licenses
sequencelengths
1
3
version
stringclasses
677 values
tree_hash
stringlengths
40
40
path
stringclasses
1 value
type
stringclasses
2 values
size
stringlengths
2
8
text
stringlengths
25
67.1M
package_name
stringlengths
2
41
repo
stringlengths
33
86
[ "MIT" ]
0.2.0
829dd95b32a41526923f44799ce0762fcd9a3a37
docs
7213
# Background Most of the math below is taken from [mohamedMonteCarloGradient2020](@citet). Consider a function $f: \mathbb{R}^n \to \mathbb{R}^m$, a parameter $\theta \in \mathbb{R}^d$ and a parametric probability distribution $p(\theta)$ on the input space. Given a random variable $X \sim p(\theta)$, we want to differentiate the expectation of $Y = f(X)$ with respect to $\theta$: $$E(\theta) = \mathbb{E}[f(X)] = \int f(x) ~ p(x | \theta) ~\mathrm{d} x = \int y ~ q(y | \theta) ~\mathrm{d} y$$ Usually this is approximated with Monte-Carlo sampling: let $x_1, \dots, x_S \sim p(\theta)$ be i.i.d., we have the estimator $$E(\theta) \simeq \frac{1}{S} \sum_{s=1}^S f(x_s)$$ ## Autodiff Since $E$ is a vector-to-vector function, the key quantity we want to compute is its Jacobian matrix $\partial E(\theta) \in \mathbb{R}^{m \times n}$: $$\partial E(\theta) = \int f(x) ~ \nabla_\theta p(x | \theta)^\top ~\mathrm{d} x = \int y ~ \nabla_\theta q(y | \theta)^\top ~ \mathrm{d} y$$ However, to implement automatic differentiation, we only need the vector-Jacobian product (VJP) $\partial E(\theta)^\top \bar{y}$ with an output cotangent $\bar{y} \in \mathbb{R}^m$. See the book by [blondelElementsDifferentiableProgramming2024](@citet) to know more. Our goal is to rephrase this VJP as an expectation, so that we may approximate it with Monte-Carlo sampling as well. ## REINFORCE Implemented by [`Reinforce`](@ref). ### Score function The REINFORCE estimator is derived with the help of the identity $\nabla \log u = \nabla u / u$: $$\begin{aligned} \partial E(\theta) & = \int f(x) ~ \nabla_\theta p(x | \theta)^\top ~ \mathrm{d}x \\ & = \int f(x) ~ \nabla_\theta \log p(x | \theta)^\top p(x | \theta) ~ \mathrm{d}x \\ & = \mathbb{E} \left[f(X) \nabla_\theta \log p(X | \theta)^\top\right] \\ \end{aligned}$$ And the VJP: $$\partial E(\theta)^\top \bar{y} = \mathbb{E} \left[f(X)^\top \bar{y} ~\nabla_\theta \log p(X | \theta)\right]$$ Our Monte-Carlo approximation will therefore be: $$\partial E(\theta)^\top \bar{y} \simeq \frac{1}{S} \sum_{s=1}^S f(x_s)^\top \bar{y} ~ \nabla_\theta \log p(x_s | \theta)$$ ### Variance reduction The REINFORCE estimator has high variance, but its variance is reduced by subtracting a so-called baseline $b = \frac{1}{S} \sum_{s=1}^S f(x_s)$ [koolBuyREINFORCESamples2022](@citep). For $S > 1$ Monte-Carlo samples, we have $$\begin{aligned} \partial E(\theta)^\top \bar{y} & \simeq \frac{1}{S} \sum_{s=1}^S \left(f(x_s) - \frac{1}{S - 1}\sum_{j\neq s} f(x_j) \right)^\top \bar{y} ~ \nabla_\theta\log p(x_s | \theta)\\ & = \frac{1}{S - 1}\sum_{s=1}^S (f(x_s) - b)^\top \bar{y} ~ \nabla_\theta\log p(x_s | \theta) \end{aligned}$$ ## Reparametrization Implemented by [`Reparametrization`](@ref). ### Trick The reparametrization trick assumes that we can rewrite the random variable $X \sim p(\theta)$ as $X = g_\theta(Z)$, where $Z \sim r$ is another random variable whose distribution $r$ does not depend on $\theta$. The expectation is rewritten with $h = f \circ g$: $$E(\theta) = \mathbb{E}\left[ f(g_\theta(Z)) \right] = \mathbb{E}\left[ h_\theta(Z) \right]$$ And we can directly differentiate through the expectation: $$\partial E(\theta) = \mathbb{E} \left[ \partial_\theta h_\theta(Z) \right]$$ This yields the VJP: $$\partial E(\theta)^\top \bar{y} = \mathbb{E} \left[ \partial_\theta h_\theta(Z)^\top \bar{y} \right]$$ We can use a Monte-Carlo approximation with i.i.d. samples $z_1, \dots, z_S \sim r$: $$\partial E(\theta)^\top \bar{y} \simeq \frac{1}{S} \sum_{s=1}^S \partial_\theta h_\theta(z_s)^\top \bar{y}$$ ### Catalogue The following reparametrizations are implemented: - Univariate Normal: $X \sim \mathcal{N}(\mu, \sigma^2)$ is equivalent to $X = \mu + \sigma Z$ with $Z \sim \mathcal{N}(0, 1)$. - Multivariate Normal: $X \sim \mathcal{N}(\mu, \Sigma)$ is equivalent to $X = \mu + L Z$ with $Z \sim \mathcal{N}(0, I)$ and $L L^\top = \Sigma$. The matrix $L$ can be obtained by Cholesky decomposition of $\Sigma$. ## Probability gradients In the case where $f$ is a function that takes values in a finite set $\mathcal{Y} = \{y_1, \cdots, y_K\}$, we may also want to compute the jacobian of the probability weights vector: $$q : \theta \longmapsto \begin{pmatrix} q(y_1|\theta) = \mathbb{P}(f(X) = y_1|\theta) \\ \dots \\ q(y_K|\theta) = \mathbb{P}(f(X) = y_K|\theta) \end{pmatrix}$$ whose Jacobian is given by $$\partial_\theta q(\theta) = \begin{pmatrix} \nabla_\theta q(y_1|\theta)^\top \\ \dots \\ \nabla_\theta q(y_K|\theta)^\top \end{pmatrix}$$ ### REINFORCE probability gradients The REINFORCE technique can be applied in a similar way: $$q(y_k | \theta) = \mathbb{E}[\mathbf{1}\{f(X) = y_k\}] = \int \mathbf{1} \{f(x) = y_k\} ~ p(x | \theta) ~ \mathrm{d}x$$ Differentiating through the integral, $$\begin{aligned} \nabla_\theta q(y_k | \theta) & = \int \mathbf{1} \{f(x) = y_k\} ~ \nabla_\theta p(x | \theta) ~ \mathrm{d}x \\ & = \mathbb{E} [\mathbf{1} \{f(X) = y_k\} ~ \nabla_\theta \log p(X | \theta)] \end{aligned}$$ The Monte-Carlo approximation for this is $$\nabla_\theta q(y_k | \theta) \simeq \frac{1}{S} \sum_{s=1}^S \mathbf{1} \{f(x_s) = y_k\} ~ \nabla_\theta \log p(x_s | \theta)$$ The VJP is then $$\begin{aligned} \partial_\theta q(\theta)^\top \bar{q} &= \sum_{k=1}^K \bar{q}_k \nabla_\theta q(y_k | \theta)\\ &\simeq \frac{1}{S} \sum_{s=1}^S \left[\sum_{k=1}^K \bar{q}_k \mathbf{1} \{f(x_s) = y_k\}\right] ~ \nabla_\theta \log p(x_s | \theta) \end{aligned}$$ In our implementation, the [`empirical_distribution`](@ref) method outputs an empirical [`FixedAtomsProbabilityDistribution`](@ref) with uniform weights $\frac{1}{S}$, where some $x_s$ can be repeated. $$q : \theta \longmapsto \begin{pmatrix} q(f(x_1)|\theta) \\ \dots \\ q(f(x_S) | \theta) \end{pmatrix}$$ We therefore define the corresponding VJP as $$\partial_\theta q(\theta)^\top \bar{q} = \frac{1}{S} \sum_{s=1}^S \bar{q}_s \nabla_\theta \log p(x_s | \theta)$$ If $\bar q$ comes from `mean`, we have $\bar q_s = f(x_s)^\top \bar y$ and we obtain the REINFORCE VJP. This VJP can be interpreted as an empirical expectation, to which we can also apply variance reduction: $$\partial_\theta q(\theta)^\top \bar q \approx \frac{1}{S-1}\sum_s(\bar q_s - b') \nabla_\theta \log p(x_s|\theta)$$ with $b' = \frac{1}{S}\sum_s \bar q_s$. Again, if $\bar q$ comes from `mean`, we have $\bar q_s = f(x_s)^\top \bar y$ and $b' = b^\top \bar y$. We then obtain the REINFORCE backward rule with variance reduction: $$\partial_\theta q(\theta)^\top \bar q \approx \frac{1}{S-1}\sum_s(f(x_s) - b)^\top \bar y \nabla_\theta \log p(x_s|\theta)$$ ### Reparametrization probability gradients To leverage reparametrization, we perform a change of variables: $$q(y | \theta) = \mathbb{E}[\mathbf{1}\{h_\theta(Z) = y\}] = \int \mathbf{1} \{h_\theta(z) = y\} ~ r(z) ~ \mathrm{d}z$$ Assuming that $h_\theta$ is invertible, we take $z = h_\theta^{-1}(u)$ and $$\mathrm{d}z = |\partial h_{\theta}^{-1}(u)| ~ \mathrm{d}u$$ so that $$q(y | \theta) = \int \mathbf{1} \{u = y\} ~ r(h_\theta^{-1}(u)) ~ |\partial h_{\theta}^{-1}(u)| ~ \mathrm{d}u$$ We can now differentiate, but it gets tedious. ## Bibliography ```@bibliography ```
DifferentiableExpectations
https://github.com/JuliaDecisionFocusedLearning/DifferentiableExpectations.jl.git
[ "MIT" ]
1.0.3
7e775de1aab04ade4be35e4324bea9be36cc4528
code
539
using SeuratRDS using Documenter makedocs(; modules=[SeuratRDS], authors="Matt Karikomi <[email protected]> and contributors", repo="https://github.com/mkarikom/SeuratRDS.jl/blob/{commit}{path}#L{line}", sitename="SeuratRDS.jl", format=Documenter.HTML(; prettyurls=get(ENV, "CI", "false") == "true", canonical="https://mkarikom.github.io/SeuratRDS.jl", assets=String[], ), pages=[ "Home" => "index.md", ], ) deploydocs(; repo="github.com/mkarikom/SeuratRDS.jl", )
SeuratRDS
https://github.com/mkarikom/SeuratRDS.jl.git
[ "MIT" ]
1.0.3
7e775de1aab04ade4be35e4324bea9be36cc4528
code
2505
#__precompile__() module SeuratRDS using Pkg using Dates using DelimitedFiles using DataFrames using RCall # ensure that Matrix is installed for R export loadSeur # return features x barcodes data as tuple with data matrix, metadata, colnames, rownames, dataframe representation function loadSeur(rdsPath::String,modality::String,assay::String,metadata::String) R""" rdsPath = $rdsPath; seur = readRDS(rdsPath);"""; # read in annotations # export counts and embedded labels R""" modality = $modality; assay = $assay; metadata = $metadata; modl = get($modality,slot(seur,"assays")); dat = slot(modl,$assay); met = get(metadata,slot(seur,"meta.data")); cnm = colnames(dat); rnm = rownames(dat);""" dat = rcopy(R"as.matrix(dat)") met = rcopy(R"as.matrix(met)") cnm = rcopy(R"as.matrix(cnm)") rnm = rcopy(R"as.matrix(rnm)") df = DataFrame(dat) rename!(df,Symbol.(reduce(vcat,cnm))) insertcols!(df,1,(:gene=>reduce(vcat,rnm))) (dat=dat,met=met,col=cnm,row=rnm,df=df) end # convert to loadSeur output to barcodes x features dataframe and add labels column function bcFeatLabels(seurData::NamedTuple,labels::Vector) df = DataFrame(seurData.dat') rename!(df,Symbol.(reduce(vcat,seurData.row))) insertcols!(df,1,(:barcode=>reduce(vcat,seurData.col))) insertcols!(df,1,(:label=>reduce(vcat,labels))) df end # return barcodes x features data where the metadata::Dict includes extra features like: # :featurename => metadata, where metadata corresponds to get(metadata,slot(seur,"meta.data")) function loadSeur(rdsPath::String, modality::String,assay::String, metadata::Dict) R""" library(Matrix) rdsPath = $rdsPath; seur = readRDS(rdsPath); modality = $modality; assay = $assay; modl = get($modality,slot(seur,"assays")); dat = slot(modl,$assay); cnm = colnames(dat); rnm = rownames(dat);"""; # read in annotations df = rcopy(R"data.frame(as.matrix(dat))") cnm = rcopy(R"as.matrix(cnm)") rnm = rcopy(R"as.matrix(rnm)") insertcols!(df,1,(:gene=>reduce(vcat,rnm))) df = permutedims(df, 1,:barcode) # export counts and embedded labels for k in keys(metadata) seurkey = get(metadata,k,"") R""" met = get($seurkey,slot(seur,"meta.data"));""" met = rcopy(R"as.matrix(met)") insertcols!(df,1,(k=>reduce(vcat,met))) end df end end
SeuratRDS
https://github.com/mkarikom/SeuratRDS.jl.git
[ "MIT" ]
1.0.3
7e775de1aab04ade4be35e4324bea9be36cc4528
code
461
using Test using DelimitedFiles using SeuratRDS dn = joinpath(@__DIR__,"data") testfn = joinpath(dn,"testSeur.rds") checkfn = joinpath(dn,"dataSeur.csv") @testset "SeuratRDS.jl" begin modality = "RNA" assay = "data" metadata = "nCount_RNA" env = initR() # make the env dat = loadSeur(testfn,env,modality,assay,metadata) check,ccols = readdlm(checkfn,header=true) @test check == dat.dat closeR(env) @test !isdir(env) end
SeuratRDS
https://github.com/mkarikom/SeuratRDS.jl.git
[ "MIT" ]
1.0.3
7e775de1aab04ade4be35e4324bea9be36cc4528
docs
486
# SeuratRDS [![Stable](https://img.shields.io/badge/docs-stable-blue.svg)](https://mkarikom.github.io/SeuratRDS.jl/stable) [![Dev](https://img.shields.io/badge/docs-dev-blue.svg)](https://mkarikom.github.io/SeuratRDS.jl/dev) [![Build Status](https://travis-ci.com/mkarikom/SeuratRDS.jl.svg?branch=master)](https://travis-ci.com/mkarikom/SeuratRDS.jl) [![Coverage](https://codecov.io/gh/mkarikom/SeuratRDS.jl/branch/master/graph/badge.svg)](https://codecov.io/gh/mkarikom/SeuratRDS.jl)
SeuratRDS
https://github.com/mkarikom/SeuratRDS.jl.git
[ "MIT" ]
1.0.3
7e775de1aab04ade4be35e4324bea9be36cc4528
docs
107
```@meta CurrentModule = SeuratRDS ``` # SeuratRDS ```@index ``` ```@autodocs Modules = [SeuratRDS] ```
SeuratRDS
https://github.com/mkarikom/SeuratRDS.jl.git
[ "MIT" ]
2.4.0
2340e4e8045e230732b223378c31b573c8598ad3
code
1513
#using Retry #using DelimitedFiles #datadir = joinpath(@__DIR__, "..", "src", "data") #isdir(datadir) || mkdir(datadir) #@info "Downloading Bollerslev and Ghysels data..." #isfile(joinpath(datadir, "bollerslev_ghysels.txt")) || download("http://people.stern.nyu.edu/wgreene/Text/Edition7/TableF20-1.txt", joinpath(datadir, "bollerslev_ghysels.txt")) # @info "Downloading stock data..." # #"DOW" is excluded because it's listed too late # tickers = ["AAPL", "IBM", "XOM", "KO", "MSFT", "INTC", "MRK", "PG", "VZ", "WBA", "V", "JNJ", "PFE", "CSCO", "TRV", "WMT", "MMM", "UTX", "UNH", "NKE", "HD", "BA", "AXP", "MCD", "CAT", "GS", "JPM", "CVX", "DIS"] # alldata = zeros(2786, 29) # for (j, ticker) in enumerate(tickers) # @repeat 4 try # @info "...$ticker" # filename = joinpath(datadir, "$ticker.csv") # isfile(joinpath(datadir, "$ticker.csv")) || download("http://quotes.wsj.com/$ticker/historical-prices/download?num_rows=100000000&range_days=100000000&startDate=03/19/2008&endDate=04/11/2019", filename) # data = parse.(Float64, readdlm(joinpath(datadir, "$ticker.csv"), ',', String, skipstart=1)[:, 5]) # length(data) == 2786 || error("Download failed for $ticker.") # alldata[:, j] .= data # rm(filename) # catch e # @delay_retry if 1==1 end # end # end # alldata = 100 * diff(log.(alldata), dims=1) # open(joinpath(datadir, "dow29.csv"), "w") do io # writedlm(io, alldata, ',') # end
ARCHModels
https://github.com/s-broda/ARCHModels.jl.git
[ "MIT" ]
2.4.0
2340e4e8045e230732b223378c31b573c8598ad3
code
783
push!(LOAD_PATH,"../src/") using Documenter, ARCHModels, DocThemeIndigo indigo = DocThemeIndigo.install(ARCHModels) DocMeta.setdocmeta!(ARCHModels, :DocTestSetup, :(using ARCHModels; using Random; Random.seed!(1)); recursive=true) makedocs(modules=[ARCHModels], sitename="ARCHModels.jl", format = Documenter.HTML(assets=String[indigo]), doctest=true, pages = ["Home" => "index.md", "introduction.md", "Type Hierarchy" => Any[ "univariatetypehierarchy.md", "multivariatetypehierarchy.md" ], "usage.md", "reference.md" ] ) deploydocs(repo="github.com/s-broda/ARCHModels.jl.git")
ARCHModels
https://github.com/s-broda/ARCHModels.jl.git
[ "MIT" ]
2.4.0
2340e4e8045e230732b223378c31b573c8598ad3
code
3828
#Todo: #HAC s.e.s from CovariancesMatrices.jl? #Float16/32 don't seem to work anymore. Problem in Optim? #support missing data? timeseries? #implement lrtest #allow uninititalized constructors for UnivariateVolatilitySpec, MeanSpec and StandardizedDistribution? If so, then be consistent with how they are defined # (change for meanspec and dist ), document, and test. Also, NaN is prob. safer than undef. #logconst needs to return the correct type """ The ARCHModels package for Julia. For documentation, see https://s-broda.github.io/ARCHModels.jl/dev. """ module ARCHModels using Reexport @reexport using StatsBase using StatsFuns: normcdf, normccdf, normlogpdf, norminvcdf, log2π, logtwo, RFunctions.tdistinvcdf, RFunctions.gammainvcdf using GLM: modelmatrix, response, LinearModel using SpecialFunctions: beta, gamma, digamma #, lgamma using MuladdMacro using PrecompileTools # work around https://github.com/JuliaMath/SpecialFunctions.jl/issues/186 # until https://github.com/JuliaDiff/ForwardDiff.jl/pull/419/ is merged # remove test in runtests.jl as well when this gets fixed using Base.Math: libm using ForwardDiff: Dual, value, partials @inline lgamma(x::Float64) = ccall((:lgamma, libm), Float64, (Float64,), x) @inline lgamma(x::Float32) = ccall((:lgammaf, libm), Float32, (Float32,), x) @inline lgamma(d::Dual{T}) where T = Dual{T}(lgamma(value(d)), digamma(value(d)) * partials(d)) using Optim using ForwardDiff using Distributions using HypothesisTests using Roots using LinearAlgebra using DataStructures: CircularBuffer using DelimitedFiles using Statistics: cov import Distributions: quantile import Base: show, showerror, eltype import Statistics: mean import Random: rand, AbstractRNG, GLOBAL_RNG import HypothesisTests: HypothesisTest, testname, population_param_of_interest, default_tail, show_params, pvalue import StatsBase: StatisticalModel, stderror, loglikelihood, nobs, fit, fit!, confint, aic, bic, aicc, dof, coef, coefnames, coeftable, CoefTable, informationmatrix, islinear, score, vcov, residuals, predict import StatsModels: TableRegressionModel export ARCHModel, UnivariateARCHModel, UnivariateVolatilitySpec, StandardizedDistribution, Standardized, MeanSpec, simulate, simulate!, selectmodel, StdNormal, StdT, StdGED, StdSkewT, Intercept, Regression, NoIntercept, ARMA, AR, MA, BG96, volatilities, mean, quantile, VaRs, pvalue, means, VolatilitySpec, MultivariateVolatilitySpec, MultivariateStandardizedDistribution, MultivariateARCHModel, MultivariateStdNormal, EGARCH, ARCH, GARCH, TGARCH, ARCHLMTest, DQTest, DOW29, DCC, CCC, covariances, correlations include("utils.jl") include("general.jl") include("univariatearchmodel.jl") include("meanspecs.jl") include("univariatestandardizeddistributions.jl") include("EGARCH.jl") include("TGARCH.jl") include("tests.jl") include("multivariatearchmodel.jl") include("multivariatestandardizeddistributions.jl") include("DCC.jl") @static if VERSION >= v"1.9.0-alpha1" @compile_workload begin io = IOBuffer() se = stderr redirect_stderr() # autocor(BG96.^2, 1:4, demean=true) # m = selectmodel(TGARCH, BG96) # show(io, m) m = fit(GARCH{1, 1}, BG96) show(io, m) m = fit(EGARCH{1, 1, 1}, BG96) show(io, m) # m = fit(GARCH{1, 1}, BG96; dist=StdSkewT) # show(io, m) # m = fit(GARCH{1, 1}, BG96; dist=StdGED) #show(io, m) ARCHLMTest(m, 4) # vars = VaRs(m, 0.05) # predict(m, :volatility; level=0.01) # t = DQTest([1., 2.], [.1, .1], .01) # show(io, t) # m = selectmodel(EGARCH, BG96) # show(io, m) # m = selectmodel(ARMA, BG96) # show(io, m) # m = fit(DCC, DOW29) # show(io, m) # simulate(GARCH{1, 1}([1., .9, .05]), 1000; warmup=500, meanspec=Intercept(5.), dist=StdT(3.)) redirect_stderr(se) end # precompile block end # if end # module
ARCHModels
https://github.com/s-broda/ARCHModels.jl.git
[ "MIT" ]
2.4.0
2340e4e8045e230732b223378c31b573c8598ad3
code
18802
""" DCC{p, q, VS<:UnivariateVolatilitySpec, T<:AbstractFloat, d} <: MultivariateVolatilitySpec{T, d} """ struct DCC{p, q, VS<:UnivariateVolatilitySpec, T<:AbstractFloat, d} <: MultivariateVolatilitySpec{T, d} R::Matrix{T} coefs::Vector{T} univariatespecs::Vector{VS} method::Symbol function DCC{p, q, VS, T, d}(R::Array{T}, coefs::Vector{T}, univariatespecs:: Vector{VS}, method::Symbol) where {p, q, T, VS<:UnivariateVolatilitySpec, d} length(coefs) == nparams(DCC{p, q}) || throw(NumParamError(nparams(DCC{p, q}), length(coefs))) @assert d == length(univariatespecs) @assert method==:twostep || method==:largescale new{p, q, VS, T, d}(R, coefs, univariatespecs, method) end end """ CCC{VS<:UnivariateVolatilitySpec, T<:AbstractFloat, d} <: MultivariateVolatilitySpec{T, d} --- DCC(Qbar, coefs, univariatespecs; method=:largescale) Construct a CCC specification with the given parameters. `coefs` must be passed as a length-zero Vector of the same element type as Qbar. """ const CCC = DCC{0, 0} """ DCC{p, q}(Qbar, coefs, univariatespecs; method=:largescale) Construct a DCC(p, q) specification with the given parameters. """ DCC{p, q}(R::Matrix{T}, coefs::Vector{T}, univariatespecs::Vector{VS}; method::Symbol=:largescale) where {p, q, T, VS<:UnivariateVolatilitySpec{T}} = DCC{p, q, VS, T, length(univariatespecs)}(R, coefs, univariatespecs, method) nparams(::Type{DCC{p, q}}) where {p, q} = p+q nparams(::Type{DCC{p, q, VS, T, d}}) where {p, q, VS, T, d}= p + q + d * nparams(VS) # strange dispatch behavior. to me these methods look the same, but they aren't. # this matches ARCHModels.presample(DCC{1,1,TGARCH{0,1,1,Float64}}) presample(::Type{DCC{p, q, VS}}) where {p, q, VS} = max(p, q, presample(VS)) # this matches ARCHModels.presample(DCC{1,1,TGARCH{0,1,1,Float64},Float64,2}) presample(::Type{DCC{p, q, VS, T, d}}) where {p, q, VS, T, d} = max(p, q, presample(VS)) fit(::Type{<:DCC}, data::Matrix{T}; meanspec=Intercept{T}, method=:largescale, algorithm=BFGS(), autodiff=:forward, kwargs...) where {T} = fit(DCC{1, 1}, data; meanspec=meanspec, method=method, algorithm=algorithm, autodiff=autodiff, kwargs...) fit(DCCspec::Type{<:DCC{p, q}}, data::Matrix{T}; meanspec=Intercept{T}, method=:largescale, algorithm=BFGS(), autodiff=:forward, kwargs...) where {p, q, T} = fit(DCC{p, q, GARCH{1, 1}}, data; meanspec=meanspec, method=method, algorithm=algorithm, autodiff=autodiff, kwargs...) """ fit(DCCspec::Type{<:DCC{p, q, VS<:UnivariateVolatilitySpec}}, data::Matrix; method=:largescale, dist=MultivariateStdNormal, meanspec=Intercept, algorithm=BFGS(), autodiff=:forward, kwargs...) Fit the DCC model specified by `DCCspec` to `data`. If `p` and `q` or `VS` are unspecified, then these default to 1, 1, and `GARCH{1, 1}`. # Keyword arguments: - `method`: one of `:largescale` or `twostep` - `dist`: the error distribution. - `meanspec`: the mean specification, as a type. - `algorithm, autodiff, kwargs, ...`: passed on to the optimizer. # Example: DCC{1, 1, GARCH{1, 1}} model: ```jldoctest julia> fit(DCC, DOW29) 29-dimensional DCC{1, 1} - GARCH{1, 1} - Intercept{Float64} specification, T=2785. DCC parameters, estimated by largescale procedure: ──────────────────── β₁ α₁ ──────────────────── 0.88762 0.0568001 ──────────────────── Calculating standard errors is expensive. To show them, use `show(IOContext(stdout, :se=>true), <model>)` ``` """ function fit(DCCspec::Type{<:DCC{p, q, VS}}, data::Matrix{T}; meanspec=Intercept{T}, method=:largescale, algorithm=BFGS(), autodiff=:forward, dist::Type{<:MultivariateStandardizedDistribution}=MultivariateStdNormal{T}) where {p, q, VS<: UnivariateVolatilitySpec, T} n, dim = size(data) resids = similar(data) if n<12 && method == :largescale error("largescale method requires n>11.") end m = fit(VS, data[:, 1], meanspec=meanspec) resids[:, 1] = residuals(m) univariatespecs = Vector{typeof(m)}(undef, dim) univariatespecs[1] = m Threads.@threads :static for i = 2:dim curmod = fit(VS, data[:, i], meanspec=meanspec) univariatespecs[i] = curmod resids[:, i] = residuals(curmod) end method == :largescale ? Σ = analytical_shrinkage(resids) : Σ = cov(resids) R = to_corr(Σ) x0 = zeros(T, p+q) if p+q>0 x0[1:p] .= 0.9/p x0[p+1:end] .= 0.05/q if method == :twostep obj = LL2step elseif method==:largescale obj = LL2step_pairs else error("No method :$method.") end f = x -> obj(DCCspec, x, R, resids) x = optimize(x->-sum(f(x)), x0, algorithm, autodiff=autodiff).minimizer else # CCC x = x0 end return MultivariateARCHModel(DCC{p, q}(R, x, getproperty.(univariatespecs, :spec); method=method), data; dist=MultivariateStdNormal{T, dim}(), meanspec=getproperty.(univariatespecs, :meanspec), fitted=true) end #LC(Θ_hat, ϕ) in Engle (2002) @inline function LL2step!(Rt::Array{Array{T, 2}, 1}, DCCspec::Type{<:DCC{p, q}}, coef::Array{T}, R, resids::Array{T2}) where {T, T2, p, q} n, dims = size(resids) LL = zeros(T, n) all(0 .< coef .< 1) || (fill!(LL, T(-Inf)); return LL) abs(sum(coef))>1 && (fill!(LL, T(-Inf)); return LL) f = 1 - sum(coef) e = @view resids[1, :] R = Symmetric(R) Rt[1:max(p,q)] .= [R for _ in 1:max(p,q)] RD5 = Diagonal(zeros(T, dims)) C = cholesky(Rt[1]).L u = inv(C) * e for t=1:n if t > max(p, q) Rt[t] .= R * f for i = 1:p Rt[t] .+= coef[i] * Rt[t-i] end for i = 1:q Rt[t] .+= coef[p+i] * resids[t-i, :]*resids[t-i, :]' end RD5 .= inv(sqrt(Diagonal(Rt[t]))) Rt[t] .= Symmetric(RD5 * Rt[t] * RD5) C .= cholesky(Rt[t]).L end e = @view resids[t, :] u .= inv(C) * e L = (dot(e, e) - dot(u, u))/2-logdet(C) LL[t] = L end LL end function LL2step(DCCspec::Type{<:DCC{p, q}}, coef::Array{T}, R, resids::Array{T2}) where {T, T2, p, q} n, dims = size(resids) Rt = [zeros(T, dims, dims) for _ in 1:n] LL2step!(Rt, DCCspec, coef, R, resids) end #same as LL2step, except for init type function LL2step2(DCCspec::Type{<:DCC{p, q}}, coef::Array{T2}, R, resids::Array{T}) where {T, T2, p, q} n, dims = size(resids) LL = zeros(T, n) all(0 .< coef .< 1) || (fill!(LL, T(-Inf)); return LL) abs(sum(coef))>1 && (fill!(LL, T(-Inf)); return LL) f = 1 - sum(coef) e = @view resids[1, :] Rt = [zeros(T, dims, dims) for _ in 1:n] R = Symmetric(R) Rt[1:max(p,q)] .= [R for _ in 1:max(p,q)] RD5 = Diagonal(zeros(T, dims)) C = cholesky(Rt[1]).L u = inv(C) * e for t = 1:n if t > max(p, q) Rt[t] .= R * f for i = 1:p Rt[t] .+= coef[i] * Rt[t-i] end for i = 1:q Rt[t] .+= coef[p+i] * resids[t-i, :]*resids[t-i, :]' end RD5 .= inv(sqrt(Diagonal(Rt[t]))) Rt[t] .= Symmetric(RD5 * Rt[t] * RD5) C .= cholesky(Rt[t]).L end e = @view resids[t, :] u .= inv(C) * e L = (dot(e, e) - dot(u, u))/2-logdet(C) LL[t] = L end LL end #doall toggles whether to return all individual likelihood contributions function LL2step_pairs(DCCspec::Type{<:DCC{p, q}}, coef::Array{T}, R, resids::Array{T2}, doall=false) where {T, T2, p, q} n, dims = size(resids) len = doall ? n : 1 LL = zeros(T, len, dims) Threads.@threads :static for k = 1:dims-1 thell = ll(DCCspec, coef, R[k, k+1], resids[:, k:k+1], doall) if doall LL[:, k] .= thell else LL[1, k:k] .= thell end end sum(LL, dims=2) end @inline function ll(DCCspec::Type{<:DCC{p, q}}, coef::Array{T}, rho, resids, doall=false) where {T, p, q} all(0 .< coef .< 1) || return T(-Inf) abs(sum(coef)) < 1 || return T(-Inf) n, dims = size(resids) f = 1 - sum(coef) len = doall ? n : 1 LL = zeros(T, len) rt = zeros(T, n) # should switch this to circbuff for speed s1 = T(1) s2 = T(1) fill!(rt, rho) @inbounds for t=1:n if t > max(p, q) s1 = T(1) s2 = T(1) rt[t] = rho * f for i = 1:q s1 += coef[p+i] * (resids[t-i, 1]^2 - 1) s2 += coef[p+i] * (resids[t-i, 2]^2 - 1) rt[t] += coef[p+i] * resids[t-i, 1] * resids[t-i, 2] end for i = 1:p rt[t] += coef[i] * rt[t-i] end rt[t] = rt[t] / sqrt(s1 * s2) end e1 = resids[t, 1] e2 = resids[t, 2] r2 = rt[t]^2 d = 1 - r2 L = (((e1*e1 + e2*e2) * r2 - 2 * rt[t] *e1 * e2) / d + log(d^2)/2) / 2 if doall LL[t] = -L else LL[1] -= L end end LL end function stderror(am::MultivariateARCHModel{T, d, MVS}) where {T, d, p, q, VS, MVS<:DCC{p, q, VS}} n, dim = size(am.data) r = p + q resids = similar(am.data) nunivariateparams = nparams(VS) + nparams(typeof(am.meanspec[1])) np = r + dim * nunivariateparams coefs = coef(am) Htt = zeros(np - r, np - r) dt = zeros(n, np - r) stderrors = zeros(np) Threads.@threads for i = 1:dim m = UnivariateARCHModel(am.spec.univariatespecs[i], am.data[:, i]; meanspec=am.meanspec[i], fitted=true) resids[:, i] = residuals(m) w=1+(i-1)*nunivariateparams:1+i*nunivariateparams-1 Htt[w, w] .= -informationmatrix(m, expected=false)/nobs(m) # is the /nobs correct here? dt[:, w] = scores(m) stderrors[r .+ w] = stderror(m) end if p + q > 0 if am.spec.method == :twostep f = x -> LL2step(MVS, x, am.spec.R, resids) Hpp = ForwardDiff.hessian(x->sum(f(x)), coefs[1:r])/n dp = ForwardDiff.jacobian(f, coefs[1:r]) # g = x -> sum(LL2step_full(x, R, data, p, q)) # Hpt = FiniteDiff.finite_difference_hessian(g, coefs)[1:2, 3:end]/n # use finite differences instead, because we don't need the whole # Hessian, and I couldn't figure out how to do this with ForwardDiff g = (x, y) -> sum(LL2step_full(MVS, VS, am.meanspec, x, y, am.spec.R, am.data)) dg = x -> ForwardDiff.gradient(y->g(x, y), coefs[1+r:end])/n h = 1e-7 Hpt = zeros(p+q, dim * nunivariateparams) for j=1:p+q dg0 = dg(coefs[1:r]) xp = copy(coefs[1:r]); xp[j] += h ddg = (dg(xp)-dg0)/h Hpt[j, :] = ddg end A = dp-(Hpt*inv(Htt)*dt')' C = inv(Hpp)*A'*A*inv(Hpp)/n^2 stderrors[1:r] = sqrt.(diag(C)) elseif am.spec.method==:largescale g = x -> LL2step_pairs(MVS, x, am.spec.R, resids, true) sc = ForwardDiff.jacobian(g, coefs[1:r]) I = sc'*sc/n/dim h = x-> LL2step_pairs_full(MVS, VS, am.meanspec, x, am.spec.R, am.data) H = ForwardDiff.hessian(x->sum(h(x)), coefs)/n/dim #J = H[1:r, 1:r] - H[1:r, r+1:end] * inv(H[1+r:end, 1+r:end]) * H[1:r, 1+r:end]' #std = sqrt.(diag(inv(J)*I*inv(J))/n) # from the 2014 version of the paper as = hcat(dt, sc) # all scores Sig = as'*as/n/dim Jnt = hcat(inv(H[1:r, 1:r])*H[1:r, 1+r:end]*inv(Htt), -inv(H[1:r, 1:r])) stderrors[1:r] .= sqrt.(diag(Jnt*Sig*Jnt'/n)) # from the 2018 version end end return stderrors end #LC(Θ, ϕ) in Engle (2002) function LL2step_full(DCCspec::Type{<:DCC{p, q}}, VS, meanspec, dcccoef::Array{T}, garchcoef::Array{T2}, R, data) where {T, T2, p, q} n, dims = size(data) resids = Array{T2}(undef, size(data)) nunivariateparams = nparams(VS) + nparams(typeof(meanspec[1])) for i = 1:dims params = garchcoef[1+(i-1)*nunivariateparams:1+i*nunivariateparams-1] ht = T2[] lht = T2[] zt = T2[] at = T2[] loglik!(ht, lht, zt, at, VS, StdNormal{Float64}, meanspec[i], data[:, i], params) resids[:, i] = zt end LL2step2(DCCspec, dcccoef, R, resids) end #LC(Θ, ϕ) in Engle (2002). not actually the full log-likelihood #this method only needed for Hpt when using ForwardDiff # function LL2step_full(coef::Array{T}, R, data, p, q) where {T} # n, dims = size(data) # resids = Array{T}(undef, size(data)) # for i = 1:dims # params = coef[3+(i-1)*nparams(GARCH{1, 1}):3+i*nparams(GARCH{1, 1})-1] # ht = T[] # lht = T[] # zt = T[] # at = T[] # loglik!(ht, lht, zt, at, GARCH{1, 1, Float64}, StdNormal{Float64}, NoIntercept(), data[:, i], params) # resids[:, i] = zt # end # LL2step(coef[1:2], R, resids, p, q) # end function LL2step_pairs_full(DCCspec::Type{<:DCC{p, q}}, VS::Type{<:UnivariateVolatilitySpec}, meanspec, coef::Array{T}, R, data) where {T, p, q} dcccoef = coef[1:p+q] garchcoef = coef[p+q+1:end] n, dims = size(data) resids = Array{T}(undef, size(data)) nunivariateparams = nparams(VS) + nparams(typeof(meanspec[1])) for i = 1:dims params = garchcoef[1+(i-1)*nunivariateparams:1+i*nunivariateparams-1] ht = T[] lht = T[] zt = T[] at = T[] loglik!(ht, lht, zt, at, VS, StdNormal{Float64}, meanspec[i], data[:, i], params) resids[:, i] = zt end LL2step_pairs(DCCspec::Type{<:DCC{p, q}}, dcccoef, R, resids) end function coefnames(::Type{<:DCC{p, q}}) where {p, q} names = Array{String, 1}(undef, p + q) names[1:p] .= (i -> "β"*subscript(i)).([1:p...]) names[p+1:p+q] .= (i -> "α"*subscript(i)).([1:q...]) return names end function coef(spec::DCC{p, q, VS, T, d}) where {p, q, VS, T, d} vcat(spec.coefs, [spec.univariatespecs[i].coefs for i in 1:d]...) end function coef(am::MultivariateARCHModel{T, d, MVS}) where {T, d, MVS<:DCC} vcat(am.spec.coefs, [vcat(am.spec.univariatespecs[i].coefs, am.meanspec[i].coefs) for i in 1:d]...) end function coefnames(am::MultivariateARCHModel{T, d, MVS}) where {T, d, p, q, VS, MVS<:DCC{p, q, VS}} nunivariateparams = nparams(VS) + nparams(typeof(am.meanspec[1])) names = Array{String, 1}(undef, p + q + d * nunivariateparams) names[1:p+q] .= coefnames(MVS) for i = 1:d names[p + q + 1 + (i-1) * nunivariateparams : p + q + i * nunivariateparams] = vcat(coefnames(VS) .* subscript(i), coefnames(am.meanspec[i]) .* subscript(i)) end return names end modname(::Type{DCC{p, q, VS, T, d}}) where {p, q, VS, T, d} = "DCC{$p, $q, $(modname(VS))}" function show(io::IO, am::MultivariateARCHModel{T, d, MVS}) where {T, d, p, q, VS, MVS<:DCC{p, q, VS}} r = p + q cc = coef(am)[1:r] println(io, "\n", "$d-dimensional DCC{$p, $q} - $(modname(VS)) - $(modname(typeof(am.meanspec[1]))) specification, T=", size(am.data)[1], ".\n") if isfitted(am) && (:se=>true) in io se = stderror(am)[1:r] z = cc ./ se if p + q >0 println(io, "DCC parameters, estimated by $(am.spec.method) procedure:", "\n", CoefTable(hcat(cc, se, z, 2.0 * normccdf.(abs.(z))), ["Estimate", "Std.Error", "z value", "Pr(>|z|)"], coefnames(MVS), 4 ) ) end else if p + q > 0 println(io, "DCC parameters", isfitted(am) ? ", estimated by $(am.spec.method) procedure:" : "", "\n", CoefTable(cc, coefnames(MVS), [""]) ) if isfitted(am) println(io, "\n","""Calculating standard errors is expensive. To show them, use `show(IOContext(stdout, :se=>true), <model>)`""") end end end end """ correlations(am::MultivariateARCHModel) Return the estimated conditional correlation matrices. """ function correlations(am::MultivariateARCHModel{T, d, MVS}) where {T, d, MVS<:DCC} resids = residuals(am; decorrelated=false) n, dims = size(resids) Rt = [zeros(T, dims, dims) for _ in 1:n] LL2step!(Rt, MVS, am.spec.coefs, am.spec.R, resids) return Rt end """ covariances(am::MultivariateARCHModel) Return the estimated conditional covariance matrices. """ function covariances(am::MultivariateARCHModel{T, d, MVS}) where {T, d, MVS<:DCC} n, dims = size(am.data) Rt = correlations(am) for i = 1:d v = volatilities(UnivariateARCHModel(am.spec.univariatespecs[i], am.data[:, i]; meanspec=am.meanspec[i], fitted=true)) @inbounds for t = 1:n # this is ugly, but I couldn't figure out how to do this w/ broadcasting Rt[t][i, :] *= v[t] Rt[t][:, i] *= v[t] end end return Rt end """ residuals(am::MultivariateARCHModel; standardized = true, decorrelated = true) Return the residuals. """ function residuals(am::MultivariateARCHModel{T, d, MVS}; standardized = true, decorrelated = true) where {T, d, MVS<:DCC} n, dims = size(am.data) resids = similar(am.data) Threads.@threads for i = 1:dims m = UnivariateARCHModel(am.spec.univariatespecs[i], am.data[:, i]; meanspec=am.meanspec[i], fitted=true) resids[:, i] = residuals(m; standardized=standardized) end if decorrelated Rt = standardized ? correlations(am) : covariances(am) @inbounds for t = 1:n resids[t, :] = inv(cholesky(Rt[t]; check=false).L) * resids[t, :] end end return resids end #this assumes Ht, Rt, zt, and at are circularbuffers or vectors of arrays Base.@propagate_inbounds @inline function update!(Ht, Rt, H, R, zt, at, MVS::Type{DCC{p, q, VS, T, d}}, coefs) where {p, q, VS, T, d} nvolaparams = nparams(VS) h5s = zeros(T, d) for i = 1:d ht = getindex.(Ht, i, i) lht = log.(ht) update!(ht, lht, getindex.(zt, i), getindex.(at, i), VS, coefs[p + q + 1 + (i-1) * nvolaparams : p + q + i * nvolaparams]) h5s[i] = sqrt(ht[end]) end Rtemp = R * (1-sum(coefs[1:p+q])) for i = 1:p Rtemp .+= coefs[i] * Rt[end-i+1] end for i = 1:q Rtemp .+= coefs[p+i] * zt[end-i+1] * zt[end-i+1]' end push!(Rt, to_corr(Rtemp)) H5 = diagm(0 => h5s) push!(Ht, H5 * Rt[end] * H5) end function uncond(spec::DCC{p, q, VS, T, d}) where {p, q, VS, T, d} h = uncond.(typeof.(spec.univariatespecs), getproperty.(spec.univariatespecs, :coefs)) D = diagm(0 => sqrt.(h)) return D * spec.R * D end
ARCHModels
https://github.com/s-broda/ARCHModels.jl.git
[ "MIT" ]
2.4.0
2340e4e8045e230732b223378c31b573c8598ad3
code
4219
""" EGARCH{o, p, q, T<:AbstractFloat} <: UnivariateVolatilitySpec{T} """ struct EGARCH{o, p, q, T<:AbstractFloat} <: UnivariateVolatilitySpec{T} coefs::Vector{T} function EGARCH{o, p, q, T}(coefs::Vector{T}) where {o, p, q, T} length(coefs) == nparams(EGARCH{o, p, q}) || throw(NumParamError(nparams(EGARCH{o, p, q}), length(coefs))) new{o, p, q, T}(coefs) end end """ EGARCH{o, p, q}(coefs) -> UnivariateVolatilitySpec Construct an EGARCH specification with the given parameters. # Example: ```jldoctest julia> EGARCH{1, 1, 1}([-0.1, .1, .9, .04]) EGARCH{1, 1, 1} specification. ───────────────────────────────── ω γ₁ β₁ α₁ ───────────────────────────────── Parameters: -0.1 0.1 0.9 0.04 ───────────────────────────────── ``` """ EGARCH{o, p, q}(coefs::Vector{T}) where {o, p, q, T} = EGARCH{o, p, q, T}(coefs) @inline nparams(::Type{<:EGARCH{o, p, q}}) where {o, p, q} = o+p+q+1 @inline nparams(::Type{<:EGARCH{o, p, q}}, subset) where {o, p, q} = isempty(subset) ? 1 : sum(subset) + 1 @inline presample(::Type{<:EGARCH{o, p, q}}) where {o, p, q} = max(o, p, q) Base.@propagate_inbounds @inline function update!( ht, lht, zt, at, ::Type{<:EGARCH{o, p ,q}}, garchcoefs, current_horizon=1 ) where {o, p, q} mlht = garchcoefs[1] @muladd begin for i = 1:o mlht = mlht + garchcoefs[i+1]*zt[end-i+1] end for i = 1:p mlht = mlht + garchcoefs[i+1+o]*lht[end-i+1] end for i = 1:q mlht = mlht + garchcoefs[i+1+o+p]*(abs(zt[end-i+1]) - sqrt2invpi) end end push!(lht, mlht) push!(ht, exp(mlht)) return nothing end @inline function uncond(::Type{<:EGARCH{o, p, q}}, coefs::Vector{T}) where {o, p, q, T} eg = one(T) for i=1:max(o, q) γ = (i<=o ? coefs[1+i] : zero(T)) α = (i<=q ? coefs[o+p+1+i] : zero(T)) eg *= exp(-α*sqrt2invpi) * (exp(.5*(γ+α)^2)*normcdf(γ+α) + exp(.5*(γ-α)^2)*normcdf(α-γ)) end h0 = (exp(coefs[1])*eg)^(1/(1-sum(coefs[o+2:o+p+1]))) end function startingvals(spec::Type{<:EGARCH{o, p, q}}, data::Array{T}) where {o, p, q, T} x0 = zeros(T, o+p+q+1) x0[1]=1 x0[2:o+1] .= 0 x0[o+2:o+p+1] .= 0.9/p x0[o+p+2:end] .= 0.05/q x0[1] = var(data)/uncond(spec, x0) return x0 end function startingvals(TT::Type{<:EGARCH}, data::Array{T} , subset::Tuple) where {T} o, p, q = subsettuple(TT, subsetmask(TT, subset)) # defend against (p, q) instead of (o, p, q) x0 = zeros(T, o+p+q+1) x0[2:o+1] .= 0.04/o x0[o+2:o+p+1] .= 0.9/p x0[o+p+2:end] .= o>0 ? 0.01/q : 0.05/q x0[1] = var(data)*(one(T)-sum(x0[2:o+1])/2-sum(x0[o+2:end])) mask = subsetmask(TT, subset) x0long = zeros(T, length(mask)) x0long[mask] .= x0 return x0long end function constraints(::Type{<:EGARCH{o, p,q}}, ::Type{T}) where {o, p, q, T} lower = zeros(T, o+p+q+1) upper = zeros(T, o+p+q+1) lower .= T(-Inf) upper .= T(Inf) lower[1] = T(-Inf) lower[o+2:o+p+1] .= zero(T) upper[o+2:o+p+1] .= one(T) return lower, upper end function coefnames(::Type{<:EGARCH{o, p, q}}) where {o, p, q} names = Array{String, 1}(undef, o+p+q+1) names[1] = "ω" names[2:o+1] .= (i -> "γ"*subscript(i)).([1:o...]) names[o+2:o+p+1] .= (i -> "β"*subscript(i)).([1:p...]) names[o+p+2:o+p+q+1] .= (i -> "α"*subscript(i)).([1:q...]) return names end @inline function subsetmask(VS_large::Union{Type{EGARCH{o, p, q}}, Type{EGARCH{o, p, q, T}}}, subs) where {o, p, q, T} ind = falses(nparams(VS_large)) subset = zeros(Int, 3) subset[4-length(subs):end] .= subs ind[1] = true os = subset[1] ps = subset[2] qs = subset[3] @assert os <= o @assert ps <= p @assert qs <= q ind[2:2+os-1] .= true ind[2+o:2+o+ps-1] .= true ind[2+o+p:2+o+p+qs-1] .= true ind end @inline function subsettuple(VS_large::Union{Type{EGARCH{o, p, q}}, Type{EGARCH{o, p, q, T}}}, subsetmask) where {o, p, q, T} os = 0 ps = 0 qs = 0 @inbounds @simd ivdep for i = 2 : o + 1 os += subsetmask[i] end @inbounds @simd ivdep for i = o + 2 : o + p + 1 ps += subsetmask[i] end @inbounds @simd ivdep for i = o + p + 2 : o + p + q + 1 qs += subsetmask[i] end (os, ps, qs) end
ARCHModels
https://github.com/s-broda/ARCHModels.jl.git
[ "MIT" ]
2.4.0
2340e4e8045e230732b223378c31b573c8598ad3
code
5013
""" TGARCH{o, p, q, T<:AbstractFloat} <: UnivariateVolatilitySpec{T} """ struct TGARCH{o, p, q, T<:AbstractFloat} <: UnivariateVolatilitySpec{T} coefs::Vector{T} function TGARCH{o, p, q, T}(coefs::Vector{T}) where {o, p, q, T} length(coefs) == nparams(TGARCH{o, p, q}) || throw(NumParamError(nparams(TGARCH{o, p, q}), length(coefs))) new{o, p, q, T}(coefs) end end """ TGARCH{o, p, q}(coefs) -> UnivariateVolatilitySpec Construct a TGARCH specification with the given parameters. # Example: ```jldoctest julia> TGARCH{1, 1, 1}([1., .04, .9, .01]) TGARCH{1, 1, 1} specification. ───────────────────────────────── ω γ₁ β₁ α₁ ───────────────────────────────── Parameters: 1.0 0.04 0.9 0.01 ───────────────────────────────── ``` """ TGARCH{o, p, q}(coefs::Vector{T}) where {o, p, q, T} = TGARCH{o, p, q, T}(coefs) """ GARCH{p, q, T<:AbstractFloat} <: UnivariateVolatilitySpec{T} --- GARCH{p, q}(coefs) -> UnivariateVolatilitySpec Construct a GARCH specification with the given parameters. # Example: ```jldoctest julia> GARCH{2, 1}([1., .3, .4, .05 ]) GARCH{2, 1} specification. ──────────────────────────────── ω β₁ β₂ α₁ ──────────────────────────────── Parameters: 1.0 0.3 0.4 0.05 ──────────────────────────────── ``` """ const GARCH = TGARCH{0} """ ARCH{q, T<:AbstractFloat} <: UnivariateVolatilitySpec{T} --- ARCH{q}(coefs) -> UnivariateVolatilitySpec Construct an ARCH specification with the given parameters. # Example: ```jldoctest julia> ARCH{2}([1., .3, .4]) TGARCH{0, 0, 2} specification. ────────────────────────── ω α₁ α₂ ────────────────────────── Parameters: 1.0 0.3 0.4 ────────────────────────── ``` """ const ARCH = GARCH{0} @inline nparams(::Type{<:TGARCH{o, p, q}}) where {o, p, q} = o+p+q+1 @inline nparams(::Type{<:TGARCH{o, p, q}}, subset) where {o, p, q} = isempty(subset) ? 1 : sum(subset) + 1 @inline presample(::Type{<:TGARCH{o, p, q}}) where {o, p, q} = max(o, p, q) Base.@propagate_inbounds @inline function update!( ht, lht, zt, at, ::Type{<:TGARCH{o, p, q}}, garchcoefs, current_horizon=1 ) where {o, p, q} mht = garchcoefs[1] @muladd begin for i = 1:o mht = mht + garchcoefs[i+1]*min(at[end-i+1], 0)^2 end for i = 1:p mht = mht + garchcoefs[i+1+o]*ht[end-i+1] end for i = 1:q if i >= current_horizon mht = mht + garchcoefs[i+1+o+p]*(at[end-i+1])^2 else mht = mht + garchcoefs[i+1+o+p]*ht[end-i+1] end end end push!(ht, mht) push!(lht, (mht > 0) ? log(mht) : -mht) return nothing end @inline function uncond(::Type{<:TGARCH{o, p, q}}, coefs::Vector{T}) where {o, p, q, T} den=one(T) for i = 1:o den -= coefs[i+1]/2 end for i = o+1:o+p+q den -= coefs[i+1] end h0 = coefs[1]/den end function startingvals(::Type{<:TGARCH{o,p,q}}, data::Array{T}) where {o, p, q, T} x0 = zeros(T, o+p+q+1) x0[2:o+1] .= 0.04/o x0[o+2:o+p+1] .= 0.9/p x0[o+p+2:end] .= o>0 ? 0.01/q : 0.05/q x0[1] = var(data)*(one(T)-sum(x0[2:o+1])/2-sum(x0[o+2:end])) return x0 end function startingvals(TT::Type{<:TGARCH}, data::Array{T} , subset::Tuple) where {T} o, p, q = subsettuple(TT, subsetmask(TT, subset)) # defend against (p, q) instead of (o, p, q) x0 = zeros(T, o+p+q+1) x0[2:o+1] .= 0.04/o x0[o+2:o+p+1] .= 0.9/p x0[o+p+2:end] .= o>0 ? 0.01/q : 0.05/q x0[1] = var(data)*(one(T)-sum(x0[2:o+1])/2-sum(x0[o+2:end])) mask = subsetmask(TT, subset) x0long = zeros(T, length(mask)) x0long[mask] .= x0 return x0long end function constraints(::Type{<:TGARCH{o,p,q}}, ::Type{T}) where {o,p, q, T} lower = zeros(T, o+p+q+1) upper = ones(T, o+p+q+1) upper[2:o+1] .= ones(T, o)/2 upper[1] = T(Inf) return lower, upper end function coefnames(::Type{<:TGARCH{o,p,q}}) where {o,p, q} names = Array{String, 1}(undef, o+p+q+1) names[1] = "ω" names[2:o+1] .= (i -> "γ"*subscript(i)).([1:o...]) names[2+o:o+p+1] .= (i -> "β"*subscript(i)).([1:p...]) names[o+p+2:o+p+q+1] .= (i -> "α"*subscript(i)).([1:q...]) return names end @inline function subsetmask(VS_large::Union{Type{TGARCH{o, p, q}}, Type{TGARCH{o, p, q, T}}}, subs) where {o, p, q, T} ind = falses(nparams(VS_large)) subset = zeros(Int, 3) subset[4-length(subs):end] .= subs ind[1] = true os = subset[1] ps = subset[2] qs = subset[3] @assert os <= o @assert ps <= p @assert qs <= q ind[2:2+os-1] .= true ind[2+o:2+o+ps-1] .= true ind[2+o+p:2+o+p+qs-1] .= true ind end @inline function subsettuple(VS_large::Union{Type{TGARCH{o, p, q}}, Type{TGARCH{o, p, q, T}}}, subsetmask) where {o, p, q, T} os = 0 ps = 0 qs = 0 @inbounds @simd ivdep for i = 2 : o + 1 os += subsetmask[i] end @inbounds @simd ivdep for i = o + 2 : o + p + 1 ps += subsetmask[i] end @inbounds @simd ivdep for i = o + p + 2 : o + p + q + 1 qs += subsetmask[i] end (os, ps, qs) end
ARCHModels
https://github.com/s-broda/ARCHModels.jl.git
[ "MIT" ]
2.4.0
2340e4e8045e230732b223378c31b573c8598ad3
code
3510
""" ARCHModel <: StatisticalModel """ abstract type ARCHModel <: StatisticalModel end # this makes predict.(am, :variance, 1:3) work Base.Broadcast.broadcastable(am::ARCHModel) = Ref(am) """ VolatilitySpec{T} Abstract supertype of UnivariateVolatilitySpec{T} and MultivariateVolatilitySpec{T} . """ abstract type VolatilitySpec{T} end """ MeanSpec{T} Abstract supertype that mean specifications inherit from. """ abstract type MeanSpec{T} end struct NumParamError <: Exception expected::Int got::Int end function showerror(io::IO, e::NumParamError) print(io, "incorrect number of parameters: expected $(e.expected), got $(e.got).") end nobs(am::ARCHModel) = length(am.data) islinear(am::ARCHModel) = false isfitted(am::ARCHModel) = am.fitted function confint(am::ARCHModel, level::Real=0.95) hcat(coef(am), coef(am)) .+ stderror(am)*quantile(Normal(),(1. -level)/2.)*[1. -1.] end score(am::ARCHModel) = sum(scores(am), dims=1) function vcov(am::ARCHModel) S = scores(am) V = S'S J = informationmatrix(am; expected=false) #Note: B&W use expected information. Ji = try inv(J) catch e if e in [LinearAlgebra.SingularException, LinearAlgebra.LAPACKException(1)] @warn "Fisher information is singular; vcov matrix is inaccurate." pinv(J) else rethrow(e) end end v = Ji*V*Ji #Huber sandwich all(diag(v).>0) || @warn "non-positive variance encountered; vcov matrix is inaccurate." v end function show(io::IO, spec::VolatilitySpec) println(io, modname(typeof(spec)), " specification.\n\n", length(spec.coefs) > 0 ? CoefTable(spec.coefs, coefnames(typeof(spec)), ["Parameters:"]) : "No estimable parameters.") end stderror(am::ARCHModel) = sqrt.(abs.(diag(vcov(am)))) """ fit!(am::ARCHModel; algorithm=BFGS(), autodiff=:forward, kwargs...) Fit the uni- or multivariate ARCHModel specified by `am`, modifying `am` in place. Keyword arguments are passed on to the optimizer. """ function fit!(am::ARCHModel; kwargs...) end """ fit(am::ARCHModel; algorithm=BFGS(), autodiff=:forward, kwargs...) Fit the uni- or multivariate ARCHModel specified by `am` and return the result in a new instance of `ARCHModel`. Keyword arguments are passed on to the optimizer. """ function fit(am::ARCHModel; kwargs...) end """ simulate!(am::ARCHModel; warmup=100, rng=Random.GLOBAL_RNG) Simulate an ARCHModel, modifying `am` in place. """ function simulate! end """ simulate(am::ARCHModel; warmup=100, rng=Random.GLOBAL_RNG) simulate(am::ARCHModel, T; warmup=100, rng=Random.GLOBAL_RNG) simulate(spec::UnivariateVolatilitySpec, T; warmup=100, dist=StdNormal(), meanspec=NoIntercept(), rng=Random.GLOBAL_RNG) Simulate a length-T time series from a UnivariateARCHModel. simulate(spec::MultivariateVolatilitySpec, T; warmup=100, dist=MultivariateStdNormal(), meanspec=[NoIntercept() for i = 1:d], rng=Random.GLOBAL_RNG) Simulate a length-T time series from a MultivariateARCHModel. """ function simulate end function simulate!(am::ARCHModel; warmup=100, rng=GLOBAL_RNG) am.fitted = false _simulate!(am.data, am.spec; warmup=warmup, dist=am.dist, meanspec=am.meanspec, rng=rng) am end function simulate(am::ARCHModel, nobs; warmup=100, rng=GLOBAL_RNG) am2 = deepcopy(am) simulate(am2.spec, nobs; warmup=warmup, dist=am2.dist, meanspec=am2.meanspec, rng) end simulate(am::ARCHModel; warmup=100, rng=GLOBAL_RNG) = simulate(am, size(am.data)[1]; warmup=warmup, rng=rng)
ARCHModels
https://github.com/s-broda/ARCHModels.jl.git
[ "MIT" ]
2.4.0
2340e4e8045e230732b223378c31b573c8598ad3
code
8114
################################################################################ #NoIntercept """ NoIntercept{T} <: MeanSpec{T} A mean specification without an intercept (i.e., the mean is zero). """ struct NoIntercept{T} <: MeanSpec{T} coefs::Vector{T} function NoIntercept{T}(coefs::Vector) where {T} length(coefs) == 0 || throw(NumParamError(0, length(coefs))) new{T}(coefs) end end """ NoIntercept(T::Type=Float64) NoIntercept{T}() NoIntercept(v::Vector) Create an instance of NoIntercept. """ NoIntercept(coefs::Vector{T}) where {T} = NoIntercept{T}(coefs) NoIntercept(T::Type=Float64) = NoIntercept(T[]) NoIntercept{T}() where {T} = NoIntercept(T[]) nparams(::Type{<:NoIntercept}) = 0 coefnames(::NoIntercept) = String[] function constraints(::Type{<:NoIntercept}, ::Type{T}) where {T<:AbstractFloat} lower = T[] upper = T[] return lower, upper end function startingvals(::NoIntercept{T}, data) where {T<:AbstractFloat} return T[] end Base.@propagate_inbounds @inline function mean( at, ht, lht, data, meanspec::NoIntercept{T}, meancoefs, t ) where {T} return zero(T) end @inline presample(::NoIntercept) = 0 Base.@propagate_inbounds @inline function uncond(::NoIntercept{T}) where {T} return zero(T) end ################################################################################ #Intercept """ Intercept{T} <: MeanSpec{T} A mean specification with just an intercept. """ struct Intercept{T} <: MeanSpec{T} coefs::Vector{T} function Intercept{T}(coefs::Vector) where {T} length(coefs) == 1 || throw(NumParamError(1, length(coefs))) new{T}(coefs) end end """ Intercept(mu) Create an instance of Intercept. `mu` can be passed as a scalar or vector. """ Intercept(coefs::Vector{T}) where {T} = Intercept{T}(coefs) Intercept(mu) = Intercept([mu]) Intercept(mu::Integer) = Intercept(float(mu)) nparams(::Type{<:Intercept}) = 1 coefnames(::Intercept) = ["μ"] function constraints(::Type{<:Intercept}, ::Type{T}) where {T<:AbstractFloat} lower = T[-Inf] upper = T[Inf] return lower, upper end function startingvals(::Intercept, data::Vector{T}) where {T<:AbstractFloat} return T[mean(data)] end Base.@propagate_inbounds @inline function mean( at, ht, lht, data, meanspec::Intercept{T}, meancoefs, t ) where {T} return meancoefs[1] end @inline presample(::Intercept) = 0 Base.@propagate_inbounds @inline function uncond(m::Intercept) return m.coefs[1] end ################################################################################ #ARMA """ ARMA{p, q, T} <: MeanSpec{T} An ARMA(p, q) mean specification. """ struct ARMA{p, q, T} <: MeanSpec{T} coefs::Vector{T} function ARMA{p, q, T}(coefs::Vector) where {p, q, T} length(coefs) == nparams(ARMA{p, q}) || throw(NumParamError(nparams(ARMA{p, q}), length(coefs))) new{p, q, T}(coefs) end end """ fit(t::Type{<:ARMA}, data; kwargs...) -> UnivariateARCHModel Fit an `ARMA{p, q}` model to `data`. """ fit(t::Type{<:ARMA}, data; kwargs...) = fit(ARCH{0}, data; meanspec=t, kwargs...) """ selectmodel(::Type{<:ARMA}, data; kwargs...) -> UnivariateARCHModel Fit a number of `ARMA{p, q}` models to `data` and return that which minimizes the [BIC](https://en.wikipedia.org/wiki/Bayesian_information_criterion). # Keyword arguments: - `dist=StdNormal`: the error distribution. - `minlags=1`: minimum lag length to try in each parameter of `VS`. - `maxlags=3`: maximum lag length to try in each parameter of `VS`. - `criterion=bic`: function that takes a `UnivariateARCHModel` and returns the criterion to minimize. - `show_trace=false`: print `criterion` to screen for each estimated model. - `algorithm=BFGS(), autodiff=:forward, kwargs...`: passed on to the optimizer. """ selectmodel(t::Type{<:ARMA}, data; kwargs...) = selectmodel(ARCH{0}, data; meanspec=t, kwargs...) """ ARMA{p, q}(coefs::Vector) Create an ARMA(p, q) model. """ ARMA{p, q}(coefs::Vector{T}) where {p, q, T} = ARMA{p, q, T}(coefs) nparams(::Type{<:ARMA{p, q}}) where {p, q} = p+q+1 function coefnames(::ARMA{p, q}) where {p, q} names = Array{String, 1}(undef, p+q+1) names[1] = "c" names[2:p+1] .= (i -> "φ"*subscript(i)).([1:p...]) names[2+p:p+q+1] .= (i -> "θ"*subscript(i)).([1:q...]) return names end const AR{p} = ARMA{p, 0} const MA{q} = ARMA{0, q} @inline presample(::ARMA{p, q}) where {p, q} = max(p, q) Base.@propagate_inbounds @inline function mean( at, ht, lht, data, meanspec::ARMA{p, q}, meancoefs::Vector{T}, t ) where {p, q, T} m = meancoefs[1] for i = 1:p m += meancoefs[1+i] * data[t-i] end for i= 1:q m += meancoefs[1+p+i] * at[end-i+1] end return m end function constraints(::Type{<:ARMA{p, q}}, ::Type{T}) where {T<:AbstractFloat, p, q} lower = [T(-Inf), -ones(T, p+q, 1)...] upper = [T(Inf), ones(T, p+q)...] return lower, upper end function startingvals(mod::ARMA{p, q, T}, data::Vector{T}) where {p, q, T<:AbstractFloat} N = length(data) X = Matrix{T}(undef, N-p, p+1) X[:, 1] .= T(1) for i = 1:p X[:, i+1] .= data[p-i+1:N-i] end phi = X \ data[p+1:end] lower, upper = constraints(ARMA{p, q}, T) phi[2:end] .= max.(phi[2:end], lower[2:p+1]*.99) phi[2:end] .= min.(phi[2:end], upper[2:p+1]*.99) return T[phi..., zeros(T, q)...] end Base.@propagate_inbounds @inline function uncond(ms::ARMA{p, q}) where {p, q} m = ms.coefs[1] p>0 && (m/=(1-sum(ms.coefs[2:p+1]))) return m end ################################################################################ #regression """ Regression{k, T} <: MeanSpec{T} A linear regression as mean specification. """ struct Regression{k, T} <: MeanSpec{T} coefs::Vector{T} X::Matrix{T} coefnames::Vector{String} function Regression{k, T}(coefs, X; coefnames=(i -> "β"*subscript(i)).([0:(k-1)...])) where {k, T} X = X[:, :] nparams(Regression{k, T}) == size(X, 2) == length(coefnames) == k || throw(NumParamError(size(X, 2), length(coefs))) return new{k, T}(coefs, X, coefnames) end end """ Regression(coefs::Vector, X::Matrix; coefnames=[β₀, β₁, …]) Regression(X::Matrix; coefnames=[β₀, β₁, …]) Regression{T}(X::Matrix; coefnames=[β₀, β₁, …]) Create a regression model. """ Regression(coefs::Vector{T}, X::MatOrVec{T}; kwargs...) where {T} = Regression{length(coefs), T}(coefs, X; kwargs...) Regression(coefs::Vector, X::MatOrVec; kwargs...) = (T = float(promote_type(eltype(coefs), eltype(X))); Regression{length(coefs), T}(convert.(T, coefs), convert.(T, X); kwargs...)) Regression{T}(X::MatOrVec; kwargs...) where T = Regression(Vector{T}(undef, size(X, 2)), convert.(T, X); kwargs...) Regression(X::MatOrVec{T}; kwargs...) where T<:AbstractFloat = Regression{T}(X; kwargs...) Regression(X::MatOrVec; kwargs...) = Regression(float.(X); kwargs...) nparams(::Type{Regression{k, T}}) where {k, T} = k function coefnames(R::Regression{k, T}) where {k, T} return R.coefnames end @inline presample(::Regression) = 0 Base.@propagate_inbounds @inline function mean( at, ht, lht, data, meanspec::Regression{k}, meancoefs::Vector{T}, t ) where {k, T} t > size(meanspec.X, 1) && error("insufficient number of observations in X (T=$(size(meanspec.X, 1))) to evaluate conditional mean at $t. Consider padding the design matrix. If you are simulating, consider passing `warmup=0`.") mean = T(0) for i = 1:k mean += meancoefs[i] * meanspec.X[t, i] end return mean end function constraints(::Type{<:Regression{k}}, ::Type{T}) where {k, T} lower = Vector{T}(undef, k) upper = Vector{T}(undef, k) fill!(lower, -T(Inf)) fill!(upper, T(Inf)) return lower, upper end function startingvals(reg::Regression{k, T}, data::Vector{T}) where {k, T<:AbstractFloat} N = length(data) beta = reg.X[1:N, :] \ data # allow extra entries in X for prediction end Base.@propagate_inbounds @inline function uncond(::Regression{k, T}) where {k, T} return T(0) end
ARCHModels
https://github.com/s-broda/ARCHModels.jl.git
[ "MIT" ]
2.4.0
2340e4e8045e230732b223378c31b573c8598ad3
code
6732
# can consolidate the remaining simulate method if we have default meanspecs for univariate/multivariate # proper multivariate meanspec, include return prediction in predict # implement correlations, covariances, residuals in terms of update!, and move them from DCC to multivariate """ DOW29 Stock returns, in procent, from 03/19/2008 through 04/11/2019, for tickers AAPL, IBM, XOM, KO, MSFT, INTC, MRK, PG, VZ, WBA, V, JNJ, PFE, CSCO, TRV, WMT, MMM, UTX, UNH, NKE, HD, BA, AXP, MCD, CAT, GS, JPM, CVX, DIS. """ const DOW29 = readdlm(joinpath(dirname(pathof(ARCHModels)), "data", "dow29.csv"), ',') """ MultivariateStandardizedDistribution{T, d} <: Distribution{Multivariate, Continuous} Abstract supertype that multivariate standardized distributions inherit from. """ abstract type MultivariateStandardizedDistribution{T, d} <: Distribution{Multivariate, Continuous} end """ MultivariateVolatilitySpec{T, d} <: VolatilitySpec{T} Abstract supertype that multivariate volatility specifications inherit from. """ abstract type MultivariateVolatilitySpec{T, d} <: VolatilitySpec{T} end """ MultivariateARCHModel{T<:AbstractFloat, d, VS<:MultivariateVolatilitySpec{T, d}, SD<:MultivariateStandardizedDistribution{T, d}, MS<:MeanSpec{T} } <: ARCHModel """ mutable struct MultivariateARCHModel{T<:AbstractFloat, d, VS<:MultivariateVolatilitySpec{T, d}, SD<:MultivariateStandardizedDistribution{T, d}, MS<:MeanSpec{T} } <: ARCHModel spec::VS data::Matrix{T} dist::SD meanspec::Vector{MS} fitted::Bool function MultivariateARCHModel{T, d, VS, SD, MS}(spec, data, dist, meanspec, fitted) where {T, d, VS, SD, MS} new(spec, data, dist, meanspec, fitted) end end dof(am::MultivariateARCHModel{T, d}) where {T, d} = nparams(typeof(am.spec)) + nparams(typeof(am.dist)) + d * nparams(eltype(am.meanspec)) function loglikelihood(am::MultivariateARCHModel) sigs = covariances(am) z = residuals(am; standardized=true, decorrelated=true) n, d = size(am.data) return -.5 * (n * d * log(2π) + sum(logdet.(cholesky.(sigs))) + sum(z.^2)) end """ MultivariateARCHModel(spec::MultivariateVolatilitySpec, data::Matrix; dist=MultivariateStdNormal, meanspec::[NoIntercept{T}() for _ in 1:d] fitted::Bool=false ) Create a MultivariateARCHModel. """ function MultivariateARCHModel(spec::VS, data::Matrix{T}; dist::SD=MultivariateStdNormal{T, d}(), meanspec::Vector{MS}=[NoIntercept{T}() for _ in 1:d], # should come up with a proper multivariate version fitted::Bool=false ) where {T<:AbstractFloat, d, VS<:MultivariateVolatilitySpec{T, d}, SD<:MultivariateStandardizedDistribution, MS<:MeanSpec } MultivariateARCHModel{T, d, VS, SD, MS}(spec, data, dist, meanspec, fitted) end """ predict(am::MultivariateARCHModel, what=:covariance) Form a 1-step ahead prediction from `am`. `what` controls which object is predicted. The choices are `:covariance` (the default) or `:correlation`. """ function predict(am::MultivariateARCHModel; what=:covariance) Ht = covariances(am) Rt = correlations(am) H = uncond(am.spec) R = to_corr(H) zt = residuals(am; decorrelated=false) at = residuals(am; standardized=false, decorrelated=false) T = size(am.data)[1] zt = [zt[t, :] for t in 1:T] at = [at[t, :] for t in 1:T] update!(Ht, Rt, H, R, zt, at, typeof(am.spec), coef(am.spec)) if what == :covariance return Ht[end] elseif what == :correlation return Rt[end] else error("Prediction target $what unknown.") end end # documented in general fit(am::MultivariateARCHModel; algorithm=BFGS(), autodiff=:forward, kwargs...) = fit(typeof(am.spec), am.data; dist=typeof(am.dist), meanspec=am.meanspec[1], algorithm=algorithm, autodiff=autodiff, kwargs...) # hacky. need multivariate version # documented in general function fit!(am::MultivariateARCHModel; algorithm=BFGS(), autodiff=:forward, kwargs...) am2 = fit(typeof(am.spec), am.data; meanspec=am.meanspec[1], method=am.spec.method, dist=typeof(am.dist), algorithm=algorithm, autodiff=autodiff, kwargs...) am.spec = am2.spec am.dist = am2.dist am.meanspec = am2.meanspec am.fitted = true am end # documented in general function simulate(spec::MultivariateVolatilitySpec{T2, d}, nobs; warmup=100, dist::MultivariateStandardizedDistribution{T2}=MultivariateStdNormal{T2, d}(), meanspec::Vector{<:MeanSpec{T2}}=[NoIntercept{T2}() for i = 1:d], rng=GLOBAL_RNG ) where {T2<:AbstractFloat, d} data = zeros(T2, nobs, d) _simulate!(data, spec; warmup=warmup, dist=dist, meanspec=meanspec, rng=rng) return MultivariateARCHModel(spec, data; dist=dist, meanspec=meanspec, fitted=false) end function _simulate!(data::Matrix{T2}, spec::MultivariateVolatilitySpec{T2, d}; warmup=100, dist::MultivariateStandardizedDistribution{T2}=MultivariateStdNormal{T2, d}(), meanspec::Vector{<:MeanSpec{T2}}=[NoIntercept{T2}() for i = 1:d], rng=GLOBAL_RNG ) where {T2<:AbstractFloat, d} @assert warmup >= 0 T, d2 = size(data) @assert d == d2 simdata = zeros(T2, T + warmup, d) r1 = presample(typeof(spec)) r2 = maximum(presample.(meanspec)) r = max(r1, r2) r = max(r, 1) # make sure this works for, e.g., ARCH{0}; CircularBuffer requires at least a length of 1 Ht = CircularBuffer{Matrix{T2}}(r) Rt = CircularBuffer{Matrix{T2}}(r) zt = CircularBuffer{Vector{T2}}(r) at = CircularBuffer{Vector{T2}}(r) @inbounds begin H = uncond(spec) R = to_corr(H) all(eigvals(H) .> 0) || error("Model is nonstationary.") themean = zeros(T2, d) for t = 1: warmup + T for i = 1:d if t > r2 ht = getindex.(Ht, i, i) lht = log.(ht) themean[i] = mean(getindex.(at, i), ht, lht, view(simdata, :, i), meanspec[i], meanspec[i].coefs, t) else themean[i] = uncond(meanspec[i]) end end if t>r1 update!(Ht, Rt, H, R, zt, at, typeof(spec), coef(spec)) else push!(Ht, H) push!(Rt, R) end z = rand(rng, dist) push!(zt, cholesky(Rt[end], check=false).L * z) push!(at, sqrt.(diag(Ht[end])) .* zt[end]) simdata[t, :] .= themean + at[end] end end data .= simdata[warmup + 1 : end, :] end
ARCHModels
https://github.com/s-broda/ARCHModels.jl.git
[ "MIT" ]
2.4.0
2340e4e8045e230732b223378c31b573c8598ad3
code
877
""" MultivariateStdNormal{T, d} <: MultivariateStandardizedDistribution{T, d} The multivariate standard normal distribution. """ struct MultivariateStdNormal{T, d} <: MultivariateStandardizedDistribution{T, d} coefs::Vector{T} end MultivariateStdNormal{T, d}() where {T, d} = MultivariateStdNormal{T, d}(T[]) MultivariateStdNormal(T::Type, d::Int) = MultivariateStdNormal{T, d}() MultivariateStdNormal(v::Vector{T}, d::Int) where {T} = MultivariateStdNormal{T, d}() MultivariateStdNormal{T}(d::Int) where {T} = MultivariateStdNormal{T, d}() MultivariateStdNormal(d::Int) = MultivariateStdNormal{Float64, d}(Float64[]) rand(rng::AbstractRNG, ::MultivariateStdNormal{T, d}) where {T, d} = randn(rng, T, d) nparams(::Type{<:MultivariateStdNormal}) = 0 coefnames(::Type{<:MultivariateStdNormal}) = String[] distname(::Type{<:MultivariateStdNormal}) = "Multivariate Normal"
ARCHModels
https://github.com/s-broda/ARCHModels.jl.git
[ "MIT" ]
2.4.0
2340e4e8045e230732b223378c31b573c8598ad3
code
3183
""" ARCHLMTest <: HypothesisTest Engle's (1982) LM test for autoregressive conditional heteroskedasticity. """ struct ARCHLMTest{T<:Real} <: HypothesisTest n::Int # number of observations p::Int # number of lags LM::T # test statistic end """ ARCHLMTest(am::UnivariateARCHModel, p=max(o, p, q, ...)) Conduct Engle's (1982) LM test for autoregressive conditional heteroskedasticity with p lags in the test regression. """ ARCHLMTest(am::UnivariateARCHModel, p=presample(typeof(am.spec))) = ARCHLMTest(residuals(am), p) """ ARCHLMTest(u::Vector, p::Integer) Conduct Engle's (1982) LM test for autoregressive conditional heteroskedasticity with p lags in the test regression. """ function ARCHLMTest(u::Vector{T}, p::Integer) where T<:Real @assert p>0 n = length(u) u2 = u.^2 X = zeros(T, (n-p, p+1)) X[:, 1] .= one(eltype(u)) for i in 1:p X[:, i+1] = u2[p-i+1:n-i] end y = u2[p+1:n] B = X \ y e = y - X*B ybar = y .- mean(y) LM = n * (1 - (e'e)/(ybar'ybar)) #T*R^2 ARCHLMTest(n, p, LM) end testname(::ARCHLMTest) = "ARCH LM test for conditional heteroskedasticity" population_param_of_interest(x::ARCHLMTest) = ("T⋅R² in auxiliary regression", 0, x.LM) function show_params(io::IO, x::ARCHLMTest, ident) println(io, ident, "sample size: ", x.n) println(io, ident, "number of lags: ", x.p) println(io, ident, "LM statistic: ", x.LM) end pvalue(x::ARCHLMTest) = pvalue(Chisq(x.p), x.LM; tail=:right) """ DQTest <: HypothesisTest Engle and Manganelli's (2004) out-of-sample dynamic quantile test. """ struct DQTest{T<:Real} <: HypothesisTest n::Int # number of observations p::Int # number of lags level::T # VaR level DQ::T # test statistic end """ DQTest(data, vars, level, p=1) Conduct Engle and Manganelli's (2004) out-of-sample dynamic quantile test with p lags in the test regression. `vars` shoud be a vector of out-of-sample Value at Risk predictions at level `level`. """ function DQTest(data::Vector{T}, vars::Vector{T}, level::AbstractFloat, p::Integer=1) where T<:Real @assert p>0 @assert length(data) == length(vars) n = length(data) hit = (data .< -vars).*1 .- level y = hit[p+1:n] X = zeros(T, (n-p, p+2)) X[:, 1] .= one(T) for i in 1:p X[:, i+1] = hit[p-i+1:n-i] end X[:, p+2] = vars[p+1:n] B = X \ y DQ = B' * (X'*X) *B/(level*(1-level)) # y'X * inv(X'X) * X'y / (level*(1-level)); note 2 typos in the paper DQTest(n, p, level, DQ) end testname(::DQTest) = "Engle and Manganelli's (2004) DQ test (out of sample)" population_param_of_interest(x::DQTest) = ("Wald statistic in auxiliary regression", 0, x.DQ) function show_params(io::IO, x::DQTest, ident) println(io, ident, "sample size: ", x.n) println(io, ident, "number of lags: ", x.p) println(io, ident, "VaR level: ", x.level) println(io, ident, "DQ statistic: ", x.DQ) end pvalue(x::DQTest) = pvalue(Chisq(x.p+2), x.DQ; tail=:right)
ARCHModels
https://github.com/s-broda/ARCHModels.jl.git
[ "MIT" ]
2.4.0
2340e4e8045e230732b223378c31b573c8598ad3
code
25547
""" BG96 Data from [Bollerslev and Ghysels (JBES 1996)](https://doi.org/10.2307/1392425). """ const BG96 = readdlm(joinpath(dirname(pathof(ARCHModels)), "data", "bollerslev_ghysels.txt"), skipstart=1)[:, 1]; """ UnivariateVolatilitySpec{T} <: VolatilitySpec{T} end Abstract supertype that univariate volatility specifications inherit from. """ abstract type UnivariateVolatilitySpec{T} <: VolatilitySpec{T} end """ StandardizedDistribution{T} <: Distributions.Distribution{Univariate, Continuous} Abstract supertype that standardized distributions inherit from. """ abstract type StandardizedDistribution{T} <: Distribution{Univariate, Continuous} end """ UnivariateARCHModel{T<:AbstractFloat, VS<:UnivariateVolatilitySpec, SD<:StandardizedDistribution{T}, MS<:MeanSpec{T} } <: ARCHModel """ mutable struct UnivariateARCHModel{T<:AbstractFloat, VS<:UnivariateVolatilitySpec, SD<:StandardizedDistribution{T}, MS<:MeanSpec{T} } <: ARCHModel spec::VS data::Vector{T} dist::SD meanspec::MS fitted::Bool function UnivariateARCHModel{T, VS, SD, MS}(spec, data, dist, meanspec, fitted) where {T, VS, SD, MS} new(spec, data, dist, meanspec, fitted) end end mutable struct UnivariateSubsetARCHModel{T<:AbstractFloat, VS<:UnivariateVolatilitySpec, SD<:StandardizedDistribution{T}, MS<:MeanSpec{T}, N } <: ARCHModel spec::VS data::Vector{T} dist::SD meanspec::MS fitted::Bool subset::NTuple{N, Int} function UnivariateSubsetARCHModel{T, VS, SD, MS, N}(spec, data, dist, meanspec, fitted, subset) where {T, VS, SD, MS, N} new(spec, data, dist, meanspec, fitted, subset) end end """ UnivariateARCHModel(spec::UnivariateVolatilitySpec, data::Vector; dist=StdNormal(), meanspec=NoIntercept(), fitted=false ) Create a UnivariateARCHModel. # Example: ```jldoctest julia> UnivariateARCHModel(GARCH{1, 1}([1., .9, .05]), randn(10)) GARCH{1, 1} model with Gaussian errors, T=10. ───────────────────────────────────────── ω β₁ α₁ ───────────────────────────────────────── Volatility parameters: 1.0 0.9 0.05 ───────────────────────────────────────── ``` """ function UnivariateARCHModel(spec::VS, data::Vector{T}; dist::SD=StdNormal{T}(), meanspec::MS=NoIntercept{T}(), fitted::Bool=false ) where {T<:AbstractFloat, VS<:UnivariateVolatilitySpec, SD<:StandardizedDistribution, MS<:MeanSpec } UnivariateARCHModel{T, VS, SD, MS}(spec, data, dist, meanspec, fitted) end function UnivariateSubsetARCHModel(spec::VS, data::Vector{T}; dist::SD=StdNormal{T}(), meanspec::MS=NoIntercept{T}(), fitted::Bool=false, subset::NTuple{N, Int} ) where {T<:AbstractFloat, VS<:UnivariateVolatilitySpec, SD<:StandardizedDistribution, MS<:MeanSpec, N } UnivariateSubsetARCHModel{T, VS, SD, MS, N}(spec, data, dist, meanspec, fitted, subset) end loglikelihood(am::UnivariateARCHModel) = loglik(typeof(am.spec), typeof(am.dist), am.meanspec, am.data, vcat(am.spec.coefs, am.dist.coefs, am.meanspec.coefs ) ) loglikelihood(am::UnivariateSubsetARCHModel) = loglik(typeof(am.spec), typeof(am.dist), am.meanspec, am.data, vcat(am.spec.coefs, am.dist.coefs, am.meanspec.coefs ), subsetmask(typeof(am.spec), am.subset) ) dof(am::UnivariateARCHModel) = nparams(typeof(am.spec)) + nparams(typeof(am.dist)) + nparams(typeof(am.meanspec)) dof(am::UnivariateSubsetARCHModel) = nparams(typeof(am.spec), am.subset) + nparams(typeof(am.dist)) + nparams(typeof(am.meanspec)) coef(am::UnivariateARCHModel)=vcat(am.spec.coefs, am.dist.coefs, am.meanspec.coefs) coefnames(am::UnivariateARCHModel) = vcat(coefnames(typeof(am.spec)), coefnames(typeof(am.dist)), coefnames(am.meanspec) ) # documented in general function simulate(spec::UnivariateVolatilitySpec{T2}, nobs; warmup=100, dist::StandardizedDistribution{T2}=StdNormal{T2}(), meanspec::MeanSpec{T2}=NoIntercept{T2}(), rng=GLOBAL_RNG ) where {T2<:AbstractFloat} data = zeros(T2, nobs) _simulate!(data, spec; warmup=warmup, dist=dist, meanspec=meanspec, rng=rng) UnivariateARCHModel(spec, data; dist=dist, meanspec=meanspec, fitted=false) end function _simulate!(data::Vector{T2}, spec::UnivariateVolatilitySpec{T2}; warmup=100, dist::StandardizedDistribution{T2}=StdNormal{T2}(), meanspec::MeanSpec{T2}=NoIntercept{T2}(), rng=GLOBAL_RNG ) where {T2<:AbstractFloat} @assert warmup>=0 append!(data, zeros(T2, warmup)) T = length(data) r1 = presample(typeof(spec)) r2 = presample(meanspec) r = max(r1, r2) r = max(r, 1) # make sure this works for, e.g., ARCH{0}; CircularBuffer requires at least a length of 1 ht = CircularBuffer{T2}(r) lht = CircularBuffer{T2}(r) zt = CircularBuffer{T2}(r) at = CircularBuffer{T2}(r) @inbounds begin h0 = uncond(typeof(spec), spec.coefs) m0 = uncond(meanspec) h0 > 0 || error("Model is nonstationary.") for t = 1:T if t>r2 themean = mean(at, ht, lht, data, meanspec, meanspec.coefs, t) else themean = m0 end if t>r1 update!(ht, lht, zt, at, typeof(spec), spec.coefs) else push!(ht, h0) push!(lht, log(h0)) end push!(zt, rand(rng, dist)) push!(at, sqrt(ht[end])*zt[end]) data[t] = themean + at[end] end end deleteat!(data, 1:warmup) end @inline function splitcoefs(coefs, VS, SD, meanspec) ng = nparams(VS) nd = nparams(SD) nm = nparams(typeof(meanspec)) length(coefs) == ng+nd+nm || throw(NumParamError(ng+nd+nm, length(coefs))) garchcoefs = coefs[1:ng] distcoefs = coefs[ng+1:ng+nd] meancoefs = coefs[ng+nd+1:ng+nd+nm] return garchcoefs, distcoefs, meancoefs end """ volatilities(am::UnivariateARCHModel) Return the conditional volatilities. """ function volatilities(am::UnivariateARCHModel{T, VS, SD}) where {T, VS, SD} ht = Vector{T}(undef, 0) lht = Vector{T}(undef, 0) zt = Vector{T}(undef, 0) at = Vector{T}(undef, 0) loglik!(ht, lht, zt, at, VS, SD, am.meanspec, am.data, vcat(am.spec.coefs, am.dist.coefs, am.meanspec.coefs)) return sqrt.(ht) end """ predict(am::UnivariateARCHModel, what=:volatility, horizon=1; level=0.01) Form a `horizon`-step ahead prediction from `am`. `what` controls which object is predicted. The choices are `:volatility` (the default), `:variance`, `:return`, and `:VaR`. The VaR level can be controlled with the keyword argument `level`. Not all prediction targets / volatility specifications support multi-step predictions. """ function predict(am::UnivariateARCHModel{T, VS, SD}, what=:volatility, horizon=1; level=0.01) where {T, VS, SD} ht = volatilities(am).^2 lht = log.(ht) zt = residuals(am) at = residuals(am, standardized=false) themean = T(0) if horizon > 1 if what == :VaR error("Predicting VaR more than one period ahead is not implemented. Consider predicting one period ahead and scaling by `sqrt(horizon)`.") elseif what == :volatility error("Predicting volatility more than one period ahead is not implemented.") elseif what == :variance && !(VS <: TGARCH) error("Predicting variance more than one period ahead is not implemented for $(modname(VS)).") end end data = copy(am.data) for current_horizon = (1 : horizon) t = length(am.data) + current_horizon if what == :return || what == :VaR themean = mean(at, ht, lht, data, am.meanspec, am.meanspec.coefs, t) end update!(ht, lht, zt, at, VS, am.spec.coefs, current_horizon) push!(zt, 0.) push!(at, 0.) push!(data, themean) end if what == :return return themean elseif what == :volatility return sqrt(ht[end]) elseif what == :variance return ht[end] elseif what == :VaR return -themean - sqrt(ht[end]) * quantile(am.dist, level) else error("Prediction target $what unknown.") end end """ means(am::UnivariateARCHModel) Return the conditional means of the model. """ function means(am::UnivariateARCHModel) return am.data-residuals(am; standardized=false) end """ residuals(am::UnivariateARCHModel; standardized=true) Return the residuals of the model. Pass `standardized=false` for the non-devolatized residuals. """ function residuals(am::UnivariateARCHModel{T, VS, SD}; standardized=true) where {T, VS, SD} ht = Vector{T}(undef, 0) lht = Vector{T}(undef, 0) zt = Vector{T}(undef, 0) at = Vector{T}(undef, 0) loglik!(ht, lht, zt, at, VS, SD, am.meanspec, am.data, vcat(am.spec.coefs, am.dist.coefs, am.meanspec.coefs)) return standardized ? zt : at end """ VaRs(am::UnivariateARCHModel, level=0.01) Return the in-sample Value at Risk implied by `am`. """ function VaRs(am::UnivariateARCHModel, level=0.01) return -means(am) .- volatilities(am) .* quantile(am.dist, level) end #this works on CircularBuffers. The idea is that ht/lht/zt need to be allocated #inside of this function, when the type that Optim it with is known (because #it calls it with dual numbers for autodiff to work). It works with arrays, too, #but grows them by length(data); hence it should be called with an empty one- #dimensional array of the right type. @inline function loglik!(ht::AbstractVector{T2}, lht::AbstractVector{T2}, zt::AbstractVector{T2}, at::AbstractVector{T2}, vs::Type{VS}, ::Type{SD}, meanspec::MS, data::Vector{T1}, coefs::AbstractVector{T3}, subsetmask=trues(nparams(vs)), returnearly=false ) where {VS<:UnivariateVolatilitySpec, SD<:StandardizedDistribution, MS<:MeanSpec, T1<:AbstractFloat, T2, T3 } garchcoefs, distcoefs, meancoefs = splitcoefs(coefs, VS, SD, meanspec) lowergarch, uppergarch = constraints(VS, T1) lowerdist, upperdist = constraints(SD, T1) lowermean, uppermean = constraints(MS, T1) all_inbounds = all(lowerdist.<distcoefs.<upperdist) && all(lowermean.<meancoefs.<uppermean) && all(lowergarch[subsetmask].<garchcoefs[subsetmask].<uppergarch[subsetmask]) returnearly && !all_inbounds && return T2(-Inf) garchcoefs .*= subsetmask T = length(data) r1 = presample(VS) r2 = presample(meanspec) r = max(r1, r2) T - r > 0 || error("Sample too small.") ki = kernelinvariants(SD, distcoefs) @inbounds begin h0 = var(data) # could be moved outside m0 = mean(data) #h0 = uncond(VS, garchcoefs) #h0 > 0 || return T2(NaN) LL = zero(T2) for t = 1:T if t>r2 themean = mean(at, ht, lht, data, meanspec, meancoefs, t) else themean = m0 end if t > r1 update!(ht, lht, zt, at, VS, garchcoefs) else push!(ht, h0) push!(lht, log(h0)) end ht[end] < 0 && return T2(NaN) push!(at, data[t]-themean) push!(zt, at[end]/sqrt(ht[end])) LL += -lht[end]/2 + logkernel(SD, zt[end], distcoefs, ki...) end#for end#inbounds LL += T*logconst(SD, distcoefs) return all_inbounds ? LL : T2(-Inf) end#function function loglik(spec::Type{VS}, dist::Type{SD}, meanspec::MS, data::Vector{<:AbstractFloat}, coefs::AbstractVector{T2}, subsetmask=trues(nparams(spec)), returnearly=false ) where {VS<:UnivariateVolatilitySpec, SD<:StandardizedDistribution, MS<:MeanSpec, T2 } r = max(presample(VS), presample(meanspec)) r = max(r, 1) # make sure this works for, e.g., ARCH{0}; CircularBuffer requires at least a length of 1 ht = CircularBuffer{T2}(r) lht = CircularBuffer{T2}(r) zt = CircularBuffer{T2}(r) at = CircularBuffer{T2}(r) loglik!(ht, lht, zt, at, spec, dist, meanspec, data, coefs, subsetmask, returnearly) end function logliks(spec, dist, meanspec, data, coefs::Vector{T}) where {T} garchcoefs, distcoefs, meancoefs = splitcoefs(coefs, spec, dist, meanspec) ht = T[] lht = T[] zt = T[] at = T[] loglik!(ht, lht, zt, at, spec, dist, meanspec, data, coefs) LLs = -lht./2 .+ logkernel.(dist, zt, Ref{Vector{T}}(distcoefs), kernelinvariants(dist, distcoefs)...) .+ logconst(dist, distcoefs) end function informationmatrix(am::UnivariateARCHModel; expected::Bool=true) expected && error("expected informationmatrix is not implemented for UnivariateARCHModel. Use expected=false.") g = x -> sum(logliks(typeof(am.spec), typeof(am.dist), am.meanspec, am.data, x)) H = ForwardDiff.hessian(g, vcat(am.spec.coefs, am.dist.coefs, am.meanspec.coefs)) J = -H end function scores(am::UnivariateARCHModel) f = x -> logliks(typeof(am.spec), typeof(am.dist), am.meanspec, am.data, x) S = ForwardDiff.jacobian(f, vcat(am.spec.coefs, am.dist.coefs, am.meanspec.coefs)) end function _fit!(garchcoefs::Vector{T}, distcoefs::Vector{T}, meancoefs::Vector{T}, ::Type{VS}, ::Type{SD}, meanspec::MS, data::Vector{T}; algorithm=BFGS(), autodiff=:forward, kwargs... ) where {VS<:UnivariateVolatilitySpec, SD<:StandardizedDistribution, MS<:MeanSpec, T<:AbstractFloat } obj = x -> -loglik(VS, SD, meanspec, data, x, trues(length(garchcoefs)), true) coefs = vcat(garchcoefs, distcoefs, meancoefs) res = optimize(obj, coefs, algorithm; autodiff=autodiff, kwargs...) coefs .= Optim.minimizer(res) ng = nparams(VS) ns = nparams(SD) nm = nparams(typeof(meanspec)) garchcoefs .= coefs[1:ng] distcoefs .= coefs[ng+1:ng+ns] meancoefs .= coefs[ng+ns+1:ng+ns+nm] meanspec.coefs .= meancoefs return nothing end """ fit(VS::Type{<:UnivariateVolatilitySpec}, data; dist=StdNormal, meanspec=Intercept, algorithm=BFGS(), autodiff=:forward, kwargs...) Fit the ARCH model specified by `VS` to `data`. `data` can be a vector or a GLM.LinearModel (or GLM.TableRegressionModel). # Keyword arguments: - `dist=StdNormal`: the error distribution. - `meanspec=Intercept`: the mean specification, either as a type or instance of that type. - `algorithm=BFGS(), autodiff=:forward, kwargs...`: passed on to the optimizer. # Example: EGARCH{1, 1, 1} model without intercept, Student's t errors. ```jldoctest julia> fit(EGARCH{1, 1, 1}, BG96; meanspec=NoIntercept, dist=StdT) EGARCH{1, 1, 1} model with Student's t errors, T=1974. Volatility parameters: ────────────────────────────────────────────── Estimate Std.Error z value Pr(>|z|) ────────────────────────────────────────────── ω -0.0162014 0.0186806 -0.867286 0.3858 γ₁ -0.0378454 0.018024 -2.09972 0.0358 β₁ 0.977687 0.012558 77.8538 <1e-99 α₁ 0.255804 0.0625497 4.08961 <1e-04 ────────────────────────────────────────────── Distribution parameters: ───────────────────────────────────────── Estimate Std.Error z value Pr(>|z|) ───────────────────────────────────────── ν 4.12423 0.40059 10.2954 <1e-24 ───────────────────────────────────────── ``` """ function fit(::Type{VS}, data::Vector{T}; dist::Type{SD}=StdNormal{T}, meanspec::Union{MS, Type{MS}}=Intercept{T}(T[0]), algorithm=BFGS(), autodiff=:forward, kwargs... ) where {VS<:UnivariateVolatilitySpec, SD<:StandardizedDistribution, MS<:MeanSpec, T<:AbstractFloat } #can't use dispatch for this b/c meanspec is a kwarg meanspec isa Type ? ms = meanspec(zeros(T, nparams(meanspec))) : ms = deepcopy(meanspec) coefs = startingvals(VS, data) distcoefs = startingvals(SD, data) meancoefs = startingvals(ms, data) _fit!(coefs, distcoefs, meancoefs, VS, SD, ms, data; algorithm=algorithm, autodiff=autodiff, kwargs...) return UnivariateARCHModel(VS(coefs), data; dist=SD(distcoefs), meanspec=ms, fitted=true) end function fitsubset(::Type{VS}, data::Vector{T}, maxlags::Int, subset::Tuple; dist::Type{SD}=StdNormal{T}, meanspec::Union{MS, Type{MS}}=Intercept{T}(T[0]), algorithm=BFGS(), autodiff=:forward, kwargs... ) where {VS<:UnivariateVolatilitySpec, SD<:StandardizedDistribution, MS<:MeanSpec, T<:AbstractFloat } #can't use dispatch for this b/c meanspec is a kwarg meanspec isa Type ? ms = meanspec(zeros(T, nparams(meanspec))) : ms = deepcopy(meanspec) VS_large = VS{ntuple(i->maxlags, length(subset))...} ng = nparams(VS_large) ns = nparams(SD) nm = nparams(typeof(ms)) mask = subsetmask(VS_large, subset) garchcoefs = startingvals(VS_large, data, subset) distcoefs = startingvals(SD, data) meancoefs = startingvals(ms, data) obj = x -> -loglik(VS_large, SD, ms, data, x, mask, true) coefs = vcat(garchcoefs, distcoefs, meancoefs) res = optimize(obj, coefs, algorithm; autodiff=autodiff, kwargs...) coefs .= Optim.minimizer(res) garchcoefs .= coefs[1:ng] distcoefs .= coefs[ng+1:ng+ns] meancoefs .= coefs[ng+ns+1:ng+ns+nm] ms.coefs .= meancoefs return UnivariateSubsetARCHModel(VS_large(garchcoefs), data; dist=SD(distcoefs), meanspec=ms, fitted=true, subset=subset) end function fit!(am::UnivariateARCHModel; algorithm=BFGS(), autodiff=:forward, kwargs...) am.spec.coefs.=startingvals(typeof(am.spec), am.data) am.dist.coefs.=startingvals(typeof(am.dist), am.data) am.meanspec.coefs.=startingvals(am.meanspec, am.data) _fit!(am.spec.coefs, am.dist.coefs, am.meanspec.coefs, typeof(am.spec), typeof(am.dist), am.meanspec, am.data; algorithm=algorithm, autodiff=autodiff, kwargs... ) am.fitted=true am end function fit(am::UnivariateARCHModel; algorithm=BFGS(), autodiff=:forward, kwargs...) am2=deepcopy(am) fit!(am2; algorithm=algorithm, autodiff=autodiff, kwargs...) return am2 end function fit(vs::Type{VS}, lm::TableRegressionModel{<:LinearModel}; kwargs...) where VS<:UnivariateVolatilitySpec fit(vs, response(lm.model); meanspec=Regression(modelmatrix(lm.model); coefnames=coefnames(lm)), kwargs...) end function fit(vs::Type{VS}, lm::LinearModel; kwargs...) where VS<:UnivariateVolatilitySpec fit(vs, response(lm); meanspec=Regression(modelmatrix(lm)), kwargs...) end """ selectmodel(::Type{VS}, data; kwargs...) -> UnivariateARCHModel Fit the volatility specification `VS` with varying lag lengths and return that which minimizes the [BIC](https://en.wikipedia.org/wiki/Bayesian_information_criterion). # Keyword arguments: - `dist=StdNormal`: the error distribution. - `meanspec=Intercept`: the mean specification, either as a type or instance of that type. - `minlags=1`: minimum lag length to try in each parameter of `VS`. - `maxlags=3`: maximum lag length to try in each parameter of `VS`. - `criterion=bic`: function that takes a `UnivariateARCHModel` and returns the criterion to minimize. - `show_trace=false`: print `criterion` to screen for each estimated model. - `algorithm=BFGS(), autodiff=:forward, kwargs...`: passed on to the optimizer. # Example ``` julia> selectmodel(EGARCH, BG96) EGARCH{1, 1, 2} model with Gaussian errors, T=1974. Mean equation parameters: ─────────────────────────────────────────────── Estimate Std.Error z value Pr(>|z|) ─────────────────────────────────────────────── μ -0.00900018 0.00943948 -0.953461 0.3404 ─────────────────────────────────────────────── Volatility parameters: ────────────────────────────────────────────── Estimate Std.Error z value Pr(>|z|) ────────────────────────────────────────────── ω -0.0544398 0.0592073 -0.919478 0.3578 γ₁ -0.0243368 0.0270414 -0.899985 0.3681 β₁ 0.960301 0.0388183 24.7384 <1e-99 α₁ 0.405788 0.067466 6.0147 <1e-08 α₂ -0.207357 0.114161 -1.81636 0.0693 ────────────────────────────────────────────── ``` """ function selectmodel(::Type{VS}, data::Vector{T}; dist::Type{SD}=StdNormal{T}, meanspec::Union{MS, Type{MS}}=Intercept{T}, maxlags::Integer=3, minlags::Integer=1, criterion=bic, show_trace=false, algorithm=BFGS(), autodiff=:forward, kwargs... ) where {VS<:UnivariateVolatilitySpec, T<:AbstractFloat, SD<:StandardizedDistribution, MS<:MeanSpec } @assert maxlags >= minlags >= 0 #threading sometimes segfaults in tests locally. possibly https://github.com/JuliaLang/julia/issues/29934 mylock=Threads.ReentrantLock() ndims = max(my_unwrap_unionall(VS)-1, 0) # e.g., two (p and q) for GARCH{p, q, T} ndims2 = max(my_unwrap_unionall(MS)-1, 0 )# e.g., two (p and q) for ARMA{p, q, T} res = Array{UnivariateSubsetARCHModel, ndims+ndims2}(undef, ntuple(i->maxlags - minlags + 1, ndims+ndims2)) Threads.@threads for ind in collect(CartesianIndices(size(res))) tup = (ind.I[1:ndims] .+ minlags .-1) MSi = (ndims2==0 ? deepcopy(meanspec) : meanspec{ind.I[ndims+1:end] .+ minlags .- 1...}) res[ind] = fitsubset(VS, data, maxlags, tup; dist=dist, meanspec=MSi, algorithm=algorithm, autodiff=autodiff, kwargs...) if show_trace lock(mylock) Core.print(modname(typeof(res[ind].spec))) ndims2>0 && Core.print("-", modname(MSi)) Core.println(" model has ", uppercase(split("$criterion", ".")[end]), " ", criterion(res[ind]), "." ) unlock(mylock) end end crits = criterion.(res) _, ind = findmin(crits) return fit(VS{res[ind].subset...}, data; dist=dist, meanspec=res[ind].meanspec, algorithm=algorithm, autodiff=autodiff, kwargs...) end function coeftable(am::UnivariateARCHModel) cc = coef(am) se = stderror(am) zz = cc ./ se CoefTable(hcat(cc, se, zz, 2.0 * normccdf.(abs.(zz))), ["Estimate", "Std.Error", "z value", "Pr(>|z|)"], coefnames(am), 4) end function show(io::IO, am::UnivariateARCHModel) if isfitted(am) cc = coef(am) se = stderror(am) ccg, ccd, ccm = splitcoefs(cc, typeof(am.spec), typeof(am.dist), am.meanspec ) seg, sed, sem = splitcoefs(se, typeof(am.spec), typeof(am.dist), am.meanspec ) zzg = ccg ./ seg zzd = ccd ./ sed zzm = ccm ./ sem println(io, "\n", modname(typeof(am.spec)), " model with ", distname(typeof(am.dist)), " errors, T=", nobs(am), ".\n") length(sem) > 0 && println(io, "Mean equation parameters:", "\n", CoefTable(hcat(ccm, sem, zzm, 2.0 * normccdf.(abs.(zzm))), ["Estimate", "Std.Error", "z value", "Pr(>|z|)"], coefnames(am.meanspec), 4 ) ) println(io, "\nVolatility parameters:", "\n", CoefTable(hcat(ccg, seg, zzg, 2.0 * normccdf.(abs.(zzg))), ["Estimate", "Std.Error", "z value", "Pr(>|z|)"], coefnames(typeof(am.spec)), 4 ) ) length(sed) > 0 && println(io, "\nDistribution parameters:", "\n", CoefTable(hcat(ccd, sed, zzd, 2.0 * normccdf.(abs.(zzd))), ["Estimate", "Std.Error", "z value", "Pr(>|z|)"], coefnames(typeof(am.dist)), 4 ) ) else println(io, "\n", modname(typeof(am.spec)), " model with ", distname(typeof(am.dist)), " errors, T=", nobs(am), ".\n\n") length(am.meanspec.coefs) > 0 && println(io, CoefTable(am.meanspec.coefs, coefnames(am.meanspec), ["Mean equation parameters:"])) println(io, CoefTable(am.spec.coefs, coefnames(typeof(am.spec)), ["Volatility parameters: "])) length(am.dist.coefs) > 0 && println(io, CoefTable(am.dist.coefs, coefnames(typeof(am.dist)), ["Distribution parameters: "])) end end function modname(::Type{S}) where S<:Union{UnivariateVolatilitySpec, MeanSpec} s = "$(S)" lastcomma = findlast(isequal(','), s) lastcomma == nothing || (s = s[1:lastcomma-1] * '}') firstdot = findfirst(isequal('.'), s) firstdot == nothing || (s = s[firstdot+1:end]) s end
ARCHModels
https://github.com/s-broda/ARCHModels.jl.git
[ "MIT" ]
2.4.0
2340e4e8045e230732b223378c31b573c8598ad3
code
11186
################################################################################ #general functions #rand(sd::StandardizedDistribution) = rand(GLOBAL_RNG, sd) #loop invariant part of the kernel @inline kernelinvariants(::Type{<:StandardizedDistribution}, coefs) = () ################################################################################ #standardized """ Standardized{D<:ContinuousUnivariateDistribution, T} <: StandardizedDistribution{T} A wrapper type for standardizing a distribution from Distributions.jl. """ struct Standardized{D<:ContinuousUnivariateDistribution, T<:AbstractFloat} <: StandardizedDistribution{T} coefs::Vector{T} end Standardized{D}(coefs::T...) where {D, T} = Standardized{D, T}([coefs...]) Standardized{D}(coefs::Vector{T}) where {D, T} = Standardized{D, T}([coefs...]) rand(rng::AbstractRNG, s::Standardized{D, T}) where {D, T} = (rand(rng, D(s.coefs...))-mean(D(s.coefs...)))./std(D(s.coefs...)) @inline logkernel(S::Type{<:Standardized{D, T1} where T1}, x, coefs::Vector{T}) where {D, T} = (try sig=std(D(coefs...)); logpdf(D(coefs...), mean(D(coefs...)) + sig*x)+log(sig); catch; T(-Inf); end) @inline logconst(S::Type{<:Standardized{D, T1} where T1}, coefs::Vector{T}) where {D, T} = zero(T) nparams(S::Type{<:Standardized{D, T} where T}) where {D} = length(fieldnames(D)) coefnames(S::Type{<:Standardized{D, T}}) where {D, T} = [string.(fieldnames(D))...] distname(S::Type{<:Standardized{D, T}}) where {D, T} = (io = IOBuffer(); sprint(io->Base.show_type_name(io, Base.typename(TDist{Float64})))) function quantile(s::Standardized{D, T}, q::Real) where {D, T} (quantile(D(s.coefs...), q)-mean(D(s.coefs...)))./std(D(s.coefs...)) end function constraints(S::Type{<:Standardized{D, T1} where T1}, ::Type{T}) where {D, T} lower = Vector{T}(undef, nparams(S)) upper = Vector{T}(undef, nparams(S)) fill!(lower, T(-Inf)) fill!(upper, T(Inf)) lower, upper end function startingvals(S::Type{<:Standardized{D, T1} where {T1}}, data::Vector{T}) where {T, D} svals = Vector{T}(undef, nparams(S)) fill!(svals, eps(T)) return svals end #for rand to work Base.eltype(::StandardizedDistribution{T}) where {T} = T """ fit(::Type{SD}, data; algorithm=BFGS(), kwargs...) Fit a standardized distribution to the data, using the MLE. Keyword arguments are passed on to the optimizer. """ function fit(::Type{SD}, data::Vector{T}; algorithm=BFGS(), kwargs... ) where {SD<:StandardizedDistribution, T<:AbstractFloat} nparams(SD) == 0 && return SD{T}() obj = x -> -loglik(SD, data, x) lower, upper = constraints(SD, T) x0 = startingvals(SD, data) res = optimize(obj, lower, upper, x0, Fminbox(algorithm); kwargs...) coefs = res.minimizer return SD(coefs) end function loglik(::Type{SD}, data::Vector{<:AbstractFloat}, coefs::Vector{T2} ) where {SD<:StandardizedDistribution, T2} T = length(data) length(coefs) == nparams(SD) || throw(NumParamError(nparams(SD), length(coefs))) @inbounds begin LL = zero(T2) iv = kernelinvariants(SD, coefs) @fastmath for t = 1:T LL += logkernel(SD, data[t], coefs, iv...) end#for end#inbounds LL += T*logconst(SD, coefs) end#function ################################################################################ #StdNormal """ StdNormal{T} <: StandardizedDistribution{T} The standard Normal distribution. """ struct StdNormal{T} <: StandardizedDistribution{T} coefs::Vector{T} function StdNormal{T}(coefs::Vector) where {T} length(coefs) == 0 || throw(NumParamError(0, length(coefs))) new{T}(coefs) end end """ StdNormal(T::Type=Float64) StdNormal(v::Vector) StdNormal{T}() Construct an instance of StdNormal. """ StdNormal(T::Type{<:AbstractFloat}=Float64) = StdNormal(T[]) StdNormal{T}() where {T<:AbstractFloat} = StdNormal(T[]) StdNormal(v::Vector{T}) where {T} = StdNormal{T}(v) rand(rng::AbstractRNG, ::StdNormal{T}) where {T} = randn(rng, T) @inline logkernel(::Type{<:StdNormal}, x, coefs) = -abs2(x)/2 @inline logconst(::Type{<:StdNormal}, coefs::Vector{T}) where {T} = -T(log2π)/2 nparams(::Type{<:StdNormal}) = 0 coefnames(::Type{<:StdNormal}) = String[] distname(::Type{<:StdNormal}) = "Gaussian" function constraints(::Type{<:StdNormal}, ::Type{T}) where {T<:AbstractFloat} lower = T[] upper = T[] return lower, upper end function startingvals(::Type{<:StdNormal}, data::Vector{T}) where {T<:AbstractFloat} return T[] end function quantile(::StdNormal, q::Real) norminvcdf(q) end ################################################################################ #StdT """ StdT{T} <: StandardizedDistribution{T} The standardized (mean zero, variance one) Student's t distribution. """ struct StdT{T} <: StandardizedDistribution{T} coefs::Vector{T} function StdT{T}(coefs::Vector) where {T} length(coefs) == 1 || throw(NumParamError(1, length(coefs))) new{T}(coefs) end end """ StdT(ν) Create a standardized t distribution with `ν` degrees of freedom. `ν`` can be passed as a scalar or vector. """ StdT(ν) = StdT([ν]) StdT(ν::Integer) = StdT(float(ν)) StdT(ν::Vector{T}) where {T} = StdT{T}(ν) (rand(rng::AbstractRNG, d::StdT{T})::T) where {T} = (ν=d.coefs[1]; rand(rng, TDist(ν))*sqrt((ν-2)/ν)) @inline kernelinvariants(::Type{<:StdT}, coefs) = (1/ (coefs[1]-2),) @inline logkernel(::Type{<:StdT}, x, coefs, iv) = (-(coefs[1] + 1) / 2) * log1p(abs2(x) *iv) @inline logconst(::Type{<:StdT}, coefs) = (lgamma((coefs[1] + 1) / 2) - log((coefs[1]-2) * pi) / 2 - lgamma(coefs[1] / 2) ) nparams(::Type{<:StdT}) = 1 coefnames(::Type{<:StdT}) = ["ν"] distname(::Type{<:StdT}) = "Student's t" function constraints(::Type{<:StdT}, ::Type{T}) where {T} lower = T[20/10] upper = T[Inf] return lower, upper end function startingvals(::Type{<:StdT}, data::Array{T}) where {T} #mean of abs(t) eabst(ν)=2*sqrt(ν-2)/(ν-1)/beta(ν/2, 1/2) ##alteratively, could use mean of log(abs(t)): #elogabst(ν)=log(ν-2)/2-digamma(ν/2)/2+digamma(1/2)/2 ht = T[] lht = T[] zt = T[] at = T[] loglik!(ht, lht, zt, at, GARCH{1, 1}, StdNormal, Intercept(0.), data, vcat(startingvals(GARCH{1, 1}, data), startingvals(Intercept(0.), data))) lower = convert(T, 2) upper = convert(T, 30) z = mean(abs.(data.-mean(data))./sqrt.(ht)) z > eabst(upper) ? [upper] : [find_zero(x -> z-eabst(x), (lower, upper))] end function quantile(dist::StdT, q::Real) ν = dist.coefs[1] tdistinvcdf(ν, q)*sqrt((ν-2)/ν) end ################################################################################ #StdGED """ StdGED{T} <: StandardizedDistribution{T} The standardized (mean zero, variance one) generalized error distribution. """ struct StdGED{T} <: StandardizedDistribution{T} coefs::Vector{T} function StdGED{T}(coefs::Vector) where {T} length(coefs) == 1 || throw(NumParamError(1, length(coefs))) new{T}(coefs) end end """ StdGED(p) Create a standardized generalized error distribution parameter `p`. `p` can be passed as a scalar or vector. """ StdGED(p) = StdGED([p]) StdGED(p::Integer) = StdGED(float(p)) StdGED(v::Vector{T}) where {T} = StdGED{T}(v) (rand(rng::AbstractRNG, d::StdGED{T})::T) where {T} = (p = d.coefs[1]; ip=1/p; (2*rand(rng)-1)*rand(rng, Gamma(1+ip, 1))^ip * sqrt(gamma(ip) / gamma(3*ip)) ) @inline logconst(::Type{<:StdGED}, coefs) = (p = coefs[1]; ip = 1/p; lgamma(3*ip)/2 - lgamma(ip)*3/2 - logtwo - log(ip)) @inline logkernel(::Type{<:StdGED}, x, coefs, s) = (p = coefs[1]; -abs(x*s)^p) @inline kernelinvariants(::Type{<:StdGED}, coefs) = (p = coefs[1]; ip = 1/p; (sqrt(gamma(3*ip) / gamma(ip)),)) nparams(::Type{<:StdGED}) = 1 coefnames(::Type{<:StdGED}) = ["p"] distname(::Type{<:StdGED}) = "GED" function constraints(::Type{<:StdGED}, ::Type{T}) where {T} lower = [zero(T)] upper = T[Inf] return lower, upper end function startingvals(::Type{<:StdGED}, data::Array{T}) where {T} ht = T[] lht = T[] zt = T[] at = T[] loglik!(ht, lht, zt, at, GARCH{1, 1}, StdNormal, Intercept(0.), data, vcat(startingvals(GARCH{1, 1}, data), startingvals(Intercept(0.), data))) z = mean((abs.(data.-mean(data))./sqrt.(ht)).^4) lower = T(0.05) upper = T(25.) f(r) = z-gamma(5/r)*gamma(1/r)/gamma(3/r)^2 f(lower)>0 && return [lower] f(upper)<0 && return [upper] return T[find_zero(f, (lower, upper))] end function quantile(dist::StdGED, q::Real) p = dist.coefs[1] ip = 1/p qq = 2*q-1 return sign(qq) * (gammainvcdf(ip, 1., abs(qq)))^ip/kernelinvariants(StdGED, [p])[1] end ################################################################################ #Hansen's SKT-Distribution """ StdSkewT{T} <: StandardizedDistribution{T} Hansen's standardized (mean zero, variance one) Skewed Student's t distribution. """ struct StdSkewT{T} <: StandardizedDistribution{T} coefs::Vector{T} function StdSkewT{T}(coefs::Vector) where {T} length(coefs) == 2 || throw(NumParamError(2, length(coefs))) new{T}(coefs) end end """ StdSkewT(v,λ) Create a standardized skewed t distribution with `v` degrees of freedom and `λ` shape parameter. `ν,λ`` can be passed as scalars or vectors. """ StdSkewT(ν,λ) = StdSkewT([float(ν), float(λ)]) StdSkewT(coefs::Vector{T}) where {T} = StdSkewT{T}(coefs) (rand(rng::AbstractRNG, d::StdSkewT{T}) where {T} = (quantile(d, rand(rng)))) @inline a(d::Type{<:StdSkewT}, coefs) = (ν=coefs[1];λ=coefs[2]; 4λ*c(d,coefs) * ((ν-2)/(ν-1))) @inline b(d::Type{<:StdSkewT}, coefs) = (ν=coefs[1];λ=coefs[2]; sqrt(1+3λ^2-a(d,coefs)^2)) @inline c(d::Type{<:StdSkewT}, coefs) = (ν=coefs[1];λ=coefs[2]; gamma((ν+1)/2) / (sqrt(π*(ν-2)) * gamma(ν/2))) @inline kernelinvariants(::Type{<:StdSkewT}, coefs) = (1/ (coefs[1]-2),) @inline function logkernel(d::Type{<:StdSkewT}, x, coefs, iv) ν=coefs[1] λ=coefs[2] c = gamma((ν+1)/2) / (sqrt(π*(ν-2)) * gamma(ν/2)) a = 4λ * c * ((ν-2)/(ν-1)) b = sqrt(1 + 3λ^2 -a^2) λsign = x < (-a/b) ? -1 : 1 (-(ν + 1) / 2) * log1p(1/abs2(1+λ*λsign) * abs2(b*x + a) *iv) end @inline logconst(d::Type{<:StdSkewT}, coefs) = (log(b(d,coefs))+(log(c(d,coefs)))) nparams(::Type{<:StdSkewT}) = 2 coefnames(::Type{<:StdSkewT}) = ["ν", "λ"] distname(::Type{<:StdSkewT}) = "Hansen's Skewed t" function constraints(::Type{<:StdSkewT}, ::Type{T}) where {T} lower = T[20/10, -one(T)] upper = T[Inf,one(T)] return lower, upper end startingvals(::Type{<:StdSkewT}, data::Array{T}) where {T<:AbstractFloat} = [startingvals(StdT, data)..., zero(T)] function quantile(d::StdSkewT{T}, q::T) where T ν = d.coefs[1] λ = d.coefs[2] a_val = a(typeof(d),d.coefs) b_val = b(typeof(d),d.coefs) λconst = q < (1 - λ)/2 ? (1 - λ) : (1 + λ) quant_numer = q < (1 - λ)/2 ? q : (q + λ) 1/b_val * ((λconst) * sqrt((ν-2)/ν) * tdistinvcdf(ν, quant_numer/λconst) - a_val) end
ARCHModels
https://github.com/s-broda/ARCHModels.jl.git
[ "MIT" ]
2.4.0
2340e4e8045e230732b223378c31b573c8598ad3
code
2342
const MatOrVec{T} = Union{Matrix{T}, Vector{T}} where T Base.@irrational sqrt2invpi 0.79788456080286535587 sqrt(big(2)/big(π)) #from here https://stackoverflow.com/questions/46671965/printing-variable-subscripts-in-julia subscript(i::Integer) = i<0 ? error("$i is negative") : join('₀'+d for d in reverse(digits(i))) #count the number of type vars. there's probably a better way. function my_unwrap_unionall(@nospecialize a) count = 0 while isa(a, UnionAll) a = a.body count += 1 end return count end @inline function to_corr(Σ) D = sqrt(abs.(Diagonal(Σ))) # horrible hack. required to fix a non-deterministic doctest failure iD = inv(D) R = iD * Σ * iD R = (R + R') / 2 end #= analytical_shrinkage(X::Matrix) Analytical nonlinear shrinkage estimator of the covariance matrix. Based on the Matlab code from [1]. Translated to Julia and used here under MIT license by permission from the authors. [1] Ledoit, O., and Wolf, M. (2018), "Analytical Nonlinear Shrinkage of Large-Dimensional Covariance Matrices", University of Zurich Econ WP 264. https://www.econ.uzh.ch/static/workingpapers_iframe.php?id=943 =# function analytical_shrinkage(X) n, p = size(X) @assert n >= 12 # important: sample size n must be >= 12 sample = Symmetric(X'*X) / n E = eigen(sample) lambda = E.values u = E.vectors # compute analytical nonlinear shrinkage kernel formula lambda = lambda[max(1, p-n+1):p] L = repeat(lambda, 1, min(p, n)) h = n^(-1/3) # Equation (4.9) H = h*L' x = (L-L') ./ H ftilde = (3/4/sqrt(5)) * mean(max.(1 .- x.^2 ./ 5, 0) ./ H, dims=2) # Equation (4.7) Hftemp = (-3/10/pi) * x + (3/4/sqrt(5)/pi) * (1 .- x.^2 ./ 5) .* log.(abs.((sqrt(5).-x) ./ (sqrt(5).+x))) # Equation (4.8) Hftemp[abs.(x) .== sqrt(5)] .= (-3/10/pi) .* x[abs.(x) .== sqrt(5)] Hftilde = mean(Hftemp./H, dims=2) if p<=n dtilde = lambda ./ ((pi * (p/n) *lambda .* ftilde).^2 + (1 .- (p/n) .- pi * (p/n) * lambda .* Hftilde).^2) # Equation (4.3) else Hftilde0 = (1/pi) * (3/10/h^2 + 3/4/sqrt(5)/h*(1-1/5/h^2) * log((1+sqrt(5)*h)/(1-sqrt(5)*h)))*mean(1 ./ lambda) # Equation (C.8) dtilde0 = 1 / (pi * (p-n) / n * Hftilde0) # Equation (C.5) dtilde1 = lambda ./ (pi^2*lambda.^2 .* (ftilde.^2 + Hftilde.^2)) # Eq. (C.4) dtilde = [dtilde0*ones(p-n,1); dtilde1] end return u * Diagonal(dtilde[:]) * u' end
ARCHModels
https://github.com/s-broda/ARCHModels.jl.git
[ "MIT" ]
2.4.0
2340e4e8045e230732b223378c31b573c8598ad3
code
23780
using Test using ARCHModels using GLM using DataFrames using StableRNGs T = 10^4; @testset "lgamma" begin @test ARCHModels.lgamma(1.0f0) == 0.0f0 end @testset "TGARCH" begin @test ARCHModels.nparams(TGARCH{1, 2, 3}) == 7 @test ARCHModels.presample(TGARCH{1, 2, 3}) == 3 spec = TGARCH{1,1,1}([1., .05, .9, .01]); str = sprint(show, spec) if VERSION < v"1.5.5" @test startswith(str, "TGARCH{1,1,1} specification.\n\n─────────────────────────────────\n ω γ₁ β₁ α₁\n─────────────────────────────────\nParameters: 1.0 0.05 0.9 0.01\n─────────────────────────────────\n") else @test startswith(str, "TGARCH{1, 1, 1} specification.\n\n─────────────────────────────────\n ω γ₁ β₁ α₁\n─────────────────────────────────\nParameters: 1.0 0.05 0.9 0.01\n─────────────────────────────────\n") end am = simulate(spec, T, rng=StableRNG(1)); am = selectmodel(TGARCH, am.data; meanspec=NoIntercept(), show_trace=true, maxlags=2) @test all(isapprox.(coef(am), [1.3954654215590847, 0.06693040956623193, 0.8680818765441008, 0.006665140784151278], rtol=1e-4)) #everything below is just pure GARCH, in fact spec = GARCH{1, 1}([1., .9, .05]) am0 = simulate(spec, T; rng=StableRNG(1)); am00 = deepcopy(am0) am00.data .= 0. simulate!(am00, rng=StableRNG(1)) @test all(am00.data .== am0.data) am00 = simulate(am0; rng=StableRNG(1)) @test all(am00.data .== am0.data) am000 = simulate(am0, nobs(am0); rng=StableRNG(1)) @test all(am000.data .== am0.data) am = selectmodel(GARCH, am0.data; meanspec=NoIntercept(), show_trace=true) @test isfitted(am) == true @test all(isapprox.(coef(am), [1.116707484875346, 0.8920705288828562, 0.05103227915762242], rtol=1e-4)) @test all(isapprox.(stderror(am), [ 0.22260057264313066, 0.016030182299773734, 0.006460941055580745], rtol=1e-3)) @test sum(volatilities(am0)) ≈ 44285.00568611553 @test sum(abs, residuals(am0)) ≈ 7964.585890843087 @test sum(abs, residuals(am0, standardized=false)) ≈ 35281.71207401529 am2 = UnivariateARCHModel(spec, am0.data) @test isfitted(am2) == false io = IOBuffer() str = sprint(io -> show(io, am2)) if VERSION < v"1.5.5" @test startswith(str, "\nTGARCH{0,1,1}") else @test startswith(str, "\nGARCH{1, 1}") end fit!(am2) @test isfitted(am2) == true io = IOBuffer() str = sprint(io -> show(io, am2)) if VERSION < v"1.5.5" @test startswith(str, "\nTGARCH{0,1,1}") else @test startswith(str, "\nGARCH{1, 1}") end am3 = fit(am2) @test isfitted(am3) == true @test all(am2.spec.coefs .== am.spec.coefs) @test all(am3.spec.coefs .== am2.spec.coefs) end @testset "ARCH" begin spec = ARCH{2}([1., .3, .4]); am = simulate(spec, T; rng=StableRNG(1)); @test selectmodel(ARCH, am.data).spec.coefs == fit(ARCH{2}, am.data).spec.coefs spec = ARCH{0}([1.]); am = simulate(spec, T, rng=StableRNG(1)); fit!(am) @test all(isapprox.(coef(am), 0.991377950108106, rtol=1e-4)) end @testset "EGARCH" begin @test ARCHModels.nparams(EGARCH{1, 2, 3}) == 7 @test ARCHModels.presample(EGARCH{1, 2, 3}) == 3 am = simulate(EGARCH{1, 1, 1}([.1, 0., .9, .1]), T; meanspec=Intercept(3), rng=StableRNG(1)) am7 = selectmodel(EGARCH, am.data; maxlags=2, show_trace=true) @test all(isapprox(coef(am7), [ 0.1240152087585493, -0.010544394266072957, 0.874501604519596, 0.10762246065941368, 3.0008464829419053], rtol=1e-4)) @test coefnames(EGARCH{2, 2, 2}) == ["ω", "γ₁", "γ₂", "β₁", "β₂", "α₁", "α₂"] @test_throws Base.ErrorException predict.(am7, :variance, 1:3) end @testset "StatisticalModel" begin #not implemented: adjr2, deviance, mss, nulldeviance, r2, rss, weights spec = GARCH{1, 1}([1., .9, .05]) am = simulate(spec, T; rng=StableRNG(1)) fit!(am) @test loglikelihood(am) == ARCHModels.loglik!(Float64[], Float64[], Float64[], Float64[], typeof(spec), StdNormal{Float64}, NoIntercept{Float64}(), am.data, spec.coefs ) @test nobs(am) == T @test dof(am) == 3 @test coefnames(GARCH{1, 1}) == ["ω", "β₁", "α₁"] @test aic(am) ≈ 57949.19500673284 rtol=1e-4 @test bic(am) ≈ 57970.82602784877 rtol=1e-4 @test aicc(am) ≈ 57949.19740769323 rtol=1e-4 @test all(coef(am) .== am.spec.coefs) @test all(isapprox(confint(am), [ 0.680418 1.553; 0.860652 0.923489; 0.0383691 0.0636955], rtol=1e-4) ) @test all(isapprox(informationmatrix(am; expected=false)/T, [ 0.125032 2.33319 2.07012; 2.33319 44.6399 40.8553; 2.07012 40.8553 41.2192], rtol=1e-4) ) @test_throws ErrorException informationmatrix(am) @test all(isapprox(score(am), [0. 0. 0.], atol=1e-3)) @test islinear(am::UnivariateARCHModel) == false @test predict(am) ≈ 4.296827552671104 @test predict(am, :variance) ≈ 18.46272701739355 @test predict(am, :return) == 0.0 @test predict(am, :VaR) ≈ 9.995915642276554 for what in [:return, :variance] @test predict.(am, what, 1:3) == [predict(am, what, h) for h in 1:3] end @test_throws Base.ErrorException predict.(am, :VaR, 1:3) @test_throws Base.ErrorException predict.(am, :volatility, 1:3) end @testset "MeanSpecs" begin spec = GARCH{1, 1}([1., .9, .05]) am = simulate(spec, T; meanspec=Intercept(0.), rng=StableRNG(1)) fit!(am) @test all(isapprox(coef(am), [1.1176635890968043, 0.8919906787166815, 0.05106346071866704, 0.00952591461710004], rtol=1e-4)) @test ARCHModels.coefnames(Intercept(0.)) == ["μ"] @test ARCHModels.nparams(Intercept) == 1 @test ARCHModels.presample(Intercept(0.)) == 0 @test ARCHModels.constraints(Intercept{Float64}, Float64) == (-Float64[Inf], Float64[Inf]) @test typeof(NoIntercept()) == NoIntercept{Float64} @test ARCHModels.coefnames(NoIntercept()) == [] @test ARCHModels.constraints(NoIntercept{Float64}, Float64) == (Float64[], Float64[]) @test ARCHModels.nparams(NoIntercept) == 0 @test ARCHModels.presample(NoIntercept()) == 0 @test ARCHModels.uncond(NoIntercept()) == 0 @test mean(zeros(5), zeros(5), zeros(5), zeros(5), NoIntercept(), zeros(5), 4) == 0. ms = ARMA{2, 2}([1., .5, .2, -.1, .3]) @test ARCHModels.nparams(typeof(ms)) == length(ms.coefs) @test ARCHModels.presample(ms) == 2 @test ARCHModels.coefnames(ms) == ["c", "φ₁", "φ₂", "θ₁", "θ₂"] spec = GARCH{1, 1}([1., .9, .05]) am = simulate(spec, T; meanspec=ms, rng=StableRNG(1)) fit!(am) @test all(isapprox(coef(am), [ 1.1375727511714622, 0.8903853180079492, 0.05158067874765809, 1.0091192373639755, 0.482666588367849, 0.21802258440272837, -0.08390300941364812, 0.28868236034111855], rtol=1e-4)) @test predict(am, :return) ≈ 2.335436537249963 rtol = 1e-6 am = selectmodel(ARCH, BG96; meanspec=AR, maxlags=2); @test all(isapprox(coef(am), [0.1191634087516343, 0.31568628680702837, 0.18331803992648235, -0.006857008709781168, 0.035836278501164005], rtol=1e-4)) @test typeof(Regression([1 2; 3 4])) == Regression{2, Float64} @test typeof(Regression([1. 2.; 3. 4.])) == Regression{2, Float64} @test typeof(Regression{Float32}([1 2; 3 4])) == Regression{2, Float32} @test typeof(Regression([1 2; 3 4])) == Regression{2, Float64} @test typeof(Regression([1, 2], [1 2; 3 4.0f0])) == Regression{2, Float32} @test typeof(Regression([1, 2.], [1 2; 3 4.0f0])) == Regression{2, Float64} @test typeof(Regression([1], [1, 2, 3, 4.0f0])) == Regression{1, Float32} @test typeof(Regression([1, 2, 3, 4.0f0])) == Regression{1, Float32} @test ARCHModels.nparams(Regression{2, Float64}) == 2 rng = StableRNG(1) beta = [1, 2] reg = Regression(beta, rand(rng, 2000, 2)) u = randn(rng, 2000)*.1 y = reg.X*reg.coefs+u @test ARCHModels.coefnames(reg) == ["β₀", "β₁"] @test ARCHModels.presample(reg) == 0 @test ARCHModels.constraints(typeof(reg), Float64) == ([-Inf, -Inf], [Inf, Inf]) @test all(isapprox(ARCHModels.startingvals(reg, y), [0.992361089980835, 2.003646964507331], rtol=1e-4)) @test ARCHModels.uncond(reg) === 0. am = simulate(GARCH{1, 1}([1., .9, .05]), 2000; meanspec=reg, warmup=0, rng=StableRNG(1)) fit!(am) @test_throws Base.ErrorException predict(am, :return) @test all(isapprox(coef(am), [1.098632569628791, 0.8866288812154145, 0.05770241980639491, 0.7697476790102007, 2.403750061921962], rtol=1e-4)) am = simulate(GARCH{1, 1}([1., .9, .05]), 1999; meanspec=reg, warmup=0, rng=StableRNG(1)) @test predict(am, :return) ≈ 2.3760239544958175 data = DataFrame(X=ones(1974), Y=BG96) model = lm(@formula(Y ~ -1 + X), data) am = fit(GARCH{1, 1}, model) @test all(isapprox(coef(am), coef(fit(GARCH{1, 1}, BG96, meanspec=Intercept)), rtol=1e-4)) @test coefnames(am)[end] == "X" @test all(isapprox(coef(am), coef(fit(GARCH{1, 1}, model.model)), rtol=1e-4)) @test sum(coef(fit(ARMA{1, 1}, BG96))) ≈ 0.21595383060382695 @test isapprox(sum(coef(selectmodel(ARMA, BG96; minlags=2, maxlags=3))), 0.254; atol=0.01) end @testset "VaR" begin am = fit(GARCH{1, 1}, BG96) @test sum(VaRs(am)) ≈ 2077.0976454790807 end @testset "Errors" begin #with unconditional as presample: #@test_warn "Fisher" stderror(UnivariateARCHModel(GARCH{3, 0}([1., .1, .2, .3]), [.1, .2, .3, .4, .5, .6, .7])) #@test_warn "non-positive" stderror(UnivariateARCHModel(GARCH{3, 0}([1., .1, .2, .3]), -5*[.1, .2, .3, .4, .5, .6, .7])) # the following are temporarily disabled while we use FiniteDiff for Hessians: #@test_logs (:warn, "Fisher information is singular; vcov matrix is inaccurate.") stderror(UnivariateARCHModel(GARCH{1, 0}( [1.0, .1]), [0., 1.])) #@test_logs (:warn, "non-positive variance encountered; vcov matrix is inaccurate.") stderror(UnivariateARCHModel(GARCH{1, 0}( [1.0, .1]), [1., 1.])) e = @test_throws ARCHModels.NumParamError ARCHModels.loglik!(Float64[], Float64[], Float64[], Float64[], GARCH{1, 1}, StdNormal{Float64}, NoIntercept{Float64}(), zeros(T), [0., 0., 0., 0.] ) str = sprint(showerror, e.value) @test startswith(str, "incorrect number of parameters") @test_throws ARCHModels.NumParamError GARCH{1, 1}([.1]) e = @test_throws ErrorException predict(UnivariateARCHModel(GARCH{0, 0}([1.]), zeros(10)), :blah) str = sprint(showerror, e.value) @test startswith(str, "Prediction target blah unknown") @test_throws ARCHModels.NumParamError ARMA{1, 1}([1.]) @test_throws ARCHModels.NumParamError Intercept([1., 2.]) @test_throws ARCHModels.NumParamError NoIntercept([1.]) @test_throws ARCHModels.NumParamError StdNormal([1.]) @test_throws ARCHModels.NumParamError StdT([1., 2.]) @test_throws ARCHModels.NumParamError StdSkewT([2.]) @test_throws ARCHModels.NumParamError StdGED([1., 2.]) @test_throws ARCHModels.NumParamError Regression([1], [1 2; 3 4]) at = zeros(10) data = rand(StableRNG(1), 10) reg = Regression(data[1:5]) @test_throws ErrorException mean(at, at, at, data, reg, [0.], 6) end @testset "Distributions" begin a=rand(StableRNG(1), StdT(3)) b=rand(StableRNG(1), StdT(3), 1)[1] @test a==b @test rand(StableRNG(1), StdNormal()) ≈ -0.5325200748641231 @testset "Gaussian" begin data = rand(StableRNG(1), T) @test typeof(StdNormal())==typeof(StdNormal(Float64[])) @test fit(StdNormal, data).coefs == Float64[] @test coefnames(StdNormal) == String[] @test ARCHModels.distname(StdNormal) == "Gaussian" @test quantile(StdNormal(), .05) ≈ -1.6448536269514724 @test ARCHModels.constraints(StdNormal{Float64}, Float64) == (Float64[], Float64[]) end @testset "Student" begin data = rand(StableRNG(1), StdT(4), T) spec = GARCH{1, 1}([1., .9, .05]) @test fit(StdT, data).coefs[1] ≈ 4. atol=0.5 @test coefnames(StdT) == ["ν"] @test ARCHModels.distname(StdT) == "Student's t" @test quantile(StdT(3), .05) ≈ -1.3587150125838563 datat = simulate(spec, T; dist=StdT(4), rng=StableRNG(1)).data datam = simulate(spec, T; dist=StdT(4), meanspec=Intercept(3), rng=StableRNG(1)).data am4 = selectmodel(GARCH, datat; dist=StdT, meanspec=NoIntercept{Float64}(), show_trace=true) am5 = selectmodel(GARCH, datam; dist=StdT, show_trace=true) @test coefnames(am5) == ["ω", "β₁", "α₁", "ν", "μ"] @test all(coeftable(am4).cols[2] .== stderror(am4)) @test isapprox(coef(am4)[4], 4., atol=0.5) @test isapprox(coef(am5)[4], 4., atol=0.5) end @testset "HansenSkewedT" begin data = rand(StableRNG(1), StdSkewT(4,-0.3), T) spec = GARCH{1, 1}([1., .9, .05]) c = fit(StdSkewT, data).coefs @test c[1] ≈ 3.990671630456716 rtol=1e-4 @test c[2] ≈ -0.3136773995478942 rtol=1e-4 @test typeof(StdSkewT(3,0)) == typeof(StdSkewT(3.,0)) == typeof(StdSkewT([3,0.0])) @test coefnames(StdSkewT) == ["ν", "λ"] @test ARCHModels.nparams(StdSkewT) == 2 @test ARCHModels.distname(StdSkewT) == "Hansen's Skewed t" @test ARCHModels.constraints(StdNormal{Float64}, Float64) == (Float64[], Float64[]) @test quantile(StdSkewT(3,0), 0.5) == 0 @test quantile(StdSkewT(3,0), .05) ≈ -1.3587150125838563 @test ARCHModels.constraints(StdSkewT{Float64}, Float64) == (Float64[20/10, -one(Float64)], Float64[Inf,one(Float64)]) dataskt = simulate(spec, T; dist=StdSkewT(4,-0.3), rng=StableRNG(1)).data datam = simulate(spec, T; dist=StdSkewT(4,-0.3), meanspec=Intercept(3), rng=StableRNG(1)).data am4 = selectmodel(GARCH, dataskt; dist=StdSkewT, meanspec=NoIntercept{Float64}(), show_trace=true) am5 = selectmodel(GARCH, datam; dist=StdSkewT, show_trace=true) @test coefnames(am5) == ["ω", "β₁", "α₁", "ν", "λ", "μ"] @test all(coeftable(am4).cols[2] .== stderror(am4)) @test all(isapprox(coef(am4), [ 1.0123398035363282, 0.9010308454299863, 0.042335307040165894, 4.24455990918083, -0.3115002211205442], rtol=1e-4)) @test all(isapprox(coef(am5), [ 1.0151845148616474, 0.9009908899358181, 0.04243949895951436, 4.241005415020919, -0.3124667515252298, 2.9931917146031144], rtol=1e-4)) end @testset "GED" begin @test typeof(StdGED(3)) == typeof(StdGED(3.)) == typeof(StdGED([3.])) data = rand(StableRNG(1), StdGED(1), T) @test fit(StdGED, data).coefs[1] ≈ 1. atol=0.5 @test coefnames(StdGED) == ["p"] @test ARCHModels.nparams(StdGED) == 1 @test ARCHModels.distname(StdGED) == "GED" @test quantile(StdGED(1), .05) ≈ -1.6281735335151468 end @testset "Standardized" begin using Distributions @test eltype(StdNormal{Float64}()) == Float64 MyStdT=Standardized{TDist} @test typeof(MyStdT([1.])) == typeof(MyStdT(1.)) @test ARCHModels.logconst(MyStdT, [0]) == 0. @test coefnames(MyStdT{Float64}) == ["ν"] @test ARCHModels.distname(MyStdT{Float64}) == "TDist" @test all(isapprox.(ARCHModels.startingvals(MyStdT, [0.]), eps())) @test quantile(MyStdT(3.), .1) ≈ quantile(StdT(3.), .1) ARCHModels.startingvals(::Type{<:MyStdT}, data::Vector{T}) where T = T[3.] am = simulate(GARCH{1, 1}([1, 0.9, .05]), 1000, dist=MyStdT(3.); rng=StableRNG(1)) @test loglikelihood(fit(am)) >= -3000. end end @testset "tests" begin am = fit(GARCH{1, 1}, BG96) LM = ARCHLMTest(am) @test pvalue(LM) ≈ 0.1139758664282619 str = sprint(show, LM) @test startswith(str, "ARCH LM test for conditional heteroskedasticity") @test ARCHModels.testname(LM) == "ARCH LM test for conditional heteroskedasticity" vars = VaRs(am, 0.01) DQ = DQTest(BG96, VaRs(am), 0.01) @test pvalue(DQ) ≈ 2.3891461144184955e-11 str = sprint(show, DQ) @test startswith(str, "Engle and Manganelli's (2004) DQ test (out of sample)") @test ARCHModels.testname(DQ) == "Engle and Manganelli's (2004) DQ test (out of sample)" end @testset "multivariate" begin am1 = fit(DCC, DOW29[:, 1:2]) am2 = fit(DCC, DOW29[:, 1:2]; method=:twostep) am3 = MultivariateARCHModel(DCC{1, 1}([1. 0.; 0. 1.], [0., 0.], [GARCH{1, 1}([1., 0., 0.]), GARCH{1, 1}([1., 0., 0.])]), DOW29[:, 1:2]) # not fitted am4 = fit(DCC, DOW29[1:20, 1:29]) # shrinkage n<p @test all(fit(am1).spec.coefs .== am1.spec.coefs) @test all(isapprox(am1.spec.coefs, [0.8912884521017908, 0.05515419379547665], rtol=1e-3)) @test all(isapprox(am2.spec.coefs, [0.8912161306136979, 0.055139392936998946], rtol=1e-3)) @test all(isapprox(am4.spec.coefs, [0.8935938309400944, 6.938893903907228e-18], atol=1e-3)) @test all(isapprox(stderror(am1)[1:2], [0.0434344187103969, 0.020778846682313102], rtol=1e-3)) @test all(isapprox(stderror(am2)[1:2], [0.030405542205923865, 0.014782869078355866], rtol=1e-4)) @test all(isapprox(predict(am1; what=:correlation)[:], [1.0, 0.4365129466277069, 0.4365129466277069, 1.0], rtol=1e-4)) @test all(isapprox(predict(am1; what=:covariance)[:], [6.916591739333349, 1.329392154000225, 1.329392154000225, 1.340972349032465], rtol=1e-4)) @test_throws ErrorException predict(am1; what=:bla) @test residuals(am1)[1, 1] ≈ 0.5107042609407892 @test_throws ErrorException fit(DCC, DOW29; method=:bla) @test_throws ARCHModels.NumParamError DCC{1, 1}([1. 0.; 0. 1.], [1., 0., 0.], [GARCH{1, 1}([1., 0., 0.]), GARCH{1, 1}([1., 0., 0.])]) @test_throws AssertionError DCC{1, 1}([1. 0.; 0. 1.], [0., 0.], [GARCH{1, 1}([1., 0., 0.]), GARCH{1, 1}([1., 0., 0.])]; method=:bla) @test coefnames(am1) == ["β₁", "α₁", "ω₁", "β₁₁", "α₁₁", "μ₁", "ω₂", "β₁₂", "α₁₂", "μ₂"] @test ARCHModels.nparams(DCC{1, 1}) == 2 ARCHModels.nparams(DCC{1, 1, GARCH{1, 1}, Float64, 2}) == 8 @test ARCHModels.presample(DCC{1, 2, GARCH{3, 4}}) == 4 @test ARCHModels.presample(DCC{1, 2, GARCH{3, 4, Float64}, Float64, 2}) == 4 io = IOBuffer() str = sprint(io -> show(io, am1)) @test startswith(str, "\n2-dim") str = sprint(io -> show(io, am3)) @test startswith(str, "\n2-dim") str = sprint(io -> show(io, am3.spec)) @test startswith(str, "DCC{1, 1") str = sprint(io -> show(IOContext(io, :se=>true), am1)) @test occursin("Std.Error", str) @test_throws ErrorException fit(DCC, DOW29[1:11, :]) # shrinkage requires n>=12 @test loglikelihood(am1) ≈ -9810.905799585276 @test ARCHModels.nparams(MultivariateStdNormal) == 0 @test typeof(MultivariateStdNormal{Float64, 3}()) == typeof(MultivariateStdNormal{Float64, 3}(Float64[])) @test typeof(MultivariateStdNormal(Float64, 3)) == typeof(MultivariateStdNormal{Float64, 3}(Float64[])) @test typeof(MultivariateStdNormal(Float64[], 3)) == typeof(MultivariateStdNormal{Float64, 3}(Float64[])) @test typeof(MultivariateStdNormal{Float64}(3)) == typeof(MultivariateStdNormal{Float64, 3}(Float64[])) @test typeof(MultivariateStdNormal(3)) == typeof(MultivariateStdNormal{Float64, 3}(Float64[])) @test all(isapprox(rand(StableRNG(1), MultivariateStdNormal(2)), [-0.5325200748641231, 0.098465514284785], rtol=1e-6)) @test coefnames(MultivariateStdNormal) == String[] @test ARCHModels.distname(MultivariateStdNormal) == "Multivariate Normal" am = am1 am.spec.coefs .= [.7, .2] ams = simulate(am; rng=StableRNG(1)) @test isfitted(ams) == false fit!(ams) @test isfitted(ams) == true @test all(isapprox(ams.spec.coefs, [0.6611103068430052, 0.23089471530783906], rtol=1e-4)) simulate!(ams; rng=StableRNG(2)) @test ams.fitted == false fit!(ams) @test all(isapprox(ams.spec.coefs, [0.6660369039914371, 0.2329752007155509], rtol=1e-4)) amc = fit(DCC{1, 2, GARCH{3, 2}}, DOW29[:, 1:4]; meanspec=AR{3}) ams = simulate(amc, T; rng=StableRNG(1)) fit!(ams) @test all(isapprox(ams.meanspec[1].coefs, [-0.1040426570178552, 0.03639191550146291, 0.033657970110476075, -0.020300480179225668], rtol=1e-4)) ame = fit(DCC{1, 2, EGARCH{1, 1, 1}}, DOW29[:, 1:4]) ams = simulate(ame, T; rng=StableRNG(1)) fit!(ams) @test all(isapprox(ams.spec.univariatespecs[1].coefs, [0.05335407349997172, -0.08008165178490954, 0.9627467601623543, 0.22652855417695117], rtol=1e-4)) ccc = fit(CCC, DOW29[:, 1:4]) @test dof(ccc) == 16 @test ccc.spec.R[1, 2] ≈ 0.37095654552885643 @test isapprox(stderror(ccc)[1], 0.06298215515406534, rtol=1e-3) cccs = simulate(ccc, T; rng=StableRNG(1)) @test cccs.data[end, 1] ≈ -0.8530862593689736 @test coefnames(ccc) == ["ω₁", "β₁₁", "α₁₁", "μ₁", "ω₂", "β₁₂", "α₁₂", "μ₂", "ω₃", "β₁₃", "α₁₃", "μ₃", "ω₄", "β₁₄", "α₁₄", "μ₄"] io = IOBuffer() str = sprint(io -> show(io, ccc)) @test startswith(str, "\n4-dim") io = IOBuffer() str = sprint(io -> show(io, ccc.spec)) @test startswith(str, "DCC{0, 0") end @testset "fixes" begin X = [-49.78749999996362, 2951.7375000000347, 1496.437499999923, 973.8375, 2440.662500000128, 2578.062500000019, 1064.42500000032, 3378.0625000002415, -1971.5000000001048, 4373.899999999894] am = fit(GARCH{2, 2}, X; meanspec = ARMA{2, 2}); @test length(volatilities(am)) == 10 @test isapprox(loglikelihood(am), -86.01774, rtol=.001) @test isapprox(predict(fit(ARMA{1, 1}, BG96), :return, 2), -0.025; atol=0.01) end
ARCHModels
https://github.com/s-broda/ARCHModels.jl.git
[ "MIT" ]
2.4.0
2340e4e8045e230732b223378c31b573c8598ad3
docs
2119
[![version](https://juliahub.com/docs/ARCHModels/version.svg)](https://juliahub.com/ui/Packages/ARCHModels/cpjxl) [![Docs (stable)](https://img.shields.io/badge/docs-stable-blue.svg)](https://s-broda.github.io/ARCHModels.jl/stable) [![Docs (dev)](https://img.shields.io/badge/docs-dev-blue.svg)](https://s-broda.github.io/ARCHModels.jl/dev) [![Build status (Linux, MacOS, Windows)](https://github.com/s-broda/ARCHModels.jl/workflows/CI/badge.svg)](https://github.com/s-broda/ARCHModels.jl/actions?query=workflow%3ACI) [![Coverage (codecov)](http://codecov.io/github/s-broda/ARCHModels.jl/coverage.svg?branch=master)](http://codecov.io/github/s-broda/ARCHModels.jl?branch=master) [![pkgeval](https://juliaci.github.io/NanosoldierReports/pkgeval_badges/A/ARCHModels.svg)](https://juliaci.github.io/NanosoldierReports/pkgeval_badges/A/ARCHModels.html) [![DOI](https://zenodo.org/badge/95967480.svg)](https://zenodo.org/badge/latestdoi/95967480) # The ARCHModels Package for Julia ARCH (Autoregressive Conditional Heteroskedasticity) models are a class of models designed to capture a feature of financial returns data known as *volatility clustering*, *i.e.*, the fact that large (in absolute value) returns tend to cluster together, such as during periods of financial turmoil, which then alternate with relatively calmer periods. This package provides efficient routines for simulating, estimating, and testing a variety of GARCH models. # Installation `ARCHModels` is a registered Julia package. To install it in Julia 1.0 or later, do ``` add ARCHModels ``` in the Pkg REPL mode (which is entered by pressing `]` at the prompt). # Documentation The extensive documentation is available [here](https://s-broda.github.io/ARCHModels.jl/stable/). # Citation If you use this package in your research, please consider citing [our paper](https://doi.org/10.18637/jss.v107.i05). # Acknowledgements This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 750559. <img src="docs/src/assets/EULOGO.jpg" width="240">
ARCHModels
https://github.com/s-broda/ARCHModels.jl.git
[ "MIT" ]
2.4.0
2340e4e8045e230732b223378c31b573c8598ad3
docs
2434
# The ARCHModels Package ARCH (Autoregressive Conditional Heteroskedasticity) models are a class of models designed to capture a feature of financial returns data known as *volatility clustering*, *i.e.*, the fact that large (in absolute value) returns tend to cluster together, such as during periods of financial turmoil, which then alternate with relatively calmer periods. The basic ARCH model was introduced by Engle (1982, Econometrica, pp. 987–1008), who in 2003 was awarded a Nobel Memorial Prize in Economic Sciences for its development. Today, the most popular variant is the generalized ARCH, or GARCH, model and its various extensions, due to Bollerslev (1986, Journal of Econometrics, pp. 307 - 327). The basic GARCH(1,1) model for a sample of daily asset returns ``\{r_t\}_{t\in\{1,\ldots,T\}}`` is ```math r_t=\sigma_tz_t,\quad z_t\sim\mathrm{N}(0,1),\quad \sigma_t^2=\omega+\alpha r_{t-1}^2+\beta \sigma_{t-1}^2,\quad \omega, \alpha, \beta>0,\quad \alpha+\beta<1. ``` This can be extended by including additional lags of past squared returns and volatilities: the GARCH(p, q) model has ``q`` of the former and ``p`` of the latter. Another generalization is to allow ``z_t`` to follow other, non-Gaussian distributions. This package implements simulation, estimation, and model selection for the following univariate models: * ARCH(q) * GARCH(p, q) * TGARCH(o, p, q) * EGARCH(o, p q) The conditional mean can be specified as either zero, an intercept, a linear regression model, or an ARMA(p, q) model. As for error distributions, the user may choose among the following: * Standard Normal * Standardized Student's ``t`` * Standardized Hansen Skewed ``t`` * Standardized Generalized Error Distribution For instance, a GARCH(1,1) model with a conditional mean from an AR(1) model with normally distributed errors can be estimated by `fit(GARCH{1,1}, data; meanspec=AR{1}, dist=StdNormal)`. In addition, the following multivariate models are supported: * CCC * DCC(p, q) ## Installation `ARCHModels` is a registered Julia package. To install it in Julia 1.0 or later, do ``` add ARCHModels ``` in the Pkg REPL mode (which is entered by pressing `]` at the prompt). ## Acknowledgements This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 750559. ![EU LOGO](assets/EULOGO.jpg)
ARCHModels
https://github.com/s-broda/ARCHModels.jl.git
[ "MIT" ]
2.4.0
2340e4e8045e230732b223378c31b573c8598ad3
docs
1440
# Introduction Consider a sample of daily asset returns ``\{r_t\}_{t\in\{1,\ldots,T\}}``. All models covered in this package share the same basic structure, in that they decompose the return into a conditional mean and a mean-zero innovation. In the univariate case, ```math r_t=\mu_t+a_t,\quad \mu_t\equiv\mathbb{E}[r_t\mid\mathcal{F}_{t-1}],\quad \sigma_t^2\equiv\mathbb{E}[a_t^2\mid\mathcal{F}_{t-1}], ``` ``z_t\equiv a_t/\sigma_t`` is identically and independently distributed according to some law with mean zero and unit variance, and ``\\{\mathcal{F}_t\\}`` is the natural filtration of ``\\{r_t\\}`` (i.e., it encodes information about past returns). In the multivariate case, ``r_t\in\mathbb{R}^d``, and the general model structure is ```math r_t=\mu_t+a_t,\quad \mu_t\equiv\mathbb{E}[r_t\mid\mathcal{F}_{t-1}],\quad \Sigma_t\equiv\mathbb{E}[a_ta_t^\mathrm{\scriptsize T}]\mid\mathcal{F}_{t-1}]. ``` ARCH models specify the conditional volatility ``\sigma_t`` (or in the multivariate case, the conditional covariance matrix ``\Sigma_t``) in terms of past returns, conditional (co)variances, and potentially other variables. This package represents an ARCH model as an instance of either [`UnivariateARCHModel`](@ref) or [`MultivariateARCHModel`](@ref). These are subtypes [`ARCHModel`](@ref) and implement the interface of `StatisticalModel` from [`StatsBase`](http://juliastats.github.io/StatsBase.jl/stable/statmodels.html).
ARCHModels
https://github.com/s-broda/ARCHModels.jl.git
[ "MIT" ]
2.4.0
2340e4e8045e230732b223378c31b573c8598ad3
docs
5183
```@meta DocTestSetup = quote using ARCHModels end ``` # Multivariate Analogously to the univariate case, an instance of [`MultivariateARCHModel`](@ref) contains a matrix of data (with observations in rows and assets in columns), and encapsulates information about the [covariance specification](@ref covspec) (e.g., [CCC](@ref) or [DCC](@ref)), the [mean specification](@ref mvmeanspec), and the [error distribution](@ref mvdistspec). [`MultivariateARCHModel`](@ref)s support many of the same methods as [`UnivariateARCHModel`](@ref)s, with a few noteworthy differences: the prediction targets for [`predict`](@ref) are `:covariances` and `:correlations` for predicting ``\Sigma_t`` and ``R_t``, respectively, and the new functions [`covariances`](@ref) and [`correlations`](@ref) respectively return the in-sample estimates of ``\Sigma_t`` and ``R_t``. ## [Covariance specifications](@id covspec) The dynamics of ``\Sigma_t`` are modelled as subtypes of [`MultivariateVolatilitySpec`](@ref). ### Conditional correlation models The main challenge in multivariate ARCH modelling is the _curse of dimensionality_: allowing each of the ``(d)(d+1)/2`` elements of ``\Sigma_t`` to depend on the past returns of all ``d`` other assets requires ``O(d^4)`` parameters without imposing additional structure. Conditional correlation models approach this issue by decomposing ``\Sigma_t`` as ```math \Sigma_t=D_t R_t D_t, ``` where ``R_t`` is the conditional correlation matrix and ``D_t`` is a diagonal matrix containing the volatilities of the individual assets, which are modelled as univariate ARCH processes. #### DCC The dynamic conditional correlation (DCC) model of [Engle (2002)](https://doi.org/10.1198/073500102288618487) imposes a GARCH-type structure on the ``R_t``. In particular, for a DCC(p, q) model (with covariance targeting), ```math R_{ij, t} = \frac{Q_{ij,t}}{\sqrt{Q_{ii,t}Q_{jj,t}}}, ``` where ```math Q_{t} \equiv\bar{Q}(1-\bar\alpha-\bar\beta)+\sum_{i=1}^{p} \beta_iQ_{t-i}+\sum_{i=1}^{q}\alpha_i\epsilon_{t-i}\epsilon_{t-i}^\mathrm{\scriptsize T}, ``` ``\bar{\alpha}\equiv\sum_{i=1}^q\alpha_i``, ``\bar{\beta}\equiv\sum_{i=1}^q\beta_i``, ``\epsilon_{t}\equiv D_t^{-1}a_t$``, ``Q_{t}=\mathrm{cov} (\epsilon_t|F_{t-1})``, and ``\bar{Q}=\mathrm{cov}(\epsilon_{t})``. It is available as `DCC{p, q}`. The constructor takes as inputs ``\bar{Q}``, a vector of coefficients, and a vector of `UnivariateARCHModel`s: ```jldoctest julia> DCC{1, 1}([1. .5; .5 1.], [.9, .05], [GARCH{1, 1}([1., .9, .05]) for _ in 1:2]) DCC{1, 1, GARCH{1, 1}} specification. ────────────────────── β₁ α₁ ────────────────────── Parameters: 0.9 0.05 ────────────────────── ``` The DCC model is typically estimated in two steps, by first fitting univariate ARCH models to the individual assets and saving the standardized residuals ``\{\epsilon_t\}``, and then estimating the DCC parameters from those. [Engle (2002)](https://doi.org/10.1198/073500102288618487) provides the details and expressions for the standard errors. By default, this package employs an alternative estimator due to [Engle, Ledoit, and Wolf (2019)](https://doi.org/10.1080/07350015.2017.1345683) which is better suited to large-dimensional problems. It achieves this by i) estimating ``\bar{Q}`` with a nonlinear shrinkage estimator instead of the sample covariance of $\epsilon_t$, and ii) estimating the DCC parameters by maximizing the sum of the pairwise log-likelihoods, rather than the joint log-likelihood over all assets, thereby avoiding the inversion of large matrices during the optimization. The estimation method is controlled by passing the `method` keyword to the constructor. Possible values are `:largescale` (the default), and `:twostep`. #### CCC The CCC (constant conditional correlation) model of [Bollerslev (1990)](https://doi.org/10.2307/2109358) models ``R_t=R`` as constant. It is the special case of the DCC model in which ``p=q=0``: ```jldoctest julia> CCC == DCC{0, 0} true ``` As such, the constructor has the exact same signature, except that the DCC parameters must be passed as a zero-length vector: ```jldoctest julia> CCC([1. .5; .5 1.], Float64[], [GARCH{1, 1}([1., .9, .05]) for _ in 1:2]) DCC{0, 0, GARCH{1, 1}} specification. No estimable parameters. ``` As for the DCC model, the constructor accepts a `method` keyword argument with possible values `:largescale` (default) or `:twostep` that determines whether ``R`` will be estimated by nonlinear shrinkage or the sample correlation of the ``\epsilon_t``. ## [Mean Specifications](@id mvmeanspec) The conditional mean of a [`MultivariateARCHModel`](@ref) is specified by a vector of [`MeanSpec`](@ref)s as described under [Mean specifications](@ref meanspec). ## [Multivariate Standardized Distributions](@id mvdistspec) Multivariate standardized distributions subtype [`MultivariateStandardizedDistribution`](@ref). Currently, only [`MultivariateStdNormal`](@ref) is available. Note that under mild assumptions, the Gaussian (quasi-)MLE consistently estimates the (multivariate) ARCH parameters even if Gaussianity is violated. ```@meta DocTestSetup = nothing DocTestFilters = nothing ```
ARCHModels
https://github.com/s-broda/ARCHModels.jl.git
[ "MIT" ]
2.4.0
2340e4e8045e230732b223378c31b573c8598ad3
docs
157
# Reference guide ## Index ```@index ``` ## Public API ```@meta DocTestFilters = r".*[0-9\.]" ``` ```@autodocs Modules = [ARCHModels] Private = false ```
ARCHModels
https://github.com/s-broda/ARCHModels.jl.git
[ "MIT" ]
2.4.0
2340e4e8045e230732b223378c31b573c8598ad3
docs
13134
# Univariate An instance of [`UnivariateARCHModel`](@ref) contains a vector of data (such as equity returns), and encapsulates information about the [volatility specification](@ref volaspec) (e.g., [GARCH](@ref) or [EGARCH](@ref)), the [mean specification](@ref meanspec) (e.g., whether an intercept is included), and the [error distribution](@ref Distributions). In general a univariate model can be written ```math r_t = \mu_t + \sigma_t z_t, \quad z_t \stackrel{\text{iid}}{\sim} F. ``` Hence, a univariate model is a triple of functions ``\left(\mu_t, \sigma_t, F \right)``. The table below lists current options for the conditional mean, conditional variance, and the error distribution. | ``\mu_t`` | ``\sigma_t`` | ``F`` | | --- | --- | --- | | `NoIntercept` | `ARCH{0}` (constant) | `StdNormal` | | `Intercept` | `ARCH{q}` | `StdT` | | `ARMA{p,q}` | `GARCH{p,q}` | `StdGED` | | `Regression(X)` | `TGARCH{o,p,q}` | Std User-Defined | | | `EGARCH{o,p,q}` | | Details on these options are given below. ## [Volatility specifications](@id volaspec) Volatility specifications describe the evolution of ``\sigma_t``. They are modelled as subtypes of [`UnivariateVolatilitySpec`](@ref). There is one type for each class of (G)ARCH model, parameterized by the number(s) of lags (e.g., ``p``, ``q`` for a GARCH(p, q) model). For each volatility specification, the order of the parameters in the coefficient vector is such that all parameters pertaining to the first type parameter (``p``) appear before those pertaining to the second (``q``). ### ARCH With ``a_t\equiv r_t-\mu_t``, the ARCH(q) volatility specification, due to [Engle (1982)](https://doi.org/10.2307/1912773 ), is ```math \sigma_t^2=\omega+\sum_{i=1}^q\alpha_i a_{t-i}^2, \quad \omega, \alpha_i>0,\quad \sum_{i=1}^{q} \alpha_i<1. ``` The corresponding type is [`ARCH{q}`](@ref). For example, an ARCH(2) model with ``ω=1``, ``α₁=.5``, and ``α₂=.4`` is obtained with ```jldoctest TYPES julia> using ARCHModels julia> ARCH{2}([1., .5, .4]) TGARCH{0, 0, 2} specification. ────────────────────────── ω α₁ α₂ ────────────────────────── Parameters: 1.0 0.5 0.4 ────────────────────────── ``` ### GARCH The GARCH(p, q) model, due to [Bollerslev (1986)](https://doi.org/10.1016/0304-4076(86)90063-1), specifies the volatility as ```math \sigma_t^2=\omega+\sum_{i=1}^p\beta_i \sigma_{t-i}^2+\sum_{i=1}^q\alpha_i a_{t-i}^2, \quad \omega, \alpha_i, \beta_i>0,\quad \sum_{i=1}^{\max p,q} \alpha_i+\beta_i<1. ``` It is available as [`GARCH{p, q}`](@ref): ```jldoctest TYPES julia> GARCH{1, 1}([1., .9, .05]) GARCH{1, 1} specification. ─────────────────────────── ω β₁ α₁ ─────────────────────────── Parameters: 1.0 0.9 0.05 ─────────────────────────── ``` This creates a GARCH(1, 1) specification with ``ω=1``, ``β=.9``, and ``α=.05``. ### TGARCH As may have been guessed from the output above, the ARCH and GARCH models are actually special cases of a more general class of models, known as TGARCH (Threshold GARCH), due to [Glosten, Jagannathan, and Runkle (1993)](https://doi.org/10.1111/j.1540-6261.1993.tb05128.x). The TGARCH{o, p, q} model takes the form ```math \sigma_t^2=\omega+\sum_{i=1}^o\gamma_i a_{t-i}^2 1_{a_{t-i}<0}+\sum_{i=1}^p\beta_i \sigma_{t-i}^2+\sum_{i=1}^q\alpha_i a_{t-i}^2, \quad \omega, \alpha_i, \beta_i, \gamma_i>0, \sum_{i=1}^{\max o,p,q} \alpha_i+\beta_i+\gamma_i/2<1. ``` The TGARCH model allows the volatility to react differently (typically more strongly) to negative shocks, a feature known as the (statistical) leverage effect. Is available as [`TGARCH{o, p, q}`](@ref): ```jldoctest TYPES julia> TGARCH{1, 1, 1}([1., .04, .9, .01]) TGARCH{1, 1, 1} specification. ───────────────────────────────── ω γ₁ β₁ α₁ ───────────────────────────────── Parameters: 1.0 0.04 0.9 0.01 ───────────────────────────────── ``` ### EGARCH The EGARCH{o, p, q} volatility specification, due to [Nelson (1991)](https://doi.org/10.2307/2938260), is ```math \log(\sigma_t^2)=\omega+\sum_{i=1}^o\gamma_i z_{t-i}+\sum_{i=1}^p\beta_i \log(\sigma_{t-i}^2)+\sum_{i=1}^q\alpha_i (|z_{t-i}|-\sqrt{2/\pi}), \quad z_t=r_t/\sigma_t,\quad \sum_{i=1}^{p}\beta_i<1. ``` Like the TGARCH model, it can account for the leverage effect. The corresponding type is [`EGARCH{o, p, q}`](@ref): ```jldoctest TYPES julia> EGARCH{1, 1, 1}([-0.1, .1, .9, .04]) EGARCH{1, 1, 1} specification. ───────────────────────────────── ω γ₁ β₁ α₁ ───────────────────────────────── Parameters: -0.1 0.1 0.9 0.04 ───────────────────────────────── ``` ## [Mean specifications](@id meanspec) Mean specifications serve to specify ``\mu_t``. They are modelled as subtypes of [`MeanSpec`](@ref). They contain their parameters as (possibly empty) vectors, but convenience constructors are provided where appropriate. The following specifications are available: * A zero mean: ``\mu_t=0``. Available as [`NoIntercept`](@ref): ```jldoctest TYPES julia> NoIntercept() # convenience constructor, eltype defaults to Float64 NoIntercept{Float64}(Float64[]) ``` * An intercept: ``\mu_t=\mu``. Available as [`Intercept`](@ref): ```jldoctest TYPES julia> Intercept(3) # convenience constructor Intercept{Float64}([3.0]) ``` * A linear regression model: ``\mu_t=\mathbf{x}_t^{\mathrm{\scriptscriptstyle T}}\boldsymbol{\beta}``. Available as [`Regression`](@ref): ```jldoctest TYPES julia> X = ones(100, 1); julia> reg = Regression(X); ``` In this example, we created a regression model containing one regressor, given by a column of ones; this is equivalent to including an intercept in the model (see [`Intercept`](@ref) above). In general, the constructor should be passed a design matrix ``\mathbf{X}`` containing ``\{\mathbf{x}_t^{\mathrm{\scriptscriptstyle T}}\}_{t=1\ldots T}`` as its rows; that is, for a model with ``T`` observations and ``k`` regressors, ``X`` would have dimensions ``T\times k``. Another way to create a linear regression with ARCH errors is to pass a `LinearModel` or `DataFrameRegressionModel` from [GLM.jl](https://github.com/JuliaStats/GLM.jl) to [`fit`](@ref), as described under [Integration with GLM.jl](@ref). * An ARMA(p, q) model: ``\mu_t=c+\sum_{i=1}^p \varphi_i r_{t-i}+\sum_{i=1}^q \theta_i a_{t-i}``. Available as [`ARMA{p, q}`](@ref): ```jldoctest TYPES julia> ARMA{1, 1}([1., .9, -.1]) ARMA{1, 1, Float64}([1.0, 0.9, -0.1]) ``` Pure AR(p) and MA(q) models are obtained as follows: ```jldoctest TYPES julia> AR{1}([1., .9]) AR{1, Float64}([1.0, 0.9]) julia> MA{1}([1., -.1]) MA{1, Float64}([1.0, -0.1]) ``` ## Distributions ### Built-in distributions Different standardized (mean zero, variance one) distributions for ``z_t`` are available as subtypes of [`StandardizedDistribution`](@ref). `StandardizedDistribution` in turn subtypes `Distribution{Univariate, Continuous}` from [Distributions.jl](https://github.com/JuliaStats/Distributions.jl), though not the entire interface need necessarily be implemented. `StandardizedDistribution`s again hold their parameters as vectors, but convenience constructors are provided. The following are currently available: * [`StdNormal`](@ref), the standard [normal distribution](https://en.wikipedia.org/wiki/Normal_distribution): ```jldoctest TYPES julia> StdNormal() # convenience constructor StdNormal{Float64}(coefs=Float64[]) ``` * [`StdT`](@ref), the standardized [Student's ``t`` distribution](https://en.wikipedia.org/wiki/Student%27s_t-distribution): ```jldoctest TYPES julia> StdT(3) # convenience constructor StdT{Float64}(coefs=[3.0]) ``` * [`StdSkewT`](@ref), the standardized [Hansen skewed ``t`` distribution](https://en.wikipedia.org/wiki/Skewed_generalized_t_distribution#cite_note-hansen-8): ```jldoctest TYPES julia> StdSkewT(3, -0.3) # convenience constructor StdSkewT{Float64}(coefs=[3.0, -0.3]) ``` * [`StdGED`](@ref), the standardized [Generalized Error Distribution](https://en.wikipedia.org/wiki/Generalized_normal_distribution): ```jldoctest TYPES julia> StdGED(1) # convenience constructor StdGED{Float64}(coefs=[1.0]) ``` ### User-defined standardized distributions Apart from the natively supported standardized distributions, it is possible to wrap a continuous univariate distribution from the [Distributions package](https://github.com/JuliaStats/Distributions.jl) in the [`Standardized`](@ref) wrapper type. Below, we reimplement the standardized normal distribution: ```jldoctest TYPES julia> using Distributions julia> const MyStdNormal = Standardized{Normal}; ``` `MyStdNormal` can be used whereever a built-in distribution could, albeit with a speed penalty. Note also that if the underlying distribution (such as `Normal` in the example above) contains location and/or scale parameters, then these are no longer identifiable, which implies that the estimated covariance matrix of the estimators will be singular. A final remark concerns the domain of the parameters: the estimation process relies on a starting value for the parameters of the distribution, say ``\theta\equiv(\theta_1, \ldots, \theta_p)'``. For a distribution wrapped in [`Standardized`](@ref), the starting value for ``\theta_i`` is taken to be a small positive value ϵ. This will fail if ϵ is not in the domain of ``\theta_i``; as an example, the standardized Student's ``t`` distribution is only defined for degrees of freedom larger than 2, because a finite variance is required for standardization. In that case, it is necessary to define a method of the (non-exported) function `startingvals` that returns a feasible vector of starting values, as follows: ```jldoctest TYPES julia> const MyStdT = Standardized{TDist}; julia> ARCHModels.startingvals(::Type{<:MyStdT}, data::Vector{T}) where T = T[3.] ``` ## Working with UnivariateARCHModels The constructor for [`UnivariateARCHModel`](@ref) takes two mandatory arguments: an instance of a subtype of [`UnivariateVolatilitySpec`](@ref), and a vector of returns. The mean specification and error distribution can be changed via the keyword arguments `meanspec` and `dist`, which respectively default to `NoIntercept` and `StdNormal`. For example, to construct a GARCH(1, 1) model with an intercept and ``t``-distributed errors, one would do ```jldoctest TYPES julia> spec = GARCH{1, 1}([1., .9, .05]); julia> data = BG96; julia> am = UnivariateARCHModel(spec, data; dist=StdT(3.), meanspec=Intercept(1.)) GARCH{1, 1} model with Student's t errors, T=1974. ────────────────────────────── μ ────────────────────────────── Mean equation parameters: 1.0 ────────────────────────────── ───────────────────────────────────────── ω β₁ α₁ ───────────────────────────────────────── Volatility parameters: 1.0 0.9 0.05 ───────────────────────────────────────── ────────────────────────────── ν ────────────────────────────── Distribution parameters: 3.0 ────────────────────────────── ``` The model can then be fitted as follows: ```jldoctest TYPES julia> fit!(am) GARCH{1, 1} model with Student's t errors, T=1974. Mean equation parameters: ───────────────────────────────────────────── Estimate Std.Error z value Pr(>|z|) ───────────────────────────────────────────── μ 0.00227251 0.00686802 0.330882 0.7407 ───────────────────────────────────────────── Volatility parameters: ────────────────────────────────────────────── Estimate Std.Error z value Pr(>|z|) ────────────────────────────────────────────── ω 0.00232225 0.00163909 1.41679 0.1565 β₁ 0.884488 0.036963 23.929 <1e-99 α₁ 0.124866 0.0405471 3.07952 0.0021 ────────────────────────────────────────────── Distribution parameters: ───────────────────────────────────────── Estimate Std.Error z value Pr(>|z|) ───────────────────────────────────────── ν 4.11211 0.400384 10.2704 <1e-24 ───────────────────────────────────────── ``` It should, however, rarely be necessary to construct a `UnivariateARCHModel` manually via its constructor; typically, instances of it are created by calling [`fit`](@ref), [`selectmodel`](@ref), or [`simulate`](@ref). !!! note If you *do* manually construct a `UnivariateARCHModel`, be aware that the constructor does not create copies of its arguments. This means that, e.g., calling `simulate!` on the constructed model will modify your data vector: ```jldoctest TYPES julia> mydata = copy(BG96); mydata[end] 0.528047 julia> am = UnivariateARCHModel(ARCH{0}([1.]), mydata); julia> simulate!(am); julia> mydata[end] ≈ 0.528047 false ``` As discussed earlier, [`UnivariateARCHModel`](@ref) implements the interface of `StatisticalModel` from [`StatsBase`](http://juliastats.github.io/StatsBase.jl/stable/statmodels.html), so you can call `coef`, `coefnames`, `confint`, `dof`, `informationmatrix`, `isfitted`, `loglikelihood`, `nobs`, `score`, `stderror`, `vcov`, etc. on its instances: ```jldoctest TYPES julia> nobs(am) 1974 ``` Other useful methods include [`means`](@ref), [`volatilities`](@ref) and [`residuals`](@ref).
ARCHModels
https://github.com/s-broda/ARCHModels.jl.git
[ "MIT" ]
2.4.0
2340e4e8045e230732b223378c31b573c8598ad3
docs
26796
```@meta DocTestSetup = quote using Random Random.seed!(1) using InteractiveUtils: subtypes end DocTestFilters = r".*[0-9\.]" ``` # Usage ## Preliminaries We focus on univariate ARCH models for most of this section. Multivariate models work quite similarly; the few differences are discussed in [Multivariate models](@ref). We will be using the data from [Bollerslev and Ghysels (1986)](https://doi.org/10.2307/1392425), available as the constant [`BG96`](@ref). The data consist of daily German mark/British pound exchange rates (1974 observations) and are often used in evaluating implementations of (G)ARCH models (see, e.g., [Brooks et.al. (2001)](https://doi.org/10.1016/S0169-2070(00)00070-4). We begin by convincing ourselves that the data exhibit ARCH effects; a quick and dirty way of doing this is to look at the sample autocorrelation function of the squared returns: ```jldoctest MANUAL julia> using ARCHModels julia> autocor(BG96.^2, 1:10, demean=true) # re-exported from StatsBase 10-element Array{Float64,1}: 0.22294073831639766 0.17663183540117078 0.14086005904595456 0.1263198344036979 0.18922204038617135 0.09068404029331875 0.08465365332525085 0.09671690899919724 0.09217329577285414 0.11984168975215709 ``` Using a critical value of ``1.96/\sqrt{1974}=0.044``, we see that there is indeed significant autocorrelation in the squared series. A more formal test for the presence of volatility clustering is [Engle's (1982)](https://doi.org/10.2307/1912773) ARCH-LM test. The test statistic is given by ``LM\equiv TR^2_{aux}``, where ``R^2_{aux}`` is the coefficient of determination in a regression of the squared returns on an intercept and ``p`` of their own lags. The test statistic follows a $\chi^2_p$ distribution under the null of no volatility clustering. ```jldoctest MANUAL julia> ARCHLMTest(BG96, 1) ARCH LM test for conditional heteroskedasticity ----------------------------------------------- Population details: parameter of interest: T⋅R² in auxiliary regression value under h_0: 0 point estimate: 98.12107516935244 Test summary: outcome with 95% confidence: reject h_0 p-value: <1e-22 Details: sample size: 1974 number of lags: 1 LM statistic: 98.12107516935244 ``` The null is strongly rejected, again providing evidence for the presence of volatility clustering. ## Estimation ### Standalone Models Having established the presence of volatility clustering, we can begin by fitting the workhorse model of volatility modeling, a GARCH(1, 1) with standard normal errors; for other model classes such as [`EGARCH`](@ref), see the [section on volatility specifications](@ref volaspec). ```jldoctest MANUAL julia> fit(GARCH{1, 1}, BG96) TGARCH{0,1,1} model with Gaussian errors, T=1974. Mean equation parameters: ─────────────────────────────────────────────── Estimate Std.Error z value Pr(>|z|) ─────────────────────────────────────────────── μ -0.00616637 0.00920152 -0.670147 0.5028 ─────────────────────────────────────────────── Volatility parameters: ───────────────────────────────────────────── Estimate Std.Error z value Pr(>|z|) ───────────────────────────────────────────── ω 0.0107606 0.00649303 1.65725 0.0975 β₁ 0.805875 0.0724765 11.1191 <1e-27 α₁ 0.153411 0.0536404 2.86 0.0042 ───────────────────────────────────────────── ``` This returns an instance of [`UnivariateARCHModel`](@ref), as described in the section [Working with UnivariateARCHModels](@ref). The parameters ``\alpha_1`` and ``\beta_1`` in the volatility equation are highly significant, again confirming the presence of volatility clustering. The standard errors are from a robust (sandwich) estimator of the variance-covariance matrix. Note also that the fitted values are the same as those found by [Bollerslev and Ghysels (1986)](https://doi.org/10.2307/1392425) and [Brooks et.al. (2001)](https://doi.org/10.1016/S0169-2070(00)00070-4) for the same dataset. The [`fit`](@ref) method supports a number of keyword arguments; the full signature is ```julia fit(::Type{<:UnivariateVolatilitySpec}, data::Vector; dist=StdNormal, meanspec=Intercept, algorithm=BFGS(), autodiff=:forward, kwargs...) ``` Their meaning is as follows: - `dist`: the error distribution. A subtype (*not instance*) of [`StandardizedDistribution`](@ref); see Section [Distributions](@ref). - `meanspec=Intercept`: the mean specification. Either a subtype of [`MeanSpec`](@ref) or an instance thereof (for specifications that require additional data, such as [`Regression`](@ref); see the [section on mean specification](@ref meanspec)). If the mean specification in question has a notion of sample size (like [`Regression`](@ref)), then the sample size should match that of the data, or an error will be thrown. As an example, ```jldoctest MANUAL julia> X = ones(length(BG96), 1); julia> reg = Regression(X); julia> fit(GARCH{1, 1}, BG96; meanspec=reg) TGARCH{0,1,1} model with Gaussian errors, T=1974. Mean equation parameters: ──────────────────────────────────────────────── Estimate Std.Error z value Pr(>|z|) ──────────────────────────────────────────────── β₀ -0.00616637 0.00920152 -0.670147 0.5028 ──────────────────────────────────────────────── Volatility parameters: ───────────────────────────────────────────── Estimate Std.Error z value Pr(>|z|) ───────────────────────────────────────────── ω 0.0107606 0.00649303 1.65725 0.0975 β₁ 0.805875 0.0724765 11.1191 <1e-27 α₁ 0.153411 0.0536404 2.86 0.0042 ───────────────────────────────────────────── ``` Here, both `reg` and `BG86` contain 1974 observations. Notice that because in this case `X` contains only a column of ones, the estimation results are equivalent to those obtained with `fit(GARCH{1, 1}, BG96; meanspec=Intercept)` above; the latter is however more memory efficient, as no design matrix needs to be stored. - The remaining keyword arguments are passed on to the optimizer. As an example, an EGARCH(1, 1, 1) model without intercept and with Student's ``t`` errors is fitted as follows: ```jldoctest MANUAL julia> fit(EGARCH{1, 1, 1}, BG96; meanspec=NoIntercept, dist=StdT) EGARCH{1, 1, 1} model with Student's t errors, T=1974. Volatility parameters: ────────────────────────────────────────────── Estimate Std.Error z value Pr(>|z|) ────────────────────────────────────────────── ω -0.0162014 0.0186806 -0.867286 0.3858 γ₁ -0.0378454 0.018024 -2.09972 0.0358 β₁ 0.977687 0.012558 77.8538 <1e-99 α₁ 0.255804 0.0625497 4.08961 <1e-04 ────────────────────────────────────────────── Distribution parameters: ───────────────────────────────────────── Estimate Std.Error z value Pr(>|z|) ───────────────────────────────────────── ν 4.12423 0.40059 10.2954 <1e-24 ───────────────────────────────────────── ``` An alternative approach to fitting a [`UnivariateVolatilitySpec`](@ref) to `BG96` is to first construct a [`UnivariateARCHModel`](@ref) containing the data, and then using [`fit!`](@ref) to modify it in place: ```jldoctest MANUAL julia> spec = GARCH{1, 1}([1., 0., 0.]); julia> am = UnivariateARCHModel(spec, BG96) TGARCH{0,1,1} model with Gaussian errors, T=1974. ──────────────────────────────────────── ω β₁ α₁ ──────────────────────────────────────── Volatility parameters: 1.0 0.0 0.0 ──────────────────────────────────────── julia> fit!(am) TGARCH{0,1,1} model with Gaussian errors, T=1974. Volatility parameters: ───────────────────────────────────────────── Estimate Std.Error z value Pr(>|z|) ───────────────────────────────────────────── ω 0.0108661 0.00657261 1.65324 0.0983 β₁ 0.804431 0.0730161 11.0172 <1e-27 α₁ 0.154597 0.0539139 2.86747 0.0041 ───────────────────────────────────────────── ``` Note that `fit!` will also modify the volatility (and mean and distribution) specifications: ```jldoctest MANUAL julia> spec TGARCH{0,1,1} specification. ────────────────────────────────────────── ω β₁ α₁ ────────────────────────────────────────── Parameters: 0.0108661 0.804431 0.154597 ────────────────────────────────────────── ``` Calling `fit(am)` will return a new instance of `UnivariateARCHModel` instead: ```jldoctest MANUAL julia> am2 = fit(am); julia> am2 === am false julia> am2.spec.coefs == am.spec.coefs true ``` ### Integration with GLM.jl Assuming the [GLM](https://github.com/JuliaStats/GLM.jl) (and possibly [DataFrames](https://github.com/JuliaData/DataFrames.jl)) packages are installed, it is also possible to pass a `LinearModel` (or `TableRegressionModel`) to [`fit`](@ref) instead of a data vector. This is equivalent to using a [`Regression`](@ref) as a mean specification. In the following example, we fit a linear model with [`GARCH{1, 1}`](@ref) errors, where the design matrix consists of a breaking intercept and time trend: ```jldoctest MANUAL julia> using GLM, DataFrames julia> data = DataFrame(B=[ones(1000); zeros(974)], T=1:1974, Y=BG96); julia> model = lm(@formula(Y ~ B*T), data); julia> fit(GARCH{1, 1}, model) GARCH{1, 1} model with Gaussian errors, T=1974. Mean equation parameters: ──────────────────────────────────────────────────────── Estimate Std.Error z value Pr(>|z|) ──────────────────────────────────────────────────────── (Intercept) 0.0610079 0.0598973 1.01854 0.3084 B -0.104142 0.0660947 -1.57565 0.1151 T -3.79532e-5 3.61469e-5 -1.04997 0.2937 B & T 8.11722e-5 4.95122e-5 1.63944 0.1011 ──────────────────────────────────────────────────────── Volatility parameters: ───────────────────────────────────────────── Estimate Std.Error z value Pr(>|z|) ───────────────────────────────────────────── ω 0.0103294 0.00591883 1.74518 0.0810 β₁ 0.808781 0.066084 12.2387 <1e-33 α₁ 0.152648 0.0499813 3.0541 0.0023 ───────────────────────────────────────────── ``` ## Model selection The function [`selectmodel`](@ref) can be used for automatic model selection, based on an information crititerion. Given a class of model (i.e., a subtype of [`UnivariateVolatilitySpec`](@ref)), it will return a fitted [`UnivariateARCHModel`](@ref), with the lag length parameters (i.e., ``p`` and ``q`` in the case of [`GARCH`](@ref)) chosen to minimize the desired criterion. The [BIC](https://en.wikipedia.org/wiki/Bayesian_information_criterion) is used by default. As an example, the following selects the optimal (minimum AIC) EGARCH(o, p, q) model, where o, p, q < 2, assuming ``t`` distributed errors. ```jldoctest MANUAL julia> selectmodel(EGARCH, BG96; criterion=aic, maxlags=2, dist=StdT) EGARCH{1, 1, 2} model with Student's t errors, T=1974. Mean equation parameters: ───────────────────────────────────────────── Estimate Std.Error z value Pr(>|z|) ───────────────────────────────────────────── μ 0.00196126 0.00695292 0.282077 0.7779 ───────────────────────────────────────────── Volatility parameters: ─────────────────────────────────────────────── Estimate Std.Error z value Pr(>|z|) ─────────────────────────────────────────────── ω -0.0031274 0.0112456 -0.278101 0.7809 γ₁ -0.0307681 0.0160754 -1.91398 0.0556 β₁ 0.989056 0.0073654 134.284 <1e-99 α₁ 0.421644 0.0678139 6.21767 <1e-09 α₂ -0.229068 0.0755326 -3.0327 0.0024 ─────────────────────────────────────────────── Distribution parameters: ───────────────────────────────────────── Estimate Std.Error z value Pr(>|z|) ───────────────────────────────────────── ν 4.18795 0.418697 10.0023 <1e-22 ───────────────────────────────────────── ``` Passing the keyword argument `show_trace=true` will show the criterion for each model after it is estimated. Any unspecified lag length parameters in the mean specification (e.g., ``p`` and ``q`` for [`ARMA`](@ref)) will be optimized over as well: ```jldoctest MANUAL julia> selectmodel(ARCH, BG96; meanspec=AR, maxlags=2, minlags=0) TGARCH{0,0,2} model with Gaussian errors, T=1974. Mean equation parameters: ─────────────────────────────────────────────── Estimate Std.Error z value Pr(>|z|) ─────────────────────────────────────────────── c -0.00681363 0.00979192 -0.695843 0.4865 ─────────────────────────────────────────────── Volatility parameters: ─────────────────────────────────────────── Estimate Std.Error z value Pr(>|z|) ─────────────────────────────────────────── ω 0.119455 0.00995804 11.9959 <1e-32 α₁ 0.314089 0.0578241 5.4318 <1e-7 α₂ 0.183502 0.0455194 4.0313 <1e-4 ─────────────────────────────────────────── ``` Here, an ARCH(2) without AR terms model was selected; this is possible because we specified `minlags=0` (the default is 1). Note that jointly optimizing over the lag lengths of both the mean and volatility specification can result in an explosion of the number of models that must be estimated; e.g., selecting the best model from the class of [`TGARCH{o, p, q}`](@ref)-[`ARMA{p, q}`](@ref) models results in ``5^\mathbf{maxlags}`` models being estimated. It may be preferable to fix the lag length of the mean specification: `am = selectmodel(ARCH, BG96; meanspec=AR{1})` considers only ARCH(q)-AR(1) models. The number of models to be estimated can also be reduced by specifying a value for `minlags` that is greater than the default of 1. Similarly, one may restrict the lag length of the volatility specification and select only among different mean specifications. E.g., the following will select the best [`ARMA{p, q}`](@ref) specification with constant variance: ```jldoctest MANUAL julia> am = selectmodel(ARCH{0}, BG96; meanspec=ARMA) TGARCH{0,0,0} model with Gaussian errors, T=1974. Mean equation parameters: ───────────────────────────────────────────── Estimate Std.Error z value Pr(>|z|) ───────────────────────────────────────────── c -0.0266446 0.0174716 -1.52502 0.1273 φ₁ -0.621838 0.160741 -3.86857 0.0001 θ₁ 0.643588 0.154303 4.17095 <1e-4 ───────────────────────────────────────────── Volatility parameters: ───────────────────────────────────────── Estimate Std.Error z value Pr(>|z|) ───────────────────────────────────────── ω 0.220848 0.0118061 18.7063 <1e-77 ───────────────────────────────────────── ``` In this case, an ARMA(1, 1) specification was selected. As a convenience, the above can equivalently achieved using `selectmodel(ARMA, BG96)`. As a final example, a construction like the following can be used to automatically select not just the lag length, but also the class of GARCH model and the error distribution: ``` julia> models = [selectmodel(VS, BG96; dist=D, minlags=1, maxlags=2) for VS in subtypes(UnivariateVolatilitySpec), D in setdiff(subtypes(StandardizedDistribution), [Standardized])]; julia> best_model = models[findmin(bic.(models))[2]] EGARCH{1,1,2} model with Hansen's Skewed t errors, T=1974. Mean equation parameters: ────────────────────────────────────────────── Estimate Std.Error z value Pr(>|z|) ────────────────────────────────────────────── μ -0.00875068 0.00799958 -1.09389 0.2740 ────────────────────────────────────────────── Volatility parameters: ───────────────────────────────────────────────── Estimate Std.Error z value Pr(>|z|) ───────────────────────────────────────────────── ω -0.00459084 0.011674 -0.393253 0.6941 γ₁ -0.0316575 0.0163004 -1.94213 0.0521 β₁ 0.987834 0.00762841 129.494 <1e-99 α₁ 0.410542 0.0683002 6.01085 <1e-8 α₂ -0.212549 0.0753432 -2.82107 0.0048 ───────────────────────────────────────────────── Distribution parameters: ──────────────────────────────────────────── Estimate Std.Error z value Pr(>|z|) ──────────────────────────────────────────── ν 4.28215 0.441225 9.70513 <1e-21 λ -0.0908645 0.032503 -2.79558 0.0052 ──────────────────────────────────────────── ``` ## Value at Risk One of the primary uses of ARCH models is for estimating and forecasting [Value at Risk](https://en.wikipedia.org/wiki/Value_at_risk). Basic in-sample estimates for the Value at Risk implied by an estimated [`UnivariateARCHModel`](@ref) can be obtained using [`VaRs`](@ref): ```@setup PLOT using ARCHModels isdir("assets") || mkdir("assets") ``` ```@repl PLOT am = fit(GARCH{1, 1}, BG96); vars = VaRs(am, 0.05); using Plots plot(-BG96, legend=:none, xlabel="\$t\$", ylabel="\$-r_t\$"); plot!(vars, color=:purple); ENV["GKSwstype"]="svg"; savefig(joinpath("assets", "VaRplot.svg")); nothing # hide ``` ![VaR Plot](assets/VaRplot.svg) ## Forecasting The [`predict(am::UnivariateARCHModel)`](@ref) method can be used to construct one-step ahead forecasts for a number of quantities. Its signature is ``` predict(am::UnivariateARCHModel, what=:volatility, horizon=1; level=0.01) ``` The optional argument `what` controls which object is predicted; the choices are `:volatility` (the default), `:variance`, `:return`, and `:VaR`. The forecast horizon is controlled by the optional argument `horizon`, and the VaR level with the keyword argument `level`. Note that when `horizon` is greater than 1, only the value *at* the horizon is returned, not the intermediate predictions; if you need those, use broadcasting: ```jldoctest MANUAL julia> am = fit(GARCH{1, 1}, BG96); julia> predict.(am, :variance, 1:3) 3-element Vector{Float64}: 0.14708779684765233 0.15185983792481744 0.15643758950119205 ``` Not all prediction targets and models support multi-step forecasts. One way to use `predict` is in a backtesting exercise. The following code snippet constructs out-of-sample VaR forecasts for the `BG96` data by re-estimating the model in a rolling window fashion, and then tests the correctness of the VaR specification with `DQTest`. ```jldoctest MANUAL; filter=r"[0-9\.]+" T = length(BG96); windowsize = 1000; vars = similar(BG96); for t = windowsize+1:T-1 m = fit(GARCH{1, 1}, BG96[t-windowsize:t]); vars[t+1] = predict(m, :VaR; level=0.05); end DQTest(BG96[windowsize+1:end], vars[windowsize+1:end], 0.05) # output Engle and Manganelli's (2004) DQ test (out of sample) ----------------------------------------------------- Population details: parameter of interest: Wald statistic in auxiliary regression value under h_0: 0 point estimate: 2.5272613188161177 Test summary: outcome with 95% confidence: fail to reject h_0 p-value: 0.4704 Details: sample size: 974 number of lags: 1 VaR level: 0.05 DQ statistic: 2.5272613188161177 ``` ## Model diagnostics and specification tests Testing volatility models in general relies on the estimated conditional volatilities ``\hat{\sigma}_t`` and the standardized residuals ``\hat{z}_t\equiv (r_t-\hat{\mu}_t)/\hat{\sigma}_t``, accessible via [`volatilities(::UnivariateARCHModel)`](@ref) and [`residuals(::UnivariateARCHModel)`](@ref), respectively. The non-standardized residuals ``\hat{u}_t\equiv r_t-\hat{\mu}_t`` can be obtained by passing `standardized=false` as a keyword argument to [`residuals`](@ref). One possibility to test a volatility specification is to apply the ARCH-LM test to the standardized residuals. This is achieved by calling [`ARCHLMTest`](@ref) on the estimated [`UnivariateARCHModel`](@ref): ```jldoctest MANUAL julia> am = fit(GARCH{1, 1}, BG96); julia> ARCHLMTest(am, 4) # 4 lags in test regression. ARCH LM test for conditional heteroskedasticity ----------------------------------------------- Population details: parameter of interest: T⋅R² in auxiliary regression value under h_0: 0 point estimate: 4.211230445141555 Test summary: outcome with 95% confidence: fail to reject h_0 p-value: 0.3782 Details: sample size: 1974 number of lags: 4 LM statistic: 4.211230445141555 ``` By default, the number of lags is chosen as the maximum order of the volatility specification (e.g., ``\max(p, q)`` for a GARCH(p, q) model). Here, the test does not reject, indicating that a GARCH(1, 1) specification is sufficient for modelling the volatility clustering (a common finding). ## Simulation To simulate from a [`UnivariateARCHModel`](@ref), use [`simulate`](@ref). You can either specify the [`UnivariateVolatilitySpec`](@ref) (and optionally the distribution and mean specification) and desired number of observations, or pass an existing [`UnivariateARCHModel`](@ref). Use [`simulate!`](@ref) to modify the data in place. Example: ```jldoctest MANUAL julia> am3 = simulate(GARCH{1, 1}([1., .9, .05]), 1000; warmup=500, meanspec=Intercept(5.), dist=StdT(3.)) TGARCH{0,1,1} model with Student's t errors, T=1000. ────────────────────────────── μ ────────────────────────────── Mean equation parameters: 5.0 ────────────────────────────── ───────────────────────────────────────── ω β₁ α₁ ───────────────────────────────────────── Volatility parameters: 1.0 0.9 0.05 ───────────────────────────────────────── ────────────────────────────── ν ────────────────────────────── Distribution parameters: 3.0 ────────────────────────────── julia> am4 = simulate(am3, 1000); # passing the number of observations is optional, the default being nobs(am3) ``` Care must be taken if the mean specification has a notion of sample size, as in the case of [`Regression`](@ref): because the sample size must match that of the data to be simulated, one must pass `warmup=0`, or an error will be thrown. For example, `am3` above could also have been simulated from as follows: ```jldoctest MANUAL julia> reg = Regression([5], ones(1000, 1)); julia> am3 = simulate(GARCH{1, 1}([1., .9, .05]), 1000; warmup=0, meanspec=reg, dist=StdT(3.)) TGARCH{0,1,1} model with Student's t errors, T=1000. ────────────────────────────── β₀ ────────────────────────────── Mean equation parameters: 5.0 ────────────────────────────── ───────────────────────────────────────── ω β₁ α₁ ───────────────────────────────────────── Volatility parameters: 1.0 0.9 0.05 ───────────────────────────────────────── ────────────────────────────── ν ────────────────────────────── Distribution parameters: 3.0 ────────────────────────────── ``` ## Multivariate models In this section, we will be using the percentage returns on 29 stocks from the DJIA from 03/19/2008 through 04/11/2019, available as [`DOW29`](@ref). Fitting a multivariate ARCH model proceeds similarly to the univariate case, by passing the type of the multivariate ARCH specification to [`fit`](@ref). If the lag length (and in the case of the DCC model, the univariate specification) is left unspecified, then these default to 1 (and [GARCH](@ref)); i.e., the following is equivalent to both `fit(DCC{1, 1}, DOW29)` and `fit(DCC{1, 1, GARCH{1, 1}}, DOW29)`: ```jldoctest MANUAL julia> m = fit(DCC, DOW29[:, 1:2]) 2-dimensional DCC{1, 1} - TGARCH{0,1,1} - Intercept{Float64} specification, T=2785. DCC parameters, estimated by largescale procedure: ───────────────────── β₁ α₁ ───────────────────── 0.891288 0.0551542 ───────────────────── Calculating standard errors is expensive. To show them, use `show(IOContext(stdout, :se=>true), <model>)` ``` The returned object is of type [`MultivariateARCHModel`](@ref). Like [`UnivariateARCHModel`](@ref), it implements most of the interface of `StatisticalModel` and hence behaves similarly, so this section documents only the major differences. The standard errors are not calculated by default. As stated in the output, they can be shown as follows: ```jldoctest MANUAL julia> show(IOContext(stdout, :se=>true), m) 2-dimensional DCC{1, 1} - TGARCH{0,1,1} - Intercept{Float64} specification, T=2785. DCC parameters, estimated by largescale procedure: ──────────────────────────────────────────── Estimate Std.Error z value Pr(>|z|) ──────────────────────────────────────────── β₁ 0.891288 0.0434362 20.5195 <1e-92 α₁ 0.0551542 0.0207797 2.65423 0.0079 ──────────────────────────────────────────── ``` Alternatively, `stderror(m)` can be used. As in the univariate case, [`fit`](@ref) supports a number of keyword arguments. The full signature is ```julia fit(spec, data: method=:largescale, dist=MultivariateStdNormal, meanspec=Intercept, algorithm=BFGS(), autodiff=:forward, kwargs...) ``` Their meaning is similar to the univariate case. In particular, `meanspec` can be any univariate mean specification, as described in under [mean specification](@ref meanspec). Certain models support different estimation methods; in the case of the DCC model, these are `:twostep` and `:largescale`, which respectively refer to the methods of [Engle (2002)](https://doi.org/10.1198/073500102288618487) and [Engle, Ledoit, and Wolf (2019)](https://doi.org/10.1080/07350015.2017.1345683). The latter sacrifices some amount of statistical efficiency for much-improved computational speed and is the default. Again paralleling the univariate case, one may also construct a [`MultivariateARCHModel`](@ref) by hand, and then call [`fit`](@ref) or [`fit!`](@ref) on it, but this is rather cumbersome, as it requires specifying all parameters of the covariance specification. One-step ahead forecasts of the covariance or correlation matrix are obtained by respectively passing `what=:covariance` (the default) or `what=:correlation` to [`predict`](@ref): ```jldoctest MANUAL julia> predict(m, what=:correlation) 2×2 Array{Float64,2}: 1.0 0.436513 0.436513 1.0 ``` In the multivariate case, there are three types of residuals that can be considered: the unstandardized residuals, ``a_t``; the devolatized residuals, ``\epsilon_t``, where ``\epsilon_{it}\equiv a_{it}/\sigma_{it}``; and the decorrelated residuals ``z_t\equiv \Sigma^{-1/2}_ta_t``. When called on a [`MultivariateARCHModel`](@ref), [`residuals`](@ref) returns ``\{z_t\}`` by default. Passing `decorrelated=false` returns ``\{\epsilon_t\}``, and passing `standardized=false` returns ``\{a_t\}`` (note that `decorrelated=true` implies `standardized=true`). ```@meta DocTestSetup = nothing DocTestFilters = nothing ```
ARCHModels
https://github.com/s-broda/ARCHModels.jl.git
[ "Apache-2.0" ]
1.0.7
e88f8d8125552a7f991eac90e9a08e5f0057a811
code
826
using Documenter, PressureDrop isCI = get(ENV, "CI", nothing) == "true" #Travis populates this env variable by default makedocs( clean = true, strict = true, pages = [ "Overview" => "index.md", "Core functions" => "core.md", #includes types "Plotting" => "plotting.md", "Pressure & temperature correlations" => "correlations.md", "PVT properties" => "pvt.md", "Valve calculations" => "valves.md", "Utilities" => "utilities.md", "Extending" => "extending.md", "Similar tools" => "similartools.md"], sitename="PressureDrop.jl", format = Documenter.HTML(prettyurls = isCI) ) if isCI deploydocs(repo = "github.com/jnoynaert/PressureDrop.jl.git") end
PressureDrop
https://github.com/jnoynaert/PressureDrop.jl.git
[ "Apache-2.0" ]
1.0.7
e88f8d8125552a7f991eac90e9a08e5f0057a811
code
5729
# A (sloppy) example of some actual analysis done using PressureDrop.jl to generate normalized pressure plots for several wells through time. wells = ["<wellname>", "<wellname>"] baseline_pressure = Dict("<wellname>" => 3125, "<wellname>" => 3191) patternplot = true max_depth = 8500 start_date = "21-Jul-2019" import Printf using DataFrames using RCall function initialize_R() R""" library(DBI) library(dplyr) library(tidyr) print(paste0('Connecting to ', $db)) connection <- DBI::dbConnect(odbc::odbc(), driver = 'SQL Server', server = '<Aries Server>', database = '<Aries DB>') """ end # note that variable interpolation in @R_str is actual variable interpolation, not string interpolation function get_production(well) R""" query <- paste0(" select d.D_DATE as Date, p.PropNum, isnull(case when d.Oil < 0 then 0 else d.Oil end,0) as Oil, isnull(case when d.Gas < 0 then 0 else d.Gas end,0) as Gas, isnull(case when d.Water < 0 then 0 else d.Water end,0) as Water, isnull(d.Press_FTP,0) as TP, isnull(d.Press_Csg,0) as CP, isnull(d.Press_Inj,0) as GasInj, d.REMARKS as Comments from ARIES.AC_DAILY as d inner join ARIES.AC_PROPERTY as p on d.PROPNUM = p.PROPNUM WHERE p.AREA = 'oklahoma' and p.LEASE like '%",$well,"%' and d.D_DATE >= '",$start_date,"' ORDER BY D_DATE asc") prod <- dbGetQuery(connection, query) %>% tidyr::fill(Water, TP, CP, GasInj, .direction = 'down') %>% replace_na(list(Oil = 0, Gas = 0)) """ @rget prod @assert length(unique(prod.PropNum)) == 1 "Query for $well accidentally pulled in $(length(unique(prod.PropNum))) propnums" return prod end function finish_R() R""" dbDisconnect(connection) """ end using PressureDrop using Gadfly function calculate_pressures(well, prod, default_GOR = 500) well_path = read_survey(path = "Surveys/$well.csv", skiplines = 4, maxdepth = max_depth) valves = read_valves(path = "GL designs/$well.csv", skiplines = 1) model = WellModel(wellbore = well_path, roughness = 0.001, valves = valves, pressurecorrelation = HagedornAndBrown, WHP = 0, CHP = 0, dp_est = 25, temperature_method = "Shiu", BHT = 160, geothermal_gradient = 0.8, q_o = 0, q_w = 500, GLR = 0, naturalGLR = 0, APIoil = 38.2, sg_water = 1.05, sg_gas = 0.65) FBHP = Array{Float64, 1}(undef, nrow(prod)) for day in 1:nrow(prod) if prod.Oil[day] + prod.Water[day] == 0 FBHP[day] = NaN else model.WHP = prod.TP[day] model.CHP = prod.CP[day] model.q_o = prod.Oil[day] model.q_w = prod.Water[day] model.naturalGLR = model.q_o + model.q_w <= 0 ? 0 : max( prod.Gas[day] * 1000 / (model.q_o + model.q_w) , default_GOR * model.q_o / (model.q_o + model.q_w) ) #force minimum GLR model.GLR = model.q_o + model.q_w <= 0 ? 0 : max( (prod.Gas[day] + prod.GasInj[day]) * 1000 / (model.q_o + model.q_w) , model.naturalGLR) FBHP[day] = gaslift_model!(model, find_injectionpoint = true, dp_min = 100) |> x -> x[1][end] end end return model, FBHP, gaslift_model!(model, find_injectionpoint = true, dp_min = 100) end ticks = log10.([0.1:0.1:0.9;1.0:1:10] |> collect) function plot_normP_data(production, FBHP, well) production = production[.!isnan.(FBHP), :] FBHP = FBHP[.!isnan.(FBHP)] initial_pressure = haskey(baseline_pressure, well) ? baseline_pressure[well] : maximum(FBHP) println("Baseline pressure: $initial_pressure") norm_rate = (production.Oil .+ production.Water) ./ (initial_pressure .- FBHP) println("Initial PI: $(norm_rate[1])") println("Max PI: $(maximum(norm_rate))") println("Final PI: $(norm_rate[end])") return plot(layer(x = 1:length(norm_rate), y = norm_rate, Geom.path), Scale.y_log10(minvalue = 10^-1., maxvalue = 10^1, labels = y-> Printf.@sprintf("%0.1f", 10^y)), Scale.x_log10, Guide.ylabel("Normalized Total Fluid (bpd / ΔP)"), Guide.xlabel("Normalized Time (days)"), Guide.yticks(ticks = ticks), Guide.title(well)) end Base.CoreLogging.disable_logging(Base.CoreLogging.Warn) #prevent dumping all of the @infos from normal PressureDrop functions initialize_R() GL_plots = Dict() pressure_plots = Dict() for well in wells println("Evaluating $well...") production = get_production(well)[1:end-1, :] #last day is usually 0 prod model, FBHPs, GL_data = calculate_pressures(well, production); #GL data is tuple of TP, CP, valve data #generate plots 1 by 1 GL_plots[well] = plot_gaslift(model.wellbore, GL_data[1], GL_data[2], model.temperatureprofile, GL_data[3], well) pressure_plots[well] = plot_normP_data(production, FBHPs, well) println("$well complete") end finish_R() #set_default_plot_size(6inch,8inch) using Compose # pressure plots if patternplot # lay out the wells in question according to gunbarrel view set_default_plot_size(12inch,5inch) gridstack(Union{Plot,Compose.Context}[pressure_plots["Mayes 1706 2-16MH"] pressure_plots["Mayes 1706 4-16MH"] ]) |> SVG("pattern.svg") else set_default_plot_size(6inch,8inch) for well in wells GL_plots[well] |> SVG("GL plots/$well GL.svg") end end
PressureDrop
https://github.com/jnoynaert/PressureDrop.jl.git
[ "Apache-2.0" ]
1.0.7
e88f8d8125552a7f991eac90e9a08e5f0057a811
code
21700
# Package for computing multiphase pressure profiles for gas lift optimization of oil & gas wells module PressureDrop using Requires import Base.show #to export type printing methods export Wellbore, GasliftValves, WellModel, read_survey, read_valves, pressure_atmospheric, traverse_topdown, casing_traverse_topdown, pressure_and_temp!, pressures_and_temp!, gaslift_model!, plot_pressure, plot_pressures, plot_temperature, plot_pressureandtemp, plot_gaslift, valve_calcs, valve_table, estimate_valve_Rvalue, BeggsAndBrill, HagedornAndBrown, Shiu_wellboretemp, Ramey_temp, Shiu_Beggs_relaxationfactor, linear_wellboretemp, LeeGasViscosity, HankinsonWithWichertPseudoCriticalTemp, HankinsonWithWichertPseudoCriticalPressure, PapayZFactor, KareemEtAlZFactor, KareemEtAlZFactor_simplified, StandingSolutionGOR, StandingBubblePoint, StandingOilVolumeFactor, BeggsAndRobinsonDeadOilViscosity, GlasoDeadOilViscosity, ChewAndConnallySaturatedOilViscosity, GouldWaterVolumeFactor, SerghideFrictionFactor, ChenFrictionFactor const pressure_atmospheric = 14.7 #used to adjust calculations between psia & psig include("types.jl") include("utilities.jl") include("pvtproperties.jl") include("valvecalculations.jl") include("pressurecorrelations.jl") include("tempcorrelations.jl") include("casingcalculations.jl") #file references for examples: const example_surveyfile = joinpath(dirname(dirname(pathof(PressureDrop))), "test/testdata/Sawgrass_9_32/Test_survey_Sawgrass_9.csv") const example_valvefile = joinpath(dirname(dirname(pathof(PressureDrop))), "test/testdata/valvedata_wrappers_1.csv") #lazy loading for Gadfly: function __init__() @require Gadfly = "c91e804a-d5a3-530f-b6f0-dfbca275c004" include("plottingfunctions.jl") end #strip args from a struct and pass as kwargs to a function: macro run(input, func) return quote local var = $(esc(input)) #resolve using the macro call environment local fn = $(esc(func)) fields = fieldnames(typeof(var)) values = map(f -> getfield(var, f), fields) args = (;(f=>v for (f,v) in zip(fields,values))...) #splat and append to convert to NamedTuple that can be passed as kwargs fn(;args...) end end #%% core functions """ `calculate_pressuresegment(<arguments>)` Pressure inputs are in **psia**. Helper function to calculate the pressure drop for a single pipe segment, using an outlet-referenced approach. Method (fixed-point iteration to account for pressure dependence of fluid PVT properties) : 1. Generates PVT properties for the average conditions in the segment for a given estimate for the pressure drop in the second. 2. Calculates a new estimated pressure drop using the PVT properties. 3. Compares the original and new pressure drop estimates to validate the stability of the estimate. 4. Iterate through steps 1-3 until a stable estimate is found (indicated by obtaining a difference between pre- and post-PVT that is within the given error tolerance). """ function calculate_pressuresegment(pressurecorrelation::Function, p_initial, dp_est, t_avg, dh_md, dh_tvd, inclination, uphill_flow, id, roughness, q_o, q_w, GLR, R_b, APIoil, sg_water, sg_gas, Z_correlation::Function, P_pc, T_pc, gas_viscosity_correlation::Function, solutionGORcorrelation::Function, bubblepoint, oilVolumeFactor_correlation::Function, waterVolumeFactor_correlation::Function, dead_oil_viscosity_correlation::Function, live_oil_viscosity_correlation::Function, frictionfactor::Function, error_tolerance = 0.1) function dP(dp) #calculate delta pressure dP as a function of input pressure estimate dp p_avg = p_initial + dp/2 Z = Z_correlation(P_pc, T_pc, p_avg, t_avg) ρ_g = gasDensity_insitu(sg_gas, Z, p_avg, t_avg) B_g = gasVolumeFactor(p_avg, Z, t_avg) μ_g = gas_viscosity_correlation(sg_gas, p_avg, t_avg, Z) R_s = solutionGORcorrelation(APIoil, sg_gas, p_avg, t_avg, R_b, bubblepoint) v_sg = gasvelocity_superficial(q_o, q_w, GLR, R_s, id, B_g) B_o = oilVolumeFactor_correlation(APIoil, sg_gas, R_s, p_avg, t_avg) B_w = waterVolumeFactor_correlation(p_avg, t_avg) v_sl = liquidvelocity_superficial(q_o, q_w, id, B_o, B_w) ρ_l = mixture_properties_simple(q_o, q_w, oilDensity_insitu(APIoil, sg_gas, R_s, B_o), waterDensity_insitu(sg_water, B_w)) σ_l = mixture_properties_simple(q_o, q_w, gas_oil_interfacialtension(APIoil, p_avg, t_avg), gas_water_interfacialtension(p_avg, t_avg)) μ_oD = dead_oil_viscosity_correlation(APIoil, t_avg) μ_l = mixture_properties_simple(q_o, q_w, live_oil_viscosity_correlation(μ_oD, R_s), assumedWaterViscosity) return pressurecorrelation(dh_md, dh_tvd, inclination, id, v_sl, v_sg, ρ_l, ρ_g, σ_l, μ_l, μ_g, roughness, p_avg, frictionfactor, uphill_flow) end dp_calc = dP(dp_est) while abs(dp_est - dp_calc) > error_tolerance dp_est = dp_calc dp_calc = dP(dp_est) end return dp_calc #allows negatives end """ `traverse_topdown(;<named arguments>)` Develop pressure traverse from wellhead down to datum in psia, returning a pressure profile as an Array{Float64,1}. Pressure correlation functions available: - `BeggsAndBrill` with Payne correction factors - `HagedornAndBrown` with Griffith and Wallis bubble flow correction # Arguments All arguments are named keyword arguments. ## Required - `wellbore::Wellbore`: Wellbore object that defines segmentation/mesh, with md, tvd, inclination, and hydraulic diameter - `roughness`: pipe wall roughness in inches - `temperatureprofile::Array{Float64, 1}`: temperature profile (in °F) as an array with **matching entries for each pipe segment defined in the Wellbore input** - `WHP`: outlet pressure (wellhead pressure) in **psig** - `dp_est`: estimated starting pressure differential (in psi) to use for all segments--impacts convergence time - `q_o`: oil rate in stocktank barrels/day - `q_w`: water rate in stb/d - `GLR`: **total** wellhead gas:liquid ratio, inclusive of injection gas, in scf/bbl - `APIoil`: API gravity of the produced oil - `sg_water`: specific gravity of produced water - `sg_gas`: specific gravity of produced gas ## Optional - `injection_point = missing`: injection point in MD for gas lift, above which total GLR is used, and below which natural GLR is used - `naturalGLR = missing`: GLR to use below point of injection, in scf/bbl - `pressurecorrelation::Function = BeggsAndBrill: pressure correlation to use - `error_tolerance = 0.1`: error tolerance for each segment in psi - `molFracCO2 = 0.0`, `molFracH2S = 0.0`: produced gas fractions of hydrogen sulfide and CO2, [0,1] - `pseudocrit_pressure_correlation::Function = HankinsonWithWichertPseudoCriticalPressure`: psuedocritical pressure function to use - `pseudocrit_temp_correlation::Function = HankinsonWithWichertPseudoCriticalTemp`: pseudocritical temperature function to use - `Z_correlation::Function = KareemEtAlZFactor`: natural gas compressibility/Z-factor correlation to use - `gas_viscosity_correlation::Function = LeeGasViscosity`: gas viscosity correlation to use - `solutionGORcorrelation::Function = StandingSolutionGOR`: solution GOR correlation to use - `bubblepoint::Union{Function, Real} = StandingBubblePoint`: either bubble point correlation or bubble point in **psia** - `oilVolumeFactor_correlation::Function = StandingOilVolumeFactor`: oil volume factor correlation to use - `waterVolumeFactor_correlation::Function = GouldWaterVolumeFactor`: water volume factor correlation to use - `dead_oil_viscosity_correlation::Function = GlasoDeadOilViscosity`: dead oil viscosity correlation to use - `live_oil_viscosity_correlation::Function = ChewAndConnallySaturatedOilViscosity`: saturated oil viscosity correction function to use - `frictionfactor::Function = SerghideFrictionFactor`: correlation function for Darcy-Weisbach friction factor """ function traverse_topdown(;wellbore::Wellbore, roughness, temperatureprofile::Array{Float64, 1}, pressurecorrelation::Function = BeggsAndBrill, WHP, dp_est, error_tolerance = 0.1, q_o, q_w, GLR, injection_point = missing, naturalGLR = missing, APIoil, sg_water, sg_gas, molFracCO2 = 0.0, molFracH2S = 0.0, pseudocrit_pressure_correlation::Function = HankinsonWithWichertPseudoCriticalPressure, pseudocrit_temp_correlation::Function = HankinsonWithWichertPseudoCriticalTemp, Z_correlation::Function = KareemEtAlZFactor, gas_viscosity_correlation::Function = LeeGasViscosity, solutionGORcorrelation::Function = StandingSolutionGOR, bubblepoint = StandingBubblePoint, oilVolumeFactor_correlation::Function = StandingOilVolumeFactor, waterVolumeFactor_correlation::Function = GouldWaterVolumeFactor, dead_oil_viscosity_correlation::Function = GlasoDeadOilViscosity, live_oil_viscosity_correlation::Function = ChewAndConnallySaturatedOilViscosity, frictionfactor::Function = SerghideFrictionFactor, kwargs...) #catch extra arguments from a WellModel for convenience @assert q_o >= 0. && q_w >= 0. && GLR >= 0. && (naturalGLR === missing || (GLR >= naturalGLR >= 0.)) "Negative rates or NGLR > GLR not supported." WHP += pressure_atmospheric #convert psig input to psia for internal PVT functions nsegments = length(wellbore.md) @assert nsegments == length(temperatureprofile) "Number of wellbore segments does not match number of temperature points." if !ismissing(injection_point) && !ismissing(naturalGLR) inj_index = searchsortedlast(wellbore.md, injection_point) if wellbore.md[inj_index] != injection_point if (injection_point - wellbore.md[inj_index]) > (wellbore.md[inj_index+1] - injection_point) #choose closest point inj_index += 1 end @info """Specified injection point at $injection_point' MD not explicitly included in wellbore. Using $(round(wellbore.md[inj_index],digits=1))' MD as an approximate match. Use the Wellbore constructor with a set of gas lift valves to add precise injection points.""" end GLRs = vcat(repeat([GLR], inner = inj_index), repeat([naturalGLR], inner = nsegments - inj_index)) R_b = repeat([naturalGLR], inner = nsegments) #reservoir total solution GOR above bpp elseif !ismissing(injection_point) || !ismissing(naturalGLR) @info "Both an injection point and natural GLR should be specified--ignoring partial specification." GLRs = repeat([GLR], inner = nsegments) R_b = GLRs else #no injection point GLRs = repeat([GLR], inner = nsegments) R_b = GLRs end pressures = Array{Float64, 1}(undef, nsegments) pressure_initial = pressures[1] = WHP P_pc = pseudocrit_pressure_correlation(sg_gas, molFracCO2, molFracH2S) _, T_pc, _ = pseudocrit_temp_correlation(sg_gas, molFracCO2, molFracH2S) @inbounds for i in 2:nsegments inclination = (wellbore.inc[i] + wellbore.inc[i-1])/2 dp_est = calculate_pressuresegment(pressurecorrelation, pressure_initial, dp_est, (temperatureprofile[i] + temperatureprofile[i-1])/2, #average temperature wellbore.md[i] - wellbore.md[i-1], #dh_md wellbore.tvd[i] - wellbore.tvd[i-1], #dh_tvd inclination, #average inclination between survey points inclination <= 90.0, #uphill_flow wellbore.id[i], roughness, q_o, q_w, GLRs[i], R_b[i], APIoil, sg_water, sg_gas, Z_correlation, P_pc, T_pc, gas_viscosity_correlation, solutionGORcorrelation, bubblepoint, oilVolumeFactor_correlation, waterVolumeFactor_correlation, dead_oil_viscosity_correlation, live_oil_viscosity_correlation, frictionfactor, error_tolerance) pressure_initial += dp_est pressures[i] = pressure_initial end return pressures .- pressure_atmospheric #convert back to psig for user-facing output end """ `traverse_topdown(;model::WellModel)` calculate top-down traverse from a WellModel object. Requires the following fields to be defined in the model: ... """ function traverse_topdown(model::WellModel) @run model traverse_topdown end """ BHP_summary(pressures, well) Print the summary for a bottomhole pressure traverse of a well. """ function BHP_summary(pressures, well) println("Flowing bottomhole pressure of $(round(pressures[end], digits = 1)) psig at $(well.md[end])' MD.", "\nAverage gradient $(round(pressures[end]/well.md[end], digits = 3)) psi/ft (MD), $(round(pressures[end]/well.tvd[end], digits = 3)) psi/ft (TVD).") end """ `pressure_and_temp(;model::WellModel)` Develop pressure traverse in psia and temperature profile in °F from wellhead down to datum for a WellModel object. Requires the following fields to be defined in the model: Returns a pressure profile as an Array{Float64,1} and updates the passed WellModel's temperature profile, referenced to the measured depths in the original Wellbore object. # Arguments All arguments are defined in the model object; see the `WellModel` documentation for reference. Pressure correlation functions available: - `BeggsAndBrill` with Payne correction factors - `HagedornAndBrown` with Griffith and Wallis bubble flow correction Temperature methods available: - "Shiu" to utilize the Ramey 1962 method with the Shiu 1980 relaxation factor correlation - "linear" for a linear interpolation between wellhead and bottomhole temperature based on TVD ## Required `WellModel` fields - `well::Wellbore`: Wellbore object that defines segmentation/mesh, with md, tvd, inclination, and hydraulic diameter - `roughness`: pipe wall roughness in inches - `temperature_method = "linear"`: temperature method to use; "Shiu" for Ramey method with Shiu relaxation factor, "linear" for linear interpolation - `WHT = missing`: wellhead temperature in °F; required for `temperature_method = "linear"` - `geothermal_gradient = missing`: geothermal gradient in °F per 100 ft; required for `temperature_method = "Shiu"` - `BHT` = bottomhole temperature in °F - `WHP`: absolute outlet pressure (wellhead pressure) in **psig** - `dp_est`: estimated starting pressure differential (in psi) to use for all segments--impacts convergence time - `q_o`: oil rate in stocktank barrels/day - `q_w`: water rate in stb/d - `GLR`: **total** wellhead gas:liquid ratio, inclusive of injection gas, in scf/bbl - `APIoil`: API gravity of the produced oil - `sg_water`: specific gravity of produced water - `sg_gas`: specific gravity of produced gas ## Optional `WellModel` fields - `injection_point = missing`: injection point in MD for gas lift, above which total GLR is used, and below which natural GLR is used - `naturalGLR = missing`: GLR to use below point of injection, in scf/bbl - `pressurecorrelation::Function = BeggsAndBrill: pressure correlation to use - `error_tolerance = 0.1`: error tolerance for each segment in psi - `molFracCO2 = 0.0`, `molFracH2S = 0.0`: produced gas fractions of hydrogen sulfide and CO2, [0,1] - `pseudocrit_pressure_correlation::Function = HankinsonWithWichertPseudoCriticalPressure`: psuedocritical pressure function to use - `pseudocrit_temp_correlation::Function = HankinsonWithWichertPseudoCriticalTemp`: pseudocritical temperature function to use - `Z_correlation::Function = KareemEtAlZFactor`: natural gas compressibility/Z-factor correlation to use - `gas_viscosity_correlation::Function = LeeGasViscosity`: gas viscosity correlation to use - `solutionGORcorrelation::Function = StandingSolutionGOR`: solution GOR correlation to use - `bubblepoint::Union{Function, Real} = StandingBubblePoint`: either bubble point correlation or bubble point in **psia** - `oilVolumeFactor_correlation::Function = StandingOilVolumeFactor`: oil volume factor correlation to use - `waterVolumeFactor_correlation::Function = GouldWaterVolumeFactor`: water volume factor correlation to use - `dead_oil_viscosity_correlation::Function = GlasoDeadOilViscosity`: dead oil viscosity correlation to use - `live_oil_viscosity_correlation::Function = ChewAndConnallySaturatedOilViscosity`: saturated oil viscosity correction function to use - `frictionfactor::Function = SerghideFrictionFactor`: correlation function for Darcy-Weisbach friction factor - `outlet_referenced = true`: whether to use outlet pressure (WHP) or inlet pressure (BHP) for starting point """ function pressure_and_temp!(m::WellModel, summary = true) if m.temperature_method == "linear" @assert !(any(ismissing.((m.WHT, m.BHT)))) "Must specific a wellhead temperature & BHT to utilize linear temperature method." m.temperatureprofile = @run m linear_wellboretemp elseif m.temperature_method == "Shiu" @assert !(any(ismissing.((m.BHT, m.geothermal_gradient)))) "Must specify a geothermal gradient & BHT to utilize Shiu/Ramey temperature method.\nRefer to published geothermal gradient maps for your region to establish a sensible default." m.temperatureprofile = @run m Shiu_wellboretemp else throw(ArgumentError("Invalid temperature method. Use one of (\"Shiu\", \"linear\").")) end pressures = traverse_topdown(m) summary ? BHP_summary(pressures, m.wellbore) : nothing return pressures end """ `pressures_and_temp!(m::WellModel)` Returns a tubing pressure profile as an Array{Float64,1}, casing pressure profile as an Array{Float64,1}, and updates the passed WellModel's temperature profile, referenced to the measured depths in the original Wellbore object. # Arguments See `WellModel` documentation. """ function pressures_and_temp!(m::WellModel, summary = true) tubing_pressures = pressure_and_temp!(m, summary) casing_pressures = casing_traverse_topdown(m) return tubing_pressures, casing_pressures end """ `gaslift_model!(m::WellModel; find_injectionpoint::Bool = false, dp_min = 100)` Returns a tubing pressure profile as an Array{Float64,1}, casing pressure profile as an Array{Float64,1}, valve data table, and updates the passed WellModel's temperature profile, # Arguments See `WellModel` documentation. - `find_injectionpoint::Bool = false`: whether to automatically infer the injection point (taken as the lowest reasonable point of lift based on differential pressure)* - `dp_min = 100`: minimum casing-tubing differential pressure at depth to infer an injection point *"greedy opening" heuristic: select _lowest_ non-orifice valve where CP @ depth is within operating envelope (below opening pressure but still above closing pressure) and has greater than the indicated differential pressure (`dp_min`) """ function gaslift_model!(m::WellModel, summary = false; find_injectionpoint::Bool = false, dp_min = 100) if find_injectionpoint m.injection_point = m.wellbore.md[end] elseif m.injection_point === missing || m.naturalGLR === missing @info "Performing gas lift calculations without defined injection information (point of injection, natural GLR) and without falling back to a calculated injection point." end tubing_pressures, casing_pressures = pressures_and_temp!(m, false); valvedata, injection_depth = valve_calcs(valves = m.valves, well = m.wellbore, sg_gas = m.sg_gas_inj, tubing_pressures = tubing_pressures, casing_pressures = casing_pressures, tubing_temps = m.temperatureprofile, casing_temps = m.temperatureprofile .* m.casing_temp_factor, dp_min = dp_min) #currently doesn't account for changing temp profile if find_injectionpoint @info "Inferred injection depth @ $injection_depth' MD." m.injection_point = injection_depth tubing_pressures = traverse_topdown(m) casing_pressures = casing_traverse_topdown(m) valvedata, _ = valve_calcs(valves = m.valves, well = m.wellbore, sg_gas = m.sg_gas_inj, tubing_pressures = tubing_pressures, casing_pressures = casing_pressures, tubing_temps = m.temperatureprofile, casing_temps = m.temperatureprofile .* m.casing_temp_factor, dp_min = dp_min) end summary ? BHP_summary(tubing_pressures, m.wellbore) : nothing return tubing_pressures, casing_pressures, valvedata end end #module PressureDrop
PressureDrop
https://github.com/jnoynaert/PressureDrop.jl.git
[ "Apache-2.0" ]
1.0.7
e88f8d8125552a7f991eac90e9a08e5f0057a811
code
5140
""" `calculate_casing_pressuresegment(<arguments>)` Helper function to calculate the pressure drop for a single casing segment containing only injection gas, using a inlet-referenced (casing head referenced) approach. Assumes no friction or entrained liquid -- uses density only. Pressure inputs are in **psia**. Solutions are obtained using fixed-point iteration. See `casing_traverse_topdown`. """ function calculate_casing_pressuresegment(p_initial, dp_est, t_avg, dh_tvd, sg_gas, Z_correlation::Function, P_pc, T_pc, error_tolerance = 0.1) function dP(dp) p_avg = p_initial + dp/2 Z = Z_correlation(P_pc, T_pc, p_avg, t_avg) ρ_g = gasDensity_insitu(sg_gas, Z, p_avg, t_avg) return (1/144.0) * ρ_g * dh_tvd end dp_calc = dP(dp_est) while abs(dp_est - dp_calc) > error_tolerance dp_est = dp_calc dp_calc = dP(dp_est) end return dp_calc end """ `casing_traverse_topdown(;<named arguments>)` Develops pressure traverse from casing head down to datum in psia, returning a pressure profile as an Array{Float64,1}. Uses only density and is only applicable to pure gas injection, i.e. assumes no friction loss and no liquid entrained in gas stream (reasonable assumptions for relatively dry gas taken through several compression stages and injected through relatively large casing). Pressure inputs are in **psig**. # Arguments All arguments are named keyword arguments. ## Required - `wellbore::Wellbore`: Wellbore object that defines segmentation/mesh, with md, tvd, inclination, and hydraulic diameter - `temperatureprofile::Array{Float64, 1}`: temperature profile (in °F) as an array with **matching entries for each pipe segment defined in the Wellbore input** - `CHP`: casing head pressure, i.e. absolute surface injection pressure in **psig** - `dp_est`: estimated starting pressure differential (in psi) to use for all segments--impacts convergence time - `sg_gas`: specific gravity of produced gas ## Optional - `error_tolerance = 0.1`: error tolerance for each segment in psi - `molFracCO2 = 0.0`, `molFracH2S = 0.0`: produced gas fractions of hydrogen sulfide and CO2, [0,1] - `pseudocrit_pressure_correlation::Function = HankinsonWithWichertPseudoCriticalPressure`: psuedocritical pressure function to use - `pseudocrit_temp_correlation::Function = HankinsonWithWichertPseudoCriticalTemp`: pseudocritical temperature function to use - `Z_correlation::Function = KareemEtAlZFactor`: natural gas compressibility/Z-factor correlation to use """ function casing_traverse_topdown(;wellbore::Wellbore, temperatureprofile::Array{Float64, 1}, CHP, dp_est, error_tolerance = 0.1, sg_gas, molFracCO2 = 0.0, molFracH2S = 0.0, pseudocrit_pressure_correlation::Function = HankinsonWithWichertPseudoCriticalPressure, pseudocrit_temp_correlation::Function = HankinsonWithWichertPseudoCriticalTemp, Z_correlation::Function = KareemEtAlZFactor) CHP += pressure_atmospheric nsegments = length(wellbore.md) @assert nsegments == length(temperatureprofile) "Number of wellbore segments does not match number of temperature points." pressures = Array{Float64, 1}(undef, nsegments) pressure_initial = pressures[1] = CHP P_pc = pseudocrit_pressure_correlation(sg_gas, molFracCO2, molFracH2S) _, T_pc, _ = pseudocrit_temp_correlation(sg_gas, molFracCO2, molFracH2S) @inbounds for i in 2:nsegments dp_calc = calculate_casing_pressuresegment(pressure_initial, dp_est, (temperatureprofile[i] + temperatureprofile[i-1])/2, #average temperature wellbore.tvd[i] - wellbore.tvd[i-1], sg_gas, Z_correlation, P_pc, T_pc, error_tolerance) pressure_initial += dp_calc pressures[i] = pressure_initial end return pressures .- pressure_atmospheric end """ `casing_traverse_topdown(m::WellModel)` Remaps casing traverse to work with WellModels """ function casing_traverse_topdown(m::WellModel) casing_traverse_topdown(;wellbore = m.wellbore, temperatureprofile = m.temperatureprofile .* m.casing_temp_factor, CHP = m.CHP, dp_est = m.dp_est_inj, error_tolerance = m.error_tolerance_inj, sg_gas = m.sg_gas_inj, molFracCO2 = m.molFracCO2_inj, molFracH2S = m.molFracH2S_inj, pseudocrit_pressure_correlation = m.pseudocrit_pressure_correlation, pseudocrit_temp_correlation = m.pseudocrit_temp_correlation, Z_correlation = m.Z_correlation) end
PressureDrop
https://github.com/jnoynaert/PressureDrop.jl.git
[ "Apache-2.0" ]
1.0.7
e88f8d8125552a7f991eac90e9a08e5f0057a811
code
9365
using .Gadfly using Compose: compose, context """ `plot_pressure(well::Wellbore, pressures, ctitle = nothing)` Plot pressure profile for a given wellbore using the pressure outputs from one of the pressure traverse functions. See `traverse_topdown` and `pressure_and_temp`. """ function plot_pressure(well::Wellbore, pressures, ctitle = nothing) plot(x = pressures, y = well.md, Geom.path, Theme(default_color = "deepskyblue"), Scale.x_continuous(format = :plain), Guide.xlabel("Pressure (psia)"), Scale.y_continuous(format = :plain), Guide.ylabel("Measured Depth (ft)"), Guide.title(ctitle), Coord.cartesian(yflip = true)) end """ `plot_pressure(m::WellModel, pressures, ctitle = nothing)` Plot pressure profile for a given wellbore using the pressure outputs from one of the pressure traverse functions. The `wellbore` field must be defined in the passed WellModel. See `traverse_topdown` and `pressure_and_temp`. """ function plot_pressure(m::WellModel, pressures, ctitle = nothing) plot_pressure(m.wellbore, pressures, ctitle) end """ `function plot_pressures(well::Wellbore, tubing_pressures, casing_pressures, ctitle = nothing, valvedepths = [])` Plot relevant gas lift pressures for a given wellbore and set of calculated pressures. See `traverse_topdown`, `casing_traverse_topdown`, and `pressure_and_temp`. """ function plot_pressures(well::Wellbore, tubing_pressures, casing_pressures, ctitle = nothing, valvedepths = []) plot(layer(x = tubing_pressures, y = well.md, Geom.path, Theme(default_color = "deepskyblue")), layer(x = casing_pressures, y = well.md, Geom.path, Theme(default_color = "springgreen")), layer(yintercept = valvedepths, Geom.hline(color = "black", style = :dash)), Scale.x_continuous(format = :plain), Guide.xlabel("Pressure (psia)"), Scale.y_continuous(format = :plain), Guide.ylabel("Measured Depth (ft)"), Guide.title(ctitle), Coord.cartesian(yflip = true)) end """ `plot_pressures(m::WellModel, tubing_pressures, casing_pressures, ctitle = nothing)` Plot relevant gas lift pressures for a given wellbore and set of calculated pressures. The `wellbore` field must be defined in the passed WellModel, with the `valves` field optional. See `traverse_topdown`, `casing_traverse_topdown`, and `pressure_and_temp`. """ function plot_pressures(m::WellModel, tubing_pressures, casing_pressures, ctitle = nothing) valvedepths = m.valves === missing ? [] : m.valves.md plot_pressures(m.wellbore, tubing_pressures, casing_pressures, ctitle, valvedepths) end """ `plot_temperature(well::Wellbore, temps, ctitle = nothing)` Plot temperature profile for a given wellbore using the pressure outputs from one of the pressure traverse functions. See `linear_wellboretemp` and `Shiu_wellboretemp`. """ function plot_temperature(well::Wellbore, temps, ctitle = nothing) plot(x = temps, y = well.md, Geom.path, Theme(default_color = "red"), Scale.x_continuous(format = :plain), Guide.xlabel("Temperature (°F)"), Scale.y_continuous(format = :plain), Guide.ylabel("Measured Depth (ft)"), Guide.title(ctitle), Coord.cartesian(yflip = true)) end """ `plot_pressureandtemp(well::Wellbore, tubing_pressures, casing_pressures, temps, ctitle = nothing, valvedepths = [])` Plot pressure & temperature profiles for a given wellbore using the pressure & temperature outputs from the pressure traverse & temperature functions. See `traverse_topdown`,`pressure_and_temp`, `linear_wellboretemp`, `Shiu_wellboretemp`. """ function plot_pressureandtemp(well::Wellbore, tubing_pressures, casing_pressures, temps, ctitle = nothing, valvedepths = []) pressure = plot(layer(x = tubing_pressures, y = well.md, Geom.path, Theme(default_color = "deepskyblue")), layer(x = casing_pressures, y = well.md, Geom.path, Theme(default_color = "mediumspringgreen")), layer(yintercept = valvedepths, Geom.hline(color = "black", style = :dash)), Scale.x_continuous(format = :plain), Guide.xlabel("psia"), Scale.y_continuous(format = :plain), Guide.ylabel("Measured Depth (ft)"), Guide.title(ctitle), Coord.cartesian(yflip = true), Theme(plot_padding=[5mm, 0mm, 5mm, 5mm])) placeholdertitle = ctitle === nothing ? nothing : " " temp = plot(x = temps, y = well.md, Geom.path, Theme(default_color = "red"), Scale.x_continuous(format = :plain), Guide.xlabel("°F"), Scale.y_continuous(labels = nothing), Guide.yticks(label = false), Guide.ylabel(nothing), Guide.title(placeholdertitle), Coord.cartesian(yflip = true), Theme(default_color = "red", plot_padding=[5mm, 5mm, 5mm, 5mm])) hstack(compose(context(0, 0, 0.75, 1), render(pressure)), compose(context(0.75, 1, 0.5, 1), render(temp))) end """ `plot_pressureandtemp(m::WellModel, tubing_pressures, casing_pressures, ctitle = nothing)` Plot pressure & temperature profiles for a given wellbore using the pressure & temperature outputs from the pressure traverse & temperature functions. The `wellbore` and `temperatureprofile` fields must be defined in the passed WellModel, with the `valves` field optional. See `traverse_topdown`,`pressure_and_temp`, `linear_wellboretemp`, `Shiu_wellboretemp`. """ function plot_pressureandtemp(m::WellModel, tubing_pressures, casing_pressures, ctitle = nothing) valvedepths = m.valves === missing ? [] : m.valves.md plot_pressureandtemp(m.wellbore, tubing_pressures, casing_pressures, m.temperatureprofile, ctitle, valvedepths) end """ `plot_gaslift(well::Wellbore, tubing_pressures, casing_pressures, temps, valvedata, ctitle = nothing)` Plot pressure & temperature profiles along with valve depths and opening/closing pressures for a gas lift well. Requires a valve table in the same format as returned by the `valve_calcs` function. See `traverse_topdown`,`pressure_and_temp`, `linear_wellboretemp`, `Shiu_wellboretemp`, `valve_calcs`. """ function plot_gaslift(well::Wellbore, tubing_pressures, casing_pressures, temps, valvedata, ctitle = nothing) valvedepths = valvedata[:,2] pressure = plot(layer(x = [valvedata[:,12];valvedata[:,13]], y = [valvedepths;valvedepths], Geom.point, Theme(default_color = "mediumpurple3")), #PVC and PVO layer(x = tubing_pressures, y = well.md, Geom.path, Theme(default_color = "deepskyblue")), layer(x = casing_pressures, y = well.md, Geom.path, Theme(default_color = "mediumspringgreen")), layer(yintercept = valvedepths, Geom.hline(color = "black", style = :dash)), Scale.x_continuous(format = :plain), Guide.xlabel("psia"), Scale.y_continuous(format = :plain), Guide.ylabel("Measured Depth (ft)"), Guide.title(ctitle), Coord.cartesian(yflip = true), Theme(plot_padding=[5mm, 0mm, 5mm, 5mm])) placeholdertitle = ctitle === nothing ? nothing : " " #generate a blank title to align the top of the plots if needed temp = plot(x = temps, y = well.md, Geom.path, Theme(default_color = "red"), Scale.x_continuous(format = :plain), Guide.xlabel("°F"), Scale.y_continuous(labels = nothing), Guide.yticks(label = false), Guide.ylabel(nothing), Guide.title(placeholdertitle), Coord.cartesian(yflip = true), Guide.manual_color_key("", ["TP", "CP", "Valves", "PVO/PVC"], ["deepskyblue", "mediumspringgreen", "black", "mediumpurple3"]), Theme(default_color = "red", plot_padding=[5mm, 5mm, 5mm, 5mm])) hstack(compose(context(0, 0, 0.65, 1), render(pressure)), compose(context(0.65, 0, 0.35, 1), render(temp))) end """ `plot_gaslift(m::WellModel, tubing_pressures, casing_pressures, valvedata, ctitle = nothing)` Plot pressure & temperature profiles along with valve depths and opening/closing pressures for a gas lift well. Requires a valve table in the same format as returned by the `valve_calcs` function. The passed WellModel must also have the `wellbore`, `temperatureprofile`, and `valves` fields defined. See `traverse_topdown`,`pressure_and_temp`, `linear_wellboretemp`, `Shiu_wellboretemp`, `valve_calcs`. """ function plot_gaslift(m::WellModel, tubing_pressures, casing_pressures, valvedata, ctitle = nothing) plot_gaslift(m.wellbore, tubing_pressures, casing_pressures, m.temperatureprofile, valvedata, ctitle) end
PressureDrop
https://github.com/jnoynaert/PressureDrop.jl.git
[ "Apache-2.0" ]
1.0.7
e88f8d8125552a7f991eac90e9a08e5f0057a811
code
18987
# Pressure correlations for PressureDrop package. # note that all of these work in psia, but the user-facing wrappers for traverses take psig. #%% Helper functions """ `liquidvelocity_superficial(q_o, q_w, id, B_o, B_w)` Returns superficial liquid velocity, v_sg. Takes oil rate (q_o, stb/d), water rate (q_w, stb/d), pipe inner diameter (inches), oil volume factor (B_o, dimensionless) and water volume factor (B_w, dimensionless). Note that this does not account for slip between liquid phases. """ function liquidvelocity_superficial(q_o, q_w, id, B_o, B_w) A = π * (id/24.0)^2 #convert id in inches to ft if q_o > 0 WOR = q_w / q_o return 6.5e-5 * (q_o + q_w) / A * (B_o/(1 + WOR) + B_w * WOR / (1 + WOR)) else #100% WC return 6.5e-5 * q_w * B_w / A end end """ `gasvelocity_superficial(q_o, q_w, GLR, R_s, id, B_g)` Returns superficial liquid velocity, v_sg. Takes oil rate, (q_o, stb/d), water rate (q_w, stb/d), gas:liquid ratio (scf/stb), solution gas:oil ratio (scf/stb), pipe inner diameter (inches), and gas volume factor (B_g). Note that this does not account for slip between liquid phases. """ function gasvelocity_superficial(q_o, q_w, GLR, R_s, id, B_g) A = π * (id/24.0)^2 #convert id in inches to ft if q_o > 0 WOR = q_w / q_o return 1.16e-5 * (q_o + q_w) / A * max(GLR - R_s /(1 + WOR), 0) * B_g # max is to prevent edge case where calculated free gas is negative else #100% WC return 1.16e-5 * q_w * GLR * B_g / A end end """ `mixture_properties_simple(q_o, q_w, property_o, property_w)` Weighted average for mixture properties. Takes the oil and water rates in equivalent units, as well as their relative properties in equivalent units. Does not account for oil slip, mixing effects, fluid expansion, behavior of emulsions, etc. """ function mixture_properties_simple(q_o, q_w, property_o, property_w) return (q_o * property_o + q_w * property_w) / (q_o + q_w) end """ `ChenFrictionFactor(N_Re, id, roughness = 0.01)` Uses the direct Chen 1979 correlation to determine friction factor, in place of the Colebrook implicit solution. Takes the dimensionless Reynolds number, pipe inner diameter in **inches**, and roughness in **inches**. Not intended for Reynolds numbers between 2000-4000. """ function ChenFrictionFactor(N_Re, id, roughness = 0.01) #Takacs #returns Economides value * 4 if N_Re <= 4000 #laminar flow boundary ~2000-2300 return 64 / N_Re else #turbulent flow k = roughness/id x = -2 * log10(k/3.7065 - 5.0452/N_Re * log10(k^1.1098 / 2.8257 + (7.149/N_Re)^0.8981)) return 1/x^2 end end """ `SerghideFrictionFactor(N_Re, id, roughness = 0.01)` Uses the direct Serghide 1984 correlation to determine friction factor, in place of the Colebrook implicit solution. Takes the dimensionless Reynolds number, pipe inner diameter in *inches*, and roughness in *inches*. Not intended for Reynolds numbers between 2000-4000. """ function SerghideFrictionFactor(N_Re, id, roughness = 0.01) if N_Re <= 4000 #laminar flow boundary ~2000-2300 return 64 / N_Re else #turbulent flow k = roughness/id A = -2 * log10(k/3.7 + 12/N_Re) B = -2 * log10(k/3.7 + 2.51*A/N_Re) C = -2 * log10(k/3.7 + 2.51*B/N_Re) return (A-((B-A)^2 / (C - (2*B) + A)))^-2 end end #%% Beggs and Brill """ `BeggsAndBrillFlowMap(λ_l, N_Fr)` Beggs and Brill flow pattern as a string ∈ {"segregated", "transition", "distributed", "intermittent"}. Takes no-slip holdup (λ_l) and mixture Froude number (N_Fr). """ function BeggsAndBrillFlowMap(λ_l, N_Fr) #graphical test bypassed in test suite--rerun if modifying this function if N_Fr < 316 * λ_l ^ 0.302 && N_Fr < 9.25e-4 * λ_l^-2.468 return "segregated" elseif N_Fr >= 9.25e-4 * λ_l^-2.468 && N_Fr < 0.1 * λ_l^-1.452 return "transition" elseif N_Fr >= 316 * λ_l ^ 0.302 || N_Fr >= 0.5 * λ_l^-6.738 return "distributed" else return "intermittent" end end const BB_coefficients = (segregated = (a = 0.980, b= 0.4846, c = 0.0868, e = 0.011, f = -3.7680, g = 3.5390, h = -1.6140), intermittent = (a = 0.845, b = 0.5351, c = 0.0173, e = 2.960, f = 0.3050, g = -0.4473, h = 0.0978), distributed = (a = 1.065, b = 0.5824, c = 0.0609), downhill = (e = 4.700, f = -0.3692, g = 0.1244, h = -0.5056) ) """ `BeggsAndBrillAdjustedLiquidHoldup(flowpattern, λ_l, N_Fr, N_lv, α, inclination, uphill_flow, PayneCorrection = true)` Helper function for Beggs and Brill. Returns adjusted liquid holdup, ε_l(α), with optional Payne et al correction applied to output. Takes flow pattern (string ∈ {"segregated", "intermittent", "distributed"}), no-slip holdup (λ_l), Froude number (N_Fr), liquid velocity number (N_lv), angle from horizontal (α, radians), uphill flow (boolean). """ function BeggsAndBrillAdjustedLiquidHoldup(flowpattern, λ_l, N_Fr, N_lv, α, inclination, uphill_flow, PayneCorrection = true) if PayneCorrection && uphill_flow correctionfactor = 0.924 elseif PayneCorrection correctionfactor = 0.685 else correctionfactor = 1.0 end flow = Symbol(flowpattern) a = BB_coefficients[flow][:a] b = BB_coefficients[flow][:b] c = BB_coefficients[flow][:c] ε_l_horizontal = a * λ_l^b / N_Fr^c #liquid holdup assuming horizontal (α = 0 rad) ε_l_horizontal = max(ε_l_horizontal, λ_l) if α ≈ 0 #horizontal flow return ε_l_horizontal else #inclined or vertical flow if uphill_flow if flowpattern == "distributed" ψ = 1.0 else e = BB_coefficients[flow][:e] f = BB_coefficients[flow][:f] g = BB_coefficients[flow][:g] h = BB_coefficients[flow][:h] C = max( (1 - λ_l) * log(e * λ_l^f * N_lv^g * N_Fr^h), 0) if inclination ≈ 0 #vertical flow ψ = 1 + 0.3 * C else ψ = 1 + C * (sin(1.8*α) - (1/3) * sin(1.8*α)^3) end end else #downhill flow e = BB_coefficients[:downhill][:e] f = BB_coefficients[:downhill][:f] g = BB_coefficients[:downhill][:g] h = BB_coefficients[:downhill][:h] C = max( (1 - λ_l) * log(e * λ_l^f * N_lv^g * N_Fr^h), 0) if inclination ≈ 0 #vertical flow ψ = 1 + 0.3 * C else ψ = 1 + C * (sin(1.8*α) - (1/3) * sin(1.8*α)^3) end end return ε_l_horizontal * ψ * correctionfactor end end """ `BeggsAndBrill(<arguments>)` Calculates pressure drop for a single pipe segment using Beggs and Brill 1973 method, with optional Payne corrections. Returns a ΔP in psi. Doesn't account for oil/water phase slip, but does properly account for inclination. As of release v0.9, assumes **outlet-defined** models only, i.e. top-down from wellhead; thus, uphill flow corresponds to producers and downhill flow to injectors. For more information, see *Petroleum Production Systems* by Economides et al., or the the Fekete [reference on pressure drops](http://www.fekete.com/san/webhelp/feketeharmony/harmony_webhelp/content/html_files/reference_material/Calculations_and_Correlations/Pressure_Loss_Calculations.htm). # Arguments All arguments take U.S. field units. - `md`: measured depth of the pipe segment, feet - `tvd`: true vertical depth, feet - `inclination`: inclination from vertical, degrees (e.g. vertical => 0) - `id`: inner diameter of the pipe segment, inches - `v_sl`: superficial liquid mixture velocity, ft/s - `v_sg`: superficial gas velocity, ft/s - `ρ_l`: liquid mixture density, lb/ft³ - `ρ_g`: gas density, lb/ft³ - `σ_l`: liquid/gas interfacial tension, centipoise - `μ_l`: liquid mixture dynamic viscosity - `μ_g`: gas dynamic viscosity - `roughness`: pipe roughness, inches - `pressure_est`: estimated average pressure of the pipe segment (needed to determine the kinetic effects component of the pressure drop) - `frictionfactor::Function = SerghideFrictionFactor`: function used to determine the Moody friction factor - `uphill_flow = true`: indicates uphill or downhill flow. It is assumed that the start of the 1D segment is an outlet and not an inlet - `PayneCorrection = true`: indicates whether the Payne et al. 1979 corrections should be applied to prevent overprediction of liquid holdup. """ function BeggsAndBrill( md, tvd, inclination, id, v_sl, v_sg, ρ_l, ρ_g, σ_l, μ_l, μ_g, roughness, pressure_est, frictionfactor::Function = SerghideFrictionFactor, uphill_flow = true, PayneCorrection = true) α = (90 - inclination) * π / 180 #inclination in rad measured from horizontal #%% flow pattern and holdup: v_m = v_sl + v_sg λ_l = v_sl / v_m #no-slip liquid holdup N_Fr = 0.373 * v_m^2 / id #mixture Froude number #id is pipe diameter in inches N_lv = 1.938 * v_sl * (ρ_l / σ_l)^0.25 #liquid velocity number per Duns & Ros flowpattern = BeggsAndBrillFlowMap(λ_l, N_Fr) if flowpattern == "transition" B = (0.1 * λ_l^-1.4516 - N_Fr) / (0.1 * λ_l^-1.4516 - 9.25e-4 * λ_l^-2.468) ε_l_seg = BeggsAndBrillAdjustedLiquidHoldup("segregated", λ_l, N_Fr, N_lv, α, inclination, uphill_flow, PayneCorrection) ε_l_int = BeggsAndBrillAdjustedLiquidHoldup("intermittent", λ_l, N_Fr, N_lv, α, inclination, uphill_flow, PayneCorrection) ε_l_adj = B * ε_l_seg + (1 - B) * ε_l_int else ε_l_adj = BeggsAndBrillAdjustedLiquidHoldup(flowpattern, λ_l, N_Fr, N_lv, α, inclination, uphill_flow, PayneCorrection) end if uphill_flow ε_l_adj = max(ε_l_adj, λ_l) #correction to original: for uphill flow, true holdup must by definition be >= no-slip holdup end # note that Payne factors reduce the overpredicted liquid holdups from the uncorrected form #%% friction factor: y = λ_l / ε_l_adj^2 if 1.0 < y < 1.2 s = log(2.2y - 1.2) #handle the discontinuity else ln_y = log(y) s = ln_y / (-0.0523 + 3.182 * ln_y - 0.872 * ln_y^2 + 0.01853 * ln_y^4) end fbyfn = exp(s) #normalizing friction factor f/fₙ ρ_ns = ρ_l * λ_l + ρ_g * (1-λ_l) #no-slip density μ_ns = μ_l * λ_l + μ_g * (1-λ_l) #no-slip friction in centipoise N_Re = 124 * ρ_ns * v_m * id / μ_ns #Reynolds number f_n = frictionfactor(N_Re, id, roughness) fric = f_n * fbyfn #friction factor #%% core calculation: ρ_m = ρ_l * ε_l_adj + ρ_g * (1 - ε_l_adj) #mixture density in lb/ft³ dpdl_el = (1/144.0) * ρ_m friction_effect = uphill_flow ? 1 : -1 #note that friction MUST act against the direction of flow dpdl_f = friction_effect * 1.294e-3 * fric * (ρ_ns * v_m^2) / id #frictional component E_k = 2.16e-4 * fric * (v_m * v_sg * ρ_ns) / pressure_est #kinetic effects; typically negligible dp_dl = (dpdl_el * tvd + dpdl_f * md) / (1 - friction_effect*E_k) #assumes friction and kinetic effects both increase pressure in the same 1D direction return dp_dl end #Beggs and Brill #%% Hagedorn & Brown """ `HagedornAndBrownLiquidHoldup(pressure_est, id, v_sl, v_sg, ρ_l, μ_l, σ_l)` Helper function to determine liquid holdup using the Hagedorn & Brown method. Does not account for inclination or oil/water slip. """ function HagedornAndBrownLiquidHoldup(pressure_est, id, v_sl, v_sg, ρ_l, μ_l, σ_l) N_lv = 1.938 * v_sl * (ρ_l / σ_l)^0.25 #liquid velocity number per Duns & Ros N_gv = 1.938 * v_sg * (ρ_l / σ_l)^0.25 #gas velocity number per Duns & Ros; yes, use liquid density & viscosity N_d = 120.872 * id/12 * (ρ_l / σ_l)^0.5 #pipe diameter number; uses id in ft N_l = 0.15726 * μ_l * (1/(ρ_l * σ_l^3))^0.25 #liquid viscosity number CN_l = 0.061 * N_l^3 - 0.0929 * N_l^2 + 0.0505 * N_l + 0.0019 #liquid viscosity coefficient * liquid viscosity number H = N_lv / N_gv^0.575 * (pressure_est/14.7)^0.1 * CN_l / N_d #holdup correlation group ε_l_by_ψ = sqrt((0.0047 + 1123.32 * H + 729489.64 * H^2)/(1 + 1097.1566 * H + 722153.97 * H^2)) B = N_gv * N_l^0.38 / N_d^2.14 ψ = (1.0886 - 69.9473*B + 2334.3497*B^2 - 12896.683*B^3)/(1 - 53.4401*B + 1517.9369*B^2 - 8419.8115*B^3) #economides et al 235 return ψ * ε_l_by_ψ end """ `HagedornAndBrownPressureDrop(pressure_est, id, v_sl, v_sg, ρ_l, ρ_g, μ_l, μ_g, σ_l, id_ft, λ_l, md, tvd, frictionfactor::Function, uphill_flow, roughness)` Helper function for H&B -- compute H&B pressure drop when bubble flow criteria are not met. """ function HagedornAndBrownPressureDrop(pressure_est, id, v_sl, v_sg, ρ_l, ρ_g, μ_l, μ_g, σ_l, id_ft, λ_l, md, tvd, frictionfactor::Function, uphill_flow, roughness) ε_l = HagedornAndBrownLiquidHoldup(pressure_est, id, v_sl, v_sg, ρ_l, μ_l, σ_l) if uphill_flow ε_l = max(ε_l, λ_l) #correction to original: for uphill flow, true holdup must by definition be >= no-slip holdup end ρ_m = ρ_l * ε_l + ρ_g * (1 - ε_l) #mixture density in lb/ft³ massflow = π*(id_ft/2)^2 * (v_sl * ρ_l + v_sg * ρ_g) * 86400 #86400 s/day #%% friction factor: μ_m = μ_l^ε_l * μ_g^(1-ε_l) N_Re = 2.2e-2 * massflow / (id_ft * μ_m) fric = frictionfactor(N_Re, id, roughness)/4 #corrected friction factor #%% core calculation: dpdl_el = 1/144.0 * ρ_m #elevation component friction_effect = uphill_flow ? 1 : -1 #note that friction MUST act against the direction of flow dpdl_f = friction_effect * 1/144.0 * fric * massflow^2 / (7.413e10 * id_ft^5 *ρ_m) #frictional component: see Economides et al #ρ_ns = λ_l * ρ_l + λ_g * ρ_g #dpdl_f = 1.294e-3 * fric * ρ_ns^2 * v_m^2 / (ρ_m * id) #Takacs -- takes normal friction factor #dpdl_kinetic = 2.16e-4 * ρ_m * v_m * (dvm_dh) #neglected except with high mass flow rates dp_dl = dpdl_el * tvd + dpdl_f * md #+ dpdl_kinetic * md return dp_dl end """ `GriffithWallisPressureDrop(v_sl, v_sg, v_m, ρ_l, ρ_g, μ_l, id_ft, md, tvd, frictionfactor::Function, uphill_flow, roughness)` Helper function for H&B correlation -- compute Griffith pressure drop for bubble flow regime. """ function GriffithWallisPressureDrop(id, v_sl, v_sg, v_m, ρ_l, ρ_g, μ_l, id_ft, λ_l, md, tvd, frictionfactor::Function, uphill_flow, roughness) v_s = 0.8 #assumed slip velocity of 0.8 ft/s -- probably assumes gas in oil bubbles with no water cut or vice versa? ε_l = 1 - 0.5 * (1 + v_m / v_s - sqrt((1 + v_m/v_s)^2 - 4*v_sg/v_s)) if uphill_flow ε_l = max(ε_l, λ_l) #correction to original: for uphill flow, true holdup must by definition be >= no-slip holdup end ρ_m = ρ_l * ε_l + ρ_g * (1 - ε_l) #mixture density in lb/ft³ massflow = π*(id_ft/2)^2 * (v_sl * ρ_l + v_sg * ρ_g) * 86400 #86400 s/day N_Re = 2.2e-2 * massflow / (id_ft * μ_l) #Reynolds number fric = frictionfactor(N_Re, id, roughness)/4 #corrected friction factor dpdl_el = 1/144.0 * ρ_m #elevation component friction_effect = uphill_flow ? 1 : -1 #note that friction MUST act against the direction of flow dpdl_f = friction_effect* 1/144.0 * fric * massflow^2 / (7.413e10 * id_ft^5 * ρ_l * ε_l^2) #frictional component dpdl = dpdl_el * tvd + dpdl_f * md return dpdl end """ `HagedornAndBrown(<arguments>)` Calculates pressure drop for a single pipe segment using the Hagedorn & Brown 1965 method (with recent modifications), with optional Griffith and Wallis bubble flow corrections. Returns a ΔP in psi. Doesn't account for oil/water phase slip, and does not incorporate flow regimes distinctions outside of in/out of bubble flow. Originally developed for vertical wells. As of release v0.9, assumes **outlet-defined** models only, i.e. top-down from wellhead; thus, uphill flow corresponds to producers and downhill flow to injectors. For more information, see *Petroleum Production Systems* by Economides et al., or the the Fekete [reference on pressure drops](http://www.fekete.com/san/webhelp/feketeharmony/harmony_webhelp/content/html_files/reference_material/Calculations_and_Correlations/Pressure_Loss_Calculations.htm). # Arguments All arguments take U.S. field units. - `md`: measured depth of the pipe segment, feet - `tvd`: true vertical depth, feet - `inclination`: inclination from vertical, degrees (e.g. vertical => 0) - `id`: inner diameter of the pipe segment, inches - `v_sl`: superficial liquid mixture velocity, ft/s - `v_sg`: superficial gas velocity, ft/s - `ρ_l`: liquid mixture density, lb/ft³ - `ρ_g`: gas density, lb/ft³ - `σ_l`: liquid/gas interfacial tension, centipoise - `μ_l`: liquid mixture dynamic viscosity - `μ_g`: gas dynamic viscosity - `roughness`: pipe roughness, inches - `pressure_est`: estimated average pressure of the pipe segment (needed to determine the kinetic effects component of the pressure drop) - `frictionfactor::Function = SerghideFrictionFactor`: function used to determine the Moody friction factor - `uphill_flow = true`: indicates uphill or downhill flow. It is assumed that the start of the 1D segment is an outlet and not an inlet - `GriffithWallisCorrection = true`: indicates whether the Griffith and Wallis 1961 corrections should be applied to prevent overprediction of liquid holdup. """ function HagedornAndBrown(md, tvd, inclination, id, v_sl, v_sg, ρ_l, ρ_g, σ_l, μ_l, μ_g, roughness, pressure_est, frictionfactor::Function = SerghideFrictionFactor, uphill_flow = true, GriffithWallisCorrection = true) id_ft = id/12 v_m = v_sl + v_sg #%% holdup: λ_l = v_sl / v_m λ_g = 1 - λ_l if GriffithWallisCorrection L_B = max(1.071 - 0.2218 * v_m^2 / id, 0.13) #Griffith bubble flow boundary if λ_g < L_B dpdl = GriffithWallisPressureDrop(id, v_sl, v_sg, v_m, ρ_l, ρ_g, μ_l, id_ft, λ_l, md, tvd, frictionfactor, uphill_flow, roughness) else dpdl = HagedornAndBrownPressureDrop(pressure_est, id, v_sl, v_sg, ρ_l, ρ_g, μ_l, μ_g, σ_l, id_ft, λ_l, md, tvd, frictionfactor, uphill_flow, roughness) end else #no correction dpdl = HagedornAndBrownPressureDrop(pressure_est, id, v_sl, v_sg, ρ_l, ρ_g, μ_l, μ_g, σ_l, id_ft, λ_l, md, tvd, frictionfactor, uphill_flow, roughness) end return dpdl end #Hagedorn & Brown
PressureDrop
https://github.com/jnoynaert/PressureDrop.jl.git
[ "Apache-2.0" ]
1.0.7
e88f8d8125552a7f991eac90e9a08e5f0057a811
code
12843
# Helper functions for pvt properties. #%% Gas """ `LeeGasViscosity(specificGravity, psiAbs, tempF, Z)` Gas viscosity (μ_g) in centipoise. Takes gas specific gravity, psia, °F, Z (deviation factor). Lee et al 1966 method. """ function LeeGasViscosity(specificGravity, psiAbs, tempF, Z) tempR = tempF + 459.67 molecularWeight = 28.967 * specificGravity density = (psiAbs * molecularWeight * 0.00149406) / (Z*tempR) K = ((0.00094 + 2.0* 10^-6.0 *molecularWeight) * tempR^1.5 ) / (200.0 + 19.0*molecularWeight + tempR) X = 3.5 + (986.0/tempR) + 0.01*molecularWeight Y = 2.4 - 0.2*X return K * exp(X * density^Y ) #in centipoise end """ `HankinsonWithWichertPseudoCriticalTemp(specificGravity, molFracCO2, molFracH2S)` Pseudo-critical temperature, adjusted pseudo-critical temperature in °R, and Wichert correction factor Takes gas specific gravity, mol fraction of CO₂, mol fraction of H₂S. Hankin-Thomas-Phillips method, with Wichert and Aziz correction for sour components. """ function HankinsonWithWichertPseudoCriticalTemp(specificGravity, molFracCO2, molFracH2S) #Hankinson-Thomas-Phillips pseudo-parameter: tempPseudoCritical = 170.5 + (307.3*specificGravity) #Wichert and Aziz pseudo-param correction for sour gas components: A = molFracCO2 + molFracH2S B = molFracH2S correctionFactor = 120.0*(A^0.9 - A^1.6) + 15.0*(B^0.5 - B^4.0) tempPseudoCriticalMod = tempPseudoCritical - correctionFactor return tempPseudoCritical, tempPseudoCriticalMod, correctionFactor end """ `HankinsonWithWichertPseudoCriticalPressure(specificGravity, molFracCO2, molFracH2S)` Pseudo-critical pressure in psia. Takes gas specific gravity, mol fraction of CO₂, mol fraction of H₂S. Hankin-Thomas-Phillips method, with Wichert and Aziz correction for sour components. """ function HankinsonWithWichertPseudoCriticalPressure(specificGravity, molFracCO2, molFracH2S) #Hankinson-Thomas-Phillips pseudo-parameter: pressurePseudoCritical = 709.6 - (58.7*specificGravity) #I think the 58.7 is incorrectly identified as 56.7 in Takacs text #pseudo-temperatures: tempPseudoCritical, tempPseudoCriticalMod, correctionFactor = HankinsonWithWichertPseudoCriticalTemp(specificGravity, molFracCO2, molFracH2S) B = molFracH2S return pressurePseudoCritical * tempPseudoCriticalMod / (tempPseudoCritical + B*(1-B)*correctionFactor) end """ `PapayZFactor(pressurePseudoCritical, tempPseudoCriticalRankine, psiAbs, tempF)` Natural gas compressibility deviation factor (Z). Take pseudocritical pressure (psia), pseudocritical temperature (°R), pressure (psia), temperature (°F). Papay 1968 method. """ function PapayZFactor(pressurePseudoCritical, tempPseudoCriticalRankine, psiAbs, tempF) pressurePseudoCriticalReduced = psiAbs/pressurePseudoCritical tempPseudoCriticalReduced = (tempF + 459.67)/tempPseudoCriticalRankine return 1 - (3.52*pressurePseudoCriticalReduced)/(10^ (0.9813*tempPseudoCriticalReduced)) + (0.274*pressurePseudoCriticalReduced*pressurePseudoCriticalReduced)/(10^(0.8157*tempPseudoCriticalReduced)) end """ `KareemEtAlZFactor(pressurePseudoCritical, tempPseudoCriticalRankine, psiAbs, tempF)` Natural gas compressibility deviation factor (Z). Take pseudocritical pressure (psia), pseudocritical temperature (°R), pressure (psia), temperature (°F). Can use gauge pressures so long as unit basis matches. Direct correlation continuous over 0.2 ≤ P_pr ≤ 15. Kareem, Iwalewa, Al-Marhoun, 2016. """ function KareemEtAlZFactor(pressurePseudoCritical, tempPseudoCriticalRankine, psiAbs, tempF) P_pr = psiAbs/pressurePseudoCritical T_pr = (tempF + 459.67)/tempPseudoCriticalRankine if !(0.2 ≤ P_pr ≤ 15) | !(1.15 ≤ T_pr ≤ 3) @info "Using Kareem et al Z-factor correlation with values outside of 0.2 ≤ P_pr ≤ 15, 1.15 ≤ T_pr ≤ 3." end a1 = 0.317842 a2 = 0.382216 a3 = -7.768354 a4 = 14.290531 a5 = 0.000002 a6 = -0.004693 a7 = 0.096254 a8 = 0.16672 a9 = 0.96691 a10 = 0.063069 a11 = -1.966847 a12 = 21.0581 a13 = -27.0246 a14 = 16.23 a15 = 207.783 a16 = -488.161 a17 = 176.29 a18 = 1.88453 a19 = 3.05921 t = 1 / T_pr A = a1 * t * exp(a2 * (1-t)^2) * P_pr B = a3 * t + a4 * t^2 + a5 * t^6 * P_pr^6 C = a9 + a8 * t * P_pr + a7 * t^2 * P_pr^2 + a6 * t^3 * P_pr^3 D = a10 * t * exp(a11 * (1-t)^2) E = a12 * t + a13 * t^2 + a14 * t^3 F = a15 * t + a16 * t^2 + a17 * t^3 G = a18 + a19 * t y = D * P_pr / ((1 + A^2) / C - (A^2 * B) / C^3) z = D * P_pr * (1 + y + y^2 - y^3) / (D * P_pr + E * y^2 - F * y^G) / (1 - y)^3 return z end """ `KareemEtAlZFactor_simplified(pressurePseudoCritical, tempPseudoCriticalRankine, psiAbs, tempF)` Natural gas compressibility deviation factor (Z). Take pseudocritical pressure (psia), pseudocritical temperature (°R), pressure (psia), temperature (°F). Linearized form from Kareem, Iwalewa, Al-Marhoun, 2016. """ function KareemEtAlZFactor_simplified(pressurePseudoCritical, tempPseudoCriticalRankine, psiAbs, tempF) P_pr = psiAbs/pressurePseudoCritical T_pr = (tempF + 459.67)/tempPseudoCriticalRankine if !(0.2 ≤ P_pr ≤ 15) | !(1.15 ≤ T_pr ≤ 3) @info "Using Kareem et al Z-factor correlation with values outside of 0.2 ≤ P_pr ≤ 15, 1.15 ≤ T_pr ≤ 3." end a1 = 0.317842 a2 = 0.382216 a3 = -7.768354 a4 = 14.290531 a5 = 0.000002 a6 = -0.004693 a7 = 0.096254 a8 = 0.16672 a9 = 0.96691 t = 1 / T_pr A = a1 * t * exp(a2 * (1-t)^2) * P_pr B = a3 * t + a4 * t^2 + a5 * t^6 * P_pr^6 C = a9 + a8 * t * P_pr + a7 * t^2 * P_pr^2 + a6 * t^3 * P_pr^3 z = (1+ A^2)/C - A^2 * B / C^3 return z end """ `gasVolumeFactor(pressureAbs, Z, tempF)` Corrected gas volume factor (B_g). Takes absolute pressure (psia), Z-factor, temp (°F). """ function gasVolumeFactor(pressureAbs, Z, tempF) return 0.0283 * (Z*(tempF+459.67)/pressureAbs) end """ `gasDensity_insitu(specificGravityGas, Z_factor, abspressure, tempF)` In-situ gas density in lb/ft³ (ρ_g). Takes gas s.g., Z-factor, absolute pressure (psia), temperature (°F). """ function gasDensity_insitu(specificGravityGas, Z_factor, abspressure, tempF) tempR = tempF + 459.67 return 2.7 * specificGravityGas * abspressure / (Z_factor * tempR) end #%% Oil #TODO: add Vasquez-Beggs for solution GOR #TODO: add Hanafy et al correlations """ `StandingBubblePoint(APIoil, sg_gas, R_b, tempF)` Bubble point pressure in psia. Takes oil gravity (°API), gas specific gravity, total solution GOR at pressures above bubble point (R_b, scf/bbl), temp (°F). """ function StandingBubblePoint(APIoil, sg_gas, R_b, tempF) y = 0.00091 * tempF - 0.0125 * APIoil return 18.2 * ((R_b/sg_gas)^0.83 * 10^y - 1.4) end """ `StandingSolutionGOR(APIoil, specificGravityGas, psiAbs, tempF)` Solution GOR (Rₛ) in scf/bbl. Takes oil gravity (°API), gas specific gravity, pressure (psia), temp (°F), total solution GOR (R_b, scf/bbl), and bubblepoint value (psia). Standing method. """ function StandingSolutionGOR(APIoil, specificGravityGas, psiAbs, tempF, R_b, bubblepoint::Real) if psiAbs >= bubblepoint return R_b else y = 0.00091*tempF - 0.0125*APIoil return specificGravityGas * (psiAbs / (18 * 10^y) )^1.205 #scf/bbl end end """ `StandingSolutionGOR(APIoil, specificGravityGas, psiAbs, tempF)` Solution GOR (Rₛ) in scf/bbl. Takes oil gravity (°API), gas specific gravity, pressure (psia), temp (°F), total solution GOR (R_b, scf/bbl), and bubblepoint function. Standing method. """ function StandingSolutionGOR(APIoil, specificGravityGas, psiAbs, tempF, R_b, bubblepoint::Function) if psiAbs >= bubblepoint(APIoil, specificGravityGas, R_b, tempF) return R_b else y = 0.00091*tempF - 0.0125*APIoil return specificGravityGas * (psiAbs / (18 * 10^y) )^1.205 #scf/bbl end end """ `StandingOilVolumeFactor(APIoil, specificGravityGas, solutionGOR, psiAbs, tempF)` Oil volume factor (Bₒ). Takes oil gravity (°API), gas specific gravity, solution GOR (scf/bbl), absolute pressure (psia), temp (°F). Standing method. """ function StandingOilVolumeFactor(APIoil, specificGravityGas, solutionGOR, psiAbs, tempF) fFactor = solutionGOR * sqrt(specificGravityGas/(141.5/(APIoil + 131.5))) + 1.25*tempF return 0.972 + (0.000147) * fFactor^1.175 end """ `oilDensity_insitu(APIoil, specificGravityGas, solutionGOR, oilVolumeFactor)` Oil density (ρₒ) in mass-lbs per ft³. Takes oil gravity (°API), gas specific gravity, solution GOR (R_s, scf/bbl), oil volume factor. """ function oilDensity_insitu(APIoil, specificGravityGas, solutionGOR, oilVolumeFactor) return (141.5/(APIoil + 131.5)*350.4 + 0.0764*specificGravityGas*solutionGOR)/(5.61 * oilVolumeFactor) #mass-lbs per ft³ end """ `BeggsAndRobinsonDeadOilViscosity(APIoil, tempF)` Dead oil viscosity (μ_oD) in centipoise. Takes oil gravity (°API), temp (°F). Use with caution at 100-150° F: viscosity can be significantly overstated. Beggs and Robinson method. """ function BeggsAndRobinsonDeadOilViscosity(APIoil, tempF) if 100 <= tempF <= 155 @info "Warning: using Beggs and Robinson for dead oil viscosity at $(tempF)° F--consider using another correlation for 100-150° F." end y = 10^(3.0324 - 0.02023*APIoil) x = y*tempF^-1.163 return 10^x - 1 end """ `GlasoDeadOilViscosity(APIoil, tempF)` Dead oil viscosity (μ_oD) in centipoise. Takes oil gravity (°API), temp (°F). Glaso method. """ function GlasoDeadOilViscosity(APIoil, tempF) return ((3.141* 10^10) / tempF^3.444) * log10(APIoil)^(10.313*log10(tempF) - 36.447) end """ `ChewAndConnallySaturatedOilViscosity(deadOilViscosity, solutionGOR)` Saturated oil viscosity (μₒ) in centipoise. Takes dead oil viscosity (cp), solution GOR (scf/bbl). Chew and Connally method to correct from dead to live oil viscosity. """ function ChewAndConnallySaturatedOilViscosity(deadOilViscosity, solutionGOR) A = 0.2 + 0.8 / 10.0^(0.00081*solutionGOR) b = 0.43 + 0.57 / 10.0^(0.00072*solutionGOR) return A * deadOilViscosity^b end #%% Water """ `waterDensity_stb(waterGravity)` Water density in lb per ft³. Takes water specific gravity. """ function waterDensity_stb(waterGravity) return waterGravity * 62.4 #lb per ft^3 end """ `waterDensity_insitu(waterGravity, B_w)` Water density in lb per ft³. Takes specific gravity, B_w. """ function waterDensity_insitu(waterGravity, B_w) return waterGravity * 62.4 / B_w #lb per ft^3 end """ `GouldWaterVolumeFactor(pressureAbs, tempF)` Water volume factor (B_w). Takes absolute pressure (psia), temp (°F). Gould method. """ function GouldWaterVolumeFactor(pressureAbs, tempF) return 1.0 + 1.21 * 10^-4 * (tempF-60) + 10^-6 * (tempF-60)^2 - 3.33 * pressureAbs * 10^-6 end const assumedWaterViscosity = 1.0 #centipoise #%% Interfacial tension """ `gas_oil_interfacialtension(APIoil, pressureAbsolute, tempF)` Gas-oil interfactial tension in dynes/cm. Takes oil API, absolute pressure (psia), temp (°F). Possibly Baker Swerdloff method; same method utilized by [Fekete](https://www.ihsenergy.ca/support/documentation_ca/Harmony/content/html_files/reference_material/calculations_and_correlations/pressure_loss_calculations.htm) """ function gas_oil_interfacialtension(APIoil, pressureAbsolute, tempF) if tempF <= 68.0 σ_dead = 39 - 0.2571 * APIoil elseif tempF >= 100.0 σ_dead = 37.5 - 0.2571 * APIoil else σ_68 = 39 - 0.2571 * APIoil σ_100 = 37.5 - 0.2571 * APIoil σ_dead = σ_68 - (tempF - 68.0) * (σ_100 - σ_68) / (100.0 - 68.0) # interpolate end C = 1.0 - 0.024 * pressureAbsolute^0.45 return C * σ_dead end """ `gas_water_interfacialtension(pressureAbsolute, tempF)` Gas-water interfactial tension in dynes/cm. Takes absolute pressure (psia), temp (°F). Possibly Baker Swerdloff method; same method utilized by [Fekete](https://www.ihsenergy.ca/support/documentation_ca/Harmony/content/html_files/reference_material/calculations_and_correlations/pressure_loss_calculations.htm) """ function gas_water_interfacialtension(pressureAbsolute, tempF) if tempF <= 74 return 75 - 1.018 * pressureAbsolute^0.349 elseif tempF >= 280 return 53 - 0.1048 * pressureAbsolute^0.637 else σ_74 = 75 - 1.018 * pressureAbsolute^0.349 σ_280 = 53 - 0.1048 * pressureAbsolute^0.637 return σ_74 + (tempF - 74.0) * (σ_280 - σ_74) / (280.0 - 74.0) #interpolate end end
PressureDrop
https://github.com/jnoynaert/PressureDrop.jl.git
[ "Apache-2.0" ]
1.0.7
e88f8d8125552a7f991eac90e9a08e5f0057a811
code
3576
# temperature correlation functions for PressureDrop package. """ `Shiu_Beggs_relaxationfactor(<arguments>)` Generates the relaxation factor, A, needed for the Ramey method, for underspecified conditions. This correlation assumes flow has stabilized and that the transient time component f(t) is not changing. # Arguments All arguments are in U.S. field units. - `q_o`: oil rate in stb/d - `q_w`: water rate in stb/d - `APIoil`: API oil gravity - `sg_water`: water specific gravity - `GLR`: gas:liquid ratio in scf/stb - `sg_gas`: gas specific gravity - `id`: flow path inner diameter in inches - `WHP`: wellhead/outlet absolute pressure in **psig** """ function Shiu_Beggs_relaxationfactor(q_o, q_w, GLR, APIoil, sg_water, sg_gas, id, WHP) sg_oil = 141.5/(APIoil + 131.5) q_g = (q_o + q_w) * GLR w = 1/86400 * (350*(q_o*sg_oil + q_w*sg_water) + 0.0764*q_g*sg_gas) #mass flow rate in lb/sec ρ_l_sc = 62.4 * mixture_properties_simple(q_o, q_w, sg_oil, sg_water) # Original Shiu-Beggs coefficients for known WHP: C_0 = 0.0063 C_1 = 0.4882 C_2 = 2.9150 C_3 = -0.3476 C_4 = 0.2219 C_5 = 0.2519 C_6 = 4.7240 return C_0 * w^C_1 * ρ_l_sc^C_2 * id^C_3 * WHP^C_4 * APIoil^C_5 * sg_gas^C_6 #relaxation distance end """ `Ramey_wellboretemp(z, inclination, T_bh, A, G_g = 1.0)` Estimates wellbore temp using Ramey 1962 method. # Arguments - `z`: true vertical depth **from the bottom of the well**, ft - `T_bh`: bottomhole temperature, °F - `A`: relaxation factor - `G_g = 1.0`: geothermal gradient in °F per 100 ft of true vertical depth """ function Ramey_temp(z, T_bh, A, G_g = 1.0) g_g = G_g / 100 return T_bh - g_g * z + A * g_g * (1 - exp(-z / A)) end """ `linear_wellboretemp(;WHT, BHT, wellbore::Wellbore)` Linear temperature profile from a wellhead temperature and bottomhole temperature in °F for a Wellbore object. Interpolation is based on true vertical depth of the wellbore, not md. """ function linear_wellboretemp(;WHT, BHT, wellbore::Wellbore, kwargs...) #catch extra arguments from a WellModel for convenience temp_slope = (BHT - WHT) / maximum(wellbore.tvd) return [WHT + depth * temp_slope for depth in wellbore.tvd] end """ `Shiu_wellboretemp(<named arguments>)` Wrapper to compute temperature profile for a Wellbore object using Ramey correlation with Shiu relaxation factor correlation. # Arguments - `BHT`: bottomhole temperature in °F - `geothermal_gradient = 1.0`: geothermal gradient in °F per 100 feet - `wellbore::Wellbore`: Wellbore object to use as reference for segmentation, inclination, and - `q_o`: oil rate in stb/d - `q_w`: water rate in stb/d - `GLR`: gas:liquid ratio in scf/day - `APIoil`: oil gravity - `sg_water`: water specific gravity - `sg_gas`: gas specific gravity - `WHP`: wellhead/outlet absolute pressure in **psig** """ function Shiu_wellboretemp(;BHT, geothermal_gradient = 1.0, wellbore::Wellbore, q_o, q_w, GLR, APIoil, sg_water, sg_gas, WHP, kwargs...) #catch extra arguments from a WellModel for convenience id_avg = sum(wellbore.id)/length(wellbore.id) A = Shiu_Beggs_relaxationfactor(q_o, q_w, GLR, APIoil, sg_water, sg_gas, id_avg, WHP) #use average inner diameter to calculate relaxation factor TD = maximum(wellbore.tvd) depths = TD .- wellbore.tvd temp_profile = [Ramey_temp(z, BHT, A, geothermal_gradient) for z in depths] return temp_profile end
PressureDrop
https://github.com/jnoynaert/PressureDrop.jl.git
[ "Apache-2.0" ]
1.0.7
e88f8d8125552a7f991eac90e9a08e5f0057a811
code
12647
""" `GasliftValves`: a type to define a string of gas lift valves for valve & pressure calculations. Constructor: `GasliftValves(md::Array, PTRO::Array, R::Array, port::Array)` Port sizes must be in integer increments of 64ths inches. Indicate orifice valves with an R-value and PTRO of 0. """ struct GasliftValves md::Array{Float64,1} PTRO::Array{Float64,1} R::Array{Float64,1} port::Array{Int64,1} function GasliftValves(md::Array{T} where T <: Real, PTRO::Array{T} where T <: Real, R::Array{T} where T <: AbstractFloat, port::Array{T} where T <: Union{Real, Int}) ports = try convert(Array{Int64,1}, port) catch throw(ArgumentError("Specify port sizes in integer 64ths inches, e.g. 16 for a quarter-inch port.")) end if any(R .> 1) || any(R .< 0) throw(ArgumentError("R-values are the area ratio of the port to the bellows and must be in [0, 1].")) elseif any(R .> 0.2) @info "Large R-value(s) entered--validate valve entry data." end new(convert(Array{Float64,1}, md), convert(Array{Float64,1}, PTRO), convert(Array{Float64,1}, R), ports) end end #printing for gas lift valves Base.show(io::IO, valves::GasliftValves) = print(io, "Valve design with $(length(valves.md)) valves and bottom valve at $(valves.md[end])' MD.") """ `Wellbore`: type to define a flow path as an input for pressure drop calculations See `read_survey` for helper method to create a Wellbore object from deviation survey files. # Fields - `md::Array{Float64, 1}`: measured depth for each segment in feet - `inc::Array{Float64, 1}`: inclination from vertical for each segment in degrees, e.g. true vertical = 0° - `tvd::Array{Float64, 1}`: true vertical depth for each segment in feet - `id::Array{Float64, 1}`: inner diameter for each pip segment in inches # Constructors By default, negative depths are disallowed, and a 0 MD / 0 TVD point is added if not present, to allow graceful handling of outlet pressure definitions. To bypass both the error checking and convenience feature, pass `true` as the final argument to the constructor. `Wellbore(md, inc, tvd, id::Array{Float64, 1}, allow_negatives = false)`: defines a new Wellbore object from a survey with inner diameter defined for each segment. Lengths of each input array must be equal. `Wellbore(md, inc, tvd, id::Float64, allow_negatives = false)`: defines a new Wellbore object with a uniform ID along the entire flow path. `Wellbore(md, inc, tvd, id, valves::GasliftValves, allow_negatives = false)`: defines a new Wellbore object and adds interpolated survey points for each gas lift valve. """ struct Wellbore md::Array{Float64, 1} inc::Array{Float64, 1} tvd::Array{Float64, 1} id::Array{Float64, 1} function Wellbore(md, inc, tvd, id::Array{Float64, 1}, allow_negatives::Bool = false) lens = length.([md, inc, tvd, id]) if !( count(x -> x == lens[1], lens) == length(lens) ) throw(DimensionMismatch("Mismatched number of wellbore elements used in wellbore constructor.")) end if !allow_negatives if minimum(md) < 0 || minimum(tvd) < 0 throw(ArgumentError("Survey contains negative measured or true vertical depths. Pass the `allow_negatives` constructor flag if this is intentional.")) end #add the origin/outlet reference point if missing if !(md[1] == tvd[1] <= 0) md = vcat(0, md) inc = vcat(0, inc) tvd = vcat(0, tvd) id = vcat(id[1], id) end end new(md, inc, tvd, id) end end #struct Wellbore #convenience constructor for uniform tubulars Wellbore(md, inc, tvd, id::Float64, allow_negatives::Bool = false) = Wellbore(md, inc, tvd, repeat([id], inner = length(md)), allow_negatives) #convenience constructors to add reference depths for valves so that they can be used as injection points function Wellbore(md, inc, tvd, id, valves::GasliftValves, allow_negatives::Bool = false) well = Wellbore(md, inc, tvd, id, allow_negatives) for v in 1:length(valves.md) upper_index = searchsortedlast(well.md, valves.md[v]) if well.md[upper_index] != valves.md[v] lower_index = upper_index + 1 #also the target insertion position x1, x2 = well.md[upper_index], well.md[lower_index] for property in [well.inc, well.tvd, well.id] y1, y2 = property[upper_index], property[lower_index] interpolated_value = y1 + (y2 - y1)/(x2 - x1) * (valves.md[v] - x1) insert!(property, lower_index, interpolated_value) end insert!(well.md, lower_index, valves.md[v]) end end return well end #handle argument defaults in read_survey function Wellbore(md, inc, tvd, id, valves::Nothing, allow_negatives::Bool = false) Wellbore(md, inc, tvd, id, allow_negatives) end #Printing for Wellbore structs Base.show(io::IO, well::Wellbore) = print(io, "Wellbore with $(length(well.md)) points.\n", "Ends at $(well.md[end])' MD / $(well.tvd[end])' TVD.\n", "Max inclination $(maximum(well.inc))°. Average ID $(round(sum(well.id)/length(well.id), digits = 3)) in.") #model struct. ONLY applies to wrapper functions. """ `WellModel`: Makes it easier to iterate well models `pressure_and_temp(;model::WellModel)` Develop pressure traverse in psia and temperature profile in °F from wellhead down to datum for a WellModel object. Requires the following fields to be defined in the model: Returns a pressure profile as an Array{Float64,1} and a temperature profile as an Array{Float64,1}, referenced to the measured depths in the original Wellbore object. Pressure correlation functions available: - `BeggsAndBrill` with Payne correction factors - `HagedornAndBrown` with Griffith and Wallis bubble flow correction ## Required - `well::Wellbore`: Wellbore object that defines segmentation/mesh, with md, tvd, inclination, and hydraulic diameter - `roughness`: pipe wall roughness in inches - `temperature_method = "linear"`: temperature method to use; "Shiu" for Ramey method with Shiu relaxation factor, "linear" for linear interpolation - `WHT = missing`: wellhead temperature in °F; required for `temperature_method = "linear"` - `geothermal_gradient = missing`: geothermal gradient in °F per 100 ft; required for `temperature_method = "Shiu"` - `BHT` = bottomhole temperature in °F - `WHP`: absolute outlet pressure (wellhead pressure) in **psig** - `dp_est`: estimated starting pressure differential (in psi) to use for all segments--impacts convergence time - `q_o`: oil rate in stocktank barrels/day - `q_w`: water rate in stb/d - `GLR`: **total** wellhead gas:liquid ratio, inclusive of injection gas, in scf/bbl - `APIoil`: API gravity of the produced oil - `sg_water`: specific gravity of produced water - `sg_gas`: specific gravity of produced gas ## Optional - `injection_point = missing`: injection point in MD for gas lift, above which total GLR is used, and below which natural GLR is used - `naturalGLR = missing`: GLR to use below point of injection, in scf/bbl - `pressurecorrelation::Function = BeggsAndBrill: pressure correlation to use - `error_tolerance = 0.1`: error tolerance for each segment in psi - `molFracCO2 = 0.0`, `molFracH2S = 0.0`: produced gas fractions of hydrogen sulfide and CO2, [0,1] - `pseudocrit_pressure_correlation::Function = HankinsonWithWichertPseudoCriticalPressure`: psuedocritical pressure function to use - `pseudocrit_temp_correlation::Function = HankinsonWithWichertPseudoCriticalTemp`: pseudocritical temperature function to use - `Z_correlation::Function = KareemEtAlZFactor`: natural gas compressibility/Z-factor correlation to use - `gas_viscosity_correlation::Function = LeeGasViscosity`: gas viscosity correlation to use - `solutionGORcorrelation::Function = StandingSolutionGOR`: solution GOR correlation to use - `bubblepoint::Union{Function, Real} = StandingBubblePoint`: either bubble point correlation or bubble point in **psia** - `oilVolumeFactor_correlation::Function = StandingOilVolumeFactor`: oil volume factor correlation to use - `waterVolumeFactor_correlation::Function = GouldWaterVolumeFactor`: water volume factor correlation to use - `dead_oil_viscosity_correlation::Function = GlasoDeadOilViscosity`: dead oil viscosity correlation to use - `live_oil_viscosity_correlation::Function = ChewAndConnallySaturatedOilViscosity`: saturated oil viscosity correction function to use - `frictionfactor::Function = SerghideFrictionFactor`: correlation function for Darcy-Weisbach friction factor - `outlet_referenced = true`: whether to use outlet pressure (WHP) or inlet pressure (BHP) for """ mutable struct WellModel wellbore::Wellbore; roughness valves::Union{GasliftValves, Missing} temperatureprofile::Union{Array{T,1}, Missing} where T <: Real temperature_method; WHT; geothermal_gradient; BHT; casing_temp_factor pressurecorrelation::Function; outlet_referenced::Bool WHP; CHP; dp_est; dp_est_inj; error_tolerance; error_tolerance_inj q_o; q_w; GLR injection_point; naturalGLR APIoil; sg_water; sg_gas; sg_gas_inj molFracCO2; molFracH2S; molFracCO2_inj; molFracH2S_inj pseudocrit_pressure_correlation::Function pseudocrit_temp_correlation::Function Z_correlation::Function gas_viscosity_correlation::Function solutionGORcorrelation::Function bubblepoint::Union{Function, Real} oilVolumeFactor_correlation::Function waterVolumeFactor_correlation::Function dead_oil_viscosity_correlation::Function live_oil_viscosity_correlation::Function frictionfactor::Function function WellModel(;wellbore, roughness, valves = missing, temperatureprofile = missing, temperature_method = "linear", WHT = missing, geothermal_gradient = missing, BHT = missing, casing_temp_factor = 0.85, pressurecorrelation = BeggsAndBrill, outlet_referenced = true, WHP, CHP = missing, dp_est, dp_est_inj = 0.1 * dp_est, error_tolerance = 0.1, error_tolerance_inj = 0.05, q_o, q_w, GLR, injection_point = missing, naturalGLR = missing, APIoil, sg_water, sg_gas, sg_gas_inj = sg_gas, molFracCO2 = 0.0, molFracH2S = 0.0, molFracCO2_inj = molFracCO2, molFracH2S_inj = molFracH2S, pseudocrit_pressure_correlation = HankinsonWithWichertPseudoCriticalPressure, pseudocrit_temp_correlation = HankinsonWithWichertPseudoCriticalTemp, Z_correlation = KareemEtAlZFactor, gas_viscosity_correlation = LeeGasViscosity, solutionGORcorrelation = StandingSolutionGOR, bubblepoint = StandingBubblePoint, oilVolumeFactor_correlation = StandingOilVolumeFactor, waterVolumeFactor_correlation = GouldWaterVolumeFactor, dead_oil_viscosity_correlation = GlasoDeadOilViscosity, live_oil_viscosity_correlation = ChewAndConnallySaturatedOilViscosity, frictionfactor = SerghideFrictionFactor) new(wellbore, roughness, valves, temperatureprofile, temperature_method, WHT, geothermal_gradient, BHT, casing_temp_factor, pressurecorrelation, outlet_referenced, WHP, CHP, dp_est, dp_est_inj, error_tolerance, error_tolerance_inj, q_o, q_w, GLR, injection_point, naturalGLR, APIoil, sg_water, sg_gas, sg_gas_inj, molFracCO2, molFracH2S, molFracCO2_inj, molFracH2S_inj, pseudocrit_pressure_correlation, pseudocrit_temp_correlation, Z_correlation, gas_viscosity_correlation, solutionGORcorrelation, bubblepoint, oilVolumeFactor_correlation, waterVolumeFactor_correlation, dead_oil_viscosity_correlation, live_oil_viscosity_correlation, frictionfactor) end end #Printing for model structs function Base.show(io::IO, model::WellModel) fields = fieldnames(WellModel) values = map(f -> getfield(model, f), fields) |> list -> map(x -> !(x isa Array) ? string(x) : "$(length(x)) points from $(maximum(x)) to $(minimum(x)).", list) msg = string.(fields) .* " : " .* values println(io, "Well model: ") for item in msg println(io, item) end end
PressureDrop
https://github.com/jnoynaert/PressureDrop.jl.git
[ "Apache-2.0" ]
1.0.7
e88f8d8125552a7f991eac90e9a08e5f0057a811
code
5220
# utility functions for PressureDrop package """ `read_survey(<named arguments>)` Reads in a wellbore deviation survey from a delimited file and returns a Wellbore object for use with pressure drop calculations. Assumes the column order for the file is (MD, INC, TVD, <optional ID>), in U.S. field units, where: MD = measured depth, ft Inc = inclination, degrees from vertical TVD = true vertical depth, ft ID = pipe hydraulic diameter, inches # Arguments - `path::String`: absolute or relative path to survey file - `delim::Char = ','`: file delimiter - `skiplines::Int64 = 1`: number of lines to skip before survey data starts; assumes a 1-line header by default - `maxdepth::Union{Bool, Real} = false`: If set to a real number, drop survey data past a certain measured depth. If false, keep the entire survey. - `id_included::Bool = false`: whether the survey segment ID is stored as a fourth column. This is the easiest option to include tapered strings. - `id::Real = 2.441`: the diameter to assume for the entire wellbore length, if the ID is not included in the survey file. - `valves::Union{GasliftValves, Nothing} = nothing`: set of gas lift valves to add corresponding depths to the final Wellbore object via interpolation - `allow_negatives::Bool = false`: allow negative depths on the survey inputs """ function read_survey(;path::String, delim::Char = ',', skiplines::Int64 = 1, maxdepth::Union{Bool, Real} = false, id_included::Bool = false, id::Real = 2.441, valves::Union{GasliftValves, Nothing} = nothing, allow_negatives::Bool = false) nlines = countlines(path) - skiplines ncols = id_included ? 4 : 3 output = Array{Float64, 2}(undef, nlines, ncols) filestream = open(path, "r") try for skip in 1:skiplines readline(filestream) end for (index, line) in enumerate(eachline(filestream)) parsedline = parse.(Float64, split(line, delim, keepempty = false)) output[index, :] = parsedline end finally close(filestream) end if maxdepth != false output = output[output[:,1] .<= maxdepth, :] end if id_included return Wellbore(output[:,1], output[:,2], output[:,3], output[:,4], valves, allow_negatives) else return Wellbore(output[:,1], output[:,2], output[:,3], id, valves, allow_negatives) end end """ `read_valves(;path::String, delim::Char = ',', skiplines::Int64 = 1)` Expects a CSV with columns for [measured depth (ft)], [test rack opening pressure (psig)], [R-value (dimensionless)], [port size (diameter in 64ths inch)]. Indicate orifice valves with an R-value and PTRO of 0. # Arguments - `path::String`: absolute or relative path to survey file - `delim::Char = ','`: file delimiter - `skiplines::Int64 = 1`: number of lines to skip before survey data starts; assumes a 1-line header by default """ function read_valves(;path::String, delim::Char = ',', skiplines::Int64 = 1) nlines = countlines(path) - skiplines output = Array{Float64, 2}(undef, nlines, 4) filestream = open(path, "r") try for skip in 1:skiplines readline(filestream) end for (index, line) in enumerate(eachline(filestream)) parsedline = parse.(Float64, split(line, delim, keepempty = false)) output[index, :] = parsedline end finally close(filestream) end return GasliftValves(output[:,1], output[:,2], output[:,3], output[:,4]) #constructor will parse appropriately end """ `interpolate(ref_array, property::Array{Real,1}, point)` Interpolate between points without any bounds checking. """ function interpolate(ref_array::Array{T,1} where T <: Real, property::Array{T,1} where T <: Real, point) index_above = searchsortedlast(ref_array, point) index_below = index_above + 1 x1 = ref_array[index_above] if x1 == point interpolated_value = property[index_above] else x2 = ref_array[index_below] y1, y2 = property[index_above], property[index_below] interpolated_value = y1 + (y2 - y1)/(x2 - x1) * (point - x1) end return interpolated_value end """ `interpolate_all(well::Wellbore, properties::Array{Array{Real,1},1}, points::Array{Real,1})` Interpolate multiple points for multiple properties with bounds checking. """ function interpolate_all(well::Wellbore, properties::Array{Array{T,1},1} where T <: Real, points::Array{T,1} where T <: Real) if !(all(length.(properties) .== length(well.md))) throw(DimensionMismatch("Property array lengths and number of wellbore survey points must match.")) end if !(all(points .<= well.md[end]) && all(points .>= well.md[1])) throw(DimensionMismatch("Interpolation points cannot be outside wellbore measured depth.")) end results = Array{Float64, 2}(undef, length(points), length(properties)) for (index, property) in enumerate(properties) results[:, index] = map(pt -> interpolate(well.md, property, pt), points) end return results end
PressureDrop
https://github.com/jnoynaert/PressureDrop.jl.git
[ "Apache-2.0" ]
1.0.7
e88f8d8125552a7f991eac90e9a08e5f0057a811
code
11778
using PrettyTables """ `ThornhillCraver_gaspassage_simplified(P_td, P_cd, T_cd, portsize_64ths)` Thornhill-Craver gas throughput for square-edged orifice (optimistic since it assumes a fully open valve where the stem does not interfere with flow). This simplified version assumes gas specific gravity at 0.65. # Arguments - `P_td`: tubing pressure at depth, **psig** - `P_cd`: casing pressure at depth, **psig** - `T_cd`: gas (casing fluid) temperature at depth, °F - `portsize_64ths`: valve port size in 64ths inch """ function ThornhillCraver_gaspassage_simplified(P_td, P_cd, T_cd, portsize_64ths) if P_td > P_cd return 0 end P_td += pressure_atmospheric P_cd += pressure_atmospheric A_p = π * (portsize_64ths/128)^2 #port area, in² R_du = max(P_td / P_cd, 0.553) #critical flow condition check return 2946 * A_p * P_cd * sqrt(R_du^1.587 - R_du^1.794) / sqrt(T_cd + 459.67) end """ `ThornhillCraver_gaspassage(<args>)` Thornhill-Craver gas throughput for square-edged orifice. See section 8.1 of *Fundamentals of Gas Lift Engineering* by Ali Hernandez, as well as published work by Ken Decker, for an in-depth discussion of the application of Thornhill-Craver to gas lift valve performance. In general, T-C will be optimistic, but should be expected to have an effective error of up to +/- 30%. # Arguments - `P_td`: tubing pressure at depth, **psig** - `P_cd`: casing pressure at depth, **psig** - `T_cd`: gas (casing fluid) temperature at depth, °F - `portsize_64ths`: valve port size in 64ths inch - `sg_gas`: gas specific gravity relative to air - `molFracCO2 = 0.0`, `molFracH2S = 0.0`: produced gas fractions of hydrogen sulfide and CO2, [0,1] - `C_d = 0.827`: discharge coefficient--uses 0.827 by defaul to match original T-C - `Z_correlation::Function = KareemEtAlZFactor`: natural gas compressibility/Z-factor correlation to use - `pseudocrit_pressure_correlation::Function = HankinsonWithWichertPseudoCriticalPressure`: psuedocritical pressure function to use - `pseudocrit_temp_correlation::Function = HankinsonWithWichertPseudoCriticalTemp`: pseudocritical temperature function to use """ function ThornhillCraver_gaspassage(P_td, P_cd, T_cd, portsize_64ths, sg_gas, molFracCO2 = 0, molFracH2S = 0, C_d = 0.827, Z_correlation::Function = KareemEtAlZFactor, pseudocrit_pressure_correlation::Function = HankinsonWithWichertPseudoCriticalPressure, pseudocrit_temp_correlation::Function = HankinsonWithWichertPseudoCriticalTemp) if P_td > P_cd return 0 end P_td += pressure_atmospheric P_cd += pressure_atmospheric k = 1.27 #assumed value for Cp_Cv; if a more precise solution is needed later, see SPE 150808 "Specific Heat Capacity of Natural Gas; Expressed as a Function of ItsSpecific gravity and Temperature" by Kareem Lateef et al P_pc = pseudocrit_pressure_correlation(sg_gas, molFracCO2, molFracH2S) _, T_pc, _ = pseudocrit_temp_correlation(sg_gas, molFracCO2, molFracH2S) Z = Z_correlation(P_pc, T_pc, P_cd, T_cd) #compressibility factor at upstream pressure T_gd = T_cd + 459.67 A_p = π * (portsize_64ths/128)^2 #port area, in² F_cf = (2/(k+1))^(k/(k-1)) #critical flow ratio F_du = max(P_td/P_cd, F_cf) #critical flow condition check return C_d * A_p * 155.5 * P_cd * sqrt(2 * 32.16 * k / (k-1) * (F_du^(2/k) - F_du^((k+1)/k))) / sqrt(Z * sg_gas * T_gd) end """ `SageAndLacy_nitrogen_Zfactor(p, T)` Sage and Lacy experimental Z-factor correlation. Takes pressure in psia and temperature in °F. """ function SageAndLacy_nitrogen_Zfactor(p, T) b = (1.207e-7 * T^3 - 1.302e-4 * T^2 + 5.122e-2 * T - 4.781) * 1e-5 c = (-2.461e-8 * T^3 + 2.640e-5 * T^2 - 1.058e-2 * T + 1.880) * 1e-8 return 1 + b * p + c * p^2 end """ `domepressure_downhole(p_d_set, T_v, error_tolerance = 0.1, p_d_est = p_d_set/0.9, T_set = 60, Zfactor::Function = SageAndLacy_nitrogen_Zfactor)` Iteratively calculates the dome pressure **in psia** of the valve downhole using gas equation of state, assuming that the change in dome volume is negligible. # Arguments - `PTRO`: test rack opening pressure of valve **in psig** - `R`: R-value of the valve (nominally, area of port divided by area of bellows/dome, but adjusted for lapped seats, etc) - `T_v`: valve temperature at depth - `error_tolerance = 0.1`: error tolerance in psi - `delta_est`: initial estimate for downhole dome pressure as a percentage of surface set pressure - `T_set = 60`: setting temperature in °F - `Zfactor::Function = SageAndLacy_nitrogen_Zfactor`: Z-factor function parameterized by target conditions as pressure in psia and temperature in °F """ function domepressure_downhole(PTRO, R, T_v, error_tolerance = 0.1, delta_est = 1.1, T_set = 60, Zfactor::Function = SageAndLacy_nitrogen_Zfactor) p_d_set = (PTRO + pressure_atmospheric) * (1 - R) p_d_est = p_d_set * delta_est p_d = Zfactor(p_d_est, T_v) / Zfactor(p_d_set, T_set) * (T_v + 459.67) * p_d_set / 520 while abs(p_d - p_d_est) > error_tolerance p_d_est = p_d p_d = Zfactor(p_d_est, T_v) / Zfactor(p_d_set, T_set) * (T_v + 459.67) * p_d_set / 520 end return p_d end """ `valve_calcs(<named args>)` Calculates a standard table of pressures and temperatures for anticipated valve operation at current (steady-state) conditions. Note that all inputs and outputs are in **psig** for ease of interpretation. Additionally, all forms are derived from the force balance for opening, P_t * A_p + P_c * (A_d - A_p) ≥ P_d * A_d and the force balance for closing, P_c ≤ P_d. Further note that: - the valve closing pressures given are a theoretical minimum (casing pressure is assumed to act on the entire area of the bellows/dome until closing). - valve opening and closing pressures are recalculated from PTRO and current conditions, rather than the other way around common during design. - casing temperature is assumed to be 85% of tubing temperature if only a tubing temperature profile is provided. **To force the use of identical temperature profiles, pass the wellbore temperature twice.** # Arguments - `valves::GasliftValves`: a GasliftValves object defining the valve string - `well::Wellbore`: a Wellbore object defining the survey/segmentation points, deviation survey, and tubing - `sg_gas`: injection gas specific gravity - `tubing_pressures::Array{T, 1} where T <: Real`: precalculated tubing pressures in **psig** - `casing_pressures::Array{T, 1} where T <: Real`: precalculated casing pressures in **psig** - `tubing_temps::Array{T, 1} where T <: Real`: precalculated tubing temperature profile in °F - `casing_temps::Array{T, 1} where T <: Real = tubing_temps .* 0.85`: precalculated casing temperature profile in °F - `dp_min = 100`: minimum differential pressure (CP - TP) in psi for calculating an assumed injection point - `one_inch_coefficient = 0.76`: coefficient of discharge for Thornhill-Craver gas passage calculations for 1" valves - `one_pt_five_inch_coefficient = 0.6`: coefficient of discharge for Thornhill-Craver gas passage calculations for 1.5" valves """ function valve_calcs(;valves::GasliftValves, well::Wellbore, sg_gas, tubing_pressures::Array{T, 1} where T <: Real, casing_pressures::Array{T, 1} where T <: Real, tubing_temps::Array{T, 1} where T <: Real, casing_temps::Array{T, 1} where T <: Real = tubing_temps .* 0.85, dp_min = 100, one_inch_coefficient = 0.76, one_pt_five_inch_coefficient = 0.6) interp_values = interpolate_all(well, [tubing_pressures, casing_pressures, tubing_temps, casing_temps, well.tvd], valves.md) P_td = interp_values[:,1] #tubing pressure at depth, psig P_cd = interp_values[:,2] #casing pressure at depth, psig T_td = interp_values[:,3] #temp of tubing fluid at depth T_cd = interp_values[:,4] #temp of casing fluid at depth valve_temps = 0.7 .* T_cd .+ 0.3 .* T_td # Faustinelli, J.G. 1997 P_bd = domepressure_downhole.(valves.PTRO, valves.R, valve_temps) #dome/bellows pressure at depth; in psia equals valve closing pressure at depth PVC = P_bd .- pressure_atmospheric #convert to psig PVO = (P_bd .- ((P_td .+ pressure_atmospheric) .* valves.R)) ./ (1 .- valves.R) #valve opening pressure at depth PVO = PVO .- pressure_atmospheric #convert to psig csg_diffs = P_cd .- casing_pressures[1] #casing differential to depth PSC = PVC .- csg_diffs PSO = PVO .- csg_diffs T_C = ThornhillCraver_gaspassage.(P_td, P_cd, T_cd, valves.port, sg_gas) GLV_numbers = length(valves.md):-1:1 PPEF = valves.R ./ (1 .- valves.R) .* 100 #production pressure effect factor # NOTE: plot_valves in plottingfunctions.jl depends on the column order of this table for PVO/PVC valvedata = hcat(GLV_numbers, valves.md, interp_values[:,5], PSO, PSC, valves.port, valves.R, PPEF, valves.PTRO, P_td, P_cd, PVO, PVC, T_td, T_cd, T_C, T_C * one_inch_coefficient, T_C * one_pt_five_inch_coefficient) valve_ids = collect(1:length(valves.md)) # find operating valve by "greedy opening" heuristic: select lowest non-orifice valve where CP @ depth is below opening pressure but still above closing pressure and has enough differential pressure active_valve_row = findlast(i -> P_cd[i] - P_td[i] >= dp_min && valves.R[i] > 0 && P_cd[i] <= PVO[i] && P_cd[i] > PVC[i], valve_ids) if active_valve_row === nothing if P_cd[end] - P_td[end] >= dp_min #assume operating on last valve active_valve_row = length(valves.md) else active_valve_row = 1 #nominal lockout, but assume you are injecting on top valve if P_cd[1] - P_td[1] < dp_min @info "Possible locked out valve condition inferred. Assuming injection at top valve with ΔP = $(round(P_cd[1] - P_td[1], digits = 1)) psi." end end end injection_depth = valves.md[active_valve_row] return valvedata, injection_depth end """ `valve_table(valvedata, injection_depth = nothing)` Pretty prints the data returned by `valve_calcs` for interpretation. """ function valve_table(valvedata, injection_depth = nothing) header = ["GLV" "MD" "TVD" "PSO" "PSC" "Port" "R" "PPEF" "PTRO" "TP" "CP" "PVO" "PVC" "T_td" "T_cd" "Q_o" "Q_1.5" "Q_1"; "" "ft" "ft" "psig" "psig" "64ths" "" "%" "psig" "psig" "psig" "psig" "psig" "°F" "°F" "mcf/d" "mcf/d" "mcf/d"] operating_valve = Highlighter((data, i, j) -> (data[i,2] == injection_depth), crayon"bg:dark_gray white bold") pretty_table(valvedata, header; tf = tf_unicode_rounded, header_crayon = crayon"yellow bold", formatters = ft_printf("%.0f", [1:6;8:18]), highlighters = (operating_valve,)) end """ `estimate_valve_Rvalue(port_size, valve_size, lapped_seat = true)` Estimates an R-value for your valve (not recommended) using sensible defaults, if you do not have a manufacturer-provided value specific to the valve (recommended). Takes port size as a diameter in 64ths inches, a valve size in inches {1.0, 1.5}, and an indication of whether the seat is lapped as {true, false}. """ function estimate_valve_Rvalue(port_size, valve_size, lapped_seat = true) if !(valve_size ∈ (1.0, 1.5)) throw(ArgumentError("Must specify a 1.0\" or 1.5\" valve.")) end port_diameter = lapped_seat ? (port_size/64 + 0.006) : port_size port_area = π * (port_diameter/2)^2 bellows_area = valve_size == 1.0 ? 0.31 : 0.77 return port_area/bellows_area end
PressureDrop
https://github.com/jnoynaert/PressureDrop.jl.git
[ "Apache-2.0" ]
1.0.7
e88f8d8125552a7f991eac90e9a08e5f0057a811
code
3332
# run benchmarks on integration scenarios BenchmarkTools.DEFAULT_PARAMETERS.seconds = timelimit Base.CoreLogging.disable_logging(Base.CoreLogging.Info) #remove info-level outputs to avoid console spam @warn "Setting up integration benchmarks..." #%% general parameters dp_est = 10. #psi error_tolerance = 0.1 #psi outlet_pressure = 220 - 14.65 #WHP in psig oil_API = 35 sg_gas = 0.65 CO2 = 0.005 sg_water = 1.07 roughness = 0.0006500 BHT = 165 id = 2.441 #%% scenario parameters scenarios = (:A, :B, :C, :D, :E) parameters = (rate = (A = 500, B = 250, C = 1000, D = 3000, E = 50), WC = (A = 0.5, B = 0.25, C = 0.75, D = 0.85, E = 0.25), GLR = (A = 4500, B = 6000, C = 3000, D = 1200, E = 10000), WHT = (A = 100, B = 90, C = 105, D = 115, E = 80)) #%% load test Wellbore testpath = joinpath(dirname(dirname(pathof(PressureDrop))), "test/testdata/Sawgrass_9_32") surveypath = joinpath(testpath, "Test_survey_Sawgrass_9.csv") testwell = read_survey(path = surveypath, id = id) #%% generate linear temperature profiles function create_temps(scenario) WHT = parameters[:WHT][scenario] return linear_wellboretemp(WHT = WHT, BHT = BHT, wellbore = testwell) end temps = [create_temps(s) for s in scenarios] temp_profiles = NamedTuple{scenarios}(temps) #temp profiles labelled by scenario @warn "Benchmarking Beggs & Brill..." corr = BeggsAndBrill timings = Array{Float64,1}(undef, length(scenarios)) for (index, scenario) in enumerate(scenarios) WC = parameters[:WC][scenario] rate = parameters[:rate][scenario] q_o = rate * (1 - WC) q_w = rate * WC GLR = parameters[:GLR][scenario] temps = temp_profiles[scenario] timings[index] = @belapsed begin traverse_topdown(wellbore = testwell, roughness = roughness, temperatureprofile = $temps, pressurecorrelation = corr, dp_est = dp_est, error_tolerance = error_tolerance, q_o = $q_o, q_w = $q_w, GLR = $GLR, APIoil = oil_API, sg_water = sg_water, sg_gas = sg_gas, WHP = outlet_pressure, molFracCO2 = CO2) end end @warn "$corr timing | min: $(minimum(timings)) s | max: $(maximum(timings)) s | mean: $(sum(timings)/length(timings)) s" @warn "Benchmarking Hagedorn & Brown..." corr = HagedornAndBrown timings = Array{Float64,1}(undef, length(scenarios)) for (index, scenario) in enumerate(scenarios) WC = parameters[:WC][scenario] rate = parameters[:rate][scenario] q_o = rate * (1 - WC) q_w = rate * WC GLR = parameters[:GLR][scenario] temps = temp_profiles[scenario] timings[index] = @belapsed begin traverse_topdown(wellbore = testwell, roughness = roughness, temperatureprofile = $temps, pressurecorrelation = corr, dp_est = dp_est, error_tolerance = error_tolerance, q_o = $q_o, q_w = $q_w, GLR = $GLR, APIoil = oil_API, sg_water = sg_water, sg_gas = sg_gas, WHP = outlet_pressure, molFracCO2 = CO2) end end @warn "$corr timing | min: $(minimum(timings)) s | max: $(maximum(timings)) s | mean: $(sum(timings)/length(timings)) s"
PressureDrop
https://github.com/jnoynaert/PressureDrop.jl.git
[ "Apache-2.0" ]
1.0.7
e88f8d8125552a7f991eac90e9a08e5f0057a811
code
1081
#test flags: devmode = false #test only subsets isCI = get(ENV, "CI", nothing) == "true" #check if running in Travis devtests = ("test_pvt.jl") #tuple of filenames to run for limited-subset tests test_plots = false #falls through to test_wrappers.jl run_benchmarks = false; timelimit = 5 #time limit in seconds for each benchmarking process using Test using PressureDrop if test_plots #note that doc generation on deployment implicitly tests all plotting functions using Gadfly end if isCI || !devmode include("test_types.jl") include("test_utilities.jl") include("test_pvt.jl") include("test_pressurecorrelations.jl") include("test_tempcorrelations.jl") include("test_casingcalcs.jl") include("test_valvecalcs.jl") include("test_integration_legacy.jl") #tolerance test include("test_integration_scenario.jl") include("test_wrappers.jl") include("test_regressions.jl") else #devmode include.(devtests); end if run_benchmarks using BenchmarkTools include("runbenchmarks.jl") end
PressureDrop
https://github.com/jnoynaert/PressureDrop.jl.git
[ "Apache-2.0" ]
1.0.7
e88f8d8125552a7f991eac90e9a08e5f0057a811
code
1134
include("../src/casingcalculations.jl") @testset "Casing pressure segment drop" begin sg_gas = 0.7 P_pc = HankinsonWithWichertPseudoCriticalPressure(sg_gas, 0, 0) _, T_pc, _ = HankinsonWithWichertPseudoCriticalTemp(sg_gas, 0, 0) ΔP = calculate_casing_pressuresegment(300, 10, (100+180)/2, 4500, sg_gas, KareemEtAlZFactor, P_pc, T_pc) @test ΔP ≈ 332.7-300 atol = 1 end @testset "Casing pressure traverse" begin md = [0, 2250, 4500] tvd = md inc = [0, 0, 0] id = 2.441 temps = [100., 140., 180.] testwell = Wellbore(md, inc, tvd, id) pressures = casing_traverse_topdown(wellbore = testwell, temperatureprofile = temps, CHP = 300 - pressure_atmospheric, sg_gas = 0.7, dp_est = 10) @test pressures[end] ≈ (332.7 - pressure_atmospheric) atol = 5 #model = WellModel(wellbore = testwell, temperatureprofile = temps, CHP = 300 - pressure_atmospheric, sg_gas_inj = 0.7, dp_est_inj = 10) #pressures2 = casing_traverse_topdown(model) #@test pressures2[end] ≈ (332.7 - pressure_atmospheric) atol = 5 end
PressureDrop
https://github.com/jnoynaert/PressureDrop.jl.git
[ "Apache-2.0" ]
1.0.7
e88f8d8125552a7f991eac90e9a08e5f0057a811
code
4388
@testset "Takacs B&B vertical single large segment" begin pressurecorrelation = BeggsAndBrill p_initial = 346.6 - 14.65 dp_est = 100 t_avg = 107.2 md_initial = 0 md_end = 3700 tvd_initial = 0 tvd_end = 3700 inclination = 0 id = 2.441 roughness = 0.0003 q_o = 375 q_w = 0 GLR = 480 APIoil = 41.06 sg_water = 1 sg_gas = 0.916 molFracCO2 = 0 molFracH2S = 0 pseudocrit_pressure_correlation = HankinsonWithWichertPseudoCriticalPressure pseudocrit_temp_correlation = HankinsonWithWichertPseudoCriticalTemp Z_correlation = PapayZFactor gas_viscosity_correlation = LeeGasViscosity solutionGORcorrelation = StandingSolutionGOR bubblepoint = 3000 oilVolumeFactor_correlation = StandingOilVolumeFactor waterVolumeFactor_correlation = GouldWaterVolumeFactor dead_oil_viscosity_correlation = GlasoDeadOilViscosity live_oil_viscosity_correlation = ChewAndConnallySaturatedOilViscosity frictionfactor = SerghideFrictionFactor error_tolerance = 1.0 #psi P_pc = pseudocrit_pressure_correlation(sg_gas, molFracCO2, molFracH2S) _, T_pc, _ = pseudocrit_temp_correlation(sg_gas, molFracCO2, molFracH2S) ΔP_est = PressureDrop.calculate_pressuresegment(pressurecorrelation, p_initial, dp_est, t_avg, md_end - md_initial, tvd_end - tvd_initial, inclination, true, id, roughness, q_o, q_w, GLR, GLR, APIoil, sg_water, sg_gas, Z_correlation, P_pc, T_pc, gas_viscosity_correlation, solutionGORcorrelation, bubblepoint, oilVolumeFactor_correlation, waterVolumeFactor_correlation, dead_oil_viscosity_correlation, live_oil_viscosity_correlation, frictionfactor, error_tolerance) @test ΔP_est ≈ 3770 * (0.170 + 0.312) / 2 atol = 100 #order of magnitude test based on average between example points in Takacs (50). end #testset Takacs B&B vertical @testset "IHS Cleveland 6 - B&B full wellbore" begin #%% end to end test testpath = joinpath(dirname(dirname(pathof(PressureDrop))), "test/testdata/Cleveland_6/Test_survey_Cleveland_6.csv") testwell = read_survey(path = testpath, id_included = false, maxdepth = 10000, id = 2.441) test_temp = collect(range(85, stop = 160, length = length(testwell.md))) pressure_values = traverse_topdown(wellbore = testwell, roughness = 0.0006, temperatureprofile = test_temp, pressurecorrelation = BeggsAndBrill, dp_est = 10, error_tolerance = 0.1, q_o = 400, q_w = 500, GLR = 2000, APIoil = 36, sg_water = 1.05, sg_gas = 0.75, WHP = 150 - 14.65) ihs_data = joinpath(dirname(dirname(pathof(PressureDrop))), "test/testdata/Cleveland_6/Perform_results_cleveland_6_long.csv") ihs_pressures = [parse.(Float64, split(line, ',', keepempty = false)) for line in readlines(ihs_data)[2:end]] |> x -> hcat(x...)' @test (ihs_pressures[end, 2] - 14.65) ≈ pressure_values[end] atol = 25 model = WellModel(wellbore = testwell, roughness = 0.0006, temperatureprofile = test_temp, pressurecorrelation = BeggsAndBrill, dp_est = 10, error_tolerance = 0.1, q_o = 400, q_w = 500, GLR = 2000, APIoil = 36, sg_water = 1.05, sg_gas = 0.75, WHP = 150 - 14.65) @test (ihs_pressures[end, 2] - 14.65) ≈ traverse_topdown(model)[end] atol = 25 #= view results ihs_temps = "C:/pressuredrop.git/test/testdata/Cleveland_6/Perform_temps_cleveland_6_long.csv" ihs_temps = [parse.(Float64, split(line, ',', keepempty = false)) for line in readlines(ihs_temps)[2:end]] |> x -> hcat(x...)' ; using Gadfly set_default_plot_size(8.5inch, 11inch) plot( layer(x = pressure_values, y = testwell.md, Geom.line), layer(x = test_temp, y = testwell.md, Geom.line, Theme(default_color = "red")), layer(x = ihs_pressures[:,2], y = ihs_pressures[:,1], Geom.line, Theme(default_color = "green")), layer(x = ihs_temps[:,2], y = ihs_temps[:,1], Geom.line, Theme(default_color = "orange")), Coord.cartesian(yflip = true)) #matches [pressure_values[i] - pressure_values[i-1] for i in 2:length(pressure_values)] #negative drops only occur where inclination is negative =# end #testset IHS Cleveland 6 - B&B
PressureDrop
https://github.com/jnoynaert/PressureDrop.jl.git
[ "Apache-2.0" ]
1.0.7
e88f8d8125552a7f991eac90e9a08e5f0057a811
code
6767
# helper function for testing to load the example results function load_example(path, ncol, delim = ',', skiplines = 1) #make sure to use nscenario+1 cols nlines = countlines(path) - skiplines output = Array{Float64, 2}(undef, nlines, ncol) filestream = open(path, "r") try for skip in 1:skiplines readline(filestream) end for (index, line) in enumerate(eachline(filestream)) parsedline = parse.(Float64, split(line, delim, keepempty = false)) output[index, :] = parsedline end finally close(filestream) end return output end # helper function for testing to interpolate the results to match wellbore segmentation function match_example(well::Wellbore, example::Array{Float64,2}) nrow = length(well.md) ncol = size(example)[2] output = Array{Float64, 2}(undef, nrow, ncol) output[:, 1] = well.md output[1, 2:end] = example[1, 2:end] for depth_index in 2:length(well.md) depth = well.md[depth_index] row_above = example[example[:,1] .<= depth, :][end,:] if row_above[1] == depth output[depth_index,2:end] = row_above[2:end] else row_below = example[example[:,1] .> depth, :][1,:] #interpolated_row = y1 + (y2 - y1)/(x2 - x1) * (depth - x1) : interpolated_values = [row_above[i] + (row_below[i] - row_above[i])/(row_below[1] - row_above[1]) * (depth - row_above[1]) for i in 2:ncol] output[depth_index,2:end] = interpolated_values end end return output end #%% general parameters dp_est = 10 #psi error_tolerance = 0.1 #psi outlet_pressure = 220 - 14.65 #WHP in psig oil_API = 35 sg_gas = 0.65 CO2 = 0.005 sg_water = 1.07 roughness = 0.0006500 BHT = 165 id = 2.441 #%% scenario parameters scenarios = (:A, :B, :C, :D, :E) parameters = (rate = (A = 500, B = 250, C = 1000, D = 3000, E = 50), WC = (A = 0.5, B = 0.25, C = 0.75, D = 0.85, E = 0.25), GLR = (A = 4500, B = 6000, C = 3000, D = 1200, E = 10000), WHT = (A = 100, B = 90, C = 105, D = 115, E = 80)) #%% load test Wellbore testpath = joinpath(dirname(dirname(pathof(PressureDrop))), "test/testdata/Sawgrass_9_32") surveypath = joinpath(testpath, "Test_survey_Sawgrass_9.csv") testwell = read_survey(path = surveypath, id = id) #%% generate linear temperature profiles function create_temps(scenario) WHT = parameters[:WHT][scenario] return linear_wellboretemp(WHT = WHT, BHT = BHT, wellbore = testwell) end temps = [create_temps(s) for s in scenarios] temp_profiles = NamedTuple{scenarios}(temps) #temp profiles labelled by scenario @testset "Beggs and Brill with Palmer correction - scenarios" begin # load test results to compare & generate interpolations from expected results at same depths as test well segmentation examplepath = joinpath(testpath,"Perform_BandB_with_Palmer_correction.csv") test_example = load_example(examplepath, length(scenarios)+1) matched_example = match_example(testwell, test_example) matched_example[:,2:end] = matched_example[:,2:end] .- 14.65 #convert to psig # generate test data -- map across all examples corr = BeggsAndBrill test_results = Array{Float64, 2}(undef, length(testwell.md), 1 + length(scenarios)) test_results[:,1] = testwell.md for (index, scenario) in enumerate(scenarios) WC = parameters[:WC][scenario] rate = parameters[:rate][scenario] q_o = rate * (1 - WC) q_w = rate * WC GLR = parameters[:GLR][scenario] test_results[:,index+1] = traverse_topdown(wellbore = testwell, roughness = roughness, temperatureprofile = temp_profiles[scenario], pressurecorrelation = corr, dp_est = dp_est, error_tolerance = error_tolerance, q_o = q_o, q_w = q_w, GLR = GLR, APIoil = oil_API, sg_water = sg_water, sg_gas = sg_gas, WHP = outlet_pressure, molFracCO2 = CO2) end # compare test data # NOTE: points after the first survey point at > 90° inclination are discarded; # the reference data appears to force positive frictional effects. hz_index = findnext(x -> x >= 90, testwell.inc, 1) compare_tolerance = 40 #every scenario except the high-rate scenario can take a 15-psi tolerance for index in 2:length(scenarios)+1 println("Comparing scenario ", index-1, " on index ", index) @test all( abs.(test_results[1:hz_index,index] .- matched_example[1:hz_index,index]) .<= compare_tolerance ) println("Max difference : ", maximum(abs.(test_results[1:hz_index,index] .- matched_example[1:hz_index,index]))) end end #testset for B&B scenarios @testset "Hagedorn & Brown with G&W correction - scenarios" begin # load test results to compare & generate interpolations from expected results at same depths as test well segmentation examplepath = joinpath(testpath,"Perform_HandB_with_GriffithWallis.csv") test_example = load_example(examplepath, length(scenarios)+1) matched_example = match_example(testwell, test_example) matched_example[:,2:end] = matched_example[:,2:end] .- 14.65 #convert to psig # generate test data -- map across all examples corr = HagedornAndBrown test_results = Array{Float64, 2}(undef, length(testwell.md), 1 + length(scenarios)) test_results[:,1] = testwell.md for (index, scenario) in enumerate(scenarios) WC = parameters[:WC][scenario] rate = parameters[:rate][scenario] q_o = rate * (1 - WC) q_w = rate * WC GLR = parameters[:GLR][scenario] test_results[:,index+1] = traverse_topdown(wellbore = testwell, roughness = roughness, temperatureprofile = temp_profiles[scenario], pressurecorrelation = corr, dp_est = dp_est, error_tolerance = error_tolerance, q_o = q_o, q_w = q_w, GLR = GLR, APIoil = oil_API, sg_water = sg_water, sg_gas = sg_gas, WHP = outlet_pressure, molFracCO2 = CO2) end # compare test data # NOTE: points after the first survey point at > 90° inclination are discarded hz_index = findnext(x -> x >= 90, testwell.inc, 1) compare_tolerance = 85 #lposer tolerance to H&B due to wide range of methods to calculate correlating groups & reynolds numbers for index in 2:length(scenarios)+1 println("Comparing scenario ", index-1, " on index ", index) @test all( abs.(test_results[1:hz_index,index] .- matched_example[1:hz_index,index]) .<= compare_tolerance ) println("Max difference : ", maximum(abs.(test_results[1:hz_index,index] .- matched_example[1:hz_index,index]))) end end #H&B testset
PressureDrop
https://github.com/jnoynaert/PressureDrop.jl.git
[ "Apache-2.0" ]
1.0.7
e88f8d8125552a7f991eac90e9a08e5f0057a811
code
2256
include("../src/pressurecorrelations.jl") @testset "Friction factors" begin @test ChenFrictionFactor(35700, 2.259, 0.001)/4 ≈ 0.0063 atol = 0.001 @test ChenFrictionFactor(5.42e5, 2.295, 0.0006)/4 ≈ 0.0046 atol=0.001 # per economides @test SerghideFrictionFactor(5.42e5, 2.295, 0.0006)/4 ≈ 0.0046 atol=0.001 @test ChenFrictionFactor(71620, 2.441, 0.0002) ≈ 0.021 atol = 0.005 #per Takacs @test SerghideFrictionFactor(71620, 2.441, 0.0002) ≈ 0.021 atol = 0.005 @test ChenFrictionFactor(101000, 2.295, 0.0002)/4 ≈ 0.005 atol = 0.005 #per economides @test SerghideFrictionFactor(101000, 2.295, 0.0002)/4 ≈ 0.005 atol = 0.005 end @testset "Superficial velocities" begin @test liquidvelocity_superficial(375, 0, 2.441, 1.05, 0) ≈ 0.79 atol = 0.01 @test gasvelocity_superficial(375, 0, 480, 109.7, 2.441, 0.0389) ≈ 1.93 atol = 0.01 end #%% Beggs and Brill flowmap #= B&B flowmap graphical test, to make sure the correct mapping is generated # Re-run after any modifications to B&B flowmap function. # Note that this does not establish stability at the region boundaries. λ_l = 10 .^ collect(-4:0.1:0); N_Fr = 10 .^ collect(-1:0.1:3); function crossjoin(x, y) output = Array{Float64, 2}(undef, length(x) * length(y), 2) index = 1 @inbounds for i in x @inbounds for j in y output[index, 1] = i output[index, 2] = j index += 1 end end return output end testdata = crossjoin(λ_l, N_Fr); flowpattern = map(BeggsAndBrillFlowMap, testdata[:,1], testdata[:,2]); using Gadfly plot(x = testdata[:,1], y = testdata[:,2], color = flowpattern, Geom.rectbin, Scale.x_log10, Scale.y_log10, Coord.Cartesian(xmin=-4, xmax=0, ymin=-1, ymax=3)) =# @testset "Beggs and Brill vertical - single segment" begin inclination = 0 v_sl = 0.79 v_sg = 1.93 v_m = 2.72 ρ_l = 49.9 ρ_g = 1.79 id = 2.441 σ_l = 8 μ_l = 3 μ_g = 0.02 roughness = 0.0006 pressure_est = 346.6 @test BeggsAndBrill(1, 1, inclination, id, v_sl, v_sg, ρ_l, ρ_g, σ_l, μ_l, μ_g, roughness, pressure_est, SerghideFrictionFactor, true, false) ≈ 0.170 atol = 0.01 end
PressureDrop
https://github.com/jnoynaert/PressureDrop.jl.git
[ "Apache-2.0" ]
1.0.7
e88f8d8125552a7f991eac90e9a08e5f0057a811
code
1555
include("../src/pvtproperties.jl") @testset "Gas PVT" begin @test LeeGasViscosity(0.7, 2000.0, 160.0, 0.75) ≈ 0.017 atol = 0.001 @test HankinsonWithWichertPseudoCriticalTemp(0.65, 0.05, 0.08) .- (370.2, 351.4, 18.09) |> x -> all(abs.(x) .<= 1) @test HankinsonWithWichertPseudoCriticalPressure(0.65, 0.05, 0.08) ≈ 634.0 atol = 2 @test PapayZFactor(634, 351.4, 600.0, 100.0) ≈ 0.921 atol = 0.01 @test KareemEtAlZFactor(663.29, 377.59, 2000, 150) ≈ 0.8242 atol = 0.05 @test KareemEtAlZFactor_simplified(663.29, 377.59, 2000, 150) ≈ 0.8242 atol = 0.15 @test gasVolumeFactor(1200, 0.85, 200) ≈ 0.013 atol = 0.001 @test gasDensity_insitu(0.916, 0.883, 346.6, 80.3) ≈ 1.79 atol = 0.01 end @testset "Oil PVT" begin @test StandingSolutionGOR(30.0, 0.6, 800.0, 120.0, nothing, 2650) ≈ 121.4 atol = 1 @test StandingSolutionGOR(41.06, 0.916, 346.6, 80.3, nothing, 2650) ≈ 109.7 atol = 1 @test StandingBubblePoint(30, 0.75, 120, 100) ≈ 614 atol = 1 @test StandingOilVolumeFactor(30.0, 0.6, 121.4, 800.0, 120.0) ≈ 1.07 atol = 0.05 @test oilDensity_insitu(41.06, 0.916, 109.7, 1.05) ≈ 49.9 atol = 0.5 @test BeggsAndRobinsonDeadOilViscosity( 37.9, 120) ≈ 4.05 atol = 0.05 @test GlasoDeadOilViscosity(37.9, 120) ≈ 2.30 atol = 0.1 @test ChewAndConnallySaturatedOilViscosity(2.3, 769.0) ≈ 0.638 atol = 0.1 end @testset "Water PVT" begin @test waterDensity_stb(1.12) ≈ 69.9 atol = 0.1 @test GouldWaterVolumeFactor(50.0, 120.0) ≈ 1.01 atol = 0.05 end
PressureDrop
https://github.com/jnoynaert/PressureDrop.jl.git
[ "Apache-2.0" ]
1.0.7
e88f8d8125552a7f991eac90e9a08e5f0057a811
code
3000
testpath = joinpath(dirname(dirname(pathof(PressureDrop))), "test/testdata") @testset "Mayes 3-16 errors" begin default_GOR = 500 max_depth = 8500 GLpath = joinpath(testpath, "Mayes_3_16/Test_GLdesign_Mayes_3_16.csv") surveypath = joinpath(testpath, "Mayes_3_16/Test_survey_Mayes_3_16.csv") well = read_survey(path = surveypath, skiplines = 4, maxdepth = max_depth) #include IDs so that tailpipe and liner are properly accounted valves = read_valves(path = GLpath, skiplines = 1) model = WellModel(wellbore = well, roughness = 0.001, valves = valves, pressurecorrelation = HagedornAndBrown, WHP = 0, CHP = 0, dp_est = 25, temperature_method = "Shiu", BHT = 160, geothermal_gradient = 0.8, q_o = 0, q_w = 500, GLR = 0, naturalGLR = 0, APIoil = 38.2, sg_water = 1.05, sg_gas = 0.65) ## 2018-02-14 (domain error in H&B flow pattern) #duplicating the exact leadup from the loop where problem originally occurred, to avoid masking any problematic calculation oil = 41.3966666 gas = 581.0 water = 136.8298755 TP = 138.0 CP = 473.0 gasinj = 533.1899861698156 model.WHP = TP model.CHP = CP model.q_o = oil model.q_w = water model.naturalGLR = model.q_o + model.q_w <= 0 ? 0 : max( gas * 1000 / (model.q_o + model.q_w) , default_GOR * model.q_o / (model.q_o + model.q_w) ) model.GLR = model.q_o + model.q_w <= 0 ? 0 : max( (gas + gasinj) * 1000 / (model.q_o + model.q_w) , model.naturalGLR) @test (gaslift_model!(model, find_injectionpoint = true, dp_min = 100) |> x-> x[1][end]) ≈ 678 atol = 1 #2018-02-12 (no output) oil = 45.0 gas = 584.0 water = 149.0972222 TP = 137.0 CP = 474.0 gasinj = 518.08798656154 model.WHP = TP model.CHP = CP model.q_o = oil model.q_w = water model.naturalGLR = model.q_o + model.q_w <= 0 ? 0 : max( gas * 1000 / (model.q_o + model.q_w) , default_GOR * model.q_o / (model.q_o + model.q_w) ) model.GLR = model.q_o + model.q_w <= 0 ? 0 : max( (gas + gasinj) * 1000 / (model.q_o + model.q_w) , model.naturalGLR) @test (gaslift_model!(model, find_injectionpoint = true, dp_min = 100) |> x-> x[1][end]) ≈ 697 atol = 1 # nonconverging segment at 6395' oil = 2 gas = 584.0 water = 149.0972222 TP = 137.0 CP = 474.0 gasinj = 518.08798656154 model.WHP = TP model.CHP = CP model.q_o = oil model.q_w = water model.naturalGLR = model.q_o + model.q_w <= 0 ? 0 : max( gas * 1000 / (model.q_o + model.q_w) , default_GOR * model.q_o / (model.q_o + model.q_w) ) model.GLR = model.q_o + model.q_w <= 0 ? 0 : max( (gas + gasinj) * 1000 / (model.q_o + model.q_w) , model.naturalGLR) @test (gaslift_model!(model, find_injectionpoint = true, dp_min = 100) |> x-> x[1][end]) ≈ 674 atol = 1 end
PressureDrop
https://github.com/jnoynaert/PressureDrop.jl.git
[ "Apache-2.0" ]
1.0.7
e88f8d8125552a7f991eac90e9a08e5f0057a811
code
813
include("../src/pressurecorrelations.jl") include("../src/tempcorrelations.jl") @testset "Temperature correlations" begin q_o = 2219 q_w = 11 APIoil = 24 sg_water = 1 GLR = 1.762 * 1000^2 / (2219 + 11) sg_gas = 0.7 id = 2.992 whp = 150 #psig A = Shiu_Beggs_relaxationfactor(q_o, q_w, GLR, APIoil, sg_water, sg_gas, id, whp) @test A ≈ 2089 atol = 1 g_g = 0.0106 * 100 bht = 173 z = 5985 - 0 @test Ramey_temp(z, bht, A, g_g) ≈ 130 atol = 2 @test Ramey_temp(1, bht, A, g_g) ≈ 173 atol = 0.1 #= visual test depths = range(1, stop = z, length = 100) ; test_temps = Ramey_wellboretemp.(depths, 0, bht, A, g_g) depths_plot = z .- depths |> collect using Gadfly plot(y = depths_plot, x = test_temps, Geom.line, Coord.cartesian(yflip = true)) =# end #Temperature correlations
PressureDrop
https://github.com/jnoynaert/PressureDrop.jl.git
[ "Apache-2.0" ]
1.0.7
e88f8d8125552a7f991eac90e9a08e5f0057a811
code
1201
@testset "Wellbore object" begin md_bad = [-1.,2.,3.,4.] md_good = [1.,2.,3.,4.] inc = [1.,2.,3.,4.] tvd_bad = [-1.,2.,3.,4.] tvd_good = [1.,2.,3.,4.] id = [1.,1.,1.,1.] #implicit test for adding the leading 0,0 survey point: w = Wellbore(md_good, inc, tvd_good, id) @test w.id[1] == w.id[2] #implicit test for allowing negatives: Wellbore(md_bad, inc, tvd_bad, id, true) try Wellbore(md_bad, inc, tvd_good, id) catch e @test e isa Exception end try Wellbore(md_good, inc, tvd_bad, id) catch e @test e isa Exception end end #testset for Wellbore object @testset "Wellbore with valves" begin md = [1.,2,3,4] tvd = [2.,4,5,6] inc = [0.,2,3,4] id = [1.,1,1,1] starting_length = length(md) valve_md = [1.5,3.5] PTRO = [1000, 900] R = [0.07,0.07] ports = [16,16] valves = GasliftValves(valve_md, PTRO, R, ports) well = Wellbore(md, inc, tvd, id, valves) @test all(length.([md,tvd,inc,id]) .== starting_length) @test well.md == [0,1,1.5,2,3,3.5,4] @test well.tvd == [0,2.,3,4,5,5.5,6] @test well.inc == [0,0.,1,2,3,3.5,4] @test well.id == [1,1.,1,1,1,1,1] end
PressureDrop
https://github.com/jnoynaert/PressureDrop.jl.git
[ "Apache-2.0" ]
1.0.7
e88f8d8125552a7f991eac90e9a08e5f0057a811
code
477
include("../src/utilities.jl") @testset begin "Interpolation" md = [1.,2.,3.,4.,5.] inc = [1.,2.,3.,4.,1.] tvd = [1.,2.,3.,4.,5.] id = [1.,1.,1.,2.,1.] well = Wellbore(md, inc, tvd, id) property1 = [1.,1.,2.,3.,4.,1.] property2 = [1.,1.,1.,1.,2.,1.] @test interpolate(well.md, property1, 4.5) == 2.5 points = [1.5, 4.5] @test interpolate_all(well, [property1, property2], points) == hcat([1.5, 2.5], [1, 1.5]) end
PressureDrop
https://github.com/jnoynaert/PressureDrop.jl.git
[ "Apache-2.0" ]
1.0.7
e88f8d8125552a7f991eac90e9a08e5f0057a811
code
2096
include("../src/valvecalculations.jl") @testset "Dome pressures" begin #testing with R-value of zero to ignore the adjustment to PTRO @test domepressure_downhole(600-14.65, 0, 180) ≈ 750 atol = 5 #function takes psig but test values are psia @test domepressure_downhole(727-14.65, 0, 120) ≈ 820 atol = 5 end @testset "Thornhill-Craver" begin @test ThornhillCraver_gaspassage_simplified(900, 1100, 140, 16) ≈ 1127 atol=1 #using psig inputs @test ThornhillCraver_gaspassage_simplified(1200, 1100, 140, 16) == 0 seats = [7*4, 32, 5*8, 3*16] Hernandez_results = [3.15, 4.11, 6.36, 9.39] .* 1000 results = [ThornhillCraver_gaspassage(420 - pressure_atmospheric, 850 - pressure_atmospheric, 150, s, 0.7) for s in seats] @test all(abs.(Hernandez_results .- results) .<= Hernandez_results .* 0.02) #2% tolerance to account for changing C_ds that aren't easily available (test cases use Winkler C_ds) @test ThornhillCraver_gaspassage(1200, 1100, 140, 16, 0.7) == 0 end @testset "Valve table" begin #EHU 256H example using Weatherford method MDs = [0,1813, 2375, 2885, 3395] TVDs = [0,1800, 2350, 2850, 3350] incs = [0,0,0,0,0] id = 2.441 well = Wellbore(MDs, incs, TVDs, id) valves = GasliftValves([1813,2375,2885,3395], [1005,990,975,960], [0.073,0.073,0.073,0.073], [16,16,16,16]) tubing_pressures = [150,837,850,840,831] casing_pressures = 1070 .+ [0,53,70,85,100] temps = [135,145,148,151,153] vdata, inj_depth = valve_calcs(valves = valves, well = well, sg_gas = 0.72, tubing_pressures = tubing_pressures, casing_pressures = casing_pressures, tubing_temps = temps, casing_temps = temps) valve_table(vdata, inj_depth) #implicit test results = vdata[1:4, [5,13,12,4]] #PSC, PVC, PVO, PSO expected_results = [1050. 1103 1124 1071; 1023 1092 1111 1042; 996 1080 1099 1015; 968 1068 1087 987] @test all(abs.(expected_results .- results) .< (expected_results .* 0.01)) #1% tolerance due to using TCFs versus PVT-based dome correction, as well as rounding errors end #testset for valve table
PressureDrop
https://github.com/jnoynaert/PressureDrop.jl.git
[ "Apache-2.0" ]
1.0.7
e88f8d8125552a7f991eac90e9a08e5f0057a811
code
2646
@testset "Pressure and temp wrapper" begin segments = 100 MDs = range(0, stop = 5000, length = segments) |> collect incs = repeat([0], inner = segments) TVDs = range(0, stop = 5000, length = segments) |> collect well = Wellbore(MDs, incs, TVDs, 2.441) model = WellModel(wellbore = well, roughness = 0.0006, temperature_method = "Shiu", geothermal_gradient = 1.0, BHT = 200, pressurecorrelation = HagedornAndBrown, WHP = 350 - pressure_atmospheric, dp_est = 25, q_o = 100, q_w = 500, GLR = 1200, APIoil = 35, sg_water = 1.1, sg_gas = 0.8) pressures = pressure_and_temp!(model) temps = model.temperatureprofile @test length(pressures) == length(temps) == segments @test pressures[1] == 350 - pressure_atmospheric @test pressures[end] ≈ (1068 - pressure_atmospheric) atol = 1 @test temps[end] == 200 @test temps[1] ≈ 181 atol = 1 end #testset for pressure & temp wrapper @testset "Gas lift wrappers" begin segments = 100 MDs = range(0, stop = 5000, length = segments) |> collect incs = repeat([0], inner = segments) TVDs = range(0, stop = 5000, length = segments) |> collect well = Wellbore(MDs, incs, TVDs, 2.441) testpath = joinpath(dirname(dirname(pathof(PressureDrop))), "test/testdata") valvepath = joinpath(testpath, "valvedata_wrappers_1.csv") valves = read_valves(path = valvepath, delim = ',', skiplines = 1) #implicit read_valves test model = WellModel(wellbore = well, roughness = 0.0, valves = valves, temperature_method = "Shiu", geothermal_gradient = 1.0, BHT = 200, pressurecorrelation = HagedornAndBrown, WHP = 350 - pressure_atmospheric, dp_est = 25, q_o = 0, q_w = 500, GLR = 4500, APIoil = 35, sg_water = 1.0, sg_gas = 0.8, CHP = 1000, naturalGLR = 0) tubing_pressures, casing_pressures, valvedata = gaslift_model!(model, find_injectionpoint = true, dp_min = 100) #also an implied test for 100% water cut Δmds = [MDs[i] - MDs[i-1] for i in 81:length(MDs)] ΔPs = [tubing_pressures[i] - tubing_pressures[i-1] for i in 81:length(MDs)] gradients = ΔPs ./ Δmds mean(x) = sum(x) / length(x) expected_gradient = 0.433 / GouldWaterVolumeFactor(mean(tubing_pressures[81:end]), mean(model.temperatureprofile[81:end])) @test mean(gradients) ≈ expected_gradient atol = 0.005 valve_table(valvedata) #%% implicit plot test if test_plots plot_gaslift(model.wellbore, tubing_pressures, casing_pressures, model.temperatureprofile, valvedata, nothing) |> x->draw(SVG("plot-gl-core.svg", 5inch, 4inch), x) end end #testset for gas lift wrappers
PressureDrop
https://github.com/jnoynaert/PressureDrop.jl.git
[ "Apache-2.0" ]
1.0.7
e88f8d8125552a7f991eac90e9a08e5f0057a811
docs
7835
# PressureDrop.jl [![Build Status](https://travis-ci.com/jnoynaert/PressureDrop.jl.svg?branch=master)](https://travis-ci.com/jnoynaert/PressureDrop.jl) [![Docs](https://img.shields.io/badge/docs-stable-blue.svg)](https://jnoynaert.github.io/PressureDrop.jl/stable) [![DOI](https://joss.theoj.org/papers/10.21105/joss.01642/status.svg)](https://doi.org/10.21105/joss.01642) Julia package for computing multiphase pressure profiles for gas lifted oil &amp; gas wells, developed as an open-source alternative to feature subsets of commercial nodal analysis or RTA software such as Prosper, Pipesim, or IHS Harmony (some comparisons [here](https://jnoynaert.github.io/PressureDrop.jl/stable/similartools/)). Currently calculates outlet-referenced models for producing wells using non-coupled temperature gradients. In addition to being open-source, `PressureDrop.jl` has several advantages over closed-source applications for its intended use cases: - Programmatic and scriptable use with native code--no binaries consuming configuration files or awkward keyword specifications - Dynamic recalculation of injection points and temperature profiles through time - Easy duplication and modification of models and scenarios - Extensible PVT or pressure correlation options by adding functions in Julia code (or C, Python, or R) - Utilization of Julia's interoperability with other languages for adding or importing new functions for model components Changelog [here](changelog.md). # Installation From the Julia prompt: press `]`, then type `add PressureDrop`. Alternatively, in Jupyter: execute a cell containing `using Pkg; Pkg.add("PressureDrop")`. # Usage Models are constructed from well objects, optional valve objects, and parameter specifications. Well and valve objects can be constructed manually or [from files](https://jnoynaert.github.io/PressureDrop.jl/stable/core/#Wellbores-1) (see [here](test/testdata/Sawgrass_9_32/Test_survey_Sawgrass_9.csv) for an example well input file and [here](test/testdata/valvedata_wrappers_1.csv) for an example valve file). Note that all inputs and calculations are in U.S. field units: ```julia julia> using PressureDrop julia> examplewell = read_survey(path = PressureDrop.example_surveyfile, id = 2.441, maxdepth = 6500) Wellbore with 67 points. Ends at 6459.0' MD / 6405.05' TVD. Max inclination 13.4°. Average ID 2.441 in. julia> examplevalves = read_valves(path = PressureDrop.example_valvefile) Valve design with 4 valves and bottom valve at 3395.0' MD. julia> model = WellModel(wellbore = examplewell, roughness = 0.00065, valves = examplevalves, pressurecorrelation = BeggsAndBrill, WHP = 200, #wellhead pressure, psig CHP = 1050, #casing pressure, psig dp_est = 25, #estimated ΔP by segment. Not critical temperature_method = "Shiu", #temperatures can be calculated or provided directly as a array BHT = 160, geothermal_gradient = 0.9, #°F, °F/100' q_o = 100, q_w = 500, #bpd GLR = 2500, naturalGLR = 400, #scf/bbl APIoil = 35, sg_water = 1.05, sg_gas = 0.65); ``` Once a model is specified, developing pressure/temperature traverses or gas lift analysis is simple: ```julia julia> tubing_pressures, casing_pressures, valvedata = gaslift_model!(model, find_injectionpoint = true, dp_min = 100) #required minimum ΔP at depth to consider as an operating valve Flowing bottomhole pressure of 964.4 psig at 6459.0' MD. Average gradient 0.149 psi/ft (MD), 0.151 psi/ft (TVD). julia> using Gadfly #necessary to make integrated plotting functions available julia> plot_gaslift(model, tubing_pressures, casing_pressures, valvedata, "Gas Lift Analysis Plot") #expect a long time to first plot due to precompilation; subsequent calls will be faster ``` ![example gl plot](examples/gl-plot-example.png) Valve tables can be generated from the output of the gas lift model: ```julia julia> valve_table(valvedata) ╭─────┬──────┬──────┬──────┬──────┬───────┬───────┬──────┬──────┬──────┬──────┬──────┬──────┬──────┬──────┬───────┬───────┬───────╮ │ GLV │ MD │ TVD │ PSO │ PSC │ Port │ R │ PPEF │ PTRO │ TP │ CP │ PVO │ PVC │ T_td │ T_cd │ Q_o │ Q_1.5 │ Q_1 │ │ │ ft │ ft │ psig │ psig │ 64ths │ │ % │ psig │ psig │ psig │ psig │ psig │ °F │ °F │ mcf/d │ mcf/d │ mcf/d │ ├─────┼──────┼──────┼──────┼──────┼───────┼───────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼───────┼───────┼───────┤ │ 4 │ 1813 │ 1806 │ 1055 │ 1002 │ 16 │ 0.073 │ 8 │ 1005 │ 384 │ 1100 │ 1104 │ 1052 │ 132 │ 112 │ 1480 │ 1125 │ 888 │ │ 3 │ 2375 │ 2357 │ 1027 │ 979 │ 16 │ 0.073 │ 8 │ 990 │ 446 │ 1115 │ 1092 │ 1045 │ 136 │ 116 │ 1493 │ 1135 │ 896 │ │ 2 │ 2885 │ 2856 │ 999 │ 957 │ 16 │ 0.073 │ 8 │ 975 │ 504 │ 1129 │ 1078 │ 1036 │ 141 │ 119 │ 1506 │ 1144 │ 903 │ │ 1 │ 3395 │ 3355 │ 970 │ 934 │ 16 │ 0.073 │ 8 │ 960 │ 568 │ 1143 │ 1063 │ 1027 │ 145 │ 123 │ 1518 │ 1154 │ 911 │ ╰─────┴──────┴──────┴──────┴──────┴───────┴───────┴──────┴──────┴──────┴──────┴──────┴──────┴──────┴──────┴───────┴───────┴───────╯ ``` Bulk calculations can also be performed either time by either iterating a model object, or calling pressure traverse functions directly: ```julia function timestep_pressure(rate, temp, watercut, GLR) temps = linear_wellboretemp(WHT = temp, BHT = 165, wellbore = examplewell) return traverse_topdown(wellbore = examplewell, roughness = 0.0065, temperatureprofile = temps, pressurecorrelation = BeggsAndBrill, dp_est = 25, error_tolerance = 0.1, q_o = rate * (1 - watercut), q_w = rate * watercut, GLR = GLR, APIoil = 36, sg_water = 1.05, sg_gas = 0.65, WHP = 120)[end] end pressures = timestep_pressure.(testdata, wellhead_temps, watercuts, GLRs) plot(x = days, y = pressures, Geom.path, Theme(default_color = "purple"), Guide.xlabel("Time (days)"), Guide.ylabel("Flowing Pressure (psig)"), Scale.y_continuous(format = :plain, minvalue = 0), Guide.title("FBHP Over Time")) ``` ![example bulk plot](examples/bulk-plot-example.png) See the [documentation](https://jnoynaert.github.io/PressureDrop.jl/stable) for more usage details. # Supported pressure correlations - Beggs and Brill, with the Payne correction factors. Best for inclined pipe. - Hagedorn and Brown, with the Griffith and Wallis bubble flow adjustment. - Casing (injection) pressure drops using corrected density but neglecting friction. These methods do not account for oil-water phase slip and assume **steady-state conditions**. # Performance The pressure drop calculations converge quickly enough in most cases that special performance considerations do not need to be taken into account during interactive use. For bulk calculations, note that as always with Julia, the best performance will be achieved by wrapping any calculations in a function, e.g. a `main()` block, to enable proper type inference by the compiler. Plotting functions are lazily loaded to avoid the overhead of loading the `Gadfly` plotting dependency. # Pull requests & bug reports - Pull requests are welcome! For additional functionality, especially pressure correlations or PVT functions, please include unit tests. - Please add any bug reports or feature requests to the [issue tracker](https://github.com/jnoynaert/PressureDrop.jl/issues). Ideally, include a [minimal, reproducible example](https://stackoverflow.com/help/minimal-reproducible-example) with any issue reports, along with additional necessary data (e.g. CSV definitions of well surveys).
PressureDrop
https://github.com/jnoynaert/PressureDrop.jl.git
[ "Apache-2.0" ]
1.0.7
e88f8d8125552a7f991eac90e9a08e5f0057a811
docs
1213
# Changes ## v1.0.3 - v1.0.5 - Documentation & compatibility updates ## v1.0.2 - Added benchmarks to test suite - Improved performance of core calculations by 15-20% - Minor documentation updates ## v1.0.1 - Added JOSS paper draft - Added assertions to guardrail pulling in negative production rates - Added Windows test builds on Travis - Modified `read_survey` to allow passing a valve object to automatically add the associated MDs ## v1.0 ### Feature & interface - Added gravity-based casing pressure calculations & gas lift valve tables - Added gas lift plots - Added support for bubble point pressure (rather than assuming oil is always under BPP) - Added docs with examples - Converted all user-facing meta-functions to use **psig** instead of absolute pressure, to reduce overhead when using field data - Added struct-based arguments: all arguments reside in a WellModel struct and can be easily re-used/modified without 20-argument function calls ### Fixes - Corrected issue with Griffith & Wallis bubble flow correction for Hagedorn & Brown pressure drops - Corrected edge case issue in superficial velocity calculations for 0 gas production - Improved test coverage
PressureDrop
https://github.com/jnoynaert/PressureDrop.jl.git
[ "Apache-2.0" ]
1.0.7
e88f8d8125552a7f991eac90e9a08e5f0057a811
docs
9579
# Core functionality ```@contents Pages = ["core.md"] Depth = 3 ``` ```@setup core using PressureDrop surveyfilepath = joinpath(dirname(dirname(pathof(PressureDrop))), "test/testdata/Sawgrass_9_32/Test_survey_Sawgrass_9.csv") valvefilepath = joinpath(dirname(dirname(pathof(PressureDrop))), "test/testdata/valvedata_wrappers_1.csv") ``` ## Creating and updating models Model definitions are created and stored as [`WellModel`](@ref) objects. Although the functionality of this package is exposed as pure functions, mutating and copying `WellModel`s is a much easier way to track and iterate on parameter sets. ### Wellbores The key component required for the pressure drop calculations is a [`Wellbore`](@ref) object that defines the flow path in terms of directional survey points (measured depth, inclination, and true vertical depth) and tubular inner diameter. `Wellbore` objects can be constructed from arrays, or from CSV files with `read_survey`, which includes some optional convenience arguments to change delimiters, skip lines, or truncate the survey. Tubing IDs do not have to be uniform and can be specified segment to segment. ```@example core examplewell = read_survey(path = surveyfilepath, id = 2.441, maxdepth = 6500) #an outlet point at 0 MD is added if not present ``` The expected format for a survey file is a comma separated file with measured depth, inclination from vertical, true vertical depth, and optionally, flowpath inner diameter: ```@setup surveyfile using PrettyTables surveyheader = ["MD" "Inc" "TVD" "ID"; "ft" "°" "ft" "in"] surveyexample = string.( [0 0 0 2.441; 460 0 460 2.441; 552 1.5 551.94 2.441; 644 1.5 643.91 1.995]) |> s -> vcat(s, ["⋮" "⋮" "⋮" "⋮"]) ``` ```@example surveyfile pretty_table(surveyexample, surveyheader; tf = tf_unicode_rounded) # hide ``` See an example survey input file [here](https://github.com/jnoynaert/PressureDrop.jl/blob/master/test/testdata/Sawgrass_9_32/Test_survey_Sawgrass_9.csv). By default, `read_survey` will skip a single header line and take a single ID for the entire flowpath. ### Valve designs [`GasliftValves`](@ref) objects define the valve strings in terms of measured run depth, test rack opening pressure, R value (ratio of the area of the port to the area of the bellows), and port size. ```@example core examplevalves = read_valves(path = valvefilepath) ``` These can also be constructed directly or from CSV files. The expect format is valves by measured depth, test rack opening pressure @ 60° F in psig, the R ratio of the valve (effective area of the port to the area of the bellows), and the port size in 64ths inches: ```@setup valvefile using PrettyTables valveheader = ["MD" "PTRO" "R" "Port"; "ft" "psig" "Ap/Ab" "64ths in"] valveexample = string.( [1813 1005 0.073 16; 2375 990 0.073 16; 2885 975 0.073 16; 3395 0 0 14]) |> s -> vcat(s, ["⋮" "⋮" "⋮" "⋮"]) ``` ```@example valvefile pretty_table(valveexample, valveheader; tf = tf_unicode_rounded) # hide ``` See an example valve input file [here](https://github.com/jnoynaert/PressureDrop.jl/blob/master/test/testdata/valvedata_wrappers_1.csv). By default, `read_valves` will skip a single header line, and orifice valves are indicated by an R-value of 0. ### Models & parameter sets [`WellModel`](@ref)s do not have to be completely specified, but require defining the minimum fields for a simple pressure drop. In general, sensible defaults are selected for PVT functions. See the [documentation](#PressureDrop.WellModel) for a list of optional fields. Note that defining a valve string is optional if all that is desired is a normal pressure drop or temperature calculation. ```@example core model = WellModel(wellbore = examplewell, roughness = 0.00065, valves = examplevalves, pressurecorrelation = BeggsAndBrill, WHP = 200, #wellhead pressure, psig CHP = 1050, #casing pressure, psig dp_est = 25, #estimated ΔP by segment. Not critical temperature_method = "Shiu", #temperatures can be calculated or provided directly as a array BHT = 160, geothermal_gradient = 0.9, #°F, °F/100' q_o = 100, q_w = 500, #bpd GLR = 2500, naturalGLR = 400, #scf/bbl APIoil = 35, sg_water = 1.05, sg_gas = 0.65); ``` Printing a WellModel will display all of its defined and undefined fields. !!! note An important aspect of model definitions is that they include the temperature profile. Passing a model object to a wrapper function that calculates both pressure and temperature will mutate the temperature profile associate with the model. ## Pressure & temperature calculations ### Pressure traverses & temperature profiles Pressure and temperature profiles can be generated from a `WellModel` using [`pressure_and_temp!`](@ref) (for tubing calculations only) or [`pressures_and_temp!`](@ref) (to include casing calculations). ```@example core tubing_pressures = pressure_and_temp!(model); #note that this updates temperature in the .temperatureprofile field of the WellModel ``` Several [plotting functions](@ref Plotting) are available to visualize the outputs. ```@example core using Gadfly #necessary to load plotting functions plot_pressure(model, tubing_pressures, "Tubing Pressure Drop") draw(SVG("plot-pressure-core.svg", 4inch, 4inch), ans); nothing # hide ``` ![](plot-pressure-core.svg) Pressure traverses for just tubing or just casing, utilizing an existing temperature profile, can be calculated using [`traverse_topdown`](@ref) or [`casing_traverse_topdown`](@ref). ### Gas lift analysis The [`gaslift_model!`](@ref) function will calculate the pressure and temperature profiles, most likely operating point (assuming single-point injection), and opening and closing pressures of the valves. ```@example core tubing_pressures, casing_pressures, valvedata = gaslift_model!(model, find_injectionpoint = true, dp_min = 100) #required minimum ΔP at depth to consider as an operating valve plot_gaslift(model, tubing_pressures, casing_pressures, valvedata, "Gas Lift Analysis Plot") draw(SVG("plot-gl-core.svg", 5inch, 4inch), ans); nothing # hide ``` ![](plot-gl-core.svg) The results of the valve calculations can be printed as a table: ```@example core valve_table(valvedata) ``` The data for a valve table can be calculated directly using [`valve_calcs`](@ref), which will interpolate pressures and temperatures at depth from known producing P/T profiles. ## [Bulk calculations](@id bulkcalcs) Pressure drops can be calculated in bulk, either by passing model arguments to functions directly, or by mutating or copying model objects. ```@example core nominal_rate(D_sei, b) = ((1-D_sei)^(-b) - 1)/b #secant decline rates to nominal rates, b ≠ 0 hyperbolic_rate(q_i, b, D_sei, t) = q_i / (1 + b * nominal_rate(D_sei, b) * t)^(1/b) #spot rate from a hyperbolic decline for t in years # generate test data q_i = 3000 b = 1.2 decline = 0.85 timesteps = range(0, stop = 2, step = 1/365) declinedata = [hyperbolic_rate(q_i, b, decline, time) for time in timesteps] noise = [randn() .* 15 for sample in timesteps] testdata = max.(declinedata .+ noise, 0) # check results days = timesteps .* 365 plot(x = days, y = testdata, Geom.path, Guide.xlabel("Time (days)"), Guide.ylabel("Total Fluid (bpd)"), Scale.y_continuous(format = :plain, minvalue = 0)) draw(SVG("test-data.svg", 6inch, 4inch), ans); nothing # hide ``` ![](test-data.svg) ```@example core # set up and calculate pressure data examplewell = read_survey(path = surveyfilepath, id = 2.441, maxdepth = 6500) function timestep_pressure(rate, temp, watercut, GLR) temps = linear_wellboretemp(WHT = temp, BHT = 165, wellbore = examplewell) return traverse_topdown(wellbore = examplewell, roughness = 0.0065, temperatureprofile = temps, pressurecorrelation = BeggsAndBrill, dp_est = 25, error_tolerance = 0.1, q_o = rate * (1 - watercut), q_w = rate * watercut, GLR = GLR, APIoil = 36, sg_water = 1.05, sg_gas = 0.65, WHP = 120)[end] end wellhead_temps = range(125, stop = 85, length = 731) watercuts = range(1, stop = 0.5, length = 731) GLR = range(0, stop = 5000, length = 731) pressures = timestep_pressure.(testdata, wellhead_temps, watercuts, GLR) # examine outputs plot(x = days, y = pressures, Geom.path, Theme(default_color = "purple"), Guide.xlabel("Time (days)"), Guide.ylabel("Flowing Pressure (psig)"), Scale.y_continuous(format = :plain, minvalue = 0), Guide.title("FBHP Over Time")) draw(SVG("pressure-data.svg", 6inch, 4inch), ans); nothing # hide ``` ![](pressure-data.svg) ## Types and Functions - Types - [`Wellbore`](@ref) - [`GasliftValves`](@ref) - [`WellModel`](@ref) - Functions [`traverse_topdown`](@ref) [`casing_traverse_topdown`](@ref) [`pressure_and_temp!`](@ref) [`pressures_and_temp!`](@ref) [`gaslift_model!`](@ref) ### Types ```@docs Wellbore GasliftValves WellModel ``` ### Functions ```@docs traverse_topdown casing_traverse_topdown pressure_and_temp! pressures_and_temp! gaslift_model! ```
PressureDrop
https://github.com/jnoynaert/PressureDrop.jl.git
[ "Apache-2.0" ]
1.0.7
e88f8d8125552a7f991eac90e9a08e5f0057a811
docs
1173
# Correlations Pressure, temperature, and friction factor correlations. Not used directly but passed as model arguments. - Pressure drop correlations - [`Beggs and Brill`](@ref BeggsAndBrill), with Payne correction - [`Hagedorn and Brown`](@ref HagedornAndBrown), with Griffith and Wallis bubble flow correction - Temperature correlations & methods - [`Linear temperature profile`](@ref linear_wellboretemp) - [`Shiu temperature profile`](@ref Shiu_wellboretemp): Ramey temperature correlation with Shiu relaxation factor - [`Ramey temp`](@ref Ramey_temp): single-point Ramey temperature correlation - [`Shiu relaxation factor`](@ref Shiu_Beggs_relaxationfactor) - Friction factor correlations - [`Serghide friction factor`](@ref SerghideFrictionFactor)(preferred) - [`Chen friction factor`](@ref ChenFrictionFactor) ## Pressure correlations ```@docs BeggsAndBrill HagedornAndBrown ``` ## Temperature correlations ```@docs linear_wellboretemp Shiu_wellboretemp Ramey_temp Shiu_Beggs_relaxationfactor ``` ## Friction factor correlations ```@docs SerghideFrictionFactor ChenFrictionFactor ```
PressureDrop
https://github.com/jnoynaert/PressureDrop.jl.git
[ "Apache-2.0" ]
1.0.7
e88f8d8125552a7f991eac90e9a08e5f0057a811
docs
1905
# Extending the calculation engine PVT or pressure/temperature correlations can easily be added, either by modifying the original source, or more simply by defining new functions in your script or session that match the interface of existing functions. For example, to add a new PVT function, first inspect either the function signature, source, or documentation for one of the functions of the category you are adding to: ``` julia> using PressureDrop help?> StandingSolutionGOR ``` ``` StandingSolutionGOR(APIoil, specificGravityGas, psiAbs, tempF, R_b, bubblepoint::Real) Solution GOR (Rₛ) in scf/bbl. Takes oil gravity (°API), gas specific gravity, pressure (psia), temp (°F), total solution GOR (R_b, scf/bbl), and bubblepoint value (psia). <other methods not shown> ``` Then simply define your new function, making sure to either utilize the same interface, or capture extra unneeded arguments. ``` function HanafySolutionGOR(APIoil, specificGravityGas, psiAbs, tempF, R_b, bubblepoint::Real) if elseif psiAbs <= 157.28 return 0 else return -49.069 + 0.312 * psiAbs end ``` The new PVT function can now be added to an existing model (or used in a pressure traverse function call or the creation of a new model): ``` oldmodel.solutionGORcorrelation = HanafySolutionGOR ``` Note that in this example the new method for solution GOR will only handle bubble points defined in absolute pressure. Utilizing `RCall`, `PyCall`, or `ccall` will also allow adding functions defined in R, Python, and C or Fortran respectively. As of v1.0, defining new correlations or model functions that require additional arguments is not supported without modifying the source. However, feel free to either submit a pull request or open an issue requesting the additional functionality (include reference to the source material and several test cases).
PressureDrop
https://github.com/jnoynaert/PressureDrop.jl.git
[ "Apache-2.0" ]
1.0.7
e88f8d8125552a7f991eac90e9a08e5f0057a811
docs
3478
# PressureDrop.jl Documentation ```@meta CurrentModule = PressureDrop ``` PressureDrop.jl is a Julia package for computing multiphase pressure profiles for gas lift optimization of oil & gas wells. Outlet-referenced models for producing wells using non-coupled temperature gradients are currently supported. !!! note All inputs and calculations are in U.S. field units. # Overview The pressure traverse along the producing flow path of an oil well (or its bottomhole pressure at the interface between the well and the reservoir) is critical information for many production and reservoir engineering workflows. This can be expensive to measure directly in many conditions, so 1D pressure and temperature models are frequently used to infer producing conditions. In most wells, the fluid flow contains three distinct phases (oil, water, and gas) with temperature- and pressure-dependent properties, including density, viscosity. In addition, the fluids will exhibit varying degrees of miscibility and entrainment depending on pressure and temperature as well, such that the pressure change with respect to distance or depth along the wellbore is itself dependent on pressure: ``\frac{∂p}{∂h} = f(p,T)`` When assuming a steady-state temperature profile, temperature varies only with depth. Further assuming steady-state flow and consistent composition of each fluid, the above can be re-expressed in terms of distance and pressure only: ``\frac{dp}{dh} = f(p,h)`` Note that ``f`` is composited from many empirical functions¹ and in most cases cannot be expressed in a tractable analytical form when dealing with multiphase flow. This is further complicated in gas lift wells, where the injection point is also pressure dependent, but changes the fluid composition and pressure profile above it. Currently, no mechanistic or empirical correlations fully capture the variability in these three-phase fluid flows (or the direct properties of the fluids themselves), so the most performant methods are typically matched to the conditions and fluids they were developed to describe². Most techniques for applying these correlations to calculate pressure profiles involve dividing the wellbore into a 1-dimensional series of discrete segments and calculating an average pressure change for the entire segment. Increasing segmentation will generally improve accuracy at the cost of additional computation. The most feasible and stable method for resolving the pressure change in each segment is typically some form of fixed-point iteration by specifying an error tolerance ε and iterating until ``f(p) - p < ε``, where ``p`` is the average pressure in the segment. --- ¹For an example of many widely-used correlations for pressure- and temperature-dependent properties of oil, water, and gas, see the "Fluids" section of the [Fekete documentation](http://www.fekete.com/SAN/TheoryAndEquations/HarmonyTheoryEquations/Content/HTML_Files/Reference_Material/Calculations_and_Correlations/Calculations_and_Correlations.htm). ²For a comprehensive overview of the theory of these applied methods in the context of gas lift engineering and nodal analysis, see Gábor Takács' *Gas Lift Manual* (2005, Pennwell Books). # Contents ```@contents Pages = [ "core.md", "utilities.md", "plotting.md", "correlations.md", "pvt.md", "valves.md", "utilities.md", "extending.md", "similartools.md" ] Depth = 2 ```
PressureDrop
https://github.com/jnoynaert/PressureDrop.jl.git
[ "Apache-2.0" ]
1.0.7
e88f8d8125552a7f991eac90e9a08e5f0057a811
docs
2588
# Plotting All plotting functions wrap Gadfly plot definitions. !!! note Plotting functionality is lazily loaded and not available until `Gadfly` has been loaded. ## Examples ```@setup plots # outputs & inputs hidden when doc is generated using PressureDrop segments = 100 MDs = range(0, stop = 5000, length = segments) |> collect incs = repeat([0], inner = segments) TVDs = range(0, stop = 5000, length = segments) |> collect well = Wellbore(MDs, incs, TVDs, 2.441) testpath = joinpath(dirname(dirname(pathof(PressureDrop))), "test/testdata") valvepath = joinpath(testpath, "valvedata_wrappers_1.csv") valves = read_valves(path = valvepath, delim = ',', skiplines = 1) #implicit read_valves test model = WellModel(wellbore = well, roughness = 0.0, valves = valves, temperature_method = "Shiu", geothermal_gradient = 1.0, BHT = 200, pressurecorrelation = HagedornAndBrown, WHP = 350 - pressure_atmospheric, dp_est = 25, q_o = 100, q_w = 500, GLR = 1200, APIoil = 35, sg_water = 1.0, sg_gas = 0.8, CHP = 1000, naturalGLR = 0) tubing_pressures, casing_pressures, valvedata = gaslift_model!(model, find_injectionpoint = true, dp_min = 100) ``` ### [`plot_gaslift`](@ref) ```@example plots using Gadfly plot_gaslift(model, tubing_pressures, casing_pressures, valvedata, "Gas Lift Analysis Plot") draw(SVG("plot-gl.svg", 5inch, 4inch), ans); nothing # hide ``` ![](plot-gl.svg) ### [`plot_pressure`](@ref) ```@example plots plot_pressure(model, tubing_pressures, "Tubing Pressure Drop") draw(SVG("plot-pressure.svg", 4inch, 4inch), ans); nothing # hide ``` ![](plot-pressure.svg) ### [`plot_pressures`](@ref) ```@example plots plot_pressures(model, tubing_pressures, casing_pressures, "Tubing and Casing Pressures") draw(SVG("plot-pressures.svg", 4inch, 4inch), ans); nothing # hide ``` ![](plot-pressures.svg) ### [`plot_temperature`](@ref) ```@example plots plot_temperature(model.wellbore, model.temperatureprofile, "Temperature Profile") draw(SVG("plot-temperature.svg", 4inch, 4inch), ans); nothing # hide ``` ![](plot-temperature.svg) ### [`plot_pressureandtemp`](@ref) ```@example plots plot_pressureandtemp(model, tubing_pressures, casing_pressures, "Pressures and Temps") draw(SVG("plot-pressureandtemp.svg", 5inch, 4inch), ans); nothing # hide ``` ![](plot-pressureandtemp.svg) ## Functions ```@docs plot_pressure plot_pressures plot_temperature plot_pressureandtemp plot_gaslift ```
PressureDrop
https://github.com/jnoynaert/PressureDrop.jl.git
[ "Apache-2.0" ]
1.0.7
e88f8d8125552a7f991eac90e9a08e5f0057a811
docs
1482
# PVT properties Most of the PVT property functions are passed as arguments to the core calculation functions, but are not used directly. ### Exported functions User-facing functions used for model construction. #### Oil - [`StandingSolutionGOR`](@ref) - [`StandingBubblePoint`](@ref) - [`StandingOilVolumeFactor`](@ref) - [`BeggsAndRobinsonDeadOilViscosity`](@ref) - [`GlasoDeadOilViscosity`](@ref) - [`ChewAndConnallySaturatedOilViscosity`](@ref) #### Gas - [`LeeGasViscosity`](@ref) - [`HankinsonWithWichertPseudoCriticalTemp`](@ref) - [`HankinsonWithWichertPseudoCriticalPressure`](@ref) - [`PapayZFactor`](@ref) - [`KareemEtAlZFactor`](@ref) - [`KareemEtAlZFactor_simplified`](@ref) #### Water - [`GouldWaterVolumeFactor`](@ref) ### Internal functions - [`PressureDrop.gasVolumeFactor`](@ref) - [`PressureDrop.gasDensity_insitu`](@ref) - [`PressureDrop.oilDensity_insitu`](@ref) - [`PressureDrop.waterDensity_stb`](@ref) - [`PressureDrop.waterDensity_insitu`](@ref) - [`PressureDrop.gas_oil_interfacialtension`](@ref) - [`PressureDrop.gas_water_interfacialtension`](@ref) ## Functions ```@autodocs Modules = [PressureDrop] Pages = ["pvtproperties.jl"] ``` ```@docs PressureDrop.gasVolumeFactor PressureDrop.gasDensity_insitu PressureDrop.oilDensity_insitu PressureDrop.waterDensity_stb PressureDrop.waterDensity_insitu PressureDrop.gas_oil_interfacialtension PressureDrop.gas_water_interfacialtension ```
PressureDrop
https://github.com/jnoynaert/PressureDrop.jl.git
[ "Apache-2.0" ]
1.0.7
e88f8d8125552a7f991eac90e9a08e5f0057a811
docs
1933
# Similar tools This package is intended as a free and flexible substitute for commercial tools, a few of which are outlined below. Please [open an issue](https://github.com/jnoynaert/PressureDrop.jl/issues) or submit a pull request for anything out of date. ## Comparison Due to its limited scope, PressureDrop.jl has a much lower memory & size footprint than other options. | Software | Scriptable | Bulk calculation (multi-time) | Dynamic injection points | Dynamic temperature profiles | User extensible | Multi-core | Notes | | ----------- | ----------- |-------- | ----------- | ----------- | ----------- |----------- | ----------- | | IHS Harmony (Fekete RTA) | ❌ | ✔️ | ⚠️ through manual profiles | ⚠️ through manual profiles | ❌ | ❌ | | | IHS Perform | ❌ | ❌ only as limited number of sensitivity cases | ❌ | ❌ | ❌ | ❌ | | | Schlumberger PipeSim | ⚠️ Python SDK to interact with executable | ✔️ | ? | ? | ❌ | ❌ | Slow. | | SNAP | ⚠️ via DLL interface exposed in VBA | ⚠️ no longer obviously maintained | ✔️ | ✔️ | ❌ | ❌ | Difficult to run advanced functionality on modern systems | | Weatherford WellFlo | ❌ | ❌ | ✔️ | ❌ | ❌ | ❌ | | | Weatherford ValCal | ❌ | ❌ | ✔️ | ❌ | ❌ | | | | PetEx Prosper | ⚠️ through secondary interface | ✔️ | ? | ✔️ | ✔️ | ❌ | Allows significant scripting & extension via user DLLs.| | PressureDrop.jl | ✔️ | ✔️ | ✔️ | ✔️ |✔️ | ⚠️ Using Julia coroutines or composable threads in 1.3 || ## Example Here the [bulk calculations](@ref bulkcalcs) example output is reproduced in Harmony (some minor differences are to be expected due to different fluid property correlations and less precision available in specifying wellbores in Harmony): ![](assets/Harmony-bulk-plot-example.png) For comparison, the PressureDrop output: ![](pressure-data.svg)
PressureDrop
https://github.com/jnoynaert/PressureDrop.jl.git
[ "Apache-2.0" ]
1.0.7
e88f8d8125552a7f991eac90e9a08e5f0057a811
docs
275
# Utilities !!! note The functions to read files all expect CSVs with headers, defined in field units. ```@index Modules = [PressureDrop] Pages = ["utilities.md"] ``` ## Functions ```@autodocs Modules = [PressureDrop] Pages = ["utilities.jl"] ```
PressureDrop
https://github.com/jnoynaert/PressureDrop.jl.git
[ "Apache-2.0" ]
1.0.7
e88f8d8125552a7f991eac90e9a08e5f0057a811
docs
1142
# Valve calculations Functions to generate valve performance curves and valve pressure tables using current conditions. ```@index Modules = [PressureDrop] Pages = ["valves.md"] ``` ## Example ```@example valves using PressureDrop MDs = [0,1813, 2375, 2885, 3395] TVDs = [0,1800, 2350, 2850, 3350] incs = [0,0,0,0,0] id = 2.441 well = Wellbore(MDs, incs, TVDs, id) valves = GasliftValves([1813,2375,2885,3395], #valve MDs [1005,990,975,960], #valve PTROs (psig) [0.073,0.073,0.073,0.073], #valve R-values [16,16,16,16]) #valve port sizes in 64ths inches tubing_pressures = [150,837,850,840,831] #pressures at depth casing_pressures = 1070 .+ [0,53,70,85,100] temps = [135,145,148,151,153] #temps at depth vdata, inj_depth = valve_calcs(valves = valves, well = well, sg_gas = 0.72, tubing_pressures = tubing_pressures, casing_pressures = casing_pressures, tubing_temps = temps, casing_temps = temps) valve_table(vdata, inj_depth) ``` ## Functions ```@autodocs Modules = [PressureDrop] Pages = ["valvecalculations.jl"] ```
PressureDrop
https://github.com/jnoynaert/PressureDrop.jl.git
[ "Apache-2.0" ]
1.0.7
e88f8d8125552a7f991eac90e9a08e5f0057a811
docs
3765
--- title: 'PressureDrop.jl: Pressure traverses and gas lift analysis for oil & gas wells' tags: - Julia - petroleum engineering - gas lift - nodal analysis authors: - name: Jared M. Noynaert orcid: 0000-0002-2986-0376 affiliation: "1" affiliations: - name: Alta Mesa Resources index: 1 date: 6 August 2019 bibliography: paper.bib --- # Summary For oil and gas wells, the pressure within the well (particularly the bottomhole pressure at the interface between the oil reservoir and the wellbore) is a key diagnostic measure, which can provide insight into current productivity, future potential, and properties of the reservoir rock from which the well is producing. Unfortunately, with the point of interest thousands of feet underground, regular direct measurement of bottomhole pressure is often prohibitively expensive or operationally burdensome. The field of production engineering, which concerns itself with extracting hydrocarbons after the wells are drilled and completed, can in many cases be summarized as the practice of reducing flowing bottomhole pressure as economically as possible, since in most cases production is inversely proportional to bottomhole pressure. One of the methods used to accomplish this goal is gas lift, which changes operating states based on the pressure and temperature profile of the entire wellbore. As a result, designing and troubleshooting gas lift requires specific calculations based on the current wellbore conditions and the equipment utilized. Due to the fundamental importance of pressure to all aspects of petroleum engineering, the calculation of multiphase pressure profiles using empirical correlations is a common task in research and practice, enabling diagnostics and transient analyses that otherwise depend on directly measured bottomhole pressure. Unfortunately, most options to perform these calculations depend on commerical software, and many software suites handle bulk calculations poorly or not at all. In addition, these commercial solutions typically have poor support for finding and modifying gas lift injection points for repeatedly modelling wells with that type of artificial lift (such as when examining variations in design, or conditions through time). ``PressureDrop.jl`` is a Julia package for computing multiphase pressure profiles for gas lifted oil and gas wells, developed as an open-source alternative to feature subsets of nodal analysis or RTA software such as Prosper, Pipesim, or IHS Harmony. It currently calculates outlet-referenced models for producing wells using non-coupled temperature gradients using industry-standard pressure correlations: Beggs and Brill [@Beggs:1973] with the Payne [@Payne:1979] correction, and Hagedorn and Brown [@Brown:1977] with the Griffith bubble flow [@Griffith:1961] correction, as well as the Ramey and Shiu temperature correlations [@Ramey:1962; @Shiu:1980]. Output plots are generated using `Gadfly.jl` [@Jones:2019]. In addition to being open-source, ``PressureDrop.jl`` has several advantages over closed-source applications for its intended use cases: (1) it allows programmatic and scriptable use with native code, without having closed binaries reference limited configuration files; (2) it supports dynamic recalculation of injection points and temperature profiles through time; (3) it enables duplication and modification of models and scenarios, including dynamic generation of parameter ranges for sensitivity analysis and quantification of uncertainty; (4) PVT or pressure correlation options can be extended by adding functions in Julia code (or C, Python, or R); (5) it allows developing wellbore models from delimited input files or database records. # References
PressureDrop
https://github.com/jnoynaert/PressureDrop.jl.git
[ "MIT" ]
0.2.0
2eaa69a7cab70a52b9687c8bf950a5a93ec895ae
code
2406
# To run #= using HashArrayMappedTries, PkgBenchmark result = benchmarkpkg(HashArrayMappedTries) export_markdown("perf.md", result) =# using BenchmarkTools using HashArrayMappedTries function create_dict(::Type{Dict}, n) where Dict dict=Dict{Int, Int}() for i in 1:n dict[i] = i end dict end function HashArrayMappedTries.insert(dict::Base.Dict{K, V}, key::K, v::V) where {K,V} dict = copy(dict) dict[key] = v return dict end function HashArrayMappedTries.delete(dict::Base.Dict{K}, key::K) where K dict = copy(dict) delete!(dict, key) return dict end function create_persistent_dict(::Type{Dict}, n) where Dict dict = Dict{Int, Int}() for i in 1:n dict = insert(dict, i, i) end dict end # PkgBenchmark ignores evals=1 so this leads to invalid results. # https://github.com/JuliaCI/BenchmarkTools.jl/issues/328 function create_benchmark(::Type{Dict}) where Dict group = BenchmarkGroup() group["creation, size=0"] = @benchmarkable create_dict($Dict, 0) group["creation (Persistent), size=0"] = @benchmarkable create_persistent_dict($Dict, 0) # group["setindex!, size=0"] = @benchmarkable dict[1] = 1 setup=(dict=create_dict($Dict, 0)) evals=1 group["insert, size=0"] = @benchmarkable insert(dict, 1, 1) setup=(dict=create_persistent_dict($Dict, 0)) for i in 0:14 N = 2^i group["creation, size=$N"] = @benchmarkable create_dict($Dict, $N) group["creation (Persistent), size=$N"] = @benchmarkable create_persistent_dict($Dict, $N) # group["setindex!, size=$N"] = @benchmarkable dict[$N+1] = $N+1 setup=(dict=create_dict($Dict, $N)) evals=1 group["getindex, size=$N"] = @benchmarkable dict[$N] setup=(dict=create_dict($Dict, $N)) # group["delete!, size=$N"] = @benchmarkable delete!(dict, $N) setup=(dict=create_dict($Dict, $N)) evals=1 # Persistent group["insert, size=$N"] = @benchmarkable insert(dict, $N+1, $N+1) setup=(dict=create_persistent_dict($Dict, $N)) group["delete, size=$N"] = @benchmarkable delete(dict, $N) setup=(dict=create_persistent_dict($Dict, $N)) end return group end const SUITE = BenchmarkGroup() SUITE["Base.Dict"] = create_benchmark(Dict) SUITE["HAMT"] = create_benchmark(HAMT)
HashArrayMappedTries
https://github.com/vchuravy/HashArrayMappedTries.jl.git
[ "MIT" ]
0.2.0
2eaa69a7cab70a52b9687c8bf950a5a93ec895ae
code
10213
module HashArrayMappedTries export HAMT, insert, delete ## # A HAMT is formed by tree of levels, where at each level # we use a portion of the bits of the hash for indexing # # We use a branching width (ENTRY_COUNT) of 32, giving us # 5bits of indexing per level # 0000_00000_00000_00000_00000_00000_00000_00000_00000_00000_00000_00000 # L11 L10 L9 L8 L7 L6 L5 L4 L3 L2 L1 L0 # # At each level we use a 32bit bitmap to store which elements are occupied. # Since our storage is "sparse" we need to map from index in [0,31] to # the actual storage index. We mask the bitmap wiht (1 << i) - 1 and count # the ones in the result. The number of set ones (+1) gives us the index # into the storage array. # # HAMT can be both persitent and non-persistent. # The `path` function searches for a matching entries, and for persistency # optionally copies the path so that it can be safely mutated. # TODO: # When `trie.data` becomes empty we could remove it from it's parent, # but we only know so fairly late. Maybe have a compact function? const ENTRY_COUNT = UInt(32) const BITMAP = UInt32 const NBITS = sizeof(UInt) * 8 @assert ispow2(ENTRY_COUNT) const BITS_PER_LEVEL = trailing_zeros(ENTRY_COUNT) const LEVEL_MASK = (UInt(1) << BITS_PER_LEVEL) - 1 # Before we rehash const MAX_SHIFT = (NBITS ÷ BITS_PER_LEVEL - 1) * BITS_PER_LEVEL mutable struct Leaf{K, V} const key::K const val::V end """ HAMT{K,V} A HashArrayMappedTrie that optionally supports persistence. """ mutable struct HAMT{K, V} const data::Vector{Union{HAMT{K, V}, Leaf{K, V}}} bitmap::BITMAP end HAMT{K, V}() where {K, V} = HAMT( Vector{Union{Leaf{K, V}, HAMT{K, V}}}(undef, 0), zero(UInt32)) struct BitmapIndex x::UInt8 function BitmapIndex(x) @assert 0 <= x < 32 new(x) end end Base.:(<<)(v, bi::BitmapIndex) = v << bi.x Base.:(>>)(v, bi::BitmapIndex) = v >> bi.x isset(trie::HAMT, bi::BitmapIndex) = isodd(trie.bitmap >> bi) function set!(trie::HAMT, bi::BitmapIndex) trie.bitmap |= (UInt32(1) << bi) @assert count_ones(trie.bitmap) == length(trie.data) end function unset!(trie::HAMT, bi::BitmapIndex) trie.bitmap &= ~(UInt32(1) << bi) @assert count_ones(trie.bitmap) == length(trie.data) end function entry_index(trie::HAMT, bi::BitmapIndex) mask = (UInt32(1) << bi.x) - UInt32(1) count_ones(trie.bitmap & mask) + 1 end # Local version isempty(trie::HAMT) = trie.bitmap == 0 isempty(::Leaf) = false struct HashState{K} key::K hash::UInt depth::Int shift::Int end HashState(key)= HashState(key, hash(key), 0, 0) # Reconstruct HashState(key, depth, shift) = HashState(key, hash(key, UInt(depth ÷ BITS_PER_LEVEL)), depth, shift) function next(h::HashState) depth = h.depth + 1 shift = h.shift + BITS_PER_LEVEL if shift > MAX_SHIFT h_hash = hash(h.key, UInt(depth ÷ BITS_PER_LEVEL)) else h_hash = h.hash end return HashState(h.key, h_hash, depth, shift) end BitmapIndex(h::HashState) = BitmapIndex((h.hash >> h.shift) & LEVEL_MASK) """ path(trie, h, copyf)::(found, present, trie, i, top, level) Internal function that walks a HAMT and finds the slot for hash. Returns if a value is `present` and a value is `found`. It returns the `trie` and the index `i` into `trie.data`, as well as the current `level`. If a copy function is provided `copyf` use the return `top` for the new persistent tree. """ @inline function path(trie::HAMT{K,V}, h::HashState, copy=false) where {K, V} if copy trie = top = HAMT{K,V}(Base.copy(trie.data), trie.bitmap) else trie = top = trie end while true bi = BitmapIndex(h) i = entry_index(trie, bi) if isset(trie, bi) next = @inbounds trie.data[i] if next isa Leaf{K,V} # Check if key match if not we will need to grow. found = (next.key === h.key || isequal(next.key, h.key)) return found, true, trie, i, bi, top, h end if copy next = HAMT{K,V}(Base.copy(next.data), next.bitmap) @inbounds trie.data[i] = next end trie = next::HAMT{K,V} else # found empty slot return true, false, trie, i, bi, top, h end h = HashArrayMappedTries.next(h) end end Base.eltype(::HAMT{K,V}) where {K,V} = Pair{K,V} function Base.in(key_val::Pair{K,V}, trie::HAMT{K,V}, valcmp=(==)) where {K,V} if isempty(trie) return false end key, val = key_val found, present, trie, i, _, _, _ = path(trie, HashState(key)) if found && present leaf = @inbounds trie.data[i]::Leaf{K,V} return valcmp(val, leaf.val) && return true end return false end function Base.haskey(trie::HAMT{K}, key::K) where K found, present, _, _, _, _, _ = path(trie, HashState(key)) return found && present end function Base.getindex(trie::HAMT{K,V}, key::K) where {K,V} if isempty(trie) throw(KeyError(key)) end found, present, trie, i, _, _, _ = path(trie, HashState(key)) if found && present leaf = @inbounds trie.data[i]::Leaf{K,V} return leaf.val end throw(KeyError(key)) end function Base.get(trie::HAMT{K,V}, key::K, default::V) where {K,V} if isempty(trie) return default end found, present, trie, i, _, _, _ = path(trie, HashState(key)) if found && present leaf = @inbounds trie.data[i]::Leaf{K,V} return leaf.val end return default end function Base.get(default::Base.Callable, trie::HAMT{K,V}, key::K) where {K,V} if isempty(trie) return default end found, present, trie, i, _, _, _ = path(trie, HashState(key)) if found && present leaf = @inbounds trie.data[i]::Leaf{K,V} return leaf.val end return default() end struct HAMTIterationState parent::Union{Nothing, HAMTIterationState} trie::HAMT i::Int end function Base.iterate(trie::HAMT, state=nothing) if state === nothing state = HAMTIterationState(nothing, trie, 1) end while state !== nothing i = state.i if i > length(state.trie.data) state = state.parent continue end trie = state.trie.data[i] state = HAMTIterationState(state.parent, state.trie, i+1) if trie isa Leaf return (trie.key => trie.val, state) else # we found a new level state = HAMTIterationState(state, trie, 1) continue end end return nothing end """ Internal function that given an obtained path, either set the value or grows the HAMT by inserting a new trie instead. """ @inline function insert!(found, present, trie::HAMT{K,V}, i, bi, h, val) where {K,V} if found # we found a slot, just set it to the new leaf # replace or insert if present # replace @inbounds trie.data[i] = Leaf{K, V}(h.key, val) else Base.insert!(trie.data, i, Leaf{K, V}(h.key, val)) end set!(trie, bi) else @assert present # collision -> grow leaf = @inbounds trie.data[i]::Leaf{K,V} leaf_h = HashState(leaf.key, h.depth, h.shift) # Reconstruct state if leaf_h.hash == h.hash error("Perfect hash collision detected") end while true new_trie = HAMT{K, V}() if present @inbounds trie.data[i] = new_trie else i = entry_index(trie, bi) Base.insert!(trie.data, i, new_trie) end set!(trie, bi) h = next(h) leaf_h = next(leaf_h) bi_new = BitmapIndex(h) bi_old = BitmapIndex(leaf_h) if bi_new == bi_old # collision in new trie -> retry trie = new_trie bi = bi_new present = false continue end i_new = entry_index(new_trie, bi_new) Base.insert!(new_trie.data, i_new, Leaf{K, V}(h.key, val)) set!(new_trie, bi_new) i_old = entry_index(new_trie, bi_old) Base.insert!(new_trie.data, i_old, leaf) set!(new_trie, bi_old) break end end end function Base.setindex!(trie::HAMT{K,V}, val::V, key::K) where {K,V} h = HashState(key) found, present, trie, i, bi, _, h = path(trie, h) insert!(found, present, trie, i, bi, h, val) return val end function Base.delete!(trie::HAMT{K,V}, key::K) where {K,V} h = HashState(key) found, present, trie, i, bi, _, _ = path(trie, h) if found && present deleteat!(trie.data, i) unset!(trie, bi) @assert count_ones(trie.bitmap) == length(trie.data) end return trie end """ insert(trie::HAMT{K, V}, key::K, val::V) where {K, V}) Persitent insertion. ```julia dict = HAMT{Int, Int}() dict = insert(dict, 10, 12) ``` """ function insert(trie::HAMT{K, V}, key::K, val::V) where {K, V} h = HashState(key) found, present, trie, i, bi, top, h = path(trie, h, true) insert!(found, present, trie, i, bi, h, val) return top end """ insert(trie::HAMT{K, V}, key::K, val::V) where {K, V}) Persitent insertion. ```julia dict = HAMT{Int, Int}() dict = insert(dict, 10, 12) dict = delete(dict, 10) ``` """ function delete(trie::HAMT{K, V}, key::K) where {K, V} h = HashState(key) found, present, trie, i, bi, top, _ = path(trie, h, true) if found && present deleteat!(trie.data, i) unset!(trie, bi) @assert count_ones(trie.bitmap) == length(trie.data) end return top end Base.length(::Leaf) = 1 Base.length(trie::HAMT) = sum((length(trie.data[entry_index(trie, BitmapIndex(i))]) for i in 0:31 if isset(trie, BitmapIndex(i))), init=0) Base.isempty(::Leaf) = false function Base.isempty(trie::HAMT) if isempty(trie) return true end return all(Base.isempty(trie.data[entry_index(trie, BitmapIndex(i))]) for i in 0:31 if isset(trie, BitmapIndex(i))) end end # module HashArrayMapTries
HashArrayMappedTries
https://github.com/vchuravy/HashArrayMappedTries.jl.git
[ "MIT" ]
0.2.0
2eaa69a7cab70a52b9687c8bf950a5a93ec895ae
code
3643
using Test using HashArrayMappedTries @testset "basics" begin dict = HAMT{Int, Int}() @test_throws KeyError dict[1] @test length(dict) == 0 @test isempty(dict) dict[1] = 1 @test dict[1] == 1 @test get(dict, 2, 1) == 1 @test get(()->1, dict, 2) == 1 @test (1 => 1) ∈ dict @test (1 => 2) ∉ dict @test (2 => 1) ∉ dict @test haskey(dict, 1) @test !haskey(dict, 2) dict[3] = 2 delete!(dict, 3) @test_throws KeyError dict[3] @test dict == delete!(dict, 3) # persistent dict2 = insert(dict, 1, 2) @test dict[1] == 1 @test dict2[1] == 2 dict3 = delete(dict2, 1) @test_throws KeyError dict3[1] @test dict3 != delete(dict3, 1) dict[1] = 3 @test dict[1] == 3 @test dict2[1] == 2 @test length(dict) == 1 @test length(dict2) == 1 end @testset "stress" begin dict = HAMT{Int, Int}() for i in 1:2048 dict[i] = i end @test length(dict) == 2048 length(collect(dict)) == 2048 values = sort!(collect(dict)) @test values[1] == (1=>1) @test values[end] == (2048=>2048) for i in 1:2048 delete!(dict, i) end @test isempty(dict) dict = HAMT{Int, Int}() for i in 1:2048 dict = insert(dict, i, i) end @test length(dict) == 2048 length(collect(dict)) == 2048 values = sort!(collect(dict)) @test values[1] == (1=>1) @test values[end] == (2048=>2048) for i in 1:2048 dict = delete(dict, i) end isempty(dict) dict = HAMT{Int, Int}() for i in 1:16384 dict[i] = i end delete!(dict, 16384) @test !haskey(dict, 16384) dict = HAMT{Int, Int}() for i in 1:16384 dict = insert(dict, i, i) end dict = delete(dict, 16384) @test !haskey(dict, 16384) end mutable struct CollidingHash end Base.hash(::CollidingHash, h::UInt) = hash(UInt(0), h) @testset "CollidingHash" begin dict = HAMT{CollidingHash, Nothing}() dict[CollidingHash()] = nothing @test_throws ErrorException dict[CollidingHash()] = nothing end struct PredictableHash x::UInt end Base.hash(x::PredictableHash, h::UInt) = x.x @testset "PredictableHash" begin dict = HAMT{PredictableHash, Nothing}() for i in 1:HashArrayMappedTries.ENTRY_COUNT key = PredictableHash(UInt(i-1)) # Level 0 dict[key] = nothing end @test length(dict.data) == HashArrayMappedTries.ENTRY_COUNT @test dict.bitmap == typemax(HashArrayMappedTries.BITMAP) for entry in dict.data @test entry isa HashArrayMappedTries.Leaf end dict = HAMT{PredictableHash, Nothing}() for i in 1:HashArrayMappedTries.ENTRY_COUNT key = PredictableHash(UInt(i-1) << HashArrayMappedTries.BITS_PER_LEVEL) # Level 1 dict[key] = nothing end @test length(dict.data) == 1 @test length(dict.data[1].data) == 32 max_level = (HashArrayMappedTries.NBITS ÷ HashArrayMappedTries.BITS_PER_LEVEL) dict = HAMT{PredictableHash, Nothing}() for i in 1:HashArrayMappedTries.ENTRY_COUNT key = PredictableHash(UInt(i-1) << (max_level * HashArrayMappedTries.BITS_PER_LEVEL)) # Level 12 dict[key] = nothing end data = dict.data for level in 1:max_level @test length(data) == 1 data = only(data).data end last_level_nbits = HashArrayMappedTries.NBITS - (max_level * HashArrayMappedTries.BITS_PER_LEVEL) if HashArrayMappedTries.NBITS == 64 @test last_level_nbits == 4 elseif HashArrayMappedTries.NBITS == 32 @test last_level_nbits == 2 end @test length(data) == 2^last_level_nbits end
HashArrayMappedTries
https://github.com/vchuravy/HashArrayMappedTries.jl.git
[ "MIT" ]
0.2.0
2eaa69a7cab70a52b9687c8bf950a5a93ec895ae
docs
1161
# HashArrayMappedTries.jl A [HashArrayMappedTrie](https://en.wikipedia.org/wiki/Hash_array_mapped_trie) or HAMT for short, is a data-structure that can be used efficient persistent hash tables. ## Usage ```julia dict = HAMT{Int, Int}() dict[1] = 1 delete!(dict, 1) ``` ### Persitency ```julia dict = HAMT{Int, Int}() dict = insert(dict, 1, 1) dict = delete(dict, 1) ``` ## Robustness against hash collisions The HAMT is robust to hash collision as long as they are not collection. As an example of a devious hash take. ``` mutable struct CollidingHash end Base.hash(::CollidingHash, h::UInt) = hash(UInt(0), h) ch1 = CollidingHash() ch2 = CollidingHash() ``` For all `h` `hash(ch1, h) == hash(ch2, h)`. `Base.Dict` is robust under those hashes as well. ``` dict = Dict{CollidingHash, Nothing}() dict[CollidingHash()] = nothing dict[CollidingHash()] = nothing display(dict) # Dict{CollidingHash, Nothing} with 2 entries: # CollidingHash() => nothing # CollidingHash() => nothing ``` Whereas HAMT. ``` dict = HAMT{CollidingHash, Nothing}() dict[CollidingHash()] = nothing dict[CollidingHash()] = nothing ERROR: Perfect hash collision detected ```
HashArrayMappedTries
https://github.com/vchuravy/HashArrayMappedTries.jl.git
[ "MIT" ]
0.2.0
2eaa69a7cab70a52b9687c8bf950a5a93ec895ae
docs
20394
# Benchmark Report for */home/vchuravy/src/HashArrayMappedTries* ## Job Properties * Time of benchmark: 26 Aug 2023 - 16:12 * Package commit: dirty * Julia commit: 661654 * Julia command flags: None * Environment variables: None ## Results Below is a table of this job's results, obtained by running the benchmarks. The values listed in the `ID` column have the structure `[parent_group, child_group, ..., key]`, and can be used to index into the BaseBenchmarks suite to retrieve the corresponding benchmarks. The percentages accompanying time and memory values in the below table are noise tolerances. The "true" time/memory value for a given benchmark is expected to fall within this percentage of the reported value. An empty cell means that the value was zero. | ID | time | GC time | memory | allocations | |------------------------------------------------------|----------------:|----------:|----------------:|------------:| | `["Base.Dict", "creation (Persistent), size=0"]` | 255.549 ns (5%) | | 544 bytes (1%) | 4 | | `["Base.Dict", "creation (Persistent), size=1"]` | 375.539 ns (5%) | | 1.06 KiB (1%) | 8 | | `["Base.Dict", "creation (Persistent), size=1024"]` | 3.237 ms (5%) | | 37.36 MiB (1%) | 5005 | | `["Base.Dict", "creation (Persistent), size=128"]` | 63.660 μs (5%) | | 450.48 KiB (1%) | 522 | | `["Base.Dict", "creation (Persistent), size=16"]` | 2.322 μs (5%) | | 14.27 KiB (1%) | 71 | | `["Base.Dict", "creation (Persistent), size=16384"]` | 973.768 ms (5%) | 88.025 ms | 7.94 GiB (1%) | 110830 | | `["Base.Dict", "creation (Persistent), size=2"]` | 480.256 ns (5%) | | 1.59 KiB (1%) | 12 | | `["Base.Dict", "creation (Persistent), size=2048"]` | 8.968 ms (5%) | | 105.71 MiB (1%) | 11149 | | `["Base.Dict", "creation (Persistent), size=256"]` | 246.730 μs (5%) | | 2.10 MiB (1%) | 1037 | | `["Base.Dict", "creation (Persistent), size=32"]` | 4.483 μs (5%) | | 35.52 KiB (1%) | 135 | | `["Base.Dict", "creation (Persistent), size=4"]` | 704.267 ns (5%) | | 2.66 KiB (1%) | 20 | | `["Base.Dict", "creation (Persistent), size=4096"]` | 43.067 ms (5%) | 1.887 ms | 514.53 MiB (1%) | 24808 | | `["Base.Dict", "creation (Persistent), size=512"]` | 664.730 μs (5%) | | 6.44 MiB (1%) | 2062 | | `["Base.Dict", "creation (Persistent), size=64"]` | 20.129 μs (5%) | | 152.48 KiB (1%) | 266 | | `["Base.Dict", "creation (Persistent), size=8"]` | 1.106 μs (5%) | | 4.78 KiB (1%) | 36 | | `["Base.Dict", "creation (Persistent), size=8192"]` | 132.564 ms (5%) | 6.889 ms | 1.57 GiB (1%) | 53480 | | `["Base.Dict", "creation, size=0"]` | 249.415 ns (5%) | | 544 bytes (1%) | 4 | | `["Base.Dict", "creation, size=1"]` | 284.456 ns (5%) | | 544 bytes (1%) | 4 | | `["Base.Dict", "creation, size=1024"]` | 17.830 μs (5%) | | 91.97 KiB (1%) | 19 | | `["Base.Dict", "creation, size=128"]` | 2.428 μs (5%) | | 6.36 KiB (1%) | 10 | | `["Base.Dict", "creation, size=16"]` | 611.899 ns (5%) | | 1.78 KiB (1%) | 7 | | `["Base.Dict", "creation, size=16384"]` | 364.750 μs (5%) | | 1.42 MiB (1%) | 31 | | `["Base.Dict", "creation, size=2"]` | 293.381 ns (5%) | | 544 bytes (1%) | 4 | | `["Base.Dict", "creation, size=2048"]` | 31.470 μs (5%) | | 91.97 KiB (1%) | 19 | | `["Base.Dict", "creation, size=256"]` | 5.704 μs (5%) | | 23.67 KiB (1%) | 13 | | `["Base.Dict", "creation, size=32"]` | 726.554 ns (5%) | | 1.78 KiB (1%) | 7 | | `["Base.Dict", "creation, size=4"]` | 302.078 ns (5%) | | 544 bytes (1%) | 4 | | `["Base.Dict", "creation, size=4096"]` | 75.530 μs (5%) | | 364.17 KiB (1%) | 25 | | `["Base.Dict", "creation, size=512"]` | 8.437 μs (5%) | | 23.69 KiB (1%) | 14 | | `["Base.Dict", "creation, size=64"]` | 1.835 μs (5%) | | 6.36 KiB (1%) | 10 | | `["Base.Dict", "creation, size=8"]` | 331.920 ns (5%) | | 544 bytes (1%) | 4 | | `["Base.Dict", "creation, size=8192"]` | 139.200 μs (5%) | | 364.17 KiB (1%) | 25 | | `["Base.Dict", "delete, size=1"]` | 94.168 ns (5%) | | 544 bytes (1%) | 4 | | `["Base.Dict", "delete, size=1024"]` | 4.836 μs (5%) | | 68.36 KiB (1%) | 6 | | `["Base.Dict", "delete, size=128"]` | 651.962 ns (5%) | | 4.66 KiB (1%) | 4 | | `["Base.Dict", "delete, size=16"]` | 113.181 ns (5%) | | 1.33 KiB (1%) | 4 | | `["Base.Dict", "delete, size=16384"]` | 74.580 μs (5%) | | 1.06 MiB (1%) | 7 | | `["Base.Dict", "delete, size=2"]` | 101.113 ns (5%) | | 544 bytes (1%) | 4 | | `["Base.Dict", "delete, size=2048"]` | 4.961 μs (5%) | | 68.36 KiB (1%) | 6 | | `["Base.Dict", "delete, size=256"]` | 1.446 μs (5%) | | 17.39 KiB (1%) | 4 | | `["Base.Dict", "delete, size=32"]` | 132.825 ns (5%) | | 1.33 KiB (1%) | 4 | | `["Base.Dict", "delete, size=4"]` | 99.864 ns (5%) | | 544 bytes (1%) | 4 | | `["Base.Dict", "delete, size=4096"]` | 18.209 μs (5%) | | 272.28 KiB (1%) | 7 | | `["Base.Dict", "delete, size=512"]` | 1.499 μs (5%) | | 17.39 KiB (1%) | 4 | | `["Base.Dict", "delete, size=64"]` | 644.902 ns (5%) | | 4.66 KiB (1%) | 4 | | `["Base.Dict", "delete, size=8"]` | 99.380 ns (5%) | | 544 bytes (1%) | 4 | | `["Base.Dict", "delete, size=8192"]` | 18.710 μs (5%) | | 272.28 KiB (1%) | 7 | | `["Base.Dict", "getindex, size=1"]` | 6.450 ns (5%) | | | | | `["Base.Dict", "getindex, size=1024"]` | 6.450 ns (5%) | | | | | `["Base.Dict", "getindex, size=128"]` | 7.317 ns (5%) | | | | | `["Base.Dict", "getindex, size=16"]` | 6.460 ns (5%) | | | | | `["Base.Dict", "getindex, size=16384"]` | 6.910 ns (5%) | | | | | `["Base.Dict", "getindex, size=2"]` | 6.450 ns (5%) | | | | | `["Base.Dict", "getindex, size=2048"]` | 6.900 ns (5%) | | | | | `["Base.Dict", "getindex, size=256"]` | 6.460 ns (5%) | | | | | `["Base.Dict", "getindex, size=32"]` | 7.688 ns (5%) | | | | | `["Base.Dict", "getindex, size=4"]` | 6.449 ns (5%) | | | | | `["Base.Dict", "getindex, size=4096"]` | 6.460 ns (5%) | | | | | `["Base.Dict", "getindex, size=512"]` | 6.920 ns (5%) | | | | | `["Base.Dict", "getindex, size=64"]` | 6.460 ns (5%) | | | | | `["Base.Dict", "getindex, size=8"]` | 6.460 ns (5%) | | | | | `["Base.Dict", "getindex, size=8192"]` | 7.257 ns (5%) | | | | | `["Base.Dict", "insert, size=0"]` | 96.143 ns (5%) | | 544 bytes (1%) | 4 | | `["Base.Dict", "insert, size=1"]` | 102.561 ns (5%) | | 544 bytes (1%) | 4 | | `["Base.Dict", "insert, size=1024"]` | 4.547 μs (5%) | | 68.36 KiB (1%) | 6 | | `["Base.Dict", "insert, size=128"]` | 655.882 ns (5%) | | 4.66 KiB (1%) | 4 | | `["Base.Dict", "insert, size=16"]` | 118.819 ns (5%) | | 1.33 KiB (1%) | 4 | | `["Base.Dict", "insert, size=16384"]` | 73.600 μs (5%) | | 1.06 MiB (1%) | 7 | | `["Base.Dict", "insert, size=2"]` | 102.608 ns (5%) | | 544 bytes (1%) | 4 | | `["Base.Dict", "insert, size=2048"]` | 4.816 μs (5%) | | 68.36 KiB (1%) | 6 | | `["Base.Dict", "insert, size=256"]` | 1.475 μs (5%) | | 17.39 KiB (1%) | 4 | | `["Base.Dict", "insert, size=32"]` | 117.118 ns (5%) | | 1.33 KiB (1%) | 4 | | `["Base.Dict", "insert, size=4"]` | 103.010 ns (5%) | | 544 bytes (1%) | 4 | | `["Base.Dict", "insert, size=4096"]` | 16.320 μs (5%) | | 272.28 KiB (1%) | 7 | | `["Base.Dict", "insert, size=512"]` | 1.515 μs (5%) | | 17.39 KiB (1%) | 4 | | `["Base.Dict", "insert, size=64"]` | 653.087 ns (5%) | | 4.66 KiB (1%) | 4 | | `["Base.Dict", "insert, size=8"]` | 103.189 ns (5%) | | 544 bytes (1%) | 4 | | `["Base.Dict", "insert, size=8192"]` | 18.520 μs (5%) | | 272.28 KiB (1%) | 7 | | `["HAMT", "creation (Persistent), size=0"]` | 195.119 ns (5%) | | 80 bytes (1%) | 2 | | `["HAMT", "creation (Persistent), size=1"]` | 273.527 ns (5%) | | 272 bytes (1%) | 6 | | `["HAMT", "creation (Persistent), size=1024"]` | 169.620 μs (5%) | | 820.34 KiB (1%) | 6883 | | `["HAMT", "creation (Persistent), size=128"]` | 15.640 μs (5%) | | 71.72 KiB (1%) | 730 | | `["HAMT", "creation (Persistent), size=16"]` | 1.576 μs (5%) | | 5.77 KiB (1%) | 75 | | `["HAMT", "creation (Persistent), size=16384"]` | 3.714 ms (5%) | | 16.18 MiB (1%) | 136157 | | `["HAMT", "creation (Persistent), size=2"]` | 340.601 ns (5%) | | 480 bytes (1%) | 10 | | `["HAMT", "creation (Persistent), size=2048"]` | 380.921 μs (5%) | | 1.75 MiB (1%) | 14694 | | `["HAMT", "creation (Persistent), size=256"]` | 32.240 μs (5%) | | 150.27 KiB (1%) | 1545 | | `["HAMT", "creation (Persistent), size=32"]` | 3.956 μs (5%) | | 15.91 KiB (1%) | 158 | | `["HAMT", "creation (Persistent), size=4"]` | 463.418 ns (5%) | | 912 bytes (1%) | 18 | | `["HAMT", "creation (Persistent), size=4096"]` | 782.240 μs (5%) | | 3.56 MiB (1%) | 31229 | | `["HAMT", "creation (Persistent), size=512"]` | 73.050 μs (5%) | | 347.98 KiB (1%) | 3249 | | `["HAMT", "creation (Persistent), size=64"]` | 7.907 μs (5%) | | 34.41 KiB (1%) | 340 | | `["HAMT", "creation (Persistent), size=8"]` | 743.448 ns (5%) | | 1.83 KiB (1%) | 34 | | `["HAMT", "creation (Persistent), size=8192"]` | 1.627 ms (5%) | | 7.33 MiB (1%) | 65424 | | `["HAMT", "creation, size=0"]` | 186.677 ns (5%) | | 80 bytes (1%) | 2 | | `["HAMT", "creation, size=1"]` | 256.185 ns (5%) | | 192 bytes (1%) | 4 | | `["HAMT", "creation, size=1024"]` | 51.960 μs (5%) | | 95.03 KiB (1%) | 2060 | | `["HAMT", "creation, size=128"]` | 6.004 μs (5%) | | 11.05 KiB (1%) | 258 | | `["HAMT", "creation, size=16"]` | 844.918 ns (5%) | | 1.61 KiB (1%) | 32 | | `["HAMT", "creation, size=16384"]` | 1.040 ms (5%) | | 1.45 MiB (1%) | 29653 | | `["HAMT", "creation, size=2"]` | 269.744 ns (5%) | | 224 bytes (1%) | 5 | | `["HAMT", "creation, size=2048"]` | 113.780 μs (5%) | | 185.78 KiB (1%) | 4212 | | `["HAMT", "creation, size=256"]` | 10.850 μs (5%) | | 21.92 KiB (1%) | 465 | | `["HAMT", "creation, size=32"]` | 1.695 μs (5%) | | 3.36 KiB (1%) | 72 | | `["HAMT", "creation, size=4"]` | 318.025 ns (5%) | | 288 bytes (1%) | 7 | | `["HAMT", "creation, size=4096"]` | 221.360 μs (5%) | | 338.72 KiB (1%) | 7807 | | `["HAMT", "creation, size=512"]` | 22.600 μs (5%) | | 46.30 KiB (1%) | 946 | | `["HAMT", "creation, size=64"]` | 3.085 μs (5%) | | 5.77 KiB (1%) | 131 | | `["HAMT", "creation, size=8"]` | 395.990 ns (5%) | | 416 bytes (1%) | 11 | | `["HAMT", "creation, size=8192"]` | 455.040 μs (5%) | | 688.94 KiB (1%) | 14410 | | `["HAMT", "delete, size=1"]` | 35.479 ns (5%) | | 96 bytes (1%) | 2 | | `["HAMT", "delete, size=1024"]` | 108.576 ns (5%) | | 672 bytes (1%) | 6 | | `["HAMT", "delete, size=128"]` | 102.283 ns (5%) | | 544 bytes (1%) | 6 | | `["HAMT", "delete, size=16"]` | 47.065 ns (5%) | | 192 bytes (1%) | 2 | | `["HAMT", "delete, size=16384"]` | 150.095 ns (5%) | | 944 bytes (1%) | 8 | | `["HAMT", "delete, size=2"]` | 35.146 ns (5%) | | 96 bytes (1%) | 2 | | `["HAMT", "delete, size=2048"]` | 113.906 ns (5%) | | 768 bytes (1%) | 6 | | `["HAMT", "delete, size=256"]` | 76.726 ns (5%) | | 480 bytes (1%) | 4 | | `["HAMT", "delete, size=32"]` | 69.162 ns (5%) | | 352 bytes (1%) | 4 | | `["HAMT", "delete, size=4"]` | 41.848 ns (5%) | | 112 bytes (1%) | 2 | | `["HAMT", "delete, size=4096"]` | 119.226 ns (5%) | | 816 bytes (1%) | 6 | | `["HAMT", "delete, size=512"]` | 78.642 ns (5%) | | 528 bytes (1%) | 4 | | `["HAMT", "delete, size=64"]` | 76.012 ns (5%) | | 416 bytes (1%) | 4 | | `["HAMT", "delete, size=8"]` | 46.559 ns (5%) | | 144 bytes (1%) | 2 | | `["HAMT", "delete, size=8192"]` | 119.310 ns (5%) | | 848 bytes (1%) | 6 | | `["HAMT", "getindex, size=1"]` | 5.220 ns (5%) | | | | | `["HAMT", "getindex, size=1024"]` | 8.669 ns (5%) | | | | | `["HAMT", "getindex, size=128"]` | 8.669 ns (5%) | | | | | `["HAMT", "getindex, size=16"]` | 5.209 ns (5%) | | | | | `["HAMT", "getindex, size=16384"]` | 11.572 ns (5%) | | | | | `["HAMT", "getindex, size=2"]` | 5.210 ns (5%) | | | | | `["HAMT", "getindex, size=2048"]` | 8.669 ns (5%) | | | | | `["HAMT", "getindex, size=256"]` | 6.710 ns (5%) | | | | | `["HAMT", "getindex, size=32"]` | 6.760 ns (5%) | | | | | `["HAMT", "getindex, size=4"]` | 5.210 ns (5%) | | | | | `["HAMT", "getindex, size=4096"]` | 8.669 ns (5%) | | | | | `["HAMT", "getindex, size=512"]` | 6.860 ns (5%) | | | | | `["HAMT", "getindex, size=64"]` | 6.780 ns (5%) | | | | | `["HAMT", "getindex, size=8"]` | 5.209 ns (5%) | | | | | `["HAMT", "getindex, size=8192"]` | 8.678 ns (5%) | | | | | `["HAMT", "insert, size=0"]` | 65.594 ns (5%) | | 192 bytes (1%) | 4 | | `["HAMT", "insert, size=1"]` | 65.015 ns (5%) | | 208 bytes (1%) | 4 | | `["HAMT", "insert, size=1024"]` | 108.324 ns (5%) | | 1.31 KiB (1%) | 6 | | `["HAMT", "insert, size=128"]` | 108.866 ns (5%) | | 576 bytes (1%) | 6 | | `["HAMT", "insert, size=16"]` | 69.619 ns (5%) | | 624 bytes (1%) | 4 | | `["HAMT", "insert, size=16384"]` | 158.961 ns (5%) | | 1.22 KiB (1%) | 8 | | `["HAMT", "insert, size=2"]` | 63.245 ns (5%) | | 208 bytes (1%) | 4 | | `["HAMT", "insert, size=2048"]` | 197.957 ns (5%) | | 1.45 KiB (1%) | 6 | | `["HAMT", "insert, size=256"]` | 105.794 ns (5%) | | 592 bytes (1%) | 6 | | `["HAMT", "insert, size=32"]` | 101.133 ns (5%) | | 464 bytes (1%) | 6 | | `["HAMT", "insert, size=4"]` | 63.908 ns (5%) | | 224 bytes (1%) | 4 | | `["HAMT", "insert, size=4096"]` | 145.598 ns (5%) | | 912 bytes (1%) | 8 | | `["HAMT", "insert, size=512"]` | 153.153 ns (5%) | | 672 bytes (1%) | 8 | | `["HAMT", "insert, size=64"]` | 102.006 ns (5%) | | 528 bytes (1%) | 6 | | `["HAMT", "insert, size=8"]` | 69.670 ns (5%) | | 512 bytes (1%) | 4 | | `["HAMT", "insert, size=8192"]` | 166.904 ns (5%) | | 1.20 KiB (1%) | 8 | ## Benchmark Group List Here's a list of all the benchmark groups executed by this job: - `["Base.Dict"]` - `["HAMT"]` ## Julia versioninfo ``` Julia Version 1.10.0-beta1 Commit 6616549950e (2023-07-25 17:43 UTC) Platform Info: OS: Linux (x86_64-linux-gnu) "Arch Linux" uname: Linux 6.3.2-arch1-1 #1 SMP PREEMPT_DYNAMIC Thu, 11 May 2023 16:40:42 +0000 x86_64 unknown CPU: AMD Ryzen 7 3700X 8-Core Processor: speed user nice sys idle irq #1-16 2200 MHz 1214558 s 2006 s 98149 s 12788419 s 20501 s Memory: 125.69889831542969 GB (83676.40234375 MB free) Uptime: 367493.26 sec Load Avg: 1.12 1.03 0.83 WORD_SIZE: 64 LIBM: libopenlibm LLVM: libLLVM-15.0.7 (ORCJIT, znver2) Threads: 1 on 16 virtual cores ```
HashArrayMappedTries
https://github.com/vchuravy/HashArrayMappedTries.jl.git
[ "MIT" ]
0.3.1
fbe229a66e2c847fc9dc9f4dd08505238edb1642
code
1259
abstract type Plot end mutable struct EChart id::String options::Dict{String,Any} width::Int64 height::Int64 end const BASE_OPTIONS=["title","legend","grid","xAxis","yAxis","radiusAxis","angleAxis","dataZoom","visualMap","tooltip","axisPointer","toolbox","brush","parallel","parallelAxis","singleAxis","timeline", "graphic","aria","color","backgroundColor","textStyle","animation","width","height"] function EChart(p::Plot) id=randstring(10) width=800 height=600 options_d=dict(p) if haskey(options_d,"width") width=options_d["width"] delete!(options_d,"width") end if haskey(options_d,"height") height=options_d["height"] delete!(options_d,"height") end return EChart(id,options_d,width,height) end import Base.getindex import Base.setindex! function Base.getindex(ec::EChart, i::String) if i=="width" return ec.width elseif i=="height" return ec.height else return Base.getindex(ec.options, i) end end function Base.setindex!(ec::EChart, v,i::String) if i=="width" ec.width=v elseif i=="height" ec.height=v else Base.setindex!(ec.options, v,i) end return nothing end
Namtso
https://github.com/AntonioLoureiro/Namtso.jl.git
[ "MIT" ]
0.3.1
fbe229a66e2c847fc9dc9f4dd08505238edb1642
code
620
struct JSFunc content ::String # "(arg1, arg2) -> { return arg1 + arg2 }" end macro js_str(content) return JSFunc(content) end function echart_json(v,f_mode) if f_mode return v else return JSON.json(v) end end echart_json(a::Array,f_mode)="[$(join(echart_json.(a,f_mode),","))]" function echart_json(d::Dict,f_mode::Bool=false) els=[] for (k,v) in d if v isa JSFunc j="\"$k\": $(v.content)" else j="\"$k\":"*echart_json(v,f_mode==false ? false : true) end push!(els,j) end return "{$(join(els,","))}" end
Namtso
https://github.com/AntonioLoureiro/Namtso.jl.git
[ "MIT" ]
0.3.1
fbe229a66e2c847fc9dc9f4dd08505238edb1642
code
274
module Namtso using Dates,JSON,Random,DataFrames export EChart,series!,public_render!,JSFunc,@js_str include("Base.jl") include("JSON.jl") include("PlotWithVectors/PlotWithVectors.jl") include("PlotWithDataFrame/PlotWithDataFrame.jl") include("Show.jl") end # module
Namtso
https://github.com/AntonioLoureiro/Namtso.jl.git
[ "MIT" ]
0.3.1
fbe229a66e2c847fc9dc9f4dd08505238edb1642
code
626
import Base.show function Base.show(io::IO, mm::MIME"text/html", ec::EChart) id=ec.id*randstring(5) options = Namtso.echart_json(ec.options) dom_str=""" <div id=\"$(id)\" style=\"height:$(ec.height)px;width:$(ec.width)px;\"></div> <script type=\"text/javascript\"> var myChart = echarts.init(document.getElementById(\"$(id)\")); myChart.setOption($options); </script> """ public_script="""<script src="https://cdnjs.cloudflare.com/ajax/libs/echarts/5.4.1/echarts.min.js"></script>""" str=public_script*dom_str println(io,str) end
Namtso
https://github.com/AntonioLoureiro/Namtso.jl.git
[ "MIT" ]
0.3.1
fbe229a66e2c847fc9dc9f4dd08505238edb1642
code
2848
mutable struct PlotWithDataFrame <:Plot df::DataFrame options::Dict{String,Any} end function EChart(df::DataFrame;series=nothing,kwargs...) chart_options=Dict{String,Any}() for (k,v) in kwargs k=string(k) chart_options[k]=v end SeriesWithDataFrame!(series,df,chart_options) chart_options["series"]=series chart_options["dataset"]=dataset(df) haskey(chart_options,"legend") ? nothing : chart_options["legend"]=Dict() haskey(chart_options,"tooltip") ? nothing : chart_options["tooltip"]=Dict() p=PlotWithDataFrame(df,chart_options) return EChart(p) end dict(p::PlotWithDataFrame)=p.options SeriesWithDataFrame!(arr::Vector,df::DataFrame,chart_options::Dict)=map(x->SeriesWithDataFrame!(x,df,chart_options),arr) seriestype(arr::Vector{T} where T<:Number)="value" seriestype(arr::Vector{T} where T<:AbstractString)="category" seriestype(arr::Vector{T} where T<:Dates.AbstractTime)="time" seriestype(arr)="value" get_chart_axys_type(arr::Vector)=get_chart_axys_type(arr[1]) get_chart_axys_type(d::Dict)=get(d,"type",nothing) function SeriesWithDataFrame!(d::Dict,df::DataFrame,chart_options::Dict) @assert haskey(d,"type") "Series does not have type key!" @assert haskey(d,"encode") "Series does not have encode key!" @assert d["encode"] isa Dict "Series encode is not a Dict!" df_names=names(df) for k in ["x","y","z"] if haskey(d["encode"],k) @assert d["encode"][k] in df_names "Field $(d["encode"][k]) not present in DataFrame!" if k=="x" if haskey(chart_options,"xAxis") axys_type=get_chart_axys_type(chart_options["xAxis"]) @assert axys_type==nothing || axys_type==seriestype(df[!,Symbol(d["encode"][k])]) "X Axys inconsistent Types" else chart_options["xAxis"]=[Dict("type"=>seriestype(df[!,Symbol(d["encode"][k])]))] end end if k=="y" if haskey(chart_options,"yAxis") axys_type=get_chart_axys_type(chart_options["yAxis"]) @assert axys_type==nothing || axys_type==seriestype(df[!,Symbol(d["encode"][k])]) "Y Axys inconsistent Types" else chart_options["yAxis"]=[Dict("type"=>seriestype(df[!,Symbol(d["encode"][k])]))] end end end end haskey(chart_options,"xAxis") ? nothing : chart_options["xAxis"]=[Dict()] haskey(chart_options,"yAxis") ? nothing : chart_options["yAxis"]=[Dict()] end function dataset(df::DataFrame) d=Dict{String,Any}() d["dimensions"]=names(df) d["source"]=[Dict(k=>r[Symbol(k)] for k in d["dimensions"]) for r in eachrow(df)] return d end
Namtso
https://github.com/AntonioLoureiro/Namtso.jl.git
[ "MIT" ]
0.3.1
fbe229a66e2c847fc9dc9f4dd08505238edb1642
code
836
axisTypes=Union{Number,Date,AbstractString} struct DataAttrs data::Vector{T} where T<:axisTypes end mutable struct Series plot_type::String name::String data::Vector{DataAttrs} options::Dict{String,Any} end mutable struct PlotWithVectors <:Plot series::Vector{Series} options::Dict{String,Any} end function EChart(kind::String,args...;kwargs...) data=[] for r in args push!(data,DataAttrs(r)) end series_options=Dict() chart_options=Dict() for (k,v) in kwargs k=string(k) if k in BASE_OPTIONS chart_options[k]=v else series_options[k]=v end end series_name="Series1" series=Series(kind,series_name,data,series_options) p=PlotWithVectors([series],chart_options) return EChart(p) end
Namtso
https://github.com/AntonioLoureiro/Namtso.jl.git
[ "MIT" ]
0.3.1
fbe229a66e2c847fc9dc9f4dd08505238edb1642
code
2187
function dict(data::Vector{DataAttrs}) data_len=length(data[1].data) @assert unique(map(x->length(x.data),data))==[data_len] "All Axis should have the same length!" ret_data=[] axis_len=length(data) for i in 1:data_len dot=[] for j in 1:axis_len push!(dot,data[j].data[i]) end push!(ret_data,dot) end xaxis=Dict() yaxis=Dict() for j in 1:axis_len if j==1 el_type=eltype(data[j].data) if el_type<:Number xaxis["type"]="value" elseif el_type<:AbstractString xaxis["type"]="category" elseif el_type<:Date xaxis["type"]="time" end end if j==2 el_type=eltype(data[j].data) if el_type<:Number yaxis["type"]="value" elseif el_type<:AbstractString yaxis["type"]="category" elseif el_type<:Date yaxis["type"]="time" end end end return (data=ret_data,xaxis=xaxis,yaxis=yaxis) end function dict(series::Series) nt=dict(series.data) xaxis=nt.xaxis yaxis=nt.yaxis series_options=Dict("type"=>series.plot_type,"name"=>series.name,"data"=>nt.data) merge!(series_options,series.options) return (xaxis=xaxis,yaxis=yaxis,series_options=series_options) end function dict_any(d::Dict) d=convert(Dict{String,Any},d) for (k,v) in d v isa Dict ? d[k]=dict_any(v) : nothing end return d end function dict(p::PlotWithVectors) options=p.options series_d=Dict("series"=>[]) for s in p.series nt=dict(s) push!(series_d["series"],nt.series_options) if length(nt.xaxis)!=0 options["xAxis"]=[nt.xaxis] end if length(nt.yaxis)!=0 options["yAxis"]=[nt.yaxis] end end ## legend if length(p.series)>1 options["legend"]=Dict("data"=>map(x->x.name,p.series)) end merge!(options,series_d) return dict_any(options) end
Namtso
https://github.com/AntonioLoureiro/Namtso.jl.git
[ "MIT" ]
0.3.1
fbe229a66e2c847fc9dc9f4dd08505238edb1642
code
59
include("Base.jl") include("Dict.jl") include("Series.jl")
Namtso
https://github.com/AntonioLoureiro/Namtso.jl.git
[ "MIT" ]
0.3.1
fbe229a66e2c847fc9dc9f4dd08505238edb1642
code
1441
function series!(ec::EChart,kind::String,args...;kwargs...) data=[] for r in args push!(data,DataAttrs(r)) end series_options=Dict() series_name="Series"*string(length(ec["series"])+1) for (k,v) in kwargs k=string(k) if k=="name" series_name=v else series_options[k]=v end end nt=Namtso.dict(Series(kind,series_name,data,series_options)) push!(ec["series"],nt.series_options) len_x=length(ec.options["xAxis"]) len_y=length(ec.options["yAxis"]) if len_x==1 if ec.options["xAxis"][1]["type"]!=nt.xaxis["type"] push!(ec.options["xAxis"],nt.xaxis) ec["series"][end]["xAxisIndex"]=1 end elseif len_x==2 @assert nt.xaxis["type"] in map(x->x["type"],ec.options["xAxis"]) "X Axis type must be one of the two existent" end if len_y==1 if ec.options["yAxis"][1]["type"]!=nt.yaxis["type"] push!(ec.options["yAxis"],nt.yaxis) ec["series"][end]["yAxisIndex"]=1 end elseif len_y==2 @assert nt.yaxis["type"] in map(x->x["type"],ec.options["yAxis"]) "Y Axis type must be one of the two existent" end ## legend if length(ec["series"])>1 ec.options["legend"]=Dict("data"=>map(x->x["name"],ec["series"])) end ec.options=dict_any(ec.options) return nothing end
Namtso
https://github.com/AntonioLoureiro/Namtso.jl.git
[ "MIT" ]
0.3.1
fbe229a66e2c847fc9dc9f4dd08505238edb1642
docs
80
# Namtso.jl ## Examples: https://antonioloureiro.github.io/Namtso.jl/docs.html
Namtso
https://github.com/AntonioLoureiro/Namtso.jl.git
[ "MIT" ]
0.1.0
f1d8ced726fe5eef53295f5d716397c1bf5d429d
code
590
using LearningSchedules using Documenter DocMeta.setdocmeta!(LearningSchedules, :DocTestSetup, :(using LearningSchedules); recursive=true) makedocs(; modules=[LearningSchedules], authors="murrellb <[email protected]> and contributors", sitename="LearningSchedules.jl", format=Documenter.HTML(; canonical="https://MurrellGroup.github.io/LearningSchedules.jl", edit_link="main", assets=String[], ), pages=[ "Home" => "index.md", ], ) deploydocs(; repo="github.com/MurrellGroup/LearningSchedules.jl", devbranch="main", )
LearningSchedules
https://github.com/MurrellGroup/LearningSchedules.jl.git
[ "MIT" ]
0.1.0
f1d8ced726fe5eef53295f5d716397c1bf5d429d
code
2147
module LearningSchedules mutable struct LearningRateSchedule lr::Float32 state::Int f!::Function end function next_rate(lrs::LearningRateSchedule) return lrs.f!(lrs) end function burnin_learning_schedule(min_lr::Float32, max_lr::Float32, inflate::Float32, decay::Float32) function f!(lrs::LearningRateSchedule) if lrs.state == 1 lrs.lr = lrs.lr * inflate if lrs.lr > max_lr lrs.state = 2 lrs.lr = lrs.lr * decay end end if lrs.state == 2 lrs.lr = lrs.lr * decay if lrs.lr < min_lr lrs.state = 3 lrs.lr = min_lr end end return lrs.lr end return LearningRateSchedule(min_lr, 1, f!) end function burnin_hyperbolic_schedule(min_lr::Float32, max_lr::Float32, inflate::Float32, decay::Float32; floor::Float32 = 0.0f0) function f!(lrs::LearningRateSchedule) #Exponential inflation, followed by hyperbolic decay if lrs.state == 1 lrs.lr = lrs.lr * inflate if lrs.lr > max_lr lrs.state = 2 end end if lrs.state == 2 #hyperbolic decay lrs.lr = (lrs.lr-floor) / (1.0f0 + decay * (lrs.lr-floor)) if lrs.lr < min_lr lrs.state = 3 lrs.lr = min_lr end end return lrs.lr end return LearningRateSchedule(min_lr, 1, f!) end #= testlrs = burnin_hyperbolic_schedule(0.000001f0, 0.0005f0, 1.17f0, 4.0f0) testlr = Float32[] batches = Float32[] for i in 1:2000 push!(testlr, next_rate(testlrs)) push!(batches, i*500) end pl = plot(batches ./ 20000, testlr) savefig(pl, "test_lr_schedule.svg") =# function linear_decay_schedule(max_lr::Float32, min_lr::Float32, steps::Int) function f!(lrs::LearningRateSchedule) lrs.lr = max(min_lr, lrs.lr - (max_lr - min_lr)/steps) return lrs.lr end return LearningRateSchedule(max_lr, 1, f!) end export burnin_learning_schedule, next_rate, burnin_hyperbolic_schedule, linear_decay_schedule end
LearningSchedules
https://github.com/MurrellGroup/LearningSchedules.jl.git
[ "MIT" ]
0.1.0
f1d8ced726fe5eef53295f5d716397c1bf5d429d
code
107
using LearningSchedules using Test @testset "LearningSchedules.jl" begin # Write your tests here. end
LearningSchedules
https://github.com/MurrellGroup/LearningSchedules.jl.git
[ "MIT" ]
0.1.0
f1d8ced726fe5eef53295f5d716397c1bf5d429d
docs
697
# LearningSchedules [![Stable](https://img.shields.io/badge/docs-stable-blue.svg)](https://MurrellGroup.github.io/LearningSchedules.jl/stable/) [![Dev](https://img.shields.io/badge/docs-dev-blue.svg)](https://MurrellGroup.github.io/LearningSchedules.jl/dev/) [![Build Status](https://github.com/MurrellGroup/LearningSchedules.jl/actions/workflows/CI.yml/badge.svg?branch=main)](https://github.com/MurrellGroup/LearningSchedules.jl/actions/workflows/CI.yml?query=branch%3Amain) [![Coverage](https://codecov.io/gh/MurrellGroup/LearningSchedules.jl/branch/main/graph/badge.svg)](https://codecov.io/gh/MurrellGroup/LearningSchedules.jl) A package with some simple learning rate scheduling functions.
LearningSchedules
https://github.com/MurrellGroup/LearningSchedules.jl.git
[ "MIT" ]
0.1.0
f1d8ced726fe5eef53295f5d716397c1bf5d429d
docs
225
```@meta CurrentModule = LearningSchedules ``` # LearningSchedules Documentation for [LearningSchedules](https://github.com/MurrellGroup/LearningSchedules.jl). ```@index ``` ```@autodocs Modules = [LearningSchedules] ```
LearningSchedules
https://github.com/MurrellGroup/LearningSchedules.jl.git
[ "MIT" ]
1.0.1
150440a6f105c6b887f05b215817ec781c72e737
code
3193
module EventEmitter export Listener, Event, listenercount, getlisteners, addlisteners!, prependlisteners!, removelistener!, removealllisteners!, on!, once!, off!, emit! struct Listener callback::Function once::Bool Listener(cb::Function, once::Bool=false) = new(cb, once) end (l::Listener)(args...) = l.callback(args...) struct Event listeners::Vector{Listener} Event(cbs::Function...; once::Bool=false) = new([Listener(cb, once) for cb ∈ cbs]) Event(l::Listener...) = new([l...]) Event() = new([]) end (e::Event)(args::Any...) = emit!(e, args...) addlisteners!(e::Event, l::Listener...) = push!(e.listeners, l...) function addlisteners!(e::Event, cbs::Function...; once::Bool=false) addlisteners!(e, (Listener(cb, once) for cb ∈ cbs)...) end prependlisteners!(e::Event, l::Listener...) = pushfirst!(e.listeners, l...) function prependlisteners!(e::Event, cbs::Function...; once::Bool=false) prependlisteners!(e, (Listener(cb, once) for cb ∈ cbs)...) end function removelistener!(e::Event, i::Int) index = i ≤ 0 ? i += length(e.listeners) : i listener = e.listeners[index] deleteat!(e.listeners, index) return listener end removelistener!(e::Event) = pop!(e.listeners) function removealllisteners!(e::Event; once::Union{Bool,Nothing}=nothing) once === nothing ? empty!(e.listeners) : deleteat!(e.listeners, [l.once === once for l ∈ e.listeners]) end on!(e::Event, cbs::Function...) = addlisteners!(e, cbs...; once=false) on!(cb::Function, e::Event) = addlisteners!(e, cb; once=false) once!(e::Event, cbs::Function...) = addlisteners!(e, cbs...; once=true) once!(cb::Function, e::Event) = addlisteners!(e, cb; once=true) const off! = removelistener! function emit!(e::Event, args::Any...) results::Vector{Any} = [] todelete::Vector{Bool} = [] for l ∈ e.listeners try push!(results, l(args...)) push!(todelete, l.once) catch exc push!(results, exc) push!(todelete, false) end end deleteat!(e.listeners, todelete) return results end emit!(cb::Function, e::Event, args::Any...) = cb(emit!(e, args...)) emit!(arr::AbstractArray{Event}, args::Any...) = [e() for e in arr] emit!(arr::AbstractArray, args::Any...) = [isa(i, Event) ? i() : i for i in arr] emit!(t::Tuple{Vararg{Event}}, args::Any...) = Tuple(e() for e in t) emit!(t::Tuple, args::Any...) = Tuple(isa(i, Event) ? i() : i for i in t) emit!(nt::NamedTuple{<:Any,<:Tuple{Vararg{Event}}}, args::Any...) = Tuple(e(args...) for e in nt) emit!(nt::NamedTuple, args::Any...) = Tuple(isa(e, Event) ? e(args...) : e for e in nt) emit!(dict::AbstractDict{<:Any,Event}, args::Any...) = [e(args...) for e in values(dict)] emit!(dict::AbstractDict, args::Any...) = [isa(e, Event) ? e(args...) : e for e in values(dict)] function listenercount(e::Event; once::Union{Bool,Nothing}=nothing) once === nothing ? length(e.listeners) : length(filter((l::Listener) -> l.once === once, e.listeners)) end function getlisteners(e::Event; once::Union{Bool,Nothing}=nothing) once === nothing ? e.listeners : filter((l::Listener) -> l.once === once, e.listeners) end end # module
EventEmitter
https://github.com/spirit-x64/EventEmitter.jl.git
[ "MIT" ]
1.0.1
150440a6f105c6b887f05b215817ec781c72e737
code
2578
using EventEmitter using Test @testset "EventEmitter.jl" begin listener1 = Listener(() -> 1) listener2 = Listener(() -> 2, true) @test listener1() === 1 @test listener2() === 2 event1 = Event() event2 = Event(() -> 1, () -> 2; once=true) event3 = Event(Listener(() -> 3, true), Listener(() -> 4, false)) @test listenercount(event1) === 0 @test listenercount(event2; once=true) === 2 @test listenercount(event3; once=false) === 1 for e ∈ (event1, event2, event3) @test isa(e, Event) @test isa(getlisteners(e), Vector{Listener}) @test all(l.once === true for l ∈ getlisteners(e; once=true)) @test all(l.once === false for l ∈ getlisteners(e; once=false)) end @test emit!(event1) == [] @test event2() == [1, 2] @test event2() == [] @test event3() == [3, 4] emit!(event3) do results @test results == [4] end once!(event3) do # [4, 5] 5 end on!(event3) do # [4, 5, 6] 6 end @test length(on!(event3, () -> 7)) === 4 # [4, 5, 6, 7] @test length(prependlisteners!(event3, () -> 8; once=false)) === 5 # [8, 4, 5, 6, 7] @test off!(event3, 1)() === 8 # [4, 5, 6, 7] @test off!(event3)() === 7 # [4, 5, 6] @test emit!(event3) == [4, 5, 6] @test length(once!(event3, () -> 9)) === 3 # [4, 6, 9] removealllisteners!(event3; once=true) @test emit!(event3) == [4, 6] removealllisteners!(event3) @test emit!(event3) == [] arr1 = [Event(() -> 1), Event(() -> 2; once=true)] arr2 = [0, Event(() -> 3), Event(() -> 4; once=true)] @test emit!(arr1) == [[1], [2]] @test emit!(arr1) == [[1], []] @test emit!(arr2) == [0, [3], [4]] @test emit!(arr2) == [0, [3], []] t1 = (Event(() -> 1), Event(() -> 2; once=true)) t2 = (0, Event(() -> 3), Event(() -> 4; once=true)) @test emit!(t1) == ([1], [2]) @test emit!(t1) == ([1], []) @test emit!(t2) == (0, [3], [4]) @test emit!(t2) == (0, [3], []) nt1 = (a=Event(() -> 1), b=Event(() -> 2; once=true)) nt2 = (a=0, b=Event(() -> 3), c=Event(() -> 4; once=true)) @test emit!(nt1) == ([1], [2]) @test emit!(nt1) == ([1], []) @test emit!(nt2) == (0, [3], [4]) @test emit!(nt2) == (0, [3], []) dict1 = Dict(:a => Event(() -> 1), :b => Event(() -> 2; once=true)) dict2 = Dict(1 => 0, "b" => Event(() -> 3), :c => Event(() -> 4; once=true)) @test emit!(dict1) == [[1],[2]] @test emit!(dict1) == [[1], []] @test emit!(dict2) == [[3], [4], 0] @test emit!(dict2) == [[3], [], 0] end
EventEmitter
https://github.com/spirit-x64/EventEmitter.jl.git
[ "MIT" ]
1.0.1
150440a6f105c6b887f05b215817ec781c72e737
docs
2863
<!-- Markdown link & img dfn's --> [license]: LICENSE # EventEmitter > Events in julia <div align="center"> <br /> <p> <a href="https://julialang.org/"><img src="https://upload.wikimedia.org/wikipedia/commons/thumb/1/1f/Julia_Programming_Language_Logo.svg/320px-Julia_Programming_Language_Logo.svg.png" alt="Julia Programming Language Logo" /></a> </p> <p> <a href="https://discord.gg/cST4tkAMy6"><img src="https://img.shields.io/discord/1266889650987860009?color=060033&logo=discord&logoColor=white" alt="Spirit's discord server" /></a> <a target="_blank" href="https://github.com/spirit-x64/EventEmitter.jl/actions/workflows/CI.yml?query=branch%3Amain"><img src="https://github.com/spirit-x64/EventEmitter.jl/actions/workflows/CI.yml/badge.svg?branch=main" alt="Build Status" /></a> </p> Julia package to easly implement event pattern in julia </div> ## Installation ```julia using Pkg; Pkg.add("EventEmitter") ``` ## License All code licensed under the [MIT license][license]. ## Getting started First run ```julia using EventEmitter ``` Construct an `Event` ```julia myevent = Event() ``` You can pass callback functions as arguments ```julia myfunction() = println("function") myevent = Event(myfunction, () -> println("Arrow function")) ``` Listeners are `on` by default. change this by setting `once` ```julia myevent = Event((x) -> print(x); once=true) ``` Or construct listeners manually and pass them ```julia # Listener(callback, once) myevent = Event(Listener(() -> 1), Listener(() -> 2, true)) ``` Use `on!()` or `once!()` to add listeners ```julia on!(myevent) do return "called everytime" end once!(myevent) do return "called once" end ``` Emit an event by calling it or using `emit!()` ```julia myevent() # [1, 2, "called everytime", "called once"] emit!(myevent) # [1, "called everytime"] ``` Listeners are called in order ```julia myevent = Event(() -> 1, () -> 2) on!(myevent, () -> 3) myevent() # [1, 2, 3] ``` Use `prependlisteners!()` to prepend listeners ```julia prependlisteners!(myevent, () -> 4, () -> 5) myevent() # [4, 5, 1, 2, 3] ``` Use `off!()` to remove a `Listener` \*`off!()` returns the `Listener` it removes, so doing `off!(event)()` will call it\* ```julia off!(myevent)() # 3 - (last) equivalent to `off!(myevent, 0)()` off!(myevent, 1)() # 4 - (first) off!(myevent, -1)() # 1 - (before last) myevent() # [5, 2] ``` Construct collections of `Event`s (arrays, tuples, named tuples and dictionaries) ```julia event1 = Event(() -> 1) event2 = Event(() -> 2) arr = [event1, event2] tuple = (event1, event2) namedtuple = (a=event1, b=event2) dict = Dict(:a => event1, :b => event2) ``` Emit the collections \*emitting a dict will give almost random order for the events\* ```julia emit!(arr) # [[1], [2]] emit!(tuple) # [[1], [2]] emit!(namedtuple) # [[1], [2]] emit!(dict) # [[1], [2]] ```
EventEmitter
https://github.com/spirit-x64/EventEmitter.jl.git
[ "MIT" ]
0.3.3
4a05f9503e4fa1cc5eada27a36c159e58d54aa7e
code
1370
# This file is a part of RobustNeuralNetworks.jl. License is MIT: https://github.com/acfr/RobustNeuralNetworks.jl/blob/main/LICENSE using Documenter using RobustNeuralNetworks const buildpath = haskey(ENV, "CI") ? ".." : "" makedocs( sitename = "RobustNeuralNetworks.jl", modules = [RobustNeuralNetworks], format = Documenter.HTML(prettyurls = haskey(ENV, "CI")), pages = [ "Home" => "index.md", "Introduction" => Any[ "Getting Started" => "introduction/getting_started.md", "Package Overview" => "introduction/package_overview.md", "Contributing to the Package" => "introduction/developing.md", ], "Examples" => Any[ "Fitting a Curve" => "examples/lbdn_curvefit.md", "Image Classification" => "examples/lbdn_mnist.md", "Reinforcement Learning" => "examples/rl.md", "Observer Design" => "examples/box_obsv.md", "(Convex) Nonlinear Control" => "examples/echo_ren.md", ], "Library" => Any[ "Model Wrappers" => "lib/models.md", "Model Parameterisations" => "lib/model_params.md", "Functions" => "lib/functions.md", ], "API" => "api.md" ], doctest = true, checkdocs=:exports ) deploydocs(repo = "github.com/acfr/RobustNeuralNetworks.jl.git")
RobustNeuralNetworks
https://github.com/acfr/RobustNeuralNetworks.jl.git
[ "MIT" ]
0.3.3
4a05f9503e4fa1cc5eada27a36c159e58d54aa7e
code
1457
# This file is a part of RobustNeuralNetworks.jl. License is MIT: https://github.com/acfr/RobustNeuralNetworks.jl/blob/main/LICENSE cd(@__DIR__) using Pkg Pkg.activate("../") using BenchmarkTools using CUDA using Flux using Random using RobustNeuralNetworks rng = Xoshiro(42) function test_lbdn_device(device; nu=2, nh=[10, 5], ny=4, γ=10, nl=tanh, batches=4, is_diff=false, do_time=true, T=Float32) # Build model model = DenseLBDNParams{T}(nu, nh, ny, γ; nl, rng) |> device is_diff && (model = DiffLBDN(model)) # Create dummy data us = randn(rng, T, nu, batches) |> device ys = randn(rng, T, ny, batches) |> device # Dummy loss function function loss(model, u, y) m = is_diff ? model : LBDN(model) return Flux.mse(m(u), y) end # Run and time, running it once to check it works print("Forwards: ") l = loss(model, us, ys) do_time && (@btime $loss($model, $us, $ys)) print("Reverse: ") g = gradient(loss, model, us, ys) do_time && (@btime $gradient($loss, $model, $us, $ys)) return l, g end function test_lbdns(device) d = device === cpu ? "CPU" : "GPU" println("\nTesting LBDNs on ", d, ":") println("--------------------\n") println("Dense LBDN:\n") test_lbdn_device(device) println("\nDense DiffLBDN:\n") test_lbdn_device(device; is_diff=true) return nothing end test_lbdns(cpu) test_lbdns(gpu)
RobustNeuralNetworks
https://github.com/acfr/RobustNeuralNetworks.jl.git
[ "MIT" ]
0.3.3
4a05f9503e4fa1cc5eada27a36c159e58d54aa7e
code
2514
# This file is a part of RobustNeuralNetworks.jl. License is MIT: https://github.com/acfr/RobustNeuralNetworks.jl/blob/main/LICENSE cd(@__DIR__) using Pkg Pkg.activate("../") using BenchmarkTools using CUDA using Flux using Random using RobustNeuralNetworks rng = Xoshiro(42) function test_ren_device(device, construct, args...; nu=4, nx=5, nv=10, ny=4, nl=tanh, batches=4, tmax=3, is_diff=false, T=Float32, do_time=true) # Build the ren model = construct{T}(nu, nx, nv, ny, args...; nl, rng) |> device is_diff && (model = DiffREN(model)) # Create dummy data us = [randn(rng, T, nu, batches) for _ in 1:tmax] |> device ys = [randn(rng, T, ny, batches) for _ in 1:tmax] |> device x0 = init_states(model, batches) |> device # Dummy loss function function loss(model, x, us, ys) m = is_diff ? model : REN(model) J = 0 for t in 1:tmax x, y = m(x, us[t]) J += Flux.mse(y, ys[t]) end return J end # Run and time, running it once first to check it works print("Forwards: ") l = loss(model, x0, us, ys) do_time && (@btime $loss($model, $x0, $us, $ys)) print("Reverse: ") g = gradient(loss, model, x0, us, ys) do_time && (@btime $gradient($loss, $model, $x0, $us, $ys)) return l, g end # Test all types and combinations γ = 10 ν = 10 nu, nx, nv, ny = 4, 5, 10, 4 X = randn(rng, ny, ny) Y = randn(rng, nu, nu) S = randn(rng, nu, ny) Q = -X'*X R = S * (Q \ S') + Y'*Y function test_rens(device) d = device === cpu ? "CPU" : "GPU" println("\nTesting RENs on ", d, ":") println("--------------------\n") println("Contracting REN:\n") test_ren_device(device, ContractingRENParams) println("\nContracting DiffREN:\n") test_ren_device(device, ContractingRENParams; is_diff=true) println("\nPassive REN:\n") test_ren_device(device, PassiveRENParams, ν) println("\nPassive DiffREN:\n") test_ren_device(device, PassiveRENParams, ν; is_diff=true) println("\nLipschitz REN:\n") test_ren_device(device, LipschitzRENParams, γ) println("\nLipschitz DiffREN:\n") test_ren_device(device, LipschitzRENParams, γ; is_diff=true) println("\nGeneral REN:\n") test_ren_device(device, GeneralRENParams, Q, S, R) println("\nGeneral DiffREN:\n") test_ren_device(device, GeneralRENParams, Q, S, R; is_diff=true) return nothing end test_rens(cpu) test_rens(gpu)
RobustNeuralNetworks
https://github.com/acfr/RobustNeuralNetworks.jl.git
[ "MIT" ]
0.3.3
4a05f9503e4fa1cc5eada27a36c159e58d54aa7e
code
1448
# This file is a part of RobustNeuralNetworks.jl. License is MIT: https://github.com/acfr/RobustNeuralNetworks.jl/blob/main/LICENSE cd(@__DIR__) using Pkg Pkg.activate("../") using BenchmarkTools using CUDA using Flux using Random using RobustNeuralNetworks rng = Xoshiro(42) function test_sandwich_device(device; batches=400, do_time=true, T=Float32) # Model parameters nu = 2 nh = [10, 5] ny = 4 γ = 10 nl = tanh # Build model model = Flux.Chain( (x) -> (√γ * x), SandwichFC(nu => nh[1], nl; T, rng), SandwichFC(nh[1] => nh[2], nl; T, rng), (x) -> (√γ * x), SandwichFC(nh[2] => ny; output_layer=true, T, rng), ) |> device # Create dummy data us = randn(rng, T, nu, batches) |> device ys = randn(rng, T, ny, batches) |> device # Dummy loss function loss(model, u, y) = Flux.mse(model(u), y) # Run and time, running it once to check it works print("Forwards: ") l = loss(model, us, ys) do_time && (@btime $loss($model, $us, $ys)) print("Reverse: ") g = gradient(loss, model, us, ys) do_time && (@btime $gradient($loss, $model, $us, $ys)) return l, g end function test_sandwich(device) d = device === cpu ? "CPU" : "GPU" println("\nTesting Sandwich on ", d, ":") println("--------------------\n") test_sandwich_device(device) return nothing end test_sandwich(cpu) test_sandwich(gpu)
RobustNeuralNetworks
https://github.com/acfr/RobustNeuralNetworks.jl.git
[ "MIT" ]
0.3.3
4a05f9503e4fa1cc5eada27a36c159e58d54aa7e
code
1419
# This file is a part of RobustNeuralNetworks.jl. License is MIT: https://github.com/acfr/RobustNeuralNetworks.jl/blob/main/LICENSE cd(@__DIR__) using Pkg Pkg.activate("../") using CairoMakie using Random using RobustNeuralNetworks rng = MersenneTwister(42) # Create a contracting REN with just its state as an output, slow dynamics nu, nx, nv, ny = 1, 1, 10, 1 ren_ps = ContractingRENParams{Float64}(nu, nx, nv, ny; output_map=false, rng, init=:cholesky) ren = REN(ren_ps) # Make it converge a little faster... ren.explicit.A .-= 1e-2 # Simulate it from different initial conditions function simulate() # Different initial conditions x1 = 5*randn(rng, nx) x2 = -deepcopy(x1) # Same inputs ts = 1:600 u = sin.(0.1*ts) # Keep track of outputs y1 = zeros(length(ts)) y2 = zeros(length(ts)) # Simulate and return outputs for t in ts x1, ya = ren(x1, u[t:t]) x2, yb = ren(x2, u[t:t]) y1[t] = ya[1] y2[t] = yb[1] end return y1, y2 end y1, y2 = simulate() # Plot trajectories fig = Figure(resolution = (500, 300)) ax = Axis(fig[1,1], xlabel="Time samples", ylabel="Internal state", title="Contracting RENs forget initial conditions") lines!(ax, y1, label="Initial condition 1") lines!(ax, y2, label="Initial condition 2") axislegend(ax, position=:rb) display(fig) save("../../docs/src/assets/contracting_ren.svg", fig)
RobustNeuralNetworks
https://github.com/acfr/RobustNeuralNetworks.jl.git
[ "MIT" ]
0.3.3
4a05f9503e4fa1cc5eada27a36c159e58d54aa7e
code
3820
# This file is a part of RobustNeuralNetworks.jl. License is MIT: https://github.com/acfr/RobustNeuralNetworks.jl/blob/main/LICENSE cd(@__DIR__) using Pkg Pkg.activate("../") using BSON using CairoMakie using ControlSystemsBase using Convex using LinearAlgebra using Mosek, MosekTools using Random using RobustNeuralNetworks rng = MersenneTwister(1) # System parameters and poles: λ = ρ*exp(± im ϕ) ρ = 0.8 ϕ = 0.2π λ = ρ .* [cos(ϕ) + sin(ϕ)*im, cos(ϕ) - sin(ϕ)*im] #exp.(im*ϕ.*[1,-1]) # Construct discrete-time system with gain 0.3, sampling time 1.0s k = 0.3 Ts = 1.0 sys = zpk([], λ, k, Ts) # Closed-loop system components sim_sys(u::AbstractMatrix) = lsim(sys, u, 1:size(u,2))[1] T0(u) = sim_sys(u) T1(u) = sim_sys(u) T2(u) = -sim_sys(u) # Sample disturbances function sample_disturbance(amplitude=10, samples=500, hold=50) d = 2 * amplitude * (rand(rng, 1, samples) .- 0.5) return kron(d, ones(1, hold)) end d = sample_disturbance() # Check out the disturbance f = Figure(resolution = (600, 400)) ax = Axis(f[1,1], xlabel="Time steps", ylabel="Output") lines!(ax, vec(d)[1:1000], label="Disturbance") axislegend(ax, position=:rt) display(f) save("../results/echo-ren/echo_ren_inputs.svg", f) # Set up a contracting REN whose outputs are yt = [xt; wt; ut] nu = 1 nx, nv = 50, 500 ny = nx + nv + nu ren_ps = ContractingRENParams{Float64}(nu, nx, nv, ny; rng) model = REN(ren_ps) model.explicit.C2 .= [I(nx); zeros(nv, nx); zeros(nu, nx)] model.explicit.D21 .= [zeros(nx, nv); I(nv); zeros(nu, nv)] model.explicit.D22 .= [zeros(nx, nu); zeros(nv, nu); I(nu)] model.explicit.by .= zeros(ny) # Echo-state network params θ = [C2, D21, D22, by] θ = Convex.Variable(1, nx+nv+nu+1) # Echo-state components (add ones for bias vector) function Qᵢ(u) x0 = init_states(model, size(u,2)) _, y = model(x0, u) return [y; ones(1,size(y,2))] end # Complete the closed-loop response and control inputs # z = T₀ + ∑ θᵢ*T₁(Qᵢ(T₂(d))) # u = ∑ θᵢ*Qᵢ(T₂(d)) function sim_echo_state_network(d, θ) z0 = T0(d) ỹ = T2(d) ũ = Qᵢ(ỹ) z1 = reduce(vcat, T1(ũ') for ũ in eachrow(ũ)) z = z0 + θ * z1 u = θ * ũ return z, u, z0 end z, u, _= sim_echo_state_network(d, θ) # Cost function and constraints J = norm(z, 1) + 1e-4*(sumsquares(u) + norm(θ, 2)) constraints = [u < 5, u > -5] # Optimise the closed-loop response problem = minimize(J, constraints) Convex.solve!(problem, Mosek.Optimizer) u1 = evaluate(u) println("Maximum training controls: ", round(maximum(u1), digits=2)) println("Minimum training controls: ", round(minimum(u1), digits=2)) println("Training cost: ", round(evaluate(J), digits=2), "\n") # Test on different inputs θ_solved = evaluate(θ) a_test = range(0, length=7, stop=8) d_test = reduce(hcat, a .* [ones(1, 50) zeros(1, 50)] for a in a_test) z_test, u_test, z0_test = sim_echo_state_network(d_test, θ_solved) println("Maximum test controls: ", round(maximum(u_test), digits=2)) println("Minimum test controls: ", round(minimum(u_test), digits=2)) bson("../results/echo-ren/echo_ren_params.bson", Dict("params" => θ_solved)) # Plot the results f = Figure(resolution = (1000, 400)) ga = f[1,1] = GridLayout() # Response ax1 = Axis(ga[1,1], xlabel="Time steps", ylabel="Output") lines!(ax1, vec(d_test), label="Disturbance") lines!(ax1, vec(z0_test), label="Open Loop") lines!(ax1, vec(z_test), label="Echo-REN") axislegend(ax1, position=:lt) # Control inputs ax2 = Axis(ga[1,2], xlabel="Time steps", ylabel="Control signal") lines!(ax2, vec(u_test), label="Echo-REN") lines!( ax2, [1, length(u_test)], [-5, -5], color=:black, linestyle=:dash, label="Constraints" ) lines!(ax2, [1, length(u_test)], [5, 5], color=:black, linestyle=:dash) axislegend(ax2, position=:rt) display(f) save("../results/echo-ren/echo_ren_results.svg", f)
RobustNeuralNetworks
https://github.com/acfr/RobustNeuralNetworks.jl.git
[ "MIT" ]
0.3.3
4a05f9503e4fa1cc5eada27a36c159e58d54aa7e
code
2141
# This file is a part of RobustNeuralNetworks.jl. License is MIT: https://github.com/acfr/RobustNeuralNetworks.jl/blob/main/LICENSE cd(@__DIR__) using Pkg Pkg.activate("../") using CairoMakie using Flux using Printf using Random using RobustNeuralNetworks # Random seed for consistency rng = Xoshiro(0) # Function to estimate f(x) = x < 0 ? 0 : 1 # Training data dx = 0.01 xs = -0.3:dx:0.3 ys = f.(xs) data = zip(xs,ys) # Model specification nu = 1 # Number of inputs ny = 1 # Number of outputs nh = fill(16,4) # 4 hidden layers, each with 16 neurons γ = 10 # Lipschitz bound of 10 # Set up model: define parameters, then create model model_ps = DenseLBDNParams{Float64}(nu, nh, ny, γ; rng) model = DiffLBDN(model_ps) # Loss function loss(model,x,y) = Flux.mse(model([x]),[y]) # Check fit error/slope during training mse(model, xs, ys) = sum(loss.((model,), xs, ys)) / length(xs) lip(model, xs, dx) = maximum(abs.(diff(model(xs'), dims=2)))/dx # Callback function to show results while training function progress(model, iter, xs, ys, dx) fit_error = round(mse(model, xs, ys), digits=4) slope = round(lip(model, xs, dx), digits=4) @show iter fit_error slope println() end # Define hyperparameters num_epochs = 300 lr = 2e-4 # Train with the Adam optimiser opt_state = Flux.setup(Adam(lr), model) for i in 1:num_epochs Flux.train!(loss, model, data, opt_state) (i % 50 == 0) && progress(model, i, xs, ys, dx) end # Print out lower-bound on Lipschitz constant Empirical_Lipschitz = lip(model, xs, dx) @printf "Empirical lower Lipschitz bound: %.2f\n" Empirical_Lipschitz # Create a figure fig = Figure(resolution = (600, 400)) ax = Axis(fig[1,1], xlabel="x", ylabel="y") get_best(x) = x<-0.05 ? 0 : (x<0.05 ? 10x + 0.5 : 1) ybest = get_best.(xs) ŷ = map(x -> model([x])[1], xs) lines!(xs, ys, label = "Data") lines!(xs, ybest, label = "Slope restriction = 10.0") lines!(xs, ŷ, label = "LBDN slope = $(round(Empirical_Lipschitz; digits=2))") axislegend(ax, position=:lt) display(fig) save("../results/lbdn-curvefit/lbdn_curve_fit.svg", fig)
RobustNeuralNetworks
https://github.com/acfr/RobustNeuralNetworks.jl.git
[ "MIT" ]
0.3.3
4a05f9503e4fa1cc5eada27a36c159e58d54aa7e
code
4953
# This file is a part of RobustNeuralNetworks.jl. License is MIT: https://github.com/acfr/RobustNeuralNetworks.jl/blob/main/LICENSE cd(@__DIR__) using Pkg Pkg.activate("../") using BSON using CairoMakie using CUDA using Flux using Flux: OneHotMatrix using MLDatasets: MNIST using Random using RobustNeuralNetworks using Statistics dev = gpu rng = MersenneTwister(42) # Model specification nu = 28*28 # Number of inputs (size of image) ny = 10 # Number of outputs (possible classifications) nh = fill(64,2) # 2 hidden layers, each with 64 neurons γ = 5 # Lipschitz bound of 5 # Set up model: define parameters, then create model T = Float32 model_ps = DenseLBDNParams{T}(nu, nh, ny, γ; rng) model = Chain(DiffLBDN(model_ps), Flux.softmax) |> dev # Get MNIST training and test data x_train, y_train = MNIST(T, split=:train)[:] |> dev x_test, y_test = MNIST(T, split=:test)[:] |> dev # Reshape features for model input x_train = Flux.flatten(x_train) x_test = Flux.flatten(x_test) # Encode categorical outputs and store data y_train = Flux.onehotbatch(y_train, 0:9) y_test = Flux.onehotbatch(y_test, 0:9) train_data = [(x_train, y_train)] # Loss function loss(model,x,y) = Flux.crossentropy(model(x), y) # Check test accuracy during training compare(y::OneHotMatrix, ŷ) = maximum(ŷ, dims=1) .== maximum(y.*ŷ, dims=1) accuracy(model, x, y::OneHotMatrix) = mean(compare(y, model(x))) # Callback function to show results while training function progress(model, iter) train_loss = round(loss(model, x_train, y_train), digits=4) test_acc = round(accuracy(model, x_test, y_test), digits=4) @show iter train_loss test_acc println() end # Train the model with the ADAM optimiser function train_mnist!(model, data; num_epochs=300, lrs=[1e-3,1e-4]) opt_state = Flux.setup(Adam(lrs[1]), model) for k in eachindex(lrs) for i in 1:num_epochs Flux.train!(loss, model, data, opt_state) (i % 50 == 0) && progress(model, i) end (k < length(lrs)) && Flux.adjust!(opt_state, lrs[k+1]) end end # Train and save the model for later train_mnist!(model, train_data) bson("../results/lbdn-mnist/lbdn_mnist.bson", Dict("model" => (model |> cpu))) # Print final results train_acc = accuracy(model, x_train, y_train)*100 test_acc = accuracy(model, x_test, y_test)*100 println("LBDN Results: ") println("Training accuracy: $(round(train_acc,digits=2))%") println("Test accuracy: $(round(test_acc,digits=2))%\n") # Make a couple of example plots indx = rand(rng, 1:100, 3) fig = Figure(resolution = (800, 300), fontsize=21) for i in eachindex(indx) # Get data and do prediction x = x_test[:,indx[i]] y = y_test[:,indx[i]] ŷ = model(x) # Make sure data is on CPU for plotting x = x |> cpu y = y |> cpu ŷ = ŷ |> cpu # Reshape data for plotting xmat = reshape(x, 28, 28) yval = (0:9)[y][1] ŷval = (0:9)[ŷ .== maximum(ŷ)][1] # Plot results ax, _ = image( fig[1,i], xmat, axis=( yreversed = true, aspect = DataAspect(), title = "Label: $(yval), Prediction: $(ŷval)", ) ) # Format the plot ax.xticksvisible = false ax.yticksvisible = false ax.xticklabelsvisible = false ax.yticklabelsvisible = false end display(fig) save("../results/lbdn-mnist/lbdn_mnist.svg", fig) ####################################################################### # Compare robustness to Dense network # Create a Dense network init = Flux.glorot_normal(rng) initb(n) = Flux.glorot_normal(rng, n) dense = Chain( Dense(nu, nh[1], Flux.relu; init, bias=initb(nh[1])), Dense(nh[1], nh[2], Flux.relu; init, bias=initb(nh[2])), Dense(nh[2], ny; init, bias=initb(ny)), Flux.softmax ) |> dev # Train it and save for later train_mnist!(dense, train_data) bson("../results/lbdn-mnist/dense_mnist.bson", Dict("model" => (dense |> cpu))) # Print final results train_acc = accuracy(dense, x_train, y_train)*100 test_acc = accuracy(dense, x_test, y_test)*100 println("Dense results:") println("Training accuracy: $(round(train_acc,digits=2))%") println("Test accuracy: $(round(test_acc,digits=2))%") # Get test accuracy as we add noise uniform(x) = 2*rand(rng, T, size(x)...) .- 1 |> dev function noisy_test_error(model, ϵ=0) noisy_xtest = x_test + ϵ*uniform(x_test) accuracy(model, noisy_xtest, y_test)*100 end ϵs = T.(LinRange(0, 200, 10)) ./ 255 lbdn_error = noisy_test_error.((model,), ϵs) dense_error = noisy_test_error.((dense,), ϵs) # Plot results fig = Figure(resolution=(500,300)) ax1 = Axis(fig[1,1], xlabel="Perturbation size", ylabel="Test accuracy (%)") lines!(ax1, ϵs, lbdn_error, label="LBDN γ=5") lines!(ax1, ϵs, dense_error, label="Dense") xlims!(ax1, 0, 0.8) axislegend(ax1, position=:lb) display(fig) save("../results/lbdn-mnist/lbdn_mnist_robust.svg", fig)
RobustNeuralNetworks
https://github.com/acfr/RobustNeuralNetworks.jl.git
[ "MIT" ]
0.3.3
4a05f9503e4fa1cc5eada27a36c159e58d54aa7e
code
5417
# This file is a part of RobustNeuralNetworks.jl. License is MIT: https://github.com/acfr/RobustNeuralNetworks.jl/blob/main/LICENSE cd(@__DIR__) using Pkg Pkg.activate("..") using CairoMakie using Flux using Printf using Random using RobustNeuralNetworks using Statistics using Zygote: Buffer rng = MersenneTwister(42) # ------------------------- # Problem setup # ------------------------- # System parameters m = 1 # Mass (kg) k = 5 # Spring constant (N/m) μ = 0.5 # Viscous damping coefficient (kg/m) # Simulation horizon and timestep (s) Tmax = 4 dt = 0.02 ts = 1:Int(Tmax/dt) # Start at zero, random goal states nx, nref, batches = 2, 1, 80 x0 = zeros(nx, batches) qref = 2*rand(rng, nref, batches) .- 1 uref = k*qref # Continuous and discrete dynamics _visc(v::Matrix) = μ * v .* abs.(v) f(x::Matrix,u::Matrix) = [x[2:2,:]; (u[1:1,:] - k*x[1:1,:] - _visc(x[2:2,:]))/m] fd(x::Matrix,u::Matrix) = x + dt*f(x,u) # Simulate the system given initial condition and a controller # Controller of the form u = k([x; qref]) function rollout(model, x0, qref) z = Buffer([zero([x0;qref])], length(ts)) x = x0 for t in ts u = model([x;qref]) z[t] = vcat(x,u) x = fd(x,u) end return copy(z) end # Cost function for z = [x;u] at each time/over all times weights = [10,1,0.1] function _cost(z, qref, uref) Δz = z .- [qref; zero(qref); uref] return mean(sum(weights .* Δz.^2; dims=1)) end cost(z::AbstractVector, qref, uref) = mean(_cost.(z, (qref,), (uref,))) # ------------------------- # Train LBDN # ------------------------- # Define an LBDN model nu = nx + nref # Inputs (states and reference) ny = 1 # Outputs (control action u) nh = fill(32, 2) # Hidden layers γ = 20 # Lipschitz bound model_ps = DenseLBDNParams{Float64}(nu, nh, ny, γ; nl=relu, rng) # Choose a loss function function loss(model_ps, x0, qref, uref) model = LBDN(model_ps) z = rollout(model, x0, qref) return cost(z, qref, uref) end # Train the model function train_box_ctrl!(model_ps, loss_func; lr=1e-3, epochs=250, verbose=false) costs = Vector{Float64}() opt_state = Flux.setup(Adam(lr), model_ps) for k in 1:epochs train_loss, ∇J = Flux.withgradient(loss_func, model_ps, x0, qref, uref) Flux.update!(opt_state, model_ps, ∇J[1]) push!(costs, train_loss) verbose && @printf "Iter %d loss: %.2f\n" k train_loss end return costs end costs = train_box_ctrl!(model_ps, loss; verbose=true) # ------------------------- # Test LBDN # ------------------------- # Evaluate final model on an example lbdn = LBDN(model_ps) x0_test = zeros(2,100) qr_test = 2*rand(rng, 1, 100) .- 1 z_lbdn = rollout(lbdn, x0_test, qr_test) # Plot position, velocity, and control input over time function plot_box_learning(costs, z, qr) _get_vec(x, i) = reduce(vcat, [xt[i:i,:] for xt in x]) q = _get_vec(z, 1) v = _get_vec(z, 2) u = _get_vec(z, 3) t = dt*ts Δq = q .- qr .* ones(length(z), length(qr_test)) Δu = u .- k*qr .* ones(length(z), length(qr_test)) fig = Figure(resolution = (600, 400)) ga = fig[1,1] = GridLayout() ax0 = Axis(ga[1,1], xlabel="Training epochs", ylabel="Cost") ax1 = Axis(ga[1,2], xlabel="Time (s)", ylabel="Position error (m)", ) ax2 = Axis(ga[2,1], xlabel="Time (s)", ylabel="Velocity (m/s)") ax3 = Axis(ga[2,2], xlabel="Time (s)", ylabel="Control error (N)") lines!(ax0, costs, color=:black) for k in axes(q,2) lines!(ax1, t, Δq[:,k], linewidth=0.5, color=:grey) lines!(ax2, t, v[:,k], linewidth=0.5, color=:grey) lines!(ax3, t, Δu[:,k], linewidth=0.5, color=:grey) end lines!(ax1, t, zeros(size(t)), color=:red, linestyle=:dash) lines!(ax2, t, zeros(size(t)), color=:red, linestyle=:dash) lines!(ax3, t, zeros(size(t)), color=:red, linestyle=:dash) xlims!.((ax1,ax2,ax3), (t[1],), (t[end],)) display(fig) return fig end fig = plot_box_learning(costs, z_lbdn, qr_test) save("../results/lbdn-rl/lbdn_rl.svg", fig) # --------------------------------- # Compare to DiffLBDN # --------------------------------- # Loss function for differentiable model loss2(model, x0, qref, uref) = cost(rollout(model, x0, qref), qref, uref) function lbdn_compute_times(n; epochs=100) print("Training models with nh = $n... ") lbdn_ps = DenseLBDNParams{Float64}(nu, [n], ny, γ; nl=relu, rng) diff_lbdn = DiffLBDN(deepcopy(lbdn_ps)) t_lbdn = @elapsed train_box_ctrl!(lbdn_ps, loss; epochs) t_diff_lbdn = @elapsed train_box_ctrl!(diff_lbdn, loss2; epochs) println("Done!") return [t_lbdn, t_diff_lbdn] end # Evaluate computation time with different hidden-layer sizes # Run it once first for just-in-time compiler sizes = 2 .^ (1:9) lbdn_compute_times(2; epochs=1) comp_times = reduce(hcat, lbdn_compute_times.(sizes)) # Plot the results fig = Figure(resolution = (500, 300)) ax = Axis( fig[1,1], xlabel="Hidden layer size", ylabel="Training time (s) (100 epochs)", xscale=Makie.log2, yscale=Makie.log10 ) lines!(ax, sizes, comp_times[1,:], label="LBDN") lines!(ax, sizes, comp_times[2,:], label="DiffLBDN") xlims!(ax, [sizes[1], sizes[end]]) axislegend(ax, position=:lt) display(fig) save("../results/lbdn-rl/lbdn_rl_comptime.svg", fig)
RobustNeuralNetworks
https://github.com/acfr/RobustNeuralNetworks.jl.git
[ "MIT" ]
0.3.3
4a05f9503e4fa1cc5eada27a36c159e58d54aa7e
code
5489
# This file is a part of RobustNeuralNetworks.jl. License is MIT: https://github.com/acfr/RobustNeuralNetworks.jl/blob/main/LICENSE cd(@__DIR__) using Pkg Pkg.activate("..") using CairoMakie using CUDA using Flux using Printf using Random using RobustNeuralNetworks using Statistics """ A note for the interested reader: - Change `dev = gpu` and `T = Float32` to train the REN observer on an Nvidia GPU with CUDA - This example is currently not optimised for the GPU, and runs faster on CPU - It would be easy to re-write it to be much faster on the GPU - If you feel like doing this, please go ahead and submit a pull request :) """ rng = MersenneTwister(0) dev = cpu T = Float64 ##################################################################### # Problem setup # System parameters m = 1 # Mass (kg) k = 5 # Spring constant (N/m) μ = 0.5 # Viscous damping coefficient (kg/m) nx = 2 # Number of states # Continuous and discrete dynamics and measurements _visc(v) = μ * v .* abs.(v) f(x,u) = [x[2:2,:]; (u[1:1,:] - k*x[1:1,:] - _visc(x[2:2,:]))/m] fd(x,u) = x + dt*f(x,u) gd(x) = x[1:1,:] # Generate training data dt = T(0.01) # Time-step (s) Tmax = 10 # Simulation horizon ts = 1:Int(Tmax/dt) # Time array indices batches = 200 u = fill(zeros(T, 1, batches), length(ts)-1) X = fill(zeros(T, 1, batches), length(ts)) X[1] = (2*rand(rng, T, nx, batches) .- 1) / 2 for t in ts[1:end-1] X[t+1] = fd(X[t],u[t]) end Xt = X[1:end-1] Xn = X[2:end] y = gd.(Xt) # Store data for training observer_data = [[ut; yt] for (ut,yt) in zip(u, y)] indx = shuffle(rng, 1:length(observer_data)) data = zip(Xn[indx] |> dev, Xt[indx] |> dev, observer_data[indx]|> dev) ##################################################################### # Train a model # Define a REN model for the observer nv = 200 nu = size(observer_data[1], 1) ny = nx model_ps = ContractingRENParams{Float32}(nu, nx, nv, ny; output_map=false, rng) model = DiffREN(model_ps) |> dev # Loss function: one step ahead error (average over time) function loss(model, xn, xt, inputs) xpred = model(xt, inputs)[1] return mean(sum((xn - xpred).^2, dims=1)) end # Train the model function train_observer!(model, data; epochs=50, lr=1e-3, min_lr=1e-6) opt_state = Flux.setup(Adam(lr), model) mean_loss = [T(1e5)] for epoch in 1:epochs batch_loss = [] for (xn, xt, inputs) in data train_loss, ∇J = Flux.withgradient(loss, model, xn, xt, inputs) Flux.update!(opt_state, model, ∇J[1]) push!(batch_loss, train_loss) end @printf "Epoch: %d, Lr: %.1g, Loss: %.4g\n" epoch lr mean(batch_loss) # Drop learning rate if mean loss is stuck or growing push!(mean_loss, mean(batch_loss)) if (mean_loss[end] >= mean_loss[end-1]) && !(lr < min_lr || lr ≈ min_lr) lr = 0.1lr Flux.adjust!(opt_state, lr) end end return mean_loss end tloss = train_observer!(model, data) ##################################################################### # Generate test data # Generate test data (a bunch of initial conditions) batches = 50 ts_test = 1:Int(20/dt) u_test = fill(zeros(1, batches), length(ts_test)) x_test = fill(zeros(nx,batches), length(ts_test)) x_test[1] = 0.2*(2*rand(rng, nx, batches) .-1) for t in ts_test[1:end-1] x_test[t+1] = fd(x_test[t], u_test[t]) end observer_inputs = [[u;y] for (u,y) in zip(u_test, gd.(x_test))] ####################################################################### # Simulate observer error # Simulate the model through time function simulate(model::AbstractREN, x0, u) recurrent = Flux.Recur(model, x0) output = recurrent.(u) return output end x0hat = init_states(model, batches) xhat = simulate(model, x0hat |> dev, observer_inputs |> dev) # Plot results function plot_results(x, x̂, ts) # Observer error Δx = x .- x̂ ts = ts.*dt _get_vec(x, i) = reduce(vcat, [xt[i:i,:] for xt in x]) q = _get_vec(x,1) q̂ = _get_vec(x̂,1) qd = _get_vec(x,2) q̂d = _get_vec(x̂,2) Δq = _get_vec(Δx,1) Δqd = _get_vec(Δx,2) fig = Figure(resolution = (600, 400)) ga = fig[1,1] = GridLayout() ax1 = Axis(ga[1,1], xlabel="Time (s)", ylabel="Position (m)", title="States") ax2 = Axis(ga[1,2], xlabel="Time (s)", ylabel="Position (m)", title="Observer Error") ax3 = Axis(ga[2,1], xlabel="Time (s)", ylabel="Velocity (m/s)") ax4 = Axis(ga[2,2], xlabel="Time (s)", ylabel="Velocity (m/s)") axs = [ax1, ax2, ax3, ax4] for k in axes(q,2) lines!(ax1, ts, q[:,k], linewidth=0.5, color=:grey) lines!(ax1, ts, q̂[:,k], linewidth=0.25, color=:red) lines!(ax2, ts, Δq[:,k], linewidth=0.5, color=:grey) lines!(ax3, ts, qd[:,k], linewidth=0.5, color=:grey) lines!(ax3, ts, q̂d[:,k], linewidth=0.25, color=:red) lines!(ax4, ts, Δqd[:,k], linewidth=0.5, color=:grey) end qmin, qmax = minimum(minimum.((q,q̂))), maximum(maximum.((q,q̂))) qdmin, qdmax = minimum(minimum.((qd,q̂d))), maximum(maximum.((qd,q̂d))) ylims!(ax1, qmin, qmax) ylims!(ax2, qmin, qmax) ylims!(ax3, qdmin, qdmax) ylims!(ax4, qdmin, qdmax) xlims!.(axs, ts[1], ts[end]) display(fig) return fig end fig = plot_results(x_test, xhat |> cpu, ts_test) save("../results/ren-obsv/ren_box_obsv.svg", fig)
RobustNeuralNetworks
https://github.com/acfr/RobustNeuralNetworks.jl.git
[ "MIT" ]
0.3.3
4a05f9503e4fa1cc5eada27a36c159e58d54aa7e
code
5487
# This file is a part of RobustNeuralNetworks.jl. License is MIT: https://github.com/acfr/RobustNeuralNetworks.jl/blob/main/LICENSE cd(@__DIR__) using Pkg Pkg.activate("..") using BSON using CairoMakie using Flux using Formatting using LinearAlgebra using Random using RobustNeuralNetworks using Statistics # TODO: Do this with Float32, will be faster # TODO: Would be even better to get it working on the GPU. Do this later dtype = Float64 # Problem setup nx = 51 # Number of states n_in = 1 # Number of inputs L = 10.0 # Size of spatial domain sigma = 0.1 # Used to construct time step # Discretise space and time dx = L / (nx - 1) dt = sigma * dx^2 # State dynamics and output functions f, g function f(u0, d) u, un = copy(u0), copy(u0) for _ in 1:5 u = copy(un) # FD approximation of heat equation f_local(v) = v[2:end - 1, :] .* (1 .- v[2:end - 1, :]) .* ( v[2:end - 1, :] .- 0.5) laplacian(v) = (v[1:end - 2, :] + v[3:end, :] - 2v[2:end - 1, :]) / dx^2 # Euler step for time un[2:end - 1, :] = u[2:end - 1, :] + dt * (laplacian(u) + f_local(u) / 2 ) # Boundary condition un[1:1, :] = d; un[end:end, :] = d; end return u end g(u, d) = [d; u[end ÷ 2:end ÷ 2, :]] # Generate simulated data function get_data(npoints=1000; init=zeros) X = init(dtype, nx, npoints) U = init(dtype, n_in, npoints) for t in 1:npoints-1 # Next state X[:, t+1] = f(X[:, t], U[:, t]) # Next input bₜ u_next = U[t] + 0.05f0*randn(dtype) (u_next > 1) && (u_next = 1) (u_next < 0) && (u_next = 0) U[t + 1] = u_next end return X, U end X, U = get_data(100000; init=zeros) xt = X[:, 1:end - 1] xn = X[:, 2:end] y = g(X, U) # Store for the observer (inputs are inputs to observer) input_data = [U; y][:, 1:end - 1] batches = 200 data = Flux.Data.DataLoader((xn, xt, input_data), batchsize=batches, shuffle=true) # Constuct a REN # TODO: Test if we actually need all of this # TODO: Does it matter what ϵ, polar_param, or nl are? nv = 500 nu = size(input_data, 1) ny = nx model_params = ContractingRENParams{dtype}( nu, nx, nv, ny; nl = tanh, ϵ=0.01, polar_param = false, output_map = false ) model = DiffREN(model_params) # (see the documentation) # Define a loss function function loss(model, xn, x, u) xpred = model(x, u)[1] return mean(norm(xpred[:, i] - xn[:, i]).^2 for i in 1:size(x, 2)) end # Train the model function train_observer!(model, data; Epochs=50, lr=1e-3, min_lr=1e-7) # Set up the optimiser opt_state = Flux.setup(Adam(lr), model) mean_loss, loss_std = [1e5], [] for epoch in 1:Epochs batch_loss = [] for (xni, xi, ui) in data # Get gradient and store loss train_loss, ∇J = Flux.withgradient(loss, model, xni, xi, ui) Flux.update!(opt_state, model, ∇J[1]) # Store losses for later push!(batch_loss, train_loss) printfmt("Epoch: {1:2d}\tTraining loss: {2:1.4E} \t lr={3:1.1E}\n", epoch, train_loss, lr) end # Print stats through epoch println("------------------------------------------------------------------------") printfmt("Epoch: {1:2d} \t mean loss: {2:1.4E}\t std: {3:1.4E}\n", epoch, mean(batch_loss), std(batch_loss)) println("------------------------------------------------------------------------") push!(mean_loss, mean(batch_loss)) push!(loss_std, std(batch_loss)) # Check for decrease in loss if mean_loss[end] >= mean_loss[end - 1] println("Reducing Learning rate") lr *= 0.1 Flux.adjust!(opt_state, lr) (lr <= min_lr) && (return mean_loss, loss_std) end end return mean_loss, loss_std end # Train and save the model tloss, loss_std = train_observer!(model, data; Epochs=50, lr=1e-3, min_lr=1e-7) bson("../results/ren-obsv/pde_obsv.bson", Dict( "model" => model, "training_loss" => tloss, "loss_std" => loss_std ) ) # Test observer T = 2000 init = (args...) -> 0.5*ones(args...) x, u = get_data(T, init=init) y = [g(x[:, t:t], u[t]) for t in 1:T] batches = 1 observer_inputs = [repeat([ui; yi], outer=(1, batches)) for (ui, yi) in zip(u, y)] # Simulate the model through time function simulate(model::AbstractREN, x0, u) recurrent = Flux.Recur(model, x0) output = recurrent.(u) return output end x0 = init_states(model, batches) xhat = simulate(model, x0, observer_inputs) Xhat = reduce(hcat, xhat) # Make a plot to show PDE and errors function plot_heatmap(f1, xdata, i) # Make and label the plot xlabel = i < 3 ? "" : "Time steps" ylabel = i == 1 ? "True" : (i == 2 ? "Observer" : "Error") ax, _ = heatmap(f1[i,1], xdata', colormap=:thermal, axis=(xlabel=xlabel, ylabel=ylabel)) # Format the axes ax.yticksvisible = false ax.yticklabelsvisible = false if i < 3 ax.xticksvisible = false ax.xticklabelsvisible = false end xlims!(ax, 0, T) end f1 = Figure(resolution=(500,400)) plot_heatmap(f1, x, 1) plot_heatmap(f1, Xhat[:, 1:batches:end], 2) plot_heatmap(f1, abs.(x - Xhat[:, 1:batches:end]), 3) Colorbar(f1[:,2], colorrange=(0,1),colormap=:thermal) display(f1) save("../results/ren-obsv/ren_pde.png", f1) # Note: this takes a long time...
RobustNeuralNetworks
https://github.com/acfr/RobustNeuralNetworks.jl.git
[ "MIT" ]
0.3.3
4a05f9503e4fa1cc5eada27a36c159e58d54aa7e
code
2451
# This file is a part of RobustNeuralNetworks.jl. License is MIT: https://github.com/acfr/RobustNeuralNetworks.jl/blob/main/LICENSE module RobustNeuralNetworks ############ Package dependencies ############ using ChainRulesCore: NoTangent, @non_differentiable using Flux: relu, identity, @functor using LinearAlgebra using Random using Zygote: Buffer import Base.:(==) import ChainRulesCore: rrule import Flux: trainable, glorot_normal # Note: to remove explicit dependency on Flux.jl, use the following # using Functors: @functor # using NNlib: relu, identity # import Optimisers.trainable # and re-write `glorot_normal` yourself. ############ Abstract types ############ """ abstract type AbstractRENParams{T} end Direct parameterisation for recurrent equilibrium networks. """ abstract type AbstractRENParams{T} end abstract type AbstractREN{T} end """ abstract type AbstractLBDNParams{T, L} end Direct parameterisation for Lipschitz-bounded deep networks. """ abstract type AbstractLBDNParams{T, L} end abstract type AbstractLBDN{T, L} end ############ Includes ############ # Useful include("Base/utils.jl") include("Base/acyclic_ren_solver.jl") # Common structures include("Base/ren_params.jl") include("Base/lbdn_params.jl") # Variations of REN include("ParameterTypes/utils.jl") include("ParameterTypes/contracting_ren.jl") include("ParameterTypes/general_ren.jl") include("ParameterTypes/lipschitz_ren.jl") include("ParameterTypes/passive_ren.jl") include("ParameterTypes/dense_lbdn.jl") # Wrappers include("Wrappers/REN/ren.jl") include("Wrappers/REN/diff_ren.jl") include("Wrappers/REN/wrap_ren.jl") include("Wrappers/LBDN/lbdn.jl") include("Wrappers/LBDN/diff_lbdn.jl") include("Wrappers/LBDN/sandwich_fc.jl") include("Wrappers/utils.jl") ############ Exports ############ # Abstract types export AbstractRENParams export AbstractREN export AbstractLBDNParams export AbstractLBDN # Basic types export DirectRENParams export ExplicitRENParams export DirectLBDNParams export ExplicitLBDNParams # Parameter types export ContractingRENParams export GeneralRENParams export LipschitzRENParams export PassiveRENParams export DenseLBDNParams # Wrappers export REN export DiffREN export WrapREN export LBDN export DiffLBDN export SandwichFC # Functions export direct_to_explicit export get_lipschitz export init_states export set_output_zero! export update_explicit! end # end RobustNeuralNetworks
RobustNeuralNetworks
https://github.com/acfr/RobustNeuralNetworks.jl.git
[ "MIT" ]
0.3.3
4a05f9503e4fa1cc5eada27a36c159e58d54aa7e
code
2364
# This file is a part of RobustNeuralNetworks.jl. License is MIT: https://github.com/acfr/RobustNeuralNetworks.jl/blob/main/LICENSE """ tril_eq_layer(σ::F, D11::Matrix, b::VecOrMat) where F Evaluate and solve lower-triangular equilibirum layer. """ function tril_eq_layer(σ::F, D11, b) where F # Solve the equilibirum layer w_eq = solve_tril_layer(σ, D11, b) # Run the equation for auto-diff to get grads: ∂σ/∂(.) * ∂(D₁₁w + b)/∂(.) # By definition, w_eq1 = w_eq so this doesn't change the forward pass. v = D11 * w_eq .+ b w_eq = σ.(v) return tril_layer_back(σ, D11, v, w_eq) end """ solve_tril_layer(σ::F, D11::Matrix, b::VecOrMat) where F Solves w = σ.(D₁₁*w .+ b) for lower-triangular D₁₁, where σ is an activation function with monotone slope restriction (eg: relu, tanh). """ function solve_tril_layer(σ::F, D11, b) where F z_eq = similar(b) Di_zi = typeof(b)(zeros(Float32, 1, size(b,2))) # similar(b, 1, size(b,2)) can induce NaN on GPU!!! for i in axes(b,1) Di = @view D11[i:i, 1:i - 1] zi = @view z_eq[1:i-1,:] bi = @view b[i:i, :] mul!(Di_zi, Di, zi) z_eq[i:i,:] .= σ.(Di_zi .+ bi) end return z_eq end @non_differentiable solve_tril_layer(σ, D11, b) """ tril_layer_back(σ::F, D11::Matrix, v::VecOrMat{T}, w_eq::VecOrMat{T}) where {F,T} Dummy function to force auto-diff engines to use the custom backwards pass. """ function tril_layer_back(σ::F, D11, v, w_eq::AbstractVecOrMat{T}) where {F,T} return w_eq end function rrule(::typeof(tril_layer_back), σ::F, D11, v, w_eq::AbstractVecOrMat{T}) where {F,T} # Forwards pass y = tril_layer_back(σ, D11, v, w_eq) # Reverse mode function tril_layer_back_pullback(Δy) Δf = NoTangent() Δσ = NoTangent() ΔD11 = NoTangent() Δb = NoTangent() # Get gradient of σ(v) wrt v evaluated at v = D₁₁w + b _back(σ, v) = rrule(σ, v)[2] backs = _back.(σ, v) j = map(b -> b(one(T))[2], backs) # Compute gradient from implicit function theorem Δw_eq = v for i in axes(Δw_eq, 2) ji = @view j[:, i] Δyi = @view Δy[:, i] Δw_eq[:,i] = (I - (ji .* D11))' \ Δyi end return Δf, Δσ, ΔD11, Δb, Δw_eq end return y, tril_layer_back_pullback end
RobustNeuralNetworks
https://github.com/acfr/RobustNeuralNetworks.jl.git