licenses
sequencelengths
1
3
version
stringclasses
677 values
tree_hash
stringlengths
40
40
path
stringclasses
1 value
type
stringclasses
2 values
size
stringlengths
2
8
text
stringlengths
25
67.1M
package_name
stringlengths
2
41
repo
stringlengths
33
86
[ "MIT" ]
1.0.10
bb37e1a43eb7c52d6a12cfe29c60b518bda742aa
code
9946
using PovertyAndInequalityMeasures using DataFrames using Test using CSV # # These tests mostly try to replicate examples from # World Bank 'Handbook on poverty and inequality' # by Haughton and Khandker # http://documents.worldbank.org/curated/en/488081468157174849/Handbook-on-poverty-and-inequality # # ... primitive type Amount <: AbstractFloat 64 end const TOL = 0.00001; # for nearly equal " This just creates an array which is `times` vcat copies of `a` " function vcn( a :: Array{Float64}, times :: Int64 ) nrows = size( a )[1] ncols = size( a )[2] newrows = nrows*times out = zeros( Float64, newrows, ncols ) p = 0 for row in 1:nrows for i in 1:times p += 1 out[p,:] .= a[row,:] end end out end NONE=Array{Symbol,1}(); function removeIgnored( d :: Dict{ Symbol, <:Any}, ignore::Array{Symbol,1} ):: Dict{ Symbol, <:Any} for i in ignore if haskey( d, i ) delete!( d, i ) end end return d; end " element - by element compare of the type of dicts we use for poverty and inequality output " function comparedics( left :: Dict{ Symbol, <:Any}, right :: Dict{ Symbol, <:Any}, ignore::Array{Symbol,1} = NONE ) :: Bool left = removeIgnored( left, ignore ) right = removeIgnored( right, ignore ) lk = keys( left ) if lk != keys( right ) return false end for k in lk # try catch here in case types are way off try if !( left[k] ≈ right[k] ) l = left[k] r = right[k] print( "comparison failed '$k' : left = $l right = $r") return false end catch e return false end end return true end @testset "WB Chapter 4 - Poverty " begin country_a = [ 1.0 100; 1.0 100; 1 150; 1 150 ] country_b = copy( country_a ) country_b[1:2,2] .= 124 country_c = [ 1.0 100; 1.0 110; 1 150; 1 160 ] # # Ch 4 doesn't discuss weighting issues, so # we'll add some simple checks for that. # a_2 and b_2 should be the same as country_a and _b, # but with 2 obs of weight 2 rather than 4 of weight 1 # country_a_2 = [2.0 100; 2.0 150 ] country_b_2 = [2.0 124; 2.0 150 ] # d should be a big version of a and also produce same result country_d = vcn( country_a, 50 ) # attempt to blow things up with huge a clone country_d = vcn( country_c, 100_000 ) # very unbalanced copy of dataset 1 with 10,000 weight1 1:2 and 2 weight 10,000 7:10 country_e = vcn( country_c[1:2,:], 10_000 ) cx = copy(country_c[3:4,:]) cx[:,1] .= 10_000 country_e = vcat( country_e, cx ) line = 125.0 growth = 0.05 country_a_pov = make_poverty( country_a, line, growth ) print("country A " );println( country_a_pov ) country_a_2_pov = make_poverty( country_a_2, line,growth ) country_b_pov = make_poverty( country_b, line, growth ) country_c_pov = make_poverty( country_c, line, growth ) print("country C " );println( country_c_pov ) country_d_pov = make_poverty( country_d, line, growth ) print("country D " );println( country_d_pov ) country_e_pov = make_poverty( country_e, line, growth ) print("country E " );println( country_e_pov ) @test povs_equal( country_a_pov, country_a_2_pov ) @test povs_equal( country_c_pov, country_e_pov ) # @test povs_equal( country_c_pov, country_d_pov ) # test dataframes same as A country_a_df = DataFrame( weight=[2.0, 2.0], income=[100.0, 150]) country_a_pov_df = make_poverty( country_a_df, line, growth, :weight, :income ) @test povs_equal( country_a_pov_df, country_a_pov ) # numbers from WP ch. 4 @test country_a_pov.headcount ≈ 0.5 @test country_b_pov.headcount ≈ 0.5 @test country_b_pov.gap ≈ 1.0/250.0 @test country_c_pov.watts ≈ 0.0877442307 # some of these are hand-calculations, for from Ada version @test isapprox( country_c_pov.gap, 0.080000, atol = TOL ) @test isapprox( country_c_pov.foster_greer_thorndyke[ 1 ], 0.5000000, atol = TOL ) # pov level @test isapprox( country_c_pov.foster_greer_thorndyke[ 2 ], 0.1984059, atol = TOL ) @test isapprox( country_c_pov.foster_greer_thorndyke[ 3 ], 0.0800000, atol = TOL ) @test isapprox( country_c_pov.foster_greer_thorndyke[ 4 ], 0.0327530, atol = TOL ) @test isapprox( country_c_pov.foster_greer_thorndyke[ 5 ], 0.0136000, atol = TOL ) @test isapprox( country_c_pov.foster_greer_thorndyke[ 6 ], 0.0057192, atol = TOL ) @test isapprox( country_c_pov.sen , 0.0900000, atol = TOL ) @test isapprox( country_c_pov.shorrocks , 0.0625000, atol = TOL ) @test isapprox( country_c_pov.watts , 0.0877442, atol = TOL ) @test isapprox( country_c_pov.time_to_exit , 1.7548846, atol = TOL ) @test isapprox( country_c_pov.gini_amongst_poor , 0.0238095, atol = TOL ) @test isapprox( country_c_pov.poverty_gap_gini , 0.5625000, atol = TOL ) end # poverty testset # # reproduce WB Table 6.3 with various cominations ofweights & data # note table has errors: # # 1. uses log10 not ln for theil## # 2. has N in wrong place for ge(2) - outside bracket # @testset "WB Chapter 6 - Inequality " begin c1 = [1.0 10; 1 15; 1 20; 1 25; 1 40; 1 20; 1 30; 1 35; 1 45; 1 90 ] # these next are copies of c1 intended # to check we haven't screwed up the weighting c2 = vcn( c1, 2 ) c3 = copy( c1 ) c3[:,1] .= 10_000.0 c4 = copy( c1 ) c4[:,1] .= 2.0 # very unbalanced copy of dataset 1 with 100,000 weight1 1:6 and 4 weight 100,000 7:10 c64k = vcn( c1[1:6,:], 100_000 ) cx = copy(c1[7:10,:]) cx[:,1] .= 100_000 c64k = vcat( c64k, cx ) iq1 = make_inequality( c1 ) iq2 = make_inequality( c2 ) iq3 = make_inequality( c3 ) iq4 = make_inequality( c4 ) iq64k = make_inequality( c64k ) # weighting and multiplying should make no difference println( "iq1");println( iq1 ) println( "iq2");println( iq2 ) println( "iq3");println( iq3 ) println( "iq64k");println( iq64k ) # test from dataframe cdf = DataFrame(income=c1[:,2], weight=c1[:,1]) iqdf = make_inequality( cdf, :weight, :income) @test ineqs_equal( iqdf, iq1 ) @test ineqs_equal( iq1 , iq64k, include_populations = false ) @test ineqs_equal( iq1 , iq2, include_populations = false ) @test ineqs_equal( iq1 , iq3, include_populations = false ) @test ineqs_equal( iq1 , iq4, include_populations = false ) @test isapprox( iq1.gini , 0.3272727, atol = TOL ) @test isapprox( iq1.theil_l, 0.1792203, atol = TOL ) @test isapprox( iq1.theil_t, 0.1830644, atol = TOL ) @test isapprox( iq1.generalised_entropy[ 1 ], 0.1883288, atol = TOL ) @test isapprox( iq1.generalised_entropy[ 2 ], 0.1954897, atol = TOL ) @test isapprox( iq1.generalised_entropy[ 3 ], 0.2047211, atol = TOL ) @test isapprox( iq1.generalised_entropy[ 4 ], 0.2162534, atol = TOL ) @test isapprox( iq1.generalised_entropy[ 5 ], 0.2303812, atol = TOL ) @test isapprox( iq1.generalised_entropy[ 6 ], 0.2474728, atol = TOL ) @test isapprox( iq1.atkinson[ 1 ], 0.0446396, atol = TOL ) @test isapprox( iq1.atkinson[ 2 ], 0.0869155, atol = TOL ) @test isapprox( iq1.atkinson[ 3 ], 0.1267328, atol = TOL ) @test isapprox( iq1.atkinson[ 4 ], 0.1640783, atol = TOL ) @test isapprox( iq1.atkinson[ 5 ], 0.1989991, atol = TOL ) @test isapprox( iq1.atkinson[ 6 ], 0.2315817, atol = TOL ) @test isapprox( iq1.atkinson[ 7 ], 0.2619332, atol = TOL ) @test isapprox( iq1.atkinson[ 8 ], 0.2901688, atol = TOL ) @test isapprox( iq1.atkinson[ 9 ], 0.3164032, atol = TOL ) @test isapprox( iq1.hoover, 0.2363636, atol = TOL ) print( iq1 ) end # inequality testset hbai_dir = "/mnt/data/hbai/tab/" if isdir(hbai_dir) # HBAI example if available # load each year & jam varnames to lower case hbai = CSV.File("$(hbai_dir)h1819.tab")|>DataFrame lcnames = Symbol.(lowercase.(string.(names(hbai)))) rename!(hbai, lcnames) # make scottish subset positives = hbai[(hbai.s_oe_ahc .> 0.0 ),:] regions = Vector{InequalityMeasures}(undef,0) nations = Vector{InequalityMeasures}(undef,0) scot = positives[(positives.gvtregn .== 12),:] wal = positives[(positives.gvtregn .== 11),:] nire = positives[(positives.gvtregn .== 13),:] eng = positives[(positives.gvtregn .< 11),:] for reg in 1:13 println("region $reg ") if reg != 3 rd = positives[(positives.gvtregn .== reg),:] ineq_ahc = make_inequality( rd,:gs_newpp,:s_oe_ahc ) push!(regions, ineq_ahc ) end end # theil decomp isn't exact if <0 incomes included uk_ineq_ahc = make_inequality( positives,:gs_newpp,:s_oe_ahc ) sco_ineq_ahc = make_inequality( scot,:gs_newpp,:s_oe_ahc ) push!( nations, sco_ineq_ahc ) wal_ineq_ahc = make_inequality( wal,:gs_newpp,:s_oe_ahc ) push!( nations, wal_ineq_ahc ) nire_ineq_ahc = make_inequality( nire,:gs_newpp,:s_oe_ahc ) push!( nations, nire_ineq_ahc ) eng_ineq_ahc = make_inequality( eng,:gs_newpp,:s_oe_ahc ) push!( nations, eng_ineq_ahc ) dt_regions = add_decomposed_theil( uk_ineq_ahc, regions ) dt_nations = add_decomposed_theil( uk_ineq_ahc, nations ) pvline_ahc = positives.mdoeahc[1]*0.6 pvline_bhc = positives.mdoebhc[1]*0.6 eng_pov_ahc = make_poverty( eng, pvline_ahc, 0.02, :gs_newpp,:s_oe_ahc ) sco_pov_ahc = make_poverty( scot, pvline_ahc, 0.02, :gs_newpp,:s_oe_ahc ) end @testset "Decile Tests" begin n = 1000 r = rand(n) rs = sort(r) rc = cumsum(rs) d = DataFrame( w=fill(1.0,n), i=r) eq = make_inequality(d,:w,:i ) @test rc[100]/100 ≈ eq.deciles[1,4] @test rs[100] ≈ eq.deciles[1,3] @test (rc[1000]-rc[900])/100 ≈ eq.deciles[10,4] @test rs[1000] ≈ eq.deciles[10,3] @test rs[900] ≈ eq.deciles[9,3] end
PovertyAndInequalityMeasures
https://github.com/grahamstark/PovertyAndInequalityMeasures.jl.git
[ "MIT" ]
1.0.10
bb37e1a43eb7c52d6a12cfe29c60b518bda742aa
docs
954
# Poverty And Inequality Measures This package allows you to generate various standard measures of poverty and inequality from a sample dataset. The measures are mostly taken from chs. 4-6 of the World Banks' [Handbook on Poverty and Inequality](http://documents.worldbank.org/curated/en/488081468157174849/Handbook-on-poverty-and-inequality). [![Stable](https://img.shields.io/badge/docs-stable-blue.svg)](https://grahamstark.github.io/PovertyAndInequalityMeasures.jl/stable) [![Dev](https://img.shields.io/badge/docs-dev-blue.svg)](https://grahamstark.github.io/PovertyAndInequalityMeasures.jl/dev) [![Build Status](https://travis-ci.com/grahamstark/PovertyAndInequalityMeasures.jl.svg?branch=master)](https://travis-ci.com/grahamstark/PovertyAndInequalityMeasures.jl) [![Coverage](https://codecov.io/gh/grahamstark/PovertyAndInequalityMeasures.jl/branch/master/graph/badge.svg)](https://codecov.io/gh/grahamstark/PovertyAndInequalityMeasures.jl)
PovertyAndInequalityMeasures
https://github.com/grahamstark/PovertyAndInequalityMeasures.jl.git
[ "MIT" ]
1.0.10
bb37e1a43eb7c52d6a12cfe29c60b518bda742aa
docs
2520
```@meta CurrentModule = PovertyAndInequalityMeasures ``` # PovertyAndInequalityMeasures This generates various measures poverty and inequality from a sample dataset. The measures are mostly taken from chs. 4-6 of the World Banks' [Handbook on Poverty and Inequality](biblio.md). See the [test case for worked examples](https://github.com/grahamstark/PovertyAndInequalityMeasures.jl/tree/master/test) Poverty measures are: * `headcount`; * `gap`; * `Foster Greer Thorndyke`, for each of the values in `foster_greer_thorndyke_alphas` - note that α=0 is headcount and α=1 is gap; * `Watts`; * `time to exit`, for the supplied growth rate; * `Shorrocks`; * `Sen`. See WB ch. 4 on these measures. Inequality Measures Are: * `Gini`; * `Atkinson`, for each value in `atkinson_es`; * `Theil`; * `generalised_entropy`; * `Hoover`; * `Theil`; * `Palma`. See World Bank chs. 5 an 6, and Cobham and Sumner on the Palma. Also returned by the inequality function are: * `total_income` * `total_population` * `average_income` * `deciles`. There's also a small `binify` routine which chops a dataset up into chunks of cumulative income and population suitable for drawing [Lorenz Curves](https://en.wikipedia.org/wiki/Lorenz_curve). ## Index ```@index ``` ```@autodocs Modules = [PovertyAndInequalityMeasures] [:constant, :type, :function] ``` ## TODO * better decomposable indices; * having separate dataframe/array versions seems complicated. ## Bibliography Cobham Alex, and Sumner Andy. “Is Inequality All about the Tails?: The Palma Measure of Income Inequality.” Significance 11, no. 1 (February 19, 2014): 10–13. [https://doi.org/10.1111/j.1740-9713.2014.00718.x](https://doi.org/10.1111/j.1740-9713.2014.00718.x). Haughton, Jonathan, and Shahidur R. Khandker. ‘Handbook on Poverty and Inequality’. The World Bank, 27 March 2009. [http://documents.worldbank.org/curated/en/488081468157174849/Handbook-on-poverty-and-inequality](http://documents.worldbank.org/curated/en/488081468157174849/Handbook-on-poverty-and-inequality). Preston, Ian. ‘Inequality and Income Gaps’. IFS Working Paper. Institute for Fiscal Studies, 5 December 2006. [https://econpapers.repec.org/paper/ifsifsewp/06_2f25.htm](https://econpapers.repec.org/paper/ifsifsewp/06_2f25.htm). Reed, Howard, and Graham Stark. ‘Tackling Child Poverty Delivery Plan - Forecasting Child Poverty in Scotland’. Scottish Government, 9 March 2018. [http://www.gov.scot/Publications/2018/03/2911/0](http://www.gov.scot/Publications/2018/03/2911/0)``.
PovertyAndInequalityMeasures
https://github.com/grahamstark/PovertyAndInequalityMeasures.jl.git
[ "MIT" ]
0.4.0
81022321115ba46e0a256913860b95d01373ce91
code
866
# Use # # DOCUMENTER_DEBUG=true julia --color=yes make.jl local [nonstrict] [fixdoctests] # # for local builds. using Documenter using EncodedArrays # Doctest setup DocMeta.setdocmeta!( EncodedArrays, :DocTestSetup, :(using EncodedArrays); recursive=true, ) makedocs( sitename = "EncodedArrays", modules = [EncodedArrays], format = Documenter.HTML( prettyurls = !("local" in ARGS), canonical = "https://oschulz.github.io/EncodedArrays.jl/stable/" ), pages = [ "Home" => "index.md", "API" => "api.md", "LICENSE" => "LICENSE.md", ], doctest = ("fixdoctests" in ARGS) ? :fix : true, linkcheck = !("nonstrict" in ARGS), strict = !("nonstrict" in ARGS), ) deploydocs( repo = "github.com/oschulz/EncodedArrays.jl.git", forcepush = true, push_preview = true, )
EncodedArrays
https://github.com/oschulz/EncodedArrays.jl.git
[ "MIT" ]
0.4.0
81022321115ba46e0a256913860b95d01373ce91
code
302
# This file is a part of EncodedArrays.jl, licensed under the MIT License (MIT). __precompile__(true) module EncodedArrays using ArraysOfArrays using BitOperations using FillArrays using StructArrays include("encoded_array.jl") include("varlen_io.jl") include("varlen_diff_codec.jl") end # module
EncodedArrays
https://github.com/oschulz/EncodedArrays.jl.git
[ "MIT" ]
0.4.0
81022321115ba46e0a256913860b95d01373ce91
code
13909
# This file is a part of EncodedArrays.jl, licensed under the MIT License (MIT). """ abstract type AbstractArrayCodec <: Codecs.Codec end Abstract type for arrays codecs. Subtypes must implement the [`AbstractEncodedArray`](@ref) API. Most coded should use [`EncodedArray`](@ref) as the concrete subtype of `AbstractArrayCodec`. Codecs that use a custom subtype of `AbstractEncodedArray` must implement EncodedArrays.encarraytype(::Type{<:AbstractArrayCodec},::Type{<:AbstractArray{T,N}})::Type{<:AbstractEncodedArray{T,N}} """ abstract type AbstractArrayCodec end export AbstractArrayCodec import Base.|> """ ¦>(A::AbstractArray{T}, codec::AbstractArrayCodec)::AbstractEncodedArray Encode `A` using `codec` and return an [`AbstractEncodedArray`](@ref). The default implementation returns an [`EncodedArray`](@ref). """ function |>(A::AbstractArray{T}, codec::AbstractArrayCodec) where T encoded = Vector{UInt8}() encode_data!(encoded, codec, A) EncodedArray{T}(codec, size(A), encoded) end # Make AbstractArrayCodec behave as a Scalar for broadcasting @inline Base.Broadcast.broadcastable(codec::AbstractArrayCodec) = (codec,) """ encode_data!(encoded::AbstractVector{UInt8}, codec::AbstractArrayCodec, data::AbstractArray) Will resize `encoded` as necessary to fit the encoded data. Returns `encoded`. """ function encode_data! end """ decode_data!(data::AbstractArray, codec::AbstractArrayCodec, encoded::AbstractVector{UInt8}) Depending on `codec`, may or may not resize `decoded` to fit the size of the decoded data. Codecs may require `decoded` to be of correct size (e.g. to improved performance or when the size/shape of the decoded data cannot be easily inferred from the encoded data. Returns `data`. """ function decode_data! end """ AbstractEncodedArray{T,N} <: AbstractArray{T,N} Abstract type for arrays that store their elements in encoded/compressed form. In addition to the standard `AbstractArray` API, an `AbstractEncodedArray` must support the functions * `EncodedArrays.getcodec(A::EncodedArray)`: Returns the codec. * `Base.codeunits(A::EncodedArray)`: Returns the internal encoded data representation. Encoded arrays will typically be created via A_enc = (codec::AbstractArrayCodec)(A::AbstractArray) or A_enc = AbstractEncodedArray(undef, codec::AbstractArrayCodec) append!(A_enc, B::AbstractArray) Decoding happens via standard array conversion or assignment: A_dec = Array(A) A_dec = convert(Array,A) A_dec = A[:] A_dec = Array{T,N}(undef, size(A_enc)...) A_dec[:] = A_enc """ abstract type AbstractEncodedArray{T,N} <: AbstractArray{T,N} end export AbstractEncodedArray import Base.== ==(A::AbstractArray, B::AbstractEncodedArray) = A == Array(B) ==(A::AbstractEncodedArray, B::AbstractArray) = Array(A) == Array(B) ==(A::AbstractEncodedArray, B::AbstractEncodedArray) = Array(A) == Array(B) """ EncodedArrays.getcodec(A::AbstractEncodedArray)::AbstractArrayCodec Returns the codec used to encode/compress A. """ function getcodec end """ EncodedArray{T,N,C,DV} <: AbstractEncodedArray{T,N} Concrete type for [`AbstractEncodedArray`](@ref)s. Constructor: ```julia EncodedArray{T}( codec::AbstractArrayCodec, size::NTuple{N,Integer}, encoded::AbstractVector{UInt8} ) ``` Codecs using `EncodedArray` only need to implement [`EncodedArrays.encode_data!`](@ref) and [`EncodedArrays.decode_data!`](@ref). If length of the decoded data can be inferred from the encoded data, a constructor EncodedArray{T,N}(codec::MyCodec,encoded::AbstractVector{UInt8}) should also be defined. By default, two `EncodedArray`s that have the same codec and size are assumed to be equal if and only if their code units are equal. Generic methods for the rest of the [`AbstractEncodedArray`](@ref) API are already provided for `EncodedArray`. """ struct EncodedArray{T,N,C<:AbstractArrayCodec,DV<:AbstractVector{UInt8}} <: AbstractEncodedArray{T,N} codec::C size::NTuple{N,Int} encoded::DV end export EncodedArray EncodedArray{T}( codec::AbstractArrayCodec, size::NTuple{N,Integer}, encoded::AbstractVector{UInt8} ) where {T,N} = EncodedArray{T, N, typeof(codec),typeof(encoded)}(codec, size, encoded) EncodedArray{T}( codec::AbstractArrayCodec, length::Integer, encoded::AbstractVector{UInt8} ) where {T} = EncodedArray{T, typeof(codec),typeof(encoded)}(codec, (len,), encoded) EncodedArray{T,N,C,DV}(A::EncodedArray{T,N,C}) where {T,N,C,DV} = EncodedArray{T,N,C,DV}(A.codec, A.size, A.encoded) Base.convert(::Type{EncodedArray{T,N,C,DV}}, A::EncodedArray{T,N,C}) where {T,N,C,DV} = EncodedArray{T,N,C,DV}(A) @inline Base.size(A::EncodedArray) = A.size @inline getcodec(A::EncodedArray) = A.codec @inline Base.codeunits(A::EncodedArray) = A.encoded # ToDo: Base.iscontiguous function Base.Array{T,N}(A::EncodedArray{U,N}) where {T,N,U} B = Array{T,N}(undef, size(A)...) decode_data!(B, getcodec(A), codeunits(A)) end Base.Array{T}(A::EncodedArray{U,N}) where {T,N,U} = Array{T,N}(A) Base.Array(A::EncodedArray{T,N}) where {T,N} = Array{T,N}(A) Base.Vector(A::EncodedArray{T,1}) where {T} = Array{T,1}(A) Base.Matrix(A::EncodedArray{T,2}) where {T} = Array{T,2}(A) Base.convert(::Type{Array{T,N}}, A::EncodedArray) where {T,N} = Array{T,N}(A) Base.convert(::Type{Array{T}}, A::EncodedArray) where {T} = Array{T}(A) Base.convert(::Type{Array}, A::EncodedArray) = Array(A) Base.convert(::Type{Vector}, A::EncodedArray) = Vector(A) Base.convert(::Type{Matrix}, A::EncodedArray) = Matrix(A) Base.IndexStyle(A::EncodedArray) = IndexLinear() function _getindex(A::EncodedArray, idxs::AbstractVector{Int}) B = collect(A) if idxs == eachindex(IndexLinear(), A) B else B[idxs] end end _getindex(A::EncodedArray, i::Int) = collect(A)[i] Base.@propagate_inbounds Base.getindex(A::EncodedArray, idxs) = _getindex(A, Base.to_indices(A, (idxs,))...) @inline function _setindex!(A::AbstractArray, B::EncodedArray, idxs::AbstractVector{Int}) @boundscheck let n = length(idxs), len_B = length(eachindex(B)) n == len_B || Base.throw_setindex_mismatch(B, (n,)) end if idxs == eachindex(A) || idxs == axes(A) decode_data!(A, getcodec(B), codeunits(B)) else decode_data!(view(A, idxs), getcodec(B), codeunits(B)) end A end Base.@propagate_inbounds function Base.setindex!(A::AbstractArray, B::EncodedArray, idxs::Colon) _setindex!(A, B, Base.to_indices(A, (idxs,))...) end @inline Base.@propagate_inbounds function Base.setindex!(A::Array, B::EncodedArray, idxs::AbstractVector{Int}) @boundscheck checkbounds(A, idxs) _setindex!(A, B, Base.to_indices(A, (idxs,))...) end function _append!(A::AbstractVector, B::EncodedArray) n = length(eachindex(B)) from = lastindex(A) + 1 to = lastindex(A) + n resize!(A, to + 1 - firstindex(A)) A[from:to] = B A end Base.append!(A::AbstractVector, B::EncodedArray) = _append!(A, B) Base.append!(A::Vector, B::EncodedArray) = _append!(A, B) # # ToDo (compatible with ElasticArrays.ElasticArray): # Base.append!(A::AbstractArray{T,N}, B::EncodedArray) where {T,N} = ... @inline function Base.copyto!(dest::AbstractArray, src::EncodedArray) @boundscheck if length(eachindex(dest)) < length(eachindex(src)) throw(BoundsError()) end decode_data!(dest, getcodec(src), codeunits(src)) end # # ToDo: # Base.copyto!(dest::AbstractArray, destoffs, src::EncodedArray, srcoffs, N) = ... import Base.== function ==(A::EncodedArray, B::EncodedArray) if getcodec(A) == getcodec(B) && size(A) == size(B) codeunits(A) == codeunits(B) else Array(A) == Array(B) end end """ VectorOfEncodedArrays{T,N,...} A vector of encoded arrays. The code units of all entries are stored in contiguous fashion using an `ArraysOfArray.VectorOfArrays`. All element arrays are encoded using the same codec. """ struct VectorOfEncodedArrays{ T, N, C <: AbstractArrayCodec, VS <: AbstractVector{<:NTuple{N,<:Integer}}, VOA <: VectorOfArrays } <: AbstractVector{EncodedArray{T,N,C,Array{UInt8,1}}} codec::C innersizes::VS encoded::VOA end export VectorOfEncodedArrays VectorOfEncodedArrays{T}(codec::AbstractArrayCodec, innersizes::AbstractVector{<:NTuple{N,<:Integer}}, encoded::VectorOfArrays) where {T,N} = VectorOfEncodedArrays{T,N,typeof(codec),typeof(innersizes),typeof(encoded)}(codec, innersizes, encoded) @inline Base.size(A::VectorOfEncodedArrays) = size(A.encoded) @inline Base.getindex(A::VectorOfEncodedArrays{T}, i::Int) where T = EncodedArray{T}(A.codec, A.innersizes[i], A.encoded[i]) @inline Base.getindex(A::VectorOfEncodedArrays{T}, idxs::Union{AbstractArray,Colon}) where T = VectorOfEncodedArrays{T}(A.codec, A.innersizes[idxs], A.encoded[idxs]) @inline Base.IndexStyle(::Type{<:VectorOfEncodedArrays}) = IndexLinear() const BroadcastedEncodeVectorOfArrays{T,N,C<:AbstractArrayCodec} = Base.Broadcast.Broadcasted{ <:Base.Broadcast.AbstractArrayStyle{1}, Tuple{Base.OneTo{Int}}, typeof(|>), <:Tuple{ VectorOfArrays{T,N}, Union{Tuple{C},Ref{C}} } } @inline _get_1st_or_ith(A, i::Int) = (length(A) == 1) ? A[1] : A[i] function _bcast_enc_impl(::Type{T}, ::Val{N}, ::Type{C}, data_arg, codec_arg) where {T,N,C} idxs_tuple = Base.Broadcast.combine_axes(data_arg, codec_arg) @assert length(idxs_tuple) == 1 idxs = idxs_tuple[1] codec = only(codec_arg) n = length(idxs) size_vec = Vector{NTuple{N,Int}}(undef, n) encoded_vec = VectorOfVectors{UInt8}() sizehint!(encoded_vec.elem_ptr, n + 1) sizehint!(encoded_vec.kernel_size, n) for i in idxs data = _get_1st_or_ith(data_arg, i) size_vec[i] = size(data) # ToDo: Improve, eliminate temporary memory allocation: tmp_encoded = encode_data!(Vector{UInt8}(), codec, data) push!(encoded_vec, tmp_encoded) end return VectorOfEncodedArrays{T}(codec, size_vec, encoded_vec) end function Base.copy(instance::BroadcastedEncodeVectorOfArrays{T,N,C}) where {T,N,C} data_arg = instance.args[1] codec_arg = instance.args[2] _bcast_enc_impl(T, Val{N}(), C, data_arg, codec_arg) end const BroadcastedDecodeVectorOfArrays{T,M,C<:AbstractArrayCodec} = Base.Broadcast.Broadcasted{ Base.Broadcast.DefaultArrayStyle{1}, Tuple{Base.OneTo{Int}}, typeof(collect), <:Tuple{VectorOfEncodedArrays{T,M,C}} } function _bcast_dec_impl(::Type{T}, ::Val{N}, ::Type{C}, encoded_data) where {T,N,C} result = VectorOfArrays{T,N}() @inbounds for i in eachindex(encoded_data) x = encoded_data[i] push!(result, Fill(typemax(T), length(x))) copyto!(last(result), x) end result end function Base.copy(instance::BroadcastedDecodeVectorOfArrays{T,N,C}) where {T,N,C} _bcast_dec_impl(T, Val{N}(), C, instance.args[1]) end # ToDo: SerialArrayCodec with decode_next, encode_next!, pos_type(codec), # finalize_codeunits! # ToDo: Custom broadcasting over encoded array. """ VectorOfEncodedSimilarArrays{T,M,C,...} A vector of encoded arrays that have the same original size. The code units of all entries are stored in contiguous fashion using an `ArraysOfArray.VectorOfArrays`. All element arrays are encoded using the same codec. """ struct VectorOfEncodedSimilarArrays{ T, M, C <: AbstractArrayCodec, VOA <: VectorOfArrays } <: AbstractArrayOfSimilarArrays{T,M,1} codec::C innersize::Dims{M} encoded::VOA end export VectorOfEncodedSimilarArrays VectorOfEncodedSimilarArrays{T}(codec::AbstractArrayCodec, innersize::Dims{M}, encoded::VectorOfArrays) where {T,M} = VectorOfEncodedSimilarArrays{T,M,typeof(codec),typeof(encoded)}(codec, innersize, encoded) @inline Base.size(A::VectorOfEncodedSimilarArrays) = size(A.encoded) @inline Base.getindex(A::VectorOfEncodedSimilarArrays{T}, i::Int) where T = EncodedArray{T}(A.codec, A.innersize, A.encoded[i]) @inline Base.getindex(A::VectorOfEncodedSimilarArrays{T}, idxs::Union{AbstractArray,Colon}) where T = VectorOfEncodedSimilarArrays{T}(A.codec, A.innersize, A.encoded[idxs]) @inline Base.IndexStyle(::Type{<:VectorOfEncodedSimilarArrays}) = IndexLinear() ArraysOfArrays.innersize(A::VectorOfEncodedSimilarArrays) = A.innersize const BroadcastedEncodeVectorOfSimilarArrays{T,M,C<:AbstractArrayCodec} = Base.Broadcast.Broadcasted{ <:Base.Broadcast.AbstractArrayStyle{1}, Tuple{Base.OneTo{Int}}, typeof(|>), <:Tuple{ AbstractArrayOfSimilarArrays{T,M,1}, Union{Tuple{C},Ref{C}} } } function Base.copy(instance::BroadcastedEncodeVectorOfSimilarArrays{T,M,C}) where {T,M,C} data_arg = instance.args[1] codec_arg = instance.args[2] voea = _bcast_enc_impl(T, Val{M}(), C, data_arg, codec_arg) codec = voea.codec encoded = voea.encoded VectorOfEncodedSimilarArrays{T}(codec, innersize(data_arg), encoded) end const BroadcastedDecodeVectorOfSimilarArrays{T,M,C<:AbstractArrayCodec} = Base.Broadcast.Broadcasted{ Base.Broadcast.DefaultArrayStyle{1}, Tuple{Base.OneTo{Int}}, typeof(collect), <:Tuple{VectorOfEncodedSimilarArrays{T,M,C}} } function _decode_data_noret!(args...) decode_data!(args...) return nothing end function _bcast_dec_impl(encoded_arrays::VectorOfEncodedSimilarArrays{T,M,C}) where {T,M,C} codec = encoded_arrays.codec elsz = encoded_arrays.innersize encoded_data = encoded_arrays.encoded n = length(encoded_data) decoded_data = similar(flatview(encoded_data), T, elsz..., n) result = VectorOfSimilarArrays(decoded_data) _decode_data_noret!.(result, Ref(codec), encoded_data) return result end function Base.copy(instance::BroadcastedDecodeVectorOfSimilarArrays) _bcast_dec_impl(instance.args[1]) end
EncodedArrays
https://github.com/oschulz/EncodedArrays.jl.git
[ "MIT" ]
0.4.0
81022321115ba46e0a256913860b95d01373ce91
code
1840
# This file is a part of EncodedArrays.jl, licensed under the MIT License (MIT). """ VarlenDiffArrayCodec <: AbstractArrayCodec """ struct VarlenDiffArrayCodec <: AbstractArrayCodec end export VarlenDiffArrayCodec # function _encode(io::IO, codec::VarlenDiffArrayCodec, x::T, last_x::T) where {T <: Integer} # write_autozz_varlen(io, x - last_x) # end # # # function _decode(io::IO, codec::VarlenDiffArrayCodec, last_x::T) where {T <: Integer} # read_autozz_varlen(io, T) + last_x # end # function _length(io::IO, codec::VarlenDiffArrayCodec, T::Type{<:Integer}) # n::Int = 0 # last_x::T = 0 # while !eof(io) # x = _decode(io, T, last_x) # last_x = x # n += 1 # end # n # end function encode_data!(encoded::AbstractVector{UInt8}, codec::VarlenDiffArrayCodec, data::AbstractVector{T}) where {T} output = IOBuffer() last_x::T = zero(T) @inbounds for x in data dx = signed(x) - signed(last_x) write_autozz_varlen(output, dx) last_x = x end tmp = take!(output) resize!(encoded, length(eachindex(tmp))) copyto!(encoded, tmp) encoded end function decode_data!(data::AbstractVector{T}, codec::VarlenDiffArrayCodec, encoded::AbstractVector{UInt8}) where {T} input = IOBuffer(encoded) last_x::T = zero(T) i = firstindex(data) while !eof(input) if lastindex(data) < i if isempty(data) resize!(data, length(eachindex(encoded))) else resize!(data, 2 * (i - firstindex(data))) end end dx = read_autozz_varlen(input, typeof(signed(zero(T)))) x = last_x + dx last_x = x data[i] = x i += 1 end if i <= lastindex(data) resize!(data, i - firstindex(data)) end data end
EncodedArrays
https://github.com/oschulz/EncodedArrays.jl.git
[ "MIT" ]
0.4.0
81022321115ba46e0a256913860b95d01373ce91
code
2085
# This file is a part of EncodedArrays.jl, licensed under the MIT License (MIT). """ read_varlen(io::IO, T::Type{<:Unsigned}) Read an unsigned variable-length integer value of type `T` from `io`. If the next value encoded in x is too large to be represented by `T`, an exception is thrown. See [`EncodedArrays.write_varlen`](@ref). """ @inline function read_varlen(io::IO, T::Type{<:Unsigned}) maxPos = 8 * sizeof(T) x::T = 0 pos::Int = 0 while true (pos >= maxPos) && throw(ErrorException("Overflow during decoding of variable-length encoded number.")) b = read(io, UInt8) x = x | (T(b & 0x7f) << pos) if ((b & 0x80) == 0) return x else pos += 7 end end end """ write_varlen(io::IO, x::Unsigned) Write unsigned integer value `x` to IO using variable-length coding. Data is written in LSB fashion in units of one byte. The highest bit of each byte indicates if more bytes will need to be read, the 7 lower bits contain the next 7 bits of x. """ @inline function write_varlen(io::IO, x::Unsigned) T = typeof(x) rest::T = x done::Bool = false while !(done) new_rest = rest >>> 7; a = UInt8(rest & 0x7F) b = (new_rest == 0) ? a : a | UInt8(0x80) write(io, b) rest = new_rest; done = (rest == 0) end nothing end """ read_autozz_varlen(io::IO, ::Type{<:Integer}) Read an integer of type `T` from `io`, using zig-zag decoding depending on whether `T` is signed or unsigned. """ function read_autozz_varlen end @inline read_autozz_varlen(io::IO, T::Type{<:Unsigned}) = read_varlen(io, T) @inline read_autozz_varlen(io::IO, T::Type{<:Signed}) = zigzagdec(read_varlen(io, unsigned(T))) """ write_autozz_varlen(io::IO, x::Integer) Write integer value `x` to `io`, using zig-zag encoding depending on whether the type of x is signed or unsigned. """ @inline write_autozz_varlen(io::IO, x::Unsigned) = write_varlen(io, x) @inline write_autozz_varlen(io::IO, x::Signed) = write_varlen(io, zigzagenc(x))
EncodedArrays
https://github.com/oschulz/EncodedArrays.jl.git
[ "MIT" ]
0.4.0
81022321115ba46e0a256913860b95d01373ce91
code
501
# This file is a part of EncodedArrays.jl, licensed under the MIT License (MIT). import Test import EncodedArrays import Documenter Test.@testset "Package EncodedArrays" begin include("test_encoded_array.jl") include("test_varlen_io.jl") include("test_varlen_diff_codec.jl") # doctests Documenter.DocMeta.setdocmeta!( EncodedArrays, :DocTestSetup, :(using EncodedArrays); recursive=true, ) Documenter.doctest(EncodedArrays) end # testset
EncodedArrays
https://github.com/oschulz/EncodedArrays.jl.git
[ "MIT" ]
0.4.0
81022321115ba46e0a256913860b95d01373ce91
code
4353
# This file is a part of EncodedArrays.jl, licensed under the MIT License (MIT). using EncodedArrays using Test using ArraysOfArrays @testset "encoded_array" begin data = rand(Int16(-1000):Int16(2000), 21) codec = VarlenDiffArrayCodec() data_enc = data |> codec @testset "ctors and conversions" begin @test @inferred(Array(data_enc)) == data @test typeof(Array(data_enc)) == Array{eltype(data),1} @test @inferred(Array{Int16}(data_enc)) == data @test @inferred(Array{Int16,1}(data_enc)) == data @test @inferred(Vector(data_enc)) == data @test @inferred(Vector{Int16}(data_enc)) == data @test typeof(Vector{Int16}(data_enc)) == Vector{Int16} @test @inferred(Vector{Int32}(data_enc)) == data @test typeof(Vector{Int32}(data_enc)) == Vector{Int32} @test @inferred(convert(Array, data_enc)) == data @test typeof(convert(Array, data_enc)) == Array{eltype(data),1} @test @inferred(convert(Array{Int16}, data_enc)) == data @test @inferred(convert(Array{Int16,1}, data_enc)) == data @test @inferred(convert(Vector, data_enc)) == data @test @inferred(convert(Vector{Int16}, data_enc)) == data @test typeof(convert(Vector{Int16}, data_enc)) == Vector{Int16} @test @inferred(convert(Vector{Int32}, data_enc)) == data @test typeof(convert(Vector{Int32}, data_enc)) == Vector{Int32} end @testset "collect" begin @test @inferred(collect(data_enc)) == data @test typeof(collect(data_enc)) == typeof(data) end @testset "getindex" begin @test @inferred(data_enc[:]) == data @test typeof(data_enc[:]) == Array{eltype(data),1} @test @inferred(data_enc[:]) == data @test @inferred(data_enc[1:21]) == data @test @inferred(data_enc[5:15]) == data[5:15] @test @inferred(data_enc[7]) == data[7] end @testset "setindex!" begin tmp = zero.(data) @test (tmp[:] = data_enc) == data tmp = vcat(zero.(data), zero.(data)) tmp2 = copy(tmp) tmp[10:30] = data_enc tmp2[10:30] = data @test tmp == tmp2 end @testset "equality" begin @test @inferred data == data_enc @test @inferred data_enc == data @test @inferred data_enc == data_enc end @testset "append!" begin A = similar(data, 0) @test @inferred(append!(A, data_enc)) === A @test A == data A = data[1:4] @test @inferred(append!(A, data_enc)) === A @test A == vcat(data[1:4], data) end @testset "append!" begin A = similar(data) @test @inferred(copyto!(A, data_enc)) === A @test A == data @test_throws BoundsError @inferred(copyto!(similar(data, 5), data_enc)) end @testset "VectorOfEncodedArrays" begin codec = VarlenDiffArrayCodec() data_orig = VectorOfArrays([cumsum(rand(-5:5, rand(1:100))) for i in 1:10]) data_enc = @inferred(broadcast(|>, data_orig, codec)) @test data_enc isa VectorOfEncodedArrays @test (a -> collect(a)).(data_enc) == data_orig data_dec = @inferred(broadcast(collect, data_enc) ) @test data_dec isa VectorOfArrays @test data_dec == data_orig @test @inferred(data_enc[2]) isa EncodedArray @test @inferred(collect(data_enc[2])) == data_orig[2] @test @inferred(data_enc[2:5]) isa VectorOfEncodedArrays @test @inferred(broadcast(collect, data_enc[2:5])) == data_orig[2:5] end @testset "VectorOfEncodedSimilarArrays" begin codec = VarlenDiffArrayCodec() data_orig = VectorOfSimilarArrays([cumsum(rand(-5:5, 100)) for i in 1:10]) data_enc = @inferred(broadcast(|>, data_orig, codec)) @test data_enc isa VectorOfEncodedSimilarArrays @test (a -> collect(a)).(data_enc) == data_orig data_dec = @inferred(broadcast(collect, data_enc) ) @test data_dec isa VectorOfSimilarArrays @test data_dec == data_orig @test @inferred(data_enc[2]) isa EncodedArray @test @inferred(collect(data_enc[2])) == data_orig[2] @test @inferred(data_enc[2:5]) isa VectorOfEncodedSimilarArrays @test @inferred(broadcast(collect, data_enc[2:5])) == data_orig[2:5] end end # testset
EncodedArrays
https://github.com/oschulz/EncodedArrays.jl.git
[ "MIT" ]
0.4.0
81022321115ba46e0a256913860b95d01373ce91
code
1587
# This file is a part of EncodedArrays.jl, licensed under the MIT License (MIT). using EncodedArrays using Test using BitOperations @testset "varlen_diff_codec" begin a = zigzagdec(UInt64(0x4c6b5f94758)) data = [a, a + 3, a - 2] codec = VarlenDiffArrayCodec() encoded = Vector{UInt8}() EncodedArrays.encode_data!(encoded, codec, data) @test encoded == [0xd8, 0x8e, 0xe5, 0xaf, 0xeb, 0x98, 0x01, 0x06, 0x09] data_dec = view(similar(data), :) # Use view to test that decoder doesn't resize @test EncodedArrays.decode_data!(data_dec, codec, encoded) === data_dec @test data_dec == data data_dec = Vector{Int64}() @test EncodedArrays.decode_data!(data_dec, codec, encoded) === data_dec @test data_dec == data data_dec = Vector{Int64}(undef, 2) @test EncodedArrays.decode_data!(data_dec, codec, encoded) === data_dec @test data_dec == data data_dec = Vector{UInt64}() @test EncodedArrays.decode_data!(data_dec, codec, encoded) === data_dec @test data_dec == data b = unsigned(a) data = [b, b + 3, b - 2] encoded = Vector{UInt8}() EncodedArrays.encode_data!(encoded, codec, data) @test encoded == [0xd8, 0x8e, 0xe5, 0xaf, 0xeb, 0x98, 0x01, 0x06, 0x09] data_dec = view(similar(data), :) # Use view to test that decoder doesn't resize @test EncodedArrays.decode_data!(data_dec, codec, encoded) === data_dec @test data_dec == data data_dec = Vector{Int64}() @test EncodedArrays.decode_data!(data_dec, codec, encoded) === data_dec @test data_dec == data end # testset
EncodedArrays
https://github.com/oschulz/EncodedArrays.jl.git
[ "MIT" ]
0.4.0
81022321115ba46e0a256913860b95d01373ce91
code
1635
# This file is a part of EncodedArrays.jl, licensed under the MIT License (MIT). using EncodedArrays using Test using BitOperations @testset "varlen_io" begin function test_encdec(T_read::Type{<:Integer}, f_read::Function, f_write::Function, x::Integer, encoded::AbstractVector{UInt8}) buf_out = IOBuffer() @inferred f_write(buf_out, x) enc_data = take!(buf_out) @test enc_data == encoded buf_in = IOBuffer(enc_data) dec_x = @inferred f_read(buf_in, T_read) @test typeof(dec_x) == T_read @test dec_x == x @test eof(buf_in) end @testset "read_varlen, write_varlen" begin f_read = EncodedArrays.read_varlen f_write = EncodedArrays.write_varlen test_encdec(UInt64, f_read, f_write, UInt64(0x00), [0x00]) test_encdec(UInt64, f_read, f_write, UInt64(0x7f), [0x7f]) test_encdec(UInt64, f_read, f_write, UInt64(0x80), [0x80, 0x01]) test_encdec(UInt64, f_read, f_write, UInt64(0x4c6b5f94759), [0xd9, 0x8e, 0xe5, 0xaf, 0xeb, 0x98, 0x01]) @test_throws ErrorException test_encdec(UInt32, f_read, f_write, UInt64(0x4c6b5f94759), [0xd9, 0x8e, 0xe5, 0xaf, 0xeb, 0x98, 0x01]) end @testset "read_autozz_varlen, write_autozz_varlen" begin f_read = EncodedArrays.read_autozz_varlen f_write = EncodedArrays.write_autozz_varlen test_encdec(UInt64, f_read, f_write, UInt64(0x4c6b5f94759), [0xd9, 0x8e, 0xe5, 0xaf, 0xeb, 0x98, 0x01]) test_encdec(Int64, f_read, f_write, zigzagdec(UInt64(0x4c6b5f94759)), [0xd9, 0x8e, 0xe5, 0xaf, 0xeb, 0x98, 0x01]) end end # testset
EncodedArrays
https://github.com/oschulz/EncodedArrays.jl.git
[ "MIT" ]
0.4.0
81022321115ba46e0a256913860b95d01373ce91
docs
1232
# EncodedArrays.jl [![Documentation for stable version](https://img.shields.io/badge/docs-stable-blue.svg)](https://oschulz.github.io/EncodedArrays.jl/stable) [![Documentation for development version](https://img.shields.io/badge/docs-dev-blue.svg)](https://oschulz.github.io/EncodedArrays.jl/dev) [![License](http://img.shields.io/badge/license-MIT-brightgreen.svg?style=flat)](LICENSE.md) [![Build Status](https://github.com/oschulz/EncodedArrays.jl/workflows/CI/badge.svg?branch=main)](https://github.com/oschulz/EncodedArrays.jl/actions?query=workflow%3ACI) [![Codecov](https://codecov.io/gh/oschulz/EncodedArrays.jl/branch/main/graph/badge.svg)](https://codecov.io/gh/oschulz/EncodedArrays.jl) EncodedArrays provides an API for arrays that store their elements in encoded/compressed form. This package is meant to be lightweight and only implements a simple codec `VarlenDiffArrayCodec`. As codec implementations are often complex and have various dependencies, more advanced codecs should be implemented in separate packages. ## Documentation * [Documentation for stable version](https://oschulz.github.io/EncodedArrays.jl/stable) * [Documentation for development version](https://oschulz.github.io/EncodedArrays.jl/dev)
EncodedArrays
https://github.com/oschulz/EncodedArrays.jl.git
[ "MIT" ]
0.4.0
81022321115ba46e0a256913860b95d01373ce91
docs
301
# API ## Modules ```@index Order = [:module] ``` ## Types and constants ```@index Order = [:type, :constant] ``` ## Functions and macros ```@index Order = [:macro, :function] ``` # Documentation ```@autodocs Modules = [EncodedArrays] Order = [:module, :type, :constant, :macro, :function] ```
EncodedArrays
https://github.com/oschulz/EncodedArrays.jl.git
[ "MIT" ]
0.4.0
81022321115ba46e0a256913860b95d01373ce91
docs
1292
# EncodedArrays.jl EncodedArrays provides an API for arrays that store their elements in encoded/compressed form. This package is meant to be lightweight and only implements a simple codec `VarlenDiffArrayCodec`. As codec implementations are often complex and have various dependencies, more advanced codecs should be implemented in separate packages. Random access on an encoded array will typically be very inefficient, but linear access may be efficient (depending on the codec). Accessing the whole array contents at once, e.g. via `collect(A)`, `A[:]`, or copying/appending/conversion to a regular array, must be efficient. An encoded array will typically have very inefficient random access, but may have efficient linear access and must be efficient when accessing the whole array contents at once via `getindex`, copying/appending to a regular array, etc. This package defines two central abstract types, [`AbstractEncodedArray`](@ref) and [`AbstractArrayCodec`](@ref). It also defines a concrete type [`EncodedArray`](@ref) that implements most of the API and only leaves [`EncodedArrays.encode_data!`](@ref) and [`EncodedArrays.decode_data!`](@ref) for a new codec to implement. Custom broadcasting optimizations are not implemented yet but will likely be added in the future.
EncodedArrays
https://github.com/oschulz/EncodedArrays.jl.git
[ "MIT" ]
0.1.1
edef04bbcbb872baa5da9950d372386700d35bc4
code
4763
module PolygenicRiskScores ## CSV parsing using CSV using DataFrames, DataFramesMeta using Dates, Distributions, Statistics, Random, LinearAlgebra, Printf using HDF5 include("parse_genet.jl") include("gigrnd.jl") include("mcmc_gtb.jl") ## argument parsing using ArgParse settings = ArgParseSettings() @add_arg_table! settings begin "--ref_dir" help = "Path to the reference panel directory" required = true "--bim_prefix" help = "Directory and prefix of the bim file for the validation set" required = true "--sst_file" help = "Path to summary statistics file" required = true "--sst_missing" help = "Indicator for missing data in sumstats file (eg 'NA')" default = "" "--a" arg_type = Float64 default = 1.0 "--b" arg_type = Float64 default = 0.5 "--phi" arg_type = Float64 "--n_gwas" help = "Sample size of the GWAS" arg_type = Int required = true "--n_iter" help = "Number of MCMC iterations to perform" arg_type = Int default = 1000 "--n_burnin" help = "Number of MCMC burn-in iterations" arg_type = Int default = 500 "--thin" arg_type = Int default = 5 "--out_dir" help = "Output file directory and prefix" required = true "--out_header" help = "Write header to output file" action = :store_true "--out_delim" help = "Output file delimiter" default = '\t' "--out_path" help = "Output file path (overrides --out_dir)" "--chrom" help = "Chromosomes to process" default = "1:22" "--beta_std" action = :store_true "--seed" help = "RNG seed for MCMC" arg_type = Int "--quiet" help = "Disable all unnecessary printing" action = :store_true "--hostsfile" help = "Hostsfile to use for parallel processing" default = nothing end function main() opts = parse_args(ARGS, settings) verbose = !opts["quiet"] chroms = eval(Meta.parse(opts["chrom"])) verbose && @info "Selecting chromosomes $chroms" ref_dir = opts["ref_dir"] verbose && @info "Parsing reference file: $ref_dir/snpinfo_1kg_hm3" t = now() ref_df = parse_ref(ref_dir * "/snpinfo_1kg_hm3", chroms) verbose && @info "$(nrow(ref_df)) SNPs in reference file ($(round(now()-t, Dates.Second)))" bim_prefix = opts["bim_prefix"] verbose && @info "Parsing BIM file: $(bim_prefix*".bim")" t = now() vld_df = parse_bim(bim_prefix, chroms) verbose && @info "$(nrow(vld_df)) SNPs in BIM file ($(round(now()-t, Dates.Second)))" for chrom in chroms _main(chrom, ref_df, vld_df, opts; verbose=verbose) end end function _main(chrom, ref_df, vld_df, opts; verbose=false) sst_file = opts["sst_file"] verbose && @info "(Chromosome $chrom) Parsing summary statistics file: $sst_file" t = now() sst_df = parse_sumstats(ref_df[ref_df.CHR .== chrom,:], vld_df[vld_df.CHR .== chrom,:], sst_file, opts["n_gwas"]; verbose=verbose, missingstring=opts["sst_missing"]) verbose && @info "(Chromosome $chrom) $(nrow(sst_df)) SNPs in summary statistics file ($(round(now()-t, Dates.Second)))" verbose && @info "(Chromosome $chrom) Parsing reference LD" t = now() ld_blk, blk_size = parse_ldblk(opts["ref_dir"], sst_df, chrom) verbose && @info "(Chromosome $chrom) Completed parsing reference LD ($(round(now()-t, Dates.Second)))" verbose && @info "(Chromosome $chrom) Initiating MCMC" t = now() beta_est = mcmc(opts["a"], opts["b"], opts["phi"], sst_df, opts["n_gwas"], ld_blk, blk_size, opts["n_iter"], opts["n_burnin"], opts["thin"], chrom, opts["beta_std"], opts["seed"]; verbose=verbose) verbose && @info "(Chromosome $chrom) Completed MCMC ($(round(now()-t, Dates.Second)))" verbose && @info "(Chromosome $chrom) Writing posterior effect sizes" eff_file = if opts["out_path"] === nothing out_path = opts["out_dir"] phi = opts["phi"] phi_str = phi === nothing ? "auto" : @sprintf("%1.0e", phi) out_path * @sprintf("_pst_eff_a%d_b%.1f_phi%s_chr%d.txt", opts["a"], opts["b"], phi_str, chrom) else opts["out_path"] end t = now() out_df = sst_df[:, [:SNP, :BP, :A1, :A2]] out_df[!, :CHR] .= chrom out_df.BETA = map(b->@sprintf("%.6e", b), beta_est) out_df = select(out_df, [:CHR, :SNP, :BP, :A1, :A2, :BETA]) CSV.write(eff_file, out_df; header=opts["out_header"], delim=opts["out_delim"]) verbose && @info "(Chromosome $chrom) finished writing posterior effect sizes ($(round(now()-t, Dates.Second)))" end end # module
PolygenicRiskScores
https://github.com/fauconab/PolygenicRiskScores.jl.git
[ "MIT" ]
0.1.1
edef04bbcbb872baa5da9950d372386700d35bc4
code
2071
# Ported from PRScs/gigrnd.py function psi(x, alpha, lam) f = -alpha*(cosh(x)-1)-lam*(exp(x)-x-1) return f end function dpsi(x, alpha, lam) f = -alpha*sinh(x)-lam*(exp(x)-1) return f end function g(x, sd, td, f1, f2) if (x >= -sd) && (x <= td) f = 1 elseif x > td f = f1 elseif x < -sd f = f2 end return f end function gigrnd(p, a, b) # setup -- sample from the two-parameter version gig(lam,omega) p = float(p); a = float(a); b = float(b) lam = p omega = sqrt(a*b) if lam < 0 lam = -lam swap = true else swap = false end alpha = sqrt(omega^2+lam^2)-lam # find t x = -psi(1, alpha, lam) if (x >= 1/2) && (x <= 2) t = 1 elseif x > 2 t = sqrt(2/(alpha+lam)) elseif x < 1/2 t = log(4/(alpha+2*lam)) end # find s x = -psi(-1, alpha, lam) if (x >= 1/2) && (x <= 2) s = 1 elseif x > 2 s = sqrt(4/(alpha*cosh(1)+lam)) elseif x < 1/2 if alpha == 0 s = 1/lam else s = min(1/lam, log(1+1/alpha+sqrt(1/alpha^2+2/alpha))) end end # find auxiliary parameters eta = -psi(t, alpha, lam) zeta = -dpsi(t, alpha, lam) theta = -psi(-s, alpha, lam) xi = dpsi(-s, alpha, lam) p = 1/xi r = 1/zeta td = t-r*eta sd = s-p*theta q = td+sd # random variate generation while true U = rand() V = rand() W = rand() if U < q/(p+q+r) rnd = -sd+q*V elseif U < (q+r)/(p+q+r) rnd = td-r*log(V) else rnd = -sd+p*log(V) end f1 = exp(-eta-zeta*(rnd-t)) f2 = exp(-theta+xi*(rnd+s)) if W*g(rnd, sd, td, f1, f2) <= exp(psi(rnd, alpha, lam)) break end end # transform back to the three-parameter version gig(p,a,b) rnd = exp(rnd)*(lam/omega+sqrt(1+lam^2/omega^2)) if swap rnd = 1/rnd end rnd = rnd/sqrt(a/b) return rnd end
PolygenicRiskScores
https://github.com/fauconab/PolygenicRiskScores.jl.git
[ "MIT" ]
0.1.1
edef04bbcbb872baa5da9950d372386700d35bc4
code
2445
# Ported from PRCcs/src/mcmc_gtb.py function mcmc(a, b, phi, sst_df, n, ld_blk, blk_size, n_iter, n_burnin, thin, chrom, beta_std, seed; verbose=false) # seed if seed !== nothing Random.seed!(seed) end # derived stats beta_mrg = copy(sst_df.BETA) maf = copy(sst_df.MAF) n_pst = (n_iter-n_burnin)/thin p = length(sst_df.SNP) n_blk = length(ld_blk) # initialization beta = zeros(p) psi = ones(p) sigma = 1.0 if phi === nothing phi = 1.0 phi_updt = true else phi_updt = false end beta_est = zeros(p) psi_est = zeros(p) sigma_est = 0.0 phi_est = 0.0 # MCMC for itr in 1:n_iter if itr % 100 == 0 verbose && @info "(Chromosome $chrom) MCMC iteration $itr" end mm = 1; quad = 0.0 for kk in 1:n_blk if blk_size[kk] == 0 continue else idx_blk = mm:(mm+blk_size[kk]-1) dinvt = ld_blk[kk] .+ Diagonal(1.0 ./ psi[idx_blk]) dinvt_chol = cholesky(dinvt).U beta_tmp = (transpose(dinvt_chol) \ beta_mrg[idx_blk]) .+ sqrt(sigma/n) .* randn(length(idx_blk)) beta[idx_blk] = dinvt_chol \ beta_tmp quad += dot(transpose(beta[idx_blk]) * dinvt, beta[idx_blk]) mm += blk_size[kk] end end err = max(n/2.0*(1.0-2.0*sum(beta.*beta_mrg)+quad), n/2.0*sum(beta .^ 2 ./ psi)) sigma = 1.0/rand(Gamma((n+p)/2.0, 1.0/err)) delta = rand.(Gamma.(a+b, 1.0 ./ (psi .+ phi))) for jj in 1:p psi[jj] = gigrnd(a-0.5, 2.0*delta[jj], n*beta[jj]^2/sigma) end psi[psi .> 1] .= 1.0 if phi_updt w = rand(Gamma(1.0, 1.0/(phi+1.0))) phi = rand(Gamma(p*b+0.5, 1.0/(sum(delta)+w))) end # posterior if (itr>n_burnin) && (itr % thin == 0) beta_est = beta_est + beta/n_pst psi_est = psi_est + psi/n_pst sigma_est = sigma_est + sigma/n_pst phi_est = phi_est + phi/n_pst end end # convert standardized beta to per-allele beta if !beta_std beta_est ./= sqrt.(2.0 .* maf .* (1.0 .- maf)) end # print estimated phi if phi_updt && verbose @info @sprintf("Estimated global shrinkage parameter: %1.2e", phi_est) end return beta_est end
PolygenicRiskScores
https://github.com/fauconab/PolygenicRiskScores.jl.git
[ "MIT" ]
0.1.1
edef04bbcbb872baa5da9950d372386700d35bc4
code
7141
function parse_ref(ref_file::String, chroms::UnitRange) df = CSV.File(ref_file; types=Dict(:A1=>Char,:A2=>Char)) |> DataFrame df.A1 = tochar.(df.A1) df.A2 = tochar.(df.A2) @assert df.CHR isa Vector{Int} @assert df.BP isa Vector{Int} @assert df.MAF isa Vector{T} where T<:Real filter!(row->row.CHR in chroms, df) return df end parse_ref(ref_file::String, chrom::Integer) = parse_ref(ref_file, chrom:chrom) function tochar(x)::Union{Char,Missing} if x isa String if length(x) == 1 return first.(x) else return missing end else x end end function parse_bim(bim_file::String, chroms::UnitRange) header = [:CHR, :SNP, :POS, :BP, :A1, :A2] df = CSV.File(bim_file*".bim"; header=header, types=Dict(:A1=>Char,:A2=>Char)) |> DataFrame df.A1 = tochar.(df.A1) df.A2 = tochar.(df.A2) @assert df.CHR isa Vector{Int} filter!(row->row.CHR in chroms, df) return df end parse_bim(bim_file::String, chrom::Integer) = parse_bim(bim_file, chrom:chrom) nuc_map(char::Char) = nuc_map(Val(char)) nuc_map(::Val{'A'}) = 'T' nuc_map(::Val{'T'}) = 'A' nuc_map(::Val{'C'}) = 'G' nuc_map(::Val{'G'}) = 'C' function permute_snps(df) unique(vcat( df[:,[:SNP,:A1,:A2]], DataFrame(SNP=df.SNP, A1=df.A2, A2=df.A1), DataFrame(SNP=df.SNP, A1=nuc_map.(first.(df.A1)), A2=nuc_map.(first.(df.A2))), DataFrame(SNP=df.SNP, A1=nuc_map.(first.(df.A2)), A2=nuc_map.(first.(df.A1))) )) end function join_snps(ref_df, vld_df, sst_df; verbose=false) # TODO: Be more efficient, don't allocate all this memory vld_snps = vld_df[:,[:SNP,:A1,:A2]] ref_snps = permute_snps(ref_df) sst_snps = permute_snps(sst_df) snps = innerjoin(vld_snps, ref_snps, sst_snps, on=[:SNP,:A1,:A2], makeunique=true) verbose && @info "$(nrow(snps)) common SNPs" return snps end norm_ppf(x) = quantile(Normal(), x) function parse_sumstats(ref_df, vld_df, sst_file, n_subj; verbose=false, missingstring="") sst_df = CSV.File(sst_file; missingstring=missingstring, types=Dict(:A1=>Char,:A2=>Char)) |> DataFrame sst_df.A1 = tochar.(sst_df.A1) sst_df.A2 = tochar.(sst_df.A2) nucs = Set(['A','C','T','G']) filter!(row->(row.A1 in nucs) && (row.A2 in nucs), sst_df) filter!(row->!(row.P isa Missing) && !(row.BETA isa Missing), sst_df) sst_df.P = convert(Vector{Float64}, sst_df.P) sst_df.BETA = convert(Vector{Float64}, sst_df.BETA) snps = join_snps(ref_df, vld_df, sst_df; verbose=verbose) sort!(snps, [:SNP, :A1, :A2]) n_sqrt = sqrt(n_subj) sst_eff = Dict{String,Float64}() for row in Tables.namedtupleiterator(sst_df) if hassnp(snps, (row.SNP,row.A1,row.A2)) || hassnp(snps, (row.SNP,nuc_map.(row.A1),nuc_map.(row.A2))) effect_sign = 1 elseif hassnp(snps, (row.SNP,row.A2,row.A1)) || hassnp(snps, (row.SNP,nuc_map.(row.A2),nuc_map.(row.A1))) effect_sign = -1 else continue end if hasproperty(row, :BETA) beta = row.BETA elseif hasproperty(row, :OR) beta = log(row.OR) end p = max(row.P, 1e-323) beta_std = effect_sign*sign(beta)*abs(norm_ppf(p/2))/n_sqrt sst_eff[row.SNP] = beta_std end _sst_df = DataFrame(SNP=String[],CHR=Int[],BP=Int[],BETA=Float64[],A1=Char[],A2=Char[],MAF=Float64[],FLP=Int[]) for (idx,row) in enumerate(Tables.namedtupleiterator(ref_df)) haskey(sst_eff, row.SNP) || continue SNP = row.SNP CHR = row.CHR BP = row.BP BETA = sst_eff[row.SNP] A1,A2 = row.A1,row.A2 if hassnp(snps, (SNP,A1,A2)) MAF = row.MAF FLP = 1 elseif hassnp(snps, (SNP,A2,A1)) A1, A2 = A2, A1 MAF = 1-row.MAF FLP = -1 elseif hassnp(snps, (SNP,nuc_map(A1),nuc_map(A2))) A1, A2 = nuc_map(A1), nuc_map(A2) MAF = row.MAF FLP = 1 elseif hassnp(snps, (SNP,nuc_map(A2),nuc_map(A1))) A1, A2 = nuc_map(A2), nuc_map(A1) MAF = 1-row.MAF FLP = -1 else verbose && @warn "(Chromosome $CHR) Didn't find ($SNP,$A1,$A2) in snps" # FIXME: Skip? end push!(_sst_df, (SNP=SNP,CHR=CHR,BP=BP,BETA=BETA,A1=A1,A2=A2,MAF=MAF,FLP=FLP)) end return _sst_df end function findsnp(snps, (snp,a1,a2)) SNP_range = binary_range_search(snps, snp, :SNP) SNP_range === nothing && return nothing SNP_L, SNP_R = SNP_range SNP_sub = snps[SNP_L:SNP_R,:] A1_range = binary_range_search(SNP_sub, a1, :A1) A1_range === nothing && return nothing A1_L, A1_R = A1_range A1_sub = SNP_sub[A1_L:A1_R,:] A2_range = binary_range_search(A1_sub, a2, :A2) A2_range === nothing && return nothing A2_L, A2_R = A2_range @assert A2_L == A2_R return SNP_L + (A1_L-1) + (A2_L-1) end hassnp(snps, row) = findsnp(snps, row) !== nothing # TODO: Allow warm-restarts function binary_range_search(snps, x, col) _snps = snps[!,col] L = 1 R = nrow(snps) while true (L > R) && return nothing M = floor(Int, (L+R)/2) _x = _snps[M] if _x == x L,R = M,M snps_rows = nrow(snps) while (L > 1) && (_snps[L - 1] == x) L -= 1 end while R < (snps_rows) && (_snps[R + 1] == x) R += 1 end return L,R elseif _x < x L = M+1 elseif _x > x R = M-1 end end end function parse_ldblk(ldblk_dir, sst_df, chrom) chr_name = ldblk_dir * "/ldblk_1kg_chr" * string(chrom) * ".hdf5" hdf_chr = h5open(chr_name, "r") n_blk = length(hdf_chr) ld_blk = [read(hdf_chr["blk_"*string(blk)]["ldblk"]) for blk in 1:n_blk] snp_blk = Vector{String}[] for blk in 1:n_blk push!(snp_blk, read(hdf_chr["blk_"*string(blk)]["snplist"])) end blk_size = Int[] _ld_blk = Matrix{Float64}[] mm = 1 for blk in 1:n_blk idx = [(ii,findfirst(s->s==snp, sst_df.SNP)) for (ii, snp) in enumerate(snp_blk[blk]) if snp in sst_df.SNP] push!(blk_size, length(idx)) if !isempty(idx) idx_blk = mm:(mm+length(snp_blk[blk])-1) flip = [sst_df.FLP[jj] for jj in last.(idx)] flipM = flip' .* flip _blk = Matrix{Float64}(undef, length(idx), length(idx)) P = collect(Iterators.product(first.(idx),first.(idx))) for icol in 1:size(P,2) for irow in 1:size(P,1) row,col = P[irow,icol] _blk[irow,icol] = ld_blk[blk][row,col] * flipM[irow,icol] end end push!(_ld_blk, _blk) mm += length(snp_blk[blk]) else push!(_ld_blk, Matrix{Float64}(undef, 0, 0)) end end return _ld_blk, blk_size end
PolygenicRiskScores
https://github.com/fauconab/PolygenicRiskScores.jl.git
[ "MIT" ]
0.1.1
edef04bbcbb872baa5da9950d372386700d35bc4
code
3046
using Test using Printf using CSV, DataFrames, Tables using HypothesisTests PRS_DATA_PATH = get(ENV, "JULIA_PRS_TEST_DATA_PATH", nothing) if PRS_DATA_PATH === nothing PRS_DATA_PATH = mktempdir() cd(PRS_DATA_PATH) do isdir("PRScs") || run(`git clone https://github.com/getian107/PRScs`) isfile("test.bim") || run(`ln -s PRScs/test_data/test.bim .`) isfile("sumstats.txt") || run(`ln -s PRScs/test_data/sumstats.txt .`) if !isdir("ldblk_1kg_eur") run(`wget -q https://www.dropbox.com/s/mt6var0z96vb6fv/ldblk_1kg_eur.tar.gz`) run(`tar xf ldblk_1kg_eur.tar.gz`) end end end #These tests check the following: #Script runs using phi auto version #Script runs using specified fi #Script successfully saves results using out_path and with out_dir function test_harness(;a=1,b=0.5,phi=1e-02,chr=22,niter=1000,out_header=false) a = repr(a) b = repr(b) phi = @sprintf("%1.0e", phi) chr = repr(chr) niter = repr(niter) cmd_jl = `julia --project -e "using PolygenicRiskScores; PolygenicRiskScores.main()" -- --ref_dir=$PRS_DATA_PATH/ldblk_1kg_eur --bim_prefix=$PRS_DATA_PATH/test --sst_file=$PRS_DATA_PATH/sumstats.txt --n_gwas=200000 --chrom=$chr --phi=$phi --n_iter=$niter --out_dir=$PRS_DATA_PATH/output_jl` if out_header push!(cmd_jl.exec, "--out_header") end run(cmd_jl) run(`python3 $PRS_DATA_PATH/PRScs/PRScs.py --ref_dir=$PRS_DATA_PATH/ldblk_1kg_eur --bim_prefix=$PRS_DATA_PATH/test --sst_file=$PRS_DATA_PATH/sumstats.txt --n_gwas=200000 --chrom=$chr --phi=$phi --n_iter=$niter --out_dir=$PRS_DATA_PATH/output_py`) output_jl = "output_jl_pst_eff_a$(a)_b$(b)_phi$(phi)_chr$(chr).txt" output_py = "output_py_pst_eff_a$(a)_b$(b)_phi$(phi)_chr$(chr).txt" beta_jl=nothing beta_py=nothing for (kind, output_path) in ((:jl, output_jl), (:py, output_py)) output_path = joinpath(PRS_DATA_PATH, output_path) @test isfile(output_path) @test stat(output_path).size > 30_000 header = [:CHR, :SNP, :BP, :A1, :A2, :BETA] if out_header f = CSV.File(output_path) else f = CSV.File(output_path; header=header) end for (idx,col) in enumerate(header) if out_header && kind == :jl @test Tables.columnnames[idx] == col end @test length(getproperty(f, col)) == 1000 end if kind == :jl beta_jl = f.BETA else beta_py = f.BETA end end # FIXME: Add accuracy/comparison tests # Do a t-test to make sure the beta results are not significantly different @test pvalue(EqualVarianceTTest(beta_jl,beta_py)) > 0.01 rm(joinpath(PRS_DATA_PATH, output_jl)) rm(joinpath(PRS_DATA_PATH, output_py)) end @testset "Basic Options" begin # Default run test_harness() end # run julia once with seed X # get hash of output file # run julia again with seed X # test that hash of new output file == old output file
PolygenicRiskScores
https://github.com/fauconab/PolygenicRiskScores.jl.git
[ "MIT" ]
0.1.1
edef04bbcbb872baa5da9950d372386700d35bc4
docs
962
# PolygenicRiskScores.jl (previously PRS.jl) PolygenicRiskScores.jl is a port of [PRS-CS](https://github.com/getian107/PRScs) to Julia. ## Usage Using the test data from PRS-CS at ~/prs-data, the following invocation should work when run in the root directory of PolygenicRiskScores.jl: ``` julia --project -e "using PolygenicRiskScores; PolygenicRiskScores.main()" -- --ref_dir=~/prs-data/ldblk_1kg_eur --bim_prefix=~/prs-data/test --sst_file=~/prs-data/sumstats.txt --n_gwas=200000 --chrom=22 --phi=1e-2 --n_iter=1000 --out_dir=~/prs-data/output_jl ``` ## Multi-threaded CSV reading Julia's CSV reader supports multi-threaded CSV reading. In order to enable this, we need to load Julia with more than one thread. This is done through the `JULIA_NUM_THREADS` environment variable: ``` JULIA_NUM_THREADS=8 julia --project -e "using PolygenicRiskScores; PolygenicRiskScores.main()" ... ``` The above code would run PolygenicRiskScores.jl with 8 threads.
PolygenicRiskScores
https://github.com/fauconab/PolygenicRiskScores.jl.git
[ "MIT" ]
0.10.1
370c3ac3c000dd3ac975681521dcfe687efc1f24
code
1424
name: CompatHelper on: schedule: - cron: 0 0 * * * workflow_dispatch: permissions: contents: write pull-requests: write jobs: CompatHelper: runs-on: ubuntu-latest steps: - name: Check if Julia is already available in the PATH id: julia_in_path run: which julia continue-on-error: true - name: Install Julia, but only if it is not already available in the PATH uses: julia-actions/setup-julia@v1 with: version: '1' arch: ${{ runner.arch }} if: steps.julia_in_path.outcome != 'success' - name: "Add the General registry via Git" run: | import Pkg ENV["JULIA_PKG_SERVER"] = "" Pkg.Registry.add("General") shell: julia --color=yes {0} - name: "Install CompatHelper" run: | import Pkg name = "CompatHelper" uuid = "aa819f21-2bde-4658-8897-bab36330d9b7" version = "3" Pkg.add(; name, uuid, version) shell: julia --color=yes {0} - name: "Run CompatHelper" run: | import CompatHelper CompatHelper.main() shell: julia --color=yes {0} env: GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }} COMPATHELPER_PRIV: ${{ secrets.DOCUMENTER_KEY }} # COMPATHELPER_PRIV: ${{ secrets.COMPATHELPER_PRIV }}
PlanetOrbits
https://github.com/sefffal/PlanetOrbits.jl.git
[ "MIT" ]
0.10.1
370c3ac3c000dd3ac975681521dcfe687efc1f24
code
3002
using PlanetOrbits using Plots using Colors logocolors = Colors.JULIA_LOGO_COLORS orbit1 = orbit( a = 0.8, i = 0.0, e = 0.0, ω = 0.0, Ω = 0.0, τ = 0.7, plx=1000, M = 1.0, ) orbit2 = orbit( a = 1.269, i = 0.0, e = 0.16, ω = 120, Ω = 0.0, τ = 0.8, plx=1000, M = 1.0, ) period(orbit1)/period(orbit2) # p = plot(xlims=(-1600,1300), ylims=(-1300,1600), size=(300,300), framestyle=:none, legend=nothing, margin=-20Plots.mm, background=:transparent) scatter!([0], [0], color=logocolors.blue, markersize=20, markerstrokewidth=1, markerstrokecolor="#222") plot!(orbit1, color=logocolors.green, linewidth=2.5) scatter!([raoff(orbit1, 0)], [decoff(orbit1, 0)], color=logocolors.green, markersize=13, markerstrokewidth=1, markerstrokecolor="#222") plot!(orbit2, color=logocolors.red, linewidth=2.5) x = raoff(orbit2, 0) y = decoff(orbit2, 0) scatter!([x],[y], color=logocolors.red, markersize=9, markerstrokewidth=1, markerstrokecolor="#222") moon = orbit( # a = 0.2, a = 0.274, i = 0, e = 0.0, ω = 120, Ω = 0.0, τ = 0.0, plx=1000, M = 1.0, ) νs = range(0, 2π, length=100) xs = raoff.(PlanetOrbits.orbitsolve_ν.(moon, νs)) .+ x ys = decoff.(PlanetOrbits.orbitsolve_ν.(moon, νs)) .+ y plot!(xs,ys, color=logocolors.purple, linewidth=2.0) i = 2 scatter!(xs[i:i],ys[i:i], color=logocolors.purple, markersize=6, markerstrokewidth=1, markerstrokecolor="#222") savefig("docs/src/assets/logo.svg") savefig("docs/src/assets/logo.png") p ## anim = @animate for t in range(0, period(orbit2), length=120) p = plot(xlims=(-1730,1400), ylims=(-1450,1700), size=(350,350), framestyle=:none, legend=nothing, margin=-20Plots.mm, background=:white) plot!(orbit1, color=logocolors.green, linewidth=2.5) x0 = raoff(orbit1, t) y0 = decoff(orbit1, t) scatter!([x0], [y0], color=logocolors.green, markersize=9, markerstrokewidth=1, markerstrokecolor="#222") plot!(orbit2, color=logocolors.red, linewidth=2.5) x = raoff(orbit2, t) y = decoff(orbit2, t) scatter!([x],[y], color=logocolors.red, markersize=13, markerstrokewidth=1, markerstrokecolor="#222") moon = orbit( # a = 0.2, a = 0.274, i = 0, e = 0.0, ω = 120, Ω = 0.0, τ = 0.0, plx=1000, M = 1.0, ) νs = range(0, 2π, length=100) xs = raoff.(PlanetOrbits.orbitsolve_ν.(moon, νs)) .+ x ys = decoff.(PlanetOrbits.orbitsolve_ν.(moon, νs)) .+ y plot!(xs,ys, color=logocolors.purple, linewidth=2.0) xm = raoff(moon, t)+x ym = decoff(moon, t)+y scatter!([xm], [ym], color=logocolors.purple, markersize=6, markerstrokewidth=1, markerstrokecolor="#222") star_x = -(x0*9^3 + x*13^3)/40^3 # + xm*6^2 star_y = -(y0*9^3 + y*13^3)/40^3 # + ym*6^2 scatter!([star_x], [star_y], color=logocolors.blue, markersize=20, markerstrokewidth=1, markerstrokecolor="#222") end gif(anim, "docs/src/assets/logo.gif", fps=30)
PlanetOrbits
https://github.com/sefffal/PlanetOrbits.jl.git
[ "MIT" ]
0.10.1
370c3ac3c000dd3ac975681521dcfe687efc1f24
code
355
using Documenter, PlanetOrbits ENV["GKSwstype"] = "100" # GR in documeter env variable include("pages.jl") makedocs( sitename="PlanetOrbits.jl", pages=pages, format = Documenter.HTML( prettyurls = get(ENV, "CI", nothing) == "true" ) ) deploydocs( repo = "github.com/sefffal/PlanetOrbits.jl.git", devbranch = "master" )
PlanetOrbits
https://github.com/sefffal/PlanetOrbits.jl.git
[ "MIT" ]
0.10.1
370c3ac3c000dd3ac975681521dcfe687efc1f24
code
526
pages = [ "Home" => "index.md", # "Getting Started" => "getting-started.md", "Tutorials" => [ "Introduction" => "introduction.md", "Plotting" => "plots.md", "Conversions" => "conversions.md", "Hyperbolic" => "hyperbolic.md", "Image Warping" => "image-warping.md", ], "Documentation" => [ "API" => "api.md", "Conventions" => "conventions.md", "Kepler Solvers" => "kepler.md", ] ]
PlanetOrbits
https://github.com/sefffal/PlanetOrbits.jl.git
[ "MIT" ]
0.10.1
370c3ac3c000dd3ac975681521dcfe687efc1f24
code
60835
### A Pluto.jl notebook ### # v0.17.5 using Markdown using InteractiveUtils # This Pluto notebook uses @bind for interactivity. When running this notebook outside of Pluto, the following 'mock version' of @bind gives bound variables a default value (instead of an error). macro bind(def, element) quote local iv = try Base.loaded_modules[Base.PkgId(Base.UUID("6e696c72-6542-2067-7265-42206c756150"), "AbstractPlutoDingetjes")].Bonds.initial_value catch; b -> missing; end local el = $(esc(element)) global $(esc(def)) = Core.applicable(Base.get, el) ? Base.get(el) : iv(el) el end end # ╔═╡ 1793f5fa-7f30-4a1d-baef-b06436e1fc71 using Revise, PlutoUI, PlanetOrbits, Plots; theme(:dao) # ╔═╡ 872e19d4-c071-40bb-a091-22e48e85e2a6 md""" # Orbit Playground A Pluto notebook for visualizing orbits """ # ╔═╡ ce86c343-b6e4-4833-935f-ee0392d1ee89 md""" *Specify the Keplerian elements to visualize using the text fields and sliders below.* """ # ╔═╡ 79f416a6-7c52-4d57-8bdd-1f84dc04d7e8 md"Gravitational Parameter of the star ($M_⊙$)" # ╔═╡ 60c8b78b-1b70-42d0-8fe6-7e40b0cdd4a2 M = 1; # ╔═╡ 124025b9-f7de-4395-a5d3-1dc6ed4a67f7 md"Paralax Distance (mas)" # ╔═╡ 9da00dbb-c645-4bb9-a26c-5f148efb36cd plx = 24.; # ╔═╡ 800b91ae-d6c6-479f-afd7-d07d7b207cd3 md"Epoch of periastron passage as fraction of orbital period [0,1]. Reference epoch: 58849." # ╔═╡ f1ef0015-d671-450f-80cf-dc6651460998 tp = 0.; # ╔═╡ c179bd9e-e392-4622-92a5-d64f442e2840 md""" Drag the numbers to adjust the orbit: a = $(@bind a Scrubbable(0.1:0.1:50, default=5))au, i = $(@bind i Scrubbable(0:1:180.0, default=0))°, Ω = $(@bind Ω Scrubbable(0:2:360.0, default=0))°, e = $( @bind e Scrubbable(0:0.01:0.9, default=0)), ω = $(@bind ω Scrubbable(0:2:360.0, default=0))°, """ # ╔═╡ 3f38e8ca-2286-427f-8816-3b8b6cc78c74 elem = VisualOrbitDeg(a,i,e,tp,M,ω,Ω,plx) # ╔═╡ 596e2d59-203c-4e69-985b-f8a82624ef6c md""" ----- Time range in MJD (modified Juian days). Increase `length` to increase the resolution of the plots. """ # ╔═╡ 465e92c8-1004-47d6-ac4e-69172afad2b0 ts = 58849 .+ range(0, 2period(elem), step=2period(elem)÷150) # ╔═╡ dde3ae5c-c51d-4efd-a824-3e360981a228 md""" Time= $(@bind t Scrubbable(ts)) mjd """ #$(@bind t NumberField(ts, default=first(ts))) time [mjd] # ╔═╡ 36bc055e-3b5b-41a0-863a-53b78a6328d9 md""" ### CSV Export Click below to download a CSV with the ΔRA, ΔDEC, and RV values for t = $(round(Int, first(t))) to $(round(Int, first(t))) (mjd) """ # ╔═╡ e8d619bc-e37d-437a-96fb-0995aed2f823 begin posn = kep2cart.(elem, ts) ra = [p[1] for p in posn] dec = [p[2] for p in posn] los = [p[3] for p in posn] rv = [p[4] for p in posn] posn_ν = PlanetOrbits.kep2cart_ν.(elem, range(-π, π, length=90)) ra_ν = [p[1] for p in posn_ν] dec_ν = [p[2] for p in posn_ν] end; # ╔═╡ 593a177f-bf0b-4b05-9408-745793ab2536 begin # Top panel: projected orbit plot p1 = plot(xflip=true, aspectratio=1, legend=:topleft, size=(650,400), fontfamily="", fmt=:svg) scatter!([0], [0], label="star", marker=:star, color=3, ms=10) l = maximum(sqrt.(ra.^2 .+ dec.^2))*1.05 plot!(ra_ν, dec_ν;label="orbit",color=1) xlims!(-1.4l,1.4l) ylims!(-l,l) scatter!([raoff(elem, t)], [decoff(elem, t)], label="planet", ms=10, color=2) xlabel!("ΔRA - mas") ylabel!("ΔDEC - mas") end # ╔═╡ 14b4f565-2f8d-4e70-a79c-8926db3b0ca7 begin # Bottom panel: planet radial velocity yl = max(abs.(extrema(rv))...)*1.25 if yl < 1.5 yl = 1.5 end ylims=(-yl,yl) p2 = plot(ts, rv; legend=:none, ylims, size=(650,200), fontfamily="", fmt=:svg, margin=10Plots.mm) scatter!([t], [radvel(elem, t)], ms=10) xlabel!("t - mjd") # ylabel!("\$\\mathrm{RV_{planet} - km/s}\$") ylabel!("RVplanet - km/s") end # ╔═╡ 30c618b6-bd58-4335-bc55-23c16317011d let # Create a super simple CSV export csv = "dRA (mas), dDEC (mas), RV (km/s)\n"*join(( join(p, ", ") for p in zip(ra,dec,rv) ), "\n") DownloadButton(csv, "orbit-a-$a-i-$i-e-$e-ω-$ω-Ω-$Ω-tp-$tp-M-$M.csv") end # ╔═╡ 9dd26db3-e443-46f3-8e18-21eb37b4d5b6 begin # dradt = diff(ra)./step(ts).*PlanetOrbits.year2days # ddecdt = diff(dec)./step(ts).*PlanetOrbits.year2days # app_speed = sqrt.(dradt.^2 .+ ddecdt.^2) # k = kep2cart.(elem, ts) # app_speed = sqrt.(getproperty.(posn_ν, :ẋ).^2 .+ getproperty.(posn_ν, :ẏ).^2) end; # ╔═╡ 00000000-0000-0000-0000-000000000001 PLUTO_PROJECT_TOML_CONTENTS = """ [deps] PlanetOrbits = "e969fe19-5388-4377-ad0e-889377a5e1a0" Plots = "91a5bcdd-55d7-5caf-9e0b-520d859cae80" PlutoUI = "7f904dfe-b85e-4ff6-b463-dae2292396a8" Revise = "295af30f-e4ad-537b-8983-00126c2a3abe" [compat] PlanetOrbits = "~0.2.0" Plots = "~1.25.6" PlutoUI = "~0.7.29" Revise = "~3.3.1" """ # ╔═╡ 00000000-0000-0000-0000-000000000002 PLUTO_MANIFEST_TOML_CONTENTS = """ # This file is machine-generated - editing it directly is not advised julia_version = "1.7.1" manifest_format = "2.0" [[deps.AbstractFFTs]] deps = ["ChainRulesCore", "LinearAlgebra"] git-tree-sha1 = "6f1d9bc1c08f9f4a8fa92e3ea3cb50153a1b40d4" uuid = "621f4979-c628-5d54-868e-fcf4e3e8185c" version = "1.1.0" [[deps.AbstractPlutoDingetjes]] deps = ["Pkg"] git-tree-sha1 = "8eaf9f1b4921132a4cff3f36a1d9ba923b14a481" uuid = "6e696c72-6542-2067-7265-42206c756150" version = "1.1.4" [[deps.Adapt]] deps = ["LinearAlgebra"] git-tree-sha1 = "af92965fb30777147966f58acb05da51c5616b5f" uuid = "79e6a3ab-5dfb-504d-930d-738a2a938a0e" version = "3.3.3" [[deps.ArgTools]] uuid = "0dad84c5-d112-42e6-8d28-ef12dabb789f" [[deps.ArnoldiMethod]] deps = ["LinearAlgebra", "Random", "StaticArrays"] git-tree-sha1 = "f87e559f87a45bece9c9ed97458d3afe98b1ebb9" uuid = "ec485272-7323-5ecc-a04f-4719b315124d" version = "0.1.0" [[deps.ArrayInterface]] deps = ["Compat", "IfElse", "LinearAlgebra", "Requires", "SparseArrays", "Static"] git-tree-sha1 = "1ee88c4c76caa995a885dc2f22a5d548dfbbc0ba" uuid = "4fba245c-0d91-5ea0-9b3e-6abc04ee57a9" version = "3.2.2" [[deps.Artifacts]] uuid = "56f22d72-fd6d-98f1-02f0-08ddc0907c33" [[deps.AstroLib]] deps = ["Dates", "DelimitedFiles", "LinearAlgebra", "Printf", "StaticArrays"] git-tree-sha1 = "283b723fa46dcfdaa758aa66e1b28fb25104ba1b" uuid = "c7932e45-9af1-51e7-9da9-f004cd3a462b" version = "0.4.1" [[deps.AstroTime]] deps = ["Dates", "EarthOrientation", "ItemGraphs", "LeapSeconds", "MacroTools", "MuladdMacro", "Reexport"] git-tree-sha1 = "b3217075a2453321b304746f64311e748f9725a7" uuid = "c61b5328-d09d-5e37-a9a8-0eb41c39009c" version = "0.7.0" [[deps.AxisAlgorithms]] deps = ["LinearAlgebra", "Random", "SparseArrays", "WoodburyMatrices"] git-tree-sha1 = "66771c8d21c8ff5e3a93379480a2307ac36863f7" uuid = "13072b0f-2c55-5437-9ae7-d433b7a33950" version = "1.0.1" [[deps.AxisArrays]] deps = ["Dates", "IntervalSets", "IterTools", "RangeArrays"] git-tree-sha1 = "d127d5e4d86c7680b20c35d40b503c74b9a39b5e" uuid = "39de3d68-74b9-583c-8d2d-e117c070f3a9" version = "0.4.4" [[deps.Base64]] uuid = "2a0f44e3-6c83-55bd-87e4-b1978d98bd5f" [[deps.Bzip2_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"] git-tree-sha1 = "19a35467a82e236ff51bc17a3a44b69ef35185a2" uuid = "6e34b625-4abd-537c-b88f-471c36dfa7a0" version = "1.0.8+0" [[deps.CEnum]] git-tree-sha1 = "215a9aa4a1f23fbd05b92769fdd62559488d70e9" uuid = "fa961155-64e5-5f13-b03f-caf6b980ea82" version = "0.4.1" [[deps.CFITSIO]] deps = ["CFITSIO_jll"] git-tree-sha1 = "4379a2dac795014534b9895a45889aa658fca213" uuid = "3b1b4be9-1499-4b22-8d78-7db3344d1961" version = "1.4.0" [[deps.CFITSIO_jll]] deps = ["Artifacts", "JLLWrappers", "LibCURL_jll", "Libdl", "Pkg"] git-tree-sha1 = "2fabb5fc48d185d104ca7ed7444b475705993447" uuid = "b3e40c51-02ae-5482-8a39-3ace5868dcf4" version = "3.49.1+0" [[deps.Cairo_jll]] deps = ["Artifacts", "Bzip2_jll", "Fontconfig_jll", "FreeType2_jll", "Glib_jll", "JLLWrappers", "LZO_jll", "Libdl", "Pixman_jll", "Pkg", "Xorg_libXext_jll", "Xorg_libXrender_jll", "Zlib_jll", "libpng_jll"] git-tree-sha1 = "4b859a208b2397a7a623a03449e4636bdb17bcf2" uuid = "83423d85-b0ee-5818-9007-b63ccbeb887a" version = "1.16.1+1" [[deps.Calculus]] deps = ["LinearAlgebra"] git-tree-sha1 = "f641eb0a4f00c343bbc32346e1217b86f3ce9dad" uuid = "49dc2e85-a5d0-5ad3-a950-438e2897f1b9" version = "0.5.1" [[deps.CatIndices]] deps = ["CustomUnitRanges", "OffsetArrays"] git-tree-sha1 = "a0f80a09780eed9b1d106a1bf62041c2efc995bc" uuid = "aafaddc9-749c-510e-ac4f-586e18779b91" version = "0.2.2" [[deps.ChainRulesCore]] deps = ["Compat", "LinearAlgebra", "SparseArrays"] git-tree-sha1 = "926870acb6cbcf029396f2f2de030282b6bc1941" uuid = "d360d2e6-b24c-11e9-a2a3-2a2ae2dbcce4" version = "1.11.4" [[deps.ChangesOfVariables]] deps = ["ChainRulesCore", "LinearAlgebra", "Test"] git-tree-sha1 = "bf98fa45a0a4cee295de98d4c1462be26345b9a1" uuid = "9e997f8a-9a97-42d5-a9f1-ce6bfc15e2c0" version = "0.1.2" [[deps.Clustering]] deps = ["Distances", "LinearAlgebra", "NearestNeighbors", "Printf", "SparseArrays", "Statistics", "StatsBase"] git-tree-sha1 = "75479b7df4167267d75294d14b58244695beb2ac" uuid = "aaaa29a8-35af-508c-8bc3-b662a17a0fe5" version = "0.14.2" [[deps.CodeTracking]] deps = ["InteractiveUtils", "UUIDs"] git-tree-sha1 = "9aa8a5ebb6b5bf469a7e0e2b5202cf6f8c291104" uuid = "da1fd8a2-8d9e-5ec2-8556-3022fb5608a2" version = "1.0.6" [[deps.ColorSchemes]] deps = ["ColorTypes", "Colors", "FixedPointNumbers", "Random"] git-tree-sha1 = "6b6f04f93710c71550ec7e16b650c1b9a612d0b6" uuid = "35d6a980-a343-548e-a6ea-1d62b119f2f4" version = "3.16.0" [[deps.ColorTypes]] deps = ["FixedPointNumbers", "Random"] git-tree-sha1 = "024fe24d83e4a5bf5fc80501a314ce0d1aa35597" uuid = "3da002f7-5984-5a60-b8a6-cbb66c0b333f" version = "0.11.0" [[deps.ColorVectorSpace]] deps = ["ColorTypes", "FixedPointNumbers", "LinearAlgebra", "SpecialFunctions", "Statistics", "TensorCore"] git-tree-sha1 = "3f1f500312161f1ae067abe07d13b40f78f32e07" uuid = "c3611d14-8923-5661-9e6a-0046d554d3a4" version = "0.9.8" [[deps.Colors]] deps = ["ColorTypes", "FixedPointNumbers", "Reexport"] git-tree-sha1 = "417b0ed7b8b838aa6ca0a87aadf1bb9eb111ce40" uuid = "5ae59095-9a9b-59fe-a467-6f913c188581" version = "0.12.8" [[deps.Compat]] deps = ["Base64", "Dates", "DelimitedFiles", "Distributed", "InteractiveUtils", "LibGit2", "Libdl", "LinearAlgebra", "Markdown", "Mmap", "Pkg", "Printf", "REPL", "Random", "SHA", "Serialization", "SharedArrays", "Sockets", "SparseArrays", "Statistics", "Test", "UUIDs", "Unicode"] git-tree-sha1 = "44c37b4636bc54afac5c574d2d02b625349d6582" uuid = "34da2185-b29b-5c13-b0c7-acf172513d20" version = "3.41.0" [[deps.CompilerSupportLibraries_jll]] deps = ["Artifacts", "Libdl"] uuid = "e66e0078-7015-5450-92f7-15fbd957f2ae" [[deps.ComponentArrays]] deps = ["ArrayInterface", "LinearAlgebra", "Requires"] git-tree-sha1 = "76495e7a7e47abc3771d70c782d5f6e66f114d36" uuid = "b0b7db55-cfe3-40fc-9ded-d10e2dbeff66" version = "0.10.5" [[deps.ComputationalResources]] git-tree-sha1 = "52cb3ec90e8a8bea0e62e275ba577ad0f74821f7" uuid = "ed09eef8-17a6-5b46-8889-db040fac31e3" version = "0.3.2" [[deps.Contour]] deps = ["StaticArrays"] git-tree-sha1 = "9f02045d934dc030edad45944ea80dbd1f0ebea7" uuid = "d38c429a-6771-53c6-b99e-75d170b6e991" version = "0.5.7" [[deps.CoordinateTransformations]] deps = ["LinearAlgebra", "StaticArrays"] git-tree-sha1 = "681ea870b918e7cff7111da58791d7f718067a19" uuid = "150eb455-5306-5404-9cee-2592286d6298" version = "0.6.2" [[deps.CustomUnitRanges]] git-tree-sha1 = "1a3f97f907e6dd8983b744d2642651bb162a3f7a" uuid = "dc8bdbbb-1ca9-579f-8c36-e416f6a65cce" version = "1.0.2" [[deps.DataAPI]] git-tree-sha1 = "cc70b17275652eb47bc9e5f81635981f13cea5c8" uuid = "9a962f9c-6df0-11e9-0e5d-c546b8b5ee8a" version = "1.9.0" [[deps.DataStructures]] deps = ["Compat", "InteractiveUtils", "OrderedCollections"] git-tree-sha1 = "3daef5523dd2e769dad2365274f760ff5f282c7d" uuid = "864edb3b-99cc-5e75-8d2d-829cb0a9cfe8" version = "0.18.11" [[deps.DataValueInterfaces]] git-tree-sha1 = "bfc1187b79289637fa0ef6d4436ebdfe6905cbd6" uuid = "e2d170a0-9d28-54be-80f0-106bbe20a464" version = "1.0.0" [[deps.Dates]] deps = ["Printf"] uuid = "ade2ca70-3891-5945-98fb-dc099432e06a" [[deps.DelimitedFiles]] deps = ["Mmap"] uuid = "8bb1440f-4735-579b-a4ab-409b98df4dab" [[deps.DensityInterface]] deps = ["InverseFunctions", "Test"] git-tree-sha1 = "80c3e8639e3353e5d2912fb3a1916b8455e2494b" uuid = "b429d917-457f-4dbc-8f4c-0cc954292b1d" version = "0.4.0" [[deps.DirectImages]] deps = ["AxisArrays", "ColorSchemes", "CoordinateTransformations", "Distributions", "FITSIO", "ImageAxes", "ImageCore", "ImageFiltering", "ImageMetadata", "ImageShow", "ImageTransformations", "Images", "Interpolations", "LinearAlgebra", "Measures", "OffsetArrays", "OrderedCollections", "Printf", "RecipesBase", "Requires", "StaticArrays", "Statistics", "StatsBase"] git-tree-sha1 = "a71357416cc81fed1d523fabc8cf5733b2068d73" uuid = "d0ffc639-4e6f-47d5-8eab-0368fa958583" version = "0.3.1" [[deps.PlanetOrbits]] deps = ["AstroLib", "AstroTime", "ChainRulesCore", "ComponentArrays", "CoordinateTransformations", "Dates", "DirectImages", "Distributions", "KissMCMC", "LinearAlgebra", "NamedTupleTools", "Random", "RecipesBase", "Requires", "StaticArrays"] git-tree-sha1 = "7e381d76b2f1545a927abac05e4a467414beabb3" uuid = "e969fe19-5388-4377-ad0e-889377a5e1a0" version = "0.2.0" [[deps.Distances]] deps = ["LinearAlgebra", "SparseArrays", "Statistics", "StatsAPI"] git-tree-sha1 = "3258d0659f812acde79e8a74b11f17ac06d0ca04" uuid = "b4f34e82-e78d-54a5-968a-f98e89d6e8f7" version = "0.10.7" [[deps.Distributed]] deps = ["Random", "Serialization", "Sockets"] uuid = "8ba89e20-285c-5b6f-9357-94700520ee1b" [[deps.Distributions]] deps = ["ChainRulesCore", "DensityInterface", "FillArrays", "LinearAlgebra", "PDMats", "Printf", "QuadGK", "Random", "SparseArrays", "SpecialFunctions", "Statistics", "StatsBase", "StatsFuns", "Test"] git-tree-sha1 = "97e9e9d0b8303bae296f3bdd1c2b0065dcb7e7ef" uuid = "31c24e10-a181-5473-b8eb-7969acd0382f" version = "0.25.38" [[deps.DocStringExtensions]] deps = ["LibGit2"] git-tree-sha1 = "b19534d1895d702889b219c382a6e18010797f0b" uuid = "ffbed154-4ef7-542d-bbb7-c09d3a79fcae" version = "0.8.6" [[deps.Downloads]] deps = ["ArgTools", "LibCURL", "NetworkOptions"] uuid = "f43a241f-c20a-4ad4-852c-f6b1247861c6" [[deps.DualNumbers]] deps = ["Calculus", "NaNMath", "SpecialFunctions"] git-tree-sha1 = "84f04fe68a3176a583b864e492578b9466d87f1e" uuid = "fa6b7ba4-c1ee-5f82-b5fc-ecf0adba8f74" version = "0.6.6" [[deps.EarCut_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"] git-tree-sha1 = "3f3a2501fa7236e9b911e0f7a588c657e822bb6d" uuid = "5ae413db-bbd1-5e63-b57d-d24a61df00f5" version = "2.2.3+0" [[deps.EarthOrientation]] deps = ["Dates", "DelimitedFiles", "LeapSeconds", "OptionalData", "RemoteFiles"] git-tree-sha1 = "d1081912769ed7d6712e1757059c7f67762ff36f" uuid = "732a3c5d-d6c0-58bc-adb1-1b51709a25e2" version = "0.7.1" [[deps.EllipsisNotation]] deps = ["ArrayInterface"] git-tree-sha1 = "3fe985505b4b667e1ae303c9ca64d181f09d5c05" uuid = "da5c29d0-fa7d-589e-88eb-ea29b0a81949" version = "1.1.3" [[deps.Expat_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"] git-tree-sha1 = "b3bfd02e98aedfa5cf885665493c5598c350cd2f" uuid = "2e619515-83b5-522b-bb60-26c02a35a201" version = "2.2.10+0" [[deps.FFMPEG]] deps = ["FFMPEG_jll"] git-tree-sha1 = "b57e3acbe22f8484b4b5ff66a7499717fe1a9cc8" uuid = "c87230d0-a227-11e9-1b43-d7ebe4e7570a" version = "0.4.1" [[deps.FFMPEG_jll]] deps = ["Artifacts", "Bzip2_jll", "FreeType2_jll", "FriBidi_jll", "JLLWrappers", "LAME_jll", "Libdl", "Ogg_jll", "OpenSSL_jll", "Opus_jll", "Pkg", "Zlib_jll", "libass_jll", "libfdk_aac_jll", "libvorbis_jll", "x264_jll", "x265_jll"] git-tree-sha1 = "d8a578692e3077ac998b50c0217dfd67f21d1e5f" uuid = "b22a6f82-2f65-5046-a5b2-351ab43fb4e5" version = "4.4.0+0" [[deps.FFTViews]] deps = ["CustomUnitRanges", "FFTW"] git-tree-sha1 = "cbdf14d1e8c7c8aacbe8b19862e0179fd08321c2" uuid = "4f61f5a4-77b1-5117-aa51-3ab5ef4ef0cd" version = "0.3.2" [[deps.FFTW]] deps = ["AbstractFFTs", "FFTW_jll", "LinearAlgebra", "MKL_jll", "Preferences", "Reexport"] git-tree-sha1 = "463cb335fa22c4ebacfd1faba5fde14edb80d96c" uuid = "7a1cc6ca-52ef-59f5-83cd-3a7055c09341" version = "1.4.5" [[deps.FFTW_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"] git-tree-sha1 = "c6033cc3892d0ef5bb9cd29b7f2f0331ea5184ea" uuid = "f5851436-0d7a-5f13-b9de-f02708fd171a" version = "3.3.10+0" [[deps.FITSIO]] deps = ["CFITSIO", "Printf", "Reexport", "Tables"] git-tree-sha1 = "e6033823834ec0070125120d4d4a1234f1826a47" uuid = "525bcba6-941b-5504-bd06-fd0dc1a4d2eb" version = "0.16.12" [[deps.FileIO]] deps = ["Pkg", "Requires", "UUIDs"] git-tree-sha1 = "67551df041955cc6ee2ed098718c8fcd7fc7aebe" uuid = "5789e2e9-d7fb-5bc7-8068-2c6fae9b9549" version = "1.12.0" [[deps.FileWatching]] uuid = "7b1f6079-737a-58dc-b8bc-7a2ca5c1b5ee" [[deps.FillArrays]] deps = ["LinearAlgebra", "Random", "SparseArrays", "Statistics"] git-tree-sha1 = "8756f9935b7ccc9064c6eef0bff0ad643df733a3" uuid = "1a297f60-69ca-5386-bcde-b61e274b549b" version = "0.12.7" [[deps.FixedPointNumbers]] deps = ["Statistics"] git-tree-sha1 = "335bfdceacc84c5cdf16aadc768aa5ddfc5383cc" uuid = "53c48c17-4a7d-5ca2-90c5-79b7896eea93" version = "0.8.4" [[deps.Fontconfig_jll]] deps = ["Artifacts", "Bzip2_jll", "Expat_jll", "FreeType2_jll", "JLLWrappers", "Libdl", "Libuuid_jll", "Pkg", "Zlib_jll"] git-tree-sha1 = "21efd19106a55620a188615da6d3d06cd7f6ee03" uuid = "a3f928ae-7b40-5064-980b-68af3947d34b" version = "2.13.93+0" [[deps.Formatting]] deps = ["Printf"] git-tree-sha1 = "8339d61043228fdd3eb658d86c926cb282ae72a8" uuid = "59287772-0a20-5a39-b81b-1366585eb4c0" version = "0.4.2" [[deps.FreeType2_jll]] deps = ["Artifacts", "Bzip2_jll", "JLLWrappers", "Libdl", "Pkg", "Zlib_jll"] git-tree-sha1 = "87eb71354d8ec1a96d4a7636bd57a7347dde3ef9" uuid = "d7e528f0-a631-5988-bf34-fe36492bcfd7" version = "2.10.4+0" [[deps.FriBidi_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"] git-tree-sha1 = "aa31987c2ba8704e23c6c8ba8a4f769d5d7e4f91" uuid = "559328eb-81f9-559d-9380-de523a88c83c" version = "1.0.10+0" [[deps.GLFW_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Libglvnd_jll", "Pkg", "Xorg_libXcursor_jll", "Xorg_libXi_jll", "Xorg_libXinerama_jll", "Xorg_libXrandr_jll"] git-tree-sha1 = "0c603255764a1fa0b61752d2bec14cfbd18f7fe8" uuid = "0656b61e-2033-5cc2-a64a-77c0f6c09b89" version = "3.3.5+1" [[deps.GR]] deps = ["Base64", "DelimitedFiles", "GR_jll", "HTTP", "JSON", "Libdl", "LinearAlgebra", "Pkg", "Printf", "Random", "RelocatableFolders", "Serialization", "Sockets", "Test", "UUIDs"] git-tree-sha1 = "4a740db447aae0fbeb3ee730de1afbb14ac798a1" uuid = "28b8d3ca-fb5f-59d9-8090-bfdbd6d07a71" version = "0.63.1" [[deps.GR_jll]] deps = ["Artifacts", "Bzip2_jll", "Cairo_jll", "FFMPEG_jll", "Fontconfig_jll", "GLFW_jll", "JLLWrappers", "JpegTurbo_jll", "Libdl", "Libtiff_jll", "Pixman_jll", "Pkg", "Qt5Base_jll", "Zlib_jll", "libpng_jll"] git-tree-sha1 = "aa22e1ee9e722f1da183eb33370df4c1aeb6c2cd" uuid = "d2c73de3-f751-5644-a686-071e5b155ba9" version = "0.63.1+0" [[deps.GeometryBasics]] deps = ["EarCut_jll", "IterTools", "LinearAlgebra", "StaticArrays", "StructArrays", "Tables"] git-tree-sha1 = "58bcdf5ebc057b085e58d95c138725628dd7453c" uuid = "5c1252a2-5f33-56bf-86c9-59e7332b4326" version = "0.4.1" [[deps.Gettext_jll]] deps = ["Artifacts", "CompilerSupportLibraries_jll", "JLLWrappers", "Libdl", "Libiconv_jll", "Pkg", "XML2_jll"] git-tree-sha1 = "9b02998aba7bf074d14de89f9d37ca24a1a0b046" uuid = "78b55507-aeef-58d4-861c-77aaff3498b1" version = "0.21.0+0" [[deps.Glib_jll]] deps = ["Artifacts", "Gettext_jll", "JLLWrappers", "Libdl", "Libffi_jll", "Libiconv_jll", "Libmount_jll", "PCRE_jll", "Pkg", "Zlib_jll"] git-tree-sha1 = "a32d672ac2c967f3deb8a81d828afc739c838a06" uuid = "7746bdde-850d-59dc-9ae8-88ece973131d" version = "2.68.3+2" [[deps.Graphics]] deps = ["Colors", "LinearAlgebra", "NaNMath"] git-tree-sha1 = "1c5a84319923bea76fa145d49e93aa4394c73fc2" uuid = "a2bd30eb-e257-5431-a919-1863eab51364" version = "1.1.1" [[deps.Graphite2_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"] git-tree-sha1 = "344bf40dcab1073aca04aa0df4fb092f920e4011" uuid = "3b182d85-2403-5c21-9c21-1e1f0cc25472" version = "1.3.14+0" [[deps.Graphs]] deps = ["ArnoldiMethod", "Compat", "DataStructures", "Distributed", "Inflate", "LinearAlgebra", "Random", "SharedArrays", "SimpleTraits", "SparseArrays", "Statistics"] git-tree-sha1 = "d727758173afef0af878b29ac364a0eca299fc6b" uuid = "86223c79-3864-5bf0-83f7-82e725a168b6" version = "1.5.1" [[deps.Grisu]] git-tree-sha1 = "53bb909d1151e57e2484c3d1b53e19552b887fb2" uuid = "42e2da0e-8278-4e71-bc24-59509adca0fe" version = "1.0.2" [[deps.HTTP]] deps = ["Base64", "Dates", "IniFile", "Logging", "MbedTLS", "NetworkOptions", "Sockets", "URIs"] git-tree-sha1 = "0fa77022fe4b511826b39c894c90daf5fce3334a" uuid = "cd3eb016-35fb-5094-929b-558a96fad6f3" version = "0.9.17" [[deps.HarfBuzz_jll]] deps = ["Artifacts", "Cairo_jll", "Fontconfig_jll", "FreeType2_jll", "Glib_jll", "Graphite2_jll", "JLLWrappers", "Libdl", "Libffi_jll", "Pkg"] git-tree-sha1 = "129acf094d168394e80ee1dc4bc06ec835e510a3" uuid = "2e76f6c2-a576-52d4-95c1-20adfe4de566" version = "2.8.1+1" [[deps.Hyperscript]] deps = ["Test"] git-tree-sha1 = "8d511d5b81240fc8e6802386302675bdf47737b9" uuid = "47d2ed2b-36de-50cf-bf87-49c2cf4b8b91" version = "0.0.4" [[deps.HypertextLiteral]] git-tree-sha1 = "2b078b5a615c6c0396c77810d92ee8c6f470d238" uuid = "ac1192a8-f4b3-4bfe-ba22-af5b92cd3ab2" version = "0.9.3" [[deps.IOCapture]] deps = ["Logging", "Random"] git-tree-sha1 = "f7be53659ab06ddc986428d3a9dcc95f6fa6705a" uuid = "b5f81e59-6552-4d32-b1f0-c071b021bf89" version = "0.2.2" [[deps.IfElse]] git-tree-sha1 = "debdd00ffef04665ccbb3e150747a77560e8fad1" uuid = "615f187c-cbe4-4ef1-ba3b-2fcf58d6d173" version = "0.1.1" [[deps.ImageAxes]] deps = ["AxisArrays", "ImageBase", "ImageCore", "Reexport", "SimpleTraits"] git-tree-sha1 = "c54b581a83008dc7f292e205f4c409ab5caa0f04" uuid = "2803e5a7-5153-5ecf-9a86-9b4c37f5f5ac" version = "0.6.10" [[deps.ImageBase]] deps = ["ImageCore", "Reexport"] git-tree-sha1 = "b51bb8cae22c66d0f6357e3bcb6363145ef20835" uuid = "c817782e-172a-44cc-b673-b171935fbb9e" version = "0.1.5" [[deps.ImageContrastAdjustment]] deps = ["ImageCore", "ImageTransformations", "Parameters"] git-tree-sha1 = "0d75cafa80cf22026cea21a8e6cf965295003edc" uuid = "f332f351-ec65-5f6a-b3d1-319c6670881a" version = "0.3.10" [[deps.ImageCore]] deps = ["AbstractFFTs", "ColorVectorSpace", "Colors", "FixedPointNumbers", "Graphics", "MappedArrays", "MosaicViews", "OffsetArrays", "PaddedViews", "Reexport"] git-tree-sha1 = "9a5c62f231e5bba35695a20988fc7cd6de7eeb5a" uuid = "a09fc81d-aa75-5fe9-8630-4744c3626534" version = "0.9.3" [[deps.ImageDistances]] deps = ["Distances", "ImageCore", "ImageMorphology", "LinearAlgebra", "Statistics"] git-tree-sha1 = "7a20463713d239a19cbad3f6991e404aca876bda" uuid = "51556ac3-7006-55f5-8cb3-34580c88182d" version = "0.2.15" [[deps.ImageFiltering]] deps = ["CatIndices", "ComputationalResources", "DataStructures", "FFTViews", "FFTW", "ImageBase", "ImageCore", "LinearAlgebra", "OffsetArrays", "Reexport", "SparseArrays", "StaticArrays", "Statistics", "TiledIteration"] git-tree-sha1 = "15bd05c1c0d5dbb32a9a3d7e0ad2d50dd6167189" uuid = "6a3955dd-da59-5b1f-98d4-e7296123deb5" version = "0.7.1" [[deps.ImageIO]] deps = ["FileIO", "Netpbm", "OpenEXR", "PNGFiles", "QOI", "Sixel", "TiffImages", "UUIDs"] git-tree-sha1 = "816fc866edd8307a6e79a575e6585bfab8cef27f" uuid = "82e4d734-157c-48bb-816b-45c225c6df19" version = "0.6.0" [[deps.ImageMagick]] deps = ["FileIO", "ImageCore", "ImageMagick_jll", "InteractiveUtils", "Libdl", "Pkg", "Random"] git-tree-sha1 = "5bc1cb62e0c5f1005868358db0692c994c3a13c6" uuid = "6218d12a-5da1-5696-b52f-db25d2ecc6d1" version = "1.2.1" [[deps.ImageMagick_jll]] deps = ["Artifacts", "JLLWrappers", "JpegTurbo_jll", "Libdl", "Libtiff_jll", "Pkg", "Zlib_jll", "libpng_jll"] git-tree-sha1 = "d43c324d044dc8256e1470a561ee7a0cf5e122c9" uuid = "c73af94c-d91f-53ed-93a7-00f77d67a9d7" version = "6.9.12+1" [[deps.ImageMetadata]] deps = ["AxisArrays", "ImageAxes", "ImageBase", "ImageCore"] git-tree-sha1 = "36cbaebed194b292590cba2593da27b34763804a" uuid = "bc367c6b-8a6b-528e-b4bd-a4b897500b49" version = "0.9.8" [[deps.ImageMorphology]] deps = ["ImageCore", "LinearAlgebra", "Requires", "TiledIteration"] git-tree-sha1 = "5581e18a74a5838bd919294a7138c2663d065238" uuid = "787d08f9-d448-5407-9aad-5290dd7ab264" version = "0.3.0" [[deps.ImageQualityIndexes]] deps = ["ImageContrastAdjustment", "ImageCore", "ImageDistances", "ImageFiltering", "OffsetArrays", "Statistics"] git-tree-sha1 = "1d2d73b14198d10f7f12bf7f8481fd4b3ff5cd61" uuid = "2996bd0c-7a13-11e9-2da2-2f5ce47296a9" version = "0.3.0" [[deps.ImageSegmentation]] deps = ["Clustering", "DataStructures", "Distances", "Graphs", "ImageCore", "ImageFiltering", "ImageMorphology", "LinearAlgebra", "MetaGraphs", "RegionTrees", "SimpleWeightedGraphs", "StaticArrays", "Statistics"] git-tree-sha1 = "36832067ea220818d105d718527d6ed02385bf22" uuid = "80713f31-8817-5129-9cf8-209ff8fb23e1" version = "1.7.0" [[deps.ImageShow]] deps = ["Base64", "FileIO", "ImageBase", "ImageCore", "OffsetArrays", "StackViews"] git-tree-sha1 = "d0ac64c9bee0aed6fdbb2bc0e5dfa9a3a78e3acc" uuid = "4e3cecfd-b093-5904-9786-8bbb286a6a31" version = "0.3.3" [[deps.ImageTransformations]] deps = ["AxisAlgorithms", "ColorVectorSpace", "CoordinateTransformations", "ImageBase", "ImageCore", "Interpolations", "OffsetArrays", "Rotations", "StaticArrays"] git-tree-sha1 = "b4b161abc8252d68b13c5cc4a5f2ba711b61fec5" uuid = "02fcd773-0e25-5acc-982a-7f6622650795" version = "0.9.3" [[deps.Images]] deps = ["Base64", "FileIO", "Graphics", "ImageAxes", "ImageBase", "ImageContrastAdjustment", "ImageCore", "ImageDistances", "ImageFiltering", "ImageIO", "ImageMagick", "ImageMetadata", "ImageMorphology", "ImageQualityIndexes", "ImageSegmentation", "ImageShow", "ImageTransformations", "IndirectArrays", "IntegralArrays", "Random", "Reexport", "SparseArrays", "StaticArrays", "Statistics", "StatsBase", "TiledIteration"] git-tree-sha1 = "11d268adba1869067620659e7cdf07f5e54b6c76" uuid = "916415d5-f1e6-5110-898d-aaa5f9f070e0" version = "0.25.1" [[deps.Imath_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"] git-tree-sha1 = "87f7662e03a649cffa2e05bf19c303e168732d3e" uuid = "905a6f67-0a94-5f89-b386-d35d92009cd1" version = "3.1.2+0" [[deps.IndirectArrays]] git-tree-sha1 = "012e604e1c7458645cb8b436f8fba789a51b257f" uuid = "9b13fd28-a010-5f03-acff-a1bbcff69959" version = "1.0.0" [[deps.Inflate]] git-tree-sha1 = "f5fc07d4e706b84f72d54eedcc1c13d92fb0871c" uuid = "d25df0c9-e2be-5dd7-82c8-3ad0b3e990b9" version = "0.1.2" [[deps.IniFile]] deps = ["Test"] git-tree-sha1 = "098e4d2c533924c921f9f9847274f2ad89e018b8" uuid = "83e8ac13-25f8-5344-8a64-a9f2b223428f" version = "0.5.0" [[deps.IntegralArrays]] deps = ["ColorTypes", "FixedPointNumbers", "IntervalSets"] git-tree-sha1 = "00019244715621f473d399e4e1842e479a69a42e" uuid = "1d092043-8f09-5a30-832f-7509e371ab51" version = "0.1.2" [[deps.IntelOpenMP_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"] git-tree-sha1 = "d979e54b71da82f3a65b62553da4fc3d18c9004c" uuid = "1d5cc7b8-4909-519e-a0f8-d0f5ad9712d0" version = "2018.0.3+2" [[deps.InteractiveUtils]] deps = ["Markdown"] uuid = "b77e0a4c-d291-57a0-90e8-8db25a27a240" [[deps.Interpolations]] deps = ["AxisAlgorithms", "ChainRulesCore", "LinearAlgebra", "OffsetArrays", "Random", "Ratios", "Requires", "SharedArrays", "SparseArrays", "StaticArrays", "WoodburyMatrices"] git-tree-sha1 = "b15fc0a95c564ca2e0a7ae12c1f095ca848ceb31" uuid = "a98d9a8b-a2ab-59e6-89dd-64a1c18fca59" version = "0.13.5" [[deps.IntervalSets]] deps = ["Dates", "EllipsisNotation", "Statistics"] git-tree-sha1 = "3cc368af3f110a767ac786560045dceddfc16758" uuid = "8197267c-284f-5f27-9208-e0e47529a953" version = "0.5.3" [[deps.InverseFunctions]] deps = ["Test"] git-tree-sha1 = "a7254c0acd8e62f1ac75ad24d5db43f5f19f3c65" uuid = "3587e190-3f89-42d0-90ee-14403ec27112" version = "0.1.2" [[deps.IrrationalConstants]] git-tree-sha1 = "7fd44fd4ff43fc60815f8e764c0f352b83c49151" uuid = "92d709cd-6900-40b7-9082-c6be49f344b6" version = "0.1.1" [[deps.ItemGraphs]] deps = ["LightGraphs"] git-tree-sha1 = "e363e8bbeb44dc32c711a9c3f7e7323601050727" uuid = "d5eda45b-7e79-5788-9687-2c6ab7b96158" version = "0.4.0" [[deps.IterTools]] git-tree-sha1 = "fa6287a4469f5e048d763df38279ee729fbd44e5" uuid = "c8e1da08-722c-5040-9ed9-7db0dc04731e" version = "1.4.0" [[deps.IteratorInterfaceExtensions]] git-tree-sha1 = "a3f24677c21f5bbe9d2a714f95dcd58337fb2856" uuid = "82899510-4779-5014-852e-03e436cf321d" version = "1.0.0" [[deps.JLD2]] deps = ["DataStructures", "FileIO", "MacroTools", "Mmap", "Pkg", "Printf", "Reexport", "TranscodingStreams", "UUIDs"] git-tree-sha1 = "09ef0c32a26f80b465d808a1ba1e85775a282c97" uuid = "033835bb-8acc-5ee8-8aae-3f567f8a3819" version = "0.4.17" [[deps.JLLWrappers]] deps = ["Preferences"] git-tree-sha1 = "22df5b96feef82434b07327e2d3c770a9b21e023" uuid = "692b3bcd-3c85-4b1f-b108-f13ce0eb3210" version = "1.4.0" [[deps.JSON]] deps = ["Dates", "Mmap", "Parsers", "Unicode"] git-tree-sha1 = "8076680b162ada2a031f707ac7b4953e30667a37" uuid = "682c06a0-de6a-54ab-a142-c8b1cf79cde6" version = "0.21.2" [[deps.JpegTurbo_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"] git-tree-sha1 = "d735490ac75c5cb9f1b00d8b5509c11984dc6943" uuid = "aacddb02-875f-59d6-b918-886e6ef4fbf8" version = "2.1.0+0" [[deps.JuliaInterpreter]] deps = ["CodeTracking", "InteractiveUtils", "Random", "UUIDs"] git-tree-sha1 = "a2366b16704ffe78be1831341e6799ab2f4f07d2" uuid = "aa1ae85d-cabe-5617-a682-6adf51b2e16a" version = "0.9.0" [[deps.KissMCMC]] deps = ["ProgressMeter", "StaticArrays", "Statistics"] git-tree-sha1 = "2a650312bcf33cda265a392f0681b6dbaedbb2b8" uuid = "79d62d8d-4dfd-5781-bc85-ce78e0ac132a" version = "0.2.1" [[deps.LAME_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"] git-tree-sha1 = "f6250b16881adf048549549fba48b1161acdac8c" uuid = "c1c5ebd0-6772-5130-a774-d5fcae4a789d" version = "3.100.1+0" [[deps.LZO_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"] git-tree-sha1 = "e5b909bcf985c5e2605737d2ce278ed791b89be6" uuid = "dd4b983a-f0e5-5f8d-a1b7-129d4a5fb1ac" version = "2.10.1+0" [[deps.LaTeXStrings]] git-tree-sha1 = "f2355693d6778a178ade15952b7ac47a4ff97996" uuid = "b964fa9f-0449-5b57-a5c2-d3ea65f4040f" version = "1.3.0" [[deps.Latexify]] deps = ["Formatting", "InteractiveUtils", "LaTeXStrings", "MacroTools", "Markdown", "Printf", "Requires"] git-tree-sha1 = "a8f4f279b6fa3c3c4f1adadd78a621b13a506bce" uuid = "23fbe1c1-3f47-55db-b15f-69d7ec21a316" version = "0.15.9" [[deps.LazyArtifacts]] deps = ["Artifacts", "Pkg"] uuid = "4af54fe1-eca0-43a8-85a7-787d91b784e3" [[deps.LeapSeconds]] deps = ["Dates"] git-tree-sha1 = "0e5be6875ee72468bc12221d32ba1021c5d224fe" uuid = "2f5f767c-a11e-5269-a972-637d4b97c32d" version = "1.1.0" [[deps.LibCURL]] deps = ["LibCURL_jll", "MozillaCACerts_jll"] uuid = "b27032c2-a3e7-50c8-80cd-2d36dbcbfd21" [[deps.LibCURL_jll]] deps = ["Artifacts", "LibSSH2_jll", "Libdl", "MbedTLS_jll", "Zlib_jll", "nghttp2_jll"] uuid = "deac9b47-8bc7-5906-a0fe-35ac56dc84c0" [[deps.LibGit2]] deps = ["Base64", "NetworkOptions", "Printf", "SHA"] uuid = "76f85450-5226-5b5a-8eaa-529ad045b433" [[deps.LibSSH2_jll]] deps = ["Artifacts", "Libdl", "MbedTLS_jll"] uuid = "29816b5a-b9ab-546f-933c-edad1886dfa8" [[deps.Libdl]] uuid = "8f399da3-3557-5675-b5ff-fb832c97cbdb" [[deps.Libffi_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"] git-tree-sha1 = "0b4a5d71f3e5200a7dff793393e09dfc2d874290" uuid = "e9f186c6-92d2-5b65-8a66-fee21dc1b490" version = "3.2.2+1" [[deps.Libgcrypt_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Libgpg_error_jll", "Pkg"] git-tree-sha1 = "64613c82a59c120435c067c2b809fc61cf5166ae" uuid = "d4300ac3-e22c-5743-9152-c294e39db1e4" version = "1.8.7+0" [[deps.Libglvnd_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg", "Xorg_libX11_jll", "Xorg_libXext_jll"] git-tree-sha1 = "7739f837d6447403596a75d19ed01fd08d6f56bf" uuid = "7e76a0d4-f3c7-5321-8279-8d96eeed0f29" version = "1.3.0+3" [[deps.Libgpg_error_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"] git-tree-sha1 = "c333716e46366857753e273ce6a69ee0945a6db9" uuid = "7add5ba3-2f88-524e-9cd5-f83b8a55f7b8" version = "1.42.0+0" [[deps.Libiconv_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"] git-tree-sha1 = "42b62845d70a619f063a7da093d995ec8e15e778" uuid = "94ce4f54-9a6c-5748-9c1c-f9c7231a4531" version = "1.16.1+1" [[deps.Libmount_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"] git-tree-sha1 = "9c30530bf0effd46e15e0fdcf2b8636e78cbbd73" uuid = "4b2f31a3-9ecc-558c-b454-b3730dcb73e9" version = "2.35.0+0" [[deps.Libtiff_jll]] deps = ["Artifacts", "JLLWrappers", "JpegTurbo_jll", "Libdl", "Pkg", "Zlib_jll", "Zstd_jll"] git-tree-sha1 = "340e257aada13f95f98ee352d316c3bed37c8ab9" uuid = "89763e89-9b03-5906-acba-b20f662cd828" version = "4.3.0+0" [[deps.Libuuid_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"] git-tree-sha1 = "7f3efec06033682db852f8b3bc3c1d2b0a0ab066" uuid = "38a345b3-de98-5d2b-a5d3-14cd9215e700" version = "2.36.0+0" [[deps.LightGraphs]] deps = ["ArnoldiMethod", "DataStructures", "Distributed", "Inflate", "LinearAlgebra", "Random", "SharedArrays", "SimpleTraits", "SparseArrays", "Statistics"] git-tree-sha1 = "432428df5f360964040ed60418dd5601ecd240b6" uuid = "093fc24a-ae57-5d10-9952-331d41423f4d" version = "1.3.5" [[deps.LinearAlgebra]] deps = ["Libdl", "libblastrampoline_jll"] uuid = "37e2e46d-f89d-539d-b4ee-838fcccc9c8e" [[deps.LogExpFunctions]] deps = ["ChainRulesCore", "ChangesOfVariables", "DocStringExtensions", "InverseFunctions", "IrrationalConstants", "LinearAlgebra"] git-tree-sha1 = "e5718a00af0ab9756305a0392832c8952c7426c1" uuid = "2ab3a3ac-af41-5b50-aa03-7779005ae688" version = "0.3.6" [[deps.Logging]] uuid = "56ddb016-857b-54e1-b83d-db4d58db5568" [[deps.LoweredCodeUtils]] deps = ["JuliaInterpreter"] git-tree-sha1 = "f46e8f4e38882b32dcc11c8d31c131d556063f39" uuid = "6f1432cf-f94c-5a45-995e-cdbf5db27b0b" version = "2.2.0" [[deps.MKL_jll]] deps = ["Artifacts", "IntelOpenMP_jll", "JLLWrappers", "LazyArtifacts", "Libdl", "Pkg"] git-tree-sha1 = "5455aef09b40e5020e1520f551fa3135040d4ed0" uuid = "856f044c-d86e-5d09-b602-aeab76dc8ba7" version = "2021.1.1+2" [[deps.MacroTools]] deps = ["Markdown", "Random"] git-tree-sha1 = "3d3e902b31198a27340d0bf00d6ac452866021cf" uuid = "1914dd2f-81c6-5fcd-8719-6d5c9610ff09" version = "0.5.9" [[deps.MappedArrays]] git-tree-sha1 = "e8b359ef06ec72e8c030463fe02efe5527ee5142" uuid = "dbb5928d-eab1-5f90-85c2-b9b0edb7c900" version = "0.4.1" [[deps.Markdown]] deps = ["Base64"] uuid = "d6f4376e-aef5-505a-96c1-9c027394607a" [[deps.MbedTLS]] deps = ["Dates", "MbedTLS_jll", "Random", "Sockets"] git-tree-sha1 = "1c38e51c3d08ef2278062ebceade0e46cefc96fe" uuid = "739be429-bea8-5141-9913-cc70e7f3736d" version = "1.0.3" [[deps.MbedTLS_jll]] deps = ["Artifacts", "Libdl"] uuid = "c8ffd9c3-330d-5841-b78e-0817d7145fa1" [[deps.Measures]] git-tree-sha1 = "e498ddeee6f9fdb4551ce855a46f54dbd900245f" uuid = "442fdcdd-2543-5da2-b0f3-8c86c306513e" version = "0.3.1" [[deps.MetaGraphs]] deps = ["Graphs", "JLD2", "Random"] git-tree-sha1 = "2af69ff3c024d13bde52b34a2a7d6887d4e7b438" uuid = "626554b9-1ddb-594c-aa3c-2596fe9399a5" version = "0.7.1" [[deps.Missings]] deps = ["DataAPI"] git-tree-sha1 = "bf210ce90b6c9eed32d25dbcae1ebc565df2687f" uuid = "e1d29d7a-bbdc-5cf2-9ac0-f12de2c33e28" version = "1.0.2" [[deps.Mmap]] uuid = "a63ad114-7e13-5084-954f-fe012c677804" [[deps.MosaicViews]] deps = ["MappedArrays", "OffsetArrays", "PaddedViews", "StackViews"] git-tree-sha1 = "b34e3bc3ca7c94914418637cb10cc4d1d80d877d" uuid = "e94cdb99-869f-56ef-bcf0-1ae2bcbe0389" version = "0.3.3" [[deps.MozillaCACerts_jll]] uuid = "14a3606d-f60d-562e-9121-12d972cd8159" [[deps.MuladdMacro]] git-tree-sha1 = "c6190f9a7fc5d9d5915ab29f2134421b12d24a68" uuid = "46d2c3a1-f734-5fdb-9937-b9b9aeba4221" version = "0.2.2" [[deps.NaNMath]] git-tree-sha1 = "f755f36b19a5116bb580de457cda0c140153f283" uuid = "77ba4419-2d1f-58cd-9bb1-8ffee604a2e3" version = "0.3.6" [[deps.NamedTupleTools]] git-tree-sha1 = "63831dcea5e11db1c0925efe5ef5fc01d528c522" uuid = "d9ec5142-1e00-5aa0-9d6a-321866360f50" version = "0.13.7" [[deps.NearestNeighbors]] deps = ["Distances", "StaticArrays"] git-tree-sha1 = "16baacfdc8758bc374882566c9187e785e85c2f0" uuid = "b8a86587-4115-5ab1-83bc-aa920d37bbce" version = "0.4.9" [[deps.Netpbm]] deps = ["FileIO", "ImageCore"] git-tree-sha1 = "18efc06f6ec36a8b801b23f076e3c6ac7c3bf153" uuid = "f09324ee-3d7c-5217-9330-fc30815ba969" version = "1.0.2" [[deps.NetworkOptions]] uuid = "ca575930-c2e3-43a9-ace4-1e988b2c1908" [[deps.OffsetArrays]] deps = ["Adapt"] git-tree-sha1 = "043017e0bdeff61cfbb7afeb558ab29536bbb5ed" uuid = "6fe1bfb0-de20-5000-8ca7-80f57d26f881" version = "1.10.8" [[deps.Ogg_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"] git-tree-sha1 = "887579a3eb005446d514ab7aeac5d1d027658b8f" uuid = "e7412a2a-1a6e-54c0-be00-318e2571c051" version = "1.3.5+1" [[deps.OpenBLAS_jll]] deps = ["Artifacts", "CompilerSupportLibraries_jll", "Libdl"] uuid = "4536629a-c528-5b80-bd46-f80d51c5b363" [[deps.OpenEXR]] deps = ["Colors", "FileIO", "OpenEXR_jll"] git-tree-sha1 = "327f53360fdb54df7ecd01e96ef1983536d1e633" uuid = "52e1d378-f018-4a11-a4be-720524705ac7" version = "0.3.2" [[deps.OpenEXR_jll]] deps = ["Artifacts", "Imath_jll", "JLLWrappers", "Libdl", "Pkg", "Zlib_jll"] git-tree-sha1 = "923319661e9a22712f24596ce81c54fc0366f304" uuid = "18a262bb-aa17-5467-a713-aee519bc75cb" version = "3.1.1+0" [[deps.OpenLibm_jll]] deps = ["Artifacts", "Libdl"] uuid = "05823500-19ac-5b8b-9628-191a04bc5112" [[deps.OpenSSL_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"] git-tree-sha1 = "648107615c15d4e09f7eca16307bc821c1f718d8" uuid = "458c3c95-2e84-50aa-8efc-19380b2a3a95" version = "1.1.13+0" [[deps.OpenSpecFun_jll]] deps = ["Artifacts", "CompilerSupportLibraries_jll", "JLLWrappers", "Libdl", "Pkg"] git-tree-sha1 = "13652491f6856acfd2db29360e1bbcd4565d04f1" uuid = "efe28fd5-8261-553b-a9e1-b2916fc3738e" version = "0.5.5+0" [[deps.OptionalData]] git-tree-sha1 = "d047cc114023e12292533bb822b45c23cb51d310" uuid = "fbd9d27c-2d1c-5c1c-99f2-7497d746985d" version = "1.0.0" [[deps.Opus_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"] git-tree-sha1 = "51a08fb14ec28da2ec7a927c4337e4332c2a4720" uuid = "91d4177d-7536-5919-b921-800302f37372" version = "1.3.2+0" [[deps.OrderedCollections]] git-tree-sha1 = "85f8e6578bf1f9ee0d11e7bb1b1456435479d47c" uuid = "bac558e1-5e72-5ebc-8fee-abe8a469f55d" version = "1.4.1" [[deps.PCRE_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"] git-tree-sha1 = "b2a7af664e098055a7529ad1a900ded962bca488" uuid = "2f80f16e-611a-54ab-bc61-aa92de5b98fc" version = "8.44.0+0" [[deps.PDMats]] deps = ["LinearAlgebra", "SparseArrays", "SuiteSparse"] git-tree-sha1 = "ee26b350276c51697c9c2d88a072b339f9f03d73" uuid = "90014a1f-27ba-587c-ab20-58faa44d9150" version = "0.11.5" [[deps.PNGFiles]] deps = ["Base64", "CEnum", "ImageCore", "IndirectArrays", "OffsetArrays", "libpng_jll"] git-tree-sha1 = "6d105d40e30b635cfed9d52ec29cf456e27d38f8" uuid = "f57f5aa1-a3ce-4bc8-8ab9-96f992907883" version = "0.3.12" [[deps.PaddedViews]] deps = ["OffsetArrays"] git-tree-sha1 = "03a7a85b76381a3d04c7a1656039197e70eda03d" uuid = "5432bcbf-9aad-5242-b902-cca2824c8663" version = "0.5.11" [[deps.Parameters]] deps = ["OrderedCollections", "UnPack"] git-tree-sha1 = "34c0e9ad262e5f7fc75b10a9952ca7692cfc5fbe" uuid = "d96e819e-fc66-5662-9728-84c9c7592b0a" version = "0.12.3" [[deps.Parsers]] deps = ["Dates"] git-tree-sha1 = "d7fa6237da8004be601e19bd6666083056649918" uuid = "69de0a69-1ddd-5017-9359-2bf0b02dc9f0" version = "2.1.3" [[deps.Pixman_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"] git-tree-sha1 = "b4f5d02549a10e20780a24fce72bea96b6329e29" uuid = "30392449-352a-5448-841d-b1acce4e97dc" version = "0.40.1+0" [[deps.Pkg]] deps = ["Artifacts", "Dates", "Downloads", "LibGit2", "Libdl", "Logging", "Markdown", "Printf", "REPL", "Random", "SHA", "Serialization", "TOML", "Tar", "UUIDs", "p7zip_jll"] uuid = "44cfe95a-1eb2-52ea-b672-e2afdf69b78f" [[deps.PkgVersion]] deps = ["Pkg"] git-tree-sha1 = "a7a7e1a88853564e551e4eba8650f8c38df79b37" uuid = "eebad327-c553-4316-9ea0-9fa01ccd7688" version = "0.1.1" [[deps.PlotThemes]] deps = ["PlotUtils", "Requires", "Statistics"] git-tree-sha1 = "a3a964ce9dc7898193536002a6dd892b1b5a6f1d" uuid = "ccf2f8ad-2431-5c83-bf29-c5338b663b6a" version = "2.0.1" [[deps.PlotUtils]] deps = ["ColorSchemes", "Colors", "Dates", "Printf", "Random", "Reexport", "Statistics"] git-tree-sha1 = "68604313ed59f0408313228ba09e79252e4b2da8" uuid = "995b91a9-d308-5afd-9ec6-746e21dbc043" version = "1.1.2" [[deps.Plots]] deps = ["Base64", "Contour", "Dates", "Downloads", "FFMPEG", "FixedPointNumbers", "GR", "GeometryBasics", "JSON", "Latexify", "LinearAlgebra", "Measures", "NaNMath", "PlotThemes", "PlotUtils", "Printf", "REPL", "Random", "RecipesBase", "RecipesPipeline", "Reexport", "Requires", "Scratch", "Showoff", "SparseArrays", "Statistics", "StatsBase", "UUIDs", "UnicodeFun", "Unzip"] git-tree-sha1 = "db7393a80d0e5bef70f2b518990835541917a544" uuid = "91a5bcdd-55d7-5caf-9e0b-520d859cae80" version = "1.25.6" [[deps.PlutoUI]] deps = ["AbstractPlutoDingetjes", "Base64", "ColorTypes", "Dates", "Hyperscript", "HypertextLiteral", "IOCapture", "InteractiveUtils", "JSON", "Logging", "Markdown", "Random", "Reexport", "UUIDs"] git-tree-sha1 = "7711172ace7c40dc8449b7aed9d2d6f1cf56a5bd" uuid = "7f904dfe-b85e-4ff6-b463-dae2292396a8" version = "0.7.29" [[deps.Preferences]] deps = ["TOML"] git-tree-sha1 = "2cf929d64681236a2e074ffafb8d568733d2e6af" uuid = "21216c6a-2e73-6563-6e65-726566657250" version = "1.2.3" [[deps.Printf]] deps = ["Unicode"] uuid = "de0858da-6303-5e67-8744-51eddeeeb8d7" [[deps.ProgressMeter]] deps = ["Distributed", "Printf"] git-tree-sha1 = "afadeba63d90ff223a6a48d2009434ecee2ec9e8" uuid = "92933f4c-e287-5a05-a399-4b506db050ca" version = "1.7.1" [[deps.QOI]] deps = ["ColorTypes", "FileIO", "FixedPointNumbers"] git-tree-sha1 = "18e8f4d1426e965c7b532ddd260599e1510d26ce" uuid = "4b34888f-f399-49d4-9bb3-47ed5cae4e65" version = "1.0.0" [[deps.Qt5Base_jll]] deps = ["Artifacts", "CompilerSupportLibraries_jll", "Fontconfig_jll", "Glib_jll", "JLLWrappers", "Libdl", "Libglvnd_jll", "OpenSSL_jll", "Pkg", "Xorg_libXext_jll", "Xorg_libxcb_jll", "Xorg_xcb_util_image_jll", "Xorg_xcb_util_keysyms_jll", "Xorg_xcb_util_renderutil_jll", "Xorg_xcb_util_wm_jll", "Zlib_jll", "xkbcommon_jll"] git-tree-sha1 = "ad368663a5e20dbb8d6dc2fddeefe4dae0781ae8" uuid = "ea2cea3b-5b76-57ae-a6ef-0a8af62496e1" version = "5.15.3+0" [[deps.QuadGK]] deps = ["DataStructures", "LinearAlgebra"] git-tree-sha1 = "78aadffb3efd2155af139781b8a8df1ef279ea39" uuid = "1fd47b50-473d-5c70-9696-f719f8f3bcdc" version = "2.4.2" [[deps.Quaternions]] deps = ["DualNumbers", "LinearAlgebra"] git-tree-sha1 = "adf644ef95a5e26c8774890a509a55b7791a139f" uuid = "94ee1d12-ae83-5a48-8b1c-48b8ff168ae0" version = "0.4.2" [[deps.REPL]] deps = ["InteractiveUtils", "Markdown", "Sockets", "Unicode"] uuid = "3fa0cd96-eef1-5676-8a61-b3b8758bbffb" [[deps.Random]] deps = ["SHA", "Serialization"] uuid = "9a3f8284-a2c9-5f02-9a11-845980a1fd5c" [[deps.RangeArrays]] git-tree-sha1 = "b9039e93773ddcfc828f12aadf7115b4b4d225f5" uuid = "b3c3ace0-ae52-54e7-9d0b-2c1406fd6b9d" version = "0.3.2" [[deps.Ratios]] deps = ["Requires"] git-tree-sha1 = "01d341f502250e81f6fec0afe662aa861392a3aa" uuid = "c84ed2f1-dad5-54f0-aa8e-dbefe2724439" version = "0.4.2" [[deps.RecipesBase]] git-tree-sha1 = "6bf3f380ff52ce0832ddd3a2a7b9538ed1bcca7d" uuid = "3cdcf5f2-1ef4-517c-9805-6587b60abb01" version = "1.2.1" [[deps.RecipesPipeline]] deps = ["Dates", "NaNMath", "PlotUtils", "RecipesBase"] git-tree-sha1 = "37c1631cb3cc36a535105e6d5557864c82cd8c2b" uuid = "01d81517-befc-4cb6-b9ec-a95719d0359c" version = "0.5.0" [[deps.Reexport]] git-tree-sha1 = "45e428421666073eab6f2da5c9d310d99bb12f9b" uuid = "189a3867-3050-52da-a836-e630ba90ab69" version = "1.2.2" [[deps.RegionTrees]] deps = ["IterTools", "LinearAlgebra", "StaticArrays"] git-tree-sha1 = "4618ed0da7a251c7f92e869ae1a19c74a7d2a7f9" uuid = "dee08c22-ab7f-5625-9660-a9af2021b33f" version = "0.3.2" [[deps.RelocatableFolders]] deps = ["SHA", "Scratch"] git-tree-sha1 = "cdbd3b1338c72ce29d9584fdbe9e9b70eeb5adca" uuid = "05181044-ff0b-4ac5-8273-598c1e38db00" version = "0.1.3" [[deps.RemoteFiles]] deps = ["Dates", "FileIO", "HTTP"] git-tree-sha1 = "54527375d877a64c55190fb762d584f927d6d7c3" uuid = "cbe49d4c-5af1-5b60-bb70-0a60aa018e1b" version = "0.4.2" [[deps.Requires]] deps = ["UUIDs"] git-tree-sha1 = "838a3a4188e2ded87a4f9f184b4b0d78a1e91cb7" uuid = "ae029012-a4dd-5104-9daa-d747884805df" version = "1.3.0" [[deps.Revise]] deps = ["CodeTracking", "Distributed", "FileWatching", "JuliaInterpreter", "LibGit2", "LoweredCodeUtils", "OrderedCollections", "Pkg", "REPL", "Requires", "UUIDs", "Unicode"] git-tree-sha1 = "2f9d4d6679b5f0394c52731db3794166f49d5131" uuid = "295af30f-e4ad-537b-8983-00126c2a3abe" version = "3.3.1" [[deps.Rmath]] deps = ["Random", "Rmath_jll"] git-tree-sha1 = "bf3188feca147ce108c76ad82c2792c57abe7b1f" uuid = "79098fc4-a85e-5d69-aa6a-4863f24498fa" version = "0.7.0" [[deps.Rmath_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"] git-tree-sha1 = "68db32dff12bb6127bac73c209881191bf0efbb7" uuid = "f50d1b31-88e8-58de-be2c-1cc44531875f" version = "0.3.0+0" [[deps.Rotations]] deps = ["LinearAlgebra", "Quaternions", "Random", "StaticArrays", "Statistics"] git-tree-sha1 = "2fa87d198bc5356c649b92109ed3ce46ee1eb89d" uuid = "6038ab10-8711-5258-84ad-4b1120ba62dc" version = "1.1.1" [[deps.SHA]] uuid = "ea8e919c-243c-51af-8825-aaa63cd721ce" [[deps.Scratch]] deps = ["Dates"] git-tree-sha1 = "0b4b7f1393cff97c33891da2a0bf69c6ed241fda" uuid = "6c6a2e73-6563-6170-7368-637461726353" version = "1.1.0" [[deps.Serialization]] uuid = "9e88b42a-f829-5b0c-bbe9-9e923198166b" [[deps.SharedArrays]] deps = ["Distributed", "Mmap", "Random", "Serialization"] uuid = "1a1011a3-84de-559e-8e89-a11a2f7dc383" [[deps.Showoff]] deps = ["Dates", "Grisu"] git-tree-sha1 = "91eddf657aca81df9ae6ceb20b959ae5653ad1de" uuid = "992d4aef-0814-514b-bc4d-f2e9a6c4116f" version = "1.0.3" [[deps.SimpleTraits]] deps = ["InteractiveUtils", "MacroTools"] git-tree-sha1 = "5d7e3f4e11935503d3ecaf7186eac40602e7d231" uuid = "699a6c99-e7fa-54fc-8d76-47d257e15c1d" version = "0.9.4" [[deps.SimpleWeightedGraphs]] deps = ["Graphs", "LinearAlgebra", "Markdown", "SparseArrays", "Test"] git-tree-sha1 = "a6f404cc44d3d3b28c793ec0eb59af709d827e4e" uuid = "47aef6b3-ad0c-573a-a1e2-d07658019622" version = "1.2.1" [[deps.Sixel]] deps = ["Dates", "FileIO", "ImageCore", "IndirectArrays", "OffsetArrays", "REPL", "libsixel_jll"] git-tree-sha1 = "8fb59825be681d451c246a795117f317ecbcaa28" uuid = "45858cf5-a6b0-47a3-bbea-62219f50df47" version = "0.1.2" [[deps.Sockets]] uuid = "6462fe0b-24de-5631-8697-dd941f90decc" [[deps.SortingAlgorithms]] deps = ["DataStructures"] git-tree-sha1 = "b3363d7460f7d098ca0912c69b082f75625d7508" uuid = "a2af1166-a08f-5f64-846c-94a0d3cef48c" version = "1.0.1" [[deps.SparseArrays]] deps = ["LinearAlgebra", "Random"] uuid = "2f01184e-e22b-5df5-ae63-d93ebab69eaf" [[deps.SpecialFunctions]] deps = ["ChainRulesCore", "IrrationalConstants", "LogExpFunctions", "OpenLibm_jll", "OpenSpecFun_jll"] git-tree-sha1 = "e08890d19787ec25029113e88c34ec20cac1c91e" uuid = "276daf66-3868-5448-9aa4-cd146d93841b" version = "2.0.0" [[deps.StackViews]] deps = ["OffsetArrays"] git-tree-sha1 = "46e589465204cd0c08b4bd97385e4fa79a0c770c" uuid = "cae243ae-269e-4f55-b966-ac2d0dc13c15" version = "0.1.1" [[deps.Static]] deps = ["IfElse"] git-tree-sha1 = "7f5a513baec6f122401abfc8e9c074fdac54f6c1" uuid = "aedffcd0-7271-4cad-89d0-dc628f76c6d3" version = "0.4.1" [[deps.StaticArrays]] deps = ["LinearAlgebra", "Random", "Statistics"] git-tree-sha1 = "2ae4fe21e97cd13efd857462c1869b73c9f61be3" uuid = "90137ffa-7385-5640-81b9-e52037218182" version = "1.3.2" [[deps.Statistics]] deps = ["LinearAlgebra", "SparseArrays"] uuid = "10745b16-79ce-11e8-11f9-7d13ad32a3b2" [[deps.StatsAPI]] git-tree-sha1 = "d88665adc9bcf45903013af0982e2fd05ae3d0a6" uuid = "82ae8749-77ed-4fe6-ae5f-f523153014b0" version = "1.2.0" [[deps.StatsBase]] deps = ["DataAPI", "DataStructures", "LinearAlgebra", "LogExpFunctions", "Missings", "Printf", "Random", "SortingAlgorithms", "SparseArrays", "Statistics", "StatsAPI"] git-tree-sha1 = "51383f2d367eb3b444c961d485c565e4c0cf4ba0" uuid = "2913bbd2-ae8a-5f71-8c99-4fb6c76f3a91" version = "0.33.14" [[deps.StatsFuns]] deps = ["ChainRulesCore", "InverseFunctions", "IrrationalConstants", "LogExpFunctions", "Reexport", "Rmath", "SpecialFunctions"] git-tree-sha1 = "bedb3e17cc1d94ce0e6e66d3afa47157978ba404" uuid = "4c63d2b9-4356-54db-8cca-17b64c39e42c" version = "0.9.14" [[deps.StructArrays]] deps = ["Adapt", "DataAPI", "StaticArrays", "Tables"] git-tree-sha1 = "2ce41e0d042c60ecd131e9fb7154a3bfadbf50d3" uuid = "09ab397b-f2b6-538f-b94a-2f83cf4a842a" version = "0.6.3" [[deps.SuiteSparse]] deps = ["Libdl", "LinearAlgebra", "Serialization", "SparseArrays"] uuid = "4607b0f0-06f3-5cda-b6b1-a6196a1729e9" [[deps.TOML]] deps = ["Dates"] uuid = "fa267f1f-6049-4f14-aa54-33bafae1ed76" [[deps.TableTraits]] deps = ["IteratorInterfaceExtensions"] git-tree-sha1 = "c06b2f539df1c6efa794486abfb6ed2022561a39" uuid = "3783bdb8-4a98-5b6b-af9a-565f29a5fe9c" version = "1.0.1" [[deps.Tables]] deps = ["DataAPI", "DataValueInterfaces", "IteratorInterfaceExtensions", "LinearAlgebra", "TableTraits", "Test"] git-tree-sha1 = "bb1064c9a84c52e277f1096cf41434b675cd368b" uuid = "bd369af6-aec1-5ad0-b16a-f7cc5008161c" version = "1.6.1" [[deps.Tar]] deps = ["ArgTools", "SHA"] uuid = "a4e569a6-e804-4fa4-b0f3-eef7a1d5b13e" [[deps.TensorCore]] deps = ["LinearAlgebra"] git-tree-sha1 = "1feb45f88d133a655e001435632f019a9a1bcdb6" uuid = "62fd8b95-f654-4bbd-a8a5-9c27f68ccd50" version = "0.1.1" [[deps.Test]] deps = ["InteractiveUtils", "Logging", "Random", "Serialization"] uuid = "8dfed614-e22c-5e08-85e1-65c5234f0b40" [[deps.TiffImages]] deps = ["ColorTypes", "DataStructures", "DocStringExtensions", "FileIO", "FixedPointNumbers", "IndirectArrays", "Inflate", "OffsetArrays", "PkgVersion", "ProgressMeter", "UUIDs"] git-tree-sha1 = "991d34bbff0d9125d93ba15887d6594e8e84b305" uuid = "731e570b-9d59-4bfa-96dc-6df516fadf69" version = "0.5.3" [[deps.TiledIteration]] deps = ["OffsetArrays"] git-tree-sha1 = "5683455224ba92ef59db72d10690690f4a8dc297" uuid = "06e1c1a7-607b-532d-9fad-de7d9aa2abac" version = "0.3.1" [[deps.TranscodingStreams]] deps = ["Random", "Test"] git-tree-sha1 = "216b95ea110b5972db65aa90f88d8d89dcb8851c" uuid = "3bb67fe8-82b1-5028-8e26-92a6c54297fa" version = "0.9.6" [[deps.URIs]] git-tree-sha1 = "97bbe755a53fe859669cd907f2d96aee8d2c1355" uuid = "5c2747f8-b7ea-4ff2-ba2e-563bfd36b1d4" version = "1.3.0" [[deps.UUIDs]] deps = ["Random", "SHA"] uuid = "cf7118a7-6976-5b1a-9a39-7adc72f591a4" [[deps.UnPack]] git-tree-sha1 = "387c1f73762231e86e0c9c5443ce3b4a0a9a0c2b" uuid = "3a884ed6-31ef-47d7-9d2a-63182c4928ed" version = "1.0.2" [[deps.Unicode]] uuid = "4ec0a83e-493e-50e2-b9ac-8f72acf5a8f5" [[deps.UnicodeFun]] deps = ["REPL"] git-tree-sha1 = "53915e50200959667e78a92a418594b428dffddf" uuid = "1cfade01-22cf-5700-b092-accc4b62d6e1" version = "0.4.1" [[deps.Unzip]] git-tree-sha1 = "34db80951901073501137bdbc3d5a8e7bbd06670" uuid = "41fe7b60-77ed-43a1-b4f0-825fd5a5650d" version = "0.1.2" [[deps.Wayland_jll]] deps = ["Artifacts", "Expat_jll", "JLLWrappers", "Libdl", "Libffi_jll", "Pkg", "XML2_jll"] git-tree-sha1 = "3e61f0b86f90dacb0bc0e73a0c5a83f6a8636e23" uuid = "a2964d1f-97da-50d4-b82a-358c7fce9d89" version = "1.19.0+0" [[deps.Wayland_protocols_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"] git-tree-sha1 = "66d72dc6fcc86352f01676e8f0f698562e60510f" uuid = "2381bf8a-dfd0-557d-9999-79630e7b1b91" version = "1.23.0+0" [[deps.WoodburyMatrices]] deps = ["LinearAlgebra", "SparseArrays"] git-tree-sha1 = "de67fa59e33ad156a590055375a30b23c40299d3" uuid = "efce3f68-66dc-5838-9240-27a6d6f5f9b6" version = "0.5.5" [[deps.XML2_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Libiconv_jll", "Pkg", "Zlib_jll"] git-tree-sha1 = "1acf5bdf07aa0907e0a37d3718bb88d4b687b74a" uuid = "02c8fc9c-b97f-50b9-bbe4-9be30ff0a78a" version = "2.9.12+0" [[deps.XSLT_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Libgcrypt_jll", "Libgpg_error_jll", "Libiconv_jll", "Pkg", "XML2_jll", "Zlib_jll"] git-tree-sha1 = "91844873c4085240b95e795f692c4cec4d805f8a" uuid = "aed1982a-8fda-507f-9586-7b0439959a61" version = "1.1.34+0" [[deps.Xorg_libX11_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg", "Xorg_libxcb_jll", "Xorg_xtrans_jll"] git-tree-sha1 = "5be649d550f3f4b95308bf0183b82e2582876527" uuid = "4f6342f7-b3d2-589e-9d20-edeb45f2b2bc" version = "1.6.9+4" [[deps.Xorg_libXau_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"] git-tree-sha1 = "4e490d5c960c314f33885790ed410ff3a94ce67e" uuid = "0c0b7dd1-d40b-584c-a123-a41640f87eec" version = "1.0.9+4" [[deps.Xorg_libXcursor_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg", "Xorg_libXfixes_jll", "Xorg_libXrender_jll"] git-tree-sha1 = "12e0eb3bc634fa2080c1c37fccf56f7c22989afd" uuid = "935fb764-8cf2-53bf-bb30-45bb1f8bf724" version = "1.2.0+4" [[deps.Xorg_libXdmcp_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"] git-tree-sha1 = "4fe47bd2247248125c428978740e18a681372dd4" uuid = "a3789734-cfe1-5b06-b2d0-1dd0d9d62d05" version = "1.1.3+4" [[deps.Xorg_libXext_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg", "Xorg_libX11_jll"] git-tree-sha1 = "b7c0aa8c376b31e4852b360222848637f481f8c3" uuid = "1082639a-0dae-5f34-9b06-72781eeb8cb3" version = "1.3.4+4" [[deps.Xorg_libXfixes_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg", "Xorg_libX11_jll"] git-tree-sha1 = "0e0dc7431e7a0587559f9294aeec269471c991a4" uuid = "d091e8ba-531a-589c-9de9-94069b037ed8" version = "5.0.3+4" [[deps.Xorg_libXi_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg", "Xorg_libXext_jll", "Xorg_libXfixes_jll"] git-tree-sha1 = "89b52bc2160aadc84d707093930ef0bffa641246" uuid = "a51aa0fd-4e3c-5386-b890-e753decda492" version = "1.7.10+4" [[deps.Xorg_libXinerama_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg", "Xorg_libXext_jll"] git-tree-sha1 = "26be8b1c342929259317d8b9f7b53bf2bb73b123" uuid = "d1454406-59df-5ea1-beac-c340f2130bc3" version = "1.1.4+4" [[deps.Xorg_libXrandr_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg", "Xorg_libXext_jll", "Xorg_libXrender_jll"] git-tree-sha1 = "34cea83cb726fb58f325887bf0612c6b3fb17631" uuid = "ec84b674-ba8e-5d96-8ba1-2a689ba10484" version = "1.5.2+4" [[deps.Xorg_libXrender_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg", "Xorg_libX11_jll"] git-tree-sha1 = "19560f30fd49f4d4efbe7002a1037f8c43d43b96" uuid = "ea2f1a96-1ddc-540d-b46f-429655e07cfa" version = "0.9.10+4" [[deps.Xorg_libpthread_stubs_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"] git-tree-sha1 = "6783737e45d3c59a4a4c4091f5f88cdcf0908cbb" uuid = "14d82f49-176c-5ed1-bb49-ad3f5cbd8c74" version = "0.1.0+3" [[deps.Xorg_libxcb_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg", "XSLT_jll", "Xorg_libXau_jll", "Xorg_libXdmcp_jll", "Xorg_libpthread_stubs_jll"] git-tree-sha1 = "daf17f441228e7a3833846cd048892861cff16d6" uuid = "c7cfdc94-dc32-55de-ac96-5a1b8d977c5b" version = "1.13.0+3" [[deps.Xorg_libxkbfile_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg", "Xorg_libX11_jll"] git-tree-sha1 = "926af861744212db0eb001d9e40b5d16292080b2" uuid = "cc61e674-0454-545c-8b26-ed2c68acab7a" version = "1.1.0+4" [[deps.Xorg_xcb_util_image_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg", "Xorg_xcb_util_jll"] git-tree-sha1 = "0fab0a40349ba1cba2c1da699243396ff8e94b97" uuid = "12413925-8142-5f55-bb0e-6d7ca50bb09b" version = "0.4.0+1" [[deps.Xorg_xcb_util_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg", "Xorg_libxcb_jll"] git-tree-sha1 = "e7fd7b2881fa2eaa72717420894d3938177862d1" uuid = "2def613f-5ad1-5310-b15b-b15d46f528f5" version = "0.4.0+1" [[deps.Xorg_xcb_util_keysyms_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg", "Xorg_xcb_util_jll"] git-tree-sha1 = "d1151e2c45a544f32441a567d1690e701ec89b00" uuid = "975044d2-76e6-5fbe-bf08-97ce7c6574c7" version = "0.4.0+1" [[deps.Xorg_xcb_util_renderutil_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg", "Xorg_xcb_util_jll"] git-tree-sha1 = "dfd7a8f38d4613b6a575253b3174dd991ca6183e" uuid = "0d47668e-0667-5a69-a72c-f761630bfb7e" version = "0.3.9+1" [[deps.Xorg_xcb_util_wm_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg", "Xorg_xcb_util_jll"] git-tree-sha1 = "e78d10aab01a4a154142c5006ed44fd9e8e31b67" uuid = "c22f9ab0-d5fe-5066-847c-f4bb1cd4e361" version = "0.4.1+1" [[deps.Xorg_xkbcomp_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg", "Xorg_libxkbfile_jll"] git-tree-sha1 = "4bcbf660f6c2e714f87e960a171b119d06ee163b" uuid = "35661453-b289-5fab-8a00-3d9160c6a3a4" version = "1.4.2+4" [[deps.Xorg_xkeyboard_config_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg", "Xorg_xkbcomp_jll"] git-tree-sha1 = "5c8424f8a67c3f2209646d4425f3d415fee5931d" uuid = "33bec58e-1273-512f-9401-5d533626f822" version = "2.27.0+4" [[deps.Xorg_xtrans_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"] git-tree-sha1 = "79c31e7844f6ecf779705fbc12146eb190b7d845" uuid = "c5fb5394-a638-5e4d-96e5-b29de1b5cf10" version = "1.4.0+3" [[deps.Zlib_jll]] deps = ["Libdl"] uuid = "83775a58-1f1d-513f-b197-d71354ab007a" [[deps.Zstd_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"] git-tree-sha1 = "cc4bf3fdde8b7e3e9fa0351bdeedba1cf3b7f6e6" uuid = "3161d3a3-bdf6-5164-811a-617609db77b4" version = "1.5.0+0" [[deps.libass_jll]] deps = ["Artifacts", "Bzip2_jll", "FreeType2_jll", "FriBidi_jll", "HarfBuzz_jll", "JLLWrappers", "Libdl", "Pkg", "Zlib_jll"] git-tree-sha1 = "5982a94fcba20f02f42ace44b9894ee2b140fe47" uuid = "0ac62f75-1d6f-5e53-bd7c-93b484bb37c0" version = "0.15.1+0" [[deps.libblastrampoline_jll]] deps = ["Artifacts", "Libdl", "OpenBLAS_jll"] uuid = "8e850b90-86db-534c-a0d3-1478176c7d93" [[deps.libfdk_aac_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"] git-tree-sha1 = "daacc84a041563f965be61859a36e17c4e4fcd55" uuid = "f638f0a6-7fb0-5443-88ba-1cc74229b280" version = "2.0.2+0" [[deps.libpng_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg", "Zlib_jll"] git-tree-sha1 = "94d180a6d2b5e55e447e2d27a29ed04fe79eb30c" uuid = "b53b4c65-9356-5827-b1ea-8c7a1a84506f" version = "1.6.38+0" [[deps.libsixel_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"] git-tree-sha1 = "78736dab31ae7a53540a6b752efc61f77b304c5b" uuid = "075b6546-f08a-558a-be8f-8157d0f608a5" version = "1.8.6+1" [[deps.libvorbis_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Ogg_jll", "Pkg"] git-tree-sha1 = "c45f4e40e7aafe9d086379e5578947ec8b95a8fb" uuid = "f27f6e37-5d2b-51aa-960f-b287f2bc3b7a" version = "1.3.7+0" [[deps.nghttp2_jll]] deps = ["Artifacts", "Libdl"] uuid = "8e850ede-7688-5339-a07c-302acd2aaf8d" [[deps.p7zip_jll]] deps = ["Artifacts", "Libdl"] uuid = "3f19e933-33d8-53b3-aaab-bd5110c3b7a0" [[deps.x264_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"] git-tree-sha1 = "4fea590b89e6ec504593146bf8b988b2c00922b2" uuid = "1270edf5-f2f9-52d2-97e9-ab00b5d0237a" version = "2021.5.5+0" [[deps.x265_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"] git-tree-sha1 = "ee567a171cce03570d77ad3a43e90218e38937a9" uuid = "dfaa095f-4041-5dcd-9319-2fabd8486b76" version = "3.5.0+0" [[deps.xkbcommon_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg", "Wayland_jll", "Wayland_protocols_jll", "Xorg_libxcb_jll", "Xorg_xkeyboard_config_jll"] git-tree-sha1 = "ece2350174195bb31de1a63bea3a41ae1aa593b6" uuid = "d8fb68d0-12a3-5cfd-a85a-d49703b185fd" version = "0.9.1+5" """ # ╔═╡ Cell order: # ╟─872e19d4-c071-40bb-a091-22e48e85e2a6 # ╠═1793f5fa-7f30-4a1d-baef-b06436e1fc71 # ╟─ce86c343-b6e4-4833-935f-ee0392d1ee89 # ╟─79f416a6-7c52-4d57-8bdd-1f84dc04d7e8 # ╠═60c8b78b-1b70-42d0-8fe6-7e40b0cdd4a2 # ╟─124025b9-f7de-4395-a5d3-1dc6ed4a67f7 # ╠═9da00dbb-c645-4bb9-a26c-5f148efb36cd # ╟─800b91ae-d6c6-479f-afd7-d07d7b207cd3 # ╠═f1ef0015-d671-450f-80cf-dc6651460998 # ╟─c179bd9e-e392-4622-92a5-d64f442e2840 # ╟─dde3ae5c-c51d-4efd-a824-3e360981a228 # ╟─593a177f-bf0b-4b05-9408-745793ab2536 # ╟─14b4f565-2f8d-4e70-a79c-8926db3b0ca7 # ╟─3f38e8ca-2286-427f-8816-3b8b6cc78c74 # ╟─36bc055e-3b5b-41a0-863a-53b78a6328d9 # ╟─30c618b6-bd58-4335-bc55-23c16317011d # ╟─596e2d59-203c-4e69-985b-f8a82624ef6c # ╠═465e92c8-1004-47d6-ac4e-69172afad2b0 # ╠═e8d619bc-e37d-437a-96fb-0995aed2f823 # ╟─9dd26db3-e443-46f3-8e18-21eb37b4d5b6 # ╟─00000000-0000-0000-0000-000000000001 # ╟─00000000-0000-0000-0000-000000000002
PlanetOrbits
https://github.com/sefffal/PlanetOrbits.jl.git
[ "MIT" ]
0.10.1
370c3ac3c000dd3ac975681521dcfe687efc1f24
code
790
using PlanetOrbits, Distributions, DataFrames # The template orbit template = orbit( M = 1.5, a = 7.6, i = deg2rad(30), e = 0.6, Ω = 0.7, ω = 1.4, tp = 0., plx = 100.0, ) # Epochs specified manually: epoch = [ mjd("2020-01-01"), mjd("2021-01-01"), mjd("2022-01-01"), ] # Or a range of epochs: epoch = range(start=mjd("2020-01-01"),step=365,length=3) astrom = DataFrame(; epoch, ra=raoff.(template, epoch), dec=decoff.(template, epoch), # Or: # pa=posangle.(template, epoch),# .+ σ_pa .* randn.(), # sep=projectedseparation.(template, epoch) .+ σ_sep .* randn.(), ) # The above will display automatically at a REPL and you can copy the values ## Optional: save to file using CSV CSV.write("astrometry.csv", astrom)
PlanetOrbits
https://github.com/sefffal/PlanetOrbits.jl.git
[ "MIT" ]
0.10.1
370c3ac3c000dd3ac975681521dcfe687efc1f24
code
2412
""" This extension package adds rule support for Enzyme. There are a few useful rules we can define for the sake of performance but the most important thing is a rule for the Kepler solver. """ module PlanetOrbitsEnzymeExt using PlanetOrbits, Enzyme # @scalar_rule kepler_solver(M, e) @setup(u = 1 - e*cos(Ω)) (1 / u,sin(Ω) / u) # These could be added to improve performance. The units would have to be adapted. # @scalar_rule raoff(o::OrbitSolution) pmra(o) # @scalar_rule decoff(o::OrbitSolution) pmdec(o) # @scalar_rule propmotionanom(o::OrbitSolution) acceleration(o) # @scalar_rule orbitsolve_ν(elem::VisualOrbit{T}, t; tref=58849) # EnzymeRules.reverse(::EnzymeRules.Config, func::EnzymeRules.Annotation{typeof(PlanetOrbits.kepler_solver)}, dret::Active, tape, args::EnzymeRules.Annotation...) = 1 # function EnzymeRules.reverse( # # config::EnzymeRules.ConfigWidth{1}, # config, # # func::typeof(PlanetOrbits.kepler_solver) # func, # args... # # ::Type{<:Active}, # # ::Any, # # ma::Active, # # e::Active # ) # @show config func ma e # if needs_primal(config) # return AugmentedReturn(func.val(x.val),nothing, nothing) # else # return AugmentedReturn(nothing, nothing, nothing) # end # end # function EnzymeRules.reverse( # conf::Config, # func::Annotation{typeof(f)}, # ann::Type{<:Annotation}, # tape, # args::Annotation... # ) # @show conf func ann tape args # end # function forward(::Const{typeof(PlanetOrbits.kepler_solver)}, ::Type{<:DuplicatedNoNeed}, x::Duplicated) # return 10+2*x.val*x.dval # end # function forward(::Const{typeof(PlanetOrbits.kepler_solver)}, ::Type{<:BatchDuplicatedNoNeed}, x::BatchDuplicated{T, N}) where {T, N} # return NTuple{N, T}(1000+2*x.val*dv for dv in x.dval) # end # function forward(func::Const{typeof(PlanetOrbits.kepler_solver)}, ::Type{<:Duplicated}, x::Duplicated) # return Duplicated(func.val(x.val), 100+2*x.val*x.dval) # end # function forward(func::Const{typeof(PlanetOrbits.kepler_solver)}, ::Type{<:BatchDuplicated}, x::BatchDuplicated{T, N}) where {T,N} # return BatchDuplicated(func.val(x.val), NTuple{N, T}(10000+2*x.val*dv for dv in x.dval)) # end # function forward(::Const{Core.typeof(f_ip)}, ::Type{<:Const}, x::Duplicated) # ld = x.val[1] # x.val[1] *= ld # x.dval[1] *= 2 * ld + 10 # return nothing # end end
PlanetOrbits
https://github.com/sefffal/PlanetOrbits.jl.git
[ "MIT" ]
0.10.1
370c3ac3c000dd3ac975681521dcfe687efc1f24
code
2544
module PlanetOrbitsForwardDiffExt using PlanetOrbits using ForwardDiff: ForwardDiff, Dual, value, partials using Roots # Current primal value takes 60ns to calculate. # Derivative tracing through function takes 94ns. # This seems too slow! Once the primal is known, we should only # need a single sin or cos and some division/multiplication. # Hacky: we have an annoying method abiguity between ::Dual being specific and ::SomeSolver being specific. # the compiler doesn't know which one to choose! We want it to choose these ones. # The best way I have found so far is to iterate at compile time through all subtypes and define gradient # rules for each. This won't work for new solvers added by a user. function define_partials_for_solver(T::Symbol) @eval function PlanetOrbits.kepler_solver(M::Dual{T}, e::Real, method::PlanetOrbits.$T) where T if value(e) >= 1 @error "diff rules need to be updated for unbound orbits. Review implicit derivative of hyperbolic keplers eqn." end EA = PlanetOrbits.kepler_solver(value(M),e,method) temp = 1 - e*cos(EA) return Dual{T}( EA, partials(M)/temp ) end @eval function PlanetOrbits.kepler_solver(M::Real, e::Dual{T}, method::PlanetOrbits.$T) where T if value(e) >= 1 @error "diff rules need to be updated for unbound orbits. Review implicit derivative of hyperbolic keplers eqn." end EA = PlanetOrbits.kepler_solver(M,value(e),method) sea, cea = sincos(EA) temp = 1 - value(e)*cea return Dual{T}( EA, partials(e)*sea/temp ) end @eval function PlanetOrbits.kepler_solver(M::Dual{T}, e::Dual{T}, method::PlanetOrbits.$T) where T if value(e) >= 1 @error "diff rules need to be updated for unbound orbits. Review implicit derivative of hyperbolic keplers eqn." end EA = PlanetOrbits.kepler_solver(value(M),value(e),method) sea, cea = sincos(EA) temp = 1 - value(e)*cea return Dual{T}( EA, partials(M)/temp + partials(e)*sea/temp, ) end end define_partials_for_solver(:Goat) define_partials_for_solver(:RootsMethod) # define_partials_for_solver(:Markley) # Shocker! Currently it's faster to diff through the Markley algorithm than it is to run it and then compute a # a single `sincos` call. SIMD is amazing! # We leave this implementation here for future in case these peformance tradeoffs change. end
PlanetOrbits
https://github.com/sefffal/PlanetOrbits.jl.git
[ "MIT" ]
0.10.1
370c3ac3c000dd3ac975681521dcfe687efc1f24
code
573
#= This file contains plot recipes for the Makie.jl ecosystem. This way you can do e.g.: lines(elems) =# module PlanetOrbitsMakieExt using PlanetOrbits, Makie function Makie.convert_single_argument(elem::AbstractOrbit) # We trace out in equal steps of true anomaly instead of time for a smooth # curve, regardless of eccentricity. L = 90 eccanoms = range(-2π, 2π, length=L) solns = orbitsolve_eccanom.(elem, eccanoms) νs = range(-π, π, length=90) return map(solns) do sol return Makie.Point2f(raoff(sol), decoff(sol)) end end end
PlanetOrbits
https://github.com/sefffal/PlanetOrbits.jl.git
[ "MIT" ]
0.10.1
370c3ac3c000dd3ac975681521dcfe687efc1f24
code
25627
""" # PlanetOrbits A package for calculating orbits in the context of direct imaging, astrometry, and radial velocity. """ module PlanetOrbits # --------------------------------------------------- # Imports # --------------------------------------------------- using LinearAlgebra using StaticArrays # --------------------------------------------------- # Constants # --------------------------------------------------- # radians <-> milliarcseconds const rad2mas = 2.06264806e8 const mas2rad = 4.848136816903219e-9 # radians <-> arcseconds const rad2as = 206265 const as2rad = 4.848132257047972e-6 # parsecs <-> astronomical units const pc2au = 206265 const au2pc = 1/pc2au # astronomical units <-> metres (IAU definition) const au2m = 1.495978707e11 const m2au = 1/au2m # days <-> seconds const day2sec = 86400 const sec2day = 1/day2sec # years <-> days const year2day_tropical = 365.2422 const day2year_tropical = 1/year2day_tropical const year2day_julian = 365.2500 # IAU definition const day2year_julian = 1/year2day_julian # years <-> seconds. Tropical definition, ie on earth on average const year2sec_tropical = 3.1556926e7 const sec2year_tropical = 1/year2sec_tropical # years <-> seconds. IAU defintion, ie using Julian years const year2sec_julian = year2day_julian*day2sec const sec2year_julian = 1/year2sec_julian # Exact "unit" definition of a jupiter mass, in terms of IAU solar mass. const mjup2msol_IAU = 1.2668653e17/1.3271244e20 # 0.0009545942339693249 # This constant accounts for the fact that the IAU definition of an AU and a solar mass # do not result in an orbital period of one Julian year. # From Gilles Otten (thank you for tracking this down!): # If G*M_sun has been determined as 1.3271244 × 1e20 m^3*s^−2 and 1 AU is 149 597 870 700 meter # by definition then a hypothetical planet around a 1 M_sun system at a semimajor axis of the # definition of 1 AU has a period of sqrt(4*pi^2/(1.3271244e20)*(149597870700)^3)/86400= # 365.2568983840419 julian days const kepler_year_to_julian_day_conversion_factor = 365.2568983840419 # julian days # --------------------------------------------------- # Type Hierarchy # --------------------------------------------------- """ AbstractOrbit Represents a orbit. Contains all the information to calculate the location of a planet at a given time, true anomaly, eccentric anomaly, or mean anomaly. Different concrete implementations of AbstractOrbit contain varying amounts of information. Basic information about the orbit can be queried using functions like `period(orbit)`. Orbits can be solved using functions like `orbitsolve(orb)`. See: `RadialVelocityOrbit`, `KepOrbit`, `VisualOrbit` """ abstract type AbstractOrbit{T} end export AbstractOrbit """ AbstractOrbitSolution Represents the solution of an orbit. Contains all the information of an AbstractOrbit, plus information necessary to uniquely locate a planet. The solution can be queried using a variety of functions such as `radvel(solution)`. The API for creating orbit solutions it not considered public as the fields may change between minor versions. Instead, create solutions only through the public `orbitsolve` and `orbitsolve_...` functions. """ abstract type AbstractOrbitSolution end export AbstractOrbitSolution # Return the orbit solution type for a given orbit type. # Register for each orbit type. function _solution_type end _solution_type(o::Any) = _solution_type(typeof(o)) # --------------------------------------------------- # System Properties # --------------------------------------------------- """ period(orbit) Period of an orbit [days]. Note: a 1 AU (IAU) orbit around a 1Msun (IAU) star has a period just over 1 julian year. """ function period end export period """ totalmass(orbit) Total mass of the system in solar masses """ function totalmass end export totalmass """ distance(orbit) Distance to the system [pc]. """ function distance end export distance """ meanmotion(orbit) Mean motion [rad/julian year]. Note: a 1 AU (IAU) orbit around a 1Msun (IAU) star has a period just over 1 julian year. """ function meanmotion end export meanmotion """ eccentricity(orbit) Eccentricity of an orbit, between 0 and 1. """ function eccentricity end export eccentricity """ inclination(orbit) Inclination of an orbit, if available [rad]. """ function inclination end export inclination """ semimajoraxis(orbit) Semi-major axis of an orbit, if available [au]. """ function semimajoraxis end export semimajoraxis """ periastron(elements) Compute the MJD of periastron passage most recently after the reference epoch tref specified in the orbit. N.B. mjd of 58849 = 2020-01-01 """ function periastron end export periastron """ semiamplitude(orbit) Radial velocity semiamplitude [m/s]. """ function semiamplitude end export semiamplitude # --------------------------------------------------- # Solve Orbit in Cartesian Coordinates # --------------------------------------------------- """ orbitsolve(orbit, t, method=Auto()) Given an orbit object and a time `t` in days, get the position and velocity of the secondary body (e.g. planet around a star). This will output a struct that is a subtype of `AbstractOrbitSolution` which we can then query with `raoff`, `decoff`, `radvel`, etc. You can also calculate those quanitities individually (see their docstrings) but if you need more than one, it is most efficient to save the orbit solution once. Note: these calculations use the small angle approximation, so are only accurate when the star is much further way from the observer than the secondary is from the primary. See also: `orbitsolve_ν`, `orbitsolve_meananom`, `orbitsolve_eccanom`, `projectedseparation`, `raoff`, `decoff`, `radvel`, `propmotionanom`. """ function orbitsolve end export orbitsolve, orbitsolve_ν, orbitsolve_meananom, orbitsolve_eccanom # --------------------------------------------------- # Orbital Position and Motion # --------------------------------------------------- """ raoff(orbit, t) Get the offset [mas] from the primary body in Right Ascension at the time `t` [days]. raoff(o) Get the offset [mas] from the primary body in Right Ascension from an instance of `AbstractOrbitSolution`. """ function raoff end export raoff """ decoff(orbit, t) Get the offset [mas] from the primary body in Declination at the time `t` [days]. decoff(orbit, t) Get the offset [mas] from the primary body in Declination from an instance of `AbstractOrbitSolution`. """ function decoff end export decoff """ posx(orbit, t) Get the offset [AU] from the primary body at the time `t` [days]. posx(orbit, t) Same as above, but from an instance of `AbstractOrbitSolution`. """ function posx end """ posy(orbit, t) Get the offset [AU] from the primary body at the time `t` [days]. posy(o) Same as above, but from an instance of `AbstractOrbitSolution`. """ function posy end """ posz(orbit, t) Get the offset [AU] from the primary body at the time `t` [days]. posz(o) Same as above, but from an instance of `AbstractOrbitSolution`. """ function posz end """ posangle(orbit, t) Calculate the position angle [rad] of the secondary about its primary from our perspective at the time `t` [days]. posangle(o) Calculate the position angle [rad] of the secondary about its primary from our perspective from an instance of `AbstractOrbitSolution`. posangle(elem, t, M_planet) Calculate the position angle [rad] of the secondary about its primary from our perspective at the time `t` [days]. In this case only, the value of M_planet can be arbitrary. posangle(o, M_planet) Calculate the position angle [rad] of the **primary** from our perspective from an instance of `AbstractOrbitSolution`. In this case only, the value of M_planet can be arbitrary. """ function posangle(o::AbstractOrbitSolution) x = posx(o) y = posy(o) return atan(x, y) # Note: the order of these arguments is *correct* in our conventions end export posangle """ projectedseparation(orbit, t) Calculate the projected separation [mas] of the secondary from its primary at the time `t` [days]. projectedseparation(o) Calculate the projected separation [mas] of the secondary from its primary from an instance of `AbstractOrbitSolution`. """ function projectedseparation(o::AbstractOrbitSolution) x = raoff(o) y = decoff(o) return sqrt(x^2 + y^2) end export projectedseparation """ pmra(orbit, t) Get the instantaneous proper motion anomaly [mas/julian year] in right-ascension of the *secondary* at the time `t` [days]. pmra(o) Get the instantaneous proper motion anomaly [mas/julian year] in right-ascension of the *secondary* from an instance of `AbstractOrbitSolution`. pmra(elem, t, M_planet) Get the instantaneous proper motion anomaly [mas/julian year] in right-ascension of the *primary* in at the time `t` [days]. The units of `M_planet` and `elem.M` must match. pmra(o, M_planet) Same as above, but from an orbit solution. """ function pmra end """ pmdec(orbit, t) Get the instantaneous proper motion anomaly [mas/julian year] in declination of the *secondary* at the time `t` [days]. pmdec(o) Get the instantaneous proper motion anomaly [mas/julian year] in declination of the *secondary* from an instance of `AbstractOrbitSolution`. pmdec(elem, t, M_planet) Get the instantaneous proper motion anomaly [mas/julian year] in declination of the *primary* in at the time `t` [days]. The units of `M_planet` and `elem.M` must match. pmdec(o, M_planet) Same as above, but from an orbit solution. """ function pmdec end export pmra, pmdec function ra end function dec end """ radvel(orbit, t) Get the relative radial velocity [m/s] of the *secondary* vs the *primary* along the line of sight (positive meaning moving away) at the time `t` [days]. radvel(o) Get the relative radial velocity [m/s] of the *secondary* vs the *primary* along the line of sight (positive meaning moving away) from an instance of `AbstractOrbitSolution`. radvel(elem, t, M_planet) Get the absolute radial velocity [m/s] of the *primary* long the line of sight (positive meaning moving away) at the time `t` [days]. The units of `M_planet` and `elem.M` must match. radvel(o, M_planet) Get the absolute radial velocity [m/s] of the *primary* along the line of sight (positive meaning moving away) from an `AbstractOrbitSolution`. The units of `M_planet` and `elem.M` must match. """ function radvel end export radvel """ accra(orbit, t) Get the instantaneous acceleration [mas/julian year^2] in the right-ascension direction of the *secondary* at the time `t` [days]. accra(o) Get the instantaneous acceleration [mas/julian year^2] in the right-ascension direction of the *secondary* from an instance of `AbstractOrbitSolution`. accra(elem, t, M_planet) Get the instantaneous acceleration [mas/julian year^2] in the right-ascension direction of the *primary* in at the time `t` [days]. The units of `M_planet` and `elem.M` must match. accra(o) Get the instantaneous acceleration [mas/julian year^2] in the right-ascension direction of the *primary* from an instance of `AbstractOrbitSolution`. The units of `M_planet` and `elem.M` must match. """ function accra end """ accdec(orbit, t) Get the instantaneous acceleration [mas/julian year^2] in the right-ascension direction of the *secondary* at the time `t` [days]. accdec(o) Get the instantaneous acceleration [mas/julian year^2] in the right-ascension direction of the *secondary* from an instance of `AbstractOrbitSolution`. accdec(elem, t, M_planet) Get the instantaneous acceleration [mas/julian year^2] in the right-ascension direction of the *primary* in at the time `t` [days]. The units of `M_planet` and `elem.M` must match. accdec(o) Get the instantaneous acceleration [mas/julian year^2] in the right-ascension direction of the *primary* from an instance of `AbstractOrbitSolution`. The units of `M_planet` and `elem.M` must match. """ function accdec end export accra, accdec """ trueanom(orbit, t) Get the true anomaly [radians] of the *secondary* at the time `t` [days]. trueanom(o) Get the true anomaly [radians] of the *secondary* from an instance of `AbstractOrbitSolution`. """ trueanom(os::AbstractOrbitSolution) = os.ν trueanom(os::AbstractOrbitSolution, mass::Number) = trueanom(os) # Same for primary and secondary """ eccanom(orbit, t) Get the eccentric anomaly [radians] of the *secondary* at the time `t` [days]. eccanom(o) Get the eccentric anomaly [radians] of the *secondary* from an instance of `AbstractOrbitSolution`. Note that for hyperbolic orbits, eccentric anomaly is not defined and the hyperbolic anomaly is returned instead. """ eccanom(os::AbstractOrbitSolution) = os.EA eccanom(os::AbstractOrbitSolution, mass::Number) = eccanom(os) # Same for primary and secondary """ meananom(orbit, t) Get the mean anomaly [radians] of the *secondary* at the time `t` [days]. meananom(o) Get the mean anomaly [radians] of the *secondary* from an instance of `AbstractOrbitSolution`. """ function meananom(os::AbstractOrbitSolution) if os.elem.e < 1 return eccanom(os) - os.elem.e * sin(eccanom(os)) else return os.elem.e * sinh(eccanom(os)) - eccanom(os) end end meananom(os::AbstractOrbitSolution, mass::Number) = meananom(os) # Same for primary and secondary export trueanom, eccanom, meananom """ periapsis(orbit) Return the periapsis of an orbit in AU. Keywords: periastron, perihelion, perigee """ function periapsis(o::AbstractOrbit) if eccentricity(o) < 1 semimajoraxis(o)*(1 - eccentricity(o)) else -semimajoraxis(o)*(eccentricity(o) - 1) end end """ apoapsis(orbit) Return the apoapsis of an orbit in AU. Keywords: apoastron, apohelion, apogee """ function apoapsis(o::AbstractOrbit) if eccentricity(o) < 1 semimajoraxis(o)*(1 + eccentricity(o)) else -semimajoraxis(o)*(1 + eccentricity(o)) end end """ semiminoraxis(orbit) Return the semi-minor axis of an orbit in AU. """ function semiminoraxis(o::AbstractOrbit) if eccentricity(o) < 1 semimajoraxis(o)*sqrt(1-eccentricity(o)^2) else semimajoraxis(o)*sqrt(eccentricity(o)^2 - 1) end end export periapsis, apoapsis, semiminoraxis # Internal function used by each orbit type to map mean anomaly to true anomaly function _trueanom_from_eccanom end # Define iterate and length = 1 so that we can broadcast over elements. Base.length(::AbstractOrbit) = 1 Base.iterate(elem::AbstractOrbit) = (elem, nothing) Base.iterate(::AbstractOrbit, ::Nothing) = nothing # --------------------------------------------------- # Kepler Equation Solvers # --------------------------------------------------- abstract type AbstractSolver end """ PlanetOrbits.Auto() Automatic choice of Kepler solver algorithm. Currently defaults to PlanetOrbits.Markley() """ struct Auto <: AbstractSolver end include("kepsolve-goat.jl") include("kepsolve-markley.jl") """ PlanetOrbits.RootsMethod(method::Roots.PlanetOrbits.Roots.AbstractUnivariateZeroMethod, kwargs...) Wraps a root finding method from Roots.jl. Requires Roots to be loaded first. You can also pass keyword arguments that will be forwarded to Roots to control the tolerance. Examples: ```julia method = PlanetOrbits.RootsMethod(Roots.Newton()) method = PlanetOrbits.RootsMethod(Roots.Thukral5B()) method = PlanetOrbits.RootsMethod(Roots.Bisection()) method = PlanetOrbits.RootsMethod(Roots.A42()) method = PlanetOrbits.RootsMethod(Roots.Newton(), rtol=1e-3, atol=1e-3) ``` """ struct RootsMethod{M,K} <: AbstractSolver method::M kwargs::K end RootsMethod(method; kwargs...) = RootsMethod(method, kwargs) include("kepsolve-roots.jl") # Fallback kepler solver function. # If algorithm is unspecified, select the best one here. kepler_solver(MA, e) = kepler_solver(MA, e, Auto()) function kepler_solver(MA, e, ::Auto) if e < 1 kepler_solver(MA, e, Markley()) else # Halley() converged slightly faster than Newton() for hyperbolic orbits kepler_solver(MA, e, RootsMethod(Roots.Halley())) # kepler_solver(MA, e, RootsMethod(Roots.Bisection())) end end function orbitsolve(elem::AbstractOrbit, t, method::AbstractSolver=Auto()) # Epoch of periastron passage tₚ = periastron(elem) if t isa Integer t = float(t) end # Mean anomaly MA = meanmotion(elem)/oftype(t, year2day_julian) * (t - tₚ) # Compute eccentric anomaly EA = kepler_solver(MA, eccentricity(elem), method) # Calculate true anomaly ν = _trueanom_from_eccanom(elem, EA) return orbitsolve_ν(elem, ν, EA, t) # optimization: Don't have to recalculate EA and t. end """ orbitsolve_ν(elem, ν, EA) Solve an orbit from a given true anomaly [rad]. See `orbitsolve` for the same function accepting a given time. Can optionally pass eccentric anomaly (EA) if already computed. """ function orbitsolve_ν end """ orbitsolve_meananom(elements, MA) Same as `orbitsolve`, but solves orbit for a given mean anomaly instead of time. """ function orbitsolve_meananom(elem::AbstractOrbit, MA) # Compute eccentric anomaly EA = kepler_solver(MA, eccentricity(elem)) # Calculate true anomaly ν = 2*atan(elem.ν_fact*tan(EA/2)) return orbitsolve_ν(elem, ν, EA) end """ orbitsolve_eccanom(elements, EA) Same as `orbitsolve`, but solves orbit for a given eccentric anomaly instead of time. """ function orbitsolve_eccanom(elem::AbstractOrbit, EA) # Calculate true anomaly ν = _trueanom_from_eccanom(elem, EA) return orbitsolve_ν(elem, ν) end function radvel(o::AbstractOrbitSolution) żcart = o.elem.K*(o.cosν_ω + o.elem.ecosω) # [m/s] return żcart end function _time_from_EA(sol::AbstractOrbitSolution, EA;) elem = sol.elem if eccentricity(elem) < 1 # Epoch of periastron passage tₚ = periastron(elem) MA = EA - eccentricity(elem) * sin(EA) # Mean anomaly t = MA/meanmotion(elem)*oftype(EA, year2day_julian) + tₚ else # Epoch of periastron passage tₚ = periastron(elem) MA = -EA + eccentricity(elem)*sinh(EA) t = MA/meanmotion(elem)*oftype(EA, year2day_julian) + tₚ end return t end # Given an eccentric anomaly, calculate *a* time at which the body # would be at that location. function _time_from_EA(elem::AbstractOrbit, EA;) if eccentricity(elem) < 1 # Epoch of periastron passage tₚ = periastron(elem) MA = EA - eccentricity(elem) * sin(EA) # Mean anomaly t = MA/meanmotion(elem)*oftype(EA, year2day_julian) + tₚ else # Epoch of periastron passage tₚ = periastron(elem) MA = -EA + eccentricity(elem)*sinh(EA) t = MA/meanmotion(elem)*oftype(EA, year2day_julian) + tₚ end return t # # ---- Worked math for elliptical case --- # # ν/2 = atan(elem.ν_fact*tan(EA/2)) # # tan(ν/2) = elem.ν_fact*tan(EA/2) # # tan(ν/2)/elem.ν_fact = tan(EA/2) # # atan(tan(ν/2)/elem.ν_fact) = (EA/2) # # atan(tan(ν/2)/elem.ν_fact)*2 = EA # # EA = atan(tan(ν/2)/elem.ν_fact)*2 # # Compute eccentric anomaly # MA = EA - elem.e * sin(EA) # # Epoch of periastron passage # tₚ = periastron(elem) # # MA = meanmotion(elem)/oftype(t, year2day) * (t - tₚ) # # MA / meanmotion(elem) * year2day = (t - tₚ) # # MA / meanmotion(elem) * year2day + tₚ = t # t = MA / meanmotion(elem) * year2day + tₚ - tref end include("orbit-keplerian.jl") include("orbit-visual.jl") include("orbit-absolute.jl") include("orbit-thiele-innes.jl") include("orbit-radvel.jl") include("orbit-cartesian.jl") function orbitsolve_meananom(elem::VisualOrbit, MA) # Compute eccentric anomaly EA = kepler_solver(MA, eccentricity(elem)) # Calculate true anomaly ν = 2*atan(elem.parent.ν_fact*tan(EA/2)) return orbitsolve_ν(elem, ν, EA) end """ Get the position in the x direction in astronomical units. """ function posx(o::Union{OrbitSolutionKep, OrbitSolutionCartesian}) if semimajoraxis(o.elem) == 0 return zero(typeof(semimajoraxis(o.elem))) end xcart = o.r*(o.cosν_ω*o.elem.sinΩ + o.sinν_ω*o.elem.cosi*o.elem.cosΩ) # [AU] return xcart end """ Get the position in the y direction in astronomical units. """ function posy(o::Union{OrbitSolutionKep, OrbitSolutionCartesian}) if semimajoraxis(o.elem) == 0 return zero(typeof(semimajoraxis(o.elem))) end ycart = o.r*(o.cosν_ω*o.elem.cosΩ - o.sinν_ω*o.elem.cosi*o.elem.sinΩ) # [AU] return ycart end """ Get the position in the z direction in astronomical units. """ function posz(o::Union{OrbitSolutionKep, OrbitSolutionCartesian}) if semimajoraxis(o.elem) == 0 return zero(typeof(semimajoraxis(o.elem))) end zcart = o.r*(o.sinν_ω*o.elem.sini) # [AU] return zcart end export posx, posy, posz """ Get the velocity in the x direction in astronomical units / julian year. """ function velx(o::Union{OrbitSolutionKep, OrbitSolutionCartesian}) ẋcart = o.elem.J*(o.elem.cosi_cosΩ*(o.cosν_ω + o.elem.ecosω) - o.elem.sinΩ*(o.sinν_ω + o.elem.esinω)) # [AU/julian year] return ẋcart end """ Get the velocity in the y direction in astronomical units / julian year. """ function vely(o::Union{OrbitSolutionKep, OrbitSolutionCartesian}) ẏcart = -o.elem.J*(o.elem.cosi_sinΩ*(o.cosν_ω + o.elem.ecosω) + o.elem.cosΩ*(o.sinν_ω + o.elem.esinω)) # [AU/julian year] return ẏcart end """ Get the velocity in the z direction in astronomical units / julian year. """ function velz(o::Union{OrbitSolutionKep, OrbitSolutionCartesian, OrbitSolutionRadialVelocity}) żcart = radvel(o) * m2au * year2sec_julian return żcart end export velx, vely, velz """ orbit(...) Construct an orbit from the provided keyword arguments. Will automatically select a subclass of AbstractOrbit based on the information provided. This is a convenience function that is not type stable and should not be used in performance sensitive contexts. Instead, call one of the concrete constructors `KepOrbit`, `VisualOrbit`, or `RadialVelocityOrbit` directly. This function logs the kind of elements created so that it's easy to select the correct constructor. Required arguments: - a: semi-major axis [AU] - M: gravitational parameter [M⊙] Optional arguments: - tp: epoch of periastron passage, default=0 - e: eccentricity, default=0 - ω: argument of periapsis [rad], default=0 - i: inclination [rad] - Ω: longitude of ascending node [rad] - plx: parallax [mas]; defines the distance to the primary """ function orbit(;kwargs...) T = supportedorbit(kwargs) if !haskey(kwargs, :e) kwargs = (;kwargs...,e=0,ω=0) end if !haskey(kwargs, :tp) kwargs = (;kwargs...,tp=0) end return T(;kwargs...) end # Function to return what orbit type is supported based on precence # or absence of properties function supportedorbit(kwargs) OrbitType = if haskey(kwargs, :x) && haskey(kwargs, :vx) CartesianOrbit elseif haskey(kwargs, :A) ThieleInnesOrbit elseif haskey(kwargs, :i) KepOrbit else RadialVelocityOrbit end if haskey(kwargs, :rv) return AbsoluteVisual{OrbitType} elseif haskey(kwargs, :plx) && !(OrbitType==ThieleInnesOrbit) return Visual{OrbitType} else return OrbitType end end export orbit # Define fallbacks for all accessor functions. # If the user calls f(elems, t, args...) we compute the # AbstractOrbitSolution for them. fun_list = ( :trueanom, :eccanom, :meananom, :posx, :posy, :posz, :raoff, :decoff, :posangle, :projectedseparation, :propmotionanom, :velx, :vely, :velz, :radvel, :pmra, :pmdec, :ra, :dec, :accra, :accdec, :acceleration, ) for fun in fun_list @eval function ($fun)(orbit::AbstractOrbit, t::Real, args...) return ($fun)(orbitsolve(orbit, t), args...) end end # Define versions that compute the quantity on of the primary instead of # the secondary mass_fun_list = ( :posx, :posy, :posz, :radvel, :raoff, :decoff, :pmra, :pmdec, :accra, :accdec, :propmotionanom, :acceleration, ) for fun in mass_fun_list @eval function ($fun)(o::AbstractOrbitSolution, M_planet) quantity = ($fun)(o) M_tot = totalmass(o.elem) return -M_planet/M_tot*quantity end end function projectedseparation(o::AbstractOrbitSolution, M_planet) quantity = projectedseparation(o) M_tot = totalmass(o.elem) return M_planet/M_tot*quantity end function posangle(o::AbstractOrbitSolution, M_planet) x = posx(o,M_planet) y = posy(o,M_planet) return atan(x, y) # Note: the order of these arguments is *correct* in our conventions end # --------------------------------------------------- # Addional & Optional Features # --------------------------------------------------- include("recipes-plots.jl") include("time.jl") include("chain-rules.jl") # include("transformation.jl") include("precompile.jl") end # module # ---------------------------------------------------
PlanetOrbits
https://github.com/sefffal/PlanetOrbits.jl.git
[ "MIT" ]
0.10.1
370c3ac3c000dd3ac975681521dcfe687efc1f24
code
1067
# Using implicit differentiation, I found that the derivatives of eccentric anomaly # have closed form solutions once the primal value is known. # By providing those here, upstream automatic differentiation libraries will be able # to efficiently diff through Kepler's equation. using ChainRulesCore @scalar_rule PlanetOrbits.kepler_solver(M, e) @setup(u = 1 - e*cos(Ω)) (1 / u,sin(Ω) / u) # We have analytic gradients for these already calculated. But with the above defintion # they don't have much of an effect. # @scalar_rule raoff(o::OrbitSolution) pmra(o) # @scalar_rule decoff(o::OrbitSolution) pmdec(o) # @scalar_rule propmotionanom(o::OrbitSolution) acceleration(o) # @scalar_rule orbitsolve_ν(elem::VisualOrbit{T}, t; tref=58849) # DiffRules.@define_diffrule PlanetOrbits.kepler_solver(M, e) = :( # EA = PlanetOrbits.kepler_solver($M,$e); # temp = 1 - e*cos(EA); # d_dM = 1 / temp # ), # :( # EA = PlanetOrbits.kepler_solver($M,$e); # temp = 1 - e*cos(EA); # d_de = sin(EA) / temp # ) # end
PlanetOrbits
https://github.com/sefffal/PlanetOrbits.jl.git
[ "MIT" ]
0.10.1
370c3ac3c000dd3ac975681521dcfe687efc1f24
code
3903
using StaticArrays """ PlanetOrbits.Goat() Kepler solver implementation from https://arxiv.org/abs/2103.15829 and https://github.com/oliverphilcox/Keplers-Goat-Herd It is here for comparison purposes only. In general, Markley() is more performant and accurate. """ struct Goat <: AbstractSolver end # Implementation from https://arxiv.org/abs/2103.15829 and https://github.com/oliverphilcox/Keplers-Goat-Herd function kepler_solver(𝓁, e, ::Goat) # This function implements the 🐐 GOAT algorithm for # solving Kepler's equation. It is approximately # 4x faster than the other methods implemented # here. if isapprox(e, 0) return 𝓁 end if isapprox(rem(𝓁,π), 0) return 𝓁 end N_it = 15 N_points = N_it-2 N_fft = (N_it)*2 radius = e / 2 # Generate e^{ikx} sampling points and precompute real and imaginary parts # Keep these on the stack inside an MVector -> no allocations exp2R = @MVector zeros(typeof(e), N_points) exp2I = @MVector zeros(typeof(e), N_points) exp4R = @MVector zeros(typeof(e), N_points) exp4I = @MVector zeros(typeof(e), N_points) coshI = @MVector zeros(typeof(e), N_points) sinhI = @MVector zeros(typeof(e), N_points) ecosR = @MVector zeros(typeof(e), N_points) esinR = @MVector zeros(typeof(e), N_points) @inbounds for j in 1:N_points freq = 2π*j/N_fft cf = cos(freq) sf = sin(freq) exp2R[j] = cf exp2I[j] = sf exp4R[j] = cf*cf-sf*sf exp4I[j] = 2.0*cf*sf coshI[j] = cosh(radius*exp2I[j]) sinhI[j] = sinh(radius*exp2I[j]) ecosR[j] = e*cos(radius*exp2R[j]) esinR[j] = e*sin(radius*exp2R[j]) end esinRadius = e*sin(radius) ecosRadius = e*cos(radius) # Define contour center for each ell and precompute sin(center), cos(center) if 𝓁 < π center = 𝓁 + e/2 else center = 𝓁 - e/2 end sinC = sin(center) cosC = cos(center) output = center # Accumulate Fourier coefficients # NB: we halve the range by symmetry, absorbing factor of 2 into ratio ####### # Separate out j = 0 piece, which is simpler # Compute z in real and imaginary parts (zI = 0 here) zR = center + radius # Compute e*sin(zR) from precomputed quantities tmpsin = sinC*ecosRadius+cosC*esinRadius # sin(zR) # Compute f(z(x)) in real and imaginary parts (fxI = 0) fxR = zR - tmpsin - 𝓁 # Add to array, with factor of 1/2 since an edge ft_gx2 = 0.5/fxR ft_gx1 = 0.5/fxR ####### # Compute for j = 1 to N_points @inbounds @simd for j in 1:N_points # Compute z in real and imaginary parts zR = center + radius*exp2R[j] zI = radius*exp2I[j] # Compute f(z(x)) in real and imaginary parts # can use precomputed cosh / sinh / cos / sin for this! tmpcosh = coshI[j] # cosh(zI) tmpsinh = sinhI[j] # sinh(zI) tmpsin = sinC*ecosR[j]+cosC*esinR[j] # e sin(zR) tmpcos = cosC*ecosR[j]-sinC*esinR[j] # e cos(zR) fxR = zR - tmpsin*tmpcosh-𝓁 fxI = zI - tmpcos*tmpsinh # Compute 1/f(z) and append to array ftmp = fxR*fxR+fxI*fxI fxR /= ftmp fxI /= ftmp ft_gx2 += (exp4R[j]*fxR+exp4I[j]*fxI) ft_gx1 += (exp2R[j]*fxR+exp2I[j]*fxI) end ####### # Separate out j = N_it piece, which is simpler # Compute z in real and imaginary parts (zI = 0 here) zR = center - radius # Compute sin(zR) from precomputed quantities tmpsin = sinC*ecosRadius-cosC*esinRadius # sin(zR) # Compute f(z(x)) in real and imaginary parts (fxI = 0 here) fxR = zR - tmpsin-𝓁 # Add to sum, with 1/2 factor for edges ft_gx2 += 0.5/fxR ft_gx1 += -0.5/fxR ####### # Compute E(ell) output += radius*ft_gx2/ft_gx1; return output end
PlanetOrbits
https://github.com/sefffal/PlanetOrbits.jl.git
[ "MIT" ]
0.10.1
370c3ac3c000dd3ac975681521dcfe687efc1f24
code
3650
""" PlanetOrbits.Markley() Kepler solver implementation from AstroLib, based on Markley (1995) Celestial Mechanics and Dynamical Astronomy, 63, 101 (DOI:10.1007/BF00691917). """ struct Markley <: AbstractSolver end # Our own simpler version of rem2pi. This probably doesn't handle # inf/nan and the boundary conditions perfectly. # However, it works with Enzyme function myrem2pi(x) if x > π while x > π x -= 2π end elseif x < -π while x < -π x += 2π end end x end # The following function is taken directly from AstroLib.jl # We remove one invariant check we handle elsewhere and also # force inlining for about a 5% speedup. # We also supply analytic gradients for use in autodiff packages. @inline function kepler_solver(_M::Real, e::Real, ::Markley) # We already handle this invariant # @assert 0 <= e <= 1 "eccentricity must be in the range [0, 1]" # M must be in the range [-pi, pi], see Markley (1995), page 2. M = rem2pi(_M, RoundNearest) # M = myrem2pi(_M) T = float(promote_type(typeof(M), typeof(e))) if iszero(M) || iszero(e) return T(M) end pi2 = abs2(T(pi)) # equation (20) α = (3 * pi2 + 8 * (pi2 - pi * abs(M)) / (5 * (1 + e)))/(pi2 - 6) # equation (5) d = 3 * (1 - e) + α * e # equation (9) q = 2 * α * d * (1 - e) - M * M # equation (10) r = 3 * α * d * (d - 1 + e) * M + M * M * M # equation (14) w = cbrt(abs2(abs(r) + sqrt(q * q * q + r * r))) # equation (15) E1 = (2 * r * w / @evalpoly(w, q * q, q, 1) + M)/d # equation (26) & equation (27) f2, f3 = e .* sincos(E1) # equation (21) f0 = E1 - f2 - M # equation (25) f1 = 1 - f3 # equation (22) δ3 = -f0 / (f1 - f0 * f2 / (2 * f1)) # equation (23) δ4 = -f0 / @evalpoly(δ3, f1, f2 / 2, f3 / 6) # equations (24) and (28) δ5 = -f0 / @evalpoly(δ4, f1, f2 / 2, f3 / 6, - f2 / 24) return E1 + δ5 # equation 29 end
PlanetOrbits
https://github.com/sefffal/PlanetOrbits.jl.git
[ "MIT" ]
0.10.1
370c3ac3c000dd3ac975681521dcfe687efc1f24
code
2967
using Roots @inline function PlanetOrbits.kepler_solver(_MA::Real, e::Real, method::RootsMethod) if e < 1 MA = rem2pi(_MA, RoundNearest) return kepler_solver_roots(MA, e, method) else return hyperbolic_kepler_solver_roots(_MA, e, method) end end @inline function kepler_solver_roots(MA::Real, e::Real, method::RootsMethod) # Standard Kepler's equation and derivatives kep1(EA) = EA - MA - e*sin(EA) kep1′(EA) = 1 - e*cos(EA) kep1′′(EA) = e*sin(EA) kep1′′′(EA) = e*cos(EA) kep1′′′′(EA) = -e*sin(EA) kep1′′′′′(EA) = -e*cos(EA) fs = (kep1,kep1′,kep1′′,kep1′′′,kep1′′′′,kep1′′′′) if e == 0 return MA end if typeof(method.method) <: Roots.AbstractBracketingMethod if e < 0.7 initial = (MA - e, MA+e) else initial = machin(e, MA) .+ (-0.05, 0.05) end else if e < 0.5 initial = MA else if -π < MA < 0 || π < MA initial = MA - e else initial = MA + e end end end EA = Roots.find_zero(fs, initial, method.method; method.kwargs...) return EA end @inline function hyperbolic_kepler_solver_roots(MA::Real, e::Real, method::RootsMethod) # Hyperbolic Kepler's equation and derivatives # Note: we keep the "eccentric anomaly" / "EA" notation but this is # really hyperbolic anomaly. keph(EA) = - EA - MA + e*sinh(EA) keph′(EA) = e*cosh(EA) - 1 keph′′(EA) = e*sinh(EA) keph′′′(EA) = e*cosh(EA) keph′′′′(EA) = e*sinh(EA) keph′′′′′(EA) = e*cosh(EA) fs = (keph,keph′,keph′′,keph′′′,keph′′′′,keph′′′′) if typeof(method.method) <: Roots.AbstractBracketingMethod initial = (MA - e, MA+e) else if abs(MA) < 100 if -π < MA < 0 || π < MA initial = MA - e else initial = MA + e end else initial = sign(MA)*log(abs(MA)) end end EA = Roots.find_zero(fs, initial, method.method; method.kwargs...) return EA end # Functions to find a good starting point for iteration, # specifically with Newton's method. # Functions by J Cook: https://www.johndcook.com/blog/2022/11/02/keplers-equation-python/ # These are currently unused. For Newton's method, we are faster # just running more iterations from a simple guess than calculating # all these sqrt and cbrt to get a good starting point. # This will solve the special form of the cubic we need. function solve_cubic(a, c, d) p = c/a q = d/a k = sqrt( q^2/4 + p^3/27 ) return cbrt(-q/2 - k) + cbrt(-q/2 + k) end # Machin's starting point for Newton's method # See johndcook.com/blog/2022/11/01/kepler-newton/ function machin(e, M) n = sqrt(5 + sqrt(16 + 9/e)) a = n*(e*(n^2 - 1)+1)/6 c = n*(1-e) d = -M s = solve_cubic(a, c, d) return n*asin(s) end
PlanetOrbits
https://github.com/sefffal/PlanetOrbits.jl.git
[ "MIT" ]
0.10.1
370c3ac3c000dd3ac975681521dcfe687efc1f24
code
15261
""" AbsoluteVisual{OrbitType}(..., ref_epoch=, ra=, dec=, plx=, rv=, pmra=, pmdec=) This wraps another orbit object to add parallax, proper motion, and RV fields, at a given reference epoch. Like a Visual{OrbitType} this allows for calculating projected quantities, eg. separation in milliarcseconds. What this type additionally does is correct for the star's 3D motion through space (RV and proper motion) and differential light travel-time compared to a reference epoch when calculating various quantities. This becomes necessary when computing eg. RVs over a long time period. ra : degrees dec : degrees plx : mas pmra : mas/yr pmdec : mas/yr rv : m/s ref_epoch : days TODO: account for viewing angle differences and differential light travel time between a planet and its host. """ struct AbsoluteVisualOrbit{T<:Number,O<:AbstractOrbit} <: AbstractOrbit{T} parent::O ref_epoch::T ra::T dec::T plx::T rv::T pmra::T pmdec::T dist::T end # TODO: distance vs time distance(elem::AbsoluteVisualOrbit, t::Number) = elem.dist*au2pc """ AbsoluteVisual{OrbitType}(..., ref_epoch=, ra=, dec=, plx=, rv=, pmra=, pmdec=) This wraps another orbit object to add parallax, proper motion, and RV fields, at a given reference epoch. Like a Visual{OrbitType} this allows for calculating projected quantities, eg. separation in milliarcseconds. What this type additionally does is correct for the star's 3D motion through space (RV and proper motion) and differential light travel-time compared to a reference epoch when calculating various quantities. This becomes necessary when computing eg. RVs over a long time period. ra : degrees dec : degrees parallax : mas pmra : mas/yr pmdec : mas/yr rv : m/s ref_epoch : years TODO: account for viewing angle differences and differential light travel time between a planet and its host. """ const AbsoluteVisual{OrbitType} = AbsoluteVisualOrbit{T,OrbitType} where T function AbsoluteVisual{OrbitType}(;ref_epoch, ra, dec, plx, rv, pmra, pmdec, kargs...,) where {OrbitType} dist = 1000/plx * pc2au # distance [AU] parent = OrbitType(;kargs...) T = _parent_num_type(parent) T = promote_type(T, typeof(ref_epoch), typeof(ra), typeof(dec), typeof(plx), typeof(rv), typeof(pmra), typeof(pmdec)) return AbsoluteVisualOrbit{T,OrbitType{T}}(parent, ref_epoch, ra, dec, plx, rv, pmra, pmdec, dist) end function AbsoluteVisual(parent::AbstractOrbit, ref_epoch, ra, dec, plx, rv, pmra, pmdec,) dist = 1000/plx * pc2au # distance [AU] T = _parent_num_type(parent) # TODO: we could have a conversion error here if the parent orbit uses a more restrictive number type and we cant convert these new properties to match return AbsoluteVisualOrbit{T,typeof(parent)}(parent, ref_epoch, ra, dec, plx, rv, pmra, pmdec, dist) end export AbsoluteVisual struct OrbitSolutionAbsoluteVisual{TEl<:AbstractOrbit,TSol<:AbstractOrbitSolution,T<:Number,TComp<:NamedTuple} <: AbstractOrbitSolution elem::TEl sol::TSol t::T compensated::TComp end """ This function calculates how to account for stellar 3D motion when comparing measurements across epochs (epoch1 vs epoch2). Typically `epoch1` is your reference epoch, `epoch2` is your measurement epoch, and the remaining parameters are parameters you are hoping to fit. You use this function to calculate their compensated values, and compare these to data at `epoch2`. Will also calculates light travel time, returning updated epochs (epoch2a) due to change in distance between epoch1 and epoch2. epoch2 will be when the light was detected, epoch2a will be the "emitted" time accounting for the different positions between epoch1 and epoch 2. Original Author: Eric Nielsen """ function compensate_star_3d_motion(elem::AbsoluteVisualOrbit,epoch2_days::Number) ra1 = elem.ra # degrees dec1 = elem.dec # degrees parallax1 = elem.plx # mas pmra1 = elem.pmra # mas/yr pmdec1 = elem.pmdec # mas/yr rv1 = elem.rv/1000 # m/s -> km/s epoch1_days = elem.ref_epoch # MJD # Be very careful now about assuming there are 365.245 days per year. # We want to use that value when using a number like proper motion in mas/yr. # We don't want to make that assumption when using delta years as a time unit, # since they are each either 365 or 366 days. # epoch1 = epoch1_days*days_per_average_year # epoch2 = epoch2_days*days_per_average_year # Guard against same epoch # TODO: could just return arguments with appropriate units if epoch1_days == epoch2_days epoch2_days += eps(epoch2_days) end T = promote_type( typeof(ra1), typeof(dec1), typeof(parallax1), typeof(pmra1), typeof(pmdec1), typeof(rv1), typeof(epoch1_days), typeof(epoch2_days) ) mydtor = convert(T, π / 180) my206265 = convert(T, 180 / π * 60 * 60) sec2year = convert(T, 365.25 * 24 * 60 * 60) pc2km = convert(T, 3.08567758149137e13) distance1 = convert(T, 1000 / parallax1) # convert RV to pc/year, convert delta RA and delta Dec to radians/year # These are differential quantities originally expressed per average-length-year. # We want them in units per day, which always have the same length dra1 = pmra1 / 1000 / my206265 / cos(dec1 * mydtor) ddec1 = pmdec1 / 1000 /my206265 ddist1 = rv1 / pc2km * sec2year # convert first epoch to x,y,z and dx,dy,dz sin_ra1, cos_ra1 = sincos(ra1*mydtor) sin_dec1, cos_dec1 = sincos(dec1*mydtor) x₁ = cos_ra1 * cos_dec1 * distance1 y₁ = sin_ra1 * cos_dec1 * distance1 z₁ = sin_dec1 * distance1 # Excellent. Now dx,dy,dz,which are constants dx = -1 * sin_ra1 * cos_dec1 * distance1 * dra1 - cos_ra1 * sin_dec1 * distance1 * ddec1 + cos_ra1 * cos_dec1 * ddist1 dy = 1 * cos_ra1 * cos_dec1 * distance1 * dra1 - sin_ra1 * sin_dec1 * distance1 * ddec1 + sin_ra1 * cos_dec1 * ddist1 dz = 1 * cos_dec1 * distance1 * ddec1 + sin_dec1 * ddist1 # be careful here with units: delta_time_jyear = (epoch2_days - epoch1_days)/year2day_julian x₂ = x₁ + dx * delta_time_jyear#(epoch2-epoch1) y₂ = y₁ + dy * delta_time_jyear#(epoch2-epoch1) z₂ = z₁ + dz * delta_time_jyear#(epoch2-epoch1) # And done. Now we just need to go backward. distance2 = sqrt(x₂^2 + y₂^2 + z₂^2) if distance2 == 0 distance2 += eps(distance2) end parallax2 = 1000/distance2 ra2 = ((atan(y₂,x₂)/mydtor + 360) % 360) arg = z₂ / distance2 if 1.0 < arg < 1.0 + sqrt(eps(1.0)) arg = 1.0 end dec2 = asin(arg) / mydtor ddist2 = 1 / sqrt(x₂^2 + y₂^2 + z₂^2) * (x₂ * dx + y₂ * dy + z₂ * dz) dra2 = 1 / (x₂^2 + y₂^2) * (-1 * y₂ * dx + x₂ * dy) ddec2 = 1 / (distance2 * sqrt(1 - z₂^2 / distance2^2)) * (-1 * z₂ * ddist2 / distance2 + dz) pmra2 = dra2 * my206265 * 1000 * cos(dec2 * mydtor) pmdec2 = ddec2 * 1000 * my206265 rv2 = ddist2 * pc2km / sec2year # light travel time delta_time = (distance2 - distance1) * 3.085677e13 / 2.99792e5 # in seconds # epoch2a = epoch2 - delta_time/3.154e7 epoch2a_days = epoch2_days - delta_time*sec2day distance2_pc = distance2 * pc2au return (; distance2_pc, parallax2, ra2, dec2, ddist2, dra2, ddec2, pmra2, pmdec2, rv2=rv2*1000, delta_time, epoch1_days, # epoch2, # epoch2a, epoch2a_days, x₁, y₁, z₁, x₂, y₂, z₂, ) end # We have to override the generic `orbitsolve` for this case, as we have to adjust # for light travel time here. function orbitsolve(elem::AbsoluteVisualOrbit, t, method::AbstractSolver=Auto()) # Epoch of periastron passage tₚ = periastron(elem) if t isa Integer t = float(t) end compensated = compensate_star_3d_motion(elem, t) # Mean anomaly MA = meanmotion(elem)/oftype(t, year2day_julian) * (compensated.epoch2a_days - tₚ) # Compute eccentric anomaly EA = kepler_solver(MA, eccentricity(elem), method) # Calculate true anomaly ν = _trueanom_from_eccanom(elem, EA) return orbitsolve_ν(elem, ν, EA, t, compensated) end function orbitsolve_ν( elem::AbsoluteVisualOrbit, ν, # TODO: EA_from_ν is no longer accurate here, since the light travel # time can vary vs time, we can't determine time from nu directly. EA=EA_from_ν(elem.parent, ν), t=_time_from_EA(elem, EA), compensated::NamedTuple=compensate_star_3d_motion(elem,t); kwargs... ) # TODO: asking for a solution at a given ν is no longer well-defined, # as it will vary over time and not repeat over each orbital period. sol = orbitsolve_ν(elem.parent, ν, EA, compensated.epoch2a_days; kwargs...) return OrbitSolutionAbsoluteVisual(elem, sol, t, compensated) end # The solution time is the time we asked for, not the true time accounting for light travel. soltime(os::OrbitSolutionAbsoluteVisual) = os.t # Forward these functions to the underlying orbit object solution_fun_list = ( :trueanom, :eccanom, :meananom, :posx, :posy, :posz, :posangle, :velx, :vely, :velz, ) for fun in solution_fun_list # TODO-1: several of these need to handle the varying parallax correctly # TODO-2: several more need to account for chaning viewing angle and planet light-travel time. @eval function ($fun)(os::OrbitSolutionAbsoluteVisual, args...) return ($fun)(os.sol, args...) end end orbit_fun_list = ( :eccentricity, :periastron, :period, :inclination, :semimajoraxis, :totalmass, :meanmotion, :semiamplitude, :_trueanom_from_eccanom, ) for fun in orbit_fun_list @eval function ($fun)(elem::AbsoluteVisualOrbit, args...) return ($fun)(elem.parent, args...) end end function radvel(os::OrbitSolutionAbsoluteVisual) # Adjust RV to account for star's 3D motion through space. # We add the difference between the RV at the reference epoch # and the RV at the measurement epoch return radvel(os.sol) + (os.compensated.rv2 - os.elem.rv) end function raoff(o::OrbitSolutionAbsoluteVisual) xcart = posx(o) # [AU] cart2angle = rad2as*oftype(xcart, 1e3)/o.compensated.distance2_pc xang = xcart*cart2angle # [mas] return xang end function decoff(o::OrbitSolutionAbsoluteVisual) ycart = posy(o) # [AU] cart2angle = rad2as*oftype(ycart, 1e3)/o.compensated.distance2_pc yang = ycart*cart2angle # [mas] return yang end function pmra(o::OrbitSolutionAbsoluteVisual) ẋcart = o.elem.parent.J*(o.elem.parent.cosi_cosΩ*(o.sol.cosν_ω + o.elem.parent.ecosω) - o.elem.parent.sinΩ*(o.sol.sinν_ω + o.elem.parent.esinω)) # [AU/year] cart2angle = rad2as*oftype(ẋcart, 1e3)/o.compensated.distance2_pc ẋang = ẋcart*cart2angle # [mas/year] return ẋang + (o.compensated.pmra2 - o.elem.pmra) end function pmdec(o::OrbitSolutionAbsoluteVisual) ẏcart = -o.elem.parent.J*(o.elem.parent.cosi_sinΩ*(o.sol.cosν_ω + o.elem.parent.ecosω) + o.elem.parent.cosΩ*(o.sol.sinν_ω + o.elem.parent.esinω)) # [AU/year] cart2angle = rad2as*oftype(ẏcart, 1e3)/o.compensated.distance2_pc ẏang = ẏcart*cart2angle # [mas/year] return ẏang + (o.compensated.pmdec2 - o.elem.pmdec) end # The non-keplerian deviation due to system's 3D motion must be applied additively # to both the function radvel(o::OrbitSolutionAbsoluteVisual, M_planet) quantity = radvel(o.sol) M_tot = totalmass(o.elem) return -M_planet/M_tot*quantity + (o.compensated.rv2 - o.elem.rv) end function pmra(o::OrbitSolutionAbsoluteVisual, M_planet) ẋcart = o.elem.parent.J*(o.elem.parent.cosi_cosΩ*(o.sol.cosν_ω + o.elem.parent.ecosω) - o.elem.parent.sinΩ*(o.sol.sinν_ω + o.elem.parent.esinω)) # [AU/year] cart2angle = rad2as*oftype(ẋcart, 1e3)/o.compensated.distance2_pc quantity = ẋang = ẋcart*cart2angle # [mas/year] M_tot = totalmass(o.elem) return -M_planet/M_tot*quantity + (o.compensated.pmra2 - o.elem.pmra) end function pmdec(o::OrbitSolutionAbsoluteVisual, M_planet) ẏcart = -o.elem.parent.J*(o.elem.parent.cosi_sinΩ*(o.sol.cosν_ω + o.elem.parent.ecosω) + o.elem.parent.cosΩ*(o.sol.sinν_ω + o.elem.parent.esinω)) # [AU/year] cart2angle = rad2as*oftype(ẏcart, 1e3)/o.compensated.distance2_pc quantity = ẏang = ẏcart*cart2angle # [mas/year] M_tot = totalmass(o.elem) return -M_planet/M_tot*quantity + (o.compensated.pmdec2 - o.elem.pmdec) end function accra(o::OrbitSolutionAbsoluteVisual) throw(NotImplementedException()) # if eccentricity(o.elem) >= 1 # @warn "acceleration not tested for ecc >= 1 yet. Results are likely wrong." # end # ẍcart = -o.elem.parent.A*(1 + o.sol.ecosν)^2 * (o.elem.parent.cosi_cosΩ*o.sol.sinν_ω + o.elem.parent.sinΩ*o.sol.cosν_ω) # [AU/year^2] # cart2angle = rad2as*oftype(ẍcart, 1e3)/o.compensated.distance2_pc # ẍang = ẍcart*cart2angle # [mas/year^2] # return ẍang end function accdec(o::OrbitSolutionAbsoluteVisual) # throw(NotImplementedException()) # if eccentricity(o.elem) >= 1 # @warn "acceleration not tested for ecc >= 1 yet. Results are likely wrong." # end # ÿcart = o.elem.parent.A*(1 + o.sol.ecosν)^2 * (o.elem.parent.cosi_sinΩ*o.sol.sinν_ω - o.elem.parent.cosΩ*o.sol.cosν_ω) # [AU/year^2] # cart2angle = rad2as*oftype(ÿcart, 1e3)/o.compensated.distance2_pc # ÿang = ÿcart*cart2angle # [mas/year^2] # return ÿang end """ PlanetOrbits.ra(orbit, t) Get the instantaneous position of a companion in degrees of RA and Dec. For the relative position, see `raoff`. """ function ra(o::OrbitSolutionAbsoluteVisual, M_planet) # Already solved at correct epoch accoutning for light travel time # difference wrt. reference epoch. kep_offset_mas = raoff(o, M_planet) total = o.compensated.ra2 + kep_offset_mas/60/60/1000 return total end """ PlanetOrbits.dec(orbit, t) Get the instantaneous position of a companion in degrees of RA and Dec. For the relative position, see `decoff`. """ function dec(o::OrbitSolutionAbsoluteVisual, M_planet) # Already solved at correct epoch accoutning for light travel time # difference wrt. reference epoch. kep_offset_mas = decoff(o, M_planet) total = o.compensated.dec2 + kep_offset_mas/60/60/1000 return total end # Pretty printing function Base.show(io::IO, mime::MIME"text/plain", elem::AbsoluteVisual) show(io, mime, elem.parent) print(io, """\ AbsoluteVisual ────────────────────────── reference epoch [days] = $(round(elem.ref_epoch, digits=1)) plx [mas] = $(round(elem.plx, digits=3)) ra [°] = $(round(elem.ra, digits=3)) dec [°] = $(round(elem.dec, digits=3)) pmra [mas/yr] = $(round(elem.pmra, digits=3)) pmdec [mas/yr] = $(round(elem.pmdec, digits=3)) rv [m/s] = $(round(elem.rv, digits=3)) ────────────────────────── """) end
PlanetOrbits
https://github.com/sefffal/PlanetOrbits.jl.git
[ "MIT" ]
0.10.1
370c3ac3c000dd3ac975681521dcfe687efc1f24
code
12651
""" This constructor assumes that 1 year, 1 AU, and 1 solar mass are compatible. According to IAU definitions, they are not. Use with care where high precision is needed. """ struct CartesianOrbit{T<:Number} <: AbstractOrbit{T} # Note: these position and velocity values are in *barycentric* coordinates x::T # AU (increasing to the left) y::T # AU (increasing upwards) z::T # AU (increasing away) vx::T # AU/yr vy::T # AU/yr vz::T # AU/yr M::T # Host mass (solar masses) # Orbital properties a::T e::T i::T ω::T Ω::T tp::T # Physical constants T::T n::T ν_fact::T p::T # Geometric factors cosi::T sini::T cosΩ::T sinΩ::T ecosω::T esinω::T cosi_cosΩ::T cosi_sinΩ::T # Semiamplitudes J::T K::T A::T function CartesianOrbit(x, y, z, vx, vy, vz, M, tref=0; tol=1e-8) # tref is the epoch at which these values are provided # This code was adapted from a combination of: # https://github.com/spencerw/keplerorbit/blob/master/KeplerOrbit/KeplerOrbit.py (MIT license) # https://github.com/esa/pykep/blob/403a7dfe8ed3ff19b43bcbd6e6856de7f820cf55/src/third_party/cspice/oscelt.c#L429 (public domain) # https://github.com/poliastro/poliastro/blob/21fd7719e89a7d22b4eac63141a60a7f1b01768c/src/poliastro/core/elements.py#L279 (MIT license) # TODO: This constructor assumes that 1 year, 1 AU, and 1 solar mass are compatible. According # to IAU definitions, they are not. Use with care where high precision is needed. if M isa Integer M = float(M) end x, y, z, vx, vy, vz, M, tref = promote(x, y, z, vx, vy, vz, M, tref) T = typeof(x) # Unit vectors i⃗ = @SVector(T[1.0, 0.0, 0.0]) j⃗ = @SVector(T[0.0, 1.0, 0.0]) k⃗ = @SVector(T[0.0, 0.0, 1.0]) # Position vector r⃗ = @SVector([ x, y, z]) r = norm(r⃗) if r == 0 error("0 position vector") end # Velocity vector v⃗ = @SVector([vx, vy, vz]) ./ 2π # TODO: track this down! v = norm(v⃗) if r == 0 error("0 velocity vector") end # Angular momentum vector h⃗ = r⃗ × v⃗ h = norm(h⃗) if h == 0 error("velocity and position vectors are parallel (degenerate case)") end # Eccentricity vector tmp⃗ = v⃗ × h⃗ e⃗ = tmp⃗ / M - r⃗ / r e = norm(e⃗) # Equivalent: # e⃗ = ((v⃗ ⋅ v⃗ - M / r) * r⃗ - (r⃗ ⋅ v⃗) * v⃗) / M # e = norm(e⃗) n⃗ = k⃗ × h⃗ n = norm(n⃗) oneminusesq = (1 - e^2) # Inclination i = π - acos((k⃗ ⋅ h⃗) / h) if e < 1 ν_fact = √((1+e)/(1-e)) # true anomaly prefactor else ν_fact = √((1+e)/(e-1)) # true anomaly prefactor end circular = e < tol equatorial = abs(i) < tol F2ν(F) = 2atan(ν_fact*tanh(F/2)) # TODO: # These cases are extremely ugly and messy. # They are correct, but should be refactored. if equatorial && !circular Ω = 0 Ω += π/2 ω = rem2pi(atan(e⃗[2], e⃗[1]), RoundDown) ν = atan((h⃗ ⋅ (e⃗ × r⃗)) / h, r⃗ ⋅ e⃗) p = h^2 / M a = p / (1 - (e^2)) if a > 0 e_se = (r⃗⋅v⃗) / sqrt(M*a) e_ce = r*v^2 / M - 1 ν = 2atan(ν_fact*tan(atan(e_se, e_ce) / 2)) a = p/oneminusesq period_days = √(a^3/M)*kepler_year_to_julian_day_conversion_factor period_yrs = period_days/year2day_julian meanmotion = 2π/period_yrs # mean motion else e_sh = (r⃗ ⋅ v⃗) / sqrt(-M*a) e_ch = r * v^2 / M - 1 ν = F2ν(log((e_ch + e_sh) / (e_ch - e_sh)) / 2) period_days = Inf meanmotion = 2π * √(M/-a^3) *kepler_year_to_julian_day_conversion_factor/year2day_julian # mean motion end ω = pi-ω if e < 1 EA = 2atan(tan(ν/2)/ν_fact) MA = EA - e*sin(EA) else EA = 2atanh(tan(ν/2)/ν_fact) MA = e*sinh(EA) -EA end tp = -MA / meanmotion * PlanetOrbits.year2day_julian + tref elseif !equatorial && circular e = oftype(e, 0) e⃗ = e⃗ * oftype(e, 0) Ω = rem2pi(atan(n⃗[2], n⃗[1]), RoundDown) ω = 0 # Argument of latitude ν = atan((r⃗ ⋅ (h⃗ × n⃗)) / h, r⃗ ⋅ n⃗) p = h^2 / M a = p/oneminusesq period_days = √(a^3/M)*kepler_year_to_julian_day_conversion_factor period_yrs = period_days/year2day_julian meanmotion = 2π/period_yrs # mean motion Ω = 3π/2 - Ω # Remaining calculation: determine tp MA = EA = 2atan(tan(ν/2)/ν_fact) tp = -MA / meanmotion * PlanetOrbits.year2day_julian + tref elseif equatorial && circular e = oftype(e, 0) e⃗ = e⃗ * oftype(e, 0) Ω = 0 ω = 0 ν = rem2pi(atan(r⃗[2], r⃗[1]), RoundDown) p = h^2 / M a = p/oneminusesq period_days = √(a^3/M)*kepler_year_to_julian_day_conversion_factor period_yrs = period_days/year2day_julian meanmotion = 2π/period_yrs # mean motion # Ω = 3π/2 - Ω # ω = 0#π/2 # @show Ω # Ω -= 3π/2 Ω = -π/2 MA = EA = 2atan(tan(ν/2)/ν_fact) tp = MA / meanmotion * year2day_julian + tref else p = h^2 / M a = p / (1 - (e^2)) # elliptical or hyperbolic if a > 0 e_se = (r⃗⋅v⃗) / sqrt(M*a) e_ce = r*v^2 / M - 1 ν = 2atan(ν_fact*tan(atan(e_se, e_ce) / 2)) a = p/oneminusesq period_days = √(a^3/M)*kepler_year_to_julian_day_conversion_factor period_yrs = period_days/year2day_julian meanmotion = 2π/period_yrs # mean motion else e_sh = (r⃗ ⋅ v⃗) / sqrt(-M*a) e_ch = r * v^2 / M - 1 ν = F2ν(log((e_ch + e_sh) / (e_ch - e_sh)) / 2) period_days = Inf meanmotion = 2π * √(M/-a^3)*kepler_year_to_julian_day_conversion_factor/year2day_julian end px = r⃗ ⋅ n⃗ py = (r⃗ ⋅ (h⃗ × n⃗)) / h ω = rem2pi(atan(py, px) - ν, RoundNearest) if n⃗[2] >= 0 Ω = 3pi/2 - acos(n⃗[1]/n); else Ω = acos(n⃗[1]/n) -pi/2 end # Remaining calculation: determine tp # Need mean anomaly if e < 1 EA = 2atan(tan(ν/2)/ν_fact) MA = EA - e*sin(EA) else EA = 2atanh(tan(ν/2)/ν_fact) MA = e*sinh(EA) -EA end tp = -MA / meanmotion * year2day_julian + tref end Ω += pi # Geometric factors involving rotation angles sini, cosi = sincos(i) sinω, cosω = sincos(ω) sinΩ, cosΩ = sincos(Ω) ecosω = e * cosω esinω = e * sinω cosi_cosΩ = cosi * cosΩ cosi_sinΩ = cosi * sinΩ if e < 1 J = ((2π * a) / period_yrs)*kepler_year_to_julian_day_conversion_factor/year2day_julian / √oneminusesq # horizontal velocity semiamplitude [AU/year] K = J * au2m * sec2year_julian * sini # radial velocity semiamplitude [m/s] A = ((4π^2 * a) / period_yrs^2) / oneminusesq^2 # horizontal acceleration semiamplitude [AU/year^2] else J = -((2π*a)/√(M/-a^3))*kepler_year_to_julian_day_conversion_factor/year2day_julian / √(-oneminusesq) # horizontal velocity semiamplitude [AU/year] K = J*au2m*sec2year_julian*sini # radial velocity semiamplitude [m/s] # TODO: acceleration not verified for ecc >= 1 yet. Results will be silently wrong. A = ((4π^2 * a)/(M/-a^3))*kepler_year_to_julian_day_conversion_factor/year2day_julian / oneminusesq^2 # horizontal acceleration semiamplitude [AU/year^2] end orbit = new{typeof(M)}( # Passed parameters that define the elements x, y, z, vx, vy, vz, M, # Converted campbell elements a, e, i, ω, Ω, tp, # Cached calcuations period_days, meanmotion, ν_fact, p, # Geometric factors cosi, sini, cosΩ, sinΩ, ecosω, esinω, cosi_cosΩ, cosi_sinΩ, # Semiamplitudes J, K, A ) return orbit end end CartesianOrbit(;x, y, z, vx, vy, vz, M, tref=0, tol=1e-8, kwargs...) = CartesianOrbit(x, y, z, vx, vy, vz, M, tref; tol) function cleanroundoff(arg) # Due to round off, we can sometimes end up just a tiny bit greater than 1 or less than -1. # In that case, apply a threshold of 1. if 1 < abs(arg) < 1+3eps() arg = one(arg) elseif -1-3eps() < abs(arg) < -1 arg = -one(arg) end return arg end period(o::CartesianOrbit) = o.T meanmotion(o::CartesianOrbit) = o.n eccentricity(o::CartesianOrbit) = o.e totalmass(o::CartesianOrbit) = o.M inclination(o::CartesianOrbit) = o.i semimajoraxis(o::CartesianOrbit) = o.a function _trueanom_from_eccanom(o::CartesianOrbit, EA) if o.e < 1 ν = 2*atan(o.ν_fact*tan(EA/2)) else # true anomaly prefactor changed in constructor if hyperbolic ν = 2*atan(o.ν_fact*tanh(EA/2)) end return ν end periastron(elem::CartesianOrbit) = elem.tp semiamplitude(elem::CartesianOrbit) = elem.K """ Represents a `CartesianOrbit` evaluated to some position. """ struct OrbitSolutionCartesian{T<:Number,TEl<:CartesianOrbit} <: AbstractOrbitSolution elem::TEl ν::T EA::T sinν_ω::T cosν_ω::T ecosν::T r::T t::T function OrbitSolutionCartesian(elem, ν, EA, sinν_ω, cosν_ω, ecosν, r, t) promoted = promote(ν, EA, sinν_ω, cosν_ω, ecosν, r, t) return new{eltype(promoted),typeof(elem)}(elem, promoted...) end end export CartesianOrbit soltime(os::OrbitSolutionCartesian) = os.t # Solve orbit to a new cartesian position given true anomaly function orbitsolve_ν(elem::CartesianOrbit, ν, EA=2atan(tan(ν / 2) / elem.ν_fact), t=_time_from_EA(elem, EA)) sinν_ω, cosν_ω = sincos(elem.ω + ν) ecosν = elem.e * cos(ν) r = elem.p / (1 + ecosν) return OrbitSolutionCartesian(elem, ν, EA, sinν_ω, cosν_ω, ecosν, r, t) end # TODO: we can accelerate this since we already know some parameters """ Convert an existing orbit object to a CartesianOrbit. """ function CartesianOrbit(os::AbstractOrbitSolution; tol=1e-8) x = PlanetOrbits.posx(os) y = PlanetOrbits.posy(os) z = PlanetOrbits.posz(os) vx = PlanetOrbits.velx(os) vy = PlanetOrbits.vely(os) vz = PlanetOrbits.velz(os) return CartesianOrbit( x, y, z, vx, vy, vz, totalmass(os.elem), soltime(os); tol ) end #= o = orbit(a=1.0,i=0,ω=π/2,e=0.5,Ω=0,M=1,plx=100.,τ=0.0) ## x = -1.05 y = 3.782338790704024e-16 z = -2.5048146051777413e-17 vx = -3.490253699036788e-16 * 2pi vy = -0.9464377445249709 * 2pi vz = 0.09496052074620637 * 2pi oc = CartesianOrbit(x,y,z,vx,vy,vz,1,0) sc = orbitsolve(oc, 0) x = PlanetOrbits.posx(sc) y = PlanetOrbits.posy(sc) z = PlanetOrbits.posz(sc) vx = PlanetOrbits.velx(sc) vy = PlanetOrbits.vely(sc) vz = PlanetOrbits.velz(sc) oc2= CartesianOrbit(x,y,z,vx,vy,vz,1,0) plot(orbitsolve(oc,0));plot!(orbitsolve(oc2,0)) # i appears to be going backwards o = orbit( a = 1, i = π/4, Ω = 0.001, ω = 0.001, e = 0.5, τ = 0.5, M = 1, tref=0 ) t = 0 oc3 = CartesianOrbit(orbitsolve(o,t)) oc4 = CartesianOrbit(orbitsolve(oc3,t)) oc5 = CartesianOrbit(orbitsolve(oc4,t)) o.ω, oc3.ω, oc4.ω,oc5.ω o.Ω, oc3.Ω, oc4.Ω,oc5.Ω o.i, oc3.i, oc4.i,oc5.i o.τ, oc3.τ, oc4.τ,oc5.τ meananom(o,t), meananom(oc3,t), meananom(oc4,t),meananom(oc5,t) plot(orbitsolve(o,t),label="o", lw=2, ls=:dash, color=1) plot!(orbitsolve(oc3,t), label="oc3", color=2) plot!(orbitsolve(oc4,t), label="oc4", color=3) plot!(orbitsolve(oc5,t), label="oc5", color=4) I think there are three things left: * something about the dates / times stamping of CartesianOrbit is not making sense. =#
PlanetOrbits
https://github.com/sefffal/PlanetOrbits.jl.git
[ "MIT" ]
0.10.1
370c3ac3c000dd3ac975681521dcfe687efc1f24
code
7496
""" KepOrbit( a, # semi-major axis [AU] e, # eccentricity i, # inclination [rad] ω, # argument of periapsis [rad] Ω, # longitude of ascending node [rad] tp, # epoch of periastron passage at MJD=0 M, # mass of primary [M⊙] ) Represents the Keplerian elements of a secondary body orbiting a primary. Use the traditional Campbell parameterization. Values can be specified by keyword argument or named tuple for convenience. """ struct KepOrbit{T<:Number} <: AbstractOrbit{T} # Orbital properties a::T e::T i::T ω::T Ω::T tp::T M::T # Physical constants T::T n::T ν_fact::T p::T # Geometric factors cosi::T sini::T cosΩ::T sinΩ::T ecosω::T esinω::T cosi_cosΩ::T cosi_sinΩ::T # Semiamplitudes J::T K::T A::T # Inner constructor to enforce invariants and pre-calculate # constants from the orbital elements function KepOrbit(a, e, i, ω, Ω, tp, M) # Enforce invariants on user parameters # a = max(a, zero(a)) # e = max(zero(e), min(e, one(e))) M = max(M, zero(M)) i = rem(i, π, RoundDown) Ω = rem2pi(Ω, RoundDown) if e >= 1 && a > 0 @warn "Negative semi-major is required for hyperbolic (e>1) orbits. Flipping sign (maxlog=1)." maxlog=1 a = -a end # Pre-calculate factors to be re-used by orbitsolve # Physical constants of system and orbit if e < 1 period_days = √(a^3/M)*kepler_year_to_julian_day_conversion_factor period_yrs = period_days/year2day_julian n = 2π/period_yrs # mean motion else period_days = Inf # TODO: Need to confirm where this 2pi is coming from # mean motion n = 2π * √(M/-a^3)*kepler_year_to_julian_day_conversion_factor/year2day_julian # n = √(M/-a^3) # mean motion end if e < 1 ν_fact = √((1 + e)/(1 - e)) # true anomaly prefactor else ν_fact = √((1 + e)/(e - 1)) # true anomaly prefactor end oneminusesq = (1 - e^2) p = a*oneminusesq # semi-latus rectum [AU] # Get type of parameters T = promote_type( typeof(a), typeof(e), typeof(i), typeof(ω), typeof(Ω), typeof(tp), typeof(M), ) # The user might pass in integers, but it makes no sense to do these # calculations on integers. Assume they mean to use floats. if T <: Integer T = promote_type(T, Float64) end # Geometric factors involving rotation angles sini, cosi = sincos(i) sinω, cosω = sincos(ω) sinΩ, cosΩ = sincos(Ω) ecosω = e*cosω esinω = e*sinω cosi_cosΩ = cosi*cosΩ cosi_sinΩ = cosi*sinΩ if e < 1 # Velocity and acceleration semiamplitudes J = ((2π*a)/period_yrs) / √oneminusesq # horizontal velocity semiamplitude [AU/year] K = J*au2m*sec2year_julian*sini # radial velocity semiamplitude [m/s] A = ((4π^2 * a)/period_yrs^2) / oneminusesq^2 # horizontal acceleration semiamplitude [AU/year^2] else J = -((2π*a)/√(M/-a^3)) / √(-oneminusesq) # horizontal velocity semiamplitude [AU/year] K = J*au2m*sec2year_julian*sini # radial velocity semiamplitude [m/s] # TODO: acceleration not verified for ecc >= 1 yet. Results will be silently wrong. A = ((4π^2 * a)/(M/-a^3)) / oneminusesq^2 # horizontal acceleration semiamplitude [AU/year^2] end new{T}( # Passed parameters that define the elements a, e, i, ω, Ω, tp, M, # Cached calcuations period_days, n, ν_fact, p, # Geometric factors cosi, sini, cosΩ, sinΩ, ecosω, esinω, cosi_cosΩ, cosi_sinΩ, # Semiamplitudes J, K, A ) end end # Allow arguments to be specified by keyword KepOrbit(;a, e, i, ω, Ω, tp, M, kwargs...) = KepOrbit(a, e, i, ω, Ω, tp, M) export KepOrbit Base.convert(::Type{KepOrbit{T2}}, orb::KepOrbit{T1}) where {T1<:Number,T2<:Number} = KepOrbit( T2(orb.a), T2(orb.e), T2(orb.i), T2(orb.ω), T2(orb.Ω), T2(orb.tp), T2(orb.M) ) """ astuple(elements) Return the parameters of a KepOrbit value as a tuple. """ function astuple(elem::KepOrbit) return (;elem.a, elem.e, elem.i, elem.ω, elem.Ω, elem.tp, elem.M) end export astuple # Pretty printing Base.show(io::IO, ::MIME"text/plain", elem::KepOrbit) = print( io, """ $(typeof(elem)) ───────────────────────── a [au ] = $(round(elem.a, sigdigits=3)) e = $(round(elem.e, sigdigits=8)) i [° ] = $(round(rad2deg(elem.i), sigdigits=3)) ω [° ] = $(round(rad2deg(elem.ω), sigdigits=3)) Ω [° ] = $(round(rad2deg(elem.Ω), sigdigits=3)) tp [day] = $(round(elem.tp, sigdigits=3)) M [M⊙ ] = $(round(elem.M, sigdigits=3)) period [yrs ] : $(round(period(elem)*day2year_julian, digits=1)) mean motion [°/yr] : $(round(rad2deg(meanmotion(elem)), sigdigits=3)) ────────────────────────── """ ) Base.show(io::IO, elem::KepOrbit) = print(io, "KepOrbit($(round(elem.a, sigdigits=3)), $(round(elem.e, sigdigits=3)), $(round(elem.i, sigdigits=3)), "* "$(round(elem.ω, sigdigits=3)), $(round(elem.Ω, sigdigits=3)), $(round(elem.tp, sigdigits=3)), "* "$(round(elem.M, sigdigits=3)))" ) """ Represents a `KepOrbit` evaluated to some position. """ struct OrbitSolutionKep{T<:Number,TEl<:KepOrbit} <: AbstractOrbitSolution elem::TEl ν::T EA::T sinν_ω::T cosν_ω::T ecosν::T r::T t::T function OrbitSolutionKep(elem, ν, EA, sinν_ω, cosν_ω, ecosν, r, t) promoted = promote(ν, EA, sinν_ω, cosν_ω, ecosν, r, t) return new{eltype(promoted),typeof(elem)}(elem, promoted...) end end _solution_type(::Type{KepOrbit}) = OrbitSolutionKep period(elem::KepOrbit) = elem.T meanmotion(elem::KepOrbit) = elem.n eccentricity(o::KepOrbit) = o.e totalmass(o::KepOrbit) = o.M inclination(o::KepOrbit) = o.i semimajoraxis(o::KepOrbit) = o.a function _trueanom_from_eccanom(o::KepOrbit, EA) if o.e < 1 ν = 2*atan(o.ν_fact*tan(EA/2)) else # true anomaly prefactor changed in constructor if hyperbolic ν = 2*atan(o.ν_fact*tanh(EA/2)) end return ν end function periastron(elem::KepOrbit) return elem.tp end semiamplitude(elem::KepOrbit) = elem.K # ---------------------------------------------------------------------------------------------------------------------- # Solve Orbit in Cartesian Coordinates # ---------------------------------------------------------------------------------------------------------------------- function EA_from_ν(elem::KepOrbit, ν) if elem.e < 1 EA = 2atan(tan(ν/2)/elem.ν_fact) else arg = tan(ν/2)/elem.ν_fact if 1 < arg < 1+sqrt(eps(arg)) arg = oftype(arg, 1) end EA = 2atanh(arg) end return EA end function orbitsolve_ν(elem::KepOrbit, ν, EA=EA_from_ν(elem, ν), t=_time_from_EA(elem, EA)) # @show EA t ν sinν_ω, cosν_ω = sincos(elem.ω + ν) ecosν = elem.e*cos(ν) # @show ecosν r = elem.p/(1 + ecosν) # @show r return OrbitSolutionKep(elem, ν, EA, sinν_ω, cosν_ω, ecosν, r, t) end soltime(os::OrbitSolutionKep) = os.t
PlanetOrbits
https://github.com/sefffal/PlanetOrbits.jl.git
[ "MIT" ]
0.10.1
370c3ac3c000dd3ac975681521dcfe687efc1f24
code
4198
""" RadialVelocityOrbit(a, e, ω, tp, M) Represents an orbit of a planet with only the information retrievable from radial velocity measurements. That is, without inclination, longitude of ascending node, or distance to the system. """ struct RadialVelocityOrbit{T<:Number} <: AbstractOrbit{T} a::T e::T ω::T tp::T M::T # Physical constants T::T n::T ν_fact::T # Geometric factors ecosω::T # Semiamplitude K::T # Inner constructor to enforce invariants and pre-calculate # constants from the orbital elements function RadialVelocityOrbit(a, e, ω, tp, M, tref=58849) # Enforce invariants on user parameters M = max(M, zero(M)) # Pre-calculate factors to be re-used by orbitsolve # Physical constants of system and orbit period_days = √(a^3/M)*kepler_year_to_julian_day_conversion_factor period_yrs = period_days/year2day_julian n = 2π/period_yrs # mean motion ν_fact = √((1 + e)/(1 - e)) # true anomaly prefactor # Get type of parameters T = promote_type( typeof(a), typeof(e), typeof(ω), typeof(tp), typeof(M), typeof(tref) ) # The user might pass in integers, but it makes no sense to do these # calculations on integers. Assume they mean to use floats. if T <: Integer T = promote_type(T, Float64) end # Geometric factors involving rotation angles ecosω = e*cos(ω) # Velocity and acceleration semiamplitudes J = ((2π*a)/period_yrs) / √(1 - e^2) # horizontal velocity semiamplitude [AU/year] K = J*au2m*sec2year_julian # radial velocity semiamplitude [m/s] new{T}( # Passed parameters that define the elements a, e, ω, tp, M, # Cached calcuations period_days, n, ν_fact, # Geometric factors ecosω, # Semiamplitude K ) end end # Allow arguments to be specified by keyword RadialVelocityOrbit(;a, e, ω, tp, M, kwargs...) = RadialVelocityOrbit(a, e, ω, tp, M) export RadialVelocityOrbit period(elem::RadialVelocityOrbit) = elem.T meanmotion(elem::RadialVelocityOrbit) = elem.n eccentricity(o::RadialVelocityOrbit) = o.e totalmass(o::RadialVelocityOrbit) = o.M semimajoraxis(o::RadialVelocityOrbit) = o.a _trueanom_from_eccanom(o::RadialVelocityOrbit, EA) =2*atan(o.ν_fact*tan(EA/2)) periastron(o::RadialVelocityOrbit) = o.tp semiamplitude(elem::RadialVelocityOrbit) = elem.K # Pretty printing Base.show(io::IO, ::MIME"text/plain", elem::RadialVelocityOrbit) = print( io, """ $(typeof(elem)) ───────────────────────── a [au ] = $(round(elem.a, sigdigits=3)) e = $(round(elem.e, sigdigits=8)) ω [° ] = $(round(rad2deg(elem.ω), sigdigits=3)) tp = $(round(elem.tp, sigdigits=3)) M [M⊙ ] = $(round(elem.M, sigdigits=3)) ────────────────────────── period [yrs ] : $(round(period(elem)*day2year_julian, digits=1)) mean motion [°/yr] : $(round(rad2deg(meanmotion(elem)), sigdigits=3)) semiamplitude₂ [m/s] : $(round(semiamplitude(elem), digits=1)) ────────────────────────── """ ) """ orbitsolve_ν(elem, ν) Solve a keplerian orbit from a given true anomaly [rad]. See orbitsolve for the same function accepting a given time. """ function orbitsolve_ν(elem::RadialVelocityOrbit, ν, EA=2atan(tan(ν/2)/elem.ν_fact), t=_time_from_EA(elem, EA)) cosν_ω = cos(elem.ω + ν) return OrbitSolutionRadialVelocity(elem, ν, EA, cosν_ω, t) end """ Represents a `RadialVelocityOrbit` evaluated to some position. """ struct OrbitSolutionRadialVelocity{T<:Number,TEl<:RadialVelocityOrbit} <: AbstractOrbitSolution elem::TEl ν::T EA::T cosν_ω::T t::T function OrbitSolutionRadialVelocity(elem, ν, EA, cosν_ω, t) promoted = promote(ν, EA, cosν_ω, t) return new{eltype(promoted),typeof(elem)}(elem, promoted...) end end export OrbitSolutionRadialVelocity soltime(os::OrbitSolutionRadialVelocity) = os.t _solution_type(::Type{RadialVelocityOrbit}) = OrbitSolutionRadialVelocity
PlanetOrbits
https://github.com/sefffal/PlanetOrbits.jl.git
[ "MIT" ]
0.10.1
370c3ac3c000dd3ac975681521dcfe687efc1f24
code
9478
""" ThieleInnesOrbit(e, tp, M, plx, A, B, F, G) Represents a visual orbit of a planet using Thiele-Innes orbital elements. Convertable to and from a VisualOrbit. This parameterization does not have the issue that traditional angular parameters have where the argument of periapsis and longitude of ascending node become undefined for circular and face on orbits respectively. !!! warning There is a remaining bug in this implementation for pi <= Ω < 2pi """ struct ThieleInnesOrbit{T<:Number} <: AbstractOrbit{T} # Orbital properties e::T tp::T M::T plx::T A::T B::T F::T G::T # Constants C::T H::T T::T n::T ν_fact::T # Inner constructor to enforce invariants and pre-calculate # constants from the orbital elements function ThieleInnesOrbit(e, tp, M, plx, A, B, F, G) e, tp, M, plx, A, B, F, G = promote(e, tp, M, plx, A, B, F, G) T = typeof(e) # TODO: confirm these following lines are necessary for us to calculate # the period and mean motion (that's all we really need) u = (A^2 + B^2 + F^2 + G^2)/2 v = A*G - B * F α = sqrt(u + sqrt((u+v)*(u-v))) a = α/plx if e > 1 a = -a @warn "Support for hyperbolic Thiele-Innes orbits is not yet complete. Results will be silently wrong." end ω_p_Ω = atan((B-F),(A+G)) ω_m_Ω = atan((B+F),(G-A)) # sign of ω_p_Ω: sin(ω_p_Ω) same sign as (B-F) # sign of ω_m_Ω: sin(ω_m_Ω) same sign as (-B-F) if sign(sin(ω_p_Ω)) != sign(B-F) ω_p_Ω = ω_p_Ω + pi end; if sign(sin(ω_m_Ω)) != sign(-B-F) ω_m_Ω = ω_m_Ω + pi end; ω_p_Ω = rem2pi(ω_p_Ω, RoundDown) ω_m_Ω = rem2pi(ω_m_Ω, RoundDown) ω = (ω_p_Ω + ω_m_Ω)/2 Ω = (ω_p_Ω - ω_m_Ω)/2 # TODO: we have an error with the following orbit orbit(M=1, e=0.4, a=1, i=2, Ω=4, ω=1, tp=0, plx=10.0); # Error seems to happen when Ω + ω > 2pi # The issue is that ω ends up off by pi. if Ω < 0 ω += π Ω += π end ω = rem2pi(ω, RoundDown) s,c = sincos(ω-Ω) d₁ = abs((A+G)*c) d₂ = abs((F-B)*s) s2,c2 = sincos(ω+Ω) if d₁ >= d₂ i = 2atan(sqrt(abs((A-G)*c2)/d₁)) else i = 2atan(sqrt(abs((B+F)*s2)/d₂)) end C = a*sin(ω)*sin(i) H = a*cos(ω)*sin(i) # Pre-calculate factors to be re-used by orbitsolve # Physical constants of system and orbit if e < 1 period_days = √(a^3/M)*kepler_year_to_julian_day_conversion_factor period_yrs = period_days/year2day_julian n = 2π/period_yrs # mean motio else period = Inf # TODO: Need to confirm where this 2pi is coming from n = 2π * √(M/-a^3)*kepler_year_to_julian_day_conversion_factor/year2day_julian # n = √(M/-a^3) # mean motion end if e < 1 ν_fact = √((1 + e)/(1 - e)) # true anomaly prefactor else ν_fact = √((1 + e)/(e - 1)) # true anomaly prefactor end new{T}(e, tp, M, plx, A, B, F, G, C, H, period_days, n, ν_fact) end end ThieleInnesOrbit(;e, tp, M, plx, A, B, F, G, kwargs...) = ThieleInnesOrbit(e, tp, M, plx, A, B, F, G) export ThieleInnesOrbit period(elem::ThieleInnesOrbit) = elem.T meanmotion(elem::ThieleInnesOrbit) = elem.n eccentricity(o::ThieleInnesOrbit) = o.e totalmass(o::ThieleInnesOrbit) = o.M function semimajoraxis(o::ThieleInnesOrbit) (;A,B,F,G,plx) = o u = (A^2 + B^2 + F^2 + G^2)/2 v = A*G - B * F α = sqrt(u + sqrt((u+v)*(u-v))) a = α/plx return a end function inclination(o::ThieleInnesOrbit) # TODO: test ω_p_Ω = atan((o.B-o.F),(o.A+o.G)) ω_m_Ω = atan((o.B+o.F),(o.G-o.A)) # sign of ω_p_Ω: sin(ω_p_Ω) same sign as (B-F) # sign of ω_m_Ω: sin(ω_m_Ω) same sign as (-B-F) if sign(sin(ω_p_Ω)) != sign(o.B-o.F) ω_p_Ω = ω_p_Ω + pi end; if sign(sin(ω_m_Ω)) != sign(-o.B-o.F) ω_m_Ω = ω_m_Ω + pi end; ω_p_Ω = rem2pi(ω_p_Ω, RoundDown) ω_m_Ω = rem2pi(ω_m_Ω, RoundDown) ω = (ω_p_Ω + ω_m_Ω)/2 Ω = (ω_p_Ω - ω_m_Ω)/2 Ω, ω if Ω < 0 ω += π Ω += π end s,c = sincos(ω-Ω) d₁ = abs((o.A+o.G)*c) d₂ = abs((o.F-o.B)*s) s2,c2 = sincos(ω+Ω) if d₁ >= d₂ i = 2atan(sqrt(abs((o.A-o.G)*c2)/d₁)) else i = 2atan(sqrt(abs((o.B+o.F)*s2)/d₂)) end return i end function _trueanom_from_eccanom(o::ThieleInnesOrbit, EA) if o.e < 1 ν = 2*atan(o.ν_fact*tan(EA/2)) else # true anomaly prefactor changed in constructor if hyperbolic ν = 2*atan(o.ν_fact*tanh(EA/2)) end return ν end periastron(o::ThieleInnesOrbit) = o.tp function semiamplitude(o::ThieleInnesOrbit) # TODO: test implementation oneminusesq = (1 - eccentricity(o)^2) a = semimajoraxis(o) sini = sin(inclination(o)) J = ((2π*a)/period(o)*day2year_julian) / √oneminusesq # horizontal velocity semiamplitude [AU/year] K = J*au2m*sec2year_julian*sini # radial velocity semiamplitude [m/s] return K end distance(o::ThieleInnesOrbit) = 1000/o.plx * pc2au """ Represents a `ThieleInnesOrbit` evaluated to some position. """ struct OrbitSolutionThieleInnes{T<:Number,TEl<:ThieleInnesOrbit} <: AbstractOrbitSolution elem::TEl ν::T EA::T x::T y::T ẋ::T ẏ::T t::T function OrbitSolutionThieleInnes(elem, ν, EA, x, y,ẋ, ẏ,t) promoted = promote(ν, EA, x, y,ẋ,ẏ, t) return new{eltype(promoted),typeof(elem)}(elem, promoted...) end end function orbitsolve_ν(elem::ThieleInnesOrbit, ν, EA=2atan(tan(ν/2)/elem.ν_fact), t=_time_from_EA(elem, EA)) # https://arxiv.org/ftp/arxiv/papers/1008/1008.3416.pdf sea, cea = sincos(EA) x = cea - elem.e if elem.e < 1 y = sea * sqrt(1 - elem.e^2) ẏ = √(1-elem.e^2)*elem.n*cos(EA)/(1-elem.e*cos(EA)) else # TODO: this is just a guess y = sea * sqrt(elem.e^2 - 1) ẏ = √(elem.e^2-1)*elem.n*cos(EA)/(elem.e*cos(EA)-1) end ẋ = -elem.n*sin(EA)/(1-elem.e*cos(EA)) return OrbitSolutionThieleInnes(elem, ν, EA, x, y, ẋ, ẏ, t) end soltime(os::OrbitSolutionThieleInnes) = os.t function raoff(sol::OrbitSolutionThieleInnes) sol.x*sol.elem.B + sol.y*sol.elem.G end function decoff(sol::OrbitSolutionThieleInnes) sol.x*sol.elem.A + sol.y*sol.elem.F end # Radial velocity not currently right. Z position is correct. function radvel(sol::OrbitSolutionThieleInnes) (sol.ẋ*sol.elem.C + sol.ẏ*sol.elem.H)*au2m*sec2year_julian end function posx(sol::OrbitSolutionThieleInnes) raoff(sol)/sol.elem.plx end function posy(sol::OrbitSolutionThieleInnes) decoff(sol)/sol.elem.plx end function posz(sol::OrbitSolutionThieleInnes) (sol.x*sol.elem.C + sol.y*sol.elem.H) end function pmra(sol::OrbitSolutionThieleInnes) sol.ẋ*sol.elem.B + sol.ẏ*sol.elem.G end function pmdec(sol::OrbitSolutionThieleInnes) sol.ẋ*sol.elem.A + sol.ẏ*sol.elem.F end function ThieleInnesOrbit(orbit::Visual{KepOrbit{T1},T2}) where {T1,T2} a = semimajoraxis(orbit) α = a*orbit.plx elem = orbit.parent A = α*( elem.cosΩ*cos(elem.ω)-elem.sinΩ*sin(elem.ω)*elem.cosi) B = α*( elem.sinΩ*cos(elem.ω)+elem.cosΩ*sin(elem.ω)*elem.cosi) F = α*(-elem.cosΩ*sin(elem.ω)-elem.sinΩ*cos(elem.ω)*elem.cosi) G = α*(-elem.sinΩ*sin(elem.ω)+elem.cosΩ*cos(elem.ω)*elem.cosi) ThieleInnesOrbit( eccentricity(orbit), periastron(orbit), totalmass(orbit), 1000/distance(orbit), A, B, F, G ) end function Visual{KepOrbit}(o::ThieleInnesOrbit) u = (o.A^2 + o.B^2 + o.F^2 + o.G^2)/2 v = o.A*o.G - o.B * o.F α = sqrt(u + sqrt((u+v)*(u-v))) ω_p_Ω = atan((o.B-o.F),(o.A+o.G)) ω_m_Ω = atan((o.B+o.F),(o.G-o.A)) # sign of ω_p_Ω: sin(ω_p_Ω) same sign as (B-F) # sign of ω_m_Ω: sin(ω_m_Ω) same sign as (-B-F) if sign(sin(ω_p_Ω)) != sign(o.B-o.F) ω_p_Ω = ω_p_Ω + pi end; if sign(sin(ω_m_Ω)) != sign(-o.B-o.F) ω_m_Ω = ω_m_Ω + pi end; ω_p_Ω = rem2pi(ω_p_Ω, RoundDown) ω_m_Ω = rem2pi(ω_m_Ω, RoundDown) ω = (ω_p_Ω + ω_m_Ω)/2 Ω = (ω_p_Ω - ω_m_Ω)/2 if Ω < 0 ω += π Ω += π end s,c = sincos(ω-Ω) d₁ = abs((o.A+o.G)*c) d₂ = abs((o.F-o.B)*s) s2,c2 = sincos(ω+Ω) if d₁ >= d₂ i = 2atan(sqrt(abs((o.A-o.G)*c2)/d₁)) else i = 2atan(sqrt(abs((o.B+o.F)*s2)/d₂)) end a = α/o.plx return Visual{KepOrbit}(;a, o.e, i, ω, Ω, o.tp, o.M, o.plx) end # Pretty printing Base.show(io::IO, ::MIME"text/plain", elem::ThieleInnesOrbit) = print( io, """ $(typeof(elem)) ───────────────────────── A [mas] = $(round(elem.A, sigdigits=3)) B [mas] = $(round(elem.B, sigdigits=3)) F [mas] = $(round(elem.F, sigdigits=3)) G [mas] = $(round(elem.G, sigdigits=3)) e = $(round(elem.e, sigdigits=8)) tp = $(round(elem.tp, sigdigits=3)) M [M⊙ ] = $(round(elem.M, sigdigits=3)) period [yrs ] : $(round(period(elem)*day2year_julian, digits=1)) mean motion [°/yr] : $(round(rad2deg(meanmotion(elem)), sigdigits=3)) ────────────────────────── """ )
PlanetOrbits
https://github.com/sefffal/PlanetOrbits.jl.git
[ "MIT" ]
0.10.1
370c3ac3c000dd3ac975681521dcfe687efc1f24
code
5081
""" Visual{OrbitType}(..., plx=...) This wraps another orbit to add the parallax distance field `plx`, thus allowing projected quantities to be calculated. It forwards everything else to the parent orbit. For example, the KepOrbit type supports calculating x and y positions in AU. A Visual{KepOrbit} additionally supports calculating projected right ascension and declination offsets. Note: the `ThieleInnesOrbit` type does not need to be wrapped in `Visual` as it the Thiele-Innes constants are already expressed in milliarcseconds and thus it always requires a `plx` value. """ struct VisualOrbit{T<:Number,O<:AbstractOrbit} <: AbstractOrbit{T} parent::O plx::T dist::T end distance(elem::VisualOrbit) = elem.dist*au2pc """ Visual{OrbitType}(..., plx=...) This wraps another orbit to add the parallax distance field `plx`, thus allowing projected quantities to be calculated. It forwards everything else to the parent orbit. For example, the KepOrbit type supports calculating x and y positions in AU. A Visual{KepOrbit} additionally supports calculating projected right ascension and declination offsets. !!! note The `ThieleInnesOrbit` type does not need to be wrapped in `Visual` as it the Thiele-Innes constants are already expressed in milliarcseconds and thus it always requires a `plx` value. """ const Visual{OrbitType} = VisualOrbit{T,OrbitType} where T _parent_num_type(orbit::AbstractOrbit{T}) where T = T function Visual{OrbitType}(;plx, args...,) where {OrbitType} dist = 1000/plx * pc2au # distance [AU] parent = OrbitType(;args...) T = _parent_num_type(parent) return VisualOrbit{T,OrbitType{T}}(parent, plx, dist) end function Visual(parent::AbstractOrbit, plx,) dist = 1000/plx * pc2au # distance [AU] T = _parent_num_type(parent) return VisualOrbit{T,typeof(parent)}(parent, plx, dist) end export Visual struct OrbitSolutionVisual{TEl<:AbstractOrbit,TSol<:AbstractOrbitSolution} <: AbstractOrbitSolution elem::TEl sol::TSol end function orbitsolve_ν(elem::VisualOrbit, ν, args...; kwargs...) sol = orbitsolve_ν(elem.parent, ν, args...; kwargs...) return OrbitSolutionVisual(elem, sol) end soltime(os::OrbitSolutionVisual) = soltime(os.sol) # Forward these functions to the underlying orbit object solution_fun_list = ( :trueanom, :eccanom, :meananom, :posx, :posy, :posz, :posangle, :velx, :vely, :velz, :radvel, ) for fun in solution_fun_list @eval function ($fun)(os::OrbitSolutionVisual, args...) return ($fun)(os.sol, args...) end end orbit_fun_list = ( :eccentricity, :periastron, :period, :inclination, :semimajoraxis, :totalmass, :meanmotion, :semiamplitude, :_trueanom_from_eccanom, ) for fun in orbit_fun_list @eval function ($fun)(elem::VisualOrbit, args...) return ($fun)(elem.parent, args...) end end function raoff(o::OrbitSolutionVisual) xcart = posx(o) # [AU] cart2angle = rad2as*oftype(xcart, 1e3)/o.elem.dist xang = xcart*cart2angle # [mas] return xang end function decoff(o::OrbitSolutionVisual) ycart = posy(o) # [AU] cart2angle = rad2as*oftype(ycart, 1e3)/o.elem.dist yang = ycart*cart2angle # [mas] return yang end function pmra(o::OrbitSolutionVisual) ẋcart = o.elem.parent.J*(o.elem.parent.cosi_cosΩ*(o.sol.cosν_ω + o.elem.parent.ecosω) - o.elem.parent.sinΩ*(o.sol.sinν_ω + o.elem.parent.esinω)) # [AU/year] cart2angle = rad2as*oftype(ẋcart, 1e3)/o.elem.dist ẋang = ẋcart*cart2angle # [mas/year] return ẋang end function pmdec(o::OrbitSolutionVisual) ẏcart = -o.elem.parent.J*(o.elem.parent.cosi_sinΩ*(o.sol.cosν_ω + o.elem.parent.ecosω) + o.elem.parent.cosΩ*(o.sol.sinν_ω + o.elem.parent.esinω)) # [AU/year] cart2angle = rad2as*oftype(ẏcart, 1e3)/o.elem.dist ẏang = ẏcart*cart2angle # [mas/year] return ẏang end function accra(o::OrbitSolutionVisual) if eccentricity(o.elem) >= 1 @warn "acceleration not tested for ecc >= 1 yet. Results are likely wrong." end ẍcart = -o.elem.parent.A*(1 + o.sol.ecosν)^2 * (o.elem.parent.cosi_cosΩ*o.sol.sinν_ω + o.elem.parent.sinΩ*o.sol.cosν_ω) # [AU/year^2] cart2angle = rad2as*oftype(ẍcart, 1e3)/o.elem.dist ẍang = ẍcart*cart2angle # [mas/year^2] return ẍang end function accdec(o::OrbitSolutionVisual) if eccentricity(o.elem) >= 1 @warn "acceleration not tested for ecc >= 1 yet. Results are likely wrong." end ÿcart = o.elem.parent.A*(1 + o.sol.ecosν)^2 * (o.elem.parent.cosi_sinΩ*o.sol.sinν_ω - o.elem.parent.cosΩ*o.sol.cosν_ω) # [AU/year^2] cart2angle = rad2as*oftype(ÿcart, 1e3)/o.elem.dist ÿang = ÿcart*cart2angle # [mas/year^2] return ÿang end # Pretty printing function Base.show(io::IO, mime::MIME"text/plain", elem::Visual) show(io, mime, elem.parent) print(io, """\ plx [mas] = $(round(elem.plx, sigdigits=3)) distance [pc ] : $(round(distance(elem), digits=1)) ────────────────────────── """) end
PlanetOrbits
https://github.com/sefffal/PlanetOrbits.jl.git
[ "MIT" ]
0.10.1
370c3ac3c000dd3ac975681521dcfe687efc1f24
code
1298
using PrecompileTools @setup_workload begin @compile_workload begin o1 = orbit( a = 1, i = π/4, Ω = 0.001, ω = 0.001, e = 0.5, tp = 365/2, M = 1, tref=0, ) o2 = orbit( a = 1, i = π/4, Ω = 0.001, ω = 0.001, e = 0.5, tp = 365/2, M = 1, tref=0, plx=100. ) o3 = orbit( A = 500, B = 600, F = -500, G = 300, e = 0.5, tp = 365/2, M = 1, tref=0, plx=100. ) o4 = CartesianOrbit(orbitsolve(o1, 0.)) # CartesianOrbit(orbitsolve(o2, 0.)) # CartesianOrbit(orbitsolve(o3, 0.)) for o in (o1,o2,o3,o4) totalmass(o) period(o) meanmotion(o) eccentricity(o) periastron(o) semiamplitude(o) radvel(o,0.0) posangle(o,0.0) end for o in (o2,o3) distance(o) raoff(o, 0.0) raoff(o, 0.0) decoff(o, 0.0) pmra(o, 0.0) pmdec(o, 0.0) end end end
PlanetOrbits
https://github.com/sefffal/PlanetOrbits.jl.git
[ "MIT" ]
0.10.1
370c3ac3c000dd3ac975681521dcfe687efc1f24
code
9242
#= This file contains plot recipes for the Plots.jl ecosystem. This way you can do e.g.: plot(elems) =# # Plotting recipes for orbital elements using RecipesBase @recipe function f(elem::AbstractOrbit) os = orbitsolve_ν(elem, 0) line_z --> nothing solmarker --> false os end @recipe function f(elem::AbsoluteVisualOrbit) os = orbitsolve(elem, elem.ref_epoch) line_z --> nothing solmarker --> false os end # Recipe for an array of orbits. Same as sigle orbit, # but scale down transparency as we add more orbits. @recipe function f(elems::AbstractArray{<:AbstractOrbit}) label --> "" seriesalpha --> 30/length(elems) for elem in elems @series begin elem end end end @recipe function f(oses::AbstractArray{<:AbstractOrbitSolution}) label --> "" seriesalpha --> 30/length(oses) for os in oses @series begin os end end end default_plotkind(::OrbitSolutionCartesian) = (:x, :y) default_plotkind(::OrbitSolutionKep) = (:x, :y) default_plotkind(::OrbitSolutionThieleInnes) = :astrometry default_plotkind(::OrbitSolutionRadialVelocity) = :radvel default_plotkind(::OrbitSolutionVisual) = :astrometry default_plotkind(::OrbitSolutionAbsoluteVisual) = :astrometry # Plotting recipes for orbital elements using RecipesBase @recipe function f(os::AbstractOrbitSolution) # Variables to plot kind = get(plotattributes, :kind, default_plotkind(os)) if kind == :astrometry kind = (:raoff, :decoff) end if kind isa Symbol kind = (:t, kind) end if length(kind) < 2 error("Requires at least two variables to create plot") end posvars = (:x,:y,:z) astromvars = (:raoff, :decoff) astromvelvars = (:pmra, :pmdec) astromaccvars = (:accra, :accdec) ravars = (:x, :raoff, :pmra) timevars = (:t, :ν, :trueanom, :meananom, :eccanom) unwrapvars = (timevars..., :posangle) spatial_vars = (posvars..., astromvars..., astromvelvars..., astromaccvars...) if all(∈(spatial_vars), kind) # Set equal aspect ratio when plotting all spatial coordinates aspect_ratio --> 1 end resolver = (; t=("t", "mjd", (sol,args...)->_time_from_EA(sol,eccanom(sol))), ν=("ν", "rad", trueanom,), trueanom=("ν", "rad", trueanom,), meananom=("mean.anom.", "rad", meananom,), eccanom=("ecc.anom", "rad", eccanom,), x=("x", "au", posx,), y=("y", "au", posy,), z=("z", "au", posz,), velx=("∂x/δt", "au/yr", velx), vely=("∂y/δt", "au/yr", vely), velz=("∂z/δt", "au/yr", velz), raoff=("Δra", "mas", raoff,), decoff=("Δdec", "mas", decoff,), pmra=("∂ra/∂t", "mas/yr", pmra,), pmdec=("∂ra/∂t", "mas/yr", pmdec,), accra=("∂²ra/∂t²", "mas/yr²", accra,), accdec=("∂²ra/∂t²", "mas/yr²", accdec,), radvel=("radvel", "m/s", radvel,), posangle=("posangle", "mas", posangle,), projectedseparation=("projectedseparation", "mas", projectedseparation,), ) xl, xu, xf = resolver[kind[1]] yl, yu, yf = resolver[kind[2]] xguide --> "$xl [$xu]" yguide --> "$yl [$yu]" if length(kind) >= 3 zl, zu, zf = resolver[kind[3]] zguide --> "$zl [$zu]" end bodies = get(plotattributes, :body, :secondary) if bodies isa Symbol bodies = (bodies,) end L = get(plotattributes, :orbitsteps, 90) for body in bodies # We trace out in equal steps of eccentric anomaly instead of time for a smooth # curve, regardless of eccentricity. # When the independent variable is a timevar (angle or time) we want # two cycles, otherwise we just do one complete orbit if kind[1] == :t || !isfinite(period(os.elem)) if isfinite(period(os.elem)) # bound orbit case default_tspan = (soltime(os)-period(os.elem), soltime(os)+period(os.elem)) tspan = get(plotattributes, :tspan, default_tspan) tstart, tstop = extrema(tspan) ea_start = eccanom(orbitsolve(os.elem, tstart)) ea_stop = eccanom(orbitsolve(os.elem, tstop)) i = 0 while i > 10 && _time_from_EA(os.elem, ea_start) > tstart + 0.000001 ea_start -= 2π i += 1 end i = 0 while i > 10 && _time_from_EA(os.elem, ea_stop) < tstop - 0.000001 ea_stop += 2π i += 1 end # if ea_stop < ea_start # ea_stop += 2π # end eccanoms = range( ea_start, ea_stop, length=L, ) else # non-elliptical case default_tspan = (soltime(os)-5*365*meanmotion(os.elem), soltime(os)+5*365*meanmotion(os.elem)) tspan = get(plotattributes, :tspan, default_tspan) tstart, tstop = extrema(tspan) eccanoms = range( eccanom(orbitsolve(os.elem, tstart)), eccanom(orbitsolve(os.elem, tstop)), length=L, ) end elseif kind[1] ∈ timevars eccanoms = range(-2π, 2π, length=L) xticks --> (range(-2π, 2π, step=π/2), ["-2π", "-3π/2", "-π", "-π/2", "0", "+π/2", "+π", "+3π/2", "+2π"]) else # Otherwise we are plotting two variables against each other and don't need # to consider multiple cycles eccanoms = range(eccanom(os), eccanom(os)+2π, length=L) line_z --> -eccanoms colorbar --> nothing end if get(plotattributes, :timestep, false) || os isa OrbitSolutionAbsoluteVisual if kind[1] == :t tspan = get(plotattributes, :tspan, (soltime(os)-period(os.elem), soltime(os)+2period(os.elem))) solns = orbitsolve.(os.elem, range(tspan..., length=L)) else solns = orbitsolve.(os.elem, range(soltime(os), soltime(os)+period(os.elem), length=L)) end else solns = orbitsolve_eccanom.(os.elem, eccanoms) end if body == :secondary x = xf(os) xs = xf.(solns) y = yf(os) ys = yf.(solns) if length(kind) >= 3 z = zf(os) zs = zf.(solns) end elseif body == :primary x = xf(os, plotattributes[:mass]) xs = xf.(solns, plotattributes[:mass]) y = yf(os, plotattributes[:mass]) ys = yf.(solns, plotattributes[:mass]) if length(kind) >= 3 z = zf(os, plotattributes[:mass]) zs = zf.(solns, plotattributes[:mass]) end else error("Unrecognized body $body. Pass body=:primary or :secondary") end # We almost always want to reverse the RA coordinate to match how we # see it in the sky. if kind[1] ∈ ravars xflip --> true end if kind[2] ∈ ravars yflip --> true end if length(kind) >= 3 && kind[3] ∈ ravars zflip --> true end # Prevent wrapped lines if kind[1] ∈ unwrapvars && isfinite(period(os.elem)) P = kind[1]==:t ? period(os.elem) : 2π unwrap!(xs, P) xs .-= P end @series begin label --> string(body) if haskey(plotattributes, :seriescolor) line_z := nothing end if isdefined(Main, :Plots) && isdefined(Main.Plots, :palette) && get(plotattributes, :solmarker, true) # We would like to create a nice semi-transparent # gray gradient. But palette isn't in PlotRecipes so # we fall back to this hacky way of getting it if body == :secondary seriescolor --> Main.Plots.palette(["#444444ff", "#44444433"],10) else seriescolor --> Main.Plots.palette(["#BB4444ff", "#BB444433"],10) end end if length(kind) >= 3 xs, ys, zs else xs, ys end end if get(plotattributes, :solmarker, true) @series begin seriestype --> :scatter label --> "" if body == :secondary seriescolor --> :gray else seriescolor --> "#BB4444" end if length(kind) >= 3 [x], [y], [z] else [x], [y] end end end end end # https://discourse.julialang.org/t/equivalent-of-matlabs-unwrap/44882/4? function unwrap!(x, period = 2π) y = convert(eltype(x), period) v = first(x) @inbounds for k = eachindex(x) x[k] = v = v + rem(x[k] - v, y, RoundNearest) end end
PlanetOrbits
https://github.com/sefffal/PlanetOrbits.jl.git
[ "MIT" ]
0.10.1
370c3ac3c000dd3ac975681521dcfe687efc1f24
code
1898
using Dates: Dates, DateTime, Date using AstroTime: AstroTime export mjd """ mjd("2020-01-01") Get the modfied julian day of a date, or in general a UTC timestamp. """ function mjd(timestamp::AbstractString) return timestamp |> AstroTime.TTEpoch |> # Switched from UTC to Terrestrial Time epoch AstroTime.modified_julian |> AstroTime.days |> AstroTime.value; end """ mjd(Date("2020-01-01")) Get the modfied julian day of a Date or DateTime object. """ function mjd(date_or_datetime::Union{Date,DateTime}) return date_or_datetime |> AstroTime.TTEpoch |> # Switched from UTC to Terrestrial Time epoch AstroTime.modified_julian |> AstroTime.days |> AstroTime.value; end """ mjd() Get the current modified julian day of right now. """ function mjd() return Dates.now() |> AstroTime.TTEpoch |> AstroTime.modified_julian |> AstroTime.days |> AstroTime.value; end export mjd """ years2mjd() Convert from decimal years (e.g. 1995.25) into modified julian date, rounded to closest second """ function years2mjd(decimal_years) yr_floor = floor(decimal_years) yr_obj = Dates.Date(yr_floor,1,1) days = (decimal_years - yr_floor) * Dates.daysinyear(yr_obj) days_floor = floor(days) ep = AstroTime.TTEpoch( Dates.DateTime(yr_floor) + Dates.Day(days_floor) + Dates.Second(round((days-days_floor)*60*60*24)) ) return AstroTime.value(AstroTime.modified_julian(ep)) end export years2mjd """ mjd2date(modified_julian) Get a Date value from a modfied julian day, rounded to closest day ## Examples ```julia julia> mjd2date(59160.8) 2020-11-08 ``` """ function mjd2date(days) return DateTime( Dates.DateTime("1858-11-17") + Dates.Day(floor(days)) + Dates.Second(round((days-floor(days))*60*60*24)) ) end export mjd2date
PlanetOrbits
https://github.com/sefffal/PlanetOrbits.jl.git
[ "MIT" ]
0.10.1
370c3ac3c000dd3ac975681521dcfe687efc1f24
code
8647
#= This file defines a Coordinate Transform that allows us to project images forward and backwards in time according to Kepler's laws. The currently solution is incomplete but workable for inclined orbital planes. =# #= Goals: I want to be able to enter orbital parameters and get a coordinate transformations object. I guess this object must encode the delta T and the image platescale. Main use case is specifying everything except semi-major axis. Then, I want a convenience function for taking an image, orbital parameters, and dt and returning a new image. Finally, I want convenience functions for doing this to a sequence of images and returning a stack (custom stacking function of course). Stacking function must look back into contrast map from original image. Reverse the dt at current location and lookup via projected separation. This is *sort* of inverse to what we have now. We need to lookup pixels, and see where those pixels were before. Finally, I want to wrap this up with some animation functions. We should be able to input an image and step through dt. Or input multiple images and fade between them. =# struct OrbitalTransformation{T<:Number} # Orbital properties i::T e::T M::T ω::T Ω::T plx::T # Image properties platescale::T # Time properties dt::T # Cached constants for these elements. dist::T ν_fact::T cos_Ω::T sin_Ω::T cos_i::T sin_i::T # Inner constructor to inforce invariants and pre-calculate a few # constants for these elements. function OrbitalTransformation(i, e, M, ω, Ω, plx, platescale, dt) # Enforce invariants on user parameters e = max(zero(e), min(e, one(e))) M = max(M, zero(M)) plx = max(plx, zero(plx)) # Pre-calculate some factors that will be re-used when calculating kep2cart at any time # Distance in AU dist = 1/(plx/1000) * pc2au # Compute period (days) # Factor in calculating the true anomaly ν_fact = √((1+e)/(1-e)) if e != 0 error("eccentric transformations are not currently working correctly") end T = promote_type( typeof(i), typeof(e), typeof(M), typeof(ω), typeof(Ω), typeof(plx), typeof(platescale), typeof(dt), ) # The user might pass in integers, but it makes no sense to do these # calculations on integers. Assume they mean to use floats. if T <: Integer T = promote_type(T, Float64) end sin_Ω, cos_Ω = sincos(Ω) sin_i, cos_i = sincos(i) new{T}( # Passed parameters that define the elements i, e, M, ω, Ω, plx, platescale, dt, # Cached calcuations dist, ν_fact, # Geometric factors cos_Ω, sin_Ω, cos_i, sin_i, ) end end # Allow arguments to be specified by keyword. OrbitalTransformation(;i, e, M, ω, Ω, plx, platescale, dt) = OrbitalTransformation(i, e, M, ω, Ω, plx, platescale, dt) # And by a named tuple without splatting OrbitalTransformation(nt::NamedTuple) = OrbitalTransformation(nt.i, nt.e, nt.M, nt.ω, nt.Ω, nt.plx, nt.platescale, nt.dt) export OrbitalTransformation function (ot::OrbitalTransformation{T})(dist_proj_px) where T # Given x and y, solve for a and mean anomaly. Or I guess eccentric anomaly? and then work back? # nvm we solve for true anomaly # Convert pixel coordinates into AU` # dist = 1/(ot.plx/1000) * pc2au dist_proj_mas = dist_proj_px*ot.platescale dist_proj_as = dist_proj_mas/1e3 dist_proj_rad = dist_proj_as / rad2as dist_proj_au = tan.(dist_proj_rad) .* ot.dist (y₀,x₀) = dist_proj_au # cos_i = cos(ot.i) # sin_Ω, cos_Ω = sincos(ot.Ω) # ν_fact = √((1+ot.e)/(1-ot.e)) r₀′ = √(x₀^2 + y₀^2) # Singularity at the origin that has a trivial solution if r₀′ ≈ 0 return SVector{2,typeof(x₀)}(0.0, 0.0) end # Derive true anomaly from position and known orbital properties # y/x = (sin_Ω*cos(θ) + cos_Ω*cos_i*sin(θ)) / # (cos_Ω*cos(θ) + sin_Ω*cos_i*sin(θ)) # y/x = (sin_Ω + cos_Ω*cos_i*tan(θ)) / # (cos_Ω + sin_Ω*cos_i*tan(θ)) # y*(cos_Ω + sin_Ω*cos_i*tan(θ)) = x*(sin_Ω + cos_Ω*cos_i*tan(θ)) # y*cos_Ω + y*sin_Ω*cos_i*tan(θ) = x*sin_Ω + x*cos_Ω*cos_i*tan(θ) # y*sin_Ω*cos_i*tan(θ) - x*cos_Ω*cos_i*tan(θ) = x*sin_Ω - y*cos_Ω # tan(θ)*(y*sin_Ω*cos_i - x*cos_Ω*cos_i) = x*sin_Ω - y*cos_Ω # tan(θ) = (x*sin_Ω - y*cos_Ω)/(y*sin_Ω*cos_i - x*cos_Ω*cos_i) # ω + ν = atan((x*sin_Ω - y*cos_Ω)/(y*sin_Ω*cos_i - x*cos_Ω*cos_i)) # ν₀ = atan(x₀*sin_Ω - y₀*cos_Ω, y₀*sin_Ω*cos_i - x₀*cos_Ω*cos_i) - ω # ν₀ = atan( # (x₀*sin_Ω - y₀*cos_Ω ), # (y₀*sin_Ω*cos_i - x₀*cos_Ω*cos_i) # ) - ω # x = r*(sin_Ω*cos_ω_ν + cos_Ω*sin_ω_ν*cos_i) # y = r*(cos_Ω*cos_ω_ν - sin_Ω*sin_ω_ν*cos_i) # y/x = r*(cos_Ω*cos_ω_ν - sin_Ω*sin_ω_ν*cos_i)/r*(sin_Ω*cos_ω_ν + cos_Ω*sin_ω_ν*cos_i) # y/x = (cos_Ω*cos_ω_ν - sin_Ω*sin_ω_ν*cos_i)/ # (sin_Ω*cos_ω_ν + cos_Ω*sin_ω_ν*cos_i) # y/x = (A*cos_ω_ν - B*sin_ω_ν*C)/ # C = cos_i # (B*cos_ω_ν + A*sin_ω_ν*C) # y/x = (A*cos_θ - B*sin_θ*C)/ # (B*cos_θ + A*sin_θ*C) # y/x = (A*cos_θ - B*sin_θ*C)/ # (B*cos_θ + A*sin_θ*C) # Substitute: # tan θ = sin θ / cos θ # sin θ = tan θ * cos θ # y/x = (A*cos_θ - B*tan θ * cos θ *C)/ # (B*cos_θ + A*tan θ * cos θ *C) # y/x = (A - B*tan θ * C)/ # (B + A*tan θ * C) # y * (B + A*tan θ * C) = x * (A - B*tan θ * C) # y * (B + A*Z) = x * (A - B*Z) # Z = tan θ * C # By + A*Zy = Ax - B*Zx # (Ay + Bx)Z = Ax - By # Expand again # Z = (cos_Ω*x - sin_Ω*y)/(cos_Ω*y + sin_Ω*x) # tan θ * C = (cos_Ω*x - sin_Ω*y)/(cos_Ω*y + sin_Ω*x) # tan ω_ν * C = (cos_Ω*x - sin_Ω*y)/(cos_Ω*y + sin_Ω*x) # tan ω_ν = (cos_Ω*x - sin_Ω*y)/(cos_Ω*y + sin_Ω*x)/C # tan ω_ν = (cos_Ω*x - sin_Ω*y)/(cos_Ω*y + sin_Ω*x) / cos_i # ω+ν = atan(cos_Ω*x - sin_Ω*y, (cos_Ω*y + sin_Ω*x)/cos_i) # ν = atan(cos_Ω*x - sin_Ω*y, (cos_Ω*y + sin_Ω*x)/cos_i) - ω # Code: # ν₀ = atan(cos_Ω*x₀ - sin_Ω*y₀, (cos_Ω*y₀ + sin_Ω*x₀)/cos_i) - ot.ω # De-project y₀′ = (ot.cos_Ω*x₀ - ot.sin_Ω*y₀)/ot.cos_i x₀′ = (ot.cos_Ω*y₀ + ot.sin_Ω*x₀) # Calculate true anomaly of initial position ν₀ = atan(y₀′, x₀′) - ot.ω # From those, get the initial eccentric anomal EA₀ = 2atan(ot.ν_fact*tan(ν₀/2)) # The inverse of kepler's equation is closed form. # This gives us initial mean anomal MA₀ = EA₀ - ot.e*sin(EA₀) # Orbital radius # After we have done the inclination re-projection, # x₀′ and y₀′ give the separation from the star in AU # and so we can calculate the initial separation as follows r₀ = √(x₀′^2 + y₀′^2) # Since we now know the eccentric anomaly via the true anomaly, # and we have the separation, we can calculate the semi-major axis. a = r₀/(1-ot.e*cos(EA₀)) # Calculate mean motion for this semi-major axis m = 2π/√(a^3/ot.M) # Advance mean anomaly by dt MA = MA₀ + m/convert(T, year2day) * (-1)* ot.dt # And finally solve for eccentric anomaly as usual EA = kepler_solver(MA, ot.e, Markley()) ν = convert(T,2)*atan(ot.ν_fact*tan(EA/convert(T,2))) sin_ω_ν, cos_ω_ν = sincos(ot.ω+ν) # sin_Ω, cos_Ω = sincos(ot.Ω) r = a*(one(T)-ot.e*cos(EA)) y = r*(ot.cos_Ω*cos_ω_ν - ot.sin_Ω*sin_ω_ν*ot.cos_i) x = r*(ot.sin_Ω*cos_ω_ν + ot.cos_Ω*sin_ω_ν*ot.cos_i) # TODO: move to tests if ot.dt == 0 xtol = isapprox(x,x₀,atol=1e-2) ytol = isapprox(y,y₀,atol=1e-2) if !xtol || !ytol @show x₀ x y₀ y r₀ r a MA MA₀ EA ν₀ ν error("Output != input despite dt=0") end end # z = r*(sin(ot.i)*sin(ot.ω+ν)) coords_AU = SVector(y,x) dist_proj_rad = atan.(coords_AU, ot.dist) dist_proj_mas = dist_proj_rad .* convert(eltype(dist_proj_rad),rad2as*1e3) # radians -> mas dist_proj_px = dist_proj_mas./ot.platescale return dist_proj_px end # Inverse transform is just time reversal: Base.inv(orbit::OrbitalTransformation) = OrbitalTransformation(orbit.i,orbit.e,orbit.M,orbit.ω,orbit.Ω,orbit.plx,orbit.platescale,-orbit.dt)
PlanetOrbits
https://github.com/sefffal/PlanetOrbits.jl.git
[ "MIT" ]
0.10.1
370c3ac3c000dd3ac975681521dcfe687efc1f24
code
12405
# ---------------------------------------------------------------------------------------------------------------------- # Imports # ---------------------------------------------------------------------------------------------------------------------- using Test using PlanetOrbits using ForwardDiff using FiniteDiff # ---------------------------------------------------------------------------------------------------------------------- # Constants and Helper Functions # ---------------------------------------------------------------------------------------------------------------------- # 10 steps per day for one year one_year_range = 0.0:0.1:365.24 # Relative tolerance for certain tests rtol = 1e-4 # Absolute tolerance for certain tests atol = 1e-6 # ---------------------------------------------------------------------------------------------------------------------- # Tests # ---------------------------------------------------------------------------------------------------------------------- ## Close to an idealized face-on Earth with circular orbit at 1 pc # Due to IAU definitions, values don't match exactly @testset "Earth, i = 0, e = 0, d = 1 pc" begin idealearth = orbit( a = 1.0, e = 0.0, i = 0.0, ω = 0.0, Ω = 0.0, tp = 0.0, M = 1.0, plx = 1000.0 ) # Test basic orbit properties @test period(idealearth) ≈ PlanetOrbits.year2day_julian rtol=rtol @test distance(idealearth) ≈ 1.0 rtol=rtol @test meanmotion(idealearth) ≈ 2π rtol=rtol @test periastron(idealearth) ≈ 0.0 @test semiamplitude(idealearth) ≈ 0.0 # Orbit solutions at quarters of the orbit oq1 = PlanetOrbits.orbitsolve_ν(idealearth, 0.0) oq2 = PlanetOrbits.orbitsolve_ν(idealearth, π/2) oq3 = PlanetOrbits.orbitsolve_ν(idealearth, π) oq4 = PlanetOrbits.orbitsolve_ν(idealearth, 3π/2) # Test orbit values at first quarter @test raoff(oq1) ≈ 0.0 atol=atol @test decoff(oq1) ≈ 1000.0 rtol=rtol @test posangle(oq1) ≈ 0.0 atol=atol @test projectedseparation(oq1) ≈ 1000.0 rtol=rtol @test sign(pmra(oq1)) == +1 @test pmdec(oq1) ≈ 0.0 atol=atol @test radvel(oq1) ≈ 0.0 atol=atol @test accra(oq1) ≈ 0.0 atol=atol @test sign(accdec(oq1)) == -1 # Test orbit values at second quarter @test raoff(oq2) ≈ 1000.0 rtol=rtol @test decoff(oq2) ≈ 0.0 atol=atol @test posangle(oq2) ≈ π/2 rtol=rtol @test projectedseparation(oq2) ≈ 1000.0 rtol=rtol @test pmra(oq2) ≈ 0.0 atol=atol @test sign(pmdec(oq2)) == -1 @test radvel(oq2) ≈ 0.0 atol=atol @test sign(accra(oq2)) == -1 @test accdec(oq2) ≈ 0.0 atol=atol # Test orbit values at third quarter @test raoff(oq3) ≈ 0.0 atol=atol @test decoff(oq3) ≈ -1000.0 rtol=rtol @test posangle(oq3) ≈ π rtol=rtol @test projectedseparation(oq3) ≈ 1000.0 rtol=rtol @test sign(pmra(oq3)) == -1 @test pmdec(oq3) ≈ 0.0 atol=atol @test radvel(oq3) ≈ 0.0 atol=atol @test accra(oq3) ≈ 0.0 atol=atol @test sign(accdec(oq3)) == +1 # Test orbit values at fourth quarter @test raoff(oq4) ≈ -1000.0 rtol=rtol @test decoff(oq4) ≈ 0.0 atol=atol @test posangle(oq4) ≈ -π/2 rtol=rtol @test projectedseparation(oq4) ≈ 1000.0 rtol=rtol @test pmra(oq4) ≈ 0.0 atol=atol @test sign(pmdec(oq4)) == +1 @test radvel(oq4) ≈ 0.0 atol=atol @test sign(accra(oq4)) == +1 @test accdec(oq4) ≈ 0.0 atol=atol # Compare velocities and accelerations @test pmra(oq1) ≈ -pmra(oq3) rtol=rtol @test pmdec(oq2) ≈ -pmdec(oq4) rtol=rtol @test accdec(oq1) ≈ -accdec(oq3) rtol=rtol @test accra(oq2) ≈ -accra(oq4) rtol=rtol end ## Idealized edge-on Earth with circular orbit at 1 pc @testset "Earth, i = 90, e = 0, d = 1 pc" begin idealearth = orbit( a = 1.0, e = 0.0, i = π/2, ω = 0.0, Ω = 0.0, tp = 0.0, M = 1.0, plx = 1000.0 ) # Test basic orbit properties @test period(idealearth) ≈ PlanetOrbits.year2day_julian rtol=rtol @test distance(idealearth) ≈ 1.0 rtol=rtol @test meanmotion(idealearth) ≈ 2π rtol=rtol @test periastron(idealearth) == 0.0 @test semiamplitude(idealearth) ≈ 29785.89 rtol=1e-3 # Orbit solutions at quarters of the orbit oq1 = PlanetOrbits.orbitsolve_ν(idealearth, 0.0) oq2 = PlanetOrbits.orbitsolve_ν(idealearth, π/2) oq3 = PlanetOrbits.orbitsolve_ν(idealearth, π) oq4 = PlanetOrbits.orbitsolve_ν(idealearth, 3π/2) # Test orbit values at first quarter @test raoff(oq1) ≈ 0.0 atol=atol @test decoff(oq1) ≈ 1000.0 rtol=rtol @test projectedseparation(oq1) ≈ 1000.0 rtol=rtol @test pmra(oq1) ≈ 0.0 atol=atol @test pmdec(oq1) ≈ 0.0 atol=atol @test radvel(oq1) ≈ 29785.89 rtol=1e-3 @test accra(oq1) ≈ 0.0 atol=atol @test sign(accdec(oq1)) == -1 # Test orbit values at second quarter @test raoff(oq2) ≈ 0.0 atol=atol @test decoff(oq2) ≈ 0.0 atol=atol @test projectedseparation(oq2) ≈ 0.0 atol=atol @test pmra(oq2) ≈ 0.0 atol=atol @test sign(pmdec(oq2)) == -1 @test radvel(oq2) ≈ 0.0 atol=atol @test accra(oq2) ≈ 0.0 atol=atol @test accdec(oq2) ≈ 0.0 atol=atol # Test orbit values at third quarter @test raoff(oq3) ≈ 0.0 atol=atol @test decoff(oq3) ≈ -1000.0 rtol=rtol @test projectedseparation(oq3) ≈ 1000.0 rtol=rtol @test pmra(oq3) ≈ 0.0 atol=atol @test pmdec(oq3) ≈ 0.0 atol=atol @test radvel(oq3) ≈ -29785.89 rtol=1e-3 @test accra(oq3) ≈ 0.0 atol=atol @test sign(accdec(oq3)) == +1 # Test orbit values at fourth quarter @test raoff(oq4) ≈ 0.0 atol=atol @test decoff(oq4) ≈ 0.0 atol=atol @test projectedseparation(oq4) ≈ 0.0 atol=atol @test pmra(oq4) ≈ 0.0 atol=atol @test sign(pmdec(oq4)) == +1 @test radvel(oq4) ≈ 0.0 atol=atol @test sign(accra(oq4)) == +1 @test accdec(oq4) ≈ 0.0 atol=atol # Compare velocities and accelerations @test pmdec(oq2) ≈ -pmdec(oq4) rtol=rtol @test accdec(oq1) ≈ -accdec(oq3) rtol=rtol end ## Test varying eccentricity @testset "Eccentricity" begin # Basic eccentric orbit eccentric_1AU_1Msun_1pc = orbit( a = 1.0, # AU e = 0.5, i = 0.0, ω = 0.0, Ω = 0.0, tp = 0.0, M = 1.0, # M_sun plx = 1000.0, # 1000 mas == 1pc ) xs = raoff.(eccentric_1AU_1Msun_1pc, one_year_range) ys = decoff.(eccentric_1AU_1Msun_1pc, one_year_range) ps = projectedseparation.(eccentric_1AU_1Msun_1pc, one_year_range) @test period(eccentric_1AU_1Msun_1pc) ≈ 1.0*PlanetOrbits.year2day_julian rtol=rtol @test distance(eccentric_1AU_1Msun_1pc) == 1 # Mean motion should be the same @test PlanetOrbits.meanmotion(eccentric_1AU_1Msun_1pc) ≈ 2π rtol=rtol # The separation should now be varying # By definition of eccentricity 0.5, 1AU and 1PC @test maximum(ps) ≈ 1500 rtol=rtol @test minimum(ps) ≈ 500 rtol=rtol # When argument of periapsis and periastron are both zero, periastron should be in the East, apoastron in the West @test maximum(ys) ≈ 500 rtol=rtol @test minimum(ys) ≈ -1500 rtol=rtol # Rotate Ω ecc_rot_Ω = orbit( a = 1.0, # AU e = 0.5, i = 0.0, ω = 0.0, Ω = deg2rad(90), tp = 0.0, M = 1.0, # M_sun plx = 1000.0, # 1000 mas == 1pc ) xs = raoff.(ecc_rot_Ω, one_year_range) ys = decoff.(ecc_rot_Ω, one_year_range) # Recall, East is left in the sky. # We have rotated 90 degrees CCW. @test minimum(xs) ≈ -1500 rtol=rtol @test maximum(xs) ≈ 500 rtol=rtol # Rotate τ ecc_rot_ω = orbit( a = 1.0, # AU e = 0.5, i = 0.0, ω = deg2rad(90.0), Ω = 0.0, tp = 0.0, M = 1.0, # M_sun plx = 1000.0, # 1000 mas == 1pc ) xs = raoff.(ecc_rot_ω, one_year_range) ys = decoff.(ecc_rot_ω, one_year_range) # Recall, East is left in the sky. # We have rotated 90 degrees CCW. @test minimum(xs) ≈ -1500 rtol=rtol @test maximum(xs) ≈ 500 rtol=rtol # Rotate Ω & τ ecc_rot_Ωτ = orbit( a = 1.0, # AU e = 0.5, i = 0.0, ω = deg2rad(-90), Ω = deg2rad(90), tp = 0.0, M = 1.0, # M_sun plx = 1000.0, # 1000 mas == 1pc ) xs = raoff.(ecc_rot_Ωτ, one_year_range) ys = decoff.(ecc_rot_Ωτ, one_year_range) # Recall, East is left in the sky. # We have rotated 90 degrees CCW. @test maximum(ys) ≈ 500 rtol=rtol @test minimum(ys) ≈ -1500 rtol=rtol # Highly eccentric ecc09 = orbit( a = 1.0, # AU e = 0.9, i = 0.0, ω = 0.0, Ω = 0.0, tp = 0.0, M = 1.0, # M_sun plx = 1000.0, # 1000 mas == 1pc ) xs = raoff.(ecc09, one_year_range) ys = decoff.(ecc09, one_year_range) ps = projectedseparation.(ecc09, one_year_range) # Loosen the tolerance on these @test maximum(ps) ≈ 1900 rtol=1e-4 @test minimum(ps) ≈ 100 rtol=1e-4 # Extremely eccentric ecc09 = orbit( a = 1.0, # AU e = 1-1e-3, i = 0.0, ω = 0.0, Ω = 0.0, tp = 0.0, M = 1.0, # M_sun plx = 1000.0, # 1000 mas == 1pc ) xs = raoff.(ecc09, one_year_range) ys = decoff.(ecc09, one_year_range) ps = projectedseparation.(ecc09, one_year_range) @test maximum(ps) ≈ 1999 rtol=1e-4 # Loosen the tolerance on these even more (periastron flies by very quickly) @test minimum(ps) ≈ 1 rtol=1e1 end ## Test chain rules @testset "Chain Rules" begin # These tests are broken at MA===0, e>0 # First test analytic chain rules k1(MA) = e->PlanetOrbits.kepler_solver(MA, e) k2(e) = MA->PlanetOrbits.kepler_solver(MA, e) for e in 0:0.1:0.9 for MA in 0.001:0.1:2π @test FiniteDiff.finite_difference_derivative(k2(e), MA) ≈ ForwardDiff.derivative(k2(e), MA) rtol=rtol end end for e = 0.001:0.1:0.9 for MA in 0.001:0.1:2π @test FiniteDiff.finite_difference_derivative(k1(MA), e) ≈ ForwardDiff.derivative(k1(MA), e) rtol=rtol end end end ## Test analytic derivatives match numeric derivatives @testset "PMA & Accel." begin # Check analytic derivative properties against ForwardDiff over a big range of orbits for t in 0.:35:356., a in 0.1:0.2:3, e in 0:0.1:0.9, i in deg2rad.([-45, 0, 45, 90, ]), ω in deg2rad.([-45, 0, 45, 90, ]), Ω in deg2rad.([-45, 0, 45, 90, ]) elems = orbit(; a, e, i = 0.0, ω = 0.0, Ω = 0.0, tp = 0.0, M = 1.0, plx = 1000.0, # 1000 mas <-> 1pc ) @test pmra(elems, 100.0) ≈ ForwardDiff.derivative( t->raoff(elems, t), 100.0 )*PlanetOrbits.year2day_julian @test pmdec(elems, 100.0) ≈ ForwardDiff.derivative( t->decoff(elems, t), 100.0 )*PlanetOrbits.year2day_julian @test accra(elems, 100.0) ≈ ForwardDiff.derivative( t->pmra(elems, t), 100.0 )*PlanetOrbits.year2day_julian @test accdec(elems, 100.0) ≈ ForwardDiff.derivative( t->pmdec(elems, t), 100.0 )*PlanetOrbits.year2day_julian end end @testset "Orbit selection" begin @test typeof(orbit(;a=1.0, e=0.0, ω=0.0, tp=0.0, M=1.0)) <: RadialVelocityOrbit @test typeof(orbit(;a=1.0, e=0.0, ω=0.0, tp=0.0, M=1.0, i=0.1, Ω=0.0)) <: KepOrbit @test typeof(orbit(;a=1.0, e=0.0, ω=0.0, tp=0.0, M=1.0, i=0.1, Ω=0.0, plx=100.0).parent) <: KepOrbit @test typeof(orbit(;A=100.0, B=100.0, F=100.0, G=-100.0, e=0.5, tp=0.0, M=1.0, plx=100.0)) <: ThieleInnesOrbit end @testset "Conventions" begin IAU_earth = orbit( a = 1.0, e = 0.0, i = 0.0, ω = 0.0, Ω = 0.0, tp = 0.0, M = 1.0, plx = 1000.0 ) @test period(IAU_earth) ≈ 365.2568983840419 rtol=1e-15 atol=1e-15 @test meanmotion(IAU_earth) ≈ 2pi*365.2500000000/365.2568983840419 rtol=1e-15 atol=1e-15 end # ----------------------------------------------------------------------------------------------------------------------
PlanetOrbits
https://github.com/sefffal/PlanetOrbits.jl.git
[ "MIT" ]
0.10.1
370c3ac3c000dd3ac975681521dcfe687efc1f24
docs
1232
<img height=150 src="https://github.com/sefffal/PlanetOrbits.jl/blob/master/docs/src/assets/logo.png"/> # PlanetOrbits.jl [![](https://img.shields.io/badge/docs-dev-blue.svg)](https://sefffal.github.io/PlanetOrbits.jl/dev) [![codecov](https://codecov.io/gh/sefffal/PlanetOrbits.jl/branch/master/graph/badge.svg?token=QLTCBWVV98)](https://codecov.io/gh/sefffal/PlanetOrbits.jl) Tools for solving simple Keplerian orbits. The primary use case is mapping orbital elements into e.g. Cartesian coordinates at different times. A Plots.jl recipe is included for easily plotting orbits. One can for instance calculate an orbit around a star in 3D, a projected position in the sky, a radial velocity curve, or stellar astrometric accleration over time. It's a great tool for visualizing different orbits (see examples) and generating nice animations (e.g. with Plots or Luxor.jl). This package has been designed for good performance and composability with a wide range of packages in the Julia ecosystem, including ForwardDiff. It forms the backbone of [Octofitter.jl](https://github.com/sefffal/Octofitter.jl), a modelling framework for all kinds of exoplanet data. See documentation at https://sefffal.github.io/PlanetOrbits.jl/dev
PlanetOrbits
https://github.com/sefffal/PlanetOrbits.jl.git
[ "MIT" ]
0.10.1
370c3ac3c000dd3ac975681521dcfe687efc1f24
docs
10365
# API Documentation The following tables show what functions are supported for what kind of orbit. If you're not sure yet what kind of orbit to use, just use the [`orbit`](@ref) function! ✅ indiciates that a function is available, and ❌ indicates it is not due to the orbit not storing sufficient information. ⚠️ indicates that it could be supoprted, but is not yet implemented. ## Required Parameters The following table specifies what properties are required to construct each orbit type. Based on this information, different orbit types have different capabilities (described in following tables). | property | meaning | KepOrbit | Visual{KepOrbit} | AbsoluteVisual{KepOrbit} | ThieleInnesOrbit | RadialVelocityOrbit | CartesianOrbit | Visual{CartesianOrbit} | |---------- | ------------------- |---------- |------------------ |----------------------- |------------------ |--------------------- |---------------- |------------------------| | M | | ✔️ | ✔️ | ✔️ | ✔️ | ✔️ | ✔️ | ✔️ | | plx | | | ✔️ | ✔️ | ✔️ | | | ✔️ | | tp | | ✔️ | ✔️ | ✔️ | ✔️ | ✔️ | ✔️ | ✔️ | | tref | | ✔️ | ✔️ | ✔️ | ✔️ | ✔️ | ✔️ | ✔️ | | e | | ✔️ | ✔️ | ✔️ | ✔️ | ✔️ | | | | i | | ✔️ | ✔️ | ✔️ | | | | | | ω | | ✔️ | ✔️ | ✔️ | | ✔️ | | | | Ω | | ✔️ | ✔️ | ✔️ | | | | | | A | | | | | ✔️ | | | | | B | | | | | ✔️ | | | | | F | | | | | ✔️ | | | | | G | | | | | ✔️ | | | | | x | | | | | | | ✔️ | ✔️ | | y | | | | | | | ✔️ | ✔️ | | z | | | | | | | ✔️ | ✔️ | | vx | | | | | | | ✔️ | ✔️ | | vy | | | | | | | ✔️ | ✔️ | | vz | | | | | | | ✔️ | ✔️ | | ref_epoch | | | | ✔️ | | | | | | ra | | | | ✔️ | | | | | | dec | | | | ✔️ | | | | | | rv | | | | ✔️ | | | | | | pmra | | | | ✔️ | | | | | | pmdec | | | | ✔️ | | | | | ## Properties of Orbits You can use these functions like `totalmass(orbit)`. | Function | KepOrbit | Visual{KepOrbit} | ThieleInnesOrbit | RadialVelocityOrbit | CartesianOrbit | Visual{CartesianOrbit} | |---------- |---------- |------------------ |------------------ |--------------------- |---------------- |------------------------ | | [`totalmass`](@ref) | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | | [`period`](@ref) | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | | [`distance`](@ref) | ❌ | ✅ | ✅ | ❌ | ❌ | ✅ | | [`meanmotion`](@ref) | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | | [`eccentricity`](@ref) | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | | [`inclination`](@ref) | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | | [`semimajoraxis`](@ref) | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | | [`periastron`](@ref) | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | | [`semiamplitude`](@ref) | ✅ | ✅ | ⚠️ | ✅ | ✅ | ✅ | ## Properties of Orbit Solutions You can use these functions like `sol = orbitsolve(orbit,mjd("2020-01")); posx(sol)` or `posx(orbit, mjd("2020-01"))`. | Function | KepOrbit | Visual{KepOrbit} | ThieleInnesOrbit | RadialVelocityOrbit | CartesianOrbit | Visual{CartesianOrbit} | |---------- |---------- |------------------ |------------------ |--------------------- |---------------- |------------------------ | | [`meananom`](@ref) | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | | [`trueanom`](@ref) | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | | [`eccanom`](@ref) | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | | [`posx`](@ref) | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | | [`posy`](@ref) | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | | [`posz`](@ref) | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | | [`velx`](@ref) | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | | [`vely`](@ref) | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | | [`velz`](@ref) | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | | [`raoff`](@ref) | ❌ | ✅ | ✅ | ❌ | ❌ | ✅ | | [`decoff`](@ref) | ❌ | ✅ | ✅ | ❌ | ❌ | ✅ | | [`radvel`](@ref) | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | | [`posangle`](@ref) | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | | [`pmra`](@ref) | ❌ | ✅ | ✅ | ❌ | ❌ | ✅ | | [`pmdec`](@ref) | ❌ | ✅ | ✅ | ❌ | ❌ | ✅ | | [`accra`](@ref) | ❌ | ✅ | ❌ | ❌ | ❌ | ⚠️ | | [`accdec`](@ref) | ❌ | ✅ | ❌ | ❌ | ❌ | ⚠️ | ## Documentation ```@autodocs Modules = [PlanetOrbits] ```
PlanetOrbits
https://github.com/sefffal/PlanetOrbits.jl.git
[ "MIT" ]
0.10.1
370c3ac3c000dd3ac975681521dcfe687efc1f24
docs
1761
# Units & Conventions The main constructor, [`Visual{KepOrbit}`](@ref), accepts the following parameters: - `a`: Semi-major axis in astronomical units (AU) - `i`: Inclination in radians - `e`: Eccentricity in the range [0, 1) - `tp`: Epoch of periastron passage in days (specifically, referenced to modified julian date) - `M`: Graviataion parameter of the central body, expressed in units of Solar mass. - `ω`: Argument of periastron - `Ω`: Longitude of the ascending node, radians. - `plx`: Distance to the system expressed in milliarcseconds of parallax. Parameters can either be specified by position or as keyword arguments (but not a mix). ![](./assets/orbit-schematic.png) This diagram shows a circular (gray), inclined (blue), and inclined eccentric (green) orbits described using the conventions of this package. The $x$ variable increases to the left in the plane of the sky, consistent with right ascension that increases towards the East. The $y$ coordinate increases upwards towards the North. The $z$ coordinate increases away from the observer. The ascending node is measured CCW in the plane of the sky starting from the $y$ (North) axis. The location of the planet along its ellipse is measured along the green ellipse starting from periastron. The parameter $tp$ describes a date at which the planet made its closest approach to the star, and therefore sets the location of the planet at a given time. For bound (circular or elliptical) orbits there are infinitely many equivalent `tp` values, related by $t_p\prime = t_p i P$ where $P$ is the period of the planet. See this PDF for a detailed derivation of projected position, velocity, and acceleration from these coordinates: [Derivation.pdf](assets/orbit_coordinate_notes.pdf)
PlanetOrbits
https://github.com/sefffal/PlanetOrbits.jl.git
[ "MIT" ]
0.10.1
370c3ac3c000dd3ac975681521dcfe687efc1f24
docs
1691
# Converting Between Orbit Types You can convert between several of the supported orbit types. Examples: ```@example 1 using PlanetOrbits, Plots # Specify a Visual{KepOrbit} orb_vis = Visual{KepOrbit}(M=1, e=0.4, a=1, i=2, Ω=3, ω=1, tp=0, plx=10.0); # Convert to Thiele-Innes orb_ti = ThieleInnesOrbit(orb_vis) # Convert back to Visual{KepOrbit} orb_vis2 = Visual{KepOrbit}(orb_ti) # Convert to a CartesianOrbit (specified by position and velocity) # We have to solve the orbit at a particular time (or true anomally, mean anomally, etc) # Then we can use that solution to construct a CartesianOrbit orb_vis_sol = orbitsolve(orb_vis,0) orb_cart = CartesianOrbit(orb_vis_sol; tol=1e-4) # default is 1e-8 # Solve each orbit at the same date time = mjd("2023-01-01") sol_vis = orbitsolve(orb_vis, time) sol_ti = orbitsolve(orb_ti, time) sol_vis2 = orbitsolve(orb_vis2, time) sol_cart = orbitsolve(orb_cart, time) plot( aspectratio=1, legend=:none,) xlims!(-1.5,1.5) ylims!(-1.5,1.5) zlims!(-1.5,1.5) plot!(sol_vis, color=1, lw=10, ms=10, kind=(:x,:y,:z)) plot!(sol_ti, color=2, lw=6, ms=6, kind=(:x,:y,:z)) plot!(sol_vis2, color=3, lw=3, ms=3, kind=(:x,:y,:z)) plot!(sol_cart, color=4, lw=1, ms=1, kind=(:x,:y,:z)) scatter!([0], [0], [0], marker=:circle, color=:white, ms=6) ``` When converting to a [`CartesianOrbit`](@ref), the `tol` parameter controls how near-equitorial and near-circular orbits are handled. If eccentricity is below `tol`, then it is zeroed and the orbit is treated as circular (changing how `ω` is set). If the absolute value of inclination is below `tol`, then it is zeroed and the orbit is treated as equatorial (changing how `Ω` is set).
PlanetOrbits
https://github.com/sefffal/PlanetOrbits.jl.git
[ "MIT" ]
0.10.1
370c3ac3c000dd3ac975681521dcfe687efc1f24
docs
1255
# Getting Started The first step to using DirectDetections.jl is to install Julia. If you're used to Python, don't worry --- Julia is easy to install, and you won't need to code anything other than changing your input data. ## Installing Julia Visit the [julialang.org](https://julialang.org/downloads/) Downloads page, and select the latest stable version for your operating system. Currently, this is 1.7.0. Click the `[help]` links next to your operating system if you require more detailed instructions. ## Installing PlanetOrbits Normally, Julia packages are installed from the General registry. Since PlanetOrbits isn't quite ready for prime time, it requires one extra step to add an additional registry. 1. Start julia in a terminal by running `julia` 2. Type `]` to enter package-mode (see Julia documentation for more details) 3. Type `up` to setup the General registry if this is your first time using Julia. 4. Type `registry add https://github.com/sefffal/DirectRegistry` 5. Type `add PlanetOrbits` If you would like to visualize your results, you can also install the Plots package: 4. Type `add Plots` This will take a little while to download all the required packages and precompile for your system. ## Plotting your first orbit
PlanetOrbits
https://github.com/sefffal/PlanetOrbits.jl.git
[ "MIT" ]
0.10.1
370c3ac3c000dd3ac975681521dcfe687efc1f24
docs
782
# Hyperbolic Orbits PlanetOrbits.jl has preliminary support for hyperbolic orbits. They are currently supported with [`KepOrbit`](@ref) and [`CartesianOrbit`](@ref) but not [`ThieleInnesOrbit`](@ref). ```@example 1 using PlanetOrbits, Plots # Specify orbit with a Campbell parameters (KepOrbit) orb = orbit(M=1, e=1.1, a=1, i=2, Ω=3, ω=1, tp=mjd("2024-01-01")); sol = orbitsolve(orb, mjd("2024-3-01")) plot(sol, tspan=mjd("2024-01-01") .+ (-300,100)) ``` ```@example 1 using PlanetOrbits, Plots # Specify orbit with a state vector (CartesianOrbit) orb = orbit( x = 1.0, y = 0.3, z = 0.001, vx = 0, vy = 9, vz = 0.0, M = 1, tref = mjd("2024-01-01") ) sol = orbitsolve(orb, mjd("2024-3-01")) plot(sol, tspan=mjd("2024-01-01") .+ (-300,100)) ```
PlanetOrbits
https://github.com/sefffal/PlanetOrbits.jl.git
[ "MIT" ]
0.10.1
370c3ac3c000dd3ac975681521dcfe687efc1f24
docs
2015
# Image Warping !!! warning This functionality is currently not working and could use some attention in the form of pull request. If you have an image of a system, you can warp the image as if each pixel were a test particle following Kepler's laws. This is an easy way to see what a disk or a system of planets would look like at a time other than when it was captured. To make this possible, PlanetOrbits.jl can create `OrbitalTransformation` objects. These follow the conventions set out in CoordinateTransformations.jl and are compatible with ImageTransformations.jl. Example: ```julia using ImageTransformations, AstroImages, CoordinateTransformations ot = OrbitalTransformation( i = 0.3, e = 0.0, M = 1.0, ω = 0.5, Ω = 0.5, plx = 300.0, platescale=10.0, # mas/px dt = 3*365.25 # days forward in time ) img = load("input.fits") tform_centered = ImageTransformations.recenter(ot, ImageTransformations.center(img)) img_future = warp(img_centered, ot, axes(img_centered)) # Display with AstroImages.jl imview([img; img_future], cmap=:seaborn_icefire_gradient) ``` **Before, and After Orbital Transformation** ![image](https://user-images.githubusercontent.com/7330605/129625363-c0295432-47f4-4400-a5a7-7140a7e7d997.png) Note the arguments `platescale` and `dt` are required, but `a` and `τ` are not. The position of the pixel in X/Y space uniquely determines the semi-major axis and epoch of periastron passage when the rest of the orbital parameters are known. `platescale` in units of milliarseconds/pixel is necessary to get the overall scale of the transform correct. This is because an orbital transformation is **not** linear (and therefore, care must be taken when composing an OrbitalTransformation with other CoordinateTransformations). Scaling an image will change the amount of rotation that occurs at each separation. `dt` is the the amount of time in days to project the image forward. It can also be negative to project the image into the past.
PlanetOrbits
https://github.com/sefffal/PlanetOrbits.jl.git
[ "MIT" ]
0.10.1
370c3ac3c000dd3ac975681521dcfe687efc1f24
docs
2341
# PlanetOrbits.jl [![GitHub](https://img.shields.io/badge/Code-GitHub-black.svg)](https://github.com/sefffal/PlanetOrbits.jl) Tools for solving Keplerian orbits, especially in the context of exoplanet detection and modelling. The functions of this package allow one to propagate two-body orbits using a variety of orbital basis sets (classic Campbell, Thiele-Innes, and Cartesian state-vectors.). A fully featured A Plots.jl recipe is included for easily plotting different orbit properties in space or time, or against other variables. Bound circular and elliptical orbits are fully supported. Support for hyperbolic orbits is experimental. Among other uses, it can be used to calculates the projected positions of planets, radial velocity, and proper motion anomaly. It is also a great tool for visualizing different orbits (see examples) and generating nice animations (e.g. with Plots or Luxor.jl). This package has been designed for good performance and composability with a wide range of packages in the Julia ecosystem. Automatic differentiation with ForwardDiff, Enzyme, and Zygote are supported. A variety of Kepler solvers are provided. Arbitrary precision can be achieved by specifying orbits using Julia's built in `BigFloat` datatype and using a solver with user-specified tolerance. To fit orbits to observations, see [Octofitter.jl](https://github.com/sefffal/Octofitter.jl). See also [AstroImages.jl](https://github.com/JuliaAstro/AstroImages.jl). ## Attribution If you find this package useful in your research, please cite the following [paper](https://dx.doi.org/10.3847/1538-3881/acf5cc) (open-access link). This software package contains calculations that are adapted from various open source packages, including: * NASA/JPL SPICE (public domain) * keplerorbit.py by Spencer Wallace (MIT license) * PoliaAstro (MIT license) * Orbitize by Blunt et al. (BSD 3-Clause License) * RadVel by Fulton et al. (MIT license) These codes were useful references in the development of this package but are not redistributed. ### Tutorials ```@contents Pages = ["introdcution.md", "plots.md", "image-warping.md"] Depth = 5 ``` ### Documentation ```@contents Pages = ["api.md", "conventions.md", "kepler.md"] Depth = 5 ``` ```@raw html <video src="assets/51-eri-orbit.mp4" autoplay loop width=300 height=300> ```
PlanetOrbits
https://github.com/sefffal/PlanetOrbits.jl.git
[ "MIT" ]
0.10.1
370c3ac3c000dd3ac975681521dcfe687efc1f24
docs
8787
# Introduction ```@setup 1 # Set a plot theme so that the plots appear nicely on dark or light documenter themes using Plots theme(:default; framestyle=:box, ) ``` This package is structured around a representation of an orbit ([`PlanetOrbits.AbstractOrbit`](@ref), and a representation of a "solved" orbit ([`PlanetOrbits.AbstractOrbitSolution`](@ref)). You start by creating an orbit with known information, e.g. the semi-major axis and eccentricity. You can then query information from this orbit, like its orbital period, mean motion, or periastron (closest approach). Then, you can "solve" the orbit one more times for a given time, eccentric anomaly, or true anomaly. Let's see how this works. ```@example 1 using PlanetOrbits, Plots orb = orbit( a=1.0, # semi major axis (AU) M=1.0, # primary mass (solar masses) ) ``` The [`orbit`](@ref) function accepts many combinations of orbital parameters and returns a subtype of [`PlanetOrbits.AbstractOrbit`](@ref). We can now query some basic properties about the orbit: ```@example 1 period(orb) # orbital period (days) ``` ```@example 1 meanmotion(orb) # Mean motion (radians/yr) ``` ```@example 1 periastron(orb) # Epoch of periastron passage (MJD) ``` ```@example 1 semiamplitude(orb) # radial velocity semi-amplitude (m/s) ``` We can plot the orbit (more on this in [Plotting](@ref)): ```@example 1 plot(orb) ``` And we can solve the orbit for a given orbital location ```@example 1 sol = orbitsolve_ν(orb, 0.1) # true anomaly (radians) sol = orbitsolve_eccanom(orb, 0.1) # eccentric anomaly (radians) sol = orbitsolve_meananom(orb, 0.1) # mean anomaly (radians) ``` When constructing an orbit, the location of the planet along its orbit can be specified by `tp`. This is the (or a) time the planet made its closest approach to the star. ```@example 1 orb = orbit( a=1.0, # semi major axis (AU) M=1.0, # primary mass (solar masses) tp=mjd("2020-04-15"), ); ``` We can now meaningfully solve the location of the planet at a specific time: ```@example 1 t = mjd("2020-07-15") # date as in modified julian days. sol = orbitsolve(orb, t) # can optionally pass `tref=...` ``` We can query specifics at this solution: ```@example 1 trueanom(sol) # true anomaly (radians) ``` ```@example 1 eccanom(sol) # eccentric anomaly (radians) ``` ```@example 1 plot(sol) # defaults to kind=:radvel for RadialVelocityOrbit ``` Notice that we now see a marker at the location found by [`orbitsolve`](@ref). We can create an orbit with some eccentricity. If not specified, eccentricity and the argument or periapsis default to 0 for any orbit type. ```@example 1 orb = orbit( a=1.0, # semi major axis (AU) M=1.0, # primary mass (solar masses) tp=mjd("2020-04-15"), # New: e=0.6, # eccentricity ω=2.5, # argument of periapsis (radians) ) plot(orb) # defaults to kind=:radvel for RadialVelocityOrbit ``` !!! warning "ω convention" The convention used in this package is that ω, the argument of periapsis, refers to the **secondary** body. This is in contrast to the typical standard adopted in the radial velocity literature where ω refers to the primary. You can convert by adding or subtracting 180°. Since we only provided very minimal information to the `orbit` function, we've been receiving a [`RadialVelocityOrbit`](@ref). This object contains sufficient information to calculate the above radial velocity plots, orbital period, etc., but not the 3D position in space. Let's create a new orbit with a specified inclination and longitude of ascending node. ```@example 1 orb = orbit( a=1.0, # semi major axis (AU) M=1.0, # primary mass (solar masses) tp=mjd("2020-04-15"), e=0.6, # eccentricity ω=2.5, # argument of periapsis (radians) # New: i=0.6, # inclination (radians) Ω=2.3, # inclination (radians) ) ``` This time we received a full [`KepOrbit`](@ref). This has the necessary information to solve the orbit in 2/3D. ```@example 1 plot(orb) # defaults to kind=(:x,:y) for KepOrbit ``` ```@example 1 plot(orb, kind=(:x,:y,:z)) ``` !!! note "Cartesian convention" The convention used in this package is that x increases to the left (just like right-ascension), and the z increases away from the observer. We can solve for a time or location as usual. ```@example 1 sol = orbitsolve(orb, mjd("2025-01")) ``` ```@example 1 eccanom(sol) # eccentric anomaly (radians) ``` We can also query the cartesian position of the planet in AU: ```@example 1 PlanetOrbits.posx(sol) ``` ```@example 1 PlanetOrbits.posy(sol) ``` ```@example 1 PlanetOrbits.posy(sol) ``` ```@example 1 plot(sol) ``` ```@example 1 plot(sol, kind=:x) ``` We can still of course calculate the radial velocity as well. ```@example 1 radvel(sol) ``` ```@example 1 plot(sol, kind=:radvel) ``` Finally, we'll specify the parallax distance to the system. This will allow us to plot orbits with angular units as they would appear in the sky from the Earth. ```@example 1 orb = orbit( a=1.0, # semi major axis (AU) M=1.0, # primary mass (solar masses) tp=mjd("2020-04-15"), e=0.6, # eccentricity ω=2.5, # argument of periapsis (radians) i=0.6, # inclination (radians) Ω=2.3, # inclination (radians) # New: plx=100.0 # parallax distance (milliarcseconds) ) ``` ```@example 1 sol = orbitsolve(orb, 0.0) plot(sol) ``` ``` posangle(sol) # position angle offset from barycentre (milliarcseconds) ``` ```@example 1 projectedseparation(sol) # separation from barycentre (milliarcseconds) ``` ```@example 1 raoff(sol) # right ascension offset from barycentre (milliarcseconds) ``` ```@example 1 decoff(sol) # declination offset from barycentre (milliarcseconds) ``` ```@example 1 raoff(sol) # right ascension offset from barycentre (milliarcseconds) ``` ```@example 1 decoff(sol) # declination offset from barycentre (milliarcseconds) ``` ```@example 1 pmra(sol) # instantaneous right ascension velocity from barycentre (milliarcseconds/year) ``` ```@example 1 pmdec(sol) # instantaneous declination velocity from barycentre (milliarcseconds/year) ``` ```@example 1 accra(sol) # instantaneous right ascension acceleration from barycentre (milliarcseconds/year^2) ``` ```@example 1 accdec(sol) # instantaneous declination acceleration from barycentre (milliarcseconds/year^2) ``` ## Performance The [`orbit`](@ref) function is a convenience only for interactive use. It is inefficient since it is not type-stable. Instead, one should use one of the orbit constructors directly. For example, instead of ```@example 1 orb = orbit( a=1.0, # semi major axis (AU) M=1.0, # primary mass (solar masses) tp=mjd("2020-04-15"), e=0.6, # eccentricity ω=2.5, # argument of periapsis (radians) i=0.6, # inclination (radians) Ω=2.3, # inclination (radians) ) # Not type stable ``` Use: ```@example 1 orb = KepOrbit( a=1.0, # semi major axis (AU) M=1.0, # primary mass (solar masses) tp=mjd("2020-04-15"), e=0.6, # eccentricity ω=2.5, # argument of periapsis (radians) i=0.6, # inclination (radians) Ω=2.3, # inclination (radians) plx=100.0 # parallax distance (milliarcseconds) ) # Type stable ``` This will prevent ‪unnecessary‬ allocations in some cases. ## Convenience All functions described above that apply to orbit solutions can be called directly on an orbit along with a time in days: ```@example 1 orb = orbit( a=1.0, # semi major axis (AU) M=1.0, # primary mass (solar masses), ) radvel(orb, mjd("2025-01-01")) ``` If you need to calculate many different properties, e.g. both x and y position at a given time/location, it is more efficient to calculate the orbit solution a single time and query the result as needed. ## Host calculations The above calculations treat the planet as a test particle and calculate their displacement/velocity/etc. compared to the two-particle system's barycentre. If you wish to calculate the same properties for the host object, you can additionally supply the mass of the planet. ```@example 1 orb = orbit( a=1.0, # semi major axis (AU) M=1.0, # primary mass (solar masses) i=0.5, Ω=2.5, plx=100.0 ) sol = orbitsolve(orb, mjd("2025-01-01")) # Secondary radial velocity radvel(sol) ``` ```@example 1 # Primary radial velocity radvel(sol, 0.1) # 0.1 solar mass secondary ``` The following show pairs of results for the secondary and the primary: ```@example 1 PlanetOrbits.posx(sol), PlanetOrbits.posx(sol, 0.1) ``` ```@example 1 radvel(sol), radvel(sol, 0.1) ``` ```@example 1 raoff(sol), raoff(sol, 0.1) ``` ```@example 1 accra(sol), accra(sol, 0.1) ``` ```@example 1 projectedseparation(sol), projectedseparation(sol, 0.1) ``` ```@example 1 posangle(sol), posangle(sol, 0.1) ```
PlanetOrbits
https://github.com/sefffal/PlanetOrbits.jl.git
[ "MIT" ]
0.10.1
370c3ac3c000dd3ac975681521dcfe687efc1f24
docs
2936
# Kepler Solvers The heart of this package is being able to take a set of Keplerian elements and output relative positions, velocities, etc. This normaly requires solving Kepler's equation numerically. This package supports a multitude of solver algorithms that can be passed to [`orbitsolve`](@ref): * [`PlanetOrbits.Auto`](@ref) * [`PlanetOrbits.Markley`](@ref) * [`PlanetOrbits.Goat`](@ref) * [`PlanetOrbits.RootsMethod`](@ref) The last of these `RootsMethod`, allows one to substitute any algorithm from the Roots.jl package. These include many different classical and modern root finding algorithms.chosen precision, including artibrary precision BigFloats. Using big floats with, for example, `Roots.PlanetOrbits.Thukral5B` and a tight tolerenace, allows you to solve orbits up to arbitrary precision. The default choice is `Auto`, which currently selects `Markley` for all cases. The Markley algorithm is very fast, reasonably accurate, and always converges, making it a good default choice. The Markley algorithm is a tweaked version of the algorithm from [AstroLib.jl](http://juliaastro.github.io/AstroLib.jl/stable/ref/#AstroLib.kepler_solver). It is non-iterative and converges with less than 1e-15 relative error across the full range of e between 0 and 1. On my laptop, this solves for a single eccentric anomaly in just 71 ns. Since it is implemented in pure Julia, there is no overhead from calling into a C or Cython compiled function and no need for vectorization. ## Examples ```@example 1 using PlanetOrbits, BenchmarkTools orb = orbit(a=1.2, e=0.1, M=1.0, ω=1.4, τ=0.5) t = mjd("2025-06-23") @benchmark orbitsolve(orb, t, PlanetOrbits.Markley()) ``` ```@example 1 @benchmark orbitsolve(orb, t, PlanetOrbits.Goat()) ``` ```@example 1 using Roots @benchmark orbitsolve(orb, t, PlanetOrbits.RootsMethod(Roots.Newton())) ``` ```@example 1 using Roots @benchmark orbitsolve(orb, t, PlanetOrbits.RootsMethod(Roots.Thukral3B())) ``` ```@example 1 @benchmark orbitsolve(orb, t, PlanetOrbits.RootsMethod(Roots.A42())) ``` ```@example 1 @benchmark orbitsolve(orb, t, PlanetOrbits.RootsMethod(Roots.Bisection())) ``` ```@example 1 @benchmark orbitsolve(orb, t, PlanetOrbits.RootsMethod(Roots.SuperHalley())) ``` ```@example 1 @benchmark orbitsolve(orb, t, PlanetOrbits.RootsMethod(Roots.Brent())) ``` ```@example 1 @benchmark orbitsolve(orb, t, PlanetOrbits.RootsMethod(Roots.Order2())) ``` ```@example 1 @benchmark orbitsolve(orb, t, PlanetOrbits.RootsMethod(Roots.AlefeldPotraShi())) ``` ## High precision You can solve Kepler's equation in high precision using big floats and tightening the tolerance on the solver. ```@example 1 orb_big = orbit(a=big(1.2), e=big(0.1), M=big(1.0), ω=big(1.4), τ=big(0.5)) sol = orbitsolve(orb_big, big(t), PlanetOrbits.RootsMethod(Roots.Thukral5B(),rtol=1e-30,atol=1e-30,)) radvel(sol) ``` ## Comparison ![](assets/solver-accuracy.png) ![](assets/solver-speed.png)
PlanetOrbits
https://github.com/sefffal/PlanetOrbits.jl.git
[ "MIT" ]
0.10.1
370c3ac3c000dd3ac975681521dcfe687efc1f24
docs
3048
# Plotting This package defines Plots.jl recipes for orbits and orbit solutions. At its most basic, you can simply call `plot` on the object. The kind of plot will be based on the type of object. You can pass the `kind` argument to control what plot is generated. Examples: ```@example 1 using PlanetOrbits, Plots orb = orbit( a=1.0, M=1.0, ) plot(orb) # defaults to kind=:radvel ``` ```@example 1 orb = orbit( a=1.0, M=1.0, i=0.5, Ω=4.5 ) plot(orb) # defaults to kind=(:x,:y) ``` ```@example 1 orb = orbit( a=1.0, M=1.0, i=0.5, Ω=4.5, plx=120.0, tp=mjd("2024-03-01") ) plot(orb) # defaults to kind=:astrom ``` We can override: ```@example 1 plot(orb, kind=:radvel) ``` ```@example 1 plot(orb, kind=(:x,:y)) ``` ```@example 1 plot(orb, kind=(:x,:z)) ``` ```@example 1 plot(orb, kind=(:x,:y,:z)) ``` They all work on a given orbit solution as well: ```@example 1 sol = orbitsolve(orb, mjd("2020-01-01")) plot(sol, kind=:radvel) ``` ```@example 1 plot(sol, kind=(:x,:y)) ``` ```@example 1 plot(sol, kind=(:x,:z)) ``` ```@example 1 plot(sol, kind=(:x,:y,:z)) ``` Note, in GR the position of the marker in 3D plots is incorrect. Try the `plotly()` backend instead. The plots are generated by tracing out the orbit in equal steps of mean anomaly. Compared to taking equal steps in time, this gives smooth lines even for very highly eccentric orbits. The plot recipe sets the axes to have default aspect ratios and flips the right-ascension (horizontal) axis to increasing towards the left as it does when viewed in the plane of the sky. ## Plotting multiple orbits If you have an array of Keplerian orbits, you can plot them all in one go: ```@example 1 elements = [orbit(a=16+0.3i, i=deg2rad(i), e=0.25+0.001i, τ=0, M=1, ω=0, Ω=120, plx=35) for i in 1:1:90] plot(elements, color=1) ``` This recipe scales down the opacity slightly so that you can see where the orbits overlap. Override by passing `alpha=1`. ## Animations You can use the Plots.jl `@gif` and `@animate` macros to create animations using a for loop. ```@example 1 orb = orbit(a=1.2, e=0.4, M=1.0, ω=π/2, τ=0.0, i=π/4, Ω=0,plx=100) @gif for t in range(0, period(orb),length=30) sol = orbitsolve(orb,t) plot( plot(sol,kind=(:raoff,:decoff),body=(:primary,:secondary),mass=0.2,legend=false,title="astrometry"), plot(sol,kind=(:pmra,:pmdec),body=(:primary,:secondary),mass=0.2,title="proper motion anomaly"), plot(sol,kind=(:accra,:accdec),body=(:primary,:secondary),mass=0.2,legend=false,title="astrometric acceleration"), plot(sol,kind=(:t,:radvel), tspan=(-300,300), body=(:primary,:secondary),mass=0.2,legend=false,title="radial velocity"), lims=:symmetric, framestyle=:box, titlefontsize=10,guidefontsize=7,tickfontsize=7 ) end ``` ## Logo To get more ideas for plotting, check out [this example](https://github.com/sefffal/PlanetOrbits.jl/blob/master/docs/logo.jl) which generates an animated version of the logo for this page. ![orbit logo](assets/logo.gif)
PlanetOrbits
https://github.com/sefffal/PlanetOrbits.jl.git
[ "MIT" ]
0.10.1
370c3ac3c000dd3ac975681521dcfe687efc1f24
docs
1158
# Symbolic Manipulation The Symbolics.jl package works fairly well out of the box with PlanetOrbits.jl. You can create fully or partially symbolic [`KepOrbit`](@ref) and/or solve for orbits at a time or true anomaly given by a symbolic `t`. This could come in use in a few scenarios. For example, if you have an orbit with all parameters known except inclination, you could construct a set of elements with `i` as a symbolic variable. Solving the orbit using [`orbitsolve`](@ref) would then return a solution with simplified symbolic expressions of `i` that can be evaluated very efficiently for different values. N.B. this approach is quite messy for a symbolic `e` since Kepler's equation is trancendental. There is some support for using the Symbolics.jl package. You can create symbolic variables and trace most of the functions defined in this package to get symbolic expressions. This is a little slow, and I'm not sure of the applications, but it's neat that it works. ```julia using Symbolics @variables t expr = radvel(elements, t); ``` This works with the VisualOrbit constructors as well if you want to create a full symbolic set of elements.
PlanetOrbits
https://github.com/sefffal/PlanetOrbits.jl.git
[ "MIT" ]
1.0.8
6d4c314981c5f1df153c23b69dfa295c5286e247
code
7155
""" KissSmoothing: Easily smooth your data! exports a single function `denoise`, for further help look at it's docstring. """ module KissSmoothing using FFTW: dct, idct using Statistics: mean using LinearAlgebra: factorize, I using SparseArrays: sparse """ denoise(V::Array; factor=1.0, rtol=1e-12, dims=ndims(V), verbose = false) smooth data in `V` according to: `V` : data to smooth `factor` : smoothing intensity `rtol` : relative tolerance on how precise the smoothing intensity is determined `dims` : array dimension being smoothed along `verbose` : enables some printing of internal info returns a tuple (S,N) where: `S` : is the smoothed data `N` : is the extracted noise in particular `S + N` reconstructs the original data `V`. """ function denoise( V::AbstractArray{Float64,N}; factor::Float64 = 1.0, rtol::Float64 = 1e-12, dims::Int64 = N, verbose::Bool = false, ) where {N} buf = IOBuffer() K1 = sqrt(2 / pi) K2 = sqrt(2) * K1 #K3 = sqrt(6)*K1 #K4 = sqrt(20)*K1 lV = size(V, dims) if lV < 4 return copy(V), zero(V) end iV = dct(V) stri = map(i -> ifelse(i == dims, lV, 1), 1:ndims(V)) X = map(abs2, reshape(LinRange(0.0, 1.0, lV), stri...)) d = factor * mean(abs, diff(V, dims = dims)) * (K1 / K2) σt = 0.5 σd = 0.25 f = zero(V) for iter = 1:60 σ = sqrt(lV) * σt / (1 - σt) if !isfinite(σ) break end f .= idct(iV .* exp.(-X .* σ)) c = mapreduce((x, y) -> abs(x - y), +, f, V) / length(V) Δ = d - c σt += σd * sign(Δ) σd /= 2 if verbose println(buf, iter, " ", σ, " ", Δ) end if abs(d - c) < rtol * d break end end if verbose print(String(take!(buf))) end f, V .- f end function tps(x::AbstractArray{Float64},y::AbstractArray{Float64}) ϵ = nextfloat(0.0) r = ϵ+mapreduce(+, x, y) do a, b abs2(a - b) end r * log(r) end struct RBF{G<:AbstractArray{Float64},C<:AbstractArray{Float64}} Γ::G C::C end function evalPhi(xs::AbstractArray{Float64}, cp::AbstractArray{Float64}) Phi = zeros(size(xs, 1), size(cp, 1)+1+size(xs,2)) @views for i = 1:size(xs, 1) mu = 0.0 for j = 1:size(cp, 1) k = tps(xs[i, :], cp[j, :]) Phi[i, j] = k mu += k end mu /= size(cp, 1) for j = 1:size(cp, 1) Phi[i, j] -= mu end Phi[i, size(cp, 1)+1] = 1.0 for j = 1:size(xs, 2) Phi[i, size(cp, 1)+1+j] = xs[i,j] end end Phi end function (net::RBF)(X::AbstractArray{Float64}) evalPhi(X, net.C) * net.Γ end """ fit_rbf(xv::Array, yv::Array, cp::Array) fit thin-plate radial basis function according to: `xv` : array NxP, N number of training points, P number of input variables `yv` : array NxQ, N number of training points, Q number of output variables `cp` : array KxP, K number of control points, P number of input variables returns a callable RBF object. """ function fit_rbf( xv::AbstractArray{Float64}, yv::AbstractArray{Float64}, cp::AbstractArray{Float64}, ) RBF(evalPhi(xv, cp) \ yv, collect(cp)) end function basis_d(x, n1, nK) x1p = max(x - n1, zero(x)) x2p = max(x - nK, zero(x)) return ((x1p)^3 - (x2p)^3) / (nK - n1) end function basis_N(x, xi, k::Int) K = length(xi) if k<1 || k>K error("order must be between 1 and K = length(xi)") end if k == K - 1 return one(x) end sx = (x - xi[1]) / (xi[end] - xi[1]) if k == K return sx end nxi_k = (xi[k] - xi[1]) / (xi[end] - xi[1]) nxi_em1 = (xi[end-1] - xi[1]) / (xi[end] - xi[1]) return basis_d(sx, nxi_k, 1) - basis_d(sx, nxi_em1, xi[end]) end """ fit_nspline(xv::Vector, yv::Vector, cp::Vector) fit natural cubic splines basis function according to: `xv` : array N, N number of training points `yv` : array N, N number of training points `cp` : array K, K number of control points returns a callable function. """ function fit_nspline( x::AbstractVector{Float64}, y::AbstractVector{Float64}, xi::AbstractVector{Float64}, ) issorted(xi) || error("Knots \"xi\" must be sorted.") N = length(x) K = length(xi) M = zeros(N, K) scal = 1 / sqrt(N) for i = 1:N, j = 1:K M[i, j] = basis_N(x[i], xi, j) / scal end C = M \ (y ./ scal) function fn(x) s = zero(x) for i in eachindex(C) s += basis_N(x, xi, i) * C[i] end return s end end """ fit_sine_series(X::Vector,Y::Vector, basis_elements::Integer; lambda = 0.0, order=3) fit Y ~ 1 + X + Σ sin(.) by minimising Σ (Y - f(x))^2 + lambda * ∫(Δ^order F)^2 `X` : array N, N number of training points. `Y` : array N, N number of training points. `basis_elements` : number of sine terms. Keyword arguments: `lambda` : intensity of regularization. `order` : derivative to regularise. returns a callable function. """ function fit_sine_series(X::AbstractVector{<:Real},Y::AbstractVector{<:Real}, basis_elements::Integer; lambda = 0.0, order::Int64=3) lx, hx = extrema(X) T = @. (X - lx)/(hx-lx)*pi M = zeros(length(X),2+basis_elements) for i in eachindex(X) M[i, 1] = 1 M[i, 2] = T[i] for k in 1:basis_elements M[i, 2+k] = sin(k*T[i]) end end phi = M'M for i=3:2+basis_elements phi[i,i] += lambda*(i-2)^(2order) end C = phi \ (M'*Y) return function fn(x) t = (x - lx)/(hx-lx)*pi s = C[1] + C[2]*t for k in 1:basis_elements s += C[2+k]*sin(k*t) end s end end """ lsq_denoise(S::AbstractVector{<:Real}; order::Integer=3, strength::Real = NaN) denoise a sequence S by penalising its order-th finite differences in a least squares regression `S` : sequence. Keyword arguments: `order` : finite differencing order. `strength` : intensity of penalisation on the derivative in [0, Inf[, if unspecified it is auto-determined. return the filtered sequence. """ function lsq_denoise(S::AbstractVector{<:Real}; order::Integer=3, strength::Real = NaN) D = sparse(1.0I, length(S), length(S)) for _ in 1:order D = diff(D, dims=1) end C = D'D smoother(t) = factorize(I + (t/(1-t))*C)\S if isfinite(strength) return smoother(strength/(1+strength)) end X = collect(S) for _ in 1:order X = diff(X) end noise = sum(x -> x^2/length(X), X) / binomial(2*order,order) t = 0.5 dt = 0.25 while true V = smoother(t) pnoise = mapreduce((x,y) -> abs2(x-y)/length(V), +, V, S) t += dt*sign(noise-pnoise) dt /= 2 if abs(pnoise-noise) < 1e-5 * noise || dt < 1e-16 break end end smoother(t) end export denoise, fit_rbf, RBF, fit_nspline, fit_sine_series, lsq_denoise end # module
KissSmoothing
https://github.com/francescoalemanno/KissSmoothing.jl.git
[ "MIT" ]
1.0.8
6d4c314981c5f1df153c23b69dfa295c5286e247
code
2550
using KissSmoothing using Test import Random @testset "Goodness of Smoothing" begin rn0 = Random.MersenneTwister(1337) for N in [100, 200, 400, 800] for α in [0.01, 0.05, 0.1] x = LinRange(0, 1, N) y = identity.(x) n = randn(rn0, length(x)) .* α yr = y .+ n ys, yn = denoise(yr) c1 = sum(abs2, yr .- y) c2 = sum(abs2, ys .- y) @test c2 < c1 s1 = sum(abs2, n) s2 = sum(abs2, yn) @test abs(log2(s2 / s1)) < 1 end end end @testset "Too few points" begin O = [1.0, 2.0, 10.0] S, N = denoise(O) @test all(O .== S) @test all(N .== 0) @test length(S) == 3 @test length(N) == 3 end @testset "Infinite smoothing" begin O = sign.(sin.(1:1000)) .+ 1 S, N = denoise(O, factor = Inf) @test all(S .≈ 1) @test all(abs.(N) .≈ 1) end @testset "Verbose" begin O = sign.(sin.(1:1000)) .+ 1 S, N = denoise(O, factor = 0.0, verbose = true) @test all(abs.(S .- O) .< 1e-10) end @testset "Fit 1D RBF" begin for μ in LinRange(-100,100,5) t = LinRange(0,2pi,150) y = sin.(t).+ μ .+ t fn = fit_rbf(t,y,LinRange(0,2pi,50)) pred_y = fn(t) error = sqrt(sum(abs2, pred_y .- y)/length(t)) @test error < 0.0001 end end @testset "Fit Sine Series" begin for μ in LinRange(-100,100,5) t = LinRange(0,2pi,150) y = sin.(t) .+ μ .* t fn = fit_sine_series(t,y,50, order = 3, lambda = 0.00001) pred_y = fn.(t) error = sqrt(sum(abs2, pred_y .- y)/length(t)) @test error < 0.0002 end end @testset "Fit NSpline" begin for μ in LinRange(-100,100,5) t = LinRange(0,2pi,150) y = sin.(t).+μ fn = fit_nspline(t,y,LinRange(0,2pi,50)) pred_y = fn.(t) error = sqrt(sum(abs2, pred_y .- y)/length(t)) @test error < 0.0002 end @test_throws ErrorException KissSmoothing.basis_N(Float64[],Float64[],1) end @testset "LSQ Denoise" begin rn1 = Random.MersenneTwister(1337) for μ in LinRange(-100,100,5) t = LinRange(0,2pi,150) y = sin.(t) ny = y .+ randn(rn1,length(t))*0.5 errorn = sqrt(sum(abs2, ny .- y)/length(t)) sy = lsq_denoise(ny) errors = sqrt(sum(abs2, sy .- y)/length(t)) sym = lsq_denoise(ny; strength = 3000.0) errorsm = sqrt(sum(abs2, sym .- y)/length(t)) @test errors < errorn @test errorsm < errorn end end
KissSmoothing
https://github.com/francescoalemanno/KissSmoothing.jl.git
[ "MIT" ]
1.0.8
6d4c314981c5f1df153c23b69dfa295c5286e247
docs
5741
# KissSmoothing.jl This package implements a denoising procedure, a Radial Basis Function estimation procedure and a Natural Cubic Splines estimation procedure. ## Denoising denoise(V::Array; factor=1.0, rtol=1e-12, dims=ndims(V), verbose = false) smooth data in `V` according to: `V` : data to smooth `factor` : smoothing intensity `rtol` : relative tolerance on how precise the smoothing intensity is determined `dims` : array dimension being smoothed `verbose` : enables some printing of internal info returns a tuple (S,N) where: `S` : is the smoothed data `N` : is the extracted noise in particular `S + N` reconstructs the original data `V`. ### Example ```julia begin using KissSmoothing, Statistics, LinearAlgebra using PyPlot figure(figsize=(5,4)) for (i,s) in enumerate(2 .^ LinRange(-1.5,1.5,4)) # generating a simple sinusoidal signal X = LinRange(0, pi, 1000) Y = sin.(X.^2) # generate it's noise corrupted version TN = std(Y).*randn(length(X))./7 .*s raw_S = Y .+ TN # using this package function to extract signal S and noise N S, N = denoise(raw_S) subplot(2, 2, i) plot(X,raw_S, color="gray",lw=0.8, label="Y noisy") plot(X,Y,color="red",label="Y true") plot(X,S,color="blue", ls ="dashed",label="Y smoothed") xlabel("X") ylabel("Y") i==1 && legend() end tight_layout() savefig("test.png") end ``` ![test.png](test.png "Plot of 1D signal smoothing") ### Multidimensional example ```julia using KissSmoothing, Statistics, LinearAlgebra using PyPlot figure(figsize=(5,4)) for (i,s) in enumerate(2 .^ LinRange(-1.5,1.5,4)) # generating a simple circle dataset X = LinRange(0,10pi,1000) Y = sin.(X) .+ randn(length(X))./7 .*s Z = cos.(X) .+ randn(length(X))./7 .*s M = [Y Z] O = [sin.(X) cos.(X)] # using this package function to extract signal S and noise N S, N = denoise(M, dims=1) subplot(2,2,i) scatter(M[:,1],M[:,2], color="gray",s=2,label="noisy") plot(S[:,1],S[:,2], color="red",lw=1.5,label="smoothed") plot(O[:,1],O[:,2], color="blue",lw=1.0,label="true") i==1 && legend() xlabel("X") ylabel("Y") end tight_layout() savefig("test_multi.png") ``` ![test_multi.png](test_multi.png "Plot of multidim smoothing") ## RBF Estimation fit_rbf(xv::Array, yv::Array, cp::Array) fit thin-plate radial basis function according to: `xv` : array NxP, N number of training points, P number of input variables `yv` : array NxQ, N number of training points, Q number of output variables `cp` : array KxP, K number of control points, P number of input variables returns a callable RBF object. ### Example ```julia using PyPlot, KissSmoothing t = LinRange(0,2pi,1000) ty = sin.(t) y = ty .+ randn(length(t)) .*0.05 fn = fit_rbf(t,y,LinRange(0,2pi,20)) scatter(t, y, color="gray",s=2,label="noisy") plot(t, fn(t), color="red",lw=1.5,label="rbf estimate") plot(t,ty, color="blue",lw=1.0,label="true") xlabel("X") ylabel("Y") legend() tight_layout() savefig("rbf.png") ``` ![rbf.png](rbf.png "Plot of rbf estimation") ## NSplines Estimation fit_nspline(xv::Vector, yv::Vector, cp::Vector) fit natural cubic splines basis function according to: `xv` : array N, N number of training points `yv` : array N, N number of training points `cp` : array K, K number of control points returns a callable function. ### Example ```julia using PyPlot, KissSmoothing t = LinRange(0,pi,1000) ty = sin.(t.^2) y = ty .+ randn(length(t)) .*0.05 fn = fit_nspline(t,y,LinRange(0,2pi,20)) scatter(t, y, color="gray",s=2,label="noisy") plot(t, fn.(t), color="red",lw=1.5,label="nspline estimate") plot(t,ty, color="blue",lw=1.0,label="true") xlabel("X") ylabel("Y") legend() tight_layout() savefig("nspline.png") ``` ![nspline.png](nspline.png "Plot of NSpline estimation") ## Sine Series Estimation fit_sine_series(X::Vector,Y::Vector, basis_elements::Integer; lambda = 0.0, order=3) fit Y ~ 1 + X + Σ sin(.) by minimising Σ (Y - f(x))^2 + lambda * ∫(Δ^order F)^2 `X` : array N, N number of training points. `Y` : array N, N number of training points. `basis_elements` : number of sine terms. Keyword arguments: `lambda` : intensity of regularization. `order` : derivative to regularise. returns a callable function. ### Example ```julia using PyPlot, KissSmoothing fg(x) = sin(x^2) + x x = collect(LinRange(0,pi,250)) xc = identity.(x) filter!(x->(x-1)^2>0.1, x) filter!(x->(x-2)^2>0.1, x) y = fg.(x) .+ randn(length(x)) .*0.05 fn = fit_sine_seris(x,y,20, lambda = 0.00001) scatter(x, y, color="gray",s=2,label="noisy") plot(xc, fn.(xc), color="red",lw=1.,label="fit") plot(xc,fg.(xc), color="blue",lw=0.7,label="true") xlabel("X") ylabel("Y") legend() tight_layout() savefig("sine_fit.png") ``` ![sine_fit.png](sine_fit.png "Plot of FFT Spline estimation") ## Least Squares Denoising lsq_denoise(S::AbstractVector{<:Real}; order::Integer=3, strength::Real = NaN) denoise a sequence S by penalising its order-th finite differences in a least squares regression `S` : sequence. Keyword arguments: `order` : finite differencing order. `strength` : intensity of penalisation on the derivative, if unspecified it is auto-determined. return the filtered sequence. ### Example ```julia using PyPlot, KissSmoothing fg(x) = sin(x^2) + x x = collect(LinRange(0,pi,150)) y = fg.(x) .+ randn(length(x)) .*0.1 plot(y, color="red",lw=1.,label="noisy seq") plot(lsq_denoise(y,order=2), color="blue",lw=1.,label="filtered") xlabel("X") ylabel("Y") legend() tight_layout() savefig("lsq_denoise.png") ``` ![lsq_denoise.png](lsq_denoise.png "Plot of LSQ Denoising")
KissSmoothing
https://github.com/francescoalemanno/KissSmoothing.jl.git
[ "MIT" ]
0.1.5
6cc9d682755680e0f0be87c56392b7651efc2c7b
code
6965
__precompile__() module Unrolled using MacroTools using MacroTools: prewalk, postwalk export @unroll, @code_unrolled export unrolled_reduce, unrolled_filter, unrolled_intersect, unrolled_setdiff, unrolled_union, unrolled_in, unrolled_any, unrolled_all, unrolled_map, unrolled_foreach function unrolled_filter end """ `type_length(::Type)` returns the length of sequences of that type (only makes sense for sequence-like types, obviously. """ function type_length end """ `type_size(::Type, dim)` returns the size of an array in the specified dimension. """ function type_size end include("range.jl") const expansion_funs = Dict{Function, Function}() macro unroll_loop(niter_type::Type, loop) local niter @assert(@capture(loop, for var_ in seq_ loopbody__ end), "Internal error in @unroll_loop") try niter = type_length(niter_type) catch e # Don't unroll the loop, we can't figure out its length if isa(e, MethodError) return esc(loop) else rethrow() end end esc(:($Unrolled.@unroll_loop($niter, for $var in $seq $(loopbody...) end))) end macro unroll_loop(niter::Int, loop) @assert(@capture(loop, for var_ in seq_ loopbody__ end), "Internal error in @unroll_loop") esc(quote $([:(let $var = $seq[$i]; $(loopbody...) end) for i in 1:niter]...) nothing end) end macro unroll_loop(loop::Expr) @assert(@capture(loop, for var_ in 1:niter_ loopbody__ end), "Internal error in @unroll_loop") esc(quote $([:(let $var = $i; $(loopbody...) end) for i in 1:niter]...) end) end type_length(tup::Type{T}) where {T<:Union{Tuple,NamedTuple}} = length(tup.types) # Default fall-back type_length(typ::Type) = length(typ) type_size(typ::Type, i) = size(typ, i) """ `function_argument_name(arg_expr)` Returns the name (as a symbol) of this argument, where arg_expr is whatever can be put in a function definition's argument list (eg. `len::Int=5`) """ function_argument_name(arg_expr) = MacroTools.splitarg(arg_expr)[1] macro unroll(fundef) # This macro will turn the function definition into a generated function. di = splitdef(fundef) @assert !haskey(di, :params) "`@unroll` only supports parametric functions using `where ...` notation" fname = di[:name] args = di[:args] kwargs = get(di, :kwargs, []) body = di[:body] arg_vars = [a===nothing ? gensym() : a for a in map(function_argument_name, args)] kwarg_vars = map(function_argument_name, kwargs) all_args = [arg_vars; kwarg_vars] function seq_type(seq_var) @assert(seq_var in all_args, "Can only unroll a loop over one of the function's arguments") return Expr(:($), seq_var) end function seq_type_length(seq_var) @assert(seq_var in all_args, "Can only unroll a loop over one of the function's arguments") return Expr(:($), Expr(:call, :($Unrolled.type_length), seq_var)) end function seq_type_size(seq_var, dim) @assert(seq_var in all_args, "Can only unroll a loop over one of the function's arguments") @assert(dim isa Integer, "Dimension argument must be an integer") return Expr(:($), Expr(:call, :($Unrolled.type_size), seq_var, dim)) end process(x) = x function process(expr::Expr) if expr.args[1]==Symbol("@unroll") what = expr.args[3] @match what begin for var_ in 1:length(seq_) loopbody__ end => :($Unrolled.@unroll_loop(for $var in 1:$(seq_type_length(seq)); $(loopbody...) end)) for var_ in 1:size(seq_, dim_) loopbody__ end => :($Unrolled.@unroll_loop(for $var in 1:$(seq_type_size(seq, dim)); $(loopbody...) end)) for var_ in seq_ loopbody__ end => :($Unrolled.@unroll_loop($(seq_type(seq)), for $var in $seq; $(loopbody...) end)) any_ => error("Cannot @unroll $what") end else expr end end # We walk over every expression in the function body, and replace the `@unroll` # loops with macros that will perform the actual unrolling (we use intermediate macros # for sanity) expansion = postwalk(process, body) exp_fun = Symbol(fname, :_unrolled_expansion_, gensym()) # gensym to support multiple methods return esc(quote # The expansion function (for easy calling) Base.@__doc__ function $exp_fun($(all_args...)) $(Expr(:quote, expansion)) end @generated function $fname($(args...); $(kwargs...)) where {$(di[:whereparams]...)} $exp_fun($(all_args...)) end $Unrolled.expansion_funs[$fname] = $exp_fun end) end macro code_unrolled(expr) @assert(@capture(expr, f_(args__))) ar = gensym() esc(quote $ar = [$(args...)] macroexpand(@__MODULE__, $Unrolled.expansion_funs[$f](map(typeof, $ar)...)) end) end ################################################################################ @generated function unrolled_map(f, seq) :(tuple($((:(f(seq[$i])) for i in 1:type_length(seq))...))) end @generated function unrolled_map(f::F, seq1, seq2) where F @assert type_length(seq1) == type_length(seq2) :(tuple($((:(f(seq1[$i], seq2[$i])) for i in 1:type_length(seq1))...))) end @unroll function unrolled_foreach(f, seq) @unroll for x in seq; f(x) end end @generated function unrolled_reduce(f, v0, seq) niter = type_length(seq) expand(i) = i == 0 ? :v0 : :(f(seq[$i], $(expand(i-1)))) return expand(niter) end function _unrolled_filter(f, tup) :($([Expr(:(...), :(f(tup[$i]) ? (tup[$i],) : ())) for i in 1:type_length(tup)]...),) end @generated unrolled_filter(f, tup) = _unrolled_filter(f, tup) unrolled_intersect(tup1, tup2) = unrolled_filter(x->x in tup2, tup1) unrolled_setdiff(tup1, tup2) = unrolled_filter(!(x->x in tup2), tup1) unrolled_union() = () unrolled_union(tup1) = tup1 unrolled_union(tup1, tup2) = (tup1..., unrolled_setdiff(tup2, tup1)...) unrolled_union(tup1, tup2, tupn...) = unrolled_reduce(unrolled_union, tup1, (tup2, tupn...)) """ `unrolled_in(obj, tup)` is like `in`. Beware that its return type is not always known - see #21322 """ @inline @unroll function unrolled_in(obj, tup) @unroll for x in tup if obj == x return true end end return false end @unroll function unrolled_all(f, tup) @unroll for x in tup if !f(x) return false end end return true end @unroll function unrolled_any(f, tup) @unroll for x in tup if f(x) return true end end return false end end # module
Unrolled
https://github.com/cstjean/Unrolled.jl.git
[ "MIT" ]
0.1.5
6cc9d682755680e0f0be87c56392b7651efc2c7b
code
1926
export FixedRange, FixedEnd, @fixed_range """ `FixedRange{A, B}()` is like `UnitRange{Int64}(A, B)`, but the bounds are encoded in the type. """ struct FixedRange{A, B} end """ `FixedRange{2, FixedEnd()}()` behaves like a type-stable 2:end """ struct FixedEnd{N} end FixedEnd() = FixedEnd{0}() Unrolled.type_length(::Type{FixedRange{A, B}}) where {A, B} = B - A + 1 Base.length(fr::FixedRange{A, B}) where {A, B} = B - A + 1 Base.maximum(fr::FixedRange{A, B}) where {A, B} = B::Int Base.minimum(fr::FixedRange{A, B}) where {A, B} = A::Int Base.getindex(fr::FixedRange, i::Int) = minimum(fr) + i - 1 Base.iterate(fr::FixedRange, state=minimum(fr)) = state > maximum(fr) ? nothing : (state, state+1) Base.lastindex(fr::FixedRange) = length(fr) replace_end(::FixedEnd{N}, ::Type{SEQ}) where {N, SEQ} = type_length(SEQ) - N replace_end(n::Int, ::Type) = n Base.getindex(seq::NTuple{N, Any}, fr::FixedRange{A, B}) where {N, A, B} = _getindex(seq, fr) Base.getindex(seq::AbstractArray, fr::FixedRange{A, B}) where {A, B} = _getindex(seq, fr) @generated _getindex(seq, ::FixedRange{A, B}) where {A, B} = :(tuple($((:(seq[$i]) for i in replace_end(A, seq):replace_end(B, seq))...))) """ `@fixed_range 3:10` behaves like the standard range `3:10`, but is stored within the type system, so that `some_tuple[@fixed_range 3:10]` is type-stable. Also supports `some_tuple[@fixed_range 3:end-5]` """ macro fixed_range(r::Expr) process(x::Int) = x process(x::Symbol) = x === :end ? :($Unrolled.FixedEnd()) : x function process(x::Expr) @assert @capture(x, en_-m_) "`@fixed_range` macro cannot handle $x" @assert en === :end :(FixedEnd{$m}()) end expand(a, b) = :($Unrolled.FixedRange{$(process(a)), $(process(b))}()) @match r begin a_:b_ => esc(expand(a, b)) s_[a_:b_] => esc(:($s[$(expand(a, b))])) any_ => error("Bad @fixed_range") end end
Unrolled
https://github.com/cstjean/Unrolled.jl.git
[ "MIT" ]
0.1.5
6cc9d682755680e0f0be87c56392b7651efc2c7b
code
3617
using Unrolled using Test using StaticArrays using MacroTools using QuickTypes: type_parameters # Check that we can extract argument names @capture(:(function foo(a, b::Int, c=2; d::Int=4) end), (function foo(args__; kwargs__) end)) @test map(Unrolled.function_argument_name, vcat(args, kwargs)) == [:a, :b, :c, :d] @unroll function my_sum(ss) total = zero(eltype(ss)) @unroll for x in ss total += x end return total end @unroll function my_sum(; ss::Tuple=1) # test kwargs total = zero(eltype(ss)) @unroll for x in ss total += x end return total end @test my_sum((1,2,3)) == 6 @test my_sum([1,2,3]) == 6 @test my_sum(SVector(1,2,3)) == 6 @test my_sum(; ss=(1,2,3)) == 6 # Had to disable this test on 0.7. @test_throws looks broken? # @test_throws AssertionError @eval @unroll function my_sum(ss) # total = zero(eltype(ss)) # @unroll for x in ss[1:end-1] # total += x # end # return total # end @unroll function _do_sum(sub_seq) # helper for my_sum_but_last total = zero(eltype(sub_seq)) @unroll for x in sub_seq total += x end return total end # Sum every number in seq except the last one function my_sum_but_last(seq) return _do_sum(seq[1:end-1]) end @test my_sum_but_last((1,20,3)) == 21 # Check that unrolled_union & co are correct and type-stable struct MyVal{T} end # Otherwise it's not type-stable. Perhaps it should defined in Base for all singleton # types. @generated Base.in(val::MyVal, tup::Tuple) = val in type_parameters(tup) @test (@inferred(unrolled_union((MyVal{1}(), MyVal{2}()), (MyVal{2}(), MyVal{0}()))) == (MyVal{1}(), MyVal{2}(), MyVal{0}())) @test (@inferred(unrolled_intersect((MyVal{1}(), MyVal{2}()), (MyVal{2}(), MyVal{0}())))== (MyVal{2}(),)) @test (@inferred(unrolled_setdiff((MyVal{1}(), MyVal{2}()), (MyVal{2}(), MyVal{0}()))) == (MyVal{1}(),)) @test (@inferred(unrolled_union((MyVal{1}(), MyVal{2}()), (MyVal{2}(), MyVal{0}()), (MyVal{10}(),))) == (MyVal{10}(), MyVal{2}(), MyVal{0}(), MyVal{1}())) @test @inferred(unrolled_reduce((+), 0, unrolled_map(abs, (1,2,-3,7)))) == 13 const tupl = (1,2,3,4,5.0,6,7...) @test @inferred(getindex(tupl, FixedRange{4, 5}())) == (4, 5.0) @test @inferred(getindex(tupl, FixedRange{4, FixedEnd{1}()}())) == (4, 5.0, 6) f(tupl) = @fixed_range(tupl[4:end-1]) @test @inferred(f(tupl)) == (4, 5.0, 6) @unroll function summer(tup, t::Type{T}) where T s = zero(T) @unroll for x in tup s += x end s end @test summer((1,2,3), Float64) === 6.0 x = [0.0] unrolled_foreach((1,2,3, 1.0)) do y x[1] += y end @test x[1] == 7.0 # Issue #6 @unroll function sim_gbm(state, sim_T, drift, vol, ts::Tuple, ::Val{log_scale}) where log_scale log_scale && (state = log.(state)) @unroll for _ in 1:length(ts) if log_scale state = sim_gbm_euler_step(state, drift, vol_matrix, dt(ts)) else state = sim_gbm_log_scale_euler_step(state, drift, vol_matrix, dt(ts)) end end return log_scale ? exp.(state) : state end # Unrolling with a sized argument struct CartesianIndexSpace{dims} <: AbstractArray{Int, 2}; end Base.size(cis::Type{CartesianIndexSpace{dims}}) where {dims} = dims Base.size(cis::Type{<:CartesianIndexSpace}, i::Integer) = size(cis)[i] Base.size(cis::CartesianIndexSpace) = size(typeof(cis)) @unroll function do_count(cis) n = 0 @unroll for i = 1:size(cis, 2) n += 1 end n end @test do_count(CartesianIndexSpace{(1,4)}()) == 4
Unrolled
https://github.com/cstjean/Unrolled.jl.git
[ "MIT" ]
0.1.5
6cc9d682755680e0f0be87c56392b7651efc2c7b
docs
3887
# Unrolled [![Build Status](https://travis-ci.org/cstjean/Unrolled.jl.svg?branch=master)](https://travis-ci.org/cstjean/Unrolled.jl) [![Coverage Status](https://coveralls.io/repos/cstjean/Unrolled.jl/badge.svg?branch=master&service=github)](https://coveralls.io/github/cstjean/Unrolled.jl?branch=master) [![codecov.io](http://codecov.io/github/cstjean/Unrolled.jl/coverage.svg?branch=master)](http://codecov.io/github/cstjean/Unrolled.jl?branch=master) Unrolled.jl provides functions to unroll loops on sequences whose length is known at compile-time (mostly `Tuple` and [`StaticArrays`](https://github.com/JuliaArrays/StaticArrays.jl)). This can significantly improve performance and type-stability. # The `@unroll` macro ```julia julia> using Unrolled julia> @unroll function my_sum(seq) # More on why we need @unroll twice later. total = zero(eltype(seq)) @unroll for x in seq total += x end return total end my_sum_unrolled_expansion_ (generic function with 1 method) julia> my_sum((1, 2, 3)) 6 ``` To see what code will be executed, ```julia # Tuples are unrolled julia> @code_unrolled my_sum((1,2,3)) quote total = zero(eltype(seq)) begin let x = seq[1] total += x end let x = seq[2] total += x end let x = seq[3] total += x end end return total end # But not vectors, since their length is not part of Vector{Int} julia> @code_unrolled my_sum([1,2,3]) quote total = zero(eltype(seq)) for x = seq total += x end return total end ``` All types for which `length` is implemented will be unrolled (this includes the fixed-size vectors from [StaticArrays.jl](https://github.com/JuliaArrays/StaticArrays.jl) and [FixedSizeArrays.jl](https://github.com/SimonDanisch/FixedSizeArrays.jl)) ## Usage `@unroll` works by generating (at compile-time) a separate function for each type combination. This is why we need (at least) two `@unroll`: - One in front of the `function` definition - One in front of each `for` loop to be unrolled `@unroll` can only unroll loops over the arguments of the function. For instance, this is an error: ```julia # Sum every number in seq except the last one @unroll function my_sum_but_last(seq) total = zero(eltype(seq)) @unroll for x in seq[1:end-1] # Bad! total += x end return total end ``` An easy work-around is to use a helper function ```julia @unroll function _do_sum(sub_seq) # helper for my_sum_but_last total = zero(eltype(sub_seq)) @unroll for x in sub_seq total += x end return total end # Sum every number in seq except the last one my_sum_but_last(seq) = _do_sum(seq[1:end-1]) my_sum_but_last((1,20,3)) # 21 ``` As a special case, `@unroll` also supports iteration over `1:some_argument` ```julia @unroll function foo(tup) @unroll for x in 1:length(tup) println(x) end end foo((:a, :b, :c)) > 1 > 2 > 3 ``` # Unrolled functions Unrolled.jl also provides the following unrolled functions, defined on `Tuple`s only. ``` unrolled_map, unrolled_reduce, unrolled_in, unrolled_any, unrolled_all, unrolled_foreach ``` and ``` unrolled_filter, unrolled_intersect, unrolled_union, unrolled_setdiff ``` The functions in this second group will only perform well when the computations can be performed entirely at compile-time (using the types). For example, `unrolled_filter(x->isa(x, Int), some_tuple)`. In this other example, `unrolled_filter` is compiled to a constant: ```julia using Unrolled, Base.Test @generated positive{N}(::Val{N}) = N > 0 @inferred unrolled_filter(positive, (Val{1}(), Val{3}(), Val{-1}(), Val{5}())) ``` # Note on `Val` In my experience, `Val` objects are more type-stable than `Val` types. Favor `Val{:x}()` over `Val{:x}`.
Unrolled
https://github.com/cstjean/Unrolled.jl.git
[ "MIT" ]
0.3.3
90ec6d3d0e421f2ae60250e9692346c0d0fa233e
code
2400
""" Least-squares spectral estimation toolbox. For help, see README.md at https://github.com/baggepinnen/LPVSpectral.jl and [Fredrik Bagge Carlson, Anders Robertsson, Rolf Johansson: "Linear Parameter-Varying Spectral Decomposition". In: 2017 American Control Conference 2017.] (http://lup.lub.lu.se/record/ac32368e-e199-44ff-b76a-36668ac7d595) Available at: http://lup.lub.lu.se/record/ac32368e-e199-44ff-b76a-36668ac7d595 This module provide the functions ``` ls_spectral tls_spectral ls_windowpsd ls_windowcsd ls_cohere ls_spectral_lpv ls_sparse_spectral_lpv ls_windowpsd_lpv basis_activation_func ``` and re-exports the following from DSP.jl ``` export periodogram, welch_pgram, Windows ``` Periodogram types and SpectralExt type can be plotted using `plot(x::SpectralExt)` """ module LPVSpectral using LinearAlgebra, Statistics, Printf using DSP, FFTW, StatsBase using RecipesBase """ LPV Spectral estimation result type. See `ls_spectral_lpv` for additional help. An object of this type can be plotted if `Plots.jl` is installed. Use regular Plots-syntax, with the additional attributes ``` normalization= :none / :sum / :max normdim = :freq / :v # Only applies if normalization= :sum or :max dims = 2 or 3 (default = 2) ``` Fields: ``` Y::AbstractVector X::AbstractVector V::AbstractVector w Nv λ coulomb::Bool normalize::Bool x # The estimated parameters Σ # Covariance of the estimated parameters ``` """ struct SpectralExt Y::AbstractVector X::AbstractVector V::AbstractVector w Nv λ coulomb::Bool normalize::Bool x Σ end include("utilities.jl") include("windows.jl") include("mel.jl") include("plotting.jl") include("lsfft.jl") include("autocov.jl") # Functions export ls_spectral, tls_spectral, ls_sparse_spectral, ls_windowpsd, ls_windowcsd, ls_cohere, ls_spectral_lpv, ls_sparse_spectral_lpv, ls_windowpsd_lpv, basis_activation_func, SpectralExt, psd, detrend, detrend!, autocov, autocor export melspectrogram, mfcc, mel # Re-export export Windows, Windows2, Windows3, mapwindows # ComplexNormal export ComplexNormal export cn_V2ΓC,cn_V2ΓC,cn_Vxx,cn_Vyy,cn_Vxy,cn_Vyx,cn_fVxx,cn_fVyy,cn_fVxy, cn_fVyx,cn_Vs,cn_V,cn_fV,Σ,pdf,affine_transform, rand using Requires function __init__() @require ProximalOperators = "a725b495-10eb-56fe-b38b-717eba820537" include("lasso.jl") end end # module
LPVSpectral
https://github.com/baggepinnen/LPVSpectral.jl.git
[ "MIT" ]
0.3.3
90ec6d3d0e421f2ae60250e9692346c0d0fa233e
code
7169
function autofun(f,t::AbstractVector,h::AbstractVector{<:Vector{T}},maxlag;kwargs...) where T<:Number res = map(zip(t,h)) do (t,h) f(t,h,maxlag;kwargs...) end Tau = getindex.(res,1) Y = getindex.(res,2) τ = reduce(vcat, Tau) y = reduce(vcat, Y) perm = @views sortperm(τ) return τ[perm],y[perm] end StatsBase.autocov(t::AbstractVector,h::AbstractVector{<:Vector{T}},maxlag;kwargs...) where T<:Number = autofun(autocov,t,h,maxlag;kwargs...) StatsBase.autocor(t::AbstractVector,h::AbstractVector{<:Vector{T}},maxlag;kwargs...) where T<:Number = autofun(autocor,t,h,maxlag;kwargs...) """ τ, acf = autocov(t::AbstractVector, y::AbstractVector{T}, maxlag; normalize=false) where T <: Number Calculate the autocovariance function for a signal `y` sampled at sample times `t`. This is useful if the signal is sampled non-equidistantly. If `y` and `t` are vectors of vectors, the acf for all data is estimated and concatenated in the output, which is always two vectors of numbers. The returned vectors are samples of the acf at lags `τ`. `τ` contains differences between entries in `t`, whereas `lags` supplied to the standard metohd of `autocov` are the differences between *indices* in `y` to compare. The result will in general be noisier that the stadard `autocov` and may require further estimation, e.g., by means of gaussian process regression or quantile regression. The following should hold `mean(acf[τ.==0]) ≈ var(y)`. #Arguments: - `t`: Vector of sample locations/times - `y`: signal - `maxlag`: Specifies the maximum difference between two values in `t` for which to calculate the ACF - `normalize`: If false (default) the behaviour mimics the standard method from StatsBase and the ACF decreases automatically for higher lags, even if the theoretical ACF does not. If `true`, the theoretical ACF is estimated. `normalize = true` leads to sharper spectral estimates when taking the fft of the ACF. Note that the variance in the estimated ACF will be high for large lags if `true`. """ function StatsBase.autocov(t::AbstractVector{tT},y::AbstractVector{T},maxlag::Number; normalize=false) where {T<:Number, tT<:Number} isequidistant(t) || return _autocov(t,y,maxlag;normalize=normalize) ly = length(y) length(t) == ly || throw(ArgumentError("t and y must be the same length")) acf = zeros(T, (ly^2+ly)÷2) τ = zeros(tT, (ly^2+ly)÷2) k = 1 @inbounds for i in eachindex(y) for j in 0:length(y)-1 i+j > ly && continue τi = abs(t[i+j]-t[i]) τi > maxlag && continue τ[k] = τi c = dot(y, 1:ly-j, y, 1+j:ly) / (ly-normalize*(j-1)) # the -1 is important, it corresponds to `corrected=true` for `var`. The variance increases for large lags and this becomes extra important close to lag=length(y)-1 acf[k] = c k += 1 end end perm = @views sortperm(τ[1:k-1]) if all(x->x==y[1], y) || var(y) < eps() return τ[perm], zeros(T,length(perm)) end return τ[perm],acf[perm] end """ τ, acf = autocor(t::AbstractVector, y::AbstractVector{T}, maxlag; normalize=false) where T <: Number Calculate the auto correlation function for a signal `y` sampled at sample times `t`. This is useful if the signal is sampled non-equidistantly. If `y` and `t` are vectors of vectors, the acf for all data is estimated and concatenated in the output, which is always two vectors of numbers. The returned vectors are samples of the acf at lags `τ`. `τ` contains differences between entries in `t`, whereas `lags` supplied to the standard metohd of `autocov` are the differences between *indices* in `y` to compare. The result will in general be noisier that the stadard `autocov` and may require further estimation, e.g., by means of gaussian process regression or quantile regression. The following should hold `mean(acf[τ.==0]) ≈ var(y)`. #Arguments: - `t`: Vector of sample locations/times - `y`: signal - `maxlag`: Specifies the maximum difference between two values in `t` for which to calculate the ACF - `normalize`: If false (default) the behaviour mimics the standard method from StatsBase and the ACF decreases automatically for higher lags, even if the theoretical ACF does not. If `true`, the theoretical ACF is estimated. `normalize = true` leads to sharper spectral estimates when taking the fft of the ACF. Note that the variance in the estimated ACF will be high for large lags if `true`. """ function StatsBase.autocor(t::AbstractVector{tT},y::AbstractVector{T},maxlag::Number; normalize=false) where {T<:Number, tT<:Number} isequidistant(t) || return _autocor(t,y,maxlag;normalize=normalize) ly = length(y) length(t) == ly || throw(ArgumentError("t and y must be the same length")) acf = zeros(T, (ly^2+ly)÷2) τ = zeros(tT, (ly^2+ly)÷2) k = 1 dd = dot(y,y) @inbounds for i in eachindex(y) for j in 0:length(y)-1 i+j > ly && continue τi = abs(t[i+j]-t[i]) τi > maxlag && continue τ[k] = τi c = dot(y, 1:ly-j, y, 1+j:ly) / (dd*(ly - normalize*(j-0))/ly) acf[k] = c k += 1 end end perm = @views sortperm(τ[1:k-1]) if dd < eps() return τ[perm], ones(T,length(perm)) end return τ[perm],acf[perm] end isequidistant(v::Union{<:UnitRange, <:StepRange, <:StepRangeLen}) = step(v) > 0 function isequidistant(v) d = v[2]-v[1] d > 0 || return false d = abs(d) for i in 3:length(v) abs(abs(v[i]-v[i-1])-d) < 20d*eps() || return false end true end function _autocov(t::AbstractVector{tT},y::AbstractVector{T},maxlag::Number; normalize=false) where {T<:Number, tT<:Number} ly = length(y) length(t) == ly || throw(ArgumentError("t and y must be the same length")) acf = zeros(T, (ly^2+ly)÷2) τ = zeros(tT, (ly^2+ly)÷2) k = 1 @inbounds for i in eachindex(y) for j in 0:length(y)-1 i+j > ly && continue τi = abs(t[i+j]-t[i]) τi > maxlag && continue τ[k] = τi c = y[i]*y[i+j] acf[k] = c k += 1 end end perm = @views sortperm(τ[1:k-1]) if all(x->x==y[1], y) || var(y) < eps() return τ[perm], zeros(T,length(perm)) end return τ[perm],acf[perm] end function _autocor(t::AbstractVector{tT},y::AbstractVector{T},maxlag::Number; normalize=false) where {T<:Number, tT<:Number} ly = length(y) length(t) == ly || throw(ArgumentError("t and y must be the same length")) acf = zeros(T, (ly^2+ly)÷2) τ = zeros(tT, (ly^2+ly)÷2) k = 1 dd = var(y) @inbounds for i in eachindex(y) for j in 0:length(y)-1 i+j > ly && continue τi = abs(t[i+j]-t[i]) τi > maxlag && continue τ[k] = τi c = y[i]*y[i+j]/dd acf[k] = c k += 1 end end perm = @views sortperm(τ[1:k-1]) if dd < eps() return τ[perm], ones(T,length(perm)) end zeroinds = τ .== 0 acf[zeroinds] .= 1 return τ[perm],acf[perm] end
LPVSpectral
https://github.com/baggepinnen/LPVSpectral.jl.git
[ "MIT" ]
0.3.3
90ec6d3d0e421f2ae60250e9692346c0d0fa233e
code
5658
using .ProximalOperators """ ls_sparse_spectral_lpv(Y,X,V,w,Nv::Int; λ = 1, coulomb = false, normalize=true) Perform LPV spectral estimation using the method presented in Bagge Carlson et al. "Linear Parameter-Varying Spectral Decomposition." modified to include a sparsity-promoting L1 group-lasso penalty on the coefficients. The groups are based on frequency, meaning a solution in which either all parameters For a particular frequency are zero, or all are non-zero. This is useful in the identification of frequency components among a large set of possible frequencies. See the paper or README For additional details. - `Y` output - `X` sample locations - `V` scheduling signal - `w` frequency vector - `Nv` number of basis functions - `λ` Regularization parameter - `coulomb` Assume discontinuity at `v=0` (useful For signals where, e.g., Coulomb friction might cause issues.)\n - `normalize` Use normalized basis functions (See paper For details). See `?ADMM` for keyword arguments to control the solver. See also `psd`, `ls_spectral_lpv` and `ls_windowpsd_lpv` """ function ls_sparse_spectral_lpv(y::AbstractVector{S}, X::AbstractVector{S}, V::AbstractVector{S}, w, Nv::Integer; λ = 1, coulomb = false, normalize = true, kwargs...) where S w = w[:] T = length(y) Nf = length(w) K = basis_activation_func(V,Nv,normalize,coulomb) M(w,X,V) = vec(vec(exp.(im.*w.*X))*K(V)')' As = zeros(complex(S),T,ifelse(coulomb,2,1)*Nf*Nv) for n = 1:T As[n,:] = M(w,X[n],V[n]) end x = zeros(S, 2size(As,2)) # Initialize with standard least squares inds = reshape(1:length(x), Nf, :)'[:] # Permute parameters so that groups are adjacent inds = vcat(inds...) # x = [real.(params); imag.(params)][inds] Φ = [real.(As) imag.(As)][:,inds] proxf = ProximalOperators.LeastSquares(Φ,y,iterative=true) gs = ntuple(f->NormL2(S(λ)), Nf) indsg = ntuple(f->((f-1)*2Nv+1:f*2Nv, ) ,Nf) proxg = SlicedSeparableSum(gs, indsg) local x, z try x,z = ADMM(x, proxf, proxg; kwargs...) catch e if e isa InterruptException @info "Aborting" z = copy(x) else rethrow(e) end end z = z[sortperm(inds)] # Sortperm is inverse of inds params = complex.(z[1:end÷2], z[end÷2+1:end]) SpectralExt(y, X, V, w, Nv, λ, coulomb, normalize, params, nothing) end """`x,f = ls_sparse_spectral(y,t,f=default_freqs(t), [window::AbstractVector]; λ=1, proxg = ProximalOperators.NormL1(λ), kwargs...)` perform spectral estimation using the least-squares method with (default) a L1-norm penalty on the Fourier coefficients, change kwarg `proxg` to e.g. `NormL0(λ)` for a different behavior or ` proxg = IndBallL0(4)` if the number of frequencies is known in advance. Promotes a sparse spectrum. See `?ADMM` for keyword arguments to control the solver. `y` is the signal to be analyzed `t` is the sampling points `f` is a vector of frequencies """ function ls_sparse_spectral(y::AbstractArray{T},t,f=default_freqs(t); init = false, λ = T(1), proxg = NormL1(λ), kwargs...) where T A,zerofreq = get_fourier_regressor(T.(t),T.(f)) params = init ? fourier_solve(A,y,zerofreq,λ) : fill(zero(T), length(f)) # Initialize with standard least squares if zerofreq === nothing x = [real.(params); imag.(params)] else x = [real.(params); imag.(params[2:end])] end proxf = ProximalOperators.LeastSquares(A,y, iterative=true) x,z = ADMM(x, proxf, proxg; kwargs...) params = fourier2complex(z, zerofreq) params, f end function ls_sparse_spectral(y::AbstractArray{T},t,f, W; init = false, λ = T(1), proxg = NormL1(T(λ)), kwargs...) where T A,zerofreq = get_fourier_regressor(t,f) params = init ? fourier_solve(A,y,zerofreq,λ) : fill(zero(T), length(f)) # Initialize with standard least squares if zerofreq === nothing x = [real.(params); imag.(params)] else x = [real.(params); imag.(params[2:end])] end Wd = Diagonal(W) Q = A'Wd*A q = A'Wd*y proxf = ProximalOperators.Quadratic(Q, q, iterative=true) # proxf = ProximalOperators.LeastSquares(A,Wd*y, iterative=true) x,z = ADMM(x, proxf, proxg; kwargs...) params = fourier2complex(z, zerofreq) params, f end """ ADMM(x,proxf,proxg; iters = 10000, # ADMM maximum number of iterations tol = 1e-5, # ADMM tolerance printerval = 100, # Print this often cb(x,z) = nothing, # Callback function μ = 0.05`) # ADMM tuning parameter. If results oscillate, lower this value. """ function ADMM(x::AbstractArray{T},proxf,proxg; iters = 10000, tol = 1e-5, printerval = 100, cb = nothing, μ = T(0.05)) where T @assert 0 ≤ μ ≤ 1 "μ should be ≤ 1" μ = T(μ) z = copy(x) u = zeros(T,size(x)) tmp = similar(u) for i = 1:iters tmp .= z.-u prox!(x, proxf, tmp, μ) tmp .= x .+ u prox!(z, proxg, tmp, μ) tmp .= x .- z u .+= tmp nxz = norm(tmp) if i % printerval == 0 @printf("%d ||x-z||₂ %.10f\n", i, nxz) if cb != nothing cb(x,z) end end if nxz < tol @printf("%d ||x-z||₂ %.10f\n", i, nxz) @info("||x-z||₂ ≤ tol") break end end x,z end
LPVSpectral
https://github.com/baggepinnen/LPVSpectral.jl.git
[ "MIT" ]
0.3.3
90ec6d3d0e421f2ae60250e9692346c0d0fa233e
code
9611
# default_freqs(t, nw=1) = LinRange(0,0.5/mean(diff(t))-1/length(t)/2,length(t)÷2÷nw) function default_freqs(n::Int,fs=1) f = FFTW.rfftfreq(n,fs) 0:f.multiplier:f[end] end default_freqs(t::AbstractVector,fs=1/mean(diff(t))) = default_freqs(length(t),fs) default_freqs(t::AbstractVector,n::Int) = default_freqs(t[1:n]) # function default_freqs(t, nw=1) # fs = 1/mean(diff(t)) # N = length(t) # l = N/2/nw # range(0,stop=0.5fs-1/N/2, length=floor(Int,l)) # end function check_freq(f) zerofreq = findfirst(iszero, f) zerofreq !== nothing && zerofreq != 1 && throw(ArgumentError("If zero frequency is included it must be the first frequency")) zerofreq end function get_fourier_regressor(t::AbstractArray{T},f::AbstractArray{T}) where T zerofreq = check_freq(f) N = length(t) Nf = length(f) Nreg = zerofreq === nothing ? 2Nf : 2Nf-1 # N >= Nreg || throw(ArgumentError("Too many frequency components $Nreg > $N")) A = zeros(T,N,Nreg) sinoffset = Nf π2 = T(2π) dd = 1/(sqrt(2*length(f))) # This is to give the spectrum the same power as using DSP.periodogram for fn=1:Nf if fn == zerofreq sinoffset = Nf-1 end @inbounds for n = 1:N phi = π2*f[fn]*t[n] A[n,fn] = cos(phi)*dd if fn != zerofreq A[n,fn+sinoffset] = -sin(phi)*dd end end end A, zerofreq end """`x,f = ls_spectral(y,t,f=(0:((length(y)-1)/2))/length(y); λ=0)` perform spectral estimation using the least-squares method `y` is the signal to be analyzed `t` is the sampling points `f` is a vector of frequencies The difference between `ls_spectral` and `rfft` is `abs.(rfft) = √(2π)abs.(x)` See also `ls_sparse_spectral` `tls_spectral` """ function ls_spectral(y,t,f=default_freqs(t); λ=1e-10, verbose=false) A, zerofreq = get_fourier_regressor(t,f) x = fourier_solve(A,y,zerofreq,λ) verbose && @info("Condition number: $(round(cond(A'A), digits=2))\n") x, f end """`x,f = ls_spectral(y,t,f,W::AbstractVector)` `W` is a vector of weights, same length as `y`, for weighted least-squares """ function ls_spectral(y,t,f,W::AbstractVector; verbose=false, λ=1e-10) A, zerofreq = get_fourier_regressor(t,f) Wd = Diagonal(W) x = (A'Wd*A + λ*I)\(A'Wd)*y verbose && @info("Condition number: $(round(cond(A'*Wd*A), digits=2))\n") fourier2complex(x,zerofreq), f end """`x,f = tls_spectral(y,t,f)` Perform total least-squares spectral estimation using the SVD-method. See `ls_spectral` for additional help """ function tls_spectral(y,t,f=default_freqs(t)[1:end-1]) zerofreq = check_freq(f) A, zerofreq = get_fourier_regressor(t,f) AA = [A y] # s = svd(AA, full=true) _,_,Vt = LAPACK.gesvd!('S','S',AA) n = size(A,2) V21 = Vt[n+1,1:n] V22 = Vt[n+1,n+1] x = -V21/V22 fourier2complex(x,zerofreq), f end """`S,f = ls_windowpsd(y,t,freqs; nw = 8, noverlap = -1, window_func=rect, estimator=ls_spectral, kwargs...)` perform widowed spectral estimation using the least-squares method. `window_func` defaults to `Windows.rect` `estimator` is the spectral estimatio function to use, default is `ls_spectral`. For sparse estimation, try `estimator = ls_sparse_spectral` See `ls_sparse_spectral` for more help. `kwargs` are passed to `estimator`. See `ls_spectral` for additional help. """ function ls_windowpsd(y,t,freqs=nothing; nw = 8, noverlap = -1, window_func=rect, estimator=ls_spectral, kwargs...) n = length(y)÷nw freqs === nothing && (freqs = default_freqs(t,n)) windows = Windows2(y,t,n,noverlap,window_func) nw = length(windows) S = zeros(eltype(y), length(freqs)) noverlap = windows.ys.noverlap poverlap = noverlap/n for (yi,ti) in windows x = estimator(yi,ti,freqs,windows.W; kwargs...)[1] S .+= abs2.(x) end # @show (1+poverlap),nw return S./nw^2, freqs end """`ls_windowcsd(y,u,t,freqs; nw = 10, noverlap = -1, window_func=rect, estimator=ls_spectral, kwargs...)` Perform windowed cross spectral density estimation using the least-squares method. `y` and `u` are the two signals to be analyzed and `t::AbstractVector` are their sampling points `window_func` defaults to `Windows.rect` `estimator` is the spectral estimatio function to use, default is `ls_spectral`. For sparse estimation, try `estimator = ls_sparse_spectral` See `ls_sparse_spectral` for more help. See `ls_spectral` for additional help. """ function ls_windowcsd(y,u,t,freqs=nothing; nw = 10, noverlap = -1, window_func=rect, estimator=ls_spectral, kwargs...) n = length(y)÷nw freqs === nothing && (freqs = default_freqs(t,n)) S = zeros(ComplexF64,length(freqs)) windowsy = Windows2(y,t,n,noverlap,window_func) windowsu = Windows2(u,t,n,noverlap,window_func) nw = length(windowsy) noverlap = windowsy.ys.noverlap poverlap = max(noverlap,1)/n for ((y,t), (u,_)) in zip(windowsy, windowsu) xy = estimator(y,t,freqs,windowsy.W; kwargs...)[1] xu = estimator(u,t,freqs,windowsu.W; kwargs...)[1] # Cross spectrum S += xy.*conj.(xu) end return S./nw, freqs end # function lscohere(y,u,t,freqs, nw = 10, noverlap = -1) # Syu = lswindowcsd(y,u,t,freqs, nw, noverlap) # Syy = lswindowpsd(y, t,freqs, nw, noverlap) # Suu = lswindowpsd(u, t,freqs, nw, noverlap) # Sch = (abs(Syu).^2)./(Suu.*Syy); # end """`ls_cohere(y,u,t,freqs; nw = 10, noverlap = -1, estimator=ls_spectral, kwargs...)` Perform spectral coherence estimation using the least-squares method. `estimator` is the spectral estimatio function to use, default is `ls_spectral`. For sparse estimation, try `estimator = ls_sparse_spectral` See `ls_sparse_spectral` for more help. See also `ls_windowcsd` and `ls_spectral` for additional help. """ function ls_cohere(y,u,t,freqs=nothing; nw = 10, noverlap = -1, estimator=ls_spectral, kwargs...) n = length(y)÷nw freqs === nothing && (freqs = default_freqs(t,n)) Syy = zeros(length(freqs)) Suu = zeros(length(freqs)) Syu = zeros(ComplexF64,length(freqs)) windows = Windows3(y,t,u,n,noverlap,hanning) for (y,t,u) in windows xy = estimator(y,t,freqs,windows.W; kwargs...)[1] xu = estimator(u,t,freqs,windows.W; kwargs...)[1] # Cross spectrum Syu .+= xy.*conj.(xu) Syy .+= abs2.(xy) Suu .+= abs2.(xu) end Sch = abs2.(Syu)./(Suu.*Syy) return Sch, freqs end @inline _K(V,vc,gamma) = exp.(-gamma*(V.-vc).^2) @inline function _K_norm(V,vc,gamma) r = _K(V,vc,gamma) r ./=sum(r) end @inline _Kcoulomb(V,vc,gamma) = _K(V,vc,gamma).*(sign.(V) .== sign.(vc)) @inline function _Kcoulomb_norm(V,vc,gamma) r = _Kcoulomb(V,vc,gamma) r ./=sum(r) end """psd(se::SpectralExt) Compute the power spectral density For a SpectralExt object See also `ls_windowpsd_lpv` """ function psd(se::SpectralExt) rp = LPVSpectral.reshape_params(copy(se.x),length(se.w)) return abs2.(sum(rp,dims=2)) end """ `ls_spectral_lpv(Y,X,V,w,Nv::Int; λ = 1e-8, coulomb = false, normalize=true)` Perform LPV spectral estimation using the method presented in Bagge Carlson et al. "Linear Parameter-Varying Spectral Decomposition." See the paper For additional details. `Y` output\n `X` sample locations\n `V` scheduling signal\n `w` frequency vector\n `Nv` number of basis functions\n `λ` Regularization parameter\n `coulomb` Assume discontinuity at `v=0` (useful for signals where, e.g., Coulomb friction might cause issues.)\n `normalize` Use normalized basis functions (See paper for details). The method will issue a warning If less than 90% of the variance in `Y` is described by the estimated model. If this is the case, try increasing either the number of frequencies or the number of basis functions per frequency. Alternatively, try lowering the regularization parameter `λ`. See also `psd`, `ls_sparse_spectral_lpv` and `ls_windowpsd_lpv` """ function ls_spectral_lpv(Y::AbstractVector,X::AbstractVector,V::AbstractVector,w,Nv::Integer; λ = 1e-8, coulomb = false, normalize=true) w = w[:] N = length(Y) Nf = length(w) K = basis_activation_func(V,Nv,normalize,coulomb) M(w,X,V) = vec(vec(exp.(im*w.*X))*K(V)')' A = zeros(ComplexF64,N, ifelse(coulomb,2,1)*Nf*Nv) for n = 1:N A[n,:] = M(w,X[n],V[n]) end params = real_complex_bs(A,Y,λ) real_params = [real.(params); imag.(params)] AA = [real.(A) imag.(A)] e = AA*real_params-Y Σ = var(e)*inv(AA'AA + λ*I) fva = 1-var(e)/var(Y) fva < 0.9 && @warn("Fraction of variance explained = $(fva)") SpectralExt(Y, X, V, w, Nv, λ, coulomb, normalize, params, Σ) end """ls_windowpsd_lpv(Y::AbstractVector,X::AbstractVector,V::AbstractVector,w,Nv::Integer, nw::Int=10, noverlap=0; kwargs...) Perform windowed psd estimation using the LPV method. A rectangular window is always used. See `?ls_spectral_lpv` for additional help. """ function ls_windowpsd_lpv(Y::AbstractVector,X::AbstractVector,V::AbstractVector,w,Nv::Integer, nw::Int=10, noverlap=0; kwargs...) S = zeros(length(w)) windows = Windows3(Y,X,V,length(Y)÷nw,noverlap,rect) # ones produces a rectangular window for (y,x,v) in windows x = ls_spectral_lpv(y,x,v,w,Nv; kwargs...) rp = reshape_params(x.x,length(w)) S += abs2.(sum(rp,dims=2)) end return S end
LPVSpectral
https://github.com/baggepinnen/LPVSpectral.jl.git
[ "MIT" ]
0.3.3
90ec6d3d0e421f2ae60250e9692346c0d0fa233e
code
4799
fft_frequencies(fs::Real, nfft::Int) = LinRange(0f0, fs / 2f0, (nfft >> 1) + 1) """ MelSpectrogram{T, F, Ti} <: DSP.Periodograms.TFR{T} # Arguments: - `power::Matrix{T}` - `mels::F` - `time::Ti` """ struct MelSpectrogram{T, F,Ti} <: DSP.Periodograms.TFR{T} power::Matrix{T} mels::F time::Ti end DSP.freq(tfr::MelSpectrogram) = tfr.mels Base.time(tfr::MelSpectrogram) = tfr.time """ MFCC{T, F, Ti} <: DSP.Periodograms.TFR{T} # Arguments: - `mfcc::Matrix{T}` - `number::F` - `time::Ti` """ struct MFCC{T, F, Ti} <: DSP.Periodograms.TFR{T} mfcc::Matrix{T} number::F time::Ti end DSP.freq(tfr::MFCC) = tfr.number Base.time(tfr::MFCC) = tfr.time function hz_to_mel(frequencies) f_min = 0f0 f_sp = 200f0 / 3 mels = collect((frequencies .- f_min) ./ f_sp) min_log_hz = 1000f0 min_log_mel = (min_log_hz .- f_min) ./ f_sp logstep = log(6.4f0) / 27f0 @inbounds for i = 1:length(mels) if frequencies[i] >= min_log_hz mels[i] = min_log_mel + log(frequencies[i] / min_log_hz) / logstep end end mels end function mel_to_hz(mels) f_min = 0f0 f_sp = 200f0 / 3 frequencies = collect(f_min .+ f_sp .* mels) min_log_hz = 1000f0 min_log_mel = (min_log_hz .- f_min) ./ f_sp logstep = log(6.4f0) / 27f0 @inbounds for i = 1:length(frequencies) if mels[i] >= min_log_mel frequencies[i] = min_log_hz * exp(logstep * (mels[i] - min_log_mel)) end end frequencies end function mel_frequencies(nmels::Int = 128, fmin::Real = 0.0f0, fmax::Real = 11025f0) min_mel = hz_to_mel(fmin)[1] max_mel = hz_to_mel(fmax)[1] mels = LinRange(min_mel, max_mel, nmels) mel_to_hz(mels) end """ M = mel(fs::Real, nfft::Int; nmels::Int = 128, fmin::Real = 0f0, fmax::Real = fs/2f0) Returns a Mel matrix `M` such that `M*f` is a mel spectrogram if `f` is a vector of spectrogram powers, e.g., ```julia M*abs2.(rfft(sound)) ``` """ function mel(fs::Real, nfft::Int; nmels::Int = 128, fmin::Real = 0f0, fmax::Real = fs/2f0) weights = zeros(Float32, nmels, (nfft >> 1) + 1) fftfreqs = fft_frequencies(fs, nfft) melfreqs = mel_frequencies(nmels + 2, fmin, fmax) enorm = 2f0 ./ (melfreqs[3:end] - melfreqs[1:nmels]) for i in 1:nmels lower = (fftfreqs .- melfreqs[i]) ./ (melfreqs[i+1] - melfreqs[i]) upper = (melfreqs[i+2] .- fftfreqs) ./ (melfreqs[i+2] - melfreqs[i+1]) weights[i, :] = max.(0, min.(lower, upper)) * enorm[i] end weights end """ melspectrogram(s, n=div(length(s), 8), args...; fs=1, nmels::Int=128, fmin::Real=0.0f0, fmax::Real=fs / 2.0f0, window=hanning, kwargs...) DOCSTRING #Arguments: - `s`: signal - `n`: number of points in each window - `args`: are sent to `spectrogram` - `fs`: sample frequency - `nmels`: number of mel frequencies - `fmin`: minimum freq - `fmax`: maximum freq - `window`: window function, defaults to hanning - `kwargs`: are sent to `spectrogram` """ function melspectrogram(S::DSP.Periodograms.Spectrogram; fs=1, nmels::Int = 128, fmin::Real = 0f0, fmax::Real = fs / 2f0) n = 2size(S.power,1)-1 data = mel(fs, n; nmels=nmels, fmin=fmin, fmax=fmax) * S.power nframes = size(data, 2) MelSpectrogram(data, LinRange(hz_to_mel(fmin)[1], hz_to_mel(fmax)[1], nmels), S.time) end function melspectrogram(s, n=div(length(s), 8), args...; fs=1, nmels::Int = 128, fmin::Real = 0f0, fmax::Real = fs / 2f0, window=hanning, kwargs...) S = DSP.spectrogram(s, n, args...; fs=fs, window=window, kwargs...) melspectrogram(S,fs=fs,nmels=nmels,fmin=fmin,fmax=fmax) end """ mfcc(s, args...; nmfcc::Int=20, nmels::Int=128, window=hanning, kwargs...) Compute the [Mel-frequency cepstral coefficients (MFCCs)](https://en.wikipedia.org/wiki/Mel-frequency_cepstrum) # Arguments: - `s`: signal - `args`: are sent to `spectrogram` - `nmfcc`: number of coeffs - `nmels`: number of mel frequencies - `window`: window function, defaults to hanning - `kwargs`: are sent to `spectrogram` """ function mfcc(s, args...; nmfcc::Int = 20, nmels::Int = 128, window=hanning, kwargs...) if nmfcc >= nmels error("number of mfcc components should be less than the number of mel frequency bins") end M = melspectrogram(s, args...; nmels=nmels, window=window, kwargs...) mfcc = dct_matrix(nmfcc, nmels) * power(M) for frame in 1:size(mfcc, 2) mfcc[:, frame] /= norm(mfcc[:, frame]) end MFCC(mfcc, 1:nmfcc, time(M)) end """returns the DCT filters""" function dct_matrix(nfilters::Int, ninput::Int) basis = Array{Float32}(undef, nfilters, ninput) samples = (1f0:2f0:2ninput) * π / 2ninput for i = 1:nfilters basis[i, :] = cos.(i * samples) end basis *= sqrt(2f0/ninput) basis end
LPVSpectral
https://github.com/baggepinnen/LPVSpectral.jl.git
[ "MIT" ]
0.3.3
90ec6d3d0e421f2ae60250e9692346c0d0fa233e
code
4861
function meshgrid(a,b) grid_a = [i for i in a, j in b] grid_b = [j for i in a, j in b] grid_a, grid_b end @recipe function plot_periodogram(p::DSP.Periodograms.TFR) title --> "Periodogram" yscale --> :log10 xguide --> "Frequency" p.freq, p.power end @recipe function plot_spectrogram(p::DSP.Periodograms.Spectrogram; compression=(0.005,1)) seriestype := :heatmap title --> "Spectrogram" yscale --> :log10 yguide --> "Frequency" xguide --> "Time [s]" p.time, p.freq[2:end], compress(log.(p.power)[2:end,:], compression) end @recipe function mel(h::MelSpectrogram; compression=(0.005,1)) seriestype := :heatmap xguide --> "Time [s]" yguide --> "Frequency [Hz]" # yticks --> yr # xticks --> xr title --> "Mel Spectrogram" yscale := :log10 freqs = (mel_to_hz(h.mels)[2:end]) h.time, freqs, compress(log.(h.power)[2:end,:], compression) end function compress(x, q) if q isa Number q = q < 0.5 ? q : 1-q q = (q, 1-q) else q = (min(q...), max(q...)) end th = quantile(vec(x),q) clamp.(x,th...) end # @userplot SchedFunc @recipe function plot_schedfunc(se::SpectralExt; normalization=:none, normdim=:freq, dims=2, bounds=true, nMC = 5_000, phase = false, mcmean=false) xi,V,X,w,Nv,coulomb,normalize = se.x,se.V,se.X,se.w,se.Nv,se.coulomb,se.normalize Nf = length(w) x = reshape_params(xi,Nf) ax = abs.(x) px = angle.(x) K = basis_activation_func(V,Nv,normalize,coulomb) fg,vg = meshgrid(w,LinRange(minimum(V),maximum(V),Nf == 100 ? 101 : 100)) # to guarantee that the broadcast below always works F = zeros(size(fg)) FB = zeros(size(fg)...,nMC) P = zeros(size(fg)) PB = zeros(size(fg)...,nMC) bounds = bounds && se.Σ != nothing if bounds cn = ComplexNormal(se.x,se.Σ) zi = LPVSpectral.rand(cn,nMC) # Draw several random parameters from the posterior distribution end for j = 1:size(fg,1) for i = 1:size(vg,2) ϕ = K(vg[j,i]) # Kernel activation vector F[j,i] = abs(dot(x[j,:],ϕ)) P[j,i] = angle(dot(x[j,:],ϕ)) if bounds for iMC = 1:nMC zii = zi[iMC,j:Nf:end][:] FB[j,i,iMC] = abs(dot(zii,ϕ)) if phase PB[j,i,iMC] = angle(dot(zii,ϕ)) end end end end end FB = sort(FB,dims=3) lim = 10 FBl = FB[:,:,nMC ÷ lim] FBu = FB[:,:,nMC - (nMC ÷ lim)] FBm = dropdims(mean(FB,dims=3),dims=3) PB = sort(PB,dims=3) PBl = PB[:,:,nMC ÷ lim] PBu = PB[:,:,nMC - (nMC ÷ lim)] PBm = dropdims(mean(PB,dims=3),dims=3) nd = normdim == :freq ? 1 : 2 normalizer = 1. if normalization == :sum normalizer = sum(F, dims=nd)/size(F,nd) elseif normalization == :max normalizer = maximum(F, dims=nd) end F = F./normalizer delete!(plotattributes, :normalization) delete!(plotattributes, :normdim) if dims == 3 delete!(plotattributes, :dims) yguide --> "\$v\$" xguide --> "\$\\omega\$" # zguide := "\$f(v)\$" for i = 1:Nf @series begin seriestype := path3d fg[i,:],vg[i,:],F[i,:] end end else for i = 1:Nf xguide --> "\$v\$" yguide --> "\$A(v)\$" title --> "Estimated functional dependece \$A(v)\$\n"# Normalization: $normalization, along dim $normdim")#, zlabel="\$f(v)\$") @series begin label --> "ω = $(round(fg[i,1]/pi,sigdigits=1))π" m = mcmean && bounds ? FBm[i,:] : F[i,:] if bounds # fillrange := FBu[i,:] ribbon := (-FBl[i,:] .+ m, FBu[i,:] .- m) end vg[i,:],m end end if phase for i = 1:Nf xguide --> "\$v\$" yguide --> "\$\\phi(v)\$" linestyle := :dashdot @series begin label --> "\$\\phi\$" fillalpha := 0.1 pi = P[i,:] if bounds ribbon := (-PBl[i,:] .+ pi, PBu[i,:] .- pi) end vg[i,:],pi end end end end delete!(plotattributes, :phase) delete!(plotattributes, :bounds) delete!(plotattributes, :nMC) delete!(plotattributes, :mcmean) nothing end @recipe function plot_spectralext(::Type{Val{:spectralext}}, x, y, z) xi,w = y.x, y.w title --> "Spectrum" Nf = length(w) x = reshape_params(xi,Nf) ax = abs2.(x) px = angle.(x) ax end
LPVSpectral
https://github.com/baggepinnen/LPVSpectral.jl.git
[ "MIT" ]
0.3.3
90ec6d3d0e421f2ae60250e9692346c0d0fa233e
code
5864
function detrend!(x::Vector, order=0, t = 1:length(x)) x[:] .-= mean(x) if order == 1 k = x\t x[:] .-= k*t end x end """detrend(x, order=0, t = 1:length(x)) Removes the trend of order `order`, i.e, mean and, if order=1, the slope of the signal `x` If `order` = 1, then the sampling points of `x` can be supplied as `t` (default: `t = 1:length(x)`) """ function detrend(x,args...) y = copy(x) detrend!(y,args...) end """basis_activation_func(V,Nv,normalize,coulomb) Returns a func ϕ(v) ∈ ℜ(Nv) that calculates the activation of `Nv` basis functions spread out to cover V nicely. If coulomb is true, then we get twice the number of basis functions, 2Nv """ function basis_activation_func(V,Nv,normalize,coulomb) if coulomb # If Coulomb setting is activated, double the number of basis functions and clip the activation at zero velocity (useful for data that exhibits a discontinuity at v=0, like coulomb friction) vc = range(0, stop=maximum(abs.(V)), length=Nv+2) vc = vc[2:end-1] vc = [-vc[end:-1:1]; vc] Nv = 2Nv gamma = Nv/(abs(vc[1]-vc[end])) K = normalize ? V -> _Kcoulomb_norm(V,vc,gamma) : V -> _Kcoulomb(V,vc,gamma) # Use coulomb basis function instead else vc = range(minimum(V), stop=maximum(V), length=Nv) gamma = Nv/(abs(vc[1]-vc[end])) K = normalize ? V -> _K_norm(V,vc,gamma) : V -> _K(V,vc,gamma) end end """`ridgereg(A,b,λ)` Accepts `λ` to solve the ridge regression problem using the formulation `[A;λI]\\[b;0]. λ should be given with the same dimension as the columns of A, i.e. if λ represents an inverse standard deviation, then 1/λ = σ, not 1/λ = σ²`""" function ridgereg(A,b,λ) n = size(A,2) [A; λ*I]\[b;zeros(n)] end """`real_complex_bs(A,b, λ=0)` Replaces the backslash operator For complex arguments. Expands the A-matrix into `[real(A) imag(A)]` and performs the computation using real arithmetics. Optionally accepts `λ` to solve the ridge regression problem using the formulation `[A;λI]\\[b;0]. λ should be given with the same dimension as the columns of A, i.e. if λ represents a standard deviation, then λ = σ, not λ = σ²` """ function real_complex_bs(A,b, λ=0) T,n = size(A) Ar = [real(A) imag(A)] xr = λ > 0 ? [Ar; λ*I]\[b;zeros(2n)] : Ar\b x = complex.(xr[1:n], xr[n+1:end]) end function fourier_solve(A,y,zerofreq,λ=0) n = size(A,2) x = λ > 0 ? svd([A; λ*I])\[y;zeros(n)] : svd(A)\y fourier2complex(x,zerofreq) end function fourier2complex(x,zerofreq) n = length(x)÷2 if zerofreq === nothing return complex.(x[1:n], x[n+1:end]) else x0 = x[zerofreq] x = deleteat!(copy(x), zerofreq) x = complex.(x[1:n], x[n+1:end]) insert!(x,zerofreq,x0) return x end end """ Returns params as a [nω × N] matrix""" reshape_params(x,Nf) = reshape(x, Nf,round(Int,length(x)/Nf)) ## Complex Normal import Base.rand mutable struct ComplexNormal{T<:Complex} m::AbstractVector{T} Γ::Cholesky C::Symmetric{T} end function ComplexNormal(X::AbstractVecOrMat,Y::AbstractVecOrMat) @assert size(X) == size(Y) mc = complex.(mean(X,dims=1)[:], mean(Y,dims=1)[:]) V = Symmetric(cov([X Y])) Γ,C = cn_V2ΓC(V) ComplexNormal(mc,Γ,C) end function ComplexNormal(X::AbstractVecOrMat{T}) where T<:Complex ComplexNormal(real.(X),imag.(X)) end function ComplexNormal(m::AbstractVector{T},V::AbstractMatrix{T}) where T<:Real n = Int(length(m)/2) mc = complex.(m[1:n], m[n+1:end]) Γ,C = cn_V2ΓC(V) ComplexNormal(mc,Γ,C) end function ComplexNormal(mc::AbstractVector{Tc},V::AbstractMatrix{Tr}) where {Tr<:Real, Tc<:Complex} Γ,C = cn_V2ΓC(V) ComplexNormal(mc,Γ,C) end function cn_V2ΓC(V::Symmetric{T}) where T<:Real n = size(V,1)÷2 Vxx = V[1:n,1:n] Vyy = V[n+1:end,n+1:end] Vxy = V[1:n,n+1:end] Vyx = V[n+1:end,1:n] Γ = cholesky(complex.(Vxx + Vyy, Vyx - Vxy)) C = Symmetric(complex.(Vxx - Vyy, Vyx + Vxy)) Γ,C end cn_V2ΓC(V::AbstractMatrix{T}) where {T<:Real} = cn_V2ΓC(Symmetric(V)) @inline cn_Vxx(Γ,C) = cholesky(real.(Matrix(Γ)+C)/2) @inline cn_Vyy(Γ,C) = cholesky(real.(Matrix(Γ)-C)/2) @inline cn_Vxy(Γ,C) = cholesky(imag.(-Matrix(Γ)+C)/2) @inline cn_Vyx(Γ,C) = cholesky(imag.(Matrix(Γ)+C)/2) @inline cn_fVxx(Γ,C) = real.(Matrix(Γ)+C)/2 @inline cn_fVyy(Γ,C) = real.(Matrix(Γ)-C)/2 @inline cn_fVxy(Γ,C) = imag.(-Matrix(Γ)+C)/2 @inline cn_fVyx(Γ,C) = imag.(Matrix(Γ)+C)/2 @inline cn_Vs(Γ,C) = cn_Vxx(Γ,C),cn_Vyy(Γ,C),cn_Vxy(Γ,C),cn_Vyx(Γ,C) @inline cn_fV(Γ,C) = [cn_fVxx(Γ,C) cn_fVxy(Γ,C); cn_fVyx(Γ,C) cn_fVyy(Γ,C)] @inline cn_V(Γ,C) = cholesky(Hermitian(cn_fV(Γ,C))) @inline Σ(cn::ComplexNormal) = Matrix(cn.Γ) # TODO: check this for f in [:cn_Vxx,:cn_Vyy,:cn_Vxy,:cn_Vyx,:cn_fVxx,:cn_fVyy,:cn_fVxy,:cn_fVyx,:cn_Vs,:cn_V,:cn_fV] @eval ($f)(cn::ComplexNormal) = ($f)(cn.Γ,cn.C) end """ `f(cn::ComplexNormal, z)` Probability density Function `f(z)` for a complex normal distribution. This can probably be more efficiently implemented """ function pdf(cn::ComplexNormal, z) k = length(cn.m) R = conj(cn.C)'*inv(cn.Γ) P = Matrix(cn.Γ)-R*cn.C # conj(Γ) = Γ for Γ::Cholesky cm = conj(cn.m) cz = conj(z) zmm = z-cn.m czmm = cz-cm ld = [czmm' zmm'] rd = [zmm; czmm] S = [Matrix(cn.Γ) cn.C;conj(cn.C) Matrix(cn.Γ)] # conj(Γ) = Γ for Γ::Cholesky 1/(π^k*sqrt(det(cn.Γ)*det(P))) * exp(-0.5* ld*(S\rd)) end affine_transform(cn::ComplexNormal, A,b) = ComplexNormal(A*cn.m+b, cholesky(Hermitian(A*Matrix(cn.Γ)*conj(A'))), Symmetric(A*cn.C*A')) function rand(cn::ComplexNormal,s::Integer) L = cn_V(cn).U m = [real(cn.m); imag(cn.m)] n = length(cn.m) z = (m' .+ randn(s,2n)*L) return complex.(z[:,1:n],z[:,n+1:end]) end
LPVSpectral
https://github.com/baggepinnen/LPVSpectral.jl.git
[ "MIT" ]
0.3.3
90ec6d3d0e421f2ae60250e9692346c0d0fa233e
code
3244
abstract type AbstractWindows end Base.length(w::AbstractWindows) = length(w.ys); Base.collect(W::AbstractWindows) = [copy.(w) for w in W] # Window2 ========================================================== struct Windows2 <: AbstractWindows y::AbstractVector t::AbstractVector ys ts W """ Windows2(y, t, n=length(y)÷8, noverlap=-1, window_func=rect) noverlap = -1 sets the noverlap to n/2 Iterating `w::Windows2` produces `(y,t)` of specified length. The window is *not* applied to the signal, instead the window array is available as `w.W`. # Arguments: - `y`: Signal - `t`: Time vector - `n`: Number of datapoints per window - `noverlap`: Overlap between windows - `window_func`: Function to create a vector of weights, e.g., `DSP.hanning, DSP.rect` etc. """ function Windows2(y::AbstractArray{T},t,n::Int=length(y)>>3, noverlap::Int=n>>1,window_func=rect) where T noverlap < 0 && (noverlap = n>>1) N = length(y) @assert N == length(t) "y and t has to be the same length" W = T.(window_func(n)) ys = arraysplit(y,n,noverlap) ts = arraysplit(t,n,noverlap) new(y,t,ys,ts,W) end end function Base.iterate(w::Windows2, state=1) state > length(w) && return nothing ((w.ys[state],w.ts[state]), state+1) end """ mapwindows(f, W::AbstractWindows) Apply a Function `f` over all windows represented by `W::Windows2`. `f` must take `(y,t)->ŷ` where `y` and `ŷ` have the same length. """ function mapwindows(f::Function, W::AbstractWindows) res = map(f,W) merge(res,W) end mapwindows(f::Function, args...) = mapwindows(f, Windows2(args...)) function Base.merge(yf::AbstractVector{<:AbstractVector},w::Windows2) ym = zeros(eltype(yf[1]), length(w.y)) counts = zeros(Int, length(w.y)) dpw = length(w.ys[1]) inds = 1:dpw for i in eachindex(w.ys) ym[inds] .+= yf[i] counts[inds] .+= 1 inds = inds .+ (dpw-w.ys.noverlap) inds = inds[1]:min(inds[end], length(ym)) end ym ./= max.(counts,1) end # Window3 ========================================================== """ Windows3(y, t, v, n=length(y)÷8, noverlap=-1, window_func=rect) noverlap = -1 sets the noverlap to n/2 #Arguments: - `y`: Signal - `t`: Time vector - `v`: Auxiliary vector - `n`: Number of datapoints per window - `noverlap`: Overlap between windows - `window_func`: Function to apply over window """ struct Windows3 <: AbstractWindows y::AbstractVector t::AbstractVector v::AbstractVector ys ts vs W function Windows3(y::AbstractVector,t::AbstractVector,v::AbstractVector,n::Int=length(y)>>3, noverlap::Int=n>>1,window_func::Function=rect) N = length(y) @assert N == length(t) == length(v) "y, t and v has to be the same length" noverlap < 0 && (noverlap = n>>1) W = window_func(n) ys = arraysplit(y,n,noverlap) ts = arraysplit(t,n,noverlap) vs = arraysplit(v,n,noverlap) new(y,t,v,ys,ts,vs,W) end end function Base.iterate(w::Windows3, state=1) state > length(w.ys) && return nothing ((w.ys[state],w.ts[state],w.vs[state]), state+1) end
LPVSpectral
https://github.com/baggepinnen/LPVSpectral.jl.git
[ "MIT" ]
0.3.3
90ec6d3d0e421f2ae60250e9692346c0d0fa233e
code
10071
using LPVSpectral using Test, LinearAlgebra, Statistics, Random, StatsBase, ProximalOperators using Plots, DSP Random.seed!(0) # write your own tests here function generate_signal(f,w,N, modphase=false) x = sort(10rand(N)) # Sample points v = range(0, stop=1, length=N) # Scheduling variable # generate output signal # phase_matrix dependence_matrix = Float64[f[(i-1)%length(f)+1].(v) for v in v, i in eachindex(w)] # N x nw frequency_matrix = [cos(w*x -0.5modphase*(dependence_matrix[i,j])) for (i,x) in enumerate(x), (j,w) in enumerate(w)] # N x nw y = sum(dependence_matrix.*frequency_matrix,dims=2)[:] # Sum over all frequencies y += 0.1randn(size(y)) y,v,x,frequency_matrix, dependence_matrix end @testset "LPVSpectral" begin @info "Testing LPVSpectral" @testset "Windows" begin @info "Testing Windows" y = 1:100 t = 1:100 W = Windows2(y,t,10,0) @test length(W) == 10 @test first(W) == (1:10,1:10) res = mapwindows(W) do (y,t) -y end @test res == -1:-1:-100 W = Windows2(y,t,10,1) @test length(W) == 11 cW = collect(W) @test cW[1] == (1:10,1:10) @test cW[2] == (10:19,10:19) res = mapwindows(W) do (y,t) -y end @test res == -1:-1:-100 y = 1:100 t = 1:100 W = Windows3(y,t,t,10,0) @test length(W) == 10 @test first(W) == (1:10,1:10,1:10) W = Windows3(y,t,t,10,1) @test length(W) == 11 cW = collect(W) @test cW[1] == (1:10,1:10,1:10) @test cW[2] == (10:19,10:19,10:19) end @testset "Mel" begin @info "Testing Mel" M = mel(1,256) @test size(M,1) == 128 @test size(M,2) == 256÷2+1 M = mel(1000,256, fmin=100) sum(M[:,1:26]) == 0 y = randn(1000) M = melspectrogram(y) @test length(freq(M)) == 128 @test size(M.power) == (128,14) @test length(time(M)) == 14 plot(M) M = mfcc(y) @test length(freq(M)) == 20 @test size(M.mfcc) == (20,14) @test length(time(M)) == 14 end @testset "LPV methods" begin @info "testing LPV methods" N = 500 # Number of training data points f = [v->2v^2, v->2/(5v+1), v->3exp(-10*(v-0.5)^2),] # Functional dependences on the scheduling variable w = 2pi*[2,10,20] # Frequency vector w_test = 2π*collect(2:2:25) Y,V,X,frequency_matrix, dependence_matrix = generate_signal(f,w,N,true) λ = 0.02 # Regularization parmater normal = true # Use normalized basis functions Nv = 50 # Number of basis functions se = ls_spectral_lpv(Y,X,V,w_test,Nv; λ = λ, normalize = normal) # Perform LPV spectral estimation @show plot(se, phase=true) windowpsd = ls_windowpsd_lpv(Y,X,V,w_test,Nv; λ = λ, normalize = normal) spectrum_lpv = psd(se) si = sortperm(spectrum_lpv[:],rev=true) @test Set(si[1:3]) == Set([1,5,10]) si = sortperm(windowpsd[:],rev=true) @test Set(si[1:3]) == Set([1,5,10]) end @testset "detrend" begin @info "testing detrend" tre = [1,2,3] @test detrend(tre) == [-1,0,1] @test tre == [1,2,3] # Shouldn't have changed detrend!(tre) @test tre == [-1,0,1] # Should have changed end ## Test ComplexNormal @testset "Complex Normal" begin @info "testing Complex Normal" n = 10 n2 = 5 a = randn(n) A = randn(n,n) A = A'A + I b = randn(n2) B = randn(n2,n2) B = B'B + I X = randn(n,n2) Y = randn(n,n2) cn = ComplexNormal(X,Y) @test size(cn.m) == (n2,) @test size(cn.Γ) == (n2,n2) @test size(cn.C) == (n2,n2) # affine_transform(cn, B, b) pdf(cn,b) pdf(cn,im*b) @test isa(cn_Vxx(A,A), Cholesky) @test isa(cn_fVxx(A,A), Matrix) @test issymmetric(cn_fVxx(A,A)) cn_V(A,0.1A) cn = ComplexNormal(a,A) cn = ComplexNormal(im*b,A) A = randn(4,4); A = A'A x = randn(1000,3) y = randn(1000,3) cn = ComplexNormal(x,y) z = rand(cn,1000000); cn2 = ComplexNormal(z) @test norm(Matrix(cn.Γ)-Matrix(cn2.Γ)) < 0.01 @test norm(Matrix(cn.C)-Matrix(cn2.C)) < 0.01 end @testset "ls methods" begin @info "testing ls methods" T = 100 t = 0:0.1:T-0.1 f = LPVSpectral.default_freqs(t) @test f[1] == 0 @test f[end] == 5 @test length(f) == 10T÷2+1 # f2 = LPVSpectral.default_freqs(t,10) # @test f2[1] == 0 # @test f2[end] == 0.5-1/length(t)/2 # @test length(f2) == T÷2÷10 @test LPVSpectral.check_freq(f) == 1 @test_throws ArgumentError LPVSpectral.check_freq([1,0,2]) A, z = LPVSpectral.get_fourier_regressor(t,f) @test size(A) == (10T,2length(f)-1) Base.isapprox(t1::Tuple{Float64,Int64}, t2::Tuple{Float64,Int64}; atol) = all(t -> isapprox(t[1],t[2],atol=atol), zip(t1,t2)) y = sin.(2pi .* t) x,freqs = ls_spectral(y,t) @test findmax(abs2.(x)) ≈ (2.0length(freqs), 101) atol=1e-4 W = ones(length(y)) x,_ = ls_spectral(y,t,f,W) @test findmax(abs2.(x)) ≈ (2.0length(freqs), 101) atol=1e-4 x,freqs = tls_spectral(y,t) @test findmax(abs2.(x)) ≈ (2.0length(freqs), 101) atol=1e-4 x,freqs = ls_windowpsd(y,t,noverlap=0) @test findmax(x)[2] == 13 x,freqs = ls_windowpsd(y,t,nw=16,noverlap=0) @test findmax(abs.(x))[2] == 7 x,freqs = ls_windowcsd(y,y,t,noverlap=0) @test findmax(abs.(x)) ≈ (2.0length(freqs), 11) atol=1e-4 x,_ = ls_cohere(y,y,t) @test all(x .== 1) x,freqs = ls_cohere(y,y .+ 0.5 .*randn.(),t,nw=8,noverlap=-1) @show mean(x) @test findmax(x) ≈ (1.0, 14) atol=0.15 @test mean(x) < 0.25 end @testset "plots" begin @info "testing plots" y = randn(1000) @show plot(periodogram(y)) @show plot(spectrogram(y)) @show plot(melspectrogram(y)) @show plot(periodogram(filtfilt(ones(4), [4], y))) @show plot(welch_pgram(y)) end @testset "Lasso" begin @info "Testing Lasso" include("test_lasso.jl") end @testset "autocov" begin @info "Testing autocov" y = repeat([1.,0.,-1.],100) τ,acf = autocov(1:length(y), y, Inf) acf0 = autocov(y, demean=false) acfh = [mean(acf[τ.==i]) for i = 0:length(acf0)-1] @test acfh ≈ acf0 rtol=0.01 @test norm(acfh - acf0) < 0.01 τ,acf = autocor(1:length(y), y, Inf) acf0 = autocor(y, demean=false) acfh = [mean(acf[τ.==i]) for i = 0:length(acf0)-1] @test acfh ≈ acf0 rtol=0.01 @test norm(acfh - acf0) < 0.1 y = randn(100) τ,acf = autocor(1:length(y), y, Inf) acf0 = autocor(y, demean=false) acfh = [mean(acf[τ.==i]) for i = 0:length(acf0)-1] @test acfh ≈ acf0 rtol=0.01 @test norm(acfh - acf0) < 0.1 y = randn(10) τ,acf = autocov(1:length(y), y, Inf) acf0 = autocov(y, demean=false) acfh = [mean(acf[τ.==i]) for i = 0:length(acf0)-1] @test acfh ≈ acf0 rtol=0.01 @test norm(acfh - acf0) < 0.2 y = randn(10) τ,acf = autocor(1:length(y), y, Inf) acf0 = autocor(y, demean=false) acfh = [mean(acf[τ.==i]) for i = 0:length(acf0)-1] @test acfh ≈ acf0 rtol=0.03 @test norm(acfh - acf0) < 0.2 y = [randn(10) for _ in 1:10] t = reshape(1.0:100,10,10) t = [t[:,i] for i in 1:size(t,2)] τ,acf = autocov(t, y, Inf) acf0 = mean(autocov.(y, demean=false)) acfh = [mean(acf[τ.==i]) for i = 0:length(acf0)-1] @test acfh ≈ acf0 rtol=0.01 @test norm(acfh - acf0) < 0.2 τ,acf = autocor(t, y, Inf) acf0 = mean(autocor.(y, demean=false)) acfh = [mean(acf[τ.==i]) for i = 0:length(acf0)-1] @test acfh ≈ acf0 rtol=0.01 @test norm(acfh - acf0) < 0.2 # See what happens if one series is contant y = zeros(10) τ,acf = autocor(1:10, y, Inf) @test all(acf .== 1) using LPVSpectral: _autocov, _autocor, isequidistant @test isequidistant(1:5) @test isequidistant(1:2:10) @test !isequidistant(reverse(1:2:10)) @test isequidistant(collect(1:5)) @test isequidistant(collect(1:2:10)) @test isequidistant(collect(1:0.33:10)) res = map(1:10) do _ t = 100rand(100) @test !isequidistant(t) t0 = 0:99 y = sin.(0.05 .* t) y0 = sin.(0.05 .* t0) τ0, acf0 = autocor(t0, y0, Inf, normalize=true) τ,acf = autocor(t, y, Inf) acff = filtfilt(ones(200),[200], acf) @test count(τ .== 0) == length(y) # plot(τ[1:10:end],acf[1:10:end]) # plot!(τ0[1:10:end],acf0[1:10:end]) # plot!(τ0[1:10:end],acff[1:10:end]) mean(abs2,acf0-acff) < 0.05 end @test mean(res) > 0.7 res = map(1:10) do _ t = 100rand(100) @test !isequidistant(t) t0 = 0:99 y = sin.(0.05 .* t) y0 = sin.(0.05 .* t0) τ0, acf0 = autocov(t0, y0, Inf, normalize=true) τ,acf = autocov(t, y, Inf) acff = filtfilt(ones(200),[200], acf) @test count(τ .== 0) == length(y) # plot(τ[1:10:end],acf[1:10:end]) # plot!(τ0[1:10:end],acf0[1:10:end]) # plot!(τ0[1:10:end],acff[1:10:end]) mean(abs2,acf0-acff) < 0.025 end @test mean(res) > 0.7 end end
LPVSpectral
https://github.com/baggepinnen/LPVSpectral.jl.git
[ "MIT" ]
0.3.3
90ec6d3d0e421f2ae60250e9692346c0d0fa233e
code
4329
using LPVSpectral, Plots, DSP, ProximalOperators @testset "lasso" begin function generate_signal(f,w,N, modphase=false) x = sort(10rand(N)) # Sample points v = range(0, stop=1, length=N) # Scheduling variable # generate output signal dependence_matrix = Float64[f[(i-1)%length(f)+1](v) for v in v, i in eachindex(w)] # N x nw frequency_matrix = [cos(w*x -0.5modphase*(dependence_matrix[i,j])) for (i,x) in enumerate(x), (j,w) in enumerate(w)] # N x nw y = sum(dependence_matrix.*frequency_matrix,dims=2)[:] # Sum over all frequencies y += 0.1randn(size(y)) y,v,x,frequency_matrix, dependence_matrix end N = 500 # Number of training data points f = [v->2v^2, v->2/(5v+1), v->3exp(-10*(v-0.5)^2),] # Functional dependences on the scheduling variable w = 2π*[2,10,20] # Frequency vector w_test = 2π*(2:2:25) # Test Frequency vector, set w_test = w For a nice Function visualization Y,V,X,frequency_matrix, dependence_matrix = generate_signal(f,w,N, true) λ = 0.02 # Regularization parameter λs = 5 # Regularization parameter group-lasso normal = true # Use normalized basis functions Nv = 50 # Number of basis functions zeronan(x) = ifelse(x==0, NaN, x) callback(x,z) = ()#plot(max.(abs2.([complex.(x[1:end÷2], x[end÷2+1:end]) complex.(z[1:end÷2], z[end÷2+1:end])]), 1e-20), reuse=true, show=true) ses = ls_sparse_spectral_lpv(Y,X,V,w_test,Nv; λ = λs, normalize = normal, tol=1e-8, printerval=100, iters=2000, cb=callback) # Perform LPV spectral estimation se = ls_spectral_lpv(Y,X,V,w_test,Nv; λ = 0.02, normalize = normal) xs = LPVSpectral.ls_sparse_spectral(Y,X,1:0.1:25; λ=20, tol=1e-9, printerval=100, iters=9000, μ=0.00001,cb=callback) # xsi = LPVSpectral.ls_sparse_spectral(Y,X,1:0.1:25; proxg=IndBallL0(6), λ=0.5, tol=1e-9, printerval=100, iters=9000, μ=0.0001,cb=callback) xsw = ls_windowpsd(Y,X,1:0.5:22; nw=2, estimator=ls_sparse_spectral, λ=0.2, tol=1e-10, printerval=10000, iters=60000, μ=0.0001) # plot(X,[Y V], linewidth=[1 2], lab=["\$y_t\$" "\$v_t\$"], xlabel=L"$x$ (sampling points)", title=L"Test signal $y_t$ and scheduling signal $v_t$", legend=true, xlims=(0,10), grid=false, c=[:cyan :blue]) plot(se; normalization=:none, dims=2, l=:solid, c = :orange, fillalpha=0.5, nMC = 100, fillcolor=:orange, linewidth=2, bounds=true, lab=reshape(["Est. \$\\omega = $(round(w/π))\\pi \$" for w in w_test],1,:), phase = false) plot!(ses; normalization=:none, dims=2, l=:solid, c = :green, linewidth=2, lab=reshape(["Est. \$\\omega = $(round(w/π))\\pi \$" for w in w_test],1,:), phase = false) plot!(V,dependence_matrix, title="Functional dependencies \$A(\\omega,v)\$", xlabel="\$v\$", ylabel="\$A(\\omega,v)\$", c = [:blue], l=:dot, linewidth=2,lab=reshape(["True \$\\omega = $(round(w/π))\\pi\$" for w in w],1,:), grid=false) ## Plot regular spectrum # spectrum_lpv = psd(se) # Calculate power spectral density # spectrum_lpvs = psd(ses) # Calculate sparse power spectral density # fs = N/(X[end]-X[1]) # This is the (approximate) sampling freqency of the generated signal # spectrum_per = DSP.periodogram(Y, fs=fs) # spectrum_welch = DSP.welch_pgram(Y, fs=fs) # plot(2π*collect(spectrum_per.freq), spectrum_per.power, lab="Periodogram", l=:path, m=:none, yscale=:log10, c=:cyan, legend=:bottomright) # plot!(2π*collect(spectrum_welch.freq), spectrum_welch.power, lab="Welch", l=:path, m=:none, yscale=:log10, linewidth=2, c=:blue) # plot!(2π*(1:0.1:25), zeronan.(abs2.(xs)), lab="sparse", l=:path, m=:none, yscale=:log10, linewidth=2, c=:magenta) # plot!(w_test,spectrum_lpv/fs, xlabel=L"\omega [rad/s]", ylabel="Spectral density", ylims=(-Inf,Inf), grid=false, lab="LPV", l=:scatter, m=:o, yscale=:log10, c=:orange) # plot!(w_test,zeronan.(spectrum_lpvs)./fs, lab="Sparse LPV", l=:scatter, m=:x, c=:green) # plot!(2π*(1:0.1:25), max.(abs2.(xsi), 1e-15), lab="sparse ind ball", l=:path, m=:none, yscale=:log10, linewidth=2, c=:yellow) # plot!(2π*(1:0.5:22), zeronan.(abs2.(xsw)), lab="sparse windowed", l=:path, m=:none, yscale=:log10, linewidth=2, c=:orange) # savetikz("/local/home/fredrikb/phdthesis/spectralest/figs/spectrum_gen2.tex") end
LPVSpectral
https://github.com/baggepinnen/LPVSpectral.jl.git
[ "MIT" ]
0.3.3
90ec6d3d0e421f2ae60250e9692346c0d0fa233e
docs
9553
# LPVSpectral [![CI](https://github.com/baggepinnen/LPVSpectral.jl/workflows/CI/badge.svg)](https://github.com/baggepinnen/LPVSpectral.jl/actions) [![codecov](https://codecov.io/gh/baggepinnen/LPVSpectral.jl/branch/master/graph/badge.svg)](https://codecov.io/gh/baggepinnen/LPVSpectral.jl) A toolbox for least-squares spectral estimation, sparse spectral estimation and Linear Parameter-Varying (LPV) spectral estimation. Contains an implementation of the spectral estimation method presented in [Bagge Carlson et al. "Linear Parameter-Varying Spectral Decomposition." 2017 American Control Conference.](http://lup.lub.lu.se/record/ac32368e-e199-44ff-b76a-36668ac7d595) ```bibtex @inproceedings{bagge2017spectral, title = {Linear Parameter-Varying Spectral Decomposition}, author = {Bagge Carlson, Fredrik and Robertsson, Anders and Johansson, Rolf}, booktitle = {2017 American Control Conference (ACC)}, year = {2017}, } ``` Extensions (sparse estimation methods) to the above article were developed in [Bagge Carlson, F.](https://www.control.lth.se/staff/fredrik-bagge-carlson/), ["Machine Learning and System Identification for Estimation in Physical Systems"](https://lup.lub.lu.se/search/publication/ffb8dc85-ce12-4f75-8f2b-0881e492f6c0) (PhD Thesis 2018). ```bibtex @thesis{bagge2018, title = {Machine Learning and System Identification for Estimation in Physical Systems}, author = {Bagge Carlson, Fredrik}, keyword = {Machine Learning,System Identification,Robotics,Spectral estimation,Calibration,State estimation}, month = {12}, type = {PhD Thesis}, number = {TFRT-1122}, institution = {Dept. Automatic Control, Lund University, Sweden}, year = {2018}, url = {https://lup.lub.lu.se/search/publication/ffb8dc85-ce12-4f75-8f2b-0881e492f6c0}, } ``` ## Installation `import Pkg; Pkg.add("LPVSpectral")` # List of functions This package provides tools for general least-squares spectral analysis, check out the functions ``` ls_spectral # Least-squares spectral analysis ls_sparse_spectral # Least-squares sparse (L0) spectral analysis (uses ADMM) tls_spectral # Total Least-squares spectral analysis ls_windowpsd # Windowed Least-squares spectral analysis (sparse estimates available, see kwarg `estimator`) ls_windowcsd # Windowed Least-squares cross-spectral density estimation (sparse estimates available, see kwarg `estimator`) ls_cohere # Least-squares cross coherence estimation (sparse estimates available, see kwarg `estimator`) ls_spectral_lpv # LPV spectral decomposition ls_sparse_spectral_lpv # LPV spectral decomposition with group-lasso penalty on frequencies (uses ADMM) ls_windowpsd_lpv # Windowed power spectral density estimation with LPV method mel # Compute Mel projection matrix melspectrogram # Standard Mel spectrogram mfcc # Mel cepstrum spectrogram ``` The functions that estimate sparse spectra require the user to manually import `using ProximalOperators`. All functions have docstrings available in the REPL. The general pattern is ```julia x,f = ls_XXX(y,t,f=default_freqs(t) [, W]; kwargs...) ``` where `x` are the complex Fourier coefficients and `f` are the frequency points. If no frequency vector is supplied, the default is to assume a sample time of 1 and use an equidistant grid from 0 to 0.5 of `length(t)÷2`. `W` is an optional weight vector of `length(y)` for weighted least-squares estimation. Some methods accept keyword arguments, these methods are `ls_windowpsd, ls_windowcsd, ls_cohere` and the keywords and their defaults are `nw = 10, noverlap = -1, window_func=rect, estimator=ls_spectral`. # Sparse spectral estimation We provide a number of ways to estimate spare spectra. These functions require the user to manually load `using ProximalOperators`. ## L₁ regularized spectral estimation Minimize ||y-Ax||₂² + λ||x||₁ where x are the Fourier coefficients. Promotes a sparse spectrum ```julia x = ls_sparse_spectral(y,t,ω; proxg=NormL1(λ), tol=1e-9, printerval=1000, iters=30000, μ=0.000001) ``` ## L₀ regularized spectral estimation Minimize ||y-Ax||₂² + λ||x||₀ where x are the Fourier coefficients. Promotes a sparse spectrum ```julia x = ls_sparse_spectral(y,t,ω; proxg=NormL0(λ), tol=1e-9, printerval=1000, iters=30000, μ=0.000001) ``` ## L₀ constrained spectral estimation Minimize ||y-Ax||₂² s.t. ||x||₀ ≦ r where x are the Fourier coefficients. Enforces an `r`-sparse spectrum ```julia x = ls_sparse_spectral(y,t,ω; proxg=IndBallL0(r), tol=1e-9, printerval=1000, iters=30000, μ=0.000001) ``` ## Sparse LPV spectral estimation See detailed example below and Bagge 2018. ```julia se = ls_sparse_spectral_lpv(Y,X,V,ω_test,Nv; λ = 0.1, normalize = normal, tol=1e-8, printerval=100, iters=6000) ``` # LPV spectral estimation We demonstrate the usage of the package with a simple example using simulated data, details can be found in the paper. ## Signal generation ```julia using LPVSpectral, Plots, LaTeXStrings, DSP """ `y,v,x = generate_signal(f,w,N)` `f` is a vector of functions `f(v)` that determine the functional dependence of the spectrum upon the velocity, one function for each frequency in `w` both the amplitude and the phase are determined from these functions `w` is a vector of frequencies for which to estimate the spectrum `y,v,x` are output signal, sample points and scheduling variable respectively """ function generate_signal(f,w,N, modphase=false) x = sort(10rand(N)) # Sample points v = range(0, stop=1, length=N) # Scheduling variable # generate output signal dependence_matrix = Float64[f[(i-1)%length(f)+1](v) for v in v, i in eachindex(w)] # N x nw frequency_matrix = [cos(w*x -0.5modphase*(dependence_matrix[i,j])) for (i,x) in enumerate(x), (j,w) in enumerate(w)] # N x nw y = sum(dependence_matrix.*frequency_matrix,dims=2)[:] # Sum over all frequencies y += 0.1randn(size(y)) y,v,x,frequency_matrix, dependence_matrix end N = 500 # Number of training data points f = [v->2v^2, v->2/(5v+1), v->3exp(-10*(v-0.5)^2),] # Functional dependences on the scheduling variable w = 2π.*[2,10,20] # Frequency vector w_test = 2π.*(2:2:25) # Test Frequency vector, set w_test = w for a nice function visualization Y,V,X,frequency_matrix, dependence_matrix = generate_signal(f,w,N, true) ``` ## Signal analysis We now make use of the spectral estimation method presented in the paper: ```julia # Options for spectral estimation λ = 0.02 # Regularization parameter λs = 1 # Regularization parameter group-lasso normal = true # Use normalized basis functions Nv = 50 # Number of basis functions se = ls_spectral_lpv(Y,X,V,w_test,Nv; λ = λ, normalize = normal) # Perform LPV spectral estimation ses = ls_sparse_spectral_lpv(Y,X,V,w_test,Nv; λ = λs, normalize = normal, tol=1e-8, printerval=100, iters=6000) # Same as above but with a group-lasso penalty on frequencies, promoting a solution with a sparse set of frequencies. Can be used to identify a sparse spectrum, i.e. to find w among w_test. ``` All that remains now is to visualize the result, along with the result of standard spectral estimation methods. ```julia plot(X,[Y V], linewidth=[1 2], lab=["\$y_t\$" "\$v_t\$"], xlabel=L"$x$ (sampling points)", title=L"Test signal $y_t$ and scheduling signal $v_t$", legend=true, xlims=(0,10), grid=false, c=[:cyan :blue]) plot(se; normalization=:none, dims=2, l=:solid, c = [:red :green :blue], fillalpha=0.5, nMC = 5000, fillcolor=[RGBA(1,.5,.5,.5) RGBA(.5,1,.5,.5) RGBA(.5,.5,1,.5)], linewidth=2, bounds=true, lab=reshape(["Est. \$\\omega = $(round(w/π))\\pi \$" for w in w_test],1,:), phase = false) plot!(V,dependence_matrix, title=L"Functional dependencies $A(\omega,v)$", xlabel=L"$v$", ylabel=L"$A(\omega,v)$", c = [:red :green :blue], l=:dot, linewidth=2,lab=reshape(["True \$\\omega = $(round(w/π))\\pi\$" for w in w],1,:), grid=false) # Plot regular spectrum spectrum_lpv = psd(se) # Calculate power spectral density spectrum_lpvs = psd(ses) # Calculate sparse power spectral density fs = N/(X[end]-X[1]) # This is the (approximate) sampling freqency of the generated signal spectrum_per = DSP.periodogram(Y, fs=fs) spectrum_welch = DSP.welch_pgram(Y, fs=fs) plot(2π*collect(spectrum_per.freq), spectrum_per.power, lab="Periodogram", l=:path, m=:none, yscale=:log10, c=:cyan) plot!(2π*collect(spectrum_welch.freq), spectrum_welch.power, lab="Welch", l=:path, m=:none, yscale=:log10, linewidth=2, c=:blue) plot!(w_test,spectrum_lpv/fs, xlabel=L"$\omega$ [rad/s]", ylabel="Spectral density", ylims=(-Inf,Inf), grid=false, lab="LPV", l=:scatter, m=:o, yscale=:log10, c=:orange) plot!(w_test,spectrum_lpvs/fs, lab="Sparse LPV", l=:scatter, m=:o, c=:green) ``` ![window](figs/gen_sig.png) ![window](figs/func_est.png) ![window](figs/spectrum.png) When the three frequencies in w have been identified, `w_test` can be replaced by `w` for a nicer plot. As indicated by the last figure, the sparse estimate using group-lasso is better at identifying the three frequency components present (with a small bias in the estimation of the true frequencies). # Plotting This package defines a recipe for plotting of periodogram types from `DSP.jl`. You can thus type ```julia using LPVSpectral, DSP, Plots plot(periodogram(y)) plot(welch_pgram(y)) plot(melspectrogram(y)) # melspectrogram, mel, mfcc are defined in this package ```
LPVSpectral
https://github.com/baggepinnen/LPVSpectral.jl.git
[ "MIT" ]
0.4.3
8a5633b506ea4406eb15de8d6a6416abd358c22a
code
2908
__precompile__() module DocSeeker export searchdocs using StringDistances, Hiccup, Requires using REPL: stripmd import Markdown # TODO: figure out how to get something useable out of `DocObj.sig` # TODO: figure out how to save `sig` and not kill serialization struct DocObj name::String mod::String typ::String # sig::Any text::String html::Markdown.MD path::String line::Int exported::Bool end function Base.hash(s::DocObj, h::UInt) hash(s.name, hash(s.mod, hash(s.typ, hash(s.text, hash(s.exported, hash(s.line, hash(s.path, hash(:DocObj, h)))))))) end function Base.:(==)(a::DocObj, b::DocObj) isequal(a.name, b.name) && isequal(a.mod, b.mod) && isequal(a.typ, b.typ) && isequal(a.text, b.text) && isequal(a.path, b.path) && isequal(a.line, b.line) && isequal(a.exported, b.exported) end # TODO: better string preprocessing. """ score(needle::AbstractString, s::DocObj, mod::String = "Main", name_only::Bool = false) -> Float Scores `s` against the search query `needle`. Returns a `Float` between 0 and 1. """ function score(needle::AbstractString, s::DocObj, mod::String = "Main", name_only::Bool = false) isempty(needle) && return mod == s.mod ? 1.0 : 0.0 score = 0.0 needles = split(needle, ' ') binding_score = length(needles) > 1 ? 0.0 : compare(needle, s.name, JaroWinkler()) c_binding_score = length(needles) > 1 ? 0.0 : compare(lowercase(needle), lowercase(s.name), JaroWinkler()) if name_only score = c_binding_score else docs_score = compare(lowercase(needle), lowercase(s.text), TokenSet(Jaro())) # bonus for exact case-insensitive binding match binding_weight = c_binding_score == 1.0 ? 0.95 : 0.7 score += binding_weight*c_binding_score + (1 - binding_weight)*docs_score end # penalty if cases don't match binding_score < c_binding_score && (score *= 0.98) # penalty if binding has no docs isempty(s.text) && (score *= 0.85) # penalty if binding isn't exported s.exported || (score *= 0.99) # penalty if module doesn't match mod ≠ "Main" && mod ≠ s.mod && (score *= 0.75) return score end # console rendering function Base.show(io::IO, d::DocObj) println(io, string(d.mod, '.', d.name, " @$(d.path):$(d.line)")) end function Base.show(io::IO, ::MIME"text/plain", d::DocObj) println(io, string(d.mod, '.', d.name, " @$(d.path):$(d.line)")) println(io) println(io, d.text) end include("introspective.jl") include("finddocs.jl") include("static.jl") include("documenter.jl") function __init()__ # improved rendering if used in Atom: @require Atom="c52e3926-4ff0-5f6e-af25-54175e0327b1" begin function Atom.render(i::Atom.Inline, d::DocObj) Atom.render(i, Atom.Tree(span(span(".syntax--support.syntax--function", d.name), span(" @ $(d.path):$(d.line)")), [Atom.render(i, Atom.renderMD(d.html))])) end end end end # module
DocSeeker
https://github.com/JunoLab/DocSeeker.jl.git
[ "MIT" ]
0.4.3
8a5633b506ea4406eb15de8d6a6416abd358c22a
code
623
using Serialization, Pkg, DocSeeker db_path(pkg, env) = joinpath(@__DIR__, "..", "db", string(pkg, "-", hash(env), ".db")) function create_db(pkg, env) sympkg = Symbol(pkg) db = db_path(pkg, env) cd(env) do open(db, "w+") do io if pkg == "Base" serialize(io, DocSeeker.alldocs(Base)) else mod = Main.eval(quote using $sympkg $sympkg end) serialize(io, DocSeeker.alldocs(mod)) end end end end pkg, env = ARGS Pkg.activate(env) create_db(pkg, env)
DocSeeker
https://github.com/JunoLab/DocSeeker.jl.git
[ "MIT" ]
0.4.3
8a5633b506ea4406eb15de8d6a6416abd358c22a
code
965
function load_documenter_docs(pkg) docs = docsdir(pkg) isempty(docs) && return [] getfiles(docs) end function getfiles(path, files = Tuple{String, String}[]) isdir(path) || return files for f in readdir(path) f = joinpath(path, f) if isfile(f) && split(f, '.')[end] == "md" push!(files, (f, read(f))) elseif isdir(f) getfiles(f, files) end end files end function searchfiles(needle, files::Vector{Tuple{String, String}}) scores = Float64[] for (path, content) in files push!(scores, compare(TokenSet(Jaro()), needle, content)) end p = sortperm(scores, rev=true)[1:min(20, length(scores))] scores[p], files[p] end searchfiles(needle, pkg::String) = searchfiles(load_documenter_docs(pkg)) function searchfiles(needle) files = Tuple{String, String}[] for pkg in readdir(Pkg.dir()) isdir(Pkg.dir(pkg)) || continue append!(files, load_documenter_docs(pkg)) end searchfiles(needle, files) end
DocSeeker
https://github.com/JunoLab/DocSeeker.jl.git
[ "MIT" ]
0.4.3
8a5633b506ea4406eb15de8d6a6416abd358c22a
code
3492
using URIParser jlhome() = ccall(:jl_get_julia_home, Any, ()) function basepath(files...) srcdir = joinpath(jlhome(), "..", "..") releasedir = joinpath(jlhome(), "..", "share", "julia") normpath(joinpath(isdir(srcdir) ? srcdir : releasedir, files...)) end function pkgrootpath(pkg) pkgpath = Base.find_package(pkg) # package not installed isfile(pkgpath) || return nothing return normpath(joinpath(dirname(pkgpath), "..")) end """ docsdir(pkg) -> String Find the directory conataining the documenatation for package `pkg`. Will fall back to returning a package's README.md. Returns an empty `String` if no indication of documentation is found. """ function docsdir(pkg) # sepcial case base lowercase(pkg) == "base" && return joinpath(basepath("doc"), "src") pkgpath = pkgrootpath(pkg) pkgpath === nothing && return "" # Documenter.jl default: docpath = joinpath(pkgpath, "docs", "src") isdir(docpath) && return docpath # other possibility: docpath = joinpath(pkgpath, "doc", "src") isdir(docpath) && return docpath # fallback to readme readmepath = joinpath(pkgpath, "README.md") return isfile(readmepath) ? readmepath : "" end function readmepath(pkg) (lowercase(pkg) == "base") && return "" pkgpath = pkgrootpath(pkg) # package not installed pkgpath === nothing && return "" joinpath(pkgpath, "README.md") end """ docsurl(pkg) -> String Return the most likely candidate for a package's online documentation or an empty string. """ docsurl(pkg) = baseURL(finddocsURL(pkg)) """ baseURL(links::Vector{Markdown.Link}) -> String Find the most common host and return the first URL in `links` with that host. """ function baseURL(links::Vector{Markdown.Link}) isempty(links) && return "" length(links) == 1 && return links[1].url # find most common host urls = map(x -> URI(x.url), links) hosts = String[url.host for url in urls] perm = sortperm([(host, count(x -> x == host, hosts)) for host in unique(hosts)], lt = (x,y) -> x[2] > y[2]) # TODO: better heuristic for choosing the right path links[perm[1]].url end """ finddocsURL(pkg) -> Vector{Markdown.Link} Search `pkg`s readme for links to documentation. """ function finddocsURL(pkg) lowercase(pkg) == "base" && return [Markdown.Link("", "https://docs.julialang.org")] pkgpath = pkgrootpath(pkg) doclinks = Markdown.Link[] pkgpath === nothing && return doclinks readmepath = joinpath(pkgpath, "README.md") isfile(readmepath) || return doclinks md = Markdown.parse(String(read(joinpath(pkgpath, "README.md")))) links = findlinks(md) isempty(links) && (links = findplainlinks(md)) for link in links if isdoclink(link) push!(doclinks, link) end end doclinks end function findplainlinks(md) text = Markdown.plain(md) [Markdown.Link(link, link) for link in matchall(r"(https?:\/\/[^\s]+)\b", text)] end function isdoclink(link::Markdown.Link) p = lowercase(Markdown.plaininline(link)) # TODO: could be a bit smarter about this contains(p, "docs") || contains(p, "documentation") || contains(p, "/stable") || contains(p, "/latest") end function findlinks(mdobj) doclinks = Markdown.Link[] for obj in mdobj.content findlinks(obj, doclinks) end doclinks end function findlinks(mdobj::Markdown.Paragraph, links) for obj in mdobj.content findlinks(obj, links) end end findlinks(mdobj, links) = nothing findlinks(mdobj::Markdown.Link, links) = push!(links, mdobj)
DocSeeker
https://github.com/JunoLab/DocSeeker.jl.git
[ "MIT" ]
0.4.3
8a5633b506ea4406eb15de8d6a6416abd358c22a
code
6325
mutable struct GlobalCache time::Float64 cache::Vector{DocObj} end const CACHE = GlobalCache(0.0, DocObj[]) CACHETIMEOUT = 30 # s MAX_RETURN_SIZE = 20 # how many results to return at most function searchdocs(needle::AbstractString; loaded::Bool = true, mod::Module = Main, maxreturns::Int = MAX_RETURN_SIZE, exportedonly::Bool = false, name_only::Bool = false) loaded ? dynamicsearch(needle, mod, exportedonly, maxreturns, name_only) : dynamicsearch(needle, mod, exportedonly, maxreturns, name_only, loaddocsdb()) end # TODO: # We may want something like `CodeTools.getmodule` here, so that we can accept `mod` as `String`: # - then we can correctly score bindings even in unloaded packages # - it would make `isdefined` checks below more robust -- currently it won't work when e.g. # we try to find `Atom.JunoDebugger.isdebugging` given `mod == Atom` function dynamicsearch(needle::AbstractString, mod::Module = Main, exportedonly::Bool = false, maxreturns::Int = MAX_RETURN_SIZE, name_only::Bool = false, docs::Vector{DocObj} = alldocs(mod)) isempty(docs) && return DocObj[] scores = zeros(size(docs)) modstr = string(mod) Threads.@threads for i in eachindex(docs) scores[i] = score(needle, docs[i], modstr, name_only) end perm = sortperm(scores, rev=true) out = [(scores[p], docs[p]) for p in perm] f = if exportedonly if mod == Main x -> x[2].exported else let mod = mod, modstr = modstr x -> begin # filters out unexported bindings x[2].exported && # filters bindings that can be reached from `mod` ( isdefined(mod, Symbol(x[2].mod)) || modstr == x[2].mod # needed since submodules are not defined in themselves ) end end end else if mod == Main x -> true else let mod = mod, modstr = modstr x -> begin # filters bindings that can be reached from `mod` isdefined(mod, Symbol(x[2].mod)) || modstr == x[2].mod # needed since submodules are not defined in themselves end end end end filter!(f, out) return out[1:min(length(out), maxreturns)] end function modulebindings(mod, exportedonly = false, binds = Dict{Module, Set{Symbol}}(), seenmods = Set{Module}()) # This does fairly stupid things, but whatever. Works for now. for mod in Base.loaded_modules_array() mod in seenmods && continue push!(seenmods, mod) modulebindings(mod, exportedonly, binds, seenmods) end for name in names(mod, all=!exportedonly, imported=!exportedonly) startswith(string(name), '#') && continue if isdefined(mod, name) && !Base.isdeprecated(mod, name) obj = getfield(mod, name) !haskey(binds, mod) && (binds[mod] = Set{Symbol}()) push!(binds[mod], name) if (obj isa Module) && !(obj in seenmods) push!(seenmods, obj) modulebindings(obj, exportedonly, binds, seenmods) end end end return binds end """ alldocs(topmod = Main) -> Vector{DocObj} Find all docstrings in all currently loaded Modules. """ function alldocs(topmod = Main)::Vector{DocObj} time() - CACHE.time < CACHETIMEOUT && return CACHE.cache results = DocObj[] # all bindings modbinds = modulebindings(topmod, false) # exported bindings only exported = modulebindings(topmod, true) # loop over all loaded modules for mod in keys(modbinds) parentmod = parentmodule(mod) meta = Docs.meta(mod) # loop over all names handled by the docsystem for b in keys(meta) # kick everything out that is handled by the docsystem haskey(modbinds, mod) && delete!(modbinds[mod], b.var) haskey(exported, mod) && delete!(exported[mod], b.var) expb = (haskey(exported, mod) && (b.var in exported[mod])) || (haskey(exported, parentmod) && (b.var in exported[parentmod])) multidoc = meta[b] for sig in multidoc.order d = multidoc.docs[sig] md = Markdown.parse(join(d.text, ' ')) text = stripmd(md) path = d.data[:path] == nothing ? "<unknown>" : d.data[:path] dobj = DocObj(string(b.var), string(b.mod), string(determinetype(b.mod, b.var)), # sig, text, md, path, d.data[:linenumber], expb) push!(results, dobj) end end # resolve everything that is not caught by the docsystem for name in modbinds[mod] b = Docs.Binding(mod, name) # figure out how to do this properly... expb = (haskey(exported, mod) && (name in exported[mod])) || (haskey(exported, parentmod) && (name in exported[parentmod])) if isdefined(mod, name) && !Base.isdeprecated(mod, name) && name != :Vararg # HACK: For now we don't need this -> free 50% speedup. # bind = getfield(mod, name) # meths = methods(bind) # if !isempty(meths) # for m in meths # dobj = DocObj(string(name), string(mod), string(determinetype(mod, name)), # "", Hiccup.div(), m.file, m.line, expb) # push!(results, dobj) # end # else # dobj = DocObj(string(name), string(mod), string(determinetype(mod, name)), # "", Markdown.parse(""), "<unknown>", 0, expb) # push!(results, dobj) # end dobj = DocObj(string(name), string(mod), string(determinetype(mod, name)), "", Markdown.parse(""), "<unknown>", 0, expb) push!(results, dobj) end end end append!(results, keywords()) results = unique(results) # update cache CACHE.time = time() CACHE.cache = results return results end function keywords() out = DocObj[] for k in keys(Docs.keywords) d = Docs.keywords[k] md = Markdown.parse(join(d.text, ' ')) text = stripmd(md) dobj = DocObj(string(k), "Base", "Keyword", text, md, "", 0, true) push!(out, dobj) end return out end function determinetype(mod, var) (isdefined(mod, var) && !Base.isdeprecated(mod, var)) || return "" b = getfield(mod, var) b isa Function && return "Function" b isa UnionAll && return "DataType" string(typeof(b)) end
DocSeeker
https://github.com/JunoLab/DocSeeker.jl.git
[ "MIT" ]
0.4.3
8a5633b506ea4406eb15de8d6a6416abd358c22a
code
2439
using Pkg using Base.Iterators: flatten using Serialization: serialize, deserialize include("utils.jl") const PROGRESS_ID = "docseeker_progress" DOCDBCACHE = DocObj[] function _createdocsdb() @info "Docs" progress=0 _id=PROGRESS_ID PKGSDONE[] = 0 try pkgs = if isdefined(Pkg, :dependencies) getfield.(values(Pkg.dependencies()), :name) else collect(keys(Pkg.installed())) end pushfirst!(pkgs, "Base") ondone = (i, el) -> progress_callback(i, el, pkgs) run_queued(docdb_wrapper, pkgs, ondone = ondone) catch err @error err finally @info "" progress=1 _id=PROGRESS_ID end end const PKGSDONE = Ref(0) function progress_callback(i, el, pkgs) total = length(pkgs) PKGSDONE[] += 1 @info "Docs: $el ($(PKGSDONE[])/$total)" progress=PKGSDONE[]/total _id=PROGRESS_ID end function docdb_wrapper(pkg) workerfile = joinpath(@__DIR__, "create_db.jl") env = dirname(Base.active_project()) cmd = `$(first(Base.julia_cmd())) --compiled-modules=no -O0 $workerfile $pkg $env` logfile = joinpath(@__DIR__, "..", "db", string(pkg, "-", hash(env), ".log")) return cmd, Dict(:log=>logfile) end """ createdocsdb() Asynchronously create a "database" of all local docstrings in [`Pkg.installed()`](@ref). This is done by loading all packages and using introspection to retrieve the docstrings -- the obvious limitation is that only packages that actually load without errors are considered. """ function createdocsdb() dbdir = joinpath(@__DIR__, "..", "db") for file in readdir(dbdir) if endswith(file, ".db") || endswith(file, ".log") rm(joinpath(dbdir, file)) end end @async _createdocsdb() nothing end """ loaddocsdb() -> Vector{DocObj} Retrieve the docstrings from the "database" created by [`createdocsdb()`](@ref). Will return an empty vector if the database is locked by [`createdocsdb()`](@ref). """ function loaddocsdb() global DOCDBCACHE isempty(DOCDBCACHE) && (DOCDBCACHE = _loaddocsdb()) length(DOCDBCACHE) == 0 && throw(ErrorException("Please regenerate the doc cache by calling `DocSeeker.createdocsdb()`.")) DOCDBCACHE end function _loaddocsdb() dbdir = joinpath(@__DIR__, "..", "db") docs = DocObj[] for file in readdir(dbdir) endswith(file, ".db") || continue try append!(docs, deserialize(joinpath(dbdir, file))) catch err # @error err, file end end unique!(docs) return docs end
DocSeeker
https://github.com/JunoLab/DocSeeker.jl.git
[ "MIT" ]
0.4.3
8a5633b506ea4406eb15de8d6a6416abd358c22a
code
3358
function run_with_timeout( command; log=stdout, timeout = 10*60, name = "", wait_time = 1, verbose = true, kill_timeout = 60, ondone=identity ) out_io = IOBuffer() err_io = IOBuffer() out_file, err_file = "", "" if VERSION < v"1.1" out_file, out_io = mktemp() err_file, err_io = mktemp() end pipe = pipeline(command, stdout = out_io, stderr = err_io) process = run(pipe, wait = false) if VERSION < v"1.1" out_io = open(out_file) err_io = open(err_file) end timeout_start = time() task = @async begin logfallback = false io = try log isa String ? open(log, "w") : log catch err @error "Error opening logfile, falling back to stdout" error=err logfallback = true stdout end try tstart = time() verbose && @info("starting $name") while process_running(process) elapsed = (time() - timeout_start) if elapsed > timeout verbose && @info("Terminating $name") kill(process) # Handle scenarios where SIGTERM is blocked/ignored/handled by the process start_time = time() while process_running(process) if time() - start_time > kill_timeout verbose && @info("Killing $name") kill(process, signum = SIGKILL) end sleep(5) end break end errstr, outstr = readstr_buffer.((out_io, err_io)) is_silent = length(errstr) == 0 && length(outstr) == 0 isempty(outstr) || println(io, outstr) isempty(errstr) || println(io, errstr) # if something printed reset timeout if !is_silent timeout_start = time() end sleep(wait_time) end ondone() verbose && @info("$name completed in $(round(time() - tstart, digits=1)) seconds") catch err @error "Error while running $(name) with timeout." error=err finally errstr, outstr = readstr_buffer.((out_io, err_io)) isempty(outstr) || println(io, outstr) isempty(errstr) || println(io, errstr) flush(io) if log isa String && !logfallback close(io) end end end return process, task end function run_queued(f, arr; sleeptime = 1, processes = 3, ondone=identity) process_queue = [] for (i, el) in enumerate(arr) while length(process_queue) >= processes filter!(process_running, process_queue) sleep(sleeptime) end args = f(el) process, task = run_with_timeout(first(args); args[2]..., name=el, ondone = () -> ondone(i, el), verbose=false) push!(process_queue, process) end for proc in process_queue wait(proc) end end function readstr_buffer(x::IOStream) return read(x, String) end function readstr_buffer(x::Base.GenericIOBuffer{Array{UInt8,1}}) return String(take!(x)) end
DocSeeker
https://github.com/JunoLab/DocSeeker.jl.git
[ "MIT" ]
0.4.3
8a5633b506ea4406eb15de8d6a6416abd358c22a
code
775
import DocSeeker: dynamicsearch function firstN(matches, desired, N = 3) binds = map(x -> x[2].name, matches[1:N]) for d in desired if !(d in binds) return false end end return true end @testset "dynamicsearch" begin @test firstN(dynamicsearch("sine"), ["sin", "sind", "asin"], 20) @test firstN(dynamicsearch("regular expression"), ["match", "eachmatch", "replace"], 20) @test dynamicsearch("Real")[1][2].name == "Real" @test length(dynamicsearch("Real")[1][2].text) > 0 @test dynamicsearch("regex")[1][2].name == "Regex" let downloadsearch = dynamicsearch("download") dfound = 0 for d in downloadsearch if d[2].name == "download" && d[2].mod == "Base" dfound += 1 end end @test dfound == 1 end end
DocSeeker
https://github.com/JunoLab/DocSeeker.jl.git
[ "MIT" ]
0.4.3
8a5633b506ea4406eb15de8d6a6416abd358c22a
code
327
import DocSeeker: baseURL, finddocsURL, readmepath @testset "finddocs" begin @testset "finddocsURL" begin @test baseURL(finddocsURL("base")) == "https://docs.julialang.org" end @testset "readmepath" begin @test readmepath("DocSeeker") == abspath(joinpath(@__DIR__, "..", "README.md")) end end
DocSeeker
https://github.com/JunoLab/DocSeeker.jl.git
[ "MIT" ]
0.4.3
8a5633b506ea4406eb15de8d6a6416abd358c22a
code
79
using DocSeeker using Test include("dynamicsearch.jl") include("finddocs.jl")
DocSeeker
https://github.com/JunoLab/DocSeeker.jl.git
[ "MIT" ]
0.4.3
8a5633b506ea4406eb15de8d6a6416abd358c22a
docs
1715
# DocSeeker [![Build Status](https://travis-ci.org/JunoLab/DocSeeker.jl.svg?branch=master)](https://travis-ci.org/JunoLab/DocSeeker.jl) DocSeeker.jl provides utilities for handling documentation in local (so far) packages. ### Usage The main entry point is `searchdocs(needle::AbstractString)`: ```julia searchdocs("sin") ``` will return a vector of tuples of scores and their corresponding match. Scores are numbers between 0 and 1, and represent the quality of a given match. Matches are `DocObj`, which accumulate lots of metadata about a binding (e.g. name, type, location etc.). `searchdocs` takes three keyword arguments: - `loaded::Bool = true` will search only packages in the current session, while `loaded = false` will search in *all* locally installed packages (actually only those in `Pkg.installed()`). Requires a call to `DocSeeker.createdocsdb()` beforehand. - `mod::Module = Main` will filter out bindings that can't be reached from the given module -- by default every loaded package will be searched. - `maxreturns::Int = DocSeeker.MAX_RETURN_SIZE = 20` will specify the maximum number of the results - `exportedonly::Bool = false` will search all names a module has, while `exportedonly = true` only takes exported names into consideration. - `name_only::Bool = false` will respect equalities between `needle` and both a binding's name and its doc text, while `name_only = true` only respects a equality to a binding's name. Re-generation of the cache that powers the search in all installed packages can be triggered via `DocSeeker.createdocsdb()` (async, so no worries about killing you julia session). For now, there is *no* automatic re-generation, though that'll be implemented soon.
DocSeeker
https://github.com/JunoLab/DocSeeker.jl.git
[ "MIT" ]
1.0.0
eacd96906188a977d9cd4b00c48552cdd46e5f47
code
2384
module CancellationTokens export CancellationTokenSource, get_token, is_cancellation_requested, cancel, OperationCanceledException include("event.jl") @enum CancellationTokenSourceStates NotCanceledState=1 NotifyingState=2 NotifyingCompleteState=3 mutable struct CancellationTokenSource _state::CancellationTokenSourceStates _timer::Union{Nothing,Timer} _kernel_event::Union{Nothing,Event} # TODO Event is Julia > 1.1, make it work on 1.0 function CancellationTokenSource() return new(NotCanceledState, nothing, nothing) end end function CancellationTokenSource(timespan_in_seconds::Real) x = CancellationTokenSource() x._timer = Timer(timespan_in_seconds) do _ _internal_notify(x) end return x end function _internal_notify(x::CancellationTokenSource) if x._state==NotCanceledState x._state = NotifyingState if x._timer!==nothing close(x._timer) x._timer = nothing end if x._kernel_event!==nothing notify(x._kernel_event) x._kernel_event = nothing end x._state = NotifyingCompleteState end end function cancel(x::CancellationTokenSource) _internal_notify(x) return end is_cancellation_requested(x::CancellationTokenSource) = x._state > NotCanceledState function _waithandle(x::CancellationTokenSource) if x._kernel_event===nothing x._kernel_event = Event() end return x._kernel_event end # CancellationToken struct CancellationToken _source::CancellationTokenSource end get_token(x::CancellationTokenSource) = CancellationToken(x) is_cancellation_requested(x::CancellationToken) = is_cancellation_requested(x._source) _waithandle(x::CancellationToken) = _waithandle(x._source) function Base.wait(x::CancellationToken) if is_cancellation_requested(x) return else wait(_waithandle(x)) end end # OperationCanceledException struct OperationCanceledException <: Exception _token::CancellationToken end get_token(x::OperationCanceledException) = x._token function CancellationTokenSource(tokens::CancellationToken...) x = CancellationTokenSource() for t in tokens @async begin wait(t) _internal_notify(x) end end return x end include("augment_base.jl") end # module
CancellationTokens
https://github.com/davidanthoff/CancellationTokens.jl.git
[ "MIT" ]
1.0.0
eacd96906188a977d9cd4b00c48552cdd46e5f47
code
571
function Base.sleep(sec::Real, token::CancellationToken) # Create a cancel source with a timeout timer_src = CancellationTokenSource(sec) timer_token = get_token(timer_src) # Create a cancel source that cancels either if the timeout source cancels, # or when the passed token cancels combined = CancellationTokenSource(timer_token, token) # Wait for the combined source to cancel wait(get_token(combined)) if is_cancellation_requested(timer_src) return else throw(OperationCanceledException(token)) end end
CancellationTokens
https://github.com/davidanthoff/CancellationTokens.jl.git
[ "MIT" ]
1.0.0
eacd96906188a977d9cd4b00c48552cdd46e5f47
code
1016
@static if VERSION < v"1.1" mutable struct Event lock::Base.Threads.Mutex q::Vector{Task} set::Bool # TODO: use a Condition with its paired lock Event() = new(Base.Threads.Mutex(), Task[], false) end function Base.wait(e::Event) e.set && return lock(e.lock) while !e.set ct = current_task() push!(e.q, ct) unlock(e.lock) try wait() catch filter!(x->x!==ct, e.q) rethrow() end lock(e.lock) end unlock(e.lock) return nothing end function Base.notify(e::Event) lock(e.lock) if !e.set e.set = true for t in e.q schedule(t) end empty!(e.q) end unlock(e.lock) return nothing end elseif VERSION < v"1.2" using Base.Threads: Event else using Base: Event end
CancellationTokens
https://github.com/davidanthoff/CancellationTokens.jl.git
[ "MIT" ]
1.0.0
eacd96906188a977d9cd4b00c48552cdd46e5f47
code
741
using Test: get_test_counts using CancellationTokens using Test @testset "CancellationTokens" begin src = CancellationTokenSource() cancel(src) wait(get_token(src)) src = CancellationTokenSource() @async begin sleep(0.1) cancel(src) end wait(get_token(src)) src = CancellationTokenSource(0.1) wait(get_token(src)) src = CancellationTokenSource() @async begin sleep(0.1) cancel(src) end wait(get_token(src)) src = CancellationTokenSource() sleep(0.1, get_token(src)) src = CancellationTokenSource() @async begin sleep(0.1) cancel(src) end @test_throws OperationCanceledException sleep(20.0, get_token(src)) end
CancellationTokens
https://github.com/davidanthoff/CancellationTokens.jl.git
[ "MIT" ]
1.0.0
eacd96906188a977d9cd4b00c48552cdd46e5f47
docs
383
# CancellationTokens A Julia implementation of .Net's Cancellation Framework. See [here](https://devblogs.microsoft.com/pfxteam/net-4-cancellation-framework/) and [here](https://docs.microsoft.com/en-us/dotnet/standard/threading/cancellation-in-managed-threads) for details. The package is currently _not_ thread safe, so it should only be used with single threaded tasks for now.
CancellationTokens
https://github.com/davidanthoff/CancellationTokens.jl.git
[ "MIT" ]
1.0.0
ffa3df6df789a731b70a237846f283802218333e
code
610
__precompile__() module InvariantCausal using Printf using LinearAlgebra import Statistics: var, cov, quantile, mean, median export causalSearch, screen_lasso, screen_HOLP, two_sample_chow, sukhatme_fisher_test, conditional_inv_test_chow, conditional_inv_test_logistic, GaussianSEM, simulate, causes, cov, random_gaussian_SEM, random_noise_intervened_SEM include("conditionalInvTests.jl") include("causalSearch.jl") include("SEM.jl") include("screening.jl") function _test_full() include(joinpath(@__DIR__, "..", "test", "test_full.jl")) end end
InvariantCausal
https://github.com/richardkwo/InvariantCausal.jl.git
[ "MIT" ]
1.0.0
ffa3df6df789a731b70a237846f283802218333e
code
3970
using StatsBase: sample using UnicodePlots: spy using Printf abstract type SEM end struct GaussianSEM <: SEM p ::Int64 B ::Matrix{Float64} err_var ::Vector{Float64} function GaussianSEM(B, err_var) @assert size(B, 1) == size(B, 2) == length(err_var) @assert all(err_var .> 0) p = length(err_var) new(p, B, err_var) end end function Base.show(io::IO, sem::GaussianSEM) print(io, "Gaussian SEM with $(sem.p) variables:\n") print(io, "B = \n") print(io, spy(sem.B)) print(io, "σ² = $(sem.err_var)") end """ simulate(sem, [n]) simulate(sem, [do_variables, do_values], [n]) Simulate from a Gaussian SEM `sem`. `n` is the sample size. do-interventions can be performed by specifying vectors of `do_variables` and `do_values`. """ function simulate(sem::GaussianSEM) p = sem.p ϵ = randn(p) .* sqrt.(sem.err_var) return (I - sem.B) \ ϵ end function simulate(sem::GaussianSEM, do_variables::Vector{Int64}, do_values::Vector{Float64}) @assert length(do_variables) == length(do_values) p = sem.p ϵ = randn(p) .* sqrt.(sem.err_var) ϵ[do_variables] .= do_values B = copy(sem.B) B[do_variables, :] .= 0 return (I - B) \ ϵ end function simulate(sem::GaussianSEM, n::Int64) return vcat(map(i -> simulate(sem), 1:n)'...) end function simulate(sem::GaussianSEM, do_variables::Vector{Int64}, do_values::Vector{Float64}, n::Int64) return vcat(map(i -> simulate(sem, do_variables, do_values), 1:n)'...) end function causes(sem::SEM, i::Int64) @assert 1 <= i <= sem.p return (1:sem.p)[sem.B[i, :].!=0] end function cov(sem::GaussianSEM) S = inv(I - sem.B) return S * diagm(sem.err_var) * S' end """ random_gaussian_SEM(p, k; [lb=-2, ub=2, var_min=0.5, var_max=2]) Generate a random-graph acyclic SEM with `p` variables and `k` average degree, and random coefficients. * `lb`, `ub`: coeff ~ unif[`lb`, `ub`] with random sign * `var_min`, `var_max`: var of error ~ unif[`var.min`, `var.max`] """ function random_gaussian_SEM(p::Int64, k::Int64; lb=-2, ub=2, var_min=0.5, var_max=2) B = zeros(p, p) B[rand(p, p) .< 2k / (p-1)] .= 1 B[UpperTriangular(B).!=0] .= 0 m = sum(B.==1) B[B.==1] .= (rand(m) * (ub - lb) .+ lb) .* sign.(randn(m)) err_var = rand(p) * (var_max - var_min) .+ var_min _order = sample(1:p, p, replace=false) B = B[_order, _order] return GaussianSEM(B, err_var) end """ random_noise_intervened_SEM(sem::GaussianSEM, [p_intervened=2, noise_multiplier_min=0.5, noise_multiplier_max=2., avoid=[], prob_coeff_unchanged=2/3, lb=-2, ub=2]) Produce a new SEM based on original SEM by changing coefficients and noise variances. * `p_intervened`: randomly choose `p_intervened` variables to intervene; will avoid those specified in `avoid` * [`noise_multiplier_min`, `noise_multiplier_max`]: interval that noise multiplier is uniformly sampled from * `prob.coeff.unchanged`: probability that coefficient is not changed * `[lb, ub]`: if to change, coefficient is drawn uniformly from this interval with random sign Return: `sem_new`, `intervened_variables` """ function random_noise_intervened_SEM(sem::GaussianSEM; p_intervened=2, noise_multiplier_min=0.5, noise_multiplier_max=2., avoid=[], prob_coeff_unchanged=2/3, lb=-2, ub=2) B = copy(sem.B) p = sem.p err_var = copy(sem.err_var) vars = sample(setdiff(collect(1:p), avoid), p_intervened, replace=false) for i in vars noise_multiplier = rand() * (noise_multiplier_max - noise_multiplier_min) + noise_multiplier_min err_var[i] = err_var[i] * noise_multiplier if rand() > prob_coeff_unchanged _J = (1:p)[B[i, :].!=0] B[i, _J] .= rand(length(_J)) * (ub - lb) .+ lb end end return GaussianSEM(B, err_var), vars end
InvariantCausal
https://github.com/richardkwo/InvariantCausal.jl.git
[ "MIT" ]
1.0.0
ffa3df6df789a731b70a237846f283802218333e
code
14307
using DataStructures: PriorityQueue, enqueue!, dequeue_pair! using DataFrames: DataFrame, columnindex using CategoricalArrays: CategoricalArray struct CausalSearchResult S ::Union{Vector{Int64}, Vector{Symbol}} confint ::Matrix{Float64} trace_confint_min ::Matrix{Float64} trace_confint_max ::Matrix{Float64} trace_p_values ::Vector{Float64} α ::Float64 p ::Int64 variables_considered ::Union{Vector{Int64}, Vector{Symbol}} selection_only ::Bool model_reject ::Bool function CausalSearchResult(S, confint, trace_confint_min, trace_confint_max, trace_p_values, α, p, variables_considered; selection_only=false) new(collect(S), confint, trace_confint_min, trace_confint_max, trace_p_values, α, p, variables_considered, selection_only, false) end function CausalSearchResult(S, trace_confint_min, trace_confint_max, trace_p_values, α, p, variables_considered; selection_only=true) confint = Matrix{Float64}(undef, length(S), 2) confint[:, 1] .= -Inf confint[:, 2] .= Inf new(collect(S), confint, trace_confint_min, trace_confint_max, trace_p_values, α, p, variables_considered, selection_only, false) end function CausalSearchResult(trace_confint_min, trace_confint_max, trace_p_values, α, p, variables_considered; selection_only=true) new(Vector{Int64}(), Matrix{Float64}(undef, 0, 2), trace_confint_min, trace_confint_max, trace_p_values, α, p, variables_considered, selection_only, true) end end function Base.show(io::IO, result::CausalSearchResult) if result.model_reject printstyled("\n * The whole model is rejected! i.e., Y | (all variables) is not invariant.\n", color=:light_magenta, bold=true) elseif isempty(result.S) # no causal variable found printstyled("\n * Found no causal variable (empty intersection).\n", color=:light_magenta, bold=true) else printstyled("\n * Causal variables include: $(result.S)\n", color=:green, bold=true) if result.selection_only printstyled(" * No confidence intervals produced in selection_only mode\n", color=:light_blue) else println(@sprintf("\n %-10s \t %-3s %% \t\t %-3s %%", "variable", result.α * 100, (1 - result.α) * 100)) for i in result.S if isa(i, Int64) j = i else j = find(result.variables_considered.==i)[1] end println(@sprintf(" %-10s \t% -04.4f \t% -04.4f", i, result.confint[j, 1], result.confint[j, 2])) end end end if length(result.variables_considered) == result.p println("\n ⋅ Variables considered include 1:$(result.p)") else println("\n ⋅ Variables considered include $(result.variables_considered)") end end """ causalSearch(X, y, env, [ S=1:size(X,2) ]; α=0.01, method="chow", p_max=8, screen="auto", verbose=true, selection_only=false, iterate_all=false, n_max_for_exact=5000, max_num_true_causes=Inf) causalSearch(df::DataFrame, target::(Int64 or Symbol), env; ...) Searching over subsets in `X[,S]` for direct causes of `y` # Arguments * `X`: either an n x p matrix or a `DataFrames.DataFrame` * `y`: vector of n (`X` and `y` can be alternatively specified by `df` and its column `target`) * `env`: environment indicators (rows of X): 1, 2, ... * `S`: set of variables (col indices of X) to search, can be a Vector or a Set * `α`: significance level (e.g. 0.01) * `method`: + `"chow"` for Gaussian linear regression, combined two-sample chow test + `"logistic-LR"` for logistic regression (`y` consists of 0 and 1), combined likelihood-ratio test + `"logistic-SF"` for logistic regression (`y` consists of 0 and 1), combined Sukhatme-Fisher test * `p_max`: maximum number of variables to consider. will method in `screen` to screen out `p_max` number of variables if `p_max < |S|`. (set to `Inf` if want no screening) * `screen`: + `"lasso"`: with lasso (from glmnet) solution path (see `screen_lasso`) + `"HOLP"`: "High dimensional ordinary least squares projection" method of Wang & Leng, only when p ≧ n (see `screen_HOLP`) + `"auto"`: use `"HOLP"` when p > n, and `"lasso"` otherwise * `verbose`: if true, will print each subset tested * `selection_only`: if true, will prune supersets of an invariant set; but not able to produce valid confidence intervals * `iterate_all`: if true, will iterate over all subsets to ensure validity of confidence intervals (if model is not rejected) * `n_max_for_exact`: maximum number of observations of an environment for exact testing; otherwise a subsample of n_max rows will be used * `max_num_true_causes`: maximum number of true causal variables; if specified to smaller than `|S|`, it will skip testing subsets with bigger size than `max_num_true_causes`. """ function causalSearch(X::Union{Matrix{Float64}, DataFrame}, y::Vector{Float64}, env::Vector{Int64}, S=1:size(X,2); α=0.01, method="chow", p_max=8, screen="auto", verbose=true, selection_only=false, iterate_all=false, n_max_for_exact=5000, max_num_true_causes=Inf) @assert size(X, 1) == length(y) == length(env) if method=="chow" model = "linear" if isa(X, DataFrame) X = Matrix{Float64}(X) # note: current linear fitting has to work with Matrix{Float64} end elseif method=="logistic-LR" || method=="logistic-SF" model = "logistic" # combine into a DataFrame (note: GLM.jl has to work with DataFrame) @assert all((y.==1) .| (y.==0)) df = DataFrame(isa(X, DataFrame) ? hcat(X, y, makeunique=true) : hcat(X, y)) for _col in propertynames(df) if isa(df[!, _col], CategoricalArray) @assert length(unique(df[!, _col])) == 2 "categorical variable $_col should be recoded to binary" end end target = propertynames(df)[end] # target is the last column else error("method must be one of: `chow`, `logistic-LR`, `logistic-SF`") end S = collect(S) S = unique(S) p = size(X, 2) if p_max < length(S) @assert model=="linear" "screening unsupported for GLM" q = length(S) if screen == "auto" if q <= size(X, 1) screen = "lasso" else screen = "HOLP" end end if screen == "lasso" S = S[screen_lasso(X[:, S], y, p_max)] elseif screen == "HOLP" S = S[screen_HOLP(X[:, S], y, p_max)] else error("screen must be one of: `auto`, `lasso`, `HOLP`") end printstyled("$(length(S)) variables are screened out from $q variables with $screen: $S\n", color=:blue) end variables_considered = S[:] if max_num_true_causes < length(S) printstyled("the size of |S| is restricted to ≦ $max_num_true_causes \n", color=:blue) else max_num_true_causes = length(S) end if iterate_all selection_only = false end accepted_sets = Dict{Union{Vector{Symbol},Vector{Int64}}, Float64}() n_tested_sets = 0 running_intersection = S running_confintervals = zeros(p, 2) running_confintervals[:, 1] .= Inf running_confintervals[:, 2] .= -Inf _trace_confint_max = Vector{Vector{Float64}}() _trace_confint_min = Vector{Vector{Float64}}() trace_p_values = Vector{Float64}() n_env = maximum(env) if method == "chow" for i in 1:n_env ni = sum(env.==i) if ni > n_max_for_exact printstyled(@sprintf("environment %d has %d obs, subsample of %d is used\n", i, ni, n_max_for_exact), color=:blue) end end end println(@sprintf "Causal invariance search across %d environments with at α=%s (|S| = %d, method = %s, model = %s)\n" n_env α length(S) method model) max_num_true_causes < length(S) && printstyled("|S| is restricted to subsets with size ≦ $max_num_true_causes.\n", color=:blue) # priority queue: S -> -p.value (so sets with higher p-values are tested sooner) candidate_sets = PriorityQueue{Union{Set{Int64}, Set{Symbol}}, Float64}() enqueue!(candidate_sets, Set{typeof(S[1])}()=>0.) size_current_set = 0 while size_current_set <= max_num_true_causes base_sets = Dict{Union{Set{Int64}, Set{Symbol}}, Float64}() # set -> (-p_value) while !isempty(candidate_sets) # dequeue the set with highest p-value _S, neg_p_value = dequeue_pair!(candidate_sets) _S_vec = collect(_S) # convert from Set{Int64} to Vector{Int64} # skip supersets under `selection_only` selection_only && length(running_intersection)!=length(S) && issubset(running_intersection, _S) && continue # test conditional invariance n_tested_sets += 1 if method == "chow" rej, p_value, conf_intervals = conditional_inv_test_chow(X[:,_S_vec], y, env, n_env, α=α, n_max_for_exact=n_max_for_exact) elseif method == "logistic-LR" # target is the last column of df rej, p_value, conf_intervals = conditional_inv_test_logistic(df, target, _S_vec, env, n_env, α=α, add_intercept=true, method="logistic-LR") elseif method == "logistic-SF" rej, p_value, conf_intervals = conditional_inv_test_logistic(df, target, _S_vec, env, n_env, α=α, add_intercept=true, method="logistic-SF") end base_sets[_S] = -p_value push!(trace_p_values, p_value) if !rej # _S is an invariant set accepted_sets[_S_vec] = p_value # running ∩ running_intersection = intersect(running_intersection, _S_vec) # running ∪ conf_intervals_padded = zeros(size(running_confintervals)) # unincluded variables have [0,0] as confint if isa(_S_vec, Vector{Int64}) conf_intervals_padded[_S_vec, :] = conf_intervals else _idx_vec = [columnindex(df, z) for z in _S_vec] conf_intervals_padded[_idx_vec, :] = conf_intervals end running_confintervals[:, 1] = min.(running_confintervals[:, 1], conf_intervals_padded[:, 1]) running_confintervals[:, 2] = max.(running_confintervals[:, 2], conf_intervals_padded[:, 2]) # keep trace push!(_trace_confint_min, conf_intervals_padded[:, 1]) push!(_trace_confint_max, conf_intervals_padded[:, 2]) if verbose println(@sprintf "S = %-40s: p-value = %-1.4f [%1s] ⋂ = %s" (isempty(_S_vec) ? "[]" : _S_vec) p_value (rej ? " " : "*") running_intersection) end if isempty(running_intersection) && (!iterate_all) break # empty, terminate end else if verbose println(@sprintf "S = %-40s: p-value = %-1.4f [%1s] ⋂ = %s" (isempty(_S_vec) ? "[]" : _S_vec) p_value (rej ? " " : "*") running_intersection) end end end isempty(running_intersection) && (!iterate_all) && break # have to break twice # generate sets with size ++ for (_base_S, _neg_p_value) in base_sets for i in setdiff(S, _base_S) S_new = union(_base_S, Set([i])) # skipping supersets of running intersection in `selection_only` mode selection_only && length(running_intersection)!=length(S) && issubset(running_intersection, S_new) && continue if haskey(candidate_sets, S_new) candidate_sets[S_new] = min(candidate_sets[S_new], _neg_p_value) else candidate_sets[S_new] = _neg_p_value end end end size_current_set += 1 end println("\nTested $n_tested_sets sets: $(length(accepted_sets)) sets are accepted.") trace_confint_min = hcat(_trace_confint_min...)' trace_confint_max = hcat(_trace_confint_max...)' if isempty(accepted_sets) # model rejected return CausalSearchResult(trace_confint_min, trace_confint_max, trace_p_values, α, p, variables_considered; selection_only = selection_only) elseif selection_only return CausalSearchResult(running_intersection, trace_confint_min, trace_confint_max, trace_p_values, α, p, variables_considered; selection_only = true) else return CausalSearchResult(running_intersection, running_confintervals, trace_confint_min, trace_confint_max, trace_p_values, α, p, variables_considered; selection_only = false) end end function causalSearch(df::DataFrame, target::Union{Int64, Symbol}, env::Vector{Int64}; α=0.01, method="chow", screen="auto", p_max=8, verbose=true, selection_only=false, iterate_all=false, n_max_for_exact=5000, max_num_true_causes=Inf) if isa(target, Int64) target = propertynames(df)[target] end S = setdiff(propertynames(df), [target]) X = df[:, S] y = df[!, target] causalSearch(X, y, env, S, α=α, method=method, screen=screen, p_max=p_max, verbose=verbose, selection_only=selection_only, iterate_all=iterate_all, n_max_for_exact=n_max_for_exact, max_num_true_causes=max_num_true_causes) end
InvariantCausal
https://github.com/richardkwo/InvariantCausal.jl.git
[ "MIT" ]
1.0.0
ffa3df6df789a731b70a237846f283802218333e
code
8666
using Distributions: cdf, FDist, TDist, Chisq, Bernoulli using StatsBase: sample using DataFrames: DataFrame using StatsModels: @formula using GLM: glm, loglikelihood, coef, confint, predict """ conditional_inv_test_chow(X, y, env, n_env; α=0.01) Test H0: `y` | `X` is invariant under environments by combining leave-one-out chow test. * `X`: n x p matrix of covariates * `y`: vector of response * `env`: vector of environments (1:n_env), corresponding to rows of X * `n_env`: number of environments * `α`: significance level * `n_max_for_exact`: maximum number of observations of an environment for exact testing; otherwise a subsample of n_max rows will be used Return: `rej`, `p_value`, `conf_intervals` * `rej`: false if invariant * `conf_intervals`: p x 2 matrix, cols = (min, max) """ function conditional_inv_test_chow(X::Matrix{Float64}, y::Vector{Float64}, env::Vector{Int64}, n_env::Int64; α=0.01, n_max_for_exact=5000) @assert n_env >= 1 p_values = ones(n_env) p = size(X, 2) n_all = size(X, 1) for i in 1:n_env @assert sum(env.==i) > 0 # fit on (-env), test on (env) idx_in = (1:n_all)[env.==i] idx_out = (1:n_all)[env.!=i] if length(idx_in) > n_max_for_exact idx_in = sample(idx_in, n_max_for_exact, replace=false) end p_values[i] = two_sample_chow(X[idx_out, :], X[idx_in, :], y[idx_out], y[idx_in]; α=α, add_intercept=true) if p_values[i] < min(α / n_env) break # early termination end end # Bonferroni correction p_value = min(minimum(p_values) * n_env, 1.) if p_value < α # reject reject = true conf_intervals = zeros(p, 2) # min = max = 0. else # not reject reject = false # pool all data and run regression X = hcat(X, ones(size(X,1))) β = (X' * X) \ (X' * y) σ = sqrt(sum((y - X * β).^2) / (n_all - p - 1)) prec_X = diag(inv(X' * X)) qt = quantile(TDist(n_all - p - 1), 1 - α / (2 * p)) conf_left = β - qt * σ * sqrt.(prec_X) conf_right = β + qt * σ * sqrt.(prec_X) # note: the union of (1-α) conf ints have coverage (1-2α) (Theorem 2 of PBM) conf_intervals = hcat(conf_left[1:p], conf_right[1:p]) end return reject, p_value, conf_intervals end """ two_sample_chow(X1, X2, y1, y2; [α=0.01, add_intercept=true]) Two-sample Chow's test of H0: two linear regressions `y1 ~ X1` and `y2 ~ X2` have the same linear coefficients, assuming Gaussian errors with equal variances. Will fit on `X1`` and test residual on `X2`. Choose `X2` to be the sample with smaller n since n2 x n2 matrix inversion is performed. """ function two_sample_chow(X1::Matrix{Float64}, X2::Matrix{Float64}, y1::Vector{Float64}, y2::Vector{Float64}; α=0.01, add_intercept=true) n1 = size(X1, 1) n2 = size(X2, 1) if add_intercept X1 = hcat(X1, ones(n1)) X2 = hcat(X2, ones(n2)) end p = size(X1, 2) # fit on X1 β = zeros(p) try β = (X1' * X1) \ (X1' * y1) catch _err printstyled("encountered $_err in least square for Chow's test\n", color=:light_red) return 0. end res2 = y2 - X2 * β Σ_res = diagm(ones(n2)) + X2 * ((X1' * X1) \ X2') # inv(A) * B = A \ B σ2 = var(y1 - X1 * β) * (n1 - 1) / (n1 - p) # should use dof = (n - p) as denominator chow_stat = res2' * (Σ_res \ res2) / (σ2 * n2) # inv(A) * B = A \ B # F distribution ν1 = n2 ν2 = n1 - size(X1, 2) p_value = 1 - cdf(FDist(ν1, ν2), chow_stat) return p_value end """ conditional_inv_test_logistic(df, :target, S, env, n_env; α=0.01, add_intercept=true, method="logistic-LR") Test `H0: y | X` is invariant under environments by combining leave-one-out likelihood ratio test. The model is logistic regression specified by `fmla`. * `df`: a DataFrames.DataFrame * `target`: target variable in df (Symbol) * `S`: covariates to condition on (`X = df[:,S]`) * `env`: vector of environments (1:n_env), corresponding to rows of X * `n_env`: number of environments * `α`: significance level * `add_intercept`: add `+ 1` or not in formula * `method`: + `logistic-LR`: likelihood ratio test + `logistic-SF`: test equal mean and variance of prediction errors with Sukhatme-Fisher Return: `rej`, `p_value`, `conf_intervals` * `rej`: false if invariant * `conf_intervals`: p x 2 matrix, cols = (min, max) """ function conditional_inv_test_logistic(df::DataFrame, target::Symbol, S::Vector{Symbol}, env::Vector{Int64}, n_env::Int64; α=0.01, add_intercept=true, method="logistic-LR") @assert n_env >= 1 @assert !(target in S) p = length(S) + add_intercept n_all = size(df, 1) p_values = ones(n_env) fmla = get_formula(df, target, S, add_intercept=add_intercept) # fit on pooled data fit0 = glm(fmla, df, Bernoulli()) # iterate over environments for i in 1:n_env @assert sum(env.==i) > 0 if method == "logistic-LR" # fit separately fit1 = glm(fmla, df[env.==i, :], Bernoulli()) fit2 = glm(fmla, df[env.!=i, :], Bernoulli()) # log likelihood ratio = 2 log (p(bigger model) / p(smaller model)) lr = 2 * (loglikelihood(fit1) + loglikelihood(fit2) - loglikelihood(fit0)) p_values[i] = 1 - cdf(Chisq(p), lr) elseif method == "logistic-SF" # predict and test equal mean of residuals if p > 1 p_hat = predict(fit0, df) else p_hat = predict(fit0) end res = (df[!, target] - p_hat) ./ sqrt.(p_hat .* (1 .- p_hat)) p_values[i] = sukhatme_fisher_test(res[env.==i], res[env.!=i]) else error("method undefined") end if p_values[i] < α / n_env break # early termination end end # Bonferroni correction p_value = min(minimum(p_values) * n_env, 1.) if p_value < α # reject reject = true conf_intervals = zeros(length(S), 2) # min = max = 0. else # not reject reject = false # the pooled fit is accepted if length(S) == 0 conf_intervals = zeros(0, 2) elseif add_intercept conf_intervals = confint(fit0)[2:end, :] # intercept is always the 1st row else conf_intervals = confint(fit0) end end return reject, p_value, conf_intervals end function conditional_inv_test_logistic(df::DataFrame, target::Symbol, S::Vector{Int64}, env::Vector{Int64}, n_env::Int64; α=0.01, add_intercept=true, method="logistic-LR") conditional_inv_test_logistic(df, target, propertynames(df)[S], env, n_env; α=α, add_intercept=add_intercept, method=method) end """ get_formula(df::DataFrame, target::Symbol, S=setdiff(names(df), [target]); add_intercept=true) Generate formula of `y ~ .` type for `df`, where `y` is specified by `target`. """ function get_formula(df::DataFrame, target::Symbol, S=setdiff(names(df), [target]); add_intercept=true) if length(S)==0 return @eval @formula($target ~ 1) end if add_intercept return @eval @formula($target ~ +(1, $(S...))) else return @eval @formula($target ~ +($(S...), 0)) end end """ sukhatme_fisher_test(x, y) Sukhatme-Fisher test of H0: vectors x and y are two independent normal samples with equal mean and variance See Perng, S. K., and Ramon C. Littell. "A test of equality of two normal population means and variances." Journal of the American Statistical Association 71.356 (1976): 968-971. Return: p-value """ function sukhatme_fisher_test(x::Vector{Float64}, y::Vector{Float64}) m = length(x) n = length(y) ss1 = var(x) * (m - 1) ss2 = var(y) * (n - 1) T = (mean(y) - mean(x)) / sqrt((m + n) * (ss1 + ss2) / ((m + n - 2) * (m * n))) F = (ss2 * (m-1)) / (ss1 * (n-1)) g = FDist(n-1, m-1) if F >= median(g) H = 2 * (1 - cdf(g, F)) else H = 2 * cdf(g, F) end W = - 2 * log(H) t = TDist(m + n - 2) w = Chisq(2) Q = - 2 * log(2 * (1 - cdf(t, abs(T)))) - 2 * log(1 - cdf(w, W)) q = Chisq(4) return 1 - cdf(q, Q) end
InvariantCausal
https://github.com/richardkwo/InvariantCausal.jl.git
[ "MIT" ]
1.0.0
ffa3df6df789a731b70a237846f283802218333e
code
1523
using Printf using GLMNet: glmnet """ screen_lasso(X, y, pmax) Screening out `pmax` variables by lasso (glmnet) on `X` and `y`. """ function screen_lasso(X::Matrix{Float64}, y::Vector{Float64}, pmax::Int64) fit = glmnet(X, y) p = size(X, 2) @assert pmax <= p betas = fit.betas n_vars = sum(betas.!=0, dims=1)[:] S = Set{Int64}() for n in unique(n_vars) Z = betas[:, n_vars.==n] non_zeros = sum(Z.!=0, dims=2)[:] vars = (1:p)[non_zeros .> 0] new_vars = setdiff(vars, S) Z = Z[new_vars, :] if length(S) + length(new_vars) > pmax # must break ties z = abs.(Z[:, end]) idx = sort(1:length(z), by = i -> z[i], rev = true) new_vars = new_vars[idx[1:(pmax - length(S))]] end union!(S, new_vars) length(S) == pmax && break end return sort(collect(S)) end """ screen_HOLP(X, y, pmax) Screen out `pmax` variables with HOLP projection. See: Wang, Xiangyu, and Chenlei Leng. "High dimensional ordinary least squares projection for screening variables." Journal of the Royal Statistical Society: Series B (Statistical Methodology) 78.3 (2016): 589-611. """ function screen_HOLP(X::Matrix{Float64}, y::Vector{Float64}, pmax::Int64) n, p = size(X) @assert p >= n @assert pmax < p _X = X .- mean(X, 1) _X = _X ./ std(_X, 1) _y = y - mean(y) β = _X' * ((_X * _X' + 10 * eye(n)) \ _y) return sortperm(abs.(β), rev=true)[1:pmax] end
InvariantCausal
https://github.com/richardkwo/InvariantCausal.jl.git
[ "MIT" ]
1.0.0
ffa3df6df789a731b70a237846f283802218333e
code
152
#!/usr/bin/env julia using InvariantCausal using Test println("Starting tests") @time begin include("test_regression.jl") include("test_search.jl") end
InvariantCausal
https://github.com/richardkwo/InvariantCausal.jl.git
[ "MIT" ]
1.0.0
ffa3df6df789a731b70a237846f283802218333e
code
8242
using InvariantCausal using DelimitedFiles using Test include(joinpath(@__DIR__, "test_search.jl")) include(joinpath(@__DIR__, "test_regression.jl")) X = readdlm(joinpath(@__DIR__, "X1.dat")) env = Vector{Int}(X[:,1]) X = X[:,2:end] S = 1:size(X,2) @time @testset "causal search" begin result = map(i -> causalSearch(X, X[:, i], env, setdiff(S,i) , α=0.01), S) @test result[2].S == [5] @test result[3].S == [5] @test result[7].S == [4] || result[7].S == [] for i in [1, 4, 5, 6] @test result[i].model_reject == true end end @time @testset "causal search with selection_only" begin result = map(i -> causalSearch(X, X[:, i], env, setdiff(S,i), α=0.01, selection_only=true), S) @test result[2].S == [5] @test result[3].S == [5] @test result[7].S == [4] || result[7].S == [] for i in [1, 4, 5, 6] @test result[i].model_reject == true end end @time @testset "causal search with limited # of true causes" begin result = map(i -> causalSearch(X, X[:, i], env, setdiff(S,i), α=0.01, max_num_true_causes=3), S) @test result[2].S == [5] @test result[3].S == [5] @test result[7].S == [4] || result[7].S == [] for i in [1, 4, 5, 6] @test result[i].model_reject == true end end @time @testset "causal search with subsampling" begin result = map(i -> causalSearch(X, X[:, i], env, setdiff(S,i), α=0.01, n_max_for_exact=90), S) @test result[2].S == [5] @test result[3].S == [5] || result[3].S == [] @test result[7].S == [4] || result[7].S == [] for i in [1, 4, 5, 6] @test result[i].model_reject == true end end function generate_setting(setting_configs; n_environments=2) n_int = rand(setting_configs["n_int"]) n_obs = rand(setting_configs["n_obs"]) p = rand(setting_configs["p"]) k = rand(setting_configs["k"]) lb_obs = rand(setting_configs["lb_obs"]) ub_obs = lb_obs + rand(setting_configs["ub_lb_delta_obs"]) _var_1 = rand(setting_configs["err_var_min"]) _var_2 = rand(setting_configs["err_var_min"]) err_var_min = min(_var_1, _var_2) err_var_max = max(_var_1, _var_2) noise_multiplier_min = rand(setting_configs["noise_multiplier_min"]) if rand() < setting_configs["prob_fixed_noise_multiplier"] noise_multiplier_max = noise_multiplier_min else noise_multiplier_max = noise_multiplier_min + rand(setting_configs["noise_multiplier_max_min_delta"]) end _l = rand(setting_configs["lb_int"]) _u = rand(setting_configs["ub_int"]) lb_int = min(_l, _u) ub_int = max(_l, _u) if rand() < setting_configs["prob_int_single"] n_int_variables = 1 frac_int_variables = 1 / p else frac_int_variables = rand(setting_configs["frac_int_variables"]) n_int_variables = floor(Int64, p * frac_int_variables) end prob_coefficient_unchanged = setting_configs["prob_coefficient_unchanged"] target = rand(1:p) SEMs = Vector{GaussianSEM}(undef, n_environments) env = repeat([1], inner=n_obs) intervened_variables = Vector{Vector{Int64}}(undef, n_environments) intervened_variables[1] = [] SEMs[1] = random_gaussian_SEM(p, k, lb=lb_obs, ub=ub_obs, var_min=err_var_min, var_max=err_var_max) true_β = SEMs[1].B[target, setdiff(1:p, target)] true_causes = (1:(p-1))[true_β .!= 0] for j in 2:n_environments SEMs[j], intervened_variables[j] = random_noise_intervened_SEM(SEMs[1], p_intervened=n_int_variables, noise_multiplier_min=noise_multiplier_min, noise_multiplier_max=noise_multiplier_max, avoid=[target], prob_coeff_unchanged=prob_coefficient_unchanged, lb=lb_int, ub=ub_int) env = vcat(env, repeat([j], inner=n_int)) end return Dict( "n_environments" => n_environments, "env" => env, "SEMs" => SEMs, "intervened_variables" => intervened_variables, "target" => target, "true_causes" => true_causes, "true_β" => true_β, "n_int" => n_int, "n_obs" => n_obs, "p" => p, "k" => k, "lb_obs" => lb_obs, "ub_obs" => ub_obs, "err_var_min" => err_var_min, "err_var_max" => err_var_max, "noise_multiplier_min" => noise_multiplier_min, "noise_multiplier_max" => noise_multiplier_max, "lb_int" => lb_int, "ub_int" => ub_int, "prob_coefficient_unchanged" => prob_coefficient_unchanged, "n_int_variables" => n_int_variables, "frac_int_variables" => frac_int_variables ) end @time @testset "random instances" begin setting_configs = Dict( "n_int" => [100, 200, 300, 400, 500], "n_obs" => [100, 200, 300, 400, 500], "p" => collect(5:9), "k" => collect(1:4), "lb_obs" => collect(0.1:0.1:2), "ub_lb_delta_obs" => collect(0.1:0.1:1), "err_var_min" => collect(0.1:0.1:2), "err_var_max" => collect(0.1:0.1:2), "noise_multiplier_min" => collect(0.1:0.1:4), "noise_multiplier_max_min_delta" => collect(0.1:0.1:2), "lb_int" => collect(0.1:0.1:2), "ub_int" => collect(0.1:0.1:2), "prob_fixed_noise_multiplier" => 1/3, "prob_coefficient_unchanged" => 2/3, "prob_int_single" => 1/6, "frac_int_variables" => 1. ./ collect(1.1:0.1:3) ) for trial in 1:10 for n_environments in [2, 3, 5] setting = generate_setting(setting_configs, n_environments=n_environments) env = setting["env"] p = setting["p"] target = setting["target"] true_β = setting["true_β"] true_causes = setting["true_causes"] intervened_variables = setting["intervened_variables"] SEM_obs = setting["SEMs"][1] X = simulate(SEM_obs, setting["n_obs"]) for j in 2:n_environments _X = simulate(setting["SEMs"][j], setting["n_int"]) X = vcat(X, _X) end y = X[:, target] X = X[:, setdiff(1:p, target)] result = causalSearch(X, y, env, verbose=false) println("S = $(result.S), truth = $true_causes") @test issubset(result.S, true_causes) for k in result.S @test result.confint[k, 1] < true_β[k] < result.confint[k, 2] end end end end @time @testset "random instances, many variables with screening" begin setting_configs = Dict( "n_int" => [100, 200, 300, 400, 500], "n_obs" => [100, 200, 300, 400, 500], "p" => collect(20:50), "k" => collect(1:3), "lb_obs" => collect(0.1:0.1:2), "ub_lb_delta_obs" => collect(0.1:0.1:1), "err_var_min" => collect(0.1:0.1:2), "err_var_max" => collect(0.1:0.1:2), "noise_multiplier_min" => collect(0.1:0.1:4), "noise_multiplier_max_min_delta" => collect(0.1:0.1:2), "lb_int" => collect(0.1:0.1:2), "ub_int" => collect(0.1:0.1:2), "prob_fixed_noise_multiplier" => 1/3, "prob_coefficient_unchanged" => 2/3, "prob_int_single" => 1/6, "frac_int_variables" => 1. ./ collect(1.1:0.1:3) ) for trial in 1:10 for n_environments in [2, 3, 5] setting = generate_setting(setting_configs, n_environments=n_environments) env = setting["env"] p = setting["p"] target = setting["target"] true_β = setting["true_β"] true_causes = setting["true_causes"] intervened_variables = setting["intervened_variables"] SEM_obs = setting["SEMs"][1] X = simulate(SEM_obs, setting["n_obs"]) for j in 2:n_environments _X = simulate(setting["SEMs"][j], setting["n_int"]) X = vcat(X, _X) end y = X[:, target] X = X[:, setdiff(1:p, target)] result = causalSearch(X, y, env, verbose=false, p_max=8) # performance only guaranteed if lasso selected all the causes println("S = $(result.S), truth = $true_causes") if issubset(true_causes, result.variables_considered) @test issubset(result.S, true_causes) end end end end
InvariantCausal
https://github.com/richardkwo/InvariantCausal.jl.git
[ "MIT" ]
1.0.0
ffa3df6df789a731b70a237846f283802218333e
code
964
using Distributions using Test using Statistics @time @testset "linear reg chow test" begin p = 7 n = 500 n_env = 3 env = repeat(1:n_env, inner=n) X = randn(n * n_env, p) beta = randn(p) y = X * beta .- 1. + randn(n * n_env) rej, p_value, conf_intervals = InvariantCausal.conditional_inv_test_chow(X, y, env, n_env) @test rej == false y[1:n] = X[1:n, :] * (beta / 2) .- 1. + randn(n) # change environment 1 rej, p_value, conf_intervals = InvariantCausal.conditional_inv_test_chow(X, y, env, n_env) @test rej == true end @time @testset "chow test" begin m = 100 p_values = map(x -> ( n = 300; p = 7; X1 = randn(2 * n, p); X2 = randn(n, p); beta = randn(p); y1 = X1 * beta .+ 1 + randn(2 * n); y2 = X2 * beta .+ 1 + randn(n); two_sample_chow(X1, X2, y1, y2)), 1:m) @test abs(mean(p_values .< 0.05) - 0.05) < 2 * sqrt(0.05 * 0.95 / m) end
InvariantCausal
https://github.com/richardkwo/InvariantCausal.jl.git