licenses
sequencelengths
1
3
version
stringclasses
677 values
tree_hash
stringlengths
40
40
path
stringclasses
1 value
type
stringclasses
2 values
size
stringlengths
2
8
text
stringlengths
25
67.1M
package_name
stringlengths
2
41
repo
stringlengths
33
86
[ "MIT" ]
0.5.0
200b2bd9dee3dfe2dcffa1fb51b6dd00d371ed2b
code
3328
@testset "low_precision.jl" begin Random.seed!(16) n,m = 10^3, 5; features = Array{Any}(undef, n, m); features[:,:] = rand(n, m); features[:,1] = round.(Int32, features[:,1]); # convert a column of 32bit integers weights = rand(-1:1,m); labels = round.(Int32, features * weights); model = build_stump(labels, features) preds = apply_tree(model, features) @test preds isa Vector{Int32} @test depth(model) == 1 n_subfeatures = Int32(0) max_depth = Int32(-1) min_samples_leaf = Int32(1) min_samples_split = Int32(2) min_purity_increase = 0.0 model = build_tree( labels, features, n_subfeatures, max_depth, min_samples_leaf, min_samples_split, min_purity_increase) preds = apply_tree(model, features) @test preds isa Vector{Int32} @test MLJ.accuracy(labels, preds) > 0.9 n_subfeatures = Int32(0) ntrees = Int32(10) partial_sampling = 0.7 max_depth = Int32(-1) model = build_forest( labels, features, n_subfeatures, ntrees, partial_sampling, max_depth) preds = apply_forest(model, features) @test preds isa Vector{Int32} @test MLJ.accuracy(labels, preds) > 0.9 n_iterations = Int32(25) model, coeffs = build_adaboost_stumps(labels, features, n_iterations); preds = apply_adaboost_stumps(model, coeffs, features); @test preds isa Vector{Int32} @test MLJ.accuracy(labels, preds) > 0.6 println("\n##### nfoldCV Classification Tree #####") n_folds = Int32(3) pruning_purity = 1.0 max_depth = Int32(-1) min_samples_leaf = Int32(1) min_samples_split = Int32(2) min_purity_increase = 0.0 accuracy = nfoldCV_tree( labels, features, n_folds, pruning_purity, max_depth, min_samples_leaf, min_samples_split, min_purity_increase) @test mean(accuracy) > 0.7 println("\n##### nfoldCV Classification Forest #####") ntrees = Int32(10) n_subfeatures = Int32(2) n_folds = Int32(3) max_depth = Int32(-1) min_samples_leaf = Int32(5) min_samples_split = Int32(2) min_purity_increase = 0.0 accuracy = nfoldCV_forest( labels, features, n_folds, n_subfeatures, ntrees, partial_sampling, max_depth, min_samples_leaf, min_samples_split, min_purity_increase) @test mean(accuracy) > 0.7 println("\n##### nfoldCV Adaboosted Stumps #####") n_iterations = Int32(25) accuracy = nfoldCV_stumps(labels, features, n_folds, n_iterations) @test mean(accuracy) > 0.6 # Test Int8 labels, and Float16 features features = Float16.(features) labels = Int8.(labels) model = build_stump(labels, features) preds = apply_tree(model, features) @test preds isa Vector{Int8} model = build_tree(labels, features) preds = apply_tree(model, features) @test preds isa Vector{Int8} model = build_forest(labels, features) preds = apply_forest(model, features) @test preds isa Vector{Int8} model = build_tree(labels, features) preds = apply_tree(model, features) @test preds isa Vector{Int8} model, coeffs = build_adaboost_stumps(labels, features, n_iterations); preds = apply_adaboost_stumps(model, coeffs, features); @test preds isa Vector{Int8} end # @testset
ModalDecisionTrees
https://github.com/aclai-lab/ModalDecisionTrees.jl.git
[ "MIT" ]
0.5.0
200b2bd9dee3dfe2dcffa1fb51b6dd00d371ed2b
code
4612
@testset "random.jl" begin Random.seed!(16) n,m = 10^3, 5; features = rand(n,m); weights = rand(-1:1,m); labels = round.(Int, features * weights); model = build_stump(labels, round.(Int, features)) preds = apply_tree(model, round.(Int, features)) @test depth(model) == 1 max_depth = 3 model = build_tree(labels, features, 0, max_depth) @test depth(model) == max_depth print_model(model, 3) model = build_tree(labels, features) preds = apply_tree(model, features) @test MLJ.accuracy(labels, preds) > 0.9 @test preds isa Vector{Int} # test RNG param of trees n_subfeatures = 2 t1 = build_tree(labels, features, n_subfeatures; rng=10) t2 = build_tree(labels, features, n_subfeatures; rng=10) t3 = build_tree(labels, features, n_subfeatures; rng=5) @test (length(t1) == length(t2)) && (depth(t1) == depth(t2)) @test (length(t1) != length(t3)) || (depth(t1) != depth(t3)) mt = Random.MersenneTwister(1) t1 = build_tree(labels, features, n_subfeatures; rng=mt) t3 = build_tree(labels, features, n_subfeatures; rng=mt) @test (length(t1) != length(t3)) || (depth(t1) != depth(t3)) model = build_forest(labels, features) preds = apply_forest(model, features) @test MLJ.accuracy(labels, preds) > 0.9 @test preds isa Vector{Int} n_subfeatures = 3 ntrees = 9 partial_sampling = 0.7 max_depth = -1 min_samples_leaf = 5 min_samples_split = 2 min_purity_increase = 0.0 model = build_forest( labels, features, n_subfeatures, ntrees, partial_sampling, max_depth, min_samples_leaf, min_samples_split, min_purity_increase) preds = apply_forest(model, features) @test MLJ.accuracy(labels, preds) > 0.9 @test length(model) == ntrees # test n_subfeatures n_subfeatures = 0 m_partial = build_forest(labels, features) # default sqrt(nfeatures) m_full = build_forest(labels, features, n_subfeatures) @test all( length.(trees(m_full)) .< length.(trees(m_partial)) ) # test partial_sampling parameter, train on single sample partial_sampling = 1 / n n_subfeatures = 0 ntrees = 1 # single tree test max_depth = -1 min_samples_leaf = 1 min_samples_split = 2 min_purity_increase = 0.0 partial = build_forest( labels, features, n_subfeatures, ntrees, partial_sampling, max_depth, min_samples_leaf, min_samples_split, min_purity_increase) @test typeof(trees(partial)[1]) <: Leaf # test RNG parameter for forests n_subfeatures = 2 ntrees = 5 m1 = build_forest(labels, features, n_subfeatures, ntrees; rng=10) m2 = build_forest(labels, features, n_subfeatures, ntrees; rng=10) m3 = build_forest(labels, features, n_subfeatures, ntrees; rng=5) @test length.(trees(m1)) == length.(trees(m2)) @test depth.(trees(m1)) == depth.(trees(m2)) @test length.(trees(m1)) != length.(trees(m3)) n_iterations = 25 model, coeffs = build_adaboost_stumps(labels, features, n_iterations); preds = apply_adaboost_stumps(model, coeffs, features); @test MLJ.accuracy(labels, preds) > 0.6 @test preds isa Vector{Int} @test length(model) == n_iterations println("\n##### nfoldCV Classification Tree #####") nfolds = 3 pruning_purity = 1.0 max_depth = 5 accuracy = nfoldCV_tree(labels, features, nfolds, pruning_purity, max_depth; rng=10, verbose=false) accuracy2 = nfoldCV_tree(labels, features, nfolds, pruning_purity, max_depth; rng=10) accuracy3 = nfoldCV_tree(labels, features, nfolds, pruning_purity, max_depth; rng=5) @test mean(accuracy) > 0.7 @test accuracy == accuracy2 @test accuracy != accuracy3 println("\n##### nfoldCV Classification Forest #####") nfolds = 3 n_subfeatures = 2 ntrees = 10 accuracy = nfoldCV_forest(labels, features, nfolds, n_subfeatures, ntrees; rng=10, verbose=false) accuracy2 = nfoldCV_forest(labels, features, nfolds, n_subfeatures, ntrees; rng=10) accuracy3 = nfoldCV_forest(labels, features, nfolds, n_subfeatures, ntrees; rng=5) @test mean(accuracy) > 0.7 @test accuracy == accuracy2 @test accuracy != accuracy3 println("\n##### nfoldCV Adaboosted Stumps #####") n_iterations = 25 n_folds = 3 accuracy = nfoldCV_stumps(labels, features, n_folds, n_iterations; rng=10, verbose=false) accuracy2 = nfoldCV_stumps(labels, features, n_folds, n_iterations; rng=10) accuracy3 = nfoldCV_stumps(labels, features, n_folds, n_iterations; rng=5) @test mean(accuracy) > 0.6 @test accuracy == accuracy2 @test accuracy != accuracy3 end # @testset
ModalDecisionTrees
https://github.com/aclai-lab/ModalDecisionTrees.jl.git
[ "MIT" ]
0.5.0
200b2bd9dee3dfe2dcffa1fb51b6dd00d371ed2b
code
394
function load_digits() data_path = joinpath(dirname(pathof(ModalDecisionTrees)), "..", "test/data/") f = open(joinpath(data_path, "digits.csv")) data = readlines(f)[2:end] data = [[parse(Float32, i) for i in split(row, ",")] for row in data] data = hcat(data...) y = Int.(data[1, 1:end]) .+ 1 X = convert(Matrix, transpose(data[2:end, 1:end])) return X, y end
ModalDecisionTrees
https://github.com/aclai-lab/ModalDecisionTrees.jl.git
[ "MIT" ]
0.5.0
200b2bd9dee3dfe2dcffa1fb51b6dd00d371ed2b
code
9929
using SoleModels using SoleModels: printmodel using SoleLogics using ModalDecisionTrees using ModalDecisionTrees: translate using ModalDecisionTrees.experimentals: parse_tree tree_str1 = """ {1} ⟨G⟩ (min[V4] >= 0.04200671690893693) NO_CLEAN_HISTORY_AND_LOW_PROBABILITY : 37/74 (conf = 0.5000) ✔ NO_CLEAN_HISTORY_AND_LOW_PROBABILITY : 32/37 (conf = 0.8649) ✘ {1} ⟨G⟩ (min[V22] >= 470729.9023515756) YES_WITH_COUGH : 32/37 (conf = 0.8649) ✔ NO_CLEAN_HISTORY_AND_LOW_PROBABILITY : 5/6 (conf = 0.8333) ✘ YES_WITH_COUGH : 31/31 (conf = 1.0000) """ tree_str2 = """ {1} ⟨G⟩ (max[V28] <= 7.245112655929639) YES : 78/141 (conf = 0.5532) ✔ {1} (min[V20] >= 4222.6591159789605) NO_CLEAN_HISTORY_AND_LOW_PROBABILITY : 55/88 (conf = 0.6250) │✔ {1} ⟨L̅⟩ (max[V11] <= 0.0038141608453366675) NO_CLEAN_HISTORY_AND_LOW_PROBABILITY : 34/66 (conf = 0.5152) ││✔ {1} ⟨A̅⟩ (max[V29] <= 178.31522392540964) NO_CLEAN_HISTORY_AND_LOW_PROBABILITY : 19/22 (conf = 0.8636) │││✔ YES : 3/3 (conf = 1.0000) │││✘ NO_CLEAN_HISTORY_AND_LOW_PROBABILITY : 19/19 (conf = 1.0000) ││✘ {1} ⟨B⟩ (min[V26] >= 217902.31767535824) YES : 29/44 (conf = 0.6591) ││ ✔ {1} max[V6] <= 0.011319891844101688 NO_CLEAN_HISTORY_AND_LOW_PROBABILITY : 12/14 (conf = 0.8571) ││ │✔ YES : 2/2 (conf = 1.0000) ││ │✘ NO_CLEAN_HISTORY_AND_LOW_PROBABILITY : 12/12 (conf = 1.0000) ││ ✘ {1} ⟨L⟩ (min[V6] >= 1.2154505217391558) YES : 27/30 (conf = 0.9000) ││ ✔ YES : 24/24 (conf = 1.0000) ││ ✘ {1} ⟨A̅⟩ (max[V16] <= 81.4665167044706) YES : 3/6 (conf = 0.5000) ││ ✔ YES : 3/3 (conf = 1.0000) ││ ✘ NO_CLEAN_HISTORY_AND_LOW_PROBABILITY : 3/3 (conf = 1.0000) │✘ {1} ⟨A̅⟩ (min[V24] >= 10.975911723366615) NO_CLEAN_HISTORY_AND_LOW_PROBABILITY : 21/22 (conf = 0.9545) │ ✔ NO_CLEAN_HISTORY_AND_LOW_PROBABILITY : 21/21 (conf = 1.0000) │ ✘ YES : 1/1 (conf = 1.0000) ✘ {1} ⟨G⟩ (min[V8] >= 494.33421895459713) YES : 45/53 (conf = 0.8491) ✔ {1} ⟨L̅⟩ (min[V27] >= 87446.39318797569) NO_CLEAN_HISTORY_AND_LOW_PROBABILITY : 7/13 (conf = 0.5385) │✔ NO_CLEAN_HISTORY_AND_LOW_PROBABILITY : 6/6 (conf = 1.0000) │✘ {1} max[V2] <= 42.36525041432014 YES : 6/7 (conf = 0.8571) │ ✔ YES : 6/6 (conf = 1.0000) │ ✘ NO_CLEAN_HISTORY_AND_LOW_PROBABILITY : 1/1 (conf = 1.0000) ✘ {1} ⟨G⟩ (min[V13] >= 31.231588457748384) YES : 39/40 (conf = 0.9750) ✔ YES : 39/39 (conf = 1.0000) ✘ NO_CLEAN_HISTORY_AND_LOW_PROBABILITY : 1/1 (conf = 1.0000) """ tree_str3 = """ {1} ⟨=⟩ (max[V28] <= 7.245112655929639) YES : 78/141 (conf = 0.5532) ✔ {1} ⟨=⟩ (min[V20] >= 4222.6591159789605) NO_CLEAN_HISTORY_AND_LOW_PROBABILITY : 55/88 (conf = 0.6250) │✔ {1} ⟨=⟩ (max[V11] <= 0.0038141608453366675) NO_CLEAN_HISTORY_AND_LOW_PROBABILITY : 34/66 (conf = 0.5152) ││✔ {1} ⟨=⟩ (max[V29] <= 178.31522392540964) NO_CLEAN_HISTORY_AND_LOW_PROBABILITY : 19/22 (conf = 0.8636) │││✔ YES : 3/3 (conf = 1.0000) │││✘ NO_CLEAN_HISTORY_AND_LOW_PROBABILITY : 19/19 (conf = 1.0000) ││✘ {1} ⟨=⟩ (min[V26] >= 217902.31767535824) YES : 29/44 (conf = 0.6591) ││ ✔ {1} max[V6] <= 0.011319891844101688 NO_CLEAN_HISTORY_AND_LOW_PROBABILITY : 12/14 (conf = 0.8571) ││ │✔ YES : 2/2 (conf = 1.0000) ││ │✘ NO_CLEAN_HISTORY_AND_LOW_PROBABILITY : 12/12 (conf = 1.0000) ││ ✘ {1} ⟨=⟩ (min[V6] >= 1.2154505217391558) YES : 27/30 (conf = 0.9000) ││ ✔ YES : 24/24 (conf = 1.0000) ││ ✘ {1} ⟨=⟩ (max[V16] <= 81.4665167044706) YES : 3/6 (conf = 0.5000) ││ ✔ YES : 3/3 (conf = 1.0000) ││ ✘ NO_CLEAN_HISTORY_AND_LOW_PROBABILITY : 3/3 (conf = 1.0000) │✘ {1} ⟨=⟩ (min[V24] >= 10.975911723366615) NO_CLEAN_HISTORY_AND_LOW_PROBABILITY : 21/22 (conf = 0.9545) │ ✔ NO_CLEAN_HISTORY_AND_LOW_PROBABILITY : 21/21 (conf = 1.0000) │ ✘ YES : 1/1 (conf = 1.0000) ✘ {1} ⟨=⟩ (min[V8] >= 494.33421895459713) YES : 45/53 (conf = 0.8491) ✔ {1} ⟨=⟩ (min[V27] >= 87446.39318797569) NO_CLEAN_HISTORY_AND_LOW_PROBABILITY : 7/13 (conf = 0.5385) │✔ NO_CLEAN_HISTORY_AND_LOW_PROBABILITY : 6/6 (conf = 1.0000) │✘ {1} max[V2] <= 42.36525041432014 YES : 6/7 (conf = 0.8571) │ ✔ YES : 6/6 (conf = 1.0000) │ ✘ NO_CLEAN_HISTORY_AND_LOW_PROBABILITY : 1/1 (conf = 1.0000) ✘ {1} ⟨=⟩ (min[V13] >= 31.231588457748384) YES : 39/40 (conf = 0.9750) ✔ YES : 39/39 (conf = 1.0000) ✘ NO_CLEAN_HISTORY_AND_LOW_PROBABILITY : 1/1 (conf = 1.0000) """ tree1 = parse_tree(tree_str1; worldtypes = [SoleData.Interval], initconditions = [ModalDecisionTrees.start_without_world]) tree2 = parse_tree(tree_str2; worldtypes = [SoleData.Interval], initconditions = [ModalDecisionTrees.start_without_world]) tree3 = parse_tree(tree_str3; worldtypes = [SoleData.OneWorld], initconditions = [ModalDecisionTrees.start_without_world]) pure_tree1 = translate(tree1) pure_tree2 = translate(tree2) pure_tree3 = translate(tree3) listrules(pure_tree1; use_shortforms=true) .|> antecedent .|> syntaxstring .|> println; listrules(pure_tree1; use_shortforms=false) .|> antecedent .|> syntaxstring .|> println; listrules(pure_tree2; use_shortforms=true) .|> antecedent .|> syntaxstring .|> println; listrules(pure_tree2; use_shortforms=false) .|> antecedent .|> syntaxstring .|> println; listrules(pure_tree3; use_shortforms=true) .|> antecedent .|> syntaxstring .|> println; listrules(pure_tree3; use_shortforms=false) .|> antecedent .|> syntaxstring .|> println; tree_str10 = """ {1} ⟨G⟩ (max[V28] <= 7.25) YES : 78/141 (conf = 0.5532) ✔ {1} (min[V20] >= 4222.66) NO_CLEAN_HISTORY_AND_LOW_PROBABILITY : 55/88 (conf = 0.6250) │✔ {1} ⟨L̅⟩ (max[V11] <= 0.00) NO_CLEAN_HISTORY_AND_LOW_PROBABILITY : 34/66 (conf = 0.5152) ││✔ {1} ⟨A̅⟩ (max[V29] <= 178.32) NO_CLEAN_HISTORY_AND_LOW_PROBABILITY : 19/22 (conf = 0.8636) │││✔ YES : 3/3 (conf = 1.0000) │││✘ NO_CLEAN_HISTORY_AND_LOW_PROBABILITY : 19/19 (conf = 1.0000) ││✘ {1} ⟨B⟩ (min[V26] >= 217902.32) YES : 29/44 (conf = 0.6591) ││ ✔ {1} max[V6] <= 0.01 NO_CLEAN_HISTORY_AND_LOW_PROBABILITY : 12/14 (conf = 0.8571) ││ │✔ YES : 2/2 (conf = 1.0000) ││ │✘ NO_CLEAN_HISTORY_AND_LOW_PROBABILITY : 12/12 (conf = 1.0000) ││ ✘ {1} ⟨L⟩ (min[V6] >= 1.22) YES : 27/30 (conf = 0.9000) ││ ✔ YES : 24/24 (conf = 1.0000) ││ ✘ {1} ⟨A̅⟩ (max[V16] <= 81.47) YES : 3/6 (conf = 0.5000) ││ ✔ YES : 3/3 (conf = 1.0000) ││ ✘ NO_CLEAN_HISTORY_AND_LOW_PROBABILITY : 3/3 (conf = 1.0000) │✘ {1} ⟨A̅⟩ (min[V24] >= 10.98) NO_CLEAN_HISTORY_AND_LOW_PROBABILITY : 21/22 (conf = 0.9545) │ ✔ NO_CLEAN_HISTORY_AND_LOW_PROBABILITY : 21/21 (conf = 1.0000) │ ✘ YES : 1/1 (conf = 1.0000) ✘ {1} ⟨G⟩ (min[V8] >= 494.33) YES : 45/53 (conf = 0.8491) ✔ {1} ⟨L̅⟩ (min[V27] >= 87446.39) NO_CLEAN_HISTORY_AND_LOW_PROBABILITY : 7/13 (conf = 0.5385) │✔ NO_CLEAN_HISTORY_AND_LOW_PROBABILITY : 6/6 (conf = 1.0000) │✘ {1} max[V2] <= 42.37 YES : 6/7 (conf = 0.8571) │ ✔ YES : 6/6 (conf = 1.0000) │ ✘ NO_CLEAN_HISTORY_AND_LOW_PROBABILITY : 1/1 (conf = 1.0000) ✘ {1} ⟨G⟩ (min[V13] >= 31.23) YES : 39/40 (conf = 0.9750) ✔ YES : 39/39 (conf = 1.0000) ✘ NO_CLEAN_HISTORY_AND_LOW_PROBABILITY : 1/1 (conf = 1.0000) """ @test_broken tree10 = parse_tree(tree_str10; worldtypes = [SoleData.Interval], initconditions = [ModalDecisionTrees.start_without_world]) tree_str_multi = """ {1} ⟨G⟩ (V1 <= 1) YES : 78/141 (conf = 0.5532) ✔ {2} (V2 >= 1) NO_CLEAN_HISTORY_AND_LOW_PROBABILITY : 55/88 (conf = 0.6250) │✔ {2} ⟨L̅⟩ (V3 <= 1) NO_CLEAN_HISTORY_AND_LOW_PROBABILITY : 34/66 (conf = 0.5152) ││✔ {1} ⟨A̅⟩ (V4 <= 1) NO_CLEAN_HISTORY_AND_LOW_PROBABILITY : 19/22 (conf = 0.8636) │││✔ YES : 3/3 (conf = 1.0000) │││✘ NO_CLEAN_HISTORY_AND_LOW_PROBABILITY : 19/19 (conf = 1.0000) ││✘ {1} ⟨B⟩ (V5 >= 1) YES : 29/44 (conf = 0.6591) ││ ✔ {3} V6 <= 1 NO_CLEAN_HISTORY_AND_LOW_PROBABILITY : 12/14 (conf = 0.8571) ││ │✔ YES : 2/2 (conf = 1.0000) ││ │✘ NO_CLEAN_HISTORY_AND_LOW_PROBABILITY : 12/12 (conf = 1.0000) ││ ✘ {2} ⟨L⟩ (V7 >= 1) YES : 27/30 (conf = 0.9000) ││ ✔ YES : 24/24 (conf = 1.0000) ││ ✘ {1} ⟨A̅⟩ (V8 <= 1) YES : 3/6 (conf = 0.5000) ││ ✔ YES : 3/3 (conf = 1.0000) ││ ✘ NO_CLEAN_HISTORY_AND_LOW_PROBABILITY : 3/3 (conf = 1.0000) │✘ {1} ⟨A̅⟩ (V9 >= 1) NO_CLEAN_HISTORY_AND_LOW_PROBABILITY : 21/22 (conf = 0.9545) │ ✔ NO_CLEAN_HISTORY_AND_LOW_PROBABILITY : 21/21 (conf = 1.0000) │ ✘ YES : 1/1 (conf = 1.0000) ✘ {1} ⟨G⟩ (V10 >= 1) YES : 45/53 (conf = 0.8491) ✔ {2} ⟨L̅⟩ (V11 >= 1) NO_CLEAN_HISTORY_AND_LOW_PROBABILITY : 7/13 (conf = 0.5385) │✔ NO_CLEAN_HISTORY_AND_LOW_PROBABILITY : 6/6 (conf = 1.0000) │✘ {2} V12 <= 1 YES : 6/7 (conf = 0.8571) │ ✔ YES : 6/6 (conf = 1.0000) │ ✘ NO_CLEAN_HISTORY_AND_LOW_PROBABILITY : 1/1 (conf = 1.0000) ✘ {1} ⟨G⟩ (V13 >= 1) YES : 39/40 (conf = 0.9750) ✔ YES : 39/39 (conf = 1.0000) ✘ NO_CLEAN_HISTORY_AND_LOW_PROBABILITY : 1/1 (conf = 1.0000) """ tree_multi = parse_tree(tree_str_multi; worldtypes = [SoleData.Interval, SoleData.Interval, SoleData.Interval], initconditions = [ModalDecisionTrees.start_without_world, ModalDecisionTrees.start_without_world, ModalDecisionTrees.start_without_world]) pure_tree_multi = translate(tree_multi) printmodel(pure_tree_multi, show_shortforms = true)
ModalDecisionTrees
https://github.com/aclai-lab/ModalDecisionTrees.jl.git
[ "MIT" ]
0.5.0
200b2bd9dee3dfe2dcffa1fb51b6dd00d371ed2b
code
2199
using Test using AbstractTrees using SoleLogics using SoleData using SoleModels using ModalDecisionTrees using ModalDecisionTrees: DTLeaf, DTInternal reg_leaf, cls_leaf = DTLeaf([1.0,2.0]), DTLeaf([1,2]) decision1 = ScalarExistentialFormula(globalrel, VariableMin(1), >=, 10) decision2 = ScalarExistentialFormula(IA_A, VariableMin(2), <, 0) decision3 = ScalarExistentialFormula(IA_L, VariableMin(3), <=, 0) branch = DTInternal(2, decision1, cls_leaf, cls_leaf) branch = DTInternal(2, decision2, cls_leaf, branch) branch = DTInternal(2, decision3, branch, cls_leaf) @test_nowarn AbstractTrees.print_tree(branch) branchpure = ModalDecisionTrees.translate(branch, [ModalDecisionTrees.StartWithoutWorld(), ModalDecisionTrees.StartWithoutWorld()]) @test_nowarn AbstractTrees.print_tree(branchpure) complete = ModalDecisionTrees.restricted2complete(branch) completepure = ModalDecisionTrees.translate(complete, [ModalDecisionTrees.StartWithoutWorld(), ModalDecisionTrees.StartWithoutWorld()]) branchpure |> printmodel completepure |> printmodel printmodel(branchpure; show_shortforms = true) printmodel(completepure; show_shortforms = true) branchpure |> listrules completepure |> listrules branchpure = ModalDecisionTrees.translate(branch, [ModalDecisionTrees.StartWithoutWorld(), ModalDecisionTrees.StartWithoutWorld()]; optimize_shortforms = true) completepure = ModalDecisionTrees.translate(complete, [ModalDecisionTrees.StartWithoutWorld(), ModalDecisionTrees.StartWithoutWorld()]; optimize_shortforms = true) printmodel(branchpure; show_shortforms = true) printmodel(completepure; show_shortforms = true) printmodel(branchpure) printmodel(completepure) branchpure |> listrules completepure |> listrules using D3Trees text = ["one\n(second line)", "2", "III", "four"] style = ["", "fill:red", "r:14px", "opacity:0.7"] link_style = ["", "stroke:blue", "", "stroke-width:10px"] tooltip = ["pops", "up", "on", "hover"] @test_nowarn t = D3Tree(children, text=text, style=style, tooltip=tooltip, link_style=link_style, title="My Tree", init_expand=10, ) @test_nowarn t = D3Tree(tree) # inchrome(t) # inbrowser(t, "firefox") # inchrome(t) # inbrowser(t, "firefox")
ModalDecisionTrees
https://github.com/aclai-lab/ModalDecisionTrees.jl.git
[ "MIT" ]
0.5.0
200b2bd9dee3dfe2dcffa1fb51b6dd00d371ed2b
code
1367
using Test using SoleData using SoleLogics using SoleData: ScalarExistentialFormula using ModalDecisionTrees using ModalDecisionTrees: DTLeaf, DTInternal using ModalDecisionTrees: isbackloop, isforthloop using ModalDecisionTrees: DoubleEdgedDecision, _back!, _forth! using ModalDecisionTrees: back, forth using AbstractTrees decision1 = ScalarExistentialFormula(globalrel, VariableMin(1), >=, 10) decision2 = ScalarExistentialFormula(IA_A, VariableMin(2), <, 0) decision3 = ScalarExistentialFormula(IA_L, VariableMin(3), <=, 0) ded1 = DoubleEdgedDecision(decision1) ded2 = DoubleEdgedDecision(decision2) ded3 = DoubleEdgedDecision(decision3) reg_leaf, cls_leaf = DTLeaf([1.0,2.0]), DTLeaf([1,2]) branch = DTInternal(2, ded1, cls_leaf, cls_leaf) @test !isbackloop(branch) @test !isforthloop(branch) _back!(ded1, Ref(branch)) _forth!(ded1, Ref(branch)) @test isbackloop(branch) @test isforthloop(branch) branch = DTInternal(1, ded2, cls_leaf, branch) _back!(ded2, Ref(branch)) _forth!(ded2, Ref(branch)) branch = DTInternal(2, ded3, branch, cls_leaf) _back!(ded3, Ref(branch)) _forth!(ded3, Ref(branch)) @test isbackloop(branch) @test isforthloop(branch) AbstractTrees.print_tree(branch) t = branch initconditions = [ModalDecisionTrees.StartWithoutWorld(), ModalDecisionTrees.StartWithoutWorld()] pure_tree = ModalDecisionTrees.translate(t, initconditions)
ModalDecisionTrees
https://github.com/aclai-lab/ModalDecisionTrees.jl.git
[ "MIT" ]
0.5.0
200b2bd9dee3dfe2dcffa1fb51b6dd00d371ed2b
code
1897
using SoleLogics using SoleModels using AbstractTrees using ModalDecisionTrees using ModalDecisionTrees: DTLeaf, DTInternal using SoleData: ExistentialTopFormula using ModalDecisionTrees: AbstractNode, DoubleEdgedDecision, DTNode, Label using ModalDecisionTrees: back!, forth! diamondtop = ExistentialTopFormula(IA_A) diamondtop2 = ExistentialTopFormula(IA_L) function MDT(prediction) return DTLeaf(prediction) end function MDT(p::Atom, left::AbstractNode, right::AbstractNode) # decision = DoubleEdgedDecision(ScalarExistentialFormula(identityrel, SoleLogics.value(p))) decision = DoubleEdgedDecision(p) return DTInternal(1, decision, left, right) end function MDT(φ::ExistentialTopFormula, left::AbstractNode, right::AbstractNode) decision = DoubleEdgedDecision(φ) return DTInternal(1, decision, left, right) end ν3 = MDT( Atom("p₂"), MDT("L₂"), MDT("L₁"), ) ν1 = MDT( diamondtop, MDT( Atom(" ̅p₁"), MDT("L₁"), ν3, ), MDT("L₁"), ) # back!((ν3), ModalDecisionTrees.right(ν1)) back!(ν3, ν1) t = MDT( diamondtop2, ν1, MDT("L₂"), ) printmodel(t) # treemap(x->(printmodel(x), children(x)), t); # paths = treemap(x->((x isa DTInternal ? ModalDecisionTrees.decision(x) : ModalDecisionTrees.prediction(x)), children(x)), t) # collect(Leaves(t)) # collect(PostOrderDFS(t)) # treemap(_t->(_t,children(_t)), t) using ModalDecisionTrees: translate t2 = ModalDecisionTrees.left(t) using Test initconditions = [ModalDecisionTrees.StartWithoutWorld()] @test_nowarn translate.(Leaves(t), initconditions) @test_nowarn translate(ν3, initconditions) @test_nowarn translate(ν1, initconditions) @test_nowarn translate(t, initconditions) @test_nowarn translate(t2, initconditions) printmodel(translate(t2, initconditions)) printmodel(t) translate(t2, initconditions) translate(t, initconditions) printmodel(t2)
ModalDecisionTrees
https://github.com/aclai-lab/ModalDecisionTrees.jl.git
[ "MIT" ]
0.5.0
200b2bd9dee3dfe2dcffa1fb51b6dd00d371ed2b
code
1211
@testset "ames.jl" begin X, y = MLJ.@load_ames # Only consider non-categorical variables mask = BitVector((!).((<:).(eltype.(values(X)), CategoricalValue))) # X = filter(((i,c),)->(i in mask), collect(enumerate(X))[mask]) X = NamedTuple(zip(keys(X)[mask], values(X)[mask])) X = DataFrame(X) X = Float64.(X) p = randperm(Random.MersenneTwister(1), 100) X, y = X[p, :], y[p] n_instances = size(X, 1) n_train = Int(floor(n_instances*.8)) p = randperm(Random.MersenneTwister(1), n_instances) train_idxs = p[1:n_train] test_idxs = p[n_train+1:end] X_train, y_train = X[train_idxs,:], y[train_idxs] X_test, y_test = X[test_idxs,:], y[test_idxs] model = ModalDecisionTree(min_purity_increase = 0.001) mach = machine(model, X_train, y_train) |> fit! yhat = MLJ.predict_mean(mach, X_test) @test StatsBase.cor(yhat, y_test) > 0.6 model = ModalRandomForest(ntrees = 15) mach = machine(model, X_train, y_train) |> fit! yhat = MLJ.predict_mean(mach, X_test) @test StatsBase.cor(yhat, y_test) > 0.7 # using Plots # p = sortperm(y_test) # scatter(y_test[p], label = "y") # scatter!(yhat[p], label = "ŷ") # k = 20 # plot!([mean(yhat[p][i:i+k]) for i in 1:length(yhat[p])-k], label = "ŷ, moving average") end
ModalDecisionTrees
https://github.com/aclai-lab/ModalDecisionTrees.jl.git
[ "MIT" ]
0.5.0
200b2bd9dee3dfe2dcffa1fb51b6dd00d371ed2b
code
2640
using ModalDecisionTrees using MLJ using DataFrames using Random using StatsBase include("$(dirname(dirname(pathof(ModalDecisionTrees))))/test/data/load.jl") X, y = load_digits() y = float.(y) p = randperm(Random.MersenneTwister(1), 100) X, y = X[p, :], y[p] Xcube = cat(map(r->reshape(r, (8,8,1)), eachrow(X))...; dims=4) Xnt = NamedTuple(zip(Symbol.(1:length(eachslice(Xcube; dims=3))), eachslice.(eachslice(Xcube; dims=3); dims=3))) n_instances = size(X, 1) n_train = Int(floor(n_instances*.8)) p = randperm(Random.MersenneTwister(1), n_instances) train_idxs = p[1:n_train] test_idxs = p[n_train+1:end] X_train, y_train = X[train_idxs,:], y[train_idxs] X_test, y_test = X[test_idxs,:], y[test_idxs] X_traincube = cat(map(r->reshape(r, (8,8,1)), eachrow(X_train))...; dims=4) X_trainnt = NamedTuple(zip(Symbol.(1:length(eachslice(X_traincube; dims=3))), eachslice.(eachslice(X_traincube; dims=3); dims=3))) X_testcube = cat(map(r->reshape(r, (8,8,1)), eachrow(X_test))...; dims=4) X_testnt = NamedTuple(zip(Symbol.(1:length(eachslice(X_testcube; dims=3))), eachslice.(eachslice(X_testcube; dims=3); dims=3))) model = ModalDecisionTree(min_purity_increase = 0.001) mach = machine(model, X_trainnt, y_train) |> fit! println(mach) c = StatsBase.cor(MLJ.predict_mean(mach, X_testnt), y_test) @test_broken c > 0.45 # model = ModalRandomForest() # mach = machine(model, X_trainnt, y_train) |> fit! # @test StatsBase.cor(MLJ.predict_mean(mach, X_testnt), y_test) > 0.5 mach = machine(ModalRandomForest(; n_subfeatures = 1, ntrees = 10, sampling_fraction = 0.7, max_depth = -1, min_samples_leaf = 1, min_samples_split = 2, min_purity_increase = 0.0, print_progress = true, rng = Random.MersenneTwister(1) ), Xnt, y) |> m->fit!(m, rows = train_idxs) println(StatsBase.cor(MLJ.predict_mean(mach, X_testnt), y_test)) @test StatsBase.cor(MLJ.predict_mean(mach, X_testnt), y_test) > 0.30 mach = machine(ModalRandomForest(; n_subfeatures = 0.6, ntrees = 10, sampling_fraction = 0.7, max_depth = -1, min_samples_leaf = 1, min_samples_split = 2, min_purity_increase = 0.0, rng = Random.MersenneTwister(1) ), Xnt, y) |> m->fit!(m, rows = train_idxs) println(StatsBase.cor(MLJ.predict_mean(mach, X_testnt), y_test)) @test StatsBase.cor(MLJ.predict_mean(mach, X_testnt), y_test) > 0.5 # using Plots # p = sortperm(y_test) # scatter(y_test[p], label = "y") # scatter!(yhat[p], label = "ŷ") # k = 20 # plot!([mean(yhat[p][i:i+k]) for i in 1:length(yhat[p])-k], label = "ŷ, moving average")
ModalDecisionTrees
https://github.com/aclai-lab/ModalDecisionTrees.jl.git
[ "MIT" ]
0.5.0
200b2bd9dee3dfe2dcffa1fb51b6dd00d371ed2b
code
473
using MLJBase using StatsBase rng = Random.MersenneTwister(1) X, y = make_regression(100, 2; rng = rng) # model = ModalDecisionTree(min_purity_increase = 0.001) model = ModalDecisionTree() mach = machine(model, X, y) train_idxs = 1:div(length(y), 2) test_idxs = div(length(y), 2)+1:100 MLJBase.fit!(mach, rows=train_idxs) ypreds = MLJBase.predict_mean(mach, rows=test_idxs) println(StatsBase.cor(ypreds, y[test_idxs])) @test StatsBase.cor(ypreds, y[test_idxs]) > 0.45
ModalDecisionTrees
https://github.com/aclai-lab/ModalDecisionTrees.jl.git
[ "MIT" ]
0.5.0
200b2bd9dee3dfe2dcffa1fb51b6dd00d371ed2b
code
896
# Regression Test - Appliances Energy Prediction Data Set # https://archive.ics.uci.edu/ml/datasets/Appliances+energy+prediction @testset "energy.jl" begin download("https://archive.ics.uci.edu/ml/machine-learning-databases/00374/energydata_complete.csv", "energy.csv"); energy = readcsv("energy.csv"); features = energy[2:end, 3:end]; labels = float.(energy[2:end, 2]); # over-fitting n_subfeatures = 0 max_depth = -1 min_samples_leaf = 1 model = build_tree( labels, features, n_subfeatures, max_depth, min_samples_leaf) preds = apply_tree(model, features); @test R2(labels, preds) > 0.99 println("\n##### nfoldCV Regression Tree #####") r2 = nfoldCV_tree(labels, features, 3); @test mean(r2) > 0.05 println("\n##### nfoldCV Regression Forest #####") r2 = nfoldCV_forest(labels, features, 2, 10, 3); @test mean(r2) > 0.35 end # @testset
ModalDecisionTrees
https://github.com/aclai-lab/ModalDecisionTrees.jl.git
[ "MIT" ]
0.5.0
200b2bd9dee3dfe2dcffa1fb51b6dd00d371ed2b
code
2805
@testset "low_precision.jl" begin Random.seed!(5) n, m = 10^3, 5 ; features = Array{Any}(undef, n, m); features[:,:] = randn(n, m); features[:,1] = round.(Int32, features[:,1]); # convert a column of 32bit integers weights = rand(-2:2,m); labels = float.(features * weights); # cast to Array{Float64,1} min_samples_leaf = Int32(1) n_subfeatures = Int32(0) max_depth = Int32(-1) min_samples_split = Int32(2) min_purity_increase = 0.5 model = build_tree( labels, round.(Int32, features), n_subfeatures, max_depth, min_samples_leaf, min_samples_split, min_purity_increase) preds = apply_tree(model, round.(Int32, features)) @test R2(labels, preds) < 0.95 @test typeof(preds) <: Vector{Float64} n_subfeatures = Int32(3) ntrees = Int32(10) partial_sampling = 0.7 max_depth = Int32(-1) min_samples_leaf = Int32(5) min_samples_split = Int32(2) min_purity_increase = 0.0 model = build_forest( labels, features, n_subfeatures, ntrees, partial_sampling, max_depth, min_samples_leaf, min_samples_split, min_purity_increase) preds = apply_forest(model, features) @test R2(labels, preds) > 0.9 @test typeof(preds) <: Vector{Float64} println("\n##### nfoldCV Regression Tree #####") n_folds = Int32(3) pruning_purity = 1.0 max_depth = Int32(-1) min_samples_leaf = Int32(5) min_samples_split = Int32(2) min_purity_increase = 0.0 r2 = nfoldCV_tree( labels, features, n_folds, pruning_purity, max_depth, min_samples_leaf, min_samples_split, min_purity_increase) @test mean(r2) > 0.6 println("\n##### nfoldCV Regression Forest #####") ntrees = Int32(10) n_subfeatures = Int32(2) n_folds = Int32(3) max_depth = Int32(-1) min_samples_leaf = Int32(5) min_samples_split = Int32(2) min_purity_increase = 0.0 r2 = nfoldCV_forest( labels, features, n_folds, n_subfeatures, ntrees, partial_sampling, max_depth, min_samples_leaf, min_samples_split, min_purity_increase) @test mean(r2) > 0.8 # Test Float16 labels, and Float16 features features = Float16.(features) labels = Float16.(labels) model = build_stump(labels, features) preds = apply_tree(model, features) @test preds isa Vector{Float16} model = build_tree(labels, features) preds = apply_tree(model, features) @test preds isa Vector{Float16} model = build_forest(labels, features) preds = apply_forest(model, features) @test preds isa Vector{Float16} model = build_tree(labels, features) preds = apply_tree(model, features) @test preds isa Vector{Float16} end # @testset
ModalDecisionTrees
https://github.com/aclai-lab/ModalDecisionTrees.jl.git
[ "MIT" ]
0.5.0
200b2bd9dee3dfe2dcffa1fb51b6dd00d371ed2b
code
5573
@testset "random.jl" begin Random.seed!(5) n, m = 10^3, 5 ; features = Array{Any}(undef, n, m); features[:,:] = randn(n, m); features[:,1] = round.(Integer, features[:,1]); # convert a column of integers weights = rand(-2:2,m); labels = float.(features * weights); # cast to Array{Float64,1} model = build_stump(labels, features) @test depth(model) == 1 # over-fitting min_samples_leaf = 1 max_depth = -1 n_subfeatures = 0 model = build_tree( labels, features, n_subfeatures, max_depth, min_samples_leaf) preds = apply_tree(model, features); @test R2(labels, preds) > 0.99 # R2: coeff of determination @test typeof(preds) <: Vector{Float64} ### @test length(model) == n # can / should this be enforced ??? # under-fitting min_samples_leaf = 100 model = build_tree( labels, round.(Int, features), n_subfeatures, max_depth, min_samples_leaf) preds = apply_tree(model, round.(Int, features)); @test R2(labels, preds) < 0.8 min_samples_leaf = 5 max_depth = 3 n_subfeatures = 0 model = build_tree( labels, features, n_subfeatures, max_depth, min_samples_leaf) @test depth(model) == max_depth min_samples_leaf = 1 n_subfeatures = 0 max_depth = -1 min_samples_split = 300 model = build_tree( labels, features, n_subfeatures, max_depth, min_samples_leaf, min_samples_split) preds = apply_tree(model, features); @test R2(labels, preds) < 0.8 n_subfeatures = 0 max_depth = -1 min_samples_leaf = 1 min_samples_split = 2 min_purity_increase = 0.5 model = build_tree( labels, features, n_subfeatures, max_depth, min_samples_leaf, min_samples_split, min_purity_increase) preds = apply_tree(model, features); @test R2(labels, preds) < 0.95 # test RNG param of trees n_subfeatures = 2 t1 = build_tree(labels, features, n_subfeatures; rng=10) t2 = build_tree(labels, features, n_subfeatures; rng=10) t3 = build_tree(labels, features, n_subfeatures; rng=5) @test (length(t1) == length(t2)) && (depth(t1) == depth(t2)) @test (length(t1) != length(t3)) || (depth(t1) != depth(t3)) mt = Random.MersenneTwister(1) t1 = build_tree(labels, features, n_subfeatures; rng=mt) t3 = build_tree(labels, features, n_subfeatures; rng=mt) @test (length(t1) != length(t3)) || (depth(t1) != depth(t3)) model = build_forest(labels, features) preds = apply_forest(model, features) @test R2(labels, preds) > 0.9 @test typeof(preds) <: Vector{Float64} n_subfeatures = 3 ntrees = 9 partial_sampling = 0.7 max_depth = -1 min_samples_leaf = 5 min_samples_split = 2 min_purity_increase = 0.0 model = build_forest( labels, features, n_subfeatures, ntrees, partial_sampling, max_depth, min_samples_leaf, min_samples_split, min_purity_increase) preds = apply_forest(model, features) @test R2(labels, preds) > 0.9 @test length(model) == ntrees # test n_subfeatures ntrees = 10 partial_sampling = 1.0 max_depth = -1 min_samples_leaf = 10 n_subfeatures = 1 m_partial = build_forest( labels, features, n_subfeatures, ntrees, partial_sampling, max_depth, min_samples_leaf) n_subfeatures = 0 m_full = build_forest( labels, features, n_subfeatures, ntrees, partial_sampling, max_depth, min_samples_leaf) @test mean(depth.(trees(m_full))) < mean(depth.(trees(m_partial))) # test partial_sampling parameter, train on single sample partial_sampling = 1 / n n_subfeatures = 0 ntrees = 1 # single tree test max_depth = -1 min_samples_leaf = 1 min_samples_split = 2 min_purity_increase = 0.0 partial = build_forest( labels, features, n_subfeatures, ntrees, partial_sampling, max_depth, min_samples_leaf, min_samples_split, min_purity_increase) @test typeof(trees(partial)[1]) <: Leaf # test RNG parameter n_subfeatures = 2 ntrees = 5 m1 = build_forest(labels, features, n_subfeatures, ntrees; rng=10) m2 = build_forest(labels, features, n_subfeatures, ntrees; rng=10) m3 = build_forest(labels, features, n_subfeatures, ntrees; rng=5) @test length.(trees(m1)) == length.(trees(m2)) @test depth.(trees(m1)) == depth.(trees(m2)) @test length.(trees(m1)) != length.(trees(m3)) println("\n##### nfoldCV Classification Tree #####") nfolds = 3 pruning_purity = 1.0 max_depth = 4 r2_1 = nfoldCV_tree(labels, features, nfolds, pruning_purity, max_depth; rng=10, verbose=false) r2_2 = nfoldCV_tree(labels, features, nfolds, pruning_purity, max_depth; rng=10) r2_3 = nfoldCV_tree(labels, features, nfolds, pruning_purity, max_depth; rng=5) @test mean(r2_1) > 0.5 @test r2_1 == r2_2 @test r2_1 != r2_3 println("\n##### nfoldCV Regression Forest #####") nfolds = 3 n_subfeatures = 2 ntrees = 10 r2_1 = nfoldCV_forest(labels, features, nfolds, n_subfeatures, ntrees; rng=10, verbose=false) r2_2 = nfoldCV_forest(labels, features, nfolds, n_subfeatures, ntrees; rng=10) r2_3 = nfoldCV_forest(labels, features, nfolds, n_subfeatures, ntrees; rng=5) @test mean(r2_1) > 0.8 @test r2_1 == r2_2 @test r2_1 != r2_3 end # @testset
ModalDecisionTrees
https://github.com/aclai-lab/ModalDecisionTrees.jl.git
[ "MIT" ]
0.5.0
200b2bd9dee3dfe2dcffa1fb51b6dd00d371ed2b
code
1787
using DecisionTree using BenchmarkTools using Random include("benchmark/classification_suite.jl") include("benchmark/regression_suite.jl") include("benchmark/utils.jl") Random.seed!(1) # Classification Benchmarks classification_tree = benchmark_classification(build_tree, apply_tree) println("\n\n############### CLASSIFICATION: BUILD TREE ###############") print_details(classification_tree["BUILD"]) println("\n\n############### CLASSIFICATION: APPLY TREE ###############") print_details(classification_tree["APPLY"]) classification_forest = benchmark_classification(build_forest, apply_forest) println("\n\n############### CLASSIFICATION: BUILD FOREST ###############") print_details(classification_forest["BUILD"]) println("\n\n############### CLASSIFICATION: APPLY FOREST ###############") print_details(classification_forest["APPLY"]) classification_adaboost = benchmark_classification(build_adaboost, apply_adaboost) println("\n\n############### CLASSIFICATION: BUILD ADABOOST ###############") print_details(classification_adaboost["BUILD"]) println("\n\n############### CLASSIFICATION: APPLY ADABOOST ###############") print_details(classification_adaboost["APPLY"]) # Regression Benchmarks regression_tree = benchmark_regression(build_tree, apply_tree) println("\n\n############### REGRESSION: BUILD TREE ###############") print_details(regression_tree["BUILD"]) println("\n\n############### REGRESSION: APPLY TREE ###############") print_details(regression_tree["APPLY"]) regression_forest = benchmark_regression(build_forest, apply_forest) println("\n\n############### REGRESSION: BUILD FOREST ###############") print_details(regression_forest["BUILD"]) println("\n\n############### REGRESSION: APPLY FOREST ###############") print_details(regression_forest["APPLY"])
ModalDecisionTrees
https://github.com/aclai-lab/ModalDecisionTrees.jl.git
[ "MIT" ]
0.5.0
200b2bd9dee3dfe2dcffa1fb51b6dd00d371ed2b
code
1626
using AbstractTrees: AbstractTrees using DecisionTree using DelimitedFiles using Random using ScikitLearnBase using StableRNGs using Statistics using Test using LinearAlgebra using DecisionTree: accuracy, R2, majority_vote, mean_squared_error using DecisionTree: confusion_matrix, ConfusionMatrix println("Julia version: ", VERSION) similarity(a, b) = first(reshape(a, 1, :) * b / norm(a) / norm(b)) srng() = StableRNGs.StableRNG(123) function run_tests(list) for test in list println("TEST: $test \n") include(test) println("="^50) end end classification = [ "classification/random.jl", "classification/low_precision.jl", "classification/heterogeneous.jl", "classification/digits.jl", "classification/iris.jl", "classification/adult.jl", "classification/scikitlearn.jl", "classification/adding_trees.jl", ] regression = [ "regression/random.jl", "regression/low_precision.jl", "regression/digits.jl", "regression/scikitlearn.jl", ] miscellaneous = [ "miscellaneous/convert.jl", "miscellaneous/abstract_trees_test.jl", "miscellaneous/feature_importance_test.jl", "miscellaneous/ensemble_methods.jl", # "miscellaneous/parallel.jl" ] test_suites = [ ("Classification", classification), ("Regression", regression), ("Miscellaneous", miscellaneous), ] @testset "Test Suites" begin for ts in 1:length(test_suites) name = test_suites[ts][1] list = test_suites[ts][2] let @testset "$name" begin run_tests(list) end end end end
ModalDecisionTrees
https://github.com/aclai-lab/ModalDecisionTrees.jl.git
[ "MIT" ]
0.5.0
200b2bd9dee3dfe2dcffa1fb51b6dd00d371ed2b
code
3803
function benchmark_classification(build::Function, apply::Function) println("\nRunning benchmarks ...") ########## benchmarks suite ########## suite = BenchmarkGroup() suite["BUILD"] = BenchmarkGroup() suite["BUILD"]["DIGITS"] = BenchmarkGroup() suite["BUILD"]["ADULT"] = BenchmarkGroup() suite["APPLY"] = BenchmarkGroup() suite["APPLY"]["DIGITS"] = BenchmarkGroup() suite["APPLY"]["ADULT"] = BenchmarkGroup() # using DIGITS dataset X, Y = load_data("digits") m, n = size(X) X_Any = Array{Any}(undef, m, n) Y_Any = Array{Any}(undef, m) X_Any[:, :] = X Y_Any[:] = Y X_Any::Matrix{Any} Y_Any::Vector{Any} model = build(Y_Any, X_Any) preds = apply(model, X_Any) suite["BUILD"]["DIGITS"][pad("Y::Any X::Any")] = @benchmarkable $build($Y_Any, $X_Any) suite["APPLY"]["DIGITS"][pad("Y::Any X::Any")] = @benchmarkable $apply($model, $X_Any) X_Any::Matrix{Any} Y = Int64.(Y)::Vector{Int64} model = build(Y, X_Any) preds = apply(model, X_Any) suite["BUILD"]["DIGITS"][pad("Y::Int64 X::Any")] = @benchmarkable $build($Y, $X_Any) suite["APPLY"]["DIGITS"][pad("Y::Int64 X::Any")] = @benchmarkable $apply($model, $X_Any) X = Int64.(X)::Matrix{Int64} Y_Any::Vector{Any} model = build(Y_Any, X) preds = apply(model, X) suite["BUILD"]["DIGITS"][pad("Y::Any X::Int64")] = @benchmarkable $build($Y_Any, $X) suite["APPLY"]["DIGITS"][pad("Y::Any X::Int64")] = @benchmarkable $apply($model, $X) Y = Int8.(Y) X = Float16.(X) model = build(Y, X) preds = apply(model, X) suite["BUILD"]["DIGITS"][pad("Y::Int8 X::Float16")] = @benchmarkable $build($Y, $X) suite["APPLY"]["DIGITS"][pad("Y::Int8 X::Float16")] = @benchmarkable $apply($model, $X) Y = Int64.(Y) X = Float64.(X) model = build(Y, X) preds = apply(model, X) suite["BUILD"]["DIGITS"][pad("Y::Int64 X::Float64")] = @benchmarkable $build($Y, $X) suite["APPLY"]["DIGITS"][pad("Y::Int64 X::Float64")] = @benchmarkable $apply($model, $X) Y = string.(Y)::Vector{String} X = Float64.(X) model = build(Y, X) preds = apply(model, X) suite["BUILD"]["DIGITS"][pad("Y::String X::Float64")] = @benchmarkable $build($Y, $X) suite["APPLY"]["DIGITS"][pad("Y::String X::Float64")] = @benchmarkable $apply( $model, $X ) # using ADULT dataset X_Any, Y_Any = load_data("adult") n = round(Int, size(X_Any, 1)) Y_Any = Y_Any[1:n]::Vector{Any} X_Any = X_Any[1:n, :]::Matrix{Any} model = build(Y_Any, X_Any) preds = apply(model, X_Any) suite["BUILD"]["ADULT"][pad("Y::Any X::Any")] = @benchmarkable $build($Y_Any, $X_Any) suite["APPLY"]["ADULT"][pad("Y::Any X::Any")] = @benchmarkable $apply($model, $X_Any) Y = String.(Y_Any)::Vector{String} X_Any::Matrix{Any} model = build(Y, X_Any) preds = apply(model, X_Any) suite["BUILD"]["ADULT"][pad("Y::String X::Any")] = @benchmarkable $build($Y, $X_Any) suite["APPLY"]["ADULT"][pad("Y::String X::Any")] = @benchmarkable $apply($model, $X_Any) Y_Any::Vector{Any} X = string.(X_Any)::Matrix{String} model = build(Y_Any, X) preds = apply(model, X) suite["BUILD"]["ADULT"][pad("Y::Any X::String")] = @benchmarkable $build($Y_Any, $X) suite["APPLY"]["ADULT"][pad("Y::Any X::String")] = @benchmarkable $apply($model, $X) Y = String.(Y)::Vector{String} X = String.(X)::Matrix{String} model = build(Y, X) preds = apply(model, X) suite["BUILD"]["ADULT"][pad("Y::String X::String")] = @benchmarkable $build($Y, $X) suite["APPLY"]["ADULT"][pad("Y::String X::String")] = @benchmarkable $apply($model, $X) ########## run suite ########## tune!(suite) results = run(suite; verbose=true) return results end
ModalDecisionTrees
https://github.com/aclai-lab/ModalDecisionTrees.jl.git
[ "MIT" ]
0.5.0
200b2bd9dee3dfe2dcffa1fb51b6dd00d371ed2b
code
1852
function benchmark_regression(build::Function, apply::Function) println("\nRunning benchmarks ...") ########## benchmarks suite ########## suite = BenchmarkGroup() suite["BUILD"] = BenchmarkGroup() suite["BUILD"]["DIGITS"] = BenchmarkGroup() suite["APPLY"] = BenchmarkGroup() suite["APPLY"]["DIGITS"] = BenchmarkGroup() # using DIGITS dataset X, Y = load_data("digits") m, n = size(X) X_Any = Array{Any}(undef, m, n) X_Any[:, :] = X X_Any::Matrix{Any} Y = Float64.(Y)::Vector{Float64} model = build(Y, X_Any) preds = apply(model, X_Any) suite["BUILD"]["DIGITS"][pad("Y::Float64 X::Any")] = @benchmarkable $build($Y, $X_Any) suite["APPLY"]["DIGITS"][pad("Y::Float64 X::Any")] = @benchmarkable $apply( $model, $X_Any ) X = Int64.(X)::Matrix{Int64} Y = Float64.(Y)::Vector{Float64} model = build(Y, X) preds = apply(model, X) suite["BUILD"]["DIGITS"][pad("Y::Float64 X::Int64")] = @benchmarkable $build($Y, $X) suite["APPLY"]["DIGITS"][pad("Y::Float64 X::Int64")] = @benchmarkable $apply($model, $X) X = Int8.(X)::Matrix{Int8} Y = Float16.(Y)::Vector{Float16} model = build(Y, X) preds = apply(model, X) suite["BUILD"]["DIGITS"][pad("Y::Float16 X::Int8")] = @benchmarkable $build($Y, $X) suite["APPLY"]["DIGITS"][pad("Y::Float16 X::Int8")] = @benchmarkable $apply($model, $X) X = Float64.(X)::Matrix{Float64} Y = Float64.(Y)::Vector{Float64} model = build(Y, X) preds = apply(model, X) suite["BUILD"]["DIGITS"][pad("Y::Float64 X::Float64")] = @benchmarkable $build($Y, $X) suite["APPLY"]["DIGITS"][pad("Y::Float64 X::Float64")] = @benchmarkable $apply( $model, $X ) ########## run suite ########## tune!(suite) results = run(suite; verbose=true) return results end
ModalDecisionTrees
https://github.com/aclai-lab/ModalDecisionTrees.jl.git
[ "MIT" ]
0.5.0
200b2bd9dee3dfe2dcffa1fb51b6dd00d371ed2b
code
705
function build_adaboost(labels, features) n_iterations = 10 model, coeffs = build_adaboost_stumps(labels, features, n_iterations) return model end function apply_adaboost(model, features) n = length(model) return apply_adaboost_stumps(model, ones(n), features) end function pad(s::String, l::Int=21) t = length(s) p = max(0, l - t) return s * " "^p end function print_details(results) k = keys(results) for i in k s = "================ " * i * " ================" println("\n" * s) display(results[i]) # if typeof(results[i]) <: BenchmarkGroup # print_details(results[i]) # end end end
ModalDecisionTrees
https://github.com/aclai-lab/ModalDecisionTrees.jl.git
[ "MIT" ]
0.5.0
200b2bd9dee3dfe2dcffa1fb51b6dd00d371ed2b
code
1209
# determine order of a numerical list, eg, [0.3, 0.1, 0.6, -0.1] -> [3, 2, 4, 1] function rank(v) w = sort(collect(enumerate(v)); by=last) return invperm(first.(w)) end features, labels = load_data("iris") features = float.(features) labels = string.(labels) classes = unique(labels) @testset "adding models in an ensemble" begin n = 40 # n_trees in first step Δn = 30 # n_trees to be added one_step_model = build_forest(labels, features, 2, n + Δn; rng=srng()) model1 = build_forest(labels, features, 2, n; rng=srng()) two_step_model = build_forest(model1, labels, features, 2, Δn; rng=srng()) @test length(two_step_model) == n + Δn # test the models agree on the initial portion of the ensemble: @test apply_forest_proba(one_step_model[1:n], features, classes) ≈ apply_forest_proba(two_step_model[1:n], features, classes) # smoke test - predictions are from the classes seen: @test issubset(unique(apply_forest(two_step_model, features)), classes) # smoke test - one-step and two-step models predict the same feature rankings: @test rank(impurity_importance(one_step_model)) == rank(impurity_importance(two_step_model)) end
ModalDecisionTrees
https://github.com/aclai-lab/ModalDecisionTrees.jl.git
[ "MIT" ]
0.5.0
200b2bd9dee3dfe2dcffa1fb51b6dd00d371ed2b
code
2496
# Classification Test - Adult Data Set # https://archive.ics.uci.edu/ml/datasets/adult @testset "adult.jl" begin features, labels = load_data("adult") model = build_tree(labels, features; rng=StableRNG(1)) preds = apply_tree(model, features) cm = confusion_matrix(labels, preds) @test cm.accuracy > 0.99 features = string.(features) labels = string.(labels) n_subfeatures = 3 n_trees = 5 model = build_forest(labels, features, n_subfeatures, n_trees; rng=StableRNG(1)) preds = apply_forest(model, features) cm = confusion_matrix(labels, preds) @test cm.accuracy > 0.9 f1 = impurity_importance(model) p1 = permutation_importance( model, labels, features, (model, y, X) -> accuracy(y, apply_forest(model, X)); rng=StableRNG(1), ).mean preds_MT = apply_forest(model, features; use_multithreading=true) cm_MT = confusion_matrix(labels, preds_MT) @test cm_MT.accuracy > 0.9 n_iterations = 15 model, coeffs = build_adaboost_stumps(labels, features, n_iterations; rng=StableRNG(1)) preds = apply_adaboost_stumps(model, coeffs, features) cm = confusion_matrix(labels, preds) @test cm.accuracy > 0.8 f2 = impurity_importance(model, coeffs) p2 = permutation_importance( model, labels, features, (model, y, X) -> accuracy(y, apply_forest(model, X)); rng=StableRNG(1), ).mean @test similarity(p2, p2) > 0.8 @test similarity(f1, f2) < 0.8 println("\n##### 3 foldCV Classification Tree #####") pruning_purity = 0.9 nfolds = 3 accuracy1 = nfoldCV_tree( labels, features, nfolds, pruning_purity; rng=StableRNG(1), verbose=false ) @test mean(accuracy1) > 0.8 println("\n##### 3 foldCV Classification Forest #####") n_subfeatures = 2 n_trees = 10 n_folds = 3 partial_sampling = 0.5 accuracy1 = nfoldCV_forest( labels, features, n_folds, n_subfeatures, n_trees, partial_sampling; rng=StableRNG(1), verbose=false, ) @test mean(accuracy1) > 0.8 println("\n##### nfoldCV Classification Adaboosted Stumps #####") n_iterations = 15 n_folds = 3 accuracy1 = nfoldCV_stumps( labels, features, n_folds, n_iterations; rng=StableRNG(1), verbose=false ) @test mean(accuracy1) > 0.8 end # @testset
ModalDecisionTrees
https://github.com/aclai-lab/ModalDecisionTrees.jl.git
[ "MIT" ]
0.5.0
200b2bd9dee3dfe2dcffa1fb51b6dd00d371ed2b
code
2869
@testset "digits.jl" begin X, Y = load_data("digits") t = DecisionTree.build_tree(Y, X) @test length(t) == 148 @test sum(apply_tree(t, X) .== Y) == length(Y) n_subfeatures = 0 max_depth = 6 min_samples_leaf = 5 t = DecisionTree.build_tree(Y, X, n_subfeatures, max_depth) @test length(t) == 57 t = DecisionTree.build_tree(Y, X, n_subfeatures, max_depth, min_samples_leaf) @test length(t) == 50 min_samples_leaf = 3 min_samples_split = 5 min_purity_increase = 0.05 t = DecisionTree.build_tree( Y, X, n_subfeatures, max_depth, min_samples_leaf, min_samples_split ) @test length(t) == 55 t = DecisionTree.build_tree( Y, X, n_subfeatures, max_depth, min_samples_leaf, min_samples_split, min_purity_increase; rng=StableRNG(1), ) @test length(t) == 54 i1 = impurity_importance(t; normalize=true) s1 = split_importance(t) p1 = permutation_importance( t, Y, X, (model, y, X) -> accuracy(y, apply_tree(model, X)); rng=StableRNG(1) ).mean # test that all purity decisions are based on passed-in purity function; # if so, this should be same as previous test entropy1000(ns, n) = DecisionTree.util.entropy(ns, n) * 1000 min_samples_leaf = 3 min_samples_split = 5 min_purity_increase = 0.05 * 1000 t = DecisionTree.build_tree( Y, X, n_subfeatures, max_depth, min_samples_leaf, min_samples_split, min_purity_increase; loss=entropy1000, rng=StableRNG(1), ) @test length(t) == 54 i2 = impurity_importance(t; normalize=true) s2 = split_importance(t) p2 = permutation_importance( t, Y, X, (model, y, X) -> accuracy(y, apply_tree(model, X)); rng=StableRNG(1) ).mean @test isapprox(i2, i1) @test s1 == s2 @test similarity(p2, p1) > 0.9 n_subfeatures = 3 n_trees = 10 partial_sampling = 0.7 max_depth = -1 min_samples_leaf = 1 min_samples_split = 2 min_purity_increase = 0.0 model = DecisionTree.build_forest( Y, X, n_subfeatures, n_trees, partial_sampling, max_depth, min_samples_leaf, min_samples_split, min_purity_increase; rng=StableRNG(1), ) preds = apply_forest(model, X) cm = confusion_matrix(Y, preds) @test cm.accuracy > 0.95 preds_MT = apply_forest(model, X; use_multithreading=true) cm_MT = confusion_matrix(Y, preds_MT) @test cm_MT.accuracy > 0.95 n_iterations = 100 model, coeffs = DecisionTree.build_adaboost_stumps(Y, X, n_iterations) preds = apply_adaboost_stumps(model, coeffs, X) cm = confusion_matrix(Y, preds) @test cm.accuracy > 0.8 end # @testset
ModalDecisionTrees
https://github.com/aclai-lab/ModalDecisionTrees.jl.git
[ "MIT" ]
0.5.0
200b2bd9dee3dfe2dcffa1fb51b6dd00d371ed2b
code
1319
### Classification - Heterogeneously typed features (ints, floats, bools, strings) @testset "heterogeneous.jl" begin m, n = 10^2, 5 tf = [trues(Int(m / 2)) falses(Int(m / 2))] inds = Random.randperm(StableRNG(1), m) labels = string.(tf[inds]) features = Array{Any}(undef, m, n) features[:, :] = randn(StableRNG(1), m, n) features[:, 2] = string.(tf[Random.randperm(StableRNG(1), m)]) features[:, 3] = map(t -> round.(Int, t), features[:, 3]) features[:, 4] = tf[inds] model = build_tree(labels, features; rng=StableRNG(1)) preds = apply_tree(model, features) cm = confusion_matrix(labels, preds) @test cm.accuracy > 0.9 n_subfeatures = 2 n_trees = 3 model = build_forest(labels, features, n_subfeatures, n_trees; rng=StableRNG(1)) preds = apply_forest(model, features) cm = confusion_matrix(labels, preds) @test cm.accuracy > 0.9 preds_MT = apply_forest(model, features; use_multithreading=true) cm_MT = confusion_matrix(labels, preds_MT) @test cm_MT.accuracy > 0.9 n_subfeatures = 7 model, coeffs = build_adaboost_stumps(labels, features, n_subfeatures; rng=StableRNG(1)) preds = apply_adaboost_stumps(model, coeffs, features) cm = confusion_matrix(labels, preds) @test cm.accuracy > 0.9 end # @testset
ModalDecisionTrees
https://github.com/aclai-lab/ModalDecisionTrees.jl.git
[ "MIT" ]
0.5.0
200b2bd9dee3dfe2dcffa1fb51b6dd00d371ed2b
code
4136
# Classification Test - Iris Data Set # https://archive.ics.uci.edu/ml/datasets/iris @testset "iris.jl" begin features, labels = load_data("iris") labels = String.(labels) classes = sort(unique(labels)) n = length(labels) # train a decision stump (depth=1) model = build_stump(labels, features) preds = apply_tree(model, features) cm = confusion_matrix(labels, preds) @test cm.accuracy > 0.6 @test depth(model) == 1 probs = apply_tree_proba(model, features, classes) @test reshape(sum(probs; dims=2), n) ≈ ones(n) # train full-tree classifier (over-fit) model = build_tree(labels, features) preds = apply_tree(model, features) cm = confusion_matrix(labels, preds) @test cm.accuracy == 1.0 @test length(model) == 9 @test depth(model) == 5 @test typeof(preds) == Vector{String} print_tree(model) probs = apply_tree_proba(model, features, classes) @test reshape(sum(probs; dims=2), n) ≈ ones(n) i1 = impurity_importance(model) s1 = split_importance(model) # prune tree to 8 leaves pruning_purity = 0.9 pt = prune_tree(model, pruning_purity) @test length(pt) == 8 preds = apply_tree(pt, features) cm = confusion_matrix(labels, preds) @test 0.99 < cm.accuracy < 1.0 i2 = impurity_importance(pt) s2 = split_importance(pt) @test isapprox(i2, i1 .+ [0, 0, 0, (47 * log(47 / 48) + log(1 / 48)) / 150]) @test s1 == s2 .+ [0, 0, 0, 1] # prune tree to 3 leaves pruning_purity = 0.6 pt = prune_tree(model, pruning_purity) @test length(pt) == 3 preds = apply_tree(pt, features) cm = confusion_matrix(labels, preds) @test 0.95 < cm.accuracy < 1.0 probs = apply_tree_proba(model, features, classes) @test reshape(sum(probs; dims=2), n) ≈ ones(n) # prune tree to a stump, 2 leaves pruning_purity = 0.5 pt = prune_tree(model, pruning_purity) @test length(pt) == 2 preds = apply_tree(pt, features) cm = confusion_matrix(labels, preds) @test 0.66 < cm.accuracy < 1.0 # run n-fold cross validation for pruned tree println("\n##### nfoldCV Classification Tree #####") nfolds = 3 accuracy = nfoldCV_tree(labels, features, nfolds; rng=StableRNG(1)) @test mean(accuracy) > 0.8 # train random forest classifier n_trees = 10 n_subfeatures = 2 partial_sampling = 0.5 model = build_forest( labels, features, n_subfeatures, n_trees, partial_sampling; rng=StableRNG(2) ) preds = apply_forest(model, features) cm = confusion_matrix(labels, preds) @test cm.accuracy > 0.95 @test typeof(preds) == Vector{String} probs = apply_forest_proba(model, features, classes) @test reshape(sum(probs; dims=2), n) ≈ ones(n) preds_MT = apply_forest(model, features; use_multithreading=true) cm_MT = confusion_matrix(labels, preds_MT) @test cm_MT.accuracy > 0.95 @test typeof(preds_MT) == Vector{String} @test sum(preds .!= preds_MT) == 0 # run n-fold cross validation for forests println("\n##### nfoldCV Classification Forest #####") n_subfeatures = 2 n_trees = 10 n_folds = 3 partial_sampling = 0.5 accuracy = nfoldCV_forest( labels, features, nfolds, n_subfeatures, n_trees, partial_sampling; rng=StableRNG(1) ) @test mean(accuracy) > 0.9 # train adaptive-boosted decision stumps n_iterations = 15 model, coeffs = build_adaboost_stumps(labels, features, n_iterations; rng=StableRNG(1)) preds = apply_adaboost_stumps(model, coeffs, features) cm = confusion_matrix(labels, preds) @test cm.accuracy > 0.9 @test typeof(preds) == Vector{String} probs = apply_adaboost_stumps_proba(model, coeffs, features, classes) @test reshape(sum(probs; dims=2), n) ≈ ones(n) # run n-fold cross validation for boosted stumps, using 7 iterations and 3 folds println("\n##### nfoldCV Classification Adaboosted Stumps #####") n_iterations = 15 nfolds = 3 accuracy = nfoldCV_stumps(labels, features, nfolds, n_iterations; rng=StableRNG(1)) @test mean(accuracy) > 0.85 end # @testset
ModalDecisionTrees
https://github.com/aclai-lab/ModalDecisionTrees.jl.git
[ "MIT" ]
0.5.0
200b2bd9dee3dfe2dcffa1fb51b6dd00d371ed2b
code
4156
@testset "low_precision.jl" begin Random.seed!(16) n, m = 10^3, 5 features = Array{Any}(undef, n, m) features[:, :] = rand(StableRNG(1), n, m) features[:, 1] = round.(Int32, features[:, 1]) # convert a column of 32bit integers weights = rand(StableRNG(1), -1:1, m) labels = round.(Int32, features * weights) model = build_stump(labels, features) preds = apply_tree(model, features) @test typeof(preds) == Vector{Int32} @test depth(model) == 1 n_subfeatures = Int32(0) max_depth = Int32(-1) min_samples_leaf = Int32(1) min_samples_split = Int32(2) min_purity_increase = 0.0 model = build_tree( labels, features, n_subfeatures, max_depth, min_samples_leaf, min_samples_split, min_purity_increase; rng=StableRNG(1), ) preds = apply_tree(model, features) cm = confusion_matrix(labels, preds) @test typeof(preds) == Vector{Int32} @test cm.accuracy > 0.9 n_subfeatures = Int32(0) n_trees = Int32(10) partial_sampling = 0.7 max_depth = Int32(-1) model = build_forest( labels, features, n_subfeatures, n_trees, partial_sampling, max_depth; rng=StableRNG(1), ) preds = apply_forest(model, features) cm = confusion_matrix(labels, preds) @test typeof(preds) == Vector{Int32} @test cm.accuracy > 0.9 preds_MT = apply_forest(model, features; use_multithreading=true) cm_MT = confusion_matrix(labels, preds_MT) @test typeof(preds_MT) == Vector{Int32} @test cm_MT.accuracy > 0.9 n_iterations = Int32(25) model, coeffs = build_adaboost_stumps(labels, features, n_iterations; rng=StableRNG(1)) preds = apply_adaboost_stumps(model, coeffs, features) cm = confusion_matrix(labels, preds) @test typeof(preds) == Vector{Int32} @test cm.accuracy > 0.6 println("\n##### nfoldCV Classification Tree #####") n_folds = Int32(3) pruning_purity = 1.0 max_depth = Int32(-1) min_samples_leaf = Int32(1) min_samples_split = Int32(2) min_purity_increase = 0.0 accuracy1 = nfoldCV_tree( labels, features, n_folds, pruning_purity, max_depth, min_samples_leaf, min_samples_split, min_purity_increase; rng=StableRNG(1), ) @test mean(accuracy1) > 0.7 println("\n##### nfoldCV Classification Forest #####") n_trees = Int32(10) n_subfeatures = Int32(2) n_folds = Int32(3) max_depth = Int32(-1) min_samples_leaf = Int32(5) min_samples_split = Int32(2) min_purity_increase = 0.0 accuracy1 = nfoldCV_forest( labels, features, n_folds, n_subfeatures, n_trees, partial_sampling, max_depth, min_samples_leaf, min_samples_split, min_purity_increase; rng=StableRNG(1), ) @test mean(accuracy1) > 0.7 println("\n##### nfoldCV Adaboosted Stumps #####") n_iterations = Int32(25) accuracy1 = nfoldCV_stumps(labels, features, n_folds, n_iterations; rng=StableRNG(1)) @test mean(accuracy1) > 0.6 # Test Int8 labels, and Float16 features features = Float16.(features) labels = Int8.(labels) model = build_stump(labels, features) preds = apply_tree(model, features) @test typeof(preds) == Vector{Int8} model = build_tree(labels, features) preds = apply_tree(model, features) @test typeof(preds) == Vector{Int8} model = build_forest(labels, features) preds = apply_forest(model, features) @test typeof(preds) == Vector{Int8} preds_MT = apply_forest(model, features; use_multithreading=true) @test typeof(preds_MT) == Vector{Int8} @test sum(abs.(preds .- preds_MT)) == zero(Int8) model = build_tree(labels, features) preds = apply_tree(model, features) @test typeof(preds) == Vector{Int8} model, coeffs = build_adaboost_stumps(labels, features, n_iterations) preds = apply_adaboost_stumps(model, coeffs, features) @test typeof(preds) == Vector{Int8} end # @testset
ModalDecisionTrees
https://github.com/aclai-lab/ModalDecisionTrees.jl.git
[ "MIT" ]
0.5.0
200b2bd9dee3dfe2dcffa1fb51b6dd00d371ed2b
code
6012
@testset "random.jl" begin Random.seed!(16) n, m = 10^3, 5 features = rand(StableRNG(1), n, m) weights = rand(StableRNG(1), -1:1, m) labels = round.(Int, features * weights) model = build_stump(labels, round.(Int, features)) preds = apply_tree(model, round.(Int, features)) @test depth(model) == 1 max_depth = 3 model = build_tree(labels, features, 0, max_depth) @test depth(model) == max_depth io = IOBuffer() print_tree(io, model, 3) text = String(take!(io)) println() print(text) println() # Read the regex as: many not arrow left followed by an arrow left, a space, some numbers and # a dot and a space and question mark. rx = r"[^<]*< [0-9\.]* ?" matches = eachmatch(rx, text) @test !isempty(matches) model = build_tree(labels, features; rng=StableRNG(1)) preds = apply_tree(model, features) cm = confusion_matrix(labels, preds) @test cm.accuracy > 0.9 @test typeof(preds) == Vector{Int} # test RNG param of trees n_subfeatures = 2 t1 = build_tree(labels, features, n_subfeatures; rng=10) t2 = build_tree(labels, features, n_subfeatures; rng=10) t3 = build_tree(labels, features, n_subfeatures; rng=5) @test (length(t1) == length(t2)) && (depth(t1) == depth(t2)) @test (length(t1) != length(t3)) || (depth(t1) != depth(t3)) mt = Random.MersenneTwister(1) t1 = build_tree(labels, features, n_subfeatures; rng=mt) t3 = build_tree(labels, features, n_subfeatures; rng=mt) @test (length(t1) != length(t3)) || (depth(t1) != depth(t3)) model = build_forest(labels, features; rng=StableRNG(1)) preds = apply_forest(model, features) cm = confusion_matrix(labels, preds) @test cm.accuracy > 0.9 @test typeof(preds) == Vector{Int} preds_MT = apply_forest(model, features; use_multithreading=true) cm_MT = confusion_matrix(labels, preds_MT) @test cm_MT.accuracy > 0.9 @test typeof(preds_MT) == Vector{Int} @test sum(abs.(preds .- preds_MT)) == zero(Int) n_subfeatures = 3 n_trees = 9 partial_sampling = 0.7 max_depth = -1 min_samples_leaf = 5 min_samples_split = 2 min_purity_increase = 0.0 model = build_forest( labels, features, n_subfeatures, n_trees, partial_sampling, max_depth, min_samples_leaf, min_samples_split, min_purity_increase; rng=StableRNG(1), ) preds = apply_forest(model, features) cm = confusion_matrix(labels, preds) @test cm.accuracy > 0.6 @test length(model) == n_trees preds_MT = apply_forest(model, features; use_multithreading=true) cm_MT = confusion_matrix(labels, preds_MT) @test cm_MT.accuracy > 0.9 # test n_subfeatures n_subfeatures = 0 m_partial = build_forest(labels, features; rng=StableRNG(1)) # default sqrt(n_features) m_full = build_forest(labels, features, n_subfeatures; rng=StableRNG(1)) @test all(length.(m_full.trees) .< length.(m_partial.trees)) # test partial_sampling parameter, train on single sample partial_sampling = 1 / n n_subfeatures = 0 n_trees = 1 # single tree test max_depth = -1 min_samples_leaf = 1 min_samples_split = 2 min_purity_increase = 0.0 partial = build_forest( labels, features, n_subfeatures, n_trees, partial_sampling, max_depth, min_samples_leaf, min_samples_split, min_purity_increase, ) @test typeof(partial.trees[1]) <: Leaf # test RNG parameter for forests n_subfeatures = 2 n_trees = 5 m1 = build_forest(labels, features, n_subfeatures, n_trees; rng=10) m2 = build_forest(labels, features, n_subfeatures, n_trees; rng=10) m3 = build_forest(labels, features, n_subfeatures, n_trees; rng=5) @test length.(m1.trees) == length.(m2.trees) @test depth.(m1.trees) == depth.(m2.trees) @test length.(m1.trees) != length.(m3.trees) n_iterations = 25 model, coeffs = build_adaboost_stumps(labels, features, n_iterations; rng=StableRNG(1)) preds = apply_adaboost_stumps(model, coeffs, features) cm = confusion_matrix(labels, preds) @test cm.accuracy > 0.6 @test typeof(preds) == Vector{Int} @test length(model) == n_iterations """ RNGs can look like they produce stable results, but do in fact differ when you run it many times. In some RNGs the problem already shows up when doing two runs and comparing those. This loop tests multiple RNGs to have a higher chance of spotting a problem. See https://github.com/JuliaAI/DecisionTree.jl/pull/174 for more information. """ function test_rng(f::Function, args, expected_accuracy) println("Testing $f") accuracy = f(args...; rng=StableRNG(10), verbose=false) accuracy2 = f(args...; rng=StableRNG(5), verbose=false) @test accuracy != accuracy2 for i in 10:14 accuracy = f(args...; rng=StableRNG(i), verbose=false) accuracy2 = f(args...; rng=StableRNG(i), verbose=false) @test mean(accuracy) > expected_accuracy @test accuracy == accuracy2 end end println("\n##### nfoldCV Classification Tree #####") nfolds = 3 pruning_purity = 1.0 max_depth = 5 args = [labels, features, nfolds, pruning_purity, max_depth] test_rng(nfoldCV_tree, args, 0.7) println("\n##### nfoldCV Classification Forest #####") nfolds = 3 n_subfeatures = 2 n_trees = 10 args = [labels, features, nfolds, n_subfeatures, n_trees] test_rng(nfoldCV_forest, args, 0.7) # This is a smoke test to verify that the multi-threaded code doesn't crash. nfoldCV_forest(args...; rng=MersenneTwister(1)) println("\n##### nfoldCV Adaboosted Stumps #####") n_iterations = 25 n_folds = 3 args = [labels, features, n_folds, n_iterations] test_rng(nfoldCV_stumps, args, 0.6) end # @testset
ModalDecisionTrees
https://github.com/aclai-lab/ModalDecisionTrees.jl.git
[ "MIT" ]
0.5.0
200b2bd9dee3dfe2dcffa1fb51b6dd00d371ed2b
code
3034
@testset "scikitlearn.jl" begin Random.seed!(2) n, m = 10^3, 5 features = rand(StableRNG(1), n, m) weights = rand(StableRNG(1), -1:1, m) labels = round.(Int, features * weights) # I wish we could use ScikitLearn.jl's cross-validation, but that'd require # installing it on Travis model = fit!( DecisionTreeClassifier(; rng=StableRNG(1), pruning_purity_threshold=0.9), features, labels, ) @test mean(predict(model, features) .== labels) > 0.8 @test impurity_importance(model) == impurity_importance(model.root) @test split_importance(model) == split_importance(model.root) @test isapprox( permutation_importance(model, features, labels; rng=StableRNG(1)).mean, permutation_importance( model.root, labels, features, (model, y, X) -> accuracy(y, apply_tree(model, X)); rng=StableRNG(1), ).mean, ) model = fit!(RandomForestClassifier(; rng=StableRNG(1)), features, labels) @test mean(predict(model, features) .== labels) > 0.8 @test impurity_importance(model) == impurity_importance(model.ensemble) @test split_importance(model) == split_importance(model.ensemble) @test isapprox( permutation_importance(model, features, labels; rng=StableRNG(1)).mean, permutation_importance( model.ensemble, labels, features, (model, y, X) -> accuracy(y, apply_forest(model, X)); rng=StableRNG(1), ).mean, ) model = fit!(AdaBoostStumpClassifier(; rng=StableRNG(1)), features, labels) # Adaboost isn't so hot on this task, disabled for now mean(predict(model, features) .== labels) @test impurity_importance(model) == impurity_importance(model.ensemble, model.coeffs) @test split_importance(model) == split_importance(model.ensemble, model.coeffs) @test isapprox( permutation_importance(model, features, labels; rng=StableRNG(1)).mean, permutation_importance( (model.ensemble, model.coeffs), labels, features, (model, y, X) -> accuracy(y, apply_adaboost_stumps(model, X)); rng=StableRNG(1), ).mean, ) N = 3000 X = randn(StableRNG(1), N, 10) # TODO: we should probably support fit!(::DecisionTreeClassifier, ::BitArray) y = convert(Vector{Bool}, randn(N) .< 0) max_depth = 5 model = fit!(DecisionTreeClassifier(; rng=StableRNG(1), max_depth), X, y) @test depth(model) == max_depth ## Test that the RNG arguments work as expected Random.seed!(2) X = randn(StableRNG(1), 100, 10) y = rand(StableRNG(1), Bool, 100) @test predict_proba(fit!(RandomForestClassifier(; rng=10), X, y), X) == predict_proba(fit!(RandomForestClassifier(; rng=10), X, y), X) @test predict_proba(fit!(RandomForestClassifier(; rng=10), X, y), X) != predict_proba(fit!(RandomForestClassifier(; rng=12), X, y), X) end # @testset
ModalDecisionTrees
https://github.com/aclai-lab/ModalDecisionTrees.jl.git
[ "MIT" ]
0.5.0
200b2bd9dee3dfe2dcffa1fb51b6dd00d371ed2b
code
4308
# Test `AbstractTrees`-interface @testset "abstract_trees_test.jl" begin # CAVEAT: These tests rely heavily on the texts generated in `printnode`. # After changes in `printnode` the following `*pattern`s might be adapted. ### Some content-checking helpers # if no feature names or class labels are given, the following keywords must be present featid_pattern = "Feature: " # feature ids are prepended by this text classid_pattern = "Class: " # `Leaf.majority` is prepended by this text # if feature names and class labels are given, they can be identified within the tree using these patterns fname_pattern(fname) = fname * " <" # feature names are followed by " <" clabel_pattern(clabel) = "─ " * clabel * " (" # class labels are embedded in "─ " and " (" # occur all elements of `pool` in the form defined by `fname_/clabel_pattern` in `str_tree`? function check_occurence(str_tree, pool, pattern) count(map(elem -> occursin(pattern(elem), str_tree), pool)) == length(pool) end @info("Test base functionality") l1 = Leaf(1, [1, 1, 2]) l2 = Leaf(2, [1, 2, 2]) l3 = Leaf(3, [3, 3, 1]) n2 = Node(2, 0.5, l2, l3) n1 = Node(1, 0.7, l1, n2) feature_names = ["firstFt", "secondFt"] class_labels = ["a", "b", "c"] infotree1 = wrap(n1, (featurenames=feature_names, classlabels=class_labels)) infotree2 = wrap(n1, (featurenames=feature_names,)) infotree3 = wrap(n1, (classlabels=class_labels,)) infotree4 = wrap(n1, (x=feature_names, y=class_labels)) infotree5 = wrap(n1) @info(" -- Tree with feature names and class labels") AbstractTrees.print_tree(infotree1) rep1 = AbstractTrees.repr_tree(infotree1) @test check_occurence(rep1, feature_names, fname_pattern) @test check_occurence(rep1, class_labels, clabel_pattern) @info(" -- Tree with feature names") AbstractTrees.print_tree(infotree2) rep2 = AbstractTrees.repr_tree(infotree2) @test check_occurence(rep2, feature_names, fname_pattern) @test occursin(classid_pattern, rep2) @info(" -- Tree with class labels") AbstractTrees.print_tree(infotree3) rep3 = AbstractTrees.repr_tree(infotree3) @test occursin(featid_pattern, rep3) @test check_occurence(rep3, class_labels, clabel_pattern) @info(" -- Tree with ids only (nonsense parameters)") AbstractTrees.print_tree(infotree4) rep4 = AbstractTrees.repr_tree(infotree4) @test occursin(featid_pattern, rep4) @test occursin(classid_pattern, rep4) @info(" -- Tree with ids only") AbstractTrees.print_tree(infotree5) rep5 = AbstractTrees.repr_tree(infotree5) @test occursin(featid_pattern, rep5) @test occursin(classid_pattern, rep5) @info("Test `children` with 'adult' decision tree") @info(" -- Preparing test data") features, labels = load_data("adult") feature_names_adult = [ "age", "workclass", "fnlwgt", "education", "education-num", "marital-status", "occupation", "relationship", "race", "sex", "capital-gain", "capital-loss", "hours-per-week", "native-country", ] model = build_tree(labels, features) wrapped_tree = wrap(model, (featurenames=feature_names_adult,)) @info(" -- Test `children`") function traverse_tree(node::InfoNode) l, r = AbstractTrees.children(node) @test l.info == node.info @test r.info == node.info traverse_tree(l) traverse_tree(r) end traverse_tree(leaf::InfoLeaf) = nothing traverse_tree(wrapped_tree) end @testset "abstract_trees - test misuse" begin @info("Test misuse of `classlabel` information") @info("Create test data - a decision tree based on the iris data set") features, labels = load_data("iris") features = float.(features) labels = string.(labels) model = DecisionTreeClassifier() fit!(model, features, labels) @info("Try to replace the exisitng class labels") class_labels = unique(labels) dtree = model.root.node wt = DecisionTree.wrap(dtree, (classlabels=class_labels,)) @test_throws AssertionError AbstractTrees.print_tree(wt) end
ModalDecisionTrees
https://github.com/aclai-lab/ModalDecisionTrees.jl.git
[ "MIT" ]
0.5.0
200b2bd9dee3dfe2dcffa1fb51b6dd00d371ed2b
code
1140
# Test conversion of Leaf to Node @testset "convert.jl" begin lf = Leaf(1, [1]) nv = Node{Int,Int}[] rv = Root{Int,Int}[] push!(nv, lf) push!(rv, lf) push!(rv, nv[1]) @test apply_tree(nv[1], [0]) == 1 @test apply_tree(rv[1], [0]) == 1 @test apply_tree(rv[2], [0]) == 1 lf = Leaf(1.0, [0.0, 1.0]) nv = Node{Int,Float64}[] rv = Root{Int,Float64}[] push!(nv, lf) push!(rv, lf) push!(rv, nv[1]) @test apply_tree(nv[1], [0]) == 1.0 @test apply_tree(rv[1], [0]) == 1.0 @test apply_tree(rv[2], [0]) == 1.0 lf = Leaf("A", ["B", "A"]) nv = Node{Int,String}[] rv = Root{Int,String}[] push!(nv, lf) push!(rv, lf) push!(rv, nv[1]) @test apply_tree(nv[1], [0]) == "A" @test apply_tree(rv[1], [0]) == "A" @test apply_tree(rv[2], [0]) == "A" end @testset "convert to text" begin n, m = 10^3, 5 features = rand(StableRNG(1), n, m) weights = rand(StableRNG(1), -1:1, m) labels = features * weights model = fit!(DecisionTreeRegressor(; rng=StableRNG(1)), features, labels) # Smoke test. print_tree(devnull, model) end
ModalDecisionTrees
https://github.com/aclai-lab/ModalDecisionTrees.jl.git
[ "MIT" ]
0.5.0
200b2bd9dee3dfe2dcffa1fb51b6dd00d371ed2b
code
1448
@testset "methods for `Ensemble` type" begin features, labels = load_data("iris") # combining identical ensembles: ensemble1 = build_forest(labels, features, 2, 7) @test DecisionTree.has_impurity_importance(ensemble1) @test ensemble1[1:2].trees == ensemble1.trees[1:2] @test length(ensemble1) == 7 @test DecisionTree.n_features(ensemble1) == 4 ensemble = vcat(ensemble1, ensemble1) @test ensemble.featim ≈ ensemble1.featim # combining heterogeneous ensembles: ensemble2 = build_forest(labels, features, 2, 10) ensemble = vcat(ensemble1, ensemble2) n1 = length(ensemble1.trees) n2 = length(ensemble2.trees) n = n1 + n2 @test n * ensemble.featim ≈ n1 * ensemble1.featim + n2 * ensemble2.featim # including an ensemble without impurity importance should drop impurity importance from # the combination: ensemble3 = build_forest(labels, features, 2, 4; impurity_importance=false) @test !DecisionTree.has_impurity_importance(ensemble3) @test vcat(ensemble1, ensemble3).featim == Float64[] @test vcat(ensemble3, ensemble1).featim == Float64[] @test vcat(ensemble3, ensemble3).featim == Float64[] # changing the number of features: ensemble4 = build_forest(labels, features[:, 1:3], 2, 4) @test_logs vcat(ensemble3, ensemble4) # ensemble 3 doesn't support importances @test_throws DecisionTree.ERR_ENSEMBLE_VCAT vcat(ensemble1, ensemble4) end
ModalDecisionTrees
https://github.com/aclai-lab/ModalDecisionTrees.jl.git
[ "MIT" ]
0.5.0
200b2bd9dee3dfe2dcffa1fb51b6dd00d371ed2b
code
8585
@testset "feature_importance_test.jl" begin X = [ -3 2 2 -2 -2 -3 -2 0 2 -1 -3 1 -1 -1 0 2 -3 1 1 -2 0 3 -2 3 1 -1 2 2 -1 -2 2 0 1 5 0 0 1 0 2 3 1 -1 1 4 -3 5 5 -2 6 3 -1 4 2 0 4 3 2 5 2 4 ] y = [0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1] # classifier model = build_tree(y, X) entropy1 = -(10 * log(10 / 20) + 10 * log(10 / 20)) / 20 entropy2 = -(5 * log(5 / 15) + 10 * log(10 / 15)) / 20 entropy3 = -(5 * log(5 / 7) + 2 * log(2 / 7)) / 20 @test isapprox( impurity_importance(model), [entropy1 - entropy2, entropy2 - entropy3, entropy3] ) @test split_importance(model) == [1, 1, 1] # prune_tree pt = prune_tree(model, 0.7) @test isapprox(impurity_importance(pt), [entropy1 - entropy2, entropy2 - entropy3, 0]) @test split_importance(pt) == [1, 1, 0] pt = prune_tree(model, 0.6) @test isapprox(impurity_importance(pt), [entropy1 - entropy2, 0, 0]) @test split_importance(pt) == [1, 0, 0] # regressor model = build_tree(float.(y), X, 0, -1, 2) mse1 = ((1^2 * 10 + 0^2 * 10) / 20 - ((1 * 10 + 0 * 10) / 20)^2) mse2 = ((1^2 * 10 + 0^2 * 5) / 15 - ((1 * 10 + 0 * 5) / 15)^2) * 15 / 20 mse3 = ((1^2 * 2 + 0^2 * 5) / 7 - ((1 * 2 + 0 * 5) / 7)^2) * 7 / 20 @test isapprox(impurity_importance(model), [mse1 - mse2, mse2 - mse3, mse3]) @test split_importance(model) == [1, 1, 1] # prune_tree pt = prune_tree(model, 0.7) @test isapprox(impurity_importance(pt), [mse1 - mse2, mse2 - mse3, 0]) @test split_importance(pt) == [1, 1, 0] pt = prune_tree(model, 0.6) @test isapprox(impurity_importance(pt), [mse1 - mse2, 0, 0]) @test split_importance(pt) == [1, 0, 0] # Increase samples for testing permutation_importance and ensemble models X2 = repeat(X; inner=(50, 1)) .+ rand(StableRNG(1), 1000, 3) y2 = repeat(y; inner=50) # classifier model = build_tree(y2, X2; rng=StableRNG(1)) p1 = permutation_importance( model, y2, X2, (model, y, X) -> accuracy(y, apply_tree(model, X)), 10; rng=StableRNG(1), ) @test similarity( impurity_importance(model), [entropy1 - entropy2, entropy2 - entropy3, entropy3] ) > 0.9 @test similarity(split_importance(model), [1, 1, 1]) > 0.9 @test argmax(p1.mean) == 1 @test argmin(p1.mean) == 3 model = build_forest(y2, X2, -1, 100; rng=StableRNG(1)) i1 = impurity_importance(model) s1 = split_importance(model) p1 = permutation_importance( model, y2, X2, (model, y, X) -> accuracy(y, apply_forest(model, X)), 10; rng=StableRNG(1), ) model = build_forest(y2, X2, -1, 100; rng=StableRNG(100)) i2 = impurity_importance(model) s2 = split_importance(model) p2 = permutation_importance( model, y2, X2, (model, y, X) -> accuracy(y, apply_forest(model, X)), 10; rng=StableRNG(100), ) @test argmin(p1.mean) == argmin(p2.mean) @test (-(sort(p1.mean; rev=true)[1:2]...) - -(sort(p2.mean; rev=true)[1:2]...)) < 0.2 @test similarity(i1, i2) > 0.9 @test similarity(s1, s2) > 0.9 model, coeffs = build_adaboost_stumps(y2, X2, 20; rng=StableRNG(1)) s1 = split_importance(model) p1 = permutation_importance( (model, coeffs), y2, X2, (model, y, X) -> accuracy(y, apply_adaboost_stumps(model, X)), 10; rng=StableRNG(1), ) model, coeffs = build_adaboost_stumps(y2, X2, 20; rng=StableRNG(100)) s2 = split_importance(model) p2 = permutation_importance( (model, coeffs), y2, X2, (model, y, X) -> accuracy(y, apply_adaboost_stumps(model, X)), 10; rng=StableRNG(100), ) @test argmin(p1.mean) == argmin(p2.mean) @test (-(sort(p1.mean; rev=true)[1:2]...) - -(sort(p2.mean; rev=true)[1:2]...)) < 0.1 @test similarity(s1, s2) > 0.9 # regressor y2 = y2 .+ rand(StableRNG(1), 1000) ./ 100 model = build_tree(y2, X2, 0, 3, 5, 2, 0.01; rng=StableRNG(1)) p1 = permutation_importance( model, y2, X2, (model, y, X) -> R2(y, apply_tree(model, X)), 10; rng=StableRNG(1) ) @test similarity(impurity_importance(model), [mse1 - mse2, mse2 - mse3, mse3]) > 0.9 @test similarity(split_importance(model), [1, 1, 1]) > 0.9 @test argmax(p1.mean) == 1 @test argmin(p1.mean) == 3 model = build_forest(y2, X2, 0, 100, 0.7, 3, 5, 2, 0.01; rng=StableRNG(1)) i1 = impurity_importance(model) s1 = split_importance(model) p1 = permutation_importance( model, y2, X2, (model, y, X) -> R2(y, apply_forest(model, X)), 10; rng=StableRNG(1) ) model = build_forest(y2, X2, 0, 100, 0.7, 3, 5, 2, 0.01; rng=StableRNG(100)) i2 = impurity_importance(model) s2 = split_importance(model) p2 = permutation_importance( model, y2, X2, (model, y, X) -> R2(y, apply_forest(model, X)), 10; rng=StableRNG(100), ) @test argmax(p1.mean) == argmax(p2.mean) @test argmin(p1.mean) == argmin(p2.mean) @test similarity(i1, i2) > 0.9 @test similarity(s1, s2) > 0.9 # Common datasets X, y = load_data("digits") # classifier model = build_tree(y, X, 0, 3, 1, 2; rng=StableRNG(1)) # sklearn equivalent: # model = DecisionTreeClassifier(max_depth = 3, criterion = 'entropy', random_state = 1) # model.fit(X, y) @test isapprox( filter(x -> >(x, 0), impurity_importance(model; normalize=true)), [0.11896482, 0.15168659, 0.17920925, 0.29679316, 0.11104555, 0.14230064], atol=0.0000005, ) # regressor model = build_tree(float.(y), X, 0, 3, 1, 2; rng=StableRNG(1)) # sklearn equivalent: # model = DecisionTreeRegressor(max_depth = 3, random_state = 1) # model.fit(X, y) @test isapprox( filter(x -> >(x, 0), impurity_importance(model; normalize=true)), [0.1983883, 0.02315617, 0.09821539, 0.06591425, 0.19884457, 0.14939765, 0.26608367], atol=0.0000005, ) X, y = load_data("iris") y = String.(y) # classifier model = build_forest(y, X, -1, 100, 0.7, 2; rng=StableRNG(100)) # sklearn: # model = RandomForestClassifier(n_estimators = 100, max_depth = 2, random_state = 100, criterion = 'entropy') # model.fit(X, y) f1 = impurity_importance(model) @test sum(f1[1:2]) < 0.25 # About 0.1% will fail among different rng @test abs(f1[4] - f1[3]) < 0.35 # About 1% will fail among different rng model, coeffs = build_adaboost_stumps(y, X, 10; rng=StableRNG(1)) # sklearn: # model = AdaBoostClassifier(base_estimator = DecisionTreeClassifier(max_depth = 1, criterion = 'entropy'), # algorithm = 'SAMME', n_estimators = 10, random_state = 1) # model.fit(X, y) f1 = impurity_importance(model, coeffs) @test sum(f1[1:2]) < 0.1 # Very Stable @test 0.35 < (f1[3] - f1[4]) < 0.45 # Very Stable # regressor y2 = repeat([1.0, 2.0, 3.0]; inner=50) model = build_forest(y2, X, 0, 100, 0.7, 2; rng=StableRNG(100)) # sklearn: # model = RandomForestRegressor(n_estimators = 100, max_depth = 2, random_state = 100) # model.fit(X, y) f1 = impurity_importance(model) @test sum(f1[1:2]) < 0.1 # Very Stable X = X[:, 1:3] # leave only one important feature # classifier model = build_forest(y, X, -1, 100, 0.7, 2; rng=StableRNG(100)) # sklearn: # model = RandomForestClassifier(n_estimators = 100, max_depth = 2, random_state = 100, criterion = 'entropy') # model.fit(X, y) f1 = impurity_importance(model) @test argmax(f1) == 3 model, coeffs = build_adaboost_stumps(y, X, 10; rng=StableRNG(1)) # sklearn: # model = AdaBoostClassifier(base_estimator = DecisionTreeClassifier(max_depth = 1, criterion = 'entropy'), # algorithm = 'SAMME', n_estimators = 10, random_state = 1) # model.fit(X, y) @test 0.85 < split_importance(model, coeffs)[3] < 0.95 # Very Stable # regressor model = build_forest(y2, X, 0, 100, 0.7, 2; rng=StableRNG(100)) # sklearn: # model = RandomForestRegressor(n_estimators = 100, max_depth = 2, random_state = 100) # model.fit(X, y) f1 = impurity_importance(model) @test sum(f1[1:2]) < 0.1 # Very Stable end
ModalDecisionTrees
https://github.com/aclai-lab/ModalDecisionTrees.jl.git
[ "MIT" ]
0.5.0
200b2bd9dee3dfe2dcffa1fb51b6dd00d371ed2b
code
772
# Test parallelization of random forests @testset "parallel.jl" begin Distributed.addprocs(1) @test Distributed.nprocs() > 1 Distributed.@everywhere using DecisionTree Random.seed!(16) # Classification n, m = 10^3, 5 features = rand(n, m) weights = rand(-1:1, m) labels = round.(Int, features * weights) model = build_forest(labels, features, 2, 10) preds = apply_forest(model, features) cm = confusion_matrix(labels, preds) @test cm.accuracy > 0.8 # Regression n, m = 10^3, 5 features = randn(n, m) weights = rand(-2:2, m) labels = features * weights model = build_forest(labels, features, 2, 10) preds = apply_forest(model, features) @test R2(labels, preds) > 0.8 end # @testset
ModalDecisionTrees
https://github.com/aclai-lab/ModalDecisionTrees.jl.git
[ "MIT" ]
0.5.0
200b2bd9dee3dfe2dcffa1fb51b6dd00d371ed2b
code
2364
@testset "digits.jl" begin X, Y = load_data("digits") Y = float.(Y) # labels/targets to Float to enable regression min_samples_leaf = 1 n_subfeatures = 0 max_depth = -1 t = DecisionTree.build_tree(Y, X, n_subfeatures, max_depth, min_samples_leaf) @test length(t) in [190, 191] min_samples_leaf = 5 t = DecisionTree.build_tree(Y, X, n_subfeatures, max_depth, min_samples_leaf) @test length(t) == 126 min_samples_leaf = 5 n_subfeatures = 0 max_depth = 6 t = DecisionTree.build_tree(Y, X, n_subfeatures, max_depth, min_samples_leaf) @test length(t) == 44 @test depth(t) == 6 min_samples_leaf = 1 n_subfeatures = 0 max_depth = -1 min_samples_split = 20 t = DecisionTree.build_tree( Y, X, n_subfeatures, max_depth, min_samples_leaf, min_samples_split ) @test length(t) == 122 min_samples_leaf = 1 n_subfeatures = 0 max_depth = -1 min_samples_split = 2 min_purity_increase = 0.25 t = DecisionTree.build_tree( Y, X, n_subfeatures, max_depth, min_samples_leaf, min_samples_split, min_purity_increase, ) @test length(t) == 103 n_subfeatures = 3 n_trees = 10 partial_sampling = 0.7 max_depth = -1 min_samples_leaf = 5 min_samples_split = 2 min_purity_increase = 0.0 model = build_forest( Y, X, n_subfeatures, n_trees, partial_sampling, max_depth, min_samples_leaf, min_samples_split, min_purity_increase; rng=StableRNG(1), ) preds = apply_forest(model, X) @test R2(Y, preds) > 0.8 preds_MT = apply_forest(model, X; use_multithreading=true) @test R2(Y, preds_MT) > 0.8 @test sum(abs.(preds .- preds_MT)) < 1e-8 println("\n##### 3 foldCV Regression Tree #####") n_folds = 5 r2 = nfoldCV_tree(Y, X, n_folds; rng=StableRNG(1), verbose=false) @test mean(r2) > 0.55 println("\n##### 3 foldCV Regression Forest #####") n_subfeatures = 2 n_trees = 10 n_folds = 5 partial_sampling = 0.5 r2 = nfoldCV_forest( Y, X, n_folds, n_subfeatures, n_trees, partial_sampling; rng=StableRNG(1), verbose=false, ) @test mean(r2) > 0.55 end # @testset
ModalDecisionTrees
https://github.com/aclai-lab/ModalDecisionTrees.jl.git
[ "MIT" ]
0.5.0
200b2bd9dee3dfe2dcffa1fb51b6dd00d371ed2b
code
938
# Regression Test - Appliances Energy Prediction Data Set # https://archive.ics.uci.edu/ml/datasets/Appliances+energy+prediction @testset "energy.jl" begin energy = let url = "https://archive.ics.uci.edu/ml/machine-learning-databases/00374/energydata_complete.csv" tmp_path = download(url) readcsv(tmp_path) end features = energy[2:end, 3:end] labels = float.(energy[2:end, 2]) # over-fitting n_subfeatures = 0 max_depth = -1 min_samples_leaf = 1 model = build_tree(labels, features, n_subfeatures, max_depth, min_samples_leaf) preds = apply_tree(model, features) @test R2(labels, preds) > 0.99 println("\n##### nfoldCV Regression Tree #####") r2 = nfoldCV_tree(labels, features, 3) @test mean(r2) > 0.05 println("\n##### nfoldCV Regression Forest #####") r2 = nfoldCV_forest(labels, features, 2, 10, 3) @test mean(r2) > 0.35 end # @testset
ModalDecisionTrees
https://github.com/aclai-lab/ModalDecisionTrees.jl.git
[ "MIT" ]
0.5.0
200b2bd9dee3dfe2dcffa1fb51b6dd00d371ed2b
code
3639
@testset "low_precision.jl" begin Random.seed!(5) n, m = 10^3, 5 features = Array{Any}(undef, n, m) features[:, :] = randn(StableRNG(1), n, m) features[:, 1] = round.(Int32, features[:, 1]) weights = rand(StableRNG(1), -2:2, m) labels = float.(features * weights) min_samples_leaf = Int32(1) n_subfeatures = Int32(0) max_depth = Int32(-1) min_samples_split = Int32(2) min_purity_increase = 0.5 model = build_tree( labels, round.(Int32, features), n_subfeatures, max_depth, min_samples_leaf, min_samples_split, min_purity_increase; rng=StableRNG(1), ) preds = apply_tree(model, round.(Int32, features)) @test R2(labels, preds) < 0.95 @test typeof(preds) <: Vector{Float64} n_subfeatures = Int32(3) n_trees = Int32(10) partial_sampling = 0.7 max_depth = Int32(-1) min_samples_leaf = Int32(5) min_samples_split = Int32(2) min_purity_increase = 0.0 model = build_forest( labels, features, n_subfeatures, n_trees, partial_sampling, max_depth, min_samples_leaf, min_samples_split, min_purity_increase; rng=StableRNG(1), ) preds = apply_forest(model, features) @test R2(labels, preds) > 0.9 @test typeof(preds) <: Vector{Float64} preds_MT = apply_forest(model, features; use_multithreading=true) @test R2(labels, preds_MT) > 0.9 @test typeof(preds_MT) <: Vector{Float64} @test sum(abs.(preds .- preds_MT)) < 1.0e-8 println("\n##### nfoldCV Regression Tree #####") n_folds = Int32(3) pruning_purity = 1.0 max_depth = Int32(-1) min_samples_leaf = Int32(5) min_samples_split = Int32(2) min_purity_increase = 0.0 r2 = nfoldCV_tree( labels, features, n_folds, pruning_purity, max_depth, min_samples_leaf, min_samples_split, min_purity_increase; rng=StableRNG(1), ) @test mean(r2) > 0.6 println("\n##### nfoldCV Regression Forest #####") n_trees = Int32(10) n_subfeatures = Int32(2) n_folds = Int32(3) max_depth = Int32(-1) min_samples_leaf = Int32(5) min_samples_split = Int32(2) min_purity_increase = 0.0 r2 = nfoldCV_forest( labels, features, n_folds, n_subfeatures, n_trees, partial_sampling, max_depth, min_samples_leaf, min_samples_split, min_purity_increase; rng=StableRNG(1), ) @test mean(r2) > 0.8 # Test Float16 labels, and Float16 features features = Float16.(features) labels = Float16.(labels) model = build_stump(labels, features) preds = apply_tree(model, features) @test typeof(preds) == Vector{Float16} model = build_tree(labels, features) preds = apply_tree(model, features) @test typeof(preds) == Vector{Float16} model = build_forest(labels, features) preds = apply_forest(model, features) @test typeof(preds) == Vector{Float16} # Verify that the `preds` were calculated based on `labels` of the same type. # If the code at some point converts the numbers to, say, `Float64`, then this test will fail. @test !all(x->(x in labels), preds) preds_MT = apply_forest(model, features; use_multithreading=true) @test typeof(preds_MT) == Vector{Float16} @test sum(abs.(preds .- preds_MT)) < 1.0e-8 model = build_tree(labels, features) preds = apply_tree(model, features) @test typeof(preds) == Vector{Float16} end # @testset
ModalDecisionTrees
https://github.com/aclai-lab/ModalDecisionTrees.jl.git
[ "MIT" ]
0.5.0
200b2bd9dee3dfe2dcffa1fb51b6dd00d371ed2b
code
2095
@testset "scikitlearn.jl" begin n, m = 10^3, 5 features = rand(StableRNG(1), n, m) weights = rand(StableRNG(1), -1:1, m) labels = features * weights model = fit!( DecisionTreeRegressor(; rng=StableRNG(1), min_samples_split=5), features, labels ) @test R2(labels, predict(model, features)) > 0.8 @test impurity_importance(model) == impurity_importance(model.root) @test isapprox( permutation_importance(model, features, labels; rng=StableRNG(1)).mean, permutation_importance( model.root, labels, features, (model, y, X) -> R2(y, apply_tree(model, X)); rng=StableRNG(1), ).mean, ) let regressor = RandomForestRegressor(; rng=StableRNG(1), n_trees=10, min_samples_leaf=5, n_subfeatures=2 ) model = fit!(regressor, features, labels) @test R2(labels, predict(model, features)) > 0.8 @test impurity_importance(model) == impurity_importance(model.ensemble) @test split_importance(model) == split_importance(model.ensemble) @test isapprox( permutation_importance(model, features, labels; rng=StableRNG(1)).mean, permutation_importance( model.ensemble, labels, features, (model, y, X) -> R2(y, apply_forest(model, X)); rng=StableRNG(1), ).mean, ) end Random.seed!(2) N = 3000 X = randn(StableRNG(1), N, 10) y = randn(StableRNG(1), N) max_depth = 5 model = fit!(DecisionTreeRegressor(; rng=StableRNG(1), max_depth), X, y) @test depth(model) == max_depth ## Test that the RNG arguments work as expected X = randn(StableRNG(1), 100, 10) y = randn(StableRNG(1), 100) @test fit_predict!(RandomForestRegressor(; rng=10), X, y) == fit_predict!(RandomForestRegressor(; rng=10), X, y) @test fit_predict!(RandomForestRegressor(; rng=10), X, y) != fit_predict!(RandomForestRegressor(; rng=22), X, y) end # @testset
ModalDecisionTrees
https://github.com/aclai-lab/ModalDecisionTrees.jl.git
[ "MIT" ]
0.5.0
200b2bd9dee3dfe2dcffa1fb51b6dd00d371ed2b
code
1444
@testset "scikitlearn.jl" begin n, m = 10^3, 5 features = rand(StableRNG(1), n, m) weights = rand(StableRNG(1), -1:1, m) labels = features * weights let regressor = DecisionTreeRegressor(; rng=StableRNG(1), min_samples_leaf=5, pruning_purity_threshold=0.1 ) model = fit!(regressor, features, labels) @test R2(labels, predict(model, features)) > 0.8 end model = fit!( DecisionTreeRegressor(; rng=StableRNG(1), min_samples_split=5), features, labels ) @test R2(labels, predict(model, features)) > 0.8 let regressor = RandomForestRegressor(; rng=StableRNG(1), n_trees=10, min_samples_leaf=5, n_subfeatures=2 ) model = fit!(regressor, features, labels) @test R2(labels, predict(model, features)) > 0.8 end N = 3000 X = randn(StableRNG(1), N, 10) y = randn(StableRNG(1), N) max_depth = 5 model = fit!(DecisionTreeRegressor(; rng=StableRNG(1), max_depth), X, y) @test depth(model) == max_depth ## Test that the RNG arguments work as expected X = randn(StableRNG(1), 100, 10) y = randn(StableRNG(1), 100) @test fit_predict!(RandomForestRegressor(; rng=10), X, y) == fit_predict!(RandomForestRegressor(; rng=10), X, y) @test fit_predict!(RandomForestRegressor(; rng=10), X, y) != fit_predict!(RandomForestRegressor(; rng=22), X, y) end # @testset
ModalDecisionTrees
https://github.com/aclai-lab/ModalDecisionTrees.jl.git
[ "MIT" ]
0.5.0
200b2bd9dee3dfe2dcffa1fb51b6dd00d371ed2b
docs
8091
# Modal Decision Trees & Forests [![Stable](https://img.shields.io/badge/docs-stable-blue.svg)](https://aclai-lab.github.io/ModalDecisionTrees.jl) [![Dev](https://img.shields.io/badge/docs-dev-blue.svg)](https://aclai-lab.github.io/ModalDecisionTrees.jl/dev) [![Build Status](https://api.cirrus-ci.com/github/aclai-lab/ModalDecisionTrees.jl.svg?branch=main)](https://cirrus-ci.com/github/aclai-lab/ModalDecisionTrees.jl) [![Coverage](https://codecov.io/gh/aclai-lab/ModalDecisionTrees.jl/branch/main/graph/badge.svg?token=LT9IYIYNFI)](https://codecov.io/gh/aclai-lab/ModalDecisionTrees.jl) [![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/aclai-lab/ModalDecisionTrees.jl/HEAD?labpath=pluto-demo.jl) <!-- [![Code Style: Blue](https://img.shields.io/badge/code%20style-blue-4495d1.svg)](https://github.com/invenia/BlueStyle) --> ### Interpretable models for native time-series & image classification! This package provides algorithms for learning *decision trees* and *decision forests* with enhanced abilities. Leveraging the express power of Modal Logic, these models can extract *temporal/spatial patterns*, and can natively handle *time series* and *images* (without any data preprocessing). Currently available via [MLJ.jl](https://github.com/alan-turing-institute/MLJ.jl) and [*Sole.jl*](https://github.com/aclai-lab/Sole.jl). #### Features & differences with [DecisionTree.jl](https://github.com/JuliaAI/DecisionTree.jl): The MLJ models provided (`ModalDecisionTree` and `ModalRandomForest`) can act as drop in replacements for DecisionTree.jl's tree and forest models. The main difference is that the two models provided are [probabilistic](https://alan-turing-institute.github.io/MLJ.jl/dev/adding_models_for_general_use/#Overview) and can perform both classification (with y labels of type `String` or `CategoricalValue`), and regression (with numeric y labels). <!-- Also feature_importance = :impurity is not supported --> Additionally, these models: - Are able to handle variables that are `AbstractVector{<:Real}` or `AbstractMatrix{<:Real}`; - Support [multimodal](https://en.wikipedia.org/wiki/Multimodal_learning) learning (e.g., learning from *combinations* of scalars, time series and images); - A unique algorithm that extends CART and C4.5; <!-- - Fully optimized implementation (fancy data structures, multithreading, memoization, minification, Pareto-based pruning optimizations, etc); --> <!-- - TODO --> <!-- - Four pruning conditions: max_depth, min_samples_leaf, min_purity_increase, max_purity_at_leaf --> <!-- TODO - Top-down pre-pruning & post-pruning --> <!-- - Bagging (Random Forests) TODO dillo meglio --> #### Current limitations (also see [TODOs](#todos)): - Only supports numeric features; - Does not support `missing` or `NaN` values. #### JuliaCon 2022 8-minute talk <!-- [![](https://img.youtube.com/vi/8F1vZsl8Zvg/0.jpg)](https://youtu.be/8F1vZsl8Zvg) --> <div align="center"> <a target="_blank" href="https://youtu.be/8F1vZsl8Zvg"> <img src="https://img.youtube.com/vi/8F1vZsl8Zvg/0.jpg"> </a> </div> <!-- ## Installation Simply type the following commands in Julia's REPL: ```julia using Pkg; Pkg.add("ModalDecisionTrees"); ``` --> ## Installation & Usage Simply type the following commands in Julia's REPL: ```julia # Install package using Pkg; Pkg.add("MLJ"); using Pkg; Pkg.add("ModalDecisionTrees"); # Import packages using MLJ using ModalDecisionTrees using Random # Load an example dataset (a temporal one) X, y = ModalDecisionTrees.load_japanesevowels() N = length(y) # Instantiate an MLJ machine based on a Modal Decision Tree with ≥ 4 samples at leaf mach = machine(ModalDecisionTree(min_samples_leaf=4), X, y) # Split dataset p = randperm(N) train_idxs, test_idxs = p[1:round(Int, N*.8)], p[round(Int, N*.8)+1:end] # Fit fit!(mach, rows=train_idxs) # Perform predictions, compute accuracy yhat = predict_mode(mach, X[test_idxs,:]) accuracy = MLJ.accuracy(yhat, y[test_idxs]) # Print model report(mach).printmodel(3) # Access raw model model = fitted_params(mach).model ``` <!-- # TODO # Render raw model Pkg.add("GraphRecipes"); Pkg.add("Plots") using GraphRecipes using Plots #wrapped_model = ModalDecisionTrees.wrap(model.root, (variable_names_map = report(mach).var_grouping,)) # for _method in [:spectral, :sfdp, :circular, :shell, :stress, :spring, :tree, :buchheim, :arcdiagram, :chorddiagram] wrapped_model = ModalDecisionTrees.wrap(model.root, (; threshold_display_method = x->round(x, digits=2)), use_feature_abbreviations = true) for _method in [:tree, :buchheim] for _nodeshape in [:rect] # , [:rect, :ellipse] display(plot( TreePlot(wrapped_model), method = _method, nodeshape = _nodeshape, # nodesize = (3,10), # root = :left, curves = false, fontsize = 10, size=(860, 640), title = "$(_method)" )) end end --> <!-- TODO (`Y isa Vector{<:{Integer,String}}`) --> <!-- Detailed usage instructions are available for each model using the doc method. For example: ```julia using MLJ doc("DecisionTreeClassifier", pkg="ModalDecisionTrees") ``` Available models are: AdaBoostStumpClassifier, DecisionTreeClassifier, DecisionTreeRegressor, RandomForestClassifier, RandomForestRegressor. --> <!-- ## Visualization A DecisionTree model can be visualized using the print_tree-function of its native interface (for an example see above in section 'Classification Example'). --> <!-- ## TODOs - [x] Enable loss functions different from Shannon's entropy (*untested*) - [x] Enable regression (*untested*) - [x] Proper test suite - [ ] Visualizations of modal rules/patterns <!-- - [x] AbstractTrees interface --> ## Want to know more? [Della Monica, Dario, et al. "Decision trees with a modal flavor." International Conference of the Italian Association for Artificial Intelligence. Cham: Springer International Publishing, 2022.](https://link.springer.com/chapter/10.1007/978-3-031-27181-6_4) Most of the works in *symbolic learning* are based either on Propositional Logics (PLs) or First-order Logics (FOLs); PLs are the simplest kind of logic and can only handle *tabular data*, while FOLs can express complex entity-relation concepts. Machine Learning with FOLs enables handling data with complex topologies, such as time series, images, or videos; however, these logics are computationally challenging. Instead, Modal Logics (e.g. [Interval Logic](https://en.wikipedia.org/wiki/Interval_temporal_logic)) represent a perfect trade-off in terms of computational tractability and expressive power, and naturally lend themselves for expressing some forms of *temporal/spatial reasoning*. Recently, symbolic learning techniques such as Decision Trees, Random Forests and Rule-Based models have been extended to the use of Modal Logics of time and space. *Modal Decision Trees* and *Modal Random Forests* have been applied to classification tasks, showing statistical performances that are often comparable to those of functional methods (e.g., neural networks), while providing, at the same time, highly-interpretable classification models. Examples of these tasks are COVID-19 diagnosis from cough/breath audio [[1]](https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4102488), [[2]](https://drops.dagstuhl.de/opus/volltexte/2021/14783/pdf/LIPIcs-TIME-2021-7.pdf), land cover classification from aereal images [[3]](https://arxiv.org/abs/2109.08325), EEG-related tasks [[4]](https://link.springer.com/chapter/10.1007/978-3-031-06242-1_53), and gas turbine trip prediction. This technology also offers a natural extension for *multimodal* learning [[5]](http://ceur-ws.org/Vol-2987/paper7.pdf). ## Credits *ModalDecisionTrees.jl* lives within the [*Sole.jl*](https://github.com/aclai-lab/Sole.jl) framework for *symbolic machine learning*. The package is developed by the [ACLAI Lab](https://aclai.unife.it/en/) @ University of Ferrara. Thanks to Ben Sadeghi ([@bensadeghi](https://github.com/bensadeghi/)), author of [DecisionTree.jl](https://github.com/JuliaAI/DecisionTree.jl), which inspired the construction of this package.
ModalDecisionTrees
https://github.com/aclai-lab/ModalDecisionTrees.jl.git
[ "MIT" ]
0.5.0
200b2bd9dee3dfe2dcffa1fb51b6dd00d371ed2b
docs
309
```@meta CurrentModule = ModalDecisionTrees ``` # ModalDecisionTrees Welcome to the documentation for [ModalDecisionTrees](https://github.com/aclai-lab/ModalDecisionTrees.jl). ```@index ``` ```@autodocs Modules = [ModalDecisionTrees, ModalDecisionTrees.MLJInterface, ModalDecisionTrees.experimentals] ```
ModalDecisionTrees
https://github.com/aclai-lab/ModalDecisionTrees.jl.git
[ "MIT" ]
1.2.1
fe0b322c6a90a0a38725908427a1dd5982bc2e1b
code
466
using Documenter using RealPolyhedralHomotopy push!(LOAD_PATH,"../src/") makedocs( sitename = "RealPolyhedralHomotopy.jl", pages = [ "RealPolyhedralHomotopy" => "index.md", ] ) # Documenter can also automatically deploy documentation to gh-pages. # See "Hosting Documentation" and deploydocs() in the Documenter manual # for more information. deploydocs( repo = "github.com/klee669/RealPolyhedralHomotopy.jl.git", devbranch = "main" )
RealPolyhedralHomotopy
https://github.com/klee669/RealPolyhedralHomotopy.jl.git
[ "MIT" ]
1.2.1
fe0b322c6a90a0a38725908427a1dd5982bc2e1b
code
550
""" RealPolyhedralHomotopy A package for finding real roots of systems of polynomial equations using polyhedral homotopy. """ module RealPolyhedralHomotopy # internal using HomotopyContinuation using AbstractAlgebra using PolynomialRoots using MixedSubdivisions using LinearAlgebra # exported using Reexport @reexport using MixedSubdivisions, HomotopyContinuation, AbstractAlgebra, PolynomialRoots, LinearAlgebra include("certify_patchwork.jl") include("generate_binomials.jl") include("rph_track.jl") end # module
RealPolyhedralHomotopy
https://github.com/klee669/RealPolyhedralHomotopy.jl.git
[ "MIT" ]
1.2.1
fe0b322c6a90a0a38725908427a1dd5982bc2e1b
code
5905
export certify_patchwork """ certify_patchwork(F::System; Number_Real_Solutions = false) Certify if a given system is patchworked that all real solutions can be found using the real polyhedral homotopy. It returns the value `1` if the system `F` is certified to be patchworked according to the certification inequality. Otherwise, `0` is returned. # Arguments * `F` : The target system for the real polyhedral homotopy. ```julia @var x y; F = System([-1 - 24000*y + x^3, -9 + 50*x*y - 1*y^2]); result = certify_patchwork(F) ``` ``` 1 ``` * There is an option `Number_Real_Solutions` returning `(1,k)` where `k` is number of real solutions to the target system when the target system is patchedworked. The default value for the option is false. ```julia result = certify_patchwork(F; Number_Real_Solutions = true) ``` ``` (1,4) ``` """ function certify_patchwork(F::System;Number_Real_Solutions::Bool = false) neqs = length(F) n =neqs varsF = variables(F); # Define matrices that are the monomial support and coefficients of F A = support_coefficients(F)[1]; B = support_coefficients(F)[2]; vB = reduce(vcat, B); # Use Log(|C|) to define lift l1 = round.(-1*(10^6)*log.(abs.(B[1]))); l1 = convert.(Int,l1); lifts = [l1]; for i in 2:neqs l = round.(-1*(10^6)*log.(abs.(B[i]))) l = convert.(Int,l) append!(lifts, [l]) end # Compute mixed cells cells = mixed_cells(A, lifts); ncells = length(cells); #Construct the Cayley matrix mats = []; for i in 1:length(A) sz = size(A[i])[2] m1 = A[i]; m2 = zeros(i-1, sz); m3 = ones(1, sz); m4 = zeros(neqs - i, sz) M = [m1 ; m2 ; m3 ; m4] append!(mats, [M]) end M = reduce(hcat, mats); ## Make inequality for each patchworked system failed_cells = []; success_cells = []; scales = []; for i in 1:ncells in_cols = []; mixedCells = indices(cells[i]) for j in 1:n offset = sum(size(A[k])[2] for k in 1:j) - size(A[j])[2] col1 = mixedCells[j][1] + offset col2 = mixedCells[j][2] + offset append!(in_cols, col1) append!(in_cols, col2) end out_cols = [ j for j in 1:size(M)[2] if j ∉ in_cols ] fails = []; for j in 1:length(out_cols) cols = vcat(in_cols, out_cols[j]); sort!(cols); M_cells = M[:, cols]; null = nullspace(M_cells); vBmod = vB[cols]; lhs = abs.(dot(null, log.(abs.(vBmod)))) rhs = log(size(M)[2])*norm(null,1) if lhs < rhs append!(fails, 1) append!(scales, rhs/lhs) end end if length(fails) == 0 append!(success_cells, i) else append!(failed_cells, i) #println(failed) end end ##### Constructing binomial systems begins ##### # Use Log(|C|) to define lift w1 = round.(-1*(10^6)*log.(abs.(B[1]))); w1 = convert.(Int,w1); lifts = [w1]; for i in 2:neqs w = round.(-1*(10^6)*log.(abs.(B[i]))) w = convert.(Int,w) append!(lifts, [w]) end # Compute mixed cells cells = mixed_cells(A, lifts); ncells = length(cells); # Define binomial systems from mixed cells binomial_systems = []; for i in 1:ncells system = []; mons = indices(cells[i]) for j in 1:neqs mons2 = mons[j] bi1 = transpose(A[j])[mons2[1]:mons2[1],:] bi2 = transpose(A[j])[mons2[2]:mons2[2],:] term1 = B[j][mons2[1]]*prod(varsF.^(transpose(bi1))) term2 = B[j][mons2[2]]*prod(varsF.^(transpose(bi2))) p = term1 + term2; append!(system,p) end append!(binomial_systems, [system]) end # Convert binomial systems from type Any to type Expression for i in 1:length(binomial_systems) binomial_systems[i] = convert(Array{Expression,1}, binomial_systems[i]) end ##### Constructing binomial systems ends ##### ##### Finding solutions for binomial systems begins ##### # Find real solutions to binomial systems r_binomial_sols = []; for i in 1:ncells T = System(binomial_systems[i]) D = zero_matrix(ZZ, n, n) Bz = zeros(n) T_mons = support_coefficients(T)[1] T_coeffs = support_coefficients(T)[2] for j in 1:n v = T_mons[j][:,1] - T_mons[j][:,2] for k in 1:length(v) D[k,j] = v[k] end Bz[j] = -1*T_coeffs[j][2]/T_coeffs[j][1] end D = transpose(D) H,U = hnf_with_transform(D) Bz_new = zeros(n); for j in 1:n v = Array(U[j, :]) v1 = transpose(Bz).^v Bz_new[j] = prod(v1) end #Create dictionary to store real solutions sols = Dict() #Initialize first entry of sols poly_root = zeros(H[n,n]+1) poly_root[end] = 1; poly_root[1] = -1*Bz_new[end] R = PolynomialRoots.roots(poly_root) real_R = findall(x->norm(x)<10^(-10), imag.(R)); test = []; for j in 1:length(real_R) append!(test, [[real(R[real_R[j]])]]) end sols[n] = test for k in 1:n-1 poly_root = im*zeros(H[n-k,n-k]+1) test =[]; for j in 1:length(sols[n-k+1]) poly_root[end] = prod(sols[n-k+1][j][end-l]^H[n-k,n-l] for l in 0:k-1) poly_root[1] = -1*Bz_new[n-k] R = PolynomialRoots.roots(poly_root) real_R = findall(x->norm(x)<10^(-10), imag.(R)); for l in 1:length(real_R) append!(test, [[real.(R[real_R[l]]),sols[n-k+1][j]]]) end end for l in 1:length(test) test[l] = collect(Iterators.flatten(test[l])) end sols[n-k] = test end append!(r_binomial_sols, [sols[1]]) end ##### Finding solutions for binomial systems ends ##### if Number_Real_Solutions == true if length(failed_cells)>0 return 0 else return (1, length(collect(Iterators.flatten(r_binomial_sols)))); end else if length(failed_cells)>0 return 0 else return 1 end end end
RealPolyhedralHomotopy
https://github.com/klee669/RealPolyhedralHomotopy.jl.git
[ "MIT" ]
1.2.1
fe0b322c6a90a0a38725908427a1dd5982bc2e1b
code
2566
export generate_binomials, Binomial_system_data """ Binomial_system_data An object contains 4 vectors consist of binomial systems and its normal vectors, liftings, and mixed cells. """ struct Binomial_system_data binomial_system::Vector{Any} normal_vectors::Vector{Any} lifts::Vector{Vector{Int64}} cells::Vector{MixedCell} end function Base.show(io::IO,x::Binomial_system_data) print(io,"Binomial_system_data") end """ generate_binomials(F::System) Return a wrapper object Binomial_system_data from an input polynomial system. Binomial systems obtained from the mixed cells induced by the ``Log|C|``-lifting. The object Binomial_system_data contains the binomial system, normal vectors, lifting vectors, and cells from the mixed subdivision computed. The object Binomial_system_data is used as an input for the rph_track function. # Arguments * `F` : The target system for the real polyhedral homotopy. ```julia B = generate_binomials(F) ``` ``` Binomial_system_data ``` ```julia B.binomial_system ``` ``` 2-element Vector{Any}: Expression[-24000*y + x^3, 50*x*y - y^2] Expression[-24000*y + x^3, -9 + 50*x*y] ``` """ function generate_binomials(F::System) x = variables(F); neqs = length(F); # Define matrices that are the monomial support and coefficients of F A = support_coefficients(F)[1]; B = support_coefficients(F)[2]; # Use Log(|C|) to define lift w1 = round.(-1*(10^6)*log.(abs.(support_coefficients(F)[2][1]))); w1 = convert.(Int,w1); lifts = [w1]; for i in 2:neqs w = round.(-1*(10^6)*log.(abs.(support_coefficients(F)[2][i]))) w = convert.(Int,w) append!(lifts, [w]) end # Compute mixed cells cells = mixed_cells(A, lifts); ncells = length(cells); # Define binomial systems from mixed cells binomial_systems = []; normal_vectors = []; for i in 1:ncells system = []; mons = indices(cells[i]) for j in 1:neqs mons2 = mons[j] bi1 = transpose(A[j])[mons2[1]:mons2[1],:] bi2 = transpose(A[j])[mons2[2]:mons2[2],:] term1 = B[j][mons2[1]]*prod(x.^(transpose(bi1))) term2 = B[j][mons2[2]]*prod(x.^(transpose(bi2))) p = term1 + term2; append!(system,p) end append!(binomial_systems, [system]) append!(normal_vectors, [normal(cells[i])]) end # Convert binomial systems from type Any to type Expression for i in 1:length(binomial_systems) binomial_systems[i] = convert(Array{Expression,1}, binomial_systems[i]) end return Binomial_system_data(binomial_systems, normal_vectors, lifts, cells) end
RealPolyhedralHomotopy
https://github.com/klee669/RealPolyhedralHomotopy.jl.git
[ "MIT" ]
1.2.1
fe0b322c6a90a0a38725908427a1dd5982bc2e1b
code
5653
export rph_track """ rph_track(B::Binomial_system_data, F::System; Certification = false) Return the output of tracking the real solutions of a given list of binomial systems to the target system. # Arguments * `B` : The object `Binomial_system_data` obtained from `generate_binomials(F)`. * `F` : The target system for the real polyhedral homotopy. ```julia @var x y; F = System([-1 - 24000*y + x^3, -9 + 50*x*y - 1*y^2]); B = generate_binomials(F); realSols = rph_track(B,F) ``` ``` 4-element Vector{Vector{Float64}}: [-1095.4451129504978, -54772.25548320812] [1095.4451137838312, 54772.255524874796] [8.111114476617955, 0.02219298606763958] [-8.103507635567631, -0.02221382112196499] ``` * The optional argument `Certification` certifies that all real solutions to a patchedworked system are found. This is done by an a posteriori certification for numerical approximations obtained by the real polyhedral homotopy. When the real polyhedral homotopy root-finding is certified, it returns a list of solutions to the target and `1`; otherwise, it returns `0`. The default value for the option is false. ```julia realSols = rph_track(B,F; Certification = true) ``` ``` ([[-1095.4451129504978, -54772.25548320812], [1095.4451137838312, 54772.255524874796], [8.111114476617955, 0.02219298606763958], [-8.103507635567631, -0.022213821121964985]], 1) ``` """ function rph_track(BData::Binomial_system_data,F::System;Certification::Bool = false) neqs = length(F); n = neqs; varsF = variables(F); binomial_systems = BData.binomial_system; normal_vectors = BData.normal_vectors; l = BData.lifts; ncells = length(binomial_systems); # Find real solutions to binomial systems r_binomial_sols = []; for i in 1:ncells T = System(binomial_systems[i]) D = zero_matrix(ZZ, n, n) B = zeros(n) T_mons = support_coefficients(T)[1] T_coeffs = support_coefficients(T)[2] for j in 1:n v = T_mons[j][:,1] - T_mons[j][:,2] for k in 1:length(v) D[k,j] = v[k] end B[j] = -1*T_coeffs[j][2]/T_coeffs[j][1] end D = transpose(D) H,U = hnf_with_transform(D) B_new = zeros(n); for l in 1:n v = Array(U[l, :]) v1 = transpose(B).^v B_new[l] = prod(v1) end #Create dictionary to store real solutions sols = Dict() #Initialize first entry of sols poly_root = zeros(H[n,n]+1) poly_root[end] = 1; poly_root[1] = -1*B_new[end] R = PolynomialRoots.roots(poly_root) real_R = findall(x->norm(x)<10^(-10), imag.(R)); test = []; for l in 1:length(real_R) append!(test, [[real(R[real_R[l]])]]) end sols[n] = test for k in 1:n-1 poly_root = im*zeros(H[n-k,n-k]+1) test =[]; for j in 1:length(sols[n-k+1]) poly_root[end] = prod(sols[n-k+1][j][end-l]^H[n-k,n-l] for l in 0:k-1) poly_root[1] = -1*B_new[n-k] R = PolynomialRoots.roots(poly_root) real_R = findall(x->norm(x)<10^(-10), imag.(R)); for l in 1:length(real_R) append!(test, [[real.(R[real_R[l]]),sols[n-k+1][j]]]) end end for l in 1:length(test) test[l] = collect(Iterators.flatten(test[l])) end sols[n-k] = test end append!(r_binomial_sols, [sols[1]]) end ### Define homotopies # Define our homotopy variable @var t # Define matrices that are the monomial support and coefficients of F A = support_coefficients(F)[1]; B = support_coefficients(F)[2]; #Create homotopy for each mixed cell homotopies = []; c = BData.cells; for k in 1:length(c) rn = normal_vectors[k] #Find exponents for homotopy variable t tvecs = []; A = support_coefficients(F)[1]; B = support_coefficients(F)[2]; Anew = A; for i in 1:n tlist = transpose(A[i])*rn + l[i] m = minimum(tlist) tlist = tlist - m*ones(length(tlist)) tlist = round.(tlist); tlist = convert.(Int, tlist) append!(tvecs, [tlist]) Anew[i] = [A[i] ; tlist'] end varsFt = collect(Iterators.flatten([varsF, t])) eqs = []; for i in 1:n varmat = varsFt.^Anew[i] eq = sum(B[i][j]*prod(varmat[:, j]) for j in 1:size(varmat)[2]) append!(eqs, [eq]) end #send t->1-t since Homotopy goes from 1 to 0 for i in 1:length(eqs) eqs[i] = subs(eqs[i], t=>(1-t)) end append!(homotopies, [eqs]) end # Change homotopies from type Any to type Expression for i in 1:length(homotopies) homotopies[i] = convert(Array{Expression,1}, homotopies[i]) end # Create our homotopy systems homotopy_systems = []; for i in 1:ncells append!(homotopy_systems, [Homotopy(homotopies[i], varsF, t)]) end #This gives the real solutions after only tracking the real solutions from the binomial systems real_sols = []; # Track real solutions from binomial systems to target system for i in 1:length(r_binomial_sols) H1 = InterpretedHomotopy(homotopy_systems[i]) R2 = HomotopyContinuation.solve(H1, r_binomial_sols[i],show_progress=false) append!(real_sols, real_solutions(R2)) end if Certification == true for i in 1:ncells cr = certify(binomial_systems[i],convert(Array{Vector{Float64}},r_binomial_sols[i])); if nreal_certified(cr) < length(r_binomial_sols[i]) return 0 end end for i in 1:length(real_sols) cr = certify(F,real_sols[i]); if nreal_certified(cr) < 1 return 0 end end return (convert(Array{Vector{Float64}},real_sols),1) else return convert(Array{Vector{Float64}},real_sols) end end
RealPolyhedralHomotopy
https://github.com/klee669/RealPolyhedralHomotopy.jl.git
[ "MIT" ]
1.2.1
fe0b322c6a90a0a38725908427a1dd5982bc2e1b
code
419
module RealPolyhedralHomotopy # internal using HomotopyContinuation using AbstractAlgebra using PolynomialRoots using MixedSubdivisions using LinearAlgebra # exported using Reexport @reexport using MixedSubdivisions, HomotopyContinuation, AbstractAlgebra, PolynomialRoots, LinearAlgebra include("certify_patchwork.jl") include("generate_binomials.jl") include("rph_track.jl") end # module
RealPolyhedralHomotopy
https://github.com/klee669/RealPolyhedralHomotopy.jl.git
[ "MIT" ]
1.2.1
fe0b322c6a90a0a38725908427a1dd5982bc2e1b
code
5662
export certify_patchwork @doc """ certify_patchwork(polySystem::System; Number_Real_Solutions = false) Certify if a given system is patchworked that all real solutions can be found using the real polyhedral homotopy. It returns the value `1` if the system `F` is certified to be patchworked according to the certification inequality. Otherwise, `0` is returned. """ function certify_patchwork(polySystem;Number_Real_Solutions::Bool = false) F = polySystem neqs = length(F) n =neqs varsF = variables(F); # Define matrices that are the monomial support and coefficients of F A = support_coefficients(F)[1]; B = support_coefficients(F)[2]; vB = reduce(vcat, B); # Use Log(|C|) to define lift l1 = round.(-1*(10^6)*log.(abs.(support_coefficients(F)[2][1]))); l1 = convert.(Int,l1); lifts = [l1]; for i in 2:neqs l = round.(-1*(10^6)*log.(abs.(support_coefficients(F)[2][i]))) l = convert.(Int,l) append!(lifts, [l]) end # Compute mixed cells cells = mixed_cells(A, lifts); ncells = length(cells); #Construct the Cayley matrix mats = []; for i in 1:length(A) sz = size(A[i])[2] m1 = A[i]; m2 = zeros(i-1, sz); m3 = ones(1, sz); m4 = zeros(neqs - i, sz) M = [m1 ; m2 ; m3 ; m4] append!(mats, [M]) end M = reduce(hcat, mats); ## Make inequality for each patchworked system failed_cells = []; success_cells = []; scales = []; for i in 1:ncells in_cols = []; mixedCells = indices(cells[i]) for j in 1:n offset = sum(size(A[k])[2] for k in 1:j) - size(A[j])[2] col1 = mixedCells[j][1] + offset col2 = mixedCells[j][2] + offset append!(in_cols, col1) append!(in_cols, col2) end out_cols = []; for j in 1:size(M)[2] t = findall(x->x==j, in_cols) if length(t) == 0 append!(out_cols, j) end end fails = []; for j in 1:length(out_cols) cols = vcat(in_cols, out_cols[j]); sort!(cols); M_cells = M[1:end, cols]; null = nullspace(M_cells); vBmod = vB[cols]; lhs = abs.(dot(null, log.(abs.(vBmod)))) rhs = log(size(M)[2])*norm(null,1) if lhs < rhs append!(fails, 1) append!(scales, rhs/lhs) end end if length(fails) == 0 append!(success_cells, i) else append!(failed_cells, i) #println(failed) end end ##### Constructing binomial systems begins ##### # Use Log(|C|) to define lift w1 = round.(-1*(10^6)*log.(abs.(support_coefficients(F)[2][1]))); w1 = convert.(Int,w1); lifts = [w1]; for i in 2:neqs w = round.(-1*(10^6)*log.(abs.(support_coefficients(F)[2][i]))) w = convert.(Int,w) append!(lifts, [w]) end # Compute mixed cells cells = mixed_cells(A, lifts); ncells = length(cells); # Define binomial systems from mixed cells binomial_systems = []; for i in 1:ncells system = []; mons = indices(cells[i]) for j in 1:neqs mons2 = mons[j] bi1 = transpose(A[j])[mons2[1]:mons2[1],1:end] bi2 = transpose(A[j])[mons2[2]:mons2[2],1:end] term1 = B[j][mons2[1]]*prod(varsF.^(transpose(bi1))) term2 = B[j][mons2[2]]*prod(varsF.^(transpose(bi2))) p = term1 + term2; append!(system,p) end append!(binomial_systems, [system]) end # Convert binomial systems from type Any to type Expression for i in 1:length(binomial_systems) binomial_systems[i] = convert(Array{Expression,1}, binomial_systems[i]) end ##### Constructing binomial systems ends ##### ##### Finding solutions for binomial systems begins ##### # Find real solutions to binomial systems r_binomial_sols = []; for i in 1:ncells T = System(binomial_systems[i]) D = zero_matrix(ZZ, n, n) Bz = zeros(n) T_mons = support_coefficients(T)[1] T_coeffs = support_coefficients(T)[2] for j in 1:n v = T_mons[j][1:end,1:1] - T_mons[j][1:end,2:2] for k in 1:length(v) D[k,j] = v[k] end Bz[j] = -1*T_coeffs[j][2]/T_coeffs[j][1] end D = transpose(D) H,U = hnf_with_transform(D) Bz_new = zeros(n); for i in 1:n v = Array(U[i:i, 1:end]) v1 = transpose(Bz).^v Bz_new[i] = prod(v1) end #Create dictionary to store real solutions sols = Dict() #Initialize first entry of sols poly_root = zeros(H[n,n]+1) poly_root[end] = 1; poly_root[1] = -1*Bz_new[end] R = PolynomialRoots.roots(poly_root) real_R = findall(x->norm(x)<10^(-10), imag.(R)); test = []; for i in 1:length(real_R) append!(test, [[real(R[real_R[i]])]]) end sols[n] = test for k in 1:n-1 poly_root = im*zeros(H[n-k,n-k]+1) test =[]; for j in 1:length(sols[n-k+1]) poly_root[end] = prod(sols[n-k+1][j][end-l]^H[n-k,n-l] for l in 0:k-1) poly_root[1] = -1*Bz_new[n-k] R = PolynomialRoots.roots(poly_root) real_R = findall(x->norm(x)<10^(-10), imag.(R)); for l in 1:length(real_R) append!(test, [[real.(R[real_R[l]]),sols[n-k+1][j]]]) end end for l in 1:length(test) test[l] = collect(Iterators.flatten(test[l])) end sols[n-k] = test end append!(r_binomial_sols, [sols[1]]) end ##### Finding solutions for binomial systems ends ##### if Number_Real_Solutions == true if length(failed_cells)>0 return 0 else return (1, length(collect(Iterators.flatten(r_binomial_sols)))); end else if length(failed_cells)>0 return 0 else return 1 end end end
RealPolyhedralHomotopy
https://github.com/klee669/RealPolyhedralHomotopy.jl.git
[ "MIT" ]
1.2.1
fe0b322c6a90a0a38725908427a1dd5982bc2e1b
code
1363
export generate_binomials function generate_binomials(poly_system) F = poly_system; neqs = length(F); varsF = variables(F); # Define matrices that are the monomial support and coefficients of F A = support_coefficients(F)[1]; B = support_coefficients(F)[2]; # Use Log(|C|) to define lift w1 = round.(-1*(10^6)*log.(abs.(support_coefficients(F)[2][1]))); w1 = convert.(Int,w1); lifts = [w1]; for i in 2:neqs w = round.(-1*(10^6)*log.(abs.(support_coefficients(F)[2][i]))) w = convert.(Int,w) append!(lifts, [w]) end # Compute mixed cells cells = mixed_cells(A, lifts); ncells = length(cells); # Define binomial systems from mixed cells binomial_systems = []; for i in 1:ncells system = []; mons = indices(cells[i]) for j in 1:neqs mons2 = mons[j] bi1 = transpose(A[j])[mons2[1]:mons2[1],1:end] bi2 = transpose(A[j])[mons2[2]:mons2[2],1:end] term1 = B[j][mons2[1]]*prod(varsF.^(transpose(bi1))) term2 = B[j][mons2[2]]*prod(varsF.^(transpose(bi2))) p = term1 + term2; append!(system,p) end append!(binomial_systems, [system]) end # Convert binomial systems from type Any to type Expression for i in 1:length(binomial_systems) binomial_systems[i] = convert(Array{Expression,1}, binomial_systems[i]) end return binomial_systems end
RealPolyhedralHomotopy
https://github.com/klee669/RealPolyhedralHomotopy.jl.git
[ "MIT" ]
1.2.1
fe0b322c6a90a0a38725908427a1dd5982bc2e1b
code
4214
export rph_track function rph_track(binomialSystem, targetSystem;Certification::Bool = false) F = targetSystem; neqs = length(F); n = neqs; varsF = variables(F); F_eqs = expressions(F); binomial_systems = binomialSystem; ncells = length(binomial_systems); # Find real solutions to binomial systems r_binomial_sols = []; for i in 1:ncells T = System(binomial_systems[i]) D = zero_matrix(ZZ, n, n) B = zeros(n) T_mons = support_coefficients(T)[1] T_coeffs = support_coefficients(T)[2] for j in 1:n v = T_mons[j][1:end,1:1] - T_mons[j][1:end,2:2] for k in 1:length(v) D[k,j] = v[k] end B[j] = -1*T_coeffs[j][2]/T_coeffs[j][1] end D = transpose(D) H,U = hnf_with_transform(D) B_new = zeros(n); for i in 1:n v = Array(U[i:i, 1:end]) v1 = transpose(B).^v B_new[i] = prod(v1) end #Create dictionary to store real solutions sols = Dict() #Initialize first entry of sols poly_root = zeros(H[n,n]+1) poly_root[end] = 1; poly_root[1] = -1*B_new[end] R = PolynomialRoots.roots(poly_root) real_R = findall(x->norm(x)<10^(-10), imag.(R)); test = []; for i in 1:length(real_R) append!(test, [[real(R[real_R[i]])]]) end sols[n] = test for k in 1:n-1 poly_root = im*zeros(H[n-k,n-k]+1) test =[]; for j in 1:length(sols[n-k+1]) poly_root[end] = prod(sols[n-k+1][j][end-l]^H[n-k,n-l] for l in 0:k-1) poly_root[1] = -1*B_new[n-k] R = PolynomialRoots.roots(poly_root) real_R = findall(x->norm(x)<10^(-10), imag.(R)); for l in 1:length(real_R) append!(test, [[real.(R[real_R[l]]),sols[n-k+1][j]]]) end end for l in 1:length(test) test[l] = collect(Iterators.flatten(test[l])) end sols[n-k] = test end append!(r_binomial_sols, [sols[1]]) end # G is an array of the polynomial systems that are the set of monomials not in each binomial system G = []; for i in 1:ncells append!(G, [F_eqs - binomial_systems[i]]) end # Define our homotopy variable @var t # Create systems consisting of monomials not in binomial system multiplied by (1-t)^a for a positive integer a homotopies = []; for k in 1:ncells J = System(G[k]) G_sup1 = support_coefficients(J)[1]; G_sup2 = support_coefficients(J)[2]; h1 = []; for i in 1:neqs t1, t2 = size(transpose(G_sup1[i])) monomial_list = []; for j in 1:t1 a = abs.(rand(Int8))%10 + 1 mon_vec = transpose(G_sup1[i])[j:j,1:end] mon1 = G_sup2[i][j]*prod(varsF.^(transpose(mon_vec))) append!(monomial_list, mon1*((1-t)^a)) end append!(h1, [sum(monomial_list)]) end append!(homotopies, [h1]) end # Change homotopies from type Any to type Expression for i in 1:length(homotopies) homotopies[i] = convert(Array{Expression,1}, homotopies[i]) end # Create our homotopy systems by adding each binomial system to other systems that have monomials with (1-t)^a attached homotopy_systems = []; for i in 1:ncells combined_sys = homotopies[i] + binomial_systems[i] append!(homotopy_systems, [Homotopy(combined_sys, varsF, t)]) end #This gives the real solutions after only tracking the real solutions from the binomial systems real_sols = []; # Track real solutions from binomial systems to target system for i in 1:length(r_binomial_sols) H1 = InterpretedHomotopy(homotopy_systems[i]) R2 = HomotopyContinuation.solve(H1, r_binomial_sols[i],show_progress=false) append!(real_sols, real_solutions(R2)) end if Certification == true for i in 1:ncells cr = certify(binomial_systems[i],convert(Array{Vector{Float64}},r_binomial_sols[i])); if nreal_certified(cr) < length(r_binomial_sols[i]) return 0 end end for i in 1:length(real_sols) cr = certify(F,real_sols[i]); if nreal_certified(cr) < 1 return 0 end end return (convert(Array{Vector{Float64}},real_sols),1) else return convert(Array{Vector{Float64}},real_sols) end end
RealPolyhedralHomotopy
https://github.com/klee669/RealPolyhedralHomotopy.jl.git
[ "MIT" ]
1.2.1
fe0b322c6a90a0a38725908427a1dd5982bc2e1b
code
396
using Test, RealPolyhedralHomotopy @var x y; F = System([-1 - 24000*y + x^3, -9 + 50*x*y - 1*y^2]); result = certify_patchwork(F); @test result == 1 result = certify_patchwork(F; Number_Real_Solutions = true); @test result[2] == 4 B = generate_binomials(F); @test length(B.binomial_system) == 2 realSols = rph_track(B,F) @test length(realSols) == 4 println("tests completed successfully")
RealPolyhedralHomotopy
https://github.com/klee669/RealPolyhedralHomotopy.jl.git
[ "MIT" ]
1.2.1
fe0b322c6a90a0a38725908427a1dd5982bc2e1b
docs
1305
# RealPolyhedralHomotopy.jl `RealPolyhedralHomotopy.jl` is a package for finding real roots of systems of polynomial equations using polyhedral homotopy. The package implements the algorithm for the real polyhedral homotopy establised in [A Polyhedral Homotopy Algorithm For Real Zeros](https://arxiv.org/abs/1910.01957). The idea for the real polyhedral homotopy motivated from the celebrated article [A Polyhedral Method for Solving Sparse Polynomial Systems](https://www.jstor.org/stable/2153370?seq=1) to apply the polyhedral homotopy method for real roots finding. ## Documents [![](https://img.shields.io/badge/docs-stable-blue.svg)](https://klee669.github.io/RealPolyhedralHomotopy.jl/stable) [![](https://img.shields.io/badge/docs-dev-blue.svg)](https://klee669.github.io/RealPolyhedralHomotopy.jl/dev) ## Installation The package can be installed via the Julia package manager. It is suggested to use Julia 1.6.1 or higher. ```julia pkg> add RealPolyhedralHomotopy ``` ## Getting Started To find a preliminary example of how the functions in this package work see [this tutorial](https://github.com/klee669/RealPolyhedralHomotopy.jl/blob/main/docs/src/index.md), otherwise see the [documentation](https://klee669.github.io/RealPolyhedralHomotopy.jl/dev/#Installation) for more details.
RealPolyhedralHomotopy
https://github.com/klee669/RealPolyhedralHomotopy.jl.git
[ "MIT" ]
1.2.1
fe0b322c6a90a0a38725908427a1dd5982bc2e1b
docs
2103
# RealPolyhedralHomotopy.jl [RealPolyhedralHomotopy.jl](https://github.com/klee669/RealPolyhedralHomotopy.jl) is a package for finding real roots of systems of polynomial equations using polyhedral homotopy. The package implements the algorithm for the real polyhedral homotopy establised in [A Polyhedral Homotopy Algorithm For Real Zeros](https://arxiv.org/abs/1910.01957). The idea for the real polyhedral homotopy motivated from the celebrated article [A Polyhedral Method for Solving Sparse Polynomial Systems](https://www.jstor.org/stable/2153370?seq=1) to apply the polyhedral homotopy method for real roots finding. The authors of this package are * [Kisun Lee](https://klee669.github.io) * [Julia Lindberg](https://sites.google.com/view/julialindberg) * [Jose Israel Rodriguez](https://sites.google.com/wisc.edu/jose) ## Installation The package can be installed via the Julia package manager. It is suggested to use Julia 1.6.1 or higher. ```julia pkg> add RealPolyhedralHomotopy ``` ## Introduction We support system input through the [HomotopyContinuation](https://www.juliahomotopycontinuation.org) package. ```julia using RealPolyhedralHomotopy @var x y; F = System([-1 - 24000*y + x^3, -9 + 50*x*y - 1*y^2]); ``` For finding real roots, the list of binomial systems corresponding to `F` is required as a start system. ```julia B = generate_binomials(F); ``` ``` Binomial_system_data ``` ```julia B.binomial_system ``` ``` 2-element Vector{Any}: Expression[-24000*y + x^3, 50*x*y - y^2] Expression[-24000*y + x^3, -9 + 50*x*y] ``` Using the function `rph_track`, real roots are found by tracking the real polyhedral homotopy. ```julia @var x y; F = System([-1 - 24000*y + x^3, -9 + 50*x*y - 1*y^2]); B = generate_binomials(F); realSols = rph_track(B,F) ``` ``` 4-element Vector{Vector{Float64}}: [-1095.4451129504978, -54772.25548320812] [1095.4451137838312, 54772.255524874796] [8.111114476617955, 0.02219298606763958] [-8.103507635567631, -0.02221382112196499] ``` ## Functions for the real polyhedral homotopy ```@docs certify_patchwork generate_binomials rph_track ```
RealPolyhedralHomotopy
https://github.com/klee669/RealPolyhedralHomotopy.jl.git
[ "MIT" ]
2.1.3
c1421f259b2dd66ed19d9cede5edcea71636b7e6
code
1608
using Documenter, Nonconvex Nonconvex.@load MMA Ipopt NLopt Percival Bayesian Hyperopt Juniper Pavito MTS Semidefinite makedocs( sitename="Nonconvex.jl", pages = [ "Getting started" => "index.md", "Problem definition" => [ "Overview" => "problem/problem.md", "`Model` definition" => "problem/model.md", "`DictModel` definition" => "problem/dict_model.md", "Querying models" => "problem/queries.md", ], "Gradients, Jacobians and Hessians" => [ "Overview" => "gradients/gradients.md", "gradients/user_defined.md", "gradients/other_ad.md", "gradients/chainrules_fd.md", "gradients/sparse.md", "gradients/symbolic.md", "gradients/implicit.md", "gradients/history.md", ], "Algorithms" => [ "Overview" => "algorithms/algorithms.md", "algorithms/mma.md", "algorithms/ipopt.md", "algorithms/nlopt.md", "algorithms/auglag.md", "algorithms/minlp.md", "algorithms/hyperopt.md", "algorithms/surrogate.md", "algorithms/mts.md", "algorithms/sdp.md", "algorithms/metaheuristics.md", "algorithms/nomad.md", "algorithms/tobs.md", ], "Optimization result" => "result.md" ], warnonly = true, ) if get(ENV, "CI", nothing) == "true" deploydocs( repo = "github.com/JuliaNonconvex/Nonconvex.jl.git", push_preview=true, ) end
Nonconvex
https://github.com/JuliaNonconvex/Nonconvex.jl.git
[ "MIT" ]
2.1.3
c1421f259b2dd66ed19d9cede5edcea71636b7e6
code
2676
module Nonconvex using Reexport @reexport using NonconvexCore @reexport using NonconvexUtils macro load(algo) esc(_load(string(algo))) end macro load(algos...) exprs = map(algos) do algo :(Nonconvex.@load $algo) end return Expr(:block, exprs...) end function _load(algo) if algo in ("MMA", "GCMMA", "MMA87", "MMA02") return install_and_load_module(:NonconvexMMA) elseif algo in ("Ipopt", "IpoptAlg") return install_and_load_module(:NonconvexIpopt) elseif algo in ("NLopt", "NLoptAlg") return install_and_load_module(:NonconvexNLopt) elseif algo in ("Juniper", "JuniperIpopt", "JuniperIpoptAlg") return install_and_load_module(:NonconvexJuniper) elseif algo in ("Pavito", "PavitoIpoptCbc", "PavitoIpoptCbcAlg") return install_and_load_module(:NonconvexPavito) elseif algo in ("Percival", "AugLag", "PercivalAlg") return install_and_load_module(:NonconvexPercival) elseif algo == "AugLag2" return install_and_load_module(:NonconvexAugLagLab) elseif algo in ("Bayesian", "BayesOpt", "BayesOptAlg") return install_and_load_module(:NonconvexBayesian) elseif algo in ("SDP", "Semidefinite", "SDPBarrier", "SDPBarrierAlg") return install_and_load_module(:NonconvexSemidefinite) elseif algo in ("Search", "MTS", "LS1", "MTSAlg", "LS1Alg") return install_and_load_module(:NonconvexSearch) elseif algo in ("Hyperopt", "Deflated", "Multistart", "HyperoptAlg", "DeflatedAlg") return install_and_load_module(:NonconvexMultistart) elseif algo == "TOBS" return install_and_load_module(:NonconvexTOBS) elseif algo == "Metaheuristics" return install_and_load_module(:NonconvexMetaheuristics) elseif algo == "NOMAD" return install_and_load_module(:NonconvexNOMAD) else throw("Unsupported algorithm. Please check the documentation of Nonconvex.jl.") end end function install_and_load_module(mod) quote using Pkg modname = $(Meta.quot(mod)) try @info "Attempting to load the package $modname." using $mod @info "Loading succesful." catch @info "Couldn't find the package $modname. Attempting to install it." try Pkg.add(string(modname)) catch err @info "Package installation failed! Please report an issue." rethrow(err) end @info "$modname installed." @info "Attempting to load the package $modname." using $mod @info "Loading succesful." end end end end
Nonconvex
https://github.com/JuliaNonconvex/Nonconvex.jl.git
[ "MIT" ]
2.1.3
c1421f259b2dd66ed19d9cede5edcea71636b7e6
code
1419
using Test, Nonconvex, Pkg @test_throws ArgumentError using NonconvexIpopt Nonconvex.@load Ipopt IpoptAlg() @test_throws ArgumentError using NonconvexNLopt Nonconvex.@load NLopt NLoptAlg(:LD_MMA) @test_throws ArgumentError using NonconvexJuniper Nonconvex.@load Juniper JuniperIpoptAlg() IpoptAlg() @test_throws ArgumentError using NonconvexMMA Nonconvex.@load MMA MMA87() MMA02() @test_throws ArgumentError using NonconvexPavito Nonconvex.@load Pavito PavitoIpoptCbcAlg() IpoptAlg() @test_throws ArgumentError using NonconvexPercival Nonconvex.@load AugLag AugLag() @test_throws ArgumentError using NonconvexBayesian Nonconvex.@load Bayesian BayesOptAlg(IpoptAlg()) #@test_throws ArgumentError using NonconvexAugLagLab #Nonconvex.@load AugLag2 #AugLag2() @test_throws ArgumentError using NonconvexSemidefinite Nonconvex.@load Semidefinite SDPBarrierAlg(IpoptAlg()) @test_throws ArgumentError using NonconvexSearch Nonconvex.@load Search MTSAlg() LS1Alg() @test_throws ArgumentError using NonconvexMultistart Nonconvex.@load Multistart HyperoptAlg(IpoptAlg()) @test_throws ArgumentError using NonconvexTOBS Nonconvex.@load TOBS TOBSAlg() @test_throws ArgumentError using NonconvexMetaheuristics Nonconvex.@load Metaheuristics MetaheuristicsAlg(ECA) Pkg.rm("NonconvexPercival") # https://github.com/ds4dm/Tulip.jl/issues/125 @test_throws ArgumentError using NonconvexNOMAD Nonconvex.@load NOMAD NOMADAlg()
Nonconvex
https://github.com/JuliaNonconvex/Nonconvex.jl.git
[ "MIT" ]
2.1.3
c1421f259b2dd66ed19d9cede5edcea71636b7e6
docs
19955
# Nonconvex [![Actions Status](https://github.com/JuliaNonconvex/Nonconvex.jl/workflows/CI/badge.svg)](https://github.com/JuliaNonconvex/Nonconvex.jl/actions) [![codecov](https://codecov.io/gh/JuliaNonconvex/Nonconvex.jl/branch/master/graph/badge.svg)](https://codecov.io/gh/JuliaNonconvex/Nonconvex.jl) [![](https://img.shields.io/badge/docs-stable-blue.svg)](https://JuliaNonconvex.github.io/Nonconvex.jl/stable) [![](https://img.shields.io/badge/docs-dev-blue.svg)](https://JuliaNonconvex.github.io/Nonconvex.jl/dev) `Nonconvex.jl` is an umbrella package over implementations and wrappers of a number of nonconvex constrained optimization algorithms and packages making use of automatic differentiation. Zero, first and second order methods are available. Nonlinear equality and inequality constraints as well as integer and nonlinear semidefinite constraints are supported. A detailed description of all the algorithms and features available in `Nonconvex` can be found in the [documentation](https://JuliaNonconvex.github.io/Nonconvex.jl/stable). ## The `JuliaNonconvex` organization The `JuliaNonconvex` organization hosts a number of packages which are available for use in `Nonconvex.jl`. The correct package is loaded using the `Nonconvex.@load` macro with the algorithm or package name. See the [documentation](https://JuliaNonconvex.github.io/Nonconvex.jl/stable) for more details. The following is a summary of all the packages in the `JuliaNonconvex` organization. | Package | Description | Tests | Coverage | | ------- | ----------- | ----- | -------- | | [Nonconvex.jl](https://github.com/mohamed82008/Nonconvex.jl) | Umbrella package for nonconvex optimization | [![Actions Status](https://github.com/JuliaNonconvex/Nonconvex.jl/workflows/CI/badge.svg)](https://github.com/JuliaNonconvex/Nonconvex.jl/actions) | [![codecov](https://codecov.io/gh/JuliaNonconvex/Nonconvex.jl/branch/master/graph/badge.svg)](https://codecov.io/gh/JuliaNonconvex/Nonconvex.jl) | | [NonconvexCore.jl](https://github.com/JuliaNonconvex/NonconvexCore.jl) | All the interface functions and structs | [![Build Status](https://github.com/JuliaNonconvex/NonconvexCore.jl/workflows/CI/badge.svg)](https://github.com/JuliaNonconvex/NonconvexCore.jl/actions) | [![Coverage](https://codecov.io/gh/JuliaNonconvex/NonconvexCore.jl/branch/master/graph/badge.svg)](https://codecov.io/gh/JuliaNonconvex/NonconvexCore.jl) | | [NonconvexMMA.jl](https://github.com/JuliaNonconvex/NonconvexMMA.jl) | Method of moving asymptotes implementation in pure Julia | [![Build Status](https://github.com/JuliaNonconvex/NonconvexMMA.jl/workflows/CI/badge.svg)](https://github.com/JuliaNonconvex/NonconvexMMA.jl/actions) | [![Coverage](https://codecov.io/gh/JuliaNonconvex/NonconvexMMA.jl/branch/master/graph/badge.svg)](https://codecov.io/gh/JuliaNonconvex/NonconvexMMA.jl) | | [NonconvexIpopt.jl](https://github.com/JuliaNonconvex/NonconvexIpopt.jl) | [Ipopt.jl](https://github.com/jump-dev/Ipopt.jl) wrapper | [![Build Status](https://github.com/JuliaNonconvex/NonconvexIpopt.jl/workflows/CI/badge.svg)](https://github.com/JuliaNonconvex/NonconvexIpopt.jl/actions) | [![Coverage](https://codecov.io/gh/JuliaNonconvex/NonconvexIpopt.jl/branch/master/graph/badge.svg)](https://codecov.io/gh/JuliaNonconvex/NonconvexIpopt.jl) | | [NonconvexNLopt.jl](https://github.com/JuliaNonconvex/NonconvexNLopt.jl) | [NLopt.jl](https://github.com/JuliaOpt/NLopt.jl) wrapper | [![Build Status](https://github.com/JuliaNonconvex/NonconvexNLopt.jl/workflows/CI/badge.svg)](https://github.com/JuliaNonconvex/NonconvexNLopt.jl/actions) | [![Coverage](https://codecov.io/gh/JuliaNonconvex/NonconvexNLopt.jl/branch/master/graph/badge.svg)](https://codecov.io/gh/JuliaNonconvex/NonconvexNLopt.jl) | | [NonconvexPercival.jl](https://github.com/JuliaNonconvex/NonconvexPercival.jl) | [Percival.jl](https://github.com/JuliaSmoothOptimizers/Percival.jl) wrapper (an augmented Lagrangian algorithm implementation) | [![Build Status](https://github.com/JuliaNonconvex/NonconvexPercival.jl/workflows/CI/badge.svg)](https://github.com/JuliaNonconvex/NonconvexPercival.jl/actions) | [![Coverage](https://codecov.io/gh/JuliaNonconvex/NonconvexPercival.jl/branch/master/graph/badge.svg)](https://codecov.io/gh/JuliaNonconvex/NonconvexPercival.jl) | | [NonconvexJuniper.jl](https://github.com/JuliaNonconvex/NonconvexJuniper.jl) | [Juniper.jl](https://github.com/lanl-ansi/Juniper.jl) wrapper | [![Build Status](https://github.com/JuliaNonconvex/NonconvexJuniper.jl/workflows/CI/badge.svg)](https://github.com/JuliaNonconvex/NonconvexJuniper.jl/actions) | [![Coverage](https://codecov.io/gh/JuliaNonconvex/NonconvexJuniper.jl/branch/master/graph/badge.svg)](https://codecov.io/gh/JuliaNonconvex/NonconvexJuniper.jl) | | [NonconvexPavito.jl](https://github.com/JuliaNonconvex/NonconvexPavito.jl) | [Pavito.jl](https://github.com/jump-dev/Pavito.jl) wrapper | [![Build Status](https://github.com/JuliaNonconvex/NonconvexPavito.jl/workflows/CI/badge.svg)](https://github.com/JuliaNonconvex/NonconvexPavito.jl/actions) | [![Coverage](https://codecov.io/gh/JuliaNonconvex/NonconvexPavito.jl/branch/master/graph/badge.svg)](https://codecov.io/gh/JuliaNonconvex/NonconvexPavito.jl) | | [NonconvexSemidefinite.jl](https://github.com/JuliaNonconvex/NonconvexSemidefinite.jl) | Nonlinear semi-definite programming algorithm | [![Build Status](https://github.com/JuliaNonconvex/NonconvexSemidefinite.jl/workflows/CI/badge.svg)](https://github.com/JuliaNonconvex/NonconvexSemidefinite.jl/actions) | [![Coverage](https://codecov.io/gh/JuliaNonconvex/NonconvexSemidefinite.jl/branch/master/graph/badge.svg)](https://codecov.io/gh/JuliaNonconvex/NonconvexSemidefinite.jl) | | [NonconvexMultistart.jl](https://github.com/JuliaNonconvex/NonconvexMultistart.jl) | Multi-start optimization algorithms | [![Build Status](https://github.com/JuliaNonconvex/NonconvexMultistart.jl/workflows/CI/badge.svg)](https://github.com/JuliaNonconvex/NonconvexMultistart.jl/actions) | [![Coverage](https://codecov.io/gh/JuliaNonconvex/NonconvexMultistart.jl/branch/master/graph/badge.svg)](https://codecov.io/gh/JuliaNonconvex/NonconvexMultistart.jl) | | [NonconvexBayesian.jl](https://github.com/JuliaNonconvex/NonconvexBayesian.jl) | Constrained Bayesian optimization implementation | [![Build Status](https://github.com/JuliaNonconvex/NonconvexBayesian.jl/workflows/CI/badge.svg)](https://github.com/JuliaNonconvex/NonconvexBayesian.jl/actions) | [![Coverage](https://codecov.io/gh/JuliaNonconvex/NonconvexBayesian.jl/branch/master/graph/badge.svg)](https://codecov.io/gh/JuliaNonconvex/NonconvexBayesian.jl) | | [NonconvexSearch.jl](https://github.com/JuliaNonconvex/NonconvexSearch.jl) | Multi-trajectory and local search methods | [![Build Status](https://github.com/JuliaNonconvex/NonconvexSearch.jl/workflows/CI/badge.svg)](https://github.com/JuliaNonconvex/NonconvexSearch.jl/actions) | [![Coverage](https://codecov.io/gh/JuliaNonconvex/NonconvexSearch.jl/branch/master/graph/badge.svg)](https://codecov.io/gh/JuliaNonconvex/NonconvexSearch.jl) | | [NonconvexAugLagLab.jl](https://github.com/JuliaNonconvex/NonconvexAugLagLab.jl) | Experimental augmented Lagrangian package | [![Build Status](https://github.com/JuliaNonconvex/NonconvexAugLagLab.jl/workflows/CI/badge.svg)](https://github.com/JuliaNonconvex/NonconvexAugLagLab.jl/actions) | [![Coverage](https://codecov.io/gh/JuliaNonconvex/NonconvexAugLagLab.jl/branch/master/graph/badge.svg)](https://codecov.io/gh/JuliaNonconvex/NonconvexAugLagLab.jl) | | [NonconvexUtils.jl](https://github.com/JuliaNonconvex/NonconvexUtils.jl) | Some utility functions for automatic differentiation, history tracing, implicit functions and more. | [![Build Status](https://github.com/JuliaNonconvex/NonconvexUtils.jl/workflows/CI/badge.svg)](https://github.com/JuliaNonconvex/NonconvexUtils.jl/actions) | [![Coverage](https://codecov.io/gh/JuliaNonconvex/NonconvexUtils.jl/branch/main/graph/badge.svg)](https://codecov.io/gh/JuliaNonconvex/NonconvexUtils.jl) | | [NonconvexTOBS.jl](https://github.com/JuliaNonconvex/NonconvexTOBS.jl) | Binary optimization algorithm called "topology optimization of binary structures" ([TOBS](https://www.sciencedirect.com/science/article/abs/pii/S0168874X17305619?via%3Dihub)) which was originally developed in the context of optimal distribution of material in mechanical components. | [![Build Status](https://github.com/JuliaNonconvex/NonconvexTOBS.jl/workflows/CI/badge.svg)](https://github.com/JuliaNonconvex/NonconvexTOBS.jl/actions) | [![Coverage](https://codecov.io/gh/JuliaNonconvex/NonconvexTOBS.jl/branch/main/graph/badge.svg)](https://codecov.io/gh/JuliaNonconvex/NonconvexTOBS.jl) | | [NonconvexMetaheuristics.jl](https://github.com/JuliaNonconvex/NonconvexMetaheuristics.jl) | Metaheuristic gradient-free optimization algorithms as implemented in [`Metaheuristics.jl`](https://github.com/jmejia8/Metaheuristics.jl). | [![Build Status](https://github.com/JuliaNonconvex/NonconvexMetaheuristics.jl/workflows/CI/badge.svg)](https://github.com/JuliaNonconvex/NonconvexMetaheuristics.jl/actions) | [![Coverage](https://codecov.io/gh/JuliaNonconvex/NonconvexMetaheuristics.jl/branch/main/graph/badge.svg)](https://codecov.io/gh/JuliaNonconvex/NonconvexMetaheuristics.jl) | | [NonconvexNOMAD.jl](https://github.com/JuliaNonconvex/NonconvexNOMAD.jl) | [NOMAD algorithm](https://dl.acm.org/doi/10.1145/1916461.1916468) as wrapped in the [`NOMAD.jl`](https://github.com/bbopt/NOMAD.jl). | [![Build Status](https://github.com/JuliaNonconvex/NonconvexNOMAD.jl/workflows/CI/badge.svg)](https://github.com/JuliaNonconvex/NonconvexNOMAD.jl/actions) | [![Coverage](https://codecov.io/gh/JuliaNonconvex/NonconvexNOMAD.jl/branch/main/graph/badge.svg)](https://codecov.io/gh/JuliaNonconvex/NonconvexNOMAD.jl) | ## Design philosophy `Nonconvex.jl` is a Julia package that implements and wraps a number of constrained nonlinear and mixed integer nonlinear programming solvers. There are 3 focus points of `Nonconvex.jl` compared to similar packages such as `JuMP.jl` and `NLPModels.jl`: 1. Emphasis on a function-based API. Objectives and constraints are normal Julia functions. 2. The ability to nest algorithms to create more complicated algorithms. 3. The ability to automatically handle structs and different container types in the decision variables by automatically vectorizing and un-vectorizing them in an AD compatible way. ## Installing Nonconvex To install `Nonconvex.jl`, open a Julia REPL and type `]` to enter the package mode. Then run: ```julia add Nonconvex ``` Alternatively, copy and paste the following code to a Julia REPL: ```julia using Pkg; Pkg.add("Nonconvex") ``` ## Loading Nonconvex To load and start using `Nonconvex.jl`, run: ```julia using Nonconvex ``` ## Quick example ```julia using Nonconvex Nonconvex.@load NLopt f(x) = sqrt(x[2]) g(x, a, b) = (a*x[1] + b)^3 - x[2] model = Model(f) addvar!(model, [0.0, 0.0], [10.0, 10.0]) add_ineq_constraint!(model, x -> g(x, 2, 0)) add_ineq_constraint!(model, x -> g(x, -1, 1)) alg = NLoptAlg(:LD_MMA) options = NLoptOptions() r = optimize(model, alg, [1.0, 1.0], options = options) r.minimum # objective value r.minimzer # decision variables ``` ## Algorithms A summary of all the algorithms available in `Nonconvex` through different packages is shown in the table below. Scroll right to see more columns and see a description of the columns below the table. | Algorithm name | Is meta-algorithm? | Algorithm package | Order | Finite bounds | Infinite bounds | Inequality constraints | Equality constraints | Semidefinite constraints | Integer variables | | ------- | ----------- | ----- | -------- | -------- | -------- | -------- | -------- | -------- | -------- | | Method of moving asymptotes (MMA) | ❌ | `NonconvexMMA.jl` (pure Julia) or `NLopt.jl` | 1 | ✅ | ✅ | ✅ | ❌ | ❌ | ❌ | | Primal dual interior point method | ❌ | `Ipopt.jl` | 1 or 2 | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ | | DIviding RECTangles algorithm (DIRECT) | ❌ | `NLopt.jl` | 0 | ✅ | ❌ | ✅ | ❌ | ❌ | ❌ | | Controlled random search (CRS) | ❌ | `NLopt.jl` | 0 | ✅ | ✅ | ❌ | ❌ | ❌ | ❌ | | Multi-Level Single-Linkage (MLSL) | Limited | `NLopt.jl` | Depends on sub-solver | ✅ | ✅ | ❌ | ❌ | ❌ | ❌ | | StoGo | ❌ | `NLopt.jl` | 1 | ✅ | ❌ | ❌ | ❌ | ❌ | ❌ | | AGS | ❌ | `NLopt.jl` | 0 | ✅ | ❌ | ✅ | ❌ | ❌ | ❌ | | Improved Stochastic Ranking Evolution Strategy (ISRES) | ❌ | `NLopt.jl` | 0 | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ | | ESCH | ❌ | `NLopt.jl` | 0 | ✅ | ✅ | ❌ | ❌ | ❌ | ❌ | | COBYLA | ❌ | `NLopt.jl` | 0 | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ | | BOBYQA | ❌ | `NLopt.jl` | 0 | ✅ | ✅ | ❌ | ❌ | ❌ | ❌ | | NEWUOA | ❌ | `NLopt.jl` | 0 | ✅ | ✅ | ❌ | ❌ | ❌ | ❌ | | Principal AXIS (PRAXIS) | ❌ | `NLopt.jl` | 0 | ✅ | ✅ | ❌ | ❌ | ❌ | ❌ | | Nelder Mead | ❌ | `NLopt.jl` | 0 | ✅ | ✅ | ❌ | ❌ | ❌ | ❌ | | Subplex | ❌ | `NLopt.jl` | 0 | ✅ | ✅ | ❌ | ❌ | ❌ | ❌ | | CCSAQ | ❌ | `NLopt.jl` | 1 | ✅ | ✅ | ✅ | ❌ | ❌ | ❌ | | SLSQP | ❌ | `NLopt.jl` | 1 | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ | | TNewton | ❌ | `NLopt.jl` | 1 | ❌ | ✅ | ❌ | ❌ | ❌ | ❌ | | Shifted limited-memory variable-metric | ❌ | `NLopt.jl` | 1 | ❌ | ✅ | ❌ | ❌ | ❌ | ❌ | | Augmented Lagrangian in `NLopt` | Limited | `NLopt.jl` | Depends on sub-solver | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ | | Augmented Lagrangian in `Percival` | ❌ | `Percival.jl` | 1 or 2 | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ | | Multiple trajectory search | ❌ | `NonconvexSearch.jl` | 0 | ✅ | ❌ | ❌ | ❌ | ❌ | ❌ | | Branch and bound for mixed integer nonlinear programming | ❌ | `Juniper.jl` | 1 or 2 | ✅ | ✅ | ✅ | ✅ | ❌ | ✅ | | Sequential polyhedral outer-approximations for mixed integer nonlinear programming | ❌ | `Pavito.jl` | 1 or 2 | ✅ | ✅ | ✅ | ✅ | ❌ | ✅ | | Evolutionary centers algorithm (ECA) | ❌ | `Metaheuristics.jl` | 0 | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ | | Differential evolution (DE) | ❌ | `Metaheuristics.jl` | 0 | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ | | Particle swarm optimization (PSO) | ❌ | `Metaheuristics.jl` | 0 | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ | | Artificial bee colony (ABC) | ❌ | `Metaheuristics.jl` | 0 | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ | | Gravitational search algorithm (GSA) | ❌ | `Metaheuristics.jl` | 0 | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ | | Simulated annealing (SA) | ❌ | `Metaheuristics.jl` | 0 | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ | | Whale optimization algorithm (WOA) | ❌ | `Metaheuristics.jl` | 0 | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ | | Machine-coded compact genetic algorithm (MCCGA) | ❌ | `Metaheuristics.jl` | 0 | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ | | Genetic algorithm (GA) | ❌ | `Metaheuristics.jl` | 0 | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ | | Nonlinear optimization with the MADS algorithm (NOMAD) | ❌ | `NOMAD.jl` | 0 | ✅ | ✅ | ✅ | Limited | ❌ | ✅ | | Topology optimization of binary structures (TOBS) | ❌ | `NonconvexTOBS.jl` | 1 | Binary | ❌ | ✅ | ❌ | ❌ | Binary | | Hyperband | ✅ | `Hyperopt.jl` | Depends on sub-solver | ✅ | ❌ | Depends on sub-solver | Depends on sub-solver | Depends on sub-solver | Depends on sub-solver | | Random search | ✅ | `Hyperopt.jl` | Depends on sub-solver | ✅ | ❌ | Depends on sub-solver | Depends on sub-solver | Depends on sub-solver | Depends on sub-solver | | Latin hypercube search | ✅ | `Hyperopt.jl` | Depends on sub-solver | ✅ | ❌ | Depends on sub-solver | Depends on sub-solver | Depends on sub-solver | Depends on sub-solver | | Surrogate assisted optimization | ✅ | `NonconvexBayesian.jl` | Depends on sub-solver | Depends on sub-solver | Depends on sub-solver | Depends on sub-solver | Depends on sub-solver | Depends on sub-solver | Depends on sub-solver | | Log barrier method for nonlinear semidefinite constraint handling | ✅ | `NonconvexSemidefinite.jl` | Depends on sub-solver | Depends on sub-solver | Depends on sub-solver | Depends on sub-solver | Depends on sub-solver | ✅ | Depends on sub-solver | The following is an explanation of all the columns in the table: - Algorithm name. This is the name of the algorithm and/or its acronym. Some algorithms have multiple variants implemented in their respective packages. When that's the case, the whole family of algorithms is mentioned only once. - Is meta-algorithm? Some algorithms are meta-algorithms that call a sub-algorithm to do the optimization after transforming the problem. In this case, a lot of the properties of the meta-algorithm are inherited from the sub-algorithm. So if the sub-algorithm requires gradients or Hessians of functions in the model, the meta-algorithm will also require gradients and Hessians of functions in the model. Fields where the property of the meta-algorithm is inherited from the sub-solver are indicated using the "Depends on sub-solver" entry. Some algorithms in `NLopt` have a "Limited" meta-algorithm status because they can only be used to wrap algorithms from `NLopt`. - Algorithm package. This is the Julia package that either implements the algorithm or calls it from another programming language. `Nonconvex` wraps all these packages using a consistent API while allowing each algorithm to be customized where possible and have its own set of options. - Order. This is the order of the algorithm. Zero-order algorithms only require the evaluation of the objective and constraint functions, they don't require any gradients or Hessians of objective and constraint functions. First-order algorithms require both the value and gradients of objective and/or constraint functions. Second-order algorithms require the value, gradients and Hessians of objective and/or constraint functions. - Finite bounds. This is true if the algorithm supports finite lower and upper bound constraints on the decision variables. One special case is the `TOBS` algorithm which only supports binary decision variables so an entry of "Binary" is used instead of true/false. - Infinite bounds. This is true if the algorithm supports unbounded decision variables either from below, above or both. - Inequality constraints. This is true if the algorithm supports nonlinear inequality constraints. - Equality constraints. This is true if the algorithm supports nonlinear equality constraints. Algorithms that only support linear equality constraints are given an entry of "Limited". - Semidefinite constraints. This is true if the algorithm supports nonlinear semidefinite constraints. - Integer variables. This is true if the algorithm supports integer/discrete/binary decision variables, not just continuous. One special case is the `TOBS` algorithm which only supports binary decision variables so an entry of "Binary" is used instead of true/false. ## How to contribute? **A beginner?** The easiest way to contribute is to read the documentation, test the package and report issues. **An impulsive tester?** Improving the test coverage of any package is another great way to contribute to the `JuliaNonconvex` org. Check the coverage report of any of the packages above by clicking the coverage badge. Find the red lines in the report and figure out tests that would cover these lines of code. **An algorithm head?** There are plenty of optimization algorithms that can be implemented and interfaced in `Nonconvex.jl`. You could be developing the next big nonconvex semidefinite programming algorithm right now! Or the next constraint handling method for evolutionary algorithms! **A hacker?** Let's figure out how to wrap some optimization package in Julia in the unique, simple and nimble `Nonconvex.jl` style. **A software designer?** Let's talk about design decisions and how to improve the modularity of the ecosystem. You can always reach out by opening an issue. ## How to cite? If you use Nonconvex.jl for your own research, please consider citing the following publication: Mohamed Tarek. Nonconvex.jl: A Comprehensive Julia Package for Non-Convex Optimization. 2023. doi: 10.13140/RG.2.2.36120.37121. ``` @article{MohamedTarekNonconvexjl, doi = {10.13140/RG.2.2.36120.37121}, url = {https://rgdoi.net/10.13140/RG.2.2.36120.37121}, author = {Tarek, Mohamed}, language = {en}, title = {Nonconvex.jl: A Comprehensive Julia Package for Non-Convex Optimization}, year = {2023} } ```
Nonconvex
https://github.com/JuliaNonconvex/Nonconvex.jl.git
[ "MIT" ]
2.1.3
c1421f259b2dd66ed19d9cede5edcea71636b7e6
docs
1576
# `Nonconvex.jl` Documentation `Nonconvex.jl` is a Julia package that implements and wraps a number of constrained nonlinear and mixed integer nonlinear programming solvers. There are 3 focus points of `Nonconvex.jl` compared to similar packages such as `JuMP.jl` and `NLPModels.jl`: 1. Emphasis on a function-based API. Objectives and constraints are normal Julia functions. 2. The ability to nest algorithms to create more complicated algorithms. 3. The ability to automatically handle structs and different container types in the decision variables by automatically vectorizing and un-vectorizing them in an AD compatible way. ## Installing Nonconvex To install `Nonconvex.jl`, open a Julia REPL and type `]` to enter the package mode. Then run: ```julia add Nonconvex ``` Alternatively, copy and paste the following code to a Julia REPL: ```julia using Pkg; Pkg.add("Nonconvex") ``` ## Loading Nonconvex To load and start using `Nonconvex.jl`, run: ```julia using Nonconvex ``` ## Quick start ```julia using Nonconvex Nonconvex.@load NLopt f(x) = sqrt(x[2]) g(x, a, b) = (a*x[1] + b)^3 - x[2] model = Model(f) addvar!(model, [0.0, 0.0], [10.0, 10.0]) add_ineq_constraint!(model, x -> g(x, 2, 0)) add_ineq_constraint!(model, x -> g(x, -1, 1)) alg = NLoptAlg(:LD_MMA) options = NLoptOptions() r = optimize(model, alg, [1.0, 1.0], options = options) r.minimum # objective value r.minimizer # decision variables ``` ## Table of contents ```@contents Pages = ["problem/problem.md", "algorithms/algorithms.md", "gradients/gradients.md", "result.md"] Depth = 3 ```
Nonconvex
https://github.com/JuliaNonconvex/Nonconvex.jl.git
[ "MIT" ]
2.1.3
c1421f259b2dd66ed19d9cede5edcea71636b7e6
docs
768
# Optimization result Each algorithm is free to return a different result type from the `optimize` function. However, all the result types have 2 fields: - `result.minimum`: stores the minimum objective value reached in the optimization - `result.minimizer`: stores the optimal decision variables reached during optimization Some result types store additional information returned by the solver, e.g. the convergence status. Please explore the fields of the `result` output from `optimize` and/or check the documentation of the individual algorithms in the [algorithms section](algorithms/algorithms.md) of the documentation. If you have further questions, feel free to open issues in the [`Nonconvex.jl` repository](https://github.com/JuliaNonconvex/Nonconvex.jl).
Nonconvex
https://github.com/JuliaNonconvex/Nonconvex.jl.git
[ "MIT" ]
2.1.3
c1421f259b2dd66ed19d9cede5edcea71636b7e6
docs
15114
# Algorithms ## Overview of algorithms A summary of all the algorithms available in `Nonconvex` through different packages is shown in the table below. Scroll right to see more columns and see a description of the columns below the table. | Algorithm name | Is meta-algorithm? | Algorithm package | Order | Finite bounds | Infinite bounds | Inequality constraints | Equality constraints | Semidefinite constraints | Integer variables | | ------- | ----------- | ----- | -------- | -------- | -------- | -------- | -------- | -------- | -------- | | Method of moving asymptotes (MMA) | ❌ | `NonconvexMMA.jl` (pure Julia) or `NLopt.jl` | 1 | ✅ | ✅ | ✅ | ❌ | ❌ | ❌ | | Primal dual interior point method | ❌ | `Ipopt.jl` | 1 or 2 | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ | | DIviding RECTangles algorithm (DIRECT) | ❌ | `NLopt.jl` | 0 | ✅ | ❌ | ✅ | ❌ | ❌ | ❌ | | Controlled random search (CRS) | ❌ | `NLopt.jl` | 0 | ✅ | ✅ | ❌ | ❌ | ❌ | ❌ | | Multi-Level Single-Linkage (MLSL) | Limited | `NLopt.jl` | Depends on sub-solver | ✅ | ✅ | ❌ | ❌ | ❌ | ❌ | | StoGo | ❌ | `NLopt.jl` | 1 | ✅ | ❌ | ❌ | ❌ | ❌ | ❌ | | AGS | ❌ | `NLopt.jl` | 0 | ✅ | ❌ | ✅ | ❌ | ❌ | ❌ | | Improved Stochastic Ranking Evolution Strategy (ISRES) | ❌ | `NLopt.jl` | 0 | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ | | ESCH | ❌ | `NLopt.jl` | 0 | ✅ | ✅ | ❌ | ❌ | ❌ | ❌ | | COBYLA | ❌ | `NLopt.jl` | 0 | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ | | BOBYQA | ❌ | `NLopt.jl` | 0 | ✅ | ✅ | ❌ | ❌ | ❌ | ❌ | | NEWUOA | ❌ | `NLopt.jl` | 0 | ✅ | ✅ | ❌ | ❌ | ❌ | ❌ | | Principal AXIS (PRAXIS) | ❌ | `NLopt.jl` | 0 | ✅ | ✅ | ❌ | ❌ | ❌ | ❌ | | Nelder Mead | ❌ | `NLopt.jl` | 0 | ✅ | ✅ | ❌ | ❌ | ❌ | ❌ | | Subplex | ❌ | `NLopt.jl` | 0 | ✅ | ✅ | ❌ | ❌ | ❌ | ❌ | | CCSAQ | ❌ | `NLopt.jl` | 1 | ✅ | ✅ | ✅ | ❌ | ❌ | ❌ | | SLSQP | ❌ | `NLopt.jl` | 1 | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ | | TNewton | ❌ | `NLopt.jl` | 1 | ❌ | ✅ | ❌ | ❌ | ❌ | ❌ | | Shifted limited-memory variable-metric | ❌ | `NLopt.jl` | 1 | ❌ | ✅ | ❌ | ❌ | ❌ | ❌ | | Augmented Lagrangian in `NLopt` | Limited | `NLopt.jl` | Depends on sub-solver | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ | | Augmented Lagrangian in `Percival` | ❌ | `Percival.jl` | 1 or 2 | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ | | Multiple trajectory search | ❌ | `NonconvexSearch.jl` | 0 | ✅ | ❌ | ❌ | ❌ | ❌ | ❌ | | Branch and bound for mixed integer nonlinear programming | ❌ | `Juniper.jl` | 1 or 2 | ✅ | ✅ | ✅ | ✅ | ❌ | ✅ | | Sequential polyhedral outer-approximations for mixed integer nonlinear programming | ❌ | `Pavito.jl` | 1 or 2 | ✅ | ✅ | ✅ | ✅ | ❌ | ✅ | | Evolutionary centers algorithm (ECA) | ❌ | `Metaheuristics.jl` | 0 | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ | | Differential evolution (DE) | ❌ | `Metaheuristics.jl` | 0 | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ | | Particle swarm optimization (PSO) | ❌ | `Metaheuristics.jl` | 0 | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ | | Artificial bee colony (ABC) | ❌ | `Metaheuristics.jl` | 0 | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ | | Gravitational search algorithm (GSA) | ❌ | `Metaheuristics.jl` | 0 | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ | | Simulated annealing (SA) | ❌ | `Metaheuristics.jl` | 0 | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ | | Whale optimization algorithm (WOA) | ❌ | `Metaheuristics.jl` | 0 | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ | | Machine-coded compact genetic algorithm (MCCGA) | ❌ | `Metaheuristics.jl` | 0 | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ | | Genetic algorithm (GA) | ❌ | `Metaheuristics.jl` | 0 | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ | | Nonlinear optimization with the MADS algorithm (NOMAD) | ❌ | `NOMAD.jl` | 0 | ✅ | ✅ | ✅ | Limited | ❌ | ✅ | | Topology optimization of binary structures (TOBS) | ❌ | `NonconvexTOBS.jl` | 1 | Binary | ❌ | ✅ | ❌ | ❌ | Binary | | Hyperband | ✅ | `Hyperopt.jl` | Depends on sub-solver | ✅ | ❌ | Depends on sub-solver | Depends on sub-solver | Depends on sub-solver | Depends on sub-solver | | Random search | ✅ | `Hyperopt.jl` | Depends on sub-solver | ✅ | ❌ | Depends on sub-solver | Depends on sub-solver | Depends on sub-solver | Depends on sub-solver | | Latin hypercube search | ✅ | `Hyperopt.jl` | Depends on sub-solver | ✅ | ❌ | Depends on sub-solver | Depends on sub-solver | Depends on sub-solver | Depends on sub-solver | | Surrogate assisted optimization | ✅ | `NonconvexBayesian.jl` | Depends on sub-solver | Depends on sub-solver | Depends on sub-solver | Depends on sub-solver | Depends on sub-solver | Depends on sub-solver | Depends on sub-solver | | Log barrier method for nonlinear semidefinite constraint handling | ✅ | `NonconvexSemidefinite.jl` | Depends on sub-solver | Depends on sub-solver | Depends on sub-solver | Depends on sub-solver | Depends on sub-solver | ✅ | Depends on sub-solver | The following is an explanation of all the columns in the table: - Algorithm name. This is the name of the algorithm and/or its acronym. Some algorithms have multiple variants implemented in their respective packages. When that's the case, the whole family of algorithms is mentioned only once. - Is meta-algorithm? Some algorithms are meta-algorithms that call a sub-algorithm to do the optimization after transforming the problem. In this case, a lot of the properties of the meta-algorithm are inherited from the sub-algorithm. So if the sub-algorithm requires gradients or Hessians of functions in the model, the meta-algorithm will also require gradients and Hessians of functions in the model. Fields where the property of the meta-algorithm is inherited from the sub-solver are indicated using the "Depends on sub-solver" entry. Some algorithms in `NLopt` have a "Limited" meta-algorithm status because they can only be used to wrap algorithms from `NLopt`. - Algorithm package. This is the Julia package that either implements the algorithm or calls it from another programming language. `Nonconvex` wraps all these packages using a consistent API while allowing each algorithm to be customized where possible and have its own set of options. - Order. This is the order of the algorithm. Zero-order algorithms only require the evaluation of the objective and constraint functions, they don't require any gradients or Hessians of objective and constraint functions. First-order algorithms require both the value and gradients of objective and/or constraint functions. Second-order algorithms require the value, gradients and Hessians of objective and/or constraint functions. - Finite bounds. This is true if the algorithm supports finite lower and upper bound constraints on the decision variables. One special case is the `TOBS` algorithm which only supports binary decision variables so an entry of "Binary" is used instead of true/false. - Infinite bounds. This is true if the algorithm supports unbounded decision variables either from below, above or both. - Inequality constraints. This is true if the algorithm supports nonlinear inequality constraints. - Equality constraints. This is true if the algorithm supports nonlinear equality constraints. Algorithms that only support linear equality constraints are given an entry of "Limited". - Semidefinite constraints. This is true if the algorithm supports nonlinear semidefinite constraints. - Integer variables. This is true if the algorithm supports integer/discrete/binary decision variables, not just continuous. One special case is the `TOBS` algorithm which only supports binary decision variables so an entry of "Binary" is used instead of true/false. ## Wrapper packages The `JuliaNonconvex` organization hosts a number of packages which wrap other optimization packages in Julia or implement their algorithms. The correct wrapper package is loaded using the `Nonconvex.@load` macro with the algorithm or package name. The following is a summary of all the wrapper packages in the `JuliaNonconvex` organization. To view the documentation of each package, click on the blue docs badge in the last column. | Package | Description | Tests | Coverage | Docs | | ------- | ----------- | ----- | -------- | -------- | | [NonconvexMMA.jl](https://github.com/JuliaNonconvex/NonconvexMMA.jl) | Method of moving asymptotes implementation in pure Julia | [![Build Status](https://github.com/JuliaNonconvex/NonconvexMMA.jl/workflows/CI/badge.svg)](https://github.com/JuliaNonconvex/NonconvexMMA.jl/actions) | [![Coverage](https://codecov.io/gh/JuliaNonconvex/NonconvexMMA.jl/branch/master/graph/badge.svg)](https://codecov.io/gh/JuliaNonconvex/NonconvexMMA.jl) | [![](https://img.shields.io/badge/docs-stable-blue.svg)](mma.md) | | [NonconvexIpopt.jl](https://github.com/JuliaNonconvex/NonconvexIpopt.jl) | [Ipopt.jl](https://github.com/jump-dev/Ipopt.jl) wrapper | [![Build Status](https://github.com/JuliaNonconvex/NonconvexIpopt.jl/workflows/CI/badge.svg)](https://github.com/JuliaNonconvex/NonconvexIpopt.jl/actions) | [![Coverage](https://codecov.io/gh/JuliaNonconvex/NonconvexIpopt.jl/branch/master/graph/badge.svg)](https://codecov.io/gh/JuliaNonconvex/NonconvexIpopt.jl) | [![](https://img.shields.io/badge/docs-stable-blue.svg)](ipopt.md) | | [NonconvexNLopt.jl](https://github.com/JuliaNonconvex/NonconvexNLopt.jl) | [NLopt.jl](https://github.com/JuliaOpt/NLopt.jl) wrapper | [![Build Status](https://github.com/JuliaNonconvex/NonconvexNLopt.jl/workflows/CI/badge.svg)](https://github.com/JuliaNonconvex/NonconvexNLopt.jl/actions) | [![Coverage](https://codecov.io/gh/JuliaNonconvex/NonconvexNLopt.jl/branch/master/graph/badge.svg)](https://codecov.io/gh/JuliaNonconvex/NonconvexNLopt.jl) | [![](https://img.shields.io/badge/docs-stable-blue.svg)](nlopt.md) | | [NonconvexPercival.jl](https://github.com/JuliaNonconvex/NonconvexPercival.jl) | [Percival.jl](https://github.com/JuliaSmoothOptimizers/Percival.jl) wrapper (an augmented Lagrangian algorithm implementation) | [![Build Status](https://github.com/JuliaNonconvex/NonconvexPercival.jl/workflows/CI/badge.svg)](https://github.com/JuliaNonconvex/NonconvexPercival.jl/actions) | [![Coverage](https://codecov.io/gh/JuliaNonconvex/NonconvexPercival.jl/branch/master/graph/badge.svg)](https://codecov.io/gh/JuliaNonconvex/NonconvexPercival.jl) | [![](https://img.shields.io/badge/docs-stable-blue.svg)](auglag.md) | | [NonconvexJuniper.jl](https://github.com/JuliaNonconvex/NonconvexJuniper.jl) | [Juniper.jl](https://github.com/lanl-ansi/Juniper.jl) wrapper | [![Build Status](https://github.com/JuliaNonconvex/NonconvexJuniper.jl/workflows/CI/badge.svg)](https://github.com/JuliaNonconvex/NonconvexJuniper.jl/actions) | [![Coverage](https://codecov.io/gh/JuliaNonconvex/NonconvexJuniper.jl/branch/master/graph/badge.svg)](https://codecov.io/gh/JuliaNonconvex/NonconvexJuniper.jl) | [![](https://img.shields.io/badge/docs-stable-blue.svg)](minlp.md) | | [NonconvexPavito.jl](https://github.com/JuliaNonconvex/NonconvexPavito.jl) | [Pavito.jl](https://github.com/jump-dev/Pavito.jl) wrapper | [![Build Status](https://github.com/JuliaNonconvex/NonconvexPavito.jl/workflows/CI/badge.svg)](https://github.com/JuliaNonconvex/NonconvexPavito.jl/actions) | [![Coverage](https://codecov.io/gh/JuliaNonconvex/NonconvexPavito.jl/branch/master/graph/badge.svg)](https://codecov.io/gh/JuliaNonconvex/NonconvexPavito.jl) | [![](https://img.shields.io/badge/docs-stable-blue.svg)](minlp.md) | | [NonconvexSemidefinite.jl](https://github.com/JuliaNonconvex/NonconvexSemidefinite.jl) | Nonlinear semi-definite programming algorithm | [![Build Status](https://github.com/JuliaNonconvex/NonconvexSemidefinite.jl/workflows/CI/badge.svg)](https://github.com/JuliaNonconvex/NonconvexSemidefinite.jl/actions) | [![Coverage](https://codecov.io/gh/JuliaNonconvex/NonconvexSemidefinite.jl/branch/master/graph/badge.svg)](https://codecov.io/gh/JuliaNonconvex/NonconvexSemidefinite.jl) | [![](https://img.shields.io/badge/docs-stable-blue.svg)](sdp.md) | | [NonconvexMultistart.jl](https://github.com/JuliaNonconvex/NonconvexMultistart.jl) | Multi-start optimization algorithms | [![Build Status](https://github.com/JuliaNonconvex/NonconvexMultistart.jl/workflows/CI/badge.svg)](https://github.com/JuliaNonconvex/NonconvexMultistart.jl/actions) | [![Coverage](https://codecov.io/gh/JuliaNonconvex/NonconvexMultistart.jl/branch/master/graph/badge.svg)](https://codecov.io/gh/JuliaNonconvex/NonconvexMultistart.jl) | [![](https://img.shields.io/badge/docs-stable-blue.svg)](hyperopt.md) | | [NonconvexBayesian.jl](https://github.com/JuliaNonconvex/NonconvexBayesian.jl) | Constrained Bayesian optimization implementation | [![Build Status](https://github.com/JuliaNonconvex/NonconvexBayesian.jl/workflows/CI/badge.svg)](https://github.com/JuliaNonconvex/NonconvexBayesian.jl/actions) | [![Coverage](https://codecov.io/gh/JuliaNonconvex/NonconvexBayesian.jl/branch/master/graph/badge.svg)](https://codecov.io/gh/JuliaNonconvex/NonconvexBayesian.jl) | [![](https://img.shields.io/badge/docs-stable-blue.svg)](surrogate.md) | | [NonconvexSearch.jl](https://github.com/JuliaNonconvex/NonconvexSearch.jl) | Multi-trajectory and local search methods | [![Build Status](https://github.com/JuliaNonconvex/NonconvexSearch.jl/workflows/CI/badge.svg)](https://github.com/JuliaNonconvex/NonconvexSearch.jl/actions) | [![Coverage](https://codecov.io/gh/JuliaNonconvex/NonconvexSearch.jl/branch/master/graph/badge.svg)](https://codecov.io/gh/JuliaNonconvex/NonconvexSearch.jl) | [![](https://img.shields.io/badge/docs-stable-blue.svg)](mts.md) | | [NonconvexTOBS.jl](https://github.com/JuliaNonconvex/NonconvexTOBS.jl) | Binary optimization algorithm called "topology optimization of binary structures" ([TOBS](https://www.sciencedirect.com/science/article/abs/pii/S0168874X17305619?via%3Dihub)) which was originally developed in the context of optimal distribution of material in mechanical components. | [![Build Status](https://github.com/JuliaNonconvex/NonconvexTOBS.jl/workflows/CI/badge.svg)](https://github.com/JuliaNonconvex/NonconvexTOBS.jl/actions) | [![Coverage](https://codecov.io/gh/JuliaNonconvex/NonconvexTOBS.jl/branch/main/graph/badge.svg)](https://codecov.io/gh/JuliaNonconvex/NonconvexTOBS.jl) | [![](https://img.shields.io/badge/docs-stable-blue.svg)](tobs.md) | | [NonconvexMetaheuristics.jl](https://github.com/JuliaNonconvex/NonconvexMetaheuristics.jl) | Metaheuristic gradient-free optimization algorithms as implemented in [`Metaheuristics.jl`](https://github.com/jmejia8/Metaheuristics.jl). | [![Build Status](https://github.com/JuliaNonconvex/NonconvexMetaheuristics.jl/workflows/CI/badge.svg)](https://github.com/JuliaNonconvex/NonconvexMetaheuristics.jl/actions) | [![Coverage](https://codecov.io/gh/JuliaNonconvex/NonconvexMetaheuristics.jl/branch/main/graph/badge.svg)](https://codecov.io/gh/JuliaNonconvex/NonconvexMetaheuristics.jl) | [![](https://img.shields.io/badge/docs-stable-blue.svg)](metaheuristics.md) | | [NonconvexNOMAD.jl](https://github.com/JuliaNonconvex/NonconvexNOMAD.jl) | [NOMAD algorithm](https://dl.acm.org/doi/10.1145/1916461.1916468) as wrapped in the [`NOMAD.jl`](https://github.com/bbopt/NOMAD.jl). | [![Build Status](https://github.com/JuliaNonconvex/NonconvexNOMAD.jl/workflows/CI/badge.svg)](https://github.com/JuliaNonconvex/NonconvexNOMAD.jl/actions) | [![Coverage](https://codecov.io/gh/JuliaNonconvex/NonconvexNOMAD.jl/branch/main/graph/badge.svg)](https://codecov.io/gh/JuliaNonconvex/NonconvexNOMAD.jl) | [![](https://img.shields.io/badge/docs-stable-blue.svg)](nomad.md) |
Nonconvex
https://github.com/JuliaNonconvex/Nonconvex.jl.git
[ "MIT" ]
2.1.3
c1421f259b2dd66ed19d9cede5edcea71636b7e6
docs
2068
# Augmented Lagrangian algorithm in pure Julia ## Description [Percival.jl](https://github.com/JuliaSmoothOptimizers/Percival.jl) is a pure Julia implementation of the augmented Lagrangian algorithm. Both first and second order versions of the algorithm are available. ## Quick start Given a model `model` and an initial solution `x0`, the following can be used to optimize the model using Percival. ```julia using Nonconvex Nonconvex.@load Percival alg = AugLag() options = AugLagOptions() result = optimize(model, alg, x0, options = options) ``` Percival is an optional dependency of Nonconvex so you need to import it in order to use it. ## Construct an instance To construct an instance of the Ipopt algorithm, use: ```julia alg = AugAlg() ``` ## Options The options keyword argument to the `optimize` function shown above must be an instance of the `AugLagOptions` struct when the algorihm is an `AugLag`. To specify options use keyword arguments in the constructor of `AugLagOptions`, e.g: ```julia options = AugLagOptions(first_order = false, rtol = 1e-4) ``` The most important option is `first_order` which is `true` by default. When `first_order` is `true`, the first order augmented Lagrangian algorithm will be used. And when it is `false`, the second order augmented Lagrangian algorithm will be used. Other arguments include: - `atol`: absolute tolerance in the subproblem optimizer - `rtol`: relative tolerance in the subproblem optimizer - `ctol`: absolute feasibility tolerance - `max_iter`: maximum number of iterations - `max_time`: maximum time in seconds - `max_eval`: maximum number of function evaluations When using the first order augmented Lagrangian and a block constraint (i.e. a constraint function that returns a vector), the use of reverse-mode AD will only require calling the adjoint operator of the block constraint function in order to compute the gradient of the augmented Lagrangian. This is particularly suitable for constraint functions whose Jacobians are expensive but the adjoint operator is relatively inexpensive.
Nonconvex
https://github.com/JuliaNonconvex/Nonconvex.jl.git
[ "MIT" ]
2.1.3
c1421f259b2dd66ed19d9cede5edcea71636b7e6
docs
3686
# Multi-start and hyper-parameter optimization in pure Julia ## Description [Hyperopt.jl](https://github.com/baggepinnen/Hyperopt.jl) is a Julia library that implements a number of hyperparameter optimization algorithms which can be used to optimize the starting point of the optimization. `NonconvexHyperopt.jl` allows the use of the algorithms in `Hyperopt.jl` as meta-algorithms using the `HyperoptAlg` struct. ## Quick start Given a model `model` and an initial solution `x0`, the following can be used to optimize the model using Hyperopt. ```julia using Nonconvex Nonconvex.@load Hyperopt alg = HyperoptAlg(IpoptAlg()) options = HyperoptOptions(sub_options = IpoptOptions(), sampler = GPSampler()) result = optimize(model, alg, x0, options = options) ``` Hyperopt is an optional dependency of Nonconvex so you need to import it in order to use it. `HyperoptAlg` can wrap any other algorithm in Nonconvex, e.g. `IpoptAlg()`. When the algorithm is a `HyperoptAlg`, the `options` keyword argument must of type `HyperoptOptions`. For more on the options available see below. ## Construct an instance To construct an instance of the Hyperopt + Ipopt algorithm, use: ```julia alg = HyperoptAlg(IpoptAlg()) ``` `HyperoptAlg` can wrap any other algorithm in Nonconvex, e.g. `NLoptAlg(:LD_MMA)` or `AugLag()`. ## Options The options keyword argument to the `optimize` function shown above must be an instance of the `HyperoptOptions` struct when the algorihm is a `HyperoptAlg`. To specify options, use keyword arguments in the constructor of `HyperoptOptions`. The `sampler` keyword argument determines the sampling algorithm used to propose new starting points in the multi-start procedure. The `sub_options` keyword argument can be used to pass in the options for the sub-optimizer. There are 2 different ways to pass the sub-options depending on the sampler type. The `sampler` argument can be of type: 1. `RandomSampler` 2. `LHSampler` 3. `CLHSampler` 4. `GPSampler` 5. `Hyperband` When optimizing the starting point, the upper and lower bounds on the initial solution must be finite, or finite bounds must be passed in to the `options` constructor. All the options that can be passed to the `HyperoptOptions` constructor are listed below: ```@docs NonconvexMultistart.HyperoptOptions ``` ### Sampler choice #### RandomSampler, LHSampler, CLHSampler and GPSampler All the sampler constructors are functions defined in Nonconvex wrapping the Hyperopt alternatives to define defaults. For `GPSampler`, `Hyperopt.Min` is always used by default in Nonconvex so you should not pass this argument. All the other arguments that can be passed to the sampler constructor can be found in the [Hyperopt documentation](https://github.com/baggepinnen/Hyperopt.jl#details). Example: ```julia options = HyperoptOptions(sub_options = IpoptOptions(), sampler = GPSampler()) ``` #### Hyperband The [Hyperband algorithm](https://github.com/baggepinnen/Hyperopt.jl#hyperband) in Hyperopt requires a different way to pass in the sub-options. The Hyperband algorithm tries to optimize the allocation of resources. The `sub_options` argument must be a function with input as the "resources" and output as the sub-solver options. The `Hyperband` constructor accepts 3 arguments: 1. The maximum resources `R` 2. `η` which roughly determines the proportion of trials discarded between each round of successive halving 3. `inner` which specifies an inner sampler of type `RandomSampler`, `LHSampler` or `CLHSampler`. Example: ```julia options = HyperoptOptions( sub_options = max_iter -> IpoptOptions(max_iter = max_iter), sampler = Hyperband(R=100, η=3, inner=RandomSampler()), ) ```
Nonconvex
https://github.com/JuliaNonconvex/Nonconvex.jl.git
[ "MIT" ]
2.1.3
c1421f259b2dd66ed19d9cede5edcea71636b7e6
docs
3650
# Interior point method using `Ipopt.jl` ## Description [Ipopt](https://coin-or.github.io/Ipopt) is a well known interior point optimizer developed and maintained by COIN-OR. The Julia wrapper of Ipopt is [Ipopt.jl](https://github.com/jump-dev/Ipopt.jl). `Ipopt.jl` is wrapped in `NonconvexIpopt.jl`. `NonconvexIpopt` allows the use of `Ipopt.jl` using the `IpoptAlg` algorithm struct. `IpoptAlg` can be used as a second order optimizer computing the Hessian of the Lagrangian in every iteration. Alternatively, an [l-BFGS approximation](https://en.wikipedia.org/wiki/Limited-memory_BFGS) of the Hessian can be used instead turning `IpoptAlg` into a first order optimizer tha only requires the gradient of the Lagrangian. ## Quick start Given a model `model` and an initial solution `x0`, the following can be used to optimize the model using Ipopt. ```julia using Nonconvex Nonconvex.@load Ipopt alg = IpoptAlg() options = IpoptOptions() result = optimize(model, alg, x0, options = options) ``` ## Construct an instance To construct an instance of the Ipopt algorithm, use: ```julia alg = IpoptAlg() ``` ## Options The options keyword argument to the `optimize` function shown above must be an instance of the `IpoptOptions` struct when the algorihm is an `IpoptAlg`. To specify options use keyword arguments in the constructor of `IpoptOptions`, e.g: ```julia options = IpoptOptions(first_order = false, tol = 1e-4, sparse = false, symbolic = false) ``` There are 4 important and special options: - `first_order`: `true` by default. When `first_order` is `true`, the first order Ipopt algorithm will be used. And when it is `false`, the second order Ipopt algorithm will be used. - `symbolic`: `false` by default. When `symbolic` is set to `true`, the gradients, Jacobians and Hessians of the objective, constraint and Lagrangian functions will be calculated using symbolic differentiation from [`Symbolics.jl`](https://github.com/JuliaSymbolics/Symbolics.jl). This is the same approach used by `symbolify` which is described in the [symbolic differentiation section](../gradients/symbolic.md) in the documentation. - `sparse`: `false` by default. When `sparse` is set to `true`, the gradients, Jacobians and Hessians of the objective, constraint and Lagrangian functions will be treated as sparse vectors/matrices. When combined with `symbolic = true`, the output of symbolic differentiation will be a sparse vector/matrix, akin to setting `sparse = true` in the `symbolify` function discussed in [symbolic differentiation section](../gradients/symbolic.md) in the documentation. When used alone with `symbolic = false`, [`SparseDiffTools.jl`](https://github.com/JuliaDiff/SparseDiffTools.jl) is used instead for the differentiation and `Symbolics` is only used to get the sparsity pattern, much like how `sparsify` works. For more details on `sparsify` and the way `SparseDiffTools` works, see the [sparsity section](../gradients/sparse.md) in the documentation is used instead. - `linear_constraints`: `false` by default. When `linear_constraints` is `true`, the Jacobian of the constraints will be computed and sparsified once at the beginning. When it is `false`, dense Jacobians will be computed in every iteration. > Note that there is no need to use `sparsify` or `symbolify` on the model or functions before optimizing it with an `IpoptAlg`. Setting the `sparse` and `symbolic` options above are enough to trigger the symbolic differentiation and/or sparsity exploitation. All the other options that can be set can be found on the [Ipopt options](https://coin-or.github.io/Ipopt/OPTIONS.html) section of Ipopt's documentation.
Nonconvex
https://github.com/JuliaNonconvex/Nonconvex.jl.git
[ "MIT" ]
2.1.3
c1421f259b2dd66ed19d9cede5edcea71636b7e6
docs
4225
# A collection of meta-heuristic algorithms in pure Julia ## Description [Metaheuristics.jl](https://github.com/jmejia8/Metaheuristics.jl) is an optimization library with a collection of [metaheuristic optimization algorithms](https://en.wikipedia.org/wiki/Metaheuristic) implemented. `NonconvexMetaheuristics.jl` allows the use of all the algorithms in the `Metaheuristics.jl` using the `MetaheuristicsAlg` struct. The main advantage of metaheuristic algorithms is that they don't require the objective and constraint functions to be differentiable. One advantage of the `Metaheuristics.jl` package compared to other black-box optimization or metaheuristic algorithm packages is that a large number of the algorithms implemented in `Metaheuristics.jl` support bounds, inequality and equality constraints using constraint handling techniques for metaheuristic algorithms. ## Supported algorithms `Nonconvex.jl` only supports the single objective optimization algorithms in `Metaheuristics.jl`. The following algorithms are supported: - Evolutionary Centers Algorithm (`ECA`) - Differential Evolution (`DE`) - Differential Evolution (`PSO`) - Artificial Bee Colony (`ABC`) - Gravitational Search Algorithm (`CGSA`) - Simulated Annealing (`SA`) - Whale Optimization Algorithm (`WOA`) - Machine-coded Compact Genetic Algorithm (`MCCGA`) - Genetic Algorithm (`GA`) For a summary of the strengths and weaknesses of each algorithm above, please refer to the table in the [algorithms page](https://jmejia8.github.io/Metaheuristics.jl/dev/algorithms/) in the `Metaheuristics` documentation. To define a `Metaheuristics` algorithm, you can use the `MetaheuristicsAlg` algorithm struct which wraps one of the above algorithm types, e.g. `MetaheuristicsAlg(ECA)` or `MetaheuristicsAlg(DE)`. ## Quick start Given a model `model` and an initial solution `x0`, the following can be used to optimize the model using `Metaheuristics`. ```julia using Nonconvex Nonconvex.@load Metaheuristics alg = MetaheuristicsAlg(ECA) options = MetaheuristicsOptions(N = 1000) # population size result = optimize(model, alg, x0, options = options) ``` `Metaheuristics` is an optional dependency of Nonconvex so you need to load the package to be able to use it. ## Options The options keyword argument to the `optimize` function shown above must be an instance of the `MetaheuristicsOptions` struct when the algorihm is a `MetaheuristicsAlg`. To specify options use keyword arguments in the constructor of `MetaheuristicsOptions`, e.g: ```julia options = MetaheuristicsOptions(N = 1000) ``` All the other options that can be set for each algorithm can be found in the [algorithms section](https://jmejia8.github.io/Metaheuristics.jl/dev/algorithms/) of the documentation of `Metaheuristics.jl`. Note that one notable difference between using `Metaheuristics` directly and using it through `Nonconvex` is that in `Nonconvex`, all the options must be passed in through the `options` struct and only the algorithm type is part of the `alg` struct. ## Variable bounds When using `Metaheuristics` algorithms, finite variables bounds are necessary. This is because the initial population is sampled randomly in the finite interval of each variable. Use of `Inf` as an upper bound or `-Inf` is therefore not acceptable. ## Initialization Most metaheuristic algorithms are population algorithms which can accept multiple initial solutions to be part of the initial population. In `Nonconvex`, you can specify multiple initial solutions by making `x0` a vector of solutions. However, since `Nonconvex` models support arbitrary collections as decision variables, you must specify that the `x0` passed in is indeed a population of solutions rather than a single solution that's a vector of vectors for instance. To specify that `x0` is a vector of solutions, you can set the `multiple_initial_solutions` option to `true` in the `options` struct, e.g: ```julia options = MetaheuristicsOptions(N = 1000, multiple_initial_solutions = true) x0 = [[1.0, 1.0], [0.0, 0.0]] ``` When fewer solutions are passed in `x0` compared to the population size, random initial solutions between the lower and upper bounds are sampled to complete the initial population.
Nonconvex
https://github.com/JuliaNonconvex/Nonconvex.jl.git
[ "MIT" ]
2.1.3
c1421f259b2dd66ed19d9cede5edcea71636b7e6
docs
4200
# First and second order mixed integer nonlinear programming algorithms ## Description There are 2 first and second order MINLP solvers available in `Nonconvex`: 1. [Juniper.jl](https://github.com/lanl-ansi/Juniper.jl) with [Ipopt.jl](https://github.com/jump-dev/Ipopt.jl) as a sub-solver. `NonconvexJuniper.jl` allows the use of the branch and bound algorithm in `Juniper.jl` using the `JuniperIpoptAlg` struct. 2. [Pavito.jl](https://github.com/jump-dev/Pavito.jl) with [Ipopt.jl](https://github.com/jump-dev/Ipopt.jl) and [Cbc.jl](https://github.com/jump-dev/Cbc.jl) as sub-solvers. `NonconvexPavito.jl` allows the use of the sequential polyhedral outer-approximations algorithm in `Pavito.jl` using the `PavitoIpoptCbcAlg` struct. ## Juniper + Ipopt ### Quick start Given a model `model` and an initial solution `x0`, the following can be used to optimize the model using Juniper and Ipopt. ```julia using Nonconvex Nonconvex.@load Juniper alg = JuniperIpoptAlg() options = JuniperIpoptOptions() result = optimize(model, alg, x0, options = options) ``` Juniper is an optional dependency of Nonconvex, so you need to load it in order to use it. Note that the integer constraints must be specified when defining variables. See the [problem definition](../problem/problem.md) documentation for more details. ### Construct an instance To construct an instance of the Juniper + Ipopt algorithm, use: ```julia alg = JuniperIpoptAlg() ``` ### Options The options keyword argument to the `optimize` function shown above must be an instance of the `JuniperIpoptOptions` struct when the algorihm is a `JuniperIpoptAlg`. To specify options use, keyword arguments in the constructor of `JuniperIpoptOptions`, e.g: ```julia options = JuniperIpoptOptions(first_order = false, linear_constraints = true, subsolver_options = IpoptOptions(), atol = 1e-4) ``` There are 3 important and special options you can pass to the optimizer: - `first_order`: `true` by default. When `first_order` is `true`, the first order Ipopt algorithm will be used. And when it is `false`, the second order Ipopt algorithm will be used. - `linear_constraints`: `false` by default. When `linear_constraints` is `true`, the Jacobian of the constraints will be computed and sparsified once at the beginning. When it is `false`, dense Jacobians will be computed in every iteration. - `subsolver_options`: an instance of `IpoptOptions` to be used in the Ipopt sub-solver. All the other options to Juniper can be found in the [Juniper documentation](https://lanl-ansi.github.io/Juniper.jl/stable/options/). ## Pavito + Ipopt + Cbc ### Quick start Given a model `model` and an initial solution `x0`, the following can be used to optimize the model using Juniper and Ipopt. ```julia using Nonconvex Nonconvex.@load Pavito alg = PavitoIpoptCbcAlg() options = PavitoIpoptCbcOptions() result = optimize(model, alg, x0, options = options) ``` Pavito is an optional dependency of Nonconvex, so you need to load it in order to use it. Note that the integer constraints must be specified when defining variables. See the [problem definition](../problem/problem.md) documentation for more details. ### Construct an instance To construct an instance of the Pavito + Ipopt + Cbc algorithm, use: ```julia alg = PavitoIpoptCbcAlg() ``` ### Options The options keyword argument to the `optimize` function shown above must be an instance of `PavitoIpoptCbcOptions` struct when the algorithm is a `PavitoIpoptCbcAlg`. To specify options, use keyword arguments in the constructor of `JuniperIpoptOptions` or `PavitoIpoptCbcOptions`, e.g: ```julia options = PavitoIpoptCbcOptions(first_order = false, subsolver_options = IpoptOptions(), timeout = 120.0) ``` There are 2 important and special options you can pass to the optimizer: - `first_order`: `true` by default. When `first_order` is `true`, the first order Ipopt algorithm will be used. And when it is `false`, the second order Ipopt algorithm will be used. - `subsolver_options`: an instance of `IpoptOptions` to be used in the Ipopt sub-solver. All the other options to Pavito can be found in the [Pavito documentation](https://github.com/jump-dev/Pavito.jl#pavito-solver-options).
Nonconvex
https://github.com/JuliaNonconvex/Nonconvex.jl.git
[ "MIT" ]
2.1.3
c1421f259b2dd66ed19d9cede5edcea71636b7e6
docs
2033
# Method of moving asymptotes in pure Julia ## Description There are 2 versions of the method of moving asymptotes (MMA) that are available in `NonconvexMMA.jl`: 1. The original MMA algorithm from the [1987 paper](https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.1620240207). 2. The globally convergent MMA (GCMMA) algorithm from the [2002 paper](https://epubs.siam.org/doi/abs/10.1137/S1052623499362822). The MMA algorithm only supports inequality constraints. However, the original algorithm was slightly generalized to handle infinite variable bounds. ## Quick start Given a model `model` and an initial solution `x0`, the following can be used to optimize the model using MMA. ```julia using Nonconvex Nonconvex.@load MMA alg = MMA87() # or MMA02() options = MMAOptions() result = optimize(model, alg, x0, options = options, convcriteria = KKTCriteria()) ``` ## Construct an instance To construct an instance of the original MMA algorithm, use: ```julia alg = MMA87() ``` or alternatively: ```julia alg = MMA() ``` To construct an instance of the globally convergent MMA algorithm, use: ```julia alg = MMA02() ``` or alternatively: ```julia alg = GCMMA() ``` ```@docs MMA87 MMA02 ``` ## Options To specify options for the MMA algorithm, you can construct an instance of `MMAOptions` and use keyword arguments. ```@docs MMAOptions ``` The `tol` option in MMA can be set to an instance of the `Tolerance` struct: ```@docs Tolerance NonconvexCore.ConvergenceState ``` ## Convergence criteria There are 4 convergence criteria available for the MMA algorithm: - `GenericCriteria` - `KKTCriteria` - `ScaledKKTCriteria` - `IpoptCriteria` ```@docs NonconvexCore.ConvergenceCriteria NonconvexCore.GenericCriteria NonconvexCore.KKTCriteria NonconvexCore.ScaledKKTCriteria NonconvexCore.IpoptCriteria NonconvexCore.assess_convergence! ``` To specify the convergence criteria, use: ```julia converiteria = GenericCriteria() ``` replacing `GenericCriteria()` by `KKTCriteria()`, `ScaledKKTCriteria()` or `IpoptCriteria()`.
Nonconvex
https://github.com/JuliaNonconvex/Nonconvex.jl.git
[ "MIT" ]
2.1.3
c1421f259b2dd66ed19d9cede5edcea71636b7e6
docs
726
# Multi-trajectory search algorithm in pure Julia ## Description Multiple trajectory search (MTS) is a derivative-free heuristic optimization method presented by [Lin-Yu Tseng and Chun Chen, 2008](https://sci2s.ugr.es/sites/default/files/files/TematicWebSites/EAMHCO/contributionsCEC08/tseng08mts.pdf). The `MTS` algorithm is implemented in the `NonconvexSearch.jl` package. This module implements all the optimization methods in the paper. ## Quick start Using default `MTSOptions()`. `MTS` is used for optimization. ```julia using Nonconvex Nonconvex.@load MTS alg = MTSAlg() LS1_options = MTSOptions() m = Model(f) lb = [0, 0] ub = [5, 5] addvar!(m, lb, ub) result = optimize(model, alg, x0, options = options) ```
Nonconvex
https://github.com/JuliaNonconvex/Nonconvex.jl.git
[ "MIT" ]
2.1.3
c1421f259b2dd66ed19d9cede5edcea71636b7e6
docs
2303
# Various optimization algorithms from `NLopt.jl` ## Description [NLopt](https://github.com/stevengj/nlopt) is an optimization library with a collection of optimization algorithms implemented. [NLopt.jl](https://github.com/JuliaOpt/NLopt.jl) is the Julia wrapper of `NLopt`. `NonconvexNLopt` allows the use of `NLopt.jl` using the `NLoptAlg` algorithm struct. ## Quick start Given a model `model` and an initial solution `x0`, the following can be used to optimize the model using NLopt. ```julia using Nonconvex Nonconvex.@load NLopt alg = NLoptAlg(:LD_SLSQP) options = NLoptOptions() result = optimize(model, alg, x0, options = options) ``` NLopt is an optional dependency of Nonconvex so you need to load the package to be able to use it. ## Construct an instance To construct an instance of NLopt's `NLOPT_LD_SLSQP` algorithm, use: ```julia alg = NLoptAlg(:LD_SLSQP) ``` All the algorithms available in NLopt are: - `:GN_DIRECT` - `:GN_DIRECT_L` - `:GNL_DIRECT_NOSCAL` - `:GN_DIRECT_L_NOSCAL` - `:GN_DIRECT_L_RAND_NOSCAL` - `:GN_ORIG_DIRECT` - `:GN_ORIG_DIRECT_L` - `:GN_CRS2_LM` - `:G_MLSL_LDS` - `:G_MLSL` - `:GD_STOGO` - `:GD_STOGO_RAND` - `:GN_AGS` - `:GN_ISRES` - `:GN_ESCH` - `:LN_COBYLA` - `:LN_BOBYQA` - `:LN_NEWUOA` - `:LN_NEWUOA_BOUND` - `:LN_PRAXIS` - `:LN_NELDERMEAD` - `:LN_SBPLX` - `:LD_MMA` - `:LD_CCSAQ` - `:LD_SLSQP` - `:LD_TNEWTON_PRECOND_RESTART` - `:LD_TNEWTON_PRECOND` - `:LD_TNEWTON_RESTART` - `:LD_TNEWTON` - `:LD_VAR2` - `:LD_VAR1` - `:AUGLAG` - `:AUGLAG_EQ` For a description of the above algorithms, please refer to the [algorithms section](https://nlopt.readthedocs.io/en/latest/NLopt_Algorithms/) of NLopt's documentation. --- **Disclaimer:** Not all the algorithms have been tested with `Nonconvex`. So if you try one and it doesn't work, please open an issue. --- ## Options The options keyword argument to the `optimize` function shown above must be an instance of the `NLoptOptions` struct when the algorihm is an `NLoptAlg`. To specify options use keyword arguments in the constructor of `NLoptOptions`, e.g: ```julia options = NLoptOptions(ftol_rel = 1e-4) ``` All the other options that can be set for each algorithm can be found in the [algorithms section](https://nlopt.readthedocs.io/en/latest/NLopt_Algorithms/) section of NLopt's documentation.
Nonconvex
https://github.com/JuliaNonconvex/Nonconvex.jl.git
[ "MIT" ]
2.1.3
c1421f259b2dd66ed19d9cede5edcea71636b7e6
docs
2381
# Nonlinear optimization with the MADS (NOMAD) algorithm for continuous and discrete, constrained optimization ## Description [NOMAD.jl](https://github.com/bbopt/NOMAD.jl) is an optimization package wrapping the C++ implementation of the [NOMAD algorithm](https://dl.acm.org/doi/10.1145/1916461.1916468). `NonconvexNOMAD` allows the use of `NOMAD.jl` using the the `NOMADAlg` struct. `NOMAD.jl` supports continuous and integer decision variables as well as bounds and inequality constraints. Linear equality constraints are also supported when no integer decision variables are in the model. ## Quick start Given a model `model` and an initial solution `x0`, the following can be used to optimize the model using `NOMAD`. ```julia using Nonconvex Nonconvex.@load NOMAD alg = NOMADAlg() options = NOMADOptions() result = optimize(model, alg, x0, options = options) ``` `NOMAD` is an optional dependency of Nonconvex so you need to load the package to be able to use it. ## Algorithm types There are 3 different variants of the `NOMADAlg` struct: - `NOMADAlg(:explicit)` - `NOMADAlg(:progressive)` - `NOMADAlg(:custom)` The explicit algorithm ensures all the constraints are satisfied at all times removing any infeasible point from the population. The progressive algorithm allows infeasible points to be part of the population but enforces feasibility in a progressive manner. The custom variant allows the use of flags on each constraint to declare it as `:explicit` or `:progressive`. For instance, assume `model` is the `Nonconvex` model and `g1` and `g2` are 2 constraint functions. ```julia add_ineq_constraint!(model, g1, flags = [:explicit]) add_ineq_constraint!(m, g2, flags = [:progressive]) ``` The above code declares the first constraint as explicit and the second as progressive. In other words, every point violating the first constraint will be removed from the population but the second constraint will be more progressively enforced. ## Options The options keyword argument to the `optimize` function shown above must be an instance of the `NOMADOptions` struct when the algorihm is a `NOMADAlg`. To specify options use keyword arguments in the constructor of `NOMADOptions`, e.g: ```julia options = NOMADOptions() ``` All the options that can be set can be found in the [`NOMAD.jl` documentation](https://bbopt.github.io/NOMAD.jl/stable/nomadProblem/).
Nonconvex
https://github.com/JuliaNonconvex/Nonconvex.jl.git
[ "MIT" ]
2.1.3
c1421f259b2dd66ed19d9cede5edcea71636b7e6
docs
2286
# Interior point meta-algorithm for handling nonlinear semidefinite constraints ## Description If you need to keep your any matrix-valued function of the decision variables positive semidefinite, Nonconvex supports an interface for the [barrier method for semidefinite programming](http://eaton.math.rpi.edu/faculty/Mitchell/courses/matp6640/notes/24A_SDPbarrierbeamer.pdf), which is a meta-algorithm transforming the optimization problem to a series of nonlinear programming problems and solving them using the pre-specified `sub_alg` and `sub_options`. ## Quick start Optimizing over a multivariate gaussian distribution with artificial samples using `Ipopt`: ```julia using Nonconvex, Distributions Nonconvex.@load Semidefinite Ipopt # Draw random multivariate gaussian samples # Random groundtruth mat_dim = 3 μ = randn(mat_dim) Σ = rand(mat_dim, mat_dim) Σ = Σ + Σ' + 2I # Generate n_sample = 1000 samples = rand(MvNormal(μ, Σ), n_sample) # Define objective function function f((x_L, x_D)) return -loglikelihood(MvNormal(μ, decompress_symmetric(x_L, x_D)), samples) end # Define the matrix-valued function function sd_constraint((x_L, x_D)) return decompress_symmetric(x_L, x_D) end # Define settings model = Model(f) mat_x0 = rand(mat_dim, mat_dim) mat_x0 = mat_x0 + mat_x0' + I x0 = [mat_x0[NonconvexSemidefinite.lowertriangind(mat_x0)], diag(mat_x0)] lbs = [fill(-Inf, length(x0[1])), zeros(length(x0[2]))] ubs = [fill(Inf, length(x0[1])), fill(Inf, length(x0[2]))] addvar!(model, lbs, ubs) add_sd_constraint!(model, sd_constraint) alg = SDPBarrierAlg(sub_alg=IpoptAlg()) options = SDPBarrierOptions(sub_options=IpoptOptions(max_iter=200), n_iter = 20) # Optimize result = optimize(model, alg, x0, options = options) # Relative error norm norm(sd_constraint(result.minimizer) - Σ) / norm(Σ) ``` ## Options ```@docs SDPBarrierOptions ``` ## Optimizer ```@docs SDPBarrierAlg ``` ## Matrix interfaces For every `n*n` real positive semidefinite matrix that optimization objective contains, please have two inputs `x_L` and `x_D` representing the lower-triangular and the diagonal part of it. In the function, call `decompress_symmetric(x_L, x_d)` to represent that matrix, which will be handled by Nonocnvex automatically ```@docs decompress_symmetric ```
Nonconvex
https://github.com/JuliaNonconvex/Nonconvex.jl.git
[ "MIT" ]
2.1.3
c1421f259b2dd66ed19d9cede5edcea71636b7e6
docs
5146
# Surrogate-assisted continuous and discrete, constrained optimization ## Description Surrogate-assisted optimization replaces expensive functions in the objecitve and/or constraints by a surrogate. In Nonconvex, a Gaussian process (GP) from [AbstractGPs.jl](https://github.com/JuliaGaussianProcesses/AbstractGPs.jl) is used. A certain amount of "benefit of the doubt" is given to solutions by minimizing: ```julia μ(x) - η * σ(x) ``` where `μ(x)` and `σ(x)` are the mean and standard deviation of the posterior GP's prediction of the function's value at point `x`. `η` is a positive number that resembles how much benefit of the doubt we want to give the solution. A high `η` means more exploration and a low `η` means more exploitation. Similarly, expensive inequality constraints are replaced by: ```julia μ(x) - η * σ(x) <= 0 ``` giving the solution the benefit of the doubt. And each equality constraint is replaced by 2 inequality constraints as such: ```julia μ(x) - η * σ(x) <= 0 <= μ(x) + η * σ(x) ``` Once the surrogates are formed, they are solved using a sub-optimizer to get the next query point to update the surrogate model. Prior to the optimization loop, initialization is done using a number of points using a Sobol sequence of points. ## Quick start ```julia using Nonconvex Nonconvex.@load BayesOpt f(x) = sqrt(x[2]) g(x, a, b) = (a*x[1] + b)^3 - x[2] model = Model() set_objective!(model, f, flags = [:expensive]) addvar!(model, [1e-4, 1e-4], [10.0, 10.0]) add_ineq_constraint!(model, x -> g(x, 2, 0), flags = [:expensive]) add_ineq_constraint!(model, x -> g(x, -1, 1)) alg = BayesOptAlg(IpoptAlg()) options = BayesOptOptions( sub_options = IpoptOptions(), maxiter = 50, ftol = 1e-4, ctol = 1e-5, ) r = optimize(model, alg, [1.234, 2.345], options = options) ``` Note that the `flags` keyword argument was used when defining the objective and constraints and set to `[:expensive]`. This is a hint to Nonconvex to use a surrogate in place of these constraint functions. ## Construct an instance To construct an instance of the surrogate-assisted optimization algorithm, use: ```julia alg = BayesOptAlg(subsolver) ``` where `subsolver` is any Nonconvex optimizer to be used to solve the surrogate model. ## Options The options keyword argument to the `optimize` function shown above must be an instance of the `BayesOptOptions` struct when the algorihm is a `BayesOptAlg`. The following options can be set using keyword arguments when constructing `BayesOptOptions`. - `sub_options`: options for the sub-optimizer - `maxiter`: the maximum number of iterations in the Bayesian optimization routine - `initialize`: `true` by default. If `true`, the GP will be initialized using a Sobol sequence of query points - `ninit`: number of initialization points - `ctol`: feasibility tolerance when accepting a solution - `ftol`: relative tolerance in the function value - `postoptimize`: `true` by default. If `true`, a local optimization procedure will be used after the Bayesian optimization is completed. - `kernel`: the GP kernel used. All the kernels from [KernelFunctions.jl](https://github.com/JuliaGaussianProcesses/KernelFunctions.jl) are available. - `noise`: GP observation noise parameter - `std_multiple`: `η` in the description of the algorithm above. ## Advanced: manually constructing surrogate functions Sometimes a function used in the model may need to be replaced by a surrogate but not the entire objective or constraint function. In this case, the surrogate function can be defined explicitly and passed in to the `optimize` function using the keyword argument `surrogates`. A surrogate for the function `f` can be constructed using: ```julia s1 = Nonconvex.surrogate(f, x0) ``` where `x0` is the initial query point. The output of `s1(x)` will be an interval from [IntervalArithmetic.jl])(https://github.com/JuliaIntervals/IntervalArithmetic.jl) with `lo` and `hi` fields, where `lo = μ(x) - η * σ(x)` and `hi = μ(x) + η σ(x)`. This interval will propagate through the objective function and/or contraint functions outputting an interval or an array of intervals at the end. To define the objective or constraint functions using the manually contructed surrogates, one needs to return the `lo` field of the output manually at the end of the objective function or inequality constraint function definitions. Equality constraints should also be transformed to a 2-block inequality constraint manually as described above. When manually passing surrogates to the `optimize` function, the `:expensive` flag is redundant and will be ignored. Example: ```julia x0 = [1.234, 2.345] s1 = Nonconvex.surrogate(f, x0) s2 = Nonconvex.surrogate(x -> [g(x, 2, 0), g(x, -1, 1)], x0) model = Model() set_objective!(model, x -> s1(x).lo) addvar!(model, [1e-4, 1e-4], [10.0, 10.0]) add_ineq_constraint!(model, x -> getproperty.(s2(x), :lo)) alg = BayesOptAlg(IpoptAlg()) options = BayesOptOptions( sub_options = IpoptOptions(print_level = 0), maxiter = 50, ctol = 1e-4, ninit = 2, initialize = true, postoptimize = false, ) r = optimize(model, alg, x0, options = options, surrogates = [s1, s2]) ```
Nonconvex
https://github.com/JuliaNonconvex/Nonconvex.jl.git
[ "MIT" ]
2.1.3
c1421f259b2dd66ed19d9cede5edcea71636b7e6
docs
4510
# Topology optimization of binary structures (TOBS), a nonlinear binary optimization heuristic ## Description The method of topology optimization of binary structures ([TOBS](https://www.sciencedirect.com/science/article/abs/pii/S0168874X17305619?via%3Dihub)) was originally developed in the context of optimal distribution of material in mechanical components. The TOBS algorithm only supports binary decision variables. The TOBS algorithm is a heuristic that relies on the sequential linearization of the objective and constraint functions, progressively enforcing the constraints in the process. The resulting binary linear program can be solved using any mixed integer linear programming (MILP) solver such `Cbc`. This process is repeated iteratively until convergence. This package implements the heuristic for binary nonlinear programming problems. ## Construct an instance To construct an instance of the `TOBS` algorithm, use: ```julia alg = TOBSAlg() ``` When optimizing a model using `TOBSAlg`, all the variables are assumed to be binary if their lower and upper bounds are 0 and 1 respectively even if the `isinteger` flag was not used. If there are variables with other bounds' values, the optimization will give an error. ## Example In this example, the classic topology optimization problem of minimizing the compliance of the structure subject to a volume constraint. Begin by installing and loading the packages required. ```julia import Nonconvex Nonconvex.@load TOBS using Pkg Pkg.add("TopOpt") using TopOpt ``` Define the problem and its parameters using [TopOpt.jl](https://github.com/JuliaTopOpt/TopOpt.jl). ```julia E = 1.0 # Young’s modulus v = 0.3 # Poisson’s ratio f = 1.0 # downward force rmin = 6.0 # filter radius xmin = 0.001 # minimum density V = 0.5 # maximum volume fraction p = 3.0 # SIMP penalty # Define FEA problem problem_size = (160, 100) # size of rectangular mesh x0 = fill(1.0, prod(problem_size)) # initial design problem = PointLoadCantilever(Val{:Linear}, problem_size, (1.0, 1.0), E, v, f) solver = FEASolver(Direct, problem; xmin=xmin) TopOpt.setpenalty!(solver, p) cheqfilter = DensityFilter(solver; rmin=rmin) # filter function comp = TopOpt.Compliance(problem, solver) # compliance function ``` Define the objective and constraint functions. ```julia obj(x) = comp(cheqfilter(x)) # compliance objective constr(x) = sum(cheqfilter(x)) / length(x) - V # volume fraction constraint ``` Finally, define the optimization problem using `Nonconvex.jl` and optimize it. ```julia m = Model(obj) addvar!(m, zeros(length(x0)), ones(length(x0))) Nonconvex.add_ineq_constraint!(m, constr) options = TOBSOptions() r = optimize(m, TOBSAlg(), x0; options=options) r.minimizer r.minimum ``` The following is a visualization of the optimization history using this example. ![histories](https://user-images.githubusercontent.com/84910559/164938659-797a6a6d-3518-4f7b-a4ff-24b43b822080.png) ![gif](https://user-images.githubusercontent.com/19524993/167059067-f08502a8-c62d-4d62-a2df-e132efc5e25c.gif) ## Options The following are the options that can be set by passing them to `TOBSOptions`, e.g. `TOBSOptions(movelimit = 0.1)`. - `movelimit`: the maximum move limit in each iteration as a ratio of the total number of variables. Default value is 0.1, i.e. a maximum of 10% of the variables are allowed to flip value in each iteration. - `convParam`: the tolerance value. The algrotihm is said to have converged if the moving average of the relative change in the objective value in the last `pastN` iterations is less than `convParam`. Default value is 0.001. - `pastN`: the number of past iterations used to compute the moving average of the relative change in the objective value. Default value is 20. - `constrRelax`: the amount of constraint relaxation applied to the linear approximation in each iteration. This is the relative constraint relaxation if the violation is higher than `constrRelax` and the absolute constraint relaxation otherwise. Default value is 0.1. - `timeLimit`: the time limit (in seconds) of each MILP solve for the linearized sub-problem. Default value is 1.0. - `optimizer`: the `JuMP` optimizer type used to solve the MILP sub-problem. Default value is `Cbc.Optimizer`. - `maxiter`: the maximum number of iterations for the algorithm. Default value is 200. - `timeStable`: a boolean value that when set to `true` switches on the time stability filter of the objective's gradient, discussed in the paper. Default value is `true`.
Nonconvex
https://github.com/JuliaNonconvex/Nonconvex.jl.git
[ "MIT" ]
2.1.3
c1421f259b2dd66ed19d9cede5edcea71636b7e6
docs
994
# Using ChainRules in ForwardDiff `ForwardDiff` is a forward-mode AD package that pre-dates `ChainRules`. `ForwardDiff` therefore does not use the `frule`s defined in `ChainRules`. In order to force `ForwardDiff` to use the `frule` defined for a function, one can use the `Nonconvex.NonconvexUtils.@ForwardDiff_frule` macro provided in `Nonconvex`. This is useful in case `ForwardDiff` is used for the entire function but a component of this function has an efficient `frule` defined that you want to take advantage of. To force `ForwardDiff` to use the `frule` defined for a function `f(x::AbstractVector)`, you can use: ```julia Nonconvex.NonconvexUtils.@ForwardDiff_frule f(x::AbstractVector{<:ForwardDiff.Dual}) ``` The signature of the function specifies the method that will be re-directed to use the `frule` from `ChainRules`. Such `frule` therefore needs to be defined for `f` to begin with. `f` with multiple inputs, scalar inputs and other input collection types are also supported.
Nonconvex
https://github.com/JuliaNonconvex/Nonconvex.jl.git
[ "MIT" ]
2.1.3
c1421f259b2dd66ed19d9cede5edcea71636b7e6
docs
1751
# Gradients, Jacobians and Hessians By default, `Nonconvex` uses: - The reverse-mode automatic differentiation (AD) package, [`Zygote.jl`](https://github.com/FluxML/Zygote.jl), for computing gradients and Jacobians of functions, and - The forward-mode AD package, [`ForwardDiff.jl`](https://github.com/JuliaDiff/ForwardDiff.jl), over `Zygote.jl` for computing Hessians. However, one can force `Nonconvex` to use other AD packages or even user-defined gradients and Hessians using special function modifiers. Those special function modifiers customize the behaviour of functions without enforcing the same behaviour on other functions. For instance: - A specific AD package can be used for one constraint function while the default AD packages are used for other functions in the optimization problem. - The history of gradients of a specific function can be stored without storing all the gradients of all the functions. - For functions with a sparse Jacobian or Hessian, the sparsity can be used to speedup the AD using sparse, forward-mode AD for these functions. In some cases, function modifiers can even be composed on top of each other to create more complex behaviours. > In `Nonconvex`, function modifiers modify the behaviour of a function when differentiated once or twice using either `ForwardDiff` or any [`ChainRules`](https://github.com/JuliaDiff/ChainRules.jl)-compatible AD package, such as `Zygote.jl`. The following features are all implemented in [`NonconvexUtils.jl`](https://github.com/JuliaNonconvex/NonconvexUtils.jl) and re-exported from `Nonconvex`. ## Table of contents ```@contents Pages = ["user_defined.md", "other_ad.md", "chainrules_fd.md", "sparse.md", "symbolic.md", "implicit.md", "history.md"] Depth = 3 ```
Nonconvex
https://github.com/JuliaNonconvex/Nonconvex.jl.git
[ "MIT" ]
2.1.3
c1421f259b2dd66ed19d9cede5edcea71636b7e6
docs
1157
# Storing history of gradients Often one may want to store intermediate solutions, function values and gradients for visualisation or post-processing. This is currently not possible with `Nonconvex.jl` as not all solvers support a callback mechanism. To workround this, the `TraceFunction` modifier can be used to store input, output and optionally gradient values during the optimization: ```julia F = TraceFunction(f; on_call = false, on_grad = true) ``` `F` can now be used inplace of `f` in objective and/or constraint functions in a `Nonconvex` model. If the `on_call` keyword argument is set to `true` (default is `true`), the input and output values are stored every time the function `F` is called. If the `on_grad` keyword argument is set to `true` (default is `true`), the input, output and gradient values are stored every time the function `F` is differentiated with either `ForwardDiff` or any `ChainRules`-compatible AD package such as `Zygote.jl`. The history is stored in `F.trace`. The `TraceFunction` modifier can be compsed with other AD-centric function modifiers in `Nonconvex`, e.g. the `sparsify` or `symbolify` function modifiers.
Nonconvex
https://github.com/JuliaNonconvex/Nonconvex.jl.git
[ "MIT" ]
2.1.3
c1421f259b2dd66ed19d9cede5edcea71636b7e6
docs
5997
# Implicit differentiation ## Background Differentiating implicit functions efficiently using the implicit function theorem has many applications including: - Nonlinear partial differential equation constrained optimization - Differentiable optimization layers in deep learning (aka deep declarative networks) - Differentiable fixed point iteration algorithms for optimal transport (e.g. the Sinkhorn methods) - Gradient-based bi-level and robust optimization (aka anti-optimization) - Multi-parameteric programming (aka optimization sensitivity analysis) For more on implicit differentation, refer to the last part of the [_Understanding automatic differentiation (in Julia)_](https://www.youtube.com/watch?v=UqymrMG-Qi4) video on YouTube and the [_Efficient and modular implicit differentiation_](https://arxiv.org/abs/2105.15183) manuscript for an introduction to the methods implemented here. ## Relationship to [`ImplicitDifferentiation.jl`](https://github.com/gdalle/ImplicitDifferentiation.jl) [`ImplicitDifferentiation.jl`](https://github.com/gdalle/ImplicitDifferentiation.jl) is an attempt to simplify the implementation in `Nonconvex` making it more lightweight and better documented. For instance, the [documentation of `ImplicitDifferentiation`](https://gdalle.github.io/ImplicitDifferentiation.jl/) presents a number of examples of implicit functions all of which can be defined using `Nonconvex` instead. ## Explicit parameters There are 4 components to any implicit function: 1. The parameters `p` 2. The variables `x` 3. The residual `f(p, x)` which is used to define `x(p)` as the `x` which satisfies `f(p, x) == 0` for a given value `p` 4. The algorithm used to evaluate `x(p)` satisfying the condition `f(p, x) == 0` In order to define a differentiable implicit function using `Nonconvex`, you have to specify the "forward" algorithm which finds `x(p)`. For instance, consider the following example: ```julia using SparseArrays, NLsolve, Zygote, Nonconvex N = 10 A = spdiagm(0 => fill(10.0, N), 1 => fill(-1.0, N-1), -1 => fill(-1.0, N-1)) p0 = randn(N) f(p, x) = A * x + 0.1 * x.^2 - p function forward(p) # Solving nonlinear system of equations sol = nlsolve(x -> f(p, x), zeros(N), method = :anderson, m = 10) # Return the zero found (ignore the second returned value for now) return sol.zero, nothing end ``` `forward` above solves for `x` in the nonlinear system of equations `f(p, x) == 0` given the value of `p`. In this case, the residual function is the same as the function `f(p, x)` used in the forward pass. One can then use the 2 functions `forward` and `f` to define an implicit function using: ```julia imf = ImplicitFunction(forward, f) xstar = imf(p0) ``` where `imf(p0)` solves the nonlinear system for `p = p0` and returns the zero `xstar` of the nonlinear system. This function can now be part of any arbitrary Julia function differentiated by Zygote, e.g. it can be part of an objective function in an optimization problem using gradient-based optimization: ```julia obj(p) = sum(imf(p)) g = Zygote.gradient(obj, p0)[1] ``` In the implicit function's adjoint rule definition, the partial Jacobian `∂f/∂x` is used according to the implicit function theorem. Often this Jacobian or a good approximation of it might be a by-product of the `forward` function. For example when the `forward` function does an optimization using a BFGS-based approximation of the Hessian of the Lagrangian function, the final BFGS approximation can be a good approximation of `∂f/∂x` where the residual `f` is the gradient of the Lagrangian function wrt `x`. In those cases, this Jacobian by-product can be returned as the second argument from `forward` instead of `nothing`. ## Implicit parameters In some cases, it may be more convenient to avoid having to specify `p` as an explicit argument in `forward` and `f`. The following is also valid to use and will give correct gradients with respect to `p`: ```julia function obj(p) N = length(p) f(x) = A * x + 0.1 * x.^2 - p function forward() # Solving nonlinear system of equations sol = nlsolve(f, zeros(N), method = :anderson, m = 10) # Return the zero found (ignore the second returned value for now) return sol.zero, nothing end imf = ImplicitFunction(forward, f) return sum(imf()) end g = Zygote.gradient(obj, p0)[1] ``` Notice that `p` was not an explicit argument to `f` or `forward` in the above example and that the implicit function is called using `imf()`. Using some explicit parameters and some implicit parameters is also supported. ## Matrix-free linear solver in the adjoint In the adjoint definition of implicit functions, a linear system: ```julia (df/dy) * x = v ``` is solved to find the adjoint vector. To solve the system using a matrix-free iterative solver (GMRES by default) that avoids constructing the Jacobian `df/dy`, you can set the `matrixfree` keyword argument to `true` (default is `false`). When set to `false`, the entrie Jacobian matrix is formed and the linear system is solved using LU factorization. ## Arbitrary data structures Both `p` and `x` above can be arbitrary data structures, not just arrays of numbers. ## Tolerance The implicit function theorem assumes that some conditions `f(p, x) == 0` is satisfied. In practice, this will only be approximately satisfied. When this condition is violated, the gradient reported by the implicit function theorem cannot be trusted since its assumption is violated. The maximum tolerance allowed to "accept" the solution `x(p)` and the gradient is given by the keyword argument `tol` (default value is `1e-5`). When the norm of the residual function `f(p, x)` is greater than this tolerance, `NaN`s are returned for the gradient instead of the value computed via the implicit function theorem. If additionally, the keyword argument `error_on_tol_violation` is set to `true` (default value is `false`), an error is thrown if the norm of the residual exceeds the specified tolerance `tol`.
Nonconvex
https://github.com/JuliaNonconvex/Nonconvex.jl.git
[ "MIT" ]
2.1.3
c1421f259b2dd66ed19d9cede5edcea71636b7e6
docs
4121
# Using other AD packages `Nonconvex` uses `Zygote` and `ForwardDiff` by default. There are other AD packages in Julia with different tradeoffs. It is possible to use other AD packages to differentiate specific functions in `Nonconvex` using function modifiers. [`AbstractDifferentiation.jl`](https://github.com/JuliaDiff/AbstractDifferentiation.jl) is a package that defines a unified API for multiple AD packages. Each AD package has a "backend type" in `AbstractDifferentiation`. You can use any `AbstractDifferentiation`-compatible AD package to differentiate specific functions in `Nonconvex`. The list of `AbstractDifferentiation`-compatible AD packages (other than `Zygote`) are: - [`FiniteDifferences.jl`](https://github.com/JuliaDiff/FiniteDifferences.jl) - [`ForwardDiff.jl`](https://github.com/JuliaDiff/ForwardDiff.jl) - [`ReverseDiff.jl`](https://github.com/JuliaDiff/ReverseDiff.jl) - [`Tracker.jl`](https://github.com/FluxML/Tracker.jl) For more on how to construct a backend struct for each AD package, please refer to the README file of the [`AbstractDifferentiation`](https://github.com/JuliaDiff/AbstractDifferentiation.jl) repository. ## `abstractdiffy`ing a function In order to use a specific `AbstractDifferentiation`-compatible AD package to differentiate a function `f(x...)` used in a `Nonconvex` objective/constraint, you can use the `abstractdiffy` function modifier from `Nonconvex`: ```julia F = abstractdiffy(f, backend, x...) F(x...) ``` where `backend` is an `AbstractDifferentiation` backend struct for the desired AD package, and `x` are all the input arguments to `f`. The following are common `backend` choices: - `AbstractDifferentiation.ForwardDiffBackend()` for `ForwardDiff` - `AbstractDifferentiation.FiniteDifferencesBackend()` for `FiniteDifferences` - `AbstractDifferentiation.ReverseDiffBackend()` for `ReverseDiff` - `AbstractDifferentiation.TrackerBackend()` for `Tracker` Note that in order to define such backend type, one must first load the `AbstractDifferentiation` package as well as the AD package to be used, e.g.: ``` using AbstractDifferentiation, ReverseDiff backend = AbstractDifferentiation.ReverseDiffBackend() ``` Having defined `F` like this, whenever `ForwardDiff` or any `ChainRules`-compatible AD package such as `Zygote` is used to differentiate `F`, the AD package corresponding to the chosen `backend` will be used instead. To use [`ForwardDiff`](https://github.com/JuliaDiff/ForwardDiff.jl) as the backend of choice, a shortcut is also available using the `forwarddiffy` function modifier instead of the more general `abstractdiffy`: ```julia F = forwarddiffy(f, x...) F(x...) ``` which is short for: ```julia backend = AbstractDifferentiation.ForwardDiffBackend() F = abstractdiffy(f, backend, x...) ``` ## `abstractdiffy`ing a model Instead of `abstractdiffy`ing or `forwarddiffy`ing one function at a time, the user can instead `abstractdiffy` or `forwarddiffy` an entire `Nonconvex` model including the objective, all the inequality constraint functions, all the equality constraint functions and all the semidefinite constraint functions. ```julia ad_model = abstractdiffy(model, backend) ``` where `model` is of type `Model` or `DictModel`. `ad_model` can now be optimized using any of the `Nonconvex` algorithms compatible with the model. Similarly, `forwarddiffy` can be used on an entire model: ```julia fd_model = forwarddiffy(model) ``` By default, the objective and all the constraint functions will be modified with `abstractdiffy`/`forwarddiffy`. To prevent the modification of some component of the model, any of the following keyword arguments can be set to `false` (default is `true`): - `objective = false` - `ineq_constraints = false` - `eq_constraints = false` - `sd_constraints = false` Setting the `objective`, `ineq_constraints`, `eq_constraints`, and/or `sd_constraints` keyword arguments to `false` (default is `true`) will prevent the modification of the objective, all the inequality constraint functions, all the equality constraint functions, and/or all the semidefinite constraint functions respectively.
Nonconvex
https://github.com/JuliaNonconvex/Nonconvex.jl.git
[ "MIT" ]
2.1.3
c1421f259b2dd66ed19d9cede5edcea71636b7e6
docs
7092
# Sparse Jacobian or Hessian ## Background For functions with a sparse Jacobian or Hessian, it can sometimes be useful to exploit such sparsity to speedup the computation of the Jacobian. This can be done using the [`SparseDiffTools.jl`](https://github.com/JuliaDiff/SparseDiffTools.jl) package. `SparseDiffTools` can compute multiple columns of the Jacobian matrix of a vector-valued function `y = f(x)` simulatenously using a single Jacobian-vector product operation. Such columns corresponding to a subset of the input variables, e.g. `(x[1], x[3])`, however need not overlap in the output variables they influence. For instance, assume - `y[1]` and `y[2]` are a function of `x[1]` and `x[2]` only, and - `y[3]` and `y[4]` are a function of `x[3]` and `x[4]` only. The Jacobian `dy/dx` will therefore have a block diagonal structure. Additionally, since `x[1]` and `x[3]` do not affect the same output variables, their corresponding columns in the block-diagonal Jacobian can be computed simulatenously using a single Jacobian-vector block. The same thing for `x[2]` and `x[4]`. Finding such subsets of input variables such that no 2 input variables in a subset affect the same output is done using `SparseDiffTools`. In the diagonal Jacobian case, all the input variables do not overlap so all the columns of the Jacobian can be obtained using a single Jacobian-vector product. The problem of finding the optimal splitting of input variables to require the least number of Jacobian-vector products when computing the full Jacobian can be formulated as a [graph coloring](https://en.wikipedia.org/wiki/Graph_coloring) problem in computer science, which is an [NP-hard](https://en.wikipedia.org/wiki/NP-hardness) problem. `SparseDiffTools` uses a tractable heuristic to find reasonable splittings for different Jacobian or Hessian sparsity patterns. The sparsity pattern of the Jacobian or Hessian can either be user-provided or it will be automatically uncovered using [`Symbolics.jl`](https://github.com/JuliaSymbolics/Symbolics.jl). In `Nonconvex`, you can enforce the use of `SparseDiffTools` for specific functions using the `sparsify` function modifier. In particular, the `rrule` and `frule` of the modified function will be using `SparseDiffTools` to find the full Jacobian first and then doing either a Jacobian-vector product in the `frule` or a vector-Jacobian product in the `rrule`. Such `frule` will also be used by `ForwardDiff` if used to differentiate the modified function. For more on `frule`s, `rrule`s, Jacobian-vector products and vector-Jacobian products, refer to the following video on [Understanding autmoatic differentiation (in Julia)](https://www.youtube.com/watch?v=UqymrMG-Qi4). ## Sparsifying a function ### First order derivatives In order to force `Nonconvex` to use `SparseDiffTools` when differentiating a function `f(x...)` once, the `sparsify` function modifier can be used: ```julia F = sparsify(f, x...; hessian = false) F(x...) ``` where `x` is some sample input arguments to `f`. `F(x...)` can now be used inplace of `f(x...)` in objectives and/or constraints to be differentiated. Whenever `ForwardDiff` or any `ChainRules`-compatible AD package such as `Zygote` is used to differentiate `F` once, `SparseDiffTools` will now be used. ### Second order derivatives When `hessian = false` (the default value), only the Jacobian/gradient of `F` will be treated as sparse. In order to use `SparseDiffTools` to compute sparse second order derivatives as well, you can set `hessian = true`. This is recommended for scalar-valued functions with sparse Hessian matrices. Setting `hessian = true` will also work for vector-valued functions `f` or for functions `f` that return multiple, non-vector outputs. The sparsity of the third order derivative tensor will be used to compute the third order tensor efficiently. ### User-defined sparsity patterns Using `sparsify` as shown above will make use of `Symbolics` to uncover the sparsity of the Jacobian and Hessian matrices of `f`. In some cases, the function `f` may not be `Symbolics`-compatible or it may have a known sparsity pattern. The user can therefore use the `jac_pattern` or `hess_pattern` keyword arguments to set the pattern manually. The `jac_pattern` is expected to be a `SparseMatrixCSC` of element type `Bool` with `true` where there is a structural non-zero, and `false` where there is a structural zero in the Jacobian matrix. The size of `jac_pattern` should be `noutputs x ninputs` where `noutputs` is the number of outputs of `f` and `ninputs` is the number of inputs to `f`. When the inputs and/or outputs are multiple and/or non-vector, they are assumed to be flattened to vectors and `noutputs`/`ninputs` is the length of the flat vector. Passing the Hessian sparsity pattern is also possible using the `hess_pattern` keyword argument. For scalar-valued functions, `hess_pattern` should have size `ninputs x ninputs` where `ninputs` is the number of input variables in the flattened input arguments. For vector-valued functions, the sparsity pattern will be the sparsity pattern of the Jacobian of the linearized Jacobian of `f`. Assume `f` takes a single vector input `x` and returns a single output vector `y`. The sparsity pattern will be that of `d(vec(dy/dx))/dx`. `hess_pattern` should therefore have size `(noutputs * ninputs) x ninputs`. For example, assume `y` is a vector of length 2 and `x` is a vector of length 3. The Jacobian `dy/dx` will be a matrix of size `2 x 3`. `vec(dy/dx)` will be a vector of length 6. `d(vec(dy/dx))/dx` will be a matrix of size `6 x 3`. `hess_pattern` should therefore be a `SparseMatrixCSC` with element type `Bool` and size `6 x 3`. For general functions `f` with multiple or non-vector inputs or outputs, `noutputs` and `ninputs` are the lengths of the flattened outputs and inputs respectively. ## Sparsifying a model Instead of sparsifying one function at a time, the user can instead sparsify an entire `Nonconvex` model including the objective, all the inequality constraint functions, all the equality constraint functions and all the semidefinite constraint functions. ```julia sp_model = sparsify(model, hessian = true) ``` where `model` is of type `Model` or `DictModel` and `hessian` has the same intepretation from the function sparisfication above. `sp_model` can now be optimized using any of the `Nonconvex` algorithms compatible with the model. By default, the objective and all the constraint functions will be sparsified. To prevent the sparisfication of some component of the model, any of the following keyword arguments can be set to `false` (default is `true`): - `objective = false` - `ineq_constraints = false` - `eq_constraints = false` - `sd_constraints = false` Setting the `objective`, `ineq_constraints`, `eq_constraints`, and/or `sd_constraints` keyword arguments to `false` (default is `true`) will prevent the sparisification of the objective, all the inequality constraint functions, all the equality constraint functions, and/or all the semidefinite constraint functions respectively.
Nonconvex
https://github.com/JuliaNonconvex/Nonconvex.jl.git
[ "MIT" ]
2.1.3
c1421f259b2dd66ed19d9cede5edcea71636b7e6
docs
3671
# Symbolic differentiation ## Background For functions, a tractable symbolic gradient/Jacobian/Hessian may exist. [`Symbolics.jl`](https://github.com/JuliaSymbolics/Symbolics.jl) is a symbolic mathematics package in Julia that can uncover the mathematical expression from Julia functions and then symbolically differentiate the resulting expression. Symbolic simplifications and cancellations can sometimes lead to computational savings compared to algorithmic differentiation. Symbolic differentiation can further exploit the sparsity of the graident, Jacobian and/Hessian if one exists. In `Nonconvex`, you can enforce the use of `Symbolics` to symbolically differentiate specific functions using the `symbolify` function modifier. In particular, the `Symbolics`-derived gradient/Jacobian/Hessian functions will be used whenever `ForwardDiff` or any `ChainRules`-compatible AD package such as `Zygote` is used to differentiate the modified function. ## Symbolifying a function ### First order derivatives In order to force `Nonconvex` to use `Symbolics` when differentiating a function `f(x...)` once, the `symbolify` function modifier can be used: ```julia F = symbolify(f, x...; hessian = false, sparse = false, simplify = false) F(x...) ``` where `x` is some sample input arguments to `f`. `F(x...)` can now be used inplace of `f(x...)` in objectives and/or constraints to be differentiated. Whenever `ForwardDiff` or any `ChainRules`-compatible AD package such as `Zygote` is used to differentiate `F` once, the `Symbolics`-derived gradient/Jacobian will now be used. The `sparse` keyword argument can be set to `true` (default is `false`) to tell `Symbolics` to return a sparse gradient/Jacobian for the function `F`. The `simplify` keyword argument can be set to `true` (default is `false`) to tell `Symbolics` to simplify the mathematical expressions for the gradient/Jacobian functions. ### Second order derivatives When `hessian = false` (the default value), only the Jacobian/gradient of `F` will be computed with `Symbolics`. In order to use `Symbolics` to differentiate the function `F` twice, you can set `hessian = true`. Setting `hessian = true` will also work for vector-valued functions `f` or for functions `f` that return multiple, non-vector outputs. The `sparse` and `simplify` keyword arguments work the same way when `hessian` is set to `true`. ## Symbolifying a model Instead of symbolifying one function at a time, the user can instead symbolify an entire `Nonconvex` model including the objective, all the inequality constraint functions, all the equality constraint functions and all the semidefinite constraint functions. ```julia sym_model = symbolify(model, hessian = true, simplify = true, sparse = true) ``` where `model` is of type `Model` or `DictModel` and `hessian`, `simplify` and `sparse` have the same intepretation from the function symbolification above. `sym_model` can now be optimized using any of the `Nonconvex` algorithms compatible with the model. By default, the objective and all the constraint functions will be symbolified. To prevent the symbolification of some component of the model, any of the following keyword arguments can be set to `false` (default is `true`): - `objective = false` - `ineq_constraints = false` - `eq_constraints = false` - `sd_constraints = false` Setting the `objective`, `ineq_constraints`, `eq_constraints`, and/or `sd_constraints` keyword arguments to `false` (default is `true`) will prevent the symbolification of the objective, all the inequality constraint functions, all the equality constraint functions, and/or all the semidefinite constraint functions respectively.
Nonconvex
https://github.com/JuliaNonconvex/Nonconvex.jl.git
[ "MIT" ]
2.1.3
c1421f259b2dd66ed19d9cede5edcea71636b7e6
docs
1904
# User-defined gradient, Jacobian or Hessian ## Gradients and Jacobians To use a user-defined gradient/Jacobian function `g(x)` for a function `f(x)`, you can use the `CustomGradFunction` modifier: ```julia F = CustomGradFunction(f, g) F(x) ``` `F` can be then used in place of `f` as an objective function, as a constraint function or as part of any such function. When `f` is scalar-valued, `g` is expected to return a gradient vector. When `f` is vector-valued, `g` is expected to return a Jacobian matrix. Whenever `ForwardDiff` or any `ChainRules`-compatible AD package such as `Zygote` is used to differentiate `F`, the custom gradient/Jacobian function `g` will be used. ## Hessian or Hessian vector product For second-order optimization algorithms, a user-defined Hessian function `h(x)` can be used for any scalar-valued function `f(x)` with gradient `g(x)`. To use a user-defined Hessian function `h(x)`, you can use the `CustomHessianFunction` modifier: ```julia F = CustomHessianFunction(f, g, h) F(x) ``` `F` can be then used in place of `f` as an objective function, as a constraint function or as part of any such function. `f` is expected to return a scalar, `g` is expected to return a gradient vector and `h` is expected to return a symmetric Hessian matrix. Whenever `ForwardDiff` or any `ChainRules`-compatible AD package such as `Zygote` is used to differentiate `F`, the custom gradient and Hessian functions will be used. Instead of a Hessian function `h`, alternatively a Hessian-vector product operator `h(x, v)` can be used, which multiplies the Hessian of `f` at `x` by the vector `v`. To use a Hessian-vector product operator `hvp(x, v)` instead of computing the full Hessian, you can pass the `hvp` function as the third argument to `CustomHessianFunction` and set the `hvp` keyword argument to `true`: ```julia F = CustomHessianFunction(f, g, hvp; hvp = true) F(x) ```
Nonconvex
https://github.com/JuliaNonconvex/Nonconvex.jl.git
[ "MIT" ]
2.1.3
c1421f259b2dd66ed19d9cede5edcea71636b7e6
docs
3660
# `DictModel` definition There are 2 ways to define a `DictModel`. The direct method is: ```julia model = DictModel() ``` To pass an objective function while constructing the model, use: ```julia model = DictModel(obj) ``` where `obj` is a function that takes a single `OrderedDict` argument. ## JuMP model to Nonconvex DictModel JuMP.jl has an excellent API for defining variables and linear constraints. Using JuMP makes it straightforward to copy a set of linear constraints and variable definitions from a paper. In Nonconvex, you can start with a JuMP model, define variables and constraints using JuMP's API then convert it to a `DictModel`. For example: ```julia jump_model = JuMP.Model() @variable jump_model 0 <= x[i=1:3] <= 1 @constraint jump_model sum(x) <= 1 model = DictModel(jump_model) ``` The objective can also be defined either using JuMP or Nonconvex. Once you convert the JuMP model to a Nonconvex model, you can go ahead and define more variables and constraints and/or set the objective in Nonconvex. ## Variable definition ### Add a single variable Each variable in a `DictModel` has a name which can be a symbol or string. Each named variable can have an arbitrary type, e.g: 1. Vectors or arrays in general 2. Dictionaries 3. Structs 4. `Tuple`s 5. `NamedTuple`s 6. Nested data structures Vectorization and de-vectorization are handled automatically by Nonconvex. To add a new named variable to a `DictModel` with a name `:a` and lower and upper bounds `lb` and `ub` respectively, use: ```julia addvar!(model, :a, lb, ub) ``` Similar to `Model`, optional keyword arguments `init` and `integer` can be set, and the types of the initial value, `lb` and `ub` must be the same. ### Add multiple variables There is no way to add multiple variables simultaneously to a `DictModel` however a single named variable that's a vector can be added. ## Objective definition To specify an objective function after creating the model, use: ```julia set_objective!(model, obj) ``` where `obj` is a function that takes a single `OrderedDict` argument. The `OrderedDict` input to `obj` will be of the same structure, shape and types as the `OrderedDict` initial solution, lower bounds and upper bounds. ## Inequality constraint definition To define an inequality constraint `f(x) <= 0`, where `f` is a Julia function that accepts a single `OrderedDict` input, use: ```julia add_ineq_constraint!(model, f) ``` The `OrderedDict` input to `f` will be of the same structure, shape and types as the `OrderedDict` initial solution, lower bounds and upper bounds. The function `f` can return: 1. A number, in which case the constraint will be `f(x) <= 0` 2. A vector or array of numbers, in which case the constraint will be applied element-wise `f(x) .<= 0`. 3. An arbitrary container or data structure, in which case the output will be vectorized first and the constraint will be applied element-wise on the vectorized output. ## Equality constraint definition To define an inequality constraint `f(x) == 0`, where `f` is a Julia function that accepts a single `OrderedDict` input, use: ```julia add_eq_constraint!(model, f) ``` The `OrderedDict` input to `f` will be of the same structure, shape and types as the `OrderedDict` initial solution, lower bounds and upper bounds. The function `f` can return: 1. A number, in which case the constraint will be `f(x) == 0` 2. A vector or array of numbers, in which case the constraint will be applied element-wise `f(x) .== 0`. 3. An arbitrary container or data structure, in which case the output will be vectorized first and the constraint will be applied element-wise on the vectorized output.
Nonconvex
https://github.com/JuliaNonconvex/Nonconvex.jl.git
[ "MIT" ]
2.1.3
c1421f259b2dd66ed19d9cede5edcea71636b7e6
docs
4968
# `Model` definition To define an empty model, run: ```julia model = Model() ``` To specify an objective function `obj` when creating the model, run: ```julia model = Model(obj) ``` where `obj` is a function that takes a single vector argument. ## Variable definition ### Add a single variable To add a new variable to a `Model` with lower and upper bounds `lb` and `ub` respectively, use: ```julia addvar!(model, lb, ub) ``` The variables added will be stacked on top of each other with a linear integer index. The lower and upper bounds for each variable don't have to be numbers, they can be: 1. Dictionaries 2. Structs 3. `Tuple`s 4. `NamedTuple`s 5. Nested data structures However, the values input cannot be vectors. A vector input has a different interpretation. See the next section. The types of the lower and upper bounds of each variable must be the same and this type will be assumed to be the type of the decision variable. Different variables can have different types though. Vectorization and de-vectorization are handled automatically by Nonconvex. To specify an initial value, use the `init` keyword argument. To add an integer constraint on the variable, use the `integer` keyword argument. For example: ```julia addvar!(model, 0.0, 10.0, init = 1.0, integer = true) ``` `init` must have the same type as the lower and upper bounds. ### Add multiple variables To add multiple variables simultaneously, pass in a vector of values for the bounds and optionally for the `init` and `integer` keyword arguments. ```julia addvar!(model, [0.0, 0.0], [10.0, 10.0], init = [1.0, 1.0], integer = [true, false]) ``` The elements of the vector can be: 1. Vectors or arrays in general 2. Dictionaries 3. Structs 4. `Tuple`s 5. `NamedTuple`s 6. Nested data structures Note that the use of vectors as elements is allowed. Similarly, the types of the lower and upper bounds and the initial values must be the same. ## Objective definition To specify an objective function after creating the model, use: ```julia set_objective!(model, obj) ``` where `obj` is a function that takes a single vector argument. The vector input to `obj` will be of the same structure, shape and types as the initial solution, lower bound and upper bound vector. ## Inequality constraint definition To define an inequality constraint `f(x) <= 0`, where `f` is a Julia function that accepts a single input vector, use: ```julia add_ineq_constraint!(model, f) ``` The vector input to `f` will be of the same structure, shape and types as the initial solution, lower bound and upper bound vector. The function `f` can return: 1. A number, in which case the constraint will be `f(x) <= 0` 2. A vector or array of numbers, in which case the constraint will be applied element-wise `f(x) .<= 0`. 3. An arbitrary container or data structure, in which case the output will be vectorized first and the constraint will be applied element-wise on the vectorized output. ## Equality constraint definition To define an inequality constraint `f(x) == 0`, where `f` is a Julia function that accepts a single input vector, use: ```julia add_eq_constraint!(model, f) ``` The vector input to `f` will be of the same structure, shape and types as the initial solution, lower bound and upper bound vector. The function `f` can return: 1. A number, in which case the constraint will be `f(x) == 0` 2. A vector or array of numbers, in which case the constraint will be applied element-wise `f(x) .== 0`. 3. An arbitrary container or data structure, in which case the output will be vectorized first and the constraint will be applied element-wise on the vectorized output. ## Changing variable bounds After defining the variables, it is possible to set the minimum and maximum variable bounds to different variables. This is useful for example in iterative procedures where the bounds are updated and the problem is resolved. To update the entire vector of minimum bounds, you can use: ```julia setmin!(model, newmin) ``` where `newmin` is a vector of bounds. `-Inf` is allowed in the bounds. To set a new minimum bound for the `i`th variable only, you can use: ```julia setmin!(model, i, newmin) ``` instead where `newmin` is a minimum bound of the appropriate type depending on the type of the `i`th variable. Similarly, to update the entire vector of maximum bounds, you can use: ```julia setmax!(model, newmax) ``` where `newmax` is a vector of bounds. `Inf` is allowed in the bounds. To set a new maximum bound for the `i`th variable only, you can use: ```julia setmax!(model, i, newmax) ``` instead where `newmax` is a maximum bound of the appropriate type depending on the type of the `i`th variable. ## Changing integrality constraints To constrain a variable to be integer or relax the integrality constraint on the `i`th variable, you can use: ```julia setinteger!(model, i, integer) ``` where `integer` is `true` to constrain the variable or `false` to relax the constraint.
Nonconvex
https://github.com/JuliaNonconvex/Nonconvex.jl.git
[ "MIT" ]
2.1.3
c1421f259b2dd66ed19d9cede5edcea71636b7e6
docs
660
# Problem definition There are 3 ways to define a model in `Nonconvex.jl`: 1. `Model` which assumes all the variables are indexed by an integer index starting from 1. The decision variables are therefore a vector. 2. `DictModel` which assumes each variable has a name. The decision variables are stored in an `OrderedDict`, an ordered dictionary data structure. 3. Start from `JuMP.Model` and convert it to `DictModel`. This is convenient to make use of `JuMP`'s user-friendly macros for variable and linear expression, objective or constraint definitions. ## Table of contents ```@contents Pages = ["model.md", "dict_model.md", "queries.md"] Depth = 3 ```
Nonconvex
https://github.com/JuliaNonconvex/Nonconvex.jl.git
[ "MIT" ]
2.1.3
c1421f259b2dd66ed19d9cede5edcea71636b7e6
docs
2510
# Model queries There are a number of information you can query about the model after constructing it. These can be useful to check that the model was defined correctly or in the post-processing step after the model has been optimized. ## Number of decision variables To query the number of decision variables in a model, use: ```julia NonconvexCore.getnvars(model) ``` ## Number of constraints To query the number of inequality constraints in a model, you can use: ```julia NonconvexCore.getnineqconstraints(model) ``` A vector-valued constraint will be counted only once. To query the number of equality constraints, you can use: ```julia NonconvexCore.getneqconstraints(model) ``` To query the number of semidefinite constraints, you can use: ```julia NonconvexCore.getnsdconstraints(model) ``` To query the total number of constraints in a model, you can use: ```julia NonconvexCore.getnconstraints(model) ``` This is the sum of all the previous queries. ## Problem dimension To get a quick overview of the number of constraints and variables in the model, you can use: ```julia NonconvexCore.getdim(model) ``` which is short for: ```julia (NonconvexCore.getnconstraints(model), NonconvexCore.getnvars(model)) ``` ## Objective and constraint functions You can get the objective and constraint functions as regular Julia functions which can be evaluated. To get the objective function, you can use: ```julia obj = NonconvexCore.getobjective(model) ``` To get a function for all the inequality constraints, you can use: ```julia ineq = NonconvexCore.getineqconstraints(model) ``` To get a function for all the equality constraints, you can use: ```julia ineq = NonconvexCore.geteqconstraints(model) ``` To get a function for all the semideifnite constraint functions, you can use: ```julia ineq = NonconvexCore.getsdconstraints(model) ``` ## Initial solution You can the initial solution using: ```julia x0 = NonconvexCore.getinit(model) ``` ## Variables bounds You can query the maximum variable bounds for all the variables using: ```julia NonconvexCore.getmax(model) ``` Similarly, you can query the minimum variable bounds for all the variables using: ```julia NonconvexCore.getmin(model) ``` ## Integrality constraints To get the vector indiciting which variables are integer, you can use: ```julia model.integer ``` which will be a `BitVector` (similar to a vector of `Bool`) with `true` corresponding to an integer constraint and `false` corresponding to a continuous variable.
Nonconvex
https://github.com/JuliaNonconvex/Nonconvex.jl.git
[ "Apache-2.0" ]
0.2.1
ebbe3767049b5276a2158a33a417b2fb73a66392
code
7330
module Scrypt using Nettle using SIMD include("data/Salsa512.jl") include("data/ScryptParameters.jl") include("util.jl") function scrypt(parameters::ScryptParameters, key::Vector{UInt8}, salt::Vector{UInt8}, derivedkeylength) derivedkeylength > 0 || ArgumentError("Must be > 0.") |> throw buffer = pbkdf2_sha256_1(key, salt, bufferlength(parameters)) parallelbuffer = reshape(reinterpret(Salsa512, buffer), (elementblockcount(parameters), parameters.p)) for i ∈ 1:parameters.p element = @views reshape(parallelbuffer[:, i], elementblockcount(parameters)) smix!(element, parameters) end derivedkey = pbkdf2_sha256_1(key, buffer, derivedkeylength) end const HASH_LENGTH = 256 ÷ 8 function pbkdf2_sha256_1(key, salt::Vector{UInt8}, derivedkeylength) blockcount = cld(derivedkeylength, HASH_LENGTH) lastblockbytes = derivedkeylength - (blockcount - 1) * HASH_LENGTH salt = [salt; zeros(UInt8, 4)] salttail = view(salt, length(salt) - 3:length(salt)) derivedkey = Matrix{UInt8}(undef, HASH_LENGTH, blockcount) for i ∈ 1:blockcount salttail[:] = reinterpret(UInt8, [UInt32(i)]) |> reverse derivedkey[:, i] = digest("sha256", key, salt) end derivedkey = reshape(derivedkey, blockcount * HASH_LENGTH)[1:derivedkeylength] return derivedkey end function smix!(element::AbstractVector{Salsa512}, parameters::ScryptParameters) workingbuffer = prepare(element) shufflebuffer = valloc(Salsa512, length(workingbuffer)) scryptblock, workingbuffer, shufflebuffer = fillscryptblock!(workingbuffer, shufflebuffer, parameters.r, parameters.N) workingbuffer = mixwithscryptblock!(workingbuffer, scryptblock, shufflebuffer, parameters.r, parameters.N) restore!(element, workingbuffer) end const SALSA_BLOCK_REORDER_INDEXES = [13; 2; 7; 12; 1; 6; 11; 16; 5; 10; 15; 4; 9; 14; 3; 8] function prepare(src::AbstractVector{Salsa512}) dest = valloc(Salsa512, length(src)) si = 1:length(src) dj = [2:length(dest); 1] for (i, j) ∈ zip(si, dj) dest[j] = src[i] permute!(uint32view(dest, j), SALSA_BLOCK_REORDER_INDEXES) end return dest end #permute! is no faster than explicit vectorization, even with a few extra allocations function restore!(dest::AbstractVector{Salsa512}, src::AbstractVector{Salsa512}) si = 1:length(src) dj = [length(dest); 1:length(dest) - 1] for (i, j) ∈ zip(si, dj) dest[j] = src[i] invpermute!(uint32view(dest, j), SALSA_BLOCK_REORDER_INDEXES) end end function fillscryptblock!(workingbuffer::AbstractVector{Salsa512}, shufflebuffer::AbstractVector{Salsa512}, r, N) scryptblock = reshape(valloc(Salsa512, 2r * N), (2r, N)) for i ∈ 1:N scryptelement = view(scryptblock, :, i) previousblock = lastblock = load_store!(workingbuffer, scryptelement, 1) for j ∈ 2:2r block = load_store!(workingbuffer, scryptelement, j) block = mixblock_shuffle_store!(block, previousblock, shufflebuffer, shuffleposition(j, r)) previousblock = block end mixblock_shuffle_store!(lastblock, previousblock, shufflebuffer, 1) workingbuffer, shufflebuffer = shufflebuffer, workingbuffer end return scryptblock, workingbuffer, shufflebuffer end shuffleposition(j, halfblockcount) = (j - 2) ÷ 2 + 2 + (iseven(j) ? 0 : halfblockcount) uint32view(x, i) = @inbounds reinterpret(UInt32, view(x, i:i)) vloadsalsa(x, i) = @inbounds vloada(Vec{16, UInt32}, uint32view(x, i), 1) vloadsalsant(x, i) = @inbounds vloadnt(Vec{16, UInt32}, uint32view(x, i), 1) vstoresalsa(v, x, i) = @inbounds vstorea(v, uint32view(x, i), 1) vstoresalsant(v, x, i) = @inbounds vstorent(v, uint32view(x, i), 1) function load_store!(workingbuffer::AbstractVector{Salsa512}, scryptelement::AbstractVector{Salsa512}, i) block = vloadsalsa(workingbuffer, i) vstoresalsant(block, scryptelement, i) return block end function mixwithscryptblock!(workingbuffer::AbstractVector{Salsa512}, scryptblock, shufflebuffer::AbstractVector{Salsa512}, r, N) for i ∈ 1:N n = integerify(workingbuffer, N) scryptelement = reshape(view(scryptblock, :, n), 2r) for j ∈ 1:r # prefetch first half of the element vprefetchnt(scryptelement, j) end previousblock = lastblock = load_xor(workingbuffer, scryptelement, 1) for j ∈ 2:2r if j ≤ (r + 1) # prefetch one additional block through end vprefetchnt(scryptelement, r + j - 1) end block = load_xor(workingbuffer, scryptelement, j) block = mixblock_shuffle_store!(block, previousblock, shufflebuffer, shuffleposition(j, r)) previousblock = block end mixblock_shuffle_store!(lastblock, previousblock, shufflebuffer, 1) workingbuffer, shufflebuffer = shufflebuffer, workingbuffer end return workingbuffer end integerify(x::AbstractVector{Salsa512}, N) = uint32view(x, 1)[5] % N + 1 function load_xor(workingbuffer::AbstractVector{Salsa512}, scryptelement::AbstractVector{Salsa512}, i) block = vloadsalsa(workingbuffer, i) block ⊻= vloadsalsant(scryptelement, i) return block end function mixblock_shuffle_store!(block, previousblock, shufflebuffer, i) block ⊻= previousblock block = salsa20(block, 8) vstoresalsa(block, shufflebuffer, i) return block end function salsa20(block, iterations) inputblock = block lines = splitblock(block) for i ∈ 1:iterations lines = salsamix(lines) lines = salsatranspose(lines) end block = joinlines(lines) block += inputblock return block end splitblock(block) = (shufflevector(block, Val((0,1,2,3))), shufflevector(block, Val((4,5,6,7))), shufflevector(block, Val((8,9,10,11))), shufflevector(block, Val((12,13,14,15)))) joinlines(lines) = @inbounds shufflevector(shufflevector(lines[1], lines[2], Val((0, 1, 2, 3, 4, 5, 6, 7))), shufflevector(lines[3], lines[4], Val((0, 1, 2, 3, 4, 5, 6, 7))), Val((0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15))) function salsamix(lines) line1, line2, line3, line4 = lines line3 = salsa(line1, line2, line3, 7) line4 = salsa(line2, line3, line4, 9) line1 = salsa(line3, line4, line1, 13) line2 = salsa(line4, line1, line2, 18) return (line1, line2, line3, line4) end function salsa(addend1, addend2, xor_operand, rotationmagnitude) sum = addend1 + addend2 rot = (sum << rotationmagnitude) | (sum >>> (sizeof(UInt32) * 8 - rotationmagnitude)) return xor_operand ⊻ rot end function salsatranspose(lines) toline3 = @inbounds shufflevector(lines[1], Val((1, 2, 3, 0))) line1 = @inbounds shufflevector(lines[3], Val((3, 0, 1, 2))) line3 = toline3 line4 = @inbounds shufflevector(lines[4], Val((2, 3, 0, 1))) return @inbounds (line1, lines[2], line3, line4) end export scrypt export ScryptParameters end
Scrypt
https://github.com/BioTurboNick/Scrypt.jl.git
[ "Apache-2.0" ]
0.2.1
ebbe3767049b5276a2158a33a417b2fb73a66392
code
2453
""" ReadOrWrite: 0 for read, 1 for write. Function follows the LLVM definition https://llvm.org/docs/LangRef.html#llvm-prefetch-intrinsic such that prefetch(ptr, Val(3), Val(0)) corresponds to prefetch0 on x86 (extreme locality) Adapted from SIMDPirates.jl """ @generated function prefetch(ptr::Ptr{T}, ::Val{Locality}, ::Val{ReadOrWrite}) where {T, Locality, ReadOrWrite} if VERSION < v"1.6.0-DEV.674" prefetch_call_string = """%addr = inttoptr i$(8sizeof(Int)) %0 to i8* call void @llvm.prefetch(i8* %addr, i32 $ReadOrWrite, i32 $Locality, i32 1) ret void""" quote $(Expr(:meta, :inline)) Base.llvmcall( ("declare void @llvm.prefetch(i8*, i32, i32, i32)", $prefetch_call_string), Cvoid, Tuple{Ptr{$T}}, ptr ) end else mod = """ declare void @llvm.prefetch(i8*, i32, i32, i32) define void @entry(i$(8sizeof(Int))) #0 { top: %addr = inttoptr i$(8sizeof(Int)) %0 to i8* call void @llvm.prefetch(i8* %addr, i32 $ReadOrWrite, i32 $Locality, i32 1) ret void } attributes #0 = { alwaysinline } """ quote $(Expr(:meta, :inline)) Base.llvmcall( ($mod, "entry"), Cvoid, Tuple{Ptr{$T}}, ptr ) end end end function vprefetch(a::SIMD.FastContiguousArray{T,1}, i::Integer) where {T} GC.@preserve a begin ptr = @inbounds pointer(a, i) prefetch(ptr, Val{3}(), Val{0}()) end end function vprefetchnt(a::SIMD.FastContiguousArray{T,1}, i::Integer) where {T} GC.@preserve a begin ptr = @inbounds pointer(a, i) prefetch(ptr, Val{0}(), Val{0}()) end end if VERSION < v"1.6.0-DEV" import Base.stride import Base.strides function stride(a::Base.ReinterpretArray, i::Int) a.parent isa StridedArray || ArgumentError("Parent must be strided.") |> throw if i > ndims(a) return length(a) end s = 1 for n = 1:(i-1) s *= size(a, n) end return s end function strides(a::Base.ReinterpretArray) a.parent isa StridedArray || ArgumentError("Parent must be strided.") |> throw Base.size_to_strides(1, size(a)...) end end
Scrypt
https://github.com/BioTurboNick/Scrypt.jl.git
[ "Apache-2.0" ]
0.2.1
ebbe3767049b5276a2158a33a417b2fb73a66392
code
251
primitive type Salsa512 512 end Salsa512(x::Vector{UInt128}) = reinterpret(Salsa512, x) |> first import SIMD.valloc valloc(t::Type, n) = valloc(t, sizeof(t), n) import Base.zero zero(::Type{Salsa512}) = zeros(UInt128, 4) |> Salsa512
Scrypt
https://github.com/BioTurboNick/Scrypt.jl.git
[ "Apache-2.0" ]
0.2.1
ebbe3767049b5276a2158a33a417b2fb73a66392
code
1346
const MAX_UINT = 2^32 - 1 struct ScryptParameters r::Int # element length multiplier N::Int # processing cost p::Int # parallelization function ScryptParameters(r, N, p) r > 0 || ArgumentError("r Must be > 0.") |> throw N > 0 || ArgumentError("N Must be > 0.") |> throw p > 0 || ArgumentError("p Must be > 0.") |> throw parameters = new(UInt(r), UInt(N), UInt(p)) p ≤ MAX_UINT * hashlength(parameters) / elementlength(parameters) || ArgumentError("p and r must satisfy the relationship p ≤ (2^32 - 1) * hashlength / elementlength)") |> throw r * N * elementunitlength(parameters) ≤ Sys.total_memory() || ArgumentError("r and N must satisfy the relationship r * N * elementunitlength ≤ Sys.total_memory") |> throw parameters end end bytes(x) = x ÷ 8 hashbitslength(::ScryptParameters) = 256 hashlength(x::ScryptParameters) = hashbitslength(x) |> bytes elementunitbitslength(::ScryptParameters) = 2 * 8 * sizeof(Salsa512) elementunitlength(x::ScryptParameters) = elementunitbitslength(x) |> bytes elementlength(x::ScryptParameters) = elementunitlength(x) * x.r bufferlength(x::ScryptParameters) = elementlength(x) * x.p elementblockcount(x::ScryptParameters) = elementlength(x) ÷ sizeof(Salsa512)
Scrypt
https://github.com/BioTurboNick/Scrypt.jl.git
[ "Apache-2.0" ]
0.2.1
ebbe3767049b5276a2158a33a417b2fb73a66392
code
1468
using Scrypt using Test @testset "Scrypt Tests" begin expected = [hex2bytes("77d6576238657b203b19ca42c18a0497f16b4844e3074ae8dfdffa3fede21442fcd0069ded0948f8326a753a0fc81f17e8d3e0fb2e0d3628cf35e20c38d18906"), hex2bytes("b034a96734ebdc650fca132f40ffde0823c2f780d675eb81c85ec337d3b1176017061beeb3ba18df59802b95a325f5f850b6fd9efb1a6314f835057c90702b19"), hex2bytes("fdbabe1c9d3472007856e7190d01e9fe7c6ad7cbc8237830e77376634b3731622eaf30d92e22a3886ff109279d9830dac727afb94a83ee6d8360cbdfa2cc0640"), hex2bytes("7023bdcb3afd7348461c06cd81fd38ebfda8fbba904f8e3ea9b543f6545da1f2d5432955613f0fcf62d49705242a9af9e61e85dc0d651e40dfcf017b45575887"), hex2bytes("2101cb9b6a511aaeaddbbe09cf70f881ec568d574a2ffd4dabe5ee9820adaa478e56fd8f4ba5d09ffa1c6d927c40f4c337304049e8a952fbcbf45c6fa77a41a4")] output = [scrypt(ScryptParameters(1, 16, 1), Vector{UInt8}(b""), Vector{UInt8}(b""), 64), scrypt(ScryptParameters(2, 32, 2), Vector{UInt8}(b"password"), Vector{UInt8}(b"NaCl"), 64), scrypt(ScryptParameters(8, 1024, 16), Vector{UInt8}(b"password"), Vector{UInt8}(b"NaCl"), 64), scrypt(ScryptParameters(8, 16384, 1), Vector{UInt8}(b"pleaseletmein"), Vector{UInt8}(b"SodiumChloride"), 64), scrypt(ScryptParameters(8, 1048576, 1), Vector{UInt8}(b"pleaseletmein"), Vector{UInt8}(b"SodiumChloride"), 64)] @test all(expected .== output) end
Scrypt
https://github.com/BioTurboNick/Scrypt.jl.git
[ "Apache-2.0" ]
0.2.1
ebbe3767049b5276a2158a33a417b2fb73a66392
docs
3254
# Scrypt.jl [![Build Status](https://travis-ci.com/BioTurboNick/Scrypt.jl.svg?branch=master)](https://travis-ci.com/github/BioTurboNick/Scrypt.jl) [![codecov.io](https://codecov.io/github/BioTurboNick/Scrypt.jl/coverage.svg?branch=master)](https://codecov.io/github/BioTurboNick/Scrypt.jl?branch=master) Port of my [Skryptonite](https://github.com/BioTurboNick/Skryptonite) C++/C# implementation of the Scrypt password-bassed key derivation algorithm / hash function, in pure Julia. I make no guarantees other than that it passes the test vectors from the original paper. Contributions welcome. Skryptonite code is more fully documented, if you wish to understand the logic. But in brief, the data is rearranged for optimal internal operations by placing the last block first and organizing the internal matrix blocks so that the diagonals are moved into columns. One thing this lacks right now is parallelization for the p parameter. Example: ``` r = 8 N = 16384 p = 1 key = Vector{UInt8}(b"pleaseletmein") salt = Vector{UInt8}(b"SodiumChloride") derivedkeylength = 64 # bytes scrypt(ScryptParameters(r, N, p), key, salt, derivedkeylength) ``` Optimization notes: - Initial: 7.511 s (93602212 allocations: 8.63 GiB) (commit 79ccff573b132d9079f908b02a717b58fa71a710) - Moved constant array selectors into global constants: 7.206 s (81019300 allocations: 7.32 GiB) (commit 9195adc4a87f06068ba6b3e7da23188cf9c22c67) - Just prior to the critical inner loop, copied the data to an MMatrix from StaticArrays: 1.455 s (81019300 allocations: 3.29 GiB) (commit 4b716febb788ff2b1493eb03e63e9034565b48e8) - Refactored and simplified: 1.642 s (81281446 allocations: 3.27 GiB) (commit 98cdaee685836c636f1abdf6745d6260de219a79) - Changed salsamix!() function to loop over rows instead of over columns, paradoxically: 1.130 s (17234346 allocations: 1.48 GiB) (commit 94e620944ca398af78eac778ea55580d81972343) - Fully implemented SIMD for Salsa20/8 instead of StaticArrays: 312.388 ms (4651434 allocations: 471.02 MiB) (commit c08f960f82f043e0443b73307542ba30ecd97d0b) - Cut down a few allocations by using `@code_warntype` to tighten up function types, but minimal improvment overall. - Further vectorized, removed some abstraction. Weirdly, vectorization of the prepare/restore functions made it marginally slower, although no difference in allocations, did not keep: 261.690 ms (1311110 allocations: 196.05 MiB) - Implemented memory-aligned and nontemporal load/store methods for fill/mix functions: 150.639 ms (524678 allocations: 88.07 MiB) (commit 857cd7a92a797bd67ca22d684e051432d6f7e48d) - Got rid of an internal array I had introduced in the inner loop accidentally: 85.645 ms (390 allocations: 16.07 MiB) (commit 6a48816057494a1770c9406723440216da68df97) - Implemented nontemporal store instructions, increased time a bit, but more secure: 90.233 ms (390 allocations: 16.07 MiB) - Added @inbounds to load/store methods: 79.289 ms (390 allocations: 16.07 MiB) 16 MiB is about the lower limit of allocation amount for the parameters I was using. End result: Only ~2 times slower than my original C++/C# package, after starting ~525 times slower. A bit more optimization to try to squeeze out.
Scrypt
https://github.com/BioTurboNick/Scrypt.jl.git
[ "MIT" ]
0.2.0
829dd95b32a41526923f44799ce0762fcd9a3a37
code
715
using DifferentiableExpectations using Documenter using DocumenterCitations bib = CitationBibliography(joinpath(@__DIR__, "src", "DiffExp.bib"); style=:authoryear) cp(joinpath(@__DIR__, "..", "README.md"), joinpath(@__DIR__, "src", "index.md"); force=true) makedocs(; modules=[DifferentiableExpectations], authors="Members of JuliaDecisionFocusedLearning", sitename="DifferentiableExpectations.jl", format=Documenter.HTML(), pages=[ "Home" => "index.md", # "API reference" => "api.md", "Background" => "background.md", ], plugins=[bib], ) deploydocs(; repo="github.com/JuliaDecisionFocusedLearning/DifferentiableExpectations.jl", devbranch="main", )
DifferentiableExpectations
https://github.com/JuliaDecisionFocusedLearning/DifferentiableExpectations.jl.git
[ "MIT" ]
0.2.0
829dd95b32a41526923f44799ce0762fcd9a3a37
code
1046
""" DifferentiableExpectations A Julia package for differentiating through expectations with Monte-Carlo estimates. # Exports $(EXPORTS) """ module DifferentiableExpectations using ChainRulesCore: ChainRulesCore, NoTangent, ProjectTo, RuleConfig, Tangent, @not_implemented, rrule, rrule_via_ad, unthunk using Compat: @compat using DensityInterface: logdensityof using Distributions: Distribution, MvNormal, Normal using DocStringExtensions using LinearAlgebra: Diagonal, cholesky, dot using OhMyThreads: tmap, treduce, tmapreduce using Random: Random, AbstractRNG, default_rng, seed! using Statistics: Statistics, cov, mean, std using StatsBase: StatsBase include("utils.jl") include("distribution.jl") include("abstract.jl") include("reinforce.jl") include("reparametrization.jl") export DifferentiableExpectation export Reinforce export Reparametrization export FixedAtomsProbabilityDistribution export empirical_distribution @compat public atoms, weights end # module DifferentiableExpectations
DifferentiableExpectations
https://github.com/JuliaDecisionFocusedLearning/DifferentiableExpectations.jl.git
[ "MIT" ]
0.2.0
829dd95b32a41526923f44799ce0762fcd9a3a37
code
2611
""" DifferentiableExpectation{t} Abstract supertype for differentiable parametric expectations `E : θ -> 𝔼[f(X)]` where `X ∼ p(θ)`, whose value and derivative are approximated with Monte-Carlo averages. # Subtypes - [`Reinforce`](@ref) - [`Reparametrization`](@ref) # Calling behavior (E::DifferentiableExpectation)(θ...; kwargs...) Return a Monte-Carlo average `(1/S) ∑f(xᵢ)` where the `xᵢ ∼ p(θ)` are iid samples. # Type parameters - `threaded::Bool`: specifies whether the sampling should be performed in parallel # Required fields - `f`: The function applied inside the expectation. - `dist_constructor`: The constructor of the probability distribution. - `rng::AbstractRNG`: The random number generator. - `nb_samples::Integer`: The number of Monte-Carlo samples. - `seed`::Union{Nothing,Integer}: The seed for the random number generator, reset before each call. Set to `nothing` for no seeding. The field `dist_constructor` must be a callable such that `dist_constructor(θ...)` generates an object `dist` that corresponds to `p(θ)`. The resulting object `dist` needs to satisfy: - the [Random API](https://docs.julialang.org/en/v1/stdlib/Random/#Hooking-into-the-Random-API) for sampling with `rand(rng, dist)` - the [DensityInterface.jl API](https://github.com/JuliaMath/DensityInterface.jl) for loglikelihoods with `logdensityof(dist, x)` """ abstract type DifferentiableExpectation{t} end is_threaded(::DifferentiableExpectation{t}) where {t} = Val(t) """ empirical_predistribution(E::DifferentiableExpectation, θ...) Return a uniform [`FixedAtomsProbabilityDistribution`](@ref) over `{x₁, ..., xₛ}`, where the `xᵢ ∼ p(θ)` are iid samples. """ function empirical_predistribution(E::DifferentiableExpectation, θ...) (; dist_constructor, rng, nb_samples, seed) = E dist = dist_constructor(θ...) isnothing(seed) || seed!(rng, seed) xs = maybe_eachcol(rand(rng, dist, nb_samples)) xdist = FixedAtomsProbabilityDistribution(xs; threaded=unval(is_threaded(E))) return xdist end """ empirical_distribution(E::DifferentiableExpectation, θ...; kwargs...) Return a uniform [`FixedAtomsProbabilityDistribution`](@ref) over `{f(x₁), ..., f(xₛ)}`, where the `xᵢ ∼ p(θ)` are iid samples. """ function empirical_distribution(E::DifferentiableExpectation, θ...; kwargs...) xdist = empirical_predistribution(E, θ...) fk = FixKwargs(E.f, kwargs) ydist = map(fk, xdist) return ydist end function (E::DifferentiableExpectation)(θ...; kwargs...) ydist = empirical_distribution(E, θ...; kwargs...) return mean(ydist) end
DifferentiableExpectations
https://github.com/JuliaDecisionFocusedLearning/DifferentiableExpectations.jl.git
[ "MIT" ]
0.2.0
829dd95b32a41526923f44799ce0762fcd9a3a37
code
4340
""" FixedAtomsProbabilityDistribution{threaded} A probability distribution with finite support and fixed atoms. Whenever its expectation is differentiated, only the weights are considered active, whereas the atoms are considered constant. # Example ```jldoctest julia> using DifferentiableExpectations, Statistics, Zygote julia> using DifferentiableExpectations: atoms, weights julia> dist = FixedAtomsProbabilityDistribution([2, 3], [0.4, 0.6]); julia> atoms(map(abs2, dist)) 2-element Vector{Int64}: 4 9 julia> weights(map(abs2, dist)) 2-element Vector{Float64}: 0.4 0.6 julia> mean(abs2, dist) 7.0 julia> gradient(mean, abs2, dist)[2] (atoms = nothing, weights = [4.0, 9.0]) ``` # Constructor FixedAtomsProbabilityDistribution( atoms::AbstractVector, weights::AbstractVector=uniform_weights(atoms); threaded=false ) # Fields $(TYPEDFIELDS) """ struct FixedAtomsProbabilityDistribution{ threaded,A<:AbstractVector,W<:AbstractVector{<:Real} } atoms::A weights::W function FixedAtomsProbabilityDistribution( atoms::A, weights::W=uniform_weights(atoms); threaded::Bool=false ) where {A,W} if isempty(atoms) || isempty(weights) throw(ArgumentError("`atoms` and `weights` must be non-empty.")) elseif length(atoms) != length(weights) throw(DimensionMismatch("`atoms` and `weights` must have the same length.")) elseif !isapprox(sum(weights), one(eltype(weights)); atol=1e-4) throw(ArgumentError("`weights` must be normalized to `1`.")) end return new{threaded,A,W}(atoms, weights) end end """ atoms(dist::FixedAtomsProbabilityDistribution) Get the vector of atoms of a distribution. """ atoms(dist::FixedAtomsProbabilityDistribution) = dist.atoms """ weights(dist::FixedAtomsProbabilityDistribution) Get the vector of weights of a distribution. """ weights(dist::FixedAtomsProbabilityDistribution) = dist.weights is_threaded(::FixedAtomsProbabilityDistribution{t}) where {t} = Val(t) Base.length(dist::FixedAtomsProbabilityDistribution) = length(dist.atoms) """ rand(rng, dist::FixedAtomsProbabilityDistribution) Sample from the atoms of `dist` with probability proportional to their weights. """ function Random.rand(rng::AbstractRNG, dist::FixedAtomsProbabilityDistribution) (; atoms, weights) = dist return StatsBase.sample(rng, atoms, StatsBase.Weights(weights)) end """ map(f, dist::FixedAtomsProbabilityDistribution) Apply `f` to the atoms of `dist`, leave the weights unchanged. """ function Base.map(f, dist::FixedAtomsProbabilityDistribution) (; atoms, weights) = dist new_atoms = mymap(is_threaded(dist), f, atoms) return FixedAtomsProbabilityDistribution(new_atoms, weights) end """ mean(dist::FixedAtomsProbabilityDistribution) Compute the expectation of `dist`, i.e. the sum of all atoms multiplied by their respective weights. """ function Statistics.mean(dist::FixedAtomsProbabilityDistribution) (; atoms, weights) = dist return mymapreduce(is_threaded(dist), *, +, weights, atoms) end """ mean(f, dist::FixedAtomsProbabilityDistribution) Shortcut for `mean(map(f, dist))`. """ function Statistics.mean(f, dist::FixedAtomsProbabilityDistribution) return mean(map(f, dist)) end function ChainRulesCore.rrule(::typeof(mean), dist::FixedAtomsProbabilityDistribution) (; atoms) = dist e = mean(dist) function dist_mean_pullback(Δe_thunked) Δe = unthunk(Δe_thunked) Δatoms = NoTangent() Δweights = mymap(is_threaded(dist), Base.Fix1(dot, Δe), atoms) Δdist = Tangent{FixedAtomsProbabilityDistribution}(; atoms=Δatoms, weights=Δweights) return NoTangent(), Δdist end return e, dist_mean_pullback end function ChainRulesCore.rrule(::typeof(mean), f, dist::FixedAtomsProbabilityDistribution) new_dist = map(f, dist) new_atoms = new_dist.atoms e = mean(new_dist) function dist_fmean_pullback(Δe_thunked) Δe = unthunk(Δe_thunked) Δatoms = NoTangent() Δweights = mymap(is_threaded(dist), Base.Fix1(dot, Δe), new_atoms) Δdist = Tangent{FixedAtomsProbabilityDistribution}(; atoms=Δatoms, weights=Δweights) return NoTangent(), NoTangent(), Δdist end return e, dist_fmean_pullback end
DifferentiableExpectations
https://github.com/JuliaDecisionFocusedLearning/DifferentiableExpectations.jl.git
[ "MIT" ]
0.2.0
829dd95b32a41526923f44799ce0762fcd9a3a37
code
4699
""" Reinforce{threaded} <: DifferentiableExpectation{threaded} Differentiable parametric expectation `F : θ -> 𝔼[f(X)]` where `X ∼ p(θ)` using the REINFORCE (or score function) gradient estimator: ``` ∂F(θ) = 𝔼[f(X) ∇₂logp(X,θ)ᵀ] ``` # Example ```jldoctest using DifferentiableExpectations, Distributions, Zygote E = Reinforce(exp, Normal; nb_samples=10^5) E_true(μ, σ) = mean(LogNormal(μ, σ)) μ, σ = 0.5, 1,0 ∇E, ∇E_true = gradient(E, μ, σ), gradient(E_true, μ, σ) isapprox(collect(∇E), collect(∇E_true); rtol=1e-1) # output true ``` # Constructor Reinforce( f, dist_constructor, dist_logdensity_grad=nothing; rng=Random.default_rng(), nb_samples=1, threaded=false, seed=nothing ) # Fields $(TYPEDFIELDS) # See also - [`DifferentiableExpectation`](@ref) """ struct Reinforce{t,variance_reduction,F,D,G,R<:AbstractRNG,S<:Union{Int,Nothing}} <: DifferentiableExpectation{t} "function applied inside the expectation" f::F "constructor of the probability distribution `(θ...) -> p(θ)`" dist_constructor::D "either `nothing` or a parameter gradient callable `(x, θ...) -> ∇₂logp(x, θ)`" dist_logdensity_grad::G "random number generator" rng::R "number of Monte-Carlo samples" nb_samples::Int "seed for the random number generator, reset before each call. Set to `nothing` for no seeding." seed::S end function Reinforce( f::F, dist_constructor::D, dist_logdensity_grad::G=nothing; rng::R=default_rng(), nb_samples=1, threaded=false, variance_reduction=true, seed::S=nothing, ) where {F,D,G,R,S} return Reinforce{threaded,variance_reduction,F,D,G,R,S}( f, dist_constructor, dist_logdensity_grad, rng, nb_samples, seed ) end function dist_logdensity_grad(rc::RuleConfig, E::Reinforce, x, θ...) (; dist_constructor, dist_logdensity_grad) = E if !isnothing(dist_logdensity_grad) dθ = dist_logdensity_grad(x, θ...) else _logdensity_partial(_θ...) = logdensityof(dist_constructor(_θ...), x) l, pullback = rrule_via_ad(rc, _logdensity_partial, θ...) dθ = Base.tail(pullback(one(l))) end return dθ end function ChainRulesCore.rrule( rc::RuleConfig, E::Reinforce{t,variance_reduction}, θ...; kwargs... ) where {t,variance_reduction} project_θ = ProjectTo(θ) (; f, nb_samples) = E xdist = empirical_predistribution(E, θ...) xs = atoms(xdist) fk = FixKwargs(f, kwargs) ydist = map(fk, xdist) ys = atoms(ydist) y = mean(ydist) _dist_logdensity_grad_partial(x) = dist_logdensity_grad(rc, E, x, θ...) gs = mymap(is_threaded(E), _dist_logdensity_grad_partial, xs) ys_baseline = if (variance_reduction && nb_samples > 1) mymap(is_threaded(E), yᵢ -> yᵢ .- y, ys) else ys end adjusted_nb_samples = nb_samples - (variance_reduction && nb_samples > 1) function pullback_Reinforce(Δy_thunked) Δy = unthunk(Δy_thunked) ΔE = @not_implemented("The fields of the `Reinforce` object are constant.") _single_sample_pullback(gᵢ, yᵢ) = gᵢ .* dot(yᵢ, Δy) Δθ = mymapreduce(is_threaded(E), _single_sample_pullback, .+, gs, ys_baseline) ./ adjusted_nb_samples Δθ_proj = project_θ(Δθ) return (ΔE, Δθ_proj...) end return y, pullback_Reinforce end function ChainRulesCore.rrule( rc::RuleConfig, ::typeof(empirical_distribution), E::Reinforce{t,variance_reduction}, θ...; kwargs..., ) where {t,variance_reduction} project_θ = ProjectTo(θ) (; f, nb_samples) = E xdist = empirical_predistribution(E, θ...) xs = atoms(xdist) fk = FixKwargs(f, kwargs) ydist = map(fk, xdist) _dist_logdensity_grad_partial(x) = dist_logdensity_grad(rc, E, x, θ...) gs = mymap(is_threaded(E), _dist_logdensity_grad_partial, xs) adjusted_nb_samples = nb_samples - (variance_reduction && nb_samples > 1) function pullback_Reinforce_probadist(Δdist_thunked) Δdist = unthunk(Δdist_thunked) Δps = Δdist.weights Δps_mean = mean(Δps) Δps_baseline = if (variance_reduction && nb_samples > 1) Δps .- Δps_mean else Δps end ΔE = @not_implemented("The fields of the `Reinforce` object are constant.") _single_sample_pullback(gᵢ, Δpᵢ) = gᵢ .* Δpᵢ Δθ = mymapreduce(is_threaded(E), _single_sample_pullback, .+, gs, Δps_baseline) ./ adjusted_nb_samples Δθ_proj = project_θ(Δθ) return (NoTangent(), ΔE, Δθ_proj...) end return ydist, pullback_Reinforce_probadist end
DifferentiableExpectations
https://github.com/JuliaDecisionFocusedLearning/DifferentiableExpectations.jl.git
[ "MIT" ]
0.2.0
829dd95b32a41526923f44799ce0762fcd9a3a37
code
4308
""" TransformedDistribution Represent the probability distribution `p` of a random variable `X ∼ p` with a transformation `X = T(Z)` where `Z ∼ q`. # Fields $(TYPEDFIELDS) """ struct TransformedDistribution{D,T} "the distribution `q` that gets transformed into `p`" base_dist::D "the transformation function `T`" transformation::T end """ rand(rng, dist::TransformedDistribution) Sample from `dist` by applying `dist.transformation` to `dist.base_dist`. """ function Random.rand(rng::AbstractRNG, dist::TransformedDistribution) (; base_dist, transformation) = dist return transformation(rand(rng, base_dist)) end """ reparametrize(dist) Turn a probability distribution `p` into a [`TransformedDistribution`](@ref) `(q, T)` such that the new distribution `q` does not depend on the parameters of `p`. These parameters are encoded (closed over) in the transformation function `T`. """ function reparametrize end function reparametrize(dist::Normal{T}) where {T} base_dist = Normal(zero(T), one(T)) μ, σ = mean(dist), std(dist) transformation(z) = μ + σ * z return TransformedDistribution(base_dist, transformation) end function reparametrize(dist::MvNormal{T}) where {T} n = length(dist) base_dist = MvNormal(fill(zero(T), n), Diagonal(fill(one(T), n))) μ, Σ = mean(dist), cov(dist) C = cholesky(Σ) transformation(z) = μ .+ C.L * z return TransformedDistribution(base_dist, transformation) end """ Reparametrization{threaded} <: DifferentiableExpectation{threaded} Differentiable parametric expectation `F : θ -> 𝔼[f(X)]` where `X ∼ p(θ)` using the reparametrization (or pathwise) gradient estimator: if `X = g(Z,θ)` where `Z ∼ q` then ``` ∂F(θ) = 𝔼_q[∂f(g(Z,θ)) ∂₂g(Z,θ)ᵀ] ``` # Example ```jldoctest using DifferentiableExpectations, Distributions, Zygote E = Reparametrization(exp, Normal; nb_samples=10^4) E_true(μ, σ) = mean(LogNormal(μ, σ)) μ, σ = 0.5, 1,0 ∇E, ∇E_true = gradient(E, μ, σ), gradient(E_true, μ, σ) isapprox(collect(∇E), collect(∇E_true); rtol=1e-1) # output true ``` # Constructor Reparametrization( f, dist_constructor, rng=Random.default_rng(), nb_samples=1, threaded=false, seed=nothing ) # Fields $(TYPEDFIELDS) # See also - [`DifferentiableExpectation`](@ref) """ struct Reparametrization{t,F,D,R<:AbstractRNG,S<:Union{Int,Nothing}} <: DifferentiableExpectation{t} "function applied inside the expectation" f::F "constructor of the probability distribution `(θ...) -> p(θ)`" dist_constructor::D "random number generator" rng::R "number of Monte-Carlo samples" nb_samples::Int "seed for the random number generator, reset before each call. Set to `nothing` for no seeding." seed::S end function Reparametrization( f::F, dist_constructor::D; rng::R=default_rng(), nb_samples=1, threaded=false, seed::S=nothing, ) where {F,D,R,S} return Reparametrization{threaded,F,D,R,S}(f, dist_constructor, rng, nb_samples, seed) end function ChainRulesCore.rrule(rc::RuleConfig, E::Reparametrization, θ...; kwargs...) project_θ = ProjectTo(θ) (; f, dist_constructor, rng, nb_samples) = E dist = dist_constructor(θ...) transformed_dist = reparametrize(dist) zs = maybe_eachcol(rand(rng, transformed_dist.base_dist, nb_samples)) zdist = FixedAtomsProbabilityDistribution(zs; threaded=unval(is_threaded(E))) xdist = map(transformed_dist.transformation, zdist) fk = FixKwargs(f, kwargs) ydist = map(fk, xdist) y = mean(ydist) function h(zᵢ, θ) transformed_dist = reparametrize(dist_constructor(θ...)) return f(transformed_dist.transformation(zᵢ); kwargs...) end function pullback_Reparametrization(Δy_thunked) Δy = unthunk(Δy_thunked) ΔE = @not_implemented("The fields of the `Reparametrization` object are constant.") function _single_sample_pullback(zᵢ) _, pb = rrule_via_ad(rc, h, zᵢ, θ) _, _, Δθ = pb(Δy) return Δθ end Δθ = mymapreduce(is_threaded(E), _single_sample_pullback, .+, zs) ./ nb_samples Δθ_proj = project_θ(Δθ) return (ΔE, Δθ_proj...) end return y, pullback_Reparametrization end
DifferentiableExpectations
https://github.com/JuliaDecisionFocusedLearning/DifferentiableExpectations.jl.git
[ "MIT" ]
0.2.0
829dd95b32a41526923f44799ce0762fcd9a3a37
code
1039
""" FixKwargs(f, kwargs) Callable struct that fixes the keyword arguments of `f` to `kwargs...`, and only accepts positional arguments. """ struct FixKwargs{F,K} f::F kwargs::K end (fk::FixKwargs)(args...) = fk.f(args...; fk.kwargs...) """ maybe_eachcol(x::AbstractVector) Return `x`. """ maybe_eachcol(x::AbstractVector) = x """ maybe_eachcol(x::AbstractMatrix) Return `eachcol(x)`. """ maybe_eachcol(x::AbstractMatrix) = eachcol(x) uniform_weights(x::AbstractArray) = ones(size(x)) ./ prod(size(x)) """ mymap(::Val{threaded}, args...) Apply either `tmap(args...)` or `map(args...)` depending on the value of `threaded`. """ mymap(::Val{true}, args...) = tmap(args...) mymap(::Val{false}, args...) = map(args...) """ mymapreduce(::Val{threaded}, args...) Apply either `tmapreduce(args...)` or `mapreduce(args...)` depending on the value of `threaded`. """ mymapreduce(::Val{true}, args...) = tmapreduce(args...) mymapreduce(::Val{false}, args...) = mapreduce(args...) unval(::Val{t}) where {t} = t
DifferentiableExpectations
https://github.com/JuliaDecisionFocusedLearning/DifferentiableExpectations.jl.git
[ "MIT" ]
0.2.0
829dd95b32a41526923f44799ce0762fcd9a3a37
code
1098
using ChainRulesCore using Distributions using DifferentiableExpectations using LinearAlgebra using Random using StableRNGs using Statistics using Test using Zygote rng = StableRNG(63) @test_throws ArgumentError FixedAtomsProbabilityDistribution(Int[], Float64[]) @test_throws DimensionMismatch FixedAtomsProbabilityDistribution([2, 3], [1.0]) @test_throws ArgumentError FixedAtomsProbabilityDistribution([2, 3], [0.4, 0.8]) for threaded in (false, true) dist = FixedAtomsProbabilityDistribution([2, 3], [0.4, 0.6]; threaded) @test length(dist) == 2 @test mean(dist) ≈ 2.6 @test mean(abs2, dist) ≈ 7.0 @test mean([rand(rng, dist) for _ in 1:(10^5)]) ≈ 2.6 rtol = 0.1 @test mean(abs2, [rand(rng, dist) for _ in 1:(10^5)]) ≈ 7.0 rtol = 0.1 @test map(abs2, dist).weights == dist.weights @test map(abs2, dist).atoms == [4, 9] @test only(gradient(mean, dist)).atoms === nothing @test only(gradient(mean, dist)).weights == [2, 3] @test last(gradient(mean, abs2, dist)).atoms === nothing @test last(gradient(mean, abs2, dist)).weights == [4, 9] end
DifferentiableExpectations
https://github.com/JuliaDecisionFocusedLearning/DifferentiableExpectations.jl.git
[ "MIT" ]
0.2.0
829dd95b32a41526923f44799ce0762fcd9a3a37
code
4405
using Distributions using DifferentiableExpectations using DifferentiableExpectations: atoms using LinearAlgebra using Random using StableRNGs using Statistics using Test using Zygote exp_with_kwargs(x; correct=false) = correct ? exp(x) : sin(x) vec_exp_with_kwargs(x; correct=false) = exp_with_kwargs.(x; correct) normal_logdensity_grad(x, θ...) = gradient((_θ...) -> logpdf(Normal(_θ...), x), θ...) @testset verbose = true "Univariate LogNormal" begin μ, σ = 0.5, 1.0 seed = 63 true_mean(μ, σ) = mean(LogNormal(μ, σ)) true_std(μ, σ) = std(LogNormal(μ, σ)) ∇mean_true = gradient(true_mean, μ, σ) @testset verbose = true "Threaded: $threaded" for threaded in (false,) # @testset "$(nameof(typeof(E)))" for E in [ Reinforce( exp_with_kwargs, Normal; rng=StableRNG(seed), nb_samples=10^4, threaded=threaded, seed=seed, ), Reinforce( exp_with_kwargs, Normal, normal_logdensity_grad; rng=StableRNG(seed), nb_samples=10^4, threaded=threaded, seed=seed, ), Reparametrization( exp_with_kwargs, Normal; rng=StableRNG(seed), nb_samples=10^4, threaded=threaded, seed=seed, ), ] string(E) @test E(μ, σ; correct=true) == E(μ, σ; correct=true) @test E.dist_constructor(μ, σ) == Normal(μ, σ) @test E(μ, σ; correct=true) ≈ true_mean(μ, σ) rtol = 0.1 @test std(atoms(empirical_distribution(E, μ, σ; correct=true))) ≈ true_std(μ, σ) rtol = 0.1 ∇mean_est = gradient((μ, σ) -> E(μ, σ; correct=true), μ, σ) @test ∇mean_est[1] ≈ ∇mean_true[1] rtol = 0.2 @test ∇mean_est[2] ≈ ∇mean_true[2] rtol = 0.2 end end end; @testset verbose = true "Multivariate LogNormal" begin μ, σ = [2.0, 3.0], [0.2, 0.3] true_mean(μ, σ) = mean.(LogNormal.(μ, σ)) true_std(μ, σ) = std.(LogNormal.(μ, σ)) ∂mean_true = jacobian(true_mean, μ, σ) @testset verbose = true "Threaded: $threaded" for threaded in (false, true) @testset "$(nameof(typeof(E)))" for E in [ Reinforce( vec_exp_with_kwargs, (μ, σ) -> MvNormal(μ, Diagonal(σ .^ 2)); rng=StableRNG(63), nb_samples=10^5, threaded=threaded, ), # Reparametrization( # vec_exp_with_kwargs, # (μ, σ) -> MvNormal(μ, Diagonal(σ .^ 2)); # rng=StableRNG(63), # nb_samples=10^5, # threaded=threaded, # ), ] @test E.dist_constructor(μ, σ) == MvNormal(μ, Diagonal(σ .^ 2)) @test E(μ, σ; correct=true) ≈ true_mean(μ, σ) rtol = 0.1 ∂mean_est = jacobian((μ, σ) -> E(μ, σ; correct=true), μ, σ) @test ∂mean_est[1] ≈ ∂mean_true[1] rtol = 0.1 @test ∂mean_est[2] ≈ ∂mean_true[2] rtol = 0.1 end end end @testset "Reinforce variance reduction" begin μ, σ = 0.5, 1.0 seed = 63 r = Reinforce(exp, Normal; nb_samples=100, variance_reduction=true, rng=StableRNG(seed)) r_no_vr = Reinforce( exp, Normal; nb_samples=100, variance_reduction=false, rng=StableRNG(seed) ) grads = [gradient(r, μ, σ) for _ in 1:1000] grads_no_vr = [gradient(r_no_vr, μ, σ) for _ in 1:1000] @test var(first.(grads)) < var(first.(grads_no_vr)) @test var(last.(grads)) < var(last.(grads_no_vr)) end @testset "Reinforce proba dist rule" begin μ, σ = 0.5, 1.0 seed = 63 r = Reinforce( exp, Normal; nb_samples=100, variance_reduction=false, rng=StableRNG(seed), seed=0 ) r_split(θ...) = mean(empirical_distribution(r, θ...)) @test r(μ, σ) == r_split(μ, σ) @test gradient(r, μ, σ) == gradient(r_split, μ, σ) r = Reinforce( exp, Normal; nb_samples=100, variance_reduction=true, rng=StableRNG(seed), seed=0 ) r_split(θ...) = mean(empirical_distribution(r, θ...)) @test r(μ, σ) == r_split(μ, σ) @test all(isapprox.(gradient(r, μ, σ), gradient(r_split, μ, σ); atol=1e-10)) end
DifferentiableExpectations
https://github.com/JuliaDecisionFocusedLearning/DifferentiableExpectations.jl.git
[ "MIT" ]
0.2.0
829dd95b32a41526923f44799ce0762fcd9a3a37
code
719
using DifferentiableExpectations: reparametrize using Distributions using StableRNGs using Test rng = StableRNG(63) @testset "Univariate Normal" begin dist = Normal(2.0, 1.0) transformed_dist = reparametrize(dist) @test mean([rand(rng, transformed_dist) for _ in 1:(10^4)]) ≈ mean(dist) rtol = 1e-1 @test std([rand(rng, transformed_dist) for _ in 1:(10^4)]) ≈ std(dist) rtol = 1e-1 end @testset "Multivariate Normal" begin dist = MvNormal([2.0, 3.0], [2.0 0.01; 0.01 1.0]) transformed_dist = reparametrize(dist) @test mean([rand(rng, transformed_dist) for _ in 1:(10^4)]) ≈ mean(dist) rtol = 1e-1 @test cov([rand(rng, transformed_dist) for _ in 1:(10^4)]) ≈ cov(dist) rtol = 1e-1 end
DifferentiableExpectations
https://github.com/JuliaDecisionFocusedLearning/DifferentiableExpectations.jl.git
[ "MIT" ]
0.2.0
829dd95b32a41526923f44799ce0762fcd9a3a37
code
1174
using Aqua: Aqua using Documenter: Documenter using JET: JET using JuliaFormatter: JuliaFormatter using DifferentiableExpectations using Test using Zygote @testset verbose = true "DifferentiableExpectations" begin @testset verbose = true "Formalities" begin @testset "Aqua" begin Aqua.test_all( DifferentiableExpectations; ambiguities=false, deps_compat=(check_extras = false), ) end @testset "JET" begin JET.test_package(DifferentiableExpectations; target_defined_modules=true) end @testset "JuliaFormatter" begin @test JuliaFormatter.format( DifferentiableExpectations; verbose=false, overwrite=false ) end @testset "Documenter" begin Documenter.doctest(DifferentiableExpectations) end end @testset "Distribution" begin include("distribution.jl") end @testset verbose = true "Reparametrization" begin include("reparametrization.jl") end @testset verbose = true "Expectation" begin include("expectation.jl") end end
DifferentiableExpectations
https://github.com/JuliaDecisionFocusedLearning/DifferentiableExpectations.jl.git
[ "MIT" ]
0.2.0
829dd95b32a41526923f44799ce0762fcd9a3a37
docs
1453
# DifferentiableExpectations.jl [![Stable](https://img.shields.io/badge/docs-stable-blue.svg)](https://JuliaDecisionFocusedLearning.github.io/DifferentiableExpectations.jl/stable/) [![Dev](https://img.shields.io/badge/docs-dev-blue.svg)](https://JuliaDecisionFocusedLearning.github.io/DifferentiableExpectations.jl/dev/) [![Build Status](https://github.com/JuliaDecisionFocusedLearning/DifferentiableExpectations.jl/actions/workflows/Test.yml/badge.svg?branch=main)](https://github.com/JuliaDecisionFocusedLearning/DifferentiableExpectations.jl/actions/workflows/Test.yml?query=branch%3Amain) [![Coverage](https://codecov.io/gh/JuliaDecisionFocusedLearning/DifferentiableExpectations.jl/branch/main/graph/badge.svg)](https://app.codecov.io/gh/JuliaDecisionFocusedLearning/DifferentiableExpectations.jl) [![Code Style: Blue](https://img.shields.io/badge/code%20style-blue-4495d1.svg)](https://github.com/JuliaDiff/BlueStyle) A Julia package for differentiating through expectations with Monte-Carlo estimates. It allows the computation of approximate derivatives for functions of the form ```math F(\theta) = \mathbb{E}_{p(\theta)}[f(X)] ``` The following estimators are implemented: - [REINFORCE](https://jmlr.org/papers/volume21/19-346/19-346.pdf#section.20) - [Reparametrization](https://jmlr.org/papers/volume21/19-346/19-346.pdf#section.56) > Warning: this package is experimental, use at your own risk and expect frequent breaking releases.
DifferentiableExpectations
https://github.com/JuliaDecisionFocusedLearning/DifferentiableExpectations.jl.git
[ "MIT" ]
0.2.0
829dd95b32a41526923f44799ce0762fcd9a3a37
docs
225
# API reference ```@meta CollapsedDocStrings = true ``` ## Public ```@autodocs Modules = [DifferentiableExpectations] Private = false ``` ## Private ```@autodocs Modules = [DifferentiableExpectations] Public = false ```
DifferentiableExpectations
https://github.com/JuliaDecisionFocusedLearning/DifferentiableExpectations.jl.git