licenses
sequencelengths
1
3
version
stringclasses
677 values
tree_hash
stringlengths
40
40
path
stringclasses
1 value
type
stringclasses
2 values
size
stringlengths
2
8
text
stringlengths
25
67.1M
package_name
stringlengths
2
41
repo
stringlengths
33
86
[ "MIT" ]
0.8.0
da36639322f6789ee33aa2d4c55186f6b2bccdd2
code
1676
export list_guild_emojis, get_guild_emoji, create_guild_emoji, modify_guild_emoji, delete_guild_emoji """ list_guild_emojis(c::Client, guild::Integer) -> Vector{Emoji} Get the [`Emoji`](@ref)s in a [`Guild`](@ref). """ function list_guild_emojis(c::Client, guild::Integer) return Response{Vector{Emoji}}(c, :GET, "/guilds/$guild/emojis") end """ get_guild_emoji(c::Client, guild::Integer, emoji::Integer) -> Emoji Get an [`Emoji`](@ref) in a [`Guild`](@ref). """ function get_guild_emoji(c::Client, guild::Integer, emoji::Integer) return Response{Emoji}(c, :GET, "/guilds/$guild/emojis/$emoji") end """ create_guild_emoji(c::Client, guild::Integer; kwargs...) -> Emoji Create an [`Emoji`](@ref) in a [`Guild`](@ref). More details [here](https://discordapp.com/developers/docs/resources/emoji#create-guild-emoji). """ function create_guild_emoji(c::Client, guild::Integer; kwargs...) return Response{Emoji}(c, :POST, "/guilds/$guild/emojis"; body=kwargs) end """ modify_guild_emoji(c::Client, guild::Integer, emoji::Integer; kwargs...) -> Emoji Edit an [`Emoji`](@ref) in a [`Guild`](@ref). More details [here](https://discordapp.com/developers/docs/resources/emoji#modify-guild-emoji). """ function modify_guild_emoji(c::Client, guild::Integer, emoji::Integer; kwargs...) return Response{Emoji}(c, :PATCH, "/guilds/$guild/emojis/$emoji"; body=kwargs) end """ delete_guild_emoji(c::Client, guild::Integer, emoji::Integer) Delete an [`Emoji`](@ref) from a [`Guild`](@ref). """ function delete_guild_emoji(c::Client, guild::Integer, emoji::Integer) return Response(c, :DELETE, "/guilds/$guild/emojis/$emoji") end
Ekztazy
https://github.com/Humans-of-Julia/Ekztazy.jl.git
[ "MIT" ]
0.8.0
da36639322f6789ee33aa2d4c55186f6b2bccdd2
code
193
include("audit_log.jl") include("channel.jl") include("emoji.jl") include("guild.jl") include("invite.jl") include("user.jl") include("voice.jl") include("webhook.jl") include("interaction.jl")
Ekztazy
https://github.com/Humans-of-Julia/Ekztazy.jl.git
[ "MIT" ]
0.8.0
da36639322f6789ee33aa2d4c55186f6b2bccdd2
code
12880
export create_guild, get_guild, modify_guild, delete_guild, get_guild_channels, create_guild_channel, modify_guild_channel_positions, get_guild_member, list_guild_members, add_guild_member, modify_guild_member, modify_current_user_nick, add_guild_member_role, remove_guild_member_role, remove_guild_member, get_guild_bans, get_guild_ban, create_guild_ban, remove_guild_ban, get_guild_roles, create_guild_role, modify_guild_role_positions, modify_guild_role, delete_guild_role, get_guild_prune_count, begin_guild_prune, get_guild_voice_regions, get_guild_invites, get_guild_integrations, create_guild_integration, modify_guild_integration, delete_guild_integration, sync_guild_integration, get_guild_embed, modify_guild_embed, get_vanity_url, get_guild_widget_image """ create_guild(c::Client; kwargs...) -> Guild Create a [`Guild`](@ref). More details [here](https://discordapp.com/developers/docs/resources/guild#create-guild). """ function create_guild(c::Client; kwargs...) return Response{Guild}(c, :POST, "/guilds"; body=kwargs) end """ get_guild(c::Client, guild::Integer) -> Guild Get a [`Guild`](@ref). """ function get_guild(c::Client, guild::Integer) return Response{Guild}(c, :GET, "/guilds/$guild") end """ modify_guild(c::Client, guild::Integer; kwargs...) -> Guild Edit a [`Guild`](@ref). More details [here](https://discordapp.com/developers/docs/resources/guild#modify-guild). """ function modify_guild(c::Client, guild::Integer; kwargs...) return Response{Guild}(c, :PATCH, "/guilds/$guild"; body=kwargs) end """ delete_guild(c::Client, guild::Integer) Delete a [`Guild`](@ref). """ function delete_guild(c::Client, guild::Integer) return Response(c, :DELETE, "/guilds/$guild") end """ get_guild_channels(c::Client, guild::Integer) -> Vector{DiscordChannel} Get the [`DiscordChannel`](@ref)s in a [`Guild`](@ref). """ function get_guild_channels(c::Client, guild::Integer) return Response{Vector{DiscordChannel}}(c, :GET, "/guilds/$guild/channels") end """ create_guild_channel(c::Client, guild::Integer; kwargs...) -> DiscordChannel Create a [`DiscordChannel`](@ref) in a [`Guild`](@ref). More details [here](https://discordapp.com/developers/docs/resources/guild#create-guild-channel). """ function create_guild_channel(c::Client, guild::Integer; kwargs...) return Response{DiscordChannel}(c, :POST, "/guilds/$guild/channels"; body=kwargs) end """ modify_guild_channel_positions(c::Client, guild::Integer, positions...) Modify the positions of [`DiscordChannel`](@ref)s in a [`Guild`](@ref). More details [here](https://discordapp.com/developers/docs/resources/guild#modify-guild-channel-positions). """ function modify_guild_channel_positions(c::Client, guild::Integer, positions...) return Response(c, :PATCH, "/guilds/$guild/channels"; body=positions) end """ get_guild_member(c::Client, guild::Integer, user::Integer) -> Member Get a [`Member`](@ref) in a [`Guild`](@ref). """ function get_guild_member(c::Client, guild::Integer, user::Integer) return Response{Member}(c, :GET, "/guilds/$guild/members/$user") end """ list_guild_members(c::Client, guild::Integer; kwargs...) -> Vector{Member} Get a list of [`Member`](@ref)s in a [`Guild`](@ref). More details [here](https://discordapp.com/developers/docs/resources/guild#list-guild-members). """ function list_guild_members(c::Client, guild::Integer; kwargs...) return Response{Vector{Member}}(c, :GET, "/guilds/$guild/members"; kwargs...) end """ add_guild_member(c::Client; kwargs...) -> Member Add a [`User`](@ref) to a [`Guild`](@ref). More details [here](https://discordapp.com/developers/docs/resources/guild#add-guild-member). """ function add_guild_member(c::Client, guild::Integer, user::Integer; kwargs...) return Response{Member}(c, :PUT, "/guilds/$guild/members/$user"; body=kwargs) end """ modify_guild__member(c::Client, guild::Integer, user::Integer; kwargs...) Modify a [`Member`](@ref) in a [`Guild`](@ref). More details [here](https://discordapp.com/developers/docs/resources/guild#modify-guild-member). """ function modify_guild_member(c::Client, guild::Integer, user::Integer; kwargs...) return Response(c, :PATCH, "/guilds/$guild/members/$user"; body=kwargs) end """ modify_current_user_nick(c::Client, guild::Intger; kwargs...) -> String Modify the [`Client`](@ref) user's nickname in a [`Guild`](@ref). More details [here](https://discordapp.com/developers/docs/resources/guild#modify-current-user-nick). """ function modify_current_user_nick(c::Client, guild::Integer; kwargs...) return Response{String}(c, :PATCH, "/guilds/$guild/members/@me/nick"; body=kwargs) end """ add_guild_member_role(c::Client, guild::Integer, user::Integer, role::Integer) Add a [`Role`](@ref) to a [`Member`](@ref). """ function add_guild_member_role(c::Client, guild::Integer, user::Integer, role::Integer) return Response(c, :PUT, "/guilds/$guild/members/$user/roles/$role") end """ remove_guild_member_role(c::Client, guild::Integer, user::Integer, role::Integer) Remove a [`Role`](@ref) from a [`Member`](@ref). """ function remove_guild_member_role(c::Client, guild::Integer, user::Integer, role::Integer) return Response(c, :DELETE, "/guilds/$guild/members/$user/roles/$role") end """ remove_guild_member(c::Client, guild::Integer, user::Integer) Kick a [`Member`](@ref) from a [`Guild`](@ref). """ function remove_guild_member(c::Client, guild::Integer, user::Integer) return Response(c, :DELETE, "/guilds/$guild/members/$user") end """ get_guild_bans(c::Client, guild::Integer) -> Vector{Ban} Get a list of [`Ban`](@ref)s in a [`Guild`](@ref). """ function get_guild_bans(c::Client, guild::Integer) return Response{Vector{Ban}}(c, :GET, "/guilds/$guild/bans") end """ get_ban(c::Client, guild::Integer, user::Integer) -> Ban Get a [`Ban`](@ref) in a [`Guild`](@ref). """ function get_guild_ban(c::Client, guild::Integer, user::Integer) return Response{Ban}(c, :GET, "/guilds/$guild/bans/$user") end """ create_guild_ban(c::Client, guild::Integer, user::Integer; kwargs...) Ban a [`Member`](@ref) from a [`Guild`](@ref). More details [here](https://discordapp.com/developers/docs/resources/guild#create-guild-ban). """ function create_guild_ban(c::Client, guild::Integer, user::Integer; kwargs...) return Response(c, :PUT, "/guilds/$guild/bans/$user"; kwargs...) end """ remove_guild_ban(c::Client, guild::Integer, user::Integer) Unban a [`User`](@ref) from a [`Guild`](@ref). """ function remove_guild_ban(c::Client, guild::Integer, user::Integer) return Response(c, :DELETE, "/guilds/$guild/bans/$user") end """ get_guild_roles(c::Client, guild::Integer) -> Vector{Role} Get a [`Guild`](@ref)'s [`Role`](@ref)s. """ function get_guild_roles(c::Client, guild::Integer) return Response{Vector{Role}}(c, :GET, "/guilds/$guild/roles") end """ create_guild_role(c::Client, guild::Integer; kwargs) -> Role Create a [`Role`](@ref) in a [`Guild`](@ref). More details [here](https://discordapp.com/developers/docs/resources/guild#create-guild-role). """ function create_guild_role(c::Client, guild::Integer; kwargs...) return Response{Role}(c, :POST, "/guilds/$guild/roles"; body=kwargs) end """ modify_guild_role_positions(c::Client, guild::Integer, positions...) -> Vector{Role} Modify the positions of [`Role`](@ref)s in a [`Guild`](@ref). More details [here](https://discordapp.com/developers/docs/resources/guild#modify-guild-role-positions). """ function modify_guild_role_positions(c::Client, guild::Integer, positions...) return Response{Vector{Role}}(c, :PATCH, "/guilds/$guild/roles"; body=positions) end """ modify_guild_role(c::Client, guild::Integer, role::Integer; kwargs) -> Role Modify a [`Role`](@ref) in a [`Guild`](@ref). More details [here](https://discordapp.com/developers/docs/resources/guild#modify-guild-role). """ function modify_guild_role(c::Client, guild::Integer, role::Integer; kwargs...) return Response{Role}(c, :PATCH, "/guilds/$guild/roles/$role"; body=kwargs) end """ delete_guild_role(c::Client, guild::Integer, role::Integer) Delete a [`Role`](@ref) from a [`Guild`](@ref). """ function delete_guild_role(c::Client, guild::Integer, role::Integer) return Response(c, :DELETE, "/guilds/$guild/roles/$role") end """ get_guild_prune_count(c::Client, guild::Integer; kwargs...) -> Dict Get the number of [`Member`](@ref)s that would be removed from a [`Guild`](@ref) in a prune. More details [here](https://discordapp.com/developers/docs/resources/guild#get-guild-prune-count). """ function get_guild_prune_count(c::Client, guild::Integer; kwargs...) return Response{Dict}(c, :GET, "/guilds/$guild/prune"; kwargs...) end """ begin_guild_prune(c::Client, guild::Integer; kwargs...) -> Dict Begin pruning [`Member`](@ref)s from a [`Guild`](@ref). More details [here](https://discordapp.com/developers/docs/resources/guild#begin-guild-prune). """ function begin_guild_prune(c::Client, guild::Integer; kwargs...) return Response{Dict}(c, :POST, "/guilds/$guild/prune"; kwargs...) end """ get_guild_voice_regions(c::Client, guild::Integer) -> Vector{VoiceRegion} Get a list of [`VoiceRegion`](@ref)s for the [`Guild`](@ref). """ function get_guild_voice_regions(c::Client, guild::Integer) return Response{Vector{VoiceRegion}}(c, :GET, "/guilds/$guild/regions") end """ get_guild_invites(c::Client, guild::Integer) -> Vector{Invite} Get a list of [`Invite`](@ref)s to a [`Guild`](@ref). """ function get_guild_invites(c::Client, guild::Integer) return Response{Vector{Invite}}(c, :GET, "/guilds/$guild/invites") end """ get_guild_integrations(c::Client, guild::Integer) -> Vector{Integration} Get a list of [`Integration`](@ref)s for a [`Guild`](@ref). """ function get_guild_integrations(c::Client, guild::Integer) return Response{Vector{Integration}}(c, :GET, "/guilds/$guild/integrations") end """ create_guild_integration(c::Client, guild::Integer; kwargs...) Create/attach an [`Integration`](@ref) to a [`Guild`](@ref). More details [here](https://discordapp.com/developers/docs/resources/guild#create-guild-integration). """ function create_guild_integration(c::Client, guild::Integer; kwargs...) return Response{Integration}(c, :POST, "/guilds/$guild/integrations"; body=kwargs) end """ modify_guild_integration(c::Client, guild::Integer, integration::Integer; kwargs...) Modify an [`Integration`](@ref) in a [`Guild`](@ref). More details [here](https://discordapp.com/developers/docs/resources/guild#modify-guild-integration). """ function modify_guild_integration( c::Client, guild::Integer, integration::Integer; kwargs..., ) return Response(c, :PATCH, "/guilds/$guild/integrations/$integration"; body=kwargs) end """ delete_guild_integration(c::Client, guild::Integer, integration::Integer) Delete an [`Integration`](@ref) from a [`Guild`](@ref). """ function delete_guild_integration(c::Client, guild::Integer, integration::Integer) return Response(c, :DELETE, "/guilds/$guild/integrations/$integration") end """ sync_guild_integration(c::Client, guild::Integer, integration::Integer) Sync an [`Integration`](@ref) in a [`Guild`](@ref). """ function sync_guild_integration(c::Client, guild::Integer, integration::Integer) return Response(c, :POST, "/guilds/$guild/integrations/$integration/sync") end """ get_guild_embed(c::Client, guild::Integer) -> GuildEmbed Get a [`Guild`](@ref)'s [`GuildEmbed`](@ref). """ function get_guild_embed(c::Client, guild::Integer) return Response{GuildEmbed}(c, :GET, "/guilds/$guild/embed") end """ modify_guild_embed(c::Client, guild::Integer; kwargs...) -> GuildEmbed Modify a [`Guild`](@ref)'s [`GuildEmbed`](@ref). More details [here](https://discordapp.com/developers/docs/resources/guild#modify-guild-embed). """ function modify_guild_embed(c::Client, guild::Integer; kwargs...) return Response{GuildEmbed}(c, :PATCH, "/guilds/$guild/embed"; body=kwargs) end """ get_vanity_url(c::Client, guild::Integer) -> Invite Get a [`Guild`](@ref)'s vanity URL, if it supports that feature. """ function get_vanity_url(c::Client, guild::Integer) return Response{Invite}(c, :GET, "/guilds/$guild/vanity-url") end """ get_guild_widget_image(c::Client, guild::Integer; kwargs...) -> Vector{UInt8} Get a [`Guild`](@ref)'s widget image in PNG format. More details [here](https://discordapp.com/developers/docs/resources/guild#get-guild-widget-image). """ function get_guild_widget_image(c::Client, guild::Integer; kwargs...) return Response{Vector{UInt8}}(c, :GET, "/guilds/$guild/widget.png"; kwargs...) end
Ekztazy
https://github.com/Humans-of-Julia/Ekztazy.jl.git
[ "MIT" ]
0.8.0
da36639322f6789ee33aa2d4c55186f6b2bccdd2
code
4816
""" create_application_command(c::Client; kwargs...) -> ApplicationCommand Creates a global [`ApplicationCommand`](@ref). """ function create_application_command(c::Client; kwargs...) return Response{ApplicationCommand}(c, :POST, "/applications/$appid/commands"; body=kwargs) end """ create_application_command(c::Client, guild::Snowflake; kwargs...) -> ApplicationCommand Creates a guild [`ApplicationCommand`](@ref). """ function create_application_command(c::Client, guild::Snowflake; kwargs...) appid = c.application_id return Response{ApplicationCommand}(c, :POST, "/applications/$appid/guilds/$guild/commands"; body=kwargs) end """ get_application_commands(c::Client) -> Vector{ApplicationCommand} Gets all global [`ApplicationCommand`](@ref)s for the logged in client. """ function get_application_commands(c::Client) appid = c.application_id return Response{Vector{ApplicationCommand}}(c, :GET, "/applications/$appid/commands") end """ get_application_commands(c::Client, guild::Snowflake) -> Vector{ApplicationCommand} Gets all guild [`ApplicationCommand`](@ref)s for the logged in client. """ function get_application_commands(c::Client, guild::Snowflake) appid = c.application_id return Response{Vector{ApplicationCommand}}(c, :GET, "/applications/$appid/guilds/$guild/commands") end """ respond_to_interaction(c::Client, int_id::Snowflake, int_token::String; kwargs...) -> Message Respond to an interaction with code 4. """ function respond_to_interaction(c::Client, int_id::Snowflake, int_token::String; kwargs...) dict = Dict{Symbol, Any}( :data => kwargs, :type => 4, ) return Response{Message}(c, :POST, "/interactions/$int_id/$int_token/callback"; body=dict) end function respond_to_interaction_with_a_modal(c::Client, int_id::Snowflake, int_token::String; kwargs...) dict = Dict{Symbol, Any}( :data => kwargs, :type => 9, ) return Response{Message}(c, :POST, "/interactions/$int_id/$int_token/callback"; body=dict) end """ ack_interaction(c::Client, int_id::Snowflake, int_token::String; kwargs...) Respond to an interaction with code 5. """ function ack_interaction(c::Client, int_id::Snowflake, int_token::String; kwargs...) dict = Dict{Symbol, Any}( :type => 5, ) return Response(c, :POST, "/interactions/$int_id/$int_token/callback"; body=dict) end """ update_ack_interaction(c::Client, int_id::Snowflake, int_token::String; kwargs...) -> Message Respond to an interaction with code 6. """ function update_ack_interaction(c::Client, int_id::Snowflake, int_token::String; kwargs...) dict = Dict{Symbol, Any}( :type => 6, ) return Response{Message}(c, :POST, "/interactions/$int_id/$int_token/callback"; body=dict) end """ update_message_int(c::Client, int_id::Snowflake, int_token::String; kwargs...) Respond to an interaction with code 7. """ function update_message_int(c::Client, int_id::Snowflake, int_token::String; kwargs...) dict = Dict{Symbol, Any}( :data => kwargs, :type => 7, ) return Response(c, :POST, "/interactions/$int_id/$int_token/callback"; body=dict) end """ create_followup_message(c::Client, int_id::Snowflake, int_token::String; kwargs...) -> Message Creates a followup message for an interaction. """ function create_followup_message(c::Client, int_id::Snowflake, int_token::String; kwargs...) appid = c.application_id return Response{Message}(c, :POST, "/webhooks/$appid/$int_token)"; body=kwargs) end """ edit_interaction(c::Client, int_id::Snowflake, int_token::String; kwargs...) Edit a followup message for an interaction. """ function edit_interaction(c::Client, int_token::String, mid::Snowflake; kwargs...) appid = c.application_id return Response(c, :PATCH, "/webhooks/$appid/$int_token/messages/$mid"; body=kwargs) end """ bulk_overwrite_application_commands(c::Client, guild::Snowflake, cmds::Vector{ApplicationCommand}) -> Vector{ApplicationCommand} Overwrites global [`ApplicationCommand`](@ref)s with the given cmds vector. """ function bulk_overwrite_application_commands(c::Client, guild::Snowflake, cmds::Vector{ApplicationCommand}) appid = c.application_id return Response{Vector{ApplicationCommand}}(c, :PUT, "/applications/$appid/guilds/$guild/commands"; body=cmds) end """ bulk_overwrite_application_commands(c::Client, guild::Snowflake, cmds::Vector{ApplicationCommand}) -> Vector{ApplicationCommand} Overwrites guild [`ApplicationCommand`](@ref)s with the given cmds vector. """ function bulk_overwrite_application_commands(c::Client, cmds::Vector{ApplicationCommand}) appid = c.application_id return Response{Vector{ApplicationCommand}}(c, :PUT, "/applications/$appid/commands"; body=cmds) end
Ekztazy
https://github.com/Humans-of-Julia/Ekztazy.jl.git
[ "MIT" ]
0.8.0
da36639322f6789ee33aa2d4c55186f6b2bccdd2
code
635
export get_invite, delete_invite """ get_invite(c::Client, invite::AbstractString; kwargs...} -> Invite Get an [`Invite`](@ref) to a [`Guild`](@ref). More details [here](https://discordapp.com/developers/docs/resources/invite#get-invite). """ function get_invite(c::Client, invite::AbstractString; kwargs...) return Response{Invite}(c, :GET, "/invites/$invite"; kwargs...) end """ delete_invite(c::Client, invite::AbstractString) -> Invite Delete an [`Invite`](@ref) to a [`Guild`](@ref). """ function delete_invite(c::Client, invite::AbstractString) return Response{Invite}(c, :DELETE, "/invites/$invite") end
Ekztazy
https://github.com/Humans-of-Julia/Ekztazy.jl.git
[ "MIT" ]
0.8.0
da36639322f6789ee33aa2d4c55186f6b2bccdd2
code
1698
export get_current_user, get_user, modify_current_user, get_current_user_guilds, leave_guild, create_dm """ get_current_user(c::Client) -> User Get the [`Client`](@ref) [`User`](@ref). """ function get_current_user(c::Client) return Response{User}(c, :GET, "/users/@me") end """ get_user(c::Client, user::Integer) -> User Get a [`User`](@ref). """ function get_user(c::Client, user::Integer) return Response{User}(c, :GET, "/users/$user") end """ modify_current_user(c::Client; kwargs...) -> User Modify the [`Client`](@ref) [`User`](@ref). More details [here](https://discordapp.com/developers/docs/resources/user#modify-current-user). """ function modify_current_user(c::Client; kwargs...) return Response{User}(c, :PATCH, "/users/@me"; body=kwargs) end """ get_user_guilds(c::Client; kwargs...) -> Vector{Guild} Get a list of [`Guild`](@ref)s the [`Client`](@ref) [`User`](@ref) is a member of. More details [here](https://discordapp.com/developers/docs/resources/user#get-current-user-guilds). """ function get_current_user_guilds(c::Client; kwargs...) return Response{Vector{Guild}}(c, :GET, "/users/@me/guilds"; kwargs...) end """ leave_guild(c::Client, guild::Integer) Leave a [`Guild`](@ref). """ function leave_guild(c::Client, guild::Integer) return Response(c, :DELETE, "/users/@me/guilds/$guild") end """ create_dm(c::Client; kwargs...) -> DiscordChannel Create a DM [`DiscordChannel`](@ref). More details [here](https://discordapp.com/developers/docs/resources/user#create-dm). """ function create_dm(c::Client; kwargs...) return Response{DiscordChannel}(c, :POST, "/users/@me/channels"; body=kwargs) end
Ekztazy
https://github.com/Humans-of-Julia/Ekztazy.jl.git
[ "MIT" ]
0.8.0
da36639322f6789ee33aa2d4c55186f6b2bccdd2
code
294
export list_voice_regions """ list_voice_regions(c::Client) -> Vector{VoiceRegion} Get a list of the [`VoiceRegion`](@ref)s that can be used when creating [`Guild`](@ref)s. """ function list_voice_regions(c::Client) return Response{Vector{VoiceRegion}}(c, :GET, "/voice/regions") end
Ekztazy
https://github.com/Humans-of-Julia/Ekztazy.jl.git
[ "MIT" ]
0.8.0
da36639322f6789ee33aa2d4c55186f6b2bccdd2
code
4876
export create_webhook, get_channel_webhooks, get_guild_webhooks, get_webhook, get_webhook_with_token, modify_webhook, modify_webhook_with_token, delete_webhook, delete_webhook_with_token, execute_webhook, execute_slack_compatible_webhook, execute_github_compatible_webhook """ create_webhook(c::Client, channel::Integer; kwargs...) -> Webhook Create a [`Webhook`](@ref) in a [`DiscordChannel`](@ref). More details [here](https://discordapp.com/developers/docs/resources/webhook#create-webhook). """ function create_webhook(c::Client, channel::Integer; kwargs...) return Response{Webhook}(c, :POST, "/channels/$channel/webhooks"; body=kwargs) end """ get_channel_webhooks(c::Client, channel::Integer) -> Vector{Webhook} Get a list of [`Webhook`](@ref)s in a [`DiscordChannel`](@ref). """ function get_channel_webhooks(c::Client, channel::Integer) return Response{Vector{Webhook}}(c, :GET, "/channels/$channel/webhooks") end """ get_guild_webhooks(c::Client, guild::Integer) -> Vector{Webhook} Get a list of [`Webhook`](@ref)s in a [`Guild`](@ref). """ function get_guild_webhooks(c::Client, guild::Integer) return Response{Vector{Webhook}}(c, :GET, "/guilds/$guild/webhooks") end """ get_webhook(c::Client, webhook::Integer) -> Webhook Get a [`Webhook`](@ref). """ function get_webhook(c::Client, webhook::Integer) return Response{Webhook}(c, :GET, "/webhooks/$webhook") end """ get_webhook_with_token(c::Client, webhook::Integer, token::AbstractString) -> Webhook Get a [`Webhook`](@ref) with a token. """ function get_webhook_with_token(c::Client, webhook::Integer, token::AbstractString) return Response{Webhook}(c, :GET, "/webhooks/$webhook/$token") end """ modify_webhook(c::Client, webhook::Integer; kwargs...) -> Webhook Modify a [`Webhook`](@ref). More details [here](https://discordapp.com/developers/docs/resources/webhook#modify-webhook). """ function modify_webhook(c::Client, webhook::Integer; kwargs...) return Response{Webhook}(c, :PATCH, "/webhooks/$webhook"; body=kwargs) end """ modify_webhook_with_token( c::Client, webhook::Integer, token::AbstractString; kwargs..., ) -> Webhook Modify a [`Webhook`](@ref) with a token. More details [here](https://discordapp.com/developers/docs/resources/webhook#modify-webhook). """ function modify_webhook_with_token( c::Client, webhook::Integer, token::AbstractString; kwargs..., ) return Response{Webhook}(c, :PATCH, "/webhooks/$webhook/$token"; body=kwargs) end """ delete_webhook(c::Client, webhook::Integer) Delete a [`Webhook`](@ref). """ function delete_webhook(c::Client, webhook::Integer) return Response(c, :DELETE, "/webhooks/$webhook") end """ delete_webhook_with_token(c::Client, webhook::Integer, token::AbstractString) Delete a [`Webhook`](@ref) with a token. """ function delete_webhook_with_token(c::Client, webhook::Integer, token::AbstractString) return Response(c, :DELETE, "/webhooks/$webhook/$token") end """ execute_webhook( c::Client, webhook::Integer, token::AbstractString; wait::Bool=false, kwargs..., ) -> Message Execute a [`Webhook`](@ref). If `wait` is not set, no [`Message`](@ref) is returned. More details [here](https://discordapp.com/developers/docs/resources/webhook#execute-webhook). """ function execute_webhook( c::Client, webhook::Integer, token::AbstractString; wait::Bool=false, kwargs..., ) return Response{Message}(c, :POST, "/webhooks/$webhook/$token"; body=kwargs, wait=wait) end """ execute_slack_compatible_webhook( c::Client, webhook::Integer, token::AbstractString; wait::Bool=true, kwargs..., ) Execute a Slack [`Webhook`](@ref). More details [here](https://discordapp.com/developers/docs/resources/webhook#execute-slackcompatible-webhook). """ function execute_slack_compatible_webhook( c::Client, webhook::Integer, token::AbstractString; wait::Bool=true, kwargs..., ) return Response{Message}( c, :POST, "/webhooks/$webhook/$token/slack"; body=kwargs, wait=wait, ) end """ execute_github_compatible_webhook( c::Client, webhook::Integer, token::AbstractString; wait::Bool=true, kwargs..., ) Execute a Github [`Webhook`](@ref). More details [here](https://discordapp.com/developers/docs/resources/webhook#execute-githubcompatible-webhook). """ function execute_github_compatible_webhook( c::Client, webhook::Integer, token::AbstractString; wait::Bool=true, kwargs..., ) return Response{Message}( c, :POST, "/webhooks/$webhook/$token/github"; body=kwargs, wait=wait, ) end
Ekztazy
https://github.com/Humans-of-Julia/Ekztazy.jl.git
[ "MIT" ]
0.8.0
da36639322f6789ee33aa2d4c55186f6b2bccdd2
code
2416
export Activity """ The start and stop times of an [`Activity`](@ref). More details [here](https://discordapp.com/developers/docs/topics/gateway#activity-object-activity-timestamps). """ struct ActivityTimestamps start::Optional{DateTime} stop::Optional{DateTime} end @boilerplate ActivityTimestamps :constructors :docs :lower :merge :mock """ Emoji for a custom [`Activity`](@ref). More details [here](https://discordapp.com/developers/docs/topics/gateway#activity-object-activity-emoji). """ struct ActivityEmoji <: DiscordObject name::String id::Optional{Snowflake} animated::Optional{Bool} end @boilerplate ActivityEmoji :constructors :docs :lower :merge :mock """ The current party of an [`Activity`](@ref)'s player. More details [here](https://discordapp.com/developers/docs/topics/gateway#activity-object-activity-party). """ struct ActivityParty id::Optional{String} size::Optional{Vector{Int}} end @boilerplate ActivityParty :constructors :docs :lower :merge :mock """ Images and hover text for an [`Activity`](@ref). More details [here](https://discordapp.com/developers/docs/topics/gateway#activity-object-activity-assets). """ struct ActivityAssets large_image::Optional{String} large_text::Optional{String} small_image::Optional{String} small_text::Optional{String} end @boilerplate ActivityAssets :constructors :docs :lower :merge :mock """ Secrets for Rich Presence joining and spectating of an [`Activity`](@ref). More details [here](https://discordapp.com/developers/docs/topics/gateway#activity-object-activity-secrets). """ struct ActivitySecrets join::Optional{String} spectate::Optional{String} match::Optional{String} end @boilerplate ActivitySecrets :constructors :docs :lower :merge :mock """ A [`User`](@ref) activity. More details [here](https://discordapp.com/developers/docs/topics/gateway#activity-object). """ struct Activity name::String type::Int url::OptionalNullable{String} timestamps::Optional{ActivityTimestamps} application_id::Optional{Snowflake} details::OptionalNullable{String} state::OptionalNullable{String} emoji::OptionalNullable{ActivityEmoji} party::Optional{ActivityParty} assets::Optional{ActivityAssets} secrets::Optional{ActivitySecrets} instance::Optional{Bool} flags::Optional{Int} end @boilerplate Activity :constructors :docs :lower :merge :mock
Ekztazy
https://github.com/Humans-of-Julia/Ekztazy.jl.git
[ "MIT" ]
0.8.0
da36639322f6789ee33aa2d4c55186f6b2bccdd2
code
382
""" A [`Message`](@ref) attachment. More details [here](https://discordapp.com/developers/docs/resources/channel#attachment-object). """ struct Attachment <: DiscordObject id::Snowflake filename::String size::Int url::String proxy_url::String height::Optional{Int} width::Optional{Int} end @boilerplate Attachment :constructors :docs :lower :merge :mock
Ekztazy
https://github.com/Humans-of-Julia/Ekztazy.jl.git
[ "MIT" ]
0.8.0
da36639322f6789ee33aa2d4c55186f6b2bccdd2
code
6139
export AuditLog const AUDIT_LOG_CHANGE_TYPES = Dict( "name" => (String, Guild), "icon_hash" => (String, Guild) , "splash_hash" => (String, Guild), "owner_id" => (Snowflake, Guild), "region" => (String, Guild), "afk_channel_id" => (Snowflake, Guild), "afk_timeout" => (Int, Guild), "mfa_level" => (Int, Guild), "verification_level" => (Int, Guild), "explicit_content_filter" => (Int, Guild), "default_message_notifications" => (Int, Guild), "vanity_url_code" => (String, Guild), "\$add" => (Vector{Role}, Guild), "\$remove" => (Vector{Role}, Guild), "prune_delete_days" => (Int, Guild), "widget_enabled" => (Bool, Guild), "widget_channel_id" => (Snowflake, Guild), "position" => (Int, DiscordChannel), "topic" => (String, DiscordChannel), "bitrate" => (Int, DiscordChannel), "permission_overwrites" => (Vector{Overwrite}, DiscordChannel), "nsfw" => (Bool, DiscordChannel), "application_id" => (Snowflake, DiscordChannel), "permissions" => (String, Role), "color" => (Int, Role), "hoist" => (Bool, Role), "mentionable" => (Bool, Role), "allow" => (Int, Role), "deny" => (Int, Role), "code" => (String, Invite), "channel_id" => (Snowflake, Invite), "inviter_id" => (Snowflake, Invite), "max_uses" => (Int, Invite), "uses" => (Int, Invite), "max_age" => (Int, Invite), "temporary" => (Bool, Invite), "deaf" => (Bool, User), "mute" => (Bool, User), "nick" => (String, User), "avatar_hash" => (String, User), "id" => (Snowflake, Any), "type" => (Any, Any), # Undocumented. "rate_limit_per_user" => (Int, DiscordChannel), ) """ A change item in an [`AuditLogEntry`](@ref). The first type parameter is the type of `new_value` and `old_value`. The second is the type of the entity that `new_value` and `old_value` belong(ed) to. More details [here](https://discordapp.com/developers/docs/resources/audit-log#audit-log-change-object). """ struct AuditLogChange{T, U} new_value::Optional{T} old_value::Optional{T} key::String type::Type{U} end @boilerplate AuditLogChange :docs :mock AuditLogChange(d::Dict{Symbol, Any}) = AuditLogChange(; d...) function AuditLogChange(; kwargs...) return if haskey(AUDIT_LOG_CHANGE_TYPES, kwargs[:key]) T, U = AUDIT_LOG_CHANGE_TYPES[kwargs[:key]] func = if T === Any identity elseif T === Snowflake snowflake elseif T <: Vector eltype(T) else T end new_value = if haskey(kwargs, :new_value) if kwargs[:new_value] isa Vector func.(kwargs[:new_value]) else func(kwargs[:new_value]) end else missing end old_value = if haskey(kwargs, :old_value) if kwargs[:old_value] isa Vector func.(kwargs[:old_value]) else func(kwargs[:old_value]) end else missing end AuditLogChange{T, U}(new_value, old_value, kwargs[:key], U) else AuditLogChange{Any, Any}( get(kwargs, :new_value, missing), get(kwargs, :old_value, missing), kwargs[:key], Any, ) end end """ Optional information in an [`AuditLogEntry`](@ref). More details [here](https://discordapp.com/developers/docs/resources/audit-log#audit-log-entry-object-optional-audit-entry-info). """ struct AuditLogOptions <: DiscordObject delete_member_days::Optional{Int} members_removed::Optional{Int} channel_id::Optional{Snowflake} count::Optional{Int} id::Optional{Snowflake} type::Optional{Int} role_name::Optional{String} end @boilerplate AuditLogOptions :docs :merge :mock AuditLogOptions(d::Dict{Symbol, Any}) = AuditLogOptions(; d...) function AuditLogOptions(; kwargs...) dmd = if haskey(kwargs, :delete_member_days) parse(Int, kwargs[:delete_member_days]) else missing end return AuditLogOptions( dmd, haskey(kwargs, :members_removed) ? parse(Int, kwargs[:members_removed]) : missing, haskey(kwargs, :channel_id) ? snowflake(kwargs[:channel_id]) : missing, haskey(kwargs, :count) ? parse(Int, kwargs[:count]) : missing, haskey(kwargs, :id) ? snowflake(kwargs[:id]) : missing, haskey(kwargs, :type) ? OverwriteType(kwargs[:type]) : missing, get(kwargs, :role_name, missing), ) end """ An entry in an [`AuditLog`](@ref). More details [here](https://discordapp.com/developers/docs/resources/audit-log#audit-log-entry-object). """ struct AuditLogEntry target_id::Nullable{Snowflake} changes::Optional{Vector{AuditLogChange}} user_id::Snowflake id::Snowflake action_type::Int options::Optional{AuditLogOptions} reason::Optional{String} end @boilerplate AuditLogEntry :constructors :docs :lower :merge :mock """ An audit log. More details [here](https://discordapp.com/developers/docs/resources/audit-log#audit-log-object). """ struct AuditLog webhooks::Vector{Webhook} users::Vector{User} audit_log_entries::Vector{AuditLogEntry} end @boilerplate AuditLog :constructors :docs :lower :merge :mock
Ekztazy
https://github.com/Humans-of-Julia/Ekztazy.jl.git
[ "MIT" ]
0.8.0
da36639322f6789ee33aa2d4c55186f6b2bccdd2
code
246
export Ban """ A [`User`](@ref) ban. More details [here](https://discordapp.com/developers/docs/resources/guild#ban-object). """ struct Ban reason::Nullable{String} user::User end @boilerplate Ban :constructors :docs :lower :merge :mock
Ekztazy
https://github.com/Humans-of-Julia/Ekztazy.jl.git
[ "MIT" ]
0.8.0
da36639322f6789ee33aa2d4c55186f6b2bccdd2
code
982
export DiscordChannel """ A Discord channel. More details [here](https://discordapp.com/developers/docs/resources/channel#channel-object). Note: The name `Channel` is already used, hence the prefix. """ struct DiscordChannel <: DiscordObject id::Snowflake type::Optional{Int} guild_id::Optional{Snowflake} position::Optional{Int} permission_overwrites::Optional{Vector{Overwrite}} name::Optional{String} topic::OptionalNullable{String} nsfw::Optional{Bool} last_message_id::OptionalNullable{Snowflake} bitrate::Optional{Int} user_limit::Optional{Int} rate_limit_per_user::Optional{Int} recipients::Optional{Vector{User}} icon::OptionalNullable{String} owner_id::Optional{Snowflake} application_id::Optional{Snowflake} parent_id::OptionalNullable{Snowflake} last_pin_timestamp::OptionalNullable{DateTime} # Not supposed to be nullable. end @boilerplate DiscordChannel :constructors :docs :lower :merge :mock
Ekztazy
https://github.com/Humans-of-Julia/Ekztazy.jl.git
[ "MIT" ]
0.8.0
da36639322f6789ee33aa2d4c55186f6b2bccdd2
code
369
""" A [`User`](@ref) connection to an external service (Twitch, YouTube, etc.). More details [here](https://discordapp.com/developers/docs/resources/user#connection-object). """ struct Connection id::String name::String type::String revoked::Bool integrations::Vector{Integration} end @boilerplate Connection :constructors :docs :lower :merge :mock
Ekztazy
https://github.com/Humans-of-Julia/Ekztazy.jl.git
[ "MIT" ]
0.8.0
da36639322f6789ee33aa2d4c55186f6b2bccdd2
code
3190
export EmbedThumbnail, EmbedVideo, EmbedImage, EmbedProvider, EmbedAuthor, EmbedFooter, EmbedField, Embed """ An [`Embed`](@ref)'s thumbnail image information. More details [here](https://discordapp.com/developers/docs/resources/channel#embed-object-embed-thumbnail-structure). """ struct EmbedThumbnail url::Optional{String} proxy_url::Optional{String} height::Optional{Int} width::Optional{Int} end @boilerplate EmbedThumbnail :constructors :docs :lower :merge :mock """ An [`Embed`](@ref)'s video information. More details [here](https://discordapp.com/developers/docs/resources/channel#embed-object-embed-video-structure). """ struct EmbedVideo url::Optional{String} height::Optional{Int} width::Optional{Int} end @boilerplate EmbedVideo :constructors :docs :lower :merge :mock """ An [`Embed`](@ref)'s image information. More details [here](https://discordapp.com/developers/docs/resources/channel#embed-object-embed-image-structure). """ struct EmbedImage url::Optional{String} proxy_url::Optional{String} height::Optional{Int} width::Optional{Int} end @boilerplate EmbedImage :constructors :docs :lower :merge :mock """ An [`Embed`](@ref)'s provider information. More details [here](https://discordapp.com/developers/docs/resources/channel#embed-object-embed-provider-structure). """ struct EmbedProvider name::Optional{String} url::OptionalNullable{String} # Not supposed to be nullable. end @boilerplate EmbedProvider :constructors :docs :lower :merge :mock """ An [`Embed`](@ref)'s author information. More details [here](https://discordapp.com/developers/docs/resources/channel#embed-object-embed-author-structure). """ struct EmbedAuthor name::Optional{String} url::Optional{String} icon_url::Optional{String} proxy_icon_url::Optional{String} end @boilerplate EmbedAuthor :constructors :docs :lower :merge :mock """ An [`Embed`](@ref)'s footer information. More details [here](https://discordapp.com/developers/docs/resources/channel#embed-object-embed-footer-structure). """ struct EmbedFooter text::String icon_url::Optional{String} proxy_icon_url::Optional{String} end @boilerplate EmbedFooter :constructors :docs :lower :merge :mock """ An [`Embed`](@ref) field. More details [here](https://discordapp.com/developers/docs/resources/channel#embed-object-embed-field-structure). """ struct EmbedField name::String value::String inline::Optional{Bool} end @boilerplate EmbedField :constructors :docs :lower :merge :mock """ A [`Message`](@ref) embed. More details [here](https://discordapp.com/developers/docs/resources/channel#embed-object). """ struct Embed title::Optional{String} type::Optional{String} description::Optional{String} url::Optional{String} timestamp::Optional{DateTime} color::Optional{Int} footer::Optional{EmbedFooter} image::Optional{EmbedImage} thumbnail::Optional{EmbedThumbnail} video::Optional{EmbedVideo} provider::Optional{EmbedProvider} author::Optional{EmbedAuthor} fields::Optional{Vector{EmbedField}} end @boilerplate Embed :constructors :docs :lower :merge :mock
Ekztazy
https://github.com/Humans-of-Julia/Ekztazy.jl.git
[ "MIT" ]
0.8.0
da36639322f6789ee33aa2d4c55186f6b2bccdd2
code
416
export Emoji """ An emoji. More details [here](https://discordapp.com/developers/docs/resources/emoji#emoji-object). """ struct Emoji <: DiscordObject id::Nullable{Snowflake} name::String roles::Optional{Vector{Snowflake}} user::Optional{User} require_colons::Optional{Bool} managed::Optional{Bool} animated::Optional{Bool} end @boilerplate Emoji :constructors :docs :lower :merge :mock
Ekztazy
https://github.com/Humans-of-Julia/Ekztazy.jl.git
[ "MIT" ]
0.8.0
da36639322f6789ee33aa2d4c55186f6b2bccdd2
code
576
struct NamingError <: Exception invalid_name::AbstractString name_of::String reason::String end struct FieldRequired <: Exception field::String structname::String end NamingError(a::AbstractString, nameof::String) = NamingError(a, nameof, "it may be too long or contain invalid characters.") Base.showerror(io::IO, e::NamingError) = print(io, "Name $(e.invalid_name) is an invalid name for `$(e.name_of)` because `$(e.reason)`.") Base.showerror(io::IO, e::FieldRequired) = print(io, "Field `$(e.field)` is required to construct a `$(e.structname)`.")
Ekztazy
https://github.com/Humans-of-Julia/Ekztazy.jl.git
[ "MIT" ]
0.8.0
da36639322f6789ee33aa2d4c55186f6b2bccdd2
code
2724
export Guild """ A Discord guild (server). Can either be an [`UnavailableGuild`](@ref) or a [`Guild`](@ref). """ abstract type AbstractGuild <: DiscordObject end function AbstractGuild(; kwargs...) return if get(kwargs, :unavailable, length(kwargs) <= 2) === true UnavailableGuild(; kwargs...) else Guild(; kwargs...) end end AbstractGuild(d::Dict{Symbol, Any}) = AbstractGuild(; d...) mock(::Type{AbstractGuild}) = mock(rand(Bool) ? UnavailableGuild : Guild) """ An unavailable Discord guild (server). More details [here](https://discordapp.com/developers/docs/resources/guild#unavailable-guild-object). """ struct UnavailableGuild <: AbstractGuild id::Snowflake unavailable::Optional{Bool} end @boilerplate UnavailableGuild :constructors :docs :lower :merge :mock """ A Discord guild (server). More details [here](https://discordapp.com/developers/docs/resources/guild#guild-object). """ struct Guild <: AbstractGuild id::Snowflake name::String icon::Nullable{String} splash::OptionalNullable{String} owner::Optional{Bool} owner_id::Optional{Snowflake} # Missing in Invite. permissions::Optional{String} region::Optional{String} # Invite afk_channel_id::OptionalNullable{Snowflake} # Invite afk_timeout::Optional{Int} # Invite embed_enabled::Optional{Bool} embed_channel_id::OptionalNullable{Snowflake} # Not supposed to be nullable. verification_level::Optional{Int} default_message_notifications::Optional{Int} # Invite explicit_content_filter::Optional{Int} # Invite roles::Optional{Vector{Role}} # Invite emojis::Optional{Vector{Emoji}} # Invite features::Optional{Vector{String}} mfa_level::Optional{Int} # Invite application_id::OptionalNullable{Snowflake} # Invite widget_enabled::Optional{Bool} widget_channel_id::OptionalNullable{Snowflake} # Not supposed to be nullable. system_channel_id::OptionalNullable{Snowflake} # Invite joined_at::Optional{DateTime} large::Optional{Bool} unavailable::Optional{Bool} member_count::Optional{Int} max_members::Optional{Int} voice_states::Optional{Vector{VoiceState}} members::Optional{Vector{Member}} channels::Optional{Vector{DiscordChannel}} presences::Optional{Vector{Presence}} max_presences::OptionalNullable{Int} vanity_url_code::OptionalNullable{String} description::OptionalNullable{String} banner::OptionalNullable{String} # Hash djl_users::Optional{Set{Snowflake}} djl_channels::Optional{Set{Snowflake}} end @boilerplate Guild :constructors :docs :lower :merge :mock Base.merge(x::UnavailableGuild, y::Guild) = y Base.merge(x::Guild, y::UnavailableGuild) = x
Ekztazy
https://github.com/Humans-of-Julia/Ekztazy.jl.git
[ "MIT" ]
0.8.0
da36639322f6789ee33aa2d4c55186f6b2bccdd2
code
288
export GuildEmbed """ A [`Guild`](@ref) embed. More details [here](https://discordapp.com/developers/docs/resources/guild#guild-embed-object). """ struct GuildEmbed enabled::Bool channel_id::Nullable{Snowflake} end @boilerplate GuildEmbed :constructors :docs :lower :merge :mock
Ekztazy
https://github.com/Humans-of-Julia/Ekztazy.jl.git
[ "MIT" ]
0.8.0
da36639322f6789ee33aa2d4c55186f6b2bccdd2
code
5015
export Handler, Context const EVENT_TYPES = Dict{String, Symbol}( "READY" => :Ready, "RESUMED" => :Resumed, "CHANNEL_CREATE" => :ChannelCreate, "CHANNEL_UPDATE" => :ChannelUpdate, "CHANNEL_DELETE" => :ChannelDelete, "CHANNEL_PINS_UPDATE" => :ChannelPinsUpdate, "GUILD_CREATE" => :GuildCreate, "GUILD_UPDATE" => :GuildUpdate, "GUILD_DELETE" => :GuildDelete, "GUILD_BAN_ADD" => :GuildBanAdd, "GUILD_BAN_REMOVE" => :GuildBanRemove, "GUILD_EMOJIS_UPDATE" => :GuildEmojisUpdate, "GUILD_INTEGRATIONS_UPDATE" => :GuildIntegrationsUpdate, "GUILD_MEMBER_ADD" => :GuildMemberAdd, "GUILD_MEMBER_REMOVE" => :GuildMemberRemove, "GUILD_MEMBER_UPDATE" => :GuildMemberUpdate, "GUILD_MEMBERS_CHUNK" => :GuildMembersChunk, "GUILD_ROLE_CREATE" => :GuildRoleCreate, "GUILD_ROLE_UPDATE" => :GuildRoleUpdate, "GUILD_ROLE_DELETE" => :GuildRoleDelete, "MESSAGE_CREATE" => :MessageCreate, "MESSAGE_UPDATE" => :MessageUpdate, "MESSAGE_DELETE" => :MessageDelete, "MESSAGE_DELETE_BULK" => :MessageDeleteBulk, "MESSAGE_REACTION_ADD" => :MessageReactionAdd, "MESSAGE_REACTION_REMOVE" => :MessageReactionRemove, "MESSAGE_REACTION_REMOVE_ALL" => :MessageReactionRemoveAll, "INTERACTION_CREATE" => :InteractionCreate, "PRESENCE_UPDATE" => :PresenceUpdate, "TYPING_START" => :TypingStart, "USER_UPDATE" => :UserUpdate, "VOICE_STATE_UPDATE" => :VoiceStateUpdate, "VOICE_SERVER_UPDATE" => :VoiceServerUpdate, "WEBHOOKS_UPDATE" => :WebhooksUpdate, ) """ Handler( f::Function d::Dict{Symbol, Any} ) Handler is a wrapper for a `Dict{Symbol, Any}` that also contains a function. """ struct Handler f::Function d::Dict{Symbol, Any} end """ Handler(; kwargs...) -> Handler Generates a handler based on kwargs and a function. """ Handler(f; kwargs...) = Handler(f, Dict(kwargs)) """ Context( data::Dict{Symbol, Any} ) Context is a wrapper for a `Dict{Symbol, Any}` with some special functionality. """ struct Context data::Dict{Symbol, Any} end """ Context(; kwargs...) -> Context Generates a context based on kwargs. """ Context(; kwargs...) = Context(Dict(kwargs)) quickdoc(name::String, ar::String) = " $(name)( f::Function c::Client ) Adds a handler for the $(replace(ar, "_"=>"\\_")) gateway event. The `f` parameter's signature should be: ``` (ctx::Context) -> Any ``` " context(data::Dict{Symbol, Any}) = Context(data) """ context(t::Symbol, data::Dict{Symbol, Any}) -> Context Checks if the Context needs to be created in a special way based on the event provided by `t`.\n Then, returns the generated context. """ function context(t::Symbol, data::Dict{Symbol, Any}) t == :OnMessageCreate && return Context(; message=Message(data)) t ∈ [:OnGuildCreate, :OnGuildUpdate] && return Context(; guild=Guild(data)) t ∈ [:OnMessageReactionAdd, :OnMessageReactionRemove] && return Context(; emoji=make(Emoji, data, :emoji), channel=DiscordChannel(; id=data[:channel_id]), message=Message(; id=data[:message_id], channel_id=data[:channel_id]), data...) t == :OnReady && return Context(; user=make(User, data, :user), data...) t == :OnInteractionCreate && return Context(; interaction=Interaction(data)) Context(data) end make(::Type{T}, data::Dict{Symbol, Any}, k::Symbol) where T <: DiscordObject = T(pop!(data, k, missing)) for (k, v) in EVENT_TYPES nm = Symbol("On"*String(v)) hm = Symbol("on_"*lowercase(k)*"!") @eval ($nm)(f::Function; kwargs...) = Handler(f; type=Symbol($nm), kwargs...) k = quote @doc quickdoc(string($hm), $k) ($hm)(f::Function, c; kwargs...) = add_handler!(c, ($nm)(f, kwargs...)) export $hm end eval(k) end # Deprecated # ---------------------------------------- # | Removed: 1.0+ | # | Added 0.3 | # | Replaced by on_message_create! | # ---------------------------------------- const on_message! = on_message_create! const on_reaction_add! = on_message_reaction_add! const on_reaction_remove! = on_message_reaction_remove! Base.getproperty(ctx::Context, sym::Symbol) = getfield(ctx, :data)[sym] Base.hasproperty(ctx::Context, sym::Symbol) = haskey(getfield(ctx, :data), sym) Base.getproperty(h::Handler, sym::Symbol) = sym != :f ? getfield(h, :d)[sym] : getfield(h, sym) Base.hasproperty(h::Handler, sym::Symbol) = haskey(getfield(h, :d), sym) handlerkind(h::Handler) = h.type handlerargs(f::Function) = method_args(first(methods(f)))
Ekztazy
https://github.com/Humans-of-Julia/Ekztazy.jl.git
[ "MIT" ]
0.8.0
da36639322f6789ee33aa2d4c55186f6b2bccdd2
code
778
export Integration """ An [`Integration`](@ref) account. More details [here](https://discordapp.com/developers/docs/resources/guild#integration-account-object). """ struct IntegrationAccount id::String name::String end @boilerplate IntegrationAccount :constructors :docs :lower :merge :mock """ A [`Guild`](@ref) integration. More details [here](https://discordapp.com/developers/docs/resources/guild#integration-object). """ struct Integration <: DiscordObject id::Snowflake name::String type::String enabled::Bool syncing::Bool role_id::Snowflake expire_behaviour::Int expire_grace_period::Int user::User account::IntegrationAccount synced_at::DateTime end @boilerplate Integration :constructors :docs :lower :merge :mock
Ekztazy
https://github.com/Humans-of-Julia/Ekztazy.jl.git
[ "MIT" ]
0.8.0
da36639322f6789ee33aa2d4c55186f6b2bccdd2
code
4762
export Interaction, InteractionData, ApplicationCommand, ApplicationCommandOption, ApplicationCommandChoice, Component, SelectOption, ResolvedData struct ResolvedData users::Optional{Dict{Snowflake, User}} members::Optional{Dict{Snowflake, Member}} roles::Optional{Dict{Snowflake, Role}} channels::Optional{Dict{Snowflake, Channel}} messages::Optional{Dict{Snowflake, Message}} end @boilerplate ResolvedData :constructors :lower :merge """ Application Command Choice. More details [here](https://discord.com/developers/docs/interactions/application-commands#application-command-object-application-command-option-choice-structure). """ struct ApplicationCommandChoice name::String value::Union{String, Number} end @boilerplate ApplicationCommandChoice :constructors :docs :lower :merge # TODO: Custom type gen for `value` field of ApplicationCommandOption. """ Application Command Option. More details [here](https://discord.com/developers/docs/interactions/application-commands#application-command-object-application-command-option-structure). """ struct ApplicationCommandOption value::Any type::Optional{Int} name::Optional{String} description::Optional{String} required::Optional{Bool} min_value::Optional{Number} max_value::Optional{Number} autocomplete::Optional{Bool} choices::Optional{Vector{ApplicationCommandChoice}} options::Optional{Vector{ApplicationCommandOption}} channel_types::Optional{Vector{Int}} focused::Optional{Bool} end @boilerplate ApplicationCommandOption :constructors :docs :lower :merge """ An Application Command. More details [here](https://discord.com/developers/docs/interactions/application-commands#application-commands). """ struct ApplicationCommand <: DiscordObject id::OptionalNullable{Snowflake} type::Optional{Int} application_id::Snowflake guild_id::Optional{Snowflake} name::String description::String options::Optional{Vector{ApplicationCommandOption}} default_permissions::Optional{Bool} version::Optional{Snowflake} end @boilerplate ApplicationCommand :constructors :docs :lower :merge :mock """ A select option. More details [here](https://discord.com/developers/docs/interactions/message-components#select-menu-object-select-option-structure). """ struct SelectOption <: DiscordObject label::String value::String description::Optional{String} emoji::Optional{Emoji} default::Optional{Bool} end @boilerplate SelectOption :constructors :docs :lower :merge :mock function SelectOption(label, value, args...) if length(args)>0 r = [:description, :emoji, :default] t = Dict([(r[x+1], args[x+1]) for x in 0:length(args)]) SelectOption(; label=label, value=value, t...) else SelectOption(; label=label, value=value) end end """ An interactable component. More details [here](https://discord.com/developers/docs/interactions/message-components). """ struct Component <: DiscordObject type::Int custom_id::Optional{String} value::Optional{String} disabled::Optional{Bool} style::Optional{Int} label::Optional{String} emoji::Optional{Emoji} url::Optional{String} options::Optional{Vector{SelectOption}} placeholder::Optional{String} min_values::Optional{Int} max_values::Optional{Int} components::Optional{Vector{Component}} end @boilerplate Component :constructors :docs :lower :merge :mock """ Data for an interaction. More details [here](https://discord.com/developers/docs/interactions/receiving-and-responding#interaction-object-interaction-data-structure). """ struct InteractionData <: DiscordObject id::OptionalNullable{Snowflake} name::OptionalNullable{String} type::OptionalNullable{Int} resolved::Optional{ResolvedData} options::Optional{Vector{ApplicationCommandOption}} custom_id::OptionalNullable{String} component_type::OptionalNullable{Int} components::OptionalNullable{Vector{Component}} values::Optional{Vector{String}} target_id::Optional{Snowflake} end @boilerplate InteractionData :constructors :docs :lower :merge """ An interaction. More details [here](https://discord.com/developers/docs/interactions/receiving-and-responding#interaction-object-interaction-structure). """ struct Interaction <: DiscordObject id::Nullable{Snowflake} application_id::Nullable{Snowflake} type::Int data::OptionalNullable{InteractionData} guild_id::Optional{Snowflake} channel_id::Optional{Snowflake} member::Optional{Member} user::Optional{User} token::String version::Optional{Int} message::Optional{Message} end @boilerplate Interaction :constructors :docs :lower :merge :mock
Ekztazy
https://github.com/Humans-of-Julia/Ekztazy.jl.git
[ "MIT" ]
0.8.0
da36639322f6789ee33aa2d4c55186f6b2bccdd2
code
387
export Invite """ An invite to a [`Guild`](@ref). More details [here](https://discordapp.com/developers/docs/resources/invite#invite-object). """ struct Invite code::String guild::Optional{Guild} channel::DiscordChannel approximate_presence_cound::Optional{Int} approximate_member_count::Optional{Int} end @boilerplate Invite :constructors :docs :lower :merge :mock
Ekztazy
https://github.com/Humans-of-Julia/Ekztazy.jl.git
[ "MIT" ]
0.8.0
da36639322f6789ee33aa2d4c55186f6b2bccdd2
code
367
""" Metadata for an [`Invite`](@ref). More details [here](https://discordapp.com/developers/docs/resources/invite#invite-metadata-object). """ struct InviteMetadata inviter::User uses::Int max_uses::Int max_age::Int temporary::Bool created_at::DateTime revoked::Bool end @boilerplate InviteMetadata :constructors :docs :lower :merge :mock
Ekztazy
https://github.com/Humans-of-Julia/Ekztazy.jl.git
[ "MIT" ]
0.8.0
da36639322f6789ee33aa2d4c55186f6b2bccdd2
code
491
export Member """ A [`Guild`](@ref) member. More details [here](https://discordapp.com/developers/docs/resources/guild#guild-member-object). """ mutable struct Member <: DiscordObject user::Optional{User} nick::OptionalNullable{String} # Not supposed to be nullable. roles::Vector{Snowflake} joined_at::DateTime premium_since::OptionalNullable{DateTime} deaf::Optional{Bool} mute::Optional{Bool} end @boilerplate Member :constructors :docs :lower :merge :mock
Ekztazy
https://github.com/Humans-of-Julia/Ekztazy.jl.git
[ "MIT" ]
0.8.0
da36639322f6789ee33aa2d4c55186f6b2bccdd2
code
2059
export Message """ A [`Message`](@ref) activity. More details [here](https://discordapp.com/developers/docs/resources/channel#message-object-message-activity-structure). """ struct MessageActivity type::Int party_id::Optional{String} end @boilerplate MessageActivity :constructors :docs :lower :merge :mock """ A Rich Presence [`Message`](@ref)'s application information. More details [here](https://discordapp.com/developers/docs/resources/channel#message-object-message-application-structure). """ struct MessageApplication <: DiscordObject id::Snowflake cover_image::Optional{String} description::String icon::String name::String end @boilerplate MessageApplication :constructors :docs :lower :merge :mock struct MessageReference <: DiscordObject message_id::Snowflake channel_id::Optional{Snowflake} guild_id::Optional{Snowflake} fail_if_not_exists::Optional{Bool} end @boilerplate MessageReference :constructors :lower :merge """ A message sent to a [`DiscordChannel`](@ref). More details [here](https://discordapp.com/developers/docs/resources/channel#message-object). """ struct Message <: DiscordObject id::Snowflake channel_id::Snowflake # MessageUpdate only requires the ID and channel ID. guild_id::Optional{Snowflake} author::Optional{User} member::Optional{Member} content::Optional{String} timestamp::Optional{DateTime} edited_timestamp::OptionalNullable{DateTime} tts::Optional{Bool} mention_everyone::Optional{Bool} mentions::Optional{Vector{User}} mention_roles::Optional{Vector{Snowflake}} attachments::Optional{Vector{Attachment}} message_reference::Optional{MessageReference} embeds::Optional{Vector{Embed}} reactions::Optional{Vector{Reaction}} nonce::OptionalNullable{Snowflake} pinned::Optional{Bool} webhook_id::Optional{Snowflake} type::Optional{Int} activity::Optional{MessageActivity} application::Optional{MessageApplication} end @boilerplate Message :constructors :docs :lower :merge :mock
Ekztazy
https://github.com/Humans-of-Julia/Ekztazy.jl.git
[ "MIT" ]
0.8.0
da36639322f6789ee33aa2d4c55186f6b2bccdd2
code
315
export Overwrite """ A permission overwrite. More details [here](https://discordapp.com/developers/docs/resources/channel#overwrite-object). """ struct Overwrite <: DiscordObject id::Snowflake type::Int allow::String deny::String end @boilerplate Overwrite :constructors :docs :lower :merge :mock
Ekztazy
https://github.com/Humans-of-Julia/Ekztazy.jl.git
[ "MIT" ]
0.8.0
da36639322f6789ee33aa2d4c55186f6b2bccdd2
code
397
export Presence """ A [`User`](@ref)'s presence. More details [here](https://discordapp.com/developers/docs/topics/gateway#presence-update). """ struct Presence user::User roles::Optional{Vector{Snowflake}} game::Nullable{Activity} guild_id::Optional{Snowflake} status::String activities::Vector{Activity} end @boilerplate Presence :constructors :docs :lower :merge :mock
Ekztazy
https://github.com/Humans-of-Julia/Ekztazy.jl.git
[ "MIT" ]
0.8.0
da36639322f6789ee33aa2d4c55186f6b2bccdd2
code
277
export Reaction """ A [`Message`](@ref) reaction. More details [here](https://discordapp.com/developers/docs/resources/channel#reaction-object). """ struct Reaction count::Int me::Bool emoji::Emoji end @boilerplate Reaction :constructors :docs :lower :merge :mock
Ekztazy
https://github.com/Humans-of-Julia/Ekztazy.jl.git
[ "MIT" ]
0.8.0
da36639322f6789ee33aa2d4c55186f6b2bccdd2
code
485
export Role """ A [`User`](@ref) role. More details [here](https://discordapp.com/developers/docs/topics/permissions#role-object). """ struct Role <: DiscordObject id::Snowflake name::String color::Optional{Int} # These fields are missing in audit log entries. hoist::Optional{Bool} position::Optional{Int} permissions::Optional{String} managed::Optional{Bool} mentionable::Optional{Bool} end @boilerplate Role :constructors :docs :lower :merge :mock
Ekztazy
https://github.com/Humans-of-Julia/Ekztazy.jl.git
[ "MIT" ]
0.8.0
da36639322f6789ee33aa2d4c55186f6b2bccdd2
code
8351
# First millisecond of 2015. const DISCORD_EPOCH = 1420070400000 # Discord's form of ID. const Snowflake = UInt64 abstract type DiscordObject end snowflake(s::Integer) = Snowflake(s) snowflake(s::AbstractString) = parse(Snowflake, s) function snowflake(s::Symbol) try parse(Snowflake, string(s)) catch return s end end snowflake(s::Any) = s snowflake2datetime(s::Snowflake) = unix2datetime(((s >> 22) + DISCORD_EPOCH) / 1000) worker_id(s::Snowflake) = (s & 0x3e0000) >> 17 process_id(s::Snowflake) = (s & 0x1f000) >> 12 increment(s::Snowflake) = s & 0xfff # Discord sends both Unix and ISO timestamps. datetime(s::Int64) = unix2datetime(s / 1000) datetime(s::AbstractString) = DateTime(replace(s, "+" => ".000+")[1:23], ISODateTimeFormat) datetime(d::DateTime) = d macro lower(T) # do nothing quote end end # Define Base.merge for a type. macro merge(T) quote function Base.merge(a::$T, b::$T) vals = map(fieldnames($T)) do f va = getfield(a, f) vb = getfield(b, f) ismissing(vb) ? va : vb end return $T(vals...) end Base.merge(::Missing, x::$T) = x Base.merge(x::$T, ::Missing) = x end end # Compute the expression needed to extract field k from keywords. field(k::QuoteNode, ::Type{Snowflake}) = :(snowflake(kwargs[$k])) field(k::QuoteNode, ::Type{DateTime}) = :(datetime(kwargs[$k])) field(k::QuoteNode, ::Type{T}) where T = :($T(kwargs[$k])) field(k::QuoteNode, ::Type{Vector{Snowflake}}) = :(snowflake.(kwargs[$k])) field(k::QuoteNode, ::Type{Vector{DateTime}}) = :(datetime.(kwargs[$k])) field(k::QuoteNode, ::Type{Vector{T}}) where T = :($T.(kwargs[$k])) field(k::QuoteNode, ::Type{Any}) = :(haskey(kwargs, $k) ? kwargs[$k] : missing) field(k::QuoteNode, ::Type{Dict{Any, T}}) where T = :(snowify(T, kwargs[$k])) function field(k::QuoteNode, ::Type{T}) where T <: Enum return :(kwargs[$k] isa Integer ? $T(Int(kwargs[$k])) : kwargs[$k] isa $T ? kwargs[$k] : $T(kwargs[$k])) end function field(k::QuoteNode, ::Type{Optional{T}}) where T return :(haskey(kwargs, $k) ? $(field(k, T)) : missing) end function field(k::QuoteNode, ::Type{Nullable{T}}) where T return :(kwargs[$k] === nothing ? nothing : $(field(k, T))) end function field(k::QuoteNode, ::Type{OptionalNullable{T}}) where T return :(haskey(kwargs, $k) ? $(field(k, Nullable{T})) : missing) end function cvs(::Type{T}, d::Dict) where T new = Dict() for (k, v) in d new[k] = T(v) end new end function symbolize(dict::Dict{String, Any}) new = Dict{Symbol, Any}() for (k, v) in dict new[Symbol(k)] = symbolize(v) end new end symbolize(t::Any) = t function snowify(d::Dict{Symbol, Any}) f = Dict() for (k, v) in d f[snowflake(k)] = v end f end # convert(::Type{Snowflake}, s::Symbol) = parse(Snowflake, s) function snowify(d::Dict{Symbol, V}) where V<:Dict{Symbol, Any} f = Dict() for (k, v) in d f[k] = snowify(v) end f end snowify(a::Any) = a # Define constructors from keyword arguments and a Dict for a type. macro constructors(T) TT = eval(T) args = map(f -> field(QuoteNode(f), fieldtype(TT, f)), fieldnames(TT)) quote function $(esc(T))(; kwargs...) kwargs = snowify(Dict(kwargs)) $(esc(T))($(args...)) end $(esc(T))(d::Dict{Symbol, Any}) = $(esc(T))(; d...) $(esc(T))(d::Dict{String, Any}) = $(esc(T))(symbolize(d)) $(esc(T))(x::$(esc(T))) = x Base.convert(::Type{$(esc(T))}, d::Dict{Symbol, Any})= $(esc(T))(d) function StructTypes.keyvaluepairs(x::$(esc(T))) d = Dict{Symbol, Any}() for k = fieldnames(typeof(x)) d[k] = getfield(x, k) end d end StructTypes.StructType(::Type{$(esc(T))}) = StructTypes.DictType() end end macro convertenum(T) quote Base.convert(::Type{$(esc(T))}, x::Int) = $(esc(T))(x) end end # Export all instances of an enum. macro exportenum(T) TT = eval(T) quote $(map(x -> :(export $(Symbol(x))), instances(TT))...) end end # Format a type for a docstring. function doctype(s::String) s = replace(s, "UInt64" => "Snowflake") s = replace(s, string(Int) => "Int") s = replace(s, "Discord." => "") s = replace(s, "Dates." => "") m = match(r"Array{([^{}]+),1}", s) m === nothing || (s = replace(s, m.match => "Vector{$(m.captures[1])}")) m = match(r"Union{Missing, Nothing, (.+)}", s) m === nothing || return replace(s, m.match => "OptionalNullable{$(m.captures[1])}") m = match(r"Union{Missing, (.+)}", s) m === nothing || return replace(s, m.match => "Optional{$(m.captures[1])}") m = match(r"Union{Nothing, (.+)}", s) m === nothing || return replace(s, m.match => "Nullable{$(m.captures[1])}") return s end # Update a type's docstring with field names and types. macro fielddoc(T) TT = eval(T) fields = filter(n -> !startswith(string(n), "djl_"), collect(fieldnames(TT))) ns = collect(string.(fields)) width = maximum(length, ns) map!(n -> rpad(n, width), ns, ns) ts = collect(map(f -> string(fieldtype(TT, f)), fields)) map!(doctype, ts, ts) docs = join(map(t -> "$(t[1]) :: $(t[2])", zip(ns, ts)), "\n") quote doc = string(@doc $T) docstring = doc * "\n## Fields\n\n```\n" * $docs * "\n```\n" Base.CoreLogging.with_logger(Base.CoreLogging.NullLogger()) do @doc docstring $T end end end # Produce a random string. randstring() = String(filter(!ispunct, map(i -> Char(rand(48:122)), 1:rand(1:20)))) # Produce a randomized value of a type. mock(::Type{Bool}; kwargs...) = rand(Bool) mock(::Type{DateTime}; kwargs...) = now() mock(::Type{AbstractString}; kwargs...) = randstring() mock(::Type{Dict{Symbol, Any}}; kwargs...) = Dict(:a => mock(String), :b => mock(Int)) mock(::Type{T}; kwargs...) where T <: AbstractString = T(randstring()) mock(::Type{T}; kwargs...) where T <: Integer = abs(rand(T)) mock(::Type{T}; kwargs...) where T <: Enum = instances(T)[rand(1:length(instances(T)))] mock(::Type{Vector{T}}; kwargs...) where T = map(i -> mock(T; kwargs...), 1:rand(1:10)) mock(::Type{Set{T}}; kwargs...) where T = Set(map(i -> mock(T; kwargs...), 1:rand(1:10))) mock(::Type{Optional{T}}; kwargs...) where T = mock(T; kwargs...) mock(::Type{Nullable{T}}; kwargs...) where T = mock(T; kwargs...) mock(::Type{OptionalNullable{T}}; kwargs...) where T = mock(T; kwargs...) # Define a mock method for a type. macro mock(T) quote function $(esc(:mock))(::Type{$T}; kwargs...) names = fieldnames($(esc(T))) types = map(TT -> fieldtype($(esc(T)), TT), names) args = Vector{Any}(undef, length(names)) for (i, (n, t)) in enumerate(zip(names, types)) args[i] = haskey(kwargs, n) ? kwargs[n] : mock(t; kwargs...) end return $(esc(T))(args...) end end end # Apply the above macros to a type. macro boilerplate(T, exs...) macros = map(e -> e.value, exs) quote @static if :constructors in $macros @constructors $T end @static if :docs in $macros @fielddoc $T end @static if :convertenum in $macros @convertenum $T end @static if :export in $macros @exportenum $T end @static if :lower in $macros @lower $T end @static if :merge in $macros @merge $T end @static if :mock in $macros @mock $T end end end include("overwrite.jl") include("role.jl") include("guild_embed.jl") include("attachment.jl") include("voice_region.jl") include("activity.jl") include("embed.jl") include("user.jl") include("ban.jl") include("integration.jl") include("connection.jl") include("emoji.jl") include("reaction.jl") include("presence.jl") include("channel.jl") include("webhook.jl") include("invite_metadata.jl") include("member.jl") include("voice_state.jl") include("message.jl") include("guild.jl") include("invite.jl") include("audit_log.jl") include("interaction.jl") include("handlers.jl")
Ekztazy
https://github.com/Humans-of-Julia/Ekztazy.jl.git
[ "MIT" ]
0.8.0
da36639322f6789ee33aa2d4c55186f6b2bccdd2
code
579
export User """ A Discord user. More details [here](https://discordapp.com/developers/docs/resources/user#user-object). """ struct User <: DiscordObject id::Snowflake # The User inside of a Presence only needs its ID set. username::Optional{String} discriminator::Optional{String} avatar::OptionalNullable{String} bot::Optional{Bool} mfa_enabled::Optional{Bool} locale::Optional{String} verified::Optional{Bool} email::OptionalNullable{String} # Not supposed to be nullable. end @boilerplate User :constructors :docs :lower :merge :mock
Ekztazy
https://github.com/Humans-of-Julia/Ekztazy.jl.git
[ "MIT" ]
0.8.0
da36639322f6789ee33aa2d4c55186f6b2bccdd2
code
362
export VoiceRegion """ A region for a [`Guild`](@ref)'s voice server. More details [here](https://discordapp.com/developers/docs/resources/voice#voice-region-object). """ struct VoiceRegion id::String name::String vip::Bool optimal::Bool deprecated::Bool custom::Bool end @boilerplate VoiceRegion :constructors :docs :lower :merge :mock
Ekztazy
https://github.com/Humans-of-Julia/Ekztazy.jl.git
[ "MIT" ]
0.8.0
da36639322f6789ee33aa2d4c55186f6b2bccdd2
code
468
""" A [`User`](@ref)'s voice connection status. More details [here](https://discordapp.com/developers/docs/resources/voice#voice-state-object). """ struct VoiceState guild_id::Optional{Snowflake} channel_id::Nullable{Snowflake} user_id::Snowflake member::Optional{Member} session_id::String deaf::Bool mute::Bool self_deaf::Bool self_mute::Bool suppress::Bool end @boilerplate VoiceState :constructors :docs :lower :merge :mock
Ekztazy
https://github.com/Humans-of-Julia/Ekztazy.jl.git
[ "MIT" ]
0.8.0
da36639322f6789ee33aa2d4c55186f6b2bccdd2
code
429
export Webhook """ A Webhook. More details [here](https://discordapp.com/developers/docs/resources/webhook#webhook-object). """ struct Webhook id::Snowflake guild_id::Optional{Snowflake} channel_id::Snowflake user::Optional{User} name::Nullable{String} avatar::Nullable{String} token::Optional{String} # Missing in audit log entries. end @boilerplate Webhook :constructors :docs :lower :merge :mock
Ekztazy
https://github.com/Humans-of-Julia/Ekztazy.jl.git
[ "MIT" ]
0.8.0
da36639322f6789ee33aa2d4c55186f6b2bccdd2
code
5093
""" An [`Activity`](@ref)'s type. Available values are `GAME`, `STREAMING`, `LISTENING`, `WATCHING`, and `COMPETING`. More details [here](https://discordapp.com/developers/docs/topics/gateway#activity-object-activity-types). """ module ActivityType const GAME=0 const STREAMING=1 const LISTENING=2 const WATCHING=3 const CUSTOM=4 const COMPETING=5 end """ Flags which indicate what an [`Activity`](@ref) payload contains. More details [here](https://discordapp.com/developers/docs/topics/gateway#activity-object-activity-flags). """ module ActivityFlags const INSTANCE=1<<0 const JOIN=1<<1 const SPECTATE=1<<2 const JOIN_REQUEST=1<<3 const SYNC=1<<4 const PLAY=1<<5 end """ [`AuditLog`](@ref) action types. More details [here](https://discordapp.com/developers/docs/resources/audit-log#audit-log-entry-object-audit-log-events). """ module ActionType const GUILD_UPDATE=1 const CHANNEL_CREATE=10 const CHANNEL_UPDATE=11 const CHANNEL_DELETE=12 const CHANNEL_OVERWRITE_CREATE=13 const CHANNEL_OVERWRITE_UPDATE=14 const CHANNEL_OVERWRITE_DELETE=15 const MEMBER_KICK=20 const MEMBER_PRUNE=21 const MEMBER_BAN_ADD=22 const MEMBER_BAN_REMOVE=23 const MEMBER_UPDATE=24 const MEMBER_ROLE_UPDATE=25 const ROLE_CREATE=30 const ROLE_UPDATE=31 const ROLE_DELETE=32 const INVITE_CREATE=40 const INVITE_UPDATE=41 const INVITE_DELETE=42 const WEBHOOK_CREATE=50 const WEBHOOK_UPDATE=51 const WEBHOOK_DELETE=52 const EMOJI_CREATE=60 const EMOJI_UPDATE=61 const EMOJI_DELETE=62 const MESSAGE_DELETE=72 end """ A [`DiscordChannel`](@ref)'s type. See full list at https://discord.com/developers/docs/resources/channel#channel-object-channel-types """ module ChannelTypes const GUILD_TEXT = 0 const DM = 1 const GUILD_VOICE = 2 const GROUP_DM = 3 const GUILD_CATEGORY = 4 const GUILD_NEWS = 5 const GUILD_STORE = 6 const GUILD_NEWS_THREAD = 10 const GUILD_PUBLIC_THREAD = 11 const GUILD_PRIVATE_THREAD = 12 const GUILD_STAGE_VOICE = 13 end """ A [`Guild`](@ref)'s verification level. More details [here](https://discordapp.com/developers/docs/resources/guild#guild-object-verification-level). """ module VerificationLevel const NONE = 0 const LOW = 1 const MEDIUM = 2 const HIGH = 3 const VERY_HIGH = 4 end """ A [`Guild`](@ref)'s default message notification level. More details [here](https://discordapp.com/developers/docs/resources/guild#guild-object-default-message-notification-level). """ module MessageNotificationLevel const ALL_MESSAGES = 0 const ONLY_MENTIONS = 1 end """ A [`Guild`](@ref)'s explicit content filter level. More details [here](https://discordapp.com/developers/docs/resources/guild#guild-object-explicit-content-filter-level). """ module ExplicitContentFilterLevel const DISABLED = 0 const MEMBERS_WITHOUT_ROLES = 1 const ALL_MEMBERS = 2 end """ A [`Guild`](@ref)'s MFA level. More details [here](https://discordapp.com/developers/docs/resources/guild#guild-object-mfa-level). """ module MFALevel const NONE = 0 const ELEVATED = 1 end module InteractionType const PING = 1 const APPLICATIONCOMMAND = 2 const MESSAGECOMPONENT = 3 end module ApplicationCommandType const CHATINPUT = 1 const UI = 2 const MESSAGE = 3 end module ComponentType const ACTIONROW = 1 const BUTTON = 2 const SELECTMENU = 3 end module OptionType const SUB_COMMAND = 1 const SUB_COMMAND_GROUP = 2 const STRING = 3 const INTEGER = 4 const BOOLEAN = 5 const USER = 6 const CHANNEL = 7 const ROLE = 8 const MENTIONABLE = 9 const NUMBER = 10 end """ A [`Message`](@ref)'s type. More details [here](https://discordapp.com/developers/docs/resources/channel#message-object-message-types). """ module MessageType const DEFAULT = 0 const RECIPIENT_ADD = 1 const RECIPIENT_REMOVE = 2 const CALL = 3 const CHANNEL_NAME_CHANGE = 4 const CHANNEL_ICON_CHANGE = 5 const CHANNEL_PINNED_MESSAGE = 6 const GUILD_MEMBER_JOIN = 7 const USER_PREMIUM_GUILD_SUBSCRIPTION = 8 const USER_PREMIUM_GUILD_SUBSCRIPTION_TIER_1 = 9 const USER_PREMIUM_GUILD_SUBSCRIPTION_TIER_2 = 10 const USER_PREMIUM_GUILD_SUBSCRIPTION_TIER_3 = 11 const CHANNEL_FOLLOW_ADD = 12 const GUILD_DISCOVERY_DISQUALIFIED = 14 const GUILD_DISCOVERY_REQUALIFIED = 15 const GUILD_DISCOVERY_GRACE_PERIOD_INITIAL_WARNING = 16 const GUILD_DISCOVERY_GRACE_PERIOD_FINAL_WARNING = 17 const THREAD_CREATED = 18 const REPLY = 19 const CHAT_INPUT_COMMAND = 20 const THREAD_STARTER_MESSAGE = 21 const GUILD_INVITE_REMINDER = 22 const CONTEXT_MENU_COMMAND = 23 end """ A [`Message`](@ref)'s activity type. More details [here](https://discordapp.com/developers/docs/resources/channel#message-object-message-activity-types). """ module MessageActivityType const JOIN = 1 const SPECTATE = 2 const LISTEN = 3 const JOIN_REQUEST = 5 end
Ekztazy
https://github.com/Humans-of-Julia/Ekztazy.jl.git
[ "MIT" ]
0.8.0
da36639322f6789ee33aa2d4c55186f6b2bccdd2
code
21172
export PERM_NONE, PERM_ALL, has_permission, permissions_in, reply, modal, intents, mention, split_message, Options, plaintext, heartbeat_ping, upload_file, set_game, opt, Option, extops, isme, component, @fetch, @fetchval, @deferred_fetch, @deferred_fetchval const CRUD_FNS = :create, :retrieve, :update, :delete """ Regex expressions for [`split_message`](@ref) to not break Discord formatting. """ const STYLES = [ r"```.+?```"s, r"`.+?`", r"~~.+?~~", r"(_|__).+?\1", r"(\*+).+?\1", ] """ Bitwise permission flags. More details [here](https://discordapp.com/developers/docs/topics/permissions#permissions-bitwise-permission-flags). """ @enum Permission begin PERM_CREATE_INSTANT_INVITE=1<<0 PERM_KICK_MEMBERS=1<<1 PERM_BAN_MEMBERS=1<<2 PERM_ADMINISTRATOR=1<<3 PERM_MANAGE_CHANNELS=1<<4 PERM_MANAGE_GUILD=1<<5 PERM_ADD_REACTIONS=1<<6 PERM_VIEW_AUDIT_LOG=1<<7 PERM_VIEW_CHANNEL=1<<10 PERM_SEND_MESSAGES=1<<11 PERM_SEND_TTS_MESSAGES=1<<12 PERM_MANAGE_MESSAGES=1<<13 PERM_EMBED_LINKS=1<<14 PERM_ATTACH_FILES=1<<15 PERM_READ_MESSAGE_HISTORY=1<<16 PERM_MENTION_EVERYONE=1<<17 PERM_USE_EXTERNAL_EMOJIS=1<<18 PERM_CONNECT=1<<20 PERM_SPEAK=1<<21 PERM_MUTE_MEMBERS=1<<22 PERM_DEAFEN_MEMBERS=1<<23 PERM_MOVE_MEMBERS=1<<24 PERM_USE_VAD=1<<25 PERM_PRIORITY_SPEAKER=1<<8 PERM_STREAM=1<<9 PERM_CHANGE_NICKNAME=1<<26 PERM_MANAGE_NICKNAMES=1<<27 PERM_MANAGE_ROLES=1<<28 PERM_MANAGE_WEBHOOKS=1<<29 PERM_MANAGE_EMOJIS=1<<30 end @boilerplate Permission :export @enum Intent begin GUILDS = 1 << 0; GUILD_MEMBERS = 1 << 1; GUILD_BANS = 1 << 2; GUILD_EMOJIS = 1 << 3; GUILD_INTEGRATIONS = 1 << 4; GUILD_WEBHOOKS = 1 << 5; GUILD_INVITES = 1 << 6; GUILD_VOICE_STATES = 1 << 7; GUILD_PRESENCES = 1 << 8; GUILD_MESSAGES = 1 << 9; GUILD_MESSAGE_REACTIONS = 1 << 10; GUILD_MESSAGE_TYPING = 1 << 11; DIRECT_MESSAGES = 1 << 12; DIRECT_MESSAGE_REACTIONS = 1 << 13; DIRECT_MESSAGE_TYPING = 1 << 14; end @boilerplate Intent :export intents(args...) = sum(Int.(args)) const PERM_NONE = 0 const PERM_ALL = |(Int.(instances(Permission))...) """ has_permission(perms::Integer, perm::Permission) -> Bool Determine whether a bitwise OR of permissions contains one [`Permission`](@ref). ## Examples ```jldoctest; setup=:(using Ekztazy) julia> has_permission(0x0420, PERM_VIEW_CHANNEL) true julia> has_permission(0x0420, PERM_ADMINISTRATOR) false julia> has_permission(0x0008, PERM_MANAGE_ROLES) true ``` """ function has_permission(perms::Integer, perm::Permission) admin = perms & Int64(PERM_ADMINISTRATOR) == Int64(PERM_ADMINISTRATOR) has = perms & Int64(perm) == Int64(perm) return admin || has end """ permissions_in(m::Member, g::Guild, ch::DiscordChannel) -> Int64 Compute a [`Member`](@ref)'s [`Permission`](@ref)s in a [`DiscordChannel`](@ref). """ function permissions_in(m::Member, g::Guild, ch::DiscordChannel) !ismissing(m.user) && m.user.id == g.owner_id && return PERM_ALL # Get permissions for @everyone. idx = findfirst(r -> r.name == "@everyone", g.roles) everyone = idx === nothing ? nothing : g.roles[idx] perms = idx === nothing ? Int64(0) : everyone.permissions perms & Int64(PERM_ADMINISTRATOR) == Int64(PERM_ADMINISTRATOR) && return PERM_ALL roles = idx === nothing ? m.roles : [everyone.id; m.roles] # Apply role overwrites. for role in roles idx = findfirst( o -> o.type === OT_ROLE && o.id == role, coalesce(ch.permission_overwrites, Overwrite[]), ) if idx !== nothing o = ch.permission_overwrites[idx] perms &= ~o.deny perms |= o.allow end end # Apply user-specific overwrite. if !ismissing(m.user) idx = findfirst( o -> o.type === OT_MEMBER && o.id == m.user.id, coalesce(ch.permission_overwrites, Overwrite[]), ) if idx !== nothing o = ch.permission_overwrites[idx] perms &= ~o.deny perms |= o.allow end end return perms end getId(int::Interaction) = ismissing(int.member) ? int.user.id : int.member.user.id getId(ctx::Context) = hasproperty(ctx, :message) ? ctx.message.author.id : getId(ctx.interaction) Base.print(io::IO, c::DiscordChannel) = print(io, "<#$(c.id)>") Base.print(io::IO, r::Role) = print(io, "<@&$(r.id)>") Base.print(io::IO, u::User) = print(io, "<@$(u.id)>") function Base.print(io::IO, m::Member) if ismissing(m.user) print(io, something(coalesce(m.nick, "<unknown member>"), "<unknown member>")) elseif ismissing(m.nick) || m.nick === nothing print(io, m.user) else print(io, "<@!$(m.user.id)>") end end function Base.print(io::IO, e::Emoji) s = if e.id === nothing coalesce(e.require_colons, false) ? ":$(e.name):" : e.name else coalesce(e.animated, false) ? "<a:$(e.name):$(e.id)>" : "<:$(e.name):$(e.id)>" end print(io, s) end function compkwfix(; kwargs...) if haskey(kwargs, :components) temp = [] for c = kwargs[:components] if c.type != 1 push!(temp, Component(; type=1, components=[c])) else push!(temp, c) end end v = Dict(kwargs) v[:components] = temp return v else return Dict(kwargs) end end """ reply( c::Client context; kwargs... ) Replies to a [`Context`](@ref), an [`Interaction`](@ref) or a [`Message`](@ref). """ reply(c::Client, m::Message; noreply=false, kwargs...) = create_message(c, m.channel_id; message_reference=(noreply ? missing : MessageReference(message_id=m.id)), compkwfix(; kwargs...)...) reply(c::Client, int::Interaction; raw=false, kwargs...) = !raw ? create(c, Message, int; compkwfix(; kwargs...)...) : respond_to_interaction(c, int.id, int.token; kwargs...) reply(c::Client, ctx::Context; kwargs...) = reply(c, (hasproperty(ctx, :message) ? ctx.message : ctx.interaction); compkwfix(; kwargs...)...) """ mention( o::DiscordObject ) Generates the plaintext mention for a [`User`](@ref), a [`Member`](@ref), a [`DiscordChannel`](@ref), a [`Role`](@ref), or a [`Context`](@ref) """ mention(u::User) = "<@$(u.id)>" mention(r::Role) = "<@&$(r.id)>" mention(m::Member) = "<@$(m.user.id)>" mention(c::DiscordChannel) = "<#$(c.id)>" mention(m::Message) = mention(m.author) mention(i::Interaction) = ismissing(i.member) ? mention(i.user) : mention(i.member) mention(ctx::Context) = if hasproperty(ctx, :interaction) return mention(ctx.interaction) elseif hasproperty(ctx, :message) return mention(ctx.message) end """ filter_ranges(u::Vector{UnitRange{Int}}) Filter a list of ranges, discarding ranges included in other ranges from the list. # Example ```jldoctest; setup=:(using Ekztazy) julia> Ekztazy.filter_ranges([1:5, 3:8, 1:20, 2:16, 10:70, 25:60, 5:35, 50:90, 10:70]) 4-element Vector{UnitRange{Int64}}: 1:20 5:35 50:90 10:70 ``` """ function filter_ranges(u::Vector{UnitRange{Int}}) v = fill(true, length(u)) for i in 1:length(u) if !all(m -> (m[1] == i) || (u[i] ⊈ m[2]), m for m in enumerate(u) if v[m[1]] == true) v[i] = false end end return u[v] end """ split_message(text::AbstractString; chunk_limit::UInt=2000, extrastyles::Vector{Regex}=Vector{Regex}(), forcesplit::Bool = true) -> Vector{String} Split a message into chunks with at most chunk_limit length, preserving formatting. The `chunk_limit` has as default the 2000 character limit of Discord's messages, but can be changed to any nonnegative integer. Formatting is specified by [`STYLES`](@ref)) and can be aggregated with the `extrastyles` argument. Discord limits messages to 2000, so the code forces split if format breaking cannot be avoided. If desired, however, this behavior can be lifter by setting `forcesplit` to false. ## Examples ```julia julia> split_message("foo") 1-element Vector{String}: "foo" julia> split_message(repeat('.', 1995) * "**hello, world**")[2] "**hello, world**" julia> split_message("**hello**, *world*", chunk_limit=10) 2-element Vector{String}: "**hello**," "*world*" julia> split_message("**hello**, _*beautiful* world_", chunk_limit=15) ┌ Warning: message was forced-split to fit the desired chunk length limit 15 └ @ Main REPL[66]:28 3-element Vector{String}: "**hello**," "_*beautiful* wo" "rld_" julia> split_message("**hello**, _*beautiful* world_", chunk_limit=15, forcesplit=false) ┌ Warning: message could not be split into chunks smaller than the length limit 15 └ @ Main REPL[66]:32 2-element Vector{String}: "**hello**," "_*beautiful* world_" julia> split_message("**hello**\\n=====\\n", chunk_limit=12) 2-element Vector{String}: "**hello**\\n==" "===" julia> split_message("**hello**\\n≡≡≡≡≡\\n", chunk_limit=12, extrastyles = [r"\\n≡+\\n"]) 2-element Vector{String}: "**hello**" "≡≡≡≡≡" ``` """ function split_message(text::AbstractString; chunk_limit::Int=2000, extrastyles::Vector{Regex}=Vector{Regex}(), forcesplit::Bool = true) chunks = String[] text = strip(text) while !isempty(text) if length(text) ≤ chunk_limit push!(chunks, strip(text)) return chunks end # get ranges associated with the formattings # mranges = vcat(findall.(union(STYLES, extrastyles),Ref(text))...) can't use findall in julia 1.0 and 1.1 ... mranges = [m.offset:m.offset+ncodeunits(m.match)-1 for m in vcat(collect.(eachmatch.(union(STYLES, extrastyles), text))...)] # filter ranges to eliminate inner formattings franges = filter_ranges(mranges) # get ranges that get split apart by the chunk limit - there should be only one, unless text is ill-formatted splitranges = filter(r -> (length(text[1:r[1]]) ≤ chunk_limit) & (length(text[1:r[end]]) > chunk_limit), franges) if length(splitranges) > 0 stop = minimum(map(r -> prevind(text, r[1]), splitranges)) end if length(splitranges) == 0 # get highest valid unicode index if no range is split apart stop = maximum(filter(n -> length(text[1:n])≤chunk_limit, thisind.(Ref(text), 1:ncodeunits(text)))) elseif (stop == 0) && (forcesplit == true) # get highest valid unicode if format breaking cannot be avoided and forcesplit is true stop = maximum(filter(n -> length(text[1:n])≤chunk_limit, thisind.(Ref(text), 1:ncodeunits(text)))) # @warn "message was forced-split to fit the desired chunk length limit $chunk_limit" elseif stop == 0 # give up at this point if current chunk cannot be split and `forcesplit` is set to false push!(chunks, strip(text)) # @warn "message could not be split into chunks smaller than the length limit $chunk_limit" return chunks end # splits preferably at a space-like character lastspace = findlast(isspace, text[1:stop]) if lastspace !== nothing stop = lastspace end # push chunk and select remaining text push!(chunks, strip(text[1:stop])) text = strip(text[nextind(text, stop):end]) end return chunks end """ plaintext(m::Message) -> String plaintext(c::Client, m::Message) -> String Get the [`Message`](@ref) contents with any [`User`](@ref) mentions replaced with their plaintext. If a [`Client`](@ref) is provided, [`DiscordChannel`](@ref)s [`Role`](@ref) are also replaced. However, only channels and roles stored in state are replaced; no API requests are made. """ function plaintext(m::Message) content = m.content for u in coalesce(m.mentions, User[]) name = "@$(u.username)" content = replace(content, "<@$(u.id)>" => name) content = replace(content, "<@!$(u.id)>" => name) end return content end function plaintext(c::Client, m::Message) content = m.content for u in coalesce(m.mentions, User[]) member = get(c.state, Member; guild=m.guild_id, user=u.id) nick = if member !== nothing && member.nick isa String "@$(member.nick)" else "@$(u.username)" end content = replace(content, "<@$(u.id)>" => "@$(u.username)") content = replace(content, "<@!$(u.id)>" => "@$nick") end guild = get(c.state, Guild; guild=m.guild_id) if guild !== nothing for r in coalesce(m.mention_roles, Snowflake[]) role = get(c.state, Role; guild=m.guild_id, role=r) if role !== nothing content = replace(content, "<@&$r>" => "@$(role.name)") end end for cap in unique(eachmatch(r"<#(\d+?)>", content)) ch = get(c.state, DiscordChannel; channel=parse(Snowflake, first(cap.captures))) if ch !== nothing content = replace(content, cap.match => "#$(ch.name)") end end end return content end """ heartbeat_ping(c::Client) -> Nullable{Period} Get the [`Client`](@ref)'s ping time to the gateway. If the client is not connected, or no heartbeats have been sent/acknowledged, `nothing` is returned. """ function heartbeat_ping(c::Client) isopen(c) || return nothing zero = DateTime(0) return c.last_hb == zero || c.last_ack == zero ? nothing : c.last_ack - c.last_hb end """ upload_file(c::Client, ch::DiscordChannel, path::AbstractString; kwargs...) -> Message Send a [`Message`](@ref) with a file [`Attachment`](@ref). Any keywords are passed on to [`create_message`](@ref). """ function upload_file(c::Client, ch::DiscordChannel, path::AbstractString; kwargs...) return create_message(c, ch.id; kwargs..., file=open(path)) end """ set_game( c::Client, game::AbstractString; type::Int=AT.GAME, since::Nullable{Int}=c.presence["since"], status::Union{PresenceStatus, AbstractString}=c.presence["status"], afk::Bool=c.presence["afk"], kwargs..., ) -> Bool Shortcut for [`update_status`](@ref) to set the [`Client`](@ref)'s [`Activity`](@ref). Any additional keywords are passed into the `activity` section. """ function set_game( c::Client, game::AbstractString; type::Int=ActionType.GAME, since::Nullable{Int}=c.presence["since"], status::Union{Int, AbstractString}=c.presence["status"], afk::Bool=c.presence["afk"], kwargs..., ) activity = merge(Dict("name" => game, "type" => type), kwargs) return update_status(c, since, activity, status, afk) end """ @fetch [functions...] block Wrap all calls to the specified CRUD functions ([`create`](@ref), [`retrieve`](@ref), [`update`](@ref), and [`delete`](@ref)) with `fetch` inside a block. If no functions are specified, all CRUD functions are wrapped. ## Examples Wrapping all CRUD functions: ```julia @fetch begin guild_resp = create(c, Guild; name="foo") guild_resp.ok || error("Request for new guild failed") channel_resp = retrieve(c, DiscordChannel, guild_resp.val) end ``` Wrapping only calls to `retrieve`: ```julia @fetch retrieve begin resp = retrieve(c, DiscordChannel, 123) future = create(c, Message, resp.val; content="foo") # Behaves normally. end ``` """ macro fetch(exs...) validate_fetch(exs...) fns = length(exs) == 1 ? CRUD_FNS : exs[1:end-1] ex = wrapfn!(exs[end], fns, :fetch) quote $ex end end """ @fetchval [functions...] block Identical to [`@fetch`](@ref), but calls are wrapped with [`fetchval`](@ref) instead. """ macro fetchval(exs...) validate_fetch(exs...) fns = length(exs) == 1 ? CRUD_FNS : exs[1:end-1] ex = wrapfn!(exs[end], fns, :fetchval) quote $ex end end """ @deferred_fetch [functions...] block Identical to [`@fetch`](@ref), but `Future`s are not `fetch`ed until the **end** of the block. This is more efficient, but only works when there are no data dependencies in the block. ## Examples This will work: ```julia @deferred_fetch begin guild_resp = create(c, Guild; name="foo") channel_resp = retrieve(c, DiscordChannel, 123) end ``` This will not, because the second call is dependent on the first value: ```julia @deferred_fetch begin guild_resp = create(c, Guild; name="foo") channels_resp = retrieve(c, DiscordChannel, guild_resp.val) end ``` """ macro deferred_fetch(exs...) validate_fetch(exs...) fns = length(exs) == 1 ? CRUD_FNS : exs[1:end-1] ex = deferfn!(exs[end], fns, :fetch) quote $ex end end """ @deferred_fetchval [functions...] block Identical to [`@deferred_fetch`](@ref), but `Future`s have [`fetchval`](@ref) called on them instead of `fetch`. """ macro deferred_fetchval(exs...) validate_fetch(exs...) fns = length(exs) == 1 ? CRUD_FNS : exs[1:end-1] ex = deferfn!(exs[end], fns, :fetchval) quote $ex end end # Validate the arguments to CRUD macros. function validate_fetch(exs...) if !(exs[end] isa Expr && exs[end].head === :block) throw(ArgumentError("Final argument must be a block")) end if !all(fn -> fn in CRUD_FNS, exs[1:end-1]) throw(ArgumentError("Only CRUD functions can be wrapped")) end end # Wrap calls to certain functions in a call to another function. wrapfn!(ex, ::Tuple, ::Symbol) = esc(ex) function wrapfn!(ex::Expr, fns::Tuple, with::Symbol) if ex.head === :call && ex.args[1] in fns ex = :($(esc(with))($(esc(ex)))) else map!(arg -> wrapfn!(arg, fns, with), ex.args, ex.args) end return ex end # Defer fetching a Future until the end of a block. deferfn!(ex, ::Tuple) = (esc(ex), Pair{Symbol, Symbol}[]) function deferfn!(ex::Expr, fns::Tuple) renames = Pair{Symbol, Symbol}[] if ex.head === :(=) && ex.args[2] isa Expr && ex.args[2].args[1] in fns newsym = gensym(ex.args[1]) push!(renames, ex.args[1] => newsym) ex.args[1] = newsym map!(esc, ex.args, ex.args) else for i in eachindex(ex.args) ex.args[i], rs = deferfn!(ex.args[i], fns) append!(renames, rs) end end return ex, renames end function deferfn!(ex, fns::Tuple, deferred::Symbol) ex, renames = deferfn!(ex, fns) repls = map(r -> :($(esc(r[1])) = $(esc(deferred))($(esc(r[2])))), renames) append!(ex.args, repls) return ex end """ Option(; kwargs...) -> ApplicationCommandOption Helper function that creates an ApplicationCommandOption` """ Option(; kwargs...) = ApplicationCommandOption(; type=3, kwargs...) Option(t::Type; kwargs...) = ApplicationCommandOption(; type=findtype(t), kwargs...) Option(t::Type, name::String, description::String; kwargs...) = Option(t; name=name, description=description, kwargs...) Option(t::Type, name::String; kwargs...) = Option(t, name, "NULL"; kwargs...) Option(name::String, description::String; kwargs...) = ApplicationCommandOption(; type=3, name=name, description=description, kwargs...) Option(name::String; kwargs...) = Option(name, "NULL"; kwargs...) """ Options(args...) -> Vector{ApplicationCommandOption} Calls [`Option`](@ref) on each Vector in the args. """ Options(args...) = [Option(a...) for a in args] """ Deprecated, use [`Option`](@ref) instead """ opt(; kwargs...) = ApplicationCommandOption(; type=3, kwargs...) opt(t::Type; kwargs...) = ApplicationCommandOption(type=findtype(t); kwargs...) const TYPEIND = Dict{Type, Int64}( String => 3, Int => 4, Bool => 5, User => 6, DiscordChannel => 7, Role => 8, ) function findtype(t::Type) return TYPEIND[t] end """ opt(ctx::Context) Helper function that is equivalent to calling `extops(ctx.interaction.data.options)` """ function opt(ctx::Context) if ismissing(ctx.interaction.data.components) extops(ctx.interaction.data.options) else extops(ctx.interaction.data.components, :custom_id) end end """ extops(ops::Vector) Creates a Dict of `option name` -> `option value` for the given vector of [`ApplicationCommandOption`](@ref). If the option is of `Subcommand` type, creates a dict for all its subcommands. """ extops(ops::Vector) = Dict([(op.name, Int(op.type) < 3 ? extops(op.options) : op.value) for op in ops]) extops(ops::Vector, kf::Symbol) = extops(ops, kf, :value) extops(ops::Vector, kf::Symbol, kv::Symbol) = Dict([(getproperty(comp, kf), getproperty(comp, kv)) for comp in vcat([c.components for c in ops]...)]) """ Return an empty `Dict` if the list of options used is missing. """ extops(::Missing) = Dict() """ isme(c::Client, ctx::Context) -> Bool Returns whether the context is a Message Context sent by the bot user. """ isme(c::Client, ctx::Context) = hasproperty(ctx, :message) ? (ctx.message.author.id == me(c).id) : false
Ekztazy
https://github.com/Humans-of-Julia/Ekztazy.jl.git
[ "MIT" ]
0.8.0
da36639322f6789ee33aa2d4c55186f6b2bccdd2
code
2359
using Ekztazy using Distributed client = Client() ENV["JULIA_DEBUG"] = Ekztazy TESTGUILD = ENV["TESTGUILD"] on_message_create!(client) do (ctx) (!isme(client, ctx)) && reply(client, ctx, content="$(mention(ctx.message.author)), $(ctx.message.content) TEST") end command!(client, TESTGUILD, "boom", "Go boom!") do (ctx) reply(client, ctx, content="$(mention(ctx)) blew up!") end command!(client, TESTGUILD, "bam", "Go bam!") do (ctx) reply(client, ctx, content="$(mention(ctx)) slapped themselves!") end command!(client, TESTGUILD, "double", "Doubles a number!", legacy=false, options=[ Option(Int, name="number", description="The number to double!") ]) do ctx, number reply(client, ctx, content="$(number*2)") end command!(client, TESTGUILD, "multiply", "Multiplies numbers!", legacy=false, options=Options( [Int, "a", "the first number"], [Int, "b", "the second number"] )) do ctx, a::Int, b::Int reply(client, ctx, content="$(a*b)") end command!(client, TESTGUILD, "greet", "Greets a user", legacy=false, options=Options( [User, "u", "The user to greet"] )) do ctx, u::Member reply(client, ctx, content="Hello, $(u)!") end command!(client, TESTGUILD, "water", "Water a plant", legacy=false, options=[ Option(Int, "howmuch", "How long do you want to water the plant?") ]) do ctx, howmuch cm = component!(client, "magic"; auto_ack=false, type=2, style=1, label="Wow, a Button!?") do context update(client, context, content="You pressed the button!") end reply(client, ctx, components=[cm], content="$(mention(ctx)) watered their plant for $(howmuch) hours. So much that the plant grew taller than them!") end command!(client, TESTGUILD, "test", "Test something", legacy=false) do ctx cm = select!( client, "class", ("Rogue", "rogue"), ("Mage", "mage"); max_values=1 ) do context, choices reply(client, context, content="You chose $(choices[1])") end reply(client, ctx, components=[cm], content="What class you want noob?") end command!(client, TESTGUILD, "quit", "Ends the bot process!") do (ctx) reply(client, ctx, content="Shutting down the bot") close(client) end on_ready!(client) do (ctx) @info "Successfully logged in as $(ctx.user.username)" # obtain(client, User).username end start(client)
Ekztazy
https://github.com/Humans-of-Julia/Ekztazy.jl.git
[ "MIT" ]
0.8.0
da36639322f6789ee33aa2d4c55186f6b2bccdd2
code
49
using Ekztazy using Test include("fulltest.jl")
Ekztazy
https://github.com/Humans-of-Julia/Ekztazy.jl.git
[ "MIT" ]
0.8.0
da36639322f6789ee33aa2d4c55186f6b2bccdd2
docs
2398
<div align="center"> <img src="https://github.com/Humans-of-Julia/Ekztazy.jl/blob/master/docs/src/assets/logo.png?raw=true" width = "100" height = "100" style="align: center"> | Documentation | Build | | -- | -- | | [![Stable](https://img.shields.io/badge/docs-stable-blue.svg)](https://humans-of-julia.github.io/Ekztazy.jl/stable/) [![Dev](https://img.shields.io/badge/docs-dev-blue.svg)](https://humans-of-julia.github.io/Ekztazy.jl/dev/)| [![CI](https://github.com/Humans-of-Julia/Ekztazy.jl/actions/workflows/ci.yml/badge.svg)](https://github.com/Humans-of-Julia/Ekztazy.jl/actions/workflows/ci.yml) | </div> Ekztazy.jl is the spiritual successor to [Discord.jl](https://github.com/Xh4H/Discord.jl). It is a maintained Julia Pkg for creating simple yet efficient [Discord](https://discord.com) bots. * Strong, expressive type system: No fast-and-loose JSON objects here. * Non-blocking: API calls return immediately and can be awaited when necessary. * Simple: Multiple dispatch allows for a [small, elegant core API](https://Humans-of-Julia.github.io/Ekztazy.jl/stable/rest.html#CRUD-API-1). * Fast: Julia is [fast like C but still easy like Python](https://julialang.org/blog/2012/02/why-we-created-julia). * Robust: Resistant to bad event handlers and/or requests. Errors are introspectible for debugging. * Lightweight: Cache what is important but shed dead weight with [TTL](https://en.wikipedia.org/wiki/Time_to_live). * Gateway independent: Ability to interact with Discord's API without establishing a gateway connection. * Distributed: [Process-based sharding](https://Humans-of-Julia.github.io/Ekztazy.jl/stable/client.html#Ekztazy.Client) requires next to no intervention and you can even run shards on separate machines. Ekztazy.jl can be added like this: ```julia ] add Ekztazy ``` # Example ```julia # Discord Token and Application ID should be saved in Env vars client = Client() # Guild to register the command in TESTGUILD = ENV["TESTGUILD"] command!(client, TESTGUILD, "double", "Doubles a number!", options=[opt(name="number", description="The number to double!")]) do (ctx) Ekztazy.reply(client, ctx, content="$(parse(Int, opt(ctx)["number"])*2)") end on_ready!(client) do (ctx) @info "Successfully logged in as $(ctx.user.username)" end start(client) ``` Many thanks to [@Xh4H](https://github.com/Xh4H) for Discord.jl which this relied heavily on.
Ekztazy
https://github.com/Humans-of-Julia/Ekztazy.jl.git
[ "MIT" ]
0.8.0
da36639322f6789ee33aa2d4c55186f6b2bccdd2
docs
339
```@meta CurrentModule = Ekztazy ``` # Client ```@docs Client enable_cache! disable_cache! me ``` ## Gateway ```@docs Base.open Base.isopen Base.close Base.wait request_guild_members update_voice_state update_status heartbeat_ping start ``` ## Caching ```@docs CacheStrategy CacheForever CacheNever CacheTTL CacheLRU CacheFilter ```
Ekztazy
https://github.com/Humans-of-Julia/Ekztazy.jl.git
[ "MIT" ]
0.8.0
da36639322f6789ee33aa2d4c55186f6b2bccdd2
docs
4243
```@meta CurrentModule = Ekztazy ``` # Events Events are how Discord communicates and interacts with our application. In Ekztazy.jl, we use the [`Handler`](@ref) type in conjunction with the [`Context`](@ref) type to handle them. ## Handler A Handler is simple to register for an event. To register a handler for the Ready event: ```julia # `c` is a client generated previously. h = OnReady() do (ctx) println("I'm ready!") end add_handler!(c, h) ``` There is also a convenience method to create handlers. As such the following code is fully equivalent: ```julia on_ready!(c) do (ctx) println("I'm ready!") end ``` (on_ready! creates an OnReady handler and adds it to the client.) You can find a list of all gateway events [here](https://discord.com/developers/docs/topics/gateway#commands-and-events-gateway-events). Simply add `On` before their NAME to get the name of the associated handler! ```@docs Handler ``` ## Context The context is simply the payload received from the interaction. Exceptions: - The `MessageCreate` context contains a [`Message`](@ref). - The `OnGuildCreate` and `OnGuildUpdate` contexts contain a [`Guild`](@ref). - The `OnInteractionCreate` context contains an [`Interaction`](@ref). You can find the expected payloads for events [here](https://discord.com/developers/docs/topics/gateway#commands-and-events-gateway-events). ```@docs Context ``` # Commands Commands are the core of any Discord Application, and as such they are also the core of Ekztazy. Let us define the most basic of functions there can be. ```julia # ... c is a client struct # ... g is a guild id for testing command!(ctx->reply(c, ctx, content="pong"), c, g, "ping", "Ping!") ``` For more information on each of the arguments, check the documentation of [`command!`](@ref) below. For more complicated functions, there are two ways for them to work. The default Discord.jl inspired "legacy style", which is deprecated, and the "new style". Let us look at both of these with two more complicated commands. `New style` ```julia # ... c is a client struct # ... g is a guild id for testing command!(c, g, "greet", "greets a user", legacy=false, options=Options( [User, "u", "The user to greet"] )) do ctx, u::Member reply(client, ctx, content="Hello, $(u)!") end command!(c, g, "eval", "evaluates a string as julia code", options=Options( [String, "str", "the string to evaluate"] )) do ctx, str::String @info "$str" reply(c, ctx, content="```julia\n$(eval(Meta.parse(str)))\n```") end ``` `Legacy style` ```julia # ... c is a client struct # ... g is a guild id for testing command!(c, g, "greet", "greets a user", options=[ opt("u", "the user to greet") ]) do ctx reply(client, ctx, content="Hello, <@$(opt(ctx)["u"])>!") end command!(c, g, "eval", "evaluates a string as julia code", options=[ opt("str", "the string to evaluate") ]) do ctx reply(c, ctx, content="```julia\n$(eval(Meta.parse(opt(ctx)["str"])))\n```") end ``` There a few key differences. In the legacy style, we have to use the [`opt`](@ref) function to get a Dict of Option name => User input, in the new style these are automatically provided to the handler function and are automatically type converted to the right type. In the legacy style, all command options are string, in the new style they can be strings, ints, bools, [`User`](@ref)s, [`Role`](@ref)s and [`DiscordChannel`](@ref)s. You can check examples to see many different command definitions. ## Handlers ```@docs command! component! on_message_create! on_guild_members_chunk! on_channel_delete! on_guild_integrations_update! on_guild_member_update! on_presence_update! on_channel_create! on_message_delete_bulk! on_message_reaction_add! on_guild_role_delete! on_ready! on_user_update! on_guild_create! on_guild_member_remove! on_typing_start! on_message_update! on_guild_emojis_update! on_interaction_create! on_guild_delete! on_voice_state_update! on_guild_member_add! on_guild_ban_remove! on_guild_role_update! on_guild_role_create! on_voice_server_update! on_guild_ban_add! on_message_reaction_remove_all! on_channel_pins_update! on_resumed! on_guild_update! on_message_delete! on_webhooks_update! on_channel_update! on_message_reaction_remove! ```
Ekztazy
https://github.com/Humans-of-Julia/Ekztazy.jl.git
[ "MIT" ]
0.8.0
da36639322f6789ee33aa2d4c55186f6b2bccdd2
docs
291
```@meta CurrentModule = Ekztazy ``` # Helpers ```@docs STYLES Permission has_permission permissions_in reply filter_ranges split_message plaintext upload_file set_game opt Option extops isme method_args add_handler! Options mention @fetch @fetchval @deferred_fetch @deferred_fetchval ```
Ekztazy
https://github.com/Humans-of-Julia/Ekztazy.jl.git
[ "MIT" ]
0.8.0
da36639322f6789ee33aa2d4c55186f6b2bccdd2
docs
5789
```@meta CurrentModule = Ekztazy ``` ## Index ### Introduction Welcome to Ekztazy.jl Ekztazy.jl is the spiritual successor to Discord.jl. It is a maintained Julia Pkg for creating simple yet efficient Discord bots. - Strong, expressive type system: No fast-and-loose JSON objects here. - Non-blocking: API calls return immediately and can be awaited when necessary. - Simple: Multiple dispatch allows for a small, elegant core API. - Fast: Julia is fast like C but still easy like Python. - Robust: Resistant to bad event handlers and/or requests. Errors are introspectible for debugging. - Lightweight: Cache what is important but shed dead weight with TTL. - Gateway independent: Ability to interact with Discord's API without establishing a gateway connection. - Distributed: Process-based sharding requires next to no intervention and you can even run shards on separate machines. ### Getting Started You can add Ekztazy.jl from Git using the following command in the REPL: ```julia ] add https://github.com/Humans-of-Julia/Ekztazy.jl ``` The most important type when working with Ekztazy.jl is the [`Client`](@ref). Most applications will start in a similar fashion to this: ```julia using Ekztazy client = Client() ``` This will create a [`Client`](@ref) using default parameters. This expects two environment variables: - APPLICATION_ID, the bot's application id - DISCORD_TOKEN, the bot's secret token These can also be specified. ```julia using Ekztazy client = Client( discord_token, application_id, intents(GUILDS, GUILD_MESSAGES) ) ``` (Assuming discord\_token is a String and applicaton\_id is an Int). For a more complete list of parameters for creating a [`Client`](@ref). Check the Client documentation. Usually when working with Ekztazy, we will either want to handle messages or commands. Let's start with messages. ```julia # ... on_message_create!(client) do (ctx) if ctx.message.author.id != me(client).id reply(client, ctx, content="I received the following message: $(ctx.message.content).") end end start(client) ``` Let's look this code. First we are using the [`on_message_create!`](@ref) function which generates a [`Handler`](@ref). (For more information on this, check the events documentation). Then in the handling function we start by checking if the the message author's id isn't the same as the the bot's. This is sensible, as we wouldn't want the bot to indefinitely respond to itself. Finally, we use the [`reply`](@ref) function to reply to the message! Under the hood, the reply function appraises the context, and finds a way to reply to it, the `kwargs` passed to it are then made into the request body. Here, in the message we use interpolation to send the message's content. We finish by calling [`start`](@ref) on the client. Next, commands. ```julia # ... g = ENV["MY_TESTING_GUILD"] command!(client, g, "double", "Doubles a number!", options=[opt(name="number", description="The number to double!")]) do (ctx) Ekztazy.reply(client, ctx, content="$(parse(Int, opt(ctx)["number"])*2)") end start(client) ``` Let's look at this code again. First we are using the [`command!`](@ref) function. This creates a command with the specified parameters. We are also using the helper [`opt`](@ref) method, to generate and get options. Calling opt with a name and description will create an option, using it on a context will get the values the user provided for each option in a Dict. Like in the previous example we are using the magic [`reply`](@ref) function that creates a followup message for the interaction. (This does not strictly reply to the interaction. Interactions instantly get ACKd by Ekztazy.jl to prevent your handling implementation from exceeding the interaction's 3s reply time limit.) Here is the equivalent using the new system. The old system is deprecated and will be removed in the next major version. ```julia # ... g = ENV["MY_TESTING_GUILD"] command!(client, g, "double", "Doubles a number!", legacy=false, options=Options( [Int, "num", "The number to double!"] ) do ctx, num::Int reply(client, ctx, content="$(num*2)") end start(client) ``` The option `num` will magically be passed to the handler to be used directly, no need to use [`opt`] anywhere anymore. The value for num is also automatically converted to an Int. Sometimes we may also want to do things without waiting for user input. However putting such code in the top scope would never be executed as [`start`](@ref) is blocking. This is where [`on_ready!`](@ref) comes in. ```julia # ... CHID = 776251117616234509 # Testing channel ID on_ready!(client) do (ctx) button = component!(client, "ar00"; type=2, style=1, label="Really??") do (ctx) Ekztazy.reply(client, ctx, content="Yes!") end create(client, Message, CHID, content="I am ready!", components=[button]) end ``` Here, we first are using the [`on_ready!`](@ref). This is called as soon as the bot is ready (see the events documentation). We are then creating a [`Component`](@ref) and a handler for it. The component's handler simply replies with "Yes!", as usual using the [`reply`](@ref) function. Next we have a new function, [`create`](@ref). This simply sends message to the specificed channel id (See the REST API documentation for more info). Here the message content is simply "I am ready". It also has a component. The component we created previously is of type 2, it's a button. It cannot be sent directly and needs to be wrapped in an action row of type 1, however Ekztazy is very nice so it'll do that for you. This is all you should need for most Discord bot projects! For any question please join the [Humans of Julia Discord](https://discord.gg/C5h9D4j), and look for me @Kyando#0001! ```@index ```
Ekztazy
https://github.com/Humans-of-Julia/Ekztazy.jl.git
[ "MIT" ]
0.8.0
da36639322f6789ee33aa2d4c55186f6b2bccdd2
docs
4149
```@meta CurrentModule = Ekztazy ``` # REST API ## Response ```@docs Response fetchval ``` ## CRUD API On top of functions for accessing individual endpoints such as [`get_channel_messages`](@ref), Ekztazy.jl also offers a unified API with just four functions. Named after [the **CRUD** model](https://en.wikipedia.org/wiki/Create,_read,_update_and_delete), they cover most of the Discord REST API and allow you to write concise, expressive code, and forget about the subtleties of endpoint naming. The argument ordering convention is roughly as follows: 1. A [`Client`](@ref), always. 2. For cases when we don't yet have the entity to be manipulated (usually [`create`](@ref) and [`retrieve`](@ref)), the entity's type. If we do have the entity ([`update`](@ref) and [`delete`](@ref)), the entity itself. 4. The remaining positional arguments supply whatever context is needed to specify the entity. For example, sending a message requires a [`DiscordChannel`](@ref) parameter. 5. Keyword arguments follow (usually for [`create`](@ref) and [`update`](@ref)). ```@docs create retrieve update delete obtain ``` The full list of types available to be manipulated is: * [`AuditLog`](@ref) * [`ApplicationCommand`](@ref) * [`Ban`](@ref) * [`DiscordChannel`](@ref) * [`Emoji`](@ref) * [`GuildEmbed`](@ref) * [`Guild`](@ref) * [`Integration`](@ref) * [`Invite`](@ref) * [`Member`](@ref) * [`Message`](@ref) * [`Overwrite`](@ref) * [`Reaction`](@ref) * [`Role`](@ref) * [`User`](@ref) * [`VoiceRegion`](@ref) * [`Webhook`](@ref) ## Endpoints Functions which wrap REST API endpoints are named and sorted according to the [Discord API documentation](https://discordapp.com/developers/docs/resources/audit-log). When a function accepts keyword arguments, the docstring will include a link to the Discord documentation which indicates the expected keys and values. Remember that the return types annotated below are not the actual return types, but the types of [`Response`](@ref) that the returned `Future`s will yield. ## Audit Log ```@docs get_guild_audit_log ``` ## Channel ```@docs get_channel modify_channel delete_channel get_channel_messages get_channel_message create_message create_reaction delete_own_reaction delete_user_reaction get_reactions delete_all_reactions edit_message delete_message bulk_delete_messages edit_channel_permissions get_channel_invites create_channel_invite delete_channel_permission trigger_typing_indicator get_pinned_messages add_pinned_channel_message delete_pinned_channel_message ``` ## Emoji ```@docs list_guild_emojis get_guild_emoji create_guild_emoji modify_guild_emoji delete_guild_emoji ``` ## Guild ```@docs create_guild get_guild modify_guild delete_guild get_guild_channels create_guild_channel modify_guild_channel_positions get_guild_member list_guild_members add_guild_member modify_guild_member modify_current_user_nick add_guild_member_role remove_guild_member_role remove_guild_member get_guild_bans get_guild_ban create_guild_ban remove_guild_ban get_guild_roles create_guild_role modify_guild_role_positions modify_guild_role delete_guild_role get_guild_prune_count begin_guild_prune get_guild_voice_regions get_guild_invites get_guild_integrations create_guild_integration modify_guild_integration delete_guild_integration sync_guild_integration get_guild_embed modify_guild_embed get_vanity_url get_guild_widget_image ``` ## Invite ```@docs get_invite delete_invite ``` ## User ```@docs get_current_user get_user modify_current_user get_current_user_guilds leave_guild create_dm ``` ## Voice ```@docs list_voice_regions ``` ## Webhook ```@docs create_webhook get_channel_webhooks get_guild_webhooks get_webhook get_webhook_with_token modify_webhook modify_webhook_with_token delete_webhook delete_webhook_with_token execute_webhook execute_slack_compatible_webhook execute_github_compatible_webhook ``` ## Interaction ```@docs create_application_command get_application_commands respond_to_interaction create_followup_message ack_interaction update_ack_interaction update_message_int create_followup_message edit_interaction bulk_overwrite_application_commands ```
Ekztazy
https://github.com/Humans-of-Julia/Ekztazy.jl.git
[ "MIT" ]
0.8.0
da36639322f6789ee33aa2d4c55186f6b2bccdd2
docs
812
```@meta CurrentModule = Ekztazy ``` # Types ```@docs Message AbstractGuild Guild Activity ActivityTimestamps ActivityParty ActivityAssets ActivitySecrets ActivityType ActivityFlags ApplicationCommand ApplicationCommandOption ApplicationCommandChoice Attachment AuditLog AuditLogEntry AuditLogChange AuditLogOptions ActionType Ban DiscordChannel Connection Component Embed EmbedThumbnail EmbedVideo EmbedImage EmbedProvider EmbedAuthor EmbedFooter EmbedField Emoji UnavailableGuild VerificationLevel MessageNotificationLevel ExplicitContentFilterLevel MFALevel GuildEmbed Integration IntegrationAccount Interaction InteractionData Invite InviteMetadata Member MessageActivity MessageApplication MessageType MessageActivityType Overwrite Presence Reaction Role SelectOption User VoiceRegion VoiceState Webhook ```
Ekztazy
https://github.com/Humans-of-Julia/Ekztazy.jl.git
[ "MIT" ]
0.5.0
200b2bd9dee3dfe2dcffa1fb51b6dd00d371ed2b
code
44542
### A Pluto.jl notebook ### # v0.19.27 using Markdown using InteractiveUtils # ╔═╡ 9ee33338-6985-4745-ab74-7caeac73496e begin using MLJ using Random using DataFrames using ModalDecisionTrees using SoleModels # Load an example time-series classification dataset as a tuple (DataFrame, Vector{String}) X, y = SoleData.load_arff_dataset("NATOPS") end # ╔═╡ 65141ec2-4da9-11ee-2a0a-8974a3ec37da md""" # ModalDecisionTrees.jl Demo """ # ╔═╡ dea67564-e905-4a49-9717-ca8071a4d489 md""" ## Learning and inspecting a Modal Decision Tree """ # ╔═╡ 99b1da9b-517a-4a84-8d0c-26e9f9ff6e15 # Instantiate the modal extension of CART, that uses relations from the coarser Interval Algebra "IA7" model = ModalDecisionTree(; relations = :IA7, downsize = (15,)) # ╔═╡ a00c4abe-5534-4c42-9464-d5a6867b9802 begin # Randomly split the data: 20% training, 80% testing N = nrow(X) perm = randperm(Random.MersenneTwister(1), N) train_idxs, test_idxs = perm[1:round(Int, N*.2)], perm[round(Int, N*.2)+1:end] mach = machine(model, X, y) # Train. @time fit!(mach; rows=train_idxs) # Compute accuracy yhat = predict_mode(mach, X[test_idxs,:]) MLJ.accuracy(yhat, y[test_idxs]) end # ╔═╡ 7655458a-d5af-44d9-9ff6-74db67f3d5d4 # Print model report(mach).printmodel() # ╔═╡ 66ec0d97-a221-4363-a21d-1c15835645d2 begin # Print model in a condensed form (useful for checking which variables were useful) report(mach).printmodel(false) # Feature importances feature_importances(mach) end # ╔═╡ b6d6ed79-9abc-47a6-bbbc-1a1610ffb830 begin # Access model tree_train = report(mach).model # Extract the corresponding ruleset ruleset = listrules(tree_train); # Print ruleset printmodel.(ruleset; show_metrics = true, threshold_digits = 2, variable_names_map = [names(X)], parenthesize_atoms = false); end # ╔═╡ 00310a1c-c4f4-43bc-a60c-a6113434f242 begin # Sprinkle the model with the test instances! predictions, tree_test = report(mach).sprinkle(X[test_idxs,:], y[test_idxs]); # Extract ruleset and print its metrics ruleset_test = listrules(tree_test) printmodel.(ruleset_test; show_metrics = true, threshold_digits = 2, variable_names_map = [names(X)]); end # ╔═╡ b3417b90-c910-407a-939b-5190602c5899 begin # In the classification scenario, rules for the same class can be joined via logical conjunction (∨) joined_ruleset_test = joinrules(ruleset_test) printmodel.(joined_ruleset_test; show_metrics = true, variable_names_map = [names(X)], threshold_digits = 3); end # ╔═╡ 3cdf0a35-edd0-4a02-9410-94e828d0f519 begin # This model has a decent accuracy by the way. TODO evaluate!(mach, resampling=StratifiedCV(; nfolds = 3, shuffle=true), measures=[accuracy], verbosity=0, check_measure=false ) end # ╔═╡ 00000000-0000-0000-0000-000000000001 PLUTO_PROJECT_TOML_CONTENTS = """ [deps] DataFrames = "a93c6f00-e57d-5684-b7b6-d8193f3e46c0" MLJ = "add582a8-e3ab-11e8-2d5e-e98b27df1bc7" ModalDecisionTrees = "e54bda2e-c571-11ec-9d64-0242ac120002" Random = "9a3f8284-a2c9-5f02-9a11-845980a1fd5c" SoleModels = "4249d9c7-3290-4ddd-961c-e1d3ec2467f8" [compat] DataFrames = "~1.6.1" MLJ = "~0.19.5" ModalDecisionTrees = "~0.1.7" SoleModels = "~0.4.0" """ # ╔═╡ 00000000-0000-0000-0000-000000000002 PLUTO_MANIFEST_TOML_CONTENTS = """ # This file is machine-generated - editing it directly is not advised julia_version = "1.9.0" manifest_format = "2.0" project_hash = "0bd92b94e833523a0cbe33d6155901e25a2ba45f" [[deps.ARFFFiles]] deps = ["CategoricalArrays", "Dates", "Parsers", "Tables"] git-tree-sha1 = "e8c8e0a2be6eb4f56b1672e46004463033daa409" uuid = "da404889-ca92-49ff-9e8b-0aa6b4d38dc8" version = "1.4.1" [[deps.AbstractTrees]] git-tree-sha1 = "faa260e4cb5aba097a73fab382dd4b5819d8ec8c" uuid = "1520ce14-60c1-5f80-bbc7-55ef81b5835c" version = "0.4.4" [[deps.Adapt]] deps = ["LinearAlgebra", "Requires"] git-tree-sha1 = "76289dc51920fdc6e0013c872ba9551d54961c24" uuid = "79e6a3ab-5dfb-504d-930d-738a2a938a0e" version = "3.6.2" weakdeps = ["StaticArrays"] [deps.Adapt.extensions] AdaptStaticArraysExt = "StaticArrays" [[deps.ArgCheck]] git-tree-sha1 = "a3a402a35a2f7e0b87828ccabbd5ebfbebe356b4" uuid = "dce04be8-c92d-5529-be00-80e4d2c0e197" version = "2.3.0" [[deps.ArgTools]] uuid = "0dad84c5-d112-42e6-8d28-ef12dabb789f" version = "1.1.1" [[deps.ArnoldiMethod]] deps = ["LinearAlgebra", "Random", "StaticArrays"] git-tree-sha1 = "62e51b39331de8911e4a7ff6f5aaf38a5f4cc0ae" uuid = "ec485272-7323-5ecc-a04f-4719b315124d" version = "0.2.0" [[deps.ArrayInterface]] deps = ["Adapt", "LinearAlgebra", "Requires", "SparseArrays", "SuiteSparse"] git-tree-sha1 = "f83ec24f76d4c8f525099b2ac475fc098138ec31" uuid = "4fba245c-0d91-5ea0-9b3e-6abc04ee57a9" version = "7.4.11" [deps.ArrayInterface.extensions] ArrayInterfaceBandedMatricesExt = "BandedMatrices" ArrayInterfaceBlockBandedMatricesExt = "BlockBandedMatrices" ArrayInterfaceCUDAExt = "CUDA" ArrayInterfaceGPUArraysCoreExt = "GPUArraysCore" ArrayInterfaceStaticArraysCoreExt = "StaticArraysCore" ArrayInterfaceTrackerExt = "Tracker" [deps.ArrayInterface.weakdeps] BandedMatrices = "aae01518-5342-5314-be14-df237901396f" BlockBandedMatrices = "ffab5731-97b5-5995-9138-79e8c1846df0" CUDA = "052768ef-5323-5732-b1bb-66c8b64840ba" GPUArraysCore = "46192b85-c4d5-4398-a991-12ede77f4527" StaticArraysCore = "1e83bf80-4336-4d27-bf5d-d5a4f845583c" Tracker = "9f7883ad-71c0-57eb-9f7f-b5c9e6d3789c" [[deps.Artifacts]] uuid = "56f22d72-fd6d-98f1-02f0-08ddc0907c33" [[deps.BangBang]] deps = ["Compat", "ConstructionBase", "InitialValues", "LinearAlgebra", "Requires", "Setfield", "Tables"] git-tree-sha1 = "e28912ce94077686443433c2800104b061a827ed" uuid = "198e06fe-97b7-11e9-32a5-e1d131e6ad66" version = "0.3.39" [deps.BangBang.extensions] BangBangChainRulesCoreExt = "ChainRulesCore" BangBangDataFramesExt = "DataFrames" BangBangStaticArraysExt = "StaticArrays" BangBangStructArraysExt = "StructArrays" BangBangTypedTablesExt = "TypedTables" [deps.BangBang.weakdeps] ChainRulesCore = "d360d2e6-b24c-11e9-a2a3-2a2ae2dbcce4" DataFrames = "a93c6f00-e57d-5684-b7b6-d8193f3e46c0" StaticArrays = "90137ffa-7385-5640-81b9-e52037218182" StructArrays = "09ab397b-f2b6-538f-b94a-2f83cf4a842a" TypedTables = "9d95f2ec-7b3d-5a63-8d20-e2491e220bb9" [[deps.Base64]] uuid = "2a0f44e3-6c83-55bd-87e4-b1978d98bd5f" [[deps.Baselet]] git-tree-sha1 = "aebf55e6d7795e02ca500a689d326ac979aaf89e" uuid = "9718e550-a3fa-408a-8086-8db961cd8217" version = "0.1.1" [[deps.BenchmarkTools]] deps = ["JSON", "Logging", "Printf", "Profile", "Statistics", "UUIDs"] git-tree-sha1 = "d9a9701b899b30332bbcb3e1679c41cce81fb0e8" uuid = "6e4b80f9-dd63-53aa-95a3-0cdb28fa8baf" version = "1.3.2" [[deps.BitFlags]] git-tree-sha1 = "43b1a4a8f797c1cddadf60499a8a077d4af2cd2d" uuid = "d1d4a3ce-64b1-5f1a-9ba4-7e7e69966f35" version = "0.1.7" [[deps.CSV]] deps = ["CodecZlib", "Dates", "FilePathsBase", "InlineStrings", "Mmap", "Parsers", "PooledArrays", "PrecompileTools", "SentinelArrays", "Tables", "Unicode", "WeakRefStrings", "WorkerUtilities"] git-tree-sha1 = "44dbf560808d49041989b8a96cae4cffbeb7966a" uuid = "336ed68f-0bac-5ca0-87d4-7b16caf5d00b" version = "0.10.11" [[deps.Calculus]] deps = ["LinearAlgebra"] git-tree-sha1 = "f641eb0a4f00c343bbc32346e1217b86f3ce9dad" uuid = "49dc2e85-a5d0-5ad3-a950-438e2897f1b9" version = "0.5.1" [[deps.Catch22]] deps = ["DelimitedFiles", "DimensionalData", "Libdl", "LinearAlgebra", "Pkg", "ProgressLogging", "Reexport", "Requires", "Statistics", "catch22_jll"] git-tree-sha1 = "319c5c8e66fb45a3d5a91864fdebe01ec314b9dc" uuid = "acdeb78f-3d39-4310-8fdf-6d75c17c6d5a" version = "0.4.4" [[deps.CategoricalArrays]] deps = ["DataAPI", "Future", "Missings", "Printf", "Requires", "Statistics", "Unicode"] git-tree-sha1 = "1568b28f91293458345dabba6a5ea3f183250a61" uuid = "324d7699-5711-5eae-9e2f-1d82baa6b597" version = "0.10.8" [deps.CategoricalArrays.extensions] CategoricalArraysJSONExt = "JSON" CategoricalArraysRecipesBaseExt = "RecipesBase" CategoricalArraysSentinelArraysExt = "SentinelArrays" CategoricalArraysStructTypesExt = "StructTypes" [deps.CategoricalArrays.weakdeps] JSON = "682c06a0-de6a-54ab-a142-c8b1cf79cde6" RecipesBase = "3cdcf5f2-1ef4-517c-9805-6587b60abb01" SentinelArrays = "91c51154-3ec4-41a3-a24f-3f23e20d615c" StructTypes = "856f2bd8-1eba-4b0a-8007-ebc267875bd4" [[deps.CategoricalDistributions]] deps = ["CategoricalArrays", "Distributions", "Missings", "OrderedCollections", "Random", "ScientificTypes"] git-tree-sha1 = "ed760a4fde49997ff9360a780abe6e20175162aa" uuid = "af321ab8-2d2e-40a6-b165-3d674595d28e" version = "0.1.11" [deps.CategoricalDistributions.extensions] UnivariateFiniteDisplayExt = "UnicodePlots" [deps.CategoricalDistributions.weakdeps] UnicodePlots = "b8865327-cd53-5732-bb35-84acbb429228" [[deps.CodeTracking]] deps = ["InteractiveUtils", "UUIDs"] git-tree-sha1 = "c0216e792f518b39b22212127d4a84dc31e4e386" uuid = "da1fd8a2-8d9e-5ec2-8556-3022fb5608a2" version = "1.3.5" [[deps.CodecZlib]] deps = ["TranscodingStreams", "Zlib_jll"] git-tree-sha1 = "02aa26a4cf76381be7f66e020a3eddeb27b0a092" uuid = "944b1d66-785c-5afd-91f1-9de20f533193" version = "0.7.2" [[deps.ColorTypes]] deps = ["FixedPointNumbers", "Random"] git-tree-sha1 = "eb7f0f8307f71fac7c606984ea5fb2817275d6e4" uuid = "3da002f7-5984-5a60-b8a6-cbb66c0b333f" version = "0.11.4" [[deps.Combinatorics]] git-tree-sha1 = "08c8b6831dc00bfea825826be0bc8336fc369860" uuid = "861a8166-3701-5b0c-9a16-15d98fcdc6aa" version = "1.0.2" [[deps.Compat]] deps = ["UUIDs"] git-tree-sha1 = "8a62af3e248a8c4bad6b32cbbe663ae02275e32c" uuid = "34da2185-b29b-5c13-b0c7-acf172513d20" version = "4.10.0" weakdeps = ["Dates", "LinearAlgebra"] [deps.Compat.extensions] CompatLinearAlgebraExt = "LinearAlgebra" [[deps.CompilerSupportLibraries_jll]] deps = ["Artifacts", "Libdl"] uuid = "e66e0078-7015-5450-92f7-15fbd957f2ae" version = "1.0.2+0" [[deps.CompositionsBase]] git-tree-sha1 = "802bb88cd69dfd1509f6670416bd4434015693ad" uuid = "a33af91c-f02d-484b-be07-31d278c5ca2b" version = "0.1.2" [deps.CompositionsBase.extensions] CompositionsBaseInverseFunctionsExt = "InverseFunctions" [deps.CompositionsBase.weakdeps] InverseFunctions = "3587e190-3f89-42d0-90ee-14403ec27112" [[deps.ComputationalResources]] git-tree-sha1 = "52cb3ec90e8a8bea0e62e275ba577ad0f74821f7" uuid = "ed09eef8-17a6-5b46-8889-db040fac31e3" version = "0.3.2" [[deps.ConcurrentUtilities]] deps = ["Serialization", "Sockets"] git-tree-sha1 = "5372dbbf8f0bdb8c700db5367132925c0771ef7e" uuid = "f0e56b4a-5159-44fe-b623-3e5288b988bb" version = "2.2.1" [[deps.ConstructionBase]] deps = ["LinearAlgebra"] git-tree-sha1 = "c53fc348ca4d40d7b371e71fd52251839080cbc9" uuid = "187b0558-2788-49d3-abe0-74a17ed4e7c9" version = "1.5.4" weakdeps = ["IntervalSets", "StaticArrays"] [deps.ConstructionBase.extensions] ConstructionBaseIntervalSetsExt = "IntervalSets" ConstructionBaseStaticArraysExt = "StaticArrays" [[deps.Crayons]] git-tree-sha1 = "249fe38abf76d48563e2f4556bebd215aa317e15" uuid = "a8cc5b0e-0ffa-5ad4-8c14-923d3ee1735f" version = "4.1.1" [[deps.DataAPI]] git-tree-sha1 = "8da84edb865b0b5b0100c0666a9bc9a0b71c553c" uuid = "9a962f9c-6df0-11e9-0e5d-c546b8b5ee8a" version = "1.15.0" [[deps.DataFrames]] deps = ["Compat", "DataAPI", "DataStructures", "Future", "InlineStrings", "InvertedIndices", "IteratorInterfaceExtensions", "LinearAlgebra", "Markdown", "Missings", "PooledArrays", "PrecompileTools", "PrettyTables", "Printf", "REPL", "Random", "Reexport", "SentinelArrays", "SortingAlgorithms", "Statistics", "TableTraits", "Tables", "Unicode"] git-tree-sha1 = "04c738083f29f86e62c8afc341f0967d8717bdb8" uuid = "a93c6f00-e57d-5684-b7b6-d8193f3e46c0" version = "1.6.1" [[deps.DataStructures]] deps = ["Compat", "InteractiveUtils", "OrderedCollections"] git-tree-sha1 = "3dbd312d370723b6bb43ba9d02fc36abade4518d" uuid = "864edb3b-99cc-5e75-8d2d-829cb0a9cfe8" version = "0.18.15" [[deps.DataValueInterfaces]] git-tree-sha1 = "bfc1187b79289637fa0ef6d4436ebdfe6905cbd6" uuid = "e2d170a0-9d28-54be-80f0-106bbe20a464" version = "1.0.0" [[deps.Dates]] deps = ["Printf"] uuid = "ade2ca70-3891-5945-98fb-dc099432e06a" [[deps.DefineSingletons]] git-tree-sha1 = "0fba8b706d0178b4dc7fd44a96a92382c9065c2c" uuid = "244e2a9f-e319-4986-a169-4d1fe445cd52" version = "0.1.2" [[deps.DelimitedFiles]] deps = ["Mmap"] git-tree-sha1 = "9e2f36d3c96a820c678f2f1f1782582fcf685bae" uuid = "8bb1440f-4735-579b-a4ab-409b98df4dab" version = "1.9.1" [[deps.Dictionaries]] deps = ["Indexing", "Random", "Serialization"] git-tree-sha1 = "e82c3c97b5b4ec111f3c1b55228cebc7510525a2" uuid = "85a47980-9c8c-11e8-2b9f-f7ca1fa99fb4" version = "0.3.25" [[deps.DimensionalData]] deps = ["Adapt", "ArrayInterface", "ConstructionBase", "Dates", "Extents", "IntervalSets", "IteratorInterfaceExtensions", "LinearAlgebra", "PrecompileTools", "Random", "RecipesBase", "SparseArrays", "Statistics", "TableTraits", "Tables"] git-tree-sha1 = "8a6e9c0ac3a861b983af862cefabc12519884a13" uuid = "0703355e-b756-11e9-17c0-8b28908087d0" version = "0.24.13" [[deps.Distances]] deps = ["LinearAlgebra", "Statistics", "StatsAPI"] git-tree-sha1 = "5225c965635d8c21168e32a12954675e7bea1151" uuid = "b4f34e82-e78d-54a5-968a-f98e89d6e8f7" version = "0.10.10" [deps.Distances.extensions] DistancesChainRulesCoreExt = "ChainRulesCore" DistancesSparseArraysExt = "SparseArrays" [deps.Distances.weakdeps] ChainRulesCore = "d360d2e6-b24c-11e9-a2a3-2a2ae2dbcce4" SparseArrays = "2f01184e-e22b-5df5-ae63-d93ebab69eaf" [[deps.Distributed]] deps = ["Random", "Serialization", "Sockets"] uuid = "8ba89e20-285c-5b6f-9357-94700520ee1b" [[deps.Distributions]] deps = ["FillArrays", "LinearAlgebra", "PDMats", "Printf", "QuadGK", "Random", "SpecialFunctions", "Statistics", "StatsAPI", "StatsBase", "StatsFuns", "Test"] git-tree-sha1 = "3d5873f811f582873bb9871fc9c451784d5dc8c7" uuid = "31c24e10-a181-5473-b8eb-7969acd0382f" version = "0.25.102" [deps.Distributions.extensions] DistributionsChainRulesCoreExt = "ChainRulesCore" DistributionsDensityInterfaceExt = "DensityInterface" [deps.Distributions.weakdeps] ChainRulesCore = "d360d2e6-b24c-11e9-a2a3-2a2ae2dbcce4" DensityInterface = "b429d917-457f-4dbc-8f4c-0cc954292b1d" [[deps.DocStringExtensions]] deps = ["LibGit2"] git-tree-sha1 = "2fb1e02f2b635d0845df5d7c167fec4dd739b00d" uuid = "ffbed154-4ef7-542d-bbb7-c09d3a79fcae" version = "0.9.3" [[deps.Downloads]] deps = ["ArgTools", "FileWatching", "LibCURL", "NetworkOptions"] uuid = "f43a241f-c20a-4ad4-852c-f6b1247861c6" version = "1.6.0" [[deps.DualNumbers]] deps = ["Calculus", "NaNMath", "SpecialFunctions"] git-tree-sha1 = "5837a837389fccf076445fce071c8ddaea35a566" uuid = "fa6b7ba4-c1ee-5f82-b5fc-ecf0adba8f74" version = "0.6.8" [[deps.EarlyStopping]] deps = ["Dates", "Statistics"] git-tree-sha1 = "98fdf08b707aaf69f524a6cd0a67858cefe0cfb6" uuid = "792122b4-ca99-40de-a6bc-6742525f08b6" version = "0.3.0" [[deps.ExceptionUnwrapping]] deps = ["Test"] git-tree-sha1 = "e90caa41f5a86296e014e148ee061bd6c3edec96" uuid = "460bff9d-24e4-43bc-9d9f-a8973cb893f4" version = "0.1.9" [[deps.Extents]] git-tree-sha1 = "5e1e4c53fa39afe63a7d356e30452249365fba99" uuid = "411431e0-e8b7-467b-b5e0-f676ba4f2910" version = "0.1.1" [[deps.FilePathsBase]] deps = ["Compat", "Dates", "Mmap", "Printf", "Test", "UUIDs"] git-tree-sha1 = "9f00e42f8d99fdde64d40c8ea5d14269a2e2c1aa" uuid = "48062228-2e41-5def-b9a4-89aafe57970f" version = "0.9.21" [[deps.FileWatching]] uuid = "7b1f6079-737a-58dc-b8bc-7a2ca5c1b5ee" [[deps.FillArrays]] deps = ["LinearAlgebra", "Random"] git-tree-sha1 = "a20eaa3ad64254c61eeb5f230d9306e937405434" uuid = "1a297f60-69ca-5386-bcde-b61e274b549b" version = "1.6.1" weakdeps = ["SparseArrays", "Statistics"] [deps.FillArrays.extensions] FillArraysSparseArraysExt = "SparseArrays" FillArraysStatisticsExt = "Statistics" [[deps.FixedPointNumbers]] deps = ["Statistics"] git-tree-sha1 = "335bfdceacc84c5cdf16aadc768aa5ddfc5383cc" uuid = "53c48c17-4a7d-5ca2-90c5-79b7896eea93" version = "0.8.4" [[deps.FunctionWrappers]] git-tree-sha1 = "d62485945ce5ae9c0c48f124a84998d755bae00e" uuid = "069b7b12-0de2-55c6-9aab-29f3d0a68a2e" version = "1.1.3" [[deps.Future]] deps = ["Random"] uuid = "9fa8497b-333b-5362-9e8d-4d0656e87820" [[deps.Graphs]] deps = ["ArnoldiMethod", "Compat", "DataStructures", "Distributed", "Inflate", "LinearAlgebra", "Random", "SharedArrays", "SimpleTraits", "SparseArrays", "Statistics"] git-tree-sha1 = "899050ace26649433ef1af25bc17a815b3db52b7" uuid = "86223c79-3864-5bf0-83f7-82e725a168b6" version = "1.9.0" [[deps.HTTP]] deps = ["Base64", "CodecZlib", "ConcurrentUtilities", "Dates", "ExceptionUnwrapping", "Logging", "LoggingExtras", "MbedTLS", "NetworkOptions", "OpenSSL", "Random", "SimpleBufferStream", "Sockets", "URIs", "UUIDs"] git-tree-sha1 = "5eab648309e2e060198b45820af1a37182de3cce" uuid = "cd3eb016-35fb-5094-929b-558a96fad6f3" version = "1.10.0" [[deps.HypergeometricFunctions]] deps = ["DualNumbers", "LinearAlgebra", "OpenLibm_jll", "SpecialFunctions"] git-tree-sha1 = "f218fe3736ddf977e0e772bc9a586b2383da2685" uuid = "34004b35-14d8-5ef3-9330-4cdb6864b03a" version = "0.3.23" [[deps.Indexing]] git-tree-sha1 = "ce1566720fd6b19ff3411404d4b977acd4814f9f" uuid = "313cdc1a-70c2-5d6a-ae34-0150d3930a38" version = "1.1.1" [[deps.Inflate]] git-tree-sha1 = "ea8031dea4aff6bd41f1df8f2fdfb25b33626381" uuid = "d25df0c9-e2be-5dd7-82c8-3ad0b3e990b9" version = "0.1.4" [[deps.InitialValues]] git-tree-sha1 = "4da0f88e9a39111c2fa3add390ab15f3a44f3ca3" uuid = "22cec73e-a1b8-11e9-2c92-598750a2cf9c" version = "0.3.1" [[deps.InlineStrings]] deps = ["Parsers"] git-tree-sha1 = "9cc2baf75c6d09f9da536ddf58eb2f29dedaf461" uuid = "842dd82b-1e85-43dc-bf29-5d0ee9dffc48" version = "1.4.0" [[deps.InteractiveUtils]] deps = ["Markdown"] uuid = "b77e0a4c-d291-57a0-90e8-8db25a27a240" [[deps.IntervalSets]] deps = ["Dates", "Random"] git-tree-sha1 = "8e59ea773deee525c99a8018409f64f19fb719e6" uuid = "8197267c-284f-5f27-9208-e0e47529a953" version = "0.7.7" weakdeps = ["Statistics"] [deps.IntervalSets.extensions] IntervalSetsStatisticsExt = "Statistics" [[deps.InvertedIndices]] git-tree-sha1 = "0dc7b50b8d436461be01300fd8cd45aa0274b038" uuid = "41ab1584-1d38-5bbf-9106-f11c6c58b48f" version = "1.3.0" [[deps.IrrationalConstants]] git-tree-sha1 = "630b497eafcc20001bba38a4651b327dcfc491d2" uuid = "92d709cd-6900-40b7-9082-c6be49f344b6" version = "0.2.2" [[deps.IterTools]] git-tree-sha1 = "4ced6667f9974fc5c5943fa5e2ef1ca43ea9e450" uuid = "c8e1da08-722c-5040-9ed9-7db0dc04731e" version = "1.8.0" [[deps.IterationControl]] deps = ["EarlyStopping", "InteractiveUtils"] git-tree-sha1 = "d7df9a6fdd82a8cfdfe93a94fcce35515be634da" uuid = "b3c1a2ee-3fec-4384-bf48-272ea71de57c" version = "0.5.3" [[deps.IteratorInterfaceExtensions]] git-tree-sha1 = "a3f24677c21f5bbe9d2a714f95dcd58337fb2856" uuid = "82899510-4779-5014-852e-03e436cf321d" version = "1.0.0" [[deps.JLLWrappers]] deps = ["Artifacts", "Preferences"] git-tree-sha1 = "7e5d6779a1e09a36db2a7b6cff50942a0a7d0fca" uuid = "692b3bcd-3c85-4b1f-b108-f13ce0eb3210" version = "1.5.0" [[deps.JSON]] deps = ["Dates", "Mmap", "Parsers", "Unicode"] git-tree-sha1 = "31e996f0a15c7b280ba9f76636b3ff9e2ae58c9a" uuid = "682c06a0-de6a-54ab-a142-c8b1cf79cde6" version = "0.21.4" [[deps.JuliaInterpreter]] deps = ["CodeTracking", "InteractiveUtils", "Random", "UUIDs"] git-tree-sha1 = "81dc6aefcbe7421bd62cb6ca0e700779330acff8" uuid = "aa1ae85d-cabe-5617-a682-6adf51b2e16a" version = "0.9.25" [[deps.LaTeXStrings]] git-tree-sha1 = "f2355693d6778a178ade15952b7ac47a4ff97996" uuid = "b964fa9f-0449-5b57-a5c2-d3ea65f4040f" version = "1.3.0" [[deps.LatinHypercubeSampling]] deps = ["Random", "StableRNGs", "StatsBase", "Test"] git-tree-sha1 = "825289d43c753c7f1bf9bed334c253e9913997f8" uuid = "a5e1c1ea-c99a-51d3-a14d-a9a37257b02d" version = "1.9.0" [[deps.Lazy]] deps = ["MacroTools"] git-tree-sha1 = "1370f8202dac30758f3c345f9909b97f53d87d3f" uuid = "50d2b5c4-7a5e-59d5-8109-a42b560f39c0" version = "0.15.1" [[deps.LibCURL]] deps = ["LibCURL_jll", "MozillaCACerts_jll"] uuid = "b27032c2-a3e7-50c8-80cd-2d36dbcbfd21" version = "0.6.3" [[deps.LibCURL_jll]] deps = ["Artifacts", "LibSSH2_jll", "Libdl", "MbedTLS_jll", "Zlib_jll", "nghttp2_jll"] uuid = "deac9b47-8bc7-5906-a0fe-35ac56dc84c0" version = "7.84.0+0" [[deps.LibGit2]] deps = ["Base64", "NetworkOptions", "Printf", "SHA"] uuid = "76f85450-5226-5b5a-8eaa-529ad045b433" [[deps.LibSSH2_jll]] deps = ["Artifacts", "Libdl", "MbedTLS_jll"] uuid = "29816b5a-b9ab-546f-933c-edad1886dfa8" version = "1.10.2+0" [[deps.Libdl]] uuid = "8f399da3-3557-5675-b5ff-fb832c97cbdb" [[deps.LinearAlgebra]] deps = ["Libdl", "OpenBLAS_jll", "libblastrampoline_jll"] uuid = "37e2e46d-f89d-539d-b4ee-838fcccc9c8e" [[deps.LogExpFunctions]] deps = ["DocStringExtensions", "IrrationalConstants", "LinearAlgebra"] git-tree-sha1 = "7d6dd4e9212aebaeed356de34ccf262a3cd415aa" uuid = "2ab3a3ac-af41-5b50-aa03-7779005ae688" version = "0.3.26" [deps.LogExpFunctions.extensions] LogExpFunctionsChainRulesCoreExt = "ChainRulesCore" LogExpFunctionsChangesOfVariablesExt = "ChangesOfVariables" LogExpFunctionsInverseFunctionsExt = "InverseFunctions" [deps.LogExpFunctions.weakdeps] ChainRulesCore = "d360d2e6-b24c-11e9-a2a3-2a2ae2dbcce4" ChangesOfVariables = "9e997f8a-9a97-42d5-a9f1-ce6bfc15e2c0" InverseFunctions = "3587e190-3f89-42d0-90ee-14403ec27112" [[deps.Logging]] uuid = "56ddb016-857b-54e1-b83d-db4d58db5568" [[deps.LoggingExtras]] deps = ["Dates", "Logging"] git-tree-sha1 = "c1dd6d7978c12545b4179fb6153b9250c96b0075" uuid = "e6f89c97-d47a-5376-807f-9c37f3926c36" version = "1.0.3" [[deps.LossFunctions]] deps = ["Markdown", "Requires", "Statistics"] git-tree-sha1 = "df9da07efb9b05ca7ef701acec891ee8f73c99e2" uuid = "30fc2ffe-d236-52d8-8643-a9d8f7c094a7" version = "0.11.1" weakdeps = ["CategoricalArrays"] [deps.LossFunctions.extensions] LossFunctionsCategoricalArraysExt = "CategoricalArrays" [[deps.LoweredCodeUtils]] deps = ["JuliaInterpreter"] git-tree-sha1 = "60168780555f3e663c536500aa790b6368adc02a" uuid = "6f1432cf-f94c-5a45-995e-cdbf5db27b0b" version = "2.3.0" [[deps.MLFlowClient]] deps = ["Dates", "FilePathsBase", "HTTP", "JSON", "ShowCases", "URIs", "UUIDs"] git-tree-sha1 = "32cee10a6527476bef0c6484ff4c60c2cead5d3e" uuid = "64a0f543-368b-4a9a-827a-e71edb2a0b83" version = "0.4.4" [[deps.MLJ]] deps = ["CategoricalArrays", "ComputationalResources", "Distributed", "Distributions", "LinearAlgebra", "MLJBase", "MLJEnsembles", "MLJFlow", "MLJIteration", "MLJModels", "MLJTuning", "OpenML", "Pkg", "ProgressMeter", "Random", "Reexport", "ScientificTypes", "Statistics", "StatsBase", "Tables"] git-tree-sha1 = "193f1f1ac77d91eabe1ac81ff48646b378270eef" uuid = "add582a8-e3ab-11e8-2d5e-e98b27df1bc7" version = "0.19.5" [[deps.MLJBase]] deps = ["CategoricalArrays", "CategoricalDistributions", "ComputationalResources", "Dates", "DelimitedFiles", "Distributed", "Distributions", "InteractiveUtils", "InvertedIndices", "LinearAlgebra", "LossFunctions", "MLJModelInterface", "Missings", "OrderedCollections", "Parameters", "PrettyTables", "ProgressMeter", "Random", "ScientificTypes", "Serialization", "StatisticalTraits", "Statistics", "StatsBase", "Tables"] git-tree-sha1 = "0b7307d1a7214ec3c0ba305571e713f9492ea984" uuid = "a7f614a8-145f-11e9-1d2a-a57a1082229d" version = "0.21.14" [[deps.MLJEnsembles]] deps = ["CategoricalArrays", "CategoricalDistributions", "ComputationalResources", "Distributed", "Distributions", "MLJBase", "MLJModelInterface", "ProgressMeter", "Random", "ScientificTypesBase", "StatsBase"] git-tree-sha1 = "95b306ef8108067d26dfde9ff3457d59911cc0d6" uuid = "50ed68f4-41fd-4504-931a-ed422449fee0" version = "0.3.3" [[deps.MLJFlow]] deps = ["MLFlowClient", "MLJBase", "MLJModelInterface"] git-tree-sha1 = "bceeeb648c9aa2fc6f65f957c688b164d30f2905" uuid = "7b7b8358-b45c-48ea-a8ef-7ca328ad328f" version = "0.1.1" [[deps.MLJIteration]] deps = ["IterationControl", "MLJBase", "Random", "Serialization"] git-tree-sha1 = "be6d5c71ab499a59e82d65e00a89ceba8732fcd5" uuid = "614be32b-d00c-4edb-bd02-1eb411ab5e55" version = "0.5.1" [[deps.MLJModelInterface]] deps = ["Random", "ScientificTypesBase", "StatisticalTraits"] git-tree-sha1 = "03ae109be87f460fe3c96b8a0dbbf9c7bf840bd5" uuid = "e80e1ace-859a-464e-9ed9-23947d8ae3ea" version = "1.9.2" [[deps.MLJModels]] deps = ["CategoricalArrays", "CategoricalDistributions", "Combinatorics", "Dates", "Distances", "Distributions", "InteractiveUtils", "LinearAlgebra", "MLJModelInterface", "Markdown", "OrderedCollections", "Parameters", "Pkg", "PrettyPrinting", "REPL", "Random", "RelocatableFolders", "ScientificTypes", "StatisticalTraits", "Statistics", "StatsBase", "Tables"] git-tree-sha1 = "10d221910fc3f3eedad567178ddbca3cc0f776a3" uuid = "d491faf4-2d78-11e9-2867-c94bc002c0b7" version = "0.16.12" [[deps.MLJTuning]] deps = ["ComputationalResources", "Distributed", "Distributions", "LatinHypercubeSampling", "MLJBase", "ProgressMeter", "Random", "RecipesBase"] git-tree-sha1 = "02688098bd77827b64ed8ad747c14f715f98cfc4" uuid = "03970b2e-30c4-11ea-3135-d1576263f10f" version = "0.7.4" [[deps.MacroTools]] deps = ["Markdown", "Random"] git-tree-sha1 = "9ee1618cbf5240e6d4e0371d6f24065083f60c48" uuid = "1914dd2f-81c6-5fcd-8719-6d5c9610ff09" version = "0.5.11" [[deps.Markdown]] deps = ["Base64"] uuid = "d6f4376e-aef5-505a-96c1-9c027394607a" [[deps.MbedTLS]] deps = ["Dates", "MbedTLS_jll", "MozillaCACerts_jll", "Random", "Sockets"] git-tree-sha1 = "03a9b9718f5682ecb107ac9f7308991db4ce395b" uuid = "739be429-bea8-5141-9913-cc70e7f3736d" version = "1.1.7" [[deps.MbedTLS_jll]] deps = ["Artifacts", "Libdl"] uuid = "c8ffd9c3-330d-5841-b78e-0817d7145fa1" version = "2.28.2+0" [[deps.Memoization]] deps = ["MacroTools"] git-tree-sha1 = "073f080e733bc6697411901224ed4fd15fefaffa" uuid = "6fafb56a-5788-4b4e-91ca-c0cea6611c73" version = "0.2.1" [[deps.MicroCollections]] deps = ["BangBang", "InitialValues", "Setfield"] git-tree-sha1 = "629afd7d10dbc6935ec59b32daeb33bc4460a42e" uuid = "128add7d-3638-4c79-886c-908ea0c25c34" version = "0.1.4" [[deps.Missings]] deps = ["DataAPI"] git-tree-sha1 = "f66bdc5de519e8f8ae43bdc598782d35a25b1272" uuid = "e1d29d7a-bbdc-5cf2-9ac0-f12de2c33e28" version = "1.1.0" [[deps.Mmap]] uuid = "a63ad114-7e13-5084-954f-fe012c677804" [[deps.ModalDecisionTrees]] deps = ["AbstractTrees", "BenchmarkTools", "CategoricalArrays", "CategoricalDistributions", "DataFrames", "DataStructures", "DelimitedFiles", "Distributions", "FillArrays", "FunctionWrappers", "Logging", "LoggingExtras", "MLJ", "MLJBase", "MLJModelInterface", "Memoization", "OpenML", "Printf", "ProgressMeter", "Random", "Reexport", "ResumableFunctions", "Revise", "SoleBase", "SoleData", "SoleLogics", "SoleModels", "Statistics", "StatsBase", "Suppressor", "Tables", "ThreadsX"] git-tree-sha1 = "7ad21a5a4c27da12cb4c8b0f76bb29a5048ffbe4" uuid = "e54bda2e-c571-11ec-9d64-0242ac120002" version = "0.1.7" [[deps.MozillaCACerts_jll]] uuid = "14a3606d-f60d-562e-9121-12d972cd8159" version = "2022.10.11" [[deps.NaNMath]] deps = ["OpenLibm_jll"] git-tree-sha1 = "0877504529a3e5c3343c6f8b4c0381e57e4387e4" uuid = "77ba4419-2d1f-58cd-9bb1-8ffee604a2e3" version = "1.0.2" [[deps.NetworkOptions]] uuid = "ca575930-c2e3-43a9-ace4-1e988b2c1908" version = "1.2.0" [[deps.OpenBLAS_jll]] deps = ["Artifacts", "CompilerSupportLibraries_jll", "Libdl"] uuid = "4536629a-c528-5b80-bd46-f80d51c5b363" version = "0.3.21+4" [[deps.OpenLibm_jll]] deps = ["Artifacts", "Libdl"] uuid = "05823500-19ac-5b8b-9628-191a04bc5112" version = "0.8.1+0" [[deps.OpenML]] deps = ["ARFFFiles", "HTTP", "JSON", "Markdown", "Pkg", "Scratch"] git-tree-sha1 = "6efb039ae888699d5a74fb593f6f3e10c7193e33" uuid = "8b6db2d4-7670-4922-a472-f9537c81ab66" version = "0.3.1" [[deps.OpenSSL]] deps = ["BitFlags", "Dates", "MozillaCACerts_jll", "OpenSSL_jll", "Sockets"] git-tree-sha1 = "51901a49222b09e3743c65b8847687ae5fc78eb2" uuid = "4d8831e6-92b7-49fb-bdf8-b643e874388c" version = "1.4.1" [[deps.OpenSSL_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl"] git-tree-sha1 = "ceeda72c9fd6bbebc4f4f598560789145a8b6c4c" uuid = "458c3c95-2e84-50aa-8efc-19380b2a3a95" version = "3.0.11+0" [[deps.OpenSpecFun_jll]] deps = ["Artifacts", "CompilerSupportLibraries_jll", "JLLWrappers", "Libdl", "Pkg"] git-tree-sha1 = "13652491f6856acfd2db29360e1bbcd4565d04f1" uuid = "efe28fd5-8261-553b-a9e1-b2916fc3738e" version = "0.5.5+0" [[deps.OrderedCollections]] git-tree-sha1 = "2e73fe17cac3c62ad1aebe70d44c963c3cfdc3e3" uuid = "bac558e1-5e72-5ebc-8fee-abe8a469f55d" version = "1.6.2" [[deps.PDMats]] deps = ["LinearAlgebra", "SparseArrays", "SuiteSparse"] git-tree-sha1 = "fcf8fd477bd7f33cb8dbb1243653fb0d415c256c" uuid = "90014a1f-27ba-587c-ab20-58faa44d9150" version = "0.11.25" [[deps.Parameters]] deps = ["OrderedCollections", "UnPack"] git-tree-sha1 = "34c0e9ad262e5f7fc75b10a9952ca7692cfc5fbe" uuid = "d96e819e-fc66-5662-9728-84c9c7592b0a" version = "0.12.3" [[deps.Parsers]] deps = ["Dates", "PrecompileTools", "UUIDs"] git-tree-sha1 = "716e24b21538abc91f6205fd1d8363f39b442851" uuid = "69de0a69-1ddd-5017-9359-2bf0b02dc9f0" version = "2.7.2" [[deps.Pkg]] deps = ["Artifacts", "Dates", "Downloads", "FileWatching", "LibGit2", "Libdl", "Logging", "Markdown", "Printf", "REPL", "Random", "SHA", "Serialization", "TOML", "Tar", "UUIDs", "p7zip_jll"] uuid = "44cfe95a-1eb2-52ea-b672-e2afdf69b78f" version = "1.9.0" [[deps.PooledArrays]] deps = ["DataAPI", "Future"] git-tree-sha1 = "36d8b4b899628fb92c2749eb488d884a926614d3" uuid = "2dfb63ee-cc39-5dd5-95bd-886bf059d720" version = "1.4.3" [[deps.PrecompileTools]] deps = ["Preferences"] git-tree-sha1 = "03b4c25b43cb84cee5c90aa9b5ea0a78fd848d2f" uuid = "aea7be01-6a6a-4083-8856-8a6e6704d82a" version = "1.2.0" [[deps.Preferences]] deps = ["TOML"] git-tree-sha1 = "00805cd429dcb4870060ff49ef443486c262e38e" uuid = "21216c6a-2e73-6563-6e65-726566657250" version = "1.4.1" [[deps.PrettyPrinting]] git-tree-sha1 = "22a601b04a154ca38867b991d5017469dc75f2db" uuid = "54e16d92-306c-5ea0-a30b-337be88ac337" version = "0.4.1" [[deps.PrettyTables]] deps = ["Crayons", "LaTeXStrings", "Markdown", "Printf", "Reexport", "StringManipulation", "Tables"] git-tree-sha1 = "ee094908d720185ddbdc58dbe0c1cbe35453ec7a" uuid = "08abe8d2-0d0c-5749-adfa-8a2ac140af0d" version = "2.2.7" [[deps.Printf]] deps = ["Unicode"] uuid = "de0858da-6303-5e67-8744-51eddeeeb8d7" [[deps.Profile]] deps = ["Printf"] uuid = "9abbd945-dff8-562f-b5e8-e1ebf5ef1b79" [[deps.ProgressLogging]] deps = ["Logging", "SHA", "UUIDs"] git-tree-sha1 = "80d919dee55b9c50e8d9e2da5eeafff3fe58b539" uuid = "33c8b6b6-d38a-422a-b730-caa89a2f386c" version = "0.1.4" [[deps.ProgressMeter]] deps = ["Distributed", "Printf"] git-tree-sha1 = "00099623ffee15972c16111bcf84c58a0051257c" uuid = "92933f4c-e287-5a05-a399-4b506db050ca" version = "1.9.0" [[deps.QuadGK]] deps = ["DataStructures", "LinearAlgebra"] git-tree-sha1 = "9ebcd48c498668c7fa0e97a9cae873fbee7bfee1" uuid = "1fd47b50-473d-5c70-9696-f719f8f3bcdc" version = "2.9.1" [[deps.REPL]] deps = ["InteractiveUtils", "Markdown", "Sockets", "Unicode"] uuid = "3fa0cd96-eef1-5676-8a61-b3b8758bbffb" [[deps.Random]] deps = ["SHA", "Serialization"] uuid = "9a3f8284-a2c9-5f02-9a11-845980a1fd5c" [[deps.RecipesBase]] deps = ["PrecompileTools"] git-tree-sha1 = "5c3d09cc4f31f5fc6af001c250bf1278733100ff" uuid = "3cdcf5f2-1ef4-517c-9805-6587b60abb01" version = "1.3.4" [[deps.Reexport]] git-tree-sha1 = "45e428421666073eab6f2da5c9d310d99bb12f9b" uuid = "189a3867-3050-52da-a836-e630ba90ab69" version = "1.2.2" [[deps.Referenceables]] deps = ["Adapt"] git-tree-sha1 = "e681d3bfa49cd46c3c161505caddf20f0e62aaa9" uuid = "42d2dcc6-99eb-4e98-b66c-637b7d73030e" version = "0.1.2" [[deps.RelocatableFolders]] deps = ["SHA", "Scratch"] git-tree-sha1 = "ffdaf70d81cf6ff22c2b6e733c900c3321cab864" uuid = "05181044-ff0b-4ac5-8273-598c1e38db00" version = "1.0.1" [[deps.Requires]] deps = ["UUIDs"] git-tree-sha1 = "838a3a4188e2ded87a4f9f184b4b0d78a1e91cb7" uuid = "ae029012-a4dd-5104-9daa-d747884805df" version = "1.3.0" [[deps.ResumableFunctions]] deps = ["MacroTools"] git-tree-sha1 = "d0399c12a584c18ed77a351925cd07f5a9b32c36" uuid = "c5292f4c-5179-55e1-98c5-05642aab7184" version = "0.6.6" [[deps.Revise]] deps = ["CodeTracking", "Distributed", "FileWatching", "JuliaInterpreter", "LibGit2", "LoweredCodeUtils", "OrderedCollections", "Pkg", "REPL", "Requires", "UUIDs", "Unicode"] git-tree-sha1 = "609c26951d80551620241c3d7090c71a73da75ab" uuid = "295af30f-e4ad-537b-8983-00126c2a3abe" version = "3.5.6" [[deps.Rmath]] deps = ["Random", "Rmath_jll"] git-tree-sha1 = "f65dcb5fa46aee0cf9ed6274ccbd597adc49aa7b" uuid = "79098fc4-a85e-5d69-aa6a-4863f24498fa" version = "0.7.1" [[deps.Rmath_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"] git-tree-sha1 = "6ed52fdd3382cf21947b15e8870ac0ddbff736da" uuid = "f50d1b31-88e8-58de-be2c-1cc44531875f" version = "0.4.0+0" [[deps.SHA]] uuid = "ea8e919c-243c-51af-8825-aaa63cd721ce" version = "0.7.0" [[deps.ScientificTypes]] deps = ["CategoricalArrays", "ColorTypes", "Dates", "Distributions", "PrettyTables", "Reexport", "ScientificTypesBase", "StatisticalTraits", "Tables"] git-tree-sha1 = "75ccd10ca65b939dab03b812994e571bf1e3e1da" uuid = "321657f4-b219-11e9-178b-2701a2544e81" version = "3.0.2" [[deps.ScientificTypesBase]] git-tree-sha1 = "a8e18eb383b5ecf1b5e6fc237eb39255044fd92b" uuid = "30f210dd-8aff-4c5f-94ba-8e64358c1161" version = "3.0.0" [[deps.Scratch]] deps = ["Dates"] git-tree-sha1 = "30449ee12237627992a99d5e30ae63e4d78cd24a" uuid = "6c6a2e73-6563-6170-7368-637461726353" version = "1.2.0" [[deps.SentinelArrays]] deps = ["Dates", "Random"] git-tree-sha1 = "04bdff0b09c65ff3e06a05e3eb7b120223da3d39" uuid = "91c51154-3ec4-41a3-a24f-3f23e20d615c" version = "1.4.0" [[deps.Serialization]] uuid = "9e88b42a-f829-5b0c-bbe9-9e923198166b" [[deps.Setfield]] deps = ["ConstructionBase", "Future", "MacroTools", "StaticArraysCore"] git-tree-sha1 = "e2cc6d8c88613c05e1defb55170bf5ff211fbeac" uuid = "efcf1570-3423-57d1-acb7-fd33fddbac46" version = "1.1.1" [[deps.SharedArrays]] deps = ["Distributed", "Mmap", "Random", "Serialization"] uuid = "1a1011a3-84de-559e-8e89-a11a2f7dc383" [[deps.ShowCases]] git-tree-sha1 = "7f534ad62ab2bd48591bdeac81994ea8c445e4a5" uuid = "605ecd9f-84a6-4c9e-81e2-4798472b76a3" version = "0.1.0" [[deps.SimpleBufferStream]] git-tree-sha1 = "874e8867b33a00e784c8a7e4b60afe9e037b74e1" uuid = "777ac1f9-54b0-4bf8-805c-2214025038e7" version = "1.1.0" [[deps.SimpleTraits]] deps = ["InteractiveUtils", "MacroTools"] git-tree-sha1 = "5d7e3f4e11935503d3ecaf7186eac40602e7d231" uuid = "699a6c99-e7fa-54fc-8d76-47d257e15c1d" version = "0.9.4" [[deps.Sockets]] uuid = "6462fe0b-24de-5631-8697-dd941f90decc" [[deps.SoleBase]] deps = ["IterTools", "Logging", "Random"] git-tree-sha1 = "ef80c88a87a76353335eec7b8aa39912ac6816a6" uuid = "4475fa32-7023-44a0-aa70-4813b230e492" version = "0.11.0" [[deps.SoleData]] deps = ["CSV", "Catch22", "DataFrames", "DataStructures", "Logging", "Random", "Reexport", "Revise", "ScientificTypes", "SoleBase", "Statistics"] git-tree-sha1 = "320dd0551ef82953609ca7ea624608f8e1884a25" uuid = "123f1ae1-6307-4526-ab5b-aab3a92a2b8c" version = "0.10.1" [[deps.SoleLogics]] deps = ["DataStructures", "Dictionaries", "Graphs", "IterTools", "Lazy", "PrettyTables", "Random", "Reexport", "Revise", "SoleBase", "StatsBase", "ThreadSafeDicts"] git-tree-sha1 = "5cd0b38b73972dc91ed97cd3bf2cc21b9378b05d" uuid = "b002da8f-3cb3-4d91-bbe3-2953433912b5" version = "0.5.0" [[deps.SoleModels]] deps = ["BenchmarkTools", "CSV", "CategoricalArrays", "DataFrames", "DataStructures", "FillArrays", "FunctionWrappers", "Graphs", "HTTP", "Lazy", "LinearAlgebra", "Logging", "MLJBase", "MLJModelInterface", "ProgressMeter", "Random", "Reexport", "Revise", "SoleBase", "SoleData", "SoleLogics", "StatsBase", "Suppressor", "Tables", "ThreadSafeDicts", "UniqueVectors", "ZipFile"] git-tree-sha1 = "0abe20c82108697c82b904e8da986a64862ca8cc" uuid = "4249d9c7-3290-4ddd-961c-e1d3ec2467f8" version = "0.3.0" [[deps.SortingAlgorithms]] deps = ["DataStructures"] git-tree-sha1 = "c60ec5c62180f27efea3ba2908480f8055e17cee" uuid = "a2af1166-a08f-5f64-846c-94a0d3cef48c" version = "1.1.1" [[deps.SparseArrays]] deps = ["Libdl", "LinearAlgebra", "Random", "Serialization", "SuiteSparse_jll"] uuid = "2f01184e-e22b-5df5-ae63-d93ebab69eaf" [[deps.SpecialFunctions]] deps = ["IrrationalConstants", "LogExpFunctions", "OpenLibm_jll", "OpenSpecFun_jll"] git-tree-sha1 = "e2cfc4012a19088254b3950b85c3c1d8882d864d" uuid = "276daf66-3868-5448-9aa4-cd146d93841b" version = "2.3.1" [deps.SpecialFunctions.extensions] SpecialFunctionsChainRulesCoreExt = "ChainRulesCore" [deps.SpecialFunctions.weakdeps] ChainRulesCore = "d360d2e6-b24c-11e9-a2a3-2a2ae2dbcce4" [[deps.SplittablesBase]] deps = ["Setfield", "Test"] git-tree-sha1 = "e08a62abc517eb79667d0a29dc08a3b589516bb5" uuid = "171d559e-b47b-412a-8079-5efa626c420e" version = "0.1.15" [[deps.StableRNGs]] deps = ["Random", "Test"] git-tree-sha1 = "3be7d49667040add7ee151fefaf1f8c04c8c8276" uuid = "860ef19b-820b-49d6-a774-d7a799459cd3" version = "1.0.0" [[deps.StaticArrays]] deps = ["LinearAlgebra", "Random", "StaticArraysCore"] git-tree-sha1 = "0adf069a2a490c47273727e029371b31d44b72b2" uuid = "90137ffa-7385-5640-81b9-e52037218182" version = "1.6.5" weakdeps = ["Statistics"] [deps.StaticArrays.extensions] StaticArraysStatisticsExt = "Statistics" [[deps.StaticArraysCore]] git-tree-sha1 = "36b3d696ce6366023a0ea192b4cd442268995a0d" uuid = "1e83bf80-4336-4d27-bf5d-d5a4f845583c" version = "1.4.2" [[deps.StatisticalTraits]] deps = ["ScientificTypesBase"] git-tree-sha1 = "30b9236691858e13f167ce829490a68e1a597782" uuid = "64bff920-2084-43da-a3e6-9bb72801c0c9" version = "3.2.0" [[deps.Statistics]] deps = ["LinearAlgebra", "SparseArrays"] uuid = "10745b16-79ce-11e8-11f9-7d13ad32a3b2" version = "1.9.0" [[deps.StatsAPI]] deps = ["LinearAlgebra"] git-tree-sha1 = "1ff449ad350c9c4cbc756624d6f8a8c3ef56d3ed" uuid = "82ae8749-77ed-4fe6-ae5f-f523153014b0" version = "1.7.0" [[deps.StatsBase]] deps = ["DataAPI", "DataStructures", "LinearAlgebra", "LogExpFunctions", "Missings", "Printf", "Random", "SortingAlgorithms", "SparseArrays", "Statistics", "StatsAPI"] git-tree-sha1 = "d1bf48bfcc554a3761a133fe3a9bb01488e06916" uuid = "2913bbd2-ae8a-5f71-8c99-4fb6c76f3a91" version = "0.33.21" [[deps.StatsFuns]] deps = ["HypergeometricFunctions", "IrrationalConstants", "LogExpFunctions", "Reexport", "Rmath", "SpecialFunctions"] git-tree-sha1 = "f625d686d5a88bcd2b15cd81f18f98186fdc0c9a" uuid = "4c63d2b9-4356-54db-8cca-17b64c39e42c" version = "1.3.0" [deps.StatsFuns.extensions] StatsFunsChainRulesCoreExt = "ChainRulesCore" StatsFunsInverseFunctionsExt = "InverseFunctions" [deps.StatsFuns.weakdeps] ChainRulesCore = "d360d2e6-b24c-11e9-a2a3-2a2ae2dbcce4" InverseFunctions = "3587e190-3f89-42d0-90ee-14403ec27112" [[deps.StringManipulation]] deps = ["PrecompileTools"] git-tree-sha1 = "a04cabe79c5f01f4d723cc6704070ada0b9d46d5" uuid = "892a3eda-7b42-436c-8928-eab12a02cf0e" version = "0.3.4" [[deps.SuiteSparse]] deps = ["Libdl", "LinearAlgebra", "Serialization", "SparseArrays"] uuid = "4607b0f0-06f3-5cda-b6b1-a6196a1729e9" [[deps.SuiteSparse_jll]] deps = ["Artifacts", "Libdl", "Pkg", "libblastrampoline_jll"] uuid = "bea87d4a-7f5b-5778-9afe-8cc45184846c" version = "5.10.1+6" [[deps.Suppressor]] deps = ["Logging"] git-tree-sha1 = "6cd9e4a207964c07bf6395beff7a1e8f21d0f3b2" uuid = "fd094767-a336-5f1f-9728-57cf17d0bbfb" version = "0.2.6" [[deps.TOML]] deps = ["Dates"] uuid = "fa267f1f-6049-4f14-aa54-33bafae1ed76" version = "1.0.3" [[deps.TableTraits]] deps = ["IteratorInterfaceExtensions"] git-tree-sha1 = "c06b2f539df1c6efa794486abfb6ed2022561a39" uuid = "3783bdb8-4a98-5b6b-af9a-565f29a5fe9c" version = "1.0.1" [[deps.Tables]] deps = ["DataAPI", "DataValueInterfaces", "IteratorInterfaceExtensions", "LinearAlgebra", "OrderedCollections", "TableTraits"] git-tree-sha1 = "a1f34829d5ac0ef499f6d84428bd6b4c71f02ead" uuid = "bd369af6-aec1-5ad0-b16a-f7cc5008161c" version = "1.11.0" [[deps.Tar]] deps = ["ArgTools", "SHA"] uuid = "a4e569a6-e804-4fa4-b0f3-eef7a1d5b13e" version = "1.10.0" [[deps.Test]] deps = ["InteractiveUtils", "Logging", "Random", "Serialization"] uuid = "8dfed614-e22c-5e08-85e1-65c5234f0b40" [[deps.ThreadSafeDicts]] git-tree-sha1 = "cdc778da600ff2166239a80cf4d82a9b118611d8" uuid = "4239201d-c60e-5e0a-9702-85d713665ba7" version = "0.1.3" [[deps.ThreadsX]] deps = ["ArgCheck", "BangBang", "ConstructionBase", "InitialValues", "MicroCollections", "Referenceables", "Setfield", "SplittablesBase", "Transducers"] git-tree-sha1 = "34e6bcf36b9ed5d56489600cf9f3c16843fa2aa2" uuid = "ac1d9e8a-700a-412c-b207-f0111f4b6c0d" version = "0.1.11" [[deps.TranscodingStreams]] deps = ["Random", "Test"] git-tree-sha1 = "9a6ae7ed916312b41236fcef7e0af564ef934769" uuid = "3bb67fe8-82b1-5028-8e26-92a6c54297fa" version = "0.9.13" [[deps.Transducers]] deps = ["Adapt", "ArgCheck", "BangBang", "Baselet", "CompositionsBase", "ConstructionBase", "DefineSingletons", "Distributed", "InitialValues", "Logging", "Markdown", "MicroCollections", "Requires", "Setfield", "SplittablesBase", "Tables"] git-tree-sha1 = "53bd5978b182fa7c57577bdb452c35e5b4fb73a5" uuid = "28d57a85-8fef-5791-bfe6-a80928e7c999" version = "0.4.78" [deps.Transducers.extensions] TransducersBlockArraysExt = "BlockArrays" TransducersDataFramesExt = "DataFrames" TransducersLazyArraysExt = "LazyArrays" TransducersOnlineStatsBaseExt = "OnlineStatsBase" TransducersReferenceablesExt = "Referenceables" [deps.Transducers.weakdeps] BlockArrays = "8e7c35d0-a365-5155-bbbb-fb81a777f24e" DataFrames = "a93c6f00-e57d-5684-b7b6-d8193f3e46c0" LazyArrays = "5078a376-72f3-5289-bfd5-ec5146d43c02" OnlineStatsBase = "925886fa-5bf2-5e8e-b522-a9147a512338" Referenceables = "42d2dcc6-99eb-4e98-b66c-637b7d73030e" [[deps.URIs]] git-tree-sha1 = "b7a5e99f24892b6824a954199a45e9ffcc1c70f0" uuid = "5c2747f8-b7ea-4ff2-ba2e-563bfd36b1d4" version = "1.5.0" [[deps.UUIDs]] deps = ["Random", "SHA"] uuid = "cf7118a7-6976-5b1a-9a39-7adc72f591a4" [[deps.UnPack]] git-tree-sha1 = "387c1f73762231e86e0c9c5443ce3b4a0a9a0c2b" uuid = "3a884ed6-31ef-47d7-9d2a-63182c4928ed" version = "1.0.2" [[deps.Unicode]] uuid = "4ec0a83e-493e-50e2-b9ac-8f72acf5a8f5" [[deps.UniqueVectors]] git-tree-sha1 = "0a150de447f51342cf2e5b379137b823f3934864" uuid = "2fbcfb34-fd0c-5fbb-b5d7-e826d8f5b0a9" version = "1.2.0" [[deps.WeakRefStrings]] deps = ["DataAPI", "InlineStrings", "Parsers"] git-tree-sha1 = "b1be2855ed9ed8eac54e5caff2afcdb442d52c23" uuid = "ea10d353-3f73-51f8-a26c-33c1cb351aa5" version = "1.4.2" [[deps.WorkerUtilities]] git-tree-sha1 = "cd1659ba0d57b71a464a29e64dbc67cfe83d54e7" uuid = "76eceee3-57b5-4d4a-8e66-0e911cebbf60" version = "1.6.1" [[deps.ZipFile]] deps = ["Libdl", "Printf", "Zlib_jll"] git-tree-sha1 = "f492b7fe1698e623024e873244f10d89c95c340a" uuid = "a5390f91-8eb1-5f08-bee0-b1d1ffed6cea" version = "0.10.1" [[deps.Zlib_jll]] deps = ["Libdl"] uuid = "83775a58-1f1d-513f-b197-d71354ab007a" version = "1.2.13+0" [[deps.catch22_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"] git-tree-sha1 = "7cfb827b3f62e20de3ccebaabf468ea979d098d9" uuid = "8a07c0c5-99ad-56cb-bc82-72eed1bb61ce" version = "0.4.0+0" [[deps.libblastrampoline_jll]] deps = ["Artifacts", "Libdl"] uuid = "8e850b90-86db-534c-a0d3-1478176c7d93" version = "5.7.0+0" [[deps.nghttp2_jll]] deps = ["Artifacts", "Libdl"] uuid = "8e850ede-7688-5339-a07c-302acd2aaf8d" version = "1.48.0+0" [[deps.p7zip_jll]] deps = ["Artifacts", "Libdl"] uuid = "3f19e933-33d8-53b3-aaab-bd5110c3b7a0" version = "17.4.0+0" """ # ╔═╡ Cell order: # ╠═65141ec2-4da9-11ee-2a0a-8974a3ec37da # ╠═dea67564-e905-4a49-9717-ca8071a4d489 # ╠═9ee33338-6985-4745-ab74-7caeac73496e # ╠═99b1da9b-517a-4a84-8d0c-26e9f9ff6e15 # ╠═a00c4abe-5534-4c42-9464-d5a6867b9802 # ╠═7655458a-d5af-44d9-9ff6-74db67f3d5d4 # ╠═66ec0d97-a221-4363-a21d-1c15835645d2 # ╠═b6d6ed79-9abc-47a6-bbbc-1a1610ffb830 # ╠═00310a1c-c4f4-43bc-a60c-a6113434f242 # ╠═b3417b90-c910-407a-939b-5190602c5899 # ╠═3cdf0a35-edd0-4a02-9410-94e828d0f519 # ╟─00000000-0000-0000-0000-000000000001 # ╟─00000000-0000-0000-0000-000000000002
ModalDecisionTrees
https://github.com/aclai-lab/ModalDecisionTrees.jl.git
[ "MIT" ]
0.5.0
200b2bd9dee3dfe2dcffa1fb51b6dd00d371ed2b
code
942
using ModalDecisionTrees using Documenter DocMeta.setdocmeta!(ModalDecisionTrees, :DocTestSetup, :(using ModalDecisionTrees); recursive=true) makedocs(; modules=[ModalDecisionTrees, ModalDecisionTrees.MLJInterface, ModalDecisionTrees.experimentals], authors="Federico Manzella, Giovanni Pagliarini, Eduard I. Stan", repo=Documenter.Remotes.GitHub("aclai-lab", "ModalDecisionTrees.jl"), sitename="ModalDecisionTrees.jl", format=Documenter.HTML(; size_threshold = 4000000, prettyurls=get(ENV, "CI", "false") == "true", canonical="https://aclai-lab.github.io/ModalDecisionTrees.jl", assets=String[], ), pages=[ "Home" => "index.md", ], warnonly = true, # TODO remove? ) deploydocs(; repo = "github.com/aclai-lab/ModalDecisionTrees.jl", target = "build", branch = "gh-pages", versions = ["main" => "main", "stable" => "v^", "v#.#", "dev" => "dev"], )
ModalDecisionTrees
https://github.com/aclai-lab/ModalDecisionTrees.jl.git
[ "MIT" ]
0.5.0
200b2bd9dee3dfe2dcffa1fb51b6dd00d371ed2b
code
437
using Lazy # TODO fix citation. """ Recursion state for ModalCART (see paper On The Foundations of Modal Decision Trees) """ abstract type MCARTState end """ TODO document vector of current worlds for each instance and modality """ struct RestrictedMCARTState{WS<:AbstractVector{WST} where {WorldType,WST<:Vector{WorldType}}} <: MCARTState witnesses::WS end struct FullMCARTState{ANC<:Vector} <: MCARTState ancestors::ANC end
ModalDecisionTrees
https://github.com/aclai-lab/ModalDecisionTrees.jl.git
[ "MIT" ]
0.5.0
200b2bd9dee3dfe2dcffa1fb51b6dd00d371ed2b
code
60446
# The code in this file for decision tree learning is inspired from: # - Ben Sadeghi's DecisionTree.jl (released under the MIT license); # - scikit-learn's and numpy's (released under the 3-Clause BSD license); # Also thanks to Poom Chiarawongse <[email protected]> ############################################################################## ############################################################################## ############################################################################## ############################################################################## mutable struct NodeMeta{L<:Label,P,D<:AbstractDecision} <: AbstractNode{L} region :: UnitRange{Int} # a slice of the instances used to decide the split of the node depth :: Int modaldepth :: Int # worlds :: AbstractVector{Worlds{W}} # current set of worlds for each training instance purity :: P # purity grade attained at training time prediction :: L # most likely label is_leaf :: Bool # whether this is a leaf node, or a split one # split node-only properties split_at :: Int # index of instances parent :: Union{Nothing,NodeMeta{L,P,D}} # parent node l :: NodeMeta{L,P,D} # left child node r :: NodeMeta{L,P,D} # right child node purity_times_nt :: P # purity grade attained at training time consistency :: Any i_modality :: ModalityId # modality id decision :: D onlyallowglobal:: Vector{Bool} function NodeMeta{L,P,D}( region :: UnitRange{Int}, depth :: Int, modaldepth :: Int, oura :: Vector{Bool}, ) where {L<:Label,P,D<:AbstractDecision} node = new{L,P,D}() node.region = region node.depth = depth node.modaldepth = modaldepth node.purity = P(NaN) node.is_leaf = false node.parent = nothing node.onlyallowglobal = oura node end end include("ModalCART-states.jl") isleftchild(node::NodeMeta, parent::NodeMeta) = (parent.l == node) isrightchild(node::NodeMeta, parent::NodeMeta) = (parent.r == node) function lastrightancestor(node::NodeMeta) n = node while !isnothing(n.parent) && isrightchild(n, n.parent) n = n.parent end return n end function makeleaf!(node::NodeMeta) node.is_leaf = true # node.i_modality = nothing # node.purity_times_nt = nothing # node.decision = nothing # node.consistency = nothing end # Conversion: NodeMeta (node + training info) -> DTNode (bare decision tree model) function _convert( node :: NodeMeta, labels :: AbstractVector{L}, class_names :: AbstractVector{L}, threshold_backmap :: Vector{<:Function} ) where {L<:CLabel} this_leaf = DTLeaf(class_names[node.prediction], labels[node.region]) if node.is_leaf this_leaf else left = _convert(node.l, labels, class_names, threshold_backmap) right = _convert(node.r, labels, class_names, threshold_backmap) DTInternal(node.i_modality, RestrictedDecision(node.decision, threshold_backmap[node.i_modality]), this_leaf, left, right) end end # Conversion: NodeMeta (node + training info) -> DTNode (bare decision tree model) function _convert( node :: NodeMeta, labels :: AbstractVector{L}, threshold_backmap :: Vector{<:Function} ) where {L<:RLabel} this_leaf = DTLeaf(node.prediction, labels[node.region]) if node.is_leaf this_leaf else left = _convert(node.l, labels, threshold_backmap) right = _convert(node.r, labels, threshold_backmap) DTInternal(node.i_modality, RestrictedDecision(node.decision, threshold_backmap[node.i_modality]), this_leaf, left, right) end end ############################################################################## ############################################################################## ############################################################################## ############################################################################## # function optimize_tree_parameters!( # X :: DimensionalLogise't{T,N}, # initcond :: InitialCondition, # allow_global_splits :: Bool, # test_operators :: AbstractVector{<:TestOperator} # ) where {T,N} # # A dimensional ontological datasets: # # flatten to adimensional case + strip of all relations from the ontology # if prod(maxchannelsize(X)) == 1 # if (length(ontology(X).relations) > 0) # @warn "The DimensionalLogise't provided has degenerate maxchannelsize $(maxchannelsize(X)), and more than 0 relations: $(ontology(X).relations)." # end # # X = DimensionalLogise't{T,0}(DimensionalDatasets.strip_ontology(ontology(X)), @views DimensionalDatasets.strip_domain(domain(X))) # end # ontology_relations = deepcopy(ontology(X).relations) # # Fix test_operators order # test_operators = unique(test_operators) # DimensionalDatasets.sort_test_operators!(test_operators) # # Adimensional operators: # # in the adimensional case, some pairs of operators (e.g. <= and >) # # are complementary, and thus it is redundant to check both at the same node. # # We avoid this by only keeping one of the two operators. # if prod(maxchannelsize(X)) == 1 # # No ontological relation # ontology_relations = [] # if test_operators ⊆ DimensionalDatasets.all_lowlevel_test_operators # test_operators = [canonical_geq] # # test_operators = filter(e->e ≠ canonical_geq,test_operators) # else # @warn "Test operators set includes non-lowlevel test operators. Update this part of the code accordingly." # end # end # # Softened operators: # # when the largest world only has a few values, softened operators fallback # # to being hard operators # # max_world_wratio = 1/prod(maxchannelsize(X)) # # if canonical_geq in test_operators # # test_operators = filter((e)->(!(e isa CanonicalConditionGeqSoft) || e.alpha < 1-max_world_wratio), test_operators) # # end # # if canonical_leq in test_operators # # test_operators = filter((e)->(!(e isa CanonicalConditionLeqSoft) || e.alpha < 1-max_world_wratio), test_operators) # # end # # Binary relations (= unary modal connectives) # # Note: the identity relation is the first, and it is the one representing # # propositional splits. # if identityrel in ontology_relations # error("Found identityrel in ontology provided. No need.") # # ontology_relations = filter(e->e ≠ identityrel, ontology_relations) # end # if globalrel in ontology_relations # error("Found globalrel in ontology provided. Use allow_global_splits = true instead.") # # ontology_relations = filter(e->e ≠ globalrel, ontology_relations) # # allow_global_splits = true # end # relations = [identityrel, globalrel, ontology_relations...] # relationId_id = 1 # relationGlob_id = 2 # ontology_relation_ids = map((x)->x+2, 1:length(ontology_relations)) # compute_globmemoset = (allow_global_splits || (initcond == ModalDecisionTrees.start_without_world)) # # Modal relations to compute gammas for # inUseRelation_ids = if compute_globmemoset # [relationGlob_id, ontology_relation_ids...] # else # ontology_relation_ids # end # # Relations to use at each split # availableRelation_ids = [] # push!(availableRelation_ids, relationId_id) # if allow_global_splits # push!(availableRelation_ids, relationGlob_id) # end # availableRelation_ids = [availableRelation_ids..., ontology_relation_ids...] # ( # test_operators, relations, # relationId_id, relationGlob_id, # inUseRelation_ids, availableRelation_ids # ) # end # DEBUGprintln = println ############################################################################################ ############################################################################################ ############################################################################################ # TODO restore resumable. Unfortunately this yields "UndefRefError: access to undefined reference" # Base.@propagate_inbounds @resumable function generate_relevant_decisions( function generate_relevant_decisions( Xs, Sfs, n_subrelations, n_subfeatures, allow_global_splits, node, rng, max_modal_depth, idxs, region, grouped_featsaggrsnopss, grouped_featsnaggrss, ) out = [] @inbounds for (i_modality, (X, modality_Sf, modality_n_subrelations::Function, modality_n_subfeatures, modality_allow_global_splits, modality_onlyallowglobal) ) in enumerate(zip(eachmodality(Xs), Sfs, n_subrelations, n_subfeatures, allow_global_splits, node.onlyallowglobal)) @logmsg LogDetail " Modality $(i_modality)/$(nmodalities(Xs))" allow_propositional_decisions, allow_modal_decisions, allow_global_decisions, modal_relations_inds, features_inds = begin # Derive subset of features to consider # Note: using "sample" function instead of "randperm" allows to insert weights for features which may be wanted in the future features_inds = StatsBase.sample(rng, 1:nfeatures(X), modality_n_subfeatures, replace = false) sort!(features_inds) # Derive all available relations allow_propositional_decisions, allow_modal_decisions, allow_global_decisions = begin if worldtype(X) == OneWorld true, false, false elseif modality_onlyallowglobal false, false, true else true, true, modality_allow_global_splits end end if !isnothing(max_modal_depth) && max_modal_depth <= node.modaldepth allow_modal_decisions = false end n_tot_relations = 0 if allow_modal_decisions n_tot_relations += length(relations(X)) end if allow_global_decisions n_tot_relations += 1 end # Derive subset of relations to consider n_subrel = Int(modality_n_subrelations(n_tot_relations)) modal_relations_inds = StatsBase.sample(rng, 1:n_tot_relations, n_subrel, replace = false) sort!(modal_relations_inds) # Check whether the global relation survived if allow_global_decisions allow_global_decisions = (n_tot_relations in modal_relations_inds) modal_relations_inds = filter!(r->r≠n_tot_relations, modal_relations_inds) n_tot_relations = length(modal_relations_inds) end allow_propositional_decisions, allow_modal_decisions, allow_global_decisions, modal_relations_inds, features_inds end @inbounds for (relation, metacondition, test_op, aggr_thresholds) in generate_decisions( X, idxs[region], modality_Sf, allow_propositional_decisions, allow_modal_decisions, allow_global_decisions, modal_relations_inds, features_inds, grouped_featsaggrsnopss[i_modality], grouped_featsnaggrss[i_modality], ) decision_instantiator = _threshold->begin cond = ScalarCondition(metacondition, _threshold) RestrictedDecision(ScalarExistentialFormula(relation, cond)) end push!(out, (i_modality, decision_instantiator, test_op, aggr_thresholds)) # @yield i_modality, decision_instantiator, test_op, aggr_thresholds end # END decisions end # END modality return out end ############################################################################################ ############################################################################################ ############################################################################################ # Split a node # Find an optimal local split satisfying the given constraints # (e.g. max_depth, min_samples_leaf, etc.) Base.@propagate_inbounds @inline function optimize_node!( node :: NodeMeta{L,P,D}, # node to split Xs :: MultiLogiset, # modal dataset Y :: AbstractVector{L}, # label vector W :: AbstractVector{U}, # weight vector grouped_featsaggrsnopss :: AbstractVector{<:AbstractVector{<:AbstractDict{<:Aggregator,<:AbstractVector{<:ScalarMetaCondition}}}}, grouped_featsnaggrss :: AbstractVector{<:AbstractVector{<:AbstractVector{<:Tuple{<:Integer,<:Aggregator}}}}, lookahead_depth :: Integer, ########################################################################## Ss :: AbstractVector{S}, ########################################################################## _is_classification :: Union{Val{true},Val{false}}, _using_lookahead :: Union{Val{true},Val{false}}, _perform_consistency_check:: Union{Val{true},Val{false}}, ########################################################################## ; # Logic-agnostic training parameters loss_function :: Loss, lookahead :: Integer, # maximum depth of the tree to locally optimize for max_depth :: Union{Nothing,Int}, # maximum depth of the resultant tree min_samples_leaf :: Int, # minimum number of instancs each leaf needs to have min_purity_increase :: AbstractFloat, # maximum purity allowed on a leaf max_purity_at_leaf :: AbstractFloat, # minimum purity increase needed for a split ########################################################################## # Modal parameters max_modal_depth :: Union{Nothing,Int}, # maximum modal depth of the resultant tree n_subrelations :: AbstractVector{NSubRelationsFunction}, # relations used for the decisions n_subfeatures :: AbstractVector{Int}, # number of features for the decisions allow_global_splits :: AbstractVector{Bool}, # allow/disallow using globalrel at any decisional node ########################################################################## # Other idxs :: AbstractVector{Int}, n_classes :: Int, rng :: Random.AbstractRNG, ) where{P,L<:_Label,D<:AbstractDecision,U,NSubRelationsFunction<:Function,S<:MCARTState} # Region of idxs to use to perform the split region = node.region _ninstances = length(region) r_start = region.start - 1 # DEBUGprintln("optimize_node!"); readline() # Gather all values needed for the current set of instances # TODO also slice the dataset? @inbounds Yf = Y[idxs[region]] @inbounds Wf = W[idxs[region]] # Yf = Vector{L}(undef, _ninstances) # Wf = Vector{U}(undef, _ninstances) # @inbounds @simd for i in 1:_ninstances # Yf[i] = Y[idxs[i + r_start]] # Wf[i] = W[idxs[i + r_start]] # end ############################################################################ # Prepare counts ############################################################################ if isa(_is_classification, Val{true}) (nc, nt), (node.purity, node.prediction) = begin nc = fill(zero(U), n_classes) @inbounds @simd for i in 1:_ninstances nc[Yf[i]] += Wf[i] end nt = sum(nc) # TODO use _compute_purity purity = loss_function(loss_function(nc, nt)::Float64)::Float64 # Assign the most likely label before the split prediction = argmax(nc) # prediction = bestguess(Yf) (nc, nt), (purity, prediction) end else sums, (tsum, nt), (node.purity, node.prediction) = begin # sums = [Wf[i]*Yf[i] for i in 1:_ninstances] sums = Yf # ssqs = [Wf[i]*Yf[i]*Yf[i] for i in 1:_ninstances] # tssq = zero(U) # tssq = sum(ssqs) # tsum = zero(U) tsum = sum(sums) # nt = zero(U) nt = sum(Wf) # @inbounds @simd for i in 1:_ninstances # # tssq += Wf[i]*Yf[i]*Yf[i] # # tsum += Wf[i]*Yf[i] # nt += Wf[i] # end # purity = (tsum * prediction) # TODO use loss function # purity = tsum * tsum # TODO use loss function # tmean = tsum/nt # purity = -((tssq - 2*tmean*tsum + (tmean^2*nt)) / (nt-1)) # TODO use loss function # TODO use _compute_purity purity = begin if W isa Ones{Int} loss_function(loss_function(sums, tsum, length(sums))::Float64) else loss_function(loss_function(sums, Wf, nt)::Float64) end end # Assign the most likely label before the split prediction = tsum / nt # prediction = bestguess(Yf) sums, (tsum, nt), (purity, prediction) end end ############################################################################ ############################################################################ ############################################################################ @logmsg LogDebug "_split!(...) " _ninstances region nt ############################################################################ # Preemptive leaf conditions ############################################################################ if isa(_is_classification, Val{true}) if ( # If all instances belong to the same class, make this a leaf (nc[node.prediction] == nt) # No binary split can honor min_samples_leaf if there are not as many as # min_samples_leaf*2 instances in the first place || (min_samples_leaf * 2 > _ninstances) # If the node is pure enough, avoid splitting # TODO rename purity to loss || (node.purity > max_purity_at_leaf) # Honor maximum depth constraint || (!isnothing(max_depth) && max_depth <= node.depth)) # DEBUGprintln("BEFORE LEAF!") # DEBUGprintln(nc[node.prediction]) # DEBUGprintln(nt) # DEBUGprintln(min_samples_leaf) # DEBUGprintln(_ninstances) # DEBUGprintln(node.purity) # DEBUGprintln(max_purity_at_leaf) # DEBUGprintln(max_depth) # DEBUGprintln(node.depth) # readline() node.is_leaf = true # @logmsg LogDetail "leaf created: " (min_samples_leaf * 2 > _ninstances) (nc[node.prediction] == nt) (node.purity > max_purity_at_leaf) (max_depth <= node.depth) return end else if ( # No binary split can honor min_samples_leaf if there are not as many as # min_samples_leaf*2 instances in the first place (min_samples_leaf * 2 > _ninstances) # equivalent to old_purity > -1e-7 || (node.purity > max_purity_at_leaf) # TODO # || (tsum * node.prediction > -1e-7 * nt + tssq) # Honor maximum depth constraint || (!isnothing(max_depth) && max_depth <= node.depth)) node.is_leaf = true # @logmsg LogDetail "leaf created: " (min_samples_leaf * 2 > _ninstances) (tsum * node.prediction > -1e-7 * nt + tssq) (tsum * node.prediction) (-1e-7 * nt + tssq) (max_depth <= node.depth) return end end ######################################################################################## ######################################################################################## ######################################################################################## # TODO try this solution for rsums and lsums (regression case) # rsums = Vector{U}(undef, _ninstances) # lsums = Vector{U}(undef, _ninstances) # @simd for i in 1:_ninstances # rsums[i] = zero(U) # lsums[i] = zero(U) # end if eltype(Ss) <: RestrictedMCARTState # TODO @view Sfs = Vector{Vector{WST} where {WorldType,WST<:Vector{WorldType}}}(undef, nmodalities(Xs)) for (i_modality,WT) in enumerate(worldtype.(eachmodality(Xs))) Sfs[i_modality] = Vector{Vector{WT}}(undef, _ninstances) @simd for i in 1:_ninstances Sfs[i_modality][i] = Ss[i_modality].witnesses[idxs[i + r_start]] end end end ######################################################################################## ######################################################################################## ######################################################################################## is_lookahead_basecase = (isa(_using_lookahead, Val{true}) && lookahead_depth == lookahead) performing_consistency_check = (isa(_perform_consistency_check, Val{true}) || is_lookahead_basecase) function splitnode!(node, Ss, idxs) # TODO, actually, when using Shannon entropy, we must correct the purity: corrected_this_purity_times_nt = loss_function(node.purity_times_nt)::Float64 # DEBUGprintln("corrected_this_purity_times_nt: $(corrected_this_purity_times_nt)") # DEBUGprintln(min_purity_increase) # DEBUGprintln(node.purity) # DEBUGprintln(corrected_this_purity_times_nt) # DEBUGprintln(nt) # DEBUGprintln(purity - node.purity_times_nt/nt) # DEBUGprintln("dishonor: $(dishonor_min_purity_increase(L, min_purity_increase, node.purity, corrected_this_purity_times_nt, nt))") # readline() # println("corrected_this_purity_times_nt = $(corrected_this_purity_times_nt)") # println("nt = $(nt)") # println("node.purity = $(node.purity)") # println("corrected_this_purity_times_nt / nt - node.purity = $(corrected_this_purity_times_nt / nt - node.purity)") # println("min_purity_increase * nt = $(min_purity_increase) * $(nt) = $(min_purity_increase * nt)") # @logmsg LogOverview "purity_times_nt increase" corrected_this_purity_times_nt/nt node.purity (corrected_this_purity_times_nt/nt + node.purity) (node.purity_times_nt/nt - node.purity) # If the best split is good, partition and split accordingly @inbounds if (( corrected_this_purity_times_nt == typemin(P)) || dishonor_min_purity_increase(L, min_purity_increase, node.purity, corrected_this_purity_times_nt, nt) ) # if isa(_is_classification, Val{true}) # @logmsg LogDebug " Leaf" corrected_this_purity_times_nt min_purity_increase (corrected_this_purity_times_nt/nt) node.purity ((corrected_this_purity_times_nt/nt) - node.purity) # else # @logmsg LogDebug " Leaf" corrected_this_purity_times_nt tsum node.prediction min_purity_increase nt (corrected_this_purity_times_nt / nt - tsum * node.prediction) (min_purity_increase * nt) # end makeleaf!(node) return false end # Compute new world sets (= take a modal step) # println(decision_str) decision_str = displaydecision(node.i_modality, node.decision) # TODO instead of using memory, here, just use two opposite indices and perform substitutions. indj = _ninstances post_unsatisfied = fill(1, _ninstances) if performing_consistency_check world_refs = [] end for i_instance in 1:_ninstances # TODO perform step with an OntologicalModalDataset X = modality(Xs, node.i_modality) # instance = DimensionalDatasets.get_instance(X, idxs[i_instance + r_start]) # println(instance) # println(Sfs[node.i_modality][i_instance]) _sat, _ss = modalstep(X, idxs[i_instance + r_start], Sfs[node.i_modality][i_instance], node.decision) # _sat, _ss = modalstep(X, idxs[i_instance + r_start], Ss[node.i_modality][idxs[i_instance + r_start]], node.decision) (issat,Ss[node.i_modality].witnesses[idxs[i_instance + r_start]]) = _sat, _ss # @logmsg LogDetail " [$issat] Instance $(i_instance)/$(_ninstances)" Sfs[node.i_modality][i_instance] (if issat Ss[node.i_modality][idxs[i_instance + r_start]] end) # println(issat) # println(Ss[node.i_modality][idxs[i_instance + r_start]]) # readline() # I'm using unsatisfied because sorting puts YES instances first, but TODO use the inverse sorting and use issat flag instead post_unsatisfied[i_instance] = !issat if performing_consistency_check push!(world_refs, _ss) end end @logmsg LogDetail " post_unsatisfied" post_unsatisfied # if length(unique(post_unsatisfied)) == 1 # @warn "An uninformative split was reached. Something's off\nPurity: $(node.purity)\nSplit: $(decision_str)\nUnsatisfied flags: $(post_unsatisfied)" # makeleaf!(node) # return false # end @logmsg LogDetail " Branch ($(sum(post_unsatisfied))+$(_ninstances-sum(post_unsatisfied))=$(_ninstances) instances) at modality $(node.i_modality) with decision: $(decision_str), purity $(node.purity)" # if sum(post_unsatisfied) >= min_samples_leaf && (_ninstances - sum(post_unsatisfied)) >= min_samples_leaf # DEBUGprintln("LEAF!") # makeleaf!(node) # return false # end ######################################################################################## ######################################################################################## ######################################################################################## # Check consistency consistency = begin if performing_consistency_check post_unsatisfied else sum(Wf[BitVector(post_unsatisfied)]) end end # @logmsg LogDetail " post_unsatisfied" post_unsatisfied # if !isapprox(node.consistency, consistency; atol=eps(Float16), rtol=eps(Float16)) # errStr = "" # errStr *= "A low-level error occurred. Please open a pull request with the following info." # errStr *= "Decision $(node.decision).\n" # errStr *= "Possible causes:\n" # errStr *= "- feature returning NaNs\n" # errStr *= "- erroneous representatives for relation $(relation(node.decision)), aggregator $(existential_aggregator(test_operator(node.decision))) and feature $(feature(node.decision))\n" # errStr *= "\n" # errStr *= "Branch ($(sum(post_unsatisfied))+$(_ninstances-sum(post_unsatisfied))=$(_ninstances) instances) at modality $(node.i_modality) with decision: $(decision_str), purity $(node.purity)\n" # errStr *= "$(length(idxs[region])) Instances: $(idxs[region])\n" # errStr *= "Different partition was expected:\n" # if performing_consistency_check # errStr *= "Actual: $(consistency) ($(sum(consistency)))\n" # errStr *= "Expected: $(node.consistency) ($(sum(node.consistency)))\n" # diff = node.consistency.-consistency # errStr *= "Difference: $(diff) ($(sum(abs.(diff))))\n" # else # errStr *= "Actual: $(consistency)\n" # errStr *= "Expected: $(node.consistency)\n" # diff = node.consistency-consistency # errStr *= "Difference: $(diff)\n" # end # errStr *= "post_unsatisfied = $(post_unsatisfied)\n" # if performing_consistency_check # errStr *= "world_refs = $(world_refs)\n" # errStr *= "new world_refs = $([Ss[node.i_modality][idxs[i_instance + r_start]] for i_instance in 1:_ninstances])\n" # end # # for i in 1:_ninstances # # errStr *= "$(DimensionalDatasets.get_channel(Xs, idxs[i + r_start], feature(node.decision)))\t$(Sfs[node.i_modality][i])\t$(!(post_unsatisfied[i]==1))\t$(Ss[node.i_modality][idxs[i + r_start]])\n"; # # end # println("ERROR! " * errStr) # end # if length(unique(post_unsatisfied)) == 1 # # Note: this should always be satisfied, since min_samples_leaf is always > 0 and nl,nr>min_samples_leaf # errStr = "An uninformative split was reached." # errStr *= "Something's off with this algorithm\n" # errStr *= "Purity: $(node.purity)\n" # errStr *= "Split: $(decision_str)\n" # errStr *= "Unsatisfied flags: $(post_unsatisfied)" # println("ERROR! " * errStr) # # error(errStr) # makeleaf!(node) # return false # end ######################################################################################## ######################################################################################## ######################################################################################## # @show post_unsatisfied # @logmsg LogDetail "pre-partition" region idxs[region] post_unsatisfied node.split_at = partition!(idxs, post_unsatisfied, 0, region) node.purity = corrected_this_purity_times_nt/nt # @logmsg LogDetail "post-partition" idxs[region] node.split_at ind = node.split_at oura = node.onlyallowglobal mdepth = node.modaldepth leftmodaldepth, rightmodaldepth = begin if is_propositional_decision(node.decision) mdepth, mdepth else # The left decision nests in the last right ancestor's formula # The right decision (lastrightancestor(node).modaldepth+1), (lastrightancestor(node).modaldepth+1) end end # onlyallowglobal changes: # on the left node, the modality where the decision was taken l_oura = copy(oura) l_oura[node.i_modality] = false r_oura = oura # no need to copy because we will copy at the end node.l = typeof(node)(region[ 1:ind], node.depth+1, leftmodaldepth, l_oura) node.r = typeof(node)(region[ind+1:end], node.depth+1, rightmodaldepth, r_oura) return true end ######################################################################################## ######################################################################################## ######################################################################################## ######################################################################################## #################################### Find best split ################################### ######################################################################################## if performing_consistency_check unsatisfied = Vector{Bool}(undef, _ninstances) end # Optimization-tracking variables node.purity_times_nt = typemin(P) # node.i_modality = -1 # node.decision = RestrictedDecision(ScalarExistentialFormula{Float64}()) # node.consistency = nothing perform_domain_optimization = is_lookahead_basecase && !performing_consistency_check ## Test all decisions or each modality for (i_modality, decision_instantiator, test_op, aggr_thresholds) in generate_relevant_decisions( Xs, Sfs, n_subrelations, n_subfeatures, allow_global_splits, node, rng, max_modal_depth, idxs, region, grouped_featsaggrsnopss, grouped_featsnaggrss, ) if isa(_is_classification, Val{true}) thresh_domain, additional_info = limit_threshold_domain(aggr_thresholds, Yf, Wf, loss_function, test_op, min_samples_leaf, perform_domain_optimization; n_classes = n_classes, nc = nc, nt = nt) else thresh_domain, additional_info = limit_threshold_domain(aggr_thresholds, Yf, Wf, loss_function, test_op, min_samples_leaf, perform_domain_optimization) end # Look for the best threshold 'a', as in atoms like "feature >= a" for (_threshold, threshold_info) in zip(thresh_domain, additional_info) decision = decision_instantiator(_threshold) # @show decision # @show aggr_thresholds # @logmsg LogDetail " Testing decision: $(displaydecision(decision))" # println(displaydecision(i_modality, decision)) # TODO avoid ugly unpacking and figure out a different way of achieving this # (test_op, _threshold) = (test_operator(decision), threshold(decision)) ######################################################################## # Apply decision to all instances ######################################################################## # Note: unsatisfied is also changed if isa(_is_classification, Val{true}) (ncr, nr, ncl, nl) = begin if !isnothing(threshold_info) && !performing_consistency_check threshold_info else # Re-initialize right counts nr = zero(U) ncr = fill(zero(U), n_classes) if performing_consistency_check unsatisfied .= 1 end for i_instance in 1:_ninstances gamma = aggr_thresholds[i_instance] issat = SoleData.apply_test_operator(test_op, gamma, _threshold) # @logmsg LogDetail " instance $i_instance/$_ninstances: (f=$(gamma)) -> issat = $(issat)" # Note: in a fuzzy generalization, `issat` becomes a [0-1] value if !issat nr += Wf[i_instance] ncr[Yf[i_instance]] += Wf[i_instance] else if performing_consistency_check unsatisfied[i_instance] = 0 end end end # ncl = Vector{U}(undef, n_classes) # ncl .= nc .- ncr ncl = nc .- ncr nl = nt - nr threshold_info_new = (ncr, nr, ncl, nl) # if !isnothing(threshold_info) && !performing_consistency_check # if threshold_info != threshold_info_new # @show nc # @show nt # @show Yf # @show Wf # @show test_op # @show _threshold # @show threshold_info # @show threshold_info_new # readline() # end # end threshold_info_new end end else (rsums, nr, lsums, nl, rsum, lsum) = begin # Initialize right counts # rssq = zero(U) rsum = zero(U) nr = zero(U) # TODO experiment with running mean instead, because this may cause a lot of memory inefficiency # https://it.wikipedia.org/wiki/Algoritmi_per_il_calcolo_della_varianza rsums = Float64[] # Vector{U}(undef, _ninstances) lsums = Float64[] # Vector{U}(undef, _ninstances) if performing_consistency_check unsatisfied .= 1 end for i_instance in 1:_ninstances gamma = aggr_thresholds[i_instance] issat = SoleData.apply_test_operator(test_op, gamma, _threshold) # @logmsg LogDetail " instance $i_instance/$_ninstances: (f=$(gamma)) -> issat = $(issat)" # TODO make this satisfied a fuzzy value if !issat push!(rsums, sums[i_instance]) # rsums[i_instance] = sums[i_instance] nr += Wf[i_instance] rsum += sums[i_instance] # rssq += ssqs[i_instance] else push!(lsums, sums[i_instance]) # lsums[i_instance] = sums[i_instance] if performing_consistency_check unsatisfied[i_instance] = 0 end end end # Calculate left counts lsum = tsum - rsum # lssq = tssq - rssq nl = nt - nr (rsums, nr, lsums, nl, rsum, lsum) end end #################################################################################### #################################################################################### #################################################################################### # @logmsg LogDebug " (n_left,n_right) = ($nl,$nr)" # Honor min_samples_leaf if !(nl >= min_samples_leaf && (_ninstances - nl) >= min_samples_leaf) continue end purity_times_nt = begin if isa(_is_classification, Val{true}) loss_function((ncl, nl), (ncr, nr)) else purity = begin if W isa Ones{Int} loss_function(lsums, lsum, nl, rsums, rsum, nr) else error("TODO expand regression code to weigthed version!") loss_function(lsums, ws_l, nl, rsums, ws_r, nr) end end # TODO use loss_function instead # ORIGINAL: TODO understand how it works # purity_times_nt = (rsum * rsum / nr) + (lsum * lsum / nl) # Variance with ssqs # purity_times_nt = (rmean, lmean = rsum/nr, lsum/nl; - (nr * (rssq - 2*rmean*rsum + (rmean^2*nr)) / (nr-1) + (nl * (lssq - 2*lmean*lsum + (lmean^2*nl)) / (nl-1)))) # Variance # var = (x)->sum((x.-StatsBase.mean(x)).^2) / (length(x)-1) # purity_times_nt = - (nr * var(rsums)) + nl * var(lsums)) # Simil-variance that is easier to compute but it does not work with few samples on the leaves # var = (x)->sum((x.-StatsBase.mean(x)).^2) # purity_times_nt = - (var(rsums) + var(lsums)) # println("purity_times_nt: $(purity_times_nt)") end end::P # If don't need to use lookahead, then I adopt the split only if it's better than the current one # Otherwise, I adopt it. if ( !(isa(_using_lookahead, Val{false}) || is_lookahead_basecase) || (purity_times_nt > node.purity_times_nt) # && !isapprox(purity_times_nt, node.purity_times_nt)) ) # DEBUGprintln((ncl,nl,ncr,nr), purity_times_nt) node.i_modality = i_modality node.purity_times_nt = purity_times_nt node.decision = decision # print(decision) # println(" NEW BEST $node.i_modality, $node.purity_times_nt/nt") # @logmsg LogDetail " Found new optimum in modality $(node.i_modality): " (node.purity_times_nt/nt) node.decision ################################# node.consistency = begin if performing_consistency_check unsatisfied[1:_ninstances] else nr end end # Short-circuit if you don't lookahead, and this is a perfect split if (isa(_using_lookahead, Val{false}) || is_lookahead_basecase) && istoploss(loss_function, purity_times_nt) # @show "Threshold shortcircuit!" break end end # In case of lookahead, temporarily accept the split, # recurse on my children, and evaluate the purity of the whole subtree if (isa(_using_lookahead, Val{true}) && lookahead_depth < lookahead) Ss_copy = deepcopy(Ss) idxs_copy = deepcopy(idxs) # TODO maybe this reset is not needed? is_leaf = splitnode!(node, Ss_copy, idxs_copy) if is_leaf # TODO: evaluate the goodneess of the leaf? else # node.purity_times_nt # purity_times_nt = loss_function((ncl, nl), (ncr, nr)) ... for childnode in [node.l, node.r] # rng_copy = optimize_node!( childnode, Xs, Y, W, grouped_featsaggrsnopss, grouped_featsnaggrss, lookahead_depth+1, ########################################################################## Ss_copy, ########################################################################## _is_classification, _using_lookahead, _perform_consistency_check ########################################################################## ; loss_function = loss_function, lookahead = lookahead, max_depth = max_depth, min_samples_leaf = min_samples_leaf, min_purity_increase = min_purity_increase, max_purity_at_leaf = max_purity_at_leaf, ########################################################################## max_modal_depth = max_modal_depth, n_subrelations = n_subrelations, n_subfeatures = n_subfeatures, allow_global_splits = allow_global_splits, ########################################################################## idxs = deepcopy(idxs_copy), n_classes = n_classes, rng = copy(rng), ) end # TODO: evaluate the goodneess of the subtree? end end end end # Finally accept the split. if (isa(_using_lookahead, Val{false}) || is_lookahead_basecase) splitnode!(node, Ss, idxs) end # println("END split!") # readline() # node end ############################################################################################ ############################################################################################ ############################################################################################ @inline function _fit_tree( Xs :: MultiLogiset, # modal dataset Y :: AbstractVector{L}, # label vector initconditions :: AbstractVector{<:InitialCondition}, # world starting conditions W :: AbstractVector{U} # weight vector ; ########################################################################## profile :: Symbol, ########################################################################## lookahead :: Union{Nothing,Integer}, ########################################################################## _is_classification :: Union{Val{true},Val{false}}, _using_lookahead :: Union{Val{true},Val{false}}, _perform_consistency_check:: Union{Val{true},Val{false}}, ########################################################################## rng = Random.GLOBAL_RNG :: Random.AbstractRNG, print_progress :: Bool = true, kwargs..., ) where{L<:_Label,U} _ninstances = ninstances(Xs) if profile == :restricted # Initialize world sets for each instance Ss = RestrictedMCARTState.(ModalDecisionTrees.initialworldsets(Xs, initconditions)) D = RestrictedDecision lookahead = 0 elseif profile == :full error("TODO implement.") lookahead = 1 else error("Unexpected ModalCART profile: $(profile).") end # Distribution of the instances indices throughout the tree. # It will be recursively permuted, and regions of it assigned to the tree nodes (idxs[node.region]) idxs = collect(1:_ninstances) # Create root node NodeMetaT = NodeMeta{(isa(_is_classification, Val{true}) ? Int64 : Float64),Float64,D} onlyallowglobal = [(initcond == ModalDecisionTrees.start_without_world) for initcond in initconditions] root = NodeMetaT(1:_ninstances, 0, 0, onlyallowglobal) if print_progress # p = ProgressThresh(Inf, 1, "Computing DTree...") p = ProgressUnknown("Computing DTree... nodes: ", spinner=true) end permodality_groups = [ begin _features = features(X) _metaconditions = metaconditions(X) _grouped_metaconditions = SoleData.grouped_metaconditions(_metaconditions, _features) # _grouped_metaconditions::AbstractVector{<:AbstractVector{Tuple{<:ScalarMetaCondition}}} # [[(i_metacond, aggregator, metacondition)...]...] groups = [begin aggrsnops = Dict{Aggregator,AbstractVector{<:ScalarMetaCondition}}() aggregators_with_ids = Tuple{<:Integer,<:Aggregator}[] for (i_metacond, aggregator, metacondition) in these_metaconditions if !haskey(aggrsnops, aggregator) aggrsnops[aggregator] = Vector{ScalarMetaCondition}() end push!(aggrsnops[aggregator], metacondition) push!(aggregators_with_ids, (i_metacond,aggregator)) end (aggrsnops, aggregators_with_ids) end for (i_feature, (_feature, these_metaconditions)) in enumerate(_grouped_metaconditions)] grouped_featsaggrsnops = first.(groups) grouped_featsnaggrs = last.(groups) # grouped_featsaggrsnops::AbstractVector{<:AbstractDict{<:Aggregator,<:AbstractVector{<:ScalarMetaCondition}}} # [Dict([aggregator => [metacondition...]]...)...] # grouped_featsnaggrs::AbstractVector{<:AbstractVector{Tuple{<:Integer,<:Aggregator}}} # [[(i_metacond,aggregator)...]...] (grouped_featsaggrsnops, grouped_featsnaggrs) end for X in eachmodality(Xs)] grouped_featsaggrsnopss = first.(permodality_groups) grouped_featsnaggrss = last.(permodality_groups) # Process nodes recursively, using multi-threading function process_node!(node, rng) # Note: better to spawn rng's beforehand, to preserve reproducibility independently from optimize_node! rng_l = spawn(rng) rng_r = spawn(rng) @inbounds optimize_node!( node, Xs, Y, W, grouped_featsaggrsnopss, grouped_featsnaggrss, 0, ################################################################################ Ss, ################################################################################ _is_classification, _using_lookahead, _perform_consistency_check ################################################################################ ; idxs = idxs, rng = rng, lookahead = lookahead, kwargs..., ) # !print_progress || ProgressMeter.update!(p, node.purity) !print_progress || ProgressMeter.next!(p, spinner="⠋⠙⠹⠸⠼⠴⠦⠧⠇⠏") if !node.is_leaf l = Threads.@spawn process_node!(node.l, rng_l) r = Threads.@spawn process_node!(node.r, rng_r) wait(l), wait(r) end end @sync Threads.@spawn process_node!(root, rng) !print_progress || ProgressMeter.finish!(p) return (root, idxs) end ############################################################################## ############################################################################## ############################################################################## ############################################################################## @inline function check_input( Xs :: MultiLogiset, Y :: AbstractVector{S}, initconditions :: Vector{<:InitialCondition}, W :: AbstractVector{U} ; ########################################################################## profile :: Symbol, ########################################################################## loss_function :: Loss, lookahead :: Union{Nothing,Integer}, max_depth :: Union{Nothing,Int}, min_samples_leaf :: Int, min_purity_increase :: AbstractFloat, max_purity_at_leaf :: AbstractFloat, ########################################################################## max_modal_depth :: Union{Nothing,Int}, n_subrelations :: Vector{<:Function}, n_subfeatures :: Vector{<:Integer}, allow_global_splits :: Vector{Bool}, ########################################################################## kwargs..., ) where {S,U} _ninstances = ninstances(Xs) if length(Y) != _ninstances error("Dimension mismatch between dataset and label vector Y: ($(_ninstances)) vs $(size(Y))") elseif length(W) != _ninstances error("Dimension mismatch between dataset and weights vector W: ($(_ninstances)) vs $(size(W))") ############################################################################ elseif length(n_subrelations) != nmodalities(Xs) error("Mismatching number of n_subrelations with number of modalities: $(length(n_subrelations)) vs $(nmodalities(Xs))") elseif length(n_subfeatures) != nmodalities(Xs) error("Mismatching number of n_subfeatures with number of modalities: $(length(n_subfeatures)) vs $(nmodalities(Xs))") elseif length(initconditions) != nmodalities(Xs) error("Mismatching number of initconditions with number of modalities: $(length(initconditions)) vs $(nmodalities(Xs))") elseif length(allow_global_splits) != nmodalities(Xs) error("Mismatching number of allow_global_splits with number of modalities: $(length(allow_global_splits)) vs $(nmodalities(Xs))") ############################################################################ # elseif any(nrelations.(eachmodality(Xs)) .< n_subrelations) # error("In at least one modality the total number of relations is less than the number " # * "of relations required at each split\n" # * "# relations: " * string(nrelations.(eachmodality(Xs))) * "\n\tvs\n" # * "# subrelations: " * string(n_subrelations |> collect)) # elseif length(findall(n_subrelations .< 0)) > 0 # error("Total number of relations $(n_subrelations) must be >= zero ") elseif any(nfeatures.(eachmodality(Xs)) .< n_subfeatures) error("In at least one modality the total number of features is less than the number " * "of features required at each split\n" * "# features: " * string(nfeatures.(eachmodality(Xs))) * "\n\tvs\n" * "# subfeatures: " * string(n_subfeatures |> collect)) elseif length(findall(n_subfeatures .< 0)) > 0 error("Total number of features $(n_subfeatures) must be >= zero ") elseif min_samples_leaf < 1 error("Min_samples_leaf must be a positive integer " * "(given $(min_samples_leaf))") # if loss_function in [entropy] # max_purity_at_leaf_thresh = 0.75 # min_purity_increase 0.01 # min_purity_increase_thresh = 0.5 # if (max_purity_at_leaf >= max_purity_at_leaf_thresh) # println("Warning! It is advised to use max_purity_at_leaf<$(max_purity_at_leaf_thresh) with loss $(loss_function)" # * "(given $(max_purity_at_leaf))") # elseif (min_purity_increase >= min_purity_increase_thresh) # println("Warning! It is advised to use max_purity_at_leaf<$(min_purity_increase_thresh) with loss $(loss_function)" # * "(given $(min_purity_increase))") # end # elseif loss_function in [gini, zero_one] && (max_purity_at_leaf > 1.0 || max_purity_at_leaf <= 0.0) # error("Max_purity_at_leaf for loss $(loss_function) must be in (0,1]" # * "(given $(max_purity_at_leaf))") elseif !isnothing(max_depth) && max_depth < 0 error("Unexpected value for max_depth: $(max_depth) (expected:" * " max_depth >= 0, or max_depth = nothing for unbounded depth)") elseif !isnothing(max_modal_depth) && max_modal_depth < 0 error("Unexpected value for max_modal_depth: $(max_modal_depth) (expected:" * " max_modal_depth >= 0, or max_modal_depth = nothing for unbounded depth)") end if !(profile in [:restricted, :full]) error("Unexpected ModalCART profile: $(profile).") end if !isnothing(lookahead) && !(lookahead >= 0) error("Unexpected value for lookahead: $(lookahead) (expected:" * " lookahead >= 0)") end if SoleData.hasnans(Xs) error("This algorithm does not allow NaN values") end if nothing in Y error("This algorithm does not allow nothing values in Y") elseif eltype(Y) <: Number && any(isnan.(Y)) error("This algorithm does not allow NaN values in Y") elseif nothing in W error("This algorithm does not allow nothing values in W") elseif any(isnan.(W)) error("This algorithm does not allow NaN values in W") end end ############################################################################################ ############################################################################################ ############################################################################################ ################################################################################ function fit_tree( # modal dataset Xs :: MultiLogiset, # label vector Y :: AbstractVector{L}, # world starting conditions initconditions :: Vector{<:InitialCondition}, # Weights (unary weigths are used if no weight is supplied) W :: AbstractVector{U} = default_weights(Y) # W :: AbstractVector{U} = Ones{Int}(ninstances(Xs)), # TODO check whether this is faster ; # Learning profile (e.g., restricted, full...) profile :: Symbol = :restricted, # Lookahead parameter (i.e., depth of the trees to locally optimize for) lookahead :: Union{Nothing,Integer} = nothing, # Perform minification: transform dataset so that learning happens faster use_minification :: Bool, # Debug-only: checks the consistency of the dataset during training perform_consistency_check :: Bool, kwargs..., ) where {L<:Union{CLabel,RLabel}, U} # Check validity of the input check_input(Xs, Y, initconditions, W; profile = profile, lookahead = lookahead, kwargs...) # Classification-only: transform labels to categorical form (indexed by integers) n_classes = begin if L<:CLabel class_names, Y = get_categorical_form(Y) length(class_names) else 0 # dummy value for the case of regression end end Xs, threshold_backmaps = begin if use_minification minify(Xs) else Xs, fill(identity, nmodalities(Xs)) end end # println(threshold_backmaps) # Call core learning function root, idxs = _fit_tree(Xs, Y, initconditions, W, ; _is_classification = Val(L<:CLabel), _using_lookahead = Val((lookahead > 0)), _perform_consistency_check = Val(perform_consistency_check), profile = profile, lookahead = lookahead, n_classes = n_classes, kwargs... ) # Finally create Tree root = begin if L<:CLabel _convert(root, map((y)->class_names[y], Y[idxs]), class_names, threshold_backmaps) else _convert(root, Y[idxs], threshold_backmaps) end end DTree{L}(root, worldtype.(eachmodality(Xs)), initconditions) end
ModalDecisionTrees
https://github.com/aclai-lab/ModalDecisionTrees.jl.git
[ "MIT" ]
0.5.0
200b2bd9dee3dfe2dcffa1fb51b6dd00d371ed2b
code
3307
__precompile__() module ModalDecisionTrees ############################################################################################ import Base: show, length using FunctionWrappers: FunctionWrapper using Logging: LogLevel, @logmsg using Printf using ProgressMeter using Random using Reexport using StatsBase using SoleBase using SoleBase: LogOverview, LogDebug, LogDetail using SoleBase: spawn, nat_sort using SoleBase: CLabel, RLabel, Label, _CLabel, _Label, get_categorical_form using SoleBase: bestguess, default_weights, slice_weights using SoleData using SoleData: nvariables, get_instance, slicedataset using FillArrays using SoleData: AbstractModalLogiset import SoleData: feature, test_operator, threshold import AbstractTrees: print_tree # Data structures @reexport using SoleData.DimensionalDatasets using SoleData: MultiLogiset using SoleData: Worlds using SoleData: nfeatures, nrelations, nmodalities, eachmodality, modality, displaystructure, # relations, # MultiLogiset, SupportedLogiset using SoleData: AbstractWorld, AbstractRelation using SoleData: AbstractWorlds, Worlds using SoleData: worldtype using SoleData: OneWorld using SoleData: Interval, Interval2D using SoleData: IARelations, IA2DRelations using SoleLogics: FullDimensionalFrame using SoleLogics: normalize using SoleData: existential_aggregator, universal_aggregator, aggregator_bottom using SoleModels import SoleModels: nnodes import SoleModels: nleaves import SoleModels: height ############################################################################################ export slicedataset, nmodalities, ninstances, nvariables export DTree, # Decision tree DForest, # Decision forest RootLevelNeuroSymbolicHybrid, # Root-level neurosymbolic hybrid model # nnodes, height, modalheight ############################################################################################ ModalityId = Int # Utility functions include("utils.jl") # Loss functions include("loss-functions.jl") # Purity helpers include("purity.jl") export RestrictedDecision, ScalarExistentialFormula, displaydecision # Definitions for Decision Leaf, Internal, Node, Tree & Forest include("base.jl") include("print.jl") # # Default parameter values include("default-parameters.jl") # Metrics for assessing the goodness of a decision leaf/rule include("leaf-metrics.jl") # One-step decisions include("interpret-onestep-decisions.jl") # Build a decision tree/forest from a dataset include("build.jl") # Perform post-hoc manipulation/analysis on a decision tree/forest (e.g., pruning) include("posthoc.jl") # Apply decision tree/forest to a dataset include("apply.jl") export ModalDecisionTree, ModalRandomForest export depth, wrapdataset # Interfaces include("interfaces/Sole/main.jl") include("interfaces/MLJ.jl") include("interfaces/AbstractTrees.jl") # Experimental features include("experimentals/main.jl") # Example datasets include("other/example-datasets.jl") end # module
ModalDecisionTrees
https://github.com/aclai-lab/ModalDecisionTrees.jl.git
[ "MIT" ]
0.5.0
200b2bd9dee3dfe2dcffa1fb51b6dd00d371ed2b
code
27660
using MLJModelInterface: classes using StatsBase export apply_tree, apply_forest, apply_model, printapply, tree_walk_metrics export sprinkle import SoleModels: apply ############################################################################################ ############################################################################################ ############################################################################################ function apply end apply_model = apply # apply_tree = apply_model @deprecate apply_tree apply_model # apply_forest = apply_model @deprecate apply_forest apply_model function apply_proba end apply_model_proba = apply_proba # apply_tree_proba = apply_model_proba @deprecate apply_tree_proba apply_model_proba # apply_trees_proba = apply_model_proba @deprecate apply_trees_proba apply_model_proba # apply_forest_proba = apply_model_proba @deprecate apply_forest_proba apply_model_proba ############################################################################################ ############################################################################################ ############################################################################################ mm_instance_initialworldset(Xs, tree::DTree, i_instance::Integer) = begin Ss = Vector{Worlds}(undef, nmodalities(Xs)) for (i_modality,X) in enumerate(eachmodality(Xs)) Ss[i_modality] = initialworldset(X, i_instance, initconditions(tree)[i_modality]) end Ss end softmax(v::AbstractVector) = exp.(v) ./ sum(exp.(v)) softmax(m::AbstractMatrix) = mapslices(softmax, m; dims=1) ############################################################################################ ############################################################################################ ############################################################################################ printapply(model::SymbolicModel, args...; kwargs...) = printapply(stdout, model, args...; kwargs...) # printapply_proba(model::SymbolicModel, args...; kwargs...) = printapply_proba(stdout, model, args...; kwargs...) function printapply(io::IO, model::SymbolicModel, Xs, Y::AbstractVector; kwargs...) predictions, newmodel = sprinkle(model, Xs, Y) printmodel(io, newmodel; kwargs...) predictions, newmodel end # function printapply_proba(io::IO, model::SymbolicModel, Xs, Y::AbstractVector; kwargs...) # predictions, newmodel = apply_proba(model, Xs, Y TODO) # printmodel(io, newmodel; kwargs...) # predictions, newmodel # end ################################################################################ # Apply models: predict labels for a new dataset of instances ################################################################################ function apply(leaf::DTLeaf, Xs, i_instance::Integer, worlds::AbstractVector{<:AbstractWorlds}; suppress_parity_warning = false) prediction(leaf) end function apply(leaf::NSDTLeaf, Xs, i_instance::Integer, worlds::AbstractVector{<:AbstractWorlds}; suppress_parity_warning = false) # if Xs isa AbstractVector # println(length(Xs)) # println(typeof(first(Xs))) # println(first(Xs)) # end d = slicedataset(Xs, [i_instance]) # println(typeof(d)) # println(hasmethod(length, (typeof(d),)) ? length(d) : nothing) # println(hasmethod(size, (typeof(d),)) ? size(d) : nothing) preds = leaf.predicting_function(d) @assert length(preds) == 1 "Error in apply(::NSDTLeaf, ...) The predicting function returned some malformed output. Expected is a Vector of a single prediction, while the returned value is:\n$(preds)\n$(hasmethod(length, (typeof(preds),)) ? length(preds) : "(length = $(length(preds)))")\n$(hasmethod(size, (typeof(preds),)) ? size(preds) : "(size = $(size(preds)))")" # println(preds) # println(typeof(preds)) preds[1] end function apply(tree::DTInternal, Xs, i_instance::Integer, worlds::AbstractVector{<:AbstractWorlds}; kwargs...) @logmsg LogDetail "applying branch..." @logmsg LogDetail " worlds" worlds (satisfied,new_worlds) = modalstep( modality(Xs, i_modality(tree)), i_instance, worlds[i_modality(tree)], decision(tree), ) worlds[i_modality(tree)] = new_worlds @logmsg LogDetail " ->(satisfied,worlds')" satisfied worlds apply((satisfied ? left(tree) : right(tree)), Xs, i_instance, worlds; kwargs...) end # Obtain predictions of a tree on a dataset function apply(tree::DTree{L}, Xs; print_progress = !(Xs isa MultiLogiset), kwargs...) where {L} @logmsg LogDetail "apply..." _ninstances = ninstances(Xs) predictions = Vector{L}(undef, _ninstances) if print_progress p = Progress(_ninstances; dt = 1, desc = "Applying tree...") end Threads.@threads for i_instance in 1:_ninstances @logmsg LogDetail " instance $i_instance/$_ninstances" # TODO figure out: is it better to interpret the whole dataset at once, or instance-by-instance? The first one enables reusing training code worlds = mm_instance_initialworldset(Xs, tree, i_instance) predictions[i_instance] = apply(root(tree), Xs, i_instance, worlds; kwargs...) print_progress && next!(p) end predictions end # use an array of trees to test features function apply( trees::AbstractVector{<:DTree{<:L}}, Xs; print_progress = !(Xs isa MultiLogiset), suppress_parity_warning = false, tree_weights::Union{AbstractMatrix{Z},AbstractVector{Z},Nothing} = nothing, ) where {L<:Label,Z<:Real} @logmsg LogDetail "apply..." ntrees = length(trees) _ninstances = ninstances(Xs) if !(tree_weights isa AbstractMatrix) if isnothing(tree_weights) tree_weights = Ones{Int}(length(trees), ninstances(Xs)) # TODO optimize? elseif tree_weights isa AbstractVector tree_weights = hcat([tree_weights for i_instance in 1:ninstances(Xs)]...) else @show typeof(tree_weights) error("Unexpected tree_weights encountered $(tree_weights).") end end @assert length(trees) == size(tree_weights, 1) "Each label must have a corresponding weight: labels length is $(length(labels)) and weights length is $(length(weights))." @assert ninstances(Xs) == size(tree_weights, 2) "Each label must have a corresponding weight: labels length is $(length(labels)) and weights length is $(length(weights))." # apply each tree to the whole dataset _predictions = Matrix{L}(undef, ntrees, _ninstances) if print_progress p = Progress(ntrees; dt = 1, desc = "Applying trees...") end Threads.@threads for i_tree in 1:ntrees _predictions[i_tree,:] = apply(trees[i_tree], Xs; print_progress = false, suppress_parity_warning = suppress_parity_warning) print_progress && next!(p) end # for each instance, aggregate the predictions predictions = Vector{L}(undef, _ninstances) Threads.@threads for i_instance in 1:_ninstances predictions[i_instance] = bestguess( _predictions[:,i_instance], tree_weights[:,i_instance]; suppress_parity_warning = suppress_parity_warning ) end predictions end # use a proper forest to test features function apply( forest::DForest, Xs; suppress_parity_warning = false, weight_trees_by::Union{Bool,Symbol,AbstractVector} = false, ) if weight_trees_by == false apply(trees(forest), Xs; suppress_parity_warning = suppress_parity_warning) elseif isa(weight_trees_by, AbstractVector) apply(trees(forest), Xs; suppress_parity_warning = suppress_parity_warning, tree_weights = weight_trees_by) # elseif weight_trees_by == :accuracy # # TODO: choose HOW to weight a tree... overall_accuracy is just an example (maybe can be parameterized) # apply(forest.trees, Xs; tree_weights = map(cm -> overall_accuracy(cm), get(forest.metrics, :oob_metrics...))) else error("Unexpected value for weight_trees_by: $(weight_trees_by)") end end function apply( nsdt::RootLevelNeuroSymbolicHybrid, Xs; suppress_parity_warning = false, ) W = softmax(nsdt.feature_function(Xs)) apply(nsdt.trees, Xs; suppress_parity_warning = suppress_parity_warning, tree_weights = W) end ################################################################################ # Sprinkle: distribute dataset instances throughout a tree ################################################################################ function _empty_tree_leaves(leaf::DTLeaf{L}) where {L} DTLeaf{L}(prediction(leaf), L[]) end function _empty_tree_leaves(leaf::NSDTLeaf{L}) where {L} NSDTLeaf{L}(leaf.predicting_function, L[], leaf.supp_valid_labels, L[], leaf.supp_valid_predictions) end function _empty_tree_leaves(node::DTInternal) return DTInternal( i_modality(node), decision(node), _empty_tree_leaves(this(node)), _empty_tree_leaves(left(node)), _empty_tree_leaves(right(node)), ) end function _empty_tree_leaves(tree::DTree) return DTree( _empty_tree_leaves(root(tree)), worldtypes(tree), initconditions(tree), ) end function sprinkle( leaf::DTLeaf{L}, Xs, i_instance::Integer, worlds::AbstractVector{<:AbstractWorlds}, y::L; update_labels = false, suppress_parity_warning = false, ) where {L<:Label} _supp_labels = L[supp_labels(leaf)..., y] _prediction = begin if update_labels bestguess(supp_labels(leaf), suppress_parity_warning = suppress_parity_warning) else prediction(leaf) end end _prediction, DTLeaf(_prediction, _supp_labels) end function sprinkle( leaf::NSDTLeaf{L}, Xs, i_instance::Integer, worlds::AbstractVector{<:AbstractWorlds}, y::L; update_labels = false, suppress_parity_warning = false, ) where {L<:Label} pred = apply(leaf, Xs, i_instance, worlds; suppress_parity_warning = suppress_parity_warning) _supp_train_labels = L[leaf.supp_train_labels..., y] _supp_train_predictions = L[leaf.supp_train_predictions..., pred] _predicting_function = begin if update_labels error("TODO expand code retrain") else leaf.predicting_function end end pred, NSDTLeaf{L}(_predicting_function, _supp_train_labels, leaf.supp_valid_labels, _supp_train_predictions, leaf.supp_valid_predictions) end function sprinkle( tree::DTInternal{L}, Xs, i_instance::Integer, worlds::AbstractVector{<:AbstractWorlds}, y::L; kwargs..., ) where {L} (satisfied,new_worlds) = modalstep( modality(Xs, i_modality(tree)), i_instance, worlds[i_modality(tree)], decision(tree) ) # if satisfied # println("new_worlds: $(new_worlds)") # end worlds[i_modality(tree)] = new_worlds this_prediction, this_leaf = sprinkle(this(tree), Xs, i_instance, worlds, y; kwargs...) # TODO test whether this works correctly pred, left_leaf, right_leaf = begin if satisfied pred, left_leaf = sprinkle(left(tree), Xs, i_instance, worlds, y; kwargs...) pred, left_leaf, right(tree) else pred, right_leaf = sprinkle(right(tree), Xs, i_instance, worlds, y; kwargs...) pred, left(tree), right_leaf end end pred, DTInternal(i_modality(tree), decision(tree), this_leaf, left_leaf, right_leaf) end function sprinkle( tree::DTree{L}, Xs, Y::AbstractVector{<:L}; print_progress = !(Xs isa MultiLogiset), reset_leaves = true, kwargs..., ) where {L} # Reset tree = (reset_leaves ? _empty_tree_leaves(tree) : tree) predictions = Vector{L}(undef, ninstances(Xs)) _root = root(tree) # Propagate instances down the tree if print_progress p = Progress(ninstances(Xs); dt = 1, desc = "Applying tree...") end # Note: no multi-threading for i_instance in 1:ninstances(Xs) worlds = mm_instance_initialworldset(Xs, tree, i_instance) pred, _root = sprinkle(_root, Xs, i_instance, worlds, Y[i_instance]; kwargs...) predictions[i_instance] = pred print_progress && next!(p) end predictions, DTree(_root, worldtypes(tree), initconditions(tree)) end # use an array of trees to test features function sprinkle( trees::AbstractVector{<:DTree{<:L}}, Xs, Y::AbstractVector{<:L}; print_progress = !(Xs isa MultiLogiset), tree_weights::Union{AbstractMatrix{Z},AbstractVector{Z},Nothing} = nothing, suppress_parity_warning = false, ) where {L<:Label,Z<:Real} @logmsg LogDetail "sprinkle..." trees = deepcopy(trees) ntrees = length(trees) _ninstances = ninstances(Xs) if !(tree_weights isa AbstractMatrix) if isnothing(tree_weights) tree_weights = Ones{Int}(length(trees), ninstances(Xs)) # TODO optimize? elseif tree_weights isa AbstractVector tree_weights = hcat([tree_weights for i_instance in 1:ninstances(Xs)]...) else @show typeof(tree_weights) error("Unexpected tree_weights encountered $(tree_weights).") end end @assert length(trees) == size(tree_weights, 1) "Each label must have a corresponding weight: labels length is $(length(labels)) and weights length is $(length(weights))." @assert ninstances(Xs) == size(tree_weights, 2) "Each label must have a corresponding weight: labels length is $(length(labels)) and weights length is $(length(weights))." # apply each tree to the whole dataset _predictions = Matrix{L}(undef, ntrees, _ninstances) if print_progress p = Progress(ntrees; dt = 1, desc = "Applying trees...") end Threads.@threads for i_tree in 1:ntrees _predictions[i_tree,:], trees[i_tree] = sprinkle(trees[i_tree], Xs, Y; print_progress = false) print_progress && next!(p) end # for each instance, aggregate the predictions predictions = Vector{L}(undef, _ninstances) Threads.@threads for i_instance in 1:_ninstances predictions[i_instance] = bestguess( _predictions[:,i_instance], tree_weights[:,i_instance]; suppress_parity_warning = suppress_parity_warning ) end predictions, trees end # use a proper forest to test features function sprinkle( forest::DForest, Xs, Y::AbstractVector{<:L}; weight_trees_by::Union{Bool,Symbol,AbstractVector} = false, kwargs... ) where {L<:Label} predictions, trees = begin if weight_trees_by == false sprinkle(trees(forest), Xs, Y; kwargs...) elseif isa(weight_trees_by, AbstractVector) sprinkle(trees(forest), Xs, Y; tree_weights = weight_trees_by, kwargs...) # elseif weight_trees_by == :accuracy # # TODO: choose HOW to weight a tree... overall_accuracy is just an example (maybe can be parameterized) # sprinkle(forest.trees, Xs; tree_weights = map(cm -> overall_accuracy(cm), get(forest.metrics, :oob_metrics...))) else error("Unexpected value for weight_trees_by: $(weight_trees_by)") end end predictions, DForest{L}(trees, (;)) # TODO note that the original metrics are lost here end function sprinkle( nsdt::RootLevelNeuroSymbolicHybrid, Xs, Y::AbstractVector{<:L}; suppress_parity_warning = false, kwargs... ) where {L<:Label} W = softmax(nsdt.feature_function(Xs)) predictions, trees = sprinkle( nsdt.trees, Xs, Y; suppress_parity_warning = suppress_parity_warning, tree_weights = W, kwargs..., ) predictions, RootLevelNeuroSymbolicHybrid(nsdt.feature_function, trees, (;)) # TODO note that the original metrics are lost here end ############################################################################################ # using Distributions using Distributions: fit, Normal using CategoricalDistributions using CategoricalDistributions: UnivariateFinite using CategoricalArrays function apply_proba(leaf::DTLeaf, Xs, i_instance::Integer, worlds::AbstractVector{<:AbstractWorlds}) supp_labels(leaf) end function apply_proba(tree::DTInternal, Xs, i_instance::Integer, worlds::AbstractVector{<:AbstractWorlds}) @logmsg LogDetail "applying branch..." @logmsg LogDetail " worlds" worlds (satisfied,new_worlds) = modalstep( modality(Xs, i_modality(tree)), i_instance, worlds[i_modality(tree)], decision(tree), ) worlds[i_modality(tree)] = new_worlds @logmsg LogDetail " ->(satisfied,worlds')" satisfied worlds apply_proba((satisfied ? left(tree) : right(tree)), Xs, i_instance, worlds) end # Obtain predictions of a tree on a dataset function apply_proba(tree::DTree{L}, Xs, _classes; return_scores = false, suppress_parity_warning = false) where {L<:CLabel} @logmsg LogDetail "apply_proba..." _classes = string.(_classes) _ninstances = ninstances(Xs) prediction_scores = Matrix{Float64}(undef, _ninstances, length(_classes)) for i_instance in 1:_ninstances @logmsg LogDetail " instance $i_instance/$_ninstances" # TODO figure out: is it better to interpret the whole dataset at once, or instance-by-instance? The first one enables reusing training code worlds = mm_instance_initialworldset(Xs, tree, i_instance) this_prediction_scores = apply_proba(root(tree), Xs, i_instance, worlds) # d = fit(UnivariateFinite, categorical(this_prediction_scores; levels = _classes)) d = begin c = categorical(collect(this_prediction_scores); levels = _classes) cc = countmap(c) s = [get(cc, cl, 0) for cl in classes(c)] UnivariateFinite(classes(c), s ./ sum(s)) end prediction_scores[i_instance, :] .= [pdf(d, c) for c in _classes] end if return_scores prediction_scores else UnivariateFinite(_classes, prediction_scores, pool=missing) end end # Obtain predictions of a tree on a dataset function apply_proba(tree::DTree{L}, Xs, _classes = nothing; return_scores = false, suppress_parity_warning = false) where {L<:RLabel} @logmsg LogDetail "apply_proba..." _ninstances = ninstances(Xs) prediction_scores = Vector{Vector{Float64}}(undef, _ninstances) for i_instance in 1:_ninstances @logmsg LogDetail " instance $i_instance/$_ninstances" # TODO figure out: is it better to interpret the whole dataset at once, or instance-by-instance? The first one enables reusing training code worlds = mm_instance_initialworldset(Xs, tree, i_instance) prediction_scores[i_instance] = apply_proba(tree.root, Xs, i_instance, worlds) end if return_scores prediction_scores else [fit(Normal, sc) for sc in prediction_scores] end end # use an array of trees to test features function apply_proba( trees::AbstractVector{<:DTree{<:L}}, Xs, _classes; tree_weights::Union{AbstractMatrix{Z},AbstractVector{Z},Nothing} = nothing, suppress_parity_warning = false ) where {L<:CLabel,Z<:Real} @logmsg LogDetail "apply_proba..." _classes = string.(_classes) ntrees = length(trees) _ninstances = ninstances(Xs) if !(tree_weights isa AbstractMatrix) if isnothing(tree_weights) tree_weights = nothing # Ones{Int}(length(trees), ninstances(Xs)) # TODO optimize? elseif tree_weights isa AbstractVector tree_weights = hcat([tree_weights for i_instance in 1:ninstances(Xs)]...) else @show typeof(tree_weights) error("Unexpected tree_weights encountered $(tree_weights).") end end @assert isnothing(tree_weights) || length(trees) == size(tree_weights, 1) "Each label must have a corresponding weight: labels length is $(length(labels)) and weights length is $(length(weights))." @assert isnothing(tree_weights) || ninstances(Xs) == size(tree_weights, 2) "Each label must have a corresponding weight: labels length is $(length(labels)) and weights length is $(length(weights))." # apply each tree to the whole dataset _predictions = Array{Float64,3}(undef, _ninstances, ntrees, length(_classes)) Threads.@threads for i_tree in 1:ntrees _predictions[:,i_tree,:] = apply_proba(trees[i_tree], Xs, _classes; return_scores = true) end # Average the prediction scores if isnothing(tree_weights) bestguesses_idx = mapslices(argmax, _predictions; dims=3) # @show bestguesses_idx bestguesses = dropdims(map(idx->_classes[idx], bestguesses_idx); dims=3) ret = map(this_prediction_scores->begin c = categorical(this_prediction_scores; levels = _classes) cc = countmap(c) s = [get(cc, cl, 0) for cl in classes(c)] UnivariateFinite(classes(c), s ./ sum(s)) end, eachslice(bestguesses; dims=1)) # ret = map(s->bestguess(s; suppress_parity_warning = suppress_parity_warning), eachslice(bestguesses; dims=1)) # @show ret ret # x = map(x->_classes[argmax(x)], eachslice(_predictions; dims=[1,2])) # dropdims(mean(_predictions; dims=2), dims=2) else # TODO fix this, it errors. tree_weights = tree_weights./sum(tree_weights) prediction_scores = Matrix{Float64}(undef, _ninstances, length(_classes)) Threads.@threads for i in 1:_ninstances prediction_scores[i,:] .= mean(_predictions[i,:,:] * tree_weights; dims=1) end prediction_scores end end # use an array of trees to test features function apply_proba( trees::AbstractVector{<:DTree{<:L}}, Xs, classes = nothing; tree_weights::Union{Nothing,AbstractVector{Z}} = nothing, kwargs... ) where {L<:RLabel,Z<:Real} @logmsg LogDetail "apply_proba..." ntrees = length(trees) _ninstances = ninstances(Xs) if !isnothing(tree_weights) @assert length(trees) === length(tree_weights) "Each label must have a corresponding weight: labels length is $(length(labels)) and weights length is $(length(weights))." end # apply each tree to the whole dataset prediction_scores = Matrix{Vector{Float64}}(undef, _ninstances, ntrees) # Threads.@threads for i_tree in 1:ntrees for i_tree in 1:ntrees prediction_scores[:,i_tree] = apply_proba(trees[i_tree], Xs; return_scores = true, kwargs...) end # Average the prediction scores if isnothing(tree_weights) # @show prediction_scores # @show collect(eachrow(prediction_scores)) # @show ([vcat(sc...) for sc in eachrow(prediction_scores)]) # @show collect([vcat.(sc...) for sc in eachrow(prediction_scores)]) [fit(Normal, vcat(sc...)) for sc in eachrow(prediction_scores)] # Vector{Vector{Float64}}([vcat(_inst_predictions...) for _inst_predictions in eachrow(_predictions)]) else error("TODO expand code") end end # use a proper forest to test features function apply_proba( forest::DForest{L}, Xs, args...; weight_trees_by::Union{Bool,Symbol,AbstractVector} = false, kwargs... ) where {L<:Label} if weight_trees_by == false apply_proba(trees(forest), Xs, args...; kwargs...) elseif isa(weight_trees_by, AbstractVector) apply_proba(trees(forest), Xs, args...; tree_weights = weight_trees_by, kwargs...) # elseif weight_trees_by == :accuracy # # TODO: choose HOW to weight a tree... overall_accuracy is just an example (maybe can be parameterized) # apply_proba(forest.trees, Xs, args...; tree_weights = map(cm -> overall_accuracy(cm), get(forest.metrics, :oob_metrics...))) else error("Unexpected value for weight_trees_by: $(weight_trees_by)") end end ############################################################################################ # function tree_walk_metrics(leaf::DTLeaf; n_tot_inst = nothing, best_rule_params = []) # if isnothing(n_tot_inst) # n_tot_inst = ninstances(leaf) # end # matches = findall(leaf.supp_labels .== predictions(leaf)) # n_correct = length(matches) # n_inst = length(leaf.supp_labels) # metrics = Dict() # confidence = n_correct/n_inst # metrics["_ninstances"] = n_inst # metrics["n_correct"] = n_correct # metrics["avg_confidence"] = confidence # metrics["best_confidence"] = confidence # if !isnothing(n_tot_inst) # support = n_inst/n_tot_inst # metrics["avg_support"] = support # metrics["support"] = support # metrics["best_support"] = support # for best_rule_p in best_rule_params # if (haskey(best_rule_p, :min_confidence) && best_rule_p.min_confidence > metrics["best_confidence"]) || # (haskey(best_rule_p, :min_support) && best_rule_p.min_support > metrics["best_support"]) # metrics["best_rule_t=$(best_rule_p)"] = -Inf # else # metrics["best_rule_t=$(best_rule_p)"] = metrics["best_confidence"] * best_rule_p.t + metrics["best_support"] * (1-best_rule_p.t) # end # end # end # metrics # end # function tree_walk_metrics(tree::DTInternal; n_tot_inst = nothing, best_rule_params = []) # if isnothing(n_tot_inst) # n_tot_inst = ninstances(tree) # end # # TODO visit also tree.this # metrics_l = tree_walk_metrics(tree.left; n_tot_inst = n_tot_inst, best_rule_params = best_rule_params) # metrics_r = tree_walk_metrics(tree.right; n_tot_inst = n_tot_inst, best_rule_params = best_rule_params) # metrics = Dict() # # Number of instances passing through the node # metrics["_ninstances"] = # metrics_l["_ninstances"] + metrics_r["_ninstances"] # # Number of correct instances passing through the node # metrics["n_correct"] = # metrics_l["n_correct"] + metrics_r["n_correct"] # # Average confidence of the subtree # metrics["avg_confidence"] = # (metrics_l["_ninstances"] * metrics_l["avg_confidence"] + # metrics_r["_ninstances"] * metrics_r["avg_confidence"]) / # (metrics_l["_ninstances"] + metrics_r["_ninstances"]) # # Average support of the subtree (Note to self: weird...?) # metrics["avg_support"] = # (metrics_l["_ninstances"] * metrics_l["avg_support"] + # metrics_r["_ninstances"] * metrics_r["avg_support"]) / # (metrics_l["_ninstances"] + metrics_r["_ninstances"]) # # Best confidence of the best-confidence path passing through the node # metrics["best_confidence"] = max(metrics_l["best_confidence"], metrics_r["best_confidence"]) # # Support of the current node # if !isnothing(n_tot_inst) # metrics["support"] = (metrics_l["_ninstances"] + metrics_r["_ninstances"])/n_tot_inst # # Best support of the best-support path passing through the node # metrics["best_support"] = max(metrics_l["best_support"], metrics_r["best_support"]) # # Best rule (confidence and support) passing through the node # for best_rule_p in best_rule_params # metrics["best_rule_t=$(best_rule_p)"] = max(metrics_l["best_rule_t=$(best_rule_p)"], metrics_r["best_rule_t=$(best_rule_p)"]) # end # end # metrics # end # tree_walk_metrics(tree::DTree; kwargs...) = tree_walk_metrics(tree.root; kwargs...)
ModalDecisionTrees
https://github.com/aclai-lab/ModalDecisionTrees.jl.git
[ "MIT" ]
0.5.0
200b2bd9dee3dfe2dcffa1fb51b6dd00d371ed2b
code
27243
using SoleData: AbstractModalLogiset import SoleModels: printmodel, displaymodel import SoleModels: ninstances, height, nnodes ############################################################################################ # Initial conditions ############################################################################################ using SoleLogics using SoleLogics: AbstractMultiModalFrame using SoleLogics: AbstractSyntaxStructure abstract type InitialCondition end struct StartWithoutWorld <: InitialCondition end; const start_without_world = StartWithoutWorld(); struct StartAtCenter <: InitialCondition end; const start_at_center = StartAtCenter(); struct StartAtWorld{W<:AbstractWorld} <: InitialCondition w::W end; function initialworldset(fr::AbstractMultiModalFrame{W}, initcond::StartWithoutWorld) where {W<:AbstractWorld} Worlds{W}([SoleLogics.emptyworld(fr)]) end function initialworldset(fr::AbstractMultiModalFrame{W}, initcond::StartAtCenter) where {W<:AbstractWorld} Worlds{W}([SoleLogics.centralworld(fr)]) end function initialworldset(::AbstractMultiModalFrame{W}, initcond::StartAtWorld{W}) where {W<:AbstractWorld} Worlds{W}([initcond.w]) end anchor(φ::AbstractSyntaxStructure, ::StartWithoutWorld) = φ anchor(φ::AbstractSyntaxStructure, ::StartAtCenter) = DiamondRelationalConnective(SoleLogics.tocenterrel)(φ) anchor(φ::AbstractSyntaxStructure, cm::StartAtWorld) = DiamondRelationalConnective(SoleLogics.AtWorldRelation(cm.w))(φ) function initialworldset( X, i_instance::Integer, args... ) initialworldset(frame(X, i_instance), args...) end function initialworldsets(Xs::MultiLogiset, initconds::AbstractVector{<:InitialCondition}) Ss = Vector{Vector{WST} where {W,WST<:Worlds{W}}}(undef, nmodalities(Xs)) # Fix for (i_modality,X) in enumerate(eachmodality(Xs)) W = worldtype(X) Ss[i_modality] = Worlds{W}[initialworldset(X, i_instance, initconds[i_modality]) for i_instance in 1:ninstances(Xs)] # Ss[i_modality] = Worlds{W}[[Interval(1,2)] for i_instance in 1:ninstances(Xs)] end Ss end ############################################################################################ """ A decision is an object that is placed at an internal decision node, and influences on how the instances are routed to its left or right child. """ abstract type AbstractDecision end """ Abstract type for nodes in a decision tree. """ abstract type AbstractNode{L<:Label} end predictiontype(::AbstractNode{L}) where {L} = L """ Abstract type for leaves in a decision tree. """ abstract type AbstractDecisionLeaf{L<:Label} <: AbstractNode{L} end """ Abstract type for internal decision nodes of a decision tree. """ abstract type AbstractDecisionInternal{L<:Label,D<:AbstractDecision} <: AbstractNode{L} end """ Union type for internal and decision nodes of a decision tree. """ const DTNode{L<:Label,D<:AbstractDecision} = Union{<:AbstractDecisionLeaf{<:L},<:AbstractDecisionInternal{L,D}} isleftchild(node::DTNode, parent::AbstractDecisionInternal) = (left(parent) == node) isrightchild(node::DTNode, parent::AbstractDecisionInternal) = (right(parent) == node) isinleftsubtree(node::DTNode, parent::AbstractDecisionInternal) = isleftchild(node, parent) || isinsubtree(node, left(parent)) isinrightsubtree(node::DTNode, parent::AbstractDecisionInternal) = isrightchild(node, parent) || isinsubtree(node, right(parent)) isinsubtree(node::DTNode, parent::DTNode) = (node == parent) || (isinleftsubtree(node, parent) || isinrightsubtree(node, parent)) isleftchild(node::DTNode, parent::AbstractDecisionLeaf) = false isrightchild(node::DTNode, parent::AbstractDecisionLeaf) = false isinleftsubtree(node::DTNode, parent::AbstractDecisionLeaf) = false isinrightsubtree(node::DTNode, parent::AbstractDecisionLeaf) = false ############################################################################################ ############################################################################################ ############################################################################################ include("decisions.jl") ############################################################################################ ############################################################################################ ############################################################################################ # Decision leaf node, holding an output (prediction) struct DTLeaf{L<:Label} <: AbstractDecisionLeaf{L} # prediction prediction :: L # supporting (e.g., training) instances labels supp_labels :: Vector{L} # create leaf DTLeaf{L}(prediction, supp_labels::AbstractVector) where {L<:Label} = new{L}(prediction, supp_labels) DTLeaf(prediction::L, supp_labels::AbstractVector) where {L<:Label} = DTLeaf{L}(prediction, supp_labels) # create leaf without supporting labels DTLeaf{L}(prediction) where {L<:Label} = DTLeaf{L}(prediction, L[]) DTLeaf(prediction::L) where {L<:Label} = DTLeaf{L}(prediction, L[]) # create leaf from supporting labels DTLeaf{L}(supp_labels::AbstractVector) where {L<:Label} = DTLeaf{L}(bestguess(L.(supp_labels)), supp_labels) function DTLeaf(supp_labels::AbstractVector) prediction = bestguess(supp_labels) DTLeaf(prediction, supp_labels) end end prediction(leaf::DTLeaf) = leaf.prediction function supp_labels(leaf::DTLeaf; train_or_valid = true) @assert train_or_valid == true leaf.supp_labels end function predictions(leaf::DTLeaf; train_or_valid = true) @assert train_or_valid == true fill(prediction(leaf), length(supp_labels(leaf; train_or_valid = train_or_valid))) end ############################################################################################ # DATASET_TYPE = MultiLogiset DATASET_TYPE = Any struct PredictingFunction{L<:Label} # f::FunctionWrapper{Vector{L},Tuple{DATASET_TYPE}} # TODO restore!!! f::FunctionWrapper{Any,Tuple{DATASET_TYPE}} function PredictingFunction{L}(f::Any) where {L<:Label} # new{L}(FunctionWrapper{Vector{L},Tuple{DATASET_TYPE}}(f)) # TODO restore!!! new{L}(FunctionWrapper{Any,Tuple{DATASET_TYPE}}(f)) end end (pf::PredictingFunction{L})(args...; kwargs...) where {L} = pf.f(args...; kwargs...)::Vector{L} # const ModalInstance = Union{AbstractArray,Any} # const LFun{L} = FunctionWrapper{L,Tuple{ModalInstance}} # TODO maybe join DTLeaf and NSDTLeaf Union{L,LFun{L}} # Decision leaf node, holding an output predicting function struct NSDTLeaf{L<:Label} <: AbstractDecisionLeaf{L} # predicting function predicting_function :: PredictingFunction{L} # supporting labels supp_train_labels :: Vector{L} supp_valid_labels :: Vector{L} # supporting predictions supp_train_predictions :: Vector{L} supp_valid_predictions :: Vector{L} # create leaf # NSDTLeaf{L}(predicting_function, supp_labels::AbstractVector) where {L<:Label} = new{L}(predicting_function, supp_labels) # NSDTLeaf(predicting_function::PredictingFunction{L}, supp_labels::AbstractVector) where {L<:Label} = NSDTLeaf{L}(predicting_function, supp_labels) # create leaf without supporting labels function NSDTLeaf{L}( predicting_function :: PredictingFunction{L}, supp_train_labels :: Vector{L}, supp_valid_labels :: Vector{L}, supp_train_predictions :: Vector{L}, supp_valid_predictions :: Vector{L}, ) where {L<:Label} new{L}( predicting_function, supp_train_labels, supp_valid_labels, supp_train_predictions, supp_valid_predictions, ) end function NSDTLeaf( predicting_function :: PredictingFunction{L}, supp_train_labels :: Vector{L}, supp_valid_labels :: Vector{L}, supp_train_predictions :: Vector{L}, supp_valid_predictions :: Vector{L}, ) where {L<:Label} NSDTLeaf{L}( predicting_function, supp_train_labels, supp_valid_labels, supp_train_predictions, supp_valid_predictions, ) end function NSDTLeaf{L}(f::Base.Callable, args...; kwargs...) where {L<:Label} NSDTLeaf{L}(PredictingFunction{L}(f), args...; kwargs...) end # create leaf from supporting labels # NSDTLeaf{L}(supp_labels::AbstractVector) where {L<:Label} = NSDTLeaf{L}(bestguess(supp_labels), supp_labels) # function NSDTLeaf(supp_labels::AbstractVector) # predicting_function = bestguess(supp_labels) # NSDTLeaf(predicting_function, supp_labels) # end end predicting_function(leaf::NSDTLeaf) = leaf.predicting_function supp_labels(leaf::NSDTLeaf; train_or_valid = true) = (train_or_valid ? leaf.supp_train_labels : leaf.supp_valid_labels) predictions(leaf::NSDTLeaf; train_or_valid = true) = (train_or_valid ? leaf.supp_train_predictions : leaf.supp_valid_predictions) ############################################################################################ using SoleData: ScalarExistentialFormula # Internal decision node, holding a split-decision and a modality index struct DTInternal{L<:Label,D<:AbstractDecision} <: AbstractDecisionInternal{L,D} # modality index + split-decision i_modality :: ModalityId decision :: D # representative leaf for the current node this :: AbstractDecisionLeaf{<:L} # child nodes left :: Union{AbstractDecisionLeaf{<:L}, DTInternal{<:L,<:AbstractDecision}} right :: Union{AbstractDecisionLeaf{<:L}, DTInternal{<:L,<:AbstractDecision}} # semantics-specific miscellanoeus info miscellaneous :: NamedTuple # create node function DTInternal{L,D}( i_modality :: ModalityId, decision :: D, this :: AbstractDecisionLeaf, left :: Union{AbstractDecisionLeaf,DTInternal}, right :: Union{AbstractDecisionLeaf,DTInternal}, miscellaneous :: NamedTuple = (;), ) where {D<:AbstractDecision,L<:Label} new{L,D}(i_modality, decision, this, left, right, miscellaneous) end function DTInternal{L}( i_modality :: ModalityId, decision :: D, this :: AbstractDecisionLeaf{<:L}, left :: Union{AbstractDecisionLeaf{<:L}, DTInternal{<:L,D}}, right :: Union{AbstractDecisionLeaf{<:L}, DTInternal{<:L,D}}, miscellaneous :: NamedTuple = (;), ) where {D<:AbstractDecision,L<:Label} node = DTInternal{L,D}(i_modality, decision, this, left, right, miscellaneous) if decision isa DoubleEdgedDecision _back!(decision, Ref(node)) _forth!(decision, Ref(node)) end return node end function DTInternal( i_modality :: ModalityId, decision :: D, this :: AbstractDecisionLeaf{L0}, left :: Union{AbstractDecisionLeaf{L1}, DTInternal{L1}}, right :: Union{AbstractDecisionLeaf{L2}, DTInternal{L2}}, miscellaneous :: NamedTuple = (;), ) where {D<:AbstractDecision,L0<:Label,L1<:Label,L2<:Label} L = Union{L0,L1,L2} node = DTInternal{L,D}(i_modality, decision, this, left, right, miscellaneous) if decision isa DoubleEdgedDecision _back!(decision, Ref(node)) _forth!(decision, Ref(node)) end return node end # create node without local leaf function DTInternal{L,D}( i_modality :: ModalityId, decision :: D, left :: Union{AbstractDecisionLeaf,DTInternal}, right :: Union{AbstractDecisionLeaf,DTInternal}, miscellaneous :: NamedTuple = (;), ) where {D<:Union{AbstractDecision,ScalarExistentialFormula},L<:Label} if decision isa ScalarExistentialFormula decision = RestrictedDecision(decision) end this = squashtoleaf(Union{<:AbstractDecisionLeaf,<:DTInternal}[left, right]) node = DTInternal{L,D}(i_modality, decision, this, left, right, miscellaneous) if decision isa DoubleEdgedDecision _back!(decision, Ref(node)) _forth!(decision, Ref(node)) end return node end function DTInternal{L}( i_modality :: ModalityId, decision :: D, left :: Union{AbstractDecisionLeaf{<:L}, DTInternal{<:L}}, right :: Union{AbstractDecisionLeaf{<:L}, DTInternal{<:L}}, miscellaneous :: NamedTuple = (;), ) where {D<:AbstractDecision,L<:Label} node = DTInternal{L,D}(i_modality, decision, left, right, miscellaneous) if decision isa DoubleEdgedDecision _back!(decision, Ref(node)) _forth!(decision, Ref(node)) end return node end function DTInternal( i_modality :: ModalityId, decision :: _D, left :: Union{AbstractDecisionLeaf{L1}, DTInternal{L1}}, right :: Union{AbstractDecisionLeaf{L2}, DTInternal{L2}}, miscellaneous :: NamedTuple = (;), ) where {_D<:Union{AbstractDecision,ScalarExistentialFormula},L1<:Label,L2<:Label} if decision isa ScalarExistentialFormula decision = RestrictedDecision(decision) end L = Union{L1,L2} D = typeof(decision) node = DTInternal{L,D}(i_modality, decision, left, right, miscellaneous) if decision isa DoubleEdgedDecision _back!(decision, Ref(node)) _forth!(decision, Ref(node)) end return node end end i_modality(node::DTInternal) = node.i_modality decision(node::DTInternal) = node.decision this(node::DTInternal) = node.this left(node::DTInternal) = node.left right(node::DTInternal) = node.right miscellaneous(node::DTInternal) = node.miscellaneous ############################################################################################ ############################################################################################ ############################################################################################ function back!(ν1::DTInternal{<:Label,<:DoubleEdgedDecision}, ν2::DTNode) _back!(decision(ν1), Ref(ν2)) return ν1 end function forth!(ν1::DTInternal{<:Label,<:DoubleEdgedDecision}, ν2::DTNode) _forth!(decision(ν1), Ref(ν2)) return ν1 end function back(ν1::DTInternal{<:Label,<:DoubleEdgedDecision}) return back(decision(ν1)) end function forth(ν1::DTInternal{<:Label,<:DoubleEdgedDecision}) return forth(decision(ν1)) end function isbackloop(ν1::DTInternal{<:Label,<:DoubleEdgedDecision}) return ν1 == back(ModalDecisionTrees.decision(ν1)) end function isforthloop(ν1::DTInternal{<:Label,<:DoubleEdgedDecision}) return ν1 == forth(ModalDecisionTrees.decision(ν1)) end function supp_labels(node::DTInternal; train_or_valid = true) @assert train_or_valid == true supp_labels(this(node); train_or_valid = train_or_valid) end function restricted2complete(ν::DTLeaf) return ν end function restricted2complete(ν::DTNode{L,<:RestrictedDecision{<:ScalarExistentialFormula}}) where {L} _i_modality = ModalDecisionTrees.i_modality(ν) _decision = ModalDecisionTrees.decision(ν) _ν1 = restricted2complete(ModalDecisionTrees.left(ν)) _ν2 = restricted2complete(ModalDecisionTrees.right(ν)) if ModalDecisionTrees.is_propositional_decision(_decision) p = get_atom(formula(_decision)) ded = DoubleEdgedDecision(p) _ν = DTInternal(_i_modality, ded, _ν1, _ν2) _ν2 isa DTLeaf || ModalDecisionTrees.back!(_ν2, _ν) return _ν else r = SoleData.relation(formula(_decision)) p = get_atom(formula(_decision)) ded = DoubleEdgedDecision(ExistentialTopFormula(r)) dedleft = DoubleEdgedDecision(p) __ν1 = DTInternal(_i_modality, dedleft, _ν1, _ν2) _ν = DTInternal(_i_modality, ded, __ν1, _ν2) ModalDecisionTrees.forth!(_ν, __ν1) # _forth!(decision(ν), Ref(__ν1)) _ν1 isa DTLeaf || ModalDecisionTrees.back!(_ν1, _ν) _ν2 isa DTLeaf || ModalDecisionTrees.back!(_ν2, _ν) return _ν end end ############################################################################################ ############################################################################################ ############################################################################################ abstract type SymbolicModel{L} end # Decision Tree struct DTree{L<:Label} <: SymbolicModel{L} # root node root :: DTNode{L} # world types (one per modality) worldtypes :: Vector{<:Type} # initial world conditions (one per modality) initconditions :: Vector{InitialCondition} function DTree{L}( root :: DTNode, worldtypes :: AbstractVector{<:Type}, initconditions :: AbstractVector{<:InitialCondition}, ) where {L<:Label} @assert length(worldtypes) > 0 "Cannot instantiate DTree with no worldtype." @assert length(initconditions) > 0 "Cannot instantiate DTree with no initcondition." new{L}(root, collect(worldtypes), Vector{InitialCondition}(collect(initconditions))) end function DTree( root :: DTNode{L,D}, worldtypes :: AbstractVector{<:Type}, initconditions :: AbstractVector{<:InitialCondition}, ) where {L<:Label,D<:AbstractDecision} DTree{L}(root, worldtypes, initconditions) end end root(tree::DTree) = tree.root worldtypes(tree::DTree) = tree.worldtypes initconditions(tree::DTree) = tree.initconditions ############################################################################################ # Decision Forest (i.e., ensable of trees via bagging) struct DForest{L<:Label} <: SymbolicModel{L} # trees trees :: Vector{<:DTree{L}} # metrics metrics :: NamedTuple # create forest from vector of trees function DForest{L}( trees :: AbstractVector{<:DTree}, ) where {L<:Label} new{L}(collect(trees), (;)) end function DForest( trees :: AbstractVector{<:DTree{L}}, ) where {L<:Label} DForest{L}(trees) end # create forest from vector of trees, with attached metrics function DForest{L}( trees :: AbstractVector{<:DTree}, metrics :: NamedTuple, ) where {L<:Label} new{L}(collect(trees), metrics) end function DForest( trees :: AbstractVector{<:DTree{L}}, metrics :: NamedTuple, ) where {L<:Label} DForest{L}(trees, metrics) end end trees(forest::DForest) = forest.trees metrics(forest::DForest) = forest.metrics ############################################################################################ # Ensamble of decision trees weighted by softmax autoencoder struct RootLevelNeuroSymbolicHybrid{F<:Any,L<:Label} <: SymbolicModel{L} feature_function :: F # trees trees :: Vector{<:DTree{L}} # metrics metrics :: NamedTuple function RootLevelNeuroSymbolicHybrid{F,L}( feature_function :: F, trees :: AbstractVector{<:DTree}, metrics :: NamedTuple = (;), ) where {F<:Any,L<:Label} new{F,L}(feature_function, collect(trees), metrics) end function RootLevelNeuroSymbolicHybrid( feature_function :: F, trees :: AbstractVector{<:DTree{L}}, metrics :: NamedTuple = (;), ) where {F<:Any,L<:Label} RootLevelNeuroSymbolicHybrid{F,L}(feature_function, trees, metrics) end end trees(nsdt::RootLevelNeuroSymbolicHybrid) = nsdt.trees metrics(nsdt::RootLevelNeuroSymbolicHybrid) = nsdt.metrics ############################################################################################ # Methods ############################################################################################ # Number of leaves nleaves(leaf::AbstractDecisionLeaf) = 1 nleaves(node::DTInternal) = nleaves(left(node)) + nleaves(right(node)) nleaves(tree::DTree) = nleaves(root(tree)) nleaves(nsdt::RootLevelNeuroSymbolicHybrid) = sum(nleaves.(trees(nsdt))) # Number of nodes nnodes(leaf::AbstractDecisionLeaf) = 1 nnodes(node::DTInternal) = 1 + nnodes(left(node)) + nnodes(right(node)) nnodes(tree::DTree) = nnodes(root(tree)) nnodes(f::DForest) = sum(nnodes.(trees(f))) nnodes(nsdt::RootLevelNeuroSymbolicHybrid) = sum(nnodes.(trees(nsdt))) # Number of trees ntrees(f::DForest) = length(trees(f)) Base.length(f::DForest) = ntrees(f) ntrees(nsdt::RootLevelNeuroSymbolicHybrid) = length(trees(nsdt)) Base.length(nsdt::RootLevelNeuroSymbolicHybrid) = ntrees(nsdt) # Height height(leaf::AbstractDecisionLeaf) = 0 height(node::DTInternal) = 1 + max(height(left(node)), height(right(node))) height(tree::DTree) = height(root(tree)) height(f::DForest) = maximum(height.(trees(f))) height(nsdt::RootLevelNeuroSymbolicHybrid) = maximum(height.(trees(nsdt))) # Modal height modalheight(leaf::AbstractDecisionLeaf) = 0 modalheight(node::DTInternal) = Int(ismodalnode(node)) + max(modalheight(left(node)), modalheight(right(node))) modalheight(tree::DTree) = modalheight(root(tree)) modalheight(f::DForest) = maximum(modalheight.(trees(f))) modalheight(nsdt::RootLevelNeuroSymbolicHybrid) = maximum(modalheight.(trees(nsdt))) # Number of supporting instances ninstances(leaf::AbstractDecisionLeaf; train_or_valid = true) = length(supp_labels(leaf; train_or_valid = train_or_valid)) ninstances(node::DTInternal; train_or_valid = true) = ninstances(left(node); train_or_valid = train_or_valid) + ninstances(right(node); train_or_valid = train_or_valid) ninstances(tree::DTree; train_or_valid = true) = ninstances(root(tree); train_or_valid = train_or_valid) ninstances(f::DForest; train_or_valid = true) = maximum(map(t->ninstances(t; train_or_valid = train_or_valid), trees(f))) # TODO actually wrong ninstances(nsdt::RootLevelNeuroSymbolicHybrid; train_or_valid = true) = maximum(map(t->ninstances(t; train_or_valid = train_or_valid), trees(nsdt))) # TODO actually wrong ############################################################################################ ############################################################################################ isleafnode(leaf::AbstractDecisionLeaf) = true isleafnode(node::DTInternal) = false isleafnode(tree::DTree) = isleafnode(root(tree)) ismodalnode(node::DTInternal) = (!isleafnode(node) && !is_propositional_decision(decision(node))) ismodalnode(tree::DTree) = ismodalnode(root(tree)) ############################################################################################ ############################################################################################ displaydecision(node::DTInternal, args...; kwargs...) = displaydecision(i_modality(node), decision(node), args...; node = node, kwargs...) # displaydecision_inverse(node::DTInternal, args...; kwargs...) = # displaydecision_inverse(i_modality(node), decision(node), args...; kwargs...) ############################################################################################ ############################################################################################ Base.show(io::IO, a::Union{DTNode,DTree,DForest}) = println(io, display(a)) function display(leaf::DTLeaf{L}) where {L<:CLabel} return """ Classification Decision Leaf{$(L)}( label: $(prediction(leaf)) supporting labels: $(supp_labels(leaf)) supporting labels countmap: $(StatsBase.countmap(supp_labels(leaf))) metrics: $(get_metrics(leaf)) ) """ end function display(leaf::DTLeaf{L}) where {L<:RLabel} return """ Regression Decision Leaf{$(L)}( label: $(prediction(leaf)) supporting labels: $(supp_labels(leaf)) metrics: $(get_metrics(leaf)) ) """ end function display(leaf::NSDTLeaf{L}) where {L<:CLabel} return """ Classification Functional Decision Leaf{$(L)}( predicting_function: $(leaf.predicting_function) supporting labels (train): $(leaf.supp_train_labels) supporting labels (valid): $(leaf.supp_valid_labels) supporting predictions (train): $(leaf.supp_train_predictions) supporting predictions (valid): $(leaf.supp_valid_predictions) supporting labels countmap (train): $(StatsBase.countmap(leaf.supp_train_labels)) supporting labels countmap (valid): $(StatsBase.countmap(leaf.supp_valid_labels)) supporting predictions countmap (train): $(StatsBase.countmap(leaf.supp_train_predictions)) supporting predictions countmap (valid): $(StatsBase.countmap(leaf.supp_valid_predictions)) metrics (train): $(get_metrics(leaf; train_or_valid = true)) metrics (valid): $(get_metrics(leaf; train_or_valid = false)) ) """ end function display(leaf::NSDTLeaf{L}) where {L<:RLabel} return """ Regression Functional Decision Leaf{$(L)}( predicting_function: $(leaf.predicting_function) supporting labels (train): $(leaf.supp_train_labels) supporting labels (valid): $(leaf.supp_valid_labels) supporting predictions (train): $(leaf.supp_train_predictions) supporting predictions (valid): $(leaf.supp_valid_predictions) metrics (train): $(get_metrics(leaf; train_or_valid = true)) metrics (valid): $(get_metrics(leaf; train_or_valid = false)) ) """ end function display(node::DTInternal{L,D}) where {L,D} return """ Decision Node{$(L),$(D)}( $(display(this(node))) ########################################################### i_modality: $(i_modality(node)) decision: $(displaydecision(node)) miscellaneous: $(miscellaneous(node)) ########################################################### sub-tree leaves: $(nleaves(node)) sub-tree nodes: $(nnodes(node)) sub-tree height: $(height(node)) sub-tree modal height: $(modalheight(node)) ) """ end function display(tree::DTree{L}) where {L} return """ Decision Tree{$(L)}( worldtypes: $(worldtypes(tree)) initconditions: $(initconditions(tree)) ########################################################### sub-tree leaves: $(nleaves(tree)) sub-tree nodes: $(nnodes(tree)) sub-tree height: $(height(tree)) sub-tree modal height: $(modalheight(tree)) ########################################################### tree: $(displaymodel(tree)) ) """ end function display(forest::DForest{L}) where {L} return """ Decision Forest{$(L)}( # trees: $(ntrees(forest)) metrics: $(metrics(forest)) forest: $(displaymodel(forest)) ) """ end function display(nsdt::RootLevelNeuroSymbolicHybrid{F,L}) where {F,L} return """ Root-Level Neuro-Symbolic Decision Tree Hybrid{$(F),$(L)}( # trees: $(ntrees(nsdt)) metrics: $(metrics(nsdt)) nsdt: $(displaymodel(nsdt)) ) """ end
ModalDecisionTrees
https://github.com/aclai-lab/ModalDecisionTrees.jl.git
[ "MIT" ]
0.5.0
200b2bd9dee3dfe2dcffa1fb51b6dd00d371ed2b
code
13061
include("ModalCART.jl") ################################################################################ ############################# Unimodal datasets ################################ ################################################################################ function build_stump(X::AbstractModalLogiset, args...; kwargs...) build_stump(MultiLogiset(X), args...; kwargs...) end function build_tree(X::AbstractModalLogiset, args...; kwargs...) build_tree(MultiLogiset(X), args...; kwargs...) end function build_forest(X::AbstractModalLogiset, args...; kwargs...) build_forest(MultiLogiset(X), args...; kwargs...) end ################################################################################ ############################ Multimodal datasets ############################### ################################################################################ doc_build = """ build_stump(X, Y, W = nothing; kwargs...) build_tree(X, Y, W = nothing; kwargs...) build_forest(X, Y, W = nothing; kwargs...) Train a decision stump (i.e., decision tree with depth 1), a decision tree, or a random forest model on logiset `X` with labels `Y` and weights `W`. """ """$(doc_build)""" function build_stump( X :: MultiLogiset, Y :: AbstractVector{L}, W :: Union{Nothing,AbstractVector{U},Symbol} = nothing; kwargs..., ) where {L<:Label,U} params = NamedTuple(kwargs) @assert !haskey(params, :max_depth) || params.max_depth == 1 "build_stump " * "does not allow max_depth != 1." build_tree(X, Y, W; max_depth = 1, kwargs...) end """$(doc_build)""" function build_tree( X :: MultiLogiset, Y :: AbstractVector{L}, W :: Union{Nothing,AbstractVector{U},Symbol} = default_weights(ninstances(X)); ############################################################################## loss_function :: Union{Nothing,Loss} = nothing, lookahead :: Union{Nothing,Integer} = nothing, max_depth :: Union{Nothing,Int64} = nothing, min_samples_leaf :: Int64 = BOTTOM_MIN_SAMPLES_LEAF, min_purity_increase :: AbstractFloat = BOTTOM_MIN_PURITY_INCREASE, max_purity_at_leaf :: AbstractFloat = BOTTOM_MAX_PURITY_AT_LEAF, ############################################################################## max_modal_depth :: Union{Nothing,Int64} = nothing, n_subrelations :: Union{Function,AbstractVector{<:Function}} = identity, n_subfeatures :: Union{Function,AbstractVector{<:Function}} = identity, initconditions :: Union{InitialCondition,AbstractVector{<:InitialCondition}} = start_without_world, allow_global_splits :: Union{Bool,AbstractVector{Bool}} = true, ############################################################################## use_minification :: Bool = false, perform_consistency_check :: Bool = DEFAULT_PERFORM_CONSISTENCY_CHECK, ############################################################################## rng :: Random.AbstractRNG = Random.GLOBAL_RNG, print_progress :: Bool = true, ) where {L<:Label,U} @assert W isa AbstractVector || W in [nothing, :rebalance, :default] W = if isnothing(W) || W == :default default_weights(Y) elseif W == :rebalance balanced_weights(Y) else W end @assert all(W .>= 0) "Sample weights must be non-negative." @assert ninstances(X) == length(Y) == length(W) "Mismatching number of samples in X, Y & W: $(ninstances(X)), $(length(Y)), $(length(W))" if isnothing(loss_function) loss_function = default_loss_function(L) end if isnothing(lookahead) lookahead = 0 end if allow_global_splits isa Bool allow_global_splits = fill(allow_global_splits, nmodalities(X)) end if n_subrelations isa Function n_subrelations = fill(n_subrelations, nmodalities(X)) end if n_subfeatures isa Function n_subfeatures = fill(n_subfeatures, nmodalities(X)) end if initconditions isa InitialCondition initconditions = fill(initconditions, nmodalities(X)) end @assert isnothing(max_depth) || (max_depth >= 0) @assert isnothing(max_modal_depth) || (max_modal_depth >= 0) fit_tree(X, Y, initconditions, W ;########################################################################### loss_function = loss_function, lookahead = lookahead, max_depth = max_depth, min_samples_leaf = min_samples_leaf, min_purity_increase = min_purity_increase, max_purity_at_leaf = max_purity_at_leaf, ############################################################################ max_modal_depth = max_modal_depth, n_subrelations = n_subrelations, n_subfeatures = [ n_subfeatures[i](nfeatures(modality)) for (i,modality) in enumerate(eachmodality(X)) ], allow_global_splits = allow_global_splits, ############################################################################ use_minification = use_minification, perform_consistency_check = perform_consistency_check, ############################################################################ rng = rng, print_progress = print_progress, ) end """$(doc_build)""" function build_forest( X :: MultiLogiset, Y :: AbstractVector{L}, # Use unary weights if no weight is supplied W :: Union{Nothing,AbstractVector{U},Symbol} = default_weights(Y); ############################################################################## # Forest logic-agnostic parameters ntrees = 100, partial_sampling = 0.7, # portion of sub-sampled samples (without replacement) by each tree ############################################################################## # Tree logic-agnostic parameters loss_function :: Union{Nothing,Loss} = nothing, lookahead :: Union{Nothing,Integer} = nothing, max_depth :: Union{Nothing,Int64} = nothing, min_samples_leaf :: Int64 = BOTTOM_MIN_SAMPLES_LEAF, min_purity_increase :: AbstractFloat = BOTTOM_MIN_PURITY_INCREASE, max_purity_at_leaf :: AbstractFloat = BOTTOM_MAX_PURITY_AT_LEAF, ############################################################################## # Modal parameters max_modal_depth :: Union{Nothing,Int64} = nothing, n_subrelations :: Union{Function,AbstractVector{<:Function}} = identity, n_subfeatures :: Union{Function,AbstractVector{<:Function}} = x -> ceil(Int64, sqrt(x)), initconditions :: Union{InitialCondition,AbstractVector{<:InitialCondition}} = start_without_world, allow_global_splits :: Union{Bool,AbstractVector{Bool}} = true, ############################################################################## use_minification :: Bool = false, perform_consistency_check :: Bool = DEFAULT_PERFORM_CONSISTENCY_CHECK, ############################################################################## rng :: Random.AbstractRNG = Random.GLOBAL_RNG, print_progress :: Bool = true, suppress_parity_warning :: Bool = false, ) where {L<:Label,U} @assert W isa AbstractVector || W in [nothing, :rebalance, :default] W = if isnothing(W) || W == :default default_weights(Y) elseif W == :rebalance balanced_weights(Y) else W end @assert all(W .>= 0) "Sample weights must be non-negative." @assert ninstances(X) == length(Y) == length(W) "Mismatching number of samples in X, Y & W: $(ninstances(X)), $(length(Y)), $(length(W))" if n_subrelations isa Function n_subrelations = fill(n_subrelations, nmodalities(X)) end if n_subfeatures isa Function n_subfeatures = fill(n_subfeatures, nmodalities(X)) end if initconditions isa InitialCondition initconditions = fill(initconditions, nmodalities(X)) end if allow_global_splits isa Bool allow_global_splits = fill(allow_global_splits, nmodalities(X)) end if ntrees < 1 error("the number of trees must be >= 1") end if !(0.0 < partial_sampling <= 1.0) error("partial_sampling must be in the range (0,1]") end if any(map(f->!(f isa SupportedLogiset), eachmodality(X))) @warn "Warning! Consider using structures optimized for model checking " * "such as SupportedLogiset." end tot_samples = ninstances(X) num_samples = floor(Int64, partial_sampling * tot_samples) trees = Vector{DTree{L}}(undef, ntrees) oob_instances = Vector{Vector{Integer}}(undef, ntrees) oob_metrics = Vector{NamedTuple}(undef, ntrees) rngs = [spawn(rng) for i_tree in 1:ntrees] if print_progress p = Progress(ntrees; dt = 1, desc = "Computing Forest...") end Threads.@threads for i_tree in 1:ntrees train_idxs = rand(rngs[i_tree], 1:tot_samples, num_samples) X_slice = SoleData.instances(X, train_idxs, Val(true)) Y_slice = @view Y[train_idxs] W_slice = SoleBase.slice_weights(W, train_idxs) trees[i_tree] = build_tree( X_slice , Y_slice , W_slice ; ################################################################################ loss_function = loss_function, lookahead = lookahead, max_depth = max_depth, min_samples_leaf = min_samples_leaf, min_purity_increase = min_purity_increase, max_purity_at_leaf = max_purity_at_leaf, ################################################################################ max_modal_depth = max_modal_depth, n_subrelations = n_subrelations, n_subfeatures = n_subfeatures, initconditions = initconditions, allow_global_splits = allow_global_splits, ################################################################################ use_minification = use_minification, perform_consistency_check = perform_consistency_check, ################################################################################ rng = rngs[i_tree], print_progress = false, ) # grab out-of-bag indices oob_instances[i_tree] = setdiff(1:tot_samples, train_idxs) tree_preds = apply(trees[i_tree], SoleData.instances(X, oob_instances[i_tree], Val(true))) oob_metrics[i_tree] = (; actual = Y[oob_instances[i_tree]], predicted = tree_preds, weights = collect(SoleBase.slice_weights(W, oob_instances[i_tree])) ) !print_progress || next!(p) end metrics = (; oob_metrics = oob_metrics, ) if L<:CLabel # For each sample, construct its random forest predictor # by averaging (or majority voting) only those # trees corresponding to boot-strap samples in which the sample did not appear oob_classified = Vector{Bool}() Threads.@threads for i in 1:tot_samples selected_trees = fill(false, ntrees) # pick every tree trained without i-th sample for i_tree in 1:ntrees if i in oob_instances[i_tree] # if i is present in the i_tree-th tree, selecte thi tree selected_trees[i_tree] = true end end index_of_trees_to_test_with = findall(selected_trees) if length(index_of_trees_to_test_with) == 0 continue end X_slice = SoleData.instances(X, [i], Val(true)) Y_slice = [Y[i]] preds = apply(trees[index_of_trees_to_test_with], X_slice; suppress_parity_warning = suppress_parity_warning) push!(oob_classified, Y_slice[1] == preds[1]) end oob_error = 1.0 - (sum(W[findall(oob_classified)]) / sum(W)) metrics = merge(metrics, ( oob_error = oob_error, )) end DForest{L}(trees, metrics) end
ModalDecisionTrees
https://github.com/aclai-lab/ModalDecisionTrees.jl.git
[ "MIT" ]
0.5.0
200b2bd9dee3dfe2dcffa1fb51b6dd00d371ed2b
code
6443
############################################################################################ # Decisions ############################################################################################ using SoleLogics using SoleLogics: identityrel, globalrel using SoleData.DimensionalDatasets: alpha using SoleData: ScalarOneStepFormula, ScalarExistentialFormula, ExistentialTopFormula, ScalarUniversalFormula struct NoNode end function displaydecision( i_modality::ModalityId, decision::AbstractDecision; variable_names_map::Union{Nothing,AbstractVector{<:AbstractVector},AbstractVector{<:AbstractDict}} = nothing, kwargs..., ) _variable_names_map = isnothing(variable_names_map) ? nothing : variable_names_map[i_modality] "{$i_modality} $(displaydecision(decision; variable_names_map = _variable_names_map, kwargs...))" end # function displaydecision_inverse(decision::AbstractDecision, args...; node = nothing, kwargs...) # syntaxstring(dual(decision), args...; node = node, kwargs...) # end # function displaydecision_inverse(i_modality::ModalityId, decision::AbstractDecision, args...; node = nothing, kwargs...) # displaydecision(i_modality, dual(decision), args...; node = node, kwargs...) # end is_propositional_decision(d::Atom) = true is_global_decision(d::Atom) = false is_propositional_decision(d::ScalarOneStepFormula) = (SoleData.relation(d) == identityrel) is_global_decision(d::ScalarOneStepFormula) = (SoleData.relation(d) == globalrel) is_propositional_decision(d::ExistentialTopFormula) = (SoleData.relation(d) == identityrel) is_global_decision(d::ExistentialTopFormula) = (SoleData.relation(d) == globalrel) import SoleData: relation, atom, metacond, feature, test_operator, threshold struct RestrictedDecision{F<:ScalarExistentialFormula} <: AbstractDecision formula :: F end formula(d::RestrictedDecision) = d.formula relation(d::RestrictedDecision) = relation(formula(d)) atom(d::RestrictedDecision) = atom(formula(d)) metacond(d::RestrictedDecision) = metacond(formula(d)) feature(d::RestrictedDecision) = feature(formula(d)) test_operator(d::RestrictedDecision) = test_operator(formula(d)) threshold(d::RestrictedDecision) = threshold(formula(d)) is_propositional_decision(d::RestrictedDecision) = is_propositional_decision(formula(d)) is_global_decision(d::RestrictedDecision) = is_global_decision(formula(d)) function displaydecision(d::RestrictedDecision; node = NoNode(), displayedges = true, kwargs...) outstr = "" outstr *= "RestrictedDecision(" outstr *= syntaxstring(formula(d); kwargs...) outstr *= ")" outstr end function RestrictedDecision( d::RestrictedDecision{<:ScalarExistentialFormula}, threshold_backmap::Function ) f = formula(d) cond = SoleLogics.value(atom(f)) newcond = ScalarCondition(metacond(cond), threshold_backmap(threshold(cond))) RestrictedDecision(ScalarExistentialFormula(relation(f), newcond)) end mutable struct DoubleEdgedDecision{F<:Formula} <: AbstractDecision formula :: F _back :: Base.RefValue{N} where N<:AbstractNode # {L,DoubleEdgedDecision} _forth :: Base.RefValue{N} where N<:AbstractNode # {L,DoubleEdgedDecision} function DoubleEdgedDecision{F}(formula::F) where {F<:Formula} @assert F <: Union{Atom,ExistentialTopFormula} "Cannot instantiate " * "DoubleEdgedDecision with formula of type $(F)." ded = new{F}() ded.formula = formula ded end function DoubleEdgedDecision(formula::F) where {F<:Formula} DoubleEdgedDecision{F}(formula) end end formula(ded::DoubleEdgedDecision) = ded.formula back(ded::DoubleEdgedDecision) = isdefined(ded, :_back) ? ded._back[] : nothing forth(ded::DoubleEdgedDecision) = isdefined(ded, :_forth) ? ded._forth[] : nothing _back(ded::DoubleEdgedDecision) = isdefined(ded, :_back) ? ded._back : nothing _forth(ded::DoubleEdgedDecision) = isdefined(ded, :_forth) ? ded._forth : nothing formula!(ded::DoubleEdgedDecision, formula) = (ded.formula = formula) _back!(ded::DoubleEdgedDecision, _back) = (ded._back = _back) _forth!(ded::DoubleEdgedDecision, _forth) = (ded._forth = _forth) # TODO remove? is_propositional_decision(ded::DoubleEdgedDecision) = is_propositional_decision(formula(ded)) is_global_decision(ded::DoubleEdgedDecision) = is_global_decision(formula(ded)) function displaydecision(ded::DoubleEdgedDecision; node = NoNode(), displayedges = true, kwargs...) outstr = "" outstr *= "DoubleEdgedDecision(" outstr *= syntaxstring(formula(ded); kwargs...) if displayedges # outstr *= ", " * (isnothing(_back(ded)) ? "-" : "$(typeof(_back(ded))){decision = $(displaydecision(_back(ded)[])), height = $(height(_back(ded)[]))}") outstr *= ", " * (isnothing(_back(ded)) ? "-" : begin νb = _back(ded)[] # @show νb # @show node if νb == node "back{loop}" else if node isa NoNode "?" else "" end * "back{decision = $(displaydecision(decision(νb); node = νb, displayedges = false)), height = $(height(νb))}" end end) # outstr *= ", " * (isnothing(_forth(ded)) ? "-" : "$(typeof(_forth(ded))){decision = $(displaydecision(_forth(ded)[])), height = $(height(_forth(ded)[]))}") outstr *= ", " * (isnothing(_forth(ded)) ? "-" : begin νf = _forth(ded)[] if νf == node "forth{loop}" else if node isa NoNode "?" else "" end * "forth{decision = $(displaydecision(decision(νf); node = νf, displayedges = false)), height = $(height(νf))}" end end) end outstr *= ")" # outstr *= "DoubleEdgedDecision(\n\t" # outstr *= syntaxstring(formula(ded)) # # outstr *= "\n\tback: " * (isnothing(back(ded)) ? "-" : displaymodel(back(ded), args...; kwargs...)) # # outstr *= "\n\tforth: " * (isnothing(forth(ded)) ? "-" : displaymodel(forth(ded), args...; kwargs...)) # outstr *= "\n\tback: " * (isnothing(_back(ded)) ? "-" : "$(typeof(_back(ded)))") # outstr *= "\n\tforth: " * (isnothing(_forth(ded)) ? "-" : "$(typeof(_forth(ded)))") # outstr *= "\n)" outstr end function DoubleEdgedDecision( d::DoubleEdgedDecision, threshold_backmap::Function ) return error("TODO implement") end
ModalDecisionTrees
https://github.com/aclai-lab/ModalDecisionTrees.jl.git
[ "MIT" ]
0.5.0
200b2bd9dee3dfe2dcffa1fb51b6dd00d371ed2b
code
980
DEFAULT_PERFORM_CONSISTENCY_CHECK = false BOTTOM_MAX_DEPTH = typemax(Int64) BOTTOM_MIN_SAMPLES_LEAF = 1 BOTTOM_MIN_PURITY_INCREASE = -Inf BOTTOM_MAX_PURITY_AT_LEAF = Inf BOTTOM_NTREES = typemax(Int64) BOTTOM_MAX_PERFORMANCE_AT_SPLIT = Inf BOTTOM_MIN_PERFORMANCE_AT_SPLIT = -Inf BOTTOM_MAX_MODAL_DEPTH = typemax(Int64) # function parametrization_is_going_to_prune(pruning_params) # (haskey(pruning_params, :max_depth) && pruning_params.max_depth < BOTTOM_MAX_DEPTH) || # # (haskey(pruning_params, :min_samples_leaf) && pruning_params.min_samples_leaf > BOTTOM_MIN_SAMPLES_LEAF) || # (haskey(pruning_params, :min_purity_increase) && pruning_params.min_purity_increase > BOTTOM_MIN_PURITY_INCREASE) || # (haskey(pruning_params, :max_purity_at_leaf) && pruning_params.max_purity_at_leaf < BOTTOM_MAX_PURITY_AT_LEAF) || # (haskey(pruning_params, :ntrees) && pruning_params.ntrees < BOTTOM_NTREES) # end
ModalDecisionTrees
https://github.com/aclai-lab/ModalDecisionTrees.jl.git
[ "MIT" ]
0.5.0
200b2bd9dee3dfe2dcffa1fb51b6dd00d371ed2b
code
25395
using ResumableFunctions using SoleLogics: AbstractFrame using SoleData: AbstractWorld, AbstractWorlds, AbstractFeature using Logging: @logmsg using SoleData: AbstractModalLogiset, SupportedLogiset using SoleData: base, globmemoset using SoleData: featchannel, featchannel_onestep_aggregation, onestep_aggregation using SoleData: SupportedLogiset, ScalarOneStepMemoset, AbstractFullMemoset using SoleData.DimensionalDatasets: UniformFullDimensionalLogiset import SoleData: relations, nrelations, metaconditions, nmetaconditions import SoleData: supports import SoleData.DimensionalDatasets: nfeatures, features using SoleData: Aggregator, TestOperator, ScalarMetaCondition using SoleData: ScalarExistentialFormula using DataStructures """ Logical datasets with scalar features. """ const AbstractScalarLogiset{ W<:AbstractWorld, U<:Number, FT<:AbstractFeature, FR<:AbstractFrame{W} } = AbstractModalLogiset{W,U,FT,FR} nrelations(X::SupportedLogiset{W,U,FT,FR,L,N,<:Tuple{<:ScalarOneStepMemoset}}) where {W,U,FT,FR,L,N} = nrelations(supports(X)[1]) nrelations(X::SupportedLogiset{W,U,FT,FR,L,N,<:Tuple{<:ScalarOneStepMemoset,<:AbstractFullMemoset}}) where {W,U,FT,FR,L,N} = nrelations(supports(X)[1]) relations(X::SupportedLogiset{W,U,FT,FR,L,N,<:Tuple{<:ScalarOneStepMemoset}}) where {W,U,FT,FR,L,N} = relations(supports(X)[1]) relations(X::SupportedLogiset{W,U,FT,FR,L,N,<:Tuple{<:ScalarOneStepMemoset,<:AbstractFullMemoset}}) where {W,U,FT,FR,L,N} = relations(supports(X)[1]) nmetaconditions(X::SupportedLogiset{W,U,FT,FR,L,N,<:Tuple{<:ScalarOneStepMemoset}}) where {W,U,FT,FR,L,N} = nmetaconditions(supports(X)[1]) nmetaconditions(X::SupportedLogiset{W,U,FT,FR,L,N,<:Tuple{<:ScalarOneStepMemoset,<:AbstractFullMemoset}}) where {W,U,FT,FR,L,N} = nmetaconditions(supports(X)[1]) metaconditions(X::SupportedLogiset{W,U,FT,FR,L,N,<:Tuple{<:ScalarOneStepMemoset}}) where {W,U,FT,FR,L,N} = metaconditions(supports(X)[1]) metaconditions(X::SupportedLogiset{W,U,FT,FR,L,N,<:Tuple{<:ScalarOneStepMemoset,<:AbstractFullMemoset}}) where {W,U,FT,FR,L,N} = metaconditions(supports(X)[1]) """ Perform the modal step, that is, evaluate an existential formula on a set of worlds, eventually computing the new world set. """ function modalstep( X, # ::AbstractScalarLogiset{W}, i_instance::Integer, worlds::AbstractWorlds{W}, decision::RestrictedDecision{<:ScalarExistentialFormula}, return_worldmap::Union{Val{true},Val{false}} = Val(false) ) where {W<:AbstractWorld} @logmsg LogDetail "modalstep" worlds displaydecision(decision) # W = worldtype(frame(X, i_instance)) φ = formula(decision) satisfied = false # TODO the's room for optimization here: with some relations (e.g. IA_A, IA_L) can be made smaller if return_worldmap isa Val{true} worlds_map = ThreadSafeDict{W,AbstractWorlds{W}}() end if length(worlds) == 0 # If there are no neighboring worlds, then the modal decision is not met @logmsg LogDetail " Empty worldset" else # Otherwise, check whether at least one of the accessible worlds witnesses truth of the decision. # TODO rewrite with new_worlds = map(...acc_worlds) # Initialize new worldset new_worlds = Worlds{W}() # List all accessible worlds acc_worlds = begin if return_worldmap isa Val{true} Threads.@threads for curr_w in worlds acc = accessibles(frame(X, i_instance), curr_w, relation(φ)) |> collect worlds_map[curr_w] = acc end unique(cat([ worlds_map[k] for k in keys(worlds_map) ]...; dims = 1)) else accessibles(frame(X, i_instance), worlds, relation(φ)) end end for w in acc_worlds if checkcondition(SoleLogics.value(atom(φ)), X, i_instance, w) # @logmsg LogDetail " Found world " w ch_readWorld ... ch_readWorld(w, channel) satisfied = true push!(new_worlds, w) end end if satisfied == true worlds = new_worlds else # If none of the neighboring worlds satisfies the decision, then # the new set is left unchanged end end if satisfied @logmsg LogDetail " YES" worlds else @logmsg LogDetail " NO" end if return_worldmap isa Val{true} return (satisfied, worlds, worlds_map) else return (satisfied, worlds) end end ############################################################################################ ############################################################################################ ############################################################################################ Base.@propagate_inbounds @resumable function generate_decisions( X::AbstractScalarLogiset{W,U}, i_instances::AbstractVector{<:Integer}, Sf::AbstractVector{<:AbstractWorlds{W}}, allow_propositional_decisions::Bool, allow_modal_decisions::Bool, allow_global_decisions::Bool, modal_relations_inds::AbstractVector, features_inds::AbstractVector, grouped_featsaggrsnops::AbstractVector{<:AbstractDict{<:Aggregator,<:AbstractVector{<:ScalarMetaCondition}}}, grouped_featsnaggrs::AbstractVector{<:AbstractVector{Tuple{<:Integer,<:Aggregator}}}, ) where {W<:AbstractWorld,U} # Propositional splits if allow_propositional_decisions for decision in generate_propositional_decisions(X, i_instances, Sf, features_inds, grouped_featsaggrsnops, grouped_featsnaggrs) # @logmsg LogDebug " Testing decision: $(displaydecision(decision))" @yield decision end end # Global splits if allow_global_decisions for decision in generate_global_decisions(X, i_instances, Sf, features_inds, grouped_featsaggrsnops, grouped_featsnaggrs) # @logmsg LogDebug " Testing decision: $(displaydecision(decision))" @yield decision end end # Modal splits if allow_modal_decisions for decision in generate_modal_decisions(X, i_instances, Sf, modal_relations_inds, features_inds, grouped_featsaggrsnops, grouped_featsnaggrs) # @logmsg LogDebug " Testing decision: $(displaydecision(decision))" @yield decision end end end using StatsBase function countmap_with_domain(v::AbstractVector, keyset::AbstractVector = unique(v), eltype = Float64) res = StatsBase.countmap(v) for el in keyset if !haskey(res, el) res[el] = zero(eltype) end end res = Dict(collect(zip(keys(res), eltype.(values(res))))) return res end """ References: - "Generalizing Boundary Points" - "Multi-Interval Discretization of Continuous-Valued Attributes for Classification Learning" """ function limit_threshold_domain( aggr_thresholds::AbstractVector{T}, Y::AbstractVector{L}, W::AbstractVector{U}, loss_function::Loss, test_op::TestOperator, min_samples_leaf::Integer, perform_domain_optimization::Bool; n_classes::Union{Nothing,Integer} = nothing, nc::Union{Nothing,AbstractVector{U}} = nothing, nt::Union{Nothing,U} = nothing, ) where {T,L<:_Label,U} if allequal(aggr_thresholds) # Always zero entropy return T[], Nothing[] end if loss_function isa ShannonEntropy && test_op in [≥, <, ≤, >] && (W isa Ones) # TODO extendo to allequal(W) # TODO extend to Gini Index, Normalized Distance Measure, Info Gain, Gain Ratio (Ref. [Linear-Time Preprocessing in Optimal Numerical Range Partitioning]) if !perform_domain_optimization thresh_domain = unique(aggr_thresholds) thresh_domain = begin if test_op in [≥, <] # Remove edge-case with zero entropy _m = minimum(thresh_domain) filter(x->x != _m, thresh_domain) elseif test_op in [≤, >] # Remove edge-case with zero entropy _m = maximum(thresh_domain) filter(x->x != _m, thresh_domain) else thresh_domain end end return thresh_domain, fill(nothing, length(thresh_domain)) else p = sortperm(aggr_thresholds) _ninstances = length(Y) _aggr_thresholds = aggr_thresholds[p] _Y = Y[p] # thresh_domain = unique(_aggr_thresholds) # sort!(thresh_domain) ps = pairs(SoleBase._groupby(first, zip(_aggr_thresholds, _Y) |> collect)) groupedY = map(((k,v),)->begin Ys = map(last, v) # footprint = sort((Ys)) # associated with ==, it works # footprint = sort(unique(Ys)) # couldn't get it to work. # footprint = countmap(Ys; alg = :dict) footprint = countmap(Ys); footprint = collect(footprint); # footprint = map(((k,c),)->k=>c/sum(values(footprint)), collect(footprint)); # normalized sort!(footprint; by = first) k => (Ys, footprint) end, collect(ps)) # groupedY = map(((k,v),)->(k=>sort(map(last, v))), collect(ps)) # groupedY = map(((k,v),)->(k=>sort(unique(map(last, v)))), collect(ps)) function is_same_footprint(f1, f2) if f1 == f2 return true end norm_f1 = map(((k,c),)->k=>c/sum(last.(f1)), f1) norm_f2 = map(((k,c),)->k=>c/sum(last.(f2)), f2) return norm_f1 == norm_f2 end if test_op in [≥, <] sort!(groupedY; by=first, rev = true) elseif test_op in [≤, >] sort!(groupedY; by=first) else error("Unexpected test_op: $(test_op)") end thresh_domain, _thresh_Ys, _thresh_footprint = first.(groupedY), first.(last.(groupedY)), last.(last.(groupedY)) # Filter out those that do not comply with min_samples_leaf n_left = 0 is_boundary_point = map(__thresh_Ys->begin n_left = n_left + length(__thresh_Ys) ((n_left >= min_samples_leaf && _ninstances-n_left >= min_samples_leaf)) end, _thresh_Ys) # Reference: ≤ is_boundary_point = map(((i, honors_min_samples_leaf),)->begin # last = (i == length(is_boundary_point)) ( (honors_min_samples_leaf && # (!last && !(is_boundary_point[i+1] && is_same_footprint(_thresh_footprint[i], _thresh_footprint[i+1]))) # !(is_boundary_point[i+1] && isapprox(_thresh_footprint[i], _thresh_footprint[i+1]))) # TODO better..? # !(is_boundary_point[i+1] && issubset(_thresh_footprint[i+1], _thresh_footprint[i]))) # Probably doesn't work # !(is_boundary_point[i+1] && issubset(_thresh_footprint[i], _thresh_footprint[i+1]))) # Probably doesn't work # true) ) end, enumerate(is_boundary_point)) thresh_domain = thresh_domain[is_boundary_point] # NOTE: pretending that these are the right counts, when they are actually the left counts!!! It doesn't matter, it's symmetric. # cur_left_counts = countmap_with_domain(L[], UnitRange{L}(1:n_classes), U) cur_left_counts = fill(zero(U), n_classes) additional_info = map(Ys->begin # addcounts!(cur_left_counts, Ys) # f = collect(values(cur_left_counts)) # weight = first(W) # when allequal(W) weight = one(U) [cur_left_counts[y] += weight for y in Ys] f = cur_left_counts if test_op in [≥, ≤] # These are left counts ncl, nl = copy(f), sum(f) # ncr = Vector{U}(undef, n_classes) # ncr .= nc .- ncl ncr = nc .- ncl nr = nt - nl else # These are right counts ncr, nr = copy(f), sum(f) # ncl = Vector{U}(undef, n_classes) # ncl .= nc .- ncr ncl = nc .- ncr nl = nt - nr end threshold_info = (ncr, nr, ncl, nl) threshold_info end, _thresh_Ys)[is_boundary_point] # @show typeof(additional_info) # @show typeof(additional_info[1]) # @show test_op, min_samples_leaf # @show groupedY # @show sum(is_boundary_point), length(thresh_domain), sum(is_boundary_point)/length(thresh_domain) return thresh_domain, additional_info end else thresh_domain = unique(aggr_thresholds) return thresh_domain, fill(nothing, length(thresh_domain)) end end # function limit_threshold_domain(loss_function::Loss, aggr_thresholds::AbstractVector{U}) where {U} # # @show aggr_thresholds # thresh_domain = begin # if U <: Bool # unique(aggr_thresholds) # else # setdiff(Set(aggr_thresholds),Set([typemin(U), typemax(U)])) # end # end # # @show thresh_domain # return thresh_domain # end ############################################################################################ Base.@propagate_inbounds @resumable function generate_propositional_decisions( X::AbstractScalarLogiset{W,U,FT,FR}, i_instances::AbstractVector{<:Integer}, Sf::AbstractVector{<:AbstractWorlds{W}}, features_inds::AbstractVector, grouped_featsaggrsnops::AbstractVector{<:AbstractDict{<:Aggregator,<:AbstractVector{<:ScalarMetaCondition}}}, grouped_featsnaggrs::AbstractVector{<:AbstractVector{Tuple{<:Integer,<:Aggregator}}}, ) where {W<:AbstractWorld,U,FT<:AbstractFeature,N,FR<:FullDimensionalFrame{N,W}} relation = identityrel _ninstances = length(i_instances) _features = features(X) # For each feature @inbounds for i_feature in features_inds feature = _features[i_feature] @logmsg LogDebug "Feature $(i_feature): $(feature)" # operators for each aggregator aggrsnops = grouped_featsaggrsnops[i_feature] # Vector of aggregators aggregators = keys(aggrsnops) # Note: order-variant, but that's ok here # dict->vector # aggrsnops = [aggrsnops[i_aggregator] for i_aggregator in aggregators] # Initialize thresholds with the bottoms thresholds = Array{U,2}(undef, length(aggregators), _ninstances) for (i_aggregator,aggregator) in enumerate(aggregators) thresholds[i_aggregator,:] .= aggregator_bottom(aggregator, U) end # For each instance, compute thresholds by applying each aggregator to the set of existing values (from the worldset) for (instance_idx,i_instance) in enumerate(i_instances) # @logmsg LogDetail " Instance $(instance_idx)/$(_ninstances)" worlds = Sf[instance_idx] # TODO also try this instead # values = [X[i_instance, w, i_feature] for w in worlds] # thresholds[:,instance_idx] = map(aggregator->aggregator(values), aggregators) for w in worlds # gamma = featvalue(feature, X[i_instance, w) # TODO in general! gamma = featvalue(feature, X, i_instance, w, i_feature) for (i_aggregator,aggregator) in enumerate(aggregators) thresholds[i_aggregator,instance_idx] = SoleData.aggregator_to_binary(aggregator)(gamma, thresholds[i_aggregator,instance_idx]) end end end # tested_metacondition = TestOperator[] # @logmsg LogDebug "thresholds: " thresholds # For each aggregator for (i_aggregator,aggregator) in enumerate(aggregators) aggr_thresholds = thresholds[i_aggregator,:] for metacondition in aggrsnops[aggregator] test_op = SoleData.test_operator(metacondition) @yield relation, metacondition, test_op, aggr_thresholds end # for metacondition end # for aggregator end # for feature end ############################################################################################ Base.@propagate_inbounds @resumable function generate_modal_decisions( X::AbstractScalarLogiset{W,U,FT,FR}, i_instances::AbstractVector{<:Integer}, Sf::AbstractVector{<:AbstractWorlds{W}}, modal_relations_inds::AbstractVector, features_inds::AbstractVector, grouped_featsaggrsnops::AbstractVector{<:AbstractDict{<:Aggregator,<:AbstractVector{<:ScalarMetaCondition}}}, grouped_featsnaggrs::AbstractVector{<:AbstractVector{Tuple{<:Integer,<:Aggregator}}}, ) where {W<:AbstractWorld,U,FT<:AbstractFeature,N,FR<:FullDimensionalFrame{N,W}} _ninstances = length(i_instances) _relations = relations(X) _features = features(X) # For each relational connective for i_relation in modal_relations_inds relation = _relations[i_relation] @logmsg LogDebug "Relation $(relation)..." # For each feature for i_feature in features_inds feature = _features[i_feature] # @logmsg LogDebug "Feature $(i_feature): $(feature)" # operators for each aggregator aggrsnops = grouped_featsaggrsnops[i_feature] # Vector of aggregators aggregators_with_ids = grouped_featsnaggrs[i_feature] # dict->vector? # aggrsnops = [aggrsnops[i_aggregator] for i_aggregator in aggregators] # Initialize thresholds with the bottoms thresholds = Array{U,2}(undef, length(aggregators_with_ids), _ninstances) for (i_aggregator,(_,aggregator)) in enumerate(aggregators_with_ids) thresholds[i_aggregator,:] .= aggregator_bottom(aggregator, U) end # For each instance, compute thresholds by applying each aggregator to the set of existing values (from the worldset) for (instance_id,i_instance) in enumerate(i_instances) # @logmsg LogDetail " Instance $(instance_id)/$(_ninstances)" worlds = Sf[instance_id] _featchannel = featchannel(base(X), i_instance, i_feature) for (i_aggregator,(i_metacond,aggregator)) in enumerate(aggregators_with_ids) metacondition = metaconditions(X)[i_metacond] for w in worlds gamma = begin if true # _featchannel = featchannel(base(X), i_instance, i_feature) # featchannel_onestep_aggregation(X, _featchannel, i_instance, w, relation, feature(metacondition), aggregator) featchannel_onestep_aggregation(X, _featchannel, i_instance, w, relation, metacondition, i_metacond, i_relation) # onestep_aggregation(X, i_instance, w, relation, feature, aggregator, i_metacond, i_relation) # elseif X isa UniformFullDimensionalLogiset # onestep_aggregation(X, i_instance, w, relation, feature, aggregator, i_metacond, i_relation) else error("generate_global_decisions is broken.") end end thresholds[i_aggregator,instance_id] = SoleData.aggregator_to_binary(aggregator)(gamma, thresholds[i_aggregator,instance_id]) end end # for (i_aggregator,(i_metacond,aggregator)) in enumerate(aggregators_with_ids) # gammas = [onestep_aggregation(X, i_instance, w, relation, feature, aggregator, i_metacond, i_relation) for w in worlds] # thresholds[i_aggregator,instance_id] = aggregator(gammas) # end end # @logmsg LogDebug "thresholds: " thresholds # For each aggregator for (i_aggregator,(_,aggregator)) in enumerate(aggregators_with_ids) aggr_thresholds = thresholds[i_aggregator,:] for metacondition in aggrsnops[aggregator] # @logmsg LogDetail " Test operator $(metacondition)" test_op = SoleData.test_operator(metacondition) @yield relation, metacondition, test_op, aggr_thresholds end # for metacondition end # for aggregator end # for feature end # for relation end ############################################################################################ Base.@propagate_inbounds @resumable function generate_global_decisions( X::AbstractScalarLogiset{W,U,FT,FR}, i_instances::AbstractVector{<:Integer}, Sf::AbstractVector{<:AbstractWorlds{W}}, features_inds::AbstractVector, grouped_featsaggrsnops::AbstractVector{<:AbstractDict{<:Aggregator,<:AbstractVector{<:ScalarMetaCondition}}}, grouped_featsnaggrs::AbstractVector{<:AbstractVector{Tuple{<:Integer,<:Aggregator}}}, ) where {W<:AbstractWorld,U,FT<:AbstractFeature,N,FR<:FullDimensionalFrame{N,W}} relation = globalrel _ninstances = length(i_instances) _features = features(X) # For each feature for i_feature in features_inds feature = _features[i_feature] @logmsg LogDebug "Feature $(i_feature): $(feature)" # operators for each aggregator aggrsnops = grouped_featsaggrsnops[i_feature] # println(aggrsnops) # Vector of aggregators aggregators_with_ids = grouped_featsnaggrs[i_feature] # println(aggregators_with_ids) # @show feature # @show aggrsnops # @show aggregators_with_ids # dict->vector # aggrsnops = [aggrsnops[i_aggregator] for i_aggregator in aggregators] # # TODO use this optimized version for SupportedLogiset: # thresholds can in fact be directly given by slicing globmemoset and permuting the two dimensions # aggregators_ids = fst.(aggregators_with_ids) # thresholds = transpose(globmemoset(X)[i_instances, aggregators_ids]) # Initialize thresholds with the bottoms # @show U thresholds = Array{U,2}(undef, length(aggregators_with_ids), _ninstances) # for (i_aggregator,(_,aggregator)) in enumerate(aggregators_with_ids) # thresholds[i_aggregator,:] .= aggregator_bottom(aggregator, U) # end # For each instance, compute thresholds by applying each aggregator to the set of existing values (from the worldset) for (instance_id,i_instance) in enumerate(i_instances) # @logmsg LogDetail " Instance $(instance_id)/$(_ninstances)" _featchannel = featchannel(base(X), i_instance, i_feature) for (i_aggregator,(i_metacond,aggregator)) in enumerate(aggregators_with_ids) # TODO delegate this job to different flavors of `get_global_gamma`. Test whether the _featchannel assignment outside is faster! metacondition = metaconditions(X)[i_metacond] gamma = begin if true # _featchannel = featchannel(base(X), i_instance, i_feature) featchannel_onestep_aggregation(X, _featchannel, i_instance, SoleLogics.emptyworld(frame(X, i_instance)), relation, metacondition, i_metacond) # onestep_aggregation(X, i_instance, dummyworldTODO, relation, feature, aggregator, i_metacond) # elseif X isa UniformFullDimensionalLogiset # onestep_aggregation(X, i_instance, dummyworldTODO, relation, feature, aggregator, i_metacond) else error("generate_global_decisions is broken.") end end # @show gamma thresholds[i_aggregator,instance_id] = gamma # thresholds[i_aggregator,instance_id] = SoleData.aggregator_to_binary(aggregator)(gamma, thresholds[i_aggregator,instance_id]) # println(gamma) # println(thresholds[i_aggregator,instance_id]) end end # println(thresholds) @logmsg LogDetail "thresholds: " thresholds # For each aggregator for (i_aggregator,(_,aggregator)) in enumerate(aggregators_with_ids) # println(aggregator) # @show aggregator aggr_thresholds = thresholds[i_aggregator,:] for metacondition in aggrsnops[aggregator] test_op = SoleData.test_operator(metacondition) @yield relation, metacondition, test_op, aggr_thresholds end # for metacondition end # for aggregator end # for feature end
ModalDecisionTrees
https://github.com/aclai-lab/ModalDecisionTrees.jl.git
[ "MIT" ]
0.5.0
200b2bd9dee3dfe2dcffa1fb51b6dd00d371ed2b
code
5856
# TODO remove and use SoleModels.accuracy, SoleModels.mae, SoleModels.mse function _acc(y_pred, y_true) @assert length(y_pred) == length(y_true) return (sum(y_pred .== y_true)/length(y_pred)) end function _mae(y_pred, y_true) @assert length(y_pred) == length(y_true) return (sum(abs.(y_true .- y_pred)) / length(y_true)) end function _mse(y_pred, y_true) @assert length(y_pred) == length(y_true) return (sum((y_true .- y_pred).^2) / length(y_true)) end function leafperformance(leaf::AbstractDecisionLeaf{L}) where {L} _gts = supp_labels(leaf) _preds = fill(prediction(leaf), length(_gts)) if L <: CLabel _acc(_gts, _preds) elseif L <: RLabel _mse(_gts, _preds) else error("Could not compute leafperformance with unknown label type: $(L).") end end function get_metrics( leaf::AbstractDecisionLeaf{<:CLabel}; n_tot_inst = nothing, rel_confidence_class_counts = nothing, train_or_valid = true, silent = false, ) metrics = (;) supporting_labels = supp_labels(leaf; train_or_valid = train_or_valid) supporting_predictions = predictions(leaf; train_or_valid = train_or_valid) ############################################################################ # Confidence, # of supporting labels, # of correctly classified instances n_inst = length(supporting_labels) n_correct = sum(supporting_labels .== supporting_predictions) confidence = n_correct/n_inst metrics = merge(metrics, ( n_inst = n_inst, n_correct = n_correct, confidence = confidence, )) ############################################################################ # Total # of instances if !isnothing(rel_confidence_class_counts) if !isnothing(n_tot_inst) @assert n_tot_inst == sum(values(rel_confidence_class_counts)) "n_tot_inst != sum(values(rel_confidence_class_counts)): $(n_tot_inst) $(sum(values(rel_confidence_class_counts))) sum($(values(rel_confidence_class_counts)))" else n_tot_inst = sum(values(rel_confidence_class_counts)) end metrics = merge(metrics, ( n_tot_inst = n_tot_inst, )) end ############################################################################ # Lift, class support and others if !isnothing(rel_confidence_class_counts) cur_class_counts = begin cur_class_counts = countmap(supporting_labels) for class in keys(rel_confidence_class_counts) if !haskey(cur_class_counts, class) cur_class_counts[class] = 0 end end cur_class_counts end rel_tot_inst = sum([cur_class_counts[class]/rel_confidence_class_counts[class] for class in keys(rel_confidence_class_counts)]) # TODO can't remember the rationale behind this? # if isa(leaf, DTLeaf) # "rel_conf: $(n_correct/rel_confidence_class_counts[prediction(leaf)])" # rel_conf = (cur_class_counts[prediction(leaf)]/get(rel_confidence_class_counts, prediction(leaf), 0))/rel_tot_inst # end metrics = merge(metrics, ( cur_class_counts = cur_class_counts, rel_tot_inst = rel_tot_inst, # rel_conf = rel_conf, )) if !isnothing(n_tot_inst) && isa(leaf, DTLeaf) class_support = get(rel_confidence_class_counts, prediction(leaf), 0)/n_tot_inst lift = confidence/class_support metrics = merge(metrics, ( class_support = class_support, lift = lift, )) end end ############################################################################ # Support if !isnothing(n_tot_inst) support = n_inst/n_tot_inst metrics = merge(metrics, ( support = support, )) end ############################################################################ # Conviction if !isnothing(rel_confidence_class_counts) && !isnothing(n_tot_inst) conviction = (1-class_support)/(1-confidence) metrics = merge(metrics, ( conviction = conviction, )) end ############################################################################ # Sensitivity share: the portion of "responsibility" for the correct classification of class L if !isnothing(rel_confidence_class_counts) && isa(leaf, DTLeaf) sensitivity_share = n_correct/get(rel_confidence_class_counts, prediction(leaf), 0) metrics = merge(metrics, ( sensitivity_share = sensitivity_share, )) end metrics end function get_metrics( leaf::AbstractDecisionLeaf{<:RLabel}; n_tot_inst = nothing, rel_confidence_class_counts = nothing, train_or_valid = true, silent = false, ) @assert isnothing(rel_confidence_class_counts) metrics = (;) supporting_labels = supp_labels(leaf; train_or_valid = train_or_valid) supporting_predictions = predictions(leaf; train_or_valid = train_or_valid) n_inst = length(supporting_labels) mae = _mae(supporting_labels, supporting_predictions) mse = _mse(supporting_labels, supporting_predictions) # sum(abs.(supporting_labels .- supporting_predictions)) / n_inst rmse = StatsBase.rmsd(supporting_labels, supporting_predictions) var = StatsBase.var(supporting_labels) metrics = merge(metrics, ( n_inst = n_inst, mae = mae, mse = mse, rmse = rmse, var = var, )) if !isnothing(n_tot_inst) support = n_inst/n_tot_inst metrics = merge(metrics, ( support = support, )) end metrics end
ModalDecisionTrees
https://github.com/aclai-lab/ModalDecisionTrees.jl.git
[ "MIT" ]
0.5.0
200b2bd9dee3dfe2dcffa1fb51b6dd00d371ed2b
code
6832
abstract type Loss end abstract type ClassificationLoss <: Loss end; abstract type RegressionLoss <: Loss end; default_loss_function(::Type{<:CLabel}) = entropy default_loss_function(::Type{<:RLabel}) = variance istoploss(::Loss, purity) = isinf(purity) ############################################################################################ # Loss functions for regression and classification # These functions return the additive inverse of entropy measures # # For each measure, three versions are defined: # - A single version, computing the loss for a single dataset # - A combined version, computing the loss for a dataset split, equivalent to (ws_l*entropy_l + ws_r*entropy_r) # - A final version, which corrects the loss and is only computed after the optimization step. # # Note: regression losses are defined in the weighted & unweigthed versions # TODO: write a loss based on gini index ############################################################################################ # Useful references: # - Wang, Y., & Xia, S. T. (2017, March). Unifying variable splitting criteria of decision trees by Tsallis entropy. In 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 2507-2511). IEEE. ############################################################################################ # Classification: Shannon entropy # (ps = normalize(ws, 1); return -sum(ps.*log.(ps))) # Source: _shannon_entropy from https://github.com/bensadeghi/DecisionTree.jl/blob/master/src/util.jl, with inverted sign struct ShannonEntropy <: ClassificationLoss end istoploss(::ShannonEntropy, purity) = iszero(purity) # Single Base.@propagate_inbounds @inline function (::ShannonEntropy)(ws :: AbstractVector{U}, t :: U) where {U<:Real} s = 0.0 @simd for k in ws if k > 0 s += k * log(k) end end return -(log(t) - s / t) end # Multiple Base.@propagate_inbounds @inline function (ent::ShannonEntropy)(wss_n_ts::Tuple{AbstractVector{U},U}...) where {U<:Real} sum(((ws, t),)->t * ShannonEntropy()(ws, t), wss_n_ts) end # Correction Base.@propagate_inbounds @inline function (::ShannonEntropy)(e :: AbstractFloat) e end ############################################################################################ # Classification: Shannon (second untested version) # # Single # Base.@propagate_inbounds @inline function _shannon_entropy(ws :: AbstractVector{U}, t :: U) where {U<:Real} # log(t) + _shannon_entropy(ws) / t # end # Base.@propagate_inbounds @inline function _shannon_entropy(ws :: AbstractVector{U}) where {U<:Real} # s = 0.0 # for k in filter((k)->k > 0, ws) # s += k * log(k) # end # s # end # # Double # Base.@propagate_inbounds @inline function _shannon_entropy( # ws_l :: AbstractVector{U}, tl :: U, # ws_r :: AbstractVector{U}, tr :: U, # ) where {U<:Real} # (tl * log(tl) + _shannon_entropy(ws_l) + # tr * log(tr) + _shannon_entropy(ws_r)) # end # # Correction # Base.@propagate_inbounds @inline function _shannon_entropy(e :: AbstractFloat) # e*log2(ℯ) # end ############################################################################################ # Classification: Tsallis entropy # (ps = normalize(ws, 1); return -log(sum(ps.^alpha))/(1.0-alpha)) with (alpha > 1.0) # Single Base.@propagate_inbounds @inline function _tsallis_entropy(alpha :: AbstractFloat, ws :: AbstractVector{U}, t :: U) where {U<:Real} log(sum(ps = normalize(ws, 1).^alpha)) end # Double Base.@propagate_inbounds @inline function _tsallis_entropy( alpha :: AbstractFloat, ws_l :: AbstractVector{U}, tl :: U, ws_r :: AbstractVector{U}, tr :: U, ) where {U<:Real} (tl * _tsallis_entropy(alpha, ws_l, tl) + tr * _tsallis_entropy(alpha, ws_r, tr)) end # Correction Base.@propagate_inbounds @inline function _tsallis_entropy(alpha :: AbstractFloat, e :: AbstractFloat) e*(1/(alpha-1.0)) end TsallisEntropy(alpha::AbstractFloat) = (args...)->_tsallis_entropy(alpha, args...) ############################################################################################ # Classification: Renyi entropy # (ps = normalize(ws, 1); -(1.0-sum(ps.^alpha))/(alpha-1.0)) with (alpha > 1.0) # Single Base.@propagate_inbounds @inline function _renyi_entropy(alpha :: AbstractFloat, ws :: AbstractVector{U}, t :: U) where {U<:Real} (sum(normalize(ws, 1).^alpha)-1.0) end # Double Base.@propagate_inbounds @inline function _renyi_entropy( alpha :: AbstractFloat, ws_l :: AbstractVector{U}, tl :: U, ws_r :: AbstractVector{U}, tr :: U, ) where {U<:Real} (tl * _renyi_entropy(alpha, ws_l, tl) + tr * _renyi_entropy(alpha, ws_r, tr)) end # Correction Base.@propagate_inbounds @inline function _renyi_entropy(alpha :: AbstractFloat, e :: AbstractFloat) e*(1/(alpha-1.0)) end RenyiEntropy(alpha::AbstractFloat) = (args...)->_renyi_entropy(alpha, args...) ############################################################################################ # Regression: Variance (weighted & unweigthed, see https://en.wikipedia.org/wiki/Weighted_arithmetic_mean) struct Variance <: RegressionLoss end # Single # sum(ws .* ((ns .- (sum(ws .* ns)/t)).^2)) / (t) Base.@propagate_inbounds @inline function (::Variance)(ns :: AbstractVector{L}, s :: L, t :: Integer) where {L} # @btime sum((ns .- mean(ns)).^2) / (1 - t) # @btime (sum(ns.^2)-s^2/t) / (1 - t) (sum(ns.^2)-s^2/t) / (1 - t) # TODO remove / (1 - t) from here, and move it to the correction-version of (::Variance), but it must be for single-version only! end # Single weighted (non-frequency weigths interpretation) # sum(ws .* ((ns .- (sum(ws .* ns)/t)).^2)) / (t) Base.@propagate_inbounds @inline function (::Variance)(ns :: AbstractVector{L}, ws :: AbstractVector{U}, wt :: U) where {L,U<:Real} # @btime (sum(ws .* ns)/wt)^2 - sum(ws .* (ns.^2))/wt # @btime (wns = ws .* ns; (sum(wns)/wt)^2 - sum(wns .* ns)/wt) # @btime (wns = ws .* ns; sum(wns)^2/wt^2 - sum(wns .* ns)/wt) # @btime (wns = ws .* ns; (sum(wns)^2/wt - sum(wns .* ns))/wt) (wns = ws .* ns; (sum(wns .* ns) - sum(wns)^2/wt)/wt) end # Double Base.@propagate_inbounds @inline function (::Variance)( ns_l :: AbstractVector{LU}, sl :: L, tl :: U, ns_r :: AbstractVector{LU}, sr :: L, tr :: U, ) where {L,LU<:Real,U<:Real} ((tl*sum(ns_l.^2)-sl^2) / (1 - tl)) + ((tr*sum(ns_l.^2)-sr^2) / (1 - tr)) end # Correction Base.@propagate_inbounds @inline function (::Variance)(e :: AbstractFloat) e end # TODO write double non weigthed ############################################################################################ # The default classification loss is Shannon's entropy entropy = ShannonEntropy() # The default regression loss is variance variance = Variance()
ModalDecisionTrees
https://github.com/aclai-lab/ModalDecisionTrees.jl.git
[ "MIT" ]
0.5.0
200b2bd9dee3dfe2dcffa1fb51b6dd00d371ed2b
code
20994
################################################################################ ################################################################################ # TODO explain ################################################################################ ################################################################################ export prune using DataStructures using SoleData.DimensionalDatasets: AbstractUnivariateFeature function prune(tree::DTree; kwargs...) DTree(prune(root(tree); depth = 0, kwargs...), worldtypes(tree), initconditions(tree)) end function prune(leaf::AbstractDecisionLeaf; kwargs...) leaf end function prune(node::DTInternal{L}; depth = nothing, kwargs...) where {L} @assert ! (haskey(kwargs, :max_depth) && isnothing(depth)) "Please specify the node depth: prune(node; depth = ...)" kwargs = NamedTuple(kwargs) if haskey(kwargs, :loss_function) && isnothing(kwargs.loss_function) ks = filter((k)->k != :loss_function, collect(keys(kwargs))) kwargs = (; zip(ks,kwargs[k] for k in ks)...) end pruning_params = merge(( loss_function = default_loss_function(L) :: Union{Nothing,Loss}, max_depth = BOTTOM_MAX_DEPTH :: Int , min_samples_leaf = BOTTOM_MIN_SAMPLES_LEAF :: Int , min_purity_increase = BOTTOM_MIN_PURITY_INCREASE :: AbstractFloat , max_purity_at_leaf = BOTTOM_MAX_PURITY_AT_LEAF :: AbstractFloat , max_performance_at_split = BOTTOM_MAX_PERFORMANCE_AT_SPLIT :: AbstractFloat , min_performance_at_split = BOTTOM_MIN_PERFORMANCE_AT_SPLIT :: AbstractFloat , simplify = false :: Bool , ), NamedTuple(kwargs)) @assert all(map((x)->(isa(x, DTInternal) || isa(x, DTLeaf)), [this(node), left(node), right(node)])) # Honor constraints on the number of instances nt = length(supp_labels(this(node))) nl = length(supp_labels(left(node))) nr = length(supp_labels(right(node))) if (pruning_params.max_depth < depth) || (pruning_params.min_samples_leaf > nr) || (pruning_params.min_samples_leaf > nl) return this(node) end # Honor performance constraints performance = leafperformance(this(node)) if (performance > pruning_params.max_performance_at_split || performance < pruning_params.min_performance_at_split) return this(node) end function _allpredictions(n) @warn "Could not simplify tree with node of type $(typeof(n))" end _allpredictions(l::DTLeaf) = [prediction(l)] _allpredictions(n::DTInternal) = [_allpredictions(left(n))..., _allpredictions(right(n))...] if pruning_params.simplify && unique(_allpredictions(node)) == unique(_allpredictions(this(node))) return this(node) end # Honor purity constraints # TODO fix missing weights!! purity = ModalDecisionTrees.compute_purity(supp_labels(this(node)); loss_function = pruning_params.loss_function) purity_r = ModalDecisionTrees.compute_purity(supp_labels(left(node)); loss_function = pruning_params.loss_function) purity_l = ModalDecisionTrees.compute_purity(supp_labels(right(node)); loss_function = pruning_params.loss_function) split_purity_times_nt = (nl * purity_l + nr * purity_r) # println("purity: ", purity) # println("purity_r: ", purity_r) # println("purity_l: ", purity_l) if (purity_r > pruning_params.max_purity_at_leaf) || (purity_l > pruning_params.max_purity_at_leaf) || dishonor_min_purity_increase(L, pruning_params.min_purity_increase, purity, split_purity_times_nt, nt) return this(node) end DTInternal( i_modality(node), decision(node), this(node), prune(left(node); pruning_params..., depth = depth+1), prune(right(node); pruning_params..., depth = depth+1) ) end function prune(forest::DForest{L}, rng::Random.AbstractRNG = Random.GLOBAL_RNG; kwargs...) where {L} pruning_params = merge(( ntrees = BOTTOM_NTREES ::Integer , ), NamedTuple(kwargs)) # Remove trees if pruning_params.ntrees != BOTTOM_NTREES perm = Random.randperm(rng, length(trees(forest)))[1:pruning_params.ntrees] forest = slice_forest(forest, perm) end pruning_params = Base.structdiff(pruning_params, (; ntrees = nothing, )) # Prune trees # if parametrization_is_going_to_prune(pruning_params) v_trees = map((t)->prune(t; pruning_params...), trees(forest)) # Note: metrics are lost forest = DForest{L}(v_trees) # end forest end function slice_forest(forest::DForest{L}, perm::AbstractVector{<:Integer}) where {L} # Note: can't compute oob_error v_trees = @views trees(forest)[perm] v_metrics = Dict() if haskey(metrics(forest), :oob_metrics) v_metrics[:oob_metrics] = @views metrics(forest).oob_metrics[perm] end v_metrics = NamedTuple(v_metrics) DForest{L}(v_trees, v_metrics) end # When training many trees with different pruning parametrizations, it can be beneficial to find the non-dominated set of parametrizations, # train a single tree per each non-dominated parametrization, and prune it afterwards x times. This hack can help save cpu time function nondominated_pruning_parametrizations( args::AbstractVector; do_it_or_not = true, return_perm = false, ignore_additional_args = [], ) args = convert(Vector{NamedTuple}, args) nondominated_pars, perm = if do_it_or_not # To be optimized to_opt = [ # tree & forest :max_depth, # :min_samples_leaf, :min_purity_increase, :max_purity_at_leaf, :max_performance_at_split, :min_performance_at_split, # forest :ntrees, ] # To be matched to_match = [ :min_samples_leaf, :loss_function, :n_subrelations, :n_subfeatures, :initconditions, :allow_global_splits, :rng, :partial_sampling, :perform_consistency_check, ] # To be left so that they are used for pruning to_leave = [ to_opt..., :loss_function, ignore_additional_args..., ] dominating = OrderedDict() overflowing_args = map((a)->setdiff(collect(keys(a)), [to_opt..., to_match..., to_leave...]), args) @assert all(length.(overflowing_args) .== 0) "Got unexpected model parameters: $(filter((a)->length(a) != 0, overflowing_args)) . In: $(args)." # Note: this optimizatio assumes that parameters are defaulted to their top (= most conservative) value polarity(::Val{:max_depth}) = max # polarity(::Val{:min_samples_leaf}) = min polarity(::Val{:min_purity_increase}) = min polarity(::Val{:max_purity_at_leaf}) = max polarity(::Val{:max_performance_at_split}) = max polarity(::Val{:min_performance_at_split}) = min polarity(::Val{:ntrees}) = max top(::Val{:max_depth}) = typemin(Int) # top(::Val{:min_samples_leaf}) = typemax(Int) top(::Val{:min_purity_increase}) = Inf top(::Val{:max_purity_at_leaf}) = -Inf top(::Val{:max_performance_at_split}) = -Inf top(::Val{:min_performance_at_split}) = Inf top(::Val{:ntrees}) = typemin(Int) perm = [] # Find non-dominated parameter set for this_args in args base_args = Base.structdiff(this_args, (; max_depth = nothing, # min_samples_leaf = nothing, min_purity_increase = nothing, max_purity_at_leaf = nothing, max_performance_at_split = nothing, min_performance_at_split = nothing, ntrees = nothing, )) dominating[base_args] = (( max_depth = polarity(Val(:max_depth ))((haskey(this_args, :max_depth ) ? this_args.max_depth : top(Val(:max_depth ))),(haskey(dominating, base_args) ? dominating[base_args][1].max_depth : top(Val(:max_depth )))), # min_samples_leaf = polarity(Val(:min_samples_leaf ))((haskey(this_args, :min_samples_leaf ) ? this_args.min_samples_leaf : top(Val(:min_samples_leaf ))),(haskey(dominating, base_args) ? dominating[base_args][1].min_samples_leaf : top(Val(:min_samples_leaf )))), min_purity_increase = polarity(Val(:min_purity_increase))((haskey(this_args, :min_purity_increase) ? this_args.min_purity_increase : top(Val(:min_purity_increase))),(haskey(dominating, base_args) ? dominating[base_args][1].min_purity_increase : top(Val(:min_purity_increase)))), max_purity_at_leaf = polarity(Val(:max_purity_at_leaf ))((haskey(this_args, :max_purity_at_leaf ) ? this_args.max_purity_at_leaf : top(Val(:max_purity_at_leaf ))),(haskey(dominating, base_args) ? dominating[base_args][1].max_purity_at_leaf : top(Val(:max_purity_at_leaf )))), max_performance_at_split = polarity(Val(:max_performance_at_split ))((haskey(this_args, :max_performance_at_split ) ? this_args.max_performance_at_split : top(Val(:max_performance_at_split ))),(haskey(dominating, base_args) ? dominating[base_args][1].max_performance_at_split : top(Val(:max_performance_at_split )))), min_performance_at_split = polarity(Val(:min_performance_at_split ))((haskey(this_args, :min_performance_at_split ) ? this_args.min_performance_at_split : top(Val(:min_performance_at_split ))),(haskey(dominating, base_args) ? dominating[base_args][1].min_performance_at_split : top(Val(:min_performance_at_split )))), ntrees = polarity(Val(:ntrees ))((haskey(this_args, :ntrees ) ? this_args.ntrees : top(Val(:ntrees ))),(haskey(dominating, base_args) ? dominating[base_args][1].ntrees : top(Val(:ntrees )))), ),[(haskey(dominating, base_args) ? dominating[base_args][2] : [])..., this_args]) outer_idx = findfirst((k)->k==base_args, collect(keys(dominating))) inner_idx = length(dominating[base_args][2]) push!(perm, (outer_idx, inner_idx)) end [ begin if (rep_args.max_depth == top(Val(:max_depth)) ) rep_args = Base.structdiff(rep_args, (; max_depth = nothing)) end # if (rep_args.min_samples_leaf == top(Val(:min_samples_leaf)) ) rep_args = Base.structdiff(rep_args, (; min_samples_leaf = nothing)) end if (rep_args.min_purity_increase == top(Val(:min_purity_increase))) rep_args = Base.structdiff(rep_args, (; min_purity_increase = nothing)) end if (rep_args.max_purity_at_leaf == top(Val(:max_purity_at_leaf)) ) rep_args = Base.structdiff(rep_args, (; max_purity_at_leaf = nothing)) end if (rep_args.max_performance_at_split == top(Val(:max_performance_at_split)) ) rep_args = Base.structdiff(rep_args, (; max_performance_at_split = nothing)) end if (rep_args.min_performance_at_split == top(Val(:min_performance_at_split)) ) rep_args = Base.structdiff(rep_args, (; min_performance_at_split = nothing)) end if (rep_args.ntrees == top(Val(:ntrees )) ) rep_args = Base.structdiff(rep_args, (; ntrees = nothing)) end this_args = merge(base_args, rep_args) (this_args, [begin ks = intersect(to_leave, keys(post_pruning_args)) (; zip(ks, [post_pruning_args[k] for k in ks])...) end for post_pruning_args in post_pruning_argss]) end for (i_model, (base_args,(rep_args, post_pruning_argss))) in enumerate(dominating) ], perm else zip(args, Iterators.repeated([(;)])) |> collect, zip(1:length(args), Iterators.repeated(1)) |> collect end if return_perm nondominated_pars, perm else nondominated_pars end end # function train_functional_leaves( tree::DTree, datasets::AbstractVector{<:Tuple{Any,AbstractVector}}, args...; kwargs..., ) # World sets for (dataset, modality, instance) worlds = Vector{Vector{Vector{<:WST} where {WorldType<:AbstractWorld,WST<:Vector{WorldType}}}}([ ModalDecisionTrees.initialworldsets(X, initconditions(tree)) for (X,Y) in datasets]) DTree(train_functional_leaves(root(tree), worlds, datasets, args...; kwargs...), worldtypes(tree), initconditions(tree)) end # At internal nodes, a functional model is trained by calling a callback function, and the leaf is created function train_functional_leaves( node::DTInternal{L}, worlds::AbstractVector{<:AbstractVector{<:AbstractVector{<:AbstractWorlds}}}, datasets::AbstractVector{D}, args...; kwargs..., ) where {L,D<:Tuple{Any,AbstractVector}} # Each dataset is sliced, and two subsets are derived (left and right) datasets_l = D[] datasets_r = D[] worlds_l = AbstractVector{<:AbstractVector{<:AbstractWorlds}}[] worlds_r = AbstractVector{<:AbstractVector{<:AbstractWorlds}}[] for (i_dataset,(X,Y)) in enumerate(datasets) satisfied_idxs = Integer[] unsatisfied_idxs = Integer[] for i_instance in 1:ninstances(X) (satisfied,new_worlds) = modalstep( modality(X, i_modality(node)), i_instance, worlds[i_dataset][i_modality(node)][i_instance], decision(node) ) if satisfied push!(satisfied_idxs, i_instance) else push!(unsatisfied_idxs, i_instance) end worlds[i_dataset][i_modality(node)][i_instance] = new_worlds end push!(datasets_l, slicedataset((X,Y), satisfied_idxs; allow_no_instances = true)) push!(datasets_r, slicedataset((X,Y), unsatisfied_idxs; allow_no_instances = true)) push!(worlds_l, [modality_worlds[satisfied_idxs] for modality_worlds in worlds[i_dataset]]) push!(worlds_r, [modality_worlds[unsatisfied_idxs] for modality_worlds in worlds[i_dataset]]) end DTInternal( i_modality(node), decision(node), # train_functional_leaves(node.this, worlds, datasets, args...; kwargs...), # TODO test whether this makes sense and works correctly this(node), train_functional_leaves(left(node), worlds_l, datasets_l, args...; kwargs...), train_functional_leaves(right(node), worlds_r, datasets_r, args...; kwargs...), ) end # At leaves, a functional model is trained by calling a callback function, and the leaf is created function train_functional_leaves( leaf::AbstractDecisionLeaf{L}, worlds::AbstractVector{<:AbstractVector{<:AbstractVector{<:AbstractWorlds}}}, datasets::AbstractVector{<:Tuple{Any,AbstractVector}}; train_callback::Function, ) where {L<:Label} functional_model = train_callback(datasets) @assert length(datasets) == 2 "TODO expand code: $(length(datasets))" (train_X, train_Y), (valid_X, valid_Y) = datasets[1], datasets[2] # println("train_functional_leaves") # println(typeof(train_X)) # println(hasmethod(size, (typeof(train_X),)) ? size(train_X) : nothing) # println(hasmethod(length, (typeof(train_X),)) ? length(train_X) : nothing) # println(ninstances(train_X)) # println(typeof(valid_X)) # println(hasmethod(size, (typeof(valid_X),)) ? size(valid_X) : nothing) # println(hasmethod(length, (typeof(valid_X),)) ? length(valid_X) : nothing) # println(ninstances(valid_X)) supp_train_labels = train_Y supp_valid_labels = valid_Y supp_train_predictions = functional_model(train_X) supp_valid_predictions = functional_model(valid_X) function get_predicting_function(model) # TODO avoid this definition, just return the model return X->model(X)::Vector{L} end NSDTLeaf{L}(get_predicting_function(functional_model), supp_train_labels, supp_valid_labels, supp_train_predictions, supp_valid_predictions) end ############################################################################################ ############################################################################################ ############################################################################################ function _variable_countmap(leaf::AbstractDecisionLeaf{L}; weighted = false) where {L<:Label} return Tuple{ModalityId,Int}[] end function _variable_countmap(node::DTInternal{L}; weighted = false) where {L<:Label} th = begin d = decision(node) f = feature(d) (f isa AbstractUnivariateFeature) ? [((i_modality(node), f.i_variable), (weighted ? length(supp_labels) : 1)),] : [] end return [ th..., _variable_countmap(left(node); weighted = weighted)..., _variable_countmap(right(node); weighted = weighted)... ] end function variable_countmap(tree::DTree{L}; weighted = false) where {L<:Label} vals = _variable_countmap(root(tree); weighted = weighted) if !weighted countmap(first.(vals)) else c = Dict([var => 0 for var in unique(first.(vals))]) for (var, weight) in vals c[var] += weight end Dict([var => count/sum(values(c)) for (var, count) in c]) end end function variable_countmap(forest::DForest{L}; weighted = false) where {L<:Label} vals = [_variable_countmap(root(t); weighted = weighted) for t in trees(forest)] |> Iterators.flatten if !weighted countmap(first.(vals)) else c = Dict([var => 0 for var in unique(first.(vals))]) for (var, weight) in vals c[var] += weight end Dict([var => count/sum(values(c)) for (var, count) in c]) end end ############################################################################################ ############################################################################################ ############################################################################################ """ Squashes a vector of `DTNode`s into a single leaf using `bestguess`. """ function squashtoleaf(nodes::AbstractVector{<:DTNode}) squashtoleaf(map((n)->(n isa AbstractDecisionLeaf ? n : this(n)), nodes)) end function squashtoleaf(leaves::AbstractVector{<:DTLeaf}) @assert length(unique(predictiontype.(leaves))) == 1 "Cannot squash leaves " * "with different prediction " * "types: $(join(unique(predictiontype.(leaves)), ", "))" L = Union{predictiontype.(leaves)...} labels = collect(Iterators.flatten(map((leaf)->supp_labels(leaf), leaves))) # @show labels # @show L if length(labels) == 0 error("Cannot squash to leaf with empty supporting labels.") end DTLeaf{L}(L.(labels)) end function squashtoleaf(leaves::AbstractVector{<:NSDTLeaf}) @assert length(unique(predictiontype.(leaves))) == 1 "Cannot squash leaves " * "with different prediction " * "types: $(join(unique(predictiontype.(leaves)), ", "))" L = Union{predictiontype.(leaves)...} supp_train_labels = L.(collect(Iterators.flatten(map((leaf)->leaf.supp_train_labels, leaves)))) supp_valid_labels = L.(collect(Iterators.flatten(map((leaf)->leaf.supp_valid_labels, leaves)))) supp_train_predictions = L.(collect(Iterators.flatten(map((leaf)->leaf.supp_train_predictions, leaves)))) supp_valid_predictions = L.(collect(Iterators.flatten(map((leaf)->leaf.supp_valid_predictions, leaves)))) supp_labels = [supp_train_labels..., supp_valid_labels..., supp_train_predictions..., supp_valid_predictions...] predicting_function = (args...; kwargs...)->(bestguess(supp_labels)) DTLeaf{L}( predicting_function, supp_train_labels, supp_valid_labels, supp_train_predictions, supp_valid_predictions, ) end
ModalDecisionTrees
https://github.com/aclai-lab/ModalDecisionTrees.jl.git
[ "MIT" ]
0.5.0
200b2bd9dee3dfe2dcffa1fb51b6dd00d371ed2b
code
6908
export printmodel # export print_tree, print_forest <--- TODO remove # print model function printmodel(model::Union{DTNode,DTree,DForest,RootLevelNeuroSymbolicHybrid}; kwargs...) printmodel(stdout, model; kwargs...) end function printmodel(io::IO, model::Union{DTNode,DTree,DForest,RootLevelNeuroSymbolicHybrid}; kwargs...) print(io, displaymodel(model; kwargs...)) end # function printmodel(io::IO, model::Union{DTNode,DTree}; kwargs...) # print_tree(io, model; kwargs...) # end # function printmodel(io::IO, model::DForest; kwargs...) # print_forest(io, model; kwargs...) # end # function printmodel(io::IO, model::RootLevelNeuroSymbolicHybrid; kwargs...) # print_rlnsdt(io, model; kwargs...) # end # function print_tree(tree::Union{DTNode,DTree}, args...; kwargs...) # print_tree(stdout, tree, args...; kwargs...) # end # function print_forest(forest::DForest, args...; kwargs...) # print_forest(stdout, forest, args...; kwargs...) # end # function print_rlnsdt(rlnsdt::RootLevelNeuroSymbolicHybrid, args...; kwargs...) # print_rlnsdt(stdout, rlnsdt, args...; kwargs...) # end # function print_tree(io::IO, tree::Union{DTNode,DTree}, args...; kwargs...) # print(io, displaymodel(tree; args..., kwargs...)) # end # function print_forest(io::IO, forest::DForest, args...; kwargs...) # print(io, displaymodel(forest; args..., kwargs...)) # end # function print_rlnsdt(io::IO, rlnstd::RootLevelNeuroSymbolicHybrid, args...; kwargs...) # print(io, displaymodel(rlnstd; args..., kwargs...)) # end ############################################################################################ function displaybriefprediction(leaf::DTLeaf) string(prediction(leaf)) end # TODO move to SoleBase and rename to string_ellipsis function str_ellipsis(str, maxcharacters = 60) str = "$(str)" if length(str) <= maxcharacters str else str[1:div(maxcharacters,2)] * "..." * str[(end-div(maxcharacters,2)+1):end] end end function displaybriefprediction(leaf::NSDTLeaf) # "{$(leaf.predicting_function), size = $(Base.summarysize(leaf.predicting_function))}" str = "$(leaf.predicting_function)" "<$(str_ellipsis(str))>" end function get_metrics_str(metrics::NamedTuple) metrics_str_pieces = [] # if haskey(metrics,:n_inst) # push!(metrics_str_pieces, "ninst = $(metrics.n_inst)") # end if haskey(metrics,:confidence) push!(metrics_str_pieces, "conf = $(@sprintf "%.4f" metrics.confidence)") end if haskey(metrics,:lift) push!(metrics_str_pieces, "lift = $(@sprintf "%.2f" metrics.lift)") end if haskey(metrics,:support) push!(metrics_str_pieces, "supp = $(@sprintf "%.4f" metrics.support)") end if haskey(metrics,:conviction) push!(metrics_str_pieces, "conv = $(@sprintf "%.4f" metrics.conviction)") end if haskey(metrics,:sensitivity_share) push!(metrics_str_pieces, "sensitivity_share = $(@sprintf "%.4f" metrics.sensitivity_share)") end if haskey(metrics,:var) push!(metrics_str_pieces, "var = $(@sprintf "%.4f" metrics.var)") end if haskey(metrics,:mae) push!(metrics_str_pieces, "mae = $(@sprintf "%.4f" metrics.mae)") end if haskey(metrics,:rmse) push!(metrics_str_pieces, "rmse = $(@sprintf "%.4f" metrics.rmse)") end metrics_str = join(metrics_str_pieces, ", ") if haskey(metrics,:n_correct) # Classification "$(metrics.n_correct)/$(metrics.n_inst) ($(metrics_str))" else # Regression "$(metrics.n_inst) ($(metrics_str))" end end function displaymodel( tree::DTree; metrics_kwargs..., ) return displaymodel(root(tree); metrics_kwargs...) end function displaymodel( forest::DForest, args...; kwargs..., ) outstr = "" _ntrees = ntrees(forest) for i_tree in 1:_ntrees outstr *= "Tree $(i_tree) / $(_ntrees)\n" outstr *= displaymodel(trees(forest)[i_tree], args...; kwargs...) end return outstr end function displaymodel( nsdt::RootLevelNeuroSymbolicHybrid, args...; kwargs..., ) outstr = "" outstr *= "Feature function: $(nsdt.feature_function)" _ntrees = ntrees(nsdt) for (i_tree,tree) in enumerate(nsdt.trees) outstr *= "Tree $(i_tree) / $(_ntrees)\n" outstr *= displaymodel(tree, args...; kwargs...) end return outstr end function displaymodel( leaf::DTLeaf; indentation_str="", depth = 0, variable_names_map = nothing, max_depth = nothing, hidemodality = false, syntaxstring_kwargs = (;), kwargs..., ) metrics = get_metrics(leaf; kwargs...) metrics_str = get_metrics_str(metrics) return "$(displaybriefprediction(leaf)) : $(metrics_str)\n" end function displaymodel( leaf::NSDTLeaf; indentation_str="", depth = 0, variable_names_map = nothing, max_depth = nothing, hidemodality = false, syntaxstring_kwargs = (;), kwargs..., ) train_metrics_str = get_metrics_str(get_metrics(leaf; train_or_valid = true, kwargs...)) valid_metrics_str = get_metrics_str(get_metrics(leaf; train_or_valid = false, kwargs...)) return "$(displaybriefprediction(leaf)) : {TRAIN: $(train_metrics_str); VALID: $(valid_metrics_str)}\n" end function displaymodel( node::DTInternal; indentation_str="", depth = 0, variable_names_map = nothing, max_depth = nothing, hidemodality = false, syntaxstring_kwargs = (;), # TODO print_rules = false, metrics_kwargs..., ) outstr = "" if isnothing(max_depth) || depth < max_depth dec_str = displaydecision(node; variable_names_map = variable_names_map, hidemodality = hidemodality, syntaxstring_kwargs...) outstr *= "$(rpad(dec_str, 59-(length(indentation_str) == 0 ? length(indentation_str)-1 : length(indentation_str)))) " # outstr *= "$(60-max(length(indentation_str)+1)) " outstr *= displaymodel(this(node); indentation_str = "", metrics_kwargs...) outstr *= indentation_str * "✔ " # "╭✔ outstr *= displaymodel(left(node); indentation_str = indentation_str*"│", depth = depth+1, variable_names_map = variable_names_map, max_depth = max_depth, hidemodality = max_depth, syntaxstring_kwargs = syntaxstring_kwargs, metrics_kwargs..., ) outstr *= indentation_str * "✘ " # "╰✘ outstr *= displaymodel(right(node); indentation_str = indentation_str*" ", depth = depth+1, variable_names_map = variable_names_map, max_depth = max_depth, hidemodality = max_depth, syntaxstring_kwargs = syntaxstring_kwargs, metrics_kwargs..., ) else depth != 0 && (outstr *= " ") outstr *= "[...]\n" end return outstr end
ModalDecisionTrees
https://github.com/aclai-lab/ModalDecisionTrees.jl.git
[ "MIT" ]
0.5.0
200b2bd9dee3dfe2dcffa1fb51b6dd00d371ed2b
code
2150
function dishonor_min_purity_increase(::Type{L}, min_purity_increase, purity, best_purity_times_nt, nt) where {L<:CLabel} (best_purity_times_nt/nt - purity < min_purity_increase) end function dishonor_min_purity_increase(::Type{L}, min_purity_increase, purity, best_purity_times_nt, nt) where {L<:RLabel} # (best_purity_times_nt - tsum * label <= min_purity_increase * nt) # ORIGINAL (best_purity_times_nt/nt - purity < min_purity_increase * nt) end # TODO fix # function _compute_purity( # faster_version assuming L<:Integer and labels going from 1:n_classes # labels ::AbstractVector{L}, # n_classes ::Integer, # weights ::AbstractVector{U} = default_weights(labels); # loss_function ::Union{Nothing,Loss} = default_loss_function(L), # ) where {L<:CLabel,L<:Integer,U} # nc = fill(zero(U), n_classes) # @simd for i in 1:max(length(labels),length(weights)) # nc[labels[i]] += weights[i] # end # nt = sum(nc) # return loss_function(nc, nt)::Float64 # end function compute_purity( labels ::AbstractVector{L}, weights ::AbstractVector{U} = default_weights(labels); loss_function ::Union{Nothing,Loss} = default_loss_function(L), ) where {L<:CLabel,U} nc = Dict{L,U}() @simd for i in 1:max(length(labels),length(weights)) nc[labels[i]] = get(nc, labels[i], 0) + weights[i] end nc = collect(values(nc)) nt = sum(nc) return loss_function(nc, nt)::Float64 end function _compute_purity( labels ::AbstractVector{L}, weights ::AbstractVector{U} = default_weights(labels); loss_function ::Union{Nothing,Loss} = default_loss_function(L), ) where {L<:RLabel,U} # sums = labels .* weights nt = sum(weights) return (loss_function(labels, weights, nt))::Float64 end function compute_purity( labels ::AbstractVector{L}, weights ::AbstractVector{U} = default_weights(labels); loss_function ::Union{Nothing,Loss} = default_loss_function(L), ) where {L<:RLabel,U} _compute_purity(labels, weights; loss_function = loss_function) end
ModalDecisionTrees
https://github.com/aclai-lab/ModalDecisionTrees.jl.git
[ "MIT" ]
0.5.0
200b2bd9dee3dfe2dcffa1fb51b6dd00d371ed2b
code
653
# partially written by Poom Chiarawongse <[email protected]> # adapted from the Julia Base.Sort Library Base.@propagate_inbounds @inline function partition!(v::AbstractVector, w::AbstractVector{T}, pivot::T, region::UnitRange{<:Integer}) where T i, j = 1, length(region) r_start = region.start - 1 @inbounds while true while i <= length(region) && w[i] <= pivot; i += 1; end; while j >= 1 && w[j] > pivot; j -= 1; end; i >= j && break ri = r_start + i rj = r_start + j v[ri], v[rj] = v[rj], v[ri] w[i], w[j] = w[j], w[i] i += 1; j -= 1 end return j end
ModalDecisionTrees
https://github.com/aclai-lab/ModalDecisionTrees.jl.git
[ "MIT" ]
0.5.0
200b2bd9dee3dfe2dcffa1fb51b6dd00d371ed2b
code
3838
using ..ModalDecisionTrees using SoleData using SoleData.DimensionalDatasets using ..ModalDecisionTrees: AbstractFeature, TestOperator using ..ModalDecisionTrees: ModalityId using ..ModalDecisionTrees: DTLeaf, DTNode, DTInternal import SoleData: feature, test_operator, threshold export DecisionPath, DecisionPathNode, get_path_in_tree, get_internalnode_dirname, mk_tree_path, get_tree_path_as_dirpath struct DecisionPathNode taken :: Bool feature :: AbstractFeature test_operator :: TestOperator threshold :: T where T worlds :: AbstractWorlds end taken(n::DecisionPathNode) = n.taken feature(n::DecisionPathNode) = n.feature test_operator(n::DecisionPathNode) = n.test_operator threshold(n::DecisionPathNode) = n.threshold worlds(n::DecisionPathNode) = n.worlds const DecisionPath = Vector{DecisionPathNode} _get_path_in_tree(leaf::DTLeaf, X::Any, i_instance::Integer, worlds::AbstractVector{<:AbstractWorlds}, i_modality::ModalityId, paths::Vector{DecisionPath})::AbstractWorlds = return worlds[i_modality] function _get_path_in_tree(tree::DTInternal, X::MultiLogiset, i_instance::Integer, worlds::AbstractVector{<:AbstractWorlds}, i_modality::Integer, paths::Vector{DecisionPath})::AbstractWorlds satisfied = true (satisfied,new_worlds,worlds_map) = modalstep( modality(X, i_modality(tree)), i_instance, worlds[i_modality(tree)], decision(tree), Val(true) ) worlds[i_modality(tree)] = new_worlds survivors = _get_path_in_tree((satisfied ? left(tree) : right(tree)), X, i_instance, worlds, i_modality(tree), paths) # if survivors of next step are in the list of worlds viewed by one # of the just accumulated "new_worlds" then that world is a survivor # for this step new_survivors::AbstractWorlds = Vector{AbstractWorld}() for curr_w in keys(worlds_map) if length(intersect(worlds_map[curr_w], survivors)) > 0 push!(new_survivors, curr_w) end end pushfirst!(paths[i_instance], DecisionPathNode(satisfied, feature(decision(tree)), test_operator(decision(tree)), thresholda(decision(tree)), deepcopy(new_survivors))) return new_survivors end function get_path_in_tree(tree::DTree{S}, X)::Vector{DecisionPath} where {S} _ninstances = ninstances(X) paths::Vector{DecisionPath} = [ DecisionPath() for i in 1:_ninstances ] for i_instance in 1:_ninstances worlds = ModalDecisionTrees.mm_instance_initialworldset(X, tree, i_instance) _get_path_in_tree(root(tree), X, i_instance, worlds, 1, paths) end paths end function get_internalnode_dirname(node::DTInternal)::String replace(displaydecision(node), " " => "_") end mk_tree_path(leaf::DTLeaf; path::String) = touch(path * "/" * string(prediction(leaf)) * ".txt") function mk_tree_path(node::DTInternal; path::String) dir_name = get_internalnode_dirname(node) mkpath(path * "/Y_" * dir_name) mkpath(path * "/N_" * dir_name) mk_tree_path(left(node); path = path * "/Y_" * dir_name) mk_tree_path(right(node); path = path * "/N_" * dir_name) end function mk_tree_path(tree_hash::String, tree::DTree; path::String) mkpath(path * "/" * tree_hash) mk_tree_path(root(tree); path = path * "/" * tree_hash) end function get_tree_path_as_dirpath(tree_hash::String, tree::DTree, decpath::DecisionPath; path::String)::String current = root(tree) result = path * "/" * tree_hash for node in decpath if current isa DTLeaf break end result *= "/" * (node.taken ? "Y" : "N") * "_" * get_internalnode_dirname(current) current = node.taken ? left(current) : right(current) end result end
ModalDecisionTrees
https://github.com/aclai-lab/ModalDecisionTrees.jl.git
[ "MIT" ]
0.5.0
200b2bd9dee3dfe2dcffa1fb51b6dd00d371ed2b
code
1156
################################################################################ # Experimental features ################################################################################ module experimentals using ModalDecisionTrees using ModalDecisionTrees: relation, feature, test_operator, threshold, is_propositional_decision, is_global_decision using SoleData using SoleData.DimensionalDatasets using SoleLogics using SoleData: nfeatures, nrelations, nmodalities, eachmodality, modality, displaystructure, # relations, # MultiLogiset, SupportedLogiset using SoleData: scalarlogiset using SoleData: AbstractWorld, AbstractRelation using SoleData: AbstractWorlds, Worlds using SoleLogics: FullDimensionalFrame using SoleData.DimensionalDatasets using SoleData: MultiLogiset using SoleData: Worlds using SoleData: worldtype using SoleData: OneWorld using SoleData: Interval, Interval2D using SoleData: IARelations MDT = ModalDecisionTrees SL = SoleLogics include("parse.jl") include("decisionpath.jl") end
ModalDecisionTrees
https://github.com/aclai-lab/ModalDecisionTrees.jl.git
[ "MIT" ]
0.5.0
200b2bd9dee3dfe2dcffa1fb51b6dd00d371ed2b
code
14083
function parse_tree( tree_str::String; check_format = true, _depth = 0, offset = 0, openpar = SoleData.UVF_OPENING_PARENTHESIS, closepar = SoleData.UVF_CLOSING_PARENTHESIS, varprefix = SoleData.UVF_VARPREFIX, worldtypes = Type{SL.AbstractWorld}[], initconditions = MDT.InitialCondition[], ) @assert openpar in ["[", "("] "Unexpected opening bracket: $(openpar)" @assert closepar in ["]", ")"] "Unexpected closing bracket: $(closepar)" @assert length(worldtypes) > 0 "Please, provide argument `worldtypes`." @assert length(initconditions) > 0 "Please, provide argument `initconditions`." worldtypes = Type{<:SL.AbstractWorld}[worldtypes...] initconditions = MDT.InitialCondition[initconditions...] root = _parse_tree(tree_str; check_format = check_format, _depth = _depth, offset = offset, varprefix = varprefix) DTree(root, worldtypes, initconditions) end function _parse_tree( tree_str::String; check_format = true, _depth = 0, offset = 0, varprefix = SoleData.UVF_VARPREFIX, openpar = SoleData.UVF_OPENING_PARENTHESIS, closepar = SoleData.UVF_CLOSING_PARENTHESIS, ) ######################################################################################## ######################################################################################## ######################################################################################## child_kwargs = (; varprefix = varprefix, ) V = varprefix # r"^[-+]?([0-9]+(\.[0-9]*)?|\.[0-9]+)$" # _threshold_ex = "[-+]?(?:[0-9]+(\\.[0-9]*)?|\\.[0-9]+)" # TODO use smarter regex (e.g., https://www.oreilly.com/library/view/regular-expressions-cookbook/9781449327453/ch06s10.html ) # _threshold_ex = "[^\\)\\s)]+" # TODO use smarter regex (e.g., https://www.oreilly.com/library/view/regular-expressions-cookbook/9781449327453/ch06s10.html ) # Regex("[-+]?([0-9]+(\\.[0-9]*)?|\\.[0-9]+)") == r"[-+]?([0-9]+(\.[0-9]*)?|\.[0-9]+)" # _threshold_ex = "[-+]?([0-9]+(\\.[0-9]*)?|\\.[0-9]+)" # GOOD _threshold_ex = "[-+]?(?:[0-9]+(?:\\.[0-9]*)?|\\.[0-9]+)(?:e?[-+]?)(?:[0-9]+)?" # https://www.oreilly.com/library/view/regular-expressions-cookbook/9781449327453/ch06s10.html _indentation_ex = "[ │]*[✔✘]" _metrics_ex = "\\(\\S*.*\\)" _feature_ex = "(?:[^\\s\\(\\)]+)\\s+(?:(?:⫹|⫺|⪳|⪴|⪵|⪶|↗|↘|>|<|=|≤|≥|<=|>=))" _normal_feature_ex_capturing = "^(\\S*)\\$openpar$V(\\d+)\\$closepar\\s+((?:>|<|=|≤|≥|<=|>=))\$" _propositional_feature_ex_capturing = "^$V(\\d+)\\s+((?:>|<|=|≤|≥|<=|>=))\$" _special_feature_ex_capturing = "^$V(\\d+)\\s+((?:⫹|⫺|⪳|⪴|⪵|⪶|↗|↘))\$" _decision_pr = "$(_feature_ex)\\s+(?:$(_threshold_ex))" _decision_pr__capturing = "($(_feature_ex))\\s+($(_threshold_ex))" leaf_ex = "(?:\\S+)\\s+:\\s+\\d+/\\d+(?:\\s+(?:$(_metrics_ex)))?" leaf_ex__capturing = "(\\S+)\\s+:\\s+(\\d+)/(\\d+)(?:\\s+($(_metrics_ex)))?" decision_ex = "(?:SimpleDecision\\()?(?:⟨(?:\\S+)⟩\\s*)?(?:$(_decision_pr)|\\(\\s*$(_decision_pr)\\s*\\))(?:\\))?" decision_ex__capturing = "(?:SimpleDecision\\()?(?:⟨(\\S+)⟩\\s*)?\\(?\\s*$(_decision_pr__capturing)\\s*\\)?(?:\\))?" # _decision_ex__capturing = "(?:⟨(\\S+)⟩\\s*)?\\s*($(_decision_pr__capturing)|\\(\\s*$(_decision_pr__capturing)\\s*\\))" # TODO default frame to 1 # split_ex = "(?:\\s*{(\\d+)}\\s+)?($(decision_ex))(?:\\s+($(leaf_ex)))?" split_ex = "\\s*{(\\d+)}\\s+($(decision_ex))(?:\\s*($(leaf_ex)))?" blank_line_regex = Regex("^\\s*\$") split_line_regex = Regex("^($(_indentation_ex)\\s+)?$(split_ex)\\s*\$") leaf_line_regex = Regex("^($(_indentation_ex)\\s+)?$(leaf_ex)\\s*\$") function _parse_simple_real(x) x = parse(Float64, x) x = isinteger(x) ? Int(x) : x end function _parse_decision((i_this_line, decision_str)::Tuple{<:Integer,<:AbstractString},) function _parse_relation(relation_str) # parsable_rels = concretesubtypes(AbstractRelation) TODO parsable_rels = [ SL.globalrel, SL.identityrel, SoleLogics.IARelations..., SoleLogics.IA3Relations..., SoleLogics.IA7Relations..., SoleLogics.RCC5Relations..., SoleLogics.RCC8Relations..., ] |> unique rel_d = Dict([ [ "Ai" => SL.IA_Ai, "Li" => SL.IA_Li, "Bi" => SL.IA_Bi, "Ei" => SL.IA_Ei, "Di" => SL.IA_Di, "Oi" => SL.IA_Oi, ]..., [syntaxstring(r) => r for r in parsable_rels]... ]) if isnothing(relation_str) identityrel else rel_d[relation_str] end end function _parse_feature_test_operator(feature_str) m_normal = match(Regex(_normal_feature_ex_capturing), feature_str) m_special = match(Regex(_special_feature_ex_capturing), feature_str) m_propos = match(Regex(_propositional_feature_ex_capturing), feature_str) if !isnothing(m_normal) && length(m_normal) == 3 feature_fun, i_variable, test_operator = m_normal function eval_feature_fun_constructor(fun_str) if fun_str == "min" MDT.VariableMin elseif fun_str == "max" MDT.VariableMax else try fun = eval(Symbol(fun_str)) (i_variable)->MDT.UnivariateFeature(i_variable, fun) catch (i_variable)->MDT.UnivariateNamedFeature(i_variable, fun_str) end end end feature_type = eval_feature_fun_constructor(feature_fun) i_variable = parse(Int, i_variable) test_operator = eval(Symbol(test_operator)) feature_type(i_variable), test_operator elseif !isnothing(m_special) && length(m_special) == 2 i_variable, feature_fun_test_operator = m_special feature_fun_test_operator_d = Dict([ "⪴" => (i_variable)->(SoleData.VariableMin(i_variable), ≥), "⪴₈₀" => (i_variable)->(SoleData.VariableSoftMin(i_variable, 80), ≥), "⪳₈₀" => (i_variable)->(SoleData.VariableSoftMax(i_variable, 80), ≤), "⪳" => (i_variable)->(SoleData.VariableMax(i_variable), ≤), "↘" => (i_variable)->(SoleData.VariableMin(i_variable), ≤), "↗" => (i_variable)->(SoleData.VariableMax(i_variable), ≥), ]) feature_fun_test_operator = feature_fun_test_operator_d[feature_fun_test_operator] i_variable = parse(Int, i_variable) feature_fun_test_operator(i_variable) elseif !isnothing(m_propos) && length(m_propos) == 2 i_variable, test_operator = m_propos i_variable = parse(Int, i_variable) feature = MDT.UnivariateNamedFeature(i_variable, "") test_operator = eval(Symbol(test_operator)) feature, test_operator else error("Unexpected format encountered on line $(i_this_line+offset) when parsing feature: \"$(feature_str)\". Matches $(m_normal), $(m_special), $(m_propos)") end end print(repeat(" ", _depth)) m = match(Regex(decision_ex), decision_str) @assert !isnothing(m) "Unexpected format encountered on line $(i_this_line+offset) when parsing decision: \"$(decision_str)\". Matches: $(m)" m = match(Regex(decision_ex__capturing), decision_str) @assert !isnothing(m) && length(m) == 3 "Unexpected format encountered on line $(i_this_line+offset) when parsing decision: \"$(decision_str)\". Matches: $(m) Expected matches = 3" # print(repeat(" ", _depth)) # println(m) # @show m[3] relation, feature_test_operator, threshold = m relation = _parse_relation(relation) feature, test_operator = _parse_feature_test_operator(feature_test_operator) threshold = _parse_simple_real(threshold) RestrictedDecision(ScalarExistentialFormula(relation, feature, test_operator, threshold)) end function _parse_leaf((i_this_line, leaf_str)::Tuple{<:Integer,<:AbstractString},) m = match(Regex(leaf_ex__capturing), leaf_str) @assert !isnothing(m) && length(m) == 4 "Unexpected format encountered on line $(i_this_line+offset) when parsing leaf: \"$(leaf_str)\". Matches: $(m) Expected matches = 4" # print(repeat(" ", _depth)) # println(m) class, n_good, n_tot, metrics = m class = String(class) n_good = parse(Int, n_good) n_tot = parse(Int, n_tot) # println(class, n_good, n_tot, metrics) # Note: metrics are not used DTLeaf(class, String[fill(class, n_good)..., fill("NO_$(class)", n_tot-n_good)...]) end ######################################################################################## ######################################################################################## ######################################################################################## # Can't do this because then i_line is misaligned # tree_str = strip(tree_str) lines = enumerate(split(tree_str, "\n")) |> collect if check_format for (i_line, line) in lines !isempty(strip(line)) || continue _line = line blank_match = match(blank_line_regex, _line) split_match = match(split_line_regex, _line) leaf_match = match(leaf_line_regex, _line) is_blank = !isnothing(blank_match) is_split = !isnothing(split_match) is_leaf = !isnothing(leaf_match) # DEBUG # println(match(Regex("($(_indentation_ex)\\s+)?"), _line)) # println(match(Regex("^\\s*($(_indentation_ex)\\s+)?({(\\d+)}\\s+)?"), _line)) # println(match(Regex("^\\s*($(_indentation_ex)\\s+)?({(\\d+)}\\s+)?$V(\\d+)"), _line)) # println(match(Regex("^\\s*($(_indentation_ex)\\s+)?({(\\d+)}\\s+)?(\\S+\\s+)?$V(\\d+)"), _line)) # println(match(Regex("^\\s*($(_indentation_ex)\\s+)?({(\\d+)}\\s+)?(\\S+\\s+)?$V(\\d+)\\s+([⫹⫺⪳⪴⪵⪶↗↘])"), _line)) # println(match(Regex("^\\s*($(_indentation_ex)\\s+)?({(\\d+)}\\s+)?$(_decision_pr)"), _line)) # println(match(Regex("^\\s*($(_indentation_ex)\\s+)?({(\\d+)}\\s+)?$(decision_ex)"), _line)) # println(match(Regex("^\\s*($(_indentation_ex)\\s+)?({(\\d+)}\\s+)?$(decision_ex)\\s+$(leaf_ex)"), _line)) @assert xor(is_blank, is_split, is_leaf) "Could not parse line $(i_line+offset): \"$(line)\". $((is_blank, is_split, is_leaf))" end end _lines = filter(((i_line, line),)->(!isempty(strip(line))), lines) if length(_lines) == 1 # a leaf _parse_leaf(_lines[1]) else # a split this_line, yes_line, no_line = begin this_line = nothing yes_line = -Inf no_line = Inf for (i_line, line) in lines !isempty(strip(line)) || continue _line = line if !isnothing(match(r"^\s*{.*$", _line)) @assert isnothing(this_line) "Cannot have more than one row beginning with '{'" this_line = i_line yes_line = i_line + 1 # print(repeat(" ", _depth)) # println("First: $(_line)") elseif i_line == yes_line @assert startswith(_line, "✔") "Line $(i_line+offset) \"$(_line)\" should start with '✔'" elseif no_line > i_line > yes_line if !startswith(_line, "│") @assert startswith(_line, "✘") "Line $(i_line+offset) \"$(_line)\" should start with '✘'" no_line = i_line-1 end else @assert startswith(_line, " ") "Line $(i_line+offset) \"$(_line)\" should start with ' '" end end this_line, yes_line, no_line end function clean_lines(lines) join([(isempty(strip(line)) ? line : begin begin_ex = Regex("^([ │]|[✔✘]\\s+)(.*)\$") match(begin_ex, line)[2] end) for (i_line, line) in lines], "\n") end left_tree_str, right_tree_str = clean_lines(lines[yes_line:no_line]), clean_lines(lines[no_line+1:end]) i_this_line, this_line = lines[this_line] print(repeat(" ", _depth)) m = match(Regex(split_ex), this_line) @assert !isnothing(m) && length(m) == 3 "Unexpected format encountered on line $(i_this_line+offset) : \"$(this_line)\". Matches: $(m) Expected matches = 3" # println(m) i_modality, decision_str, leaf_str = m # @show i_modality, decision_str, leaf_str i_modality = parse(Int, i_modality) decision = _parse_decision((i_this_line, decision_str),) # println(clean_lines(lines[yes_line:no_line])) # println("\n") # println(clean_lines(lines[no_line+1:end])) left = _parse_tree(left_tree_str; offset = yes_line-1, check_format = false, _depth = _depth + 1, child_kwargs...) right = _parse_tree(right_tree_str; offset = no_line-1, check_format = false, _depth = _depth + 1, child_kwargs...) if isnothing(leaf_str) DTInternal(i_modality, decision, left, right) else this = _parse_leaf((i_this_line, leaf_str),) DTInternal(i_modality, decision, this, left, right) end end end
ModalDecisionTrees
https://github.com/aclai-lab/ModalDecisionTrees.jl.git
[ "MIT" ]
0.5.0
200b2bd9dee3dfe2dcffa1fb51b6dd00d371ed2b
code
6100
""" Adapted from https://github.com/JuliaAI/DecisionTree.jl/blob/dev/src/abstract_trees.jl """ import AbstractTrees: children, printnode MDT = ModalDecisionTrees """ Implementation of the `AbstractTrees.jl`-interface (see: [AbstractTrees.jl](https://github.com/JuliaCollections/AbstractTrees.jl)). The functions `children` and `printnode` make up the interface traits of `AbstractTrees.jl` (see below for details). The goal of this implementation is to wrap a `ModalDecisionTree` in this abstract layer, so that a plot recipe for visualization of the tree can be created that doesn't rely on any implementation details of `ModalDecisionTrees.jl`. That opens the possibility to create a plot recipe which can be used by a variety of tree-like models. For a more detailed explanation of this concept have a look at the follwing article in "Towards Data Science": ["If things are not ready to use"](https://towardsdatascience.com/part-iii-if-things-are-not-ready-to-use-59d2db378bec) """ """ InfoNode{T,S} InfoLeaf{T} These types are introduced so that additional information currently not present in a `ModalDecisionTree`-structure -- for example, the names of the variables -- can be used for visualization. This additional information is stored in the variable `info` of these types. It is a `NamedTuple`. So it can be used to store arbitraty information, apart from the two points mentioned. In analogy to the type definitions of `ModalDecisionTree`, the generic type `S` is the type of the variable values used within a node as a threshold for the splits between its children and `T` is the type of the output given (basically, a Number or a String). """ struct InfoNode{T,S} node :: MDT.DTInternal{T,S} info :: NamedTuple end struct InfoLeaf{T} leaf :: MDT.AbstractDecisionLeaf{T} info :: NamedTuple end """ wrap(node::MDT.DTInternal, info = NamedTuple()) wrap(leaf::MDT.AbstractDecisionLeaf, info = NamedTuple()) Add to each `node` (or `leaf`) the additional information `info` and wrap both in an `InfoNode`/`InfoLeaf`. Typically a `node` or a `leaf` is obtained by creating a decision tree using either the native interface of `ModalDecisionTrees.jl` or via other interfaces which are available for this package (e.g., `MLJ`, see their docs for further details). Using the function `build_tree` of the native interface returns such an object. To use a ModalDecisionTree `mdt` (obtained this way) with the abstraction layer provided by the `AbstractTrees`-interface implemented here and optionally add variable names (`modality_variable_names`, an arrays of arrays of strings) use the following syntax: 1. `wdc = wrap(mdt)` 2. `wdc = wrap(mdt, (modality_variable_names = modality_variable_names, ))` In the first case `mdt` gets just wrapped, no information is added. No. 2 adds variable names. Note that the trailing comma is needed, in order to create a NamedTuple. """ wrap(node::MDT.DTree, info::NamedTuple = NamedTuple()) = wrap(root(node), info = info) wrap(node::MDT.DTInternal, info::NamedTuple = NamedTuple()) = InfoNode(node, info) wrap(leaf::MDT.AbstractDecisionLeaf, info::NamedTuple = NamedTuple()) = InfoLeaf(leaf, info) """ children(node::InfoNode) Return for each `node` given, its children. In case of a `ModalDecisionTree` there are always exactly two children, because the model produces binary trees where all nodes have exactly one left and one right child. `children` is used for tree traversal. The additional information `info` is carried over from `node` to its children. """ children(dt::MDT.DTree) = children(root(dt)) children(dt_node::MDT.DTInternal) = ( left(dt_node), right(dt_node), ) children(dt_leaf::MDT.AbstractDecisionLeaf) = () children(node::InfoNode) = ( wrap(left(node.node), node.info), wrap(right(node.node), node.info), ) children(leaf::InfoLeaf) = () """ TODO use AbstractTrees.nodevalue when a version > 0.4 is available """ _nodevalue(dt_node::MDT.DTInternal) = (i_modality(dt_node), decision(dt_node)) _nodevalue(dt_leaf::MDT.AbstractDecisionLeaf) = (prediction(dt_leaf), ) _nodevalue(node::InfoNode) = _nodevalue(node.node) _nodevalue(leaf::InfoLeaf) = _nodevalue(leaf.node) """ printnode(io::IO, node::InfoNode) printnode(io::IO, leaf::InfoLeaf) Write a printable representation of `node` or `leaf` to output-stream `io`. If `node.info`/`leaf.info` have a field called - `modality_variable_names` it is expected to be an array of arrays of variable names corresponding to the variable names used in the tree nodes; note that there are two layers of reference because variables are grouped into `modalities` (see MLJ's docs for ModalDecisionTree: @doc ModalDecisionTree) They will be used for printing instead of the ids. Note that the left subtree of any split node represents the 'yes-branch', while the right subtree the 'no-branch', respectively. `print_tree` outputs the left subtree first and then below the right subtree. """ function printnode(io::IO, dt_node::MDT.DTInternal) print(io, displaydecision(dt_node)) end function printnode(io::IO, dt_leaf::MDT.AbstractDecisionLeaf) metrics = MDT.get_metrics(dt_leaf) print(io, MDT.displaybriefprediction(dt_leaf), " ($(metrics.n_correct)/$(metrics.n_inst))") end # https://discourse.julialang.org/t/filtering-keys-out-of-named-tuples/73564 filter_nt_fields(f, nt) = NamedTuple{filter(f, keys(nt))}(nt) function printnode(io::IO, node::InfoNode) kwargs = filter_nt_fields(x -> x in [:variable_names_map, :threshold_display_method, :use_feature_abbreviations], node.info) dt_node = node.node print(io, displaydecision(dt_node; kwargs...)) end function printnode(io::IO, leaf::InfoLeaf) dt_leaf = leaf.leaf metrics = MDT.get_metrics(dt_leaf) # if :class_labels ∈ keys(leaf.info) # print(io, leaf.info.class_labels[MDT.displaybriefprediction(dt_leaf)], " ($(metrics.n_correct)/$(metrics.n_inst))") # else print(io, MDT.displaybriefprediction(dt_leaf), " ($(metrics.n_correct)/$(metrics.n_inst))") # end end
ModalDecisionTrees
https://github.com/aclai-lab/ModalDecisionTrees.jl.git
[ "MIT" ]
0.5.0
200b2bd9dee3dfe2dcffa1fb51b6dd00d371ed2b
code
9208
# Inspired from JuliaAI/MLJDecisionTreeInterface.jl module MLJInterface export ModalDecisionTree, ModalRandomForest export depth, wrapdataset using MLJModelInterface using MLJModelInterface.ScientificTypesBase using CategoricalArrays using DataFrames using DataStructures using Tables using Random using Random: GLOBAL_RNG using SoleLogics using SoleLogics: AbstractRelation using SoleData using SoleData.MLJUtils using SoleData: TestOperator using SoleModels using ModalDecisionTrees using ModalDecisionTrees: InitialCondition const MMI = MLJModelInterface const MDT = ModalDecisionTrees const _package_url = "https://github.com/giopaglia/$(MDT).jl" include("MLJ/default-parameters.jl") include("MLJ/sanity-checks.jl") include("MLJ/printer.jl") include("MLJ/wrapdataset.jl") include("MLJ/feature-importance.jl") include("MLJ/ModalDecisionTree.jl") include("MLJ/ModalRandomForest.jl") include("MLJ/docstrings.jl") const SymbolicModel = Union{ ModalDecisionTree, ModalRandomForest, } const TreeModel = Union{ ModalDecisionTree, } const ForestModel = Union{ ModalRandomForest, } include("MLJ/downsize.jl") include("MLJ/clean.jl") ############################################################################################ ############################################################################################ ############################################################################################ # DecisionTree.jl (https://github.com/JuliaAI/DecisionTree.jl) is the main package # for decision tree learning in Julia. These definitions allow for ModalDecisionTrees.jl # to act as a drop-in replacement for DecisionTree.jl. Well, more or less. depth(t::MDT.DTree) = height(t) ############################################################################################ ############################################################################################ ############################################################################################ function MMI.fit(m::SymbolicModel, verbosity::Integer, X, y, var_grouping, classes_seen=nothing, w=nothing) # @show get_kwargs(m, X) model = begin if m isa ModalDecisionTree MDT.build_tree(X, y, w; get_kwargs(m, X)...) elseif m isa ModalRandomForest MDT.build_forest(X, y, w; get_kwargs(m, X)...) else error("Unexpected model type: $(typeof(m))") end end if m.post_prune merge_purity_threshold = m.merge_purity_threshold if isnothing(merge_purity_threshold) if !isnothing(classes_seen) merge_purity_threshold = Inf else error("Please, provide a `merge_purity_threshold` parameter (maximum MAE at splits).") end end model = MDT.prune(model; simplify = true, max_performance_at_split = merge_purity_threshold) end verbosity < 2 || MDT.printmodel(model; max_depth = m.display_depth, variable_names_map = var_grouping) translate_function = m->ModalDecisionTrees.translate(m, (; # syntaxstring_kwargs = (; hidemodality = (length(var_grouping) == 1), variable_names_map = var_grouping) )) rawmodel_full = model rawmodel = MDT.prune(model; simplify = true) solemodel_full = translate_function(model) solemodel = translate_function(rawmodel) fitresult = ( model = model, rawmodel = rawmodel, solemodel = solemodel, var_grouping = var_grouping, ) printer = ModelPrinter(m, model, solemodel, var_grouping) cache = nothing report = ( printmodel = printer, sprinkle = (Xnew, ynew; simplify = false)->begin (Xnew, ynew, var_grouping, classes_seen, w) = MMI.reformat(m, Xnew, ynew; passive_mode = true) preds, sprinkledmodel = ModalDecisionTrees.sprinkle(model, Xnew, ynew) if simplify sprinkledmodel = MDT.prune(sprinkledmodel; simplify = true) end preds, translate_function(sprinkledmodel) end, # TODO remove redundancy? model = solemodel, model_full = solemodel_full, rawmodel = rawmodel, rawmodel_full = rawmodel_full, solemodel = solemodel, solemodel_full = solemodel_full, var_grouping = var_grouping, # LEGACY with JuliaIA/DecisionTree.jl print_tree = printer, # features = ?, ) if !isnothing(classes_seen) report = merge(report, (; classes_seen = classes_seen, )) fitresult = merge(fitresult, (; classes_seen = classes_seen, )) end return fitresult, cache, report end MMI.fitted_params(::TreeModel, fitresult) = merge(fitresult, (; tree = fitresult.rawmodel)) MMI.fitted_params(::ForestModel, fitresult) = merge(fitresult, (; forest = fitresult.rawmodel)) ############################################################################################ ############################################################################################ ############################################################################################ function MMI.predict(m::SymbolicModel, fitresult, Xnew, var_grouping = nothing) if !isnothing(var_grouping) && var_grouping != fitresult.var_grouping @warn "variable grouping differs from the one used in training! " * "training var_grouping: $(fitresult.var_grouping)" * "var_grouping = $(var_grouping)" * "\n" end MDT.apply_proba(fitresult.rawmodel, Xnew, get(fitresult, :classes_seen, nothing); suppress_parity_warning = true) end ############################################################################################ # DATA FRONT END ############################################################################################ function MMI.reformat(m::SymbolicModel, X, y, w = nothing; passive_mode = false) X, var_grouping = wrapdataset(X, m; passive_mode = passive_mode) y, classes_seen = fix_y(y) (X, y, var_grouping, classes_seen, w) end MMI.selectrows(::SymbolicModel, I, X, y, var_grouping, classes_seen, w = nothing) = (MMI.selectrows(X, I), MMI.selectrows(y, I), var_grouping, classes_seen, MMI.selectrows(w, I),) # For predict function MMI.reformat(m::SymbolicModel, Xnew) Xnew, var_grouping = wrapdataset(Xnew, m; passive_mode = true) (Xnew, var_grouping) end MMI.selectrows(::SymbolicModel, I, Xnew, var_grouping) = (MMI.selectrows(Xnew, I), var_grouping,) # MMI.fitted_params(::SymbolicModel, fitresult) = fitresult ############################################################################################ # FEATURE IMPORTANCES ############################################################################################ MMI.reports_feature_importances(::Type{<:SymbolicModel}) = true function MMI.feature_importances(m::SymbolicModel, fitresult, report) # generate feature importances for report if !(m.feature_importance == :split) error("Unexpected feature_importance encountered: $(m.feature_importance).") end featimportance_dict = compute_featureimportance(fitresult.rawmodel, fitresult.var_grouping; normalize=true) featimportance_vec = collect(featimportance_dict) sort!(featimportance_vec, rev=true, by=x->last(x)) return featimportance_vec end ############################################################################################ # METADATA (MODEL TRAITS) ############################################################################################ MMI.metadata_pkg.( ( ModalDecisionTree, ModalRandomForest, # DecisionTreeRegressor, # RandomForestRegressor, # AdaBoostStumpClassifier, ), name = "$(MDT)", package_uuid = "e54bda2e-c571-11ec-9d64-0242ac120002", package_url = _package_url, is_pure_julia = true, is_wrapper=false, package_license = "MIT", ) for (model, human_name) in [ (ModalDecisionTree, "Modal Decision Tree"), (ModalRandomForest, "Modal Random Forest"), ] MMI.metadata_model( model, input_scitype = Union{ Table( Continuous, AbstractArray{<:Continuous,0}, AbstractArray{<:Continuous,1}, AbstractArray{<:Continuous,2}, Count, AbstractArray{<:Count,0}, AbstractArray{<:Count,1}, AbstractArray{<:Count,2}, OrderedFactor, AbstractArray{<:OrderedFactor,0}, AbstractArray{<:OrderedFactor,1}, AbstractArray{<:OrderedFactor,2}, ), }, target_scitype = Union{ AbstractVector{<:Multiclass}, AbstractVector{<:Continuous}, AbstractVector{<:Count}, AbstractVector{<:Finite}, AbstractVector{<:Textual} }, human_name = human_name, supports_weights = true, load_path = "$MDT.$(model)", ) end end using .MLJInterface
ModalDecisionTrees
https://github.com/aclai-lab/ModalDecisionTrees.jl.git
[ "MIT" ]
0.5.0
200b2bd9dee3dfe2dcffa1fb51b6dd00d371ed2b
code
5299
mutable struct ModalDecisionTree <: MMI.Probabilistic ## Pruning conditions max_depth :: Union{Nothing,Int} min_samples_leaf :: Union{Nothing,Int} min_purity_increase :: Union{Nothing,Float64} max_purity_at_leaf :: Union{Nothing,Float64} max_modal_depth :: Union{Nothing,Int} ## Logic parameters # Relation set relations :: Union{ Nothing, # defaults to a well-known relation set, depending on the data; Symbol, # one of the relation sets specified in AVAILABLE_RELATIONS; Vector{<:AbstractRelation}, # explicitly specify the relation set; # Vector{<:Union{Symbol,Vector{<:AbstractRelation}}}, # MULTIMODAL CASE: specify a relation set for each modality; Function # A function worldtype -> relation set. } # Condition set features :: Union{ Nothing, # defaults to scalar conditions (with ≥ and <) on well-known feature functions (e.g., minimum, maximum), applied to all variables; Vector{<:Union{SoleData.VarFeature,Base.Callable}}, # scalar conditions with ≥ and <, on an explicitly specified feature set (callables to be applied to each variable, or VarFeature objects); Vector{<:Tuple{Base.Callable,Integer}}, # scalar conditions with ≥ and <, on a set of features specified as a set of callables to be applied to a set of variables each; Vector{<:Tuple{TestOperator,<:Union{SoleData.VarFeature,Base.Callable}}}, # explicitly specify the pairs (test operator, feature); Vector{<:SoleData.ScalarMetaCondition}, # explicitly specify the scalar condition set. } conditions :: Union{ Nothing, # defaults to scalar conditions (with ≥ and <) on well-known feature functions (e.g., minimum, maximum), applied to all variables; Vector{<:Union{SoleData.VarFeature,Base.Callable}}, # scalar conditions with ≥ and <, on an explicitly specified feature set (callables to be applied to each variable, or VarFeature objects); Vector{<:Tuple{Base.Callable,Integer}}, # scalar conditions with ≥ and <, on a set of features specified as a set of callables to be applied to a set of variables each; Vector{<:Tuple{TestOperator,<:Union{SoleData.VarFeature,Base.Callable}}}, # explicitly specify the pairs (test operator, feature); Vector{<:SoleData.ScalarMetaCondition}, # explicitly specify the scalar condition set. } # Type for the extracted feature values featvaltype :: Type # Initial conditions initconditions :: Union{ Nothing, # defaults to standard conditions (e.g., start_without_world) Symbol, # one of the initial conditions specified in AVAILABLE_INITIALCONDITIONS; InitialCondition, # explicitly specify an initial condition for the learning algorithm. } ## Miscellaneous downsize :: Union{Bool,NTuple{N,Integer} where N,Function} print_progress :: Bool rng :: Union{Random.AbstractRNG,Integer} ## DecisionTree.jl parameters display_depth :: Union{Nothing,Int} min_samples_split :: Union{Nothing,Int} n_subfeatures :: Union{Nothing,Int,Float64,Function} post_prune :: Bool merge_purity_threshold :: Union{Nothing,Float64} feature_importance :: Symbol end # keyword constructor function ModalDecisionTree(; max_depth = nothing, min_samples_leaf = nothing, min_purity_increase = nothing, max_purity_at_leaf = nothing, max_modal_depth = nothing, # relations = nothing, features = nothing, conditions = nothing, featvaltype = Float64, initconditions = nothing, # downsize = true, print_progress = false, rng = Random.GLOBAL_RNG, # display_depth = nothing, min_samples_split = nothing, n_subfeatures = nothing, post_prune = false, merge_purity_threshold = nothing, feature_importance = :split, ) model = ModalDecisionTree( max_depth, min_samples_leaf, min_purity_increase, max_purity_at_leaf, max_modal_depth, # relations, features, conditions, featvaltype, initconditions, # downsize, print_progress, rng, # display_depth, min_samples_split, n_subfeatures, post_prune, merge_purity_threshold, feature_importance, ) message = MMI.clean!(model) isempty(message) || @warn message return model end
ModalDecisionTrees
https://github.com/aclai-lab/ModalDecisionTrees.jl.git
[ "MIT" ]
0.5.0
200b2bd9dee3dfe2dcffa1fb51b6dd00d371ed2b
code
5476
mutable struct ModalRandomForest <: MMI.Probabilistic sampling_fraction :: Float64 ntrees :: Int ## Pruning conditions max_depth :: Union{Nothing,Int} min_samples_leaf :: Union{Nothing,Int} min_purity_increase :: Union{Nothing,Float64} max_purity_at_leaf :: Union{Nothing,Float64} max_modal_depth :: Union{Nothing,Int} ## Logic parameters # Relation set relations :: Union{ Nothing, # defaults to a well-known relation set, depending on the data; Symbol, # one of the relation sets specified in AVAILABLE_RELATIONS; Vector{<:AbstractRelation}, # explicitly specify the relation set; # Vector{<:Union{Symbol,Vector{<:AbstractRelation}}}, # MULTIMODAL CASE: specify a relation set for each modality; Function # A function worldtype -> relation set. } # Condition set features :: Union{ Nothing, # defaults to scalar conditions (with ≥ and <) on well-known feature functions (e.g., minimum, maximum), applied to all variables; Vector{<:Union{SoleData.VarFeature,Base.Callable}}, # scalar conditions with ≥ and <, on an explicitly specified feature set (callables to be applied to each variable, or VarFeature objects); Vector{<:Tuple{Base.Callable,Integer}}, # scalar conditions with ≥ and <, on a set of features specified as a set of callables to be applied to a set of variables each; Vector{<:Tuple{TestOperator,<:Union{SoleData.VarFeature,Base.Callable}}}, # explicitly specify the pairs (test operator, feature); Vector{<:SoleData.ScalarMetaCondition}, # explicitly specify the scalar condition set. } conditions :: Union{ Nothing, # defaults to scalar conditions (with ≥ and <) on well-known feature functions (e.g., minimum, maximum), applied to all variables; Vector{<:Union{SoleData.VarFeature,Base.Callable}}, # scalar conditions with ≥ and <, on an explicitly specified feature set (callables to be applied to each variable, or VarFeature objects); Vector{<:Tuple{Base.Callable,Integer}}, # scalar conditions with ≥ and <, on a set of features specified as a set of callables to be applied to a set of variables each; Vector{<:Tuple{TestOperator,<:Union{SoleData.VarFeature,Base.Callable}}}, # explicitly specify the pairs (test operator, feature); Vector{<:SoleData.ScalarMetaCondition}, # explicitly specify the scalar condition set. } # Type for the extracted feature values featvaltype :: Type # Initial conditions initconditions :: Union{ Nothing, # defaults to standard conditions (e.g., start_without_world) Symbol, # one of the initial conditions specified in AVAILABLE_INITIALCONDITIONS; InitialCondition, # explicitly specify an initial condition for the learning algorithm. } ## Miscellaneous downsize :: Union{Bool,NTuple{N,Integer} where N,Function} print_progress :: Bool rng :: Union{Random.AbstractRNG,Integer} ## DecisionTree.jl parameters display_depth :: Union{Nothing,Int} min_samples_split :: Union{Nothing,Int} n_subfeatures :: Union{Nothing,Int,Float64,Function} post_prune :: Bool merge_purity_threshold :: Union{Nothing,Float64} feature_importance :: Symbol end # keyword constructor function ModalRandomForest(; sampling_fraction = 0.7, ntrees = 10, max_depth = nothing, min_samples_leaf = nothing, min_purity_increase = nothing, max_purity_at_leaf = nothing, max_modal_depth = nothing, # relations = nothing, features = nothing, conditions = nothing, featvaltype = Float64, initconditions = nothing, # downsize = true, print_progress = (ntrees > 50), rng = Random.GLOBAL_RNG, # display_depth = nothing, min_samples_split = nothing, n_subfeatures = nothing, post_prune = false, merge_purity_threshold = nothing, feature_importance = :split, ) model = ModalRandomForest( sampling_fraction, ntrees, # max_depth, min_samples_leaf, min_purity_increase, max_purity_at_leaf, max_modal_depth, # relations, features, conditions, featvaltype, initconditions, # downsize, print_progress, rng, # display_depth, min_samples_split, n_subfeatures, post_prune, merge_purity_threshold, feature_importance, ) message = MMI.clean!(model) isempty(message) || @warn message return model end
ModalDecisionTrees
https://github.com/aclai-lab/ModalDecisionTrees.jl.git
[ "MIT" ]
0.5.0
200b2bd9dee3dfe2dcffa1fb51b6dd00d371ed2b
code
11129
function get_kwargs(m::SymbolicModel, X) base_kwargs = (; loss_function = nothing, max_depth = m.max_depth, min_samples_leaf = m.min_samples_leaf, min_purity_increase = m.min_purity_increase, max_purity_at_leaf = m.max_purity_at_leaf, max_modal_depth = m.max_modal_depth, #################################################################################### n_subrelations = identity, n_subfeatures = m.n_subfeatures, initconditions = readinitconditions(m, X), allow_global_splits = ALLOW_GLOBAL_SPLITS, #################################################################################### use_minification = false, perform_consistency_check = false, #################################################################################### rng = m.rng, print_progress = m.print_progress, ) additional_kwargs = begin if m isa TreeModel (;) elseif m isa ForestModel (; partial_sampling = m.sampling_fraction, ntrees = m.ntrees, suppress_parity_warning = true, ) else error("Unexpected model type: $(typeof(m))") end end merge(base_kwargs, additional_kwargs) end function MMI.clean!(m::SymbolicModel) warning = "" if m isa TreeModel mlj_default_min_samples_leaf = mlj_mdt_default_min_samples_leaf mlj_default_min_purity_increase = mlj_mdt_default_min_purity_increase mlj_default_max_purity_at_leaf = mlj_mdt_default_max_purity_at_leaf mlj_default_n_subfeatures = mlj_mdt_default_n_subfeatures elseif m isa ForestModel mlj_default_min_samples_leaf = mlj_mrf_default_min_samples_leaf mlj_default_min_purity_increase = mlj_mrf_default_min_purity_increase mlj_default_max_purity_at_leaf = mlj_mrf_default_max_purity_at_leaf mlj_default_n_subfeatures = mlj_mrf_default_n_subfeatures mlj_default_ntrees = mlj_mrf_default_ntrees mlj_default_sampling_fraction = mlj_mrf_default_sampling_fraction else error("Unexpected model type: $(typeof(m))") end if !(isnothing(m.max_depth) || m.max_depth ≥ -1) warning *= "max_depth must be ≥ -1, but $(m.max_depth) " * "was provided. Defaulting to $(mlj_default_max_depth).\n" m.max_depth = mlj_default_max_depth end if !(isnothing(m.min_samples_leaf) || m.min_samples_leaf ≥ 1) warning *= "min_samples_leaf must be ≥ 1, but $(m.min_samples_leaf) " * "was provided. Defaulting to $(mlj_default_min_samples_leaf).\n" m.min_samples_leaf = mlj_default_min_samples_leaf end if !(isnothing(m.max_modal_depth) || m.max_modal_depth ≥ -1) warning *= "max_modal_depth must be ≥ -1, but $(m.max_modal_depth) " * "was provided. Defaulting to $(mlj_default_max_modal_depth).\n" m.max_modal_depth = mlj_default_max_depth end # Patch parameters: -1 -> nothing m.max_depth == -1 && (m.max_depth = nothing) m.max_modal_depth == -1 && (m.max_modal_depth = nothing) m.display_depth == -1 && (m.display_depth = nothing) # Patch parameters: nothing -> default value isnothing(m.max_depth) && (m.max_depth = mlj_default_max_depth) isnothing(m.min_samples_leaf) && (m.min_samples_leaf = mlj_default_min_samples_leaf) isnothing(m.min_purity_increase) && (m.min_purity_increase = mlj_default_min_purity_increase) isnothing(m.max_purity_at_leaf) && (m.max_purity_at_leaf = mlj_default_max_purity_at_leaf) isnothing(m.max_modal_depth) && (m.max_modal_depth = mlj_default_max_modal_depth) ######################################################################################## ######################################################################################## ######################################################################################## if !(isnothing(m.relations) || m.relations isa Symbol && m.relations in keys(AVAILABLE_RELATIONS) || m.relations isa Vector{<:AbstractRelation} || m.relations isa Function ) warning *= "relations should be in $(collect(keys(AVAILABLE_RELATIONS))) " * "or a vector of SoleLogics.AbstractRelation's, " * "but $(m.relations) " * "was provided. Defaulting to $(mlj_default_relations_str).\n" m.relations = nothing end isnothing(m.relations) && (m.relations = mlj_default_relations) m.relations isa Vector{<:AbstractRelation} && (m.relations = m.relations) # Patch name: features -> conditions if !isnothing(m.features) if !isnothing(m.conditions) error("Please, only specify one hyper-parameter in `features` and `conditions`." * "Given: features = $(m.features) & conditions = $(m.conditions).") end m.conditions = m.features m.features = nothing end if !(isnothing(m.conditions) || m.conditions isa Vector{<:Union{SoleData.VarFeature,Base.Callable}} || m.conditions isa Vector{<:Tuple{Base.Callable,Integer}} || m.conditions isa Vector{<:Tuple{TestOperator,<:Union{SoleData.VarFeature,Base.Callable}}} || m.conditions isa Vector{<:SoleData.ScalarMetaCondition} ) warning *= "conditions should be either:" * "a) a vector of features (i.e., callables to be associated to all variables, or SoleData.VarFeature objects);\n" * "b) a vector of tuples (callable,var_id);\n" * "c) a vector of tuples (test_operator,features);\n" * "d) a vector of SoleData.ScalarMetaCondition;\n" * "but $(m.conditions) " * "was provided. Defaulting to $(mlj_default_conditions_str).\n" m.conditions = nothing end isnothing(m.conditions) && (m.conditions = mlj_default_conditions) if !(isnothing(m.initconditions) || m.initconditions isa Symbol && m.initconditions in keys(AVAILABLE_INITCONDITIONS) || m.initconditions isa InitialCondition ) warning *= "initconditions should be in $(collect(keys(AVAILABLE_INITCONDITIONS))), " * "but $(m.initconditions) " * "was provided. Defaulting to $(mlj_default_initconditions_str).\n" m.initconditions = nothing end isnothing(m.initconditions) && (m.initconditions = mlj_default_initconditions) ######################################################################################## ######################################################################################## ######################################################################################## m.downsize = begin if m.downsize == true make_downsizing_function(m) elseif m.downsize == false identity elseif m.downsize isa NTuple{N,Integer} where N make_downsizing_function(m.downsize) elseif m.downsize isa Function m.downsize else error("Unexpected value for `downsize` encountered: $(m.downsize)") end end if m.rng isa Integer m.rng = Random.MersenneTwister(m.rng) end ######################################################################################## ######################################################################################## ######################################################################################## if !(isnothing(m.min_samples_split) || m.min_samples_split ≥ 2) warning *= "min_samples_split must be ≥ 2, but $(m.min_samples_split) " * "was provided. Defaulting to $(nothing).\n" m.min_samples_split = nothing end # Note: # (min_samples_leaf * 2 > ninstances) || (min_samples_split > ninstances) ⇔ # (max(min_samples_leaf * 2, min_samples_split) > ninstances) ⇔ # (max(min_samples_leaf, div(min_samples_split, 2)) * 2 > ninstances) if !isnothing(m.min_samples_split) m.min_samples_leaf = max(m.min_samples_leaf, div(m.min_samples_split, 2)) end if m.n_subfeatures isa Integer && !(m.n_subfeatures > 0) warning *= "n_subfeatures must be > 0, but $(m.n_subfeatures) " * "was provided. Defaulting to $(nothing).\n" m.n_subfeatures = nothing end # Legacy behaviour m.n_subfeatures == -1 && (m.n_subfeatures = sqrt_f) m.n_subfeatures == 0 && (m.n_subfeatures = identity) function make_n_subfeatures_function(n_subfeatures) if isnothing(n_subfeatures) mlj_default_n_subfeatures elseif n_subfeatures isa Integer warning *= "An absolute n_subfeatures was provided $(n_subfeatures). " * "It is recommended to use relative values (between 0 and 1), interpreted " * "as the share of the random portion of feature space explored at each split." x -> convert(Int64, n_subfeatures) elseif n_subfeatures isa AbstractFloat @assert 0 ≤ n_subfeatures ≤ 1 "Unexpected value for " * "n_subfeatures: $(n_subfeatures). It should be ∈ [0,1]" x -> ceil(Int64, x*n_subfeatures) elseif n_subfeatures isa Function # x -> ceil(Int64, n_subfeatures(x)) # Generates too much nesting n_subfeatures else error("Unexpected value for n_subfeatures: $(n_subfeatures) " * "(type: $(typeof(n_subfeatures)))") end end m.n_subfeatures = make_n_subfeatures_function(m.n_subfeatures) # Only true for classification: # if !(0 ≤ m.merge_purity_threshold ≤ 1) # warning *= "merge_purity_threshold should be between 0 and 1, " * # "but $(m.merge_purity_threshold) " * # "was provided.\n" # end if m.feature_importance == :impurity warning *= "feature_importance = :impurity is currently not supported." * "Defaulting to $(:split).\n" m.feature_importance == :split end if !(m.feature_importance in [:split]) warning *= "feature_importance should be in [:split], " * "but $(m.feature_importance) " * "was provided.\n" end if m isa ForestModel isnothing(m.sampling_fraction) && (m.sampling_fraction = mlj_default_sampling_fraction) if !(0 ≤ m.sampling_fraction ≤ 1) warning *= "sampling_fraction should be ∈ [0,1], " * "but $(m.sampling_fraction) " * "was provided.\n" end isnothing(m.ntrees) && (m.ntrees = mlj_default_ntrees) if !(m.ntrees > 0) warning *= "ntrees should be > 0, " * "but $(m.ntrees) " * "was provided.\n" end end return warning end
ModalDecisionTrees
https://github.com/aclai-lab/ModalDecisionTrees.jl.git
[ "MIT" ]
0.5.0
200b2bd9dee3dfe2dcffa1fb51b6dd00d371ed2b
code
7146
using SoleData.DimensionalDatasets using SoleData.DimensionalDatasets: UniformFullDimensionalLogiset using SoleData: ScalarOneStepMemoset, AbstractFullMemoset using SoleData: naturalconditions const ALLOW_GLOBAL_SPLITS = true const mlj_default_max_depth = nothing const mlj_default_max_modal_depth = nothing const mlj_mdt_default_min_samples_leaf = 4 const mlj_mdt_default_min_purity_increase = 0.002 const mlj_mdt_default_max_purity_at_leaf = Inf const mlj_mdt_default_n_subfeatures = identity const mlj_mrf_default_min_samples_leaf = 1 const mlj_mrf_default_min_purity_increase = -Inf const mlj_mrf_default_max_purity_at_leaf = Inf const mlj_mrf_default_ntrees = 50 sqrt_f(x) = ceil(Int, sqrt(x)) const mlj_mrf_default_n_subfeatures = sqrt_f const mlj_mrf_default_sampling_fraction = 0.7 AVAILABLE_RELATIONS = OrderedDict{Symbol,Function}([ :none => (d)->AbstractRelation[], :IA => (d)->[globalrel, (d == 1 ? SoleLogics.IARelations : (d == 2 ? SoleLogics.IA2DRelations : error("Unexpected dimensionality ($d).")))...], :IA3 => (d)->[globalrel, (d == 1 ? SoleLogics.IA3Relations : (d == 2 ? SoleLogics.IA32DRelations : error("Unexpected dimensionality ($d).")))...], :IA7 => (d)->[globalrel, (d == 1 ? SoleLogics.IA7Relations : (d == 2 ? SoleLogics.IA72DRelations : error("Unexpected dimensionality ($d).")))...], :RCC5 => (d)->[globalrel, SoleLogics.RCC5Relations...], :RCC8 => (d)->[globalrel, SoleLogics.RCC8Relations...], ]) mlj_default_relations = nothing mlj_default_relations_str = "either no relation (adimensional data), " * "IA7 interval relations (1- and 2-dimensional data)." # , or RCC5 relations " * # "(2-dimensional data)." function defaultrelations(dataset, relations) # @show typeof(dataset) if dataset isa Union{ SupportedLogiset{W,U,FT,FR,L,N,<:Tuple{<:ScalarOneStepMemoset}} where {W,U,FT,FR,L,N}, SupportedLogiset{W,U,FT,FR,L,N,<:Tuple{<:ScalarOneStepMemoset,<:AbstractFullMemoset}} where {W,U,FT,FR,L,N}, } if relations == mlj_default_relations MDT.relations(dataset) else error("Unexpected dataset type: $(typeof(dataset)).") end else symb = begin if relations isa Symbol relations elseif dimensionality(dataset) == 0 :none elseif dimensionality(dataset) == 1 :IA7 elseif dimensionality(dataset) == 2 :IA7 # :RCC8 else error("Cannot infer relation set for dimensionality $(repr(dimensionality(dataset))). " * "Dimensionality should be 0, 1 or 2.") end end d = dimensionality(dataset) if d == 0 AVAILABLE_RELATIONS[:none](d) else AVAILABLE_RELATIONS[symb](d) end end end # Infer relation set from model.relations parameter and the (unimodal) dataset. function readrelations(model, dataset) if model.relations == mlj_default_relations || model.relations isa Symbol defaultrelations(dataset, model.relations) else if dataset isa Union{ SupportedLogiset{W,U,FT,FR,L,N,<:Tuple{<:ScalarOneStepMemoset}} where {W,U,FT,FR,L,N}, SupportedLogiset{W,U,FT,FR,L,N,<:Tuple{<:ScalarOneStepMemoset,<:AbstractFullMemoset}} where {W,U,FT,FR,L,N}, } rels = model.relations(dataset) @assert issubset(rels, MDT.relations(dataset)) "Could not find " * "specified relations $(SoleLogics.displaysyntaxvector(rels)) in " * "logiset relations $(SoleLogics.displaysyntaxvector(MDT.relations(dataset)))." rels else model.relations(dataset) end end end mlj_default_conditions = nothing mlj_default_conditions_str = "scalar conditions (test operators ≥ and <) " * "on either minimum and maximum feature functions (if dimensional data is provided), " * "or the features of the logiset, if one is provided." function defaultconditions(dataset) if dataset isa Union{ SupportedLogiset{W,U,FT,FR,L,N,<:Tuple{<:ScalarOneStepMemoset}} where {W,U,FT,FR,L,N}, SupportedLogiset{W,U,FT,FR,L,N,<:Tuple{<:ScalarOneStepMemoset,<:AbstractFullMemoset}} where {W,U,FT,FR,L,N}, } MDT.metaconditions(dataset) elseif dataset isa UniformFullDimensionalLogiset vcat([ [ ScalarMetaCondition(feature, ≥), (all(i_instance->SoleData.nworlds(frame(dataset, i_instance)) == 1, 1:ninstances(dataset)) ? [] : [ScalarMetaCondition(feature, <)] )... ] for feature in features(dataset)]...) else if all(i_instance->SoleData.nworlds(frame(dataset, i_instance)) == 1, 1:ninstances(dataset)) [identity] else [minimum, maximum] end end end function readconditions(model, dataset) conditions = begin if model.conditions == mlj_default_conditions defaultconditions(dataset) else model.conditions end end if dataset isa Union{ SupportedLogiset{W,U,FT,FR,L,N,<:Tuple{<:ScalarOneStepMemoset}} where {W,U,FT,FR,L,N}, SupportedLogiset{W,U,FT,FR,L,N,<:Tuple{<:ScalarOneStepMemoset,<:AbstractFullMemoset}} where {W,U,FT,FR,L,N}, } @assert issubset(conditions, MDT.metaconditions(dataset)) "Could not find " * "specified conditions $(SoleLogics.displaysyntaxvector(conditions)) in " * "logiset metaconditions $(SoleLogics.displaysyntaxvector(MDT.metaconditions(dataset)))." conditions else # @show typeof(dataset) naturalconditions(dataset, conditions, model.featvaltype) end end mlj_default_initconditions = nothing mlj_default_initconditions_str = "" * ":start_with_global" # (i.e., starting with a global decision, such as ⟨G⟩ min(V1) > 2) " * # "for 1-dimensional data and :start_at_center for 2-dimensional data." AVAILABLE_INITCONDITIONS = OrderedDict{Symbol,InitialCondition}([ :start_with_global => MDT.start_without_world, :start_at_center => MDT.start_at_center, ]) function readinitconditions(model, dataset) if SoleData.ismultilogiseed(dataset) map(mod->readinitconditions(model, mod), eachmodality(dataset)) else if model.initconditions == mlj_default_initconditions # d = dimensionality(SoleData.base(dataset)) # ? TODO maybe remove base for AbstractModalLogiset's? d = dimensionality(frame(dataset, 1)) if d == 0 AVAILABLE_INITCONDITIONS[:start_with_global] elseif d == 1 AVAILABLE_INITCONDITIONS[:start_with_global] elseif d == 2 AVAILABLE_INITCONDITIONS[:start_with_global] else error("Unexpected dimensionality: $(d)") end else AVAILABLE_INITCONDITIONS[model.initconditions] end end end
ModalDecisionTrees
https://github.com/aclai-lab/ModalDecisionTrees.jl.git
[ "MIT" ]
0.5.0
200b2bd9dee3dfe2dcffa1fb51b6dd00d371ed2b
code
17017
# # DOCUMENT STRINGS # "The model is probabilistic, symbolic model " * # "for classification and regression tasks with dimensional data " * # "(e.g., images and time-series)." * descr = """ The symbolic, probabilistic model is able to extract logical descriptions of the data in terms of logical formulas (see [SoleLogics.jl](https://github.com/aclai-lab/SoleLogics.jl)) on atoms that are scalar conditions on the variables (or features); for example, min[V2] ≥ 10, that is, "the minimum of variable 2 is not less than 10". As such, the model is suitable for tasks that involve non-scalar data, but require some level of interpretable and transparent modeling. At the moment, the only loss functions available are Shannon's entropy (classification) and variance (regression). """ # TODO link in docstring? # [SoleLogics.jl](https://github.com/aclai-lab/SoleLogics.jl)) on atoms that are const MDT_ref = "" * "Manzella et al. (2021). \"Interval Temporal Random Forests with an " * "Application to COVID-19 Diagnosis\". 10.4230/LIPIcs.TIME.2021.7" const DOC_RANDOM_FOREST = "[Random Forest algorithm]" * "(https://en.wikipedia.org/wiki/Random_forest), originally published in " * "Breiman, L. (2001): \"Random Forests.\", *Machine Learning*, vol. 45, pp. 5–32" function docstring_piece_1( T::Type ) if T <: ModalDecisionTree default_min_samples_leaf = mlj_mdt_default_min_samples_leaf default_min_purity_increase = mlj_mdt_default_min_purity_increase default_max_purity_at_leaf = mlj_mdt_default_max_purity_at_leaf forest_hyperparams_str = "" n_subfeatures_str = """ - `n_subfeatures=0`: Number of features to select at random at each node (0 for all), or a Function that outputs this number, given a number of available features. """ elseif T <: ModalRandomForest default_min_samples_leaf = mlj_mrf_default_min_samples_leaf default_min_purity_increase = mlj_mrf_default_min_purity_increase default_max_purity_at_leaf = mlj_mrf_default_max_purity_at_leaf forest_hyperparams_str = """ - `n_trees=10`: number of trees to train - `sampling_fraction=0.7` fraction of samples to train each tree on """ n_subfeatures_str = """ - `n_subfeatures`: Number of features to select at random at each node (0 for all), or a Function that outputs this number, given a number of available features. Defaulted to `ceil(Int, sqrt(x))`. """ else error("Unexpected model type: $(typeof(m))") end """ Modal C4.5. This classification and regression algorithm, originally presented in $MDT_ref, is an extension of the CART and C4.5 [decision tree learning algorithms](https://en.wikipedia.org/wiki/Decision_tree_learning) that leverages the expressive power of modal logics of time and space to perform temporal/spatial reasoning on non-scalar data, such as time-series and images. $(descr) # Training data In MLJ or MLJBase, bind an instance `model` to data with mach = machine(model, X, y) where - `X`: any table of input features (e.g., a `DataFrame`) whose columns each have one of the following element scitypes: `Continuous`, `Count`, `OrderedFactor`, or any 0-, 1-, 2-dimensional array with elements of these scitypes; check column scitypes with `schema(X)` - `y`: is the target, which can be any `AbstractVector` whose element scitype is `Multiclass`, `Continuous`, `Finite`, or `Textual`; check the scitype with `scitype(y)` Train the machine with `fit!(mach)`. # Hyper-parameters $(forest_hyperparams_str) - `max_depth=-1`: Maximum depth of the decision tree (-1=any) - `min_samples_leaf=$(default_min_samples_leaf)`: Minimum number of samples required at each leaf - `min_purity_increase=$(default_min_purity_increase)`: Minimum value for the loss function needed for a split - `max_purity_at_leaf=$(default_max_purity_at_leaf)`: Minimum value for the loss function needed for a split - `max_modal_depth=-1`: Maximum modal depth of the decision tree (-1=any). When this depth is reached, only propositional decisions are taken. $(n_subfeatures_str) - `feature=[minimum, maximum]` Feature functions to be used by the tree to mine scalar conditions (e.g., `minimum[V2] ≥ 10`) - `featvaltype=Float64` Output type for feature functions, when it cannot be inferred (e.g., with custom feature functions provided). - `relations=nothing` Relations that the model uses to look for patterns; it can be a symbol in [:IA, :IA3, :IA7, :RCC5, :RCC8], where :IA stands for [Allen's Interval Algebra](https://en.wikipedia.org/wiki/Allen%27s_interval_algebra) (13 relations in 1D, 169 relations in 2D), :IA3 and :IA7 are [coarser fragments with 3 and 7 relations, respectively](https://www.sciencedirect.com/science/article/pii/S0004370218305964), :RCC5 and :RCC8 are [Region Connection Calculus algebras](https://en.wikipedia.org/wiki/Region_connection_calculus) with 5 and 8 topological operators, respectively. Relations from :IA, :IA3, :IA7, capture directional aspects of the relative arrangement of two intervals in time (or rectangles in a 2D space), while relations from :RCC5 and :RCC8 only capture topological aspects and are therefore rotation and flip-invariant. This hyper-parameter defaults to $(mlj_default_relations_str). - `initconditions=nothing` initial conditions for evaluating modal decisions at the root; it can be a symbol in [:start_with_global, :start_at_center]. :start_with_global forces the first decision to be a *global* decision (e.g., `⟨G⟩ (minimum[V2] ≥ 10)`, which translates to "there exists a region where the minimum of variable 2 is higher than 10"). :start_at_center forces the first decision to be evaluated on the smallest central world, that is, the central value of a time-series, or the central pixel of an image. This hyper-parameter defaults to $(mlj_default_initconditions_str). - `downsize=true` Whether to perform automatic downsizing, by means of moving average. In fact, this algorithm has high complexity (both time and space), and can only handle small time-series (< 100 points) & small images (< 10 x 10 pixels). When set to `true`, automatic downsizing is performed; when it is an `NTuple` of `Integer`s, a downsizing of dimensional data to match that size is performed. - `print_progress=false`: set to `true` for a progress bar - `post_prune=false`: set to `true` for post-fit pruning - `merge_purity_threshold=1.0`: (post-pruning) merge leaves having combined purity `>= merge_purity_threshold` - `display_depth=5`: max depth to show when displaying the tree(s) - `rng=Random.GLOBAL_RNG`: random number generator or seed """ end """ $(MMI.doc_header(ModalDecisionTree)) `ModalDecisionTree` implements $(docstring_piece_1(ModalDecisionTree)) - `display_depth=5`: max depth to show when displaying the tree # Operations - `predict(mach, Xnew)`: return predictions of the target given features `Xnew` having the same scitype as `X` above. # Fitted parameters The fields of `fitted_params(mach)` are: - `model`: the tree object, as returned by the core algorithm - `var_grouping`: the adopted grouping of the features encountered in training, in an order consistent with the output of `printmodel`. The MLJ interface can currently deal with scalar, temporal and spatial features, but has one limitation, and one tricky procedure for handling them at the same time. The limitation is for temporal and spatial features to be uniform in size across the instances (the algorithm will automatically throw away features that do not satisfy this constraint). As for the tricky procedure: before the learning phase, features are divided into groups (referred to as `modalities`) according to each variable's `channel size`, that is, the size of the vector or matrix. For example, if X is multimodal, and has three temporal features :x, :y, :z with 10, 10 and 20 points, respectively, plus three spatial features :R, :G, :B, with the same size 5 × 5 pixels, the algorithm assumes that :x and :y share a temporal axis, :R, :G, :B share two spatial axis, while :z does not share any axis with any other variable. As a result, the model will group features into three modalities: - {1} [:x, :y] - {2} [:z] - {3} [:R, :G, :B] and `var_grouping` will be [["x", "y"], ["z"], ["R", "G", "B"]]. "R", "G", "B"] # Report The fields of `report(mach)` are: - `printmodel`: method to print a pretty representation of the fitted model, with single argument the tree depth. The interpretation of the tree requires you to understand how the current MLJ interface of ModalDecisionTrees.jl handles features of different modals. See `var_grouping` above. Note that the split conditions (or decisions) in the tree are relativized to a specific modality, of which the number is shown. - `var_grouping`: the adopted grouping of the features encountered in training, in an order consistent with the output of `printmodel`. See `var_grouping` above. - `feature_importance_by_count`: a simple count of each of the occurrences of the features across the model, in an order consistent with `var_grouping`. - `classes_seen`: list of target classes actually observed in training. # Examples ```julia using MLJ using ModalDecisionTrees using Random tree = ModalDecisionTree(min_samples_leaf=4) # Load an example dataset (a temporal one) X, y = ModalDecisionTrees.load_japanesevowels() N = length(y) mach = machine(tree, X, y) # Split dataset p = randperm(N) train_idxs, test_idxs = p[1:round(Int, N*.8)], p[round(Int, N*.8)+1:end] # Fit fit!(mach, rows=train_idxs) # Perform predictions, compute accuracy yhat = predict_mode(mach, X[test_idxs,:]) accuracy = MLJ.accuracy(yhat, y[test_idxs]) # Access raw model fitted_params(mach).model report(mach).printmodel(3) "{1} ⟨G⟩ (max[coefficient1] <= 0.883491) 3 : 91/512 (conf = 0.1777) ✔ {1} ⟨G⟩ (max[coefficient9] <= -0.157292) 3 : 89/287 (conf = 0.3101) │✔ {1} ⟨L̅⟩ (max[coefficient6] <= -0.504503) 3 : 89/209 (conf = 0.4258) ││✔ {1} ⟨A⟩ (max[coefficient3] <= 0.220312) 3 : 81/93 (conf = 0.8710) [...] ││✘ {1} ⟨L̅⟩ (max[coefficient1] <= 0.493004) 8 : 47/116 (conf = 0.4052) [...] │✘ {1} ⟨A⟩ (max[coefficient2] <= -0.285645) 7 : 41/78 (conf = 0.5256) │ ✔ {1} min[coefficient3] >= 0.002931 4 : 34/36 (conf = 0.9444) [...] │ ✘ {1} ⟨G⟩ (min[coefficient5] >= 0.18312) 7 : 39/42 (conf = 0.9286) [...] ✘ {1} ⟨G⟩ (max[coefficient3] <= 0.006087) 5 : 51/225 (conf = 0.2267) ✔ {1} ⟨D⟩ (max[coefficient2] <= -0.301233) 5 : 51/102 (conf = 0.5000) │✔ {1} ⟨D̅⟩ (max[coefficient3] <= -0.123654) 5 : 51/65 (conf = 0.7846) [...] │✘ {1} ⟨G⟩ (max[coefficient9] <= -0.146962) 7 : 16/37 (conf = 0.4324) [...] ✘ {1} ⟨G⟩ (max[coefficient9] <= -0.424346) 1 : 47/123 (conf = 0.3821) ✔ {1} min[coefficient1] >= 1.181048 6 : 39/40 (conf = 0.9750) [...] ✘ {1} ⟨G⟩ (min[coefficient4] >= -0.472485) 1 : 47/83 (conf = 0.5663) [...]" ``` """ ModalDecisionTree """ $(MMI.doc_header(ModalRandomForest)) `ModalRandomForest` implements the standard $DOC_RANDOM_FOREST, based on $(docstring_piece_1(ModalRandomForest)) - `n_subrelations=identity` Number of relations to randomly select at any point of the tree. Must be a function of the number of the available relations. It defaults to `identity`, that is, consider all available relations. - `n_subfeatures=x -> ceil(Int64, sqrt(x))` Number of functions to randomly select at any point of the tree. Must be a function of the number of the available functions. It defaults to `x -> ceil(Int64, sqrt(x))`, that is, consider only about square root of the available functions. - `ntrees=$(mlj_mrf_default_ntrees)` Number of trees in the forest. - `sampling_fraction=0.7` Fraction of samples to train each tree on. - `rng=Random.GLOBAL_RNG` Random number generator or seed. # Operations - `predict(mach, Xnew)`: return predictions of the target given features `Xnew` having the same scitype as `X` above. Predictions are probabilistic, but uncalibrated. - `predict_mode(mach, Xnew)`: instead return the mode of each prediction above. # Fitted parameters The fields of `fitted_params(mach)` are: - `model`: the forest object, as returned by the core algorithm - `var_grouping`: the adopted grouping of the features encountered in training, in an order consistent with the output of `printmodel`. The MLJ interface can currently deal with scalar, temporal and spatial features, but has one limitation, and one tricky procedure for handling them at the same time. The limitation is for temporal and spatial features to be uniform in size across the instances (the algorithm will automatically throw away features that do not satisfy this constraint). As for the tricky procedure: before the learning phase, features are divided into groups (referred to as `modalities`) according to each variable's `channel size`, that is, the size of the vector or matrix. For example, if X is multimodal, and has three temporal features :x, :y, :z with 10, 10 and 20 points, respectively, plus three spatial features :R, :G, :B, with the same size 5 × 5 pixels, the algorithm assumes that :x and :y share a temporal axis, :R, :G, :B share two spatial axis, while :z does not share any axis with any other variable. As a result, the model will group features into three modalities: - {1} [:x, :y] - {2} [:z] - {3} [:R, :G, :B] and `var_grouping` will be [["x", "y"], ["z"], ["R", "G", "B"]]. # Report The fields of `report(mach)` are: - `printmodel`: method to print a pretty representation of the fitted model, with single argument the depth of the trees. The interpretation of the tree requires you to understand how the current MLJ interface of ModalDecisionTrees.jl handles features of different modals. See `var_grouping` above. Note that the split conditions (or decisions) in the tree are relativized to a specific frame, of which the number is shown. - `var_grouping`: the adopted grouping of the features encountered in training, in an order consistent with the output of `printmodel`. See `var_grouping` above. - `feature_importance_by_count`: a simple count of each of the occurrences of the features across the model, in an order consistent with `var_grouping`. - `classes_seen`: list of target classes actually observed in training. # Examples ```julia using MLJ using ModalDecisionTrees using Random forest = ModalRandomForest(ntrees = 50) # Load an example dataset (a temporal one) X, y = ModalDecisionTrees.load_japanesevowels() N = length(y) mach = machine(forest, X, y) # Split dataset p = randperm(N) train_idxs, test_idxs = p[1:round(Int, N*.8)], p[round(Int, N*.8)+1:end] # Fit fit!(mach, rows=train_idxs) # Perform predictions, compute accuracy Xnew = X[test_idxs,:] ynew = predict_mode(mach, Xnew) # point predictions accuracy = MLJ.accuracy(ynew, y[test_idxs]) yhat = predict_mode(mach, Xnew) # probabilistic predictions pdf.(yhat, "1") # probabilities for one of the classes ("1") # Access raw model fitted_params(mach).model report(mach).printmodel(3) # Note that the output here can be quite large. ``` """ ModalRandomForest # # Examples # ``` # using MLJ # MDT = @load DecisionTreeRegressor pkg=ModalDecisionTrees # tree = MDT(max_depth=4, min_samples_split=3) # X, y = make_regression(100, 2) # synthetic data # mach = machine(tree, X, y) |> fit! # Xnew, _ = make_regression(3, 2) # yhat = predict(mach, Xnew) # new predictions # fitted_params(mach).model # raw tree or stump object from DecisionTree.jl # ``` # See also # [DecisionTree.jl](https://github.com/JuliaAI/DecisionTree.jl) and # the unwrapped model type # [MLJDecisionTreeInterface.DecisionTree.DecisionTreeRegressor](@ref). # """ # DecisionTreeRegressor # # Examples # ``` # using MLJ # Forest = @load RandomForestRegressor pkg=ModalDecisionTrees # forest = Forest(max_depth=4, min_samples_split=3) # X, y = make_regression(100, 2) # synthetic data # mach = machine(forest, X, y) |> fit! # Xnew, _ = make_regression(3, 2) # yhat = predict(mach, Xnew) # new predictions # fitted_params(mach).forest # raw `Ensemble` object from DecisionTree.jl # ``` # See also # [DecisionTree.jl](https://github.com/JuliaAI/DecisionTree.jl) and # the unwrapped model type # [MLJDecisionTreeInterface.DecisionTree.RandomForestRegressor](@ref).
ModalDecisionTrees
https://github.com/aclai-lab/ModalDecisionTrees.jl.git
[ "MIT" ]
0.5.0
200b2bd9dee3dfe2dcffa1fb51b6dd00d371ed2b
code
5838
using StatsBase using StatsBase: mean using SoleBase: movingwindow using SoleData: AbstractDimensionalDataset DOWNSIZE_MSG = "If this process gets killed, please downsize your dataset beforehand." function make_downsizing_function(channelsize::NTuple) return function downsize(instance) return moving_average(instance, channelsize) end end function make_downsizing_function(::TreeModel) function downsize(instance) channelsize = MultiData.instance_channelsize(instance) nvariables = MultiData.instance_nvariables(instance) channelndims = length(channelsize) if channelndims == 1 n_points = channelsize[1] if nvariables > 30 && n_points > 100 # @warn "Downsizing series $(n_points) points to $(100) points ($(nvariables) variables). $DOWNSIZE_MSG" instance = moving_average(instance, 100) elseif n_points > 150 # @warn "Downsizing series $(n_points) points to $(150) points ($(nvariables) variables). $DOWNSIZE_MSG" instance = moving_average(instance, 150) end elseif channelndims == 2 if nvariables > 30 && prod(channelsize) > prod((7,7),) new_channelsize = min.(channelsize, (7,7)) # @warn "Downsizing image of size $(channelsize) to $(new_channelsize) pixels ($(nvariables) variables). $DOWNSIZE_MSG" instance = moving_average(instance, new_channelsize) elseif prod(channelsize) > prod((10,10),) new_channelsize = min.(channelsize, (10,10)) # @warn "Downsizing image of size $(channelsize) to $(new_channelsize) pixels ($(nvariables) variables). $DOWNSIZE_MSG" instance = moving_average(instance, new_channelsize) end end instance end end function make_downsizing_function(::ForestModel) function downsize(instance) channelsize = MultiData.instance_channelsize(instance) nvariables = MultiData.instance_nvariables(instance) channelndims = length(channelsize) if channelndims == 1 n_points = channelsize[1] if nvariables > 30 && n_points > 100 # @warn "Downsizing series $(n_points) points to $(100) points ($(nvariables) variables). $DOWNSIZE_MSG" instance = moving_average(instance, 100) elseif n_points > 150 # @warn "Downsizing series $(n_points) points to $(150) points ($(nvariables) variables). $DOWNSIZE_MSG" instance = moving_average(instance, 150) end elseif channelndims == 2 if nvariables > 30 && prod(channelsize) > prod((4,4),) new_channelsize = min.(channelsize, (4,4)) # @warn "Downsizing image of size $(channelsize) to $(new_channelsize) pixels ($(nvariables) variables). $DOWNSIZE_MSG" instance = moving_average(instance, new_channelsize) elseif prod(channelsize) > prod((7,7),) new_channelsize = min.(channelsize, (7,7)) # @warn "Downsizing image of size $(channelsize) to $(new_channelsize) pixels ($(nvariables) variables). $DOWNSIZE_MSG" instance = moving_average(instance, new_channelsize) end end instance end end # TODO move to MultiData/SoleData _mean(::Type{T}, vals::AbstractArray{T}) where {T<:Number} = StatsBase.mean(vals) _mean(::Type{T1}, vals::AbstractArray{T2}) where {T1<:AbstractFloat,T2<:Integer} = T1(StatsBase.mean(vals)) _mean(::Type{T1}, vals::AbstractArray{T2}) where {T1<:Integer,T2<:AbstractFloat} = round(T1, StatsBase.mean(vals)) # # 1D # function moving_average( # instance::AbstractArray{T,1}; # kwargs... # ) where {T<:Union{Nothing,Number}} # npoints = length(instance) # return [_mean(T, instance[idxs]) for idxs in movingwindow(npoints; kwargs...)] # end # # 1D # function moving_average( # instance::AbstractArray{T,1}, # nwindows::Integer, # relative_overlap::AbstractFloat = .5, # ) where {T<:Union{Nothing,Number}} # npoints = length(instance) # return [_mean(T, instance[idxs]) for idxs in movingwindow(npoints; nwindows = nwindows, relative_overlap = relative_overlap)] # end # 1D-instance function moving_average( instance::AbstractArray{T,2}, nwindows::Union{Integer,Tuple{Integer}}, relative_overlap::AbstractFloat = .5, ) where {T<:Union{Nothing,Number}} nwindows = nwindows isa Tuple{<:Integer} ? nwindows[1] : nwindows npoints, n_variables = size(instance) new_instance = similar(instance, (nwindows, n_variables)) for i_variable in 1:n_variables new_instance[:, i_variable] .= [_mean(T, instance[idxs, i_variable]) for idxs in movingwindow(npoints; nwindows = nwindows, relative_overlap = relative_overlap)] end return new_instance end # 2D-instance function moving_average( instance::AbstractArray{T,3}, new_channelsize::Tuple{Integer,Integer}, relative_overlap::AbstractFloat = .5, ) where {T<:Union{Nothing,Number}} n_instance, n_Y, n_variables = size(instance) windows_1 = movingwindow(n_instance; nwindows = new_channelsize[1], relative_overlap = relative_overlap) windows_2 = movingwindow(n_Y; nwindows = new_channelsize[2], relative_overlap = relative_overlap) new_instance = similar(instance, (new_channelsize..., n_variables)) for i_variable in 1:n_variables new_instance[:, :, i_variable] .= [_mean(T, instance[idxs1, idxs2, i_variable]) for idxs1 in windows_1, idxs2 in windows_2] end return new_instance end function moving_average(dataset::AbstractDimensionalDataset, args...; kwargs...) return map(instance->moving_average(instance, args...; kwargs...), eachinstance(dataset)) end
ModalDecisionTrees
https://github.com/aclai-lab/ModalDecisionTrees.jl.git
[ "MIT" ]
0.5.0
200b2bd9dee3dfe2dcffa1fb51b6dd00d371ed2b
code
719
function compute_featureimportance(model, var_grouping = nothing; normalize = true) feature_importance_by_count = MDT.variable_countmap(model) if !isnothing(var_grouping) feature_importance_by_count = Dict([ # i_var => var_grouping[i_modality][i_var] var_grouping[i_modality][i_var] => count for ((i_modality, i_var), count) in feature_importance_by_count]) end if normalize sumcount = sum(Vector{Float64}(collect(values(feature_importance_by_count)))) feature_importance_by_count = Dict([ feature => (count/sumcount) for (feature, count) in feature_importance_by_count]) end feature_importance_by_count end
ModalDecisionTrees
https://github.com/aclai-lab/ModalDecisionTrees.jl.git
[ "MIT" ]
0.5.0
200b2bd9dee3dfe2dcffa1fb51b6dd00d371ed2b
code
2122
using MLJModelInterface import Base: show struct ModelPrinter{M<:MDT.SymbolicModel,SM<:SoleModels.AbstractModel} m::MLJModelInterface.Model rawmodel::M solemodel::SM var_grouping::Union{Nothing,AbstractVector{<:AbstractVector},AbstractVector{<:AbstractDict}} end function (c::ModelPrinter)(args...; kwargs...) c(stdout, args...; kwargs...) end # Do not remove (generates compile-time warnings) function (c::ModelPrinter)(io::IO; kwargs...) c(io, true, c.m.display_depth; kwargs...) end function (c::ModelPrinter)( io::IO, max_depth::Union{Nothing,Integer}; kwargs... ) c(io, true, max_depth = max_depth; kwargs...) end function (c::ModelPrinter)( io::IO, print_solemodel::Bool, max_depth::Union{Nothing,Integer} = c.m.display_depth; kwargs... ) c(io, (print_solemodel ? c.solemodel : c.rawmodel); max_depth = max_depth, kwargs...) end function (c::ModelPrinter)( io::IO, model, X = nothing, y = nothing; max_depth = c.m.display_depth, hidemodality = (isnothing(c.var_grouping) || length(c.var_grouping) == 1), kwargs... ) more_kwargs = begin if model isa Union{MDT.DForest,MDT.DTree,MDT.DTNode} (; variable_names_map = c.var_grouping, max_depth = max_depth) elseif model isa SoleModels.AbstractModel (; max_depth = max_depth, syntaxstring_kwargs = (variable_names_map = c.var_grouping, hidemodality = hidemodality)) else error("Unexpected model type $(model)") end end # if haskey(kwargs, :variable_names_map) && kwargs.variable_names_map is not multimodal then fix... variable_names_map if isnothing(X) && isnothing(y) MDT.printmodel(io, model; silent = true, more_kwargs..., kwargs...) elseif !isnothing(X) && !isnothing(y) (X, y, var_grouping, classes_seen) = MMI.reformat(c.m, X, y) MDT.printapply(io, model, X, y; silent = true, more_kwargs..., kwargs...) else error("ModelPrinter: Either provide X and y or don't!") end end Base.show(io::IO, c::ModelPrinter) = print(io, "ModelPrinter object")
ModalDecisionTrees
https://github.com/aclai-lab/ModalDecisionTrees.jl.git
[ "MIT" ]
0.5.0
200b2bd9dee3dfe2dcffa1fb51b6dd00d371ed2b
code
906
# if model.check_conditions == true # check_conditions(model.conditions) # end # function check_conditions(conditions) # if isnothing(conditions) # return # end # # Check that feature extraction functions are scalar # wrong_conditions = filter((f)->begin # !all( # (ch)->!(f isa Base.Callable) || # (ret = f(ch); isa(ret, Real) && typeof(ret) == eltype(ch)), # [collect(1:10), collect(1.:10.)] # ) # end, conditions) # @assert length(wrong_conditions) == 0 "When specifying feature extraction functions " * # "for inferring `conditions`, please specify " * # "scalar functions accepting an object of type `AbstractArray{T}` " * # "and returning an object of type `T`, with `T<:Real`. " * # "Instead, got wrong feature functions: $(wrong_conditions)." # end
ModalDecisionTrees
https://github.com/aclai-lab/ModalDecisionTrees.jl.git
[ "MIT" ]
0.5.0
200b2bd9dee3dfe2dcffa1fb51b6dd00d371ed2b
code
6175
using SoleData using SoleData: AbstractModalLogiset, SupportedLogiset using MultiData using MultiData: dataframe2dimensional # UNI # AbstractArray -> scalarlogiset -> supportedlogiset # SupportedLogiset -> supportedlogiset # AbstractModalLogiset -> supportedlogiset # MULTI # SoleData.MultiDataset -> multilogiset # AbstractDataFrame -> naturalgrouping -> multilogiset # MultiLogiset -> multilogiset function wrapdataset( X, model, force_var_grouping::Union{Nothing,AbstractVector{<:AbstractVector}} = nothing; passive_mode = false ) if X isa MultiLogiset if !isnothing(force_var_grouping) @warn "Ignoring var_grouping $(force_var_grouping) (a MultiLogiset was provided)." end multimodal_X, var_grouping = X, nothing return multimodal_X, var_grouping end # Vector of instance values # Matrix instance x variable -> Matrix variable x instance if X isa AbstractVector X = collect(reshape(X, 1, length(X))) elseif X isa AbstractMatrix X = collect(X') end if X isa AbstractArray # Cube if !(X isa Union{AbstractVector,AbstractMatrix}) @warn "AbstractArray of $(ndims(X)) dimensions and size $(size(X)) encountered. " * "This will be interpreted as a dataset of $(size(X)[end]) instances, " * "$(size(X)[end-1]) variables, and channel size $(size(X)[1:end-2])." # "datasets ($(typeof(X)) encountered)" end X = eachslice(X; dims=ndims(X)) end X = begin if X isa AbstractDimensionalDataset X = model.downsize.(eachinstance(X)) if !passive_mode @info "Precomputing logiset..." metaconditions = readconditions(model, X) features = unique(SoleData.feature.(metaconditions)) scalarlogiset(X, features; use_onestep_memoization = true, conditions = metaconditions, relations = readrelations(model, X), print_progress = (ninstances(X) > 500) ) else MultiData.dimensional2dataframe(X) end elseif X isa SupportedLogiset X elseif X isa AbstractModalLogiset SupportedLogiset(X; use_onestep_memoization = true, conditions = readconditions(model, X), relations = readrelations(model, X) ) elseif X isa AbstractMultiDataset X elseif Tables.istable(X) DataFrame(X) else X end end # @show X # @show collect.(X) # readline() # DataFrame -> MultiDataset + variable grouping (needed for printing) X, var_grouping = begin if X isa AbstractDataFrame allowedcoltypes = Union{Real,AbstractArray{<:Real,0},AbstractVector{<:Real},AbstractMatrix{<:Real}} wrong_columns = filter(((colname,c),)->!(eltype(c) <: allowedcoltypes), collect(zip(names(X), eachcol(X)))) @assert length(wrong_columns) == 0 "Invalid columns " * "encountered: `$(join(first.(wrong_columns), "`, `", "` and `"))`. $(MDT).jl only allows " * "variables that are `Real` and `AbstractArray{<:Real,N}` with N ∈ {0,1,2}. " * "Got: `$(join(eltype.(last.(wrong_columns)), "`, `", "` and `"))`" * (length(wrong_columns) > 1 ? ", respectively" : "") * "." var_grouping = begin if isnothing(force_var_grouping) var_grouping = SoleData.naturalgrouping(X; allow_variable_drop = true) if !(length(var_grouping) == 1 && length(var_grouping[1]) == ncol(X)) @info "Using variable grouping:\n" * # join(map(((i_mod,variables),)->"[$i_mod] -> [$(join(string.(variables), ", "))]", enumerate(var_grouping)), "\n") join(map(((i_mod,variables),)->"\t{$i_mod} => $(Tuple(variables))", enumerate(var_grouping)), "\n") end var_grouping else @assert force_var_grouping isa AbstractVector{<:AbstractVector} "$(typeof(force_var_grouping))" force_var_grouping end end md = MultiDataset(X, var_grouping) # Downsize md = MultiDataset([begin mod, varnames = dataframe2dimensional(mod) mod = model.downsize.(eachinstance(mod)) SoleData.dimensional2dataframe(mod, varnames) end for mod in eachmodality(md)]) md, var_grouping else X, nothing end end # println(X) # println(modality(X, 1)) multimodal_X = begin if X isa SoleData.AbstractMultiDataset if !passive_mode || !SoleData.ismultilogiseed(X) @info "Precomputing logiset..." MultiLogiset([begin _metaconditions = readconditions(model, mod) features = unique(SoleData.feature.(_metaconditions)) # @show _metaconditions # @show features scalarlogiset(mod, features; use_onestep_memoization = true, conditions = _metaconditions, relations = readrelations(model, mod), print_progress = (ninstances(X) > 500) ) end for mod in eachmodality(X) ]) else X end elseif X isa AbstractModalLogiset MultiLogiset(X) elseif X isa MultiLogiset X else error("Unexpected dataset type: $(typeof(X)). Allowed dataset types are " * "AbstractArray, AbstractDataFrame, " * "SoleData.AbstractMultiDataset and SoleData.AbstractModalLogiset.") end end return (multimodal_X, var_grouping) end
ModalDecisionTrees
https://github.com/aclai-lab/ModalDecisionTrees.jl.git
[ "MIT" ]
0.5.0
200b2bd9dee3dfe2dcffa1fb51b6dd00d371ed2b
code
8266
using SoleData: ExistentialTopFormula # function translate( # node::DTInternal{L,D}, # initconditions, # all_ancestors::Vector{<:DTInternal} = DTInternal[], # all_ancestor_formulas::Vector = [], # pos_ancestors::Vector{<:DTInternal} = DTInternal[], # info = (;), # shortform::Union{Nothing,MultiFormula} = nothing, # ) where {L,D<:DoubleEdgedDecision} # forthnode = forth(node) # subtree_nodes = [] # cur_node = node # while cur_node != forthnode # push!(subtree_nodes, cur_node) # @assert isinleftsubtree(forthnode, cur_node) || isinrightsubtree(forthnode, cur_node) "Translation error! Illegal case detected." # cur_node = isinleftsubtree(forthnode, cur_node) ? left(cur_node) : right(cur_node) # end # @show length(subtree_nodes) # @show displaydecision.(decision.(subtree_nodes)) # println(displaydecision.(decision.(subtree_nodes))) # push!(subtree_nodes, forthnode) # new_all_ancestors = DTInternal{L,<:DoubleEdgedDecision}[all_ancestors..., subtree_nodes...] # new_pos_ancestors = DTInternal{L,<:DoubleEdgedDecision}[pos_ancestors..., subtree_nodes...] # for (i, (νi, νj)) in enumerate(zip(new_all_ancestors[2:end], new_all_ancestors[1:end-1])) # if !(isleftchild(νi, νj) || isrightchild(νi, νj)) # error("ERROR") # @show νi # @show νj # end # end # φl = pathformula(new_all_ancestors, left(forthnode), false) # φr = SoleLogics.normalize(¬(φl); allow_atom_flipping=true, prefer_implications = true) # new_all_ancestor_formulas = [all_ancestor_formulas..., φl] # # @show φl, φr # # φr = pathformula(new_pos_ancestors, right(node), true) # # @show syntaxstring(φl) # pos_shortform, neg_shortform = begin # if length(all_ancestors) == 0 # ( # φl, # φr, # ) # else # my_conjuncts = [begin # (isinleftsubtree(node, anc) ? φ : SoleLogics.normalize(¬(φ); allow_atom_flipping=true, prefer_implications = true)) # end for (φ, anc) in zip(all_ancestor_formulas, all_ancestors)] # my_left_conjuncts = [my_conjuncts..., φl] # my_right_conjuncts = [my_conjuncts..., φr] # ∧(my_left_conjuncts...), ∧(my_right_conjuncts...) # end # end # info = merge(info, (; # this = translate(ModalDecisionTrees.this(node), initconditions, new_all_ancestors, all_ancestor_formulas, new_pos_ancestors, (;), shortform), # supporting_labels = ModalDecisionTrees.supp_labels(node), # )) # if !isnothing(shortform) # # @show syntaxstring(shortform) # info = merge(info, (; # shortform = build_antecedent(shortform, initconditions), # )) # end # SoleModels.Branch( # build_antecedent(φl, initconditions), # translate(left(forthnode), initconditions, new_all_ancestors, new_all_ancestor_formulas, new_pos_ancestors, (;), pos_shortform), # translate(right(forthnode), initconditions, new_all_ancestors, new_all_ancestor_formulas, pos_ancestors, (;), neg_shortform), # info # ) # end # isback(backnode::DTInternal, back::DTInternal) = (backnode == back(node)) function isimplicative(f::Formula) t = tree(f) isimpl = (token(t) == (→)) || (SoleLogics.isbox(token(t)) && SoleLogics.isunary(token(t)) && first(children(t)) == (→)) println(syntaxstring(f), "\t", isimpl) return isimpl end function pathformula( ancestors::Vector{<:DTInternal{L,<:DoubleEdgedDecision}}, node::DTNode{LL}, multimodal::Bool, args...; kwargs... ) where {L,LL} φ, isimpl = _pathformula_complete(DTNode{Union{L,LL},<:DoubleEdgedDecision}[ancestors..., node], multimodal, args...; kwargs...) println(syntaxstring(φ)) println() println() println() return φ end # TODO @memoize function _pathformula_complete( path::Vector{<:DTNode{L,<:DoubleEdgedDecision}}, multimodal::Bool, # dontincrease::Bool = true, # addlast = true, # perform_checks = true, ) where {L} if !multimodal println([ν isa DTLeaf ? ModalDecisionTrees.prediction(ν) : displaydecision(decision(ν)) for ν in path]) path = filter(ν->((ν isa DTLeaf) || i_modality(ν) == i_modality(last(path[1:end-1]))), path) # @assert length(path) > 0 end h = length(path)-1 # println([displaydecision.(decision.(path[1:end-1]))..., ModalDecisionTrees.prediction(path[end])]) println([ν isa DTLeaf ? ModalDecisionTrees.prediction(ν) : displaydecision(decision(ν)) for ν in path]) @show h if h == 0 return (SoleLogics.⊤, false) # return error("pathformula cannot accept path of height 0.") elseif h == 1 ν0, ν1 = path return (MultiFormula(i_modality(ν0), get_lambda(ν0, ν1)), false) else ν0, ν1 = path[1], path[2] _lambda = get_lambda(ν0, ν1) @show syntaxstring(_lambda) path1, path2, ctr, ctr_child = begin # # if perform_checks # contributors = filter(ν->back(ν) == ν1, path) # @assert length(contributors) <= 1 # return length(contributors) == 1 ? first(contributors) : ν1 i_ctr, ctr = begin i_ctr, ctr = nothing, nothing i_ctr, ctr = 2, path[2] for (i_node, ν) in enumerate(path[1:end-1]) if back(ν) == ν1 i_ctr, ctr = i_node, ν break end end i_ctr, ctr end path1, path2 = path[2:i_ctr], path[i_ctr:end] @show i_ctr ctr_child = path[i_ctr+1] path1, path2, ctr, ctr_child end agreement = !xor(isleftchild(ν1, ν0), isleftchild(ctr_child, ctr)) f1, _ = _pathformula_complete(path1, true) f2, f2_isimpl = _pathformula_complete(path2, true) # DEBUG: # λ = MultiFormula(i_modality(ν0), _lambda) # f1 = f1 == ⊤ ? MultiFormula(1, f1) : f1 # f2 = f2 == ⊤ ? MultiFormula(1, f2) : f2 # @show syntaxstring(λ) # @show syntaxstring(f1) # @show syntaxstring(f2) # END DEBUG # f2_isimpl = isimplicative(f2) ded = decision(ν0) isprop = is_propositional_decision(ded) if isprop λ = MultiFormula(i_modality(ν0), _lambda) if !xor(agreement, !f2_isimpl) # return (λ ∧ (f1 ∧ f2), false) if f1 == ⊤ && f2 != ⊤ return (λ ∧ f2, false) elseif f1 != ⊤ && f2 == ⊤ return (λ ∧ f1, false) elseif f1 != ⊤ && f2 != ⊤ return (λ ∧ (f1 ∧ f2), false) else return (λ, false) end else # return (λ → (f1 → f2), true) if f1 == ⊤ && f2 != ⊤ return (λ → f2, true) elseif f1 != ⊤ && f2 == ⊤ return (λ → f1, true) elseif f1 != ⊤ && f2 != ⊤ return (λ → (f1 → f2), true) else return (λ, true) end end else rel = relation(formula(ded)) if !xor(agreement, !f2_isimpl) ◊ = SoleLogics.diamond(rel) # return (◊(f1 ∧ f2), false) if f1 == ⊤ && f2 != ⊤ return (◊(f2), false) elseif f1 != ⊤ && f2 == ⊤ return (◊(f1), false) elseif f1 != ⊤ && f2 != ⊤ return (◊(f1 ∧ f2), false) else return (◊(⊤), false) end else □ = SoleLogics.box(rel) # return (□(f1 → f2), true) if f1 == ⊤ && f2 != ⊤ return (□(f2), true) elseif f1 != ⊤ && f2 == ⊤ return (□(f1), true) elseif f1 != ⊤ && f2 != ⊤ return (□(f1 → f2), true) else return (⊤, true) end end end end end
ModalDecisionTrees
https://github.com/aclai-lab/ModalDecisionTrees.jl.git
[ "MIT" ]
0.5.0
200b2bd9dee3dfe2dcffa1fb51b6dd00d371ed2b
code
19988
using Revise using SoleLogics using SoleModels using SoleModels: info using SoleData using SoleData: ScalarCondition, ScalarMetaCondition using SoleData: AbstractFeature using SoleData: relation, feature, test_operator, threshold, inverse_test_operator using ModalDecisionTrees: DTInternal, DTNode, DTLeaf, NSDTLeaf using ModalDecisionTrees: isleftchild, isrightchild, isinleftsubtree, isinrightsubtree using ModalDecisionTrees: left, right using FunctionWrappers: FunctionWrapper using Memoization ############################################################################################ # MDTv1 translation ############################################################################################ function build_antecedent(a::MultiFormula, initconditions) MultiFormula(Dict([i_mod => anchor(f, initconditions[i_mod]) for (i_mod, f) in modforms(a)])) end function translate(model::SoleModels.AbstractModel; kwargs...) return model end # TODO remove function translate( model::Union{DTree,DForest}; info = (;), kwargs... ) return translate(model, info; kwargs...) end function translate( forest::DForest, info = (;); kwargs... ) pure_trees = [translate(tree; kwargs...) for tree in trees(forest)] info = merge(info, (; metrics = metrics(forest), )) return SoleModels.DecisionForest(pure_trees, info) end function translate( tree::DTree, info = (;); kwargs... ) pure_root = translate(ModalDecisionTrees.root(tree), ModalDecisionTrees.initconditions(tree); kwargs...) info = merge(info, SoleModels.info(pure_root)) info = merge(info, (;)) return SoleModels.DecisionTree(pure_root, info) end function translate( tree::DTLeaf, initconditions, args...; info = (;), shortform = nothing, optimize_shortforms = nothing, ) info = merge(info, (; supporting_labels = ModalDecisionTrees.supp_labels(tree), supporting_predictions = ModalDecisionTrees.predictions(tree), )) if !isnothing(shortform) info = merge(info, (; shortform = build_antecedent(shortform, initconditions), )) end return SoleModels.ConstantModel(ModalDecisionTrees.prediction(tree), info) end function translate( tree::NSDTLeaf, initconditions, args...; info = (;), shortform = nothing, optimize_shortforms = nothing, ) info = merge(info, (; supporting_labels = ModalDecisionTrees.supp_labels(tree), supporting_predictions = ModalDecisionTrees.predictions(tree), )) if !isnothing(shortform) info = merge(info, (; shortform = build_antecedent(shortform, initconditions), )) end return SoleModels.FunctionModel(ModalDecisionTrees.predicting_function(tree), info) end ############################################################################################ ############################################################################################ ############################################################################################ function translate( node::DTInternal{L,D}, initconditions, path::Vector{<:DTInternal} = DTInternal[], pos_path::Vector{<:DTInternal} = DTInternal[], ancestors::Vector{<:DTInternal} = DTInternal[], ancestor_formulas::Vector = []; info = (;), shortform::Union{Nothing,MultiFormula} = nothing, optimize_shortforms::Bool = true ) where {L,D<:AbstractDecision} if D<:RestrictedDecision forthnode = node new_ancestors = DTInternal{L,<:RestrictedDecision}[ancestors..., forthnode] new_path = DTInternal{L,<:RestrictedDecision}[path..., forthnode] new_pos_path = DTInternal{L,<:RestrictedDecision}[pos_path..., forthnode] φl = pathformula(new_pos_path, left(forthnode), false) elseif D<:DoubleEdgedDecision forthnode = forth(node) subtree_nodes = [] cur_node = node while cur_node != forthnode push!(subtree_nodes, cur_node) @assert isinleftsubtree(forthnode, cur_node) || isinrightsubtree(forthnode, cur_node) "Translation error! Illegal case detected." cur_node = isinleftsubtree(forthnode, cur_node) ? left(cur_node) : right(cur_node) end # @show length(subtree_nodes) # @show displaydecision.(decision.(subtree_nodes)) # println(displaydecision.(decision.(subtree_nodes))) push!(subtree_nodes, forthnode) new_ancestors = DTInternal{L,<:DoubleEdgedDecision}[ancestors..., forthnode] new_path = DTInternal{L,<:DoubleEdgedDecision}[path..., subtree_nodes...] new_pos_path = DTInternal{L,<:DoubleEdgedDecision}[pos_path..., subtree_nodes...] # DEBUG # for (i, (νi, νj)) in enumerate(zip(new_path[2:end], new_path[1:end-1])) # if !(isleftchild(νi, νj) || isrightchild(νi, νj)) # error("ERROR") # @show νi # @show νj # end # end φl = pathformula(new_path, left(forthnode), false) else error("Unexpected decision type: $(D)") end φr = SoleLogics.normalize(¬(φl); allow_atom_flipping=true, prefer_implications = true) new_ancestor_formulas = [ancestor_formulas..., φl] # φr = pathformula(new_pos_path, right(forthnode), true) # @show syntaxstring(φl) pos_shortform, neg_shortform = begin if length(path) == 0 ( φl, φr, ) else # my_conjuncts = [begin # # anc_prefix = new_path[1:nprefix] # # cur_node = new_path[nprefix+1] # anc_prefix = new_path[1:(nprefix+1)] # new_pos_path = similar(anc_prefix, 0) # for i in 1:(length(anc_prefix)-1) # if isinleftsubtree(anc_prefix[i+1], anc_prefix[i]) # push!(new_pos_path, anc_prefix[i]) # end # end # φ = pathformula(new_pos_path, anc_prefix[end], false) # (isinleftsubtree(node, anc_prefix[end]) ? φ : ¬φ) # end for nprefix in 1:(length(new_path)-1)] # @assert length(ancestor_formulas) == length(ancestors) my_conjuncts = [begin (isinleftsubtree(node, anc) ? φ : SoleLogics.normalize(¬(φ); allow_atom_flipping=true, prefer_implications = true)) end for (φ, anc) in zip(ancestor_formulas, ancestors)] my_left_conjuncts = [my_conjuncts..., φl] my_right_conjuncts = [my_conjuncts..., φr] # println() # println() # println() # @show syntaxstring.(my_left_conjuncts) # @show syntaxstring.(my_right_conjuncts) # @show syntaxstring(∧(my_left_conjuncts...)) # @show syntaxstring(∧(my_right_conjuncts...)) if optimize_shortforms # if D <: DoubleEdgedDecision # error("optimize_shortforms is untested with DoubleEdgedDecision's.") # end # Remove nonmaximal positives (for each modality) modalities = unique(i_modality.(new_ancestors)) my_filtered_left_conjuncts = similar(my_left_conjuncts, 0) my_filtered_right_conjuncts = similar(my_right_conjuncts, 0) for i_mod in modalities this_mod_mask = map((anc)->i_modality(anc) == i_mod, new_ancestors) # @show this_mod_mask this_mod_ancestors = new_ancestors[this_mod_mask] # @show syntaxstring.(formula.(decision.(this_mod_ancestors))) ispos_ancestors = [isinleftsubtree(ν2, ν1) for (ν2, ν1) in zip(this_mod_ancestors[2:end], this_mod_ancestors[1:end-1])] # @show ispos_ancestors begin this_mod_conjuncts = my_left_conjuncts[this_mod_mask] # ispos = map(anc->isinleftsubtree(left(forthnode), anc), this_mod_ancestors) ispos = [ispos_ancestors..., true] lastpos = findlast(x->x == true, ispos) # @show i_mod, ispos if !isnothing(lastpos) this_mod_conjuncts = [this_mod_conjuncts[lastpos], this_mod_conjuncts[(!).(ispos)]...] end # @show this_mod_conjuncts append!(my_filtered_left_conjuncts, this_mod_conjuncts) end begin this_mod_conjuncts = my_right_conjuncts[this_mod_mask] # ispos = map(anc->isinleftsubtree(right(forthnode), anc), this_mod_ancestors) ispos = [ispos_ancestors..., false] lastpos = findlast(x->x == true, ispos) # @show i_mod, ispos if !isnothing(lastpos) this_mod_conjuncts = [this_mod_conjuncts[lastpos], this_mod_conjuncts[(!).(ispos)]...] end # @show this_mod_conjuncts append!(my_filtered_right_conjuncts, this_mod_conjuncts) end end # @show syntaxstring(∧(my_filtered_left_conjuncts...)) # @show syntaxstring(∧(my_filtered_right_conjuncts...)) ∧(my_filtered_left_conjuncts...), ∧(my_filtered_right_conjuncts...) else ∧(my_left_conjuncts...), ∧(my_right_conjuncts...) end end end # pos_conj = pathformula(new_pos_path[1:end-1], new_pos_path[end], false) # @show pos_conj # @show syntaxstring(pos_shortform) # @show syntaxstring(neg_shortform) # # shortforms for my children # pos_shortform, neg_shortform = begin # if isnothing(shortform) # φl, φr # else # dl, dr = Dict{Int64,SoleLogics.SyntaxTree}(deepcopy(modforms(shortform))), Dict{Int64,SoleLogics.SyntaxTree}(deepcopy(modforms(shortform))) # dl[i_modality(node)] = modforms(φl)[i_modality(node)] # dr[i_modality(node)] = modforms(φr)[i_modality(node)] # MultiFormula(dl), MultiFormula(dr) # end # end forthnode_as_a_leaf = ModalDecisionTrees.this(forthnode) this_as_a_leaf = translate(forthnode_as_a_leaf, initconditions, new_path, new_pos_path, ancestors, ancestor_formulas; shortform = shortform, optimize_shortforms = optimize_shortforms) info = merge(info, (; this = this_as_a_leaf, # supporting_labels = SoleModels.info(this_as_a_leaf, :supporting_labels), supporting_labels = ModalDecisionTrees.supp_labels(forthnode_as_a_leaf), # supporting_predictions = SoleModels.info(this_as_a_leaf, :supporting_predictions), supporting_predictions = ModalDecisionTrees.predictions(forthnode_as_a_leaf), )) if !isnothing(shortform) # @show syntaxstring(shortform) info = merge(info, (; shortform = build_antecedent(shortform, initconditions), )) end SoleModels.Branch( build_antecedent(φl, initconditions), translate(left(forthnode), initconditions, new_path, new_pos_path, new_ancestors, new_ancestor_formulas; shortform = pos_shortform, optimize_shortforms = optimize_shortforms), translate(right(forthnode), initconditions, new_path, pos_path, new_ancestors, new_ancestor_formulas; shortform = neg_shortform, optimize_shortforms = optimize_shortforms), info ) end # function translate( # node::DTInternal{L,D}, # initconditions, # all_ancestors::Vector{<:DTInternal} = DTInternal[], # all_ancestor_formulas::Vector = [], # pos_ancestors::Vector{<:DTInternal} = DTInternal[]; # info = (;), # shortform::Union{Nothing,MultiFormula} = nothing, # optimize_shortforms = false, # ) where {L,D<:RestrictedDecision} # new_all_ancestors = DTInternal{L,<:RestrictedDecision}[all_ancestors..., node] # new_pos_ancestors = DTInternal{L,<:RestrictedDecision}[pos_ancestors..., node] # φl = pathformula(new_pos_ancestors, left(node), false) # φr = SoleLogics.normalize(¬(φl); allow_atom_flipping=true, prefer_implications = true) # new_all_ancestor_formulas = [all_ancestor_formulas..., φl] # # @show φl, φr # # φr = pathformula(new_pos_ancestors, right(node), true) # # @show syntaxstring(φl) # pos_shortform, neg_shortform = begin # if length(all_ancestors) == 0 # ( # φl, # φr, # ) # else # # my_conjuncts = [begin # # # anc_prefix = new_all_ancestors[1:nprefix] # # # cur_node = new_all_ancestors[nprefix+1] # # anc_prefix = new_all_ancestors[1:(nprefix+1)] # # new_pos_all_ancestors = similar(anc_prefix, 0) # # for i in 1:(length(anc_prefix)-1) # # if isinleftsubtree(anc_prefix[i+1], anc_prefix[i]) # # push!(new_pos_all_ancestors, anc_prefix[i]) # # end # # end # # φ = pathformula(new_pos_all_ancestors, anc_prefix[end], false) # # (isinleftsubtree(node, anc_prefix[end]) ? φ : ¬φ) # # end for nprefix in 1:(length(new_all_ancestors)-1)] # my_conjuncts = [begin # (isinleftsubtree(node, anc) ? φ : SoleLogics.normalize(¬(φ); allow_atom_flipping=true, prefer_implications = true)) # end for (φ, anc) in zip(all_ancestor_formulas, all_ancestors)] # my_left_conjuncts = [my_conjuncts..., φl] # my_right_conjuncts = [my_conjuncts..., φr] # # Remove nonmaximal positives (for each modality) # modalities = unique(i_modality.(new_all_ancestors)) # my_filtered_left_conjuncts = similar(my_left_conjuncts, 0) # my_filtered_right_conjuncts = similar(my_right_conjuncts, 0) # for i_mod in modalities # this_mod_mask = map((anc)->i_modality(anc) == i_mod, new_all_ancestors) # this_mod_ancestors = new_all_ancestors[this_mod_mask] # begin # this_mod_conjuncts = my_left_conjuncts[this_mod_mask] # ispos = map(anc->isinleftsubtree(left(node), anc), this_mod_ancestors) # lastpos = findlast(x->x, ispos) # # @show i_mod, ispos # if !isnothing(lastpos) # this_mod_conjuncts = [this_mod_conjuncts[lastpos], this_mod_conjuncts[(!).(ispos)]...] # end # append!(my_filtered_left_conjuncts, this_mod_conjuncts) # end # begin # this_mod_conjuncts = my_right_conjuncts[this_mod_mask] # ispos = map(anc->isinleftsubtree(right(node), anc), this_mod_ancestors) # lastpos = findlast(x->x, ispos) # # @show i_mod, ispos # if !isnothing(lastpos) # this_mod_conjuncts = [this_mod_conjuncts[lastpos], this_mod_conjuncts[(!).(ispos)]...] # end # append!(my_filtered_right_conjuncts, this_mod_conjuncts) # end # end # ∧(my_filtered_left_conjuncts...), ∧(my_filtered_right_conjuncts...) # end # end # # pos_conj = pathformula(new_pos_ancestors[1:end-1], new_pos_ancestors[end], false) # # @show pos_conj # # @show syntaxstring(pos_shortform) # # @show syntaxstring(neg_shortform) # # # shortforms for my children # # pos_shortform, neg_shortform = begin # # if isnothing(shortform) # # φl, φr # # else # # dl, dr = Dict{Int64,SoleLogics.SyntaxTree}(deepcopy(modforms(shortform))), Dict{Int64,SoleLogics.SyntaxTree}(deepcopy(modforms(shortform))) # # dl[i_modality(node)] = modforms(φl)[i_modality(node)] # # dr[i_modality(node)] = modforms(φr)[i_modality(node)] # # MultiFormula(dl), MultiFormula(dr) # # end # # end # info = merge(info, (; # this = translate(ModalDecisionTrees.this(node), initconditions, new_all_ancestors, all_ancestor_formulas, new_pos_ancestors; shortform = shortform, optimize_shortforms = optimize_shortforms), # supporting_labels = ModalDecisionTrees.supp_labels(node), # )) # if !isnothing(shortform) # # @show syntaxstring(shortform) # info = merge(info, (; # shortform = build_antecedent(shortform, initconditions), # )) # end # SoleModels.Branch( # build_antecedent(φl, initconditions), # translate(left(node), initconditions, new_all_ancestors, new_all_ancestor_formulas, new_pos_ancestors; shortform = pos_shortform, optimize_shortforms = optimize_shortforms), # translate(right(node), initconditions, new_all_ancestors, new_all_ancestor_formulas, pos_ancestors; shortform = neg_shortform, optimize_shortforms = optimize_shortforms), # info # ) # end ############################################################################################ ############################################################################################ ############################################################################################ function _condition(feature::AbstractFeature, test_op, threshold::T) where {T} # t = FunctionWrapper{Bool,Tuple{U,T}}(test_op) metacond = ScalarMetaCondition(feature, test_op) cond = ScalarCondition(metacond, threshold) return cond end function _atom(φ::ScalarCondition) test_op = test_operator(φ) return Atom(_condition(feature(φ), test_op, threshold(φ))) end function _atom_inv(φ::ScalarCondition) test_op = inverse_test_operator(test_operator(φ)) return Atom(_condition(feature(φ), test_op, threshold(φ))) end function _atom(p::String) return Atom(p) end function _atom_inv(p::String) # return Atom(startswith(p, "¬") ? p[nextind(p,1):end] : "¬$p") # return startswith(p, "¬") ? Atom(p[nextind(p,1):end]) : ¬(Atom(p)) return ¬(Atom(p)) end get_atom(φ::Atom) = φ get_atom_inv(φ::Atom) = ¬(φ) get_atom(φ::ExistentialTopFormula) = ⊤ get_atom_inv(φ::ExistentialTopFormula) = ⊥ get_diamond_op(φ::ExistentialTopFormula) = DiamondRelationalConnective(relation(φ)) get_box_op(φ::ExistentialTopFormula) = BoxRelationalConnective(relation(φ)) get_atom(φ::ScalarExistentialFormula) = _atom(φ.p) get_atom_inv(φ::ScalarExistentialFormula) = _atom_inv(φ.p) get_diamond_op(φ::ScalarExistentialFormula) = DiamondRelationalConnective(relation(φ)) get_box_op(φ::ScalarExistentialFormula) = BoxRelationalConnective(relation(φ)) # function is_propositional(node::DTNode) # f = formula(ModalDecisionTrees.decision(node)) # isprop = (relation(f) == identityrel) # return isprop # end function get_lambda(parent::DTNode, child::DTNode) d = ModalDecisionTrees.decision(parent) f = formula(d) # isprop = (relation(f) == identityrel) isprop = is_propositional_decision(d) if isinleftsubtree(child, parent) p = get_atom(f) if isprop return SyntaxTree(p) else diamond_op = get_diamond_op(f) return diamond_op(p) end elseif isinrightsubtree(child, parent) p_inv = get_atom_inv(f) if isprop return SyntaxTree(p_inv) else box_op = get_box_op(f) return box_op(p_inv) end else error("Cannot compute pathformula on malformed path: $((child, parent)).") end end include("complete.jl") include("restricted.jl")
ModalDecisionTrees
https://github.com/aclai-lab/ModalDecisionTrees.jl.git
[ "MIT" ]
0.5.0
200b2bd9dee3dfe2dcffa1fb51b6dd00d371ed2b
code
2844
# Compute path formula using semantics from TODO cite @memoize function pathformula( pos_ancestors::Vector{<:DTInternal{L,<:RestrictedDecision{<:ScalarExistentialFormula}}}, node::DTNode{LL}, multimodal::Bool, dontincrease::Bool = true, addlast = true, ) where {L,LL} if length(pos_ancestors) == 0 # return error("pathformula cannot accept 0 pos_ancestors. node = $(node).") # @show get_lambda(node, left(node)) return MultiFormula(i_modality(node), get_lambda(node, left(node))) else # Compute single-modality formula to check. if !multimodal pos_ancestors = filter(a->i_modality(a) == i_modality(last(pos_ancestors)), pos_ancestors) # @assert length(pos_ancestors) > 0 end if length(pos_ancestors) == 1 # @show prediction(this(node)) anc = first(pos_ancestors) # @show get_lambda(anc, node) return MultiFormula(i_modality(anc), get_lambda(anc, node)) else nodes = begin if addlast [pos_ancestors..., node] else pos_ancestors end end f = formula(ModalDecisionTrees.decision(nodes[1])) p = MultiFormula(i_modality(nodes[1]), SyntaxTree(get_atom(f))) isprop = is_propositional_decision(decision(nodes[1])) _dontincrease = isprop φ = pathformula(Vector{DTInternal{Union{L,LL},<:RestrictedDecision{<:ScalarExistentialFormula}}}(nodes[2:(end-1)]), nodes[end], multimodal, _dontincrease, addlast) # @assert length(unique(anc_mods)) == 1 "At the moment, translate does not work " * # "for MultiFormula formulas $(unique(anc_mods))." # @show addlast if (addlast && isinleftsubtree(nodes[end], nodes[end-1])) || (!addlast && isinleftsubtree(node, nodes[end])) # Remember: don't use isleftchild, because it fails in the multimodal case. # @show "DIAMOND" if isprop return dontincrease ? φ : (p ∧ φ) else ◊ = get_diamond_op(f) return ◊(p ∧ φ) end elseif (addlast && isinrightsubtree(nodes[end], nodes[end-1])) || (!addlast && isinrightsubtree(node, nodes[end])) # Remember: don't use isrightchild, because it fails in the multimodal case. # @show "BOX" if isprop return dontincrease ? φ : (p → φ) else □ = get_box_op(f) return □(p → φ) end else error("Cannot compute pathformula on malformed path: $((nodes[end], nodes[end-1])).") end end end end
ModalDecisionTrees
https://github.com/aclai-lab/ModalDecisionTrees.jl.git
[ "MIT" ]
0.5.0
200b2bd9dee3dfe2dcffa1fb51b6dd00d371ed2b
code
73064
export TestOperator, canonical_geq, canonical_leq, CanonicalFeatureGeqSoft, CanonicalFeatureLeqSoft abstract type TestOperator end ################################################################################ ################################################################################ abstract type TestOperatorPositive <: TestOperator end abstract type TestOperatorNegative <: TestOperator end polarity(::TestOperatorPositive) = true polarity(::TestOperatorNegative) = false @inline bottom(::TestOperatorPositive, T::Type) = typemin(T) @inline bottom(::TestOperatorNegative, T::Type) = typemax(T) @inline opt(::TestOperatorPositive) = max @inline opt(::TestOperatorNegative) = min # Warning: I'm assuming all operators are "closed" (= not strict, like >= and <=) @inline evaluate_thresh_decision(::TestOperatorPositive, t::T, gamma::T) where {T} = (t <= gamma) @inline evaluate_thresh_decision(::TestOperatorNegative, t::T, gamma::T) where {T} = (t >= gamma) compute_modal_gamma(test_operator::Union{TestOperatorPositive,TestOperatorNegative}, w::WorldType, relation::AbstractRelation, channel::DimensionalChannel{T,N}) where {WorldType<:AbstractWorld,T,N} = begin worlds = accessibles(channel, [w], relation) # TODO rewrite as reduce(opt(test_operator), (computePropositionalThreshold(test_operator, w, channel) for w in worlds); init=bottom(test_operator, T)) v = bottom(test_operator, T) for w in worlds e = computePropositionalThreshold(test_operator, w, channel) v = opt(test_operator)(v,e) end v end computeModalThresholdDual(test_operator::TestOperatorPositive, w::WorldType, relation::AbstractRelation, channel::DimensionalChannel{T,N}) where {WorldType<:AbstractWorld,T,N} = begin worlds = accessibles(channel, [w], relation) extr = (typemin(T),typemax(T)) for w in worlds e = computePropositionalThresholdDual(test_operator, w, channel) extr = (min(extr[1],e[1]), max(extr[2],e[2])) end extr end computeModalThresholdMany(test_ops::Vector{<:TestOperator}, w::WorldType, relation::AbstractRelation, channel::DimensionalChannel{T,N}) where {WorldType<:AbstractWorld,T,N} = begin [compute_modal_gamma(test_op, w, relation, channel) for test_op in test_ops] end ################################################################################ ################################################################################ # ⪴ and ⪳, that is, "*all* of the values on this world are at least, or at most ..." struct CanonicalFeatureGeq <: TestOperatorPositive end; const canonical_geq = CanonicalFeatureGeq(); struct CanonicalFeatureLeq <: TestOperatorNegative end; const canonical_leq = CanonicalFeatureLeq(); dual_test_operator(::CanonicalFeatureGeq) = canonical_leq dual_test_operator(::CanonicalFeatureLeq) = canonical_geq # TODO introduce singleton design pattern for these constants primary_test_operator(x::CanonicalFeatureGeq) = canonical_geq # x primary_test_operator(x::CanonicalFeatureLeq) = canonical_geq # dual_test_operator(x) siblings(::CanonicalFeatureGeq) = [] siblings(::CanonicalFeatureLeq) = [] Base.show(io::IO, test_operator::CanonicalFeatureGeq) = print(io, "⪴") Base.show(io::IO, test_operator::CanonicalFeatureLeq) = print(io, "⪳") @inline computePropositionalThreshold(::CanonicalFeatureGeq, w::AbstractWorld, channel::DimensionalChannel{T,N}) where {T,N} = begin # println(CanonicalFeatureGeq) # println(w) # println(channel) # println(maximum(ch_readWorld(w,channel))) # readline() minimum(ch_readWorld(w,channel)) end @inline computePropositionalThreshold(::CanonicalFeatureLeq, w::AbstractWorld, channel::DimensionalChannel{T,N}) where {T,N} = begin # println(CanonicalFeatureLeq) # println(w) # println(channel) # readline() maximum(ch_readWorld(w,channel)) end @inline computePropositionalThresholdDual(::CanonicalFeatureGeq, w::AbstractWorld, channel::DimensionalChannel{T,N}) where {T,N} = extrema(ch_readWorld(w,channel)) @inline test_decision(test_operator::CanonicalFeatureGeq, w::AbstractWorld, channel::DimensionalChannel{T,N}, threshold::Number) where {T,N} = begin # TODO maybe this becomes SIMD, or sum/all(ch_readWorld(w,channel) .<= threshold) # Source: https://stackoverflow.com/questions/47564825/check-if-all-the-elements-of-a-julia-array-are-equal # @inbounds # TODO try: # all(ch_readWorld(w,channel) .>= threshold) for x in ch_readWorld(w,channel) x >= threshold || return false end return true end @inline test_decision(test_operator::CanonicalFeatureLeq, w::AbstractWorld, channel::DimensionalChannel{T,N}, threshold::Number) where {T,N} = begin # TODO maybe this becomes SIMD, or sum/all(ch_readWorld(w,channel) .<= threshold) # Source: https://stackoverflow.com/questions/47564825/check-if-all-the-elements-of-a-julia-array-are-equal # @info "WLes" w threshold #n ch_readWorld(w,channel) # @inbounds # TODO try: # all(ch_readWorld(w,channel) .<= threshold) for x in ch_readWorld(w,channel) x <= threshold || return false end return true end ################################################################################ ################################################################################ export canonical_geq_95, canonical_geq_90, canonical_geq_85, canonical_geq_80, canonical_geq_75, canonical_geq_70, canonical_geq_60, canonical_leq_95, canonical_leq_90, canonical_leq_85, canonical_leq_80, canonical_leq_75, canonical_leq_70, canonical_leq_60 # ⪴_α and ⪳_α, that is, "*at least α⋅100 percent* of the values on this world are at least, or at most ..." struct CanonicalFeatureGeqSoft <: TestOperatorPositive alpha :: AbstractFloat CanonicalFeatureGeqSoft(a::T) where {T<:Real} = (a > 0 && a < 1) ? new(a) : throw_n_log("Invalid instantiation for test operator: CanonicalFeatureGeqSoft($(a))") end; struct CanonicalFeatureLeqSoft <: TestOperatorNegative alpha :: AbstractFloat CanonicalFeatureLeqSoft(a::T) where {T<:Real} = (a > 0 && a < 1) ? new(a) : throw_n_log("Invalid instantiation for test operator: CanonicalFeatureLeqSoft($(a))") end; const canonical_geq_95 = CanonicalFeatureGeqSoft((Rational(95,100))); const canonical_geq_90 = CanonicalFeatureGeqSoft((Rational(90,100))); const canonical_geq_85 = CanonicalFeatureGeqSoft((Rational(85,100))); const canonical_geq_80 = CanonicalFeatureGeqSoft((Rational(80,100))); const canonical_geq_75 = CanonicalFeatureGeqSoft((Rational(75,100))); const canonical_geq_70 = CanonicalFeatureGeqSoft((Rational(70,100))); const canonical_geq_60 = CanonicalFeatureGeqSoft((Rational(60,100))); const canonical_leq_95 = CanonicalFeatureLeqSoft((Rational(95,100))); const canonical_leq_90 = CanonicalFeatureLeqSoft((Rational(90,100))); const canonical_leq_85 = CanonicalFeatureLeqSoft((Rational(85,100))); const canonical_leq_80 = CanonicalFeatureLeqSoft((Rational(80,100))); const canonical_leq_75 = CanonicalFeatureLeqSoft((Rational(75,100))); const canonical_leq_70 = CanonicalFeatureLeqSoft((Rational(70,100))); const canonical_leq_60 = CanonicalFeatureLeqSoft((Rational(60,100))); alpha(x::CanonicalFeatureGeqSoft) = x.alpha alpha(x::CanonicalFeatureLeqSoft) = x.alpha # dual_test_operator(x::CanonicalFeatureGeqSoft) = TestOpNone # dual_test_operator(x::CanonicalFeatureLeqSoft) = TestOpNone # TODO The dual_test_operators for CanonicalFeatureGeqSoft(alpha) is TestOpLeSoft(1-alpha), which is not defined yet. # Define it, together with their dual_test_operator and computePropositionalThresholdDual # dual_test_operator(x::CanonicalFeatureGeqSoft) = throw_n_log("If you use $(x), need to write computeModalThresholdDual for the primal test operator.") # dual_test_operator(x::CanonicalFeatureLeqSoft) = throw_n_log("If you use $(x), need to write computeModalThresholdDual for the primal test operator.") primary_test_operator(x::CanonicalFeatureGeqSoft) = x primary_test_operator(x::CanonicalFeatureLeqSoft) = dual_test_operator(x) const SoftenedOperators = [ canonical_geq_95, canonical_leq_95, canonical_geq_90, canonical_leq_90, canonical_geq_80, canonical_leq_80, canonical_geq_85, canonical_leq_85, canonical_geq_75, canonical_leq_75, canonical_geq_70, canonical_leq_70, canonical_geq_60, canonical_leq_60, ] siblings(x::Union{CanonicalFeatureGeqSoft,CanonicalFeatureLeqSoft}) = SoftenedOperators Base.show(io::IO, test_operator::CanonicalFeatureGeqSoft) = print(io, "⪴" * subscriptnumber(rstrip(rstrip(string(alpha(test_operator)*100), '0'), '.'))) Base.show(io::IO, test_operator::CanonicalFeatureLeqSoft) = print(io, "⪳" * subscriptnumber(rstrip(rstrip(string(alpha(test_operator)*100), '0'), '.'))) # TODO improved version for Rational numbers # TODO check @inline test_op_partialsort!(test_op::CanonicalFeatureGeqSoft, vals::Vector{T}) where {T} = partialsort!(vals,ceil(Int, alpha(test_op)*length(vals)); rev=true) @inline test_op_partialsort!(test_op::CanonicalFeatureLeqSoft, vals::Vector{T}) where {T} = partialsort!(vals,ceil(Int, alpha(test_op)*length(vals))) @inline computePropositionalThreshold(test_op::Union{CanonicalFeatureGeqSoft,CanonicalFeatureLeqSoft}, w::AbstractWorld, channel::DimensionalChannel{T,N}) where {T,N} = begin vals = vec(ch_readWorld(w,channel)) test_op_partialsort!(test_op,vals) end # @inline computePropositionalThresholdDual(test_op::CanonicalFeatureGeqSoft, w::AbstractWorld, channel::DimensionalChannel{T,N}) where {T,N} = begin # vals = vec(ch_readWorld(w,channel)) # xmin = test_op_partialsort!(test_op,vec(ch_readWorld(w,channel))) # xmin = partialsort!(vals,ceil(Int, alpha(test_op)*length(vals)); rev=true) # xmax = partialsort!(vals,ceil(Int, (alpha(test_op))*length(vals))) # xmin,xmax # end @inline computePropositionalThresholdMany(test_ops::Vector{<:TestOperator}, w::AbstractWorld, channel::DimensionalChannel{T,N}) where {T,N} = begin vals = vec(ch_readWorld(w,channel)) (test_op_partialsort!(test_op,vals) for test_op in test_ops) end @inline test_decision(test_operator::CanonicalFeatureGeqSoft, w::AbstractWorld, channel::DimensionalChannel{T,N}, threshold::Number) where {T,N} = begin ys = 0 # TODO write with reduce, and optimize it (e.g. by stopping early if the decision is reached already) vals = ch_readWorld(w,channel) for x in vals if x >= threshold ys+=1 end end (ys/length(vals)) >= test_operator.alpha end @inline test_decision(test_operator::CanonicalFeatureLeqSoft, w::AbstractWorld, channel::DimensionalChannel{T,N}, threshold::Number) where {T,N} = begin ys = 0 # TODO write with reduce, and optimize it (e.g. by stopping early if the decision is reached already) vals = ch_readWorld(w,channel) for x in vals if x <= threshold ys+=1 end end (ys/length(vals)) >= test_operator.alpha end ################################################################################ ################################################################################ const all_lowlevel_test_operators = [ canonical_geq, canonical_leq, SoftenedOperators... ] const all_ordered_test_operators = [ canonical_geq, canonical_leq, SoftenedOperators... ] const all_test_operators_order = [ canonical_geq, canonical_leq, SoftenedOperators... ] sort_test_operators!(x::Vector{TO}) where {TO<:TestOperator} = begin intersect(all_test_operators_order, x) end ################################################################################ ################################################################################ function test_decision( X::DimensionalDataset{T}, i_sample::Integer, w::AbstractWorld, feature::AbstractFeature, test_operator::OrderingTestOperator, threshold::T) where {T} test_decision(X, i_sample, w, feature, existential_aggregator(test_operator), threshold) end function test_decision( X::DimensionalDataset{T}, i_sample::Integer, w::AbstractWorld, feature::AbstractFeature... , aggregator::typeof(maximum), threshold::T) where {T} values = get_values ... (X, i_sample, w, feature.i_attribute...) ch_readWorld(w,channel) all_broadcast_sc(values, test_operator, threshold) end function test_decision( X::InterpretedModalDataset{T}, i_sample::Integer, w::AbstractWorld, feature::AbstractFeature, test_operator::TestOperatorFun, threshold::T) where {T} test_decision(X.domain, i_sample, w, feature, test_operator, threshold) end ############################################################################################ ############################################################################################ function computePropositionalThreshold(feature::AbstractFeature, w::AbstractWorld, instance::DimensionalInstance{T,N}) where {T,N} compute_feature(feature, inst_readWorld(w, instance)::DimensionalChannel{T,N-1})::T end computeModalThresholdDual(test_operator::TestOperatorFun, w::WorldType, relation::R where R<:_UnionOfRelations{relsTuple}, channel::DimensionalChannel{T,N}) where {WorldType<:AbstractWorld,T,N} = computePropositionalThresholdDual(test_operator, w, channel) fieldtypes(relsTuple) compute_modal_gamma(test_operator::TestOperatorFun, w::WorldType, relation::R where R<:_UnionOfRelations{relsTuple}, channel::DimensionalChannel{T,N}) where {WorldType<:AbstractWorld,T,N} = computePropositionalThreshold(test_operator, w, channel) fieldtypes(relsTuple) #= # needed for GAMMAS yieldReprs(test_operator::CanonicalFeatureGeq, repr::_ReprMax{Interval}, channel::DimensionalChannel{T,1}) where {T} = reverse(extrema(ch_readWorld(repr.w, channel)))::NTuple{2,T} yieldReprs(test_operator::CanonicalFeatureGeq, repr::_ReprMin{Interval}, channel::DimensionalChannel{T,1}) where {T} = extrema(ch_readWorld(repr.w, channel))::NTuple{2,T} yieldReprs(test_operator::CanonicalFeatureGeq, repr::_ReprVal{Interval}, channel::DimensionalChannel{T,1}) where {T} = (channel[repr.w.x],channel[repr.w.x])::NTuple{2,T} yieldReprs(test_operator::CanonicalFeatureGeq, repr::_ReprNone{Interval}, channel::DimensionalChannel{T,1}) where {T} = (typemin(T),typemax(T))::NTuple{2,T} yieldRepr(test_operator::Union{CanonicalFeatureGeq,CanonicalFeatureLeq}, repr::_ReprMax{Interval}, channel::DimensionalChannel{T,1}) where {T} = maximum(ch_readWorld(repr.w, channel))::T yieldRepr(test_operator::Union{CanonicalFeatureGeq,CanonicalFeatureLeq}, repr::_ReprMin{Interval}, channel::DimensionalChannel{T,1}) where {T} = minimum(ch_readWorld(repr.w, channel))::T yieldRepr(test_operator::Union{CanonicalFeatureGeq,CanonicalFeatureLeq}, repr::_ReprVal{Interval}, channel::DimensionalChannel{T,1}) where {T} = channel[repr.w.x]::T yieldRepr(test_operator::CanonicalFeatureGeq, repr::_ReprNone{Interval}, channel::DimensionalChannel{T,1}) where {T} = typemin(T)::T yieldRepr(test_operator::CanonicalFeatureLeq, repr::_ReprNone{Interval}, channel::DimensionalChannel{T,1}) where {T} = typemax(T)::T enum_acc_repr(test_operator::CanonicalFeatureGeq, w::Interval, ::_RelationGlob, X::Integer) = _ReprMax(Interval(1,X+1)) enum_acc_repr(test_operator::CanonicalFeatureLeq, w::Interval, ::_RelationGlob, X::Integer) = _ReprMin(Interval(1,X+1)) # TODO optimize relationGlob computeModalThresholdDual(test_operator::CanonicalFeatureGeq, w::Interval, r::R where R<:AbstractRelation, channel::DimensionalChannel{T,1}) where {T} = yieldReprs(test_operator, enum_acc_repr(test_operator, w, r, size(channel)...), channel) computeModalThreshold(test_operator::Union{CanonicalFeatureGeq,CanonicalFeatureLeq}, w::Interval, r::R where R<:AbstractRelation, channel::DimensionalChannel{T,1}) where {T} = yieldRepr(test_operator, enum_acc_repr(test_operator, w, r, size(channel)...), channel) # TODO optimize relationGlob? # computeModalThresholdDual(test_operator::CanonicalFeatureGeq, w::Interval, ::_RelationGlob, channel::DimensionalChannel{T,1}) where {T} = begin # # X = length(channel) # # println("Check!") # # println(test_operator) # # println(w) # # println(relation) # # println(channel) # # println(computePropositionalThresholdDual(test_operator, Interval(1,X+1), channel)) # # readline() # # computePropositionalThresholdDual(test_operator, Interval(1,X+1), channel) # reverse(extrema(channel)) # end # computeModalThreshold(test_operator::CanonicalFeatureGeq, w::Interval, ::_RelationGlob, channel::DimensionalChannel{T,1}) where {T} = begin # # TODO optimize this by replacing readworld with channel[1:X]... # # X = length(channel) # # maximum(ch_readWorld(Interval(1,X+1),channel)) # maximum(channel) # end # computeModalThreshold(test_operator::CanonicalFeatureLeq, w::Interval, ::_RelationGlob, channel::DimensionalChannel{T,1}) where {T} = begin # # TODO optimize this by replacing readworld with channel[1:X]... # # X = length(channel) # # minimum(ch_readWorld(Interval(1,X+1),channel)) # minimum(channel) # end ch_readWorld(w::Interval, channel::DimensionalChannel{T,1}) where {T} = channel[w.x:w.y-1] =# #= # needed for GAMMAS yieldReprs(test_operator::CanonicalFeatureGeq, repr::_ReprMax{Interval2D}, channel::DimensionalChannel{T,2}) where {T} = reverse(extrema(ch_readWorld(repr.w, channel)))::NTuple{2,T} yieldReprs(test_operator::CanonicalFeatureGeq, repr::_ReprMin{Interval2D}, channel::DimensionalChannel{T,2}) where {T} = extrema(ch_readWorld(repr.w, channel))::NTuple{2,T} yieldReprs(test_operator::CanonicalFeatureGeq, repr::_ReprVal{Interval2D}, channel::DimensionalChannel{T,2}) where {T} = (channel[repr.w.x.x, repr.w.y.x],channel[repr.w.x.x, repr.w.y.x])::NTuple{2,T} yieldReprs(test_operator::CanonicalFeatureGeq, repr::_ReprNone{Interval2D}, channel::DimensionalChannel{T,2}) where {T} = (typemin(T),typemax(T))::NTuple{2,T} yieldRepr(test_operator::Union{CanonicalFeatureGeq,CanonicalFeatureLeq}, repr::_ReprMax{Interval2D}, channel::DimensionalChannel{T,2}) where {T} = maximum(ch_readWorld(repr.w, channel))::T yieldRepr(test_operator::Union{CanonicalFeatureGeq,CanonicalFeatureLeq}, repr::_ReprMin{Interval2D}, channel::DimensionalChannel{T,2}) where {T} = minimum(ch_readWorld(repr.w, channel))::T yieldRepr(test_operator::Union{CanonicalFeatureGeq,CanonicalFeatureLeq}, repr::_ReprVal{Interval2D}, channel::DimensionalChannel{T,2}) where {T} = channel[repr.w.x.x, repr.w.y.x]::T yieldRepr(test_operator::CanonicalFeatureGeq, repr::_ReprNone{Interval2D}, channel::DimensionalChannel{T,2}) where {T} = typemin(T)::T yieldRepr(test_operator::CanonicalFeatureLeq, repr::_ReprNone{Interval2D}, channel::DimensionalChannel{T,2}) where {T} = typemax(T)::T enum_acc_repr(test_operator::CanonicalFeatureGeq, w::Interval2D, ::_RelationGlob, X::Integer, Y::Integer) = _ReprMax(Interval2D(Interval(1,X+1), Interval(1,Y+1))) enum_acc_repr(test_operator::CanonicalFeatureLeq, w::Interval2D, ::_RelationGlob, X::Integer, Y::Integer) = _ReprMin(Interval2D(Interval(1,X+1), Interval(1,Y+1))) # TODO write only one ExtremeModal/ExtremaModal # TODO optimize relationGlob computeModalThresholdDual(test_operator::CanonicalFeatureGeq, w::Interval2D, r::R where R<:AbstractRelation, channel::DimensionalChannel{T,2}) where {T} = begin # if (channel == [412 489 559 619 784; 795 771 1317 854 1256; 971 874 878 1278 560] && w.x.x==1 && w.x.y==3 && w.y.x==3 && w.y.y==4) # println(enum_acc_repr(test_operator, w, r, size(channel)...)) # readline() # end yieldReprs(test_operator, enum_acc_repr(test_operator, w, r, size(channel)...), channel) end compute_modal_gamma(test_operator::Union{CanonicalFeatureGeq,CanonicalFeatureLeq}, w::Interval2D, r::R where R<:AbstractRelation, channel::DimensionalChannel{T,2}) where {T} = yieldRepr(test_operator, enum_acc_repr(test_operator, w, r, size(channel)...), channel) # channel = [1,2,3,2,8,349,0,830,7290,298,20,29,2790,27,90279,270,2722,79072,0] # w = ModalLogic.Interval(3,9) # # w = ModalLogic.Interval(3,4) # for relation in ModalLogic.IARelations # ModalLogic.computeModalThresholdDual(canonical_geq, w, relation, channel) # end # channel2 = randn(3,4) # channel2[1:3,1] # channel2[1:3,2] # channel2[1:3,3] # channel2[1:3,4] # vals=channel2 # mapslices(maximum, vals, dims=1) # computeModalThresholdDual(test_operator::CanonicalFeatureGeq, w::Interval2D, ::_RelationGlob, channel::DimensionalChannel{T,2}) where {T} = begin # # X = size(channel, 1) # # Y = size(channel, 2) # # println("Check!") # # println(test_operator) # # println(w) # # println(relation) # # println(channel) # # println(computePropositionalThresholdDual(test_operator, Interval2D(Interval(1,X+1), Interval(1, Y+1)), channel)) # # readline() # # computePropositionalThresholdDual(test_operator, Interval2D(Interval(1,X+1), Interval(1, Y+1)), channel) # reverse(extrema(channel)) # end # compute_modal_gamma(test_operator::CanonicalFeatureGeq, w::Interval2D, ::_RelationGlob, channel::DimensionalChannel{T,2}) where {T} = begin # # TODO optimize this by replacing readworld with channel[1:X]... # # X = size(channel, 1) # # Y = size(channel, 2) # # maximum(channel[1:X,1:Y]) # maximum(channel) # end # compute_modal_gamma(test_operator::CanonicalFeatureLeq, w::Interval2D, ::_RelationGlob, channel::DimensionalChannel{T,2}) where {T} = begin # # TODO optimize this by replacing readworld with channel[1:X]... # # X = size(channel, 1) # # Y = size(channel, 2) # # println(channel) # # println(w) # # println(minimum(channel[1:X,1:Y])) # # readline() # # minimum(channel[1:X,1:Y]) # minimum(channel) # end @inline ch_readWorld(w::Interval2D, channel::DimensionalChannel{T,2}) where {T} = channel[w.x.x:w.x.y-1,w.y.x:w.y.y-1] =# # Other options: # accessibles2_1_2(S::AbstractWorldSet{Interval}, ::_IA_L, X::Integer) = # IterTools.imap(Interval, _accessibles(Base.argmin((w.y for w in S)), IA_L, X)) # accessibles2_1_2(S::AbstractWorldSet{Interval}, ::_IA_Li, X::Integer) = # IterTools.imap(Interval, _accessibles(Base.argmax((w.x for w in S)), IA_Li, X)) # accessibles2_2(S::AbstractWorldSet{Interval}, ::_IA_L, X::Integer) = begin # m = argmin(map((w)->w.y, S)) # IterTools.imap(Interval, _accessibles([w for (i,w) in enumerate(S) if i == m][1], IA_L, X)) # end # accessibles2_2(S::AbstractWorldSet{Interval}, ::_IA_Li, X::Integer) = begin # m = argmax(map((w)->w.x, S)) # IterTools.imap(Interval, _accessibles([w for (i,w) in enumerate(S) if i == m][1], IA_Li, X)) # end # # This makes sense if we have 2-Tuples instead of intervals # function snd((a,b)::Tuple) b end # function fst((a,b)::Tuple) a end # accessibles2_1(S::AbstractWorldSet{Interval}, ::_IA_L, X::Integer) = # IterTools.imap(Interval, # _accessibles(S[argmin(map(snd, S))], IA_L, X) # ) # accessibles2_1(S::AbstractWorldSet{Interval}, ::_IA_Li, X::Integer) = # IterTools.imap(Interval, # _accessibles(S[argmax(map(fst, S))], IA_Li, X) # ) #= # TODO parametrize on the test_operator. These are wrong anyway... # Note: these conditions are the ones that make a modal_step inexistent enum_acc_repr(test_operator::Union{CanonicalFeatureGeq,CanonicalFeatureLeq}, w::Interval, ::_IA_A, X::Integer) = (w.y < X+1) ? _ReprVal(Interval(w.y, w.y+1) ) : _ReprNone{Interval}() # [Interval(w.y, X+1)] : Interval[] enum_acc_repr(test_operator::Union{CanonicalFeatureGeq,CanonicalFeatureLeq}, w::Interval, ::_IA_Ai, X::Integer) = (1 < w.x) ? _ReprVal(Interval(w.x-1, w.x) ) : _ReprNone{Interval}() # [Interval(1, w.x)] : Interval[] enum_acc_repr(test_operator::Union{CanonicalFeatureGeq,CanonicalFeatureLeq}, w::Interval, ::_IA_B, X::Integer) = (w.x < w.y-1) ? _ReprVal(Interval(w.x, w.x+1) ) : _ReprNone{Interval}() # [Interval(w.x, w.y-1)] : Interval[] enum_acc_repr(test_operator::Union{CanonicalFeatureGeq,CanonicalFeatureLeq}, w::Interval, ::_IA_E, X::Integer) = (w.x+1 < w.y) ? _ReprVal(Interval(w.y-1, w.y) ) : _ReprNone{Interval}() # [Interval(w.x+1, w.y)] : Interval[] enum_acc_repr(test_operator::CanonicalFeatureGeq, w::Interval, ::_IA_L, X::Integer) = (w.y+1 < X+1) ? _ReprMax(Interval(w.y+1, X+1) ) : _ReprNone{Interval}() # [Interval(w.y+1, X+1)] : Interval[] enum_acc_repr(test_operator::CanonicalFeatureGeq, w::Interval, ::_IA_Li, X::Integer) = (1 < w.x-1) ? _ReprMax(Interval(1, w.x-1) ) : _ReprNone{Interval}() # [Interval(1, w.x-1)] : Interval[] enum_acc_repr(test_operator::CanonicalFeatureGeq, w::Interval, ::_IA_D, X::Integer) = (w.x+1 < w.y-1) ? _ReprMax(Interval(w.x+1, w.y-1) ) : _ReprNone{Interval}() # [Interval(w.x+1, w.y-1)] : Interval[] enum_acc_repr(test_operator::CanonicalFeatureLeq, w::Interval, ::_IA_L, X::Integer) = (w.y+1 < X+1) ? _ReprMin(Interval(w.y+1, X+1) ) : _ReprNone{Interval}() # [Interval(w.y+1, X+1)] : Interval[] enum_acc_repr(test_operator::CanonicalFeatureLeq, w::Interval, ::_IA_Li, X::Integer) = (1 < w.x-1) ? _ReprMin(Interval(1, w.x-1) ) : _ReprNone{Interval}() # [Interval(1, w.x-1)] : Interval[] enum_acc_repr(test_operator::CanonicalFeatureLeq, w::Interval, ::_IA_D, X::Integer) = (w.x+1 < w.y-1) ? _ReprMin(Interval(w.x+1, w.y-1) ) : _ReprNone{Interval}() # [Interval(w.x+1, w.y-1)] : Interval[] enum_acc_repr(test_operator::CanonicalFeatureGeq, w::Interval, ::_IA_Bi, X::Integer) = (w.y < X+1) ? _ReprMin(Interval(w.x, w.y+1) ) : _ReprNone{Interval}() # [Interval(w.x, X+1)] : Interval[] enum_acc_repr(test_operator::CanonicalFeatureGeq, w::Interval, ::_IA_Ei, X::Integer) = (1 < w.x) ? _ReprMin(Interval(w.x-1, w.y) ) : _ReprNone{Interval}() # [Interval(1, w.y)] : Interval[] enum_acc_repr(test_operator::CanonicalFeatureGeq, w::Interval, ::_IA_Di, X::Integer) = (1 < w.x && w.y < X+1) ? _ReprMin(Interval(w.x-1, w.y+1) ) : _ReprNone{Interval}() # [Interval(1, X+1)] : Interval[] enum_acc_repr(test_operator::CanonicalFeatureGeq, w::Interval, ::_IA_O, X::Integer) = (w.x+1 < w.y && w.y < X+1) ? _ReprMin(Interval(w.y-1, w.y+1) ) : _ReprNone{Interval}() # [Interval(w.x+1, X+1)] : Interval[] enum_acc_repr(test_operator::CanonicalFeatureGeq, w::Interval, ::_IA_Oi, X::Integer) = (1 < w.x && w.x+1 < w.y) ? _ReprMin(Interval(w.x-1, w.x+1) ) : _ReprNone{Interval}() # [Interval(1, w.y-1)] : Interval[] enum_acc_repr(test_operator::CanonicalFeatureLeq, w::Interval, ::_IA_Bi, X::Integer) = (w.y < X+1) ? _ReprMax(Interval(w.x, w.y+1) ) : _ReprNone{Interval}() # [Interval(w.x, X+1)] : Interval[] enum_acc_repr(test_operator::CanonicalFeatureLeq, w::Interval, ::_IA_Ei, X::Integer) = (1 < w.x) ? _ReprMax(Interval(w.x-1, w.y) ) : _ReprNone{Interval}() # [Interval(1, w.y)] : Interval[] enum_acc_repr(test_operator::CanonicalFeatureLeq, w::Interval, ::_IA_Di, X::Integer) = (1 < w.x && w.y < X+1) ? _ReprMax(Interval(w.x-1, w.y+1) ) : _ReprNone{Interval}() # [Interval(1, X+1)] : Interval[] enum_acc_repr(test_operator::CanonicalFeatureLeq, w::Interval, ::_IA_O, X::Integer) = (w.x+1 < w.y && w.y < X+1) ? _ReprMax(Interval(w.y-1, w.y+1) ) : _ReprNone{Interval}() # [Interval(w.x+1, X+1)] : Interval[] enum_acc_repr(test_operator::CanonicalFeatureLeq, w::Interval, ::_IA_Oi, X::Integer) = (1 < w.x && w.x+1 < w.y) ? _ReprMax(Interval(w.x-1, w.x+1) ) : _ReprNone{Interval}() # [Interval(1, w.y-1)] : Interval[] =# # computeModalThresholdDual(test_operator::CanonicalFeatureGeq, w::Interval, ::_IA_A, channel::DimensionalChannel{T,1}) where {T} = # (w.y < length(channel)+1) ? (channel[w.y],channel[w.y]) : (typemax(T),typemin(T)) # compute_modal_gamma(test_operator::CanonicalFeatureGeq, w::Interval, ::_IA_A, channel::DimensionalChannel{T,1}) where {T} = # (w.y < length(channel)+1) ? channel[w.y] : typemax(T) # compute_modal_gamma(test_operator::CanonicalFeatureLeq, w::Interval, ::_IA_A, channel::DimensionalChannel{T,1}) where {T} = # (w.y < length(channel)+1) ? channel[w.y] : typemin(T) # computeModalThresholdDual(test_operator::CanonicalFeatureGeq, w::Interval, ::_IA_Ai, channel::DimensionalChannel{T,1}) where {T} = # (1 < w.x) ? (channel[w.x-1],channel[w.x-1]) : (typemax(T),typemin(T)) # compute_modal_gamma(test_operator::CanonicalFeatureGeq, w::Interval, ::_IA_Ai, channel::DimensionalChannel{T,1}) where {T} = # (1 < w.x) ? channel[w.x-1] : typemax(T) # compute_modal_gamma(test_operator::CanonicalFeatureLeq, w::Interval, ::_IA_Ai, channel::DimensionalChannel{T,1}) where {T} = # (1 < w.x) ? channel[w.x-1] : typemin(T) # computeModalThresholdDual(test_operator::CanonicalFeatureGeq, w::Interval, ::_IA_L, channel::DimensionalChannel{T,1}) where {T} = # (w.y+1 < length(channel)+1) ? reverse(extrema(channel[w.y+1:length(channel)])) : (typemax(T),typemin(T)) # compute_modal_gamma(test_operator::CanonicalFeatureGeq, w::Interval, ::_IA_L, channel::DimensionalChannel{T,1}) where {T} = # (w.y+1 < length(channel)+1) ? maximum(channel[w.y+1:length(channel)]) : typemax(T) # compute_modal_gamma(test_operator::CanonicalFeatureLeq, w::Interval, ::_IA_L, channel::DimensionalChannel{T,1}) where {T} = # (w.y+1 < length(channel)+1) ? minumum(channel[w.y+1:length(channel)]) : typemin(T) # computeModalThresholdDual(test_operator::CanonicalFeatureGeq, w::Interval, ::_IA_Li, channel::DimensionalChannel{T,1}) where {T} = # (1 < w.x-1) ? reverse(extrema(channel[1:w.x-2])) : (typemax(T),typemin(T)) # compute_modal_gamma(test_operator::CanonicalFeatureGeq, w::Interval, ::_IA_Li, channel::DimensionalChannel{T,1}) where {T} = # (1 < w.x-1) ? maximum(channel[1:w.x-2]) : typemax(T) # compute_modal_gamma(test_operator::CanonicalFeatureLeq, w::Interval, ::_IA_Li, channel::DimensionalChannel{T,1}) where {T} = # (1 < w.x-1) ? minumum(channel[1:w.x-2]) : typemin(T) # computeModalThresholdDual(test_operator::CanonicalFeatureGeq, w::Interval, ::_IA_B, channel::DimensionalChannel{T,1}) where {T} = # (w.x < w.y-1) ? (channel[w.x],channel[w.x]) : (typemax(T),typemin(T)) # compute_modal_gamma(test_operator::CanonicalFeatureGeq, w::Interval, ::_IA_B, channel::DimensionalChannel{T,1}) where {T} = # (w.x < w.y-1) ? channel[w.x] : typemax(T) # compute_modal_gamma(test_operator::CanonicalFeatureLeq, w::Interval, ::_IA_B, channel::DimensionalChannel{T,1}) where {T} = # (w.x < w.y-1) ? channel[w.x] : typemin(T) # computeModalThresholdDual(test_operator::CanonicalFeatureGeq, w::Interval, ::_IA_Bi, channel::DimensionalChannel{T,1}) where {T} = # (w.y < length(channel)+1) ? (minimum(channel[w.x:w.y-1+1]),maximum(channel[w.x:w.y-1+1])) : (typemax(T),typemin(T)) # compute_modal_gamma(test_operator::CanonicalFeatureGeq, w::Interval, ::_IA_Bi, channel::DimensionalChannel{T,1}) where {T} = # (w.y < length(channel)+1) ? minimum(channel[w.x:w.y-1+1]) : typemax(T) # compute_modal_gamma(test_operator::CanonicalFeatureLeq, w::Interval, ::_IA_Bi, channel::DimensionalChannel{T,1}) where {T} = # (w.y < length(channel)+1) ? maximum(channel[w.x:w.y-1+1]) : typemin(T) # computeModalThresholdDual(test_operator::CanonicalFeatureGeq, w::Interval, ::_IA_E, channel::DimensionalChannel{T,1}) where {T} = # (w.x+1 < w.y) ? (channel[w.y-1],channel[w.y-1]) : (typemax(T),typemin(T)) # compute_modal_gamma(test_operator::CanonicalFeatureGeq, w::Interval, ::_IA_E, channel::DimensionalChannel{T,1}) where {T} = # (w.x+1 < w.y) ? channel[w.y-1] : typemax(T) # compute_modal_gamma(test_operator::CanonicalFeatureLeq, w::Interval, ::_IA_E, channel::DimensionalChannel{T,1}) where {T} = # (w.x+1 < w.y) ? channel[w.y-1] : typemin(T) # computeModalThresholdDual(test_operator::CanonicalFeatureGeq, w::Interval, ::_IA_Ei, channel::DimensionalChannel{T,1}) where {T} = # (1 < w.x) ? (minimum(channel[w.x-1:w.y-1]),maximum(channel[w.x-1:w.y-1])) : (typemax(T),typemin(T)) # compute_modal_gamma(test_operator::CanonicalFeatureGeq, w::Interval, ::_IA_Ei, channel::DimensionalChannel{T,1}) where {T} = # (1 < w.x) ? minimum(channel[w.x-1:w.y-1]) : typemax(T) # compute_modal_gamma(test_operator::CanonicalFeatureLeq, w::Interval, ::_IA_Ei, channel::DimensionalChannel{T,1}) where {T} = # (1 < w.x) ? maximum(channel[w.x-1:w.y-1]) : typemin(T) # computeModalThresholdDual(test_operator::CanonicalFeatureGeq, w::Interval, ::_IA_D, channel::DimensionalChannel{T,1}) where {T} = # (w.x+1 < w.y-1) ? reverse(extrema(channel[w.x+1:w.y-1-1])) : (typemax(T),typemin(T)) # compute_modal_gamma(test_operator::CanonicalFeatureGeq, w::Interval, ::_IA_D, channel::DimensionalChannel{T,1}) where {T} = # (w.x+1 < w.y-1) ? maximum(channel[w.x+1:w.y-1-1]) : typemax(T) # compute_modal_gamma(test_operator::CanonicalFeatureLeq, w::Interval, ::_IA_D, channel::DimensionalChannel{T,1}) where {T} = # (w.x+1 < w.y-1) ? minumum(channel[w.x+1:w.y-1-1]) : typemin(T) # computeModalThresholdDual(test_operator::CanonicalFeatureGeq, w::Interval, ::_IA_Di, channel::DimensionalChannel{T,1}) where {T} = # (1 < w.x && w.y < length(channel)+1) ? (minimum(channel[w.x-1:w.y-1+1]),maximum(channel[w.x-1:w.y-1+1])) : (typemax(T),typemin(T)) # compute_modal_gamma(test_operator::CanonicalFeatureGeq, w::Interval, ::_IA_Di, channel::DimensionalChannel{T,1}) where {T} = # (1 < w.x && w.y < length(channel)+1) ? minimum(channel[w.x-1:w.y-1+1]) : typemax(T) # compute_modal_gamma(test_operator::CanonicalFeatureLeq, w::Interval, ::_IA_Di, channel::DimensionalChannel{T,1}) where {T} = # (1 < w.x && w.y < length(channel)+1) ? maximum(channel[w.x-1:w.y-1+1]) : typemin(T) # computeModalThresholdDual(test_operator::CanonicalFeatureGeq, w::Interval, ::_IA_O, channel::DimensionalChannel{T,1}) where {T} = # (w.x+1 < w.y && w.y < length(channel)+1) ? (minimum(channel[w.y-1:w.y-1+1]),maximum(channel[w.y-1:w.y-1+1])) : (typemax(T),typemin(T)) # compute_modal_gamma(test_operator::CanonicalFeatureGeq, w::Interval, ::_IA_O, channel::DimensionalChannel{T,1}) where {T} = # (w.x+1 < w.y && w.y < length(channel)+1) ? minimum(channel[w.y-1:w.y-1+1]) : typemax(T) # compute_modal_gamma(test_operator::CanonicalFeatureLeq, w::Interval, ::_IA_O, channel::DimensionalChannel{T,1}) where {T} = # (w.x+1 < w.y && w.y < length(channel)+1) ? maximum(channel[w.y-1:w.y-1+1]) : typemin(T) # computeModalThresholdDual(test_operator::CanonicalFeatureGeq, w::Interval, ::_IA_Oi, channel::DimensionalChannel{T,1}) where {T} = # (1 < w.x && w.x+1 < w.y) ? (minimum(channel[w.x-1:w.x]),maximum(channel[w.x-1:w.x])) : (typemax(T),typemin(T)) # compute_modal_gamma(test_operator::CanonicalFeatureGeq, w::Interval, ::_IA_Oi, channel::DimensionalChannel{T,1}) where {T} = # (1 < w.x && w.x+1 < w.y) ? minimum(channel[w.x-1:w.x]) : typemax(T) # compute_modal_gamma(test_operator::CanonicalFeatureLeq, w::Interval, ::_IA_Oi, channel::DimensionalChannel{T,1}) where {T} = # (1 < w.x && w.x+1 < w.y) ? maximum(channel[w.x-1:w.x]) : typemin(T) # enum_acc_repr for _IA2D_URelations # 3 operator categories for the 13+1 relations const _IA2DRelMaximizer = Union{_RelationGlob,_IA_L,_IA_Li,_IA_D} const _IA2DRelMinimizer = Union{_RelationId,_IA_O,_IA_Oi,_IA_Bi,_IA_Ei,_IA_Di} const _IA2DRelSingleVal = Union{_IA_A,_IA_Ai,_IA_B,_IA_E} #= ################################################################################ ################################################################################ # TODO remove (needed for GAMMAS) # Utility type for enhanced computation of thresholds abstract type _ReprTreatment end struct _ReprFake{WorldType<:AbstractWorld} <: _ReprTreatment w :: WorldType end struct _ReprMax{WorldType<:AbstractWorld} <: _ReprTreatment w :: WorldType end struct _ReprMin{WorldType<:AbstractWorld} <: _ReprTreatment w :: WorldType end struct _ReprVal{WorldType<:AbstractWorld} <: _ReprTreatment w :: WorldType end struct _ReprNone{WorldType<:AbstractWorld} <: _ReprTreatment end # enum_acc_repr(::CanonicalFeatureGeq, w::WorldType, ::_RelationId, XYZ::Vararg{Integer,N}) where {WorldType<:AbstractWorld,N} = _ReprMin(w) # enum_acc_repr(::CanonicalFeatureLeq, w::WorldType, ::_RelationId, XYZ::Vararg{Integer,N}) where {WorldType<:AbstractWorld,N} = _ReprMax(w) @inline enum_acc_repr2D(test_operator::TestOperator, w::Interval2D, rx::R1 where R1<:AbstractRelation, ry::R2 where R2<:AbstractRelation, X::Integer, Y::Integer, _ReprConstructor::Type{rT}) where {rT<:_ReprTreatment} = begin x = enum_acc_repr(test_operator, w.x, rx, X) # println(x) if x == _ReprNone{Interval}() return _ReprNone{Interval2D}() end y = enum_acc_repr(test_operator, w.y, ry, Y) # println(y) if y == _ReprNone{Interval}() return _ReprNone{Interval2D}() end return _ReprConstructor(Interval2D(x.w, y.w)) end # 3*3 = 9 cases ((13+1)^2 = 196 relations) # Maximizer operators enum_acc_repr(test_operator::CanonicalFeatureGeq, w::Interval2D, r::_IA2DRel{R1,R2} where {R1<:_IA2DRelMaximizer,R2<:_IA2DRelMaximizer}, X::Integer, Y::Integer) = enum_acc_repr2D(test_operator, w, r.x, r.y, X, Y, _ReprMax) enum_acc_repr(test_operator::CanonicalFeatureGeq, w::Interval2D, r::_IA2DRel{R1,R2} where {R1<:_IA2DRelMinimizer,R2<:_IA2DRelMinimizer}, X::Integer, Y::Integer) = begin # println(enum_acc_repr2D(test_operator, w, r.x, r.y, X, Y, _ReprMin)) enum_acc_repr2D(test_operator, w, r.x, r.y, X, Y, _ReprMin) end enum_acc_repr(test_operator::CanonicalFeatureGeq, w::Interval2D, r::_IA2DRel{R1,R2} where {R1<:_IA2DRelSingleVal,R2<:_IA2DRelSingleVal}, X::Integer, Y::Integer) = enum_acc_repr2D(test_operator, w, r.x, r.y, X, Y, _ReprVal) enum_acc_repr(test_operator::CanonicalFeatureGeq, w::Interval2D, r::_IA2DRel{R1,R2} where {R1<:_IA2DRelMaximizer,R2<:_IA2DRelSingleVal}, X::Integer, Y::Integer) = enum_acc_repr2D(test_operator, w, r.x, r.y, X, Y, _ReprMax) enum_acc_repr(test_operator::CanonicalFeatureGeq, w::Interval2D, r::_IA2DRel{R1,R2} where {R1<:_IA2DRelMinimizer,R2<:_IA2DRelSingleVal}, X::Integer, Y::Integer) = enum_acc_repr2D(test_operator, w, r.x, r.y, X, Y, _ReprMin) enum_acc_repr(test_operator::CanonicalFeatureGeq, w::Interval2D, r::_IA2DRel{R1,R2} where {R1<:_IA2DRelSingleVal,R2<:_IA2DRelMaximizer}, X::Integer, Y::Integer) = enum_acc_repr2D(test_operator, w, r.x, r.y, X, Y, _ReprMax) enum_acc_repr(test_operator::CanonicalFeatureGeq, w::Interval2D, r::_IA2DRel{R1,R2} where {R1<:_IA2DRelSingleVal,R2<:_IA2DRelMinimizer}, X::Integer, Y::Integer) = enum_acc_repr2D(test_operator, w, r.x, r.y, X, Y, _ReprMin) enum_acc_repr(test_operator::CanonicalFeatureLeq, w::Interval2D, r::_IA2DRel{R1,R2} where {R1<:_IA2DRelMaximizer,R2<:_IA2DRelMaximizer}, X::Integer, Y::Integer) = enum_acc_repr2D(test_operator, w, r.x, r.y, X, Y, _ReprMin) enum_acc_repr(test_operator::CanonicalFeatureLeq, w::Interval2D, r::_IA2DRel{R1,R2} where {R1<:_IA2DRelMinimizer,R2<:_IA2DRelMinimizer}, X::Integer, Y::Integer) = enum_acc_repr2D(test_operator, w, r.x, r.y, X, Y, _ReprMax) enum_acc_repr(test_operator::CanonicalFeatureLeq, w::Interval2D, r::_IA2DRel{R1,R2} where {R1<:_IA2DRelSingleVal,R2<:_IA2DRelSingleVal}, X::Integer, Y::Integer) = enum_acc_repr2D(test_operator, w, r.x, r.y, X, Y, _ReprVal) enum_acc_repr(test_operator::CanonicalFeatureLeq, w::Interval2D, r::_IA2DRel{R1,R2} where {R1<:_IA2DRelMaximizer,R2<:_IA2DRelSingleVal}, X::Integer, Y::Integer) = enum_acc_repr2D(test_operator, w, r.x, r.y, X, Y, _ReprMin) enum_acc_repr(test_operator::CanonicalFeatureLeq, w::Interval2D, r::_IA2DRel{R1,R2} where {R1<:_IA2DRelMinimizer,R2<:_IA2DRelSingleVal}, X::Integer, Y::Integer) = enum_acc_repr2D(test_operator, w, r.x, r.y, X, Y, _ReprMax) enum_acc_repr(test_operator::CanonicalFeatureLeq, w::Interval2D, r::_IA2DRel{R1,R2} where {R1<:_IA2DRelSingleVal,R2<:_IA2DRelMaximizer}, X::Integer, Y::Integer) = enum_acc_repr2D(test_operator, w, r.x, r.y, X, Y, _ReprMin) enum_acc_repr(test_operator::CanonicalFeatureLeq, w::Interval2D, r::_IA2DRel{R1,R2} where {R1<:_IA2DRelSingleVal,R2<:_IA2DRelMinimizer}, X::Integer, Y::Integer) = enum_acc_repr2D(test_operator, w, r.x, r.y, X, Y, _ReprMax) # The last two cases are difficult to express with enum_acc_repr, better do it at computeModalThresholdDual instead # TODO create a dedicated min/max combination representation? yieldMinMaxCombinations(test_operator::CanonicalFeatureGeq, productRepr::_ReprTreatment, channel::DimensionalChannel{T,2}, dims::Integer) where {T} = begin if productRepr == _ReprNone{Interval2D}() return typemin(T),typemax(T) end vals = ch_readWorld(productRepr.w, channel) # TODO try: maximum(mapslices(minimum, vals, dims=1)),minimum(mapslices(maximum, vals, dims=1)) extr = vec(mapslices(extrema, vals, dims=dims)) # println(extr) maxExtrema(extr) end yieldMinMaxCombination(test_operator::CanonicalFeatureGeq, productRepr::_ReprTreatment, channel::DimensionalChannel{T,2}, dims::Integer) where {T} = begin if productRepr == _ReprNone{Interval2D}() return typemin(T) end vals = ch_readWorld(productRepr.w, channel) maximum(mapslices(minimum, vals, dims=dims)) end yieldMinMaxCombination(test_operator::CanonicalFeatureLeq, productRepr::_ReprTreatment, channel::DimensionalChannel{T,2}, dims::Integer) where {T} = begin if productRepr == _ReprNone{Interval2D}() return typemax(T) end vals = ch_readWorld(productRepr.w, channel) minimum(mapslices(maximum, vals, dims=dims)) end computeModalThresholdDual(test_operator::CanonicalFeatureGeq, w::Interval2D, r::_IA2DRel{R1,R2} where {R1<:_IA2DRelMinimizer,R2<:_IA2DRelMaximizer}, channel::DimensionalChannel{T,2}) where {T} = begin yieldMinMaxCombinations(test_operator, enum_acc_repr2D(test_operator, w, r.x, r.y, size(channel)..., _ReprFake), channel, 1) end compute_modal_gamma(test_operator::Union{CanonicalFeatureGeq,CanonicalFeatureLeq}, w::Interval2D, r::_IA2DRel{R1,R2} where {R1<:_IA2DRelMinimizer,R2<:_IA2DRelMaximizer}, channel::DimensionalChannel{T,2}) where {T} = begin yieldMinMaxCombination(test_operator, enum_acc_repr2D(test_operator, w, r.x, r.y, size(channel)..., _ReprFake), channel, 1) end computeModalThresholdDual(test_operator::CanonicalFeatureGeq, w::Interval2D, r::_IA2DRel{R1,R2} where {R1<:_IA2DRelMaximizer,R2<:_IA2DRelMinimizer}, channel::DimensionalChannel{T,2}) where {T} = begin yieldMinMaxCombinations(test_operator, enum_acc_repr2D(test_operator, w, r.x, r.y, size(channel)..., _ReprFake), channel, 2) end compute_modal_gamma(test_operator::Union{CanonicalFeatureGeq,CanonicalFeatureLeq}, w::Interval2D, r::_IA2DRel{R1,R2} where {R1<:_IA2DRelMaximizer,R2<:_IA2DRelMinimizer}, channel::DimensionalChannel{T,2}) where {T} = begin yieldMinMaxCombination(test_operator, enum_acc_repr2D(test_operator, w, r.x, r.y, size(channel)..., _ReprFake), channel, 2) end =# # TODO: per CanonicalFeatureLeq gli operatori si invertono const _IA2DRelMax = Union{_RelationGlob,_IA_L,_IA_Li,_IA_D} const _IA2DRelMin = Union{_RelationId,_IA_O,_IA_Oi,_IA_Bi,_IA_Ei,_IA_Di} const _IA2DRelVal = Union{_IA_A,_IA_Ai,_IA_B,_IA_E} # accessibles_aggr(f::Union{SingleAttributeMin,SingleAttributeMax}, a::Union{typeof(minimum),typeof(maximum)}, w::Interval2D, r::_IA2DRel{R1,R2} where {R1<:_IA2DRelMax,R2<:_IA2DRelMax}, X::Integer) = IterTools.imap(Interval2D, Iterators.product(accessibles_aggr(f, a, w.x, rx, X), accessibles_aggr(f, a, w.y, ry, Y))) #= computeModalThresholdDual(test_operator::CanonicalFeatureGeq, w::Interval2D, r::RCC5Relation, channel::DimensionalChannel{T,2}) where {T} = begin maxExtrema( map((RCC8_r)->(computeModalThresholdDual(test_operator, w, RCC8_r, channel)), RCC52RCC8Relations(r)) ) end compute_modal_gamma(test_operator::CanonicalFeatureGeq, w::Interval2D, r::RCC5Relation, channel::DimensionalChannel{T,2}) where {T} = begin maximum( map((RCC8_r)->(compute_modal_gamma(test_operator, w, RCC8_r, channel)), RCC52RCC8Relations(r)) ) end compute_modal_gamma(test_operator::CanonicalFeatureLeq, w::Interval2D, r::RCC5Relation, channel::DimensionalChannel{T,2}) where {T} = begin mininimum( map((RCC8_r)->(compute_modal_gamma(test_operator, w, RCC8_r, channel)), RCC52RCC8Relations(r)) ) end =# # More efficient implementations for edge cases # ? #= # TODO optimize RCC5 # Virtual relation used for computing Topo_DC on Interval2D struct _Virtual_Enlarge <: AbstractRelation end; const Virtual_Enlarge = _Virtual_Enlarge(); # Virtual_Enlarge enlargeInterval(w::Interval, X::Integer) = Interval(max(1,w.x-1),min(w.y+1,X+1)) enum_acc_repr(test_operator::CanonicalFeatureGeq, w::Interval, ::_Virtual_Enlarge, X::Integer) = _ReprMin(enlargeInterval(w,X)) enum_acc_repr(test_operator::CanonicalFeatureLeq, w::Interval, ::_Virtual_Enlarge, X::Integer) = _ReprMax(enlargeInterval(w,X)) # Topo2D2Topo1D(::_Topo_DC) = [ # (RelationGlob , Topo_DC), # # TODO many many others but for now let's just say... # (Topo_DC , Virtual_Enlarge), # ] Topo2D2Topo1D(::_Topo_EC) = [ (Topo_EC , Topo_EC), # (Topo_PO , Topo_EC), (Topo_TPP , Topo_EC), (Topo_TPPi , Topo_EC), (Topo_NTPP , Topo_EC), (Topo_NTPPi , Topo_EC), (RelationId , Topo_EC), # (Topo_EC , Topo_PO), (Topo_EC , Topo_TPP), (Topo_EC , Topo_TPPi), (Topo_EC , Topo_NTPP), (Topo_EC , Topo_NTPPi), (Topo_EC , RelationId), ] Topo2D2Topo1D(::_Topo_PO) = [ (Topo_PO , Topo_PO), # (Topo_PO , Topo_TPP), (Topo_PO , Topo_TPPi), (Topo_PO , Topo_NTPP), (Topo_PO , Topo_NTPPi), (Topo_PO , RelationId), # (Topo_TPP , Topo_PO), (Topo_TPPi , Topo_PO), (Topo_NTPP , Topo_PO), (Topo_NTPPi , Topo_PO), (RelationId , Topo_PO), # (Topo_TPPi , Topo_TPP), (Topo_TPP , Topo_TPPi), # (Topo_NTPP , Topo_TPPi), (Topo_TPPi , Topo_NTPP), # (Topo_NTPPi , Topo_TPP), (Topo_NTPPi , Topo_NTPP), (Topo_TPP , Topo_NTPPi), (Topo_NTPP , Topo_NTPPi), ] Topo2D2Topo1D(::_Topo_TPP) = [ (Topo_TPP , Topo_TPP), # (Topo_NTPP , Topo_TPP), (Topo_TPP , Topo_NTPP), # (RelationId , Topo_TPP), (Topo_TPP , RelationId), # (RelationId , Topo_NTPP), (Topo_NTPP , RelationId), ] Topo2D2Topo1D(::_Topo_TPPi) = [ (Topo_TPPi , Topo_TPPi), # (Topo_NTPPi , Topo_TPPi), (Topo_TPPi , Topo_NTPPi), # (RelationId , Topo_TPPi), (Topo_TPPi , RelationId), # (RelationId , Topo_NTPPi), (Topo_NTPPi , RelationId), ] Topo2D2Topo1D(::_Topo_NTPP) = [ (Topo_NTPP , Topo_NTPP), ] Topo2D2Topo1D(::_Topo_NTPPi) = [ (Topo_NTPPi , Topo_NTPPi), ] computeModalThresholdDual(test_operator::CanonicalFeatureGeq, w::Interval2D, r::_Topo_DC, channel::DimensionalChannel{T,2}) where {T} = begin reprx1 = enum_acc_repr2D(test_operator, w, RelationGlob, IA_L, size(channel)..., _ReprMax) reprx2 = enum_acc_repr2D(test_operator, w, RelationGlob, IA_Li, size(channel)..., _ReprMax) repry1 = enum_acc_repr2D(test_operator, w, IA_L, Virtual_Enlarge, size(channel)..., _ReprMax) repry2 = enum_acc_repr2D(test_operator, w, IA_Li, Virtual_Enlarge, size(channel)..., _ReprMax) extr = yieldReprs(test_operator, reprx1, channel), yieldReprs(test_operator, reprx2, channel), yieldReprs(test_operator, repry1, channel), yieldReprs(test_operator, repry2, channel) maxExtrema(extr) end compute_modal_gamma(test_operator::CanonicalFeatureGeq, w::Interval2D, r::_Topo_DC, channel::DimensionalChannel{T,2}) where {T} = begin # reprx1 = enum_acc_repr2D(test_operator, w, IA_L, RelationGlob, size(channel)..., _ReprMax) # reprx2 = enum_acc_repr2D(test_operator, w, IA_Li, RelationGlob, size(channel)..., _ReprMax) # repry1 = enum_acc_repr2D(test_operator, w, RelationGlob, IA_L, size(channel)..., _ReprMax) # repry2 = enum_acc_repr2D(test_operator, w, RelationGlob, IA_Li, size(channel)..., _ReprMax) reprx1 = enum_acc_repr2D(test_operator, w, RelationGlob, IA_L, size(channel)..., _ReprMax) reprx2 = enum_acc_repr2D(test_operator, w, RelationGlob, IA_Li, size(channel)..., _ReprMax) repry1 = enum_acc_repr2D(test_operator, w, IA_L, Virtual_Enlarge, size(channel)..., _ReprMax) repry2 = enum_acc_repr2D(test_operator, w, IA_Li, Virtual_Enlarge, size(channel)..., _ReprMax) # if channel == [819 958 594; 749 665 383; 991 493 572] && w.x.x==1 && w.x.y==2 && w.y.x==1 && w.y.y==3 # println(max(yieldRepr(test_operator, reprx1, channel), # yieldRepr(test_operator, reprx2, channel), # yieldRepr(test_operator, repry1, channel), # yieldRepr(test_operator, repry2, channel))) # readline() # end max(yieldRepr(test_operator, reprx1, channel), yieldRepr(test_operator, reprx2, channel), yieldRepr(test_operator, repry1, channel), yieldRepr(test_operator, repry2, channel)) end compute_modal_gamma(test_operator::CanonicalFeatureLeq, w::Interval2D, r::_Topo_DC, channel::DimensionalChannel{T,2}) where {T} = begin reprx1 = enum_acc_repr2D(test_operator, w, RelationGlob, IA_L, size(channel)..., _ReprMin) reprx2 = enum_acc_repr2D(test_operator, w, RelationGlob, IA_Li, size(channel)..., _ReprMin) repry1 = enum_acc_repr2D(test_operator, w, IA_L, Virtual_Enlarge, size(channel)..., _ReprMin) repry2 = enum_acc_repr2D(test_operator, w, IA_Li, Virtual_Enlarge, size(channel)..., _ReprMin) min(yieldRepr(test_operator, reprx1, channel), yieldRepr(test_operator, reprx2, channel), yieldRepr(test_operator, repry1, channel), yieldRepr(test_operator, repry2, channel)) end # EC: Just optimize the values on the outer boundary computeModalThresholdDual(test_operator::CanonicalFeatureGeq, w::Interval2D, r::_Topo_EC, channel::DimensionalChannel{T,2}) where {T} = begin X,Y = size(channel) reprs = [ ((w.x.x-1 >= 1) ? [Interval2D(Interval(w.x.x-1,w.x.x),enlargeInterval(w.y,Y))] : Interval2D[])..., ((w.x.y+1 <= X+1) ? [Interval2D(Interval(w.x.y,w.x.y+1),enlargeInterval(w.y,Y))] : Interval2D[])..., ((w.y.x-1 >= 1) ? [Interval2D(enlargeInterval(w.x,X),Interval(w.y.x-1,w.y.x))] : Interval2D[])..., ((w.y.y+1 <= Y+1) ? [Interval2D(enlargeInterval(w.x,X),Interval(w.y.y,w.y.y+1))] : Interval2D[])..., ] extr = map(w->yieldReprs(test_operator, _ReprMax(w), channel), reprs) maxExtrema(extr) end compute_modal_gamma(test_operator::CanonicalFeatureGeq, w::Interval2D, r::_Topo_EC, channel::DimensionalChannel{T,2}) where {T} = begin X,Y = size(channel) reprs = [ ((w.x.x-1 >= 1) ? [Interval2D(Interval(w.x.x-1,w.x.x),enlargeInterval(w.y,Y))] : Interval2D[])..., ((w.x.y+1 <= X+1) ? [Interval2D(Interval(w.x.y,w.x.y+1),enlargeInterval(w.y,Y))] : Interval2D[])..., ((w.y.x-1 >= 1) ? [Interval2D(enlargeInterval(w.x,X),Interval(w.y.x-1,w.y.x))] : Interval2D[])..., ((w.y.y+1 <= Y+1) ? [Interval2D(enlargeInterval(w.x,X),Interval(w.y.y,w.y.y+1))] : Interval2D[])..., ] extr = map(w->yieldRepr(test_operator, _ReprMax(w), channel), reprs) maximum([extr..., typemin(T)]) end compute_modal_gamma(test_operator::CanonicalFeatureLeq, w::Interval2D, r::_Topo_EC, channel::DimensionalChannel{T,2}) where {T} = begin X,Y = size(channel) reprs = [ ((w.x.x-1 >= 1) ? [Interval2D(Interval(w.x.x-1,w.x.x),enlargeInterval(w.y,Y))] : Interval2D[])..., ((w.x.y+1 <= X+1) ? [Interval2D(Interval(w.x.y,w.x.y+1),enlargeInterval(w.y,Y))] : Interval2D[])..., ((w.y.x-1 >= 1) ? [Interval2D(enlargeInterval(w.x,X),Interval(w.y.x-1,w.y.x))] : Interval2D[])..., ((w.y.y+1 <= Y+1) ? [Interval2D(enlargeInterval(w.x,X),Interval(w.y.y,w.y.y+1))] : Interval2D[])..., ] extr = map(w->yieldRepr(test_operator, _ReprMin(w), channel), reprs) minimum([extr..., typemax(T)]) end # PO: For each pair crossing the border, perform a minimization step and then a maximization step computeModalThresholdDual(test_operator::CanonicalFeatureGeq, w::Interval2D, r::_Topo_PO, channel::DimensionalChannel{T,2}) where {T} = begin # if true && # # (channel == [1620 1408 1343; 1724 1398 1252; 1177 1703 1367] && w.x.x==1 && w.x.y==3 && w.y.x==3 && w.y.y==4) || # # (channel == [412 489 559 619 784; 795 771 1317 854 1256; 971 874 878 1278 560] && w.x.x==1 && w.x.y==3 && w.y.x==3 && w.y.y==4) # (channel == [2405 2205 1898 1620 1383; 1922 1555 1383 1393 1492; 1382 1340 1434 1640 1704] && w.x.x==1 && w.x.y==3 && w.y.x==3 && w.y.y==4) # x_singleton = ! (w.x.x < w.x.y-1) # y_singleton = ! (w.y.x < w.y.y-1) # if x_singleton && y_singleton # println(typemin(T),typemax(T)) # else # rx1,rx2 = x_singleton ? (IA_Bi,IA_Ei) : (IA_O,IA_Oi) # ry1,ry2 = y_singleton ? (IA_Bi,IA_Ei) : (IA_O,IA_Oi) # println(rx1) # println(rx2) # println(ry1) # println(ry2) # # reprx1 = enum_acc_repr2D(test_operator, w, rx1, RelationId, size(channel)..., _ReprMin) # # reprx2 = enum_acc_repr2D(test_operator, w, rx2, RelationId, size(channel)..., _ReprMin) # # repry1 = enum_acc_repr2D(test_operator, w, RelationId, ry1, size(channel)..., _ReprMin) # # repry2 = enum_acc_repr2D(test_operator, w, RelationId, ry2, size(channel)..., _ReprMin) # # println(reprx1) # # println(reprx2) # # println(repry1) # # println(repry2) # println( # yieldMinMaxCombinations(test_operator, enum_acc_repr2D(test_operator, w, RelationId, ry1, size(channel)..., _ReprFake), channel, 2) # ) # println( # yieldMinMaxCombinations(test_operator, enum_acc_repr2D(test_operator, w, RelationId, ry2, size(channel)..., _ReprFake), channel, 2) # ) # println( # yieldMinMaxCombinations(test_operator, enum_acc_repr2D(test_operator, w, rx1, RelationId, size(channel)..., _ReprFake), channel, 1) # ) # println( # yieldMinMaxCombinations(test_operator, enum_acc_repr2D(test_operator, w, rx2, RelationId, size(channel)..., _ReprFake), channel, 1) # ) # println( # maxExtrema(( # yieldMinMaxCombinations(test_operator, enum_acc_repr2D(test_operator, w, RelationId, ry1, size(channel)..., _ReprFake), channel, 2), # yieldMinMaxCombinations(test_operator, enum_acc_repr2D(test_operator, w, RelationId, ry2, size(channel)..., _ReprFake), channel, 2), # yieldMinMaxCombinations(test_operator, enum_acc_repr2D(test_operator, w, rx1, RelationId, size(channel)..., _ReprFake), channel, 1), # yieldMinMaxCombinations(test_operator, enum_acc_repr2D(test_operator, w, rx2, RelationId, size(channel)..., _ReprFake), channel, 1), # )) # ) # # println(computeModalThresholdDual(test_operator, w, RectangleRelation(rx1 , RelationId), channel)) # # println(computeModalThresholdDual(test_operator, w, RectangleRelation(rx2 , RelationId), channel)) # # println(computeModalThresholdDual(test_operator, w, RectangleRelation(RelationId , ry1), channel)) # # println(computeModalThresholdDual(test_operator, w, RectangleRelation(RelationId , ry2), channel)) # # println(maxExtrema(( # # computeModalThresholdDual(test_operator, w, RectangleRelation(rx1 , RelationId), channel), # # computeModalThresholdDual(test_operator, w, RectangleRelation(rx2 , RelationId), channel), # # computeModalThresholdDual(test_operator, w, RectangleRelation(RelationId , ry1), channel), # # computeModalThresholdDual(test_operator, w, RectangleRelation(RelationId , ry2), channel), # # )) # # ) # end # readline() # end x_singleton = ! (w.x.x < w.x.y-1) y_singleton = ! (w.y.x < w.y.y-1) if x_singleton && y_singleton return typemin(T),typemax(T) end rx1,rx2 = x_singleton ? (IA_Bi,IA_Ei) : (IA_O,IA_Oi) ry1,ry2 = y_singleton ? (IA_Bi,IA_Ei) : (IA_O,IA_Oi) # reprx1 = enum_acc_repr2D(test_operator, w, rx1, RelationId, size(channel)..., _ReprFake) # reprx2 = enum_acc_repr2D(test_operator, w, rx2, RelationId, size(channel)..., _ReprFake) # repry1 = enum_acc_repr2D(test_operator, w, RelationId, ry1, size(channel)..., _ReprFake) # repry2 = enum_acc_repr2D(test_operator, w, RelationId, ry2, size(channel)..., _ReprFake) maxExtrema( yieldMinMaxCombinations(test_operator, enum_acc_repr2D(test_operator, w, RelationId, ry1, size(channel)..., _ReprFake), channel, 2), yieldMinMaxCombinations(test_operator, enum_acc_repr2D(test_operator, w, RelationId, ry2, size(channel)..., _ReprFake), channel, 2), yieldMinMaxCombinations(test_operator, enum_acc_repr2D(test_operator, w, rx1, RelationId, size(channel)..., _ReprFake), channel, 1), yieldMinMaxCombinations(test_operator, enum_acc_repr2D(test_operator, w, rx2, RelationId, size(channel)..., _ReprFake), channel, 1), ) end compute_modal_gamma(test_operator::CanonicalFeatureGeq, w::Interval2D, r::_Topo_PO, channel::DimensionalChannel{T,2}) where {T} = begin # if channel == [1620 1408 1343; 1724 1398 1252; 1177 1703 1367] && w.x.x==1 && w.x.y==3 && w.y.x==3 && w.y.y==4 # println(! (w.x.x < w.x.y-1) && ! (w.y.x < w.y.y-1)) # println(max( # computeModalThresholdDual(test_operator, w, RectangleRelation(RelationId , IA_O), channel), # computeModalThresholdDual(test_operator, w, RectangleRelation(RelationId , IA_Oi), channel), # computeModalThresholdDual(test_operator, w, RectangleRelation(IA_Oi , RelationId), channel), # computeModalThresholdDual(test_operator, w, RectangleRelation(IA_O , RelationId), channel), # )) # readline() # end x_singleton = ! (w.x.x < w.x.y-1) y_singleton = ! (w.y.x < w.y.y-1) if x_singleton && y_singleton return typemin(T) end rx1,rx2 = x_singleton ? (IA_Bi,IA_Ei) : (IA_O,IA_Oi) ry1,ry2 = y_singleton ? (IA_Bi,IA_Ei) : (IA_O,IA_Oi) max( yieldMinMaxCombination(test_operator, enum_acc_repr2D(test_operator, w, RelationId, ry1, size(channel)..., _ReprFake), channel, 2), yieldMinMaxCombination(test_operator, enum_acc_repr2D(test_operator, w, RelationId, ry2, size(channel)..., _ReprFake), channel, 2), yieldMinMaxCombination(test_operator, enum_acc_repr2D(test_operator, w, rx1, RelationId, size(channel)..., _ReprFake), channel, 1), yieldMinMaxCombination(test_operator, enum_acc_repr2D(test_operator, w, rx2, RelationId, size(channel)..., _ReprFake), channel, 1), ) end compute_modal_gamma(test_operator::CanonicalFeatureLeq, w::Interval2D, r::_Topo_PO, channel::DimensionalChannel{T,2}) where {T} = begin x_singleton = ! (w.x.x < w.x.y-1) y_singleton = ! (w.y.x < w.y.y-1) if x_singleton && y_singleton return typemax(T) end rx1,rx2 = x_singleton ? (IA_Bi,IA_Ei) : (IA_O,IA_Oi) ry1,ry2 = y_singleton ? (IA_Bi,IA_Ei) : (IA_O,IA_Oi) min( yieldMinMaxCombination(test_operator, enum_acc_repr2D(test_operator, w, RelationId, ry1, size(channel)..., _ReprFake), channel, 2), yieldMinMaxCombination(test_operator, enum_acc_repr2D(test_operator, w, RelationId, ry2, size(channel)..., _ReprFake), channel, 2), yieldMinMaxCombination(test_operator, enum_acc_repr2D(test_operator, w, rx1, RelationId, size(channel)..., _ReprFake), channel, 1), yieldMinMaxCombination(test_operator, enum_acc_repr2D(test_operator, w, rx2, RelationId, size(channel)..., _ReprFake), channel, 1), ) end # TPP: Just optimize the values on the inner boundary computeModalThresholdDual(test_operator::CanonicalFeatureGeq, w::Interval2D, r::_Topo_TPP, channel::DimensionalChannel{T,2}) where {T} = begin reprs = if (w.x.x < w.x.y-1) && (w.y.x < w.y.y-1) [Interval2D(Interval(w.x.x,w.x.x+1),w.y), Interval2D(Interval(w.x.y-1,w.x.y),w.y), Interval2D(w.x,Interval(w.y.x,w.y.x+1)), Interval2D(w.x,Interval(w.y.y-1,w.y.y))] elseif (w.x.x < w.x.y-1) || (w.y.x < w.y.y-1) [w] else Interval2D[] end extr = map(w->yieldReprs(test_operator, _ReprMax(w), channel), reprs) maxExtrema(extr) end compute_modal_gamma(test_operator::CanonicalFeatureGeq, w::Interval2D, r::_Topo_TPP, channel::DimensionalChannel{T,2}) where {T} = begin reprs = if (w.x.x < w.x.y-1) && (w.y.x < w.y.y-1) [Interval2D(Interval(w.x.x,w.x.x+1),w.y), Interval2D(Interval(w.x.y-1,w.x.y),w.y), Interval2D(w.x,Interval(w.y.x,w.y.x+1)), Interval2D(w.x,Interval(w.y.y-1,w.y.y))] elseif (w.x.x < w.x.y-1) || (w.y.x < w.y.y-1) [w] else Interval2D[] end extr = map(w->yieldRepr(test_operator, _ReprMax(w), channel), reprs) maximum([extr..., typemin(T)]) end compute_modal_gamma(test_operator::CanonicalFeatureLeq, w::Interval2D, r::_Topo_TPP, channel::DimensionalChannel{T,2}) where {T} = begin reprs = if (w.x.x < w.x.y-1) && (w.y.x < w.y.y-1) [Interval2D(Interval(w.x.x,w.x.x+1),w.y), Interval2D(Interval(w.x.y-1,w.x.y),w.y), Interval2D(w.x,Interval(w.y.x,w.y.x+1)), Interval2D(w.x,Interval(w.y.y-1,w.y.y))] elseif (w.x.x < w.x.y-1) || (w.y.x < w.y.y-1) [w] else Interval2D[] end extr = map(w->yieldRepr(test_operator, _ReprMin(w), channel), reprs) minimum([extr..., typemax(T)]) end # TPPi: check 4 possible extensions of the box and perform a minimize+maximize step computeModalThresholdDual(test_operator::CanonicalFeatureGeq, w::Interval2D, r::_Topo_TPPi, channel::DimensionalChannel{T,2}) where {T} = begin X,Y = size(channel) reprs = [ ((w.x.x-1 >= 1) ? [Interval2D(Interval(w.x.x-1,w.x.y),w.y)] : Interval2D[])..., ((w.x.y+1 <= X+1) ? [Interval2D(Interval(w.x.x,w.x.y+1),w.y)] : Interval2D[])..., ((w.y.x-1 >= 1) ? [Interval2D(w.x,Interval(w.y.x-1,w.y.y))] : Interval2D[])..., ((w.y.y+1 <= Y+1) ? [Interval2D(w.x,Interval(w.y.x,w.y.y+1))] : Interval2D[])..., ] extr = map(w->yieldReprs(test_operator, _ReprMin(w), channel), reprs) maxExtrema(extr) end compute_modal_gamma(test_operator::CanonicalFeatureGeq, w::Interval2D, r::_Topo_TPPi, channel::DimensionalChannel{T,2}) where {T} = begin X,Y = size(channel) reprs = [ ((w.x.x-1 >= 1) ? [Interval2D(Interval(w.x.x-1,w.x.y),w.y)] : Interval2D[])..., ((w.x.y+1 <= X+1) ? [Interval2D(Interval(w.x.x,w.x.y+1),w.y)] : Interval2D[])..., ((w.y.x-1 >= 1) ? [Interval2D(w.x,Interval(w.y.x-1,w.y.y))] : Interval2D[])..., ((w.y.y+1 <= Y+1) ? [Interval2D(w.x,Interval(w.y.x,w.y.y+1))] : Interval2D[])..., ] extr = map(w->yieldRepr(test_operator, _ReprMin(w), channel), reprs) maximum([extr..., typemin(T)]) end compute_modal_gamma(test_operator::CanonicalFeatureLeq, w::Interval2D, r::_Topo_TPPi, channel::DimensionalChannel{T,2}) where {T} = begin X,Y = size(channel) reprs = [ ((w.x.x-1 >= 1) ? [Interval2D(Interval(w.x.x-1,w.x.y),w.y)] : Interval2D[])..., ((w.x.y+1 <= X+1) ? [Interval2D(Interval(w.x.x,w.x.y+1),w.y)] : Interval2D[])..., ((w.y.x-1 >= 1) ? [Interval2D(w.x,Interval(w.y.x-1,w.y.y))] : Interval2D[])..., ((w.y.y+1 <= Y+1) ? [Interval2D(w.x,Interval(w.y.x,w.y.y+1))] : Interval2D[])..., ] extr = map(w->yieldRepr(test_operator, _ReprMax(w), channel), reprs) minimum([extr..., typemax(T)]) end enum_acc_repr(test_operator::TestOperator, w::Interval2D, ::_Topo_NTPP, X::Integer, Y::Integer) = enum_acc_repr(test_operator, w, RectangleRelation(IA_D,IA_D), X, Y) enum_acc_repr(test_operator::TestOperator, w::Interval2D, ::_Topo_NTPPi, X::Integer, Y::Integer) = enum_acc_repr(test_operator, w, RectangleRelation(IA_Di,IA_Di), X, Y) =# #= # To test optimizations fn1 = ModalLogic.enum_acc_repr fn2 = ModalLogic.enum_acc_repr2 rel = ModalLogic.Topo_EC X = 4 Y = 3 while(true) a = randn(4,4); wextr = (x)->ModalLogic.computePropositionalThresholdDual([canonical_geq, canonical_leq], x,a); # TODO try all rectangles, avoid randominzing like this... Also try all channel sizes x1 = rand(1:X); x2 = x1+rand(1:(X+1-x1)); x3 = rand(1:Y); x4 = x3+rand(1:(Y+1-x3)); for i in 1:X println(a[i,:]); end println(x1,",",x2); println(x3,",",x4); println(a[x1:x2-1,x3:x4-1]); print("[") print(fn1(ModalLogic.Interval2D((x1,x2),(x3,x4)), rel, size(a)...) |> (y)->map((x)->ModalLogic.print_world(x),y)); println("]") print("[") print(fn2(ModalLogic.Interval2D((x1,x2),(x3,x4)), rel, size(a)...) |> (y)->map((x)->ModalLogic.print_world(x),y)); println("]") println(fn1(ModalLogic.Interval2D((x1,x2),(x3,x4)), rel, size(a)...) |> wextr); println(fn2(ModalLogic.Interval2D((x1,x2),(x3,x4)), rel, size(a)...) |> wextr); (fn1(ModalLogic.Interval2D((x1,x2),(x3,x4)), rel, size(a)...) |> wextr) == (fn2(ModalLogic.Interval2D((x1,x2),(x3,x4)), rel, size(a)...) |> wextr) || break; end fn1 = ModalLogic.enum_acc_repr fn2 = ModalLogic.enum_acc_repr2 rel = ModalLogic.Topo_EC a = [253 670 577; 569 730 931; 633 850 679]; X,Y = size(a) while(true) wextr = (x)->ModalLogic.computePropositionalThresholdDual([canonical_geq, canonical_leq], x,a); # TODO try all rectangles, avoid randominzing like this... Also try all channel sizes x1 = rand(1:X); x2 = x1+rand(1:(X+1-x1)); x3 = rand(1:Y); x4 = x3+rand(1:(Y+1-x3)); for i in 1:X println(a[i,:]); end println(x1,",",x2); println(x3,",",x4); println(a[x1:x2-1,x3:x4-1]); print("[") print(fn1(ModalLogic.Interval2D((x1,x2),(x3,x4)), rel, size(a)...) |> (y)->map((x)->ModalLogic.print_world(x),y)); println("]") print("[") print(fn2(ModalLogic.Interval2D((x1,x2),(x3,x4)), rel, size(a)...) |> (y)->map((x)->ModalLogic.print_world(x),y)); println("]") println(fn1(ModalLogic.Interval2D((x1,x2),(x3,x4)), rel, size(a)...) |> wextr); println(fn2(ModalLogic.Interval2D((x1,x2),(x3,x4)), rel, size(a)...) |> wextr); (fn1(ModalLogic.Interval2D((x1,x2),(x3,x4)), rel, size(a)...) |> wextr) == (fn2(ModalLogic.Interval2D((x1,x2),(x3,x4)), rel, size(a)...) |> wextr) || break; end fn1 = ModalLogic.enum_acc_repr fn2 = ModalLogic.enum_acc_repr2 rel = ModalLogic.Topo_EC a = [253 670 577; 569 730 931; 633 850 679]; X,Y = size(a) while(true) wextr = (x)->ModalLogic.computePropositionalThresholdDual([canonical_geq, canonical_leq], x,a); # TODO try all rectangles, avoid randominzing like this... Also try all channel sizes x1 = 2 x2 = 3 x3 = 2 x4 = 3 for i in 1:X println(a[i,:]); end println(x1,",",x2); println(x3,",",x4); println(a[x1:x2-1,x3:x4-1]); print("[") print(fn1(ModalLogic.Interval2D((x1,x2),(x3,x4)), rel, size(a)...) |> (y)->map((x)->ModalLogic.print_world(x),y)); println("]") print("[") print(fn2(ModalLogic.Interval2D((x1,x2),(x3,x4)), rel, size(a)...) |> (y)->map((x)->ModalLogic.print_world(x),y)); println("]") println(fn1(ModalLogic.Interval2D((x1,x2),(x3,x4)), rel, size(a)...) |> wextr); println(fn2(ModalLogic.Interval2D((x1,x2),(x3,x4)), rel, size(a)...) |> wextr); (fn1(ModalLogic.Interval2D((x1,x2),(x3,x4)), rel, size(a)...) |> wextr) == (fn2(ModalLogic.Interval2D((x1,x2),(x3,x4)), rel, size(a)...) |> wextr) || break; end =# ################################################################################ # END 2D Topological relations ################################################################################ # const DimensionalUniDataset{T<:Number,UD} = AbstractArray{T,UD}# getUniChannel(ud::DimensionalUniDataset{T,1}, idx::Integer) where T = @views ud[idx] # N=0 # getUniChannel(ud::DimensionalUniDataset{T,2}, idx::Integer) where T = @views ud[:, idx] # N=1 # getUniChannel(ud::DimensionalUniDataset{T,3}, idx::Integer) where T = @views ud[:, :, idx] # N=2 # Initialize DimensionalUniDataset by slicing across the attribute dimension # DimensionalUniDataset(::UndefInitializer, d::DimensionalDataset{T,2}) where T = Array{T,1}(undef, nsamples(d))::DimensionalUniDataset{T,1} # DimensionalUniDataset(::UndefInitializer, d::DimensionalDataset{T,3}) where T = Array{T,2}(undef, size(d)[1:end-1])::DimensionalUniDataset{T,2} # DimensionalUniDataset(::UndefInitializer, d::DimensionalDataset{T,4}) where T = Array{T,3}(undef, size(d)[1:end-1])::DimensionalUniDataset{T,3} # get_channel(d::DimensionalDataset{T,2}, idx_i::Integer, idx_a::Integer) where T = @views d[ idx_a, idx_i]::T # N=0 # get_channel(d::DimensionalDataset{T,3}, idx_i::Integer, idx_a::Integer) where T = @views d[:, idx_a, idx_i]::DimensionalChannel{T,1} # N=1 # get_channel(d::DimensionalDataset{T,4}, idx_i::Integer, idx_a::Integer) where T = @views d[:, :, idx_a, idx_i]::DimensionalChannel{T,2} # N=2 # channel_size(d::DimensionalDataset{T,2}, idx_i::Integer) where T = size(d[ 1, idx_i]) # channel_size(d::DimensionalDataset{T,3}, idx_i::Integer) where T = size(d[:, 1, idx_i]) # channel_size(d::DimensionalDataset{T,4}, idx_i::Integer) where T = size(d[:, :, 1, idx_i]) # channel_size(d::DimensionalDataset{T,D}, idx_i::Integer) where {T,D} = size(d[idx_i])[1:end-2] # @computed get_channel(X::InterpretedModalDataset{T,N}, idxs::AbstractVector{Integer}, attribute::Integer) where T = X[idxs, attribute, fill(:, N)...]::AbstractArray{T,N-1} # # get_channel(X::InterpretedModalDataset, args...) = get_channel(X.domain, args...) # # get_channel(X::MultiFrameModalDataset, i_frame::Integer, idx_i::Integer, idx_f::Integer, args...) = get_channel(X.frames[i_frame], idx_i, idx_f, args...) # # # TODO maybe using views can improve performances # attributeview(X::DimensionalDataset{T,2}, idxs::AbstractVector{Integer}, attribute::Integer) = d[idxs, attribute] # attributeview(X::DimensionalDataset{T,3}, idxs::AbstractVector{Integer}, attribute::Integer) = view(d, idxs, attribute, :) # attributeview(X::DimensionalDataset{T,4}, idxs::AbstractVector{Integer}, attribute::Integer) = view(d, idxs, attribute, :, :) # strip_domain(d::DimensionalDataset{T,2}) where T = d # N=0 # strip_domain(d::DimensionalDataset{T,3}) where T = dropdims(d; dims=1) # N=1 # strip_domain(d::DimensionalDataset{T,4}) where T = dropdims(d; dims=(1,2)) # N=2 # function prepare_featsnaggrs(grouped_featsnops::AbstractVector{<:AbstractVector{<:TestOperatorFun}}) # # Pairs of feature ids + set of aggregators # grouped_featsnaggrs = Vector{<:Aggregator}[ # ModalLogic.existential_aggregator.(test_operators) for (i_feature, test_operators) in enumerate(grouped_featsnops) # ] # # grouped_featsnaggrs = [grouped_featsnaggrs[i_feature] for i_feature in 1:length(features)] # # # Flatten dictionary, and enhance aggregators in dictionary with their relative indices # # flattened_featsnaggrs = Tuple{<:AbstractFeature,<:Aggregator}[] # # i_featsnaggr = 1 # # for (i_feature, aggregators) in enumerate(grouped_featsnaggrs) # # for aggregator in aggregators # # push!(flattened_featsnaggrs, (features[i_feature],aggregator)) # # i_featsnaggr+=1 # # end # # end # grouped_featsnaggrs # end
ModalDecisionTrees
https://github.com/aclai-lab/ModalDecisionTrees.jl.git
[ "MIT" ]
0.5.0
200b2bd9dee3dfe2dcffa1fb51b6dd00d371ed2b
code
1520
using OpenML using SoleData using DataFrames function load_japanesevowels() X = DataFrame(OpenML.load(375)) # Load JapaneseVowels https://www.openml.org/search?type=data&status=active&id=375 names(X) take_col = [] i_take = 1 prev_frame = nothing # prev_utterance = nothing for row in eachrow(X) cur_frame = Float64(row.frame) # cur_utterance = row.utterance if !isnothing(prev_frame) && cur_frame == 1.0 i_take += 1 end prev_frame = cur_frame # prev_utterance = cur_utterance push!(take_col, i_take) end # combine(groupby(X, [:speaker, :take, :utterance]), :coefficient1 => Base.vect) # combine(groupby(X, [:speaker, :take, :utterance]), Base.vect) # combine(groupby(X, [:speaker, :take, :utterance]), All() .=> Base.vect) # combine(groupby(X, [:speaker, :take, :utterance]), :coefficient1 => Ref) # countmap(take_col) X[:,:take] = take_col X = combine(DataFrames.groupby(X, [:speaker, :take, :utterance]), Not([:speaker, :take, :utterance, :frame]) .=> Ref; renamecols=false) Y = X[:,:speaker] # select!(X, Not([:speaker, :take, :utterance])) # Force uniform size across instances by capping series minimum_n_points = minimum(collect(Iterators.flatten(eachrow(length.(X[:,Not([:speaker, :take, :utterance])]))))) new_X = (x->x[1:minimum_n_points]).(X[:,Not([:speaker, :take, :utterance])]) # new_X, varnames = SoleData.dataframe2cube(new_X) new_X, Y end
ModalDecisionTrees
https://github.com/aclai-lab/ModalDecisionTrees.jl.git
[ "MIT" ]
0.5.0
200b2bd9dee3dfe2dcffa1fb51b6dd00d371ed2b
code
4906
using Revise using ModalDecisionTrees using SoleData.DimensionalDatasets using Random using BenchmarkTools rng = MersenneTwister(1) _ninstances, _ninstances_h = 10, 5 n_vars = 2 n_feats = n_vars*2 n_pts = 5 using SoleModels using SoleData: VariableMin, VariableMax features = [] featsnops = [] for i_var in 1:n_vars push!(features, VariableMin(i_var)) push!(featsnops, [≥]) push!(features, VariableMax(i_var)) push!(featsnops, [<]) end Xs = MultiLogiset([ scalarlogiset(randn(n_pts, n_vars, _ninstances), features, conditions = featsnops, relations = [IARelations...], onestep_precompute_relmemoset = true, onestep_precompute_globmemoset = true, ) ]); W = ModalDecisionTrees.default_weights(_ninstances) kwargs = (; loss_function = ModalDecisionTrees.entropy, max_depth = typemax(Int), min_samples_leaf = 4, min_purity_increase = -Inf, max_purity_at_leaf = 0.2, n_subrelations = Function[identity], n_subfeatures = Int64[n_feats], allow_global_splits = [true], use_minification = false, ) perform_consistency_check = true # @code_warntype ninstances(Xs) initconditions = [ModalDecisionTrees.start_without_world] ################################################################################ # fit ################################################################################ Y = String[fill("0", _ninstances_h)..., fill("1", _ninstances_h)...] ModalDecisionTrees.fit_tree(Xs, Y, initconditions, W; perform_consistency_check = perform_consistency_check, kwargs...) @code_warntype ModalDecisionTrees.fit_tree(Xs, Y, initconditions, W; perform_consistency_check = perform_consistency_check, kwargs...) @inferred ModalDecisionTrees.fit_tree(Xs, Y, initconditions, W; perform_consistency_check = perform_consistency_check, kwargs...) Y = Int64[fill(3, _ninstances_h)..., fill(1, _ninstances_h)...] ModalDecisionTrees.fit_tree(Xs, Y, initconditions, W; perform_consistency_check = perform_consistency_check, kwargs...) @code_warntype ModalDecisionTrees.fit_tree(Xs, Y, initconditions, W; perform_consistency_check = perform_consistency_check, kwargs...) @inferred ModalDecisionTrees.fit_tree(Xs, Y, initconditions, W; perform_consistency_check = perform_consistency_check, kwargs...) Y = Float64[fill(0.0, _ninstances_h)..., fill(1.0, _ninstances_h)...] ModalDecisionTrees.fit_tree(Xs, Y, initconditions, W; perform_consistency_check = perform_consistency_check, kwargs...) @code_warntype ModalDecisionTrees.fit_tree(Xs, Y, initconditions, W; perform_consistency_check = perform_consistency_check, kwargs...) @inferred ModalDecisionTrees.fit_tree(Xs, Y, initconditions, W; perform_consistency_check = perform_consistency_check, kwargs...) ################################################################################ # _fit ################################################################################ Y = Int64[fill(1, _ninstances_h)..., fill(2, _ninstances_h)...] ModalDecisionTrees._fit_tree(Xs, Y, initconditions, W; n_classes = 2, _is_classification = Val(true), _perform_consistency_check = Val(perform_consistency_check), kwargs...) @code_warntype ModalDecisionTrees._fit_tree(Xs, Y, initconditions, W; n_classes = 2, _is_classification = Val(true), _perform_consistency_check = Val(perform_consistency_check), kwargs...) Y = Float64[fill(0.0, _ninstances_h)..., fill(1.0, _ninstances_h)...] ModalDecisionTrees._fit_tree(Xs, Y, initconditions, W; n_classes = 0, _is_classification = Val(false), _perform_consistency_check = Val(perform_consistency_check), kwargs...) @code_warntype ModalDecisionTrees._fit_tree(Xs, Y, initconditions, W; n_classes = 0, _is_classification = Val(false), _perform_consistency_check = Val(perform_consistency_check), kwargs...) ################################################################################ # split_node! ################################################################################ Y = Int64[fill(1, _ninstances_h)..., fill(2, _ninstances_h)...] idxs = collect(1:_ninstances) Ss = ModalDecisionTrees.initialworldsets(Xs, initconditions) onlyallowglobal = [(initcond == ModalDecisionTrees.start_without_world) for initcond in initconditions] node = ModalDecisionTrees.NodeMeta{Float64,Int64}(1:_ninstances, 0, 0, onlyallowglobal) @code_warntype ModalDecisionTrees.split_node!(node, Xs, Ss, Y, initconditions, W; idxs = idxs, rng = rng, n_classes = 2, _is_classification = Val(true), _perform_consistency_check = Val(perform_consistency_check), kwargs..., ) # https://docs.julialang.org/en/v1/manual/performance-tips/#Be-aware-of-when-Julia-avoids-specializing # @which f(...)).specializations # TODO regression case
ModalDecisionTrees
https://github.com/aclai-lab/ModalDecisionTrees.jl.git
[ "MIT" ]
0.5.0
200b2bd9dee3dfe2dcffa1fb51b6dd00d371ed2b
code
3014
using Test using SoleData using SoleModels using ModalDecisionTrees using ModalDecisionTrees: DTLeaf, prediction using ModalDecisionTrees: DTInternal, decision # Creation of decision leaves, nodes, decision trees, forests # Construct a leaf from a label # @test DTLeaf(1) == DTLeaf{Int64}(1, Int64[]) # @test DTLeaf{Int64}(1) == DTLeaf{Int64}(1, Int64[]) # @test DTLeaf("Class_1") == DTLeaf{String}("Class_1", String[]) # @test DTLeaf{String}("Class_1") == DTLeaf{String}("Class_1", String[]) # Construct a leaf from a label & supporting labels # @test DTLeaf(1, []) == DTLeaf{Int64}(1, Int64[]) # @test DTLeaf{Int64}(1, [1.0]) == DTLeaf{Int64}(1, Int64[1]) @test repr( DTLeaf(1.0, [1.0])) == repr(DTLeaf{Float64}(1.0, [1.0])) @test_nowarn DTLeaf{Float32}(1, [1]) @test_nowarn DTLeaf{Float32}(1.0, [1.5]) @test_throws MethodError DTLeaf(1, ["Class1"]) @test_throws InexactError DTLeaf(1, [1.5]) @test_nowarn DTLeaf{String}("1.0", ["0.5", "1.5"]) # Inferring the label from supporting labels @test prediction(DTLeaf{String}(["Class_1", "Class_1", "Class_2"])) == "Class_1" @test_nowarn DTLeaf(["1.5"]) @test_throws MethodError DTLeaf([1.0,"Class_1"]) # Check robustness @test_nowarn DTLeaf{Int64}(1, 1:10) @test_nowarn DTLeaf{Int64}(1, 1.0:10.0) @test_nowarn DTLeaf{Float32}(1, 1:10) # @test prediction(DTLeaf(1:10)) == 5 @test prediction(DTLeaf{Float64}(1:10)) == 5.5 @test prediction(DTLeaf{Float32}(1:10)) == 5.5f0 @test prediction(DTLeaf{Float64}(1:11)) == 6 # Check edge parity case (aggregation biased towards the first class) @test prediction(DTLeaf{String}(["Class_1", "Class_2"])) == "Class_1" @test prediction(DTLeaf(["Class_1", "Class_2"])) == "Class_1" # TODO test NSDT Leaves # Decision internal node (DTInternal) + Decision Tree & Forest (DTree & DForest) formula = SoleData.ScalarExistentialFormula(SoleData.globalrel, VariableMin(1), >=, 10) _decision = RestrictedDecision(formula) reg_leaf, cls_leaf = DTLeaf([1.0,2.0]), DTLeaf([1,2]) # create node cls_node = @test_nowarn DTInternal(2, _decision, cls_leaf, cls_leaf, cls_leaf) # composite node cls_node = @test_nowarn DTInternal(2, _decision, cls_leaf, cls_leaf, cls_leaf) cls_node = DTInternal(2, _decision, cls_leaf, cls_leaf, cls_leaf) # Note: modality is required @test_throws MethodError DTInternal(_decision, cls_leaf, cls_leaf, cls_leaf) @test_throws MethodError DTInternal(_decision, reg_leaf, reg_leaf, reg_leaf) @test_throws MethodError DTInternal(_decision, cls_node, cls_leaf) # create node without local _decision # cls_node = @test_nowarn DTInternal(2, _decision, cls_leaf, cls_leaf) @test_logs (:warn,) DTInternal(2, _decision, cls_leaf, cls_leaf) cls_node = DTInternal(2, _decision, cls_leaf, cls_leaf) # Mixed tree @test_throws AssertionError DTInternal(2, _decision, reg_leaf, cls_leaf) cls_tree = @test_nowarn DTree(cls_node, [ModalDecisionTrees.Interval], [ModalDecisionTrees.start_without_world]) cls_forest = @test_nowarn DForest([cls_tree, cls_tree, cls_tree])
ModalDecisionTrees
https://github.com/aclai-lab/ModalDecisionTrees.jl.git
[ "MIT" ]
0.5.0
200b2bd9dee3dfe2dcffa1fb51b6dd00d371ed2b
code
12358
using ModalDecisionTrees using MLJ using DataFrames using SoleModels using SoleData using Logging using SoleLogics using Random using Test N = 5 y = [i <= div(N,2)+1 for i in 1:N] # Split dataset p = randperm(Random.MersenneTwister(1), N) train_idxs, test_idxs = p[1:round(Int, N*.8)], p[round(Int, N*.8)+1:end] _size = ((x)->(hasmethod(size, (typeof(x),)) ? size(x) : missing)) X_static = DataFrame( ID = 1:N, a = randn(N), b = [-2.0, 1.0, 2.0, missing, 3.0], c = [1, 2, 3, 4, 5], d = [0, 1, 0, 1, 0], e = ['M', 'F', missing, 'M', 'F'], ) _size.(X_static) @test_throws AssertionError MLJ.fit!(machine(ModalDecisionTree(;), X_static, y), rows=train_idxs) X_static = DataFrame( ID = 1:N, # a = randn(N), b = [-2.0, -1.0, 2.0, 2.0, 3.0], c = [1, 2, 3, 4, 5], d = [0, 1, 0, 1, 0], ) _size.(X_static) @test_throws AssertionError MLJ.fit!(machine(ModalDecisionTree(;), X_static, y), rows=train_idxs) mach = MLJ.fit!(machine(ModalDecisionTree(; min_samples_leaf = 2), Float64.(X_static[:,Not(:ID)]), y), rows=train_idxs) @test depth(fitted_params(mach).tree) == 0 mach = MLJ.fit!(machine(ModalDecisionTree(; min_purity_increase=-Inf, min_samples_leaf = 1), Float64.(X_static[:,Not(:ID)]), y), rows=train_idxs) @test depth(fitted_params(mach).tree) > 0 X_multi1 = DataFrame( ID = 1:N, t1 = [randn(2), randn(2), randn(2), randn(2), randn(2)], # good t2 = [randn(2), randn(2), randn(2), randn(2), randn(2)], # good ) _size.(X_multi1) MLJ.fit!(machine(ModalDecisionTree(;), X_multi1, y), rows=train_idxs) X_multi2 = DataFrame( ID = 1:N, t3 = [randn(2), randn(2), randn(2), randn(2), randn(2)], # good twrong1 = [randn(2), randn(2), randn(5), randn(2), randn(4)], # good but actually TODO ) _size.(X_multi2) MLJ.fit!(machine(ModalDecisionTree(;), X_multi2, y), rows=train_idxs) X_images1 = DataFrame( ID = 1:N, R1 = [randn(2,2), randn(2,2), randn(2,2), randn(2,2), randn(2,2)], # good ) _size.(X_images1) MLJ.fit!(machine(ModalDecisionTree(;), X_images1, y), rows=train_idxs) X_images1 = DataFrame( ID = 1:N, R1 = [randn(2,3), randn(2,3), randn(2,3), randn(2,3), randn(2,3)], # good ) _size.(X_images1) logiset = scalarlogiset(X_images1[:,Not(:ID)]; use_onestep_memoization=true, conditions = [ ScalarMetaCondition(VariableMax(1), ≥), ScalarMetaCondition(VariableMax(1), <), ScalarMetaCondition(VariableMin(1), ≥), ScalarMetaCondition(VariableMin(1), <), ], relations = [globalrel]) ModalDecisionTrees.build_tree(logiset, y) ModalDecisionTrees.build_tree(logiset, y; max_depth = nothing, min_samples_leaf = ModalDecisionTrees.BOTTOM_MIN_SAMPLES_LEAF, min_purity_increase = ModalDecisionTrees.BOTTOM_MIN_PURITY_INCREASE, max_purity_at_leaf = ModalDecisionTrees.BOTTOM_MAX_PURITY_AT_LEAF, ) ModalDecisionTrees.build_tree(MultiLogiset(logiset), y) multilogiset, _ = ModalDecisionTrees.wrapdataset(X_images1[:,Not(:ID)], ModalDecisionTree(; min_samples_leaf = 1)) kwargs = (loss_function = nothing, max_depth = nothing, min_samples_leaf = 1, min_purity_increase = 0.002, max_purity_at_leaf = Inf, max_modal_depth = nothing, n_subrelations = identity, n_subfeatures = identity, initconditions = ModalDecisionTrees.StartAtCenter(), allow_global_splits = true, use_minification = false, perform_consistency_check = false, rng = Random.GLOBAL_RNG, print_progress = false) ModalDecisionTrees.build_tree(multilogiset, y; kwargs... ) MLJ.fit!(machine(ModalDecisionTree(; min_samples_leaf = 1, relations = (d)->[globalrel]), X_images1[:,Not(:ID)], y), rows=train_idxs, verbosity=2) MLJ.fit!(machine(ModalDecisionTree(; min_samples_leaf = 1, relations = (d)->[globalrel]), X_images1[:,Not(:ID)], y), verbosity=2) @test_throws CompositeException MLJ.fit!(machine(ModalDecisionTree(; min_samples_leaf = 1, initconditions = :start_at_center, relations = (d)->SoleLogics.AbstractRelation[]), X_images1[:,Not(:ID)], y), verbosity=2) X_images1 = DataFrame( ID = 1:N, R1 = [randn(2,3), randn(2,3), randn(2,3), randn(2,3), randn(2,3)], # good G1 = [randn(3,3), randn(3,3), randn(3,3), randn(3,3), randn(3,3)], # good B1 = [randn(3,3), randn(3,3), randn(3,3), randn(3,3), randn(3,3)], # good ) _size.(X_images1) MLJ.fit!(machine(ModalDecisionTree(; min_samples_leaf = 2), X_images1[:,Not(:ID)], y), rows=train_idxs) X_images2 = DataFrame( ID = 1:N, R2 = [ones(5,5), ones(5,5), ones(5,5), zeros(5,5), zeros(5,5)], # good G2 = [randn(5,5), randn(5,5), randn(5,5), randn(5,5), randn(5,5)], # good B2 = [randn(5,5), randn(5,5), randn(5,5), randn(5,5), randn(5,5)], # good ) _size.(X_images2) X_all = innerjoin([Float64.(X_static), X_multi1, X_multi2, X_images1, X_images2]... , on = :ID)[:, Not(:ID)] _size.(X_all) MLJ.fit!(machine(ModalDecisionTree(;), X_all, y), rows=train_idxs) X_all = innerjoin([X_multi1, X_images2]... , on = :ID)[:, Not(:ID)] mach = MLJ.fit!(machine(ModalDecisionTree(; min_samples_leaf = 1), X_all, y), rows=train_idxs) multilogiset, var_grouping = ModalDecisionTrees.wrapdataset(X_all, ModalDecisionTree(; min_samples_leaf = 1)) ModalDecisionTrees.build_tree(multilogiset, y; kwargs... ) ############################################################################################ ############################################################################################ ############################################################################################ # Multimodal tree: X_all = DataFrame( mode0 = [1.0, 0.0, 0.0, 0.0, 0.0], mode1 = [zeros(5), ones(5), zeros(5), zeros(5), zeros(5)], mode2 = [zeros(5,5), zeros(5,5), ones(5,5), zeros(5,5), zeros(5,5)], ) mach = MLJ.fit!(machine(ModalDecisionTree(; min_samples_leaf = 1), X_all, y), rows=train_idxs) report(mach).printmodel(1000; threshold_digits = 2); printmodel.(listrules(report(mach).model; use_shortforms=true, use_leftmostlinearform = true)); printmodel.(joinrules(listrules(report(mach).model; use_shortforms=true, use_leftmostlinearform = true))); model = ModalDecisionTree(min_purity_increase = 0.001) @test_logs min_level=Logging.Error machine(model, X_multi1, y) |> fit! @test_logs min_level=Logging.Error machine(model, X_multi2, y) |> fit! @test_logs min_level=Logging.Error machine(model, X_images1, y) |> fit! @test_logs min_level=Logging.Error machine(model, X_images2, y) |> fit! machine(model, X_all, y) |> fit! # @test_throws AssertionError machine(model, X_all, y) |> fit! ############################################################################################ ############################################################################################ ############################################################################################ using MultiData using SoleData using ModalDecisionTrees using MLJ using DataFrames using SoleModels using Random using Test using Logging N = 5 # Multimodal tree: _X_all = DataFrame( mode0 = [1.0, 0.0, 0.0, 0.0, 0.0], mode1 = [zeros(5), ones(5), zeros(5), zeros(5), zeros(5)], mode2 = [zeros(5,5), zeros(5,5), ones(5,5), zeros(5,5), zeros(5,5)], ) X_all = MultiDataset(_X_all) y = [i <= div(N,2)+1 for i in 1:N] # Split dataset p = randperm(Random.MersenneTwister(1), N) train_idxs, test_idxs = p[1:round(Int, N*.8)], p[round(Int, N*.8)+1:end] @test_logs min_level=Logging.Error wrapdataset(X_all, ModalDecisionTree(;)) @test_logs min_level=Logging.Error mach = MLJ.fit!(machine(ModalDecisionTree(; min_samples_leaf = 1), X_all, y), rows=train_idxs) # Very multimodal tree: N = 100 # Multimodal tree: # X_all = DataFrame( # mode0 = [min(rand(), 1/i) for i in 1:N], # mode1 = [max.(rand(5), 1/i) for i in 1:N], # mode2 = [begin # a = zeros(5,5) # idx = rand(1:ceil(Int, 4*(i/N))) # a[idx:1+idx,2:3] = max.(rand(2, 2), 1/i) # end for i in 1:N], # ) X_all = DataFrame( mode0 = [rand() for i in 1:N], mode1 = [rand(5) for i in 1:N], mode2 = [rand(5,5) for i in 1:N], ) X_all = MultiDataset(X_all) y = [i <= div(N,2)+1 for i in 1:N] # Split dataset p = randperm(Random.MersenneTwister(1), N) train_idxs, test_idxs = p[1:round(Int, N*.8)], p[round(Int, N*.8)+1:end] multilogiset, var_grouping = ModalDecisionTrees.wrapdataset(X_all, ModalDecisionTree(; min_samples_leaf = 1)) mach = MLJ.fit!(machine(ModalDecisionTree(; max_purity_at_leaf = Inf, min_samples_leaf = 1, min_purity_increase = -Inf), X_all, y), rows=train_idxs) preds = string.(predict_mode(mach, X_all)) report(mach).model report(mach).solemodel printmodel(report(mach).solemodel; show_shortforms = true) longform_ruleset = (listrules(report(mach).model; use_shortforms=false)); shortform_ruleset = (listrules(report(mach).model; use_shortforms=true)); longform_ruleset .|> antecedent .|> x->syntaxstring(x; threshold_digits = 2) .|> println; shortform_ruleset .|> antecedent .|> x->syntaxstring(x; threshold_digits = 2) .|> println; as = (longform_ruleset .|> antecedent); as = as .|> (x->normalize(x; allow_atom_flipping=true, prefer_implications = true)) bs = (shortform_ruleset .|> antecedent); bs = bs .|> (x->normalize(x; allow_atom_flipping=true, prefer_implications = true)) # (as[2], bs[2]) .|> x->syntaxstring(x; threshold_digits = 2) .|> println # (as[13], bs[13]) .|> x->syntaxstring(x; threshold_digits = 2) .|> println # as .|> x->syntaxstring(x; threshold_digits = 2) # bs .|> x->syntaxstring(x; threshold_digits = 2) # @test isequal(as, bs) # @test all(((x,y),)->isequal(x,y), collect(zip((longform_ruleset .|> antecedent .|> x->normalize(x; allow_atom_flipping=true)), (shortform_ruleset .|> antecedent .|> x->normalize(x; allow_atom_flipping=true))))) # Longform set is mutually exclusive & collectively exhaustive longform_y_per_rule = [SoleModels.apply(r, multilogiset) for r in longform_ruleset] m1 = hcat(longform_y_per_rule...) @test all(r->count(!isnothing, r) >= 1, eachrow(m1)); @test all(r->count(!isnothing, r) < 2, eachrow(m1)); @test all(r->count(!isnothing, r) == 1, eachrow(m1)); # Path formula CORRECTNESS! Very very important!! map(s->filter(!isnothing, s), eachrow(m1)) longform_y = map(s->filter(!isnothing, s)[1], eachrow(m1)) @test preds == longform_y # Shortform set is mutually exclusive & collectively exhaustive shortform_y_per_rule = [SoleModels.apply(r, multilogiset) for r in shortform_ruleset] m2 = hcat(shortform_y_per_rule...) @test all(r->count(!isnothing, r) >= 1, eachrow(m2)); @test all(r->count(!isnothing, r) < 2, eachrow(m2)); @test all(r->count(!isnothing, r) == 1, eachrow(m2)); # Path formula CORRECTNESS! Very very important!! map(s->filter(!isnothing, s), eachrow(m2)) shortform_y = map(s->filter(!isnothing, s)[1], eachrow(m2)) @test shortform_y == preds # More consistency _shortform_y_per_rule = [map(r->SoleModels.apply(r, multilogiset, i_instance), shortform_ruleset) for i_instance in 1:ninstances(multilogiset)] for j in 1:size(m1, 1) for i in 1:size(m1, 2) @test m2[j,i] == hcat(_shortform_y_per_rule...)[i,j] end end @test eachcol(hcat(_shortform_y_per_rule...)) == eachrow(hcat(shortform_y_per_rule...)) # More consistency _longform_y_per_rule = [map(r->SoleModels.apply(r, multilogiset, i_instance), longform_ruleset) for i_instance in 1:ninstances(multilogiset)] for j in 1:size(m1, 1) for i in 1:size(m1, 2) @test m1[j,i] == hcat(_longform_y_per_rule...)[i,j] end end @test eachcol(hcat(_longform_y_per_rule...)) == eachrow(hcat(longform_y_per_rule...)) @test longform_y_per_rule == shortform_y_per_rule @test _longform_y_per_rule == _shortform_y_per_rule # filter.(!isnothing, eachrow(hcat(longform_y_per_rule...))) # # filter.(!isnothing, eachcol(hcat(longform_y_per_rule...))) # filter.(!isnothing, eachrow(hcat(shortform_y_per_rule...))) # # filter.(!isnothing, eachcol(hcat(shortform_y_per_rule...))) printmodel.(listrules(report(mach).model; use_shortforms=true)); printmodel.(listrules(report(mach).model; use_shortforms=true, use_leftmostlinearform = true)); printmodel.(joinrules(longform_ruleset); show_metrics = true); printmodel.(joinrules(shortform_ruleset); show_metrics = true); printmodel.(joinrules(listrules(report(mach).model))); @test_nowarn printmodel.(listrules(report(mach).model; use_shortforms=true, use_leftmostlinearform = true)) @test_nowarn printmodel.(joinrules(listrules(report(mach).model; use_shortforms=true, use_leftmostlinearform = true)))
ModalDecisionTrees
https://github.com/aclai-lab/ModalDecisionTrees.jl.git
[ "MIT" ]
0.5.0
200b2bd9dee3dfe2dcffa1fb51b6dd00d371ed2b
code
2586
using Pkg # Pkg.activate(".") # Pkg.add("Revise") # Pkg.add("MLJ") # Pkg.add("MLJBase") # Pkg.add(url = "https://github.com/aclai-lab/ModalDecisionTrees.jl", rev = "dev-v0.8") # Pkg.add("ScientificTypes") # Pkg.add("DataFrames") # Pkg.add("Tables") # Pkg.add("ARFFFiles#main") using Revise using ModalDecisionTrees using MLJ using MLJBase using ScientificTypes using DataFrames using Tables using StatsBase using MLJModelInterface MMI = MLJModelInterface MDT = ModalDecisionTrees include("utils.jl") model = ModalDecisionTree(; min_samples_leaf = 4, min_purity_increase = 0.002, ) using ARFFFiles, DataFrames dataset_name = "NATOPS" # dataset_name = "RacketSports" # dataset_name = "Libras" X, y = SoleModels.load_arff_dataset(dataset_name) fitresult = MMI.fit(model, 0, X, Y); Y_test_preds, test_tree = MMI.predict(model, fitresult[1], X_test, Y_test); tree = fitresult[1].rawmodel fitresult[3].print_tree() fitresult[3].print_tree(test_tree) println(tree) println(test_tree) # MLJ.ConfusionMatrix()(Y_test_preds, Y_test); # SoleModels.ConfusionMatrix(Y_test_preds, Y_test) # tree = fitresult.rawmodel # println(tree) # println(test_tree) # fitreport.print_tree() # fitreport.print_tree(test_tree) # using AbstractTrees # using GraphRecipes # using Plots # default(size=(1000, 1000)) # plot(TreePlot(tree.root), method=:tree, fontsize=10) # show_latex(tree, "train") # show_latex(test_tree, "test") show_latex(tree, "train", [variable_names_latex]) show_latex(test_tree, "test", [variable_names_latex]) # function apply_static_descriptor(X::DataFrame, f::Function) # variable_names = names(X) # rename(f.(X), Dict([Symbol(a) => Symbol("$(f)($(a))") for a in variable_names])) # end # function apply_static_descriptor(X::DataFrame, fs::AbstractVector{<:Function}) # hcat([apply_static_descriptor(X, f) for f in fs]...) # end # for fs in [mean, var, minimum, maximum, [minimum, maximum], [mean, minimum, maximum], [var, mean, minimum, maximum]] # X_static_train = apply_static_descriptor(X_train, fs) # X_static_test = apply_static_descriptor(X_test, fs) # fitresult = MMI.fit(model, 0, X_static_train, Y_train); # Y_test_preds, test_tree = MMI.predict(model, fitresult[1], X_static_test, Y_test); # tree = fitresult[1].rawmodel # fitresult[3].print_tree() # fitresult[3].print_tree(test_tree) # # println(tree) # # println(test_tree) # # MLJ.ConfusionMatrix()(Y_test_preds, Y_test) # println(fs) # println(SoleModels.ConfusionMatrix(Y_test_preds, Y_test)) # readline() # end
ModalDecisionTrees
https://github.com/aclai-lab/ModalDecisionTrees.jl.git
[ "MIT" ]
0.5.0
200b2bd9dee3dfe2dcffa1fb51b6dd00d371ed2b
code
1688
using Test using ModalDecisionTrees using MLJ using MLJBase using SoleModels using SoleData using SoleData.DimensionalDatasets using DataFrames using Random using CategoricalArrays using StatsBase using StatsBase: mean using ModalDecisionTrees: build_stump, build_tree, build_forest # For MLDatasets ENV["DATADEPS_ALWAYS_ACCEPT"] = true # Pkg.update() println("Julia version: ", VERSION) function run_tests(list) println("\n" * ("#"^50)) for test in list println("TEST: $test") include(test) println("=" ^ 50) end end test_suites = [ ("Base", ["base.jl"]), ("Classification, modal", [ "classification/japanesevowels.jl", "classification/digits.jl", "classification/mnist.jl", # "classification/demo-juliacon2022.jl", ]), ("Classification", [ "classification/iris.jl", "classification/iris-params.jl", ]), ("Regression", [ "regression/simple.jl", # "regression/ames.jl", "regression/digits-regression.jl", # "regression/random.jl", ]), ("Miscellaneous", [ "multimodal-datasets-multiformulas-construction.jl", ]), ("Other", [ "other/parse-and-translate-restricted.jl", "other/restricted2complete.jl", "other/translate-complete.jl", ]), ("Pluto Demo", ["$(dirname(dirname(pathof(ModalDecisionTrees))))/pluto-demo.jl", ]), ] @testset "ModalDecisionTrees.jl" begin for ts in 1:length(test_suites) name = test_suites[ts][1] list = test_suites[ts][2] let @testset "$name" begin run_tests(list) end end end end
ModalDecisionTrees
https://github.com/aclai-lab/ModalDecisionTrees.jl.git
[ "MIT" ]
0.5.0
200b2bd9dee3dfe2dcffa1fb51b6dd00d371ed2b
code
5563
using MLJ using ModalDecisionTrees using MLDatasets using SoleData using SoleModels using Test Xcube, y = begin if MNIST isa Base.Callable # v0.7 CIFAR10(:test)[:] else # v0.5 CIFAR10.testdata() end end class_names = ["airplane", "automobile", "bird", "cat", "deer", "dog", "frog", "horse", "ship", "truck"] y = map(_y-> class_names[_y+1], y) N = length(y) n_test = 1000 n_train = 1000 p = 1:n_test p_test = n_test .+ (1:n_train) ############################################################################################ ############################################################################################ ############################################################################################ X = SoleData.cube2dataframe(Xcube, ["R", "G", "B"]) X_train, y_train = X[p,:], y[p] X_test, y_test = X[p_test,:], y[p_test] model = ModalDecisionTree(; relations = :RCC8, conditions = [minimum], # initconditions = :start_at_center, featvaltype = Float32, downsize = (10,10), # (x)->ModalDecisionTrees.MLJInterface.moving_average(x, (10,10)) # conditions = [minimum, maximum, UnivariateFeature{Float64}(recheight), UnivariateFeature{Float64}(recwidth)], # conditions = [minimum, maximum, UnivariateFeature{Float32}(1, recheight), UnivariateFeature{Float32}(1, recwidth)], print_progress = true, ) mach = machine(model, X_train, y_train) |> fit! report(mach).printmodel(1000; threshold_digits = 2); printmodel(report(mach).model; show_metrics = true); printmodel.(listrules(report(mach).model); show_metrics = true); yhat_test = MLJ.predict_mode(mach, X_test) @test MLJ.accuracy(y_test, yhat_test) > 0.15 @test_broken MLJ.accuracy(y_test, yhat_test) > 0.5 yhat_test2, tree2 = report(mach).sprinkle(X_test, y_test); @test yhat_test2 == yhat_test soletree2 = ModalDecisionTrees.translate(tree2) printmodel(soletree2; show_metrics = true); printmodel.(listrules(soletree2); show_metrics = true); SoleModels.info.(listrules(soletree2), :supporting_labels); leaves = consequent.(listrules(soletree2)) SoleModels.readmetrics.(leaves) zip(SoleModels.readmetrics.(leaves),leaves) |> collect |> sort @test MLJ.accuracy(y_test, yhat_test) > 0.4 ############################################################################################ ############################################################################################ ############################################################################################ # using Images # using ImageFiltering # using StatsBase # Xcube # # img = eachslice(Xcube; dims=4)[1] # Xcubergb = mapslices(c->RGB(c...), Xcube, dims=3) # Xcubehsv = HSV.(Xcubergb) # # Xcubergb = mapslices(c->(@show c), Xcubehsv, dims=3) # Xcubehsv = mapslices(c->[first(c).h, first(c).s, first(c).v], Xcubehsv, dims=3) # # Xcubergb = mapslices(c->[c.h, c.s, c.v], Xcubehsv, dims=[1,2,4]) # X = SoleData.cube2dataframe(Xcube, ["H", "S", "V"]) # X_train, y_train = X[p,:], y[p] # X_test, y_test = X[p_test,:], y[p_test] # kernel = [1 0 -1; # 2 0 -2; # 1 0 -1] # im = imfilter(rand(10,10), kernel) # im = imfilter(rand(2,2), kernel) # recvedge(x) = (imfilter(x, [1;; -1])) # rechedge(x) = (imfilter(x, [1;; -1]')) # recvsobel(x) = (imfilter(x, [1 0 -1; 2 0 -2; 1 0 -1])) # rechsobel(x) = (imfilter(x, [1 0 -1; 2 0 -2; 1 0 -1]')) # vedge(x) = StatsBase.mean(recvedge(x)) # prod(size(x)) == 1 ? Inf : StatsBase.mean(recvedge(x)) # hedge(x) = StatsBase.mean(rechedge(x)) # prod(size(x)) == 1 ? Inf : StatsBase.mean(rechedge(x)) # vsobel(x) = StatsBase.mean(recvsobel(x)) # prod(size(x)) == 1 ? Inf : StatsBase.mean(recvsobel(x)) # hsobel(x) = StatsBase.mean(rechsobel(x)) # prod(size(x)) == 1 ? Inf : StatsBase.mean(rechsobel(x)) # svedge(x) = StatsBase.sum(recvedge(x)) # prod(size(x)) == 1 ? Inf : StatsBase.sum(recvedge(x)) # shedge(x) = StatsBase.sum(rechedge(x)) # prod(size(x)) == 1 ? Inf : StatsBase.sum(rechedge(x)) # svsobel(x) = StatsBase.sum(recvsobel(x)) # prod(size(x)) == 1 ? Inf : StatsBase.sum(recvsobel(x)) # shsobel(x) = StatsBase.sum(rechsobel(x)) # prod(size(x)) == 1 ? Inf : StatsBase.sum(rechsobel(x)) # model = ModalDecisionTree(; # relations = :RCC8, # min_samples_leaf = 8, # conditions = [svsobel, shsobel], # # initconditions = :start_at_center, # initconditions = :start_with_global, # featvaltype = Float32, # downsize = (8,8), # # conditions = [minimum, maximum, UnivariateFeature{Float64}(recheight), UnivariateFeature{Float64}(recwidth)], # # conditions = [minimum, maximum, UnivariateFeature{Float32}(1, recheight), UnivariateFeature{Float32}(1, recwidth)], # print_progress = true, # ) # mach = machine(model, X_train, y_train) |> fit! # report(mach).printmodel(1000; threshold_digits = 2); # printmodel(report(mach).model; show_metrics = true); # printmodel.(listrules(report(mach).model); show_metrics = true); # yhat_test = MLJ.predict_mode(mach, X_test) # MLJ.accuracy(y_test, yhat_test) # @test MLJ.accuracy(y_test, yhat_test) > 0.15 # @test_broken MLJ.accuracy(y_test, yhat_test) > 0.5 # model = ModalDecisionTree(; # relations = :RCC8, # conditions = [svedge, shedge], # # initconditions = :start_at_center, # featvaltype = Float32, # downsize = (5,5), # # conditions = [minimum, maximum, UnivariateFeature{Float64}(recheight), UnivariateFeature{Float64}(recwidth)], # # conditions = [minimum, maximum, UnivariateFeature{Float32}(1, recheight), UnivariateFeature{Float32}(1, recwidth)], # print_progress = true, # )
ModalDecisionTrees
https://github.com/aclai-lab/ModalDecisionTrees.jl.git
[ "MIT" ]
0.5.0
200b2bd9dee3dfe2dcffa1fb51b6dd00d371ed2b
code
10273
using Tables using DataFrames using StatsBase import MLJModelInterface: fit variable_names_latex = [ "\\text{hand tip}_X^L", "\\text{hand tip}_Y^L", "\\text{hand tip}_Z^L", "\\text{hand tip}_X^R", "\\text{hand tip}_Y^R", "\\text{hand tip}_Z^R", "\\text{elbow}_X^L", "\\text{elbow}_Y^L", "\\text{elbow}_Z^L", "\\text{elbow}_X^R", "\\text{elbow}_Y^R", "\\text{elbow}_Z^R", "\\text{wrist}_X^L", "\\text{wrist}_Y^L", "\\text{wrist}_Z^L", "\\text{wrist}_X^R", "\\text{wrist}_Y^R", "\\text{wrist}_Z^R", "\\text{thumb}_X^L", "\\text{thumb}_Y^L", "\\text{thumb}_Z^L", "\\text{thumb}_X^R", "\\text{thumb}_Y^R", "\\text{thumb}_Z^R", ] function show_latex(tree; file_suffix = "", variable_names = nothing, silent = true) include("../results/utils/print-tree-to-latex.jl") savedir = "latex" additional_dict = Dict{String, String}( "predictionI have command" => "\\fcolorbox{black}{pastel1}{\\ \\ I have command\\ \\ }", "predictionAll clear" => "\\fcolorbox{black}{pastel2}{\\ \\ All clear\\ \\ }", "predictionNot clear" => "\\fcolorbox{black}{pastel3}{\\ \\ Not clear\\ \\ }", "predictionSpread wings" => "\\fcolorbox{black}{pastel4}{\\ \\ Spread wings\\ \\ }", "predictionFold wings" => "\\fcolorbox{black}{pastel5}{\\ \\ Fold wings\\ \\ }", "predictionLock wings" => "\\fcolorbox{black}{pastel6}{\\ \\ Lock wings\\ \\ }", ) common_kwargs = ( conversion_dict = additional_dict, # threshold_scale_factor = 3, threshold_show_decimals = 2, hide_modality_ids = true, variable_names_map = variable_names, # replace_dict = Dict([ # # "\\{1\\}" => "", # # "{1}" => "", # "NN" => "N", # ]), scale = 1., height = ["25em", "25em", "20em", "22em", "22em", "22em"], decisions_at_nodes = false, edges_textsize = [:Large, :small, :Large, :small, :small, :small], tree_names = ["t_minmax_static", "t_minmax_temporal", "t_neuro_static", "t_minmax_neuro_temporal", "t_minmax_neuro_static", "t_neuro_temporal"], latex_preamble = """ \\definecolor{pastel1}{RGB}{161, 201, 244} \\definecolor{pastel2}{RGB}{255, 180, 130} \\definecolor{pastel3}{RGB}{141, 229, 161} \\definecolor{pastel4}{RGB}{255, 159, 155} \\definecolor{pastel5}{RGB}{208, 187, 255} \\definecolor{pastel6}{RGB}{222, 187, 155} \\definecolor{pastel7}{RGB}{250, 176, 228} \\definecolor{pastel8}{RGB}{207, 207, 207} \\definecolor{pastel9}{RGB}{255, 254, 163} \\definecolor{pastel10}{RGB}{185, 242, 240} """, # space_unit = (2.2, 3.9)./.2, space_unit = (2.2, 3.9)./.75, # min_n_inst = ) main_tex_file = "tree$(file_suffix == "" ? "" : "-$(file_suffix)").tex" save_tree_latex( [tree], savedir; main_tex_file = main_tex_file, common_kwargs..., ) cd(savedir) if !silent run(`pdflatex $(main_tex_file)`); else # run(`bash -c "echo 2"`); # run(`bash -c "echo 2 2\\\>\\&1 \\\> /dev/null"`); run(`bash -c "pdflatex $(main_tex_file) 2\\\>\\&1 \\\> /dev/null"`); end pdf_name = replace(main_tex_file, ".tex" => ".pdf") run(`evince $pdf_name`); cd("..") end ############################################################################################ ############################################################################################ ############################################################################################ using LinearAlgebra using StatsBase using SoleBase: Label, RLabel, CLabel struct ConfusionMatrix{T<:Number} ######################################################################################## class_names::Vector matrix::Matrix{T} ######################################################################################## overall_accuracy::Float64 kappa::Float64 mean_accuracy::Float64 accuracies::Vector{Float64} F1s::Vector{Float64} sensitivities::Vector{Float64} specificities::Vector{Float64} PPVs::Vector{Float64} NPVs::Vector{Float64} ######################################################################################## function ConfusionMatrix(matrix::AbstractMatrix) ConfusionMatrix(Symbol.(1:size(matrix, 1)), matrix) end function ConfusionMatrix( class_names::Vector, matrix::AbstractMatrix{T}, ) where {T<:Number} @assert size(matrix,1) == size(matrix,2) "Cannot instantiate ConfusionMatrix with matrix of size ($(size(matrix))" n_classes = size(matrix,1) @assert length(class_names) == n_classes "Cannot instantiate ConfusionMatrix with mismatching n_classes ($(n_classes)) and class_names $(class_names)" ALL = sum(matrix) TR = LinearAlgebra.tr(matrix) F = ALL-TR overall_accuracy = TR / ALL prob_chance = (sum(matrix,dims=1) * sum(matrix,dims=2))[1] / ALL^2 kappa = (overall_accuracy - prob_chance) / (1.0 - prob_chance) #################################################################################### TPs = Vector{Float64}(undef, n_classes) TNs = Vector{Float64}(undef, n_classes) FPs = Vector{Float64}(undef, n_classes) FNs = Vector{Float64}(undef, n_classes) for i in 1:n_classes class = i other_classes = [(1:i-1)..., (i+1:n_classes)...] TPs[i] = sum(matrix[class,class]) TNs[i] = sum(matrix[other_classes,other_classes]) FNs[i] = sum(matrix[class,other_classes]) FPs[i] = sum(matrix[other_classes,class]) end #################################################################################### # https://en.wikipedia.org/wiki/Accuracy_and_precision#In_binary_classification accuracies = (TPs .+ TNs)./ALL mean_accuracy = StatsBase.mean(accuracies) # https://en.wikipedia.org/wiki/F-score F1s = TPs./(TPs.+.5*(FPs.+FNs)) # https://en.wikipedia.org/wiki/Sensitivity_and_specificity sensitivities = TPs./(TPs.+FNs) specificities = TNs./(TNs.+FPs) PPVs = TPs./(TPs.+FPs) NPVs = TNs./(TNs.+FNs) new{T}(class_names, matrix, overall_accuracy, kappa, mean_accuracy, accuracies, F1s, sensitivities, specificities, PPVs, NPVs, ) end function ConfusionMatrix( actual::AbstractVector{L}, predicted::AbstractVector{L}, weights::Union{Nothing,AbstractVector{Z}} = nothing; force_class_order = nothing, ) where {L<:CLabel,Z} @assert length(actual) == length(predicted) "Cannot compute ConfusionMatrix with mismatching number of actual $(length(actual)) and predicted $(length(predicted)) labels." if isnothing(weights) weights = default_weights(actual) end @assert length(actual) == length(weights) "Cannot compute ConfusionMatrix with mismatching number of actual $(length(actual)) and weights $(length(weights)) labels." class_labels = begin class_labels = unique([actual; predicted]) if isnothing(force_class_order) class_labels = sort(class_labels, lt=SoleBase.nat_sort) else @assert length(setdiff(force_class_order, class_labels)) == 0 class_labels = force_class_order end # Binary case: retain order of classes YES/NO if length(class_labels) == 2 && startswith(class_labels[1], "YES") && startswith(class_labels[2], "NO") class_labels = reverse(class_labels) end class_labels end _ninstances = length(actual) _actual = zeros(Int, _ninstances) _predicted = zeros(Int, _ninstances) n_classes = length(class_labels) for i in 1:n_classes _actual[actual .== class_labels[i]] .= i _predicted[predicted .== class_labels[i]] .= i end matrix = zeros(eltype(weights),n_classes,n_classes) for (act,pred,w) in zip(_actual, _predicted, weights) matrix[act,pred] += w end ConfusionMatrix(class_labels, matrix) end end overall_accuracy(cm::ConfusionMatrix) = cm.overall_accuracy kappa(cm::ConfusionMatrix) = cm.kappa class_counts(cm::ConfusionMatrix) = sum(cm.matrix,dims=2) function Base.show(io::IO, cm::ConfusionMatrix) max_num_digits = maximum(length(string(val)) for val in cm.matrix) println(io, "Confusion Matrix ($(length(cm.class_names)) classes):") for (i,(row,class_name,sensitivity)) in enumerate(zip(eachrow(cm.matrix),cm.class_names,cm.sensitivities)) for val in row print(io, lpad(val,max_num_digits+1," ")) end println(io, "\t\t\t$(round(100*sensitivity, digits=2))%\t\t$(class_name)") end ############################################################################ println(io, "accuracy =\t\t$(round(overall_accuracy(cm), digits=4))") println(io, "κ =\t\t\t$(round(cm.kappa, digits=4))") ############################################################################ println(io, "sensitivities:\t\t$(round.(cm.sensitivities, digits=4))") println(io, "specificities:\t\t$(round.(cm.specificities, digits=4))") println(io, "PPVs:\t\t\t$(round.(cm.PPVs, digits=4))") println(io, "NPVs:\t\t\t$(round.(cm.NPVs, digits=4))") print(io, "F1s:\t\t\t$(round.(cm.F1s, digits=4))") println(io, "\tmean_F1:\t$(round(cm.mean_accuracy, digits=4))") print(io, "accuracies:\t\t$(round.(cm.accuracies, digits=4))") println(io, "\tmean_accuracy:\t$(round(cm.mean_accuracy, digits=4))") end ############################################################################################ ############################################################################################ ############################################################################################
ModalDecisionTrees
https://github.com/aclai-lab/ModalDecisionTrees.jl.git
[ "MIT" ]
0.5.0
200b2bd9dee3dfe2dcffa1fb51b6dd00d371ed2b
code
2099
@testset "demo-juliacon2022.jl" begin # Import ModalDecisionTrees.jl & MLJ using ModalDecisionTrees using MLJ include("demo-juliacon2022-utils.jl"); ################################################################################ # Obtain dataset (official) split dataset_train, dataset_test = load_arff_dataset("NATOPS"); # Unpack split X_train, y_train = dataset_train; X_test, y_test = dataset_test; # X_train[1,:"Elbow left, X coordinate"] = begin x = X_train[1,:"Elbow left, X coordinate"]; x[1] = NaN; x end # X_train[:,:"Elbow left, X coordinatex"] = [ # begin x = Vector{Union{Float64,Missing}}(y); x[1] = missing; x end # for y in X_train[:,:"Elbow left, X coordinate"]] # names(X_train[:,[end]]) # X_train = moving_average.(X_train, 10, 10) # X_train = ((x)->x[1:3]).(X_train) # X_test = moving_average.(X_test, 10, 10) # X_test = ((x)->x[1:3]).(X_test) # X_train[:,:new] = [randn(2,2) for i in 1:nrow(X_train)] # X_test[:, :new] = [randn(2,2) for i in 1:nrow(X_test)] # X_train = X_train[:,[1,end]] # X_test = X_test[:,[1, end]] w = abs.(randn(nrow(X_train))) # Instantiate model with standard pruning conditions model = ModalDecisionTree() # model = ModalDecisionTree(; relations = :RCC8) ################################################################################ # Train model & ring a bell :D @time mach = machine(model, X_train, y_train, w) |> fit! # run(`paplay /usr/share/sounds/freedesktop/stereo/complete.oga`); # Print model mach.report.printmodel() # Test on the hold-out set & # inspect the distribution of test instances across the leaves y_test_preds = MLJ.predict(mach, X_test); # predict(args...) = MLJ.predict(ModalDecisionTree(), args...); # y_test_preds, test_tree = MLJ.predict(mach, X_test, y_test); # Inspect confusion matrix cm = ConfusionMatrix(y_test, y_test_preds; force_class_order=["I have command", "All clear", "Not clear", "Spread wings", "Fold wings", "Lock wings",]); @test overall_accuracy(cm) > 0.6 # Render model in LaTeX # show_latex(mach.fitresult.rawmodel; variable_names = [variable_names_latex], silent = true); end
ModalDecisionTrees
https://github.com/aclai-lab/ModalDecisionTrees.jl.git
[ "MIT" ]
0.5.0
200b2bd9dee3dfe2dcffa1fb51b6dd00d371ed2b
code
8931
using Random using ModalDecisionTrees using MLJBase include("$(dirname(dirname(pathof(ModalDecisionTrees))))/test/data/load.jl") _X, _y = load_digits() Xcube = cat(map(r->reshape(r, (8,8,1)), eachrow(_X))...; dims=4) Xcube_small = Xcube Xcube_small = mapslices(x->[ sum(x[1:2, 1:2]) sum(x[1:2, 3:4]) sum(x[1:2, 5:6]) sum(x[1:2, 7:8]); sum(x[3:4, 1:2]) sum(x[3:4, 3:4]) sum(x[3:4, 5:6]) sum(x[3:4, 7:8]); sum(x[5:6, 1:2]) sum(x[5:6, 3:4]) sum(x[5:6, 5:6]) sum(x[5:6, 7:8]); sum(x[7:8, 1:2]) sum(x[7:8, 3:4]) sum(x[7:8, 5:6]) sum(x[7:8, 7:8]); ], Xcube; dims = [1,2]) Xnt = NamedTuple(zip(Symbol.(1:length(eachslice(Xcube_small; dims=3))), eachslice.(eachslice(Xcube_small; dims=3); dims=3))) X = Xnt y = string.(_y.-1) N = length(y) p = randperm(Random.MersenneTwister(1), N) train_idxs, test_idxs = p[1:round(Int, N*.1)], p[round(Int, N*.1)+1:end] ############################################################################################ # # Full training TODO too costly # mach = @time machine(ModalDecisionTree(;), X, y) |> fit! # @show nnodes(fitted_params(mach).rawmodel) # @test nnodes(fitted_params(mach).rawmodel) == 191 # @show sum(predict_mode(mach, X) .== y) / length(y) # @test sum(predict_mode(mach, X) .== y) / length(y) > 0.92 ############################################################################################ mach = @time machine(ModalDecisionTree(;), X, y) |> m->fit!(m, rows = train_idxs) @test nnodes(fitted_params(mach).rawmodel) == 57 @test sum(predict_mode(mach, rows = test_idxs) .== y[test_idxs]) / length(y[test_idxs]) > 0.43 mach = @time machine(ModalDecisionTree(; n_subfeatures = 0, max_depth = 6, min_samples_leaf = 5, ), X, y) |> m->fit!(m, rows = train_idxs) @test nnodes(fitted_params(mach).rawmodel) == 45 @test sum(predict_mode(mach, rows = test_idxs) .== y[test_idxs]) / length(y[test_idxs]) > 0.41 mach = machine(ModalRandomForest(; n_subfeatures = 0.7, ntrees = 10, sampling_fraction = 0.7, max_depth = -1, min_samples_leaf = 1, min_samples_split = 2, min_purity_increase = 0.0, rng = Random.MersenneTwister(1) ), X, y) |> m->fit!(m, rows = train_idxs) @test nnodes(fitted_params(mach).rawmodel) == 736 @test_nowarn predict_mode(mach, rows = test_idxs) @test_nowarn MLJ.predict(mach, rows = test_idxs) @test sum(predict_mode(mach, rows = test_idxs) .== y[test_idxs]) / length(y[test_idxs]) > 0.53 ############################################################################################ # NamedTuple dataset mach = @time machine(ModalDecisionTree(;), Xnt, y) |> m->fit!(m, rows = train_idxs) @test nnodes(fitted_params(mach).rawmodel) == 57 @test sum(predict_mode(mach, rows = test_idxs) .== y[test_idxs]) / length(y[test_idxs]) > 0.43 mach = @time machine(ModalDecisionTree(; relations = :IA7, features = [minimum], initconditions = :start_at_center, ), Xnt, y) |> m->fit!(m, rows = train_idxs) @test nnodes(fitted_params(mach).rawmodel) == 43 @test sum(predict_mode(mach, rows = test_idxs) .== y[test_idxs]) / length(y[test_idxs]) > 0.58 mach = @time machine(ModalDecisionTree(; relations = :IA7, features = [minimum, maximum], # initconditions = :start_at_center, featvaltype = Float32, ), selectrows(Xnt, train_idxs), selectrows(y, train_idxs)) |> m->fit!(m) @test nnodes(fitted_params(mach).rawmodel) == 57 @test sum(predict_mode(mach, selectrows(Xnt, test_idxs)) .== y[test_idxs]) / length(y[test_idxs]) > 0.43 ############################################################################################ ############################################################################################ ############################################################################################ mach = @time machine(ModalDecisionTree(;), Xnt, y) |> m->fit!(m, rows = train_idxs) @test nnodes(fitted_params(mach).rawmodel) == 57 @test sum(predict_mode(mach, rows = test_idxs) .== y[test_idxs]) / length(y[test_idxs]) > 0.43 mach = @time machine(ModalDecisionTree(; n_subfeatures = 0, max_depth = 6, min_samples_leaf = 5, ), Xnt, y) |> m->fit!(m, rows = train_idxs) @test nnodes(fitted_params(mach).rawmodel) == 45 @test sum(predict_mode(mach, rows = test_idxs) .== y[test_idxs]) / length(y[test_idxs]) > 0.41 @test_throws CompositeException mach = machine(ModalRandomForest(; n_subfeatures = 3, ntrees = 10, sampling_fraction = 0.7, max_depth = -1, min_samples_leaf = 1, min_samples_split = 2, min_purity_increase = 0.0, rng = Random.MersenneTwister(1), ), Xnt, y) |> m->fit!(m, rows = train_idxs) mach = machine(ModalRandomForest(; n_subfeatures = 0.2, ntrees = 10, sampling_fraction = 0.7, max_depth = -1, min_samples_leaf = 1, min_samples_split = 2, min_purity_increase = 0.0, rng = Random.MersenneTwister(1), ), Xnt, y) |> m->fit!(m, rows = train_idxs) @test nnodes(fitted_params(mach).rawmodel) == 768 @test sum(predict_mode(mach, rows = test_idxs) .== y[test_idxs]) / length(y[test_idxs]) > 0.51 # ############################################################################################ # ############################################################################################ # ############################################################################################ # using ImageFiltering # using StatsBase # kernel = [1 0 -1; # 2 0 -2; # 1 0 -1] # im = imfilter(rand(10,10), kernel) # im = imfilter(rand(2,2), kernel) # recvedge(x) = (imfilter(x, [1;; -1])) # rechedge(x) = (imfilter(x, [1;; -1]')) # recvsobel(x) = (imfilter(x, [1 0 -1; 2 0 -2; 1 0 -1])) # rechsobel(x) = (imfilter(x, [1 0 -1; 2 0 -2; 1 0 -1]')) # vedge(x) = StatsBase.mean(recvedge(x)) # prod(size(x)) == 1 ? Inf : StatsBase.mean(recvedge(x)) # hedge(x) = StatsBase.mean(rechedge(x)) # prod(size(x)) == 1 ? Inf : StatsBase.mean(rechedge(x)) # vsobel(x) = StatsBase.mean(recvsobel(x)) # prod(size(x)) == 1 ? Inf : StatsBase.mean(recvsobel(x)) # hsobel(x) = StatsBase.mean(rechsobel(x)) # prod(size(x)) == 1 ? Inf : StatsBase.mean(rechsobel(x)) # svedge(x) = StatsBase.sum(recvedge(x)) # prod(size(x)) == 1 ? Inf : StatsBase.sum(recvedge(x)) # shedge(x) = StatsBase.sum(rechedge(x)) # prod(size(x)) == 1 ? Inf : StatsBase.sum(rechedge(x)) # svsobel(x) = StatsBase.sum(recvsobel(x)) # prod(size(x)) == 1 ? Inf : StatsBase.sum(recvsobel(x)) # shsobel(x) = StatsBase.sum(rechsobel(x)) # prod(size(x)) == 1 ? Inf : StatsBase.sum(rechsobel(x)) # train_idxs, test_idxs = p[1:round(Int, N*.2)], p[round(Int, N*.2)+1:end] # # train_idxs = train_idxs[1:10] # mach = @time machine(ModalDecisionTree(; # relations = :IA7, # features = [hedge, vedge], # # initconditions = :start_at_center, # featvaltype = Float32, # ), selectrows(Xnt, train_idxs), selectrows(y, train_idxs)) |> m->fit!(m) # @show nnodes(fitted_params(mach).rawmodel) # @test nnodes(fitted_params(mach).rawmodel) == 71 # @show sum(predict_mode(mach, selectrows(Xnt, test_idxs)) .== y[test_idxs]) / length(y[test_idxs]) # @test sum(predict_mode(mach, selectrows(Xnt, test_idxs)) .== y[test_idxs]) / length(y[test_idxs]) > 0.73 # preds, tree2 = report(mach).sprinkle(selectrows(Xnt, test_idxs), selectrows(y, test_idxs)); # @show MLJ.accuracy(preds, selectrows(y, test_idxs)) # @test MLJ.accuracy(preds, selectrows(y, test_idxs)) > 0.75 # # printmodel.(joinrules(listrules(report(mach).model)); show_metrics = true, threshold_digits = 2); # printmodel.(joinrules(listrules(ModalDecisionTrees.translate(tree2))); show_metrics = true, threshold_digits = 2); # readmetrics.(joinrules(listrules(ModalDecisionTrees.translate(tree2)))) # # train_idxs = train_idxs[1:10] # mach = @time machine(ModalDecisionTree(; # relations = :IA7, # features = [shedge, svedge], # # initconditions = :start_at_center, # featvaltype = Float32, # ), selectrows(Xnt, train_idxs), selectrows(y, train_idxs)) |> m->fit!(m) # @show nnodes(fitted_params(mach).rawmodel) # @test nnodes(fitted_params(mach).rawmodel) == 79 # @show sum(predict_mode(mach, selectrows(Xnt, test_idxs)) .== y[test_idxs]) / length(y[test_idxs]) # @test sum(predict_mode(mach, selectrows(Xnt, test_idxs)) .== y[test_idxs]) / length(y[test_idxs]) > 0.73 # preds, tree2 = report(mach).sprinkle(selectrows(Xnt, test_idxs), selectrows(y, test_idxs)); # @show MLJ.accuracy(preds, selectrows(y, test_idxs)) # @test MLJ.accuracy(preds, selectrows(y, test_idxs)) > 0.75 # # printmodel.(joinrules(listrules(report(mach).model)); show_metrics = true, threshold_digits = 2); # printmodel.(joinrules(listrules(ModalDecisionTrees.translate(tree2))); show_metrics = true, threshold_digits = 2); # readmetrics.(joinrules(listrules(ModalDecisionTrees.translate(tree2))))
ModalDecisionTrees
https://github.com/aclai-lab/ModalDecisionTrees.jl.git
[ "MIT" ]
0.5.0
200b2bd9dee3dfe2dcffa1fb51b6dd00d371ed2b
code
3853
using ModalDecisionTrees using MLJ using Random X, y = @load_iris model = ModalDecisionTree(; max_depth = 0) mach = @time machine(model, X, y) |> fit! @test height(fitted_params(mach).rawmodel) == 0 @test depth(fitted_params(mach).rawmodel) == 0 model = ModalDecisionTree(; max_depth = 2, ) mach = @time machine(model, X, y) |> fit! @test depth(fitted_params(mach).rawmodel) == 2 model = ModalDecisionTree(; min_samples_leaf = 2, min_samples_split = 4, min_purity_increase = 0.1, max_purity_at_leaf = 1.0, print_progress = true, rng = 2 ) mach = @time machine(model, X, y) |> fit! @test depth(fitted_params(mach).tree) == 4 ################################################################################ using ModalDecisionTrees using MLJ using Random X, y = @load_iris model = ModalDecisionTree(; max_purity_at_leaf = 1.0, print_progress = true, display_depth = 1, rng = Random.MersenneTwister(2) ) mach = @time machine(model, X, y) |> fit! report(mach).printmodel() ################################################################################ using ModalDecisionTrees using MLJ using Random X, y = @load_iris model = ModalDecisionTree(; max_purity_at_leaf = 1.0, print_progress = true, max_modal_depth = 2, n_subfeatures = round(Int, length(Tables.columns(X)) * (0.5)), # display_depth = nothing, display_depth = 2, rng = Random.MersenneTwister(2) ) mach = @time machine(model, X, y) |> fit! @test depth(fitted_params(mach).tree) == 6 @test_nowarn report(mach).printmodel() @test_nowarn report(mach).printmodel(false, 0) @test_nowarn report(mach).printmodel(true, 0) @test_nowarn report(mach).printmodel(false, 2) @test_nowarn report(mach).printmodel(true, 2) @test_nowarn report(mach).printmodel(0) @test_nowarn report(mach).printmodel(1) @test_nowarn report(mach).printmodel(4) @test_nowarn report(mach).printmodel(10) report(mach).printmodel(; hidemodality=false) report(mach).printmodel(hidemodality=false) @test_nowarn report(mach).printmodel(show_metrics = true) @test_nowarn report(mach).printmodel(show_intermediate_finals = true) @test_nowarn report(mach).printmodel(show_metrics = true, show_intermediate_finals = true) @test_nowarn report(mach).printmodel(show_metrics = true, show_intermediate_finals = true, max_depth=nothing) @test_nowarn report(mach).printmodel(show_metrics = (;), show_intermediate_finals = 200, max_depth=nothing) printmodel.(listrules(report(mach).model); show_metrics=true); out1 = (io = IOBuffer(); report(mach).printmodel(io, true); String(take!(io))) out2 = (io = IOBuffer(); report(mach).printmodel(io, false); String(take!(io))) @test occursin("petal", out1) @test occursin("petal", out2) # @test occursin("petal", displaymodel(report(mach).model)) @test_nowarn listrules(report(mach).model) @test_nowarn listrules(report(mach).model; use_shortforms=true) @test_nowarn listrules(report(mach).model; use_shortforms=false) printmodel.(listrules(report(mach).model; use_shortforms=true, use_leftmostlinearform = true)) @test_nowarn listrules(report(mach).model; use_shortforms=true, use_leftmostlinearform = true) # @test_throws ErrorException listrules(report(mach).model; use_shortforms=true, use_leftmostlinearform = true) @test_nowarn listrules(report(mach).model; use_shortforms=false, use_leftmostlinearform = true) @test_throws ErrorException listrules(report(mach).model; use_shortforms=false, use_leftmostlinearform = true, force_syntaxtree = true) @test_nowarn report(mach).printmodel(true, 3; syntaxstring_kwargs = (;hidemodality = true)) model = ModalRandomForest() mach = @time machine(model, X, y, w) |> fit! Xnew = (sepal_length = [6.4, 7.2, 7.4], sepal_width = [2.8, 3.0, 2.8], petal_length = [5.6, 5.8, 6.1], petal_width = [2.1, 1.6, 1.9],) yhat = MLJ.predict(mach, Xnew) yhat = MLJ.predict_mode(mach, X) @test MLJ.accuracy(y, yhat) > 0.8
ModalDecisionTrees
https://github.com/aclai-lab/ModalDecisionTrees.jl.git
[ "MIT" ]
0.5.0
200b2bd9dee3dfe2dcffa1fb51b6dd00d371ed2b
code
1324
using ModalDecisionTrees using MLJ ################################################################################ X, y = @load_iris w = abs.(randn(length(y))) # w = fill(1, length(y)) # w = rand([1,2], length(y)) model = ModalDecisionTree() mach = @time machine(model, X, y, w) |> fit! Xnew = (sepal_length = [6.4, 7.2, 7.4], sepal_width = [2.8, 3.0, 2.8], petal_length = [5.6, 5.8, 6.1], petal_width = [2.1, 1.6, 1.9],) yhat = MLJ.predict(mach, Xnew) yhat = MLJ.predict_mode(mach, Xnew) yhat = MLJ.predict_mode(mach, X) @test MLJ.accuracy(y, yhat) > 0.8 @test_nowarn fitted_params(mach).rawmodel @test_nowarn report(mach).model @test_nowarn printmodel(prune(fitted_params(mach).rawmodel, simplify=true, min_samples_leaf = 20), max_depth = 3) @test_nowarn printmodel(prune(fitted_params(mach).rawmodel, simplify=true, min_samples_leaf = 20)) @test_nowarn printmodel(report(mach).model, header = false) @test_nowarn printmodel(report(mach).model, header = :brief) @test_nowarn printmodel(report(mach).model, header = true) io = IOBuffer() @test_nowarn printmodel(io, report(mach).model, show_subtree_info = true) # String(take!(io)) @test_nowarn printmodel.((SoleModels.listrules(report(mach).model,))); ################################################################################
ModalDecisionTrees
https://github.com/aclai-lab/ModalDecisionTrees.jl.git
[ "MIT" ]
0.5.0
200b2bd9dee3dfe2dcffa1fb51b6dd00d371ed2b
code
5197
# Import packages using Test using MLJ using ModalDecisionTrees using SoleModels using SoleData using Random # A Modal Decision Tree with ≥ 4 samples at leaf t = ModalDecisionTree(; min_samples_split=2, min_samples_leaf = 4, ) # Load an example dataset (a temporal one) X, y = ModalDecisionTrees.load_japanesevowels() X, varnames = SoleData.dataframe2cube(X) p = randperm(Random.MersenneTwister(2), 100) X, y = X[:, :, p], y[p] X = NamedTuple(zip(Symbol.(1:length(eachslice(X; dims=2))), eachslice.(eachslice(X; dims=2); dims=2))) nvars = length(X) N = length(y) mach = machine(t, X, y) # Split dataset p = randperm(Random.MersenneTwister(1), N) train_idxs, test_idxs = p[1:round(Int, N*.8)], p[round(Int, N*.8)+1:end] # Fit @time MLJ.fit!(mach, rows=train_idxs) # Perform predictions, compute accuracy yhat = MLJ.predict(mach, rows=test_idxs) acc = sum(mode.(yhat) .== y[test_idxs])/length(yhat) yhat = MLJ.predict_mode(mach, rows=test_idxs) acc = sum(yhat .== y[test_idxs])/length(yhat) @test acc >= 0.8 @test_nowarn report(mach).printmodel(syntaxstring_kwargs = (; variable_names_map = [('A':('A'+nvars))], threshold_digits = 2)) @test_throws BoundsError report(mach).printmodel(syntaxstring_kwargs = (; variable_names_map = [["a", "b"]])) @test_throws BoundsError report(mach).printmodel(syntaxstring_kwargs = (; variable_names_map = ["a", "b"])) @test_nowarn report(mach).printmodel(syntaxstring_kwargs = (; variable_names_map = 'A':('A'+nvars))) @test_nowarn report(mach).printmodel(syntaxstring_kwargs = (; variable_names_map = collect('A':('A'+nvars)))) @test_nowarn printmodel(report(mach).model) @test_nowarn listrules(report(mach).model) @test_nowarn listrules(report(mach).model; use_shortforms=true) @test_nowarn listrules(report(mach).model; use_shortforms=false) @test_nowarn listrules(report(mach).model; use_shortforms=true, use_leftmostlinearform = true) @test_nowarn listrules(report(mach).model; use_shortforms=false, use_leftmostlinearform = true) @test_throws ErrorException listrules(report(mach).model; use_shortforms=false, use_leftmostlinearform = true, force_syntaxtree = true) # Access raw model fitted_params(mach).rawmodel; report(mach).printmodel(3); @time MLJ.fit!(mach) @test_nowarn feature_importances(mach) ############################################################################################ ############################################################################################ ############################################################################################ mach = @time machine(ModalDecisionTree(post_prune = true), X, y) |> MLJ.fit! mach = @time machine(ModalDecisionTree(post_prune = true, max_modal_depth = 2), X, y) |> MLJ.fit! mach = @time machine(ModalDecisionTree(min_samples_split=100, post_prune = true, merge_purity_threshold = 0.4), X, y) |> MLJ.fit! mach = @time machine(ModalDecisionTree(n_subfeatures = 0.2,), X, y) |> MLJ.fit! mach = @time machine(ModalDecisionTree(n_subfeatures = 2,), X, y) |> MLJ.fit! mach = @time machine(ModalDecisionTree(n_subfeatures = x->ceil(Int64, div(x, 2)),), X, y) |> MLJ.fit! mach = @time machine(ModalDecisionTree(downsize = false,), X, y) |> MLJ.fit! ############################################################################################ ############################################################################################ ############################################################################################ # NaNs Xwithnans = deepcopy(X) for i in 1:4 rng = MersenneTwister(i) c = rand(rng, 1:length(Xwithnans)) r = rand(rng, 1:length(Xwithnans[c])) Xwithnans[c][r][rand(1:length(Xwithnans[c][r]))] = NaN @test_throws ErrorException @time machine(ModalDecisionTree(), Xwithnans, y) |> MLJ.fit! end ############################################################################################ ############################################################################################ ############################################################################################ X, y = ModalDecisionTrees.load_japanesevowels() X, varnames = SoleData.dataframe2cube(X) multilogiset, var_grouping = ModalDecisionTrees.wrapdataset(X, ModalDecisionTree(; min_samples_leaf = 1)) # A Modal Decision Tree t = ModalDecisionTree(min_samples_split=100, post_prune = true, merge_purity_threshold = true) N = length(y) p = randperm(Random.MersenneTwister(1), N) train_idxs, test_idxs = p[1:round(Int, N*.8)], p[round(Int, N*.8)+1:end] mach = @test_logs (:warn,) machine(t, modality(multilogiset, 1), y) @time MLJ.fit!(mach, rows=train_idxs) yhat = MLJ.predict_mode(mach, rows=test_idxs) acc = sum(yhat .== y[test_idxs])/length(yhat) @test MLJ.kappa(yhat, y[test_idxs]) > 0.5 mach = @test_logs (:warn,) machine(t, multilogiset, y) # Fit @time MLJ.fit!(mach, rows=train_idxs) yhat = MLJ.predict_mode(mach, rows=test_idxs) acc = sum(yhat .== y[test_idxs])/length(yhat) MLJ.kappa(yhat, y[test_idxs]) > 0.5 @test_nowarn yhat = MLJ.predict_mode(mach, multilogiset) @test_nowarn prune(fitted_params(mach).rawmodel, simplify=true) @test_nowarn prune(fitted_params(mach).rawmodel, simplify=true, min_samples_leaf = 20)
ModalDecisionTrees
https://github.com/aclai-lab/ModalDecisionTrees.jl.git
[ "MIT" ]
0.5.0
200b2bd9dee3dfe2dcffa1fb51b6dd00d371ed2b
code
6599
using Test using Logging using MLJ using SoleData using SoleModels using ModalDecisionTrees using MLDatasets DOWNSIZE_WINDOW = (3,3) Xcube, y = begin if MNIST isa Base.Callable # v0.7 trainset = MNIST(:train) trainset[:] else # v0.5 MNIST.traindata() end end y = string.(y) N = length(y) p = 1:100 p_test = 101:1000 # N begin X = SoleData.cube2dataframe(Xcube) X_train, y_train = X[p,:], y[p] X_test, y_test = X[p_test,:], y[p_test] model = ModalDecisionTree() mach = @time machine(model, X_train, y_train) |> fit! report(mach).printmodel(1000; threshold_digits = 2); yhat_test = MLJ.predict_mode(mach, X_test) @test MLJ.accuracy(y_test, yhat_test) > 0.2 end _s = collect(size(Xcube)) insert!(_s, length(_s), 1) Xcube = reshape(Xcube, _s...) X = SoleData.cube2dataframe(Xcube, ["black"]) X_train, y_train = X[p,:], y[p] X_test, y_test = X[p_test,:], y[p_test] # begin # model = ModalDecisionTree() # mach = @time machine(model, X_train, y_train) |> fit! # report(mach).printmodel(1000; threshold_digits = 2); # yhat_test = MLJ.predict_mode(mach, X_test) # MLJ.accuracy(y_test, yhat_test) # @test MLJ.accuracy(y_test, yhat_test) > 0.2 # end # begin # model = ModalDecisionTree(; relations = :IA7,) # mach = @time machine(model, X_train, y_train) |> fit! # report(mach).printmodel(1000; threshold_digits = 2); # yhat_test = MLJ.predict_mode(mach, X_test) # MLJ.accuracy(y_test, yhat_test) # @test MLJ.accuracy(y_test, yhat_test) > 0.2 # end begin model = ModalDecisionTree(; downsize = DOWNSIZE_WINDOW) mach = @time machine(model, X_train, y_train) |> fit! report(mach).printmodel(1000; threshold_digits = 2); yhat_test = MLJ.predict_mode(mach, X_test) MLJ.accuracy(y_test, yhat_test) @test MLJ.accuracy(y_test, yhat_test) > 0.12 end begin model = ModalDecisionTree(; relations = :IA7, downsize = DOWNSIZE_WINDOW) mach = @time machine(model, X_train, y_train) |> fit! report(mach).printmodel(1000; threshold_digits = 2); yhat_test = MLJ.predict_mode(mach, X_test) MLJ.accuracy(y_test, yhat_test) @test MLJ.accuracy(y_test, yhat_test) > 0.26 end begin recheight(x) = Float32(size(x, 1)) recwidth(x) = Float32(size(x, 2)) model = ModalDecisionTree(; relations = :IA7, features = [minimum, maximum, recheight, recwidth], featvaltype = Float32, downsize = DOWNSIZE_WINDOW, ) mach1 = @time machine(model, X_train, y_train) |> fit! model = ModalDecisionTree(; relations = :IA7, features = [recheight, recwidth, minimum, maximum], featvaltype = Float32, downsize = DOWNSIZE_WINDOW, ) mach2 = @time machine(model, X_train, y_train) |> fit! report(mach1).printmodel(1000; threshold_digits = 2); report(mach2).printmodel(1000; threshold_digits = 2); @test_broken displaymodel(fitted_params(mach1).solemodel) == displaymodel(fitted_params(mach2).solemodel) yhat_test = MLJ.predict_mode(mach1, X_test) MLJ.accuracy(y_test, yhat_test) @test MLJ.accuracy(y_test, yhat_test) > 0.25 end begin recheight(x) = Float32(size(x, 1)) recwidth(x) = Float32(size(x, 2)) model = ModalDecisionTree(; relations = :IA7, features = [minimum, maximum, recheight, recwidth], initconditions = :start_at_center, featvaltype = Float32, downsize = DOWNSIZE_WINDOW, # features = [minimum, maximum, UnivariateFeature{Float64}(recheight), UnivariateFeature{Float64}(recwidth)], # features = [minimum, maximum, UnivariateFeature{Float32}(1, recheight), UnivariateFeature{Float32}(1, recwidth)], ) mach = @time machine(model, X_train, y_train) |> fit! report(mach).printmodel(1000; threshold_digits = 2); yhat_test = MLJ.predict_mode(mach, X_test) MLJ.accuracy(y_test, yhat_test) @test MLJ.accuracy(y_test, yhat_test) > 0.25 end begin model = ModalDecisionTree(; relations = :IA3, features = [minimum], initconditions = :start_at_center, featvaltype = Float32, downsize = DOWNSIZE_WINDOW, # features = [minimum, maximum, UnivariateFeature{Float64}(recheight), UnivariateFeature{Float64}(recwidth)], # features = [minimum, maximum, UnivariateFeature{Float32}(1, recheight), UnivariateFeature{Float32}(1, recwidth)], ) mach = @time machine(model, X_train, y_train) |> fit! report(mach).printmodel(1000; threshold_digits = 2); yhat_test = MLJ.predict_mode(mach, X_test) MLJ.accuracy(y_test, yhat_test) @test MLJ.accuracy(y_test, yhat_test) > 0.25 end begin model = ModalDecisionTree(; relations = :IA7, features = [minimum], initconditions = :start_at_center, # downsize = (x)->ModalDecisionTrees.MLJInterface.moving_average(x, (10,10)), downsize = (x)->ModalDecisionTrees.MLJInterface.moving_average(x, DOWNSIZE_WINDOW), ) mach = @test_logs min_level=Logging.Error @time machine(model, X_train, y_train) |> fit! model = ModalDecisionTree(; relations = :IA7, features = [minimum], initconditions = :start_at_center, downsize = DOWNSIZE_WINDOW, # downsize = (10,10), # features = [minimum, maximum, UnivariateFeature{Float64}(recheight), UnivariateFeature{Float64}(recwidth)], # features = [minimum, maximum, UnivariateFeature{Float32}(1, recheight), UnivariateFeature{Float32}(1, recwidth)], ) mach = @test_logs min_level=Logging.Error @time machine(model, X_train, y_train) |> fit! report(mach).printmodel(1000; threshold_digits = 2); yhat_test = MLJ.predict_mode(mach, X_test) @test MLJ.accuracy(y_test, yhat_test) > 0.25 yhat_test2, tree2 = report(mach).sprinkle(X_test, y_test); @test yhat_test2 == yhat_test soletree2 = ModalDecisionTrees.translate(tree2) @test_nowarn printmodel(soletree2; show_metrics = true); @test_nowarn printmodel.(listrules(soletree2); show_metrics = true, threshold_digits = 2); @test_nowarn printmodel.(joinrules(listrules(soletree2)); show_metrics = true, threshold_digits = 2); SoleModels.info.(listrules(soletree2), :supporting_labels); _leaves = consequent.(listrules(soletree2)) SoleModels.readmetrics.(_leaves) zip(SoleModels.readmetrics.(_leaves),_leaves) |> collect |> sort # @test MLJ.accuracy(y_test, yhat_test) > 0.4 with DOWNSIZE_WINDOW = (10,10) @test MLJ.accuracy(y_test, yhat_test) > 0.27 end
ModalDecisionTrees
https://github.com/aclai-lab/ModalDecisionTrees.jl.git
[ "MIT" ]
0.5.0
200b2bd9dee3dfe2dcffa1fb51b6dd00d371ed2b
code
4337
using MLJ using ModalDecisionTrees using MLDatasets # TODO remove? using DataFrames using Random # Regression, spatial problem using RDatasets channing = RDatasets.dataset("robustbase", "radarImage") N = maximum(channing[:,:XCoord]) M = maximum(channing[:,:YCoord]) Xcube = fill(Inf, N, M, 3) for r in eachrow(channing) Xcube[r[:XCoord], r[:YCoord], 1] = r[:Band1] Xcube[r[:XCoord], r[:YCoord], 2] = r[:Band2] Xcube[r[:XCoord], r[:YCoord], 3] = r[:Band3] end samplemap = (x->all(!isinf,x)).(eachslice(Xcube; dims=(1,2))) _s = size(samplemap) samplemap[[1,end],:] .= 0 samplemap[:,[1,end]] .= 0 samplemap = cat(moving_average(eachslice(samplemap; dims=1); window_size=2, window_step=1)...; dims=2)' samplemap = cat(moving_average(eachslice(samplemap; dims=2); window_size=2, window_step=1)...; dims=2) samplemap = hcat(eachslice(samplemap; dims=2)..., zeros(size(samplemap, 1))) samplemap = hcat(eachslice(samplemap; dims=1)..., zeros(size(samplemap, 2)))' samplemap = (samplemap .== 1.0) @assert _s == size(samplemap) samples = [begin X = Xcube[(idx[1]-1):(idx[1]+1), (idx[2]-1):(idx[2]+1), [1,2]] y = Xcube[idx[1], idx[2], 3] (X, y) end for idx in findall(isone, samplemap)] samples = filter(s->all(!isinf, first(s)), samples) shuffle!(samples) X = DataFrame([((x)->x[:,:,1]).(first.(samples)), ((x)->x[:,:,2]).(first.(samples))], :auto) y = last.(samples) N = length(y) mach = machine(ModalDecisionTree(min_samples_leaf=4), X, y) # Split dataset p = randperm(Random.MersenneTwister(1), N) train_idxs, test_idxs = p[1:round(Int, N*.8)], p[round(Int, N*.8)+1:end] # Fit MLJ.fit!(mach, rows=train_idxs) yhat = MLJ.predict(mach, rows=test_idxs) mae = MLJ.mae(mean.(yhat), y[test_idxs]) mae = MLJ.mae(MLJ.predict_mean(mach, rows=test_idxs), y[test_idxs]) mae = MLJ.mae(MLJ.predict_mean(mach, rows=train_idxs), y[train_idxs]) t = ModalDecisionTree(relations = :RCC5, min_samples_leaf=2) mach = machine(t, X, y) MLJ.fit!(mach, rows=train_idxs) report(mach).printmodel(1000; threshold_digits = 2); listrules(report(mach).model; use_shortforms=true, use_leftmostlinearform = true) fs = SoleData.antecedent.(listrules(report(mach).model; use_shortforms=true, use_leftmostlinearform = true)) fsnorm = map(f->normalize(modforms(f)[1]; allow_atom_flipping = true), fs) # TODO: expand to implicationstate function knowntoimply(t1::SyntaxTree, t2::SyntaxTree) # @show t1 # @show t2 _diamg = SoleLogics.DiamondRelationalConnective(globalrel) _boxg = SoleLogics.BoxRelationalConnective(globalrel) @assert arity(_diamg) == 1 @assert arity(_boxg) == 1 if token(t1) == _boxg && token(t2) == _diamg knowntoimply(children(t1)[1], children(t2)[1]) elseif token(t1) == _boxg && token(t2) == _boxg knowntoimply(children(t1)[1], children(t2)[1]) elseif token(t1) == _diamg && token(t2) == _diamg knowntoimply(children(t1)[1], children(t2)[1]) elseif token(t1) isa Atom{<:ScalarCondition} && token(t2) isa Atom{<:ScalarCondition} c1 = SoleLogics.value(token(t1)) c2 = SoleLogics.value(token(t2)) # if SoleData.metacond(c1) == SoleData.metacond(c2) # @show c1, c2 # @show SoleData.test_operator(c1)(SoleData.threshold(c1), SoleData.threshold(c2)) # end (SoleData.metacond(c1) == SoleData.metacond(c2) && SoleData.test_operator(c1)(SoleData.threshold(c1), SoleData.threshold(c2))) else false end end function _simplify(φ::SyntaxTree) if token(φ) in [CONJUNCTION, DISJUNCTION] φ = LeftmostLinearForm(φ) chs = children(φ) for i in length(chs):-1:1 ch1 = chs[i] for ch2 in chs if (token(φ) == CONJUNCTION && knowntoimply(ch2, ch1)) || (token(φ) == DISJUNCTION && knowntoimply(ch1, ch2)) deleteat!(chs, i) break end end end tree(LeftmostLinearForm(SoleLogics.connective(φ), chs)) else φ end end _simplify.(fsnorm) syntaxstring.(_simplify.(fsnorm)) .|> println; printmodel.(listrules(report(mach).model); show_metrics = true, threshold_digits = 2); mae = MLJ.mae(MLJ.predict_mean(mach, rows=test_idxs), y[test_idxs]) mae = MLJ.mae(MLJ.predict_mean(mach, rows=train_idxs), y[train_idxs])
ModalDecisionTrees
https://github.com/aclai-lab/ModalDecisionTrees.jl.git
[ "MIT" ]
0.5.0
200b2bd9dee3dfe2dcffa1fb51b6dd00d371ed2b
code
10904
using Tables # using ARFFFiles using DataFrames using StatsBase import MLJModelInterface: fit using HTTP using ZipFile using DataStructures variable_names_latex = [ "\\text{hand tip}_X^L", "\\text{hand tip}_Y^L", "\\text{hand tip}_Z^L", "\\text{hand tip}_X^R", "\\text{hand tip}_Y^R", "\\text{hand tip}_Z^R", "\\text{elbow}_X^L", "\\text{elbow}_Y^L", "\\text{elbow}_Z^L", "\\text{elbow}_X^R", "\\text{elbow}_Y^R", "\\text{elbow}_Z^R", "\\text{wrist}_X^L", "\\text{wrist}_Y^L", "\\text{wrist}_Z^L", "\\text{wrist}_X^R", "\\text{wrist}_Y^R", "\\text{wrist}_Z^R", "\\text{thumb}_X^L", "\\text{thumb}_Y^L", "\\text{thumb}_Z^L", "\\text{thumb}_X^R", "\\text{thumb}_Y^R", "\\text{thumb}_Z^R", ] function load_arff_dataset(dataset_name, path = "http://www.timeseriesclassification.com/aeon-toolkit/$(dataset_name).zip") # function load_arff_dataset(dataset_name, path = "../datasets/Multivariate_arff/$(dataset_name)") (X_train, y_train), (X_test, y_test) = begin if(any(startswith.(path, ["https://", "http://"]))) r = HTTP.get(path); z = ZipFile.Reader(IOBuffer(r.body)) # ( # ARFFFiles.load(DataFrame, z.files[[f.name == "$(dataset_name)_TRAIN.arff" for f in z.files]][1]), # ARFFFiles.load(DataFrame, z.files[[f.name == "$(dataset_name)_TEST.arff" for f in z.files]][1]), # ) ( read(z.files[[f.name == "$(dataset_name)_TRAIN.arff" for f in z.files]][1], String) |> parseARFF, read(z.files[[f.name == "$(dataset_name)_TEST.arff" for f in z.files]][1], String) |> parseARFF, ) else ( # ARFFFiles.load(DataFrame, "$(path)/$(dataset_name)_TRAIN.arff"), # ARFFFiles.load(DataFrame, "$(path)/$(dataset_name)_TEST.arff"), read(z.files[[f.name == "$(path)/$(dataset_name)_TRAIN.arff" for f in z.files]][1], String) |> parseARFF, read(z.files[[f.name == "$(path)/$(dataset_name)_TEST.arff" for f in z.files]][1], String) |> parseARFF, ) end end @assert dataset_name == "NATOPS" "This code is only for showcasing. Need to expand code to comprehend more datasets." # variable_names = [ # "Hand tip left, X coordinate", # "Hand tip left, Y coordinate", # "Hand tip left, Z coordinate", # "Hand tip right, X coordinate", # "Hand tip right, Y coordinate", # "Hand tip right, Z coordinate", # "Elbow left, X coordinate", # "Elbow left, Y coordinate", # "Elbow left, Z coordinate", # "Elbow right, X coordinate", # "Elbow right, Y coordinate", # "Elbow right, Z coordinate", # "Wrist left, X coordinate", # "Wrist left, Y coordinate", # "Wrist left, Z coordinate", # "Wrist right, X coordinate", # "Wrist right, Y coordinate", # "Wrist right, Z coordinate", # "Thumb left, X coordinate", # "Thumb left, Y coordinate", # "Thumb left, Z coordinate", # "Thumb right, X coordinate", # "Thumb right, Y coordinate", # "Thumb right, Z coordinate", # ] variable_names = [ "X[Hand tip l]", "Y[Hand tip l]", "Z[Hand tip l]", "X[Hand tip r]", "Y[Hand tip r]", "Z[Hand tip r]", "X[Elbow l]", "Y[Elbow l]", "Z[Elbow l]", "X[Elbow r]", "Y[Elbow r]", "Z[Elbow r]", "X[Wrist l]", "Y[Wrist l]", "Z[Wrist l]", "X[Wrist r]", "Y[Wrist r]", "Z[Wrist r]", "X[Thumb l]", "Y[Thumb l]", "Z[Thumb l]", "X[Thumb r]", "Y[Thumb r]", "Z[Thumb r]", ] variable_names_latex = [ "\\text{hand tip l}_X", "\\text{hand tip l}_Y", "\\text{hand tip l}_Z", "\\text{hand tip r}_X", "\\text{hand tip r}_Y", "\\text{hand tip r}_Z", "\\text{elbow l}_X", "\\text{elbow l}_Y", "\\text{elbow l}_Z", "\\text{elbow r}_X", "\\text{elbow r}_Y", "\\text{elbow r}_Z", "\\text{wrist l}_X", "\\text{wrist l}_Y", "\\text{wrist l}_Z", "\\text{wrist r}_X", "\\text{wrist r}_Y", "\\text{wrist r}_Z", "\\text{thumb l}_X", "\\text{thumb l}_Y", "\\text{thumb l}_Z", "\\text{thumb r}_X", "\\text{thumb r}_Y", "\\text{thumb r}_Z", ] X_train = fix_dataframe(X_train, variable_names) X_test = fix_dataframe(X_test, variable_names) class_names = [ "I have command", "All clear", "Not clear", "Spread wings", "Fold wings", "Lock wings", ] fix_class_names(y) = class_names[round(Int, parse(Float64, y))] y_train = map(fix_class_names, y_train) y_test = map(fix_class_names, y_test) @assert nrow(X_train) == length(y_train) "$(nrow(X_train)), $(length(y_train))" ((X_train, y_train), (X_test, y_test)) end const _ARFF_SPACE = UInt8(' ') const _ARFF_COMMENT = UInt8('%') const _ARFF_AT = UInt8('@') const _ARFF_SEP = UInt8(',') const _ARFF_NEWLINE = UInt8('\n') const _ARFF_NOMSTART = UInt8('{') const _ARFF_NOMEND = UInt8('}') const _ARFF_ESC = UInt8('\\') const _ARFF_MISSING = UInt8('?') const _ARFF_RELMARK = UInt8('\'') # function readARFF(path::String) # open(path, "r") do io # df = DataFrame() # classes = String[] # lines = readlines(io) ... function parseARFF(arffstring::String) df = DataFrame() classes = String[] lines = split(arffstring, "\n") for i in 1:length(lines) line = lines[i] # If not empty line or comment if !isempty(line) if UInt8(line[1]) != _ARFF_COMMENT sline = split(line, " ") # println(sline[1][1]) # If the first symbol is @ if UInt8(sline[1][1]) == _ARFF_AT # If @relation if sline[1][2:end] == "relation" # println("Relation: " * sline[2]) end # if sline[1][2:end] == "variable" && sline[2] == "class" # classes = sline[3][2:end-1] # println(classes) # end # data, first char is ' elseif UInt8(sline[1][1]) == _ARFF_RELMARK sline[1] = sline[1][2:end] data_and_class = split(sline[1],"\'") string_data = split(data_and_class[1], "\\n") class = data_and_class[2][2:end] if isempty(names(df)) for i in 1:length(string_data) insertcols!(df, Symbol("V$(i)") => Array{Float64, 1}[]) # add the variables as 1,2,3,ecc. end end float_data = Dict{Int,Vector{Float64}}() for i in 1:length(string_data) float_data[i] = map(x->parse(Float64,x), split(string_data[i], ",")) end # @show float_data push!(df, [float_data[i] for i in 1:length(string_data)]) push!(classes, class) # @show data # @show class end end end end # for i in eachrow(df) # println(typeof(i)) # break # end p = sortperm(eachrow(df), by=x->classes[rownumber(x)]) return df[p, :], classes[p] end function fix_dataframe(df, variable_names = nothing) s = unique(size.(df[:,1])) @assert length(s) == 1 "$(s)" @assert length(s[1]) == 1 "$(s[1])" nvars, npoints = length(names(df)), s[1][1] old_var_names = names(df) X = OrderedDict() if isnothing(variable_names) variable_names = ["V$(i_var)" for i_var in 1:nvars] end @assert nvars == length(variable_names) for (i_var,var) in enumerate(variable_names) X[Symbol(var)] = [row[i_var] for row in eachrow(df)] end X = DataFrame(X) # Y = df[:,end] # X, string.(Y) # X, Y end function show_latex(tree; file_suffix = "", variable_names = nothing, silent = true) include("../results/utils/print-tree-to-latex.jl") savedir = "latex" additional_dict = Dict{String, String}( "predictionI have command" => "\\fcolorbox{black}{pastel1}{\\ \\ I have command\\ \\ }", "predictionAll clear" => "\\fcolorbox{black}{pastel2}{\\ \\ All clear\\ \\ }", "predictionNot clear" => "\\fcolorbox{black}{pastel3}{\\ \\ Not clear\\ \\ }", "predictionSpread wings" => "\\fcolorbox{black}{pastel4}{\\ \\ Spread wings\\ \\ }", "predictionFold wings" => "\\fcolorbox{black}{pastel5}{\\ \\ Fold wings\\ \\ }", "predictionLock wings" => "\\fcolorbox{black}{pastel6}{\\ \\ Lock wings\\ \\ }", ) common_kwargs = ( conversion_dict = additional_dict, # threshold_scale_factor = 3, threshold_show_decimals = 2, hide_modality_ids = true, variable_names_map = variable_names, # replace_dict = Dict([ # # "\\{1\\}" => "", # # "{1}" => "", # "NN" => "N", # ]), scale = 1., height = ["25em", "25em", "20em", "22em", "22em", "22em"], decisions_at_nodes = false, edges_textsize = [:Large, :small, :Large, :small, :small, :small], tree_names = ["t_minmax_static", "t_minmax_temporal", "t_neuro_static", "t_minmax_neuro_temporal", "t_minmax_neuro_static", "t_neuro_temporal"], latex_preamble = """ \\definecolor{pastel1}{RGB}{161, 201, 244} \\definecolor{pastel2}{RGB}{255, 180, 130} \\definecolor{pastel3}{RGB}{141, 229, 161} \\definecolor{pastel4}{RGB}{255, 159, 155} \\definecolor{pastel5}{RGB}{208, 187, 255} \\definecolor{pastel6}{RGB}{222, 187, 155} \\definecolor{pastel7}{RGB}{250, 176, 228} \\definecolor{pastel8}{RGB}{207, 207, 207} \\definecolor{pastel9}{RGB}{255, 254, 163} \\definecolor{pastel10}{RGB}{185, 242, 240} """, # space_unit = (2.2, 3.9)./.2, space_unit = (2.2, 3.9)./.75, # min_n_inst = ) main_tex_file = "tree$(file_suffix == "" ? "" : "-$(file_suffix)").tex" save_tree_latex( [tree], savedir; main_tex_file = main_tex_file, common_kwargs..., ) cd(savedir) if !silent run(`pdflatex $(main_tex_file)`); else # run(`bash -c "echo 2"`); # run(`bash -c "echo 2 2\\\>\\&1 \\\> /dev/null"`); run(`bash -c "pdflatex $(main_tex_file) 2\\\>\\&1 \\\> /dev/null"`); end pdf_name = replace(main_tex_file, ".tex" => ".pdf") run(`evince $pdf_name`); cd("..") end
ModalDecisionTrees
https://github.com/aclai-lab/ModalDecisionTrees.jl.git
[ "MIT" ]
0.5.0
200b2bd9dee3dfe2dcffa1fb51b6dd00d371ed2b
code
906
### Classification - Heterogeneously typed features (ints, floats, bools, strings) @testset "heterogeneous.jl" begin m, n = 10^2, 5 tf = [trues(Int(m/2)) falses(Int(m/2))] inds = Random.randperm(m) labels = string.(tf[inds]) features = Array{Any}(undef, m, n) features[:,:] = randn(m, n) features[:,2] = string.(tf[Random.randperm(m)]) features[:,3] = map(t -> round.(Int, t), features[:,3]) features[:,4] = tf[inds] model = build_tree(labels, features) preds = apply_tree(model, features) @test MLJ.accuracy(labels, preds) > 0.9 n_subfeatures = 2 ntrees = 3 model = build_forest(labels, features, n_subfeatures, ntrees) preds = apply_forest(model, features) @test MLJ.accuracy(labels, preds) > 0.9 n_subfeatures = 7 model, coeffs = build_adaboost_stumps(labels, features, n_subfeatures) preds = apply_adaboost_stumps(model, coeffs, features) @test MLJ.accuracy(labels, preds) > 0.9 end # @testset
ModalDecisionTrees
https://github.com/aclai-lab/ModalDecisionTrees.jl.git
[ "MIT" ]
0.5.0
200b2bd9dee3dfe2dcffa1fb51b6dd00d371ed2b
code
3016
# Classification Test - Iris Data Set # https://archive.ics.uci.edu/ml/datasets/iris @testset "iris.jl" begin features, labels = load_data("iris") labels = String.(labels) classes = sort(unique(labels)) n = length(labels) # train a decision stump (depth=1) model = build_stump(labels, features) preds = apply_tree(model, features) @test MLJ.accuracy(labels, preds) > 0.6 @test depth(model) == 1 probs = apply_tree_proba(model, features, classes) @test reshape(sum(probs, dims=2), n) ≈ ones(n) # train full-tree classifier (over-fit) model = build_tree(labels, features) preds = apply_tree(model, features) @test MLJ.accuracy(labels, preds) == 1.0 @test length(model) == 9 @test depth(model) == 5 @test preds isa Vector{String} print_model(model) probs = apply_tree_proba(model, features, classes) @test reshape(sum(probs, dims=2), n) ≈ ones(n) # prune tree to 8 leaves pruning_purity = 0.9 pt = prune(model, pruning_purity) @test length(pt) == 8 preds = apply_tree(pt, features) @test 0.99 < MLJ.accuracy(labels, preds) < 1.0 # prune tree to 3 leaves pruning_purity = 0.6 pt = prune(model, pruning_purity) @test length(pt) == 3 preds = apply_tree(pt, features) @test 0.95 < MLJ.accuracy(labels, preds) < 1.0 probs = apply_tree_proba(model, features, classes) @test reshape(sum(probs, dims=2), n) ≈ ones(n) # prune tree to a stump, 2 leaves pruning_purity = 0.5 pt = prune(model, pruning_purity) @test length(pt) == 2 preds = apply_tree(pt, features) @test 0.66 < MLJ.accuracy(labels, preds) < 1.0 # run n-fold cross validation for pruned tree println("\n##### nfoldCV Classification Tree #####") nfolds = 3 accuracy = nfoldCV_tree(labels, features, nfolds) @test mean(accuracy) > 0.8 # train random forest classifier ntrees = 10 n_subfeatures = 2 sampling_fraction = 0.5 model = build_forest(labels, features, n_subfeatures, ntrees, sampling_fraction) preds = apply_forest(model, features) @test MLJ.accuracy(labels, preds) > 0.95 @test preds isa Vector{String} probs = apply_forest_proba(model, features, classes) @test reshape(sum(probs, dims=2), n) ≈ ones(n) # run n-fold cross validation for forests println("\n##### nfoldCV Classification Forest #####") n_subfeatures = 2 ntrees = 10 n_folds = 3 sampling_fraction = 0.5 accuracy = nfoldCV_forest(labels, features, nfolds, n_subfeatures, ntrees, sampling_fraction) @test mean(accuracy) > 0.9 # train adaptive-boosted decision stumps n_iterations = 15 model, coeffs = build_adaboost_stumps(labels, features, n_iterations) preds = apply_adaboost_stumps(model, coeffs, features) @test MLJ.accuracy(labels, preds) > 0.9 @test preds isa Vector{String} probs = apply_adaboost_stumps_proba(model, coeffs, features, classes) @test reshape(sum(probs, dims=2), n) ≈ ones(n) # run n-fold cross validation for boosted stumps, using 7 iterations and 3 folds println("\n##### nfoldCV Classification Adaboosted Stumps #####") n_iterations = 15 nfolds = 3 accuracy = nfoldCV_stumps(labels, features, nfolds, n_iterations) @test mean(accuracy) > 0.9 end # @testset
ModalDecisionTrees
https://github.com/aclai-lab/ModalDecisionTrees.jl.git