licenses
sequencelengths
1
3
version
stringclasses
677 values
tree_hash
stringlengths
40
40
path
stringclasses
1 value
type
stringclasses
2 values
size
stringlengths
2
8
text
stringlengths
25
67.1M
package_name
stringlengths
2
41
repo
stringlengths
33
86
[ "MIT" ]
0.5.1
4a51ecb0d0bb2bb7ccf06891437c7bf928f7d356
code
1290
@testset "Weighted sampling single tests" begin @testset "method=$method" for method in (AlgWRSWRSKIP(),) wv(el) = 1.0 a, b = 1, 100 z = itsample(a:b, wv, method) @test a <= z <= b z = itsample(Iterators.filter(x -> x != b+1, a:b+1), wv, method) @test a <= z <= b iter = Iterators.filter(x -> x != b + 1, a:b+1) rs = ReservoirSample(Int, method) for x in iter fit!(rs, x, wv(x)) end @test a <= value(rs) <= b @test nobs(rs) == 100 rng = StableRNG(43) wv2(el) = el <= 50 ? 1.0 : 2.0 iters = (a:b, Iterators.filter(x -> x != b + 1, a:b+1)) for it in iters reps = 10000 dict_res = Dict{Int, Int}() for _ in 1:reps s = itsample(rng, it, wv2, method) if s in keys(dict_res) dict_res[s] += 1 else dict_res[s] = 1 end end cases = 100 ps_exact = [wv2(el)/150 for el in keys(dict_res)] count_est = collect(values(dict_res)) chisq_test = ChisqTest(count_est, ps_exact) @test pvalue(chisq_test) > 0.05 end end end
StreamSampling
https://github.com/JuliaDynamics/StreamSampling.jl.git
[ "MIT" ]
0.5.1
4a51ecb0d0bb2bb7ccf06891437c7bf928f7d356
docs
3881
# StreamSampling.jl [![CI](https://github.com/JuliaDynamics/StreamSampling.jl/workflows/CI/badge.svg)](https://github.com/JuliaDynamics/StreamSampling.jl/actions?query=workflow%3ACI) [![](https://img.shields.io/badge/docs-stable-blue.svg)](https://juliadynamics.github.io/StreamSampling.jl/stable/) [![codecov](https://codecov.io/gh/JuliaDynamics/StreamSampling.jl/graph/badge.svg?token=F8W0MC53Z0)](https://codecov.io/gh/JuliaDynamics/StreamSampling.jl) [![Aqua QA](https://raw.githubusercontent.com/JuliaTesting/Aqua.jl/master/badge.svg)](https://github.com/JuliaTesting/Aqua.jl) [![DOI](https://zenodo.org/badge/692407431.svg)](https://zenodo.org/doi/10.5281/zenodo.12826684) The scope of this package is to provide general methods to sample from any stream in a single pass through the data, even when the number of items contained in the stream is unknown. This has some advantages over other sampling procedures: - If the iterable is lazy, the memory required grows in relation to the size of the sample, instead of the all population. - The sample collected is a random sample of the portion of the stream seen thus far at any point of the sampling process. - In some cases, sampling with the techniques implemented in this library can bring considerable performance gains, since the population of items doesn't need to be previously stored in memory. ## Overview of the functionalities The `itsample` function allows to consume all the stream at once and return the sample collected: ```julia julia> using StreamSampling julia> st = 1:100; julia> itsample(st, 5) 5-element Vector{Int64}: 9 15 52 96 91 ``` In some cases, one needs to control the updates the `ReservoirSample` will be subject to. In this case you can simply use the `fit!` function to update the reservoir: ```julia julia> using StreamSampling julia> rs = ReservoirSample(Int, 5); julia> for x in 1:100 fit!(rs, x) end julia> value(rs) 5-element Vector{Int64}: 7 9 20 49 74 ``` Consult the [API page](https://juliadynamics.github.io/StreamSampling.jl/stable/api) for more information on these and other functionalities. ## Benchmark As stated in the first section, using these sampling techniques can bring down considerably the memory usage of the program, but there are cases where they are also more time efficient, as demostrated below with a comparison with the equivalent methods of `StatsBase.sample`: ```julia julia> using StreamSampling julia> using BenchmarkTools, Random, StatsBase julia> rng = Xoshiro(42); julia> iter = Iterators.filter(x -> x != 10, 1:10^7); julia> wv(el) = Float64(el); julia> @btime itsample($rng, $iter, 10^4, AlgRSWRSKIP()); 12.301 ms (6 allocations: 156.38 KiB) julia> @btime sample($rng, collect($iter), 10^4; replace=true); 92.936 ms (35 allocations: 290.93 MiB) julia> @btime itsample($rng, $iter, 10^4, AlgL()); 12.719 ms (3 allocations: 78.19 KiB) julia> @btime sample($rng, collect($iter), 10^4; replace=false); 93.544 ms (41 allocations: 291.08 MiB) julia> @btime itsample($rng, $iter, $wv, 10^4, AlgWRSWRSKIP()); 18.672 ms (22 allocations: 547.34 KiB) julia> @btime sample($rng, collect($iter), Weights($wv.($iter)), 10^4; replace=true); 377.567 ms (83 allocations: 963.26 MiB) julia> @btime itsample($rng, $iter, $wv, 10^4, AlgAExpJ()); 37.600 ms (8 allocations: 234.55 KiB) julia> @btime sample($rng, collect($iter), Weights($wv.($iter)), 10^4; replace=false); 258.426 ms (74 allocations: 658.24 MiB) ``` Some more performance comparisons in respect to `StatsBase` methods are in the [benchmark](https://github.com/JuliaDynamics/StreamSampling.jl/blob/main/benchmark/) folder. ## Contributing Contributions are welcome! If you encounter any issues, have suggestions for improvements, or would like to add new features, feel free to open an issue or submit a pull request.
StreamSampling
https://github.com/JuliaDynamics/StreamSampling.jl.git
[ "MIT" ]
0.5.1
4a51ecb0d0bb2bb7ccf06891437c7bf928f7d356
docs
457
# API This is the API page of the package. For a general overview of the functionalities consult the [ReadMe](https://github.com/JuliaDynamics/StreamSampling.jl). ## General Functionalities ```@docs ReservoirSample fit! merge! merge empty! value ordvalue nobs itsample ``` ## Sampling Algorithms ```@docs StreamSampling.AlgR StreamSampling.AlgL StreamSampling.AlgRSWRSKIP StreamSampling.AlgARes StreamSampling.AlgAExpJ StreamSampling.AlgWRSWRSKIP ```
StreamSampling
https://github.com/JuliaDynamics/StreamSampling.jl.git
[ "MIT" ]
0.5.1
4a51ecb0d0bb2bb7ccf06891437c7bf928f7d356
docs
1732
# An Illustrative Example Suppose to receive data about some process in the form of a stream and you want to detect if anything is going wrong in the data being received. A reservoir sampling approach could be useful to evaluate properties on the data stream. This is a demonstration of such a use case using `StreamSampling.jl`. We will assume that the monitored statistic in this case is the mean of the data, and you want that to be lower than a certain threshold otherwise some malfunctioning is expected. ```julia julia> using StreamSampling, Statistics, Random julia> function monitor(stream, thr) rng = Xoshiro(42) # we use a reservoir sample of 10^4 elements rs = ReservoirSample(rng, Int, 10^4) # we loop over the stream and fit the data in the reservoir for (i, e) in enumerate(stream) fit!(rs, e) # we check the mean value every 1000 iterations if iszero(mod(i, 1000)) && mean(value(rs)) >= thr return rs end end end ``` We use some toy data for illustration ```julia julia> stream = 1:10^8; # the data stream julia> thr = 2*10^7; # the threshold for the mean monitoring ``` Then, we run the monitoring ```julia julia> rs = monitor(stream, thr); ``` The number of observations until the detection is triggered is given by ```julia julia> nobs(rs) 40009000 ``` which is very close to the true value of `4*10^7 - 1` observations. Note that in this case we could use an online mean methods, instead of holding all the sample into memory. However, the approach with the sample is more general because it allows to estimate any statistic about the stream.
StreamSampling
https://github.com/JuliaDynamics/StreamSampling.jl.git
[ "MIT" ]
0.1.0
09d9c045d14d223a31b94e9c39a0564a9c41b47f
code
9674
 struct AhoCorasickAutomaton{T <: Unsigned} base::Vector{T} from::Vector{T} ikey::Vector{T} deep::Vector{T} back::Vector{T} arcs::Vector{Vector{UInt8}} end function AhoCorasickAutomaton{T}() where T base = T[1] from = T[1] ikey = T[0] deep = T[0] back = T[0] arcs = [UInt8[]] return AhoCorasickAutomaton{T}(base, from, ikey, deep, back, arcs) end function AhoCorasickAutomaton{T}(keys::Vector, sort::Bool) where T obj = AhoCorasickAutomaton{T}() if sort && !issorted(keys) Base.sort!(keys) end for (key, i) in keys addkey!(obj, codeunits(key), T(i)) end shrink!(obj) @inbounds fillback!(obj) validate(obj) resize!(obj.arcs, 0) return obj end function AhoCorasickAutomaton{T}(keys::AbstractDict{String, Ti}; sort::Bool = true) where {T, Ti} return AhoCorasickAutomaton{T}(collect(keys), sort) end function AhoCorasickAutomaton{T}(keys::Vector{String}; sort::Bool = true) where T return AhoCorasickAutomaton{T}(collect(zip(keys, 1:length(keys))), sort) end function ==(x::AhoCorasickAutomaton, y::AhoCorasickAutomaton) return x.base == y.base && x.from == y.from && x.ikey == y.ikey && x.deep == y.deep && x.back == y.back end function in(key::AbstractString, obj::AhoCorasickAutomaton{T})::Bool where T return get(obj, key, T(0)) > 0 end function in(key::DenseVector{UInt8}, obj::AhoCorasickAutomaton{T})::Bool where T return get(obj, key, T(0)) > 0 end function get(obj::AhoCorasickAutomaton{T}, key::DenseVector{UInt8}, default::T)::T where T cur::T = 1 n::T = length(obj.from) for c in key nxt = obj.base[cur] + c if (nxt <= n && obj.from[nxt] == cur) cur = nxt else return default end end return obj.ikey[cur] end function get(obj::AhoCorasickAutomaton{T}, key::AbstractString, default::T)::T where T return get(obj, codeunits(key), default) end function length(obj::AhoCorasickAutomaton{T}) where T return count(!iszero, obj.ikey) end function collect(obj::AhoCorasickAutomaton{T}) where T base = obj.base from = obj.from ikey = obj.ikey res = Pair{String, Int}[] for i = 1:length(ikey) if ikey[i] == 0 continue end codes = UInt8[] j = i while j > 1 c = j - base[from[j]] push!(codes, c) j = from[j] end push!(res, String(reverse!(codes)) => ikey[i]) end return res end function keys(obj::AhoCorasickAutomaton{T}) where T return map(first, collect(obj)) end function values(obj::AhoCorasickAutomaton{T}) where T return filter(!iszero, obj.ikey) end function shrink!(obj::AhoCorasickAutomaton{T})::T where T actlen = findlast(!iszero, obj.from) if (actlen < length(obj.from)) resize!(obj.base, actlen) resize!(obj.from, actlen) resize!(obj.ikey, actlen) resize!(obj.deep, actlen) resize!(obj.back, actlen) resize!(obj.arcs, actlen) end return actlen end function enlarge!(obj::AhoCorasickAutomaton{T}, newlen::T)::T where T base = obj.base; from = obj.from; deep = obj.deep; back = obj.back; ikey = obj.ikey; arcs = obj.arcs; oldlen::T = length(obj.base) newlen2 = oldlen while newlen2 < newlen newlen2 *= 2 end if (oldlen < newlen2) resize!(base, newlen2) resize!(from, newlen2) resize!(ikey, newlen2) resize!(deep, newlen2) resize!(back, newlen2) resize!(arcs, newlen2) # for i = oldlen + 1:newlen2 base[i] = i end base[oldlen + 1:newlen2] .= 0 from[oldlen + 1:newlen2] .= 0 ikey[oldlen + 1:newlen2] .= 0 deep[oldlen + 1:newlen2] .= 0 back[oldlen + 1:newlen2] .= 0 for i in oldlen + 1:newlen2 arcs[i] = UInt8[] end end return newlen2 end function addkey!(obj::AhoCorasickAutomaton{T}, code::Base.CodeUnits{UInt8,String}, icode::T)::Nothing where T base = obj.base; from = obj.from; deep = obj.deep; back = obj.back; ikey = obj.ikey; arcs = obj.arcs; cur::T = 1 nxt::T = 0 for c in code nxt = base[cur] + c enlarge!(obj, nxt) if (from[nxt] == 0) from[nxt] = cur push!(arcs[cur], c) deep[nxt] = deep[cur] + 1 cur = nxt elseif (from[nxt] == cur) cur = nxt else # from[nxt] != cur push!(arcs[cur], c) if length(arcs[cur]) <= length(arcs[from[nxt]]) || from[nxt] == from[cur] rebase!(obj, cur) nxt = base[cur] + c else rebase!(obj, from[nxt]) end from[nxt] = cur deep[nxt] = deep[cur] + 1 cur = nxt end end ikey[cur] = icode return nothing end function rebase!(obj::AhoCorasickAutomaton{T}, cur::T)::Nothing where T base = obj.base; from = obj.from; deep = obj.deep; back = obj.back; ikey = obj.ikey; arcs = obj.arcs; oldbase = base[cur] @assert length(arcs[cur]) > 0 string(cur) newbase = findbase(obj, cur) enlarge!(obj, newbase + maximum(arcs[cur])) for i = eachindex(arcs[cur]) # arc = arcs[cur][i] newson = newbase + arcs[cur][i] from[newson] = cur oldson = oldbase + arcs[cur][i] if (from[oldson] != cur) continue end base[newson] = base[oldson] ikey[newson] = ikey[oldson] deep[newson] = deep[oldson] z = arcs[newson]; arcs[newson] = arcs[oldson]; arcs[oldson] = z; # grandsons for arc in arcs[newson] from[base[newson] + arc] = newson end # oldson base[oldson] = from[oldson] = ikey[oldson] = deep[oldson] = 0 end base[cur] = newbase return nothing end function findbase(obj::AhoCorasickAutomaton{T}, cur::T)::T where T base = obj.base; from = obj.from; deep = obj.deep; back = obj.back; ikey = obj.ikey; arcs = obj.arcs; n::T = length(from) for b = max(cur + 1, base[cur]):n ok = true for arc in arcs[cur] @inbounds ok &= arc + b > n || from[arc + b] == 0 end if (ok) return b end end return T(n + 1) end function fillback!(obj::AhoCorasickAutomaton{T})::Nothing where T base = obj.base; from = obj.from; deep = obj.deep; back = obj.back; ikey = obj.ikey; arcs = obj.arcs; #println(arcs) n::T = length(arcs) root::T = 1 que = similar(base); head::T = 1; tail::T = 2; que[1] = root; back[root] = root; while head < tail cur = que[head]; head += 1; for arc in arcs[cur] chd = base[cur] + arc chdback = root if (cur != root) chdback = back[cur] while chdback != root && (base[chdback] + arc > n || from[base[chdback] + arc] != chdback) chdback = back[chdback] end if base[chdback] + arc <= n && from[base[chdback] + arc] == chdback chdback = base[chdback] + arc end end back[chd] = chdback que[tail] = chd; tail += 1; end end return nothing end function validate(obj::AhoCorasickAutomaton{T})::Nothing where T base = obj.base; from = obj.from; deep = obj.deep; back = obj.back; ikey = obj.ikey; arcs = obj.arcs; root = 1 que = similar(base); head = 1; tail = 2; que[1] = root; while head < tail cur = que[head]; head += 1; for arc in arcs[cur] chd = base[cur] + arc # @assert from[chd] == cur && back[chd] != chd && back[chd] != 0 string(chd, " fa=", cur, " from=", from[chd], " back=", back[chd]) @assert from[chd] == cur string("cur=", cur, " chd=", chd, " from=", from[chd]) que[tail] = chd; tail += 1; end end return nothing end """ ACMatch has 3 fields: 1. s : start of match 2. t : stop of match, [s, t), using str[s:prevind(str, t)] to get matched patterns 3. i : index of the key in *obj*, which is the original insertion order of keys to *obj* The field *i* may be use as index of external property arrays, i.e., the AhoCorasickAutomaton can act as a `Map{String, Any}`. """ struct ACMatch s::Int t::Int i::Int end import Base.length length(x::ACMatch) = x.t - x.s function isless(x::ACMatch, y::ACMatch)::Bool return x.s < y.s || x.s == y.s && x.t < y.t || x.s == y.s && x.t == y.t && x.i < y.i end function eachmatch(obj::AhoCorasickAutomaton{T}, text::AbstractString)::Vector{ACMatch} where T return eachmatch(obj, codeunits(text)) end function eachmatch(obj::AhoCorasickAutomaton{T}, codes::DenseVector{UInt8})::Vector{ACMatch} where T base = obj.base; from = obj.from; deep = obj.deep; back = obj.back; ikey = obj.ikey; arcs = obj.arcs; n = length(base) root = cur = T(1) res = ACMatch[] for i = 1:length(codes) c = codes[i] while cur != root && (base[cur] + c > n || from[base[cur] + c ] != cur) cur = back[cur] end if (base[cur] + c <= n && from[base[cur] + c] == cur) cur = base[cur] + c end # if (ikey[cur] > 0) node = cur while node != root if (ikey[node] > 0) push!(res, ACMatch(i + 1 - deep[node], i + 1, ikey[node])) end node = back[node] end # end end return res end import Base.getindex getindex(xs::String, match::ACMatch) = xs[match.s:prevind(xs, match.t)]
KongYiji
https://github.com/hack1nt0/KongYiji.jl.git
[ "MIT" ]
0.1.0
09d9c045d14d223a31b94e9c39a0564a9c41b47f
code
6743
 struct CtbSentence tree::Vector{Char} postags::Vector{Pair{String, String}} end struct CtbDocument type::String sents::Vector{CtbSentence} end struct CtbTag name::String description::String example::Vector{String} end "Chinese Treebank 8.0 of 3,007 docs, 71,369 sentences, 1,620,561 words and 2,589,848 characters (hanzi or foreign)" struct ChTreebank docs::Vector{CtbDocument} end function ChTreebank(home::String; nf=0) home_data = joinpath(home, "data", "bracketed") if (nf <= 0) nf = length(readdir(home_data)) end docs = Vector{CtbDocument}(undef, nf) @showprogress 1 "Parsing ChTreebank..." for (i, file_name) in enumerate(readdir(home_data)) if i > nf break end type = "" id = parse(Int, file_name[6:9]) if 0001<=id<=0325 || 0400<=id<=0454 || 0500<=id<=0540 || 0600<=id<=0885 || 0900<=id<=0931 || 4000<=id<=4050 type = "Newwire" elseif 0590<=id<=0596 || 1001<=id<=1151 type = "Magazine articles" elseif 2000<=id<=3145 || 4051<=id<=4111 type = "Broadcast news" elseif 4112<=id<=4197 type = "Broadcast conversations" elseif 4198<=id<=4411 type = "Weblogs" elseif 5000<=id<=5558 type = "Discussion forums" else type = "N/A" end trees = parsectbfile(joinpath(home_data, file_name)) sents = [CtbSentence(tree, postags(CtbTree(tree))) for tree in trees] docs[i] = CtbDocument(type, sents) end return ChTreebank(docs) end Base.length(sent::CtbSentence) = length(sent.postags) Base.length(doc::CtbDocument) = length(doc.sents) Base.length(ctb::ChTreebank) = length(ctb.docs) Base.getindex(sent::CtbSentence, inds...) = getindex(sent.postags, inds...) Base.getindex(doc::CtbDocument, inds...) = getindex(doc.sents, inds...) Base.getindex(ctb::ChTreebank, inds...) = getindex(ctb.docs, inds...) Base.iterate(sent::CtbSentence, state=1) = state > length(sent) ? nothing : (sent.postags[state], state + 1) Base.iterate(doc::CtbDocument, state=1) = state > length(doc) ? nothing : (doc.sents[state], state + 1) Base.iterate(ctb::ChTreebank, state=1) = state > length(ctb) ? nothing : (ctb.docs[state], state + 1) function Base.summary(ctb::ChTreebank) ndoc = length(ctb.docs) nsent = sum(map(doc -> length(doc.trees), ctb.docs)) nword = sum(map(doc -> sum(map(length, doc.postags)), ctb.docs)) return "CTB($(ndoc) D. $(nsent) S. $(nword) W.)" end mutable struct Block chrs::Vector{Char} nlb::Int end function Block() chrs = Char[] sizehint!(chrs, 100) #resize!(chrs, 100) return Block(chrs, 0) end function push!(b::Block, chrs::Vector{Char}) for c in chrs if c == '(' b.nlb += 1 elseif c == ')' b.nlb -= 1 end push!(b.chrs, c) end end function text(b::Block) resize!(b.chrs, length(b.chrs)); return b.chrs end function ok(block::Block) return block.nlb == 0 end function parsectbfile(file_path) ret = Vector{Char}[] b = Block() open(file_path, "r") do io for line in eachline(io) if startswith(line, "(") push!(b, collect(line)) if !ok(b) for line in eachline(io) push!(b, collect(line)) if ok(b) break end end end push!(ret, text(b)) b = Block() end end end return ret end text(tree::CtbTree) = tree.label ispostag(tree::CtbTree) = length(tree.adj) == 1 && isleaf(tree.adj[1]) function postags(sent::CtbTree) ret = Pair{String, String}[] visitor(tree::CtbTree) = if ispostag(tree) && text(tree) != "-NONE-" push!(ret, text(tree)=>text(tree.adj[1])) end dfstraverse(sent, visitor) return ret end postags(doc::CtbDocument) = Iterators.flatten(doc) function tokens(sent::CtbTree) ret = String[] visitor(tree::CtbTree) = if ispostag(tree) && text(tree) != "-NONE-" push!(ret, text(tree.adj[1])) end dfstraverse(sent, visitor) return ret end tokens(sent::CtbSentence) = map(last, sent) tokens(doc::CtbDocument) = mapreduce(tokens, append!, doc) raw(sent::CtbSentence) = mapreduce(last, *, sent) #todo speed up raw(doc::CtbDocument) = mapreduce(raw, *, doc) function ==(a::ChTreebank, b::ChTreebank) return all(fname -> getfield(a, fname) == getfield(b, fname), fieldnames(ChTreebank)) end function ==(a::CtbDocument, b::CtbDocument) return all(fname -> getfield(a, fname) == getfield(b, fname), fieldnames(CtbDocument)) end function ==(a::CtbSentence, b::CtbSentence) return all(fname -> getfield(a, fname) == getfield(b, fname), fieldnames(CtbSentence)) end function split(ctb::ChTreebank; percents::Vector{Float64}=[0.7, 0.2, 0.1]) percents ./= sum(percents) n = length(ctb) caps = map(p -> floor(p * n), percents) caps[3] += n - sum(caps) idx = randperm(n) train = ChTreebank(ctb.tags, ctb.docs[1:caps[1]]) dev = ChTreebank(ctb.tags, ctb.docs[caps[1]+1:caps[1]+caps[2]]) test = ChTreebank(ctb.tags, ctb.docs[end-caps[3]+1:end]) return (train, dev, test) end import Base.+ function kfolds(docs; k::Int=10) groups = DefaultDict{String, Vector{CtbDocument}}(()->CtbDocument[]) for doc in docs push!(groups[doc.type], doc) end k = min(k, mapreduce(length, max, values(groups))) @assert 2 <= k r = [CtbDocument[] for _ in 1:k] for (ig, group) in enumerate(values(groups)) ng = length(group) kg = min(ng, k) idx = randperm(ng) from = 1 for i in 1:k sz = div(ng, kg) + (i <= ng % kg ? 1 : 0) to = from + sz - 1 append!(r[i], group[idx[from:to]]) from = to + 1 end @assert from == ng + 1 end return r end function postable() tsv = readdlm(joinpath(pathof(KongYiji), "..", "..", "data", "postable.tsv"), '\t', String) return UselessTable(tsv[2:end,:]; cnames=tsv[1,:], heads=["CTB postable"]) end
KongYiji
https://github.com/hack1nt0/KongYiji.jl.git
[ "MIT" ]
0.1.0
09d9c045d14d223a31b94e9c39a0564a9c41b47f
code
1295
struct LinearChainConditionalRandomField{Tv <: AbstractFloat} featurenames::Vector{String} scores::Vector{Tv} matrix::Matrix{Any} end #= function LinearChainConditionalRandomField(fs=[ ["Y-1", "Y", "W"], ["Y-1", "Y", "P"], ["Y-1", "Y", "P-1"], ["Y", "W"], ["Y", "D"], ]) fnames = ["Y-1", "Y", "P-1", "P", "P-2", "W-1", "W", "W+1", "D"] scores = fill(0., 0) end =# function display(model::LinearChainConditionalRandomField) nr = size(model.matrix, 1) nc = size(model.matrix, 2) rows = Vector{Any}(undef, nr) for i = 1:nr rows[i] = map(x -> ismissing(x) ? "" : string(x), model.matrix[i, :]) pushfirst!(rows[i], model.featurenames[i]) end pushfirst!(rows, Any["FN\\Score", model.scores...]) return display(Markdown.MD(Markdown.Table(rows, [:r, fill(:c, nc)...]))) end function LinearChainConditionalRandomField( edgeobservations::Vector{Function}, nodeobservations::Vector{Function}, observationfuncs::Vector{Function} ) body end function inference(model::LinearChainConditionalRandomField) end function estimation(model::LinearChainConditionalRandomField) end function edgeobs1(tag::Vector{Int}, poswords::Matrix{String}, i::Int) return (tag[i - 1], tag[i], poswords[i]) end
KongYiji
https://github.com/hack1nt0/KongYiji.jl.git
[ "MIT" ]
0.1.0
09d9c045d14d223a31b94e9c39a0564a9c41b47f
code
6559
struct CtbTree label::String adj::Vector{CtbTree} # prob::Float64 end isleaf(tree::CtbTree) = length(tree.adj) == 0 function dfstraverse(tree::CtbTree, visitor::Function) for chd in tree.adj dfstraverse(chd, visitor) end visitor(tree) return nothing end function label(s::String) #todo special cases t = findfirst(!isletter, s) return (t == nothing || t == 1) ? s : s[1:t - 1] end function CtbTree(chars::Vector{Char}; l = findfirst(isequal('('), chars), trim = label) nchar = length(chars) l += 1 r = l while chars[r] != '(' && chars[r] != ')' r += 1 end if (chars[r] == ')') ss = split(join(chars[l:r - 1])) @assert length(ss) == 2 leaf = CtbTree(String(ss[2]), CtbTree[]) posn = CtbTree(trim(String(ss[1])), CtbTree[leaf]) return posn else @assert chars[r] == '(' ss = split(join(chars[l:r - 1])) # @assert length(ss) == 1 string(l, " ", chars) if length(ss) == 0 return CtbTree(chars; l = r) end @assert length(ss) == 1 fa = CtbTree(trim(String(ss[1])), CtbTree[]) # setlabel!(obj, cur, ss[1]) nlb = 1 while nlb > 0 if (chars[r] == '(') if nlb == 1 l = r end nlb += 1 elseif chars[r] == ')' nlb -= 1 if nlb == 1 push!(fa.adj, CtbTree(chars; l = l, trim = trim)) end end r += 1 end return fa end end CtbTree(ct::String; trim = label) = CtbTree(collect(ct); trim = trim) function ==(ta::CtbTree, tb::CtbTree) ta.label == tb.label && length(ta.adj) == length(tb.adj) && all(i -> ta.adj[i] == tb.adj[i], 1:length(ta.adj)) end function size(tree::CtbTree) if isleaf(tree) return (1, 1) else h = w = 0 for chd in tree.adj ch, cw = size(chd) h += ch; w = max(w, cw + 1) end return (h, w) end end function display(obj::CtbTree) xlim, ylim = size(obj) mat = fill("", xlim, ylim) ileaf = 1 colors = Dict{String, Int}() edges = Vector{Tuple{Int, Int, Int, Int}}() function dfs(cur::CtbTree) if !haskey(colors, cur.label) colors[cur.label] = (1 + (length(colors) + 1) * 10) % 256 end if isleaf(cur) mat[ileaf, ylim] = cur.label ileaf += 1 return (ileaf - 1, ylim) else cxys = Vector{Tuple{Int, Int}}() x = xlim; y = ylim; for chd in cur.adj cx, cy = dfs(chd) x = min(x, cx) y = min(y, cy - 1) push!(cxys, (cx, cy)) end for cxy in cxys push!(edges, (x, y, cxy[1], cxy[2])) end mat[x, y] = cur.label return (x, y) end end dfs(obj); for (lx, ly, rx, ry) in edges for x = lx + 1:rx - 1 new = old = mat[x, ly] if old == "" new = "│" end if old == "└" new = "├" end mat[x, ly] = new end if lx < rx mat[rx, ly] = "└" end mat[rx, ly + 1:ry - 1] .= "─"; end yw = mapreduce(length, max, mat; dims = 1) .+ 2 for x = 1:xlim, y = 1:ylim s = mat[x, y]; ns = length(s) # words if y == ylim println(" ", s); continue end padl = div(yw[y] - ns, 2) if (y == ylim - 1) padl = yw[y] - ns end padr = yw[y] - ns - padl padlc = padrc = '─' if s == "" || s == "│" padlc = padrc = ' ' elseif s == "└" || s == "├" || x == 1 && y == 1 padlc = ' ' end ns = padlc ^ padl * s * padrc ^ padr for i = 1:padl print(padlc) end if haskey(colors, s) printstyled(s; color = colors[s]) else print(s) end for i = 1:padr print(padrc) end end return nothing end # ctb = parsectb("data/ctb8.0") # using DataFrames # import Base.stat # function stat(ctb::CtbTreeBank) # from = Vector{String}(); to = Vector{Vector{String}}() # from2 = Vector{String}(); to2 = Vector{String}() # function visitor(tree, cur) # nchds = length(tree.adj[cur]) # if nchds > 0 # if nchds == 1 # chd = tree.adj[cur][1] # if length(tree.adj[chd]) == 0 # if tree.label[cur] != "-NONE-" # push!(from2, tree.label[cur]) # push!(to2, tree.label[chd]) # end # elseif tree.label[chd] != "-NONE-" # push!(from, tree.label[cur]) # push!(to, tree.label[tree.adj[cur]]) # end # else # push!(from, tree.label[cur]) # push!(to, tree.label[tree.adj[cur]]) # end # end # end # for vec in ctb # for tree in vec # dfstraverse(tree, visitor) # end # end # function f(df::DataFrame) # return by(df, [:from, :to], tot = :from => length, sort = true) # end # inn = f(DataFrame(from = from, to = to)) # pos = f(DataFrame(from = from2, to = to2)) # inn, pos # end # CtbTreeNode = Union{InnerTreeNode, PosTreeNode, LeafTreeNode} # CtbTreeNode(label::String, id::String) == InnerTreeNode(label, id, Int[], 0.0) function cnf(root::CtbTree)::CtbTree nchd = length(root.adj) if nchd == 0 return root elseif nchd <= 2 newroot = CtbTree(root.label, CtbTree[]) for i = 1:nchd push!(newroot.adj, cnf(root.adj[i])) end return newroot else newroot = CtbTree(root.label, CtbTree[]) newright = CtbTree(join(map(x -> x.label, root.adj[2:end]), "+"), root.adj[2:end]) push!(newroot.adj, cnf(root.adj[1])) push!(newroot.adj, cnf(newright)) return newroot end end function decnf(root::CtbTree) nodes = decnf2(root) return length(nodes) == 1 ? nodes[1] : CtbTree(join(map(x -> x.label, nodes), "+"), nodes) end function decnf2(root::CtbTree)::Vector{CtbTree} nchd = length(root.adj) if nchd == 0 return CtbTree[root] end if nchd == 1 newroot = CtbTree(root.label, decnf2(root.adj[1])) return CtbTree[newroot] end newroot = CtbTree(root.label, append!(decnf2(root.adj[1]), decnf2(root.adj[2]))) istmp = in('+', root.label) return istmp ? newroot.adj : CtbTree[newroot] end
KongYiji
https://github.com/hack1nt0/KongYiji.jl.git
[ "MIT" ]
0.1.0
09d9c045d14d223a31b94e9c39a0564a9c41b47f
code
8664
const Td = Dict const Tf = Float64 struct CykModel nrule::Int base2::Int labelid::Td{String, Int} idlabel::Vector{String} fa2lr::Vector{Vector{Tuple{Int, Int, Tf}}} ss2fa::Vector{Vector{Tuple{Int, Tf}}} lr2fa::Td{Int, Vector{Tuple{Int, Tf}}} l2far::Vector{Vector{Tuple{Int, Int, Tf}}} end function CykModel(ctb::ChTreebank) labelid = Td{String, Int}() falr = Td{Tuple{Int, Int, Int}, Tf}() fass = Td{Tuple{Int, Int}, Tf}() function visitor(cur::ChTree)::Nothing nchd = length(cur.adj) if isleaf(cur) || isposn(cur) ; elseif nchd == 1 key = (cur.label, cur.adj[1].label) for pos in key if !haskey(labelid, pos) labelid[pos] = length(labelid) + 1 end end key = map(x -> labelid[x], key) fass[key] = Base.get(fass, key, 0) + 1 else key = (cur.label, cur.adj[1].label, cur.adj[2].label) for pos in key if !haskey(labelid, pos) labelid[pos] = length(labelid) + 1 end end key = map(x -> labelid[x], key) falr[key] = Base.get(falr, key, 0) + 1 end return nothing end for vt in ctb for tree in vt tree = cnf(tree) dfstraverse(tree, visitor) end end npos = length(labelid) base2 = 1; while (1 << base2) <= npos base2 += 1 end; # smoothing? fatot = Td{Int, Tf}() for (key, cnt) in falr fa = key[1] fatot[fa] = Base.get(fatot, fa, 0) + 1 end for (key, cnt) in fass fa = key[1] fatot[fa] = Base.get(fatot, fa, 0) + 1 end for (key, cnt) in falr fa = key[1] prob = -log(cnt / fatot[fa]) falr[key] = prob end for (key, cnt) in fass fa = key[1] prob = -log(cnt / fatot[fa]) fass[key] = prob end return CykModel(base2, labelid, falr, fass) end import Base.length length(model::CykModel) = model.nrule function CykModel(base2::Int, labelid::Td{String, Int}, falr::Td{Tuple{Int, Int, Int}, Tf}, fass::Td{Tuple{Int, Int}, Tf}) idlabel = Vector{String}(undef, length(labelid)) for (pos, id) in labelid idlabel[id] = pos end lr2fa = Td{Int, Vector{Tuple{Int, Tf}}}() for ((fa, l, r), prob) in falr lr = (l << base2) + r if !haskey(lr2fa, lr) lr2fa[lr] = Vector{Tuple{Int, Tf}}() end fas = lr2fa[lr] push!(fas, (fa, prob)) end for ((fa, ss), prob) in fass if !haskey(lr2fa, ss) lr2fa[ss] = Vector{Tuple{Int, Tf}}() end fas = lr2fa[ss] push!(fas, (fa, prob)) end nlabel = length(labelid) l2far = Vector{Vector{Tuple{Int, Int, Tf}}}(undef, nlabel) for i = 1:nlabel l2far[i] = Vector{Tuple{Int, Int, Tf}}() end for ((fa, l, r), prob) in falr push!(l2far[l], (fa, r, prob)) end fa2lr = Vector{Vector{Tuple{Int, Int, Tf}}}(undef, nlabel) for i = 1:nlabel fa2lr[i] = Vector{Tuple{Int, Int, Tf}}() end for ((fa, l, r), prob) in falr push!(fa2lr[fa], (l, r, prob)) end ss2fa = Vector{Vector{Tuple{Int, Tf}}}(undef, nlabel) for i = 1:nlabel ss2fa[i] = Vector{Tuple{Int, Tf}}() end for ((fa, ss), prob) in fass push!(ss2fa[ss], (fa, prob)) end return CykModel(length(falr), base2, labelid, idlabel, fa2lr, ss2fa, lr2fa, l2far) end import Base: read, write, == ==(x::CykModel, y::CykModel) = length(x) == length(y) && x.idlabel == y.idlabel && x.base2 == y.base2 && x.fa2lr == y.fa2lr && x.ss2fa == y.ss2fa function read(io::IO, ::Type{CykModel}) base2 = 0; labelid = Td{String, Int}(); lr2fa = Td{Int, Td{Int, Tf}}() fa2lr = Td{Tuple{Int, Int, Int}, Tf}() fa2ss = Td{Tuple{Int, Int}, Tf}() for line in eachline(io) cells = split(line); ncell = length(cells) if ncell == 1 base2 = parse(Int, cells[1]) end if ncell == 2 labelid[cells[1]] = parse(Int, cells[2]) end if ncell == 3 fa = parse(Int, cells[1]) ss = parse(Int, cells[2]) prob = parse(Tf, cells[2]) fa2ss[(fa, ss)] = prob end if ncell == 4 fa = parse(Int, cells[1]) l = parse(Int, cells[2]) r = parse(Int, cells[3]) prob = parse(Tf, cells[4]) fa2lr[(fa, l, r)] = prob end end return CykModel(base2, labelid, fa2lr, fa2ss) end function write(io::IO, obj::CykModel) println(io, obj.base2) for (pos, id) in obj.labelid println(io, pos, " ", id) end for (falr, prob) in obj.fa2lr fa = falr[1]; l = falr[2]; r = falr[3]; println(io, fa, " ", l, " ", r, " ", prob) end for (fass, prob) in obj.fa2ss fa = fass[1]; ss = fass[2]; println(io, fa, " ", ss, " ", prob) end end import Base.get const single = Td{String, Tf}() get(model::CykModel, l::Int, r::Int) = get(model.lr2fa, (l << model.base2) + r, single) get(model::CykModel, ss::Int) = get(model.lr2fa, ss, single) function cyk(poswords::Vector{Tuple{String, String}}, model::CykModel) nrule = model.nrule labelid = model.labelid fa2lr = model.fa2lr ss2fa = model.ss2fa l2far = model.l2far nlabel = length(labelid) nword = length(poswords) Tf = Float64 Td = Dict{Int, Tf} dp = Matrix{Td}(undef, nword, nword) Td2 = Dict{Int, Union{Tuple{Int, Int, Int}, Tuple{Int, Int}, Tuple{String}}} nx = Matrix{Td2}(undef, nword, nword) @inbounds begin for len = 1:nword @show len for i = 1:nword - len + 1 res = Td() res2 = Td2() if len == 1 pos = labelid[poswords[i][1]] res[pos] = 0.0 res2[pos] = (poswords[i][2],) else for k = 1:len - 1 dpl = dp[i, k]; dpr = dp[i + k, len - k] # @show length(dpl) * length(dpr), length(model.fa2lr) if length(dpl) * length(dpr) << 1 >= nrule # if false for fa = 1:nlabel for (l, r, prob) in fa2lr[fa] if haskey(dpl, l) && haskey(dpr, r) old = get(res, fa, Inf) lp = dpl[l] rp = dpr[r] new = lp + rp + prob if new < old res[fa] = new res2[fa] = (l, r, k) end end end end else for (l, pl) in dpl for (fa, r, prob) in l2far[l] if haskey(dpr, r) old = get(res, fa, Inf) new = pl + dpr[r] + prob if new < old res[fa] = new res2[fa] = (l, r, k) end end end end end end end while true upd = false for (ss, pss) in res for (fa, prule) in ss2fa[ss] old = get(res, fa, Inf) new = prule + pss if new < old res[fa] = new; res2[fa] = (ss, len); upd = true end end end if !upd break end end dp[i, len] = res nx[i, len] = res2 end end end start = findmin(dp[1, nword]) function dfs(s, o, ilabel)::ChTree cur = ChTree(model.idlabel[ilabel], ChTree[]) nxt = nx[s, o][ilabel]; nnxt = length(nxt) if nnxt == 1 push!(cur.adj, ChTree(nxt[1], ChTree[])) elseif nnxt == 2 push!(cur.adj, dfs(s, o, nxt[1])) else no = nxt[3] push!(cur.adj, dfs(s, no, nxt[1])) push!(cur.adj, dfs(s + no, o - no, nxt[2])) end return cur end return (start[1], dfs(1, nword, start[2])) end
KongYiji
https://github.com/hack1nt0/KongYiji.jl.git
[ "MIT" ]
0.1.0
09d9c045d14d223a31b94e9c39a0564a9c41b47f
code
6966
const Tv = Float64 const Ti = UInt32 mutable struct HMM dict::AhoCorasickAutomaton{Ti} words::Vector{String} user_words::Int tags::Vector{String} hpr::Vector{Tv} h2h::Matrix{Tv} h2v::Vector{Dict{Int, Tv}} INF::Vector{Tv} end function HMM(corpus) wmp, words, pmp, tags = Dict{String, Int}(), String[], Dict{String, Int}(), String[] for doc in corpus, sent in doc, (pos, word) in sent if !haskey(wmp, word) wmp[word] = length(wmp) + 1; push!(words, word) end if !haskey(pmp, pos) pmp[pos] = length(pmp) + 1; push!(tags, pos) end end np = length(pmp) hpr, h2h, h2v, INF = fill(Tv(0), np), fill(Tv(0), (np, np)), [DefaultDict{Int, Tv}(Tv(0)) for _ in 1:np], fill(Tv(0), np) for doc in corpus, sent in doc pp = 0 for (pos, word) in sent iw, ip = wmp[word], pmp[pos] if pp == 0 hpr[ip] += 1 else h2h[pp,ip] += 1 end pp = ip h2v[ip][iw] += 1 end end dict = AhoCorasickAutomaton{Ti}(words) return HMM(dict, words, 0, tags, hpr, h2h, h2v, INF) end function Kong(;user_dict_path="", user_dict_array=[], user_dict_weight=1, EPS::Tv=1e-9) file = joinpath(pathof(KongYiji), "..", "..", "data", "hmm.jld2") if !isfile(file) file = unzip7(joinpath(pathof(KongYiji), "..", "..", "data", "hmm.jld2.7z")) end @assert isfile(file) old = load(file)["hmm"] if !isfile(user_dict_path) && length(user_dict_array) == 0 normalize!(old; EPS=EPS) return old end wmp, pmp = str2int(old.words), str2int(old.tags) max_cnt_h2v = [maximum(values(vs)) for vs in old.h2v] if isfile(user_dict_path) for line in eachline(user_dict_path) cells = split(line) word, pos = "", "" if length(cells) > 0 word = cells[1] end if length(cells) > 1 pos = cells[2] end if pos != "" && !haskey(pmp, pos) error("Postag $(pos) not defined") end if word == "" continue end if pos == "" pos = "NR" end #NOTE default pos NR if !haskey(wmp, word) wmp[word] = length(wmp) + 1; push!(old.words, word); old.user_words += 1 end iw, ip = wmp[word], pmp[pos] old.h2v[ip][iw] = user_dict_weight * max_cnt_h2v[ip] end end if length(user_dict_array) > 0 pos, word = "", "" for cell in user_dict_array if cell isa String word = cell elseif cell isa Tuple || cell isa Pair pos, word = cell else error("Not supported user_dict_array cell type (String || Pair{String, String} || Tuple{String, String})") end if pos == "" pos = "NR" end if !haskey(pmp, pos) error("Postag $(pos) not defined") end if !haskey(wmp, word) wmp[word] = length(wmp) + 1; push!(old.words, word); old.user_words += 1 end iw, ip = wmp[word], pmp[pos] old.h2v[ip][iw] = user_dict_weight * max_cnt_h2v[ip] end end old.dict = AhoCorasickAutomaton{Ti}(old.words) normalize!(old; EPS=EPS) return old end function normalize!(hmm::HMM; EPS::Tv=1e-9) xs = hmm.hpr xs .+= EPS; xs .= log.(xs ./ sum(xs)) xs = hmm.h2h xs .+= EPS; xs .= log.(xs ./ sum(xs; dims=2)) for (ih, vs) in enumerate(hmm.h2v) tot = sum(values(vs)) + EPS * (length(vs) + 1) for (k, v) in vs vs[k] = log((v + EPS) / tot) #todo race condition? end hmm.INF[ih] = log(EPS / tot) end end function str2int(xs::Vector{String}) r = Dict{String, Int}() for (i, w) in enumerate(xs) r[w] = i end return r end function (hmm::HMM)(xs::Vector{String}) nc_max = mapreduce(ncodeunits, max, xs) np = length(hmm.hpr) @assert np > 0 dp = fill(Tv(-Inf), (nc_max + 1, np)) pre = fill((1, 0), (nc_max + 1, np)) return [hmm(x, dp, pre) for x in xs] end function (hmm::HMM)(x::String) return hmm([x])[1] end function (hmm::HMM)(x::String, dp::Matrix{Tv}, pre::Matrix{Tuple{Int, Int}}) chrs = codeunits(x) #todo slow? vtxs = collect(eachmatch(hmm.dict, chrs)) sort!(vtxs) nv, nc, np = length(vtxs), length(chrs), length(hmm.hpr) for i = 1:nc + 1, j in 1:np dp[i,j] = -Inf end pv = 1 dp[1, :] = hmm.hpr pre_i = 1 for i in 1:nc + 1 if dp[i,1] != -Inf pre_i = i end while pv <= nv && vtxs[pv].s < i pv = pv + 1 end if !(pv <= nv && vtxs[pv].s == i || i == nc + 1) continue end if dp[i, 1] == -Inf #@show i, pre_i for pi = 1:np, pj = 1:np maybe = dp[pre_i, pj] + hmm.INF[pj] + hmm.h2h[pj,pi] if maybe > dp[i, pi] dp[i, pi] = maybe; pre[i, pi] = (pre_i, pj) end end end while pv <= nv && vtxs[pv].s == i vtx = vtxs[pv] j = i + length(vtx) for pi = 1:np for pj = 1:np maybe = dp[i, pi] + hmm.h2h[pi,pj] + get(hmm.h2v[pi], vtx.i, hmm.INF[pi]) if maybe > dp[j,pj] dp[j,pj] = maybe; pre[j,pj] = (i, pi) end end end pv = pv + 1 end end #=== @show hmm @show maximum(dp[nc + 1, :]) @show dp @show vtxs =### v = (nc + 1, argmax(dp[nc + 1,:])) ret = fill("", 0) while v[1] != 1 pv = pre[v[1],v[2]] push!(ret, x[pv[1]:prevind(x, v[1])]) v = pv end reverse!(ret) return ret end function ==(a::HMM, b::HMM) return all(fname -> getfield(a, fname) == getfield(b, fname), fieldnames(HMM)) end #### Interfaces to ChTreebank function (hmm::HMM)(sent::CtbSentence) return hmm(raw(sent)) end function (hmm::HMM)(doc::CtbDocument) return hmm(raw(doc)) #todo split sentences??? end function (hmm::HMM)(docs::Vector{CtbDocument}) return hmm([raw(doc) for doc in docs]) end
KongYiji
https://github.com/hack1nt0/KongYiji.jl.git
[ "MIT" ]
0.1.0
09d9c045d14d223a31b94e9c39a0564a9c41b47f
code
3655
###### legacy codes function splits(text::AbstractString, obj::HiddenMarkovModel; ntrial = 2, pos = true) codes = codeunits(text) aca = obj.aca; pos = obj.pos; hpr = obj.hpr; h2h = obj.h2h; alpha = obj.alpha; h2v = obj.h2v; positions = collect(eachmatch(aca, text)) if (length(positions) == 0) return [String(text)] end ncode = length(codes); npos = length(pos); dp = Array{Float64, 3}(undef, ntrial, npos, ncode + 1); dp .= 1.0 / 0.0; dp[1, 1, ncode + 1] = 0.0; nx = Array{Tuple{Int, Int, Int}, 3}(undef, ntrial, npos, ncode + 1) j = length(positions) charindexes = collect(eachindex(text)); push!(charindexes, ncode + 1); k = nchar = length(charindexes) - 1 for i = ncode:-1:1 while j > 0 && i < positions[j].t j -= 1 end while j > 0 && i == positions[j].t iword = positions[j].i s = positions[j].s t = positions[j].t for ipos = 1:npos res = view(dp, :, ipos, s) H2V = get(h2v[ipos], iword, alpha[ipos]) nxt = view(nx, :, ipos, s) for ipos2 = 1:npos for itrial2 = 1:ntrial cur = H2V + h2h[ipos2, ipos] + dp[itrial2, ipos2, t + 1] for itrial = 1:ntrial if cur < res[itrial] res[itrial + 1:end] .= res[itrial:end - 1] nxt[itrial + 1:end] .= nxt[itrial:end - 1] res[itrial] = cur nxt[itrial] = (itrial2, ipos2, t) # @show itrial, ipos, s, itrial2, ipos2, t + 1 break end end end end end j -= 1 end if i == charindexes[k] iword = 0 s = i t = charindexes[k + 1] - 1 for ipos = 1:npos res = view(dp, :, ipos, s) H2V = get(h2v[ipos], iword, alpha[ipos]) nxt = view(nx, :, ipos, s) for ipos2 = 1:npos for itrial2 = 1:ntrial cur = H2V + h2h[ipos2, ipos] + dp[itrial2, ipos2, t + 1] for itrial = 1:ntrial if cur < res[itrial] res[itrial + 1:end] .= res[itrial:end - 1] nxt[itrial + 1:end] .= nxt[itrial:end - 1] res[itrial] = cur nxt[itrial] = (itrial2, ipos2, t) break end end end end end k -= 1 end end # dp[:, :, 1] .+= hpr for i = 1:ntrial dp[i, :, 1] .+= hpr end res = Vector() dp1 = dp[:, :, 1] for i = 1:ntrial minind = findmin(dp1)[2] dp1[minind] = 1.0 / 0.0 itrial = minind[1] ipos = minind[2] pvis = 1 segs = Vector{Tuple{String, String}}() while pvis <= ncode # @show nx[ipos, pvis] nxt = nx[itrial, ipos, pvis] itrial2 = nxt[1] ipos2 = nxt[2] pvis2 = nxt[3] push!(segs, (pos[ipos], String(codes[pvis:pvis2]))) itrial = itrial2 ipos = ipos2 pvis = pvis2 + 1 end push!(res, segs) end push!(res, dp[:, :, 1]) push!(res, nx[:, :, 1]) return res end
KongYiji
https://github.com/hack1nt0/KongYiji.jl.git
[ "MIT" ]
0.1.0
09d9c045d14d223a31b94e9c39a0564a9c41b47f
code
8776
###### legacy codes struct HiddenMarkovModel{Tv <: AbstractFloat, Ti <: Integer} aca::AhoCorasickAutomaton{Ti} pos::Vector{String} hpr::Vector{Tv} h2h::Matrix{Tv} h2v::Vector{Dict{Int, Tv}} MAX::Tv sumhpr::Tv sumh2hdim1::Matrix{Tv} sumh2vdimv::Vector{Tv} end function HiddenMarkovModel{Tv, Ti}(; model::Union{String, Nothing} = joinpath(dirname(pathof(ChineseTokenizers)), "..", "chmm"), poswords::Union{String, Nothing} = nothing, userdict::Union{String, Nothing} = nothing) where {Tv, Ti} if model == nothing @assert poswords != nothing "poswords must not be nothing." dict = Dict{String, Int}() if userdict != nothing open(userdict, "r") do io for line in eachline(io) cells = split(line, " ") word = String(cells[1]) if !haskey(dict, word) dict[word] = length(dict) + 1 end end end end poss = Dict{String, Int}() hpr = Tv[] h2h = Dict{Int, Tv}[] h2v = Dict{Int, Tv}[] open(poswords, "r") do io for line in eachline(io) nword = parse(Int, line) if nword <= 0 continue end poswords = Vector{Tuple{String, String}}() tmp = nword for line2 in eachline(io) cells = split(line2) pos = String(split(cells[1], "-")[1]) word = String(cells[2]) push!(poswords, (pos, word)) tmp -= 1 if tmp == 0 break end end # hpr, h2h, h2v for i = 1:nword pos = poswords[i][1] word = poswords[i][2] ih = get(poss, pos, length(poss) + 1) if ih == length(poss) + 1 poss[pos] = ih push!(hpr, 0) push!(h2h, Dict{Int, Tv}()) push!(h2v, Dict{Int, Tv}()) end iw = get(dict, word, length(dict) + 1) if iw == length(dict) + 1 dict[word] = iw end if i == 1 hpr[ih] += 1 end if i > 1 ph = poss[poswords[i - 1][1]] if !haskey(h2h[ph], ih) h2h[ph][ih] = 0 end h2h[ph][ih] += 1 end if !haskey(h2v[ih], iw) h2v[ih][iw] = 0 end h2v[ih][iw] += 1 end end end nword = length(dict) aca = AhoCorasickAutomaton{Ti}(dict; sort = true) npos = length(poss); pos = Vector{String}(undef, npos) for (p, i) in poss pos[i] = p end sumhpr = norm!(hpr) h2h2 = zeros(Tv, npos, npos) for (ih, hs) in enumerate(h2h) for (ih2, cnt) in hs h2h2[ih2, ih] += cnt end end sumh2hdim1 = norm!(h2h2) sumh2vdimv = norm!(h2v) MAX = mapreduce(x -> maximum(values(x)), max, h2v) return HiddenMarkovModel{Tv, Ti}(aca, pos, hpr, h2h2, h2v, MAX, sumhpr, sumh2hdim1, sumh2vdimv) else old = open(model, "r") do io read(io, HiddenMarkovModel) end if poswords == nothing && userdict == nothing return old end dict = Dict(collect(old.aca)) posid = Dict{String, Int}(); for (id, pos) in enumerate(old.pos) posid[pos] = id end hpr = denorm!(old.hpr, old.sumhpr) h2h = denorm!(old.h2h, old.sumh2hdim1) h2v = denorm!(old.h2v, old.sumh2vdimv) if userdict != nothing open(userdict, "r") do io for line in eachline(io) cells = split(line) word = cells[1] pos = length(cells) > 1 ? cells[2] : "NN" iw = get(dict, word, length(dict) + 1) if iw == length(dict) + 1 dict[word] = iw end ih = get(posid, pos, 0) @assert ih != 0 "Userdict contains an unrecognizable POS - " * pos if !haskey(h2v[ih], iw) h2v[ih][iw] = 0 end h2v[ih][iw] += 1 end end end if poswords != nothing open(poswords, "r") do io for line in eachline(io) nword = parse(Int, line) ph = 0 for i = 1:nword cells = split(readline(io)) pos = cells[1] word = cells[2] iw = get(dict, word, length(dict) + 1) if iw == length(dict) + 1 dict[word] = iw end ih = get(posid, pos, 0) @assert ih != 0 "Poswords contains an unrecognizable POS - " * pos if !haskey(h2v[ih], iw) h2v[ih][iw] = 0 end h2v[ih][iw] += 1 if i == 1 hpr[ih] += 1 end if i > 1 h2h[ih, ph] += 1 end ph = ih end end end end nword = length(dict) aca = AhoCorasickAutomaton{Ti}(dict; sort = true) pos = Vector{String}(undef, length(posid)); for (p, id) in posid pos[id] = p end sumhpr = norm!(hpr) sumh2hdim1 = norm!(h2h) sumh2vdimv = norm!(h2v) MAX = mapreduce(x -> maximum(values(x)), max, h2v) return HiddenMarkovModel{Tv, Ti}(aca, pos, hpr, h2h, h2v, MAX, sumhpr, sumh2hdim1, sumh2vdimv) end end HiddenMarkovModel() = HiddenMarkovModel{Float32, Int32}(;) function display(obj::HiddenMarkovModel{Tv, Ti}) where Tv where Ti title = string(typeof(obj), " ", (nword = length(obj.aca), npos = length(obj.pos), nbyte = Base.format_bytes(Base.summarysize(obj)))) println(title) rows = Any[["POS", "nhead", "tot", "unique", "examples"]] description = stat(obj) for i = 1:length(obj.pos) r = description[i] push!(rows, [r.pos, r.nhead, r.tot, length(r.vs), r.pos == "URL" ? "Omitted." : string(r.vs[1:min(5, end)])]) end return display(Markdown.MD(Markdown.Table(rows, Symbol[:l, :r, :r, :r, :l]))) end function split(text::AbstractString, obj::HiddenMarkovModel{Tv, Ti}) where {Tv, Ti} codes = codeunits(text) nc = length(codes) aca = obj.aca; pos = obj.pos; hpr = obj.hpr; h2h = obj.h2h; INF = obj.MAX * nc; h2v = obj.h2v; matches = collect(eachmatch(aca, text)) sort!(matches) nm = length(matches) nh = length(pos) dp = fill(Tv(Inf), nh, nc) bk = fill((0, 0), nh, nc) cover = fill(false, nc) for m in matches cover[m.s:m.t] .= true end pm = 1 sc = 1 while sc <= nc if !cover[sc] tc = sc + 1 while tc <= nc && !cover[tc] tc += 1 end tc -= 1 for sh in 1:nh for th in 1:nh cur = (sc == 1 ? hpr[sh] : dp[sh, sc - 1]) + h2h[th, sh] + get(h2v[th], 0, INF) if cur < dp[th, tc] dp[th, tc] = cur bk[th, tc] = (-sh, sc - 1) end end end sc = tc + 1 else while pm <= nm && matches[pm].s < sc pm += 1 end while pm <= nm && matches[pm].s == sc m = matches[pm] tc = m.t iw = m.i for sh in 1:nh for th in 1:nh cur = (sc == 1 ? hpr[sh] : dp[sh, sc - 1]) + h2h[th, sh] + get(h2v[th], iw, INF) if cur < dp[th, tc] dp[th, tc] = cur bk[th, tc] = (sh, sc - 1) end end end pm += 1 end sc += 1 end end poss = String[] word = String[] th = findmin(dp[:, nc])[2] tc = nc while 1 <= tc sh = bk[th, tc][1] sc = bk[th, tc][2] if sh < 1 sh = -sh push!(poss, pos[th] * "?") push!(word, String(codes[sc + 1:tc])) else push!(poss, pos[th]) push!(word, String(codes[sc + 1:tc])) end th = sh tc = sc end reverse!(poss) reverse!(word) # return (res = segs, dp = dp, segs = map(x -> String(codes[x.s:x.t]), matches)) return hcat(poss, word) end
KongYiji
https://github.com/hack1nt0/KongYiji.jl.git
[ "MIT" ]
0.1.0
09d9c045d14d223a31b94e9c39a0564a9c41b47f
code
4218
 function (hmm::HMM)(input::String, dlm::String) standard = split(input, dlm) x = join(standard) return hmm(x, standard) end function (hmm::HMM)(x::String, standard::Vector) chrs = codeunits(x) vtxs = collect(eachmatch(hmm.dict, chrs)) sort!(vtxs) nv, nc, np = length(vtxs), length(chrs), length(hmm.hpr) dp = fill(-Inf, (nc + 1, np)) pre = fill((1, 0), (nc + 1, np)) for i = 1:nc + 1, j in 1:np dp[i,j] = -Inf end pv = 1 dp[1, :] = hmm.hpr pre_i = 1 for i in 1:nc + 1 if dp[i,1] != -Inf pre_i = i end while pv <= nv && vtxs[pv].s < i pv = pv + 1 end if !(pv <= nv && vtxs[pv].s == i || i == nc + 1) continue end if dp[i, 1] == -Inf #@show i, pre_i for pi = 1:np, pj = 1:np maybe = dp[pre_i, pj] + hmm.INF[pj] + hmm.h2h[pj,pi] if maybe > dp[i, pi] dp[i, pi] = maybe; pre[i, pi] = (pre_i, pj) end end end while pv <= nv && vtxs[pv].s == i vtx = vtxs[pv] j = i + length(vtx) for pi = 1:np for pj = 1:np maybe = dp[i, pi] + hmm.h2h[pi,pj] + get(hmm.h2v[pi], vtx.i, hmm.INF[pi]) if maybe > dp[j,pj] dp[j,pj] = maybe; pre[j,pj] = (i, pi) end end end pv = pv + 1 end end v = (nc + 1, argmax(dp[nc + 1,:])) output = fill("", 0) while v[1] != 1 pv = pre[v[1],v[2]] push!(output, x[pv[1]:prevind(x, v[1])]) v = pv end reverse!(output) #print debug infos println("Standard : " * join(standard, " ")) println("Output : " * join(output, " ")) v = (nc + 1, argmax(dp[nc + 1,:])) info = Matrix{Any}(undef, (length(x), 5)) nr = 1 while v[1] != 1 pv = pre[v[1],v[2]] word, postag, source, prob_h2v, prob_add = "", "", "", 0., 0. s, t = pv[1], v[1] word = x[s:prevind(x, t)] postag_id = pv[2] postag = hmm.tags[postag_id] word_id = 0 begin vtx_id = searchsortedfirst(vtxs, ACMatch(s, t, -1)) if vtx_id < nv + 1 && vtxs[vtx_id].s == s && vtxs[vtx_id].t == t word_id = vtxs[vtx_id].i end if word_id == 0 source = "algorithm" else source = ifelse(word_id > length(hmm.words) - hmm.user_words, "usr.dict", "CTB") end end prob_h2v = word_id == 0 ? hmm.INF[postag_id] : hmm.h2v[postag_id][word_id] prob_add = dp[v[1],v[2]] - dp[pv[1],pv[2]] prob_h2v, prob_add = map(x->trunc(exp(x); digits=6), [prob_h2v, prob_add]) info[nr,:] = [word, postag, source, prob_h2v, prob_add] nr += 1 v = pv end nr -= 1 println(UselessTable(reverse(info[1:nr,:]; dims=1); cnames=["word", "pos.tag", "source", "prob.h2v", "Prob.Add."], heads=["KongYiji(1) Debug Table",], foots=["neg.log.likelihood = $(-maximum(dp[nc + 1,:]))"] ) ) match_mat = Matrix{Any}(undef, (nv, 3)) match_mat[:,1] = [(v.s,v.t) for v in vtxs] match_mat[:,2] = [x[v] for v in vtxs] match_mat[:,3] = [(v.i > length(hmm.words) - hmm.user_words ? "user.dict" : "CTB") for v in vtxs] println(UselessTable(match_mat; cnames=["UInt8.range", "word", "source"], heads=["AhoCorasickAutomaton Matched Words"])) end
KongYiji
https://github.com/hack1nt0/KongYiji.jl.git
[ "MIT" ]
0.1.0
09d9c045d14d223a31b94e9c39a0564a9c41b47f
code
4668
 struct HmmScoreTable c_cmat::Matrix{Int} #char level confusion matrix c_f1::Vector{Float64} #char level f1 score c_p::Vector{Float64} #char level precision c_r::Vector{Float64} #char level recall w_f1::Float64 #word level f1 score w_p::Float64 #word level precision w_r::Float64 #word level recall n::Int #how many tables combined end HmmScoreTable(xs::Vector{Vector{String}}, ys::Vector{Vector{String}}) = mapreduce(p->HmmScoreTable(p...), +, zip(xs, ys)) """ x : Standard output y : KongYiji output """ function HmmScoreTable(x::Vector{String}, y::Vector{String}) #### char level # confusion matrix c_cmat, c_f1, c_p, c_r = fill(0, (4, 4)), fill(0., 4), fill(0., 4), fill(0., 4) idx = Dict(:B=>1, :M=>2, :E=>3, :S=>4) nchr = mapreduce(length, +, x) xa = fill(:M, nchr) p = 1 for w in x nw = length(w) xa[p] = :B xa[p + nw - 1] = :E if nw == 1 xa[p] = :S end p += nw end ya = fill(:M, nchr) p = 1 for w in y nw = length(w) ya[p] = :B ya[p + nw - 1] = :E if nw == 1 ya[p] = :S end p += nw end for i = 1:nchr c_cmat[idx[ya[i]],idx[xa[i]]] += 1 end # precision, recall, f1-score c_f1, c_p, c_r = fill(0., 4), fill(0., 4), fill(0., 4) for i = 1:4 num, den = c_cmat[i,i], sum(c_cmat[i,:]) c_p[i] = num == den ? 1. : (0. + num) / den num, den = c_cmat[i,i], sum(c_cmat[:,i]) c_r[i] = num == den ? 1. : (0. + num) / den c_f1[i] = f1(c_p[i], c_r[i]) end ##### word level ix, iy, px, py, nx, ny, r = 1, 1, 1, 1, length(x), length(y), 0. while ix <= nx && iy <= ny if px == py if x[ix] == y[iy] r += 1 end nxi, nyi = length(x[ix]), length(y[iy]) if nxi == nyi px += nxi; py += nyi; ix += 1; iy += 1 elseif nxi < nyi px += nxi; ix += 1 else py += nyi; iy += 1 end elseif px < py while px < py && ix <= nx px += length(x[ix]); ix += 1 end else while py < px && iy <= ny py += length(y[iy]); iy += 1 end end end w_p = r / length(y) w_r = r / length(x) w_f1 = f1(w_p, w_r) return HmmScoreTable(c_cmat, c_f1, c_p, c_r, w_f1, w_p, w_r, 1) end +(a::HmmScoreTable, b::HmmScoreTable) = HmmScoreTable(map(x->getfield(a, x) + getfield(b, x), fieldnames(HmmScoreTable))...) function show(io::IO, tb::HmmScoreTable) n = size(tb.c_cmat, 1) fm(d) = string(trunc(d * 100, sigdigits=3), "%") fm1(d) = trunc(d, sigdigits=5) char_f1, char_p, char_r = map(x->x / tb.n, [tb.c_f1, tb.c_p, tb.c_r]) word_f1, word_p, word_r = map(x->x / tb.n, [tb.w_f1, tb.w_p, tb.w_r]) mat = Array{Any}(missing, (n + 4, n + 1)) mat[1:n,1:n] .= tb.c_cmat mat[n + 1,1:n] .= sum(tb.c_cmat, dims=1)[1,:] mat[1:n,n + 1] .= sum(tb.c_cmat, dims=2)[:,1] mat[n + 1,n + 1] = sum(tb.c_cmat) mat[n + 2,1:n] .= fm.(char_p); mat[n + 2,n + 1] = "" mat[n + 3,1:n] .= fm.(char_r); mat[n + 3,n + 1] = "" mat[n + 4,1:n] .= fm1.(char_f1); mat[n + 4,n + 1] = "" char_avg_f1, char_avg_p, char_avg_r = map(x->sum(x)/length(x), [char_f1, char_p, char_r]) utb = UselessTable(mat; cnames=(:B, :M, :E, :S, ""), rnames=(:B, :M, :E, :S, "", :Precision, :Recall, :F1), topleft="O\\S", foots=["Char level avg.F1: $(fm1(char_avg_f1)), avg.precison: $(fm(char_avg_p)), avg.recall: $(fm(char_avg_r))", "Word level F1: $(fm1(word_f1)), precison: $(fm(word_p)), recall: $(fm(word_r))", ], heads=["KongYiji(1) HMM Score Table $(tb.n) combined"], ) show(io, utb) end f1(x, y) = 2 / (1. / x + 1. / y) ############ Interfaces to ChTreebank HmmScoreTable(xs::Vector{CtbDocument}, ys::Vector{Vector{String}}) = HmmScoreTable(map(tokens, xs), ys)
KongYiji
https://github.com/hack1nt0/KongYiji.jl.git
[ "MIT" ]
0.1.0
09d9c045d14d223a31b94e9c39a0564a9c41b47f
code
490
module KongYiji import Base: size, split, display, read, write, first, stat, push!, length, iterate, ==, getindex, summary, collect, values, isless, get, eachmatch using Pkg using JLD2, FileIO using Random, DataStructures, ProgressMeter, DelimitedFiles export Kong, postable include("UselessTable.jl") include("zip7.jl") include("AhoCorasickAutomaton.jl") include("CtbTree.jl") include("ChTreebank.jl") include("HMM.jl") include("HmmScoreTable.jl") include("HmmDebug.jl") end # module
KongYiji
https://github.com/hack1nt0/KongYiji.jl.git
[ "MIT" ]
0.1.0
09d9c045d14d223a31b94e9c39a0564a9c41b47f
code
1709
abstract type AbstractChineseTokenizer end struct OneGramTokenizer <: AbstractChineseTokenizer aca::AhoCorasickAutomaton{UInt32} nlf::Vector{Float64} INF::Float64 end function OneGramTokenizer(words::Vector{String}, freqs::Vector{Int}) aca = AhoCorasickAutomaton{UInt32}(words) nlf = -log.(freqs ./ Float64(sum(freqs))) INF = maximum(nlf) return OneGramTokenizer(aca, nlf, INF) end function OneGramTokenizer(;filepath::String = joinpath(Pkg.dir("ChineseTokenizers"), "data", "dict")) words = String[] freqs = Int[] open(filepath, "r") do io for line in eachline(io) cells = split(line, " ") push!(words, String(cells[1])) push!(freqs, parse(Int, cells[2])) end end return OneGramTokenizer(words, freqs) end function split(text::AbstractString, tokenizer::OneGramTokenizer)::Vector{String} codes = codeunits(text) res = String[] aca = tokenizer.aca; nlf = tokenizer.nlf; INF = tokenizer.INF positions = reverse!(eachmatch(aca, text)) @show sort(positions) if (length(positions) == 0) return [String(text)] end n = length(codes) dp = fill(INF, n + 1); dp = cumsum(dp); reverse!(dp) to = collect(1:n) for pos in positions if dp[pos.t + 1] + nlf[pos.i] < dp[pos.s] dp[pos.s] = dp[pos.t + 1] + nlf[pos.i] to[pos.s] = pos.t end end println("dp: ", dp) println("to: ", to) s = 1 while s <= n t = to[s] if t == s t += 1 while t <= n && t == to[t] t += 1 end t -= 1 end push!(res, String(codes[s:t])) s = t + 1 end return res end
KongYiji
https://github.com/hack1nt0/KongYiji.jl.git
[ "MIT" ]
0.1.0
09d9c045d14d223a31b94e9c39a0564a9c41b47f
code
3933
 struct UselessTable mat::Matrix{Any} heads::Vector{Any} foots::Vector{Any} useful::Any end import Base.show function show(io::IO, tb::UselessTable) compact = get(io, :compact, false) dsize = get(io, :displaysize, displaysize()) limit = get(io, :limit, true) offset = " " nrow, ncol = size(tb.mat, 1), size(tb.mat, 2) mat = fill("", (nrow, ncol)) for i in 1:nrow, j in 1:ncol if ismissing(tb.mat[i,j]) mat[i,j] = "N/A" elseif isnothing(tb.mat[i,j]) mat[i,j] = "" else mat[i,j] = string(tb.mat[i,j]) end #todo compact end colwidth = [maximum(map(textwidth, mat[:,i])) for i in 1:ncol] .+ 1 for i in 1:nrow, j in 1:ncol pad = ifelse(j == 1, rpad, lpad) val = mat[i,j] val = pad(val, colwidth[j] - textwidth(val) + length(val)) if j == 1 val = offset * val end mat[i,j] = val end function middle(s::String, width::Int) r = offset * s n = textwidth(r) if n < width r = " " ^ div((width - n), 2) * r end return r end function right(s::String, width::Int) r = offset * s n = textwidth(r) if n < width r = " " ^ (width - n) * r end return r end totw = sum(colwidth) for i in 1:nrow #print headers if i == 1 && length(tb.heads) > 0 for head in tb.heads println(io, middle(string(head), totw)) end println(io, middle("-" ^ totw, totw)) end for j in 1:ncol print(io, mat[i,j]) end println(io) #print foots if i == nrow && length(tb.foots) > 0 println(io, middle("=" ^ totw, totw)) for foot in tb.foots println(io, right(string(foot), totw)) end end end end function UselessTable(mat::Matrix{Tv}; rnames=nothing, cnames=nothing, topleft=nothing, heads=[], foots=[], useful=nothing) where {Tv} ncol = size(mat, 2); nrow = size(mat, 1) if isnothing(cnames) cnames = 1:ncol end if isnothing(rnames) rnames = 1:nrow end ncol += 1; nrow += 1 mat2 = Matrix{Any}(missing, (nrow, ncol)) mat2[1,1] = topleft mat2[1,2:end] .= cnames mat2[2:end,1] .= rnames for i in 2:nrow, j in 2:ncol mat2[i,j] = mat[i-1,j-1] end return UselessTable(mat2, heads, foots, useful) end ==(a::UselessTable, b::UselessTable) = a.mat == b.mat #= function UselessTable(dict::Dict{Tcname,Dict{Trname, Tv}}; topleft="") where {Tcname, Trname, Tv} cnames = Dict{Tcname, Int}(map(reverse, enumerate(keys(dict)))) rnames = Dict{Trname, Int}() for col in values(dict), (rname, cell) in col if !haskey(rnames, rname) rnames[rname] = length(rnames) + 1 end end rnames2 = sort(collect(keys(rnames)), by=x->rnames[x]) cnames2 = sort(collect(keys(cnames)), by=x->cnames[x]) ncol = length(cnames) + 1 nrow = length(rnames) + 1 mat = Matrix{Any}(missing, (nrow, ncol)) mat[1,1] = topleft mat[1,2:end] .= cnames2 mat[2:end,1] .= rnames2 for (cname, col) in dict, (rname, cell) in col mat[rnames[rname]+1,cnames[cname]+1] = cell end return UselessTable(mat, dict) end =#
KongYiji
https://github.com/hack1nt0/KongYiji.jl.git
[ "MIT" ]
0.1.0
09d9c045d14d223a31b94e9c39a0564a9c41b47f
code
4192
###### legacy codes function simplify(c::Char) return c end function ==(a::HiddenMarkovModel{Tv, Ti}, b::HiddenMarkovModel{Tv, Ti}) where {Tv, Ti} res = true for fname in fieldnames(HiddenMarkovModel{Tv, Ti}) res &= getfield(a, fname) == getfield(b, fname) end return res end function write(io::IO, obj::HiddenMarkovModel{Tv, Ti}) where {Tv, Ti} nbit = 0 nbit += write(io, sizeof(Tv)) if Ti isa Unsigned nbit += write(io, +1) else nbit += write(io, -1) end nbit += write(io, sizeof(Ti)) nbit += write(io, obj.aca) for p in obj.pos nbit += write(io, p, " ") end nbit += write(io, "\n") nbit += write(io, obj.hpr) nbit += write(io, obj.h2h) for vp in obj.h2v nbit += write(io, length(vp)) for (v, p) in vp nbit += write(io, v) nbit += write(io, p) end end nbit += write(io, obj.MAX) nbit += write(io, obj.sumhpr) nbit += write(io, obj.sumh2hdim1) nbit += write(io, obj.sumh2vdimv) return nbit end function nbit2type(nbit, types) filter(x -> sizeof(x) == nbit, types)[1] end function read(io::IO, obj::Type{HiddenMarkovModel}) Tv = nbit2type(read(io, Int), [Float32, Float64]) sign = read(io, Int) Ti = Int if sign > 0 Ti = nbit2type(read(io, Int), [UInt8, UInt16, UInt32, UInt64]) else Ti = nbit2type(read(io, Int), [Int8, Int16, Int32, Int64]) end aca = read(io, AhoCorasickAutomaton) pos = split(readline(io)) npos = length(pos) hpr = reinterpret(Tv, read(io, npos * sizeof(Tv))) h2h = reshape(reinterpret(Tv, read(io, npos * npos * sizeof(Tv))), (npos, npos)) h2v = Vector{Dict{Int, Tv}}(undef, npos) for i = 1:npos vps = Dict{Int, Tv}() nv = read(io, Int) for j = 1:nv v = read(io, Int) p = read(io, Tv) vps[v] = p end h2v[i] = vps end MAX = read(io, Tv) sumhpr = read(io, Tv) sumh2hdim1 = reshape(reinterpret(Tv, read(io, npos * sizeof(Tv))), 1, npos) sumh2vdimv = reinterpret(Tv, read(io, npos * sizeof(Tv))) return HiddenMarkovModel{Tv, Ti}(aca, pos, hpr, h2h, h2v, MAX, sumhpr, sumh2hdim1, sumh2vdimv) end function h2v(obj::HiddenMarkovModel{Tv, Ti}, h::String, v::String) where Tv where Ti ih = findfirst(isequal(h), obj.pos) iv = get(obj.aca, v, Ti(0)) return get(obj.h2v[ih], iv, obj.alpha[ih]) end function h2h(obj::HiddenMarkovModel{Tv, Ti}, pos1::String, pos2::String) where Tv where Ti i1 = findfirst(isequal(pos1), obj.pos) i2 = findfirst(isequal(pos2), obj.pos) return obj.h2h[i2, i1] end function norm!(hpr::Vector{Tv}) where Tv tot = sum(hpr) @assert !isinf(tot) hpr .= -log.(hpr ./ tot) return tot end function norm!(h2h::Matrix{Tv}) where Tv sum1 = sum(h2h; dims = 1) h2h .= -log.(h2h ./ sum1) return sum1 end function norm!(h2v::Vector{Dict{Int, Tv}}) where Tv sumv = Vector{Tv}(undef, length(h2v)) for (ih, vs) in enumerate(h2v) tot = sum(values(vs)) sumv[ih] = tot for v in keys(vs) vs[v] = -log(vs[v]) + log(tot) end end return sumv end function denorm!(hpr::Vector{Tv}, sumhpr::Tv) where Tv return hpr .= exp.(.-hpr) .* sumhpr end function denorm!(h2h::Matrix{Tv}, sumh2hdim1::Matrix{Tv}) where Tv return h2h .= exp.(.-h2h) .* sumh2hdim1 end function denorm!(h2v::Vector{Dict{Int, Tv}}, sumh2vdimv::Vector{Tv}) where Tv for (h, vs) in enumerate(h2v) for (v, p) in vs vs[v] = exp(-p) * sumh2vdimv[h] end end return h2v end function stat(obj::HiddenMarkovModel{Tv, Ti}) where {Tv, Ti} res = Vector() dict = map(first, sort!(collect(obj.aca); by = last)) hpr = copy(obj.hpr) denorm!(hpr, obj.sumhpr) for i = 1:length(obj.pos) pos = obj.pos[i] nhead = round(Int, hpr[i]) tot = round(Int, obj.sumh2vdimv[i]) vs = sort!(collect(obj.h2v[i]); by = last, rev = true) vs = map(x -> dict[x[1]], vs) push!(res, (pos = pos, nhead = nhead, tot = tot, vs = vs)) end return res end
KongYiji
https://github.com/hack1nt0/KongYiji.jl.git
[ "MIT" ]
0.1.0
09d9c045d14d223a31b94e9c39a0564a9c41b47f
code
860
 function zip7(file) to = dirname(file) dest = joinpath(to, string(basename(file), ".7z")) try cmd = "7z a -y -t7z -- $(dest) $(file)" run(pipeline(ifelse(Sys.iswindows(), `cmd /c $cmd`, `sh -c $cmd`); stdout=joinpath(to, "7zip.log"))) catch e rm(dest; force=true) throw(e) end return dest end function unzip7(file) to = dirname(file) source = joinpath(dirname(file), basename(file)[1:end-3]) try cmd = "7z e -y -o$(to) $(file)" run(pipeline(ifelse(Sys.iswindows(), `cmd /c $cmd`, `sh -c $cmd`); stdout=joinpath(to, "7zip.log"))) catch e rm(source; force=true) throw(e) end return source end
KongYiji
https://github.com/hack1nt0/KongYiji.jl.git
[ "MIT" ]
0.1.0
09d9c045d14d223a31b94e9c39a0564a9c41b47f
code
4053
using Test, KongYiji, Pkg, JLD2, FileIO, ProgressMeter #= @testset "Generating REQUIRE file..." begin println(Pkg.METADATA_compatible_uuid("KongYiji")) PT = Pkg.Types Pkg.activate("..") # current directory as the project ctx = PT.Context() pkg = ctx.env.pkg if pkg ≡ nothing @error "Not in a package, I won't generate REQUIRE." exit(1) else @info "found package" pkg = pkg end deps = PT.get_deps(ctx) non_std_deps = sort(collect(setdiff(keys(deps), values(ctx.stdlibs)))) open(joinpath("..", "REQUIRE"), "w") do io println(io, "julia 0.7") for d in non_std_deps println(io, d) @info "listing $d" end end end =# #= @testset "Generating CTB data file..." begin home = joinpath("d:\\", "ctb8.0") @time ctb = KongYiji.ChTreebank(home; nf=0) ctb_path = joinpath(pathof(KongYiji), "..", "..", "data") ctb_name = joinpath(ctb_path, "ctb.jld2") mkpath(ctb_path) @time @save ctb_name ctb @time zipped_name = KongYiji.zip7(ctb_name) rm(ctb_name) @time unzipped_name = KongYiji.unzip7(zipped_name) @time ctb2 = load(unzipped_name)["ctb"] @time @test ctb == ctb2 end =# @testset "Test CTB postable..." begin println(postable()) end #= @testset "Cross validating HMM on CTB..." begin @time unzipped_file = KongYiji.unzip7(joinpath(pathof(KongYiji), "..", "..", "data", "ctb.jld2.7z")) @time ctb = load(unzipped_file)["ctb"] @show length(ctb) folds = KongYiji.kfolds(ctb; k=10) k = length(folds) tbs = Vector{KongYiji.HmmScoreTable}(undef, k) @showprogress 1 "Cross Validating HMM..." for i in 1:k test = folds[i] train = collect(Iterators.flatten([folds[j] for j in 1:k if j != i])) hmm = KongYiji.HMM(train) KongYiji.normalize!(hmm) # Don't forget x = test y = hmm(x) tbs[i] = KongYiji.HmmScoreTable(x, y) # println(tbs[i]) end hmmscoretable = sum(tbs) println(hmmscoretable) end =# #= @testset "Generating HMM model file of CTB..." begin @time ctb_home = KongYiji.unzip7(joinpath(pathof(KongYiji), "..", "..", "data", "ctb.jld2.7z")) @time ctb = load(ctb_home)["ctb"] @time hmm = KongYiji.HMM(ctb) home = joinpath(pathof(KongYiji), "..", "..", "data", "hmm.jld2") mkpath(dirname(home)) @time @save home hmm @time zhome = KongYiji.zip7(home) rm(home) @time home2 = KongYiji.unzip7(zhome) @assert home == home2 @time hmm2 = load(home2)["hmm"] @test hmm == hmm2 end =# @testset "Test KongYiji(1) with Hand written examples..." begin tk = Kong() input = "一个脱离了低级趣味的人" output = tk(input) @show output input = "一/个/脱离/了/低级/趣味/的/人" tk(input, "/") inputs = [ "他/说/的/确实/在理", "这/事/的确/定/不/下来", "费孝通/向/人大/常委会/提交/书面/报告", "邓颖超/生前/使用/过/的/物品", "停电/范围/包括/沙坪坝区/的/犀牛屙屎/和/犀牛屙屎抽水", ] println("Input :") for input in inputs println(input) end println("raw output :") for input in inputs println(tk(filter(c -> c != '/', input))) end tk2 = Kong(; user_dict_array=[("VV", "定"), ("VA", "在理"), "邓颖超", "沙坪坝区", "犀牛屙屎", "犀牛屙屎抽水", ] ) println("output with user dict supplied :") for input in inputs println(tk2(filter(c -> c != '/', input))) end end
KongYiji
https://github.com/hack1nt0/KongYiji.jl.git
[ "MIT" ]
0.1.0
09d9c045d14d223a31b94e9c39a0564a9c41b47f
docs
7339
# KongYiji.jl 断文识字的“孔乙己” -- 一个简单的中文分词工具 Kong Yiji, a simple fine tuned Chinese tokenizer ## Features ### Version 0.1.0 1. Trained on Chinese Treebank 8.0. Of version 1 now, using a extended word-level Hidden Markov Model(HMM) contrast by eariler char-level HMM. 2. Fine tuned to deal with **new words**(未登录词, 网络新词). If the algorithm cannot find them, just add them to user dict(see **Constructor**), and twist **usr_dict_weight** if necessary. 3. Fully exported debug info. See Usage. ## Constructor ```julia kong(; user_dict_path="", user_dict_array=[], user_dict_weight=1) ``` + **user_dict_path** : a file path of user dict, eachline of which begin a **word**, optionally followed by a **part-of-speech tag(postag)**; If the postag not supplied, **NR (Proper noun, 专有名词)** is automatically inserted. + **user_dict_array** : a Vector{Tuple{String, String}} repr. [(postag, word)] + **user_dict_weight** : if value is **m**, frequency of (postag, word) in user dictionary will be $ m * maximum(values(h2v[postag])) $ ***Note all user suppiled postags MUST conform to specifications of Chinest Treebank.*** ``` CTB postable ------------------------------------------------------------------------------------- part.of.speech summary 1 NR 专属名词 2 NT 时间 3 NN 其他名词 4 PN 代词 5 VA 形容词动词化 6 VC be、not be 对应的中文 7 VE have、not have 对应的中文 8 VV 其他动词 9 P 介词 10 LC 方位词 11 AD 副词 12 DT 谁的,哪一个 13 CD (数)量词 14 OD (顺)序词 15 M (数)量词 16 CC 连(接)词 17 CS 连(接)词 18 DEC 的 19 DEG 的 20 DER 得 21 DEV 地 22 AS Aspect Particle 表达英语中的进行式、完成式的词,比如(着,了,过) 23 SP 句子结尾词(了,吧,呢,啊,呀,吗) 24 ETC 等(等) 25 MSP 其他 26 IJ 句首感叹词 27 ON 象声词 28 LB 被 29 SB 被 30 BA 把 31 JJ 名词修饰词 32 PU 标点符号 33 FW POS不清楚的词(不是外语词) ``` ## Usage ``` Julia println("Simple Usage") tk = Kong() input = "一个脱离了低级趣味的人" output = tk(input) @show output println() println("Debug Output") input = "一/个/脱离/了/低级/趣味/的/人" tk(input, "/") println() println("Test some difficult cases, from https://www.matrix67.com/blog/archives/4212") inputs = [ "他/说/的/确实/在理", "这/事/的确/定/不/下来", "费孝通/向/人大/常委会/提交/书面/报告", "邓颖超/生前/使用/过/的/物品", "停电/范围/包括/沙坪坝区/的/犀牛屙屎/和/犀牛屙屎抽水", ] println("Input :") for input in inputs println(input) end println("Raw output :") for input in inputs println(tk(filter(c -> c != '/', input))) end tk2 = Kong(; user_dict_array=[("VV", "定"), ("VA", "在理"), "邓颖超", "沙坪坝区", "犀牛屙屎", "犀牛屙屎抽水", ] ) println("Output with user dict supplied :") for input in inputs println(tk2(filter(c -> c != '/', input))) end ``` ## Output ``` Simple Usage output = ["一", "个", "脱离", "了", "低级", "趣味", "的", "人"] Debug Output Standard : 一 个 脱离 了 低级 趣味 的 人 Output : 一 个 脱离 了 低级 趣味 的 人 KongYiji(1) Debug Table ----------------------------------------- word pos.tag source prob.h2v Prob.Add. 1 一 CD CTB 0.323977 0.203435 2 个 M CTB 0.260022 0.019667 3 脱离 VV CTB 0.000177 1.1e-5 4 了 AS CTB 0.808087 0.045661 5 低级 JJ CTB 0.000462 0.000352 6 趣味 NN CTB 4.2e-5 2.0e-6 7 的 DEG CTB 0.972857 0.744126 8 人 NN CTB 0.01615 0.004388 ========================================= neg.log.likelihood = 50.088239033558935 AhoCorasickAutomaton Matched Words --------------------------- UInt8.range word source 1 (1, 4) 一 CTB 2 (4, 7) 个 CTB 3 (7, 10) 脱 CTB 4 (7, 13) 脱离 CTB 5 (10, 13) 离 CTB 6 (13, 16) 了 CTB 7 (16, 19) 低 CTB 8 (16, 22) 低级 CTB 9 (19, 22) 级 CTB 10 (22, 25) 趣 CTB 11 (22, 28) 趣味 CTB 12 (25, 28) 味 CTB 13 (28, 31) 的 CTB 14 (31, 34) 人 CTB Test some difficult cases, from https://www.matrix67.com/blog/archives/4212 Input : 他/说/的/确实/在理 这/事/的确/定/不/下来 费孝通/向/人大/常委会/提交/书面/报告 邓颖超/生前/使用/过/的/物品 停电/范围/包括/沙坪坝区/的/犀牛屙屎/和/犀牛屙屎抽水 Raw output : ["他", "说", "的", "确实", "在", "理"] ["这", "事", "的", "确定", "不", "下来"] ["费孝通", "向", "人大", "常委会", "提交", "书面", "报告"] ["邓", "颖", "超生", "前", "使用", "过", "的", "物品"] ["停电", "范围", "包括", "沙", "坪", "坝", "区", "的", "犀牛", "屙", "屎", "和", "犀牛", "屙", "屎", "抽水"] Output with user dict supplied : ["他", "说", "的", "确实", "在理"] ["这", "事", "的确", "定", "不", "下来"] ["费孝通", "向", "人大", "常委会", "提交", "书面", "报告"] ["邓颖超", "生前", "使用", "过", "的", "物品"] ["停电", "范围", "包括", "沙坪坝区", "的", "犀牛屙屎", "和", "犀牛屙屎抽水"] ``` ## Todos + Filter low frequency words from CTB + Exploit summary of POS table, insert a example column, plus constract with other POS scheme(PKU etc.) + Explore MaxEntropy & CRF related algorithms <!--stackedit_data: eyJoaXN0b3J5IjpbLTEyNDI5Nzk3MTUsLTIwMDY4ODQ4NF19 -->
KongYiji
https://github.com/hack1nt0/KongYiji.jl.git
[ "MIT" ]
0.3.0
a4bc0ad02c25a442357189b60168a0173c9bbf76
code
917
module MotionCaptureJointCalibration export PoseData, CalibrationProblem, CalibrationResult, solve, calibration_joints, free_joints, num_poses, num_calibration_params, num_markers using Requires using StaticArrays using RigidBodyDynamics using JuMP using LinearAlgebra using MathProgBase: SolverInterface.AbstractMathProgSolver using RigidBodyDynamics.Graphs: TreePath include("util.jl") include("problem.jl") include("result.jl") include("deconstruct.jl") include("residual.jl") include("solve.jl") include("synthetic.jl") function __init__() @require DrakeVisualizer="49c7015b-b8db-5bc5-841b-fcb31c578176" begin @require RigidBodyTreeInspector="82daab19-8fc9-5c1e-9f69-37d6aaa0269b" begin @require Interact="c601a237-2ae4-5e1e-952c-7a85b0c7eef1" begin include("visualization.jl") end end end end end # module
MotionCaptureJointCalibration
https://github.com/JuliaRobotics/MotionCaptureJointCalibration.jl.git
[ "MIT" ]
0.3.0
a4bc0ad02c25a442357189b60168a0173c9bbf76
code
955
function deconstruct(ordered_marker_bodies::AbstractVector{<:RigidBody}, q::AbstractVector, marker_positions_body::AbstractDict{<:RigidBody, <:AbstractVector{<:Point3D}}) x = Vector(q) for body in ordered_marker_bodies positions = marker_positions_body[body] for j = 1 : length(positions) append!(x, positions[j].v) end end x end function reconstruct!(ordered_marker_bodies::AbstractVector{<:RigidBody}, q::AbstractVector, marker_positions_body::AbstractDict{<:RigidBody, <:AbstractVector{<:Point3D}}, x...) index = 1 for i = 1 : length(q) q[i] = x[index] index += 1 end for body in ordered_marker_bodies positions = marker_positions_body[body] frame = default_frame(body) for j = 1 : length(positions) positions[j] = Point3D(frame, x[index], x[index + 1], x[index + 2]) index += 3 end end end
MotionCaptureJointCalibration
https://github.com/JuliaRobotics/MotionCaptureJointCalibration.jl.git
[ "MIT" ]
0.3.0
a4bc0ad02c25a442357189b60168a0173c9bbf76
code
2515
struct PoseData{T} configuration::TreeJointSegmentedVector{T} marker_positions::Dict{RigidBody{T}, Vector{Point3DS{T}}} end mutable struct CalibrationProblem{T} mechanism::Mechanism{T} calibration_param_bounds::Dict{<:Joint{T}, Vector{Tuple{T, T}}} free_joint_configuration_bounds::Dict{<:Joint{T}, Vector{Tuple{T, T}}} marker_location_bounds::Dict{RigidBody{T}, Vector{Tuple{Point3DS{T}, Point3DS{T}}}} pose_data::Vector{PoseData{T}} body_weights::Dict{RigidBody{T}, T} ordered_marker_bodies::Vector{RigidBody{T}} function CalibrationProblem( mechanism::Mechanism{T}, calibration_param_bounds::Dict{<:Joint{T}, Vector{Tuple{T, T}}}, free_joint_configuration_bounds::Dict{<:Joint{T}, Vector{Tuple{T, T}}}, marker_location_bounds::Dict{RigidBody{T}, Vector{Tuple{Point3DS{T}, Point3DS{T}}}}, pose_data::Vector{PoseData{T}}, body_weights::Dict{RigidBody{T}, T} = Dict(b => one(T) for b in keys(marker_location_bounds))) where {T} @assert isempty(symdiff(keys(marker_location_bounds), keys(body_weights))) canonicalize!(marker_location_bounds) ordered_marker_bodies = intersect(bodies(mechanism), keys(body_weights)) new{T}(mechanism, calibration_param_bounds, free_joint_configuration_bounds, marker_location_bounds, pose_data, body_weights, ordered_marker_bodies) end end num_poses(problem::CalibrationProblem) = length(problem.pose_data) num_calibration_params(problem::CalibrationProblem) = sum(length, values(problem.calibration_param_bounds)) num_calibration_params(problem::CalibrationProblem, joint::Joint) = length(problem.calibration_param_bounds[joint]) num_markers(problem::CalibrationProblem) = sum(length, values(problem.marker_location_bounds)) num_markers(problem::CalibrationProblem, body::RigidBody) = length(problem.marker_location_bounds[body]) RigidBodyDynamics.num_bodies(problem::CalibrationProblem) = length(problem.body_weights) calibration_joints(problem::CalibrationProblem) = keys(problem.calibration_param_bounds) free_joints(problem::CalibrationProblem) = keys(problem.free_joint_configuration_bounds) function Base.show(io::IO, problem::CalibrationProblem{T}) where {T} msg = """CalibrationProblem{$T} with: * $(num_poses(problem)) poses * $(num_calibration_params(problem)) calibration parameters * $(num_markers(problem)) markers attached to $(num_bodies(problem)) bodies """ println(io, msg) end
MotionCaptureJointCalibration
https://github.com/JuliaRobotics/MotionCaptureJointCalibration.jl.git
[ "MIT" ]
0.3.0
a4bc0ad02c25a442357189b60168a0173c9bbf76
code
3503
function _marker_residual(state::MechanismState{X, M, C}, ordered_marker_bodies::AbstractVector{<:RigidBody}, marker_positions_world::AbstractDict{RigidBody{M}, <:AbstractVector{<:Point3D}}, marker_positions_body::AbstractDict{RigidBody{M}, <:AbstractVector{<:Point3D}}, body_weights::AbstractDict{RigidBody{M}, Float64}) where {X, M, C} normalize_configuration!(state) residual = zero(C) for body in ordered_marker_bodies weight = body_weights[body] tf = transform_to_root(state, body) positions_body = marker_positions_body[body] positions_world = marker_positions_world[body] for i in eachindex(positions_body, positions_world) p = tf * positions_body[i] pmeas = positions_world[i] residual += weight * mapreduce(x -> zero_nans(x)^2, +, (p - pmeas).v) end end residual end # NOTE: ∇residual_v maps the joint velocity vector to the time derivative of the marker residual, rd: # # rd = <∇residual_v , v> # # The desired gradient g is the mapping from the time derivative of the joint configuration vector to # the time derivative of the marker residual: # # rd = <g , qd> # # qd and v are related by an invertible linear map (see e.g. Port-based modeling and control for # efficient bipedal walking robots, Definition 2.9): # # v = v_Q qd # # so we have # # rd = <∇residual_v , v> = <∇residual_v , v_Q qd> = <v_Qᵀ ∇residual_v , qd> # # which shows that g = v_Qᵀ ∇residual_v function _∇marker_residual!(g::AbstractVector{T}, state::MechanismState{T}, ordered_marker_bodies::AbstractVector{RigidBody{T}}, marker_positions_world::AbstractDict{RigidBody{T}, <:AbstractVector{Point3DS{T}}}, marker_positions_body::AbstractDict{RigidBody{T}, <:AbstractVector{Point3DS{T}}}, body_weights::AbstractDict{RigidBody{T}, T}, jacobians::Dict{RigidBody{T}, Pair{TreePath{RigidBody{T}, Joint{T}}, GeometricJacobian{Matrix{T}}}}) where {T} normalize_configuration!(state) nq = num_positions(state) ∇residual_q = SegmentedVector(view(g, 1 : nq), tree_joints(state.mechanism), num_positions) # TODO: allocates ∇residual_ps = view(g, nq + 1 : length(g)) # TODO: allocates ∇residual_v = zero(velocity(state)) # TODO: allocates mechanism = state.mechanism nv = num_velocities(state) p_index = 0 for body in ordered_marker_bodies weight = body_weights[body] tf = transform_to_root(state, body) path_to_root, J = jacobians[body] geometric_jacobian!(J, state, path_to_root) positions_body = marker_positions_body[body] positions_world = marker_positions_world[body] for i in eachindex(positions_body, positions_world) p = tf * positions_body[i] pmeas = positions_world[i] e = zero_nans.((p - pmeas).v) for j = 1 : nv ω = SVector(J.angular[1, j], J.angular[2, j], J.angular[3, j]) v = SVector(J.linear[1, j], J.linear[2, j], J.linear[3, j]) ∇residual_v[j] += 2 * weight * dot(e, ω × p.v + v) end ∇residual_p = 2 * weight * e' * rotation(tf) ∇residual_ps[p_index += 1] = ∇residual_p[1] ∇residual_ps[p_index += 1] = ∇residual_p[2] ∇residual_ps[p_index += 1] = ∇residual_p[3] end end configuration_derivative_to_velocity_adjoint!(∇residual_q, state, ∇residual_v) g end
MotionCaptureJointCalibration
https://github.com/JuliaRobotics/MotionCaptureJointCalibration.jl.git
[ "MIT" ]
0.3.0
a4bc0ad02c25a442357189b60168a0173c9bbf76
code
988
struct CalibrationResult{T} status::Symbol residual::T calibration_params::Dict{<:Joint{T}, Vector{T}} configurations::Vector{TreeJointSegmentedVector{T}} marker_positions::Dict{RigidBody{T}, Vector{Point3DS{T}}} end num_poses(result::CalibrationResult) = length(result.configurations) num_calibration_params(result::CalibrationResult) = sum(length, values(result.calibration_params)) num_markers(result::CalibrationResult) = sum(length, values(result.marker_positions)) RigidBodyDynamics.num_bodies(result::CalibrationResult) = length(result.marker_positions) function Base.show(io::IO, result::CalibrationResult{T}) where {T} println(io, "CalibrationResult{$T}: $(string(result.status)), residual = $(result.residual). Calibration parameters:") num_joints = length(result.calibration_params) n = 0 for (joint, params) in result.calibration_params print(io, "$(joint.name): $params") (n += 1) < num_joints && println(io) end end
MotionCaptureJointCalibration
https://github.com/JuliaRobotics/MotionCaptureJointCalibration.jl.git
[ "MIT" ]
0.3.0
a4bc0ad02c25a442357189b60168a0173c9bbf76
code
6032
function solve(problem::CalibrationProblem{T}, solver::AbstractMathProgSolver) where {T} # unpack mechanism = problem.mechanism calibration_param_bounds = problem.calibration_param_bounds marker_bodies = problem.ordered_marker_bodies marker_location_bounds = problem.marker_location_bounds free_joint_configuration_bounds = problem.free_joint_configuration_bounds pose_data = problem.pose_data body_weights = problem.body_weights num_poses = MotionCaptureJointCalibration.num_poses(problem) state = MechanismState{T}(mechanism) m = Model(solver = solver) # variables calibration_params = Dict(j => @variable(m, [1 : num_calibration_params(problem, j)], basename="c_$(j.name)") for j in calibration_joints(problem)) configurations = [copyto!(similar(configuration(state), JuMP.Variable), @variable(m, [1 : num_positions(mechanism)], basename="q$i")) for i = 1 : num_poses] marker_positions = Dict(b => [Point3D(default_frame(b), @variable(m, [1 : 3], basename="m_$(b.name)_$i")) for i = 1 : num_markers(problem, b)] for b in marker_bodies) @variable(m, pose_residuals[1 : num_poses]) # calibration param constraints for (joint, bounds) in calibration_param_bounds params = calibration_params[joint] setlowerbound.(params, first.(bounds)) setupperbound.(params, last.(bounds)) setvalue.(params, 0) end # joint configuration constraints and initial values for i = 1 : num_poses q = configurations[i] qmeasured = pose_data[i].configuration setvalue.(q, qmeasured) for joint in tree_joints(mechanism) # to fix the order qjoint = q[joint] if joint ∈ free_joints(problem) # free joint configuration bounds bounds = free_joint_configuration_bounds[joint] lower = first.(bounds) upper = last.(bounds) if joint_type(joint) isa QuaternionFloating # TODO: method for getting rotation part qrot = qjoint[1 : 4] @NLconstraint(m, qrot[1]^2 + qrot[2]^2 + qrot[3]^2 + qrot[4]^2 == 1) # Unit norm constraint lower[1 : 4] .= max.(lower[1 : 4], -1) upper[1 : 4] .= min.(upper[1 : 4], +1) end setlowerbound.(qjoint, lower) setupperbound.(qjoint, upper) elseif joint ∈ calibration_joints(problem) # calibration joint model # TODO: generalize to handle not just offsets but also other models # TODO: add redundant bounds on qjoint? qjoint_measured = qmeasured[joint] cjoint = calibration_params[joint] @constraint(m, qjoint_measured .== qjoint .+ cjoint) else # other joints: fix at measured position JuMP.fix.(qjoint, qmeasured[joint]) end end end # marker position constraints and initial values for body in keys(marker_location_bounds) for (position, bounds) in zip(marker_positions[body], marker_location_bounds[body]) lower, upper = bounds @framecheck position.frame lower.frame @framecheck position.frame upper.frame for (coord, lower_coord, upper_coord) in zip(position.v, lower.v, upper.v) if lower_coord == upper_coord JuMP.fix(coord, lower_coord) else setlowerbound(coord, lower_coord) setupperbound(coord, upper_coord) end end end end # objective: sum of marker residuals marker_positions_body = Dict( b => [Point3D(default_frame(b), 0., 0., 0.) for i = 1 : num_markers(problem, b)] for b in marker_bodies) paths_to_root = Dict(b => RigidBodyDynamics.path(mechanism, root_body(mechanism), b) for b in marker_bodies) jacobians = Dict(b => (p => geometric_jacobian(state, p)) for (b, p) in paths_to_root) for i = 1 : num_poses marker_residual = (args::Float64...) -> begin reconstruct!(marker_bodies, configuration(state), marker_positions_body, args...) normalize_configuration!(state) setdirty!(state) _marker_residual(state, marker_bodies, pose_data[i].marker_positions, marker_positions_body, body_weights) end ∇marker_residual! = (g, args::Float64...) -> begin reconstruct!(marker_bodies, configuration(state), marker_positions_body, args...) normalize_configuration!(state) setdirty!(state) _∇marker_residual!(g, state, marker_bodies, pose_data[i].marker_positions, marker_positions_body, body_weights, jacobians) end marker_residual_args = deconstruct(marker_bodies, configurations[i], marker_positions) num_marker_residual_args = length(marker_residual_args) # actually the same for all poses fun = Symbol("marker_residual_", i) JuMP.register(m, fun, num_marker_residual_args, marker_residual, ∇marker_residual!, autodiff = false) arg_expressions = [:($(marker_residual_args[i])) for i = 1 : num_marker_residual_args] JuMP.addNLconstraint(m, :($(pose_residuals[i]) == $(fun)($(arg_expressions...)))) end @NLobjective(m, Min, sum(pose_residuals[i] for i = 1 : num_poses) / num_poses) @objective m Min 0 status = JuMP.solve(m) calibration_params_sol = Dict(j => getvalue.(c) for (j, c) in calibration_params) configurations_sol = [copyto!(similar(configuration, T), getvalue.(configuration)) for configuration in configurations] marker_positions_sol = Dict(b => (p -> Point3D(p.frame, SVector{3}( getvalue.(p.v)))).(positions) for (b, positions) in marker_positions) CalibrationResult(status, getobjectivevalue(m), calibration_params_sol, configurations_sol, marker_positions_sol) end
MotionCaptureJointCalibration
https://github.com/JuliaRobotics/MotionCaptureJointCalibration.jl.git
[ "MIT" ]
0.3.0
a4bc0ad02c25a442357189b60168a0173c9bbf76
code
6709
module SyntheticDataGeneration export MarkerPositionGenerationOptions, PoseDataGenerationOptions, generate_marker_positions, generate_joint_offset, generate_pose_data, generate_calibration_problem using MotionCaptureJointCalibration using RigidBodyDynamics using StaticArrays using Parameters using Base.Iterators using Random: randperm, rand! using MotionCaptureJointCalibration: Point3DS @with_kw struct MarkerPositionGenerationOptions marker_measurement_stddev::Float64 = 1e-5 marker_offset_max::Float64 = 0.1 num_markers::Int = 4 num_measured_markers::Int = 3 end @with_kw struct PoseDataGenerationOptions num_poses::Int = 25 motion_capture_noise_stddev::Float64 = 1e-6 joint_configuration_noise_stddev::Float64 = 1e-4 occlusion_probability::Float64 = 0.025 end function generate_marker_positions(bodies::AbstractVector{<:RigidBody}, options::MarkerPositionGenerationOptions = MarkerPositionGenerationOptions()) # Marker positions in body frame B = eltype(bodies) T = Float64 ground_truth_marker_positions = Dict(b => Vector{Point3DS{T}}() for b in bodies) measured_marker_positions = Dict(b => Vector{Tuple{Point3DS{T}, Point3DS{T}}}() for b in bodies) for body in bodies frame = default_frame(body) # TODO: use some other frame to improve test coverage measured_marker_inds = randperm(options.num_markers)[1 : options.num_measured_markers] for i = 1 : options.num_markers ground_truth = Point3D(frame, (rand(SVector{3}) - 0.5) * 2 * options.marker_offset_max) push!(ground_truth_marker_positions[body], ground_truth) bounds = if i ∈ measured_marker_inds measurement_error = FreeVector3D(frame, options.marker_measurement_stddev * randn(SVector{3})) measured = ground_truth + measurement_error measured, measured else lower = Point3D(frame, fill(-0.2, SVector{3})) upper = Point3D(frame, fill(0.2, SVector{3})) lower, upper end push!(measured_marker_positions[body], bounds) end end ground_truth_marker_positions, measured_marker_positions end function generate_joint_offset(joint::Joint, max_offset::Number) (rand(num_positions(joint)) .- 0.5) .* max_offset .* 2 end function generate_joint_offsets(joints::AbstractVector{<:Joint}, max_offset::Number) Dict(j => generate_joint_offset(j, max_offset) for j in joints) end function generate_pose_data( state::MechanismState{X, M, C}, ground_truth_marker_positions::AbstractDict{<:RigidBody{M}, <:AbstractVector{Point3DS{T}}}, ground_truth_offsets::AbstractDict{<:Joint{M}, <:AbstractVector{T}}, free_joints::AbstractVector{<:Joint{M}}, options::PoseDataGenerationOptions = PoseDataGenerationOptions()) where {X, M, C, T} ground_truth_pose_data = Vector{PoseData{C}}() measured_pose_data = Vector{PoseData{C}}() mechanism = state.mechanism for i = 1 : options.num_poses rand!(state) # Joint configurations q_ground_truth = copy(configuration(state)) q_measured = copy(q_ground_truth) for (joint, offset) in ground_truth_offsets qjoint = q_measured[joint] qjoint .+= offset end for joint in free_joints qjoint = q_measured[joint] zero_configuration!(qjoint, joint) end for joint in setdiff(tree_joints(mechanism), free_joints) qjoint = q_measured[joint] qjoint .+= options.joint_configuration_noise_stddev * randn(num_positions(joint)) end # Markers S = promote_type(C, T) markerbodies = keys(ground_truth_marker_positions) ground_truth_marker_data = Dict(b => Vector{Point3DS{S}}() for b in markerbodies) measured_marker_data = Dict(b => Vector{Point3DS{S}}() for b in markerbodies) for body in markerbodies toworld = transform_to_root(state, body) for (j, marker_body) in enumerate(ground_truth_marker_positions[body]) marker_world = transform(marker_body, toworld) push!(ground_truth_marker_data[body], marker_world) occluded = rand() < options.occlusion_probability measured = if occluded Point3D(marker_world.frame, fill(S(NaN), SVector{3})) else noise = FreeVector3D(marker_world.frame, options.motion_capture_noise_stddev * randn(SVector{3})) marker_world + noise end push!(measured_marker_data[body], measured) end end push!(ground_truth_pose_data, PoseData(q_ground_truth, ground_truth_marker_data)) push!(measured_pose_data, PoseData(q_measured, measured_marker_data)) end ground_truth_pose_data, measured_pose_data end function generate_calibration_problem(state::MechanismState{T}, body_weights::Dict{RigidBody{T}, T}; marker_options::MarkerPositionGenerationOptions = MarkerPositionGenerationOptions(), pose_options::PoseDataGenerationOptions = PoseDataGenerationOptions()) where {T} bodies = collect(keys(body_weights)) mechanism = state.mechanism correction_joints = unique(flatten([collect(RigidBodyDynamics.path(mechanism, body1, body2)) for (body1, body2) in product(bodies, bodies)])) calibration_param_bounds = Dict{Joint{T}, Vector{Tuple{T, T}}}(j => fill((-0.05, 0.05), num_positions(j)) for j in correction_joints) free_joint_configuration_bounds = Dict{Joint{T}, Vector{Tuple{T, T}}}( j => fill((-1., 1.), num_positions(j)) for j in tree_joints(mechanism) if isfloating(j)) free_joints = collect(keys(free_joint_configuration_bounds)) ground_truth_marker_positions, measured_marker_positions = generate_marker_positions(bodies, marker_options) ground_truth_offsets = Dict{Joint{T}, Vector{T}}(j => generate_joint_offset(j, 1e-2) for j in correction_joints) ground_truth_pose_data, measured_pose_data = generate_pose_data(state, ground_truth_marker_positions, ground_truth_offsets, free_joints, pose_options) problem = CalibrationProblem( mechanism, calibration_param_bounds, free_joint_configuration_bounds, measured_marker_positions, measured_pose_data, body_weights) configurations = [data.configuration for data in ground_truth_pose_data] ground_truth = CalibrationResult(:Optimal, 0., ground_truth_offsets, configurations, ground_truth_marker_positions) problem, ground_truth end end # module
MotionCaptureJointCalibration
https://github.com/JuliaRobotics/MotionCaptureJointCalibration.jl.git
[ "MIT" ]
0.3.0
a4bc0ad02c25a442357189b60168a0173c9bbf76
code
655
const Point3DS{T} = Point3D{SVector{3, T}} zero_nans(x) = ifelse(isnan(x), zero(x), x) function canonicalize(body::RigidBody, point::Point3D) if point.frame != default_frame(body) point = frame_definition(body, point.frame) * point end point end function canonicalize!(d::Dict{RigidBody{T}, Vector{Tuple{Point3DS{T}, Point3DS{T}}}}) where {T} for (body, bounds) in d for i in eachindex(bounds) bounds[i] = canonicalize.(Ref(body), bounds[i]) end end end const TreeJointSegmentedVector{T} = SegmentedVector{ RigidBodyDynamics.JointID, T, Base.OneTo{RigidBodyDynamics.JointID}, Vector{T}}
MotionCaptureJointCalibration
https://github.com/JuliaRobotics/MotionCaptureJointCalibration.jl.git
[ "MIT" ]
0.3.0
a4bc0ad02c25a442357189b60168a0173c9bbf76
code
1838
using DrakeVisualizer using RigidBodyTreeInspector using RigidBodyTreeInspector: RGBA, HyperSphere, Point using Interact function RigidBodyTreeInspector.inspect!(state::MechanismState, vis::Visualizer, problem::CalibrationProblem, result::CalibrationResult) radius = 0.01 semitransparent_green = RGBA(0., 1, 0, 0.5) for points in values(result.marker_positions) for point in points sphere = HyperSphere(Point{3, Float64}(point.v), radius) addgeometry!(vis, state.mechanism, point.frame, GeometryData(sphere, semitransparent_green)) end end markervis = vis[:marker_measurements] cal_selector = radiobuttons(Dict("Before calibration" => false, "After calibration" => true)) pose_slider = slider(1 : num_poses(result), value = 1, label = "Pose number") map(pose_slider, cal_selector) do i, cal set_configuration!(state, result.configurations[i]) if !cal q_before_cal = problem.pose_data[i].configuration for joint in keys(problem.calibration_param_bounds) set_configuration!(state, joint, q_before_cal[joint]) end end settransform!(vis, state) delete!(markervis) for points in values(problem.pose_data[i].marker_positions) for point in points num_measured_coordinates = 3 - count(isnan.(point.v)) if num_measured_coordinates > 0 blueness = num_measured_coordinates / 3 color = RGBA(0., 0., blueness, 0.5) sphere = HyperSphere(Point{3, Float64}(point.v), radius) addgeometry!(markervis, state.mechanism, point.frame, GeometryData(sphere, color)) end end end end vbox(cal_selector, pose_slider) end
MotionCaptureJointCalibration
https://github.com/JuliaRobotics/MotionCaptureJointCalibration.jl.git
[ "MIT" ]
0.3.0
a4bc0ad02c25a442357189b60168a0173c9bbf76
code
5847
using MotionCaptureJointCalibration using DrakeVisualizer using RigidBodyTreeInspector using Interact using MotionCaptureJointCalibration.SyntheticDataGeneration using RigidBodyDynamics using StaticArrays using ValkyrieRobot using ForwardDiff using Ipopt using NBInclude using Test using LinearAlgebra using MotionCaptureJointCalibration: Point3DS, reconstruct!, deconstruct, _marker_residual, _∇marker_residual! using Random: seed!, rand! T = Float64 val = Valkyrie() mechanism = val.mechanism remove_fixed_tree_joints!(mechanism) state = MechanismState{T}(mechanism) markerbodies = findbody.(Ref(mechanism), ["leftFoot", "pelvis"]) seed!(1) body_weights = Dict(b => rand() for b in markerbodies) marker_options = MarkerPositionGenerationOptions() pose_options = PoseDataGenerationOptions() problem, groundtruth = generate_calibration_problem(state, body_weights, marker_options = marker_options, pose_options = pose_options) @testset "deconstruct/reconstruct!" begin q = zeros(num_positions(mechanism)) marker_positions_body = Dict(b => [Point3D(default_frame(b), 0., 0., 0.) for i = 1 : num_markers(problem, b)] for b in markerbodies) reconstruct!(markerbodies, q, marker_positions_body, deconstruct(markerbodies, configuration(state), groundtruth.marker_positions)...) @test all(q .== configuration(state)) for (body, positions) in groundtruth.marker_positions @test all(marker_positions_body[body] .== positions) end end @testset "marker_residual gradient" begin data = problem.pose_data[1] marker_positions_world = data.marker_positions function marker_residual_inefficient(x::X...) where {X} M = eltype(mechanism) state = MechanismState{X}(mechanism) marker_positions_body = Dict{RigidBody{M}, Vector{Point3DS{X}}}( b => [Point3D(default_frame(b), zero(X), zero(X), zero(X)) for i = 1 : num_markers(problem, b)] for b in markerbodies ) reconstruct!(markerbodies, configuration(state), marker_positions_body, x...) normalize_configuration!(state) setdirty!(state) _marker_residual(state, markerbodies, marker_positions_world, marker_positions_body, body_weights) end f(args) = [marker_residual_inefficient(args...)] for i = 1 : 100 rand!(state) q = configuration(state) Jcheck = ForwardDiff.jacobian(f, deconstruct(markerbodies, q, groundtruth.marker_positions)) set_configuration!(state, q) g = zeros(length(Jcheck)) paths_to_root = Dict(b => RigidBodyDynamics.path(mechanism, root_body(mechanism), b) for b in markerbodies) jacobians = Dict(b => (p => geometric_jacobian(state, p)) for (b, p) in paths_to_root) _∇marker_residual!(g, state, markerbodies, marker_positions_world, groundtruth.marker_positions, body_weights, jacobians) J = g' @test isapprox(J, Jcheck, atol = 1e-14) end end @testset "problem" begin @test num_poses(problem) == pose_options.num_poses @test num_calibration_params(problem) == 6 @test num_markers(problem) == marker_options.num_markers * length(markerbodies) @test num_bodies(problem) == length(markerbodies) show(devnull, problem) end @testset "solve" begin # NLopt SLSQP works well with up to 10 poses, free floating joint configurations and two unmeasured markers # solver = NLoptSolver(algorithm = :LD_SLSQP) solver = IpoptSolver(print_level = 4, max_iter = 10000, derivative_test = "first-order", check_derivatives_for_naninf = "yes", tol = 1e-10) # other useful options: # hessian_approximation = "limited-memory" result = solve(problem, solver) @test result.status == :Optimal @test num_poses(problem) == num_poses(result) @test num_calibration_params(problem) == num_calibration_params(result) @test num_markers(problem) == num_markers(result) @test num_bodies(problem) == num_bodies(result) # check calibration parameters for joint in calibration_joints(problem) @test isapprox(result.calibration_params[joint], groundtruth.calibration_params[joint]; atol = 1e-3) end # check configurations solutionstate = MechanismState{T}(mechanism) groundtruthstate = MechanismState{T}(mechanism) for i = 1 : num_poses(problem) set_configuration!(solutionstate, result.configurations[i]) set_configuration!(groundtruthstate, groundtruth.configurations[i]) for body in bodies(mechanism) @test isapprox(transform_to_root(solutionstate, body), transform_to_root(groundtruthstate, body); atol = 2e-3) end end # printing and visualization (just to make sure the code doesn't error) show(devnull, result) vis = Visualizer()[:valkyrie] geometry = visual_elements(mechanism, URDFVisuals(ValkyrieRobot.urdfpath(); package_path = [ValkyrieRobot.packagepath()])) setgeometry!(vis, mechanism, geometry) inspect!(state, vis, problem, result) end using RigidBodyTreeInspector @testset "example notebooks" begin notebookdir = joinpath(@__DIR__, "..", "notebooks") excludedirs = [".ipynb_checkpoints"] excludefiles = String[] for (root, dir, files) in walkdir(notebookdir) basename(root) in excludedirs && continue for file in files file in excludefiles && continue name, ext = splitext(file) lowercase(ext) == ".ipynb" || continue path = joinpath(root, file) @eval module $(gensym()) # Each notebook is run in its own module. using Test using NBInclude @testset "Notebook: $($name)" begin # Note: use #NBSKIP in a cell to skip it during tests. @nbinclude($path; regex = r"^((?!\#NBSKIP).)*$"s) end end # module end end end
MotionCaptureJointCalibration
https://github.com/JuliaRobotics/MotionCaptureJointCalibration.jl.git
[ "MIT" ]
0.3.0
a4bc0ad02c25a442357189b60168a0173c9bbf76
docs
2769
# MotionCaptureJointCalibration [![Build Status](https://travis-ci.org/JuliaRobotics/MotionCaptureJointCalibration.jl.svg?branch=master)](https://travis-ci.org/JuliaRobotics/MotionCaptureJointCalibration.jl) [![codecov.io](http://codecov.io/github/JuliaRobotics/MotionCaptureJointCalibration.jl/coverage.svg?branch=master)](http://codecov.io/github/JuliaRobotics/MotionCaptureJointCalibration.jl?branch=master) MotionCaptureJointCalibration provides functionality for kinematic calibration of robots, given measurements of the positions of motion capture markers attached to the robot's links and positions of the robot's joints in a number of poses. It does so by solving a nonlinear program (NLP) with (weighted) square error between measured and predicted marker locations as the objective to minimize. MotionCaptureJointCalibration is a small Julia library built on top of [JuMP](https://github.com/JuliaOpt/JuMP.jl) and [RigidBodyDynamics.jl](https://github.com/JuliaRobotics/RigidBodyDynamics.jl). JuMP makes it possible to choose between various NLP solvers. [Ipopt](https://github.com/JuliaOpt/Ipopt.jl) appears to perform fairly well for the problems formulated by this package. ## News * October 18, 2017: [tagged version 0.0.1](https://github.com/JuliaRobotics/MotionCaptureJointCalibration.jl/releases/tag/v0.0.1). * August 4, 2017: the package is under initial construction. ## Features Features include: * handling of occlusions * handling of measurements of the body-fixed locations of only a subset of the markers attached to the robot (the unknown marker positions will be solved for, given rough bounds) * handling of measurements of only a subset of a robot's joint positions (the unknown joint positions will be solved for, given rough bounds) * proper handling of quaternion-parameterized floating joints (unit norm constraints for quaternions) * visualization of calibration results using [RigidBodyTreeInspector](https://github.com/rdeits/RigidBodyTreeInspector.jl) Currently, MotionCaptureJointCalibration can only estimate constant offsets between measured and actual joint positions. ## Installation To install, simply run ```julia Pkg.add("MotionCaptureJointCalibration") ``` This will install MotionCaptureJointCalibration and its required dependencies. RigidBodyTreeInspector.jl is an optional dependency and can be used to visualize the calibration results (`Pkg.add("RigidBodyTreeInspector")`). You'll also need an NLP solver that interfaces with JuMP, e.g. Ipopt (`Pkg.add("Ipopt")`). ## Usage See [the demo notebook](https://github.com/JuliaRobotics/MotionCaptureJointCalibration.jl/blob/master/notebook/Demo.ipynb) for usage. ## Acknowledgements A variant of the NLP formulation used in this package is due to Michael Posa.
MotionCaptureJointCalibration
https://github.com/JuliaRobotics/MotionCaptureJointCalibration.jl.git
[ "MIT" ]
0.6.1
685e90c65e72a1d27065be39fac48a2a587c86a4
code
881
using ExtendedKronigPennyMatrix using Documenter DocMeta.setdocmeta!(ExtendedKronigPennyMatrix, :DocTestSetup, :(using ExtendedKronigPennyMatrix); recursive=true) makedocs(; modules=[ExtendedKronigPennyMatrix], authors="Hiroharu Sugawara <[email protected]>", repo="https://github.com/hsugawa8651/ExtendedKronigPennyMatrix.jl/blob/{commit}{path}#{line}", sitename="ExtendedKronigPennyMatrix.jl", format=Documenter.HTML(; prettyurls=get(ENV, "CI", "false") == "true", canonical="https://hsugawa8651.github.io/ExtendedKronigPennyMatrix.jl", assets=String[], ), pages=[ "Home" => "index.md", "Manual" => [ "Usage" => "usage.md", "使い方" => "usageja.md" ], "Reference" => "reference.md", ], ) deploydocs(; repo="github.com/hsugawa8651/ExtendedKronigPennyMatrix.jl", )
ExtendedKronigPennyMatrix
https://github.com/hsugawa8651/ExtendedKronigPennyMatrix.jl.git
[ "MIT" ]
0.6.1
685e90c65e72a1d27065be39fac48a2a587c86a4
code
1020
using ExtendedKronigPennyMatrix using LinearAlgebra using PyPlot pygui(false) function plot_KP(v0, rho) clf() cm=get_cmap("tab10") pot=FiniteSquareWell(v0, rho) pf = get_potential(pot) a=1 xs=-2a:a/100:3a plot(xs, pf.(xs), "k") for Ka in (-18:18)/18*π model=Model(pot, Ka) ev = eigvals(model.hnm) for i in 1:5 plot(Ka/ π, ev[i], ".", color=cm(i-1)) end end xlim(-1,1) ylim(-2,32) xlabel(L"$Ka / \pi$") ylabel(L"Energy / $E_0$") title( L"$v_{0} =$"*string(v0)*", "*L"$\rho =$"*string(rho)) end function main() # plot_KP( 0, 0.5) ylim(-0.5,25) savefig("Pavelich_Fig4a.png") # plot_KP( 10, 0.5) ylim(-0.5,30) savefig("Pavelich_Fig4b.png") savefig("KP_10_05.png") # plot_KP( 10, 0.8) ylim(-0.5,30) savefig("KP_10_08.png") # plot_KP(20.5607, 0.5) ylim(-0.5,40) savefig("Pavelich_Fig6.png") # plot_KP(10.8775, 0.8) ylim(-0.5,30) savefig("Pavelich_Fig7.png") end main()
ExtendedKronigPennyMatrix
https://github.com/hsugawa8651/ExtendedKronigPennyMatrix.jl.git
[ "MIT" ]
0.6.1
685e90c65e72a1d27065be39fac48a2a587c86a4
code
627
using ExtendedKronigPennyMatrix using LinearAlgebra using PyPlot pygui(false) function plot_IHO(v0) clf() cm=get_cmap("tab10") pot=InvertedHarmonicOscillator(v0) pf = get_potential(pot) a=1 xs=-2a:a/100:3a plot(xs, pf.(xs), "k") for Ka in (-18:18)/18*π model=Model(pot, Ka) ev = eigvals(model.hnm) for i in 1:5 plot(Ka/ π, ev[i], ".", color=cm(i-1)) end end xlim(-1,1) ylim(0,50) xlabel(L"$Ka / \pi$") ylabel(L"Energy / $E_0$") title( L"$v0 =$"*string(v0)) end function main() # plot_IHO( 7.30815) savefig("Pavelich_Fig9.png") end main()
ExtendedKronigPennyMatrix
https://github.com/hsugawa8651/ExtendedKronigPennyMatrix.jl.git
[ "MIT" ]
0.6.1
685e90c65e72a1d27065be39fac48a2a587c86a4
code
608
using ExtendedKronigPennyMatrix using LinearAlgebra using PyPlot pygui(false) function plot_IHO(A) clf() cm=get_cmap("tab10") pot= LinearWell(A) pf = get_potential(pot) a=1 xs=-2a:a/100:3a plot(xs, pf.(xs), "k") for Ka in (-18:18)/18*π model=Model(pot, Ka) ev = eigvals(model.hnm) for i in 1:5 plot(Ka/ π, ev[i], ".", color=cm(i-1)) end end xlim(-1,1) ylim(0,40) xlabel(L"$Ka / \pi$") ylabel(L"Energy / $E_0$") title( L"$A =$"*string(A)) end function main() # plot_IHO(19.8705) savefig("Pavelich_Fig10.png") end main()
ExtendedKronigPennyMatrix
https://github.com/hsugawa8651/ExtendedKronigPennyMatrix.jl.git
[ "MIT" ]
0.6.1
685e90c65e72a1d27065be39fac48a2a587c86a4
code
972
using ExtendedKronigPennyMatrix using LinearAlgebra using PyPlot pygui(false) function plot_potential() clf() cm=get_cmap("tab10") potentials = [ [ FiniteSquareWell(1.0, 0.5), "Kronig-Penny ρ=0.5" ], [ FiniteSquareWell(1.0, 0.8), "Kronig-Penny ρ=0.8" ], [ SimpleHarmonicOscillator(1.0), "Simple Harmonic Oscillator" ], [ InvertedHarmonicOscillator(1.0), "Inverted Harmonic Oscillator" ], [ LinearWell(1.0), "LinearWell" ] ] npotentials=length(potentials) fig, axs = subplots(npotentials,1, sharex=true, tight_layout=true) @show axs for (cnt, desc) in enumerate(potentials) pot, ttl = desc pf = get_potential(pot) a=1 xs=-2a:a/100:2a axs[cnt].plot(xs, pf.(xs)) axs[cnt].set_title(ttl, y=-0.5) axs[cnt].set_xlabel("") axs[cnt].set_xticks([]) axs[cnt].set_ylabel("") # axs[cnt].axis("off") end fig.savefig("Pavelich_Fig5.png") end plot_potential()
ExtendedKronigPennyMatrix
https://github.com/hsugawa8651/ExtendedKronigPennyMatrix.jl.git
[ "MIT" ]
0.6.1
685e90c65e72a1d27065be39fac48a2a587c86a4
code
626
using ExtendedKronigPennyMatrix using LinearAlgebra using PyPlot pygui(false) function plot_SHO(v0) clf() cm=get_cmap("tab10") pot=SimpleHarmonicOscillator(v0) pf = get_potential(pot) a=1 xs=-2a:a/100:3a plot(xs, pf.(xs), "k") for Ka in (-18:18)/18*π model=Model(pot, Ka) ev = eigvals(model.hnm) for i in 1:5 plot(Ka/ π, ev[i], ".", color=cm(i-1)) end end xlim(-1,1) ylim(0,30) xlabel(L"$Ka / \pi$") ylabel(L"Energy / $E_0$") title( L"$v0 =$"*string(v0)) end function main() # plot_SHO( 4.84105) savefig("Pavelich_Fig8.png") end main()
ExtendedKronigPennyMatrix
https://github.com/hsugawa8651/ExtendedKronigPennyMatrix.jl.git
[ "MIT" ]
0.6.1
685e90c65e72a1d27065be39fac48a2a587c86a4
code
1162
using ExtendedKronigPennyMatrix using LinearAlgebra using PyPlot pygui(false) function plot_potential() clf() cm=get_cmap("tab10") potentials = [ [ FiniteSquareWell(20.5607, 0.5), "Kronig-Penny ρ=0.5" ], [ InvertedHarmonicOscillator(7.30845), "Inverted HO" ], [ FiniteSquareWell(10.8775, 0.8), "Kronig-Penny ρ=0.8" ], [ LinearWell(19.8705), "LinearWell" ], [ SimpleHarmonicOscillator(4.84105), "Simple HO" ], ] npotentials=length(potentials) for (cnt, desc) in enumerate(potentials) pot, ttl = desc pf = get_potential(pot) a=1 Ka= -pi model=Model(pot, Ka) ev = eigvals(model.hnm) ev30=ev[3] @show ev30 for (j,Ka) in enumerate((-36:36)/36*π) model=Model(pot, Ka) ev = eigvals(model.hnm) if j==1 plot(Ka/ π, ev[3] - ev30, ".", color=cm(cnt-1), label=ttl) else plot(Ka/ π, ev[3] - ev30, ".", color=cm(cnt-1)) end end end legend(loc=3) xlim(-1,1) ylim(-3,0.2) xlabel(L"$Ka / \pi$") ylabel(L"Energy / $E_0$") savefig("Pavelich_Fig11.png") end plot_potential()
ExtendedKronigPennyMatrix
https://github.com/hsugawa8651/ExtendedKronigPennyMatrix.jl.git
[ "MIT" ]
0.6.1
685e90c65e72a1d27065be39fac48a2a587c86a4
code
446
__precompile__(true) using LinearAlgebra module ExtendedKronigPennyMatrix using Unitful include("basic.jl") export Alternates, get_E10, get_potential export Model include("FiniteSquareWell.jl") include("SimpleHarmonicOscillator.jl") include("InvertedHarmonicOscillator.jl") include("LinearWell.jl") export FiniteSquareWell, SimpleHarmonicOscillator, InvertedHarmonicOscillator, LinearWell, constructMatrix end
ExtendedKronigPennyMatrix
https://github.com/hsugawa8651/ExtendedKronigPennyMatrix.jl.git
[ "MIT" ]
0.6.1
685e90c65e72a1d27065be39fac48a2a587c86a4
code
2299
# KronigPenny """ struct FiniteSquareWell(v0, ρ) holds parameters of finite square well potential. Fields * `v0` : potential height in units of ``E_{1}^{(0)}`` * `ρ` : barrier width in units of period ``a``, where ``0 < \\rho = \\dfrac{b}{a} < 1`` * Note that a position ``x`` is expressed in units of ``a`` throughout this package. The constructor `FiniteSquareWell(v0, ρ)` confirms that `0 ≤ ρ ≤ 1`, otherwise throws an error. """ struct FiniteSquareWell <: Potential v0:: Real ρ:: Real # ρ = b/a FiniteSquareWell(v0, ρ) = 0 ≤ ρ ≤ 1 ? new(v0,ρ) : error("ρ < 0 or 1 < ρ") end """ get_potential(::FiniteSquareWell) returns a function ``v`` to evaluate potential ``v(x)`` as a position ``x``, such that: ```math \\begin{aligned} v(x) & = \\begin{cases} v_{0} & \\text{inside well, i.e.,} \\dfrac{1-\\rho}{2} \\le \\dfrac{x}{a} \\le \\dfrac{1+\\rho}{2}, \\\\ 0 & \\text{outside well}\\end{cases} \\\\ v(x+a) &= v(x) \\end{aligned} ``` * Note that a position ``x`` is expressed in units of ``a`` throughout this package. """ function get_potential(pot::FiniteSquareWell) return x -> (1-pot.ρ)/2 <= mod(x,1)< (1+pot.ρ)/2 ? 0 : pot.v0 end """ constuctMatrix(model::Model{FiniteSquareWell}) computes and fills Hamiltonian matrix fields `hnm` in `model` with finite square well. ```math h_{nm} = \\begin{cases} \\left(2n + \\dfrac{Ka}{\\pi}\\right)^{2} + v_{0} (1-\\rho) & \\text{for}\\; n = m\\;\\text{(diagonal elements)} \\\\ v_{0} \\dfrac{(-1)^{m-n+1}}{\\pi} \\dfrac{\\sin \\pi(m-n)\\rho}{m-n} & \\text{for}\\; n \\neq m\\;\\text{(off-diagonal elements)}\\end{cases} ``` """ function constuctMatrix(model::Model{FiniteSquareWell}) qnum=model.qnum hnm=model.hnm Ka=model.Ka potential=model.potential v0=potential.v0 ρ=potential.ρ for (i,m) in enumerate(qnum) for (j,n) in Iterators.take(enumerate(qnum), i-1) hnm[i,j] = 0 end end for (i,m) in enumerate(qnum) hnm[i,i] = (2m+Ka/π)^2 + v0*(1-ρ) end for (i,m) in enumerate(qnum) for (j,n) in Iterators.take(enumerate(qnum), i-1) hnm[i,j] = v0*(-1)^(m-n+1)/π * sinpi((m-n)ρ)/(m-n) end for (j,n) in Iterators.drop(enumerate(qnum), i) hnm[i,j] = v0*(-1)^(m-n+1)/π * sinpi((m-n)ρ)/(m-n) end end end
ExtendedKronigPennyMatrix
https://github.com/hsugawa8651/ExtendedKronigPennyMatrix.jl.git
[ "MIT" ]
0.6.1
685e90c65e72a1d27065be39fac48a2a587c86a4
code
2226
# Inverted Harmonic Oscillator """ struct InvertedHarmonicOscillator(v0) holds parameters of finite square well potential. Fields * `v0` ``= \\hbar\\omega`` in units of ``E_{1}^{(0)}`` """ struct InvertedHarmonicOscillator <: Potential v0:: Real end """ get_potential(::InvertedHarmonicOscillator) returns a function ``v`` to evaluate potential ``v(x)`` as a position ``x``, such that: ```math \\begin{aligned} v(x) & = \\begin{cases} -\\dfrac{1}{2}m {\\omega}^{2} a^{2} \\left[ \\left(\\dfrac{x}{a}\\right)^2 - \\dfrac{1}{4} \\right] & 0 \\le \\dfrac{x}{a} \\le \\dfrac{1}{2} \\\\ -\\dfrac{1}{2}m {\\omega}^{2} a^{2} \\left[ \\left(\\dfrac{x}{a}-1\\right)^2 - \\dfrac{1}{4} \\right] & \\dfrac{1}{2} \\le \\dfrac{x}{a} \\le 1 \\end{cases} \\\\ v(x+a) &= v(x) \\end{aligned} ``` * Note that a position ``x`` is expressed in units of ``a`` throughout this package. """ function get_potential(pot::InvertedHarmonicOscillator) return x -> (x1 = mod(x,1.0); x1 < 1/2 ? pot.v0^2 * pi^2 / 4.0 * (1/4 - x1^2) : pot.v0^2 * pi^2 / 4.0 * (1/4 - (x1-1)^2) ) end """ constuctMatrix(model::Model{InvertedHarmonicOscillator}) computes and fills Hamiltonian matrix fields `hnm` in `model` with finite square well. ```math h_{nm} = \\begin{cases} \\left(2n + \\dfrac{Ka}{\\pi}\\right)^{2} + v_{0}^{2} \\dfrac{\\pi^2}{24} & \\text{for}\\; n = m\\;\\text{(diagonal elements)} \\\\ - \\dfrac{v_{0}^2}{8} \\dfrac{(-1)^{m-n}}{(m-n)^{2}} & \\text{for}\\; n \\neq m\\;\\text{(off-diagonal elements)}\\end{cases} ``` """ function constuctMatrix(model::Model{InvertedHarmonicOscillator}) qnum=model.qnum hnm=model.hnm Ka=model.Ka potential=model.potential v0=potential.v0 for (i,m) in enumerate(qnum) for (j,n) in Iterators.take(enumerate(qnum), i-1) hnm[i,j] = 0 end end for (i,m) in enumerate(qnum) hnm[i,i] = (2m+Ka/π)^2 + v0^2 * pi^2 / 24 end for (i,m) in enumerate(qnum) for (j,n) in Iterators.take(enumerate(qnum), i-1) hnm[i,j] = -v0^2/8 * (-1)^(m-n) / (m-n)^2 end for (j,n) in Iterators.drop(enumerate(qnum), i) hnm[i,j] = -v0^2/8 * (-1)^(m-n) / (m-n)^2 end end end
ExtendedKronigPennyMatrix
https://github.com/hsugawa8651/ExtendedKronigPennyMatrix.jl.git
[ "MIT" ]
0.6.1
685e90c65e72a1d27065be39fac48a2a587c86a4
code
1963
# LinearWell """ struct LinearWell(A) holds parameters of finite square well potential. Fields * `A` ``= \\hbar\\omega`` in units of ``E_{1}^{(0)}`` """ struct LinearWell <: Potential A:: Real end """ get_potential(::LinearWell) returns a function ``v`` to evaluate potential ``v(x)`` as a position ``x``, such that: ```math \\begin{aligned} v(x) & = \\begin{cases} 2A \\left( \\dfrac{1}{2} - \\dfrac{x}{a} \\right) & 0 \\le \\dfrac{x}{a} \\le \\dfrac{1}{2} \\\\ 2A \\left( \\dfrac{x}{a} - \\dfrac{1}{2} \\right) & \\dfrac{1}{2} \\le \\dfrac{x}{a} \\le 1 \\end{cases} \\\\ v(x+a) &= v(x) \\end{aligned} ``` * Note that a position ``x`` is expressed in units of ``a`` throughout this package. """ function get_potential(pot::LinearWell) return x -> (x1 = mod(x,1.0); x1 < 1/2 ? 2 * pot.A * (1/2 - x1) : 2 * pot.A * (x1 - 1/2) ) end """ constuctMatrix(model::Model{LinearWell}) computes and fills Hamiltonian matrix fields `hnm` in `model` with finite square well. ```math h_{nm} = \\begin{cases} \\left(2n + \\dfrac{Ka}{\\pi}\\right)^{2} + \\dfrac{A}{2} & \\text{for}\\; n = m\\;\\text{(diagonal elements)} \\\\ \\dfrac{-A}{\\pi^2 (m-n)^{2}} \\left[ 1-(-1)^{m-n}\\right] & \\text{for}\\; n \\neq m\\;\\text{(off-diagonal elements)}\\end{cases} ``` """ function constuctMatrix(model::Model{LinearWell}) qnum=model.qnum hnm=model.hnm Ka=model.Ka potential=model.potential A=potential.A for (i,m) in enumerate(qnum) for (j,n) in Iterators.take(enumerate(qnum), i-1) hnm[i,j] = 0 end end for (i,m) in enumerate(qnum) hnm[i,i] = (2m+Ka/π)^2 + A / 2 end for (i,m) in enumerate(qnum) for (j,n) in Iterators.take(enumerate(qnum), i-1) hnm[i,j] = -A / pi^2 / (m-n)^2 * ( 1 - (-1)^(m-n)) end for (j,n) in Iterators.drop(enumerate(qnum), i) hnm[i,j] = -A / pi^2 / (m-n)^2 * ( 1 - (-1)^(m-n)) end end end
ExtendedKronigPennyMatrix
https://github.com/hsugawa8651/ExtendedKronigPennyMatrix.jl.git
[ "MIT" ]
0.6.1
685e90c65e72a1d27065be39fac48a2a587c86a4
code
1988
# Simple Harmonic Oscillator """ struct SimpleHarmonicOscillator(v0) holds parameters of finite square well potential. Fields * `v0` ``= \\hbar\\omega`` in units of ``E_{1}^{(0)}`` """ struct SimpleHarmonicOscillator <: Potential v0:: Real end """ get_potential(::SimpleHarmonicOscillator) returns a function ``v`` to evaluate potential ``v(x)`` as a position ``x``, such that: ```math \\begin{aligned} v(x) & = \\dfrac{1}{2}m {\\omega}^{2} a^{2} \\left(\\dfrac{x}{a}-\\dfrac{1}{2}\\right)^2 = \\dfrac{\\pi^2}{4} v_{0}^2 E_{1}^{(0)} \\left(\\dfrac{x}{a}-\\dfrac{1}{2}\\right)^2, \\quad 0 \\le \\dfrac{x}{a} \\le 1 \\\\ v(x+a) &= v(x) \\end{aligned} ``` * Note that a position ``x`` is expressed in units of ``a`` throughout this package. """ function get_potential(pot::SimpleHarmonicOscillator) return x -> pot.v0^2 * pi^2 / 4.0 * (mod(x,1.0)-1/2)^2 end """ constuctMatrix(model::Model{SimpleHarmonicOscillator}) computes and fills Hamiltonian matrix fields `hnm` in `model` with finite square well. ```math h_{nm} = \\begin{cases} \\left(2n + \\dfrac{Ka}{\\pi}\\right)^{2} + v_{0}^{2} \\dfrac{\\pi^2}{48} & \\text{for}\\; n = m\\;\\text{(diagonal elements)} \\\\ \\dfrac{v_{0}^2}{8} \\dfrac{(-1)^{m-n}}{(m-n)^{2}} & \\text{for}\\; n \\neq m\\;\\text{(off-diagonal elements)}\\end{cases} ``` """ function constuctMatrix(model::Model{SimpleHarmonicOscillator}) qnum=model.qnum hnm=model.hnm Ka=model.Ka potential=model.potential v0=potential.v0 for (i,m) in enumerate(qnum) for (j,n) in Iterators.take(enumerate(qnum), i-1) hnm[i,j] = 0 end end for (i,m) in enumerate(qnum) hnm[i,i] = (2m+Ka/π)^2 + v0^2 * pi^2 / 48 end for (i,m) in enumerate(qnum) for (j,n) in Iterators.take(enumerate(qnum), i-1) hnm[i,j] = v0^2/8 * (-1)^(m-n) / (m-n)^2 end for (j,n) in Iterators.drop(enumerate(qnum), i) hnm[i,j] = v0^2/8 * (-1)^(m-n) / (m-n)^2 end end end
ExtendedKronigPennyMatrix
https://github.com/hsugawa8651/ExtendedKronigPennyMatrix.jl.git
[ "MIT" ]
0.6.1
685e90c65e72a1d27065be39fac48a2a587c86a4
code
3077
""" Alternates(nmax) is an iterator to generate the series ``\\{0, 1, -1, 2, -2, \\ldots \\}`` up to `nmax` as an ordering of quantum numbers. ``` collect(Alternates(0)) => [0] collect(Alternates(1)) => [0, 1, -1] collect(Alternates(2)) => [0, 1, -1, 2, -2] ``` """ struct Alternates nmax::Int end Base.eltype(::Type{Alternates}) = Int Base.length(alt::Alternates) = alt.nmax*2+1 """ Base.iterate(alt::Alternates, state::Int = 1) """ function Base.iterate(alt::Alternates, state::Int = 1) state > alt.nmax*2+1 && return nothing nxt = state ÷ 2 if state % 2 == 1 nxt *= -1 end (nxt, state+1) end """ get_E10(a; me=1) calculates the ground state energy ``E_{1}^{(0)}``. ```math E_{1}^{(0)} = \\dfrac{\\pi^2\\hbar^2}{2ma^2} ``` * `a` : system length * `me` : electron mass This function handles physical quantities with Unitful package. * If `a` is dimensionless, suppose that `a` is in `nm` unit. * Otherwise, `a` must have a dimension of length `L`. * If `me` is dimensionless, suppose that `me` is an effective mass with respect to electron rest mass. * Otherwise, `me` must have a dimension of mass `M`. * The resultant enegy value is repesented in `eV`. """ function get_E10(a; me=1) a0 = if isa(a, Unitful.Length) a elseif isa(a, Real) a * 1u"nm" else throw(Unitful.DimensionError) end m0 = if isa(me, Unitful.Mass) me elseif isa(me, Real) me * 1u"me" else throw(Unitful.DimensionError) end e10 = pi^2*(1u"ħ")^2 / (2*m0*a0^2) |> u"eV" return e10 end """ Potential is an abstraction of potential including * potential height, and/or * other parameters depending on specific potential. A subtype of `Potential` is expected to possess following methods: * `get_potential(<:Potential)` * returns a function to evaluate potential value as a position. """ abstract type Potential end """ struct Model{P<:Potential} is an abstraction of model including following fields: * `potential` : concrete Potential * `Ka` : wavenumber multiplied by `a`, period * `nmax` : maximum of quantum numbers * `mmax` : size of Hamiltonian matrix * `qnum` : iterator of quantum numbers * `hnm` : hamiltonian matrix A concrete subtype of model is expected to possess following methods: * `constuctMatrix(model::Model{P})` """ struct Model{P<:Potential} potential::P Ka::Float64 nmax::Int64 # maximum of quantum numbers mmax::Int64 # size of Hamiltonian qnum::Alternates hnm::Matrix end """ function Model(pot::Potential,Ka::Float64,nmax::Int64=60) is a constructor of Kronig-Penny model, and defines other fields: `qnum`, `nmax`, and `hnm` * Mandantory parameters: * `pot` : potential * `Ka` : wavenumber multiplied by `a`, period * Optional parameters: * `nmax` : maximum of quantum numbers """ function Model(pot::Potential,Ka::Float64,nmax::Int64=60) qnum=Alternates(nmax) mmax=length(qnum) hnm=zeros(Float64,(mmax,mmax)) model=Model(pot,Ka,nmax,mmax,qnum,hnm) constuctMatrix(model) model end
ExtendedKronigPennyMatrix
https://github.com/hsugawa8651/ExtendedKronigPennyMatrix.jl.git
[ "MIT" ]
0.6.1
685e90c65e72a1d27065be39fac48a2a587c86a4
code
237
@testset "Alternates" begin @test collect(Alternates(0)) == [0] @test collect(Alternates(1)) == [0, 1, -1 ] @test collect(Alternates(2)) == [0, 1, -1, 2, -2 ] @test collect(Alternates(3)) == [0, 1, -1, 2, -2, 3, -3 ] end
ExtendedKronigPennyMatrix
https://github.com/hsugawa8651/ExtendedKronigPennyMatrix.jl.git
[ "MIT" ]
0.6.1
685e90c65e72a1d27065be39fac48a2a587c86a4
code
512
@testset "KronigPenny" begin @testset "KP_ex" begin filenames = [ "KP_10_05.png", "KP_10_08.png", "Pavelich_Fig4a.png", "Pavelich_Fig4b.png", "Pavelich_Fig6.png", "Pavelich_Fig7.png" ] ENV["MPLBACKEND"]="agg" # no GUI using PyPlot include("../example/ex1_FiniteSquareWell.jl") using CRC32c for filename in filenames @test open(crc32c, filename) == open(crc32c, joinpath("example", filename)) rm(filename) end end end
ExtendedKronigPennyMatrix
https://github.com/hsugawa8651/ExtendedKronigPennyMatrix.jl.git
[ "MIT" ]
0.6.1
685e90c65e72a1d27065be39fac48a2a587c86a4
code
185
@testset "basic" begin @test get_E10(1.0) ≈ 0.3760301626167376u"eV" @test get_E10(1u"nm") ≈ 0.3760301626167376u"eV" @test get_E10(1u"nm", me=1.0) ≈ 0.3760301626167376u"eV" end
ExtendedKronigPennyMatrix
https://github.com/hsugawa8651/ExtendedKronigPennyMatrix.jl.git
[ "MIT" ]
0.6.1
685e90c65e72a1d27065be39fac48a2a587c86a4
code
195
using ExtendedKronigPennyMatrix using Test using Unitful @testset "ExtendedKronigPennyMatrix.jl" begin include("Alternates.jl") include("basic.jl") # include("KronigPennyTest.jl") end
ExtendedKronigPennyMatrix
https://github.com/hsugawa8651/ExtendedKronigPennyMatrix.jl.git
[ "MIT" ]
0.6.1
685e90c65e72a1d27065be39fac48a2a587c86a4
docs
1099
# ExtendedKronigPennyMatrix <p align="center"> <img src="example/Pavelich_Fig6.png" alt="Pavelich_Fig6" width="600px"> </p> [![Stable](https://img.shields.io/badge/docs-stable-blue.svg)](https://hsugawa8651.github.io/ExtendedKronigPennyMatrix.jl/stable) [![Dev](https://img.shields.io/badge/docs-dev-blue.svg)](https://hsugawa8651.github.io/ExtendedKronigPennyMatrix.jl/dev) [![Build Status](https://github.com/hsugawa8651/ExtendedKronigPennyMatrix.jl/workflows/CI/badge.svg)](https://github.com/hsugawa8651/ExtendedKronigPennyMatrix.jl/actions) Construct a numerical Hamiltonian matrix of Kronig-Penny model extended to arbitrary potentials based on the paper written by Pavelich and Marsiglio. > R. L. Pavelicha and F. Marsigliob, > "The Kronig-Penney model extended to arbitrary potentials via numerical matrix mechanics," American Journal of Physics 83, 774 (2015). > [DOI:10.1119/1.4923026](https://doi.org/10.1119/1.4923026), > [ResearchGate](https://www.researchgate.net/publication/268227429_The_Kronig-Penney_model_extended_to_arbitrary_potentials_via_numerical_matrix_mechanics)
ExtendedKronigPennyMatrix
https://github.com/hsugawa8651/ExtendedKronigPennyMatrix.jl.git
[ "MIT" ]
0.6.1
685e90c65e72a1d27065be39fac48a2a587c86a4
docs
975
```@meta CurrentModule = ExtendedKronigPennyMatrix ``` # ExtendedKronigPennyMatrix Documentation for [ExtendedKronigPennyMatrix](https://github.com/hsugawa8651/ExtendedKronigPennyMatrix.jl). # Introduction Construct a numerical Hamiltonian matrix $(h_{nm})$ of Kronig-Penny model extended to arbitrary potentials based on the paper written by Pavelich and Marsiglio. ```math \sum_{m=1}^{\infty} h_{nm} c_{m} = ec_{n} ``` Energy is expressed in units of $E_{1}^{(0)}$. ```math E_{1}^{(0)} = \dfrac{\pi^2\hbar^2}{2ma^2} ``` Refer the formulations to the following paper: > R. L. Pavelicha and F. Marsigliob, > "The Kronig-Penney model extended to arbitrary potentials via numerical matrix mechanics," American Journal of Physics 83, 774 (2015). > [DOI:10.1119/1.4923026](https://doi.org/10.1119/1.4923026), > [ResearchGate](https://www.researchgate.net/publication/268227429_The_Kronig-Penney_model_extended_to_arbitrary_potentials_via_numerical_matrix_mechanics)
ExtendedKronigPennyMatrix
https://github.com/hsugawa8651/ExtendedKronigPennyMatrix.jl.git
[ "MIT" ]
0.6.1
685e90c65e72a1d27065be39fac48a2a587c86a4
docs
1285
## Interface ### Alternates - iterator for quantum numbers ```@docs Alternates ``` ```@docs Base.iterate(::Alternates, state::Int = 1) ``` ### E10 - the ground state energy ```@docs ExtendedKronigPennyMatrix.get_E10 ``` ### Potential ```@docs ExtendedKronigPennyMatrix.Potential ``` ### Model ```@docs ExtendedKronigPennyMatrix.Model ``` ```@docs ExtendedKronigPennyMatrix.Model(pot::ExtendedKronigPennyMatrix.Potential,Ka::Float64,nmax::Int64=60) ``` ## Finite Square Well ```@docs FiniteSquareWell ``` ```@docs get_potential(::FiniteSquareWell) ``` ```@docs ExtendedKronigPennyMatrix.constuctMatrix(::Model{FiniteSquareWell}) ``` ## Simple Harmonic Oscillator ```@docs SimpleHarmonicOscillator ``` ```@docs get_potential(::SimpleHarmonicOscillator) ``` ```@docs ExtendedKronigPennyMatrix.constuctMatrix(::Model{SimpleHarmonicOscillator}) ``` ## Inverted Harmonic Oscillator ```@docs InvertedHarmonicOscillator ``` ```@docs get_potential(::InvertedHarmonicOscillator) ``` ```@docs ExtendedKronigPennyMatrix.constuctMatrix(::Model{InvertedHarmonicOscillator}) ``` ## LinearWell ```@docs LinearWell ``` ```@docs get_potential(::LinearWell) ``` ```@docs ExtendedKronigPennyMatrix.constuctMatrix(::Model{LinearWell}) ``` ## Alphabetical Index ```@index ```
ExtendedKronigPennyMatrix
https://github.com/hsugawa8651/ExtendedKronigPennyMatrix.jl.git
[ "MIT" ]
0.6.1
685e90c65e72a1d27065be39fac48a2a587c86a4
docs
1868
# Usage ```@setup session1 using PyPlot clf() ``` Here is a sample REPL session to draw a dispersion relationship by using this package. First, construct `FiniteSquareWell` potential object. ```@repl session1 using ExtendedKronigPennyMatrix v0=10; rho=0.5 # b/a; pot=FiniteSquareWell(v0, rho) ``` Use `get_function` method to acquire potential function. ```@repl session1 begin pf = get_potential(pot) a = 1 xs=-a:a/100:2a plot(xs, pf.(xs), "k") xlim(0,1) xlabel(L"$x / a$") ylabel(L"Energy / $E_0$") title( L"$\rho =$"*string(rho)) savefig("plot1.png", dpi=150); nothing # hide end ``` ![](plot1.png) Define `Model` by calling its constructor. ```@repl session1 Ka=0.0 # wavenumber multiplied by a; model=Model(pot, Ka) ``` The field `hnm` of model contains Hamiltonian matrix. ```@repl session1 typeof(model.hnm) size(model.hnm) model.hnm[1:5,1:5] ``` Use [`LinearAlgebra.eigvals`](https://docs.julialang.org/en/v1/stdlib/LinearAlgebra/#LinearAlgebra.eigvals) method to compute its energy eigenvalues. Refer to the [`LinearAlgebra`](https://docs.julialang.org/en/v1/stdlib/LinearAlgebra/) standard library section in Julia documentation. ```@repl session1 using LinearAlgebra evs=eigvals(model.hnm); evs[1:3] ``` Draw dispersion curve by scanning `Ka` values between ``[-\pi, \pi]``. ```@repl session1 using PyPlot clf() begin a = 1 xs=-a:a/100:2a plot(xs .- 1/2, pf.(xs), "k") # Holizontally shift to centerize the potential well cm=get_cmap("tab10") for Ka in (-18:18)/18*π model=Model(pot, Ka) ev = eigvals(model.hnm) for i in 1:5 plot(Ka/ π, ev[i], ".", color=cm(i-1)) end end xlim(-1,1) ylim(-2,32) xlabel(L"$Ka / \pi$") ylabel(L"Energy / $E_0$") title( L"$\rho =$"*string(rho)) savefig("plot2.png", dpi=150); nothing # hide end ``` ![](plot2.png)
ExtendedKronigPennyMatrix
https://github.com/hsugawa8651/ExtendedKronigPennyMatrix.jl.git
[ "MIT" ]
0.6.1
685e90c65e72a1d27065be39fac48a2a587c86a4
docs
1720
# 使い方 このパッケージを利用して、分散関係を描画する手順を紹介します。 JuliaのREPLを用いた例です。 最初に、`FiniteSquareWell` ポテンシャルを作成します。 ```@repl session1 using ExtendedKronigPennyMatrix v0=10; rho=0.5 # b/a; pot=FiniteSquareWell(v0, rho) ``` ポテンシャル形状は `get_function`関数で得られます。 ここでは `PyPlot` パッケージを用いて、プロットします。 ```@repl session1 using PyPlot clf() begin pf = get_potential(pot) a = 1 xs=-a:a/100:2a plot(xs, pf.(xs), "k") xlim(0,1) xlabel(L"$x / a$") ylabel(L"Energy / $E_0$") title( L"$\rho =$"*string(rho)) # savefig("plot1.png", dpi=150); nothing # hide end ``` ![](plot1.png) 次に、`Model` オブジェクトを作成します。 ```@repl session1 Ka=0.0 # wavenumber multiplied by a; model=Model(pot, Ka) ``` このオブジェクトの `hnm` フィールドに、ハミルトニアン行列が計算されました。 ```@repl session1 typeof(model.hnm) size(model.hnm) model.hnm[1:5,1:5] ``` Juliaの [`LinearAlgebra.eigvals`](https://docs.julialang.org/en/v1/stdlib/LinearAlgebra/#LinearAlgebra.eigvals) メソッドを用いて、エネルギー固有値を計算します。 詳しくは、Juliaドキュメントの [`LinearAlgebra`](https://docs.julialang.org/en/v1/stdlib/LinearAlgebra/) 標準ライブラリを参照してください。 ```@repl session1 using LinearAlgebra evs=eigvals(model.hnm); evs[1:3] ``` 波数(と周期`a`の積)`Ka` を ``[-\pi, \pi]`` の範囲で走査して、分散関係を描きます。 ```@repl session1 using PyPlot clf() begin a = 1 xs=-a:a/100:2a plot(xs .- 1/2, pf.(xs), "k") # Holizontally shift to centerize the potential well cm=get_cmap("tab10") for Ka in (-18:18)/18*π model=Model(pot, Ka) ev = eigvals(model.hnm) for i in 1:5 plot(Ka/ π, ev[i], ".", color=cm(i-1)) end end xlim(-1,1) ylim(-2,32) xlabel(L"$Ka / \pi$") ylabel(L"Energy / $E_0$") title( L"$\rho =$"*string(rho)) savefig("plot2.png", dpi=150); nothing # hide end ``` ![](plot2.png)
ExtendedKronigPennyMatrix
https://github.com/hsugawa8651/ExtendedKronigPennyMatrix.jl.git
[ "Apache-2.0" ]
1.0.0
b14d2173208683125949ec04e71004a3ddd7cadc
code
11175
# Copyright 2022 XXIV # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. module CocktailDB using HTTP using JSON export search, searchbyLetter, searchingredient export search_ingredient_byid, filter_byingredient export categoriesfilter, glassesfilter, ingredientsfilter export alcoholicfilter, random, search_byid, filter_byglass export filter_byalcoholic, filter_bycategory struct CocktailDBException <: Exception msg end function _getrequest(endpoint::String) try request = HTTP.request("GET", "https://thecocktaildb.com/api/json/v1/1/$endpoint") response = String(request.body) return response catch ex if isa(ex, HTTP.ExceptionRequest.StatusError) return String(ex.response.body) else rethrow(ex) end end end """ Search cocktail by name * `s` cocktail name """ function search(s::String) try response = _getrequest("search.php?s=$(HTTP.URIs.escapeuri(s))") if length(response) == 0 throw(CocktailDBException("Something went wrong: Empty response")) end json = JSON.parse(response) if json["drinks"] == nothing || length(json["drinks"]) == 0 throw(CocktailDBException("Something went wrong: Empty response")) end return json["drinks"] catch ex if isa(ex, CocktailDBException) rethrow(ex) else throw(CocktailDBException(sprint(showerror, ex))) end end end """ Search cocktails by first letter * `c` cocktails letter """ function searchbyLetter(c::Char) try response = _getrequest("search.php?f=$c") if length(response) == 0 throw(CocktailDBException("Something went wrong: Empty response")) end json = JSON.parse(response) if json["drinks"] == nothing || length(json["drinks"]) == 0 throw(CocktailDBException("Something went wrong: Empty response")) end return json["drinks"] catch ex if isa(ex, CocktailDBException) rethrow(ex) else throw(CocktailDBException(sprint(showerror, ex))) end end end """ Search ingredient by name * `s` ingredient name """ function searchingredient(s::String) try response = _getrequest("search.php?i=$(HTTP.URIs.escapeuri(s))") if length(response) == 0 throw(CocktailDBException("Something went wrong: Empty response")) end json = JSON.parse(response) if json["ingredients"] == nothing || length(json["ingredients"]) == 0 throw(CocktailDBException("Something went wrong: Empty response")) end return json["ingredients"][1] catch ex if isa(ex, CocktailDBException) rethrow(ex) else throw(CocktailDBException(sprint(showerror, ex))) end end end """ Search cocktail details by id * `i` cocktail id """ function search_byid(i::Int) try response = _getrequest("lookup.php?i=$i") if length(response) == 0 throw(CocktailDBException("Something went wrong: Empty response")) end json = JSON.parse(response) if json["drinks"] == nothing || length(json["drinks"]) == 0 throw(CocktailDBException("Something went wrong: Empty response")) end return json["drinks"][1] catch ex if isa(ex, CocktailDBException) rethrow(ex) else throw(CocktailDBException(sprint(showerror, ex))) end end end """ Search ingredient by ID * `i` ingredient id """ function search_ingredient_byid(i::Int) try response = _getrequest("lookup.php?iid=$i") if length(response) == 0 throw(CocktailDBException("Something went wrong: Empty response")) end json = JSON.parse(response) if json["ingredients"] == nothing || length(json["ingredients"]) == 0 throw(CocktailDBException("Something went wrong: Empty response")) end return json["ingredients"][1] catch ex if isa(ex, CocktailDBException) rethrow(ex) else throw(CocktailDBException(sprint(showerror, ex))) end end end """ Search a random cocktail """ function random() try response = _getrequest("random.php") if length(response) == 0 throw(CocktailDBException("Something went wrong: Empty response")) end json = JSON.parse(response) if json["drinks"] == nothing || length(json["drinks"]) == 0 throw(CocktailDBException("Something went wrong: Empty response")) end return json["drinks"][1] catch ex if isa(ex, CocktailDBException) rethrow(ex) else throw(CocktailDBException(sprint(showerror, ex))) end end end """ Filter by ingredient * `s` ingredient name """ function filter_byingredient(s::String) try response = _getrequest("filter.php?i=$(HTTP.URIs.escapeuri(s))") if length(response) == 0 throw(CocktailDBException("Something went wrong: Empty response")) end json = JSON.parse(response) if json["drinks"] == nothing || length(json["drinks"]) == 0 throw(CocktailDBException("Something went wrong: Empty response")) end return json["drinks"] catch ex if isa(ex, CocktailDBException) rethrow(ex) else throw(CocktailDBException(sprint(showerror, ex))) end end end """ Filter by alcoholic * `s` alcoholic or non alcoholic """ function filter_byalcoholic(s::String) try response = _getrequest("filter.php?a=$(HTTP.URIs.escapeuri(s))") if length(response) == 0 throw(CocktailDBException("Something went wrong: Empty response")) end json = JSON.parse(response) if json["drinks"] == nothing || length(json["drinks"]) == 0 throw(CocktailDBException("Something went wrong: Empty response")) end return json["drinks"] catch ex if isa(ex, CocktailDBException) rethrow(ex) else throw(CocktailDBException(sprint(showerror, ex))) end end end """ Filter by Category * `s` category name """ function filter_bycategory(s::String) try response = _getrequest("filter.php?c=$(HTTP.URIs.escapeuri(s))") if length(response) == 0 throw(CocktailDBException("Something went wrong: Empty response")) end json = JSON.parse(response) if json["drinks"] == nothing || length(json["drinks"]) == 0 throw(CocktailDBException("Something went wrong: Empty response")) end return json["drinks"] catch ex if isa(ex, CocktailDBException) rethrow(ex) else throw(CocktailDBException(sprint(showerror, ex))) end end end """ Filter by Glass * `s` glass name """ function filter_byglass(s::String) try response = _getrequest("filter.php?g=$(HTTP.URIs.escapeuri(s))") if length(response) == 0 throw(CocktailDBException("Something went wrong: Empty response")) end json = JSON.parse(response) if json["drinks"] == nothing || length(json["drinks"]) == 0 throw(CocktailDBException("Something went wrong: Empty response")) end return json["drinks"] catch ex if isa(ex, CocktailDBException) rethrow(ex) else throw(CocktailDBException(sprint(showerror, ex))) end end end """ List the categories filter """ function categoriesfilter() try response = _getrequest("list.php?c=list") if length(response) == 0 throw(CocktailDBException("Something went wrong: Empty response")) end json = JSON.parse(response) if json["drinks"] == nothing || length(json["drinks"]) == 0 throw(CocktailDBException("Something went wrong: Empty response")) end array = String[] for i in json["drinks"] push!(array, i["strCategory"]) end return array catch ex if isa(ex, CocktailDBException) rethrow(ex) else throw(CocktailDBException(sprint(showerror, ex))) end end end """ List the glasses filter """ function glassesfilter() try response = _getrequest("list.php?g=list") if length(response) == 0 throw(CocktailDBException("Something went wrong: Empty response")) end json = JSON.parse(response) if json["drinks"] == nothing || length(json["drinks"]) == 0 throw(CocktailDBException("Something went wrong: Empty response")) end array = String[] for i in json["drinks"] push!(array, i["strGlass"]) end return array catch ex if isa(ex, CocktailDBException) rethrow(ex) else throw(CocktailDBException(sprint(showerror, ex))) end end end """ List the ingredients filter """ function ingredientsfilter() try response = _getrequest("list.php?i=list") if length(response) == 0 throw(CocktailDBException("Something went wrong: Empty response")) end json = JSON.parse(response) if json["drinks"] == nothing || length(json["drinks"]) == 0 throw(CocktailDBException("Something went wrong: Empty response")) end array = String[] for i in json["drinks"] push!(array, i["strIngredient1"]) end return array catch ex if isa(ex, CocktailDBException) rethrow(ex) else throw(CocktailDBException(sprint(showerror, ex))) end end end """ List the alcoholic filter """ function alcoholicfilter() try response = _getrequest("list.php?a=list") if length(response) == 0 throw(CocktailDBException("Something went wrong: Empty response")) end json = JSON.parse(response) if json["drinks"] == nothing || length(json["drinks"]) == 0 throw(CocktailDBException("Something went wrong: Empty response")) end array = String[] for i in json["drinks"] push!(array, i["strAlcoholic"]) end return array catch ex if isa(ex, CocktailDBException) rethrow(ex) else throw(CocktailDBException(sprint(showerror, ex))) end end end end # CocktailDB
CocktailDB
https://github.com/thechampagne/CocktailDB.jl.git
[ "Apache-2.0" ]
1.0.0
b14d2173208683125949ec04e71004a3ddd7cadc
docs
1296
# CocktailDB.jl [![](https://img.shields.io/github/v/tag/thechampagne/CocktailDB.jl?label=version)](https://github.com/thechampagne/CocktailDB.jl/releases/latest) [![](https://img.shields.io/github/license/thechampagne/CocktailDB.jl)](https://github.com/thechampagne/CocktailDB.jl/blob/main/LICENSE) CocktailDB API client for **Julia**. ### Download **Julia pkg REPL** write `]` to enter the pkg repl ``` add CocktailDB ``` **Julia REPL** ``` using Pkg; Pkg.add("CocktailDB") ``` ### Example ```julia using CocktailDB for i in search("Vodka") println(i["strDrink"]) end ``` ### License CocktailDB API client is released under the [Apache License 2.0](https://github.com/thechampagne/CocktailDB.jl/blob/main/LICENSE). ``` Copyright 2022 XXIV Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ```
CocktailDB
https://github.com/thechampagne/CocktailDB.jl.git
[ "MIT" ]
0.5.1
d8dcac8d4c1876d6e23226145ac6e3ac8d4d0b85
code
678
using Documenter, SignalOperators, SignalBase DocMeta.setdocmeta!(SignalBase, :DocTestSetup, :(using SignalBase; using SignalBase.Units); recursive=true) makedocs(; modules=[SignalOperators, SignalBase], format=Documenter.HTML(), pages=[ "Home" => "index.md", "Manual" => "manual.md", "Custom Signals" => "custom_signal.md", "Custom Sinks" => "custom_sink.md", "Reference" => "reference.md", ], repo="https://github.com/haberdashPI/SignalOperators.jl/blob/{commit}{path}#L{line}", sitename="SignalOperators.jl", authors="David Little", ) deploydocs(; repo="github.com/haberdashPI/SignalOperators.jl", )
SignalOperators
https://github.com/haberdashPI/SignalOperators.jl.git
[ "MIT" ]
0.5.1
d8dcac8d4c1876d6e23226145ac6e3ac8d4d0b85
code
1414
using .AxisArrays function SignalTrait(::Type{<:AxisArray{T,N}}) where {T,N} if N ∈ [1,2] IsSignal{T,Float64,Int}() else error("Array must have 1 or 2 dimensions to be treated as a signal.") end end function framerate(x::AxisArray) times = axisvalues(AxisArrays.axes(x,Axis{:time}))[1] inHz(1/step(times)) end const WithAxes{Tu} = AxisArray{<:Any,<:Any,<:Any,Tu} const AxTimeD1 = Union{ WithAxes{<:Tuple{Axis{:time}}}, WithAxes{<:Tuple{Axis{:time},<:Any}}} const AxTimeD2 = WithAxes{<:Tuple{<:Any,Axis{:time}}} const AxTime = Union{AxTimeD1,AxTimeD2} nframes(x::AxisArray) = length(AxisArrays.axes(x,Axis{:time})) function nchannels(x::AxisArray) chdim = axisdim(x,Axis{:time}) == 1 ? 2 : 1 size(x,chdim) end sampletype(x::AxisArray) = eltype(x) function Signal(x::AxisArray,fs::Union{Missing,Number}=missing) if !isconsistent(fs,framerate(x)) error("Signal expected to have frame rate of $(inHz(fs)) Hz.") else x end end timeslice(x::AxTimeD1,indices) = view(x,indices,:) timeslice(x::AxTimeD2,indices) = PermutedDimsArray(view(x,:,indices),(2,1)) function initsink(x,::Type{<:AxisArray}) times = Axis{:time}(range(0s,length=nframes(x),step=float(s/framerate(x)))) channels = Axis{:channel}(1:nchannels(x)) AxisArray(initsink(x,Array),times,channels) end AxisArrays.AxisArray(x::AbstractSignal) = sink(x,AxisArray)
SignalOperators
https://github.com/haberdashPI/SignalOperators.jl.git
[ "MIT" ]
0.5.1
d8dcac8d4c1876d6e23226145ac6e3ac8d4d0b85
code
1338
using .DimensionalData using .DimensionalData: Time, @dim @dim SigChannel "Signal Channel" export SigChannel, Time function Signal(x::AbstractDimensionalArray,::IsSignal, fs::Union{Missing,Number}=missing) if !isconsistent(fs,framerate(x)) error("Signal expected to have frame rate of $fs Hz.") else x end end hastime(::Type{T}) where T <: Tuple = any(@λ(_ <: Time),T.types) function SignalTrait(::Type{<:AbstractDimensionalArray{T,N,Dim}}) where {T,N,Dim} if hastime(Dim) IsSignal{T,Float64,Int}() else error("Dimensional array must have a `Time` dimension.") end end nframes(x::AbstractDimensionalArray) = length(dims(x,Time)) sampletype(x::AbstractDimensionalArray) = eltype(x) AbstractVecOrMat nchannels(x::AbstractDimensionalArray) = prod(length,setdiff(dims(x),(dims(x,Time),))) framerate(x::AbstractDimensionalArray) = 1/inseconds(Float64,step(dims(x,Time).val)) timeslice(x::AbstractDimensionalArray,indices) = view(x,Time(indices)) function initsink(x,::Type{<:DimensionalArray}) times = Time(range(0s,length=nframes(x), step=1s/convert(Float64,framerate(x)))) channels = SigChannel(1:nchannels(x)) DimensionalArray(initsink(x,Array),(times,channels)) end DimensionalData.DimensionalArray(x::AbstractSignal) = sink(x,DimensionalArray)
SignalOperators
https://github.com/haberdashPI/SignalOperators.jl.git
[ "MIT" ]
0.5.1
d8dcac8d4c1876d6e23226145ac6e3ac8d4d0b85
code
231
using .FixedPointNumbers function Pad(x,p::typeof(one)) if isknowninf(nframes(x)) x elseif sampletype(x) <: Fixed x |> ToEltype(float(sampletype(x))) |> Pad(p) else PaddedSignal(x,p) end end
SignalOperators
https://github.com/haberdashPI/SignalOperators.jl.git
[ "MIT" ]
0.5.1
d8dcac8d4c1876d6e23226145ac6e3ac8d4d0b85
code
419
using .LibSndFile @info "Loading LibSndFile backend for SignalOperators." for fmt in LibSndFile.supported_formats if fmt != DataFormat{:WAV} @eval function load_signal(::$fmt,filename,fs=missing) Signal(load(filename),fs) end @eval function save_signal(::$fmt,filename,x) data,sr = sink(x,Tuple) save(filename,data,samplerate=sr) end end end
SignalOperators
https://github.com/haberdashPI/SignalOperators.jl.git
[ "MIT" ]
0.5.1
d8dcac8d4c1876d6e23226145ac6e3ac8d4d0b85
code
664
using .SampledSignals: SampleBuf function Signal(x::SampleBuf,fs::Union{Missing,Number}=missing) if !isconsistent(fs,framerate(x)) error("Signal expected to have frame rate of $(inHz(fs)) Hz.") else x end end SignalTrait(::Type{<:SampleBuf{T}}) where T = IsSignal{T,Float64,Int}() nframes(x::SampleBuf) = size(x,1) nchannels(x::SampleBuf) = size(x,2) framerate(x::SampleBuf) = SampledSignals.samplerate(x) sampletype(x::SampleBuf) = eltype(x) timeslice(x::SampleBuf,indices) = view(x,indices,:) initsink(x,::Type{<:SampleBuf}) = SampleBuf(initsink(x,Array),framerate(x)) SampledSignals.SampleBuf(x::AbstractSignal) = sink(x,SampleBuf)
SignalOperators
https://github.com/haberdashPI/SignalOperators.jl.git
[ "MIT" ]
0.5.1
d8dcac8d4c1876d6e23226145ac6e3ac8d4d0b85
code
1855
module SignalOperators using Requires, DSP, LambdaFn, Unitful, Compat, PrettyPrinting, FillArrays, FileIO using PrettyPrinting: best_fit, indent, list_layout, literal, pair_layout using SignalBase import SignalBase: nframes, nchannels, sampletype, framerate, duration using SignalBase.Units: FrameQuant export nframes, nchannels, sampletype, framerate, duration module Units using SignalBase.Units export kframes, frames, Hz, s, kHz, ms, dB, °, rad end using .Units @static if VERSION ≤ v"1.3" # patch in fix for clamp from Julia 1.3 clamp(x,lo,hi) = max(min(x,hi),lo) clamp(::Missing,l,h) = missing end include("inflen.jl") include("util.jl") # signal definition include("signal.jl") include("sink.jl") include("wrapping.jl") # types of signals include("numbers.jl") include("arrays.jl") include("functions.jl") # various operators (transforms one signal into another) include("cutting.jl") include("appending.jl") include("padding.jl") include("filters.jl") include("mapsignal.jl") include("reformatting.jl") include("ramps.jl") function __init__() # TODO: use @require for AxisArrays @require WAV = "8149f6b0-98f6-5db9-b78f-408fbbb8ef88" begin include("WAV.jl") end @require FixedPointNumbers = "53c48c17-4a7d-5ca2-90c5-79b7896eea93" begin include("FixedPointNumbers.jl") end @require AxisArrays = "39de3d68-74b9-583c-8d2d-e117c070f3a9" begin include("AxisArrays.jl") end # extensions @require SampledSignals = "bd7594eb-a658-542f-9e75-4c4d8908c167" begin include("SampledSignals.jl") end @require LibSndFile = "b13ce0c6-77b0-50c6-a2db-140568b8d1a5" begin include("LibSndFile.jl") end @require DimensionalData = "0703355e-b756-11e9-17c0-8b28908087d0" begin include("DimensionalData.jl") end end end # module
SignalOperators
https://github.com/haberdashPI/SignalOperators.jl.git
[ "MIT" ]
0.5.1
d8dcac8d4c1876d6e23226145ac6e3ac8d4d0b85
code
418
using .WAV function save_signal(::DataFormat{:WAV},filename,x) data,fs = sink(x,Tuple) wavwrite(data,filename,Fs=round(Int,fs)) end function load_signal(::DataFormat{:WAV},x,fs=missing) x,_fs = wavread(x) if !isconsistent(fs,_fs) error("Expected file $x to have framerate $fs. If you wish to convert", " the frame rate, you can use `ToFramerate`.") end Signal(x,_fs) end
SignalOperators
https://github.com/haberdashPI/SignalOperators.jl.git
[ "MIT" ]
0.5.1
d8dcac8d4c1876d6e23226145ac6e3ac8d4d0b85
code
3354
export Append, Prepend, append, prepend struct AppendSignals{Si,Sis,T,L} <: WrappedSignal{Si,T} signals::Sis len::L end SignalTrait(x::Type{T}) where {Si,T <: AppendSignals{Si}} = SignalTrait(x,SignalTrait(Si)) function SignalTrait(x::Type{<:AppendSignals{Si,Rst,T,L}}, ::IsSignal{T,Fs}) where {Si,Rst,T,L,Fs} IsSignal{T,Fs,L}() end child(x::AppendSignals) = x.signals[1] nframes_helper(x::AppendSignals) = x.len duration(x::AppendSignals) = sum(duration.(x.signals)) root(x::AppendSignals) = reduce(mergeroot,root.(x.signals)) """ Append(x,y,...) Append a series of signals, one after the other. """ Append(y) = x -> Append(x,y) """ Prepend(x,y,...) Prepend the series of signals: `Prepend(xs...)` is equivalent to `Append(reverse(xs)...)`. """ Prepend(x) = y -> Append(x,y) Prepend(x,y,rest...) = Append(reverse((x,y,rest...))...) """ append(x,y,...) Equivalent to `sink(Append(x,y,...))` ## See also [`Append`](@ref) """ append(xs...) = sink(Append(xs...)) """ prepend(x,y,...) Equivalent to `sink(Prepend(x,y,...))` ## See also [`Prepend`](@ref) """ prepend(xs...) = sink(Prepend(xs...)) function Append(xs...) xs = Uniform(xs,channels=true) if any(isknowninf ∘ nframes,xs[1:end-1]) error("Cannot Append to the end of an infinite signal") end El = promote_type(sampletype.(xs)...) xs = map(xs) do x if sampletype(x) != El ToEltype(x,El) else x end end len = any(isknowninf ∘ nframes,xs) ? inflen : sum(nframes,xs) AppendSignals{typeof(xs[1]),typeof(xs),El,typeof(len)}(xs, len) end ToFramerate(x::AppendSignals,s::IsSignal{<:Any,<:Number},c::ComputedSignal,fs;blocksize) = Append(ToFramerate.(x.signals,fs;blocksize=blocksize)...) ToFramerate(x::AppendSignals,s::IsSignal{<:Any,Missing},__ignore__,fs; blocksize) = Append(ToFramerate.(x.signals,fs;blocksize=blocksize)...) struct AppendBlock{S,C} signal::S child::C k::Int end child(x::AppendBlock) = x.child nframes(x::AppendBlock) = nframes(x.child) @Base.propagate_inbounds frame(::AppendSignals,x::AppendBlock,i) = frame(x.signal,x.child,i) function nextblock(x::AppendSignals,maxlen,skip) child = nextblock(x.signals[1],maxlen,skip) advancechild(x,maxlen,skip,1,child) end function nextblock(x::AppendSignals,maxlen,skip,block::AppendBlock) childblock = nextblock(x.signals[block.k],maxlen,skip,child(block)) advancechild(x,maxlen,skip,block.k,childblock) end function advancechild(x::AppendSignals,maxlen,skip,k,childblock) K = length(x.signals) while k < K && isnothing(childblock) k += 1 childblock = nextblock(x.signals[k],maxlen,skip) end if !isnothing(childblock) AppendBlock(x.signals[k],childblock,k) end end Base.show(io::IO,::MIME"text/plain",x::AppendSignals) = pprint(io,x) function PrettyPrinting.tile(x::AppendSignals) if length(x.signals) == 2 child = signaltile(x.signals[1]) operate = literal("Append(") * signaltile(x.signals[2]) * literal(")") | literal("Append(") / indent(4) * signaltile(x.signals[2]) / literal(")") tilepipe(child,operate) else list_layout(map(signaltile,x.signals),prefix="Append",sep=",",sep_brk=",") end end signaltile(x::AppendSignals) = PrettyPrinting.tile(x)
SignalOperators
https://github.com/haberdashPI/SignalOperators.jl.git
[ "MIT" ]
0.5.1
d8dcac8d4c1876d6e23226145ac6e3ac8d4d0b85
code
4982
export sink errordim() = error("To treat an array as a signal it must have 1 or 2 dimensions") # signals can be arrays with some metadata """ ## Arrays Any array can be interpreted as a signal. By default the first dimension is time, the second channels and their frame rate is a missing value. If you pass a non-missin gframerate, and the array currently has a missing frame rate a `Tuple` value will be returned (see "Array & Number" below). If you specify a non-missing frame rate to an array type with a missing frame rate the return value will be a Tuple (see Array & Number section below). Some array types change this default behavior, as follows. !!! warning Arrays of more than two dimensions are not currently supported. - [`AxisArrays`](https://github.com/JuliaArrays/AxisArrays.jl), if they have an axis labeled `time` and one or zero additional axes, can be treated as a signal. The time dimension must be represented using on object with the `step` function defined (e.g. any `AbstractRange` object). - [`SampleBuf`](https://github.com/JuliaAudio/SampledSignals.jl) objects are also properly interpreted as signals, as per the conventions employed for its package. - [`DimensionalArrays`](https://github.com/rafaqz/DimensionalData.jl) can be treated as signals if there is a `Time` dimension, which must be represented using an object with the `step` function defined (e.g. `AbstractRange`) and zero or one additional dimensions (treated as channels) """ function Signal(x::AbstractArray,fs::Union{Missing,Number}=missing) if ismissing(fs) if ndims(x) ∈ [1,2] return x else errordim() end else (x,Float64(inHz(fs))) end end ToFramerate(x::AbstractArray,::IsSignal{<:Any,Missing},::DataSignal,fs::Number;blocksize) = Signal(x,fs) ToFramerate(x::AbstractArray,s::IsSignal{<:Any,<:Number},::DataSignal,fs::Number;blocksize) = __ToFramerate__(x,s,fs,blocksize) function SignalTrait(::Type{<:AbstractArray{T,N}}) where{T,N} if N ∈ [1,2] IsSignal{T,Missing,Int}() else error("Array must have 1 or 2 dimensions to be treated as a signal.") end end nframes(x::AbstractVecOrMat) = size(x,1) nchannels(x::AbstractVecOrMat) = size(x,2) sampletype(x::AbstractVecOrMat) = eltype(x) framerate(x::AbstractVecOrMat) = missing timeslice(x::AbstractArray,indices) = view(x,indices,:) """ ## Array & Number A tuple of an array and a number can be interepted as a signal. The first dimension is time, the second channels, and the number determines the frame rate (in Hertz). """ function Signal(x::Tuple{<:AbstractArray,<:Number}, fs::Union{Missing,Number}=missing) if !isconsistent(fs,x[2]) error("Signal expected to have frame rate of $(inHz(fs)) Hz.") else x end end function SignalTrait(::Type{<:Tuple{<:AbstractArray{T,N},<:Number}}) where {T,N} if N ∈ [1,2] IsSignal{T,Float64,Int}() else error("Array must have 1 or 2 dimensions to be treated as a signal.") end end nframes(x::Tuple{<:AbstractVecOrMat,<:Number}) = size(x[1],1) nchannels(x::Tuple{<:AbstractVecOrMat,<:Number}) = size(x[1],2) framerate(x::Tuple{<:AbstractVecOrMat,<:Number}) = x[2] sampletype(x::Tuple{<:AbstractVecOrMat,<:Number}) = eltype(x[1]) timeslice(x::Tuple{<:AbstractVecOrMat,<:Number},indices) = view(x[1],indices,:) function nextblock(x::Tuple{<:AbstractVecOrMat,<:Number},maxlen,skip, block=ArrayBlock([],0)) nextblock(x[1],maxlen,skip,block) end """ ArrayBlock{A,S}(data::A,state::S) A straightforward implementation of blocks as an array and a custom state. The array allows a generic implementation of [`nframes`](@ref) and [`SignalOperators.frame`](@ref). The fields of this struct are `data` and `state`. [Custom signals](@ref custom_signals) can return an `ArrayBlock` from [`SignalOperators.nextblock`](@ref) to allow for fallback implementations of [`nframes`](@ref) and [`SignalOperators.frame`](@ref). """ struct ArrayBlock{A,S} data::A state::S end nframes(block::ArrayBlock) = size(block.data,1) @Base.propagate_inbounds frame(x,block::ArrayBlock,i) = view(block.data,i,:) function nextblock(x::AbstractArray,maxlen,skip,block = ArrayBlock([],0)) offset = block.state + nframes(block) if offset < nframes(x) len = min(maxlen,nframes(x)-offset) ArrayBlock(timeslice(x,offset .+ (1:len)),offset) end end function signaltile(x) io = IOBuffer() signalshow(io,x) literal(String(take!(io))) end function signalshow(io,x::AbstractArray,shownfs=false) p = parent(x) if p === x show(IOContext(io,:displaysize=>(1,30),:limit=>true), MIME("text/plain"),x) !shownfs && show_fs(io,x) else signalshow(io,p,true) show_fs(io,x) end end function signalshow(io,x::Tuple{<:AbstractArray,<:Number},shownfs=false) signalshow(io,x[1],true) show_fs(io,x) end
SignalOperators
https://github.com/haberdashPI/SignalOperators.jl.git
[ "MIT" ]
0.5.1
d8dcac8d4c1876d6e23226145ac6e3ac8d4d0b85
code
6371
export Until, After, until, after, Window, window ################################################################################ # cutting signals struct CutApply{Si,Tm,K,T} <: WrappedSignal{Si,T} signal::Si time::Tm end CutApply(signal::T,time,fn) where T = CutApply(signal,SignalTrait(T),time,fn) CutApply(signal::Si,::IsSignal{T},time::Tm,kind::K) where {Si,Tm,K,T} = CutApply{Si,Tm,K,T}(signal,time) CutMethod(x::CutApply) = CutMethod(x.signal) SignalTrait(::Type{T}) where {Si,T <: CutApply{Si}} = SignalTrait(T,SignalTrait(Si)) function SignalTrait(::Type{<:CutApply{Si,Tm,K}},::IsSignal{T,Fs,L}) where {Si,Tm,K,T,Fs,L} if Fs <: Missing IsSignal{T,Missing,Missing}() elseif K <: Val{:Until} IsSignal{T,Float64,Int}() elseif K <: Val{:After} IsSignal{T,Float64,L}() else error("Unexpected cut apply type $K") end end child(x::CutApply) = x.signal resolvelen(x::CutApply) = inframes(Int,maybeseconds(x.time),framerate(x)) const UntilApply{S,T} = CutApply{S,T,Val{:Until}} const AfterApply{S,T} = CutApply{S,T,Val{:After}} """ Window(x;from,to) Window(x;at,width) Extract a window of time from a signal by specifying either the start and stop point of the window (`from` and `to`) or the center and width (`at` and `wdith`) of the window. """ Window(;kwds...) = x -> Window(x;kwds...) function Window(x;at=nothing,width=nothing,from=nothing,to=nothing) if isnothing(at) != isnothing(width) || isnothing(from) != isnothing(to) || isnothing(at) == isnothing(from) error("`Window` must either use the two keywords `at` and `width` OR", "the two keywords `from` and `to`.") end after,until = isnothing(from) ? (at-width/2,width) : from,to-from x |> After(after) |> Until(until) end """ window(x;from,to) window(x;at,width) Equivalent to `sink(Window(...))`. ## See also [`Window`](@ref) """ window(x;kwds...) = sink(Window(x;kwds...)) """ Until(x,time) Create a signal of all frames of `x` up until and including `time`. """ Until(time) = x -> Until(x,time) Until(x,time) = CutApply(Signal(x),time,Val{:Until}()) """ until(x,time) Equivalent to `sink(Until(x,time))` ## See also [`Until`](@ref) """ until(x,time) = sink(Until(x,time)) """ After(x,time) Create a signal of all frames of `x` after `time`. !!! note If you use `frames` as the unit here, keep in mind that because this returns all frames *after* the given index, the result is effectively zero indexed: i.e. `all(sink(After(1:10,1frames)) .== 2:10)` """ After(time) = x -> After(x,time) After(x,time) = CutApply(Signal(x),time,Val{:After}()) """ after(x,time) Equivalent to `sink(After(x,time))` ## See also [`After`](@ref) """ after(x,time) = sink(After(x,time)) Base.show(io::IO,::MIME"text/plain",x::CutApply) = pprint(io,x) function PrettyPrinting.tile(x::CutApply) operate = literal(string(cutname(x),"(",(x.time),")")) tilepipe(signaltile(x.signal),operate) end signaltile(x::CutApply) = PrettyPrinting.tile(x) cutname(x::UntilApply) = "Until" cutname(x::AfterApply) = "After" nframes_helper(x::UntilApply) = min(nframes_helper(x.signal),max(0,resolvelen(x))) duration(x::UntilApply) = min(duration(x.signal),max(0,inseconds(Float64,maybeseconds(x.time),framerate(x)))) nframes_helper(x::AfterApply) = clamp(nframes_helper(x.signal) - resolvelen(x),0,nframes_helper(x.signal)) duration(x::AfterApply) = clamp(duration(x.signal) - inseconds(Float64,maybeseconds(x.time),framerate(x)),0,duration(x.signal)) EvalTrait(x::AfterApply) = DataSignal() stretchtime(t,scale) = t stretchtime(t::FrameQuant,scale::Number) = inframes(Int,t*scale)*frames function ToFramerate(x::UntilApply,s::IsSignal{<:Any,<:Number},c::ComputedSignal,fs;blocksize) t = stretchtime(x.time,fs/framerate(x)) CutApply(ToFramerate(child(x),fs;blocksize=blocksize),t, Val{:Until}()) end function ToFramerate(x::CutApply{<:Any,<:Any,K},s::IsSignal{<:Any,Missing}, __ignore__,fs; blocksize) where K t = stretchtime(x.time,fs/framerate(x)) CutApply(ToFramerate(child(x),fs;blocksize=blocksize),t,K()) end struct CutBlock{C} n::Int child::C end child(x::CutBlock) = x.child function nextblock(x::AfterApply,maxlen,skip) if resolvelen(x) == 0 childblock = nextblock(child(x),maxlen,false) CutBlock(0,childblock) else len = max(0,resolvelen(x)) childblock = nextblock(child(x),len,true) skipped = nframes(childblock) while !isnothing(childblock) && skipped < len childblock = nextblock(child(x),min(maxlen,len - skipped),true, childblock) isnothing(childblock) && break skipped += nframes(childblock) end if skipped < len io = IOBuffer() signalshow(io,child(x)) sig_string = String(take!(io)) error("Signal is too short to skip $(maybeseconds(x.time)): ", sig_string) end @assert skipped == len nextblock(x,maxlen,skip,CutBlock(0,childblock)) end end function nextblock(x::AfterApply,maxlen,skip,block::CutBlock) childblock = nextblock(child(x),maxlen,skip,child(block)) if !isnothing(childblock) CutBlock(0,childblock) end end nextblock(x::AfterApply,maxlen,skip,block::CutBlock{Nothing}) = nothing function timeslice(x::AfterApply,indices) from = clamp(resolvelen(x),0,nframes(x.signal))+1 to = nframes(x.signal) timeslice(x.signal,(from:to)[indices]) end initblock(x::UntilApply) = CutBlock(resolvelen(x),nothing) function nextblock(x::UntilApply,len,skip,block::CutBlock=initblock(x)) nextlen = block.n - nframes(block) if nextlen > 0 childblock = !isnothing(child(block)) ? nextblock(child(x),min(nextlen,len),skip,child(block)) : nextblock(child(x),min(nextlen,len),skip) if !isnothing(childblock) CutBlock(nextlen,childblock) end end end function timeslice(x::UntilApply,indices) to = clamp(resolvelen(x),0,nframes(x.signal)) timeslice(x.signal,(1:to)[indices]) end nframes(x::CutBlock) = nframes(child(x)) nframes(x::CutBlock{Nothing}) = 0 @Base.propagate_inbounds frame(x::CutApply,block::CutBlock,i) = frame(child(x),child(block),i)
SignalOperators
https://github.com/haberdashPI/SignalOperators.jl.git
[ "MIT" ]
0.5.1
d8dcac8d4c1876d6e23226145ac6e3ac8d4d0b85
code
27
# signals can be filenames
SignalOperators
https://github.com/haberdashPI/SignalOperators.jl.git
[ "MIT" ]
0.5.1
d8dcac8d4c1876d6e23226145ac6e3ac8d4d0b85
code
11031
export Normpower, Filt, normpower, filt, Lowpass, Bandpass, Bandstop, Highpass const default_blocksize = 2^12 struct FilterFn{D,M,A} design::D method::M args::A end (fn::FilterFn)(fs) = digitalfilter(fn.design(inHz.(fn.args)...,fs=inHz(fs)),fn.method) filterfn(design,method,args...) = FilterFn(design,method,args) function nyquist_check(x,hz) if !ismissing(framerate(x)) && inHz(hz) ≥ 0.5framerate(x) error("The frequency $(hz) cannot be represented at a sampling rate ", "of $(framerate(x)) Hz. Increase the frame rate or lower ", "the frequency.") end end """ Filt(x,::Type{<:FilterType},bounds...;method=Butterworth(order),order=5, blocksize=4096) Apply the given filter type (e.g. `Lowpass`) using the given method to design the filter coefficients. The type is specified as per the types from [`DSP`](https://github.com/JuliaDSP/DSP.jl) Filt(x,h;[blocksize=4096]) Apply the given digital filter `h` (from [`DSP`](https://github.com/JuliaDSP/DSP.jl)) to signal `x`. ## Blocksize Blocksize determines the size of the buffer used when computing intermediate values of the filter. It need not normally be adjusted, though changing it can alter how efficient filter application is. !!! note The non-lazy version of `Filt` is `filt` from the [`DSP`](https://github.com/JuliaDSP/DSP.jl) package. Proper methods have been defined such that it should be possible to call `filt` on a signal and get a signal back. The argument order for `filt` follows a different convention, with `x` coming after the filter specification. In contrast, `Filt` uses the convention of keeping `x` as the first argument to make piping possible. """ Filt(::Type{T},bounds...;kwds...) where T <: DSP.Filters.FilterType = x -> Filt(x,T,bounds...;kwds...) function Filt(x,::Type{F},bounds...;blocksize=default_blocksize,order=5, method=Butterworth(order)) where F <: DSP.Filters.FilterType nyquist_check.(Ref(x),bounds) Filt(x, filterfn(F,method,bounds...),blocksize=blocksize) end Filt(h;kwds...) = x -> Filt(x,h;kwds...) Filt(x,fn::Union{FilterFn,Function};kwds...) = Filt(x,SignalTrait(x),fn;kwds...) Filt(x,h;kwds...) = Filt(x,SignalTrait(x),RawFilterFn(h);kwds...) Filt(x,::Nothing,args...;kwds...) = Filt(Signal(x),args...;kwds...) function DSP.filt( b::Union{AbstractVector, Number}, a::Union{AbstractVector, Number}, x::AbstractSignal, si::AbstractArray{S} = DSP._zerosi(b,a,T)) where {T,S} R = promote_type(eltype(b), eltype(a), T, S) data = initsink(ToEltype(x,R),refineroot(root(x))) filt!(data,b,a,sink(x,Array),si) data end function DSP.filt!( data::AbstractArray, b::Union{AbstractVector, Number}, a::Union{AbstractVector, Number}, x::AbstractSignal, si::AbstractArray{S} = DSP._zerosi(b,a,T)) where {T,S} filt!(data,b,a,sink(x,Array),si) end struct RawFilterFn{H} h::H end (fn::RawFilterFn)(fs) = deepcopy(fn.h) resolve_filter(x) = DSP.Filters.DF2TFilter(x) resolve_filter(x::FIRFilter) = x Filt(x,s::IsSignal,fn;blocksize=default_blocksize,newfs=framerate(x)) = FilteredSignal(x,fn,blocksize,newfs) struct FilteredSignal{T,Si,Fn,Fs} <: WrappedSignal{Si,T} signal::Si fn::Fn blocksize::Int framerate::Fs end function FilteredSignal(signal::Si,fn::Fn,blocksize::Number,newfs::Fs) where {Si,Fn,Fs} T = float(sampletype(signal)) FilteredSignal{T,Si,Fn,Fs}(signal,fn,Int(blocksize),newfs) end SignalTrait(x::Type{T}) where {S,T <: FilteredSignal{<:Any,S}} = SignalTrait(x,SignalTrait(S)) SignalTrait(x::Type{<:FilteredSignal{T}},::IsSignal{<:Any,Fs,L}) where {T,Fs,L} = IsSignal{T,Fs,L}() child(x::FilteredSignal) = x.signal framerate(x::FilteredSignal) = x.framerate EvalTrait(x::FilteredSignal) = ComputedSignal() Base.show(io::IO,::MIME"text/plain",x::FilteredSignal) = pprint(io,x) function PrettyPrinting.tile(x::FilteredSignal) child = signaltile(x.signal) operate = literal(filterstring(x.fn)) tilepipe(child,operate) end signaltile(x::FilteredSignal) = PrettyPrinting.tile(x) function filterstring(fn::FilterFn) if isempty(fn.args) string("Filt(",designstring(fn.design),")") else string("Filt(",designstring(fn.design),",", join(string.(fn.args),","),")") end end filterstring(x) = string("Filt(",string(x),")") function filtertring(fn::RawFilterFn) io = IOBuffer() show(IOContext(io,:displaysize=>(1,30),:limit=>true), MIME("text/plain"),x) string("Filt(",String(take!(io)),")") end designstring(::Type{<:Lowpass}) = "Lowpass" designstring(::Type{<:Highpass}) = "Highpass" designstring(::Type{<:Bandpass}) = "Bandpass" designstring(::Type{<:Bandstop}) = "Bandstop" function ToFramerate(x::FilteredSignal,s::IsSignal{<:Any,<:Number},::ComputedSignal,fs; blocksize) # is this a non-resampling filter? if framerate(x) == framerate(x.signal) FilteredSignal(ToFramerate(x.signal,fs,blocksize=blocksize), x.fn,x.blocksize,fs) else ToFramerate(x.signal,s,DataSignal(),fs,blocksize=blocksize) end end function ToFramerate(x::FilteredSignal,::IsSignal{<:Any,Missing},__ignore__,fs; blocksize) FilteredSignal(ToFramerate(x.signal,fs,blocksize=blocksize), x.fn,x.blocksize,fs) end function nframes_helper(x::FilteredSignal) if ismissing(framerate(x.signal)) missing elseif framerate(x) == framerate(x.signal) nframes_helper(x.signal) else ceil(Int,nframes_helper(x.signal)*framerate(x)/framerate(x.signal)) end end struct FilterBlock{H,S,T,C} len::Int last_output_index::Int available_output::Int last_input_offset::Int last_output_offset::Int hs::Vector{H} input::Matrix{S} output::Matrix{T} child::C end child(x::FilterBlock) = x.child init_length(x::FilteredSignal,h) = min(nframes(x),x.blocksize) function init_length(x::FilteredSignal{<:Any,<:Any,<:ResamplerFn},h) n = trunc(Int,max(1,min(nframes(x),x.blocksize) / x.fn.ratio)) out = DSP.outputlength(h,n) if out > 0 n else n = trunc(Int,max(1,x.blocksize / x.fn.ratio)) out = DSP.outputlength(h,n) if out > 0 n else error("Blocksize is too small for this resampling filter.") end end end struct UndefChild end const undef_child = UndefChild() function FilterBlock(x::FilteredSignal) hs = [resolve_filter(x.fn(framerate(x))) for _ in 1:nchannels(x.signal)] len = init_length(x,hs[1]) input = Array{sampletype(x.signal)}(undef,len,nchannels(x)) output = Array{sampletype(x)}(undef,x.blocksize,nchannels(x)) FilterBlock(0,0,0, 0,0, hs,input,output,undef_child) end nframes(x::FilterBlock) = x.len @Base.propagate_inbounds frame(::FilteredSignal,x::FilterBlock,i) = view(x.output,i+x.last_output_index,:) inputlength(x,n) = n outputlength(x,n) = n inputlength(x::DSP.Filters.Filter,n) = DSP.inputlength(x,n) outputlength(x::DSP.Filters.Filter,n) = DSP.outputlength(x,n) function nextblock(x::FilteredSignal,maxlen,skip, block::FilterBlock=FilterBlock(x)) last_output_index = block.last_output_index + block.len if nframes_helper(x) == last_output_index return nothing end # check for leftover frames in the output buffer if last_output_index < block.available_output len = min(maxlen, block.available_output - last_output_index) FilterBlock(len, last_output_index, block.available_output, block.last_input_offset, block.last_output_offset, block.hs, block.input, block.output, block.child) # otherwise, generate more filtered output else @assert !isnothing(child(block)) psig = Pad(x.signal,zero) childblock = !isa(child(block), UndefChild) ? nextblock(psig,size(block.input,1),false,child(block)) : nextblock(psig,size(block.input,1),false) childblock = sink!(block.input,psig,SignalTrait(psig),childblock) last_input_offset = block.last_input_offset + size(block.input,1) # filter the input into the output buffer out_len = outputlength(block.hs[1],size(block.input,1)) if out_len ≤ 0 error("Unexpected non-positive output length!") end for ch in 1:size(block.output,2) filt!(view(block.output,1:out_len,ch),block.hs[ch], view(block.input,:,ch)) end last_output_offset = block.last_output_offset + out_len FilterBlock(min(maxlen,out_len), 0, out_len, last_input_offset, last_output_offset, block.hs, block.input, block.output, childblock) end end # TODO: create an online version of Normpower? # TODO: this should be excuted lazzily to allow for unkonwn framerates struct NormedSignal{Si,T} <: WrappedSignal{Si,T} signal::Si end child(x::NormedSignal) = x.signal nframes_helper(x::NormedSignal) = nframes_helper(x.signal) NormedSignal(x::Si) where Si = NormedSignal{Si,float(sampletype(x))}(x) SignalTrait(x::Type{T}) where {S,T <: NormedSignal{S}} = SignalTrait(x,SignalTrait(S)) SignalTrait(x::Type{<:NormedSignal{<:Any,T}},::IsSignal{<:Any,Fs,L}) where {T,Fs,L} = IsSignal{T,Fs,L}() function ToFramerate(x::NormedSignal,s::IsSignal{<:Any,<:Number}, ::ComputedSignal,fs;blocksize) NormedSignal(ToFramerate(x.signal,fs,blocksize=blocksize)) end function ToFramerate(x::NormedSignal,::IsSignal{<:Any,Missing}, __ignore__,fs;blocksize) NormedSignal(ToFramerate(x.signal,fs,blocksize=blocksize)) end struct NormedBlock{A} offset::Int len::Int vals::A end nframes(x::NormedBlock) = x.len @Base.propagate_inbounds frame(::NormedSignal,x::NormedBlock,i) = view(x.vals,i,:) function initblock(x::NormedSignal) if isknowninf(nframes(x)) error("Cannot normalize an infinite-length signal. Please ", "use `Until` to take a prefix of the signal") end vals = Array{sampletype(x)}(undef,nframes(x),nchannels(x)) sink!(vals, x.signal) rms = sqrt(mean(x -> float(x)^2,vals)) vals ./= rms S,V = typeof(x), typeof(vals) NormedBlock(0,0,vals) end function nextblock(x::NormedSignal,maxlen,skip,block::NormedBlock=initblock(x)) len = min(maxlen,nframes(x) - block.offset) NormedBlock(block.offset + block.len, len, block.vals) end """ Normpower(x) Return a signal with normalized power. That is, divide all frames by the root-mean-squared value of the entire signal. """ function Normpower(x) x = Signal(x) NormedSignal{typeof(x),float(sampletype(x))}(Signal(x)) end """ normpower(x) Equivalent to `sink(Normpower(x))` ## See also [`Normpower`](@ref) """ normpower(x) = sink(Normpower(x)) Base.show(io::IO,::MIME"text/plain",x::NormedSignal) = pprint(io,x) function PrettyPrinting.tile(x::NormedSignal) tilepipe(signaltile(x.signal),literal("Normpower")) end signaltile(x::NormedSignal) = PrettyPrinting.tile(x)
SignalOperators
https://github.com/haberdashPI/SignalOperators.jl.git
[ "MIT" ]
0.5.1
d8dcac8d4c1876d6e23226145ac6e3ac8d4d0b85
code
3889
using Random # helpers astuple(x::Number) = (x,) astuple(x::Tuple) = x astuple(x) = error("Function must return number or tuple of numbers.") ntuple_T(::Type{<:NTuple{<:Any,T}}) where T = T ntuple_N(::Type{<:NTuple{N}}) where N = N # signals can be generated by functions of time struct SignalFunction{Fn,Fr,El,T,Fs} <: AbstractSignal{El} fn::Fn first::El ω::Fr ϕ::Float64 framerate::Fs function SignalFunction(fn::Fn,first::El,ω::Fr,ϕ, sr::Fs=missing) where {Fn,El,Fr,Fs} new{Fn,Fr,El,ntuple_T(El),Fs}(fn,first,ω,ϕ,sr) end end SignalTrait(::Type{<:SignalFunction{<:Any,<:Any,<:Any,T,Fs}}) where {T,Fs} = IsSignal{T,Fs,InfiniteLength}() nchannels(x::SignalFunction) = ntuple_N(typeof(x.first)) nframes_helper(x::SignalFunction) = inflen framerate(x::SignalFunction) = x.framerate EvalTrait(x::SignalFunction) = ComputedSignal() function Base.show(io::IO, ::MIME"text/plain",x::SignalFunction) if ismissing(x.ω) && iszero(x.ϕ) write(io,string(x.fn)) show_fs(io,x) else write(io,"Signal(") write(io,string(x.fn)) !ismissing(x.ω) && write(io,",ω=",string(x.ω)) !iszero(x.ϕ) && write(io,",ϕ=",string(x.ϕ),"π") write(io,")") show_fs(io,x) end end struct FunctionBlock offset::Int len::Int end nextblock(x::SignalFunction,maxlen,skip) = FunctionBlock(0,maxlen) nextblock(x::SignalFunction,maxlen,skip,block::FunctionBlock) = FunctionBlock(block.offset + block.len,maxlen) nframes(block::FunctionBlock) = block.len frame(x,block::FunctionBlock,i) = x.fn(2π*(((i+block.offset)/x.framerate*x.ω + x.ϕ) % 1.0)) frame(x::SignalFunction{<:Any,Missing},block::FunctionBlock,i) = x.fn((i+block.offset)/x.framerate + x.ϕ) frame(x::SignalFunction{typeof(sin)},block::FunctionBlock,i) = sinpi(2*((i+block.offset)/x.framerate*x.ω + x.ϕ)) frame(x::SignalFunction{typeof(sin),Missing},block::FunctionBlock,i) = sinpi(2*((i+block.offset)/x.framerate + x.ϕ)) ToFramerate(x::SignalFunction,::IsSignal,::ComputedSignal,fs;blocksize) = SignalFunction(x.fn,x.first,x.ω,x.ϕ,coalesce(inHz(Float64,fs),x.framerate)) abstract type Functor end """ ## Functions Signal(fn,[framerate];[ω/frequency],[ϕ/phase]) Functions can define infinite length signals of known or unknown frame rate. The function `fn` can either return a number or, for multi-channel signals, a tuple of values. The input to `fn` is either a phase value or a time value. If a frequency is specified (using either the ω or frequency keyword), the input to `fn` will be a phase value in radians, ranging from 0 to 2π. If no frequency is specified the value passed to `fn` is the time in seconds. Specifying phase (by the ϕ or phase keyword) will first add that value to the input before passing it to `fn`. When frequency is specified, the phase is assumed to be in units of radians (but you can also pass degrees by using `°` or a unit of time (e.g. `s` for seconds)). When frequency is not specified the phase is assumed to be in units of seconds. """ function Signal(fn::Union{Function,Functor}, framerate::Union{Missing,Number}=missing; ω=missing,frequency=ω,ϕ=0,phase=ϕ) SignalFunction(fn,astuple(fn(0.0)),inHz(ω), ismissing(ω) ? inseconds(Float64,ϕ) : inradians(Float64,ϕ,ω)/2π, inHz(Float64,framerate)) end struct RandFn{R} rng::R end Base.string(x::RandFn) = "randn" """ If `fn == randn` no frequency or phase can be specified. Instead there is a single keyword argument, `rng`, which allows you to specify the random number generator; `rng` defaults to `Random.GLOBAL_RNG`. """ Signal(x::typeof(randn),fs::Union{Missing,Number}=missing;rng=Random.GLOBAL_RNG) = SignalFunction(RandFn(rng),(randn(rng),),missing,0.0,inHz(Float64,fs)) frame(x::SignalFunction{<:RandFn,Missing},block::FunctionBlock,i) = randn(x.fn.rng)
SignalOperators
https://github.com/haberdashPI/SignalOperators.jl.git
[ "MIT" ]
0.5.1
d8dcac8d4c1876d6e23226145ac6e3ac8d4d0b85
code
1468
export inflen abstract type Infinite end struct InfiniteLength <: Infinite end @doc """ inflen Represents an infinite length. Proper overloads are defined to handle arithmetic and ordering for the infinite value. """ const inflen = InfiniteLength() Base.show(io::IO,::MIME"text/plain",::InfiniteLength) = write(io,"inflen") Base.isinf(::Infinite) = true isknowninf(x) = isinf(x) isknowninf(::Missing) = false Base.ismissing(::Infinite) = false Base.:(+)(x::Infinite,::Number) = x Base.:(+)(::Number,x::Infinite) = x Base.:(-)(x::Infinite,::Number) = x Base.:(+)(x::Infinite,::Missing) = x Base.:(+)(::Missing,x::Infinite) = x Base.:(-)(x::Infinite,::Missing) = x Base.isless(::Number,::Infinite) = true Base.isless(::Infinite,::Number) = false Base.isless(::Infinite,::Missing) = false Base.isless(::Missing,::Infinite) = true Base.isless(::Infinite,::Infinite) = false Base.:(*)(x::Infinite,::Number) = x Base.:(*)(::Number,x::Infinite) = x Base.:(*)(x::Infinite,::Missing) = x Base.:(*)(::Missing,x::Infinite) = x Base.:(*)(x::Infinite,::Unitful.FreeUnits) = x Base.:(/)(x::Infinite,::Number) = x Base.:(/)(x::Infinite,::Missing) = x Base.:(/)(::Number,::Infinite) = 0 Base.:(/)(::Missing,::Infinite) = 0 Base.ceil(::T,x::Infinite) where T = x Base.ceil(x::Infinite) = x Base.floor(::T,x::Infinite) where T = x Base.floor(x::Infinite) = x Base.length(::Infinite) = 1 Base.iterate(x::Infinite) = x, nothing Base.iterate(::Infinite,::Nothing) = nothing
SignalOperators
https://github.com/haberdashPI/SignalOperators.jl.git
[ "MIT" ]
0.5.1
d8dcac8d4c1876d6e23226145ac6e3ac8d4d0b85
code
10864
using Unitful export OperateOn, Operate, Mix, Amplify, AddChannel, SelectChannel, operate, mix, amplify, addchannel, selectchannel, Extend ################################################################################ # binary operators struct MapSignal{Fn,N,C,T,Fs,El,Si,Pd,PSi} <: AbstractSignal{T} fn::Fn val::El signals::Si framerate::Fs padding::Pd padded_signals::PSi blocksize::Int bychannel::Bool end function MapSignal(fn::Fn,val::El,signals::Si, framerate::Fs,padding::Pd,blocksize::Int,bychannel::Bool) where {Fn,El,L,Si,Fs,Pd} T = El == NoValues ? Nothing : ntuple_T(El) N = El == NoValues ? 0 : length(signals) C = El == NoValues ? 1 : nchannels(signals[1]) padded_signals = Extend.(signals,Ref(padding)) PSi = typeof(padded_signals) MapSignal{Fn,N,C,T,Fs,El,Si,Pd,PSi}(fn,val,signals,framerate,padding, padded_signals,blocksize,bychannel) end struct NoValues end novalues = NoValues() SignalTrait(x::Type{<:MapSignal{<:Any,<:Any,<:Any,T,Fs,L}}) where {Fs,T,L} = IsSignal{T,Fs,L}() nchannels(x::MapSignal) = length(x.val) framerate(x::MapSignal) = x.framerate function duration(x::MapSignal) durs = duration.(x.padded_signals) Ns = nframes_helper.(x.padded_signals) durlen = ifelse.(isknowninf.(durs),Ns ./ framerate(x),durs) reduce(maxlen,durlen) end function ToFramerate(x::MapSignal,s::IsSignal{<:Any,<:Number}, c::ComputedSignal,fs;blocksize) if inHz(fs) < x.framerate # reframe input if we are downsampling OperateOn(cleanfn(x.fn),ToFramerate.(x.signals,fs,blocksize=blocksize)..., padding=x.padding,bychannel=x.bychannel, blocksize=x.blocksize) else # reframe output if we are upsampling ToFramerate(x,s,DataSignal(),fs,blocksize=blocksize) end end root(x::MapSignal) = reduce(mergeroot,root.(x.signals)) ToFramerate(x::MapSignal,::IsSignal{<:Any,Missing},__ignore__,fs;blocksize) = OperateOn(cleanfn(x.fn),ToFramerate.(x.signals,fs,blocksize=blocksize)..., padding=x.padding,bychannel=x.bychannel,blocksize=x.blocksize) """ OperateOn(fn,arguments...;padding=default_pad(fn),bychannel=false) Apply `fn` across the samples of the passed signals. The output length is the maximum length of the arguments. Shorter signals are extended using `Extend(x,padding)`. !!! note There is no piped version of `OperateOn`, use [`Operate`](@ref) to pipe. The shorter name is used to pipe because it is expected to be the more common use case. ## Channel-by-channel functions (default) When `bychannel == false` the function `fn` should treat each of its arguments as a single number and return a single number. This operation is broadcast across all channels of the input. It is expected to be a type stable function. The signals are first promoted to have the same sample rate and the same number of channels using [`Uniform`](@ref). ## Cross-channel functions When `bychannel=false`, rather than being applied to each channel seperately the function `fn` is applied to each frame, containing all channels. For example, for a two channel signal, the following would swap these two channels. ```julia x = rand(10,2) swapped = OperateOn(x,bychannel=false) do val val[2],val[1] end ``` The signals are first promoted to have the same sample rate, but the number of channels of each input signal remains unchanged. ## Padding Padding determines how frames past the end of shorter signals are reported. If you wish to change the padding for all signals you can set the value of the keyword argument `padding`. If you wish to specify distinct padding values for some of the inputs, you can first call [`Extend`](@ref) on those arguments. The default value for `padding` is determined by the `fn` passed. A fallback implementation of `default_pad` returns `zero`. The default value for the four basic arithmetic operators is their identity (`one` for `*` and `zero` for `+`). To define a new default for a specific function, just create a new method of `default_pad(fn)` ```julia myfun(x,y) = x + 2y SignalOperators.default_pad(::typeof(myfun)) = one sink(OperateOn(myfun,Until(5,2frames),Until(2,4frames))) == [9,9,5,5] ``` """ function OperateOn(fn,xs...; padding = default_pad(fn), bychannel = true, blocksize = default_blocksize) xs = Uniform(xs,channels=bychannel) fs = framerate(xs[1]) vals = testvalue.(xs) if bychannel fn = FnBr(fn) end MapSignal(fn,astuple(fn(vals...)),xs,fs,padding,blocksize, bychannel) end tolen(x::Extended) = x.len tolen(x::Number) = x tolen(x::NumberExtended) = 0 tolen(x::InfiniteLength) = inflen tolen(x::Missing) = missing maxlen(x,y) = max(tolen(x),tolen(y)) maxlen(x::NumberExtended,y::NumberExtended) = x nframes_helper(x::MapSignal) = reduce(maxlen,nframes_helper.(x.signals)) """ Operate(fn,rest...;padding,bychannel) Equivalent to ```julia (x) -> OperateOn(fn,x,rest...;padding=padding,bychannel=bychannel) ```` ## See also [`OperateOn`](@ref) """ Operate(fn,xs...;kwds...) = x -> OperateOn(fn,x,xs...;kwds...) """ operate(fn,args...;padding,bychannel) Equivalent to `sink(OperateOn(fn,args...;padding,bychannel))` ## See also [`OperateOn`](@ref) """ operate(fn,args...;kwds...) = sink(OperateOn(fn,args...;kwds...)) struct FnBr{Fn} fn::Fn end (fn::FnBr)(xs...) = fn.fn.(xs...) cleanfn(x) = x cleanfn(x::FnBr) = x.fn testvalue(x) = Tuple(zero(sampletype(x)) for _ in 1:nchannels(x)) const MAX_CHANNEL_STACK = 64 struct MapSignalBlock{Ch,C,O} len::Int offset::Int channels::Ch blocks::C offsets::O end nframes(x::MapSignalBlock) = x.len function prepare_channels(x::MapSignal) nch = ntuple_N(typeof(x.val)) (nch > MAX_CHANNEL_STACK && (x.fn isa FnBr)) ? Array{sampletype(x)}(undef,nch) : nothing end struct EmptyChildBlock end const emptychild = EmptyChildBlock() nframes(::EmptyChildBlock) = 0 nextblock(x,maxlen,skip,::EmptyChildBlock) = nextblock(x,maxlen,skip) initblock(x::MapSignal{<:Any,N}) where N = MapSignalBlock(0,0,prepare_channels(x),Tuple(emptychild for _ in 1:N), Tuple(zeros(N))) function nextblock(x::MapSignal{Fn,N,CN},maxlen,skip, block::MapSignalBlock=initblock(x)) where {Fn,N,CN} maxlen = min(maxlen,nframes(x) - (block.offset + block.len)) (maxlen == 0) && return nothing offsets = map(block.offsets, block.blocks) do offset, childblock offset += nframes(block) offset == nframes(childblock) ? 0 : offset end blocks = map(x.padded_signals,block.blocks,offsets) do sig, childblock, offset if offset == 0 nextblock(sig,maxlen,skip,childblock) else childblock end end # find the smallest child block length, and use that as the length for the # parent block length len = min(maxlen,minimum(nframes.(blocks) .- offsets)) Ch, C, O = typeof(block.channels), typeof(blocks), typeof(offsets) MapSignalBlock{Ch,C,O}(len,block.offset + block.len,block.channels,blocks, offsets) end trange(::Val{N}) where N = (trange(Val(N-1))...,N) trange(::Val{1}) = (1,) @Base.propagate_inbounds function frame(x::MapSignal{<:FnBr,N,CN}, block::MapSignalBlock{<:Nothing}, i::Int) where {N,CN} inputs = frame.(x.padded_signals,block.blocks,i .+ block.offsets) map(ch -> x.fn(map(@λ(_[ch]),inputs)...),trange(Val{CN}())) end @Base.propagate_inbounds function frame( x::MapSignal{<:FnBr,N,CN}, block::MapSignalBlock{<:Array}, i::Int) where {N,CN} inputs = frame.(x.padded_signals,block.blocks,i .+ block.offsets) map!(ch -> x.fn(map(@λ(_[ch]),inputs)...),block.channels,1:CN) end @Base.propagate_inbounds function frame( x::MapSignal{<:Any,N,CN}, block::MapSignalBlock{<:Nothing}, i::Int) where {N,CN} x.fn(frame.(x.padded_signals,block.blocks,i .+ block.offsets)...) end default_pad(x) = zero default_pad(::typeof(*)) = one default_pad(::typeof(/)) = one Base.show(io::IO,::MIME"text/plain",x::MapSignal) = pprint(io,x) function PrettyPrinting.tile(x::MapSignal) if length(x.signals) == 1 tilepipe(signaltile(x.signals[1]),literal(string(mapstring(x.fn),")"))) elseif length(x.signals) == 2 operate = literal(mapstring(x.fn)) * signaltile(x.signals[2]) * literal(")") | literal(mapstring(x.fn)) / indent(4) * signaltile(x.signals[2]) / literal(")") tilepipe(signaltile(x.signals[1]),operate) else list_layout(signaltile.(collect(x.signals)),par=(mapstring(x.fn),")")) end # TODO: report the padding and bychannel values if a they are non-default # values end signaltile(x::MapSignal) = PrettyPrinting.tile(x) mapstring(fn) = string("Operate(",fn,",") mapstring(x::FnBr) = string("Operate(",x.fn,",") """ Mix(xs...) Sum all signals together, using [`OperateOn`](@ref). Unlike `OperateOn`, `Mix` includes a piped version. """ Mix(y) = x -> Mix(x,y) Mix(xs...) = OperateOn(+,xs...) mapstring(::FnBr{<:typeof(+)}) = "Mix(" """ mix(xs...) Equivalent to `sink(Mix(xs...))` ## See also [`Mix`](@ref) """ mix(xs...) = sink(Mix(xs...)) """ Amplify(xs...) Find the product, on a per-frame basis, for all signals `xs` using [`OperateOn`](@ref). Unlike `OperateOn`, `Amplify` includes a piped version. """ Amplify(y) = x -> Amplify(x,y) Amplify(xs...) = OperateOn(*,xs...) mapstring(::FnBr{<:typeof(*)}) = "Amplify(" """ amplify(xs...) Equivalent to `sink(Amplify(xs...))` ## See also [`Amplify`](@ref) """ amplify(xs...) = sink(Amplify(xs...)) """ AddChannel(xs...) Concatenate the channels of all signals into one signal, using [`OperateOn`](@ref). This will result in a signal with `sum(nchannels,xs)` channels. Unlike `OperateOn`, `AddChannels` includes a piped version. """ AddChannel(y) = x -> AddChannel(x,y) AddChannel(xs...) = OperateOn(tuplecat,xs...;bychannel=false) tuplecat(a,b) = (a...,b...) tuplecat(a,b,c,rest...) = reduce(tuplecat,(a,b,c,rest...)) mapstring(::typeof(tuplecat)) = "AddChannel(" """ addchannel(xs...) Equivalent to `sink(AddChannel(xs...))`. ## See also [`AddChannel`](@ref) """ addchannel(xs...) = sink(AddChannel(xs...)) """ SelectChannel(x,n) Select channel `n` of signal `x`, as a single-channel signal, using [`OperateOn`](@ref). Unlike `OperateOn`, `SelectChannel` includes a piped version. """ SelectChannel(n) = x -> SelectChannel(x,n) SelectChannel(x,n) = OperateOn(GetChanFn(n),x,bychannel=false) struct GetChanFn; n::Int; end (fn::GetChanFn)(x) = x[fn.n] mapstring(fn::GetChanFn) = string("SelectChannel(",fn.n) """ selectchannel(xs...) Equivalent to `sink(SelectChannel(xs...))` ## See also [`SelectChannel`](@ref) """ selectchannel(xs...) = sink(SelectChannel(xs...))
SignalOperators
https://github.com/haberdashPI/SignalOperators.jl.git
[ "MIT" ]
0.5.1
d8dcac8d4c1876d6e23226145ac6e3ac8d4d0b85
code
1837
struct NumberSignal{T,S,DB} <: AbstractSignal{T} val::T framerate::S end struct NumberExtended <: Infinite end const numextend = NumberExtended() nframes_helper(x::NumberSignal) = numextend cleanextend(x::NumberExtended) = inflen NumberSignal(x::T,sr::Fs;dB=false) where {T,Fs} = NumberSignal{T,Fs,dB}(x,sr) function Base.show(io::IO, ::MIME"text/plain", x::NumberSignal{<:Any,<:Any,true}) show(io,MIME("text/plain"), uconvertrp(Units.dB, x.val)) show_fs(io,x) end function Base.show(io::IO, ::MIME"text/plain", x::NumberSignal{<:Any,<:Any,false}) show(io, MIME("text/plain"), x.val) show_fs(io,x) end """ ## Numbers Numbers can be treated as infinite length, constant signals of unknown frame rate. ### Example ```julia rand(10,2) |> Amplify(20dB) |> nframes == 10 ``` !!! note The length of numbers are treated specially when passed to [`OperateOn`](@ref): if there are other types of signal passed as input, the number signals are considered to be as long as the longest signal. ```julia nframes(Mix(1,2)) == inflen nframes(Mix(1,rand(10,2))) == 10 ``` """ Signal(val::Number,::Nothing,fs) = NumberSignal(val,inHz(Float64,fs)) Signal(val::Unitful.Gain{<:Any,<:Any,T},::Nothing,fs) where T = NumberSignal(float(T)(uconvertrp(NoUnits,val)),inHz(Float64,fs),dB=true) SignalTrait(::Type{<:NumberSignal{T,S}}) where {T,S} = IsSignal{T,S,InfiniteLength}() nchannels(x::NumberSignal) = 1 framerate(x::NumberSignal) = x.framerate ToFramerate(x::NumberSignal{<:Any,<:Any,DB},::IsSignal,::ComputedSignal, fs=missing;blocksize) where DB = NumberSignal(x.val,fs,dB=DB) struct NumberBlock len::Int end nextblock(x::NumberSignal,len,skip,block::NumberBlock=NumberBlock(0)) = NumberBlock(len) nframes(block::NumberBlock) = block.len frame(x,block::NumberBlock,i) = x.val
SignalOperators
https://github.com/haberdashPI/SignalOperators.jl.git
[ "MIT" ]
0.5.1
d8dcac8d4c1876d6e23226145ac6e3ac8d4d0b85
code
8148
export Pad, cycle, mirror, lastframe struct PaddedSignal{S,T,E} <: WrappedSignal{S,T} signal::S Pad::T end PaddedSignal(x::S,pad::T,extending=false) where {S,T} = PaddedSignal{S,T,extending}(x,pad) SignalTrait(x::Type{T}) where {S,T <: PaddedSignal{S}} = SignalTrait(x,SignalTrait(S)) SignalTrait(x::Type{<:PaddedSignal},::IsSignal{T,Fs}) where {T,Fs} = IsSignal{T,Fs,InfiniteLength}() nframes_helper(x::PaddedSignal) = inflen nframes_helper(x::PaddedSignal{<:Any,<:Any,true}) = Extended(nframes(x.signal)) duration(x::PaddedSignal) = inflen ToFramerate(x::PaddedSignal,s::IsSignal{<:Any,<:Number},c::ComputedSignal,fs;blocksize) = PaddedSignal(ToFramerate(x.signal,fs,blocksize=blocksize),x.Pad) ToFramerate(x::PaddedSignal,s::IsSignal{<:Any,Missing},__ignore__,fs; blocksize) = PaddedSignal(ToFramerate(x.signal,fs;blocksize=blocksize),x.Pad) """ Pad(x,padding) Create a signal that appends an infinite number of values, `padding`, to `x`. The value `padding` can be: - a number - a tuple or vector - a type function: a one argument function of the `sampletype` of `x` - a value function: a one argument function of the signal `x` for which `SignalOperators.valuefunction(padding) == true`. - an indexing function: a three argument function following the same type signature as `getindex` for two dimensional arrays. If the signal is already infinitely long (e.g. a previoulsy padded signal), `Pad` has no effect. If `padding` is a number it is used as the value for all samples past the end of `x`. If `padding` is a tuple or vector it is the value for all frames past the end of `x`. If `padding` is a type function it is passed the [`sampletype`](@ref) of the signal and the resulting value is used as the value for all frames past the end of `x`. Examples include `zero` and `one` If `padding` is a value function it is passed the signal `x` just before padding occurs during a call to `sink`; it should return a tuple of `sampletype(x)` values. The return value is repeated for all remaining frames of the signal. For example, [`lastframe`](@ref) is a value function. If `padding` is an indexing function (it accepts 3 arguments) it will be used to retrieve frames from the signal `x` assuming it conforms to the `AbstractArray` interface, with the first index being frames and the second channels. If the frame index goes past the bounds of the array, it should be transformed to an index within the range of that array. Note that such padding functions only work on signals that are also AbstractArray objects. You can always generate an array from a given signal by first passing it through `sink` or `sink!`. !!! info A indexing function will also work on a signal represented as a tuple of an array and number; it simply passed the array (leaving off the number). ## See also [`Extend`](@ref) [`cycle`](@ref) [`mirror`](@ref) [`lastframe`](@ref) [`valuefunction`](@ref) """ Pad(p) = x -> Pad(x,p) function Pad(x,p) x = Signal(x) isknowninf(nframes(x)) ? x : PaddedSignal(x,p) end """ Extend(x,padding) Behaves like [`Pad`](@ref), except when passed directly to [`OperateOn`](@ref); in that case, the signal `x` will only be padded up to the length of the longest signal input to `OperateOn` ## See Also [`OperateOn`](@ref) [`Pad`](@ref) """ Extend(p) = x -> Extend(x,p) function Extend(x,p) x = Signal(x) isknowninf(nframes(x)) ? x : PaddedSignal(x,p,true) end """ lastframe When passed as an argument to `Pad`, allows padding using the last frame of a signal. You cannot use this function in other contexts, and it will normally throw an error. See [`Pad`](@ref). """ lastframe(x) = error("Must be passed as argument to `Pad`.") """ SignalOperators.valuefunction(fn) Returns true if `fn` should be treated as a value function. See [`Pad`](@ref). If you wish your own function to be a value function, you can do this as follows. SignalOperators.valuefunction(::typeof(myfun)) = true """ valuefunction(x) = false valuefunction(::typeof(lastframe)) = true """ cycle(x,i,j) An indexing function which wraps index i using mod, thus repeating the signal when i > size(x,1). It can be passed as the second argument to [`Pad`](@ref). """ @Base.propagate_inbounds cycle(x,i,j) = x[(i-1)%end+1,j] """ mirror(x,i,j) An indexing function which mirrors the indices when i > size(x,1). This means that past the end of the signal x, the signal first repeats with frames in reverse order, then repeats in the original order, so on and so forth. It can be passed as the second argument to [`Pad`](@ref). """ @Base.propagate_inbounds function mirror(x,i,j) function helper(i,N) count,remainder = divrem(i-1,N) iseven(count) ? remainder+1 : N-remainder end x[helper(i,end),j] end usepad(x::PaddedSignal,block) = usepad(x,SignalTrait(x),block) usepad(x::PaddedSignal,s::IsSignal,block) = usepad(x,s,x.Pad,block) usepad(x::PaddedSignal,s::IsSignal{T},p::Number,block) where T = Fill(convert(T,p),nchannels(x.signal)) function usepad(x::PaddedSignal,s::IsSignal{T}, p::Union{Array,Tuple},block) where T map(x -> convert(T,x),p) end usepad(x::PaddedSignal,s::IsSignal,::typeof(lastframe),block) = frame(x,block,nframes(block)) usepad(x::PaddedSignal,s::IsSignal,::typeof(lastframe),::Nothing) = error("Signal is length zero; there is no last frame to pad with.") indexable(x::AbstractArray) = true indexable(x::Tuple{<:AbstractArray,<:Number}) = true indexable(x) = false indexing(x::AbstractArray) = x indexing(x::Tuple{<:AbstractArray,<:Number}) = x[1] function usepad(x::PaddedSignal,s::IsSignal{T},fn::Function,block) where T nargs = map(x -> x.nargs - 1, methods(fn).ms) if 3 ∈ nargs if indexable(x.signal) i -> fn(indexing(x.signal),i,:) else io = IOBuffer() show(io,MIME("text/plain"),child(x)) sig_string = String(take!(io)) error("Attemped to specify an indexing pad function for the ", "following signal, which is not known to support ", "`getindex`.\n",sig_string) end elseif 1 ∈ nargs if valuefunction(fn) fn(x.signal) else Fill(fn(T),nchannels(x.signal)) end else error("Pad function ($fn) must take 1 or 3 arguments. ", "Refer to `Pad` documentation.") end end child(x::PaddedSignal) = x.signal struct UsePad end const use_pad = UsePad() struct PadBlock{P,C} Pad::P child_or_len::C offset::Int end child(x::PadBlock{<:Nothing}) = x.child_or_len child(x::PadBlock) = nothing nframes(x::PadBlock{<:Nothing}) = nframes(child(x)) nframes(x::PadBlock) = x.child_or_len @Base.propagate_inbounds frame(x,block::PadBlock{<:Nothing},i) = frame(child(x),child(block),i) @Base.propagate_inbounds frame(x,block::PadBlock{<:Function},i) = block.Pad(i + block.offset) @Base.propagate_inbounds frame(x,block::PadBlock,i) = block.Pad function nextblock(x::PaddedSignal,maxlen,skip) block = nextblock(child(x),maxlen,skip) if isnothing(block) PadBlock(usepad(x,block),maxlen,0) else PadBlock(nothing,block,0) end end function nextblock(x::PaddedSignal,maxlen,skip,block::PadBlock{<:Nothing}) childblock = nextblock(child(x),maxlen,skip,child(block)) if isnothing(childblock) PadBlock(usepad(x,block),maxlen,nframes(block) + block.offset) else PadBlock(nothing,childblock,nframes(block) + block.offset) end end function nextblock(x::PaddedSignal,len,skip,block::PadBlock) PadBlock(block.Pad,len,nframes(block) + block.offset) end Base.show(io::IO,::MIME"text/plain",x::PaddedSignal) = pprint(io,x) function PrettyPrinting.tile(x::PaddedSignal) child = signaltile(x.signal) operate = literal(string("Pad(",x.Pad,")")) tilepipe(child,operate) end function PrettyPrinting.tile(x::PaddedSignal{<:Any,<:Any,true}) child = signaltile(x.signal) operate = literal(string("Extend(",x.Pad,")")) tilepipe(child,operate) end signaltile(x::PaddedSignal) = PrettyPrinting.tile(x)
SignalOperators
https://github.com/haberdashPI/SignalOperators.jl.git
[ "MIT" ]
0.5.1
d8dcac8d4c1876d6e23226145ac6e3ac8d4d0b85
code
8284
export RampOn, RampOff, Ramp, FadeTo, sinramp, rampon, rampoff, ramp, fadeto sinramp(x) = sinpi(0.5x) struct RampSignal{D,S,Tm,Fn,T} <: WrappedSignal{S,T} signal::S time::Tm fn::Fn end function RampSignal(D,signal::S,time::Tm,fn::Fn) where {S,Tm,Fn} T = sampletype(signal) RampSignal{D,S,Tm,Fn,float(T)}(signal,time,fn) end SignalTrait(::Type{T}) where {S,T <: RampSignal{<:Any,S}} = SignalTrait(T,SignalTrait(S)) function SignalTrait(::Type{<:RampSignal{D,S,Tm,Fn,T}},::IsSignal{<:Any,Fs,L}) where {D,S,Tm,Fn,T,Fs,L} IsSignal{T,Fs,L}() end child(x::RampSignal) = x.signal resolvelen(x::RampSignal) = max(1,inframes(Int,maybeseconds(x.time),framerate(x))) function ToFramerate( x::RampSignal{D}, s::IsSignal{<:Any,<:Number}, c::ComputedSignal,fs;blocksize) where D t = stretchtime(x.time,fs/framerate(x)) RampSignal(D,ToFramerate(child(x),fs;blocksize=blocksize),x.time,x.fn) end function ToFramerate( x::RampSignal{D}, s::IsSignal{<:Any,Missing}, __ignore__,fs; blocksize) where D RampSignal(D,ToFramerate(child(x),fs;blocksize=blocksize),x.time,x.fn) end struct RampBlock{Fn,T} Ramp::Fn marker::Int stop::Int offset::Int len::Int end RampBlock(x,fn,marker,stop,offset,len) = RampBlock{typeof(fn),float(sampletype(x))}(fn,marker,stop,offset,len) nframes(x::RampBlock) = x.len frame(x::RampSignal{:on},block::RampBlock{Nothing,T},i) where T = Fill(one(T),nchannels(x)) frame(x::RampSignal{:off},block::RampBlock{Nothing,T},i) where T = Fill(one(T),nchannels(x)) function frame(x::RampSignal{:on},block::RampBlock,i) ramplen = block.marker rampval = block.Ramp((i+block.offset-1) / ramplen) Fill(rampval,nchannels(x)) end function frame(x::RampSignal{:off},block::RampBlock,i) startramp = block.marker - block.offset stop = block.stop - block.offset rampval = block.stop > startramp ? rampval = block.Ramp(1-(i - startramp)/(stop - startramp)) : rampval = block.Ramp(1) Fill(rampval,nchannels(x)) end function nextblock(x::RampSignal{:on},maxlen,skip) ramplen = resolvelen(x) RampBlock(x,x.fn,ramplen,nframes(x),0,min(ramplen,maxlen)) end function nextblock(x::RampSignal{:off},maxlen,skip) rampstart = nframes(x) - resolvelen(x) RampBlock(x,nothing,rampstart,nframes(x),0,min(rampstart,maxlen)) end function nextblock(x::RampSignal{:on},maxlen,skip,block::RampBlock) offset = block.offset + block.len len = min(nframes(x) - offset,maxlen,block.marker - offset) if len == 0 len = min(nframes(x) - offset,maxlen) RampBlock(x,nothing,block.marker,block.stop,offset,len) else RampBlock(x,x.fn,block.marker,block.stop,offset,len) end end function nextblock(x::RampSignal{:on},maxlen,skip,block::RampBlock{Nothing}) offset = block.offset + block.len len = min(nframes(x) - offset,maxlen,block.stop - offset) if len > 0 RampBlock(x,nothing,block.marker,block.stop,offset,len) end end function nextblock(x::RampSignal{:off},maxlen,skip,block::RampBlock{Nothing}) offset = block.offset + block.len len = min(nframes(x) - offset,maxlen,block.marker - offset) if len == 0 len = min(nframes(x) - offset,maxlen) RampBlock(x,x.fn,block.marker,block.stop,offset,len) else RampBlock(x,nothing,block.marker,block.stop,offset,len) end end function nextblock(x::RampSignal{:off},maxlen,skip,block::RampBlock) offset = block.offset + block.len len = min(nframes(x) - offset,maxlen,block.stop - offset) if len > 0 RampBlock(x,x.fn,block.marker,block.stop,offset,len) end end function Base.show(io::IO, ::MIME"text/plain",x::RampSignal{D}) where D if x.fn isa typeof(sinramp) if D == :on write(io,"RampOnFn(",string(x.time),")") elseif D == :off write(io,"RampOffFn(",string(x.time),")") else error("Reached unexpected code") end else if D == :on write(io,"RampOnFn(",string(x.time),",",string(x.fn),")") elseif D == :off write(io,"RampOffFn(",string(x.time),",",string(x.fn),")") else error("Reached unexpected code") end end end """ RampOn(x,[len=10ms],[fn=x -> sinpi(0.5x)]) Ramp the onset of a signal, smoothly transitioning from 0 to full amplitude over the course of `len` seconds. The function determines the shape of the ramp and should be non-decreasing with a range of [0,1] over the domain [0,1]. It should map over the entire range: that is `fn(0) == 0` and `fn(1) == 1`. Both `len` and `fn` are optional arguments: either one or both can be specified, though `len` must occur before `fn` if present. """ RampOn(fun::Function) = RampOn(10ms,fun) RampOn(len::Number=10ms,fun::Function=sinramp) = x -> RampOn(x,len,fun) function RampOn(x,len::Number=10ms,fun::Function=sinramp) x = Signal(x) x |> Amplify(RampSignal(:on,x,len,fun)) end """ rampon(x,[len],[fn]) Equivalent to `sink(RampOn(x,[len],[fn]))` ## See also [`RampOn`](@ref) """ rampon(args...) = sink(RampOn(args...)) """ RampOff(x,[len=10ms],[fn=x -> sinpi(0.5x)]) Ramp the offset of a signal, smoothly transitioning from full amplitude to 0 amplitude over the course of `len` seconds. The function determines the shape of the ramp and should be non-decreasing with a range of [0,1] over the domain [0,1]. It should map over the entire range: that is `fn(0) == 0` and `fn(1) == 1`. Both `len` and `fn` are optional arguments: either one or both can be specified, though `len` must occur before `fn` if present. """ RampOff(fun::Function) = RampOff(10ms,fun) RampOff(len::Number=10ms,fun::Function=sinramp) = x -> RampOff(x,len,fun) function RampOff(x,len::Number=10ms,fun::Function=sinramp) x = Signal(x) x |> Amplify(RampSignal(:off,x,len,fun)) end """ rampoff(x,[len],[fn]) Equivalent to `sink(RampOff(x,[len],[fn]))` ## See also [`RampOff`](@ref) """ rampoff(args...) = sink(RampOff(args...)) """ Ramp(x,[len=10ms],[fn=x -> sinpi(0.5x)]) Ramp the onset and offset of a signal, smoothly transitioning from 0 to full amplitude over the course of `len` seconds at the start and from full to 0 amplitude over the course of `len` seconds. The function determines the shape of the ramp and should be non-decreasing with a range of [0,1] over the domain [0,1]. It should map over the entire range: that is `fn(0) == 0` and `fn(1) == 1`. Both `len` and `fn` are optional arguments: either one or both can be specified, though `len` must occur before `fn` if present. """ Ramp(fun::Function) = Ramp(10ms,fun) Ramp(len::Number=10ms,fun::Function=sinramp) = x -> Ramp(x,len,fun) function Ramp(x,len::Number=10ms,fun::Function=sinramp) x = Signal(x) x |> RampOn(len,fun) |> RampOff(len,fun) end """ ramp(x,[len],[fn]) Equivalent to `sink(Ramp(x,[len],[fn]))` ## See also [`Ramp`](@ref) """ ramp(args...) = sink(Ramp(args...)) """ FadeTo(x,y,[len=10ms],[fn=x->sinpi(0.5x)]) Append x to y, with a smooth transition lasting `len` seconds fading from `x` to `y` (so the total length is `duration(x) + duration(y) - len`). This fade is accomplished with a [`RampOff`](@ref) of `x` and a [`RampOn`](@ref) for `y`. `fn` should be non-decreasing with a range of [0,1] over the domain [0,1]. It should map over the entire range: that is `fn(0) == 0` and `fn(1) == 1`. Both `len` and `fn` are optional arguments: either one or both can be specified, though `len` must occur before `fn` if present. """ FadeTo(y,fun::Function) = FadeTo(y,10ms,fun) FadeTo(y,len::Number=10ms,fun::Function=sinramp) = x -> FadeTo(x,y,len,fun) function FadeTo(x,y,len::Number=10ms,fun::Function=sinramp) x,y = Uniform((x,y)) x = Signal(x) if ismissing(framerate(x)) error("Unknown frame rate is not supported by `FadeTo`.") end n = inframes(Int,maybeseconds(len),framerate(x)) silence = Signal(zero(sampletype(y))) |> Until((nframes(x) - n)*frames) x |> RampOff(len,fun) |> Mix( y |> RampOn(len,fun) |> Prepend(silence)) end """ fadeto(x,y,[len],[fn]) Equivalent to `sink(FadeTo(x,[len],[fn]))` ## See also [`FadeTo`](@ref) """ fadeto(args...) = sink(FadeTo(args...))
SignalOperators
https://github.com/haberdashPI/SignalOperators.jl.git
[ "MIT" ]
0.5.1
d8dcac8d4c1876d6e23226145ac6e3ac8d4d0b85
code
6406
using DSP: FIRFilter, resample_filter export ToFramerate, ToChannels, Format, Uniform, ToEltype, toframerate, tochannels, format, toeltype """ ToFramerate(x,fs;blocksize) Change the frame rate of `x` to the given frame rate `fs`. The underlying implementation depends on whether the input is a computed or data signal, as determined by [`EvalTrait`](@ref). Computed signals (e.g. `Signal(sin)`) are resampled exactly: the result is simply computed for more time points or fewer time points, so as to generate the appropriate number of frames. Data-based signals (`Signal(rand(50,2))`) are resampled using filtering (akin to `DSP.resample`). In this case you can use the keyword arugment `blocksize` to change the analysis window used. See [`Filt`](@ref) for more details. Setting `blocksize` for a computed signal will succeed, but different `blocksize` values have no effect on the underlying implementation. # Implementation You need only implement this function for [custom signals](@ref custom_signals) for particular scenarios, described below. ## Custom Computed Signals If you implement a new sigal type that is a computed signal, you must implement `ToFramerate` with the following type signature. ```julia function ToFramerate(x::MyCustomSignal,s::IsSignal{<:Any,<:Number}, c::ComputedSignal,framerate;blocksize) ## ... end ``` The result should be a new version of the computed signal with the given frame rate. ## Handling missing frame rates If you implement a new signal type that can handle missing frame rate values, you will need to implement the following version of `ToFramerate` so that a known frame rate can be applied to a signal with a missing frame rate. ```julia function ToFramerate(x::MyCustomSignal,s::IsSignal{<:Any,Missing}, evaltrait,framerate;blocksize) ## ... end ``` The result should be a new version of the signal with the specified frame rate. """ ToFramerate(fs;blocksize=default_blocksize) = x -> ToFramerate(x,fs;blocksize=blocksize) ToFramerate(x,fs;blocksize=default_blocksize) = ismissing(fs) && ismissing(framerate(x)) ? x : coalesce(inHz(fs) == framerate(x),false) ? x : ToFramerate(x,SignalTrait(x),EvalTrait(x),inHz(fs);blocksize=blocksize) ToFramerate(x,::Nothing,ev,fs;kwds...) = nosignal(x) """ toframerate(x,fs;blocksize) Equivalent to `sink(ToFramerate(x,fs;blocksize=blocksize))` ## See also [`ToFramerate`](@ref) """ toframerate(x,fs;blocksize=default_blocksize) = sink(ToFramerate(x,fs;blocksize=blocksize)) ToFramerate(x,::IsSignal,::DataSignal,::Missing;kwds...) = x ToFramerate(x,::IsSignal,::ComputedSignal,::Missing;kwds...) = x function ToFramerate(x,s::IsSignal{<:Any,<:Number},::DataSignal,fs::Number;blocksize) __ToFramerate__(x,s,fs,blocksize) end function (fn::ResamplerFn)(fs) h = resample_filter(fn.ratio) self = FIRFilter(h, fn.ratio) τ = timedelay(self) setphase!(self, τ) self end filterstring(fn::ResamplerFn) = string("ToFramerate(",inHz(fn.fs)*Hz,")") function maybe_rationalize(r) x = rationalize(r) # only use rational number if it is a small integer ratio if max(numerator(x),denominator(x)) ≤ 3 x else r end end function __ToFramerate__(x,s::IsSignal{T},fs,blocksize) where T # copied and modified from DSP's `resample` ratio = maybe_rationalize(fs/framerate(x)) init_fs = framerate(x) if ratio == 1 x else Filt(x,s,ResamplerFn(ratio,fs);blocksize=blocksize,newfs=fs) end end """ ToChannels(x,ch) Force a signal to have `ch` number of channels, by mixing channels together or broadcasting a single channel over multiple channels. """ ToChannels(ch) = x -> ToChannels(x,ch) ToChannels(x,ch) = ToChannels(x,SignalTrait(x),ch) ToChannels(x,::Nothing,ch) = ToChannels(Signal(x),ch) """ tochannels(x,ch) Equivalent to `sink(ToChannels(x,ch))` ## See also [`ToFramerate`](@ref) """ tochannels(x,ch) = sink(ToChannels(x,ch)) struct AsNChannels ch::Int end (fn::AsNChannels)(x) = tuple((x[1] for _ in 1:fn.ch)...) mapstring(fn::AsNChannels) = string("ToChannels(",fn.ch) struct As1Channel end (fn::As1Channel)(x) = sum(x) mapstring(fn::As1Channel) = string("ToChannels(1") function ToChannels(x,::IsSignal,ch) if ch == nchannels(x) x elseif ch == 1 OperateOn(As1Channel(),x,bychannel=false) elseif nchannels(x) == 1 OperateOn(AsNChannels(ch),x,bychannel=false) else error("No rule to convert signal with $(nchannels(x)) channels to", " a signal with $ch channels.") end end struct ToEltypeFn{El} end (fn::ToEltypeFn{El})(x) where El = convert(El,x) mapstring(fn::ToEltypeFn{El}) where El = string("ToEltype(",El,")") """ ToEltype(x,T) Converts individual samples in signal `x` to type `T`. """ ToEltype(::Type{T}) where T = x -> ToEltype(x,T) ToEltype(x,::Type{T}) where T = OperateOn(ToEltypeFn{T}(),x) """ toeltype(x,T) Equivalent to `sink(ToEltype(x,T))` ## See also [`ToEltype`](@ref) """ toeltype(x,::Type{T}) where T = sink(ToEltype(x,T)) """ Format(x,fs,ch) Efficiently convert both the framerate (`fs`) and channels `ch` of signal `x`. This selects an optimal ordering for `ToFramerate` and `ToChannels` to avoid redundant computations. """ function Format(x,fs,ch=nchannels(x)) if ch > 1 && nchannels(x) == 1 ToFramerate(x,fs) |> ToChannels(ch) else ToChannels(x,ch) |> ToFramerate(fs) end end """ format(x,fs,ch) Equivalent to `sink(Format(x,fs,ch))` ## See also [`Format`](@ref) """ format(x,fs,ch) = sink(Format(x,fs,ch)) """ Uniform(xs;channels=false) Promote the frame rate (and optionally the number of channels) to be the highest frame rate (and optionally highest channel count) of the iterable of signals `xs`. !!! note `Uniform` rarely needs to be called directly. It is called implicitly on all passed signals, within the body of operators such as [`OperateOn`](@ref). """ function Uniform(xs;channels=false) xs = Signal.(xs) if any(!ismissing,SignalOperators.framerate.(xs)) framerate = maximum(skipmissing(SignalOperators.framerate.(xs))) else framerate = missing end if !channels Format.(xs,framerate) else ch = maximum(skipmissing(nchannels.(xs))) Format.(xs,framerate,ch) end end
SignalOperators
https://github.com/haberdashPI/SignalOperators.jl.git
[ "MIT" ]
0.5.1
d8dcac8d4c1876d6e23226145ac6e3ac8d4d0b85
code
5642
export duration, nframes, framerate, nchannels, Signal, sink, sink!, sampletype using FileIO # Signals have a frame rate and some iterator element type # T, which is an NTuple{N,<:Number}. """ SignalOperators.IsSignal{T,Fs,L} Represents the format of a signal type with three type parameters: * `T` - The [`sampletype`](@ref) of the signal. * `Fs` - The type of the framerate. It should be either `Float64` or `Missing`. * `L` - The type of the length of the signal. It should be either `Infinity`, `Missing` or `Int`. """ struct IsSignal{T,Fs,L} end # not everything that's a signal belongs to this package, (hence the use of # trait-based dispatch), but everything that is in this package is a child of # `AbstractSignal`. This allows for easy dispatch to convert such signals to # another object type (e.g. Array or AxisArray). The value T refers to the # sampletype abstract type AbstractSignal{T} end nframes_helper(x) = nframes(x) nframes_helper(x::AbstractSignal) = error("Undefined `nframes_helper` for $(typeof(x))") nframes(x::AbstractSignal) = cleanextend(nframes_helper(x)) cleanextend(x) = x struct Extended{T} <:Infinite len::T end cleanextend(x::Extended) = inflen Base.:(/)(x::Extended,y::Number) = Extended(x.len / y) """ SiganlOperators.SignalTrait(::Type{T}) where T Returns either `nothing` if the type T should not be considered a signal (the default) or [`IsSignal`](@ref) to indicate the signal format for this signal. """ SignalTrait(x::T) where T = SignalTrait(T) SignalTrait(::Type{T}) where T = nothing sampletype(x::AbstractSignal) = sampletype(x,SignalTrait(x)) sampletype(x,::IsSignal{T}) where T = T IsSignal{T}(fs::Fs,len::L) where {T,Fs,L} = IsSignal{T,Fs,L}() function show_fs(io,x) if !get(io,:compact,false) && !ismissing(framerate(x)) write(io," (") show(io, MIME("text/plain"), framerate(x)) write(io," Hz)") end end signalshow(io,x) = show(io,MIME("text/plain"),x) function tilepipe(child,operate) single = child * literal(" |> ") * operate breaking = child * literal(" |>") / indent(4) * operate single | breaking end nosignal(::Nothing) = error("Value is not a signal: nothing") nosignal(x) = error("Value is not a signal: $x") isconsistent(fs,_fs) = ismissing(fs) || inHz(_fs) == inHz(fs) """ Signal(x,[framerate]) Coerce `x` to be a signal, optionally specifying its frame rate (usually in Hz). All signal operators first call `Signal(x)` for each argument. This means you only need to call `Signal` when you want to pass additional arguments to it. !!! note If you pipe `Signal` and pass a frame rate, you must specify the units of the frame rate (e.g. `x |> Signal(20Hz)`). A unitless number is always interpreted as a constant, infinite-length signal (see below). !!! note If you are implementing `Signal` for a [custom signal](@ref custom_signals), you will need to support the second argument of `Signal` by specifying `fs::Union{Number,Missing}=missing`, or equivalent. The type of objects that can be coerced to signals are as follows. """ Signal(;kwds...) = x -> Signal(x;kwds...) Signal(fs::Quantity;kwds...) = x -> Signal(x,fs;kwds...) Signal(x,fs::Union{Number,Missing}=missing) = Signal(x,SignalTrait(x),fs) Signal(x,::Nothing,fs) = error("Don't know how create a signal from $x.") function filetype(x) m = match(r".+\.([^\.]+$)",x) if isnothing(m) error("The file \"$x\" has no filetype.") else DataFormat{Symbol(uppercase(m[1]))}() end end """ ## Filenames A string with a filename ending with an appropriate filetype can be read in as a signal. You will need to call `import` or `using` on the backend for reading the file. Available backends include the following pacakges - [WAV](https://github.com/dancasimiro/WAV.jl) - [LibSndFile](https://github.com/JuliaAudio/LibSndFile.jl) """ Signal(x::String,fs::Union{Missing,Number}=missing) = load_signal(filetype(x),x,fs) function load_signal(::DataFormat{T},x,fs) where T error("No backend loaded for file of type $T. Refer to the ", "documentation of `Signal` to find a list of available backends.") end """ ## Existing signals Any existing signal just returns itself from `Signal`. If a frame rate is specified it will be set if `x` has an unknown frame rate. If it has a known frame rate and doesn't match `framerate(x)` an error will be thrown. If you want to change the frame rate of a signal use [`ToFramerate`](@ref). """ function Signal(x,::IsSignal,fs) if ismissing(framerate(x)) ToFramerate(x,fs) elseif !isconsistent(fs,framerate(x)) error("Signal expected to have frame rate of $(inHz(fs)) Hz.") else x end end # computed signals have to implement there own version of ToFramerate # (e.g. resample) to avoid inefficient computations struct DataSignal end struct ComputedSignal end """ SiganlOperators.EvalTrait(x) Indicates whether the signal is a `DataSignal` or `ComputedSignal`. Data signals represent frames concretely as a set of frames. Examples include arrays and numbers. Data signals generally return themselves, or some wrapper type when `sink` is called on them. Computed signals are any signal that invovles some intermediate computation, in which frames must be computued on the fly. Calls to `sink` on a computed signal results in some new, data signal. Most signals returned by a signal operator are computed signals. Computed signals have the extra responsibility of implementing [`ToFramerate`](@ref) """ EvalTrait(x) = DataSignal() EvalTrait(x::AbstractSignal) = ComputedSignal()
SignalOperators
https://github.com/haberdashPI/SignalOperators.jl.git
[ "MIT" ]
0.5.1
d8dcac8d4c1876d6e23226145ac6e3ac8d4d0b85
code
8040
""" sink(signal,[to]) Creates a given type of object (`to`) from a signal. By default the type of the resulting sink is determined by the type of the underlying data of the signal: e.g. if `x` is a `SampleBuf` object then `sink(Mix(x,2))` is also a `SampleBuf` object. If there is no underlying data (`Signal(sin) |> sink`) then a Tuple of an array and the framerate is returned. !!! warning Though `sink` often makes a copy of an input array, it is not guaranteed to do so. For instance `sink(Until(rand(10),5frames))` will simply take a view of the first 5 frames of the input. # Values for `to` ## Type If `to` is an array type (e.g. `Array`, `DimensionalArray`) the signal is written to a value of that type. If `to` is a `Tuple` the result is an `Array` of samples and a number indicating the sample rate in Hertz. """ sink() = x -> sink(x,refineroot(root(x))) sink(to::Type) = x -> sink(x,to) sink(x) = sink(x,refineroot(root(x))) root(x) = x refineroot(x::AbstractArray) = refineroot(x,SignalTrait(x)) refineroot(x,::Nothing) = Tuple{<:AbstractArray,<:Number} refineroot(x,::IsSignal{<:Any,Missing}) = Array refineroot(x,::IsSignal) = typeof(x) refineroot(x) = Tuple{<:AbstractArray,<:Number} refineroot(x::T) where T <: Tuple{<:AbstractArray,<:Number} = T mergepriority(x) = 0 mergepriority(x::Array) = 1 mergepriority(x::AbstractArray) = mergepriority(x,SignalTrait(x)) mergepriority(x::AbstractArray,::IsSignal) = 2 mergepriority(x::AbstractArray,::Nothing) = 0 function mergeroot(x,y) if mergepriority(x) ≥ mergepriority(y) return x else return y end end abstract type CutMethod end struct DataCut <: CutMethod end struct SinkCut <: CutMethod end CutMethod(x) = CutMethod(x,EvalTrait(x)) CutMethod(x,::DataSignal) = SinkCut() CutMethod(x::AbstractArray,::DataSignal) = DataCut() CutMethod(x::Tuple{<:AbstractArray,<:Number},::DataSignal) = DataCut() CutMethod(x,::ComputedSignal) = SinkCut() sink(x,::Type{T}) where T = sink(x,T,CutMethod(x)) function sink(x,::Type{T},::DataCut) where T x = process_sink_params(x) data = timeslice(x,:) if Base.typename(typeof(parent(data))) == Base.typename(T) data else # if the sink type is new, we have to copy the data # because it could be in a different memory layout result = initsink(x,T) sink!(result,x) result end end rawdata(x::SubArray) = x function rawdata(x::AbstractArray) p = parent(x) if p === x return p else return rawdata(p) end end function sink(x,::Type{T},::SinkCut) where T x = process_sink_params(x) result = initsink(x,T) sink!(result,x) result end function process_sink_params(x) x = Signal(x) ismissing(nframes(x)) && error("Unknown number of frames in signal.") isinf(nframes(x)) && error("Cannot store infinite signal.") x end """ SignalOperators.initsink(x,::Type{T}) Initialize an object of type T so that it can store all frames of signal `x`. If you wish an object to serve as a [custom sink](@ref custom_sinks) you can implement this method. You can use [`nchannels`](@ref) and [`sampletype`](@ref) of `x` to determine how to initialize the object for the first method, or you can just use `initsink(x,Array)` and wrap the return value with your custom type. """ function initsink(x,::Type{<:Array}) Array{sampletype(x),2}(undef,nframes(x),nchannels(x)) end initsink(x,::Type{<:Tuple}) = (Array{sampletype(x)}(undef,nframes(x),nchannels(x)),framerate(x)) initsink(x,::Type{<:Array},data) = data initsink(x,::Type{<:Tuple},data) = (data,framerate(x)) Base.Array(x::AbstractSignal) = sink(x,Array) Base.Tuple(x::AbstractSignal) = sink(x,Tuple) """ ## Filename If `to` is a string, it is assumed to describe the name of a file to which the signal will be written. You will need to call `import` or `using` on an appropriate backend for writing to the given file type. Available backends include the following pacakges - [WAV](https://codecov.io/gh/haberdashPI/SignalOperators.jl/src/master/src/WAV.jl) - [LibSndFile](https://github.com/JuliaAudio/LibSndFile.jl) """ sink(to::String) = x -> sink(x,to) function sink(x,to::String) x = process_sink_params(x) save_signal(filetype(to),to,x) end function save_signal(::Val{T},filename,x) where T error("No backend loaded for file of type $T. Refer to the documentation ", "of `Signal` to find a list of available backends.") end """ sink!(array,x) Write `size(array,1)` frames of signal `x` to `array`. """ sink!(result::Union{AbstractVector,AbstractMatrix}) = x -> sink!(result,x) sink!(result::Tuple{<:AbstractArray,<:Number},x) = (sink!(result[1],x), result[2]) function sink!(result::Union{AbstractVector,AbstractMatrix},x; framerate=SignalOperators.framerate(x)) if nframes(x) < size(result,1) error("Signal is too short to fill buffer of length $(size(result,1)).") end x = ToChannels(x,size(result,2)) sink!(result,x,SignalTrait(x)) result end """ SignalOperators.nextblock(x,maxlength,skip,[last_block]) Retrieve the next block of frames for signal `x`, or nothing, if no more blocks exist. Analogous to `Base.iterate`. The returned block must satisfy the interface for signal blocks as described in [custom signals](@ref custom_signals). ## Arugments - `x`: the signal to retriev blocks from - `maxlength`: The resulting block must have no more than `maxlength` frames, but may have fewer frames than that; it should not have zero frames unless `maxlength == 0`. - `skip`: If `skip == true`, it is guaranted that [`frame`](@ref) will never be called on the returned block. The value of `skip` is `true` when skipping blocks during a call to [`After`](@ref)). - `last_block` The fourth argument is optional. If included, the block that occurs after this block is returned. If it is left out, nextblock returns the very first block of the signal. """ function nextblock end """ SignalOperators.timeslice(x::AbstractArray,indices) Extract the slice of x with the given time indices. [Custom signals](@ref custom_signals) can implement this method if the signal is an `AbstractArray` allowing the use of a fallback implementation of [`SignalOperators.nextblock`](@ref). """ function timeslice end """ SignalOperators.frame(x,block,i) Retrieves the frame at index `i` of the given block of signal `x`. A frame is one or more channels of `sampletype(x)` values. The return value should be an indexable object (e.g. a number, tuple or array) of these channel values. This method should be implemented by blocks of [custom signals](@ref custom_signals). """ function frame end fold(x) = zip(x,Iterators.drop(x,1)) sink!(result,x,sig::IsSignal) = sink!(result,x,sig,nextblock(x,size(result,1),false)) function sink!(result,x,::IsSignal,block) written = 0 while !isnothing(block) && written < size(result,1) @assert nframes(block) > 0 sink_helper!(result,written,x,block) written += nframes(block) maxlen = size(result,1)-written if maxlen > 0 block = nextblock(x,maxlen,false,block) end end @assert written == nframes(result) block end """ SignalOperators.sink_helper!(result,written,x,block) Write the given `block` of frames from signal `x` to `result` given that a total of `written` frames have already been written to the result. This method should be fast: i.e. a for loop using @simd and @inbounds. It should call [`nframes`](@ref) and [`SignalOperators.frame`](@ref) on the block to write the frames. **Do not call `frame` more than once for each index of the block**. """ @noinline function sink_helper!(result,written,x,block) @inbounds @simd for i in 1:nframes(block) writesink!(result,i+written,frame(x,block,i)) end end @Base.propagate_inbounds function writesink!(result::AbstractArray,i,v) for ch in 1:length(v) result[i,ch] = v[ch] end v end
SignalOperators
https://github.com/haberdashPI/SignalOperators.jl.git
[ "MIT" ]
0.5.1
d8dcac8d4c1876d6e23226145ac6e3ac8d4d0b85
code
570
function dictgroup(by,col) x = by(first(col)) dict = Dict{typeof(x),Vector}() for c in col k = by(c) dict[k] = push!(get(dict,k,[]),c) end dict end struct ResamplerFn{T,Fs} ratio::T fs::Fs end SignalBase.inframes(::InfiniteLength,fs=missing) = inflen SignalBase.inframes(::Type{T}, ::InfiniteLength,fs=missing) where T = inflen SignalBase.inseconds(::InfiniteLength,r=missing) = inflen SignalBase.inseconds(::Type{T},::InfiniteLength,r=missing) where T = inflen maybeseconds(x::Number) = x*s maybeseconds(x::Quantity) = x
SignalOperators
https://github.com/haberdashPI/SignalOperators.jl.git
[ "MIT" ]
0.5.1
d8dcac8d4c1876d6e23226145ac6e3ac8d4d0b85
code
537
using Statistics abstract type WrappedSignal{C,T} <: AbstractSignal{T} end """ child(x) Retrieve the signal wrapped by x of type `WrappedSignal` """ function child end SignalTrait(::Type{<:WrappedSignal{C}}) where C = SignalTrait(C) EvalTrait(x::WrappedSignal) = EvalTrait(child(x)) nchannels(x::WrappedSignal) = nchannels(child(x)) framerate(x::WrappedSignal) = framerate(child(x)) nframes_helper(x::WrappedSignal) = nframes_helper(child(x)) duration(x::WrappedSignal) = duration(child(x)) root(x::WrappedSignal) = root(child(x))
SignalOperators
https://github.com/haberdashPI/SignalOperators.jl.git
[ "MIT" ]
0.5.1
d8dcac8d4c1876d6e23226145ac6e3ac8d4d0b85
code
3824
using BenchmarkTools using SignalOperators using SignalOperators.Units using Random using Traceur using Statistics using DSP # TODO: slow performance for my german_track project # TODO: test randn on its own # TODO: test randn combined with filter dB = SignalOperators.Units.dB suite = BenchmarkGroup() suite["signal"] = BenchmarkGroup() suite["baseline"] = BenchmarkGroup() rng = MersenneTwister(1983) # x = rand(rng,10^1,2) # y = rand(rng,10^1,2) x = rand(rng,10^4,2) y = rand(rng,10^4,2) Signal(x,1000Hz) |> ToFramerate(500Hz) |> sink suite["signal"]["sinking"] = @benchmarkable Signal(x,1000Hz) |> sink suite["baseline"]["sinking"] = @benchmarkable copy(x) suite["signal"]["functions"] = @benchmarkable begin Signal(sin,ω=10Hz) |> Until(10kframes) |> ToFramerate(1000Hz) |> sink end suite["baseline"]["functions"] = @benchmarkable begin sinpi.(range(0,step=1/1000,length=10^4) .* (2*10)) end suite["signal"]["numbers"] = @benchmarkable begin 1 |> Until(10_000frames) |> ToFramerate(1000Hz) |> sink end suite["baseline"]["numbers"] = @benchmarkable begin ones(10_000) end suite["signal"]["cutting"] = @benchmarkable begin x |> Until(5*10^3*frames) |> ToFramerate(1000Hz) |> sink end suite["baseline"]["cutting"] = @benchmarkable x[1:(5*10^3)] suite["signal"]["padding"] = @benchmarkable begin Pad($x,zero) |> Until(20_000frames) |> ToFramerate(1000Hz) |> sink end suite["baseline"]["padding"] = @benchmarkable vcat($x,zero($x)) suite["signal"]["appending"] = @benchmarkable sink(ToFramerate(Append($x,$y),1000Hz)) suite["baseline"]["appending"] = @benchmarkable vcat($x,$y) suite["signal"]["mapping"] = @benchmarkable sink(ToFramerate(Mix($x,$y),1000Hz)) suite["baseline"]["mapping"] = @benchmarkable $x .+ $y suite["signal"]["filtering"] = @benchmarkable begin Filt($x,Lowpass,20Hz) |> ToFramerate(1000Hz) |> sink end suite["baseline"]["filtering"] = @benchmarkable begin Filt($x,digitalfilter(Lowpass(20,fs=1000),Butterworth(5))) |> ToFramerate(1000Hz) |> sink end suite["signal"]["resampling"] = @benchmarkable begin Signal($x,1000Hz) |> ToFramerate(500Hz) |> sink end suite["baseline"]["resampling"] = @benchmarkable begin Filters.resample($(x[:,1]),1//2) Filters.resample($(x[:,2]),1//2) end suite["signal"]["resampling-irrational"] = @benchmarkable begin Signal($x,1000Hz) |> ToFramerate(π*1000Hz) |> sink end suite["baseline"]["resampling-irrational"] = @benchmarkable begin Filters.resample($(x[:,1]),Float64(π)) Filters.resample($(x[:,2]),Float64(π)) end # TODO: there still seems to be some per O(N) growth # in the # of allocs... is that just the call to `filter`? suite["signal"]["overall"] = @benchmarkable begin N = 10000 x_ = rand(2N,2) Mix(Signal(sin,ω=10Hz),x_) |> ToFramerate(2000Hz) |> Until(0.5*N*frames) |> After(0.25*N*frames) |> Append(sin) |> Until(N*frames) |> Filt(Lowpass,20Hz) |> Normpower |> Amplify(-10dB) |> sink end suite["baseline"]["overall"] = @benchmarkable begin N = 10000 x_ = rand(2N,2) y = sin.(2π.*10.0.*range(0,0.5,length=N)) y = hcat(y,y) z = sin.(range(0,0.5,length=N)) app = vcat(x_[1:N,:] .+ y,hcat(z,z)) f = filt(digitalfilter(Lowpass(20,fs=2000),Butterworth(5)),app) f ./= 2sqrt(mean(f.^2)) f end paramspath = joinpath(@__DIR__,"params.json") if isfile(paramspath) loadparams!(suite, BenchmarkTools.load(paramspath)[1], :evals) else tune!(suite) BenchmarkTools.save(paramspath, params(suite)) end result = run(suite) for case in keys(result["signal"]) m1 = minimum(result["signal"][case]) m2 = minimum(result["baseline"][case]) println("") println("$case: ratio to bare julia") println("----------------------------------------") display(ratio(m1,m2)) end
SignalOperators
https://github.com/haberdashPI/SignalOperators.jl.git
[ "MIT" ]
0.5.1
d8dcac8d4c1876d6e23226145ac6e3ac8d4d0b85
code
39578
using SignalOperators, SignalOperators.Units using SignalOperators: SignalTrait, IsSignal using LambdaFn using Test using Statistics using WAV using FixedPointNumbers using Unitful using ProgressMeter using BenchmarkTools using Pkg using DimensionalData using DimensionalData: X, Time using AxisArrays using DSP dB = SignalOperators.Units.dB test_wav = "test.wav" example_wav = "example.wav" example_ogg = "example.ogg" examples_wav = "examples.wav" test_files = [test_wav,example_wav,example_ogg,examples_wav] const total_test_groups = 33 progress = Progress(total_test_groups,desc="Running tests...") @testset "SignalOperators.jl" begin @testset "Function Currying" begin x = Signal(1,10Hz) @test isa(Mix(x),Function) @test isa(Amplify(x),Function) @test isa(Filt(Lowpass,200Hz,400Hz),Function) @test isa(Ramp(10ms),Function) @test isa(RampOn(10ms),Function) @test isa(RampOff(10ms),Function) @test isa(FadeTo(x),Function) @test isa(Amplify(20dB),Function) @test isa(AddChannel(x),Function) @test isa(SelectChannel(1),Function) @test isa(Filt(x -> x),Function) end next!(progress) @testset "Basic signals" begin @test SignalTrait(Signal([1,2,3,4],10Hz)) isa IsSignal @test SignalTrait(Signal(1:100,10Hz)) isa IsSignal @test SignalTrait(Signal(1,10Hz)) isa IsSignal @test SignalTrait(Signal(sin,10Hz)) isa IsSignal @test SignalTrait(Signal(randn,10Hz)) isa IsSignal @test_throws ErrorException Signal(x -> [1,2],5Hz) noise = Signal(randn,50Hz) |> Until(5s) @test isapprox(noise |> Array |> mean,0,atol=0.3) z = Signal(0,10Hz) |> Until(5s) @test all(z |> Array .== 0) o = Signal(1,10Hz) |> Until(5s) @test all(o |> Array .== 1) @test_throws ErrorException Signal(rand(5),10Hz) |> Signal(5Hz) @test_throws ErrorException Signal(randn,10Hz) |> Signal(5Hz) @test_throws ErrorException sink!(ones(10,2),ones(5,2)) end next!(progress) @testset "Array tuple output" begin x = rand(10,2) @test Signal(x,10Hz) == (x,10) @test sink(Mix(Signal(x,10Hz),1)) == (x.+1,10) end next!(progress) @testset "Function signals" begin @test sink(Signal(sin,ω=5Hz,ϕ=π) |> Until(1s) |> ToFramerate(20Hz)) == sink(Signal(sin,ω=5Hz,ϕ=π*rad) |> Until(1s) |> ToFramerate(20Hz)) @test sink(Signal(sin,ω=5Hz,ϕ=π) |> Until(1s) |> ToFramerate(20Hz)) == sink(Signal(sin,ω=5Hz,ϕ=100ms) |> Until(1s) |> ToFramerate(20Hz)) @test sink(Signal(sin,ω=5Hz,ϕ=π) |> Until(1s) |> ToFramerate(20Hz)) == sink(Signal(sin,ω=5Hz,ϕ=180°) |> Until(1s) |> ToFramerate(20Hz)) @test sink(Signal(sin,ϕ=1s) |> Until(1s) |> ToFramerate(20Hz),Array) ≈ sink(Signal(sin,ω=1Hz,ϕ=0) |> Until(1s) |> ToFramerate(20Hz),Array) @test_throws ErrorException Signal(sin,ϕ=2π*rad) |> Until(1s) |> ToFramerate(20Hz) |> sink() @test Signal(identity,ω=2Hz,10Hz) |> Until(10frames) |> sink |> duration == 1.0 end next!(progress) @testset "Sink to arrays" begin tone = Signal(sin,44.1kHz,ω=100Hz) |> Until(5s) |> Array @test tone[1] .< tone[110] # verify bump of sine wave end next!(progress) @testset "Files as signals" begin tone = Signal(range(0,1,length=4),10Hz) |> sink(test_wav) @test SignalTrait(Signal(test_wav)) isa IsSignal @test isapprox(sink(Signal(test_wav),Array), range(0,1,length=4),rtol=1e-6) end next!(progress) @testset "Change channel Count" begin tone = Signal(sin,22Hz,ω=10Hz) |> Until(5s) @test (tone |> ToChannels(2) |> nchannels) == 2 @test (tone |> ToChannels(1) |> nchannels) == 1 data = tone |> ToChannels(2) |> Array @test size(data,2) == 2 data2 = Signal(data,22Hz) |> ToChannels(1) |> Array @test all(data2 .== sum(data,dims=2)) @test size(data2,2) == 1 @test_throws ErrorException tone |> ToChannels(2) |> ToChannels(3) end next!(progress) @testset "Cutting Operators" begin for nch in 1:2 tone = Signal(sin,44.1kHz,ω=100Hz) |> ToChannels(nch) |> Until(5s) @test !isinf(nframes(tone)) @test nframes(tone) == 44100*5 @test after(rand(10,nch),0frames) |> nframes == 10 @test after(rand(10,nch) |> Amplify(2),0frames) |> nframes == 10 @test all(until(1:10,5frames) .== 1:5) @test length(until(1:10,-5frames)) == 0 x = rand(12,nch) cutarray = Signal(x,6Hz) |> After(0.5s) |> Until(1s) @test nframes(cutarray) == 6 cutarray = Signal(x,6Hz) |> Until(1s) |> After(0.5s) @test nframes(cutarray) == 3 cutarray = Signal(x,6Hz) |> Until(1s) |> Until(0.5s) cutarray2 = Signal(x,6Hz) |> Until(0.5s) @test sink(cutarray) == sink(cutarray2) @test_throws ErrorException Signal(1:10,5Hz) |> After(3s) |> sink x = rand(20,nch) @test window(x,from=0frames, to=5frames) == x[1:5,:] @test window(x,from=15frames, to=25frames) == x[16:20,:] x = rand(12,nch) |> Signal(6Hz) @test Append(Until(x,1s),After(x,1s)) |> nframes == 12 aftered = tone |> After(2s) @test nframes(aftered) == 44100*3 x = rand(12,nch) xv = until(x,5frames) xv .= 0 @test all(x[1:5] .== 0) x = rand(12,nch) xv = after(x,5frames) xv .= 0 @test all(x[6:12] .== 0) x = rand(12,nch) xv = window(x,from=2frames,to=5frames) xv .= 0 @test all(x[3:5] .== 0) x = rand(12,nch) y = copy(x) xv = x |> Amplify(2) |> Until(5frames) |> sink xv .= 0 @test x == y end end next!(progress) @testset "Padding" begin for nch in 1:3 tone = Signal(sin,22Hz,ω=10Hz) |> ToChannels(nch) |> Until(5s) |> Pad(zero) |> Until(7s) |> Array @test mean(abs.(tone[1:22*5,:])) > 0 @test mean(abs.(tone[22*5:22*7,:])) == 0 tone = Signal(sin,22Hz,ω=10Hz) |> Until(5s) |> Pad(0) |> Until(7s) |> Array @test mean(abs.(tone[1:22*5,:])) > 0 @test mean(abs.(tone[22*5:22*7,:])) == 0 @test rand(10,nch) |> Signal(10Hz) |> Pad(zero) |> After(15frames) |> Until(10frames) |> Array == zeros(10,nch) x = 5ones(5,nch) result = Pad(x,zero) |> Until(10frames) |> ToFramerate(10Hz) |> Array @test all(iszero,result[6:10,:]) x = rand(10,nch) result = Pad(Signal(x,10Hz),cycle) |> Until(30frames) |> Array @test result == vcat(x,x,x) result = Pad(Signal(x,10Hz),mirror) |> Until(30frames) |> Array @test result == vcat(x,reverse(x,dims=1),x) result = Pad(Signal(x,10Hz),lastframe) |> Until(15frames) |> Array @test all(result[11:end,:] .== result[10:10,:]) x = Signal(sin,10Hz) |> ToChannels(nch) |> Until(1s) @test_throws ErrorException Pad(x,cycle) |> Array @test_throws ErrorException Pad(x,mirror) |> Array result = Pad(x,lastframe) |> Until(15frames) |> Array @test all(result[11:end,:] .== result[10:10,:]) padv = rand(nch) result = Pad(x,padv) |> Until(15frames) |> Array @test all(result[11:end,:] .== padv') @test_throws ErrorException sin |> Until(1s) |> Pad(mirror) |> Until(2s) |> ToFramerate(10Hz) |> sink @test_throws ErrorException sin |> Until(1s) |> Pad((a,b) -> a+b) |> Until(2s) |> ToFramerate(10Hz) |> sink x = rand(10,nch) y = rand(15,nch) @test Extend(x,one) |> nframes == inflen @test Mix(Extend(x,one),y) |> nframes == 15 @test Mix(y,Extend(x,one)) |> nframes == 15 @test Mix(Pad(x,one),y) |> nframes |> isinf @test Mix(1,rand(10,2)) |> nframes == 10 @test Mix(1,Extend(rand(10,2),zero)) |> nframes == 10 @test Mix(rand(10,2),1) |> nframes == 10 @test Mix(Extend(rand(10,2),zero),1) |> nframes == 10 @test Mix(sin,1,rand(10,2)) |> nframes |> isinf @test Mix(1,sin,rand(10,2)) |> nframes |> isinf @test Mix(1,rand(10,2),sin) |> nframes |> isinf end end next!(progress) @testset "Appending" begin for nch in 1:2 a = Signal(sin,22Hz,ω=10Hz) |> ToChannels(nch) |> Until(5s) b = Signal(sin,22Hz,ω=5Hz) |> ToChannels(nch) |> Until(5s) tones = a |> Append(b) @test duration(tones) == 10 @test nframes(Array(tones)) == 220 @test all(Array(tones) .== vcat(Array(a),Array(b))) fs = 3 a = Signal(2,fs) |> ToChannels(nch) |> Until(2s) |> Append(Signal(3,fs)) |> Until(4s) @test nframes(Array(a)) == 4*fs x = Append( rand(10,nch) |> After(0.5s), Signal(sin) |> ToChannels(nch) |> Until(0.5s)) |> ToFramerate(20Hz) |> sink @test duration(x) ≈ 0.5 @test_throws ErrorException Append(sin,1:10) @test SignalTrait(Append(1:10,sin)) isa IsSignal end end next!(progress) @testset "Mixing" begin for nch in 1:2 a = Signal(sin,30Hz,ω=10Hz) |> ToChannels(2) |> Until(2s) b = Signal(sin,30Hz,ω=5Hz) |> ToChannels(2) |> Until(2s) complex = Mix(a,b) @test duration(complex) == 2 @test nframes(Array(complex)) == 60 end x = rand(20,SignalOperators.MAX_CHANNEL_STACK+1) y = rand(20,SignalOperators.MAX_CHANNEL_STACK+1) @test (Mix(x,y) |> ToFramerate(20Hz) |> Array) == (x .+ y) x = rand(20,2) result = OperateOn(reverse,x,bychannel=false) |> ToFramerate(20Hz) |> Array @test result == [x[:,2] x[:,1]] end next!(progress) @testset "Handling of padded Mix and Amplify" begin for nch in 1:2 fs = 3Hz a = Signal(2,fs) |> ToChannels(nch) |> Until(2s) |> Append(Signal(3,fs)) |> Until(4s) b = Signal(3,fs) |> ToChannels(nch) |> Until(3s) result = Mix(a,b) |> Array for ch in 1:nch @test all(result[:,ch] .== [ fill(2,3*2) .+ fill(3,3*2); fill(3,3*1) .+ fill(3,3*1); fill(3,3*1) ]) end result = Amplify(a,b) |> Array for ch in 1:nch @test all(result[:,ch] .== [ fill(2,3*2) .* fill(3,3*2); fill(3,3*1) .* fill(3,3*1); fill(3,3*1) ]) end end x = rand(10,2) y = rand(5,2) z = ones(10,4) Signal(x,10Hz) |> AddChannel(y) |> sink!(z) @test all(iszero,z[6:10,3:4]) end next!(progress) @testset "Filtering" begin for nch in 1:2 a = Signal(sin,100Hz,ω=10Hz) |> ToChannels(nch) |> Until(5s) b = Signal(sin,100Hz,ω=5Hz) |> ToChannels(nch) |> Until(5s) cmplx = Mix(a,b) high = cmplx |> Filt(Highpass,8Hz,method=Chebyshev1(5,1)) |> DimensionalArray low = cmplx |> Filt(Lowpass,6Hz,method=Butterworth(5)) |> DimensionalArray highlow = low |> Filt(Highpass,8Hz,method=Chebyshev1(5,1)) |> DimensionalArray bandp1 = cmplx |> Filt(Bandpass,20Hz,30Hz,method=Chebyshev1(5,1)) |> DimensionalArray bandp2 = cmplx |> Filt(Bandpass,2Hz,12Hz,method=Chebyshev1(5,1)) |> DimensionalArray bands1 = cmplx |> Filt(Bandstop,20Hz,30Hz,method=Chebyshev1(5,1)) |> DimensionalArray bands2 = cmplx |> Filt(Bandstop,2Hz,12Hz,method=Chebyshev1(5,1)) |> DimensionalArray @test_throws ErrorException Filt(a,Highpass,75Hz) @test_throws ErrorException Filt(a,Lowpass,75Hz) @test_throws ErrorException Filt(a,Bandpass,75Hz,80Hz) @test_throws ErrorException Filt(a,Bandstop,75Hz,80Hz) @test nframes(high) == 500 @test nframes(low) == 500 @test nframes(highlow) == 500 @test mean(high) < 0.01 @test mean(low) < 0.02 @test 10mean(abs,highlow) < mean(abs,low) @test 10mean(abs,highlow) < mean(abs,high) @test 10mean(abs,bandp1) < mean(abs,bandp2) @test 10mean(abs,bands2) < mean(abs,bands1) @test mean(abs,cmplx |> Amplify(10) |> Normpower |> Array) < mean(abs,cmplx |> Amplify(10) |> Array) # proper filtering of blocks high2_ = cmplx |> Filt(Highpass,8Hz,method=Chebyshev1(5,1),blocksize=100) @test high2_.blocksize == 100 high2 = high2_ |> Array @test high2 ≈ high # proper state of cut filtered signal (with blocks) high3 = cmplx |> Filt(Highpass,8Hz,method=Chebyshev1(5,1),blocksize=64) |> After(1s) @test Array(high3) ≈ Array(high)[101:500,:] # custom filter interface high4 = cmplx |> Filt(digitalfilter(Highpass(8,fs=framerate(cmplx)), Chebyshev1(5,1))) @test Array(high) == Array(high4) end end next!(progress) @testset "Ramps" begin for nch in 1:2 tone = Signal(sin,50Hz,ω=10Hz) |> ToChannels(nch) |> Until(5s) ramped = Signal(sin,50Hz,ω=10Hz) |> ToChannels(nch) |> Until(5s) |> Ramp(500ms) |> DimensionalArray @test mean(@λ(_^2),ramped[Time(Between(0s,500ms))]) < mean(@λ(_^2),ramped[Time(Between(500ms, 1s))]) @test mean(@λ(_^2),ramped[Time(Between(4.5s, 5s))]) < mean(@λ(_^2),ramped[Time(Between(4s, 4.5s))]) @test mean(abs,vec(ramped)) < mean(abs,vec(sink(tone,Array))) @test mean(ramped) < 1e-4 x = Signal(sin,22Hz,ω=10Hz) |> ToChannels(nch) |> Until(2s) y = Signal(sin,22Hz,ω=5Hz) |> ToChannels(nch) |> Until(2s) fading = FadeTo(x,y,500ms) result = Array(fading) @test nframes(fading) == ceil(Int,(2+2-0.5)*22) @test nframes(result) == nframes(fading) @test result[1:33,:] == Array(x)[1:33,:] @test result[44:end,:] == Array(y)[11:end,:] ramped2 = Signal(sin,500Hz,ω=20Hz,ϕ=π/2) |> ToChannels(nch) |> Until(100ms) |> Ramp(identity) |> Array @test mean(abs,ramped2[1:5,:]) < mean(abs,ramped2[6:10,:]) ramped2 = Signal(sin,500Hz,ω=20Hz,ϕ=π/2) |> ToChannels(nch) |> Until(100ms) |> RampOn(identity) |> Array @test mean(abs,ramped2[1:5,:]) < mean(abs,ramped2[6:10,:]) ramped2 = Signal(sin,500Hz,ω=20Hz,ϕ=π/2) |> ToChannels(nch) |> Until(100ms) |> RampOff(identity) |> Array @test mean(abs,ramped2[7:10,:]) < mean(abs,ramped2[1:6,:]) end end next!(progress) @testset "Resampling" begin for nch in 1:2 tone = Signal(sin,20Hz,ω=5Hz) |> ToChannels(nch) |> Until(5s) resamp = ToFramerate(tone,40Hz) @test framerate(resamp) == 40 @test nframes(resamp) == 2nframes(tone) downsamp = ToFramerate(tone,15Hz) @test framerate(downsamp) == 15 @test nframes(downsamp) == 0.75nframes(tone) @test Array(downsamp) |> nframes == nframes(downsamp) x = rand(10,nch) |> ToFramerate(2kHz) |> sink @test framerate(x) == 2000 toned = tone |> sink resamp = ToFramerate(toned,40Hz) @test framerate(resamp) == 40 resampled = resamp |> sink @test nframes(resampled) == 2nframes(tone) # test multi-block resampling resamp = ToFramerate(toned,40Hz,blocksize=64) resampled2 = sink(resamp) @test nframes(resampled) == 2nframes(tone) @test resampled[1] ≈ resampled2[1] # verify that the state of the filter is proplery reset # (so it should produce same output a second time) resampled3 = resamp |> sink @test resampled2[1] ≈ resampled3[1] padded = tone |> Pad(one) |> Until(7s) resamp = ToFramerate(padded,40Hz) @test nframes(resamp) == 7*40 @test resamp |> Array |> size == (7*40,nch) @test ToFramerate(tone,20Hz) === tone a = Signal(sin,48Hz,ω=10Hz) |> ToChannels(nch) |> Until(3s) b = Signal(sin,48Hz,ω=5Hz) |> ToChannels(nch) |> Until(3s) cmplx = Mix(a,b) high = cmplx |> Filt(Highpass,8Hz,method=Chebyshev1(5,1)) resamp_high = ToFramerate(high,24Hz) @test resamp_high |> Array |> size == (72,nch) resamp_twice = ToFramerate(toned,15Hz) |> ToFramerate(50Hz) @test resamp_twice isa SignalOperators.FilteredSignal @test SignalOperators.child(resamp_twice) === toned end end next!(progress) @testset "Automatic reformatting" begin a = Signal(sin,200Hz,ω=10Hz) |> ToChannels(2) |> Until(5s) b = Signal(sin,100Hz,ω=5Hz) |> Until(3s) complex = Mix(a,b) @test nchannels(complex) == 2 @test framerate(complex) == 200 @test nframes(complex |> sink) == 1000 more = Mix(a,b,1) @test nframes(more |> sink) == 1000 end next!(progress) @testset "Axis Arrays" begin x = AxisArray(ones(20),Axis{:time}(range(0s,2s,length=20))) proc = Signal(x) |> Ramp |> AxisArray @test size(proc,1) == size(x,1) @test proc isa AxisArray end next!(progress) @testset "Operating over empty signals" begin for nch in 1:2 tone = Signal(sin,200Hz,ω=10Hz) |> ToChannels(nch) |> Until(10frames) |> Until(0frames) @test nframes(tone) == 0 @test tone |> Operate(-) |> nframes == 0 end end next!(progress) @testset "Normpower" begin for nch in 1:2 tone = Signal(sin,10Hz,ω=2Hz) |> ToChannels(nch) |> Until(2s) |> Ramp |> Normpower @test all(sqrt.(mean(Array(tone).^2,dims=1)) .≈ 1) resamp = tone |> ToFramerate(20Hz) |> Array @test all(sqrt.(mean(Array(resamp).^2,dims=1)) .≈ 1) end end next!(progress) @testset "Handling of arrays/numbers" begin stereo = Signal([10.0.*(1:10) 5.0.*(1:10)],5Hz) @test stereo |> nchannels == 2 @test stereo |> sink(Array) |> size == (10,2) @test stereo |> Until(5frames) |> Array |> size == (5,2) @test stereo |> After(5frames) |> Array |> size == (5,2) for nch in 1:2 # Numbers tone = Signal(sin,200Hz,ω=10Hz) |> ToChannels(nch) |> Mix(1.5) |> Until(5s) |> Array @test all(tone .>= 0.5) x = Signal(1,5Hz) |> ToChannels(nch) |> Until(5s) |> Array @test x isa AbstractArray{Int} @test all(10 |> ToChannels(nch) |> Until(1s) |> ToFramerate(10Hz) |> Array .== 10) dc_off = Signal(1,10Hz) |> ToChannels(nch) |> Until(1s) |> Amplify(20dB) |> Array @test all(dc_off .== 10) dc_off = Signal(1,10Hz) |> ToChannels(nch) |> Until(1s) |> Amplify(40dB) |> Array @test all(dc_off .== 100) # AbstractArrays tone = Signal(sin,200Hz,ω=10Hz) |> ToChannels(nch) |> Until(10frames) |> Mix(10.0.*(1:10)) |> Array @test all(tone[1:10,:] .>= 10.0*(1:10)) x = Signal(10.0.*(1:10),5Hz) |> ToChannels(nch) |> Until(1s) |> Array @test x isa AbstractArray{Float64} @test Signal(10.0.*(1:10),5Hz) |> ToChannels(nch) |> SignalOperators.sampletype == Float64 end # AxisArray x = AxisArray(rand(2,10),Axis{:channel}(1:2), Axis{:time}(range(0,1,length=10))) @test x |> Until(500ms) |> Array |> size == (4,2) @test x |> Until(500ms) |> sink |> size == (4,2) # poorly shaped arrays @test_throws ErrorException Signal(rand(2,2,2)) end next!(progress) @testset "Handling of infinite signals" begin for nch in 1:2 tone = Signal(sin,200Hz,ω=10Hz) |> ToChannels(nch) |> Until(10frames) |> After(5frames) |> After(2frames) @test nframes(tone) == 3 @test size(Array(tone)) == (3,nch) tone = Signal(sin,200Hz,ω=10Hz) |> ToChannels(nch) |> After(5frames) |> Until(5frames) @test nframes(tone) == 5 @test size(Array(tone)) == (5,nch) @test Array(tone)[1] > 0.9 tone = Signal(sin,200Hz,ω=10Hz) |> ToChannels(nch) |> Until(10frames) |> After(5frames) @test nframes(tone) == 5 @test size(Array(tone)) == (5,nch) @test Array(tone)[1] > 0.9 @test_throws ErrorException Signal(sin,200Hz) |> Normpower |> Until(1s) |> Array @test_throws ErrorException Signal(sin,200Hz) |> ToChannels(nch) |> Array end end next!(progress) @testset "Test that non-signals correctly error" begin x = r"nonsignal" @test_throws MethodError x |> framerate @test_throws MethodError x |> ToFramerate(10Hz) |> sink @test_throws MethodError x |> duration @test_throws ErrorException x |> Until(5s) @test_throws ErrorException x |> After(2s) @test_throws MethodError x |> nframes @test_throws MethodError x |> nchannels @test_throws ErrorException x |> Pad(zero) @test_throws MethodError x |> Filt(Lowpass,3Hz) @test_throws ErrorException x |> Normpower @test_throws ErrorException x |> SelectChannel(1) @test_throws ErrorException x |> Ramp x = rand(5,2) y = r"nonsignal" @test_throws ErrorException x |> Append(y) @test_throws ErrorException x |> Mix(y) @test_throws ErrorException x |> AddChannel(y) @test_throws ErrorException x |> FadeTo(y) end next!(progress) @testset "Handle of frame units" begin x = Signal(rand(100,2),10Hz) y = Signal(rand(50,2),10Hz) @test x |> Until(30frames) |> sink |> nframes == 30 @test x |> After(30frames) |> sink |> nframes == 70 @test x |> Append(y) |> After(20frames) |> sink |> nframes == 130 @test x |> Append(y) |> Until(130frames) |> sink |> nframes == 130 @test x |> Pad(zero) |> Until(150frames) |> sink |> nframes == 150 @test x |> Ramp(10frames) |> sink |> nframes == 100 @test x |> FadeTo(y,10frames) |> sink |> nframes > 100 end next!(progress) function showstring(x) io = IOBuffer() show(io,MIME("text/plain"),x) String(take!(io)) end @testset "Handle printing" begin x = Signal(rand(100,2),10Hz) y = Signal(rand(50,2),10Hz) @test Signal(sin,22Hz,ω=10Hz,ϕ=π/4) |> showstring == "Signal(sin,ω=10,ϕ=0.125π) (22.0 Hz)" @test Signal(2dB,10Hz) |> showstring == "2.0000000000000004 dB (10.0 Hz)" @test x |> Until(5s) |> showstring == "100×2 $(Array{Float64,2}): … (10.0 Hz) |> Until(5 s)" @test x |> After(2s) |> showstring == "100×2 $(Array{Float64,2}): … (10.0 Hz) |> After(2 s)" # the below is a bit of a hack, but it works for now... # this might break on future 1.x julia versions if VERSION <= v"1.5.99" @test x |> Append(y) |> showstring == "100×2 $(Array{Float64,2}): … (10.0 Hz) |>\n Append(50×2 $(Array{Float64,2}): … (10.0 Hz))" else @test x |> Append(y) |> showstring == "100×2 $(Array{Float64,2}): … (10.0 Hz) |> Append(50×2 $(Array{Float64,2}): … (10.0 Hz))" end @test x |> Pad(zero) |> showstring == "100×2 $(Array{Float64,2}): … (10.0 Hz) |> Pad(zero)" @test x |> Extend(zero) |> showstring == "100×2 $(Array{Float64,2}): … (10.0 Hz) |> Extend(zero)" @test x |> Filt(Lowpass,3Hz) |> showstring == "100×2 $(Array{Float64,2}): … (10.0 Hz) |> Filt(Lowpass,3 Hz)" @test x |> Normpower |> showstring == "100×2 $(Array{Float64,2}): … (10.0 Hz) |> Normpower" @test x |> Mix(y) |> showstring == "100×2 $(Array{Float64,2}): … (10.0 Hz) |> Mix(50×2 $(Array{Float64,2}): … (10.0 Hz))" @test x |> Amplify(y) |> showstring == "100×2 $(Array{Float64,2}): … (10.0 Hz) |>\n Amplify(50×2 $(Array{Float64,2}): … (10.0 Hz))" @test x |> AddChannel(y) |> showstring == "100×2 $(Array{Float64,2}): … (10.0 Hz) |>\n AddChannel(50×2 $(Array{Float64,2}): … (10.0 Hz))" @test x |> SelectChannel(1) |> showstring == "100×2 $(Array{Float64,2}): … (10.0 Hz) |> SelectChannel(1)" @test x |> Operate(identity) |> showstring == "100×2 $(Array{Float64,2}): … (10.0 Hz) |> Operate(identity,)" @test x |> ToFramerate(20Hz) |> showstring == "100×2 $(Array{Float64,2}): … (10.0 Hz) |> ToFramerate(20 Hz)" @test x |> ToChannels(1) |> showstring == "100×2 $(Array{Float64,2}): … (10.0 Hz) |> ToChannels(1)" @test ( x[1][:,1],x[2] ) |> ToChannels(2) |> showstring == "100-element $(Array{Float64,1}): … (10.0 Hz) |> ToChannels(2)" @test startswith(rand(5,2) |> Filt(fs -> Highpass(10,20,fs=fs)) |> showstring, "5×2 $(Array{Float64,2}): … |> Filt(") @test x |> Ramp |> showstring == "100×2 $(Array{Float64,2}): … (10.0 Hz) |>\n Amplify(RampOnFn(10 ms)) |> Amplify(RampOffFn(10 ms))" @test x |> Ramp(identity) |> showstring == "100×2 $(Array{Float64,2}): … (10.0 Hz) |>\n Amplify(RampOnFn(10 ms,identity)) |> Amplify(RampOffFn(10 ms,identity))" @test x |> FadeTo(y) |> showstring == "100×2 $(Array{Float64,2}): … (10.0 Hz) |> Amplify(RampOffFn(10 ms)) |>\n Mix(0.0 (10.0 Hz) |> Until(100 frames) |>\n ToChannels(2) |> Append(50×2 $(Array{Float64,2}): … (10.0 Hz) |>\n Amplify(RampOnFn(10 ms))))" end next!(progress) @testset "Non-lazy operators" begin x = Signal(rand(10,2),10Hz) |> sink(DimensionalArray) y = Signal(rand(10,2),10Hz) |> sink(DimensionalArray) @test until(x,5frames) |> size == (5,2) @test after(x,5frames) |> size == (5,2) @test append(x,y) |> size == (20,2) @test prepend(x,y) |> size == (20,2) @test operate(+,x,y) == x.+y @test mix(x,y) == x.+y @test amplify(x,y) == x.*y @test addchannel(x,y) |> size == (10,4) @test all(selectchannel(x,1) .== x[:,1]) @test rampon(x) |> size == (10,2) @test rampoff(x) |> size == (10,2) @test ramp(x) |> size == (10,2) @test fadeto(x,y,4frames) |> size == (10+10-4,2) # @test toframerate(x,5Hz) |> size == (5,2) x_ = Signal(rand(40,2),20Hz) |> sink(DimensionalArray) @test toframerate(x_,40Hz) |> size == (80,2) @test tochannels(x,1) |> size == (10,1) @test toeltype(x,Float32) |> eltype <: Float32 # @test format(x,5Hz,1) |> size == (5,1) @test format(x_,40Hz,1) |> size == (80,1) end next!(progress) @testset "Handle lower bitrate" begin x = Signal(rand(Float32,100,2),10Hz) y = Signal(rand(Float32,50,2),10Hz) @test x |> framerate == 10 @test x |> sink(Array) |> eltype == Float32 @test x |> duration == 10 @test x |> Until(5s) |> Array |> eltype == Float32 @test x |> After(2s) |> Array |> eltype == Float32 @test x |> nframes == 100 @test x |> nchannels == 2 @test x |> Append(y) |> Array |> eltype == Float32 @test x |> Append(y) |> After(2s) |> Array |> eltype == Float32 @test x |> Append(y) |> Until(13s) |> Array |> eltype == Float32 @test x |> Pad(zero) |> Until(15s) |> Array |> eltype == Float32 @test x |> Filt(Lowpass,3Hz) |> Array |> eltype == Float32 @test x |> Normpower |> Amplify(-10f0*dB) |> Array |> eltype == Float32 @test x |> Mix(y) |> ToFramerate(10Hz) |> Array |> eltype == Float32 @test x |> AddChannel(y) |> ToFramerate(10Hz) |> Array |> eltype == Float32 @test x |> SelectChannel(1) |> ToFramerate(10Hz) |> Array |> eltype == Float32 @test x |> Ramp |> Array |> eltype == Float32 @test x |> FadeTo(y) |> Array |> eltype == Float32 end next!(progress) @testset "Handle fixed point numbers" begin x = Signal(rand(Fixed{Int16,15},100,2),10Hz) y = Signal(rand(Fixed{Int16,15},50,2),10Hz) @test x |> framerate == 10 @test x |> sink |> framerate == 10 @test x |> duration == 10 @test x |> Until(5s) |> duration == 5 @test x |> After(2s) |> duration == 8 @test x |> nframes == 100 @test x |> nchannels == 2 @test x |> Until(3s) |> sink |> nframes == 30 @test x |> After(3s) |> sink |> nframes == 70 @test x |> Append(y) |> sink |> nframes == 150 @test x |> Append(y) |> After(2s) |> sink |> nframes == 130 @test x |> Append(y) |> Until(13s) |> sink |> nframes == 130 @test x |> Pad(zero) |> Until(15s) |> sink |> nframes == 150 @test x |> Filt(Lowpass,3Hz) |> sink |> nframes == 100 @test x |> Normpower |> Amplify(-10dB) |> sink |> nframes == 100 @test x |> Mix(y) |> sink() |> ToFramerate(10Hz) |> nframes == 100 @test x |> AddChannel(y) |> sink() |> ToFramerate(10Hz) |> nframes == 100 @test x |> SelectChannel(1) |> sink() |> ToFramerate(10Hz) |> nframes == 100 @test x |> Ramp |> sink |> nframes == 100 @test x |> FadeTo(y) |> sink |> nframes == 150 end next!(progress) @testset "Handle unknown frame rates" begin x = rand(100,2) y = rand(50,2) @test x |> framerate |> ismissing @test x |> ToFramerate(10Hz) |> sink |> framerate == 10 @test x |> ToFramerate(10Hz) |> framerate == 10 @test x |> duration |> ismissing @test x |> Until(5s) |> duration |> ismissing @test x |> After(2s) |> duration |> ismissing @test x |> nframes == 100 @test x |> nchannels == 2 @test x |> ToFramerate(10Hz) |> sink |> framerate == 10 @test x |> Until(3s) |> ToFramerate(10Hz) |> sink |> nframes == 30 @test x |> After(3s) |> ToFramerate(10Hz) |> sink |> nframes == 70 @test x |> Append(y) |> ToFramerate(10Hz) |> sink |> nframes == 150 @test x |> Append(y) |> After(2s) |> ToFramerate(10Hz) |> sink |> nframes == 130 @test x |> Append(y) |> Until(13s) |> ToFramerate(10Hz) |> sink |> nframes == 130 @test x |> Pad(zero) |> Until(15s) |> ToFramerate(10Hz) |> sink |> nframes == 150 @test x |> Filt(Lowpass,3Hz) |> ToFramerate(10Hz) |> sink |> nframes == 100 @test x |> Normpower |> Amplify(-10dB) |> ToFramerate(10Hz) |> sink |> nframes == 100 @test x |> Mix(y) |> ToFramerate(10Hz) |> sink |> nframes == 100 @test x |> AddChannel(y) |> ToFramerate(10Hz) |> sink |> nframes == 100 @test x |> SelectChannel(1) |> ToFramerate(10Hz) |> sink |> nframes == 100 @test x |> Ramp |> ToFramerate(10Hz) |> sink |> nframes == 100 @test_throws ErrorException x |> FadeTo(y) |> ToFramerate(10Hz) |> sink end next!(progress) @testset "Short-block Operators" begin x = Signal(ones(25,2),10Hz) y = Signal(ones(10,2),10Hz) z = Signal(ones(15,2),10Hz) @test sink(x |> Append(y) |> Append(z) |> Filt(Lowpass,3Hz,blocksize=5)) == sink(x |> Append(y) |> Append(z) |> Filt(Lowpass,3Hz)) @test sink(x |> Pad(zero) |> Until(15s) |> Append(y) |> Filt(Lowpass,3Hz,blocksize=5)) == sink(x |> Pad(zero) |> Until(15s) |> Append(y) |> Filt(Lowpass,3Hz,blocksize=5)) @test sink(x |> RampOn(7frames) |> Filt(Lowpass,3Hz,blocksize=5)) == sink(x |> RampOn(7frames) |> Filt(Lowpass,3Hz)) @test sink(x |> Ramp(3frames) |> Filt(Lowpass,3Hz,blocksize=5)) == sink(x |> Ramp(3frames) |> Filt(Lowpass,3Hz)) @test toframerate(y,40Hz) |> first |> size == (40,2) @test toframerate(y,5Hz) |> first |> size == (5,2) @test_throws ErrorException toframerate(y,40Hz,blocksize=5) @test_throws ErrorException toframerate(y,5Hz,blocksize=5) end # try out more complicated combinations of various features @testset "Stress tests" begin # Append, dropping the first signal entirely a = Until(sin,2s) b = Until(cos,2s) x = Append(a,b) |> After(3s) @test (x |> ToFramerate(20Hz) |> sink) == (b |> After(1s) |> ToFramerate(20Hz) |> sink()) noise = Signal(randn,20Hz) |> Until(6s) |> sink # filtering in combination with `After` x = noise |> Filt(Lowpass,7Hz) |> Until(4s) afterx = noise |> Filt(Lowpass,7Hz) |> Until(4s) |> After(2s) @test sink(x,DimensionalArray)[Time(Between(2s, 4s))] ≈ sink(afterx,DimensionalArray) # multiple frame rates x = Signal(sin,ω=10Hz,20Hz) |> Until(4s) |> sink |> ToFramerate(30Hz) |> Filt(Lowpass,10Hz) |> FadeTo(Signal(sin,ω=5Hz) |> Until(4s),500ms) |> ToFramerate(22Hz) @test framerate(x) == 22 @test duration(x) == 7.5 x = Signal(sin,ω=10Hz,20Hz) |> Until(4s) |> ToFramerate(30Hz) |> Filt(Lowpass,10Hz) |> FadeTo(Signal(sin,ω=5Hz) |> Until(4s),500ms) |> ToFramerate(22Hz) |> sink @test framerate(x) == 22 @test duration(x) == 7.5 # multiple filters x = noise |> Filt(Lowpass,9Hz) |> Mix(Signal(sin,ω=12Hz) |> Until(6s)) |> Filt(Highpass,4Hz,method=Chebyshev1(5,1)) |> Array y = noise |> Filt(Lowpass,9Hz) |> Mix(Signal(sin,ω=12Hz) |> Until(6s)) |> sink |> Filt(Highpass,4Hz,method=Chebyshev1(5,1)) |> Array @test x ≈ y y = noise |> Filt(Lowpass,9Hz,blocksize=11) |> Mix(Signal(sin,ω=12Hz) |> Until(6s)) |> Filt(Highpass,4Hz,method=Chebyshev1(5,1),blocksize=9) |> Array @test x ≈ y # multiple After and Until commands x = Signal(sin,ω=5Hz) |> After(2s) |> Until(20s) |> After(2s) |> Until(15s) |> After(2s) |> After(2s) |> Until(5s) |> Until(2s) |> ToFramerate(12Hz) |> sink @test duration(x) == 2 # different offset appending summation x = Append(1 |> Until(1s),2 |> Until(2s)) y = Append(3 |> Until(2s),4 |> Until(1s)) result = Mix(x,y) |> ToFramerate(10Hz) |> Array @test all(result .== [fill(4,10);fill(5,10);fill(6,10)]) # multiple operators with a Mix in the middle x = randn |> Until(4s) |> After(50ms) |> Filt(Lowpass,5Hz) |> Mix(Signal(sin,ω=7Hz)) |> Until(3.5s) |> Filt(Highpass,2Hz) |> Append(rand(10,2)) |> Append(rand(5,2)) |> ToFramerate(20Hz) |> sink @test duration(x) == 4.25 end next!(progress) @testset "README Examples" begin randn |> Until(2s) |> Normpower |> ToFramerate(44.1kHz) |> sink(example_wav) sound1 = Signal(sin,ω=1kHz) |> Until(5s) |> Ramp |> Normpower |> Amplify(-20dB) result = sound1 |> ToFramerate(4kHz) |> sink @test result |> nframes == 4000*5 @test mean(abs,result[1]) > 0 sound2 = example_wav |> Normpower |> Amplify(-20dB) # a 1kHz sawtooth wave sound3 = Signal(ϕ -> ϕ/π - 1,ω=1kHz) |> Until(2s) |> Ramp |> Normpower |> Amplify(-20dB) # a 5 Hz amplitude modulated noise sound4 = randn |> Amplify(Signal(ϕ -> 0.5sin(ϕ) + 0.5,ω=5Hz)) |> Until(5s) |> Normpower |> Amplify(-20dB) # a 1kHz tone surrounded by a notch noise SNR = 5dB x = Signal(sin,ω=1kHz) |> Until(1s) |> Ramp |> Normpower |> Amplify(-20dB + SNR) y = Signal(randn) |> Until(1s) |> Filt(Bandstop,0.5kHz,2kHz) |> Normpower |> Amplify(-20dB) scene = Mix(x,y) # write all of the signal to a single file, at 44.1 kHz Append(sound1,sound2,sound3,sound4,scene) |> sink(examples_wav) @test isfile(examples_wav) end next!(progress) @testset "Testing DimensionalData" begin x = rand(10,2) data = DimensionalArray(x,(Time(range(0s,0.9s,step=0.1s)),SigChannel(1:2))) @test all(Array(Mix(data,1)) .== data .+ 1) data2 = x |> Signal(10Hz) |> sink(DimensionalArray) # failed test!! @test data2 == data @test sink(Mix(data,1)) isa DimensionalArray end next!(progress) # test LibSndFile and SampleBuf # (only supported for Julia versions 1.3 or higher) @static if VERSION ≥ v"1.3" mydir = mktempdir(@__DIR__) Pkg.activate(mydir) Pkg.add("LibSndFile") Pkg.add("SampledSignals") @testset "Testing LibSndFile" begin using LibSndFile using SampledSignals: SampleBuf randn |> Until(2s) |> Normpower |> ToFramerate(4kHz) |> sink(example_ogg) x = example_ogg |> sink(SampleBuf) example_ogg |> sink(AxisArray) @test SignalOperators.framerate(x) == 4000 @test sink(Mix(x,1)) isa SampleBuf end next!(progress) @testset "Test adaptive return type" begin x = rand(10,2) data = DimensionalArray(x,(Time(range(0s,1s,length=10)),X(1:2))) @test sink(Mix(1,data)) isa DimensionalArray data = SampleBuf(x,10) @test sink(Mix(1,data)) isa SampleBuf data = Signal(rand(10,2),10Hz) |> sink(AxisArray) data2 = SampleBuf(x,10) @test sink(Mix(rand(10,2),data2)) isa SampleBuf @test sink(Mix(data,data2)) isa AxisArray @test sink(Mix(data2,data)) isa SampleBuf end rm(mydir,recursive=true,force=true) next!(progress) end for file in test_files isfile(file) && rm(file) end end
SignalOperators
https://github.com/haberdashPI/SignalOperators.jl.git
[ "MIT" ]
0.5.1
d8dcac8d4c1876d6e23226145ac6e3ac8d4d0b85
docs
4314
# SignalOperators [![Project Status: Active – The project has reached a stable, usable state and is being actively developed.](https://www.repostatus.org/badges/latest/active.svg)](https://www.repostatus.org/#active) [![Stable](https://img.shields.io/badge/docs-stable-blue.svg)](https://haberdashPI.github.io/SignalOperators.jl/stable) [![Dev](https://img.shields.io/badge/docs-dev-blue.svg)](https://haberdashPI.github.io/SignalOperators.jl/dev) [![GitHub Actions](https://github.com/haberdashPI/SignalOperators.jl/workflows/CI/badge.svg)](https://github.com/haberdashPI/SignalOperators.jl/actions?query=workflow%3ACI) [![PkgEval](https://juliaci.github.io/NanosoldierReports/pkgeval_badges/S/SignalOperators.svg)](https://juliaci.github.io/NanosoldierReports/pkgeval_badges/report.html) [![Codecov](https://codecov.io/gh/haberdashPI/SignalOperators.jl/branch/master/graph/badge.svg)](https://codecov.io/gh/haberdashPI/SignalOperators.jl) SignalOperators is a [Julia](https://julialang.org/) package that aims to provide a clean interface for generating and manipulating signals: typically sounds, but any signal regularly sampled in time can be manipulated. ```julia using WAV using SignalOperators using SignalOperators.Units # allows the use of dB, Hz, s etc... as unitful values # a pure tone 20 dB below a power 1 signal, with on and off ramps (for # a smooth onset/offset) sound1 = Signal(sin,ω=1kHz) |> Until(5s) |> Ramp |> Normpower |> Amplify(-20dB) # a sound defined by a file, matching the overall power to that of sound1 sound2 = "example.wav" |> Normpower |> Amplify(-20dB) # a 1kHz sawtooth wave sound3 = Signal(ϕ -> ϕ-π,ω=1kHz) |> Ramp |> Normpower |> Amplify(-20dB) # a 5 Hz amplitude modulated noise sound4 = randn |> Amplify(Signal(ϕ -> 0.5sin(ϕ) + 0.5,ω=5Hz)) |> Until(5s) |> Normpower |> Amplify(-20dB) # a 1kHz tone surrounded by a notch noise SNR = 5dB x = Signal(sin,ω=1kHz) |> Until(1s) |> Ramp |> Normpower |> Amplify(-20dB + SNR) y = Signal(randn) |> Until(1s) |> Filt(Bandstop,0.5kHz,2kHz) |> Normpower |> Amplify(-20dB) scene = Mix(x,y) # write all of the signals to a single file, at 44.1 kHz Append(sound1,sound2,sound3,sound4,scene) |> ToFramerate(44.1kHz) |> sink("examples.wav") ``` The interface is relatively generic and can be used to operate on or produce a number of different signal representations, including [`AxisArrays`](https://github.com/JuliaArrays/AxisArrays.jl), [`DimensionalData`](https://github.com/rafaqz/DimensionalData.jl) and `SampleBuf` objects from [`SampledSignals`](https://github.com/JuliaAudio/SampledSignals.jl). It should also be straightforward to extend the operators to [new signal representations](https://haberdashpi.github.io/SignalOperators.jl/stable/custom_signal/). Operators generally produce signals that match the type input values, when these are uniform. In many cases, operators are designed to create efficient, lazy representations of signals, and will only generate data on a call to [`sink`](https://haberdashpi.github.io/SignalOperators.jl/stable/reference/#SignalOperators.sink); however, there are non-lazy versions of the operators as well, for quick, one-off usage. ```julia using SampledSignals: SampleBuf a = SampleBuf(rand(100,2),100) b = SampleBuf(ones(100,2),100) using SignalOperators c = mix(a,b) c == sink(Mix(a,b)) ``` Because of the smarts in the operators, the resulting value `c` will also be a `SampleBuf` object. Read more about how to use the operators in the [documentation](https://haberdashPI.github.io/SignalOperators.jl/stable). ## Status The functions are relatively bug-free and thoroughly documented. Everything here will run pretty fast. All calls should fall within the same order of magnitude of equivalent "raw" julia code (e.g. loops and broadcasting over arrays). I'm the only person I know who has made thorough use of this package: it's obviously possible there are still some bugs or performance issues lurking about. (I welcome new issues or PRs!!!) ## Acknowledgements Many thanks to @ssfrr for some great discussions during this [PR](https://github.com/JuliaAudio/SampledSignals.jl/pull/44), and related issues on the [SampledSignals](https://github.com/JuliaAudio/SampledSignals.jl) package. Those interactions definitely influenced my final design here.
SignalOperators
https://github.com/haberdashPI/SignalOperators.jl.git
[ "MIT" ]
0.5.1
d8dcac8d4c1876d6e23226145ac6e3ac8d4d0b85
docs
910
This documents my git workflow. *Before version 0.2*: all commits are to master, and tags denote new, stable releases of the 0.1 branch. *Starting with the development of version 0.2 features* 1. master includes the latest and greatest, working features 2. release-x.y: stable branch for older release x.y, making it easy to backport any bug fixes 3. feat-X branches contain new, WIP features, that may not yet compile and may be quite buggy 4. fix-X branches contain new, WIP bug fixes, that may not yet compile 5. refactor-X branches contain new, WIP refactoring of code that may not yet compile New releases of the most recent version # are tagged on master. When a `feat`, `fix` or `refactor` branch is merged, it should first be rebased into commits that conform to the [Conventiional Commit](https://www.conventionalcommits.org/en/v1.0.0-beta.2/#summary) standard.
SignalOperators
https://github.com/haberdashPI/SignalOperators.jl.git
[ "MIT" ]
0.5.1
d8dcac8d4c1876d6e23226145ac6e3ac8d4d0b85
docs
2467
# [Custom Signals](@id custom_signals) To treat new custom objects as signals, you must support the signal interface. Such an object must return an appropriate [`SignalOperators.IsSignal`](@ref) object when calling [`SignalOperators.SignalTrait`](@ref). `IsSignal` is an emptry struct that has three type parameters, indicating the [`sampletype`](@ref) the type of [`framerate`](@ref) and the type used to represent the length returned by [`nframes`](@ref). For example, for an array `SignalTrait` is implemented as follows. ```julia SignalTrait(x::Type{<:Array{T}}) where T = IsSignal{T,Missing,Int} ``` All signals should implement the appropriate methods from [`SignalBase`](https://github.com/haberdashPI/SignalBase.jl). What additional methods you should implement depends on what kind of signal you have. ## AbstractArray objects If your signal is an array of some kind you should implement [`SignalOperators.timeslice`](@ref), which should return a requested range of frames from the signal. You should also consider defining your array type to be a [custom sink](@ref custom_sinks). ## Other objects Any other type of signal should implement [`SignalOperators.nextblock`](@ref), which is used to sequentially retrieve blocks from a signal. Analogous to `Base.iterate`, [`SignalOperators.nextblock`](@ref) will return `nothing` when there are no more blocks to produce. If the returned blocks will be represetend by an array of numbers, then [`SignalOperators.ArrayBlock`](@ref) should be used. In other cases, such as when you want to compute individual frames of the block on-the-fly, you should return an object that implements the following two methods. * [`nframes`](@ref) Like a signal, each block has some number of frames. Unlike signals, this cannot be an infinite or missing value. The implementation should be a fast, type-stable function. * [`SignalOperators.frame`](@ref) Individual frames of the block can be accessed by their index within the block (falling in the range of `1:nframes(block)`). This should be a fast, type-stable function. The method is guaranteed to only be called at most once for each index in the block. ## Optional Methods There are several **optional** methods you can define for signals as well. * [`Signal`](@ref) - to enable one more other types to be interpreted as your custom signal type * [`SignalOperators.EvalTrait`](@ref) and [`ToFramerate`](@ref) - to enable custom handling of signal resmapling
SignalOperators
https://github.com/haberdashPI/SignalOperators.jl.git
[ "MIT" ]
0.5.1
d8dcac8d4c1876d6e23226145ac6e3ac8d4d0b85
docs
946
# [Custom Sinks] (@id custom_sinks) You can create custom sinks, which can be passed to [`sink`](@ref) or [`sink!`](@ref) by defining two methods: [`SignalOperators.initsink`](@ref) and [`SignalOperators.sink_helper!`](@ref). The first method is called when a call to `sink` is made (e.g. `sink(MyCustomSink)`). The second method is called inside `sink!` and provides the core operation to write blocks of frames to the sink. There is already a method of `sink_helper!` defined for `AbstractArray` objects, so you likely do not need to implement it if your custom sink is an `AbtractArray`. You may also want to implement a constructor of the sink type that takes a single argument `x` of type `SignalOperators.AbstractSignal`. This should generally just call `sink(x,CustomSink)`. !!! note Implementing `initsink` is not strictly necessary. If you do not implement `initsink` you will only be able to write to the sink using `sink!`.
SignalOperators
https://github.com/haberdashPI/SignalOperators.jl.git
[ "MIT" ]
0.5.1
d8dcac8d4c1876d6e23226145ac6e3ac8d4d0b85
docs
1907
# SignalOperators.jl SignalOperators is a [Julia](https://julialang.org/) package that aims to provide a clean interface for generating and manipulating signals: typically sounds, but any signal regularly sampled in time can be manipulated. You can install it in Julia by starting the Pkg prompt (hit `]`), and using the `add` command. ```julia (1.2) pkg> add SignalOperators ``` As a preview of functionality, here are some example sound generation routines. You can find more detailed information in the manual and reference. ```julia using SignalOperators using SignalOperators.Units # allows the use of dB, Hz, s etc... as unitful values # a pure tone 20 dB below a power 1 signal, with on and off ramps (for # a smooth onset/offset) sound1 = Signal(sin,ω=1kHz) |> Until(5s) |> Ramp |> Normpower |> Amplify(-20dB) # a sound defined by a file, matching the overall power to that of sound1 sound2 = "example.wav" |> Normpower |> Amplify(-20dB) # a 1kHz sawtooth wave sound3 = Signal(ϕ -> ϕ-π,ω=1kHz) |> Ramp |> Normpower |> Amplify(-20dB) # a 5 Hz amplitude modulated noise sound4 = randn |> Amplify(Signal(ϕ -> 0.5sin(ϕ) + 0.5,ω=5Hz)) |> Until(5s) |> Normpower |> Amplify(-20dB) # a 1kHz tone surrounded by a notch noise SNR = 5dB x = Signal(sin,ω=1kHz) |> Until(1s) |> Ramp |> Normpower |> Amplify(-20dB + SNR) y = Signal(randn) |> Until(1s) |> Filt(Bandstop,0.5kHz,2kHz) |> Normpower |> Amplify(-20dB) scene = Mix(x,y) # write all of the signals to a single file, at 44.1 kHz Append(sound1,sound2,sound3,sound4,scene) |> ToFramerate(44.1kHz) |> sink("examples.wav") ``` ## Acknowledgements Many thanks to @ssfrr for some great discussions during this [PR](https://github.com/JuliaAudio/SampledSignals.jl/pull/44), and related issues on the [SampledSignals](https://github.com/JuliaAudio/SampledSignals.jl) package. Those interactions definitely influenced my final design here.
SignalOperators
https://github.com/haberdashPI/SignalOperators.jl.git
[ "MIT" ]
0.5.1
d8dcac8d4c1876d6e23226145ac6e3ac8d4d0b85
docs
11969
# Manual SignalOperators is composed of a set of functions for generating, inspecting and operating over signals. Here, a "signal" is represented as a number of frames: each frame contains some number of channels (e.g. left and right speaker) with a sampled value (e.g. `Float64`) for each channel. The values are sampled regularly in time (e.g. every 100th of a second, or 100 Hz); this is referred to as the frame rate. ## Key concepts There are several important concepts employed across the public interface. Let's step through one of the examples from the homepage (and README.md), which demonstrates most of these concepts. ```julia sound1 = Signal(sin,ω=1kHz) |> Until(5s) |> Ramp |> Normpower |> Amplify(-20dB) ``` This example creates a 1 kHz pure-tone (sine wave) that lasts 5 seconds. Its amplitude is 20 dB lower than a signal with unit 1 power. There are a few things going on here: piping, the use of units, lazy evaluation, infinite length signals and unspecified frame rates. ### Piping Almost all of the operators in SignalOperators can be piped. This means that instead of passing the first argument you can pipe it using `|>`. For example, the two statements below have the same meaning. ```julia sound1 = Signal(sin,ω=1kHz) |> Until(5s) sound1 = Until(Signal(sin,ω=1kHz),5s) ``` The use of piping makes it easier to read the sequence of operations that are performed on the signal. ### Units In any place where a function needs a time or a frequency, it can be specified in appropriate units. There are many places where units can be passed. They all have a default assumed unit if a plain number without units is passed. The default units are seconds, Hertz, and radians as appropriate for the given argument. ```julia sound1 = Signal(sin,ω=1kHz) sound1 = Signal(sin,ω=1000) ``` Each unit is represented by a constant you can multiply by a number (in Julia, 10ms == 10*ms). To make use of the unit constants, you must call `using SignalOperators.Units`. This exports the following units: `frames`, `kframes`, `Hz`, `kHz` `s`, `ms`, `rad`, `°`, and `dB`. You can just include the ones you want using e.g. `using SignalOperators.Units: Hz`, or you can include more by adding the [`Unitful`](https://github.com/PainterQubits/Unitful.jl) package to your project and adding the desired units from there. For example, `using Unitful: MHz` would include mega-Hertz frequencies (not normally useful for sound signals). Most of the default units have been re-exported from `Unitful`. However, the `frames` unit and its derivatives (e.g. `kframes`) are unique to the SignalOperators package. They allow you to specify the time in terms of the number of frames: e.g. at a frame rate of 100 Hz, `2s == 200frames`. Other powers of ten are represented for `frames`, (e.g. `Mframes` for mega-frames) but they are not exported (e.g. you would have to call `SignalOperators.Units: Mframes` before using `20Mframes`). !!! note You can find the available powers-of-ten for units in `Unitful.prefixdict` Note that the output of functions to inspect a signal (e.g. `duration`, `framerate`) are bare values in the default unit (e.g. seconds or Hertz). No unit is explicitly provided by the return value. #### Decibels You can pass an amplification value as a unitless or a unitful value in `dB`; a unitless value is not assumed to be in decibels. Instead, it's assumed to be the actual ratio by which you wish to multiply the signal. For example, `Amplify(x,2)` will make `x` twice as loud while `Amplify(x,2dB)` will increase the amplitude by two decibells. ### Lazy Evaluation To ensure efficient signal generation, signal operators are lazy: no computations are performed until the actual signal data is requested. This lazy quality is reflected in the captilization of the operators: conceptually the operators define some new signal object which can be used to generate frames of data based on the input signal or signals. To request evaluation of a lazy signal you can use an array constructor: `Array`, `AxisArray`, `DimensinoalArray` or `SampleBuf`, or you can call the more general methods [`sink`](@ref) or [`sink!`](@ref). The result of `sink` is itself a (non-lazy) signal. You can always specify the return type of `sink`, but by default it tries to maintain the same representation of the signal or signals used as input, favoring the earlier arguments over later arguments. For example `sink(SampleBuf(rand(10,2),10) |> Mix(1)) isa SampleBuf`. The function [`sink`](@ref) can also write data to a file. To store the five second signal in the above example to "example.wav" we could write the following. ```julia sound1 |> ToFramerate(44.1kHz) |> sink("example.wav") ``` In this case `sound1` had no defined frame rate, so we must specify one using [`ToFramerate`](@ref). #### Non-lazy operators If you prefer the result of an operator to be non-lazy, so you don't have to call `sink` first, you can make use the lower case versions of the operators. These operators do not allow for piping, as this would typically be quite inefficient. If you want to combine multiple operators, they should normally be evaluated lazily. ### Infinite lengths Some of the ways you can define a signal lead to an infinite length signal. To allow for calls to `sink`, you have to specify the length, using [`Until`](@ref). For example, when using `Signal(sin)`, the signal is an infinite length sine wave. That's why, in the example above, we use [`Until`](@ref) to specify the length, as follows. ```julia Signal(sin,ω=1kHz) |> Until(5s) ``` Infinite lengths are represented as the value [`inflen`](@ref) (e.g. when calling [`nframes`](@ref)). This has overloaded definitions of various operators to play nicely with ordering, arithmetic etc... ### Unspecified frame rates You may notice that the above signal has no defined frame rate. Such a signal is defined by a function, and can be sampled at whatever rate you desire. If you add a signal to the chain of operations that does have a defined frame rate, the unspecified frame rate will be resolved to that same rate (see signal promotion, below). ### Signal promotion A final concept, which is not as obvious from the examples, is the use of automatic signal promotion. When multiple signals are passed to the same operator, and they have a different number of channels or different frame rate, the signals are first converted to the highest fidelity format and then operated on. This allows for a relatively seamless chain of operations where you don't have to worry about the specific format of the signal, and you won't loose information about your signals unless you explicitly request a lower fidelity signal format (e.g. using [`ToChannels`](@ref) or [`ToFramerate`](@ref)). ## Signal generation There are four basic types that can be interpreted as signals: numbers, arrays, functions and files. Internally the function [`Signal`](@ref) is called on any object passed to a function that operates on a signal; you can call [`Signal`](@ref) yourself if you want to specify more information. For example, you may want to provide the exact frame rate the signal should be interpreted to have. ### Numbers A number is treated as an infinite length signal, with unknown frame rate. ```julia 1 |> Until(1s) |> ToFramerate(10Hz) |> sink == ones(10) ``` ### Arrays A standard array is treated as a finite signal with unknown frame rate. ```julia rand(10,2) |> ToFramerate(10Hz) |> sink |> duration == 1 ``` An `AxisArray`, `DimesnionalArray` or `SampleBuf` (from [`SampledSignals`](https://github.com/JuliaAudio/SampledSignals.jl)) is treated as a finite signal with a known frame rate (and is the default output of [`sink`](@ref)) ```julia using AxisArrays x = AxisArray(rand(10,1),Axis{:time}(range(0,1,length=10))) framerate(x) == 10 ``` ### Functions A single argument function of time (in seconds) can be treated as an infinite signal. It can be also be a function of radians if you specify a frequency using `ω` (or `frequency`). See [`Signal`](@ref)'s documentation for more details. ```julia Signal(sin,ω=1kHz) |> duration |> isinf == true ``` A small exception to this is `randn`. It can be used directly as a signal with unknown frame rate. ```julia randn |> duration == isinf ``` ### Files A file is interpreted as an audio file to be loaded into memory. You must include the `WAV` or `LibSndFile` package for this to work. ```julia using WAV x = Signal("example.wav") ``` ## Signal inspection You can examine the properties of a signal using [`nframes`](@ref), [`nchannels`](@ref), [`framerate`](@ref), and [`duration`](@ref). ## Signal operators There are several categories of signal operators: extending, cutting, filtering, ramping, and mapping. ### Extending You can extend a signal using [`Pad`](@ref) or [`Append`](@ref). A padded signal becomes infinite by appending the signal by a repeated value, usually `one` or `zero`. You can append two or more signals (or [`Prepend`](@ref)) so they occur one after another. ```julia Pad(x,zero) |> duration |> isinf == true Append(x,y,z) |> duration == duration(x) + duration(y) + duration(z) ``` !!! note You cannot append more than one new signal within a pipe. That is, the following will throw an error. ```julia # Don't do this! x |> Append(y,z) ``` This is because `Append(y,z)` does not return a function to be piped (as `Append(y)` does). It returns a signal with `y` followed by `z`. You can instead call this as follows. ```julia # This will do what you want! x |> Append(y) |> Append(z) ``` ### Cutting You can cut signals apart, removing either the end of the signal ([`Until`](@ref)) or the beginning ([`After`](@ref)). The operations are exact compliments of one another. ```julia Append(Until(x,2s),After(x,2s)) |> nframes == nframes(x) ``` ### Filtering You can filter signals, removing undesired frequencies using [`Filt`](@ref). ```julia Signal(randn) |> Filt(Lowpass,20Hz) ``` !!! warning If you write `using DSP` you will have to also write `dB = SignalOperators.Units.dB` if you want to make use of the proper meaning of `dB` for `SignalOperators`: `DSP` also defines `dB`. An unusual filter is [`Normpower`](@ref): it computes the root mean squared power of the signal and then normalizes each frame by that value. ### Ramping A Ramp allows for smooth transitions between 0 amplitude and the full amplitude of the signal. It is useful to avoid clicks in the onset or offset of a sound. For example, pure-tones are typically ramped when presented. ```julia Signal(sin,ω=2kHz) |> Until(5s) |> Ramp ``` You can ramp only the start of a signal ([`RampOn`](@ref)), or the end of it ([`RampOff`](@ref)) and you can use ramps to create a smooth transition between two signals ([`FadeTo`](@ref)). ### General operators The most general operator is [`OperateOn`](@ref). It works a lot like `map` but automatically promotes the signals, as with all operators, *and* it pads the end of the signal appropriately, so different length signals can be combined. The output is always the length of the longest *finite*-length signal. ```julia a = Signal(sin,ω=2kHz) |> Until(2s) b = Signal(sin,ω=1kHz) |> Until(3s) a_minus_b = OperateOn(-,a,b) ``` The function [`OperateOn`](@ref) cannot itself be piped, due to ambiguity in the arguments, but you can use the shorter [`Operate`](@ref) for these purposes. ```julia a_minus_b = a |> Operate(-,b) ``` A number of shortcuts for `OperateOn` exist, and these can be piped normally. There are shortcuts for addition ([`Mix`](@ref)) and multiplication ([`Amplify`](@ref)). ```julia a_plus_b = a |> Mix(b) a_times_b = a |> Amplify(b) ``` There are shortcuts to add or isolate channels, [`AddChannel`](@ref) and [`SelectChannel`](@ref). These set the keyword argument `bychannel` of [`OperateOn`](@ref) to `false` (see [`OperateOn`](@ref)'s documentation for details).
SignalOperators
https://github.com/haberdashPI/SignalOperators.jl.git
[ "MIT" ]
0.5.1
d8dcac8d4c1876d6e23226145ac6e3ac8d4d0b85
docs
1022
# Reference ## Signal Generation ```@docs Signal sink sink! ``` ## Signal Inspection ```@docs inflen duration nframes nchannels framerate sampletype ``` ## Signal Operators ### Basic Operators ```@docs Until until After after Window window Append append Prepend prepend Pad Extend mirror cycle lastframe SignalOperators.valuefunction ``` ### Mapping Operators ```@docs Filt Normpower normpower OperateOn Operate operate Mix mix Amplify amplify AddChannel addchannel SelectChannel selectchannel ``` ### Ramping Operators ```@docs RampOn rampon RampOff rampoff Ramp ramp FadeTo fadeto ``` ### Reformatting Operators ```@docs ToFramerate toframerate ToChannels tochannels ToEltype toeltype Format format Uniform ``` ## Custom Signals ```@docs SignalOperators.SignalTrait SignalOperators.IsSignal SignalOperators.EvalTrait SignalOperators.nextblock SignalOperators.frame SignalOperators.timeslice SignalOperators.ArrayBlock ``` ## Custom Sinks ```@docs SignalOperators.initsink SignalOperators.sink_helper! ```
SignalOperators
https://github.com/haberdashPI/SignalOperators.jl.git
[ "MIT" ]
0.1.0
655dc935ae8cfe92c07c1b414e629b774e0b42dc
code
3939
# version = v"1.14.1119" version = v"1.14.1227" deps_dir = dirname(@__FILE__) par_dir = abspath(joinpath(deps_dir, "..")) sdk_dir = joinpath(deps_dir, "sdk_v$version") lib_target_dir = joinpath(par_dir, "lib") lib_dir = joinpath(sdk_dir, "lib") lib_x64_dir = joinpath(lib_dir, "x64") lib_x86_dir = joinpath(lib_dir, "x86") lib_mac_dir = joinpath(lib_dir, "mac") if Sys.islinux() || Sys.isapple() sdk_file = joinpath(deps_dir, "ASI_linux_mac_SDK_V$version.tar.bz2") if !isfile(sdk_file) println("Downloading ASI_linux_mac_SDK_V$version.tar.bz2 from astronomy-imaging-camera.com (ZWO)") download("https://astronomy-imaging-camera.com/software/ASI_linux_mac_SDK_V$version.tar.bz2", sdk_file) end elseif Sys.iswindows() sdk_file = joinpath(deps_dir, "ASI_Windows_SDK_V$version.zip") if !isfile(sdk_file) println("Downloading ASI_Windows_SDK_V$version.zip from astronomy-imaging-camera.com (ZWO)") download("https://astronomy-imaging-camera.com/software/ASI_Windows_SDK_V$version.zip", sdk_file) end end if !isdir(sdk_dir) mkdir(sdk_dir) end if !isdir(lib_target_dir) mkdir(lib_target_dir) end #extract if isfile(sdk_file) if Sys.isunix() unpack_cmd = `tar xjf $sdk_file --directory=$sdk_dir` end if Sys.iswindows() if isdefined(Base, :LIBEXECDIR) const exe7z = joinpath(Sys.BINDIR, Base.LIBEXECDIR, "7z.exe") else const exe7z = joinpath(Sys.BINDIR, "7z.exe") end unpack_cmd = `$exe7z x -o$sdk_dir -y $sdk_file` end run(unpack_cmd) end # copy extracted library file to lib subfolder if Sys.islinux() mv(joinpath(lib_dir, "asi.rules"), joinpath(deps_dir, "..", "asi.rules"), force=true) if Sys.ARCH==:x86_64 if Sys.WORD_SIZE==64 source_file = joinpath(lib_x64_dir, "libASICamera2.so.$version") target_file = joinpath(lib_target_dir, "libASICamera2.so") mv(source_file, target_file, force=true) else source_file = joinpath(lib_x86_dir, "libASICamera2.so.$version") target_file = joinpath(lib_target_dir, "libASICamera2.so") mv(source_file, target_file, force=true) end # RaspberryPi support elseif Sys.ARCH==:aarch64 source_file = joinpath(lib_dir, "armv8", "libASICamera2.so.$version") target_file = joinpath(lib_target_dir, "libASICamera2.so") mv(source_file, target_file, force=true) elseif Sys.ARCH==:arm || (Sys.ARCH==:aarch && Sys.WORD_SIZE==32) source_file = joinpath(lib_dir, "armv7", "libASICamera2.so.$version") target_file = joinpath(lib_target_dir, "libASICamera2.so") mv(source_file, target_file, force=true) end elseif Sys.isapple() source_file = joinpath(lib_mac_dir, "libASICamera2.dylib.$version") target_file = joinpath(lib_target_dir, "libASICamera2.dylib") mv(source_file, target_file, force=true) elseif Sys.iswindows() if isa(1, Int64) source_file = joinpath(sdk_dir, "ASI SDK", "lib", "x64", "ASICamera2.dll") target_file = joinpath(lib_target_dir, "ASICamera2.dll") mv(source_file, target_file, force=true) else source_file = joinpath(sdk_dir, "ASI SDK", "lib", "x86", "ASICamera2.dll") target_file = joinpath(lib_target_dir, "ASICamera2.dll") mv(source_file, target_file, force=true) end end # cleanup rm(sdk_file) rm(sdk_dir, recursive=true) if Sys.isunix() rules_file = joinpath(par_dir, "asi.rules") println("\nPlease install the udev rules for the camera device, so that you can access it without root privileges. To install the rules, run 'sudo install $rules_file /lib/udev/rules.d'\n or\n 'sudo install $rules_file /etc/udev/rules.d'\n and reboot or relog and reconnect the camera. Then run\n 'cat /sys/module/usbcore/parameters/usbfs_memory_mb'\n and make sure the result is 200.\n") end
LibASICamera
https://github.com/AlfTetzlaff/LibASICamera.jl.git
[ "MIT" ]
0.1.0
655dc935ae8cfe92c07c1b414e629b774e0b42dc
code
135
using Documenter, LibASICamera makedocs(sitename="LibASICamera API") deploydocs(repo = "github.com/AlfTetzlaff/LibASICamera.jl.git")
LibASICamera
https://github.com/AlfTetzlaff/LibASICamera.jl.git
[ "MIT" ]
0.1.0
655dc935ae8cfe92c07c1b414e629b774e0b42dc
code
925
module LibASICamera import Libdl using CEnum if Sys.isunix() const libASICamera2 = joinpath(@__DIR__, "../lib/libASICamera2") elseif Sys.isapple() # don't know if apple counts as unix const libASICamera2 = joinpath(@__DIR__, "../lib/libASICamera2") elseif Sys.iswindows() const libASICamera2 = joinpath(@__DIR__, "../lib/ASICamera2") end include(joinpath(@__DIR__, "LibASICamera_highlevel.jl")) export ASICamera, open_camera, close_camera, init_camera, start_exposure, stop_exposure, start_video, stop_video, allocate_buffer, enable_dark_subtract, disable_dark_subtract, pulse_guide_on, pulse_guide_off, send_soft_trigger, capture_still #capture_video # export the rest foreach(names(@__MODULE__, all=true)) do s if startswith(string(s), "ASI") || startswith(string(s), "set") ||startswith(string(s), "get") @eval export $s end end end # module
LibASICamera
https://github.com/AlfTetzlaff/LibASICamera.jl.git
[ "MIT" ]
0.1.0
655dc935ae8cfe92c07c1b414e629b774e0b42dc
code
7246
function ASIGetNumOfConnectedCameras() ccall((:ASIGetNumOfConnectedCameras, libASICamera2), Cint, ()) end function ASIGetProductIDs(pPIDs) ccall((:ASIGetProductIDs, libASICamera2), Cint, (Ref{Cint},), pPIDs) end function ASIGetCameraProperty(pASICameraInfo, iCameraIndex) ccall((:ASIGetCameraProperty, libASICamera2), ASI_ERROR_CODE, (Ref{_ASI_CAMERA_INFO}, Cint), pASICameraInfo, iCameraIndex) end function ASIGetCameraPropertyByID(iCameraID, pASICameraInfo) ccall((:ASIGetCameraPropertyByID, libASICamera2), ASI_ERROR_CODE, (Cint, Ref{ASI_CAMERA_INFO}), iCameraID, pASICameraInfo) end function ASIOpenCamera(iCameraID) ccall((:ASIOpenCamera, libASICamera2), ASI_ERROR_CODE, (Cint,), iCameraID) end function ASIInitCamera(iCameraID) ccall((:ASIInitCamera, libASICamera2), ASI_ERROR_CODE, (Cint,), iCameraID) end function ASICloseCamera(iCameraID) ccall((:ASICloseCamera, libASICamera2), ASI_ERROR_CODE, (Cint,), iCameraID) end # ASI_ERROR_CODE ASIGetNumOfControls(int iCameraID, int * piNumberOfControls); function ASIGetNumOfControls(iCameraID, piNumberOfControls::Ref{Cint}) ccall((:ASIGetNumOfControls, libASICamera2), ASI_ERROR_CODE, (Cint, Ref{Cint}), iCameraID, piNumberOfControls) end function ASIGetControlCaps(iCameraID, iControlIndex, pControlCaps) ccall((:ASIGetControlCaps, libASICamera2), ASI_ERROR_CODE, (Cint, Cint, Ref{_ASI_CONTROL_CAPS}), iCameraID, iControlIndex, pControlCaps) end function ASIGetControlValue(iCameraID, ControlType, plValue::Ref{Clong}, pbAuto::Ref{ASI_BOOL}) ccall((:ASIGetControlValue, libASICamera2), ASI_ERROR_CODE, (Cint, Cint, Ref{Clong}, Ref{ASI_BOOL}), iCameraID, ControlType, plValue, pbAuto) end function ASISetControlValue(iCameraID, ControlType, lValue, bAuto) ccall((:ASISetControlValue, libASICamera2), ASI_ERROR_CODE, (Cint, Cint, Clong, Cint), iCameraID, ControlType, lValue, bAuto) end function ASISetROIFormat(iCameraID, iWidth, iHeight, iBin, Img_type::ASI_IMG_TYPE) ccall((:ASISetROIFormat, libASICamera2), ASI_ERROR_CODE, (Cint, Cint, Cint, Cint, ASI_IMG_TYPE), iCameraID, iWidth, iHeight, iBin, Img_type) end function ASIGetROIFormat(iCameraID, piWidth::Ref{Cint}, piHeight::Ref{Cint}, piBin::Ref{Cint}, pImg_type::Ref{ASI_IMG_TYPE}) ccall((:ASIGetROIFormat, libASICamera2), ASI_ERROR_CODE, (Cint, Ref{Cint}, Ref{Cint}, Ref{Cint}, Ref{ASI_IMG_TYPE}), iCameraID, piWidth, piHeight, piBin, pImg_type) end function ASISetStartPos(iCameraID, iStartX, iStartY) ccall((:ASISetStartPos, libASICamera2), ASI_ERROR_CODE, (Cint, Cint, Cint), iCameraID, iStartX, iStartY) end function ASIGetStartPos(iCameraID, piStartX::Ref{Cint}, piStartY::Ref{Cint}) ccall((:ASIGetStartPos, libASICamera2), ASI_ERROR_CODE, (Cint, Ref{Cint}, Ref{Cint}), iCameraID, piStartX, piStartY) end function ASIGetDroppedFrames(iCameraID, piDropFrames) ccall((:ASIGetDroppedFrames, libASICamera2), ASI_ERROR_CODE, (Cint, Ref{Cint}), iCameraID, piDropFrames) end function ASIEnableDarkSubtract(iCameraID, pcBMPPath) ccall((:ASIEnableDarkSubtract, libASICamera2), ASI_ERROR_CODE, (Cint, Cstring), iCameraID, pcBMPPath) end function ASIDisableDarkSubtract(iCameraID) ccall((:ASIDisableDarkSubtract, libASICamera2), ASI_ERROR_CODE, (Cint,), iCameraID) end function ASIStartVideoCapture(iCameraID) ccall((:ASIStartVideoCapture, libASICamera2), ASI_ERROR_CODE, (Cint,), iCameraID) end function ASIStopVideoCapture(iCameraID) ccall((:ASIStopVideoCapture, libASICamera2), ASI_ERROR_CODE, (Cint,), iCameraID) end function ASIGetVideoData(iCameraID, pBuffer::T, lBuffSize, iWaitms) where T if T == Matrix{UInt8} ccall((:ASIGetVideoData, libASICamera2), ASI_ERROR_CODE, (Cint, Ref{Cuchar}, Clong, Cint), iCameraID, pBuffer, lBuffSize, iWaitms) elseif T == Matrix{UInt16} # explicitly handle unsafe conversion from uint16 to uint8 ccall((:ASIGetVideoData, libASICamera2), ASI_ERROR_CODE, (Cint, Ref{Cuchar}, Clong, Cint), iCameraID, Base.unsafe_convert(Ref{Cuchar}, pBuffer), lBuffSize, iWaitms) end end function ASIPulseGuideOn(iCameraID, direction) ccall((:ASIPulseGuideOn, libASICamera2), ASI_ERROR_CODE, (Cint, Cint), iCameraID, direction) end function ASIPulseGuideOff(iCameraID, direction) ccall((:ASIPulseGuideOff, libASICamera2), ASI_ERROR_CODE, (Cint, Cint), iCameraID, direction) end function ASIStartExposure(iCameraID, bIsDark) ccall((:ASIStartExposure, libASICamera2), ASI_ERROR_CODE, (Cint, Cint), iCameraID, bIsDark) end function ASIStopExposure(iCameraID) ccall((:ASIStopExposure, libASICamera2), ASI_ERROR_CODE, (Cint,), iCameraID) end function ASIGetExpStatus(iCameraID, pExpStatus) ccall((:ASIGetExpStatus, libASICamera2), ASI_ERROR_CODE, (Cint, Ref{ASI_EXPOSURE_STATUS}), iCameraID, pExpStatus) end function ASIGetDataAfterExp(iCameraID, pBuffer::T, lBuffSize) where T if T == Matrix{UInt8} ccall((:ASIGetDataAfterExp, libASICamera2), ASI_ERROR_CODE, (Cint, Ref{Cuchar}, Clong), iCameraID, pBuffer, lBuffSize) elseif T == Matrix{UInt16} # explicitly handle unsafe conversion from uint16 to uint8 ccall((:ASIGetDataAfterExp, libASICamera2), ASI_ERROR_CODE, (Cint, Ref{Cuchar}, Clong), iCameraID, Base.unsafe_convert(Ref{Cuchar}, pBuffer), lBuffSize) end end function ASIGetID(iCameraID, pID) ccall((:ASIGetID, libASICamera2), ASI_ERROR_CODE, (Cint, Ref{ASI_ID}), iCameraID, pID) end function ASISetID(iCameraID, ID) ccall((:ASISetID, libASICamera2), ASI_ERROR_CODE, (Cint, ASI_ID), iCameraID, ID) end function ASIGetGainOffset(iCameraID, pOffset_HighestDR, pOffset_UnityGain, pGain_LowestRN, pOffset_LowestRN) ccall((:ASIGetGainOffset, libASICamera2), ASI_ERROR_CODE, (Cint, Ref{Cint}, Ref{Cint}, Ref{Cint}, Ref{Cint}), iCameraID, pOffset_HighestDR, pOffset_UnityGain, pGain_LowestRN, pOffset_LowestRN) end function ASIGetSDKVersion() ccall((:ASIGetSDKVersion, libASICamera2), Cstring, ()) end function ASIGetCameraSupportMode(iCameraID, pSupportedMode) ccall((:ASIGetCameraSupportMode, libASICamera2), ASI_ERROR_CODE, (Cint, Ref{_ASI_SUPPORTED_MODE}), iCameraID, pSupportedMode) end function ASIGetCameraMode(iCameraID, mode) ccall((:ASIGetCameraMode, libASICamera2), ASI_ERROR_CODE, (Cint, Ref{ASI_CAMERA_MODE}), iCameraID, mode) end function ASISetCameraMode(iCameraID, mode) ccall((:ASISetCameraMode, libASICamera2), ASI_ERROR_CODE, (Cint, ASI_CAMERA_MODE), iCameraID, mode) end function ASISendSoftTrigger(iCameraID, bStart) ccall((:ASISendSoftTrigger, libASICamera2), ASI_ERROR_CODE, (Cint, Cint), iCameraID, bStart) end function ASIGetSerialNumber(iCameraID, pSN) ccall((:ASIGetSerialNumber, libASICamera2), ASI_ERROR_CODE, (Cint, Ref{ASI_SN}), iCameraID, pSN) end function ASISetTriggerOutputIOConf(iCameraID, pin, bPinHigh, lDelay, lDuration) ccall((:ASISetTriggerOutputIOConf, libASICamera2), ASI_ERROR_CODE, (Cint, ASI_TRIG_OUTPUT_PIN, Cint, Clong, Clong), iCameraID, pin, bPinHigh, lDelay, lDuration) end function ASIGetTriggerOutputIOConf(iCameraID, pin, bPinHigh, lDelay, lDuration) ccall((:ASIGetTriggerOutputIOConf, libASICamera2), ASI_ERROR_CODE, (Cint, ASI_TRIG_OUTPUT_PIN, Ref{Cint}, Ref{Clong}, Ref{Clong}), iCameraID, pin, bPinHigh, lDelay, lDuration) end
LibASICamera
https://github.com/AlfTetzlaff/LibASICamera.jl.git
[ "MIT" ]
0.1.0
655dc935ae8cfe92c07c1b414e629b774e0b42dc
code
23481
include(joinpath(@__DIR__, "LibASICamera_types.jl")) include(joinpath(@__DIR__, "LibASICamera_ccalls.jl")) """ ASICamera The struct which contains information about the camera. Has fields .info and .control_caps. """ struct ASICamera info::ASI_CAMERA_INFO control_caps::Vector{ASI_CONTROL_CAPS} end """ allocate_buffer(width::Integer, height::Integer, img_type::ASI_IMG_TYPE) Allocates an image buffer for the camera to write to. # Args: width: Image width height: Image height img_type: One of -ASI_IMG_RAW8 -ASI_IMG_Y8 -ASI_IMG_RAW16 -ASI_IMG_RAW24 # Returns: A zero-initialized array of the appropriate shape. # Throws: ASIWrapperError if an unsupported image type is given. """ function allocate_buffer(width::Integer, height::Integer, img_type::ASI_IMG_TYPE) if img_type==ASI_IMG_RAW8 || img_type==ASI_IMG_Y8 return zeros(UInt8, width, height) elseif img_type==ASI_IMG_RAW16 return zeros(UInt16, width, height) elseif img_type==ASI_IMG_RAW24 return zeros(UInt8, width, height, 3) else throw(ASIWrapperError("Image type $img_type not implemented.")) end end # This allows to use an ellipsis: allocate_buffer(get_roi_format(cam)...) allocate_buffer(width::Integer, height::Integer, unused, img_type::ASI_IMG_TYPE) = allocate_buffer(width, height, img_type) """ get_num_connected_cameras() This function returns the count of connected cameras and should be called first. """ get_num_connected_cameras() = ASIGetNumOfConnectedCameras() """ get_camera_property(id::Integer) Fetches the camera properties for a given ID. # Args: id: Camera id # Returns: ASI_CAMERA_INFO object # Throws: ASIError in case of failure """ function get_camera_property(id::Integer) camera_info = _ASI_CAMERA_INFO() err = ASIGetCameraProperty(camera_info, id) if err != ASI_SUCCESS throw(ASIError(err)) end return ASI_CAMERA_INFO(camera_info) # convert to human-readable type end get_camera_property(cam::ASICamera) = get_camera_property(cam.info.CameraID) """ open_camera(id::Integer) Opens the ASI camera connection. Open the camera before any interaction with the camera, this will not affect the camera which is capturing. Then you must call init_camera() to perform any actions. # Args: id: Camera ID # Throws: ASIError """ function open_camera(id::Integer) err = ASIOpenCamera(id) if err != ASI_SUCCESS print("[ERROR] Could not connect to camera. Make sure you can access the camera without being root by calling \"sudo install asi.rules /lib/udev/rules.d\" from the lib subdir of the SDK and then relogging / rebooting.") throw(ASIError(err)) end end open_camera(cam::ASICamera) = open_camera(cam.info.CameraID) """ init_camera(id::Integer) Initialize the camera. Needs to be called before capturing any data. # Args: id: Camera id # Throws: ASIError """ function init_camera(id::Integer) err = ASIInitCamera(id) if err != ASI_SUCCESS throw(ASIError(err)) end end init_camera(cam::ASICamera) = init_camera(cam.info.CameraID) """ close_camera(id::Integer) Closes the ASI camera connection. # Args: id: Camera id # Throws: ASIError """ function close_camera(id::Integer) err = ASICloseCamera(id) if err != ASI_SUCCESS throw(ASIError(err)) end end close_camera(cam::ASICamera) = close_camera(cam.info.CameraID) """ get_control_caps(id::Integer) Returns the control properties available for this camera. The camera needs to be open. # Args: id: Camera id # Returns: Vector of ASI_CONTROL_CAPS structs. # Throws: ASIError """ function get_control_caps(id::Integer) num_controls = Ref{Cint}(0) err = ASIGetNumOfControls(id, num_controls) if err != ASI_SUCCESS throw(ASIError(err)) end control_caps = Vector{ASI_CONTROL_CAPS}(undef, num_controls.x) for i in 1:num_controls.x cap = _ASI_CONTROL_CAPS() err = ASIGetControlCaps(id, i-1, cap) if err != ASI_SUCCESS throw(ASIError(err)) end control_caps[i] = ASI_CONTROL_CAPS(cap) # convert to human-readable type end return control_caps end get_control_caps(cam::ASICamera) = get_control_caps(cam.info.CameraID) """ get_connected_devices() Returns a list of the connected devices. """ function get_connected_devices() num_cameras = get_num_connected_cameras() if num_cameras == 0 throw(ASIWrapperError("No cameras found.")) end cameras = Vector{ASICamera}(undef, num_cameras) for i in 0:num_cameras-1 open_camera(i) init_camera(i) info = get_camera_property(i) control_caps = get_control_caps(i) cameras[i+1] = ASICamera(info, control_caps) end return cameras end """ get_control_value(id::Integer, control_type::ASI_CONTROL_TYPE) Fetches the current setting of the control value, e.g. exposure or gain. # Args: id: Camera id control_type: The control type to fetch, e.g. exposure or gain. # Returns: A tuple (value, is_auto) # Throws: ASIError """ function get_control_value(id::Integer, control_type::ASI_CONTROL_TYPE) value = Ref{Clong}(0) auto = Ref{ASI_BOOL}(ASI_FALSE) err = ASIGetControlValue(id, control_type, value, auto) if err != ASI_SUCCESS throw(ASIError(err)) end return (value[], Bool(auto[])) end get_control_value(cam::ASICamera, control_type::ASI_CONTROL_TYPE) = get_control_value(cam.info.CameraID, control_type) get_temperature(id) = get_control_value(id, ASI_TEMPERATURE)[1] * 0.1 """ set_control_value(id::Integer, control_type::ASI_CONTROL_TYPE, value, auto::Bool=false) Sets a control (e.g. exposure) to the given value. Automatically sets the minimum or maximum if the given value is out of bounds. # Args: id: Camera id control_type: The control type to set, e.g. exposure or gain. value: The value to which the control is set. auto: Whether or not the control should be automatically set. Check if this is supported for the given control beforehand. # Throws: ASIError """ function set_control_value(id::Integer, control_type::ASI_CONTROL_TYPE, value, auto::Bool=false) err = ASISetControlValue(id, control_type, value, auto) if err != ASI_SUCCESS throw(ASIError(err)) end end set_control_value(cam::ASICamera, control_type::ASI_CONTROL_TYPE, value, auto::Bool=false) = set_control_value(cam.info.CameraID, control_type, value, auto) set_gain(id, gain, auto=false) = set_control_value(id, ASI_GAIN, gain, auto) set_exposure(id, exposure_μs, auto=false) = set_control_value(id, ASI_EXPOSURE, exposure_μs, auto) set_gamma(id, gamma, auto=false) = set_control_value(id, ASI_GAMMA, gamma, auto) set_bandwidth(id, bandwidth, auto=false) = set_control_value(id, ASI_BANDWIDTHOVERLOAD, bandwidth, auto) set_flip(id, flip) = set_control_value(id, ASI_FLIP, flip) set_autoexp_max_gain(id, val) = set_control_value(id, ASI_AUTO_MAX_GAIN, val) set_autoexp_max_exp(id, exposure_ms) = set_control_value(id, ASI_AUTO_MAX_EXP, exposure_ms) set_autoexp_target_brightness(id, brightness) = set_control_value(id, ASI_AUTO_MAX_BRIGHTNESS, brightness) set_highspeed_mode(id, active) = set_control_value(id, ASI_HIGH_SPEED_MODE, active) # ... """ get_status(id::Integer) Returns the status of all camera parameters. """ function get_status(id::Integer) control_caps = get_control_caps(id) ret = [] for t in control_caps push!(ret, (t.Name, get_control_value(id, t.ControlType)[1])) end return ret end get_status(cam::ASICamera) = get_status(cam.info.CameraID) """ set_roi_format(id::Integer, width, height, binning, img_type::ASI_IMG_TYPE) Sets the region of interest (roi). Do so before capturing. The width and height are the values *after* binning, i.e. you need to set the width to 640 and the height to 480 if you want to run at 640x480 @ BIN2. ASI120's data size must be a multiple of 1024 which means width*height%1024==0. # Args: id: Camera id width: ROI width height: ROI height binning: The binning mode; 2 means to read out 2x2 pixels together. Check which binning values are supported in the ASI_CAMERA_INFO struct of the camera struct or by calling get_camera_property(id). # Throws: ASIError """ function set_roi_format(id::Integer, width, height, binning, img_type::ASI_IMG_TYPE) if width%8 != 0 throw("Width must be a multiple of 8.") end if height%2 != 0 throw("Height must be a multiple of 2.") end if (width*height)%1024 != 0 && get_camera_property(id).Name in ["ZWO ASI 120MM", "ZWO ASI 120MC"] throw("Width times height must be a multiple of 2.") end err = ASISetROIFormat(id, width, height, binning, img_type) if err != ASI_SUCCESS throw(ASIError(err)) end end set_roi_format(cam::ASICamera, width, height, binning, img_type::ASI_IMG_TYPE) = set_roi_format(cam.info.CameraID, width, height, binning, img_type) """ get_roi_format(id::Integer) Fetches the current region of interest settings. """ function get_roi_format(id::Integer) width = Ref{Cint}(0) height = Ref{Cint}(0) binning = Ref{Cint}(false) img_type = Ref{ASI_IMG_TYPE}(ASI_IMG_RAW8) err = ASIGetROIFormat(id, width, height, binning, img_type) if err != ASI_SUCCESS throw(ASIError(err)) end return (width.x, height.x, binning.x, img_type.x) end get_roi_format(cam::ASICamera) = get_roi_format(cam.info.CameraID) """ set_roi_start(id::Integer, startx, starty) Sets the position of the top-left corner of the region of interest. You can call this while the camera is streaming to move the ROI. By default, the ROI will be centered. In binned mode, the start values are relative to the binned sensor size. # Throws: ASIError """ function set_roi_start(id::Integer, startx, starty) err = ASISetStartPos(id, startx, starty) if err != ASI_SUCCESS throw(ASIError(err)) end end set_roi_start(cam::ASICamera, startx, starty) = set_roi_start(cam.info.CameraID, startx, starty) """ get_roi_start(id::Integer) Returns the region of interest start position (start_x, start_y). """ function get_roi_start(id::Integer) startx = Ref{Cint}(0) starty = Ref{Cint}(0) err = ASIGGetStartPos(id, startx, starty) if err != ASI_SUCCESS throw(ASIError(err)) end return (startx[], starty[]) end get_roi_start(cam::ASICamera) = get_roi_start(cam.info.CameraID) """ get_dropped_frames(id::Integer) Returns the number of dropped frames. Frames are dropped when the USB is bandwidth is low or the harddisk write speed is slow. The count is reset to 0 after capturing stops. """ function get_dropped_frames(id::Integer) dropped_frames = Ref{Cint}(0) err = ASIGetDroppedFrames(id, dropped_frames) if err != ASI_SUCCESS throw(ASIError(err)) end end get_dropped_frames(cam::ASICamera) = get_dropped_frames(cam.info.CameraID) """ """ function enable_dark_subtract(id::Integer, path) err = ASIEnableDarkSubtract(id, path) if err != ASI_SUCCESS throw(ASIError(err)) end end enable_dark_subtract(cam::ASICamera) = enable_dark_subtract(cam.info.CameraID) """ """ function disable_dark_subtract(id::Integer) err = ASIDisableDarkSubtract(id) if err != ASI_SUCCESS throw(ASIError(err)) end end disable_dark_subtract(cam::ASICamera) = disable_dark_subtract(cam.info.CameraID) """ start_video(id::Integer) Start video capture. # Throws: ASIError """ function start_video(id::Integer) err = ASIStartVideoCapture(id) if err != ASI_SUCCESS throw(ASIError(err)) end end start_video(cam::ASICamera) = start_video(cam.info.CameraID) """ stop_video(id::Integer) Stops a running video capture. # Throws: ASIError """ function stop_video(id::Integer) err = ASIStopVideoCapture(id) if err != ASI_SUCCESS throw(ASIError(err)) end end stop_video(cam::ASICamera) = stop_video(cam.info.CameraID) """ get_video_data!(id::Integer, buffer, timeout_ms) Writes a video frame to the given buffer. Make sure the buffer is large enough to fit the frame. Call this as fast as possible in a loop and check whether the return value equals ASI_SUCCESS. # Args: id: Camera id buffer: A buffer to write the video frame to. timeout_ms: Time to wait for a frame. Recommendation: 2 * exposure_μs + 500 ms <- inconsistent units?! # Returns: An ASI_ERROR_CODE, which should be ASI_SUCCESS. """ function get_video_data!(id::Integer, buffer, timeout_ms=500) return ASIGetVideoData(id, buffer, sizeof(buffer), Int32(round(timeout_ms))) end get_video_data!(cam::ASICamera, buffer, timeout_ms) = get_video_data!(cam.info.CameraID, buffer, timeout_ms) """ pulse_guide_on(id::Integer, direction::ASI_GUIDE_DIRECTION) Activates the pulse guide in the given direction. # Args: id: Camera id direction: Guiding direction; call 'instances(ASI_GUIDE_DIRECTION)' # Throws: ASIError """ function pulse_guide_on(id::Integer, direction::ASI_GUIDE_DIRECTION) err = ASIPulseGuideOn(id, direction) if err != ASI_SUCCESS throw(ASIError(err)) end end pulse_guide_on(cam::ASICamera) = pulse_guide_on(cam.info.CameraID) """ pulse_guide_off(id::Integer, direction::ASI_GUIDE_DIRECTION) Deactivates the pulse guide in the given direction. # Args: id: Camera id direction: Guiding direction; call 'instances(ASI_GUIDE_DIRECTION)' for options. # Throws: ASIError """ function pulse_guide_off(id::Integer, direction::ASI_GUIDE_DIRECTION) err = ASIPulseGuideOff(id, direction) if err != ASI_SUCCESS throw(ASIError(err)) end end pulse_guide_off(cam::ASICamera) = pulse_guide_off(cam.info.CameraID) """ start_exposure(id::Integer, is_dark=false) Starts an exposure. All relevant parameters (exposure time, gain) have to be set beforehand by calling set_control_value(...) or e.g. set_gain(...). """ function start_exposure(id::Integer, is_dark=false) err = ASIStartExposure(id, is_dark) if err != ASI_SUCCESS throw(ASIError(err)) end end start_exposure(cam::ASICamera, is_dark=false) = start_exposure(cam.info.CameraID, is_dark) """ stop_exposure(id::Integer) Stops an ongoing exposure. """ function stop_exposure(id::Integer) err = ASIStopExposure(id) if err != ASI_SUCCESS throw(ASIError(err)) end end stop_exposure(cam::ASICamera) = stop_exposure(cam.info.CameraID) """ get_exp_status(id::Integer) Returns the status of an ongoing exposure. See 'instances(ASI_EXP_STATUS)'. # Throws: ASIError """ function get_exp_status(id::Integer) status = Ref{ASI_EXPOSURE_STATUS}(ASI_EXP_IDLE) err = ASIGetExpStatus(id, status) if err != ASI_SUCCESS throw(ASIError(err)) end return status[] end get_exp_status(cam::ASICamera) = get_exp_status(cam.info.CameraID) """ get_data_after_exp!(id::Integer, buffer) Fetches the data after a successful exposure and writes it into buffer. """ function get_data_after_exp!(id::Integer, buffer) err = ASIGetDataAfterExp(id, buffer, sizeof(buffer)) if err != ASI_SUCCESS throw(ASIError(err)) end end get_data_after_exp!(cam::ASICamera, buffer) = get_data_after_exp!(cam.info.CameraID, buffer) """ get_id(id::Integer) Returns the camera id stored in flash, only available for USB3 cameras. """ function get_id(id::Integer) camera_id = ASI_ID() err = ASIGetID(id, camera_id) if err != ASI_SUCCESS throw(ASIError(err)) end end get_id(cam::ASICamera) = get_id(cam.info.CameraID) """ capture_still(id::Integer) Captures a still image. You have to set gain, exposure etc. beforehand using set_control_value(...). # Returns: An array containing the image. # Throws: ASIWrapperError if the image format is not supported by the wrapper, or ASIError in other unfortunate cases """ function capture_still(id::Integer) exposure_μs, _ = get_control_value(id, ASI_EXPOSURE) width, height, binning, img_type = get_roi_format(id) buffer = allocate_buffer(width, height, img_type) start_exposure(id, false) sleep(0.05) # option 2: wait almost the entire exposure time instead of polling # sleep(exposure_μs/1000*0.9) while get_exp_status(id) == ASI_EXP_WORKING sleep(0.01) end if get_exp_status(id) == ASI_EXP_SUCCESS get_data_after_exp!(id, buffer) return buffer[end:-1:1, :] else throw("Exposure failed") end end capture_still(cam::ASICamera) = capture_still(cam.info.CameraID) """ get_gain_offset(id::Integer) Get the presets for offset and gain values at different "sweet spots". # Args: id: Camera id # Returns: A dictionary containing: 1. The offset at highest dynamic range 2. The offset at unity gain 3. The gain with lowest readout noise 4. The offset with lowest readout noise # Throws: ASIError """ function get_gain_offset(id::Integer) offset_highest_dr = Ref{Cint}(0) # Offset at highest dynamic range offset_unity_gain = Ref{Cint}(0) # Offset at unity gain gain_lowest_rn = Ref{Cint}(0) # Gain at lowest readout noise offset_lowest_rn = Ref{Cint}(0) # Offset at lowest readout noise err = ASIGetGainOffset(id, offset_highest_dr, offset_unity_gain, gain_lowest_rn, offset_lowest_rn) if err != ASI_SUCCESS throw(ASIError(err)) end return Dict(["offset_highest_dr" => offset_highest_dr[], "offset_unity_gain" => offset_unity_gain[], "gain_lowest_rn" => gain_lowest_rn[], "offset_lowest_rn" => offset_lowest_rn[]]) end get_gain_offset(cam::ASICamera) = get_gain_offset(cam.info.CameraID) """ get_sdk_version() Returns the SDK version. """ function get_sdk_version() return unsafe_string(ASIGetSDKVersion()) end """ get_supported_modes(id::Integer) Returns the supported camera modes, only need to call when the IsTriggerCam in the CameraInfo is true. # Throws: ASIError """ function get_supported_modes(id::Integer) supported_modes = ASI_SUPPORTED_MODE() err = ASIGetCameraSupportMode(id, supported_modes) if err != ASI_SUCCESS throw(ASIError(err)) end return [m for m in supported_modes.SupportedCameraModes if m > ASI_MODE_END] end get_supported_modes(cam::ASICamera) = get_supported_modes(cam.info.CameraID) """ get_camera_mode(id::Integer) Get the current camera mode, only needed to call when the IsTriggerCam in the CameraInfo is true. """ function get_camera_mode(id::Integer) mode = Ref{ASI_CAMERA_MODE}(ASI_MODE_END) err = ASIGetCameraMode(id, mode) if err != ASI_SUCCESS throw(ASIError(err)) end return mode[] end get_camera_mode(cam::ASICamera) = get_camera_mode(cam.info.CameraID) """ set_camera_mode(id::Integer, mode::ASI_CAMERA_MODE) Set the camera mode, only needed to call when the IsTriggerCam in the CameraInfo is true. """ function set_camera_mode(id::Integer, mode::ASI_CAMERA_MODE) err = ASISetCameraMode(id, mode) if err != ASI_SUCCESS throw(ASIError(err)) end end set_camera_mode(cam::ASICamera) = set_camera_mode(cam.info.CameraID) """ send_soft_trigger(id::Integer, start::ASI_BOOL) From original docs: Send a softTrigger. For edge trigger, it only need to set true which means send a rising trigger to start exposure. For level trigger, it need to set true first means start exposure, and set false means stop exposure. Only needed to call when the IsTriggerCam in the CameraInfo is true. """ function send_soft_trigger(id::Integer, start::ASI_BOOL) err = ASISendSoftTrigger(id, start) if err != ASI_SUCCESS throw(ASIError(err)) end end send_soft_trigger(cam::ASICamera) = send_soft_trigger(cam.info.CameraID) """ get_serial_number(id::Integer) Returns the camera serial number. """ function get_serial_number(id::Integer) sn = ASI_SN() err = ASIGetSerialNumber(id, sn) if err != ASI_SUCCESS throw(ASIError(err)) end return unsafe_string(sn.id) end get_serial_number(cam::ASICamera) = get_serial_number(cam.info.CameraID) """ set_trigger_output_config(id::Integer, pin::ASI_TRIG_OUTPUT_PIN, high::ASI_BOOL, delay, duration) Configure the output pin (A or B) of Trigger port. If duration <= 0, this output pin will be closed. Only need to call when the IsTriggerCam in the CameraInfo is true. # Args: id: Camera id pin: Select the pin for output high: If true, the selected pin will output a high level as a signal when it is effective. delay: The delay between the camera receiving a trigger signal and the output of the valid level. From 0 μs - 2,000,000,000 μs. duration: The duration of the valid level output. Same range as delay. """ function set_trigger_output_config(id::Integer, pin::ASI_TRIG_OUTPUT_PIN, high::ASI_BOOL, delay_μs, duration_μs) err = ASISetTriggerOutputIOConf(id, pin, high, delay_μs, duration_μs) if err != ASI_SUCCESS throw(ASIError(err)) end end set_trigger_output_config(cam::ASICamera) = set_trigger_output_config(cam.info.CameraID) """ get_trigger_output_config(id::Integer) Get the output pin configuration, only needed to call when the IsTriggerCam in the CameraInfo is true. """ function get_trigger_output_config(id::Integer) pin = ASI_TRIG_OUTPUT_NONE high = ASI_FALSE delay = Ref{Clong}(0) duration = Ref{Clong}(0) err = ASIGetTriggerOutputIOConf(id, pin, high, delay, duration) if err != ASI_SUCCESS throw(ASIError(err)) end return Dict(["pin" => pin, "high" => high, "delay" => delay, "duration" => duration]) end get_trigger_output_config(cam::ASICamera) = get_trigger_output_config(cam.info.CameraID) # """ # capture_video(id) # # Starts capturing a video in a while loop, displaying it in a Makie scene. # # Args: # id: Camera object or int # # Throws: # An error when the camera returns an image type which is unsupported by this package. # """ # function capture_video(id) # # Camera stuff setup # exposure_μs, _ = get_control_value(id, ASI_EXPOSURE) # width, height, binning, img_type = get_roi_format(id) # # buffer = allocate_buffer(width, height, img_type) # # # Makie scene setup # scene = Scene() #resolution = (size(buffer,2),size(buffer,1))) # im = image!(scene, buffer, show_axis = false, scale_plot = false, colorrange=(0,255))[end] # display(scene) # # function video_loop() # while isopen(scene) # get_video_data!(cam, buffer, 0.2*exposure_μs+500) # im[1] = buffer[end:-1:1, :] # flip x axis for some reason... # yield() # end # end # # start_video(id) # # try # video_loop() # catch err # rethrow(err) # finally # stop_video(id) # end # # return nothing # end # # capture_video(cam::ASICamera, callback::Function) = capture_video(cam.info.CameraID, callback)
LibASICamera
https://github.com/AlfTetzlaff/LibASICamera.jl.git
[ "MIT" ]
0.1.0
655dc935ae8cfe92c07c1b414e629b774e0b42dc
code
7177
const ASICAMERA_ID_MAX = 128 # Type and error enumerations @cenum ASI_CONTROL_TYPE::UInt32 begin ASI_GAIN = 0 ASI_EXPOSURE = 1 # Exposure time in μs ASI_GAMMA = 2 # 1-100, default: 50 ASI_WB_R = 3 # white balance, red component ASI_WB_B = 4 # white balance, blue ASI_OFFSET = 5 # pixel value offset / bias ASI_BANDWIDTHOVERLOAD = 6 # data transfer rate percentage ASI_OVERCLOCK = 7 ASI_TEMPERATURE = 8 # 10 times the actual temperature ASI_FLIP = 9 ASI_AUTO_MAX_GAIN = 10 # Maximum gain when auto adjust ASI_AUTO_MAX_EXP = 11 # Maximum exposure time when auto adjust, μs ASI_AUTO_TARGET_BRIGHTNESS = 12 # Target brightness when auto adjust ASI_HARDWARE_BIN = 13 ASI_HIGH_SPEED_MODE = 14 ASI_COOLER_POWER_PERC = 15 ASI_TARGET_TEMP = 16 # °C, don't multiply by 10 ASI_COOLER_ON = 17 ASI_MONO_BIN = 18 # lead to a smaller grid at software bin mode for color camera?! ASI_FAN_ON = 19 ASI_PATTERN_ADJUST = 20 # currently only supported by 1600 mono camera ASI_ANTI_DEW_HEATER = 21 end const ASI_BRIGHTNESS = ASI_OFFSET const ASI_AUTO_MAX_BRIGHTNESS = ASI_AUTO_TARGET_BRIGHTNESS @cenum ASI_BAYER_PATTERN::UInt32 begin ASI_BAYER_RG = 0 ASI_BAYER_BG = 1 ASI_BAYER_GR = 2 ASI_BAYER_GB = 3 end @cenum ASI_IMG_TYPE::Int32 begin ASI_IMG_RAW8 = 0 ASI_IMG_RGB24 = 1 ASI_IMG_RAW16 = 2 ASI_IMG_Y8 = 3 ASI_IMG_END = -1 end @cenum ASI_GUIDE_DIRECTION::UInt32 begin ASI_GUIDE_NORTH = 0 ASI_GUIDE_SOUTH = 1 ASI_GUIDE_EAST = 2 ASI_GUIDE_WEST = 3 end @cenum ASI_FLIP_STATUS::UInt32 begin ASI_FLIP_NONE = 0 ASI_FLIP_HORIZ = 1 ASI_FLIP_VERT = 2 ASI_FLIP_BOTH = 3 end @cenum ASI_CAMERA_MODE::Int32 begin ASI_MODE_NORMAL = 0 ASI_MODE_TRIG_SOFT_EDGE = 1 ASI_MODE_TRIG_RISE_EDGE = 2 ASI_MODE_TRIG_FALL_EDGE = 3 ASI_MODE_TRIG_SOFT_LEVEL = 4 ASI_MODE_TRIG_HIGH_LEVEL = 5 ASI_MODE_TRIG_LOW_LEVEL = 6 ASI_MODE_END = -1 end @cenum ASI_TRIG_OUTPUT::Int32 begin ASI_TRIG_OUTPUT_PINA = 0 ASI_TRIG_OUTPUT_PINB = 1 ASI_TRIG_OUTPUT_NONE = -1 end const ASI_TRIG_OUTPUT_PIN = ASI_TRIG_OUTPUT @cenum ASI_ERROR_CODE::UInt32 begin ASI_SUCCESS = 0 ASI_ERROR_INVALID_INDEX = 1 ASI_ERROR_INVALID_ID = 2 ASI_ERROR_INVALID_CONTROL_TYPE = 3 ASI_ERROR_CAMERA_CLOSED = 4 ASI_ERROR_CAMERA_REMOVED = 5 ASI_ERROR_INVALID_PATH = 6 ASI_ERROR_INVALID_FILEFORMAT = 7 ASI_ERROR_INVALID_SIZE = 8 ASI_ERROR_INVALID_IMGTYPE = 9 ASI_ERROR_OUTOF_BOUNDARY = 10 ASI_ERROR_TIMEOUT = 11 ASI_ERROR_INVALID_SEQUENCE = 12 ASI_ERROR_BUFFER_TOO_SMALL = 13 ASI_ERROR_VIDEO_MODE_ACTIVE = 14 ASI_ERROR_EXPOSURE_IN_PROGRESS = 15 ASI_ERROR_GENERAL_ERROR = 16 ASI_ERROR_INVALID_MODE = 17 ASI_ERROR_END = 18 end struct ASIError <: Exception code::ASI_ERROR_CODE end Base.showerror(io::IO, err::ASIError) = print(io, err.code) struct ASIWrapperError <: Exception message::String end Base.showerror(io::IO, err::ASIWrapperError) = print(io, err.message) @cenum ASI_BOOL::UInt32 begin ASI_FALSE = 0 ASI_TRUE = 1 end ASI_BOOL(b::Bool) = b ? ASI_TRUE : ASI_FALSE @cenum ASI_EXPOSURE_STATUS::UInt32 begin ASI_EXP_IDLE = 0 ASI_EXP_WORKING = 1 ASI_EXP_SUCCESS = 2 ASI_EXP_FAILED = 3 end # Structs # kept mutable for now, has to be checked # added constructors mutable struct _ASI_CAMERA_INFO Name::NTuple{64, Cchar} CameraID::Cint MaxHeight::Clong MaxWidth::Clong IsColorCam::ASI_BOOL BayerPattern::ASI_BAYER_PATTERN SupportedBins::NTuple{16, Cint} SupportedVideoFormat::NTuple{8, ASI_IMG_TYPE} PixelSize::Cdouble MechanicalShutter::ASI_BOOL ST4Port::ASI_BOOL IsCoolerCam::ASI_BOOL IsUSB3Host::ASI_BOOL IsUSB3Camera::ASI_BOOL ElecPerADU::Cfloat BitDepth::Cint IsTriggerCam::ASI_BOOL Unused::NTuple{16, UInt8} end _ASI_CAMERA_INFO() = _ASI_CAMERA_INFO( NTuple{64, Cchar}([0 for i in 1:64]), 0,0,0, ASI_FALSE, ASI_BAYER_RG, NTuple{16, Cint}([0 for i in 1:16]), NTuple{8, ASI_IMG_TYPE}([ASI_IMG_END for i in 1:8]), 0, ASI_FALSE, ASI_FALSE, ASI_FALSE, ASI_FALSE, ASI_FALSE, 1., 0, ASI_FALSE, NTuple{16, UInt8}([0 for i in 1:16]) ) # human-readable type struct ASI_CAMERA_INFO Name::String CameraID::Cint MaxHeight::Clong MaxWidth::Clong IsColorCam::ASI_BOOL BayerPattern::ASI_BAYER_PATTERN SupportedBins::Vector SupportedVideoFormat::Vector PixelSize::Cdouble MechanicalShutter::ASI_BOOL ST4Port::ASI_BOOL IsCoolerCam::ASI_BOOL IsUSB3Host::ASI_BOOL IsUSB3Camera::ASI_BOOL ElecPerADU::Cfloat BitDepth::Cint IsTriggerCam::ASI_BOOL end ASI_CAMERA_INFO(info::_ASI_CAMERA_INFO) = ASI_CAMERA_INFO( split(String([Char(c) for c in info.Name]), "\0")[1], info.CameraID, info.MaxHeight, info.MaxWidth, info.IsColorCam, info.BayerPattern, [i for i in info.SupportedBins if i > 0], [i for i in info.SupportedVideoFormat if i > ASI_IMG_END], info.PixelSize, info.MechanicalShutter, info.ST4Port, info.IsCoolerCam, info.IsUSB3Host, info.IsUSB3Camera, info.ElecPerADU, info.BitDepth, info.IsTriggerCam ) mutable struct _ASI_CONTROL_CAPS Name::NTuple{64, Cchar} Description::NTuple{128, UInt8} MaxValue::Clong MinValue::Clong DefaultValue::Clong IsAutoSupported::ASI_BOOL IsWritable::ASI_BOOL ControlType::ASI_CONTROL_TYPE Unused::NTuple{32, UInt8} end _ASI_CONTROL_CAPS() = _ASI_CONTROL_CAPS( NTuple{64, Cchar}([0 for i in 1:64]), # Name NTuple{128, Cchar}([0 for i in 1:128]), # Description 0, 0, 0, # Max, Min, Default ASI_FALSE, # IsAutoSupported ASI_FALSE, # IsWritable ASI_GAIN, # ControlType; gain corresponds to 0 NTuple{32, UInt8}([0 for i in 1:32]) # Unused ) # human-readable type struct ASI_CONTROL_CAPS Name::String Description::String MaxValue::Clong MinValue::Clong DefaultValue::Clong IsAutoSupported::ASI_BOOL IsWritable::ASI_BOOL ControlType::ASI_CONTROL_TYPE end ASI_CONTROL_CAPS(control_caps::_ASI_CONTROL_CAPS) = ASI_CONTROL_CAPS( split(String([Char(c) for c in control_caps.Name]), "\0")[1], # Name split(String([Char(c) for c in control_caps.Description]), "\0")[1], # Description control_caps.MaxValue, control_caps.MinValue, control_caps.DefaultValue, # Max, Min, Default control_caps.IsAutoSupported, # IsAutoSupported control_caps.IsWritable, # IsWritable control_caps.ControlType # ControlType; gain corresponds to 0 ) # const ASI_CONTROL_CAPS = _ASI_CONTROL_CAPS mutable struct _ASI_ID id::NTuple{8, Cuchar} end _ASI_ID() = _ASI_ID(NTuple{8, Cuchar}(zeros(Cuchar, 10))) const ASI_ID = _ASI_ID const ASI_SN = ASI_ID mutable struct _ASI_SUPPORTED_MODE SupportedCameraModes::NTuple{16, ASI_CAMERA_MODE} end _ASI_SUPPORTED_MODE() = _ASI_SUPPORTED_MODE( NTuple{16, ASI_CAMERA_MODE}(fill(ASI_MODE_END, 16)) ) const ASI_SUPPORTED_MODE = _ASI_SUPPORTED_MODE
LibASICamera
https://github.com/AlfTetzlaff/LibASICamera.jl.git
[ "MIT" ]
0.1.0
655dc935ae8cfe92c07c1b414e629b774e0b42dc
code
890
using Test using LibASICamera devices = [] try devices = get_connected_devices() catch err println("\nConnect the camera for testing and make sure you can access the camera without being root by calling \"sudo install asi.rules /lib/udev/rules.d\" from the lib subdir of the SDK and then relogging / rebooting.\n") rethrow(err) end @testset "$(cam.info.Name)" for cam in devices control_caps = get_control_caps(cam) @testset "set/get $(cap.Name)" for cap in control_caps default = cap.DefaultValue control_type = cap.ControlType if cap.IsWritable == ASI_TRUE set_control_value(cam, control_type, default, auto = false) @test default == get_control_value(cam, control_type)[1] end end @testset "Capture Still" begin @test isa(capture_still(cam), Array) end close_camera(cam) end
LibASICamera
https://github.com/AlfTetzlaff/LibASICamera.jl.git
[ "MIT" ]
0.1.0
655dc935ae8cfe92c07c1b414e629b774e0b42dc
docs
5562
# <img src="/docs/LibASICamera_logo.svg?raw=true&sanitize=true" width="5%"> LibASICamera.jl [![](https://img.shields.io/badge/docs-dev-blue)](https://alftetzlaff.github.io/LibASICamera.jl/dev/) [![](https://img.shields.io/badge/ZWO-ASI-critical)](https://astronomy-imaging-camera.com/) A julia wrapper for the ASI Camera interface. Please note that this is my first julia project, so suggestions for improvements are welcome! ## Installation To install this package, spin up julia, hit the ']' key to enter the package manager, then type: ```julia pkg> add LibASICamera # works, as soon as this package is registered #or pkg> add https://github.com/AlfTetzlaff/LibASICamera.jl ``` ### Linux specific steps The ZWO ASI SDK will be downloaded in the background. Please note that (on Linux) you have to install the udev rules for the cameras. Run ```julia pkg> build -v LibASICamera ``` to get the command to run in order to install the udev rules. Or in your terminal, run: ``` sudo install /path/to/asi.rules /lib/udev/rules.d ``` ### Windows specific steps Download and install the camera driver from [here](https://astronomy-imaging-camera.com/software-drivers). ### Test The wrapper was written and tested on Linux. In principle it should work on Windows and Mac as well, but I couldn't test it so far. You can then connect the camera and run partial tests on functionality by typing in the package manager: ```julia pkg> test LibASICamera ``` ## Usage Get the connected devices and open them: ```julia devices = get_connected_devices() cam = devices[1] ``` Query information about the camera, like resolution or pixel size: ```julia @show get_camera_property(cam) #or @show cam.info ``` Get the parameters, which can be controlled or queried by the user, like gain, exposure or temperature: ```julia @show get_control_caps(cam) # or @show cam.control_caps ``` Get and set a control value, for some, special shorthand functions exist: ```julia value, is_auto_controlled = get_control_value(cam, ASI_GAIN) set_control_value(cam, ASI_GAIN, value, is_auto_controlled) set_gain(cam, value) get_temperature(cam) ``` ## Still image Take a still image: ```julia set_gain(cam, 30) # example values set_exposure(cam, 500) img = capture_still(cam) ``` ## Video Take a video using Makie: ```julia using LibASICamera using Makie devices = get_connected_devices() cam = devices[1] set_gain(cam, 30, true) # example values set_exposure(cam, 500, true) function capture_video(cam::ASICamera) # Camera stuff setup width, height, binning, img_type = get_roi_format(cam) buffer = allocate_buffer(width, height, img_type) # Makie scene setup colorrange = img_type == ASI_IMG_RAW16 ? 2^16-1 : 255 scene = Scene() img = image!(scene, buffer, show_axis = false, scale_plot = false, colorrange=(0,colorrange))[end] display(scene) function video_loop() err = ASI_SUCCESS while isopen(scene) && err == ASI_SUCCESS err = get_video_data!(cam, buffer, 5000) img[1] = buffer[end:-1:1, :] # for some reason we have to flip x yield() end println(err) end start_video(cam) video_loop() stop_video(cam) end @async t = capture_video(cam) stop_video(cam) # Always close the camera at the end close_camera(cam) ``` The above example runs the video capturing asynchronously in the main _thread_. You might notice that the REPL input gets sluggish under certain circumstances (exposure times, bandwidth settings and depending on your hardware). This can be resolved by moving the video capturing to another _process_ using Distributed.jl: ```julia using Distributed addprocs(1) nprocs() #%% @everywhere using LibASICamera @everywhere using Makie #%% @everywhere function main() cam = get_connected_devices()[1] set_exposure(cam, 500, true) set_gain(cam, 30) set_control_value(cam, ASI_BANDWIDTHOVERLOAD, 90) set_control_value(cam, ASI_HIGH_SPEED_MODE, false) set_roi_format(cam, 1280, 960, 1, ASI_IMG_RAW8) # set_roi_format(cam, 640, 480, 2, ASI_IMG_RAW8) # set_roi_format(cam, 640, 480, 1, ASI_IMG_RAW8) # set_roi_format(cam, 320, 240, 1, ASI_IMG_RAW8) # set_roi_format(cam, 168, 128, 1, ASI_IMG_RAW8) function capture_video(cam::ASICamera) # Camera stuff setup width, height, binning, img_type = get_roi_format(cam) buffer = allocate_buffer(width, height, img_type) # Makie scene setup colorrange = img_type == ASI_IMG_RAW16 ? 2^16-1 : 255 scene = Scene() img = image!(scene, buffer, show_axis = false, scale_plot = false, colorrange=(0,colorrange))[end] t = text!(scene, "0 FPS", color=:yellow, position=(width, height), align=(:top, :right), textsize=Int(height/16)) display(scene) function video_loop(cam, buffer, img, t) err = ASI_SUCCESS while isopen(scene) && err == ASI_SUCCESS t0 = time_ns() err = get_video_data!(cam, buffer, 5000) img[1] = buffer[end:-1:1, :] # for some reason we have to flip x t1 = time_ns() t[end][1] = string(round(1. /(Float64(t1-t0)/1E9), digits=1), " FPS") yield() end println(err) end start_video(cam) video_loop(cam, buffer, img, t) stop_video(cam) end capture_video(cam) close_camera(cam) end remotecall(main, 2) ``` If you encounter any issues, don't hesitate to ask!
LibASICamera
https://github.com/AlfTetzlaff/LibASICamera.jl.git
[ "MIT" ]
0.1.0
655dc935ae8cfe92c07c1b414e629b774e0b42dc
docs
91
# LibASICamera API ```@autodocs Modules = [LibASICamera] Order = [:function, :type] ```
LibASICamera
https://github.com/AlfTetzlaff/LibASICamera.jl.git
[ "MIT" ]
0.5.8
9a2694230a5866647c83138168a70350d10e5e36
code
166
using NeighbourLists using JuLIP using BenchmarkTools using PyCall using ASE include("profile_pairlist.jl") include("profile_nbody.jl") include("profile_forces.jl")
NeighbourLists
https://github.com/JuliaMolSim/NeighbourLists.jl.git
[ "MIT" ]
0.5.8
9a2694230a5866647c83138168a70350d10e5e36
code
4080
using NeighbourLists using JuLIP, StaticArrays # ================================== # Lennard-Jones Test # ================================== function lj_iter(nlist, V) Es = zeros(nsites(nlist)) for (i, _1, r, _2) in pairs(nlist) Es[i] += V(r) end dE = zeros(eltype(nlist.R), nsites(nlist)) for (i, j, r, R) in pairs(nlist) dV = (@D V(r)) * (R/r) dE[j] += dV dE[i] -= dV end return Es, dE end function lj_mapreduce{T}(nlist::PairList{T}, V) Es = maptosites!( (r,R) -> V(r), zeros(T, nsites(nlist)), pairs(nlist) ) dE = maptosites_d!((r,R) -> (@D V(r)), zeros(JVec{T}, nsites(nlist)), pairs(nlist) ) end function lj_nbody{T}(nlist::PairList{T}, V) Es = maptosites!(r -> V(r[1]), zeros(T, nsites(nlist)), nbodies(2, nlist) ) dE = maptosites_d!(r -> (@D V(r[1])), zeros(JVec{T}, nsites(nlist)), nbodies(2, nlist) ) end println("----------------------------------------") println("Lennard-Jones Test") println("----------------------------------------") r0 = rnn(:Fe) cutoff = r0 * 2.7 lj = LennardJones(r0, 1.0) * C1Shift(cutoff) for L in (2, 5, 10, 20) at = bulk(:Fe, cubic=true) * L println("Bulk Fe, Nat = $(length(at))") println("PairList construction:") @time nlist = PairList(positions(at), cutoff, cell(at), pbc(at)) @time nlist = PairList(positions(at), cutoff, cell(at), pbc(at)) println("Energy + Force assembly Iterator:") @time lj_iter(nlist, lj) @time lj_iter(nlist, lj) println("Energy + Force assembly MapReduce:") @time lj_mapreduce(nlist, lj) @time lj_mapreduce(nlist, lj) println("Energy + Force assembly nbody MapReduce:") @time lj_nbody(nlist, lj) @time lj_nbody(nlist, lj) end # # ================================== # # EAM Test # # ================================== # # # function eam_iter{T}(nlist::PairList{T}, V) # Es = zeros(T, nsites(nlist)) # for (i, _1, r, R) in NeighbourLists.sites(nlist) # Es[i] += V(r, R) # end # dE = zeros(JVec{T}, nsites(nlist)) # for (i, j, r, R) in NeighbourLists.sites(nlist) # dV = @D V(r, R) # dE[j] += dV # dE[i] -= sum(dV) # end # return Es, dE # end # # function eam_iter!{T}(nlist::PairList{T}, V) # Es = zeros(T, nsites(nlist)) # for (i, _1, r, R) in NeighbourLists.sites(nlist) # Es[i] += V(r, R) # end # dE = zeros(JVec{T}, nsites(nlist)) # ndv = maximum(length(j) for (i, j, r, R) in NeighbourLists.sites(nlist)) # dV = zeros(JVec{T}, ndv) # for (i, j, r, R) in NeighbourLists.sites(nlist) # fill!(dV, zero(JVec{T})) # JuLIP.Potentials.evaluate_d!(dV, V, r, R) # for a = 1:length(j) # dE[j[a]] += dV[a] # dE[i] -= dV[a] # end # end # return Es, dE # end # # function eam_mapreduce{T}(nlist::PairList{T}, V) # Es = map!(V, zeros(T, nsites(nlist)), NeighbourLists.sites(nlist)) # dE = map_cfd!((r, R) -> (@D V(r,R)), zeros(JVec{T}, nsites(nlist)), # NeighbourLists.sites(nlist)) # end # # println("----------------------------------------") # println("Analytic EAM Test") # println("----------------------------------------") # r0 = rnn("Fe") # cutoff = r0 * 2.7 # ϕ = (@analytic r -> 1/r) * C1Shift(cutoff) # ρ = (@analytic r -> exp(-r/3)) * C1Shift(cutoff) # eam = EAM(ϕ, ρ, @analytic t -> sqrt(1+t)) # # for L in (5, 10, 20) # at = bulk("Fe", cubic=true) * L # println("Bulk Fe, Nat = $(length(at))") # println("PairList construction:") # @time nlist = PairList(positions(at), cutoff, cell(at), pbc(at)) # @time nlist = PairList(positions(at), cutoff, cell(at), pbc(at)) # println("Energy + Force assembly Iterator:") # @time eam_iter(nlist, eam) # @time eam_iter(nlist, eam) # println("Energy + Force assembly MapReduce:") # @time eam_mapreduce(nlist, eam) # @time eam_mapreduce(nlist, eam) # println("Energy + Force assembly In-place Iterator:") # @time eam_iter!(nlist, eam) # @time eam_iter!(nlist, eam) # end
NeighbourLists
https://github.com/JuliaMolSim/NeighbourLists.jl.git