licenses
sequencelengths
1
3
version
stringclasses
677 values
tree_hash
stringlengths
40
40
path
stringclasses
1 value
type
stringclasses
2 values
size
stringlengths
2
8
text
stringlengths
25
67.1M
package_name
stringlengths
2
41
repo
stringlengths
33
86
[ "MIT" ]
0.2.12
e4a10b7cdb7ec836850e43a4cee196f4e7b02756
docs
700
# PkgBenchmarks PkgBenchmark provides an interface for Julia package developers to track performance changes of their packages. The package contains the following features * Running the benchmark suite at a specified commit, branch or tag. The path to the julia executable, the command line flags, and the environment variables can be customized. * Comparing performance of a package between different package commits, branches or tags. * Exporting results to markdown for benchmarks and comparisons, similar to how Nanosoldier reports results for the benchmarks in Base Julia. ## Installation PkgBenchmark is registered so installation is done by running `import Pkg; Pkg.add("PkgBenchmark")`.
PkgBenchmark
https://github.com/JuliaCI/PkgBenchmark.jl.git
[ "MIT" ]
0.2.12
e4a10b7cdb7ec836850e43a4cee196f4e7b02756
docs
2317
# Running a benchmark suite ```@meta DocTestSetup = quote using PkgBenchmark end ``` Use `benchmarkpkg` to run benchmarks defined in a suite as defined in the previous section. ```@docs benchmarkpkg ``` The results of a benchmark is returned as a `BenchmarkResult`: ```@docs PkgBenchmark.BenchmarkResults ``` ## More advanced customization Instead of passing a commit, branch etc. as a `String` to `benchmarkpkg`, a [`BenchmarkConfig`](@ref) can be passed ```@docs PkgBenchmark.BenchmarkConfig ``` This object contains the package commit, julia command, and what environment variables will be used when benchmarking. The default values can be seen by using the default constructor ```julia-repl julia> BenchmarkConfig() BenchmarkConfig: id: nothing juliacmd: `/home/user/julia/julia` env: ``` The `id` is a commit, branch etc as described in the previous section. An `id` with value `nothing` means that the current state of the package will be benchmarked. The default value of `juliacmd` is `joinpath(Sys.BINDIR, Base.julia_exename()` which is the command to run the julia executable without any command line arguments. To instead benchmark the branch `PR`, using the julia command `julia -O3` with the environment variable `JULIA_NUM_THREADS` set to `4`, the config would be created as ```jldoctest julia> config = BenchmarkConfig(id = "PR", juliacmd = `julia -O3`, env = Dict("JULIA_NUM_THREADS" => 4)) BenchmarkConfig: id: "PR" juliacmd: `julia -O3` env: JULIA_NUM_THREADS => 4 ``` To benchmark the package with the config, call [`benchmarkpkg`](@ref) as e.g. ```julia benchmark("Tensors", config) ``` !!! info The `id` keyword to the `BenchmarkConfig` does not have to be a branch, it can be most things that git can understand, for example a commit id or a tag. Benchmarks can be saved and read using `writeresults` and ``readresults` respectively: ```@docs PkgBenchmark.readresults PkgBenchmark.writeresults ``` ## CI Integration Tracking changes in performance throughout the development of a package can be automated as part of package CI. [BenchmarkCI.jl](https://github.com/tkf/BenchmarkCI.jl) provides a convenient way to run a PkgBenchmark suite as part of a package's CI actions.
PkgBenchmark
https://github.com/JuliaCI/PkgBenchmark.jl.git
[ "MIT" ]
0.1.10
406bb881a8d4ac57347dc2b50294b059db2750e6
code
576
using Documenter using RetentionParameterEstimator makedocs( sitename = "RetentionParameterEstimator", #format = Documenter.HTML(), #modules = [RetentionData] pages = Any[ "Home" => "index.md", "Docstrings" => "docstrings.md" ] ) # Documenter can also automatically deploy documentation to gh-pages. # See "Hosting Documentation" and deploydocs() in the Documenter manual # for more information. deploydocs( repo = "github.com/GasChromatographyToolbox/RetentionParameterEstimator.jl", devbranch = "main" )
RetentionParameterEstimator
https://github.com/GasChromatographyToolbox/RetentionParameterEstimator.jl.git
[ "MIT" ]
0.1.10
406bb881a8d4ac57347dc2b50294b059db2750e6
code
15819
### A Pluto.jl notebook ### # v0.19.41 using Markdown using InteractiveUtils # This Pluto notebook uses @bind for interactivity. When running this notebook outside of Pluto, the following 'mock version' of @bind gives bound variables a default value (instead of an error). macro bind(def, element) quote local iv = try Base.loaded_modules[Base.PkgId(Base.UUID("6e696c72-6542-2067-7265-42206c756150"), "AbstractPlutoDingetjes")].Bonds.initial_value catch; b -> missing; end local el = $(esc(element)) global $(esc(def)) = Core.applicable(Base.get, el) ? Base.get(el) : iv(el) el end end # ╔═╡ 09422105-a747-40ac-9666-591326850d8f begin # online version import Pkg version = "0.1.8" Pkg.activate(mktempdir()) Pkg.add([ Pkg.PackageSpec(name="RetentionParameterEstimator", version=version) ]) using RetentionParameterEstimator md""" online, Packages, estimate\_retention\_parameters, for RetentionParameterEstimator v$(version) """ #= # local version (database is still downloaded from github) import Pkg # activate the shared project environment Pkg.activate(Base.current_project()) using RetentionParameterEstimator #Pkg.add([ # Pkg.PackageSpec(name="RetentionParameterEstimator", rev="minor_fix_jsb") #]) md""" local, Packages, estimate\_retention\_parameters.jl, for RetentionParameterEstimator v0.1.6 """ =# end # ╔═╡ eb5fc23c-2151-47fa-b56c-5771a4f8b9c5 begin html"""<style> main { max-width: 75%; margin-left: 1%; margin-right: 20% !important; } """ end # ╔═╡ f46b165e-67d9-402f-a225-72d1082007be TableOfContents() # ╔═╡ 6d4ec54b-01b2-4208-9b9e-fcb70d236c3e md""" # $(Resource("https://raw.githubusercontent.com/JanLeppert/RetentionParameterEstimator.jl/main/docs/src/assets/logo_b.svg")) Estimation of K-centric retention parameters by temperature programmed GC with different temperature programs. """ # ╔═╡ ebc2a807-4413-4721-930a-6328ae72a1a9 md""" ## Select measurement data Measured chromatograms used to **estimate** the parameters by optimization: Load own data: $(@bind own_data CheckBox(default=false)) """ # ╔═╡ 51a22a15-24f9-4280-9c91-32e48727003a if own_data == true md""" $(@bind file_meas FilePicker([MIME("text/csv")])) """ else file_meas = RetentionParameterEstimator.download_data("https://raw.githubusercontent.com/JanLeppert/RetentionParameterEstimator.jl/main/data/meas_df05_Rxi5SilMS.csv"); end # ╔═╡ eb14e619-82d4-49ac-ab2a-28e56230dbc6 begin if isnothing(file_meas) md""" Selected chromatograms for **estimation**: _nothing_ Please select a file of chromatograms for **estimation**! """ else meas = RetentionParameterEstimator.load_chromatograms(file_meas); md""" Selected chromatograms for **estimation**: $(file_meas["name"]) """ end end # ╔═╡ d745c22b-1c96-4a96-83da-abb1df91ab87 begin if !isnothing(file_meas) md""" Select measurements: $(@bind selected_measurements confirm(MultiSelect(meas[3].measurement; default=meas[3].measurement))) Select solutes: $(@bind selected_solutes confirm(MultiSelect(meas[4]; default=meas[4]))) """ end end # ╔═╡ b2c254a2-a5d6-4f18-803a-75d048fc7cdf meas_select = RetentionParameterEstimator.filter_selected_measurements(meas, selected_measurements, selected_solutes); # ╔═╡ f3ffd4ce-a378-4033-88e9-bc1fb8cc4bbe md""" ## Select mode * `m1` ... estimate the three retention parameters (``T_{char}``, ``θ_{char}`` and ``ΔC_p``). * `m1a` ... estimate the three retention parameters (``T_{char}``, ``θ_{char}`` and ``ΔC_p``) and select ``L`` and ``d``. * `m2` ... estimate the three retention parameters (``T_{char}``, ``θ_{char}`` and ``ΔC_p``) and the column diameter ``d``. $(@bind select_mode confirm(Select(["m1", "m1a", "m2"]))) """ # ╔═╡ e98f4b1b-e577-40d0-a7d8-71c53d99ee1b if select_mode == "m1a" #md""" #Column parameters: #L in m: $(@bind L_input NumberField(0.0:0.01:1000.0; default=meas[1].L)) #d in mm: $(@bind d_input NumberField(0.0:0.0001:1.0; default=meas[1].d*1000.0)) @bind col_input confirm( PlutoUI.combine() do Child md""" ## Column dimensions L in m: $(Child("L", NumberField(0.0:0.01:1000.0; default=meas_select[1].L))) d in mm: $(Child("d", NumberField(0.0:0.0001:1.0; default=meas_select[1].d*1000.0))) """ end ) end # ╔═╡ 3b40b0b1-7007-48c7-b47b-dbeaf501b73d begin min_th = 0.1 loss_th = 1.0 if select_mode == "m1" check, msg, df_flag, index_flag, res, Telu_max = RetentionParameterEstimator.check_measurement(meas_select, (L = meas_select[1].L, d = meas_select[1].d*1000); min_th=min_th, loss_th=loss_th, se_col=false) md""" ## Results L/d ratio: $(meas_select[1].L/(meas_select[1].d)) $(res) """ elseif select_mode == "m1a" check, msg, df_flag, index_flag, res, Telu_max = RetentionParameterEstimator.check_measurement(meas_select, col_input; min_th=min_th, loss_th=loss_th, se_col=false) md""" ## Results L/d ratio: $(col_input[1]/(col_input[2]*1e-3)) $(res) """ elseif select_mode == "m2" res, Telu_max = RetentionParameterEstimator.method_m2(meas_select; se_col=false) check = true md""" ## Results d = $(1000.0 * res.d[1]) mm L/d ratio: $(meas_select[1].L./(res.d[1])) $(res) """ end end # d = $(1000.0 * (res.d[1] ± res.d_std[1])) mm # ╔═╡ 8cc151a6-a60a-4aba-a813-1a142a073948 begin if check == false md""" ## Results !!! warning $(msg) The found minima for solutes $(meas[4][index_flag]) is above the threshold $(min_th) s². $(df_flag) Check for the plausibility of measurements, if a solute is listed there, all retention times for all used measurements should be checked, not only the listed flagged ones. An error in one retention time, e.g. typo, could produce deviations from the model in other (correct) measurements. $(res) """ end end # ╔═╡ 0f4c35c4-32f7-4d11-874d-1f23daad7da8 begin head = ["file:", file_meas["name"], "selected measurements:", join(selected_measurements, " "), "mode:", select_mode ] res_export = RetentionParameterEstimator.separate_error_columns(res) io = IOBuffer() CSV.write(io, DataFrame[], header=head) CSV.write(io, res_export, append=true, writeheader=true) #export_str_ = export_str(opt_values, col_values, prog_values, peaklist) md""" ## Export Results Filename: $(@bind result_filename TextField((20,1); default="Result.csv")) """ end # ╔═╡ b4f17579-9994-46e1-a3d0-6030650f0dbe md""" $(DownloadButton(io.data, result_filename)) """ # ╔═╡ 0d61fd05-c0c6-4764-9f96-3b867a456ad3 md""" ## Select verification data Measured chromatograms used to **verify** the estimated parameters: """ # ╔═╡ 38d1e196-f375-48ac-bc11-80b10472c1cd if own_data == true md""" $(@bind file_comp FilePicker([MIME("text/csv")])) """ else file_comp = RetentionParameterEstimator.download_data("https://raw.githubusercontent.com/JanLeppert/RetentionParameterEstimator.jl/main/data/comp_df05_Rxi5SilMS.csv"); end # ╔═╡ 762c877d-3f41-49de-a7ea-0eef1456ac11 begin if isnothing(file_comp) md""" Selected chromatograms for **verification**: _nothing_ Please select a file of chromatograms for **verification**! """ else if file_meas == file_comp comp = RetentionParameterEstimator.load_chromatograms(file_comp); md""" Selected chromatograms for **verification**: $(file_comp["name"]) _**Attention**_: The selected data for estimation and verification is the same! """ else comp = RetentionParameterEstimator.load_chromatograms(file_comp); md""" Selected chromatograms for **verification**: $(file_comp["name"]) """ end end end # ╔═╡ 07a7e45a-d73e-4a83-9323-700d3e2a88cc begin if !isnothing(file_comp) md""" Select comparison measurements: $(@bind selected_comparison confirm(MultiSelect(comp[3].measurement; default=comp[3].measurement))) """ end end # ╔═╡ ae424251-f4f7-48aa-a72b-3be85a193705 md""" ## Verification Using the estimated parameters (``T_{char}``, ``θ_{char}``, ``ΔC_p``) resp. (``T_{char}``, ``θ_{char}``, ``ΔC_p``, ``d``) to simulate other temperature programs. Compare the simulated retention times with measured retention times. """ # ╔═╡ 116ccf37-4a18-44ac-ae6e-98932901a8b0 begin comp_select = RetentionParameterEstimator.filter_selected_measurements(comp, selected_comparison, selected_solutes) pl, loss, par = RetentionParameterEstimator.comparison(res, comp_select) meanΔtR = Array{Float64}(undef, length(pl)) meanrelΔtR = Array{Float64}(undef, length(pl)) for i=1:length(pl) meanΔtR[i] = mean(abs.(pl[i].ΔtR)) meanrelΔtR[i] = mean(abs.(pl[i].relΔtR)) end df_loss = DataFrame(comp=selected_comparison, loss=loss, sqrt_loss=sqrt.(loss), mean_ΔtR=meanΔtR, mean_relΔtR_percent=meanrelΔtR.*100.0) end # ╔═╡ 157f24e6-1664-41c8-9079-b9dd0a2c98a9 md""" Peaklists of the simulated verification programs, including difference to measured retention times. $(embed_display(pl)) """ # ╔═╡ f6a55039-8c32-4d21-8119-fc48e3bf0dc2 md""" **Options for plot** add labels: $(@bind labels CheckBox(default=true)) """ # ╔═╡ e16e8b29-0f85-43b6-a405-6ab60b0e3ee0 begin if labels==true label_db = DataFrame(Name=comp[4]) md""" $(embed_display(RetentionParameterEstimator.plot_chromatogram_comparison(pl, meas_select, comp_select; annotation=labels))) * Simulated chromatograms in **blue**. * Measured retention times in **orange**. * Labels: $(embed_display(label_db)) """ else md""" $(embed_display(RetentionParameterEstimator.plot_chromatogram_comparison(pl, meas_select, comp_select; annotation=labels))) * Simulated chromatograms in **blue**. * Measured retention times in **orange**. """ end end # ╔═╡ f83b26e7-f16d-49ac-ab3b-230533ac9c82 md""" ## Alternative parameters Select file with alternative parameters: """ # ╔═╡ 62c014d5-5e57-49d7-98f8-dace2f1aaa32 if own_data == true md""" $(@bind file_db FilePicker([MIME("text/csv")])) """ else file_db = RetentionParameterEstimator.download_data("https://raw.githubusercontent.com/JanLeppert/RetentionParameterEstimator.jl/main/data/database_Rxi5SilMS_beta125.csv"); end # ╔═╡ 5123aa1b-b899-4dd6-8909-6be3b82a80d0 begin if isnothing(file_db) md""" Selected file with alternative parameters: _nothing_ Please select a file with alternative parameters! """ else db = DataFrame(CSV.File(file_db["data"])) diff = RetentionParameterEstimator.difference_estimation_to_alternative_data(res, db) pbox = RetentionParameterEstimator.plotbox(diff) md""" Selected file with alternative parameters: $(file_db["name"]) $(embed_display(db)) Difference of parameters to estimation: $(embed_display(diff)) Boxplot of relative differences: $(embed_display(pbox)) """ end end # ╔═╡ 903d12f1-6d6f-4a71-8095-7457cffcafc4 md""" ## Isothermal ``\ln{k}`` data Select file with isothermal measured ``\ln{k}`` data: """ # ╔═╡ a41148bc-03b0-4bd1-b76a-7406aab63f48 if own_data == true md""" $(@bind file_isolnk FilePicker([MIME("text/csv")])) """ else file_isolnk = RetentionParameterEstimator.download_data("https://raw.githubusercontent.com/JanLeppert/RetentionParameterEstimator.jl/main/data/isothermal_lnk_df05_Rxi5SilMS.csv"); end # ╔═╡ 66287dfc-fe77-4fa8-8892-79d2d3de6cb3 begin if isnothing(file_isolnk) md""" Selected isothermal measured ``\ln{k}`` data: _nothing_ Please select a file of isothermal measured ``\ln{k}`` data! """ else isolnk = DataFrame(CSV.File(file_isolnk["data"])) md""" Selected isothermal measured ``\ln{k}`` data: $(file_isolnk["name"]) $(embed_display(isolnk)) """ end end # ╔═╡ b4fc2f6e-4500-45da-852e-59fb084e365a md""" ## Plot ``\ln{k}`` over ``T`` Select solute for ``\ln{k}`` plot: $(@bind select_solute confirm(Select(meas_select[4]; default=meas_select[4][1]))) """ # ╔═╡ c0f0b955-6791-401f-8252-745332c4210f begin gr() #p_lnk_ = plot(xlabel=L"T \mathrm{\; in \: °C}", ylabel=L"\ln{k}", title=select_solute, minorticks=4, minorgrid=true) p_lnk_ = plot(xlabel="T in °C", ylabel="lnk", title=select_solute, minorticks=4, minorgrid=true) if @isdefined isolnk scatter!(p_lnk_, isolnk.T.-273.15, isolnk[!, select_solute], label="isothermal meas.") end if @isdefined db i = findfirst(RetentionParameterEstimator.GasChromatographySimulator.CAS_identification(select_solute).CAS.==db.CAS) if !isnothing(i) lnk_db(T) = (db.DeltaCp[i]/8.31446261815324 + (db.Tchar[i]+273.15)/db.thetachar[i])*((db.Tchar[i]+273.15)/(T+273.15)-1) + db.DeltaCp[i]/8.31446261815324*log((T+273.15)/(db.Tchar[i]+273.15)) RetentionParameterEstimator.plot_lnk!(p_lnk_, lnk_db, RetentionParameterEstimator.Tmin(meas)*0.925, (Telu_max[findfirst(select_solute.==meas[4])]-273.15)*1.025, lbl="alternative database") end end res_f = filter([:Name] => x -> x == select_solute, res) lnk(T) = (Measurements.value.(res_f.ΔCp[1])/8.31446261815324 + Measurements.value.(res_f.Tchar[1])/Measurements.value.(res_f.θchar[1]))*(Measurements.value.(res_f.Tchar[1])/(T+273.15)-1) + Measurements.value.(res_f.ΔCp[1])/8.31446261815324*log((T+273.15)/Measurements.value.(res_f.Tchar[1])) RetentionParameterEstimator.plot_lnk!(p_lnk_, lnk, RetentionParameterEstimator.Tmin(meas)*0.925, (Telu_max[findfirst(select_solute.==meas[4])]-273.15)*1.025, lbl=select_mode) RetentionParameterEstimator.add_min_max_marker!(p_lnk_, RetentionParameterEstimator.Tmin(meas), Telu_max[findfirst(select_solute.==meas[4])]-273.15, lnk) p_lnk_ end # ╔═╡ b6c2ad4d-6fc5-4700-80e3-f616c0b9aa91 begin gr() #p_lnk_all = plot(xlabel=L"T \mathrm{\; in \: °C}", ylabel=L"\ln{k}", title="all", minorticks=4, minorgrid=true, legend=:none) p_lnk_all = plot(xlabel="T in °C", ylabel="lnk", title="all", minorticks=4, minorgrid=true, legend=:none) for i=1:length(meas_select[4]) res_ = filter([:Name] => x -> x == meas_select[4][i], res) lnk(T) = (Measurements.value.(res_.ΔCp[1])/8.31446261815324 + Measurements.value.(res_.Tchar[1])/Measurements.value.(res_.θchar[1]))*(Measurements.value.(res_.Tchar[1])/(T+273.15)-1) + Measurements.value.(res_.ΔCp[1])/8.31446261815324*log((T+273.15)/Measurements.value.(res_.Tchar[1])) RetentionParameterEstimator.plot_lnk!(p_lnk_all, lnk, RetentionParameterEstimator.Tmin(meas_select)*0.925, (Telu_max[i]-273.15)*1.025, lbl=meas_select[4][i]) RetentionParameterEstimator.add_min_max_marker!(p_lnk_all, RetentionParameterEstimator.Tmin(meas_select), Telu_max[i]-273.15, lnk) end p_lnk_all end # ╔═╡ 9178967d-26dc-43be-b6e4-f35bbd0b0b04 md""" # End """ # ╔═╡ Cell order: # ╠═09422105-a747-40ac-9666-591326850d8f # ╟─eb5fc23c-2151-47fa-b56c-5771a4f8b9c5 # ╟─f46b165e-67d9-402f-a225-72d1082007be # ╟─6d4ec54b-01b2-4208-9b9e-fcb70d236c3e # ╟─ebc2a807-4413-4721-930a-6328ae72a1a9 # ╟─51a22a15-24f9-4280-9c91-32e48727003a # ╟─eb14e619-82d4-49ac-ab2a-28e56230dbc6 # ╟─d745c22b-1c96-4a96-83da-abb1df91ab87 # ╟─b2c254a2-a5d6-4f18-803a-75d048fc7cdf # ╟─f3ffd4ce-a378-4033-88e9-bc1fb8cc4bbe # ╟─e98f4b1b-e577-40d0-a7d8-71c53d99ee1b # ╟─3b40b0b1-7007-48c7-b47b-dbeaf501b73d # ╟─8cc151a6-a60a-4aba-a813-1a142a073948 # ╟─0f4c35c4-32f7-4d11-874d-1f23daad7da8 # ╟─b4f17579-9994-46e1-a3d0-6030650f0dbe # ╟─0d61fd05-c0c6-4764-9f96-3b867a456ad3 # ╟─38d1e196-f375-48ac-bc11-80b10472c1cd # ╟─762c877d-3f41-49de-a7ea-0eef1456ac11 # ╟─07a7e45a-d73e-4a83-9323-700d3e2a88cc # ╟─ae424251-f4f7-48aa-a72b-3be85a193705 # ╟─116ccf37-4a18-44ac-ae6e-98932901a8b0 # ╟─157f24e6-1664-41c8-9079-b9dd0a2c98a9 # ╟─f6a55039-8c32-4d21-8119-fc48e3bf0dc2 # ╟─e16e8b29-0f85-43b6-a405-6ab60b0e3ee0 # ╟─f83b26e7-f16d-49ac-ab3b-230533ac9c82 # ╟─62c014d5-5e57-49d7-98f8-dace2f1aaa32 # ╟─5123aa1b-b899-4dd6-8909-6be3b82a80d0 # ╟─903d12f1-6d6f-4a71-8095-7457cffcafc4 # ╟─a41148bc-03b0-4bd1-b76a-7406aab63f48 # ╟─66287dfc-fe77-4fa8-8892-79d2d3de6cb3 # ╟─b4fc2f6e-4500-45da-852e-59fb084e365a # ╟─c0f0b955-6791-401f-8252-745332c4210f # ╟─b6c2ad4d-6fc5-4700-80e3-f616c0b9aa91 # ╟─9178967d-26dc-43be-b6e4-f35bbd0b0b04
RetentionParameterEstimator
https://github.com/GasChromatographyToolbox/RetentionParameterEstimator.jl.git
[ "MIT" ]
0.1.10
406bb881a8d4ac57347dc2b50294b059db2750e6
code
7285
# functions used to estimate start values of the parameters """ reference_holdup_time(prog, L, d, gas; control="Pressure") Calculate the reference holdup time for the GC program `prog` for a column with length `L` and diameter `d` and `gas` as mobile phase. The reference holdup time is the holdup time at the reference temperature 150°C. """ function reference_holdup_time(col, prog; control="Pressure") Tref = 150.0 # estimate the time of the temperature program for T=Tref t_ = prog.time_steps T_ = prog.temp_steps knots = Interpolations.deduplicate_knots!(T_ .- Tref; move_knots=true) interp = interpolate((knots, ), cumsum(t_), Gridded(Linear())) tref = interp(0.0) # inlet and outlet pressure at time tref Fpin_ref = prog.Fpin_itp(tref) pout_ref = prog.pout_itp(tref) # hold-up time calculated for the time of the program, when T=Tref tMref = GasChromatographySimulator.holdup_time(Tref+273.15, Fpin_ref, pout_ref, col.L, col.d, col.gas, control=control) return tMref end """ elution_temperature(tRs, prog) Calculate the elution temperatures from retention times `tRs` and GC programs `prog`. """ function elution_temperature(tRs, prog) Telus = Array{Float64}(undef, length(tRs)) for i=1:length(tRs) if ismissing(tRs[i]) Telus[i] = NaN else Telus[i] = prog.T_itp(0.0, tRs[i]) end end return Telus end """ estimate_start_parameter_single_ramp(tRs::DataFrame, col, prog; time_unit="min", control="Pressure") Estimation of initial parameters for `Tchar`, `θchar` and `ΔCp` based on the elution temperatures calculated from the retention times `tR` and GC programs `prog` for column `col`. For this function it is assumed, that single ramp heating programs are used. The elution temperatures of all measurements are calculated and than interpolated over the heating rates. For a dimensionless heating rate of 0.6 the elution temperature and the characteristic temperature of a substance are nearly equal. Based on this estimated `Tchar` estimates for the initial values of `θchar` and `ΔCp` are calculated as `` \\theta_{char,init} = 22 \\left(\\frac{T_{char,init}}{T_{st}}\\right)^{0.7} \\left(1000\\frac{d_f}{d}\\right)^{0.09} °C `` and `` \\Delta C_p = (-180 + 0.63 T_{char,init}) \\mathrm{J mol^{-1} K^{-1}} `` # Output * `Tchar_est` ... estimate for initial guess of the characteristic temperature * `θchar_est` ... estimate for initial guess of θchar * `ΔCp_est` ... estimate for initial guess of ΔCp * `Telu_max` ... the maximum of the calculated elution temperatures of the solutes """ function estimate_start_parameter_single_ramp(tRs::DataFrame, col, prog; time_unit="min", control="Pressure") if time_unit == "min" a = 60.0 else a = 1.0 end tR_meas = Array(tRs[:,2:end]).*a nt, ns = size(tR_meas) tMref = Array{Float64}(undef, nt) RT = Array{Float64}(undef, nt) Telu_meas = Array{Float64}(undef, nt, ns) for i=1:nt tMref[i] = reference_holdup_time(col, prog[i]; control=control)/a # single-ramp temperature programs with ramp between time_steps 2 and 3 are assumed RT[i] = (prog[i].temp_steps[3] - prog[i].temp_steps[2])/prog[i].time_steps[3]*a Telu_meas[i,:] = elution_temperature(tR_meas[i,:], prog[i]) end rT = RT.*tMref./θref Telu_max = Array{Float64}(undef, ns) Tchar_est = Array{Float64}(undef, ns) θchar_est = Array{Float64}(undef, ns) ΔCp_est = Array{Float64}(undef, ns) for i=1:ns knots = Interpolations.deduplicate_knots!(Telu_meas[:,i]; move_knots=true) interp = interpolate((rT .- rT_nom, ), knots, Gridded(Linear())) Telu_max[i] = maximum(Telu_meas[:,i]) Tchar_est[i] = interp(0.0) θchar_est[i] = 22.0*(Tchar_est[i]/Tst)^0.7*(1000*col.df/col.d)^0.09 ΔCp_est[i] = -52.0 + 0.34*Tchar_est[i] end return Tchar_est, θchar_est, ΔCp_est, Telu_max end """ estimate_start_parameter_mean_elu_temp(tRs::DataFrame, col, prog; time_unit="min", control="Pressure") Estimation of initial parameters for `Tchar`, `θchar` and `ΔCp` based on the elution temperatures calculated from the retention times `tR` and GC programs `prog` for column `col`. This function is used, if the temperature program is not a single ramp heating program. The elution temperatures of all measurements are calculated and the mean value of the elution temperatures is used as the initial characteristic temperature of a substance. Based on this estimated `Tchar` estimates for the initial values of `θchar` and `ΔCp` are calculated as `` \\theta_{char,init} = 22 \\left(\\frac{T_{char,init}}{T_{st}}\\right)^{0.7} \\left(1000\\frac{d_f}{d}\\right)^{0.09} °C `` and `` \\Delta C_p = (-52 + 0.34 T_{char,init}) \\mathrm{J mol^{-1} K^{-1}} `` # Output * `Tchar_est` ... estimate for initial guess of the characteristic temperature * `θchar_est` ... estimate for initial guess of θchar * `ΔCp_est` ... estimate for initial guess of ΔCp * `Telu_max` ... the maximum of the calculated elution temperatures of the solutes """ function estimate_start_parameter_mean_elu_temp(tRs::DataFrame, col, prog; time_unit="min") if time_unit == "min" a = 60.0 else a = 1.0 end tR_meas = Array(tRs[:,2:end]).*a nt, ns = size(tR_meas) Telu_max = Array{Float64}(undef, ns) Tchar_est = Array{Float64}(undef, ns) θchar_est = Array{Float64}(undef, ns) ΔCp_est = Array{Float64}(undef, ns) for j=1:ns Telu = Array{Float64}(undef, nt) for i=1:nt Telu[i] = elution_temperature(tR_meas[i,j], prog[i])[1] end Telu_max[j] = maximum(Telu) Tchar_est[j] = mean(Telu) θchar_est[j] = 22.0*(Tchar_est[j]/273.15)^0.7*(1000*col.df/col.d)^0.09 ΔCp_est[j] = -52.0 + 0.34*Tchar_est[j] end return Tchar_est, θchar_est, ΔCp_est, Telu_max end """ estimate_start_parameter(tRs::DataFrame, col, prog; time_unit="min", control="Pressure") Estimation of initial parameters for `Tchar`, `θchar` and `ΔCp` based on the elution temperatures calculated from the retention times `tR` and GC programs `prog` for column `col`. The initial value of `Tchar` is estimated from the elution temperatures of the measurements. Based on this estimated `Tchar` estimates for the initial values of `θchar` and `ΔCp` are calculated as `` \\theta_{char,init} = 22 \\left(\\frac{T_{char,init}}{T_{st}}\\right)^{0.7} \\left(1000\\frac{d_f}{d}\\right)^{0.09} °C `` and `` \\Delta C_p = (-52 + 0.34 T_{char,init}) \\mathrm{J mol^{-1} K^{-1}} `` # Output * `Tchar_est` ... estimate for initial guess of the characteristic temperature * `θchar_est` ... estimate for initial guess of θchar * `ΔCp_est` ... estimate for initial guess of ΔCp * `Telu_max` ... the maximum of the calculated elution temperatures of the solutes """ function estimate_start_parameter(tR_meas::DataFrame, col, prog; time_unit="min", control="Pressure") Tchar_est, θchar_est, ΔCp_est, Telu_max = try estimate_start_parameter_single_ramp(tR_meas, col, prog; time_unit=time_unit, control=control) catch estimate_start_parameter_mean_elu_temp(tR_meas, col, prog; time_unit=time_unit) end return Tchar_est, θchar_est, ΔCp_est, Telu_max end
RetentionParameterEstimator
https://github.com/GasChromatographyToolbox/RetentionParameterEstimator.jl.git
[ "MIT" ]
0.1.10
406bb881a8d4ac57347dc2b50294b059db2750e6
code
11189
# functions for loading the measured retention data and the necessary informations (column definition, programs, ...) # this function is a modified version from GasChromatographySimulator # if it works, put this function into GasChromatographySimulator """ Program(TP, FpinP, L; pout="vacuum", time_unit="min") Construct the structure `Program` with conventional formulation (see function `conventional_program` in `GasChromatographySimulator.jl`) of programs for the case without a thermal gradient. # Arguments * `TP`: conventional formulation of a temperature program. * `FpinP`: conventional formulation of a Flow (in m³/s) resp. inlet pressure (in Pa(a)) program. * `L`: Length of the capillary measured in m (meter). * `pout`: Outlet pressure, "vacuum" (default), "atmosphere" or the outlet pressure in Pa(a). * `time_unit`: unit of time in the programs, "min"` (default) times are measured in minutes, "s" times are measured in seconds. The argument `L` is used to construct the temperature interpolation `T_itp(x,t)`. # Examples ```julia julia> Program((40.0, 1.0, 5.0, 280.0, 2.0, 20.0, 320.0, 2.0), (400000.0, 10.0, 5000.0, 500000.0, 20.0), 10.0) ``` """ function Program(TP, FpinP, L; pout="vacuum", time_unit="min") ts1, Ts = GasChromatographySimulator.conventional_program(TP; time_unit=time_unit) ts2, Fps = GasChromatographySimulator.conventional_program(FpinP; time_unit=time_unit) # remove additional 0.0 which are not at the first position ts1_ = ts1[[1; findall(0.0.!=ts1)]] Ts_ = Ts[[1; findall(0.0.!=ts1)]] ts2_ = ts2[[1; findall(0.0.!=ts2)]] Fps_ = Fps[[1; findall(0.0.!=ts2)]] time_steps = GasChromatographySimulator.common_time_steps(ts1_, ts2_) temp_steps = GasChromatographySimulator.new_value_steps(Ts_, ts1_, time_steps) Fpin_steps = GasChromatographySimulator.new_value_steps(Fps_, ts2_, time_steps) if pout == "vacuum" pout_steps = zeros(length(time_steps)) elseif isa(pout, Number) pout_steps = pout.*ones(length(time_steps)) else pout_steps = pn.*ones(length(time_steps)) end a_gf = [zeros(length(time_steps)) zeros(length(time_steps)) L.*ones(length(time_steps)) zeros(length(time_steps))] gf(x) = GasChromatographySimulator.gradient(x, a_gf) T_itp = GasChromatographySimulator.temperature_interpolation(time_steps, temp_steps, gf, L) Fpin_itp = GasChromatographySimulator.steps_interpolation(time_steps, Fpin_steps) pout_itp = GasChromatographySimulator.steps_interpolation(time_steps, pout_steps) prog = GasChromatographySimulator.Program(time_steps, temp_steps, Fpin_steps, pout_steps, gf, a_gf, T_itp, Fpin_itp, pout_itp) return prog end function extract_temperature_and_pressure_programs(TPprog) iP = findall(occursin.("p", names(TPprog))) # column index of pressure information pamb = TPprog[!, iP[end]] #iT = 2:(iP[1]-1) # column index of temperature program information TPs = TPprog[!,1:(iP[1]-1)] PPs = DataFrame(measurement = TPs.measurement, p1 = TPprog[!,iP[1]].+pamb, t1 = TPs.t1) # pressure program in Pa(a) iTrate = findall(occursin.("RT", names(TPs))) # column index of heating rates heatingrates = Array{Array{Union{Missing, Float64}}}(undef, length(iTrate)) Tdiff = Array{Array{Union{Missing, Float64}}}(undef, length(iTrate)) for i=1:length(iTrate) heatingrates[i] = TPs[!, iTrate[i]] Tdiff[i] = TPs[!, iTrate[i]+1] .- TPs[!, iTrate[i]-2] end pressurerates = Array{Array{Union{Missing, Float64}}}(undef, length(iTrate)) for i=1:length(iTrate) pressurerates[i] = (TPprog[!,iP[i+1]] .- TPprog[!,iP[i]]) .* heatingrates[i] ./ Tdiff[i] if !ismissing(pressurerates[i] != zeros(length(pressurerates[i]))) PPs[!,"RP$(i)"] = pressurerates[i] PPs[!,"p$(i+1)"] = TPprog[!, iP[i+1]].+pamb PPs[!,"t$(i+1)"] = TPs[!,"t$(i+1)"] else PPs[!,"t$(i)"] = TPs[!,"t$(i+1)"] .+ Tdiff[i] ./ heatingrates[i] end end PPs[!,"pamb"] = pamb return TPs, PPs end function extract_measured_program(TPprog, path, L) # load the measured programs prog = Array{GasChromatographySimulator.Program}(undef, length(TPprog.filename)) for i=1:length(TPprog.filename) meas_prog = DataFrame(CSV.File(joinpath(path, TPprog.filename[i]), silencewarnings=true)) prog[i] = GasChromatographySimulator.Program(meas_prog.timesteps, meas_prog.tempsteps, meas_prog.pinsteps, meas_prog.poutsteps, L) end return prog end """ load_chromatograms(file; filter_missing=true) Loading of the chromatographic data (column information, GC program information, retention time information, see also "Structure of input data") from a file. # Arguments * `file` ... path to the file. * `filter_missing` ... option to ignore solutes, where some retention times are not given. (`default = true`). # Output A tuple of the following quantities: * `col` ... settings of the column as `GasChromatographySimulator.Column` structure. * `prog` ... Array of the GC programs as `GasChromatographySimulator.Program` structure. * `tRs` ... DataFrame of the retention times. * `solute_names` ... Vector of the solute names. * `pout` ... outlet pressure (detector pressure), "vacuum" or "atmospheric". * `time_unit` ... unit of time scale used in the retention times and GC programs, "min" or "s". """ function load_chromatograms(file; filter_missing=true, delim=";") # new version -> check case for `filter_missing=false` and missing values in further functions!!!! n = open(f->countlines(f), file) #col_df = DataFrame(CSV.File(file, header=1, limit=1, stringtype=String, silencewarnings=true, delim=delim, types=[Float64, Float64, Float64, String, String, String, String])) col_df = DataFrame(CSV.File(file, header=1, limit=1, stringtype=String, silencewarnings=true, delim=delim, types=Dict("L" => Float64, "d" => Float64, "df" => Float64))) col = GasChromatographySimulator.Column(col_df.L[1], col_df.d[1], col_df.df[1], col_df.sp[1], col_df.gas[1]) pout = col_df.pout[1] time_unit = col_df.time_unit[1] n_meas = Int((n - 2 - 2)/2) TPprog = DataFrame(CSV.File(file, header=3, limit=n_meas, stringtype=String, silencewarnings=true, delim=delim)) #PP = DataFrame(CSV.File(file, header=3+n_meas+1, limit=n_meas, stringtype=String)) # convert pressures from Pa(g) to Pa(a), add p_atm to this data set tRs_ = DataFrame(CSV.File(file, header=n-n_meas, stringtype=String, silencewarnings=true, delim=delim)) solute_names_ = names(tRs_)[2:end] # filter non-solute names out (columnx) filter!(x -> !occursin.("Column", x), solute_names_) if names(TPprog)[2] == "filename" path = dirname(file) prog = extract_measured_program(TPprog, path, col.L) else TPs, PPs = extract_temperature_and_pressure_programs(TPprog) prog = Array{GasChromatographySimulator.Program}(undef, length(TPs.measurement)) for i=1:length(TPs.measurement) if pout == "atmospheric" pout_ = PPs[i, end] else pout_ = "vacuum" end prog[i] = Program(collect(skipmissing(TPs[i, 2:end])), collect(skipmissing(PPs[i, 2:(end-1)])), col.L; pout=pout_, time_unit=time_unit) end end # filter out substances with retention times missing if filter_missing == true solute_names = solute_names_[findall((collect(any(ismissing, c) for c in eachcol(tRs_))).==false)[2:end].-1] tRs = tRs_[!,findall((collect(any(ismissing, c) for c in eachcol(tRs_))).==false)] else solute_names = solute_names_ # what to do with missing entries for the optimization???? tRs = tRs_ end return col, prog, tRs[!,1:(length(solute_names)+1)], solute_names, pout, time_unit#, TPs, PPs end """ load_chromatograms(file::Dict{Any, Any}; filter_missing=true, path=joinpath(dirname(pwd()), "data", "exp_pro")) Loading of the chromatographic data (column information, GC program information, retention time information, see also "Structure of input data") from a file selected by the FilePicker in a Pluto notebook. # Arguments * `file` ... file dictionary from the FilePicker. * `filter_missing` ... option to ignore solutes, where some retention times are not given. (`default = true`). * `path` ... if the temperature programs are defined by measured temperatures over time, define the path to these files. # Output A tuple of the following quantities: * `col` ... settings of the column as `GasChromatographySimulator.Column` structure. * `prog` ... Array of the GC programs as `GasChromatographySimulator.Program` structure. * `tRs` ... DataFrame of the retention times. * `solute_names` ... Vector of the solute names. * `pout` ... outlet pressure (detector pressure), "vacuum" or "atmospheric". * `time_unit` ... unit of time scale used in the retention times and GC programs, "min" or "s". """ function load_chromatograms(file::Dict{Any, Any}; filter_missing=true, path=joinpath(dirname(pwd()), "data", "exp_pro"), delim=";") # if file is the output of FilePicker() n = length(CSV.File(file["data"]; silencewarnings=true, comment=";;"))+1 col_df = DataFrame(CSV.File(file["data"], header=1, limit=1, stringtype=String, silencewarnings=true, delim=delim)) col = GasChromatographySimulator.Column(convert(Float64, col_df.L[1]), col_df.d[1], col_df.df[1], col_df.sp[1], col_df.gas[1]) pout = col_df.pout[1] time_unit = col_df.time_unit[1] n_meas = Int((n - 2 - 2)/2) TPprog = DataFrame(CSV.File(file["data"], header=3, limit=n_meas, stringtype=String, silencewarnings=true, delim=delim)) #PP = DataFrame(CSV.File(file, header=3+n_meas+1, limit=n_meas, stringtype=String)) # convert pressures from Pa(g) to Pa(a), add p_atm to this data set tRs_ = DataFrame(CSV.File(file["data"], header=n-n_meas, stringtype=String, silencewarnings=true, comment=";;", delim=delim)) solute_names_ = names(tRs_)[2:end] # filter non-solute names out (columnx) filter!(x -> !occursin.("Column", x), solute_names_) if names(TPprog)[2] == "filename" #path = dirname(file) prog = extract_measured_program(TPprog, path, col.L) else TPs, PPs = extract_temperature_and_pressure_programs(TPprog) prog = Array{GasChromatographySimulator.Program}(undef, length(TPs.measurement)) for i=1:length(TPs.measurement) if pout == "vacuum" pout_ = "vacuum" else # pout="atmospheric" pout_ = PPs[i, end] end prog[i] = Program(collect(skipmissing(TPs[i, 2:end])), collect(skipmissing(PPs[i, 2:(end-1)])), col.L; pout=pout_, time_unit=time_unit) end end # filter out substances with retention times missing if filter_missing == true solute_names = solute_names_[findall((collect(any(ismissing, c) for c in eachcol(tRs_))).==false)[2:end].-1] tRs = tRs_[!,findall((collect(any(ismissing, c) for c in eachcol(tRs_))).==false)] else solute_names = solute_names_ tRs = tRs_ end return col, prog, tRs[!,1:(length(solute_names)+1)], solute_names, pout, time_unit#, TPs, PPs end
RetentionParameterEstimator
https://github.com/GasChromatographyToolbox/RetentionParameterEstimator.jl.git
[ "MIT" ]
0.1.10
406bb881a8d4ac57347dc2b50294b059db2750e6
code
6429
# functions defining the loss-function """ tR_calc(Tchar, θchar, ΔCp, L, d, prog, gas; opt=std_opt) Calculates the retention time tR for a solute with the K-centric parameters `Tchar` `θchar` and `ΔCp` for a column with length `L`, internal diameter `d`, the (conventional) program `prog`, options `opt` and mobile phase `gas`. For this calculation only the ODE for the migration of a solute in a GC column is solved, using the function `GasChromatographySimulator.solving_migration`. """ function tR_calc(Tchar, θchar, ΔCp, L, d, prog, gas; opt=std_opt) # df has no influence on the result (is hidden in Tchar, θchar, ΔCp) # replace the following using GasChromatographySimulator.solving_migration or GasChromatographySimulator.solving_odesystem_r (but reworked for autodiffablity) # also add possibility of quantities with uncertainties!!! # can Optimization.jl work with uncertainties??? k(x,t,Tchar_,θchar_,ΔCp_) = exp((ΔCp_/R + Tchar_/θchar_)*(Tchar_/prog.T_itp(x,t)-1) + ΔCp_/R*real(log(Complex(prog.T_itp(x,t)/Tchar_)))) rM(x,t,L_,d_) = GasChromatographySimulator.mobile_phase_residency(x,t, prog.T_itp, prog.Fpin_itp, prog.pout_itp, L_, d_, gas; ng=opt.ng, vis=opt.vis, control=opt.control) r(t,p,x) = (1+k(x,t,p[1],p[2],p[3]))*rM(x,t,p[4],p[5]) t₀ = 0.0 xspan = (0.0, L) p = (Tchar, θchar, ΔCp, L, d) prob = ODEProblem(r, t₀, xspan, p) solution = solve(prob, alg=opt.alg, abstol=opt.abstol, reltol=opt.reltol) tR = solution.u[end] return tR end # use this as the main function function tR_calc(Tchar, θchar, ΔCp, L, d, df, prog, gas; opt=std_opt) # df has no influence on the result (is hidden in Tchar, θchar, ΔCp) solution = GasChromatographySimulator.solving_migration(prog.T_itp, prog.Fpin_itp, prog.pout_itp, L, d, df, Tchar, θchar, ΔCp, d/df, gas, opt; kwargs...) tR = solution.u[end] return tR end """ tR_τR_calc(Tchar, θchar, ΔCp, L, d, df, prog, Cag, t₀, τ₀, gas; opt=std_opt) Calculates the retention time tR for a solute with the K-centric parameters `Tchar` `θchar` and `ΔCp` for a column with length `L`, internal diameter `d`, film thickness `df`, the (conventional) program `prog`, diffusirivity coefficient `Cag`, start time `t₀`, initial peak width `τ₀`, options `opt` and mobile phase `gas`. For this calculation the ODE-system for the migration of a solute and peak width in a GC column is solved, using the function `GasChromatographySimulator.solving_odesystem_r`. The result is a tuple of retention time `tR` and peak width `τR`. """ function tR_τR_calc(Tchar, θchar, ΔCp, L, d, df, prog, Cag, t₀, τ₀, gas; opt=std_opt) solution = GasChromatographySimulator.solving_odesystem_r(L, d, df, gas, prog.T_itp, prog.Fpin_itp, prog.pout_itp, Tchar, θchar, ΔCp, df/d, Cag, t₀, τ₀, opt) tR = solution.u[end][1] τR = sqrt(solution.u[end][2]) return tR, τR end """ loss(tR, Tchar, θchar, ΔCp, L, d, prog, gas; opt=std_opt, metric="squared") Loss function as sum of squares of the residuals between the measured and calculated retention times. # Arguments * `tR` ... mxn-array of the measured retention times in seconds. * `Tchar` ... n-array of characteristic temperatures in K. * `θchar` ... n-array of characteristic constants in °C. * `ΔCp` ... n-array of the change of adiabatic heat capacity in J mol^-1 K^-1. * `L` ... number of the length of the column in m. * `d` ... number of the diameters of the column in m. * `prog` ... m-array of structure GasChromatographySimulator.Programs containing the definition of the GC-programs. * `gas` ... string of name of the mobile phase gas. # Output The output is a tuple of the following quantites: * `sum((tR.-tRcalc).^2)` ... sum of the squared residuals over m GC-programs and n solutes. """ function loss(tR, Tchar, θchar, ΔCp, L, d, prog, gas; opt=std_opt, metric="squared") if length(size(tR)) == 1 ns = 1 # number of solutes np = size(tR)[1] # number of programs elseif length(size(tR)) == 0 ns = 1 np = 1 else ns = size(tR)[2] np = size(tR)[1] end tRcalc = Array{Any}(undef, np, ns) for j=1:ns for i=1:np tRcalc[i,j] = tR_calc(Tchar[j], θchar[j], ΔCp[j], L, d, prog[i], gas; opt=opt) end end if metric == "abs" l = sum(abs.(tR.-tRcalc))/(ns*np) elseif metric == "squared" l = sum((tR.-tRcalc).^2)/(ns*np) else l = sum((tR.-tRcalc).^2)/(ns*np) end return l end function loss(tR, Tchar, θchar, ΔCp, φ₀, L, d, df, prog, gas; opt=std_opt, metric="squared") if length(size(tR)) == 1 ns = 1 # number of solutes np = size(tR)[1] # number of programs elseif length(size(tR)) == 0 ns = 1 np = 1 else ns = size(tR)[2] np = size(tR)[1] end tRcalc = Array{Any}(undef, np, ns) for j=1:ns for i=1:np tRcalc[i,j] = tR_calc(Tchar[j], θchar[j], ΔCp[j], φ₀, L, d, df, prog[i], gas; opt=opt) end end if metric == "abs" l = sum(abs.(tR.-tRcalc))/(ns*np) elseif metric == "squared" l = sum((tR.-tRcalc).^2)/(ns*np) else l = sum((tR.-tRcalc).^2)/(ns*np) end return l end function tR_calc_(A, B, C, L, d, β, prog, gas; opt=std_opt) k(x,t,A_,B_,C_,β_) = exp(A_ + B_/prog.T_itp(x,t) + C_*log(prog.T_itp(x,t)) - log(β_)) #rM(x,t,L,d) = GasChromatographySimulator.mobile_phase_residency(x,t, prog.T_itp, prog.Fpin_itp, prog.pout_itp, L, d, gas; ng=opt.ng, vis=opt.vis, control=opt.control) rM(x,t,L_,d_) = 64 * sqrt(prog.Fpin_itp(t)^2 - x/L*(prog.Fpin_itp(t)^2-prog.pout_itp(t)^2)) / (prog.Fpin_itp(t)^2-prog.pout_itp(t)^2) * L_/d_^2 * GasChromatographySimulator.viscosity(x, t, prog.T_itp, gas, vis=opt.vis) * prog.T_itp(x, t) r(t,p,x) = (1+k(x,t,p[1],p[2],p[3], p[6]))*rM(x,t,p[4],p[5]) t₀ = 0.0 xspan = (0.0, L) p = (A, B, C, L, d, β) prob = ODEProblem(r, t₀, xspan, p) solution = solve(prob, alg=opt.alg, abstol=opt.abstol, reltol=opt.reltol) tR = solution.u[end] return tR end function loss_(tR, A, B, C, L, d, β, prog, gas; opt=std_opt, metric="squared") # loss function as sum over all programs and solutes if length(size(tR)) == 1 ns = 1 # number of solutes np = size(tR)[1] # number of programs elseif length(size(tR)) == 0 ns = 1 np = 1 else ns = size(tR)[2] np = size(tR)[1] end tRcalc = Array{Any}(undef, np, ns) for j=1:ns for i=1:np tRcalc[i,j] = tR_calc(A[j], B[j], C[j], L, d, β, prog[i], opt, gas) end end if metric == "abs" l = sum(abs.(tR.-tRcalc))/(ns*np) elseif metric == "squared" l = sum((tR.-tRcalc).^2)/(ns*np) else l = sum((tR.-tRcalc).^2)/(ns*np) end return l, tRcalc end
RetentionParameterEstimator
https://github.com/GasChromatographyToolbox/RetentionParameterEstimator.jl.git
[ "MIT" ]
0.1.10
406bb881a8d4ac57347dc2b50294b059db2750e6
code
4196
# additional misc. functions function compare!(df, db) ΔTchar = Array{Float64}(undef, length(df.Name)) Δθchar = Array{Float64}(undef, length(df.Name)) ΔΔCp = Array{Float64}(undef, length(df.Name)) relΔTchar = Array{Float64}(undef, length(df.Name)) relΔθchar = Array{Float64}(undef, length(df.Name)) relΔΔCp = Array{Float64}(undef, length(df.Name)) for i=1:length(df.Name) ii = findfirst(df.Name[i].==db.Name) if isnothing(ii) ΔTchar[i] = NaN Δθchar[i] = NaN ΔΔCp[i] = NaN relΔTchar[i] = NaN relΔθchar[i] = NaN relΔΔCp[i] = NaN else ΔTchar[i] = df.Tchar[i] - (db.Tchar[ii] + 273.15) Δθchar[i] = df.θchar[i] - db.thetachar[ii] ΔΔCp[i] = df.ΔCp[i] - db.DeltaCp[ii] relΔTchar[i] = ΔTchar[i]/(db.Tchar[ii] + 273.15) relΔθchar[i] = Δθchar[i]/db.thetachar[ii] relΔΔCp[i] = ΔΔCp[i]/db.DeltaCp[ii] end end df[!, :ΔTchar] = ΔTchar df[!, :Δθchar] = Δθchar df[!, :ΔΔCp] = ΔΔCp df[!, :relΔTchar] = relΔTchar df[!, :relΔθchar] = relΔθchar df[!, :relΔΔCp] = relΔΔCp return df end function simulate_measurements(compare, meas, result::DataFrame; opt=std_opt) L = compare[1].L sp = compare[1].sp φ₀ = compare[1].df/compare[1].d gas = compare[1].gas prog = compare[2] solute_names = result.Name if compare[6] == "min" a = 60.0 else a = 1.0 end CAS = GasChromatographySimulator.CAS_identification(string.(result.Name)).CAS sub = Array{GasChromatographySimulator.Substance}(undef, length(solute_names)) for i=1:length(solute_names) #ii = findfirst(solute_names[i].==result[j].Name) if "θchar" in names(result) Cag = GasChromatographySimulator.diffusivity(CAS[i], gas) sub[i] = GasChromatographySimulator.Substance(result.Name[i], CAS[i], result.Tchar[i], result.θchar[i], result.ΔCp[i], φ₀, "", Cag, 0.0, 0.0) else Cag = GasChromatographySimulator.diffusivity(CAS[i], gas) sub[i] = GasChromatographySimulator.Substance(result.Name[i], CAS[i], result.Tchar[i]+273.15, result.thetachar[i], result.DeltaCp[i], φ₀, "", Cag, 0.0, 0.0) end end par = Array{GasChromatographySimulator.Parameters}(undef, length(prog)) pl = Array{DataFrame}(undef, length(prog)) loss = Array{Float64}(undef, length(prog)) for i=1:length(compare[2]) #ii = findfirst(solute_names[i].==solute_names_compare) if "d" in names(result) d = mean(result.d) # if d was estimate use the mean value else d = compare[1].d end λ = meas[1].L/d col = GasChromatographySimulator.Column(λ*d, d, φ₀*d, sp, gas) par[i] = GasChromatographySimulator.Parameters(col, compare[2][i], sub, opt) try pl[i] = GasChromatographySimulator.simulate(par[i])[1] catch pl[i] = DataFrame(Name=solute_names, tR=NaN.*ones(length(solute_names)), τR=NaN.*ones(length(solute_names))) end #CAS = GasChromatographySimulator.CAS_identification(string.(result.Name)).CAS ΔtR = Array{Float64}(undef, length(solute_names)) relΔtR = Array{Float64}(undef, length(solute_names)) for k=1:length(solute_names) kk = findfirst(pl[i].Name[k].==compare[4]) tR_compare = Array(compare[3][i, 2:(length(compare[4])+1)]).*a ΔtR[k] = pl[i].tR[k] - tR_compare[kk] relΔtR[k] = (pl[i].tR[k] - tR_compare[kk])/tR_compare[kk] end pl[i][!, :ΔtR] = ΔtR pl[i][!, :relΔtR] = relΔtR loss[i] = sum(ΔtR.^2)/length(ΔtR) end return pl, loss, par end """ separate_error_columns(res) If the result dataframe `res` contains columns with `Measurements` typed values, these columns will be split in two. The first column contains the value and uses the original column name. The second column contains the uncertainty and the name of the column is the original name with an added "_uncertainty". If the column is not of the `Measurements` type, it will be copied as is for the new dataframe. """ function separate_error_columns(res) new_res = DataFrame() for i=1:size(res)[2] if typeof(res[!,i]) == Array{Measurement{Float64}, 1} new_res[!, names(res)[i]] = Measurements.value.(res[!,i]) new_res[!, names(res)[i]*"_uncertainty"] = Measurements.uncertainty.(res[!,i]) else new_res[!, names(res)[i]] = res[!,i] end end return new_res end
RetentionParameterEstimator
https://github.com/GasChromatographyToolbox/RetentionParameterEstimator.jl.git
[ "MIT" ]
0.1.10
406bb881a8d4ac57347dc2b50294b059db2750e6
code
10228
# functions for the notebook function download_data(url) io = IOBuffer(); download = urldownload(url, save_raw=io); return Dict{Any, Any}("data" => io, "name" => split(url, '/')[end]) end # filter function for selected measurements and selected solutes function filter_selected_measurements(meas, selected_measurements, selected_solutes) index_measurements = Array{Int}(undef, length(selected_measurements)) for i=1:length(selected_measurements) index_measurements[i] = findfirst(selected_measurements[i].==meas[3].measurement) end index_solutes = Array{Int}(undef, length(selected_solutes)) for i=1:length(selected_solutes) if isnothing(findfirst(selected_solutes[i].==names(meas[3]))) error("The names of selected analytes are different from the measurement file.") else index_solutes[i] = findfirst(selected_solutes[i].==names(meas[3])) end end meas_select = (meas[1], meas[2][index_measurements], meas[3][index_measurements, [1; index_solutes]], selected_solutes, meas[5], meas[6]) return meas_select end # comparing predicted retention times using the optimization result `res` with the measured retention times `comp` function comparison(res, comp) opt = GasChromatographySimulator.Options(ng=true, odesys=false) #CAS_comp = GasChromatographySimulator.CAS_identification(comp[4]).CAS #CAS_meas = GasChromatographySimulator.CAS_identification(meas[4]).CAS i_sub = findall(x->x in res.Name, comp[4]) # indices of common elements of CAS_comp in CAS_meas (indeices relative to CAS_meas) sub = Array{GasChromatographySimulator.Substance}(undef, length(i_sub)) for i in i_sub id = GasChromatographySimulator.CAS_identification(res.Name[i]) #if ismissing(id) # id_C15= GasChromatographySimulator.CAS_identification("pentadecane") # Cag = GasChromatographySimulator.diffusivity(id_C15, comp[1].gas) # use C15 value # CAS = id_C15.CAS #else Cag = GasChromatographySimulator.diffusivity(id, comp[1].gas) CAS = id.CAS #end if "θchar" in names(res) sub[i] = GasChromatographySimulator.Substance(res.Name[i], CAS, Measurements.value(res.Tchar[i]), Measurements.value(res.θchar[i]), Measurements.value(res.ΔCp[i]), comp[1].df/comp[1].d, "", Cag, 0.0, 0.0) else sub[i] = GasChromatographySimulator.Substance(res.Name[i], CAS, res.Tchar[i]+273.15, res.thetachar[i], res.DeltaCp[i], comp[1].df/comp[1].d, "", Cag, 0.0, 0.0) end # this is for phase ratio as set in comp end if comp[6] == "min" a = 60.0 else a = 1.0 end par = Array{GasChromatographySimulator.Parameters}(undef, length(comp[3].measurement)) pl = Array{DataFrame}(undef, length(comp[3].measurement)) loss = Array{Float64}(undef, length(comp[3].measurement)) for i=1:length(comp[3].measurement) #ii = findfirst(solute_names[i].==solute_names_compare) if "d" in names(res) d = mean(Measurements.value.(res.d)) # if d was estimate use the mean value elseif @isdefined col_input d = col_input.d/1000.0 else d = comp[1].d end col = GasChromatographySimulator.Column(comp[1].L, d, comp[1].df/comp[1].d*d, comp[1].sp, comp[1].gas) par[i] = GasChromatographySimulator.Parameters(col, comp[2][i], sub, opt) #try #pl[i] = GasChromatographySimulator.simulate(par[i])[1] sol, peak = GasChromatographySimulator.solve_separate_multithreads(par[i]) pl[i] = peaklist(sol, peak, par[i]) #catch # pl[i] = DataFrame(Name=comp[4], tR=NaN.*ones(length(comp[4])), τR=NaN.*ones(length(comp[4]))) #end #CAS = GasChromatographySimulator.CAS_identification(string.(result[j].Name)).CAS ΔtR = Array{Float64}(undef, length(comp[4])) relΔtR = Array{Float64}(undef, length(comp[4])) for k=1:length(comp[4]) kk = findfirst(pl[i].Name[k].==comp[4]) tR_compare = Array(comp[3][i, 2:(length(comp[4])+1)]).*a ΔtR[k] = pl[i].tR[k] - tR_compare[kk] relΔtR[k] = (pl[i].tR[k] - tR_compare[kk])/tR_compare[kk] end pl[i][!, :tR] = pl[i].tR./a pl[i][!, :τR] = pl[i].τR./a pl[i][!, :ΔtR] = ΔtR./a pl[i][!, :relΔtR] = relΔtR loss[i] = sum(ΔtR.^2)/length(ΔtR) end return pl, loss, par end # from GasChromatographySimulator function peaklist(sol, peak, par) n = length(par.sub) No = Array{Union{Missing, Int64}}(undef, n) Name = Array{String}(undef, n) CAS = Array{String}(undef, n) tR = Array{Float64}(undef, n) TR = Array{Float64}(undef, n) σR = Array{Float64}(undef, n) uR = Array{Float64}(undef, n) τR = Array{Float64}(undef, n) kR = Array{Float64}(undef, n) Res = fill(NaN, n) Δs = fill(NaN, n) Annotations = Array{String}(undef, n) #Threads.@threads for i=1:n for i=1:n Name[i] = par.sub[i].name CAS[i] = par.sub[i].CAS if sol[i].t[end]==par.col.L tR[i] = sol[i].u[end] TR[i] = par.prog.T_itp(par.col.L, tR[i]) - 273.15 uR[i] = 1/GasChromatographySimulator.residency(par.col.L, tR[i], par.prog.T_itp, par.prog.Fpin_itp, par.prog.pout_itp, par.col.L, par.col.d, par.col.df, par.col.gas, par.sub[i].Tchar, par.sub[i].θchar, par.sub[i].ΔCp, par.sub[i].φ₀; ng=par.opt.ng, vis=par.opt.vis, control=par.opt.control, k_th=par.opt.k_th) τR[i] = sqrt(peak[i].u[end]) σR[i] = τR[i]*uR[i] kR[i] = GasChromatographySimulator.retention_factor(par.col.L, tR[i], par.prog.T_itp, par.col.d, par.col.df, par.sub[i].Tchar, par.sub[i].θchar, par.sub[i].ΔCp, par.sub[i].φ₀; k_th=par.opt.k_th) else tR[i] = NaN TR[i] = NaN uR[i] = NaN τR[i] = NaN σR[i] = NaN kR[i] = NaN end No[i] = try parse(Int,split(par.sub[i].ann, ", ")[end]) catch missing end if ismissing(No[i]) Annotations[i] = par.sub[i].ann else Annotations[i] = join(split(par.sub[i].ann, ", ")[1:end-1], ", ") end end df = sort!(DataFrame(No = No, Name = Name, CAS = CAS, tR = tR, τR = τR, TR=TR, σR = σR, uR = uR, kR = kR, Annotations = Annotations, ), [:tR]) #Threads.@threads for i=1:n-1 for i=1:n-1 Res[i] = (df.tR[i+1] - df.tR[i])/(2*(df.τR[i+1] + df.τR[i])) Δs[i] = (df.tR[i+1] - df.tR[i])/(df.τR[i+1] - df.τR[i]) * log(df.τR[i+1]/df.τR[i]) end df[!, :Res] = Res df[!, :Δs] = Δs return select(df, [:No, :Name, :CAS, :tR, :τR, :TR, :σR, :uR, :kR, :Res, :Δs, :Annotations]) end function plot_chromatogram_comparison(pl, meas, comp; lines=true, annotation=true) gr() p_chrom = Array{Plots.Plot}(undef, length(pl)) for i=1:length(pl) p_chrom[i] = plot(xlabel="time in $(meas[6])", legend=false) max_ = maximum(GasChromatographySimulator.plot_chromatogram(pl[i], (minimum(pl[i].tR)*0.95, maximum(pl[i].tR)*1.05))[3])*1.05 min_ = - max_/20 GasChromatographySimulator.plot_chromatogram!(p_chrom[i], pl[i], (minimum(pl[i].tR)*0.95, maximum(pl[i].tR)*1.05); annotation=false, mirror=false) xlims!((minimum(pl[i].tR)*0.95, maximum(pl[i].tR)*1.05)) ylims!(min_, max_) #add marker for measured retention times for j=1:length(comp[4]) plot!(p_chrom[i], comp[3][i,j+1].*ones(2), [min_, max_], c=:orange) # add lines between measured and calculated retention times jj = findfirst(comp[4][j].==pl[i].Name) apex = GasChromatographySimulator.chromatogram([pl[i].tR[jj]], [pl[i].tR[jj]], [pl[i].τR[jj]])[1] if lines == true plot!(p_chrom[i], [comp[3][i,j+1], pl[i].tR[jj]], [max_, apex], c=:grey, linestyle=:dash) if annotation==true plot!(p_chrom[i], annotations = (pl[i].tR[jj], apex, text(j, 10, rotation=0, :center))) end end end plot!(p_chrom[i], title=comp[3].measurement[i]) end return plot(p_chrom..., layout=(length(p_chrom),1), size=(800,length(p_chrom)*200), yaxis=nothing, grid=false) end function plot_lnk!(p, lnk, Tmin, Tmax; lbl="") Trange = Tmin:(Tmax-Tmin)/100.0:Tmax lnk_calc = Array{Float64}(undef, length(Trange)) for i=1:length(Trange) lnk_calc[i] = lnk(Trange[i]) end plot!(p, Trange, lnk_calc, label=lbl) return p end function Tmin(meas) Tmin_ = Array{Float64}(undef, length(meas[2])) for i=1:length(meas[2]) Tmin_[i] = minimum(meas[2][i].temp_steps) end return minimum(Tmin_) end function add_min_max_marker!(p, Tmin, Tmax, lnk) scatter!(p, (Tmin, lnk(Tmin)), markershape=:rtriangle, markersize=5, c=:black, label = "measured temperature range") scatter!(p, (Tmax, lnk(Tmax)), markershape=:ltriangle, markersize=5, c=:black, label = "measured temperature range") return p end function plotbox(df1) p_box1 = boxplot(ylabel="relative difference in %", legend=false) #for i=1:length(unique(df1.methode)) # df1f = filter([:methode] => x -> x .== unique(df1.methode)[i], df1) boxplot!(p_box1, ["Tchar"], df1.relΔTchar.*100.0) dotplot!(p_box1, ["Tchar"], df1.relΔTchar.*100.0, marker=(:black, stroke(0))) boxplot!(p_box1, ["θchar"], df1.relΔθchar.*100.0) dotplot!(p_box1, ["θchar"], df1.relΔθchar.*100.0, marker=(:black, stroke(0))) boxplot!(p_box1, ["ΔCp"], df1.relΔΔCp.*100.0) dotplot!(p_box1, ["ΔCp"], df1.relΔΔCp.*100.0, marker=(:black, stroke(0))) #end return p_box1 end function difference_estimation_to_alternative_data(res, db) ΔTchar = Array{Float64}(undef, length(res.Name)) Δθchar = Array{Float64}(undef, length(res.Name)) ΔΔCp = Array{Float64}(undef, length(res.Name)) relΔTchar = Array{Float64}(undef, length(res.Name)) relΔθchar = Array{Float64}(undef, length(res.Name)) relΔΔCp = Array{Float64}(undef, length(res.Name)) for i=1:length(res.Name) ii = findfirst(GasChromatographySimulator.CAS_identification(res.Name[i]).CAS.==db.CAS) if !isnothing(ii) ΔTchar[i] = Measurements.value(res.Tchar[i]) - (db.Tchar[ii] + 273.15) Δθchar[i] = Measurements.value(res.θchar[i]) - db.thetachar[ii] ΔΔCp[i] = Measurements.value(res.ΔCp[i]) - db.DeltaCp[ii] relΔTchar[i] = ΔTchar[i]/(db.Tchar[ii] + 273.15) relΔθchar[i] = Δθchar[i]/db.thetachar[ii] relΔΔCp[i] = ΔΔCp[i]/db.DeltaCp[ii] else ΔTchar[i] = NaN Δθchar[i] = NaN ΔΔCp[i] = NaN relΔTchar[i] = NaN relΔθchar[i] = NaN relΔΔCp[i] = NaN end end diff = DataFrame(Name=res.Name, ΔTchar=ΔTchar, Δθchar=Δθchar, ΔΔCp=ΔΔCp, relΔTchar=relΔTchar, relΔθchar=relΔθchar, relΔΔCp=relΔΔCp) return diff end
RetentionParameterEstimator
https://github.com/GasChromatographyToolbox/RetentionParameterEstimator.jl.git
[ "MIT" ]
0.1.10
406bb881a8d4ac57347dc2b50294b059db2750e6
code
31102
# functions used for the optimization of the loss-function #------------------ # Optimization only for the K-centric retention parameters """ opt_Kcentric(x, p) Function used for optimization of the loss-function in regards to the three K-centric parameters. # Arguments * `x` ... 3n-vector of the three K-centric parameters of n solutes. Elements 1:n are Tchar, n+1:2n are θchar and 2n+1:3n are ΔCp values. * `p` ... vector containing the fixed parameters: * `tR = p[1]` ... mxn-array of the measured retention times in seconds. * `L = p[2]` ... number of the length of the column in m. * `d = p[3]` ... number of the diameters of the column in m. * `prog = p[4]` ... m-array of structure GasChromatographySimulator.Programs containing the definition of the GC-programs. * `opt = p[5]` ... struture GasChromatographySimulator.Options containing the settings for options for the simulation. * `gas = p[6]` ... string of name of the mobile phase gas. * `metric = p[7]` ... string of the metric used for the loss function (`squared` or `abs`). # Output * `sum((tR.-tRcalc).^2)` ... sum of the squared residuals over m GC-programs and n solutes. """ function opt_Kcentric(x, p) # for 2-parameter version `x` is shorter, the part for `ΔCp = x[2*ns+1+1:3*ns+1]` will be missing # instead set `ΔCp = zeros(ns)` tR = p[1] L = p[2] d = p[3] prog = p[4] opt = p[5] gas = p[6] metric = p[7] if length(size(tR)) == 1 ns = 1 else ns = size(tR)[2] end Tchar = x[1:ns] # Array length = number solutes θchar = x[ns+1:2*ns] # Array length = number solutes ΔCp = x[2*ns+1:3*ns] # Array length = number solutes return loss(tR, Tchar, θchar, ΔCp, L, d, prog, gas; opt=opt, metric=metric)[1] end function opt_Kcentric_(x, p) # for 2-parameter version `x` is shorter, the part for `ΔCp = x[2*ns+1+1:3*ns+1]` will be missing # instead set `ΔCp = zeros(ns)` tR = p[1] φ₀ = p[2] L = p[3] d = p[4] df = p[5] prog = p[6] opt = p[7] gas = p[8] metric = p[9] if length(size(tR)) == 1 ns = 1 else ns = size(tR)[2] end Tchar = x[1:ns] # Array length = number solutes θchar = x[ns+1:2*ns] # Array length = number solutes ΔCp = x[2*ns+1:3*ns] # Array length = number solutes return loss(tR, Tchar, θchar, ΔCp, φ₀, L, d, df, prog, gas; opt=opt, metric=metric)[1] end """ optimize_Kcentric(tR, col, prog, Tchar_e::Vector{T}, θchar_e::Vector{T}, ΔCp_e::Vector{T}; method=NewtonTrustRegion(), opt=std_opt, maxiters=10000, metric="squared") Optimization regarding the estimization of the retention parameters `Tchar`, `θchar` and `ΔCp`. The initial guess is a vector (`Tchar_e`, `θchar_e` and `ΔCp_e`) for optimization algorithms, which do not need lower/upper bounds. If a method is used, which needs lower/upper bounds the initial parameters should be a matrix, with the first column (`[1,:]`) beeing the initial guess, the second column (`[2,:]`) the lower bound and the third column (`[3,:]`) the upper bound. """ function optimize_Kcentric(tR, col, prog, Tchar_e::Vector{T}, θchar_e::Vector{T}, ΔCp_e::Vector{T}; method=NewtonTrustRegion(), opt=std_opt, maxiters=10000, maxtime=600.0, metric="squared") where T<:Number p = (tR, col.L, col.d, prog, opt, col.gas, metric) x0 = [Tchar_e; θchar_e; ΔCp_e] optf = OptimizationFunction(opt_Kcentric, Optimization.AutoForwardDiff()) prob = Optimization.OptimizationProblem(optf, x0, p, f_calls_limit=maxiters) opt_sol = solve(prob, method, maxiters=maxiters, maxtime=maxtime) return opt_sol end function optimize_Kcentric(tR, col, prog, Tchar_e::Matrix{T}, θchar_e::Matrix{T}, ΔCp_e::Matrix{T}; method=BBO_adaptive_de_rand_1_bin_radiuslimited(), opt=std_opt, maxiters=10000, maxtime=600.0, metric="squared") where T<:Number # here default method should be one which needs bounds p = (tR, col.L, col.d, prog, opt, col.gas, metric) x0 = [Tchar_e[1,:]; θchar_e[1,:]; ΔCp_e[1,:]] lb = [Tchar_e[2,:]; θchar_e[2,:]; ΔCp_e[2,:]] ub = [Tchar_e[3,:]; θchar_e[3,:]; ΔCp_e[3,:]] optf = OptimizationFunction(opt_Kcentric, Optimization.AutoForwardDiff()) prob = Optimization.OptimizationProblem(optf, x0, p, lb=lb, ub=ub, f_calls_limit=maxiters) opt_sol = solve(prob, method, maxiters=maxiters, maxtime=maxtime) return opt_sol end function optimize_Kcentric_(tR, col, prog, Tchar_e::Vector{T}, θchar_e::Vector{T}, ΔCp_e::Vector{T}; method=NewtonTrustRegion(), opt=std_opt, maxiters=10000, maxtime=600.0, metric="squared") where T<:Number p = (tR, col.df/col.d, col.L, col.d, col.df, prog, opt, col.gas, metric) x0 = [Tchar_e; θchar_e; ΔCp_e] optf = OptimizationFunction(opt_Kcentric_, Optimization.AutoForwardDiff()) prob = Optimization.OptimizationProblem(optf, x0, p, f_calls_limit=maxiters) opt_sol = solve(prob, method, maxiters=maxiters, maxtime=maxtime) return opt_sol end """ opt_dKcentric(x, p) Function used for optimization of the loss-function in regards to the three K-centric parameters and the column diameter. # Arguments * `x` ... (3n+1)-vector of the column diameter and the three K-centric parameters of n solutes. The first element represents the column diameterd `d` and elements 2:n+1 are `Tchar`, n+2:2n+1 are `θchar` and 2n+2:3n+1 are `ΔCp` values. * `p` ... vector containing the fixed parameters: * `tR = p[1]` ... mxn-array of the measured retention times in seconds. * `L = p[2]` ... number of the length of the column in m. * `prog = p[3]` ... m-array of structure GasChromatographySimulator.Programs containing the definition of the GC-programs. * `opt = p[4]` ... struture GasChromatographySimulator.Options containing the settings for options for the simulation. * `gas = p[5]` ... string of name of the mobile phase gas. * `metric = p[6]` ... string of the metric used for the loss function (`squared` or `abs`). # Output * `sum((tR.-tRcalc).^2)` ... sum of the squared residuals over m GC-programs and n solutes. """ function opt_dKcentric(x, p) # for 2-parameter version `x` is shorter, the part for `ΔCp = x[2*ns+1+1:3*ns+1]` will be missing # instead set `ΔCp = zeros(ns)` tR = p[1] L = p[2] prog = p[3] opt = p[4] gas = p[5] metric = p[6] if length(size(tR)) == 1 ns = 1 else ns = size(tR)[2] end d = x[1] Tchar = x[2:ns+1] # Array length = number solutes θchar = x[ns+1+1:2*ns+1] # Array length = number solutes ΔCp = x[2*ns+1+1:3*ns+1] # Array length = number solutes return loss(tR, Tchar, θchar, ΔCp, L, d, prog, gas; opt=opt, metric=metric) end function opt_dKcentric_(x, p) # for 2-parameter version `x` is shorter, the part for `ΔCp = x[2*ns+1+1:3*ns+1]` will be missing # instead set `ΔCp = zeros(ns)` tR = p[1] φ₀ = p[2] L = p[3] df = p[4] prog = p[5] opt = p[6] gas = p[7] metric = p[8] if length(size(tR)) == 1 ns = 1 else ns = size(tR)[2] end d = x[1] Tchar = x[2:ns+1] # Array length = number solutes θchar = x[ns+1+1:2*ns+1] # Array length = number solutes ΔCp = x[2*ns+1+1:3*ns+1] # Array length = number solutes return loss(tR, Tchar, θchar, ΔCp, φ₀, L, d, df, prog, gas; opt=opt, metric=metric) end """ optimize_dKcentric(tR, col, prog, d_e, Tchar_e, θchar_e, ΔCp_e; method=NewtonTrustRegion(), opt=std_opt, maxiters=10000, metric="squared") Optimization regarding the estimization of the column diameter `d` and the retention parameters `Tchar`, `θchar` and `ΔCp`. The initial guess is a number (`d_e`) or a vector (`Tchar_e`, `θchar_e` and `ΔCp_e`) for optimization algorithms, which do not need lower/upper bounds. If a method is used, which needs lower/upper bounds the initial parameters should be a vector of length 3 (`d_e`) or a matrix (`Tchar_e`, `θchar_e` and `ΔCp_e`), with the first element/column beeing the initial guess, the second element/column the lower bound and the third element/column the upper bound. """ function optimize_dKcentric(tR, col, prog, d_e::Number, Tchar_e::Vector{T}, θchar_e::Vector{T}, ΔCp_e::Vector{T}; method=NewtonTrustRegion(), opt=std_opt, maxiters=10000, maxtime=600.0, metric="squared") where T<:Number p = (tR, col.L, prog, opt, col.gas, metric) x0 = [d_e; Tchar_e; θchar_e; ΔCp_e] optf = OptimizationFunction(opt_dKcentric, Optimization.AutoForwardDiff()) prob = Optimization.OptimizationProblem(optf, x0, p, f_calls_limit=maxiters) opt_sol = solve(prob, method, maxiters=maxiters, maxtime=maxtime) return opt_sol end function optimize_dKcentric(tR, col, prog, d_e::Vector{T}, Tchar_e::Matrix{T}, θchar_e::Matrix{T}, ΔCp_e::Matrix{T}; method=BBO_adaptive_de_rand_1_bin_radiuslimited(), opt=opt_std, maxiters=10000, maxtime=600.0, metric="squared") where T<:Number # here default method should be one which needs bounds p = (tR, col.L, prog, opt, col.gas, metric) x0 = [d_e[1]; Tchar_e[1,:]; θchar_e[1,:]; ΔCp_e[1,:]] lb = [d_e[2]; Tchar_e[2,:]; θchar_e[2,:]; ΔCp_e[2,:]] ub = [d_e[3]; Tchar_e[3,:]; θchar_e[3,:]; ΔCp_e[3,:]] optf = OptimizationFunction(opt_dKcentric, Optimization.AutoForwardDiff()) prob = Optimization.OptimizationProblem(optf, x0, p, lb=lb, ub=ub, f_calls_limit=maxiters) opt_sol = solve(prob, method, maxiters=maxiters, maxtime=maxtime) return opt_sol end function optimize_dKcentric_(tR, col, prog, d_e::Number, Tchar_e::Vector{T}, θchar_e::Vector{T}, ΔCp_e::Vector{T}; method=NewtonTrustRegion(), opt=std_opt, maxiters=10000, maxtime=600.0, metric="squared") where T<:Number p = (tR, col.df/col.d, col.L, col.df, prog, opt, col.gas, metric) x0 = [d_e; Tchar_e; θchar_e; ΔCp_e] optf = OptimizationFunction(opt_dKcentric_, Optimization.AutoForwardDiff()) prob = Optimization.OptimizationProblem(optf, x0, p, f_calls_limit=maxiters) opt_sol = solve(prob, method, maxiters=maxiters, maxtime=maxtime) return opt_sol end function estimate_parameters(tRs, solute_names, col, prog, rp1_e, rp2_e, rp3_e; method=NewtonTrustRegion(), opt=std_opt, maxiters=10000, maxtime=600.0, mode="dKcentric", metric="squared", pout="vacuum", time_unit="min") # mode = "Kcentric", "Kcentric_single", "dKcentric", "dKcentric_single" # add the case for 2-parameter model, where rp3 === 0.0 always # -> alternative versions of the different `optimize_` functions (without the third retention parameter) # -> similar, alternative versions for `opt_` functions needed if time_unit == "min" a = 60.0 else a = 1.0 end tR_meas = Array(tRs[:,2:end]).*a if length(size(tR_meas)) == 1 ns = 1 else ns = size(tR_meas)[2] end d_e = col.d rp1 = Array{Float64}(undef, ns) rp2 = Array{Float64}(undef, ns) rp3 = Array{Float64}(undef, ns) min = Array{Float64}(undef, ns) #retcode = Array{Any}(undef, ns) if mode == "Kcentric_single" sol = Array{SciMLBase.OptimizationSolution}(undef, ns) for j=1:ns sol[j] = optimize_Kcentric(tR_meas[:,j], col, prog, rp1_e[j,:], rp2_e[j,:], rp3_e[j,:]; method=method, opt=opt, maxiters=maxiters, maxtime=maxtime, metric=metric) rp1[j] = sol[j][1] rp2[j] = sol[j][2] rp3[j] = sol[j][3] min[j] = sol[j].minimum #retcode[j] = sol[j].retcode end df = DataFrame(Name=solute_names, Tchar=rp1, θchar=rp2, ΔCp=rp3, min=min)#, retcode=retcode) elseif mode == "Kcentric" sol = optimize_Kcentric(tR_meas, col, prog, rp1_e, rp2_e, rp3_e; method=method, opt=opt, maxiters=maxiters, maxtime=maxtime, metric=metric) rp1 = sol[1:ns] # Array length = number solutes rp2 = sol[ns+1:2*ns] # Array length = number solutes rp3 = sol[2*ns+1:3*ns] # Array length = number solutes for j=1:ns min[j] = sol.minimum #retcode[j] = sol.retcode end df = DataFrame(Name=solute_names, Tchar=rp1, θchar=rp2, ΔCp=rp3, min=min)#, retcode=retcode) elseif mode == "dKcentric" sol = optimize_dKcentric(tR_meas, col, prog, d_e, rp1_e, rp2_e, rp3_e; method=method, opt=opt, maxiters=maxiters, maxtime=maxtime, metric=metric) d = sol[1].*ones(ns) rp1 = sol[2:ns+1] # Array length = number solutes rp2 = sol[ns+1+1:2*ns+1] # Array length = number solutes rp3 = sol[2*ns+1+1:3*ns+1] # Array length = number solutes for j=1:ns min[j] = sol.minimum #retcode[j] = sol.retcode end df = DataFrame(Name=solute_names, d=d, Tchar=rp1, θchar=rp2, ΔCp=rp3, min=min)#, retcode=retcode) elseif mode == "dKcentric_single" sol = Array{SciMLBase.OptimizationSolution}(undef, ns) d = Array{Float64}(undef, ns) for j=1:ns sol[j] = optimize_dKcentric(tR_meas[:,j], col, prog, d_e, rp1_e[j,:], rp2_e[j,:], rp3_e[j,:]; method=method, opt=opt, maxiters=maxiters, maxtime=maxtime, metric=metric) d[j] = sol[j][1] rp1[j] = sol[j][2] rp2[j] = sol[j][3] rp3[j] = sol[j][4] min[j] = sol[j].minimum #retcode[j] = sol[j].retcode end df = DataFrame(Name=solute_names, d=d, Tchar=rp1, θchar=rp2, ΔCp=rp3, min=min)#, retcode=retcode) end return df, sol end """ estimate_parameters() Calculate the estimates for the K-centric parameters and (optional) the column diameter. # Arguments * `chrom` ... Tuple of the loaded chromatogram, see [`load_chromatograms`](@ref) # Options * `method=NewtonTrustRegion()` ... used optimization method * `opt=std_opt` ... general options, `std_opt = GasChromatographySimulator.Options(abstol=1e-8, reltol=1e-5, ng=true, odesys=false)` * `maxiters=10000` ... maximum number of iterations for every single optimization * `maxtime=600.0` ... maximum time for every single optimization * `mode="dKcentric"` ... mode of the estimation. Possible options: * "Kcentric_single" ... optimization for the three K-centric retention parameters separatly for every solute * "Kcentric" ... optimization for the three K-centric retention parameters together for all solutes * "dKcentric_single" ... optimization for the column diameter and the three K-centric retention parameters separatly for every solute * "dKcentric" ... optimization for the column diameter and the three K-centric retention parameters together for all solutes * `metric="squared"` ... used metric for the loss function ("squared" or "abs") # Output * `df` ... DataFrame with the columns `Name` (solute names), `d` (estimated column diameter, optional), `Tchar` (estimated Tchar), `θchar` (estimated θchar), `ΔCp` (estimated ΔCp) and `min` (value of the loss function at the found optima) * `sol` ... Array of `SciMLBase.OptimizationSolution` with the results of the optimization with some additional informations. """ function estimate_parameters(chrom; method=NewtonTrustRegion(), opt=std_opt, maxiters=10000, maxtime=600.0, mode="dKcentric", metric="squared") Tchar_est, θchar_est, ΔCp_est, Telu_max = estimate_start_parameter(chrom[3], chrom[1], chrom[2]; time_unit=chrom[6]) return estimate_parameters(chrom[3], chrom[4], chrom[1], chrom[2], Tchar_est, θchar_est, ΔCp_est; method=method, opt=opt, maxiters=maxiters, maxtime=maxtime, mode=mode, metric=metric, pout=chrom[5], time_unit=chrom[6]) end function estimate_parameters_(tRs, solute_names, col, prog, rp1_e, rp2_e, rp3_e; method=NewtonTrustRegion(), opt=std_opt, maxiters=10000, maxtime=600.0, mode="dKcentric", metric="squared", pout="vacuum", time_unit="min") # mode = "Kcentric", "Kcentric_single", "dKcentric", "dKcentric_single" if time_unit == "min" a = 60.0 else a = 1.0 end tR_meas = Array(tRs[:,2:end]).*a if length(size(tR_meas)) == 1 ns = 1 else ns = size(tR_meas)[2] end d_e = col.d rp1 = Array{Float64}(undef, ns) rp2 = Array{Float64}(undef, ns) rp3 = Array{Float64}(undef, ns) min = Array{Float64}(undef, ns) #retcode = Array{Any}(undef, ns) if mode == "Kcentric_single" sol = Array{SciMLBase.OptimizationSolution}(undef, ns) for j=1:ns sol[j] = optimize_Kcentric_(tR_meas[:,j], col, prog, rp1_e[j,:], rp2_e[j,:], rp3_e[j,:]; method=method, opt=opt, maxiters=maxiters, maxtime=maxtime, metric=metric) rp1[j] = sol[j][1] rp2[j] = sol[j][2] rp3[j] = sol[j][3] min[j] = sol[j].minimum #retcode[j] = sol[j].retcode end df = DataFrame(Name=solute_names, Tchar=rp1, θchar=rp2, ΔCp=rp3, min=min)#, retcode=retcode) elseif mode == "Kcentric" sol = optimize_Kcentric_(tR_meas, col, prog, rp1_e, rp2_e, rp3_e; method=method, opt=opt, maxiters=maxiters, maxtime=maxtime, metric=metric) rp1 = sol[1:ns] # Array length = number solutes rp2 = sol[ns+1:2*ns] # Array length = number solutes rp3 = sol[2*ns+1:3*ns] # Array length = number solutes for j=1:ns min[j] = sol.minimum #retcode[j] = sol.retcode end df = DataFrame(Name=solute_names, Tchar=rp1, θchar=rp2, ΔCp=rp3, min=min)#, retcode=retcode) elseif mode == "dKcentric" sol = optimize_dKcentric_(tR_meas, col, prog, d_e, rp1_e, rp2_e, rp3_e; method=method, opt=opt, maxiters=maxiters, maxtime=maxtime, metric=metric) d = sol[1].*ones(ns) rp1 = sol[2:ns+1] # Array length = number solutes rp2 = sol[ns+1+1:2*ns+1] # Array length = number solutes rp3 = sol[2*ns+1+1:3*ns+1] # Array length = number solutes for j=1:ns min[j] = sol.minimum #retcode[j] = sol.retcode end df = DataFrame(Name=solute_names, d=d, Tchar=rp1, θchar=rp2, ΔCp=rp3, min=min)#, retcode=retcode) elseif mode == "dKcentric_single" sol = Array{SciMLBase.OptimizationSolution}(undef, ns) d = Array{Float64}(undef, ns) for j=1:ns sol[j] = optimize_dKcentric_(tR_meas[:,j], col, prog, d_e, rp1_e[j,:], rp2_e[j,:], rp3_e[j,:]; method=method, opt=opt, maxiters=maxiters, maxtime=maxtime, metric=metric) d[j] = sol[j][1] rp1[j] = sol[j][2] rp2[j] = sol[j][3] rp3[j] = sol[j][4] min[j] = sol[j].minimum #retcode[j] = sol[j].retcode end df = DataFrame(Name=solute_names, d=d, Tchar=rp1, θchar=rp2, ΔCp=rp3, min=min)#, retcode=retcode) end return df, sol end # full methods """ check_measurement(meas, col_input; min_th=0.1, loss_th=1.0, se_col=true) Similar to `method_m1` ([`method_m1`](@ref)) estimate the three retention parameters ``T_{char}``, ``θ_{char}`` and ``ΔC_p`` including standard errors, see [`stderror`](@ref). In addition, if the found optimized minima is above a threshold `min_th`, it is flagged and the squared differences of single measured retention times and calculated retention times above another threshold `loss_th` are recorded. # Arguments * `meas` ... Tuple with the loaded measurement data, see [`load_chromatograms`](@ref). * `col_input` ... Named tuple with `col_input.L` the column length in m and `col_input.d` the column diameter in mm. If this parameter is not gicen, than these parameters are taken from `meas`. * `se_col=true` ... If `true` the standard errors (from the Hessian matrix, see [`stderror`](@ref)) of the estimated parameters are added as separate columns to the result dataframe. If `false` the standard errors are added to the values as `Masurement` type. # Output * `check` ... Boolean. `true` if all values are below the thresholds, `false` if not. * `msg` ... String. Description of `check` * `df_flag` ... Dataframe containing name of the flagged measurements, solutes and the corresponding mesured and calculated retention times. * `index_flag` ... Indices of flagged results * `res` ... Dataframe with the optimized parameters and the found minima. * `Telu_max` ... The maximum of elution temperatures every solute experiences in the measured programs. """ function check_measurement(meas, col_input; min_th=0.1, loss_th=1.0, se_col=true, method=NewtonTrustRegion(), opt=std_opt, maxiters=10000, maxtime=600.0) col = GasChromatographySimulator.Column(col_input.L, col_input.d*1e-3, meas[1].df, meas[1].sp, meas[1].gas) Tchar_est, θchar_est, ΔCp_est, Telu_max = RetentionParameterEstimator.estimate_start_parameter(meas[3], col, meas[2]; time_unit=meas[6]) df = estimate_parameters(meas[3], meas[4], col, meas[2], Tchar_est, θchar_est, ΔCp_est; mode="Kcentric_single", pout=meas[5], time_unit=meas[6], method=method, opt=std_opt, maxiters=maxiters, maxtime=maxtime)[1] index_flag = findall(df.min.>min_th) if length(index_flag) == 0 check = true msg = "retention times in normal range" df_flag = DataFrame() else check = false msg = "discrapancy of retention times detected" loss_flag, tRcalc, tRmeas = flagged_loss(meas, df, index_flag) index_loss_flag = findall(loss_flag.>loss_th) flag_meas = Array{String}(undef, length(index_loss_flag)) flag_sub = Array{String}(undef, length(index_loss_flag)) tRmeas_ = Array{Float64}(undef, length(index_loss_flag)) tRcalc_ = Array{Float64}(undef, length(index_loss_flag)) for i=1:length(index_loss_flag) flag_meas[i] = meas[3].measurement[index_loss_flag[i][1]] flag_sub[i] = meas[4][index_flag[index_loss_flag[i][2]]] tRmeas_[i] = tRmeas[index_loss_flag[i][1], index_loss_flag[i][2]] tRcalc_[i] = tRcalc[index_loss_flag[i][1], index_loss_flag[i][2]] end df_flag = DataFrame(measurement=flag_meas, solute=flag_sub, tRmeas=tRmeas_, tRcalc=tRcalc_) end # calculate the standard errors of the 3 parameters using the hessian matrix stderrors = stderror(meas, df, col_input)[1] # output dataframe res = if se_col == true DataFrame(Name=df.Name, min=df.min, Tchar=df.Tchar, Tchar_std=stderrors.sd_Tchar, θchar=df.θchar, θchar_std=stderrors.sd_θchar, ΔCp=df.ΔCp, ΔCp_std=stderrors.sd_ΔCp) else DataFrame(Name=df.Name, min=df.min, Tchar=df.Tchar.±stderrors.sd_Tchar, θchar=df.θchar.±stderrors.sd_θchar, ΔCp=df.ΔCp.±stderrors.sd_ΔCp) end return check, msg, df_flag, index_flag, res, Telu_max end function flagged_loss(meas, df, index_flag) if meas[6] == "min" a = 60.0 else a = 1.0 end tRcalc = Array{Float64}(undef, length(meas[3].measurement), length(index_flag)) tRmeas = Array{Float64}(undef, length(meas[3].measurement), length(index_flag)) for j=1:length(index_flag) for i=1:length(meas[3].measurement) tRcalc[i,j] = RetentionParameterEstimator.tR_calc(df.Tchar[index_flag[j]], df.θchar[index_flag[j]], df.ΔCp[index_flag[j]], meas[1].L, meas[1].d, meas[2][i], meas[1].gas) tRmeas[i,j] = meas[3][!, index_flag[j]+1][i]*a end end (tRmeas.-tRcalc).^2, tRcalc, tRmeas end """ method_m1(meas, col_input; se_col=true) Estimation of the three retention parameters ``T_{char}``, ``θ_{char}`` and ``ΔC_p`` including standard errors, see [`stderror`](@ref). # Arguments * `meas` ... Tuple with the loaded measurement data, see [`load_chromatograms`](@ref). * `col_input` ... Named tuple with `col_input.L` the column length in m and `col_input.d` the column diameter in mm. If this parameter is not gicen, than these parameters are taken from `meas`. * `se_col=true` ... If `true` the standard errors (from the Hessian matrix, see [`stderror`](@ref)) of the estimated parameters are added as separate columns to the result dataframe. If `false` the standard errors are added to the values as `Masurement` type. # Output * `res` ... Dataframe with the optimized parameters and the found minima. * `Telu_max` ... The maximum of elution temperatures every solute experiences in the measured programs. """ function method_m1(meas, col_input; se_col=true, method=NewtonTrustRegion(), opt=std_opt, maxiters=10000, maxtime=600.0) # definition of the column col = GasChromatographySimulator.Column(col_input.L, col_input.d*1e-3, meas[1].df, meas[1].sp, meas[1].gas) # calculate start parameters Tchar_est, θchar_est, ΔCp_est, Telu_max = estimate_start_parameter(meas[3], col, meas[2]; time_unit=meas[6]) # optimize every solute separatly for the 3 remaining parameters `Tchar`, `θchar`, `ΔCp` res_ = estimate_parameters(meas[3], meas[4], col, meas[2], Tchar_est, θchar_est, ΔCp_est; mode="Kcentric_single", pout=meas[5], time_unit=meas[6], method=method, opt=std_opt, maxiters=maxiters, maxtime=maxtime)[1] # calculate the standard errors of the 3 parameters using the hessian matrix stderrors = stderror(meas, res_, col_input)[1] # output dataframe res = if se_col == true DataFrame(Name=res_.Name, min=res_.min, Tchar=res_.Tchar, Tchar_std=stderrors.sd_Tchar, θchar=res_.θchar, θchar_std=stderrors.sd_θchar, ΔCp=res_.ΔCp, ΔCp_std=stderrors.sd_ΔCp) else DataFrame(Name=res_.Name, min=res_.min, Tchar=res_.Tchar.±stderrors.sd_Tchar, θchar=res_.θchar.±stderrors.sd_θchar, ΔCp=res_.ΔCp.±stderrors.sd_ΔCp) end return res, Telu_max end """ method_m2(meas; se_col=true) Estimation of the column diameter ``d`` and three retention parameters ``T_{char}``, ``θ_{char}`` and ``Δ C_p`` including standard errors, see [`stderror`](@ref). In a first run all four parameters are estimated for every substance separatly, resulting in different optimized column diameters. The mean value of the column diameter is used for a second optimization using this mean diameter and optimize the remainig thre retention parameters ``T_{char}``, ``θ_{char}`` and ``Δ C_p``. # Arguments * `meas` ... Tuple with the loaded measurement data, see [`load_chromatograms`](@ref). * `col_input` ... Named tuple with `col_input.L` the column length in m and `col_input.d` the column diameter in mm. If this parameter is not gicen, than these parameters are taken from `meas`. * `se_col=true` ... If `true` the standard errors (from the Hessian matrix, see [`stderror`](@ref)) of the estimated parameters are added as separate columns to the result dataframe. If `false` the standard errors are added to the values as `Masurement` type. # Output * `res` ... Dataframe with the optimized parameters and the found minima. * `Telu_max` ... The maximum of elution temperatures every solute experiences in the measured programs. """ function method_m2(meas; se_col=true, method=NewtonTrustRegion(), opt=std_opt, maxiters=10000, maxtime=600.0) # retention times, use only the solutes, which have non-missing retention time entrys tRs = meas[3][!,findall((collect(any(ismissing, c) for c in eachcol(meas[3]))).==false)] # solute names, use only the solutes, which have non-missing retention time entrys solute_names = meas[4][findall((collect(any(ismissing, c) for c in eachcol(meas[3]))).==false)[2:end].-1] # calculate start parameters Tchar_est, θchar_est, ΔCp_est, Telu_max = estimate_start_parameter(tRs, meas[1], meas[2]; time_unit=meas[6]) # optimize every solute separatly for the 4 parameters `Tchar`, `θchar`, `ΔCp` and `d` res_dKcentric_single = estimate_parameters(tRs, solute_names, meas[1], meas[2], Tchar_est, θchar_est, ΔCp_est; pout=meas[5], time_unit=meas[6], mode="dKcentric_single", method=method, opt=std_opt, maxiters=maxiters, maxtime=maxtime)[1] # define a new column with the mean value of the estimated `d` over all solutes new_col = GasChromatographySimulator.Column(meas[1].L, mean(res_dKcentric_single.d), meas[1].df, meas[1].sp, meas[1].gas) # optimize every solute separatly for the 3 remaining parameters `Tchar`, `θchar`, `ΔCp` res_ = estimate_parameters(tRs, solute_names, new_col, meas[2], res_dKcentric_single.Tchar, res_dKcentric_single.θchar, res_dKcentric_single.ΔCp; pout=meas[5], time_unit=meas[6], mode="Kcentric_single", method=method, opt=std_opt, maxiters=maxiters, maxtime=maxtime)[1] res_[!, :d] = mean(res_dKcentric_single.d).*ones(length(res_.Name)) res_[!, :d_std] = std(res_dKcentric_single.d).*ones(length(res_.Name)) # calculate the standard errors of the 3 parameters using the hessian matrix stderrors = stderror(meas, res_)[1] # output dataframe res = if se_col == true DataFrame(Name=res_.Name, min=res_.min, Tchar=res_.Tchar, Tchar_std=stderrors.sd_Tchar, θchar=res_.θchar, θchar_std=stderrors.sd_θchar, ΔCp=res_.ΔCp, ΔCp_std=stderrors.sd_ΔCp, d=res_.d, d_std=res_.d_std) else DataFrame(Name=res_.Name, min=res_.min, Tchar=res_.Tchar.±stderrors.sd_Tchar, θchar=res_.θchar.±stderrors.sd_θchar, ΔCp=res_.ΔCp.±stderrors.sd_ΔCp, d=res_.d.±res_.d_std) end return res, Telu_max end """ stderror(meas, res) Calculation of the standard error of the found optimized parameters using the hessian matrix at the optima. # Arguments * `meas` ... Tuple with the loaded measurement data, see [`load_chromatograms`](@ref). * `res` ... Dataframe with the result of the optimization, see [`estimate_parameters`](@ref). Optional parameters * `col_input` ... Named tuple with `col_input.L` the column length in m and `col_input.d` the column diameter in mm. If this parameter is not gicen, than these parameters are taken from `meas`. # Output * `stderrors` ... Dataframe with the standard errors of the optimized parameters. * `Hessian` ... The hessian matrix at the found optims. """ function stderror(meas, res) sdTchar = Array{Float64}(undef, size(res)[1]) sdθchar = Array{Float64}(undef, size(res)[1]) sdΔCp = Array{Float64}(undef, size(res)[1]) Hessian = Array{Any}(undef, size(res)[1]) for i=1:size(res)[1] # the loss-function used in the optimization p = [meas[3][!,i+1].*60.0, meas[1].L, meas[1].d, meas[2], std_opt, meas[1].gas, "squared"] LF(x) = opt_Kcentric(x, p) # the hessian matrix of the loss-function, calculated with ForwardDiff.jl H(x) = ForwardDiff.hessian(LF, x) # the hessian matrix at the found optima Hessian[i] = H([res.Tchar[i], res.θchar[i], res.ΔCp[i]]) # the calculated standard errors of the parameters sdTchar[i] = sqrt.(abs.(inv(Hessian[i])))[1,1] sdθchar[i] = sqrt.(abs.(inv(Hessian[i])))[2,2] sdΔCp[i] = sqrt.(abs.(inv(Hessian[i])))[3,3] end stderrors = DataFrame(Name=res.Name, sd_Tchar=sdTchar, sd_θchar=sdθchar, sd_ΔCp=sdΔCp) return stderrors, Hessian end function stderror(meas, res, col_input) sdTchar = Array{Float64}(undef, size(res)[1]) sdθchar = Array{Float64}(undef, size(res)[1]) sdΔCp = Array{Float64}(undef, size(res)[1]) Hessian = Array{Any}(undef, size(res)[1]) for i=1:size(res)[1] # the loss-function used in the optimization p = [meas[3][!,i+1].*60.0, col_input.L, col_input.d, meas[2], std_opt, meas[1].gas, "squared"] LF(x) = opt_Kcentric(x, p) # the hessian matrix of the loss-function, calculated with ForwardDiff.jl H(x) = ForwardDiff.hessian(LF, x) # the hessian matrix at the found optima Hessian[i] = H([res.Tchar[i], res.θchar[i], res.ΔCp[i]]) # the calculated standard errors of the parameters sdTchar[i] = sqrt.(abs.(inv(Hessian[i])))[1,1] sdθchar[i] = sqrt.(abs.(inv(Hessian[i])))[2,2] sdΔCp[i] = sqrt.(abs.(inv(Hessian[i])))[3,3] end stderrors = DataFrame(Name=res.Name, sd_Tchar=sdTchar, sd_θchar=sdθchar, sd_ΔCp=sdΔCp) return stderrors, Hessian end
RetentionParameterEstimator
https://github.com/GasChromatographyToolbox/RetentionParameterEstimator.jl.git
[ "MIT" ]
0.1.10
406bb881a8d4ac57347dc2b50294b059db2750e6
code
823
module RetentionParameterEstimator using Reexport @reexport using CSV @reexport using DataFrames using ForwardDiff using GasChromatographySimulator using Interpolations @reexport using Measurements using Optimization using OptimizationBBO using OptimizationCMAEvolutionStrategy using OptimizationOptimJL using OptimizationOptimisers @reexport using Plots @reexport using PlutoUI @reexport using StatsPlots using UrlDownload @reexport using Statistics include("Load.jl") include("Loss.jl") include("Estimate_Start_Values.jl") include("Optimization.jl") include("Simulate_Test.jl") include("Misc.jl") include("Notebook.jl") const θref = 30.0 const rT_nom = 0.69 const Tst = 273.15 const R = 8.31446261815324 const std_opt = GasChromatographySimulator.Options(abstol=1e-8, reltol=1e-5, ng=true, odesys=false) end # module
RetentionParameterEstimator
https://github.com/GasChromatographyToolbox/RetentionParameterEstimator.jl.git
[ "MIT" ]
0.1.10
406bb881a8d4ac57347dc2b50294b059db2750e6
code
4617
# Functions used to simulate chromatograms to use as test values for the optimization #""" #conventional_GC(L, d, df, sp, gas, TP, PP, solutes, db_path, db_file) # #Description. #""" function conventional_GC(L, d, df, sp, gas, TP, PP, solutes, db_path, db_file; pout="vacuum", time_unit="min") opt = std_opt col = GasChromatographySimulator.Column(L, d, df, sp, gas) prog = GasChromatographySimulator.Program(TP, PP, L; pout=pout, time_unit=time_unit) sub = GasChromatographySimulator.load_solute_database(db_path, db_file, sp, gas, solutes, zeros(length(solutes)), zeros(length(solutes))) par = GasChromatographySimulator.Parameters(col, prog, sub, opt) return par end #""" # sim_test_chrom(L, d, df, sp, gas, TPs, PPs, solutes, db_path, db_file) # #Description. #""" function sim_test_chrom(L, d, df, sp, gas, TPs, PPs, solutes, db_path, db_file; pout="vacuum", time_unit="min") par_meas = Array{GasChromatographySimulator.Parameters}(undef, length(TPs)) for i=1:length(TPs) par_meas[i] = conventional_GC(L, d, df, sp, gas, TPs[i], PPs[i], solutes, db_path, db_file; pout=pout, time_unit=time_unit) end tR_meas = Array{Float64}(undef, length(TPs), length(solutes)) for i=1:length(TPs) pl_meas = GasChromatographySimulator.simulate(par_meas[i])[1] for j=1:length(solutes) jj = findfirst(pl_meas.Name.==solutes[j]) tR_meas[i,j] = pl_meas.tR[jj] end end return tR_meas, par_meas end function sim_test_chrom(column, TPs, PPs, solutes, db_path, db_file) tR_meas, par_meas = sim_test_chrom(column[:L], column[:d], column[:df], column[:sp], column[:gas], TPs, PPs, solutes, db_path, db_file; pout=column[:pout], time_unit=column[:time_unit]) return tR_meas, par_meas end function convert_vector_of_vector_to_2d_array(TPs) nTP = Array{Int}(undef, length(TPs)) for i=1:length(TPs) nTP[i] = length(TPs[i]) end TPm = Array{Union{Float64,Missing}}(undef, length(TPs), maximum(nTP)) for i=1:length(TPs) for j=1:maximum(nTP) if j>length(TPs[i]) TPm[i,j] = missing else TPm[i,j] = TPs[i][j] end end end return TPm end function program_header!(df_P, c) header = Array{Symbol}(undef, size(df_P)[2]) header[1] = :measurement i1 = 1 i2 = 1 i3 = 1 for i=2:size(df_P)[2] if i in collect(2:3:size(df_P)[2]) header[i] = Symbol(string(c, "$(i1)")) i1 = i1 + 1 elseif i in collect(3:3:size(df_P)[2]) header[i] = Symbol("t$(i2)") i2 = i2 + 1 else header[i] = Symbol(string("R", c, "$(i3)")) i3 = i3 + 1 end end return rename!(df_P, header) end function save_simulation(file, column, measurement_name, TPs, PPs, pamb, solutes, tR_meas) # save the results: # # system information in header # L, d, df, sp, gas, pout, time_unit CSV.write(file, DataFrame(column)) # Program # measurment_name, TP, p1, p2, ... , pamb TPm = RetentionParameterEstimator.convert_vector_of_vector_to_2d_array(TPs) PPm = RetentionParameterEstimator.convert_vector_of_vector_to_2d_array(PPs) df_prog = DataFrame([measurement_name TPm PPm[:,1:3:end].-pamb fill(pamb, length(measurement_name))], :auto) # header naming for Program header = Array{Symbol}(undef, size(df_prog)[2]) header[1] = :measurement header[end] = :pamb np = size(df_prog)[2] - 2 # number of program columns (temperature and pressure) nrates = Int((np - 3)/4) # number of rates of the temperature program i1 = 1 i2 = 1 i3 = 1 for i=2:(np-nrates) # temperature program part if i in collect(2:3:(np-nrates)) header[i] = Symbol(string("T", "$(i1)")) i1 = i1 + 1 elseif i in collect(3:3:(np-nrates)) header[i] = Symbol("t$(i2)") i2 = i2 + 1 else header[i] = Symbol(string("RT", "$(i3)")) i3 = i3 + 1 end end for i=(np-nrates+1):(size(df_prog)[2]-1) # pressure part header[i] = Symbol(string("p$(i-(np-nrates))")) end rename!(df_prog, header) CSV.write(file, df_prog, append=true, writeheader=true) # retention times # measurement_name, tR if column[:time_unit] == "min" a = 60.0 else a = 1.0 end df_tR = DataFrame(measurement=measurement_name) for i=1:length(solutes) df_tR[!, solutes[i]] = tR_meas[:,i]./a end CSV.write(file, df_tR, append=true, writeheader=true) end
RetentionParameterEstimator
https://github.com/GasChromatographyToolbox/RetentionParameterEstimator.jl.git
[ "MIT" ]
0.1.10
406bb881a8d4ac57347dc2b50294b059db2750e6
code
3909
using Test, RetentionParameterEstimator, GasChromatographySimulator L = 30.0 d = 0.25e-3 df = 0.25e-6 sp = "SLB5ms" gas = "He" TP = [40.0, 3.0, 15.0, 340.0, 5.0] PP = [150000.0, 3.0, 5000.0, 250000.0, 5.0] solutes = ["Decane", "2-Octanol", "Pentadecane"] db_path = "./data" db_file = "Database_SLB5ms.csv" pout = "vacuum" time_unit = "min" # Simulation_Test.jl par = RetentionParameterEstimator.conventional_GC(L, d, df, sp, gas, TP, PP, solutes, db_path, db_file; pout=pout, time_unit=time_unit) @test par.prog.time_steps[2] == 3.0*60.0 tR_sim, par_sim = RetentionParameterEstimator.sim_test_chrom(L, d, df, sp, gas, [TP, TP], [PP, PP], solutes, db_path, db_file; pout=pout, time_unit=time_unit) @test tR_sim[1,1] == tR_sim[2,1] # more meaningful test? # compare GasChromatographySimulator.simulate() and RetentionParameterEstimator.tR_calc() # pl, sol = GasChromatographySimulator.simulate(par) # Tchar = par.sub[3].Tchar # θchar = par.sub[3].θchar # ΔCp = par.sub[3].ΔCp # opt = par.opt ##tR = RetentionParameterEstimator.tR_calc(Tchar, θchar, ΔCp, df/d, L, d, df, par.prog, gas) ##pl.tR[3] == tR # false, because of odesys=true for GasChromatographySimulator # and in RetentionParameterEstimator only the migration ODE is used ##@test isapprox(pl.tR[3], tR, atol=1e-4) #opt_ = GasChromatographySimulator.Options(ng=true) #par_ = GasChromatographySimulator.Parameters(par.col, par.prog, par.sub, opt_) #pl_, sol_ = GasChromatographySimulator.simulate(par_) #opt__ = GasChromatographySimulator.Options(ng=true, odesys=false) #par__ = GasChromatographySimulator.Parameters(par.col, par.prog, par.sub, opt__) #pl__, sol__ = GasChromatographySimulator.simulate(par__) #opt___ = GasChromatographySimulator.Options(ng=false, odesys=false) #par___ = GasChromatographySimulator.Parameters(par.col, par.prog, par.sub, opt___) #pl___, sol___ = GasChromatographySimulator.simulate(par___) #[pl.tR[3], pl_.tR[3], pl__.tR[3], pl___.tR[3]].-tR # lowest difference for opt__ and opt___ to tR ≈ 1e-5 # Load.jl file = "./data/meas_test.csv" meas = RetentionParameterEstimator.load_chromatograms(file; filter_missing=true) @test meas[4][1] == "2-Octanone" meas_select = RetentionParameterEstimator.filter_selected_measurements(meas, ["meas3", "meas4", "meas5"], ["2-Octanone"]); file = "./data/meas_test_2.csv" # from Email from [email protected] -> Issue #29 meas_ = RetentionParameterEstimator.load_chromatograms(file; filter_missing=true) @test meas_[2][1].Fpin_steps[3] == meas_[2][1].Fpin_steps[3] # Loss.jl # Estimate_Start_Values.jl # Optimization.jl #df, sol = RetentionParameterEstimator.estimate_parameters(meas; mode="Kcentric_single") #@test isapprox(df.Tchar[1], 400.15; atol = 0.01) #@test isapprox(sol[2].minimum, 0.009; atol = 0.0001) col_input = (L = meas_select[1].L, d = meas_select[1].d*1000) check, msg, df_flag, index_flag, res, Telu_max = RetentionParameterEstimator.check_measurement(meas_select, col_input; min_th=0.1, loss_th=1.0, se_col=false) @test check == true @test isapprox(res.Tchar[1], 400.0; atol = 1.0) #@test isapprox(res.min[2], 0.009; atol = 0.001) #col_input_ = (L = meas[1].L, d = meas[1].d*1000*1.1) #check_, msg_, df_flag_, index_flag_, res_, Telu_max_ = RetentionParameterEstimator.check_measurement(meas, col_input_; min_th=0.1, loss_th=1.0) #@test msg_ == "discrapancy of retention times detected" #@test isapprox(res_.Tchar[1], 415.5; atol = 0.1) #@test isapprox(res_.min[2], 0.21; atol = 0.01) res_m1, Telu_max_m1 = RetentionParameterEstimator.method_m1(meas_select, col_input, se_col=false) @test res_m1.Tchar == res.Tchar @test Telu_max_m1 == Telu_max res_m2, Telu_max_m2 = RetentionParameterEstimator.method_m2(meas_select, se_col=true) @test isapprox(res_m2.d[1], 0.00024, atol=0.00001) # ToDo: # add test for missing measuremet values
RetentionParameterEstimator
https://github.com/GasChromatographyToolbox/RetentionParameterEstimator.jl.git
[ "MIT" ]
0.1.10
406bb881a8d4ac57347dc2b50294b059db2750e6
docs
4617
# RetentionParameterEstimator.jl [![DOI:10.1016/j.chroma.2023.464008](http://img.shields.io/badge/DOI-10.1016/j.chroma.2023.464008-B31B1B.svg)](https://doi.org/10.1016/j.chroma.2023.464008) [![DOI](https://zenodo.org/badge/550339258.svg)](https://zenodo.org/badge/latestdoi/550339258) [![](https://img.shields.io/badge/docs-stable-blue.svg)](https://GasChromatographyToolbox.github.io/RetentionParameterEstimator.jl/stable) [![](https://img.shields.io/badge/docs-dev-blue.svg)](https://GasChromatographyToolbox.github.io/RetentionParameterEstimator.jl/dev) [![CI](https://github.com/GasChromatographyToolbox/RetentionParameterEstimator.jl/actions/workflows/ci.yml/badge.svg)](https://github.com/GasChromatographyToolbox/RetentionParameterEstimator.jl/actions/workflows/ci.yml) [![codecov.io](http://codecov.io/github/GasChromatographyToolbox/RetentionParameterEstimator.jl/coverage.svg?branch=main)](http://codecov.io/github/GasChromatographyToolbox/RetentionParameterEstimator.jl?branch=main) Estimation of retention parameters for the interaction of analytes with a stationary phase in Gas Chromatography (GC). The retention parameters are estimated from a set of temperature programmed GC runs. The GC simulation ['GasChromatographySimulator.jl'](https://github.com/GasChromatographyToolbox/GasChromatographySimulator.jl) is used to compute the retention times with several sets of estimated retention parameters and compare these computed retention times with the measured retention times. An optimization process is used to minimize the difference between computed and measured retention times. The retention parameters resulting in this minimized difference are the final result. In addition it is also possible to estimate the column diameter _d_. ## Installation To install the package type: ```julia julia> ] add RetentionParameterEstimator ``` To use the package type: ```julia julia> using RetentionParameterEstimator ``` ## Documentation Please read the [documentation page](https://GasChromatographyToolbox.github.io/RetentionParameterEstimator.jl/stable/) for more information. ## Notebooks In the folder [notebooks](https://github.com/GasChromatographyToolbox/RetentionParameterEstimator/tree/main/notebooks) notebooks, using [Pluto.jl](https://github.com/fonsp/Pluto.jl), for the estimation of retention parameters from temperature programmed GC measurements are available. To use these notebooks [Julia, v1.6 or above,](https://julialang.org/downloads/#current_stable_release) must be installed and **Pluto** must be added: ```julia julia> ] (v1.7) pkg> add Pluto ``` To run Pluto, use the following commands: ```julia julia> using Pluto julia> Pluto.run() ``` Pluto will open your browser. In the field `Open from file` the URL of a notebook or the path to a locally downloaded notebook can be insert and the notebook will open and load the necessary packages. ### Overview of notebooks - `estimate_retention_parameters.jl` (https://github.com/GasChromatographyToolbox/RetentionParameterEstimator.jl/blob/main/notebooks/estimate_retention_parameters.jl): - Notebook to estimate the retention parameters and optional the column diameter from measured chromatograms - a standard error for the estimated parameters is given - comparison of other measured chromatograms with predicted chromatograms using the found optimal parameters - plot of the resulting retention factor ``k`` over temperature ``T``, a comparing plot with other data (e.g. isothermal measured) is possible - in default, the notebook uses the data from the publication ## Contribution Please open an issue if you: - want to report a bug - have problems using the package (please first look at the documentation) - have ideas for new features or ways to improve the usage of this package You can contribute (e.g. fix bugs, add new features, add to the documentation) to this package by Pull Request: - first discuss your contributions in a new issue - ensure that all tests pass locally before starting the pull request - new features should be included in `runtests.jl` - add description to the pull request, link to corresponding issues by `#` and issue number - the pull request will be reviewed ## Citation ``` @article{Leppert2023, author = {Leppert, Jan and Brehmer, Tillman and Wüst, Matthias and Boeker, Peter}, title = {Estimation of retention parameters from temperature programmed gas chromatography}, journal = {Journal of Chromatography A}, month = jun, year = {2023}, volume = {1699}, pages = {464008}, issn = {00219673}, doi = {10.1016/j.chroma.2023.464008}, } ```
RetentionParameterEstimator
https://github.com/GasChromatographyToolbox/RetentionParameterEstimator.jl.git
[ "MIT" ]
0.1.10
406bb881a8d4ac57347dc2b50294b059db2750e6
docs
240
## Module Index ```@index Modules = [RetentionParameterEstimator] Order = [:constant, :type, :function, :macro] ``` ## Detailed API ```@autodocs Modules = [RetentionParameterEstimator] Order = [:constant, :type, :function, :macro] ```
RetentionParameterEstimator
https://github.com/GasChromatographyToolbox/RetentionParameterEstimator.jl.git
[ "MIT" ]
0.1.10
406bb881a8d4ac57347dc2b50294b059db2750e6
docs
192
# RetentionParameterEstimator.jl Documentation for RetentionParameterEstimator.jl [RetentionParameterEstimator.jl](https://github.com/GasChromatographyToolbox/RetentionParameterEstimator.jl)
RetentionParameterEstimator
https://github.com/GasChromatographyToolbox/RetentionParameterEstimator.jl.git
[ "MIT" ]
0.2.0
9c7c79fd1a7bfe329908fd80360bb4fb9c4a07a2
code
756
module SimplicialSets using StructEqualHash, LinearCombinations using LinearCombinations: Sign, ONE, signed, Zero, sum0, return_type, @Function, unval using LinearCombinations: coefftype as coeff_type import LinearCombinations: linear_filter, deg, diff, coprod, hastrait using Base: Fix1, Fix2, @propagate_inbounds import Base: show, ==, hash, copy, one, isone, *, /, ^, inv, length, firstindex, lastindex, getindex, setindex! include("abstract.jl") include("product.jl") include("opposite.jl") include("interval.jl") include("suspension.jl") include("symbolic.jl") include("loopgroup.jl") include("bar.jl") include("groups.jl") include("twistedproduct.jl") # include("szczarba.jl") include("ez.jl") include("surj.jl") include("helpers.jl") end
SimplicialSets
https://github.com/matthias314/SimplicialSets.jl.git
[ "MIT" ]
0.2.0
9c7c79fd1a7bfe329908fd80360bb4fb9c4a07a2
code
3437
# # Interval # const Interval = Union{Tuple{Integer,Integer}, Pair{<:Integer,<:Integer}, UnitRange{<:Integer}} interval_length(k::Interval) = last(k)-first(k)+1 # # AbstractSimplex datatype # export AbstractSimplex, isdegenerate abstract type AbstractSimplex end @linear_broadcastable AbstractSimplex # for a new concrete subtype NewSimplex of AbstractSimplex, at least # the following methods must be defined: # dim(::NewSimplex) # d(:NewSimplex, ::Int) # s(:NewSimplex, ::Int) function d!(x::AbstractSimplex, kk::AbstractVector{<:Integer}) for k in reverse(kk) d!(x, k) end x end @generated function d(x::T, kk) where T <: AbstractSimplex if hasmethod(d!, (T, Int)) :(d!(copy(x), kk)) else :(foldl(d, reverse(kk), init = x)) end end function s!(x::AbstractSimplex, kk::AbstractVector{<:Integer}) for k in kk s!(x, k) end x end @generated function s(x::T, kk) where T <: AbstractSimplex if hasmethod(s!, (T, Int)) :(s!(copy(x), kk)) else quote for k in kk x = s(x, k) end x end end end #= function r!(x::AbstractSimplex, kk) l = dim(x) for k in reverse(kk) if !(0 <= k <= l) error("index outside the allowed range 0:$l") end d!(x, k+1:l) l = k-1 end d!(x, 0:l) end =# function r(x::T, kk) where T <: AbstractSimplex # kk is a tuple/vector/iterator of Tuple{Integer,Integer} isempty(kk) && error("at least one interval must be given") kk[end] isa Interval || error("second argument must contain integer tuples, pairs or unit ranges") y = x for k in dim(x):-1:last(kk[end])+1 y = d(y, k) end for i in length(kk)-1:-1:1 kk[i] isa Interval || error("second argument must contain integer tuples, pairs or unit ranges") kki1 = first(kk[i+1]) kki = last(kk[i]) if kki == kki1 y = s(y, kki) else for k in kki1-1:-1:kki+1 y = d(y, k) end end end for k in first(kk[1])-1:-1:0 y = d(y, k) end y end function isdegenerate(x::AbstractSimplex, k::Integer) @boundscheck if k < 0 || k >= dim(x) error("index outside the allowed range 0:$(dim(x)-1)") end @inbounds x == s(d(x, k), k) end @propagate_inbounds isdegenerate(x::AbstractSimplex, k0::Integer, k1::Integer) = any(k -> isdegenerate(x, k), k0:k1-1) isdegenerate(x::AbstractSimplex) = @inbounds isdegenerate(x, 0, dim(x)) linear_filter(x::AbstractSimplex) = !isdegenerate(x) deg(x::AbstractSimplex) = dim(x) @linear_kw function diff(x::T; coefftype = Int, addto = zero(Linear{T,unval(coefftype)}), coeff = ONE, is_filtered = false) where T <: AbstractSimplex if iszero(coeff) return addto end n = dim(x) if n != 0 for k in 0:n addmul!(addto, d(x, k), signed(k, coeff)) end end addto end function ^(g::AbstractSimplex, n::Integer) if n >= 32 # square-and-multiply s = g m = one(g) while n != 0 if isodd(n) m *= s end s *= s n >>= 1 end m elseif n > 0 *(ntuple(Returns(g), n)...) elseif n == 0 one(g) else inv(g)^(-n) end end
SimplicialSets
https://github.com/matthias314/SimplicialSets.jl.git
[ "MIT" ]
0.2.0
9c7c79fd1a7bfe329908fd80360bb4fb9c4a07a2
code
4179
# # simplicial bar construction # export BarSimplex import Base: *, /, ^, one, isone, inv struct BarSimplex{T} <: AbstractSimplex g::Vector{T} end function BarSimplex(g::Vector{T}) where T <: AbstractSimplex @boundscheck all(enumerate(g)) do (i, x) dim(x) == i-1 end || error("simplices have incorrect dimensions", g) BarSimplex{T}(g) end @propagate_inbounds function BarSimplex(iter; op::Union{typeof(*),typeof(+)} = *) if op isa typeof(+) BarSimplex(AddToMul.(iter)) # todo: this leads to additional allocations else BarSimplex(collect(iter)) end end show(io::IO, x::BarSimplex) = print(io, '[', join(x.g, ','), ']') @struct_equal_hash BarSimplex{T} where T copy(x::BarSimplex{T}) where T = BarSimplex{T}(copy(x.g)) length(x::BarSimplex) = length(x.g) iterate(x::BarSimplex, state...) = iterate(x.g, state...) dim(x::BarSimplex) = length(x) # note: multiplication of bar simplices only makes sense for commutative groups one(x::BarSimplex, n::Integer = dim(x)) = one(typeof(x), n) isone(x::BarSimplex) = all(isone, x.g) inv(x::BarSimplex{T}) where T = BarSimplex(inv.(x.g)) function *(x::BarSimplex{T}, ys::BarSimplex{T}...) where T @boundscheck all(==(dim(x)) ∘ dim, ys) || error("illegal arguments") BarSimplex(.*(x.g, map(y -> y.g, ys)...)) end function ^(x::BarSimplex, n::Integer) BarSimplex(x.g .^ n) end function /(x::BarSimplex{T}, y::BarSimplex{T}) where T @boundscheck dim(x) == dim(y) || error("illegal arguments") BarSimplex(x.g ./ y.g) # BarSimplex(map(splat(/), zip(x.g, y.g))) end # # bar construction for discrete groups # function d(x::BarSimplex{T}, k::Integer) where T @boundscheck if k < 0 || k > (n = dim(x)) || n == 0 error("illegal arguments") end g = x.g @inbounds gg = T[if i < k g[i] elseif i == k g[i]*g[i+1] else g[i+1] end for i in 1:length(g)-1] BarSimplex(gg) end function s(x::BarSimplex{T}, k::Integer) where T @boundscheck if k < 0 || k > dim(x) error("illegal arguments") end g = x.g k += 1 @inbounds gg = T[if i < k g[i] elseif i == k one(T) else g[i-1] end for i in 1:length(g)+1] BarSimplex(gg) end @inline function isdegenerate(x::BarSimplex, k::Integer) @boundscheck if k < 0 || k >= dim(x) error("illegal arguments") end @inbounds isone(x.g[k+1]) end function one(::Type{BarSimplex{T}}, n::Integer = 0) where T n >= 0 || error("dimension must be non-negative") BarSimplex(T[one(T) for k in 0:n-1]) end # # bar construction for simplicial groups # export twf_bar function d(x::BarSimplex{T}, k::Integer) where T <: AbstractSimplex @boundscheck if k < 0 || k > (n = dim(x)) || n == 0 error("illegal arguments") end g = x.g @inbounds gg = T[if i < k g[i] elseif i == k g[i]*d(g[i+1], 0) else d(g[i+1], i-k) end for i in 1:length(g)-1] @inbounds BarSimplex(gg) end function s(x::BarSimplex{T}, k::Integer) where T <: AbstractSimplex @boundscheck if k < 0 || k > dim(x) error("illegal arguments") end g = x.g k += 1 @inbounds gg = [if i < k g[i] elseif i == k one(T, k-1) else s(g[i-1], i-k-1) end for i in 1:length(g)+1] @inbounds BarSimplex(gg) end @inline function isdegenerate(x::BarSimplex{T}, k::Integer) where T <: AbstractSimplex @boundscheck if k < 0 || k >= dim(x) error("illegal arguments") end g = x.g @inbounds isone(g[k+1]) && all(i -> isdegenerate(g[i], i-k-2), k+2:dim(x)) end function one(::Type{BarSimplex{T}}, n::Integer = 0) where T <: AbstractSimplex n >= 0 || error("dimension must be non-negative") BarSimplex(T[one(T, k) for k in 0:n-1]) end # twisting function function twf_bar(x::BarSimplex{T}) where T <: AbstractSimplex if deg(x) == 0 error("twisting function not defined for 0-simplices") else return x.g[end] end end
SimplicialSets
https://github.com/matthias314/SimplicialSets.jl.git
[ "MIT" ]
0.2.0
9c7c79fd1a7bfe329908fd80360bb4fb9c4a07a2
code
7192
# # Eilenberg-Zilber maps # export ez, aw, shih_opp, shih_eml, shih # # shuffle map # multinomial() = 1 multinomial(k1) = 1 multinomial(k1, ks...) = binomial(k1+sum(ks)::Int, k1)*multinomial(ks...) # multinomial(k::Int...) = length(k) <= 1 ? 1 : binomial(sum(k)::Int, k[1])*multinomial(k[2:end]...) function foreach_shuffle_simplex(f, p::Int, q::Int, x0::S, y0::T, m::Int = 0; xv = Vector{S}(undef, q+1), yv = Vector{T}(undef, q+1), kv = Vector{Int}(undef, q+1), sv = Vector{Int}(undef, q+1)) where {S <: AbstractSimplex, T <: AbstractSimplex} i = 1 xv[1] = x0 yv[1] = y0 kv[1] = 0 sv[1] = p*q @inbounds while i != 0 if i <= q && kv[i] < p+i kv[i+1] = kv[i]+1 xv[i+1] = s(xv[i] , kv[i]+m) yv[i+1] = yv[i] sv[i+1] = sv[i] i += 1 else if i > q # this means i == q+1 yy = yv[q+1] for kk in kv[q+1]:p+q-1 yy = s(yy, kk+m) end f(xv[q+1], yy, sv[q+1]) end i -= 1 if i != 0 yv[i] = s(yv[i], kv[i]+m) # TODO: this fails for SymbolicSimplex in dim p+q close to 24 kv[i] += 1 sv[i] -= q+1-i end end end nothing end _ez(f, addto, coeff, x) = addmul!(addto, x, coeff; is_filtered = true) function _ez(f::F, addto, coeff, x::S, y::T, z...) where {F,S,T} p = dim(x) q = dim(y) # stack for foreach_shuffle_simplex # this is not necessary, but avoids allocations xv = Vector{S}(undef, q+1) yv = Vector{T}(undef, q+1) kv = Vector{Int}(undef, q+1) sv = Vector{Int}(undef, q+1) # foreach_shuffle_simplex(p, q, x, y) do xx, yy, ss foreach_shuffle_simplex(p, q, x, y; xv, yv, kv, sv) do xx, yy, ss _ez(f, addto, signed(ss, coeff), f(xx, yy), z...) end end ez_prod() = ProductSimplex(; dim = 0) ez_prod(x) = ProductSimplex(x) ez_prod(x, y) = ProductSimplex(x..., y) _ez_term_type(f, P) = P _ez_term_type(f, P, T, U...) = _ez_term_type(f, return_type(f, P, T), U...) ez_term_type(f) = return_type(f) ez_term_type(f, T) = return_type(f, T) ez_term_type(f, T, U...) = _ez_term_type(f, ez_term_type(f, T), U...) @linear_kw function ez(xs::AbstractSimplex...; f = ez_prod, coefftype = Int, addto = zero(Linear{ez_term_type(f, typeof.(xs)...),unval(coefftype)}), coeff = one(coeff_type(addto)), sizehint = true, is_filtered = false) isempty(xs) && return addmul!(addto, f(), coeff; is_filtered = true) is_filtered || all(!isdegenerate, xs) || return addto sizehint && sizehint!(addto, length(addto) + multinomial(map(dim, xs)...)) x1, xr... = xs _ez(f, addto, coeff, f(x1), xr...) addto end ez(t::AbstractTensor; kw...) = ez(t...; kw...) hastrait(::typeof(ez), prop::Val, ::Type{<:AbstractTensor{T}}) where T <: Tuple = hastrait(ez, prop, fieldtypes(T)...) @multilinear ez deg(::typeof(ez)) = Zero() keeps_filtered(::typeof(ez), ::Type) = true # # Alexander-Whitney map # _aw(addto, coeff, ::Tuple{}) = addmul!(addto, Tensor(), coeff) function _aw(addto, coeff, x::Tuple{AbstractSimplex}, z...) isdegenerate(x[1]) || addmul!(addto, Tensor(x[1], z...), coeff; is_filtered = true) end @inline function _aw(addto, coeff, x::Tuple, z...) n = dim(x[end]) for k in 0:n y = r(x[end], ((k, n),)) isdegenerate(y) || _aw(addto, coeff, map(Fix2(r, ((0, k),)), x[1:end-1]), y, z...) end end @linear_kw function aw(x::ProductSimplex{T}; coefftype = Int, addto = zero(Linear{Tensor{T},unval(coefftype)}), coeff = ONE, is_filtered = false) where T <: Tuple{Vararg{AbstractSimplex}} if !iszero(coeff) && (is_filtered || !isdegenerate(x)) _aw(addto, coeff, components(x)) end addto end @linear aw deg(::typeof(aw)) = Zero() # # homotopy # @linear_kw function shih_opp(z::ProductSimplex{Tuple{S, T}}; coefftype = Int, addto = zero(Linear{ProductSimplex{Tuple{S,T}},unval(coefftype)}), coeff = ONE, sizehint = true, is_filtered = false) where {S <: AbstractSimplex, T <: AbstractSimplex} iszero(coeff) && return addto n = dim(z) sizehint && sizehint!(addto, length(addto)+(1<<(n+1))-n-2) x, y = components(z) # stack for foreach_shuffle_simplex xv = Vector{S}(undef, n+1) yv = Vector{T}(undef, n+1) kv = Vector{Int}(undef, n+1) sv = Vector{Int}(undef, n+1) for p in 0:n-1, q in 0:n-1-p xx = r(x, ((0, p), (p+q+1, n))) yy = r(y, ((p, n),)) # if nondeg || !(isdegenerate(xx, 0, p+1) || isdegenerate(yy, 0, q+1)) if !(isdegenerate(xx, 0, p+1) || isdegenerate(yy, 0, q+1)) foreach_shuffle_simplex(p, q+1, xx, yy; xv, yv, kv, sv) do xxx, yyy, sss @inbounds addmul!(addto, ProductSimplex(xxx, s(yyy, p+q+1); dim = n+1), signed(p+q+sss, coeff); is_filtered = true) end end end addto end @linear shih_opp deg(::typeof(shih_opp)) = 1 @linear_kw function shih_eml(z::ProductSimplex{Tuple{S, T}}; coefftype = Int, addto = zero(Linear{ProductSimplex{Tuple{S,T}},unval(coefftype)}), coeff = ONE, sizehint = true, is_filtered = false) where {S <: AbstractSimplex, T <: AbstractSimplex} iszero(coeff) && return addto n = dim(z) sizehint && sizehint!(addto, length(addto)+(1<<(n+1))-n-2) x, y = components(z) # stack for foreach_shuffle_simplex xv = Vector{S}(undef, n) yv = Vector{T}(undef, n) kv = Vector{Int}(undef, n) sv = Vector{Int}(undef, n) for p in 0:n-1, q in 0:n-1-p m = n-1-p-q xx = r(x, ((0, n-q),)) yy = r(y, ((0, m), (n-q, n))) # if nondeg || !(isdegenerate(xx, m, m+p+1) || isdegenerate(yy, m, m+q+1)) if !(isdegenerate(xx, m, m+p+1) || isdegenerate(yy, m, m+q+1)) foreach_shuffle_simplex(p+1, q, s(xx, m), yy, m+1; xv, yv, kv, sv) do xxx, yyy, sss @inbounds addmul!(addto, ProductSimplex(xxx, yyy; dim = n+1), signed(m+sss, coeff); is_filtered = true) end end end addto end @linear shih_eml deg(::typeof(shih_eml)) = 1 # setting the default version const shih = shih_eml # # group operations on chains # import Base: *, inv @linear inv keeps_filtered(::typeof(inv), ::Type) = true _mul(addto, coeff, t) = ez(Tensor(t); f = *, addto, coeff) function _mul(addto, coeff, t, a, b...) for (x, c) in a _mul(addto, coeff*c, (t..., x), b...) end end function *(a::AbstractLinear{<:AbstractSimplex}...) # TODO: add addto & coeff R = promote_type(map(coefftype, a)...) T = return_type(*, map(termtype, a)...) addto = zero(Linear{T,R}) l = prod(map(length, a)) l == 0 && return addto _mul(addto, ONE, (), a...) addto end # # diagonal map and coproduct # export diag diag(x::AbstractSimplex) = @inbounds ProductSimplex(x, x) @linear diag keeps_filtered(::typeof(diag), ::Type) = true coprod(x::AbstractSimplex; kw...) = aw(diag(x); kw...)
SimplicialSets
https://github.com/matthias314/SimplicialSets.jl.git
[ "MIT" ]
0.2.0
9c7c79fd1a7bfe329908fd80360bb4fb9c4a07a2
code
1183
# # group stuff # export AddToMul, Lattice import Base: *, /, ^, +, -, zero, iszero, one, isone # # AddToMul # struct AddToMul{T} x::T end show(io::IO, a::AddToMul) = print(io, a.x) one(::Type{AddToMul{T}}) where T = AddToMul(zero(T)) one(a::AddToMul) = AddToMul(zero(a.x)) isone(a::AddToMul) = iszero(a.x) *(a::AddToMul{T}...) where T = AddToMul(mapreduce(b -> b.x, +, a)) /(a::AddToMul{T}, b::AddToMul{T}) where T = AddToMul(a.x-b.x) inv(a::AddToMul) = AddToMul(-a.x) ^(a::AddToMul, n::Integer) = AddToMul(n * a.x) # # Lattice # struct Lattice{N} v::NTuple{N, Int} end Lattice(ii::Int...) = Lattice(ii) show(io::IO, g::Lattice) = print(io, g.v) length(::Lattice{N}) where N = N iterate(g::Lattice, state...) = iterate(g.v, state...) zero(::Type{Lattice{N}}) where N = Lattice(ntuple(Returns(0), N)) zero(::T) where T <: Lattice = zero(T) # this doesn't seem to be faster than the default g.v == zero(g.v) iszero(g::Lattice) = all(iszero, g.v) +(g::Lattice{N}...) where N = Lattice(map(+, map(h -> h.v, g)...)) -(g::Lattice) = Lattice(.- g.v) -(g::Lattice{N}, h::Lattice{N}) where N = Lattice(g.v .- h.v) *(n::Integer, g::Lattice) = Lattice(n .* g.v)
SimplicialSets
https://github.com/matthias314/SimplicialSets.jl.git
[ "MIT" ]
0.2.0
9c7c79fd1a7bfe329908fd80360bb4fb9c4a07a2
code
1419
module TestHelpers using ..SimplicialSets using StructEqualHash: @struct_equal_hash as @struct_equal_hash using LinearCombinations using SimplicialSets: d, s export BasicSimplex, undo_basic # # BasicSimplex # # used to test that functions only use the basic operations dim, d, s struct BasicSimplex{T<:AbstractSimplex} <: AbstractSimplex x::T end # Base.:(==)(y::BasicSimplex, z::BasicSimplex) = y.x == z.x # Base.hash(y::BasicSimplex, h::UInt) = hash(y.x, h) @struct_equal_hash BasicSimplex{T} where T Base.copy(y::BasicSimplex) = BasicSimplex(copy(y.x)) SimplicialSets.dim(y::BasicSimplex) = dim(y.x) SimplicialSets.d(y::BasicSimplex, k::Integer) = BasicSimplex(d(y.x, k)) SimplicialSets.s(y::BasicSimplex, k::Integer) = BasicSimplex(s(y.x, k)) Base.:*(ys::BasicSimplex...) = BasicSimplex(*((y.x for y in ys)...)) Base.:/(y::BasicSimplex, z::BasicSimplex) = BasicSimplex(y.x/z.x) Base.inv(y::BasicSimplex) = BasicSimplex(inv(y.x)) Base.one(::Type{BasicSimplex{T}}, n...) where T = BasicSimplex(one(T, n...)) Base.one(y::BasicSimplex, n...) = BasicSimplex(one(y.x, n...)) undo_basic(x::AbstractSimplex) = x undo_basic(y::BasicSimplex) = y.x undo_basic(x::ProductSimplex) = ProductSimplex((undo_basic(y) for y in x)...) undo_basic(x::AbstractTensor) = Tensor((undo_basic(y) for y in x)...) # undo_basic(a::Linear) = Linear(undo_basic(x) => c for (x, c) in a) @linear undo_basic end # module TestHelpers
SimplicialSets
https://github.com/matthias314/SimplicialSets.jl.git
[ "MIT" ]
0.2.0
9c7c79fd1a7bfe329908fd80360bb4fb9c4a07a2
code
1062
# # simplicial interval # export IntervalSimplex struct IntervalSimplex <: AbstractSimplex p::Int q::Int function IntervalSimplex(p::Int, q::Int) if p >= 0 && q >= 0 && p+q != 0 new(p, q) else error("illegal arguments") end end end IntervalSimplex() = IntervalSimplex(1,1) @struct_equal_hash IntervalSimplex dim(x::IntervalSimplex) = x.p + x.q - 1 function d(x::IntervalSimplex, k::Int) p, q = x.p, x.q if 0 <= k < p IntervalSimplex(p-1, q) elseif 0 <= k < p+q IntervalSimplex(p, q-1) else error("illegal arguments") end end function s(x::IntervalSimplex, k::Int) p, q = x.p, x.q if 0 <= k < p IntervalSimplex(p+1, q) elseif 0 <= k < p+q IntervalSimplex(p, q+1) else error("illegal arguments") end end isdegenerate(x::IntervalSimplex, k::Integer) = k != x.p-1 isdegenerate(x::IntervalSimplex) = x.p > 1 || x.q > 1 # not exported at the moment isabovevertex(x::IntervalSimplex) = x.p == 0 || x.q == 0
SimplicialSets
https://github.com/matthias314/SimplicialSets.jl.git
[ "MIT" ]
0.2.0
9c7c79fd1a7bfe329908fd80360bb4fb9c4a07a2
code
3880
# # loop group # import Base: one, isone, inv, *, /, ^ # LoopGroupGenerator struct LoopGroupGenerator{T <: AbstractSimplex} gen::T inv::Bool end function show(io::IO, u::LoopGroupGenerator) show(io, u.gen) if u.inv # print(io, "^{-1}") print(io, "⁻¹") end end @struct_equal_hash LoopGroupGenerator{T} where T <: AbstractSimplex dim(u::LoopGroupGenerator) = dim(u.gen)-1 @propagate_inbounds d(u::LoopGroupGenerator, k) = LoopGroupGenerator(d(u.gen, k), u.inv) @propagate_inbounds s(u::LoopGroupGenerator, k) = LoopGroupGenerator(s(u.gen, k), u.inv) @propagate_inbounds isdegenerate(u::LoopGroupGenerator, k) = isdegenerate(u.gen, k) inv(u::LoopGroupGenerator) = LoopGroupGenerator(u.gen, !u.inv) areinverse(u::LoopGroupGenerator{T}, v::LoopGroupGenerator{T}) where T = u.gen == v.gen && u.inv != v.inv # LoopGroupSimplex export LoopGroupSimplex, twf_loop struct LoopGroupSimplex{T<:AbstractSimplex} <: AbstractSimplex gens::Vector{LoopGroupGenerator{T}} dim::Int end function LoopGroupSimplex(x::T) where T <: AbstractSimplex n = dim(x) if n == 0 error("illegal argument") end if isdegenerate(x, 0) LoopGroupSimplex(LoopGroupGenerator{T}[], n-1) else LoopGroupSimplex([LoopGroupGenerator(x, false)], n-1) end end function show(io::IO, g::LoopGroupSimplex) print(io, '⟨') join(io, g.gens, ',') print(io, '⟩') end dim(g::LoopGroupSimplex) = g.dim copy(g::LoopGroupSimplex) = LoopGroupSimplex(copy(g.gens), g.dim) length(g::LoopGroupSimplex) = length(g.gens) iterate(g::LoopGroupSimplex, state...) = iterate(g.gens, state...) function one(::Type{LoopGroupSimplex{T}}, n::Integer = 0) where T <: AbstractSimplex n >= 0 || error("dimension must be non-negative") LoopGroupSimplex{T}(LoopGroupGenerator{T}[], n) # we need the parameter in "LoopGroupSimplex{T}" to get the automatic conversion of n to Int end one(g::T, n = dim(g)) where T <: LoopGroupSimplex = one(T, n) isone(g::LoopGroupSimplex) = length(g) == 0 @struct_equal_hash LoopGroupSimplex{T} where T <: AbstractSimplex function append!(g::LoopGroupSimplex{T}, u::LoopGroupGenerator{T}, ::Val{nondeg0}) where {T, nondeg0} gens = g.gens @boundscheck if dim(g) != dim(u) error("illegal arguments") end @inbounds if nondeg0 || !isdegenerate(u, 0) if isempty(gens) || !areinverse(gens[end], u) push!(gens, u) else pop!(gens) end end g end function d(g::T, k::Integer) where T <: LoopGroupSimplex n = dim(g) m = n == 0 ? -1 : n 0 <= k <= m || error("index outside the allowed range 0:$m") h = one(T, dim(g)-1) sizehint!(h.gens, (k == 0 ? 2 : 1) * length(g)) @inbounds for u in g.gens v = d(u, k+1) if k != 0 append!(h, v, Val(false)) else w = inv(d(u, 0)) append!(h, u.inv ? v : w, Val(false)) append!(h, u.inv ? w : v, Val(false)) end end h end function s(g::LoopGroupSimplex, k::Integer) n = dim(g) 0 <= k <= n || error("index outside the allowed range 0:$n") LoopGroupSimplex(map(u -> @inbounds(s(u, k+1)), g.gens), n+1) end function inv(g::LoopGroupSimplex) gens = similar(g.gens) for (k, u) in enumerate(g.gens) @inbounds gens[end+1-k] = inv(u) end LoopGroupSimplex(gens, g.dim) end function mul!(g::LoopGroupSimplex{T}, hs::LoopGroupSimplex{T}...) where T <: AbstractSimplex all(==(dim(g)) ∘ dim, hs) || error("illegal arguments") sizehint!(g.gens, length(g)+sum(length, hs; init = 0)) for h in hs, v in h.gens append!(g, v, Val(true)) end g end *(g::LoopGroupSimplex{T}, hs::LoopGroupSimplex{T}...) where T <: AbstractSimplex = mul!(copy(g), hs...) # twisting function twf_loop(x::AbstractSimplex) = LoopGroupSimplex(x)
SimplicialSets
https://github.com/matthias314/SimplicialSets.jl.git
[ "MIT" ]
0.2.0
9c7c79fd1a7bfe329908fd80360bb4fb9c4a07a2
code
1594
# # OppositeSimplex datatype # export OppositeSimplex, opposite struct OppositeSimplex{T<:AbstractSimplex} <: AbstractSimplex x::T end function show(io::IO, y::OppositeSimplex) print(io, "OppositeSimplex(", repr(y.x), ')') end @struct_equal_hash OppositeSimplex{T} where T copy(y::OppositeSimplex) = OppositeSimplex(copy(y.x)) dim(y::OppositeSimplex) = dim(y.x) d(y::OppositeSimplex, k::Integer) = OppositeSimplex(d(y.x, dim(y)-k)) s(y::OppositeSimplex, k::Integer) = OppositeSimplex(s(y.x, dim(y)-k)) *(ys::OppositeSimplex...) = OppositeSimplex(*((y.x for y in ys)...)) /(y::OppositeSimplex, z::OppositeSimplex) = OppositeSimplex(y.x/z.x) inv(y::OppositeSimplex) = OppositeSimplex(inv(y.x)) one(::Type{OppositeSimplex{T}}, n...) where T = OppositeSimplex(one(T, n...)) one(y::OppositeSimplex, n...) = OppositeSimplex(one(y.x, n...)) opposite(x::AbstractSimplex) = OppositeSimplex(x) opposite(y::OppositeSimplex) = y.x opposite(x::ProductSimplex) = ProductSimplex((opposite(y) for y in x)...) opposite(x::AbstractTensor) = Tensor((opposite(y) for y in x)...) q2(x::AbstractSimplex) = ifelse((dim(x)+1) & 2 == 0, 0, 1) # this is 0 if dim(x) == 0 or 3 mod 4, and 1 if dim(x) == 1 or 2 mod 4 q2(t::AbstractTensor) = sum0(map(q2, Tuple(t))) @linear_kw function opposite(a::AbstractLinear{T,R}; coefftype = R, addto = zero(Linear{return_type(opposite, T),unval(coefftype)}), coeff = ONE) where {T,R} iszero(coeff) && return addto for (x, c) in a addmul!(addto, opposite(x), coeff*signed(q2(x), c); is_filtered = true) end addto end
SimplicialSets
https://github.com/matthias314/SimplicialSets.jl.git
[ "MIT" ]
0.2.0
9c7c79fd1a7bfe329908fd80360bb4fb9c4a07a2
code
3921
# # ProductSimplex datatype # export ProductSimplex, components using Base: @__MODULE__ as @MODULE import Base: length, iterate, convert # struct ProductSimplex{T<:Tuple{Vararg{AbstractSimplex}}} struct ProductSimplex{T<:Tuple} <: AbstractSimplex xl::T dim::Int # we need `@propagate_inbounds` instead of `@inline`, see julia/#30411 @propagate_inbounds ProductSimplex{T}(xl::T; dim::Union{Integer,Missing} = missing) where T<:Tuple{Vararg{AbstractSimplex}} = begin if dim === missing if isempty(xl) error("use 'dim' to specify the dimension of an empty product simplex") else dim = (@MODULE).dim(xl[1]) end end @boundscheck begin dim >= 0 || error("dimension must be non-negative") all(==(dim) ∘ (@MODULE).dim, xl) || error("dimensions of simplices do not match") end new{T}(xl, dim) end end @propagate_inbounds ProductSimplex(xl::T; dim::Union{Integer,Missing} = missing) where T <: Tuple = ProductSimplex{T}(xl; dim) @propagate_inbounds ProductSimplex(x::AbstractSimplex...; kw...) = ProductSimplex(x; kw...) function show(io::IO, x::ProductSimplex) print(io, '(', join(map(repr, components(x)), ','), ')') end components(x::ProductSimplex) = x.xl length(x::ProductSimplex) = length(components(x)) firstindex(x::ProductSimplex) = 1 lastindex(x::ProductSimplex) = length(x) iterate(x::ProductSimplex, state...) = iterate(components(x), state...) @propagate_inbounds getindex(x::ProductSimplex, k) = components(x)[k] # copy(x::ProductSimplex) = ProductSimplex(copy(x.xl)) copy(x::ProductSimplex) = x convert(::Type{P}, x::ProductSimplex) where P <: ProductSimplex = @inbounds P(components(x); dim = dim(x)) @struct_equal_hash ProductSimplex{T} where T # @struct_equal_hash ProductSimplex # TODO: should we take the tuple type T into account? dim(x::ProductSimplex) = x.dim @propagate_inbounds function d(x::ProductSimplex, k::Integer) n = dim(x) @boundscheck begin m = n == 0 ? -1 : n 0 <= k <= m || error("index outside the allowed range 0:$m") end ProductSimplex(map(y -> @inbounds(d(y, k)), x.xl); dim = n-1) end @propagate_inbounds function s(x::ProductSimplex, k::Integer) n = dim(x) @boundscheck begin 0 <= k <= n || error("index outside the allowed range 0:$n") end ProductSimplex(map(y -> @inbounds(s(y, k)), x.xl); dim = n+1) end @propagate_inbounds function r(x::ProductSimplex, kk) ProductSimplex(map(y -> r(y, kk), x.xl)) end @propagate_inbounds function r(x::ProductSimplex{Tuple{}}, kk) isempty(kk) && error("at least one interval must be given") ProductSimplex((); dim = sum(map(interval_length, kk))-1) end @inline function isdegenerate(x::ProductSimplex, k::Integer) @boundscheck if k < 0 || k >= dim(x) error("index outside the allowed range 0:$(dim(x))") end @inbounds all(y -> isdegenerate(y, k), components(x)) end # concatenating and flattening ProductSimplex using LinearCombinations: _cat import LinearCombinations: cat, flatten, _flatten cat(x::ProductSimplex...) = ProductSimplex(_cat(x...); dim = dim(x[1])) _flatten(x::ProductSimplex) = _cat(map(_flatten, components(x))...) flatten(x::ProductSimplex) = ProductSimplex(_flatten(x); dim = dim(x)) # # regrouping # using LinearCombinations: regroup_check_arg, regroup_eval_expr import LinearCombinations: _length, _getindex _length(::Type{<:ProductSimplex{T}}) where T <: Tuple = _length(T) @propagate_inbounds _getindex(::Type{T}, i) where T <: ProductSimplex = _getindex(T.parameters[1], i) function (rg::Regroup{A})(x::T) where {A,T<:ProductSimplex} regroup_check_arg(ProductSimplex, typeof(A), T) || error("argument type $(typeof(x)) does not match first Regroup parameter $A") @inbounds regroup_eval_expr(rg, _getindex, ProductSimplex, x) end
SimplicialSets
https://github.com/matthias314/SimplicialSets.jl.git
[ "MIT" ]
0.2.0
9c7c79fd1a7bfe329908fd80360bb4fb9c4a07a2
code
4434
# # surjections and interval cut operations # export Surjection, arity struct Surjection{K} # K is the number of labels u::Vector{Int} # the surjection proper # u1::Vector{Int} # previous interval with same label (0 for first occurrence) f::Vector{Bool} # final intervals v::NTuple{K,Vector{Int}} # intervals for each i in 1:K end show(io::IO, surj::Surjection{K}) where K = print(io, "Surjection{$K}($(repr(surj.u)))") ==(surj1::Surjection, surj2::Surjection) = surj1.u == surj2.u hash(surj::Surjection, h::UInt) = hash(surj.u, h) deg(surj::Surjection{K}) where K = length(surj.u)-K arity(surj::Surjection{K}) where K = K is_surjection(k, u::AbstractVector{Int}) = extrema(u; init = (1, 0)) == (1, k) && all(Fix2(in, u), 2:k-1) isdegenerate_surjection(u) = any(i -> @inbounds(u[i-1] == u[i]), 2:length(u)) isdegenerate(surj::Surjection) = isdegenerate_surjection(surj.u) linear_filter(surj::Surjection) = !isdegenerate(surj) # TODO: do we need to allow empty u? yes function Surjection{k}(u; check = true) where k !check || is_surjection(k, u) || error("argument is not a surjection onto 1:$k") l = length(u) v = ntuple(_ -> Int[], k) # we cannot use Returns for i in 1:l push!(v[u[i]], i) end # determine final intervals f = fill(false, l) for i in 1:k f[v[i][end]] = true end Surjection{k}(u, f, v) end Surjection(u) = Surjection{maximum(u; init = 0)}(u) @linear_kw function diff(surj::Surjection{k}; coefftype = Int, addto = zero(Linear{Surjection{k},unval(coefftype)}), coeff = ONE, is_filtered = false) where k (; u, f, v) = surj s = 0 l = length(u) us = Vector{Int}(undef, l) @inbounds for i in 1:l if !f[i] si = s s += 1 else vi = v[u[i]] length(vi) == 1 && continue si = us[vi[end-1]] + 1 end us[i] = si if i == 1 || i == l || u[i-1] != u[i+1] # this means that w below is non-degenerate w = deleteat!(copy(u), i) addmul!(addto, Surjection{k}(w; check = false), signed(si, coeff); is_filtered = true) end end addto end # interval cuts struct IC n::Int k::Int end length(a::IC) = binomial(a.n+a.k-1, a.k-1) function iterate(a::IC) ic = zeros(Int, a.k+1) @inbounds ic[a.k+1] = a.n ic, ic end @inline function iterate(a::IC, ic) i = a.k while i > 1 && @inbounds ic[i] == a.n i -= 1 end if i == 1 nothing else @inbounds m = ic[i]+1 for j in i:a.k @inbounds ic[j] = m end ic, ic end end @propagate_inbounds function isdegenerate_ic(v, ic) for pp in v i = -1 for p in pp if p != 1 && ic[p] == i return true end i = ic[p+1] end end false end @linear_kw function (surj::Surjection{k})(x::T; coefftype = Int, addto = zero(Linear{Tensor{NTuple{k,T}},unval(coefftype)}), coeff = one(coeff_type(addto)), is_filtered = false) where {k, T <: AbstractSimplex} iszero(coeff) && return addto if k == 0 # in this case the interval cut operation is the augmentation map deg(x) == 0 && addmul!(addto, Tensor(), coeff) return addto end u = surj.u f = surj.f v = surj.v l = length(u) a = IC(dim(x), l) sizehint!(addto, length(addto)+length(a)) rr = ntuple(i -> Vector{Tuple{Int,Int}}(undef, length(v[i])), k) L = Vector{Int}(undef, l) @inbounds for ic in a isdegenerate_ic(v, ic) && continue for i in 1:k, j in 1:length(v[i]) rr[i][j] = (ic[v[i][j]], ic[v[i][j]+1]) end xl = map(Fix1(r, x), rr) any(isdegenerate, xl) && continue # TODO: incorporate non-deg testing into iterate # compute permutation sign s = sum(@inbounds ifelse(f[i], 0, ic[i+1]) for i in 1:l) for i in 1:l L[i] = Li = ic[i+1] - ic[i] + ifelse(f[i], 0, 1) ui = u[i] for j in 1:i-1 if ui < u[j] s += Li*L[j] end end end addmul!(addto, Tensor(xl), signed(s, coeff); is_filtered = true) end addto end @linear surj::Surjection
SimplicialSets
https://github.com/matthias314/SimplicialSets.jl.git
[ "MIT" ]
0.2.0
9c7c79fd1a7bfe329908fd80360bb4fb9c4a07a2
code
2085
# # simplicial suspension # export SuspensionSimplex struct SuspensionSimplex{T <: AbstractSimplex} <: AbstractSimplex i::IntervalSimplex x::T function SuspensionSimplex{T}(i::IntervalSimplex) where T <: AbstractSimplex isabovevertex(i) ? new{T}(i) : error("illegal arguments") end function SuspensionSimplex(x::T, i::IntervalSimplex) where T <: AbstractSimplex if dim(x) == dim(i) isabovevertex(i) ? new{T}(i) : new{T}(i, x) else error("illegal arguments") end end end SuspensionSimplex(x::T, p::Int, q::Int = dim(x)+1-p) where T <: AbstractSimplex = SuspensionSimplex(x, IntervalSimplex(p, q)) SuspensionSimplex(x::ProductSimplex{Tuple{T, IntervalSimplex}}) where T <: AbstractSimplex = SuspensionSimplex(components(x)...) function show(io::IO, x::SuspensionSimplex) print(io, isabovevertex(x) ? "Σ($(x.i))" : "Σ($(x.x),$(x.i))") end dim(x::SuspensionSimplex) = dim(x.i) isabovevertex(x::SuspensionSimplex) = isabovevertex(x.i) function ==(x::SuspensionSimplex{T}, y::SuspensionSimplex{T}) where T <: AbstractSimplex x.i == y.i && (isabovevertex(x) || x.x == y.x) end function hash(x::SuspensionSimplex, h::UInt) h = hash(x.i, h) if isabovevertex(x) h else hash(x.x, h) end end function d(x::SuspensionSimplex{T}, k::Integer) where T <: AbstractSimplex if isabovevertex(x) SuspensionSimplex{T}(d(x.i, k)) else SuspensionSimplex(d(x.x, k), d(x.i, k)) end end function s(x::SuspensionSimplex{T}, k::Integer) where T <: AbstractSimplex if isabovevertex(x) SuspensionSimplex{T}(s(x.i, k)) else SuspensionSimplex(s(x.x, k), s(x.i, k)) end end function isdegenerate(x::SuspensionSimplex, k::Integer) if isabovevertex(x) dim(x) > 0 else isdegenerate(x.i, k) && isdegenerate(x.x, k) end end function isdegenerate(x::SuspensionSimplex) if isabovevertex(x) dim(x) > 0 else any(k -> isdegenerate(x.i, k) && isdegenerate(x.x, k), 0:dim(x)-1) end end
SimplicialSets
https://github.com/matthias314/SimplicialSets.jl.git
[ "MIT" ]
0.2.0
9c7c79fd1a7bfe329908fd80360bb4fb9c4a07a2
code
3862
# # SymbolicSimplex datatype # export SymbolicSimplex, dim, vertices # implementation using UInt128 const Label = Union{Symbol,Char} struct SymbolicSimplex{L<:Label} <: AbstractSimplex label::L dim::Int v::UInt128 function SymbolicSimplex(label::L, dim, v) where L <: Label @boundscheck if dim > 24 error("SymbolicSimplex is limited to dimension at most 24") end new{L}(label, dim, v) end end function SymbolicSimplex(label::Label, w::AbstractVector{<:Integer}) v = UInt128(0) for k in reverse(w) 0 <= k < 32 || error("vertex numbers must be between 0 and 31") v = 32*v+k end SymbolicSimplex(label, length(w)-1, v) end SymbolicSimplex(label::Label, n::Integer) = SymbolicSimplex(label, 0:n) dim(x::SymbolicSimplex) = x.dim # copy(x::SymbolicSimplex) = SymbolicSimplex(x.label, x.dim, x.v) copy(x::SymbolicSimplex) = x to_uint(x::Symbol) = objectid(x) to_uint(x::Char) = UInt(1073741831)*UInt(x) # hash(x::SymbolicSimplex, h::UInt) = hash(x.v, hash(256*x.dim+Int(x.label), h)) function Base.hash(x::SymbolicSimplex, h::UInt) m = UInt(1073741827)*(x.dim % UInt) + to_uint(x.label) # the constants are primes with product 0x1000000280000015 # which is greater than the 60 = 12*5 bits needed for 12 vertices if x.dim <= 12 hash(x.v % UInt + m, h) else hash(x.v + m, h) end end function Base.:(==)(x::SymbolicSimplex, y::SymbolicSimplex) # x.label == y.label && x.dim == y.dim && x.v == y.v end function vertices(x::SymbolicSimplex) d = x.v m = dim(x)+1 s = Vector{Int}(undef, m) for k in 1:m d, r = divrem(d, UInt128(1) << 5) s[k] = r end s end function show(io::IO, x::SymbolicSimplex) print(io, x.label, '[') join(io, vertices(x), ',') print(io, ']') end const bitmask = [[UInt128(0)]; [UInt128(1) << (5*k) - UInt128(1) for k in 1:25]] function d(x::SymbolicSimplex, k::Integer) n = dim(x) @boundscheck if k < 0 || k > n || n == 0 error("index outside the allowed range 0:$(n == 0 ? -1 : n)") end @inbounds w = (x.v & bitmask[k+1]) | (x.v & ~bitmask[k+2]) >> 5 @inbounds SymbolicSimplex(x.label, n-1, w) end # missing: d for kk a collections function r(x::SymbolicSimplex, kk) isempty(kk) && error("at least one interval must be given") n = zero(first(kk[1])) w = x.v & bitmask[last(kk[end])+2] for i in length(kk)-1:-1:1 ka = last(kk[i]) kb = first(kk[i+1]) w = (w & bitmask[ka+2]) | ((w & ~bitmask[kb+1]) >> (5*(kb-ka-1))) n += last(kk[i+1])-kb+1 end w >>= 5*first(kk[1]) n += last(kk[1])-first(kk[1]) # println(n, typeof(n)) SymbolicSimplex(x.label, n, w) end function s(x::SymbolicSimplex, k::Integer) n = dim(x) if n == 24 error("SymbolicSimplex is limited to dimension at most 24") end @boundscheck if k < 0 || k > n error("index outside the allowed range 0:$n") end @inbounds w = (x.v & bitmask[k+2]) | (x.v & ~bitmask[k+1]) << 5 @inbounds SymbolicSimplex(x.label, n+1, w) end function s(x::SymbolicSimplex, kk::AbstractVector{<:Integer}) w = UInt128(0) v = x.v l = length(kk) n = dim(x) if n+l > 24 error("SymbolicSimplex is limited to dimension at most 24") end for i in 1:l @inbounds k = kk[i]+1 @boundscheck if k > n+i error("indices outside the allowed range") end @inbounds w |= v & bitmask[k+1] @inbounds v = (v & ~bitmask[k]) << 5 end @inbounds SymbolicSimplex(x.label, n+l, w | v) end @inline function isdegenerate(x::SymbolicSimplex, k::Integer) @boundscheck if k < 0 || k >= dim(x) error("illegal arguments") end @inbounds xor(x.v, x.v >> 5) & bitmask[k+2] & ~bitmask[k+1] == 0 end
SimplicialSets
https://github.com/matthias314/SimplicialSets.jl.git
[ "MIT" ]
0.2.0
9c7c79fd1a7bfe329908fd80360bb4fb9c4a07a2
code
1395
# # Szczarba operators # export szczarba szczarba(x::AbstractSimplex, ::Tuple{}, ::Int, ::Int) = x function szczarba(x::AbstractSimplex, ii::Tuple, k::Int, l::Int = 0) # l keeps track of how often the simplicial operator has been derived # println("x = $x ii = $ii k = $k l = $l") i1 = first(ii) i2 = Base.tail(ii) if k < i1 szczarba(s(d(x, i1-k+l), l), i2, k, l+1) elseif k == i1 szczarba(x, i2, k, l+1) else szczarba(s(x, l), i2, k-1, l+1) end end function szczarba(x::AbstractSimplex, twf, ii::Tuple) n = dim(x) if x == 0 error("illegal arguments") end g = szczarba(inv(twf(x)), ii, 0) for k in 1:n-1 x = d(x, 0) g *= szczarba(inv(twf(x)), ii, k) end g end # TODO: sign function foreach_szczarba(f, n::Int) ii = zeros(Int, n) while true f(ii) k = n while ii[k] == k-1 ii[k] = 0 k -= 1 if k == 0 return end end ii[k] += 1 end end function szczarba(x::AbstractSimplex, twf) n = dim(x) if n > 1 a = TODO foreach_szczarba(n) do ii, ss addcoeff!(a, szczarba(x, twf, ii), ss) end a elseif n == 1 g = inv(twf(x)) Linear(g => 1, one(g) => -1) else error("illegal arguments") end end
SimplicialSets
https://github.com/matthias314/SimplicialSets.jl.git
[ "MIT" ]
0.2.0
9c7c79fd1a7bfe329908fd80360bb4fb9c4a07a2
code
1145
# # twisted Cartesian products # export TwistedProductSimplex struct TwistedProductSimplex{TWF, B<:AbstractSimplex, F<:AbstractSimplex} <: AbstractSimplex b::B f::F twf::TWF @inline function TwistedProductSimplex(b::B, f::F, twf::TWF) where {B <: AbstractSimplex, F <: AbstractSimplex, TWF} @boundscheck if dim(b) != dim(f) error("simplices must be of the same dimension") end new{TWF, B, F}(b, f, twf) end end show(io::IO, x::TwistedProductSimplex) = print(io, "($(x.b),$(x.f))") ==(x::T, y::T) where T <: TwistedProductSimplex{TWF,B,F} where {TWF,B,F} = x.b == y.b && x.f == y.f hash(x::TwistedProductSimplex, h::UInt) = hash(x.f, hash(x.b, h)) dim(x::TwistedProductSimplex) = dim(x.b) function d(x::TwistedProductSimplex, k) if k == 0 f = x.twf(x.b) * d(x.f, 0) else f = d(x.f, k) end TwistedProductSimplex(d(x.b, k), f, x.twf) end function s(x::TwistedProductSimplex, k) TwistedProductSimplex(s(x.b, k), s(x.f, k), x.twf) end @propagate_inbounds isdegenerate(x::TwistedProductSimplex, k::Int) = isdegenerate(x.b, k) && isdegenerate(x.f, k)
SimplicialSets
https://github.com/matthias314/SimplicialSets.jl.git
[ "MIT" ]
0.2.0
9c7c79fd1a7bfe329908fd80360bb4fb9c4a07a2
code
18364
using Test, StructEqualHash, LinearCombinations, SimplicialSets using SimplicialSets: d, s, Interval, interval_length using SimplicialSets.TestHelpers using LinearCombinations: diff, signed const TENSORMAP = Tensor # # Interval # @testset "Interval" begin for a in ( (2, 5), 2 => 5, 2:5 ) @test a isa Interval @test interval_length(a) == 4 end end function test_simplex(x::AbstractSimplex, n) @test dim(x) isa Integer @test n == dim(x) >= 0 @test hash(x) isa UInt xc = @inferred copy(x) @test x == xc @test hash(x) == hash(xc) @test_throws Exception d(x, -1) @test_throws Exception d(x, n+1) n == 0 && @test_throws Exception d(x, 0) @test_throws Exception s(x, -1) @test_throws Exception s(x, n+1) for i in 0:n if n >= 1 y = @inferred d(x, i) @test dim(y) == n-1 && typeof(y) == typeof(x) end y = @inferred s(x, i) @test dim(y) == n+1 && typeof(y) == typeof(x) @test @inferred isdegenerate(y) @test @inferred isdegenerate(y, i) !isdegenerate(x) && @test all(0:n) do j @inferred(isdegenerate(y, j)) == (j == i) end end if n >= 2 for j in 0:n, i in 0:j-1 @test d(d(x, j), i) == d(d(x, i), j-1) end end for j in 0:n, i in 0:j @test s(s(x, j), i) == s(s(x, i), j+1) end for j in 0:n, i in 0:j-1 @test d(s(x, Int8(j)), BigInt(i)) == s(d(x, Int16(i)), Int32(j-1)) end for j in 0:n @test d(s(x, j), j) == d(s(x, j), j+1) == x end for j in 0:n, i in j+2:n+1 @test d(s(x, Int16(j)), Int8(i)) == s(d(x, Int32(i-1)), BigInt(j)) end # test d(x, kk) for R in (Int8, Int, BigInt) kk = R[k for k in 0:n if rand(Bool)] length(kk) == n+1 && popfirst!(kk) @test d(x, kk) == undo_basic(d(BasicSimplex(x), kk)) end # test s(x, kk) for R in (Int8, Int, BigInt) kk = R[] l = 0 for i in 0:div(n, 3) k = rand(l:n+i) push!(kk, k) l = k+1 end @test s(x, kk) == undo_basic(s(BasicSimplex(x), kk)) end # test r(x, kk) @test_throws Exception r(x, []) @test_throws Exception r(x, [(1,2)]) for R in (Int8, Int, BigInt) kk = UnitRange{R}[] k2 = 0 while k2 <= (n <= 2 ? n-1 : n-2) k1 = rand(k2:n) k2 = rand(k1:n) push!(kk, R(k1):R(k2)) end if !isempty(kk) y = SimplicialSets.r(x, kk) @test dim(y) == sum(map(length, kk))-1 @test y == undo_basic(SimplicialSets.r(BasicSimplex(x), kk)) end end end @testset failfast=true "BasicSimplex" begin for n in 0:3 x = SymbolicSimplex('x', n) y = BasicSimplex(x) @test dim(y) == dim(x) n > 0 && @test all(0:n) do k ; d(y, k) == BasicSimplex(d(y.x, k)) end @test all(0:n) do k ; s(y, k) == BasicSimplex(s(y.x, k)) end test_simplex(y, n) end x = BarSimplex([Lattice(1,0)]; op = +) y = BarSimplex([Lattice(0,1)]; op = +) p = LoopGroupSimplex(SymbolicSimplex('p', 3)) q = LoopGroupSimplex(SymbolicSimplex('q', 3)) for (x1, x2) in ( (x, y), (p, q) ) y1 = BasicSimplex(x1) y2 = BasicSimplex(x2) @test *(y1) == y1 @test y1 * y2 * y1 == BasicSimplex(x1 * x2 * x1) @test inv(y1) == BasicSimplex(inv(x1)) if x1 isa BarSimplex{AddToMul{Lattice{2}}} # / is defined for commutative groups only @test y1 / y2 == BasicSimplex(x1 / x2) else @test_throws Exception y1 / y2 end @test one(y1) == BasicSimplex(one(x1)) @test one(y1, 5) == BasicSimplex(one(x1, 5)) @test one(typeof(y1)) == BasicSimplex(one(typeof(x1))) @test one(typeof(y1), 4) == BasicSimplex(one(typeof(x1), 4)) end end function test_group(x::T, is_commutative) where T <: AbstractSimplex n = dim(x) onex = @inferred one(x) test_simplex(onex, n) @test isone(onex) @test one(x, Int8(n+1)) == one(T, BigInt(n+1)) @test one(T) == one(T, 0) @test_throws Exception one(x, -1) for i in 0:n n > 0 && @test d(onex, i) == one(x, n-1) @test s(onex, i) == one(x, n+1) end @test *(x) == x @test x * onex == x == onex * x @test isone(x * inv(x)) && isone(inv(x) *x) @test_throws Exception x*one(T, n+1) @test @inferred(x^0) == onex @test @inferred(x^1) == x @test @inferred(x^3) == x*x*x @test @inferred(x^(-1)) == inv(x) @test @inferred(x^(-2)) == inv(x)^2 invx = @inferred inv(x) @test dim(invx) == n for i in 0:n n > 0 && @test d(invx, i) == inv(d(x, i)) @test s(invx, i) == inv(s(x, i)) end a = Linear(x => Int8(1), inv(x) => Int8(2)) @test @inferred(one(a)) == Linear(one(T) => one(Int8)) @test isone(one(a)) @test a * one(a) == a == one(a) * a if iseven(n) @test a*a*a == @inferred a^3 else is_commutative && @test iszero(a*a) end end function test_group(x::T, y::T, is_commutative) where T <: AbstractSimplex k, l = dim(x), dim(y) if k == l xy = @inferred x*y @test dim(xy) == k for i in 0:k k > 0 && @test d(xy, i) == d(x, i)*d(y, i) @test s(xy, i) == s(x, i)*s(y, i) end @test xy*x == x*y*x == x*(y*x) if is_commutative @test y*x == xy @test x/y == x*inv(y) else @test_throws Exception x/y end else @test_throws Exception x*y end a = Linear{T,BigInt}(x => 2) b = Linear{T,Float32}(y => 3) ab = @inferred a*b @test coefftype(ab) == promote_type(BigInt, Float32) && termtype(ab) == T !iszero(ab) && @test deg(ab) == k+l is_commutative && @test b*a == (-1)^(k*l) * ab @test diff(ab) == diff(a)*b + (-1)^k*a*diff(b) end @testset failfast=true "SymbolicSimplex" begin for n in (0, 1, 2, 14) x = SymbolicSimplex(:x, BigInt(n)) test_simplex(x, n) y = SymbolicSimplex('y', 1:2:2*n+1) test_simplex(y, n) v = sort!(rand(UInt8(0):UInt8(31), n+1)) z = SymbolicSimplex(:z, v) test_simplex(z, n) @test isdegenerate(z) == !allunique(v) end end @testset failfast=true "ProductSimplex" begin @test_throws Exception ProductSimplex() @test_throws Exception ProductSimplex(()) x = SymbolicSimplex('x', 2) y = SymbolicSimplex('y', 3) @test_throws Exception ProductSimplex(x, y) @test_throws Exception ProductSimplex(x; dim = 3) @test_throws Exception ProductSimplex(x, y; dim = 3) for n in 0:3 xv = ntuple(k -> BasicSimplex(SymbolicSimplex('a'+k, n)), 4) for k in 0:4 @test_throws Exception ProductSimplex(xv[1:k]; dim = -1) w = @inferred ProductSimplex(xv[1:k]; dim = BigInt(n)) @test w == @inferred ProductSimplex(xv[1:k]...; dim = n) if k > 0 v = @inferred ProductSimplex(xv[1:k]) @test v == w end test_simplex(w, n) end end end @testset failfast=true "LoopGroupSimplex" begin x = SymbolicSimplex('x', 3) xx = LoopGroupSimplex(x) xc = LoopGroupSimplex(copy(x)) @test xc == copy(xx) !== xx m = 3 for n in 1:4 # xv = ntuple(k -> LoopGroupSimplex(SymbolicSimplex('a'+k, n)), m) xv = ntuple(k -> LoopGroupSimplex(BasicSimplex(SymbolicSimplex('a'+k, n))), m) u = xv[1] for k in 0:m, l in 0:m v = prod(xv[1:k]; init = one(u)) w = prod(xv[m-l+1:m]; init = one(u)) test_simplex(v, n-1) test_group(v, false) test_group(v, w, false) end end end function test_barsimplex(n, m, groupsimplex, is_commutative) for k in 0:n T = typeof(groupsimplex(0, m)) v = T[groupsimplex(i-1, m) for i in 1:k] x = @inferred BarSimplex(v) xc = BarSimplex(copy(v)) @test xc == copy(x) !== x test_simplex(x, k) is_commutative || continue test_group(x, true) for l in 0:n y = BarSimplex(T[groupsimplex(i-1, m) for i in 1:l]) test_group(x, y, true) end end end # random_lattice_element(_, m) = AddToMul(Lattice(Tuple(rand(-3:3, m)))) # we need an inferrable return type # random_lattice_element(_, _)::AddToMul{Lattice{3}} = AddToMul(Lattice(ntuple(_ -> rand(-3:3), 3))) random_lattice_element(_, _) = AddToMul(Lattice(ntuple(_ -> rand(-3:3), 3))) struct M a::Matrix{Rational{Int}} end @struct_equal_hash M Base.one(::Type{M}) = M([1 0; 0 1]) Base.one(::M) = one(M) Base.isone(x::M) = isone(x.a) Base.inv(x::M) = M(inv(x.a)) Base.:*(x::M, ys::M...) = M(*(x.a, map(y -> y.a, ys)...)) # Base.:/(x::M, y::M) = x*inv(y) function random_matrix_2x2(_, _) a11 = rand(1:8) a22 = rand(1:8) b = a11*a22+1 a12 = findfirst(i -> rem(b, i) == 0, 2:b) + 1 a21 = div(b, a12) M([a11 a12; a21 a22]) end @testset failfast=true "BarSimplex discrete" begin test_barsimplex(4, 3, random_lattice_element, true) test_barsimplex(4, 3, random_matrix_2x2, false) end function random_loopgroupsimplex(n, m) prod(LoopGroupSimplex(SymbolicSimplex(rand('a':'z'), n+1)) for _ in 1:m) end function random_barsimplex(n, m) BarSimplex([random_lattice_element(0, m) for i in 1:n]) end function random_barbarsimplex(n, m) BarSimplex([random_barsimplex(i-1, m) for i in 1:n]) end @testset failfast=true "BarSimplex simplicial" begin test_barsimplex(4, 3, random_barsimplex, true) # test double bar construction of Z^3 test_barsimplex(3, 3, random_barbarsimplex, true) # test triple bar construction of Z^3 test_barsimplex(4, 3, BasicSimplex ∘ random_loopgroupsimplex, false) # it seems that the multiplication of chains on the bar construction of a loop group is graded commutative! end #= q2(n) = div(n*(n+1), 2) qsign(a::Linear) = Linear(x => signed(q2(deg(x)), c) for (x, c) in a) opp_linear(a::Linear) = qsign(opposite(a)) opp_swap(a::Linear{<:ProductSimplex}) = # deg(x) == degree of ProductSimplex(x, y) Linear(opposite(ProductSimplex(y, x)) => signed(q2(deg(x)), c) for ((x, y), c) in a) opp_swap(a::Linear{<:Tensor}) = Linear(opposite(Tensor(y, x)) => signed(q2(deg(x)+deg(y)), c) for ((x, y), c) in a) =# const opposite_swap = opposite ∘ swap @testset failfast=true "OppositeSimplex" begin for n in (0, 1, 4) x = SymbolicSimplex(:x, n) test_simplex(x, n) test_simplex(BasicSimplex(x), n) x = random_loopgroupsimplex(n, 2) y = random_loopgroupsimplex(n, 2) test_simplex(x, n) test_group(x, false) test_group(x, y, false) x = random_barsimplex(n, 2) y = random_barsimplex(n, 2) test_simplex(x, n) test_group(x, true) test_group(x, y, true) end for n in 0:8 x = SymbolicSimplex(:x, n) a = Linear(x => 1) @test opposite(diff(a)) == diff(opposite(a)) end end @testset failfast=true "ez" begin @test @inferred(ez(Tensor())) == Linear(ProductSimplex(; dim = 0) => 1) for k in 0:8 t = Tensor(ntuple(Returns(SymbolicSimplex('i', 1)), k)) @inferred ez(t) @inferred ez(t; coefftype = Val(Float16)) end for m in 0:4, n in 0:4 x = SymbolicSimplex(:x, m) y = SymbolicSimplex(:y, n) a = tensor(x, y) c1 = a |> ez |> opposite_swap c2 = a |> opposite_swap |> ez @test c1 == c2 end n = 3 x = random_loopgroupsimplex(n, 2) y = random_loopgroupsimplex(n, 2) z = random_loopgroupsimplex(n, 2) t = Tensor(BasicSimplex.((x, y, z))) @test ez(undo_basic(t)) == undo_basic(ez(t)) rgr = regroup( :( (1,(2,3)) ), :( (1,2,3) ) ) rgl = regroup( :( ((1,2),3) ), :( (1,2,3) ) ) @test rgr(ez(x, ez(y, z))) == ez(x, y, z) == rgl(ez(ez(x, y), z)) w = SymbolicSimplex('w', 0) @test @inferred(ez(Tensor(w, w))) == Linear(ProductSimplex(w, w) => 1) @test ez(x, w) == Linear(ProductSimplex(x, s(w, 0:n-1)) => 1) @test ez(w, x) == Linear(ProductSimplex(s(w, 0:n-1), x) => 1) a = Linear(Tensor(x,y,z) => 1) @test diff(ez(a)) == ez(diff(a)) end @testset failfast=true "aw" begin @test @inferred(aw(ProductSimplex(; dim = 0))) == Linear(Tensor() => 1) @test iszero(aw(ProductSimplex(; dim = 1))) for k in 0:8 w = ProductSimplex(ntuple(Returns(SymbolicSimplex('i', 1)), k); dim = 1) @inferred aw(w) @inferred aw(w; coefftype = Val(Float32)) end for n in 0:8 x = SymbolicSimplex('x', n) y = SymbolicSimplex('y', n) w = ProductSimplex(x, y) b = Linear(w => 1) c1 = b |> aw |> opposite_swap c2 = b |> opposite_swap |> aw @test c1 == c2 end n = 3 x = random_loopgroupsimplex(n, 2) y = random_loopgroupsimplex(n, 2) z = random_loopgroupsimplex(n, 2) w = ProductSimplex(x, y, z) w = ProductSimplex(BasicSimplex.((x, y, z))) @test aw(undo_basic(w)) == undo_basic(aw(w)) rgr, rgri = regroup_inv( :( (1,(2,3)) ), :( (1,2,3) ) ) rgl, rgli = regroup_inv( :( ((1,2),3) ), :( (1,2,3) ) ) a = w |> aw ar = w |> rgri |> aw |> TENSORMAP(identity, aw) |> rgr al = w |> rgli |> aw |> TENSORMAP(aw, identity) |> rgl @test ar == a == al w = SymbolicSimplex('w', 0) @test @inferred(aw(ProductSimplex(w, w))) == Linear(Tensor(w, w) => 1) @test aw(ProductSimplex(x, s(w, 0:n-1))) == Linear(Tensor(x, w) => 1) @test aw(ProductSimplex(s(w, 0:n-1), x)) == Linear(Tensor(w, x) => 1) a = Linear(ProductSimplex(x,y,z) => 1) @test diff(aw(a)) == aw(diff(a)) end @testset failfast=true "shih" begin for n in 0:8 x = SymbolicSimplex('x', n) y = SymbolicSimplex('y', n) w = ProductSimplex(x, y) @inferred shih_eml(w; coefftype = Val(Int16)) @inferred shih_opp(w; coefftype = Val(Int32)) b = Linear(w => 1) c1 = b |> shih_eml |> opposite_swap c2 = b |> opposite_swap |> shih_opp @test c1 == c2 end n = 3 x = random_loopgroupsimplex(n, 2) y = random_loopgroupsimplex(n, 2) z = random_loopgroupsimplex(n, 2) w = ProductSimplex(x, y) b = Linear(w => 1) c = Linear(ProductSimplex(BasicSimplex(x), BasicSimplex(y)) => 1) u = SymbolicSimplex('u', 0) v = ProductSimplex(x, y, z) a = Linear(v => 1) rgr, rgri = regroup_inv( :( (1,(2,3)) ), :( (1,2,3) ) ) rgl, rgli = regroup_inv( :( ((1,2),3) ), :( (1,2,3) ) ) for shih in (shih_eml, shih_opp) @test shih(undo_basic(c)) == undo_basic(shih(b)) @test iszero(shih(shih(b))) @test iszero(shih(ProductSimplex(u, u))) c1 = a |> rgri |> shih |> rgr |> rgli |> shih |> rgl c2 = a |> rgli |> shih |> rgl |> rgri |> shih |> rgr @test c1 == -c2 end end @testset failfast=true "EZ relations" begin for n in (0, 1, 4) x = SymbolicSimplex('x', n) y = SymbolicSimplex('y', n) a = tensor(x, y) w = ProductSimplex(x, y) b = Linear(w => 1) @test aw(ez(a)) == a for shih in (shih_eml, shih_opp) @test ez(aw(b)) - b == diff(shih(b)) + shih(diff(b)) end end end @testset failfast=true "Hirsch formula" begin f11, g21 = regroup_inv( :( (1,2,3) ), :( (1,(2,3)) ) ) f31, g11 = regroup_inv( :( (1,2,3) ), :( ((1,2),3) ) ) f21 = regroup( :( (1,2,3) ), :( (2,(1,3)) ) ) g31 = regroup( :( ((2,1),3) ), :( (2,3,1) ) ) for n in (0, 1, 2, 4) x = SymbolicSimplex('x', n) y = SymbolicSimplex('y', n) z = SymbolicSimplex('z', n) a = Linear( ProductSimplex(x, y, z) => 1 ) u = a |> f11 |> shih |> swap |> g11 |> aw v = a |> f21 |> aw |> TENSORMAP(identity, aw ∘ swap ∘ shih) |> g21 w = a |> f31 |> aw |> TENSORMAP(aw ∘ swap ∘ shih, identity) |> g31 @test u == v + w end end @testset failfast=true "AAFR formula" begin # we check a formula from # Alvarez, V.; Armario, J. A.; Frau, M. D.; Real, P. # Algebra structures on the twisted Eilenberg-Zilber theorem # TODO: what is the formula? n = 3 x = SymbolicSimplex('x', n) y = SymbolicSimplex('y', n) z = SymbolicSimplex('z', n) w = SymbolicSimplex('w', n) xy = ProductSimplex(x, y) zw = ProductSimplex(z, w) a = Linear(xy => 1) b = Linear(zw => 1) f = regroup( :( ((1,2),(3,4)) ), :( ((1,3),(2,4)) ) ) t1 = ez(x, y) t2 = shih(b) t3 = ez(tensor(t1, t2)) t4 = f(t3) t5 = shih(t4) @test iszero(t5) t1 = shih(a) t2 = ez(z, w) t3 = ez(tensor(t1, t2)) t4 = f(t3) t5 = shih(t4) @test iszero(t5) t1 = shih(a) t2 = shih(b) t3 = ez(tensor(t1, t2)) t4 = f(t3) t5 = shih(t4) @test iszero(t5) end @testset failfast=true "surjections" begin surj = @inferred Surjection{0}(Int[]) @test @inferred arity(surj) == 0 @test @inferred deg(surj) == 0 surj = @inferred Surjection{4}(Int[1,2,3,2,2,1,4]) @test @inferred arity(surj) == 4 @test @inferred deg(surj) == 3 @test @inferred isdegenerate(surj) @test iszero(Linear(surj => 1)) surj = Surjection([1,3,2,1,4,2,1]) a = Linear(surj => 1) b = @inferred diff(a) @test typeof(b) == typeof(a) @test iszero(diff(b)) c = @inferred diff(a; coeff = 2) @test typeof(c) == typeof(a) @test c == 2*b c2 = @inferred diff(a; addto = c, coeff = -2) @test c2 === c @test iszero(c2) end @testset failfast=true "interval cuts" begin surj = Surjection(Int[]) y = SymbolicSimplex('y', 0) @test surj(y; coeff = -1) == Linear(Tensor() => -1) s12 = Surjection(1:2) s21 = Surjection([2,1]) f4 = TENSORMAP(coprod, coprod) ∘ coprod rg = regroup(:(((1,2),(3,4))), :((1,2,3,4))) y = SymbolicSimplex('y', 4) z = random_loopgroupsimplex(4, 3) w = random_barsimplex(4, 3) for x in (BasicSimplex(y), y, ProductSimplex(y, y), z, w) surj = Surjection(Int[]) @test iszero(surj(x)) cx = coprod(x) @test s12(x) == cx @test s21(x) == swap(cx) s1234 = Surjection(1:4) @test rg(f4(x)) == s1234(x) surj = Surjection([1,3,3,2]) @test iszero(surj(x)) for n in 0:8 surj = Surjection(1:n) @inferred surj(x) end end end
SimplicialSets
https://github.com/matthias314/SimplicialSets.jl.git
[ "MIT" ]
0.2.0
9c7c79fd1a7bfe329908fd80360bb4fb9c4a07a2
docs
3421
# SimplicialSets.jl This packages provides functions to work with simplicial sets. Various kinds of simplicial sets are supported, including symbolic simplices, products, bar constructions and Kan loop groups. The Eilenberg-Zilber maps and interval cut operations are also implemented. **Docstrings and other documentation are under construction. Below we illustrate some of the available functionality.** The package uses [LinearCombinations.jl](https://github.com/matthias314/LinearCombinations.jl) to represent formal linear combinations of simplices. By default, coefficients are of type `Int`. ## Examples ### Basic operations and symbolic simplices ```julia julia> using LinearCombinations, SimplicialSets julia> x = SymbolicSimplex(:x, 4) x[0,1,2,3,4] julia> dim(x) 4 julia> using SimplicialSets: d, s julia> d(x, 2) x[0,1,3,4] julia> s(x, 2) x[0,1,2,2,3,4] julia> isdegenerate(x), isdegenerate(s(x, 2)) (false, true) julia> using LinearCombinations: diff julia> diff(x) x[0,1,2,3]-x[0,2,3,4]+x[1,2,3,4]+x[0,1,3,4]-x[0,1,2,4] ``` ### Loop groups ```julia julia> x, y = SymbolicSimplex(:x, 3), SymbolicSimplex(:y, 3) (x[0,1,2,3], y[0,1,2,3]) julia> u, v = LoopGroupSimplex(x), LoopGroupSimplex(y) (⟨x[0,1,2,3]⟩, ⟨y[0,1,2,3]⟩) julia> w = u*v ⟨x[0,1,2,3],y[0,1,2,3]⟩ julia> inv(w) ⟨y[0,1,2,3]⁻¹,x[0,1,2,3]⁻¹⟩ julia> diff(w) -⟨x[0,1,3],y[0,1,3]⟩+⟨x[0,1,2],y[0,1,2]⟩ +⟨x[1,2,3]⁻¹,x[0,2,3],y[1,2,3]⁻¹,y[0,2,3]⟩ ``` ### Eilenberg-Zilber maps ```julia julia> x, y = SymbolicSimplex(:x, 2), SymbolicSimplex(:y, 2) (x[0,1,2], y[0,1,2]) julia> z = ProductSimplex(x, y) (x[0,1,2],y[0,1,2]) julia> ez(x, y) # shuffle map -(x[0,0,1,1,2],y[0,1,1,2,2])+(x[0,1,2,2,2],y[0,0,0,1,2]) +(x[0,0,1,2,2],y[0,1,1,1,2])+(x[0,0,0,1,2],y[0,1,2,2,2]) +(x[0,1,1,1,2],y[0,0,1,2,2])-(x[0,1,1,2,2],y[0,0,1,1,2]) julia> aw(z) # Alexander-Whitney map x[0,1]⊗y[1,2]+x[0]⊗y[0,1,2]+x[0,1,2]⊗y[2] julia> shih(z) # Eilenberg-MacLane homotopy -(x[0,1,1,2],y[0,1,2,2])+(x[0,0,1,1],y[0,1,1,2]) -(x[0,0,0,1],y[0,1,2,2])+(x[0,0,1,2],y[0,2,2,2]) ``` Let's check that `shih` is indeed a homotopy from the identity to `ez∘aw`: ```julia julia> diff(shih(z)) + shih(diff(z)) == ez(aw(z)) - z true ``` Let's verify the "side conditions" for the Eilenberg-Zilber maps: ```julia julia> shih(ez(x, y)), aw(shih(z)), shih(shih(z)) (0, 0, 0) ``` Let's check that the shuffle map is commutative: ```julia julia> x, y = SymbolicSimplex(:x, 1), SymbolicSimplex(:y, 3) (x[0,1], y[0,1,2,3]) julia> t = tensor(x, y) x[0,1]⊗y[0,1,2,3] julia> ez(t) -(x[0,0,1,1,1],y[0,1,1,2,3])+(x[0,0,0,1,1],y[0,1,2,2,3]) +(x[0,1,1,1,1],y[0,0,1,2,3])-(x[0,0,0,0,1],y[0,1,2,3,3]) julia> a = swap(ez(t)) -(y[0,1,2,3,3],x[0,0,0,0,1])-(y[0,1,1,2,3],x[0,0,1,1,1]) +(y[0,0,1,2,3],x[0,1,1,1,1])+(y[0,1,2,2,3],x[0,0,0,1,1]) julia> swap(t) -y[0,1,2,3]⊗x[0,1] julia> b = ez(swap(t)) -(y[0,1,2,3,3],x[0,0,0,0,1])-(y[0,1,1,2,3],x[0,0,1,1,1]) +(y[0,0,1,2,3],x[0,1,1,1,1])+(y[0,1,2,2,3],x[0,0,0,1,1]) julia> a == b true ``` ### Interval cut operations ```julia julia> sj = Surjection([1,3,2,1]) Surjection{3}([1, 3, 2, 1]) julia> x = SymbolicSimplex(:x, 2) x[0,1,2] julia> sj(x) -x[0,1,2]⊗x[1]⊗x[0,1]-x[0,2]⊗x[1,2]⊗x[0,1]-x[0,1,2]⊗x[0,1]⊗x[0] -x[0,1,2]⊗x[2]⊗x[1,2]+x[0,2]⊗x[0,1,2]⊗x[0]+x[0,2]⊗x[2]⊗x[0,1,2] -x[0,1,2]⊗x[1,2]⊗x[1] julia> diff(sj) Surjection{3}([2, 3, 1])-Surjection{3}([1, 2, 3]) julia> diff(sj(x)) == diff(sj)(x) + (-1)^deg(sj) * sj(diff(x)) true ```
SimplicialSets
https://github.com/matthias314/SimplicialSets.jl.git
[ "MIT" ]
0.1.1
116831207eb15bcfa0844a4de6cc07929ecef0de
code
847
module PairAsPipe export @pap using MacroTools using MacroTools: @capture macro pap(ex) has_newcol = @capture(ex, newcol_ = rhs_) if !has_newcol rhs = ex end # for obtaining symbols symbols = QuoteNode[] gen_symbols = Symbol[] rhs = MacroTools.postwalk(function(x) if x isa QuoteNode push!(symbols, x) push!(gen_symbols, MacroTools.gensym(x.value)) return gen_symbols[end] else return x end end, rhs) lhs = Expr(:tuple, gen_symbols...) # the fn in # :col => fn fn = Expr(:->, lhs, rhs) # the [:col1, :col2] in # the [:col1, :col2] => fn cols = Expr(:vect, symbols...) if has_newcol fn = Expr(:call, :(=>), fn, QuoteNode(newcol)) end esc(Expr(:call, :(=>), cols, fn)) end end
PairAsPipe
https://github.com/xiaodaigh/PairAsPipe.jl.git
[ "MIT" ]
0.1.1
116831207eb15bcfa0844a4de6cc07929ecef0de
code
269
using PairAsPipe using Test @testset "PairAsPipe.jl" begin # Write your tests here. end using DataFrames, DataFramesMeta, Pipe data = DataFrame(a = rand(1:8, 100), b = rand(1:8, 100), c = rand(100)) @pipe data |> groupby(_, :a) |> @orderby(_, :b)
PairAsPipe
https://github.com/xiaodaigh/PairAsPipe.jl.git
[ "MIT" ]
0.1.1
116831207eb15bcfa0844a4de6cc07929ecef0de
docs
876
## PairAsPipe.jl **P**air**A**s**P**ipe (`@pap`) is friendly with DataFrames.jl's API. The macro `@pap` is designed to transform `newcol = fn(:col)` to `:col => fn => :newcol` which is an elegant (ab)use of pairs syntax (`a => b`) as pipes. Hence the name of the package. ### Usage Some examples ```julia using DataFrames, PairAsPipe df = DataFrame(a = 1:3) transform(df, @pap b = :a .* 2) # same as transform(df, :a => a->a.*2 => :b) transform(df, @pap :a .* 2) # same as transform(df, :a => a->a.*2); except for output column name transform(df, @pap sum(:a)) # same as transform(df, :a => mean); except for output column name filter(@pap(:a == 1), df) # same as filter([:a] => a -> a == 1, df) ``` ### Similar Work * [DataFramesMacros.jl](https://github.com/matthieugomez/DataFramesMacros.jl) * [DataFramesMeta.jl](https://github.com/JuliaData/DataFramesMeta.jl)
PairAsPipe
https://github.com/xiaodaigh/PairAsPipe.jl.git
[ "MIT" ]
2.3.0
3a86c9b6f29a5ed3a5ffd9bffb0d4010e2e91f22
code
2436
### benchmark.jl --- Benchmark Cuba.jl and Cuba C Library using Cuba, Printf const ndim=3 const ncomp=11 const atol=1e-8 const rtol=1e-8 rsq(x,y,z) = abs2(x) + abs2(y) + abs2(z) t1(x,y,z) = sin(x)*cos(y)*exp(z) t2(x,y,z) = 1.0/((x + y)*(x + y) + 0.003)*cos(y)*exp(z) t3(x,y,z) = 1.0/(3.75 - cos(pi*x) - cos(pi*y) - cos(pi*z)) t4(x,y,z) = abs(rsq(x,y,z) - 0.125) t5(x,y,z) = exp(-rsq(x,y,z)) t6(x,y,z) = 1.0/(1.0 - x*y*z + 1e-10) t7(x,y,z) = sqrt(abs(x - y - z)) t8(x,y,z) = exp(-x*y*z) t9(x,y,z) = abs2(x)/(cos(x + y + z + 1.0) + 5.0) t10(x,y,z) = (x > 0.5) ? 1.0/sqrt(x*y*z + 1e-5) : sqrt(x*y*z) t11(x,y,z) = (rsq(x,y,z) < 1.0) ? 1.0 : 0.0 function test(x::Vector{Float64}, f::Vector{Float64}) @inbounds f[1] = t1( x[1], x[2], x[3]) @inbounds f[2] = t2( x[1], x[2], x[3]) @inbounds f[3] = t3( x[1], x[2], x[3]) @inbounds f[4] = t4( x[1], x[2], x[3]) @inbounds f[5] = t5( x[1], x[2], x[3]) @inbounds f[6] = t6( x[1], x[2], x[3]) @inbounds f[7] = t7( x[1], x[2], x[3]) @inbounds f[8] = t8( x[1], x[2], x[3]) @inbounds f[9] = t9( x[1], x[2], x[3]) @inbounds f[10] = t10(x[1], x[2], x[3]) @inbounds f[11] = t11(x[1], x[2], x[3]) end @info "Performance of Cuba.jl:" for alg in (vegas, suave, divonne, cuhre) # Run the integrator a first time to compile the function. alg(test, ndim, ncomp, atol=atol, rtol=rtol); start_time = time_ns() alg(test, ndim, ncomp, atol=atol, rtol=rtol); end_time = time_ns() println(@sprintf("%10.6f", Int(end_time - start_time)/1e9), " seconds (", uppercasefirst(string(nameof(alg))), ")") end cd(@__DIR__) do if mtime("benchmark.c") > mtime("benchmark-c") run(`gcc -O3 -I $(Cuba.Cuba_jll.artifact_dir)/include -o benchmark-c benchmark.c $(Cuba.Cuba_jll.libcuba_path) -lm`) end @info "Performance of Cuba Library in C:" withenv(Cuba.Cuba_jll.JLLWrappers.LIBPATH_env => Cuba.Cuba_jll.LIBPATH[]) do run(`./benchmark-c`) end if success(`which gfortran`) if mtime("benchmark.f") > mtime("benchmark-fortran") run(`gfortran -O3 -fcheck=no-bounds -cpp -o benchmark-fortran benchmark.f $(Cuba.Cuba_jll.libcuba_path) -lm`) end @info "Performance of Cuba Library in Fortran:" withenv(Cuba.Cuba_jll.JLLWrappers.LIBPATH_env => Cuba.Cuba_jll.LIBPATH[]) do run(`./benchmark-fortran`) end end end
Cuba
https://github.com/giordano/Cuba.jl.git
[ "MIT" ]
2.3.0
3a86c9b6f29a5ed3a5ffd9bffb0d4010e2e91f22
code
223
using Documenter, Cuba makedocs( modules = [Cuba], sitename = "Cuba", strict = true, ) deploydocs( repo = "github.com/giordano/Cuba.jl.git", target = "build", deps = nothing, make = nothing, )
Cuba
https://github.com/giordano/Cuba.jl.git
[ "MIT" ]
2.3.0
3a86c9b6f29a5ed3a5ffd9bffb0d4010e2e91f22
code
8534
### Cuba.jl --- Julia library for multidimensional numerical integration. __precompile__() module Cuba using Cuba_jll export vegas, suave, divonne, cuhre ### Default values of parameters # Common arguments. const NVEC = 1 const RTOL = 1e-4 const ATOL = 1e-12 const FLAGS = 0 const SEED = 0 const MINEVALS = 0 const MAXEVALS = 1000000 const STATEFILE = "" const SPIN = C_NULL # Vegas-specific arguments. const NSTART = 1000 const NINCREASE = 500 const NBATCH = 1000 const GRIDNO = 0 # Suave-specific arguments. const NNEW = 1000 const NMIN = 2 const FLATNESS = 25.0 # Divonne-specific arguments. const KEY1 = 47 const KEY2 = 1 const KEY3 = 1 const MAXPASS = 5 const BORDER = 0.0 const MAXCHISQ = 10.0 const MINDEVIATION = 0.25 const NGIVEN = 0 const LDXGIVEN = 0 const XGIVEN = 0 const NEXTRA = 0 const PEAKFINDER = C_NULL # Cuhre-specific argument. const KEY = 0 ### Functions # Note on implementation: instead of passing the function that performs # calculations as "integrand" argument to integrator routines, we pass the # pointer to this function and use "func_" to actually perform calculations. # Without doing so and trying to "cfunction" a function not yet defined we would # run into a # # cfunction: no method exactly matched the required type signature (function not yet c-callable) # # error. See http://julialang.org/blog/2013/05/callback for more information on # this, in particular the section about "qsort_r" ("Passing closures via # pass-through pointers"). Thanks to Steven G. Johnson for pointing to this. # # For better performance, when nvec == 1 we store a simple Vector, instead of a Matrix with # second dimension equal to 1. function generic_integrand!(ndim::Cint, x_::Ptr{Cdouble}, ncomp::Cint, f_::Ptr{Cdouble}, func!) # Get arrays from "x_" and "f_" pointers. x = unsafe_wrap(Array, x_, (ndim,)) f = unsafe_wrap(Array, f_, (ncomp,)) func!(x, f) return Cint(0) end function generic_integrand_userdata!(ndim::Cint, x_::Ptr{Cdouble}, ncomp::Cint, f_::Ptr{Cdouble}, func!_and_userdata) func!, userdata = func!_and_userdata # Get arrays from "x_" and "f_" pointers. x = unsafe_wrap(Array, x_, (ndim,)) f = unsafe_wrap(Array, f_, (ncomp,)) func!(x, f, userdata) return Cint(0) end function generic_integrand!(ndim::Cint, x_::Ptr{Cdouble}, ncomp::Cint, f_::Ptr{Cdouble}, func!, nvec::Cint) # Get arrays from "x_" and "f_" pointers. x = unsafe_wrap(Array, x_, (ndim, nvec)) f = unsafe_wrap(Array, f_, (ncomp, nvec)) func!(x, f) return Cint(0) end function generic_integrand_userdata!(ndim::Cint, x_::Ptr{Cdouble}, ncomp::Cint, f_::Ptr{Cdouble}, func!_and_userdata, nvec::Cint) func!, userdata = func!_and_userdata # Get arrays from "x_" and "f_" pointers. x = unsafe_wrap(Array, x_, (ndim, nvec)) f = unsafe_wrap(Array, f_, (ncomp, nvec)) func!(x, f, userdata) return Cint(0) end # Return pointer for "integrand", to be passed as "integrand" argument to Cuba functions. integrand_ptr(integrand::T) where {T} = @cfunction(generic_integrand!, Cint, (Ref{Cint}, # ndim Ptr{Cdouble}, # x Ref{Cint}, # ncomp Ptr{Cdouble}, # f Ref{T})) # userdata integrand_ptr_userdata(integrand::T, userdata::D) where {T, D} = @cfunction(generic_integrand_userdata!, Cint, (Ref{Cint}, # ndim Ptr{Cdouble}, # x Ref{Cint}, # ncomp Ptr{Cdouble}, # f Ref{Tuple{T, D}})) # userdata integrand_ptr_nvec(integrand::T) where {T} = @cfunction(generic_integrand!, Cint, (Ref{Cint}, # ndim Ptr{Cdouble}, # x Ref{Cint}, # ncomp Ptr{Cdouble}, # f Ref{T}, # userdata Ref{Cint})) # nvec integrand_ptr_nvec_userdata(integrand::T, userdata::D) where {T, D} = @cfunction(generic_integrand_userdata!, Cint, (Ref{Cint}, # ndim Ptr{Cdouble}, # x Ref{Cint}, # ncomp Ptr{Cdouble}, # f Ref{Tuple{T, D}}, # userdata Ref{Cint})) # nvec abstract type Integrand{T} end function __init__() Cuba.cores(0, 10000) end # handle keyword deprecation function tols(atol,rtol,abstol,reltol) if !ismissing(abstol) || !ismissing(reltol) Base.depwarn("abstol and reltol keywords are now atol and rtol, respectively", :quadgk) end return coalesce(abstol,atol), coalesce(reltol,rtol) end include("cuhre.jl") include("divonne.jl") include("suave.jl") include("vegas.jl") struct Integral{T} integral::Vector{Float64} error::Vector{Float64} probability::Vector{Float64} neval::Int64 fail::Int32 nregions::Int32 end Base.getindex(x::Integral, n::Integer) = getfield(x, n) function Base.iterate(x::Integral, i=1) i > 6 && return nothing return x[i], i + 1 end _print_fail_extra(io::IO, x::Integral) = nothing _print_fail_extra(io::IO, x::Integral{<:Divonne}) = print(io, "\nHint: Try increasing `maxevals` to ", x.neval+x.fail) function print_fail(io::IO, x::Integral) print(io, "Note: ") fail = x.fail if fail < 0 print(io, "Dimension out of range") elseif fail == 0 print(io, "The desired accuracy was reached") elseif fail > 0 print(io, "The accuracy was not met within the maximum number of evaluations") _print_fail_extra(io, x) end end function Base.show(io::IO, x::Integral) ncomp = length(x.integral) println(io, ncomp == 1 ? "Component:" : "Components:") for i in 1:ncomp println(io, " ", lpad("$i", ceil(Int, log10(ncomp+1))), ": ", x.integral[i], " ± ", x.error[i], " (prob.: ", x.probability[i],")") end println(io, "Integrand evaluations: ", x.neval) println(io, "Number of subregions: ", x.nregions) print_fail(io, x) end @inline function dointegrate(x::T) where {T<:Integrand} # Choose the integrand function wrapper based on the value of `nvec`. This function is # called only once, so the overhead of the following if should be negligible. if x.nvec == 1 integrand = ismissing(x.userdata) ? integrand_ptr(x.func) : integrand_ptr_userdata(x.func, x.userdata) else integrand = ismissing(x.userdata) ? integrand_ptr_nvec(x.func) : integrand_ptr_nvec_userdata(x.func, x.userdata) end integral = Vector{Cdouble}(undef, x.ncomp) error = Vector{Cdouble}(undef, x.ncomp) prob = Vector{Cdouble}(undef, x.ncomp) neval = Ref{Int64}(0) fail = Ref{Cint}(0) nregions = Ref{Cint}(0) dointegrate!(x, integrand, integral, error, prob, neval, fail, nregions) return Integral{T}(integral, error, prob, neval[], fail[], nregions[]) end ### Other functions, not exported function cores(n::Integer, p::Integer) ccall((:cubacores, libcuba), Ptr{Cvoid}, (Ptr{Cint}, Ptr{Cint}), Ref{Cint}(n), Ref{Cint}(p)) return 0 end function accel(n::Integer, p::Integer) ccall((:cubaaccel, libcuba), Ptr{Cvoid}, (Ptr{Cint}, Ptr{Cint}), Ref{Cint}(n), Ref{Cint}(p)) return 0 end function init(f::Ptr{Cvoid}, arg::Ptr{Cvoid}) ccall((:cubainit, libcuba), Ptr{Cvoid}, (Ptr{Cvoid}, Ptr{Cvoid}), f, arg) return 0 end function exit(f::Ptr{Cvoid}, arg::Ptr{Cvoid}) ccall((:cubaexit, libcuba), Ptr{Cvoid}, (Ptr{Cvoid}, Ptr{Cvoid}), f, arg) return 0 end end # module
Cuba
https://github.com/giordano/Cuba.jl.git
[ "MIT" ]
2.3.0
3a86c9b6f29a5ed3a5ffd9bffb0d4010e2e91f22
code
2801
### cuhre.jl --- Integrate with Cuhre method struct Cuhre{T, D} <: Integrand{T} func::T userdata::D ndim::Int ncomp::Int nvec::Int64 rtol::Cdouble atol::Cdouble flags::Int minevals::Int64 maxevals::Int64 key::Int statefile::String spin::Ptr{Cvoid} end @inline function dointegrate!(x::Cuhre{T, D}, integrand, integral, error, prob, neval, fail, nregions) where {T, D} userdata = ismissing(x.userdata) ? x.func : (x.func, x.userdata) ccall((:llCuhre, libcuba), Cdouble, (Cint, # ndim Cint, # ncomp Ptr{Cvoid}, # integrand Any, # userdata Int64, # nvec Cdouble, # rtol Cdouble, # atol Cint, # flags Int64, # minevals Int64, # maxevals Cint, # key Ptr{Cchar}, # statefile Ptr{Cvoid}, # spin Ptr{Cint}, # nregions Ptr{Int64}, # neval Ptr{Cint}, # fail Ptr{Cdouble}, # integral Ptr{Cdouble}, # error Ptr{Cdouble}),# prob # Input x.ndim, x.ncomp, integrand, userdata, x.nvec, x.rtol, x.atol, x.flags, x.minevals, x.maxevals, x.key, x.statefile, x.spin, # Output nregions, neval, fail, integral, error, prob) end """ cuhre(integrand, ndim=2, ncomp=1[, keywords]) -> integral, error, probability, neval, fail, nregions Calculate integral of `integrand` over the unit hypercube in `ndim` dimensions using Cuhre algorithm. `integrand` is a vectorial function with `ncomp` components. `ncomp` defaults to 1, `ndim` defaults to 2 and must be ≥ 2. Accepted keywords: * `userdata` * `nvec` * `rtol` * `atol` * `flags` * `minevals` * `maxevals` * `key` * `statefile` * `spin` """ function cuhre(integrand::T, ndim::Integer=2, ncomp::Integer=1; nvec::Integer=NVEC, rtol::Real=RTOL, atol::Real=ATOL, flags::Integer=FLAGS, minevals::Real=MINEVALS, maxevals::Real=MAXEVALS, key::Integer=KEY, statefile::AbstractString=STATEFILE, spin::Ptr{Cvoid}=SPIN, abstol=missing, reltol=missing, userdata=missing) where {T} atol_,rtol_ = tols(atol,rtol,abstol,reltol) # Cuhre requires "ndim" to be at least 2, even for an integral over a one # dimensional domain. Instead, we don't prevent users from setting wrong # "ndim" values like 0 or negative ones. ndim >=2 || throw(ArgumentError("In Cuhre ndim must be ≥ 2")) return dointegrate(Cuhre(integrand, userdata, ndim, ncomp, Int64(nvec), Cdouble(rtol_), Cdouble(atol_), flags, trunc(Int64, minevals), trunc(Int64, maxevals), key, String(statefile), spin)) end
Cuba
https://github.com/giordano/Cuba.jl.git
[ "MIT" ]
2.3.0
3a86c9b6f29a5ed3a5ffd9bffb0d4010e2e91f22
code
4492
### divonne.jl --- Integrate with Divonne method struct Divonne{T, D} <: Integrand{T} func::T userdata::D ndim::Int ncomp::Int nvec::Int64 rtol::Cdouble atol::Cdouble flags::Int seed::Int minevals::Int64 maxevals::Int64 key1::Int key2::Int key3::Int maxpass::Int border::Cdouble maxchisq::Cdouble mindeviation::Cdouble ngiven::Int64 ldxgiven::Int xgiven::Array{Cdouble, 2} nextra::Int64 peakfinder::Ptr{Cvoid} statefile::String spin::Ptr{Cvoid} end @inline function dointegrate!(x::Divonne{T, D}, integrand, integral, error, prob, neval, fail, nregions) where {T, D} userdata = ismissing(x.userdata) ? x.func : (x.func, x.userdata) ccall((:llDivonne, libcuba), Cdouble, (Cint, # ndim Cint, # ncomp Ptr{Cvoid}, # integrand Any, # userdata Int64, # nvec Cdouble, # rtol Cdouble, # atol Cint, # flags Cint, # seed Int64, # minevals Int64, # maxevals Cint, # key1 Cint, # key2 Cint, # key3 Cint, # maxpass Cdouble, # border Cdouble, # maxchisq Cdouble, # mindeviation Int64, # ngiven Cint, # ldxgiven Ptr{Cdouble}, # xgiven Int64, # nextra Ptr{Cvoid}, # peakfinder Ptr{Cchar}, # statefile Ptr{Cvoid}, # spin Ptr{Cint}, # nregions Ptr{Int64}, # neval Ptr{Cint}, # fail Ptr{Cdouble}, # integral Ptr{Cdouble}, # error Ptr{Cdouble}),# prob # Input x.ndim, x.ncomp, integrand, userdata, x.nvec, x.rtol, x.atol, x.flags, x.seed, x.minevals, x.maxevals, x.key1, x.key2, x.key3, x.maxpass, x.border, x.maxchisq, x.mindeviation, x.ngiven, x.ldxgiven, x.xgiven, x.nextra, x.peakfinder, x.statefile, x.spin, # Output nregions, neval, fail, integral, error, prob) end """ divonne(integrand, ndim=2, ncomp=1[, keywords]) -> integral, error, probability, neval, fail, nregions Calculate integral of `integrand` over the unit hypercube in `ndim` dimensions using Divonne algorithm. `integrand` is a vectorial function with `ncomp` components. `ncomp` defaults to 1, `ndim` defaults to 2 and must be ≥ 2. Accepted keywords: * `userdata` * `nvec` * `rtol` * `atol` * `flags` * `seed` * `minevals` * `maxevals` * `key1` * `key2` * `key3` * `maxpass` * `border` * `maxchisq` * `mindeviation` * `ngiven` * `ldxgiven` * `xgiven` * `nextra` * `peakfinder` * `statefile` * `spin` """ function divonne(integrand::T, ndim::Integer=2, ncomp::Integer=1; nvec::Integer=NVEC, rtol::Real=RTOL, atol::Real=ATOL, flags::Integer=FLAGS, seed::Integer=SEED, minevals::Real=MINEVALS, maxevals::Real=MAXEVALS, key1::Integer=KEY1, key2::Integer=KEY2, key3::Integer=KEY3, maxpass::Integer=MAXPASS, border::Real=BORDER, maxchisq::Real=MAXCHISQ, mindeviation::Real=MINDEVIATION, ngiven::Integer=NGIVEN, ldxgiven::Integer=LDXGIVEN, xgiven::Array{Cdouble,2}=zeros(Cdouble, ldxgiven, ngiven), nextra::Integer=NEXTRA, peakfinder::Ptr{Cvoid}=PEAKFINDER, statefile::AbstractString=STATEFILE, spin::Ptr{Cvoid}=SPIN, reltol=missing, abstol=missing, userdata=missing) where {T} atol_,rtol_ = tols(atol,rtol,abstol,reltol) # Divonne requires "ndim" to be at least 2, even for an integral over a one # dimensional domain. Instead, we don't prevent users from setting wrong # "ndim" values like 0 or negative ones. ndim >=2 || throw(ArgumentError("In Divonne ndim must be ≥ 2")) return dointegrate(Divonne(integrand, userdata, ndim, ncomp, Int64(nvec), Cdouble(rtol_), Cdouble(atol_), flags, seed, trunc(Int64, minevals), trunc(Int64, maxevals), key1, key2, key3, maxpass, Cdouble(border), Cdouble(maxchisq), Cdouble(mindeviation), Int64(ngiven), ldxgiven, xgiven, Int64(nextra), peakfinder, String(statefile), spin)) end
Cuba
https://github.com/giordano/Cuba.jl.git
[ "MIT" ]
2.3.0
3a86c9b6f29a5ed3a5ffd9bffb0d4010e2e91f22
code
2870
### suave.jl --- Integrate with Suave method struct Suave{T, D} <: Integrand{T} func::T userdata::D ndim::Int ncomp::Int nvec::Int64 rtol::Cdouble atol::Cdouble flags::Int seed::Int minevals::Int64 maxevals::Int64 nnew::Int64 nmin::Int64 flatness::Cdouble statefile::String spin::Ptr{Cvoid} end @inline function dointegrate!(x::Suave{T, D}, integrand, integral, error, prob, neval, fail, nregions) where {T, D} userdata = ismissing(x.userdata) ? x.func : (x.func, x.userdata) ccall((:llSuave, libcuba), Cdouble, (Cint, # ndim Cint, # ncomp Ptr{Cvoid}, # integrand Any, # userdata Int64, # nvec Cdouble, # rtol Cdouble, # atol Cint, # flags Cint, # seed Int64, # minevals Int64, # maxevals Int64, # nnew Int64, # nmin Cdouble, # flatness Ptr{Cchar}, # statefile Ptr{Cvoid}, # spin Ptr{Cint}, # nregions Ptr{Int64}, # neval Ptr{Cint}, # fail Ptr{Cdouble}, # integral Ptr{Cdouble}, # error Ptr{Cdouble}),# prob # Input x.ndim, x.ncomp, integrand, userdata, x.nvec, x.rtol, x.atol, x.flags, x.seed, x.minevals, x.maxevals, x.nnew, x.nmin, x.flatness, x.statefile, x.spin, # Output nregions, neval, fail, integral, error, prob) end """ suave(integrand, ndim=1, ncomp=1[, keywords]) -> integral, error, probability, neval, fail, nregions Calculate integral of `integrand` over the unit hypercube in `ndim` dimensions using Suave algorithm. `integrand` is a vectorial function with `ncomp` components. `ndim` and `ncomp` default to 1. Accepted keywords: * `userdata` * `nvec` * `rtol` * `atol` * `flags` * `seed` * `minevals` * `maxevals` * `nnew` * `nmin` * `flatness` * `statefile` * `spin` """ function suave(integrand::T, ndim::Integer=1, ncomp::Integer=1; nvec::Integer=NVEC, rtol::Real=RTOL, atol::Real=ATOL, flags::Integer=FLAGS, seed::Integer=SEED, minevals::Real=MINEVALS, maxevals::Real=MAXEVALS, nnew::Integer=NNEW, nmin::Integer=NMIN, flatness::Real=FLATNESS, statefile::AbstractString=STATEFILE, spin::Ptr{Cvoid}=SPIN, reltol=missing, abstol=missing, userdata=missing) where {T} atol_,rtol_ = tols(atol,rtol,abstol,reltol) return dointegrate(Suave(integrand, userdata, ndim, ncomp, Int64(nvec), Cdouble(rtol_), Cdouble(atol_), flags, seed, trunc(Int64, minevals), trunc(Int64, maxevals), Int64(nnew), Int64(nmin), Cdouble(flatness), String(statefile), spin)) end
Cuba
https://github.com/giordano/Cuba.jl.git
[ "MIT" ]
2.3.0
3a86c9b6f29a5ed3a5ffd9bffb0d4010e2e91f22
code
2999
### vegas.jl --- Integrate with Vegas method struct Vegas{T, D} <: Integrand{T} func::T userdata::D ndim::Int ncomp::Int nvec::Int64 rtol::Cdouble atol::Cdouble flags::Int seed::Int minevals::Int64 maxevals::Int64 nstart::Int64 nincrease::Int64 nbatch::Int64 gridno::Int statefile::String spin::Ptr{Cvoid} end @inline function dointegrate!(x::Vegas{T, D}, integrand, integral, error, prob, neval, fail, nregions) where {T, D} userdata = ismissing(x.userdata) ? x.func : (x.func, x.userdata) ccall((:llVegas, libcuba), Cdouble, (Cint, # ndim Cint, # ncomp Ptr{Cvoid}, # integrand Any, # userdata Int64, # nvec Cdouble, # rtol Cdouble, # atol Cint, # flags Cint, # seed Int64, # minevals Int64, # maxevals Int64, # nstart Int64, # nincrease Int64, # nbatch Cint, # gridno Ptr{Cchar}, # statefile Ptr{Cvoid}, # spin Ptr{Int64}, # neval Ptr{Cint}, # fail Ptr{Cdouble}, # integral Ptr{Cdouble}, # error Ptr{Cdouble}),# prob # Input x.ndim, x.ncomp, integrand, userdata, x.nvec, x.rtol, x.atol, x.flags, x.seed, x.minevals, x.maxevals, x.nstart, x.nincrease, x.nbatch, x.gridno, x.statefile, x.spin, # Output neval, fail, integral, error, prob) end """ vegas(integrand, ndim=1, ncomp=1[, keywords]) -> integral, error, probability, neval, fail, nregions Calculate integral of `integrand` over the unit hypercube in `ndim` dimensions using Vegas algorithm. `integrand` is a vectorial function with `ncomp` components. `ndim` and `ncomp` default to 1. Accepted keywords: * `userdata` * `nvec` * `rtol` * `atol` * `flags` * `seed` * `minevals` * `maxevals` * `nstart` * `nincrease` * `nbatch` * `gridno` * `statefile` * `spin` """ function vegas(integrand::T, ndim::Integer=1, ncomp::Integer=1; nvec::Integer=NVEC, rtol::Real=RTOL, atol::Real=ATOL, flags::Integer=FLAGS, seed::Integer=SEED, minevals::Real=MINEVALS, maxevals::Real=MAXEVALS, nstart::Integer=NSTART, nincrease::Integer=NINCREASE, nbatch::Integer=NBATCH, gridno::Integer=GRIDNO, statefile::AbstractString=STATEFILE, spin::Ptr{Cvoid}=SPIN, reltol=missing, abstol=missing, userdata=missing) where {T} atol_,rtol_ = tols(atol,rtol,abstol,reltol) return dointegrate(Vegas(integrand, userdata, ndim, ncomp, Int64(nvec), Cdouble(rtol_), Cdouble(atol_), flags, seed, trunc(Int64, minevals), trunc(Int64, maxevals), Int64(nstart), Int64(nincrease), Int64(nbatch), gridno, String(statefile), spin)) end
Cuba
https://github.com/giordano/Cuba.jl.git
[ "MIT" ]
2.3.0
3a86c9b6f29a5ed3a5ffd9bffb0d4010e2e91f22
code
5839
### runtests.jl --- Test suite for Cuba.jl using Cuba using Test using Distributed, LinearAlgebra f1(x, y, z) = sin(x) * cos(y) * exp(z) f2(x, y, z) = exp(-(x * x + y * y + z * z)) f3(x, y, z) = 1 / (1 - x * y * z) function integrand1(x, f) f[1] = f1(x[1], x[2], x[3]) f[2] = f2(x[1], x[2], x[3]) f[3] = f3(x[1], x[2], x[3]) end # Make sure using "addprocs" doesn't make the program segfault. addprocs(1) Cuba.cores(0, 10000) Cuba.accel(0, 1000) # Test results and make sure the estimation of error is exact. ncomp = 3 @testset "$alg" for (alg, atol) in ((vegas, 1e-4), (suave, 1e-3), (divonne, 1e-4), (cuhre, 1e-8)) # Make sure that using maxevals > typemax(Int32) doesn't result into InexactError. if alg == divonne result = @inferred alg(integrand1, 3, ncomp, atol=atol, rtol=1e-8, flags=0, border=1e-5, maxevals=3000000000) else result = @inferred alg(integrand1, 3, ncomp, atol=atol, rtol=1e-8, flags=0, maxevals=3e9) end # Analytic expressions: ((e-1)*(1-cos(1))*sin(1), (sqrt(pi)*erf(1)/2)^3, zeta(3)) for (i, answer) in enumerate((0.6646696797813771, 0.41653838588663805, 1.2020569031595951)) @test result[1][i] ≈ answer atol = result[2][i] end end struct UserData para::Float64 end function integrand2(x, f, userdata) f[1] = f1(x[1], x[2], x[3]) + userdata.para f[2] = f2(x[1], x[2], x[3]) + userdata.para f[3] = f3(x[1], x[2], x[3]) + userdata.para end @testset "$alg with userdata" for (alg, atol) in ((vegas, 1e-4), (suave, 1e-3), (divonne, 1e-4), (cuhre, 1e-8)) # Make sure that using maxevals > typemax(Int32) doesn't result into InexactError. if alg == divonne result = @inferred alg(integrand2, 3, ncomp, atol=atol, rtol=1e-8, flags=0, border=1e-5, maxevals=3000000000, userdata=UserData(0.1)) else result = @inferred alg(integrand2, 3, ncomp, atol=atol, rtol=1e-8, flags=0, maxevals=3e9, userdata=UserData(0.1)) end # Analytic expressions: ((e-1)*(1-cos(1))*sin(1)+1.0, (sqrt(pi)*erf(1)/2)^3+1.0, zeta(3)+1.0) for (i, answer) in enumerate((0.7646696797813771, 0.51653838588663805, 1.3020569031595951)) @test result[1][i] ≈ answer atol = result[2][i] end end @testset "ndim" begin func(x, f) = (f[] = norm(x)) answer_1d = 1 / 2 # integral of abs(x) in 1D answer_2d = (8 * asinh(1) + 2^(7 / 2)) / 24 # integral of sqrt(x^2 + y^2) in 2D @test @inferred(vegas(func))[1][1] ≈ answer_1d rtol = 1e-4 @test @inferred(suave(func))[1][1] ≈ answer_1d rtol = 1e-2 @test @inferred(divonne(func))[1][1] ≈ answer_2d rtol = 1e-4 @test @inferred(cuhre(func))[1][1] ≈ answer_2d rtol = 1e-4 @test_throws ArgumentError cuhre(func, 1) @test_throws ArgumentError divonne(func, 1) end @testset "Integral over infinite domain" begin func(x) = log(1 + x^2) / (1 + x^2) result, rest = @inferred cuhre((x, f) -> f[1] = func(x[1] / (1 - x[1])) / (1 - x[1])^2, atol=1e-12, rtol=1e-10) @test result[1] ≈ pi * log(2) atol = 3e-12 end @testset "Vectorization" begin for alg in (vegas, suave, divonne, cuhre) result1, err1, _ = @inferred alg((x, f) -> f[1] = x[1] + cos(x[2]) - exp(x[3]), 3) result2, err2, _ = @inferred alg((x, f) -> f[1, :] .= x[1, :] .+ cos.(x[2, :]) .- exp.(x[3, :]), 3, nvec=10) @test result1 == result2 @test err1 == err2 result1, err1, _ = @inferred alg((x, f) -> begin f[1] = sin(x[1]) f[2] = sqrt(x[2]) end, 2, 2) result2, err2, _ = @inferred alg((x, f) -> begin f[1, :] .= sin.(x[1, :]) f[2, :] .= sqrt.(x[2, :]) end, 2, 2, nvec=10) @test result1 == result2 @test err1 == err2 end end @testset "Vectorization with userdata" begin for alg in (vegas, suave, divonne, cuhre) result1, err1, _ = @inferred alg((x, f, u) -> f[1] = u.para + x[1] + cos(x[2]) - exp(x[3]), 3; userdata=UserData(0.1)) result2, err2, _ = @inferred alg((x, f, u) -> f[1, :] .= u.para .+ x[1, :] .+ cos.(x[2, :]) .- exp.(x[3, :]), 3, nvec=10, userdata=UserData(0.1)) @test result1 == result2 @test err1 == err2 result1, err1, _ = @inferred alg((x, f, u) -> begin f[1] = sin(x[1]) + u.para f[2] = sqrt(x[2]) + u.para end, 2, 2; userdata=UserData(0.1)) result2, err2, _ = @inferred alg((x, f, u) -> begin f[1, :] .= sin.(x[1, :]) .+ u.para f[2, :] .= sqrt.(x[2, :]) .+ u.para end, 2, 2, nvec=10, userdata=UserData(0.1)) @test result1 == result2 @test err1 == err2 end end @testset "Show" begin @test occursin("Note: The desired accuracy was reached", repr(vegas((x, f) -> f[1] = x[1]))) @test occursin("Note: The accuracy was not met", repr(suave((x, f) -> f[1] = x[1], atol=1e-12, rtol=1e-12))) @test occursin("Try increasing `maxevals` to", repr(divonne((x, f) -> f[1] = exp(x[1]) * cos(x[1]), atol=1e-9, rtol=1e-9))) @test occursin("Note: Dimension out of range", repr(Cuba.dointegrate(Cuba.Cuhre((x, f) -> f[1] = x[1], missing, 1, 1, Int64(Cuba.NVEC), Cuba.RTOL, Cuba.ATOL, Cuba.FLAGS, Int64(Cuba.MINEVALS), Int64(Cuba.MAXEVALS), Cuba.KEY, Cuba.STATEFILE, Cuba.SPIN)))) end # Make sure these functions don't crash. Cuba.init(C_NULL, C_NULL) Cuba.exit(C_NULL, C_NULL) # Dummy call just to increase code coverage Cuba.integrand_ptr(Cuba.generic_integrand!) Cuba.integrand_ptr_userdata(Cuba.generic_integrand!, missing) Cuba.integrand_ptr_nvec(Cuba.generic_integrand!) Cuba.integrand_ptr_nvec_userdata(Cuba.generic_integrand!, missing)
Cuba
https://github.com/giordano/Cuba.jl.git
[ "MIT" ]
2.3.0
3a86c9b6f29a5ed3a5ffd9bffb0d4010e2e91f22
docs
6459
# History of Cuba.jl ## v2.3.0 (2022-09-24) ### New Features * License was changed to MIT "Expat" ([#40](https://github.com/giordano/Cuba.jl/issues/40), [#43](https://github.com/giordano/Cuba.jl/pull/43)). * It is now possible to directly pass data to the integrand function with the `userdata` keyword argument ([#39](https://github.com/giordano/Cuba.jl/pull/39)). See the [example in the documentation](https://giordano.github.io/Cuba.jl/v2.3.0/#Passing-data-to-the-integrand-function) for more details. ## v2.2.0 (2021-01-28) ### New Features * Update to support Cuba v4.2.1. ## v2.1.0 (2020-04-12) ### New Features * The Cuba binary library is now installed as a [JLL package](https://docs.binarybuilder.org/stable/jll/). This requires Julia v1.3 or later version. v2.0.0 (2019-02-27) ------------------- ### Breaking Changes * Support for Julia 0.7 was dropped. ### New Features * When using the package in the REPL, the result of the integration now has a more informative description about the error flag. v1.0.0 (2018-08-17) ------------------- ### Breaking Changes * Support for Julia 0.6 was dropped. * Keyword arguments `reltol` and `abstol` are now called `rtol` and `atol`, respectively, to match keywords in `isapprox` function. * Deprecated functions `llvegas`, `llsuave`, `lldivonne`, and `llcuhre` have been removed. ### New Features * The build script has been updated, now the package supports Linux-musl and FreeBSD systems. v0.5.0 (2018-05-15) ------------------- ### New Features * The package now uses [`BinaryProvider.jl`](https://github.com/JuliaPackaging/BinaryProvider.jl) to install a pre-built version of the Cuba library on all platforms. ### Breaking Changes * Support for Julia 0.5 was dropped * The default value of argument `ndim` has been changed to 2 in `divonne` and `cuhre`. These algorithms require the number of dimensions to be at least 2. Now setting `ndim` to 1 throws an error. Your code will not be affected by this change if you did not explicitely set `ndim`. See issue [#14](https://github.com/giordano/Cuba.jl/issues/14). v0.4.0 (2017-07-08) ------------------- ### Breaking Changes * Now `vegas`, `suave`, `divonne`, and `cuhre` wrap the 64-bit integers functions. The 32-bit integers functions are no more available. `llvegas`, `llsuave`, `lldivonne`, `llcuhre` are deprecated and will be removed at some point in the future. This change reduces confusion about the function to use. ### New Features * Now it is possible to vectorize a function in order to speed up its evaluation (see issue [#10](https://github.com/giordano/Cuba.jl/issues/10) and PR [#11](https://github.com/giordano/Cuba.jl/pull/11)). * The result of integration is wrapped in an `Integral` object. This is not a breaking change because its fields can be iterated over like a tuple, exactly as before. v0.3.1 (2017-05-02) ------------------- ### Improvements * Small performance improvements by avoiding dynamic dispatch in callback ([#6](https://github.com/giordano/Cuba.jl/pull/6)). No user visible change. v0.3.0 (2017-01-24) ------------------- ### Breaking Changes * Support for Julia 0.4 was dropped * Integrators functions with uppercase names were removed. They were deprecated in v0.2.0 ### New Features * New 64-bit integers functions `llvegas`, `llsuave`, `lldivonne`, `llcuhre` are provided. They should be used in cases where convergence is not reached within the ordinary 32-bit integer range ([#4](https://github.com/giordano/Cuba.jl/issues/4)) v0.2.0 (2016-10-15) ------------------- This release faces some changes to the user interface. Be aware of them when upgrading. ### New Features * `ndim` and `ncomp` arguments can be omitted. In that case they default to 1. This change is not breaking, old syntax will continue to work. ### Breaking Changes All integrator functions and some optional keywords have been renamed for more consistency with the Julia environment. Here is the detailed list: * Integrators functions have been renamed to lowercase name: `Vegas` to `vegas`, `Suave` to `suave`, `Divonne` to `divonne`, `Cuhre` to `cuhre`. The uppercase variants are still available but deprecated, they will be removed at some point in the future. * Optional keywords changes: `epsabs` to `abstol`, `epsrel` to `reltol`, `maxeval` to `maxevals`, `mineval` to `minevals`. v0.1.4 (2016-08-21) ------------------- * A new version of Cuba library is downloaded to be compiled on GNU/Linux and Mac OS systems. There have been only small changes for compatibility with recent GCC versions, no actual change to the library nor to the Julia wrapper. Nothing changed for Windows users. v0.1.3 (2016-08-11) ------------------- ### New Features * A tagged version of Cuba library is now downloaded when building the package. This ensures reproducibility of the results of a given `Cuba.jl` release. v0.1.2 (2016-08-11) ------------------- ### New Features * Windows (`i686` and `x86_64` architectures) supported ([#2](https://github.com/giordano/Cuba.jl/issues/2)) v0.1.1 (2016-08-05) ------------------- ### Bug Fixes * Fix warnings in Julia 0.5 v0.1.0 (2016-06-08) ------------------- ### New Features * Module precompilation enabled v0.0.5 (2016-04-12) ------------------- ### New Features * User interface greatly simplified (thanks to Steven G. Johnson; [#3](https://github.com/giordano/Cuba.jl/issues/3)). This change is **backward incompatible**. See documentation for details v0.0.4 (2016-04-10) ------------------- ### New Features * New complete documentation, available at http://cubajl.readthedocs.org/ and locally in `docs/` directory ### Breaking Changes * `verbose` keyword renamed to `flags` ### Bug Fixes * Number of cores fixed to 0 to avoid crashes when Julia has more than 1 process * In `Cuhre` and `Divonne`, force `ndim` to be 2 when user sets it to 1 v0.0.3 (2016-04-06) ------------------- ### New Features * Add `cores`, `accel`, `init`, `exit` function. They will likely not be much useful for most users, so they are not exported nor documented. See Cuba manual for information ### Breaking Changes * Make `ndim` and `ncomp` arguments mandatory ### Bug Fixes * Fix build script v0.0.2 (2016-04-04) ------------------- ### Bug Fixes * Fix path of libcuba v0.0.1 (2016-04-04) ------------------- * First release
Cuba
https://github.com/giordano/Cuba.jl.git
[ "MIT" ]
2.3.0
3a86c9b6f29a5ed3a5ffd9bffb0d4010e2e91f22
docs
7122
# Cuba.jl | **Documentation** | **Build Status** | **Code Coverage** | |:---------------------------------------:|:-----------------------------------:|:-------------------------------:| | [![][docs-stable-img]][docs-stable-url] | [![Build Status][gha-img]][gha-url] | [![][coveral-img]][coveral-url] | | [![][docs-latest-img]][docs-latest-url] | | [![][codecov-img]][codecov-url] | Introduction ------------ `Cuba.jl` is a library for multidimensional numerical integration with different algorithms in [Julia](http://julialang.org/). This is just a Julia wrapper around the C [Cuba library](http://www.feynarts.de/cuba/), version 4.2, by **Thomas Hahn**. All the credits goes to him for the underlying functions, blame me for any problem with the Julia interface. Feel free to report bugs and make suggestions at https://github.com/giordano/Cuba.jl/issues. All algorithms provided by Cuba library are supported in `Cuba.jl`: * `vegas` (type: Monte Carlo; variance reduction with importance sampling) * `suave` (type: Monte Carlo; variance reduction with globally adaptive subdivision + importance sampling) * `divonne` (type: Monte Carlo or deterministic; variance reduction with stratified sampling, aided by methods from numerical optimization) * `cuhre` (type: deterministic; variance reduction with globally adaptive subdivision) Integration is performed on the n-dimensional unit hypercube [0, 1]^n. For more details on the algorithms see the manual included in Cuba library and available in `deps/usr/share/cuba.pdf` after successful installation of `Cuba.jl`. `Cuba.jl` is available on all platforms supported by Julia. Installation ------------ The latest version of `Cuba.jl` is available for Julia 1.3 and later versions, and can be installed with [Julia built-in package manager](https://julialang.github.io/Pkg.jl/stable/). In a Julia session, after entering the package manager mode with `]`, run the command ```julia pkg> update pkg> add Cuba ``` Older versions are also available for Julia 0.4-1.2. Usage ----- After installing the package, run ``` julia using Cuba ``` or put this command into your Julia script. `Cuba.jl` provides the following functions to integrate: ``` julia vegas(integrand, ndim, ncomp[; keywords...]) suave(integrand, ndim, ncomp[; keywords...]) divonne(integrand, ndim, ncomp[; keywords...]) cuhre(integrand, ndim, ncomp[; keywords...]) ``` These functions wrap the 64-bit integers functions provided by the Cuba library. The only mandatory argument is: * `function`: the name of the function to be integrated Optional positional arguments are: * `ndim`: the number of dimensions of the integration domain. Defaults to 1 in `vegas` and `suave`, to 2 in `divonne` and `cuhre`. Note: `ndim` must be at least 2 with the latest two methods. * `ncomp`: the number of components of the integrand. Defaults to 1 `ndim` and `ncomp` arguments must appear in this order, so you cannot omit `ndim` but not `ncomp`. `integrand` should be a function `integrand(x, f)` taking two arguments: - the input vector `x` of length `ndim` - the output vector `f` of length `ncomp`, used to set the value of each component of the integrand at point `x` Also [anonymous functions](https://docs.julialang.org/en/v1/manual/functions/#man-anonymous-functions-1) are allowed as `integrand`. For those familiar with [`Cubature.jl`](https://github.com/stevengj/Cubature.jl) package, this is the same syntax used for integrating vector-valued functions. For example, the integral ``` ∫_0^1 cos(x) dx = sin(1) = 0.8414709848078965 ``` can be computed with one of the following commands ``` julia julia> vegas((x, f) -> f[1] = cos(x[1])) Component: 1: 0.8414910005259609 ± 5.2708169787733e-5 (prob.: 0.028607201257039333) Integrand evaluations: 13500 Number of subregions: 0 Note: The desired accuracy was reached julia> suave((x, f) -> f[1] = cos(x[1])) Component: 1: 0.8411523690658836 ± 8.357995611133613e-5 (prob.: 1.0) Integrand evaluations: 22000 Number of subregions: 22 Note: The desired accuracy was reached julia> divonne((x, f) -> f[1] = cos(x[1])) Component: 1: 0.841468071955942 ± 5.3955070531551656e-5 (prob.: 0.0) Integrand evaluations: 1686 Number of subregions: 14 Note: The desired accuracy was reached julia> cuhre((x, f) -> f[1] = cos(x[1])) Component: 1: 0.8414709848078966 ± 2.2204460420128823e-16 (prob.: 3.443539937576958e-5) Integrand evaluations: 195 Number of subregions: 2 Note: The desired accuracy was reached ``` The integrating functions `vegas`, `suave`, `divonne`, and `cuhre` return an `Integral` object whose fields are ``` julia integral :: Vector{Float64} error :: Vector{Float64} probl :: Vector{Float64} neval :: Int64 fail :: Int32 nregions :: Int32 ``` The first three fields are vectors with length `ncomp`, the last three ones are scalars. The `Integral` object can also be iterated over like a tuple. In particular, if you assign the output of integration functions to the variable named `result`, you can access the value of the `i`-th component of the integral with `result[1][i]` or `result.integral[i]` and the associated error with `result[2][i]` or `result.error[i]`. The details of other quantities can be found in Cuba manual. All other arguments listed in Cuba documentation can be passed as optional keywords. ### Documentation ### A more detailed manual of `Cuba.jl`, with many complete examples, is available at https://giordano.github.io/Cuba.jl/stable/. Related projects ---------------- There are other Julia packages for multidimenensional numerical integration: * [`Cubature.jl`](https://github.com/stevengj/Cubature.jl) * [`HCubature.jl`](https://github.com/stevengj/HCubature.jl) * [`NIntegration.jl`](https://github.com/pabloferz/NIntegration.jl) License ------- The Cuba.jl package is released under the terms of the MIT "Expat" License. Note that the binary library [Cuba](http://www.feynarts.de/cuba/) is distributed with the GNU Lesser General Public License. The original author of Cuba.jl is Mosè Giordano. If you use this library for your work, please credit Thomas Hahn (citable papers about Cuba library: <https://ui.adsabs.harvard.edu/abs/2005CoPhC.168...78H/abstract> and <https://ui.adsabs.harvard.edu/abs/2015JPhCS.608a2066H/abstract>). [docs-latest-img]: https://img.shields.io/badge/docs-latest-blue.svg [docs-latest-url]: https://giordano.github.io/Cuba.jl/latest/ [docs-stable-img]: https://img.shields.io/badge/docs-stable-blue.svg [docs-stable-url]: https://giordano.github.io/Cuba.jl/stable/ [gha-img]: https://github.com/giordano/Cuba.jl/workflows/CI/badge.svg [gha-url]: https://github.com/giordano/Cuba.jl/actions?query=workflow%3ACI [coveral-img]: https://coveralls.io/repos/github/giordano/Cuba.jl/badge.svg?branch=master [coveral-url]: https://coveralls.io/github/giordano/Cuba.jl?branch=master [codecov-img]: https://codecov.io/gh/giordano/Cuba.jl/branch/master/graph/badge.svg [codecov-url]: https://codecov.io/gh/giordano/Cuba.jl
Cuba
https://github.com/giordano/Cuba.jl.git
[ "MIT" ]
2.3.0
3a86c9b6f29a5ed3a5ffd9bffb0d4010e2e91f22
docs
48215
Cuba ==== ```@meta DocTestSetup = quote using Cuba end ``` Introduction ------------ [`Cuba.jl`](https://github.com/giordano/Cuba.jl) is a [Julia](http://julialang.org/) library for multidimensional [numerical integration](https://en.wikipedia.org/wiki/Numerical_integration) of real-valued functions of real arguments, using different algorithms. This is just a Julia wrapper around the C [Cuba library](http://www.feynarts.de/cuba/), version 4.2, by **Thomas Hahn**. All the credits goes to him for the underlying functions, blame me for any problem with the Julia interface. All algorithms provided by Cuba library are supported in `Cuba.jl`: * [Vegas](https://en.wikipedia.org/wiki/VEGAS_algorithm): | Basic integration method | Type | [Variance reduction](https://en.wikipedia.org/wiki/Variance_reduction) | | --------------------------------------------------------------------------------------- | -------------------------------------------------------------------- | ------------------------------------------------------------------------ | | [Sobol quasi-random sample](https://en.wikipedia.org/wiki/Sobol_sequence) | [Monte Carlo](https://en.wikipedia.org/wiki/Monte_Carlo_integration) | [importance sampling](https://en.wikipedia.org/wiki/Importance_sampling) | | [Mersenne Twister pseudo-random sample](https://en.wikipedia.org/wiki/Mersenne_Twister) | " | " | | [Ranlux pseudo-random sample](http://arxiv.org/abs/hep-lat/9309020) | " | " | * Suave | Basic integration method | Type | Variance reduction | | ------------------------------------- | ----------- | ---------------------------------------------------------------------------------------------------------- | | Sobol quasi-random sample | Monte Carlo | globally [adaptive subdivision](https://en.wikipedia.org/wiki/Adaptive_quadrature) and importance sampling | | Mersenne Twister pseudo-random sample | " | " | | Ranlux pseudo-random sample | " | " | * Divonne | Basic integration method | Type | Variance reduction | | ------------------------------------- | ------------- | --------------------------------------------------------------------------------------------------------------------- | | Korobov quasi-random sample | Monte Carlo | [stratified sampling](https://en.wikipedia.org/wiki/Stratified_sampling) aided by methods from numerical optimization | | Sobol quasi-random sample | " | " | | Mersenne Twister pseudo-random sample | " | " | | Ranlux pseudo-random sample | " | " | | cubature rules | deterministic | " | * Cuhre | Basic integration method | Type | Variance reduction | | ------------------------ | ------------- | ----------------------------- | | cubature rules | deterministic | globally adaptive subdivision | For more details on the algorithms see the manual included in Cuba library and available in `deps/usr/share/cuba.pdf` after successful installation of `Cuba.jl`. Integration is always performed on the ``n``-dimensional [unit hypercube](https://en.wikipedia.org/wiki/Hypercube) ``[0, 1]^{n}``. !!! tip "Integrate over different domains" If you want to compute an integral over a different set, you have to scale the integrand function in order to have an equivalent integral on ``[0, 1]^{n}`` using [substitution rules](https://en.wikipedia.org/wiki/Integration_by_substitution). For example, recall that in one dimension ```math \int_{a}^{b} f(x)\,\mathrm{d}x = \int_{0}^{1} f(a + (b - a) y) (b - a)\,\mathrm{d}y ``` where the final ``(b - a)`` is the one-dimensional version of the Jacobian. Integration over a semi-infinite or an inifite domain is a bit trickier, but you can follow [this advice](http://ab-initio.mit.edu/wiki/index.php/Cubature#Infinite_intervals) from Steven G. Johnson: to compute an integral over a semi-infinite interval, you can perform the change of variables ``x=a+y/(1-y)``: ```math \int_{a}^{\infty} f(x)\,\mathrm{d}x = \int_{0}^{1} f\left(a + \frac{y}{1 - y}\right)\frac{1}{(1 - y)^2}\,\mathrm{d}y ``` For an infinite interval, you can perform the change of variables ``x=(2y - 1)/((1 - y)y)``: ```math \int_{-\infty}^{\infty} f(x)\,\mathrm{d}x = \int_{0}^{1} f\left(\frac{2y - 1}{(1 - y)y}\right)\frac{2y^2 - 2y + 1}{(1 - y)^2y^2}\,\mathrm{d}y ``` In addition, recall that for an [even function](https://en.wikipedia.org/wiki/Even_and_odd_functions#Even_functions) ``\int_{-\infty}^{\infty} f(x)\,\mathrm{d}x = 2\int_{0}^{\infty}f(x)\,\mathrm{d}x``, while the integral of an [odd function](https://en.wikipedia.org/wiki/Even_and_odd_functions#Odd_functions) over the infinite interval ``(-\infty, \infty)`` is zero. All this generalizes straightforwardly to more than one dimension. In [Examples](@ref) section you can find the computation of a 3-dimensional [integral with non-constant boundaries](#Integral-with-non-constant-boundaries-1) using `Cuba.jl` and two [integrals over infinite domains](#Integrals-over-Infinite-Domains-1). `Cuba.jl` is available on all platforms supported by Julia. Installation ------------ The latest version of `Cuba.jl` is available for Julia 1.3 and later versions, and can be installed with [Julia built-in package manager](https://docs.julialang.org/en/v1/stdlib/Pkg/). In a Julia session run the commands ```julia pkg> update pkg> add Cuba ``` Older versions are also available for Julia 0.4-1.2. Usage ----- After installing the package, run ```julia using Cuba ``` or put this command into your Julia script. `Cuba.jl` provides the following functions to integrate: ```@docs vegas suave divonne cuhre ``` Large parts of the following sections are borrowed from Cuba manual. Refer to it for more information on the details. `Cuba.jl` wraps the 64-bit integers functions of Cuba library, in order to push the range of certain counters to its full extent. In detail, the following arguments: - for Vegas: `nvec`, `minevals`, `maxevals`, `nstart`, `nincrease`, `nbatch`, `neval`, - for Suave: `nvec`, `minevals`, `maxevals`, `nnew`, `nmin`, `neval`, - for Divonne: `nvec`, `minevals`, `maxevals`, `ngiven`, `nextra`, `neval`, - for Cuhre: `nvec`, `minevals`, `maxevals`, `neval`, are passed to the Cuba library as 64-bit integers, so they are limited to be at most ```jldoctest julia> typemax(Int64) 9223372036854775807 ``` There is no way to overcome this limit. See the following sections for the meaning of each argument. ### Arguments The only mandatory argument of integrator functions is: - `integrand` (type: `Function`): the function to be integrated Optional positional arguments are: - `ndim` (type: `Integer`): the number of dimensions of the integratation domain. If omitted, defaults to 1 in `vegas` and `suave`, to 2 in `divonne` and `cuhre`. Note: `ndim` must be at least 2 with the latest two methods. - `ncomp` (type: `Integer`): the number of components of the integrand. Default to 1 if omitted `integrand` should be a function `integrand(x, f)` taking two arguments: - the input vector `x` of length `ndim` - the output vector `f` of length `ncomp`, used to set the value of each component of the integrand at point `x` `x` and `f` are matrices with dimensions `(ndim, nvec)` and `(ncomp, nvec)`, respectively, when `nvec` > 1. See the [Vectorization](@ref) section below for more information. Also [anonymous functions](https://docs.julialang.org/en/v1/manual/functions/#man-anonymous-functions-1) are allowed as `integrand`. For those familiar with `Cubature.jl` package, this is the same syntax used for integrating vector-valued functions. For example, the integral ```math \int_{0}^{1} \cos (x) \,\mathrm{d}x = \sin(1) = 0.8414709848078965 ``` can be computed with one of the following commands ```jldoctest julia> vegas((x, f) -> f[1] = cos(x[1])) Component: 1: 0.841491000525961 ± 5.2708169786483034e-5 (prob.: 0.028607201258847748) Integrand evaluations: 13500 Number of subregions: 0 Note: The desired accuracy was reached julia> suave((x, f) -> f[1] = cos(x[1])) Component: 1: 0.8413748866950329 ± 7.772872640815592e-5 (prob.: 1.0) Integrand evaluations: 23000 Number of subregions: 23 Note: The desired accuracy was reached julia> divonne((x, f) -> f[1] = cos(x[1])) Component: 1: 0.841468071955942 ± 5.3955070531551656e-5 (prob.: 1.1102230246251565e-16) Integrand evaluations: 1686 Number of subregions: 14 Note: The desired accuracy was reached julia> cuhre((x, f) -> f[1] = cos(x[1])) Component: 1: 0.8414709848078967 ± 2.304857594221477e-15 (prob.: 4.869900880782919e-5) Integrand evaluations: 195 Number of subregions: 2 Note: The desired accuracy was reached ``` In section [Examples](@ref) you can find more complete examples. Note that `x` and `f` are both arrays with type `Float64`, so `Cuba.jl` can be used to integrate real-valued functions of real arguments. See how to work with a [complex integrand](#Complex-integrand-1). !!! note "Limit on number of components" The Cuba C library has a hard limit on the number of components that you can use for your integrand function, which is set at compile time. The build of the library currently used by `Cuba.jl` has this limit set to 1024, the default. If you use an integrand with a larger number of components, the integration will fail, which you can detect by checking the `fail` field of the `Integral` output object, which will be non-zero, see the "[Output](@ref)" section below. If you need to integrate functions with components larger than 1024, consider using other packages which don't have this limitation, like [`HCubature.jl`](https://github.com/JuliaMath/HCubature.jl) or [`Cubature.jl`](https://github.com/JuliaMath/Cubature.jl). !!! note "Compatibility" If you used `Cuba.jl` until version 0.0.4, be aware that the user interface has been reworked in version 0.0.5 in a backward incompatible way. ### Optional Keywords All other arguments required by Cuba integrator routines can be passed as optional keywords. `Cuba.jl` uses some reasonable default values in order to enable users to invoke integrator functions with a minimal set of arguments. Anyway, if you want to make sure future changes to some default values of keywords will not affect your current script, explicitely specify the value of the keywords. #### Common Keywords These are optional keywords common to all functions: - `nvec` (type: `Integer`, default: `1`): the maximum number of points to be given to the integrand routine in each invocation. Usually this is 1 but if the integrand can profit from e.g. Single Instruction Multiple Data (SIMD) vectorization, a larger value can be chosen. See [Vectorization](@ref) section. - `rtol` (type: `Real`, default: `1e-4`), and `atol` (type: `Real`, default: `1e-12`): the requested relative (``\varepsilon_{\text{rel}}``) and absolute (``\varepsilon_{\text{abs}}``) accuracies. The integrator tries to find an estimate ``\hat{I}`` for the integral ``I`` which for every component ``c`` fulfills ``|\hat{I}_c - I_c|\leq \max(\varepsilon_{\text{abs}}, \varepsilon_{\text{rel}} |I_c|)``. - `flags` (type: `Integer`, default: `0`): flags governing the integration: - Bits 0 and 1 are taken as the verbosity level, i.e. `0` to `3`, unless the `CUBAVERBOSE` environment variable contains an even higher value (used for debugging). Level `0` does not print any output, level `1` prints "reasonable" information on the progress of the integration, level `2` also echoes the input parameters, and level `3` further prints the subregion results (if applicable). - Bit 2 = `0`: all sets of samples collected on a subregion during the various iterations or phases contribute to the final result. Bit 2 = `1`, only the last (largest) set of samples is used in the final result. - (Vegas and Suave only) Bit 3 = `0`, apply additional smoothing to the importance function, this moderately improves convergence for many integrands. Bit 3 = `1`, use the importance function without smoothing, this should be chosen if the integrand has sharp edges. - Bit 4 = `0`, delete the state file (if one is chosen) when the integration terminates successfully. Bit 4 = `1`, retain the state file. - (Vegas only) Bit 5 = `0`, take the integrator's state from the state file, if one is present. Bit 5 = `1`, reset the integrator's state even if a state file is present, i.e. keep only the grid. Together with Bit 4 this allows a grid adapted by one integration to be used for another integrand. - Bits 8--31 =: `level` determines the random-number generator. To select e.g. last samples only and verbosity level 2, pass `6 = 4 + 2` for the flags. - `seed` (type: `Integer`, default: `0`): the seed for the pseudo-random-number generator. This keyword is not available for [`cuhre`](@ref). The random-number generator is chosen as follows: | `seed` | `level` (bits 8--31 of `flags`) | Generator | | -------- | ------------------------------- | -------------------------------- | | zero | N/A | Sobol (quasi-random) | | non-zero | zero | Mersenne Twister (pseudo-random) | | non-zero | non-zero | Ranlux (pseudo-random) | Ranlux implements Marsaglia and Zaman's 24-bit RCARRY algorithm with generation period ``p``, i.e. for every 24 generated numbers used, another ``p - 24`` are skipped. The luxury level is encoded in `level` as follows: - Level 1 (``p = 48``): very long period, passes the gap test but fails spectral test. - Level 2 (``p = 97``): passes all known tests, but theoretically still defective. - Level 3 (``p = 223``): any theoretically possible correlations have very small chance of being observed. - Level 4 (``p = 389``): highest possible luxury, all 24 bits chaotic. Levels 5--23 default to 3, values above 24 directly specify the period ``p``. Note that Ranlux's original level 0, (mis)used for selecting Mersenne Twister in Cuba, is equivalent to `level` = `24`. - `minevals` (type: `Real`, default: `0`): the minimum number of integrand evaluations required - `maxevals` (type: `Real`, default: `1000000`): the (approximate) maximum number of integrand evaluations allowed - `statefile` (type: `AbstractString`, default: `""`): a filename for storing the internal state. To not store the internal state, put `""` (empty string, this is the default) or `C_NULL` (C null pointer). Cuba can store its entire internal state (i.e. all the information to resume an interrupted integration) in an external file. The state file is updated after every iteration. If, on a subsequent invocation, a Cuba routine finds a file of the specified name, it loads the internal state and continues from the point it left off. Needless to say, using an existing state file with a different integrand generally leads to wrong results. This feature is useful mainly to define "check-points" in long-running integrations from which the calculation can be restarted. Once the integration reaches the prescribed accuracy, the state file is removed, unless bit 4 of `flags` (see above) explicitly requests that it be kept. - `spin` (type: `Ptr{Void}`, default: `C_NULL`): this is the placeholder for the "spinning cores" pointer. `Cuba.jl` does not support parallelization, so this keyword should not have a value different from `C_NULL`. - `userdata` (arbitrary julia type, default: `missing`): user data passed to the integrand. See [Passing data to the integrand function](@ref) for a usage example. !!! note "Compatibility" The keyword `userdata` is only supported in `Cuba.jl` after the version 2.3.0. #### Vegas-Specific Keywords These optional keywords can be passed only to [`vegas`](@ref): - `nstart` (type: `Integer`, default: `1000`): the number of integrand evaluations per iteration to start with - `nincrease` (type: `Integer`, default: `500`): the increase in the number of integrand evaluations per iteration - `nbatch` (type: `Integer`, default: `1000`): the batch size for sampling Vegas samples points not all at once, but in batches of size `nbatch`, to avoid excessive memory consumption. `1000` is a reasonable value, though it should not affect performance too much - `gridno` (type: `Integer`, default: `0`): the slot in the internal grid table. It may accelerate convergence to keep the grid accumulated during one integration for the next one, if the integrands are reasonably similar to each other. Vegas maintains an internal table with space for ten grids for this purpose. The slot in this grid is specified by `gridno`. If a grid number between `1` and `10` is selected, the grid is not discarded at the end of the integration, but stored in the respective slot of the table for a future invocation. The grid is only re-used if the dimension of the subsequent integration is the same as the one it originates from. In repeated invocations it may become necessary to flush a slot in memory, in which case the negative of the grid number should be set. #### Suave-Specific Keywords These optional keywords can be passed only to [`suave`](@ref): - `nnew` (type: `Integer`, default: `1000`): the number of new integrand evaluations in each subdivision - `nmin` (type: `Integer`, default: `2`): the minimum number of samples a former pass must contribute to a subregion to be considered in that region's compound integral value. Increasing `nmin` may reduce jumps in the ``\chi^2`` value - `flatness` (type: `Real`, default: `.25`): the type of norm used to compute the fluctuation of a sample. This determines how prominently "outliers", i.e. individual samples with a large fluctuation, figure in the total fluctuation, which in turn determines how a region is split up. As suggested by its name, `flatness` should be chosen large for "flat" integrands and small for "volatile" integrands with high peaks. Note that since `flatness` appears in the exponent, one should not use too large values (say, no more than a few hundred) lest terms be truncated internally to prevent overflow. #### Divonne-Specific Keywords These optional keywords can be passed only to [`divonne`](@ref): - `key1` (type: `Integer`, default: `47`): determines sampling in the partitioning phase: `key1` ``= 7, 9, 11, 13`` selects the cubature rule of degree `key1`. Note that the degree-11 rule is available only in 3 dimensions, the degree-13 rule only in 2 dimensions. For other values of `key1`, a quasi-random sample of ``n_1 = |\verb|key1||`` points is used, where the sign of `key1` determines the type of sample, - `key1` ``> 0``, use a Korobov quasi-random sample, - `key1` ``< 0``, use a "standard" sample (a Sobol quasi-random sample if `seed` ``= 0``, otherwise a pseudo-random sample). - `key2` (type: `Integer`, default: `1`): determines sampling in the final integration phase: `key2` ``= 7, 9, 11, 13`` selects the cubature rule of degree `key2`. Note that the degree-11 rule is available only in 3 dimensions, the degree-13 rule only in 2 dimensions. For other values of `key2`, a quasi-random sample is used, where the sign of `key2` determines the type of sample, - `key2` ``> 0``, use a Korobov quasi-random sample, - `key2` ``< 0``, use a "standard" sample (see description of `key1` above), and ``n_2 = |\verb|key2||`` determines the number of points, - ``n_2\geq 40``, sample ``n_2`` points, - ``n_2 < 40``, sample ``n_2\,n_{\text{need}}`` points, where ``n_{\text{need}}`` is the number of points needed to reach the prescribed accuracy, as estimated by Divonne from the results of the partitioning phase - `key3` (type: `Integer`, default: `1`): sets the strategy for the refinement phase: `key3` ``= 0``, do not treat the subregion any further. `key3` ``= 1``, split the subregion up once more. Otherwise, the subregion is sampled a third time with `key3` specifying the sampling parameters exactly as `key2` above. - `maxpass` (type: `Integer`, default: `5`): controls the thoroughness of the partitioning phase: The partitioning phase terminates when the estimated total number of integrand evaluations (partitioning plus final integration) does not decrease for `maxpass` successive iterations. A decrease in points generally indicates that Divonne discovered new structures of the integrand and was able to find a more effective partitioning. `maxpass` can be understood as the number of "safety" iterations that are performed before the partition is accepted as final and counting consequently restarts at zero whenever new structures are found. - `border` (type: `Real`, default: `0.`): the width of the border of the integration region. Points falling into this border region will not be sampled directly, but will be extrapolated from two samples from the interior. Use a non-zero `border` if the integrand function cannot produce values directly on the integration boundary - `maxchisq` (type: `Real`, default: `10.`): the ``\chi^2`` value a single subregion is allowed to have in the final integration phase. Regions which fail this ``\chi^2`` test and whose sample averages differ by more than `mindeviation` move on to the refinement phase. - `mindeviation` (type: `Real`, default: `0.25`): a bound, given as the fraction of the requested error of the entire integral, which determines whether it is worthwhile further examining a region that failed the ``\chi^2`` test. Only if the two sampling averages obtained for the region differ by more than this bound is the region further treated. - `ngiven` (type: `Integer`, default: `0`): the number of points in the `xgiven` array - `ldxgiven` (type: `Integer`, default: `0`): the leading dimension of `xgiven`, i.e. the offset between one point and the next in memory - `xgiven` (type: `AbstractArray{Real}`, default: `zeros(Cdouble, ldxgiven, ngiven)`): a list of points where the integrand might have peaks. Divonne will consider these points when partitioning the integration region. The idea here is to help the integrator find the extrema of the integrand in the presence of very narrow peaks. Even if only the approximate location of such peaks is known, this can considerably speed up convergence. - `nextra` (type: `Integer`, default: `0`): the maximum number of extra points the peak-finder subroutine will return. If `nextra` is zero, `peakfinder` is not called and an arbitrary object may be passed in its place, e.g. just 0 - `peakfinder` (type: `Ptr{Void}`, default: `C_NULL`): the peak-finder subroutine #### Cuhre-Specific Keyword This optional keyword can be passed only to [`cuhre`](@ref): - `key` (type: `Integer`, default: `0`): chooses the basic integration rule: `key` ``= 7, 9, 11, 13`` selects the cubature rule of degree `key`. Note that the degree-11 rule is available only in 3 dimensions, the degree-13 rule only in 2 dimensions. For other values, the default rule is taken, which is the degree-13 rule in 2 dimensions, the degree-11 rule in 3 dimensions, and the degree-9 rule otherwise. ### Output The integrating functions [`vegas`](@ref), [`suave`](@ref), [`divonne`](@ref), and [`cuhre`](@ref) return an `Integral` object whose fields are ```.julia integral :: Vector{Float64} error :: Vector{Float64} probl :: Vector{Float64} neval :: Int64 fail :: Int32 nregions :: Int32 ``` The first three fields are arrays with length `ncomp`, the last three ones are scalars. The `Integral` object can also be iterated over like a tuple. In particular, if you assign the output of integrator functions to the variable named `result`, you can access the value of the `i`-th component of the integral with `result[1][i]` or `result.integral[i]` and the associated error with `result[2][i]` or `result.error[i]`. - `integral` (type: `Vector{Float64}`, with `ncomp` components): the integral of `integrand` over the unit hypercube - `error` (type: `Vector{Float64}`, with `ncomp` components): the presumed absolute error for each component of `integral` - `probability` (type: `Vector{Float64}`, with `ncomp` components): the ``\chi^2`` -probability (not the ``\chi^2`` -value itself!) that `error` is not a reliable estimate of the true integration error. To judge the reliability of the result expressed through `prob`, remember that it is the null hypothesis that is tested by the ``\chi^2`` test, which is that `error` is a reliable estimate. In statistics, the null hypothesis may be rejected only if `prob` is fairly close to unity, say `prob` ``>.95`` - `neval` (type: `Int64`): the actual number of integrand evaluations needed - `fail` (type: `Int32`): an error flag: - `fail` = `0`, the desired accuracy was reached - `fail` = `-1`, dimension out of range - `fail` > `0`, the accuracy goal was not met within the allowed maximum number of integrand evaluations. While Vegas, Suave, and Cuhre simply return `1`, Divonne can estimate the number of points by which `maxevals` needs to be increased to reach the desired accuracy and returns this value. - `nregions` (type: `Int32`): the actual number of subregions needed (always `0` in [`vegas`](@ref)) Vectorization ------------- Vectorization means evaluating the integrand function for several points at once. This is also known as [Single Instruction Multiple Data](https://en.wikipedia.org/wiki/SIMD) (SIMD) paradigm and is different from ordinary parallelization where independent threads are executed concurrently. It is usually possible to employ vectorization on top of parallelization. `Cuba.jl` cannot automatically vectorize the integrand function, of course, but it does pass (up to) `nvec` points per integrand call ([Common Keywords](@ref)). This value need not correspond to the hardware vector length --computing several points in one call can also make sense e.g. if the computations have significant intermediate results in common. When `nvec` > 1, the input `x` is a matrix of dimensions `(ndim, nvec)`, while the output `f` is a matrix with dimensions `(ncomp, nvec)`. Vectorization can be used to evaluate more quickly the integrand function, for example by exploiting parallelism, thus speeding up computation of the integral. See the section [Vectorized Function](@ref) below for an example of a vectorized funcion. !!! note "Disambiguation" The `nbatch` argument of [`vegas`](@ref) is related in purpose but not identical to `nvec`. It internally partitions the sampling done by Vegas but has no bearing on the number of points given to the integrand. On the other hand, it it pointless to choose `nvec` > `nbatch` for Vegas. Examples -------- ### One dimensional integral The integrand of ```math \int_{0}^{1} \frac{\log(x)}{\sqrt{x}} \,\mathrm{d}x ``` has an algebraic-logarithmic divergence for ``x = 0``, but the integral is convergent and its value is ``-4``. `Cuba.jl` integrator routines can handle this class of functions and you can easily compute the numerical approximation of this integral using one of the following commands: ```jldoctest julia> vegas( (x,f) -> f[1] = log(x[1])/sqrt(x[1])) Component: 1: -3.9981623937128448 ± 0.00044066437168409865 (prob.: 0.28430529712907515) Integrand evaluations: 1007500 Number of subregions: 0 Note: The accuracy was not met within the maximum number of evaluations julia> suave( (x,f) -> f[1] = log(x[1])/sqrt(x[1])) Component: 1: -4.000246664970977 ± 0.00039262438882794375 (prob.: 1.0) Integrand evaluations: 50000 Number of subregions: 50 Note: The desired accuracy was reached julia> divonne( (x,f) -> f[1] = log(x[1])/sqrt(x[1]), atol = 1e-8, rtol = 1e-8) Component: 1: -3.999999899620808 ± 2.1865962888458758e-7 (prob.: 0.0) Integrand evaluations: 1002059 Number of subregions: 1582 Note: The accuracy was not met within the maximum number of evaluations Hint: Try increasing `maxevals` to 4884287 julia> cuhre( (x,f) -> f[1] = log(x[1])/sqrt(x[1])) Component: 1: -4.000000355067185 ± 0.00033954840286260385 (prob.: 0.0) Integrand evaluations: 5915 Number of subregions: 46 Note: The desired accuracy was reached ``` ### Vector-valued integrand Consider the integral ```math \int\limits_{\Omega} \boldsymbol{f}(x,y,z)\,\mathrm{d}x\,\mathrm{d}y\,\mathrm{d}z ``` where ``\Omega = [0, 1]^{3}`` and ```math \boldsymbol{f}(x,y,z) = \left(\sin(x)\cos(y)\exp(z), \,\exp(-(x^2 + y^2 + z^2)), \,\frac{1}{1 - xyz}\right) ``` In this case it is more convenient to write a simple Julia script to compute the above integral ```jldoctest julia> using Cuba, SpecialFunctions julia> function integrand(x, f) f[1] = sin(x[1])*cos(x[2])*exp(x[3]) f[2] = exp(-(x[1]^2 + x[2]^2 + x[3]^2)) f[3] = 1/(1 - prod(x)) end integrand (generic function with 1 method) julia> result, err = cuhre(integrand, 3, 3, atol=1e-12, rtol=1e-10); julia> answer = ((ℯ-1)*(1-cos(1))*sin(1), (sqrt(pi)*erf(1)/2)^3, zeta(3)); julia> for i = 1:3 println("Component ", i) println(" Result of Cuba: ", result[i], " ± ", err[i]) println(" Exact result: ", answer[i]) println(" Actual error: ", abs(result[i] - answer[i])) end Component 1 Result of Cuba: 0.6646696797813743 ± 1.0083313461375621e-13 Exact result: 0.6646696797813771 Actual error: 2.886579864025407e-15 Component 2 Result of Cuba: 0.4165383858806458 ± 2.9328672381493003e-11 Exact result: 0.41653838588663805 Actual error: 5.992262241960589e-12 Component 3 Result of Cuba: 1.202056903164971 ± 1.195855757269273e-10 Exact result: 1.2020569031595951 Actual error: 5.375921929839933e-12 ``` ### Integral with non-constant boundaries The integral ```math \int_{-y}^{y}\int_{0}^{z}\int_{0}^{\pi} \cos(x)\sin(y)\exp(z)\,\mathrm{d}x\,\mathrm{d}y\,\mathrm{d}z ``` has non-constant boundaries. By applying the substitution rule repeatedly, you can scale the integrand function and get this equivalent integral over the fixed domain ``\Omega = [0, 1]^{3}`` ```math \int\limits_{\Omega} 2\pi^{3}yz^2 \cos(\pi yz(2x - 1)) \sin(\pi yz) \exp(\pi z)\,\mathrm{d}x\,\mathrm{d}y\,\mathrm{d}z ``` that can be computed with `Cuba.jl` using the following Julia script ```jldoctest julia> using Cuba julia> function integrand(x, f) f[1] = 2pi^3*x[2]*x[3]^2*cos(pi*x[2]*x[3]*(2*x[1] - 1.0))* sin(pi*x[2]*x[3])*exp(pi*x[3]) end integrand (generic function with 1 method) julia> result, err = cuhre(integrand, 3, 1, atol=1e-12, rtol=1e-10); julia> answer = pi*ℯ^pi - (4ℯ^pi - 4)/5; julia> begin println("Result of Cuba: ", result[1], " ± ", err[1]) println("Exact result: ", answer) println("Actual error: ", abs(result[1] - answer)) end Result of Cuba: 54.98607586826152 ± 5.460606620717379e-9 Exact result: 54.98607586789537 Actual error: 3.6614977716453723e-10 ``` ### Integrals over Infinite Domains `Cuba.jl` assumes always as integration domain the hypercube ``[0, 1]^n``, but we have seen that using integration by substitution we can calculate integrals over different domains as well. In the [Introduction](@ref) we also proposed two useful substitutions that can be employed to change an infinite or semi-infinite domain into a finite one. As a first example, consider the following integral with a semi-infinite domain: ```math \int_{0}^{\infty}\frac{\log(1 + x^2)}{1 + x^2}\,\mathrm{d}x ``` whose exact result is ``\pi\log 2``. This can be computed as follows: ```jldoctest julia> using Cuba julia> # The function we want to integrate over [0, ∞). julia> func(x) = log(1 + x^2)/(1 + x^2) func (generic function with 1 method) julia> # Scale the function in order to integrate over [0, 1]. julia> function integrand(x, f) f[1] = func(x[1]/(1 - x[1]))/(1 - x[1])^2 end integrand (generic function with 1 method) julia> result, err = cuhre(integrand, atol = 1e-12, rtol = 1e-10); julia> answer = pi*log(2); julia> begin println("Result of Cuba: ", result[1], " ± ", err[1]) println("Exact result: ", answer) println("Actual error: ", abs(result[1] - answer)) end Result of Cuba: 2.1775860903056903 ± 2.153947023352171e-10 Exact result: 2.177586090303602 Actual error: 2.0881074647149944e-12 ``` Now we want to calculate this integral, over an infinite domain ```math \int_{-\infty}^{\infty} \frac{1 - \cos x}{x^2}\,\mathrm{d}x ``` which gives ``\pi``. You can calculate the result with the code below. Note that integrand function has value ``1/2`` for ``x=0``, but you have to inform Julia about this. ```jldoctest julia> using Cuba julia> # The function we want to integrate over (-∞, ∞). julia> func(x) = x==0 ? 0.5*one(x) : (1 - cos(x))/x^2 func (generic function with 1 method) julia> # Scale the function in order to integrate over [0, 1]. julia> function integrand(x, f) f[1] = func((2*x[1] - 1)/x[1]/(1 - x[1])) * (2*x[1]^2 - 2*x[1] + 1)/x[1]^2/(1 - x[1])^2 end integrand (generic function with 1 method) julia> result, err = cuhre(integrand, atol = 1e-7, rtol = 1e-7); julia> answer = float(pi); julia> begin println("Result of Cuba: ", result[1], " ± ", err[1]) println("Exact result: ", answer) println("Actual error: ", abs(result[1] - answer)) end Result of Cuba: 3.1415928900554886 ± 2.050669142055499e-6 Exact result: 3.141592653589793 Actual error: 2.3646569546897922e-7 ``` ### Complex integrand As already explained, `Cuba.jl` operates on real quantities, so if you want to integrate a complex-valued function of complex arguments you have to treat complex quantities as 2-component arrays of real numbers. For example, if you do not remember [Euler's formula](https://en.wikipedia.org/wiki/Euler%27s_formula), you can compute this simple integral ```math \int_{0}^{\pi/2} \exp(\mathrm{i} x)\,\mathrm{d}x ``` with the following code ```jldoctest julia> using Cuba julia> function integrand(x, f) # Complex integrand, scaled to integrate in [0, 1]. tmp = cis(x[1]*pi/2)*pi/2 # Assign to two components of "f" the real # and imaginary part of the integrand. f[1], f[2] = reim(tmp) end integrand (generic function with 1 method) julia> result = cuhre(integrand, 2, 2); julia> begin println("Result of Cuba: ", complex(result[1]...)) println("Exact result: ", complex(1.0, 1.0)) end Result of Cuba: 1.0000000000000002 + 1.0000000000000002im Exact result: 1.0 + 1.0im ``` ### Passing data to the integrand function Cuba Library allows program written in C and Fortran to pass extra data to the integrand function with `userdata` argument. This is useful, for example, when the integrand function depends on changing parameters. For example, the [cumulative distribution function](https://en.wikipedia.org/wiki/Cumulative_distribution_function) ``F(x;k)`` of [chi-squared distribution](https://en.wikipedia.org/wiki/Chi-squared_distribution) is defined by ```math F(x; k) = \int_{0}^{x} \frac{t^{k/2 - 1}\exp(-t/2)}{2^{k/2}\Gamma(k/2)} \,\mathrm{d}t = \frac{x}{2^{k/2}\Gamma(k/2)} \int_{0}^{1} (xt)^{k/2 - 1}\exp(-xt/2) \,\mathrm{d}t ``` The integrand depends on user-defined parameters ``x`` and ``k``. One option is passing a tuple `(x, k)` to the integrand using the `userdata` keyword argument in [`vegas`](@ref), [`suave`](@ref), [`divonne`](@ref) or [`cuhre`](@ref). The following julia script uses this trick to compute ``F(x = \pi; k)`` for different ``k`` and compares the result with more precise values, based on the analytic expression of the cumulative distribution function, provided by [GSL.jl](https://github.com/jiahao/GSL.jl) package. ```julia julia> using Cuba, GSL, Printf, SpecialFunctions julia> function integrand(t, f, userdata) # Chi-squared probability density function, without constant denominator. # The result of integration will be divided by that factor. # userdata is a tuple (x, k/2), see below x, k = userdata f[1] = (t[1]*x)^(k/2 - 1.0)*exp(-(t[1]*x)/2) end julia> chi2cdf(x::Real, k::Real) = x*cuhre(integrand; userdata = (x, k))[1][1]/(2^(k/2)*gamma(k/2)) chi2cdf (generic function with 1 method) julia> x = float(pi); julia> begin @printf("Result of Cuba: %.6f %.6f %.6f %.6f %.6f\n", map((k) -> chi2cdf(x, k), collect(1:5))...) @printf("Exact result: %.6f %.6f %.6f %.6f %.6f\n", map((k) -> cdf_chisq_P(x, k), collect(1:5))...) end Result of Cuba: 0.923681 0.792120 0.629694 0.465584 0.321833 Exact result: 0.923681 0.792120 0.629695 0.465584 0.321833 ``` An alternative solution to pass the user-defined data is implementing the integrand as a nested inner function. The inner function can access any variable visible in its [scope](https://docs.julialang.org/en/v1/manual/variables-and-scoping/). ```julia julia> using Cuba, GSL, Printf, SpecialFunctions julia> function chi2cdf(x::Real, k::Real) k2 = k/2 # Chi-squared probability density function, without constant denominator. # The result of integration will be divided by that factor. function chi2pdf(t::Float64) # "k2" is taken from the outside. return t^(k2 - 1.0)*exp(-t/2) end # Neither "x" is passed directly to the integrand function, # but is visible to it. "x" is used to scale the function # in order to actually integrate in [0, 1]. x*cuhre((t,f) -> f[1] = chi2pdf(t[1]*x))[1][1]/(2^k2*gamma(k2)) end chi2cdf (generic function with 1 method) julia> x = float(pi); julia> begin @printf("Result of Cuba: %.6f %.6f %.6f %.6f %.6f\n", map((k) -> chi2cdf(x, k), collect(1:5))...) @printf("Exact result: %.6f %.6f %.6f %.6f %.6f\n", map((k) -> cdf_chisq_P(x, k), collect(1:5))...) end Result of Cuba: 0.923681 0.792120 0.629694 0.465584 0.321833 Exact result: 0.923681 0.792120 0.629695 0.465584 0.321833 ``` ### Vectorized Function Consider the integral ```math \int\limits_{\Omega} \prod_{i=1}^{10} \cos(x_{i}) \,\mathrm{d}\boldsymbol{x} = \sin(1)^{10} = 0.1779883\dots ``` where ``\Omega = [0, 1]^{10}`` and ``\boldsymbol{x} = (x_{1}, \dots, x_{10})`` is a 10-dimensional vector. A simple way to compute this integral is the following: ```.julia julia> using Cuba, BenchmarkTools julia> cuhre((x, f) -> f[] = prod(cos.(x)), 10) Component: 1: 0.17798706658707045 ± 1.070799596273229e-6 (prob.: 0.2438374079277991) Integrand evaluations: 7815 Number of subregions: 2 Note: The desired accuracy was reached julia> @benchmark cuhre((x, f) -> f[] = prod(cos.(x)), 10) BenchmarkTools.Trial: 2448 samples with 1 evaluation. Range (min … max): 1.714 ms … 7.401 ms ┊ GC (min … max): 0.00% … 75.31% Time (median): 1.820 ms ┊ GC (median): 0.00% Time (mean ± σ): 2.035 ms ± 858.367 μs ┊ GC (mean ± σ): 9.08% ± 14.32% ██▅▅▄▁ ▁ ▁ ███████▇▆▆▄▁▄▁▁▁▄▃▃▅▁▁▃▃▁▃▃▁▁▃▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▃▁▁▅▆▇▇██▇ █ 1.71 ms Histogram: log(frequency) by time 5.97 ms < Memory estimate: 2.03 MiB, allocs estimate: 39078. ``` We can use vectorization in order to speed up evaluation of the integrand function. ```julia julia> function fun_vec(x,f) f[1,:] .= 1.0 for j in 1:size(x,2) for i in 1:size(x, 1) f[1, j] *= cos(x[i, j]) end end end fun_vec (generic function with 1 method) julia> cuhre(fun_vec, 10, nvec = 1000) Component: 1: 0.17798706658707045 ± 1.070799596273229e-6 (prob.: 0.2438374079277991) Integrand evaluations: 7815 Number of subregions: 2 Note: The desired accuracy was reached julia> @benchmark cuhre(fun_vec, 10, nvec = 1000) BenchmarkTools.Trial: 4971 samples with 1 evaluation. Range (min … max): 951.837 μs … 1.974 ms ┊ GC (min … max): 0.00% … 0.00% Time (median): 981.597 μs ┊ GC (median): 0.00% Time (mean ± σ): 1.001 ms ± 69.101 μs ┊ GC (mean ± σ): 0.00% ± 0.00% █▂ ▁▆▇▁▂▂▂▆▅▂▁▁▁▁ ▁ ██▇▆█████████████████████▇██▇████▇▆▇█▆▆▆▇▆▅▆▆█▇▅▅▅▅▄▅▆▄▅▄▂▃▂ █ 952 μs Histogram: log(frequency) by time 1.24 ms < Memory estimate: 1.59 KiB, allocs estimate: 39. ``` A further speed up can be gained by running the `for` loop in parallel with `Threads.@threads`. For example, running Julia with 4 threads: ```julia julia> function fun_par(x,f) f[1,:] .= 1.0 Threads.@threads for j in 1:size(x,2) for i in 1:size(x, 1) f[1, j] *= cos(x[i, j]) end end end fun_par (generic function with 1 method) julia> cuhre(fun_par, 10, nvec = 1000) Component: 1: 0.17798706658707045 ± 1.070799596273229e-6 (prob.: 0.2438374079277991) Integrand evaluations: 7815 Number of subregions: 2 Note: The desired accuracy was reached julia> @benchmark cuhre(fun_par, 10, nvec = 1000) BenchmarkTools.Trial: 6198 samples with 1 evaluation. Range (min … max): 587.456 μs … 7.076 ms ┊ GC (min … max): 0.00% … 0.00% Time (median): 798.933 μs ┊ GC (median): 0.00% Time (mean ± σ): 801.498 μs ± 149.908 μs ┊ GC (mean ± σ): 0.18% ± 1.50% ▇█▇▃ ▂▄▆▃▂▃▃▂▂▂▂▂▂▁▂▁▁▁▁▂▄▅▃▂▅██████▆▆▆▆▆█▇▇▆▄▄▃▂▃▂▂▂▂▂▂▁▂▁▁▁▁▁▁▁▁ ▃ 587 μs Histogram: frequency by time 1.03 ms < Memory estimate: 19.31 KiB, allocs estimate: 228. ``` Performance ----------- `Cuba.jl` cannot ([yet?](https://github.com/giordano/Cuba.jl/issues/1)) take advantage of parallelization capabilities of Cuba Library. Nonetheless, it has performances comparable with equivalent native C or Fortran codes based on Cuba library when `CUBACORES` environment variable is set to `0` (i.e., multithreading is disabled). The following is the result of running the benchmark present in `test` directory on a 64-bit GNU/Linux system running Julia 0.7.0-beta2.3 (commit 83ce9c7524) equipped with an Intel(R) Core(TM) i7-4700MQ CPU. The C and FORTRAN 77 benchmark codes have been compiled with GCC 7.3.0. ``` $ CUBACORES=0 julia -e 'using Pkg; import Cuba; include(joinpath(dirname(dirname(pathof(Cuba))), "benchmarks", "benchmark.jl"))' [ Info: Performance of Cuba.jl: 0.257360 seconds (Vegas) 0.682703 seconds (Suave) 0.329552 seconds (Divonne) 0.233190 seconds (Cuhre) [ Info: Performance of Cuba Library in C: 0.268249 seconds (Vegas) 0.682682 seconds (Suave) 0.319553 seconds (Divonne) 0.234099 seconds (Cuhre) [ Info: Performance of Cuba Library in Fortran: 0.233532 seconds (Vegas) 0.669809 seconds (Suave) 0.284515 seconds (Divonne) 0.195740 seconds (Cuhre) ``` Of course, native C and Fortran codes making use of Cuba Library outperform `Cuba.jl` when higher values of `CUBACORES` are used, for example: ``` $ CUBACORES=1 julia -e 'using Pkg; cd(Pkg.dir("Cuba")); include("test/benchmark.jl")' [ Info: Performance of Cuba.jl: 0.260080 seconds (Vegas) 0.677036 seconds (Suave) 0.342396 seconds (Divonne) 0.233280 seconds (Cuhre) [ Info: Performance of Cuba Library in C: 0.096388 seconds (Vegas) 0.574647 seconds (Suave) 0.150003 seconds (Divonne) 0.102817 seconds (Cuhre) [ Info: Performance of Cuba Library in Fortran: 0.094413 seconds (Vegas) 0.556084 seconds (Suave) 0.139606 seconds (Divonne) 0.107335 seconds (Cuhre) ``` `Cuba.jl` internally fixes `CUBACORES` to 0 in order to prevent from forking `julia` processes that would only slow down calculations eating up the memory, without actually taking advantage of concurrency. Furthemore, without this measure, adding more Julia processes with `addprocs()` would only make the program segfault. Related projects ---------------- There are other Julia packages for multidimenensional numerical integration: * [`Cubature.jl`](https://github.com/stevengj/Cubature.jl) * [`HCubature.jl`](https://github.com/stevengj/HCubature.jl) * [`NIntegration.jl`](https://github.com/pabloferz/NIntegration.jl) Development ----------- `Cuba.jl` is developed on GitHub: <https://github.com/giordano/Cuba.jl>. Feel free to report bugs and make suggestions at <https://github.com/giordano/Cuba.jl/issues>. ### History The ChangeLog of the package is available in [NEWS.md](https://github.com/giordano/Cuba.jl/blob/master/NEWS.md) file in top directory. There have been some breaking changes from time to time, beware of them when upgrading the package. License ------- The Cuba.jl package is licensed under the GNU Lesser General Public License, the same as [Cuba library](http://www.feynarts.de/cuba/). The original author is Mosè Giordano. Credits ------- If you use this library for your work, please credit Thomas Hahn. Citable papers about Cuba Library: - Hahn, T. 2005, Computer Physics Communications, 168, 78. DOI:[10.1016/j.cpc.2005.01.010](http://dx.doi.org/10.1016/j.cpc.2005.01.010). arXiv:[hep-ph/0404043](http://arxiv.org/abs/hep-ph/0404043). Bibcode:[2005CoPhC.168…78H](http://adsabs.harvard.edu/abs/2005CoPhC.168...78H). - Hahn, T. 2015, Journal of Physics Conference Series, 608, 012066. DOI:[10.1088/1742-6596/608/1/012066](http://dx.doi.org/10.1088/1742-6596/608/1/012066). arXiv:[1408.6373](http://arxiv.org/abs/1408.6373). Bibcode:[2015JPhCS.608a2066H](http://adsabs.harvard.edu/abs/2015JPhCS.608a2066H).
Cuba
https://github.com/giordano/Cuba.jl.git
[ "MIT" ]
0.3.0
5fa226120074e3996d6922e39bf02df6e1cee1a0
code
2453
using BenchmarkTools using EnvironmentalTransport using EarthSciMLBase, EarthSciData using ModelingToolkit, DomainSets using Dates starttime = datetime2unix(DateTime(2022, 5, 1)) function setup_advection_simulator(lonres, latres, stencil) @parameters lon=0.0 lat=0.0 lev=1.0 t endtime = datetime2unix(DateTime(2022, 5, 1, 1, 0, 5)) geosfp, updater = GEOSFP("0.25x0.3125_NA"; dtype = Float64, coord_defaults = Dict(:lon => 0.0, :lat => 0.0, :lev => 1.0)) domain = DomainInfo( [partialderivatives_δxyδlonlat, partialderivatives_δPδlev_geosfp(geosfp)], constIC(16.0, t ∈ Interval(starttime, endtime)), constBC(16.0, lon ∈ Interval(deg2rad(-129), deg2rad(-61)), lat ∈ Interval(deg2rad(11), deg2rad(59)), lev ∈ Interval(1, 3))) function emissions(t) @variables c(t) = 1.0 D = Differential(t) ODESystem([D(c) ~ lat + lon + lev], t, name = :emissions) end emis = emissions(t) csys = couple(emis, domain, geosfp, updater) op = AdvectionOperator(100.0, stencil, ZeroGradBC()) csys = couple(csys, op) sim = Simulator(csys, [deg2rad(lonres), deg2rad(latres), 1]) scimlop = EarthSciMLBase.get_scimlop(only(csys.ops), sim) scimlop, init_u(sim) end suite = BenchmarkGroup() suite["Advection Simulator"] = BenchmarkGroup(["advection", "simulator"]) suite["Advection Simulator"]["in-place"] = BenchmarkGroup() suite["Advection Simulator"]["out-of-place"] = BenchmarkGroup() for stencil in [l94_stencil, ppm_stencil] suite["Advection Simulator"]["in-place"][stencil] = BenchmarkGroup() suite["Advection Simulator"]["out-of-place"][stencil] = BenchmarkGroup() for (lonres, latres) in ((0.625, 0.5), (0.3125, 0.25)) @info "setting up $lonres x $latres with $stencil" op, u = setup_advection_simulator(lonres, latres, stencil) suite["Advection Simulator"]["in-place"][stencil]["$lonres x $latres (N=$(length(u)))"] = @benchmarkable $(op)( $(u[:]), $(u[:]), [0.0], $starttime) suite["Advection Simulator"]["out-of-place"][stencil]["$lonres x $latres (N=$(length(u)))"] = @benchmarkable $(op)( $(u[:]), [0.0], $starttime) end end #op, u = setup_advection_simulator(0.1, 0.1, l94_stencil) #@profview op(u[:], u[:], [0.0], starttime) tune!(suite) results = run(suite, verbose = true) BenchmarkTools.save("output.json", median(results))
EnvironmentalTransport
https://github.com/EarthSciML/EnvironmentalTransport.jl.git
[ "MIT" ]
0.3.0
5fa226120074e3996d6922e39bf02df6e1cee1a0
code
981
using EnvironmentalTransport using Documenter DocMeta.setdocmeta!(EnvironmentalTransport, :DocTestSetup, :(using EnvironmentalTransport); recursive=true) makedocs(; modules=[EnvironmentalTransport], authors="EarthSthSciML authors and contributors", repo="https://github.com/EarthSciML/EnvironmentalTransport.jl/blob/{commit}{path}#{line}", sitename="EnvironmentalTransport.jl", format=Documenter.HTML(; prettyurls=get(ENV, "CI", "false") == "true", canonical="https://EarthSciML.github.io/EnvironmentalTransport.jl", edit_link="main", assets=String[], repolink="https://github.com/EarthSciML/EnvironmentalTransport.jl" ), pages=[ "Home" => "index.md", "Advection" => "advection.md", "Puff Model" => "puff.md", "API" => "api.md", "🔗 Benchmarks" => "benchmarks.md", ], ) deploydocs(; repo="github.com/EarthSciML/EnvironmentalTransport.jl", devbranch="main", )
EnvironmentalTransport
https://github.com/EarthSciML/EnvironmentalTransport.jl.git
[ "MIT" ]
0.3.0
5fa226120074e3996d6922e39bf02df6e1cee1a0
code
1654
module EarthSciDataExt using DocStringExtensions import EarthSciMLBase using EarthSciMLBase: param_to_var, ConnectorSystem, CoupledSystem, get_coupletype using EarthSciData: GEOSFPCoupler using EnvironmentalTransport: PuffCoupler, AdvectionOperator function EarthSciMLBase.couple2(p::PuffCoupler, g::GEOSFPCoupler) p, g = p.sys, g.sys p = param_to_var(p, :v_lon, :v_lat, :v_lev) g = param_to_var(g, :lon, :lat, :lev) ConnectorSystem([ p.lon ~ g.lon p.lat ~ g.lat p.lev ~ g.lev p.v_lon ~ g.A3dyn₊U p.v_lat ~ g.A3dyn₊V p.v_lev ~ g.A3dyn₊OMEGA ], p, g) end """ $(SIGNATURES) Couple the advection operator into the CoupledSystem. This function mutates the operator to add the windfield variables. There must already be a source of wind data in the coupled system for this to work. Currently the only valid source of wind data is `EarthSciData.GEOSFP`. """ function EarthSciMLBase.couple(c::CoupledSystem, op::AdvectionOperator)::CoupledSystem found = 0 for sys in c.systems if EarthSciMLBase.get_coupletype(sys) == GEOSFPCoupler found += 1 op.vardict = Dict( "lon" => sys.A3dyn₊U, "lat" => sys.A3dyn₊V, "lev" => sys.A3dyn₊OMEGA ) end end if found == 0 error("Could not find a source of wind data in the coupled system. Valid sources are currently {EarthSciData.GEOSFP}.") elseif found > 1 error("Found multiple sources of wind data in the coupled system. Valid sources are currently {EarthSciData.GEOSFP}") end push!(c.ops, op) c end end
EnvironmentalTransport
https://github.com/EarthSciML/EnvironmentalTransport.jl.git
[ "MIT" ]
0.3.0
5fa226120074e3996d6922e39bf02df6e1cee1a0
code
424
module EnvironmentalTransport using DocStringExtensions using SciMLOperators using LinearAlgebra using SciMLBase: NullParameters using ModelingToolkit: t, D, get_unit, getdefault, ODESystem, @variables, @parameters, @constants, get_variables, substitute using SciMLBase: terminate! using EarthSciMLBase include("advection_stencils.jl") include("boundary_conditions.jl") include("advection.jl") include("puff.jl") end
EnvironmentalTransport
https://github.com/EarthSciML/EnvironmentalTransport.jl.git
[ "MIT" ]
0.3.0
5fa226120074e3996d6922e39bf02df6e1cee1a0
code
6380
export AdvectionOperator #= An advection kernel for a 4D array, where the first dimension is the state variables and the next three dimensions are the spatial dimensions. =# function advection_kernel_4d(u, stencil, vs, Δs, Δt, idx, p = NullParameters()) lpad, rpad = stencil_size(stencil) offsets = ((CartesianIndex(0, lpad, 0, 0), CartesianIndex(0, rpad, 0, 0)), (CartesianIndex(0, 0, lpad, 0), CartesianIndex(0, 0, rpad, 0)), (CartesianIndex(0, 0, 0, lpad), CartesianIndex(0, 0, 0, rpad)) ) du = zero(eltype(u)) @inbounds for i in eachindex(vs, Δs, offsets) v, Δ, (l, r) = vs[i], Δs[i], offsets[i] uu = @view u[(idx - l):(idx + r)] du += stencil(uu, v, Δt, Δ; p) end du end function advection_kernel_4d_builder(stencil, v_fs, Δ_fs) function advect_f(u, idx, Δt, t, p = NullParameters()) vs = get_vs(v_fs, idx, t) Δs = get_Δs(Δ_fs, idx, t) advection_kernel_4d(u, stencil, vs, Δs, Δt, idx, p) end end function get_vs(v_fs, i, j, k, t) ( (v_fs[1](i, j, k, t), v_fs[1](i + 1, j, k, t)), (v_fs[2](i, j, k, t), v_fs[2](i, j + 1, k, t)), (v_fs[3](i, j, k, t), v_fs[3](i, j, k + 1, t)) ) end get_vs(v_fs, idx::CartesianIndex{4}, t) = get_vs(v_fs, idx[2], idx[3], idx[4], t) get_Δs(Δ_fs, i, j, k, t) = (Δ_fs[1](i, j, k, t), Δ_fs[2](i, j, k, t), Δ_fs[3](i, j, k, t)) get_Δs(Δ_fs, idx::CartesianIndex{4}, t) = get_Δs(Δ_fs, idx[2], idx[3], idx[4], t) #= A function to create an advection operator for a 4D array, Arguments: * `u_prototype`: A prototype array of the same size and type as the input array. * `stencil`: The stencil operator, e.g. `l94_stencil` or `ppm_stencil`. * `v_fs`: A vector of functions to get the wind velocity at a given place and time. The function signature should be `v_fs(i, j, k, t)`. * `Δ_fs`: A vector of functions to get the grid spacing at a given place and time. The function signature should be `Δ_fs(i, j, k, t)`. * `Δt`: The time step size, which is assumed to be fixed. * `bc_type`: The boundary condition type, e.g. `ZeroGradBC()`. =# function advection_op(u_prototype, stencil, v_fs, Δ_fs, Δt, bc_type; p = NullParameters()) sz = size(u_prototype) v_fs = tuple(v_fs...) Δ_fs = tuple(Δ_fs...) adv_kernel = advection_kernel_4d_builder(stencil, v_fs, Δ_fs) function advection(u, p, t) # Out-of-place u = bc_type(reshape(u, sz...)) du = adv_kernel.((u,), CartesianIndices(u), (Δt,), (t,), (p,)) reshape(du, :) end function advection(du, u, p, t) # In-place u = bc_type(reshape(u, sz...)) du = reshape(du, sz...) du .= adv_kernel.((u,), CartesianIndices(u), (Δt,), (t,), (p,)) end FunctionOperator(advection, reshape(u_prototype, :), p = p) end "Get a value from the x-direction velocity field." function vf_x(args1, args2) i, j, k, t = args1 data_f, grid1, grid2, grid3, Δ = args2 x1 = grid1[min(i, length(grid1))] - Δ / 2 # Staggered grid x2 = grid2[j] x3 = grid3[k] data_f(t, x1, x2, x3) end "Get a value from the y-direction velocity field." function vf_y(args1, args2) i, j, k, t = args1 data_f, grid1, grid2, grid3, Δ = args2 x1 = grid1[i] x2 = grid2[min(j, length(grid2))] - Δ / 2 # Staggered grid x3 = grid3[k] data_f(t, x1, x2, x3) end "Get a value from the z-direction velocity field." function vf_z(args1, args2) i, j, k, t = args1 data_f, grid1, grid2, grid3, Δ = args2 x1 = grid1[i] x2 = grid2[j] x3 = k > 1 ? grid3[min(k, length(grid3))] - Δ / 2 : grid3[k] data_f(t, x1, x2, x3) # Staggered grid end tuplefunc(vf) = (i, j, k, t) -> vf((i, j, k, t)) """ $(SIGNATURES) Return a function that gets the wind velocity at a given place and time for the given `varname`. `data_f` should be a function that takes a time and three spatial coordinates and returns the value of the wind speed in the direction indicated by `varname`. """ function get_vf(sim, varname::AbstractString, data_f) if varname ∈ ("lon", "x") vf = Base.Fix2( vf_x, (data_f, sim.grid[1], sim.grid[2], sim.grid[3], sim.Δs[1])) return tuplefunc(vf) elseif varname ∈ ("lat", "y") vf = Base.Fix2( vf_y, (data_f, sim.grid[1], sim.grid[2], sim.grid[3], sim.Δs[2])) return tuplefunc(vf) elseif varname == "lev" vf = Base.Fix2( vf_z, (data_f, sim.grid[1], sim.grid[2], sim.grid[3], sim.Δs[3])) return tuplefunc(vf) else error("Invalid variable name $(varname).") end end "function to get grid deltas." function Δf(args1, args2) i, j, k, t = args1 tff, Δ, grid1, grid2, grid3 = args2 c1, c2, c3 = grid1[i], grid2[j], grid3[k] Δ / tff(t, c1, c2, c3) end """ $(SIGNATURES) Return a function that gets the grid spacing at a given place and time for the given `varname`. """ function get_Δ(sim::EarthSciMLBase.Simulator, varname::AbstractString) pvaridx = findfirst( isequal(varname), String.(Symbol.(EarthSciMLBase.pvars(sim.domaininfo)))) tff = sim.tf_fs[pvaridx] tuplefunc(Base.Fix2( Δf, (tff, sim.Δs[pvaridx], sim.grid[1], sim.grid[2], sim.grid[3]))) end """ $(SIGNATURES) Create an `EarthSciMLBase.Operator` that performs advection. Advection is performed using the given `stencil` operator (e.g. `l94_stencil` or `ppm_stencil`). `p` is an optional parameter set to be used by the stencil operator. `bc_type` is the boundary condition type, e.g. `ZeroGradBC()`. """ mutable struct AdvectionOperator <: EarthSciMLBase.Operator Δt::Any stencil::Any bc_type::Any vardict::Any function AdvectionOperator(Δt, stencil, bc_type) new(Δt, stencil, bc_type, nothing) end end function EarthSciMLBase.get_scimlop(op::AdvectionOperator, sim::Simulator, u = nothing) u = isnothing(u) ? init_u(sim) : u pvars = EarthSciMLBase.pvars(sim.domaininfo) pvarstrs = [String(Symbol(pv)) for pv in pvars] v_fs = [] Δ_fs = [] for varname in pvarstrs data_f = sim.obs_fs[sim.obs_fs_idx[op.vardict[varname]]] push!(v_fs, get_vf(sim, varname, data_f)) push!(Δ_fs, get_Δ(sim, varname)) end scimlop = advection_op(u, op.stencil, v_fs, Δ_fs, op.Δt, op.bc_type, p = sim.p) cache_operator(scimlop, u[:]) end
EnvironmentalTransport
https://github.com/EarthSciML/EnvironmentalTransport.jl.git
[ "MIT" ]
0.3.0
5fa226120074e3996d6922e39bf02df6e1cee1a0
code
6549
export l94_stencil, ppm_stencil, upwind1_stencil, upwind2_stencil """ $(SIGNATURES) L94 advection in 1-D (Lin et al., 1994) * ϕ is the scalar field at the current time step, it should be a vector of length 5. * U is the velocity at both edges of the central grid cell, it should be a vector of length 2. * Δt is the length of the time step. * Δz is the grid spacing. The output will be time derivative of the central index (i.e. index 3) of the ϕ vector (i.e. dϕ/dt). (The output is dependent on the Courant number, which depends on Δt, so Δt needs to be an input to the function.) """ function l94_stencil(ϕ, U, Δt, Δz; kwargs...) δϕ1(i) = ϕ[i] - ϕ[i - 1] Δϕ1_avg(i) = (δϕ1(i) + δϕ1(i + 1)) / 2.0 ## Monotonicity slope limiter ϕ1_min(i) = minimum((ϕ[i - 1], ϕ[i], ϕ[i + 1])) ϕ1_max(i) = maximum((ϕ[i - 1], ϕ[i], ϕ[i + 1])) function Δϕ1_mono(i) sign(Δϕ1_avg(i)) * minimum((abs(Δϕ1_avg(i)), 2 * (ϕ[i] - ϕ1_min(i)), 2 * (ϕ1_max(i) - ϕ[i]))) end courant(i) = U[i] * Δt / Δz function FLUX(i) ifelse(U[i] >= 0, (U[i] * (ϕ[i + 1] + Δϕ1_mono(i + 1) * (1 - courant(i)) / 2.0)), (U[i] * (ϕ[i + 2] - Δϕ1_mono(i + 2) * (1 + courant(i)) / 2.0))) end ϕ2(i) = -(FLUX(i - 1) - FLUX(i - 2)) / Δz ϕ2(3) end " Return the left and right stencil size of the L94 stencil. " stencil_size(s::typeof(l94_stencil)) = (2, 2) """ $(SIGNATURES) PPM advection in 1-D (Collela and Woodward, 1984) * ϕ is the scalar field at the current time step, it should be a vector of length 8 (3 cells on the left, the central cell, and 4 cells on the right). * U is the velocity at both edges of the central grid cell, it should be a vector of length 2. * Δt is the length of the time step. * Δz is the grid spacing. The output will be time derivative of the central index (i.e. index 4) of the ϕ vector (i.e. dϕ/dt). (The output is dependent on the Courant number, which depends on Δt, so Δt needs to be an input to the function.) """ function ppm_stencil(ϕ, U, Δt, Δz; kwargs...) ϵ = 0.01 η⁽¹⁾ = 20 η⁽²⁾ = 0.05 ## Edge value calculation δϕ(i) = 1 / 2 * (ϕ[i + 1] - ϕ[i - 1]) function δₘϕ(i) ifelse((ϕ[i + 1] - ϕ[i]) * (ϕ[i] - ϕ[i - 1]) > 0, min( abs(δϕ(i - 1)), 2 * abs(ϕ[i] - ϕ[i - 1]), 2 * abs(ϕ[i + 1] - ϕ[i])) * sign(δϕ(i - 1)), zero(eltype(ϕ)) ) end ϕ₊½(i) = 1 / 2 * (ϕ[i + 1] + ϕ[i]) - 1 / 6 * (δₘϕ(i + 1) - δₘϕ(i)) ## Discontinuity detection δ²ϕ(i) = 1 / (6 * Δz^2) * (ϕ[i + 1] - 2 * ϕ[i] + ϕ[i - 1]) function η_tilde(i) ifelse( -δ²ϕ(i + 1) * δ²ϕ(i - 1) * abs(ϕ[i + 1] - ϕ[i - 1]) - ϵ * min(abs(ϕ[i + 1]), abs(ϕ[i - 1])) > 0, -(δ²ϕ(i + 1) - δ²ϕ(i - 1)) * (Δz^2) / (ϕ[i + 1] - ϕ[i - 1]), zero(eltype(ϕ)) ) end η(i) = clamp(η⁽¹⁾ * (η_tilde(i) - η⁽²⁾), 0, 1) ϕLᵈ(i) = ϕ[i] + 1 / 2 * δₘϕ(i) ϕRᵈ(i) = ϕ[i + 1] + 1 / 2 * δₘϕ(i + 1) ϕL₀(i) = ϕ₊½(i) * (1 - η(i)) + ϕLᵈ(i) * η(i) ϕR₀(i) = ϕ₊½(i + 1) * (1 - η(i)) + ϕRᵈ(i) * η(i) ## Monotonicity examination function ϕL(i) ifelse((ϕR₀(i) - ϕ[i]) * (ϕ[i] - ϕL₀(i)) <= 0, ϕ[i], ifelse( (ϕR₀(i) - ϕL₀(i)) * (ϕ[i] - 1 / 2 * (ϕL₀(i) + ϕR₀(i))) >= (ϕR₀(i) - ϕL₀(i))^2 / 6, 3 * ϕ[i] - 2 * ϕR₀(i), ϕL₀(i) )) end function ϕR(i) ifelse((ϕR₀(i) - ϕ[i]) * (ϕ[i] - ϕL₀(i)) <= 0, ϕ[i], ifelse( -(ϕR₀(i) - ϕL₀(i))^2 / 6 > (ϕR₀(i) - ϕL₀(i)) * (ϕ[i] - 1 / 2 * (ϕR₀(i) + ϕL₀(i))), 3 * ϕ[i] - 2 * ϕL₀(i), ϕR₀(i) )) end ## Compute flux courant(i) = U[i] * Δt / Δz Δϕ(i) = ϕR(i) - ϕL(i) ϕ₆(i) = 6 * (ϕ[i] - 1 / 2 * (ϕL(i) + ϕR(i))) function FLUX(i) ifelse(U[i] >= 0, courant(i) * (ϕR(i + 2) - 1 / 2 * courant(i) * (Δϕ(i + 2) - (1 - 2 / 3 * courant(i)) * ϕ₆(i + 2))), courant(i) * (ϕL(i + 3) - 1 / 2 * courant(i) * (Δϕ(i + 3) - (1 + 2 / 3 * courant(i)) * ϕ₆(i + 3))) ) end ϕ2(i) = (FLUX(i - 3) - FLUX(i - 2)) / Δt ϕ2(4) end " Return the left and right stencil size of the PPM stencil. " stencil_size(s::typeof(ppm_stencil)) = (3, 4) """ $(SIGNATURES) First-order upwind advection in 1-D: https://en.wikipedia.org/wiki/Upwind_scheme. * ϕ is the scalar field at the current time step, it should be a vector of length 3 (1 cell on the left, the central cell, and 1 cell on the right). * U is the velocity at both edges of the central grid cell, it should be a vector of length 2. * Δt is the length of the time step. * Δz is the grid spacing. The output will be time derivative of the central index (i.e. index 2) of the ϕ vector (i.e. dϕ/dt). `Δt` and `p` are not used, but are function arguments for consistency with other operators. """ function upwind1_stencil(ϕ, U, Δt, Δz; p = nothing) sz = sign(Δz) # Handle negative grid spacing ul₊ = sz*max(sz*U[1], zero(eltype(U))) ul₋ = sz*min(sz*U[1], zero(eltype(U))) ur₊ = sz*max(sz*U[2], zero(eltype(U))) ur₋ = sz*min(sz*U[2], zero(eltype(U))) flux₊ = (ϕ[1]*ul₊ - ϕ[2]*ur₊) / Δz flux₋ = (ϕ[2]*ul₋ - ϕ[3]*ur₋) / Δz flux₊ + flux₋ end " Return the left and right stencil size of the first-order upwind stencil. " stencil_size(s::typeof(upwind1_stencil)) = (1, 1) """ $(SIGNATURES) Second-order upwind advection in 1-D, otherwise known as linear-upwind differencing (LUD): https://en.wikipedia.org/wiki/Upwind_scheme. * ϕ is the scalar field at the current time step, it should be a vector of length 5 (2 cells on the left, the central cell, and 2 cells on the right). * U is the velocity at both edges of the central grid cell, it should be a vector of length 2. * Δt is the length of the time step. * Δz is the grid spacing. The output will be time derivative of the central index (i.e. index 3) of the ϕ vector (i.e. dϕ/dt). (Δt is not used, but is a function argument for consistency with other operators.) """ function upwind2_stencil(ϕ, U, Δt, Δz; kwargs...) u₊ = max(U[1], zero(eltype(U))) u₋ = min(U[2], zero(eltype(U))) ϕ₋ = (3ϕ[3] - 4ϕ[2] + ϕ[1]) / (2Δz) ϕ₊ = (-ϕ[4] + 4ϕ[3] - 3ϕ[2]) / (2Δz) -(u₊ * ϕ₋ + u₋ * ϕ₊) end " Return the left and right stencil size of the second-order upwind stencil. " stencil_size(s::typeof(upwind2_stencil)) = (2, 2)
EnvironmentalTransport
https://github.com/EarthSciML/EnvironmentalTransport.jl.git
[ "MIT" ]
0.3.0
5fa226120074e3996d6922e39bf02df6e1cee1a0
code
996
export ZeroGradBC "An array with external indexing implemented for boundary conditions." abstract type BCArray{T, N} <: AbstractArray{T, N} end """ $(SIGNATURES) An array with zero gradient boundary conditions. """ struct ZeroGradBCArray{P, T, N} <: BCArray{T, N} parent::P function ZeroGradBCArray(x::AbstractArray{T, N}) where {T, N} return new{typeof(x), T, N}(x) end end zerogradbcindex(i::Int, N::Int) = clamp(i, 1, N) zerogradbcindex(i::UnitRange, N::Int) = zerogradbcindex.(i, N) Base.size(A::ZeroGradBCArray) = size(A.parent) Base.checkbounds(::Type{Bool}, ::ZeroGradBCArray, i...) = true function Base.getindex(A::ZeroGradBCArray{P, T, N}, ind::Vararg{Union{Int, UnitRange}, N}) where {P, T, N} v = A.parent i = map(zerogradbcindex, ind, size(A)) @boundscheck checkbounds(v, i...) @inbounds ret = v[i...] ret end """ $(SIGNATURES) Zero gradient boundary conditions. """ struct ZeroGradBC end (bc::ZeroGradBC)(x) = ZeroGradBCArray(x)
EnvironmentalTransport
https://github.com/EarthSciML/EnvironmentalTransport.jl.git
[ "MIT" ]
0.3.0
5fa226120074e3996d6922e39bf02df6e1cee1a0
code
3359
export Puff struct PuffCoupler sys::Any end """ $(TYPEDSIGNATURES) Create a Lagrangian transport model which advects a "puff" or particle of matter within a fluid velocity field. Model boundaries are set by the DomainInfo argument. The model sets boundaries at the ground and model bottom and top, preventing the puff from crossing those boundaries. If the puff reaches one of the horizontal boundaries, the simulation is stopped. """ function Puff(di::DomainInfo; name = :puff) pv = EarthSciMLBase.pvars(di) coords = [] for p in pv n = Symbol(p) v = EarthSciMLBase.add_metadata(only(@variables $n(t) = getdefault(p)), p) push!(coords, v) end @assert length(coords)==3 "DomainInfo must have 3 coordinates for puff model but currently has $(length(coords)): $coords" # Get transforms for e.g. longitude to meters. trans = EarthSciMLBase.partialderivative_transforms(di) for (it, tr) in enumerate(trans) # Make sure using correct coords. for (ip, p) in enumerate(pv) vars = get_variables(tr) iloc = findfirst(isequal(p), vars) if !isnothing(iloc) trans[it] = substitute(trans[it], vars[iloc] => coords[ip]) end end end # Create placeholder velocity variables. vs = [] for i in eachindex(coords) v_sym = Symbol("v_$(Symbol(pv[i]))") vu = get_unit(coords[i]) / get_unit(trans[i]) / get_unit(t) v = only(@parameters $(v_sym)=0 [unit = vu description = "$(Symbol(pv[i])) speed"]) push!(vs, v) end eqs = D.(coords) .~ vs .* trans grd = EarthSciMLBase.grid(di, [1, 1, 1]) lev_idx = only(findall(v -> string(Symbol(v)) in ["lev(t)", "z(t)"], coords)) lon_idx = only(findall(v -> string(Symbol(v)) in ["lon(t)", "x(t)"], coords)) lat_idx = only(findall(v -> string(Symbol(v)) in ["lat(t)", "y(t)"], coords)) # Boundary condition at the ground and model top. uc = get_unit(coords[lev_idx]) @constants( offset=0.05, [unit = uc, description="Offset for boundary conditions"], glo=grd[lev_idx][begin], [unit=uc, description="lower bound"], ghi=grd[lev_idx][end], [unit=uc, description="upper bound"], v_zero=0, [unit = get_unit(eqs[lev_idx].rhs)], ) @variables v_vertical(t) [unit = get_unit(eqs[lev_idx].rhs)] push!(eqs, v_vertical ~ eqs[lev_idx].rhs) eqs[lev_idx] = let eq = eqs[lev_idx] c = coords[lev_idx] eq.lhs ~ ifelse(c - offset < glo, max(v_zero, v_vertical), ifelse(c + offset > ghi, min(v_zero, v_vertical), v_vertical)) end lower_bound = coords[lev_idx] ~ grd[lev_idx][begin] upper_bound = coords[lev_idx] ~ grd[lev_idx][end] vertical_boundary = [lower_bound, upper_bound] # Stop simulation if we reach the lateral boundaries. affect!(integrator, u, p, ctx) = terminate!(integrator) wb = coords[lon_idx] ~ grd[lon_idx][begin] eb = coords[lon_idx] ~ grd[lon_idx][end] sb = coords[lat_idx] ~ grd[lat_idx][begin] nb = coords[lat_idx] ~ grd[lat_idx][end] lateral_boundary = [wb, eb, sb, nb] => (affect!, [], [], [], nothing) ODESystem(eqs, EarthSciMLBase.ivar(di); name = name, metadata = Dict(:coupletype => PuffCoupler), continuous_events = [vertical_boundary, lateral_boundary]) end
EnvironmentalTransport
https://github.com/EarthSciML/EnvironmentalTransport.jl.git
[ "MIT" ]
0.3.0
5fa226120074e3996d6922e39bf02df6e1cee1a0
code
2672
using EnvironmentalTransport using EnvironmentalTransport: get_vf, get_Δ using Test using EarthSciMLBase, EarthSciData using ModelingToolkit, DomainSets, OrdinaryDiffEq using ModelingToolkit: t, D using Distributions, LinearAlgebra using DynamicQuantities using Dates @parameters( lon=0.0, [unit=u"rad"], lat=0.0, [unit=u"rad"], lev=1.0, ) starttime = datetime2unix(DateTime(2022, 5, 1)) endtime = datetime2unix(DateTime(2022, 5, 1, 1, 0, 5)) geosfp, geosfp_updater = GEOSFP("4x5"; dtype = Float64, coord_defaults = Dict(:lon => 0.0, :lat => 0.0, :lev => 1.0)) domain = DomainInfo( [partialderivatives_δxyδlonlat, partialderivatives_δPδlev_geosfp(geosfp)], constIC(16.0, t ∈ Interval(starttime, endtime)), constBC(16.0, lon ∈ Interval(deg2rad(-130.0), deg2rad(-60.0)), lat ∈ Interval(deg2rad(9.75), deg2rad(60.0)), lev ∈ Interval(1, 3))) function emissions(μ_lon, μ_lat, σ) @variables c(t) = 0.0 [unit=u"kg"] @constants v_emis = 50.0 [unit=u"kg/s"] @constants t_unit = 1.0 [unit=u"s"] # Needed so that arguments to `pdf` are unitless. dist = MvNormal([starttime, μ_lon, μ_lat, 1], Diagonal(map(abs2, [3600.0, σ, σ, 1]))) ODESystem([D(c) ~ pdf(dist, [t/t_unit, lon, lat, lev]) * v_emis], t, name = :Test₊emissions) end emis = emissions(deg2rad(-122.6), deg2rad(45.5), 0.1) csys = couple(emis, domain, geosfp, geosfp_updater) sim = Simulator(csys, [deg2rad(4), deg2rad(4), 1]) st = SimulatorStrangThreads(Tsit5(), SSPRK22(), 1.0) sol = run!(sim, st) @test 310 < norm(sol.u[end]) < 330 op = AdvectionOperator(100.0, l94_stencil, ZeroGradBC()) @test isnothing(op.vardict) # Before coupling, there shouldn't be anything here. csys = couple(csys, op) @test !isnothing(op.vardict) # after coupling, there should be something here. sol = run!(sim, st) # With advection, the norm should be lower because the pollution is more spread out. @test 310 < norm(sol.u[end]) < 350 @testset "get_vf lon" begin f = sim.obs_fs[sim.obs_fs_idx[op.vardict["lon"]]] @test get_vf(sim, "lon", f)(2, 3, 1, starttime) ≈ -6.816295428727573 end @testset "get_vf lat" begin f = sim.obs_fs[sim.obs_fs_idx[op.vardict["lat"]]] @test get_vf(sim, "lat", f)(3, 2, 1, starttime) ≈ -5.443038969820774 end @testset "get_vf lev" begin f = sim.obs_fs[sim.obs_fs_idx[op.vardict["lev"]]] @test get_vf(sim, "lev", f)(3, 1, 2, starttime) ≈ -0.019995461793337128 end @testset "get_Δ" begin @test get_Δ(sim, "lat")(2, 3, 1, starttime) ≈ 445280.0 @test get_Δ(sim, "lon")(3, 2, 1, starttime) ≈ 432517.0383085161 @test get_Δ(sim, "lev")(3, 1, 2, starttime) ≈ -1516.7789198950632 end
EnvironmentalTransport
https://github.com/EarthSciML/EnvironmentalTransport.jl.git
[ "MIT" ]
0.3.0
5fa226120074e3996d6922e39bf02df6e1cee1a0
code
5518
using Main.EnvironmentalTransport using Test c = [0.0, 1, 2, 3, 4, 5] v = [10.0, 8, 6, 4, 2, 0, 1] Δt = 0.05 Δz = 0.5 @testset "l94 1" begin c2 = [c[1], c[1], c..., c[end], c[end]] result = [l94_stencil(c2[(i - 2):(i + 2)], v[(i - 2):(i - 1)], Δt, Δz) for i in 3:8] @test max.((0,), c .+ result .* Δt) ≈ [0.0, 0.28, 1.8, 3.24, 4.68, 4.5] end @testset "ppm 1" begin c2 = [c[1], c[1], c[1], c..., c[end], c[end], c[end], c[end]] result = [ppm_stencil(c2[(i - 3):(i + 4)], v[(i - 3):(i - 2)], Δt, Δz) for i in 4:9] @test c .+ result .* Δt ≈ [0.0, 0.3999999999999999, 1.8, 3.2, 4.6, 4.5] end @testset "upwind1 1" begin c2 = [c[1], c..., c[end]] result = [upwind1_stencil(c2[(i - 1):(i + 1)], v[(i - 1):i], Δt, Δz) for i in 2:7] @test c .+ result .* Δt ≈ [0.0, 0.3999999999999999, 1.8, 3.2, 4.6, 4.5] end @testset "upwind2 1" begin c2 = [c[1], c[1], c..., c[end], c[end]] result = [upwind2_stencil(c2[(i - 2):(i + 2)], v[(i - 2):(i - 1)], Δt, Δz) for i in 3:8] @test max.((0,), c .+ result .* Δt) ≈ [0.0, 0.0, 1.4, 2.6, 3.8, 5.0] end c = [6.0, 6, 5, 5, 6, 6] v = [2.0, 2, 2, 2, 2, 2, 2] @testset "l94 2" begin c2 = [c[1], c[1], c..., c[end], c[end]] result = [l94_stencil(c2[(i - 2):(i + 2)], v[(i - 2):(i - 1)], Δt, Δz) for i in 3:8] @test max.((0,), c .+ result .* Δt) ≈ [6.0, 6.0, 5.2, 5.0, 5.8, 6.0] end @testset "ppm 2" begin c2 = [c[1], c[1], c[1], c..., c[end], c[end], c[end], c[end]] result = [ppm_stencil(c2[(i - 3):(i + 4)], v[(i - 3):(i - 2)], Δt, Δz) for i in 4:9] @test c .+ result .* Δt ≈ [6.0, 6.0, 5.2, 5.0, 5.8, 6.0] end @testset "upwind1 2" begin c2 = [c[1], c..., c[end]] result = [upwind1_stencil(c2[(i - 1):(i + 1)], v[(i - 1):i], Δt, Δz) for i in 2:7] @test c .+ result .* Δt ≈ [6.0, 6.0, 5.2, 5.0, 5.8, 6.0] end @testset "upwind2 2" begin c2 = [c[1], c[1], c..., c[end], c[end]] result = [upwind2_stencil(c2[(i - 2):(i + 2)], v[(i - 2):(i - 1)], Δt, Δz) for i in 3:8] @test max.((0,), c .+ result .* Δt) ≈ [6.0, 6.0, 5.3, 4.9, 5.7, 6.1] end @testset "Constant Field Preservation" begin u0 = ones(10) v = 1.0 Δt = 0.1 Δz = 0.1 @testset "Constant wind" begin for stencil in [upwind1_stencil, upwind2_stencil, l94_stencil, ppm_stencil] @testset "$(nameof(stencil))" begin lpad, rpad = EnvironmentalTransport.stencil_size(stencil) dudt = [stencil(u0[(i - lpad):(i + rpad)], [v, v], Δt, Δz) for i in (1 + lpad):(10 - rpad)] @test dudt ≈ zeros(10 - lpad - rpad) end end end end @testset "Known solution" begin for (dir, u0) in [("up", collect(1.0:10.0)), ("down", collect(10.0:-1:1))] @testset "$dir" begin v = 1.0 Δt = 1.0 # For vertical grid, increasing altitude mean decreasing pressure, so Δz is negative. for (Δz, zdir) in [(1.0, "pos Δz"), (-1.0, "neg Δz")] @testset "$zdir" begin uu0 = u0 .* sign(Δz) for stencil in [ upwind1_stencil, upwind2_stencil, l94_stencil, ppm_stencil] @testset "$(nameof(stencil))" begin lpad, rpad = EnvironmentalTransport.stencil_size(stencil) dudt = [stencil(uu0[(i - lpad):(i + rpad)], [v, v], Δt, Δz) for i in (1 + lpad):(10 - rpad)] if dir == "up" @test dudt ≈ zeros(10 - lpad - rpad) .- 1 else @test dudt ≈ zeros(10 - lpad - rpad) .+ 1 end end end end end end end end @testset "Mass Conservation" begin u0_opts = [("up", 1.0:10.0), ("down", 10.0:-1:1), ("rand", rand(10))] for stencil in [upwind1_stencil, upwind2_stencil, l94_stencil, ppm_stencil] @testset "$(nameof(stencil))" begin lpad, rpad = EnvironmentalTransport.stencil_size(stencil) N = 10 + lpad * 2 + rpad * 2 v_opts = [("c", ones(N + 1)), ("up", 1.0:(N + 1)), ("down", (N + 1):-1:1.0), ("neg up", -(1.0:(N + 1))), ("neg down", -((N + 1):-1:1.0)), ("rand", rand(N + 1) .* 2 .- 1)] Δz_opts = [("c", ones(N)), ("up", 1.0:N), ("down", N:-1:1.0), ("neg", -N:-1.0)] for (d1, u0_in) in u0_opts @testset "u0 $d1" begin u0 = zeros(N) u0[(1 + lpad * 2):(N - rpad * 2)] .= u0_in for (d2, v) in v_opts @testset "v $d2" begin Δt = 1.0 for (d3, Δz) in Δz_opts @testset "Δz $d3" begin dudt = [stencil( u0[(i - lpad):(i + rpad)], v[i:(i + 1)], Δt, Δz[i]) for i in (1 + lpad):(N - rpad)] @test sum(dudt .* Δz[(1 + lpad):(N - rpad)])≈0.0 atol=1e-14 end end end end end end end end end
EnvironmentalTransport
https://github.com/EarthSciML/EnvironmentalTransport.jl.git
[ "MIT" ]
0.3.0
5fa226120074e3996d6922e39bf02df6e1cee1a0
code
1754
using EnvironmentalTransport: advection_op using EnvironmentalTransport using Test using LinearAlgebra using SciMLOperators using SciMLBase: NullParameters c = zeros(3, 6, 6, 6) c[2, :, 3, 4] = [0.0, 1, 2, 3, 4, 5] c[2, 3, :, 4] = [0.0, 1, 2, 3, 4, 5] c[2, 3, 4, :] = [0.0, 1, 2, 3, 4, 5] const v = [10.0, 8, 6, 4, 2, 0, 1] const Δt = 0.05 const Δz = 0.5 v_fs = ((i, j, k, t) -> v[i], (i, j, k, t) -> v[j], (i, j, k, t) -> v[k]) Δ_fs = ((i, j, k, t) -> Δz, (i, j, k, t) -> Δz, (i, j, k, t) -> Δz) @testset "4d advection op" begin adv_op = advection_op(c, upwind1_stencil, v_fs, Δ_fs, Δt, ZeroGradBC()) adv_op = cache_operator(adv_op, c) result_oop = adv_op(c[:], NullParameters(), 0.0) result_iip = similar(result_oop) adv_op(result_iip, c[:], NullParameters(), 0.0) for (s, result) in (("in-place", result_iip), ("out-of-place", result_oop)) @testset "$s" begin result = reshape(result, size(c)) @test result[2, :, 3, 4] ≈ [0.0, -24.0, -16.0, -32.0, -36.0, -70.0] @test result[2, 3, :, 4] ≈ [0.0, -24.0, -16.0, -16.0, -36.0, -70.0] @test result[2, 3, 4, :] ≈ [0.0, -24.0, -28.0, -16.0, -36.0, -70.0] @test all(result[1, :, :, :] .≈ 0.0) @test all(result[3, :, :, :] .≈ 0.0) end end end mul_stencil(ϕ, U, Δt, Δz; p = 0.0) = p EnvironmentalTransport.stencil_size(s::typeof(mul_stencil)) = (0, 0) @testset "parameters" begin adv_op = advection_op(c, mul_stencil, v_fs, Δ_fs, Δt, ZeroGradBC(), p = 0.0) adv_op = cache_operator(adv_op, c) result_oop = adv_op(c[:], 2.0, 0.0) result_iip = similar(result_oop) adv_op(result_iip, c[:], 2.0, 0.0) @test all(result_iip .== 6.0) @test all(result_oop .== 6.0) end
EnvironmentalTransport
https://github.com/EarthSciML/EnvironmentalTransport.jl.git
[ "MIT" ]
0.3.0
5fa226120074e3996d6922e39bf02df6e1cee1a0
code
288
using Main.EnvironmentalTransport using Test a = rand(3, 4) x = ZeroGradBC()(a) @test x[1:3,1:4] == a @test all(x[-10:1,15:30] .== a[begin,end]) @test all(x[end:end+20,begin-3:begin] .== a[end,begin]) @test all((@view x[1:3,1:4]) .== a) @test CartesianIndices((3, 4)) == eachindex(x)
EnvironmentalTransport
https://github.com/EarthSciML/EnvironmentalTransport.jl.git
[ "MIT" ]
0.3.0
5fa226120074e3996d6922e39bf02df6e1cee1a0
code
1386
using Test using Main.EnvironmentalTransport using EarthSciMLBase using EarthSciData using ModelingToolkit using ModelingToolkit: t using DynamicQuantities using DomainSets using OrdinaryDiffEq using Dates starttime = DateTime(2022, 5, 1) endtime = DateTime(2022, 5, 1, 3) geosfp, geosfp_updater = GEOSFP("4x5"; dtype = Float64, coord_defaults = Dict(:lon => deg2rad(-97), :lat => deg2rad(40), :lev => 1.0), cache_size = 3) EarthSciData.lazyload!(geosfp_updater, datetime2unix(starttime)) @parameters lon=deg2rad(-97) [unit = u"rad"] @parameters lat=deg2rad(40) [unit = u"rad"] @parameters lev = 3.0 di = DomainInfo( [partialderivatives_δxyδlonlat, partialderivatives_δPδlev_geosfp(geosfp)], constIC(16.0, t ∈ Interval(starttime, endtime)), constBC(16.0, lon ∈ Interval(deg2rad(-115), deg2rad(-68.75)), lat ∈ Interval(deg2rad(25), deg2rad(53.7)), lev ∈ Interval(1, 15)), dtype = Float64) puff = Puff(di) model = couple(puff, geosfp) sys = convert(ODESystem, model) sys, _ = EarthSciMLBase.prune_observed(sys) @test length(equations(sys)) == 3 @test occursin("PS", string(equations(sys))) # Check that we're using the GEOSFP pressure data. @test issetequal([Symbol("puff₊lon(t)"), Symbol("puff₊lat(t)"), Symbol("puff₊lev(t)")], Symbol.(unknowns(sys))) @test length(parameters(sys)) == 0 @test length(observed(sys)) == 9
EnvironmentalTransport
https://github.com/EarthSciML/EnvironmentalTransport.jl.git
[ "MIT" ]
0.3.0
5fa226120074e3996d6922e39bf02df6e1cee1a0
code
2004
using Test using Main.EnvironmentalTransport using EarthSciMLBase using ModelingToolkit using ModelingToolkit: t using OrdinaryDiffEq using DynamicQuantities using DomainSets @parameters x=0 [unit = u"m"] @parameters y=0 [unit = u"m"] @parameters z=0 [unit = u"m"] starttime = 0.0 endtime = 1.0 di = DomainInfo( constIC(16.0, t ∈ Interval(starttime, endtime)), constBC(16.0, x ∈ Interval(-1.0, 1.0), y ∈ Interval(-1.0, 1.0), z ∈ Interval(-1.0, 1.0) ), dtype = Float64) puff = Puff(di) puff = structural_simplify(puff) @test length(equations(puff)) == 3 @test issetequal([Symbol("z(t)"), Symbol("x(t)"), Symbol("y(t)")], Symbol.(unknowns(puff))) @test issetequal([:v_x, :v_y, :v_z], Symbol.(parameters(puff))) prob = ODEProblem(puff, [], (starttime, endtime), []) @testset "x terminate +" begin p = MTKParameters(puff, [puff.v_x => 2.0]) prob2 = remake(prob, p = p) sol = solve(prob2) @test sol.t[end] ≈ 0.5 @test sol[puff.x][end] ≈ 1.0 end @testset "x terminate -" begin p = MTKParameters(puff, [puff.v_x => -2.0]) prob2 = remake(prob, p = p) sol = solve(prob2) @test sol.t[end] ≈ 0.5 @test sol[puff.x][end] ≈ -1.0 end @testset "y terminate +" begin p = MTKParameters(puff, [puff.v_y => 2.0]) prob2 = remake(prob, p = p) sol = solve(prob2) @test sol.t[end] ≈ 0.5 @test sol[puff.y][end] ≈ 1.0 end @testset "y terminate -" begin p = MTKParameters(puff, [puff.v_y => -2.0]) prob2 = remake(prob, p = p) sol = solve(prob2) @test sol.t[end] ≈ 0.5 @test sol[puff.y][end] ≈ -1.0 end @testset "z bounded +" begin p = MTKParameters(puff, [puff.v_z => 10.0]) prob2 = remake(prob, p = p) sol = solve(prob2) @test sol.t[end] ≈ 1 @test maximum(sol[puff.z]) ≈ 1.0 end @testset "z bounded -" begin p = MTKParameters(puff, [puff.v_z => -10.0]) prob2 = remake(prob, p = p) sol = solve(prob2) @test sol.t[end] ≈ 1 @test minimum(sol[puff.z]) ≈ -1.0 end
EnvironmentalTransport
https://github.com/EarthSciML/EnvironmentalTransport.jl.git
[ "MIT" ]
0.3.0
5fa226120074e3996d6922e39bf02df6e1cee1a0
code
561
using EnvironmentalTransport using Test, SafeTestsets @testset "EnvironmentalTransport.jl" begin @safetestset "Advection Stencils" begin include("advection_stencil_test.jl") end @safetestset "Boundary Conditions" begin include("boundary_conditions_test.jl") end @safetestset "Advection" begin include("advection_test.jl") end @safetestset "Advection Simulator" begin include("advection_simulator_test.jl") end @safetestset "Puff" begin include("puff_test.jl") end @safetestset "Puff-GEOSFP" begin include("puff_geosfp_test.jl") end end
EnvironmentalTransport
https://github.com/EarthSciML/EnvironmentalTransport.jl.git
[ "MIT" ]
0.3.0
5fa226120074e3996d6922e39bf02df6e1cee1a0
docs
1159
# EnvironmentalTransport [![Stable](https://img.shields.io/badge/docs-stable-blue.svg)](https://EarthSciML.github.io/EnvironmentalTransport.jl/stable/) [![Dev](https://img.shields.io/badge/docs-dev-blue.svg)](https://EarthSciML.github.io/EnvironmentalTransport.jl/dev/) [![Build Status](https://github.com/EarthSciML/EnvironmentalTransport.jl/actions/workflows/CI.yml/badge.svg?branch=main)](https://github.com/EarthSciML/EnvironmentalTransport.jl/actions/workflows/CI.yml?query=branch%3Amain) [![Coverage](https://codecov.io/gh/EarthSciML/EnvironmentalTransport.jl/branch/main/graph/badge.svg)](https://codecov.io/gh/EarthSciML/EnvironmentalTransport.jl) [![Code Style: Blue](https://img.shields.io/badge/code%20style-blue-4495d1.svg)](https://github.com/invenia/BlueStyle) [![ColPrac: Contributor's Guide on Collaborative Practices for Community Packages](https://img.shields.io/badge/ColPrac-Contributor's%20Guide-blueviolet)](https://github.com/SciML/ColPrac) [![PkgEval](https://JuliaCI.github.io/NanosoldierReports/pkgeval_badges/E/EnvironmentalTransport.svg)](https://JuliaCI.github.io/NanosoldierReports/pkgeval_badges/E/EnvironmentalTransport.html)
EnvironmentalTransport
https://github.com/EarthSciML/EnvironmentalTransport.jl.git
[ "MIT" ]
0.3.0
5fa226120074e3996d6922e39bf02df6e1cee1a0
docs
5117
# Numerical Advection Operator We have two ways to represent phenomena that occur across space such as advection: through symbolically-defined partial differential equation systems, which will be covered elsewhere in documentation, and through numerically-implemented algorithms. This is an example of the latter. (Currently, symbolically defined PDEs are too slow to be used in large-scale simulations.) To demonstrate how it works, let's first set up our environment: ```@example adv using EnvironmentalTransport using EarthSciMLBase, EarthSciData using ModelingToolkit, DomainSets, DifferentialEquations using ModelingToolkit: t, D using DynamicQuantities using Distributions, LinearAlgebra using Dates using NCDatasets, Plots nothing #hide ``` ## Emissions Next, let's set up an emissions scenario to advect. We have some emissions centered around Portland, starting at the beginning of the simulation and then tapering off: ```@example adv starttime = datetime2unix(DateTime(2022, 5, 1, 0, 0)) endtime = datetime2unix(DateTime(2022, 6, 1, 0, 0)) @parameters( lon=-97.0, [unit=u"rad"], lat=30.0, [unit=u"rad"], lev=1.0, ) function emissions(μ_lon, μ_lat, σ) @variables c(t) = 0.0 [unit=u"kg"] @constants v_emis = 50.0 [unit=u"kg/s"] @constants t_unit = 1.0 [unit=u"s"] # Needed so that arguments to `pdf` are unitless. dist = MvNormal([starttime, μ_lon, μ_lat, 1], Diagonal(map(abs2, [3600.0*24*3, σ, σ, 1]))) ODESystem([D(c) ~ pdf(dist, [t/t_unit, lon, lat, lev]) * v_emis], t, name = :emissions) end emis = emissions(deg2rad(-122.6), deg2rad(45.5), deg2rad(1)) ``` ## Coupled System Next, let's set up a spatial and temporal domain for our simulation, and some input data from GEOS-FP to get wind fields for our advection. We need to use `coord_defaults` in this case to get the GEOS-FP data to work correctly, but it doesn't matter what the defaults are. We also set up an [outputter](https://data.earthsci.dev/stable/api/#EarthSciData.NetCDFOutputter) to save the results of our simulation, and couple the components we've created so far into a single system. ```@example adv geosfp, geosfp_updater = GEOSFP("0.5x0.625_NA"; dtype = Float64, coord_defaults = Dict(:lon => -97.0, :lat => 30.0, :lev => 1.0)) domain = DomainInfo( [partialderivatives_δxyδlonlat, partialderivatives_δPδlev_geosfp(geosfp)], constIC(16.0, t ∈ Interval(starttime, endtime)), constBC(16.0, lon ∈ Interval(deg2rad(-129), deg2rad(-61)), lat ∈ Interval(deg2rad(11), deg2rad(59)), lev ∈ Interval(1, 30)), dtype = Float64) outfile = ("RUNNER_TEMP" ∈ keys(ENV) ? ENV["RUNNER_TEMP"] : tempname()) * "out.nc" # This is just a location to save the output. output = NetCDFOutputter(outfile, 3600.0) csys = couple(emis, domain, geosfp, geosfp_updater, output) ``` ## Advection Operator Next, we create an [`AdvectionOperator`](@ref) to perform advection. We need to specify a time step (600 s in this case), as stencil algorithm to do the advection (current options are [`l94_stencil`](@ref) and [`ppm_stencil`](@ref)). We also specify zero gradient boundary conditions. Then, we couple the advection operator to the rest of the system. !!! warning The advection operator will automatically couple itself to available wind fields such as those from GEOS-FP, but the wind-field component (e.g.. `geosfp`) must already be present in the coupled system for this to work correctly. ```@example adv adv = AdvectionOperator(300.0, upwind1_stencil, ZeroGradBC()) csys = couple(csys, adv) ``` Now, we initialize a [`Simulator`](https://base.earthsci.dev/dev/simulator/) to run our demonstration. We specify a horizontal resolution of 4 degrees and a vertical resolution of 1 level, and use the `Tsit5` time integrator for our emissions system of equations, and a time integration scheme for our advection operator (`SSPRK22` in this case). Refer [here](https://docs.sciml.ai/DiffEqDocs/stable/solvers/ode_solve/) for the available time integrator choices. We also choose a operator splitting interval of 600 seconds. Then, we run the simulation. ```@example adv sim = Simulator(csys, [deg2rad(1), deg2rad(1), 1]) st = SimulatorStrangThreads(Tsit5(), SSPRK22(), 300.0) @time run!(sim, st, save_on=false, save_start=false, save_end=false, initialize_save=false) ``` ## Visualization Finally, we can visualize the results of our simulation: ```@example adv ds = NCDataset(outfile, "r") imax = argmax(reshape(maximum(ds["emissions₊c"][:, :, :, :], dims=(1, 3, 4)), :)) anim = @animate for i ∈ 1:size(ds["emissions₊c"])[4] plot( heatmap(rad2deg.(sim.grid[1]), rad2deg.(sim.grid[2]), ds["emissions₊c"][:, :, 1, i]', title="Ground-Level", xlabel="Longitude", ylabel="Latitude"), heatmap(rad2deg.(sim.grid[1]), sim.grid[3], ds["emissions₊c"][:, imax, :, i]', title="Vertical Cross-Section (lat=$(round(rad2deg(sim.grid[2][imax]), digits=1)))", xlabel="Longitude", ylabel="Vertical Level"), ) end gif(anim, fps = 15) ``` ```@setup adv rm(outfile, force=true) ```
EnvironmentalTransport
https://github.com/EarthSciML/EnvironmentalTransport.jl.git
[ "MIT" ]
0.3.0
5fa226120074e3996d6922e39bf02df6e1cee1a0
docs
98
# API Index ```@index ``` # API Documentation ```@autodocs Modules = [EnvironmentalTransport] ```
EnvironmentalTransport
https://github.com/EarthSciML/EnvironmentalTransport.jl.git
[ "MIT" ]
0.3.0
5fa226120074e3996d6922e39bf02df6e1cee1a0
docs
300
# Redirecting... ```@raw html <html> <head> <meta http-equiv="refresh" content="0; url=https://transport.earthsci.dev/benchmarks/" /> </head> <body> <p>If you are not redirected automatically, follow this <a href="https://transport.earthsci.dev/benchmarks/">link</a>.</p> </body> </html> ```
EnvironmentalTransport
https://github.com/EarthSciML/EnvironmentalTransport.jl.git
[ "MIT" ]
0.3.0
5fa226120074e3996d6922e39bf02df6e1cee1a0
docs
2295
```@meta CurrentModule = EnvironmentalTransport ``` # EnvironmentalTransport: Algorithms for Environmental Mass Transport Documentation for [EnvironmentalTransport.jl](https://github.com/EarthSciML/EnvironmentalTransport.jl). This package contains algorithms for simulating environmental mass transport, for use with the [EarthSciML](https://earthsci.dev) ecosystem. ## Installation ```julia using Pkg Pkg.add("EnvironmentalTransport") ``` ## Feature Summary This package contains types and functions designed to simplify the process of constructing and composing symbolically-defined Earth Science model components together. ## Feature List * Numerical Advection ## Contributing * Please refer to the [SciML ColPrac: Contributor's Guide on Collaborative Practices for Community Packages](https://github.com/SciML/ColPrac/blob/master/README.md) for guidance on PRs, issues, and other matters relating to contributing. ## Reproducibility ```@raw html <details><summary>The documentation of this EnvironmentalTransport package was built using these direct dependencies,</summary> ``` ```@example using Pkg # hide Pkg.status() # hide ``` ```@raw html </details> ``` ```@raw html <details><summary>and using this machine and Julia version.</summary> ``` ```@example using InteractiveUtils # hide versioninfo() # hide ``` ```@raw html </details> ``` ```@raw html <details><summary>A more complete overview of all dependencies and their versions is also provided.</summary> ``` ```@example using Pkg # hide Pkg.status(;mode = PKGMODE_MANIFEST) # hide ``` ```@raw html </details> ``` ```@raw html You can also download the <a href=" ``` ```@eval using TOML using Markdown version = TOML.parse(read("../../Project.toml",String))["version"] name = TOML.parse(read("../../Project.toml",String))["name"] link = Markdown.MD("https://github.com/EarthSciML/"*name*".jl/tree/gh-pages/v"*version*"/assets/Manifest.toml") ``` ```@raw html ">manifest</a> file and the <a href=" ``` ```@eval using TOML using Markdown version = TOML.parse(read("../../Project.toml",String))["version"] name = TOML.parse(read("../../Project.toml",String))["name"] link = Markdown.MD("https://github.com/EarthSciML/"*name*".jl/tree/gh-pages/v"*version*"/assets/Project.toml") ``` ```@raw html ">project</a> file. ```
EnvironmentalTransport
https://github.com/EarthSciML/EnvironmentalTransport.jl.git
[ "MIT" ]
0.3.0
5fa226120074e3996d6922e39bf02df6e1cee1a0
docs
2981
# Air Pollution "Puff" Model Example ```@example puff using EarthSciMLBase, EarthSciData, EnvironmentalTransport using ModelingToolkit using ModelingToolkit: t using DynamicQuantities using DifferentialEquations using Plots using Dates using DomainSets firestart = DateTime(2021, 10, 1) firelength = 4 * 3600 # Seconds simulationlength = 1 # Days firelon = deg2rad(-97) firelat = deg2rad(40) fireradius = 0.05 # Degrees samplerate = 1800.0 # Seconds samples_per_time = 10 # Samples per each emission time fireheight = 15.0 # Vertical level (Allowing this to be automatically calculated is a work in progress). emis_rate = 1.0 # kg/s, fire emission rate geosfp, _ = GEOSFP("0.5x0.625_NA"; dtype = Float64, coord_defaults = Dict(:lon => deg2rad(-97), :lat => deg2rad(40), :lev => 1.0), cache_size=simulationlength*24÷3+2) @parameters lon = firelon [unit=u"rad"] @parameters lat = firelat [unit=u"rad"] @parameters lev = fireheight sim_end = firestart + Day(simulationlength) domain = DomainInfo( [partialderivatives_δxyδlonlat, partialderivatives_δPδlev_geosfp(geosfp)], constIC(16.0, t ∈ Interval(firestart, sim_end)), constBC(16.0, lon ∈ Interval(deg2rad(-115), deg2rad(-68.75)), lat ∈ Interval(deg2rad(25), deg2rad(53.7)), lev ∈ Interval(1, 72)), dtype = Float64) puff = Puff(domain) model = couple(puff, geosfp) sys = convert(ODESystem, model) sys, _ = EarthSciMLBase.prune_observed(sys) u0 = ModelingToolkit.get_defaults(sys) tspan = (datetime2unix(firestart), datetime2unix(sim_end)) prob=ODEProblem(sys, u0, tspan) sol = solve(prob, Tsit5()) # Solve once to make sure data is loaded. function prob_func(prob, i, repeat) r = rand() * fireradius θ = rand() * 2π u0 = [firelon + r * cos(θ), firelat + r * sin(θ), fireheight] ts = (tspan[1] + floor(i / samples_per_time) * samplerate, tspan[2]) remake(prob, u0 = u0, tspan = ts) end eprob = EnsembleProblem(prob, prob_func = prob_func) esol = solve(eprob, Tsit5(); trajectories=ceil(firelength/samplerate*samples_per_time)) vars = [sys.puff₊lon, sys.puff₊lat, sys.puff₊lev] ranges = [(Inf, -Inf), (Inf, -Inf), (Inf, -Inf)] for sol in esol for (i, var) in enumerate(vars) rng = (minimum(sol[var]), maximum(sol[var])) ranges[i] = (min(ranges[i][1], rng[1]), max(ranges[i][2], rng[2])) end end anim = @animate for t in datetime2unix(firestart):samplerate:datetime2unix(sim_end) p = plot( xlim=rad2deg.(ranges[1]), ylim=rad2deg.(ranges[2]), zlim=ranges[3], title = "Time: $(unix2datetime(t))", xlabel = "Longitude (deg)", ylabel = "Latitude (deg)", zlabel = "Vertical Level", ) for sol in esol if t < sol.t[1] || t > sol.t[end] continue end scatter!(p, [rad2deg(sol(t)[1])], [rad2deg(sol(t)[2])], [sol(t)[3]], label = :none, markercolor=:black, markersize=1.5, ) end end gif(anim, fps=15) ```
EnvironmentalTransport
https://github.com/EarthSciML/EnvironmentalTransport.jl.git
[ "MIT" ]
0.1.3
de91207d8a5c788c2c333c188ce1c5bd594ef0ce
code
817
using FractionalTransforms using Documenter DocMeta.setdocmeta!(FractionalTransforms, :DocTestSetup, :(using FractionalTransforms); recursive=true) makedocs(; modules=[FractionalTransforms], authors="Qingyu Qu", repo="https://github.com/SciFracX/FractionalTransforms.jl/blob/{commit}{path}#{line}", sitename="FractionalTransforms.jl", format=Documenter.HTML(; prettyurls=get(ENV, "CI", "false") == "true", canonical="https://SciFracX.github.io/FractionalTransforms.jl", assets=String[], ), pages=[ "Home" => "index.md", "Fractional Fourier Transform" => "frft.md", "Fractional Sine Transform" => "frst.md", "Fractional Cosine Transform" => "frct.md" ], ) deploydocs(; repo="github.com/SciFracX/FractionalTransforms.jl", )
FractionalTransforms
https://github.com/SciFracX/FractionalTransforms.jl.git
[ "MIT" ]
0.1.3
de91207d8a5c788c2c333c188ce1c5bd594ef0ce
code
221
module FractionalTransforms using LinearAlgebra, DSP, ToeplitzMatrices, FFTW include("frft.jl") include("frst.jl") include("frct.jl") export frft export freq_shear, time_shear, sinc_interp export frst export frct end
FractionalTransforms
https://github.com/SciFracX/FractionalTransforms.jl.git
[ "MIT" ]
0.1.3
de91207d8a5c788c2c333c188ce1c5bd594ef0ce
code
1670
""" frct(signal, α, p) Computing the α order fractional cosine transform of the input **signal**. # Example ```julia-repl julia> frct([1,2,3], 0.5, 2) 3-element Vector{ComplexF64}: 1.707106781186547 + 0.9874368670764581im 1.5606601717798205 - 1.3964466094067267im -0.3535533905932727 - 0.6982233047033652im ``` ### References ```tex @article{article, author = {Pei, Soo-Chang and Yeh, Min-Hung}, year = {2001}, month = {07}, pages = {1198 - 1207}, title = {The discrete fractional cosine and sine transforms}, volume = {49}, journal = {Signal Processing, IEEE Transactions on}, doi = {10.1109/78.923302} } ``` """ function frct(signal, α, p) N = length(signal) @views signal = signal[:] p = min(max(2, p), N-1) E = dFRCT(N,p) result = E *(exp.(-im*pi*α*collect(0:N-1)) .*(E' *signal)) return result end function dFRCT(N, p) N1 = 2*N-2 d2 = [1, -2, 1] d_p = 1 s = 0 st = zeros(1, N1) for k = 1:floor(Int, p/2) if typeof(d_p) <: Number d_p = @. d2*d_p else d_p = conv(d2, d_p) end st[vcat(collect(N1-k+1:N1), collect(1:k+1))] = d_p st[1] = 0 temp = vcat(union(1, collect(1:k-1)), union(1,collect(1:k-1))) temp = temp[:] ./collect(1:2*k) s = s.+(-1)^(k-1)*prod(temp)*2*st end H = Toeplitz(s[:], s[:]) + diagm(real.(fft(s[:]))) V = hcat(zeros(N-2), zeros(N-2, N-2)+I, zeros(N-2), reverse(zeros(N-2, N-2)+I, dims=1)) ./sqrt(2) V = vcat([1 zeros(1, N1-1)], V, [zeros(1, N-1) 1 zeros(1, N-2)]) Ev = V*H*V' _, ee = eigen(Ev) E = reverse(ee, dims=2) E[end,:] = E[end,:]/sqrt(2) return E end
FractionalTransforms
https://github.com/SciFracX/FractionalTransforms.jl.git
[ "MIT" ]
0.1.3
de91207d8a5c788c2c333c188ce1c5bd594ef0ce
code
2243
""" frft(signal, α) By entering the signal and the order, we can obtain the Fractional Fourier transform value. # Example ```julia-repl julia> frft([1,2,3], 0.5) 0.2184858049179108 - 0.48050718989735614im 3.1682634817489754 + 0.38301661364477946im 1.3827766087134183 - 1.1551815500981393im ``` """ function frft(f, α) f = f[:] f=ComplexF64.(f) N = length(f) signal = zeros(ComplexF64, N) shft = rem.(collect(Int64, 0:N-1).+floor(Int64, N/2), N).+1 sN = sqrt(N) α = mod(α, 4) if α==0 signal = f return signal end if α==2 signal = reverse(f, dims=1) return signal end if α==1 signal[shft,1] = fft(f[shft])/sN return signal end if α==3 signal[shft, 1] = ifft(f[shft])*sN return signal end if α>2.0 α = α-2 f = reverse(f, dims=1) end if α>1.5 α = α-1 f[shft] = fft(f[shft])/sN end if α<0.5 α = α+1 f[shft, 1] = ifft(f[shft])*sN end alpha = α*pi/2 tana2 = tan(alpha/2) sina = sin(alpha) f = [zeros(N-1,1) ; interp(f) ; zeros(N-1,1)] chrp = exp.(-im*pi/N*tana2/4*collect(-2*N+2:2*N-2).^2) f = chrp.*f c = pi/N/sina/4; signal = fconv(exp.(im*c*collect(-(4*N-4):4*N-4).^2), f) signal = signal[4*N-3:8*N-7]*sqrt(c/pi) signal = chrp.*signal signal = @. exp(-im*(1-α)*pi/4)*signal[N:2:end-N+1] return signal end function interp(x) N = length(x) y = zeros(ComplexF64, 2*N-1, 1) y[1:2:2*N-1] = x xint = fconv(y[1:2*N-1], sinc.(collect(-(2*N-3):(2*N-3))'/2)) xint = xint[2*N-2:end-2*N+3] return xint end function fconv(x,y) N = length([x[:]; y[:]])-1 P::Int = nextpow(2, N) z = ifft(ourfft(x, P) .* ourfft(y, P)) z = z[1:N] return z end function ourfft(x, n) s=length(x) x=x[:] if s > n return fft(x[1:n]) elseif s < n return fft([x; zeros(n-s)]) else return fft(x) end end function ourifft(x, n) s=length(x) x=x[:] if s > n return ifft(x[1:n]) elseif s < n return ifft([x; zeros(n-s)]) else return ifft(x) end end
FractionalTransforms
https://github.com/SciFracX/FractionalTransforms.jl.git
[ "MIT" ]
0.1.3
de91207d8a5c788c2c333c188ce1c5bd594ef0ce
code
1553
""" frst(signal, α, p) Computing the α order fractional sine transform of the input **signal**. # Example ```julia-repl julia> frst([1,2,3], 0.5, 2) 3-element Vector{ComplexF64}: 1.707106781186548 + 1.207106781186547im 1.9999999999999998 - 1.7071067811865481im -1.1213203435596437 - 1.2071067811865468im ``` ### References ```tex @article{article, author = {Pei, Soo-Chang and Yeh, Min-Hung}, year = {2001}, month = {07}, pages = {1198 - 1207}, title = {The discrete fractional cosine and sine transforms}, volume = {49}, journal = {Signal Processing, IEEE Transactions on}, doi = {10.1109/78.923302} } ``` """ function frst(signal, α, p) N = length(signal) @views signal = signal[:] p = min(max(2, p), N-1) E = dFRST(N,p) result = E *(exp.(-im*pi*α*collect(0:N-1)) .*(E' *signal)) return result end function dFRST(N, p) N1 = 2*N+2 d2 = [1, -2, 1] d_p = 1 s = 0 st = zeros(1, N1) for k = 1:floor(Int, p/2) if isa(d_p, Number) d_p = @. d2*d_p else d_p = conv(d2, d_p) end st[vcat(collect(N1-k+1:N1), collect(1:k+1))] = d_p st[1]=0 temp=vcat(union(1, collect(1:k-1)), union(2,collect(1:k-1))) temp = temp[:] ./collect(1:2*k) s=s.+(-1)^(k-1)*prod(temp)*2*st end H = Toeplitz(s[:], s[:]) +diagm(real.(fft(s[:]))) V = hcat(zeros(N), reverse(zeros(N, N)+I, dims=1), zeros(N), -(zeros(N, N)+I)) ./sqrt(2) Od = V*H*V' _, vo = eigen(Od) return reverse(reverse(vo, dims=2), dims=1) end
FractionalTransforms
https://github.com/SciFracX/FractionalTransforms.jl.git
[ "MIT" ]
0.1.3
de91207d8a5c788c2c333c188ce1c5bd594ef0ce
code
313
using FractionalTransforms using Test @testset "Test FRCT" begin @test isapprox(real(frct([1,2,3], 0.5, 2)), [1.707106781186547, 1.5606601717798205, -0.3535533905932727], atol=1e-5) @test isapprox(imag(frct([1,2,3], 0.5, 2)), [0.9874368670764581, -1.3964466094067267, -0.6982233047033652], atol=1e-5) end
FractionalTransforms
https://github.com/SciFracX/FractionalTransforms.jl.git
[ "MIT" ]
0.1.3
de91207d8a5c788c2c333c188ce1c5bd594ef0ce
code
1566
using FractionalTransforms using Test @testset "Test FRFT" begin @test isapprox(real(frft([1, 2, 3], 0.5)), [0.2184858049179108 3.1682634817489754 1.3827766087134183], atol=1e-5) @test isapprox(imag(frft([1, 2, 3], 0.5)), [-0.48050718989735614 0.38301661364477946 -1.1551815500981393], atol=1e-5) @test isapprox(real(frft([1, 2, 3, 4, 5], 0.3)), [0.6317225402281863 1.921850573794287 2.9473079123194106 4.7693889446948665 1.1215925410506982]; atol=1e-6) @test isapprox(imag(frft([1, 2, 3, 4, 5], 0.3)), [-0.6482786115154652 -0.3257271769214941 0.9987425650468786 -0.951165035143666 -3.2965111836383025]; atol=1e-6) @test isapprox(real(frft([1, 2, 3, 4, 5], 1)), [0.0 0.0 6.7082039324993685 0.0 0.0]; atol=1e-6) end @testset "Test FRFT auxillary functions" begin @testset "Test Sinc Interpolation" begin @test isapprox(real(sinc_interp([1, 2, 3], 3)), [1.0, 1.1577906803857638, 1.4472383504822042, 2.0, 2.6877283651812367, 3.1425747039042147, 3.0]; atol=1e-5) @test isapprox(imag(sinc_interp([1, 2, 3], 3)), [-4.0696311822644287e-17, -2.4671622769447922e-17, -2.522336560207922e-16, -3.331855648569948e-17, 0.0, 1.9624582529744518e-17, 3.331855648569948e-17]; atol=1e-5) end @testset "Test Frequency Shear" begin @test isapprox(real(freq_shear([1, 2, 3], 3)), [0.0707372016677029, 2.0, 0.2122116050031087]; atol=1e-5) @test isapprox(imag(freq_shear([1, 2, 3], 3)), [0.9974949866040544, 0.0, 2.9924849598121632]; atol=1e-5) end end
FractionalTransforms
https://github.com/SciFracX/FractionalTransforms.jl.git
[ "MIT" ]
0.1.3
de91207d8a5c788c2c333c188ce1c5bd594ef0ce
code
295
using FractionalTransforms using Test @testset "Test FRST" begin @test isapprox(real(frst([1,2,3], 0.5, 2)), [1.707106781186548, 2, -1.1213203435596437], atol=1e-5) @test isapprox(imag(frst([1,2,3], 0.5, 2)), [1.207106781186547, -1.7071067811865481, -1.2071067811865468], atol=1e-5) end
FractionalTransforms
https://github.com/SciFracX/FractionalTransforms.jl.git
[ "MIT" ]
0.1.3
de91207d8a5c788c2c333c188ce1c5bd594ef0ce
code
153
using FractionalTransforms using Test @testset "FractionalTransforms.jl" begin include("frft.jl") include("frst.jl") include("frct.jl") end
FractionalTransforms
https://github.com/SciFracX/FractionalTransforms.jl.git
[ "MIT" ]
0.1.3
de91207d8a5c788c2c333c188ce1c5bd594ef0ce
docs
3407
# FractionalTransforms.jl <p align="center"> <img width="250px" src="https://raw.githubusercontent.com/SciFracX/FractionalTransforms.jl/master/docs/src/assets/logo.svg"/> </p> <p align="center"> <a href="https://github.com/SciFracX/FractionalTransforms.jl/actions?query=workflow%3ACI"> <img alt="building" src="https://github.com/SciFracX/FractionalTransforms.jl/workflows/CI/badge.svg"> </a> <a href="https://codecov.io/gh/SciFracX/FractionalTransforms.jl"> <img alt="codecov" src="https://codecov.io/gh/SciFracX/FractionalTransforms.jl/branch/master/graph/badge.svg"> </a> <a href="https://www.erikqqy.xyz/FRFT.jl/dev/"> <img src="https://img.shields.io/badge/docs-dev-blue.svg" alt="license"> </a> <a href="https://github.com/SciFracX/FractionalTransforms.jl/blob/master/LICENSE"> <img src="https://img.shields.io/github/license/SciFracX/FractionalTransforms.jl?style=flat-square" alt="license"> </a> </p> <p align="center"> <a href="https://github.com/SciFracX/FractionalTransforms.jl/issues"> <img alt="GitHub issues" src="https://img.shields.io/github/issues/SciFracX/FractionalTransforms.jl?style=flat-square"> </a> <a href="#"> <img alt="GitHub stars" src="https://img.shields.io/github/stars/SciFracX/FractionalTransforms.jl?style=flat-square"> </a> <a href="https://github.com/SciFracX/FractionalTransforms.jl/network"> <img alt="GitHub forks" src="https://img.shields.io/github/forks/SciFracX/FractionalTransforms.jl?style=flat-square"> </a> </p> ## Installation If you have already installed Julia, you can install FractionalTransforms.jl in REPL using Julia package manager: ```julia pkg> add FractionalTransforms ``` ## Quick start ### Fractional Fourier Transform Compute the Fractional Fourier transform by the following command: ```julia frft(signal, order) ``` ### Fractional Sine Transform Compute the Fractional Sine transform by the following command: ```julia julia> frst(signal, order, p) ``` ### Fractional Cosine Transform Compute the Fractional Cosine transform by the following command: ```julia julia> frct(signal, order, p) ``` ## Introduce The custom Fourier Transform transforms the input signal from time domain to frequency domain, the Fractional Fourier transform, in a more generalized aspect, can transform the input signal to the fractional domain, reveal more properties and features of the signal. ## Plans * Add more examples relating to signal processing, image processing etc. * Cover more algorithms, including Fractional Hadamard Transform, Fractional Gabor Transform... ## Acknowledgements I would like to express gratitude to * *Jeffrey C. O'Neill* for what he has done in [DiscreteTFDs](http://tfd.sourceforge.net/). * [Digital computation of the fractional Fourier transform](https://ieeexplore.ieee.org/document/536672) by [H.M. Ozaktas](https://ieeexplore.ieee.org/author/37294843100); [O. Arikan](https://ieeexplore.ieee.org/author/37350304900); [M.A. Kutay](https://ieeexplore.ieee.org/author/37350303800); [G. Bozdagt](https://ieeexplore.ieee.org/author/37086987430) * [The discrete fractional cosine and sine transforms](http://dx.doi.org/10.1109/78.923302) by Pei, Soo-Chang and Yeh, Min-Hung. * https://nalag.cs.kuleuven.be/research/software/FRFT/ > Please note that FRFT, FRST and FRCT are adapted from Matlab files, credits go to the original authors, bugs are my own.
FractionalTransforms
https://github.com/SciFracX/FractionalTransforms.jl.git
[ "MIT" ]
0.1.3
de91207d8a5c788c2c333c188ce1c5bd594ef0ce
docs
69
# Fractional Cosine Transform ```@docs FractionalTransforms.frct ```
FractionalTransforms
https://github.com/SciFracX/FractionalTransforms.jl.git
[ "MIT" ]
0.1.3
de91207d8a5c788c2c333c188ce1c5bd594ef0ce
docs
2527
# Fractional Fourier Transform ```@contents Pages = ["frft.md"] ``` ## Definition While we are already familiar with the Fourier transform, which is defined by the integral of the product of the original function and a kernel function ``e^{-2\pi ix\xi}​``: ```math \hat{f}(\xi)=\mathcal{F}[f(x)]=\int_{-\infty}^\infty f(x)e^{-2\pi ix\xi}dx ``` The Fractional Fourier transform has the similar definition: ```math \hat{f}(\xi)=\mathcal{F}^{\alpha}[f(x)]=\int_{-\infty}^\infty K(\xi,x)f(x)dx ``` ```math K(\xi,x)=A_\phi \exp[i\pi(x^2\cot\phi-2x\xi\csc\phi+\xi^2\cot\phi)] ``` ```math A_\phi=\frac{\exp(-i\pi\ \mathrm{sgn}(\sin\phi)/4+i\phi/2)}{|\sin\phi|^{1/2}} ``` ```math \phi=\frac{\alpha\pi}{2} ``` To compute the α-order Fractional Fourier transform of a signal, you can directly compute using **frft** function: ```@docs FractionalTransforms.frft ``` ## Features The fractional Fourier transform algorithm is ``O(N\log N)`` time complexity algorithm. ## Relationship with FRST and FRCT The FRFT can be computed by a smaller transform kernel with the help of the FRCT or the DFRST for the even or odd signal. ## Algorithm details The numerical algorithm can be treated as as follows: The definition of [Fractional Fourier Transform](https://en.wikipedia.org/wiki/Fractional_Fourier_transform) being interpolated using [Shannon interpolation](https://en.wikipedia.org/wiki/Whittaker%E2%80%93Shannon_interpolation_formula), after limit the range, the formulation can be recognized as the [convolution](https://en.wikipedia.org/wiki/Convolution) of the kernel function and the chirp-modulated function. Then we can use [FFT](https://en.wikipedia.org/wiki/Fast_Fourier_transform) to compute the convolution in $O(N\ \log N)$ time. Finally, process the above output using the [chirp modulation](https://en.wikipedia.org/wiki/Chirp). ## Acknowledge: The Fractional Fourier Transform algorithm is taken from [Digital computation of the fractional Fourier transform](https://ieeexplore.ieee.org/document/536672) by [H.M. Ozaktas](https://ieeexplore.ieee.org/author/37294843100); [O. Arikan](https://ieeexplore.ieee.org/author/37350304900); [M.A. Kutay](https://ieeexplore.ieee.org/author/37350303800); [G. Bozdagt](https://ieeexplore.ieee.org/author/37086987430) and *Jeffrey C. O'Neill* for what he has done in [DiscreteTFDs](http://tfd.sourceforge.net/). !!! tip "Value of α" In FractionalTransforms.jl, α is processed as order, while in some books or papers, α would mean **angle**, which is **order\*π/2**
FractionalTransforms
https://github.com/SciFracX/FractionalTransforms.jl.git
[ "MIT" ]
0.1.3
de91207d8a5c788c2c333c188ce1c5bd594ef0ce
docs
139
# Fractional Sine Transform ```@docs FractionalTransforms.frst ``` ## Property * Unitarity * Angle additivity * Periodicity * Symmetric
FractionalTransforms
https://github.com/SciFracX/FractionalTransforms.jl.git
[ "MIT" ]
0.1.3
de91207d8a5c788c2c333c188ce1c5bd594ef0ce
docs
1446
# FractionalTransforms.jl Hello there👋! FractionalTransforms.jl is a Julia package aiming at providing supports for computing fractional transforms. ## Installation To install FractionalTransforms.jl, please open Julia REPL and press`]` key to use package mode and then type the following command: ```julia Pkg> add FractionalTransforms ``` Or if you want to experience the latest version of FractionalTransforms.jl: ```julia Pkg> add FractionalTransforms#master ``` ## Plans * Add more examples relating to signal processing, image processing etc. * Cover more algorithms, including Fractional Hadamard Transform... ## Acknowledgements I would like to express gratitude to * *Jeffrey C. O'Neill* for what he has done in [DiscreteTFDs](http://tfd.sourceforge.net/). * [Digital computation of the fractional Fourier transform](https://ieeexplore.ieee.org/document/536672) by [H.M. Ozaktas](https://ieeexplore.ieee.org/author/37294843100); [O. Arikan](https://ieeexplore.ieee.org/author/37350304900); [M.A. Kutay](https://ieeexplore.ieee.org/author/37350303800); [G. Bozdagt](https://ieeexplore.ieee.org/author/37086987430) * [The discrete fractional cosine and sine transforms](http://dx.doi.org/10.1109/78.923302) by Pei, Soo-Chang and Yeh, Min-Hung. **FractionalTransforms.jl** is built upon the hard work of many scientific researchers, I sincerely appreciate what they have done to help the development of science and technology.
FractionalTransforms
https://github.com/SciFracX/FractionalTransforms.jl.git
[ "MIT" ]
0.1.8
4a8a14f9a08181a1a0ccb1bafe7f0a233360a198
code
689
using ConstraintModels using Documenter DocMeta.setdocmeta!(ConstraintModels, :DocTestSetup, :(using ConstraintModels); recursive=true) makedocs(; modules=[ConstraintModels], authors="Jean-Francois Baffier", repo="https://github.com/JuliaConstraints/ConstraintModels.jl/blob/{commit}{path}#{line}", sitename="ConstraintModels.jl", format=Documenter.HTML(; prettyurls=get(ENV, "CI", "false") == "true", canonical="https://JuliaConstraints.github.io/ConstraintModels.jl", assets=String[], ), pages=[ "Home" => "index.md", ], ) deploydocs(; repo="github.com/JuliaConstraints/ConstraintModels.jl", devbranch="main", )
ConstraintModels
https://github.com/JuliaConstraints/ConstraintModels.jl.git
[ "MIT" ]
0.1.8
4a8a14f9a08181a1a0ccb1bafe7f0a233360a198
code
513
module ConstraintModels using CBLS using Constraints using Dictionaries using JuMP using LocalSearchSolvers const LS = LocalSearchSolvers import LocalSearchSolvers: Options export chemical_equilibrium export golomb export qap export magic_square export mincut export n_queens export scheduling export sudoku include("assignment.jl") include("chemical_equilibrium.jl") include("cut.jl") include("golomb.jl") include("magic_square.jl") include("n_queens.jl") include("scheduling.jl") include("sudoku.jl") end
ConstraintModels
https://github.com/JuliaConstraints/ConstraintModels.jl.git
[ "MIT" ]
0.1.8
4a8a14f9a08181a1a0ccb1bafe7f0a233360a198
code
400
function qap(n, W, D, ::Val{:JuMP}) model = JuMP.Model(CBLS.Optimizer) @variable(model, 1 ≤ X[1:n] ≤ n, Int) @constraint(model, X in AllDifferent()) Σwd = p -> sum(sum(W[p[i], p[j]] * D[i, j] for j in 1:n) for i in 1:n) @objective(model, Min, ScalarFunction(Σwd)) return model, X end qap(n, weigths, distances; modeler = :JuMP) = qap(n, weigths, distances, Val(modeler))
ConstraintModels
https://github.com/JuliaConstraints/ConstraintModels.jl.git
[ "MIT" ]
0.1.8
4a8a14f9a08181a1a0ccb1bafe7f0a233360a198
code
686
function chemical_equilibrium(A, B, C) model = JuMP.Model(CBLS.Optimizer) n = length(C) m = length(B) # Add the number of moles per compound (continuous interval) @variable(model, 0 ≤ X[1:n] ≤ maximum(B)) # mass_conservation function conserve = i -> (x -> begin δ = abs(sum(A[:, i] .* x) - B[i]) return δ ≤ 1.e-6 ? 0. : δ end ) for i in 1:m @constraint(model, X in Error(conserve(i))) end # computes the total energy freed by the reaction free_energy = x -> sum(j -> x[j] * (C[j] + log(x[j] / sum(x)))) @objective(model, Min, ScalarFunction(free_energy)) return model, X end
ConstraintModels
https://github.com/JuliaConstraints/ConstraintModels.jl.git
[ "MIT" ]
0.1.8
4a8a14f9a08181a1a0ccb1bafe7f0a233360a198
code
1151
""" mincut(graph::AbstractMatrix{T}; source::Int, sink::Int, interdiction::Int = 0) where T <: Number Compute the minimum cut of a graph. # Arguments: - `graph`: Any matrix <: AbstractMatrix that describes the capacities of the graph - `source`: Id of the source node; must be set - `sink`: Id of the sink node; must be set - `interdiction`: indicates the number of forbidden links """ function mincut(graph; source, sink, interdiction=0) m = model(; kind=:cut) n = size(graph, 1) d = domain(0:n) separator = n + 1 # value that separate the two sides of the cut # Add variables: foreach(_ -> variable!(m, d), 0:n) # Extract error function from usual_constraint e1 = (x; param=nothing, dom_size=n + 1) -> error_f( usual_constraints[:ordered])(x; param, dom_size ) e2 = (x; param=nothing, dom_size=n + 1) -> error_f( usual_constraints[:all_different])(x; param, dom_size ) # Add constraint constraint!(m, e1, [source, separator, sink]) constraint!(m, e2, 1:(n + 1)) # Add objective objective!(m, (x...) -> o_mincut(graph, x...; interdiction)) return m end
ConstraintModels
https://github.com/JuliaConstraints/ConstraintModels.jl.git
[ "MIT" ]
0.1.8
4a8a14f9a08181a1a0ccb1bafe7f0a233360a198
code
1762
function golomb(n, L, ::Val{:raw}) m = model(; kind=:golomb) # Add variables d = domain(0:L) foreach(_ -> variable!(m, d), 1:n) # Extract error function from usual_constraint e1 = (x; param=nothing, dom_size=n) -> error_f( usual_constraints[:all_different])(x; param, dom_size ) e2 = (x; param=nothing, dom_size=n) -> error_f( usual_constraints[:all_equal_param])(x; param, dom_size ) e3 = (x; param=nothing, dom_size=n) -> error_f( usual_constraints[:dist_different])(x; param, dom_size ) # # Add constraints constraint!(m, e1, 1:n) constraint!(m, x -> e2(x; param=0), 1:1) for i in 1:(n - 1), j in (i + 1):n, k in i:(n - 1), l in (k + 1):n (i, j) < (k, l) || continue constraint!(m, e3, [i, j, k, l]) end # Add objective objective!(m, o_dist_extrema) return m end function golomb(n, L, ::Val{:JuMP}) m = JuMP.Model(CBLS.Optimizer) @variable(m, 1 ≤ X[1:n] ≤ L, Int) @constraint(m, X in AllDifferent()) # different marks @constraint(m, X in Ordered()) # for output convenience, keep them ordered # No two pairs have the same length for i in 1:(n - 1), j in (i + 1):n, k in i:(n - 1), l in (k + 1):n (i, j) < (k, l) || continue @constraint(m, [X[i], X[j], X[k], X[l]] in DistDifferent()) end # Add objective @objective(m, Min, ScalarFunction(maximum)) return m, X end """ golomb(n, L=n²) Model the Golomb problem of `n` marks on the ruler `0:L`. The `modeler` argument accepts :raw, and :JuMP (default), which refer respectively to the solver internal model, the MathOptInterface model, and the JuMP model. """ golomb(n, L=n^2; modeler = :JuMP) = golomb(n, L, Val(modeler))
ConstraintModels
https://github.com/JuliaConstraints/ConstraintModels.jl.git
[ "MIT" ]
0.1.8
4a8a14f9a08181a1a0ccb1bafe7f0a233360a198
code
845
function magic_square(n, ::Val{:JuMP}) N = n^2 model = JuMP.Model(CBLS.Optimizer) magic_constant = n * (N + 1) / 2 @variable(model, 1 ≤ X[1:n, 1:n] ≤ N, Int) @constraint(model, vec(X) in AllDifferent()) for i in 1:n @constraint(model, X[i,:] in SumEqualParam(magic_constant)) @constraint(model, X[:,i] in SumEqualParam(magic_constant)) end @constraint(model, [X[i,i] for i in 1:n] in SumEqualParam(magic_constant)) @constraint(model, [X[i,n + 1 - i] for i in 1:n] in SumEqualParam(magic_constant)) return model, X end """ magic_square(n; modeler = :JuMP) Create a model for the magic square problem of order `n`. The `modeler` argument accepts :JuMP (default), which refer to the solver the JuMP model. """ magic_square(n; modeler = :JuMP) = magic_square(n, Val(modeler))
ConstraintModels
https://github.com/JuliaConstraints/ConstraintModels.jl.git
[ "MIT" ]
0.1.8
4a8a14f9a08181a1a0ccb1bafe7f0a233360a198
code
692
function n_queens(n, ::Val{:JuMP}) model = JuMP.Model(CBLS.Optimizer) @variable(model, 1 ≤ Q[1:n] ≤ n, Int) @constraint(model, Q in AllDifferent()) for i in 1:n, j in i + 1:n @constraint(model, [Q[i],Q[j]] in Predicate(x -> x[1] != x[2])) @constraint(model, [Q[i],Q[j]] in Predicate(x -> x[1] != x[2] + i - j)) @constraint(model, [Q[i],Q[j]] in Predicate(x -> x[1] != x[2] + j - i)) end return model, Q end """ n_queens(n; modeler = :JuMP) Create a model for the n-queens problem with `n` queens. The `modeler` argument accepts :JuMP (default), which refer to the JuMP model. """ n_queens(n; modeler=:JuMP) = n_queens(n, Val(modeler))
ConstraintModels
https://github.com/JuliaConstraints/ConstraintModels.jl.git
[ "MIT" ]
0.1.8
4a8a14f9a08181a1a0ccb1bafe7f0a233360a198
code
1739
function scheduling(processing_times, due_dates, ::Val{:raw}) m = model(; kind = :scheduling) n = length(processing_times) # number of jobs max_time = sum(processing_times) d = domain(0:max_time) foreach(_ -> variable!(m, d), 1:n) # C (1:n) foreach(_ -> variable!(m, d), 1:n) # S (n+1:2n) minus_eq_param(param) = x -> abs(x[1] - x[2] - param) less_than_param(param) = x -> abs(x[1] - param) sequential_tasks(x) = x[1] ≤ x[2] || x[3] ≤ x[4] for i in 1:n constraint!(m, minus_eq_param(processing_times[i]), [i, i + n]) constraint!(m, less_than_param(due_dates[i]), [i]) end for i in 1:n, j in 1:n i == j && continue constraint!(m, sequential_tasks, [i, j + n, j, i + n]) end return m end function scheduling(processing_times, due_dates, ::Val{:JuMP}) model = JuMP.Model(CBLS.Optimizer) n = length(processing_times) # number of jobs max_time = sum(processing_times) @variable(model, 0 ≤ C[1:n] ≤ max_time, Int) # completion @variable(model, 0 ≤ S[1:n] ≤ max_time, Int) # start for i in 1:n @constraint(model, [C[i], S[i]] in MinusEqualParam(processing_times[i])) @constraint(model, [C[i]] in LessThanParam(due_dates[i])) end for i in 1:n, j in 1:n i == j && continue @constraint(model, [C[i], S[j], C[j], S[i]] in SequentialTasks()) end return model, C, S end """ scheduling(processing_time, due_date; modeler=:JuMP) Create a model for the n-queens problem with `n` queens. The `modeler` argument accepts :JuMP (default), which refer to the JuMP model. """ scheduling(processing_times, due_dates; modeler=:JuMP) = scheduling(processing_times, due_dates, Val(modeler))
ConstraintModels
https://github.com/JuliaConstraints/ConstraintModels.jl.git
[ "MIT" ]
0.1.8
4a8a14f9a08181a1a0ccb1bafe7f0a233360a198
code
10524
function sudoku(n, start, ::Val{:raw}) N = n^2 d = domain(1:N) m = model(;kind=:sudoku) # Add variables if isnothing(start) foreach(_ -> variable!(m, d), 1:(N^2)) else foreach(((x, v),) -> variable!(m, 1 ≤ v ≤ N ? domain(v) : d), pairs(start)) end e = (x; param=nothing, dom_size=N) -> error_f( usual_constraints[:all_different])(x; param=param, dom_size=dom_size ) # Add constraints: line, columns; blocks foreach(i -> constraint!(m, e, (i * N + 1):((i + 1) * N)), 0:(N - 1)) foreach(i -> constraint!(m, e, [j * N + i for j in 0:(N - 1)]), 1:N) for i in 0:(n - 1) for j in 0:(n - 1) vars = Vector{Int}() for k in 1:n for l in 0:(n - 1) push!(vars, (j * n + l) * N + i * n + k) end end constraint!(m, e, vars) end end return m end function sudoku(n, start, ::Val{:MOI}) N = n^2 m = Optimizer() MOI.add_variables(m, N^2) # Add domain to variables # TODO: make it accept starting solutions foreach(i -> MOI.add_constraint(m, VI(i), DiscreteSet(1:N)), 1:N^2) # Add constraints: line, columns; blocks foreach(i -> MOI.add_constraint(m, VOV(map(VI, (i * N + 1):((i + 1) * N))), MOIAllDifferent(N)), 0:(N - 1)) foreach(i -> MOI.add_constraint(m, VOV(map(VI, [j * N + i for j in 0:(N - 1)])), MOIAllDifferent(N)), 1:N) for i in 0:(n - 1) for j in 0:(n - 1) vars = Vector{Int}() for k in 1:n for l in 0:(n - 1) push!(vars, (j * n + l) * N + i * n + k) end end MOI.add_constraint(m, VOV(map(VI, vars)), MOIAllDifferent(N)) end end return m end function sudoku(n, start, ::Val{:JuMP}) N = n^2 m = JuMP.Model(CBLS.Optimizer) @variable(m, 1 ≤ X[1:N, 1:N] ≤ N, Int) if !isnothing(start) for i in 1:N, j in 1:N v_ij = start[i,j] if 1 ≤ v_ij ≤ N @constraint(m, X[i,j] == v_ij) end end end for i in 1:N @constraint(m, X[i,:] in AllDifferent()) # rows @constraint(m, X[:,i] in AllDifferent()) # columns end for i in 0:(n-1), j in 0:(n-1) @constraint(m, vec(X[(i*n+1):(n*(i+1)), (j*n+1):(n*(j+1))]) in AllDifferent()) # blocks end return m, X end """ sudoku(n; start= Dictionary{Int, Int}(), modeler = :JuMP) Create a model for the sudoku problem of domain `1:n²` with optional starting values. The `modeler` argument accepts :raw, :MOI, and :JuMP (default), which refer respectively to the solver internal model, the MathOptInterface model, and the JuMP model. ```julia # Construct a JuMP model `m` and its associated matrix `grid` for sudoku 9×9 m, grid = sudoku(3) # Same with a starting instance instance = [ 9 3 0 0 0 0 0 4 0 0 0 0 0 4 2 0 9 0 8 0 0 1 9 6 7 0 0 0 0 0 4 7 0 0 0 0 0 2 0 0 0 0 0 6 0 0 0 0 0 2 3 0 0 0 0 0 8 5 3 1 0 0 2 0 9 0 2 8 0 0 0 0 0 7 0 0 0 0 0 5 3 ] m, grid = sudoku(3, start = instance) # Run the solver optimize!(m) # Retrieve and display the values solution = value.(grid) display(solution, Val(:sudoku)) ``` """ sudoku(n; start=nothing, modeler = :JuMP) = sudoku(n, start, Val(modeler)) @doc raw""" ```julia mutable struct SudokuInstance{T <: Integer} <: AbstractMatrix{T} ``` A `struct` for SudokuInstances, which is a subtype of `AbstractMatrix`. --- ```julia SudokuInstance(A::AbstractMatrix{T}) SudokuInstance(::Type{T}, n::Int) # fill in blank sudoku of type T SudokuInstance(n::Int) # fill in blank sudoku of type Int SudokuInstance(::Type{T}) # fill in "standard" 9×9 sudoku of type T SudokuInstance() # fill in "standard" 9×9 sudoku of type Int SudokuInstance(n::Int, P::Pair{Tuple{Int, Int}, T}...) where {T <: Integer} # construct a sudoku given pairs of coordinates and values SudokuInstance(P::Pair{Tuple{Int, Int}, T}...) # again, default to 9×9 sudoku, constructing given pairs ``` Constructor functions for the `SudokuInstance` `struct`. """ mutable struct SudokuInstance{T <: Integer} <: AbstractMatrix{T} A::AbstractMatrix{T} where {T <: Integer} function SudokuInstance(A::AbstractMatrix{T}) where {T <: Integer} size(A, 1) == size(A, 2) || throw(error("Sodokus must be square; received matrix of size $(size(A, 1))×$(size(A, 2)).")) isequal(sqrt(size(A, 1)), isqrt(size(A, 1))) || throw(error("SudokuInstances must be able to split into equal boxes (e.g., a 9×9 SudokuInstance has three 3×3 squares). Size given is $(size(A, 1))×$(size(A, 2)).")) new{T}(A) end # # fill in blank sudoku if needed # SudokuInstance(::Type{T}, n::Int) where {T <: Integer} = new{T}(fill(zero(T), n, n)) # SudokuInstance(n::Int) = new{Int}(SudokuInstance(Int, n)) # # Use "standard" 9×9 if no size provided # SudokuInstance(::Type{T}) where {T <: Integer} = new{T}(SudokuInstance(T, 9)) # SudokuInstance() = new{Int}(SudokuInstance(9)) # # Construct a sudoku given coordinates and values # function SudokuInstance(n::Int, P::Pair{Tuple{Int,Int},T}...) where {T <: Integer} # A = zeros(T, n, n) # for (i, v) in P # A[i...] = v # end # new{T}(A) # end # # again, default to 9×9 # SudokuInstance(P::Pair{Tuple{Int,Int},T}...) where {T <: Integer} = new{T}(SudokuInstance(9, P...)) end """ SudokuInstance(X::Dictionary) Construct a `SudokuInstance` with the values `X` of a solver as input. """ function SudokuInstance(X::Dictionary) n = isqrt(length(X)) A = zeros(Int, n, n) for (k,v) in enumerate(Base.Iterators.partition(X, n)) A[k,:] = v end return SudokuInstance(A) end SudokuInstance(X::Matrix{Float64}) = SudokuInstance(map(Int, X)) # # abstract array interface for SudokuInstance struct """ Base.size(S::SudokuInstance) Extends `Base.size` for `SudokuInstance`. """ Base.size(S::SudokuInstance) = size(S.A) """ Base.getindex(S::SudokuInstance, i::Int) Base.getindex(S::SudokuInstance, I::Vararg{Int,N}) where {N} Extends `Base.getindex` for `SudokuInstance`. """ # Base.getindex(S::SudokuInstance, i::Int) = getindex(S.A, i) Base.getindex(S::SudokuInstance, I::Vararg{Int,N}) where {N} = getindex(S.A, I...) """ Base.setindex!(S::SudokuInstance, v, i::Int) Base.setindex!(S::SudokuInstance, v, I::Vararg{Int,N}) Extends `Base.setindex!` for `SudokuInstance`. """ # Base.setindex!(S::SudokuInstance, v, i) = setindex!(S.A, v, i) # Base.setindex!(S::SudokuInstance, v, I::Vararg) = setindex!(S.A, v, I...) const _rules = Dict( :up_right_corner => '┐', :up_left_corner => '┌', :bottom_left_corner => '└', :bottom_right_corner => '┘', :up_intersection => '┬', :left_intersection => '├', :right_intersection => '┤', :middle_intersection => '┼', :bottom_intersection => '┴', :column => '│', :row => '─', :blank => '⋅', # this is the character used for 0s in a SudokuInstance puzzle ) """ _format_val(a) Format an integer `a` into a string for SudokuInstance. """ _format_val(a) = iszero(a) ? _rules[:blank] : string(a) """ _format_line_segment(r, col_pos, M) Format line segment of a sudoku grid. """ function _format_line_segment(r, col_pos, M) sep_length = length(r) line = string() for k in axes(r, 1) n_spaces = 1 Δ = maximum((ndigits(i) for i in M[:, (col_pos * sep_length) + k])) - ndigits(r[k]) if Δ ≥ 0 n_spaces = Δ + 1 end line *= repeat(' ', n_spaces) * _format_val(r[k]) end return line * ' ' * _rules[:column] end """ _format_line(r, M) Format line of a sudoku grid. """ function _format_line(r, M) sep_length = isqrt(length(r)) line = _rules[:column] for i in 1:sep_length abs_sep_pos = sep_length * i line *= _format_line_segment(r[(abs_sep_pos - sep_length + 1):abs_sep_pos], i - 1, M) end return line end """ _get_sep_line(s, pos_row, M) Return a line separator. """ function _get_sep_line(s, pos_row, M) sep_length = isqrt(s) # deal with left-most edges sep_line = string() if pos_row == 1 sep_line *= _rules[:up_left_corner] elseif mod(pos_row, sep_length) == 0 if pos_row == s sep_line *= _rules[:bottom_left_corner] else sep_line *= _rules[:left_intersection] end end # rest of row seperator; TODO: make less convoluted. ATM it works, but I think it can be simplified. for pos_col in 1:s sep_line *= repeat(_rules[:row], maximum((ndigits(i) for i in M[:, pos_col])) + 1) if mod(pos_col, sep_length) == 0 sep_line *= _rules[:row] if pos_col == s if pos_row == 1 sep_line *= _rules[:up_right_corner] elseif pos_row == s sep_line *= _rules[:bottom_right_corner] else sep_line *= _rules[:right_intersection] end elseif pos_row == 1 sep_line *= _rules[:up_intersection] elseif pos_row == s sep_line *= _rules[:bottom_intersection] else sep_line *= _rules[:middle_intersection] end end end return sep_line end @doc raw""" ```julia display(io::IO, S::SudokuInstance) display(S::SudokuInstance) # default to stdout ``` Displays an ``n\times n`` SudokuInstance. """ function Base.display(io, S::SudokuInstance) sep_length = isqrt(size(S, 1)) max_n_digits = maximum((ndigits(i) for i in S)) println(io, _get_sep_line(size(S, 1), 1, S)) for (i, r) in enumerate(eachrow(S)) println(io, _format_line(r, S)) if iszero(mod(i, sep_length)) println(io, _get_sep_line(size(S, 1), i, S)) end end return nothing end """ Base.display(S::SudokuInstance) Extends `Base.display` to `SudokuInstance`. """ Base.display(S::SudokuInstance) = display(stdout, S) """ Base.display(X::Dictionary) Extends `Base.display` to a sudoku configuration. """ Base.display(X::Dictionary) = display(SudokuInstance(X)) """ Base.display(X, Val(:sudoku)) Extends `Base.display` to a sudoku configuration. """ Base.display(X, ::Val{:sudoku}) = display(SudokuInstance(X))
ConstraintModels
https://github.com/JuliaConstraints/ConstraintModels.jl.git
[ "MIT" ]
0.1.8
4a8a14f9a08181a1a0ccb1bafe7f0a233360a198
code
2491
@testset "JuMP: constraints" begin m = Model(CBLS.Optimizer) err = _ -> 1.0 concept = _ -> true @variable(m, X[1:10], DiscreteSet(1:4)) @constraint(m, X in Error(err)) @constraint(m, X in Predicate(concept)) @constraint(m, X in AllDifferent()) @constraint(m, X in AllEqual()) @constraint(m, X in AllEqualParam(2)) @constraint(m, X in AlwaysTrue()) @constraint(m, X[1:4] in DistDifferent()) @constraint(m, X[1:2] in Eq()) @constraint(m, X in Ordered()) end @testset "JuMP: sudoku 9x9" begin m, X = sudoku(3) optimize!(m) solution_ = value.(X) display(solution_, Val(:sudoku)) end @testset "JuMP: golomb(5)" begin m, X = golomb(5) optimize!(m) @info "JuMP: golomb(5)" value.(X) end @testset "JuMP: magic_square(3)" begin m, X = magic_square(3) optimize!(m) @info "JuMP: magic_square(3)" value.(X) end @testset "JuMP: n_queens(5)" begin m, X = n_queens(5) optimize!(m) @info "JuMP: n_queens(5)" value.(X) end @testset "JuMP: qap(12)" begin m, X = qap(12, qap_weights, qap_distances) optimize!(m) @info "JuMP: qap(12)" value.(X) end @testset "JuMP: basic opt" begin model = Model(CBLS.Optimizer) set_optimizer_attribute(model, "iteration", 100) @test get_optimizer_attribute(model, "iteration") == 100 set_time_limit_sec(model, 5.0) @test time_limit_sec(model) == 5.0 @variable(model, x in DiscreteSet(0:20)) @variable(model, y in DiscreteSet(0:20)) @constraint(model, [x,y] in Predicate(v -> 6v[1] + 8v[2] >= 100 )) @constraint(model, [x,y] in Predicate(v -> 7v[1] + 12v[2] >= 120 )) objFunc = v -> 12v[1] + 20v[2] @objective(model, Min, ScalarFunction(objFunc)) optimize!(model) @info "JuMP: basic opt" value(x) value(y) (12*value(x)+20*value(y)) end @testset "JuMP: Chemical equilibrium" begin m, X = chemical_equilibrium(atoms_compounds, elements_weights, standard_free_energy) # set_optimizer_attribute(m, "iteration", 10000) # set_time_limit_sec(m, 120.0) optimize!(m) @info "JuMP: $compounds_names ⟺ $mixture_name" value.(X) end @testset "JuMP: Scheduling" begin model, completion_times, start_times = scheduling(processing_times, due_times) optimize!(model) @info solution_summary(model) @info "JuMP: scheduling" value.(start_times) value.(completion_times) processing_times due_times @info (value.(start_times)+processing_times == value.(completion_times)) end
ConstraintModels
https://github.com/JuliaConstraints/ConstraintModels.jl.git
[ "MIT" ]
0.1.8
4a8a14f9a08181a1a0ccb1bafe7f0a233360a198
code
2289
const MOI = MathOptInterface const MOIT = MOI.Test const MOIU = MOI.Utilities const MOIB = MOI.Bridges const VOV = MOI.VectorOfVariables const VI = MOI.VariableIndex const OPTIMIZER_CONSTRUCTOR = MOI.OptimizerWithAttributes( CBLS.Optimizer, MOI.Silent() => true ) const OPTIMIZER = MOI.instantiate(OPTIMIZER_CONSTRUCTOR) @testset "LocalSearchSolvers" begin @test MOI.get(OPTIMIZER, MOI.SolverName()) == "LocalSearchSolvers" end # @testset "supports_default_copy_to" begin # @test MOIU.supports_default_copy_to(OPTIMIZER, false) # # Use `@test !...` if names are not supported # @test !MOIU.supports_default_copy_to(OPTIMIZER, true) # end const BRIDGED = MOI.instantiate( OPTIMIZER_CONSTRUCTOR, with_bridge_type = Float64 ) const CONFIG = MOIT.TestConfig(atol=1e-6, rtol=1e-6) # @testset "Unit" begin # # Test all the functions included in dictionary `MOI.Test.unittests`, # # except functions "number_threads" and "solve_qcp_edge_cases." # MOIT.unittest( # BRIDGED, # CONFIG, # ["number_threads", "solve_qcp_edge_cases"] # ) # end # @testset "Modification" begin # MOIT.modificationtest(BRIDGED, CONFIG) # end # @testset "Continuous Linear" begin # MOIT.contlineartest(BRIDGED, CONFIG) # end # @testset "Continuous Conic" begin # MOIT.contlineartest(BRIDGED, CONFIG) # end # @testset "Integer Conic" begin # MOIT.intconictest(BRIDGED, CONFIG) # end @testset "MOI: examples" begin # m = LocalSearchSolvers.Optimizer() # MOI.add_variables(m, 3) # MOI.add_constraint(m, VI(1), LS.DiscreteSet([1,2,3])) # MOI.add_constraint(m, VI(2), LS.DiscreteSet([1,2,3])) # MOI.add_constraint(m, VI(3), LS.DiscreteSet([1,2,3])) # MOI.add_constraint(m, VOV([VI(1),VI(2)]), LS.MOIPredicate(allunique)) # MOI.add_constraint(m, VOV([VI(2),VI(3)]), LS.MOIAllDifferent(2)) # MOI.set(m, MOI.ObjectiveFunction{LS.ScalarFunction}(), LS.ScalarFunction(sum, VI(1))) # MOI.optimize!(m) m1 = CBLS.Optimizer() MOI.add_variable(m1) MOI.add_constraint(m1, VI(1), CBLS.DiscreteSet([1,2,3])) m2 = CBLS.Optimizer() MOI.add_constrained_variable(m2, CBLS.DiscreteSet([1,2,3])) # opt = CBLS.sudoku(3, modeler = :MOI) # MOI.optimize!(opt) # @info solution(opt) end
ConstraintModels
https://github.com/JuliaConstraints/ConstraintModels.jl.git
[ "MIT" ]
0.1.8
4a8a14f9a08181a1a0ccb1bafe7f0a233360a198
code
1799
sudoku_start = [ 9 3 0 0 0 0 0 4 0 0 0 0 0 4 2 0 9 0 8 0 0 1 9 6 7 0 0 0 0 0 4 7 0 0 0 0 0 2 0 0 0 0 0 6 0 0 0 0 0 2 3 0 0 0 0 0 8 5 3 1 0 0 2 0 9 0 2 8 0 0 0 0 0 7 0 0 0 0 0 5 3 ] qap_weights = [ 0 1 2 2 3 4 4 5 3 5 6 7 1 0 1 1 2 3 3 4 2 4 5 6 2 1 0 2 1 2 2 3 1 3 4 5 2 1 2 0 1 2 2 3 3 3 4 5 3 2 1 1 0 1 1 2 2 2 3 4 4 3 2 2 1 0 2 3 3 1 2 3 4 3 2 2 1 2 0 1 3 1 2 3 5 4 3 3 2 3 1 0 4 2 1 2 3 2 1 3 2 3 3 4 0 4 5 6 5 4 3 3 2 1 1 2 4 0 1 2 6 5 4 4 3 2 2 1 5 1 0 1 7 6 5 5 4 3 3 2 6 2 1 0 ] qap_distances = [ 0 3 4 6 8 5 6 6 5 1 4 6 3 0 6 3 7 9 9 2 2 7 4 7 4 6 0 2 6 4 4 4 2 6 3 6 6 3 2 0 5 5 3 3 9 4 3 6 8 7 6 5 0 4 3 4 5 7 6 7 5 9 4 5 4 0 8 5 5 5 7 5 6 9 4 3 3 8 0 6 8 4 6 7 6 2 4 3 4 5 6 0 1 5 5 3 5 2 2 9 5 5 8 1 0 4 5 2 1 7 6 4 7 5 4 5 4 0 7 7 4 4 3 3 6 7 6 5 5 7 0 9 6 7 6 6 7 5 7 3 2 7 9 0 ] atoms_compounds = [ 1 0 0 2 0 0 2 0 1 0 1 0 0 2 0 1 1 0 0 1 1 0 0 1 0 0 2 1 0 1 ] elements_weights = [2 1 1] standard_free_energy = [ -6.0890 -17.164 -34.054 -5.9140 -24.721 -14.986 -24.100 -10.708 -26.662 -22.179 ] compounds_names = "x₁⋅H + x₂⋅H₂ + x₃⋅H₂O + x₄⋅N + x₅⋅N₂ + x₆⋅NH + x₇⋅NO + x₈⋅O + x₉⋅O₂ + x₁₀⋅OH" mixture_name = "½⋅N₂H₄ + ½⋅O₂" equation = compounds_names * " = " * mixture_name processing_times = [3, 2, 1] due_times = [5, 6, 8]
ConstraintModels
https://github.com/JuliaConstraints/ConstraintModels.jl.git
[ "MIT" ]
0.1.8
4a8a14f9a08181a1a0ccb1bafe7f0a233360a198
code
3145
@testset "Raw solver: internals" begin models = [ sudoku(2; modeler = :raw), ] for m in models @info describe(m) s = solver(m; options = Options(print_level =:verbose, iteration = Inf)) for x in keys(get_variables(s)) @test get_name(s, x) == "x$x" for c in get_cons_from_var(s, x) @test x ∈ get_vars_from_cons(s, c) end @test constriction(s, x) == 3 @test draw(s, x) ∈ get_domain(s, x) end for c in keys(get_constraints(s)) @test length_cons(s, c) == 4 end for x in keys(get_variables(s)) add_var_to_cons!(s, 3, x) delete_var_from_cons!(s, 3, x) @test length_var(s, x) == 4 end for c in keys(get_constraints(s)) add_var_to_cons!(s, c, 17) @test length_cons(s, c) == 5 @test 17 ∈ get_constraint(s, c) delete_var_from_cons!(s, c, 17) @test length_cons(s, c) == 4 end solve!(s) solution(s) # TODO: temp patch for coverage, make it nice for x in keys(LocalSearchSolvers.tabu_list(s)) LocalSearchSolvers.tabu_value(s, x) end # LocalSearchSolvers._values!(s, Dictionary{Int,Int}()) end end @testset "Raw solver: sudoku" begin sudoku_instance = collect(Iterators.flatten(sudoku_start)) s = solver( sudoku(3; start = sudoku_instance, modeler = :raw); options = Options(print_level = :minimal, iteration = 10000) ) display(Dictionary(1:length(sudoku_instance), sudoku_instance)) solve!(s) display(solution(s)) end @testset "Raw solver: golomb" begin s = solver(golomb(5, modeler = :raw); options = Options(print_level = :minimal, iteration = 1000)) solve!(s) @info "Results golomb!" @info "Values: $(get_values(s))" @info "Sol (val): $(best_value(s))" @info "Sol (vals): $(!isnothing(best_value(s)) ? best_values(s) : nothing)" end @testset "Raw solver: mincut" begin graph = zeros(5, 5) graph[1,2] = 1.0 graph[1,3] = 2.0 graph[1,4] = 3.0 graph[2,5] = 1.0 graph[3,5] = 2.0 graph[4,5] = 3.0 s = solver(mincut(graph, source=1, sink=5), options = Options(print_level = :minimal)) solve!(s) @info "Results mincut!" @info "Values: $(get_values(s))" @info "Sol (val): $(best_value(s))" @info "Sol (vals): $(!isnothing(best_value(s)) ? best_values(s) : nothing)" s = solver(mincut(graph, source=1, sink=5, interdiction=1), options = Options(print_level = :minimal)) solve!(s) @info "Results 1-mincut!" @info "Values: $(get_values(s))" @info "Sol (val): $(best_value(s))" @info "Sol (vals): $(!isnothing(best_value(s)) ? best_values(s) : nothing)" s = solver(mincut(graph, source=1, sink=5, interdiction=2), options = Options(print_level = :minimal)) solve!(s) @info "Results 2-mincut!" @info "Values: $(get_values(s))" @info "Sol (val): $(best_value(s))" @info "Sol (vals): $(!isnothing(best_value(s)) ? best_values(s) : nothing)" end
ConstraintModels
https://github.com/JuliaConstraints/ConstraintModels.jl.git
[ "MIT" ]
0.1.8
4a8a14f9a08181a1a0ccb1bafe7f0a233360a198
code
275
using CBLS using ConstraintModels using Dictionaries using JuMP using LocalSearchSolvers using MathOptInterface using Test @testset "ConstraintModels.jl" begin include("instances.jl") include("raw_solver.jl") include("MOI_wrapper.jl") include("JuMP.jl") end
ConstraintModels
https://github.com/JuliaConstraints/ConstraintModels.jl.git
[ "MIT" ]
0.1.8
4a8a14f9a08181a1a0ccb1bafe7f0a233360a198
docs
912
# ConstraintModels [![Stable](https://img.shields.io/badge/docs-stable-blue.svg)](https://JuliaConstraints.github.io/ConstraintModels.jl/stable) [![Dev](https://img.shields.io/badge/docs-dev-blue.svg)](https://JuliaConstraints.github.io/ConstraintModels.jl/dev) [![Build Status](https://github.com/JuliaConstraints/ConstraintModels.jl/workflows/CI/badge.svg)](https://github.com/JuliaConstraints/ConstraintModels.jl/actions) [![codecov](https://codecov.io/gh/JuliaConstraints/ConstraintModels.jl/branch/main/graph/badge.svg?token=4u3yBCTDYG)](https://codecov.io/gh/JuliaConstraints/ConstraintModels.jl) [![Code Style: Blue](https://img.shields.io/badge/code%20style-blue-4495d1.svg)](https://github.com/invenia/BlueStyle) [![ColPrac: Contributor's Guide on Collaborative Practices for Community Packages](https://img.shields.io/badge/ColPrac-Contributor's%20Guide-blueviolet)](https://github.com/SciML/ColPrac)
ConstraintModels
https://github.com/JuliaConstraints/ConstraintModels.jl.git
[ "MIT" ]
0.1.8
4a8a14f9a08181a1a0ccb1bafe7f0a233360a198
docs
224
```@meta CurrentModule = ConstraintModels ``` # ConstraintModels Documentation for [ConstraintModels](https://github.com/JuliaConstraints/ConstraintModels.jl). ```@index ``` ```@autodocs Modules = [ConstraintModels] ```
ConstraintModels
https://github.com/JuliaConstraints/ConstraintModels.jl.git
[ "MIT" ]
0.3.4
4c11fcf40b7cd7015b82e1ff7d5426fd7f145eb9
code
709
using Documenter using Plots push!(LOAD_PATH,"../src/") using UnderwaterAcoustics makedocs( sitename = "UnderwaterAcoustics.jl", format = Documenter.HTML(prettyurls = false), linkcheck = !("skiplinks" in ARGS), pages = Any[ "Home" => "index.md", "Manual" => Any[ "uw_basic.md", "pm_basic.md", "pm_envref.md", "pm_api.md" ], "Propagation models" => Any[ "pm_pekeris.md" ], "Tutorials" => Any[ "tut_turing.md", "tut_autodiff.md" ] ] ) deploydocs( repo = "github.com/org-arl/UnderwaterAcoustics.jl.git", branch = "gh-pages", devbranch = "master", devurl = "dev", versions = ["stable" => "v^", "v#.#", "dev" => "dev"] )
UnderwaterAcoustics
https://github.com/org-arl/UnderwaterAcoustics.jl.git