `Int32`, `Float32`, etc.; * `S`: the scope of the vector in the codelet, `In`, `Out`, or `InOut`. `VertexVector` is only meant to be used by end-user to define the arguments of codelets with the [`@codelet`](@ref) macro. You should not try to manually instantiate or access the fields of a `VertexVector`. For scalar arguments use [`VertexScalar`](@ref). ## Example ```julia VertexVector{Float32, In} # input-only vector of `Float32` elements VertexVector{Int32, Out} # output-only vector of `Int32` elements VertexVector{UInt32, InOut} # input/output vector of `UInt32` elements ``` """ struct VertexVector{T, S} <: AbstractVector{T} base::Ptr{T} length::UInt32 end VertexVector{T,S}(::UndefInitializer, length::Int) where {T,S} = VertexVector{T,S}(C_NULL, length) function Base.setindex!(vec::VertexVector, f, i::Int) unsafe_store!(vec.base, f, i) end function Base.getindex(vec::VertexVector, i::Int) return unsafe_load(vec.base, i) end Base.size(t::VertexVector) = (t.length,) function Base.size(t::VertexVector, d::Int) if d <= 0 error("Dimension $(d) out of range") elseif d == 1 return t.length else return 1 end end function Base.copyto!(dest::VertexVector, src::VertexVector) for i in eachindex(dest, src) dest[i] = src[i] end end # TODO: significantly decreases codesize if set to false but might be actually needed sometimes @inline function Base.mightalias(A::VertexVector, B::VertexVector) return false end # In Julia v1.9 the default algorithm for sorting arrays requires a scratch area, but we # can't use it on an IPU because it'd need to allocate an extra array, so let's default to # the simple fully in-place `QuickSort`. Base.Sort.defalg(::VertexVector) = QuickSort # Simple methods, don't access the elements Base.show(io::IO, x::VertexVector) = Base.show_default(io, x) Base.show(io::IO, ::MIME"text/plain", x::VertexVector) = Base.show_default(io, x) """ VertexScalar{T, S} This datatype formally represents scalars to be used in codelets (vertices) in IPU programs. Technically, these are implemented as single-element tensors. The parameters of `VertexScalar{T,S}` are * `T`: the type of the scalar, e.g. `Int32`, `Float32`, etc.; * `S`: the scope of the scalar in the codelet, `In`, `Out`, or `InOut`. `VertexScalar` is only meant to be used by end-user to define the arguments of codelets with the [`@codelet`](@ref) macro. You should not try to manually instantiate or access the fields of a `VertexScalar`. Inside a codelet you can access and set the number by unwrapping it with `[]`. For vector arguments use [`VertexVector`](@ref). ## Example Examples of types ```julia VertexScalar{Float32, In} # input-only `Float32` number VertexScalar{Int32, Out} # output-only `Int32` number VertexScalar{UInt32, InOut} # input/output `UInt32` number ``` Inside a codelet, let `x` have type `VertexScalar`, you can access its value if it has scope `In` or `InOut` with ```julia @ipushow x[] y = x[] / 3.14 ``` If `x` has scope `Out` or `InOut` you can set its value with `x[] = ...`: ```julia x[] = 3.14 ``` """ struct VertexScalar{T, S} ptr::Ptr{T} end # Scalar arguments are implemented as single-element tensors Base.getindex(s::VertexScalar{T,<:Union{In,InOut}}) where {T} = unsafe_load(s.ptr) Base.setindex!(s::VertexScalar{T,<:Union{Out,InOut}}, x::T) where {T} = unsafe_store!(s.ptr, x)
IPUToolkit
https://github.com/JuliaIPU/IPUToolkit.jl.git
[ "MIT" ]
1.6.2
252cd6243b0780158a2f7e259aefea9e16f965aa
code
687
using Test using CxxWrap # We often want to check that some CxxWrap objects are not NULL. macro cxxtest(ex) return quote local out = $(esc(ex)) Test.@test out.cpp_object != C_NULL out end end # https://giordano.github.io/blog/2019-05-03-julia-get-pointer-value/ dereference(T::DataType, ptr::Ptr) = unsafe_load(Ptr{T}(ptr)) dereference(T::DataType, ptr::CxxRef) = dereference(T, ptr.cpp_object) dereference(T::DataType, ptr::Poplar.Type_Allocated) = dereference(T, ptr.cpp_object) # Do we have access to hardware IPU? If not, we have to skip tests which don't # work on IPU model. const USE_HARDWARE_IPU = get(ENV, "GITHUB_ACTIONS", "false") != "true"
IPUToolkit
https://github.com/JuliaIPU/IPUToolkit.jl.git
[ "MIT" ]
1.6.2
252cd6243b0780158a2f7e259aefea9e16f965aa
code
14157
module IPUCompilerTest # Whether bounds are always checked const check_bounds = Base.JLOptions().check_bounds == 1 using Test using IPUToolkit.IPUCompiler using GPUCompiler: GPUCompiler using IPUToolkit.Poplar if Poplar.SDK_VERSION ≥ v"2.2.0" || !check_bounds using Enzyme using LinearAlgebra using Statistics end if !check_bounds using StaticArrays end # Silence progress spinners. IPUCompiler.PROGRESS_SPINNER[] = false include("common.jl") ∂(f, x) = first(first(autodiff_deferred(Reverse, f, Active(x)))) # Define a non-const variable which will lead to a reference to a literal pointer in the IR # of a codelet below. non_const_var::Float32 = 0f0 function test_compiler_program(device) target = @cxxtest Poplar.DeviceGetTarget(device) graph = @cxxtest Poplar.Graph(target) # Define a local function to make sure macro hygiene is right double(x) = x * 2 @codelet graph function TimesTwo(inconst::VertexVector{Float32, In}, outvec::VertexVector{Float32, Out}) outvec .= double.(inconst) end @codelet graph function Sort(invec::VertexVector{Float32, In}, outvec::VertexVector{Float32, Out}) copyto!(outvec, invec) sort!(outvec) end @codelet graph function Sin(invec::VertexVector{Float32, In}, outvec::VertexVector{Float32, Out}) for idx in eachindex(outvec) @inbounds outvec[idx] = sin(invec[idx]) end end @codelet graph function Print(pi::VertexScalar{Float32, In}) @ipuprint "Hello, world!" @ipuprint "Titire tu" " patule" " recubans sub tegmine " "fagi" @ipuprint "The Answer to the Ultimate Question of Life, the Universe, and Everything is " 42 x = Int32(7) @ipushow x @ipushow pi[] end # Test some invalid kernels invalid_error = pkgversion(GPUCompiler) <= v"0.23" ? GPUCompiler.KernelError : GPUCompiler.InvalidIRError @test_throws invalid_error @codelet graph f_access_out_scalar(x::VertexScalar{Float32, Out}) = @ipushow x[] @test_throws invalid_error @codelet graph f_set_in_scalar(x::VertexScalar{Float32, In}) = x[] = 3.14f0 # This function would contain a reference to a literal pointer, likely an # invalid memory address on the IPU. @test_throws ErrorException @codelet graph literal_pointer(v::VertexVector{Float32,Out}) = v .= non_const_var input = Float32[5, 2, 10, 102, -10, 2, 256, 15, 32, 100] inconst = @cxxtest Poplar.GraphAddConstant(graph, input) outvec1 = @cxxtest similar(graph, inconst, "outvec1"); outvec2 = @cxxtest similar(graph, inconst, "outvec2"); outvec3 = @cxxtest similar(graph, inconst, "outvec3"); prog = @cxxtest Poplar.ProgramSequence() add_vertex(graph, prog, TimesTwo, inconst, outvec1) add_vertex(graph, prog, Sort, outvec1, outvec2) add_vertex(graph, prog, Sin, outvec2, outvec3) add_vertex(graph, prog, Print, 3.14f0) # Pass as codelet a function with more than one method @test_throws ArgumentError add_vertex(graph, prog, +, outvec3) # Pass wrong number of arguments to the codelet @test_throws ArgumentError add_vertex(graph, prog, Print, outvec2, outvec3) # Init some variables which will be used to read back from the IPU # the results of some basic operations. output_timestwo = similar(input) Poplar.GraphCreateHostRead(graph, "timestwo-read", outvec1) output_sort = similar(input) Poplar.GraphCreateHostRead(graph, "sort-read", outvec2) output_sin = similar(input) Poplar.GraphCreateHostRead(graph, "sin-read", outvec3) flags = @cxxtest Poplar.OptionFlags() Poplar.OptionFlagsSet(flags, "debug.instrument", "true") engine = @cxxtest Poplar.Engine(graph, prog, flags) # Load and run the program, but capture the stderr, so that we can test that # it contains what we expect. pipe = Pipe() redirect = USE_HARDWARE_IPU ? redirect_stderr : redirect_stdout redirect(pipe) do Poplar.EngineLoadAndRun(engine, device) # Flush streams to make sure everything is printed out, especially # important when using the IPU model. Libc.flush_cstdio() end output = IOBuffer() task = @async write(output, pipe) close(pipe) wait(task) lines = split(String(take!(output)), '\n') @test contains(lines[1], r"Hello, world!$") @test contains(lines[2], r"Titire tu patule recubans sub tegmine fagi$") @test contains(lines[3], r"The Answer to the Ultimate Question of Life, the Universe, and Everything is 42$") @test contains(lines[4], r"x = 7$") @test contains(lines[5], r"pi\[] = 3.140*$") @test lines[end] == "" # Read back some tensors and check the expected values. Poplar.EngineReadTensor(engine, "timestwo-read", output_timestwo) @test output_timestwo == 2 .* input Poplar.EngineReadTensor(engine, "sort-read", output_sort) @test output_sort == sort(output_timestwo) Poplar.EngineReadTensor(engine, "sin-read", output_sin) @test output_sin == sin.(output_sort) Poplar.detach_devices() end function test_ipuprogram(device) N = 15_000 input = randn(Float32, N) outvec1 = PoplarVector{Float32}(undef, N) outvec2 = PoplarVector{Float32}(undef, N) outvec3 = PoplarVector{Float32}(undef, N) outvec4 = PoplarVector{Float32}(undef, N) outvec5 = PoplarVector{Float32}(undef, N) f(x) = cos(x) f′(x) = ∂(f, x) g(x) = tan(x) g′(x) = ∂(g, x) @ipuprogram device begin function TimesTwo(inconst::VertexVector{Float32, In}, outvec::VertexVector{Float32, Out}) outvec .= 2 .* inconst end function Scale(invec::VertexVector{Float32, In}, outvec::VertexVector{Float32, Out}) outvec .= invec # `sum(abs2, v)` is layman norm because we can't statically compile # `LinearAlgebra.norm!`. outvec .*= sqrt(length(outvec) / sum(abs2, outvec)) end function Exp(invec::VertexVector{Float32, In}, outvec::VertexVector{Float32, Out}) for idx in eachindex(outvec) @inbounds outvec[idx] = exp(invec[idx]) end end function DiffCos(invec::VertexVector{Float32, In}, outvec::VertexVector{Float32, Out}) outvec .= f′.(invec) end function DiffTan(invec::VertexVector{Float32, In}, outvec::VertexVector{Float32, Out}) for idx in eachindex(outvec) @inbounds outvec[idx] = g′(invec[idx]) end end TimesTwo(input, outvec1) Scale(outvec1, outvec2) Exp(outvec2, outvec3) DiffCos(outvec3, outvec4) DiffTan(outvec4, outvec5) jl_outvec1 = outvec1 jl_outvec2 = outvec2 jl_outvec3 = outvec3 jl_outvec4 = outvec4 jl_outvec5 = outvec5 end Poplar.detach_devices() @test jl_outvec1 ≈ 2 .* input @test norm(jl_outvec2) ≈ sqrt(N) @test jl_outvec3 ≈ exp.(jl_outvec2) @test jl_outvec4 ≈ @. -sin(jl_outvec3) @test jl_outvec5 ≈ @. sec(jl_outvec4) ^ 2 end function test_ipubuiltins(device) N = 15_000 outvec1 = PoplarVector{Float16}(undef, N) outvec2 = PoplarVector{Float16}(undef, N) outvec3 = PoplarVector{Float16}(undef, N) outvec4 = PoplarVector{Float16}(undef, N) @ipuprogram device begin function Random(out::VertexVector{Float16, Out}) for idx in eachindex(out) out[idx] = rand(Float16) end end function TimesTwoSin(in::VertexVector{Float16,In}, out::VertexVector{Float16, Out}) for idx in eachindex(in, out) out[idx] = sin(2 * in[idx]) end end function Sort16(in::VertexVector{Float16,In}, out::VertexVector{Float16, Out}) copyto!(out, in) sort!(out; rev=true) end function RandomNorm(out::VertexVector{Float16, Out}) for idx in eachindex(out) out[idx] = randn(Float16) end end Random(outvec1) TimesTwoSin(outvec1, outvec2) Sort16(outvec2, outvec3) RandomNorm(outvec4) jl_outvec1 = outvec1 jl_outvec2 = outvec2 jl_outvec3 = outvec3 jl_outvec4 = outvec4 end Poplar.detach_devices() # There's a non-zero probability that this test may fail, but assuming an # average relative error of sqrt(N) / N, we multiply by `pi` to be somewhat # safe (and `pi` is cool). @test mean(jl_outvec1) ≈ 0.5 rtol=(pi * sqrt(N) / N) @test jl_outvec2 ≈ sin.(2 .* jl_outvec1) @test jl_outvec3 ≈ sort(jl_outvec2; rev=true) @test mean(jl_outvec4) ≈ 0 atol=0.02 @test std(jl_outvec4) ≈ 1 rtol=0.02 end rosenbrock(x, y=4) = (1 - x) ^ 2 + 100 * (y - x ^ 2) ^ 2 rosenbrock′(x) = ∂(rosenbrock, x) # See Algorithm 1 at page 2 of https://arxiv.org/abs/1412.6980 function adam(∂f, x₀::T) where {T} x = x₀ # Some constants α = T(0.001) # learning rate β₁ = T(0.9) β₂ = T(0.999) ϵ = T(1e-8) # Momenta m = zero(T) v = zero(T) # Stopping criteria Δ = 10 * eps(T) δ = one(T) max_t = Int32(1_000_000) t = one(max_t) while abs(δ) > Δ && t ≤ max_t g = ∂f(x) m = β₁ * m + (1 - β₂) * g v = β₂ * v + (1 - β₂) * g ^ 2 m̂ = m / (1 - β₁ ^ t) v̂ = v / (1 - β₂ ^ t) δ = α * m̂ / (√(v̂) + ϵ) x -= δ t += one(t) end return x end function test_adam(device) input = collect(Float32.(-4:1:4)) output = PoplarVector{Float32}(undef, length(input)) @ipuprogram device begin function AdamRosenbrock(in::VertexVector{Float32, In}, out::VertexVector{Float32, Out}) for idx in eachindex(out) out[idx] = adam(rosenbrock′, in[idx]) end end AdamRosenbrock(input, output) jl_output = output end Poplar.detach_devices() @test all(isapprox.(jl_output, [repeat([-2], 4); repeat([2], 5)]; atol=2.6e-3)) end function test_linalg(device) N = 16 mat1 = randn(Float32, N) mat2 = randn(Float32, N) mul = PoplarVector{Float32}(undef, N) inverse = PoplarVector{Float32}(undef, N) @ipuprogram device begin function LinAlg(in1::VertexVector{Float32, In}, in2::VertexVector{Float32, In}, mul::VertexVector{Float32, Out}, inverse::VertexVector{Float32, Out}) # Arguments can only be vectors, so we need to convert them to # (static) matrices to do some linear algebra stuff. The conversion # to `SMatrix` has an internal check about the shape/size of the # to-be-converted array which would result in dynamic dispatch, we # need to skip the check with `@inbounds`, but we need to be extra # sure we're passing consistent data. m1 = @inbounds SMatrix{4,4,Float32,16}(in1) m2 = @inbounds SMatrix{4,4,Float32,16}(in2) m1_m2 = m1 * m2 mul .= (m1_m2)[:] inverse .= inv(m1_m2)[:] end LinAlg(mat1, mat2, mul, inverse) jl_mul = mul jl_inv = inverse end Poplar.detach_devices() jl_mul = reshape(jl_mul, 4, 4) @test reshape(mat1, 4, 4) * reshape(mat2, 4, 4) ≈ jl_mul @test reshape(jl_inv, 4, 4) ≈ inv(jl_mul) end @testset "IPUCompiler" begin programs = (test_compiler_program, test_adam, test_ipuprogram, test_linalg) if USE_HARDWARE_IPU # `test_ipubuiltins` tests IPU builtins which requires compiling for # hardware IPU, not compatible with an IPU model. programs = (programs..., test_ipubuiltins) end @testset "Test program: $(f)" for f in programs function skip_test(f) @warn """ Skipping IPUCompiler test $(f). To run this testset use import Pkg; Pkg.test("IPUToolkit"; julia_args=`--check-bounds=auto`) """ @test_broken false end if Poplar.SDK_VERSION ≥ v"2.2.0" || !check_bounds if f in (test_linalg,) && check_bounds # * `test_linalg`: converting a `Vector` to `SMatrix` results # into dynamic dispatch in the error path, this can be skipped # with `@inbounds`, but `@inbounds` is no-op if we force # bounds checks so we have no hope to run this nice test when # using `--check-bounds=yes`. skip_test(f) else device = @cxxtest if USE_HARDWARE_IPU # Get a device @test_logs((:info, r"^Trying to attach to device"), (:info, r"^Successfully attached to device"), match_mode=:any, Poplar.get_ipu_device()) else Poplar.get_ipu_model() end # Run a test program f(device) end else # With --check-bounds=yes GPUCompiler generates a function mentioning an undefined # symbol `gpu_malloc`. Mark the test as broken until we sort this out. However # this function is optimised away when compiling with `-O1` or higher, and for # Poplar.SDK_VERSION ≥ v"2.2.0" we use `-O3`. skip_test(f) end end @testset "VertexVector" begin vec = VertexVector{Float32, Out}(undef, 10) @test vec.base == C_NULL @test vec.length == 10 @test contains(repr(vec), r"VertexVector{Float32,.*Out}") end @testset "Printing to IPU" begin # Printing is already tested in the program above, here we only check # that disabling printing makes the `@ipu*` macros no-op. IPUCompiler.DISABLE_PRINT[] = true @test @macroexpand(@ipuprintf "Hello, world!") == :() @test @macroexpand(@ipuprint "Hello, world!") == :() @test @macroexpand(@ipushow x) == :() # Restore `DISABLE_PRINT` IPUCompiler.DISABLE_PRINT[] = false end end end # module IPUCompilerTest
IPUToolkit
https://github.com/JuliaIPU/IPUToolkit.jl.git
[ "MIT" ]
1.6.2
252cd6243b0780158a2f7e259aefea9e16f965aa
code
5028
module PoplarTest using Test using IPUToolkit.Poplar include("common.jl") function test_poplar_program(device) target = @cxxtest Poplar.DeviceGetTarget(device) graph = @cxxtest Poplar.Graph(target) Poplar.PopopsAddCodelets(graph) v1 = @cxxtest Poplar.GraphAddVariable(graph, Poplar.FLOAT(), UInt64[2, 2], "v1") @test_throws ArgumentError copyto!(graph, v1, [1, 2, 3, 4]) v2 = @cxxtest similar(graph, v1, "v2") for i in 0:1 for j in 0:1 @graph begin Poplar.GraphSetTileMapping(v1[i][j], i*2 + j) Poplar.GraphSetTileMapping(v2[i][j], j*2 + i) end end end prog = @cxxtest Poplar.ProgramSequence() h1 = Float32[1.0, 1.5, 2.0, 2.5] h2 = Float32[4.0, 3.0, 2.0, 1.0] # We want to exercise the use of `copyto!` (-> `Graph::setInitialValue`) on # a tensor allocated with `Graph::addVariable`, but for some reason the test # below would fail with older SDKs and on an IPU model, so in that case we # use good ol' `Graph::AddConstant`. if Poplar.SDK_VERSION < v"2.6" && !USE_HARDWARE_IPU c1 = @cxxtest Poplar.GraphAddConstant(graph, h1) else c1 = @cxxtest Poplar.GraphAddVariable(graph, Poplar.FLOAT(), UInt64[4], "c1") copyto!(graph, c1, h1) end c2 = @cxxtest Poplar.GraphAddConstant(graph, h2) @graph begin Poplar.GraphSetTileMapping(c1, 0) Poplar.GraphSetTileMapping(c2, 0) end Poplar.ProgramSequenceAdd(prog, Poplar.ProgramCopy(c1, Poplar.TensorFlatten(v1))) Poplar.ProgramSequenceAdd(prog, Poplar.ProgramCopy(c2, Poplar.TensorFlatten(v2))) flags = @cxxtest Poplar.OptionFlags() v3 = @cxxtest Poplar.PopopsAdd(graph, v1, v2, prog, "Add", flags) v4 = @cxxtest Poplar.PopopsAdd(graph, v3, v2, prog, "Add", flags) v5 = @cxxtest Poplar.PopopsAdd(graph, v1, Poplar.TensorTranspose(v2), prog, "Add", flags) # Init some variables which will be used to read back from the IPU # (model) the results of some basic operations. h3 = zeros(Float32, 4) h4 = zeros(Float32, 4) h5 = zeros(Float32, 4) @graph begin Poplar.GraphCreateHostRead("v3-read", v3) Poplar.GraphCreateHostRead("v4-read", v4) Poplar.GraphCreateHostRead("v5-read", v5) end engine = @cxxtest Poplar.Engine(graph, prog, flags) Poplar.EngineLoadAndRun(engine, device) # Read back some tensors and check the expected values. Poplar.EngineReadTensor(engine, "v3-read", h3) @test h3 == h1 + h2 Poplar.EngineReadTensor(engine, "v4-read", h4) @test h4 == h3 + h2 Poplar.EngineReadTensor(engine, "v5-read", h5) # TODO: try to write this test in terms of the other tensors. @test h5 == Float32[5.0, 3.5, 5.0, 3.5] # Release the device at the end of the program Poplar.DeviceDetach(device) end @testset "Poplar" begin @cxxtest Poplar.Tensor() @testset "Device manager" begin dm = Poplar.DeviceManager() @test Poplar.DeviceManagerGetNumDevices(dm) > 0 end # Make sure that dereferencing the types pointers gives a non-totally-useless value. @testset "Types" begin @testset "$(type)" for type in (:BOOL, :CHAR, :UNSIGNED_CHAR, :SIGNED_CHAR, :UNSIGNED_SHORT, :SHORT, :UNSIGNED_INT, :INT, :UNSIGNED_LONG, :LONG, :UNSIGNED_LONGLONG, :LONGLONG, :HALF, :FLOAT) @test dereference(Cint, getfield(Poplar, type)()) != 0 end end # Test a simple program using a software-emulated IPU (IPU model) @testset "IPU Model" begin device = @cxxtest Poplar.get_ipu_model() test_poplar_program(device) end # Same test, but with a real IPU USE_HARDWARE_IPU && @testset "Hardware IPU" begin # Make sure `get_ipu_devices` works when you request 0 devices. device = @test_logs (:info, r"^Attached to devices with IDs [\w\d]+\[\]") Poplar.get_ipu_devices(0) @test isempty(device) # Simple test for `get_ipu_devices` with a range as second argument. Poplar.DeviceDetach.(@test_logs((:info, r"^Trying to attach to device 0..."), match_mode=:any, Poplar.get_ipu_devices(1, 0:0))) # Couldn't attach to all requested devices @test_logs((:warn, "Requested 2 devices, but could attach only to 0"), (:info, r"^Attached to devices with IDs [\w\d]+\[\]"), Poplar.get_ipu_devices(2, 0:-1)) # Get a device device = @cxxtest @test_logs((:info, r"^Trying to attach to device"), (:info, r"^Successfully attached to device"), match_mode=:any, Poplar.get_ipu_device()) # Run a test program test_poplar_program(device) end end end # module PoplarTest
IPUToolkit
https://github.com/JuliaIPU/IPUToolkit.jl.git
[ "MIT" ]
1.6.2
252cd6243b0780158a2f7e259aefea9e16f965aa
code
44
include("poplar.jl") include("compiler.jl")
IPUToolkit
https://github.com/JuliaIPU/IPUToolkit.jl.git
[ "MIT" ]
1.6.2
252cd6243b0780158a2f7e259aefea9e16f965aa
docs
2162
# IPUToolkit.jl [![](https://img.shields.io/badge/docs-stable-blue.svg)](https://juliaipu.github.io/IPUToolkit.jl/stable) [![](https://img.shields.io/badge/docs-dev-blue.svg)](https://juliaipu.github.io/IPUToolkit.jl/dev) [![Tests and docs](https://github.com/JuliaIPU/IPUToolkit.jl/actions/workflows/ci.yml/badge.svg?branch=main&event=push)](https://github.com/JuliaIPU/IPUToolkit.jl/actions/workflows/ci.yml) This package allows you to interface the [Intelligence Processing Unit (IPU) by Graphcore](https://www.graphcore.ai/products/ipu) using the [Julia programming language](https://julialang.org/). ***Disclaimer**: at the moment this is package is in a proof-of-concept stage, not suitable for production usage.* ## Usage and documentation The package is called `IPUToolkit` because it provides different tools to interface the IPU from Julia: * you can use functionalities in the [Poplar SDK](https://www.graphcore.ai/products/poplar); * you can use Julia's code generation capabilities to automatically compile native code that can be run on the IPU; * there is a small [embedded Domain-Specific Language](https://en.wikipedia.org/wiki/Domain-specific_language) (eDSL) to automatically generate the code of a program. These approaches are exploratory of the functionalities, and are often limited in scope and are described in more details in the [documentation](https://juliaipu.github.io/IPUToolkit.jl/). For examples of usage of this package, see the [`examples/`](https://github.com/JuliaIPU/IPUToolkit.jl/tree/main/examples) directory of the official repository. ## Talks and demos Here is some material that you may find useful for learning more about Julia on the IPU and trying it out yourself: * [Pluto notebook](https://giordano.github.io/blog/2023-07-20-julia-ipu/) of presentation given at Graphcore and at JuliaCon in July 2023 * Talk "[Julia meets the Intelligence Processing Unit](https://www.youtube.com/watch?v=-fxB0kmcCVE)" at JuliaCon 2023 * Talk "[Automatic differentiation on the IPU with Enzyme.jl](https://giordano.github.io/talks/2024-03-27-julia-ipu-enzymecon/)" at [EnzymeCon 2024](https://enzyme.mit.edu/conference)
IPUToolkit
https://github.com/JuliaIPU/IPUToolkit.jl.git
[ "MIT" ]
1.6.2
252cd6243b0780158a2f7e259aefea9e16f965aa
docs
9131
# Writing codelets in Julia The `IPUToolkit.IPUCompiler` submodule allows you to write [codelets](https://docs.graphcore.ai/projects/poplar-user-guide/en/3.2.0/vertices_overview.html) for the IPU in Julia. Codelets are defined with the [`@codelet`](@ref) macro, and then you can use them inside a program, written using the interface to the Poplar SDK described before. This mechanism uses the [`GPUCompiler.jl`](https://github.com/JuliaGPU/GPUCompiler.jl) package, which is a generic framework for generating LLVM IR code for specialised targets, not limited to GPUs despite the historical name. Examples of codelets written in Julia are shown in the files [`examples/main.jl`](https://github.com/JuliaIPU/IPUToolkit.jl/blob/main/examples/main.jl), [`examples/pi.jl`](https://github.com/JuliaIPU/IPUToolkit.jl/blob/main/examples/pi.jl), [`examples/adam.jl`](https://github.com/JuliaIPU/IPUToolkit.jl/blob/main/examples/adam.jl), [`examples/diffeq.jl`](https://github.com/JuliaIPU/IPUToolkit.jl/blob/main/examples/diffeq.jl). The code inside a codelet has the same limitations as all the compilation models based on [`GPUCompiler.jl`](https://github.com/JuliaGPU/GPUCompiler.jl): * the code has to be statically inferred and compiled, dynamic dispatch is not admitted; * you cannot use functionalities which require the Julia runtime, most notably the garbage collector; * you cannot call into any other external binary library at runtime, for example you cannot call into a BLAS library. After defining a codelet with `@codelet` you can add a vertex calling this codelet to the graph with the function [`add_vertex`](@ref), which also allows controlling the tile mapping in a basic way, or `Poplar.GraphAddVertex`. ```@docs @codelet VertexVector VertexScalar add_vertex IPUCompiler.TARGET_COLOSSUS IPUCompiler.KEEP_LLVM_FILES IPUCompiler.POPC_FLAGS IPUCompiler.PROGRESS_SPINNER ``` ## IPU builtins Inside codelets defined with [`@codelet`](@ref) all calls to random functions * `rand(Float16)` * `rand(Float32)` * `rand(UInt32)` * `rand(UInt64)` * `randn(Float16)` * `randn(Float32)` result to call to corresponding IPU builtins for [random number generation](https://docs.graphcore.ai/projects/poplar-api/en/latest/ipu_intrinsics/ipu_builtins.html#random-number-generation). The uniformly distributed numbers follow the general semantic of the Julia function `rand` (floating point numbers are uniformely distributed in the $[0, 1)$ range), while the normally distributed numbers have the properties described in the Poplar SDK documentation (numbers are in the range $[-93/16, 93/16]$). !!! note The IPU builtins for random numbers return pairs of numbers, but the Julia functions `randn(Float16)` and `randn(Float32)` return only a single number, discarding the second number of the pair. If you have a vector of even length that you want to fill in-place with normally distributed numbers, you can use the [`randn2!`](@ref) function to do that efficiently, without discarding any number. Additionally, you can use the [IPU builtins](https://docs.graphcore.ai/projects/poplar-api/en/latest/ipu_intrinsics/ipu_builtins.html) listed below. ```@docs get_scount_l get_tile_id randn2! ``` ## Printing Inside codelets you can print text and value of variables using the macros [`@ipuprintf`](@ref), [`@ipuprint`](@ref), [`@ipuprintln`](@ref), and [`@ipushow`](@ref). These macros are useful for debugging purposes but printing inside a codelet might incur performance penalty. To completely disable all printing and make these macros no-op you can set [`IPUCompiler.DISABLE_PRINT`](@ref): ```julia IPUCompiler.DISABLE_PRINT[] = true ``` ```@docs @ipuprintf @ipuprint @ipuprintln @ipushow IPUCompiler.DISABLE_PRINT ``` ## Benchmarking To benchmark expressions inside codelets you can use the macros [`@ipucycles`](@ref), [`@ipushowcycles`](@ref), and [`@ipuelapsed`](@ref), which report the number of cycles spent in the wrapped expression. They are similar to Julia's `@time`, `@showtime`, and `@elapsed` macros, but report the number of cycles, as the clockspeed of tiles cannot be easily obtained _inside_ a codelet. The corresponding time can be obtained by dividing the number of cycles by the clock frequency of the the tile, which you can get with [`Poplar.TargetGetTileClockFrequency(target)`](https://docs.graphcore.ai/projects/poplar-api/en/latest/poplar/device/Target.html#_CPPv4NK6poplar6Target21getTileClockFrequencyEv) outside of the codelet, and should usually be 1.330 GHz or 1.850 GHz depending on the model of your IPU. The printing macros `@ipucycles` and `@ipushowcycles` can be made completely no-op by setting [`IPUCompiler.DISABLE_PRINT`](@ref). !!! warning Timing of expressions taking longer than `typemax(UInt32) / tile_clock_frequency` (about 2 or 3 seconds depending on your IPU model) is unreliable because the difference between the starting and the ending cycle counts would overflow. Note also that the `Poplar.TargetGetTileClockFrequency(target)` function [may not return a reliable value](https://github.com/UoB-HPC/ipu-hpc-cookbook/blob/96a37c2f7c745fb4e1ca0bc12fa68fe39df067a7/timing-program-execution/README.md#using-counters-on-the-ipu), but this is an upstream bug (this has been observed at least up to Poplar SDK v3.0). You may have to use tools like `gc-monitor`, `gc-inventory`, or `gc-info --device-id <N> --tile-clock-speed` to obtain the correct tile clock frequency. ```@docs @ipucycles @ipushowcycles @ipuelapsed ``` ## Passing non-constant variables from global scope If your kernel references a non-constant (`const`) global variable, the generated code will result in a reference to a memory address on the host, and this will fatally fail at runtime because programs running on the IPU don't have access to the host memory. Constant variables are not affected by this problem because their values are inlined when the function is compiled. If you can't or don't want to make a variable constant you can interpolate its value with a top-level [`@eval`](https://docs.julialang.org/en/v1/base/base/#Base.@eval) when defining the codelet. For example: ```julia using IPUToolkit.IPUCompiler, IPUToolkit.Poplar device = Poplar.get_ipu_device() target = Poplar.DeviceGetTarget(device) graph = Poplar.Graph(target) tile_clock_frequency = Poplar.TargetGetTileClockFrequency(target) @eval @codelet graph function test(invec::VertexVector{Float32, In}, outvec::VertexVector{Float32, Out}) # We can use the intrinsic `get_scount_l` to get the cycle counter right # before and after some operations, so that we can benchmark it. cycles_start = get_scount_l() # Do some operations here... cycles_end = get_scount_l() # Divide the difference between the two cycle counts by the tile frequency # clock to get the time. time = (cycles_end - cycles_start) / $(tile_clock_frequency) # Show the time spent doing your operations @ipushow time end ``` The use of `@eval` allows you not to have to pass an extra argument to your kernel just to use the value of the variable inside the codelet. ## Debugging compilation errors in codelets Writing codelets for the IPU takes some practice, because you cannot use any arbitrary construct or package as you would normally do when running code on a CPU. As mentioned above, codelets have to be statically compiled with `GPUCompiler.jl`, with all the limitations of this framework, which can only use a subset of the Julia language. Therefore, it happens frequently that you run into compilation errors while developing a codelet function, and you have then to resolve the issues, which usually involves removing [dynamic dispatch](https://en.wikipedia.org/wiki/Dynamic_dispatch) calls (which would require the JIT compiler at runtime), resolving [type-instabilities](https://docs.julialang.org/en/v1/manual/performance-tips/#Write-%22type-stable%22-functions), [avoiding memory allocations](https://docs.julialang.org/en/v1/manual/performance-tips/#Measure-performance-with-[@time](@ref)-and-pay-attention-to-memory-allocation), etc... If you have [`Cthulhu.jl`](https://github.com/JuliaDebug/Cthulhu.jl) installed, you can set [`IPUCompiler.DEBUG_COMPILATION_ERRORS`](@ref) to `true` to automatically open an interactive shell when compiling a codelet results into invalid LLVM IR, to more easily debug the codelet code. We suggest again taking a look at the code samples in the [`examples/`](https://github.com/JuliaIPU/IPUToolkit.jl/tree/main/examples) directory for learning how to write working IPU codelets in Julia. ```@docs IPUCompiler.DEBUG_COMPILATION_ERRORS ``` ## Domain-Specific Language: `@ipuprogram` The `IPUCompiler.@ipuprogram` macro provides a very simple and limited DSL to automatically generate most of the boilerplate code needed when writing an IPU program. You can do *very* little with this DSL, which is mainly a showcase of Julia's meta-programming capabilities. A fully commented examples of use of the `@ipuprogram` macro is available in the [`examples/dsl.jl`](https://github.com/JuliaIPU/IPUToolkit.jl/blob/main/examples/dsl.jl) file.
IPUToolkit
https://github.com/JuliaIPU/IPUToolkit.jl.git
[ "MIT" ]
1.6.2
252cd6243b0780158a2f7e259aefea9e16f965aa
docs
4686
# IPUToolkit.jl [`IPUToolkit.jl`](https://github.com/JuliaIPU/IPUToolkit.jl) allows you to interface the [Intelligence Processing Unit (IPU) by Graphcore](https://www.graphcore.ai/products/ipu) using the [Julia programming language](https://julialang.org/). The main motivation for this project is to explore Julia's introspection and metaprogramming capabilities to write high-level code for the IPU using an alternative method to the tools developed by Graphcore, and leverage code-generation through LLVM to generate efficient code for the device: also the IPU compiler is based on this framework, so the LLVM IR constitutes a common language between Julia and the IPU compiler. !!! warning "Disclaimer" This effort is not officially endorsed by Graphcore, although we gracefully received help through the public Graphcore support channels. This package is currently a proof-of-concept, not suitable for production usage. Its API may be subject to frequent development and breaking changes. This package was initially created by Emily Dietrich and Luk Burchard, and later expanded by Mosè Giordano. [Mosè](https://github.com/giordano)'s work on this package was funded by [UCL Centre for Advance Research Computing](https://www.ucl.ac.uk/advanced-research-computing). ## Requirements This package requires * Julia v1.6+ (currently tested up to Julia v1.10), * the Poplar SDK v1.3 or v2.0-v3.2 including the `popc` compiler, * a C++ compiler supporting C++17 standard for compiling the wrapper around the Poplar SDK (e.g. G++ 9 or following releases). Other versions of the Poplar SDK are not currently supported. !!! note "Compatibility between Julia and Poplar SDK" Both Julia and the Poplar SDK are coupled to a specific version of the LLVM compiler framework, and you will need to match a specific version of the Poplar SDK with a version of Julia using the same major version of LLVM. For example * the Poplar SDK version 2.2 uses LLVM 13, which is available in Julia v1.8; * the Poplar SDK versions 2.3-2.5 use LLVM 14, which is available in Julia v1.9; * the Poplar SDK versions 2.6-3.2 use LLVM 15, which is available in Julia v1.10; * the Poplar SDK version 3.3 uses LLVM 16, which is available in Julia v1.11 (NOTE: this combination has ***not*** been tested yet and is likely not to work at the moment). ## Installation To install the package, run the commands ```julia using Pkg Pkg.add("IPUToolkit") ``` You will need to build the wrapper around the Poplar SDK. This should happen automatically the first time you install the package, in any case you can run it with ```julia Pkg.build() ``` This step requires a C++ compiler supporting C++17 standard. You have to set the compiler with the `CXX` environment variable, this can be either its absolute path or simply its name if it is in the [`PATH`](https://en.wikipedia.org/wiki/PATH_(variable)) environment variable. The compiler must be able to find Poplar header files automatically, depending on your installation of the Poplar SDK you may have to add its `include/` directory to the [`CPATH`](https://gcc.gnu.org/onlinedocs/cpp/Environment-Variables.html) environment variable, but this should be done automatically by the script to activate a Poplar SDK. !!! note Compiling the wrapper around the Poplar SDK will take several minutes (up to about 7 minutes, depending on the Poplar version), without printing any progress to screen. Hold on. ## Usage The package is called IPUToolkit because it provides different tools to interface the IPU from Julia: * you can use functionalities in the [Poplar SDK](https://www.graphcore.ai/products/poplar); * you can use Julia's code generation capabilities to automatically compile native code that can be run on the IPU; * there is a small [embedded Domain-Specific Language](https://en.wikipedia.org/wiki/Domain-specific_language) (eDSL) to automatically generate the code of a program. These approaches are exploratory of the functionalities, and are often limited in scope and are described in more details in the following sections. ## Talks and demos Here is some material that you may find useful for learning more about Julia on the IPU and trying it out yourself: * [Pluto notebook](https://giordano.github.io/blog/2023-07-20-julia-ipu/) of presentation given at Graphcore and at JuliaCon in July 2023 * Talk "[Julia meets the Intelligence Processing Unit](https://www.youtube.com/watch?v=-fxB0kmcCVE)" at JuliaCon 2023 * Talk "[Automatic differentiation on the IPU with Enzyme.jl](https://giordano.github.io/talks/2024-03-27-julia-ipu-enzymecon/)" at [EnzymeCon 2024](https://enzyme.mit.edu/conference)
IPUToolkit
https://github.com/JuliaIPU/IPUToolkit.jl.git
[ "MIT" ]
1.6.2
252cd6243b0780158a2f7e259aefea9e16f965aa
docs
4607
# Interfacing the Poplar SDK A quick example of use of the Poplar SDK functionalities, available in the `IPUToolkit.Poplar` submodule: ```julia julia> using IPUToolkit.Poplar julia> dm = Poplar.DeviceManager(); julia> Int(Poplar.DeviceManagerGetNumDevices(dm)) 129 julia> device = Poplar.get_ipu_device(); [ Info: Trying to attach to device 0... [ Info: Successfully attached to device 0 julia> Int(Poplar.DeviceGetId(device)) 0 julia> Poplar.detach_devices() ``` A couple of basic examples of programs running on the IPU written using the interface to the Poplar SDK are available in the files [`examples/tutorial1.jl`](https://github.com/JuliaIPU/IPUToolkit.jl/blob/main/examples/tutorial1.jl) and [`examples/tutorial2.jl`](https://github.com/JuliaIPU/IPUToolkit.jl/blob/main/examples/tutorial2.jl). We automatically generate the bindings of the Poplar SDK using [`Clang.jl`](https://github.com/JuliaInterop/Clang.jl) and [`CxxWrap.jl`](https://github.com/JuliaInterop/CxxWrap.jl). There is not automatic documentation at the moment, but functions can be accessed from the `Poplar` submodule. Also, the `IPUToolkit.Poplar` submodule wraps a subset of the functionalities available in the Poplar SDK, do not expect to be able to use all functionalities. Remember that Julia does not use class-based object-oriented programming, class instances will usually be first arguments of the methods you want to use. Function naming convention and signature is usually as follows: * class name in [CamelCase](https://en.wikipedia.org/wiki/Camel_case), followed by method name also in CamelCase. Note that first letter of method name is always uppercase in this naming convention, even if it is lowercase in the Poplar SDK. For example, the method `getNumDevices` of the `DeviceManager` class can be accessed in the `Poplar` submodule with `Poplar.DeviceManagerGetNumDevices`; * the first argument of the function is the class instance. For example, to use the Julia function `Poplar.DeviceManagerGetNumDevices`, you need to pass as first argument an instance of `DeviceManager`; * the following arguments are the same as in the method you want to use in the SDK. For example, the method `getNumDevices` of the `DeviceManager` class doesn't take any argument, so the Julia function `Poplar.DeviceManagerGetNumDevices` will take an instance of `DeviceManager` as *only* argument. ## Convenient methods In addition to this, for some functions (e.g. `EngineWriteTensor`, `EngineConnectStream`, `EngineReadTensor`) we provide more user-friendly methods where the last argument can be a Julia's `Array`, without having to pass additional arguments for pointers or array size. Furthermore, the custom functions [`Poplar.get_ipu_device`](@ref) and [`Poplar.get_ipu_devices`](@ref) can be used to access one more IPU devices, as shown in the example above. Another function for which we provide a convenient method is `Poplar.GraphAddConstant`: ```julia Poplar.GraphAddConstant(graph, host_array) ``` adds the `host_array` (a plain standard Julia `Array` living on the host) to `graph`, automatically inferring from `host_array` the type and the shape of the tensor in the graph. This works also with `host_array::Array{Float16}`. You can slice a tensor with the usual Julia notation `tensor[index1:index2]`, this corresponds to a call to [`Tensor.slice(index1, index2+1)`](https://docs.graphcore.ai/projects/poplar-api/en/latest/poplar/graph/Tensor.html#_CPPv4NK6poplar6Tensor5sliceENSt6size_tENSt6size_tE). [`similar`](@ref) can be used to add to `graph` a tensor with the same shape and optionally element type as `tensor`, while [`copyto!`](@ref) can be used to copy elements of a CPU host array into an IPU tensor. ## Using `IPUToolkit.jl` without an IPU While this package requires a physical IPU to use all the available features, you can still experiment with the IPU programming model even if you do not have access to a hardware IPU. The Poplar SDK provides a feature called IPU Model, which is a software emulation of the behaviour of the IPU hardware. While the IPU model comes with [some limitations](https://docs.graphcore.ai/projects/poplar-user-guide/en/latest/poplar_programs.html#programming-with-poplar), it can be useful for testing or debugging. To use the IPU model in `IPUToolkit.jl`, define the device of your IPU program with [`Poplar.get_ipu_model`](@ref): ```julia device = Poplar.get_ipu_model() # Then the rest of the program continues as usual target = Poplar.DeviceGetTarget(device) graph = Poplar.Graph(target) # ... ``` ```@autodocs Modules = [IPUToolkit.Poplar] ```
IPUToolkit
https://github.com/JuliaIPU/IPUToolkit.jl.git
[ "MIT" ]
1.6.2
252cd6243b0780158a2f7e259aefea9e16f965aa
docs
3113
problem: libpoplar which is needed to interface with ipus (setup data-flow, upload codelets to ipu, ...) only offers a c++ api projects offering binding to c++ code: Cxx.jl and CxxWrap.jl Cxx.jl: * write c++ code inside of julia code * can directly call into c++ libraries and pass values from julia + \+ easy to use + \+ doesn't need any additional setup + \+ allows more complex c++ snippets - \- (big one) does not work on current julia - \- passing values from julia to c++ can be annoying - \- requires users to write c++ code themselves, no longer pure julia code CxxWrap.jl: * bindings are defined from c++ code and compiled to shared library to be loaded by julia * on julia side everything is pure julia * \+ no c++ knowledge by endusers required + \+ clean interface for programmers + \+ comes with integration for various standard c++ data types - \- every function/constant needs to be manually defined on c++ side - \- on changes on the c++ side a (potentially huge) library needs to be recompiled - \- a lot of modern c++ features do not integrate well Updating cxx.jl would a lot of effort (other people have tried and failed and julia has substantially changed since the last version of cxx.jl released) CxxWrap approach needs bindings Manually crafting all bindings would be both a lot of effort (lots of functions) ~~handcrafted boring~~ much more likely to break on updates - Want to automatically generate c++ side of bindings - need (libpoplar specific) way to parse c++ headers and generate c++ bindings for them approach: use Clang.jl (julia libclang) to parse c++ headers (similar: https://github.com/TakekazuKATO/OpenCV.jl/blob/master/generateWrapper.jl) process: - Resolve header locations of all the headers which are supposed to get parsed - parse headers with libclang (clang.jl for julia bindings) - iterate over the clang abstract syntax tree - filter out all members which dont belong to poplib namespaces - generate the cxxwrap c++ code needed to define the binding for relevant member types (class decl, function decl, enum decl, inheritance, ...) (that's the big part) - compile generated code (templated into handcrafted template.cpp) to shared library (to be loaded by cxxwrap) - shared library loadable through cxxwrap library - small additions in handcrafted julia code (nicer ipu management) problems/hacks: c++ is big complex language with loads of features which aren't directly supported by cxxwrap which means a lot of functions can't be directly wrapped direcltly with cxxwrap -> generate lambdas instead of passing function directly into cxxwrap poplar array and string types are different from julia arrays, need to be automatically converted -> convert poplar array types from and to julia arrays automatically optional parameters aren't directly supported by cxxwrap -> generate multiple function definitions (for all possible combinations of existing/not existing optional parameters) virtual classes(?) can't be dealocated by cxxwrap properly -> (bad) auto-applied hotfix of cxxwrap to disable calling the dealocator on those types
IPUToolkit
https://github.com/JuliaIPU/IPUToolkit.jl.git
[ "MIT" ]
1.6.2
252cd6243b0780158a2f7e259aefea9e16f965aa
docs
1909
skip_empty_classdecl: skips class declarations without a body insufficient_access: element is private private or protected constructor_missing_class: skips constructors which don't belong to a "normal" class/struct ostream_blacklist: skips if arguments contain ostreams as they can't be copied which messes with cxxwrap istream_blacklist: skips if arguments contain istreams as they can't be copied which messes with cxxwrap rvalue_unsupported: skips if arguments contain rvalue references as they aren't supported by cxxwrap unique_ptr_blacklist: skips if arguments contain a unique_pointer as they aren't supported by cxxwrap default_constructor: skips if the contructor is the default constructor (no arguments) because cxxwrap automatically generates it deleted_method: skips deleted methods (`func(int i) = delete;`) operator_unsupported: skips if this method is overloading an operator getimpl_blacklist: skips functions named "getImpl" or "getPImpl" as those return incomplete classes in poplar libraries which are unsupported in cxxwrap calls_deleted_function: skips functions which attempt to call deleted functions (currently hardcoded) unsupported_template: skips functions with templated arguments that aren't of type ArrayRef<T> skip_compiler_definitions: skips compiler definitions header_blacklisted: header has been explicitly blacklisted not_allowed_namespace: namespace of node isn't in the whitelist fieldata_size_blacklist: workaround to a specific function (poplar::FieldData::SizeT::size) being defined the same way twice(?) expr_blacklisted: explicitly blacklist poplar expressions due to them using unsupported c++ features equivalent_device_type_blacklist: explicitly blacklist poplar `equivalent_device_type` as it's using unsupported c++ features getdevices_blacklist: explicitly blacklists the `getDevices` function as it returns a vector of incomplete classes
IPUToolkit
https://github.com/JuliaIPU/IPUToolkit.jl.git
[ "MIT" ]
0.15.7
3b1dcbf62e469a67f6733ae493401e53d92ff543
code
1203
module StatsPlots using Reexport import RecipesBase: recipetype import Tables import TableOperations using RecipesPipeline @reexport using Plots import Plots: _cycle using Plots.PlotMeasures using StatsBase using Distributions using LinearAlgebra: eigen, diagm using Widgets, Observables import Observables: AbstractObservable, @map, observe import Widgets: @nodeps import DataStructures: OrderedDict import Clustering: Hclust, nnodes using Interpolations using MultivariateStats: MultivariateStats using AbstractFFTs: fft, ifft import KernelDensity using NaNMath @recipe f(k::KernelDensity.UnivariateKDE) = k.x, k.density @recipe f(k::KernelDensity.BivariateKDE) = k.x, k.y, permutedims(k.density) @shorthands cdensity export @df, dataviewer include("df.jl") include("interact.jl") include("corrplot.jl") include("cornerplot.jl") include("distributions.jl") include("boxplot.jl") include("dotplot.jl") include("violin.jl") include("ecdf.jl") include("hist.jl") include("marginalhist.jl") include("marginalscatter.jl") include("marginalkde.jl") include("bar.jl") include("dendrogram.jl") include("andrews.jl") include("ordinations.jl") include("covellipse.jl") include("errorline.jl") end # module
StatsPlots
https://github.com/JuliaPlots/StatsPlots.jl.git
[ "MIT" ]
0.15.7
3b1dcbf62e469a67f6733ae493401e53d92ff543
code
1574
@userplot AndrewsPlot """ andrewsplot(args...; kw...) Shows each row of an array (or table) as a line. The `x` argument specifies a grouping variable. This is a way to visualize structure in high-dimensional data. https://en.wikipedia.org/wiki/Andrews_plot #Examples ```julia using RDatasets, StatsPlots iris = dataset("datasets", "iris") @df iris andrewsplot(:Species, cols(1:4)) ``` """ andrewsplot @recipe function f(h::AndrewsPlot) if length(h.args) == 2 # specify x if not given x, y = h.args else y = h.args[1] x = ones(size(y, 1)) end seriestype := :andrews # series in a user recipe will have different colors for g in unique(x) @series begin label := "$g" range(-π, stop = π, length = 200), Surface(y[g .== x, :]) #surface needed, or the array will be split into columns end end nothing end # the series recipe @recipe function f(::Type{Val{:andrews}}, x, y, z) y = y.surf rows, cols = size(y) seriestype := :path # these series are the lines, will keep the same colors for j = 1:rows @series begin primary := false ys = zeros(length(x)) terms = [isodd(i) ? cos((i ÷ 2) .* ti) : sin((i ÷ 2) .* ti) for i = 2:cols, ti in x] for ti in eachindex(x) ys[ti] = y[j, 1] / sqrt(2) + sum(y[j, i] .* terms[i - 1, ti] for i = 2:cols) end x := x y := ys () end end x := [] y := [] () end
StatsPlots
https://github.com/JuliaPlots/StatsPlots.jl.git
[ "MIT" ]
0.15.7
3b1dcbf62e469a67f6733ae493401e53d92ff543
code
2527
@userplot GroupedBar recipetype(::Val{:groupedbar}, args...) = GroupedBar(args) Plots.group_as_matrix(g::GroupedBar) = true grouped_xy(x::AbstractVector, y::AbstractArray) = x, y grouped_xy(y::AbstractArray) = 1:size(y, 1), y @recipe function f(g::GroupedBar; spacing = 0) x, y = grouped_xy(g.args...) nr, nc = size(y) isstack = pop!(plotattributes, :bar_position, :dodge) === :stack isylog = pop!(plotattributes, :yscale, :identity) ∈ (:log10, :log) the_ylims = pop!(plotattributes, :ylims, (-Inf, Inf)) # extract xnums and set default bar width. # might need to set xticks as well xnums = if eltype(x) <: Number xdiff = length(x) > 1 ? mean(diff(x)) : 1 bar_width --> 0.8 * xdiff x else bar_width --> 0.8 ux = unique(x) xnums = (1:length(ux)) .- 0.5 xticks --> (xnums, ux) xnums end @assert length(xnums) == nr # compute the x centers. for dodge, make a matrix for each column x = if isstack x else bws = plotattributes[:bar_width] / nc bar_width := bws * clamp(1 - spacing, 0, 1) xmat = zeros(nr, nc) for r = 1:nr bw = _cycle(bws, r) farleft = xnums[r] - 0.5 * (bw * nc) for c = 1:nc xmat[r, c] = farleft + 0.5bw + (c - 1) * bw end end xmat end fill_bottom = if isylog if isfinite(the_ylims[1]) min(minimum(y) / 100, the_ylims[1]) else minimum(y) / 100 end else 0 end # compute fillrange y, fr = isstack ? groupedbar_fillrange(y) : (y, get(plotattributes, :fillrange, [fill_bottom])) if isylog replace!(fr, 0 => fill_bottom) end fillrange := fr seriestype := :bar x, y end function groupedbar_fillrange(y) nr, nc = size(y) # bar series fills from y[nr, nc] to fr[nr, nc], y .>= fr fr = zeros(nr, nc) y = copy(y) y[.!isfinite.(y)] .= 0 for r = 1:nr y_neg = 0 # upper & lower bounds for positive bar y_pos = sum([e for e in y[r, :] if e > 0]) # division subtract towards 0 for c = 1:nc el = y[r, c] if el >= 0 y[r, c] = y_pos y_pos -= el fr[r, c] = y_pos else fr[r, c] = y_neg y_neg += el y[r, c] = y_neg end end end y, fr end
StatsPlots
https://github.com/JuliaPlots/StatsPlots.jl.git
[ "MIT" ]
0.15.7
3b1dcbf62e469a67f6733ae493401e53d92ff543
code
7911
# --------------------------------------------------------------------------- # Box Plot notch_width(q2, q4, N) = 1.58 * (q4 - q2) / sqrt(N) @recipe function f( ::Type{Val{:boxplot}}, x, y, z; notch = false, whisker_range = 1.5, outliers = true, whisker_width = :half, sort_labels_by = identity, xshift = 0.0, ) # if only y is provided, then x will be UnitRange 1:size(y,2) if typeof(x) <: AbstractRange if step(x) == first(x) == 1 x = plotattributes[:series_plotindex] else x = [getindex(x, plotattributes[:series_plotindex])] end end xsegs, ysegs = Segments(), Segments() texts = String[] glabels = sort(collect(unique(x))) warning = false outliers_x, outliers_y = zeros(0), zeros(0) bw = plotattributes[:bar_width] isnothing(bw) && (bw = 0.8) @assert whisker_width === :match || whisker_width == :half || whisker_width >= 0 "whisker_width must be :match, :half, or a positive number" ww = whisker_width === :match ? bw : whisker_width == :half ? bw / 2 : whisker_width for (i, glabel) in enumerate(sort(glabels; by = sort_labels_by)) # filter y values = y[filter(i -> _cycle(x, i) == glabel, 1:length(y))] # compute quantiles q1, q2, q3, q4, q5 = quantile(values, range(0, stop = 1, length = 5)) # notch n = notch_width(q2, q4, length(values)) # warn on inverted notches? if notch && !warning && ((q2 > (q3 - n)) || (q4 < (q3 + n))) @warn("Boxplot's notch went outside hinges. Set notch to false.") warning = true # Show the warning only one time end # make the shape center = Plots.discrete_value!(plotattributes, :x, glabel)[1] + xshift hw = 0.5_cycle(bw, i) # Box width HW = 0.5_cycle(ww, i) # Whisker width l, m, r = center - hw, center, center + hw lw, rw = center - HW, center + HW # internal nodes for notches L, R = center - 0.5 * hw, center + 0.5 * hw # outliers if Float64(whisker_range) != 0.0 # if the range is 0.0, the whiskers will extend to the data limit = whisker_range * (q4 - q2) inside = Float64[] for value in values if (value < (q2 - limit)) || (value > (q4 + limit)) if outliers push!(outliers_y, value) push!(outliers_x, center) end else push!(inside, value) end end # change q1 and q5 to show outliers # using maximum and minimum values inside the limits q1, q5 = Plots.ignorenan_extrema(inside) q1, q5 = (min(q1, q2), max(q4, q5)) # whiskers cannot be inside the box end # Box push!(xsegs, m, lw, rw, m, m) # lower T push!(ysegs, q1, q1, q1, q1, q2) # lower T push!( texts, "Lower fence: $q1", "Lower fence: $q1", "Lower fence: $q1", "Lower fence: $q1", "Q1: $q2", "", ) if notch push!(xsegs, r, r, R, L, l, l, r, r) # lower box push!(xsegs, r, r, l, l, L, R, r, r) # upper box push!(ysegs, q2, q3 - n, q3, q3, q3 - n, q2, q2, q3 - n) # lower box push!( texts, "Q1: $q2", "Median: $q3 ± $n", "Median: $q3 ± $n", "Median: $q3 ± $n", "Median: $q3 ± $n", "Q1: $q2", "Q1: $q2", "Median: $q3 ± $n", "", ) push!(ysegs, q3 + n, q4, q4, q3 + n, q3, q3, q3 + n, q4) # upper box push!( texts, "Median: $q3 ± $n", "Q3: $q4", "Q3: $q4", "Median: $q3 ± $n", "Median: $q3 ± $n", "Median: $q3 ± $n", "Median: $q3 ± $n", "Q3: $q4", "", ) else push!(xsegs, r, r, l, l, r, r) # lower box push!(xsegs, r, l, l, r, r, m) # upper box push!(ysegs, q2, q3, q3, q2, q2, q3) # lower box push!( texts, "Q1: $q2", "Median: $q3", "Median: $q3", "Q1: $q2", "Q1: $q2", "Median: $q3", "", ) push!(ysegs, q4, q4, q3, q3, q4, q4) # upper box push!( texts, "Q3: $q4", "Q3: $q4", "Median: $q3", "Median: $q3", "Q3: $q4", "Q3: $q4", "", ) end push!(xsegs, m, lw, rw, m, m) # upper T push!(ysegs, q5, q5, q5, q5, q4) # upper T push!( texts, "Upper fence: $q5", "Upper fence: $q5", "Upper fence: $q5", "Upper fence: $q5", "Q3: $q4", "", ) end if !Plots.isvertical(plotattributes) # We should draw the plot horizontally! xsegs, ysegs = ysegs, xsegs outliers_x, outliers_y = outliers_y, outliers_x # Now reset the orientation, so that the axes limits are set correctly. orientation := default(:orientation) end @series begin # To prevent linecolor equal to fillcolor (It makes the median visible) if plotattributes[:linecolor] == plotattributes[:fillcolor] plotattributes[:linecolor] = plotattributes[:markerstrokecolor] end primary := true seriestype := :shape x := xsegs.pts y := ysegs.pts () end # Outliers if outliers && !isempty(outliers) @series begin primary := false seriestype := :scatter if get!(plotattributes, :markershape, :circle) === :none plotattributes[:markershape] = :circle end fillrange := nothing x := outliers_x y := outliers_y () end end # Hover primary := false seriestype := :path marker := false if Plots.is_attr_supported(Plots.backend(), :hover) hover := texts end linewidth := 0 x := xsegs.pts y := ysegs.pts () end Plots.@deps boxplot shape scatter # ------------------------------------------------------------------------------ # Grouped Boxplot @userplot GroupedBoxplot recipetype(::Val{:groupedboxplot}, args...) = GroupedBoxplot(args) @recipe function f(g::GroupedBoxplot; spacing = 0.1) x, y = grouped_xy(g.args...) # extract xnums and set default bar width. # might need to set xticks as well ux = unique(x) x = if eltype(x) <: Number bar_width --> (0.8 * mean(diff(sort(ux)))) float.(x) else bar_width --> 0.8 xnums = [findfirst(isequal(xi), ux) for xi in x] .- 0.5 xticks --> (eachindex(ux) .- 0.5, ux) xnums end # shift x values for each group group = get(plotattributes, :group, nothing) if group != nothing gb = RecipesPipeline._extract_group_attributes(group) labels, idxs = getfield(gb, 1), getfield(gb, 2) n = length(labels) bws = plotattributes[:bar_width] / n bar_width := bws * clamp(1 - spacing, 0, 1) for i = 1:n groupinds = idxs[i] Δx = _cycle(bws, i) * (i - (n + 1) / 2) x[groupinds] .+= Δx end end seriestype := :boxplot x, y end Plots.@deps groupedboxplot boxplot
StatsPlots
https://github.com/JuliaPlots/StatsPlots.jl.git
[ "MIT" ]
0.15.7
3b1dcbf62e469a67f6733ae493401e53d92ff543
code
3429
@userplot CornerPlot recipetype(::Val{:cornerplot}, args...) = CornerPlot(args) @recipe function f(cp::CornerPlot; compact = false, maxvariables = 30, histpct = 0.1) mat = cp.args[1] C = cor(mat) @assert typeof(mat) <: AbstractMatrix N = size(mat, 2) if N > maxvariables error( "Requested to plot $N variables in $(N^2) subplots! Likely, the first input needs transposing, otherwise increase maxvariables.", ) end # k is the number of rows/columns to hide k = compact ? 1 : 0 # n is the total number of rows/columns. hists always shown n = N + 1 - k labs = pop!(plotattributes, :label, ["x$i" for i = 1:N]) if labs != [""] && length(labs) != N error("Number of labels not identical to number of datasets") end # build a grid layout, where the histogram sizes are a fixed percentage, and we scatterpcts = ones(n - 1) * (1 - histpct) / (n - 1) g = grid( n, n, widths = vcat(scatterpcts, histpct), heights = vcat(histpct, scatterpcts), ) spidx = 1 indices = zeros(Int, n, n) for i = 1:n, j = 1:n isblank = (i == 1 && j == n) || (compact && i > 1 && j < n && j >= i) g[i, j].attr[:blank] = isblank if !isblank indices[i, j] = spidx spidx += 1 end end layout := g # some defaults legend := false foreground_color_border := nothing margin --> 1mm titlefont --> font(11) fillcolor --> Plots.fg_color(plotattributes) linecolor --> Plots.fg_color(plotattributes) grid --> true ticks := nothing xformatter := x -> "" yformatter := y -> "" link := :both grad = cgrad(get(plotattributes, :markercolor, :RdYlBu)) # figure out good defaults for scatter plot dots: pltarea = 1 / (2n) nsamples = size(mat, 1) markersize --> clamp(pltarea * 800 / sqrt(nsamples), 1, 10) markeralpha --> clamp(pltarea * 100 / nsamples^0.42, 0.005, 0.4) # histograms in the right column for i = 1:N compact && i == 1 && continue @series begin orientation := :h seriestype := :histogram subplot := indices[i + 1 - k, n] grid := false view(mat, :, i) end end # histograms in the top row for j = 1:N compact && j == N && continue @series begin seriestype := :histogram subplot := indices[1, j] grid := false view(mat, :, j) end end # scatters for i = 1:N vi = view(mat, :, i) for j = 1:N # only the lower triangle if compact && i <= j continue end vj = view(mat, :, j) @series begin ticks := :auto if i == N xformatter := :auto xguide := _cycle(labs, j) end if j == 1 yformatter := :auto yguide := _cycle(labs, i) end seriestype := :scatter subplot := indices[i + 1 - k, j] markercolor := grad[0.5 + 0.5C[i, j]] smooth --> true markerstrokewidth --> 0 vj, vi end end # end end end
StatsPlots
https://github.com/JuliaPlots/StatsPlots.jl.git
[ "MIT" ]
0.15.7
3b1dcbf62e469a67f6733ae493401e53d92ff543
code
3938
""" corrplot This plot type shows the correlation among input variables. A correlation plot may be produced by a matrix. A correlation matrix can also be created from the columns of a `DataFrame` using the [`@df`](@ref) macro like so: ```julia @df iris corrplot([:SepalLength :SepalWidth :PetalLength :PetalWidth]) ``` The marker color in scatter plots reveals the degree of correlation. Pass the desired colorgradient to `markercolor`. With the default gradient positive correlations are blue, neutral are yellow and negative are red. In the 2d-histograms, the color gradient shows the frequency of points in that bin (as usual, controlled by `seriescolor`). """ @userplot CorrPlot recipetype(::Val{:corrplot}, args...) = CorrPlot(args) """ to_corrplot_matrix(mat) Transforms the input into a correlation plot matrix. Meant to be overloaded by other types! """ to_corrplot_matrix(x) = x function update_ticks_guides(d::KW, labs, i, j, n) # d[:title] = (i==1 ? _cycle(labs,j) : "") # d[:xticks] = (i==n) d[:xguide] = (i == n ? _cycle(labs, j) : "") # d[:yticks] = (j==1) d[:yguide] = (j == 1 ? _cycle(labs, i) : "") end @recipe function f(cp::CorrPlot) mat = to_corrplot_matrix(cp.args[1]) n = size(mat, 2) C = cor(mat) labs = pop!(plotattributes, :label, [""]) link := :x # need custom linking for y layout := (n, n) legend := false foreground_color_border := nothing margin := 1mm titlefont := font(11) fillcolor --> Plots.fg_color(plotattributes) linecolor --> Plots.fg_color(plotattributes) markeralpha := 0.4 grad = cgrad(get(plotattributes, :markercolor, :RdYlBu)) indices = reshape(1:(n^2), n, n)' title = get(plotattributes, :title, "") title_location = get(plotattributes, :title_location, :center) title := "" # histograms on the diagonal for i = 1:n @series begin if title != "" && title_location === :left && i == 1 title := title end seriestype := :histogram subplot := indices[i, i] grid := false xformatter --> ((i == n) ? :auto : (x -> "")) yformatter --> ((i == 1) ? :auto : (y -> "")) update_ticks_guides(plotattributes, labs, i, i, n) view(mat, :, i) end end # scatters for i = 1:n ylink := setdiff(vec(indices[i, :]), indices[i, i]) vi = view(mat, :, i) for j = 1:n j == i && continue vj = view(mat, :, j) subplot := indices[i, j] update_ticks_guides(plotattributes, labs, i, j, n) if i > j #below diag... scatter @series begin seriestype := :scatter markercolor := grad[0.5 + 0.5C[i, j]] smooth := true markerstrokewidth --> 0 xformatter --> ((i == n) ? :auto : (x -> "")) yformatter --> ((j == 1) ? :auto : (y -> "")) vj, vi end else #above diag... hist2d @series begin seriestype := get(plotattributes, :seriestype, :histogram2d) if title != "" && i == 1 && ( (title_location === :center && j == div(n, 2) + 1) || (title_location === :right && j == n) ) if iseven(n) title_location := :left end title := title end xformatter --> ((i == n) ? :auto : (x -> "")) yformatter --> ((j == 1) ? :auto : (y -> "")) vj, vi end end end end end
StatsPlots
https://github.com/JuliaPlots/StatsPlots.jl.git
[ "MIT" ]
0.15.7
3b1dcbf62e469a67f6733ae493401e53d92ff543
code
1333
""" covellipse(μ, Σ; showaxes=false, n_std=1, n_ellipse_vertices=100) Plot a confidence ellipse of the 2×2 covariance matrix `Σ`, centered at `μ`. The ellipse is the contour line of a Gaussian density function with mean `μ` and variance `Σ` at `n_std` standard deviations. If `showaxes` is true, the two axes of the ellipse are also plotted. """ @userplot CovEllipse @recipe function f(c::CovEllipse; showaxes = false, n_std = 1, n_ellipse_vertices = 100) μ, S = _covellipse_args(c.args; n_std = n_std) θ = range(0, 2π; length = n_ellipse_vertices) A = S * [cos.(θ)'; sin.(θ)'] @series begin seriesalpha --> 0.3 Shape(μ[1] .+ A[1, :], μ[2] .+ A[2, :]) end showaxes && @series begin label := false linecolor --> "gray" ([μ[1] + S[1, 1], μ[1], μ[1] + S[1, 2]], [μ[2] + S[2, 1], μ[2], μ[2] + S[2, 2]]) end end function _covellipse_args( (μ, Σ)::Tuple{AbstractVector{<:Real},AbstractMatrix{<:Real}}; n_std::Real, ) size(μ) == (2,) && size(Σ) == (2, 2) || error("covellipse requires mean of length 2 and covariance of size 2×2.") λ, U = eigen(Σ) μ, n_std * U * diagm(.√λ) end _covellipse_args(args; n_std) = error( "Wrong inputs for covellipse: $(typeof.(args)). " * "Expected real-valued vector μ, real-valued matrix Σ.", )
StatsPlots
https://github.com/JuliaPlots/StatsPlots.jl.git
[ "MIT" ]
0.15.7
3b1dcbf62e469a67f6733ae493401e53d92ff543
code
1640
function treepositions(hc::Hclust, useheight::Bool, orientation = :vertical) order = StatsBase.indexmap(hc.order) nodepos = Dict(-i => (float(order[i]), 0.0) for i in hc.order) xs = Array{Float64}(undef, 4, size(hc.merges, 1)) ys = Array{Float64}(undef, 4, size(hc.merges, 1)) for i = 1:size(hc.merges, 1) x1, y1 = nodepos[hc.merges[i, 1]] x2, y2 = nodepos[hc.merges[i, 2]] xpos = (x1 + x2) / 2 ypos = useheight ? hc.heights[i] : (max(y1, y2) + 1) nodepos[i] = (xpos, ypos) xs[:, i] .= [x1, x1, x2, x2] ys[:, i] .= [y1, ypos, ypos, y2] end if orientation === :horizontal return ys, xs else return xs, ys end end @recipe function f(hc::Hclust; useheight = true, orientation = :vertical) typeof(useheight) <: Bool || error("'useheight' argument must be true or false") legend --> false linecolor --> :black if orientation === :horizontal yforeground_color_axis --> :white ygrid --> false ylims --> (0.5, length(hc.order) + 0.5) yticks --> (1:nnodes(hc), string.(1:nnodes(hc))[hc.order]) if useheight hs = sum(hc.heights) xlims --> (0, hs + hs * 0.01) else xlims --> (0, Inf) end xshowaxis --> useheight else xforeground_color_axis --> :white xgrid --> false xlims --> (0.5, length(hc.order) + 0.5) xticks --> (1:nnodes(hc), string.(1:nnodes(hc))[hc.order]) ylims --> (0, Inf) yshowaxis --> useheight end treepositions(hc, useheight, orientation) end
StatsPlots
https://github.com/JuliaPlots/StatsPlots.jl.git
[ "MIT" ]
0.15.7
3b1dcbf62e469a67f6733ae493401e53d92ff543
code
7438
""" `@df d x` Convert every symbol in the expression `x` with the respective column in `d` if it exists. If you want to avoid replacing the symbol, escape it with `^`. `NA` values are replaced with `NaN` for columns of `Float64` and `""` or `Symbol()` for strings and symbols respectively. `x` can be either a plot command or a block of plot commands. """ macro df(d, x) esc(Expr(:call, df_helper(x), d)) end """ `@df x` Curried version of `@df d x`. Outputs an anonymous function `d -> @df d x`. """ macro df(x) esc(df_helper(x)) end function df_helper(x) i = gensym() Expr(:(->), i, df_helper(i, x)) end function df_helper(d, x) if isa(x, Expr) && x.head === :block # meaning that there were multiple plot commands commands = [ df_helper(d, xx) for xx in x.args if !(isa(xx, Expr) && xx.head === :line || isa(xx, LineNumberNode)) ] # apply the helper recursively return Expr(:block, commands...) elseif isa(x, Expr) && x.head === :call # each function call is operated on alone syms = Any[] vars = Symbol[] plot_call = parse_table_call!(d, x, syms, vars) names = gensym() compute_vars = Expr( :(=), Expr(:tuple, Expr(:tuple, vars...), names), Expr(:call, :($(@__MODULE__).extract_columns_and_names), d, syms...), ) argnames = _argnames(names, x) if (length(plot_call.args) >= 2) && isa(plot_call.args[2], Expr) && (plot_call.args[2].head === :parameters) label_plot_call = Expr( :call, :($(@__MODULE__).add_label), plot_call.args[2], argnames, plot_call.args[1], plot_call.args[3:end]..., ) else label_plot_call = Expr(:call, :($(@__MODULE__).add_label), argnames, plot_call.args...) end return Expr(:block, compute_vars, label_plot_call) else error("Second argument ($x) can only be a block or function call") end end parse_table_call!(d, x, syms, vars) = x function parse_table_call!(d, x::QuoteNode, syms, vars) new_var = gensym(x.value) push!(syms, x) push!(vars, new_var) return new_var end function parse_table_call!(d, x::Expr, syms, vars) if x.head === :. && length(x.args) == 2 isa(x.args[2], QuoteNode) && return x elseif x.head === :call x.args[1] === :^ && length(x.args) == 2 && return x.args[2] if x.args[1] === :cols if length(x.args) == 1 push!(x.args, :($(@__MODULE__).column_names($d))) return parse_table_call!(d, x, syms, vars) end range = x.args[2] new_vars = gensym("range") push!(syms, range) push!(vars, new_vars) return new_vars end elseif x.head === :braces # From Query: use curly brackets to simplify writing named tuples new_ex = Expr(:tuple, x.args...) for (j, field_in_NT) in enumerate(new_ex.args) if isa(field_in_NT, Expr) && field_in_NT.head === :(=) new_ex.args[j] = Expr(:(=), field_in_NT.args...) elseif field_in_NT isa QuoteNode new_ex.args[j] = Expr(:(=), field_in_NT.value, field_in_NT) elseif isa(field_in_NT, Expr) new_ex.args[j] = Expr( :(=), Symbol(filter(t -> t != ':', string(field_in_NT))), field_in_NT, ) elseif isa(field_in_NT, Symbol) new_ex.args[j] = Expr(:(=), field_in_NT, field_in_NT) end end return parse_table_call!(d, new_ex, syms, vars) end return Expr(x.head, (parse_table_call!(d, arg, syms, vars) for arg in x.args)...) end function column_names(t) s = Tables.schema(t) s === nothing ? propertynames(first(Tables.rows(t))) : s.names end not_kw(x) = true not_kw(x::Expr) = !(x.head in [:kw, :parameters]) function insert_kw!(x::Expr, s::Symbol, v) index = isa(x.args[2], Expr) && x.args[2].head === :parameters ? 3 : 2 x.args = vcat(x.args[1:(index - 1)], Expr(:kw, s, v), x.args[index:end]) end function _argnames(names, x::Expr) Expr(:vect, [_arg2string(names, s) for s in x.args[2:end] if not_kw(s)]...) end _arg2string(names, x) = stringify(x) function _arg2string(names, x::Expr) if x.head === :call && x.args[1] == :cols return :($(@__MODULE__).compute_name($names, $(x.args[2]))) elseif x.head === :call && x.args[1] == :hcat return hcat(stringify.(x.args[2:end])...) elseif x.head === :hcat return hcat(stringify.(x.args)...) else return stringify(x) end end stringify(x) = filter(t -> t != ':', string(x)) compute_name(names, i::Int) = names[i] compute_name(names, i::Symbol) = i compute_name(names, i) = reshape([compute_name(names, ii) for ii in i], 1, :) """ add_label(argnames, f, args...; kwargs...) This function ensures that labels are passed to the plotting command, if it accepts them. If `f` does not accept keyword arguments, and `kwargs` is empty, it will only forward `args...`. If the user has provided keyword arguments, but `f` does not accept them, then it will error. """ function add_label(argnames, f, args...; kwargs...) i = findlast(t -> isa(t, Expr) || isa(t, AbstractArray), argnames) try if (i === nothing) return f(args...; kwargs...) else return f(label = stringify.(argnames[i]), args...; kwargs...) end catch e if e isa MethodError || (e isa ErrorException && occursin("does not accept keyword arguments", e.msg)) # check if the user has supplied kwargs, then we need to rethrow the error isempty(kwargs) || rethrow(e) # transmit only args to `f` return f(args...) else rethrow(e) end end end get_col(s::Int, col_nt, names) = col_nt[names[s]] get_col(s::Symbol, col_nt, names) = get(col_nt, s, s) get_col(syms, col_nt, names) = hcat((get_col(s, col_nt, names) for s in syms)...) # get the appropriate name when passed an Integer add_sym!(cols, i::Integer, names) = push!(cols, names[i]) # check for errors in Symbols add_sym!(cols, s::Symbol, names) = s in names ? push!(cols, s) : cols # recursively extract column names function add_sym!(cols, s, names) for si in s add_sym!(cols, si, names) end cols end """ extract_columns_and_names(df, syms...) Extracts columns and their names (if the column number is an integer) into a slightly complex `Tuple`. The structure goes as `((columndata...), names)`. This is unpacked by the [`@df`](@ref) macro into `gensym`'ed variables, which are passed to the plotting function. !!! note If you want to extend the [`@df`](@ref) macro to work with your custom type, this is the function you should overload! """ function extract_columns_and_names(df, syms...) Tables.istable(df) || error("Only tables are supported") names = column_names(df) # extract selected column names selected_cols = add_sym!(Symbol[], syms, names) cols = Tables.columntable(TableOperations.select(df, unique(selected_cols)...)) return Tuple(get_col(s, cols, names) for s in syms), names end
StatsPlots
https://github.com/JuliaPlots/StatsPlots.jl.git
[ "MIT" ]
0.15.7
3b1dcbf62e469a67f6733ae493401e53d92ff543
code
3279
# pick a nice default x range given a distribution function default_range(dist::Distribution, alpha = 0.0001) minval = isfinite(minimum(dist)) ? minimum(dist) : quantile(dist, alpha) maxval = isfinite(maximum(dist)) ? maximum(dist) : quantile(dist, 1 - alpha) minval, maxval end function default_range(m::Distributions.UnivariateMixture, alpha = 0.0001) mapreduce(_minmax, 1:Distributions.ncomponents(m)) do k default_range(Distributions.component(m, k), alpha) end end _minmax((xmin, xmax), (ymin, ymax)) = (min(xmin, ymin), max(xmax, ymax)) yz_args(dist) = default_range(dist) function yz_args(dist::DiscreteUnivariateDistribution) minval, maxval = extrema(dist) if isfinite(minval) && isfinite(maxval) # bounded sup = support(dist) return sup isa AbstractVector ? (sup,) : ([sup...],) else # unbounded return (UnitRange(promote(default_range(dist)...)...),) end end # this "user recipe" adds a default x vector based on the distribution's μ and σ @recipe function f(dist::Distribution) if dist isa DiscreteUnivariateDistribution seriestype --> :sticks end (dist, yz_args(dist)...) end @recipe function f(m::Distributions.UnivariateMixture; components = true) if m isa DiscreteUnivariateDistribution seriestype --> :sticks end if components for k = 1:Distributions.ncomponents(m) c = Distributions.component(m, k) @series begin (c, yz_args(c)...) end end else (m, yz_args(m)...) end end @recipe function f(distvec::AbstractArray{<:Distribution}, yz...) for di in distvec @series begin seriesargs = isempty(yz) ? yz_args(di) : yz if di isa DiscreteUnivariateDistribution seriestype --> :sticks end (di, seriesargs...) end end end # this "type recipe" replaces any instance of a distribution with a function mapping xi to yi @recipe f(::Type{T}, dist::T; func = pdf) where {T<:Distribution} = xi -> func(dist, xi) #----------------------------------------------------------------------------- # qqplots @recipe function f(h::QQPair; qqline = :identity) if qqline in (:fit, :quantile, :identity, :R) xs = [extrema(h.qx)...] if qqline === :identity ys = xs elseif qqline === :fit itc, slp = hcat(fill!(similar(h.qx), 1), h.qx) \ h.qy ys = slp .* xs .+ itc else # if qqline === :quantile || qqline == :R quantx, quanty = quantile(h.qx, [0.25, 0.75]), quantile(h.qy, [0.25, 0.75]) slp = diff(quanty) ./ diff(quantx) ys = quanty .+ slp .* (xs .- quantx) end @series begin primary := false seriestype := :path xs, ys end end seriestype --> :scatter legend --> false h.qx, h.qy end loc(D::Type{T}, x) where {T<:Distribution} = fit(D, x), x loc(D, x) = D, x @userplot QQPlot recipetype(::Val{:qqplot}, args...) = QQPlot(args) @recipe f(h::QQPlot) = qqbuild(loc(h.args[1], h.args[2])...) @userplot QQNorm recipetype(::Val{:qqnorm}, args...) = QQNorm(args) @recipe f(h::QQNorm) = QQPlot((Normal, h.args[1]))
StatsPlots
https://github.com/JuliaPlots/StatsPlots.jl.git
[ "MIT" ]
0.15.7
3b1dcbf62e469a67f6733ae493401e53d92ff543
code
3623
# --------------------------------------------------------------------------- # Dot Plot (strip plot, beeswarm) @recipe function f(::Type{Val{:dotplot}}, x, y, z; mode = :density, side = :both) # if only y is provided, then x will be UnitRange 1:size(y, 2) if typeof(x) <: AbstractRange if step(x) == first(x) == 1 x = plotattributes[:series_plotindex] else x = [getindex(x, plotattributes[:series_plotindex])] end end grouplabels = sort(collect(unique(x))) barwidth = plotattributes[:bar_width] barwidth == nothing && (barwidth = 0.8) getoffsets(halfwidth, y) = mode === :uniform ? (rand(length(y)) .* 2 .- 1) .* halfwidth : mode === :density ? violinoffsets(halfwidth, y) : zeros(length(y)) points_x, points_y = zeros(0), zeros(0) for (i, grouplabel) in enumerate(grouplabels) # filter y groupy = y[filter(i -> _cycle(x, i) == grouplabel, 1:length(y))] center = Plots.discrete_value!(plotattributes, :x, grouplabel)[1] halfwidth = 0.5_cycle(barwidth, i) offsets = getoffsets(halfwidth, groupy) if side === :left offsets = -abs.(offsets) elseif side === :right offsets = abs.(offsets) end append!(points_y, groupy) append!(points_x, center .+ offsets) end seriestype := :scatter x := points_x y := points_y () end Plots.@deps dotplot scatter Plots.@shorthands dotplot function violinoffsets(maxwidth, y) normalizewidths(maxwidth, widths) = maxwidth * widths / Plots.ignorenan_maximum(widths) function getlocalwidths(widths, centers, y) upperbounds = [violincenters[violincenters .> yval] for yval ∈ y] .|> findmin .|> first lowercenters = findmax.([violincenters[violincenters .≤ yval] for yval ∈ y]) lowerbounds, lowerindexes = first.(lowercenters), last.(lowercenters) δs = (y .- lowerbounds) ./ (upperbounds .- lowerbounds) itp = interpolate(widths, BSpline(Quadratic(Reflect(OnCell())))) localwidths = itp.(lowerindexes .+ δs) end violinwidths, violincenters = violin_coords(y) violinwidths = normalizewidths(maxwidth, violinwidths) localwidths = getlocalwidths(violinwidths, violincenters, y) offsets = (rand(length(y)) .* 2 .- 1) .* localwidths end # ------------------------------------------------------------------------------ # Grouped dotplot @userplot GroupedDotplot recipetype(::Val{:groupeddotplot}, args...) = GroupedDotplot(args) @recipe function f(g::GroupedDotplot; spacing = 0.1) x, y = grouped_xy(g.args...) # extract xnums and set default bar width. # might need to set xticks as well ux = unique(x) x = if eltype(x) <: Number bar_width --> (0.8 * mean(diff(sort(ux)))) float.(x) else bar_width --> 0.8 xnums = [findfirst(isequal(xi), ux) for xi in x] .- 0.5 xticks --> (eachindex(ux) .- 0.5, ux) xnums end # shift x values for each group group = get(plotattributes, :group, nothing) if group != nothing gb = RecipesPipeline._extract_group_attributes(group) labels, idxs = getfield(gb, 1), getfield(gb, 2) n = length(labels) bws = plotattributes[:bar_width] / n bar_width := bws * clamp(1 - spacing, 0, 1) for i = 1:n groupinds = idxs[i] Δx = _cycle(bws, i) * (i - (n + 1) / 2) x[groupinds] .+= Δx end end seriestype := :dotplot x, y end Plots.@deps groupeddotplot dotplot
StatsPlots
https://github.com/JuliaPlots/StatsPlots.jl.git
[ "MIT" ]
0.15.7
3b1dcbf62e469a67f6733ae493401e53d92ff543
code
689
# --------------------------------------------------------------------------- # empirical CDF @recipe function f(ecdf::StatsBase.ECDF) seriestype := :steppost legend --> :topleft x = [ecdf.sorted_values[1]; ecdf.sorted_values] if :weights in propertynames(ecdf) && !isempty(ecdf.weights) # support StatsBase versions >v0.32.0 y = [0; cumsum(ecdf.weights) ./ sum(ecdf.weights)] else y = range(0, 1; length = length(x)) end x, y end @userplot ECDFPlot recipetype(::Val{:ecdfplot}, args...) = ECDFPlot(args) @recipe function f(p::ECDFPlot) x = p.args[1] if !isa(x, StatsBase.ECDF) x = StatsBase.ecdf(x) end x end
StatsPlots
https://github.com/JuliaPlots/StatsPlots.jl.git
[ "MIT" ]
0.15.7
3b1dcbf62e469a67f6733ae493401e53d92ff543
code
10410
@userplot ErrorLine """ # StatsPlots.errorline(x, y, arg): Function for parsing inputs to easily make a [`ribbons`] (https://ggplot2.tidyverse.org/reference/geom_ribbon.html), stick errorbar (https://www.mathworks.com/help/matlab/ref/errorbar.html), or plume (https://stackoverflow.com/questions/65510619/how-to-prepare-my-data-for-plume-plots) plot while allowing for easily controlling error type and NaN handling. # Inputs: default values are indicated with *s x (vector, unit range) - the values along the x-axis for each y-point y (matrix [x, repeat, group]) - values along y-axis wrt x. The first dimension must be of equal length to that of x. The second dimension is treated as the repeated observations and error is computed along this dimension. If the matrix has a 3rd dimension this is treated as a new group. error_style (`Symbol` - *:ribbon*, :stick, :plume) - determines whether to use a ribbon style or stick style error representation. centertype (symbol - *:mean* or :median) - which approach to use to represent the central value of y at each x-value. errortype (symbol - *:std*, :sem, :percentile) - which error metric to use to show the distribution of y at each x-value. percentiles (Vector{Int64} *[25, 75]*) - if using errortype === :percentile then which percentiles to use as bounds. groupcolor (Symbol, RGB, Vector of Symbol or RGB) - Declares the color for each group. If no value is passed then will use the default colorscheme. If one value is given then it will use that color for all groups. If multiple colors are given then it will use a different color for each group. secondarycolor (`Symbol`, `RGB`, `:matched` - *:Gray60*) - When using stick mode this will allow for the setting of the stick color. If `:matched` is given then the color of the sticks with match that of the main line. secondarylinealpha (float *.1*) - alpha value of plume lines. numsecondarylines (int *100*) - number of plume lines to plot behind central line. stickwidth (Float64 *.01*) - How much of the x-axis the horizontal aspect of the error stick should take up. # Example ```julia x = 1:10 y = fill(NaN, 10, 100, 3) for i = axes(y,3) y[:,:,i] = collect(1:2:20) .+ rand(10,100).*5 .* collect(1:2:20) .+ rand()*100 end y = reshape(1:100, 10, 10); errorline(1:10, y) ``` """ errorline function compute_error( y::AbstractMatrix, centertype::Symbol, errortype::Symbol, percentiles::AbstractVector, ) y_central = fill(NaN, size(y, 1)) # NaNMath doesn't accept Ints so convert to AbstractFloat if necessary if eltype(y) <: Integer y = float(y) end # First compute the center y_central = if centertype === :mean mapslices(NaNMath.mean, y, dims = 2) elseif centertype === :median mapslices(NaNMath.median, y, dims = 2) else error("Invalid center type. Valid symbols include :mean or :median") end # Takes 2d matrix [x,y] and computes the desired error type for each row (value of x) if errortype === :std || errortype === :sem y_error = mapslices(NaNMath.std, y, dims = 2) if errortype == :sem y_error = y_error ./ sqrt(size(y, 2)) end elseif errortype === :percentile y_lower = fill(NaN, size(y, 1)) y_upper = fill(NaN, size(y, 1)) if any(isnan.(y)) # NaNMath does not have a percentile function so have to go via StatsBase for i in axes(y, 1) yi = y[i, .!isnan.(y[i, :])] y_lower[i] = percentile(yi, percentiles[1]) y_upper[i] = percentile(yi, percentiles[2]) end else y_lower = mapslices(Y -> percentile(Y, percentiles[1]), y, dims = 2) y_upper = mapslices(Y -> percentile(Y, percentiles[2]), y, dims = 2) end y_error = (y_central .- y_lower, y_upper .- y_central) # Difference from center value else error("Invalid error type. Valid symbols include :std, :sem, :percentile") end return y_central, y_error end @recipe function f( e::ErrorLine; errorstyle = :ribbon, centertype = :mean, errortype = :std, percentiles = [25, 75], groupcolor = nothing, secondarycolor = nothing, stickwidth = 0.01, secondarylinealpha = 0.1, numsecondarylines = 100, secondarylinewidth = 1, ) if length(e.args) == 1 # If only one input is given assume it is y-values in the form [x,obs] y = e.args[1] x = 1:size(y, 1) else # Otherwise assume that the first two inputs are x and y x = e.args[1] y = e.args[2] # Check y orientation ndims(y) > 3 && error("ndims(y) > 3") if !any(size(y) .== length(x)) error("Size of x and y do not match") elseif ndims(y) == 2 && size(y, 1) != length(x) && size(y, 2) == length(x) # Check if y needs to be transposed or transmuted y = transpose(y) elseif ndims(y) == 3 && size(y, 1) != length(x) error( "When passing a 3 dimensional matrix as y, the axes must be [x, repeat, group]", ) end end # Determine if a color palette is being used so it can be passed to secondary lines if :color_palette ∉ keys(plotattributes) color_palette = :default else color_palette = plotattributes[:color_palette] end # Parse different color type if groupcolor isa Symbol || groupcolor isa RGB{Float64} || groupcolor isa RGBA{Float64} groupcolor = [groupcolor] end # Check groupcolor format if (groupcolor !== nothing && ndims(y) > 2) && length(groupcolor) == 1 groupcolor = repeat(groupcolor, size(y, 3)) # Use the same color for all groups elseif (groupcolor !== nothing && ndims(y) > 2) && length(groupcolor) < size(y, 3) error("$(length(groupcolor)) colors given for a matrix with $(size(y,3)) groups") elseif groupcolor === nothing gsi_counter = 0 for i = 1:length(plotattributes[:plot_object].series_list) if plotattributes[:plot_object].series_list[i].plotattributes[:primary] gsi_counter += 1 end end # Start at next index and allow wrapping of indices gsi_counter += 1 idx = (gsi_counter:(gsi_counter + size(y, 3))) .% length(palette(color_palette)) idx[findall(x -> x == 0, idx)] .= length(palette(color_palette)) groupcolor = palette(color_palette)[idx] end if errorstyle === :plume && numsecondarylines > size(y, 2) # Override numsecondarylines numsecondarylines = size(y, 2) end for g in axes(y, 3) # Iterate through 3rd dimension # Compute center and distribution for each value of x y_central, y_error = compute_error(y[:, :, g], centertype, errortype, percentiles) if errorstyle === :ribbon seriestype := :path @series begin x := x y := y_central ribbon := y_error fillalpha --> 0.1 linecolor := groupcolor[g] fillcolor := groupcolor[g] () # Suppress implicit return end elseif errorstyle === :stick x_offset = diff(extrema(x) |> collect)[1] * stickwidth seriestype := :path for (i, xi) in enumerate(x) # Error sticks @series begin primary := false x := [xi - x_offset, xi + x_offset, xi, xi, xi + x_offset, xi - x_offset] if errortype === :percentile y := [ repeat([y_central[i] - y_error[1][i]], 3) repeat([y_central[i] + y_error[2][i]], 3) ] else y := [ repeat([y_central[i] - y_error[i]], 3) repeat([y_central[i] + y_error[i]], 3) ] end # Set the stick color if secondarycolor === nothing linecolor := :gray60 elseif secondarycolor === :matched linecolor := groupcolor[g] else linecolor := secondarycolor end linewidth := secondarylinewidth () # Suppress implicit return end end # Base line seriestype := :line @series begin primary := true x := x y := y_central linecolor := groupcolor[g] () end elseif errorstyle === :plume num_obs = size(y, 2) if num_obs > numsecondarylines sub_sample_idx = sample(1:num_obs, numsecondarylines, replace = false) y_sub_sample = y[:, sub_sample_idx, g] else y_sub_sample = y[:, :, g] end seriestype := :path for i = 1:numsecondarylines # Background paths @series begin primary := false x := x y := y_sub_sample[:, i] # Set the stick color if secondarycolor === nothing || secondarycolor === :matched linecolor := groupcolor[g] else linecolor := secondarycolor end linealpha := secondarylinealpha linewidth := secondarylinewidth () # Suppress implicit return end end # Base line seriestype := :line @series begin primary := true x := x y := y_central linecolor := groupcolor[g] linewidth --> 3 # Make it stand out against the plume better () end else error("Invalid error style. Valid symbols include :ribbon, :stick, or :plume.") end end end
StatsPlots
https://github.com/JuliaPlots/StatsPlots.jl.git
[ "MIT" ]
0.15.7
3b1dcbf62e469a67f6733ae493401e53d92ff543
code
7346
# --------------------------------------------------------------------------- # density @recipe function f( ::Type{Val{:density}}, x, y, z; trim = false, bandwidth = KernelDensity.default_bandwidth(y), ) newx, newy = violin_coords(y, trim = trim, wts = plotattributes[:weights], bandwidth = bandwidth) if Plots.isvertical(plotattributes) newx, newy = newy, newx end x := newx y := newy seriestype := :path () end Plots.@deps density path # --------------------------------------------------------------------------- # cumulative density @recipe function f( ::Type{Val{:cdensity}}, x, y, z; trim = false, npoints = 200, bandwidth = KernelDensity.default_bandwidth(y), ) newx, newy = violin_coords(y, trim = trim, wts = plotattributes[:weights], bandwidth = bandwidth) if Plots.isvertical(plotattributes) newx, newy = newy, newx end newy = cumsum(float(yi) for yi in newy) newy ./= newy[end] x := newx y := newy seriestype := :path () end Plots.@deps cdensity path ea_binnumber(y, bin::AbstractVector) = error("You cannot specify edge locations for equal area histogram") ea_binnumber(y, bin::Real) = (floor(bin) == bin || error("Only integer or symbol values accepted by bins"); Int(bin)) ea_binnumber(y, bin::Int) = bin ea_binnumber(y, bin::Symbol) = Plots._auto_binning_nbins((y,), 1, mode = bin) @recipe function f(::Type{Val{:ea_histogram}}, x, y, z) bin = ea_binnumber(y, plotattributes[:bins]) bins := quantile(y, range(0, stop = 1, length = bin + 1)) normalize := :density seriestype := :barhist () end Plots.@deps histogram barhist push!(Plots._histogram_like, :ea_histogram) @shorthands ea_histogram @recipe function f(::Type{Val{:testhist}}, x, y, z) markercolor --> :red seriestype := :scatter () end @shorthands testhist # --------------------------------------------------------------------------- # grouped histogram @userplot GroupedHist Plots.group_as_matrix(g::GroupedHist) = true @recipe function f(p::GroupedHist) _, v = grouped_xy(p.args...) group = get(plotattributes, :group, nothing) bins = get(plotattributes, :bins, :auto) normed = get(plotattributes, :normalize, false) weights = get(plotattributes, :weights, nothing) # compute edges from ungrouped data h = Plots._make_hist((vec(copy(v)),), bins; normed = normed, weights = weights) nbins = length(h.weights) edges = h.edges[1] bar_width --> mean(map(i -> edges[i + 1] - edges[i], 1:nbins)) x = map(i -> (edges[i] + edges[i + 1]) / 2, 1:nbins) if group === nothing y = reshape(h.weights, nbins, 1) else gb = RecipesPipeline._extract_group_attributes(group) labels, idxs = getfield(gb, 1), getfield(gb, 2) ngroups = length(labels) ntot = count(x -> !isnan(x), v) # compute weights (frequencies) by group using those edges y = fill(NaN, nbins, ngroups) for i = 1:ngroups groupinds = idxs[i] v_i = filter(x -> !isnan(x), v[:, i]) w_i = weights == nothing ? nothing : weights[groupinds] h_i = Plots._make_hist((v_i,), h.edges; normed = false, weights = w_i) if normed y[:, i] .= h_i.weights .* (length(v_i) / ntot / sum(h_i.weights)) else y[:, i] .= h_i.weights end end end GroupedBar((x, y)) end # --------------------------------------------------------------------------- # Compute binsizes using Wand (1997)'s criterion # Ported from R code located here https://github.com/cran/KernSmooth/tree/master/R "Returns optimal histogram edge positions in accordance to Wand (1995)'s criterion'" Plots.wand_edges(x::AbstractVector, args...) = (binwidth = wand_bins(x, args...); (minimum(x) - binwidth):binwidth:(maximum(x) + binwidth)) "Returns optimal histogram bin widths in accordance to Wand (1995)'s criterion'" function wand_bins(x, scalest = :minim, gridsize = 401, range_x = extrema(x), trun = true) n = length(x) minx, maxx = range_x gpoints = range(minx, stop = maxx, length = gridsize) gcounts = linbin(x, gpoints, trun = trun) scalest = if scalest === :stdev sqrt(var(x)) elseif scalest === :iqr (quantile(x, 3 // 4) - quantile(x, 1 // 4)) / 1.349 elseif scalest === :minim min((quantile(x, 3 // 4) - quantile(x, 1 // 4)) / 1.349, sqrt(var(x))) else error("scalest must be one of :stdev, :iqr or :minim (default)") end scalest == 0 && error("scale estimate is zero for input data") sx = (x .- mean(x)) ./ scalest sa = (minx - mean(x)) / scalest sb = (maxx - mean(x)) / scalest gpoints = range(sa, stop = sb, length = gridsize) gcounts = linbin(sx, gpoints, trun = trun) hpi = begin alpha = ((2 / (11 * n))^(1 / 13)) * sqrt(2) psi10hat = bkfe(gcounts, 10, alpha, [sa, sb]) alpha = (-105 * sqrt(2 / pi) / (psi10hat * n))^(1 // 11) psi8hat = bkfe(gcounts, 8, alpha, [sa, sb]) alpha = (15 * sqrt(2 / pi) / (psi8hat * n))^(1 / 9) psi6hat = bkfe(gcounts, 6, alpha, [sa, sb]) alpha = (-3 * sqrt(2 / pi) / (psi6hat * n))^(1 / 7) psi4hat = bkfe(gcounts, 4, alpha, [sa, sb]) alpha = (sqrt(2 / pi) / (psi4hat * n))^(1 / 5) psi2hat = bkfe(gcounts, 2, alpha, [sa, sb]) (6 / (-psi2hat * n))^(1 / 3) end scalest * hpi end function linbin(X, gpoints; trun = true) n, M = length(X), length(gpoints) a, b = gpoints[1], gpoints[M] gcnts = zeros(M) delta = (b - a) / (M - 1) for i = 1:n lxi = ((X[i] - a) / delta) + 1 li = floor(Int, lxi) rem = lxi - li if 1 <= li < M gcnts[li] += 1 - rem gcnts[li + 1] += rem end if !trun if lt < 1 gcnts[1] += 1 end if li >= M gcnts[M] += 1 end end end gcnts end "binned kernel function estimator" function bkfe(gcounts, drv, bandwidth, range_x) bandwidth <= 0 && error("'bandwidth' must be strictly positive") a, b = range_x h = bandwidth M = length(gcounts) gpoints = range(a, stop = b, length = M) ## Set the sample size and bin width n = sum(gcounts) delta = (b - a) / (M - 1) ## Obtain kernel weights tau = 4 + drv L = min(Int(fld(tau * h, delta)), M) lvec = 0:L arg = lvec .* delta / h kappam = pdf.(Normal(), arg) ./ h^(drv + 1) hmold0, hmnew = ones(length(arg)), ones(length(arg)) hmold1 = arg if drv >= 2 for i in (2:drv) hmnew = arg .* hmold1 .- (i - 1) .* hmold0 hmold0 = hmold1 # Compute mth degree Hermite polynomial hmold1 = hmnew # by recurrence. end end kappam = hmnew .* kappam ## Now combine weights and counts to obtain estimate ## we need P >= 2L+1L, M: L <= M. P = nextpow(2, M + L + 1) kappam = [kappam; zeros(P - 2 * L - 1); reverse(kappam[2:end])] Gcounts = [gcounts; zeros(P - M)] kappam = fft(kappam) Gcounts = fft(Gcounts) sum(gcounts .* (real(ifft(kappam .* Gcounts)))[1:M]) / (n^2) end
StatsPlots
https://github.com/JuliaPlots/StatsPlots.jl.git
[ "MIT" ]
0.15.7
3b1dcbf62e469a67f6733ae493401e53d92ff543
code
4107
plot_function(plt::Function, grouped) = plt plot_function(plt::Tuple, grouped) = grouped ? plt[2] : plt[1] combine_cols(dict, ns) = length(ns) > 1 ? hcat((dict[n] for n in ns)...) : dict[ns[1]] function dataviewer(t; throttle = 0.1, nbins = 30, nbins_range = 1:100) (t isa AbstractObservable) || (t = Observable{Any}(t)) coltable = map(Tables.columntable, t) @show names = map(collect ∘ keys, coltable) dict = @map Dict((key, val) for (key, val) in pairs(&coltable)) x = Widgets.dropdown(names, placeholder = "First axis", multiple = true) y = Widgets.dropdown(names, placeholder = "Second axis", multiple = true) y_toggle = Widgets.togglecontent(y, value = false, label = "Second axis") plot_type = Widgets.dropdown( OrderedDict( "line" => Plots.plot, "scatter" => Plots.scatter, "bar" => (Plots.bar, StatsPlots.groupedbar), "boxplot" => (StatsPlots.boxplot, StatsPlots.groupedboxplot), "corrplot" => StatsPlots.corrplot, "cornerplot" => StatsPlots.cornerplot, "density" => StatsPlots.density, "cdensity" => StatsPlots.cdensity, "histogram" => StatsPlots.histogram, "marginalhist" => StatsPlots.marginalhist, "violin" => (StatsPlots.violin, StatsPlots.groupedviolin), ), placeholder = "Plot type", ) # Add bins if the plot allows it display_nbins = @map (&plot_type) in [corrplot, cornerplot, histogram, marginalhist] ? "block" : "none" nbins = (Widgets.slider( nbins_range, extra_obs = ["display" => display_nbins], value = nbins, label = "number of bins", )) nbins.scope.dom = Widgets.div( nbins.scope.dom, attributes = Dict("data-bind" => "style: {display: display}"), ) nbins_throttle = Observables.throttle(throttle, nbins) by = Widgets.dropdown(names, multiple = true, placeholder = "Group by") by_toggle = Widgets.togglecontent(by, value = false, label = "Split data") plt = Widgets.button("plot") output = @map begin if (&plt == 0) plot() else args = Any[] # add first and maybe second argument push!(args, combine_cols(&dict, x[])) has_y = y_toggle[] && !isempty(y[]) has_y && push!(args, combine_cols(&dict, y[])) # compute automatic kwargs kwargs = Dict() # grouping kwarg has_by = by_toggle[] && !isempty(by[]) by_tup = Tuple(getindex(&dict, b) for b in by[]) has_by && (kwargs[:group] = NamedTuple{Tuple(by[])}(by_tup)) # label kwarg if length(x[]) > 1 kwargs[:label] = x[] elseif y_toggle[] && length(y[]) > 1 kwargs[:label] = y[] end # x and y labels densityplot1D = plot_type[] in [cdensity, density, histogram] (length(x[]) == 1 && (densityplot1D || has_y)) && (kwargs[:xlabel] = x[][1]) if has_y && length(y[]) == 1 kwargs[:ylabel] = y[][1] elseif !has_y && !densityplot1D && length(x[]) == 1 kwargs[:ylabel] = x[][1] end plot_func = plot_function(plot_type[], has_by) plot_func(args...; nbins = &nbins_throttle, kwargs...) end end wdg = Widget{:dataviewer}( [ "x" => x, "y" => y, "y_toggle" => y_toggle, "by" => by, "by_toggle" => by_toggle, "plot_type" => plot_type, "plot_button" => plt, "nbins" => nbins, ], output = output, ) @layout! wdg Widgets.div( Widgets.div(:x, :y_toggle, :plot_type, :by_toggle, :plot_button), Widgets.div(style = Dict("width" => "3em")), Widgets.div(Widgets.observe(_), :nbins), style = Dict("display" => "flex", "direction" => "row"), ) end
StatsPlots
https://github.com/JuliaPlots/StatsPlots.jl.git
[ "MIT" ]
0.15.7
3b1dcbf62e469a67f6733ae493401e53d92ff543
code
1749
@shorthands marginalhist @recipe function f(::Type{Val{:marginalhist}}, plt::AbstractPlot; density = false) x, y = plotattributes[:x], plotattributes[:y] i = isfinite.(x) .& isfinite.(y) x, y = x[i], y[i] bns = get(plotattributes, :bins, :auto) scale = get(plotattributes, :scale, :identity) edges1, edges2 = Plots._hist_edges((x, y), bns) xlims, ylims = map( x -> Plots.scale_lims( Plots.ignorenan_extrema(x)..., Plots.default_widen_factor, scale, ), (x, y), ) # set up the subplots legend --> false link := :both grid --> false layout --> @layout [ tophist _ hist2d{0.9w,0.9h} righthist ] # main histogram2d @series begin seriestype := :histogram2d right_margin --> 0mm top_margin --> 0mm subplot := 2 bins := (edges1, edges2) xlims --> xlims ylims --> ylims end # these are common to both marginal histograms ticks := nothing xguide := "" yguide := "" foreground_color_border := nothing fillcolor --> Plots.fg_color(plotattributes) linecolor --> Plots.fg_color(plotattributes) if density trim := true seriestype := :density else seriestype := :histogram end # upper histogram @series begin subplot := 1 bottom_margin --> 0mm bins := edges1 y := x xlims --> xlims end # right histogram @series begin orientation := :h subplot := 3 left_margin --> 0mm bins := edges2 y := y ylims --> ylims end end # # now you can plot like: # marginalhist(rand(1000), rand(1000))
StatsPlots
https://github.com/JuliaPlots/StatsPlots.jl.git
[ "MIT" ]
0.15.7
3b1dcbf62e469a67f6733ae493401e53d92ff543
code
1534
@userplot MarginalKDE @recipe function f(kc::MarginalKDE; levels = 10, clip = ((-3.0, 3.0), (-3.0, 3.0))) x, y = kc.args x = vec(x) y = vec(y) m_x = median(x) m_y = median(y) dx_l = m_x - quantile(x, 0.16) dx_h = quantile(x, 0.84) - m_x dy_l = m_y - quantile(y, 0.16) dy_h = quantile(y, 0.84) - m_y xmin = m_x + clip[1][1] * dx_l xmax = m_x + clip[1][2] * dx_h ymin = m_y + clip[2][1] * dy_l ymax = m_y + clip[2][2] * dy_h k = KernelDensity.kde((x, y)) kx = KernelDensity.kde(x) ky = KernelDensity.kde(y) ps = pdf.(Ref(k), x, y) ls = [] for p in range(1.0 / levels, stop = 1 - 1.0 / levels, length = levels - 1) push!(ls, quantile(ps, p)) end legend --> false layout := @layout [ topdensity _ contour{0.9w,0.9h} rightdensity ] @series begin seriestype := :contour levels := ls fill := false colorbar := false subplot := 2 xlims := (xmin, xmax) ylims := (ymin, ymax) (collect(k.x), collect(k.y), k.density') end ticks := nothing xguide := "" yguide := "" @series begin seriestype := :density subplot := 1 xlims := (xmin, xmax) ylims := (0, 1.1 * maximum(kx.density)) x end @series begin seriestype := :density subplot := 3 orientation := :h xlims := (0, 1.1 * maximum(ky.density)) ylims := (ymin, ymax) y end end
StatsPlots
https://github.com/JuliaPlots/StatsPlots.jl.git
[ "MIT" ]
0.15.7
3b1dcbf62e469a67f6733ae493401e53d92ff543
code
1674
@shorthands marginalscatter @recipe function f(::Type{Val{:marginalscatter}}, plt::AbstractPlot; density = false) x, y = plotattributes[:x], plotattributes[:y] i = isfinite.(x) .& isfinite.(y) x, y = x[i], y[i] scale = get(plotattributes, :scale, :identity) xlims, ylims = map( x -> Plots.scale_lims( Plots.ignorenan_extrema(x)..., Plots.default_widen_factor, scale, ), (x, y), ) # set up the subplots legend --> false link := :both grid --> false layout --> @layout [ topscatter _ scatter2d{0.9w,0.9h} rightscatter ] # main scatter2d @series begin seriestype := :scatter right_margin --> 0mm top_margin --> 0mm subplot := 2 xlims --> xlims ylims --> ylims end # these are common to both marginal scatter ticks := nothing xguide := "" yguide := "" fillcolor --> Plots.fg_color(plotattributes) linecolor --> Plots.fg_color(plotattributes) if density trim := true seriestype := :density else seriestype := :scatter end # upper scatter @series begin subplot := 1 bottom_margin --> 0mm showaxis := :x x := x y := ones(y |> size) xlims --> xlims ylims --> (0.95, 1.05) end # right scatter @series begin orientation := :h showaxis := :y subplot := 3 left_margin --> 0mm # bins := edges2 y := y x := ones(x |> size) end end # # now you can plot like: # marginalscatter(rand(1000), rand(1000))
StatsPlots
https://github.com/JuliaPlots/StatsPlots.jl.git
[ "MIT" ]
0.15.7
3b1dcbf62e469a67f6733ae493401e53d92ff543
code
675
@recipe function f(mds::MultivariateStats.MDS{<:Real}; mds_axes = (1, 2)) length(mds_axes) in [2, 3] || throw(ArgumentError("Can only accept 2 or 3 mds axes")) xax = mds_axes[1] yax = mds_axes[2] tfm = collect(MultivariateStats.predict(mds)') xlabel --> "MDS$xax" ylabel --> "MDS$yax" seriestype := :scatter aspect_ratio --> 1 if length(mds_axes) == 3 zax = mds_axes[3] zlabel --> "MDS$zax" tfm[:, xax], tfm[:, yax], tfm[:, zax] else tfm[:, xax], tfm[:, yax] end end #= This needs to wait on a different PCA API in MultivariateStats.jl @recipe function f(pca::PCA{<:Real}; pca_axes=(1,2)) end =#
StatsPlots
https://github.com/JuliaPlots/StatsPlots.jl.git
[ "MIT" ]
0.15.7
3b1dcbf62e469a67f6733ae493401e53d92ff543
code
5875
# --------------------------------------------------------------------------- # Violin Plot const _violin_warned = [false] function violin_coords( y; wts = nothing, trim::Bool = false, bandwidth = KernelDensity.default_bandwidth(y), ) kd = wts === nothing ? KernelDensity.kde(y, npoints = 200, bandwidth = bandwidth) : KernelDensity.kde(y, weights = weights(wts), npoints = 200, bandwidth = bandwidth) if trim xmin, xmax = Plots.ignorenan_extrema(y) inside = Bool[xmin <= x <= xmax for x in kd.x] return (kd.density[inside], kd.x[inside]) end kd.density, kd.x end get_quantiles(quantiles::AbstractVector) = quantiles get_quantiles(x::Real) = [x] get_quantiles(b::Bool) = b ? [0.5] : Float64[] get_quantiles(n::Int) = range(0, 1, length = n + 2)[2:(end - 1)] @recipe function f( ::Type{Val{:violin}}, x, y, z; trim = true, side = :both, show_mean = false, show_median = false, quantiles = Float64[], bandwidth = KernelDensity.default_bandwidth(y), ) # if only y is provided, then x will be UnitRange 1:size(y,2) if typeof(x) <: AbstractRange if step(x) == first(x) == 1 x = plotattributes[:series_plotindex] else x = [getindex(x, plotattributes[:series_plotindex])] end end xsegs, ysegs = Segments(), Segments() qxsegs, qysegs = Segments(), Segments() mxsegs, mysegs = Segments(), Segments() glabels = sort(collect(unique(x))) bw = plotattributes[:bar_width] bw == nothing && (bw = 0.8) msc = plotattributes[:markerstrokecolor] for (i, glabel) in enumerate(glabels) fy = y[filter(i -> _cycle(x, i) == glabel, 1:length(y))] widths, centers = violin_coords( fy, trim = trim, wts = plotattributes[:weights], bandwidth = bandwidth, ) isempty(widths) && continue # normalize hw = 0.5_cycle(bw, i) widths = hw * widths / Plots.ignorenan_maximum(widths) # make the violin xcenter = Plots.discrete_value!(plotattributes, :x, glabel)[1] xcoords = if (side === :right) vcat(widths, zeros(length(widths))) .+ xcenter elseif (side === :left) vcat(zeros(length(widths)), -reverse(widths)) .+ xcenter else vcat(widths, -reverse(widths)) .+ xcenter end ycoords = vcat(centers, reverse(centers)) push!(xsegs, xcoords) push!(ysegs, ycoords) if show_mean mea = StatsBase.mean(fy) mw = maximum(widths) mx = xcenter .+ [-mw, mw] * 0.75 my = [mea, mea] if side === :right mx[1] = xcenter elseif side === :left mx[2] = xcenter end push!(mxsegs, mx) push!(mysegs, my) end if show_median med = StatsBase.median(fy) mw = maximum(widths) mx = xcenter .+ [-mw, mw] / 2 my = [med, med] if side === :right mx[1] = xcenter elseif side === :left mx[2] = xcenter end push!(qxsegs, mx) push!(qysegs, my) end quantiles = get_quantiles(quantiles) if !isempty(quantiles) qy = quantile(fy, quantiles) maxw = maximum(widths) for i in eachindex(qy) qxi = xcenter .+ [-maxw, maxw] * (0.5 - abs(0.5 - quantiles[i])) qyi = [qy[i], qy[i]] if side === :right qxi[1] = xcenter elseif side === :left qxi[2] = xcenter end push!(qxsegs, qxi) push!(qysegs, qyi) end push!(qxsegs, [xcenter, xcenter]) push!(qysegs, [extrema(qy)...]) end end @series begin seriestype := :shape x := xsegs.pts y := ysegs.pts () end if !isempty(mxsegs.pts) @series begin primary := false seriestype := :shape linestyle := :dot x := mxsegs.pts y := mysegs.pts () end end if !isempty(qxsegs.pts) @series begin primary := false seriestype := :shape x := qxsegs.pts y := qysegs.pts () end end seriestype := :shape primary := false x := [] y := [] () end Plots.@deps violin shape # ------------------------------------------------------------------------------ # Grouped Violin @userplot GroupedViolin recipetype(::Val{:groupedviolin}, args...) = GroupedViolin(args) @recipe function f(g::GroupedViolin; spacing = 0.1) x, y = grouped_xy(g.args...) # extract xnums and set default bar width. # might need to set xticks as well ux = unique(x) x = if eltype(x) <: Number bar_width --> (0.8 * mean(diff(sort(ux)))) float.(x) else bar_width --> 0.8 xnums = [findfirst(isequal(xi), ux) for xi in x] .- 0.5 xticks --> (eachindex(ux) .- 0.5, ux) xnums end # shift x values for each group group = get(plotattributes, :group, nothing) if group != nothing gb = RecipesPipeline._extract_group_attributes(group) labels, idxs = getfield(gb, 1), getfield(gb, 2) n = length(labels) bws = plotattributes[:bar_width] / n bar_width := bws * clamp(1 - spacing, 0, 1) for i = 1:n groupinds = idxs[i] Δx = _cycle(bws, i) * (i - (n + 1) / 2) x[groupinds] .+= Δx end end seriestype := :violin x, y end Plots.@deps groupedviolin violin
StatsPlots
https://github.com/JuliaPlots/StatsPlots.jl.git
[ "MIT" ]
0.15.7
3b1dcbf62e469a67f6733ae493401e53d92ff543
code
6037
using StatsPlots using Test using StableRNGs using NaNMath using Clustering using Distributions using MultivariateStats @testset "Grouped histogram" begin rng = StableRNG(1337) gpl = groupedhist( rand(rng, 1000), yscale = :log10, ylims = (1e-2, 1e4), bar_position = :stack, ) @test NaNMath.minimum(gpl[1][1][:y]) <= 1e-2 @test NaNMath.minimum(gpl[1][1][:y]) > 0 rng = StableRNG(1337) gpl = groupedhist( rand(rng, 1000), yscale = :log10, ylims = (1e-2, 1e4), bar_position = :dodge, ) @test NaNMath.minimum(gpl[1][1][:y]) <= 1e-2 @test NaNMath.minimum(gpl[1][1][:y]) > 0 data = [1, 1, 1, 1, 2, 1] mask = (collect(1:6) .< 5) gpl1 = groupedhist(data[mask], group = mask[mask], color = 1) gpl2 = groupedhist(data[.!mask], group = mask[.!mask], color = 2) gpl12 = groupedhist(data, group = mask, nbins = 5, bar_position = :stack) @test NaNMath.maximum(gpl12[1][end][:y]) == NaNMath.maximum(gpl1[1][1][:y]) data = [10 12; 1 1; 0.25 0.25] gplr = groupedbar(data) @test NaNMath.maximum(gplr[1][1][:y]) == 10 @test NaNMath.maximum(gplr[1][end][:y]) == 12 gplr = groupedbar(data, bar_position = :stack) @test NaNMath.maximum(gplr[1][1][:y]) == 22 @test NaNMath.maximum(gplr[1][end][:y]) == 12 end # testset @testset "dendrogram" begin # Example from https://en.wikipedia.org/wiki/Complete-linkage_clustering wiki_example = [ 0 17 21 31 23 17 0 30 34 21 21 30 0 28 39 31 34 28 0 43 23 21 39 43 0 ] clustering = hclust(wiki_example, linkage = :complete) xs, ys = StatsPlots.treepositions(clustering, true, :vertical) @test xs == [ 2.0 1.0 4.0 1.75 2.0 1.0 4.0 1.75 3.0 2.5 5.0 4.5 3.0 2.5 5.0 4.5 ] @test ys == [ 0.0 0.0 0.0 23.0 17.0 23.0 28.0 43.0 17.0 23.0 28.0 43.0 0.0 17.0 0.0 28.0 ] end @testset "Histogram" begin data = randn(1000) @test 0.2 < StatsPlots.wand_bins(data) < 0.4 end @testset "Distributions" begin @testset "univariate" begin @testset "discrete" begin pbern = plot(Bernoulli(0.25)) @test pbern[1][1][:x][1:2] == zeros(2) @test pbern[1][1][:x][4:5] == ones(2) @test pbern[1][1][:y][[1, 4]] == zeros(2) @test pbern[1][1][:y][[2, 5]] == [0.75, 0.25] pdirac = plot(Dirac(0.25)) @test pdirac[1][1][:x][1:2] == [0.25, 0.25] @test pdirac[1][1][:y][1:2] == [0, 1] ppois_unbounded = plot(Poisson(1)) @test ppois_unbounded[1][1][:x] isa AbstractVector @test ppois_unbounded[1][1][:x][1:2] == zeros(2) @test ppois_unbounded[1][1][:x][4:5] == ones(2) @test ppois_unbounded[1][1][:y][[1, 4]] == zeros(2) @test ppois_unbounded[1][1][:y][[2, 5]] == pdf.(Poisson(1), ppois_unbounded[1][1][:x][[1, 4]]) pnonint = plot(Bernoulli(0.75) - 1 // 2) @test pnonint[1][1][:x][1:2] == [-1 // 2, -1 // 2] @test pnonint[1][1][:x][4:5] == [1 // 2, 1 // 2] @test pnonint[1][1][:y][[1, 4]] == zeros(2) @test pnonint[1][1][:y][[2, 5]] == [0.25, 0.75] pmix = plot( MixtureModel([Bernoulli(0.75), Bernoulli(0.5)], [0.5, 0.5]); components = false, ) @test pmix[1][1][:x][1:2] == zeros(2) @test pmix[1][1][:x][4:5] == ones(2) @test pmix[1][1][:y][[1, 4]] == zeros(2) @test pmix[1][1][:y][[2, 5]] == [0.375, 0.625] dzip = MixtureModel([Dirac(0), Poisson(1)], [0.1, 0.9]) pzip = plot(dzip; components = false) @test pzip[1][1][:x] isa AbstractVector @test pzip[1][1][:y][2:3:end] == pdf.(dzip, Int.(pzip[1][1][:x][1:3:end])) end end end @testset "ordinations" begin @testset "MDS" begin X = randn(4, 100) M = fit(MultivariateStats.MDS, X; maxoutdim = 3, distances = false) Y = MultivariateStats.predict(M)' mds_plt = plot(M) @test mds_plt[1][1][:x] == Y[:, 1] @test mds_plt[1][1][:y] == Y[:, 2] @test mds_plt[1][:xaxis][:guide] == "MDS1" @test mds_plt[1][:yaxis][:guide] == "MDS2" mds_plt2 = plot(M; mds_axes = (3, 1, 2)) @test mds_plt2[1][1][:x] == Y[:, 3] @test mds_plt2[1][1][:y] == Y[:, 1] @test mds_plt2[1][1][:z] == Y[:, 2] @test mds_plt2[1][:xaxis][:guide] == "MDS3" @test mds_plt2[1][:yaxis][:guide] == "MDS1" @test mds_plt2[1][:zaxis][:guide] == "MDS2" end end @testset "errorline" begin rng = StableRNG(1337) x = 1:10 # Test for floats y = rand(rng, 10, 100) .* collect(1:2:20) @test errorline(1:10, y)[1][1][:x] == x # x-input @test all( round.(errorline(1:10, y)[1][1][:y], digits = 3) .== round.(mean(y, dims = 2), digits = 3), ) # mean of y @test all( round.(errorline(1:10, y)[1][1][:ribbon], digits = 3) .== round.(std(y, dims = 2), digits = 3), ) # std of y # Test for ints y = reshape(1:100, 10, 10) @test all(errorline(1:10, y)[1][1][:y] .== mean(y, dims = 2)) @test all( round.(errorline(1:10, y)[1][1][:ribbon], digits = 3) .== round.(std(y, dims = 2), digits = 3), ) # Test colors y = rand(rng, 10, 100, 3) .* collect(1:2:20) c = palette(:default) e = errorline(1:10, y) @test colordiff(c[1], e[1][1][:linecolor]) == 0.0 @test colordiff(c[2], e[1][2][:linecolor]) == 0.0 @test colordiff(c[3], e[1][3][:linecolor]) == 0.0 end @testset "marginalhist" begin rng = StableRNG(1337) pl = marginalhist(rand(rng, 100), rand(rng, 100)) @test show(devnull, pl) isa Nothing end @testset "marginalscatter" begin rng = StableRNG(1337) pl = marginalscatter(rand(rng, 100), rand(rng, 100)) @test show(devnull, pl) isa Nothing end
StatsPlots
https://github.com/JuliaPlots/StatsPlots.jl.git
[ "MIT" ]
0.15.7
3b1dcbf62e469a67f6733ae493401e53d92ff543
docs
1889
# StatsPlots.jl NEWS ## 0.10 - Rename package from StatPlots to StatsPlots ## 0.7 current version ### 0.7.3 - fixed out of bound error with `violin` and `boxplot` - fixed title location in `corrplot` - better handling of `NaN` and `Inf` - recipe for `hclust` dendrogram (clustering visualization) - `dataviewer` recipe for interactive GUIs ### 0.7.2 - fix stack overflow with `@df` and `begin ... end` blocks - avoid recomputing data unnecessarily in `@df` ### 0.7.1 - remove Loess dependency - fix hygien macro issue in `@df` - add curly bracket syntax for automatic naming of groups - add `cols()` to select all columns ### 0.7.0 - remove DataFrames dependency - improve tick handling in correlation plots - add support for discrete distributions - add automatic legend with `@df` - allow passing columns of a data table programmatically with `cols` ### 0.6.0 - deprecate the `plot(df, :x, :y)` syntax - complete the removal of groupederror - remove shadederror - suppress axis labels in marginalhist ### 0.5.1 - remove groupederror, as that is now in it's own package - add `qqnorm` and `qqplot` - fix 2d density plots ### 0.5.0 - major reconfiguring of the support for tables: - change the syntax to `@df mydataframe plot(:a, :b)` - allows using DataFrames automatically in user recipes - support for all iterable tables, including DataFrame, DataTable, IndexedTable, IterableTable and DataStreams.Source - better interface to `groupedbar` - added equal-area histograms - added the `:wand` binning option for 1-dimensional histograms ### 0.4.2 - improvements to the groupapply function ### 0.4.1 patch release - reexport Plots ### 0.4.0 - Fix 0.6 deprecations - support for `_cycle` ### 0.3.0 - added expressions with DataFrame symbols - added `groupapply` method for population analysis - updated boxplots to turn off outlier points and improves whiskers
StatsPlots
https://github.com/JuliaPlots/StatsPlots.jl.git
[ "MIT" ]
0.15.7
3b1dcbf62e469a67f6733ae493401e53d92ff543
docs
17974
# StatsPlots [![Build Status](https://travis-ci.org/JuliaPlots/StatsPlots.jl.svg?branch=master)](https://travis-ci.org/JuliaPlots/StatsPlots.jl) [![Documentation](https://img.shields.io/badge/docs-stable-blue.svg)](https://docs.juliaplots.org/latest/generated/statsplots/) [![project chat](https://img.shields.io/badge/zulip-join_chat-brightgreen.svg)](https://julialang.zulipchat.com/#narrow/stream/236493-plots) ### Original author: Thomas Breloff (@tbreloff), maintained by the JuliaPlots members This package is a drop-in replacement for Plots.jl that contains many statistical recipes for concepts and types introduced in the JuliaStats organization. - Types: - DataFrames - Distributions - Recipes: - histogram/histogram2d - groupedhist - [boxplot](https://en.wikipedia.org/wiki/Box_plot) - [dotplot](https://en.wikipedia.org/wiki/Dot_plot_(statistics)) - [violin](https://en.wikipedia.org/wiki/Violin_plot) - marginalhist - corrplot/cornerplot - [andrewsplot](https://en.wikipedia.org/wiki/Andrews_plot) - errorline ([ribbon](https://ggplot2.tidyverse.org/reference/geom_ribbon.html), [stick](https://www.mathworks.com/help/matlab/ref/errorbar.html), [plume](https://www.e-education.psu.edu/files/meteo410/file/Plume.pdf)) - MDS plot - [qq-plot](https://en.wikipedia.org/wiki/Q%E2%80%93Q_plot) It is thus slightly less lightweight, but has more functionality. Initialize: ```julia #]add StatsPlots # install the package if it isn't installed using StatsPlots # no need for `using Plots` as that is reexported here gr(size=(400,300)) ``` Table-like data structures, including `DataFrames`, `IndexedTables`, `DataStreams`, etc... (see [here](https://github.com/davidanthoff/IterableTables.jl) for an exhaustive list), are supported thanks to the macro `@df` which allows passing columns as symbols. Those columns can then be manipulated inside the `plot` call, like normal `Arrays`: ```julia using DataFrames, IndexedTables df = DataFrame(a = 1:10, b = 10 .* rand(10), c = 10 .* rand(10)) @df df plot(:a, [:b :c], colour = [:red :blue]) @df df scatter(:a, :b, markersize = 4 .* log.(:c .+ 0.1)) t = table(1:10, rand(10), names = [:a, :b]) # IndexedTable @df t scatter(2 .* :b) ``` Inside a `@df` macro call, the `cols` utility function can be used to refer to a range of columns: ```julia @df df plot(:a, cols(2:3), colour = [:red :blue]) ``` or to refer to a column whose symbol is represented by a variable: ```julia s = :b @df df plot(:a, cols(s)) ``` `cols()` will refer to all columns of the data table. In case of ambiguity, symbols not referring to `DataFrame` columns must be escaped by `^()`: ```julia df[:red] = rand(10) @df df plot(:a, [:b :c], colour = ^([:red :blue])) ``` The `@df` macro plays nicely with the new syntax of the [Query.jl](https://github.com/davidanthoff/Query.jl) data manipulation package (v0.8 and above), in that a plot command can be added at the end of a query pipeline, without having to explicitly collect the outcome of the query first: ```julia using Query, StatsPlots df |> @filter(_.a > 5) |> @map({_.b, d = _.c-10}) |> @df scatter(:b, :d) ``` The `@df` syntax is also compatible with the Plots.jl grouping machinery: ```julia using RDatasets school = RDatasets.dataset("mlmRev","Hsb82") @df school density(:MAch, group = :Sx) ``` To group by more than one column, use a tuple of symbols: ```julia @df school density(:MAch, group = (:Sx, :Sector), legend = :topleft) ``` ![grouped](https://user-images.githubusercontent.com/6333339/35101563-eacf9be4-fc57-11e7-88d3-db5bb47b08ac.png) To name the legend entries with custom or automatic names (i.e. `Sex = Male, Sector = Public`) use the curly bracket syntax `group = {Sex = :Sx, :Sector}`. Entries with `=` get the custom name you give, whereas entries without `=` take the name of the column. --- The old syntax, passing the `DataFrame` as the first argument to the `plot` call is no longer supported. --- ## Visualizing a table interactively A GUI based on the Interact package is available to create plots from a table interactively, using any of the recipes defined below. This small app can be deployed in a Jupyter lab / notebook, Juno plot pane, a Blink window or in the browser, see [here](http://juliagizmos.github.io/Interact.jl/latest/deploying/) for instructions. ```julia import RDatasets iris = RDatasets.dataset("datasets", "iris") using StatsPlots, Interact using Blink w = Window() body!(w, dataviewer(iris)) ``` ![dataviewer](https://user-images.githubusercontent.com/6333339/43359702-abd82d74-929e-11e8-8fc9-b589287f1c23.png) ## marginalhist with DataFrames ```julia using RDatasets iris = dataset("datasets","iris") @df iris marginalhist(:PetalLength, :PetalWidth) ``` ![marginalhist](https://user-images.githubusercontent.com/6333339/29869938-fbe08d02-8d7c-11e7-9409-ca47ee3aaf35.png) --- ## marginalscatter with DataFrames ```julia using RDatasets iris = dataset("datasets","iris") @df iris marginalscatter(:PetalLength, :PetalWidth) ``` ![marginalscatter](https://user-images.githubusercontent.com/12200202/92408723-3aa78e00-f0f3-11ea-8ddc-9517f0f58207.png) --- ## marginalkde ```julia x = randn(1024) y = randn(1024) marginalkde(x, x+y) ``` ![correlated-marg](https://user-images.githubusercontent.com/90048/96789354-04804e00-13c3-11eb-82d3-6130e8c9d48a.png) * `levels=N` can be used to set the number of contour levels (default 10); levels are evenly-spaced in the cumulative probability mass. * `clip=((-xl, xh), (-yl, yh))` (default `((-3, 3), (-3, 3))`) can be used to adjust the bounds of the plot. Clip values are expressed as multiples of the `[0.16-0.5]` and `[0.5,0.84]` percentiles of the underlying 1D distributions (these would be 1-sigma ranges for a Gaussian). ## corrplot and cornerplot This plot type shows the correlation among input variables. The marker color in scatter plots reveal the degree of correlation. Pass the desired colorgradient to `markercolor`. With the default gradient positive correlations are blue, neutral are yellow and negative are red. In the 2d-histograms the color gradient show the frequency of points in that bin (as usual controlled by `seriescolor`). ```julia gr(size = (600, 500)) ``` then ```julia @df iris corrplot([:SepalLength :SepalWidth :PetalLength :PetalWidth], grid = false) ``` or also: ```julia @df iris corrplot(cols(1:4), grid = false) ``` ![corrplot](https://user-images.githubusercontent.com/8429802/51600111-8a771880-1f01-11e9-818f-6cbfc5efad74.png) A correlation plot may also be produced from a matrix: ```julia M = randn(1000,4) M[:,2] .+= 0.8sqrt.(abs.(M[:,1])) .- 0.5M[:,3] .+ 5 M[:,3] .-= 0.7M[:,1].^2 .+ 2 corrplot(M, label = ["x$i" for i=1:4]) ``` ![](https://user-images.githubusercontent.com/8429802/51600126-91059000-1f01-11e9-9d37-f49bee5ff534.png) ```julia cornerplot(M) ``` ![](https://user-images.githubusercontent.com/8429802/51600133-96fb7100-1f01-11e9-9943-4a10f1ad2907.png) ```julia cornerplot(M, compact=true) ``` ![](https://user-images.githubusercontent.com/8429802/51600140-9bc02500-1f01-11e9-87e3-746ae4daccbb.png) --- ## boxplot, dotplot, and violin ```julia import RDatasets singers = RDatasets.dataset("lattice", "singer") @df singers violin(string.(:VoicePart), :Height, linewidth=0) @df singers boxplot!(string.(:VoicePart), :Height, fillalpha=0.75, linewidth=2) @df singers dotplot!(string.(:VoicePart), :Height, marker=(:black, stroke(0))) ``` ![violin](https://user-images.githubusercontent.com/16589944/98538614-506c3780-228b-11eb-881c-158c2f781798.png) Asymmetric violin or dot plots can be created using the `side` keyword (`:both` - default,`:right` or `:left`), e.g.: ```julia singers_moscow = deepcopy(singers) singers_moscow[:Height] = singers_moscow[:Height] .+ 5 @df singers violin(string.(:VoicePart), :Height, side=:right, linewidth=0, label="Scala") @df singers_moscow violin!(string.(:VoicePart), :Height, side=:left, linewidth=0, label="Moscow") @df singers dotplot!(string.(:VoicePart), :Height, side=:right, marker=(:black,stroke(0)), label="") @df singers_moscow dotplot!(string.(:VoicePart), :Height, side=:left, marker=(:black,stroke(0)), label="") ``` Dot plots can spread their dots over the full width of their column `mode = :uniform`, or restricted to the kernel density (i.e. width of violin plot) with `mode = :density` (default). Horizontal position is random, so dots are repositioned each time the plot is recreated. `mode = :none` keeps the dots along the center. ![violin2](https://user-images.githubusercontent.com/16589944/98538618-52ce9180-228b-11eb-83d2-6d7b7c89fd52.png) --- ## Equal-area histograms The ea-histogram is an alternative histogram implementation, where every 'box' in the histogram contains the same number of sample points and all boxes have the same area. Areas with a higher density of points thus get higher boxes. This type of histogram shows spikes well, but may oversmooth in the tails. The y axis is not intuitively interpretable. ```julia a = [randn(100); randn(100) .+ 3; randn(100) ./ 2 .+ 3] ea_histogram(a, bins = :scott, fillalpha = 0.4) ``` ![equal area histogram](https://user-images.githubusercontent.com/8429802/29754490-8d1b01f6-8b86-11e7-9f86-e1063a88dfd8.png) --- ## AndrewsPlot AndrewsPlots are a way to visualize structure in high-dimensional data by depicting each row of an array or table as a line that varies with the values in columns. https://en.wikipedia.org/wiki/Andrews_plot ```julia using RDatasets iris = dataset("datasets", "iris") @df iris andrewsplot(:Species, cols(1:4), legend = :topleft) ``` ![iris_andrews_curve](https://user-images.githubusercontent.com/1159782/46241166-c392e800-c368-11e8-93de-125c6eb38b52.png) --- ## ErrorLine The ErrorLine function shows error distributions for lines plots in a variety of styles. ```julia x = 1:10 y = fill(NaN, 10, 100, 3) for i = axes(y,3) y[:,:,i] = collect(1:2:20) .+ rand(10,100).*5 .* collect(1:2:20) .+ rand()*100 end errorline(1:10, y[:,:,1], errorstyle=:ribbon, label="Ribbon") errorline!(1:10, y[:,:,2], errorstyle=:stick, label="Stick", secondarycolor=:matched) errorline!(1:10, y[:,:,3], errorstyle=:plume, label="Plume") ``` ![ErrorLine Styles](https://user-images.githubusercontent.com/24966610/186655231-2b7b9e37-0beb-4796-ad08-cbb84020ffd8.svg) --- ## Distributions ```julia using Distributions plot(Normal(3,5), fill=(0, .5,:orange)) ``` ![](https://cloud.githubusercontent.com/assets/933338/16718702/561510f6-46f0-11e6-834a-3cf17a5b77d6.png) ```julia dist = Gamma(2) scatter(dist, leg=false) bar!(dist, func=cdf, alpha=0.3) ``` ![](https://cloud.githubusercontent.com/assets/933338/16718720/729b6fea-46f0-11e6-9bff-fdf2541ce305.png) ### Quantile-Quantile plots The `qqplot` function compares the quantiles of two distributions, and accepts either a vector of sample values or a `Distribution`. The `qqnorm` is a shorthand for comparing a distribution to the normal distribution. If the distributions are similar the points will be on a straight line. ```julia x = rand(Normal(), 100) y = rand(Cauchy(), 100) plot( qqplot(x, y, qqline = :fit), # qqplot of two samples, show a fitted regression line qqplot(Cauchy, y), # compare with a Cauchy distribution fitted to y; pass an instance (e.g. Normal(0,1)) to compare with a specific distribution qqnorm(x, qqline = :R) # the :R default line passes through the 1st and 3rd quartiles of the distribution ) ``` ![skaermbillede 2017-09-28 kl 22 46 28](https://user-images.githubusercontent.com/8429802/30989741-0c4f9dac-a49f-11e7-98ff-028192a8d5b1.png) ## Grouped Bar plots ```julia groupedbar(rand(10,3), bar_position = :stack, bar_width=0.7) ``` ![tmp](https://cloud.githubusercontent.com/assets/933338/18962081/58a2a5e0-863d-11e6-8638-94f88ecc544d.png) This is the default: ```julia groupedbar(rand(10,3), bar_position = :dodge, bar_width=0.7) ``` ![tmp](https://cloud.githubusercontent.com/assets/933338/18962092/673f6c78-863d-11e6-9ee9-8ca104e5d2a3.png) The `group` syntax is also possible in combination with `groupedbar`: ```julia ctg = repeat(["Category 1", "Category 2"], inner = 5) nam = repeat("G" .* string.(1:5), outer = 2) groupedbar(nam, rand(5, 2), group = ctg, xlabel = "Groups", ylabel = "Scores", title = "Scores by group and category", bar_width = 0.67, lw = 0, framestyle = :box) ``` ![](https://user-images.githubusercontent.com/6645258/32116755-b7018f02-bb2a-11e7-82c7-ca471ecaeecf.png) ## Grouped Histograms ``` using RDatasets iris = dataset("datasets", "iris") @df iris groupedhist(:SepalLength, group = :Species, bar_position = :dodge) ``` ![dodge](https://user-images.githubusercontent.com/6033297/77240750-a11d0c00-6ba6-11ea-9715-81a8a7e20cd6.png) ``` @df iris groupedhist(:SepalLength, group = :Species, bar_position = :stack) ``` ![stack](https://user-images.githubusercontent.com/6033297/77240749-9c585800-6ba6-11ea-85ea-e023341cb246.png) ## Dendrograms ```julia using Clustering D = rand(10, 10) D += D' hc = hclust(D, linkage=:single) plot(hc) ``` ![dendrogram](https://user-images.githubusercontent.com/381464/43355211-855d5aa2-920d-11e8-82d7-2bf1a7aeccb5.png) The `branchorder=:optimal` option in `hclust()` can be used to minimize the distance between neighboring leaves: ```julia using Clustering using Distances using StatsPlots using Random n = 40 mat = zeros(Int, n, n) # create banded matrix for i in 1:n last = minimum([i+Int(floor(n/5)), n]) for j in i:last mat[i,j] = 1 end end # randomize order mat = mat[:, randperm(n)] dm = pairwise(Euclidean(), mat, dims=2) # normal ordering hcl1 = hclust(dm, linkage=:average) plot( plot(hcl1, xticks=false), heatmap(mat[:, hcl1.order], colorbar=false, xticks=(1:n, ["$i" for i in hcl1.order])), layout=grid(2,1, heights=[0.2,0.8]) ) ``` ![heatmap dendrogram non-optimal](https://user-images.githubusercontent.com/3502975/59949267-a1824e00-9440-11e9-96dd-4628a8372ae2.png) Compare to: ```julia # optimal ordering hcl2 = hclust(dm, linkage=:average, branchorder=:optimal) plot( plot(hcl2, xticks=false), heatmap(mat[:, hcl2.order], colorbar=false, xticks=(1:n, ["$i" for i in hcl2.order])), layout=grid(2,1, heights=[0.2,0.8]) ) ``` ![heatmap dendrogram optimal](https://user-images.githubusercontent.com/3502975/59949464-20778680-9441-11e9-8ed7-9a639b50dfb2.png) ### Dendrogram on the right side ```julia using Distances using Clustering using StatsBase using StatsPlots pd=rand(Float64,16,7) dist_col=pairwise(CorrDist(),pd,dims=2) hc_col=hclust(dist_col, branchorder=:optimal) dist_row=pairwise(CorrDist(),pd,dims=1) hc_row=hclust(dist_row, branchorder=:optimal) pdz=similar(pd) for row in hc_row.order pdz[row,hc_col.order]=zscore(pd[row,hc_col.order]) end nrows=length(hc_row.order) rowlabels=(1:16)[hc_row.order] ncols=length(hc_col.order) collabels=(1:7)[hc_col.order] l = grid(2,2,heights=[0.2,0.8,0.2,0.8],widths=[0.8,0.2,0.8,0.2]) plot( layout = l, plot(hc_col,xticks=false), plot(ticks=nothing,border=:none), plot( pdz[hc_row.order,hc_col.order], st=:heatmap, #yticks=(1:nrows,rowlabels), yticks=(1:nrows,rowlabels), xticks=(1:ncols,collabels), xrotation=90, colorbar=false ), plot(hc_row,yticks=false,xrotation=90,orientation=:horizontal,xlim=(0,1)) ) ``` ![heatmap with dendrograms on top and on the right](https://user-images.githubusercontent.com/13688320/224165246-bb3aba7d-5df2-47b5-9678-3384d13610fd.png) ## GroupedErrors.jl for population analysis Population analysis on a table-like data structures can be done using the highly recommended [GroupedErrors](https://github.com/piever/GroupedErrors.jl) package. This external package, in combination with StatsPlots, greatly simplifies the creation of two types of plots: ### 1. Subject by subject plot (generally a scatter plot) Some simple summary statistics are computed for each experimental subject (mean is default but any scalar valued function would do) and then plotted against some other summary statistics, potentially splitting by some categorical experimental variable. ### 2. Population plot (generally a ribbon plot in continuous case, or bar plot in discrete case) Some statistical analysis is computed at the single subject level (for example the density/hazard/cumulative of some variable, or the expected value of a variable given another) and the analysis is summarized across subjects (taking for example mean and s.e.m), potentially splitting by some categorical experimental variable. For more information please refer to the [README](https://github.com/piever/GroupedErrors.jl/blob/master/README.md). A GUI based on QML and the GR Plots.jl backend to simplify the use of StatsPlots.jl and GroupedErrors.jl even further can be found [here](https://github.com/piever/PlugAndPlot.jl) (usable but still in alpha stage). ## Ordinations MDS from [`MultivariateStats.jl`](https://github.com/JuliaStats/MultivariateStats.jl) can be plotted as scatter plots. ```julia using MultivariateStats, RDatasets, StatsPlots iris = dataset("datasets", "iris") X = convert(Matrix, iris[:, 1:4]) M = fit(MDS, X'; maxoutdim=2) plot(M, group=iris.Species) ``` ![MDS plot](https://user-images.githubusercontent.com/3502975/64883550-a6186600-d62d-11e9-8f6b-c5094abf5573.png) PCA will be added once the API in MultivariateStats is changed. See https://github.com/JuliaStats/MultivariateStats.jl/issues/109 and https://github.com/JuliaStats/MultivariateStats.jl/issues/95. ## Covariance ellipses A 2×2 covariance matrix `Σ` can be plotted as an ellipse, which is a contour line of a Gaussian density function with variance `Σ`. ``` covellipse([0,2], [2 1; 1 4], n_std=2, aspect_ratio=1, label="cov1") covellipse!([1,0], [1 -0.5; -0.5 3], showaxes=true, label="cov2") ``` ![covariance ellipses](https://user-images.githubusercontent.com/4170948/84170978-f0c2f380-aa82-11ea-95de-ce2fe14e16ec.png)
StatsPlots
https://github.com/JuliaPlots/StatsPlots.jl.git
[ "MIT" ]
3.13.3
a4816454042d72e4bae37d13e592591381356a17
code
660
__precompile__() module ODEInterfaceDiffEq using Reexport @reexport using DiffEqBase using ODEInterface, Compat, DataStructures, FunctionWrappers using LinearAlgebra import DiffEqBase: solve const warnkeywords = (:save_idxs, :d_discontinuities, :unstable_check, :tstops, :calck, :progress, :dense, :save_start) function __init__() global warnlist = Set(warnkeywords) end const KW = Dict{Symbol, Any} include("algorithms.jl") include("integrator_types.jl") include("integrator_utils.jl") include("solve.jl") export ODEInterfaceAlgorithm, dopri5, dop853, odex, seulex, radau, radau5, rodas, ddeabm, ddebdf end # module
ODEInterfaceDiffEq
https://github.com/SciML/ODEInterfaceDiffEq.jl.git
[ "MIT" ]
3.13.3
a4816454042d72e4bae37d13e592591381356a17
code
2295
# ODEInterface.jl Algorithms abstract type ODEInterfaceAlgorithm <: DiffEqBase.AbstractODEAlgorithm end abstract type ODEInterfaceImplicitAlgorithm <: ODEInterfaceAlgorithm end abstract type ODEInterfaceExplicitAlgorithm <: ODEInterfaceAlgorithm end """ dopri5: Hairer's classic implementation of the Dormand-Prince 4/5 method. """ struct dopri5 <: ODEInterfaceExplicitAlgorithm end SciMLBase.alg_order(alg::dopri5) = 5 """ dop853: Explicit Runge-Kutta 8(5,3) by Dormand-Prince. """ struct dop853 <: ODEInterfaceExplicitAlgorithm end SciMLBase.alg_order(alg::dop853) = 8 """ odex: GBS extrapolation-algorithm based on the midpoint rule. """ struct odex <: ODEInterfaceExplicitAlgorithm end SciMLBase.alg_order(alg::odex) = 12 """ seulex: Extrapolation-algorithm based on the linear implicit Euler method. """ struct seulex{T} <: ODEInterfaceImplicitAlgorithm jac_lower::T jac_upper::T end SciMLBase.alg_order(alg::seulex) = 12 """ radau: Implicit Runge-Kutta (Radau IIA) of variable order between 5 and 13. """ struct radau{T} <: ODEInterfaceImplicitAlgorithm jac_lower::T jac_upper::T end SciMLBase.alg_order(alg::radau) = 13 """ radau5: Implicit Runge-Kutta method (Radau IIA) of order 5. """ struct radau5{T} <: ODEInterfaceImplicitAlgorithm jac_lower::T jac_upper::T end SciMLBase.alg_order(alg::radau5) = 5 """ rodas: Rosenbrock 4(3) method. """ struct rodas{T} <: ODEInterfaceImplicitAlgorithm jac_lower::T jac_upper::T end SciMLBase.alg_order(alg::rodas) = 4 """ ddeabm: Adams-Bashforth-Moulton Predictor-Corrector method (order between 1 and 12) """ struct ddeabm <: ODEInterfaceExplicitAlgorithm end SciMLBase.alg_order(alg::ddeabm) = 12 """ ddebdf: Backward Differentiation Formula (orders between 1 and 5) """ struct ddebdf{T} <: ODEInterfaceImplicitAlgorithm jac_lower::T jac_upper::T end SciMLBase.alg_order(alg::ddebdf) = 5 seulex(; jac_lower = nothing, jac_upper = nothing) = seulex(jac_lower, jac_upper) radau(; jac_lower = nothing, jac_upper = nothing) = radau(jac_lower, jac_upper) radau5(; jac_lower = nothing, jac_upper = nothing) = radau5(jac_lower, jac_upper) rodas(; jac_lower = nothing, jac_upper = nothing) = rodas(jac_lower, jac_upper) ddebdf(; jac_lower = nothing, jac_upper = nothing) = ddebdf(jac_lower, jac_upper)
ODEInterfaceDiffEq
https://github.com/SciML/ODEInterfaceDiffEq.jl.git
[ "MIT" ]
3.13.3
a4816454042d72e4bae37d13e592591381356a17
code
1021
mutable struct DEOptions{SType, CType} saveat::SType save_on::Bool save_everystep::Bool callback::CType end mutable struct ODEInterfaceIntegrator{F, algType, uType, uPrevType, oType, SType, solType, P, CallbackCacheType} <: DiffEqBase.AbstractODEIntegrator{algType, true, uType, Float64} f::F u::uType uprev::uPrevType t::Float64 tprev::Float64 p::P opts::oType u_modified::Bool tdir::Float64 sizeu::SType sol::solType eval_sol_fcn::Any event_last_time::Int vector_event_last_time::Int callback_cache::CallbackCacheType alg::algType last_event_error::Float64 end @inline function (integrator::ODEInterfaceIntegrator)(t, deriv::Type{Val{N}} = Val{0}; idxs = nothing) where {N} @assert N==0 "ODEInterface does not support dense derivative" sol = integrator.eval_sol_fcn(t) return idxs == nothing ? sol : sol[idxs] end
ODEInterfaceDiffEq
https://github.com/SciML/ODEInterfaceDiffEq.jl.git
[ "MIT" ]
3.13.3
a4816454042d72e4bae37d13e592591381356a17
code
4127
# Carries along the `u` which is an allocation to save when no callbacks function handle_callbacks!(integrator, eval_sol_fcn) discrete_callbacks = integrator.opts.callback.discrete_callbacks continuous_callbacks = integrator.opts.callback.continuous_callbacks atleast_one_callback = false continuous_modified = false discrete_modified = false saved_in_cb = false if !(typeof(continuous_callbacks) <: Tuple{}) time, upcrossing, event_occured, event_idx, idx, counter = DiffEqBase.find_first_continuous_callback(integrator, continuous_callbacks...) if event_occured integrator.event_last_time = idx integrator.vector_event_last_time = event_idx continuous_modified, saved_in_cb = DiffEqBase.apply_callback!(integrator, continuous_callbacks[idx], time, upcrossing, event_idx) else integrator.event_last_time = 0 integrator.vector_event_last_time = 1 end end if !(typeof(discrete_callbacks) <: Tuple{}) discrete_modified, saved_in_cb = DiffEqBase.apply_discrete_callback!(integrator, discrete_callbacks...) end if !saved_in_cb savevalues!(integrator) end integrator.u_modified = continuous_modified || discrete_modified end function DiffEqBase.savevalues!(integrator::ODEInterfaceIntegrator, force_save = false)::Tuple{Bool, Bool} saved, savedexactly = false, false !integrator.opts.save_on && return saved, savedexactly uType = eltype(integrator.sol.u) if integrator.opts.save_everystep || force_save saved = true push!(integrator.sol.t, integrator.t) save_value!(integrator.sol.u, copy(integrator.u), uType, integrator.sizeu) end while !isempty(integrator.opts.saveat) && integrator.tdir * first(integrator.opts.saveat) < integrator.tdir * integrator.t saved = true curt = pop!(integrator.opts.saveat) tmp = integrator(curt)::Vector{Float64} push!(integrator.sol.t, curt) save_value!(integrator.sol.u, tmp, uType, integrator.sizeu) end savedexactly = last(integrator.sol.t) == integrator.t return saved, savedexactly end function DiffEqBase.change_t_via_interpolation!(integrator::ODEInterfaceIntegrator, t) integrator.t = t tmp = integrator(integrator.t)::Vector{Float64} if eltype(integrator.sol.u) <: Vector integrator.u .= tmp else integrator.u .= reshape(tmp, integrator.sizeu) end nothing end DiffEqBase.get_tmp_cache(i::ODEInterfaceIntegrator, args...) = nothing @inline function Base.getproperty(integrator::ODEInterfaceIntegrator, sym::Symbol) if sym == :dt return integrator.t - integrator.tprev else return getfield(integrator, sym) end end @inline function DiffEqBase.u_modified!(integrator::ODEInterfaceIntegrator, bool::Bool) integrator.u_modified = bool end function initialize_callbacks!(integrator, initialize_save = true) t = integrator.t u = integrator.u callbacks = integrator.opts.callback integrator.u_modified = true u_modified = initialize!(callbacks, u, t, integrator) # if the user modifies u, we need to fix current values if u_modified if initialize_save && (any((c) -> c.save_positions[2], callbacks.discrete_callbacks) || any((c) -> c.save_positions[2], callbacks.continuous_callbacks)) savevalues!(integrator, true) end end # reset this as it is now handled so the integrators should proceed as normal integrator.u_modified = false end DiffEqBase.set_proposed_dt!(integrator::ODEInterfaceIntegrator, dt) = nothing
ODEInterfaceDiffEq
https://github.com/SciML/ODEInterfaceDiffEq.jl.git
[ "MIT" ]
3.13.3
a4816454042d72e4bae37d13e592591381356a17
code
18211
function DiffEqBase.__solve(prob::DiffEqBase.AbstractODEProblem{uType, tuptType, isinplace}, alg::AlgType, timeseries = [], ts = [], ks = []; saveat = Float64[], verbose = true, save_everystep = isempty(saveat), save_on = true, save_start = save_everystep || isempty(saveat) || typeof(saveat) <: Number ? true : prob.tspan[1] in saveat, timeseries_errors = true, dense_errors = false, callback = nothing, alias_u0 = false, kwargs...) where {uType, tuptType, isinplace, AlgType <: ODEInterfaceAlgorithm} tType = eltype(tuptType) isstiff = alg isa ODEInterfaceImplicitAlgorithm if verbose warned = !isempty(kwargs) && check_keywords(alg, kwargs, warnlist) if !(typeof(prob.f) <: DiffEqBase.AbstractParameterizedFunction) && isstiff if DiffEqBase.has_tgrad(prob.f) @warn("Explicit t-gradient given to this stiff solver is ignored.") warned = true end end warned && warn_compat() end callbacks_internal = CallbackSet(callback) max_len_cb = DiffEqBase.max_vector_callback_length(callbacks_internal) if max_len_cb isa VectorContinuousCallback callback_cache = DiffEqBase.CallbackCache(max_len_cb.len, uBottomEltype, uBottomEltype) else callback_cache = nothing end tspan = prob.tspan o = KW(kwargs) u0 = prob.u0 if typeof(u0) <: Number u = [u0] else if alias_u0 u = u0 else u = deepcopy(u0) end end tdir = sign(tspan[2] - tspan[1]) saveat_internal = saveat_disc_handling(saveat, tdir, tspan, tType) sizeu = size(u) o[:RHS_CALLMODE] = ODEInterface.RHS_CALL_INSITU if save_everystep _timeseries = Vector{uType}(undef, 0) ts = Vector{tType}(undef, 0) else _timeseries = [copy(u0)] ts = [tspan[1]] end uprev = similar(u) sol = DiffEqBase.build_solution(prob, alg, ts, _timeseries, timeseries_errors = timeseries_errors, calculate_error = false, stats = DiffEqBase.Stats(0), retcode = ReturnCode.Default) opts = DEOptions(saveat_internal, save_on, save_everystep, callbacks_internal) if !isinplace && typeof(u) <: AbstractArray f! = (t, u, du) -> (du[:] = vec(prob.f(reshape(u, sizeu), integrator.p, t)); nothing) elseif !(typeof(u) <: Vector{Float64}) f! = (t, u, du) -> (prob.f(reshape(du, sizeu), reshape(u, sizeu), integrator.p, t); du = vec(du); nothing) else f! = (t, u, du) -> prob.f(du, u, integrator.p, t) end integrator = ODEInterfaceIntegrator(prob.f, u, uprev, tspan[1], tspan[1], prob.p, opts, false, tdir, sizeu, sol, (t) -> [t], 0, 1, callback_cache, alg, 0.0) initialize_callbacks!(integrator) outputfcn = OutputFunction(integrator) o[:OUTPUTFCN] = outputfcn if !(typeof(callbacks_internal.continuous_callbacks) <: Tuple{}) || !isempty(saveat) if typeof(alg) <: Union{ddeabm, ddebdf} @warn("saveat and continuous callbacks ignored for ddeabm and ddebdf") o[:OUTPUTMODE] = ODEInterface.OUTPUTFCN_WODENSE else o[:OUTPUTMODE] = ODEInterface.OUTPUTFCN_DENSE end else o[:OUTPUTMODE] = ODEInterface.OUTPUTFCN_WODENSE end dict = buildOptions(o, ODEINTERFACE_OPTION_LIST, ODEINTERFACE_ALIASES, ODEINTERFACE_ALIASES_REVERSED) if prob.f.mass_matrix != I if typeof(prob.f.mass_matrix) <: Matrix && isstiff dict[:MASSMATRIX] = prob.f.mass_matrix elseif !isstiff error("This solver does not support mass matrices") else error("This solver must use full or banded mass matrices.") end end if DiffEqBase.has_jac(prob.f) dict[:JACOBIMATRIX] = (t, u, J) -> prob.f.jac(J, u, prob.p, t) end if isstiff && alg.jac_lower !== nothing dict[:JACOBIBANDSSTRUCT] = (alg.jac_lower, alg.jac_upper) end # Convert to the strings opts = ODEInterface.OptionsODE([Pair(ODEINTERFACE_STRINGS[k], v) for (k, v) in dict]...) if typeof(alg) <: dopri5 tend, uend, retcode, stats = ODEInterface.dopri5(f!, tspan[1], tspan[2], vec(integrator.u), opts) elseif typeof(alg) <: dop853 tend, uend, retcode, stats = ODEInterface.dop853(f!, tspan[1], tspan[2], vec(integrator.u), opts) elseif typeof(alg) <: odex tend, uend, retcode, stats = ODEInterface.odex(f!, tspan[1], tspan[2], vec(integrator.u), opts) elseif typeof(alg) <: seulex tend, uend, retcode, stats = ODEInterface.seulex(f!, tspan[1], tspan[2], vec(integrator.u), opts) elseif typeof(alg) <: radau tend, uend, retcode, stats = ODEInterface.radau(f!, tspan[1], tspan[2], vec(integrator.u), opts) elseif typeof(alg) <: radau5 tend, uend, retcode, stats = ODEInterface.radau5(f!, tspan[1], tspan[2], vec(integrator.u), opts) elseif typeof(alg) <: rodas tend, uend, retcode, stats = ODEInterface.rodas(f!, tspan[1], tspan[2], vec(integrator.u), opts) elseif typeof(alg) <: ddeabm tend, uend, retcode, stats = ODEInterface.ddeabm(f!, tspan[1], tspan[2], vec(integrator.u), opts) elseif typeof(alg) <: ddebdf tend, uend, retcode, stats = ODEInterface.ddebdf(f!, tspan[1], tspan[2], vec(integrator.u), opts) end if !save_everystep push!(ts, tend) save_value!(_timeseries, uend, uType, sizeu) end if retcode < 0 if retcode == -1 verbose && @warn("Input is not consistent.") return_retcode = ReturnCode.Failure elseif retcode == -2 verbose && @warn("Interrupted. Larger maxiters is needed.") return_retcode = ReturnCode.MaxIters elseif retcode == -3 verbose && @warn("Step size went too small.") return_retcode = ReturnCode.DtLessThanMin elseif retcode == -4 verbose && @warn("Interrupted. Problem is probably stiff.") return_retcode = ReturnCode.Unstable end else return_retcode = ReturnCode.Success end if DiffEqBase.has_analytic(prob.f) DiffEqBase.calculate_solution_errors!(integrator.sol; timeseries_errors = timeseries_errors, dense_errors = dense_errors) end destats = sol.stats destats.nf = stats["no_rhs_calls"] if haskey(stats, "no_steps_rejected") destats.nreject = stats["no_steps_rejected"] destats.naccept = stats["no_steps_accepted"] end if haskey(stats, "no_jac_calls") destats.njacs = stats["no_jac_calls"] end if haskey(stats, "no_lu_decomp") destats.nw = stats["no_lu_decomp"] end DiffEqBase.solution_new_retcode(sol, return_retcode) end function save_value!(_timeseries, u, ::Type{T}, sizeu) where {T <: Number} push!(_timeseries, first(u)) end function save_value!(_timeseries, u, ::Type{T}, sizeu) where {T <: Vector} push!(_timeseries, u) end function save_value!(_timeseries, u, ::Type{T}, sizeu) where {T <: Array} push!(_timeseries, reshape(u, sizeu)) end function buildOptions(o, optionlist, aliases, aliases_reversed) dict1 = Dict{Symbol, Any}([Pair(k, o[k]) for k in (keys(o) ∩ optionlist)]) dict2 = Dict([Pair(aliases_reversed[k], o[k]) for k in (keys(o) ∩ values(aliases))]) merge(dict1, dict2) end function saveat_disc_handling(saveat, tdir, tspan, tType) if typeof(saveat) <: Number if (tspan[1]:saveat:tspan[end])[end] == tspan[end] saveat_vec = convert(Vector{tType}, collect(tType, (tspan[1] + saveat):saveat:tspan[end])) else saveat_vec = convert(Vector{tType}, collect(tType, (tspan[1] + saveat):saveat:(tspan[end] - saveat))) end else saveat_vec = vec(collect(tType, Iterators.filter(x -> tdir * tspan[1] < tdir * x < tdir * tspan[end], saveat))) end if tdir > 0 saveat_internal = BinaryMinHeap(saveat_vec) else saveat_internal = BinaryMaxHeap(saveat_vec) end saveat_internal end const ODEINTERFACE_OPTION_LIST = Set([:RTOL, :ATOL, :OUTPUTFCN, :OUTPUTMODE, :MAXSTEPS, :STEST, :EPS, :RHO, :SSMINSEL, :SSMAXSEL, :SSBETA, :MAXSS, :INITIALSS, :MAXEXCOLUMN, :STEPSIZESEQUENCE, :MAXSTABCHECKS, :MAXSTABCHECKLINE, :DENSEOUTPUTWOEE, :INTERPOLDEGRE, :SSREDUCTION, :SSSELECTPAR1, :SSSELECTPAR2, :ORDERDECFRAC, :ORDERINCFRAC, :OPT_RHO, :OPT_RHO2, :RHSAUTONOMOUS, :M1, :M2, :LAMBDADENSE, :TRANSJTOH, :STEPSIZESEQUENCE, :JACRECOMPFACTOR, :MASSMATRIX, :JACOBIMATRIX, :JACOBIBANDSSTRUCT, :WORKFORRHS, :WORKFORJAC, :WORKFORDEC, :WORKFORSOL, :MAXNEWTONITER, :NEWTONSTARTZERO, :NEWTONSTOPCRIT, :DIMFIND1VAR, :MAXSTAGES, :MINSTAGES, :INITSTAGES, :STEPSIZESTRATEGY, :FREEZESSLEFT, :FREEZESSRIGHT, :ORDERDECFACTOR, :ORDERINCFACTOR, :ORDERDECCSTEPFAC1, :ORDERDECSTEPFAC2, :RHS_CALLMODE, ]) const ODEINTERFACE_ALIASES = Dict{Symbol, Symbol}(:RTOL => :reltol, :ATOL => :abstol, :MAXSTEPS => :maxiters, :MAXSS => :dtmax, :INITIALSS => :dt, #:SSMINSEL=>:qmin, :SSBETA => :beta2, :SSMAXSEL => :qmax) const ODEINTERFACE_ALIASES_REVERSED = Dict{Symbol, Symbol}([(v, k) for (k, v) in ODEINTERFACE_ALIASES]) const ODEINTERFACE_STRINGS = Dict{Symbol, String}(:LOGIO => "logio", :LOGLEVEL => "loglevel", :RHS_CALLMODE => "RightHandSideCallMode", :RTOL => "RelTol", :ATOL => "AbsTol", :MAXSTEPS => "MaxNumberOfSteps", :EPS => "eps", :OUTPUTFCN => "OutputFcn", :OUTPUTMODE => "OutputFcnMode", :STEST => "StiffTestAfterStep", :RHO => "rho", :SSMINSEL => "StepSizeMinSelection", :SSMAXSEL => "StepSizeMaxSelection", :SSBETA => "StepSizeBeta", :MAXSS => "MaxStep", :INITIALSS => "InitialStep", :MAXEXCOLUMN => "MaxExtrapolationColumn", :MAXSTABCHECKS => "MaxNumberOfStabilityChecks", :MAXSTABCHECKLINE => "MaxLineForStabilityCheck", :INTERPOLDEGREE => "DegreeOfInterpolation", :ORDERDECFRAC => "OrderDecreaseFraction", :ORDERINCFRAC => "OrderIncreaseFraction", :STEPSIZESEQUENCE => "StepSizeSequence", :SSREDUCTION => "StepSizeReduction", :SSSELECTPAR1 => "StepSizeSelectionParam1", :SSSELECTPAR2 => "StepSizeSelectionParam2", :RHO2 => "rho2", :DENSEOUTPUTWOEE => "DeactivateErrorEstInDenseOutput", :TRANSJTOH => "TransfromJACtoHess", :MAXNEWTONITER => "MaxNewtonIterations", :NEWTONSTARTZERO => "StartNewtonWithZeros", :DIMOFIND1VAR => "DimensionOfIndex1Vars", :DIMOFIND2VAR => "DimensionOfIndex2Vars", :DIMOFIND3VAR => "DimensionOfIndex3Vars", :STEPSIZESTRATEGY => "StepSizeStrategy", :M1 => "M1", :M2 => "M2", :JACRECOMPFACTOR => "RecomputeJACFactor", :NEWTONSTOPCRIT => "NewtonStopCriterion", :FREEZESSLEFT => "FreezeStepSizeLeftBound", :FREEZESSRIGHT => "FreezeStepSizeRightBound", :MASSMATRIX => "MassMatrix", :JACOBIMATRIX => "JacobiMatrix", :JACOBIBANDSTRUCT => "JacobiBandStructure", :MAXSTAGES => "MaximalNumberOfStages", :MINSTAGES => "MinimalNumberOfStages", :INITSTAGES => "InitialNumberOfStages", :ORDERINCFACTOR => "OrderIncreaseFactor", :ORDERDECFACTOR => "OrderDecreaseFactor", :ORDERDECSTEPFAC1 => "OrderDecreaseStepFactor1", :ORDERDECSTEPFAC2 => "OrderDecreaseStepFactor2", :RHSAUTONOMOUS => "AutonomousRHS", :LAMBDADENSE => "LambdaForDenseOutput", :WORKFORRHS => "WorkForRightHandSide", :WORKFORJAC => "WorkForJacobimatrix", :WORKFORDEC => "WorkForLuDecomposition", :WORKFORSOL => "WorkForSubstitution", :BVPCLASS => "BoundaryValueProblemClass", :SOLMETHOD => "SolutionMethod", :IVPOPT => "OptionsForIVPsolver") struct OutputFunction{T} <: Function integrator::T end function (f::OutputFunction)(reason::ODEInterface.OUTPUTFCN_CALL_REASON, tprev::Float64, t::Float64, u::Vector{Float64}, eval_sol_fcn, extra_data::Dict) if reason == ODEInterface.OUTPUTFCN_CALL_STEP integrator = f.integrator integrator.uprev .= integrator.u if eltype(integrator.sol.u) <: Vector integrator.u .= u else integrator.u .= reshape(u, integrator.sizeu) end integrator.t = t integrator.tprev = tprev integrator.eval_sol_fcn = eval_sol_fcn handle_callbacks!(integrator, eval_sol_fcn) if integrator.u_modified if eltype(integrator.sol.u) <: Vector u .= integrator.u else tmp = reshape(u, integrator.sizeu) tmp .= integrator.u end return ODEInterface.OUTPUTFCN_RET_CONTINUE_XCHANGED else return ODEInterface.OUTPUTFCN_RET_CONTINUE end # TODO: ODEInterface.OUTPUTFCN_RET_STOP for terminate! end ODEInterface.OUTPUTFCN_RET_CONTINUE end
ODEInterfaceDiffEq
https://github.com/SciML/ODEInterfaceDiffEq.jl.git
[ "MIT" ]
3.13.3
a4816454042d72e4bae37d13e592591381356a17
code
1452
using ODEInterfaceDiffEq, DiffEqBase, Test import ODEProblemLibrary: prob_ode_linear, prob_ode_2Dlinear, prob_ode_vanderpol prob = prob_ode_linear sol = solve(prob, dopri5(), dt = 1 // 2^(4)) sol = solve(prob, dop853(); dt = 1 // 2^(4)) sol = solve(prob, odex(); dt = 1 // 2^(4)) sol = solve(prob, seulex(); dt = 1 // 2^(4)) sol = solve(prob, radau(); dt = 1 // 2^(4)) sol = solve(prob, radau5(); dt = 1 // 2^(4)) sol = solve(prob, rodas(); dt = 1 // 2^(4)) sol = solve(prob, ddeabm(); dt = 1 // 2^(4)) sol = solve(prob, ddebdf(); dt = 1 // 2^(4)) prob = prob_ode_2Dlinear sol = solve(prob, dopri5(), dt = 1 // 2^4) sol = solve(prob, dop853(); dt = 1 // 2^(4)) sol = solve(prob, odex(); dt = 1 // 2^(4)) sol = solve(prob, seulex(); dt = 1 // 2^(4)) sol = solve(prob, radau(); dt = 1 // 2^(4)) sol = solve(prob, radau5(); dt = 1 // 2^(4)) sol = solve(prob, rodas(); dt = 1 // 2^(4)) sol = solve(prob, ddeabm(); dt = 1 // 2^(4)) sol = solve(prob, ddebdf(); dt = 1 // 2^(4)) prob = prob_ode_vanderpol sol = solve(prob, dopri5(), dt = 1 // 2^4) sol = solve(prob, dop853(); dt = 1 // 2^(4)) sol = solve(prob, odex(); dt = 1 // 2^(4)) sol = solve(prob, seulex(); dt = 1 // 2^(4)) sol = solve(prob, radau(); dt = 1 // 2^(4)) sol = solve(prob, radau5(); dt = 1 // 2^(4)) sol = solve(prob, rodas(); dt = 1 // 2^(4)) sol = solve(prob, ddeabm(); dt = 1 // 2^(4)) sol = solve(prob, ddebdf(); dt = 1 // 2^(4))
ODEInterfaceDiffEq
https://github.com/SciML/ODEInterfaceDiffEq.jl.git
[ "MIT" ]
3.13.3
a4816454042d72e4bae37d13e592591381356a17
code
617
using ODEInterfaceDiffEq, Test callback_f = function (du, u, p, t) du[1] = u[2] du[2] = -9.81 end condtion = function (u, t, integrator) # Event when event_f(u,t,k) == 0 u[1] end affect! = nothing affect_neg! = function (integrator) integrator.u[2] = -integrator.u[2] end callback = ContinuousCallback(condtion, affect!, affect_neg!) u0 = [50.0, 0.0] tspan = (0.0, 25.0) prob = ODEProblem(callback_f, u0, tspan) sol = solve(prob, dopri5(), callback = callback, dtmax = 0.5) @test sol(4.0)[1] > 0 sol = solve(prob, dopri5(), callback = callback, save_everystep = true) @test sol(4.0)[1] > -1e-12
ODEInterfaceDiffEq
https://github.com/SciML/ODEInterfaceDiffEq.jl.git
[ "MIT" ]
3.13.3
a4816454042d72e4bae37d13e592591381356a17
code
536
using ODEInterfaceDiffEq, DiffEqBase using Test jac_called = false function Lotka(du, u, p, t) du[1] = u[1] - u[1] * u[2] # REPL[7], line 3: du[2] = -3 * u[2] + 1 * u[1] * u[2] nothing end function Lotka_jac(J, u, p, t) global jac_called jac_called = true J[1, 1] = 1.0 - u[2] J[1, 2] = -u[1] J[2, 1] = 1 * u[2] J[2, 2] = -3 + u[1] nothing end prob = ODEProblem(ODEFunction(Lotka, jac = Lotka_jac), ones(2), (0.0, 2.0)) sol = solve(prob, radau5(); dt = 1 // 2^(4)) @test jac_called == true
ODEInterfaceDiffEq
https://github.com/SciML/ODEInterfaceDiffEq.jl.git
[ "MIT" ]
3.13.3
a4816454042d72e4bae37d13e592591381356a17
code
617
using ODEInterfaceDiffEq, DiffEqBase using Test import ODEProblemLibrary: prob_ode_mm_linear prob = prob_ode_mm_linear @test_throws ErrorException solve(prob, dopri5(), dt = 1 // 2^4) @test_throws ErrorException solve(prob, dop853(); dt = 1 // 2^(4)) @test_throws ErrorException solve(prob, odex(); dt = 1 // 2^(4)) sol = solve(prob, seulex(); dt = 1 // 2^(4)) sol = solve(prob, radau(); dt = 1 // 2^(4)) sol = solve(prob, radau5(); dt = 1 // 2^(4)) sol = solve(prob, rodas(); dt = 1 // 2^(4)) @test_throws ErrorException solve(prob, ddeabm(); dt = 1 // 2^(4)) sol = solve(prob, ddebdf(); dt = 1 // 2^(4))
ODEInterfaceDiffEq
https://github.com/SciML/ODEInterfaceDiffEq.jl.git
[ "MIT" ]
3.13.3
a4816454042d72e4bae37d13e592591381356a17
code
381
using ODEInterfaceDiffEq, DiffEqBase using Test @time @testset "Algorithms" begin include("algorithm_tests.jl") end @time @testset "Saving" begin include("saving_tests.jl") end @time @testset "Mass Matrix" begin include("mass_matrix_tests.jl") end @time @testset "Jacobian Tests" begin include("jac_tests.jl") end @time @testset "Callback Tests" begin include("callbacks.jl") end
ODEInterfaceDiffEq
https://github.com/SciML/ODEInterfaceDiffEq.jl.git
[ "MIT" ]
3.13.3
a4816454042d72e4bae37d13e592591381356a17
code
476
using ODEInterfaceDiffEq, DiffEqBase using Test import ODEProblemLibrary: prob_ode_linear prob = prob_ode_linear sol = solve(prob, dopri5(), dt = 1 // 2^(4)) sol = solve(prob, dopri5()) #plot(sol,plot_analytic=true) sol = solve(prob, dopri5(), save_everystep = false) @test sol.t == [0.0, 1.0] sol = solve(prob, dopri5(), saveat = 0.1) @test sol.t == collect(0:0.1:1) sol = solve(prob, dopri5(), save_on = false, save_start = false) @test isempty(sol.t) && isempty(sol.u)
ODEInterfaceDiffEq
https://github.com/SciML/ODEInterfaceDiffEq.jl.git
[ "MIT" ]
3.13.3
a4816454042d72e4bae37d13e592591381356a17
docs
2535
# ODEInterfaceDiffEq [![Join the chat at https://gitter.im/JuliaDiffEq/Lobby](https://badges.gitter.im/JuliaDiffEq/Lobby.svg)](https://gitter.im/JuliaDiffEq/Lobby?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge&utm_content=badge) [![Build Status](https://github.com/SciML/ODEInterfaceDiffEq.jl/workflows/CI/badge.svg)](https://github.com/SciML/ODEInterfaceDiffEq.jl/actions?query=workflow%3ACI) [![Coverage Status](https://coveralls.io/repos/SciML/ODEInterfaceDiffEq.jl/badge.svg?branch=master&service=github)](https://coveralls.io/github/SciML/ODEInterfaceDiffEq.jl?branch=master) [![codecov.io](http://codecov.io/github/SciML/ODEInterfaceDiffEq.jl/coverage.svg?branch=master)](http://codecov.io/github/SciML/ODEInterfaceDiffEq.jl?branch=master) This package contains bindings for ODEInterface.jl to allow it to be used with the JuliaDiffEq common interface. For more information on using the solvers from this package, see the [DifferentialEquations.jl documentation](https://docs.sciml.ai/DiffEqDocs/stable/). ## Installation A standard installation on MacOSX and Linux should work. On Windows, you need to install mingw32 compilers and add them to the path. [MingW32 can be found here](https://sourceforge.net/projects/mingw-w64/). Then add the path to your environment variables. An example path is: ``` C:\Program Files\mingw-w64\x86_64-6.1.0-posix-seh-rt_v5-rev0\mingw64\bin ``` Note that it is required that you add ODEInterface.jl as well; ```julia ]add ODEInterface ``` Otherwise you may have issues instantiating the solvers. ## Common API Usage This library adds the common interface to ODEInterface.jl's solvers. [See the DifferentialEquations.jl documentation for details on the interface](https://docs.sciml.ai/DiffEqDocs/stable/). Following the Lorenz example from [the ODE tutorial](https://docs.sciml.ai/DiffEqDocs/stable/tutorials/ode_example/), we can solve this using `dopri5` via the following: ```julia using ODEInterface, ODEInterfaceDiffEq function lorenz(du,u,p,t) du[1] = 10.0(u[2]-u[1]) du[2] = u[1]*(28.0-u[3]) - u[2] du[3] = u[1]*u[2] - (8/3)*u[3] end u0 = [1.0;0.0;0.0] tspan = (0.0,100.0) prob = ODEProblem(lorenz,u0,tspan) sol = solve(prob,dopri5(),abstol=1e-4) using Plots; plot(sol,vars=(1,2,3)) ``` The options available in `solve` are documented [at the common solver options page](https://docs.sciml.ai/DiffEqDocs/stable/basics/common_solver_opts/). The available methods are documented [at the ODE solvers page](https://docs.sciml.ai/DiffEqDocs/stable/solvers/ode_solve/).
ODEInterfaceDiffEq
https://github.com/SciML/ODEInterfaceDiffEq.jl.git
[ "MIT" ]
0.8.0
2e8ff74c4b7ff2c2bacfcfe24c00aadfd3527f95
code
784
using Pkg Pkg.activate(@__DIR__) # As long as it is not registered, this is nice, in general it locally always # renders docs of the current version checked out in this repo. Pkg.develop(PackageSpec(; path=(@__DIR__) * "/../")) using MultiGridBarrier using Documenter using PyPlot DocMeta.setdocmeta!(MultiGridBarrier, :DocTestSetup, :(using MultiGridBarrier); recursive=true) makedocs(; modules=[MultiGridBarrier], authors="Sébastien Loisel", sitename="MultiGridBarrier.jl", format=Documenter.HTML(; canonical="https://sloisel.github.io/MultiGridBarrier.jl", edit_link="main", assets=String[], ), pages=[ "Home" => "index.md", ], ) deploydocs(; repo="github.com/sloisel/MultiGridBarrier.jl", devbranch="main", )
MultiGridBarrier
https://github.com/sloisel/MultiGridBarrier.jl.git
[ "MIT" ]
0.8.0
2e8ff74c4b7ff2c2bacfcfe24c00aadfd3527f95
code
34015
export Barrier, AMG, barrier, amgb, amg, newton, illinois, Convex, convex_linear, convex_Euclidian_power, AMGBConvergenceFailure, amgb_core, amg_construct, amg_plot, amg_solve, amg_dim function blkdiag(M...) Mat = typeof(M[1]) Mat(blockdiag((sparse.(M))...)) end struct AMGBConvergenceFailure <: Exception message end Base.showerror(io::IO, e::AMGBConvergenceFailure) = print(io, "AMGBConvergenceFailure:\n", e.message) """ Barrier A type for holding barrier functions. Fields are: f0::Function f1::Function f2::Function `f0` is the barrier function itself, while `f1` is its gradient and `f2` is the Hessian. """ @kwdef struct Barrier f0::Function f1::Function f2::Function end """ @kwdef struct AMG{T,M,Geometry} ... end Objects of this type should probably be assembled by the constructor `amg()`. A multigrid with `L` level. Denote by `l` between 1 and `L`, a grid level. Fields are: * `x::Matrix{T}` the vertices of the fine grid. * `w::Vector{T}` corresponding quadrature weights. * `R_fine::Array{M,1}` an array of `L` matrices. The columns of `R_fine[l]` are basis functions for the function space on grid level `l`, interpolated to the fine grid. * `R_coarse::Array{M,1}` an array of `L` matrices. The columns of `R_coarse[l]` are basis functions for the function space on grid level `l`. Unlike `R_fine[l]`, these basis functions are on grid level `l`, not interpolated to the fine grid. * `D::Array{M,2}` an array of differential operators. For example, if the barrier parameters are to be `u,ux,s`, with `ux` the derivative of `u`, then `D[l,:] = [I,Dx,I]`, where `Dx` is a numerical differentiation operator on grid level `l`. * `refine_u::Array{M,1}` an array of `L` grid refinement matrices. If `x[l]` has `n[l]` vertices, then `refine_u[l]` is `n[l+1]` by `n[l]`. * `coarsen_u::Array{M,1}` an array of `L` grid coarsening matrices. `coarsen_u[l]` is `n[l]` by `n[l+1]`. * `refine_z::Array{M,1}` an array of `L` grid refining matrices for the "state vector" `z`. For example, if `z` contains the state functions `u` and `s`, then there are `k=2` state functions, and `refine_z[l]` is `k*n[l+1]` by `k*n[l]`. * `coarsen_z::Array{M,1}` an array of `L` grid coarsening matrices for the "state vector" `z`. `coarsen_z[l]` is `k*n[l]` by `k*n[l+1]`. These various matrices must satisfy a wide variety of algebraic relations. For this reason, it is recommended to use the constructor `amg()`. """ @kwdef struct AMG{T,M,Geometry} x::Matrix{T} w::Vector{T} R_fine::Array{M,1} R_coarse::Array{M,1} D::Array{M,2} refine_u::Array{M,1} coarsen_u::Array{M,1} refine_z::Array{M,1} coarsen_z::Array{M,1} end function amg_helper(::Type{Geometry}, x::Matrix{T}, w::Vector{T}, state_variables::Matrix{Symbol}, D::Matrix{Symbol}, subspaces::Dict{Symbol,Vector{M}}, operators::Dict{Symbol,M}, refine::Vector{M}, coarsen::Vector{M}) where {T,M,Geometry} L = length(refine) @assert size(w) == (size(x)[1],) && size(refine)==(L,) && size(coarsen)==(L,) for l=1:L @assert norm(coarsen[l]*refine[l]-I)<sqrt(eps(T)) end refine_fine = Array{M,1}(undef,(L,)) refine_fine[L] = refine[L] coarsen_fine = Array{M,1}(undef,(L,)) coarsen_fine[L] = coarsen[L] for l=L-1:-1:1 refine_fine[l] = refine_fine[l+1]*refine[l] coarsen_fine[l] = coarsen[l]*coarsen_fine[l+1] end R_coarse = Array{M,1}(undef,(L,)) R_fine = Array{M,1}(undef,(L,)) nu = size(state_variables)[1] @assert size(state_variables)[2] == 2 for l=1:L foo = [sparse(subspaces[state_variables[k,2]][l]) for k=1:nu] R_coarse[l] = M(blockdiag(foo...)) foo = [sparse(refine_fine[l]*subspaces[state_variables[k,2]][l]) for k=1:nu] R_fine[l] = M(blockdiag(foo...)) end nD = size(D)[1] @assert size(D)[2]==2 bar = Dict{Symbol,Int}() for k=1:nu bar[state_variables[k,1]] = k end D0 = Array{M,2}(undef,(L,nD)) for l=1:L n = size(coarsen_fine[l],1) Z = M(spzeros(T,n,n)) for k=1:nD foo = [Z for j=1:nu] foo[bar[D[k,1]]] = coarsen_fine[l]*operators[D[k,2]]*refine_fine[l] D0[l,k] = hcat(foo...) end end refine_z = [blkdiag([refine[l] for k=1:nu]...) for l=1:L] coarsen_z = [blkdiag([coarsen[l] for k=1:nu]...) for l=1:L] AMG{T,M,Geometry}(x=x,w=w,R_fine=R_fine,R_coarse=R_coarse,D=D0, refine_u=refine,coarsen_u=coarsen,refine_z=refine_z,coarsen_z=coarsen_z) end """ function amg(::Type{Geometry}; x::Matrix{T}, w::Vector{T}, state_variables::Matrix{Symbol}, D::Matrix{Symbol}, subspaces::Dict{Symbol,Vector{M}}, operators::Dict{Symbol,M}, refine::Vector{M}, coarsen::Vector{M}, full_space=:full, id_operator=:id, feasibility_slack=:feasibility_slack, generate_feasibility=true) where {T,M,Geometry} Construct an `AMG` object for use with the `amgb` solver. In many cases, this constructor is not called directly by the user. For 1d and 2d finite elements, use the `fem1d()` or `fem2d()`. For 1d and 2d spectral elements, use `spectral1d()` or `spectral2d()`. You use `amg()` directly if you are implementing your own function spaces. The `AMG` object shall represent all `L` grid levels of the multigrid hierarchy. Parameters are: * `x`: the vertices of the fine grid. * `w`: the quadrature weights for the fine grid. * `state_variables`: a matrix of symbols. The first column indicates the names of the state vectors or functions, and the second column indicates the names of the corresponding subspaces. A typical example is: `state_variables = [:u :dirichlet; :s :full]`. This would define the solution as being functions named u(x) and s(x). The u function would lie in the space `:dirichlet`, presumably consisting of functions with homogeneous Dirichlet conditions. The s function would lie in the space `:full`, presumably being the full function space, without boundary conditions. * `D`: a matrix of symbols. The first column indicates the names of various state variables, and the second column indicates the corresponding differentiation operator(s). For example: `D = [:u :id ; :u :dx ; :s :id]`. This would indicate that the barrier should be called as `F(x,y)` with `y = [u,ux,s]`, where `ux` denotes the derivative of `u` with respect to the space variable `x`. * `subspaces`: a `Dict` mapping each subspace symbol to an array of `L` matrices, e.g. for each `l`, `subspaces[:dirichlet][l]` is a matrix whose columns span the homogeneous Dirichlet subspace of grid level `l`. * `operators`: a `Dict` mapping each differential operator symbol to a matrix, e.g. `operators[:id]` is an identity matrix, while `operators[:dx]` is a numerical differentiation matrix, on the fine grid level `L`. * `refine`: an array of length `L` of matrices. For each `l`, `refine[l]` interpolates from grid level `l` to grid level `l+1`. `refine[L]` should be the identity, and `coarsen[l]*refine[l]` should be the identity. * `coarsen`: an array of length `L` of matrices. For each `l`, `coarsen[l]` interpolates or projects from grid level `l+1` to grid level `l`. `coarsen[L]` should be the identity. * `generate_feasibility`: if true, `amg()` returns a pair `M` of `AMG` objects. `M[1]` is an `AMG` object to be used for the main optimization problem, while `M[2]` is an `AMG` object for the preliminary feasibility sub problem. In this case, `amg()` also needs to be provided with the following additional information: `feasibility_slack` is the name of a special slack variable that must be unique to the feasibility subproblem (default: `:feasibility_slack`); `full_space` is the name of the "full" vector space (i.e. no boundary conditions, default: `:full`); and `id_operator` is the name of the identity operator (default: `:id`). """ function amg(::Type{Geometry}; x::Matrix{T}, w::Vector{T}, state_variables::Matrix{Symbol}, D::Matrix{Symbol}, subspaces::Dict{Symbol,Vector{M}}, operators::Dict{Symbol,M}, refine::Vector{M}, coarsen::Vector{M}, full_space=:full, id_operator=:id, feasibility_slack=:feasibility_slack, generate_feasibility=true) where {T,M,Geometry} M1 = amg_helper(Geometry,x,w,state_variables,D,subspaces,operators,refine,coarsen) if !generate_feasibility return M1 end s1 = vcat(state_variables,[feasibility_slack full_space]) D1 = vcat(D,[feasibility_slack id_operator]) M2 = amg_helper(Geometry,x,w,s1,D1,subspaces,operators,refine,coarsen) return M1,M2 end @doc raw""" struct Convex barrier::Function cobarrier::Function slack::Function end The `Convex` data structure represents a convex domain $Q$ implicitly by way of three functions. The `barrier` function is a barrier for $Q$. `cobarrier` is a barrier for the feasibility subproblem, and `slack` is a function that initializes a valid slack value for the feasibility subproblem. The various `convex_` functions can be used to generate various convex domains. These function are called as follows: `barrier(x,y)`. `x` is a vertex in a grid, as per the `AMG` object. `y` is some vector. For each fixed `x` variable, `y -> barrier(x,y)` defines a barrier for a convex set in `y`. """ struct Convex{T} barrier::Function cobarrier::Function slack::Function end """ function convex_linear(::Type{T}=Float64;idx=Colon(),A::Function=(x)->I,b::Function=(x)->T(0)) where {T} Generate a `Convex` structure corresponding to the convex domain A(x,k)*y[idx] .+ b(x,k) ≤ 0. """ function convex_linear(::Type{T}=Float64;idx=Colon(),A::Function=(x)->I,b::Function=(x)->T(0)) where {T} F(x,y) = A(x)*y[idx] .+ b(x) barrier_linear(x,y) = -sum(log.(F(x,y))) cobarrier_linear(x,yhat) = -sum(log.(F(x,yhat[1:end-1]) .+ yhat[end])) slack_linear(x,y) = -minimum(F(x,y)) return Convex{T}(barrier_linear,cobarrier_linear,slack_linear) end normsquared(z) = dot(z,z) @doc raw""" function convex_Euclidian_power(::Type{T}=Float64;idx=Colon(),A::Function=(x)->I,b::Function=(x)->T(0),p::Function=x->T(2)) where {T} Generate a `Convex` object corresponding to the convex set defined by $z[end] \geq \|z[1:end-1]\|_2^p$ where $z = A(x)*y[idx] .+ b(x)$. """ function convex_Euclidian_power(::Type{T}=Float64;idx=Colon(),A::Function=(x)->I,b::Function=(x)->T(0),p::Function=x->T(2)) where {T} F(x,y) = A(x)*y[idx] .+ b(x) mu = p->(if (p==2 || p==1) 0 elseif p<2 1 else 2 end) function barrier_Euclidian_power(x,y) z = F(x,y) p0 = p(x) ::T return -log(z[end]^(2/p0)-normsquared(z[1:end-1]))-mu(p0)*log(z[end]) end function cobarrier_Euclidian_power(x,yhat) z = F(x,yhat[1:end-1]) z[end] += yhat[end] p0 = p(x) ::T return -log(z[end]^(2/p0)-normsquared(z[1:end-1]))-mu(p0)*log(z[end]) end function slack_Euclidian_power(x,y) z = F(x,y) p0 = p(x) ::T return -min(z[end]-normsquared(z[1:end-1])^(p0/2),z[end]) end return Convex{T}(barrier_Euclidian_power,cobarrier_Euclidian_power,slack_Euclidian_power) end function convex_piecewise(::Type{T}=Float64;select::Function,Q::Vector{Convex{T}}) where{T} n = length(Q) function barrier_piecewise(x,y) ret = T(0) sel = select(x) for k=1:n if sel[k] ret += Q[k].barrier(x,y) end end return ret end function cobarrier_piecewise(x,y) ret = T(0) sel = select(x) for k=1:n if sel[k] ret += Q[k].cobarrier(x,y) end end return ret end function slack_piecewise(x,y) ret = T(0) sel = select(x) for k=1:n if sel[k] ret = max(ret,Q[k].slack(x,y)) end end return ret end return Convex{T}(barrier_piecewise,cobarrier_piecewise,slack_piecewise) end Base.intersect(U::Convex{T}, V::Convex{T}) where {T} = convex_piecewise(T;select=x->[true,true],Q=[U,V]) @doc raw""" function barrier(F; F1=(x,y)->ForwardDiff.gradient(z->F(x,z),y), F2=(x,y)->ForwardDiff.hessian(z->F(x,z),y))::Barrier Constructor for barriers. * `F` is the actual barrier function. It should take parameters `(x,y)`. * `F1` is the gradient of `F` with respect to `y`. * `F2` is the Hessian of `F` with respect to `y`. By default, `F1` and `F2` are automatically generated by the module `ForwardDiff`. A more specific description of the Barrier object is as follows. The function `Barrier.f0` has parameters: function Barrier.f0(z,x,w,c,R,D,z0) Here, `R` is a matrix and `D` is an array of matrices; `x` is a matrix of quadrature nodes with weights `w`, and `c` is a matrix describing the functional we seek to minimize. The value of `Barrier.f0` is given by: ``` p = length(w) n = length(D) Rz = z0+R*z Dz = hcat([D[k]*Rz for k=1:n]...) y = [F(x[k,:],Dz[k,:]) for k=1:p] dot(w,y)+sum([dot(w.*c[:,k],Dz[:,k]) for k=1:n]) ``` Thus, `Barrier.f0` can be regarded as a quadrature approximation of the integral ```math \int_{\Omega} \left(\sum_{k=1}^nc_k(x)v_k(x)\right) + F(x,v_1(x),\ldots,v_n(x)) \, dx \text{ where } v_k = D_k(z_0 + Rz). ``` Functions `Barrier.f1` and `Barrier.f2` are the gradient and Hessian, respectively, of `Barrier.f0`, with respect to the `z` parameter. If the underlying matrices are sparse, then sparse arithmetic is used for `Barrier.f2`. """ function barrier(F; F1=(x,y)->ForwardDiff.gradient(z->F(x,z),y), F2=(x,y)->ForwardDiff.hessian(z->F(x,z),y))::Barrier function apply_D(z::Vector{T},x,w,R,D,z0) where {T} @assert all(isfinite.(z)) p = length(w) n = length(D) Dz = Array{T,2}(undef,(p,n)) Rz = z0+R*z for k=1:n Dz[:,k] = D[k]*Rz end return Dz end function f0(z::Vector{T},x,w,c,R,D,z0) where {T} Dz = apply_D(z,x,w,R,D,z0) p = length(w) n = length(D) y = [F(x[k,:],Dz[k,:]) for k=1:p] dot(w,y)+sum([dot(w.*c[:,k],Dz[:,k]) for k=1:n]) end function f1(z::Vector{T},x,w,c,R,D,z0) where {T} Dz = apply_D(z,x,w,R,D,z0) p = length(w) n = length(D) y = Array{T,2}(undef,(p,n)) for k=1:p y[k,:] = F1(x[k,:],Dz[k,:]) end y += c m0 = size(D[1],2) ret = zeros(T,(m0,)) for k=1:n ret += D[k]'*(w.*y[:,k]) end R'*ret end function f2(z::Vector{T},x,w,c,R,D,z0) where {T} Dz = apply_D(z,x,w,R,D,z0) p = length(w) n = length(D) y = Array{T,3}(undef,(p,n,n)) for k=1:p y[k,:,:] = F2(x[k,:],Dz[k,:]) end m0 = size(D[1],2) ret = spzeros(T,m0,m0) for j=1:n foo = spdiagm(0=>w.*y[:,j,j]) ret += (D[j])'*foo*D[j] for k=1:j-1 foo = spdiagm(0=>w.*y[:,j,k]) ret += D[j]'*foo*D[k] + D[k]'*foo*D[j] end end R'*ret*R end Barrier(f0=f0,f1=f1,f2=f2) end function amgb_phase1(B::Barrier, M::AMG{T,Mat,Geometry}, x::Matrix{T}, z::Vector{T}, c::Matrix{T}; maxit=10000, early_stop=z->false) where {T,Mat,Geometry} L = length(M.R_fine) cm = Vector{Matrix{T}}(undef,L) cm[L] = c zm = Vector{Vector{T}}(undef,L) zm[L] = z xm = Vector{Matrix{T}}(undef,L) xm[L] = x wm = Vector{Vector{T}}(undef,L) wm[L] = M.w passed = falses((L,)) for l=L-1:-1:1 cm[l] = M.coarsen_u[l]*cm[l+1] xm[l] = M.coarsen_u[l]*xm[l+1] zm[l] = M.coarsen_z[l]*zm[l+1] wm[l] = M.refine_u[l]'*wm[l+1] end (f0,f1,f2) = (B.f0,B.f1,B.f2) its = zeros(Int,(L,)) converged = false for l=1:L if early_stop(zm[L]) break end x = xm[l] w = wm[l] R = M.R_coarse[l] D = M.D[l,:] z0 = zm[l] c0 = cm[l] s0 = zeros(T,(size(R)[2],)) SOL = newton(Mat, s->f0(s,x,w,c0,R,D,z0), s->f1(s,x,w,c0,R,D,z0), s->f2(s,x,w,c0,R,D,z0), s0, maxit=maxit) converged = SOL.converged if !converged it = SOL.k throw(AMGBConvergenceFailure("Damped Newton iteration failed to converge at level $l during phase 1 ($it iterations, maxit=$maxit).")) end its[l] = SOL.k znext = copy(zm) s = R*SOL.x znext[l] = zm[l]+s try for k=l+1:L s = M.refine_z[k-1]*s znext[k] = zm[k]+s s0 = zeros(T,(size(M.R_coarse[k])[2],)) y0 = f0(s0,xm[k],wm[k],cm[k],M.R_coarse[k],M.D[k,:],znext[k])::T y1 = f1(s0,xm[k],wm[k],cm[k],M.R_coarse[k],M.D[k,:],znext[k]) @assert isfinite(y0) && all(isfinite.(y1)) end zm = znext passed[l] = true catch end end if !passed[end] throw(AMGBConvergenceFailure("Phase 1 failed to converge on the finest grid.")) end (z=zm[L],its=its,passed=passed) end function amgb_step(B::Barrier, M::AMG{T,Mat,Geometry}, x::Matrix{T}, z::Vector{T}, c::Matrix{T}; maxit=Int(ceil(log2(-log2(eps(T)))))+2, early_stop=z->false) where {T,Mat,Geometry} L = length(M.R_fine) (f0,f1,f2) = (B.f0,B.f1,B.f2) its = zeros(Int,(L,)) converged = false w = M.w D = M.D[L,:] function step(j,J) R = M.R_fine[J] s0 = zeros(T,(size(R)[2],)) while true SOL = newton(Mat, s->f0(s,x,w,c,R,D,z), s->f1(s,x,w,c,R,D,z), s->f2(s,x,w,c,R,D,z), s0, maxit=maxit) its[J] += SOL.k if SOL.converged z = z+R*SOL.x return true end jmid = (j+J)÷2 if jmid==j return false end if early_stop(z) return true end if !step(j,jmid) return false end j = jmid end end if step(0,L) converged = true end return (z=z,its=its,converged=converged) end """ function illinois(f,a::T,b::T;fa=f(a),fb=f(b),maxit=10000) where {T} Find a root of `f` between `a` and `b` using the Illinois algorithm. If `f(a)*f(b)>=0`, returns `b`. """ function illinois(f,a::T,b::T;fa=f(a),fb=f(b),maxit=10000) where {T} @assert isfinite(fa) && isfinite(fb) if fa==0 return a end if fa*fb>=0 return b end for k=1:maxit c = (a*fb-b*fa)/(fb-fa) fc = f(c) @assert isfinite(fc) if c<=min(a,b) || c>=max(a,b) || fc*fa==0 || fc*fb==0 return c end if fb*fc<0 a,fa = b,fb else fa /= 2 end b,fb = c,fc end throw("Illinois solver failed to converge.") end """ function newton(::Type{Mat}, F0::Function, F1::Function, F2::Function, x::Array{T,1}; maxit=10000, theta=T(0.1), beta=T(0.1), tol=eps(T)) where {T,Mat} Damped Newton iteration for minimizing a function. * `F0` the objective function * `F1` and `F2` are the gradient and Hessian of `F0`, respectively. * `x` the starting point of the minimization procedure. The Hessian `F2` return value should be of type `Mat`. The optional parameters are: * `maxit`, the iteration aborts with a failure message if convergence is not achieved within `maxit` iterations. * `tol` is used as a stopping criterion. We stop when the decrement in the objective is sufficiently small. """ function newton(::Type{Mat}, F0::Function, F1::Function, F2::Function, x::Array{T,1}; maxit=10000, theta=T(0.1), beta=T(0.1), tol=eps(T)) where {T,Mat} ss = T[] ys = T[] @assert all(isfinite.(x)) y = F0(x) ::T @assert isfinite(y) push!(ys,y) converged = false k = 0 g = F1(x) ::Array{T,1} @assert all(isfinite.(g)) ynext,xnext,gnext=y,x,g while k<maxit && !converged k+=1 H = F2(x) ::Mat n = ((H+I*norm(H)*eps(T))\g)::Array{T,1} @assert all(isfinite.(n)) inc = dot(g,n) if inc<=0 converged = true break end s = T(1) while s>T(0) try function phi(s) xn = x-s*n @assert(isfinite(F0(xn))) return dot(F1(xn),n) end s = illinois(phi,T(0),s,fa=inc) xnext = x-s*n ynext,gnext = F0(xnext)::T,F1(xnext) @assert isfinite(ynext) && all(isfinite.(gnext)) break catch end s = s*beta end if ynext>=y && norm(gnext)>=theta*norm(g) converged = true end x,y,g = xnext,ynext,gnext push!(ss,s) push!(ys,y) end return (x=x,y=y,k=k,converged=converged,ss=ss,ys=ys) end """ function amgb_core(B::Barrier, M::AMG{T,Mat,Geometry}, x::Matrix{T}, z::Array{T,1}, c::Array{T,2}; tol=(eps(T)), t=T(0.1), maxit=10000, kappa=T(10.0), early_stop=z->false, verbose=true) where {T,Mat,Geometry} The "Algebraic MultiGrid Barrier" method. * `B` a Barrier object. * `M` an AMG object. * `x` a matrix with the same number of rows as `M.x`. This is passed as the `x` parameter of the barrier. Often, `x = M.x`. * `z` a starting point for the minimization, which should be admissible, i.e. `B.f0(z)<∞`. * `c` an objective functional to minimize. Concretely, we minimize the integral of `c.*(D*z)`, as computed by the finest quadrature in `M`, subject to `B.f0(z)<∞`. Here, `D` is the differential operator provided in `M`. Optional parameters: * `t`: the initial value of `t` * `tol`: we stop when `1/t<tol`. * `maxit`: the maximum number of `t` steps. * `kappa`: the initial size of the t-step. Stepsize adaptation is used in the AMGB algorithm, where the t-step size may be made smaller or large, but it will never exceed the initial size provided here. * `verbose`: set to `true` to see a progress bar. * `early_stop`: if `early_stop(z)` is `true` then the minimization is stopped early. This is used when solving the preliminary feasibility problem. Return value is a named tuple `SOL` with the following fields: * `SOL.converged` is `true` if convergence was obtained, else it is `false`. * `SOL.z` the computed solution. Further `SOL` fields contain various statistics about the solve process. """ function amgb_core(B::Barrier, M::AMG{T,Mat,Geometry}, x::Matrix{T}, z::Array{T,1}, c::Array{T,2}; tol=sqrt(eps(T)), t=T(0.1), maxit=10000, kappa=T(10.0), early_stop=z->false, progress=x->nothing, c0=T(0)) where {T,Mat,Geometry} t_begin = time() tinit = t kappa0 = kappa L = length(M.R_fine) its = zeros(Int,(L,maxit)) ts = zeros(T,(maxit,)) kappas = zeros(T,(maxit,)) times = zeros(Float64,(maxit,)) k = 1 times[k] = time() SOL = amgb_phase1(B,M,x,z,c0 .+ t*c,maxit=maxit,early_stop=early_stop) passed = SOL.passed its[:,k] = SOL.its kappas[k] = kappa ts[k] = t z = SOL.z mi = Int(ceil(log2(-log2(eps(T)))))+2 while t<=1/tol && kappa > 1 && k<maxit && !early_stop(z) k = k+1 its[:,k] .= 0 times[k] = time() prog = ((log(t)-log(tinit))/(log(1/tol)-log(tinit))) progress(prog) while kappa > 1 t1 = kappa*t SOL = amgb_step(B,M,x,z,c0 .+ t1*c,maxit=mi,early_stop=early_stop) its[:,k] += SOL.its if SOL.converged if maximum(SOL.its)<=mi*0.5 kappa = min(kappa0,kappa^2) end z = SOL.z t = t1 break end kappa = sqrt(kappa) end ts[k] = t kappas[k] = kappa end converged = (t>1/tol) || early_stop(z) if !converged throw(AMGBConvergenceFailure("Convergence failure in amgb at t=$t, k=$k, kappa=$kappa.")) end t_end = time() t_elapsed = t_end-t_begin return (z=z,c=c,its=its[:,1:k],ts=ts[1:k],kappas=kappas[1:k],M=M, t_begin=t_begin,t_end=t_end,t_elapsed=t_elapsed,times=times[1:k],passed=passed) end """ function amgb(M::Tuple{AMG{T,Mat,Geometry},AMG{T,Mat,Geometry}}, f::Union{Function,Matrix{T}}, g::Union{Function,Matrix{T}}, Q::Convex; x::Matrix{T} = M[1].x, t=T(0.1), t_feasibility=t, verbose=true, return_details=false, rest...) where {T,Mat,Geometry} A thin wrapper around `amgb_core()`. Parameters are: * `M`: obtained from the `amg` constructor, a pair of `AMG` structures. `M[1]` is the main problem while `M[2]` is the feasibility problem. * `f`: the functional to minimize. * `g`: the "boundary conditions". * `Q`: a `Convex` domain for the convex optimization problem. * `rest...`: any further named arguments are passed on to `amgb_core`. The initial `z0` guess, and the cost functional `c0`, are computed as follows: m = size(M[1].x,1) for k=1:m z0[k,:] .= g(M[1].x[k,:]) c0[k,:] .= f(M[1].x[k,:]) end By default, the return value `z` is an `m×n` matrix, where `n` is the number of `state_variables`, see either `fem1d()`, `fem2d()`, `spectral1d()` or `spectral2d()`. If `return_details=true` then the return value is a named tuple with fields `z`, `SOL_feasibility` and `SOL_main`; the latter two fields are named tuples with detailed information regarding the various solves. """ function amgb(M::Tuple{AMG{T,Mat,Geometry},AMG{T,Mat,Geometry}}, f::Union{Function,Matrix{T}}, g::Union{Function,Matrix{T}}, Q::Convex; x::Matrix{T} = M[1].x, t=T(0.1), t_feasibility=t, verbose=true, return_details=false, rest...) where {T,Mat,Geometry} progress = x->nothing pbar = 0 if verbose pbar = Progress(1000000; dt=1.0) progress = x->update!(pbar,Int(floor(1000000*x))) end M0 = M[1] D0 = M0.D[end,1] xend = M0.x m = size(xend,1) ns = Int(size(D0,2)/m) nD = size(M0.D,2) w = zeros(T,(m,nD)) c0 = f if f isa Function c0 = zeros(T,(m,nD)) for k=1:m c0[k,:] .= f(x[k,:]) end end z0 = g if g isa Function z0 = zeros(T,(m,ns)) for k=1:m z0[k,:] .= g(x[k,:]) end end wend = M0.w z2 = reshape(z0,(:,)) for k=1:nD w[:,k] = M0.D[end,k]*z2 end pbarfeas = 0.0 feasible = true SOL1=nothing try for k=1:m @assert(isfinite(Q.barrier(x[k,:],w[k,:])::T)) end catch pbarfeas = 0.1 z1 = hcat(z0,[2*max(Q.slack(x[k,:],w[k,:]),1) for k=1:m]) b = 2*max(1,maximum(z1[:,end])) c1 = zeros(T,(m,nD+1)) c1[:,end] .= 1 B1 = barrier((x,y)->dot(y,y)+Q.cobarrier(x,y)-log(b^2-y[end]^2)) z1 = reshape(z1,(:,)) early_stop(z) = all(z[end-m+1:end] .< 0) try SOL1 = amgb_core(B1,M[2],x,z1,c1,t=t_feasibility, progress=x->progress(pbarfeas*x), early_stop=early_stop, rest...)#,c0=hcat(t*c0,zeros(T,(m,1)))) @assert early_stop(SOL1.z) catch e if isa(e,AMGBConvergenceFailure) throw(AMGBConvergenceFailure("Could not solve the feasibility subproblem, probem may be infeasible. Failure was: "+e.message)) end throw(e) end z2 = reshape((reshape(SOL1.z,(m,ns+1)))[:,1:end-1],(:,)) end B = barrier(Q.barrier) SOL2 = amgb_core(B,M0,x,z2,c0,t=t, progress=x->progress((1-pbarfeas)*x+pbarfeas),rest...) if verbose progress(1.0) finish!(pbar) end z = reshape(SOL2.z,(m,:)) if return_details return (z=z,SOL_feasibility=SOL1,SOL_main=SOL2) end return z end default_f(T) = [(x)->T[0.5,0.0,1.0],(x)->T[0.5,0.0,0.0,1.0]] default_g(T) = [(x)->T[x[1],2],(x)->T[x[1]^2+x[2]^2,100.0]] default_D = [[:u :id :u :dx :s :id], [:u :id :u :dx :u :dy :s :id]] """ function amg_solve(::Type{T}=Float64; L::Integer=2, n=nothing, method=FEM1D, K = nothing, state_variables::Matrix{Symbol} = [:u :dirichlet :s :full], dim::Integer = amg_dim(method), D::Matrix{Symbol} = default_D[dim], M = amg_construct(T,method,L=L,n=n,K=K,state_variables=state_variables,D=D), p::T = T(1.0), g::Union{Function,Matrix{T}} = default_g(T)[dim], f::Union{Function,Matrix{T}} = default_f(T)[dim], Q::Convex{T} = convex_Euclidian_power(T,idx=2:dim+2,p=x->p), show=true, return_details=false, rest...) where {T} A simplified interface for module MultiGridBarrier to "quickly get started". To solve a p-Laplace problem, do: `amg_solve()`. Different behaviors can be obtained by supplying various optional keyword arguments, as follows. * `L=2`: the number of times to subdivide the base mesh. * The `n` parameter is only used in `spectral` methods, in which case, if `n` is an integer, then `L` is disregarded. `n` is the number of quadrature nodes along each axis. * `method=FEM1D`: this must be either `FEM1D`, `FEM2D`, `SPECTRAL1D` or `SPECTRAL2D`. This parameter is used twice: once to choose the constructor for the `M` parameter, and again to plot the solution if `show` is `true`. If `show` is `false` and if `M` is constructed "manually", not by its default value, then the `method` parameter is ignored. * `K`: In most cases, this is `nothing`, but in the `fem2d` case, `K` is the initial mesh. * `state_variables = [:u :dirichlet ; :s :full]`: the names of the components of the solution vector `z`. * `dim = size(M[1].x[end],2)`, the dimension of the problem, should be 1 or 2. This is only used in the default values of the `g`, `f`, `Q`, `D` parameters, and is ignored if these parameters do not use default values. * `D`: the differential operators, see below for defaults. * `M`: a mesh obtained by one of the constructors `fem1d`, `fem2d`, `spectral1d` or `spectral2d`, corresponding to the `method` parameter. * `x = M[1].x`: a matrix, same number of rows as `M[1].x`. This matrix will be passed, row by row, to the barrier function, as the x parameter. * `p = T(1.0)`: the parameter of the p-Laplace operator. This is only relevant if the default value is used for the `Q` parameter, and is ignored otherwise. * `g`: the "boundary conditions" function. See below for defaults. * `f`: the "forcing" or "cost functional" to be minimized. See below for defaults. * `Q`: the convex domain to which the solution should belong. Defaults to `convex_Euclidian_power(T,idx=2:dim+2,p=x->p)`, which corresponds to p-Laplace problems. Change this to solve other variational problems. * `show=true`: if `true`, plot the solution. * `return_details=false`: if `false`, return a `Vector{T}` of the solution. If `true`, returned a named tuple with some more details about the solution process. * `rest...`: any further keyword arguments are passed on to `amgb`. The default values for the parameters `f`, `g`, `D` are as follows | `dim` | 1 | 2 | |:------|:----------------------|:------------------------------| | `f` | `(x)->T[0.5,0.0,1.0]` | `(x)->T[0.5,0.0,0.0,1.0]` | | `g` | `(x)->T[x[1],2]` | `(x)->T[x[1]^2+x[2]^2,100.0]` | | `D` | `[:u :id` | `[:u :id` | | | ` :u :dx` | ` :u :dx` | | | ` :s :id]` | ` :u :dy` | | | | ` :s :id]` | """ function amg_solve(::Type{T}=Float64; L::Integer=2, n=nothing, method=FEM1D, K = nothing, state_variables::Matrix{Symbol} = [:u :dirichlet :s :full], dim::Integer = amg_dim(method), D::Matrix{Symbol} = default_D[dim], M = amg_construct(T,method,L=L,n=n,K=K,state_variables=state_variables,D=D), p::T = T(1.0), g::Union{Function,Matrix{T}} = default_g(T)[dim], f::Union{Function,Matrix{T}} = default_f(T)[dim], Q::Convex{T} = convex_Euclidian_power(T,idx=2:dim+2,p=x->p), show=true, return_details=false, rest...) where {T} SOL=amgb(M,f, g, Q,;return_details=return_details,rest...) if show z = if return_details SOL.z else SOL end amg_plot(M[1],z[:,1]) end SOL end function amg_precompile() fem1d_solve(L=1) fem2d_solve(L=1) spectral1d_solve(L=1) spectral2d_solve(L=1) end precompile(amg_precompile,())
MultiGridBarrier
https://github.com/sloisel/MultiGridBarrier.jl.git
[ "MIT" ]
0.8.0
2e8ff74c4b7ff2c2bacfcfe24c00aadfd3527f95
code
4315
@doc raw""" module MultiGridBarrier Module `MultiGridBarrier` solves convex optimization problems in function spaces, for example, solving p-Laplace problems. We recommend to start with the functions `fem1d_solve()`, `fem2d_solve()`, `spectral1d_solve()`, `spectral2d_solve()`. These functions are sufficient to solve p-Laplace problems in 1d or 2d, using finite or spectral elements. For more general use, the user will need to familiarize themselves with the basic ideas of convex optimization. * Overview of convex optimization in function spaces by MultiGrid Barrier method. The general idea is to build a multigrid hierarchy, represented by an `AMG` object, and barrier for a convex set, represented by a `Barrier` object, and then solve a convex optimization problem using the `amgb()` solver. To generate the multigrid hierarchy represented by the `AMG` object, use either `fem1d()`, `fem2d()`, `spectral1d()` or `spectral2d()` functions. These constructors will assemble suitable `AMG` objects for either FEM or spectral discretizations, in 1d or 2d. One should think of these four constructors as being specialized in constructing some specific function spaces. A user can use the `amg()` constructor directly if custom function spaces are required, but this is more difficult. We now describe the barrier function. Assume that ``\Omega \subset \mathbb{R}^d`` is some open set. Consider the example of the p-Laplace problem on ``\Omega``. Let ``f(x)`` be a "forcing" (a function) on ``\Omega``, and ``1 \leq p < \infty``. One wishes to solve the minimization problem ```math \begin{equation} \inf_u \int_{\Omega} fu + \|\nabla u\|_2^p \, dx. \tag{1} \end{equation} ``` Generally speaking, ``u`` will range in some function space, e.g. a space of differentiable functions satisfying homogeneous Dirichlet conditions. Under some conditions, minimizing (1) is equivalent to solving the p-Laplace PDE: ```math \nabla \cdot (\|\nabla u\|_2^{p-2}\nabla u) = {1 \over p} f. ``` We introduct the "slack function" ``s(x)`` and replace (1) with the following equivalent problem: ```math \begin{equation} \inf_{s(x) \geq \|\nabla u(x)\|_2^p} \int_{\Omega} fu + s \, dx. \tag{2} \end{equation} ``` Define the convex set ``\mathcal{Q} = \{ (u(x),q(x),s(x)) \; : \; s(x) \geq \|q(x)\|_2^p \}``, and ```math z = \begin{bmatrix} u \\ s \end{bmatrix}, \qquad c^T = [f,0,1], \qquad Dz = \begin{bmatrix} u \\ \nabla u \\ s \end{bmatrix}. ``` Then, (2) can be rewritten as ```math \begin{equation} \inf_{Dz \in \mathcal{Q}} \int_{\Omega} c^T(x)Dz(x) \, dx. \tag{3} \end{equation} ``` Recall that a barrier for ``\mathcal{Q}`` is a convex function ``\mathcal{F}`` on ``\mathcal{Q}`` such that ``\mathcal{F} < \infty`` in the interior of ``\mathcal{Q}`` and ``\mathcal{F} = \infty`` on the boundary of ``\mathcal{Q}``. A barrier for the p-Laplace problem is: ```math \mathcal{F}(u,q,s) = \int_{\Omega} -\log(s^{2 \over p} - \|q\|_2^2) - 2\log s \, dx = \int_{\Omega} F(Dz(x)) \, dx. ``` The central path ``z^*(t)`` minimizes, for each fixed ``t>0``, the quantity ```math \int_{\Omega} tc^TDz + F(Dz) \, dx. ``` As ``t \to \infty``, ``z^*(t)`` forms a minimizing sequence (or filter) for (3). We think of the function ``c(x)`` as the "functional" that we seek to minimize. The `Convex{T}` type describes various convex sets (denoted ``Q`` above) by way of functions `barrier()`, `cobarrier()` and `slack()`. `barrier` is indeed a barrier for ``Q``, `cobarrier()` is a barrier for a related feasibility problems, and ``slack()`` is used in solving the feasibility problem. `Convex{T}` objects can be created using the various `convex_...()` constructors, e.g. `convex_Euclidian_power()` for the p-Laplace problem. Once one has `AMG` and `Convex` objects, and a suitable "functional" `c`, one uses the `amgb()` function to solve the optimization problem by the MultiGrid Barrier method, a variant of the barrier method (or interior point method) that is quasi-optimal for sufficiently regular problems. """ module MultiGridBarrier using SparseArrays using LinearAlgebra using PyPlot using PyCall using ForwardDiff using ProgressMeter using QuadratureRules include("AlgebraicMultiGridBarrier.jl") include("fem1d.jl") include("fem2d.jl") include("spectral1d.jl") include("spectral2d.jl") include("Parabolic.jl") end
MultiGridBarrier
https://github.com/sloisel/MultiGridBarrier.jl.git
[ "MIT" ]
0.8.0
2e8ff74c4b7ff2c2bacfcfe24c00aadfd3527f95
code
5571
export parabolic_solve, parabolic_plot default_D_parabolic = [ [:u :id :u :dx :s1 :id :s2 :id], [:u :id :u :dx :u :dy :s1 :id :s2 :id] ] default_f_parabolic = [ (f1,w1,w2)->[f1,0,w1,w2], (f1,w1,w2)->[f1,0,0,w1,w2] ] default_g_parabolic = [ (t,x)->[x[1],0,0], (t,x)->[x[1]^2+x[2]^2,0,0], ] @doc raw""" function parabolic_solve(::Type{T}=Float64; method = FEM2D, state_variables = [:u :dirichlet :s1 :full :s2 :full], dim = amg_dim(method), f1 = x->T(0.5), f_default = default_f_parabolic[dim], p = T(1), h = T(0.2), f = (t,x)->f_default(h*f1(x)-x[1+dim],T(0.5),h/p), g = default_g_parabolic[dim], D = default_D_parabolic[dim], L = 2, t0 = T(0), t1 = T(1), M = amg_construct(T,method,L=L,D=D,state_variables=state_variables), Q = (convex_Euclidian_power(;idx=[1,2+dim],p=x->T(2)) ∩ convex_Euclidian_power(;idx=vcat(2:1+dim,3+dim),p=x->p)), verbose = true, show = true, interval = 200, printer=(animation)->display("text/html", animation.to_html5_video(embed_limit=200.0)), rest...) where {T} Solves a parabolic (i.e. time-dependent) p-Laplace problem of the form: ```math u_t - \nabla \cdot (\|\nabla u\|_2^{p-2}\nabla u) = -f_1. ``` We use the implicit Euler scheme ``u_t \approx (u_{k+1}-u_k)/h`` to arrive at: ```math u_{k+1} - h\nabla \cdot (\|\nabla u_{k+1}\|_2^{p-2}\nabla u_{k+1}) = u_k-hf_1. ``` According to the calculus of variation, we look for a weak solution minimizing ```math J(u) = \int_{\Omega}{1 \over 2} u^2 + h {1 \over p} \|\nabla u\|_2^p + (hf_1-u_k)u \, dx ``` We introduce the slack functions ``s_1 \geq u^2`` and ``s_2 \geq \|\nabla u\|_2^p`` and minimize instead ```math \int_{\Omega} {1 \over 2}s_1 + {h \over p} s_2 + (hf_1-u_k)u \, dx. ``` The canonical form is: ```math z = \begin{bmatrix} u \\ s_1 \\ s_2 \end{bmatrix} \qquad f^T = \left[hf_1-u_k,0,0,{1 \over 2},{h \over p}\right] \qquad Dz = \begin{bmatrix} u \\ u_x \\ u_y \\ s_1 \\ s_2 \end{bmatrix} \qquad g = \begin{bmatrix} g_1 \\ 0 \\ 0 \end{bmatrix}. ``` Here, ``g_1`` encodes boundary conditions for ``u``. Then we minimize: ```math \int_{\Omega} f^TDz ``` The named arguments `rest...` are passed verbatim to `amg_solve`. """ function parabolic_solve(::Type{T}=Float64; method = FEM2D, state_variables = [:u :dirichlet :s1 :full :s2 :full], dim = amg_dim(method), f1 = x->T(0.5), f_default = default_f_parabolic[dim], p = T(1), h = T(0.2), f = (t,x)->f_default(h*f1(x)-x[1+dim],T(0.5),h/p), g = default_g_parabolic[dim], D = default_D_parabolic[dim], L = 2, t0 = T(0), t1 = T(1), M = amg_construct(T,method,L=L,D=D,state_variables=state_variables), Q = (convex_Euclidian_power(;idx=[1,2+dim],p=x->T(2)) ∩ convex_Euclidian_power(;idx=vcat(2:1+dim,3+dim),p=x->p)), verbose = true, show = true, interval = 200, printer=(animation)->display("text/html", animation.to_html5_video(embed_limit=200.0)), rest...) where {T} ts = t0:h:t1 n = length(ts) m = size(M[1].x,1) g0 = g if g isa Function foo = g(t0,M[1].x[1,:]) d = length(foo) g0 = zeros(T,(m,d,n)) for j=1:n for k=1:m g0[k,:,j] = g(ts[j],M[1].x[k,:]) end end end d = size(g0,2) U = g0 pbar = 0 prog = k->nothing if verbose pbar = Progress(n; dt=1.0) prog = k->update!(pbar,k) end for k=1:n-1 prog(k-1) z = amg_solve(;L=L,method=method,M=M,x=hcat(M[1].x,U[:,:,k]),g=U[:,:,k+1],f=x->f(ts[k+1],x),Q=Q,show=false,verbose=false,rest...) U[:,:,k+1] = z end if verbose finish!(pbar) end if show parabolic_plot(method,M[1],U[:,1,:],interval=interval,printer=printer) end return U end """ function parabolic_plot(method,M::AMG{T, Mat,Geometry}, U::Matrix{T}; interval=200, embed_limit=200.0, printer=(animation)->display("text/html", animation.to_html5_video(embed_limit=embed_limit))) where {T,Mat,Geometry} Animate the solution of the parabolic problem. """ function parabolic_plot(method,M::AMG{T, Mat,Geometry}, U::Matrix{T}; interval=200, embed_limit=200.0, printer=(animation)->display("text/html", animation.to_html5_video(embed_limit=embed_limit))) where {T,Mat,Geometry} anim = pyimport("matplotlib.animation") # anim = matplotlib.animation m0 = minimum(U) m1 = maximum(U) dim = amg_dim(method) function animate(i) clf() ret = amg_plot(M,U[:,i+1]) ax = plt.gca() if dim==1 ax.set_ylim([m0, m1]) return ret end ax.axes.set_zlim3d(bottom=m0, top=m1) return [ret,] end init()=animate(0) fig = figure() myanim = anim.FuncAnimation(fig, animate, frames=size(U,2), init_func=init, interval=interval, blit=true) printer(myanim) plt.close(fig) return nothing end function parabolic_precompile() parabolic_solve(method=FEM1D,L=1,h=0.5) parabolic_solve(method=FEM2D,L=1,h=0.5) parabolic_solve(method=SPECTRAL1D,L=1,h=0.5) parabolic_solve(method=SPECTRAL2D,L=2,h=0.5) end precompile(parabolic_precompile,())
MultiGridBarrier
https://github.com/sloisel/MultiGridBarrier.jl.git
[ "MIT" ]
0.8.0
2e8ff74c4b7ff2c2bacfcfe24c00aadfd3527f95
code
4644
export fem1d, FEM1D, fem1d_solve " abstract type FEM1D end" abstract type FEM1D end " amg_dim(::Type{FEM1D}) = 1" amg_dim(::Type{FEM1D}) = 1 " amg_construct(::Type{T},::Type{FEM1D};rest...) where {T} = fem1d(T;rest...)" amg_construct(::Type{T},::Type{FEM1D};rest...) where {T} = fem1d(T;rest...) " fem1d_solve(::Type{T}=Float64;rest...) where {T} = amg_solve(T;method=FEM1D,rest...)" fem1d_solve(::Type{T}=Float64;rest...) where {T} = amg_solve(T;method=FEM1D,rest...) """ function fem1d(::Type{T}=Float64; L::Int=4, state_variables = [:u :dirichlet :s :full], D = [:u :id :u :dx :s :id], generate_feasibility=true) where {T} Construct an `AMG` object for a 1d piecewise linear finite element grid. The interval is [-1,1]. Parameters are: * `L`: divide the interval into 2^L subintervals (L for Levels). * `state_variables`: the "state vector" consists of functions, by default this is `u(x)` and `s(x)`, on the finite element grid. * `D`: the set of differential operator. The barrier function `F` will eventually be called with the parameters `F(x,Dz)`, where `z` is the state vector. By default, this results in `F(x,u,ux,s)`, where `ux` is the derivative of `u`. * `generate_feasibility`: if `true`, returns a pair `M` of `AMG` objects. `M[1]` is the `AMG` object for the main problem, and `M[2]` is for the feasibility subproblem. """ function fem1d(::Type{T}=Float64; L::Int=4, n=nothing, K=nothing, state_variables = [:u :dirichlet :s :full], D = [:u :id :u :dx :s :id], generate_feasibility=true) where {T} ls = [2^k for k=1:L] x = Array{Array{T,2},1}(undef,(L,)) dirichlet = Array{SparseMatrixCSC{T,Int},1}(undef,(L,)) full = Array{SparseMatrixCSC{T,Int},1}(undef,(L,)) uniform = Array{SparseMatrixCSC{T,Int},1}(undef,(L,)) refine = Array{SparseMatrixCSC{T,Int},1}(undef,(L,)) coarsen = Array{SparseMatrixCSC{T,Int},1}(undef,(L,)) for l=1:L n0 = 2^l x[l] = reshape(hcat((0:n0-1)./T(n0),(1:n0)./T(n0))',(2*n0,1)) .* 2 .- 1 N = size(x[l])[1] dirichlet[l] = vcat(spzeros(T,1,n0-1),blockdiag(repeat([sparse(T[1 ; 1 ;;])],outer=(n0-1,))...),spzeros(T,1,n0-1)) full[l] = sparse(T,I,N,N) uniform[l] = sparse(ones(T,(N,1))) end N = size(x[L])[1] w = repeat([T(2)/N],outer=(N,)) id = sparse(T,I,N,N) dx = blockdiag(repeat([sparse(T[-2^(L-1) 2^(L-1) -2^(L-1) 2^(L-1)])],outer=(2^L,))...) refine[L] = id coarsen[L] = id for l=1:L-1 n0 = 2^l refine[l] = blockdiag( repeat([sparse(T[1.0 0.0 0.5 0.5 0.5 0.5 0.0 1.0])],outer=(n0,))...) coarsen[l] = blockdiag( repeat([sparse(T[1 0 0 0 0 0 0 1])],outer=(n0,))...) end subspaces = Dict(:dirichlet => dirichlet, :full => full, :uniform => uniform) operators = Dict(:id => id, :dx => dx) return amg(FEM1D,x=x[L],w=w,state_variables=state_variables, D=D,subspaces=subspaces,operators=operators,refine=refine,coarsen=coarsen, generate_feasibility=generate_feasibility) end """ function fem1d_interp(x::Vector{T}, y::Vector{T}, t::T) where{T} Interpolate a 1d piecewise linear function at the given `t` value. If `u(xi)` is the piecewise linear function such that `u(x[k])=y[k]` then this function returns `u(t)`. """ function fem1d_interp(x::Vector{T}, y::Vector{T}, t::T) where{T} b = length(x) if t<x[1] return y[1] elseif t>x[b] return y[b] end a = 1 while b-a>1 c = (a+b)÷2 if x[c]<=t a=c else b=c end end w = (t-x[a])/(x[b]-x[a]) return w*y[b]+(1-w)*y[a] end """ function fem1d_interp(x::Vector{T}, y::Vector{T}, t::Vector{T}) where{T} Returns `[fem1d_interp(x,y,t[k]) for k=1:length(t)]`. """ function fem1d_interp(x::Vector{T}, y::Vector{T}, t::Vector{T}) where{T} [fem1d_interp(x,y,t[k]) for k=1:length(t)] end " amg_plot(M::AMG{T,Mat,FEM1D}, z::Vector{T}) where {T,Mat} = plot(M.x[end],z)" amg_plot(M::AMG{T,Mat,FEM1D}, z::Vector{T}) where {T,Mat} = plot(M.x,z)
MultiGridBarrier
https://github.com/sloisel/MultiGridBarrier.jl.git